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Abstract

This master’s thesis considers the fractional general porous medium equation; a nonlocal
equation with nonlinear diffusivity. Properties of the nonlocal operator are derived. Ex-
istence of distributional solutions are proved, together with L1-contraction and distance
to the family of vanishing viscosity solutions. Then a Fourier Galerkin method with spec-
tral vanishing viscosity (SVV) is proposed and shown to be convergent under suitable
conditions to the distributional solution.

Lastly, numerical experiments for some important special cases of the problem are
provided, together with convergence plots. This gives some information about when it is
suitable to use SVV.



Sammendrag

Denne masteroppgaver betrakter den fraksjonelle, generelle porøse medierligningen; en
ikke-lokal ligning p̊a ikkelineær diffusjon. Egenskaper for den ikke-lokale operatoren blir
utledet før eksistens av distribusjonsløsninger blir bevist. L1-kontraksjon og avstand til
“vanishing viscosity” løsninger blir ogs̊a bevist for distribusjonsløsninger. Deretter foresl̊as
en Fourier Galerkinmetode med spektral viskositet (SVV). Det blir bevist at metoden
konvergerer under rimelige antakelser til distribusjonsløsningen.

Til slutt vises flere numeriske eksperimenter for noen av de viktigste spesialtilfellene
av problemet. I tillegg fremvises noen konvergensplot, som peker p̊a n̊ar det er tilr̊adelig
å bruke SVV.
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2 1 INTRODUCTION

1 Introduction
Ever since Einstein showed in [9] the link between Brownian motion and the heat equation,
the Laplace operator has played a significant role in modelling diffusive processes. To
study an even wider range of processes than the heat equation could handle, the first
generalization was to replace the laplacian by an elliptic operator with variable coefficients
(for instance where diffusivity is dependent on direction) or even a nonlinear elliptic
operator, where diffusivity is dependent on the magnitude of the solution at a point. For
evolution equations of these types cf. e.g. [16, 27]. However, if the diffusion process should
take long-range effects into account, the laplacian will have to be replaced by a nonlocal
operator. Loosely speaking, this corresponds to changing the underlying process from
Brownian motion to an another process. The most popular of these is the α-stable Lévy
processes, which generate the fractional laplacian. This leads to evolutionary equations
of the form

∂u

∂t
= L(u)

where L=−(−∆)α2 , α ∈ (0,2) is the fractional laplacian.
In this project we will take the natural generalization of the fractional heat equation

study the nonlinear problem
∂u

∂t
= L(Φ(u)),

Since we are going to discuss and implement a numerical method for this equation, we
need to restrict it somewhat by adding initial data and suitable boundary conditions. We
will consider the following periodic problem:

∂u
∂t = L(Φ(u)), in (0,2π)× (0,T )
u
∣∣∣
t=0

= u0,
(1.1)

which is a subclass of the problems studied by Stein-Olav Davidsen in his master’s thesis
[5]. However, a slight oversight in an energy estimate proved to have deep consequences,
and the correcting of that argument lead to new insights regarding the stability of the
convergence argument with regards to the fractionality parameter α. Therefore, the
author has opted to disregard any convection terms in (1.1) in this project, to keep focus
on the nonlinear diffusion.

The layout of the project is as follows: First, we will make sure we are on the same
page when it comes to notation before we get more explicit about the nonlocal operator
and derive some properties for it, we will also define in what sense we seek a solution
of (1.1). Some time will also be spent on deriving existence of solutions as well as other
properties of solutions. In section 3, we formulate a numerical method for (1.1), and in
section 4 we prove convergence under suitable assumptions. Section 5 is devoted to some
numerical experiments, getting to know the qualitative behaviour of solution of (1.1), and
also numerically verifying the convergence established in section 4.
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2 The fractional general porous medium equation

We are working on the spatial domain (0,2π) and temporal domain [0,T ], where T <∞.
We will use QT to denote the space-time cylinder (0,2π)× [0,T ]. We will let Ckper(R)
be the set of k times continuously differentiable functions on the real line that are 2π
periodic. Its norm is the one inherited from Ck(R).

For sake of brevity, the Lp-norms taken only in space we will use the shorthand ||·||p =
||·||Lp((0,2π)). In the special case p = 2 we will go even further and only write ||·||, which
is justified in the central position this norm will take in the ensuing study.

Furthermore, we will use the notation

〈f,g〉=
∫ 2π

0
f(x)g(x)dx

for the standard inner product on L2((0,2π)). All other norms, e.g. those taken over QT
will be made out explicit. Lastly, we will denote by (·)+ the function max{·,0}, and C
will denote a generic positive constant. The reader should be aware that C may change
value from line to line without this being made explicit in what’s to follow.

With that out of the way we can direct our focus towards to the problem at hand, viz.
1.1. To begin this section, we will consider the nonlocal operator, and derive some useful
properties. This will be done in a slightly more general setting that what is necessary, but
attention will be paid to how the results work in the context of the fractional laplacian.
Following the discussion on the nonlocal operator, we define in what sense we seek a
solution of (1.1). We will then use a vanishing viscosity argument to show the existence
of solutions in this sense, in addition to some properties they enjoy.

2.1 The nonlocal operator
We start off this section with a more general notion of the nonlocal operator than we will
mainly be concerned with in this report. This section will be devoted to state some useful
properties of the nonlocal operator, and pay attention to how these properties pertain to
the fractional laplacian.

In the most general case we will consider here we take a nonnegative Radon measure,
µ, and then define a nonlocal operator as

Lµ(u) =
∫
|y|>0

u(x+y)−u(x)−y1|y|<1
∂u

∂x
(x)dµ(y) (2.1)

with 1 being the indicator function. We assume that the measure satisfies∫
R

min(|y|2,1)dµ(y)<∞. (2.2)

Example 2.1. With the measure µ given by

dµ(z) = dπα(z) = cαdz
|z|1+α , α ∈ (0,2), (2.3)
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and

cα =
αΓ

(
1+α

2

)
2π1/2+αΓ

(
1− α

2

) , (2.4)

then Lπα =−(−∆)α2 . The integrability condition is seen to hold for this measure by∫
R

min(|y|2,1)dπα(y) = cα

∫ 1

−1
|y|1−αdy+ 2cα

∫ ∞
1
|y|−1−αdy

= 2cα
2−α + 2cα

α

In addition, notice that since the measure is symmetric we can equivalently define

−(−∆)
α
2 [u](x) = cα

∫
|y|>0

u(x+y)−u(x)−y1|y|<r
∂u

∂x
(x)dπα(y), (2.5)

where r > 0 is arbitrary.

Remark 1. With the definition (2.1), the integral is well-defined for any ψ ∈ C2
per(R).

To see this we use the equality

ψ(x+y)−ψ(x)−y∂ψ
∂x

(x) = y2
∫ 1

0
(1− τ)∂

2ψ

∂x2 (x+ τy)dτ,

which when put into (2.1) gives us that

Lµ[ψ(·)](x) =
∫
|y|<1

y2
∫ 1

0
(1− τ)∂

2ψ

∂x2 (x+ τy)dτdµ(y)

+
∫
|y|>1

ψ(x+y)−ψ(x)dµ(y)

≤
∣∣∣∣∣
∣∣∣∣∣∂2ψ

∂x2

∣∣∣∣∣
∣∣∣∣∣
∞

∫
|y|<1
|y|2dµ(y)

+ 2 ||ψ||∞
∫
|y|>1

dµ(y),

which is finite be the regularity of ψ together with the integrability assumption on the
measure.

This fact we’ll be used more or less implicitly throughout the report when we use
Fubini’s theorem to switch the integration over y with any other integration.

The first property of the nonlocal operator we will derive, can in some ways be viewed
as an integration by parts formula for the nonlocal operator if the measure µ is symmetric.
The result is summarised in the following Lemma.

Lemma 2.1. For a symmetric Radon measure µ that can be written as dµ(y) =m(y)dy,
where m is measurable, the identity

〈L(u),v〉=−1
2

∫ 2π

0

∫
|y|>0

(u(x+y)−u(x))(v(x+y)−v(x))m(y)dydx (2.6)

for u,v ∈ C2
per(R).
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Proof. For starters, the variable transformation y = z−x show that

〈L(u),v〉=
∫ 2π

0

∫
|z|>0

[
u(z)−u(x)− (z−x)1|z−x|<1

∂u

∂x
(x)
]
v(x)m(z−x)dzdx

=
∫ 2π

0

∑
k∈Z

∫ 2π(k+1)

2πk

[
u(z)−u(x)− (z−x)1|z−x|<1

∂u

∂x
(x)
]
v(x)m(z−x)dzdx.

Another translation of the z-variable and using the periodicity of u results in

〈L(u),v〉=
∑
k∈Z

∫ 2π

0

∫ 2π

0

[
u(z)−u(x)− (z−x+ 2πk)1|z−x+2πk|<1

∂u

∂x
(x)
]
v(x)m(z−x+2πk)dzdx.

Since u ∈ C2
per(R) and v is bounded we can use Fubini’s Theorem. Together with the

symmetry of the measure, this yields

〈L(u),v〉=
∑
k∈Z

∫ 2π

0

∫ 2π

0

[
u(z)−u(x)− (z−x+ 2πk)1|z−x+2πk|<1

∂u

∂x
(x)
]
v(x)m(x− z−2πk)dxdz

=
∑
k∈Z

∫ 2π

0

∫ 2π(1−k)

−2πk

[
u(z)−u(x)− (z−x)1|z−x|<1

∂u

∂x
(x)
]
v(x)m(x− z)dxdz,

where we in the last step did a translation in the x-variable. Summing over all k yields
an integral in x over |x|> 0, which yields

〈L(u),v〉=−
∫ 2π

0

∫
|x|>0

[
u(x)−u(z)− (x− z)1|z−x|<1

∂u

∂x
(x)
]
v(x)m(x− z)dxdz.

The last step we’ll do in this line of reasoning is to recover the y-variable by the transfor-
mation x= z+y, resulting in

〈L(u),v〉=−
∫ 2π

0

∫
|y|>0

[
u(z+y)−u(z)−y1|y|<1

∂u

∂x
(z+y)

]
v(z+y)m(y)dydz.

Of course, the z can be interchanged with x, and so by interpolating this equality with
the straightforward definition we have

〈L(u),v〉= 1
2

∫ 2π

0

∫
|y|>0

[
u(x+y)−u(x)−y1|y|<1

∂u

∂x
(x)
]
v(x)m(y)dydx

− 1
2

∫ 2π

0

∫
|y|>0

[
u(x+y)−u(x)−y1|y|<1

∂u

∂x
(x+y)

]
v(x+y)m(y)dydx

=−1
2

∫ 2π

0

∫
|y|>0

(u(x+y)−u(x))(v(x+y)−v(x))m(y)dydx

+ 1
2

∫ 2π

0

∫ 1

−1
y

(
∂u

∂x
(x+y)v(x+y)− ∂u

∂x
(x)v(x)

)
m(y)dydx.
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All that remains is to show that the latter of the right hand side terms is zero. This
can be seen by using Fubini’s Theorem as

1
2

∫ 2π

0

∫ 1

−1
y

(
∂u

∂x
(x+y)v(x+y)− ∂u

∂x
(x)v(x)

)
m(y)dydx

= 1
2

∫ 1

−1
y

(∫ 2π

0

∂u

∂x
(x+y)v(x+y)dx−

∫ 2π

0

∂u

∂x
(x)v(x)dx

)
m(y)dy,

which is easily seen to be zero by a translation of the first inner integral together with
using periodicity.

Observation 1. We see that the form (2.6) is both symmetric and bilinear, making L a
self-adjoint operator, at least in C2

per(R).

Remark 2. It is noteworthy to remark on the similarity between (2.6) and the identity

〈∆u,v〉=−
〈
∂u

∂x
,
∂v

∂x

〉
.

Consider now that a function u defined in (0,2π) lends itself to Fourier representation.
That is, u may be written as

u(x) =
∑
ξ∈Z

ûξe
iξx.

By the linearity of Lµ we thus have that

Lµ[u](x) =
∑
ξ∈Z

ûξLµ(eiξx)

=
∑
ξ∈Z

ûξ

∫
|y|>0

eiξ(x+y)− eiξx− iξy1|y|<1e
iξxdµ(y)

=
∑
ξ∈Z

(∫
|y|>0

eiξy−1− iξy1|y|<1dµ(y)
)

︸ ︷︷ ︸
=:Gµ(ξ)

ûξe
iξx

=
∑
ξ∈Z

Gµ(ξ)ûξeiξx.

And so we may see that the nonlocal operator acts as a Fourier multiplier (weighting
of the frequencies). For µ symmetric we have the following result.

Lemma 2.2. For a symmetric, nonnegative Radon measure µ the weighting coefficients
Gµ(ξ) corresponding to the nonlocal operator Lµ are real and nonpositive.

Proof. By the definition, the imaginary part of Gµ(ξ) is

Im(Gµ(ξ)) =
∫
|y|>0

sin(ξy)− ξy1|y|<1dµ(y),

and since the integrand is odd while the measure is even, this integral is zero.
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Similarly the real part is

Re(Gµ(ξ)) =
∫
|y|>0

cos(ξy)−1dµ(y).

Here the integrand is even and nonpositive, whereas the measure is even and nonnegative,
and so this integral is nonpositive.
Example 2.2. Again, consider the case L=−(−∆)α2 . It can be shown that

Gπα(ξ) =−Cα|ξ|α (2.7)

(cf. e.g. [3]), where Cα = 2cαα−1 ∫∞
0 x−α sin(x) > 0. Indeed, an equivalent definition of

the fractional laplacian is via the Fourier transform relation

F [L[u]](ξ) = |ξ|αF [u](ξ).

We’ll end this section on nonlocal operators with the following interpolation estimate
for the fractional laplacian.
Lemma 2.3 (Interpolation estimate for fractional laplacian). With L = −(−∆)α2 there
is for every ε > 0 a constant Cε =Kε−α/(2−α), where K only depends on α, so that

||Lu|| ≤ Cε ||u||+ ε

∣∣∣∣∣
∣∣∣∣∣∂2u

∂x2

∣∣∣∣∣
∣∣∣∣∣ (2.8)

holds for every u ∈H2((0,2π)).
Proof. By Parseval’s identity for Fourier series we have that

||Lu||2 = 2πC2
α

∑
ξ∈Z
|ξ|2α|ûξ|2. (2.9)

We’ll make use of Young’s inequality of the kind

xy ≤ εxp+Cεy
q (2.10)

which holds for x,y ∈ [0,∞), ε > 0 and p ∈ (1,∞). Here 1
p + 1

q = 1 and Cε = Cε1−q is a
constant depending only on p and ε that goes to infinity as ε→ 0. Take now ε > 0 and
define ε̃= ε2

2πC2
α

. We then have when choosing p= 2
α that

1 · |ξ|2α ≤ ε̃|ξ|4 +Cε̃.

With this choice for p we have q = 2
2−α , see then that Cε̃ = Cε̃−α/(2−α) = Ĉε−2α/(2−α).

Putting this back into (2.9) we get

||Lu||2 ≤ 2πC2
α

∑
ξ∈Z

(ε̃|ξ|4 +Cε̃)|ûξ|2

= Cε
∑
ξ∈Z
|ûξ|2 + ε2

∑
ξ∈Z
|ξ|4|ûξ|2

= Cε ||u||2 + ε2
∣∣∣∣∣
∣∣∣∣∣∂2u

∂x2

∣∣∣∣∣
∣∣∣∣∣
2

≤
(
Cε ||u||+ ε

∣∣∣∣∣
∣∣∣∣∣∂2u

∂x2

∣∣∣∣∣
∣∣∣∣∣
)2
.
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Take note that the value of Cε was redefined from line to line without this having any
detrimental effect on the argument. And in particular in the last step Cε = Kε−α/(2−α).
The proof is completed after taking the square root on both sides of the inequality.

This concludes our discussion of the more general nonlocal operator, so in the following
L is always the fractional laplacian −(−∆)α2 , and µ= πα.

2.2 Distributional solution and existence
Rather than looking for a strong solution (1.1), where the PDE is satisfied by u at every
point, we will look for a solution in a weaker sense. This is of course very common
when studying partial differential equations, as it it eases the regularity requirements on
a solution. In this project we will consider distributional solutions, taken from [10].

Definition 2.1. A function u ∈ L∞(QT ) is an L∞ disitributional solution of 1.1 if

a) For all ψ ∈ C∞(R× [0,T ]) that is 2π-periodic in space and has compact support in
(0,T ) ∫ T

0

∫ 2π

0
u(x,t)∂ψ

∂t
(x,t) + Φ(u(x,t))L[ψ(·, t)](x)dxdt= 0.

b) u−u0 ∈ L1(QT ).

c) The initial condition is imposed in the sense that

ess lim
t→0+

∫ 2π

0
|u(x,t)−u0(x)|dx= 0.

Remark 1. Uniqueness of distributional solutions can be proven for Φ continuous and
nondecreasing and the initial data is bounded. However, the additional framework needed
to prove uniqueness may distract a bit from our main focus. For the Cauchy problem,
this is proven in [10] and the techniques used therein can most likely be extended to the
periodic case we are stuying here.

To show existence, and the other properties of distributional solutions of (1.1) we will
use the technique of vanishing viscosity. To do this we define the auxiliary problem

∂vε
∂t = L(Φ(vε)) + ε∂

2vε
∂x2 , (x,t) ∈ (0,2π)× [0,T ]

vε(x,0) = u0(x), x ∈ (0,2π)
vε(0, t) = vε(2π,t), t ∈ [0,T ],

(2.11)

where ε > 0. Showing existence and regularity of solutions to (2.11) lie beyond the scope
of this project report. However, techniques for showing existence and regularity can be
adapted from [14, App. B], and also see remark 2.6 given in [4].

What we will be doing in the remainder of this section is study some properties of
solutions of (2.11) and finally using a compactness argument to show that the family of
vanishing viscosity solutions converge to the unique distributional solution of (1.1).
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2.2.1 Properties of vanishing viscosity solutions

On our way to using a compactness argument, the first property of vanishing viscosity
solutions we establish is a variant of L1-contraction. It is summarized in the following
Lemma.

Lemma 2.4. Assume Φ is continuous, nondecreasing and Φ(0) = 0. For a fixed ε > 0, let
v1,v2 ∈ C2,1(QT ) be solutions of (2.11) with initial data u0,1 and u0,2 respectively. Then

∫ 2π

0
(v2(x,t)−v1(x,t))+dx≤

∫ 2π

0
(u0,2(x)−u0,1(x))+dx (2.12)

holds for every t ∈ [0,T ].

Proof. Let sgn+
ρ be a smooth approximation of sgn+, which is defined as

sgn+(x) =

1, if x > 0
0, otherwise.

This we may do with the standard mollifier, ω, which is defined as

ω(x) =

Ce
− 1

1−|x|2 , for |x|< 1
0, otherwise,

where C is a normalization factor to ensure that
∫
Rω(x)dx= 1. We then go on to define

sgn+
ρ (x) =

(
sgn+ ∗1

ρ
ω

(
·
ρ

))
(x) (2.13)

for ρ > 0. Take now the difference of (2.11) for v2 and v1. By multiplying this with
sgn+

ρ (v2−v1) and intergrating over (0,2π) in space we get〈
∂

∂t
(v2−v1),sgn+

ρ (v2−v1)
〉

=
〈
L(Φ(v2)−Φ(v1)),sgn+

ρ (v2−v1)
〉

+ ε

〈
∂2

∂x2 (v2−v1),sgn+
ρ (v2−v1)

〉
. (2.14)

We have that
lim
ρ→0

∂

∂t
(v2−v1)sgn+

ρ (v2−v1) = ∂

∂t
(v2−v1)+,

pointwise almost everywhere. Together with the regularity of v1 and v2 we may then use
the dominated convergence theorem to get that

lim
ρ→0

〈
∂

∂t
(v2−v1),sgn+

ρ (v2−v1)
〉

=
∫ 2π

0

∂

∂t
(v2−v1)+dx

= d
dt

∫ 2π

0
(v2−v1)+dx.



10 2 THE FRACTIONAL GENERAL POROUS MEDIUM EQUATION

For the nonlocal term we make the claim that

lim
ρ→0

〈
L(Φ(v2)−Φ(v1)),sgn+

ρ (v2−v1)
〉
≤ 0. (2.15)

To prove this, we start off by using Lemma 2.1 to find that

〈
L(Φ(v2)−Φ(v1)),sgn+

ρ (v2−v1)
〉

=−1
2

∫ 2π

0

∫
|y|>0

[Φ(v2(x+y)−Φ(v1(x+y))−Φ(v2(x)) + Φ(v1(x))]

×
[
sgn+

ρ (v2(x+y)−v1(x+y))− sgn+
ρ (v2(x)−v1(x))

]
dµ(y)dx.

By the smoothness of the integrand, the innermost integral is finite, and since the in-
tegration in x is over a finite interval the whole integral is finite. Thus we use Fubini’s
Theorem to get

〈
L(Φ(v2)−Φ(v1)),sgn+

ρ (v2−v1)
〉

=−1
2

∫
|y|>0

∫ 2π

0
[Φ(v2(x+y)−Φ(v1(x+y))−Φ(v2(x)) + Φ(v1(x))]

×
[
sgn+

ρ (v2(x+y)−v1(x+y))− sgn+
ρ (v2(x)−v1(x))

]
dxdµ(y)

=:−1
2

∫
|y|>0

fρ(y)dµ(y).

We want to use the dominated convergence theorem to interchange the limit with both
integrals, and the first step is to find a function that dominates fρ(y) while still being
integrable in the measure µ. We need to treat |y| > 1 and |y| < 1 separately. The case
|y|> 1 is the easier one, and we see that

|fρ(y)| ≤
∫ 2π

0
|Φ(v2(x+y)−Φ(v1(x+y))−Φ(v2(x)) + Φ(v1(x))|

×
∣∣∣sgn+

ρ (v2(x+y)−v1(x+y))− sgn+
ρ (v2(x)−v1(x))

∣∣∣dx
≤ 4π (||Φ(v2)||∞+ ||Φ(v1)||∞)<∞,

using the boundedness of sgn+
ρ together with the continuity of v2 and v1. Because the

measure is singular at y = 0, such a crude estimate will not do for |y| < 1. Rather, in
this case we expand the integrand and translate all terms so that the sgn+

ρ terms do not
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depend on y. To be more explicit we get

fρ(y) =
∫ 2π

0
(Φ(v2(x+y))−Φ(v1(x+y)))sgn+

ρ (v2(x+y)−v1(x+y))

− (Φ(v2(x+y))−Φ(v1(x+y)))sgn+
ρ (v2(x)−v1(x))

− (Φ(v2(x))−Φ(v1(x)))sgn+
ρ (v2(x+y)−v1(x+y))

+ (Φ(v2(x))−Φ(v1(x)))sgn+
ρ (v2(x)−v1(x))dx

=
∫ 2π−y

−y
(Φ(v2(x))−Φ(v1(x)))sgn+

ρ (v2(x)−v1(x))dx

−
∫ 2π

0
(Φ(v2(x+y))−Φ(v1(x+y)))sgn+

ρ (v2(x)−v1(x))dx

−
∫ 2π−y

−y
(Φ(v2(x−y))−Φ(v1(x−y)))sgn+

ρ (v2(x)−v1(x))dx

+
∫ 2π

0
(Φ(v2(x))−Φ(v1(x)))sgn+

ρ (v2(x)−v1(x))dx.

Since the integrand is periodic in all terms, the intervals we integrate over can be translated
to a common interval. Using this and rearranging terms, we get

fρ(y) =−
∫ 2π

0

[(
Φ(v2(x+y))−2Φ(v2(x)) + Φ(v2(x−y))

)
−
(
Φ(v1(x+y))−2Φ(v1(x)) + Φ(v1(x−y))

)]
× sgn+

ρ (v2(x)−v1(x))dx.

For a general function g ∈ C2(R) we have that

g(x+y)−2g(x) +g(x−y) =
∫ 1

0

d
dsg(x+ sy)ds+

∫ 1

0

d
dsg(x− sy)ds

= y
∫ 1

0

dg
dx(x+ sy)− dg

dx(x− sy)ds

= y
∫ 1

0

∫ s

−s

d
dτ

(
dg
dx(x+ τy)

)
dτ ds

= y2
∫ 1

0

∫ s

−s

d2g

dx2 (x+ τy)dτ ds.

In our particular, this identity gives us the estimate

|fρ(y)| ≤ 2π|y|2
(∣∣∣∣∣
∣∣∣∣∣∂2Φ(v2)

∂x2

∣∣∣∣∣
∣∣∣∣∣
∞

+
∣∣∣∣∣
∣∣∣∣∣∂2Φ(v1)

∂x2

∣∣∣∣∣
∣∣∣∣∣
∞

)
<∞.

