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ABSTRACT

The discovery of the Jones polynomial invariant of knots is one of most important
and influential breakthroughs in geometric topology, and indeed pure mathematics,
in the last 30 years. One way to obtain it is to begin with a braid group, map
this into a Temperley-Lieb algebra, and then take a Markov trace. This gives the
Kauffman bracket polynomial, from which the Jones polynomial can obtained by a
slight modification.

In this master thesis, we categorify all aspects of this construction of the Kauffman
bracket polynomial, working with 2-braids and their appropriate notion of isotopy,
and exploring algebraic, higher categorical structures into which they assemble.






SAMMENDRAG

Oppdagelsen av Jonespolynomet, en knuteinvariant, er en av de viktigste gjennombrud-
dene i geometrisk topologi, og i ren matematikk generelt de siste 30 arene. En mate for
a oppna Jonespolynomet pa, er ved a begynne med en flettegruppe (”Braid”-gruppe),
avbilde denne p en Temperley-Lieb algebra, og deretter ta Markov trace av resultatet.
Dette gir oss et "Kauffman bracket”-polynom, hvor vi med en liten modifikasjon kan
finne Jonespolynomet.

I denne oppgaven kategorifiserer vi alle aspekter ved denne konstruksjonen av
"Kauffman bracket”-polynomet. Dette gjor vi ved a jobbe med 2-braids og det
passende begrepet av isotopi, og utforske de hgyere kategorielle strukturer som disse

utgjor.
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CHAPTER 1

INTRODUCTION



1.1. Overview

The Jones polynomial invariant of knot theory is of deep significance across geometric
topology, representation theory, category theory, and surrounding fields. It was
originally discovered not directly as a diagrammatic knot invariant, but as an invariant
of braids, observed to furthermore be invariant under the Markov moves. In [I3],
Kauffman gave a beautiful, geometrically flavoured constuction of this braid invariant.

First, the braid group B,, is mapped into the Temperley-Lieb algebra 7, by smoothing
the crossings of a braid to a linear combination of diagrammatic tangles. Second, T,
is mapped to Z[A, A71], the ring of Laurent polynomials in one variable, by taking
the Markov trace of a diagrammatic tangle, and extending linearly. In this way, up
to a normalisation, we obtain an invariant of braids known as the Kauffman bracket
polynomial. The Jones polynomial arises as a modification of the Kauffman bracket
polynomial which, unlike the latter, is invariant under the Markov moves on braids,
and hence gives rise to a knot invariant.

This thesis is the first of a planned series of works by Therese Mardal Hagland,
the author, and Richard Williamson, which take a new look at this construction of
Kauffman, placing it in a conceptual, category theoretic framework, and then make
use of a higher categorical internalisation of this framework to construct an invariant
of 2-braids which categorifies the Kauffman bracket, and of 2-knots which categorifies
the Jones polynomial. This is in turn part of a broad programme, amongst the
various directions of which we seek to understand our categorification of the Jones
polynomial to an invariant of 2-knots by means of higher quantum algebra, and to lay
the foundations for a theory of virtual 2-braids and a theory of virtual 2-knots.

1.2. Synopsis — |

There are two principal parts to this thesis. In Chapter[3], we approach the construction
outlined above of the Kauffman bracket polynomial in a purely category theoretic way.
There are several novelties in our approach. Firstly, we do not work with the braid
groups B,, for n > 0 individually. Instead, we define in a canonical way, beginning with
a very small amount of data, exactly enough to allow us to express the Reidemeister
moves, a strict monoidal category Braids/R-moves in a canonical way, and view the
Kauffman bracket as a strict monoidal functor whose source is Braids/R-moves. This
can be thought of as defining the Kauffman bracket for all of these braid groups in
one go.

In a similar way, we do not work with the Temperley-Lieb algebras 7,, for n > 0
individually, but rather work with them all in one go, by means, given an auxiliary
datum S, with a canonically constructed strict monoidal category TL(S). We express
smoothing of braids, one of the two key aspects of Kauffman’s construction, as a strict
monoidal functor from Braids/R-moves to TL(S). The details of the framework which
we put in place to construct TL(S) are the second significant novelty of our approach.

In order to capture the smoothing of braids that it is one of the two key ingredients



of Kauffman’s construction, it is however necessary to work with linear combinations
of diagrammatic tangles, with coefficients which are polynomials in a pair of variables
A and B. We do not achieve this by means of enrichment of a strict monoidal category
over Z[A, B]-Mod, as one might first think. Instead, we define TL(S) to be a 2-ring,
namely a ring internal to Cat, constructed canonically from a very small amount of
data, which exactly allows us to express the smoothing of an under crossing and an
over crossing, together with the datum S.

To explain this, a principal motivation for our category theoretic reworking of the
construction of the Kauffman bracket is to put in place a framework that seamlessly can
be lifted to a higher categorical setting, allowing us to define a categorified Kauffman
bracket for 2-braids. To achieve this, we develope all of the category theoretic machinery
that we need to carry out the construction of the Kauffman bracket for braids internally
to a sufficiently structured category C. In our construction of the Kauffman bracket
for braids, we take C to be Cat, the category of categories. But in our construction of
the categorified Kauffman bracket for 2-braids in the second part of this work, we take
C to be 2-Cat, the category of cubical 2-categories. In this way, all of our framework
categorifies effortlessly.

The notion of a category enriched over Z[A, B]-Mod is not, unlike the rest of our
framework, one that can be internalised in a simple manner. It is for this reason that
we work instead with 2-rings. It is straightforward to express the notion of a ring
internally to a category. The notion of a 2-ring is that which we obtain by internalising
to Cat. It is the recognition that 2-rings, and in fact also modules over them, although
we shall not explicitly make use of the latter in this work, can achieve the same purpose
as categories enriched over a category of modules, that we particularly regard as a
significant aspect of our approach.

Our treatment of the Markov trace, the second of the two key aspects of Kauffman’s
construction, is a third significant novelty of our approach. Various approaches have
been taken to capturing notions of trace category theoretically, for instance by Yetter
n [I§], and by Joyal, Street, and Verity in [10]. This is achieved by requiring, as
part of the structure of one’s (monoidal) category, the possibility of manipulating
certain maps to obtain others, in a way which obeys a certain prescription. Instead,
we construct a Markov trace as a functor, constructed in a canonical way, from TL(S)
to a 2-ring, directly analogous to the way in which the Markov trace of 7, can be
viewed as a map to a polynomial ring Z[A, B, | in three variables.

Throughout, our canonical definitions of Braids/R-moves and TL(S) allow us to focus
on the essence of Kauffman’s construction when defining the smoothing of braids and
the Markov trace, namely how to smooth an over crossing and an under crossing, and
how to define the Markov trace of a single generating diagrammatic tangle, which
we denote by CupAndCap. The rest is taken care of by the universal properties with
which Braids/R-moves and TL(S) are equipped as a consequence of their canonical
construction.

Though our focus in Chapter |3|is upon establishing a robust categorical framework
for the construction of the Kauffman bracket invariant, our approach highlights certain
points regarding the invariant itself that may not be widely appreciated. Firstly, the



invariance of the Kauffman bracket under the R3 moves follows immediately from the
cyclity property of the Markov trace; and, for the same reason, invariance under one
of the R2 moves immediately ensures invariance under the other. Thus we obtain an
invariant by forcing the Markov trace of the smoothing of one side of one of the R2
moves to be equal to the Markov trace of the smoothing of the other side of this R2
move.

If our Markov trace is to Z[A, B, ], then the Markov trace of the smoothing of one
side of the R2 move is

A’y + ABy? + B*y + AB,

whilst the Markov trace of the smoothing of the other side is 1. Our second point is
that the canonical quotient of Z[A, B, ~] for which we obtain an invariant is thus

Z[A,B,v]/ (A>y+ ABy* + B>y + AB—1).

For this invariant to be useful, it is necessary to be able to decide whether two
polyomials in A, B, and ~ are equal when passing to

Z[A,B,9]/ (A*>y+ ABy* + B>y + AB —1)..
To establish this, one method is to construct a morphism of rings from
Z[A,B,v]/ (A%y+ ABy* + B>y + AB — 1)

to a ring in which equality can more easily be decided. One such ring is Z[A, A™1],
which admits a morphism from

Z[A,B,v]/ (A’>y+ ABy* + B>y + AB — 1)

given by:

However, other rings can also be used, such as the ring Z[A]/(A? — 1), which admits a
morphism from
Z|A, B,/ (A>y+ ABy* + B>y + AB — 1)

given by:

A— A,
B — 0,
v 1.



This ring allows us, for instance, to detect the fact that the braid version of the trefoil
knot is not isotopic to the trivial braid, namely the braid version of the unknot. In
summary, whilst the ring of Laurent polynomials Z[A, A~!] is used almost always in
the literature as the recipient of the Kauffman bracket, we wish to emphasise that it
is mot the canonical choice of recipient, and only one of several rings which are useful
for calculational purposes.

Thirdly, on a more minor note, we do not actually work with rings in the usual
sense in this work, but with what are typically known as semirings, without additive
inverses. The construction of the Kauffman bracket goes through perfectly well. In our
framework, commutativity also appears naturally as a consequence of our construction
of the Markov trace. We do not impose it from the beginning, and all aspects of the
construction of the Kauffman bracket except for those making use of the cyclicity
property of the Markov trace do not require it.

1.3. Synopsis — Il

In Chapter {4] the second principal part of this work, we categorify the constructions of
the first part to obtain an invariant of 2-braids. By design, as already discussed, the
framework categorifies effortlessly. However, as with any interesting categorification,
this framework alone does not give an invariant.

We make certain choices which our higher categorical framework canonically builds
upon to define a 2-category 2-Braids of 2-braids, a Temperley-Lieb 3-ring 2-TL(S) given
a certain datum S, smoothing of 2-braids, and a Markov trace functor for diagrammatic
2-tangles. The 1-categorical truncation of all of these constructions agrees with that of
the first part of this work. It is the 2-arrows of 2-Braids that correspond to a geometric
notion of 2-braid, and the 2-arrows of 2-TL(S) that correspond to linear combinations
of a geometric notion of diagrammatic 2-tangle. The choices to which we referred at
the beginning of the paragraph determine these 2-arrows, and allow us to express our
notion of smoothing of 2-braids. These choices of how to define 2-Braids and 2-TL, and
how to define smoothing of 2-braids, have been arrived at geometrically, and, though
entirely implicit, we regard this work as the heart of the second part of the thesis.

In addition, we make the choice of the category of cubical 2-categories as that in
which to internalise the framework of the first part of this work. Just as braids can
be built up from over-crossings and under-crossings, we wish to express formally the
idea that 2-braids can be built up from those choices of 2-braid which we have just
discussed. As a square has two pairs of opposite edges, so a 2-braid has two pairs of
opposite braids. This suggests that 2-braids be built up by means of two notions of
composition of 2-braids, namely glueing 2-braids together in the direction of one of the
two pairs of opposite braids, and glueing 2-braids together in the direction of the other
of these pairs. This is naturally captured in a cubical setting for 2-category theory.

The choice of a cubical as opposed to a globular setting for 2-category theory appears
to us to be essential. Indeed, in a globular setting, one cannot specify that the source
and target braids in one of the two directions of composition be the same, and one is



thus led to admit formal compositions which are nonsensical from a geometrical point
of view.

1.4. Relationship to other work

The idea to capture knotted surfaces of one kind or another in a higher categorical
setting is a natural one. However, the only work we are aware of which touches on
ours is that on 2-tangles which we discussed at the beginning of §4.2, which, as we
discuss there, is significantly different both in motivation and in technical detail.

We are not aware of any prior work on a geometrically motivated, algebraic definition
of a 2-braid group. The only approach to the theory of 2-braids that we are aware of
in the literature is that discussed for instance by Kamada in [I1]. It differs greatly
from ours. We are not aware of any work at all, geometric or algebraic, on smoothing
of 2-braids.

An influential algebraic definition of a 2-braid group, approached from an entirely
different point of view, was given by Rouquier in [I6]. It is not at all clear that 2-braids
in the geometric sense are captured by the latter definition. In particular, we do not
see that the 2-braid group of [16] could capture those braids which involve triple plane
crossings, and in particular the tetrahedral move, which is expected to be related to
Zamolodchikov equations, discussed in [12], and expected to be at the heart of an
approach via higher quantum algebra to the kind of invariant which we construct in
this work.

The construction of a Jones polynomial-like invariant of 2-knots is a very natural
problem, and one would expect a good solution to it to have deep ramifications
across several fields, just as with the ordinary Jones polynomial. Despite this, a
construction of such a gadget, or of a Kauffman bracket-like invariant as a step towards
it, having been suggested prior to the recent work [14] of Therese Mardal Hagland.
The author has not been directly influenced by [14], and our approach is in several
ways considerably different. Nevertheless, [14] has influenced the author’s supervisor
greatly, and in this way [I4] has had an important indirect influence on this thesis.

1.5. Future directions

Though the opportunity has not arisen to include it in the thesis, the author and
her supervisor believe to understand how build up upon the work of this thesis to
construct the Jones polynomial of knots in a categorical framework, and, categorifying
this framework, to construct a Jones polynomial-like invariant of 2-knots. This will
include a new, algebraic approach to diagrammatic knot theory and diagrammatic
2-knot theory.

In the case of diagrammatic knot theory, this will again involve an internalisation of
the categorical framework of the first part of this work to cubical 2-categories, but in
an entirely different way to that in the second part of this work. This will allow us to



construct knot diagrams by composing in two directions from certain basic building
blocks. We will be able to express RO, R1, R2, and R3 moves in this setting, allowing
us to work with knots up to isotopy.

In the case of diagrammatic 2-knot theory, this will involve an internalisation of the
categorical framework of the first part of this work to cubical 3-categories, allowing us
to construct diagrams of 2-knots by composing in three directions from certain basic
building blocks. In addition to double and triple plane crossings as considered in the
2-braid setting, we will be able to work with Whitney umbrella crossings. We will be
able to express all seven of the Roseman moves in this setting, allowing us to work
with 2-knots up to isotopy.

1.6. Preliminaries and foundations

We refer the reader to the appendix to this work for notation, terminology, and
assumptions that we shall, without mention, make use of throughout. We also explain
in the appendix the foundational setting in which we work.






CHAPTER 2

INTERNAL ALGEBRAIC
STRUCTURES AND CERTAIN FREE
CONSTRUCTIONS



2.1. Internal algebraic structures

In this section, we define, internally to a category C which has a final object, the
algebraic structures that we make use of in this work: monoids, commutative monoids,
and semirings (which we refer to simply as rings). When C is the category of sets, we
recover the algebraic structures that are usually referred to by these names. In this
work, however, we shall in Chapter [3[take C to be Cat, the category of small categories,
and in Chapter [4] take C to be 2-Cat, the category of cubical 2-categories.

We observe that monoids internal to C assemble into a category Mon(C, and that
rings internal to C assemble into a category Ring(C). These categories are constructed
canonically, in a 2-categorical setting, in [17], and are demonstrated to admit various
categorical constructions, but we do not go into this here, beyond stating the latter.

Finally, we carry out a form of the Eckmann-Hilton argument in two settings. First,
we demonstrate that composition coincides with multiplication, and that both are
commutative, for arrows

1r

1r

of a 2-ring R. Second, we demonstrate that both horizontal and vertical composition
coincide with multiplication, and that all three are commutative, for 2-arrows of a
3-ring R whose boundary is as follows.

ud

lr —% > 1q

J o

Iy —— 1
T T

2.1.1. Monoids
Assumption 2.1.1.1. Let C be a category, and let 1¢ be a final object of C.

Notation 2.1.1.2. Let A be an object of C. Let

A,bi pA,zn'
1 2
Ax A

A A

be a diagram in C which defines a binary product. Let

1(;#»/1

be an arrow of C. Let



be the canonical arrow to which the universal property of 1¢ gives rise. We denote by

a X id

A Ax A

the canonical arrow of C such that the following diagram in C commutes.

A
ao ;
b a X id ud
A Abi Ax A Abi A
Dy Day
We denote by
1d X a

A Ax A

the canonical arrow of C such that the following diagram in C commutes.

A
ao
id id X a b
A Abi Ax A Abi A
Y4 y2)

Definition 2.1.1.3. A monoid internal to C consists of the following data.
(1) An object M of C.
(2) A diagram

M, bi M, bi
b2
MxM-——M

Mpl

in C which defines a binary product.

(3) A diagram

M tri
Py




in C which defines a triple product.

(4) An arrow
MxM-——->M

of C.

(5) An arrow

of C.
We require that the following hold.

(1) The following diagram in C commutes.

Mx MxM—>M yrwm
1d X l k
M x M ' M
(2) The following diagram in C commutes.
u 1 x1id M x M
id M
M
(3) The following diagram in C commutes.
v 1d x 1 Mox M

i~

M



Terminology 2.1.1.4. We refer to a monoid internal to Cat as a strict monoidal
category.

Remark 2.1.1.5. We might have instead referred to a monoid internal to Cat as a
2-monoid, and to a monoid internal to 2-Cat as a 3-monoid, to be consistent with the
terminology we shall adopt in to refer to a ring internal to Cat or 2-Cat, but, to
avoid possible obfuscation, we shall not do so.

Terminology 2.1.1.6. We refer to a monoid internal to 2-Cat as a strict monoidal
cubical 2-category.

Notation 2.1.1.7. When working with monoids internal to Cat or to 2-Cat, namely
with strict monoidal categories or with strict monoidal cubical 2-categories, we shall
typically denote the functor - by ®.

Definition 2.1.1.8. Let My and M; be monoids internal to C. Let us denote by M,
the object of C which is part of the data of My, and denote the remaining pieces of
data of My as follows.

Mo,bi Mo ,bi

Mo

Let us denote by M; the object of C which is part of the data of My, and denote the
remaining pieces of data of M; as follows.

le,bi le,bi

1 2

Ml Ml X Ml Ml
My tri

Dy




M, x My — 5

1
1o — M g

A morphism from Mgy to My consists of an arrow

MOF

M,

of C such that the following hold.
(1) The following diagram in C commutes.

M[)XMULMO

FxF F

M1 X M1 EEE—— M1
My

(2) The following diagram in C commutes.

1
le i, M,
F

1ar,
My

Terminology 2.1.1.9. We refer to a morphism of monoids internal to Cat or 2-Cat
as a strict monoidal functor.

Remark 2.1.1.10. Let My, My, and My be monoids internal to C. Let M, be the
object of C which is part of the data of Mg, let M; be the object of C which is part of
the data of My, and let M5 be the object of C which is part of the data of My. Let

Fo

My M,y

be an arrow of C which defines a morphism from My to My, and let

F
M, —

Ms

be an arrow of C which defines a morphism from M; to M. Then the arrow



F10F0

0 M,

of C defines a morphism from My to M.

Remark 2.1.1.11. Let M be a monoid internal to C. Let us denote the object of C
which is part of the data of M by M. Then the arrow

MZ;d,M

of C defines a morphism from M to M.

Notation 2.1.1.12. Monoids internal to C and morphisms between them assemble,
with composition defined as in Remark [2.1.1.10} and identity morphisms defined as in
Remark [2.1.1.11} into a category. We shall denote this category by Mon(C).

Fact 2.1.1.13. Suppose that C satisfies certain hypotheses given in [17]. Then Mon(C)
has finite coproducts, coequalisers, pushouts, and binary products.

Remark 2.1.1.14. Fact is proven in [I7], and we shall assume it. In [I7], the
category Mon(C) is constructed in a purely 2-categorical way. The demonstration that
Mon(C) admits the categorical constructions listed in Fact makes use of this
2-categorical point of view.

2.1.2. Commutative monoids

Notation 2.1.2.1. Let M be an object of C, and let

M.bi M. bi
Y2 y2)

M M x M

M

be a diagram in C which defines a binary product. We denote by

MxM—"MxM

the canonical arrow of C such that the following diagram in C commutes.

M x M



Definition 2.1.2.2. Let M be a monoid internal to C. Let us denote by M the object
of C which is part of the data of M, and denote the remaining pieces of data of M as
follows.

M,bi M, bi

Then M is commutative if the following diagram in C commutes.

MxM—"sMxM

Ny

M

Terminology 2.1.2.3. We refer to a commutative monoid internal to Cat as a strict
symmetric monoidal category.

Terminology 2.1.2.4. We refer to a commutative monoid internal to 2-Cat as a strict
symmetric monoidal cubical 2-category.

Remark 2.1.2.5. We might have instead referred to a commutative monoid internal
to Cat as a commutative 2-monoid, and to a commutative monoid internal to 2-Cat
as a commutative 3-monoid, to be consistent with the terminology we shall adopt in
to refer to a ring internal to Cat or 2-Cat, but, to avoid possible obfuscation, we
shall not do so.

Notation 2.1.2.6. When working with commutative monoids internal to C, we shall
typically denote - by 4, and denote 1 by 0.

Notation 2.1.2.7. When working with commutative monoids internal to Cat or 2-Cat,
namely with strict symmetric monoidal categories, we shall typically denote the functor
- by .



Definition 2.1.2.8. Let My and M; be commutative monoids internal to C. Let us
denote the object of C which is part of the data of My by M, and denote the object
of C which is part of the data of My by M. A morphism from My to My is an arrow

F

M, M,

of C which defines a morphism from Mg to M.

2.1.3. Rings
Notation 2.1.3.1. Let R be an object of C. Let
phi phbi
R«————RxR———R

be a diagram in C which defines a binary product. We denote by

RA>R><R

the canonical arrow of C such that the following diagram in C commutes.

Definition 2.1.3.2. A ring internal to C consists of the following data.
(1) An object R of C.
(2) A diagram

pR,bi pR,bi
1 2
R

in C which defines a binary product.

(3) A diagram

Rtri




in C which defines a triple product.

(4) An arrow

RxR R
of C.
(5) An arrow
YR
of C.
(6) An arrow
RxR——R
of C.
(7) An arrow
le L R

of C.

We require that the following hold.

(1) The data of (1) — (5) defines a commutative monoid internal to C.
(2) The data of (1) — (3) and (6) — (7) defines a monoid internal to C.

(3) The following diagram in C commutes.



A xid x id

RxRXR RxRXRXR
id X 7 X id
RxRXRXR
1d X + - X
Rx R
+
R xR - R

(4) The following diagram in C commutes.

RxRXR id x id x A RxRXxRXR
1d X T X id
RxRxRXR
+ % id CX
RXx R
+
RxR - R

Terminology 2.1.3.3. We refer to a ring internal to Cat as a 2-ring.
Terminology 2.1.3.4. We refer to a ring internal to 2-Cat as a 3-ring.

Terminology 2.1.3.5. We refer to the commutative monoid defined by the data of
(1) — (5) in Definition [2.1.3.2| as the additive structure of a ring internal to C.

Notation 2.1.3.6. Let R be a ring internal to C. We denote its additive structure by
Radd.

Terminology 2.1.3.7. We refer to the monoid defined by the data of (1) — (3) and
(6) — (7) in Definition [2.1.3.2 as the multiplicative structure of a ring internal to C.

Notation 2.1.3.8. Let R be a ring internal to C. We denote its multiplicative structure
by Rmult'



Remark 2.1.3.9. When C is the category of sets, a ring internal to C is usually
referred to as a commutative semiring or commutative rig. In particular, we do not
require the monoid which defines the additive structure of a ring to have inverses.

Definition 2.1.3.10. Let Ry and R; be rings internal to C. Let Ry be the object of C
which is part of the data of Ry, and let Ry be the object of C which is part of the data
of Ri. A morphism from Ry to Ry consists of an arrow

ROF

Ry

of C such that the following hold.

(1) The arrow F defines a morphism from R3% to R3%.

(2) The arrow F defines a morphism from R to RPU'.

Terminology 2.1.3.11. We refer to a morphism of rings internal to Cat as a functor
of 2-rings.

Terminology 2.1.3.12. We refer to a morphism of rings internal to 2-Cat as a functor
of 3-rings.

Remark 2.1.3.13. Let Ry, Ry, and Ry be rings internal to C. Let Ry be the object of
C which is part of the data of Ry, let Ry be the object of C which is part of the data of
Ri, and let Ry be the object of C which is part of the data of Ry. Let

F
Ry —°

Ry

be an arrow of C which defines a morphism from Ry to Ry, and let

Fy

Ry Ry

be an arrow of C which defines a morphism from R; to Ry. Then the arrow

F10F0

0 2

of C defines a morphism of from Ry to R».

Remark 2.1.3.14. Let R be a ring internal to C. Let R be the object of C which is
part of the data of R. Then the arrow
1d

R R

of C defines a morphism from R to R.



Notation 2.1.3.15. Rings internal to C and morphisms between them assemble, with
composition defined as in Remark [2.1.3.13] and identity morphisms defined as in
Remark [2.1.3.14] into a category. We shall denote this category by Ring(C).

Fact 2.1.3.16. Suppose that C satisfies certain hypotheses given in [17]. Then Ring(C)
has finite coproducts, coequalisers, pushouts, and binary products.

Remark 2.1.3.17. Fact[2.1.3.16]is proven in [17], and we shall assume it. As discussed
in Remark for Mon(C), the category Ring(C) is constructed in a purely 2-
categorical way in [I7], and the demonstration that Ring(C) admits the categorical
constructions listed in Fact makes use of this 2-categorical point of view.

Remark 2.1.3.18. Crucial to our categorical construction of the Kauffman bracket
for braids will be to, roughly speaking, equip the arrows of a monoidal category with
the structure of a free (left) R-module, where R is a ring internal to the category of
sets. Typically, one would make use of the notion of a monoidal category enriched over
the category of R-modules to express this idea. However, the definition of an enriched
category is not one which is simple to express internally to a category. As discussed
in the introduction to this work, internalisation is a fundamental to the approach
which we shall take in Chapter [4] to categorifying the framework for constructing the
Kauffman bracket which we shall establish in Chapter [3]

The notion of a module over a ring is one which is straightforward to express
internally to a category C. Whilst we omit a formal definition, because we shall not
make use of it elsewhere, let us refer in this remark to a module internal to Cat over a
2-ring as a 2-module over this 2-ring. Let R be a ring internal to the category of sets.
As we shall now explain, a category enriched over the category of (left) R-modules
can be viewed as a 2-module over the discrete 2-ring determined by R. We give this
explanation in the language of category theory in a set-theoretic foundations, rather
than in the setting, described in the appendix, in which we are carrying out our formal
work,

Given any set X, let us denote the discrete category determined by X by disc(X).
This category can be defined as follows.

(1) The set of objects Ob(disc(X)) is X.
(2) The set of arrows Arr(disc(X)) is X.

(3) The source and target maps

Arr(disc(X)) —— Ob(disc(X))

i are both the identity map

ud



(4) The map

Ob (disc(X)) Arr (disc(X))

of disc(X) defining the identity arrows of disc(X) is the identity map

x oy

(5) The map

Arr(disc(X)) x ) Arr (disc(X)) Arr (disc(X))

Ob disc(x)
defining composition of arrows of disc(X) is, observing that the diagram

XLX

d e

X—X
id

defines a pullback in the category of sets,is the identity map

Xz_d,X,

Let R be the set which is part of the data of R. We equip disc(R) with the structure
of a 2-ring disc(R) in the following way.

(1) The functor

disc(R) x disc(R)

disc(R)

is given both on objects and on arrows by the map

R xR R.




(2) Viewing lca as disc(lset), where lse is a final object of the category of sets, the
functor

lcat 0 disc(R)

is given both on objects and on arrows by the map

0 . R

1Set

(3) The functor

disc(R) x disc(R)

disc(R)

is given on both objects and on arrows by the map

R x R R.

(4) Viewing lc, in the same way as in (2), the functor
1 .
lcat — disc(R)

is given both on objects and on arrows by the map

LR

1Set

Let us refer to the 2-ring disc(R) as the discrete 2-ring on R.

A category enriched over the category of modules over R is exactly the data of a
2-module M over disc(R) with the property that, letting M denote the category which
is part of the data of M, the functor

disc(R) x M —— M

which is part of the data of M is the projection map on objects, namely r @y, m =m
for every element r of R and every object m of M.

This leads to the idea to work with 2-modules over a 2-ring in internal category
theory, rather than with enriched categories. Taking this one step further, it suggests
to work with the notion of an algebra over a ring in internal category theory rather
than with enriched monoidal categories.



In fact, though, we shall not explicitly make use of the notion of an algebra over
a ring internal to a category in this work. Instead, we shall make use of free rings
internal to a category, and categorical constructions in Ring(C). In this way, we shall
be able to express formally all that we would require of the notion of an algebra over
a ring internal to a category.

Remark 2.1.3.19. That, as described in Remark [2.1.3.18] 2-modules over a 2-ring
generalise categories enriched over the category of modules over a ring, is an observation
which we would imagine is folkloric, but we are not aware of any work it which it
appears.

Proposition 2.1.3.20. Let R be a 2-ring. Let R denote the category which is part of
the data of R. Let

S

lg —— 1

and

1RL1R

be arrows of R. Then the arrows go f, fog, f ®r g, and g Rr [ of R are equal.
Proof. Let

R.bi R.bi
yZ1 V%)

R xR

R R

be the diagram in Cat which is part of the data of R, and which defines a binary
product. Let

u

I()LHI R xR

denote the canonical functor such that the following diagram in Cat commutes.

0
1Ca'c I
1 ot id(1R) ¥ g
Tz o T
1
U
R xR
f X Zd(1R>

We make the following observations.



(1) By definition of the arrow

. (id(1r) x g) o (f x id(1R)) RxR.

of R, the following diagram in Cat commutes.

T Tynz
. . u
(Zd(1R> X g) o (f X zd(lR))
R xR
(2) By definition of the arrow
x 1d(1
i) oo R,
of R, the following diagram in Cat commutes.
x 1d(1
fxide) »or
prb
f 1
R
(3) By definition of the arrow
1d(1gr) X
T (Ir) x g R xR,
of R, the following diagram in Cat commutes.
1d(1g) X
T (Ir) x g R xR
pRY
id(1R) !

R



(4) We deduce from (1) - (3) that the following diagram in Cat commutes.

(5) Appealing to the universal property of Z olJ; Z, and the definition of the arrow
id(1g) o f, we deduce from (4) that the following diagram in Cat commutes.

. (id(1R) x g) o (f x id(1R)) o

pR,bi
’ld(lR) ©] f !

R

(6) Since the arrow id(1g) o f is equal to f, we deduce from (5) that the following
diagram in Cat commutes.

(id(1r) x g) o (f x id(1R)) -

pR,bi
f 1
R

(7) By an entirely analogous argument to that of (1) — (6), the following diagram
in Cat commutes.

; (id(1R) x g) o (f x id(1R)) S

R,bi
g 2!

R



(8) We deduce from (6), (7), the definition of the arrow

X
Ifg

R X R,

of R, and the universal property of R x R, that the arrow
(id(1r) x g) o (f x id(1R))
of R is equal to the arrow f x g of R.

(9) We deduce from (8) that the following diagram in Cat commutes.

; (id(1r) x g) o (f x id(1R)) .

fxg QR

R xR R
QR

(10) Since ®g is a functor, we deduce from (9) that the arrow

(id(1r) ®r g) o (f ®rid(1R))
of R is equal to the arrow f ®g g of R.

(11) By requirement (2) of Definition [2.1.1.3) with respect to R™ the arrow
id(1r) ®r g of R is equal to the arrow g of R.

(12) By requirement (3) of Definition [2.1.1.3) with respect to R™ the arrow
f ®rid(1g) of R is equal to the arrow f of R.

(13) We deduce from (10) — (12) that the arrow g o f of R is equal to the arrow
f®rgof R.

Working with the arrow

of R instead of the arrow

, (id(1R) x g) o (f x id(1R)) RxR.

of R, an entirely analogous argument demonstrates that the arrow g o f of R is also
equal to the arrow g ®g f of R. Finally, working with the arrow



of R instead of the arrow

- (id(lR) X g) o (f X z'd(lR)) RxR.

of R, an entirely analogous argument demonstrates that the arrow f o g of R is equal
to the arrow f ®gr g of R. Putting all of this together, we have that

gerf=gof=f®g=fog
O

Proposition 2.1.3.21. Let R be a 3-ring. Let R denote the cubical 2-category which
is part of the data of R. Let

and

be 2-arrows of R. Then the 2-arrows T Oyer O, T Oper T, T Opor O, O Opor T, 0 QR T, and
T ®r o of R are equal.

Proof. Let

R

be the diagram in 2-Cat which is part of the data of R, and which defines a binary
product. Let

u

S.U S R xR




denote the canonical functor such that the following diagram in 2-Cat commutes.

idyer (id(1R)) X T

R xR
0 X idyer (id(1R))

We make the following observations.

(1) By definition of the 2-arrow

) (ide@d(lR)) X 7-> Oper (0 X idver(id(lR))> RxR.

of R, the following diagram in 2-Cat commutes.

Sver
S§—— S, S

(iduer (id(18) % 7)) 0uer (0 % iduer (id(lRm lu

R xR

(2) By definition of the 2-arrow

X 1dyer (2d(1
s> ( <R))R><R,

of R, the following diagram in 2-Cat commutes.

0 X tdyer (2d(1
S (id(0)

R.bi
o 51

R



(3) By definition of the 2-arrow

idyer (id(1R)) % T
S ( (R)) R xR,

of R, the following diagram in 2-Cat commutes.

idyer (id(1R)) X T

S R xR
pR,bi
idyer (id(15)) !
R

(4) We deduce from (1) — (3) that the following diagram in 2-Cat commutes.

T

(5) Appealing to the universal property of S ,Us S, and the definition of the 2-
arrow idye, (id(1g)) o o, we deduce from (4) that the following diagram in 2-Cat
commutes.

(idver(id(lR) % g)) o <f X idyer(id(lR))> RAR

R,bi
kpl

R

idyer (id(1R)) Oper 0

(6) Since the 2-arrow idye, (id(lR)) ouer 0 s equal to o, we deduce from (5) that the
following diagram in 2-Cat commutes.



. (idver(id(]‘R)) X 7') Oper <U X (id(lR))> R R

R,bi
o Dby

R

(7) By an entirely analogous argument to that of (1) — (6), the following diagram
in 2-Cat commutes.

. (idver(id(lR)) X T) Oyer <0 X (id(lR))) R R

R,bi
g %!

R

(8) We deduce from (6), (7), the definition of the 2-arrow

o XT

S

R XR,

of R, and the universal property of R x R, that the 2-arrow

(iduer (1(18)) % 7) 00y (0 % i (id(15))

of R is equal to the 2-arrow o x 7 of R.

(9) We deduce from (8) that the following diagram in 2-Cat commutes.

(idm (id(1g)) x T) Over (0 X idver(id(lR))>

S R xR
UXT{ ®R
R xR R

Xr

(10) Since ®g is a functor, we deduce from (9) that the 2-arrow

(zdm (id(1g) ®& r)) Over (o ®R idyer (id(lR)))

of R is equal to the 2-arrow o ®g 7 of R.



(11) By requirement (2) of Definition [2.1.1.3) with respect to R™! the arrow
1dyer (id(lR)) ®r T of R is equal to the arrow 7 of R.

(12) By requirement (3) of Definition [2.1.1.3[ with respect to R™ the 2-arrow
0 QR 1dyer (id(lR)) of R is equal to the 2-arrow o of R.

(13) We deduce from (10) — (12) that the arrow 7o, 0 of R is equal to the 2-arrow
o ®r T of R.

Working with the 2-arrow

S (T . z’dver(id(lR))) Oper (idver(id(1R> x o) s

of R instead of the 2-arrow

. <7:dyer(id<]'R)) % 7) Oper (0 X idyer(id<1R))> .

of R, an entirely analogous argument demonstrates that the arrow 7 o,.,. o of R is also
equal to the arrow 7 ®g o of R. Working with the 2-arrow

) (U y Z.dm(l-d(m)) Oper <idver(id(1R)) X T> -

of R instead of the 2-arrow

. (idw (id(1r)) x T) Over (“ X Ser (id(lR))> R xR

of R, an entirely analogous argument demonstrates that the arrow o o,.,. 7 of R is
equal to the arrow o ®g 7 of R. Working with the 2-arrow

. (@dw (id(1r)) X T) ©hor (" X Ulhor (id(lRm R xR

instead of the 2-arrow

(et <) e i)

of R, an entirely analogous argument demonstrates that the arrow 7 oy, 0 of R is
equal to the arrow o ®g 7 of R. Finally, working with the 2-arrow



. <U « idhor(id(lR))> Ohor (idhor(id(lR)) X 7') T

of R instead of the 2-arrow

. (zdver (id(1r)) x T) Over (” X Suer (id(lR)» RXR

of R, an entirely analogous argument demonstrates that the arrow o oy, 7 of R is
equal to the arrow o ®g 7 of R.
Putting all of this together, we have that

TRRO =T Oper 0 =0 QRT = 0 Oper T
and that
T Opor O =0 QR T = T Opor T.

Hence all six of these 2-arrows are equal.
m

Remark 2.1.3.22. The proofs of Proposition [2.1.3.20] and Proposition [2.1.3.21] are a
form of the Eckmann-Hilton argument. This argument, in a category theoretic setting,

goes back to §4 of the paper [4] of Eckmann and Hilton.



2.2. Assumed free constructions

Certain free constructions of the internal algebraic structures introduced in will
be made vital use throughout this work. The first is that of free monoid internal to
a category C on a monoidal datum internal to C. The second is that of a free ring
internal to C on a monoidal datum internal to C. The third is that of a free ring
internal to C on a monoid internal to C.

In this section, we introduce these free constructions, and relate them. That they
can be carried out is demonstrated in [17].

2.2.1. Free monoid on a monoidal datum internal to a category

Assumption 2.2.1.1. Let C be a category, and let 1. be a final object of C.

Definition 2.2.1.2. A monoidal datum internal to C consists of the following data.

(1) An object A of C.
(2) An object B of C
(3) A diagram

pB,bz‘ pB,bi
! BxB—2

B

in C which defines a binary product.

(4) An arrow

pairs

—— BxB

of C.
(5) An arrow

to

of C.

Definition 2.2.1.3. Let M be a monoid internal to C. Let M be the object of C which
is part of the data of M. A monoidal datum for M consists of the following data.

(1) A monoidal datum M internal to C.



(2) An arrow

B M
of C.
Let
pM bi pM,bi
M M x M —2 M

be the diagram in C which is part of the data of M, and which defines a binary product.
Let A and B be the objects of C which are the first and second parts respectively of
the data of M, and let us denote the rest of the data of M as follows.

pB,bi pB,bi
Bt BxB—2 B
pairs
M x B
to
A—". B

We require that the following diagram in C commutes.

pairs
“.BxB

)

tom M x M

Fact 2.2.1.4. Suppose that C satisfies certain hypotheses, given in [17]. Let M be a
monoidal datum internal to C, and let B be the object of C which is the second part of
the data of Ml. Then there is a monoid F(M) internal to C, and an arrow

LR(M)

B F(M)



of C, where F(M) is the object of C which is part of the data of F(M), such that, for
every monoid M internal to C, and every arrow

(3

B M

of C with the property that (M, i) defines a monoidal datum for M, where M 1is the
object of C which is part of the data of M, there is a unique arrow

FOM) canm

of C with the following properties.
(1) The data (M, irur) defines a monoidal datum for F(M).
(2) The arrow cany of C defines a morphism from F(M) to M.

