

70 6 CONCLUDING REMARKS

6 Concluding remarks
With the results and discussion in section 5, we can note that SVV should not be applied
in all cases. Some knowledge of the exact solution goes a long way to knowing when SVV,
and how much, should be used. First off, we have seen that if Φ has no degeneracies,
SVV is not needed as it would take away from the convergence. If you have discontinuous
problem you will be better off approximating the initial data with the Fejer- or de la
Vallée Poussin kernel in this case. This is not so surprising, since any finite regularity
that might warrant the need for stabilization in a numerical scheme will most likely arise
from Φ being degenerate. This reasoning is validating in the numerical experiments where
we saw that both for weakly- and strongly degenerate problems, oscillations could arise.
These oscillations where mild enough to not ruin convergence completely, but adding SVV
in these cases both removed oscillations and in some cases improved on the convergence.

The need to use SVV to stabilize numerical solutions also increased with α close to
2, which is in agreement with the fact that L converges to the laplacian as α→ 2 and
solutions of the local variant of (1.1) can have finite regularity when Φ is degenerate.

This knowledge becomes additionally valuable if (1.1) is augmented with a convective
term, a natural generalization. For α ∈ (0,1) the dissipation is too weak to hinder the
onset of shock discontinuities (cf. [8, 15]) in the case of a linear diffusive term, and
similar behaviour is to be expected in the nonlinear case. With the possibility of shock
discontinuities to form for α< 1, stabilization with SVV will be required both for low and
high values of α.

6.1 Where to go from here
As already stated, a natural extension of the discussion in this project is to add a convec-
tive term. Most of the analysis done in section 4 can be extended to this case, but extra
care will be needed especially the energy estimate for the derivatives of uN (Lemma 4.5).

Another extension of the problem considered herein is to let the nonlocal operator not
only be the fractional laplacian, but defined by other symmetric- and asymmetric Radon
measures. Again, the crux of the difficulty will lie in the generalization of Lemma 4.5,
and in particular, the interpolation estimate of Lemma 2.3 that will need to be extended
to more general measures.

Although (1.1) was in this project only considered in one spatial dimension, the ex-
tension to two- or three dimension would be interesting. The necessary modifications of
the analysis in section 4 would most likely follow the notation and techniques that were
used in [4].

In addition, the use of a Fourier basis in a spectral method is only advisable in the case
of periodic boundary conditions. In applications, problems with essential- and natural
boundary conditions like Dirichlet and Neumann conditions are common. So a basis other
than Fourier would be required for a spectral method, e.g. a polynomial basis. Also, if
SVV is to be used in this setting, a modal basis (as opposed to nodal) should be used.
Further, to keep the matrices of the resulting numerical scheme sparse the polynomial
basis should in some sense take the bilinear form of the nonlocal operator into account
(Lemma 2.1). For instance, in the local case the “boundary adapted bubble functions”

6.1 WHERE TO GO FROM HERE 71

of [1, sec. 2.3.3], which are orthogonal in H1
0 ((−1,1)), can be used. See also [17]. The

use of a Legendre basis on Burgers’ equation with SVV was studied in [19]. Other than
that, the author has not been able to find SVV used with polynomial bases. However,
successful use of a polynomial basis, especially on a bounded domain with homogeneous
Dirichlet boundary conditions, is an important stepping stone to be able to use spectral
element methods on (1.1). I.e. dividing the global domain into smaller subdomains, akin
to finite element methods. This extension would let us solve (1.1) with spectral methods
on more irregular domains, e.g. domains with holes.

72 A GIBB’S PHENOMENON AND HANDLING OF INITIAL DATA

A Gibb’s phenomenon and handling of initial data
To complete the method (3.32) we need a way to project the initial data u0 into the
discrete function space SN . The obvious candidates are SN or IN . However, if u0 contains
discontinuities, then PNu0 will have oscillations about the discontinuities, which is widely
known as Gibb’s phenomenon (cf. [1, Sec. 2.1.4]). Loosely speaking, these oscillations
comes from the fact that

SNu0 =DN ∗u0 (A.1)
, where DN is the Dirichlet kernel, and contains oscillations and rapidly changes sign
about the origin.

Gibb’s phenomenon has the detrimental effect that even though u0 is bounded, this is
no guarantee for PNu0 to be uniformly bounded. The same holds for the total variation,
i.e. even if u0 has bounded variation this does not imply that the total variation of PNu0
is uniformly bounded. So the Gibb’s phenomenon poses an issue that should be adressed
in a numerical implementation.

The usual way to tackle this problem stems from the observation that Gibb’s phe-
nomenon gives high frequency oscillations, and so a dampening of the higher frequencies
will hopefully yields approximations that are better behaved. So assume now that the
initial data u0 lends itself to the Fourier representation

u0(x) =
∑
ξ∈Z

u0,ξe
iξx.

The first such dampening of higher frequencies we’ll consider is the use of the Fejer kernel,
which operates on u0 as

FNu0 =
∑
|ξ|≤N

(
1− |ξ|

N + 1

)
u0,ξe

iξx. (A.2)

We see that FN acts as a linear dampening of the frequencies of u0. Since all information
of u0 lies in the coefficients u0,ξ, one can predict that a heavy dampening of the frequencies
will lead to losing some of the features of u0. Indeed, as we shall see shortly, the Fejer
kernel leads to quite heavy smearing of discontinuities.

To retain as much of the structure of u0 as possible, another smoothening operator is
now proposed. This is the so-called de la Vallée Poussin kernel, VN , which acts on u0 as

VNu0 =
∑
|ξ|≤[N2]

u0,ξe
iξx+

∑
[N2]<|ξ|≤N

2− |ξ|[
N
2

]
u0,ξe

iξx, (A.3)

where
[
N
2

]
is the smallest integer greater than or equal to N

2 . See that VN does no
dampening on the lower frequencies, in contrast to the Fejer kernel.

