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ABSTRACT

The discovery of the Jones polynomial invariant of knots is one of most important
and influential breakthroughs in geometric topology, and indeed pure mathematics,
in the last 30 years. One way to obtain it is to begin with a braid group, map
this into a Temperley-Lieb algebra, and then take a Markov trace. This gives the
Kauffman bracket polynomial, from which the Jones polynomial can obtained by a
slight modification.

In this master thesis, we categorify all aspects of this construction of the Kauffman
bracket polynomial, working with 2-braids and their appropriate notion of isotopy,
and exploring algebraic, higher categorical structures into which they assemble.

i





SAMMENDRAG

Oppdagelsen av Jonespolynomet, en knuteinvariant, er en av de viktigste gjennombrud-
dene i geometrisk topologi, og i ren matematikk generelt de siste 30 årene. En m̊ate for
å oppn̊a Jonespolynomet p̊a, er ved å begynne med en flettegruppe (”Braid”-gruppe),
avbilde denne p en Temperley-Lieb algebra, og deretter ta Markov trace av resultatet.
Dette gir oss et ”Kauffman bracket”-polynom, hvor vi med en liten modifikasjon kan
finne Jonespolynomet.

I denne oppgaven kategorifiserer vi alle aspekter ved denne konstruksjonen av
”Kauffman bracket”-polynomet. Dette gjør vi ved å jobbe med 2-braids og det
passende begrepet av isotopi, og utforske de høyere kategorielle strukturer som disse
utgjør.
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CHAPTER 1

INTRODUCTION



1.1. Overview

The Jones polynomial invariant of knot theory is of deep significance across geometric
topology, representation theory, category theory, and surrounding fields. It was
originally discovered not directly as a diagrammatic knot invariant, but as an invariant
of braids, observed to furthermore be invariant under the Markov moves. In [13],
Kauffman gave a beautiful, geometrically flavoured constuction of this braid invariant.

First, the braid group Bn is mapped into the Temperley-Lieb algebra Tn by smoothing
the crossings of a braid to a linear combination of diagrammatic tangles. Second, Tn
is mapped to Z[A,A−1], the ring of Laurent polynomials in one variable, by taking
the Markov trace of a diagrammatic tangle, and extending linearly. In this way, up
to a normalisation, we obtain an invariant of braids known as the Kauffman bracket
polynomial. The Jones polynomial arises as a modification of the Kauffman bracket
polynomial which, unlike the latter, is invariant under the Markov moves on braids,
and hence gives rise to a knot invariant.

This thesis is the first of a planned series of works by Therese Mardal Hagland,
the author, and Richard Williamson, which take a new look at this construction of
Kauffman, placing it in a conceptual, category theoretic framework, and then make
use of a higher categorical internalisation of this framework to construct an invariant
of 2-braids which categorifies the Kauffman bracket, and of 2-knots which categorifies
the Jones polynomial. This is in turn part of a broad programme, amongst the
various directions of which we seek to understand our categorification of the Jones
polynomial to an invariant of 2-knots by means of higher quantum algebra, and to lay
the foundations for a theory of virtual 2-braids and a theory of virtual 2-knots.

1.2. Synopsis – I

There are two principal parts to this thesis. In Chapter 3, we approach the construction
outlined above of the Kauffman bracket polynomial in a purely category theoretic way.
There are several novelties in our approach. Firstly, we do not work with the braid
groups Bn for n ≥ 0 individually. Instead, we define in a canonical way, beginning with
a very small amount of data, exactly enough to allow us to express the Reidemeister
moves, a strict monoidal category Braids/R-moves in a canonical way, and view the
Kauffman bracket as a strict monoidal functor whose source is Braids/R-moves. This
can be thought of as defining the Kauffman bracket for all of these braid groups in
one go.

In a similar way, we do not work with the Temperley-Lieb algebras Tn for n ≥ 0
individually, but rather work with them all in one go, by means, given an auxiliary
datum S, with a canonically constructed strict monoidal category TL(S). We express
smoothing of braids, one of the two key aspects of Kauffman’s construction, as a strict
monoidal functor from Braids/R-moves to TL(S). The details of the framework which
we put in place to construct TL(S) are the second significant novelty of our approach.

In order to capture the smoothing of braids that it is one of the two key ingredients



of Kauffman’s construction, it is however necessary to work with linear combinations
of diagrammatic tangles, with coefficients which are polynomials in a pair of variables
A and B. We do not achieve this by means of enrichment of a strict monoidal category
over Z[A,B]-Mod, as one might first think. Instead, we define TL(S) to be a 2-ring,
namely a ring internal to Cat, constructed canonically from a very small amount of
data, which exactly allows us to express the smoothing of an under crossing and an
over crossing, together with the datum S.

To explain this, a principal motivation for our category theoretic reworking of the
construction of the Kauffman bracket is to put in place a framework that seamlessly can
be lifted to a higher categorical setting, allowing us to define a categorified Kauffman
bracket for 2-braids. To achieve this, we develope all of the category theoretic machinery
that we need to carry out the construction of the Kauffman bracket for braids internally
to a sufficiently structured category C. In our construction of the Kauffman bracket
for braids, we take C to be Cat, the category of categories. But in our construction of
the categorified Kauffman bracket for 2-braids in the second part of this work, we take
C to be 2-Cat, the category of cubical 2-categories. In this way, all of our framework
categorifies effortlessly.

The notion of a category enriched over Z[A,B]-Mod is not, unlike the rest of our
framework, one that can be internalised in a simple manner. It is for this reason that
we work instead with 2-rings. It is straightforward to express the notion of a ring
internally to a category. The notion of a 2-ring is that which we obtain by internalising
to Cat. It is the recognition that 2-rings, and in fact also modules over them, although
we shall not explicitly make use of the latter in this work, can achieve the same purpose
as categories enriched over a category of modules, that we particularly regard as a
significant aspect of our approach.

Our treatment of the Markov trace, the second of the two key aspects of Kauffman’s
construction, is a third significant novelty of our approach. Various approaches have
been taken to capturing notions of trace category theoretically, for instance by Yetter
in [18], and by Joyal, Street, and Verity in [10]. This is achieved by requiring, as
part of the structure of one’s (monoidal) category, the possibility of manipulating
certain maps to obtain others, in a way which obeys a certain prescription. Instead,
we construct a Markov trace as a functor, constructed in a canonical way, from TL(S)
to a 2-ring, directly analogous to the way in which the Markov trace of Tn can be
viewed as a map to a polynomial ring Z[A,B, γ] in three variables.

Throughout, our canonical definitions of Braids/R-moves and TL(S) allow us to focus
on the essence of Kauffman’s construction when defining the smoothing of braids and
the Markov trace, namely how to smooth an over crossing and an under crossing, and
how to define the Markov trace of a single generating diagrammatic tangle, which
we denote by CupAndCap. The rest is taken care of by the universal properties with
which Braids/R-moves and TL(S) are equipped as a consequence of their canonical
construction.

Though our focus in Chapter 3 is upon establishing a robust categorical framework
for the construction of the Kauffman bracket invariant, our approach highlights certain
points regarding the invariant itself that may not be widely appreciated. Firstly, the



invariance of the Kauffman bracket under the R3 moves follows immediately from the
cyclity property of the Markov trace; and, for the same reason, invariance under one
of the R2 moves immediately ensures invariance under the other. Thus we obtain an
invariant by forcing the Markov trace of the smoothing of one side of one of the R2
moves to be equal to the Markov trace of the smoothing of the other side of this R2
move.

If our Markov trace is to Z[A,B, γ], then the Markov trace of the smoothing of one
side of the R2 move is

A2γ + ABγ2 +B2γ + AB,

whilst the Markov trace of the smoothing of the other side is 1. Our second point is
that the canonical quotient of Z[A,B, γ] for which we obtain an invariant is thus

Z[A,B, γ]/
(
A2γ + ABγ2 +B2γ + AB − 1

)
.

For this invariant to be useful, it is necessary to be able to decide whether two
polyomials in A, B, and γ are equal when passing to

Z[A,B, γ]/
(
A2γ + ABγ2 +B2γ + AB − 1

)
.

To establish this, one method is to construct a morphism of rings from

Z[A,B, γ]/
(
A2γ + ABγ2 +B2γ + AB − 1

)
to a ring in which equality can more easily be decided. One such ring is Z[A,A−1],
which admits a morphism from

Z[A,B, γ]/
(
A2γ + ABγ2 +B2γ + AB − 1

)
given by:

A 7→ A,

B 7→ A−1,

γ 7→ −A2 − A−2.

However, other rings can also be used, such as the ring Z[A]/(A2 − 1), which admits a
morphism from

Z[A,B, γ]/
(
A2γ + ABγ2 +B2γ + AB − 1

)
given by:

A 7→ A,

B 7→ 0,

γ 7→ 1.



This ring allows us, for instance, to detect the fact that the braid version of the trefoil
knot is not isotopic to the trivial braid, namely the braid version of the unknot. In
summary, whilst the ring of Laurent polynomials Z[A,A−1] is used almost always in
the literature as the recipient of the Kauffman bracket, we wish to emphasise that it
is not the canonical choice of recipient, and only one of several rings which are useful
for calculational purposes.

Thirdly, on a more minor note, we do not actually work with rings in the usual
sense in this work, but with what are typically known as semirings, without additive
inverses. The construction of the Kauffman bracket goes through perfectly well. In our
framework, commutativity also appears naturally as a consequence of our construction
of the Markov trace. We do not impose it from the beginning, and all aspects of the
construction of the Kauffman bracket except for those making use of the cyclicity
property of the Markov trace do not require it.

1.3. Synopsis – II

In Chapter 4, the second principal part of this work, we categorify the constructions of
the first part to obtain an invariant of 2-braids. By design, as already discussed, the
framework categorifies effortlessly. However, as with any interesting categorification,
this framework alone does not give an invariant.

We make certain choices which our higher categorical framework canonically builds
upon to define a 2-category 2-Braids of 2-braids, a Temperley-Lieb 3-ring 2-TL(S) given
a certain datum S, smoothing of 2-braids, and a Markov trace functor for diagrammatic
2-tangles. The 1-categorical truncation of all of these constructions agrees with that of
the first part of this work. It is the 2-arrows of 2-Braids that correspond to a geometric
notion of 2-braid, and the 2-arrows of 2-TL(S) that correspond to linear combinations
of a geometric notion of diagrammatic 2-tangle. The choices to which we referred at
the beginning of the paragraph determine these 2-arrows, and allow us to express our
notion of smoothing of 2-braids. These choices of how to define 2-Braids and 2-TL, and
how to define smoothing of 2-braids, have been arrived at geometrically, and, though
entirely implicit, we regard this work as the heart of the second part of the thesis.

In addition, we make the choice of the category of cubical 2-categories as that in
which to internalise the framework of the first part of this work. Just as braids can
be built up from over-crossings and under-crossings, we wish to express formally the
idea that 2-braids can be built up from those choices of 2-braid which we have just
discussed. As a square has two pairs of opposite edges, so a 2-braid has two pairs of
opposite braids. This suggests that 2-braids be built up by means of two notions of
composition of 2-braids, namely glueing 2-braids together in the direction of one of the
two pairs of opposite braids, and glueing 2-braids together in the direction of the other
of these pairs. This is naturally captured in a cubical setting for 2-category theory.

The choice of a cubical as opposed to a globular setting for 2-category theory appears
to us to be essential. Indeed, in a globular setting, one cannot specify that the source
and target braids in one of the two directions of composition be the same, and one is



thus led to admit formal compositions which are nonsensical from a geometrical point
of view.

1.4. Relationship to other work

The idea to capture knotted surfaces of one kind or another in a higher categorical
setting is a natural one. However, the only work we are aware of which touches on
ours is that on 2-tangles which we discussed at the beginning of §4.2, which, as we
discuss there, is significantly different both in motivation and in technical detail.

We are not aware of any prior work on a geometrically motivated, algebraic definition
of a 2-braid group. The only approach to the theory of 2-braids that we are aware of
in the literature is that discussed for instance by Kamada in [11]. It differs greatly
from ours. We are not aware of any work at all, geometric or algebraic, on smoothing
of 2-braids.

An influential algebraic definition of a 2-braid group, approached from an entirely
different point of view, was given by Rouquier in [16]. It is not at all clear that 2-braids
in the geometric sense are captured by the latter definition. In particular, we do not
see that the 2-braid group of [16] could capture those braids which involve triple plane
crossings, and in particular the tetrahedral move, which is expected to be related to
Zamolodchikov equations, discussed in [12], and expected to be at the heart of an
approach via higher quantum algebra to the kind of invariant which we construct in
this work.

The construction of a Jones polynomial-like invariant of 2-knots is a very natural
problem, and one would expect a good solution to it to have deep ramifications
across several fields, just as with the ordinary Jones polynomial. Despite this, a
construction of such a gadget, or of a Kauffman bracket-like invariant as a step towards
it, having been suggested prior to the recent work [14] of Therese Mardal Hagland.
The author has not been directly influenced by [14], and our approach is in several
ways considerably different. Nevertheless, [14] has influenced the author’s supervisor
greatly, and in this way [14] has had an important indirect influence on this thesis.

1.5. Future directions

Though the opportunity has not arisen to include it in the thesis, the author and
her supervisor believe to understand how build up upon the work of this thesis to
construct the Jones polynomial of knots in a categorical framework, and, categorifying
this framework, to construct a Jones polynomial-like invariant of 2-knots. This will
include a new, algebraic approach to diagrammatic knot theory and diagrammatic
2-knot theory.

In the case of diagrammatic knot theory, this will again involve an internalisation of
the categorical framework of the first part of this work to cubical 2-categories, but in
an entirely different way to that in the second part of this work. This will allow us to



construct knot diagrams by composing in two directions from certain basic building
blocks. We will be able to express R0, R1, R2, and R3 moves in this setting, allowing
us to work with knots up to isotopy.

In the case of diagrammatic 2-knot theory, this will involve an internalisation of the
categorical framework of the first part of this work to cubical 3-categories, allowing us
to construct diagrams of 2-knots by composing in three directions from certain basic
building blocks. In addition to double and triple plane crossings as considered in the
2-braid setting, we will be able to work with Whitney umbrella crossings. We will be
able to express all seven of the Roseman moves in this setting, allowing us to work
with 2-knots up to isotopy.

1.6. Preliminaries and foundations

We refer the reader to the appendix to this work for notation, terminology, and
assumptions that we shall, without mention, make use of throughout. We also explain
in the appendix the foundational setting in which we work.





CHAPTER 2

INTERNAL ALGEBRAIC
STRUCTURES AND CERTAIN FREE

CONSTRUCTIONS



2.1. Internal algebraic structures

In this section, we define, internally to a category C which has a final object, the
algebraic structures that we make use of in this work: monoids, commutative monoids,
and semirings (which we refer to simply as rings). When C is the category of sets, we
recover the algebraic structures that are usually referred to by these names. In this
work, however, we shall in Chapter 3 take C to be Cat, the category of small categories,
and in Chapter 4 take C to be 2-Cat, the category of cubical 2-categories.

We observe that monoids internal to C assemble into a category Mon(C, and that
rings internal to C assemble into a category Ring(C). These categories are constructed
canonically, in a 2-categorical setting, in [17], and are demonstrated to admit various
categorical constructions, but we do not go into this here, beyond stating the latter.

Finally, we carry out a form of the Eckmann-Hilton argument in two settings. First,
we demonstrate that composition coincides with multiplication, and that both are
commutative, for arrows

1R 1R

of a 2-ring R. Second, we demonstrate that both horizontal and vertical composition
coincide with multiplication, and that all three are commutative, for 2-arrows of a
3-ring R whose boundary is as follows.

1T 1T

1T 1T

id

idid

id

2.1.1. Monoids

Assumption 2.1.1.1. Let C be a category, and let 1C be a final object of C.

Notation 2.1.1.2. Let A be an object of C. Let

A A× A A
pA,bi1 pA,bi2

be a diagram in C which defines a binary product. Let

1C A
a

be an arrow of C. Let

A 1
p



be the canonical arrow to which the universal property of 1C gives rise. We denote by

A A× Aa× id

the canonical arrow of C such that the following diagram in C commutes.

A

A A× A A

a ◦ p
a× id id

pA,bi1 pA,bi2

We denote by

A A× Aid× a

the canonical arrow of C such that the following diagram in C commutes.

A

A A× A A

id
id× a

a ◦ p

pA,bi1 pA,bi2

Definition 2.1.1.3. A monoid internal to C consists of the following data.

(1) An object M of C.

(2) A diagram

M M ×M M
pM,bi
1 pM,bi

2

in C which defines a binary product.

(3) A diagram

M ×M ×M

M M M

pM,tri
1

pM,tri
2

pM,tri
3



in C which defines a triple product.

(4) An arrow

M ×M M
·

of C.

(5) An arrow

1C M
1

of C.

We require that the following hold.

(1) The following diagram in C commutes.

M ×M ×M M ×M

M ×M M

· × id

·id× ·

·

(2) The following diagram in C commutes.

M M ×M

M

1× id

·
id

(3) The following diagram in C commutes.

M M ×M

M

id× 1

·
id



Terminology 2.1.1.4. We refer to a monoid internal to Cat as a strict monoidal
category.

Remark 2.1.1.5. We might have instead referred to a monoid internal to Cat as a
2-monoid, and to a monoid internal to 2-Cat as a 3-monoid, to be consistent with the
terminology we shall adopt in §2.1.3 to refer to a ring internal to Cat or 2-Cat, but, to
avoid possible obfuscation, we shall not do so.

Terminology 2.1.1.6. We refer to a monoid internal to 2-Cat as a strict monoidal
cubical 2-category.

Notation 2.1.1.7. When working with monoids internal to Cat or to 2-Cat, namely
with strict monoidal categories or with strict monoidal cubical 2-categories, we shall
typically denote the functor · by ⊗.

Definition 2.1.1.8. Let M0 and M1 be monoids internal to C. Let us denote by M0

the object of C which is part of the data of M0, and denote the remaining pieces of
data of M0 as follows.

M0 M0 ×M0 M0

pM0,bi
1 pM0,bi

2

M0 ×M0 ×M0

M0 M0 M0

pM0,tri
1

pM0,tri
2

pM0,tri
3

M0 ×M0 M0

·M0

1C M0

1M0

Let us denote by M1 the object of C which is part of the data of M1, and denote the
remaining pieces of data of M1 as follows.

M1 M1 ×M1 M1

pM1,bi
1 pM1,bi

2

M1 ×M1 ×M1

M1 M1 M1

pM1,tri
1

pM1,tri
2

pM1,tri
3



M1 ×M1 M1

·M1

1C M1

1M1

A morphism from M0 to M1 consists of an arrow

M0 M1
F

of C such that the following hold.

(1) The following diagram in C commutes.

M0 ×M0 M0

M1 ×M1 M1

·M0

FF × F

·M1

(2) The following diagram in C commutes.

1C M0

M1

1M0

F
1M1

Terminology 2.1.1.9. We refer to a morphism of monoids internal to Cat or 2-Cat
as a strict monoidal functor.

Remark 2.1.1.10. Let M0, M1, and M2 be monoids internal to C. Let M0 be the
object of C which is part of the data of M0, let M1 be the object of C which is part of
the data of M1, and let M2 be the object of C which is part of the data of M2. Let

M0 M1

F0

be an arrow of C which defines a morphism from M0 to M1, and let

M1 M2

F1

be an arrow of C which defines a morphism from M1 to M2. Then the arrow



M0 M2

F1 ◦ F0

of C defines a morphism from M0 to M2.

Remark 2.1.1.11. Let M be a monoid internal to C. Let us denote the object of C
which is part of the data of M by M . Then the arrow

M M
id

of C defines a morphism from M to M.

Notation 2.1.1.12. Monoids internal to C and morphisms between them assemble,
with composition defined as in Remark 2.1.1.10, and identity morphisms defined as in
Remark 2.1.1.11, into a category. We shall denote this category by Mon(C).

Fact 2.1.1.13. Suppose that C satisfies certain hypotheses given in [17]. Then Mon(C)
has finite coproducts, coequalisers, pushouts, and binary products.

Remark 2.1.1.14. Fact 2.1.1.13 is proven in [17], and we shall assume it. In [17], the
category Mon(C) is constructed in a purely 2-categorical way. The demonstration that
Mon(C) admits the categorical constructions listed in Fact 2.1.1.13 makes use of this
2-categorical point of view.

2.1.2. Commutative monoids

Notation 2.1.2.1. Let M be an object of C, and let

M M ×M M
pM,bi
1 pM,bi

2

be a diagram in C which defines a binary product. We denote by

M ×M M ×Mτ

the canonical arrow of C such that the following diagram in C commutes.

M ×M

M M ×M M

pM,bi
2 τ

pM,bi
1

pM,bi
1 pM,bi

2



Definition 2.1.2.2. Let M be a monoid internal to C. Let us denote by M the object
of C which is part of the data of M, and denote the remaining pieces of data of M as
follows.

M M ×M M
pM,bi
1 pM,bi

2

M ×M ×M

M M M

pM,tri
1

pM,tri
2

pM,tri
3

M ×M M
·M

1C M
1M

Then M is commutative if the following diagram in C commutes.

M ×M M ×M

M

τ

·
·

Terminology 2.1.2.3. We refer to a commutative monoid internal to Cat as a strict
symmetric monoidal category.

Terminology 2.1.2.4. We refer to a commutative monoid internal to 2-Cat as a strict
symmetric monoidal cubical 2-category.

Remark 2.1.2.5. We might have instead referred to a commutative monoid internal
to Cat as a commutative 2-monoid, and to a commutative monoid internal to 2-Cat
as a commutative 3-monoid, to be consistent with the terminology we shall adopt in
§2.1.3 to refer to a ring internal to Cat or 2-Cat, but, to avoid possible obfuscation, we
shall not do so.

Notation 2.1.2.6. When working with commutative monoids internal to C, we shall
typically denote · by +, and denote 1 by 0.

Notation 2.1.2.7. When working with commutative monoids internal to Cat or 2-Cat,
namely with strict symmetric monoidal categories, we shall typically denote the functor
· by ⊕.



Definition 2.1.2.8. Let M0 and M1 be commutative monoids internal to C. Let us
denote the object of C which is part of the data of M0 by M0, and denote the object
of C which is part of the data of M1 by M1. A morphism from M0 to M1 is an arrow

M0 M1
F

of C which defines a morphism from M0 to M1.

2.1.3. Rings

Notation 2.1.3.1. Let R be an object of C. Let

R R×R R
pR,bi1 pR,bi2

be a diagram in C which defines a binary product. We denote by

R R×R∆

the canonical arrow of C such that the following diagram in C commutes.

R

R R×R R

id
∆

id

pR,bi1 pR,bi2

Definition 2.1.3.2. A ring internal to C consists of the following data.

(1) An object R of C.

(2) A diagram

R R×R R
pR,bi1 pR,bi2

in C which defines a binary product.

(3) A diagram

R×R×R

R R R

pR,tri1
pR,tri2

pR,tri3



in C which defines a triple product.

(4) An arrow

R×R R
+

of C.

(5) An arrow

1C R
0

of C.

(6) An arrow

R×R R
·

of C.

(7) An arrow

1C R
1

of C.

We require that the following hold.

(1) The data of (1) – (5) defines a commutative monoid internal to C.

(2) The data of (1) – (3) and (6) – (7) defines a monoid internal to C.

(3) The following diagram in C commutes.



R×R×R R×R×R×R

R×R×R×R

R×R

R×R R

∆× id× id

id× τ × id

· × ·

+

id×+

·

(4) The following diagram in C commutes.

R×R×R R×R×R×R

R×R×R×R

R×R

R×R R

id× id×∆

id× τ × id

· × ·

+

+× id

·

Terminology 2.1.3.3. We refer to a ring internal to Cat as a 2-ring.

Terminology 2.1.3.4. We refer to a ring internal to 2-Cat as a 3-ring.

Terminology 2.1.3.5. We refer to the commutative monoid defined by the data of
(1) – (5) in Definition 2.1.3.2 as the additive structure of a ring internal to C.

Notation 2.1.3.6. Let R be a ring internal to C. We denote its additive structure by
Radd.

Terminology 2.1.3.7. We refer to the monoid defined by the data of (1) – (3) and
(6) – (7) in Definition 2.1.3.2 as the multiplicative structure of a ring internal to C.

Notation 2.1.3.8. Let R be a ring internal to C. We denote its multiplicative structure
by Rmult.



Remark 2.1.3.9. When C is the category of sets, a ring internal to C is usually
referred to as a commutative semiring or commutative rig. In particular, we do not
require the monoid which defines the additive structure of a ring to have inverses.

Definition 2.1.3.10. Let R0 and R1 be rings internal to C. Let R0 be the object of C
which is part of the data of R0, and let R1 be the object of C which is part of the data
of R1. A morphism from R0 to R1 consists of an arrow

R0 R1
F

of C such that the following hold.

(1) The arrow F defines a morphism from Radd
0 to Radd

1 .

(2) The arrow F defines a morphism from Rmult
0 to Rmult

1 .

Terminology 2.1.3.11. We refer to a morphism of rings internal to Cat as a functor
of 2-rings.

Terminology 2.1.3.12. We refer to a morphism of rings internal to 2-Cat as a functor
of 3-rings.

Remark 2.1.3.13. Let R0, R1, and R2 be rings internal to C. Let R0 be the object of
C which is part of the data of R0, let R1 be the object of C which is part of the data of
R1, and let R2 be the object of C which is part of the data of R2. Let

R0 R1

F0

be an arrow of C which defines a morphism from R0 to R1, and let

R1 R2

F1

be an arrow of C which defines a morphism from R1 to R2. Then the arrow

R0 R2

F1 ◦ F0

of C defines a morphism of from R0 to R2.

Remark 2.1.3.14. Let R be a ring internal to C. Let R be the object of C which is
part of the data of R. Then the arrow

R R
id

of C defines a morphism from R to R.



Notation 2.1.3.15. Rings internal to C and morphisms between them assemble, with
composition defined as in Remark 2.1.3.13, and identity morphisms defined as in
Remark 2.1.3.14, into a category. We shall denote this category by Ring(C).

Fact 2.1.3.16. Suppose that C satisfies certain hypotheses given in [17]. Then Ring(C)
has finite coproducts, coequalisers, pushouts, and binary products.

Remark 2.1.3.17. Fact 2.1.3.16 is proven in [17], and we shall assume it. As discussed
in Remark 2.1.1.14 for Mon(C), the category Ring(C) is constructed in a purely 2-
categorical way in [17], and the demonstration that Ring(C) admits the categorical
constructions listed in Fact 2.1.3.16 makes use of this 2-categorical point of view.

Remark 2.1.3.18. Crucial to our categorical construction of the Kauffman bracket
for braids will be to, roughly speaking, equip the arrows of a monoidal category with
the structure of a free (left) R-module, where R is a ring internal to the category of
sets. Typically, one would make use of the notion of a monoidal category enriched over
the category of R-modules to express this idea. However, the definition of an enriched
category is not one which is simple to express internally to a category. As discussed
in the introduction to this work, internalisation is a fundamental to the approach
which we shall take in Chapter 4 to categorifying the framework for constructing the
Kauffman bracket which we shall establish in Chapter 3.

The notion of a module over a ring is one which is straightforward to express
internally to a category C. Whilst we omit a formal definition, because we shall not
make use of it elsewhere, let us refer in this remark to a module internal to Cat over a
2-ring as a 2-module over this 2-ring. Let R be a ring internal to the category of sets.
As we shall now explain, a category enriched over the category of (left) R-modules
can be viewed as a 2-module over the discrete 2-ring determined by R. We give this
explanation in the language of category theory in a set-theoretic foundations, rather
than in the setting, described in the appendix, in which we are carrying out our formal
work,

Given any set X, let us denote the discrete category determined by X by disc(X).
This category can be defined as follows.

(1) The set of objects Ob
(
disc(X)

)
is X.

(2) The set of arrows Arr
(
disc(X)

)
is X.