(3) The following diagram in C commutes.

LF(M
B (M)

Terminology 2.2.1.5. We refer to F(M) as the free monoid on M.

Remark 2.2.1.6. Both Cat and 2-Cat satisfy the hypotheses required to hold at the
beginning of Fact [2.2.1.4]

Terminology 2.2.1.7. Suppose that C has an inital object (). Let B be an object of
C. Assume that there is a diagram

B,bi B,bi
P Y2

B B x B

B

in C which defines a binary product. Let M be the monoidal datum given by the
following data.

(1) The object of C which is the first part of the data of M is (.
(2) The object of C which is the second part of the data of M is B.
(3) The diagram in C which is the third part of the data of M is the following.

B.bi B.bi
P1 Pa

B B x B

B



(4) The arrow

airs
Oc p4>B X B

is the canonical arrow to which the universal property of () gives rise.

(5) The arrow

@c to B

is the canonical arrow to which the universal property of ()¢ gives rise.

Then we refer to the free monoid on M as the free monoid on B.

2.2.2. Free ring on a monoidal datum internal to a category

Definition 2.2.2.1. Let R be a ring internal to C. A monoidal datum for R is a
monoidal datum for R™u',

Fact 2.2.2.2. Suppose that C satisfies certain hypotheses, given in [17]. Let M =
(A, B, pairsy, toy) be a monoidal datum internal to C. Then there is a ring F(M)
internal to C, and an arrow

of C, where F(M) is the object of C which is part of the data of F(M), such that, for
every ring R internal to C, and every arrow
iR

B R

of C with the property that (M, ig) defines a monoidal datum for M, where R is the
object of C which is part of the data of R, there is a unique arrow

canpym

F(M) R

of C with the following properties.

(1) The data (M, ipu)) defines a monoidal datum for F(M).

(2) The arrow cany of C defines a morphism from F(M) to R.



(3) The following diagram in C commutes.

LF(M)

B

Terminology 2.2.2.3. We refer to F(M) as the free ring on M.

Remark 2.2.2.4. Both Cat and 2-Cat satisfy the hypotheses required to hold at the
beginning of Fact [2.2.2.2]

Terminology 2.2.2.5. Suppose that C has an inital object (). Let B be an object of
C. Assume that there is a diagram

B.bi B.bi
P1 Pa

B B x B

B

in C which defines a binary product. Let M be the monoidal datum defined as in
Terminology [2.2.1.7. Then we refer to the free ring on M as the free ring on B.

2.2.3. Free ring on a monoid internal to a category

Fact 2.2.3.1. Suppose that C satisfies certain hypotheses, given in [17]. Let M be a
monoid internal to C. Then there is a ring F(M) internal to C, and a morphism

LF(M)

M F(M)mult

of monotds internal to C, such that, for every ring R internal to C, and every morphism

f

M Rmult

of monoids internal to C, there is a unique morphism

cang

F(M) ———

of rings internal to C such that the following diagram in Mon(C) commutes.

TF(M
M M)

F(M)mUIt

cang



Terminology 2.2.3.2. We refer to F(M) as the free ring on M.

Remark 2.2.3.3. Both Cat and 2-Cat satisfy the hypotheses required to hold at the
beginning of Fact [2.2.3.1

Fact 2.2.3.4. Suppose that C satisfies the hypotheses that are required to hold at the
beginning of Fact[2.2.1.4) and Fact[2.2.2.3 Let M be a monoidal datum internal to C,
and let B be the object of C which is the second part of the data of M. Appealing to
Fact|2.2.1.4} let Fupon(e) (M) denote the free monoid on M internal to C. Appealing to
Fact @ let Fring(c)(Ml) denote the free ring on M internal to C. Let us denote by

u mu
FMon(C) (M) - FRing(C) (M) g

the morphism of monoids internal to C to which the monoid Fringc) (M)™u" internal to
C and the arrow

?:FRing(C) (M)
— Fring(o) (M)

of C give rise, by means of the universal property of Fuon(c)(M). Then Fring(c)(IM)™"
along with the morphism

u mu
FMon(C) (M) - FRing(C) (M) It)

of monoids internal to C define the free ring on Fyon(cat)(M) internal to C.






CHAPTER 3

A CATEGORICAL FRAMEWORK FOR
THE KAUFFMAN BRACKET



3.1. Categories of braids

We define a category Braids, whose arrows we think of and depict as braids. as a free
strict monoidal category on a monoidal datum Mpg,.;qs. We then formulate the R2 and
R3 Reidemeister moves in terms of arrows of Braids, and define a series of monoidal
categories by taking colimits in Mon(Cat) which identify the two sides of each of these
moves. First, a category Braids/R2,,e in which one of the R2 moves has been forced to
become an identity. Second, a category Braids/R2pen in which both of the R2 moves
have been forced to become identites. Finally, a category Braids/R-moves in which all
of the R2 and R3 moves have been forced to become identities.

We think of the arrows of Braids/R-moves as braids up to isotopy. More generally,
we think of our work in this section as carrying out an algebraisation of the topological
theory of braids.

We observe that, to define Braids/R-moves from Braids/R2,0, it is enough to force
just one of the R3 moves to become an identity. All of the other R3 moves then become
identities as a consequence. Making use of this observation, and of the categories
Braids/R2,ne and Braids/R2p0th, rather than defining Braids/R-moves from Braids in one
step, will allow us to demonstrate in as short a manner as possible that the Kauffman
bracket we construct in is a braid invariant.

3.1.1. The category of braids
Notation 3.1.1.1. Let

1Cat U 1Cat

1Cat 1Cat

be a diagram in Cat which defines a binary coproduct.
Notation 3.1.1.2. Let us denote by

0T (2,2)

1Cat U 1Cat

the functor determined by the pair of objects (2,2) of 1ca U Lcat.
Notation 3.1.1.3. Let us denote by

(0,1)

0T ya

the functor determined by the pair of objects (0, 1) of Z.

Notation 3.1.1.4. Let
. bi O bi
) 15
07 UoT

0T oL

be a diagram in Cat which defines a binary coproduct.



Notation 3.1.1.5. Let us denote by

(2,2) 1 (2,2)
07 LU oL Tcat U lcat

the canonical functor such that the following diagram in Cat, in which it is the
unlabelled vertical arrow, commutes.

;O bi ;OTbi
1
0T 07 L1 oT 0T
(2,2) (2,2)
1Cat U 1Cat
Notation 3.1.1.6. Let
T,bi -Z,bi
g g
T TUT T
be a diagram in Cat which defines a binary coproduct.
Notation 3.1.1.7. Let us denote by
0,1)U (0,1
0Z U 0T (©HuO1 TUZz

the canonical functor such that the following diagram in Cat, in which it is the
unlabelled vertical arrow, commutes.

0T bi O bi

i i

0z 0T u oL

0z

"0 (0,1)

TUT
Notation 3.1.1.8. Let
(2,2)U(2,2)
0T 10T leat U lcat
Braids
(0,1) U (0,1) re <2
U7t T Braids<,
rl -

be a co-cartesian square in Cat.



Notation 3.1.1.9. We denote the object of Braids<s corresponding to the functor

Braids
g ol

lcat Braids<,

by 1, and depict it as follows.

We denote the object of Braids<, corresponding to the functor

TOBl’aidSSQ 09 .
1Cat Braldsgz
by 2, and depict it as follows.
[ ] [ J
We depict the arrow
id(1)

of Braids<y as follows.

We depict the arrow
id(2)

of Braids<y as follows.

We denote the arrow of Braids<, corresponding to the functor



Braids<o .T,bi
T’l ) Zl .
7 Braldsg

by OverCrossing, and depict it as follows.

p
/

We denote the arrow of Braids<y corresponding to the functor

Braids<o .T,bi
=701

T
7 ! 2 Braidsg

by UnderCrossing, and depict it as follows.

.
N\

Remark 3.1.1.10. The definition of Braids<s can be thought of as follows. We begin
with a category consisting of exactly two objects, 1 and 2, and no non-identity arrows.
We then proceed as follows.

(1) We add an arrow

which we denote by OverCrossing.

(2) We add another arrow

2— 2

which we denote by UnderCrossing.



(3) We then add exactly those further arrows

2 —2

that we need to have a category, namely arbitrary finite compositions of OverCrossing
and UnderCrossing.

As this description makes clear, Braids<, can also be defined as the free category on
the directed graph consisting of exactly two objects 1, 2, and exactly two arrows

2 — 2.

We prefer, however, the more direct approach, working purely within Cat, that we
have taken.

Notation 3.1.1.11. Let

Braids<o Braids<»

. p . . P
Braids<, —t Braids<, x Braids<s 2

Braidsgg

be a diagram in Cat which defines a binary product.
Notation 3.1.1.12. Let

(1,1)

lcat Braids< x Braids<s

be the canonical functor such that the following diagram in Cat commutes.

1Cat
1 1
(1,1)
Braids<, ——— Braids<, x Braids< —— Braids<
rai 2 rai 2
Dy - %) B

Definition 3.1.1.13. The category of braids is, appealing to Fact [2.2.1.4] the free
strict monoidal category on the monoidal datum Mpgigs = (1cat, Braids<o, (1,1),2)
internal to Cat.

Notation 3.1.1.14. We denote the category of braids by Braids. We denote the
canonical functor

Braids<o —— Braids

by CaNBraids-



Remark 3.1.1.15. The construction of the category Braids can be thought as taking
the free strict monoidal category upon Braids<s, subject to the requirement that
1 ® 1 = 2. Thus the objects of Braids can be thought of as the symbols

l1®---®1

————
for n > 0. We depict

1®---®1

—_——
as follows, for n > 1.

. .o oe e .

We sometimes denote the symbol

1®---®1

—_———

simply by n.
The arrows of Braids can be thought of as built from those of Braids<s by horizontal
concatenation. Thus, for instance, there is an arrow

id(1) ® OverCrossing
I1®1®1 I®l®l,

which we depict as follows.

p
S

We think of the unit object of Braids, which we denote by 0, as the ‘empty braid’, or
the ‘braid with zero strands’.

From this description, we see that the arrows of Braids correspond exactly to braids,
on any number of strands, in the topological sense. However, we shall not make use of
this or any other explicit description of Braids in our formal work. We shall appeal
only to its universal property.

Notation 3.1.1.16. We depict composition in both Braids<y and Braids as vertical
glueing. For instance, we depict the arrow

UnderCrossing o OverCrossing




in either Braids<, or Braids as follows.

E

N

3.1.2. Categories of braids up to isotopy
Notation 3.1.2.1. Appealing to Fact [2.2.1.4, we denote by F(Z) the free strict

monoidal category on Z.
Notation 3.1.2.2. Let

R2,ne(0ne half)
F(Z) Braids

be the strict monoidal functor to which, by means of the universal property of F(Z),
the functor

UnderCrossing o OverCrossing )
Braids

gives rise.

Notation 3.1.2.3. Let

R2,ne(other half)
F(Z) Braids

be the strict monoidal functor to which, by means of the universal property of F(Z),
the functor

A Braids

corresponding to the arrow

id

of Braids gives rise.



Definition 3.1.2.4. Appealing to Fact [2.1.1.13], let
R2,ne(0ne half)

F(Z) Braids
R2,ne(other half)

qR2one

Braids/R2one

be a diagram in Mon(Cat) which defines a coequaliser.

Remark 3.1.2.5. The arrows R2,,c(one half) and R2,,.(other half) of Braids express
algebraically the two halves of the R2 move which allows us to replace

E

N\

by the following, and vice versa.

We refer to this R2 move as R2,,.. Let us regard two braids as equivalent if one can
be obtained from the other by a finite sequence of R2,,. moves. Then the objects
of Braids/R2,,e are the same as those of Braids, and the arrows of Braids/R2,, can
be thought of in the same way as the arrows of Braids, namely as braids, up to the
afore-mentioned notion of equivalence.

Notation 3.1.2.6. Let

R2u0(0ne half)
F(Z) Braids

be the strict monoidal functor to which, by means of the universal property of F(Z),
the functor

OverCrossing o UnderCrossing

Braids

gives rise.



Notation 3.1.2.7. Let

R2¢w0(other half)
F(Z) Braids

be the strict monoidal functor to which, by means of the universal property of F(Z),
the functor

A Braids

corresponding to the arrow

d

of Braids gives rise.

Definition 3.1.2.8. Appealing to Fact [2.1.1.13], let

JR2o,. © R2wo(0ne half)

F(T) Braids/R2ome — 2, Braids/R2pon
JR2e © R2uwo(0ther half)
be a diagram in Mon(Cat) which defines a coequaliser.
Notation 3.1.2.9. We denote the functor
Braids R2uwo © R2one Braids/R2poth

by AR2poeh -

Remark 3.1.2.10. The arrows R2,,(one half) and R2,,(other half) of Braids express
algebraically the two halves of the R2 move which allows us to replace

=

S

by the following, and vice versa.



We refer to this R2 move as R2,,. Let us regard two braids as equivalent if one can
be obtained from the other by a finite sequence of R2,,. and R2,, moves. Then the
objects of Braids/R2,.h are the same as those of Braids, and the arrows of Braids/R2pet,
can be thought of in the same way as the arrows of Braids, namely as braids, up to
the afore-mentioned notion of equivalence.

Remark 3.1.2.11. The category Braids/R2,uh is in fact a groupoid. The arrows

OverCrossing

and

UnderCrossing

of Braids<, are the non-identity generating arrows for Braids as the free strict monoidal
category on Mpggs. Since these two arrows become inverse to one another in
Braids/R2,0th, it follows that all arrows of Braids become isomorphisms in Braids/R2poth.

The observation that Braids/R2,0, is a groupoid will not be made use of in this
work.

Notation 3.1.2.12. Let us denote the arrow
OverCrossing ® id(1)

of Braids by ;. Let us denote the arrow

id(1) ® OverCrossing

of Braids by os.

Notation 3.1.2.13. Let

R3one(0ne half) _
F(Z) Braids

be the strict monoidal functor to which, by means of the universal property of F(Z),
the functor
010099001

Braids

gives rise.



Notation 3.1.2.14. Let

R3one(other half)
F(Z) Braids

be the strict monoidal functor to which, by means of the universal property of F(Z),
the functor

09 © 01 009

Braids

gives rise.

Definition 3.1.2.15. Appealing to Fact [2.1.1.13] let

qR2p, © R3one(0ne half)

F(T) Braids/R2betn — "+ Braids/R-moves
qR2s.0, © R30ne(other half)
be a diagram in Mon(Cat) which defines a coequaliser.
Notation 3.1.2.16. We denote the functor
Braids — e 2 1o Braids/R-moves

by gR-moves-

Remark 3.1.2.17. The arrows R3,,e(0one half) and R34 (other half) of Braids express
algebraically the two halves of the R3 move which allows us to replace

E

S

by the following, and vice versa.



S

We refer to this R3 move as R3gpe.

Notation 3.1.2.18. Let us denote the arrow
; UnderCrossing ® id(1) 5

of Braids by o, . Let us denote the arrow

1d(1) ® UnderCrossin
5 (1) g .

of Braids by 2.

Notation 3.1.2.19. Let

R34wo(one half)
F(Z) Braids

be the strict monoidal functor to which, by means of the universal property of F(Z),
the functor

01_1002001

7 Braids

gives rise.

Notation 3.1.2.20. Let

R3uwo(other half)
F(Z) Braids

be the strict monoidal functor to which, by means of the universal property of F(Z),
the functor



02001002_1

Braids

gives rise.

Remark 3.1.2.21. The arrows R3,,(one half) and R3,,(other half) of Braids express
algebraically the two halves of the R3 move which allows us to replace

E

N\

by the following, and vice versa.

=

S

We refer to this R3 move as R3q,,.

Proposition 3.1.2.22. The following diagram in Cat commutes.



0'1_100'200'1

7 Braids
090010 0'2_1 GR-moves
Braids Braids/R-moves

gR-moves

Proof. We make the following observations.
(1) By definition of Braids/R-moves, the following diagram in Cat commutes.

0100990071

7z Braids
02 ©01 ©039 qR-moves
Braids Braids/R-moves

R-moves

(2) By the functoriality of ¢r.moves, We deduce from (1) that the following diagram
in Cat commutes.

0'1100'100'200'1

T Braids
0;1002001002 gR-moves
Braids Braids/R-moves
gR-moves

(3) By definition of Braids/R2,ye, the following diagram in Cat commutes.

id(2) .
T Braids
01_1 o001 AR2y 4,
Braids Braids/R2one
AR2p0,

(4) We deduce from (3) that the following diagram in Cat commutes.



id(2)
7 Braids
o too Braids/R2,pe qR2uwo
qR20ne
AR2p0,
Braids = Braids/R2u0th

(5) We deduce from (4) that the following diagram in Cat commutes.

id(2)
A Braids
%
0'1_1 o O'l BraldS/R2both qR-moves
AR2p0,
qR3one
Braids " Braids/R-moves
-moves

(6) By the functoriality gr.moves; We deduce from (5) that the following diagram in
Cat commutes.

092 001 )
T Braids
0'1_1001002001 ‘CIR—moves
Braids Braids/R-moves
GR-moves

(7) We deduce from (2) and (6) that the following diagram in Cat commutes.

092 001

7 Braids

—1
0, 009001009

‘ GR-moves

Braids

Braids/R-moves

R-moves



(8) By the functoriality gr-moves; We deduce from (7) that the following diagram in
Cat commutes.

0'200'100'2_1

T Braids
-1 -1
01 ©020071 002009 gR-moves
Braids Braids/R-moves

R-moves

(9) By definition of Braids/R2p, the following diagram in Cat commutes.

1
090 0.
T 22 Braids
id(2) AR2p01,
Braids r— Braids/R2poth

(10) We deduce from (9) that the following diagram in Cat commutes.

02 00y !
T Braids
%
Zd(2) Braids/ szoth gR-moves
AR2p01h
qR3one
Braids " Braids/R-moves
-moves

(11) By the functoriality grmoves, we deduce from (10) that the following diagram
in Cat commutes.

0110020010020051

Braids
0, 009007 R-moves
Braids Braids/R-moves

gR-moves



(12) We deduce from (8) and (11) that the following diagram in Cat commutes, as
required.

020010051

T Braids
0;1002001 dR-moves
Braids Braids/R-moves

R-moves

O

Remark 3.1.2.23. In our pictorial notation, the proof of Proposition [3.1.2.22]is as
follows.

(1) By definition of Braids/R-moves, the braid

E

/

is equal, as an arrow of Braids/R-moves, to the following braid.

E

S



(2) By functoriality of gr.moves, the braid

E

N

is equal, as an arrow of Braids/R-moves, to the following braid.

E

N\

(3) By definition of Braids/R24pe, the braid



is equal, as an arrow of Braids/R2,,e, to the following braid.

E

N\

(4) We deduce from (3) that the braid

is equal, as an arrow of Braids/R2pe, to the following braid.

E

N

(5) We deduce from (4) that the braid



is equal, as an arrow of Braids/R-moves, to the following braid.

E

N

(6) By functoriality of gr-moves, we deduce from (5) that the braid

E

S

is equal, as an arrow of Braids/R-moves, to the following braid.



N

(7) We deduce from (2) and (6) that the braid

is equal, as an arrow of Braids/R-moves, to the following braid.



N

(8) By functoriality of gr-moves, we deduce from (7) that the braid

=

/

is equal, as an arrow of Braids/R-moves, to the following braid.



N

(9) By definition of Braids/R2pe, the braid

E

N

is equal, as an arrow of Braids/R2pe, to the following braid.



(10) We deduce from (10) that the braid

E

N\

is equal, as an arrow of Braids/R-moves, to the following braid.

(11) By functoriality of gr-moves, We deduce from (10) that the braid

RN

N



is equal, as an arrow of Braids/R-moves, to the following braid.

E

N\

(12) We deduce from (8) and (11) that the braid

=

/

is equal, as an arrow of Braids/R-moves, to the following braid.



E

N\

Corollary 3.1.2.24. The following diagram in Cat commutes.
R3.wo(0ne half)

F(Z) Braids
R3iwo (other half) k [ GR-moves
Braids Braids/R-moves

R-moves

Proof. We make the following observations.

(1) By definition of R3y,.(one half), the following diagram in Cat commutes.

R3iwo(0ne half)

Braids/R-moves

(2) We deduce from (1) and Proposition [3.1.2.22f that the following diagram in Cat

commutes.

A

Ugodlk

Braids/R-moves

F(Z)

R3two(0ne half)




(3) We deduce from (2) that the following diagram in Cat commutes.

iz

7z

F(Z)

dR-moves © R3two(one half)

—1
GR-moves © (02 00100y )

Braids/R-moves

(4) By definition of R3y,.(second half), the following diagram in Cat commutes.

77

0'200'1&

Braids/R-moves

F(T)

R3iwo (other half)

(5) We deduce from (4) that the following diagram in Cat commutes.

l
T T

—1
gR-moves © (02 001 Ok

Braids/R-moves

F(Z)

gR-moves © R3two(0ther half)

(6) Appealing to the universal property of F(Z), we deduce from (3) and (5) that
the following diagram in Cat commutes, as required.

R34wo(one half)

F(Z) Braids
R3wo(other half) JR-moves
Braids Braids/R-moves

R-moves

Notation 3.1.2.25. Let

R3:hree(One half
F(Z) e ) Braids




be the strict monoidal functor to which, by means of the universal property of F(Z),
the functor

Jloagoafl

Braids

gives rise.

Notation 3.1.2.26. Let

R3:hree (other half
FI) — ( ). Braids

be the strict monoidal functor to which, by means of the universal property of F(Z),
the functor

02_1001002

7 Braids

gives rise.

Remark 3.1.2.27. The arrows R3ipee(one half) and R3ipee(other half) of Braids ex-
press algebraically the two halves of the R3 move which allows us to replace

=

S

by the following, and vice versa.



E

N\

Proposition 3.1.2.28. The following diagram in Cat commutes.

We refer to this R3 move as R3¢pree.

01002001_1

A Braids

0'2100'100'2

l GgR-moves

Braids

Braids/R-moves
R-moves

Proof. We make the following observations.
(1) By definition of Braids/R-moves, the following diagram in Cat commutes.

0100990071

7 Braids
020071002 gR-moves
Braids Braids/R-moves

gR-moves

(2) By the functoriality of gr.moves, we deduce from (1) that the following diagram
in Cat commutes.

0'100'200'100'1_1

T Braids
0'200'100'200'1_1 GgR-moves
Braids Braids/R-moves

GR-moves



(3) By definition of Braids/R2,ye, the following diagram in Cat commutes.

1d(2
7 @) Braids
o1 0 01_1 JVQszoth
Braids — Braids/R2,0th

(4) We deduce from (3) that the following diagram in Cat commutes.

id(2)
A Braids
ogLooy" Braids/R24pe AR2poin
qR2one
qR240
Braids = Braids/R2pth
both

(5) We deduce from (4) that the following diagram in Cat commutes.

id(2)
A Braids
%
010 01_1 Braids/R2both GR-moves
4R2y01h
4R34ne
Braids " Braids/R-moves

(6) By the functoriality gr-moves; We deduce from (5) that the following diagram in
Cat commutes.

01 0029

7T Braids

Uloazoaloafl

l gR-moves

Braids —————— Braids/R-moves
R-moves



(7) We deduce from (2) and (6) that the following diagram in Cat commutes.

01 009 i
T Braids
0200100200;1 gR-moves
Braids Braids/R-moves

R-moves

(8) By the functoriality gr-moves, We deduce from (7) that the following diagram in
Cat commutes.

1
09 ©071009

T Braids
-1 -1
09 009001009200 RQR—moves
Braids Braids/R-moves

R-moves

(9) By definition of Braids/R2pe, the following diagram in Cat commutes.

oytoo
7 2 2 Braids
id(?)) k AR2,0h
Braid Braids/R2,,
raids G raids/R2poth

(10) We deduce from (9) that the following diagram in Cat commutes.

7 Braids
%
ld(g) Braids/ R2both GR-moves
AR2peh
qR3one
Braids " Braids/R-moves

(11) By the functoriality gr.moves, We deduce from (10) that the following diagram
in Cat commutes.



021002001002001_1

Braids
0'100'200'1_1 gR-moves
Braids Braids/R-moves

GR-moves

(12) We deduce from (8) and (11) that the following diagram in Cat commutes, as
required.

1
09 ©071009

T Braids
0100'20(71_1 GR-moves
Braids Braids/R-moves

GgR-moves

Corollary 3.1.2.29. The following diagram in Cat commutes.

R3¢hree (ONe half
three( ) Braids

R3three (other half) GR-moves

Braids ———— Braids/R-moves
R-moves

Proof. We make the following observations.

(1) By definition of R3hyee(one half), the following diagram in Cat commutes.

{
T I

Uloagk

Braids/R-moves

F(Z)

R3three(0ne half)

(2) We deduce from (1) and Proposition [3.1.2.28| that the following diagram in Cat

commutes.



iz

o3t ak

Braids/R-moves

F(Z)

R3three (0ne half)

(3) We deduce from (2) that the following diagram in Cat commutes.

?
T z

-1
GgR-moves © (02 o Ulm

Braids/R-moves

F(Z)

gR-moves © R3three<0ne ha|f)

(4) By definition of R3yee(other half), the following diagram in Cat commutes.

R3:three (other half)

Braids/R-moves

(5) We deduce from (4) that the following diagram in Cat commutes.

iz

A

—1
GgR-moves © (02 o O-lm

Braids/R-moves

F(Z)

qR-moves © R3three (0ther half)

(6) Appealing to the universal property of F(Z), we deduce from (3) and (5) that
the following diagram in Cat commutes, as required.

R3:hrec(0ne half
three ) Braids

R3three (other half) gR-moves

Braids

Braids/R-moves
R-moves



Notation 3.1.2.30. Let

R3four(0ne half)
F(Z) Braids

be the strict monoidal functor to which, by means of the universal property of F(Z),
the functor

aloagloafl

Braids

gives rise.

Notation 3.1.2.31. Let

R3¢,ur (other half) _
F(Z) Braids

be the strict monoidal functor to which, by means of the universal property of F(Z),
the functor

02_1001_1002

A Braids

gives rise.

Remark 3.1.2.32. The arrows R3¢, (one half) and R3¢, (other half) of Braids express
algebraically the two halves of the R3 move which allows us to replace

=

S

by the following, and vice versa.



N\

Proposition 3.1.2.33. The following diagram in Cat commutes.

We refer to this R3 move as R3¢, .

Jloagloafl

Braids

ngoafloagl RQR—moves

Braids ———— Braids/R-moves
R-moves

Proof. We make the following observations.

(1) By Proposition |3.1.2.22 the following diagram in Cat commutes.

011002001

T Braids
09 0 01 OO’;1 GR-moves
Braids Braids/R-moves

gR-moves

(2) By the functoriality of gr.moves, we deduce from (1) that the following diagram
in Cat commutes.

0'1100'200'100'1_1

7z Braids
0'200'100'2_100'1_1 gR-moves
Braids Braids/R-moves

GR-moves



(3) By definition of Braids/R2,ye, the following diagram in Cat commutes.

id(3) .
A Braids
01 0 01_1 lQszOth
Braid Braids/R2,,
raids T rai S/ both

(4) We deduce from (3) that the following diagram in Cat commutes.

id(3)
A Braids
ogiooy! Braids/R2ne AR2poih
qR2one
qutwo
Braids = Braids/R2u0th
both

(5) We deduce from (4) that the following diagram in Cat commutes.

id(3)
A Braids
%
010 01_1 BraidS/R2both GR-moves
quboth
4R34ne
Braids " Braids/R-moves

(6) By the functoriality gr-moves, Wwe deduce from (5) that the following diagram in
Cat commutes.

01 002

7 Braids

1

o Lo 0200100, qR-moves

Braids

Braids/R-moves
R-moves



(7) We deduce from (2) and (6) that the following diagram in Cat commutes.

oflo@

T Braids

1

09 0010 051 ooy GR-moves

Braids —————— Braids/R-moves
R-moves

(8) By the functoriality gr-moves, We deduce from (7) that the following diagram in
Cat commutes.

-1 -1

z Braids
1o oo o oot qr
Oy 09 004 092 00 -moves
Braids Braids/R-moves

R-moves

(9) By definition of Braids/R2pe, the following diagram in Cat commutes.

02_1002

T Braids

id(3)

k AR2p0,

Braids ————— Braids/R2,1h
szoth

(10) We deduce from (9) that the following diagram in Cat commutes.

(72_1 0 09
v Braids
A
Zd(3) Bra'dS/ R2b0th qR_moves
qR2both
qR3one
Braids = Braids/R-moves

(11) By the functoriality gr.moves, We deduce from (10) that the following diagram
in Cat commutes.



~1 -1, -1
0, 0020010045 OO0

Braids
. -
01009 004 gR-moves
Braids Braids/R-moves

qR-moves
(12) We deduce from (8) and (11) that the following diagram in Cat commutes, as
required.

-1 -1
0_2 001 00_2

z Braids
-1 1
01009 00 qR-moves
Braids Braids/R-moves

GgR-moves

Corollary 3.1.2.34. The following diagram in Cat commutes.

R3four(0ne half)
F(Z) Braids

R3f0ur(other half) GR-moves

Braids ———— Braids/R-moves
R-moves

Proof. We make the following observations.

(1) By definition of R3¢, (one half), the following diagram in Cat commutes.

l
T T

0_100'21&

Braids/R-moves

F(Z)

R3four(0ne half)

(2) We deduce from (1) and Proposition [3.1.2.33| that the following diagram in Cat

commutes.



{
T I

oyto olk

Braids/R-moves

F(Z)

R3¢, (0ne half)

(3) We deduce from (2) that the following diagram in Cat commutes.

)
T z

-1 -1
gR-moves © (02 00, m

Braids/R-moves

F(Z)

GgR-moves © R3f0u,(one half)

(4) By definition of R3¢, (other half), the following diagram in Cat commutes.

iz

7z

F(I)

1 R3four(other half)
0-2 ©] 0-1 O 09

Braids/R-moves

(5) We deduce from (4) that the following diagram in Cat commutes.

s

7z

-1 -1
GgR-moves © (02 00y m

Braids/R-moves

F(Z)

JR-moves © R3four (other half)

(6) Appealing to the universal property of F(Z), we deduce from (3) and (5) that
the following diagram in Cat commutes, as required.

R3four (0ne half)
F(Z) Braids

R3fou,(other half) gR-moves

Braids ———— Braids/R-moves
R-moves



Notation 3.1.2.35. Let

R3five(one half)
F(Z) Braids

be the strict monoidal functor to which, by means of the universal property of F(Z),
the functor

-1, -1
o, 00, 00

T Braids

gives rise.

Notation 3.1.2.36. Let

R3fye(other half) _
F(Z) Braids

be the strict monoidal functor to which, by means of the universal property of F(Z),
the functor

02001_1002_1

Braids

gives rise.

Remark 3.1.2.37. The arrows R3ge(one half) and R3¢ (other half) of Braids express
algebraically the two halves of the R3 move which allows us to replace

E

N\

by the following, and vice versa.



=

S

Proposition 3.1.2.38. The following diagram in Cat commutes.

We refer to this R3 move as R3ye.

Jfloagloal

7 Braids

02001_1002_1

k GR-moves

Braids ———— Braids/R-moves
R-moves

Proof. We make the following observations.

(1) By Proposition |3.1.2.28 the following diagram in Cat commutes.

Jloagoafl

Braids

051001 O 09 gR-moves

Braids

Braids/R-moves
GR-moves

(2) By the functoriality of gr.moves, we deduce from (1) that the following diagram
in Cat commutes.

011001002001_1

7z Braids
1, 1
01 ©0y9 001009 gR-moves
Braids Braids/R-moves

GR-moves



(3) By definition of Braids/R2,ye, the following diagram in Cat commutes.

id(3) .
A Braids
0'1_1 oNox] lQszOth
Braid Braids/R2,,
raids T rai S/ both

(4) We deduce from (3) that the following diagram in Cat commutes.

id(3)
A Braids
%
0'1_1 00y Braids/R2ne qR2,ouh
qR2one
AR2uno
Braids = Braids/R2,0tn
both

(5) We deduce from (4) that the following diagram in Cat commutes.

id(3)
A Braids
%
0-1_1 001 BraidS/R2both 4gR-moves
quboth
4R30ne
Braids " Braids/R-moves

(6) By the functoriality gr-moves, Wwe deduce from (5) that the following diagram in
Cat commutes.

azoafl

7 Braids

1

o Lo 01002007 qR-moves

Braids

Braids/R-moves
R-moves



(7) We deduce from (2) and (6) that the following diagram in Cat commutes.

ogoafl

T Braids

Ufl o 051 0 01 0 09 GR-moves

Braids —————— Braids/R-moves
R-moves

(8) By the functoriality gr-moves, We deduce from (7) that the following diagram in
Cat commutes.

02001_1002_1

z Braids
“logilo o oot qr
04 (o) 0100200y -moves
Braids Braids/R-moves

R-moves

(9) By definition of Braids/R2pe, the following diagram in Cat commutes.

02002_1

T Braids

id(3)

k AR2p0,

Braids ————— Braids/R2,1h
szoth

(10) We deduce from (9) that the following diagram in Cat commutes.

09 O 02_1
v Braids
A
Zd(3) Bra'dS/ R2b0th qR_moves
qR2both
qR3one
Braids = Braids/R-moves

(11) By the functoriality gr.moves, We deduce from (10) that the following diagram
in Cat commutes.



-1, -1 -1
0, 005 001009200,

Braids

logito qr
01 Oy 01 -moves
Braids Braids/R-moves

GR-moves

(12) We deduce from (8) and (11) that the following diagram in Cat commutes, as
required.

-1 -1
0_200_1 00—2

z Braids

~1 -1, R
01 09 g1 -moves
Braids Braids/R-moves

GgR-moves

Corollary 3.1.2.39. The following diagram in Cat commutes.

R3fve(one half)
F(Z) Braids

R3ﬁve(other half) GR-moves

Braids ——— Braids/R-moves
R-moves

Proof. We make the following observations.

(1) By definition of R3fye(one half), the following diagram in Cat commutes.

l
T T

Braids/R-moves

F(Z)

R3fve(one half)

(2) We deduce from (1) and Proposition [3.1.2.38| that the following diagram in Cat

commutes.



iT

Ugoollh

Braids/R-moves

F(Z)

R3fve(one half)

(3) We deduce from (2) that the following diagram in Cat commutes.

l
T I

-1 —1
gR-moves © (02 o0y Ok

Braids/R-moves

F(Z)

gR-moves © R3ﬁve(one half)

(4) By definition of R3gye(other half), the following diagram in Cat commutes.

R3fve(other half)

Braids/R-moves

(5) We deduce from (4) that the following diagram in Cat commutes.

iz

7

F(Z)

GR-moves © R3fve(other half)

-1 -1
gR-moves © (UQ 001 ©0y )

Braids/R-moves

(6) Appealing to the universal property of F(Z), we deduce from (3) and (5) that
the following diagram in Cat commutes, as required.

R3fve(one half)

F(Z) Braids
R3ﬁve (other half) GR-moves
Braids Braids/R-moves

R-moves



Notation 3.1.2.40. Let

R3six(one half)
F(Z) Braids

be the strict monoidal functor to which, by means of the universal property of F(Z),
the functor

“1 4 =1, 1
0, 0045 00,

Braids

gives rise.

Notation 3.1.2.41. Let

R3.ix(other half) _
F(Z) Braids

be the strict monoidal functor to which, by means of the universal property of F(Z),
the functor

-1

-1 —1
0y 00, 00,

Braids

gives rise.

Remark 3.1.2.42. The arrows R3g,(one half) and R3g,(other half) of Braids express
algebraically the two halves of the R3 move which allows us to replace

=

N\

by the following, and vice versa.



=

N\

Proposition 3.1.2.43. The following diagram in Cat commutes.

We refer to this R3 move as R3g.

Jfloagloafl

A Braids

[ GR-moves

Braids ————— Braids/R-moves
R-moves

Proof. We make the following observations.
(1) By Proposition |3.1.2.33 the following diagram in Cat commutes.

01005100;1

Braids

05100;1002 GR-moves

Braids

Braids/R-moves
gR-moves

(2) By the functoriality of gr.moves, we deduce from (1) that the following diagram
in Cat commutes.

01_1001002_1001—1 )
T Braids
1 -1 -1 R
0'1 00'2 OO'l O 09 -moves
Braids Braids/R-moves

GgR-moves



(3) By definition of Braids/R2,ye, the following diagram in Cat commutes.

id(3) .
A Braids
0'1_1 oNox] lQszOth
Braid Braids/R2,,
raids T rai S/ both

(4) We deduce from (3) that the following diagram in Cat commutes.

id(3)
A Braids
%
0'1_1 00y Braids/R2ne qR2,ouh
quone
AR2uno
Braids = Braids/R2,0tn
both

(5) We deduce from (4) that the following diagram in Cat commutes.

id(3)
A Braids
%
0-1_1 001 BraidS/R2both 4gR-moves
quboth
4R30ne
Braids " Braids/R-moves

(6) By the functoriality gr-moves, Wwe deduce from (5) that the following diagram in
Cat commutes.

-1 -1
0y ©0;

7z Braids

1

o Lo 010 051 oo, gR-moves

Braids —————— Braids/R-moves
R-moves



(7) We deduce from (2) and (6) that the following diagram in Cat commutes.

-1 -1
0y ©0

7T Braids

Ufl o a;l o Ufl 0 09 gR-moves

Braids —————— Braids/R-moves
R-moves

(8) By the functoriality gr-moves, We deduce from (7) that the following diagram in
Cat commutes.

-1, -1 _ -1
0y O0] 00,

A Braids

-1, -1 _ —1 ~1
0, 00y 00 00200,

l gR-moves

Braids

Braids/R-moves

R-moves

(9) By definition of Braids/R2pe, the following diagram in Cat commutes.

02002_1

T Braids

id(3)

k AR2p0,

Braids ————— Braids/R2,1h
szoth

(10) We deduce from (9) that the following diagram in Cat commutes.

09 O 02_1
v Braids
A
Zd(3) Bra'dS/ R2b0th qR_moves
qR2both
qR3one
Braids = Braids/R-moves

(11) By the functoriality gr.moves, We deduce from (10) that the following diagram
in Cat commutes.



01_1002_1001_1002002_1 .
Braids
0'1—100'2_100'1_1 gR-moves
Braids Braids/R-moves

GR-moves

(12) We deduce from (8) and (11) that the following diagram in Cat commutes, as
required.