Example A.1. To summarize what we have so far, and try to justify some of the heuristics
in the discussion, let’s consider u0 defined on [0,2π) and periodic as

u0(x) =

1, if x ∈
(
π
2 ,

3π
2

)
0, otherwise.

(A.4)

73

(a) INu0 plotted with u0. (b) The discrete version of FNu0 plotted with
u0

(c) The discrete version of VNu0 plotted with
u0

Figure A.1: The various way of approximating the initial data. Here with N = 16 and u0
as given in example A.1.

74 A GIBB’S PHENOMENON AND HANDLING OF INITIAL DATA

Consult figure A.1 to see how the discrete versions of the various approximations to
u0. In figure A.1a we see the Gibb’s phenomenon clearly present, and will become more
pronounced as N increases. From figure A.1b we see that the Fejer kernel extinguishes
the high frequency oscillations, but this happens at a loss of smearing out u0. Lastly, in
figure A.1c we see a compromise between the two in VNu0, where some oscillations are
still present to keep the some of the structure of u0.

Of course, one need not stop here when considering frequency-dampening operators.
In general we may define an operator as

KNu0 =
∑
|ξ|≤N

σξu0,ξe
iξx, (A.5)

where the σξ is an even sequence in ξ, σ0 = 1, and σ|ξ| is nonincreasing in ξ. The reader
is referred to [1, Sec. 2.1.4] for more examples.

To get back to why the approximations FNu0 and VNu0 are needed, we recall that the
more obvious way of approximating the initial data lead to potenial Gibb’s oscillations
which made us lose control of both boundedness and total variation in the approximation.
To see that the operator FN and VN regain this control it’s useful to change perspective
somewhat. Since both operators are acting componentwise on u0, they can be expressed
as convolutions with some kernel. For the Fejer kernel we have FNu0(x) = FN ∗u0, where

FN (x) = 1
N + 1

sin
(
(N + 1)x2

)
sin
(
x
2

)
2

. (A.6)

Notice that FN ≥ 0, which is in correspondence with FNu0 not exhibiting Gibb’s oscilla-
tions. The analogous de la Vallée Poussin kernel is

VN (x) = 2
N

sin
(
N x

2

)2
− sin

(
N
2 ·

x
2

)2

sin
(
x
2

)2

 (A.7)

(cf. [20]).
Assume now that u0 is bounded, then Young’s inequality for convolutions yields

||KN ∗u0||∞ ≤ ||KN ||1 · ||u0||∞ ,

where KN is a placeholder for either FN or VN . And so if KN is uniformly bounded in
L1((0,2π)) we can control the boundedness of KNu0. For the Fejer kernel ||FN ||1 = 1,
and for the de la Vallée Poussin kernel ||VN ||1 = 1

3 + 2
√

3
π (cf. [20, Cor. 1.3]).

The following lemma shows that also total variation is under control when using FN
or VN , making both approximations feasible in our subsequent compactness argument.

Lemma A.1. Assume u0 has bounded variation, and that {KN}N∈Z is a family of kernels
uniformly bounded in L1((0,2π)). Then the total variation of KN ∗u0 is uniformly bounded
by the estimate

|KN ∗u0|BV ≤
1
π
|u0|BV ||KN ||1 . (A.8)

75

Proof. The definition of convolutions of periodic functions gives us that

(KN ∗u0)(x) = 1
2π

∫ 2π

0
KN (y)u0(x−y)dy.

Let now 0 = x0 < x1 < .. . < xm = 2π be a partition of [0,2π], when then have

m−1∑
i=0
|(KN ∗u0)(xi+1)− (KN ∗u0)(xi)|=

1
2π

m−1∑
i=0

∣∣∣∣∣
∫ 2π

0
KN (y)(u0(xi+1−y)−u0(xi−y))dy

∣∣∣∣∣
≤ 1

2π

m−1∑
i=0

∫ 2π

0
|KN (y)| · |u0(xi+1−y)−u0(xi−y)|dy

= 1
2π

∫ 2π

0
|KN (y)|

m−1∑
i=0
|u0(xi+1−y)−u0(xi−y)|

dy

≤ |u0|BV
π

∫ 2π

0
|KN (y)|dy

= 1
π
|u0|BV ||KN ||1 ,

where the factor 2 comes from taking into account the possible jump between of u0(0+)
and u0(2π−). Take now the supremum over all such finite partitions results in

|KN ∗u0|BV ≤
1
π
|u0|BV ||KN ||1 . (A.9)

76 B PROOF OF LEMMA 2.9

B Proof of Lemma 2.9
Proof. The proof takes inspiration from the proof of Theorem 2.4 in appendix B of [4],
which in turn is inspired by the celebrated Kruzkov’s doubling of variables argument (cf.
e.g. [14, Ch. 2]).

Establishing an entropy relation: Let η be a smooth convex function in one variable.
For vε = vε(x,t), multiply (2.11) by η′(vε) to get

η′(vε)
∂vε
∂t

= η′(vε)L[Φ(vε)] + εη′(v−ε)
∂2vε
∂x2 . (B.1)

First, we notice that
η′(vε)

∂vε
∂t

= ∂η(vε)
∂t

,

but also that

η′(vε)
∂2vε
∂x2 = ∂2η(vε)

∂x2 −η′′(vε)
(
∂vε
∂x

)2

≤ ∂2η(vε)
∂x2

by the convexity of η, and so (B.1) becomes

∂η(vε)
∂t

≤ η′(vε)L[Φ(vε)] + ε
∂2η(vε)
∂x2 .