(3) The source and target maps

Arr
(
disc(X)

)
Ob
(
disc(X)

)
i are both the identity map

X X.
id



(4) The map

Ob
(
disc(X)

)
Arr
(
disc(X)

)
of disc(X) defining the identity arrows of disc(X) is the identity map

X X.
id

(5) The map

Arr
(
disc(X)

)
×

Ob
(

disc(X)
) Arr(disc(X)

)
Arr
(
disc(X)

)
defining composition of arrows of disc(X) is, observing that the diagram

X X

X X

id

idid

id

defines a pullback in the category of sets,is the identity map

X X.
id

Let R be the set which is part of the data of R. We equip disc(R) with the structure
of a 2-ring disc(R) in the following way.

(1) The functor

disc(R)× disc(R) disc(R)
⊕

is given both on objects and on arrows by the map

R×R R.
+



(2) Viewing 1Cat as disc(1Set), where 1Set is a final object of the category of sets, the
functor

1Cat disc(R)
0

is given both on objects and on arrows by the map

1Set R.
0

(3) The functor

disc(R)× disc(R) disc(R)
⊗

is given on both objects and on arrows by the map

R×R R.
·

(4) Viewing 1Cat in the same way as in (2), the functor

1Cat disc(R)
1

is given both on objects and on arrows by the map

1Set R.
1

Let us refer to the 2-ring disc(R) as the discrete 2-ring on R.
A category enriched over the category of modules over R is exactly the data of a

2-module M over disc(R) with the property that, lettingM denote the category which
is part of the data of M, the functor

disc(R)×M M

which is part of the data of M is the projection map on objects, namely r ⊗M m = m
for every element r of R and every object m of M .

This leads to the idea to work with 2-modules over a 2-ring in internal category
theory, rather than with enriched categories. Taking this one step further, it suggests
to work with the notion of an algebra over a ring in internal category theory rather
than with enriched monoidal categories.



In fact, though, we shall not explicitly make use of the notion of an algebra over
a ring internal to a category in this work. Instead, we shall make use of free rings
internal to a category, and categorical constructions in Ring(C). In this way, we shall
be able to express formally all that we would require of the notion of an algebra over
a ring internal to a category.

Remark 2.1.3.19. That, as described in Remark 2.1.3.18, 2-modules over a 2-ring
generalise categories enriched over the category of modules over a ring, is an observation
which we would imagine is folkloric, but we are not aware of any work it which it
appears.

Proposition 2.1.3.20. Let R be a 2-ring. Let R denote the category which is part of
the data of R. Let

1R 1R

f

and

1R 1R

g

be arrows of R. Then the arrows g ◦ f , f ◦ g, f ⊗R g, and g ⊗R f of R are equal.

Proof. Let

R R×R R
pR,bi1 pR,bi2

be the diagram in Cat which is part of the data of R, and which defines a binary
product. Let

I 0t1 I R ×Ru

denote the canonical functor such that the following diagram in Cat commutes.

1Cat I

I I 0t1 I

R ×R

0

rI0t1I01

rI0t1I1

id(1R)× g

f × id(1R)

u

We make the following observations.



(1) By definition of the arrow

I R ×R,

(
id(1R)× g

)
◦
(
f × id(1R)

)

of R, the following diagram in Cat commutes.

I I 0t1 I

R ×R

s

u(
id(1R)× g

)
◦
(
f × id(1R)

)

(2) By definition of the arrow

I R ×R,
f × id(1R)

of R, the following diagram in Cat commutes.

I R ×R

R

f × id(1R)

pR,bi1f

(3) By definition of the arrow

I R ×R,
id(1R)× g

of R, the following diagram in Cat commutes.

I R ×R

R

id(1R)× g

pR,bi1id(1R)



(4) We deduce from (1) – (3) that the following diagram in Cat commutes.

1Cat I

I I 0t1 I

R

0

rI0t1I01

rI0t1I1

id(1R)

f

pR,bi1 ◦ u

(5) Appealing to the universal property of I 0t1 I, and the definition of the arrow
id(1R) ◦ f , we deduce from (4) that the following diagram in Cat commutes.

I R ×R

R

(
id(1R)× g

)
◦
(
f × id(1R)

)
pR,bi1id(1R) ◦ f

(6) Since the arrow id(1R) ◦ f is equal to f , we deduce from (5) that the following
diagram in Cat commutes.

I R ×R

R

(
id(1R)× g

)
◦
(
f × id(1R)

)
pR,bi1f

(7) By an entirely analogous argument to that of (1) – (6), the following diagram
in Cat commutes.

I R ×R

R

(
id(1R)× g

)
◦
(
f × id(1R)

)
pR,bi2g



(8) We deduce from (6), (7), the definition of the arrow

I R ×R,
f × g

of R, and the universal property of R×R, that the arrow(
id(1R)× g

)
◦
(
f × id(1R)

)
of R is equal to the arrow f × g of R.

(9) We deduce from (8) that the following diagram in Cat commutes.

I R ×R

R×R R

(
id(1R)× g

)
◦
(
f × id(1R)

)
⊗Rf × g

⊗R

(10) Since ⊗R is a functor, we deduce from (9) that the arrow(
id(1R)⊗R g

)
◦
(
f ⊗R id(1R)

)
of R is equal to the arrow f ⊗R g of R.

(11) By requirement (2) of Definition 2.1.1.3 with respect to Rmult, the arrow
id(1R)⊗R g of R is equal to the arrow g of R.

(12) By requirement (3) of Definition 2.1.1.3 with respect to Rmult, the arrow
f ⊗R id(1R) of R is equal to the arrow f of R.

(13) We deduce from (10) – (12) that the arrow g ◦ f of R is equal to the arrow
f ⊗R g of R.

Working with the arrow

I R ×R

(
g × id(1R)

)
◦
(
id(1R)× f

)
of R instead of the arrow

I R ×R,

(
id(1R)× g

)
◦
(
f × id(1R)

)
of R, an entirely analogous argument demonstrates that the arrow g ◦ f of R is also
equal to the arrow g ⊗R f of R. Finally, working with the arrow



I R ×R

(
f × id(1R)

)
◦
(
id(1R)× g

)
of R instead of the arrow

I R ×R,

(
id(1R)× g

)
◦
(
f × id(1R)

)
of R, an entirely analogous argument demonstrates that the arrow f ◦ g of R is equal
to the arrow f ⊗R g of R. Putting all of this together, we have that

g ⊗R f = g ◦ f = f ⊗R g = f ◦ g.

Proposition 2.1.3.21. Let R be a 3-ring. Let R denote the cubical 2-category which
is part of the data of R. Let

1R 1R

σ

1R 1R

id

idid

id

and

1R 1R

τ

1R 1R

id

idid

id

be 2-arrows of R. Then the 2-arrows τ ◦ver σ, σ ◦ver τ , τ ◦hor σ, σ ◦hor τ , σ ⊗R τ , and
τ ⊗R σ of R are equal.

Proof. Let

R R×R R
pR,bi1 pR,bi2

be the diagram in 2-Cat which is part of the data of R, and which defines a binary
product. Let

S nts S R×Ru



denote the canonical functor such that the following diagram in 2-Cat commutes.

I S

S S nts S

R×R

n

rSntsS
0s

rSntsS
1

idver
(
id(1R)

)
× τ

σ × idver
(
id(1R)

)
u

We make the following observations.

(1) By definition of the 2-arrow

S R×R,

(
idver

(
id(1R)

)
× τ
)
◦ver

(
σ × idver

(
id(1R)

))

of R, the following diagram in 2-Cat commutes.

S S nts S

R×R

sver

u(
idver

(
id(1R)× τ

))
◦ver

(
σ × idver

(
id(1R)

))

(2) By definition of the 2-arrow

S R×R,
σ × idver

(
id(1R)

)

of R, the following diagram in 2-Cat commutes.

S R×R

R

σ × idver
(
id(1R)

)
pR,bi1σ



(3) By definition of the 2-arrow

S R×R,
idver

(
id(1R)

)
× τ

of R, the following diagram in 2-Cat commutes.

S R×R

R

idver
(
id(1R)

)
× τ

pR,bi1
idver

(
id(1R)

)

(4) We deduce from (1) – (3) that the following diagram in 2-Cat commutes.

I S

S S nts S

R

n

rSntsS
0s

rSntsS
1

idver
(
id(1R)

)

σ

pR,bi1 ◦ u

(5) Appealing to the universal property of S nts S, and the definition of the 2-
arrow idver

(
id(1R)

)
◦ σ, we deduce from (4) that the following diagram in 2-Cat

commutes.

S R×R

R

(
idver

(
id(1R)× g

))
◦
(
f × idver

(
id(1R)

))

pR,bi1
idver

(
id(1R)

)
◦ver σ

(6) Since the 2-arrow idver
(
id(1R)

)
◦ver σ is equal to σ, we deduce from (5) that the

following diagram in 2-Cat commutes.



S R×R

R

(
idver

(
id(1R)

)
× τ
)
◦ver

(
σ ×

(
id(1R)

))

pR,bi1σ

(7) By an entirely analogous argument to that of (1) – (6), the following diagram
in 2-Cat commutes.

S R×R

R

(
idver

(
id(1R)

)
× τ
)
◦ver

(
σ ×

(
id(1R)

))

pR,bi2g

(8) We deduce from (6), (7), the definition of the 2-arrow

S R×R,σ × τ

of R, and the universal property of R×R, that the 2-arrow(
idver

(
id(1R)

)
× τ
)
◦ver

(
σ × idver

(
id(1R)

))
of R is equal to the 2-arrow σ × τ of R.

(9) We deduce from (8) that the following diagram in 2-Cat commutes.

S R×R

R×R R

(
idver

(
id(1R)

)
× τ
)
◦ver

(
σ × idver

(
id(1R)

))
⊗Rσ × τ

⊗R

(10) Since ⊗R is a functor, we deduce from (9) that the 2-arrow(
idver

(
id(1R)⊗R τ

))
◦ver

(
σ ⊗R idver

(
id(1R)

))
of R is equal to the 2-arrow σ ⊗R τ of R.



(11) By requirement (2) of Definition 2.1.1.3 with respect to Rmult, the arrow
idver

(
id(1R)

)
⊗R τ of R is equal to the arrow τ of R.

(12) By requirement (3) of Definition 2.1.1.3 with respect to Rmult, the 2-arrow
σ ⊗R idver

(
id(1R)

)
of R is equal to the 2-arrow σ of R.

(13) We deduce from (10) – (12) that the arrow τ ◦ver σ of R is equal to the 2-arrow
σ ⊗R τ of R.

Working with the 2-arrow

S R×R

(
τ × idver

(
id(1R)

))
◦ver

(
idver

(
id(1R)× σ

)

of R instead of the 2-arrow

S R×R

(
idver

(
id(1R)

)
× τ
)
◦ver

(
σ × idver

(
id(1R)

))

of R, an entirely analogous argument demonstrates that the arrow τ ◦ver σ of R is also
equal to the arrow τ ⊗R σ of R. Working with the 2-arrow

S R×R

(
σ × idver

(
id(1R)

))
◦ver

(
idver

(
id(1R)

)
× τ
)

of R instead of the 2-arrow

S R×R

(
idver

(
id(1R)

)
× τ
)
◦ver

(
σ × idver

(
id(1R)

))

of R, an entirely analogous argument demonstrates that the arrow σ ◦ver τ of R is
equal to the arrow σ ⊗R τ of R. Working with the 2-arrow

S R×R

(
idhor

(
id(1R)

)
× τ
)
◦hor

(
σ × idhor

(
id(1R)

))

instead of the 2-arrow

S R×R

(
idver

(
id(1R)

)
× τ
)
◦ver

(
σ × idver

(
id(1R)

))

of R, an entirely analogous argument demonstrates that the arrow τ ◦hor σ of R is
equal to the arrow σ ⊗R τ of R. Finally, working with the 2-arrow



S R×R

(
σ × idhor

(
id(1R)

))
◦hor

(
idhor

(
id(1R)

)
× τ
)

of R instead of the 2-arrow

S R×R

(
idver

(
id(1R)

)
× τ
)
◦ver

(
σ × idver

(
id(1R)

))

of R, an entirely analogous argument demonstrates that the arrow σ ◦hor τ of R is
equal to the arrow σ ⊗R τ of R.

Putting all of this together, we have that

τ ⊗R σ = τ ◦ver σ = σ ⊗R τ = σ ◦ver τ

and that
τ ◦hor σ = σ ⊗R τ = σ ◦hor τ.

Hence all six of these 2-arrows are equal.

Remark 2.1.3.22. The proofs of Proposition 2.1.3.20 and Proposition 2.1.3.21 are a
form of the Eckmann-Hilton argument. This argument, in a category theoretic setting,
goes back to §4 of the paper [4] of Eckmann and Hilton.



2.2. Assumed free constructions

Certain free constructions of the internal algebraic structures introduced in §2.1 will
be made vital use throughout this work. The first is that of free monoid internal to
a category C on a monoidal datum internal to C. The second is that of a free ring
internal to C on a monoidal datum internal to C. The third is that of a free ring
internal to C on a monoid internal to C.

In this section, we introduce these free constructions, and relate them. That they
can be carried out is demonstrated in [17].

2.2.1. Free monoid on a monoidal datum internal to a category

Assumption 2.2.1.1. Let C be a category, and let 1C be a final object of C.

Definition 2.2.1.2. A monoidal datum internal to C consists of the following data.

(1) An object A of C.

(2) An object B of C

(3) A diagram

B B ×B B
pB,bi1 pB,bi2

in C which defines a binary product.

(4) An arrow

A B ×B
pairs

of C.

(5) An arrow

A B
to

of C.

Definition 2.2.1.3. Let M be a monoid internal to C. Let M be the object of C which
is part of the data of M. A monoidal datum for M consists of the following data.

(1) A monoidal datum M internal to C.



(2) An arrow

B M
i

of C.

Let

M M ×M M
pM,bi
1 pM,bi

2

be the diagram in C which is part of the data of M, and which defines a binary product.
Let A and B be the objects of C which are the first and second parts respectively of
the data of M, and let us denote the rest of the data of M as follows.

B B ×B B
pB,bi1 pB,bi2

A B ×B
pairsM

A B
toM

We require that the following diagram in C commutes.

A B ×B

M ×M

B M

pairsM

i× i

·M

toM

i

Fact 2.2.1.4. Suppose that C satisfies certain hypotheses, given in [17]. Let M be a
monoidal datum internal to C, and let B be the object of C which is the second part of
the data of M. Then there is a monoid F(M) internal to C, and an arrow

B F (M)
iF (M)



of C, where F (M) is the object of C which is part of the data of F(M), such that, for
every monoid M internal to C, and every arrow

B M
iM

of C with the property that (M, iM) defines a monoidal datum for M, where M is the
object of C which is part of the data of M, there is a unique arrow

F (M) M
canM

of C with the following properties.

(1) The data
(
M, iF (M)

)
defines a monoidal datum for F(M).

(2) The arrow canM of C defines a morphism from F(M) to M.

(3) The following diagram in C commutes.

B F (M)

M

iF (M)

canM
iM

Terminology 2.2.1.5. We refer to F(M) as the free monoid on M.

Remark 2.2.1.6. Both Cat and 2-Cat satisfy the hypotheses required to hold at the
beginning of Fact 2.2.1.4.

Terminology 2.2.1.7. Suppose that C has an inital object ∅C. Let B be an object of
C. Assume that there is a diagram

B B ×B B
pB,bi1 pB,bi2

in C which defines a binary product. Let M be the monoidal datum given by the
following data.

(1) The object of C which is the first part of the data of M is ∅C.

(2) The object of C which is the second part of the data of M is B.

(3) The diagram in C which is the third part of the data of M is the following.

B B ×B B
pB,bi1 pB,bi2



(4) The arrow

∅C B ×B
pairs

is the canonical arrow to which the universal property of ∅C gives rise.

(5) The arrow

∅C B
to

is the canonical arrow to which the universal property of ∅C gives rise.

Then we refer to the free monoid on M as the free monoid on B.

2.2.2. Free ring on a monoidal datum internal to a category

Definition 2.2.2.1. Let R be a ring internal to C. A monoidal datum for R is a
monoidal datum for Rmult.

Fact 2.2.2.2. Suppose that C satisfies certain hypotheses, given in [17]. Let M =
(A,B, pairsM, toM) be a monoidal datum internal to C. Then there is a ring F(M)
internal to C, and an arrow

B F (M)
iF (M)

of C, where F (M) is the object of C which is part of the data of F(M), such that, for
every ring R internal to C, and every arrow

B R
iR

of C with the property that (M, iR) defines a monoidal datum for M, where R is the
object of C which is part of the data of R, there is a unique arrow

F (M) R
canM

of C with the following properties.

(1) The data
(
M, iF (M)

)
defines a monoidal datum for F(M).

(2) The arrow canM of C defines a morphism from F(M) to R.



(3) The following diagram in C commutes.

B F (M)

R

iF (M)

canM
iR

Terminology 2.2.2.3. We refer to F(M) as the free ring on M.

Remark 2.2.2.4. Both Cat and 2-Cat satisfy the hypotheses required to hold at the
beginning of Fact 2.2.2.2.

Terminology 2.2.2.5. Suppose that C has an inital object ∅C. Let B be an object of
C. Assume that there is a diagram

B B ×B B
pB,bi1 pB,bi2

in C which defines a binary product. Let M be the monoidal datum defined as in
Terminology 2.2.1.7. Then we refer to the free ring on M as the free ring on B.

2.2.3. Free ring on a monoid internal to a category

Fact 2.2.3.1. Suppose that C satisfies certain hypotheses, given in [17]. Let M be a
monoid internal to C. Then there is a ring F(M) internal to C, and a morphism

M F (M)mult
iF(M)

of monoids internal to C, such that, for every ring R internal to C, and every morphism

M Rmult
f

of monoids internal to C, there is a unique morphism

F(M) R
canR

of rings internal to C such that the following diagram in Mon(C) commutes.

M F (M)mult

R

iF(M))

canR
f



Terminology 2.2.3.2. We refer to F(M) as the free ring on M.

Remark 2.2.3.3. Both Cat and 2-Cat satisfy the hypotheses required to hold at the
beginning of Fact 2.2.3.1.

Fact 2.2.3.4. Suppose that C satisfies the hypotheses that are required to hold at the
beginning of Fact 2.2.1.4 and Fact 2.2.2.2. Let M be a monoidal datum internal to C,
and let B be the object of C which is the second part of the data of M. Appealing to
Fact 2.2.1.4, let FMon(C)(M) denote the free monoid on M internal to C. Appealing to
Fact 2.2.2.2, let FRing(C)(M) denote the free ring on M internal to C. Let us denote by

FMon(C)(M) FRing(C)(M)multu

the morphism of monoids internal to C to which the monoid FRing(C)(M)mult internal to
C and the arrow

B FRing(C)(M)
iFRing(C)(M)

of C give rise, by means of the universal property of FMon(C)(M). Then FRing(C)(M)mult

along with the morphism

FMon(C)(M) FRing(C)(M)mult,
u

of monoids internal to C define the free ring on FMon(Cat)(M) internal to C.





CHAPTER 3

A CATEGORICAL FRAMEWORK FOR
THE KAUFFMAN BRACKET



3.1. Categories of braids

We define a category Braids, whose arrows we think of and depict as braids. as a free
strict monoidal category on a monoidal datum MBraids. We then formulate the R2 and
R3 Reidemeister moves in terms of arrows of Braids, and define a series of monoidal
categories by taking colimits in Mon(Cat) which identify the two sides of each of these
moves. First, a category Braids/R2one in which one of the R2 moves has been forced to
become an identity. Second, a category Braids/R2both in which both of the R2 moves
have been forced to become identites. Finally, a category Braids/R-moves in which all
of the R2 and R3 moves have been forced to become identities.

We think of the arrows of Braids/R-moves as braids up to isotopy. More generally,
we think of our work in this section as carrying out an algebraisation of the topological
theory of braids.

We observe that, to define Braids/R-moves from Braids/R2both, it is enough to force
just one of the R3 moves to become an identity. All of the other R3 moves then become
identities as a consequence. Making use of this observation, and of the categories
Braids/R2one and Braids/R2both, rather than defining Braids/R-moves from Braids in one
step, will allow us to demonstrate in as short a manner as possible that the Kauffman
bracket we construct in §3.3 is a braid invariant.

3.1.1. The category of braids

Notation 3.1.1.1. Let

1Cat 1Cat t 1Cat 1Cat
1 2

be a diagram in Cat which defines a binary coproduct.

Notation 3.1.1.2. Let us denote by

∂I 1Cat t 1Cat

(2, 2)

the functor determined by the pair of objects (2, 2) of 1Cat t 1Cat.

Notation 3.1.1.3. Let us denote by

∂I I
(0, 1)

the functor determined by the pair of objects (0, 1) of I.

Notation 3.1.1.4. Let

∂I ∂I t ∂I ∂I
i∂I,bi1 i∂I,bi2

be a diagram in Cat which defines a binary coproduct.



Notation 3.1.1.5. Let us denote by

∂I t ∂I 1Cat t 1Cat

(2, 2) t (2, 2)

the canonical functor such that the following diagram in Cat, in which it is the
unlabelled vertical arrow, commutes.

∂I ∂I t ∂I ∂I

1Cat t 1Cat

i∂I,bi1 i∂I,bi2

(2, 2) (2, 2)

Notation 3.1.1.6. Let

I I t I I
iI,bi1 iI,bi2

be a diagram in Cat which defines a binary coproduct.

Notation 3.1.1.7. Let us denote by

∂I t ∂I I t I
((0, 1) t (0, 1)

the canonical functor such that the following diagram in Cat, in which it is the
unlabelled vertical arrow, commutes.

∂I ∂I t ∂I ∂I

I t I

i∂I,bi1 i∂I,bi2

iI,bi1 ◦ (0, 1) iI,bi2 ◦ (0, 1)

Notation 3.1.1.8. Let

∂I t ∂I 1Cat t 1Cat

I t I Braids≤2

(2, 2) t (2, 2)

r
Braids≤2

0
(0, 1) t (0, 1)

r
Braids≤2

1

be a co-cartesian square in Cat.



Notation 3.1.1.9. We denote the object of Braids≤2 corresponding to the functor

1Cat Braids≤2
r

Braids≤2

0 ◦ 1

by 1, and depict it as follows.

We denote the object of Braids≤2 corresponding to the functor

1Cat Braids≤2
r

Braids≤2

0 ◦ 2

by 2, and depict it as follows.

We depict the arrow

1 1
id(1)

of Braids≤2 as follows.

We depict the arrow

2 2
id(2)

of Braids≤2 as follows.

We denote the arrow of Braids≤2 corresponding to the functor



I Braids≤2
r

Braids≤2

1 ◦ iI,bi1

by OverCrossing, and depict it as follows.

We denote the arrow of Braids≤2 corresponding to the functor

I Braids≤2
r

Braids≤2

1 ◦ iI,bi2

by UnderCrossing, and depict it as follows.

Remark 3.1.1.10. The definition of Braids≤2 can be thought of as follows. We begin
with a category consisting of exactly two objects, 1 and 2, and no non-identity arrows.
We then proceed as follows.

(1) We add an arrow

2 2,

which we denote by OverCrossing.

(2) We add another arrow

2 2,

which we denote by UnderCrossing.



(3) We then add exactly those further arrows

2 2

that we need to have a category, namely arbitrary finite compositions of OverCrossing
and UnderCrossing.

As this description makes clear, Braids≤2 can also be defined as the free category on
the directed graph consisting of exactly two objects 1, 2, and exactly two arrows

2 2.

We prefer, however, the more direct approach, working purely within Cat, that we
have taken.

Notation 3.1.1.11. Let

Braids≤2 Braids≤2 × Braids≤2 Braids≤2
p

Braids≤2

1 p
Braids≤2

2

be a diagram in Cat which defines a binary product.

Notation 3.1.1.12. Let

1Cat Braids≤2 × Braids≤2
(1, 1)

be the canonical functor such that the following diagram in Cat commutes.

1Cat

Braids≤2 Braids≤2 × Braids≤2 Braids≤2

1
(1, 1)

1

p
Braids≤2

1 p
Braids≤2

2

Definition 3.1.1.13. The category of braids is, appealing to Fact 2.2.1.4, the free
strict monoidal category on the monoidal datum MBraids = (1Cat,Braids≤2, (1, 1), 2)
internal to Cat.

Notation 3.1.1.14. We denote the category of braids by Braids. We denote the
canonical functor

Braids≤2 Braids

by canBraids.



Remark 3.1.1.15. The construction of the category Braids can be thought as taking
the free strict monoidal category upon Braids≤2, subject to the requirement that
1⊗ 1 = 2. Thus the objects of Braids can be thought of as the symbols

1⊗ · · · ⊗ 1︸ ︷︷ ︸
n

for n ≥ 0. We depict
1⊗ · · · ⊗ 1︸ ︷︷ ︸

n

as follows, for n ≥ 1.

. . .

We sometimes denote the symbol

1⊗ · · · ⊗ 1︸ ︷︷ ︸
n

simply by n.
The arrows of Braids can be thought of as built from those of Braids≤2 by horizontal

concatenation. Thus, for instance, there is an arrow

1⊗ 1⊗ 1 1⊗ 1⊗ 1,
id(1)⊗ OverCrossing

which we depict as follows.

We think of the unit object of Braids, which we denote by 0, as the ‘empty braid’, or
the ‘braid with zero strands’.

From this description, we see that the arrows of Braids correspond exactly to braids,
on any number of strands, in the topological sense. However, we shall not make use of
this or any other explicit description of Braids in our formal work. We shall appeal
only to its universal property.

Notation 3.1.1.16. We depict composition in both Braids≤2 and Braids as vertical
glueing. For instance, we depict the arrow

2 2
UnderCrossing ◦ OverCrossing



in either Braids≤2 or Braids as follows.

3.1.2. Categories of braids up to isotopy

Notation 3.1.2.1. Appealing to Fact 2.2.1.4, we denote by F(I) the free strict
monoidal category on I.

Notation 3.1.2.2. Let

F(I) Braids
R2one(one half)

be the strict monoidal functor to which, by means of the universal property of F(I),
the functor

I Braids
UnderCrossing ◦ OverCrossing

gives rise.

Notation 3.1.2.3. Let

F(I) Braids
R2one(other half)

be the strict monoidal functor to which, by means of the universal property of F(I),
the functor

I Braids

corresponding to the arrow

2 2
id

of Braids gives rise.



Definition 3.1.2.4. Appealing to Fact 2.1.1.13, let

F(I) Braids Braids/R2one

R2one(one half)

R2one(other half)

qR2one

be a diagram in Mon(Cat) which defines a coequaliser.

Remark 3.1.2.5. The arrows R2one(one half) and R2one(other half) of Braids express
algebraically the two halves of the R2 move which allows us to replace

by the following, and vice versa.

We refer to this R2 move as R2one. Let us regard two braids as equivalent if one can
be obtained from the other by a finite sequence of R2one moves. Then the objects
of Braids/R2one are the same as those of Braids, and the arrows of Braids/R2one can
be thought of in the same way as the arrows of Braids, namely as braids, up to the
afore-mentioned notion of equivalence.

Notation 3.1.2.6. Let

F(I) Braids
R2two(one half)

be the strict monoidal functor to which, by means of the universal property of F(I),
the functor

I Braids
OverCrossing ◦ UnderCrossing

gives rise.



Notation 3.1.2.7. Let

F(I) Braids
R2two(other half)

be the strict monoidal functor to which, by means of the universal property of F(I),
the functor

I Braids

corresponding to the arrow

2 2
id

of Braids gives rise.

Definition 3.1.2.8. Appealing to Fact 2.1.1.13, let

F(I) Braids/R2one Braids/R2both

qR2one ◦ R2two(one half)

qR2one ◦ R2two(other half)

qR2two

be a diagram in Mon(Cat) which defines a coequaliser.

Notation 3.1.2.9. We denote the functor

Braids Braids/R2both

qR2two ◦ qR2one

by qR2both
.

Remark 3.1.2.10. The arrows R2two(one half) and R2two(other half) of Braids express
algebraically the two halves of the R2 move which allows us to replace

by the following, and vice versa.



We refer to this R2 move as R2two. Let us regard two braids as equivalent if one can
be obtained from the other by a finite sequence of R2one and R2two moves. Then the
objects of Braids/R2both are the same as those of Braids, and the arrows of Braids/R2both

can be thought of in the same way as the arrows of Braids, namely as braids, up to
the afore-mentioned notion of equivalence.