—1 . —1_ 1
0, 00, 00,

A Braids

1 -1

- —1
0, 00, 00,

GR-moves

Braids

Braids/R-moves

4R-moves

Corollary 3.1.2.44. The following diagram in Cat commutes.
R3six(one half)

F(Z) Braids
R3six (other half) GR-moves
Braids Braids/R-moves

R-moves

Proof. We make the following observations.

(1) By definition of R3gy(one half), the following diagram in Cat commutes.

l
T T

o7t ooyt A

Braids/R-moves

F(Z)

R3six(one half)

(2) We deduce from (1) and Proposition [3.1.2.43| that the following diagram in Cat

commutes.



iz

Ugloallm

Braids/R-moves

F(Z)

R34ix(one half)

(3) We deduce from (2) that the following diagram in Cat commutes.

.
T z

-1 -1 -1
qR-moves © (02 © 0y ok

Braids/R-moves

F(Z)

gR-moves © R3six(one half)

(4) By definition of R34y (other half), the following diagram in Cat commutes.

iz

7

F(Z)

1 1 4 R3.ix(other half)
o, 00y o0,

Braids/R-moves

(5) We deduce from (4) that the following diagram in Cat commutes.

iz

7z

F(Z)

-1 GR-moves © I:{:'ssix(OtI']er half)

-1
GR-moves © (02 00y

00;1)

Braids/R-moves

(6) Appealing to the universal property of F(Z), we deduce from (3) and (5) that
the following diagram in Cat commutes, as required.

R3six(one half)
F(Z) Braids

R3six (other half) GR-moves

Braids ———— Braids/R-moves
R-moves



]

Remark 3.1.2.45. The objects of Braids/R-moves are the same as those of Braids.
Let us regard two braids as equivalent if one can be obtained from the other by
a finite sequence of the Reidemeister moves R2,ne, R2two;, R3one; R3twos -+ R3six,
namely if they are isotopic. Proposition [3.1.2.22, Proposition [3.1.2.28] Proposition
3.1.2.33| Proposition [3.1.2.38] and Proposition [3.1.2.43] establish that the arrows of
Braids/R-moves can be thought of as braids up to this notion of equivalence, or, in
other words, braids up to isotopy, even though the definition of Braids/R-moves only
involved R24ne, R2two, and R3gpe.

Remark 3.1.2.46. Let B, denote the braid group on n strands, in the usual sense,
viewed as a category with one object. Then Braids/R-moves is in fact isomorphic
to ||,> Bn, where this coproduct is taken in Cat. Indeed, the full subcategory of
Braids/R-moves on the single object n is in fact isomorphic to B,.

As first observed in the paper [§] of Joyal and Street, and its later version [9], the
category | |, <, B, is the free braided monoidal category on 1ca.

We shall not make use of this description or universal property of Braids/R-moves
in this work, and omit a formal statement and proof.



3.2. Temperley-Lieb categories and Markov trace
functors

We define a category TL, whose arrows we think of as diagrammatic tangles, as a
free 2-ring on a monoidal datum M. Next, we introduce the notion of a datum for
smoothing of braids. Given such a datum S, we define from TL a 2-ring TL(S) in
two steps, via a 2-ring TL(S)P"®. We think of the arrows of TL(S) as linearisations of
diagrammatic tangles.

Following this, we introduce the notion of a Markov trace datum with respect to
a 2-ring. Given such a datum T, we construct a functor of 2-rings from TL(S) to a
2-ring T defined by means of T. On arrows, we think of this functor as taking the
Markov trace of a linearised diagrammatic tangle.

We conclude with two auxiliary constructions. First, given a 2-ring R, we construct
a datum for smoothing of braids. Second, given again a 2-ring R, we construct a
Markov trace datum with respect to it.

3.2.1. The Temperley-Lieb category
Notation 3.2.1.1. Let

(2,2)
81— 1Cat U 1Cat
(0,1) l TJLSZ
T Tl
rl -

be a co-cartesian square in Cat.

Notation 3.2.1.2. We denote the object of TL<, corresponding to the functor

TL
ro ol

1Cat TI—§2

by 1, and depict it as follows.

We denote the object of TL<y corresponding to the functor

TL
rog ~2 02

Lcat Tleo

by 2, and depict it as follows.



We depict the arrow

of TL<, as follows.

We depict the arrow
id(2)

of TL<, as follows.

We denote the arrow of TL<, corresponding to the functor

TlLes
T

T

TL<o

by CupAndCap, and depict it as follows.

N
[

Remark 3.2.1.3. The definition of TL<, can be thought of as follows. We begin with
a category consisting of exactly two objects, 1 and 2, and no non-identity arrows. We
then proceed as follows.



(1) We add an arrow

which we denote by CupAndCap.

(2) We then add exactly those further arrows

2—2

that we need to have a category, namely arbitrary finite compositions of CupAndCap.

As this description makes clear, TL<y can also be defined as the free category on the
directed graph consisting of exactly two objects 1, 2, and exactly one arrow

2 — 2.

However, we prefer the more direct approach, working purely within Cat, that we have
taken.

Notation 3.2.1.4. Let

TL<o TL<o

TLSQ D TLSQ X TLSQ

TL<y

be a diagram in Cat which defines a binary product.

Notation 3.2.1.5. Let
(1,1)

TLSQ X TLSQ

Cat

be the canonical functor such that the following diagram in Cat commutes.

1Cat
(1,1)

TlL<o

TLSQ X TLSQ

P %)

TL<o

Definition 3.2.1.6. The Temperley-Lieb 2-ring is, appealing to Fact [2.2.2.2] the free
2-ring on the monoidal datum My = (ICat, TlL<o, (1,1), 2) internal to Cat.



Terminology 3.2.1.7. We refer to the category which is part of the data of TL as
the Temperley-Lieb category.

Notation 3.2.1.8. We denote both the Temperley-Lieb 2-ring and Temperley-Lieb
category by TL. We denote by cant the canonical functor

TLos TL.

Remark 3.2.1.9. The construction of the category TL can be thought of in two steps.
First, we take the free strict monoidal category on TL<s, subject to the requirement
that 1 ® 1 = 2. Let us denote this category by F(TL<y). The objects of F(TL<s) can,
as with the objects of Braids, be thought of as the symbols

1®---®1

—_——
for n > 0. We again depict

1®---®1

————
as follows, for n > 1.

) e )

We sometimes denote the symbol

1®---®1

—_——

simply by n.
The arrows of F(TL<3) can be thought of as built from those of TL<s by horizontal
concatenation. Thus, for instance, there is an arrow

id(1) ® CupAndCap
I®1®l1 I®1l®l,

which we depict as follows.

N
{0



We think of the unit object of F(TL<s), which we denote by 0, as the ‘empty tangle’,
or the ‘tangle with zero arcs’.

From this description, we see that the arrows of F(TL<s), correspond exactly to
the diagrammatic tangles, in the topological sense, used to define the Temperley-Lieb
algebras .7, for n > 0 in §III of [13].

We then define TL to be the free 2-ring on F(TL<s), subject to the requirement that
the multiplicative monoidal structure TL coincides with the monoidal structure on
F(TL<2) when we view the latter category as living inside TL. The crucial aspect, for
us, of TL as compared to F(TL<2) is that we have a notion of addition of arrows of
F(TL<2), thought of as diagrammatic tangles, by means of the symmetric monoidal
structure (@, 0) of TL. For instance, there is an arrow of TL given by

CupAndCap @ CupAndCap @ (id(l) ® CupAndCap),
or
2 - CupAndCap & (id(l) ® CupAndCap)

for short.

However, we shall not make use of a two-step construction of this kind, or any other
construction or explicit description of TL in our formal work. We shall appeal only to
its universal property.

Notation 3.2.1.10. We depict composition in both TL<s and TL as vertical concate-
nation. For instance, we depict the arrow

CupAndCap o CupAndCap

in either TL<, or TL as follows.

N

[



3.2.2. The Temperley-Lieb category with respect to a datum for
smoothing of braids

Definition 3.2.2.1. A datum for smoothing of braids consists of the following data.
(1) A 2-ring R. We shall also denote by R the category which is part of its data.
(2) An arrow A of R.

(3) An arrow B of R.

Assumption 3.2.2.2. Let S = (R, A, B) be a datum for smoothing of braids.

Notation 3.2.2.3. Appealing to Fact [2.1.3.16] let
TL(S)P"e,bi TL(S)Pre,bi
(3} (5
TL(S)Pr

R TL

be a diagram in Ring(Cat) which defines a binary coproduct.

Terminology 3.2.2.4. We refer to TL(S)P™ as the pre-Temperley-Lieb category with
respect to S.

Notation 3.2.2.5. We denote the functor of 2-rings

[TLE)P™ bi

TL —2

TL(S)P

by canty(sype.
Notation 3.2.2.6. Let us denote the category which is part of the data of TL(S)P"
by TL(S)Pe.

Notation 3.2.2.7. Let
TL(S)Pre,bi TL(S)P"e,bi

L TL(S)P® x TL(S)P ——

TL(S)Pre TL(S)Pre

be the diagram in Cat which is part of the data of TL(S)P™, which defines a binary
product.

Notation 3.2.2.8. Appealing to Fact [2.2.2.2] let us denote the free 2-ring on Z by
F2—Ring<I>‘

Notation 3.2.2.9. Let f be an arrow of TL. We then also denote by f the canonical
functor of 2-rings

F2—Ring (I)

TL(S)Pe



to which the functor

P

TL(S)Pe

gives rise by means of the universal property of Fa_ging(Z).

Notation 3.2.2.10. Let f and g be arrows of TL. Let us denote by (f, g) the canonical
functor of 2-rings

F27Ring (I)

TL(S)™ x TL(S)P"

such that the following diagram in Ring(Cat) commutes.

F2—Ring(I)
TL(S),bi
ite (f,9)
pre pre pre pre
TL(S) g TL(S)" x TL(S) o TL(S)
1 2

We denote by f ® g the arrow of TL(S)P™ corresponding to the functor

Rty o (f.9)

TL(S)P™.

Remark 3.2.2.11. In this way, we in particular have a notion of multiplication of
arrows of TL(S)P*®, thought of as formal sums of diagrammatic tangles, by A and B.
This, for us, is the crucial difference between TL(S)P*® and TL.

Notation 3.2.2.12. Appealing to Fact [2.2.2.2] let us denote the free 2-ring on 1c,;
by F2—ring(1Cat)-

Notation 3.2.2.13. Let us denote by

2
F2—ring(1Cat)

TL(S)P

the canonical functor of 2-rings to which the functor

Z.'2I'L(S)P'e,bi 09
lcat TL(S)Pre

gives rise by means of the universal property of Fao_ing(1cat)-

Notation 3.2.2.14. Let us denote the source and target of the arrow A of R by
ap and a; respectively, and the source and target of the arrow B of R by by and b,
respectively.



Notation 3.2.2.15. Let us denote by

oy (@0®D@HED (@Y BmiBY) o0

the functor determined by the objects (ag ® 2) @ (by ® 2) and (a1 ® 2) & (b; ® 2) of
TL(S)Pre.

Notation 3.2.2.16. Appealing to Fact [2.2.2.2] let us denote the free 2-ring on 0Z by
Fo_ring(OZ).

Notation 3.2.2.17. Let us denote by

Faonne (0T) ((ao ®2) @ (bo ®2), (a1 ®2) B (b ® 2)) e

the functor of 2-rings to which the functor

oy (@®D@HED @Y "miBY) o0

gives rise by means of the universal property of Fo_ing(0Z).

Notation 3.2.2.18. Appealing to Fact [2.1.3.16} let

can
Fosing(0T) TLES) — 2 TI(S)

(2,2)

be a diagram, in which the unlabelled arrow is

F a0 ((ao ®2) @ (bo ®2), (a1 ®2) ® (b ® 2)) L@

in Ring(Cat) which defines a coequaliser.

Remark 3.2.2.19. The idea of the construction of TL(S) from TL(S)P™ is that we
identify both of the objects (ag ® 2) ® (by ® 2) and (a3 ® 2) ® (by ® 2) of TL(S)P™® with
the object 2 of TL(S)P™. This ensures that certain arrows of TL(S) which we shall
make crucial use of in are endomorphisms of 2, which we shall require in order to
exhibit Mp.igs as a monoidal datum for TL(S).

Because of the way in which we will make use of TL(S) in §3.3] we shall typically
think of the arrows of TL(S) as formal linear combinations of diagrammatic tangles,
the coefficients of which are non-commutative polynomials in A and B, built out of &
and ®. There are, though, many arrows of TL(S) which are not of this form.



Remark 3.2.2.20. In Remark we observed that it is possible to view Braids
as the coproduct of the braid groups B,, for n > 0. It is not possible to view TL(S)
as built out the Temperley-Lieb algebras 7, in this way. If, as discussed in Remark
we had chosen to construct TL(S) as an enriched monoidal category rather
than as a 2-ring, the Temperley-Lieb category we obtained would have been the
coproduct | |, -, T, viewing 7,, as an enriched monoidal category with one object.

Nevertheless, supposing temporarily, for simplicity, that we assume our 2-rings to be
commutative, let R be the 2-ring which we can think of as follows. The set of objects
of Ris N, the set of natural numbers. For every natural number n, viewed as an object
of R, the set of endomorphisms of n can also be thought of as N. There are no arrows
of R which are not endomorphisms. The ring operations on objects are those of N. The
ring operations on arrows are also those of N, understood in the only possible way: if
e is an endomorphism of a natural number m, and f is an endomorphism of a natural
number n, then e + f is an endomorphism of m + n, and similarly for multiplication.

Let R[A, B] be the 2-ring obtained by freely adding a pair of arrows A and B to R.
This construction is carried out formally in §3.2.4 Let S be the datum for smoothing
of braids given by (R, A, B). Then the arrows of TL(S) are exactly the same as those
of |],50 T Ln, if TL, is taken to be an algebra over N[A, B]. It is only on objects that
the two categories differ.

3.2.3. Markov trace functors

Definition 3.2.3.1. Let R be a 2-ring. A Markov trace datum with respect to R
consists of the following data.

(1) A 2-ring TP,

(2) An arrow

1Tpre 1Tpre

of TPre.

(3) A functor of 2-rings

R TPre.

Assumption 3.2.3.2. Let R be a 2-ring, and let T = (TP, ~,t) be a Markov trace
datum with respect to R. Let us denote by TP™ the category which is part of the data
of TP,



Notation 3.2.3.3. Let

].Tpl’e |_| ].Tpre

1Cat U 1Cat Tpre

denote the canonical functor such that the following diagram in Cat, in which it is the
unlabelled middle arrow, commutes.

1 2
1Cat 1Cat L 1Cat 1Cat
Tere

Proposition 3.2.3.4. The following diagram in Cat commutes.

(2,2)
oL 1Cat U 1Cat
(O, 1) 1Tpre |_| 1Tpre
7z Tere
Y
Proof. We make the following observations.
(1) By definition of the functor
(2,2)
oL 1Cat U 1Cat;

the following diagram in Cat commutes.

0

N

1Cat U 1Cat

oz

1Cat

(2,2)

(2) By definition of the functor

]_Tpre |_| 1Tpre

]-Cat U ]-Cat Tpre,



the following diagram in Cat commutes.

2
1Cat - 1Cat L 1Cat

(3) We deduce from (1) and (2) that the following diagram in Cat commutes.

1Tpre |_| ]_Tpre

Tpre

1Cat O aI

1x

(1Tpre L 1Tpre) @) (2, 2)

Tore
(4) By definition of the functor
or 0 7
the following diagram in Cat commutes.
lew — 2 0T
N (0,1)

7

(5) By definition of the arrow « of TP, the following diagram in Cat commutes.

1Cat 0 1z

N

(6) We deduce from (4) and (5) that the following diagram in Cat commutes.

v

Tere



0

1Cat oL
o (0,1
1& 70(0,1)
Tere

(7) We deduce from (3) and (6) that the following diagram in Cat commutes.

0

1Cat oL
O (1Tpre L ]_Tpre) @) (27 2)
oz Tere

70 (0,1)

(8) By an entirely analogous argument to that of (1) — (7), the following diagram
in Cat commutes.

]-Cat 1 a.,z-
1 (1Tpre L ].Tpre) O (27 2)
oz Tore

70 (0,1)

(9) We deduce from (7) and (8) that the following diagram in Cat commutes, as

required.
(2,2)
oL 1Cat U 1Cat
(O, 1) 1Tpre |_| 1Tpre
T TPre
Y

Notation 3.2.3.5. Appealing to Proposition [3.2.3.4] let

TI’SQ

Tley Tore




denote the canonical functor such that the following diagram in Cat commutes.

(2,2)
oz 1Cat U 1Cat
TL
(Oa 1) L) =2
1Tpre |_| 1Tpre
Z TLey The
711 -
TI’SQ
Trre
gl
Notation 3.2.3.6. Let us denote by
prbi pIrb
Tere 1 TPre x TPre 2 Tere

the diagram which is part of the data of TP, and which defines a binary product.

Proposition 3.2.3.7. The following diagram in Cat commutes.

(1,1)

Leat Tley X Tl<o
Tr§2 X Tr§2
2 Tore x Tore
R7re
TL Tore
=2 Tr§2

Proof. We make the following observations.

(1) By definition of Tr<g x Tr<g, the following diagram in Cat commutes.

TrSQ X Tr§2
TLSQ X TLSQ Tere x TPre
TLeo,bi TP bi
Py - b
TLo Tere

TrSQ



(2) By definition of the functor (1,1), the following diagram in Cat commutes.

(1,1)
TLSQ X TLSQ

TL<o,bi
\ Jpl <

TlL<o

1Cat

(3) By definition of the functor 1, the following diagram in Cat commutes.

N

1Cat U 1Cat

1Cat

1

TL<

<2
Ty

(4) We deduce from (2) and (3) that the following diagram in Cat commutes.

(1,1)

1Cat TI—§2 X TI—§2
e
1Cat U 1Cat Lo, TI—§2

(5) We deduce from (1) and (4) that the following diagram in Cat commutes.

(Tr§2 X Tr§2) ¢) (1, 1)

Lea TP x TPre
TP bs
1 Py
1Cat U 1Cat TL Tere
TI’SQ O TO <2

(6) By definition of Tr<o, we have that the following diagram in Cat commutes.



TL<o

To
1Cat U 1Cat TI—§2
TrSQ
1Tpre |_| 1Tpre
Tpre

(7) We deduce from (5) and (6) that the following diagram in Cat commutes.

(Tl’gz X Tr§2) o) (1, 1)

Leat Trre x TPre
1 B
oo U 1c Tore
at at Lroe Ll Lgoe

(8) By definition of the functor lwe Ll 11, we have that the following diagram in
Cat commutes.

1cat,bi
1

1Cat U 1Cat

k

(9) We deduce from (7) and (8) that the following diagram in Cat commutes.

1Cat

1Tpre L 1Tpre

Trre

e M2 X T2} 0D e e

TPre bi
1Tpre pl

There

(10) By an entirely analogous argument to that of (1) — (9), we have that the
following diagram in Cat commutes.

(Tr<2 X Tr<2) [¢) (]., ].)
I ————— Tere 5 Tore

TP bi

1Tpre 2

Tpre



(11) We deduce from (9), (10), and the universal property of TP x TP that the
following diagram in Cat commutes.

(1,1)
1Cat TI—§2 X TI—SQ

1Tpre h

TrPre » Tpre

TrSQ X TrSQ

(12) We deduce from (11) that the following diagram in Cat commutes.

(1,1)

lcat TLeo X TL<y
Treg X Treo
Lyore X 1ypre TePre x TPre
Qore
TPre x Tere Tere

QTpre

(13) By requirement (2) in Definition [2.1.1.3 with respect to (TP)™" we have that

the following diagram in Cat commutes.

1Tpre X 1Tpre

leat TPre x TPre
e
k
Tere

(14) We deduce from (12) and (13) that the following diagram in Cat commutes.

(1,1)

Lcat TLey X TLeo

TrSQ X Tr§2
TPre ¢ TPre

].Tpre
e

Tpre



(15) By definition of the functor 2, we have that the following diagram in Cat

comimutes.
X

1Cat U 1Cat

1Cat

2

TLSQ

<2
To

(16) We deduce from (16) that the following diagram in Cat commutes.

Lcar Tl
2 Treo
1Cat L 1Cat Tere
Treyorg =

(17) We deduce from (16) and (6) that the following diagram in Cat commutes.

2
1Cat TLSQ
2 Treo
lcat U lc, Tpre
ot Gt T e U 17w

(18) By definition of the functor ltee Ll 11we, we have that the following diagram in
Cat commutes.

2
1Cat 1Cat U 1Cat
k 1Tpre I_l 1Tpre
Trre

(19) We deduce from (17) and (18) that the following diagram in Cat commutes.



2

1Cat TI—SQ
Tr
1& <2
Tere

(20) We conclude from (14) and (19) that the following diagram in Cat commutes,
as required.

(1,1)

]-Cat TLSQ X TLSQ
Trgz X Tr§2
2 TPre x TPre
Qere
TL Tere
=2 TI’SQ
O
Corollary 3.2.3.8. The functor
TI’<2
TlL<y — TPre
exhibits Mt as a monoidal datum for TP,
Proof. Follows immediately from Proposition [3.2.3.7] m
Notation 3.2.3.9. Appealing to Corollary [3.2.3.8] let
TL T e

denote the canonical functor of 2-rings to which the functor

Tr Tore

TLSQ
gives rise, by means of the universal property of TL.
Remark 3.2.3.10. The idea of the construction of Tr is as follows.

(1) The objects 1 and 2 of TL<y are sent to the unit object 11ee for the multiplicative
structure of TP,



(2) The arrow

CupAndCap

of TL<, is sent to

Y

1Tpre EEEE—— 1Tpre.

(3) We extend freely to all of TL<o. Thus, for instance, the arrow

CupAndCap o CupAndCap

of TL is sent to the arrow

7o

1Tpre 1Tpre 3

of TP which, appealing to Proposition [2.1.3.20] is equal to the arrow

Y X Tere Y

1Tpre 1Tpre 5

of TP, or

72

1Tpre EE—— 1Tpre7

for short.
(4) We extend freely to all of TL. Thus, for instance, the arrow
(CupAndCap 1L id(l)) DTL (CupAndCap o CupAndCap)
of TL is sent to the arrow
(v ®ore 1d(17me)) Broe 77,

or, in other words,
2
Y Bere Y.



Notation 3.2.3.11. Let

S,pre
TL(S)Pe T Tere

denote the canonical 2-ring functor such that the following diagram in Ring(Cat)
commutes.

Z.TL(S)P'e,bi Z.TL(S)Pre,bi
R— TL(S)Pre TL
S,pre
Tere

Terminology 3.2.3.12. We refer to

S,pre
TL(ES)Pe T qore

as the pre-Markov trace functor associated to T.

Remark 3.2.3.13. The idea of the construction of Tr®#" is that we extend Tr linearly.
Thus, for instance, the arrow

(A @i (id(1) @71s) CupAndCap) ) 1) (B ®11(s) CupAndCap)
of TL(S) is sent to

(t(A) @7ere (id(L1wre) @ore ) ) Drere (E(B) @11(5) )

or, in other words, to
(t(A) @Tpre t(B)) ®Tpre 7

Notation 3.2.3.14. Let us denote by

1Tpre

F27ring<1Cat) Tere

the canonical functor of 2-rings to which the functor

].Tpre
Lcat Tere

gives rise, by means of the universal property of Fo_ying(1cat).



Notation 3.2.3.15. Let us denote by

T B UTE @ 6 h)

the canonical functor determined by the pair of objects Tr*P®(ao@®by) and TrP®(a, @b,)
of TPre.

Notation 3.2.3.16. Let us denote by

TSP (ao @ by) LI TroPe(ay @ b
Faring (OT) (&) (GO0

the canonical functor of 2-rings to which the functor

0T TeoP®(ag @ bo) U Tr*P (a1 @ by) Tore

gives rise by means of the universal property of Fo_ing(0Z).

Notation 3.2.3.17. Let us denote by

az_ ( ]_Tpre 3 ]_Tpre ) Tpre

pre

the functor determined by the pair (1tee, 11ee) of objects of TP,

Notation 3.2.3.18. Let us denote by

1 pre,l pre
Farring(T) (Lre, L) Tere

the canonical functor of 2-rings to which the functor

81 ( 1Tpre 3 1Tpre ) Tpre

gives rise by means of the universal property of Fa_ng(0Z).

Notation 3.2.3.19. Appealing to Fact [2.1.3.16] let
TrS’pre(ag D bo) L TrS’pre(al D bl)
F27ring(az) Tere
(1Tpre7 1Tpre)

canT

be a coequaliser diagram in Ring(Cat).



Remark 3.2.3.20. The idea of the construction of T from TP is that we identify
both of the objects TrP(aq ® ay) and TrP(by @ by) of TP with the object 1w of
TP, The purpose of this is to ensure that the functor of 2-rings

S,pre
TL(S)Pe T Tore

extends to a functor from

TL(S)

in the manner we shall now describe.

Proposition 3.2.3.21. The following diagram in Cat commutes.

(ap ®2) @ (by ®2)

lcat TL(S)Pre
2 cant o TroP™e
TL(S)Pre T
cant o TroPre

Proof. We make the following observations.
(1) Since Tr®P™ is a functor of 2-rings, the following diagram in Cat commutes.

ag ®2) @ (b ® 2
1oy A0 EDEDED, 1y g

-I—rS,pre
(Tr*"%(ap) @ TPe(2)) @ (TroP™(by) @ Tr™Pe(2))

Tere

(2) By definition of Tr*P™® we have that Tr*P(2) is equal to Iwe. We deduce from
(1) that the diagram

(ap ®2) @ (by ® 2)

lcat TL(S)Pre
S,pre S,pre TrS:Pre
(Tr P (a/()) ® 1Tpre) EB (Tr P (bO) ® 1Tpre)
Tpre

in Cat commutes, and hence that the following diagram in Cat commutes.



ag ®2)D (bg ® 2
lea (a0®2) @ (b )TL(S)Pfe

TrS,pre
TroP®(ag) & Tro™(by)

Tpre

(3) Appealing again to the fact that Tr>P" is a functor of 2-rings, we deduce from

(2) that the following diagram in Cat commutes.

ap ®2) B (by ® 2
ey DEDODOD gy gy

TrS,pre
TrS’pre(ao ) bo)

Trre

(4) By definition of T, we have that the following diagram in Cat commutes.

TroP(ag @ b
Lcat (0 EM), o

canrt
cant o ].Tpre

T

(5) Since cant is a functor of 2-rings, we deduce from (4) that the following diagram
in Cat commutes.

TroP(ag @ b
Lcat (0 E0), o

cant
17

T

(6) We deduce from (3) and (5) that the following diagram in Cat commutes.



It

(7) Appealing again to the fact that Tr*P™(2) is equal to 11, and to the fact that
cant is a functor of 2-rings, we have that the following diagram in Cat commutes.

Lo — 2 TL(S)P
\ cant o TroPre
It

T

(8) We deduce from (6) and (7) that the following diagram in Cat commutes, as
required.

(ap ®2) @ (by ® 2)

lcat TL(S)Pre
2 cant o TroPre
TL(S)Pre T
cant o TroPre

Proposition 3.2.3.22. The following diagram in Cat commutes.

(a1 ®2) & (b ®2)

Lcat TL(S)Pr
2 cant o TroPre
TL(S)" T
cant o TroPre

Proof. Entirely analogous to the proof of Proposition [3.2.3.21] [



Corollary 3.2.3.23. The following diagram in Ring(Cat) commutes.

(a0 ®2) @ (bp ®2)) U ((a1 ®2) @ (b ®2))

Fo_ting(0T) TL(S)Pre
(2,2) cant o TSpre
TL(S)P T
cant o TroPre

Proof. Tt follows immediately from Proposition [3.2.3.21] and Proposition [3.2.3.22| that
the following diagram in Cat commutes.

o7 ((ao ® 2) e (bO ® 2)) L ((a1 (029 2) D (bl X 2)) TL(S)pre

(2,2) cant o TroPre

TL(S)Pre T
cant o TroPre

Appealing to the universal property of Fo_;ng(0Z), we deduce that the following
diagram in Ring(Cat) commutes, as required.

((ao®2)® (b ®2)) U ((a1 ®2) & (by ®2))

Fo_ring(OZ) TL(S)Pr
(2,2) cant o TroPre
TL(S)Pre T
cant o TroPre

Notation 3.2.3.24. Appealing to Corollary , let

iia

TL(S) T

denote the canonical functor of 2-rings such that the following diagram in Ring(Cat)
commutes.

can
TLS)Pe — 0 T1(s)

%

T

T



Terminology 3.2.3.25. We refer to Tr® as the Markov trace functorwith respect to
T.

Remark 3.2.3.26. Let R and R[A, B] be the 2-rings of Remark [3.2.2.20] and let S
be the datum for smoothing of braids defined of Remark [3.2.2.20] Let R[4, B,~] be
the 2-ring constructed from R[A, B] by formally adding an endomorphism ~ of the
multiplicative unit 1g. This construction is carried out formally in The arrows
of R[A, B, ] are exactly those of the coproduct | | .,N[A, B, ] in Cat of one copy of
N[A4, B,~] for each natural number. -

Let T be the Markov trace datum given by (R[A, B,~], v, canga,p,]), where

CaNR[A, B ]

R[A, B]

R[4, B, 7]

is the canonical functor of 2-rings. Then the Markov trace functor

iia T

TL(S)

with respect to T almost agrees, on arrows, with the usual Markov trace morphisms

TL,

N[A, B, 7]

discussed for instance in the remark after Proposition 3.6 in [13], albeit for a quotient
of N[A, B,~]. In the literature, v is usually assumed to be invertible. Our Markov
trace functor is obtained exactly from the usual Markov trace morphisms

TL,

N[4, B,v,77]

1

if all uses of y~" are replaced by uses of 7.

3.2.4. Constructing a datum for smoothing of braids given a
2-ring

Notation 3.2.4.1. Appealing to Fact [2.2.2.2] let Fo_ying[A, B] denote the free 2-ring
on ZUZ. We denote the canonical functor

TU7Z

F2—ring[A7 B]

by can F27ring [A,B] :

Notation 3.2.4.2. We shall also denote by R[A, B] the category which is part of the
data of R[A, B].

Notation 3.2.4.3. Appealing to Fact [2.1.3.16] let



.R[A,B],bi .R[A,B],bi
4 2
R[A, B]

R F2—ring[A7 B]

be a binary coproduct in Ring(Cat).

Notation 3.2.4.4. We denote by A the arrow of R[A, B] corresponding to the functor

R[A,B],bi T bi
22 © CanF27ring[AaB] © Zl

7 R[A, B

Notation 3.2.4.5. We denote by B the arrow of R[A, B] corresponding to the functor

,bi

R[A,B],bi )
22 © CanF27ring[AvB] o 22

T R[A, B]

Remark 3.2.4.6. The idea of the construction of R[A, B] is as follows.

(1) We add an arrow A to R, along with a pair of objects which are its source and
target.

(2) We add an arrow B to R, along with a pair of objects which are its source and
target.

(3) We add exactly those objects and arrows to R which are needed to have a 2-ring.
The arrrows added can be thought of as all non-commutative polynomials, with
coefficients in R, in the variables A and B. The objects added can be thought
of as all non-commutative polynomials, with coefficients in R, in four variables,
corresponding to the four objects added to R, namely the source and target of A
and the source and target of B.

Remark 3.2.4.7. We have that (R[A, B], A, B) defines a datum for smoothing of
braids. In fact, this datum is universal amongst data for smoothing of braids con-
structed from R. We shall not, however, need this universal property, and shall omit
its precise statement and a proof.

3.2.5. Constructing a Markov trace datum given a 2-ring

Notation 3.2.5.1. Let

p
1Cat U 1Cat

1Cat

be the canonical functor.



Notation 3.2.5.2. Let

p
1Cat L 1Cat 1Cat
oul [7’0? al
I e ]

be a co-cartesian square in Cat.

Notation 3.2.5.3. We denote by « the arrow of F[y] corresponding to the functor

Tlf (7]

z

Flvl-

Remark 3.2.5.4. The definition of F[y] can be thought of as follows. We begin with
a category consisting of exactly one object, which we denote by 1, and no non-identity
arrows. We then proceed as follows.

(1) We add an arrow

which we denote by 7.

(2) We then add exactly those further arrows

l—1

that we need to have a category, namely arbitrary finite compositions of v with
itself.

Notation 3.2.5.5. Appealing to Fact [2.2.2.2] let Fo_,ing[7] denote the free 2-ring on
Flv]. We denote the canonical functor

Fly] —— Fz—ringm

by can Faeringl1]-

Notation 3.2.5.6. Appealing to Fact [2.2.2.2 we denote by Fo_ing(1cat) the free 2-ring
on lcat.



Notation 3.2.5.7. Let

1r

F2—Ring(1Cat) R

be the canonical functor of 2-rings to which the functor

1RR

1Cat

gives rise by means of the universal property of Fa_ging(1lcat)-

Notation 3.2.5.8. Let
g
F2—Ring(1Cat) - F2—ringh/]
be the canonical functor to which the functor
F]

CanFQ—rin ["Y] © TO
lcat - Farting [7]

gives rise by means of the universal property of Fo_ging(1cat)-

Notation 3.2.5.9. Appealing to Fact [2.1.3.16] let

g
F2—Ring(1Cat) - F2—ring [7]

1r l ‘ rgh]

be a co-cartesian square in Ring(Cat).

Notation 3.2.5.10. Let

1R

F2—Ring(1Cat) R

be the canonical functor of 2-rings to which the functor
Ir

leg —— R

gives rise by means of the universal property of Fo_ging(1lcat)-

Notation 3.2.5.11. Let

g
F2—Ring<]-Cat> - F2—ring h/]



be the canonical functor to which the functor

Fl
can F27ring [’7] o TO

1Cat F2—ring ['7]

gives rise by means of the universal property of Fa_ging(1lcat)-

Notation 3.2.5.12. Appealing to Fact 2.1.3.16] let

g
F2—Ring(1Cat) - F2—ring [’7]

1r l l Tgi[v]

be a co-cartesian square in Ring(Cat).

Notation 3.2.5.13. We denote by v the arrow of R[] corresponding to the functor

7AOR[’Y] © CanF27ringh] o
z R[7]

Remark 3.2.5.14. The idea of the construction of R[v] is that we identify the single
object of F[y], viewed as an object of Fa_ing[7] via the functor cang,_, (), with the unit
1g of R™! Thus v becomes an endomorphism of 1g. We now express this formally.

Proposition 3.2.5.15. The following diagram in Cat commutes.

1Cat Y 1z
Y
N
R[]
Proof. We make the following observations.
(1) By definition of the functor
oul

1Cat L 1Cat A

Y

the following diagram in Cat commutes.



1Cat

iicat’bi \
1Cat U 1Cat A

oul

(2) By definition of F[y], the following diagram in Cat commutes.

p
1Ca'c U 1Ca'c 1Cat
oul [r(]): al
T F
g ]
1

(3) We deduce from (1) and (2) that the following diagram in Cat commutes.

1Cat 0 7z
po ,l’iCaubi [ T{'—['Y]
1
Cat To}—h’] [7]

(4) Appealing to the universal property of lc,;, we have that the functor

-1 cat,bi

poiy

1Cat 1Cat

is equal to

ud

1Cat > 1Cat-

(5) By definition, we have that the functor

7{ [v]

7z

Flv]

corresponds to the arrow vy of F[v].



(6) We deduce from (3) — (5) that the following diagram in Cat commutes.

1Cat

(7) We deduce from (6) that the following diagram in Cat commutes.

0

1Cat v
CanFZ—ring[’Y] © /y
can F]
F27ring['7] S
F2—ring[’7]
(8) By definition of the functor
)

F2—ring(1Cat> - F2—ring [’Y] )

the following diagram in Cat commutes.

7{ []

1Cat 1z

CanlCat [ CanF27ring[7]

F27ring<1Cat) T’ I:27ring [’7]

(9) We deduce from (7) and (8) that the following diagram in Cat commutes.

e — 2 7

gocam

F27ring h/]

can F2_ting (] o

(10) We deduce from (9) that the following diagram in Cat commutes.



1Cat Y 1

R[] \
o ©go canlCat

(11) By definition of the arrow y of Fao_ying[7], we deduce from (10) that the following
diagram in Cat commutes.

R0 6 can o
0 F2—ring['y] 7

R[]

1Cat 0 1z

R[] \
TO ©go Canlcat

(12) By definition of R[y], the following diagram in Cat commutes.

g

R[]

g
F2—Ring(1Cat) - F2—ring h’]

L{ ‘r(*)?[ﬂ

R R[]

rlRM

(13) We deduce from (11) and (12) that the following diagram in Cat commutes.

0

1Cat I
R \ 7
1 b) @) lR o cany,,
R[]
(14) By definition of the functor
1R
F2fring(1Cat) Ra

the following diagram in Cat commutes.



cany.,,
1Cat > 27ring(1Cat)

Ir
Ir

R

(15) By definition of a functor of 2-rings, the following diagram in Cat commutes.

1
1Cat Kk R
R[]
.
LRy l !
R[]

(16) We deduce from (13) — (15) that the following diagram in Cat commutes, as
required.

1Cat

]
Proposition 3.2.5.16. The following diagram in Cat commutes.
1Cat ! v
r‘y
R[]
Proof. Entirely analogous to the proof of Proposition [3.2.5.15] [

Corollary 3.2.5.17. We have that (Rh],%rlRM> defines a Markov trace datum with
respect to R.

Proof. Follows immediately from Proposition [3.2.5.15| and Proposition [3.2.5.16, [



Remark 3.2.5.18. In fact, (R[y],%r? M) is universal amongst Markov trace data

with respect to R. We shall not, however, need this universal property, and shall omit
its precise statement and a proof.



3.3. The Kauffman bracket invariant

Given a datum S for smoothing of braids, we construct in a canonical way a strict
monoidal functor Smoothing from Braids to TL(S) which, on arrows, we think of as
‘smoothing’ a braid to a formal linear sum of diagrammatic tangles in the usual way.
Given a Markov trace datum T, we combine this functor with the Markov trace functor
with respect to T constructed in §3.2.3] to define a strict monoidal functor from Braids
to a 2-ring T which is constructed from the data of T.

On arrows, we think of this functor as taking the Kauffman bracket of a braid.
We then demonstrate that this strict monoidal functor gives rise to a functor from
Braids/R-moves to T. On arrows, we think of the construction of this last functor as a
demonstration that the Kauffman bracket is a braid invariant.

3.3.1. Smoothing functor

Notation 3.3.1.1. Let S = (R, A, B) be a datum for smoothing of braids. We shall
also denote the category which is part of the data of R by R.

Notation 3.3.1.2. Let us denote the source and target of A by ag and a; respectively.
Let us denote the source and target of B by by and b; respectively.