Thus, there is a constant C, independent of ρ, so that

|fρ(y)| ≤ Cmin{|y|2,1},

which is integrable in the measure µ. This enables us to use the dominated convergence
theorem as

lim
ρ→0

∫
|y|>0

fρ(y)dµ(y) =
∫
|y|>0

lim
ρ→0

fρ(y)dµ(y).
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We can use the dominated convergence theorem again on fρ(y) since the integrand is
bounded. Since the integrand of fρ(y) converges pointwise almost everywhere to[

Φ(v2(x+y))−Φ(v1(x+y))−Φ(v2(x)) + Φ(v1(x))
]

×
[
sgn+(v2(x+y)−v1(x+y))− sgn+(v2(x)−v1(x))

]
,

the use of the dominated convergence theorem results in

lim
ρ→0

fρ(y) =
∫ 2π

0

[
Φ(v2(x+y))−Φ(v1(x+y))−Φ(v2(x)) + Φ(v1(x))

]
×
[
sgn+(v2(x+y)−v1(x+y))− sgn+(v2(x)−v1(x))

]
dx.

We see that the integrand is nonzero if

v2(x+y)> v1(x+y), and
v2(x)≤ v1(x),

and by the monotonicity of Φ this means that

Φ(v2(x+y))≥ Φ(v1(x+y)), and
Φ(v2(x))≤ Φ(v1(x)).

By inspection we then find that the integrand is nonnegative. The other case, when

v2(x+y)≤ v1(x+y), and
v2(x)> v1(x)

can be treated similarly. So we deduce that

lim
ρ→0

fρ(y)≥ 0,

for almost every y, which makes us finally arrive at the conclusion that

lim
ρ→0

〈
L(Φ(v2)−Φ(v1)),sgn+

ρ (v2−v1)
〉

=−1
2 lim
ρ→0

∫
|y|>0

fρ(y)dµ(y)

≤ 0.

With that out of the way, we move on to the viscous term of (2.14). Here we define

ηρ(x) =
∫ x

0
sgn+

ρ (s)ds, (2.16)

which is a convex function since sgn+
ρ ≥ 0. We may now use the inequality

η′ρ(v)∂
2v

∂x2 = ∂2ηρ(v)
∂x2 −η′ρ(v)

(
∂v

∂x

)2

≤ ∂2ηρ(v)
∂x2
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to get that

ε

〈
∂2

∂x2 (v2−v1),sgn+
ρ (v2−v1)

〉
≤
∫ 2π

0

∂2

∂x2ηρ(v2−v1)dx

= 0

by the periodicity of v2 and v1. In total, we have from (2.14) that
d
dt

∫ 2π

0
(v2(x,t)−v1(x,t))+dx≤ 0.

Lastly, integrating in time from 0 to t ∈ [0,T ] results in∫ 2π

0
(v2(x,t)−v1(x,t))+dx≤

∫ 2π

0
(u0,2(x)−u0,1(x))+dx.

This estimate immediately gives us a comparison principle.
Corollary 2.1. With the same assumptions as in Lemma 2.4, assume further that u0,2 ≥
u0,1. Then v2 ≥ v1 in QT .
Proof. By Lemma 2.4 and the assumption on the initial data∫ 2π

0
(v2(x,t)−v1(x,t))+dx≤ 0

for every t ∈ [0,T ]. Since (·)+ ≥ 0 and the continuity of v2 and v1, this means that

(v2(x,t)−v1(x,t))+ = 0

everywhere, which proves the assertion.

We will now put Lemma 2.4 to good use in proving both L1-contractivity and L∞

stability.
Lemma 2.5. With the same notation and assumptions as Lemma 2.4

||v2(·, t)−v1(·, t)||1 ≤ ||u0,2−u0,1||1 (2.17)

holds for every t ∈ [0,T ].
Proof. Using Lemma 2.4 for v2−v1 and v1−v2 yields∫ 2π

0
(v2(x,t)−v1(x,t))+dx+

∫ 2π

0
(v1(x,t)−v2(x,t))+dx

≤
∫ 2π

0
(u0,2(x)−u0,1(x))+dx+

∫ 2π

0
(u0,1(x)−u0,2(x))+dx,

and by observing that for any a,b ∈ R

|a− b|= (a− b)+ + (b−a)+,

we get ∫ 2π

0
|v2(x,t)−v1(x,t)|dx≤

∫ 2π

0
|u0,2(x)−u0,1(x)|dx,

which completes the proof.



14 2 THE FRACTIONAL GENERAL POROUS MEDIUM EQUATION

Corollary 2.2. (2.11) has at most one solution in C2,1(QT ).

Proof. Suppose that v1 and v2 are two distinct solutions of (2.11) with the same initial
data u0. Then by Lemma 2.5

||v2(·, t)−v1(·, t)||1 = 0.

This implies that v2 = v1 almost everywhere in QT , and by continuity the equality is
indeed everywhere.

Lemma 2.6. Let vε ∈C2,1(QT ) be a solution of (4.42) and assume u0 ∈L∞((0,2π)), then

||vε(·, t)||∞ ≤ ||u0||∞ , (2.18)

for every t ∈ [0,T ].

Proof. By defining a function f(x,t) = ||u0||∞, we find that f solves (2.11) with initial
data constant equal to ||u0||∞, and so by Lemma 2.4∫ 2π

0
(vε(x,t)−||u0||∞)+dx≤

∫ 2π

0
(u0(x)−||u0||∞)+dx= 0,

which implies that vε(x,t)≤ ||u0||∞.
Similarly −f solves (2.11) with initial data −||u0||∞ and so∫ 2π

0
(−||u0||∞−vε(x,t))+dx≤

∫ 2π

0
(−||u0||∞−u0(x))+dx= 0, (2.19)

which yields
vε(x,t)≥−||u0||∞ .

This together with the first estimate gives us that

|vε(x,t)| ≤ ||u0||∞ ,

which proves the assertion.

Remark 1. The result of Lemma 2.6 will do for our purposes since it gives a uniform
bound on vε independent of ε. However, we should note that the technique used in the
above proof can with minor changes yield the stronger result that

inf
y∈(0,2π)

u0(y)≤ vε(x,t)≤ sup
y∈(0,2π)

u0(y).

Next we’ll see that if in addition the initial data has bounded variation, then the
vanishing viscosity solution also has bounded variation.

Lemma 2.7. Assume that u0 has bounded variation in addition to the assumptions of
Lemma 2.4. Let vε be the solution to (2.11), then

|vε|BV ≤ |u0|BV , (2.20)

holds for every t ∈ [0,T ].
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Proof. Consider
λ(vε,h) :=

∫ 2π

0
|vε(x+h,t)−vε(x,t)|dx.

We have that vε(·+h, ·) solves (2.11) with initial data v0 = u0(·+h), and so by Lemma
2.5

λ(vε,h)≤
∫ 2π

0
|u0(x+h)−u0(x)|dx.

Using Lemma A.1 in [14] we then have that

|vε|BV = lim
h→0

λ(vε,h)
|h|

≤ lim
h→0

1
|h|

∫ 2π

0
|u0(x+h)−u0(x)|dx

≤ lim
h→0

|h| · |u0|BV
|h|

= |u0|BV ,

which completes the proof.

The last estimate we need to enable the use of a compactness argument is a time
regularity estimate. The following Lemma gives a sufficient estimate.
Lemma 2.8. Let vε ∈ C2,1(QT ) be the solution of (2.11). With the same assumptions as
in Lemma 2.7 there is a constant C so that

||vε(·, t2)−vε(·, t1)||1 ≤ C|u0|BV
√
|t2− t1| (2.21)

holds for every t2, t1 ∈ [0,T ].
Proof. We start off by defining vρε (x,t) = vε(·, t)∗ωρ(x), with ω being the standard molli-
fier. We then have by the triangle inequality

||vε(·, t2)−vε(·, t1)||1 ≤ ||vε(·, t2)−vρε (·, t2)||1
+ ||vρε (·, t2)−vρε (·, t1)||1
+ ||vρε (·, t1)−vε(·, t1)||1 . (2.22)

For the first and last term on the right hand side of (2.22) we have that

||vε−vρε ||1 =
∫ 2π

0

∣∣∣∣∣
∫ ρ

−ρ
(vε(x)−vε(x−y))ωρ(y)dy

∣∣∣∣∣dx
≤
∫ 2π

0

∫ ρ

−ρ
|vε(x)−vε(x−y)|ωρ(y)dydx,

and using Fubini’s together with Lemma A.1 in [14] we get

||vε−vρε ||1 ≤
∫ ρ

−ρ
ωρ(y)

∫ 2π

0
|vε(x)−vε(x−y)|dxdy

≤ |vε|BV
∫ ρ

−ρ
|y|ωρ(y)dy

≤ C|vε|BV ρ.



16 2 THE FRACTIONAL GENERAL POROUS MEDIUM EQUATION

Putting this back into (2.22) and using Lemma 2.7 results in

||vε(·, t2)−vε(·, t1)||1 ≤ C|u0|BV ρ+ ||vρε (·, t2)−vρε (·, t1)||1 . (2.23)

We need to estimate the remaining norm on the right hand side of (2.23), and to do so
we see that

vρε (x,t2)−vρε (x,t1) = (t2− t1)
∫ 1

0

∂vρε
∂t

(x,t1 + s(t2− t1))ds,

which implies that

||vρε (·, t2)−vρε (·, t1)||1 ≤ |t2− t1|
∫ 2π

0

∫ 1

0

∣∣∣∣∣∂vρε∂t (x,t2 + s(t2− t1))
∣∣∣∣∣dsdx.

Fubini’s Theorem then ensures us that

||vρε (·, t2)−vρε (·, t1)||1 ≤ |t2− t1|
∫ 1

0

∣∣∣∣∣
∣∣∣∣∣∂vρε∂t (·, t1 + s(t2− t1))

∣∣∣∣∣
∣∣∣∣∣
1
ds (2.24)

Convolving (2.11) with ω̂ρ we find that∣∣∣∣∣
∣∣∣∣∣∂vρε∂t

∣∣∣∣∣
∣∣∣∣∣
1
≤ ||L[Φ(vε)]∗ωρ||1

+ ε

∣∣∣∣∣
∣∣∣∣∣∂2vρε
∂x2

∣∣∣∣∣
∣∣∣∣∣
1
. (2.25)

The nonlocal term of (2.25) is the trickiest to handle. Here we make the claim that
there is a constant C so that

||L[Φ(vε)]∗ωρ||1 ≤ C
(

1
ρ
|vε|BV + ||vε||

)
(2.26)

To prove this claim we first notice that for a general ϕ

(L(ϕ)∗ωρ)(x) =
∫
R

(∫
|z|>0

ϕ(y+ z)−ϕ(y)− z1|z|<1
∂ϕ

∂x
(y)dµ(z)

)
ωρ(x−y)dy

=
∫
R

(∫
|z|<1

ϕ(y+ z)−ϕ(y)− z∂ϕ
∂x

(y)dµ(z)
)
ωρ(x−y)dy

+
∫
R

(∫
|z|>1

ϕ(y+ z)−ϕ(y)dµ(z)
)
ωρ(x−y)dy. (2.27)

For the first of these terms we have that

ϕ(y+ z)−ϕ(y)− z∂ϕ
∂x

(y) =
∫ 1

0

∫ θ

0
z2∂

2ϕ

∂x2 (y+ τz)dτ dθ

=
∫ 1

0

∫ 1

τ
z2∂

2ϕ

∂x2 (y+ τz)dθdτ

=
∫ 1

0
z2(1− τ)∂

2ϕ

∂x2 (y+ τz)dτ.
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Thus we get for the first term on the right hand side of (2.27), after using Fubini’s and
integration by parts, that

∫
R

(∫
|z|<1

∫ 1

0
z2(1− τ)∂

2ϕ

∂x2 (y+ τz)dτ dµ(z)
)
ωρ(x−y)dy

=
∫
R

∫
|z|<1

∫ 1

0
z2(1− τ)∂ϕ

∂x
(y+ τz)∂ωρ

∂x
(x−y)dτ dµ(z)dy. (2.28)

Note here that the integration by parts was taken in the y-variable, and due to ωρ(x−y)
this leads to no additional boundary terms, and no sign change. We now put this back
into (2.27) and take the L1-norm in space to get

||L(ϕ)∗ωρ||1 ≤
∫ 2π

0

∣∣∣∣∣
∫
R

∫
|z|<1

∫ 1

0
z2(1− τ)∂ϕ

∂x
(y+ τz)∂ωρ

∂x
(x−y)dτ dµ(z)dy

∣∣∣∣∣dx︸ ︷︷ ︸
=:I1

+
∫ 2π

0

∣∣∣∣∣
∫
R

∫
|z|>1

ϕ(y+ z)−ϕ(y)dµ(z)ωρ(x−y)dy
∣∣∣∣∣dx︸ ︷︷ ︸

=:I2

. (2.29)

Considering I1, we have

I1 ≤
∫ 2π

0

∫
R

∫
|z|<1

∫ 1

0
|z|2(1− τ)

∣∣∣∣∣∂ϕ∂x (y+ τz)
∣∣∣∣∣ ·
∣∣∣∣∣∂ωρ∂x

(x−y)
∣∣∣∣∣dτ dµ(z)dydx,

and by the symmetry of convolutions

I1 ≤
∫ 2π

0

∫
R

∫
|z|<1

∫ 1

0
|z|2(1− τ)

∣∣∣∣∣∂ϕ∂x (x−y+ τz)
∣∣∣∣∣ ·
∣∣∣∣∣∂ωρ∂x

(y)
∣∣∣∣∣dτ dµ(z)dydx.

Now the only x-dependence is in ∂ϕ
∂x , and so using Fubini’s to make the x-integral the

innermost we get

I1 ≤ |ϕ|BV
∫
R

∫
|z|<1

∫ 1

0
|z|2(1− τ)

∣∣∣∣∣∂ωρ∂x
(y)
∣∣∣∣∣dτ dµ(z)dy.

≤ C

ρ
|ϕ|BV

Similarly for I2 we may use the symmetry of convolutions in conjunction with Fubini’s
Theorem. This enables the estimates

I2 ≤
∫ 2π

0

∫
R

∫
|z|>1
|ϕ(x−y+ z)|+ |ϕ(x−y)|dµ(z)ωρ(y)dydx

≤ 2 ||ϕ||1
∫
R

∫
|z|>1

ωρ(y)dµ(z)dy

≤ C ||ϕ||1 .
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When the estimates for I1 and I2 are put back into (2.27) we end up with

||L(ϕ)∗ωρ||1 ≤ C
(

1
ρ
|ϕ|BV + ||ϕ||1

)
. (2.30)

Putting in ϕ= Φ(vε) we get

||L[Φ(vε)]∗ωρ||1 ≤ C
(

1
ρ
|Φ(vε)|BV + ||Φ(vε)||1

)
. (2.31)

To establish (2.26) we now use that Φ is locally Lipschitz and Lemma 2.6, so there is a
constant LΦ so that

|Φ(vε)|= |Φ(vε)−Φ(0)|
≤ LΦ|vε|,

which means that
||Φ(vε)||1 ≤ LΦ ||vε||1 .

The BV term can be treated similarly. See that for any partition 0 = x0 < .. . < xm = 2π
we have

m−1∑
k=0
|Φ(vε(xk+1))−Φ(vε(xk))| ≤ LΦ

m−1∑
k=0
|vε(xk+1)−vε(xk)|

≤ LΦ|vε|BV .

Taking the supremum over all such finite partitions we find that

|Φ(vε)|BV ≤ LΦ|vε|BV .

Putting this back into (2.31) results in the desired

||L[Φ(vε)]||1 ≤ C
(

1
ρ
|vε|BV + ||vε||1

)
. (2.32)

Using Lemma 2.5 and 2.7 this results in

||L[Φ(vε)]∗ωρ||1 ≤ C
(

1
ρ
|u0|BV + ||u0||1

)
.

Moving on to the viscous term of (2.25) we use the rule of differentiating convolutions
and Young’s inequality, which yields∣∣∣∣∣

∣∣∣∣∣∂2vρε
∂x2

∣∣∣∣∣
∣∣∣∣∣
1

=
∣∣∣∣∣
∣∣∣∣∣∂vε∂x ∗ ∂ωρ∂x

∣∣∣∣∣
∣∣∣∣∣
1

≤
∣∣∣∣∣
∣∣∣∣∣∂vε∂x

∣∣∣∣∣
∣∣∣∣∣
1

∣∣∣∣∣
∣∣∣∣∣∂ωρ∂x

∣∣∣∣∣
∣∣∣∣∣
1

≤ C|u0|BV
1
ρ
.
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With these estimates (2.25) becomes∣∣∣∣∣
∣∣∣∣∣∂vρε∂t

∣∣∣∣∣
∣∣∣∣∣
1
≤ C

(
1
ρ

+ 1
)
. (2.33)

Going further we put this back into (2.24) to get

||vρε (·, t2)−vρε (·, t1)||1 ≤ C|t2− t1|
(

1
ρ

+ 1
)
, (2.34)

which we put into (2.23) to finally arrive at

||vε(·, t2)−vε(·, t1)||1 ≤ C
(
ρ+ |t2− t1|

(
1
ρ

+ 1
))

. (2.35)

The proof is completed by setting ρ=
√
|t2− t1|.

Before closing out this section on vanishing viscosity solutions, we want to estimate
the difference between two vanishing viscosity solution with different viscosities. Although
the following estimate is not optimal, it is sufficient for our purposes. The proof is rather
long, and has therefore been relegated to appendix B, so as to not disrupt the continuity
of the text too much.

Lemma 2.9. Let vε,vδ ∈ C2,1(QT ) be solutions of (2.11) with viscosities ε and δ respec-
tively. Assume further that u0 has bounded variation. Then there is a constant C so
that

||vε(·, t)−vδ(·, t)||1 ≤ C|u0|
√
ε+ δ

for all t ∈ [0,T ].

2.2.2 Convergence to distributional solution

With the estimates proved in section 2.2.1, we are now in a position to use a compactness
argument and show that vε converges to a distributional solution of (1.1). We will use
Kolmogorov’s compactness theorem, and for sake of the reader’s ease of reference we state
it in full now. It can also be found as Theorem A.8 in [14].

Theorem 2.1 (Theorem A.8 in [14]). Let uη : Rn× [0,∞)→ R be a family of functions
such that for each positive T ,

|uη(x,t)| ≤ CT , (x,t) ∈ Rn× [0,T ]

for a constant CT independent of η. Assume in addition for all compact B ⊂ Rn and for
t ∈ [0,T ] that

sup
|ξ|≤|ρ|

∫
B
|uη(x+ ξ, t)−uη(x,t)|dx≤ νB,T (|ρ|),

for a modulus of continuity ν. Furthermore, assume for s and t in [0,T ] that∫
B
|uη(x,t)−uη(x,s)|dx≤ ωB,T (|t− s|) as η→ 0
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for some modulus of continuity ωT . Then there exists a sequence ηj→ 0 such that for each
t ∈ [0,T ] the function {uηj (t)} converges to a function u(t) ∈ L1

loc(Rn). The convergence
is in C([0,T ];L1

loc(Rn).

The main result of this section is summarized in the following Theorem.

Theorem 2.2. Assume Φ is C2, nondecreasing and Φ(0) = 0. Assume further that u0 ∈
L∞((0,2π))∩BV ((0,2π)). Then there exists a unique distributional solution, u, to (1.1),
and ||u||L∞(QT ) ≤ ||u0||∞. Moreover, if v is a distributional solution of (1.1) with initial
data v0, then

||u(·, t)−v(·, t)||1 ≤ ||u0−v0||1 (2.36)
holds for all t ∈ [0,T ]. In addition, if uε is a solution of (2.11), then there is a constant
C, independent of ε, so that

||u(·, t)−uε(·, t)||1 ≤ C|u0|BV
√
ε. (2.37)

Proof. Denote by {uε}ε>0 the family of solution of (2.11). First we’ll establish that uε
has a limit point, and then show that this limit point is the unique distributional solution
together with some properties.

Establishing limit point of uε: Again we want to use Kolmogorov’s theorem. Lemma
2.6 |uε(x,t)| ≤ ||u0||∞, and Lemma 2.7 ensures that the second assumption of The-
orem 2.1 is satisfied. Time regularity is proved in Lemma 2.8. We may thus con-
clude that there is a subsequence {uεj}j∈N that converges to some u in C([0,T ] :
L1((0,2π))). In addition, Lemma 2.9 implies that uε is Cauchy in C([0,T ] :L1((0,2π))).
Therefore uε converges to u, not just a subsequence of uε.

The limit u is a distributional solution: Take any ψ ∈ C∞(R× [0,T ]) that is 2π-
periodic and has compact support in the temporal variable. Using integration by
parts, and that L is self-adjoint, we have for every ε > 0 that uε satisfies∫ T

0

∫ 2π

0
uε(x,t)

∂ψ

∂t
(x,t) + Φ(uε(x,t))L[ψ(·, t)](x) + εuε(x,t)

∂2ψ

∂x2 (x,t)dxdt= 0.
(2.38)

By the convergence of uε to u we have that

||uε−u||L1(QT ) ≤ T sup
t∈[0,T ]

||uε(·, t)−u(·, t)||1→ 0,

as ε→ 0. Similarly, using that Φ is locally Lipschitz, we get

lim
ε→0
||Φ(u)−Φ(uε)||L1(QT ) = 0.

For the viscous term we use the boundedness of uε as

lim
ε→0

ε
∫ T

0

∫ 2π

0
uε(x,t)

∂2ψ

∂x2 (x,t)dxdt≤ lim
ε→0

2πTε ||u0||∞

∣∣∣∣∣
∣∣∣∣∣∂2ψ

∂x2

∣∣∣∣∣
∣∣∣∣∣
L∞(QT )

= 0.
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It is a well-known fact that strong convergence implies weak convergence, so taking
the limit ε→ 0 in (2.38) we get

∫ T

0

∫ 2π

0
u(x,t)∂ψ

∂t
(x,t) + Φ(u(x,t))L[ψ(·, t)](x) = 0. (2.39)

That u satisfies the initial condition, we see by using the triangle inequality and
Lemma 2.8, resulting in

||u(·, t)−u0||1 ≤ ||u(·, t)−uε(·, t)||1 + ||uε(·, t)−u0||1
≤ ||u(·, t)−uε(·, t)||1 +C

√
t,

where C is a constant independent of ε, and so taking the limit ε→ 0 we get

lim
t→0+

||u(·, t)−u0||1 ≤ lim
t→0+

C
√
t= 0.

And so u is a distributional solution of (1.1).

L1-contraction: Let v be a distributional solution (1.1) with initial data v0, and is the
limit of vanishing viscosity solution {vε}ε>0. Using the triangle inequality

||u(·, t)−v(·, t)||1 ≤ ||u(·, t)−uε(·, t)||1
+ ||uε(·, t)−vε(·, t)||1
+ ||vε(·, t)−v(·, t)||1 .

Using Lemma 2.5 and taking the limit ε→ 0 results in

||u(·, t)−v(·, t)||1 ≤ ||u0−v0||1 ,

which proves L1-contractivity for distributional solutions.

Convergence rate of uε: Using the triangle inequality and Lemma 2.9 leads to

||u(·, t)−uε(·, t)||1 ≤ ||u(·, t)−vδ(·, t)||1 + ||uε(·, t)−uδ(·, t)||1
≤ ||u(·, t)−vδ(·, t)||1 +C|u0|BV

√
ε+ δ,

where C is a constant independent of ε and δ. Taking δ→ 0 we get

||u(·, t)−uε(·, t)||1 ≤ C|u0|BV
√
ε. (2.40)

Remark 1. Note that strictly speaking, theorem 2.1 is not needed in this argument
because of Lemma 2.9. However, we have incorporated it here to show that the existence
of a distributional solution does not hinge on Lemma 2.9.
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3 Numerical formulation
The main point of using spectral methods in a numerical code is that their order of conver-
gence is directly related to the smoothness of the underlying exact solution of the problem
one is studying. So if the solution is infinitely smooth, the numerical approximation will
be satisfactory for a low number of degrees of freedom relative to other numerical formula-
tions, like finite element methods. However, if the exact solution exhibits finite regularity
the order of convergence of the spectral method will usually be truncated to a lower order.
Therefore, before formulating a spectral method it is beneficial to know something of the
regularity of the exact solution we are trying to approximate numerically.