We now multiply this by a nonnegative test function ψ ∈ C∞(R× [0,T]) that is
2π-periodic in space and has compact support in time. Integrating over QT and
using integration by parts appropriately leads to

∫∫
QT

η(vε)
∂ψ

∂t
+η′(vε)L[Φ(vε)]ψ+ εη(vε)

∂2ψ

∂x2 dxdt≥ 0. (B.2)

Now, take any k ∈ R, and define ηγ(vε,k) = ((vε− k)2 + γ2) 1
2 . We take the limit

γ→ 0 and use the dominated convergence theorem on each term to get
∫∫
QT

η(vε,k)∂ψ
∂t

+η′(vε,k)L[Φ(vε)]ψ+ εη(vε,k)∂
2ψ

∂x2 dxdt≥ 0, (B.3)

with η(vε,k) = |vε−k| and η′(vε,k) = sgn(vε−k).
Consider vδ = vδ(y,s), and we get by the exact same approach that

∫∫
QT

η(vδ,k)∂ψ
∂t

+η′(vδ,k)L[Φ(vδ)]ψ+ δη(vδ,k)∂
2ψ

∂y2 dyds≥ 0, (B.4)

for every k ∈R and nonnegative ψ ∈ C∞(R× [0,T]) that’s 2π-periodic in space and
with compact support in time.

77

The doubling of variables: In (B.3) we take k = vδ(y,s) and integrate over y and s.
Similarly we let in (B.4) k = vε(x,t) and integrate over x and t. Summing these
together, and we get

∫∫
QT

∫∫
QT
η(vε(x,t),vδ(y,s))

(
∂

∂t
+ ∂

∂s

)
ψ(x,y, t,s)

+η′(vε(x,t),vδ(y,s))(L[Φ(vε(·, t)](x)−L[Φ(vδ(·, s)](y))ψ(x,y, t,s)

+η(vε(x,t),vδ(y,s))
(
ε
∂2

∂x2 + δ
∂2

∂y2

)
ψ(x,y, t,s)dw ≥ 0, (B.5)

with dw = dxdtdyds, and ψ = ψ(x,y, t,s) is 2π-periodic and infintely regular in x
and y and has compact support t and s.
To continue, we notice

L[Φ(vε(·, t)](x)−L[Φ(vδ(·, s)](y) =
∫
|z|>0

Φ(vε(x+ z, t))−Φ(vδ(y+ z,s))

−Φ(vε(x,t)) + Φ(vδ(y,s))

− z1|z|<1

(
∂Φ(vε)
∂x

(x,t)− ∂Φ(vδ)
∂y

(y,s)
)

dµ(z)

= L̃[Φ(vε(·, t))−Φ(vδ(·, s))](x,y),

where we define

L̃[ϕ(·, ·)](x,y) :=
∫
|z|>0

ϕ(x+ z,y+ z)−ϕ(x,y)− z1|z|<1

(
∂

∂x
+ ∂

∂y

)
ϕ(x,y)dµ(z).

We then have that

η′(vε(x,t),vδ(y,s))L̃[Φ(vε(·, t))−Φ(vδ(·, s))](x,y)≤ L̃[η(Φ(vε(·, t)),Φ(vδ(·, s)))](x,y).
(B.6)

To see this, we use

sgn(vε(x,t)−vδ(y,s))(Φ(vε(x,t))−Φ(vδ(y,s))) = |Φ(vε(x,t))−Φ(vδ(y,s))|

to get that

η′(vε(x,t),vδ(y,s))L̃[Φ(vε(·, t))−Φ(vδ(·, s))](x,y)≤
∫
|z|>0
|Φ(vε(x+ z, t))−Φ(vδ(y+ z,s))|

− |Φ(vε(x,t))−Φ(vδ(y,s))|

− z1|z|<1 sgn(vε(x,t)−vδ(y,s))
(
∂Φ(vε)
∂x

(x,t)− ∂Φ(vδ)
∂y

(y,s)
)

dµ(z).

For the last term we use that sgn(vε(x,t)−vδ(y,s)) = sgn(Φ(vε(x,t))−Φ(vδ(y,s)) ex-
cept possibly if Φ′(s) = 0 for all s between vε(x,t) and vδ(y,s), but then ∂Φ(vε)

∂x (x,t) =
∂Φ(vδ)
∂y (y,s) = 0. And so (B.6) is justified.

78 B PROOF OF LEMMA 2.9

Next we show that L̃ is self-adjoint. See that by Fubini’s theorem∫∫
QT

∫∫
QT
L̃[η(Φ(vε(·, t)),Φ(vδ(·, s))](x,y)ψ(x,y, t,s)dw

=
∫
|z|>0

∫∫
QT

∫∫
QT

η(Φ(vε(x+ z, t)),Φ(vδ(y+ z,s)))ψ(x,y, t,s)dw

−
∫∫
QT

∫∫
QT

η(Φ(vε(x,t)),Φ(vδ(y,s)))ψ(x,y, t,s)dw

− z1|z|<1

∫∫
QT

∫∫
QT

(
∂

∂x
+ ∂

∂y

)
η(Φ(vε(x,t)),Φ(vδ(y,s)))ψ(x,y, t,s)dwdµ(z).

Using the variable transformation (x,y) 7→ (x−z,y−z) and periodicity to translate
the domain of integration back to (0,2π) on the first term, and integration by parts
on the last, we find that∫∫

QT

∫∫
QT
L̃[η(Φ(vε(·, t)),Φ(vδ(·, s))](x,y)ψ(x,y, t,s)dw

=
∫
|z|>0

∫∫
QT

∫∫
QT

η(Φ(vε(x,t)),Φ(vδ(y,s)))ψ(x− z,y− z, t,s)dw

−
∫∫
QT

∫∫
QT

η(Φ(vε(x,t)),Φ(vδ(y,s)))ψ(x,y, t,s)dw

+ z1|z|<1

∫∫
QT

∫∫
QT

η(Φ(vε(x,t)),Φ(vδ(y,s)))
(
∂

∂x
+ ∂

∂y

)
ψ(x,y, t,s)dwdµ(z).

Finally, using that the fractional laplacian measure is symmetric together with Fu-
bini’s theorem again, we get∫∫

QT

∫∫
QT
L̃[η(Φ(vε(·, t)),Φ(vδ(·, s))](x,y)ψ(x,y, t,s)dw

=
∫∫
QT

∫∫
QT

η(Φ(vε(x,t),Φ(vδ(y,s))

×
(∫
|z|>0

ψ(x+ z,y+ z, t,s)−ψ(x,y, t,s)− z1|z|<1

(
∂

∂x
+ ∂

∂y

)
ψ(x,y, t,s)dµ(z)

)
dw

=
∫∫
QT

∫∫
QT

η(Φ(vε(x,t),Φ(vδ(y,s))L̃[ψ(·, ·, t,s)](x,y)dw.