Notation 3.3.1.3. Throughout this chapter, we shall view the objects and arrows of
TL<, as objects and arrows of TL via the functor

canm L

TL<o

In addition, we shall view the objects and arrows of TL as objects and arrows of
TL(S)P™ via the functor

CanTL(S)pre

TL TL(S)Pe.

Finally, we shall view the objects and arrows of TL(S)P™® as objects and arrows of
TL(S) via the functor

TL(sPe —

TL(S).
Viewing the object 1 of TL<y as an object of TL, TL(S)P™, or TL(S) in this way, we
shall denote, for any integer n > 1, the object

1®m - ®r 1

n

of TL by n, and the object
} ®TL(ES) -+ DTL(S) {

g
n

of TL(S) by n.



Notation 3.3.1.4. Let

S(l'f”!’

yARNA

TL(S)

denote the canonical functor such that the diagrams

T.bi
21
7 TUT
Sarr
(A ®7LE) id(2) D) (B @1us) CUPAndCaP)\ l
TL(S)
and
T.bi
19
7 U7
Sarr
(A ®7L(s) CupAndCap) B1is) (B @7is) id(2)) l
TL(S)
in Cat commute.
Notation 3.3.1.5. Let
Lot Ul —2 5 TL(S)

denote the canonical functor such that the following diagram in Cat commutes.

1 2
1Cat U 1Cat “ Lcat

N A

TL(S)

1Cat

Proposition 3.3.1.6. The following diagram in Cat commutes.
0

1 Cat 7

b
31
TuzT

S(ZTT

TL(S)



Proof. We make the following observations.

(1) By definition of s, we have that the following diagram in Cat commutes.

T,bi
21

7z TUZ

(A RTL(S) id(?)) DTL(S) (B RTL(S) CupAndCh

TL(S)

Sarr

(2) By definition of A, B, id(2), and CupAndCap, we have that the following diagram
in Cat, in which the unlabelled arrow is

(A @11 1d(2)) Do) (B @1is) CupAndCap),

commutes.

1Cat 0 A

(a0 @1L(s) 2) Drics) (Do ®TL(SK

TL(S)

(3) By definition of TL(S), the object
(a0 @1L(s) 2) B1ies) (bo @Tues) 2)
of TL(S) is equal to the object 2 of TL(S).

(4) We conclude from (1) — (3) that the following diagram in Cat commutes, as
required.

1Cat

T,bi
)

yARNA

Sarr

TL(S)



Proposition 3.3.1.7. The following diagram in Cat commutes.

1

1Cat A

T,bi
21

Tuz

S(ZTT‘

TL(S)

Proof. Entirely analogous to the proof of Proposition [3.3.1.6]

Proposition 3.3.1.8. The following diagram in Cat commutes.

0

1Cat A

T,bi
o

yARNA

8(17‘7’

TL(S)

Proof. Entirely analogous to the proof of Proposition [3.3.1.6]

Proposition 3.3.1.9. The following diagram in Cat commutes.

1

1 Cat A

T,bi
[

yARNA

S(l'f"f‘

TL(S)

Proof. Entirely analogous to the proof of Proposition [3.3.1.6|

Proposition 3.3.1.10. The following diagram in Cat commutes.



(2,2)U(2,2)

81 L 8I 1Cat U 1Cat
(0,1) 1 (0,1) Sob
TUT . TL(S)

Proof. We make the following observations.
(1) By definition of the functor

(2,2)u(2,2)
0L U oL ]-Cat L ]-Cat7

the following diagram in Cat, in which this functor is the unlabelled middle arrow,

comimutes.
.0Z,bi .9Z,bi
(31 3
0T 07T 10T oL
(2.2) l (2,2)
1Cat U 1Cat

(2) We deduce from (1) that the following diagram in Cat, in which the unlabelled
middle arrow is s, o (2,2), commutes.

9T ,bi JOTbi

31 2
0T 0Z U oL o0z
Sobm l Aa 2)

1Cat L1 Cat

(3) We deduce from (2) and the definition of s,;, that the following diagram in Cat
commutes.

0T bi DT bi

il i

oT 0T LT 2 oT

(2,2) J (2.2)

1Cat L 1Cat



(4) By definition of the functor

0,1)U (0,1
9T U oL ©.HuO1 TUT,

the following diagram in Cat, in which this functor is the unlabelled middle arrow,
commutes.

[OTbi ;0T bi
o7 — OT U OT oz
it 0 (0,1) l iz 0 (0,1)
TUZ
(5) We deduce from (4) that the followmg diagram in Cat, in which the unlabelled
middle arrow is sS4 © ( ) commutes.
.OZ,bi -0Z,bi
i i
0L 0L 10T oz
Sarr 01170 (0,1) J Sarr 01" 0 (0, 1)
TUZT

(6) We deduce from Proposition [3.3.1.6| and Proposition |3.3.1.6| that the following

diagram in Cat commutes.

(0,1)
0T Uz

s o ZZ bi
(2’ 2) arr 1

TL(S)

(7) We deduce from Proposition [3.3.1.6| and Proposition |3.3.1.6| that the following

diagram in Cat commutes.




(8) We deduce from (5) — (7) that the following diagram in Cat, in which the
unlabelled middle arrow is sq o ((0,1) L (0,1)), commutes.

L bi L bi
oT ! 0T LT oT
2,2) J 2,2)
TUT

(9) We deduce from (2) and (8) that the following diagram in Cat commutes, as

required.
ooz 22022 Lear U lcat
(0,1)U(0,1) Sob
TUZ - TL(S)

Notation 3.3.1.11. Appealing to Proposition [3.3.1.10} let us denote by

. Smoothing
Braids<, TL(S)

the canonical functor such that the following diagram in Cat commutes.

(2,2) U (2,2)
8:[ L 81 1Cat U 1Cat
Braids<o
(07 1) LU (0> 1) To = Sop
TUZL TBraidsgz Bl’aldSSQ

Smoothing




Proposition 3.3.1.12. The following diagram in Cat commutes.

(1,1)

lcat Braids<y x Braids<g
Smoothing x Smoothing
2 TL(S) x TL(S)
XTL(S)
Braids<s TL(S)

Smoothing

Proof. We make the following observations.

(1) By definition of Smoothing x Smoothing, the following diagram in Cat commutes.

Smoothing x Smoothing

Braids<, x Braids<, TL(S) x TL(S)
p?raidsig,bi p'll'L(S),bi
Braids TL(S

=? Smoothing ®)

(2) By definition of the functor (1,1), the following diagram in Cat commutes.

(1,1)

lcat Braids< x Braids<s

Braids<,bi
Py

BraidsSQ

(3) By definition of the functor 1, the following diagram in Cat commutes.

1Cat

'1Cat7bl' 1
(3

1Cat L 1Cat

BraidS<2
TBraidSSQ -

0



(4) We deduce from (2) and (3) that the following diagram in Cat commutes.

(1,1)

lcat — Braids<y X Braids<

’iicat plBraidSSQ,bi
1Cat u 1Cat Braids BraldSSQ
rg o

(5) We deduce from (1) and (4) that the following diagram in Cat commutes.

(Smoothing x Smoothing) o (1, 1)

Lcat TL(S) x TL(S)
Z}Cat,bz' p'll'L(S),bi
1Cat |_| 1Cat TL(S)

. Braids
Smoothingor, =

(6) By definition of Smoothing, we have that the following diagram in Cat commutes.

Braids<o
o ~ :
1Cat I_I 1Cat Bra'dSSQ
‘Smoothing
Sob
TL(S)

(7) We deduce from (5) and (6) that the following diagram in Cat commutes.

(Smoothing x Smoothing) o (1,1)

Lcat TL(S) x TL(S)
jleacbi l kp‘ll'L(S),bz‘
Leat U lcat S TL(S)
(8) By definition of the functor
Lear U Tear — 2 TL(S),

we have that the following diagram in Cat commutes.



(3
1Cat - 1Cat U 1Cat
\ lsob
TL(S)

(9) We deduce from (7) and (8) that the following diagram in Cat commutes.

Smoothing x Smoothing) o (1,1
e o ¢ 8o 15 xTLS)

TL(S),bi
[pl ®

TL(S)
(10) By an entirely analogous argument to that of (1) — (9), we have that the
following diagram in Cat commutes.

Smoothing x Smoothing) o (1,1
Lcat ( & 8oLl TL(S) x TL(S)

TL(S),bi
! n (S)

TL(S)

(11) We deduce from (9), (10), and the universal property of TL(S) x TL(S) that
the following diagram in Cat commutes.

(1,1)

lcat — Braids<y X Braids<

(1.1) ‘Smoothing x Smoothing

TL(S) x TL(S)

(12) Appealing first to the universal property of TL x TL and then to the universal
property of TL(S) x TL(S), it is an immediate consequence of the definition of
the functor

(1,1)

lcat TL(S) x TL(S)



that the following diagram in Cat commutes.

(1,1)

1Cat TLSQ X TLSQ

cantpL X canyL

TL x TL
(1,1)

canT(s) X canTyi(s)

TL(S) x TL(S)

(13) Appealing to the universal property of TL, we have that the following diagram
in Cat commutes.

(1,1)

lcat TLoy X TL<o

cantL X cantp
2 TLx TL

@TL
Tle TL

canTL

(14) Since canyy(s) is a functor of 2-rings, the following diagram in Cat commutes.

canTy(s) X Ca NTL(S)

TL x TL TL(S) x TL(S)
RTL ATL(S)
TL TL(S)

canry(s)

(15) By definition of the functor

2

1Cat TL(S),

we have that the following diagram in Cat commutes.



TLSQ canTL(S) o canTtL TL(S)

(16) We deduce from (11) — (15) that the following diagram in Cat commutes.

(1,1)

lcat Braids<, x Braids<s
Smoothing x Smoothing
TL(S) x TL(S)

XTL

TL(S)

(17) By definition of the functor

lcat 42> Braids<s,

the following diagram in Cat commutes.

1Cat
Lcat,bi 2
(5)
leae U Lcat . Braids<
Braids<o
ro -

(18) We deduce from (17) that the following diagram in Cat commutes.

2

lcat Braids<s
Z’écat’b" Smoothing
1Cat |_| 1Cat TL(S)

. Braids
Smoothingor, =



(19) We deduce from (6) and (18) that the following diagram in Cat commutes.

lcat 2 Braids<,
@écat’“ k Smoothing
1Cat |_| 1Cat b TL(S)
(20) By definition of the functor
So
1Cat U 1Cat ’ TI—(S)7
the following diagram in Cat commutes.
'1Cat,bi
2
1Cat 1Cat U 1Cat
X lsob
TL(S)

(21) We deduce from (19) and (20) that the following diagram in Cat commutes.

Braids<,

x [Smoothing

TL(S)

1Cat

(22) We conclude from (16) and (21) that the following diagram in Cat commutes,
as required.

(1,1)

lest — " Braids<s x Braids<;

Smoothing x Smoothing

2 TL(S) x TL(S)
TL(S)
Braidsgg TL(S)

Smoothing



Corollary 3.3.1.13. The functor

) Smoothing
Braids<o TL(S)mult

exhibits Migpaigs as a monoidal datum for TL(S)mult,
Proof. Follows immediately from Proposition [3.3.1.12] O

Notation 3.3.1.14. Appealing to Corollary |3.3.1.13] let

S thi
moothing TL(S)”‘”“

Braids

denote the canonical strict monoidal functor to which the functor

TL(S)

. Smoothing
Bra@sgg

gives rise, by means of the universal property of Braids.

Remark 3.3.1.15. The idea of the construction of Smoothing is as follows.

(1) The objects 1 and 2 of Braids<s are sent to the objects of TL<y of the same
denotation, viewed as objects of TL via the functor

cantL

Tl TL.

(2) The arrow

UnderCrossing

of BraidsSQ

.
N\

is sent to the arrow

(A @i id(2)) Brus) (B @1is) CupAndCap)




of TL(S), namely a formal linear combination of the diagrammatic tangles id(2)

and CupAndCap.

N
{0

OverCrossing

(3) The arrow

of Braids<y

-
S

(A ATL(S) CupAndCap) DrLs) (B TL(S) id(Q))

is sent to the arrow

2

of TL(S), namely the same formal linear combination of the diagrammatic tangles
id(2)



and CupAndCap

as in (2), but with the opposite choice of coefficients.

(4) We extend freely to all of Braids<s. Thus, for instance, the arrow

OverCrossing o UnderCrossing

of Braidsgz

=

/

is sent, denoting Gty (s) and @1y (s) simply by @& and ® respectively, to the arrow

VRS

(A ® CupAndCap) ® (B ® 2d(2))> o ((A ®1id(2)) ® (B® CupAndCap))
(A ® CupAndCap) o (A ® zd(?))) ® ((B ®id(2)) o (B® CupAndCap))

Ao A) ® CupAndCap) @ ((B o B) ® CupAndCap)

( (Ao A) @ (CupAndCap o id(2 ))) ® ((B o B)® (id(2) o CupAndCap))
= ((
( Ao A& BoB)) ® CupAndCap

of TL(S). The first equality is a consequence of the functoriality of @. The
second is a consequence of the functoriality of ®. The fourth is a consequence of
requirement (4) in the definition of a 2-ring, in Definition [2.1.3.2]



(5) We extend freely to all of Braids. Thus, for instance, the arrow

(id(l) @ Braids OverCrossing) o (UnderCrossing QBraids id(l))

of Braids

=

S

is sent, denoting @11 (s) and @7 (s) simply by & and ® respectively, to the arrow

\

<(A ® (id(1) @11 CupAndCap)) @ (B® id(3))> o <(A ®id(3)) & <B ® (CupAndCap @1 id(1))

/

:<A ® (id(1) @70 CupAndCap)) o (A® zd(3))) ® ((B ®1d(3)) o (B ® (CupAndCap @1 zd(l))))

_ ((A 0 A)® ((@'d(1) @71 CupAndCap) o id(3)>) ® ((B o B)® (z’d(?)) o (CupAndCap @, id(l))))
:((A o A) ® (id(1) @7, cupAndCap)) ® ((B o B) ® (CupAndCap @, z’d(l)))

of TL(S).

3.3.2. The Kauffman bracket
Notation 3.3.2.1. Let Fyon(Z) denote the free strict monoidal category on Z.

Remark 3.3.2.2. Let Fo_ying(Z) denote the free 2-ring on Z. Appealing to Fact[2.2.3.4
we have that Fo_ing(Z) can be viewed as the free 2-ring on Fyon(Z).

Notation 3.3.2.3. Let

Tr® o Smoothing o R2,ne(0ne half)
F2—ring(I)

be the functor of 2-rings to which, by means of the universal property of Fo_ng(Z) as
the free 2-ring on Fyon(Z), the strict monoidal functor



Tr® o Smoothing o R2,,c(one half) —"

gives rise.

Notation 3.3.2.4. Let

R2,ne(other half)
F2—ring (I>

be the functor of 2-rings to which, by means of the universal property of Fo_ng(Z) as
the free 2-ring on Fyon(Z), the strict monoidal functor

Tr® o Smoothing o R2.,(other half)
F(I) Tmult

gives rise.
Notation 3.3.2.5. Appealing to Fact let
Tr® o Smoothing o R2,,c(one half)
F2—ring(z) T
Tr® o Smoothing o R2,,(other half)

Ginv

Tinv

be a coequaliser diagram in Ring(Cat).

Notation 3.3.2.6. Let us denote by

mult
Tinv

Braids

the strict monoidal functor g;,, o T o Smoothing.

Terminology 3.3.2.7. We refer to

Braids

mult
Tinv

as the Kauffman bracket.

Proposition 3.3.2.8. The following diagram in Mon(Cat) commutes.
R2one(0ne half)

Faon(Z) Braids
R2ne(other half) K
Braids T,,,m™"




Proof. Follows immediately from the definition of T;,,, the definition of the functor of
2-rings

Tr® o Smoothing o R2ne(0ne half)

I:2—ring (I)

and the definition of the functor of 2-rings

R2one(other half)

F2—ring(I)

]

Notation 3.3.2.9. Appealing to Proposition [3.3.2.8 and the universal property of
Braids/R2,pe, let us denote by

K /R20ne

mult
Tinv

Braids/R2ne

the canonical strict monoidal functor such that the following diagram in Mon(Cat)
commutes.

Braids (R2ene Braids/ R2one
K/R20ne
e
T mult

Proposition 3.3.2.10. The following diagram in Mon(Cat) commutes.

qR2one © R2two(0ne half)

Fnmon(Z) Braids/R2,ne
GR2one © R24wo(other half) K /R2one
Braids/R2,ne T, M
K/R2ne

Proof. We make the following observations.

(1) Appealing to the functoriality of Smoothing and the functoriality of Tr®, the
following diagram in Cat, in which the unlabelled arrow is

T (Smoothing(OverCrossing)) o Tr® (Smoothing(UnderCrossing))
z T,




commutes.

OverCrossing o UnderCrossing _
Braids

Tr® o Smoothing

T

(2) By definition of Smoothing, the functor

Tr® (Smoothing(UnderCrossing) )
z T

corresponds to an arrow
It —— 1t

of T, and the functor

T (Smoothing(OverCrossing))
z T

corresponds to an arrow

It —— 17

of T.

(3) We deduce from (1), (2), and Corollary ?? that the following diagram in Cat, in
which the unlabelled arrow is

Tr (Smoothing(UnderCrossing)) o Tr° (Smoothing(OverCrossing) )
7z T,

commutes.

OverCrossing o UnderCrossing _
Braids

Tr® o Smoothing

T



(4) Appealing to the functoriality of Smoothing and the functoriality of Tr°, the
following diagram in Cat, in which the unlabelled arrow is

Tr® (Smoothing(UnderCrossing)) o Tr® (Smoothing(OverCrossing) ) T
1 ;

commutes.
7z
UnderCrossing o OverCrossing

Braids T
Tr® o Smoothing

(5) We deduce from (3) and (4) that the following diagram in Cat commutes.

OverCrossing o UnderCrossing )
Braids

UnderCrossing o OverCrossing Tr® o Smoothing

Braids T
Tr® o Smoothing

(6) By definition of the functors R2,ne(one half) and R2y,,(one half), and appealing
to the universal property of Fuon(Z), we deduce from (5) that the following
diagram in Ring(Cat) commutes.

R2¢wo(one half)

Fmon(Z) Braids
R2ne(0ne half) Tr® o Smoothing
Braids Tmult

Tr® o Smoothing

(7) By Proposition 77, the following diagram in Mon(Cat) commutes.



R2,ne(0ne half)

Fuon(Z) Braids
R2,ne(other half) Ginw © Tr° 0 Smoothing
Braids Tiny ™"

Ginv © T o Smoothing

(8) We deduce from (6), (7), and the definition of K, that the following diagram in
Mon(Cat) commutes.

R2¢wo(0ne half)

Frmon(Z) Braids
R2ne(other half) K
Braids T ™
K

(9) By definition, the strict monoidal functors R2,,¢(other half) and R2y,,(other half)
are equal.

(10) We deduce from (8) and (9) that the following diagram in Mon(Cat) commutes.

R2.w0(0ne half)

Fmon(Z) Braids
R2.wo(other half) K
Braids Tin ™"
K

(11) By definition of K/R2pe, the following diagram in Mon(Cat) commutes.

qR2one

Braids

Braids/R2,ne

i

(12) We deduce from (10) and (11) that the following diagram in Mon(Cat) com-
mutes, as required.

K/R20ne

Tinv



JR25 © R24wo(0ne half)

Fumon(Z) Braids/R2,ne
JR2ene © R2¢wo(other half) K/R2one
Braids/R2,ne T,
K/R2one

[]

Notation 3.3.2.11. Appealing to Proposition [3.3.2.10| and the universal property of
Braids/R2p0th, let us denote by

K/R2p0th

Braids/RZboth —_— ianUIt

the canonical strict monoidal functor such that the following diagram in Mon(Cat)
commutes.

qR2two

Braids/R2one Braids/R2ctn
K/R2p,
Km / both
T mult

Proposition 3.3.2.12. The following diagram in Mon(Cat) commutes.

qR2y.s, © R3one(0ne half)

FMon (I) Bl’aidS/szoth
qR2y, © R3one(other half) K/R2b0th
Braids/R2y, T ™
/ both K/R2one

Proof. Similar to the proof of Proposition [3.3.2.10, The key point is that, by Proposi-
tion [2.1.3.20, and the fact Tr® and Smoothing are strict monoidal functors, we have

K/R2botn (OverCrossing @ id(1)) = K/R2yon (id(1) ® OverCrossing).
]

Notation 3.3.2.13. Appealing to Proposition [3.3.2.12| and the universal property of
Braids/R-moves, let us denote by



K/R-moves

Braids/R-moves L

the canonical strict monoidal functor such that the following diagram in Mon(Cat)
commutes.

Braids/R2,0th m» Braids/R-moves

l K/R-moves
K/R2poth

mult
Tinv

Terminology 3.3.2.14. We refer to the functor

K/R-moves

Braids/R-moves T, ™

as the Kauffman bracket invariant of braids.

Remark 3.3.2.15. The idea of the construction of K/R-moves is as follows.

(1) We define the Kauffman bracket of a braid, namely the strict monoidal functor

Braids

mult
T,

to be the Markov trace of its smoothing to a diagrammatic tangle.

(2) We modify T to ensure that K is invariant under R2,,, by forcing the Kauffman
bracket of two halves of R2,,. to become equal. We denote the 2-ring that we
obtain from T in this way by Ti,,.

(3) Making use of a cyclicity property of Tr®, we demonstrate that the Kauffman
bracket to Tj,, is invariant under both R2y,, and R3,,.. Taking into consideration
Remark [3.1.2.45] we thus have that the Kauffman bracket to Tj,, is invariant all
the Reidemeister moves R25ne, R2tw0, R3one; R3two, - - -5 R3six. In other words, it is
an invariant of braids.



Remark 3.3.2.16. We make the following observations.

Tr® o Smoothing o (UnderCrossing o OverCrossing)

- TrS((A ®id(2)) ® (B ® cupAndcap)) o Trs((A ® CupAndCap) @ (B ® id(2)))
= ((Azidam) & (Boq)) o ((A®q) & (B2idlr))

((Agidin) @ (Be)) e ((Aeqy) @ (Boidir))

(4@ (Boy)) e ((Ae7) o B)
(42

(A®7) @B))®<(B®7>®((A®7)@B)>

=(ARAR7)®(AB)® (BRIT®AR®RY)® (B®y® B)
=(ARARY) D (ARBRYR®7)®(ARB)® (BR B®Y)

The first equality holds by the definition of UnderCrossing and OverCrossing, the
functoriality of Smoothing, and the functoriality and definition of Tr°. The second
equality holds by definition of Tr® and the fact that Tr® is a functor of 2-rings. The
third equality holds by Corollary ??7. The fourth equality holds by definition of 1+
as the unit for the multiplicative structure of T. The fifth and sixth equalities hold
because T is a 2-ring. The final equality holds by Corollary ?77.

Let

(ARARY)®(ARBRY®7) G (A®B)®(BRBR®") -

F2—ring (I)

denote the functor of 2-rings to which the functor

. (ARARY)®(ARBR7®7)® (AR B)® (B®BR®") -

gives rise. Let

It

F2—ring (I) T

denote the functor of 2-rings to which the functor

It

A T

gives rise. Then, by the above calculation and the definition of Tj,,, the following
diagram in Ring(Cat) defines a coequaliser.

(ARARY)®(ARBR7®7)® (AR B)®d (B®BR®")
Ginv
F2fring(z) T Tinv
id(17)




Remark 3.3.2.17. We make the following observations.
Smoothing o (UnderCrossing o OverCrossing)
= ((A®id(2)) ® (B ® CupAndCap) ) o (4 © CupAndCap) & (B 2 id(2)) )
— ((4®id(2)) o (A® CupAndCap) ) @ ((B © CupAndCap) o (B @ id(2)))

= ( Ao A)® (id(2) o cupAndCap)> P ((B o B) ® (CupAndCap o id(2))>
((Ao A) ® CupAndCap) & ((B o B) @ CupAndCap)
(Ao A)® (Bo B)) ® CupAndCap

The first equality holds by the definition of UnderCrossing and OverCrossing, and the
functoriality of Smoothing. The second holds by the functoriality of @&. The third
holds by the functoriality of ®. The fifth holds because TL(S) is a 2-ring.

By the functoriality and definition of Tr®, we deduce that

Tr® o Smoothing o (UnderCrossing o OverCrossing)

is equal to
(AoA) @ (BoB)) @1,
and thus, appealing to Corollary 7?7, to
(A®A) @ (B®B)) ®@1.

Hence, and by definition of T;,,, the following diagram in Ring(Cat) defines a co-
equaliser.

(A A)® (B® B)) ® v

F2—ring(I) T
id(1r)

Ginv

Tinv

Remark 3.3.2.18. Let R and R[A, B] be the 2-rings of Remark [3.2.2.20, Let S be

the smoothing datum of Remark [3.2.2.20, Let R[y] be the 2-ring of Remark [3.2.3.26]
Let T be the Markov trace datum of Remark B.2.3.26] Let

K/R-moves

Braids/R-moves

be the Kauffman bracket invariant with respect to S and T. Then, on arrows, K is then
exactly the usual Kauffman bracket of a braid. Indeed, if we restrict K to the group
of endomorphisms of the object n of Braids, then it recovers exactly the morphism of
groups

B, N[A, B, 9]

defining the usual Kauffman bracket, where B, is the braid group on n strands.



3.4. Examples
3.4.1. Hopf link

Notation 3.4.1.1. Throughout this section, we shall view the objects and arrows of
Braids<, as objects and arrows of Braids via the functor

. CaNgraids .
Braids<o ———— Braids.

Viewing the object 1 of Braids<, as an object of Braids in this way, we shall denote,
for any integer n > 1, the object

\1 ®Braids o ®Braids 1/

v~
n

of Braids by n.
Given a datum for smoothing of braids S = (R, A, B), we shall similarly view the
objects and arrows of TL<y as objects and arrows of TL via the functor

anm L

TL<o

In addition, we shall view the objects and arrows of TL as objects and arrows of
TL(S)P via the functor

CanTL(S)pre

TL(S)P".

pre

Finally, we shall view the objects and arrows of TL(S)P" as objects and arrows of

TL(S) via the functor

canry(s)

TL(S)P TL(S).

Viewing the object 1 of TL<s as an object of TL, TL(S)P*, or TL(S) in this way, we
shall denote, for any integer n > 1, the object

1®m - ®rn 1

n

of TL by n, and the object
1®71ue) - O1e) L

-~
n

of TL(S) by n.

Notation 3.4.1.2. In the following examples, we are denoting ©r ) and ®tys)
simply by @& and ® respectively.



Notation 3.4.1.3. Let us denote the arrow

OverCrossing

of Braids

N

X

Notation 3.4.1.4. Let us denote the arrow

=

by o.

UnderCrossing

of Braids

E

N

by o~ 1.

Notation 3.4.1.5. Let us denote the arrow
CupAndCap

of TL(S)

) C



Notation 3.4.1.6. We denote the arrow

O00

2 —2

of Braids

E

S

by Hopf.
Example 3.4.1.7. Let S = (R, A, B) be a datum for smoothing of braids. Let

T = (TP, ~,t) be a Markov trace datum with respect to R. We make the following
observations.

(1) By functoriality, the arrow

Smoothing(Hopf)

of TL(S) is equal to

Smoothing(c) o Smoothing(o)

(2) By definition of Smoothing, the arrow

Smoothing(o)

is equal to

(A ® CupAndCap) ® (B ®id(2))
2 2.




(3) We have that

(A® CupAndCap) @ (B ® id(2)) ) o ((A @ CupAndCap) @ (B & id(2)))

(4@ CupAndCap) o (4 @ CupAndCap)) & ( (B @id(2)) o (B @ id(2)) )
((Ao A) ® (CupAndCap o CupAndCap)) & < (Bo B)® (id(2) o 2d(2)))
((A o A) ® (CupAndCap o CupAndCap) ) D

( (BoB)®id(2 ))
of TL(S).
(4) We deduce from (1) — (3) that the arrow

Smoothing(Hopf)

of TL is equal to

((Ao A) ® (CupAndCap o CupAndCap)) & ((B o B) ®id(2))

(5) The Markov trace of Smooting(Hopf) is, denoting t(A), t(B), Q1w and S
simply by A, B, ® and @ respectively,
Tr® o Smooting(Hopf)
—Ti <((A o A) ® (CupAndCap o CupAndCap)) & ((B o B) ® z'd(2))>

=((AoA)® (y07)) ® (BoB)
=(A®A)®(y®7v) & (B®B)

Or, simply
Tr® o Smooting(Hopf) = 4242 @ B2.

Notation 3.4.1.8. We denote the arrow

(N eN

22— 2

of Braids



N

S

Example 3.4.1.9. Let S = (R, A, B) be a datum for smoothing of braids. Let
T = (TP, ~,t) be a Markov trace datum with respect to R. We make the following
observations.

by Trefoil.

(1) By functoriality, the arrow

Smoothing(Trefoil)

of TL(S) is equal to

Smoothing (o) o Smoothing (o) o Smoothing (o)

(2) By definition of Smoothing, the arrow

Smoothing(o)

is equal to

(A ® CupAndCap) & (B ® id(2))
2 2.

(3) From Example we have that

Smoothing(c) o Smoothing(o)




of TL is equal to

((Ao A) ® (CupAndCap o CupAndCap)) & ((B o B) ®id(2))

(4) We have that

((A ® CupAndCap) @ (B ® id(Z)))
o <((A o A) ® (CupAndCap o CupAndCap)) fa) ((B oB)® zd(2))>
:<(A & CupAndCap) o (4 o A) ® (CupAndCap o CupAndCap))>
=@ ((B ®id(2)) o (BoB)® id(2))>
:((A o (Ao A)) @ (CupAndCap o (CupAndCap o CupAndCap)))
—@ ((Bo(BoB)) @ (id(2) 0id(2)))
:((A o Ao A)® (CupAndCap o CupAndCap o CupAndCap)) b ((B oBoB)® id(2))

of TL(S).
(5) We deduce from (1) — (4) that the arrow

Smoothing(Trefoil)

of TL is equal to

(Ao Ao A)® (CupAndCap o CupAndCap o CupAndCap)) @ ((B o Bo B) ®id(2))
2

2.

(6) The Markov trace of Smooting(Trefoil) is, denoting t(A), t(B), @1we and S
simply by A, B, ® and & respectively,

Tr® o Smooting(Trefoil)
:Trg<((A o Ao A)® (CupAndCap o CupAndCap o CupAndCap)) @ ((B oBoB)® 2d(2))>

:((AOAOA)(X)(VOVOV))@(BOBOB)
=(AvAeA)o(rey®y) e (B® B D)



Or, simply
Tr® o Smooting(Trefoil) = A3y* @ B3.

Notation 3.4.1.10. We denote the arrow
(0'_1 ®Braids Zd(:l)) o (Zd(1> ®Braids U) o (0_1 ®Braids Zd<1)) o (Zd<1) ®Braids U)

@

Example 3.4.1.11. Let S = (R, A, B) be a datum for smoothing of braids. Let
T = (TP, ~,t) be a Markov trace datum with respect to R. We make the following
observations.

of Braids

N\

by FigureEight.

(1) By functoriality, the arrow

5 Smoothing(FigureEight) 5

of TL(S) is equal to

Smoothing (o™ ®graigs id(1)) o Smoothing (id(1) ®graids 0)

oSmoothing (0! ®graigs id(1)) o Smoothing (id(1) Qgyaids o)
3 3




(2) By definition of Smoothing, the arrow

Smoothing (0™ ®graias 1d(1))
3 3

is equal to

(A®id(3)) ® <B ® (CupAndCap @1, id(l)))
3 3.

(3) By definition of Smoothing, the arrow

Smoothing(z’d(l) Braids U)
3 3

is equal to

(A ® (id(1) &0 cupAndCap)) ® (B®id(3))
3 3,

(4) We have that

((A ®id(3)) © (B ® (CupAndCap @m, id(l)))) 0 ((A ® (id(1) @7 CupAndCap) ) @ (B &

0 <(A ®id(3)) & (B ® (CupAndCap @7, id(l)))) o <<A ® (id(1) @, cupAndCap)) & (E
= ((A ®id(3)) o (A® (id(1) @1 CupAndCap) ) o (A @ id(3)) o (A ® (id(1) @7 CupAndCap

® ((B ® (CupAndCap @i id(1)) ) o (B @id(3)) o (B ® (CupAndCap @i id(1)) ) o (B @
—(((A o Ao Ao A)®id(3) o (id(1) ®. CupAndCap) o id(3) o (id(1) L CupAndCap)>)

® <<(B o Bo Bo B)® (CupAndCap ®1 id(1)) o id(3) o (CupAndCap &7 id(1)) o zd(3)>)
_ ((A o AoAoA)® (id(1) ®ry (CupAndCap o cupAndcap)))
@ ((B o BoBo B)® ((CupAndCap o CupAndCap) ®1. id(l)))

of TL(S).



(5) We deduce from (1) — (4) that the arrow

5 Smoothing(FigureEight) 3

of TL is equal to

<(A o AoAoA)@ (id(1) @y (CupAndCap o cupAndcap))>
@((B o BoBo B)® ((CupAndCap o CupAndCap) @7 id(l)))

(6) The Markov trace of Smooting(FigureEight) is, denoting t(A), ¢(B), ®we and
G1ee simply by A, B, ® and @ respectively,

Tr® o Smooting(FigureEight)

:TrS(((A oAoAoA)® (id(1) ®1. (CupAndCap o CupAndCap)))

® ((B o Bo Bo B)® ((CupAndCap o CupAndCap) @, zd(l))))

(AoAoAoA)®(yov)) @ ((BoBoBoB)®(y07))
=(A2A0A®A) @ (Y®1)® (BeBeBRB)® (y®7))

Or, simply

Tr® o Smooting(FigureEight) = A%~ @ B*+2.

Notation 3.4.1.12. We denote the arrow

(U X Braids ’id(l)) o (id(l) X Braids 0'_1) o (id(l) X Braids 0_1) o (U X Braids id(l))

of Braids



S

Example 3.4.1.13. Let S = (R, 4, B) be a datum for smoothing of braids. Let
T = (TP, ~,t) be a Markov trace datum with respect to R. We make the following
observations.

by Twohopf.

(1) By functoriality, the arrow

. Smoothing(Twohopf)

of TL(S) is equal to

Smoothing(o @praids id(1)) o Smoothing(id(1) @praigs o)
; oSmoothing(id(1) ®graigs 0 ') © Smoothing(o ®paigs 7d(1)) 5

(2) By definition of Smoothing, the arrow

Smoothing(o ®gyaids 1d(1))

3

is equal to

3(A ® (CupAndCap @7 id(1))) & (B ® z’d(S))3




(3) By definition of Smoothing, the arrow

; Smoothing(id(1) ®praigs 0 1) 5

is equal to

3(A ®id(3)) @ (B® (id(1) @7 CuloAndC?:\p))3

(4) We have that

((A ® (CupAndCap ®1 id(1))) ® (B ® id(3))> o <(A ®1id(3)) ® (B ® (id(1) @7, CupAndCap)))

o ((A ®id(3)) & (B @ (id(1) @7, CupAndCap))) o <(A ® (CupAndCap @1 id(1))) & (B © id(3))
:((A @ (CupAndCap @7 id(1))) o (A®id(3)) o (A ®id(3)) o (A ® (CupAndCap @ z’d(l))))

& ((B®id(3)) o (B @ (id(1) o CupAndCap)) o (B @ (id(1) @i CupAndCap)) o (B @ id(3)) )
- ((A o Ao Ao A)® ((CupAndCap @y id(1)) o id(3) o id(3) o (CupAndCap @, z’d(l))))

@ ((B o Bo BoB)® (id(3) o ((id(1) @7 CupAndCap) o (id(1) @7 CupAndCap) o id(B)))
- ((A o Ao Ao A)@ ((CupAndCap o CupAndCap) @1 z’d(l))))

@ ((B o BoBo B)® ((id(1) & (CupAndCap o cupAndCap)))

of TL(S).
(5) We deduce from (1) — (4) that the arrow

5 Smoothing(Twohopf)

of TL is equal to

((A o Ao Ao A) ® ((CupAndCap o CupAndCap) @ @'d(1))))
@((B o BoBo B)® ((id(1) @ (CupAndCap o CupAndCap)))




(6) The Markov trace of Smooting(Twohopf) is, denoting t(A), t(B), @ee and S
simply by A, B, ® and @ respectively,

Tr® o Smooting(Twohopf)

_TS (((A 0 Ao Ao A)® ((CupAndCap o CupAndCap) @ id(1))) )

@ ((B o BoBoB)® ((id(1) & (CupAndCap o CupAndCap))))

(AcAoAocA)® (yoy)) @ (BoBoBoB)®((y07))
=(ARARA®A)®(Y®7)®(BB®B®B)®((y®7))

Or, simply
Tr® o Smooting(Twohopf) = A%y* @ B2,

Notation 3.4.1.14. We denote the arrow
(0 ®Braids Zd(2)) o (U ®Braids Zd(2)) o (Zd(2) ®Braids U) o (Zd(2) ®Braids 0)

of Braids

] /!

/ ..

Example 3.4.1.15. Let S = (R, A, B) be a datum for smoothing of braids. Let
T = (TP, ~,t) be a Markov trace datum with respect to R. We make the following
observations.

by Hopf LI Hopf.



(1) By functoriality, the arrow

Smoothing(Hopf U Hopf)

of TL(S) is equal to

Smoothing (0 @praids id(2)) © Smoothing (o @graids 1d(2))

oSmoothing(id(?) ®Braids O’) o Smoothing(id(Z) @ Braids 0)
4 4

(2) By definition of Smoothing, the arrow

Smoothing (o ®graias id(2))
4 4

is equal to

(A ® (CupAndCap @m id(2)) ) @ (B @ id(4))
4 4.

(3) By definition of Smoothing, the arrow

Smoothing (id(2) @graias )

4

is equal to

(4@ (id(2) @m CupAndCap) ) & (B @ id(4))
4 4.

(4) We have that



((A® (CupAndCap & id(2))) & (B @ id(4)) ) o ((A® (CupAndCap &ry id(2))) & (B @ i

o ((A® (id(2) @m CupAndCap)) @ (B @ id(4)) ) o ((A @ (id(2) & CupAndCap)) @ (B &
:((A ® (CupAndCap @1y id(2))) o (A ® (CupAndCap @ id(2)))

o (A® (id(2) @mi CupAndCap)) o (A @ (id(2) @m. CupAndCap)) )

& ((B@id(4)) o (Beidd) o (Beid4)o (Boid4))
::(@4014044014)@>((CUpAndcapcaTLuﬂz))o(cupAndcap@ﬁlid(zn

o(uu2)®TLcupAndCap)o(uu2)®TLcupAndCap))>

@ ((B o BoBoB)® (id(4) oid(4) o id(4) o z’d(4))>
::<@4ox4ol4ol4)@>(«CupAndeaoCupAndCap)®TLHK2»

o (id(2) @71 (CupAndCap o cupAndCap))>

@ ((BoBoBoB)®id4))
of TL(S).