As a representative example we will use Φ(u) = |u|m−1u, for m ≥ 1. Then (1.1),
with the fractional laplacian as nonlocal operator, is called the fractional porous medium
equation (see e.g. [6]). It is also valuable to view this equation in conjunction with its
local counterpart,

∂u

∂t
= ∆(|u|m−1u), (3.1)

the porous medium equation. More information on the pourous medium equation and
some of its generalizations can be found in the monograph [27]. Existence, uniqueness
and some regularity results for the fractional porous medium equation

∂u

∂t
=−(−∆)

α
2 (|u|m−1u), (3.2)

was studied in amongst others [7]. One of the main difference between (3.1) and (3.2) is
that for nonnegative initial data, the fractional porous medium equation behaves more
like the heat equation in that the solution is instantly positive everywhere. This is in stark
contrast to the local case (3.1), where if the initial data as compact support the solution
will have a free boundary that moves at a finite speed (as is the case with the famous
Barenblatt solution). Since the fractional laplacian recovers the standard laplacian in the
limit α→ 2, we can thus expect that the gradient of the solution will be less and less
well-behaved for increasing α.

The phenomenon of solutions with compact support in the local case is in no way
restricted only to the porous medium equation, and similar behaviour can be expected
of any Φ if Φ′ = 0 somewhere in the range of the solution. If we want to make a robust
and flexible code that can handle a wide range of Φ and α ∈ (0,2), the risk of having
a wildly varying gradient must in some way be addressed. To that end we will use
stabilization technique well-suited to modal basis like trigonometric polynomials, viz.
spectral vanishing viscosity (SVV).

This stabilization technique was first used by Tadmor in [24] and consist in adding a
viscous term that acts only on the higher frequencies. The spectral vanishing viscosity was
first used to recover spectral convergence for spectral methods on the Burgers’ equation,
whose solution may exhibit shock discontinuities in finite time. To be more precise the
spectral vanishing viscosity method consists in adding a viscous term to (1.1) like

∂u

∂t
= L(Φ(u)) + εN

∂2

∂x2 (QN ∗u), (3.3)
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where QN is a symmetric viscosity kernel,

QN (x) =
∑
|ξ|≤N

Q̂ξe
iξx, (3.4)

and the coefficients Q̂ξ satisfy
Q̂ξ = 0, |ξ|<mN

0≤ Q̂ξ ≤ 1, |ξ| ≥ 1
Q̂−ξ = Q̂ξ, |ξ| ≤N and
Q̂|ξ| ≤ Q̂|ξ|+1.

(3.5)

The main challenge with the spectral vanishing viscosity is calibrating the parameters εN
and mN so that εN → 0 and mN →∞ at suitable rates as N →∞. This point will be
more thoroughly discussed in section 4, where we want to establish convergence of the
ensuing numerical formulation.

In the remainder of this section we will first consider some projections into Fourier
space. These projections will figure prominently in the following where we derive a Fourier
Galerkin method. Some space is also devoted to considering a Fourier collocation method,
which from an implementation viewpoint will prove to be less feasible than the Galerkin
methods.

3.1 Fourier expansion
Due to the representation of a nonlocal operator L as weighting of Fourier coefficients, a
natural choice for the finite dimensional space to seek a numerical solution of (1.1) would
seem to be

SN := span({eiξx}Nξ=−N ). (3.6)
With this choice of function space, the subsequent numerical methods, and the argument
we will use to prove their convergence, is heavily reliant on knowledge about the relevant
projections into SN . Therefore, it seems advisable to devote a section to studying the two
most used projections into SN . This will be our focus in this section.

For the remainder of this section, let f ∈Hm((0,2π)) with m≥ 0, which means it has
the representation

f(x) =
∑
ξ∈Z

cξe
iξx, (3.7)

where
cξ = 1

2π

∫ 2π

0
f(x)e−iξxdx. (3.8)

In addition, with f ∈Hm((0,2π)) it can be shown that∑
ξ∈Z

(1 + |ξ|2m)|cξ|2 <∞.

The first projection we’ll consider is the truncation of the Fourier series, i.e. we define
the projection SN as

(SNf)(x) =
∑
|ξ|≤N

cξe
iξx. (3.9)
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The first property to be aware of, and one of the reasons why the space SN figures so
prominently in spectral methods, is that the projection error decreases with an order
depending on the smoothness of f .

Lemma 3.1. Assume f ∈Hm((0,2π)), then

||(I−SN )f || ≤N−m
∣∣∣∣∣
∣∣∣∣∣∂sf∂x

∣∣∣∣∣
∣∣∣∣∣ . (3.10)

Proof. This result is easily derived from Parseval’s identity as

||(I−SN )f ||=
2π

∑
|ξ|>N

|cξ|2


1
2

=
2π

∑
|ξ|>N

1
|ξ|2m

|ξ|2m|cξ|2


1
2

≤ 1
Nm

2π
∑
|ξ|>N

|ξ|2m|cξ|2


1
2

≤N−m
∣∣∣∣∣
∣∣∣∣∣∂mf∂xm

∣∣∣∣∣
∣∣∣∣∣ .

Note that here we have used that
∂rf

∂xr
=
∑
ξ∈Z

(iξ)rcξeiξx,

for 0≤ r ≤m.

Remark 1. With f ∈ C∞, we see from (3.10) that the projection SNf converges to f
faster than any polynomial order of N . This rapid rate of convergence is usually given
the name of spectral (or exponential) convergence in the literature.

Remark 2. In a similar way it can be shown that for every 0 ≤ r ≤m there is a C so
that ∣∣∣∣∣

∣∣∣∣∣ ∂r∂xr (I−SN )f
∣∣∣∣∣
∣∣∣∣∣≤ CNr−m

∣∣∣∣∣
∣∣∣∣∣∂mf∂xm

∣∣∣∣∣
∣∣∣∣∣ , (3.11)

cf. [1, section 5.1].

In numerical implementation the need to evaluate integrals such as (3.8) may arise,
and doing so exaclty will in general not be feasible in an implementation. One will then
need to resort to numerical integration to approximate cξ. If we use the trapezoidal
rule together with the nodes xj = 2πj

2N+1 , j = 0, . . . ,2N we get the approximate Fourier
coefficients given by

c̃ξ = 1
2N + 1

2N∑
j=0

f(xj)e−iξxj , (3.12)
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and we define the projection IN into SN by

(INf)(x) =
∑
|ξ|≤N

c̃ξe
iξx, (3.13)

which enjoys the property of interpolating f at the nodes xj for j = 0, . . . ,2N (cf. e.g.
[12, sec. 8.1]). As we will see shortly, the operator IN behaves asymptotically like the
truncated Fourier series SN , albeit with greater constants, but first there is a Lemma
showing that IN is just SN with an additional ”aliasing” error.
Lemma 3.2. We have the decomposition

IN = SN +AN , (3.14)

where

(ANf)(x) =
∑
|ξ|≤N

∑
k∈Z
k 6=0

cξ+k(2N+1)

eiξx. (3.15)

Moreover, ANf is orthogonal to (I−SN )f , and so

||(I− IN )f ||2 = ||(I−SN )f ||2 + ||ANf ||2 . (3.16)

Proof. By the Fourier representation of f

f(xj) =
∑
ξ∈Z

cξe
iξxj , j = 0, . . . ,2N.

Take now any k ∈ Z, and see that

ei(ξ+k(2N+1))xj = ei(ξxj+2πkj)

= eiξxj ,

and therefore

f(xj) =
∑
|ξ|≤N

∑
k∈Z

cξ+k(2N+1)

eiξxj . (3.17)

We now multiply this by e
−inxj

2N+1 , with |n| ≤N , and sum over j to get

c̃n =
∑
|ξ|≤N

∑
k∈Z

cξ+k(2N+1)

 1
2N + 1

2N∑
j=0

ei(ξ−n)xj

=
∑
k∈Z
k 6=0

cn+k(2N+1).

The last step is justified in the evaluation of the sum as

1
2N + 1

2N∑
j=0

ei(ξ−n)xj = 1
2N + 1

2N∑
j=0

e2πi(ξ−n) j
2N+1

=

1, if ξ = n+ (2N + 1)k,
0, otherwise
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and since −N ≤ ξ,n ≤ N the sum is different from zero only when ξ = n. Putting this
expression in for INf we find that

(INf)(x) =
∑
|ξ|≤N

∑
k∈Z

cξ+k(2N+1)

eiξx

=
∑
|ξ|≤N

cξe
iξx+

∑
|ξ|≤N

∑
k∈Z
k 6=0

cξ+k(2N+1)

eiξx
= SNf +ANf.

Lastly we find that

(I− IN )f = (I−SN )f −ANf

=
∑
|ξ|>N

cξe
iξx−

∑
|ξ|≤N

∑
k∈Z
k 6=0

cξ+k(2N+1)

eiξx,
and we see that the first term contains no frequencies ≤N whereas the second term only
contains such terms. By the orthogonality of {eiξx}ξ∈Z and Parseval’s identity we thus
can conclude that

||(I− IN )f ||2 = ||(I−SN )f ||2 + ||ANf ||2 . (3.18)

From Lemma 3.2 and 3.1 we see that for IN to enjoy the same order of convergence as
SN we need quite a strong bound the aliasing error. Luckily this is case, and is summarized
in the following lemma.

Lemma 3.3 (Lemma 3.1 in [23]). Let f ∈Hm((0,2π)) with m≥ 1, then there is a constant
C independent of f so that

||ANf || ≤ CN−m
∣∣∣∣∣
∣∣∣∣∣(I−SN )∂

mf

∂xm

∣∣∣∣∣
∣∣∣∣∣ . (3.19)

Proof. First of all we have by Parseval’s identity

||ANf ||2 = 2π
∑
|ξ|≤N

∣∣∣∣∣∣∣∣
∑
k∈Z
k 6=0

cξ+k(2N+1)

∣∣∣∣∣∣∣∣
2

≤ 2π
∑
|ξ|≤N

∣∣∣∣∣∣∣∣
∑
k∈Z
k 6=0

|cξ+k(2N+1)|

∣∣∣∣∣∣∣∣
2

.

For every |ξ| ≤N and k ∈ Z the inequality

|k|N ≤ |ξ+k(2N + 1)|
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holds, and so

||ANf ||2 ≤ 2π
∑
|ξ|≤N

∣∣∣∣∣∣∣∣
∑
k∈Z
k 6=0

|ξ+k(2N + 1)|m
(|k|N)m |cξ+k(2N+1)|

∣∣∣∣∣∣∣∣
2

.

Use of Cauchy-Schwarz’ inequality results in

||ANf ||2 ≤ 2π
∑
|ξ|≤N

∑
k∈Z
k 6=0

1
(|k|N)2m


∑
k∈Z
k 6=0

|ξ+k(2N + 1)|2|cξ+k(2N+1)|2



= 2π
N2m

∑
|ξ|≤N

∑
k∈Z
k 6=0

1
|k|2m


∑
k∈Z
k 6=0

|ξ+k(2N + 1)|2m|cξ+k(2N+1)|2


≤ C

N2m
∑
|ξ|≤N

∑
k∈Z
k 6=0

|ξ+k(2N + 1)|2m|cξ+k(2N+1)|2, (3.20)

since the sum ∑
k 6=0

1
|k|2m <∞ for m≥ 1. Lastly we notice that the double sum in (3.20)

is the same as a single sum over all |ξ|>N , and thus we end up with

||ANf ||2 ≤
C

N2m
∑
|ξ|>N

|ξ|2m|cξ|2

= C

N2m

∣∣∣∣∣
∣∣∣∣∣(I−SN )∂

mf

∂xm

∣∣∣∣∣
∣∣∣∣∣
2
.

Taking the square root of this inequality completes the proof.

Remark 1. Lemma 3.1 in [23] is slightly more general and states the result for f ∈
Hp((0,2π)) with p > 1

2 , this corresponds to f being at least bounded and continuous (cf.
[13, Thm. 3.32]). This seems reasonable since if f was allowed discontinuous then we
would have little control on f outside of the discrete nodes we are doing the interpolation
on.

Finally we are in a position where we can prove that the projection error of IN behaves
asymptotically the same as SN . Since this spectral convergence is paramount in our
subsequent proof of convergence, we will be able to show convergence when both using
SN and IN in the numerical formulation.

Lemma 3.4. Let f ∈Hm((0,2π)), with m≥ 1, and let 0≤ r≤m. Then there is a constant
C so that ∣∣∣∣∣

∣∣∣∣∣∂r∂r (I− IN )f
∣∣∣∣∣
∣∣∣∣∣≤ CNr−m

∣∣∣∣∣
∣∣∣∣∣∂mf∂xm

∣∣∣∣∣
∣∣∣∣∣ . (3.21)



28 3 NUMERICAL FORMULATION

Proof. By the decompostion of IN in Lemma 3.2 the projection error is∣∣∣∣∣
∣∣∣∣∣ ∂r∂xr (I− IN )f

∣∣∣∣∣
∣∣∣∣∣≤

∣∣∣∣∣
∣∣∣∣∣ ∂r∂xr (I−SN )f

∣∣∣∣∣
∣∣∣∣∣+
∣∣∣∣∣
∣∣∣∣∣ ∂r∂xrANf

∣∣∣∣∣
∣∣∣∣∣ . (3.22)

Now we use the spectral convergence of SN and also realize that for trigonometric poly-
nomials of degree ≤N we have

∣∣∣∣∣∣ ∂r∂xr ·∣∣∣∣∣∣≤N r ||·||. This yields∣∣∣∣∣
∣∣∣∣∣ ∂r∂xr (I− IN )f

∣∣∣∣∣
∣∣∣∣∣≤ CNr−m

∣∣∣∣∣
∣∣∣∣∣∂mf∂xm

∣∣∣∣∣
∣∣∣∣∣+N r ||ANf || , (3.23)

and the proof is completed by using Lemma 3.3 on the latter term.

We close off this section by noting that although SN and IN enjoy the same spectral
convergence, the interpolation operator IN does not commute with differentiation or the
nonlocal operator Lµ. This is in contrast with SN which does commute with any operator
that works as a weighting of frequencies ( ∂r

∂xr and Lµ being particular examples). Luckily,
this property of SN will not be required in the following convergence theory.

3.2 Formulation of numerical methods

3.2.1 Fourier Galerkin method

As is usual with Galerkin methods, we look for a solution of the type
uN (x,t) =

∑
|ξ|≤N

ûξ(t)eiξx, (3.24)

i.e. uN (·, t) ∈ SN for every t, and we want uN to satisfy (3.3) weakly in SN . That is,〈
∂uN
∂t
−L(Φ(uN ))− εN

∂2

∂x2 (QN ∗uN ),ϕ
〉

= 0, ∀ϕ ∈ SN . (3.25)

Take now ϕ(x) = e−iξx

2π , which when put in (3.25) results in
∂ûξ
∂t
−Gµ(ξ)Φ̂ξ + εN |ξ|2Q̂ξûξ = 0, (3.26)

where
Φ̂ξ = 1

2π

∫ 2π

0
Φ(uN (x,t))e−iξxdx,

i.e. the Fourier coefficients of Φ(uN ). Considering (3.26), we now multiply by eiξx and
sum over all |ξ| ≤N , which gives

∂

∂t

∑
|ξ|≤N

ûξe
iξx−

∑
|ξ|≤N

Gµ(ξ)Φ̂ξe
iξx+ εN

∑
|ξ|≤N

|ξ|2Q̂ξûξeiξx = 0. (3.27)

We recognize this equation as
∂uN
∂t

= SNL(Φ(uN )) + εN
∂2

∂x2 (QN ∗uN ), (3.28)

and since SN and L commute we arrive at the strong spectral vanishing viscosity method
∂uN
∂t

= L(SNΦ(uN )) + εN
∂2

∂x2 (QN ∗uN ). (3.29)
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3.2.2 Pseudospectral Fourier Galerkin

If we take a moment to consider (3.29) from an implementational perspective, we see that
even though we may have exact knowledge of the Fourier coefficients of uN , that is no
guarantee that we’ll be able to solve the integrals

1
2π

∫ 2π

0
Φ(uN )eiξxdx

exactly for general Φ. Indeed, calculating Φ̂ξ exactly is only feasible for very particular
Φ. To make for a flexible numerical code that can handle general Φ the most obvious
thing to do seems to be to replace the SN in (3.29) with the discrete operator IN . This
corresponds to approximating the coefficients Φ̂ξ using

Φ̂ξ ≈
1

2N + 1

2N∑
j=0

Φ(uN (xj))eiξxj . (3.30)

With the decomposition of IN from Lemma 3.2, we may define a general projection
operator as

PN = SN +aAN , (3.31)

where a is 0 or 1, depending on whether we want to consider the truncated Fourier series
or the discrete interpolation. With this more flexible projection defined we can consider
the spectral method given by

∂uN
∂t

= L(PNΦ(uN )) + εN
∂2

∂x2 (QN ∗uN ). (3.32)

When PN = IN is used, the resulting scheme is in the literature usually called a pseu-
dospectral method, because of the introduction of an aliasing error.

To complete the method (3.32) we need a way to approximate u0 in the space SN . The
obvious choice would be to take uN0 := uN (·,0) =PNu0, but here one needs to be careful. If
u0 contains jump discontinuities it is a well-known fact that PNu0 will exhibit oscillations
in a neighbourhood of the discontinuities. First off all, this severly inhibits the rate of
convergence for the method, but also control of the L∞-norm and the total variation of
PNu0. Further discussion of how this may be remedied is relegated to appendix A (see
also [25]).

It is (3.32) that we will prove convergence for under suitable assumptions, and note
that it contains both the Galerkin method and the pseuodospectral method as special
cases.

3.2.3 Considering a Fourier collocation method

Another numerical formulation that’s reasonable to consider in this context is the collo-
cation method. Here we seek a numerical solution

ũN (x,t) =
∑
|ξ|≤N

ũξ(t)eiξx (3.33)
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that satisfies the strong form (3.3) exactly at the discrete points xj for j = 0, . . . ,2N . That
is, ũN satisfies

(
∂ũN
∂t
−L(Φ(ũN ))− εN

∂

∂x2 (QN ∗ ũN )
)∣∣∣∣∣∣

x=xj

= 0, j = 0, . . .2N. (3.34)

Now we’ll do as in the Fourier Galerkin case and derive a PDE which ũN solves, and to
that end we multiply (3.34) by e

−iξxj
2N+1 and sum over j to get

1
2N + 1

2N∑
j=0

∂ũN (xj)
∂t

e−iξxj = 1
2N + 1

2N∑
j=0
L(Φ(ũN (xj)))e−iξxj

+ εN
2N + 1

2N∑
j=0

∂2

∂x2 (QN ∗ ũN )(xj)eiξxj , (3.35)

which we recognize as(
IN
∂ũN
∂t

)
ξ

= (INL(Φ(ũN )))ξ + εN

(
IN

∂2

∂x2 (QN ∗ ũN )
)
ξ

. (3.36)

First off, we recognize that IN can be removed from the left hand side as well as from
the spectral vanishing viscosity term since both these are trigonometric polynomials of
degree ≤N for all times. So when multiplying (3.36) by eiξx and summing over |ξ| ≤N
we get ũN solves

∂ũN
∂t

= INL(Φ(ũN )) + εN
∂2

∂x2 (QN ∗ ũN ). (3.37)

Since IN does not commute with L this is not equivalent to the pesudospectral Galerkin
method. Even worse is the fact that, as we encountered in (3.29), we need to calculate
the exact Fourier coefficients of Φ(ũN ), before using the relation

L(Φ(ũN )) =
∑
ξ∈Z

Gµ(ξ)Φ̃ξe
iξx

to get the exact point values of L(Φ(ũN )) at the nodes xj , and finally using this point
values to evaluate INL(Φ(ũN )). As already stated, having a numerical code that calculates
Φ̃ξ exactly for general Φ is overly ambitious. Of course, the most reasonable remedy would
be to rather approximate Φ̃ξ using IN , but then we end up with the equation

∂ũN
∂t

= INL(INΦ(ũN )) + εN
∂2

∂x2 (QN ∗ ũN )

= L(INΦ(ũN ) + εN
∂2

∂x2 (QN ∗ ũN ),

i.e. the same method as the pseudospectral Galerkin method.
For this reason the collocation method will not be discussed further in this project.



31

4 Convergence of the Fourier spectral method
For linear problems, a Galerkin method may be proved to be convergent by the powerful
Lax-Milgram Theorem (cf. [22, Lemma 3.1]), but in our case the form resulting from a
Fourier Galerkin method would not be bilinear, and if we want to handle cases where Φ is
degenerate, any hope of proving coercivity is ill-founded. However, spectral methods has
the great advantage in the solutions being easily interpreted as a subset of some function
space, and so various compactness arguments may be used. In [24, 18] E. Tadmor and Y.
Maday were able to put compensated compactness (cf. [26]) to great use, but this type
of compactness suits hyperbolic conservation laws well. This is because of the additional
entropy condition that a solution needs to satisfy, and no such structure is easily found in
parabolic equations. The choice of compactness argument to use should be informed by
the structure of the PDE, and as an extension what types of a priori estimates one is able
to derive. In [4] S. Cifani and E. R. Jakobsen were able to show L∞-, total variation- and
time estimates for the special case of (3.32) where Φ(u) =u. We will in the following extend
these estimates to more general Φ, which will enable the use Kolmogorov’s compactness
Theorem (Theorem 2.1), but more importantly it will lay the groundwork to show that uN
converges to the vanishing viscosity solution and as a consequence, to the distributional
solution of (1.1).

The layout for the rest of this section is as follows: We start by stating the assump-
tions we will be working with. Then follows derivations of L2-estimates for uN and its
derivatives. In the proof of the latter, a noteworthy sublety will emerge concerning the
estimate’s dependance on α. We shall see that this is in accordance with the heuristic
that solutions are less well-behaved, or are closer to finitely regular, for α close to 2. We
will then use these L2-estimates to prove boundedness first in L∞, then in total variation
before deriving a time estimate. To close out the section, we bring all these estimates
together to show that our numerical solutions uN indeed converge to the distributional
solution of (1.1).

4.1 Preliminaries and assumptions
For the spectral viscosity parameters (εN ,mN ) we assume the following.

Assumption 4.1 (Spectral viscosity parameters).

εN ∝N−θ, 0< θ <
2
ν

mN ∝N
θ
2 (logN)−

1
2 ,

where ν = 2+α
2−α .

For the nonlinearity Φ we assume:

Assumption 4.2 (The nonlinearity Φ). For Φ we assume that Φ(0), is nondecreasing,
that is,

Φ′(u)≥ 0, ∀u ∈ R,
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and is locally Lipschitz continuous. In addition we assume that Φ∈Cs(R) where s satisfies

s≥ 4
1− θ ν2

.

Here ν and θ are the same as in assumption 4.1.
And lastly we need assumptions on the initial data.

Assumption 4.3 (The initial data u0). We assume the initial data is integrable, bounded
and of bounded variation, i.e.

u0 ∈ L1((0,2π))∩L∞((0,2π))∩BV ((0,2π)).

In addition, we assume there is a constant C so that

εrνN

∣∣∣∣∣
∣∣∣∣∣∂ru0
∂xr

∣∣∣∣∣
∣∣∣∣∣
2
≤ C

holds for all integers r ≥ 0. Here εN and ν are the same as in assumption 4.1.
Remark 1. With assumption 4.3, u0 is sufficiently smooth to avoid any Gibb’s phe-
nomenon, and therefore the approximation of initial data uN0 = PNu0 is what we will con-
sider in the following convergence theory. Note then that by orthogonality and Lemma
3.4 ∣∣∣∣∣

∣∣∣∣∣∂ruN0∂xr

∣∣∣∣∣
∣∣∣∣∣
2
≤
∣∣∣∣∣
∣∣∣∣∣∂ru0
∂xr

∣∣∣∣∣
∣∣∣∣∣
2

+
∣∣∣∣∣
∣∣∣∣∣ ∂r∂xr (I−PN )u0

∣∣∣∣∣
∣∣∣∣∣
2

≤ Cε−rνN +C

∣∣∣∣∣
∣∣∣∣∣∂ru0
∂xr

∣∣∣∣∣
∣∣∣∣∣
2

≤ Cε−rνN .