We put this back into (B.5) to arrive at∫∫
QT

∫∫
QT
η(vε(x,t),vδ(y,s))

(
∂

∂t
+ ∂

∂s

)
ψ(x,y, t,s)

+η(Φ(vε(x,t)),Φ(vδ(y,s)))L̃[ψ(·, ·, t,s)](x,y)

+η(vε(x,t),vδ(y,s))
(
ε
∂2

∂x2 + δ
∂2

∂y2

)
ψ(x,y, t,s)dw ≥ 0. (B.7)

Choice of test function: Let now ω be the standard mollifier, We also need the periodic
variant of ωρ, which we define as

ω̂ρ(x) =
∑
k∈Z

ωρ(x+ 2πk).

79

We then take as a test function

ψ(x,y, t,s) = ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
φ(t),

where ρ,γ > 0, and φ is a C∞ function with compact support (0,T), and is to be
determined later on. Before putting our choice for ψ into (B.7), we notice by direct
calculation that(

∂

∂t
+ ∂

∂s

)
ψ(x,y, t,s) = ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
φ′(t) and(

∂

∂x
+ ∂

∂y

)
ψ(x,y, t,s) = 0.

From the latter of these identities and that ψ(x+ z,y+ z, t,s) = ψ(x,y, t,s) we also
have that L̃[ψ(·, ·, t,s)](x,y) = 0. With this in mind, we get from (B.7) that

−
∫∫
QT

∫∫
QT
|vε(x,t)−vδ(y,s)|ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
φ′(t)dw

≤
∫∫
QT

∫∫
QT
|vε(x,t)−vδ(y,s)|

(
ε
∂2

∂x2 + δ
∂2

∂y2

)
ψ(x,y, t,s)dw. (B.8)

Estimating the right hand side of (B.8): Using integration by parts, we get

ε
∫∫
QT

∫∫
QT
|vε(x,t)−vδ(y,s)|

∂2ψ

∂x2 dw

≤ ε
∫∫
QT

∫∫
QT

∣∣∣∣∣∂u∂x(x,t)
∣∣∣∣∣ ·
∣∣∣∣12 ω̂′ρ

(
x−y

2

)∣∣∣∣ωγ (t− s2

)
φ(t)dw,

and if we now take the integration first over y and s, then

ε
∫∫
QT

∫∫
QT
|vε(x,t)−vδ(y,s)|

∂2ψ

∂x2 dw

≤ εC
ρ

∫∫
QT

∣∣∣∣∣∂u∂x(x,t)
∣∣∣∣∣
∫ T

0
ωγ

(
t− s

2

)
φ(t)dsdxdt

≤ C
∫ T

0
phi(t)dt|vε|BV

ε

ρ

≤ C
∫ T

0
phi(t)dt|u0|BV

ε

ρ
,

where the last step is justified by Lemma 2.7. We estimate the other term on the
right hand side of (B.8) in a similar manner, and so we get
∫∫
QT

∫∫
QT
|vε(x,t)−vδ(y,s)|

(
ε
∂2

∂x2 + δ
∂2

∂y2

)
ψ(x,y, t,s)dw≤C

∫ T

0
phi(t)dt|u0|BV

ε+ δ

ρ
.

(B.9)

80 B PROOF OF LEMMA 2.9

Estimating the left hand side of (B.8): With the inequality |a| − |b| ≤ |a− b|, we
have that

|vε(x,t)−vδ(y,s)|φ′(t)−|vε(x,t)−vδ(x,t)|φ′(t)
≤ |vδ(x,t)−vδ(y,s)| · |φ′(t)|
≤ |vδ(x,t)−vδ(x,s)| · |φ′(t)|+ |vδ(x,s)−vδ(y,s)| · |φ′(t)|.

Rearranging terms, we find that

−|vε(x,t)−vδ(y,s)|φ′(t)≥−|vε(x,t)−vδ(x,t)|φ′(t)
−|vδ(x,t)−vδ(x,s)| · |φ′(t)|
− |vδ(x,s)−vδ(y,s)| · |φ′(t)|.

Since ωγ and ω̂ρ are nonnegative functions, we get for the left hand side of (B.8)
that

−
∫∫
QT

∫∫
QT
|vε(x,t)−vδ(y,s)|ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
φ′(t)dw

≥−
∫∫
QT

∫∫
QT
|vε(x,t)−vδ(x,t)|ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
φ′(t)dw

−
∫∫
QT

∫∫
QT
|vδ(x,t)−vδ(x,s)|ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
|φ′(t)|dw

−
∫∫
QT

∫∫
QT
|vδ(x,s)−vδ(y,s)|ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
|φ′(t)|dw. (B.10)

For the second term on the right hand side of (B.10) all factors in the integrand are
bounded, so we may use Fubini’s theorem and integrate first over y to get∫∫

QT

∫∫
QT
|vδ(x,t)−vδ(x,s)|ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
|φ′(t)|dw

=
∫∫
QT

∫ T

0
|vδ(x,t)−vδ(x,s)|ωγ

(
t− s

2

)
|φ′(t)|dsdxdt.

If we next take the integration over x and use the time estimate of Lemma 2.8 we
end up with∣∣∣∣∣

∫∫
QT

∫∫
QT
|vδ(x,t)−vδ(x,s)|ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
|φ′(t)|dw

∣∣∣∣∣
≤ C

∫ T

0

∫ T

0

√
|t− s|ωγ

(
t− s

2

)
|φ′(t)|dsdt.

Using now that as γ→ 0, ωγ approaches Dirac’s delta yields∫∫
QT

∫∫
QT
|vδ(x,t)−vδ(x,s)|ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
|φ′(t)|dw→ 0,

as γ→ 0.