(5) We deduce from (1) — (4) that the arrow

4Smoothing(Hopf L Hopf)4

of TL is equal to

((A 0cAocAocA)® (((CupAndCap o CupAndCap) @7 id(2))

o(id(2) @11 (CupAndCap o CupAndCap)))
®((BoBoBoB)®id(4))

(6) The Markov trace of Smooting(Hopf U Hopf) is, denoting ¢(A), t(B), ®twe and



Ptee simply by A, B, ® and @ respectively,

Tr® o Smooting(Hopf LI Hopf)

=Tr° (((A 0cAocAocA)® (((CupAndCap o CupAndCap) @7 id(2))
o (id(2) @7 (CupAndCap o CupAndCap)))

@b ((BOBOBOB) ®id(4))>

:((AOAOAOA)@(”)/O’)/O”)/O”)/»EB((BOBOBOB))
(A ARA®R A (107078 7) @ (B®B®B® B))

Or, simply
Tr® o Smooting(Hopf L Hopf) = A*y* @ B*.






CHAPTER 4

A KAUFFMAN BRACKET INVARIANT
FOR 2-BRAIDS IN A 2-CATEGORICAL
FRAMEWORK




4.1. 2-categories of 2-braids

We define a cubical 2-category 2-Braids in two steps. On objects and 1-arrows, 2-Braids
is identical to Braids. We think of the 2-arrows of 2-Braids as 2-braids, which for us
are planes, possibly broken, joining four braids which we depict as drawn on two of
the pairs of opposite faces of a cube.

The first step is to define a cubical 2-category 2-Braids
cubical 2-category on a monoidal datum M, g .. doute. The 2-arrows of 2-Braids
correspond to those 2-braids without triple plane crossings, namely with only double
plane crossings.

To obtain 2-Braids from 2-Braids®™"?'®, we glue in 2-arrows which we think of as triple
plane crossings. Formally, we express this glueing by means of a colimit Mon(2-Cat).

The analogues in diagrammatic 2-knot theory of the Reidemeister moves are known
as Roseman moves. First investigated by Homma and Nagase in the papers [6] and [7],
the fact that these moves detect isotopy of 2-knots was discussed by Roseman in [15].

We formulate those Roseman moves which are relevant for defining isotopy of 2-
braids, namely the bubble, saddle, triple, and tetrahedral moves, in terms of 2-arrows
of 2-Braids. We define a strict monoidal cubical 2-category 2-Braids/R-moves by taking
a colimit in Mon(2-Cat) which identifies the two sides of each of these moves.

On objects and 1-arrows, 2-Braids/R-moves is identical to Braids/R-moves. We think
of the arrows of 2-Braids/R-moves as 2-braids up to isotopy. We view our work in this
section as carrying out an algebraisation of the theory of 2-braids in a topological sense.
This algebraisation involves identifying 2-braids which can be considered to generate
all others, in the same sense as OverCrossing and UnderCrossing generate all braids.
This is a subtler matter than for braids. The generators involving two planes are not,
for instance, double crossings in the sense of 2-knot theory, but rather fragments (we
often think of them as quarters) of these. Partly as a consequence of this, there are
2-arrows of 2-Braids which are not invertible. In other words, 2-Braids is not a cubical
2-groupoid.

Though the pictures which we draw of our 2-braid generators are only, for us,
informal notation, we consider them as a vital an aspect of our work as the formal
development. Indeed, we feel that the algebraisation we have arrived at marries what
appears to be natural and fundamental from an algebraic point of view, and what
appears to be natural and fundamental from a topological point of view.

We are not aware that any algebraisation of the topological theory of 2-braids has
previously been suggested. Despite the importance to which we attach a natural
topological interpretation of our 2-braids, we do not regard our algebraisation as
standing or falling on whether any 2-braid in one’s preferred topological sense can be
captured in our framework, so long as the theory of 2-braids defined by 2-Braids/R-moves
is rich and interesting, as we feel it is.

In defining 2-Braids/R-moves, we have not investigated in depth which of the Roseman
moves become identities as a consequence of forcing some of the other Roseman moves
to become identities, in the manner we discussed in We consider this to be an
interesting problem, which we plan to explore in future work.

double o the free strict monoidal

double



In the light of Remark [3.1.2.45] it is natural to ask if 2-Braids can be viewed as the
free braided monoidal cubical 2-category on 1,.c... We feel this to be plausible, but
have not yet looked into it.

4.1.1. The 2-category of 2-braids

Notation 4.1.1.1. Throughout this section, we view Braids<, and Braids as having

been constructed as a cubical 2-category, by carrying out exaactly the same construction
as in §3.1.1, but in 2-Cat rather than Cat.

Notation 4.1.1.2. Throughout this section, we shall view the objects and 1-arrows
of Braids<y as objects and 1-arrows of Braids via the functor

CaNBraids

Braids.

Braids<,
Viewing the object 1 of Braids<, as an object of Braids in this way, we shall denote,
for any integer n > 1, the object
1 ®PBraids * * * DBraids 1

N~
n

of Braids by n.
Notation 4.1.1.3. Let us denote the 1-arrow

OverCrossing

of Braids<y

-
S

Notation 4.1.1.4. Let us denote the 1-arrow
UnderCrossing

by o.

of BraidsSQ

.
N



by o~ 1.
Notation 4.1.1.5. Let us denote by J(LowerOverRightOver) the functor

oS

Braids<,
corresponding to the following square in Braids<s.

d

2—2

2—2

Notation 4.1.1.6. Let us denote by d(UpperOverRightUnder) the functor

oS

Braids<,

corresponding to the following square in Braids<s.

Notation 4.1.1.7. Let us denote by J(LowerUnderRightUnder) the functor

oS

Braidsgg

corresponding to the following square in Braids<s.

ud

2 —2

2— 72

g

Notation 4.1.1.8. Let us denote by d(UpperUnderRightOver) the functor

oS

Braids<,



corresponding to the following square in Braids<,.

-1
299 .9

2 — 2

id

Notation 4.1.1.9. Let us denote by d(LowerOverLeftUnder) the functor

oS Braidsgg

corresponding to the following square in Braids<s.

ud

2—2

Notation 4.1.1.10. Let us denote by d(UpperOverLeftOver) the functor

oS

Braids<

corresponding to the following square in Braids<,.

2 —2

ud
Notation 4.1.1.11. Let us denote by d(LowerUnderLeftOver) the functor

oS

BraidsSQ

corresponding to the following square in Braids<,.

o 1

2— 2

0.—1




Notation 4.1.1.12. Let us denote by d(UpperUnderLeftUnder) the functor

oS

Braids<

corresponding to the following square in Braids<.

2—2

Notation 4.1.1.13. Let

oS e oS
-8&% A@ight
iy ig

Ll 08

be a diagram in 2-Cat which defines a coproduct of eight copies of 0S.

Notation 4.1.1.14. Let
if,e% /‘g,eight
LlsS

be a diagram in 2-Cat which defines a coproduct of eight copies of S.
Notation 4.1.1.15. Let

a5 !

Lls S

denote the canonical functor such that the following diagram in 2-Cat commutes for
every 1 <7 <8&.

-0S,eight
L

oS S

Lls S

.08, eight
g



Notation 4.1.1.16. Let

generators
| |g 0S Ls Braids<,

denote the canonical functor such that the following hold.

(1) The following diagram in 2-Cat commutes.

Z-@S,eight
08 — ||, 08
enerators
8(LowerOverRight(h l Use
Braidsgg
(2) The following diagram in 2-Cat commutes.
.08, eight
b2
aS ||s0S
enerators
8(UpperOverRightUm l Use
Braids<,
(3) The following diagram in 2-Cat commutes.
.08, eight
'3
0S8 Ll 0S
enerators
8(LowerUnderRightUrm kug nerarer
Braids<
(4) The following diagram in 2-Cat commutes.
.08 ,eight
Uy
aS |lg 0S8

enerators
d(UpperU nderRightoveX l Lse

Braids<,



(5) The following diagram in 2-Cat commutes.

Z-@S,eight
08 — 11,08
enerators
G(LowerOverLeftUrm k Use
BraidsSz
(6) The following diagram in 2-Cat commutes.
.08, eight
L6
oS | |s 0S
enerators
8(UpperOverLeftOvek ‘ Lse
Braids<s
(7) The following diagram in 2-Cat commutes.
.08, eight
b7
oS |ls 0S
enerators
8(LowerUnderLeftCm k Use
Braids<
(8) The following diagram in 2-Cat commutes.
.08, eight
's
oS | |s 0S
enerators
8(UpperUnderLeftUrm ‘ Use
Braids<s
Notation 4.1.1.17. Let
Ls¢
Lls 08 Lls S
2-Braidsdouble
Ls generatorsk [ re <
Braids<, 2—Braidsi°2UbIe

2—Braidsd<°5Jble
Tl -



be a co-cartesian square in 2-Cat.

Notation 4.1.1.18. We denote the 2-arrow of 2—Braidsd§°2uble corresponding to the
functor

2-Braids®”™ .5 cight
"o °h : Jcdouble
) 2-BraidsZ,

by LowerOverRightOver, or o, oro for short, and depict it as follows.

.

|7

_/

Remark 4.1.1.19. The previous figure depicts two planes, one of which is broken
into two pieces. The plane which is unbroken is depicted in blue in the following figure.

The other plane is broken where it appears to cross the first plane. One piece of the
broken plane is depicted in green in the following figure.



The second piece of the broken plane is depicted in green in the following figure. This
piece actually lies behind the other plane as we look at it, and can only be seen because
we have depicted the other plane as if it were hollow.

All other pictures of 2-braids that we draw are to be understood in this way.

Notation 4.1.1.20. We denote the 2-arrow of 2-Braids%°2”ble corresponding to the
functor

2-Braidsdouble
TO -

.S,eight
Ol . 1 _double
S 2-BraidsZ;,

by UpperOverRightUnder, or oyogry for short, and depict it as follows.



Notation 4.1.1.21. We denote the 2-arrow of 2—Braidsd§°2Uble corresponding to the
functor

2-Braids®"™ .5 cight
"o ot . 1 double
) 2-BraidsZ,

by LowerUnderRightUnder, or o yry for short, and depict it as follows.

/

Notation 4.1.1.22. We denote the 2-arrow of 2—Braidsi°2”ble corresponding to the
functor

2_Braidsdouble .S.eight
ro R

S

+ 1.double
2-BraidsZ,

by UpperUnderRightOver, or oyyro for short, and depict it as follows.

\




Notation 4.1.1.23. We denote the 2-arrow of 2—Braids‘;°2Uble corresponding to the
functor

2—Braidsd§°§Jble .S, eight
TO ©] 25

S

- 1.double
2-Braids2;

by LowerOverLeftUnder, or o oLy for short, and depict it as follows.

_—

Notation 4.1.1.24. We denote the 2-arrow of 2—Braids‘%°2”ble corresponding to the
functor

2—Braids‘2’§‘ble .S, eight
"o © - 1.double
) 2-BraidsZ,

by UpperOverlLeftOver, or oyoLo for short, and depict it as follows.

]

RN

Notation 4.1.1.25. We denote the 2-arrow of 2—Braidsi°2uble corresponding to the
functor

2-Braids®™ s cight
T‘O o 7,7

S

2-Braids®'

by LowerUnderLeftOver, or o,y o for short, and depict it as follows.



\

Notation 4.1.1.26. We denote the 2-arrow of 2—Braids‘;°2Uble corresponding to the
functor
2—Braids‘%’§’bIe S tw

To ©1g

S

. 1.double
2-Braids 2,

by UpperUnderLeftUnder, or oyyLy for short, and depict it as follows.

\

Remark 4.1.1.27. The definition of 2—Braidsi°2Uble can be thought of as follows. We
begin with a category Braids<s. We then proceed as follows.

(1) We add eight 2-arrows whose boundaries are configurations of arrows of Braids<s,
of which either the top and left arrow, the top and right arrow, the bottom and
right arrow, or the bottom and left arrow are identities.

(2) We then add exactly those further 2-arrows that we need to have a cubical
2-category, namely compositions of arbitrary m x n grids made up of the eight
2-arrows of (1), where m > 0 and n > 0 are integers, in which the horizontal
sources and targets of the 2-arrows match in the m direction, and the vertical
sources and targets of the 2-arrows match in the n direction.

Notation 4.1.1.28. We depict vertical composition in both 2-Braidsd§°2Uble and 2-Braids®uP'®
as vertical glueing. Thus, for instance, there is a 2-arrow

OLORO Over OUOLO;



which we depict as follows,

We depict horizontal composition in both 2—Braidsi°2Uble and 2-Braids®“?*® as horizontal

glueing. Thus, for instance, there is a 2-arrow

OLORO ©hor TUOLO;

which we depict as follows.

In each of these two figures, the two generating 2-arrows depicted should be imagined
by the reader to be glued. We do not do so, as we feel the figures are clearer as they
are. We shall depict 2-braids in this way throughout.

Notation 4.1.1.29. We shall view the objects and arrows of Braids<s as objects and

l-arrows of 2-Braids?%™®®, via the functor



: ydouble
2—Bra|dsS2

- " . 1 double
Braids<s 2-Braids) ™.

Notation 4.1.1.30. Let
2-Braids%osPle 2-Braidsdo®'e

p p
: 2—Braids%°2”bIe X 2—Braidsd§°2Uble 2

2—Braidsi°2“b'e 2_Braid5102uble

be a diagram in 2-Cat which defines a binary product.

Notation 4.1.1.31. Let

(1,1)

locat ———— 2—Braids‘%°2uble X 2—Braidsd§°2”ble

be the canonical functor such that the following diagram in 2-Cat commutes.

12-Cat

(1,1)

- 1double + 1.double - 1.double - 1double
2-BraidsZ, 2-Braids2,”" x 2-BraidsZ, ™ —————— 2-Braids2,

2-Braids%%' 2-Braids?%
by D

Definition 4.1.1.32. The 2-category of 2-braids with double plane crossings is, ap-
pealing to Fact [2.2.1.4] the free strict monoidal cubical 2-category on the monoidal
datum M, g, ,igesome = (1o-cat, 2—Braids%°2“b'e, (1,1),2) internal to 2-Cat.

Notation 4.1.1.33. We denote the 2-category of 2-braids with double plane crossings
by 2-Braids®"?®. We denote by can, g, the canonical functor

2-Braids< 2-Braids®P.

Remark 4.1.1.34. The construction of the category 2-Braids®"?'® can be thought as
taking the free strict monoidal category upon 2-Braids<,, subject to the requirement
that 1 ® 1 = 2. The objects and 1-arrows can be thought of in the same way as those
of Braids. The 2-arrows of 2-Braids®"""® can be thought of as built from the 2-arrows
of 2-Braids®%™ by concatenation in the direction orthogonal to those we have chosen
for depicting horizontal and vertical composition. Thus, for instance, we depict the
2-arrow
oLoro ® id(1)

as follows.



Y,
[

/

Notation 4.1.1.35. Appealing to Fact [2.2.1.4] let us denote by F(9S) the free strict
monoidal cubical 2-category on dS. Let us denote the canonical functor

oS F(9S)

by cangs.

Notation 4.1.1.36. Appealing to Fact [2.2.1.4] let us denote by F(S) the free strict
monoidal cubical 2-category on 8. Let us denote the canonical functor

S— F(S)
by cang.
Notation 4.1.1.37. Let us denote by
F(0S) —— F(S)

the functor of strict monoidal 2-categories to which the functor
Cangs) ot

oS F(S)

gives rise, by means of the universal property of F(9S).

Notation 4.1.1.38. Throughout the remainder of this section, let us denote by o
the 1-arrow

OverCrossing ® id

of 2-Braids®°ub'e.

p
S



Notation 4.1.1.39. Throughout the remainder of this section, let us denote by ;!
the 1-arrow

UnderCrossing ® id 5

of 2-Braids°uP'e,

.
N\

Notation 4.1.1.40. Throughout the remainder of this section, let us denote by o9
the 1-arrow

1d ® OverCrossing

of 2-Braidsd°uP'e,

P
S

Notation 4.1.1.41. Throughout the remainder of this section, let us denote by o, *
the 1-arrow

td ® UnderCrossing
3 3

of 2-Braids®°ub'e.

.
N\

Notation 4.1.1.42. Let us denote by d(TwoUnOnce) the canonical functor of strict
monoidal cubical 2-categories



F(0S) 2-Braids®"

to which the functor

2_Braidsdouble

oS

corresponding to the following square of 1-arrows in 2-Braids®®“'

of the universal property of F(9S).

gives rise, by means

02

Notation 4.1.1.43. Let us denote by 9(OneOnceTwice) the canonical functor of strict
monoidal cubical 2-categories

F(0S) 2-Braids®"

to which the functor

oS 2-Braidsdouble

corresponding to the following square of 1-arrows in 2-Braids®“"*® gives rise, by means
of the universal property of F(9S).

01

33— 3

— — -1 1
0110021[ [01 © 03

33— 3

02

Notation 4.1.1.44. Let us denote by d(TwoUnTwice) the canonical functor of strict
monoidal cubical 2-categories

2-BraidseuPle

F(9S)

to which the functor

oS 2-Braidsdouble

corresponding to the following square of 1-arrows in 2-Braids®""® gives rise, by means
of the universal property of F(9S).



Notation 4.1.1.45. Let us denote by 9(OneTwiceOnce) the canonical functor of strict
monoidal cubical 2-categories

F(OS) 2-Braids®u'e

to which the functor

oS 2-Braidsdouble

corresponding to the following square of 1-arrows in 2-Braids®®“'

of the universal property of F(0S).

gives rise, by means

1
01

33— 3

1, -1 -1, -1
o, o0, [ kal o0,

Notation 4.1.1.46. Let us denote by d(TwoOnceUn) the canonical functor of strict
monoidal cubical 2-categories

2-Braidsdouble

F(DS)

to which the functor

oS 2_Braidsdouble

corresponding to the following square of 1-arrows in 2-Braids®"® gives rise, by means
of the universal property of F(9S).

02

33— 3

—1 —1
09 0 04 [ kag 001

33— 3

01



Notation 4.1.1.47. Let us denote by d(OneUnTwice) the canonical functor of strict
monoidal cubical 2-categories

2-BraidseuPle

F(0S)

to which the functor

oS 2-Braidsdouble

double

corresponding to the following square of 1-arrows in 2-Braids gives rise, by means

of the universal property of F(9S).

01

33— 3

01002_1[ [afloag

33— 3

02

Notation 4.1.1.48. Let us denote by d(TwoTwiceUn) the canonical functor of strict
monoidal cubical 2-categories

2_BraidsouPle

F(0S)

to which the functor

oS 2-Braidsdouble

double

corresponding to the following square of 1-arrows in 2-Braids gives rise, by means

of the universal property of F(9S).

02

33— 3

-1 -1 -1 -1
0y ©0; [ [(72 004

33— 3

01
Notation 4.1.1.49. Let us denote by 9(OneUnOnce) the canonical functor of strict

monoidal cubical 2-categories

F(OS) 2-Braids®t'e

to which the functor

2-Braidsdouble

oS




double

corresponding to the following square of 1-arrows in 2-Braids gives rise, by means

of the universal property of F(0S).

Notation 4.1.1.50. Let us denote by 9(TwoOnceTwice) the canonical functor of strict
monoidal cubical 2-categories

F(0S) 2-Braids®"

to which the functor

aS 2_Braidsdouble

corresponding to the following square of 1-arrows in 2-Braids®“®"® gives rise, by means
of the universal property of F(9S).

Notation 4.1.1.51. Let us denote by d(OneTwiceUn) the canonical functor of strict
monoidal cubical 2-categories

2_BraidsdouPle

F(DS)

to which the functor

aS 2_Braidsdouble

corresponding to the following square of 1-arrows in 2-Braids®"® gives rise, by means
of the universal property of F(0S).



Notation 4.1.1.52. Let us denote by 9(TwoTwiceOnce) the canonical functor of strict
monoidal cubical 2-categories

F(0S)

2_BraidsouPle

to which the functor

2-Braidsdouble

oS

corresponding to the following square of 1-arrows in 2-Braids®""*® gives rise, by means
of the universal property of F(9S).

1
)

33— 3

-1, -1 -1, -1
0y 00 [ [02 00,

Notation 4.1.1.53. Let us denote by 9(OneOnceUn) the canonical functor of strict
monoidal cubical 2-categories

2_BraidsouPle

F(0S)

to which the functor

2-Braidsdouble

oS

corresponding to the following square of l-arrows in 2-Braids®®"® gives rise, by means

of the universal property of F(9S).
oy !

33— 3

0'100'2[ [0’100'2



Notation 4.1.1.54. Let

88 t% F(88 ), twelve
3P

|_|12

be a diagram in Mon(2-Cat) which defines a coproduct of twelve copies of F(0S).

Notation 4.1.1.55. Let

F(S) - F(S)

.F(S),t% F(S) twelve
(3} b2

LIsF(S)
be a diagram in Mon(2-Cat) which defines a coproduct of twelve copies of F(S).

Notation 4.1.1.56. Let

L Fos) !

F(S)

denote the canonical functor of strict monoidal cubical 2-categories such that the
following diagram in 2-Cat commutes for every 1 < j < 12.

(88) twelve

F(0S) = L1, F(9S)
L Llge

F(S) L, F(S)

iF(@S),twelve

Notation 4.1.1.57. Let

enerators
L], F(OS) Ue 2-Braids®oub'e

denote the canonical functor of strict monoidal cubical 2-categories such that the
following hold.

(1) The following diagram in Mon(2-Cat) commutes.



.F(0S),twelve
G

F(9S) L1, F(9S)

enerators
0(TwoU nm l e

2-Braidsd°uP'e

(2) The following diagram in Mon(2-Cat) commutes.

.F(9S),twelve
bo

F(9S) Ll1, F(9S)

enerators
8(OneOnceT& [ e

2-BraidsouPle

(3) The following diagram in Mon(2-Cat) commutes.

Z.F(BS) ;twelve

F(9S) - LI, F(OS)

enerators
8(TonnTm kl_l &

2-Braidsdouble

(4) The following diagram in Mon(2-Cat) commutes.

.F(8S),twelve
by

F(9S) L1, F(9S)

enerators
8(OneTwiceCh [ e

2-BraidsouPle

(5) The following diagram in Mon(2-Cat) commutes.

.F(9S),twelve

F(OS) -~ LI, F(OS)

enerators
6(TwoOnm ‘ e

2-BraidsouPle




(6) The following diagram in Mon(2-Cat) commutes.

.F(9S),twelve
6

F(9S) L1, F(9S)

enerators
d(OneU nT& [ e

2_BraidsouPle

(7) The following diagram in Mon(2-Cat) commutes.

.F(0S),twelve
b7

F(9S) Li» F(9S)

enerators
a(Tonwim kl—l &

2_Braidsdouble

(8) The following diagram in Mon(2-Cat) commutes.

Z»F(@S) stwelve

F(OS) = LI, F(OS)

enerators
O(OneUnh ‘ e

2-BraidsouPle

(9) The following diagram in Mon(2-Cat) commutes.

.F(9S),twelve

F(0S) = Ly, F(OS)

enerators
a(TwoOnceTm k Ue

2-BraidsouPle

(10) The following diagram in Mon(2-Cat) commutes.



Z.F(é)S) Jtwelve

F(0S) — LI, F(OS)

enerators
8(OneTwim [ Ue

2-Braidsd°uP'e

(11) The following diagram in Mon(2-Cat) commutes.

.F(9S),twelve
481

F(9S) L1, F(9S)

enerators
8(Tonwicem k e

2-Braidsdouble

(12) The following diagram in Mon(2-Cat) commutes.

.F(0S),twelve
12

F(0S) L1, F(9S)

enerators
8(One0nm ‘ Us

2-Braidsdouble

Notation 4.1.1.58. Let

U F0s) — B2 )

2-Braids
| ],, generators k [ s

2-Braidsoub'e . 2-Braids
,r,%-Bralds

be a co-cartesian square in Mon(2-Cat).
Terminology 4.1.1.59. We refer to 2-Braids as the 2-category of 2-braids.

Notation 4.1.1.60. We denote the functor of strict monoidal 2-categories

2-Braids
1

2_Braidsdouble 2-Braids

by CaN2_Braids-



Notation 4.1.1.61. We denote the 2-arrow of 2-Braids corresponding to the functor

2-Braids . :F(S),twelve
To 01 o cang

S 2_Braidsdouble

by TwoUnOnce, or oyyo for short, and depict it as follows.

Notation 4.1.1.62. We denote the 2-arrow of 2-Braids corresponding to the functor

_Brai .F(S),twel
T'(2) Braids o 22( ),twelve o cang

S 2-Braidsdouble

by OneOnceTwice, or o107 for short, and depict it as follows.



Notation 4.1.1.63. We denote the 2-arrow of 2-Braids corresponding to the functor

2-Braids . :F(S),twelve
To 013 o cang

S 2_Braidsdouble

by TwoUnTwice, or ooyt for short, and depict it as follows.

Notation 4.1.1.64. We denote the 2-arrow of 2-Braids corresponding to the functor



2-Braids . F(S),twelve
To 01y o cang

S 2_Braidsdouble

by OneTwiceOnce, or o110 for short, and depict it as follows.

ﬁw
o

Notation 4.1.1.65. We denote the 2-arrow of 2-Braids corresponding to the functor

2-Braids . :F(S).twelve
7o 015 ocang

S 2_Braidsdouble

by TwoOnceUn, or o,0y for short, and depict it as follows.



Notation 4.1.1.66. We denote the 2-arrow of 2-Braids corresponding to the functor

2-Braids . ;F(S) twelve
o O 14 O Cang

) 2-Braidsouble

by OneUnTwice, or oyt for short, and depict it as follows.

Notation 4.1.1.67. We denote the 2-arrow of 2-Braids corresponding to the functor



2-Braids . F(S),twelve
To 01y o cang

S 2_Braidsdouble

by TwoTwiceUn, or ooty for short, and depict it as follows.

Notation 4.1.1.68. We denote the 2-arrow of 2-Braids corresponding to the functor

_Brai .F(S),twel
7,.(2) Braids o 28( ),twelve o cang

S 2-Braidsdouble

by OneUnOnce, or oyyp for short, and depict it as follows.



Notation 4.1.1.69. We denote the 2-arrow of 2-Braids corresponding to the functor

2-Braids . :F(S),twelve
To 019 o cang

S 2_Braidsdouble

by TwoOnceTwice, or o071 for short, and depict it as follows.

Notation 4.1.1.70. We denote the 2-arrow of 2-Braids corresponding to the functor



2-Braids . F(S),twelve
To ° 11 o cang

S 2_Braidsdouble

by OneTwiceUn, or o1y for short, and depict it as follows.

Notation 4.1.1.71. We denote the 2-arrow of 2-Braids corresponding to the functor

2-Braids . :F(S).twelve
To O1lyq o cang

S 2_Braidsdouble

by TwoTwiceOnce, or o,1o for short, and depict it as follows.



Notation 4.1.1.72. We denote the 2-arrow of 2-Braids corresponding to the functor

R .F(S),twel
7”8 Braids o Zlé )twelve O Cang . 1 _double
2-Braids

by OneOnceUn, or ooy for short, and depict it as follows.

Remark 4.1.1.73. The names we have given the 2-arrows of 2-Braids of Notation
[4£1.1.61] - Notation {.1.1.72 are determined as follows.



(1) The first of the three words refers to whether the north edge has a crossing
between the first and second strand (One) or between the second and third strand
(Two).

(2) The second of the three words refers to whether the plane whose north edge has
source 1 is unbroken (Un), broken by one of the other planes (Once), or broken
by both of the other planes (Twice).

(3) The third of the three words refers to whether the plane whose north edge has
source 2 is unbroken (Un), broken by one of the other planes (Once), or broken
by both of the other planes (Twice).

Remark 4.1.1.74. The construction of the category 2-Braids can be thought as freely
adding twelve 2-arrows to 2-Braids®®'®. The objects and 1-arrows of 2-Braids can be
thought of in the same way as of those of Braids.

The 2-arrows of 2-Braids can be thought of as built from the twenty 2-arrows defined
in Notation 4.1.1.18| - [4.1.1.26| and Notation 4.1.1.61| — Notation |4.1.1.72| by vertical

glueing, horizontal glueing, and concatenation in the direction orthogonal to those we
have chosen to depict vertical and horizontal glueing.

Remark 4.1.1.75. The underlying category of 2-Braids is exactly Braids. We shall,
not, however, need this in our formal work, and omit a proof.

4.1.2. 2-categories of 2-braids up to isotopy
Notation 4.1.2.1. Let

Bubble,ne(one half)
2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



id(2) id(2)

2 2 2
id(2) OLORO o JLuLO id(2)
2 2 2
o o1
id(2) OUORU o ! ouuLU id(2)
2 2 2
id(2) id(2)

Notation 4.1.2.2. Let

Bubble, (other half)

2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow

id(2)

id(2) id(id(2)) id(2)

id(2)
of 2-Braids gives rise.

Remark 4.1.2.3. The 2-arrows Bubble,,e(one half) and Bubbley,e(other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the bubble move,
which allows us to replace



/

\ |
L
_//\/ %V

by the following, and vice versa.

Notation 4.1.2.4. Let

Bubbleyo (one half)
2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids




corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.

1d(2 1d(2
2 R ®
id(2) OLURU o ! oLoLy id(2)
2 2 2
0.71 o
id(2) OUURO o ouoLo id(2)
2 2 2
id(2) id(2)

Notation 4.1.2.5. Let

Bubbleyo (other half)
2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow

id(2)

id(2) id(id(2)) id(2)

id(2)
of 2-Braids gives rise.
Remark 4.1.2.6. The 2-arrows Bubbley,,(one half) and Bubbley,,(other half) of 2-Braids

express algebraically the two halves of the Roseman move known as the bubble move,
which allows us to replace



by the following, and vice versa.

Notation 4.1.2.7. Let

Saddle,e (other half)
2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids




corresponding to the 2-arrow

id(2) idyer (07 0 0) id(2)

of 2-Braids gives rise.

Remark 4.1.2.8. The 2-arrows Saddley,e(one half) and Saddleye (other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the saddle move,
which allows us to replace

/my\/\\
[

by the following, and vice versa.




Notation 4.1.2.9. Let

Saddle,,(one half)

2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the

universal property of F(S), the functor

2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.

-1

2 o g
id(2) OUURO ouoLO
2
id(2) id(2)
id(2) OLURU -1 oLoLu
2
O_—l g

Notation 4.1.2.10.

Let

id(2)

id(2)



Saddleyo (other half)
2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow

of 2-Braids gives rise.

Remark 4.1.2.11. The 2-arrows Saddley,,(one half) and Saddle,,(other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the saddle move,
which allows us to replace

— o

//\

N
RN

//-

by the following, and vice versa.



Notation 4.1.2.12. Let

Saddleipree(0ne half)

2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the

universal property of F(S), the functor

2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following

2-arrows of 2-Braids gives rise.

id(2) id(2)
2

o ILuLo id(2)  oLoro
2

P o

o1 ouuLY id(2)  ouoru
2

id(2) id(2)



Notation 4.1.2.13. Let

Saddlehree (other half
e ). >-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

) 2-Braids
corresponding to the 2-arrow
) id(2) )
cloo idhor (07 0 0) cloo
2 2
id(2)

of 2-Braids gives rise.

Remark 4.1.2.14. The 2-arrows Saddleiee(one half) and Saddleee(other half) of
2-Braids express algebraically the two halves of the Roseman move known as the saddle
move, which allows us to replace

/ 7
N

by the following, and vice versa.



Notation 4.1.2.15. Let

Saddlef,,,(one half)

2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the

universal property of F(S), the functor

2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following

2-arrows of 2-Braids gives rise.

id(2) id(2)
2

o1 OLOLU id(2)  oLury
2

g 0.71

o oUoLO id(2)  ouuro
2

id(2) id(2)



Notation 4.1.2.16. Let

Saddleg,,, (other half)
2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

) 2-Braids
corresponding to the 2-arrow
) id(2) )
goo ! idnhor(0 0071 goo!
2 2
id(2)

of 2-Braids gives rise.

Remark 4.1.2.17. The 2-arrows Saddles,, (one half) and Saddleg,, (other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the saddle move,
which allows us to replace

ST
/ /

by the following, and vice versa.



Notation 4.1.2.18. Let

Tripleghe (one half
P ( ) 2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



o1 09 01

3 3 3 3
id(3) ouory @ 1 o’ o1 ouyoLo ® 1

: id(3) ; . : id(3) ;
id(3) 1 ® oLoro P oy 1 ® oLoLu

3 02 3 01 3 02 3
id(3) 1 ® oyoru oy P 1 ® oyoLo

; id(3) ; . ; id(3) ;
id(3) oLoro ® 1 o1 ot oo ® 1

3 o 3 o 3 o1 3

Notation 4.1.2.19. Let

Triplegne (other half
P ( ) 2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.

id(3)

id(3)

id(3)

id(3)



010092001

id(3) idyer (01 0 09 0 07) id(3)

01009 007

Remark 4.1.2.20. The 2-arrows Tripley,e(one half) and Tripleone (other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the triple move,
which allows us to replace

I
i
{\

J
be
i

|
A
IjiF

il

)

by the following, and vice versa.



Notation 4.1.2.21. Let

Triplewyo (one half
Plesuol ) 2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



o1 02 91

3 3 3 3
id(3) oyory ® 1 o’ o' ouuy ® 1
1d(3 id(3
3 ®) 3 027U 3 G 3
Zd(3) 1® oLury 0’51 U;l 1® oLowu
02_1 o1 09
3 3 3 3
id(3) 1 ® oyuro P 02 1 ® ouoro
1d(3 1d(3
3 ( ) 3 O1U0 3 ( ) 3
id(?)) OLoro ® 1 01 01 oLulo ® 1
3 3 3 3
o1 09 0.1—1

Notation 4.1.2.22. Let

Triplewyo (other half
Plesuol ) 2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.

id(3)

id(3)

id(3)

id(3)



011002001

id(3) idyer (07 0 0y 0 01) id(3)

w

0'1100'200'1

Remark 4.1.2.23. The 2-arrows Tripley,o(one half) and Tripley, (other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the triple move,
which allows us to replace

=R
Shiapso)

Ry =T
/ =

by the following, and vice versa.

Ay
/

/
L

|
5

|
i




Notation 4.1.2.24. Let

Triplethree (One half
Plettres( ) 2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3 3 3
id(3) ouuro ® 1 o1 o1 ouoLo ® 1
1d(3 1d(3
3 ©) 3 o200 3 & 3
id(3) 1 ® oLoro 02 02 1 ® owuo
09 g1 0-2_1
3 3 3 3
id(3) 1 ® oyoru oyt oy 1 ® oyuLu
1d(3 1d(3
3 ( ) 3 010T 3 ( ) 3
id(3) oLury ® 1 ot o' oo ® 1
3 3 3 3
0_1—1 09 01

Notation 4.1.2.25. Let

Tripleihree (Other half
) Pleciree( )2—Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.

id(3)

id(3)

id(3)

id(3)



01002001_1

id(3) idyer(01 0 09 0 07 1) id(3)

01002001_1

Remark 4.1.2.26. The 2-arrows Triplegee(one half) and Tripleynee(other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the triple move,
which allows us to replace

=i
|

Y \
“XX &V\J
— V

Syl
A

)

/

by the following, and vice versa.



Notation 4.1.2.27. Let

Tripleso,, (one half
Plefour( ) 2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



01 3 ) 3 01
id(3) oyuro ® 1 o1 o1 ouoLo ® 1

id(3) ; e 5 id(3)
id(3) 1 ® oLoro 02 02 1 ® ouo

o ; o ; o5

id(3) 1 ® oyoru oyt oy’ 1 ® oyuLu

id(3) ; ire 5 id(3)
id(3) oLury ® 1 ot or! oo ® 1

ot ’ oyt ’ 91
Notation 4.1.2.28. Let

Triplefour (other half) o Braide

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.

id(3)

id(3)

id(3)

id(3)



01002_1001_1

w

id(3) idyer (01 005 00 ) id(3)

w

01002_1001_1

Remark 4.1.2.29. The 2-arrows Triplef,,(one half) and Triplef,, (other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the triple move,
which allows us to replace

by the following, and vice versa.



Notation 4.1.2.30. Let

Triplesye (one half
Pletive( ) 2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 2 3 ik 3 i 3
id(3) ouoru ® 1 ot ot ouuLy ® 1

; id(3) ; . ; id(3) ;
id(3) 1 ® oLuru oy oyt 1 ® oroLu

3 7 3 o 3 > 3
id(3) 1 ® ouyuro P T2 1 ® ouoro

; id(3) ; o ; id(3) ;
id(3) oLoro ® 1 o1 o1 oo ® 1

3 - 3 — 3 — 3

o B

Notation 4.1.2.31. Let

Triplegye (other half
Plefue( ) 2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.

id(3)

id(3)

id(3)

id(3)



-1, -1
0, 0045 00

id(3) idyer(07 00y o 0y) id(3)

w

01_1002_1001

Remark 4.1.2.32. The 2-arrows Triplegye(one half) and Triplegye(other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the triple move,
which allows us to replace

)
Ay
/

/
[\o

|
i)
ImyE'==i]

/

:

Wl
\

\

by the following, and vice versa.



Notation 4.1.2.33. Let

Triplegix(one half
Plesic( ) 2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 i 3 i 3 i 3
id(3) ouuro ® 1 a1 ot oyuLy @ 1

; id(3) ; o ; id(3) ;
id(3) 1 ® oLury oy P 1 ® oLuLo

3 %’ 3 7 3 %’ 3
id(3) 1 ® oyuro P oy’ 1 ® oyuLu

; id(3) ; e ; id(3) ;
id(3) oLury @ 1 ot o1 q®1

3 — 3 — 3 — 3

of o o8

Notation 4.1.2.34. Let

Triplegy (other half
Plesic( ) 2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.

id(3)

id(3)

id(3)

id(3)



Remark 4.1.2.35. The 2-arrows Triplegy(one half) and Tripleg,(other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the tripe move,
which allows us to replace

=
=l
/

/ Y
ORI
WG

by the following, and vice versa.



Notation 4.1.2.36. Let

Triplegeyen (one half
P ( ) 2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



) 01 02

3 3 3 3
id(3) 1 ® oyoru oy’ 02 1 ® oyoLo

; id(3) ; . : id(3) ;
id(3) oLoro ® 1 a1 ot oo ® 1

3 01 3 02 3 01 3
id(3) ouoru ® 1 ot o1 ouoLo ® 1

; id(3) ; oo 5 id(3) ;
id(3) 1 ® oLoro 02 oy 1®oLow

3 o 3 o 3 o 3

Notation 4.1.2.37. Let

Triplegeyen (other half
P ( ) 2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.

id(3)

id(3)

id(3)

id(3)



092 001 009

id(3) idyer (09 0 01 0 09) id(3)

09 O 01009

Remark 4.1.2.38. The 2-arrows Triplegeyen(one half) and Triplegeyen(other half) of
2-Braids express algebraically the two halves of the Roseman move known as the
triple move, which allows us to replace

:
\

JIfTy

\
-
1K

o
|

il

\J
be
i

by the following, and vice versa.