Therefore, for each N , uN0 satisfies assumption 4.3.
Furthermore, by the assumption u0 is C∞, and by the L∞ estimate (5.1.17) in [1] we

have ∣∣∣∣∣∣uN0 ∣∣∣∣∣∣∞ ≤ ||u0||∞+ ||(I−PN )u0||∞

≤ ||u0||∞+C log(N)N−1
∣∣∣∣∣
∣∣∣∣∣∂u0
∂x

∣∣∣∣∣
∣∣∣∣∣
∞
<∞,

so uN0 is uniformly bounded. We may do similarly for the bounded variation: By Cauchy-
Schwarz’ inequality ∣∣∣∣∣

∣∣∣∣∣∂uN0∂x
∣∣∣∣∣
∣∣∣∣∣
1
≤ C

∣∣∣∣∣
∣∣∣∣∣∂uN0∂x

∣∣∣∣∣
∣∣∣∣∣

≤ C
(∣∣∣∣∣
∣∣∣∣∣ ∂∂x(I−PN )u0

∣∣∣∣∣
∣∣∣∣∣+
∣∣∣∣∣
∣∣∣∣∣∂u0
∂x

∣∣∣∣∣
∣∣∣∣∣
)

≤ C
∣∣∣∣∣
∣∣∣∣∣∂u0
∂x

∣∣∣∣∣
∣∣∣∣∣<∞,

which means that uN0 is also uniformly bounded in total variation.
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Remark 2. There is also the possibility of using uN0 = KNu0, where KN is either the
Fejer- or de la Vallée Poussin approximation, as initial data (cf. appendix A). In this
case uN0 would also satisfy assumption 4.3: By Young’s inequality for convolutions∣∣∣∣∣∣uN0 ∣∣∣∣∣∣p = ||KN ∗u0||p ≤ ||KN ||1 ||u0||p ,

for any p ≥ 1. In addition the kernel KN is uniformly bounded in L1((0,2π)). Setting
p=∞ gives that uN0 is uniformly bounded.

Using differentiation for convolutions as∣∣∣∣∣
∣∣∣∣∣∂ruN0∂xr

∣∣∣∣∣
∣∣∣∣∣
2
≤ ||KN ||21

∣∣∣∣∣
∣∣∣∣∣∂ru0
∂xr

∣∣∣∣∣
∣∣∣∣∣
2

≤ Cε−rνN .

This together with Lemma A.1, gives that also uN0 satisfies assumption 4.3.
However, with this way of approximating the initial data, we lack a spectral estimate

of the type in Lemma 3.4 in the L2-norm. We need this type of estimate in the following
convergence theory when we derive a rate of convergence for the numerical method.

In addition to the assumption, we will also have great use of the following result
regarding the residual of the SVV operator, RN := I−QN .
Lemma 4.1. For 0≤ s≤ 2, ∣∣∣∣∣

∣∣∣∣∣∂sRN∂xs

∣∣∣∣∣
∣∣∣∣∣
L1(Ω)

≤ Cms
N logN. (4.1)

Moreover, for 0≤ r ≤ s≤ 2, if cN = CεNm
2
N logN ≤ Ĉ, then for all p≥ 1, φ ∈ Lp(Ω)

εN

∣∣∣∣∣
∣∣∣∣∣ ∂2

∂x2 (RN ∗φ)
∣∣∣∣∣
∣∣∣∣∣
Lp(Ω)

≤ cN ||φ||Lp(Ω) . (4.2)

Proof. Confer [2], Lemma 3.1 and Corollary 3.2 for a proof.
Lemma 4.2 (Gagliardo-Nirenberg L2 bound for a function g(u)). Assume that g ∈ Cs,
then there exists a constant Ks so that∣∣∣∣∣

∣∣∣∣∣∂sg(u)
∂xs

∣∣∣∣∣
∣∣∣∣∣≤Ks

∣∣∣∣∣
∣∣∣∣∣∂su∂xs

∣∣∣∣∣
∣∣∣∣∣ , Ks ≤ C

s∑
k=1
|g|Ck ||u||

k−1
L∞(Ω) (4.3)

Proof. This is Theorem 7.1 [2], and a proof can be found there.
Lemma 4.3. Assume that g ∈ Cs and let uN be a trigonometric polynomial of degree
≤N , then for every 0≤ r ≤ s∣∣∣∣∣

∣∣∣∣∣ ∂r∂xr (I−PN )g(uN )
∣∣∣∣∣
∣∣∣∣∣≤ Ks

Ns−r

∣∣∣∣∣
∣∣∣∣∣∂suN∂xs

∣∣∣∣∣
∣∣∣∣∣ , (4.4)

where Ks is asymptotically the same as in Lemma 4.2 with regards to g and uN .
Proof. From (5.1.10) in [1] or Lemma 3.4 we have that∣∣∣∣∣

∣∣∣∣∣ ∂r∂xr (I−PN )g(uN )
∣∣∣∣∣
∣∣∣∣∣≤ CNr−s

∣∣∣∣∣
∣∣∣∣∣∂sg(uN )

∂xs

∣∣∣∣∣
∣∣∣∣∣ ,

and so use of Lemma 4.2 completes the proof.
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4.2 L2-stability
We rewrite (3.32) as

∂tuN
∂t
−L(Φ(uN ))− εN∆uN =−εN∆(RN ∗uN )−L((I−PN )Φ(uN )). (4.5)

Equation (4.5) may be interpreted as (1.1) with the addition of a small diffusive part
on the left hand side. On the right hand side we see that some error to the true (1.1) is
introduced by the projection of Φ(uN ) and the residual of the spectral viscosity operator.

Our first estimate of the numerical solution of (3.32) we summarise in the following
Lemma:
Lemma 4.4. Assume that assumptions 4.1 through 4.3 hold. For a solution of (3.29)
there is a constant B0, proportional to ||uN ||2L∞(QT ), so that

||u||2(t) + 2εN
∣∣∣∣∣
∣∣∣∣∣∂uN∂x

∣∣∣∣∣
∣∣∣∣∣
2

L2(QT )
≤ B0 +C ||u0||2 (4.6)

holds.
Proof. After multiplying (4.5) by uN and integrating in space over (0,2π) we have〈

∂uN
∂t

,uN

〉
−
〈
∂2Φ(uN )
∂x2 ,uN

〉
− εN

〈
∂2uN
∂x2 ,uN

〉

=−εN
〈
∂2

∂x2 (RN ∗uN ),uN
〉
−
〈
∂2

∂x2 (I−PN )Φ(uN ),uN
〉
. (4.7)

To ease the exposition somewhat, we’ll consider (4.7) term by term.
i) The term involving the temporal derivative can be seen to equal〈

∂uN
∂t

,uN

〉
= 1

2
d
dt ||uN ||

2 .

ii) For the nonlocal part we have by Lemma 2.1 that

−〈L(Φ(uN )),uN 〉= 1
2

∫ 2π

0

∫
|y|>0

(Φ(uN (x+y))−Φ(uN (x))(uN (x+y)−uN (x))dµ(y)dx

≥ 0
This nonnegativity is deduced from the assumed monotonicity of Φ: We have that
uN (x+y)≥≤uN (x) implies that Φ(uN (x+y))≥≤Φ(uN (x)) and so the integrand is always
nonnegative.

iii) We also use integration by parts on the viscous term to get

−εN
〈
∂2uN
∂x2 ,uN

〉
= εN

−uN ∂uN
∂x

∣∣∣∣∣∣
2π

x=0
+
〈
∂uN
∂x

,
∂uN
∂x

〉
= εN

∣∣∣∣∣
∣∣∣∣∣∂uN∂x

∣∣∣∣∣
∣∣∣∣∣
2
,

where again we have used the periodicity to get rid of the boundary terms.
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iv) Now to the residual of the spectral viscosity operator, where by Cauchy-Schwarz’
inequality

−εN
〈
∂2

∂x2 (RN ∗uN ),uN
〉
≤ εN ||uN ||

∣∣∣∣∣
∣∣∣∣∣ ∂2

∂x2 (RN ∗uN )
∣∣∣∣∣
∣∣∣∣∣

Using Lemma 4.1 we get

−εN
〈
∂2

∂x2 (RN ∗uN ),uN
〉
≤ cN ||uN ||2 ,

where cN := CεNm
2
N log(N), which by assumption 4.1 is uniformly bounded.

v) Lastly we consider
〈L((I−PN )Φ(uN )),uN 〉 . (4.8)

Notice that for any φ ∈ L2((0,2π))

(I−SN )φ(x) =
∑
|ξ|>N

φ̂ξe
iξx,

and in particular has no terms with eiξx where |ξ| ≤ N . It is easy to verify that
this is true also for the spatial derivatives of φ. So the inner product above involves
the product between a trigonometric polynomial of degree ≤N and a function that
involves no terms where |ξ| ≤ N . Seeing as {eiξx}ξ∈Z is an orthogonal sequence in
L2((0,2π)) we conclude that the above inner product must be zero.

Combining all of the above into (4.7) yields

1
2

d
dt ||uN ||

2 (t) + εN

∣∣∣∣∣
∣∣∣∣∣∂uN∂x

∣∣∣∣∣
∣∣∣∣∣
2
(t)≤ cN ||uN ||2 (t). (4.9)

Now we integrate in time from 0 to T to get

||uN ||2 + 2εN
∣∣∣∣∣
∣∣∣∣∣∂uN∂x

∣∣∣∣∣
∣∣∣∣∣
2

L2(QT )
≤
∣∣∣∣∣∣uN0 ∣∣∣∣∣∣2 + cN ||uN ||2L2(QT ) . (4.10)

All that remains to do now is to employ that cN ||uN ||2L2(QT ) ≤C ||uN ||
2
L∞(QT ) =: B0, and

that
∣∣∣∣∣∣uN0 ∣∣∣∣∣∣≤ C ||u0||, to get the result.

4.3 Energy estimate of derivatives
As a continuation of Lemma 4.4, we will now prove a similar energy estimate for the
spatial derivatives of uN .
Lemma 4.5. Assume that assumptions 4.1 through 4.3 are satisfied. For a solution uN

of (3.29) and integer r ≥ 1 there is a constant Br ≤ CB0

(∏r+1
k=2

k+r odd
Kk
)4/(2−α)

so that

εrνN

∣∣∣∣∣
∣∣∣∣∣∂ruN∂x2r

∣∣∣∣∣
∣∣∣∣∣
2
(t) + εrν+1

N

∣∣∣∣∣
∣∣∣∣∣∂r+1uN
∂xr+1

∣∣∣∣∣
∣∣∣∣∣
2

L2(QT )
≤ Br + εrνN C

∣∣∣∣∣
∣∣∣∣∣∂ru0
∂xr

∣∣∣∣∣
∣∣∣∣∣
2

(4.11)

holds, where we recall that ν = 2+α
2−α .
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Proof. Now we multiply (4.5) by ∂2ruN
∂x2r and integrate in space over (0,2π). This leaves us

with 〈
∂uN
∂t

,
∂2ruN
∂x2r

〉
−
〈
L[Φ(uN )], ∂

2ruN
∂x2r

〉
− εN

〈
∂2uN
∂x2 ,

∂2ruN
∂x2r

〉

=−
〈
L((I−PN )Φ(uN )), ∂

2ruN
∂x2r

〉
− εN

〈
∂2

∂x2 (RN ∗uN ), ∂
2ruN
∂x2r

〉
. (4.12)

Again, it’s seems reasonable to consider (4.12) term by term.
i) We have that 〈

∂uN
∂t

,
∂2ruN
∂x2r

〉
= (−1)r

〈
∂

∂t

∂ruN
∂xr

,
∂ruN
∂xr

〉

= 1
2

d
dt

∣∣∣∣∣
∣∣∣∣∣∂ruN∂xr

∣∣∣∣∣
∣∣∣∣∣
2
,

after repeated use of integration by parts, and periodicity to get rid of boundary
terms.

ii) Using integration by parts r−1 times on the viscous term renders

−εN
〈
∂2uN
∂x2 ,

∂2ruN
∂x2r

〉
=−εN (−1)r−1

〈
∂r+1uN
∂xr+1 ,

∂r+1uN
∂xr+1

〉

= (−1)rεN
∣∣∣∣∣
∣∣∣∣∣∂r+1uN
∂xr+1

∣∣∣∣∣
∣∣∣∣∣
2
.

iii) By the same argumentation as in the proof of Lemma 4.4 the term involving (I −
PN )Φ(uN ) is zero.

To summarize thus far, we have, after multiplying by (−1)r,

1
2

d
dt

∣∣∣∣∣
∣∣∣∣∣∂ruN∂xr

∣∣∣∣∣
∣∣∣∣∣
2
+εN

∣∣∣∣∣
∣∣∣∣∣∂r+1uN
∂xr+1

∣∣∣∣∣
∣∣∣∣∣= (−1)r

〈
L(Φ(uN )), ∂

2ruN
∂x2r

〉
−εN

〈
∂2

∂x2 (RN ∗uN ), ∂
2ruN
∂x2r

〉
.

(4.13)
Considering the first term on the right hand side, we yet again use integration by parts

and Cauchy-Schwarz’ to get

(−1)r
〈
L(Φ(uN )), ∂

2ruN
∂x2r

〉
=−

〈
L
(
∂r−1Φ(uN )
∂xr−1

)
,
∂ur+1

N

∂xr+1

〉

≤
∣∣∣∣∣
∣∣∣∣∣L
(
∂r−1Φ(uN )
∂xr−1

)∣∣∣∣∣
∣∣∣∣∣ ·
∣∣∣∣∣
∣∣∣∣∣∂u

r+1
N

∂xr+1

∣∣∣∣∣
∣∣∣∣∣ .

Now, by the interpolation estimate in Lemma 2.3 and the Gagliardo-Nirenberg estimate
in Lemma 4.2 we have for any ε > 0∣∣∣∣∣

∣∣∣∣∣L
(
∂r−1Φ(uN )
∂xr−1

)∣∣∣∣∣
∣∣∣∣∣≤ ε

∣∣∣∣∣
∣∣∣∣∣∂r+1Φ(uN )

∂xr+1

∣∣∣∣∣
∣∣∣∣∣+Cε

∣∣∣∣∣
∣∣∣∣∣∂r−1Φ(uN )

∂xr−1

∣∣∣∣∣
∣∣∣∣∣

≤ εKr+1

∣∣∣∣∣
∣∣∣∣∣∂r+1uN
∂xr+1

∣∣∣∣∣
∣∣∣∣∣+CεKr−1

∣∣∣∣∣
∣∣∣∣∣∂r−1uN
∂xr−1

∣∣∣∣∣
∣∣∣∣∣ .
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We do similarly with the term involving RN , i.e. after repeated integration by parts
and Cauchy-Schwarz’

−εN
〈
∂2

∂x2 (RN ∗uN ), ∂
2ruN
∂x2r

〉
= (−1)rεN

〈
∂2

∂x2

(
RN ∗

∂r−1uN
∂xr−1

)
,
∂r+1uN
∂xr+1

〉

≤ εN
∣∣∣∣∣
∣∣∣∣∣ ∂2

∂x2

(
RN ∗

∂r−1uN
∂xr−1

)∣∣∣∣∣
∣∣∣∣∣ ·
∣∣∣∣∣
∣∣∣∣∣∂r+1uN
∂xr+1

∣∣∣∣∣
∣∣∣∣∣ ,

and by Lemma 4.1

εN

∣∣∣∣∣
∣∣∣∣∣ ∂2

∂x2

(
RN ∗

∂r−1uN
∂xr−1

)∣∣∣∣∣
∣∣∣∣∣≤ cN

∣∣∣∣∣
∣∣∣∣∣∂r−1uN
∂xr−1

∣∣∣∣∣
∣∣∣∣∣ .

After putting these two estimates back into (4.13) we get

1
2
d

dt

∣∣∣∣∣
∣∣∣∣∣∂ruN∂xr

∣∣∣∣∣
∣∣∣∣∣
2

+ εN

∣∣∣∣∣
∣∣∣∣∣∂r+1uN
∂xr+1

∣∣∣∣∣
∣∣∣∣∣≤ εKr+1

∣∣∣∣∣
∣∣∣∣∣∂r+1uN
∂xr+1

∣∣∣∣∣
∣∣∣∣∣
2

+ (cN +CεKr−1)
∣∣∣∣∣
∣∣∣∣∣∂r+1uN
∂xr+1

∣∣∣∣∣
∣∣∣∣∣ ·
∣∣∣∣∣
∣∣∣∣∣∂r−1uN
∂xr−1

∣∣∣∣∣
∣∣∣∣∣ . (4.14)

By Young’s inequality we have that for any ε̃ > 0
∣∣∣∣∣
∣∣∣∣∣∂r+1uN
∂xr+1

∣∣∣∣∣
∣∣∣∣∣ ·
∣∣∣∣∣
∣∣∣∣∣∂r−1uN
∂xr−1

∣∣∣∣∣
∣∣∣∣∣≤ ε̃

2

∣∣∣∣∣
∣∣∣∣∣∂r+1uN
∂xr+1

∣∣∣∣∣
∣∣∣∣∣
2

+ 1
2ε̃

∣∣∣∣∣
∣∣∣∣∣∂r−1uN
∂xr−1

∣∣∣∣∣
∣∣∣∣∣
2
,

and the name of the game is now to calibrate the free parameters ε and ε̃ so that when
put back into (4.14) yields something worthwhile. To be more specific we want the norm
of ∂r+1uN

∂xr+1 to have a positive coefficient on the left hand side of (4.14), and so leaving the
norm of ∂r−1uN

∂xr−1 alone on the right hand side. See now that the particular choice of

ε= εN
4 ·

1
Kr+1

, ε̃= εN
4 ·

2
cN +CεKr−1

yields
1
2

d
dt

∣∣∣∣∣
∣∣∣∣∣∂ruN∂xr

∣∣∣∣∣
∣∣∣∣∣
2

+ εN
2

∣∣∣∣∣
∣∣∣∣∣∂r+1uN
∂xr+1

∣∣∣∣∣
∣∣∣∣∣≤ (cN +CεKr−1)2

εN

∣∣∣∣∣
∣∣∣∣∣∂r−1uN
∂xr−1

∣∣∣∣∣
∣∣∣∣∣
2
, (4.15)

and after temporal integration we are left with
∣∣∣∣∣
∣∣∣∣∣∂ruN∂xr

∣∣∣∣∣
∣∣∣∣∣
2
(t) + εN

∣∣∣∣∣
∣∣∣∣∣∂r+1uN
∂xr+1

∣∣∣∣∣
∣∣∣∣∣
2

L2(Qt)
≤ (cN +CεKr−1)2

εN

∣∣∣∣∣
∣∣∣∣∣∂r−1uN
∂xr−1

∣∣∣∣∣
∣∣∣∣∣
2

L2(Qt)
+
∣∣∣∣∣
∣∣∣∣∣∂ruN0∂xr

∣∣∣∣∣
∣∣∣∣∣
2
.

(4.16)
Now some attention should be put on the coefficient on the right hand side. By

assumption we have that cN is bounded, and by Lemma 2.3 Cε = C
(Kr+1

εN

)α/(2−α)
. And
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so

(cN +CεKr−1)2

εN
≤
CK4/(2−α)

r+1
εN

(1 + ε
−2α/(2−α)
N )

≤ CK4/(2−α)
r+1

(
ε−1
N + ε

−1+ 2α
2−α

N

)
≤ CK4/(2−α)

r+1 ε
− 2+α

2−α
N ,

where we have used the inequality (x+ y)2 ≤ 2(x2 + y2), and that 2+α
2−α > 1 for α ∈ (0,2).

We have also used for simplicity that Kr−1 ≤ Kr+1, which of course can be done in its
construction in Lemma 4.2. In addition we should now recognize that 2+α

2−α = ν, So we end
up with the recurrence relation∣∣∣∣∣
∣∣∣∣∣∂ruN∂xr

∣∣∣∣∣
∣∣∣∣∣
2
(t) + εN

∣∣∣∣∣
∣∣∣∣∣∂r+1uN
∂xr+1

∣∣∣∣∣
∣∣∣∣∣
2

L2(Qt)
≤ CK4/(2−α)

r+1 ε−νN

∣∣∣∣∣
∣∣∣∣∣∂r−1uN
∂xr−1

∣∣∣∣∣
∣∣∣∣∣
2

L2(Qt)
+
∣∣∣∣∣
∣∣∣∣∣∂ru0
∂xr

∣∣∣∣∣
∣∣∣∣∣
2
. (4.17)

We’ll now use (4.17) together with Lemma 4.4 to show that there is a constant Br so
that ∣∣∣∣∣

∣∣∣∣∣∂r+1uN
∂xr+1

∣∣∣∣∣
∣∣∣∣∣
2

L2(QT )
≤ Brε−(rν+1)

N . (4.18)

The case r = 0 is evident from Lemma 4.4, and for r = 1 we have by (4.17) and the
assumption on u0 that

εN

∣∣∣∣∣
∣∣∣∣∣∂2uN
∂x2

∣∣∣∣∣
∣∣∣∣∣
2

L2(QT )
≤ CK4/(2−α)

2 B0ε
−ν
N +Cε−νN

≤ B1ε
−ν
N .

By induction we now have that for a general r that

εN
∣∣∣∣∣∣∂r+1uN

∣∣∣∣∣∣2
L2(QT )

≤ CBr−2K4/(2−α)
r+1 ε

−(ν+rν−2ν+1)
N +Cε−rνN

≤ Br(ε−(rν+(1−ν))
N + ε−rνN )

≤ Brε−rνN ,

where the last step comes from the observation that 1− ν < 0. Putting this back into
(4.17) we finally get

∣∣∣∣∣
∣∣∣∣∣∂ruN∂xr

∣∣∣∣∣
∣∣∣∣∣
2
(t) + εN

∣∣∣∣∣
∣∣∣∣∣∂r+1uN
∂xr+1

∣∣∣∣∣
∣∣∣∣∣
2

L2(Qt)
≤ Brε−rνN +

∣∣∣∣∣
∣∣∣∣∣∂ru0
∂xr

∣∣∣∣∣
∣∣∣∣∣
2
, (4.19)

and we are done with the proof after multiplying by εrνN . Notice also that the constants
satisfy Br =CBr−2K4/(2−α)

r+1 , and so fulfills the relation stated in the Lemma. To see this,
we first note that

B1 ≤ CB0K4/(2−α)
2 ,
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and
B2 ≤ CB0K4/(2−α)

3 ,

so the relation

Br ≤ CB0

 r+1∏
k=2

k+r odd

Kk


4

2−α

holds for r = 1,2. For r > 2 we use induction, so suppose it holds for r ≤ s, and consider
r = s+ 1, then

Bs+1 ≤ CBs−1K4/(2−α)
s+2

≤ CB0


s∏

k=2
k+(s−1) odd

Kk


4

2−α

K4/(2−α)
s+2

≤ CB0


s+2∏
k=2

k+(s+1) odd

Kk


4

2−α

.

The last step follows since if k+(s−1) is odd, then so is k+(s+1). In addition (s+1)+
(s+ 2) is odd, and so the additional factor can be added to the product. Therefore, the
relation also holds for r = s+ 1.

The proof of Lemma 4.5 is admittedly quite unruly, and a bit persnickety, but the
usefulness of the result will emerge in the next section where we’ll derive some L∞-bounds.

4.4 L∞-estimate
Lemma 4.6. Let assumptions 4.1 through 4.3 hold, and let uN be a solution of (3.29),
then for each nonnegative integer r there is a constant C so that∣∣∣∣∣

∣∣∣∣∣ ∂r∂xr (I−PN )Φ(uN )
∣∣∣∣∣
∣∣∣∣∣
∞
≤ CBsN r+2−s(1−θ ν2 ) (4.20)

holds for all times. Here s is as in assumption 4.2.

Proof. By Theorem 6, in section 5.6 of [11] (a generalization of Morrey’s inequality), we
have for any ϕ ∈Hr+[ 1

2 ]+1((0,2π)) =Hr+2((0,2π)) that∣∣∣∣∣
∣∣∣∣∣∂rϕ∂xr

∣∣∣∣∣
∣∣∣∣∣
∞
≤ C ||ϕ||Hr+2((0,2π)) ,

and again using (5.1.10) of [1] this yields∣∣∣∣∣
∣∣∣∣∣∂rϕ∂xr

∣∣∣∣∣
∣∣∣∣∣
∞
≤ C

∣∣∣∣∣
∣∣∣∣∣∂r+2ϕ

∂xr+2

∣∣∣∣∣
∣∣∣∣∣ . (4.21)
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This leads us to deduce that∣∣∣∣∣
∣∣∣∣∣ ∂r∂xr (I−PN )Φ(uN )

∣∣∣∣∣
∣∣∣∣∣
∞
≤ C

∣∣∣∣∣
∣∣∣∣∣ ∂r+2

∂xr+2 (I−PN )Φ(uN )
∣∣∣∣∣
∣∣∣∣∣ , (4.22)

and by Lemma 4.3 this results in∣∣∣∣∣
∣∣∣∣∣ ∂r∂xr (I−PN )Φ(uN )

∣∣∣∣∣
∣∣∣∣∣
∞
≤ C

Ns−r−2

∣∣∣∣∣
∣∣∣∣∣∂suN∂xs

∣∣∣∣∣
∣∣∣∣∣ . (4.23)

It’s at this point Lemma 4.5 can be put to use, which together with the assumption
on u0 leads to ∣∣∣∣∣

∣∣∣∣∣∂suN∂xs

∣∣∣∣∣
∣∣∣∣∣≤ CBsε−sν/2N . (4.24)

And so putting this into (4.23) together with εN ∝N−θ yields for r = 2∣∣∣∣∣
∣∣∣∣∣ ∂r∂xr (I−SN )Φ(uN )

∣∣∣∣∣
∣∣∣∣∣
∞
≤ CBsN r+2−s(1−θ ν2 ). (4.25)

This result will now now be put to immediate use to get a similar bound for the
projection error on the nonlocal operator.