81

For the third term on the right hand side of (B.10), notice that
∫∫
QT

∫∫
QT
|vδ(x,s)−vδ(y,s)|ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
|φ′(t)|dw≤C|u0|BV ρ

∫ T

0
|φ′(t)|dt,

where we have used that∫ 2π

0

∫ 2π

0
|vδ(x,s)−vδ(y,s)|ω̂ρ

(
x−y

2

)
dydx=

∫ 2π

0

∫ 2π

0
|vδ(x,s)−vδ(x+y)|ω̂ρ

(
y

2

)
dydx

≤ |vδ|BV
∫ π

−π
|y|ω̂ρ

(
y

2

)
dydx

≤ C|u0|BV ρ.

Furthermore, when we integrate over y and s, we get∫∫
QT

∫∫
QT
|vε(x,t)−vδ(x,t)|ω̂ρ

(
x−y

2

)
ωγ

(
t− s

2

)
φ′(t)dw

=
∫∫
QT
|vε(x,t)−vδ(x,t)|φ′(t)dxdt.

where we use that ω(·) integrates to 1. We put all this back into (B.10), and take
it together with (B.9) into (B.8) to arrive at

−
∫∫
QT
|vε(x,t)−vδ(x,t)|φ′(t)dxdt≤C|u0|BV ρ

∫ T

0
|φ′(t)|dt+C

∫ T

0
φ(t)dt|u0|BV

ε+ δ

ρ
.

(B.11)

Determining φ and finishing up: Take 0< t1 < t2 < T , and define

φ(t) =
∫ t

−∞
ωγ̃(τ − t1)−ωγ̃(τ − t2)dτ,

where γ̃ is sufficiently small to make the support φ contained in [0,T]. We would
also like the mollification around t1 and t2 not to interfere. Since the support of
ωγ̃ is contained in [−γ̃, γ̃], we see that γ̃ < min

{
t2−t1

4 , t12 ,
T−t2

2

}
will do. To help

understanding, φ is now a smooth approximation of 1(t1,t2). By direct calculation,
it is seen that

φ′(t) = ωγ̃(t− t1)−ωγ̃(t− t2),
and ∫ T

0
|φ′(t)|dt= 2∫ T

0
φ(t)dt= t2− t1 ≤ T.

Taking the limit γ̃→ 0 in (B.11) yields
∫ 2π

0
|vε(x,t2)−vδ(x,t2)|dx≤

∫ 2π

0
|vε(x,t1)−vδ(x,t1)|dx+C|u0|BV

(
ρ+ ε+ δ

ρ

)
.

82 B PROOF OF LEMMA 2.9

Letting t1 approach 0 and using that vε and vδ share initial data results in

||vε(·, t2)−vδ(·, t2)||1 ≤ C|u0|BV
(
ρ+ ε+ δ

ρ

)
,

and taking ρ=
√
ε+ δ, we at long last end up at the desired result.

Remark 1. The technique used in this proof may seem overly complicated for our pur-
poses, and additionally it does not coincide well with the intuition that vδ→ vε as δ→ ε

in some sense. However, more straightforward approaches will require an estimate of ∂2vε
∂2x2

in L∞ that is independent of ε.
For simplicity, assume that ε > δ and take the difference of (2.11) for vε and vδ. Then

∂

∂t
(vε−vδ) = L[Φ(vε)−Φ(vδ)] + δ

∂2

∂x2 (vε−vδ)

+ (ε− δ)∂
2vε
∂x2 .

If we now multiply by sgnρ(vε−vδ), where sgnρ is the standard mollification of sgn, and
integrate over (0,2π) we get〈

∂

∂t
(vε−vδ),sgnρ(vε−vδ)

〉
=
〈
L[Φ(vε)−Φ(vδ)],sgnρ(vε−vδ)

〉
+ δ

〈
∂2

∂x2 (vε−vδ),sgnρ(vε−vδ)
〉

+ (ε− δ)
〈
∂2vε
∂x2 ,sgnρ(vε−vδ)

〉
.

Using a similar argument as that in the proof Lemma 2.4 we get in the limit ρ→ 0 that

d
dt ||vε−vδ||1 ≤ (ε− δ)

〈
∂2vε
∂x2 ,sgn(vε−vδ)

〉
.

The trouble comes in estimating the right hand side of this, which we need some sort of
estimate of ∂

2vε
∂x2 that is independent of ε for. Or at least an estimate where the dependence

on ε is made explicit. Regrettably we do not have this sort of estimate at our disposal.

83

C Software documentation
The code for this project was written mainly in Python, and this appendix is devoted
to documenting what constituents were needed in making a working code. An example
of how to build a script for running simulations is also provided. But first we need to
establish how we can numerically compute the coefficient for the Fourier weighting of the
fractional laplacian, Cα.

C.1 Computing Fresnel integral
As already stated we have analytic expressions for Cα when α ∈ (0,1], but for α ∈ (1,2),
numerical quadrature is needed to approximate the generalized Fresnel integral∫ ∞

0
x−α sin(x)dx. (C.1)

In [21], Takuya Ooura and Masatake Mori provide an algorithm for evaluating such
integrals, and an implementation in C can be found on Ooura’s home page, http:
//www.kurims.kyoto-u.ac.jp/˜ooura/. However, the implementation requires an an-
alytic integrand, and ours is singular at x = 0. The solution is to split up the integral
as ∫ ∞

0
x−α sin(x)dx=

∫ b

0
x−α sin(x)dx︸ ︷︷ ︸

=:I1

+
∫ ∞
b

x−α sin(x)dx︸ ︷︷ ︸
=:I2

,

for some b > 0. In the implementation in this project b= 1 was used.
To handle I1 we do the same as proposed in [5], and use a Taylor series with remainder

for the integrand as

x−α sin(x) =
N−1∑
k=0

(−1)k x
2k+1−α

(2k+ 1)! + rN ,

which then gives that∫ b

0
x−α sin(x)dx=

N−1∑
k=0

(−1)k b2k+2−α

(2k+ 2−α)(2k+ 1)! +RN .