Remark 3.1.2.11. The category Braids/R2both is in fact a groupoid. The arrows

2 2
OverCrossing

and

2 2
UnderCrossing

of Braids≤2 are the non-identity generating arrows for Braids as the free strict monoidal
category on MBraids. Since these two arrows become inverse to one another in
Braids/R2both, it follows that all arrows of Braids become isomorphisms in Braids/R2both.

The observation that Braids/R2both is a groupoid will not be made use of in this
work.

Notation 3.1.2.12. Let us denote the arrow

3 3
OverCrossing ⊗ id(1)

of Braids by σ1. Let us denote the arrow

3 3
id(1)⊗ OverCrossing

of Braids by σ2.

Notation 3.1.2.13. Let

F(I) Braids
R3one(one half)

be the strict monoidal functor to which, by means of the universal property of F(I),
the functor

I Braids
σ1 ◦ σ2 ◦ σ1

gives rise.



Notation 3.1.2.14. Let

F(I) Braids
R3one(other half)

be the strict monoidal functor to which, by means of the universal property of F(I),
the functor

I Braids
σ2 ◦ σ1 ◦ σ2

gives rise.

Definition 3.1.2.15. Appealing to Fact 2.1.1.13, let

F(I) Braids/R2both Braids/R-moves

qR2both
◦ R3one(one half)

qR2both
◦ R3one(other half)

qR3one

be a diagram in Mon(Cat) which defines a coequaliser.

Notation 3.1.2.16. We denote the functor

Braids Braids/R-moves
qR3one ◦ qR2both

by qR-moves.

Remark 3.1.2.17. The arrows R3one(one half) and R3one(other half) of Braids express
algebraically the two halves of the R3 move which allows us to replace

by the following, and vice versa.



We refer to this R3 move as R3one.

Notation 3.1.2.18. Let us denote the arrow

3 3
UnderCrossing ⊗ id(1)

of Braids by σ−11 . Let us denote the arrow

3 3
id(1)⊗ UnderCrossing

of Braids by σ−22 .

Notation 3.1.2.19. Let

F(I) Braids
R3two(one half)

be the strict monoidal functor to which, by means of the universal property of F(I),
the functor

I Braids
σ−11 ◦ σ2 ◦ σ1

gives rise.

Notation 3.1.2.20. Let

F(I) Braids
R3two(other half)

be the strict monoidal functor to which, by means of the universal property of F(I),
the functor



I Braids
σ2 ◦ σ1 ◦ σ−12

gives rise.

Remark 3.1.2.21. The arrows R3two(one half) and R3two(other half) of Braids express
algebraically the two halves of the R3 move which allows us to replace

by the following, and vice versa.

We refer to this R3 move as R3two.

Proposition 3.1.2.22. The following diagram in Cat commutes.



I Braids

Braids Braids/R-moves

σ−11 ◦ σ2 ◦ σ1

qR-movesσ2 ◦ σ1 ◦ σ−12

qR-moves

Proof. We make the following observations.

(1) By definition of Braids/R-moves, the following diagram in Cat commutes.

I Braids

Braids Braids/R-moves

σ1 ◦ σ2 ◦ σ1

qR-movesσ2 ◦ σ1 ◦ σ2

qR-moves

(2) By the functoriality of qR-moves, we deduce from (1) that the following diagram
in Cat commutes.

I Braids

Braids Braids/R-moves

σ−11 ◦ σ1 ◦ σ2 ◦ σ1

qR-movesσ−11 ◦ σ2 ◦ σ1 ◦ σ2

qR-moves

(3) By definition of Braids/R2one, the following diagram in Cat commutes.

I Braids

Braids Braids/R2one

id(2)

qR2bothσ−11 ◦ σ1

qR2both

(4) We deduce from (3) that the following diagram in Cat commutes.



I Braids

Braids/R2one

Braids Braids/R2both

id(2)

qR2twoσ−11 ◦ σ1

qR2two

qR2one

qR2one

qR2both

(5) We deduce from (4) that the following diagram in Cat commutes.

I Braids

Braids/R2both

Braids Braids/R-moves

id(2)

qR-movesσ−11 ◦ σ1

qR-moves

qR2both

qR2both

qR3one

(6) By the functoriality qR-moves, we deduce from (5) that the following diagram in
Cat commutes.

I Braids

Braids Braids/R-moves

σ2 ◦ σ1

qR-movesσ−11 ◦ σ1 ◦ σ2 ◦ σ1

qR-moves

(7) We deduce from (2) and (6) that the following diagram in Cat commutes.

I Braids

Braids Braids/R-moves

σ2 ◦ σ1

qR-movesσ−11 ◦ σ2 ◦ σ1 ◦ σ2

qR-moves



(8) By the functoriality qR-moves, we deduce from (7) that the following diagram in
Cat commutes.

I Braids

Braids Braids/R-moves

σ2 ◦ σ1 ◦ σ−12

qR-movesσ−11 ◦ σ2 ◦ σ1 ◦ σ2 ◦ σ−12

qR-moves

(9) By definition of Braids/R2both, the following diagram in Cat commutes.

I Braids

Braids Braids/R2both

σ2 ◦ σ−12

qR2bothid(2)

qR2both

(10) We deduce from (9) that the following diagram in Cat commutes.

I Braids

Braids/R2both

Braids Braids/R-moves

σ2 ◦ σ−12

qR-movesid(2)

qR-moves

qR2both

qR2both

qR3one

(11) By the functoriality qR-moves, we deduce from (10) that the following diagram
in Cat commutes.

I Braids

Braids Braids/R-moves

σ−11 ◦ σ2 ◦ σ1 ◦ σ2 ◦ σ−12

qR-movesσ−11 ◦ σ2 ◦ σ1

qR-moves



(12) We deduce from (8) and (11) that the following diagram in Cat commutes, as
required.

I Braids

Braids Braids/R-moves

σ2 ◦ σ1 ◦ σ−12

qR-movesσ−11 ◦ σ2 ◦ σ1

qR-moves

Remark 3.1.2.23. In our pictorial notation, the proof of Proposition 3.1.2.22 is as
follows.

(1) By definition of Braids/R-moves, the braid

is equal, as an arrow of Braids/R-moves, to the following braid.



(2) By functoriality of qR-moves, the braid

is equal, as an arrow of Braids/R-moves, to the following braid.

(3) By definition of Braids/R2one, the braid



is equal, as an arrow of Braids/R2one, to the following braid.

(4) We deduce from (3) that the braid

is equal, as an arrow of Braids/R2both, to the following braid.

(5) We deduce from (4) that the braid



is equal, as an arrow of Braids/R-moves, to the following braid.

(6) By functoriality of qR-moves, we deduce from (5) that the braid

is equal, as an arrow of Braids/R-moves, to the following braid.



(7) We deduce from (2) and (6) that the braid

is equal, as an arrow of Braids/R-moves, to the following braid.



(8) By functoriality of qR-moves, we deduce from (7) that the braid

is equal, as an arrow of Braids/R-moves, to the following braid.



(9) By definition of Braids/R2both, the braid

is equal, as an arrow of Braids/R2both, to the following braid.



(10) We deduce from (10) that the braid

is equal, as an arrow of Braids/R-moves, to the following braid.

(11) By functoriality of qR-moves, we deduce from (10) that the braid



is equal, as an arrow of Braids/R-moves, to the following braid.

(12) We deduce from (8) and (11) that the braid

is equal, as an arrow of Braids/R-moves, to the following braid.



Corollary 3.1.2.24. The following diagram in Cat commutes.

F(I) Braids

Braids Braids/R-moves

R3two(one half)

qR-movesR3two(other half)

qR-moves

Proof. We make the following observations.

(1) By definition of R3two(one half), the following diagram in Cat commutes.

I F(I)

Braids/R-moves

iI

R3two(one half)
σ−11 ◦ σ2 ◦ σ1

(2) We deduce from (1) and Proposition 3.1.2.22 that the following diagram in Cat
commutes.

I F(I)

Braids/R-moves

iI

R3two(one half)
σ2 ◦ σ1 ◦ σ−12



(3) We deduce from (2) that the following diagram in Cat commutes.

I F(I)

Braids/R-moves

iI

qR-moves ◦ R3two(one half)
qR-moves ◦

(
σ2 ◦ σ1 ◦ σ−12

)

(4) By definition of R3two(second half), the following diagram in Cat commutes.

I F(I)

Braids/R-moves

iI

R3two(other half)
σ2 ◦ σ1 ◦ σ−12

(5) We deduce from (4) that the following diagram in Cat commutes.

I F(I)

Braids/R-moves

iI

qR-moves ◦ R3two(other half)
qR-moves ◦

(
σ2 ◦ σ1 ◦ σ−12

)

(6) Appealing to the universal property of F(I), we deduce from (3) and (5) that
the following diagram in Cat commutes, as required.

F(I) Braids

Braids Braids/R-moves

R3two(one half)

qR-movesR3two(other half)

qR-moves

Notation 3.1.2.25. Let

F(I) Braids
R3three(one half)



be the strict monoidal functor to which, by means of the universal property of F(I),
the functor

I Braids
σ1 ◦ σ2 ◦ σ−11

gives rise.

Notation 3.1.2.26. Let

F(I) Braids
R3three(other half)

be the strict monoidal functor to which, by means of the universal property of F(I),
the functor

I Braids
σ−12 ◦ σ1 ◦ σ2

gives rise.

Remark 3.1.2.27. The arrows R3three(one half) and R3three(other half) of Braids ex-
press algebraically the two halves of the R3 move which allows us to replace

by the following, and vice versa.



We refer to this R3 move as R3three.

Proposition 3.1.2.28. The following diagram in Cat commutes.

I Braids

Braids Braids/R-moves

σ1 ◦ σ2 ◦ σ−11

qR-movesσ−12 ◦ σ1 ◦ σ2

qR-moves

Proof. We make the following observations.

(1) By definition of Braids/R-moves, the following diagram in Cat commutes.

I Braids

Braids Braids/R-moves

σ1 ◦ σ2 ◦ σ1

qR-movesσ2 ◦ σ1 ◦ σ2

qR-moves

(2) By the functoriality of qR-moves, we deduce from (1) that the following diagram
in Cat commutes.

I Braids

Braids Braids/R-moves

σ1 ◦ σ2 ◦ σ1 ◦ σ−11

qR-movesσ2 ◦ σ1 ◦ σ2 ◦ σ−11

qR-moves



(3) By definition of Braids/R2one, the following diagram in Cat commutes.

I Braids

Braids Braids/R2both

id(2)

qR2bothσ1 ◦ σ−11

qR2both

(4) We deduce from (3) that the following diagram in Cat commutes.

I Braids

Braids/R2one

Braids Braids/R2both

id(2)

qR2bothσ1 ◦ σ−11

qR2both

qR2one

qR2one

qR2two

(5) We deduce from (4) that the following diagram in Cat commutes.

I Braids

Braids/R2both

Braids Braids/R-moves

id(2)

qR-movesσ1 ◦ σ−11

qR-moves

qR2both

qR2both

qR3one

(6) By the functoriality qR-moves, we deduce from (5) that the following diagram in
Cat commutes.

I Braids

Braids Braids/R-moves

σ1 ◦ σ2

qR-movesσ1 ◦ σ2 ◦ σ1 ◦ σ−11

qR-moves



(7) We deduce from (2) and (6) that the following diagram in Cat commutes.

I Braids

Braids Braids/R-moves

σ1 ◦ σ2

qR-movesσ2 ◦ σ1 ◦ σ2 ◦ σ−11

qR-moves

(8) By the functoriality qR-moves, we deduce from (7) that the following diagram in
Cat commutes.

I Braids

Braids Braids/R-moves

σ−12 ◦ σ1 ◦ σ2

qR-movesσ−12 ◦ σ2 ◦ σ1 ◦ σ2 ◦ σ−11

qR-moves

(9) By definition of Braids/R2both, the following diagram in Cat commutes.

I Braids

Braids Braids/R2both

σ−12 ◦ σ2

qR2bothid(3)

qR2both

(10) We deduce from (9) that the following diagram in Cat commutes.

I Braids

Braids/R2both

Braids Braids/R-moves

σ−12 ◦ σ2

qR-movesid(3)

qR-moves

qR2both

qR2both

qR3one

(11) By the functoriality qR-moves, we deduce from (10) that the following diagram
in Cat commutes.



I Braids

Braids Braids/R-moves

σ−12 ◦ σ2 ◦ σ1 ◦ σ2 ◦ σ−11

qR-movesσ1 ◦ σ2 ◦ σ−11

qR-moves

(12) We deduce from (8) and (11) that the following diagram in Cat commutes, as
required.

I Braids

Braids Braids/R-moves

σ−12 ◦ σ1 ◦ σ2

qR-movesσ1 ◦ σ2 ◦ σ−11

qR-moves

Corollary 3.1.2.29. The following diagram in Cat commutes.

F(I) Braids

Braids Braids/R-moves

R3three(one half)

qR-movesR3three(other half)

qR-moves

Proof. We make the following observations.

(1) By definition of R3three(one half), the following diagram in Cat commutes.

I F(I)

Braids/R-moves

iI

R3three(one half)
σ1 ◦ σ2 ◦ σ−11

(2) We deduce from (1) and Proposition 3.1.2.28 that the following diagram in Cat
commutes.



I F(I)

Braids/R-moves

iI

R3three(one half)
σ−12 ◦ σ1 ◦ σ2

(3) We deduce from (2) that the following diagram in Cat commutes.

I F(I)

Braids/R-moves

iI

qR-moves ◦ R3three(one half)
qR-moves ◦

(
σ−12 ◦ σ1 ◦ σ2

)

(4) By definition of R3three(other half), the following diagram in Cat commutes.

I F(I)

Braids/R-moves

iI

R3three(other half)
σ−12 ◦ σ1 ◦ σ2

(5) We deduce from (4) that the following diagram in Cat commutes.

I F(I)

Braids/R-moves

iI

qR-moves ◦ R3three(other half)
qR-moves ◦

(
σ−12 ◦ σ1 ◦ σ2

)

(6) Appealing to the universal property of F(I), we deduce from (3) and (5) that
the following diagram in Cat commutes, as required.

F(I) Braids

Braids Braids/R-moves

R3three(one half)

qR-movesR3three(other half)

qR-moves



Notation 3.1.2.30. Let

F(I) Braids
R3four(one half)

be the strict monoidal functor to which, by means of the universal property of F(I),
the functor

I Braids
σ1 ◦ σ−12 ◦ σ−11

gives rise.

Notation 3.1.2.31. Let

F(I) Braids
R3four(other half)

be the strict monoidal functor to which, by means of the universal property of F(I),
the functor

I Braids
σ−12 ◦ σ−11 ◦ σ2

gives rise.

Remark 3.1.2.32. The arrows R3four(one half) and R3four(other half) of Braids express
algebraically the two halves of the R3 move which allows us to replace

by the following, and vice versa.



We refer to this R3 move as R3four.

Proposition 3.1.2.33. The following diagram in Cat commutes.

I Braids

Braids Braids/R-moves

σ1 ◦ σ−12 ◦ σ−11

qR-movesσ−12 ◦ σ−11 ◦ σ2

qR-moves

Proof. We make the following observations.

(1) By Proposition 3.1.2.22 the following diagram in Cat commutes.

I Braids

Braids Braids/R-moves

σ−11 ◦ σ2 ◦ σ1

qR-movesσ2 ◦ σ1 ◦ σ−12

qR-moves

(2) By the functoriality of qR-moves, we deduce from (1) that the following diagram
in Cat commutes.

I Braids

Braids Braids/R-moves

σ−11 ◦ σ2 ◦ σ1 ◦ σ−11

qR-movesσ2 ◦ σ1 ◦ σ−12 ◦ σ−11

qR-moves



(3) By definition of Braids/R2one, the following diagram in Cat commutes.

I Braids

Braids Braids/R2both

id(3)

qR2bothσ1 ◦ σ−11

qR2both

(4) We deduce from (3) that the following diagram in Cat commutes.

I Braids

Braids/R2one

Braids Braids/R2both

id(3)

qR2bothσ1 ◦ σ−11

qR2both

qR2one

qR2one

qR2two

(5) We deduce from (4) that the following diagram in Cat commutes.

I Braids

Braids/R2both

Braids Braids/R-moves

id(3)

qR-movesσ1 ◦ σ−11

qR-moves

qR2both

qR2both

qR3one

(6) By the functoriality qR-moves, we deduce from (5) that the following diagram in
Cat commutes.

I Braids

Braids Braids/R-moves

σ−11 ◦ σ2

qR-movesσ−11 ◦ σ2 ◦ σ1 ◦ σ−11

qR-moves



(7) We deduce from (2) and (6) that the following diagram in Cat commutes.

I Braids

Braids Braids/R-moves

σ−11 ◦ σ2

qR-movesσ2 ◦ σ1 ◦ σ−12 ◦ σ−11

qR-moves

(8) By the functoriality qR-moves, we deduce from (7) that the following diagram in
Cat commutes.

I Braids

Braids Braids/R-moves

σ−12 ◦ σ−11 ◦ σ2

qR-movesσ−12 ◦ σ2 ◦ σ−11 ◦ σ2 ◦ σ−11

qR-moves

(9) By definition of Braids/R2both, the following diagram in Cat commutes.

I Braids

Braids Braids/R2both

σ−12 ◦ σ2

qR2bothid(3)

qR2both

(10) We deduce from (9) that the following diagram in Cat commutes.

I Braids

Braids/R2both

Braids Braids/R-moves

σ−12 ◦ σ2

qR-movesid(3)

qR-moves

qR2both

qR2both

qR3one

(11) By the functoriality qR-moves, we deduce from (10) that the following diagram
in Cat commutes.



I Braids

Braids Braids/R-moves

σ−12 ◦ σ2 ◦ σ1 ◦ σ−12 ◦ σ−11

qR-movesσ1 ◦ σ−12 ◦ σ−11

qR-moves

(12) We deduce from (8) and (11) that the following diagram in Cat commutes, as
required.

I Braids

Braids Braids/R-moves

σ−12 ◦ σ−11 ◦ σ2

qR-movesσ1 ◦ σ−12 ◦ σ−11

qR-moves

Corollary 3.1.2.34. The following diagram in Cat commutes.

F(I) Braids

Braids Braids/R-moves

R3four(one half)

qR-movesR3four(other half)

qR-moves

Proof. We make the following observations.

(1) By definition of R3four(one half), the following diagram in Cat commutes.

I F(I)

Braids/R-moves

iI

R3four(one half)
σ1 ◦ σ−12 ◦ σ−11

(2) We deduce from (1) and Proposition 3.1.2.33 that the following diagram in Cat
commutes.



I F(I)

Braids/R-moves

iI

R3four(one half)
σ−12 ◦ σ−11 ◦ σ2

(3) We deduce from (2) that the following diagram in Cat commutes.

I F(I)

Braids/R-moves

iI

qR-moves ◦ R3four(one half)
qR-moves ◦

(
σ−12 ◦ σ−11 ◦ σ2

)

(4) By definition of R3four(other half), the following diagram in Cat commutes.

I F(I)

Braids/R-moves

iI

R3four(other half)
σ−12 ◦ σ−11 ◦ σ2

(5) We deduce from (4) that the following diagram in Cat commutes.

I F(I)

Braids/R-moves

iI

qR-moves ◦ R3four(other half)
qR-moves ◦

(
σ−12 ◦ σ−11 ◦ σ2

)

(6) Appealing to the universal property of F(I), we deduce from (3) and (5) that
the following diagram in Cat commutes, as required.

F(I) Braids

Braids Braids/R-moves

R3four(one half)

qR-movesR3four(other half)

qR-moves



Notation 3.1.2.35. Let

F(I) Braids
R3five(one half)

be the strict monoidal functor to which, by means of the universal property of F(I),
the functor

I Braids
σ−11 ◦ σ−12 ◦ σ1

gives rise.

Notation 3.1.2.36. Let

F(I) Braids
R3five(other half)

be the strict monoidal functor to which, by means of the universal property of F(I),
the functor

I Braids
σ2 ◦ σ−11 ◦ σ−12

gives rise.

Remark 3.1.2.37. The arrows R3five(one half) and R3five(other half) of Braids express
algebraically the two halves of the R3 move which allows us to replace

by the following, and vice versa.



We refer to this R3 move as R3five.

Proposition 3.1.2.38. The following diagram in Cat commutes.

I Braids

Braids Braids/R-moves

σ−11 ◦ σ−12 ◦ σ1

qR-movesσ2 ◦ σ−11 ◦ σ−12

qR-moves

Proof. We make the following observations.

(1) By Proposition 3.1.2.28 the following diagram in Cat commutes.

I Braids

Braids Braids/R-moves

σ1 ◦ σ2 ◦ σ−11

qR-movesσ−12 ◦ σ1 ◦ σ2

qR-moves

(2) By the functoriality of qR-moves, we deduce from (1) that the following diagram
in Cat commutes.

I Braids

Braids Braids/R-moves

σ−11 ◦ σ1 ◦ σ2 ◦ σ−11

qR-movesσ−11 ◦ σ−12 ◦ σ1 ◦ σ2

qR-moves



(3) By definition of Braids/R2one, the following diagram in Cat commutes.

I Braids

Braids Braids/R2both

id(3)

qR2bothσ−11 ◦ σ1

qR2both

(4) We deduce from (3) that the following diagram in Cat commutes.

I Braids

Braids/R2one

Braids Braids/R2both

id(3)

qR2bothσ−11 ◦ σ1

qR2both

qR2one

qR2one

qR2two

(5) We deduce from (4) that the following diagram in Cat commutes.

I Braids

Braids/R2both

Braids Braids/R-moves

id(3)

qR-movesσ−11 ◦ σ1

qR-moves

qR2both

qR2both

qR3one

(6) By the functoriality qR-moves, we deduce from (5) that the following diagram in
Cat commutes.

I Braids

Braids Braids/R-moves

σ2 ◦ σ−11

qR-movesσ−11 ◦ σ1 ◦ σ2 ◦ σ−11

qR-moves



(7) We deduce from (2) and (6) that the following diagram in Cat commutes.

I Braids

Braids Braids/R-moves

σ2 ◦ σ−11

qR-movesσ−11 ◦ σ−12 ◦ σ1 ◦ σ2

qR-moves

(8) By the functoriality qR-moves, we deduce from (7) that the following diagram in
Cat commutes.

I Braids

Braids Braids/R-moves

σ2 ◦ σ−11 ◦ σ−12

qR-movesσ−11 ◦ σ−12 ◦ σ1 ◦ σ2 ◦ σ−12

qR-moves

(9) By definition of Braids/R2both, the following diagram in Cat commutes.

I Braids

Braids Braids/R2both

σ2 ◦ σ−12

qR2bothid(3)

qR2both

(10) We deduce from (9) that the following diagram in Cat commutes.

I Braids

Braids/R2both

Braids Braids/R-moves

σ2 ◦ σ−12

qR-movesid(3)

qR-moves

qR2both

qR2both

qR3one

(11) By the functoriality qR-moves, we deduce from (10) that the following diagram
in Cat commutes.



I Braids

Braids Braids/R-moves

σ−11 ◦ σ−12 ◦ σ1 ◦ σ2 ◦ σ−12

qR-movesσ−11 ◦ σ−12 ◦ σ1

qR-moves

(12) We deduce from (8) and (11) that the following diagram in Cat commutes, as
required.

I Braids

Braids Braids/R-moves

σ2 ◦ σ−11 ◦ σ−12

qR-movesσ−11 ◦ σ−12 ◦ σ1

qR-moves

Corollary 3.1.2.39. The following diagram in Cat commutes.

F(I) Braids

Braids Braids/R-moves

R3five(one half)

qR-movesR3five(other half)

qR-moves

Proof. We make the following observations.

(1) By definition of R3five(one half), the following diagram in Cat commutes.

I F(I)

Braids/R-moves

iI

R3five(one half)
σ−11 ◦ σ−12 ◦ σ1

(2) We deduce from (1) and Proposition 3.1.2.38 that the following diagram in Cat
commutes.



I F(I)

Braids/R-moves

iI

R3five(one half)
σ2 ◦ σ−11 ◦ σ−12

(3) We deduce from (2) that the following diagram in Cat commutes.

I F(I)

Braids/R-moves

iI

qR-moves ◦ R3five(one half)
qR-moves ◦

(
σ2 ◦ σ−11 ◦ σ−12

)

(4) By definition of R3five(other half), the following diagram in Cat commutes.

I F(I)

Braids/R-moves

iI

R3five(other half)
σ2 ◦ σ−11 ◦ σ−12

(5) We deduce from (4) that the following diagram in Cat commutes.

I F(I)

Braids/R-moves

iI

qR-moves ◦ R3five(other half)
qR-moves ◦

(
σ2 ◦ σ−11 ◦ σ−12

)

(6) Appealing to the universal property of F(I), we deduce from (3) and (5) that
the following diagram in Cat commutes, as required.

F(I) Braids

Braids Braids/R-moves

R3five(one half)

qR-movesR3five(other half)

qR-moves



Notation 3.1.2.40. Let

F(I) Braids
R3six(one half)

be the strict monoidal functor to which, by means of the universal property of F(I),
the functor

I Braids
σ−11 ◦ σ−12 ◦ σ−11

gives rise.

Notation 3.1.2.41. Let

F(I) Braids
R3six(other half)

be the strict monoidal functor to which, by means of the universal property of F(I),
the functor

I Braids
σ−12 ◦ σ−11 ◦ σ−12

gives rise.

Remark 3.1.2.42. The arrows R3six(one half) and R3six(other half) of Braids express
algebraically the two halves of the R3 move which allows us to replace

by the following, and vice versa.



We refer to this R3 move as R3six.

Proposition 3.1.2.43. The following diagram in Cat commutes.

I Braids

Braids Braids/R-moves

σ−11 ◦ σ−12 ◦ σ−11

qR-movesσ−12 ◦ σ−11 ◦ σ−12

qR-moves

Proof. We make the following observations.

(1) By Proposition 3.1.2.33 the following diagram in Cat commutes.

I Braids

Braids Braids/R-moves

σ1 ◦ σ−12 ◦ σ−11

qR-movesσ−12 ◦ σ−11 ◦ σ2

qR-moves

(2) By the functoriality of qR-moves, we deduce from (1) that the following diagram
in Cat commutes.

I Braids

Braids Braids/R-moves

σ−11 ◦ σ1 ◦ σ−12 ◦ σ−11

qR-movesσ−11 ◦ σ−12 ◦ σ−11 ◦ σ2

qR-moves



(3) By definition of Braids/R2one, the following diagram in Cat commutes.

I Braids

Braids Braids/R2both

id(3)

qR2bothσ−11 ◦ σ1

qR2both

(4) We deduce from (3) that the following diagram in Cat commutes.

I Braids

Braids/R2one

Braids Braids/R2both

id(3)

qR2bothσ−11 ◦ σ1

qR2both

qR2one

qR2one

qR2two

(5) We deduce from (4) that the following diagram in Cat commutes.

I Braids

Braids/R2both

Braids Braids/R-moves

id(3)

qR-movesσ−11 ◦ σ1

qR-moves

qR2both

qR2both

qR3one

(6) By the functoriality qR-moves, we deduce from (5) that the following diagram in
Cat commutes.

I Braids

Braids Braids/R-moves

σ−12 ◦ σ−11

qR-movesσ−11 ◦ σ1 ◦ σ−12 ◦ σ−11

qR-moves



(7) We deduce from (2) and (6) that the following diagram in Cat commutes.

I Braids

Braids Braids/R-moves

σ−12 ◦ σ−11

qR-movesσ−11 ◦ σ−12 ◦ σ−11 ◦ σ2

qR-moves

(8) By the functoriality qR-moves, we deduce from (7) that the following diagram in
Cat commutes.

I Braids

Braids Braids/R-moves

σ−12 ◦ σ−11 ◦ σ−12

qR-movesσ−11 ◦ σ−12 ◦ σ−11 ◦ σ2 ◦ σ−12

qR-moves

(9) By definition of Braids/R2both, the following diagram in Cat commutes.

I Braids

Braids Braids/R2both

σ2 ◦ σ−12

qR2bothid(3)

qR2both

(10) We deduce from (9) that the following diagram in Cat commutes.

I Braids

Braids/R2both

Braids Braids/R-moves

σ2 ◦ σ−12

qR-movesid(3)

qR-moves

qR2both

qR2both

qR3one

(11) By the functoriality qR-moves, we deduce from (10) that the following diagram
in Cat commutes.