Lemma 4.7. Let uN be the solution to (3.32), and let Φ ∈ Cs(R), then

||L(I−PN )Φ(uN )||∞ ≤ CBsN
2+α−s(1−θ ν2 ). (4.26)

Observation 1. Before proving the Lemma, it is worth noticing that Lemma 4.7 inter-
polates Lemma 4.6 in that they coincide when α→ 0 or α→ 2.

Proof of Lemma 4.7. We consider the fractional laplacian on the form given in (2.5), and
for sake of brevity we write ϕ= (I−PN )Φ(uN ), then

||L(u)||∞ =
∣∣∣∣∣
∣∣∣∣∣
∫
|y|>0

ϕ(x+y)−ϕ(x)−y1|y|<r
∂ϕ

∂x
(x)dµ(z)

∣∣∣∣∣
∣∣∣∣∣
∞
. (4.27)

Now a natural distinction comes into place for 0<α< 1 and 1≤ α< 2 since in the former
case the term involving ∂ϕ

∂x is integrable and the integral is zero from the symmetry of the
measure. So what we’ll now do is consider both cases and derive an intermediate estimate
in ϕ and its derivatives.

0< α < 1: See that from the identity

ϕ(x+y)−ϕ(x) =
∫ 1

0

d
dτ ϕ(x+ τy)dτ

=
∫ 1

0
y
∂ϕ

∂x
(x+ τy)dτ,
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we can write for every r > 0

L[ϕ](x) =
∫
|y|≤r

y
∫ 1

0

∂ϕ

∂x
(x+ τy)dτdµ(y) +

∫
|y|>r

ϕ(x+y)−ϕ(x)dµ(y),

and so
||Lϕ||∞ ≤

∣∣∣∣∣
∣∣∣∣∣∂ϕ∂x

∣∣∣∣∣
∣∣∣∣∣
∞

∫
|y|≤r
|y|dµ(y) + 2 ||ϕ||∞

∫
|y|>r

dµ(y). (4.28)

We have that ∫
|y|≤r
|y|dµ(y) = 2cα

∫ r

0
y−αdy = 2cαr1−α

1−α ,∫
|y|>r

dµ(y) = 2cα
∫ ∞
r

y−1−αdy = 2cαr−α
α

,

yielding

||Lϕ||∞ ≤ 2cα
(
r1−α

1−α

∣∣∣∣∣
∣∣∣∣∣∂ϕ∂x

∣∣∣∣∣
∣∣∣∣∣
∞

+ 2r
−α

α
||ϕ||∞

)
. (4.29)

The point of keeping the free parameter, r, was to minimize the right hand side. It
is easy to check that the r yielding the best estimate is

r = 2 ||ϕ||∞∣∣∣∣∣∣∂ϕ∂x ∣∣∣∣∣∣∞ ,
which results in the interpolation-like estimate

||Lϕ||∞ ≤
22−αcα
α(1−α) ||ϕ||

1−α
∞

∣∣∣∣∣
∣∣∣∣∣∂ϕ∂x

∣∣∣∣∣
∣∣∣∣∣
α

∞
. (4.30)

Finally we use Lemma 4.6 with r = 0,2 and s the smoothness of Φ to get

||Lϕ||∞ ≤ CBsN
(1−α)(2−s(1−θ ν2 ))+α(3−s(1−θ ν2 ))

= CBsN2+α−s(1−θ ν2 ).

1≤ α < 2: We use a similar treatment in this case, but now the term involving the deriva-
tive of ϕ can’t be ignored due to the fact that y is not integrable in any neightbour
of the origin with this measure. To remedy this we use the identity

ϕ(x+y)−ϕ(x)−y∂ϕ
∂x

(x) =
∫ 1

0
y

(
∂ϕ

∂x
(x+ τy)− ∂ϕ

∂x
(x)
)

dτ

=
∫ 1

0
y
∫ τ

0

d

dθ

∂ϕ

∂x
(x+ θy)dθdτ

= y2
∫ 1

0

∫ τ

0

∂2ϕ

∂x2 (x+ θy)dθdτ.

So with (4.27) in mind we thus have

||Lϕ||∞ ≤
∣∣∣∣∣
∣∣∣∣∣∂2ϕ

∂x2

∣∣∣∣∣
∣∣∣∣∣
∞

∫
|y|≤r

|y|2

2 dµ(y) + 2 ||ϕ||∞
∫
|y|>r

dµ(y). (4.31)
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Doing as we did in the previous case, we have with∫
|y|≤r
|y|2dµ(y) = 2cα

∫ r

0
y1−αdy = 2cαr2−α

2−α

that
||Lϕ||∞ ≤ cα

(
r2−α

2−α

∣∣∣∣∣
∣∣∣∣∣∂2ϕ

∂x2

∣∣∣∣∣
∣∣∣∣∣
∞

+ 4r
−α

α
||ϕ||∞

)
. (4.32)

We find the r minimizing the right hand side of (4.32) to be

r = 2

 ||ϕ||∞∣∣∣∣∣∣∂2ϕ
∂x2

∣∣∣∣∣∣
∞


1/2

,

which when put into (4.32) results in the estimate

||Lϕ||∞ ≤
23−αcα
α(2−α) ||ϕ||

1−α/2
∞

∣∣∣∣∣
∣∣∣∣∣∂2ϕ

∂x2

∣∣∣∣∣
∣∣∣∣∣
α/2

∞
. (4.33)

Again using Lemma 4.6 with r = 0,2 finally yields

||Lϕ||∞ ≤ CBsN
(1−α/2)(2−s(1−θ ν2 ))+α/2(4−s(1−θ ν2 )

= CBsN2+α−s(1−θ ν2 ).

One may be justified in asking why we’ve paid so much attention to keeping the
constants Br separated from other constants that are depending on e.g. α. The reason
for this is that Br depends on the supremum norm of uN , and so is as of yet not known
to be bounded. This will be remedied in the Lemma to follow, and as such this result
will be a culmination of all the work put in from Lemma 4.4 and up to this point. The
boundedness in supremum norm is also one of the pillars on which our compactness
argument will stand, making it a bit easier to appreciate the results proven thus far.

Lemma 4.8. Let uN be the solution of (3.32), and take assumptions 4.1 through 4.3 to
hold. Then

||uN (·, t)||∞ ≤ C ||u0||∞ (4.34)
for t < C ln(N).

Proof. We do as in the proof of Lemma 5.1 in [4], and multiply (4.5) with pup−1
N , where

p is an even integer, and integrate over (0,2π) in space to get〈
∂uN
∂t

,pup−1
N

〉
−
〈
LΦ(uN ),pup−1

N

〉
− εN

〈
∂2uN
∂x2 ,pup−1

N

〉

=−εN
〈
∂2

∂x2 (RN ∗uN ),pup−1
N

〉
−
〈
L(I−PN )Φ(uN ),pup−1

N

〉
, (4.35)

and as usual it would seem best to consider this term by term.
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i) For the first term 〈
∂uN
∂t

,pup−1
N

〉
=
∫ 2π

0

∂

∂t
upNdx

= d
dt ||uN ||

p
p

= p ||uN ||p−1
p

d

dt
||uN ||p ,

which holds only for p even since then upN = |uN |p.

ii) For the nonlocal term on the left hand side we use Lemma 2.1 as

−
〈
LΦ(uN ),pup−1

N

〉
= p

2

∫ 2π

0

∫
|y|>0

(Φ(uN (x+y))−Φ(uN (x)))·(up−1
N (x+y)−up−1

N (x))dπα(y)dx.

Since both Φ(uN ) and up−1
N are nondecreasing functions in uN the integrand, and so

the whole integral, is nonnegative. Again see that this only holds when p even.

iii) The viscous term on the left hand side is also nonnegative. This can be seen when
using integration by parts as

−εN
〈
∂2uN
∂x2 ,pup−1

N

〉
=
∫ 2π

0

∂uN
∂x

∂

∂x
(pup−1

N )dx

= p(p−1)
∫ 2π

0

(
∂uN
∂x

)2
up−2
N dx≥ 0.

iv) Moving on to the right hand side we use Hölder’s inequality to get

−εN
〈
∂2

∂x2 (RN ∗uN ),pup−1
N

〉
≤ pεN

∣∣∣∣∣
∣∣∣∣∣ ∂2

∂x2 (RN ∗uN )
∣∣∣∣∣
∣∣∣∣∣
p

·
∣∣∣∣∣∣up−1

N

∣∣∣∣∣∣ p
p−1

,

and we note that
∣∣∣∣∣∣up−1

N

∣∣∣∣∣∣ p
p−1

= ||uN ||p−1
p .

v) A similar use of Hölder’s inequality on the projection error for the nonlocal term
yields

−
〈
L(I−PN )Φ(uN ),pup−1

N

〉
≤ p ||L(I−SN )Φ(uN )||p ||uN ||

p−1
p .

Putting all this together we get from (4.35) that

p ||uN ||p−1
p

d
dt ||uN ||p ≤ p ||uN ||

p−1
p

||L(I−PN )Φ(uN )||p+ εN

∣∣∣∣∣
∣∣∣∣∣ ∂2

∂x2 (RN ∗uN )
∣∣∣∣∣
∣∣∣∣∣
p

 .
Dividing by p ||uN ||p−1

p on both sides and sending p→∞ we get

d
dt ||uN ||∞ ≤ ||L(I−PN )Φ(uN )||∞+ εN

∣∣∣∣∣
∣∣∣∣∣ ∂2

∂x2 (RN ∗uN )
∣∣∣∣∣
∣∣∣∣∣
∞
. (4.36)
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Using Lemmas 4.7 and 4.1 on the right hand side results in
d
dt ||uN ||∞ ≤ CBsN

2+α−s(1−θ ν2 ) + cN ||uN ||∞ . (4.37)

With the way Bs was constructed in Lemma 4.5, we have Bs≤C
(
||uN ||

s2
4
∞

) 4
2−α

=C ||uN ||
s2

2−α
∞

(see the differences and similarities this has to the corresponding constant in [4]). Now
we go on to define y(t) = ||uN ||∞ e−cN t, which then results in the estimate

d
dty(t)≤ CN2+α−s(1−θ ν2 )︸ ︷︷ ︸

:=h(N)

y(t)
s2

2−α ecN ( s2
2−α−1)t. (4.38)

Using separation of variables and integrating in time gives us

1
1− s2

2−α

(
y(t)1− s2

2−α −y(0)1− s2
2−α

)
≤ h(N)

cN

1
s2

2−α −1

(
ecN ( s2

2−α−1)t−1
)
,

and solving for y(t) yields the estimate

y(t)≤ y(0)
(

1− h(N)
cN

(
ecN ( s2

2−α−1)t−1
)
y(0)

s2
2−α

) 1
1− s2

2−α . (4.39)

Here it is worthwhile to note that this inequality also holds when s2

2−α > 1. When putting
back in the expression for y(t) we get from (4.39) that

||uN ||∞ ≤ e
cN t

1− h(N)
cN

(
ecN ( s2

2−α−1)t−1
)∣∣∣∣∣∣uN0 ∣∣∣∣∣∣ s2

2−α

∞


1

1− s2
2−α

∣∣∣∣∣∣uN0 ∣∣∣∣∣∣∞ . (4.40)

Since
∣∣∣∣∣∣uN0 ∣∣∣∣∣∣∞ ≤ C ||u0||∞ and by the assumptions on s and cN we can thus conclude

that ||uN ||∞ is uniformly bounded, independent of N for t < C ln(N), where C is some
constant.

4.5 BV estimate
Lemma 4.9. Let uN be a solution of (3.32), then for finite times the estimate

|uN |BV ≤ ecN t
(
|u0|BV +CN r−s(1−θ ν2 )+ θ

2 (1−ν)
)

(4.41)

holds. Here r = 2 if α ∈ (0,1] and r = 3 if α ∈ (1,2).

Proof. We will closely follow the proof of Lemma 5.2 in [4], with of course a slight mod-
ification required for the nonlinear term. So we differentiate (4.5) in the spatial variable
to get

∂

∂t

(
∂uN
∂x

)
−L

(
∂Φ(uN )
∂x

)
− εN

∂3uN
∂x3 =−L

(
∂

∂x
(I−PN )Φ(uN )

)
− εN

∂2

∂x2

(
RN ∗

∂uN
∂x

)
.

(4.42)
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Let now sgnρ be the standard mollification of the sign function with parameter ρ. That
is,

sgnρ(x) =
(

sgn∗1
ρ
ω

(
·
ρ

))
(x),

where ω(x) = Ce
− 1

1−|x|2 for |x| < 1 and zero otherwise. Again, the constant is a normal-
ization factor to ensure that the integral of ω is 1. We now multiply (4.42) by sgnρ

(
∂uN
∂x

)
and integrate in space to get〈

∂

∂t

(
∂uN
∂x

)
,sgnρ

(
∂uN
∂x

)〉
−
〈
L
(
∂Φ(uN )
∂x

)
,sgnρ

(
∂uN
∂x

)〉
− εN

〈
∂3uN
∂x3 ,sgnρ

(
∂uN
∂x

)〉

=−
〈
L
(
∂

∂x
(I−PN )Φ(uN )

)
,sgnρ

(
∂uN
∂x

)〉
− εN

〈
∂2

∂x2

(
RN ∗

∂uN
∂x

)
,sgnρ

(
∂uN
∂x

)〉
.

(4.43)

As has become our modus operandi at this point, we consider (4.43) term by term.

i) Using Theorem 7 in Appendix C of [11] we have that

lim
ρ→0

∂

∂t

(
∂uN
∂x

)
sgnρ

(
∂uN
∂x

)
= ∂

∂t

(
∂uN
∂x

)
sgn

(
∂uN
∂x

)

= ∂

∂t

∣∣∣∣∂uN∂x
∣∣∣∣,

where the convergence is pointwise. In addition the convergence is monotonic. Whether
it’s increasing or decreasing depends on the sign of ∂uN

∂x and its temporal derivate.
And so splitting (0,2π) into the subsets

B± =
{
x ∈ (0,2π) : ∂

∂t

(
∂uN
∂x

)
sgn

(
∂uN
∂x

)
>
<0
}
,

and use the monotone convergence theorem on each of these. Then

lim
ρ→0

〈
∂

∂t

(
∂uN
∂x

)
,sgnρ

(
∂uN
∂x

)〉
=
∫ 2π

0

∂

∂t

∣∣∣∣∂uN∂x
∣∣∣∣dx

= d
dt

∣∣∣∣∣
∣∣∣∣∣∂uN∂x

∣∣∣∣∣
∣∣∣∣∣
1
.

ii) For the nonlocal term we use a similar line of reasoning as that in the proof of Lemma
2.4 to find that

lim
ρ→0
−
〈
L
(
∂Φ(uN )
∂x

)
,sgnρ

(
∂uN
∂x

)〉

= 1
2

∫
|y|>0

∫ 2π

0

(
∂Φ(uN )
∂x

(x+y)− ∂Φ(uN )
∂x

(x)
)(

sgn
(
∂uN
∂x

(x+y)
)
− sgn

(
∂uN
∂x

(x)
))

dxdπα(y)
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Expanding the integrand results in(
∂Φ(uN )
∂x

(x+y)− ∂Φ(uN )
∂x

(x)
)(

sgn
(
∂uN
∂x

(x+y)
)
− sgn

(
∂uN
∂x

(x)
))

= Φ′(uN (x+y))
(∣∣∣∣∂uN∂x (x+y)

∣∣∣∣− ∂uN∂x (x+y)sgn
(
∂uN
∂x

(x)
))

+ Φ′(uN (x))
(∣∣∣∣∂uN∂x (x)

∣∣∣∣− ∂uN∂x (x)sgn
(
∂uN
∂x

(x+y)
))

,

which we see is nonnegative because Φ′ ≥ 0, and so the nonlocal term on the left
hand side of (4.43) is nonnegative.

iii) Define now
ηρ(u) =

∫ u

0
sgnρ(s)ds,

which is a convex function since sgnρ is nondecreasing. For any sufficiently smooth
convex function we have the useful inequality

∂2

∂x2ηρ

(
∂uN
∂x

)
= ∂

∂x

(
η′ρ

(
∂uN
∂x

)
∂2uN
∂x2

)

= η′′ρ

(
∂uN
∂x

)(
∂2uN
∂x2

)2
+η′ρ

(
∂uN
∂x

)
∂3uN
∂x3

≥ η′ρ

(
∂uN
∂x

)
∂3uN
∂x3 ,

because η′′ρ ≥ 0. This computation is justified in our case because both uN and ηρ
are C∞ functions.
And so we get

εN

〈
∂3uN
∂x3 ,sgnρ

(
∂uN
∂x

)〉
≥−

∫ 2π

0

∂2

∂x2ηρ

(
∂uN
∂x

)
dx

= ∂

∂x
ηρ

(
∂uN
∂x

)∣∣∣∣∣∣
2π

x=0
= 0,

by the periodicity of uN .

iv) For the first of the right hand side terms in (4.43) we use that
∣∣∣sgnρ

(
∂uN
∂x

)∣∣∣ ≤ 1, to
get the estimate

−
〈
L
(
∂

∂x
(I−PN )Φ(uN )

)
,sgnρ

(
∂uN
∂x

)〉
≤
∣∣∣∣∣
∣∣∣∣∣L
(
∂

∂x
(I−PN )Φ(uN )

)∣∣∣∣∣
∣∣∣∣∣
1

=
√

2π
∣∣∣∣∣
∣∣∣∣∣L
(
∂

∂x
(I−PN )Φ(uN )

)∣∣∣∣∣
∣∣∣∣∣ ,

where the last step is achieved using Cauchy-Schwarz’ inequality.
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v) We do similarly for the latter right hand side term of (4.43), but now use Lemma 4.1
instead of Cauchy-Schwarz’ to get

−εN
〈
∂2

∂x2

(
RN ∗

∂uN
∂x

)
,sgnρ

(
∂uN
∂x

)〉
≤ cN

∣∣∣∣∣
∣∣∣∣∣∂uN∂x

∣∣∣∣∣
∣∣∣∣∣
1
.

Putting all this back into (4.43) results in

d
dt

∣∣∣∣∣
∣∣∣∣∣∂uN∂x

∣∣∣∣∣
∣∣∣∣∣
1
≤ cN

∣∣∣∣∣
∣∣∣∣∣∂uN∂x

∣∣∣∣∣
∣∣∣∣∣
1

+C

∣∣∣∣∣
∣∣∣∣∣L
(
∂

∂x
(I−PN )Φ(uN )

)∣∣∣∣∣
∣∣∣∣∣ . (4.44)

Turning our attention to the projection error for the nonlocal term, we get by Lemma 3.2
that ∣∣∣∣∣

∣∣∣∣∣L
(
∂

∂x
(I−PN )Φ(uN )

)∣∣∣∣∣
∣∣∣∣∣≤

∣∣∣∣∣
∣∣∣∣∣L(I−SN )∂Φ(uN )

∂x

∣∣∣∣∣
∣∣∣∣∣+a

∣∣∣∣∣
∣∣∣∣∣L∂ANΦ(uN )

∂x

∣∣∣∣∣
∣∣∣∣∣ , (4.45)

where we recall that a is either 0 or 1 depending on whether we want to consider the
Galerkin- or the pseudospectral formulation.

For the first part of (4.45)we get by Parseval’s identity∣∣∣∣∣
∣∣∣∣∣L(I−SN )∂Φ(uN )

∂x

∣∣∣∣∣
∣∣∣∣∣
2

= 2πC2
α

∑
|ξ|>N

|ξ|2(α+1)|Φ̂ξ|2

≤ C


∑
|ξ|>N |ξ|4|Φ̂ξ|2, α ∈ (0,1],∑
|ξ|>N |ξ|6|Φ̂ξ|2, α ∈ (1,2),

and so again by Parseval’s identity we thus have

∣∣∣∣∣
∣∣∣∣∣L(I−SN )∂Φ(uN )

∂x

∣∣∣∣∣
∣∣∣∣∣≤ C


∣∣∣∣∣∣∣∣ ∂2

∂x2 (I−SN )Φ(uN )
∣∣∣∣∣∣∣∣ , α ∈ (0,1]∣∣∣∣∣∣∣∣ ∂3

∂x3 (I−SN )Φ(uN )
∣∣∣∣∣∣∣∣ , α ∈ (1,2).

(4.46)

After use of Lemma 4.2 this becomes∣∣∣∣∣
∣∣∣∣∣L(I−SN )∂Φ(uN )

∂x

∣∣∣∣∣
∣∣∣∣∣≤ CN r−s

∣∣∣∣∣
∣∣∣∣∣∂suN∂xs

∣∣∣∣∣
∣∣∣∣∣ , (4.47)

where r = 2,3, depending on the given α. Notice that we are no longer so concerned with
the constant’s depence on ||uN ||L∞ because of Lemma 4.8. We may do similarly to the
aliasing term in (4.45) by seeing that∣∣∣∣∣

∣∣∣∣∣L∂ANΦ(uN )
∂x

∣∣∣∣∣
∣∣∣∣∣
2

= 2πC2
α

∑
|ξ|≤N

|ξ|2(α+1)|(ANΦ(uN ))ξ|2

≤ CN2r ∑
|ξ|≤N

|(ANΦ(uN ))ξ|2

= CN2r ||ANΦ(uN )||2 ,
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and so by using Lemma 3.3 and 4.3 we find that∣∣∣∣∣
∣∣∣∣∣L∂ANΦ(uN )

∂x

∣∣∣∣∣
∣∣∣∣∣≤ CNr−s

∣∣∣∣∣
∣∣∣∣∣∂suN∂xs

∣∣∣∣∣
∣∣∣∣∣ .

We put this back into (4.44) and use separation of variables to arrive at
∣∣∣∣∣
∣∣∣∣∣∂uN∂x

∣∣∣∣∣
∣∣∣∣∣
1
≤ ecN t

∣∣∣∣∣
∣∣∣∣∣∂u0
∂x

∣∣∣∣∣
∣∣∣∣∣
1

+CNr−s
∣∣∣∣∣
∣∣∣∣∣∂suN∂x2

∣∣∣∣∣
∣∣∣∣∣
L2(QT )

 . (4.48)

Finally, by the energy estimate in Lemma 4.5∣∣∣∣∣
∣∣∣∣∣∂suN∂xs

∣∣∣∣∣
∣∣∣∣∣
L2(QT )

≤ Cε−((s−1)ν2 + 1
2 )

N ≤ CNθ(sν2 + 1−ν
2 ),

we have ∣∣∣∣∣
∣∣∣∣∣∂uN∂x

∣∣∣∣∣
∣∣∣∣∣
1
≤ ecN t

(∣∣∣∣∣
∣∣∣∣∣∂uN0∂x

∣∣∣∣∣
∣∣∣∣∣
1

+CNr−s(1−θ ν2 )+ θ
2 (1−ν)

)
. (4.49)

By the assumptions on s, and θ this expression is bounded uniformly, independent of N
for finite times. Lastly, we have in one spatial dimension that the total variation of uN is
bounded by

|uN |BV ≤
∣∣∣∣∣
∣∣∣∣∣∂uN∂x

∣∣∣∣∣
∣∣∣∣∣
1
, (4.50)

and the result follows.

4.6 Time regularity estimate
Lemma 4.10. Let uN be the solution of (3.32), then there is a constant C so that

||uN (·, t2)−uN (·, t1)||1 ≤ C
√
|t2− t1| (4.51)

holds for all t1, t2 ∈ [0,T ].