This being an alternating series, the remainder term, RN , is smaller in magnitude then
the next term of the series, so

|RN | ≤
b2N+2−α

(2N + 2−α)(2N + 1)! ,

which is for sufficiently large N , depending on b, decreasing. Thus, given an error tolerance
level of ε, one needs to find N so that

b2N+2−α(2N + 2−α)(2N + 1)!≤ ε. (C.2)

With an N satisfying this inequality we may approximate

I1 ≈
N−1∑
k=0

(−1)k b2k+2−α

(2k+ 2−α)(2k+ 1)! . (C.3)

84 C SOFTWARE DOCUMENTATION

To handle the integral I2, we use the C code package by Ooura, and more specifically
the function

void intdeo(double (*f)(double), double a, double omega,
double eps, double *i, double *err)

which is suited for integrals on (a,∞) with oscillating integrand. Since the code for this
project is written in Python, and the code package for evaluating the oscillatory integrals
is written in C, we need to create a C extension in Python, to wrap the function with a
Python interface. Luckily this is quite manageable, and we will now give a short step-
by-step description on how to do it. The reader should also be aware that the amount of
tutorials and examples on this subject are ample, and just a web search away.

Step 1: Create .c-file: First we create “oscintmodule.c”, the file which will contain the
module.

/∗
∗ osc intmodule . c
∗/

#include <Python . h>
/∗ This p u l l s in the Python API and
∗must come b e f o r e any o ther i n c l u d e s ta tements ∗/

#include <math . h>

/∗ The o s c i l l a t i n g in tegrand : ∗/
double f (double x , double alpha)
{

return pow(x,−alpha)∗ s i n (x) ;
}

/∗
∗ Provided C−f u n c t i o n :
∗/

void i n tdeo (double a , double alpha , double omega ,
double eps , double ∗ i , double ∗ e r r)
{
/∗ See web page f o r implementat ion . Note t h a t
∗ we have a l s o changed the i n t e r f a c e to take
∗ in the doub le alpha , i n s t e a d o f the
∗ f u n c t i o n p o i n t e r f
∗/
}

/∗

C.1 COMPUTING FRESNEL INTEGRAL 85

∗ Function to be c a l l e d from Python
∗/

stat ic PyObject∗ py os c i l l a t o ryQuadra tu r e (PyObject∗ s e l f ,
PyObject∗ args)

{
const double b , alpha , omega , eps ;
double i =0, e r r =256;

/∗ Parses the input g iven in Python and
∗ c o n v e r t s to corresponding C t y p e s .
∗/

i f (! PyArg ParseTuple (args , ”dddd” , &b , &alpha ,
&omega , &eps))

return NULL;

/∗ C a l l the i n t d e o f u n c t i o n ∗/
i n tdeo (b , alpha , omega , eps , &i , &e r r) ;

/∗ Convert back to Python o b j e c t and re turn ∗/
return Py BuildValue (”d” , i) ;

}

/∗
∗ Set up methods t a b l e :
∗/

stat ic PyMethodDef oscintmodule methods [] = {
{ ‘ ‘ o s c i l l a t o ry Qu ad ra tu r e ’ ’ , py osc i l l a to ryQuadra ture ,
METH VARARGS,
‘ ‘ Function for eva lua t ing o s c i l l a t i n g i n t e g r a l s ’ ’ } ,
{NULL, NULL, 0 , NULL}

} ;

/∗
∗ Python c a l l s t h i s to l e t us i n i t i a l i z e our module
∗/

PyMODINIT FUNC i n i t o s c i n tm od u l e (void)
{

(void) Py InitModule (” osc intmodule ” ,
osc intmodule methods) ;

}
/∗
∗ NOTE: The f u n c t i o n name must be

86 C SOFTWARE DOCUMENTATION

∗ i n i t [e x a c t name o f module] .
∗/

The key part of “oscintmodule.c” is the function “py oscillatoryQuadrature” that
takes in arguments from Python, and then converts them to C before doing what
we want on them there and then return a double for Python. See that we also need
to create a methods table that links each function in the module to the name we
want in the final Python module. Finally, we have a function that initializes the
module, which will be called when we compile the file.

Step 2:Compiling and creating necessary links: The next step is to compile oscint-
module.c and create the necessary links so that the oscillatoryQuadrature can be
used in a Python script. This can readily be done with Python script as follows:

Setup . py
from d i s t u t i l s . co re import setup , Extension

setup (name=’ osc intmodule ’ , v e r s i on=’ 1 .0 ’ , \
ext modules =[Extension (’ osc intmodule ’ ,

[’ osc intmodule . c ’])])

All that remains to do is then to run “setup.py” as

python se tup . py i n s t a l l

in the terminal.
To use the function in Python, all that is required is to import the oscintmodule,
like so:

import osc intmodule as o s c i n t

Using o s c i l l a t o r y Q u a d r a t u r e from C e x t e n s i o n :
i n t e g r a l = o s c i n t . o s c i l l a t o ry Qu ad ra t u r e (1 . , 1 . 5 , 1 . , 1E−8)

Arguments are : s t a r t o f i n t e r v a l ,
alpha ,
frequency ,
error t o l e r a n c e , r e s p e c t i v e l y .