I Braids

Braids Braids/R-moves

σ−11 ◦ σ−12 ◦ σ−11 ◦ σ2 ◦ σ−12

qR-movesσ−11 ◦ σ−12 ◦ σ−11

qR-moves

(12) We deduce from (8) and (11) that the following diagram in Cat commutes, as
required.

I Braids

Braids Braids/R-moves

σ−12 ◦ σ−11 ◦ σ−12

qR-movesσ−11 ◦ σ−12 ◦ σ−11

qR-moves

Corollary 3.1.2.44. The following diagram in Cat commutes.

F(I) Braids

Braids Braids/R-moves

R3six(one half)

qR-movesR3six(other half)

qR-moves

Proof. We make the following observations.

(1) By definition of R3six(one half), the following diagram in Cat commutes.

I F(I)

Braids/R-moves

iI

R3six(one half)
σ−11 ◦ σ−12 ◦ σ−11

(2) We deduce from (1) and Proposition 3.1.2.43 that the following diagram in Cat
commutes.



I F(I)

Braids/R-moves

iI

R3six(one half)
σ−12 ◦ σ−11 ◦ σ−12

(3) We deduce from (2) that the following diagram in Cat commutes.

I F(I)

Braids/R-moves

iI

qR-moves ◦ R3six(one half)
qR-moves ◦

(
σ−12 ◦ σ−11 ◦ σ−12

)

(4) By definition of R3six(other half), the following diagram in Cat commutes.

I F(I)

Braids/R-moves

iI

R3six(other half)
σ−12 ◦ σ−11 ◦ σ−12

(5) We deduce from (4) that the following diagram in Cat commutes.

I F(I)

Braids/R-moves

iI

qR-moves ◦ R3six(other half)
qR-moves ◦

(
σ−12 ◦ σ−11 ◦ σ−12

)

(6) Appealing to the universal property of F(I), we deduce from (3) and (5) that
the following diagram in Cat commutes, as required.

F(I) Braids

Braids Braids/R-moves

R3six(one half)

qR-movesR3six(other half)

qR-moves



Remark 3.1.2.45. The objects of Braids/R-moves are the same as those of Braids.
Let us regard two braids as equivalent if one can be obtained from the other by
a finite sequence of the Reidemeister moves R2one, R2two, R3one, R3two, . . . , R3six,
namely if they are isotopic. Proposition 3.1.2.22, Proposition 3.1.2.28, Proposition
3.1.2.33, Proposition 3.1.2.38, and Proposition 3.1.2.43 establish that the arrows of
Braids/R-moves can be thought of as braids up to this notion of equivalence, or, in
other words, braids up to isotopy, even though the definition of Braids/R-moves only
involved R2one, R2two, and R3one.

Remark 3.1.2.46. Let Bn denote the braid group on n strands, in the usual sense,
viewed as a category with one object. Then Braids/R-moves is in fact isomorphic
to
⊔
n≥0 Bn, where this coproduct is taken in Cat. Indeed, the full subcategory of

Braids/R-moves on the single object n is in fact isomorphic to Bn.
As first observed in the paper [8] of Joyal and Street, and its later version [9], the

category
⊔
n≥0 Bn is the free braided monoidal category on 1Cat.

We shall not make use of this description or universal property of Braids/R-moves
in this work, and omit a formal statement and proof.



3.2. Temperley-Lieb categories and Markov trace
functors

We define a category TL, whose arrows we think of as diagrammatic tangles, as a
free 2-ring on a monoidal datum MTL. Next, we introduce the notion of a datum for
smoothing of braids. Given such a datum S, we define from TL a 2-ring TL(S) in
two steps, via a 2-ring TL(S)pre. We think of the arrows of TL(S) as linearisations of
diagrammatic tangles.

Following this, we introduce the notion of a Markov trace datum with respect to
a 2-ring. Given such a datum T, we construct a functor of 2-rings from TL(S) to a
2-ring T defined by means of T. On arrows, we think of this functor as taking the
Markov trace of a linearised diagrammatic tangle.

We conclude with two auxiliary constructions. First, given a 2-ring R, we construct
a datum for smoothing of braids. Second, given again a 2-ring R, we construct a
Markov trace datum with respect to it.

3.2.1. The Temperley-Lieb category

Notation 3.2.1.1. Let

∂I 1Cat t 1Cat

I TL≤2

(2, 2)

r
TL≤2

0
(0, 1)

r
TL≤2

1

be a co-cartesian square in Cat.

Notation 3.2.1.2. We denote the object of TL≤2 corresponding to the functor

1Cat TL≤2
r

TL≤2

0 ◦ 1

by 1, and depict it as follows.

We denote the object of TL≤2 corresponding to the functor

1Cat TL≤2
r

TL≤2

0 ◦ 2

by 2, and depict it as follows.



We depict the arrow

1 1
id(1)

of TL≤2 as follows.

We depict the arrow

2 2
id(2)

of TL≤2 as follows.

We denote the arrow of TL≤2 corresponding to the functor

I TL≤2
r

TL≤2

1

by CupAndCap, and depict it as follows.

Remark 3.2.1.3. The definition of TL≤2 can be thought of as follows. We begin with
a category consisting of exactly two objects, 1 and 2, and no non-identity arrows. We
then proceed as follows.



(1) We add an arrow

2 2,

which we denote by CupAndCap.

(2) We then add exactly those further arrows

2 2

that we need to have a category, namely arbitrary finite compositions of CupAndCap.

As this description makes clear, TL≤2 can also be defined as the free category on the
directed graph consisting of exactly two objects 1, 2, and exactly one arrow

2 2.

However, we prefer the more direct approach, working purely within Cat, that we have
taken.

Notation 3.2.1.4. Let

TL≤2 TL≤2 × TL≤2 TL≤2
p

TL≤2

1 p
TL≤2

2

be a diagram in Cat which defines a binary product.

Notation 3.2.1.5. Let

1Cat TL≤2 × TL≤2
(1, 1)

be the canonical functor such that the following diagram in Cat commutes.

1Cat

TL≤2 TL≤2 × TL≤2 TL≤2

1
(1, 1)

1

p
TL≤2

1 p
TL≤2

2

Definition 3.2.1.6. The Temperley-Lieb 2-ring is, appealing to Fact 2.2.2.2, the free
2-ring on the monoidal datum MTL =

(
1Cat,TL≤2, (1, 1), 2

)
internal to Cat.



Terminology 3.2.1.7. We refer to the category which is part of the data of TL as
the Temperley-Lieb category.

Notation 3.2.1.8. We denote both the Temperley-Lieb 2-ring and Temperley-Lieb
category by TL. We denote by canTL the canonical functor

TL≤2 TL.

Remark 3.2.1.9. The construction of the category TL can be thought of in two steps.
First, we take the free strict monoidal category on TL≤2, subject to the requirement
that 1⊗ 1 = 2. Let us denote this category by F(TL≤2). The objects of F(TL≤2) can,
as with the objects of Braids, be thought of as the symbols

1⊗ · · · ⊗ 1︸ ︷︷ ︸
n

for n ≥ 0. We again depict
1⊗ · · · ⊗ 1︸ ︷︷ ︸

n

as follows, for n ≥ 1.

. . .

We sometimes denote the symbol

1⊗ · · · ⊗ 1︸ ︷︷ ︸
n

simply by n.
The arrows of F(TL≤2) can be thought of as built from those of TL≤2 by horizontal

concatenation. Thus, for instance, there is an arrow

1⊗ 1⊗ 1 1⊗ 1⊗ 1,
id(1)⊗ CupAndCap

which we depict as follows.



We think of the unit object of F(TL≤2), which we denote by 0, as the ‘empty tangle’,
or the ‘tangle with zero arcs’.

From this description, we see that the arrows of F(TL≤2), correspond exactly to
the diagrammatic tangles, in the topological sense, used to define the Temperley-Lieb
algebras Tn for n ≥ 0 in §III of [13].

We then define TL to be the free 2-ring on F(TL≤2), subject to the requirement that
the multiplicative monoidal structure TL coincides with the monoidal structure on
F(TL≤2) when we view the latter category as living inside TL. The crucial aspect, for
us, of TL as compared to F(TL≤2) is that we have a notion of addition of arrows of
F(TL≤2), thought of as diagrammatic tangles, by means of the symmetric monoidal
structure (⊕, 0) of TL. For instance, there is an arrow of TL given by

CupAndCap⊕ CupAndCap⊕
(
id(1)⊗ CupAndCap

)
,

or

2 · CupAndCap⊕
(
id(1)⊗ CupAndCap

)
for short.

However, we shall not make use of a two-step construction of this kind, or any other
construction or explicit description of TL in our formal work. We shall appeal only to
its universal property.

Notation 3.2.1.10. We depict composition in both TL≤2 and TL as vertical concate-
nation. For instance, we depict the arrow

2 2
CupAndCap ◦ CupAndCap

in either TL≤2 or TL as follows.



3.2.2. The Temperley-Lieb category with respect to a datum for
smoothing of braids

Definition 3.2.2.1. A datum for smoothing of braids consists of the following data.

(1) A 2-ring R. We shall also denote by R the category which is part of its data.

(2) An arrow A of R.

(3) An arrow B of R.

Assumption 3.2.2.2. Let S = (R, A,B) be a datum for smoothing of braids.

Notation 3.2.2.3. Appealing to Fact 2.1.3.16, let

R TL(S)pre TL
i
TL(S)pre,bi
1 i

TL(S)pre,bi
2

be a diagram in Ring(Cat) which defines a binary coproduct.

Terminology 3.2.2.4. We refer to TL(S)pre as the pre-Temperley-Lieb category with
respect to S.

Notation 3.2.2.5. We denote the functor of 2-rings

TL TL(S)pre
i
TL(S)pre,bi
2

by canTL(S)pre .

Notation 3.2.2.6. Let us denote the category which is part of the data of TL(S)pre

by TL(S)pre.

Notation 3.2.2.7. Let

TL(S)pre TL(S)pre × TL(S)pre TL(S)pre
p

TL(S)pre,bi
1 p

TL(S)pre,bi
2

be the diagram in Cat which is part of the data of TL(S)pre, which defines a binary
product.

Notation 3.2.2.8. Appealing to Fact 2.2.2.2, let us denote the free 2-ring on I by
F2−Ring(I).

Notation 3.2.2.9. Let f be an arrow of TL. We then also denote by f the canonical
functor of 2-rings

F2−Ring(I) TL(S)pre



to which the functor

I TL(S)pre
f

gives rise by means of the universal property of F2−Ring(I).

Notation 3.2.2.10. Let f and g be arrows of TL. Let us denote by (f, g) the canonical
functor of 2-rings

F2−Ring(I) TL(S)pre × TL(S)pre

such that the following diagram in Ring(Cat) commutes.

F2−Ring(I)

TL(S)pre TL(S)pre × TL(S)pre TL(S)pre

i
TL(S),bi
1 ◦ f

(f, g)
i
TL(S),bi
2 ◦ g

p
TL(S)pre,bi
1 p

TL(S)pre,bi
2

We denote by f ⊗ g the arrow of TL(S)pre corresponding to the functor

I TL(S)pre.
⊗TL(S) ◦ (f, g)

Remark 3.2.2.11. In this way, we in particular have a notion of multiplication of
arrows of TL(S)pre, thought of as formal sums of diagrammatic tangles, by A and B.
This, for us, is the crucial difference between TL(S)pre and TL.

Notation 3.2.2.12. Appealing to Fact 2.2.2.2, let us denote the free 2-ring on 1Cat

by F2−ring(1Cat).

Notation 3.2.2.13. Let us denote by

F2−ring(1Cat) TL(S)pre2

the canonical functor of 2-rings to which the functor

1Cat TL(S)pre
i
TL(S)pre,bi
2 ◦ 2

gives rise by means of the universal property of F2−ring(1Cat).

Notation 3.2.2.14. Let us denote the source and target of the arrow A of R by
a0 and a1 respectively, and the source and target of the arrow B of R by b0 and b1
respectively.



Notation 3.2.2.15. Let us denote by

∂I TL(S)pre

(
(a0 ⊗ 2)⊕ (b0 ⊗ 2), (a1 ⊗ 2)⊕ (b1 ⊗ 2)

)
the functor determined by the objects (a0 ⊗ 2)⊕ (b0 ⊗ 2) and (a1 ⊗ 2)⊕ (b1 ⊗ 2) of
TL(S)pre.

Notation 3.2.2.16. Appealing to Fact 2.2.2.2, let us denote the free 2-ring on ∂I by
F2−ring(∂I).

Notation 3.2.2.17. Let us denote by

F2−ring(∂I) TL(S)pre

(
(a0 ⊗ 2)⊕ (b0 ⊗ 2), (a1 ⊗ 2)⊕ (b1 ⊗ 2)

)
the functor of 2-rings to which the functor

∂I TL(S)pre

(
(a0 ⊗ 2)⊕ (b0 ⊗ 2), (a1 ⊗ 2)⊕ (b1 ⊗ 2)

)
gives rise by means of the universal property of F2−ring(∂I).

Notation 3.2.2.18. Appealing to Fact 2.1.3.16, let

F2−ring(∂I) TL(S)pre TL(S)

(2, 2)

canTL(S)

be a diagram, in which the unlabelled arrow is

F2−ring(∂I) TL(S)pre,

(
(a0 ⊗ 2)⊕ (b0 ⊗ 2), (a1 ⊗ 2)⊕ (b1 ⊗ 2)

)
in Ring(Cat) which defines a coequaliser.

Remark 3.2.2.19. The idea of the construction of TL(S) from TL(S)pre is that we
identify both of the objects (a0 ⊗ 2)⊕ (b0 ⊗ 2) and (a1 ⊗ 2)⊕ (b1 ⊗ 2) of TL(S)pre with
the object 2 of TL(S)pre. This ensures that certain arrows of TL(S) which we shall
make crucial use of in §3.3 are endomorphisms of 2, which we shall require in order to
exhibit MBraids as a monoidal datum for TL(S).

Because of the way in which we will make use of TL(S) in §3.3, we shall typically
think of the arrows of TL(S) as formal linear combinations of diagrammatic tangles,
the coefficients of which are non-commutative polynomials in A and B, built out of ⊕
and ⊗. There are, though, many arrows of TL(S) which are not of this form.



Remark 3.2.2.20. In Remark 3.1.2.46, we observed that it is possible to view Braids
as the coproduct of the braid groups Bn for n ≥ 0. It is not possible to view TL(S)
as built out the Temperley-Lieb algebras Tn in this way. If, as discussed in Remark
2.1.3.18, we had chosen to construct TL(S) as an enriched monoidal category rather
than as a 2-ring, the Temperley-Lieb category we obtained would have been the
coproduct

⊔
n≥0 Tn, viewing Tn as an enriched monoidal category with one object.

Nevertheless, supposing temporarily, for simplicity, that we assume our 2-rings to be
commutative, let R be the 2-ring which we can think of as follows. The set of objects
of R is N, the set of natural numbers. For every natural number n, viewed as an object
of R, the set of endomorphisms of n can also be thought of as N. There are no arrows
of R which are not endomorphisms. The ring operations on objects are those of N. The
ring operations on arrows are also those of N, understood in the only possible way: if
e is an endomorphism of a natural number m, and f is an endomorphism of a natural
number n, then e+ f is an endomorphism of m+ n, and similarly for multiplication.

Let R[A,B] be the 2-ring obtained by freely adding a pair of arrows A and B to R.
This construction is carried out formally in §3.2.4. Let S be the datum for smoothing
of braids given by (R, A,B). Then the arrows of TL(S) are exactly the same as those
of
⊔
n≥0 T Ln, if T Ln is taken to be an algebra over N[A,B]. It is only on objects that

the two categories differ.

3.2.3. Markov trace functors

Definition 3.2.3.1. Let R be a 2-ring. A Markov trace datum with respect to R
consists of the following data.

(1) A 2-ring Tpre.

(2) An arrow

1Tpre 1Tpre

γ

of Tpre.

(3) A functor of 2-rings

R Tpre.
t

Assumption 3.2.3.2. Let R be a 2-ring, and let T = (Tpre, γ, t) be a Markov trace
datum with respect to R. Let us denote by Tpre the category which is part of the data
of Tpre.



Notation 3.2.3.3. Let

1Cat t 1Cat Tpre
1Tpre t 1Tpre

denote the canonical functor such that the following diagram in Cat, in which it is the
unlabelled middle arrow, commutes.

1Cat 1Cat t 1Cat 1Cat

Tpre

1 2

1Tpre 1Tpre

Proposition 3.2.3.4. The following diagram in Cat commutes.

∂I 1Cat t 1Cat

I Tpre

(2, 2)

1Tpre t 1Tpre(0, 1)

γ

Proof. We make the following observations.

(1) By definition of the functor

∂I 1Cat t 1Cat,
(2, 2)

the following diagram in Cat commutes.

1Cat ∂I

1Cat t 1Cat

0

(2, 2)
2

(2) By definition of the functor

1Cat t 1Cat Tpre,
1Tpre t 1Tpre



the following diagram in Cat commutes.

1Cat 1Cat t 1Cat

Tpre

2

1Tpre t 1Tpre

1Tpre

(3) We deduce from (1) and (2) that the following diagram in Cat commutes.

1Cat ∂I

Tpre

0

(1Tpre t 1Tpre) ◦ (2, 2)
1Tpre

(4) By definition of the functor

∂I I
(0, 1)

the following diagram in Cat commutes.

1Cat ∂I

I

0

(0, 1)
0

(5) By definition of the arrow γ of Tpre, the following diagram in Cat commutes.

1Cat I

Tpre

0

γ
1Tpre

(6) We deduce from (4) and (5) that the following diagram in Cat commutes.



1Cat ∂I

Tpre

0

γ ◦ (0, 1)
1Tpre

(7) We deduce from (3) and (6) that the following diagram in Cat commutes.

1Cat ∂I

∂I Tpre

0

(1Tpre t 1Tpre) ◦ (2, 2)0

γ ◦ (0, 1)

(8) By an entirely analogous argument to that of (1) – (7), the following diagram
in Cat commutes.

1Cat ∂I

∂I Tpre

1

(1Tpre t 1Tpre) ◦ (2, 2)1

γ ◦ (0, 1)

(9) We deduce from (7) and (8) that the following diagram in Cat commutes, as
required.

∂I 1Cat t 1Cat

I Tpre

(2, 2)

1Tpre t 1Tpre(0, 1)

γ

Notation 3.2.3.5. Appealing to Proposition 3.2.3.4, let

TL≤2 Tpre
Tr≤2



denote the canonical functor such that the following diagram in Cat commutes.

∂I 1Cat t 1Cat

I TL≤2

Tpre

(2, 2)

r
TL≤2

0
(0, 1)

r
TL≤2

1

1Tpre t 1Tpre

γ

Tr≤2

Notation 3.2.3.6. Let us denote by

Tpre Tpre × Tpre Tpre
pTpre,bi
1 pTpre,bi

2

the diagram which is part of the data of Tpre, and which defines a binary product.

Proposition 3.2.3.7. The following diagram in Cat commutes.

1Cat TL≤2 × TL≤2

Tpre × Tpre

TL≤2 Tpre

(1, 1)

Tr≤2 × Tr≤2

⊗Tpre

2

Tr≤2

Proof. We make the following observations.

(1) By definition of Tr≤2 × Tr≤2, the following diagram in Cat commutes.

TL≤2 × TL≤2 Tpre × Tpre

TL≤2 Tpre

Tr≤2 × Tr≤2

pTpre,bi
1p

TL≤2,bi
1

Tr≤2



(2) By definition of the functor (1, 1), the following diagram in Cat commutes.

1Cat TL≤2 × TL≤2

TL≤2

(1, 1)

p
TL≤2,bi
11

(3) By definition of the functor 1, the following diagram in Cat commutes.

1Cat

1Cat t 1Cat TL≤2

1

r
TL≤2

0

1

(4) We deduce from (2) and (3) that the following diagram in Cat commutes.

1Cat TL≤2 × TL≤2

1Cat t 1Cat TL≤2

(1, 1)

p
TL≤2,bi
1i1Cat

1

r
TL≤2

0

(5) We deduce from (1) and (4) that the following diagram in Cat commutes.

1Cat Tpre × Tpre

1Cat t 1Cat Tpre

(Tr≤2 × Tr≤2) ◦ (1, 1)

pTpre,bi
11

Tr≤2 ◦ r
TL≤2

0

(6) By definition of Tr≤2, we have that the following diagram in Cat commutes.



1Cat t 1Cat TL≤2

Tpre

r
TL≤2

0

Tr≤2
1Tpre t 1Tpre

(7) We deduce from (5) and (6) that the following diagram in Cat commutes.

1Cat Tpre × Tpre

1Cat t 1Cat Tpre

(Tr≤2 × Tr≤2) ◦ (1, 1)

pTpre,bi
11

1Tpre t 1Tpre

(8) By definition of the functor 1Tpre t 1Tpre , we have that the following diagram in
Cat commutes.

1Cat 1Cat t 1Cat

Tpre

i
1Cat,bi

1

1Tpre t 1Tpre

1Tpre

(9) We deduce from (7) and (8) that the following diagram in Cat commutes.

1Cat Tpre × Tpre

Tpre

(Tr≤2 × Tr≤2) ◦ (1, 1)

pTpre,bi
11Tpre

(10) By an entirely analogous argument to that of (1) – (9), we have that the
following diagram in Cat commutes.

1Cat Tpre × Tpre

Tpre

(Tr≤2 × Tr≤2) ◦ (1, 1)

pTpre,bi
21Tpre



(11) We deduce from (9), (10), and the universal property of Tpre × Tpre, that the
following diagram in Cat commutes.

1Cat TL≤2 × TL≤2

Tpre × Tpre

(1, 1)

Tr≤2 × Tr≤2
1Tpre × 1Tpre

(12) We deduce from (11) that the following diagram in Cat commutes.

1Cat TL≤2 × TL≤2

Tpre × Tpre

Tpre × Tpre Tpre

(1, 1)

Tr≤2 × Tr≤2

⊗Tpre

1Tpre × 1Tpre

⊗Tpre

(13) By requirement (2) in Definition 2.1.1.3 with respect to (Tpre)mult, we have that
the following diagram in Cat commutes.

1Cat Tpre × Tpre

Tpre

1Tpre × 1Tpre

⊗Tpre

1Tpre

(14) We deduce from (12) and (13) that the following diagram in Cat commutes.

1Cat TL≤2 × TL≤2

Tpre × Tpre

Tpre

(1, 1)

Tr≤2 × Tr≤2

⊗Tpre

1Tpre



(15) By definition of the functor 2, we have that the following diagram in Cat
commutes.

1Cat

1Cat t 1Cat TL≤2

2

r
TL≤2

0

2

(16) We deduce from (16) that the following diagram in Cat commutes.

1Cat TL≤2

1Cat t 1Cat Tpre

2

Tr≤22

Tr≤2 ◦ r
TL≤2

0

(17) We deduce from (16) and (6) that the following diagram in Cat commutes.

1Cat TL≤2

1Cat t 1Cat Tpre

2

Tr≤22

1Tpre t 1Tpre

(18) By definition of the functor 1Tpre t 1Tpre , we have that the following diagram in
Cat commutes.

1Cat 1Cat t 1Cat

Tpre

2

1Tpre t 1Tpre

1Tpre

(19) We deduce from (17) and (18) that the following diagram in Cat commutes.



1Cat TL≤2

Tpre

2

Tr≤2
1Tpre

(20) We conclude from (14) and (19) that the following diagram in Cat commutes,
as required.

1Cat TL≤2 × TL≤2

Tpre × Tpre

TL≤2 Tpre

(1, 1)

Tr≤2 × Tr≤2

⊗Tpre

2

Tr≤2

Corollary 3.2.3.8. The functor

TL≤2 Tpre
Tr≤2

exhibits MTL as a monoidal datum for Tpre.

Proof. Follows immediately from Proposition 3.2.3.7.

Notation 3.2.3.9. Appealing to Corollary 3.2.3.8, let

TL TpreTr

denote the canonical functor of 2-rings to which the functor

TL≤2 TpreTr

gives rise, by means of the universal property of TL.

Remark 3.2.3.10. The idea of the construction of Tr is as follows.

(1) The objects 1 and 2 of TL≤2 are sent to the unit object 1Tpre for the multiplicative
structure of Tpre.



(2) The arrow

2 2
CupAndCap

of TL≤2 is sent to

1Tpre 1Tpre .
γ

(3) We extend freely to all of TL≤2. Thus, for instance, the arrow

2 2
CupAndCap ◦ CupAndCap

of TL is sent to the arrow

1Tpre 1Tpre ,
γ ◦ γ

of Tpre which, appealing to Proposition 2.1.3.20, is equal to the arrow

1Tpre 1Tpre ,
γ ⊗Tpre γ

of Tpre, or

1Tpre 1Tpre ,
γ2

for short.

(4) We extend freely to all of TL. Thus, for instance, the arrow(
CupAndCap⊗TL id(1)

)
⊕TL

(
CupAndCap ◦ CupAndCap

)
of TL is sent to the arrow (

γ ⊗Tpre id(1Tpre)
)
⊕Tpre γ2,

or, in other words,

γ ⊕Tpre γ2.



Notation 3.2.3.11. Let

TL(S)pre TpreTrS,pre

denote the canonical 2-ring functor such that the following diagram in Ring(Cat)
commutes.

R TL(S)pre TL

Tpre

i
TL(S)pre,bi
1 i

TL(S)pre,bi
2

t TrS,pre Tr

Terminology 3.2.3.12. We refer to

TL(S)pre TpreTrS,pre

as the pre-Markov trace functor associated to T.

Remark 3.2.3.13. The idea of the construction of TrS,pre is that we extend Tr linearly.
Thus, for instance, the arrow(

A⊗TL(S)
(
id(1)⊗TL(S) CupAndCap

) )
⊕TL(S)

(
B ⊗TL(S) CupAndCap

)
of TL(S) is sent to(

t(A)⊗Tpre (id(1Tpre)⊗Tpre γ)
)
⊕Tpre

(
t(B)⊗TL(S) γ

)
,

or, in other words, to (
t(A)⊕Tpre t(B)

)
⊗Tpre γ.

Notation 3.2.3.14. Let us denote by

F2−ring(1Cat) Tpre
1Tpre

the canonical functor of 2-rings to which the functor

1Cat Tpre
1Tpre

gives rise, by means of the universal property of F2−ring(1Cat).



Notation 3.2.3.15. Let us denote by

∂I Tpre
TrS,pre(a0 ⊕ b0) t TrS,pre(a1 ⊕ b1)

the canonical functor determined by the pair of objects TrS,pre(a0⊕b0) and TrS,pre(a1⊕b1)
of Tpre.

Notation 3.2.3.16. Let us denote by

F2−ring(∂I) Tpre
TrS,pre(a0 ⊕ b0) t TrS,pre(a1 ⊕ b1)

the canonical functor of 2-rings to which the functor

∂I Tpre
TrS,pre(a0 ⊕ b0) t TrS,pre(a1 ⊕ b1)

gives rise by means of the universal property of F2−ring(∂I).

Notation 3.2.3.17. Let us denote by

∂I Tpre
(1Tpre , 1Tpre)

the functor determined by the pair (1Tpre , 1Tpre) of objects of Tpre.

Notation 3.2.3.18. Let us denote by

F2−ring(∂I) Tpre
(1Tpre , 1Tpre)

the canonical functor of 2-rings to which the functor

∂I Tpre
(1Tpre , 1Tpre)

gives rise by means of the universal property of F2−ring(∂I).

Notation 3.2.3.19. Appealing to Fact 2.1.3.16, let

F2−ring(∂I) Tpre T

TrS,pre(a0 ⊕ b0) t TrS,pre(a1 ⊕ b1)

(1Tpre , 1Tpre)

canT

be a coequaliser diagram in Ring(Cat).



Remark 3.2.3.20. The idea of the construction of T from Tpre is that we identify
both of the objects TrS,pre(a0 ⊕ a1) and TrS,pre(b0 ⊕ b1) of Tpre with the object 1Tpre of
Tpre. The purpose of this is to ensure that the functor of 2-rings

TL(S)pre TpreTrS,pre

extends to a functor from

TL(S) T,

in the manner we shall now describe.