Notation 4.1.2.39. Let

Triplecigh: (one half
e ) 2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3 3 3
Zd(3) 1 ® oyuro 02 02 1 ® ouoLo
1d(3 1d(3
3 ©) 3 J1U0 3 & 3
id(3) oLoro ® 1 o J1 oo ® 1
(o] o)) 0-1_1
3 3 3 3
id(3) ouoru ® 1 ot or! oyuy ® 1
id(3 id(3
3 ( ) 3 O2TU 3 ( ) 3
id(3) 1 ® oLyru oyt oy 1 ® oLowu
3 3 3 3
oyl o1 o9

Notation 4.1.2.40. Let

Triplegight (other half)

2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.

id(3)

id(3)

id(3)

id(3)



02001002_1

w

id(3) idyer (09 0 0y 005 1) id(3)

02001002_1

Remark 4.1.2.41. The 2-arrows Triplegight (one half) and Tripleggh: (other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the triple move,
which allows us to replace

[T
=

=

\

|

Ty

|

sl
/

/J
i
i

by the following, and vice versa.



Notation 4.1.2.42. Let

Triplepine(one half
P ( ) 2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



09 01 02

3 3 3 3
id(3) 1 ® oyoru oyt oyt 1 ® oyuru
1d(3 1d(3
3 G 3 o107 3 & 3
id(3) oLury ® 1 Ufl Ufl oo ®1
01_1 09 01
3 3 3 3
id(3) ouuro ® 1 o1 o1 ouoLo ® 1
1d(3 1d(3
3 ( ) 3 O2U0 3 ( ) 3
id(3) 1 ® oLoro 02 P 1 ® oruio
3 - 3 _ 3 — 3
2 1 o;

Notation 4.1.2.43. Let

Triplepine (other half
i ( ) 2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.

id(3)

id(3)

id(3)

id(3)



021001002

id(3) idyer(05 ' 0 01 0 03) id(3)

w
w

0'2100'100'2

Remark 4.1.2.44. The 2-arrows Triplepine(one half) and Triple,ine (other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the triple move,
which allows us to replace

I

—\
=
=

1

_/

JIfTy

o
|

\

/

[i

by the following, and vice versa.



Notation 4.1.2.45. Let

Tripleten (one half
Pleten ) 2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 > 3 i 3 i 3
id(3) 1 ® oyoru oyt oyt 1 ® oyuru

; id(3) ; . ; id(3) ;
id(3) oLury ® 1 o’ o' oo ® 1

5 01_1 3 02_1 5 o1 5
id(3) ouuro ® 1 o1 o ouoLo ® 1

; id(3) ; e ; id(3) ;
id(3) 1 ® oLoro 02 P 1 ® oLuro

3 - 3 — 3 — 3

oy o,

Notation 4.1.2.46. Let

Tripleten (other half
Pleten ) 2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.

id(3)

id(3)

id(3)

id(3)



-1 -1
0y 00, 003

w

id(3) idyer(0y 007t 0 09) id(3)

w
w

02_1001_1002

Remark 4.1.2.47. The 2-arrows Tripleie,(one half) and Triplete, (other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the triple move,
which allows us to replace

o
|

[ —

\

N

e
[ i
\/\W I

by the following, and vice versa.



Notation 4.1.2.48. Let

Triplegjeven (0ne half
Pledteven( ) 2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3 3 3
id(3) 1 ® oyuro P o 1 ® oyoLo

; id(3) ; - 5 id(3) ;
id(3) oLoro ® 1 o 01 oo ® 1

3 7 3 i 3 i 3
id(3) ouyoru ® 1 ot or! oyuy ® 1

; id(3) ; pare 5 id(3) ;
id(3) 1 ® oLyru oyt oy 1 ® oLoLu

3 -1 3 -1 3 09 3

o R

Notation 4.1.2.49. Let

Triplecieven (other half)
S) 2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.

id(3)

id(3)

id(3)

id(3)



02001_1002_1

id(3) idyer (09007 00y t) id(3)

02001_1002_1

Remark 4.1.2.50. The 2-arrows Triplegeven(0one half) and Triplegeyen(other half) of
2-Braids express algebraically the two halves of the Roseman move known as the triple
move, which allows us to replace

AT ALY
/\

/,
L
\

by the following, and vice versa.



Notation 4.1.2.51. Let

Tripleqyelve (One half
Plesuete( ) 2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3 3 3
id(3) 1 ® ouyuro oy oyt 1 ® oyuru

; id(3) ; - 5 id(3) 5
id(3) oLury ® 1 ot 71 oo ® 1

3 7 3 % 3 o 3
id(3) oyuro ® 1 a1 ot ouuy ® 1

; id(3) ; oor 5 id(3) 5
id(3) 1 ® oLuru oyt 02 1 ® oruo

3 — 3 — 3 — 3

o5 o o5

Notation 4.1.2.52. Let

Triplewelve (other half
Pletweie( )Z—Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.

id(3)

id(3)

id(3)

id(3)



14 =14 -1
o, 00, 00,

id(3) idyer(0y ooy ooyt id(3)

Remark 4.1.2.53. The 2-arrows Tripleyene(one half) and Triplegene(other half) of
2-Braids express algebraically the two halves of the Roseman move known as the triple
move, which allows us to replace

—

V

Ml
/\

by the following, and vice versa.



Notation 4.1.2.54. We denote the following 2-arrow

g

2 —2

id(2) [ kid@)

2—2

of 2-Braids by VerticalOverCrossing, or oy for short.

Notation 4.1.2.55. We denote the following 2-arrow

2—2

2 —2

of 2-Braids by VerticalUnderCrossing, or oy for short.

Notation 4.1.2.56. We denote following 2-arrow
id(2)

D

id(2)

of 2-Braids by HorizontalOverCrossing, or oo for short.



Notation 4.1.2.57. We denote the following 2-arrow
id(2)

D

2— 2

id(2)
of 2-Braids by HorizontalUnderCrossing, or oy for short.

Notation 4.1.2.58. To make the pasting diagram for the tetrahedralmove more
readable, some of the notation is simplified. Every l-arrow without notation is the
identity. The identity 2-arrow, id(id(4)), is denoted by id. The 2-arrows have a
number, 1,2 or 3, as an additional subscript. This number says which two planes
that are crossing. If the number is ¢, then the i’th and (¢ + 1)’th plane cross. Other
simplification is expressed in the following list.

1) S;=c'®c7!
Sy = OHu ® OLURUY
Ss = oLoLu ® THy

Sy = ovy ® oHo

)

)

)

5) S5 = oLurRU ® THU
) S6 = onu @ oLuLo

) S7 = oguoru ® THU

) S8 = oHo ® oyuLy

) So = oHo ® owy
510 = ony ® oyoru

S11 = oyurLy @ ony

Trpy = 1d(1) ® o201

Trp3 = 0710 X ’Ld(l)

)
)
)

13) Trpy = id(1) ® oa70
)
) Trpy = id(1) ® oa0u
)

Trp; = 020y ® id(1)



(17) Trpg = o201 ®id(1)
Notation 4.1.2.59. Let

Tetrahedraly,e(one half)
2-Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.

Notation 4.1.2.60. Let

Tetrahedraly,e (other half% _
F(S) -Braids

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.

Remark 4.1.2.61. The 2-arrows Tetrahedral,,.(one half) and Tetrahedralyne(other half)
of 2-Braids express algebraically the two halves of the Roseman move known as the
saddle move, which allows us to replace

by the following, and vice versa.

Notation 4.1.2.62. Let
F(S) F(S)

ZE(% %,ﬁﬁ

Les F(S)

be a diagram in Mon(2-Cat) which defines a coproduct of 66 copies of F(S).
Notation 4.1.2.63. Let

one half moves
Llgs F(S) Lo 2-Braids

denote the canonical functor of strict monoidal cubical 2-categories such that the
following hold.



02

01 ) O3 P 01
4 4 4
-1 -1 -1 -1
01vo 02U0RU 09 O2HU Oy 09~ O2HU 09 "O2uUULU 01vu
-1
oy 01
4 4 Trp, 4
~1 -1 -1 -1
T1UORU o S S1 S o o3 Ss St Se 01 O1UuLU
-1 -1 -1
O3 o1 O2 01 03
4 4 4
. ‘H_y ‘H_y .
ud o3y O1UORU o) 01 O1uuLU O3v0 id
-1
O3 03
4 4 Trp, 4
. ‘H ‘H .
id T3vU T2LURU o 05 O2L0LU T3v0 id
-1 —1 -1 -1
O3 09 01 09 03
4 4 4
—1 -1
O2HO 02 09 O20ULU O1vu 02LORO g 02  O2HO
QHL
4 — 4 Trp, Trp, 4 —— 4
1 -1
O3LURU o3 03  O3HO o3 Sy 03 03HO 03 05 03L0LU
4 1 4 1 1 o 4 o
O3 oy oy 2 3



T 4 €
[0 [ Lo [0
ONED 39@7@ NHZo Tmb TNb NHZo TNb NYNI1Zo NAEO
: 14 14 poofdiL oy 4 14 ¥
0 €0
I—
€ I 1 €
D._O._mbﬂlb :m HW oﬂ@ Hlb Hlb w.@ Hm mm Hlb ndaNIEp
i i 4 4 i i i
o €0 (95) €o 1o
- - -
€ €
pr NATp D._O._mbﬁlb ﬁI.O NdNIEp OAlp pl
14 . 14 oot ¥ 14 . 14 v
0 0
—
4 4
p1 NATp nnnep, S0 Lo nYonzp OAlp P
i 4 4 4 4 i i
- - -
NHZp 2 Tmb n¥NIzp OAEp 30._NbTmb 2o OHZp
9 g
7 dip v 4 o 4 iy ype———7
0
-
BDDGTG 1o OHIp 1p 6 1o OHIp 1p TG 0¥0oNTp
i 4 4 4 4 i i



(1) The following diagram in Mon(2-Cat) commutes.

-F(S5),66
iF©)

F(S) Llss F(S)

one half moves
Bubblegne (one half) [u“

2-Braids

(2) The following diagram in Mon(2-Cat) commutes.

F(S),66
3

F(S) Llss F(S)

one half moves
Bubbleq,o(one half) ‘I_I%

2-Braids

(3) The following diagram in Mon(2-Cat) commutes.

JF(S).66
3
F(S) Lss F(S)
one half moves
Saddle,ne(one half) ‘u%

2-Braids

(4) The following diagram in Mon(2-Cat) commutes.

F(S),66
Ly

F(S) Llss F(S)

one half moves
Saddleyy, (one half) ‘LIGG

2-Braids

(5) The following diagram in Mon(2-Cat) commutes.



F(S),66

F(S) ——— Ly F(S)

one half moves
Saddlegpee (one half) [Uﬁﬁ

2-Braids

(6) The following diagram in Mon(2-Cat) commutes.

;F(5).66
6
F(S) Lgs F(S)
one half moves
Saddlero, (one half) ku%
2-Braids

(7) The following diagram in Mon(2-Cat) commutes.

JF(8).66
7
F(S) Les F(S)
one half moves
Tripleone (one half) ‘u%
2-Braids

(8) The following diagram in Mon(2-Cat) commutes.

;F(8)66
8
F(S) Les F(S)
one half moves
Tripleywo (one half) [u%
2-Braids

(9) The following diagram in Mon(2-Cat) commutes.

F(S),66
%9

F(S) Llss F(S)

one half moves
Triplegnree (0ne half) ‘U66

2-Braids



(10) The following diagram in Mon(2-Cat) commutes.

F(S),66
10

F(S) Llss F(S)

one half moves
Triplefour (one half) ku%

2-Braids

(11) The following diagram in Mon(2-Cat) commutes.

.F(S),66
211

F(S) Llss F(S)

one half moves
Triplegve (one half) [U%

2-Braids

(12) The following diagram in Mon(2-Cat) commutes.

.F(S),66
GV

F(S) Llss F(S)

. one half moves
Triplegx(one half) luw

2-Braids

(13) The following diagram in Mon(2-Cat) commutes.

F(S),66

F(S) ——— s F(S)

one half moves
Tripleseven (0ne half) RU%

2-Braids

(14) The following diagram in Mon(2-Cat) commutes.



F(S),66
L4

F(S) Les F(S)

one half moves
Tripleeight(one half) [I—Iﬁﬁ

2-Braids

(15) The following diagram in Mon(2-Cat) commutes.

F(S),66

F(S) 2 [ F(S)

one half moves
Triplepine(one half) [U“

2-Braids

(16) The following diagram in Mon(2-Cat) commutes.

F(S),66

F(S) 0 s F(S)

one half moves
Tripleen (one half) [uﬁﬁ

2-Braids

(17) The following diagram in Mon(2-Cat) commutes.

.F(S),66
(),

F(S) ———— s F(S)

one half moves
Tripleeleven (one half) ll_l&;

2-Braids

(18) The following diagram in Mon(2-Cat) commutes.

.F(S),66
()

F(S) ——— g F(S)

one half moves
Triplewelve (0ne half) ‘l—l66

2-Braids




(19) The following diagram in Mon(2-Cat) commutes.

F(S),66

F(S) —2 . s F(S)

one half moves
Tetrahedraly,e (one half) ‘u%

2-Braids

(66) The following diagram in Mon(2-Cat) commutes.

.F(S),66
F(S)

F(S) ——— g F(S)

|_]¢6 one half moves
Tetrahedralortyeight (0ne half)

2-Braids

Notation 4.1.2.64. Let

other half moves
Llgs F(S) Lls 2-Braids

denote the canonical functor of strict monoidal cubical 2-categories such that the
following hold.

(1) The following diagram in Mon(2-Cat) commutes.

-F(S5),66
iF©)

F(S) Llss F(S)

other half moves
Bubblegne (other half) [u“

2-Braids

(2) The following diagram in Mon(2-Cat) commutes.

F(S),66
3

F(S) Llss F(S)

other half moves
Bubble,,(other half) ‘U%

2-Braids



(3) The following diagram in Mon(2-Cat) commutes.

jF(S5).66
3
F(S) Llss F(S)
other half moves
Saddlegne (other half) JU“’
2-Braids

(4) The following diagram in Mon(2-Cat) commutes.

JF(5),66
4
F(S) Lss F(S)
other half moves
Saddleps (other half) [U“
2-Braids

(5) The following diagram in Mon(2-Cat) commutes.

JF(S).66
5
F(S) Lss F(S)
. other half moves
Saddlegyee (other half) [u“
2-Braids

(6) The following diagram in Mon(2-Cat) commutes.

Z.F(S),66
6
F(S) L6 F(S)
other half moves
Saddlegou (other half) kl_l%

2-Braids

(7) The following diagram in Mon(2-Cat) commutes.



.F(S),66
JF(S).

F(S) — Lls F(S)

other half moves
Triplegne (other half) ku‘iﬁ

2-Braids

(8) The following diagram in Mon(2-Cat) commutes.

JF(5),66
8
F(S) Lss F(S)
other half moves
Triplegyo (other half) [U%

2-Braids

(9) The following diagram in Mon(2-Cat) commutes.

jF(5).66
9
F(S) Les F(S)
other half moves
Tripleinree (other half) lu%
2-Braids

(10) The following diagram in Mon(2-Cat) commutes.

.F(S),66
F(S)

F(S) ———— g F(S)

other half moves
Tripleoy, (other half) kU%

2-Braids

(11) The following diagram in Mon(2-Cat) commutes.

.F(S),66
11

F(S) Llss F(S)

other half moves
Triplegve (other half) ‘LI%

2-Braids



(12) The following diagram in Mon(2-Cat) commutes.

JF(8),66
12
F(S) Llgs F(S)
other half moves
Tripleg (other half) ll_'%
2-Braids

(13) The following diagram in Mon(2-Cat) commutes.

JF(S).66
13
F(S) Lgs F(S)
other half moves
Triplegeven (other half) ku%
2-Braids

(14) The following diagram in Mon(2-Cat) commutes.

F(S),66
l14
F(S) Lle F(S)
other half moves
Tripleeignt (other half) [UGG
2-Braids

(15) The following diagram in Mon(2-Cat) commutes.

F(S),66

F(S) 2 [y F(S)

other half moves
Tripleyine(other half) ‘LIGG

2-Braids

(16) The following diagram in Mon(2-Cat) commutes.



F(S),66

F(S) —2 . |y F(S)

other half moves
Triplecen(other half) [U%

2-Braids

(17) The following diagram in Mon(2-Cat) commutes.

F(S),66

F(S) ——— |y F(S)

other half moves
Tripleeieven (other half) lu%

2-Braids

(18) The following diagram in Mon(2-Cat) commutes.

.F(S),66
F(S)

F(S) ———— s F(S)

other half moves
Triplewelve (other half) [LI%

2-Braids

(19) The following diagram in Mon(2-Cat) commutes.

F(S),66
l1g

F(S) Llgs F(S)

|_|g other half moves
Tetrahedraly,e (other half)

2-Braids

(66) The following diagram in Mon(2-Cat) commutes.



F(S),66
L6

F(S) Llgs F(S)

| |gs other half moves
Tetrahedralfortyeight (0ther half)

2-Braids

Notation 4.1.2.65. Let

| lgs one half moves
Lles F(S) 2-Braids AR moves 2-Braids/R-moves

|_lg6 other half moves

be a diagram in Mon(2-Cat) which defines a coequaliser.

Remark 4.1.2.66. The underlying category of 2-Braids/R-moves is exactly Braids/R-moves.
We shall, not, however, need this in our formal work, and omit a proof.

Remark 4.1.2.67. Let us regard a pair of 2-braids as equivalent if one can be
obtained from the other by a finite sequence of Roseman moves, namely any of the
Roseman moves Bubbleg,., Bubble.o, Saddley,, . .., Saddlesy,, Triplegne, - - ., Triplewelve,
Tetrahedralgne, ..., Tetrahedralyenty four- In other, we regard a pair of 2-braids as
equivalent if they are isotopic. The 2-arrows of 2-Braids/R-moves can be thought of as
arrows of 2-Braids, namely as 2-braids, up to isotopy.



4.2. Temperley-Lieb 2-categories and Markov trace
functors

We define a cubical 2-category 2-TL in two steps. On objects and 1-arrows, 2-TL is
identical to TL. We think of the 2-arrows of 2-TL as diagrammatic 2-tangles, which
for us are planes and pieces of spheres joining four diagrammatic tangles which we
depict as drawn on two of the pairs of opposite faces of a cube.

The first step is to define a cubical 2-category 2-TL%"P*® ag the free strict monoidal
cubical 2-category on a monoidal datum M, 1. The 2-arrows of 2-TL are generated
by those diagrammatic 2-tangles which we shall make use of in to smoothen the
generating 2-arrows of 2-Braids®!?'.

To obtain 2-TL from 2-TL%"® we glue in 2-arrows which we think of as those
diagrammatic 2-tangles which we shall make use of in to smoothen the generating
2-arrows of 2-Braids which we think of as triple plane crossings. Formally, we express
this glueing by means of a colimit Mon(2-Cat).

Having defined 2-TL, we introduce the notion of a datum for smoothing of 2-braids.
Given such a datum S, we define from TL a 3-ring TL(S) in two steps, via a 3-ring
TL(S)P. We think of the arrows of TL(S) as linearisations of diagrammatic 2-tangles.

Following this, we introduce the notion of a Markov trace datum with respect to
a 3-ring. Given such a datum T, we construct a functor of 3-rings from TL(S) to a
3-ring T defined by means of T. On arrows, we think of this functor as defining a
categorification to linearised diagrammatic 2-tangles of the Markov trace for linearised
diagrammatic tangles constructed in §3.2]

Just as in and for 2-rings, one can, given a 3-ring R, construct a datum
for smoothing of 2-braids from it, and construct a Markov trace datum from it. We
omit the details, which are a straightforward categorification of those of and
43.2.9)

Work on 2-categories of 2-tangles has been carried out previously. We refer the
reader to, for instance, the paper [1] of Baez and Langford, the earlier but erroneous
paper [5] of Fischer, and §6.2 of the book [3] of Carter and Saito. However, our work is
significantly different and novel in several ways. Perhaps the most important of these
differences is that our definition of 2-TL(S) is motivated by allowing us to carry out
the notion of smoothing of 2-braids which we introduce in §4.3] rather by considering
the higher categorical structures into which topological 2-tangles assemble.

4.2.1. The Temperley-Lieb 2-category

Notation 4.2.1.1. Throughout this section, we shall view the objects and arrows of
TL<y as objects and arrows of TL via the functor

Al

Tl



Viewing the object 1 of TL<y as an object of TL in this way, we shall denote, for any
integer n > 1, the object

1®m - ®n 1

v~
n

of TL by n, and the object
1®1e)  O1i) L

~\~
n

of TL(S) by n.

Notation 4.2.1.2. Throughout this section, we view TL<, as a cubical 2-category
with no non-identity 2-arrows.

Notation 4.2.1.3. Let us denote the 1-arrow

CupAndCap
of TLSQ
by 7.

Notation 4.2.1.4. Let us denote by J(LowerRight) the functor

oS

TLSQ

corresponding to the following square in TL<s.

ud

2 —2

2—2



Notation 4.2.1.5. Let us denote by d(UpperRight) the functor

oS TLey

corresponding to the following square in TL<s.

2T .9

2 — 2

id

Notation 4.2.1.6. Let us denote by 0(LowerLeft) the functor

oS

Tl
corresponding to the following square in TL<s.

o

2—2

Notation 4.2.1.7. Let us denote by d(UpperLeft) the functor

oS

TLSQ

corresponding to the following square in TL<s.

9T .9
2 — 2
id
Notation 4.2.1.8. Let
oS R oS
i?&% Afour
1,08

be a diagram in 2-Cat which defines a coproduct of four copies of 9S.



Notation 4.2.1.9. Let

-S,Jk /’our
3 Ly

LS
be a diagram in 2-Cat which defines a coproduct of four copies of S.

Notation 4.2.1.10. Let
Ly

I_IS 88 |_|4 S

denote the canonical functor such that the following diagram in 2-Cat commutes for
every 1 <7 < 4.

.08, four
L

oS 1],08

LS

.08, four
L

Notation 4.2.1.11. Let

| | generators

L], 08 TL<o

denote the canonical functor such that the following hold.

(1) The following diagram in 2-Cat commutes.

.08, four
(31

oS 11,08

t
8(LowerRighk kl_l generators

Tl

(2) The following diagram in 2-Cat commutes.



.08, four
)

oS L], 08
t
d(UpperRight) { | | generators
Tl

(3) The following diagram in 2-Cat commutes.

Z'as,four
S > L, 05
t
O(LowerLeft) ‘ || generators
TL<o

(4) The following diagram in 2-Cat commutes.

iBS,four
08 — 11,08
enerators
G(Upperm [ Le
TL<y
Notation 4.2.1.12. Let
L,
L, 08 LS
| | generators k [ TS'TLSQ
TLe, 2-TLEM

LSQ

be a co-cartesian square in 2-Cat.
Notation 4.2.1.13. We denote the 2-arrow of 2—TLd§°2ijle corresponding to the functor

I
2_-|-|_d§05be .S, four
TO (¢] /Ll

S 2_TL%02ub|e

by LowerRight, or 7 r for short, and depict it as follows.



Notation 4.2.1.14. We denote the 2-arrow of 2—TL°'S°2Uble corresponding to the functor

2-TLdgPke

.S, four
To Oy

S 2‘TLd§02LJbIe

by UpperRight, or myg for short, and depict it as follows.

P

Notation 4.2.1.15. We denote the 2-arrow of 2—TL%°2Uble corresponding to the functor

2'TLd§05ble .S, four
TO o1

S

2_TLd§02ub|e

by LowerLeft, or 7| for short, and depict it as follows.

o




Notation 4.2.1.16. We denote the 2-arrow of 2—TL%°2Uble corresponding to the functor

2'TLd§O§|ble .S, four
To 013

S

2_TLc%02ub|e

by Upperleft, or 7y, for short, and depict it as follows.

Notation 4.2.1.17. We shall view the objects and arrows of TL<s as objects and
l-arrows of 2—TLd§°2”b'e, via the functor

2-TLoyble
oo

Tl 2-TLE" .

Notation 4.2.1.18. Let
2—TL?;ble 2_TL<§>;ble

ouble pl ouble ouble p2 ouble
2-TLE™ 2-TLEMe x 2-TLIG™ 2-TLI™

be a diagram in 2-Cat which defines a binary product.
Notation 4.2.1.19. Let

(1,1)

12—Cat 2-T|_dSO2UbIe % 2_TLc;02uble

be the canonical functor such that the following diagram in 2-Cat commutes.

12—Cat

(1,1)

2_TL<102ub|e — 2-TLiOQUbIe % 2_TLd<o2ub|e — 2_TLd<o2ub|e
- 2-TLCouble - — 2_T | double =
<2 <2

yZ1 Pa



Definition 4.2.1.20. The Temperley-Lieb 2-category for 2-braids with double plane
crossings is, appealing to Fact [2.2.1.4] the free strict monoidal cubical 2-category on
the monoidal datum M, 1| douse = (12_Cat, 2—TL%°2“b'e, (1,1), 2) internal to 2-Cat.

Notation 4.2.1.21. We denote the Temperley-Lieb 2-category for 2-braids with
double plane crossings by 2-TL%"?'®. We denote by can, r wwe the canonical functor

2-TL<y 2-Tdouble,

Notation 4.2.1.22. Let us denote by 077" the canonical functor of strict monoidal
cubical 2-categories

F(OS) 2-T| double

to which the functor

88 2_-|—Ldou ble

Ldouble

corresponding to the following square of 1-arrows in 2-T gives rise, by means of

the universal property of F(9S).
id(3)

_—

3———3

id(3)
Notation 4.2.1.23. Let us denote by 973" the canonical functor of strict monoidal

cubical 2-categories

F(OS) 2-T| double

to which the functor

85 2_TLdou ble

Ldouble

corresponding to the following square of 1-arrows in 2-T gives rise, by means of

the universal property of F(0S).
id(3)

D

||

3———3

id(3)



Notation 4.2.1.24. Let us denote by 973" the canonical functor of strict monoidal
cubical 2-categories

F(9S) 2-TLdoubte

to which the functor

(98 2_TLdoubIe

corresponding to the following square of 1-arrows in 2-TLYP*® gives rise, by means of
the universal property of F(9S).

T1

33— 3

id(3) [ [z’d(i’))

33— 3

T2
Notation 4.2.1.25. Let us denote by 7, the canonical functor of strict monoidal
cubical 2-categories

F(0S) 2-T | double

to which the functor

88 2_TLdoub|e

corresponding to the following square of 1-arrows in 2-TLY "' gives rise, by means of
the universal property of F(9S).

T2

33— 3

id(3) [ [z‘d(?))

33— 3

1

Notation 4.2.1.26. Let us denote by 972" the canonical functor of strict monoidal
cubical 2-categories

2T Ldouble

F(9S)

to which the functor

88 2_TLdoubIe




corresponding to the following square of l-arrows in 2-TL9%""*® gives rise, by means of
the universal property of F(9S).

id(3)

33— 3

7'207'1[ kTQOTl

_—

id(3)

Notation 4.2.1.27. Let us denote by 975" the canonical functor of strict monoidal
cubical 2-categories

2T Ldouble

F(DS)

to which the functor

85 2_TLdou ble

corresponding to the following square of l-arrows in 2-TL9%"*® gives rise, by means of
the universal property of F(9S).

id(3)

 —

7'107'2[ leng

3———3

id(3)

Notation 4.2.1.28. Let us denote by 972" the canonical functor of strict monoidal
cubical 2-categories

F(OS) 2-T|double

to which the functor

(98 2_TLdou ble

Ldouble

corresponding to the following square of 1-arrows in 2-T gives rise, by means of

the universal property of F(9S).



1

3——3

"

33— 3

T2

Notation 4.2.1.29. Let us denote by 973" the canonical functor of strict monoidal
cubical 2-categories

F(OS) 2-T|double

to which the functor

(98 2_TLdoubIe

corresponding to the following square of 1-arrows in 2-TLYP"® gives rise, by means of
the universal property of F(9S).

71

3——3

33— 3

T2

Notation 4.2.1.30. Let us denote by 975" the canonical functor of strict monoidal
cubical 2-categories

2T Ldouble

F(9S)

to which the functor

(98 2_TLdoubIe

corresponding to the following square of 1-arrows in 2-TLYP"® gives rise, by means of
the universal property of F(9S).

T2

3——3

33— 3

1



Notation 4.2.1.31. Let us denote by 971y the canonical functor of strict monoidal
cubical 2-categories

2T Ldouble

F(0S)

to which the functor

aS 2_-|-Ldou ble

Ldouble

corresponding to the following square of 1-arrows in 2-T gives rise, by means of

the universal property of F(9S).

T2

33— 3

||

33— 3

1

Notation 4.2.1.32. Let us denote by 97} the canonical functor of strict monoidal
cubical 2-categories

F(0S) 2-T | double

to which the functor

(98 2_TLdou ble

corresponding to the following square of 1-arrows in 2-TLY"" gives rise, by means of
the universal property of F(9S).

T1

33— 3

7'107'2[ \17—107-2

33— 3

T2

Notation 4.2.1.33. Let us denote by 9715 the canonical functor of strict monoidal
cubical 2-categories

F(9S) 2-TLdoubte

to which the functor

88 2_TLdou ble




Ldouble

corresponding to the following square of 1-arrows in 2-T gives rise, by means of

the universal property of F(9S).

53— .3
3 — 3
Notation 4.2.1.34. Let
L., F(0S) | | generators T double

denote the canonical functor of strict monoidal cubical 2-categories such that the
following hold.

(1) The following diagram in Mon(2-Cat) commutes.

.F(0S),twelve

F(0S) — L F(05)
| | generators
(1) k
2_TLdoub|e

(2) The following diagram in Mon(2-Cat) commutes.

.F(0S),twelve
lo

F(0S)

L1, F(9S)
h | | generators

2_TLdou ble

(3) The following diagram in Mon(2-Cat) commutes.

.F(0S),twelve
t3

F(0S)

L1, F(9S)
k | | generators

2_-|—Ldouble



(4) The following diagram in Mon(2-Cat) commutes.

Z.F(BS) stwelve

F(0S) — > F(05)
| | generators
a(1y") k
2_TLdoub|e

(5) The following diagram in Mon(2-Cat) commutes.

.F(0S),twelve

FOS) — L2 F(2S)
| | generators
a(rs") k
2_TLdoub|e

(6) The following diagram in Mon(2-Cat) commutes.

.F(0S),twelve

F(0S) — L2 F(0S)
| | generators
(") k
2_TLdoub|e

(7) The following diagram in Mon(2-Cat) commutes.

Z.F(&S‘),twelve

F(0S) — L1, F(0S)
| | generators
a(r) k
2_-|-Ldoub|e

(8) The following diagram in Mon(2-Cat) commutes.



.F(0S),twelve

L1, F(9S)
k | | generators

2_-|—Ldouble

(9) The following diagram in Mon(2-Cat) commutes.

Z.F(&S') Jtwelve

9
F(9S) L1, F(9S)
| | generators
A(ry") k
2_-|—Ldouble

(10) The following diagram in Mon(2-Cat) commutes.

.F(0S), twelve

F(0S) — LI, F(DS)
| | generators
2_TLdoub|e

(11) The following diagram in Mon(2-Cat) commutes.

.F(98),twelve
b1

F(0S) L1, F(9S)

| | generators
oY) k
2_TLdou ble

(12) The following diagram in Mon(2-Cat) commutes.

.F(9S),twelve
L2

F(0S) L1, F(9S)

| | generators
o(ri3) k
2_-|-Ldoub|e



Notation 4.2.1.35. Let

U F0s) — 2 )

2-TL
||, generators S

2-T| double — 2-TL

be a co-cartesian square in Mon(2-Cat).
Terminology 4.2.1.36. We refer to 2-TL as the Temperley-Lieb 2-category.

Notation 4.2.1.37. We denote the functor of strict monoidal 2-categories

2-TL
1

.
2-TLoMe ——— 2-TL

by can,.Ty.

Notation 4.2.1.38. We denote the 2-arrow of 2-TL corresponding to the functor

2.TL . -F(S),twelve
T.D o Zl O Ca nS

S 2_TLdoub|e

by 712 ' and depict it as follows.




Notation 4.2.1.39. We denote the 2-arrow of 2-TL corresponding to the functor

_ .F(S),twel
r2TL o jFEhweve o cang
8 2_TLdoub|e

by 7'22 ' and depict it as follows.

C

Notation 4.2.1.40. We denote the 2-arrow of 2-TL corresponding to the functor

2.TL . -F(S),twelve
Ty Oy ocang

S 2_TLdoub|e

by 7'3? ' and depict it as follows.



Notation 4.2.1.41. We denote the 2-arrow of 2-TL corresponding to the functor

2.TL . -F(S),twelve
re oy o cang

S 2_-|-Ldoub|e

by 742 ' and depict it as follows.

.

\f )

;




Notation 4.2.1.42. We denote the 2-arrow of 2-TL corresponding to the functor

_ .F(S),twel
r2TL o jEShweve o cang
8 2_TLdoub|e

by 7'52 ' and depict it as follows.

_J|C

Notation 4.2.1.43. We denote the 2-arrow of 2-TL corresponding to the functor

2.TL . -F(S),twelve
Ty " Olg ocang

S 2_TLdoub|e

by 7'62 ' and depict it as follows.



N
-/ |

Notation 4.2.1.44. We denote the 2-arrow of 2-TL corresponding to the functor

2.TL . -F(S),twelve
TD o} Z7 O Ca nS

S 2_-|-Ldoub|e

by 7'72 ' and depict it as follows.




Notation 4.2.1.45. We denote the 2-arrow of 2-TL corresponding to the functor

_ .F(S),twel
r2TL o jEEhIwee o cang
8 2_TLdoub|e

by 7'82 ' and depict it as follows.

Notation 4.2.1.46. We denote the 2-arrow of 2-TL corresponding to the functor

2.TL . -F(S),twelve
re - O o cang

S 2_TLdoub|e

by 7'92 ' and depict it as follows.



Notation 4.2.1.47. We denote the 2-arrow of 2-TL corresponding to the functor

2.TL . -F(S),twelve
o AN O Cang

S 2_TLdoub|e

by det, and depict it as follows.

Notation 4.2.1.48. We denote the 2-arrow of 2-TL corresponding to the functor



2.TL . -F(S),twelve
To 014 O Cang

S 2_TLdoub|e

by 77, and depict it as follows.

N
/|

Notation 4.2.1.49. We denote the 2-arrow of 2-TL corresponding to the functor

2-TL . -F(S),twelve
re 0 iys ocang

S 2_TLdoub|e

by 753, and depict it as follows.



Remark 4.2.1.50. The underlying category of 2-TL is exactly TL. We shall, not,
however, need this in our formal work, and omit a proof.

4.2.2. The Temperley-Lieb 2-category with respect to a datum
for smoothing of 2-braids

Definition 4.2.2.1. A datum for smoothing of 2-braids consists of the following data.

(1) A 3-ring R. We shall also denote the cubical 2-category which is part of the
data of R by R.

(2) A pair A' = (A}, A}) of 1-arrows of R.
(3) A pair A%? = (A?’d, Ag’d> of 2-arrows R.
(4) An 8-tuple
A= (AT AT A AST AT AT A A ALY
of 2-arrows of R.

Notation 4.2.2.2. Throughout the remainder of this chapter, let S = (R, Al A%A A“)
be a datum for smoothing of 2-braids.

Notation 4.2.2.3. Appealing to Fact [2.1.3.16] let

2-TL(S)P",bi 2-TL(S)P" bi
3 3

R 2.TL(S)Pe

2-TL

be a diagram in Ring(2-Cat) which defines a binary coproduct.



Terminology 4.2.2.4. We refer to 2-TL(S)P™ as the pre-Temperley-Lieb cubical 2-
category with respect to S.

Notation 4.2.2.5. We denote the functor of 3-rings

2-TL(S)Pre bi
9
2-TL

2.TL(S)"

by cany.ti(spe.
Notation 4.2.2.6. Let us denote the cubical 2-category which is part of the data of
2-TL(S)P® by 2-TL(S)Pre.

Notation 4.2.2.7. Let
2-TL(S)Pe bi 2-TL(S)Pe bi
- 2-TL(S)P'® x 2-TL(S)Pre —

2-TL(S)" 2-TL(S)"

be the diagram in 2-Cat which is part of the data of 2-TL(S)P™, which defines a binary
product.

Notation 4.2.2.8. Appealing to Fact [2.2.2.2] let us denote the free 3-ring on S by
F37Ring<8)-

Notation 4.2.2.9. Let o be a 2-arrow of 2-TL. We then also denote by ¢ the canonical
functor of 3-rings

F3_R;ng(8) TL(S)Pre
to which the functor
o

S

2.TL(S)P

gives rise by means of the universal property of F3_ging(S).

Notation 4.2.2.10. Let o and 7 be 2-arrows of 2-TL. Let us denote by (o, 7) the
canonical functor of 3-rings

F3—Ring(8)

2-TL(S)P® x 2-TL(S)"

such that the following diagram in Ring(2-Cat) commutes.

I:Z*}—Ring (S)

2-TL(S)

— 2-TL(S)Pr x 2-TL(S)P :
2-TL(S)Pre bi 2-TL(S)P™e bi
Py %)

2-TL(S)



We denote by o ® 7 the 2-arrow of 2-TL(S)P™ corresponding to the functor
®Ti(s) © (0, 7)

2-TL(S)Pre.

Remark 4.2.2.11. In this way, we in particular have a notion of multiplication of

2-arrows of 2-TL(S)P™, thought of as formal sums of diagrammatic tangles, by A?’d,

Ag’d, and A?’t all 1 < j < 8. This, for us, is the crucial difference between 2-TL(S)P"
and 2-TL.

Notation 4.2.2.12. Appealing to Fact [2.2.2.2] let us denote the free 3-ring on 15.cat
by F3—ring(12—Cat)~

Notation 4.2.2.13. Let us denote by
2

F37ring<12-Cat) 2_TL(S)pre

the canonical functor of 3-rings to which the functor

2 pre s
2TLE™ b g

Lo car — 2-TL(S)Pr

gives rise by means of the universal property of Fs_ing(12-cat).

Notation 4.2.2.14. Let us denote the source and target of the arrow A of R by
ap and a; respectively, and the source and target of the arrow B of R by by and b,
respectively.

Notation 4.2.2.15. Let us denote by

- ((ao ®2) & (b ®2), (a1 ®2) & (b1 ®2)) 2T

the functor determined by the objects (ap ® 2) @ (by ® 2) and (a1 ® 2) @ (by ® 2) of
2-TL(S)Pre.