C.2 SOFTWARE DOCUMENTATION 87

C.2 Software documentation
What follows is a list of methods, together with a short despriction, that were used in
the implementation. For sake of completeness, and short example of a script for running
a simulation on the fractional porous medium equation is also added.

physical to fourier(u evals, N): Given the values of a function u at points xj , j =
0, . . . ,N−1, returns the discrete Fourier coefficients using FFT. Assumes real input
and returns a complex array of length N/2 + 1.

fourier to physical(u coeffs,N): Given the Fourier coefficients of a real function u,
returns the evaluations of u at xj .

nonlinear coeffs(u points, N, phi): Given the values of u at xj , with N nodes, and
the nonlinearity Φ, returns the discrete Fourier coefficients of Φ(u).

nonlinear coeffs from fourier(u coeffs, N, phi): Given the discrete Fourier coeffi-
cients of u, returns the discrete Fourier coefficients of Φ(u).

get svv eps(theta,N): Given SVV parameter θ and number of degrees of freedom, re-
turns εN according to assumption 4.1.

get svv m(theta, N): Given the SVV parameter θ and number of degrees of freedom,
returns mN according to assumption 4.1.

get svv qhat(m,N): Given the SVV spectrum limit mN and degrees of freedom N
returns an array of length N/2 + 1 containing the SVV components Q̂ξ for 0≤ ξ ≤
N/2.

get time derivative(u coeff, N, phi, qhat, xisq, xial, epsN, c alpha): Given the dis-
crete Fourier coefficients of u, degrees of freedom N , nonlinearity Φ, SVV compo-
nents Q̂ξ, the derivative weightings |ξ|2 and |ξ|α, together with the parameters εN
and Cα returns the time derivative as

−Cα|ξ|αΦ̂ξ− εN |ξ|2Q̂ξûξ

for 0≤ ξ ≤N/2.

fourier svv RK4(u points, N, phi, alpha, c alpha, qhat, dt, epsN): Uses the val-
ues of u at xj and “get time derivative(...)” to evolve u one time step of magnitude
dt with the explicit fourth order Runge-Kutta method.

get little c alpha(alpha): Given α, returns cα according to (2.4).

get theta alpha(alpha, eps): Given α and an error tolerance “eps”, returns an approx-
imation of the Fresnel integral ∫ ∞

0
x−α sin(x)dx.

88 C SOFTWARE DOCUMENTATION

get boundary layer integral(alpha,b, eps): Given α, end point b and error tolerance
ε, returns an approximation of I1 according to (C.3).

get big c alpha(alpha, eps): Given α and error tolerance ε, returns Cα = 2cαα−1 ∫∞
0 x−α sin(x).

oscillatoryQuadrature(b, alpha, omega, eps): Given start of interval b, α, frequency
ω and error tolerance ε uses the C-extension as previously outlined and approximates
I2.

fejer approximation(u,N): Given the number of points N and the values of u at the
points, returns the value of the discrete Fejer approximation at the same points.

vallee poussin approximation(u,N): Given the number of points N and the values of
u at the points, returns the value of the discrete de la Vallée Poussin approximation
at the same points.

Lastly, we give the promised code example for running a simple simulation of the
fractional porous medium equation, which will yield an animation of the solution evolving
through time. This is a working example of generating an animation, so there it is
unavoidable to have a lot of code that draws attention away for the numerical method
itself. For the reader who is foremost interested in that, the pertinent parts lies in the
parameter initializations together with the animation function “animate”.

S c r i p t f o r numerical s i m u l a t i o n o f the

Import ing modules :
import numpy as np
import numpy . f f t as f f t
import f o u r i e r
A l l f u n c t i o n s e x c e p t
o s c i l l a t o r y Q u a d r a t u r e i s in the ” f o u r i e r ” module .

import matp lo t l i b . pyplot as p l t
import matp lo t l i b . animation as animation

#################
Parameters :
#################
N = 256 #Dofs

I n i t i a l data :
def i n i t i a l d a t a (x) :

return 1 .∗ (np . abs (x−np . p i)<0.5∗np . p i)

Make the f u n c t i o n so i t works componentwise :

C.2 SOFTWARE DOCUMENTATION 89

i n i t i a l d a t a = np . v e c t o r i z e (i n i t i a l d a t a)

N o n l i n e a r i t y :
m = 2 .
def phi (u) :

return np . s i gn (u)∗np . abs (u)∗∗ (m)

phi = np . v e c t o r i z e (phi)

F r a c t i o n a l l a p l a c i a n :
alpha = 1 .5
eps = 1E−8
c a lpha = f o u r i e r . g e t b i g c a l p h a (alpha , eps)

End time :
T = 0.5

Delta time :
dt = 1E−3

SVV data :
theta = 0 .5
epsN = f o u r i e r . g e t s v v e p s (theta , N)
mN = f o u r i e r . get svv m (theta , N)
qhat = f o u r i e r . g e t svv qhat (theta , N)

Get s p a t i a l domain
x = 2 .∗np . p i /N∗np . arange (N)

I n i t i a l i z e data :
u = i n i t i a l d a t a (x)

######################
ANIMATION:
######################

Wanted l e n g t h o f animation (in s e c s) :
ani T = 20 .

Frame r a t e :
f p s = 30

Number o f frames :

90 C SOFTWARE DOCUMENTATION

num frames = int (f p s ∗ani T)

Number o f time s t e p s per frame :
t ime s t ep s = int (T/(dt∗num frames))

S t a r t f i g u r e :
f i g = p l t . f i g u r e ()
ax = f i g . add subplot (111 , au to s ca l e on=False ,

xl im =(0. ,2∗np . p i) , yl im=(min(u)−0.1 , max(u)+0.5))

I n i t i a l i z e l i n e to be drawn :
l i n e , = ax . p l o t ([] , [] , ’b− ’ , lw =1.5)

I n i t i a l i z e t e x t say ing e l a p s e d time in animation :
t ime t ex t = ax . t ex t (0 . 0 2 , 0 . 95 , ’ ’ , t rans form=ax . transAxes)

I n i t i a l i z e time :
t = 0 .