Proposition 3.2.3.21. The following diagram in Cat commutes.

1Cat TL(S)pre

TL(S)pre T

(a0 ⊗ 2)⊕ (b0 ⊗ 2)

canT ◦ TrS,pre2

canT ◦ TrS,pre

Proof. We make the following observations.

(1) Since TrS,pre is a functor of 2-rings, the following diagram in Cat commutes.

1Cat TL(S)pre

Tpre

(a0 ⊗ 2)⊕ (b0 ⊗ 2)

TrS,pre(
TrS,pre(a0)⊗ TrS,pre(2)

)
⊕
(
TrS,pre(b0)⊗ TrS,pre(2)

)

(2) By definition of TrS,pre, we have that TrS,pre(2) is equal to 1Tpre . We deduce from
(1) that the diagram

1Cat TL(S)pre

Tpre

(a0 ⊗ 2)⊕ (b0 ⊗ 2)

TrS,pre(
TrS,pre(a0)⊗ 1Tpre

)
⊕
(
TrS,pre(b0)⊗ 1Tpre

)

in Cat commutes, and hence that the following diagram in Cat commutes.



1Cat TL(S)pre

Tpre

(a0 ⊗ 2)⊕ (b0 ⊗ 2)

TrS,pre

TrS,pre(a0)⊕ TrS,pre(b0)

(3) Appealing again to the fact that TrS,pre is a functor of 2-rings, we deduce from
(2) that the following diagram in Cat commutes.

1Cat TL(S)pre

Tpre

(a0 ⊗ 2)⊕ (b0 ⊗ 2)

TrS,pre

TrS,pre(a0 ⊕ b0)

(4) By definition of T, we have that the following diagram in Cat commutes.

1Cat Tpre

T

TrS,pre(a0 ⊕ b0)

canT
canT ◦ 1Tpre

(5) Since canT is a functor of 2-rings, we deduce from (4) that the following diagram
in Cat commutes.

1Cat Tpre

T

TrS,pre(a0 ⊕ b0)

canT
1T

(6) We deduce from (3) and (5) that the following diagram in Cat commutes.



1Cat TL(S)pre

Tpre

T

(a0 ⊗ 2)⊕ (b0 ⊗ 2)

TrS,pre

canT

1T

(7) Appealing again to the fact that TrS,pre(2) is equal to 1Tpre , and to the fact that
canT is a functor of 2-rings, we have that the following diagram in Cat commutes.

1Cat TL(S)pre

T

2

canT ◦ TrS,pre

1T

(8) We deduce from (6) and (7) that the following diagram in Cat commutes, as
required.

1Cat TL(S)pre

TL(S)pre T

(a0 ⊗ 2)⊕ (b0 ⊗ 2)

canT ◦ TrS,pre2

canT ◦ TrS,pre

Proposition 3.2.3.22. The following diagram in Cat commutes.

1Cat TL(S)pre

TL(S)pre T

(a1 ⊗ 2)⊕ (b1 ⊗ 2)

canT ◦ TrS,pre2

canT ◦ TrS,pre

Proof. Entirely analogous to the proof of Proposition 3.2.3.21.



Corollary 3.2.3.23. The following diagram in Ring(Cat) commutes.

F2−ring(∂I) TL(S)pre

TL(S)pre T

(
(a0 ⊗ 2)⊕ (b0 ⊗ 2)

)
t
(
(a1 ⊗ 2)⊕ (b1 ⊗ 2)

)
canT ◦ TrS,pre(2, 2)

canT ◦ TrS,pre

Proof. It follows immediately from Proposition 3.2.3.21 and Proposition 3.2.3.22 that
the following diagram in Cat commutes.

∂I TL(S)pre

TL(S)pre T

(
(a0 ⊗ 2)⊕ (b0 ⊗ 2)

)
t
(
(a1 ⊗ 2)⊕ (b1 ⊗ 2)

)
canT ◦ TrS,pre(2, 2)

canT ◦ TrS,pre

Appealing to the universal property of F2−ring(∂I), we deduce that the following
diagram in Ring(Cat) commutes, as required.

F2−ring(∂I) TL(S)pre

TL(S)pre T

(
(a0 ⊗ 2)⊕ (b0 ⊗ 2)

)
t
(
(a1 ⊗ 2)⊕ (b1 ⊗ 2)

)
canT ◦ TrS,pre(2, 2)

canT ◦ TrS,pre

Notation 3.2.3.24. Appealing to Corollary , let

TL(S) T
TrS

denote the canonical functor of 2-rings such that the following diagram in Ring(Cat)
commutes.

TL(S)pre TL(S)

T

canTL(S)

TrS

TrS,pre



Terminology 3.2.3.25. We refer to TrS as the Markov trace functorwith respect to
T.

Remark 3.2.3.26. Let R and R[A,B] be the 2-rings of Remark 3.2.2.20, and let S
be the datum for smoothing of braids defined of Remark 3.2.2.20. Let R[A,B, γ] be
the 2-ring constructed from R[A,B] by formally adding an endomorphism γ of the
multiplicative unit 1R. This construction is carried out formally in §3.2.5. The arrows
of R[A,B, γ] are exactly those of the coproduct

⊔
n≥0N[A,B, γ] in Cat of one copy of

N[A,B, γ] for each natural number.
Let T be the Markov trace datum given by (R[A,B, γ], γ, canR[A,B,γ]), where

R[A,B] R[A,B, γ]
canR[A,B,γ]

is the canonical functor of 2-rings. Then the Markov trace functor

TL(S) T
TrS

with respect to T almost agrees, on arrows, with the usual Markov trace morphisms

T Ln N[A,B, γ]

discussed for instance in the remark after Proposition 3.6 in [13], albeit for a quotient
of N[A,B, γ]. In the literature, γ is usually assumed to be invertible. Our Markov
trace functor is obtained exactly from the usual Markov trace morphisms

T Ln N[A,B, γ, γ−1]

if all uses of γ−1 are replaced by uses of γ.

3.2.4. Constructing a datum for smoothing of braids given a
2-ring

Notation 3.2.4.1. Appealing to Fact 2.2.2.2, let F2−ring[A,B] denote the free 2-ring
on I t I. We denote the canonical functor

I t I F2−ring[A,B]

by canF2−ring[A,B].

Notation 3.2.4.2. We shall also denote by R[A,B] the category which is part of the
data of R[A,B].

Notation 3.2.4.3. Appealing to Fact 2.1.3.16, let



R R[A,B] F2−ring[A,B]
i
R[A,B],bi
1 i

R[A,B],bi
2

be a binary coproduct in Ring(Cat).

Notation 3.2.4.4. We denote by A the arrow of R[A,B] corresponding to the functor

I R[A,B]
i
R[A,B],bi
2 ◦ canF2−ring[A,B] ◦ iI,bi1

Notation 3.2.4.5. We denote by B the arrow of R[A,B] corresponding to the functor

I R[A,B]
i
R[A,B],bi
2 ◦ canF2−ring[A,B] ◦ iI,bi2

Remark 3.2.4.6. The idea of the construction of R[A,B] is as follows.

(1) We add an arrow A to R, along with a pair of objects which are its source and
target.

(2) We add an arrow B to R, along with a pair of objects which are its source and
target.

(3) We add exactly those objects and arrows to R which are needed to have a 2-ring.
The arrrows added can be thought of as all non-commutative polynomials, with
coefficients in R, in the variables A and B. The objects added can be thought
of as all non-commutative polynomials, with coefficients in R, in four variables,
corresponding to the four objects added to R, namely the source and target of A
and the source and target of B.

Remark 3.2.4.7. We have that (R[A,B], A,B) defines a datum for smoothing of
braids. In fact, this datum is universal amongst data for smoothing of braids con-
structed from R. We shall not, however, need this universal property, and shall omit
its precise statement and a proof.

3.2.5. Constructing a Markov trace datum given a 2-ring

Notation 3.2.5.1. Let

1Cat t 1Cat 1Cat

p

be the canonical functor.



Notation 3.2.5.2. Let

1Cat t 1Cat 1Cat

I F [γ]

p

r
F [γ]
00 t 1

r
F [γ]
1

be a co-cartesian square in Cat.

Notation 3.2.5.3. We denote by γ the arrow of F [γ] corresponding to the functor

I F [γ].
r
F [γ]
1

Remark 3.2.5.4. The definition of F [γ] can be thought of as follows. We begin with
a category consisting of exactly one object, which we denote by 1, and no non-identity
arrows. We then proceed as follows.

(1) We add an arrow

1 1,

which we denote by γ.

(2) We then add exactly those further arrows

1 1

that we need to have a category, namely arbitrary finite compositions of γ with
itself.

Notation 3.2.5.5. Appealing to Fact 2.2.2.2, let F2−ring[γ] denote the free 2-ring on
F [γ]. We denote the canonical functor

F [γ] F2−ring[γ]

by canF2−ring[γ].

Notation 3.2.5.6. Appealing to Fact 2.2.2.2, we denote by F2−ring(1Cat) the free 2-ring
on 1Cat.



Notation 3.2.5.7. Let

F2−Ring(1Cat) R
1R

be the canonical functor of 2-rings to which the functor

1Cat R
1R

gives rise by means of the universal property of F2−Ring(1Cat).

Notation 3.2.5.8. Let

F2−Ring(1Cat) F2−ring[γ]
g

be the canonical functor to which the functor

1Cat F2−ring[γ]
canF2−ring[γ] ◦ r

F [γ]
0

gives rise by means of the universal property of F2−Ring(1Cat).

Notation 3.2.5.9. Appealing to Fact 2.1.3.16, let

F2−Ring(1Cat) F2−ring[γ]

R R[γ]

g

r
R[γ]
0

1R

r
R[γ]
1

be a co-cartesian square in Ring(Cat).

Notation 3.2.5.10. Let

F2−Ring(1Cat) R
1R

be the canonical functor of 2-rings to which the functor

1Cat R
1R

gives rise by means of the universal property of F2−Ring(1Cat).

Notation 3.2.5.11. Let

F2−Ring(1Cat) F2−ring[γ]
g



be the canonical functor to which the functor

1Cat F2−ring[γ]
canF2−ring[γ] ◦ r

F [γ]
0

gives rise by means of the universal property of F2−Ring(1Cat).

Notation 3.2.5.12. Appealing to Fact 2.1.3.16, let

F2−Ring(1Cat) F2−ring[γ]

R R[γ]

g

r
R[γ]
0

1R

r
R[γ]
1

be a co-cartesian square in Ring(Cat).

Notation 3.2.5.13. We denote by γ the arrow of R[γ] corresponding to the functor

I R[γ]
r

R[γ]
0 ◦ canF2−ring[γ] ◦ γ

Remark 3.2.5.14. The idea of the construction of R[γ] is that we identify the single
object of F [γ], viewed as an object of F2−ring[γ] via the functor canF2−ring[γ], with the unit
1R of Rmult. Thus γ becomes an endomorphism of 1R. We now express this formally.

Proposition 3.2.5.15. The following diagram in Cat commutes.

1Cat I

R[γ]

0

γ
1R[γ]

Proof. We make the following observations.

(1) By definition of the functor

1Cat t 1Cat I,0 t 1

the following diagram in Cat commutes.



1Cat

1Cat t 1Cat I

i1Cat,bi
1

0 t 1

0

(2) By definition of F [γ], the following diagram in Cat commutes.

1Cat t 1Cat 1Cat

I F [γ]

p

r
F [γ]
00 t 1

r
F [γ]
1

(3) We deduce from (1) and (2) that the following diagram in Cat commutes.

1Cat I

1Cat F [γ]

0

r
F [γ]
1p ◦ i1Cat,bi

1

r
F [γ]
0

(4) Appealing to the universal property of 1Cat, we have that the functor

1Cat 1Cat

p ◦ i1Cat,bi
1

is equal to

1Cat 1Cat.
id

(5) By definition, we have that the functor

I F [γ]
r
F [γ]
1

corresponds to the arrow γ of F [γ].



(6) We deduce from (3) – (5) that the following diagram in Cat commutes.

1Cat I

F [γ]

0

γ
r
F [γ]
0

(7) We deduce from (6) that the following diagram in Cat commutes.

1Cat I

F2−ring[γ]

0

canF2−ring[γ] ◦ γ
canF2−ring[γ] ◦ r

F [γ]
0

(8) By definition of the functor

F2−ring(1Cat) F2−ring[γ],
g

the following diagram in Cat commutes.

1Cat I

F2−ring(1Cat) F2−ring[γ]

r
F [γ]
0

canF2−ring[γ]can1Cat

g

(9) We deduce from (7) and (8) that the following diagram in Cat commutes.

1Cat I

F2−ring[γ]

0

canF2−ring[γ] ◦ γg ◦ can1Cat

(10) We deduce from (9) that the following diagram in Cat commutes.



1Cat I

R[γ]

0

r
R[γ]
0 ◦ canF2−ring[γ] ◦ γ

r
R[γ]
0 ◦ g ◦ can1Cat

(11) By definition of the arrow γ of F2−ring[γ], we deduce from (10) that the following
diagram in Cat commutes.

1Cat I

R[γ]

0

γ
r

R[γ]
0 ◦ g ◦ can1Cat

(12) By definition of R[γ], the following diagram in Cat commutes.

F2−Ring(1Cat) F2−ring[γ]

R R[γ]

g

r
R[γ]
0

1R

r
R[γ]
1

(13) We deduce from (11) and (12) that the following diagram in Cat commutes.

1Cat I

R[γ]

0

γ
r

R[γ]
1 ◦ 1R ◦ can1Cat

(14) By definition of the functor

F2−ring(1Cat) R,
1R

the following diagram in Cat commutes.



1Cat F2−ring(1Cat)

R

can1Cat

1R
1R

(15) By definition of a functor of 2-rings, the following diagram in Cat commutes.

1Cat R

R[γ]

1R

r
R[γ]
11R[γ]

’

(16) We deduce from (13) – (15) that the following diagram in Cat commutes, as
required.

1Cat I

R[γ]

0

γ
1R[γ]

Proposition 3.2.5.16. The following diagram in Cat commutes.

1Cat I

R[γ]

1

γ
1R[γ]

Proof. Entirely analogous to the proof of Proposition 3.2.5.15.

Corollary 3.2.5.17. We have that
(
R[γ], γ, r

R[γ]
1

)
defines a Markov trace datum with

respect to R.

Proof. Follows immediately from Proposition 3.2.5.15 and Proposition 3.2.5.16.



Remark 3.2.5.18. In fact,
(
R[γ], γ, r

R[γ]
1

)
is universal amongst Markov trace data

with respect to R. We shall not, however, need this universal property, and shall omit
its precise statement and a proof.



3.3. The Kauffman bracket invariant

Given a datum S for smoothing of braids, we construct in a canonical way a strict
monoidal functor Smoothing from Braids to TL(S) which, on arrows, we think of as
‘smoothing’ a braid to a formal linear sum of diagrammatic tangles in the usual way.
Given a Markov trace datum T, we combine this functor with the Markov trace functor
with respect to T constructed in §3.2.3, to define a strict monoidal functor from Braids
to a 2-ring T which is constructed from the data of T.

On arrows, we think of this functor as taking the Kauffman bracket of a braid.
We then demonstrate that this strict monoidal functor gives rise to a functor from
Braids/R-moves to T. On arrows, we think of the construction of this last functor as a
demonstration that the Kauffman bracket is a braid invariant.

3.3.1. Smoothing functor

Notation 3.3.1.1. Let S = (R, A,B) be a datum for smoothing of braids. We shall
also denote the category which is part of the data of R by R.

Notation 3.3.1.2. Let us denote the source and target of A by a0 and a1 respectively.
Let us denote the source and target of B by b0 and b1 respectively.

Notation 3.3.1.3. Throughout this chapter, we shall view the objects and arrows of
TL≤2 as objects and arrows of TL via the functor

TL≤2 TL.
canTL

In addition, we shall view the objects and arrows of TL as objects and arrows of
TL(S)pre via the functor

TL TL(S)pre.
canTL(S)pre

Finally, we shall view the objects and arrows of TL(S)pre as objects and arrows of
TL(S) via the functor

TL(S)pre TL(S).
canTL(S)

Viewing the object 1 of TL≤2 as an object of TL, TL(S)pre, or TL(S) in this way, we
shall denote, for any integer n ≥ 1, the object

1⊗TL · · · ⊗TL 1︸ ︷︷ ︸
n

of TL by n, and the object
1⊗TL(S) · · · ⊗TL(S) 1︸ ︷︷ ︸

n

of TL(S) by n.



Notation 3.3.1.4. Let

I t I TL(S)
sarr

denote the canonical functor such that the diagrams

I I t I

TL(S)

iI,bi1

sarr(
A⊗TL(S) id(2)

)
⊕TL(S)

(
B ⊗TL(S) CupAndCap

)

and

I I t I

TL(S)

iI,bi2

sarr(
A⊗TL(S) CupAndCap

)
⊕TL(S)

(
B ⊗TL(S) id(2)

)

in Cat commute.

Notation 3.3.1.5. Let

1Cat t 1Cat TL(S)
sob

denote the canonical functor such that the following diagram in Cat commutes.

1Cat 1Cat t 1Cat 1Cat

TL(S)

1 2

2
sob

2

Proposition 3.3.1.6. The following diagram in Cat commutes.

1Cat I

I t I

TL(S)

0

iI,bi1

sarr

2



Proof. We make the following observations.

(1) By definition of sarr, we have that the following diagram in Cat commutes.

I I t I

TL(S)

iI,bi1

sarr(
A⊗TL(S) id(2)

)
⊕TL(S)

(
B ⊗TL(S) CupAndCap

)

(2) By definition of A, B, id(2), and CupAndCap, we have that the following diagram
in Cat, in which the unlabelled arrow is(

A⊗TL(S) id(2)
)
⊕TL(S)

(
B ⊗TL(S) CupAndCap

)
,

commutes.

1Cat I

TL(S)

0

(a0 ⊗TL(S) 2)⊕TL(S) (b0 ⊗TL(S) 2)

(3) By definition of TL(S), the object

(a0 ⊗TL(S) 2)⊕TL(S) (b0 ⊗TL(S) 2)

of TL(S) is equal to the object 2 of TL(S).

(4) We conclude from (1) – (3) that the following diagram in Cat commutes, as
required.

1Cat I

I t I

TL(S)

0

iI,bi1

sarr

2



Proposition 3.3.1.7. The following diagram in Cat commutes.

1Cat I

I t I

TL(S)

1

iI,bi1

sarr

2

Proof. Entirely analogous to the proof of Proposition 3.3.1.6.

Proposition 3.3.1.8. The following diagram in Cat commutes.

1Cat I

I t I

TL(S)

0

iI,bi2

sarr

2

Proof. Entirely analogous to the proof of Proposition 3.3.1.6.

Proposition 3.3.1.9. The following diagram in Cat commutes.

1Cat I

I t I

TL(S)

1

iI,bi2

sarr

2

Proof. Entirely analogous to the proof of Proposition 3.3.1.6.

Proposition 3.3.1.10. The following diagram in Cat commutes.



∂I t ∂I 1Cat t 1Cat

I t I TL(S)

(2, 2) t (2, 2)

sob(0, 1) t (0, 1)

sarr

Proof. We make the following observations.

(1) By definition of the functor

∂I t ∂I 1Cat t 1Cat,
(2, 2) t (2, 2)

the following diagram in Cat, in which this functor is the unlabelled middle arrow,
commutes.

∂I ∂I t ∂I ∂I

1Cat t 1Cat

i∂I,bi1 i∂I,bi2

(2, 2) (2, 2)

(2) We deduce from (1) that the following diagram in Cat, in which the unlabelled
middle arrow is sob ◦ (2, 2), commutes.

∂I ∂I t ∂I ∂I

1Cat t 1Cat

i∂I,bi1 i∂I,bi2

sob ◦ (2, 2) sob ◦ (2, 2)

(3) We deduce from (2) and the definition of sob that the following diagram in Cat
commutes.

∂I ∂I t ∂I ∂I

1Cat t 1Cat

i∂I,bi1 i∂I,bi2

(2, 2) (2, 2)



(4) By definition of the functor

∂I t ∂I I t I,
(0, 1) t (0, 1)

the following diagram in Cat, in which this functor is the unlabelled middle arrow,
commutes.

∂I ∂I t ∂I ∂I

I t I

i∂I,bi1 i∂I,bi2

iI,bi1 ◦ (0, 1) iI,bi2 ◦ (0, 1)

(5) We deduce from (4) that the following diagram in Cat, in which the unlabelled
middle arrow is sarr ◦

(
(0, 1) t (0, 1)

)
, commutes.

∂I ∂I t ∂I ∂I

I t I

i∂I,bi1 i∂I,bi2

sarr ◦ iI,bi1 ◦ (0, 1) sarr ◦ iI,bi2 ◦ (0, 1)

(6) We deduce from Proposition 3.3.1.6 and Proposition 3.3.1.6 that the following
diagram in Cat commutes.

∂I I t I

TL(S)

(0, 1)

sarr ◦ iI,bi1(2, 2)

(7) We deduce from Proposition 3.3.1.6 and Proposition 3.3.1.6 that the following
diagram in Cat commutes.

∂I I t I

TL(S)

(0, 1)

sarr ◦ iI,bi2(2, 2)



(8) We deduce from (5) – (7) that the following diagram in Cat, in which the
unlabelled middle arrow is sarr ◦

(
(0, 1) t (0, 1)

)
, commutes.

∂I ∂I t ∂I ∂I

I t I

i∂I,bi1 i∂I,bi2

(2, 2) (2, 2)

(9) We deduce from (2) and (8) that the following diagram in Cat commutes, as
required.

∂I t ∂I 1Cat t 1Cat

I t I TL(S)

(2, 2) t (2, 2)

sob(0, 1) t (0, 1)

sarr

Notation 3.3.1.11. Appealing to Proposition 3.3.1.10, let us denote by

Braids≤2 TL(S)
Smoothing

the canonical functor such that the following diagram in Cat commutes.

∂I t ∂I 1Cat t 1Cat

I t I Braids≤2

TL(S)

(2, 2) t (2, 2)

r
Braids≤2

0
(0, 1) t (0, 1)

r
Braids≤2

1

sob

sarr

Smoothing



Proposition 3.3.1.12. The following diagram in Cat commutes.

1Cat Braids≤2 × Braids≤2

TL(S)× TL(S)

Braids≤2 TL(S)

(1, 1)

Smoothing × Smoothing

⊗TL(S)

2

Smoothing

Proof. We make the following observations.

(1) By definition of Smoothing×Smoothing, the following diagram in Cat commutes.

Braids≤2 × Braids≤2 TL(S)× TL(S)

Braids≤2 TL(S)

Smoothing × Smoothing

p
TL(S),bi
1p

Braids≤2,bi
1

Smoothing

(2) By definition of the functor (1, 1), the following diagram in Cat commutes.

1Cat Braids≤2 × Braids≤2

Braids≤2

(1, 1)

p
Braids≤2,bi
11

(3) By definition of the functor 1, the following diagram in Cat commutes.

1Cat

1Cat t 1Cat Braids≤2

i1Cat,bi
1

r
Braids≤2

0

1



(4) We deduce from (2) and (3) that the following diagram in Cat commutes.

1Cat Braids≤2 × Braids≤2

1Cat t 1Cat Braids≤2

(1, 1)

p
Braids≤2,bi
1i1Cat

1

r
Braids≤2

0

(5) We deduce from (1) and (4) that the following diagram in Cat commutes.

1Cat TL(S)× TL(S)

1Cat t 1Cat TL(S)

(Smoothing × Smoothing) ◦ (1, 1)

p
TL(S),bi
1i1Cat,bi

1

Smoothing ◦ rBraids≤2

0

(6) By definition of Smoothing, we have that the following diagram in Cat commutes.

1Cat t 1Cat Braids≤2

TL(S)

r
Braids≤2

0

Smoothing
sob

(7) We deduce from (5) and (6) that the following diagram in Cat commutes.

1Cat TL(S)× TL(S)

1Cat t 1Cat TL(S)

(Smoothing × Smoothing) ◦ (1, 1)

p
TL(S),bi
1i1Cat,bi

1

sob

(8) By definition of the functor

1Cat t 1Cat TL(S),
sob

we have that the following diagram in Cat commutes.



1Cat 1Cat t 1Cat

TL(S)

i
1Cat,bi

1

sob
1

(9) We deduce from (7) and (8) that the following diagram in Cat commutes.

1Cat TL(S)× TL(S)

TL(S)

(Smoothing × Smoothing) ◦ (1, 1)

p
TL(S),bi
11

(10) By an entirely analogous argument to that of (1) – (9), we have that the
following diagram in Cat commutes.

1Cat TL(S)× TL(S)

TL(S)

(Smoothing × Smoothing) ◦ (1, 1)

p
TL(S),bi
21

(11) We deduce from (9), (10), and the universal property of TL(S)× TL(S) that
the following diagram in Cat commutes.

1Cat Braids≤2 × Braids≤2

TL(S)× TL(S)

(1, 1)

Smoothing × Smoothing
(1, 1)

(12) Appealing first to the universal property of TL× TL and then to the universal
property of TL(S) × TL(S), it is an immediate consequence of the definition of
the functor

1Cat TL(S)× TL(S)
(1, 1)



that the following diagram in Cat commutes.

1Cat TL≤2 × TL≤2

TL× TL

TL(S)× TL(S)

(1, 1)

canTL × canTL

canTL(S) × canTL(S)

(1, 1)

(13) Appealing to the universal property of TL, we have that the following diagram
in Cat commutes.

1Cat TL≤2 × TL≤2

TL× TL

TL≤2 TL

(1, 1)

canTL × canTL

⊗TL

2

canTL

(14) Since canTL(S) is a functor of 2-rings, the following diagram in Cat commutes.

TL× TL TL(S)× TL(S)

TL TL(S)

canTL(S) × canTL(S)

⊗TL(S)⊗TL

canTL(S)

(15) By definition of the functor

1Cat TL(S),
2

we have that the following diagram in Cat commutes.



1Cat

TL≤2 TL(S)

2

canTL(S) ◦ canTL

2

(16) We deduce from (11) – (15) that the following diagram in Cat commutes.

1Cat Braids≤2 × Braids≤2

TL(S)× TL(S)

TL(S)

(1, 1)

Smoothing × Smoothing

⊗TL

2

(17) By definition of the functor

1Cat Braids≤2,
2

the following diagram in Cat commutes.

1Cat

1Cat t 1Cat Braids≤2

i
1Cat,bi

2

r
Braids≤2

0

2

(18) We deduce from (17) that the following diagram in Cat commutes.

1Cat Braids≤2

1Cat t 1Cat TL(S)

2

Smoothingi
1Cat,bi

2

Smoothing ◦ rBraids≤2

0



(19) We deduce from (6) and (18) that the following diagram in Cat commutes.

1Cat Braids≤2

1Cat t 1Cat TL(S)

2

Smoothingi
1Cat,bi

2

sob

(20) By definition of the functor

1Cat t 1Cat TL(S),
sob

the following diagram in Cat commutes.

1Cat 1Cat t 1Cat

TL(S)

i
1Cat,bi

2

sob
2

(21) We deduce from (19) and (20) that the following diagram in Cat commutes.

1Cat Braids≤2

TL(S)

2

Smoothing
2

(22) We conclude from (16) and (21) that the following diagram in Cat commutes,
as required.

1Cat Braids≤2 × Braids≤2

TL(S)× TL(S)

Braids≤2 TL(S)

(1, 1)

Smoothing × Smoothing

⊗TL(S)

2

Smoothing



Corollary 3.3.1.13. The functor

Braids≤2 TL(S)mult
Smoothing

exhibits MBraids as a monoidal datum for TL(S)mult.

Proof. Follows immediately from Proposition 3.3.1.12.

Notation 3.3.1.14. Appealing to Corollary 3.3.1.13, let

Braids TL(S)mult
Smoothing

denote the canonical strict monoidal functor to which the functor

Braids≤2 TL(S)
Smoothing

gives rise, by means of the universal property of Braids.

Remark 3.3.1.15. The idea of the construction of Smoothing is as follows.