Notation 4.2.2.16. Appealing to Fact [2.2.2.2] let us denote the free 3-ring on 0Z by
F3_ring(OZ).

Notation 4.2.2.17. Let us denote by

Frons (1) (o2 he @2 nLe) -

the functor of 3-rings to which the functor

(a0 ®2) @ (b0 ®2), (01 ©2) & (b1 ®2)) 2TLE)™

gives rise by means of the universal property of F3_ing(0Z).



Notation 4.2.2.18. Appealing to Fact [2.1.3.16] let

Cana.TL(s)

F3_ring(0Z) 2-TL(S)Pre

[

(2,2)

2-TL(S)

be a diagram, in which the unlabelled arrow is

o (00) (a0 ®2) ® (by ®2), (a1 ®2) B (by ®2)) 2TLE

in Ring(2-Cat) which defines a coequaliser.

Remark 4.2.2.19. The idea of the construction of 2-TL(S) from 2-TL(S)P™ is that
we identify both of the objects (ap ® 2) @ (by ® 2) and (a; ® 2) & (by ® 2) of 2-TL(S)P™
with the object 2 of 2-TL(S)P*. This ensures that certain arrows of 2-TL(S) which we
shall make crucial use of in are endomorphisms of 2, which we shall require in
order to exhibit M, g .. o as a monoidal datum for 2-TL(S).

The objects and 1-arrows of 2-TL(S) can be thought of in the same way as those
of TL(S). Because of the way in which we will make use of 2-TL(S) in §3.3| we shall
typically think of the 2-arrows of 2-TL(S) as formal linear combinations of diagrammatic
tangles, the coefficients of which are non-commutative polynomials in the variables
A?’d, Ag’d, and A?’t for 1 < 5 < 8, built out of @& and ®. There are, though, many
arrows of 2-TL(S) which are not of this form.

4.2.3. Markov trace functors

Definition 4.2.3.1. Let R be a 3-ring. A Markov trace datum with respect to R
consists of the following data.

(1) A 3-ring T.
(2) A l-arrow

It

It

of T.

(3) Ad-tuple I'y = (L1, Tg2, Tas, Laa) of 2-arrows of T with the following bound-
aries.

1 id

It
id Lan g

It

It



of T.

It > It
of T.
o
v Las3 id
Iy ——— 11
of T.
o
v Laa4 id
It - It
of T.

(3) A 4-tuple I'y = (I'g1,Ta2, Las, Taa) of 2-arrows of T with the following bound-

aries.

17 id

It
id Lax Y

It

ISs

of T.



It

Iy ———Ir
of T.
1t id 1t
v a3 id
1t 1t
of T.
o
v Laa4 id
It 7 It
of T.

(4) A 12-tuple I'; = (I'y1, ..., 'y 12) of 2-arrows of T with the following boundaries.

11 id

It

Y I s Y

1t 1t

id

of T.




of T.

of T.

of T.

of T.

of T.

It

1
id i

ud

id 1t
Yoy I Yo

It

1t

1t

It

1t 1t



of T

of T

of T

of T

of T

1t ! 1t

7 Ft,g i

1t 5 1t

17 i 17

v Lo v

It T It

g —

Y I 10 Y

It T Ies

Iy ! Iy
oy i 7o

1t 1t

It 1y
vo ISP Teq

1t 1



of T.
(5) A 2-arrow

of T.

Notation 4.2.3.2. Until further notice, let R be a 3-ring, and let T = (Tp'e's"h, v, Ly Ity F)
be a Markov trace datum with respect to R.

Notation 4.2.3.3. Let

Tr
L|4 8 I—I Tpre—sph

denote the canonical functor such that the following diagram in 2-Cat commutes for
every 1 <5 <12

Z-f,four

S

LS
L], Tr

Tpre—sph

La;

Proposition 4.2.3.4. The following diagram in 2-Cat commutes.

L, ¢

L, 88 LS
| |, generators [ L], Tr
TL Tpre-sph
=2 TrSQ
Proof. O

Notation 4.2.3.5. Appealing to Proposition [4.2.3.4] let us denote by

Tr§2
22T L%O;ble T




the canonical functor such that the following diagram in 2-Cat commutes.

Ls ¢

L 08

|| generators

TLSQ

Tpre—sph

TrSQ

Proposition 4.2.3.6. The following diagram in 2-Cat commutes.

(1,1)

1Cat 2_TLdSozub|e % 2_TLd§oQub|e
Trgz X Tr§2
2 Tpre—sph % Tpre—sph
®Tpre-sph
2_TLcio2ub|e Tpre—sph
- TI’SQ
Corollary 4.2.3.7. The functor
T
2-TL%O2Ub|e r<2 Trre sph

exhibits My 1 sowe as a monoidal datum for TPesPh,

Notation 4.2.3.8. Appealing to Corollary [4.2.3.7, let

Tr Tpre—sph

2_TLdoub|e

denote the canonical functor of 3-rings to which the functor

TI’SQ

20T Lio2uble Tpre-sph

gives rise, by means of the universal property of 2-TLuP'e,



Notation 4.2.3.9. Appealing to Fact 2.2.2.2 let us denote by F3_ing(S) the free
3-ring on S. Let us denote the canonical functor

S — F3fring (8)

by cang, .. (S).

Notation 4.2.3.10. Let

F3 rlng m Ag twelve
L2

|_|12 Fs_ rlng

be a diagram in Ring(2-Cat) which defines a coproduct of twelve copies of F3_ing(S).

Notation 4.2.3.11. Let

Tr
|2 F3-ring(S) UL» Tpre-sph

denote the canonical functor of 3-rings such that the following diagram in 2-Cat
commutes for every 1 < 7 < 12.

.F3_ring(S) twelve
L

F3—ring(3) |_|12 F3—ring(3)

L1, Tr

Tpre—sph

Ly j

Proposition 4.2.3.12. The following diagram in Ring(Cat) commutes.

Lot

L1, F(0S) Lo F(S)
L] generatorsl L, Tr
2_-|—Ldouble T
Tr

Notation 4.2.3.13. Appealing to Proposition [4.2.3.12] let

2-TL Tr Tere-sph




denote the canonical functor of 3-rings such that the following diagram in Ring(2-Cat)
commutes.

U12 L

|_|12 F3—ring(5) |_|12 F3—ring(5))
||, generators ra T || Tr
2_TLdoubIe ) 2-TL
1
\
Tpre-sph
Tr
Notation 4.2.3.14. Let
TrS,pre—sph

DTL(S)Pre T ", Tresph

denote the canonical functor of 3-rings such that the following diagram in Ring(2-Cat)
commutes.

2 TLE)P bi 2 TL(E)P bi
R—— 2TL(S)Pre 2 2 TL
S,pre-sph
t Tr Tr
Tpre—sph

Terminology 4.2.3.15. We refer to

S,pre-sph
2_TL(S)pre TroPresp Tpre—sph

as the pre-spherical Markov trace functor associated to T.

Notation 4.2.3.16. For every 1 < 75 <4, let

..
Fa_ting(S) o Tpre-seh

denote the functor of 3-rings to which the functor



I'yiot
d.j Tpre-sph

S

gives rise, by means of the universal property of F3_ying(S).
Notation 4.2.3.17. For every 1 < j < 12, let

T, .
b Tpre—sph

F3—ring (S)

denote the functor of 3-rings to which the functor

| )
b Tpre—sph

S

gives rise, by means of the universal property of F3_ing(S).

Notation 4.2.3.18. Let

F3 rmg F3 rmg )
F3 r|n\ A
16
|—|16 F3 rmg

be a diagram in Ring(2-Cat) which defines a coproduct of 16 copies of F3_ing(S).
Notation 4.2.3.19. Let
Lis 0

pre-sph
T

|_|12 F3—ring(5>

denote the canonical functor of 3-rings such that the diagram

.F3_1ing(S),16
tj

F3—ring(5) |_|16 F3—ring (S)

L

Tpre—sph

La;

in 2-Cat commutes for every 1 < j < 4, and the diagram

>F37ring(8)716
L

F3_ring(S) 16 F3—ring(S)

k kl_hea

Tpre-sph



in 2-Cat commutes for every 5 < 5 < 16.

Notation 4.2.3.20. Let us denote by

\Y
Lis F3-ring(S) ——— F3-1ing(S)

the canonical functor of 3-rings such that the following diagram in Ring(2-Cat) com-
mutes for every 1 < j < 16.

.F3_1ing(S),16
tj

F3—ring(8) |_|16 F3—ring(8>

R

Tpre—sph

Notation 4.2.3.21. Let us denote by

T
|_|16 F3*ring<8)

Tpre—sph

the canonical functor of 3-rings to which the functor

r

Tpre—sph

S

gives rise.
Notation 4.2.3.22. Appealing to Fact [2.1.3.16] let

|_|16 6
|—|16 F3—ring (S) Tpre—sph
'oV

canpre

Tpre

be a diagram in Ring(2-Cat) which defines a coequaliser.
Notation 4.2.3.23. Let us denote by

S,pre
2TL(S)Pre T, Tore

the functor of 3-rings given by cantee o TPesPh,

Terminology 4.2.3.24. We refer to TP as the pre-Markov trace functor with respect
to T.

Notation 4.2.3.25. Appealing to Fact [2.2.2.2] let us denote the free 3-ring on 1,.cat
by F3_Ring(12-cat)-



Notation 4.2.3.26. Let us denote by

1Tpre Tpre

I:3—ring ( 12—Cat)

the canonical functor of 3-rings to which the functor

1Tpre
Lo cat Tere

gives rise, by means of the universal property of F3_ying(12-cat)-

Notation 4.2.3.27. Let us denote by

or TI’S’pre(CLO @ bo) L TrS’pre(al () bl) Tore

the canonical functor determined by the pair of objects Tr*P*(ag@by) and TrP®(a, ®b;)
of TPre.

Notation 4.2.3.28. Appealing to Fact [2.2.2.2] let us denote the free 3-ring on 157 by
F3_Ring(81').

Notation 4.2.3.29. Let us denote by

TSP (ao @ by) LI TroP®(ay @ b
Fa—ring (91) (&) (WO

the canonical functor of 3-rings to which the functor

S,pre S,pre
81 Tr ((10 b bo) U Tr (a1 &b bl) Tore

gives rise by means of the universal property of F3_ing(0Z).

Notation 4.2.3.30. Let us denote by

az_ ( ].Tpre 5 1Tpre ) Tpre

the functor determined by the pair (1w, 1ere) of objects of TP,
Notation 4.2.3.31. Let us denote by

]. I’e, ]_ re
Fg,,ring((?l) ( B Bl ) Tere

the canonical functor of 3-rings to which the functor

az' ( ].Tpre 5 ]_Tpre ) Tpre

gives rise by means of the universal property of F3_ing(0Z).



Notation 4.2.3.32. Appealing to Fact [2.1.3.16} let
TrS’pre(aO D bo) (] Trs’pre(al D bl)
F3—ring(al-) Tere
(]_Tpre, 1Tpre)

canT

be a coequaliser diagram in Ring(2-Cat).

Remark 4.2.3.33. The idea of the construction of T from TP is that we identify
both of the objects Tr*P®(ag @ a;) and Tr*P®(by ® by) of TP with the object lqwe of
TP, The purpose of this is to ensure that the functor of 3-rings

S,pre
2TL(S)Pe 1T T

extends to a functor from

2TL(S)

in the manner we shall now describe.

Proposition 4.2.3.34. The following diagram in 2-Cat commutes.

(ap ®2) @ (b @ 2)

1o cat 2-TL(S)Pr
2 cant o TroPre
2-TL(S)Pre T
cant o TroPre

Proposition 4.2.3.35. The following diagram in 2-Cat commutes.

(a1 ®2) ® (by ®2)

1ocat 2-TL(S)Pre
2 cant o TroPre
2-TL(S)Pr T
cant o TroPre
Proof. Entirely analogous to the proof of Proposition |4.2.3.34] O

Corollary 4.2.3.36. The following diagram in Ring(2-Cat) commutes.



((a0®2)® (bp ®2)) U ((a1 ®2) ® (b ®2))

F3_ring(0Z) 2-TL(S)Pre
(2,2) cant o TSere
2-TL(S)Pre T

cant o TroPre

Notation 4.2.3.37. Appealing to Corollary 4.2.3.36] let

T

2-TL(S) T

denote the canonical functor of 3-rings such that the following diagram in Ring(Cat)
commutes.

Cano.TL(S
2.TL(S) — o T (s)

k

Terminology 4.2.3.38. We refer to Tr° as the Markov trace functor with respect to
T.

T

T

Remark 4.2.3.39. The Markov trace functor

S
2.TL(S) " T
does not agree with the Markov trace functor
S
TLES) T

on l-arrows. The origin of this is in the passage from TP®P" to TP which has as a
consequence that v is forced to become equal to id(1yee).



4.3. The Kauffman 2-bracket invariant

Given a datum S for smoothing of 2-braids, we construct in a canonical way a strict
monoidal functor Smoothing from 2-Braids to 2-TL(S) which, on arrows, we think of as
‘smoothing’ a 2-braid to a formal linear sum of diagrammatic 2-tangles, categorifying
the smoothing functor which we constructed in The construction of this functor,
and in particular the way in which we define smoothing of triple plane crossings, is
perhaps the heart of this thesis.

Our notion of smoothing of triple plane crossings is motivated entirely by topological
considerations. To smoothen a triple plane crossing, we choose, for each of three pairs
of planes involved, one of the two ways to smoothen their double plane crossing. We
then fit the pieces of planes which we otain together in a compatible way. FEach triple
plane crossing has, in this way eight smoothings, rather than the two which we have
for a double plane crossing, or a crossing in the ordinary theory of braids. However,
the triple plane crossings do not give rise to the same smoothings. There are in fact
twelve possibilities, altogether.

Since each triple plane crossing gives rise to eight smoothings, we require eight
variables, A%’t, ey Ag’t to keep track of them. We do so as follows. The choice of
smoothing for each of the pairs of crossings in the triple plane crossing can be kept
track of by a triple, each of entry of which is either A%d or A%’d. We then simply pick
one way to assign the variables A?’t, e Ag’t to the eight possible such triples.

Given a Markov trace datum T, we combine our smoothing functor with the Markov
trace functor with respect to T constructed in §?7, to define a strict monoidal functor
from 2-Braids to a 3-ring T which is constructed from the data of T. On 2-arrows,
we think of this functor as categorifying the Kauffman bracket functor which we
constructed in We then demonstrate how this strict monoidal functor gives rise
to a functor from Braids/R-moves to T. On 2-arrows, we think of the construction of
last functor as a demonstration that we have constructed an invariant of 2-braids.

There is much which remains to be explored regarding our Kauffman 2-bracket
invariant. We have not had the opportunity yet to investigate its efficacy in detecting
interesting 2-braids which are not isotopic to trivial 2-braids. In particular, we are
very interested in using our invariant to detect 2-knottedness. However, considerable
work is first required to relate our 2-braid theory to 2-knot theory. There should be
a way to ‘close up’ our 2-braids to 2-knots, but this is a more subtle matter than in
ordinary braid and knot theory. In particular, it will almost certainly be necessary to
impose some restrictions on the possible boundaries of those 2-braids for which we
define ‘closing up’. Having now established a theoretical framework for a Kauffman
2-bracket invariant, which we believe to be robust, we plan in future work to explore
and refine it through calculating it for examples of 2-braids, once we understand better
how to obtain how to characterise such examples.

On a different note, we conjecture that our invariant can be significantly improved
by introducing a notion of writhe for 2-braids. We feel that we understand how to do
this, and plan to return to this in future work.



4.3.1. Smoothing functor
Notation 4.3.1.1. Let S = (R, A', A%?, A*) be a datum for smoothing of 2-braids.

Notation 4.3.1.2. Let us denote by Smoothing(LowerOverRightOver) the functor

S

2-TL(S)
corresponding to the 2-arrow
(Af’d ® id(id(2))> ® (Ag’d ® LowerRight)
of 2-TL(S).
Notation 4.3.1.3. Let us denote by Smoothing(UpperOverRightUnder) the functor

S

2-TL(S)
corresponding to the 2-arrow
<A%d ® @'d(id(2))> ® <A§’d ® UpperRight)
of 2-TL(S).
Notation 4.3.1.4. Let us denote by Smoothing(LowerUnderRightUnder) the functor

S

2-TL(S)
corresponding to the 2-arrow
(Ag’d ® id(id(2))> ® <A%d ® LowerRight)
of 2-TL(S).
Notation 4.3.1.5. Let us denote by Smoothing(UpperUnderRightOver) the functor

S

2-TL(S)
corresponding to the 2-arrow
(Ag’d ® z’d(z’d(2))> @ (A%d ® UpperRight)

of 2-TL(S).



Notation 4.3.1.6. Let us denote by Smoothing(LowerOverLeftUnder) the functor

S

2-TL(S)
corresponding to the 2-arrow
( A2 & id(i 2,d
2d o zd(zd(?))) @ (Al ® LowerLeft)

of 2-TL(S).
Notation 4.3.1.7. Let us denote by Smoothing(UpperOverLeftOver) the functor

S

2-TL(S)
corresponding to the 2-arrow
2d o : (s 2,d
(AQ’ ® zd(zd(Q))) @ (Al ® UpperLeft>

of 2-TL(S).

Notation 4.3.1.8. Let us denote by Smoothing(LowerUnderLeftOver) the functor

S 2-TL(S)

corresponding to the 2-arrow
<A%d ® id(id@))) ® (Ag’d ® LowerLeft)

of 2-TL(S).
Notation 4.3.1.9. Let us denote by Smoothing(LowerUnderLeftUnder) the functor

S

2-TL(S)
corresponding to the 2-arrow
(42! @ id(id(2))) © (A3 © UpperLeft)

of 2-TL(S).

Notation 4.3.1.10. Let

Smoothin
LIS L & 2TL(S)

denote the canonical functor such that the following hold.



(1) The following diagram in 2-Cat commutes.

.S, eight
3

S LS

thi
Smoothing(LowerOverRight(h [ng Smoothing

Braids<,

(2) The following diagram in 2-Cat commutes.

-S,eight
b2

S LlgS

thi
Smoothing(UpperOverRightUm [I_ls Smoothing

Braids<

(3) The following diagram in 2-Cat commutes.

-S,eight
'3

S LS

thi
SmOOthi”z‘%(LowerUnderRightUrm {USSmoo ing

Braids<,

(4) The following diagram in 2-Cat commutes.

if,eight

S Lls S

Smoothing(UpperUnderRightOve\ { LIs Smoothing

Braids<

(5) The following diagram in 2-Cat commutes.

.S, eight
5

S Ll S

b
Smoothing(LowerOverLeftUm lufﬂ Smoothing

Braids<,




(6) The following diagram in 2-Cat commutes.

-S,eight
le
) LlsS
thi
Smoothing(UpperOverLeft(k ['—IS Smoothing
Braids§2

(7) The following diagram in 2-Cat commutes.

.S, eight
t7

S LS

thi
Smoothing(LowerUnderLeft(h lUSSmOO Ing

Braids<,

(8) The following diagram in 2-Cat commutes.

-S,eight
i etg

S —° LIS

b
Smoothing(UpperUnderLeftcm kl—l?% Smoothing

Braids<

Proposition 4.3.1.11. The following diagram in 2-Cat commutes.

Ls ¢

Lls 95 LlsS
| generatorsl [ |_s Smoothing
Braids 2-TL(S
raiths2 Smoothing (5)

Notation 4.3.1.12. Appealing to Proposition [4.3.1.11} let us denote by

Smoothin
2-Braidstoybe & L oTL(S)

the canonical functor such that the following diagram in 2-Cat commutes.



Ls ¢

Ll 0S LlsS
|| generators ‘ Té‘B“aids‘be'e |lg Smoothing

Braids<s 2-Braids®yP'

2-Braids%%
Smoothing

1
2-TL(S)

Smoothing

Proposition 4.3.1.13. The following diagram in 2-Cat commutes.

(1,1)

Lcat 2-Braids23™* x 2-Braids"®"
Smoothing x Smoothing
2 2-TL(S) x 2-TL(S)

X2-TL(S)

2-Braids®, ' 2-TL(S
=2 Smoothing 5)

Corollary 4.3.1.14. The functor

Smoothing

2-Braids$y™* 2-TL(S)mu®

mult

exhibits M, g igsdowe as a monoidal datum for 2-TL(S)

Notation 4.3.1.15. Appealing to Corollary 4.3.1.14] let

Smoothing

2-Braids®"' 2-TL(S)mult

denote the canonical functor of strict monoidal cubical 2-categories to which the
functor
_ Smoothing
2-Braids®y®® ——————— 2-TL(S)

gives rise, by means of the universal property of 2-Braids®u'e.



Notation 4.3.1.16. Let us denote by Smoothing(TwoUnOnce) the canonical functor
of strict monoidal cubical 2-categories

F(0S) 2-TL(S)mut

to which the functor

S

2-TL(S)
corresponding to the 2-arrow
(A?t ® id(z’d(?)))) @ (A%t ® rf’t> @ (Aé’t ® 7'22’t> @ (A?t ® 7'42’t>
® (ASJ ® 75“) ® (A?t ® 792’t> ® <A§vt ® ﬁgf). ® (Ai’t ® ﬁ;)

Notation 4.3.1.17. Let us denote by Smoothing(OneOnceTwice) the canonical functor
of strict monoidal cubical 2-categories

F(0S) 2-TL(S)mult

to which the functor

S

2TL(S)
corresponding to the 2-arrow

(Aot e (4 er) e (4 erd) e (4 o)

® (Ag’t ® id(id(S))) @ (Aé’t ® 72”) ® (A?’t ® 73“> ® (Aﬁ’t ® 78“).

Notation 4.3.1.18. Let us denote by Smoothing(TwoUnTwice) the canonical functor
of strict monoidal cubical 2-categories

F(0S) 2-TL(S)mt

to which the functor

S

2-TL(S)
corresponding to the 2-arrow
(Aen)e (4 ed)e (4 ed) e (4 )

D (Ag’t ® Tf’t> ® (Aﬁ”f ® Tfét> b (A?’t ® id(z’d(?)))) &) (Ag’t ® 722’75).



Notation 4.3.1.19. Let us denote by Smoothing(OneTwiceOnce) the canonical functor
of strict monoidal cubical 2-categories

F(0S) 2-TL(S)mut

to which the functor

S

2-TL(S)
corresponding to the 2-arrow
(o) e (4 o) e (4 i) e (4 o)
= (A?;t ® 732”*) D (Aﬁvt ® 78“> D (A%t ® z‘d(z’d(s))> &) (Aﬁvt ® 72“).

Notation 4.3.1.20. Let us denote by Smoothing(TwoOnceUn) the canonical functor
of strict monoidal cubical 2-categories

F(OS) 2-TL(S)mult

to which the functor

S

2-TL(S)
corresponding to the 2-arrow
(A%t ® id(z’d(3))> @ (Ag’t ® 72“) @ (A?;t ® 7'42’t> ® (Ai’t ® leét>
o (e e (4ed)e (4 er) e (4 er).

Notation 4.3.1.21. Let us denote by Smoothing(OneUnTwice) the canonical functor
of strict monoidal cubical 2-categories

F(0S) 2-TL(S)mt

to which the functor

S

2-TL(S)
corresponding to the 2-arrow
(A%t ® id(z’d(?)))) 0 (Ag’t ® 72“> 0 (A?f ® 7'32’t> 0 (Ai’t ® 78“>

o (4'er)e(4en)e (4o e (4 ).



Notation 4.3.1.22. Let us denote by Smoothing(TwoTwiceUn) the canonical functor
of strict monoidal cubical 2-categories

F(0S) 2-TL(S)mut

to which the functor

S

2-TL(S)
corresponding to the 2-arrow
(A%t ® r§’t> ® <A§’t ® id(id(?)))) ® (A?;t ® ﬁgf) ® (Ai’t ® 7'42’t>
@ (A?t ® 75“) @ (Aﬁvt ® rf’t> @ <A$vt ® 7122’t> @ <A§vt ® 7927'5).

Notation 4.3.1.23. Let us denote by Smoothing(OneUnOnce) the canonical functor
of strict monoidal cubical 2-categories

F(0S) 2-TL(S)mult

to which the functor

S

2-TL(S)
corresponding to the 2-arrow
(A%t ® 72“) @ (Ag’t ® id(z’d(3))> @ <A§’t ® 78“> @ (Ai’t ® r??’t)
o (e e (4'er) e (4 er)e (43 e

Notation 4.3.1.24. Let us denote by Smoothing(TwoOnceTwice) the canonical func-
tor of strict monoidal cubical 2-categories

F(0S) 2-TL(S)mt

to which the functor

S

2-TL(S)
corresponding to the 2-arrow
(o) e (4 o) e (4 eri) o (4 o)

@ (Agvt ® rﬁf) @ (Agvt ® rj’t> @ (A?t ® 722”5> D (Aﬁ’t ® id(z’d(?)))).



Notation 4.3.1.25. Let us denote by Smoothing(OneTwiceUn) the canonical functor
of strict monoidal cubical 2-categories

F(0S) 2-TL(S)mut

to which the functor

S

2-TL(S)
corresponding to the 2-arrow
(Arerdt)e(4'er)e (4 er) e (A o)
o (e )e (4ed) e (4 en') o (A eid(ids3)).

Notation 4.3.1.26. Let us denote by Smoothing(TwoTwiceOnce) the canonical func-
tor of strict monoidal cubical 2-categories

F(OS) 2-TL(S)mult

to which the functor

S

2-TL(S)
corresponding to the 2-arrow
(A%t ® rﬁf) @ (Ag’t ® 742’t> @ (A?;t ® 722"*) ® (A?j ® id(z’d(3))>
o (ef)o(4eg)e (4 er)e (4 er).

Notation 4.3.1.27. Let us denote by Smoothing(OneOnceUn) the canonical functor
of strict monoidal cubical 2-categories

F(0S) 2-TL(S)mt

to which the functor

S

2-TL(S)
corresponding to the 2-arrow
(A%t ® 78“> 0 <A§’t ® 7'32’t> 0 (Ag’t ® 72“) 0 (Ai’t ® id(id(B)))

o (4'er)e(4en)e (4en')e (4 o).



Notation 4.3.1.28. Let

Smoothin
L F(S) - S 2 TL(s)m

denote the canonical functor such that the following hold.

(1) The following diagram in 2-Cat commutes.

-F(S),twelve
31

FS) Lz F(S)
Smoothi
Smoothing(Tonn(m [Lllz moothing
2_TL(S)mult

(2) The following diagram in 2-Cat commutes.

.F(S),twelve
b2

F(S) Lo F(S)

Smoothin
Smoothing(OneOnceTm [Um ;

2-TL(S)™ "

(3) The following diagram in 2-Cat commutes.

.F(S),twelve
t3

F(S) LI, F(S)

Smoothin
Smoothing(TonnTM ‘UU )

2-TL(S)met

(4) The following diagram in 2-Cat commutes.

.F(S),twelve
by

F(S) L1, F(S)

Smoothin
Smoothing(OneTwice(m [uw &

2-TL(S)muk



(5) The following diagram in 2-Cat commutes.

-F(S),twelve
5

F(S) L, F(S)
Smoothin
Smoothing(TwoOn(m [ul? &
2-TL(S)mult
(6) The following diagram in 2-Cat commutes.
Z»F(S),twelve
6
F(S) L> F(S)
Smoothin
Smoothing(OneUnTm [UH &
2-TL(S)mult
(7) The following diagram in 2-Cat commutes.
Z-F(S),twelve
7
F(S) L2 F(S)
Smoothin
Smoothing(Tonwim lulz &
2-TL(S)mult
(8) The following diagram in 2-Cat commutes.
Z.F(S),twelve
8
F(S) L2 F(S)
Smoothin
Smoothing(OneUnm ‘|_|12 &
2-TL(S)mult

(9) The following diagram in 2-Cat commutes.



Z.F(S) Jtwelve

F(S) - L1, F(S)

Smoothin

Smoothing(TwoOnceT& ‘l_lu ;
2-TL(S)mUIt

(10) The following diagram in 2-Cat commutes.

Z.F(S),twelve

F(S) = UF(S)
Smoothin
Smoothing(OneTwiceU\ [Um &
2-TL(S)mult

(11) The following diagram in 2-Cat commutes.

.F(S),twelve
b1

F(S) LIis F(S)

Smoothin
Smoothing(TonwiceOnck ‘ L. ;

2-TL(S)m"

(12) The following diagram in 2-Cat commutes.

.F(S),twelve
12

F(S) Ll F(S)

Smoothin
Smoothing(OneOnceU\ lum &

2-TL(S)mut

Proposition 4.3.1.29. The following diagram in Mon(Cat) commutes.

Lo e
L1, F(9S) Lo F(S)
L] generatorsl l ||, Smoothing
2-Braids®P' 2-TL(S)mult

Smoothing



Notation 4.3.1.30. Appealing to Proposition [4.3.1.29| let

Smoothing

2-Braids 2-TL(S)mult

denote the canonical functor of strict monoidal cubical 2-categories such that the
following diagram in Mon(2-Cat) commutes.

U Fos) —— 22 )

||, generators lTS-Braids |];, Smoothing
2-BraidsdouPle P 2-Braids
T
Smoom
2-TL(S)mult

Smoothing

4.3.2. The Kauffman 2-bracket

Notation 4.3.2.1. Let Fyon(S) denote the free strict monoidal cubical 2-category on
S.

Remark 4.3.2.2. Let F3_ing(S) denote the free 3-ring on Z. Appealing to Fact[2.2.3.4
we have that F3_ng(S) can be viewed as the free 3-ring on Fyon(S).

Notation 4.3.2.3. For 1 < j <2, let

Tr® o Smoothing o Bubble;n (one half)
F3—ring<8) T

be the functor of 3-rings to which, by means of the universal property of F3_ying(S) as
the free 3-ring on Fpon(S), the strict monoidal functor

Tr® o Smoothing o Bubble;n (one half) |
T (S) L

gives rise.
Notation 4.3.2.4. For 1 < j <4 let

Tr® o Smoothing o Saddlej (one half)
F3—ring(8) T




be the functor of 3-rings to which, by means of the universal property of F3_;ing(S) as
the free 3-ring on Fyon(S), the strict monoidal functor

Tr® o Smoothing o Saddle; (one half) |
sz\ (S) Tmu t

gives rise.
Notation 4.3.2.5. For 1 < j <12, let

Tr® o Smoothing o Triple;n (one half)
F3—ring<8> J T

be the functor of 3-rings to which, by means of the universal property of F3_ying(S) as
the free 3-ring on Fyon(S), the strict monoidal functor

Tr® o Smoothing o Tripleys (one half) |
sz\(‘S) T

gives rise.
Notation 4.3.2.6. For 1 < 5 <48, let

Tr® o Smoothing o Tetrahedral (one half)
F3—ring(8) T

be the functor of 3-rings to which, by means of the universal property of F3_ying(S) as
the free 3-ring on Fyon(S), the strict monoidal functor

Tr® o Smoothing o Tetrahedral (one half) |
Fa\(S) L

gives rise.
Notation 4.3.2.7. For 1 < j <2, let

Tr® o Smoothing o Bubblej (other half)
F3—ring<8) T

be the functor of 3-rings to which, by means of the universal property of F3_ing(S) as
the free 3-ring on Fyon(S), the strict monoidal functor

Tr® o Smoothing o Bubbleju (other half) |
Fan\(S) L

gives rise.



Notation 4.3.2.8. For 1 < j <4, let

Tr® o Smoothing o Saddleju (other half)
F3—ring(8) T

be the functor of 3-rings to which, by means of the universal property of F3_,ing(S) as
the free 3-ring on Fpon(S), the strict monoidal functor

Tr® o Smoothing o Saddleju (other half) |
FMI\(S) Tmult

gives rise.
Notation 4.3.2.9. For 1 < 75 <12, let

Tr® o Smoothing o Triple; (other half)
F3—ring<8) ’ T

be the functor of 3-rings to which, by means of the universal property of F3_ing(S) as
the free 3-ring on Fpon(S), the strict monoidal functor

Tr® o Smoothing o Tripleju (other half) |
]:./\/ll\(S) Tmut

gives rise.
Notation 4.3.2.10. For 1 < j <48, let

Tr® o Smoothing o Tetrahedral; (other half)
F3—ring(8)

be the functor of 3-rings to which, by means of the universal property of F3_ying(S) as
the free 3-ring on Fyon(S), the strict monoidal functor

Tr® o Smoothing o Tetrahedral;n (other half) |
JT_'MZ\(S) Tmut

gives rise.

Notation 4.3.2.11. Let

F3fring(8) e FM3fring(S)
st—ring(S)K A(SL%
3 66
L6 Fmon(S)

be a diagram in 2-Cat which defines a coproduct of 66 copies of F3_ing(S).



Notation 4.3.2.12. Let

Ll_[j T’ o Smoothmg o R-moves(one half)
66 F3 nng T

denote the canonical functor such that the following hold.

(1) The following diagram in 2-Cat commutes for 1 < j < 2.

‘F3_,ing($) ,66
tj

F3—ring(8) |_|66 F3—ring (5)

Bubble; (one half)

(2) The following diagram in 2-Cat commutes for 1 < j < 4.

| |¢¢ Tr* o Smoothing o R-moves(one half)

T

.F3_ing(S),66
tj

F3—ring(3) |_|66 F3—ring(3)

Saddle (one half)

(3) The following diagram in 2-Cat commutes for 1 < 7 < 12.

| Jgs Tr° © Smoothing o R-moves(one half)

T

- F37ring (S) ,66
i

F3—ring<8) |_|66 F3—ring(8)

Tripleys (one half)

(4) The following diagram in 2-Cat commutes for 1 < j < 48.

| Jgs Tr° o Smoothing o R-moves(one half)

T

~F37ring (8) 766
Y

F3_ring(S) Lgs F3—ring(S)

Tetrahedral (one half)

| Jg Tr* o Smoothing o R-moves(one half)

T



Notation 4.3.2.13. Let

s T 0 Smoothing o R-moves(other half)
66 F3—ring

denote the canonical functor such that the following hold.

(1) The following diagram in 2-Cat commutes for 1 < j < 2.

.F3_,ing(8),66
by

F3—ring<8> |_|66 F3—ring<8)

Bubble (other half)

(2) The following diagram in 2-Cat commutes for 1 < j < 4.

| J¢ Tr® o Smoothing o R-moves(other half)

T

.F3_1ing(S),66
tj

F3—ring (3) |—|66 F3—ring (8)

Saddleju (other half)

(3) The following diagram in 2-Cat commutes for 1 < j < 12.

| Jss Tr® © Smoothing o R-moves(other half)

T

'F37ring (S)>66
i

F3—ring(5) |_|66 F3—ring(8)

Triples (other half)

(4) The following diagram in 2-Cat commutes for 1 < j < 48.

| g Tr® o Smoothing o R-moves(other half)

T

~F37ring (8)766
tj

F3_ring(S) Lgs F3—ring(S)

Tetrahedral (other half)

| J¢ Tr® o Smoothing o R-moves(other half)

T



Notation 4.3.2.14. Appealing to Fact [2.1.3.16} let

Tr® o Smoothing o R-moves(one half)

|_|66 F3ring(S) T
Tr® o Smoothing o R-moves(other half)

Ginv

Tinv

be a coequaliser diagram in Ring(2-Cat).

Notation 4.3.2.15. Let us denote by

2-Braids

mult
Tinv

the strict monoidal functor g;,, o T o Smoothing.

Terminology 4.3.2.16. We refer to

mult
Tinv

2-Braids

as the Kauffman 2-bracket.

Proposition 4.3.2.17. The following diagram in Mon(2-Cat) commutes.

|lgs (one half moves)

Llss Fvon(S) 2-Braidsdeuble
| |g (other half moves) «
2-Braids Tinvmult
K

Notation 4.3.2.18. Appealing to Proposition [4.3.2.17| and the universal property of
2-Braids/R-moves, let us denote by

K/R-moves
2-Braids/R-moves Tinv

mult

the canonical strict monoidal functor such that the following diagram in Mon(2-Cat)
commutes.

GR—moves

2-Braids

2-Braids/R-moves

.

K/R-moves

mult
Tinv



Terminology 4.3.2.19. We refer to the functor

K/R-moves

2-Braids/R-moves T, M

as the Kauffman 2-bracket invariant of 2-braids.

Remark 4.3.2.20. In our construction of K/R-moves, we defined T;,, by forcing the
Markov traces of the smoothings of both sides of every Roseman move to be equal.
This is conceptually correct, but, as in the construction we gave of the Kauffman
bracket invariant

. K/R-moves
Braids/R-moves

inv,

we might hope that, by making use of Proposition [2.1.3.21], it would suffice to force
the Markov traces of the smoothings of both sides of only some of Roseman move to
be equal.

Though we omit a formal proof, we believe that, by virtue of Proposition [2.1.3.21] it
suffices to force the Markov traces of the smoothings of the following Roseman moves
to become equal: one of the bubble moves, one of the saddle moves, and three of the
triple moves (such as Tripleone, Triplewo, and Triplegee). We do not believe it necessary
to force the Markov traces of the smoothings of both sides of any of tetrahedral moves
to become equal. This is analogous to the fact that it is not necessary to force the
Markov traces of the smoothings of both sides of any of the R3 moves to become equal
in the construction of

K/R-moves
Braids/R-moves ——— T;,.

Remark 4.3.2.21. To arrive at an explicit description of T;,,, it suffices, given Remark
77?7, to calculate the Markov traces of the smoothings of the following Roseman moves
to become equal: one of the bubble moves, one of the saddle moves, and three of
the triple moves (such as Triplegne, Triplemo, and Triplewree). Whilst we shall omit the
details, we believe that these calculations yield the following.

(1) We have that Smoothing o Bubble,,.(one half) is equal to the following 2-arrow
of TL(S).

(((A%’d Over A%’d) Ohor (A%d Over A%d)> ® Zd<ld(2)))

® ( ((A%d Over A%d) Ohor (A%d Over Agd)) & ((TLR Over 7-UR) Ohor (TLL Over 7-UL)))



Hence Tr® o Smoothing o Bubble,ne(one half) is equal to the following 2-arrow of T.
() (a3
We have that Tr® o Smoothing o Bubblegne (other half) is equal to the 2-arrow
id(id(2))

of TL(S). Hence Tr® o Smoothing o Bubbleyne(other half) is equal to the 2-arrow

1
of T.
(2) We have that Smoothing o Saddle,ne(one half) is equal to the following 2-arrow
of TL(S).
((A“ ver ATY) O (AT 0ver AT?) ) (12 )

@(( A2 d Over A2 Ohor A2 d Over A2 ¢ ) ® TUR Ohor TUL))

@(( (A3 0yer A3Y) opor (A7 0yer AS7) ) ® (LR Ohor TLL))

@(( A2d Oyer Azd ohor AQd Over A2d ) ® ( TUR Over TLR) Ohor (TUL Over 7-LL)>)

Hence Tr® o Smoothing o Saddle,ne(one half) is equal to the following 2-arrow of T.
(A1) & (AT (4397 (479743 0 (a1

We have that Smoothing o Saddle,n(other half) is equal to the following 2-arrow
of TL(S).