And now to c r e a t e f u n c t i o n s to be passed i n t o M a t p l o t l i b ’ s
animation i n t e r f a c e :

def i n i t () :
‘ ‘ ‘ ‘ ‘ ‘ I n i t i a l i z e animation ’ ’ ’ ’ ’ ’
l i n e . s e t d a t a ([] , [])
t ime t ex t . s e t t e x t (’ ’)
return l i n e , t ime t ex t

def animate (i) :
‘ ‘ ‘ ‘ ‘ ‘ Perform animation step ’ ’ ’ ’ ’ ’

V a r i a b l e s changed in t h i s s t e p needs
to be d e c l a r e d g l o b a l :
global u , t

Do some time s t e p s :
for i in range (t ime s t ep) :

t += dt
u = f o u r i e r . four i e r svv RK4 (u , N, phi , alpha ,

c a lpha , qhat , dt , epsN)

Update f i g u r e data :
l i n e . s e t d a t a (x , u)
t ime t ex t . s e t t e x t (’ time=%.4 f ’ %t)

C.2 SOFTWARE DOCUMENTATION 91

return l i n e , t ime t ex t

Do the animation :
ani = animation . FuncAnimation (f i g , animate , frames=num frames ,

b l i t=True , i n i t f u n c=i n i t)

Prepare f o r w r i t i n g animation to f i l e
(Should check which w r i t e r your system i s

us ing as d e f a u l t) :
mywriter = animation . AVConWriter (fp s=fp s)

Save animation :
ani . save (’ f o u r i e r f r a c l a p p m e 1 d .mp4 ’ , w r i t e r=mywriter ,

e x t r a a r g s = [’−vcodec ’ , ’ l i bx264 ’]

92 REFERENCES

References
[1] C. Canuto, M.Y. Hussaini, A. Quarteroni, and T.A. Zang. Spectral Methods: Fun-

damentals in Single Domains. Springer Verlag, 2010.

[2] Gui Qiang Chen, Qiang Du, and Eitan Tadmor. Spectral viscosity approximations
to multidimensional scalar conservation laws. Mathematics of Computation, 61(204):
629–643, 1993.

[3] Simone Cifani. On nonlinear fractional convection-diffusion equations. PhD thesis,
PhD Thesis 2011: 282, NTNU, 2011.

[4] Simone Cifani and Espen Jakobsen. On the spectral vanishing viscosity method for
periodic fractional conservation laws. Mathematics of Computation, 82(283):1489–
1514, 2013.

[5] Stein-Olav Hagen Davidsen. Nonlinear integro-differential equations: Numerical so-
lutions by using spectral methods. Master’s thesis, NTNU, 2013.

[6] Arturo de Pablo, Fernando Quirós, Ana Rodriguez, and Juan Luis Vázquez. A
fractional porous medium equation. Advances in Mathematics, 226(2):1378–1409,
2011.

[7] Arturo de Pablo, Fernando Quirós, Ana Rodŕıguez, and Juan Luis Vázquez. A
general fractional porous medium equation. Communications on Pure and Applied
Mathematics, 65(9):1242–1284, 2012.

[8] Hongjie Dong, Dapeng Du, and Dong Li. Finite time singularities and global well-
posedness for fractal burgers equations. Indiana University mathematics journal, 58
(2):807–821, 2009.

[9] Albert Einstein. Investigations on the Theory of the Brownian Movement. Courier
Corporation, 1956.

[10] Jørgen Endal, Espen R. Jakobsen, and Felix del Toso. Uniqueness and existence for
very general nonlocal equations of porous medium type. Preprint, 2015.

[11] Lawrence C Evans. Partial differential equations. Providence, Rhode Land: American
Mathematical Society, 1998.

[12] Claude Gasquet and Patrick Witomski. Fourier analysis and applications: filtering,
numerical computation, wavelets, volume 30. Springer Science & Business Media,
1999.

[13] Dorothee Haroske and Hans Triebel. Distributions, Sobolev spaces, elliptic equations.
European Mathematical Society, 2008.

[14] Helge Holden and Nils Henrik Risebro. Front tracking for hyperbolic conservation
laws, volume 152. Springer Science & Business Media, 2011.

REFERENCES 93

[15] Alexander Kiselev, Fedor Nazarov, and Roman Shterenberg. Blow up and regularity
for fractal burgers equation. arXiv preprint arXiv:0804.3549, 2008.

[16] O. A. Ladyzhenskaya, V. A. Solonnikov, and N. N. Uraltseva. Linear and quasi-linear
equations of parabolic type, volume 23. American Mathematical Soc., 1968.

[17] Yvon Maday and Alfio Quarteroni. Legendre and chebyshev spectral approximations
of burgers’ equation. Numerische Mathematik, 37(3):321–332, 1981.

[18] Yvon Maday and Eitan Tadmor. Analysis of the spectral vanishing viscosity method
for periodic conservation laws. SIAM Journal on Numerical Analysis, 26(4):854–870,
1989.

[19] Yvon Maday, Sidi M Ould Kaber, and Eitan Tadmor. Legendre pseudospectral vis-
cosity method for nonlinear conservation laws. SIAM Journal on Numerical Analysis,
30(2):321–342, 1993.

[20] Harsh Mehta. The l1 norms of de la vallée poussin kernels. Journal of Mathematical
Analysis and Applications, 422(2):825–837, 2015.

[21] Takuya Ooura and Masatake Mori. The double exponential formula for oscillatory
functions over the half infinite interval. Journal of Computational and Applied Math-
ematics, 38(1):353–360, 1991.

[22] Alfio Quarteroni. Numerical models for differential problems, volume 2. Springer
Science & Business Media, 2010.

[23] S. Schochet. The rate of convergence of spectral-viscosity methods for periodic scalar
conservation laws. SIAM Journal on Numerical Analysis, 27(5):1142–1159, 1990. doi:
10.1137/0727066. URL http://dx.doi.org/10.1137/0727066.

[24] Eitan Tadmor. Convergence of spectral methods for nonlinear conservation laws.
SIAM Journal on Numerical Analysis, 26(1):30–44, 1989.

[25] Eitan Tadmor. Total variation and error estimates for spectral viscosity approxima-
tions. Mathematics of Computation, 60(201):245–256, 1993.

[26] Luc Tartar. Compensated compactness and applications to partial differential equa-
tions. In Nonlinear analysis and mechanics, Heriot-Watt symposium, volume 4, pages
136–211. Pitman, 1979.

[27] Juan Luis Vázquez. The porous medium equation: mathematical theory. Oxford
University Press, 2007.