Proof. The proof will go along very similar lines as that in [4], and so we start by defining
the standard mollification of uN as

uεN (x,t) = (uN (·, t)∗ωε)(x), (4.52)

where ωε is the mollifier as the one we used in the proof of Lemma 4.9. Take now
t1, t2 ∈ [0,T ], then a simple use of the triangle inequality reveals that

||uN (·, t2)−uN (·, t1)||1 ≤ ||uN (·, t2)−uεN (·, t2)||1
+ ||uεN (·, t2)−uεN (·, t1)||1
+ ||uεN (·, t1)−uN (·, t1)||1 . (4.53)
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For the first and last term on the right hand side we estimate as follows: By definition

||uN (·, t)−uεN (·, t)||1 =
∫ 2π

0

∣∣∣∣uN (x,t)−
∫
R
uN (x−y)ωε(y)dy

∣∣∣∣dx
=
∫ 2π

0

∣∣∣∣∫R(uN (x,t)−uN (x−y, t))ωε(y)dy
∣∣∣∣dx

=
∫ 2π

0

∣∣∣∣∣
∫
R

(∫ 1

0
y
∂uN
∂x

(x− sy)ds
)
ωε(y)dy

∣∣∣∣∣dx
≤
∫ 2π

0

∫
R

∫ 1

0
|y| ·

∣∣∣∣∣∂uN∂x (x− sy)
∣∣∣∣∣ωε(y)dsdydx.

By employing Fubini’s theorem to take the integral over x to be the innermost integral,
we get

||uN (·, t)−uεN (·, t)||1 ≤
∫
R

∫ 1

0
|y|ωε(y)

∫ 2π

0

∣∣∣∣∣∂uN∂x (x− sy)
∣∣∣∣∣dxdsdy

≤ |uN |BV
∫
R
|y|ωε(y)dy.

The support of ωε is contained in [−ε, ε] and so

||uN (·, t)−uεN (·, t)||1 ≤ ε|uN |BV . (4.54)

What remains now is to estimate the term

||uεN (·, t2)−uεN (·, t1)||1 ,

and to that end we express the difference as an integral, now in time. I.e.

|uεN (·, t2)−uεN (·, t1)|=
∣∣∣∣∣(t2− t1)

∫ 1

0

uεN
∂t

(t1 + τ(t2− t1))dτ
∣∣∣∣∣

≤ |t2− t1|
∫ 1

0

∣∣∣∣∣∂uεN∂t (t1 + τ(t2− t1))
∣∣∣∣∣dτ,

and so we find that

||uεN (·, t2)−uεN (·, t1)||1 ≤ |t2− t1|
∫ 1

0

∣∣∣∣∣
∣∣∣∣∣∂uεN∂t (·, t1 + τ(t2− t1))

∣∣∣∣∣
∣∣∣∣∣
1
dτ. (4.55)

It would seem evident from (4.55) that we now need to estimate the L1-norm of the
temporal derivative of uεN . We do as in [4], and convolve (4.5) with ωε before taking the
absolute value and integrating over (0,2π) in space. This results in∣∣∣∣∣

∣∣∣∣∣∂uN∂t ∗ωε
∣∣∣∣∣
∣∣∣∣∣
1

=
∣∣∣∣∣
∣∣∣∣∣∂uεN∂t

∣∣∣∣∣
∣∣∣∣∣
1

≤ εN
∣∣∣∣∣
∣∣∣∣∣∂2uN
∂x2 ∗ωε

∣∣∣∣∣
∣∣∣∣∣
1

+ εN

∣∣∣∣∣
∣∣∣∣∣ ∂2

∂x2 (RN ∗uN )∗ωε
∣∣∣∣∣
∣∣∣∣∣
1

+ ||L(Φ(uN ))∗ωε||1 + ||L((I−PN )Φ(uN ))∗ωε||1 , (4.56)

and as usual we will for sake of clarity consider (4.56) term by term.
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i) By Young’s inequality for convolutions∣∣∣∣∣
∣∣∣∣∣∂2uN
∂x2 ∗ωε

∣∣∣∣∣
∣∣∣∣∣
1

=
∣∣∣∣∣
∣∣∣∣∣∂uN∂x ∗ ∂ωε∂x

∣∣∣∣∣
∣∣∣∣∣
1

≤
∣∣∣∣∣
∣∣∣∣∣∂uN∂x

∣∣∣∣∣
∣∣∣∣∣
1

∣∣∣∣∣
∣∣∣∣∣∂ωε∂x

∣∣∣∣∣
∣∣∣∣∣
1

≤ C

ε
|uN |BV .

ii) We may similarly use Young’s inequality on the term involving the residual of the
spectral viscosity operator. Then

εN

∣∣∣∣∣
∣∣∣∣∣ ∂2

∂x2 (RN ∗uN )∗ωε
∣∣∣∣∣
∣∣∣∣∣
1
≤ εN

∣∣∣∣∣
∣∣∣∣∣ ∂2

∂x2 (RN ∗uN )
∣∣∣∣∣
∣∣∣∣∣
1
||ωε||1

≤ cN ||uN ||1 ,

where the last step is from Lemma 4.1.

iii) The terms involving the fractional laplacian are by far the trickiest to handle here,
but we can argue as we did in the proof of Lemma 2.8 to get that

||L[ϕ]∗ωε||1 ≤ C
(1
ε
|ϕ|BV + ||ϕ||1

)
(4.57)

Setting ϕ= Φ(uN ) in (4.57), we see that we need to estimate the total variation and
L1-norm of Φ(uN ). For the total variation we have

|Φ(uN )|BV =
∫ 2π

0
Φ′(uN )

∣∣∣∣∣∂uN∂x
∣∣∣∣∣dx. (4.58)

By Lemma 4.8 we know that for finite times uN is uniformly bounded, independent
of N . Say that uN is bounded by C. Since by assumption Φ is locally Lipschitz
continuous there is a constant LΦ <∞ so that sup|u|≤C Φ′(u)≤ LΦ. Thus we get the
estimate

|Φ(uN )|BV ≤ LΦ|uN |BV . (4.59)
We can do similarly for the L1-norm of Φ(uN ), see that by the assumption that
Φ(0) = 0 we have

||Φ(uN )||1 =
∫ 2π

0
|Φ(uN )|dx

=
∫ 2π

0
|Φ(uN )−Φ(0)|dx

≤ LΦ

∫ 2π

0
|uN |dx

= LΦ ||uN ||1 . (4.60)

In conclusion, we get by (4.57) that

||L(Φ(uN ))∗ωε||1 ≤ C
(1
ε
|uN |BV + ||uN ||1

)
. (4.61)
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iv) The hard work in considering the nonlocal operator is done, and we may now use
(4.57) with ϕ= (I−SN )Φ(uN ), which results in

||L((I−PN )Φ(uN ))∗ωε||1 ≤ C
(1
ε
|(I−PN )Φ(uN )|BV + ||(I−PN )Φ(uN )||1

)
.

Since we’re on a bounded domain, we have by Cauchy-Schwarz’ inequality that ||·||1≤√
2π ||·||, and so

||L((I−SN )Φ(uN ))∗ωε||1 ≤ C
(

1
ε

∣∣∣∣∣
∣∣∣∣∣ ∂∂x(I−PN )Φ(uN )

∣∣∣∣∣
∣∣∣∣∣+ ||(I−SN )Φ(uN )||

)
.

(4.62)
By Lemma 4.2 and 4.5 the projection errors can be estimated as

||(I−PN )Φ(uN )|| ≤ CN−s(1−θ
ν
2 ), and∣∣∣∣∣

∣∣∣∣∣ ∂∂x(I−PN )Φ(uN )
∣∣∣∣∣
∣∣∣∣∣≤ CN1−s(1−θ ν2 ),

where s is the smoothness of Φ. Finally, by the assumptions on s and θ, we end up
with

||L((I−PN )Φ(uN ))∗ωε||1 ≤ C
(1
ε
N−3 +N−4

)
. (4.63)

With estimates for all terms on the right hand side of (4.56) in place the resulting
inequality becomes∣∣∣∣∣

∣∣∣∣∣∂uεN∂t
∣∣∣∣∣
∣∣∣∣∣
1
≤ C

(1
ε
|uN |BV + ||uN ||1

)
+C

(1
ε
N−3 +N−4

)
. (4.64)

By Lemma 4.9 |uN |BV is uniformly bounded, and by Lemma 4.4 together with ||·||L1 ≤√
2π ||·||, ||uN ||L1 is uniformly bounded, and so∣∣∣∣∣

∣∣∣∣∣∂uεN∂t
∣∣∣∣∣
∣∣∣∣∣
1
≤ C

(1
ε

+ 1
)
. (4.65)

Putting this back into (4.55) results in

||uεN (·, t2)−uεN (·, t1)||1 ≤ C|t2− t1|
(1
ε

+ 1
)
, (4.66)

and finally we put this together with (4.54) back into (4.53) to end up with

||uN (·, t2)−uN (·, t1)||1 ≤ C
(
ε+ |t2− t1|

(1
ε

+ 1
))

. (4.67)

The proof is completed by taking ε=
√
|t2− t1|.
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4.7 Convergence
Finally all the a priori estimates we need are established, and so we are in a position to
use the Kolmogorov’s compactness (Theorem 2.1).

Theorem 4.1. Under assumptions 4.1 through 4.3, the family of numerical solutions
{uN}N has a subsequence {uNj}j that converges in C([0,T ] :L1((0,2π))) to a u∈C([0,T ] :
L1((0,2π)))∩L∞(QT )∩L∞([0,T ] :BV ((0,2π))).

Proof. The uniform boundedness for uN was established in Lemma 4.8, and temporal
stability is given by Lemma 4.10 with modulus of continuity ωT (|t− s|) =

√
|t− s|. The

last assumption that needs to be fulfilled for us to be able to use Theorem 2.1 is the shift
stability in the spatial variable. By Lemma A.1 in [14] we have∫ 2π

0
|uN (x+ ξ)−uN (x)|dx≤ |ξ| · |uN |BV ,

and by Lemma 4.9 we thus get that this is bounded with modulus of continuity νT (|ρ|) =
C|ρ|, for some constant C. This leaves all assumptions in Theorem 2.1 fulfilled, and use
of said Theorem yields the result.

It remains to be established that uN converges towards a distributional solution of
(1.1), to do this we’ll take an intermediate route, and first show that uN is in some sense
close to the strong vanishing viscosity solution of (2.11).

Theorem 4.2. Let assumptions 4.1 through 4.3 hold. Let uN be the solution of (3.32)
with initial data uN0 = PNu0 and let vεN be the solution of (2.11), with viscosity parameter
εN . Then there is a constant C so that

||uN −vεN ||1 ≤ C
√
εN

(
1 +N r−s(1−θ ν2 )+ θ

2 +N−s(1−θ
ν
2 )+ θ

2

)
, (4.68)

where r = 1 if α ∈ (0,1] and r = 2 if α ∈ (1,2).

Proof. Taking the difference between (3.32) and (??) results in

∂

∂t
(uN −vεN )−L(Φ(uN )−Φ(vεN ))− εN

∂2

∂x2 (uN −vεN )

=−εN
∂2

∂x2 (RN ∗uN )−L(I−PN )Φ(uN ). (4.69)

In the spirit of the proof of Lemma 4.9, we multiply by sgnρ(uN −vεN ) and integrate over
(0,2π) in space before letting ρ→ 0. Let’s yet again do as before and consider (4.69) term
by term.

i) Arguing as in the proof Lemma 4.9, we find by the monotone convergence Theorem
that

lim
ρ→0

〈
∂

∂t
(uN −vεN ),sgnρ(uN −vεN )

〉
=
∫ 2π

0

∂

∂t
(uN −vεN ) · sgn(uN −vεN )dx

= d
dt ||uN −vεN ||1 .
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ii) For the nonlocal term we argue as we did in the proof of Lemma 2.4 to get that

− lim
ρ→0

〈
L(Φ(uN )−Φ(vεN )),sgnρ(uN −vεN )

〉
= 1

2

∫ 2π

0

∫
|y|>0
{Φ(uN (x+y))−Φ(vεN (x+y)) + Φ(vεN (x))−Φ(uN (x))}

×{sgn(uN (x+y)−vεN (x+y))− sgn(uN (x)−vεN (x))}dπα(y)dx.

Considering the integrand, it is zero where uN − vεN has the same sign at x+y and
x. So suppose uN (x+y) ≥ vεN (x+y), and

uN (x) ≤ vεN (x),

where at least one of the inequalities are strict. Then we have by the monotonicity
of Φ that Φ(uN (x+y)) ≥ Φ(vεN (x+y)), and

Φ(uN (x) ≤ Φ(vεN (x)),

and by inspection we find that the integrand is nonnegative in this case. The opposite
case can be treated similarly, and we conclude that

− lim
ρ→0
〈L(Φ(uN )−Φ(vεN )),sgn(uN −vεN )〉 ≥ 0.

iii) With the definition
ηρ(u) =

∫ u

0
sgnρ(s)ds,

we may argue as in the proof of Lemma 4.9 to find that

−εN
〈
∂2

∂x2 (uN −vεN ),sgnρ(uN −vεN )
〉
≥ 0

for every ρ > 0.

iv) Since |sgnρ(uN −vεN )| ≤ 1 we have

−εN
〈
∂2

∂x2 (RN ∗uN ),sgnρ(uN −vεN )
〉
≤ εN

∣∣∣∣∣
∣∣∣∣∣ ∂2

∂x2 (RN ∗uN )
∣∣∣∣∣
∣∣∣∣∣
1

≤ εN
∣∣∣∣∣
∣∣∣∣∣∂RN∂x

∣∣∣∣∣
∣∣∣∣∣
1

∣∣∣∣∣
∣∣∣∣∣∂uN∂x

∣∣∣∣∣
∣∣∣∣∣
1
,

and by Lemma 4.1

−εN
〈
∂2

∂x2 (RN ∗uN ),sgnρ(uN −vεN )
〉
≤ CεNmN log(N)

≤ C√εN .
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v) For the last term of (4.69) we have

−
〈
L(I−PN )Φ(uN ),sgnρ(uN −vεN )

〉
≤ ||L(I−PN )Φ(uN )||1
≤ C ||L(I−PN )Φ(uN )|| .

In toto,
d

dt
||uN −vεN ||1 ≤ C(√εN + ||L(I−PN )Φ(uN )||), (4.70)

and after integrating in time we find that

||uN −vεN ||1 (t)≤ C
(√

εN + ||L(I−PN )Φ(uN )||L2(QT )
)

+
∣∣∣∣∣∣uN0 −u0

∣∣∣∣∣∣ . (4.71)

We can estimate the projection error on the nonlocal term in a similar manner as in the
proof of Lemma 4.9, but now with one less derivative, to get

||L(I−PN )Φ(uN )||L2(QT ) ≤ CN
r−s

∣∣∣∣∣
∣∣∣∣∣∂suN∂xs

∣∣∣∣∣
∣∣∣∣∣
L2(QT )

,

where r = 1 if α ∈ (0,1] and r = 2 if α ∈ (1,2). Using Lemma 4.5 together with the
assumption on εN

||L(I−PN )Φ(uN )||L2(QT ) ≤ CN
r−s(1−θ ν2 )+ θ

2 (1−ν)

≤ CN r−s(1−θ ν2 ),

where the last step is justified in the observation that 1− ν < 0. For the error in initial
data, we have ∣∣∣∣∣∣uN0 −u0

∣∣∣∣∣∣≤ CN−s ∣∣∣∣∣
∣∣∣∣∣∂su0
∂xs

∣∣∣∣∣
∣∣∣∣∣ ,

and by the assumption on the initial data
∣∣∣∣∣∣uN0 −u0

∣∣∣∣∣∣≤ CN−sε−sν2N

≤ CN−s(1−θ
ν
2 ).

Put back into (4.71), all this finally yields

||uN −vεN ||1 ≤ C
(√

εN +N r−s(1−θ ν2 ) +N−s(1−θ
ν
2 )
)

≤ C√εN
(

1 +N r−s(1−θ ν2 )+ θ
2 +N−s(1−θ

ν
2 )+ θ

2

)
. (4.72)

Finally, Theorem 4.2 together with Theorem 2.2 gives us that uN does indeed converge
to distributional solution of (1.1), as summarized in the following corollary.
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Corollary 4.1. Let assumptions (4.1) through (4.3) hold. Then the solutions, uN , of the
spectral vanishing viscosity method (3.32) converge to the unique distributional solution,
u, of (1.1). Moreover, there is a a constant C, independent of N , so that

||uN (·, t)−u(·, t)||1 ≤ C
√
εN

(
1 +N r−s(1−θ ν2 )+ θ

2 +N−s(1−θ
ν
2 )+ θ

2

)
, (4.73)

holds for all t ∈ [0,T ].

Proof. The estimate (4.73) is established by using theorems 4.2 and 2.2 together with the
triangle inequality. By the assumptions, the right hand side of (4.73) goes to 0 as N→∞,
and so

lim
N→∞

||uN (·, t)−u(·, t)||1 = 0,

which proves that uN converges to u in C([0,T ] : L1((0,2π))).
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5 Implementation and numerical experiments
With convergence of the spectral vanishing viscosity method (3.32) established in the
previous section, this section will be devoted to giving directions on how to implement
the method, and also provide some numerical examples. These examples will then give
an insight into the behaviour of solutions to (1.1), but also provide some guidelines on
when spectral vanishing viscosity should be applied. As with most stabilizing methods,
the SVV adds some artificial diffusion which may have the disadvantage of smearing out
the numerical too much, thus not capturing some characteristics of the exact solution in
a satisfactory manner. This is not unlike the question of approximating the initial data,
as discussed in appendix A.

5.1 Discretization and numerical solver
In physcial space, we use in this project the equidistant nodes

xj = 2πj
N

, j = 0, . . . ,N −1,

for an even N ∈ N. With this nodal set, it is convention in a Fourier method to have the
finite-dimensional function space to be

SN = {eiξx}N/2−1
ξ=−N/2.

The reason for this is that in a flexible numerical code all integrals of the type

f̂ξ =
∫ 2π

0
f(x)e−iξxdx

will have to be approximated using numerical quadrature, where the discrete Fourier
transform

f̂ξ ≈
1
N

N−1∑
j=0

f(xj)e−iξxj ,

is by far the most common. With this approximation f̂N/2 = f̂−N/2, and so no information
is gained in adding the N/2 frequency to SN .

Our numerical method now seeks a function of the form

uN (x,t) =
N/2−1∑
ξ=−N/2

ûξ(t)eiξx

that satisfies
∂uN
∂t = L(PNΦ(uN )) + εN

∂2

∂x2 (QN ∗uN ), for (x,t) ∈QT
uN (·,0) = PNu0,

(5.1)

where we recall that PN could be either SN or IN , but in the following we will always use
PN = IN , which makes for a numerical code that can handle a wide range of problems.
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If we now take −N/2 ≤ ξ ≤ N/2− 1, and multiply (5.1) by e−iξx

2π and integrate over
(0,2π) in space, we find that

∂ûξ
∂t =−Cα|ξ|αΦ̂ξ− εN |ξ|2Q̂ξûξ
ûξ(0) = (PNu0)ξ.

(5.2)

It’s important to notice that (5.2) provides for −N/2≤ ξ ≤N/2−1 a system of ordinary
differential equations that can be solved numerically using a time integration scheme of
your choosing. In this project, we have opted to use the explicit fourth order Runge-Kutta
method for the time integration.

To make the method (5.2) prepared for a numerical implementation we need to ex-
plicitly address the choice of the SVV parameters εN ,mN and Q̂ξ. We will here follow
[18] and assumption 4.1 as

εN = CN−θ

mN =N
θ
2 log2(N)−

1
2

Q̂ξ =


0, |ξ|<mN
|ξ|−mN
mN

, mN ≤ 2mN

1, |ξ|> 2mN ,

where θ and C needs be determined on a more ad-hoc basis. However, throughout the
following numerical experiments θ = 0.5, and C = 0.05 has done the job. Note also the
resemblance between the SVV kernel QN and the de la Vallée Poussin kernel VN as
discussed in appendix A. Indeed, we have that QN = I−VmN .

Before moving on to the numerical examples, we note that also the coefficient for the
fractional laplacian, Cα, needs to be calculated. We recall that

Cα = 2cα
α

∫ ∞
0

x−α sin(x)dx,

where

cα =
αΓ

(
1+α

2

)
2π 1

2 +αΓ
(
1− α

2

) .
For α ∈ (0,1], we have that

∫ ∞
0

x−α sin(x)dx=

Γ(1−α)sin
(
π(1−α)

2

)
α ∈ (0,1)

π
2 α = 1

(cf. [4]), but for α ∈ (1,2), the integral has to be approximated using quadrature. A
further discussion of this can be found in appendix C.

5.2 Weakly degenerate
As our first numerical example, we consider the fractional porous medium equation with
discontinuous initial data. In this case we then have

Φ(u) = u|u|m−1,
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where m> 1, and

u0(x) =

1, for |x−π|< π
2

0, otherwise.

This choice of Φ is degenerate for u= 0, and the local case is extensively studied in [27].
The Cauchy problem for the fractional porous medium equation was studied in [6, 7].

In figure 5.1, we see the results of numerical simulations for some values of α. What
we are able to notice is that because of the smoothness of the underlying solution, the
simulation without SVV seems fairly stable, and importantly the amount of SVV added
in the other simulations are not enough to overly smear the solutions. Another important
feature to notice from figure 5.1, is that for increasing α, the diffusion seems to slow down,
and the areas of rapid change becomes smaller. This is in accordance with the fact that L
approaches the regular laplacian (or a scaled version of it) as α→ 2, together with what
we may know of solutions to the porous medium equation (cf. [27]). Indeed for α close
to 2, the gradient of the solution comes close to discontinuous. This will yield numerical
oscillations if SVV is not incorporated, as is shown in figure 5.2a, which the SVV clearly
helps to stabilize as we can see in figure 5.2b.

5.3 Fast diffusion

We will again consider Φ(u) = u|u|m−1, but now with 0 <m < 1. In the local case, this
equation has been dubbed the fast diffusion equation, so it seems fitting that we call it the
fractional fast diffusion equation in this setting. Although the degeneracy at u= 0 is not
present in the fast diffusion case, we no longer have a locally Lipschitz nonlinearity. The
results of some numerical simulation, with and without SVV, are summarized in figure
5.3. Worth noting here is that even though the SVV approximation is fairly successful at
retaining the overall structure of the solution, it is the least so for the lowest value of α.
This observation is in agreement with assumption 4.1, where smaller values for α allows
for greater values of θ, which in turn decreases the value of εN .

Although not clearly visible in figure 5.3, the tails of the solution are not lost for α
closer to 2, which is in contrast to our previous discussion of the fractional porous medium
equation and figure 5.2. This suggests that the fast diffusion case is similar to the heat
equation in that the speed of propagation is infinite also in the limit α→ 2, which lends
the name fast diffusion some creedence.

In the analysis of the fractional fast diffusion equation, the literature makes a clear
distinction for when m>m∗ := (d−α)+

d , where d is the number of spatial dimension. As
can be seen from fig 5.3a and 5.3b the implementation seems robust enough to also handle
the case when m<m∗.

5.4 Strongly degenerate
As the last class of problems we’ll consider is when the nonlinearity Φ is strongly degen-
erate, i.e. when Φ′ = 0 on a nontrivial interval. As a representative example we use

Φ(u) = max{u,0}.
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(a) α= 0.5, without SVV. (b) α= 0.5, with SVV.

(c) α= 1.0, without SVV. (d) α= 1.0, with SVV.

(e) α= 1.5, without SVV. (f) α= 1.5, with SVV.

Figure 5.1: Numerical solution of the fractional porous medium equation for selected
values of α. All simulation are with N = 128, T = 0.5 and m= 3. The dotted line is the
initial data.
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(a) α= 1.999, without SVV. (b) α= 1.999, with SVV.

Figure 5.2: Numerical solution of the fractional porous medium equation for α = 1.999.
The simulation are with N = 128, T = 0.5 and m= 3. The dotted line is the initial data.

In the local case, this equation is often called Stefan’s problem, and may be used to model
phase transitions, like the melting of an ice cube in a glass of water. So in the nonlocal
case we will in this project dub this equation the fractional Stefan problem.

To better understand the qualitative behaviour of solutions to this problem, we will
take as initial data

u0(x) = sgn(π−x), (5.3)

since then a fair amount of the initial data lies within the degeneracy of Φ.
The results of the numerical simulations are summarized in figure 5.4. As has already

been made clear in the previous examples, solutions are smoother for low values of α, but
here already for α = 1, we begin to see oscillations close to where the gradient changes
rapidly. Again, these oscillations were not present when SVV was added.

To conclude this discussion on the fractional Stefan’s problem, we will see that it is not
necessary for the initial data to be discontinuous for oscillations in the numerical solution
to emerge. We continue to consider Φ(u) = max{u,0}, but now we take the initial data
to be

u0(x) =

exp
{

1− 1
1−|x−π|2

}
− 1

2 for |x−π|< 1
−1

2 otherwise,

together with the somewhat extreme parameters α = 1.99 and T = 15. The results are
depicted in figure 5.5. As we can see, the smooth initial data does not hinder the emergence
of oscillations about the discontinuities, and again the adding of SVV smooths out the
oscillations in what may be called a satisfactory manner.