(1) The objects 1 and 2 of Braids≤2 are sent to the objects of TL≤2 of the same
denotation, viewed as objects of TL via the functor

TL≤2 TL.
canTL

(2) The arrow

2 2
UnderCrossing

of Braids≤2

is sent to the arrow

2 2

(
A⊗TL(S) id(2)

)
⊕TL(S)

(
B ⊗TL(S) CupAndCap

)



of TL(S), namely a formal linear combination of the diagrammatic tangles id(2)

and CupAndCap.

(3) The arrow

2 2
OverCrossing

of Braids≤2

is sent to the arrow

2 2

(
A⊗TL(S) CupAndCap

)
⊕TL(S)

(
B ⊗TL(S) id(2)

)
of TL(S), namely the same formal linear combination of the diagrammatic tangles
id(2)



and CupAndCap

as in (2), but with the opposite choice of coefficients.

(4) We extend freely to all of Braids≤2. Thus, for instance, the arrow

2 2
OverCrossing ◦ UnderCrossing

of Braids≤2

is sent, denoting ⊕TL(S) and ⊗TL(S) simply by ⊕ and ⊗ respectively, to the arrow

((
A⊗ CupAndCap

)
⊕
(
B ⊗ id(2)

))
◦
((
A⊗ id(2)

)
⊕
(
B ⊗ CupAndCap

))
=
((
A⊗ CupAndCap

)
◦
(
A⊗ id(2)

))
⊕
((
B ⊗ id(2)

)
◦
(
B ⊗ CupAndCap

))
=
(

(A ◦ A)⊗
(
CupAndCap ◦ id(2)

))
⊕
(

(B ◦B)⊗
(
id(2) ◦ CupAndCap

))
=
(
(A ◦ A)⊗ CupAndCap

)
⊕
(
(B ◦B)⊗ CupAndCap

)
=
(
(A ◦ A)⊕ (B ◦B)

)
⊗ CupAndCap

of TL(S). The first equality is a consequence of the functoriality of ⊕. The
second is a consequence of the functoriality of ⊗. The fourth is a consequence of
requirement (4) in the definition of a 2-ring, in Definition 2.1.3.2.



(5) We extend freely to all of Braids. Thus, for instance, the arrow

3 3

(
id(1)⊗Braids OverCrossing

)
◦
(
UnderCrossing ⊗Braids id(1)

)

of Braids

is sent, denoting ⊕TL(S) and ⊗TL(S) simply by ⊕ and ⊗ respectively, to the arrow

((
A⊗

(
id(1)⊗TL CupAndCap

))
⊕
(
B ⊗ id(3)

))
◦
((
A⊗ id(3)

)
⊕
(
B ⊗

(
CupAndCap⊗TL id(1)

)))
=

(
A⊗

(
id(1)⊗TL CupAndCap

))
◦
(
A⊗ id(3)

))
⊕
((
B ⊗ id(3)

)
◦
(
B ⊗

(
CupAndCap⊗TL id(1)

)))
=

(
(A ◦ A)⊗

((
id(1)⊗TL CupAndCap

)
◦ id(3)

))
⊕
(

(B ◦B)⊗
(
id(3) ◦

(
CupAndCap⊗TL id(1)

)))
=
(

(A ◦ A)⊗
(
id(1)⊗TL CupAndCap

))
⊕
(

(B ◦B)⊗
(
CupAndCap⊗TL id(1)

))
of TL(S).

3.3.2. The Kauffman bracket

Notation 3.3.2.1. Let FMon(I) denote the free strict monoidal category on I.

Remark 3.3.2.2. Let F2−ring(I) denote the free 2-ring on I. Appealing to Fact 2.2.3.4,
we have that F2−ring(I) can be viewed as the free 2-ring on FMon(I).

Notation 3.3.2.3. Let

F2−ring(I) T
TrS ◦ Smoothing ◦ R2one(one half)

be the functor of 2-rings to which, by means of the universal property of F2−ring(I) as
the free 2-ring on FMon(I), the strict monoidal functor



F(I) Tmult
TrS ◦ Smoothing ◦ R2one(one half)

gives rise.

Notation 3.3.2.4. Let

F2−ring(I) T
R2one(other half)

be the functor of 2-rings to which, by means of the universal property of F2−ring(I) as
the free 2-ring on FMon(I), the strict monoidal functor

F(I) Tmult
TrS ◦ Smoothing ◦ R2one(other half)

gives rise.

Notation 3.3.2.5. Appealing to Fact 2.1.3.16, let

F2−ring(I) T Tinv

TrS ◦ Smoothing ◦ R2one(one half)

TrS ◦ Smoothing ◦ R2one(other half)

qinv

be a coequaliser diagram in Ring(Cat).

Notation 3.3.2.6. Let us denote by

Braids Tinv
multK

the strict monoidal functor qinv ◦ TrS ◦ Smoothing.

Terminology 3.3.2.7. We refer to

Braids Tinv
multK

as the Kauffman bracket.

Proposition 3.3.2.8. The following diagram in Mon(Cat) commutes.

FMon(I) Braids

Braids Tinv
mult

R2one(one half)

KR2one(other half)

K



Proof. Follows immediately from the definition of Tinv, the definition of the functor of
2-rings

F2−ring(I) T
TrS ◦ Smoothing ◦ R2one(one half)

and the definition of the functor of 2-rings

F2−ring(I) T.
R2one(other half)

Notation 3.3.2.9. Appealing to Proposition 3.3.2.8 and the universal property of
Braids/R2one, let us denote by

Braids/R2one Tinv
mult

K/R2one

the canonical strict monoidal functor such that the following diagram in Mon(Cat)
commutes.

Braids Braids/R2one

Tinv
mult

qR2one

K/R2one
K

Proposition 3.3.2.10. The following diagram in Mon(Cat) commutes.

FMon(I) Braids/R2one

Braids/R2one Tinv
mult

qR2one ◦ R2two(one half)

K/R2oneqR2one ◦ R2two(other half)

K/R2one

Proof. We make the following observations.

(1) Appealing to the functoriality of Smoothing and the functoriality of TrS, the
following diagram in Cat, in which the unlabelled arrow is

I T,
TrS
(
Smoothing(OverCrossing)

)
◦ TrS

(
Smoothing(UnderCrossing)

)



commutes.

I Braids

T

OverCrossing ◦ UnderCrossing

TrS ◦ Smoothing

(2) By definition of Smoothing, the functor

I T
TrS
(
Smoothing(UnderCrossing)

)
corresponds to an arrow

1T 1T

of T, and the functor

I T
TrS
(
Smoothing(OverCrossing)

)
corresponds to an arrow

1T 1T

of T.

(3) We deduce from (1), (2), and Corollary ?? that the following diagram in Cat, in
which the unlabelled arrow is

I T,
TrS
(
Smoothing(UnderCrossing)

)
◦ TrS

(
Smoothing(OverCrossing)

)
commutes.

I Braids

T

OverCrossing ◦ UnderCrossing

TrS ◦ Smoothing



(4) Appealing to the functoriality of Smoothing and the functoriality of TrS, the
following diagram in Cat, in which the unlabelled arrow is

I T,
TrS
(
Smoothing(UnderCrossing)

)
◦ TrS

(
Smoothing(OverCrossing)

)

commutes.

I

Braids T

UnderCrossing ◦ OverCrossing

TrS ◦ Smoothing

(5) We deduce from (3) and (4) that the following diagram in Cat commutes.

I Braids

Braids T

OverCrossing ◦ UnderCrossing

TrS ◦ SmoothingUnderCrossing ◦ OverCrossing

TrS ◦ Smoothing

(6) By definition of the functors R2one(one half) and R2two(one half), and appealing
to the universal property of FMon(I), we deduce from (5) that the following
diagram in Ring(Cat) commutes.

FMon(I) Braids

Braids Tmult

R2two(one half)

TrS ◦ SmoothingR2one(one half)

TrS ◦ Smoothing

(7) By Proposition ??, the following diagram in Mon(Cat) commutes.



FMon(I) Braids

Braids Tinv
mult

R2one(one half)

qinv ◦ TrS ◦ SmoothingR2one(other half)

qinv ◦ TrS ◦ Smoothing

(8) We deduce from (6), (7), and the definition of K, that the following diagram in
Mon(Cat) commutes.

FMon(I) Braids

Braids Tinv
mult

R2two(one half)

KR2one(other half)

K

(9) By definition, the strict monoidal functors R2one(other half) and R2two(other half)
are equal.

(10) We deduce from (8) and (9) that the following diagram in Mon(Cat) commutes.

FMon(I) Braids

Braids Tinv
mult

R2two(one half)

KR2two(other half)

K

(11) By definition of K/R2one, the following diagram in Mon(Cat) commutes.

Braids Braids/R2one

Tinv

qR2one

K/R2one
K

(12) We deduce from (10) and (11) that the following diagram in Mon(Cat) com-
mutes, as required.



FMon(I) Braids/R2one

Braids/R2one Tinv
mult

qR2one ◦ R2two(one half)

K/R2oneqR2one ◦ R2two(other half)

K/R2one

Notation 3.3.2.11. Appealing to Proposition 3.3.2.10 and the universal property of
Braids/R2both, let us denote by

Braids/R2both Tinv
mult

K/R2both

the canonical strict monoidal functor such that the following diagram in Mon(Cat)
commutes.

Braids/R2one Braids/R2both

Tinv
mult

qR2two

K/R2both
K/R2one

Proposition 3.3.2.12. The following diagram in Mon(Cat) commutes.

FMon(I) Braids/R2both

Braids/R2both Tinv
mult

qR2both
◦ R3one(one half)

K/R2bothqR2both
◦ R3one(other half)

K/R2one

Proof. Similar to the proof of Proposition 3.3.2.10. The key point is that, by Proposi-
tion 2.1.3.20, and the fact TrS and Smoothing are strict monoidal functors, we have

K/R2both

(
OverCrossing ⊗ id(1)

)
= K/R2both

(
id(1)⊗ OverCrossing

)
.

Notation 3.3.2.13. Appealing to Proposition 3.3.2.12 and the universal property of
Braids/R-moves, let us denote by



Braids/R-moves Tinv
mult

K/R-moves

the canonical strict monoidal functor such that the following diagram in Mon(Cat)
commutes.

Braids/R2both Braids/R-moves

Tinv
mult

qR−moves

K/R-moves
K/R2both

Terminology 3.3.2.14. We refer to the functor

Braids/R-moves Tinv
mult

K/R-moves

as the Kauffman bracket invariant of braids.

Remark 3.3.2.15. The idea of the construction of K/R-moves is as follows.

(1) We define the Kauffman bracket of a braid, namely the strict monoidal functor

Braids Tmult,
K

to be the Markov trace of its smoothing to a diagrammatic tangle.

(2) We modify T to ensure that K is invariant under R2one, by forcing the Kauffman
bracket of two halves of R2one to become equal. We denote the 2-ring that we
obtain from T in this way by Tinv.

(3) Making use of a cyclicity property of TrS, we demonstrate that the Kauffman
bracket to Tinv is invariant under both R2two and R3one. Taking into consideration
Remark 3.1.2.45, we thus have that the Kauffman bracket to Tinv is invariant all
the Reidemeister moves R2one, R2two, R3one, R3two, . . . , R3six. In other words, it is
an invariant of braids.



Remark 3.3.2.16. We make the following observations.

TrS ◦ Smoothing ◦ (UnderCrossing ◦ OverCrossing)

= TrS
((
A⊗ id(2)

)
⊕ (B ⊗ CupAndCap)

)
◦ TrS

(
(A⊗ CupAndCap)⊕

(
B ⊗ id(2)

))
=
((
A⊗ id(1T)

)
⊕
(
B ⊗ γ

))
◦
((
A⊗ γ

)
⊕
(
B ⊗ id(1T)

))
=
((
A⊗ id(1T)

)
⊕
(
B ⊗ γ

))
⊗
((
A⊗ γ

)
⊕
(
B ⊗ id(1T)

))
=
(
A⊕

(
B ⊗ γ

))
⊗
((
A⊗ γ

)
⊕B

)
=
(
A⊗

(
(A⊗ γ)⊕B

))
⊕
(

(B ⊗ γ)⊗
(
(A⊗ γ)⊕B

))
= (A⊗ A⊗ γ)⊕ (A⊗B)⊕ (B ⊗ γ ⊗ A⊗ γ)⊕ (B ⊗ γ ⊗B)

= (A⊗ A⊗ γ)⊕ (A⊗B ⊗ γ ⊗ γ)⊕ (A⊗B)⊕ (B ⊗B ⊗ γ)

The first equality holds by the definition of UnderCrossing and OverCrossing, the
functoriality of Smoothing, and the functoriality and definition of TrS. The second
equality holds by definition of TrS and the fact that TrS is a functor of 2-rings. The
third equality holds by Corollary ??. The fourth equality holds by definition of 1T

as the unit for the multiplicative structure of T. The fifth and sixth equalities hold
because T is a 2-ring. The final equality holds by Corollary ??.

Let

F2−ring(I) T
(A⊗ A⊗ γ)⊕ (A⊗B ⊗ γ ⊗ γ)⊕ (A⊗B)⊕ (B ⊗B ⊗ γ)

denote the functor of 2-rings to which the functor

I T
(A⊗ A⊗ γ)⊕ (A⊗B ⊗ γ ⊗ γ)⊕ (A⊗B)⊕ (B ⊗B ⊗ γ)

gives rise. Let

F2−ring(I) T
1T

denote the functor of 2-rings to which the functor

I T
1T

gives rise. Then, by the above calculation and the definition of Tinv, the following
diagram in Ring(Cat) defines a coequaliser.

F2−ring(I) T Tinv

(A⊗ A⊗ γ)⊕ (A⊗B ⊗ γ ⊗ γ)⊕ (A⊗B)⊕ (B ⊗B ⊗ γ)

id(1T)

qinv



Remark 3.3.2.17. We make the following observations.

Smoothing ◦ (UnderCrossing ◦ OverCrossing)

=
((
A⊗ id(2)

)
⊕
(
B ⊗ CupAndCap

))
◦
((
A⊗ CupAndCap

)
⊕
(
B ⊗ id(2)

))
=
((
A⊗ id(2)

)
◦
(
A⊗ CupAndCap

))
⊕
((
B ⊗ CupAndCap

)
◦
(
B ⊗ id(2)

))
=
(

(A ◦ A)⊗
(
id(2) ◦ CupAndCap

))
⊕
(

(B ◦B)⊗
(
CupAndCap ◦ id(2)

))
=
(
(A ◦ A)⊗ CupAndCap

)
⊕
(
(B ◦B)⊗ CupAndCap

)
=
(
(A ◦ A)⊕ (B ◦B)

)
⊗ CupAndCap

The first equality holds by the definition of UnderCrossing and OverCrossing, and the
functoriality of Smoothing. The second holds by the functoriality of ⊕. The third
holds by the functoriality of ⊗. The fifth holds because TL(S) is a 2-ring.

By the functoriality and definition of TrS, we deduce that

TrS ◦ Smoothing ◦ (UnderCrossing ◦ OverCrossing)

is equal to (
(A ◦ A)⊕ (B ◦B)

)
⊗ γ,

and thus, appealing to Corollary ??, to(
(A⊗ A)⊕ (B ⊗B)

)
⊗ γ.

Hence, and by definition of Tinv, the following diagram in Ring(Cat) defines a co-
equaliser.

F2−ring(I) T Tinv

(
(A⊗ A)⊕ (B ⊗B)

)
⊗ γ

id(1T)

qinv

Remark 3.3.2.18. Let R and R[A,B] be the 2-rings of Remark 3.2.2.20. Let S be
the smoothing datum of Remark 3.2.2.20. Let R[γ] be the 2-ring of Remark 3.2.3.26.
Let T be the Markov trace datum of Remark 3.2.3.26. Let

Braids/R-moves T
K/R-moves

be the Kauffman bracket invariant with respect to S and T. Then, on arrows, K is then
exactly the usual Kauffman bracket of a braid. Indeed, if we restrict K to the group
of endomorphisms of the object n of Braids, then it recovers exactly the morphism of
groups

Bn N[A,B, γ]

defining the usual Kauffman bracket, where Bn is the braid group on n strands.



3.4. Examples

3.4.1. Hopf link

Notation 3.4.1.1. Throughout this section, we shall view the objects and arrows of
Braids≤2 as objects and arrows of Braids via the functor

Braids≤2 Braids.
canBraids

Viewing the object 1 of Braids≤2 as an object of Braids in this way, we shall denote,
for any integer n ≥ 1, the object

1⊗Braids · · · ⊗Braids 1︸ ︷︷ ︸
n

of Braids by n.
Given a datum for smoothing of braids S = (R, A,B), we shall similarly view the

objects and arrows of TL≤2 as objects and arrows of TL via the functor

TL≤2 TL.
canTL

In addition, we shall view the objects and arrows of TL as objects and arrows of
TL(S)pre via the functor

TL TL(S)pre.
canTL(S)pre

Finally, we shall view the objects and arrows of TL(S)pre as objects and arrows of
TL(S) via the functor

TL(S)pre TL(S).
canTL(S)

Viewing the object 1 of TL≤2 as an object of TL, TL(S)pre, or TL(S) in this way, we
shall denote, for any integer n ≥ 1, the object

1⊗TL · · · ⊗TL 1︸ ︷︷ ︸
n

of TL by n, and the object
1⊗TL(S) · · · ⊗TL(S) 1︸ ︷︷ ︸

n

of TL(S) by n.

Notation 3.4.1.2. In the following examples, we are denoting ⊕TL(S) and ⊗TL(S)
simply by ⊕ and ⊗ respectively.



Notation 3.4.1.3. Let us denote the arrow

2 2
OverCrossing

of Braids

by σ.

Notation 3.4.1.4. Let us denote the arrow

2 2
UnderCrossing

of Braids

by σ−1.

Notation 3.4.1.5. Let us denote the arrow

2 2
CupAndCap

of TL(S)

by τ .



Notation 3.4.1.6. We denote the arrow

2 2
σ ◦ σ

of Braids

by Hopf.

Example 3.4.1.7. Let S = (R, A,B) be a datum for smoothing of braids. Let
T = (Tpre, γ, t) be a Markov trace datum with respect to R. We make the following
observations.

(1) By functoriality, the arrow

2 2
Smoothing(Hopf)

of TL(S) is equal to

2 2.
Smoothing(σ) ◦ Smoothing(σ)

(2) By definition of Smoothing, the arrow

2 2
Smoothing(σ)

is equal to

2 2.
(A⊗ CupAndCap)⊕

(
B ⊗ id(2)

)



(3) We have that

(
(A⊗ CupAndCap)⊕

(
B ⊗ id(2)

))
◦
(

(A⊗ CupAndCap)⊕
(
B ⊗ id(2)

))
=
(
(A⊗ CupAndCap) ◦ (A⊗ CupAndCap)

)
⊕
((
B ⊗ id(2)

)
◦
(
B ⊗ id(2)

))
=
(
(A ◦ A)⊗ (CupAndCap ◦ CupAndCap)

)
⊕
(

(B ◦B)⊗
(
id(2) ◦ id(2)

))
=
(
(A ◦ A)⊗ (CupAndCap ◦ CupAndCap)

)
⊕
(
(B ◦B)⊗ id(2)

)
of TL(S).

(4) We deduce from (1) – (3) that the arrow

2 2
Smoothing(Hopf)

of TL is equal to

2 2.

(
(A ◦ A)⊗ (CupAndCap ◦ CupAndCap)

)
⊕
(
(B ◦B)⊗ id(2)

)

(5) The Markov trace of Smooting(Hopf) is, denoting t(A), t(B), ⊗Tpre and ⊕Tpre

simply by A, B, ⊗ and ⊕ respectively,

TrS ◦ Smooting(Hopf)

=TrS
((

(A ◦ A)⊗ (CupAndCap ◦ CupAndCap)
)
⊕
(
(B ◦B)⊗ id(2)

))
=
(
(A ◦ A)⊗ (γ ◦ γ)

)
⊕ (B ◦B)

=
(
(A⊗ A)⊗ (γ ⊗ γ)

)
⊕ (B ⊗B)

Or, simply

TrS ◦ Smooting(Hopf) = A2γ2 ⊕B2.

Notation 3.4.1.8. We denote the arrow

2 2
σ ◦ σ ◦ σ

of Braids



by Trefoil.

Example 3.4.1.9. Let S = (R, A,B) be a datum for smoothing of braids. Let
T = (Tpre, γ, t) be a Markov trace datum with respect to R. We make the following
observations.

(1) By functoriality, the arrow

2 2
Smoothing(Trefoil)

of TL(S) is equal to

2 2.
Smoothing(σ) ◦ Smoothing(σ) ◦ Smoothing(σ)

(2) By definition of Smoothing, the arrow

2 2
Smoothing(σ)

is equal to

2 2.
(A⊗ CupAndCap)⊕

(
B ⊗ id(2)

)

(3) From Example 3.4.1.7 we have that

2 2
Smoothing(σ) ◦ Smoothing(σ)



of TL is equal to

2 2.

(
(A ◦ A)⊗ (CupAndCap ◦ CupAndCap)

)
⊕
(
(B ◦B)⊗ id(2)

)

(4) We have that

(
(A⊗ CupAndCap)⊕

(
B ⊗ id(2)

))
◦
((

(A ◦ A)⊗ (CupAndCap ◦ CupAndCap)
)
⊕
(
(B ◦B)⊗ id(2)

))
=
(

(A⊗ CupAndCap) ◦
(
(A ◦ A)⊗ (CupAndCap ◦ CupAndCap)

))
=⊕

((
B ⊗ id(2)

)
◦
(
(B ◦B)⊗ id(2)

))
=
((
A ◦ (A ◦ A)

)
⊗
(
CupAndCap ◦ (CupAndCap ◦ CupAndCap)

))
=⊕

((
B ◦ (B ◦B)

)
⊗
(
id(2) ◦ id(2)

))
=
(
(A ◦ A ◦ A)⊗ (CupAndCap ◦ CupAndCap ◦ CupAndCap)

)
⊕
(
(B ◦B ◦B)⊗ id(2)

)
of TL(S).

(5) We deduce from (1) – (4) that the arrow

2 2
Smoothing(Trefoil)

of TL is equal to

2 2.

(
(A ◦ A ◦ A)⊗ (CupAndCap ◦ CupAndCap ◦ CupAndCap)

)
⊕
(
(B ◦B ◦B)⊗ id(2)

)

(6) The Markov trace of Smooting(Trefoil) is, denoting t(A), t(B), ⊗Tpre and ⊕Tpre

simply by A, B, ⊗ and ⊕ respectively,

TrS ◦ Smooting(Trefoil)

=TrS
((

(A ◦ A ◦ A)⊗ (CupAndCap ◦ CupAndCap ◦ CupAndCap)
)
⊕
(
(B ◦B ◦B)⊗ id(2)

))
=
(
(A ◦ A ◦ A)⊗ (γ ◦ γ ◦ γ)

)
⊕ (B ◦B ◦B)

=
(
(A⊗ A⊗ A)⊗ (γ ⊗ γ ⊗ γ)

)
⊕ (B ⊗B ⊗B)



Or, simply
TrS ◦ Smooting(Trefoil) = A3γ3 ⊕B3.

Notation 3.4.1.10. We denote the arrow

3 3

(
σ−1 ⊗Braids id(1)

)
◦
(
id(1)⊗Braids σ

)
◦
(
σ−1 ⊗Braids id(1)

)
◦
(
id(1)⊗Braids σ

)
of Braids

by FigureEight.

Example 3.4.1.11. Let S = (R, A,B) be a datum for smoothing of braids. Let
T = (Tpre, γ, t) be a Markov trace datum with respect to R. We make the following
observations.

(1) By functoriality, the arrow

3 3
Smoothing(FigureEight)

of TL(S) is equal to

3 3.

Smoothing
(
σ−1 ⊗Braids id(1)

)
◦ Smoothing

(
id(1)⊗Braids σ

)
◦Smoothing

(
σ−1 ⊗Braids id(1)

)
◦ Smoothing

(
id(1)⊗Braids σ

)



(2) By definition of Smoothing, the arrow

3 3
Smoothing

(
σ−1 ⊗Braids id(1)

)

is equal to

3 3.

(
A⊗ id(3)

)
⊕
(
B ⊗

(
CupAndCap⊗TL id(1)

))

(3) By definition of Smoothing, the arrow

3 3
Smoothing

(
id(1)⊗Braids σ

)

is equal to

3 3.

(
A⊗

(
id(1)⊗TL CupAndCap

))
⊕
(
B ⊗ id(3)

)

(4) We have that

((
A⊗ id(3)

)
⊕
(
B ⊗

(
CupAndCap⊗TL id(1)

)))
◦
((

A⊗
(
id(1)⊗TL CupAndCap

))
⊕
(
B ⊗ id(3)

))
◦
((
A⊗ id(3)

)
⊕
(
B ⊗

(
CupAndCap⊗TL id(1)

)))
◦
((

A⊗
(
id(1)⊗TL CupAndCap

))
⊕
(
B ⊗ id(3)

))
=

((
A⊗ id(3)

)
◦
(
A⊗

(
id(1)⊗TL CupAndCap

))
◦
(
A⊗ id(3)

)
◦
(
A⊗

(
id(1)⊗TL CupAndCap

)))
⊕
((

B ⊗
(
CupAndCap⊗TL id(1)

))
◦
(
B ⊗ id(3)

)
◦
(
B ⊗

(
CupAndCap⊗TL id(1)

))
◦
(
B ⊗ id(3)

))
=

((
(A ◦ A ◦ A ◦ A)⊗ id(3) ◦

(
id(1)⊗TL CupAndCap

)
◦ id(3) ◦

(
id(1)⊗TL CupAndCap

)))
⊕
((

(B ◦B ◦B ◦B)⊗
(
CupAndCap⊗TL id(1)

)
◦ id(3) ◦

(
CupAndCap⊗TL id(1)

)
◦ id(3)

))
=
(

(A ◦ A ◦ A ◦ A)⊗
(
id(1)⊗TL (CupAndCap ◦ CupAndCap)

))
⊕
(

(B ◦B ◦B ◦B)⊗
(
(CupAndCap ◦ CupAndCap)⊗TL id(1)

))
of TL(S).



(5) We deduce from (1) – (4) that the arrow

3 3
Smoothing(FigureEight)

of TL is equal to

3 3.

(
(A ◦ A ◦ A ◦ A)⊗

(
id(1)⊗TL (CupAndCap ◦ CupAndCap)

))
⊕
(

(B ◦B ◦B ◦B)⊗
(
(CupAndCap ◦ CupAndCap)⊗TL id(1)

))

(6) The Markov trace of Smooting(FigureEight) is, denoting t(A), t(B), ⊗Tpre and
⊕Tpre simply by A, B, ⊗ and ⊕ respectively,

TrS ◦ Smooting(FigureEight)

=TrS
((

(A ◦ A ◦ A ◦ A)⊗
(
id(1)⊗TL (CupAndCap ◦ CupAndCap)

))
⊕
(

(B ◦B ◦B ◦B)⊗
(
(CupAndCap ◦ CupAndCap)⊗TL id(1)

)))
=
(
(A ◦ A ◦ A ◦ A)⊗ (γ ◦ γ)

)
⊕
(
(B ◦B ◦B ◦B)⊗ (γ ◦ γ)

)
=
(
(A⊗ A⊗ A⊗ A)⊗ (γ ⊗ γ)

)
⊕
(
(B ⊗B ⊗B ⊗B)⊗ (γ ⊗ γ)

)

Or, simply

TrS ◦ Smooting(FigureEight) = A4γ2 ⊕B4γ2.

Notation 3.4.1.12. We denote the arrow

3 3
(σ ⊗Braids id(1)) ◦ (id(1)⊗Braids σ

−1) ◦ (id(1)⊗Braids σ
−1) ◦ (σ ⊗Braids id(1))

of Braids



by Twohopf.

Example 3.4.1.13. Let S = (R, A,B) be a datum for smoothing of braids. Let
T = (Tpre, γ, t) be a Markov trace datum with respect to R. We make the following
observations.

(1) By functoriality, the arrow

3 3
Smoothing(Twohopf)

of TL(S) is equal to

3 3.

Smoothing(σ ⊗Braids id(1)) ◦ Smoothing(id(1)⊗Braids σ
−1)

◦Smoothing(id(1)⊗Braids σ
−1) ◦ Smoothing(σ ⊗Braids id(1))

(2) By definition of Smoothing, the arrow

3 3
Smoothing(σ ⊗Braids id(1))

is equal to

3 3.