(((Ag’d Ohor A%d) Ohor (A%d Ohor A%d)> ® Zd(Zd(2)>)
5 ((((A%d er 25 v (47 0 43%)) @ ( (43" o A) o (457 0 43

®(TUR Ohor m)))

@(<(A?’d Ohor Ag’d) Ohor (Ag’d Over A?’d)) ® ((TUR Ohor TLL) ©hor (TUR ©hor TLL))>



Hence Tr® o Smoothing o Saddlegne (other half) is equal to the following 2-arrow of
T.

(A (43 0 (A (A7) & (429} (43)") o (42" (43

(3) We have that Smoothing o Triplegne(one half) is equal to the following 2-arrow of



TL(S).

/\

2,d 2,d 2,d 2,d 2.t 2t 2,d 2,d 2,d 2,d
Al Over Al Over Al Over Al ) Ohor (Al Over Al ) Ohor (Ag Over A2 Over AQ Over AQ ))

id(i ))

2,d d 2,d 2,d 2.t 2t 2,d 2,d 2,d 2,d
< A Over A Over A Over A ) hor (A5 Over A5 ) Ohor (A2 Over Al Over Al Over A2 ))

D

@ ( ((Tur ®71L 1) Over (TLr @71 1)) Ohor (Tf’t Over Tf’t) ohor ((1 @71 7LL) Over (1 ®TL TUL))))

2

2 d 2,d 2,d 2t 2.t 2,d 2,d 2,d 2,d
Over A Over A Over A ) hor (AQ Over AQ ) Ohor (Al Over AQ Over AQ Over A1 ))

2

d 2,d 2,d 2t 2,d 2,d 2,d 2,d
S¥ A Over A Over A Over A ) hor (A(j Over AG ) Ohor (Al Over Al Over Al Over Al ))

® (id(id

(

(
. ( A2d
® ( ((1 ®7L 7LR) Over (1 @TL TUR)) Ohor (ng’t Over TQQ’t) ohor ((TuL @7L 1) over (TLL @71 1))))
© ( (42 o A2 vy 450 A2 (A3 0 A3 o (A3 1 A3 01 43 0 A3
& ( 7'4 over7'3 ))
© ( (43 o A2 v 45 0 45 e (A2 0 A2 oy (A3 1 A 01 A3 0 A7)
® ( ((Tur ®7L 1) Over (TLrR @71 1)) Ohor (7'92’t Over T?’t) ohor ((1 @7L7LL) Over (1 ®TL TUL))))
® ( (A3 over A3 over A3 ver AT?) Ohor (A7 Over A7) Oner (AT 0ver A3 0rer A3 000 A7)
® (( (1 @11 TLR) Over (1 TL TUR)) ©hor (Tfét Over Tg2’t) ohor ((TuL ®7L 1) Over (TLL ®TL 1))))

( 2d o 2

® (( TUR ®TL 1) Over (1 7L TLR) Over (1 @71 TUR) Over (TLR ®TL 1)) Ohor (75" Over 7")
Ohor ((TuL @70 1) over (1 @71 7L) Over (1 ®7L TUL) Over (TUR BLL 1))))
® ( (437 over A3 0ver A3 0ver A3) Otr (A" 0ver A3") Oher (AT 0ver AT 000y AT 010, A7)
( (TuR @70 1) Over (1 &1L TLR) Over (1 ®TL TUR) Over (TLR ®TL 1)) Ohor (713 Over T11')

Ohor ((TuL @70 1) over (1 @71 7LL) Over (1 ®7L TUL) Over (TUR ®LL 1))))



Hence Tr® o Smoothing o Triplleone (one half) is equal to the following 2-arrow of T.
(A2 (43 (42" @ (43 (42 (43
© (A2 (A2 (42 & (424" (439" (42
B (A (43" (A2 @ (42" (43" (43))
& (A3 (A2 (42)° @ (43 (434)* (42)7)
We have that Smoothing o Tripley,e(other half) is equal to the following 2-arrow of
TL(S).
(((A%d Ohor A%d) Ohor (A%d Ohor A%d) Ohor (Ag’d Ohor A%d)) ® Zd(ld(g)))

) (((A%d Ohor Agd) Ohor (A%d Ohor A%d) Ohor (Ag’d Ohor A%d))

/N

S

Agd Ohor A%d) Ohor (Ag’d Ohor A%d) Ohor (A%d Ohor Ag’d))>

X

((Tur ®7L 1) Onor (TLL ®TL 1))))

((A%d Ohor Agd) Ohor (A%d Ohor Agd) Ohor (A?d Ohor A%d»

S

&

((Tur @TL 1) Ohor (TLL @711 1)) Ohor ((1 @711 TUR) Ohor (1 @71 TLL))))

(A2 onor AT) opor (AT Ohor A3) Ohor (AT 0nor A3))

&

((1 @71 TUR) hor (1 @711 7LL)) ©hor ((Tur ®TL 1) Ohor (TLL @71 1)))>

((A%d Ohor Ag,d) Ohor (A%d Ohor Agd) Ohor (A%d Ohor Ag’d))

S

S

X

((Tur ®1L 1) Ohor (TLL @11 1)) Ohor ((1 ®7L TUR) Ohor (1 @71 7LL))

Ohor ((TUR @TL 1) Ohor (TLL ©TL 1))))

Hence Tr° o Smoothing o Triplegne(other half) is equal to the following 2-arrow of T.
(" (a3 (A8 (43 @ (429" (45°)

o (A () © (439 (43 )2 o (43 (43



(4) We have that Smoothing o Triplew,o(one half) is equal to the following 2-arrow
of TL(S).

2 d 2 d 2 d 2,d 2t 2,d 2,d 2,d 2,d
<(<A Over A Over A Over A ) Ohor (AQ Over A2 ) Ohor (Al Over A2 Over AQ Over Al ))

id(i ))

2,d d 2,d 2,d 2.t 2t 2,d 2,d 2,d 2,d
S < A Over A Over A Over A ) hor (Aﬁ Over AG ) Ohor (Al Over Al Over Al Over A1 ))

@ ( ((Tur ®71L 1) Over (TLr @71 1)) Ohor (Tf’t Over Tf’t) ohor ((1 @71 7LL) Over (1 ®TL TUL))))

2

2 d 2,d 2,d 2t 2.t 2,d 2,d 2,d 2,d
Over A Over A Over A ) hor (Al Over A1 ) Ohor (AQ Over AQ Over AQ Over AQ ))

2

d 2,d 2,d 2t 2,d 2,d 2,d 2,d
S¥ A Over A Over A Over A ) hor <A5 Over A5 ) Ohor (A2 Over Al Over Al Over AQ ))

® (id(id

(

(
. ( A2d
® ( ((1 @70 7LR) over (1 7L TUR)) Ohor (72" Over T3 ) Ohor ((TuL @71 1) Over (TLL ®TL 1))))
& ( (42 o 43" v A5 0 A2t (A2 0 AT oy (AT A5 01 43 0 AT
® ( i Over Ty ))
© ( (43 o A3 v 45 43) ot (A2 0 A2 oy (AT 1 A2 01 AT 0 )
® ( ((Tur ®7L 1) Over (TLR @71 1)) Ohor (7'92’t Over T?’t) Ohor ((1 @7L7LL) Over (1 ®TL TUL))))
® ( (AP over AT 0ver AT 0rer AT) Opor (A3 Ouer A7) Oher (A3 ver A3 0ver A3 0000 43))
® (( (1 @11 TLR) Over (1 TL TUR)) ©hor (Tfét Over Tg2’t) ohor ((TuL ®7L 1) 0ver (TLL ®TL 1))))

( 2d o g2

® (( 7UR ®TL 1) Over (1 7L TLR) Over (1 @71 TUR) Over (TLR ®TL 1)) Ohor (75" Over 7")
Ohor ((TuL @70 1) over (1 @71 7L) Over (1 ®7L TUL) Over (TUR ®LL 1))))
 ( (437 over A7 0ver A7 0ver A3) Oty (42" 0ver A7) Oher (A3 Over AT 000y A7 016, 43
( (TuR @71 1) Over (1 &1L TLR) Over (1 ®TL TUR) Over (TLR ®TL 1)) Ohor (13 Over T11')

Ohor ((TuL @70 1) over (1 @71 7LL) Over (1 @71 TUL) Over (TUR ®LL 1))))



Hence Tr® o Smoothing o Triplleg,o (one half) is equal to the following 2-arrow of T.
(A (43 ()" & (429 () (42
o (AR (43 (43) @ (43%) " (3% (a2")?
& (A3 (A2 (42) & (AT (43 (43)°) "
@ (AP (43)" (42 @ (A7) (43" (42)") 7
We have that Smoothing o Tripley,(other half) is equal to the following 2-arrow of
TL(S).
(((Agﬁd Ohor A7) Ohor (A3 0hor ATY) Ohor (AT 0hor A3M)) @ z’d(z’d(3)))

D (((A%d Ohor Agjd) Ohor (A%d Ohor A%d) Ohor (A%d Ohor Agjd))

//:/—\

S

Ag’d Ohor A%d) Ohor (A%d Ohor A%d) Ohor (Ag’d Ohor A%d))>

®

((Tur ®7L 1) Onor (TLL ®TL 1))))

((A%d Ohor Ag’d) Ohor (A%d Ohor Agd) Ohor (A%d Ohor Aad))

@

X

((Tur ®71L 1) Ohor (L @71 1)) Ohor ((1 7L TUR) Ohor (1 7L TLL))))

((Ag’d Ohor A%d) Ohor (A%d Ohor Agd) Ohor (Ag’d Ohor A%d))

X

(1 @711 TUR) ©hor (1 @7 7LL)) Ohor ((Tur ®TL 1) Ohor (TLL ®TL 1))))

S

((A%d Ohor Agd) Ohor (A%d Ohor Agd) Ohor (A%d Ohor A%d»

S

®

((Tur ®1L 1) Ohor (TLL @71 1)) Ohor ((1 @7L TUR) Ohor (1 @71 TLL))

Ohor ((TUR ®7L 1) Onor (TLL ®TL 1)))>

Hence Tr® o Smoothing o Tripley,o(other half) is equal to the following 2-arrow of T.
(30 (a2 (43 (40 (a3

o (A () © (439 (43 )2 o (43 (43



(5) We have that Smoothing o Triplegee(one half) is equal to the following 2-arrow
of TL(S).

2 d 2 d 2 d 2,d 2t 2,d 2,d 2,d 2,d
<(<A Over A Over A Over A ) Ohor (A5 Over A5 ) Ohor (Ag Over Al Over Al Over AQ ))

id(i ))

2,d d 2,d 2,d 2.t 2t 2,d 2,d 2,d 2,d
S < A Over A Over A Over A ) hor (Al Over Al ) Ohor (A2 Over A2 Over A2 Over A2 ))

@ ( ((Tur ®71L 1) Over (TLr @71 1)) Ohor (Tf’t Over Tf’t) ohor ((1 @71 7LL) Over (1 ®TL TUL))))

2

2 d 2,d 2,d 2t 2.t 2,d 2,d 2,d 2,d
Over A Over A Over A ) hor (Aﬁ Over AG ) Ohor (Al Over Al Over A1 Over A1 ))

2

d 2,d 2,d 2t 2,d 2,d 2,d 2,d
S¥ A Over A Over A Over A ) hor (AQ Over AQ ) Ohor (Al Over A2 Over AQ Over Al ))

® (id(id

(

(
. ( A2d
® ( ((1 ®7L 7LR) Over (1 @TL TUR)) Ohor (ng’t Over TQQ’t) ohor ((TuL @TL 1) over (TLL @TL 1))))
© (43 o A2 v 45y 45 e (A2 0 A2 oy (A3 1 A 01 A3 0 A3
(%9 ( 7'4 over7'3 ))
© ( (42 o A2 v 45 0 A2 1 (A3 0 A3 o (A3 1 A3 01 43 0 A7)
® ( ((Tur ®7L 1) Over (TLR @71 1)) Ohor (7'92’t Over T?’t) Ohor ((1 @7L7LL) Over (1 ®TL TUL))))
® ( (A3 over A3 over 43" ver A3") Ohor (A3 Over AZ') Oner (AT 0ver AT 0y AT 000 A7)
® (( (1 @11 TLR) Over (1 TL TUR)) ©hor (Tfét Over Tg2’t) ohor ((TuL ®7L 1) 0ver (TLL ®TL 1))))

( 2d o g2

® (( 7UR ®TL 1) Over (1 7L TLR) Over (1 @71 TUR) Over (TLR ®TL 1)) Ohor (75" Over 7")
Ohor ((TuL @70 1) over (1 @71 7L) Over (1 ®7L TUL) Over (TUR ®LL 1))))
® ( (A7 over A3 0ver A3 0ver A7) Oty (43" 0ver AT Oher (AT 0ver A3 0ver A3 0067 A7)
( (TuR @71 1) Over (1 &1L TLR) Over (1 ®TL TUR) Over (TLR ®TL 1)) Ohor (13 Over T11')

Ohor ((TuL @70 1) over (1 @71 7LL) Over (1 @71 TUL) Over (TUR ®LL 1))))



Hence Tr® o Smoothing o Triplleree (0ne half) is equal to the following 2-arrow of T.
(A0 (43 ()" & (429 ()" (421
& (A1) (A2 (A2 (A24)* (42 (420
& (A3 (A2 (421) @ (A2 (43" (42)) "
& (A1) (43" (43)" @ (A7) (43" (43"
We have that Smoothing o Tripleyee(other half) is equal to the following 2-arrow
of TL(S).
(((A%d Ohor A%d) Ohor (Ag’d Ohor A%d) Ohor (A%d Ohor A%d)) ® Zd(ld(?})))
D (((A%d Ohor A%d) Ohor (A%d Ohor A%d> Ohor (A%d Ohor A%d))

D

—

(A7 Oer A3") Opor (A3 Oner A7) Oy (A7 0pr 43%) )

®

((Tur ®TL 1) Ohor (TLL @TL 1))>>

((Ag’d Ohor A%d) Ohor (A%d Ohor Agd) Ohor (Ag’d Ohor A%d))

@

X

((Tur ®71L 1) Ohor (L @11 1)) Ohor ((1 7L TUR) Ohor (1 @71 TLL))))

((A%d Ohor A%’d) Ohor (A%d Ohor Agd) Ohor (A%d Ohor Ag’d))

X

(1 @711 7UR) ©hor (1 @7 7LL)) Ohor ((TuR ®TL 1) Ohor (TLL ®TL 1)))>

(A3 onor AT?) Ohor (AT ohor A7) Ohor (A7 opor A3))

S

®

S

((Tur ®71L 1) Ohor (7L @71 1)) Ohor ((1 @71 TUR) Ohor (1 @71 7LL))

Ohor ((TUR ®7L 1) onor (TLL ®TL 1)))>

Hence Tr® o Smoothing o Triplehree (other half) is equal to the following 2-arrow of
T.

(A (43 @ (A () @ (47 (43))

o (A () © (439 (43 )2 o (43 (43
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A.1. Synthetic category theory

In Chapter [3|, we make use of various constructions in Cat, the category of categories.
In fact, our work can be thought of as carried out in a synthetic theory of the category
of categories, namely in a formal language, such as a flavour of type theory, in which
various fundamental category theoretic notions are taken as primitive, and rules
are given which allow one to carry out various category theoretic constructions. In
particular, it can be carried out in any category admitting the same constructions as
Cat.

In this section, we outline informally those synthetic constructions and assumptions
governing Cat that we have in mind. We take as given, as we do throughout this work,
a meta-category theory allowing us to express those categorical notions we require.
This meta-category theory is, from a foundational point of view, constructive in a very
strong sense, and predicative. We assume that it has a notion of equality of functors
that is reflexive, symmetric, and transitive, as usual for such a notion. It is only in
Chapter [2| that we shall make use of our meta-category theory beyond the use of it
that we make in this appendix. In Chapter [3| we work entirely with Cat, whilst in
Chapter 4| we work entirely with 2-Cat, which we shall discuss in the next section.

Terminology A.1.1.1. We refer to an object of Cat as a category.

Remark A.1.1.2. In this section, when we refer to a category, we shall always mean a
category in this sense, rather than in the sense of our meta-category theory. Elsewhere
in this work, it will always be clear from the context which sense we have in mind.

Terminology A.1.1.3. We refer to an arrow of Cat as a functor.

Remark A.1.1.4. We adopt the same convention when referring to functors as that
described in Remark when referring to categories.

Assumption A.1.1.5. There is a category 1, which is a final object of Cat.
Terminology A.1.1.6. Let A be a category. We refer to a functor

l1— A

as an object of A.

Assumption A.1.1.7. There is a category Z, together with a functor

0

1 A

and a functor




Terminology A.1.1.8. Let A be a category. We refer to a functor

7z A

as an arrow of A.

Terminology A.1.1.9. Let A be a category. Let

f

7z A

be an arrow of A. We refer to the object of A given by
fo0

as the source of f. We refer to the object of A given by
fol

as the target of f.

Notation A.1.1.10. Let A be a category. Let f be an arrow of A. Let ay denote the
source of f, and let a; denote the target of f. We often denote f as follows.

ay ——— ay

Assumption A.1.1.11. There is a diagram
0

1 7T
|
z oz Toh T
™

in Cat which defines a co-cartesian square.

Assumption A.1.1.12. The category Z oLl; Z has an arrow s such that the diagrams

0

1 ya

7

TohT

ol



and

1

z

T Toh7Z

in Cat commute.
Notation A.1.1.13. Let A be a category. Let f and g be arrows of A such that the

source of g is equal to the target of f. In other words, the following diagram in Cat

commutes.
1
|
T
f

We denote by g o f the canonical functor such that the following diagram in Cat

commutes.
Zoulz
0|—’1
TolhZ
T
O

Remark A.1.1.14. It follows immediately from the definition of g o f that the source
of g o f is equal to the source of f, and that the target of g o f is equal to the target
of g.

—_

Terminology A.1.1.15. Let A be a category. Let f and g be arrows of A such that
the source of g is equal to the target of f. We refer to the arrow g o f of A as the
composition of f and g.

Remark A.1.1.16. Let A be a category. Let fy and gg be arrows of A such that the
source of gg is equal to the target of fy. Let fi; and ¢g; be arrows of A such that the
source of gy is equal to the target of f;. Suppose that fj is equal to f;, and that g is



equal to g;. It follows immediately from the universal property of Z ¢Ll; Z that g1 o fi
is equal to gg o fo.

Assumption A.1.1.17. Let A be a category. Composition of arrows of A is associa-
tive. In other words, given arrows f, g, and h of A such that the source of ¢ is equal
to the target of f, and the source of h is equal to the target of g, then (hog)o f is
equal to ho (go f).

Remark A.1.1.18. We shall implicitly make use of Assumption [A.1.1.17] throughout
this work, without further mention, by omitting parentheses when we work with
compositions of three or more arrows of a category.

Assumption A.1.1.19. Let A be a category. Let a be an object of A. There is an
arrow of A whose source is a, and whose target is a.

Terminology A.1.1.20. Let A be a category. Let a be an object of A. We refer

to the arrow id(a) of A to which the rule of Assumption [A.1.1.19| gives rise as the
identity arrow with respect to a.

Notation A.1.1.21. Let A be a category. Let a be an object of A. We denote the
identity arrow with respect to a by id(a).

Remark A.1.1.22. Let A be a category. Let a be an object of A. Appealing to
the universal property of 1, an arrow whose source is a and whose target is a can be
constructed, such that Assumption holds. Since we shall not make use of this
specific construction, we prefer to take the rule of Assumption as primitive.

Assumption A.1.1.23. Let A be a category. Let

Gy —> a1

be an arrow of A. Then f oid(ag) is equal to f.
Assumption A.1.1.24. Let A be a category. Let

ay —— ay

be an arrow of A. Then id(a;) o f is equal to f.

Assumption A.1.1.25. Let A be a category. Let ag and a; be objects of A. Suppose
that ag is equal to a;. Then id(ag) is equal to id(ay).

Assumption A.1.1.26. There is an object 0Z of Cat.

Assumption A.1.1.27. Let A be a category. Given a pair of objects of A, there is a
functor

0z A.




Remark A.1.1.28. If we assume that there is a coproduct of two copies of 1 and
1 in Cat, then an object of Cat with the property of 0Z can be constructed, and
hence Assumption is not necessary. However, we prefer to make Assumption
in any case, as we shall only appeal directly to the rule it introduces.

Assumption A.1.1.29. Let A be a category. Let ag, a1, as, and as be objects of A.
Let

f

oz A

be the functor determined by ay and a; by means of the rule of Assumption [A.1.1.27]
Let

o1 7

A

be the functor determined by as and az by means of the rule of Assumption [A.1.1.27]
Suppose that ag is equal to as, and that ay is equal to az. Then f is equal to g.

Assumption A.1.1.30. The category Cat has those finite coproducts, coequalisers,
and pushouts that we make use of in this work.

Assumption A.1.1.31. The category Cat has those finite products which we make
use of in this work.

A.2. Synthetic cubical 2-category theory

In Chapter 4, we make use of various constructions in the category 2-Cat of cubical
2-categories. Just as our work with Cat can, as discussed in §A.T] be thought of as
carried out synthetically, so our work with 2-Cat can be thought of as carried out in a
synthetic theory of the category of cubical 2-categories. In particular, it can be carried
out in any category admitting the same constructions as

twocat.

In this section, we outline informally those synthetic constructions and assumptions
governing 2-Cat that we have in mind. We take as given the same meta-category
theory as mentioned at the beginning of By a 2-category, we shall always mean
a strict 2-category.

Cubical 2-categories are also known as edge-symmetric double categories. The notion
of a cubical 2-category differs from that of a globular 2-category, the latter being by
far the better known of the two, in that the 2-arrows are thought of as squares rather
than as globes. A globular 2-category can be viewed as a cubical 2-category in which
all squares have identity vertical (say) arrows.

Nevertheless, if one assumes cubical 2-categories to be equipped with a little more
structure than we do here, that of connections, then the category of cubical 2-categories
is in fact equivalent to the category of globular 2-categories, as demonstrated for



instance in the paper [2] of Brown and Mosa. However, depending on the purpose to
which they are put, one of the two notions can be much more natural than the other.
As we explain elsewhere in this work, we regard the use of cubical rather than globular
2-categories as essential to the framework of Chapter []

Terminology A.1.2.1. We refer to an object of 2-Cat as a cubical 2-category.
Terminology A.1.2.2. We refer to an arrow of 2-Cat as a functor.

Remark A.1.2.3. Arrows of 2-Cat are also sometimes known as 2-functors, or strict
2-functors.

Assumption A.1.2.4. There is a cubical 2-category 1, which is a final object of
2-Cat.

Terminology A.1.2.5. Let A be a cubical 2-category. We refer to a functor

l1—— A

as an object of A.

Assumption A.1.2.6. There is a cubical 2-category Z, together with a functor

0

1 T

and a functor

L.z

Terminology A.1.2.7. Let A be a cubical 2-category. We refer to a functor

7z A

as a I-arrow of A.

Terminology A.1.2.8. Let A be a cubical 2-category. Let

f

7z A

be a 1-arrow of A. We refer to the object of A given by

o0
1f

as the source of f. We refer to the object of A given by
fol

as the target of f.



Notation A.1.2.9. Let A be a cubical 2-category. Let f be a l-arrow of A. Let
ag denote the source of f, and let a; denote the target of f. We often denote f as
follows.

g —>

Assumption A.1.2.10. There is a diagram

0

1 ya

TolhZ
To

7z

T

TolhZ Ol_ll I
™

in 2-Cat which defines a co-cartesian square.

Assumption A.1.2.11. The cubical 2-category Z gLl; Z has a 1-arrow s such that the
diagrams

1 0 7
0 S
7 ot TolhZ
L
and
1 7
1 S
7 oz TolhZ
To

in 2-Cat commute.

Notation A.1.2.12. Let A be a cubical 2-category. Let f and g be 1-arrows of A
such that the source of ¢ is equal to the target of f. In other words, the following
diagram in 2-Cat commutes.




We denote by g o f the canonical functor such that the following diagram in 2-Cat
commutes.

1 A
1 TOIOUJ q
I TolhZ I()l_ll I
7
gof
A

Remark A.1.2.13. It follows immediately from the definition of go f that the source
of go f is equal to the source of f, and that the target of g o f is equal to the target
of g.

Terminology A.1.2.14. Let A be a cubical 2-category. Let f and g be l-arrows of
A such that the source of g is equal to the target of f. We refer to the 1-arrow g o f
of A as the composition of f and g.

Remark A.1.2.15. Let A be a cubical 2-category. Let fo and gg be 1-arrows of A
such that the source of g is equal to the target of fy,. Let f; and g; be 1-arrows of
A such that the source of g; is equal to the target of f;. Suppose that fy is equal to
f1, and that gq is equal to g;. It follows immediately from the universal property of
7T oLy Z that gy o f; is equal to gy o fo.

Assumption A.1.2.16. Let A be a cubical 2-category. Then composition of 1-arrows
of A is associative. In other words, given l-arrows f, g, and h of A such that the
source of g is equal to the target of f, and the source of h is equal to the target of g,
then (hog)o fis equal to ho(go f).

Remark A.1.2.17. We shall implicitly make use of Assumption [A.1.2.16| throughout
this work, without further mention, by omitting parentheses when we work with
compositions of three or more arrows of a cubical 2-category.

Notation A.1.2.18. Let A be a cubical 2-category. Let a be an object of A. Let p
denote the canonical functor

T

to which the universal property of 1 gives rise. We denote the 1-arrow

aop

7z A

of A by id(a).



Terminology A.1.2.19. Let A be a cubical 2-category. Let a be an object of A. We
refer to the l-arrow id(a) of A as the identity 1-arrow with respect to a.

Remark A.1.2.20. It follows immediately from the definition of id(a), appealing to
the universal property of 1, that the source of id(a) is a, and that the target of id(a)
is a.

Assumption A.1.2.21. Let A be a cubical 2-category. Let
f

ag ——— aq

be a 1-arrow of A. Then f oid(ap) is equal to f.
Assumption A.1.2.22. Let A be a cubical 2-category. Let

g —> a1

be a l-arrow of A. Then id(a;) o f is equal to f.

Assumption A.1.2.23. Let A be a cubical 2-category. Let ag and a; be objects of
A. Suppose that ag is equal to a;. Then id(ag) is equal to id(ay).

Assumption A.1.2.24. There is an object 0Z of 2-Cat.

Assumption A.1.2.25. Let A be a cubical 2-category. Given a pair of objects of A,
there is a functor

oz A.

Remark A.1.2.26. If we assume that there is a coproduct of two copies of 1 and 1
in 2-Cat, then an object of 2-Cat with the property of 0Z can be constructed, and
hence Assumption is not necessary. However, we prefer to make Assumption
in any case, in order to be able to appeal directly to the rule it introduces.

Assumption A.1.2.27. Let A be a cubical 2-category. Let ag, a1, as, and az be
objects of A. Let

f

oz A

be the functor determined by ag and a; by means of the rule of Assumption [A.1.2.25]
Let

9

oz A

be the functor determined by as and az by means of the rule of Assumption [A.1.2.25]
Suppose that ag is equal to as, and that ay is equal to az. Then f is equal to g.



Remark A.1.2.28. Thus far, our synthetic theory of 2-Cat is identical, up to a couple
of changes of terminology, to the our synthetic theory of Cat. Thus, appealing to

Assumption [A.1.2.71] any construction which can be carried out in Cat can be carried
out in 2-Cat.

Assumption A.1.2.29. There is a cubical 2-category S, together with four functors

1—— S,

which we denote by nw, ne, sw, and se, and four functors

7z S,

which we denote by n, s, w, and e, and whose sources and targets satisfy those equalities
which allow us to depict these 1-arrows as follows.

n
nw ——— ne

Terminology A.1.2.30. Let A be a cubical 2-category. We refer to a functor
S—— A

as a 2-arrow of A.

Terminology A.1.2.31. Let A be a cubical 2-category. Let o be a 2-arrow of . A. We
refer to the l-arrow

7_9°n 4
as the north face of 0. We refer to the 1-arrow
7_9°¢ 4
as the east face of 0. We refer to the 1-arrow
7_oow 4
as the west face of 0. We refer to the 1-arrow
70995 4

as the south face of o.



Notation A.1.2.32. Let A be a cubical 2-category. Let

g

S A

be a 2-arrow of A. Let ag, aq, as, and a3 be objects of A, and let fy, f1, f2, and f3
be 1-arrows of A whose sources and targets satisfy those equalities which allow us to
depict them as follows.

fo

Gy —> a1

fz‘ Jfl

ay ——> as

fs

Suppose that the north face of ¢ is equal to fy, that the east face of o is equal to fi,
that the west face of o is equal to f5, and that the south face of ¢ is equal to f3. We
then depict o as follows.

fo

Gy —> a1

e o i

Ay — > as

3

Assumption A.1.2.33. There is a diagram

T n

S
l SnsS
([

Sl S

SnlsS
,r,lns

in 2-Cat which defines a co-cartesian square.

Assumption A.1.2.34. The cubical 2-category S ,Us S has a 1-arrow s.e, such that
the diagrams

S

LJ

sS

7z

S

SnlsS
,r.lns



and

S
l Sver
L

Sl S

in 2-Cat commute.

Notation A.1.2.35. Let A be a cubical 2-category. Let o and 7 be 2-arrows of A
such that the north face of 7 is equal to the south face of 0. In other words, the
following diagram in 2-Cat commutes.

7 n S

AT

Sl S

S

o

We denote by 7 oy 0 the canonical functor such that the following diagram in 2-Cat
commutes.

T

Remark A.1.2.36. It follows immediately from the definition of 7 o, o that the
north face of 7 oy 0 is equal to the north face of o, and that the south face of 7 oy o
is equal to the south face of 7.

Terminology A.1.2.37. Let A be a cubical 2-category. Let o and 7 be 2-arrows of
A such that the north face of 7 is equal to the south face of 0. We refer to the 2-arrow
T oyer 0 Of A as the wvertical composition of o and 7.

Remark A.1.2.38. Let A be a cubical 2-category. Let oy and 79 be 2-arrows of A
such that the north face of 7y is equal to the south face of 0. Let o1 and 71 be 2-arrows



of A such that the north face of 7 is equal to the south face of o;. Suppose that oy
is equal to o1, and that 7y is equal to 7. It follows immediately from the universal
property of S ,Ls S that 71 oy 07 is equal to Ty Oyer 0p.

Assumption A.1.2.39. Let A be a cubical 2-category. Then vertical composition of
2-arrows of A is associative. In other words, given 2-arrows o, 7, and v of A such that
the north face of 7 is equal to the south face of o, and the north face of v is equal to
the south face of 7, then (v oye T) Oyer 0 is equal to U oy (T Oyer 7).

Remark A.1.2.40. We shall implicitly make use of Assumption [A.1.2.39| throughout
this work, without further mention, by omitting parentheses when we work with
vertical compositions of three or more 2-arrows of a cubical 2-category.

Assumption A.1.2.41. Let A be a cubical 2-category. Let o and 7 be 2-arrows of
A such that the north face of 7 is equal to the south face of o. Then the west face of
T oyer 0 is the composition of the west faces of o and 7, and the east face of 7 oy o is
the composition of the east faces of ¢ and 7.

Assumption A.1.2.42. Let A be a cubical 2-category. Let
f

Gy —> a1

be a 1-arrow of A. Then there is a 2-arrow of 4 whose north face is f, whose south
face is f, whose west face is id(ag), and whose east face is id(agp).

Terminology A.1.2.43. Let A be a cubical 2-category. Let

Gy —> a1

be a 1-arrow of A. We refer to the 2-arrow of A to which f gives rise, by means of the
rule of Assumption [A.1.2.42] as the vertical identity with respect to f.

Notation A.1.2.44. Let A be a cubical 2-category. Let

Qo ay

be a l-arrow of A. We denote the vertical identity with respect to f by idye (f).
Assumption A.1.2.45. Let A be a cubical 2-category. Let

fo

Gy —> a1

I o i

gy ——> a3

3

be a 2-arrow of A. Then o o idye(fo) is equal to o.



Assumption A.1.2.46. Let A be a cubical 2-category. Let
fo

g —> a1

fo g S

ay —— a3

fs

be a 2-arrow of A. Then ide(f3) o o is equal to o.

Assumption A.1.2.47. Let A be a cubical 2-category. Let fy and f; be l-arrows of
A. Suppose that fj is equal to f1. Then idye (fo) is equal to idye (f1).

Assumption A.1.2.48. There is a diagram

in 2-Cat which defines a co-cartesian square.

Assumption A.1.2.49. The cubical 2-category S ,Lle S has a 1-arrow sy, such that
the diagrams

7 S
w Shor
S0 S, S

T
and
e

T S
w Shor

L
SwlleS S wlle S

in 2-Cat commute.

Notation A.1.2.50. Let A be a cubical 2-category. Let o and 7 be 2-arrows of A
such that the west face of 7 is equal to the east face of o. In other words, the following
diagram in 2-Cat commutes.



We denote by 7 o, 0 the canonical functor such that the following diagram in 2-Cat
commutes.

z

Remark A.1.2.51. It follows immediately from the definition of 7 o, o that the
west face of 7 oo 0 is equal to the west face of o, and that the east face of 7 op, o is
equal to the east face of 7.

Terminology A.1.2.52. Let A be a cubical 2-category. Let o and 7 be 2-arrows of
A such that the west face of 7 is equal to the east face of 0. We refer to the 2-arrow
T ohor 0 Of A as the horizontal composition of o and 7.

Remark A.1.2.53. Let A be a cubical 2-category. Let oy and 79 be 2-arrows of A
such that the west face of 7y is equal to the east face of oy. Let o1 and 7 be 2-arrows
of A such that the west face of 7 is equal to the east face of 0. Suppose that oy
is equal to oy, and that 7y is equal to 71. It follows immediately from the universal
property of S L. S that 71 one, 07 is equal to 7 oper 09.

Assumption A.1.2.54. Let A be a cubical 2-category. Then horizontal composition
of 2-arrows of A is associative. In other words, given 2-arrows o, 7, and v of A such
that the west face of 7 is equal to the east face of o, and the north face of v is equal
to the south face of 7, then (v oper T) Oher 0 is equal to U opor (T Ohor 7).

Remark A.1.2.55. We shall implicitly make use of Assumption [A.1.2.54] throughout
this work, without further mention, by omitting parentheses when we work with
horizontal compositions of three or more 2-arrows of a cubical 2-category.



Assumption A.1.2.56. Let A be a cubical 2-category. Let ¢ and 7 be 2-arrows of
A such that the west face of 7 is equal to the east face of o. Then the north face of
T Ohor 0 is the composition of the north faces of ¢ and 7, and the south face of 7 oo o
is the composition of the south faces of o and 7.

Assumption A.1.2.57. Let A be a cubical 2-category. Let

Gy ——>
be a l-arrow of A. Then there is a 2-arrow of A whose west face is f, whose east face
is f, whose north face is id(ag), and whose south face is id(a,).

Terminology A.1.2.58. Let A be a cubical 2-category. Let

g —>

be a 1-arrow of A. We refer to the 2-arrow of A to which f gives rise, by means of the
rule of Assumption [A.1.2.57| as the horizontal identity with respect to f.

Notation A.1.2.59. Let A be a cubical 2-category. Let
f

Gy —> a1

be a l-arrow of 4. We denote the horizontal identity with respect to f by idher(f).
Assumption A.1.2.60. Let A be a cubical 2-category. Let
Jo

g —> a1

fo 9 S

Gy ——> as

fs

be a 2-arrow of A. Then o o idh(f2) is equal to o.
Assumption A.1.2.61. Let A be a cubical 2-category. Let
Jo

ay ——— ay

fo 9 f1

Gy ——> as

3

be a 2-arrow of A. Then idp(f1) 0 o is equal to o.



Assumption A.1.2.62. Let A be a cubical 2-category. Let fy and f; be l-arrows of
A. Suppose that fj is equal to f1. Then idn(fo) is equal to idner(f1).

Assumption A.1.2.63. Let A be a cubical 2-category. Let oy, 01, 09, and o3 be
2-arrows of A such that we have those equalities of faces which allow us to depict these
2-arrows as follows. We omit labels for the objects and 1-arrows.

g0 01

02 03

Then the 2-arrow
(03 Ohor 02) Over (01 Ohor UO)

of A is equal to the 2-arrow

(03 Over Ul) Ohor (02 Ohor UO)
of A.

Terminology A.1.2.64. The rule which Assumption [A.1.2.63] introduces is known
as the interchange or exchange axiom.

Remark A.1.2.65. We shall implicitly make use of Assumption |[A.1.2.63] sometimes
in combination with Assumption|A.1.2.39/and/or Assumption [A.1.2.54] throughout this

work, without further mention, in the form that the 2-arrows obtained by composing,
also known as pasting, together an m by n rectangular grid of 2-arrows in any of the
possible ways are all equal, allowing us to omit to single out one of these possibilities.

Assumption A.1.2.66. There is a cubical 2-category 0S.

Assumption A.1.2.67. Let A be a cubical 2-category. Let fy, fi1, f2, and f3 be
l-arrows of A whose sources and targets satisfy those equalities which allow us to
depict them as follows.

Jo

ay —— ay

f2‘ Jfl

ay ——> as

3

There is a functor

0§ —— A



Remark A.1.2.68. If we assume that we have certain finite colimits involving 1 and
7 in 2-Cat, then an object of 2-Cat with the property of S can be constructed, and
hence Assumption is not necessary. However, we prefer to make Assumption
in any case, in order to be able to appeal directly to the rule it introduces.

Assumption A.1.2.69. Let A be a cubical 2-category. Let fy, fi1, f2, and f3 be
1-arrows of A whose sources and targets satisfy those equalities which allow us to
depict them as follows.

Jo

Gy —> a1

le Jfl

Ay — > as

3

Let go, g1, g2, and g3 be 1-arrows of A whose sources and targets satisfy those equalities
which allow us to depict them as follows.

bOLbl

o e

by —— b
2 g3 3

Let

08 —2— A
be the functor determined by fy, fi, f2, and f3 by means of the rule of Assumption
[A1.2.67 Let

|

be the functor determined by gg, g1, g2, and g3 by means of the rule of Assumption
A.1.2.67, Suppose that f; is equal to g; for every 1 < j < 4. Then o is equal to 7.

Notation A.1.2.70. We denote by ¢ the functor

oS S

determined by the 1-arrows n, e, w, and s of S.

Assumption A.1.2.71. The category 2-Cat has those finite coproducts, coequalisers,
and pushouts that we make use of in this work.

Assumption A.1.2.72. The category 2-Cat has those finite products which we make
use of in this work.
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