5.5 Approximating the initial data with a smoother kernel

In all the above numerical examples we have used uN0 = INu0, but due to Gibb’s oscillla-
tions this may not be the soundest strategy for approximating the initial data. Especially
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(a) α= 0.5, without SVV. (b) α= 0.5, with SVV.

(c) α= 1.0, without SVV. (d) α= 1.0, with SVV.

(e) α= 1.5, without SVV. (f) α= 1.5, with SVV.

Figure 5.3: Numerical solution of the fractional fast diffusion equation for selected values
of α. All simulation are with N = 128, T = 0.5 and m= 2

5 . The dotted line is the initial
data.
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(a) α= 0.5, without SVV. (b) α= 0.5, with SVV.

(c) α= 1.0, without SVV. (d) α= 1.0, with SVV.

(e) α= 1.8, without SVV. (f) α= 1.8, with SVV.

Figure 5.4: Numerical solution of the fractional Stefan problem for selected values of α.
All simulation are with N = 128 and T = 0.5. The dotted line is the initial data.
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(a) α= 1.99, without SVV. (b) α= 1.99, with SVV.

Figure 5.5: Numerical solution of the fractional Stefan problem with smooth initial data.
Both simulation are with N = 128 and T = 15. The dotted line is the initial data.

when the initial data is discontinuous, as has been the case in all our examples so far. The
oscillations we have seen so far may just be Gibb’s oscillations from the initial data that
haven’t had the time to diffuse away, rather than an artifact from the numerical scheme.

To address this issue, we review the cases where we encountered oscillations. In figure
5.6 the results from the case of fractional porous medium equation with a very high
fractionality parameter. In figures 5.6a and 5.6b we have approximated the initial data
using the discrete Fejer kernel. As we can see from these figures, the oscillations are
still present without SVV, and the addition of SVV smooths out the oscillations without
overly smearing the solution. In figures 5.6c and 5.6d we see the same effect also when
approximating the initial data using the discrete de la Vallée Poussin Kernel.

Going back to fractional Stefan’s problem (Φ(u) = max{u,0}), we get a similar be-
haviour. Confer figure 5.7. As we can see from figure 5.7a and 5.7b, even though the
Fejer approximation of the initial data does well to smooth out the osillation around the
discontinuity, an increase in α and for larger times, the oscillations are still present, which
the SVV is able to handle. A similar story is told in figure 5.7c and 5.7d when the initial
data is approximated using de la Vallée Poussin kernel.

As a conclusion, we have seen that the oscillations that arise for degenerate problems
when using no stabilization technique can not be attributed entirely to using the discrete
interpolant IN for approximating the initial data. Consequently, stabilization methods
like SVV will have to be incorporated to create a numerical code that can handle as
general a problem as possible.

5.6 Verifying convergence
The previous numerical experiments hints at when SVV should be used, and to what
extent. They also somewhat affirms that the proposed numerical method is good, in that
the numerical solutions are well-behaved and do not stray far from what we might expect
the solutions to look like. However, this does not constitute a sufficient confirmation
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(a) uN
0 = FNu0, without SVV. (b) uN

0 = FNu0, with SVV.

(c) uN
0 = VNu0, without SVV. (d) uN

0 = VNu0, with SVV.

Figure 5.6: Numerical solution of the fractional porous medium equation for α = 1.999,
m= 3, and different ways to approximate the initial data. All simulation are with N = 128
and T = 0.5. The dotted line is the initial data.
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(a) uN
0 = FNu0, without SVV. (b) uN

0 = FNu0, with SVV.

(c) uN
0 = VNu0, without SVV. (d) uN

0 = VNu0, with SVV.

Figure 5.7: Numerical solution of the fractional Stefan’s problem for α= 1.9, and different
ways to approximate the initial data. All simulation are with N = 128 and T = 1. The
dotted line is the initial data.
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that the implemented numerical method is correct, and to lay any remaining unease to
rest we need to quantify the error in some way. Thus, a numerical verification of the
implementation is of significant importance if we are to have solid trust in the preceding
numerical experiments.

First off, we need a way to quantify the distance between functions periodic functions.
Luckily, Parseval’s identity provides us with a way of doing this in a way that is well-suited
for a numerical method based on a Fourier basis. Let u,v ∈ L2((0,2π)) be 2π-periodic,
then we have that

||u−v||=
√

2π
∑
ξ∈Z
|ûξ− v̂ξ|2,

where ûξ and v̂ξ are the Fourier coefficients of u and v respectively.
Next, we need a correct solution to compare the numerical results to. This is a bit

trickier, since (1.1) has no known explicit, exact solutions. As a proxy we will in the
subsequent use the numerical solution with a large number of degrees of freedom, N , as
the exact solution.

Because (1.1) poses a variety of problems, and the solutions may have different reg-
ularity properties depending on u0, α and Φ, we shall study several cases and see where
SVV enhances convergence, but also where it to some degree slows it down. In addition
to showing that the Fourier spectral method we have implemented converge, this will also
inform when SVV should be used.

5.6.1 Weakly degenerate

As the first case to consider, we use the fractional porous medium. That is, Φ(u) =
u|u|m−1, with m> 1. For this case, it is of interest to consider both when we have smooth
initial data away from the degeneracy u = 0, and when the initial data is discontinuous.
For the former, we use as initial data

u0(x) = sin(cos(x)) + 1,

and the results for various α are shown in figure 5.8. As we can see, for all α the
numerical method without SVV drops down to machine precision quite fast, whereas
the inclusion of SVV makes the method have a slower rate of convergence. This may
be somewhat surprising and can be to some extent chalked up to the need to calibrate
the SVV parameters more than what has been done in this project. However, with this
choice of Φ and u0 (1.1) constitutes a uniformly parabolic problem in the sense that
0< c≤ Φ′ ≤ C for some constants c and C in the relevant domain of Φ. In the local case
solutions will be infinitely regular, and so it is reasonable to believe that the fractional
problem also will have a high order of regularity, which would diminish the need for any
stabilization technique.

Going back to the initial data we used for the fractional porous medium equation in
the numerical experiments, we also consider

u0(x) =

1 for |x−π|< π
2

0 otherwise,
(5.4)
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(a) α= 0.5. (b) α= 1.

(c) α= 1.5. (d) α= 1.999

Figure 5.8: Numerical error for the fractional porous medium equation with m = 2, se-
lected values for α and smooth initial data away from the degeneracy.
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(a) α= 0.5. (b) α= 1.

(c) α= 1.5. (d) α= 1.999

Figure 5.9: Numerical error for the fractional porous medium equation with m = 2, se-
lected values for α and discontinuous initial data.

and the results are shown in figure 5.9. Here we see that both with and without SVV
we have spectral convergence. Importantly, the addition of SVV does not take anything
away from the convergence of the method. That the errors depicted in figure 5.9 have a
much lower order of accuracy than what is shown in figure 5.8 can be explained by the
fact that the approximation of the discontinuous initial will contribute to a larger error
than the approximation of smooth initial data. It is also worth noting that already for
the lower values of N the error curves in figure 5.9 show a significant downward slope.
This suggests that the underlying solution is at least continuous.

As we saw in the numerical experiments, for values of α close to 2, mild oscillations
may occur, and seeing as SVV was both successful in removing these oscillations while
also retaining the order of convergence, SVV seems like a quite reasonable stabilization
technique to use in this case.
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(a) α= 0.5. (b) α= 1.

(c) α= 1.5. (d) α= 1.9

Figure 5.10: Numerical error for the fractional Stefan’s problem, selected values for α and
discontinuous initial data.

5.6.2 Strongly degenerate with discontinuous initial data

Lastly we will consider the case that brought on the most consistent oscillations, viz. the
strongly degenerate problem with

Φ(u) = max{u,0},

and initial data
u0(x) = sgn(π−x).

The results of this case is shown in figure 5.10, and we see that here the addition
of SVV even improves on the convergence rate for all values of α. This effect is most
prominent for α closer to 2, and for large N . Especially in the case α= 1.9 (figure 5.10d)
we see the concave error curve for large N that is the hallmark of spectral convergence.
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6 Concluding remarks
With the results and discussion in section 5, we can note that SVV should not be applied
in all cases. Some knowledge of the exact solution goes a long way to knowing when SVV,
and how much, should be used. First off, we have seen that if Φ has no degeneracies,
SVV is not needed as it would take away from the convergence. If you have discontinuous
problem you will be better off approximating the initial data with the Fejer- or de la
Vallée Poussin kernel in this case. This is not so surprising, since any finite regularity
that might warrant the need for stabilization in a numerical scheme will most likely arise
from Φ being degenerate. This reasoning is validating in the numerical experiments where
we saw that both for weakly- and strongly degenerate problems, oscillations could arise.
These oscillations where mild enough to not ruin convergence completely, but adding SVV
in these cases both removed oscillations and in some cases improved on the convergence.

The need to use SVV to stabilize numerical solutions also increased with α close to
2, which is in agreement with the fact that L converges to the laplacian as α→ 2 and
solutions of the local variant of (1.1) can have finite regularity when Φ is degenerate.

This knowledge becomes additionally valuable if (1.1) is augmented with a convective
term, a natural generalization. For α ∈ (0,1) the dissipation is too weak to hinder the
onset of shock discontinuities (cf. [8, 15]) in the case of a linear diffusive term, and
similar behaviour is to be expected in the nonlinear case. With the possibility of shock
discontinuities to form for α< 1, stabilization with SVV will be required both for low and
high values of α.

6.1 Where to go from here
As already stated, a natural extension of the discussion in this project is to add a convec-
tive term. Most of the analysis done in section 4 can be extended to this case, but extra
care will be needed especially the energy estimate for the derivatives of uN (Lemma 4.5).

Another extension of the problem considered herein is to let the nonlocal operator not
only be the fractional laplacian, but defined by other symmetric- and asymmetric Radon
measures. Again, the crux of the difficulty will lie in the generalization of Lemma 4.5,
and in particular, the interpolation estimate of Lemma 2.3 that will need to be extended
to more general measures.

Although (1.1) was in this project only considered in one spatial dimension, the ex-
tension to two- or three dimension would be interesting. The necessary modifications of
the analysis in section 4 would most likely follow the notation and techniques that were
used in [4].

In addition, the use of a Fourier basis in a spectral method is only advisable in the case
of periodic boundary conditions. In applications, problems with essential- and natural
boundary conditions like Dirichlet and Neumann conditions are common. So a basis other
than Fourier would be required for a spectral method, e.g. a polynomial basis. Also, if
SVV is to be used in this setting, a modal basis (as opposed to nodal) should be used.
Further, to keep the matrices of the resulting numerical scheme sparse the polynomial
basis should in some sense take the bilinear form of the nonlocal operator into account
(Lemma 2.1). For instance, in the local case the “boundary adapted bubble functions”
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of [1, sec. 2.3.3], which are orthogonal in H1
0 ((−1,1)), can be used. See also [17]. The

use of a Legendre basis on Burgers’ equation with SVV was studied in [19]. Other than
that, the author has not been able to find SVV used with polynomial bases. However,
successful use of a polynomial basis, especially on a bounded domain with homogeneous
Dirichlet boundary conditions, is an important stepping stone to be able to use spectral
element methods on (1.1). I.e. dividing the global domain into smaller subdomains, akin
to finite element methods. This extension would let us solve (1.1) with spectral methods
on more irregular domains, e.g. domains with holes.
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A Gibb’s phenomenon and handling of initial data
To complete the method (3.32) we need a way to project the initial data u0 into the
discrete function space SN . The obvious candidates are SN or IN . However, if u0 contains
discontinuities, then PNu0 will have oscillations about the discontinuities, which is widely
known as Gibb’s phenomenon (cf. [1, Sec. 2.1.4]). Loosely speaking, these oscillations
comes from the fact that

SNu0 =DN ∗u0 (A.1)
, where DN is the Dirichlet kernel, and contains oscillations and rapidly changes sign
about the origin.

Gibb’s phenomenon has the detrimental effect that even though u0 is bounded, this is
no guarantee for PNu0 to be uniformly bounded. The same holds for the total variation,
i.e. even if u0 has bounded variation this does not imply that the total variation of PNu0
is uniformly bounded. So the Gibb’s phenomenon poses an issue that should be adressed
in a numerical implementation.

The usual way to tackle this problem stems from the observation that Gibb’s phe-
nomenon gives high frequency oscillations, and so a dampening of the higher frequencies
will hopefully yields approximations that are better behaved. So assume now that the
initial data u0 lends itself to the Fourier representation

u0(x) =
∑
ξ∈Z

u0,ξe
iξx.

The first such dampening of higher frequencies we’ll consider is the use of the Fejer kernel,
which operates on u0 as

FNu0 =
∑
|ξ|≤N

(
1− |ξ|

N + 1

)
u0,ξe

iξx. (A.2)

We see that FN acts as a linear dampening of the frequencies of u0. Since all information
of u0 lies in the coefficients u0,ξ, one can predict that a heavy dampening of the frequencies
will lead to losing some of the features of u0. Indeed, as we shall see shortly, the Fejer
kernel leads to quite heavy smearing of discontinuities.

To retain as much of the structure of u0 as possible, another smoothening operator is
now proposed. This is the so-called de la Vallée Poussin kernel, VN , which acts on u0 as

VNu0 =
∑
|ξ|≤[N2 ]

u0,ξe
iξx+

∑
[N2 ]<|ξ|≤N

2− |ξ|[
N
2

]
u0,ξe

iξx, (A.3)

where
[
N
2

]
is the smallest integer greater than or equal to N

2 . See that VN does no
dampening on the lower frequencies, in contrast to the Fejer kernel.

Example A.1. To summarize what we have so far, and try to justify some of the heuristics
in the discussion, let’s consider u0 defined on [0,2π) and periodic as

u0(x) =

1, if x ∈
(
π
2 ,

3π
2

)
0, otherwise.

(A.4)
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(a) INu0 plotted with u0. (b) The discrete version of FNu0 plotted with
u0

(c) The discrete version of VNu0 plotted with
u0

Figure A.1: The various way of approximating the initial data. Here with N = 16 and u0
as given in example A.1.
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Consult figure A.1 to see how the discrete versions of the various approximations to
u0. In figure A.1a we see the Gibb’s phenomenon clearly present, and will become more
pronounced as N increases. From figure A.1b we see that the Fejer kernel extinguishes
the high frequency oscillations, but this happens at a loss of smearing out u0. Lastly, in
figure A.1c we see a compromise between the two in VNu0, where some oscillations are
still present to keep the some of the structure of u0.

Of course, one need not stop here when considering frequency-dampening operators.
In general we may define an operator as

KNu0 =
∑
|ξ|≤N

σξu0,ξe
iξx, (A.5)

where the σξ is an even sequence in ξ, σ0 = 1, and σ|ξ| is nonincreasing in ξ. The reader
is referred to [1, Sec. 2.1.4] for more examples.

To get back to why the approximations FNu0 and VNu0 are needed, we recall that the
more obvious way of approximating the initial data lead to potenial Gibb’s oscillations
which made us lose control of both boundedness and total variation in the approximation.
To see that the operator FN and VN regain this control it’s useful to change perspective
somewhat. Since both operators are acting componentwise on u0, they can be expressed
as convolutions with some kernel. For the Fejer kernel we have FNu0(x) = FN ∗u0, where

FN (x) = 1
N + 1

sin
(
(N + 1)x2

)
sin
(
x
2

)
2

. (A.6)

Notice that FN ≥ 0, which is in correspondence with FNu0 not exhibiting Gibb’s oscilla-
tions. The analogous de la Vallée Poussin kernel is

VN (x) = 2
N

sin
(
N x

2

)2
− sin

(
N
2 ·

x
2

)2

sin
(
x
2

)2

 (A.7)

(cf. [20]).
Assume now that u0 is bounded, then Young’s inequality for convolutions yields

||KN ∗u0||∞ ≤ ||KN ||1 · ||u0||∞ ,

where KN is a placeholder for either FN or VN . And so if KN is uniformly bounded in
L1((0,2π)) we can control the boundedness of KNu0. For the Fejer kernel ||FN ||1 = 1,
and for the de la Vallée Poussin kernel ||VN ||1 = 1

3 + 2
√

3
π (cf. [20, Cor. 1.3]).

The following lemma shows that also total variation is under control when using FN
or VN , making both approximations feasible in our subsequent compactness argument.

Lemma A.1. Assume u0 has bounded variation, and that {KN}N∈Z is a family of kernels
uniformly bounded in L1((0,2π)). Then the total variation of KN ∗u0 is uniformly bounded
by the estimate

|KN ∗u0|BV ≤
1
π
|u0|BV ||KN ||1 . (A.8)
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Proof. The definition of convolutions of periodic functions gives us that

(KN ∗u0)(x) = 1
2π

∫ 2π

0
KN (y)u0(x−y)dy.

Let now 0 = x0 < x1 < .. . < xm = 2π be a partition of [0,2π], when then have

m−1∑
i=0
|(KN ∗u0)(xi+1)− (KN ∗u0)(xi)|=

1
2π

m−1∑
i=0

∣∣∣∣∣
∫ 2π

0
KN (y)(u0(xi+1−y)−u0(xi−y))dy

∣∣∣∣∣
≤ 1

2π

m−1∑
i=0

∫ 2π

0
|KN (y)| · |u0(xi+1−y)−u0(xi−y)|dy

= 1
2π

∫ 2π

0
|KN (y)|

m−1∑
i=0
|u0(xi+1−y)−u0(xi−y)|

dy

≤ |u0|BV
π

∫ 2π

0
|KN (y)|dy

= 1
π
|u0|BV ||KN ||1 ,

where the factor 2 comes from taking into account the possible jump between of u0(0+)
and u0(2π−). Take now the supremum over all such finite partitions results in

|KN ∗u0|BV ≤
1
π
|u0|BV ||KN ||1 . (A.9)
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B Proof of Lemma 2.9
Proof. The proof takes inspiration from the proof of Theorem 2.4 in appendix B of [4],
which in turn is inspired by the celebrated Kruzkov’s doubling of variables argument (cf.
e.g. [14, Ch. 2]).

Establishing an entropy relation: Let η be a smooth convex function in one variable.
For vε = vε(x,t), multiply (2.11) by η′(vε) to get

η′(vε)
∂vε
∂t

= η′(vε)L[Φ(vε)] + εη′(v−ε)
∂2vε
∂x2 . (B.1)

First, we notice that
η′(vε)

∂vε
∂t

= ∂η(vε)
∂t

,

but also that

η′(vε)
∂2vε
∂x2 = ∂2η(vε)

∂x2 −η′′(vε)
(
∂vε
∂x

)2

≤ ∂2η(vε)
∂x2

by the convexity of η, and so (B.1) becomes

∂η(vε)
∂t

≤ η′(vε)L[Φ(vε)] + ε
∂2η(vε)
∂x2 .

We now multiply this by a nonnegative test function ψ ∈ C∞(R× [0,T ]) that is
2π-periodic in space and has compact support in time. Integrating over QT and
using integration by parts appropriately leads to

∫∫
QT

η(vε)
∂ψ

∂t
+η′(vε)L[Φ(vε)]ψ+ εη(vε)

∂2ψ

∂x2 dxdt≥ 0. (B.2)

Now, take any k ∈ R, and define ηγ(vε,k) = ((vε− k)2 + γ2) 1
2 . We take the limit

γ→ 0 and use the dominated convergence theorem on each term to get
∫∫
QT

η(vε,k)∂ψ
∂t

+η′(vε,k)L[Φ(vε)]ψ+ εη(vε,k)∂
2ψ

∂x2 dxdt≥ 0, (B.3)

with η(vε,k) = |vε−k| and η′(vε,k) = sgn(vε−k).
Consider vδ = vδ(y,s), and we get by the exact same approach that

∫∫
QT

η(vδ,k)∂ψ
∂t

+η′(vδ,k)L[Φ(vδ)]ψ+ δη(vδ,k)∂
2ψ

∂y2 dyds≥ 0, (B.4)

for every k ∈R and nonnegative ψ ∈ C∞(R× [0,T ]) that’s 2π-periodic in space and
with compact support in time.
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The doubling of variables: In (B.3) we take k = vδ(y,s) and integrate over y and s.
Similarly we let in (B.4) k = vε(x,t) and integrate over x and t. Summing these
together, and we get

∫∫
QT

∫∫
QT
η(vε(x,t),vδ(y,s))

(
∂

∂t
+ ∂

∂s

)
ψ(x,y, t,s)

+η′(vε(x,t),vδ(y,s))(L[Φ(vε(·, t)](x)−L[Φ(vδ(·, s)](y))ψ(x,y, t,s)

+η(vε(x,t),vδ(y,s))
(
ε
∂2

∂x2 + δ
∂2

∂y2

)
ψ(x,y, t,s)dw ≥ 0, (B.5)

with dw = dxdtdyds, and ψ = ψ(x,y, t,s) is 2π-periodic and infintely regular in x
and y and has compact support t and s.
To continue, we notice

L[Φ(vε(·, t)](x)−L[Φ(vδ(·, s)](y) =
∫
|z|>0

Φ(vε(x+ z, t))−Φ(vδ(y+ z,s))

−Φ(vε(x,t)) + Φ(vδ(y,s))

− z1|z|<1

(
∂Φ(vε)
∂x

(x,t)− ∂Φ(vδ)
∂y

(y,s)
)

dµ(z)

= L̃[Φ(vε(·, t))−Φ(vδ(·, s))](x,y),

where we define

L̃[ϕ(·, ·)](x,y) :=
∫
|z|>0

ϕ(x+ z,y+ z)−ϕ(x,y)− z1|z|<1

(
∂

∂x
+ ∂

∂y

)
ϕ(x,y)dµ(z).

We then have that

η′(vε(x,t),vδ(y,s))L̃[Φ(vε(·, t))−Φ(vδ(·, s))](x,y)≤ L̃[η(Φ(vε(·, t)),Φ(vδ(·, s)))](x,y).
(B.6)

To see this, we use

sgn(vε(x,t)−vδ(y,s))(Φ(vε(x,t))−Φ(vδ(y,s))) = |Φ(vε(x,t))−Φ(vδ(y,s))|

to get that

η′(vε(x,t),vδ(y,s))L̃[Φ(vε(·, t))−Φ(vδ(·, s))](x,y)≤
∫
|z|>0
|Φ(vε(x+ z, t))−Φ(vδ(y+ z,s))|

− |Φ(vε(x,t))−Φ(vδ(y,s))|

− z1|z|<1 sgn(vε(x,t)−vδ(y,s))
(
∂Φ(vε)
∂x

(x,t)− ∂Φ(vδ)
∂y

(y,s)
)

dµ(z).

For the last term we use that sgn(vε(x,t)−vδ(y,s)) = sgn(Φ(vε(x,t))−Φ(vδ(y,s)) ex-
cept possibly if Φ′(s) = 0 for all s between vε(x,t) and vδ(y,s), but then ∂Φ(vε)

∂x (x,t) =
∂Φ(vδ)
∂y (y,s) = 0. And so (B.6) is justified.
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Next we show that L̃ is self-adjoint. See that by Fubini’s theorem∫∫
QT

∫∫
QT
L̃[η(Φ(vε(·, t)),Φ(vδ(·, s))](x,y)ψ(x,y, t,s)dw

=
∫
|z|>0

∫∫
QT

∫∫
QT

η(Φ(vε(x+ z, t)),Φ(vδ(y+ z,s)))ψ(x,y, t,s)dw

−
∫∫
QT

∫∫
QT

η(Φ(vε(x,t)),Φ(vδ(y,s)))ψ(x,y, t,s)dw

− z1|z|<1

∫∫
QT

∫∫
QT

(
∂

∂x
+ ∂

∂y

)
η(Φ(vε(x,t)),Φ(vδ(y,s)))ψ(x,y, t,s)dwdµ(z).

Using the variable transformation (x,y) 7→ (x−z,y−z) and periodicity to translate
the domain of integration back to (0,2π) on the first term, and integration by parts
on the last, we find that∫∫

QT

∫∫
QT
L̃[η(Φ(vε(·, t)),Φ(vδ(·, s))](x,y)ψ(x,y, t,s)dw

=
∫
|z|>0

∫∫
QT

∫∫
QT

η(Φ(vε(x,t)),Φ(vδ(y,s)))ψ(x− z,y− z, t,s)dw

−
∫∫
QT

∫∫
QT

η(Φ(vε(x,t)),Φ(vδ(y,s)))ψ(x,y, t,s)dw

+ z1|z|<1

∫∫
QT

∫∫
QT

η(Φ(vε(x,t)),Φ(vδ(y,s)))
(
∂

∂x
+ ∂

∂y

)
ψ(x,y, t,s)dwdµ(z).