(
A⊗ (CupAndCap⊗TL id(1))

)
⊕
(
B ⊗ id(3)

)



(3) By definition of Smoothing, the arrow

3 3
Smoothing(id(1)⊗Braids σ

−1)

is equal to

3 3.

(
A⊗ id(3)

)
⊕
(
B ⊗ (id(1)⊗TL CupAndCap)

)

(4) We have that

((
A⊗ (CupAndCap⊗TL id(1))

)
⊕
(
B ⊗ id(3)

))
◦
((
A⊗ id(3)

)
⊕
(
B ⊗ (id(1)⊗TL CupAndCap)

))
◦
((
A⊗ id(3)

)
⊕
(
B ⊗ (id(1)⊗TL CupAndCap)

))
◦
((
A⊗ (CupAndCap⊗TL id(1))

)
⊕
(
B ⊗ id(3)

))
=
((
A⊗ (CupAndCap⊗TL id(1))

)
◦
(
A⊗ id(3)

)
◦
(
A⊗ id(3)

)
◦
(
A⊗ (CupAndCap⊗TL id(1))

))
⊕
((
B ⊗ id(3)

)
◦
(
B ⊗ (id(1)⊗TL CupAndCap)

)
◦
(
B ⊗ (id(1)⊗TL CupAndCap)

)
◦
(
B ⊗ id(3)

))
=
(

(A ◦ A ◦ A ◦ A)⊗
(
(CupAndCap⊗TL id(1)) ◦ id(3) ◦ id(3) ◦ (CupAndCap⊗TL id(1))

))
⊕
(

(B ◦B ◦B ◦B)⊗
(
id(3) ◦ ((id(1)⊗TL CupAndCap) ◦ (id(1)⊗TL CupAndCap) ◦ id(3)

))
=
(

(A ◦ A ◦ A ◦ A)⊗
(
(CupAndCap ◦ CupAndCap)⊗TL id(1))

))
⊕
(

(B ◦B ◦B ◦B)⊗
(
(id(1)⊗TL (CupAndCap ◦ CupAndCap)

))

of TL(S).

(5) We deduce from (1) – (4) that the arrow

3 3
Smoothing(Twohopf)

of TL is equal to

3 3.

(
(A ◦ A ◦ A ◦ A)⊗

(
(CupAndCap ◦ CupAndCap)⊗TL id(1))

))
⊕
(

(B ◦B ◦B ◦B)⊗
(
(id(1)⊗TL (CupAndCap ◦ CupAndCap)

))



(6) The Markov trace of Smooting(Twohopf) is, denoting t(A), t(B), ⊗Tpre and ⊕Tpre

simply by A, B, ⊗ and ⊕ respectively,

TrS ◦ Smooting(Twohopf)

=TrS
((

(A ◦ A ◦ A ◦ A)⊗
(
(CupAndCap ◦ CupAndCap)⊗TL id(1))

))
⊕
(

(B ◦B ◦B ◦B)⊗
(
(id(1)⊗TL (CupAndCap ◦ CupAndCap)

)))
=
(
(A ◦ A ◦ A ◦ A)⊗ (γ ◦ γ)

)
⊕
(
(B ◦B ◦B ◦B)⊗ ((γ ◦ γ)

)
=
(
(A⊗ A⊗ A⊗ A)⊗ (γ ⊗ γ)

)
⊕
(
(B ⊗B ⊗B ⊗B)⊗ ((γ ⊗ γ)

)
Or, simply

TrS ◦ Smooting(Twohopf) = A4γ2 ⊕B4γ2.

Notation 3.4.1.14. We denote the arrow

4 4

(
σ ⊗Braids id(2)

)
◦
(
σ ⊗Braids id(2)

)
◦
(
id(2)⊗Braids σ

)
◦
(
id(2)⊗Braids σ

)
of Braids

by Hopf t Hopf.

Example 3.4.1.15. Let S = (R, A,B) be a datum for smoothing of braids. Let
T = (Tpre, γ, t) be a Markov trace datum with respect to R. We make the following
observations.



(1) By functoriality, the arrow

4 4
Smoothing(Hopf t Hopf)

of TL(S) is equal to

4 4.

Smoothing
(
σ ⊗Braids id(2)

)
◦ Smoothing

(
σ ⊗Braids id(2)

)
◦Smoothing

(
id(2)⊗Braids σ

)
◦ Smoothing

(
id(2)⊗Braids σ

)

(2) By definition of Smoothing, the arrow

4 4
Smoothing

(
σ ⊗Braids id(2)

)

is equal to

4 4.

(
A⊗

(
CupAndCap⊗TL id(2)

))
⊕
(
B ⊗ id(4)

)

(3) By definition of Smoothing, the arrow

4 4
Smoothing

(
id(2)⊗Braids σ

)

is equal to

4 4.

(
A⊗

(
id(2)⊗TL CupAndCap

))
⊕
(
B ⊗ id(4)

)

(4) We have that



((
A⊗

(
CupAndCap⊗TL id(2)

))
⊕
(
B ⊗ id(4)

))
◦
((
A⊗

(
CupAndCap⊗TL id(2)

))
⊕
(
B ⊗ id(4)

))
◦
((
A⊗

(
id(2)⊗TL CupAndCap

))
⊕
(
B ⊗ id(4)

))
◦
((
A⊗

(
id(2)⊗TL CupAndCap

))
⊕
(
B ⊗ id(4)

))
=
((
A⊗

(
CupAndCap⊗TL id(2)

))
◦
(
A⊗

(
CupAndCap⊗TL id(2)

))
◦
(
A⊗

(
id(2)⊗TL CupAndCap

))
◦
(
A⊗

(
id(2)⊗TL CupAndCap

)))
⊕
((
B ⊗ id(4)

)
◦
(
B ⊗ id(4)

)
◦
(
B ⊗ id(4)

)
◦
(
B ⊗ id(4)

))
=

(
(A ◦ A ◦ A ◦ A)⊗

((
CupAndCap⊗TL id(2)

)
◦
(
CupAndCap⊗TL id(2)

)
◦
(
id(2)⊗TL CupAndCap

)
◦
(
id(2)⊗TL CupAndCap

)))
⊕
(

(B ◦B ◦B ◦B)⊗
(
id(4) ◦ id(4) ◦ id(4) ◦ id(4)

))
=

(
(A ◦ A ◦ A ◦ A)⊗

((
(CupAndCap ◦ CupAndCap)⊗TL id(2)

)
◦
(
id(2)⊗TL (CupAndCap ◦ CupAndCap

)))
⊕
(
(B ◦B ◦B ◦B)⊗ id(4)

)
of TL(S).

(5) We deduce from (1) – (4) that the arrow

4 4
Smoothing(Hopf t Hopf)

of TL is equal to

4 4.

(
(A ◦ A ◦ A ◦ A)⊗

((
(CupAndCap ◦ CupAndCap)⊗TL id(2)

)
◦
(
id(2)⊗TL (CupAndCap ◦ CupAndCap

)))
⊕
(
(B ◦B ◦B ◦B)⊗ id(4)

)

(6) The Markov trace of Smooting(Hopf t Hopf) is, denoting t(A), t(B), ⊗Tpre and



⊕Tpre simply by A, B, ⊗ and ⊕ respectively,

TrS ◦ Smooting(Hopf t Hopf)

=TrS

((
(A ◦ A ◦ A ◦ A)⊗

((
(CupAndCap ◦ CupAndCap)⊗TL id(2)

)
◦
(
id(2)⊗TL (CupAndCap ◦ CupAndCap

)))
⊕
(
(B ◦B ◦B ◦B)⊗ id(4)

))
=
(
(A ◦ A ◦ A ◦ A)⊗ (γ ◦ γ ◦ γ ◦ γ)

)
⊕
(
(B ◦B ◦B ◦B)

)
=
(
(A⊗ A⊗ A⊗ A)⊗ (γ ⊗ γ ⊗ γ ⊗ γ)

)
⊕
(
(B ⊗B ⊗B ⊗B)

)
Or, simply

TrS ◦ Smooting(Hopf t Hopf) = A4γ4 ⊕B4.





CHAPTER 4

A KAUFFMAN BRACKET INVARIANT
FOR 2-BRAIDS IN A 2-CATEGORICAL

FRAMEWORK



4.1. 2-categories of 2-braids

We define a cubical 2-category 2-Braids in two steps. On objects and 1-arrows, 2-Braids
is identical to Braids. We think of the 2-arrows of 2-Braids as 2-braids, which for us
are planes, possibly broken, joining four braids which we depict as drawn on two of
the pairs of opposite faces of a cube.

The first step is to define a cubical 2-category 2-Braidsdouble as the free strict monoidal
cubical 2-category on a monoidal datum M2-Braidsdouble . The 2-arrows of 2-Braidsdouble

correspond to those 2-braids without triple plane crossings, namely with only double
plane crossings.

To obtain 2-Braids from 2-Braidsdouble, we glue in 2-arrows which we think of as triple
plane crossings. Formally, we express this glueing by means of a colimit Mon(2-Cat).

The analogues in diagrammatic 2-knot theory of the Reidemeister moves are known
as Roseman moves. First investigated by Homma and Nagase in the papers [6] and [7],
the fact that these moves detect isotopy of 2-knots was discussed by Roseman in [15].

We formulate those Roseman moves which are relevant for defining isotopy of 2-
braids, namely the bubble, saddle, triple, and tetrahedral moves, in terms of 2-arrows
of 2-Braids. We define a strict monoidal cubical 2-category 2-Braids/R-moves by taking
a colimit in Mon(2-Cat) which identifies the two sides of each of these moves.

On objects and 1-arrows, 2-Braids/R-moves is identical to Braids/R-moves. We think
of the arrows of 2-Braids/R-moves as 2-braids up to isotopy. We view our work in this
section as carrying out an algebraisation of the theory of 2-braids in a topological sense.
This algebraisation involves identifying 2-braids which can be considered to generate
all others, in the same sense as OverCrossing and UnderCrossing generate all braids.
This is a subtler matter than for braids. The generators involving two planes are not,
for instance, double crossings in the sense of 2-knot theory, but rather fragments (we
often think of them as quarters) of these. Partly as a consequence of this, there are
2-arrows of 2-Braids which are not invertible. In other words, 2-Braids is not a cubical
2-groupoid.

Though the pictures which we draw of our 2-braid generators are only, for us,
informal notation, we consider them as a vital an aspect of our work as the formal
development. Indeed, we feel that the algebraisation we have arrived at marries what
appears to be natural and fundamental from an algebraic point of view, and what
appears to be natural and fundamental from a topological point of view.

We are not aware that any algebraisation of the topological theory of 2-braids has
previously been suggested. Despite the importance to which we attach a natural
topological interpretation of our 2-braids, we do not regard our algebraisation as
standing or falling on whether any 2-braid in one’s preferred topological sense can be
captured in our framework, so long as the theory of 2-braids defined by 2-Braids/R-moves
is rich and interesting, as we feel it is.

In defining 2-Braids/R-moves, we have not investigated in depth which of the Roseman
moves become identities as a consequence of forcing some of the other Roseman moves
to become identities, in the manner we discussed in §3.1. We consider this to be an
interesting problem, which we plan to explore in future work.



In the light of Remark 3.1.2.45, it is natural to ask if 2-Braids can be viewed as the
free braided monoidal cubical 2-category on 12-Cat. We feel this to be plausible, but
have not yet looked into it.

4.1.1. The 2-category of 2-braids

Notation 4.1.1.1. Throughout this section, we view Braids≤2 and Braids as having
been constructed as a cubical 2-category, by carrying out exaactly the same construction
as in §3.1.1, but in 2-Cat rather than Cat.

Notation 4.1.1.2. Throughout this section, we shall view the objects and 1-arrows
of Braids≤2 as objects and 1-arrows of Braids via the functor

Braids≤2 Braids.
canBraids

Viewing the object 1 of Braids≤2 as an object of Braids in this way, we shall denote,
for any integer n ≥ 1, the object

1⊗Braids · · · ⊗Braids 1︸ ︷︷ ︸
n

of Braids by n.

Notation 4.1.1.3. Let us denote the 1-arrow

2 2
OverCrossing

of Braids≤2

by σ.

Notation 4.1.1.4. Let us denote the 1-arrow

2 2
UnderCrossing

of Braids≤2



by σ−1.

Notation 4.1.1.5. Let us denote by ∂(LowerOverRightOver) the functor

∂S Braids≤2

corresponding to the following square in Braids≤2.

2 2

2 2

id

σid

σ

Notation 4.1.1.6. Let us denote by ∂(UpperOverRightUnder) the functor

∂S Braids≤2

corresponding to the following square in Braids≤2.

2 2

2 2

σ

σ−1id

id

Notation 4.1.1.7. Let us denote by ∂(LowerUnderRightUnder) the functor

∂S Braids≤2

corresponding to the following square in Braids≤2.

2 2

2 2

id

σ−1id

σ−1

Notation 4.1.1.8. Let us denote by ∂(UpperUnderRightOver) the functor

∂S Braids≤2



corresponding to the following square in Braids≤2.

2 2

2 2

σ−1

σid

id

Notation 4.1.1.9. Let us denote by ∂(LowerOverLeftUnder) the functor

∂S Braids≤2

corresponding to the following square in Braids≤2.

2 2

2 2

id

idσ−1

σ

Notation 4.1.1.10. Let us denote by ∂(UpperOverLeftOver) the functor

∂S Braids≤2

corresponding to the following square in Braids≤2.

2 2

2 2

σ

idσ

id

Notation 4.1.1.11. Let us denote by ∂(LowerUnderLeftOver) the functor

∂S Braids≤2

corresponding to the following square in Braids≤2.

2 2

2 2

id

idσ

σ−1



Notation 4.1.1.12. Let us denote by ∂(UpperUnderLeftUnder) the functor

∂S Braids≤2

corresponding to the following square in Braids≤2.

2 2

2 2

σ−1

idσ−1

id

Notation 4.1.1.13. Let

∂S · · · ∂S

⊔
8 ∂S

i∂S,eight1 i∂S,eight8

be a diagram in 2-Cat which defines a coproduct of eight copies of ∂S.

Notation 4.1.1.14. Let

S · · · S

⊔
8 S

iS,eight1 iS,eight8

be a diagram in 2-Cat which defines a coproduct of eight copies of S.

Notation 4.1.1.15. Let ⊔
8 ∂S

⊔
8 S

⊔
8 ι

denote the canonical functor such that the following diagram in 2-Cat commutes for
every 1 ≤ j ≤ 8.

∂S
⊔

8 ∂S

S
⊔

8 S

i∂S,eightj

⊔
8 ιι

i∂S,eightj



Notation 4.1.1.16. Let ⊔
8 ∂S Braids≤2

⊔
8 generators

denote the canonical functor such that the following hold.

(1) The following diagram in 2-Cat commutes.

∂S
⊔

8 ∂S

Braids≤2

i∂S,eight1

⊔
8 generators∂(LowerOverRightOver)

(2) The following diagram in 2-Cat commutes.

∂S
⊔

8 ∂S

Braids≤2

i∂S,eight2

⊔
8 generators∂(UpperOverRightUnder)

(3) The following diagram in 2-Cat commutes.

∂S
⊔

8 ∂S

Braids≤2

i∂S,eight3

⊔
generators

∂(LowerUnderRightUnder)

(4) The following diagram in 2-Cat commutes.

∂S
⊔

8 ∂S

Braids≤2

i∂S,eight4

⊔
8 generators∂(UpperUnderRightOver)



(5) The following diagram in 2-Cat commutes.

∂S
⊔

8 ∂S

Braids≤2

i∂S,eight5

⊔
8 generators∂(LowerOverLeftUnder)

(6) The following diagram in 2-Cat commutes.

∂S
⊔

8 ∂S

Braids≤2

i∂S,eight6

⊔
8 generators∂(UpperOverLeftOver)

(7) The following diagram in 2-Cat commutes.

∂S
⊔

8 ∂S

Braids≤2

i∂S,eight7

⊔
8 generators∂(LowerUnderLeftOver)

(8) The following diagram in 2-Cat commutes.

∂S
⊔

8 ∂S

Braids≤2

i∂S,eight8

⊔
8 generators∂(UpperUnderLeftUnder)

Notation 4.1.1.17. Let ⊔
8 ∂S

⊔
8 S

Braids≤2 2-Braidsdouble
≤2

⊔
8 ι

r
2-Braidsdouble

≤2

0

⊔
8 generators

r
2-Braidsdouble

≤2

1



be a co-cartesian square in 2-Cat.

Notation 4.1.1.18. We denote the 2-arrow of 2-Braidsdouble
≤2 corresponding to the

functor

S 2-Braidsdouble
≤2

r
2-Braidsdouble

≤2

0 ◦ iS,eight1

by LowerOverRightOver, or σLORO for short, and depict it as follows.

Remark 4.1.1.19. The previous figure depicts two planes, one of which is broken
into two pieces. The plane which is unbroken is depicted in blue in the following figure.

The other plane is broken where it appears to cross the first plane. One piece of the
broken plane is depicted in green in the following figure.



The second piece of the broken plane is depicted in green in the following figure. This
piece actually lies behind the other plane as we look at it, and can only be seen because
we have depicted the other plane as if it were hollow.

All other pictures of 2-braids that we draw are to be understood in this way.

Notation 4.1.1.20. We denote the 2-arrow of 2-Braidsdouble
≤2 corresponding to the

functor

S 2-Braidsdouble
≤2

r
2-Braidsdouble

≤2

0 ◦ iS,eight2

by UpperOverRightUnder, or σUORU for short, and depict it as follows.



Notation 4.1.1.21. We denote the 2-arrow of 2-Braidsdouble
≤2 corresponding to the

functor

S 2-Braidsdouble
≤2

r
2-Braidsdouble

≤2

0 ◦ iS,eight3

by LowerUnderRightUnder, or σLURU for short, and depict it as follows.

Notation 4.1.1.22. We denote the 2-arrow of 2-Braidsdouble
≤2 corresponding to the

functor

S 2-Braidsdouble
≤2

r
2-Braidsdouble

≤2

0 ◦ iS,eight4

by UpperUnderRightOver, or σUURO for short, and depict it as follows.



Notation 4.1.1.23. We denote the 2-arrow of 2-Braidsdouble
≤2 corresponding to the

functor

S 2-Braidsdouble
≤2

r
2-Braidsdouble

≤2

0 ◦ iS,eight5

by LowerOverLeftUnder, or σLOLU for short, and depict it as follows.

Notation 4.1.1.24. We denote the 2-arrow of 2-Braidsdouble
≤2 corresponding to the

functor

S 2-Braidsdouble
≤2

r
2-Braidsdouble

≤2

0 ◦ iS,eight6

by UpperOverLeftOver, or σUOLO for short, and depict it as follows.

Notation 4.1.1.25. We denote the 2-arrow of 2-Braidsdouble
≤2 corresponding to the

functor

S 2-Braidsdouble
≤2

r
2-Braidsdouble

≤2

0 ◦ iS,eight7

by LowerUnderLeftOver, or σLULO for short, and depict it as follows.



Notation 4.1.1.26. We denote the 2-arrow of 2-Braidsdouble
≤2 corresponding to the

functor

S 2-Braidsdouble
≤2

r
2-Braidsdouble

≤2

0 ◦ iS,tw8

by UpperUnderLeftUnder, or σUULU for short, and depict it as follows.

Remark 4.1.1.27. The definition of 2-Braidsdouble
≤2 can be thought of as follows. We

begin with a category Braids≤2. We then proceed as follows.

(1) We add eight 2-arrows whose boundaries are configurations of arrows of Braids≤2,
of which either the top and left arrow, the top and right arrow, the bottom and
right arrow, or the bottom and left arrow are identities.

(2) We then add exactly those further 2-arrows that we need to have a cubical
2-category, namely compositions of arbitrary m× n grids made up of the eight
2-arrows of (1), where m ≥ 0 and n ≥ 0 are integers, in which the horizontal
sources and targets of the 2-arrows match in the m direction, and the vertical
sources and targets of the 2-arrows match in the n direction.

Notation 4.1.1.28. We depict vertical composition in both 2-Braidsdouble
≤2 and 2-Braidsdouble

as vertical glueing. Thus, for instance, there is a 2-arrow

σLORO ◦ver σUOLO,



which we depict as follows,

We depict horizontal composition in both 2-Braidsdouble
≤2 and 2-Braidsdouble as horizontal

glueing. Thus, for instance, there is a 2-arrow

σLORO ◦hor σUOLO,

which we depict as follows.

In each of these two figures, the two generating 2-arrows depicted should be imagined
by the reader to be glued. We do not do so, as we feel the figures are clearer as they
are. We shall depict 2-braids in this way throughout.

Notation 4.1.1.29. We shall view the objects and arrows of Braids≤2 as objects and
1-arrows of 2-Braidsdouble

≤2 , via the functor



Braids≤2 2-Braidsdouble
≤2 .

r
2-Braidsdouble

≤2

1

Notation 4.1.1.30. Let

2-Braidsdouble
≤2 2-Braidsdouble

≤2 × 2-Braidsdouble
≤2 2-Braidsdouble

≤2
p

2-Braidsdouble
≤2

1 p
2-Braidsdouble

≤2

2

be a diagram in 2-Cat which defines a binary product.

Notation 4.1.1.31. Let

12-Cat 2-Braidsdouble
≤2 × 2-Braidsdouble

≤2
(1, 1)

be the canonical functor such that the following diagram in 2-Cat commutes.

12-Cat

2-Braidsdouble
≤2 2-Braidsdouble

≤2 × 2-Braidsdouble
≤2 2-Braidsdouble

≤2

1
(1, 1)

1

p
2-Braidsdouble

≤2

1 p
2-Braidsdouble

≤2

2

Definition 4.1.1.32. The 2-category of 2-braids with double plane crossings is, ap-
pealing to Fact 2.2.1.4, the free strict monoidal cubical 2-category on the monoidal
datum M2-Braidsdouble =

(
12-Cat, 2-Braids

double
≤2 , (1, 1), 2

)
internal to 2-Cat.

Notation 4.1.1.33. We denote the 2-category of 2-braids with double plane crossings
by 2-Braidsdouble. We denote by can2-Braidsdouble the canonical functor

2-Braids≤2 2-Braidsdouble.

Remark 4.1.1.34. The construction of the category 2-Braidsdouble can be thought as
taking the free strict monoidal category upon 2-Braids≤2, subject to the requirement
that 1⊗ 1 = 2. The objects and 1-arrows can be thought of in the same way as those
of Braids. The 2-arrows of 2-Braidsdouble can be thought of as built from the 2-arrows
of 2-Braidsdouble

≤2 by concatenation in the direction orthogonal to those we have chosen
for depicting horizontal and vertical composition. Thus, for instance, we depict the
2-arrow

σLORO ⊗ id(1)

as follows.



Notation 4.1.1.35. Appealing to Fact 2.2.1.4, let us denote by F(∂S) the free strict
monoidal cubical 2-category on ∂S. Let us denote the canonical functor

∂S F(∂S)

by can∂S .

Notation 4.1.1.36. Appealing to Fact 2.2.1.4, let us denote by F(S) the free strict
monoidal cubical 2-category on S. Let us denote the canonical functor

S F(S)

by canS .

Notation 4.1.1.37. Let us denote by

F(∂S) F(S)
ι

the functor of strict monoidal 2-categories to which the functor

∂S F(S)
canF(S) ◦ ι

gives rise, by means of the universal property of F(∂S).

Notation 4.1.1.38. Throughout the remainder of this section, let us denote by σ1
the 1-arrow

3 3
OverCrossing ⊗ id

of 2-Braidsdouble.



Notation 4.1.1.39. Throughout the remainder of this section, let us denote by σ−11

the 1-arrow

3 3
UnderCrossing ⊗ id

of 2-Braidsdouble.

Notation 4.1.1.40. Throughout the remainder of this section, let us denote by σ2
the 1-arrow

3 3
id⊗ OverCrossing

of 2-Braidsdouble.

Notation 4.1.1.41. Throughout the remainder of this section, let us denote by σ−12

the 1-arrow

3 3
id⊗ UnderCrossing

of 2-Braidsdouble.

Notation 4.1.1.42. Let us denote by ∂(TwoUnOnce) the canonical functor of strict
monoidal cubical 2-categories



F(∂S) 2-Braidsdouble

to which the functor

∂S 2-Braidsdouble

corresponding to the following square of 1-arrows in 2-Braidsdouble gives rise, by means
of the universal property of F(∂S).

3 3

3 3

σ2

σ2 ◦ σ1σ2 ◦ σ1

σ1

Notation 4.1.1.43. Let us denote by ∂(OneOnceTwice) the canonical functor of strict
monoidal cubical 2-categories

F(∂S) 2-Braidsdouble

to which the functor

∂S 2-Braidsdouble

corresponding to the following square of 1-arrows in 2-Braidsdouble gives rise, by means
of the universal property of F(∂S).

3 3

3 3

σ1

σ−11 ◦ σ−12σ−11 ◦ σ−12

σ2

Notation 4.1.1.44. Let us denote by ∂(TwoUnTwice) the canonical functor of strict
monoidal cubical 2-categories

F(∂S) 2-Braidsdouble

to which the functor

∂S 2-Braidsdouble

corresponding to the following square of 1-arrows in 2-Braidsdouble gives rise, by means
of the universal property of F(∂S).



3 3

3 3

σ−12

σ2 ◦ σ1σ2 ◦ σ1

σ−11

Notation 4.1.1.45. Let us denote by ∂(OneTwiceOnce) the canonical functor of strict
monoidal cubical 2-categories

F(∂S) 2-Braidsdouble

to which the functor

∂S 2-Braidsdouble

corresponding to the following square of 1-arrows in 2-Braidsdouble gives rise, by means
of the universal property of F(∂S).

3 3

3 3

σ−11

σ−11 ◦ σ−12σ−11 ◦ σ−12

σ−12

Notation 4.1.1.46. Let us denote by ∂(TwoOnceUn) the canonical functor of strict
monoidal cubical 2-categories

F(∂S) 2-Braidsdouble

to which the functor

∂S 2-Braidsdouble

corresponding to the following square of 1-arrows in 2-Braidsdouble gives rise, by means
of the universal property of F(∂S).

3 3

3 3

σ2

σ−12 ◦ σ1σ2 ◦ σ−11

σ1



Notation 4.1.1.47. Let us denote by ∂(OneUnTwice) the canonical functor of strict
monoidal cubical 2-categories

F(∂S) 2-Braidsdouble

to which the functor

∂S 2-Braidsdouble

corresponding to the following square of 1-arrows in 2-Braidsdouble gives rise, by means
of the universal property of F(∂S).

3 3

3 3

σ1

σ−11 ◦ σ2σ1 ◦ σ−12

σ2

Notation 4.1.1.48. Let us denote by ∂(TwoTwiceUn) the canonical functor of strict
monoidal cubical 2-categories

F(∂S) 2-Braidsdouble

to which the functor

∂S 2-Braidsdouble

corresponding to the following square of 1-arrows in 2-Braidsdouble gives rise, by means
of the universal property of F(∂S).

3 3

3 3

σ2

σ−12 ◦ σ−11σ−12 ◦ σ−11

σ1

Notation 4.1.1.49. Let us denote by ∂(OneUnOnce) the canonical functor of strict
monoidal cubical 2-categories

F(∂S) 2-Braidsdouble

to which the functor

∂S 2-Braidsdouble



corresponding to the following square of 1-arrows in 2-Braidsdouble gives rise, by means
of the universal property of F(∂S).

3 3

3 3

σ1

σ1 ◦ σ2σ1 ◦ σ2

σ2

Notation 4.1.1.50. Let us denote by ∂(TwoOnceTwice) the canonical functor of strict
monoidal cubical 2-categories

F(∂S) 2-Braidsdouble

to which the functor

∂S 2-Braidsdouble

corresponding to the following square of 1-arrows in 2-Braidsdouble gives rise, by means
of the universal property of F(∂S).

3 3

3 3

σ−12

σ2 ◦ σ−11σ−12 ◦ σ1

σ−11

Notation 4.1.1.51. Let us denote by ∂(OneTwiceUn) the canonical functor of strict
monoidal cubical 2-categories

F(∂S) 2-Braidsdouble

to which the functor

∂S 2-Braidsdouble

corresponding to the following square of 1-arrows in 2-Braidsdouble gives rise, by means
of the universal property of F(∂S).