Finally, using that the fractional laplacian measure is symmetric together with Fu-
bini’s theorem again, we get∫∫

QT

∫∫
QT
L̃[η(Φ(vε(·, t)),Φ(vδ(·, s))](x,y)ψ(x,y, t,s)dw

=
∫∫
QT

∫∫
QT

η(Φ(vε(x,t),Φ(vδ(y,s))

×
(∫
|z|>0

ψ(x+ z,y+ z, t,s)−ψ(x,y, t,s)− z1|z|<1

(
∂

∂x
+ ∂

∂y

)
ψ(x,y, t,s)dµ(z)

)
dw

=
∫∫
QT

∫∫
QT

η(Φ(vε(x,t),Φ(vδ(y,s))L̃[ψ(·, ·, t,s)](x,y)dw.

We put this back into (B.5) to arrive at∫∫
QT

∫∫
QT
η(vε(x,t),vδ(y,s))

(
∂

∂t
+ ∂

∂s

)
ψ(x,y, t,s)

+η(Φ(vε(x,t)),Φ(vδ(y,s)))L̃[ψ(·, ·, t,s)](x,y)

+η(vε(x,t),vδ(y,s))
(
ε
∂2

∂x2 + δ
∂2

∂y2

)
ψ(x,y, t,s)dw ≥ 0. (B.7)

Choice of test function: Let now ω be the standard mollifier, We also need the periodic
variant of ωρ, which we define as

ω̂ρ(x) =
∑
k∈Z

ωρ(x+ 2πk).
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We then take as a test function

ψ(x,y, t,s) = ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
φ(t),

where ρ,γ > 0, and φ is a C∞ function with compact support (0,T ), and is to be
determined later on. Before putting our choice for ψ into (B.7), we notice by direct
calculation that(

∂

∂t
+ ∂

∂s

)
ψ(x,y, t,s) = ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
φ′(t) and(

∂

∂x
+ ∂

∂y

)
ψ(x,y, t,s) = 0.

From the latter of these identities and that ψ(x+ z,y+ z, t,s) = ψ(x,y, t,s) we also
have that L̃[ψ(·, ·, t,s)](x,y) = 0. With this in mind, we get from (B.7) that

−
∫∫
QT

∫∫
QT
|vε(x,t)−vδ(y,s)|ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
φ′(t)dw

≤
∫∫
QT

∫∫
QT
|vε(x,t)−vδ(y,s)|

(
ε
∂2

∂x2 + δ
∂2

∂y2

)
ψ(x,y, t,s)dw. (B.8)

Estimating the right hand side of (B.8): Using integration by parts, we get

ε
∫∫
QT

∫∫
QT
|vε(x,t)−vδ(y,s)|

∂2ψ

∂x2 dw

≤ ε
∫∫
QT

∫∫
QT

∣∣∣∣∣∂u∂x(x,t)
∣∣∣∣∣ ·
∣∣∣∣12 ω̂′ρ

(
x−y

2

)∣∣∣∣ωγ (t− s2

)
φ(t)dw,

and if we now take the integration first over y and s, then

ε
∫∫
QT

∫∫
QT
|vε(x,t)−vδ(y,s)|

∂2ψ

∂x2 dw

≤ εC
ρ

∫∫
QT

∣∣∣∣∣∂u∂x(x,t)
∣∣∣∣∣
∫ T

0
ωγ

(
t− s

2

)
φ(t)dsdxdt

≤ C
∫ T

0
phi(t)dt|vε|BV

ε

ρ

≤ C
∫ T

0
phi(t)dt|u0|BV

ε

ρ
,

where the last step is justified by Lemma 2.7. We estimate the other term on the
right hand side of (B.8) in a similar manner, and so we get
∫∫
QT

∫∫
QT
|vε(x,t)−vδ(y,s)|

(
ε
∂2

∂x2 + δ
∂2

∂y2

)
ψ(x,y, t,s)dw≤C

∫ T

0
phi(t)dt|u0|BV

ε+ δ

ρ
.

(B.9)
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Estimating the left hand side of (B.8): With the inequality |a| − |b| ≤ |a− b|, we
have that

|vε(x,t)−vδ(y,s)|φ′(t)−|vε(x,t)−vδ(x,t)|φ′(t)
≤ |vδ(x,t)−vδ(y,s)| · |φ′(t)|
≤ |vδ(x,t)−vδ(x,s)| · |φ′(t)|+ |vδ(x,s)−vδ(y,s)| · |φ′(t)|.

Rearranging terms, we find that

−|vε(x,t)−vδ(y,s)|φ′(t)≥−|vε(x,t)−vδ(x,t)|φ′(t)
−|vδ(x,t)−vδ(x,s)| · |φ′(t)|
− |vδ(x,s)−vδ(y,s)| · |φ′(t)|.

Since ωγ and ω̂ρ are nonnegative functions, we get for the left hand side of (B.8)
that

−
∫∫
QT

∫∫
QT
|vε(x,t)−vδ(y,s)|ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
φ′(t)dw

≥−
∫∫
QT

∫∫
QT
|vε(x,t)−vδ(x,t)|ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
φ′(t)dw

−
∫∫
QT

∫∫
QT
|vδ(x,t)−vδ(x,s)|ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
|φ′(t)|dw

−
∫∫
QT

∫∫
QT
|vδ(x,s)−vδ(y,s)|ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
|φ′(t)|dw. (B.10)

For the second term on the right hand side of (B.10) all factors in the integrand are
bounded, so we may use Fubini’s theorem and integrate first over y to get∫∫

QT

∫∫
QT
|vδ(x,t)−vδ(x,s)|ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
|φ′(t)|dw

=
∫∫
QT

∫ T

0
|vδ(x,t)−vδ(x,s)|ωγ

(
t− s

2

)
|φ′(t)|dsdxdt.

If we next take the integration over x and use the time estimate of Lemma 2.8 we
end up with∣∣∣∣∣

∫∫
QT

∫∫
QT
|vδ(x,t)−vδ(x,s)|ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
|φ′(t)|dw

∣∣∣∣∣
≤ C

∫ T

0

∫ T

0

√
|t− s|ωγ

(
t− s

2

)
|φ′(t)|dsdt.

Using now that as γ→ 0, ωγ approaches Dirac’s delta yields∫∫
QT

∫∫
QT
|vδ(x,t)−vδ(x,s)|ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
|φ′(t)|dw→ 0,

as γ→ 0.
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For the third term on the right hand side of (B.10), notice that
∫∫
QT

∫∫
QT
|vδ(x,s)−vδ(y,s)|ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
|φ′(t)|dw≤C|u0|BV ρ

∫ T

0
|φ′(t)|dt,

where we have used that∫ 2π

0

∫ 2π

0
|vδ(x,s)−vδ(y,s)|ω̂ρ

(
x−y

2

)
dydx=

∫ 2π

0

∫ 2π

0
|vδ(x,s)−vδ(x+y)|ω̂ρ

(
y

2

)
dydx

≤ |vδ|BV
∫ π

−π
|y|ω̂ρ

(
y

2

)
dydx

≤ C|u0|BV ρ.

Furthermore, when we integrate over y and s, we get∫∫
QT

∫∫
QT
|vε(x,t)−vδ(x,t)|ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
φ′(t)dw

=
∫∫
QT
|vε(x,t)−vδ(x,t)|φ′(t)dxdt.

where we use that ω(·) integrates to 1. We put all this back into (B.10), and take
it together with (B.9) into (B.8) to arrive at

−
∫∫
QT
|vε(x,t)−vδ(x,t)|φ′(t)dxdt≤C|u0|BV ρ

∫ T

0
|φ′(t)|dt+C

∫ T

0
φ(t)dt|u0|BV

ε+ δ

ρ
.

(B.11)

Determining φ and finishing up: Take 0< t1 < t2 < T , and define

φ(t) =
∫ t

−∞
ωγ̃(τ − t1)−ωγ̃(τ − t2)dτ,

where γ̃ is sufficiently small to make the support φ contained in [0,T ]. We would
also like the mollification around t1 and t2 not to interfere. Since the support of
ωγ̃ is contained in [−γ̃, γ̃], we see that γ̃ < min

{
t2−t1

4 , t12 ,
T−t2

2

}
will do. To help

understanding, φ is now a smooth approximation of 1(t1,t2). By direct calculation,
it is seen that

φ′(t) = ωγ̃(t− t1)−ωγ̃(t− t2),
and ∫ T

0
|φ′(t)|dt= 2∫ T

0
φ(t)dt= t2− t1 ≤ T.

Taking the limit γ̃→ 0 in (B.11) yields
∫ 2π

0
|vε(x,t2)−vδ(x,t2)|dx≤

∫ 2π

0
|vε(x,t1)−vδ(x,t1)|dx+C|u0|BV

(
ρ+ ε+ δ

ρ

)
.
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Letting t1 approach 0 and using that vε and vδ share initial data results in

||vε(·, t2)−vδ(·, t2)||1 ≤ C|u0|BV
(
ρ+ ε+ δ

ρ

)
,

and taking ρ=
√
ε+ δ, we at long last end up at the desired result.

Remark 1. The technique used in this proof may seem overly complicated for our pur-
poses, and additionally it does not coincide well with the intuition that vδ→ vε as δ→ ε

in some sense. However, more straightforward approaches will require an estimate of ∂2vε
∂2x2

in L∞ that is independent of ε.
For simplicity, assume that ε > δ and take the difference of (2.11) for vε and vδ. Then

∂

∂t
(vε−vδ) = L[Φ(vε)−Φ(vδ)] + δ

∂2

∂x2 (vε−vδ)

+ (ε− δ)∂
2vε
∂x2 .

If we now multiply by sgnρ(vε−vδ), where sgnρ is the standard mollification of sgn, and
integrate over (0,2π) we get〈

∂

∂t
(vε−vδ),sgnρ(vε−vδ)

〉
=
〈
L[Φ(vε)−Φ(vδ)],sgnρ(vε−vδ)

〉
+ δ

〈
∂2

∂x2 (vε−vδ),sgnρ(vε−vδ)
〉

+ (ε− δ)
〈
∂2vε
∂x2 ,sgnρ(vε−vδ)

〉
.

Using a similar argument as that in the proof Lemma 2.4 we get in the limit ρ→ 0 that

d
dt ||vε−vδ||1 ≤ (ε− δ)

〈
∂2vε
∂x2 ,sgn(vε−vδ)

〉
.

The trouble comes in estimating the right hand side of this, which we need some sort of
estimate of ∂

2vε
∂x2 that is independent of ε for. Or at least an estimate where the dependence

on ε is made explicit. Regrettably we do not have this sort of estimate at our disposal.
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C Software documentation
The code for this project was written mainly in Python, and this appendix is devoted
to documenting what constituents were needed in making a working code. An example
of how to build a script for running simulations is also provided. But first we need to
establish how we can numerically compute the coefficient for the Fourier weighting of the
fractional laplacian, Cα.

C.1 Computing Fresnel integral
As already stated we have analytic expressions for Cα when α ∈ (0,1], but for α ∈ (1,2),
numerical quadrature is needed to approximate the generalized Fresnel integral∫ ∞

0
x−α sin(x)dx. (C.1)

In [21], Takuya Ooura and Masatake Mori provide an algorithm for evaluating such
integrals, and an implementation in C can be found on Ooura’s home page, http:
//www.kurims.kyoto-u.ac.jp/˜ooura/. However, the implementation requires an an-
alytic integrand, and ours is singular at x = 0. The solution is to split up the integral
as ∫ ∞

0
x−α sin(x)dx=

∫ b

0
x−α sin(x)dx︸ ︷︷ ︸

=:I1

+
∫ ∞
b

x−α sin(x)dx︸ ︷︷ ︸
=:I2

,

for some b > 0. In the implementation in this project b= 1 was used.
To handle I1 we do the same as proposed in [5], and use a Taylor series with remainder

for the integrand as

x−α sin(x) =
N−1∑
k=0

(−1)k x
2k+1−α

(2k+ 1)! + rN ,

which then gives that∫ b

0
x−α sin(x)dx=

N−1∑
k=0

(−1)k b2k+2−α

(2k+ 2−α)(2k+ 1)! +RN .

This being an alternating series, the remainder term, RN , is smaller in magnitude then
the next term of the series, so

|RN | ≤
b2N+2−α

(2N + 2−α)(2N + 1)! ,

which is for sufficiently large N , depending on b, decreasing. Thus, given an error tolerance
level of ε, one needs to find N so that

b2N+2−α(2N + 2−α)(2N + 1)!≤ ε. (C.2)

With an N satisfying this inequality we may approximate

I1 ≈
N−1∑
k=0

(−1)k b2k+2−α

(2k+ 2−α)(2k+ 1)! . (C.3)
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To handle the integral I2, we use the C code package by Ooura, and more specifically
the function

void intdeo(double (*f)(double), double a, double omega,
double eps, double *i, double *err)

which is suited for integrals on (a,∞) with oscillating integrand. Since the code for this
project is written in Python, and the code package for evaluating the oscillatory integrals
is written in C, we need to create a C extension in Python, to wrap the function with a
Python interface. Luckily this is quite manageable, and we will now give a short step-
by-step description on how to do it. The reader should also be aware that the amount of
tutorials and examples on this subject are ample, and just a web search away.

Step 1: Create .c-file: First we create “oscintmodule.c”, the file which will contain the
module.

/∗
∗ osc intmodule . c
∗/

#include <Python . h>
/∗ This p u l l s in the Python API and
∗must come b e f o r e any o ther i n c l u d e s ta tements ∗/

#include <math . h>

/∗ The o s c i l l a t i n g in tegrand : ∗/
double f (double x , double alpha )
{

return pow(x,−alpha )∗ s i n ( x ) ;
}

/∗
∗ Provided C−f u n c t i o n :
∗/

void i n tdeo (double a , double alpha , double omega ,
double eps , double ∗ i , double ∗ e r r )
{
/∗ See web page f o r implementat ion . Note t h a t
∗ we have a l s o changed the i n t e r f a c e to take
∗ in the doub le alpha , i n s t e a d o f the
∗ f u n c t i o n p o i n t e r f
∗/
}

/∗
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∗ Function to be c a l l e d from Python
∗/

stat ic PyObject∗ py os c i l l a t o ryQuadra tu r e ( PyObject∗ s e l f ,
PyObject∗ args )

{
const double b , alpha , omega , eps ;
double i =0, e r r =256;

/∗ Parses the input g iven in Python and
∗ c o n v e r t s to corresponding C t y p e s .
∗/

i f ( ! PyArg ParseTuple ( args , ”dddd” , &b , &alpha ,
&omega , &eps ) )

return NULL;

/∗ C a l l the i n t d e o f u n c t i o n ∗/
i n tdeo (b , alpha , omega , eps , &i , &e r r ) ;

/∗ Convert back to Python o b j e c t and re turn ∗/
return Py BuildValue ( ”d” , i ) ;

}

/∗
∗ Set up methods t a b l e :
∗/

stat ic PyMethodDef oscintmodule methods [ ] = {
{ ‘ ‘ o s c i l l a t o ry Qu ad ra tu r e ’ ’ , py osc i l l a to ryQuadra ture ,
METH VARARGS,
‘ ‘ Function for eva lua t ing o s c i l l a t i n g i n t e g r a l s ’ ’ } ,
{NULL, NULL, 0 , NULL}

} ;

/∗
∗ Python c a l l s t h i s to l e t us i n i t i a l i z e our module
∗/

PyMODINIT FUNC i n i t o s c i n tm od u l e ( void )
{

( void ) Py InitModule ( ” osc intmodule ” ,
osc intmodule methods ) ;

}
/∗
∗ NOTE: The f u n c t i o n name must be
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∗ i n i t [ e x a c t name o f module ] .
∗/

The key part of “oscintmodule.c” is the function “py oscillatoryQuadrature” that
takes in arguments from Python, and then converts them to C before doing what
we want on them there and then return a double for Python. See that we also need
to create a methods table that links each function in the module to the name we
want in the final Python module. Finally, we have a function that initializes the
module, which will be called when we compile the file.

Step 2:Compiling and creating necessary links: The next step is to compile oscint-
module.c and create the necessary links so that the oscillatoryQuadrature can be
used in a Python script. This can readily be done with Python script as follows:

# Setup . py
from d i s t u t i l s . co re import setup , Extension

setup (name=’ osc intmodule ’ , v e r s i on=’ 1 .0 ’ , \
ext modules =[ Extension ( ’ osc intmodule ’ ,

[ ’ osc intmodule . c ’ ] ) ] )

All that remains to do is then to run “setup.py” as

# python se tup . py i n s t a l l

in the terminal.
To use the function in Python, all that is required is to import the oscintmodule,
like so:

import osc intmodule as o s c i n t

# Using o s c i l l a t o r y Q u a d r a t u r e from C e x t e n s i o n :
i n t e g r a l = o s c i n t . o s c i l l a t o ry Qu ad ra t u r e ( 1 . , 1 . 5 , 1 . , 1E−8)

# Arguments are : s t a r t o f i n t e r v a l ,
# alpha ,
# frequency ,
# error t o l e r a n c e , r e s p e c t i v e l y .
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C.2 Software documentation
What follows is a list of methods, together with a short despriction, that were used in
the implementation. For sake of completeness, and short example of a script for running
a simulation on the fractional porous medium equation is also added.

physical to fourier(u evals, N): Given the values of a function u at points xj , j =
0, . . . ,N−1, returns the discrete Fourier coefficients using FFT. Assumes real input
and returns a complex array of length N/2 + 1.

fourier to physical(u coeffs,N): Given the Fourier coefficients of a real function u,
returns the evaluations of u at xj .

nonlinear coeffs(u points, N, phi): Given the values of u at xj , with N nodes, and
the nonlinearity Φ, returns the discrete Fourier coefficients of Φ(u).

nonlinear coeffs from fourier(u coeffs, N, phi): Given the discrete Fourier coeffi-
cients of u, returns the discrete Fourier coefficients of Φ(u).

get svv eps(theta,N): Given SVV parameter θ and number of degrees of freedom, re-
turns εN according to assumption 4.1.

get svv m(theta, N): Given the SVV parameter θ and number of degrees of freedom,
returns mN according to assumption 4.1.

get svv qhat(m,N): Given the SVV spectrum limit mN and degrees of freedom N
returns an array of length N/2 + 1 containing the SVV components Q̂ξ for 0≤ ξ ≤
N/2.

get time derivative(u coeff, N, phi, qhat, xisq, xial, epsN, c alpha): Given the dis-
crete Fourier coefficients of u, degrees of freedom N , nonlinearity Φ, SVV compo-
nents Q̂ξ, the derivative weightings |ξ|2 and |ξ|α, together with the parameters εN
and Cα returns the time derivative as

−Cα|ξ|αΦ̂ξ− εN |ξ|2Q̂ξûξ

for 0≤ ξ ≤N/2.

fourier svv RK4(u points, N, phi, alpha, c alpha, qhat, dt, epsN): Uses the val-
ues of u at xj and “get time derivative(...)” to evolve u one time step of magnitude
dt with the explicit fourth order Runge-Kutta method.

get little c alpha(alpha): Given α, returns cα according to (2.4).

get theta alpha(alpha, eps): Given α and an error tolerance “eps”, returns an approx-
imation of the Fresnel integral ∫ ∞

0
x−α sin(x)dx.
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get boundary layer integral(alpha,b, eps): Given α, end point b and error tolerance
ε, returns an approximation of I1 according to (C.3).

get big c alpha(alpha, eps): Given α and error tolerance ε, returns Cα = 2cαα−1 ∫∞
0 x−α sin(x).

oscillatoryQuadrature(b, alpha, omega, eps): Given start of interval b, α, frequency
ω and error tolerance ε uses the C-extension as previously outlined and approximates
I2.

fejer approximation(u,N): Given the number of points N and the values of u at the
points, returns the value of the discrete Fejer approximation at the same points.

vallee poussin approximation(u,N): Given the number of points N and the values of
u at the points, returns the value of the discrete de la Vallée Poussin approximation
at the same points.

Lastly, we give the promised code example for running a simple simulation of the
fractional porous medium equation, which will yield an animation of the solution evolving
through time. This is a working example of generating an animation, so there it is
unavoidable to have a lot of code that draws attention away for the numerical method
itself. For the reader who is foremost interested in that, the pertinent parts lies in the
parameter initializations together with the animation function “animate”.

# S c r i p t f o r numerical s i m u l a t i o n o f the

# Import ing modules :
import numpy as np
import numpy . f f t as f f t
import f o u r i e r
# A l l f u n c t i o n s e x c e p t
# o s c i l l a t o r y Q u a d r a t u r e i s in the ” f o u r i e r ” module .

import matp lo t l i b . pyplot as p l t
import matp lo t l i b . animation as animation

#################
# Parameters :
#################
N = 256 #Dofs

# I n i t i a l data :
def i n i t i a l d a t a ( x ) :

return 1 .∗ ( np . abs (x−np . p i )<0.5∗np . p i )

# Make the f u n c t i o n so i t works componentwise :
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i n i t i a l d a t a = np . v e c t o r i z e ( i n i t i a l d a t a )

# N o n l i n e a r i t y :
m = 2 .
def phi (u ) :

return np . s i gn (u)∗np . abs (u )∗∗ (m)

phi = np . v e c t o r i z e ( phi )

# F r a c t i o n a l l a p l a c i a n :
alpha = 1 .5
eps = 1E−8
c a lpha = f o u r i e r . g e t b i g c a l p h a ( alpha , eps )

# End time :
T = 0.5

# Delta time :
dt = 1E−3

# SVV data :
theta = 0 .5
epsN = f o u r i e r . g e t s v v e p s ( theta , N)
mN = f o u r i e r . get svv m ( theta , N)
qhat = f o u r i e r . g e t svv qhat ( theta , N)

# Get s p a t i a l domain
x = 2 .∗np . p i /N∗np . arange (N)

# I n i t i a l i z e data :
u = i n i t i a l d a t a ( x )

######################
# ANIMATION:
######################

# Wanted l e n g t h o f animation ( in s e c s ) :
ani T = 20 .

# Frame r a t e :
f p s = 30

# Number o f frames :
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num frames = int ( f p s ∗ani T )

# Number o f time s t e p s per frame :
t ime s t ep s = int (T/( dt∗num frames ) )

# S t a r t f i g u r e :
f i g = p l t . f i g u r e ( )
ax = f i g . add subplot (111 , au to s ca l e on=False ,

xl im =(0. ,2∗np . p i ) , yl im=(min(u)−0.1 , max(u )+0.5))

# I n i t i a l i z e l i n e to be drawn :
l i n e , = ax . p l o t ( [ ] , [ ] , ’b− ’ , lw =1.5)

# I n i t i a l i z e t e x t say ing e l a p s e d time in animation :
t ime t ex t = ax . t ex t ( 0 . 0 2 , 0 . 95 , ’ ’ , t rans form=ax . transAxes )

# I n i t i a l i z e time :
t = 0 .

# And now to c r e a t e f u n c t i o n s to be passed i n t o M a t p l o t l i b ’ s
# animation i n t e r f a c e :

def i n i t ( ) :
‘ ‘ ‘ ‘ ‘ ‘ I n i t i a l i z e animation ’ ’ ’ ’ ’ ’
l i n e . s e t d a t a ( [ ] , [ ] )
t ime t ex t . s e t t e x t ( ’ ’ )
return l i n e , t ime t ex t

def animate ( i ) :
‘ ‘ ‘ ‘ ‘ ‘ Perform animation step ’ ’ ’ ’ ’ ’

# V a r i a b l e s changed in t h i s s t e p needs
# to be d e c l a r e d g l o b a l :
global u , t

# Do some time s t e p s :
for i in range ( t ime s t ep ) :

t += dt
u = f o u r i e r . four i e r svv RK4 (u , N, phi , alpha ,

c a lpha , qhat , dt , epsN )

# Update f i g u r e data :
l i n e . s e t d a t a (x , u)
t ime t ex t . s e t t e x t ( ’ time=%.4 f ’ %t )
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return l i n e , t ime t ex t

# Do the animation :
ani = animation . FuncAnimation ( f i g , animate , frames=num frames ,

b l i t=True , i n i t f u n c=i n i t )

# Prepare f o r w r i t i n g animation to f i l e
# ( Should check which w r i t e r your system i s

us ing as d e f a u l t ) :
mywriter = animation . AVConWriter ( fp s=fp s )

# Save animation :
ani . save ( ’ f o u r i e r f r a c l a p p m e 1 d .mp4 ’ , w r i t e r=mywriter ,

e x t r a a r g s = [ ’−vcodec ’ , ’ l i bx264 ’ ]
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