3 3

3 3

σ−11

σ1 ◦ σ−12σ−11 ◦ σ2

σ−12

Notation 4.1.1.52. Let us denote by ∂(TwoTwiceOnce) the canonical functor of strict
monoidal cubical 2-categories

F(∂S) 2-Braidsdouble

to which the functor

∂S 2-Braidsdouble

corresponding to the following square of 1-arrows in 2-Braidsdouble gives rise, by means
of the universal property of F(∂S).

3 3

3 3

σ−12

σ−12 ◦ σ−11σ−12 ◦ σ−11

σ−11

Notation 4.1.1.53. Let us denote by ∂(OneOnceUn) the canonical functor of strict
monoidal cubical 2-categories

F(∂S) 2-Braidsdouble

to which the functor

∂S 2-Braidsdouble

corresponding to the following square of 1-arrows in 2-Braidsdouble gives rise, by means
of the universal property of F(∂S).

3 3

3 3

σ−11

σ1 ◦ σ2σ1 ◦ σ2

σ−12



Notation 4.1.1.54. Let

F(∂S) · · · F(∂S)

⊔
12 F(∂S)

i
F(∂S),twelve
1 i

F(∂S),twelve
12

be a diagram in Mon(2-Cat) which defines a coproduct of twelve copies of F(∂S).

Notation 4.1.1.55. Let

F(S) · · · F(S)

⊔
8 F(S)

i
F(S),twelve
1 i

F(S),twelve
12

be a diagram in Mon(2-Cat) which defines a coproduct of twelve copies of F(S).

Notation 4.1.1.56. Let

⊔
12 F(∂S)

⊔
12 F(S)

⊔
12 ι

denote the canonical functor of strict monoidal cubical 2-categories such that the
following diagram in 2-Cat commutes for every 1 ≤ j ≤ 12.

F(∂S)
⊔

12 F(∂S)

F(S)
⊔

12 F(S)

i
F(∂S),twelve
j

⊔
8 ιι

i
F(∂S),twelve
j

Notation 4.1.1.57. Let

⊔
12 F(∂S) 2-Braidsdouble

⊔
generators

denote the canonical functor of strict monoidal cubical 2-categories such that the
following hold.

(1) The following diagram in Mon(2-Cat) commutes.



F(∂S)
⊔

12 F(∂S)

2-Braidsdouble

i
F(∂S),twelve
1

⊔
generators

∂(TwoUnOnce)

(2) The following diagram in Mon(2-Cat) commutes.

F(∂S)
⊔

12 F(∂S)

2-Braidsdouble

i
F(∂S),twelve
2

⊔
generators

∂(OneOnceTwice)

(3) The following diagram in Mon(2-Cat) commutes.

F(∂S)
⊔

12 F(∂S)

2-Braidsdouble

i
F(∂S),twelve
3

⊔
generators

∂(TwoUnTwice)

(4) The following diagram in Mon(2-Cat) commutes.

F(∂S)
⊔

12 F(∂S)

2-Braidsdouble

i
F(∂S),twelve
4

⊔
generators

∂(OneTwiceOnce)

(5) The following diagram in Mon(2-Cat) commutes.

F(∂S)
⊔

12 F(∂S)

2-Braidsdouble

i
F(∂S),twelve
5

⊔
generators

∂(TwoOnceUn)



(6) The following diagram in Mon(2-Cat) commutes.

F(∂S)
⊔

12 F(∂S)

2-Braidsdouble

i
F(∂S),twelve
6

⊔
generators

∂(OneUnTwice)

(7) The following diagram in Mon(2-Cat) commutes.

F(∂S)
⊔

12 F(∂S)

2-Braidsdouble

i
F(∂S),twelve
7

⊔
generators

∂(TwoTwiceUn)

(8) The following diagram in Mon(2-Cat) commutes.

F(∂S)
⊔

12 F(∂S)

2-Braidsdouble

i
F(∂S),twelve
8

⊔
generators

∂(OneUnOnce)

(9) The following diagram in Mon(2-Cat) commutes.

F(∂S)
⊔

12 F(∂S)

2-Braidsdouble

i
F(∂S),twelve
9

⊔
generators

∂(TwoOnceTwice)

(10) The following diagram in Mon(2-Cat) commutes.



F(∂S)
⊔

12 F(∂S)

2-Braidsdouble

i
F(∂S),twelve
10

⊔
generators

∂(OneTwiceUn)

(11) The following diagram in Mon(2-Cat) commutes.

F(∂S)
⊔

12 F(∂S)

2-Braidsdouble

i
F(∂S),twelve
11

⊔
generators

∂(TwoTwiceOnce)

(12) The following diagram in Mon(2-Cat) commutes.

F(∂S)
⊔

12 F(∂S)

2-Braidsdouble

i
F(∂S),twelve
12

⊔
generators

∂(OneOnceUn)

Notation 4.1.1.58. Let ⊔
12 F(∂S)

⊔
12 F(S)

2-Braidsdouble 2-Braids

⊔
12 ι

r2-Braids
0

⊔
12 generators

r2-Braids
1

be a co-cartesian square in Mon(2-Cat).

Terminology 4.1.1.59. We refer to 2-Braids as the 2-category of 2-braids.

Notation 4.1.1.60. We denote the functor of strict monoidal 2-categories

2-Braidsdouble 2-Braids
r2-Braids
1

by can2-Braids.



Notation 4.1.1.61. We denote the 2-arrow of 2-Braids corresponding to the functor

S 2-Braidsdouble
r2-Braids
0 ◦ iF(S),twelve1 ◦ canS

by TwoUnOnce, or σ2UO for short, and depict it as follows.

Notation 4.1.1.62. We denote the 2-arrow of 2-Braids corresponding to the functor

S 2-Braidsdouble
r2-Braids
0 ◦ iF(S),twelve2 ◦ canS

by OneOnceTwice, or σ1OT for short, and depict it as follows.



Notation 4.1.1.63. We denote the 2-arrow of 2-Braids corresponding to the functor

S 2-Braidsdouble
r2-Braids
0 ◦ iF(S),twelve3 ◦ canS

by TwoUnTwice, or σ2UT for short, and depict it as follows.

Notation 4.1.1.64. We denote the 2-arrow of 2-Braids corresponding to the functor



S 2-Braidsdouble
r2-Braids
0 ◦ iF(S),twelve4 ◦ canS

by OneTwiceOnce, or σ1TO for short, and depict it as follows.

Notation 4.1.1.65. We denote the 2-arrow of 2-Braids corresponding to the functor

S 2-Braidsdouble
r2-Braids
0 ◦ iF(S),twelve5 ◦ canS

by TwoOnceUn, or σ2OU for short, and depict it as follows.



Notation 4.1.1.66. We denote the 2-arrow of 2-Braids corresponding to the functor

S 2-Braidsdouble
r2-Braids
0 ◦ iF(S),twelve6 ◦ canS

by OneUnTwice, or σ1UT for short, and depict it as follows.

Notation 4.1.1.67. We denote the 2-arrow of 2-Braids corresponding to the functor



S 2-Braidsdouble
r2-Braids
0 ◦ iF(S),twelve7 ◦ canS

by TwoTwiceUn, or σ2TU for short, and depict it as follows.

Notation 4.1.1.68. We denote the 2-arrow of 2-Braids corresponding to the functor

S 2-Braidsdouble
r2-Braids
0 ◦ iF(S),twelve8 ◦ canS

by OneUnOnce, or σ1UO for short, and depict it as follows.



Notation 4.1.1.69. We denote the 2-arrow of 2-Braids corresponding to the functor

S 2-Braidsdouble
r2-Braids
0 ◦ iF(S),twelve9 ◦ canS

by TwoOnceTwice, or σ2OT for short, and depict it as follows.

Notation 4.1.1.70. We denote the 2-arrow of 2-Braids corresponding to the functor



S 2-Braidsdouble
r2-Braids
0 ◦ iF(S),twelve10 ◦ canS

by OneTwiceUn, or σ1TU for short, and depict it as follows.

Notation 4.1.1.71. We denote the 2-arrow of 2-Braids corresponding to the functor

S 2-Braidsdouble
r2-Braids
0 ◦ iF(S),twelve11 ◦ canS

by TwoTwiceOnce, or σ2TO for short, and depict it as follows.



Notation 4.1.1.72. We denote the 2-arrow of 2-Braids corresponding to the functor

S 2-Braidsdouble
r2-Braids
0 ◦ iF(S),twelve12 ◦ canS

by OneOnceUn, or σ1OU for short, and depict it as follows.

Remark 4.1.1.73. The names we have given the 2-arrows of 2-Braids of Notation
4.1.1.61 – Notation 4.1.1.72 are determined as follows.



(1) The first of the three words refers to whether the north edge has a crossing
between the first and second strand (One) or between the second and third strand
(Two).

(2) The second of the three words refers to whether the plane whose north edge has
source 1 is unbroken (Un), broken by one of the other planes (Once), or broken
by both of the other planes (Twice).

(3) The third of the three words refers to whether the plane whose north edge has
source 2 is unbroken (Un), broken by one of the other planes (Once), or broken
by both of the other planes (Twice).

Remark 4.1.1.74. The construction of the category 2-Braids can be thought as freely
adding twelve 2-arrows to 2-Braidsdouble. The objects and 1-arrows of 2-Braids can be
thought of in the same way as of those of Braids.

The 2-arrows of 2-Braids can be thought of as built from the twenty 2-arrows defined
in Notation 4.1.1.18 – 4.1.1.26 and Notation 4.1.1.61 – Notation 4.1.1.72 by vertical
glueing, horizontal glueing, and concatenation in the direction orthogonal to those we
have chosen to depict vertical and horizontal glueing.

Remark 4.1.1.75. The underlying category of 2-Braids is exactly Braids. We shall,
not, however, need this in our formal work, and omit a proof.

4.1.2. 2-categories of 2-braids up to isotopy

Notation 4.1.2.1. Let

F(S) 2-Braids
Bubbleone(one half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



2 2 2

σLORO σLULO

2 2 2

σUORU σUULU

2 2 2

id(2) id(2)

id(2)

id(2)

id(2)

id(2)

id(2) id(2)

σ

σ−1

σ σ−1

Notation 4.1.2.2. Let

F(S) 2-Braids
Bubbleone(other half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow

2 2

id
(
id(2)

)
2 2

id(2)

id(2)id(2)

id(2)

of 2-Braids gives rise.

Remark 4.1.2.3. The 2-arrows Bubbleone(one half) and Bubbleone(other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the bubble move,
which allows us to replace



by the following, and vice versa.

Notation 4.1.2.4. Let

F(S) 2-Braids
Bubbletwo(one half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids



corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.

2 2 2

σLURU σLOLU

2 2 2

σUURO σUOLO

2 2 2

id(2) id(2)

id(2)

id(2)

id(2)

id(2)

id(2) id(2)

σ−1

σ

σ−1 σ

Notation 4.1.2.5. Let

F(S) 2-Braids
Bubbletwo(other half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow

2 2

id
(
id(2)

)
2 2

id(2)

id(2)id(2)

id(2)

of 2-Braids gives rise.

Remark 4.1.2.6. The 2-arrows Bubbletwo(one half) and Bubbletwo(other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the bubble move,
which allows us to replace



by the following, and vice versa.

Notation 4.1.2.7. Let

F(S) 2-Braids
Saddleone(other half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids



corresponding to the 2-arrow

2 2

idver(σ
−1 ◦ σ)

2 2

σ−1 ◦ σ

id(2)id(2)

σ−1 ◦ σ

of 2-Braids gives rise.

Remark 4.1.2.8. The 2-arrows Saddleone(one half) and Saddleone(other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the saddle move,
which allows us to replace

by the following, and vice versa.



Notation 4.1.2.9. Let

F(S) 2-Braids
Saddletwo(one half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.

2 2 2

σUURO σUOLO

2 2 2

σLURU σLOLU

2 2 2

σ−1 σ

id(2)

id(2)

id(2)

id(2)

σ−1 σ

σ

σ−1

id(2) id(2)

Notation 4.1.2.10. Let



F(S) 2-Braids
Saddletwo(other half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow

2 2

idver(σ ◦ σ−1)

2 2

σ ◦ σ−1

id(2)id(2)

σ ◦ σ−1

of 2-Braids gives rise.

Remark 4.1.2.11. The 2-arrows Saddletwo(one half) and Saddletwo(other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the saddle move,
which allows us to replace

by the following, and vice versa.



Notation 4.1.2.12. Let

F(S) 2-Braids
Saddlethree(one half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.

2 2 2

σLULO σLORO

2 2 2

σUULU σUORU

2 2 2

id(2) id(2)

σ

σ−1

σ

σ−1

id(2) id(2)

id(2)

id(2)

σ−1 σ



Notation 4.1.2.13. Let

F(S) 2-Braids
Saddlethree(other half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow

2 2

idhor(σ
−1 ◦ σ)

2 2

id(2)

σ−1 ◦ σσ−1 ◦ σ

id(2)

of 2-Braids gives rise.

Remark 4.1.2.14. The 2-arrows Saddlethree(one half) and Saddlethree(other half) of
2-Braids express algebraically the two halves of the Roseman move known as the saddle
move, which allows us to replace

by the following, and vice versa.



Notation 4.1.2.15. Let

F(S) 2-Braids
Saddlefour(one half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.

2 2 2

σLOLU σLURU

2 2 2

σUOLO σUURO

2 2 2

id(2) id(2)

σ−1

σ

σ−1

σ

id(2) id(2)

id(2)

id(2)

σ σ−1



Notation 4.1.2.16. Let

F(S) 2-Braids
Saddlefour(other half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow

2 2

idhor(σ ◦ σ−1)

2 2

id(2)

σ ◦ σ−1σ ◦ σ−1

id(2)

of 2-Braids gives rise.

Remark 4.1.2.17. The 2-arrows Saddlefour(one half) and Saddlefour(other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the saddle move,
which allows us to replace

by the following, and vice versa.



Notation 4.1.2.18. Let

F(S) 2-Braids
Tripleone(one half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3 3 3

σUORU ⊗ 1 σUOLO ⊗ 1

3 3 σ2OU 3 3

1⊗ σLORO 1⊗ σLOLU

3 3 3 3

1⊗ σUORU 1⊗ σUOLO

3 3 σ1UT 3 3

σLORO ⊗ 1 σLOLU ⊗ 1

3 3 3 3

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

σ1 σ2 σ1

σ2 σ1 σ2

σ1 σ2 σ1

σ−11

σ2

σ−12

σ1

σ1

σ−12

σ2

σ−11

Notation 4.1.2.19. Let

F(S) 2-Braids
Tripleone(other half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3

idver(σ1 ◦ σ2 ◦ σ1)

3 3

σ1 ◦ σ2 ◦ σ1

id(3)id(3)

σ1 ◦ σ2 ◦ σ1

Remark 4.1.2.20. The 2-arrows Tripleone(one half) and Tripleone(other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the triple move,
which allows us to replace

by the following, and vice versa.



Notation 4.1.2.21. Let

F(S) 2-Braids
Tripletwo(one half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3 3 3

σUORU ⊗ 1 σUULU ⊗ 1

3 3 σ2TU 3 3

1⊗ σLURU 1⊗ σLOLU

3 3 3 3

1⊗ σUURO 1⊗ σUOLO

3 3 σ1UO 3 3

σLORO ⊗ 1 σLULO ⊗ 1

3 3 3 3

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

σ1 σ2 σ−11

σ−12 σ1 σ2

σ1 σ2 σ−11

σ−11

σ−12

σ2

σ1

σ−11

σ−12

σ2

σ1

Notation 4.1.2.22. Let

F(S) 2-Braids
Tripletwo(other half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3

idver(σ
−1
1 ◦ σ2 ◦ σ1)

3 3

σ−11 ◦ σ2 ◦ σ1

id(3)id(3)

σ−11 ◦ σ2 ◦ σ1

Remark 4.1.2.23. The 2-arrows Tripletwo(one half) and Tripletwo(other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the triple move,
which allows us to replace

by the following, and vice versa.



Notation 4.1.2.24. Let

F(S) 2-Braids
Triplethree(one half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3 3 3

σUURO ⊗ 1 σUOLO ⊗ 1

3 3 σ2UO 3 3

1⊗ σLORO 1⊗ σLULO

3 3 3 3

1⊗ σUORU 1⊗ σUULU

3 3 σ1OT 3 3

σLURU ⊗ 1 σLOLU ⊗ 1

3 3 3 3

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

σ−11 σ2 σ1

σ2 σ1 σ−12

σ−11
σ2 σ1

σ1

σ2

σ−12

σ−11

σ1

σ2

σ−12

σ−11

Notation 4.1.2.25. Let

F(S) 2-Braids
Triplethree(other half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3

idver(σ1 ◦ σ2 ◦ σ−11 )

3 3

σ1 ◦ σ2 ◦ σ−11

id(3)id(3)

σ1 ◦ σ2 ◦ σ−11

Remark 4.1.2.26. The 2-arrows Triplethree(one half) and Triplethree(other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the triple move,
which allows us to replace

by the following, and vice versa.



Notation 4.1.2.27. Let

F(S) 2-Braids
Triplefour(one half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3 3 3

σUURO ⊗ 1 σUOLO ⊗ 1

3 3 σ2UT 3 3

1⊗ σLORO 1⊗ σLULO

3 3 3 3

1⊗ σUORU 1⊗ σUULU

3 3 σ1TO 3 3

σLURU ⊗ 1 σLOLU ⊗ 1

3 3 3 3

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

σ−11 σ−12 σ1

σ2 σ−11 σ−12

σ−11 σ−12
σ1

σ1

σ2

σ−12

σ−11

σ1

σ2

σ−12

σ−11

Notation 4.1.2.28. Let

F(S) 2-Braids
Triplefour(other half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3

idver(σ1 ◦ σ−12 ◦ σ−11 )

3 3

σ1 ◦ σ−12 ◦ σ−11

id(3)id(3)

σ1 ◦ σ−12 ◦ σ−11

Remark 4.1.2.29. The 2-arrows Triplefour(one half) and Triplefour(other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the triple move,
which allows us to replace

by the following, and vice versa.



Notation 4.1.2.30. Let

F(S) 2-Braids
Triplefive(one half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3 3 3

σUORU ⊗ 1 σUULU ⊗ 1

3 3 σ2TO 3 3

1⊗ σLURU 1⊗ σLOLU

3 3 3 3

1⊗ σUURO 1⊗ σUOLO

3 3 σ1OU 3 3

σLORO ⊗ 1 σLULO ⊗ 1

3 3 3 3

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

σ1 σ−12 σ−11

σ−12 σ−11 σ2

σ1 σ−12 σ−11

σ−11

σ−12

σ2

σ1

σ−11

σ−12

σ2

σ1

Notation 4.1.2.31. Let

F(S) 2-Braids
Triplefive(other half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3

idver(σ
−1
1 ◦ σ−12 ◦ σ1)

3 3

σ−11 ◦ σ−12 ◦ σ1

id(3)id(3)

σ−11 ◦ σ−12 ◦ σ1

Remark 4.1.2.32. The 2-arrows Triplefive(one half) and Triplefive(other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the triple move,
which allows us to replace

by the following, and vice versa.



Notation 4.1.2.33. Let

F(S) 2-Braids
Triplesix(one half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3 3 3

σUURO ⊗ 1 σUULU ⊗ 1

3 3 σ2OT 3 3

1⊗ σLURU 1⊗ σLULO

3 3 3 3

1⊗ σUURO 1⊗ σUULU

3 3 σ1TU 3 3

σLURU ⊗ 1 q ⊗ 1

3 3 3 3

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

σ−11 σ−12 σ−11

σ−12 σ−11 σ−12

σ−11 σ−12 σ−11

σ1

σ−12

σ2

σ−11

σ−11

σ2

σ−12

σ1

Notation 4.1.2.34. Let

F(S) 2-Braids
Triplesix(other half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3

idver(σ
−1
1 ◦ σ−12 ◦ σ−11 )

3 3

σ−11 ◦ σ−12 ◦ σ−11

id(3)id(3)

σ−11 ◦ σ−12 ◦ σ−11

Remark 4.1.2.35. The 2-arrows Triplesix(one half) and Triplesix(other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the tripe move,
which allows us to replace

by the following, and vice versa.



Notation 4.1.2.36. Let

F(S) 2-Braids
Tripleseven(one half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3 3 3

1⊗ σUORU 1⊗ σUOLO

3 3 σ1UT 3 3

σLORO ⊗ 1 σLOLU ⊗ 1

3 3 3 3

σUORU ⊗ 1 σUOLO ⊗ 1

3 3 σ2OU 3 3

1⊗ σLORO 1⊗ σLOLU

3 3 3 3

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

σ2 σ1 σ2

σ1 σ2 σ1

σ2 σ1 σ2

σ−12

σ1

σ−11

σ2

σ2

σ−11

σ1

σ−12

Notation 4.1.2.37. Let

F(S) 2-Braids
Tripleseven(other half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3

idver(σ2 ◦ σ1 ◦ σ2)

3 3

σ2 ◦ σ1 ◦ σ2

id(3)id(3)

σ2 ◦ σ1 ◦ σ2

Remark 4.1.2.38. The 2-arrows Tripleseven(one half) and Tripleseven(other half) of
2-Braids express algebraically the two halves of the Roseman move known as the
triple move, which allows us to replace

by the following, and vice versa.



Notation 4.1.2.39. Let

F(S) 2-Braids
Tripleeight(one half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3 3 3

1⊗ σUURO 1⊗ σUOLO

3 3 σ1UO 3 3

σLORO ⊗ 1 σLULO ⊗ 1

3 3 3 3

σUORU ⊗ 1 σUULU ⊗ 1

3 3 σ2TU 3 3

1⊗ σLURU 1⊗ σLOLU

3 3 3 3

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

σ−12 σ1 σ2

σ1 σ2 σ−11

σ−12
σ1 σ2

σ2

σ1

σ−11

σ−12

σ2

σ1

σ−11

σ−12

Notation 4.1.2.40. Let

F(S) 2-Braids
Tripleeight(other half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3

idver(σ2 ◦ σ1 ◦ σ−12 )

3 3

σ2 ◦ σ1 ◦ σ−12

id(3)id(3)

σ2 ◦ σ1 ◦ σ−12

Remark 4.1.2.41. The 2-arrows Tripleeight(one half) and Tripleeight(other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the triple move,
which allows us to replace

by the following, and vice versa.



Notation 4.1.2.42. Let

F(S) 2-Braids
Triplenine(one half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3 3 3

1⊗ σUORU 1⊗ σUULU

3 3 σ1OT 3 3

σLURU ⊗ 1 σLOLU ⊗ 1

3 3 3 3

σUURO ⊗ 1 σUOLO ⊗ 1

3 3 σ2UO 3 3

1⊗ σLORO 1⊗ σLULO

3 3 3 3

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

σ2 σ1 σ−12

σ−11 σ2 σ1

σ2 σ1 σ−12

σ−12

σ−11

σ1

σ2

σ−12

σ−11

σ1

σ2

Notation 4.1.2.43. Let

F(S) 2-Braids
Triplenine(other half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3

idver(σ
−1
2 ◦ σ1 ◦ σ2)

3 3

σ−12 ◦ σ1 ◦ σ2

id(3)id(3)

σ−12 ◦ σ1 ◦ σ2

Remark 4.1.2.44. The 2-arrows Triplenine(one half) and Triplenine(other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the triple move,
which allows us to replace

by the following, and vice versa.



Notation 4.1.2.45. Let

F(S) 2-Braids
Tripleten(one half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3 3 3

1⊗ σUORU 1⊗ σUULU

3 3 σ1TO 3 3

σLURU ⊗ 1 σLOLU ⊗ 1

3 3 3 3

σUURO ⊗ 1 σUOLO ⊗ 1

3 3 σ2UT 3 3

1⊗ σLORO 1⊗ σLULO

3 3 3 3

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

σ2 σ−11 σ−12

σ−11 σ−12 σ1

σ2 σ−11 σ−12

σ−12

σ−11

σ1

σ2

σ−12

σ−11

σ1

σ2

Notation 4.1.2.46. Let

F(S) 2-Braids
Tripleten(other half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3

idver(σ
−1
2 ◦ σ−11 ◦ σ2)

3 3

σ−12 ◦ σ−11 ◦ σ2

id(3)id(3)

σ−12 ◦ σ−11 ◦ σ2

Remark 4.1.2.47. The 2-arrows Tripleten(one half) and Tripleten(other half) of 2-Braids
express algebraically the two halves of the Roseman move known as the triple move,
which allows us to replace

by the following, and vice versa.



Notation 4.1.2.48. Let

F(S) 2-Braids
Tripleeleven(one half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3 3 3

1⊗ σUURO 1⊗ σUOLO

3 3 σ1OU 3 3

σLORO ⊗ 1 σLULO ⊗ 1

3 3 3 3

σUORU ⊗ 1 σUULU ⊗ 1

3 3 σ2TO 3 3

1⊗ σLURU 1⊗ σLOLU

3 3 3 3

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

σ−12 σ−11 σ2

σ1 σ−12 σ−11

σ−12 σ−11
σ2

σ2

σ1

σ−11

σ−12

σ2

σ1

σ−11

σ−12

Notation 4.1.2.49. Let

F(S) 2-Braids
Tripleeleven(other half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3

idver(σ2 ◦ σ−11 ◦ σ−12 )

3 3

σ2 ◦ σ−11 ◦ σ−12

id(3)id(3)

σ2 ◦ σ−11 ◦ σ−12

Remark 4.1.2.50. The 2-arrows Tripleeleven(one half) and Tripleeleven(other half) of
2-Braids express algebraically the two halves of the Roseman move known as the triple
move, which allows us to replace

by the following, and vice versa.



Notation 4.1.2.51. Let

F(S) 2-Braids
Tripletwelve(one half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3 3 3

1⊗ σUURO 1⊗ σUULU

3 3 σ1TU 3 3

σLURU ⊗ 1 σLULO ⊗ 1

3 3 3 3

σUURO ⊗ 1 σUULU ⊗ 1

3 3 σ2OT 3 3

1⊗ σLURU 1⊗ σLULO

3 3 3 3

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

id(3)

σ−12 σ−11 σ−12

σ−11 σ−12 σ−11

σ−12 σ−11 σ−12

σ2

σ−11

σ1

σ−12

σ−12

σ1

σ−11

σ2

Notation 4.1.2.52. Let

F(S) 2-Braids
Tripletwelve(other half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.



3 3

idver(σ
−1
2 ◦ σ−11 ◦ σ−12 )

3 3

σ−12 ◦ σ−11 ◦ σ−12

id(3)id(3)

σ−12 ◦ σ−11 ◦ σ−12

Remark 4.1.2.53. The 2-arrows Tripletwelve(one half) and Tripletwelve(other half) of
2-Braids express algebraically the two halves of the Roseman move known as the triple
move, which allows us to replace

by the following, and vice versa.



Notation 4.1.2.54. We denote the following 2-arrow

2 2

2 2

σ

id(2)id(2)

σ

of 2-Braids by VerticalOverCrossing, or σV O for short.

Notation 4.1.2.55. We denote the following 2-arrow

2 2

2 2

σ−1

id(2)id(2)

σ−1

of 2-Braids by VerticalUnderCrossing, or σV U for short.

Notation 4.1.2.56. We denote following 2-arrow

2 2

2 2

id(2)

σσ

id(2)

of 2-Braids by HorizontalOverCrossing, or σHO for short.



Notation 4.1.2.57. We denote the following 2-arrow

2 2

2 2

id(2)

σ−1σ−1

id(2)

of 2-Braids by HorizontalUnderCrossing, or σHU for short.

Notation 4.1.2.58. To make the pasting diagram for the tetrahedralmove more
readable, some of the notation is simplified. Every 1-arrow without notation is the
identity. The identity 2-arrow, id

(
id(4)

)
, is denoted by id. The 2-arrows have a

number, 1,2 or 3, as an additional subscript. This number says which two planes
that are crossing. If the number is i, then the i’th and (i+ 1)’th plane cross. Other
simplification is expressed in the following list.

(1) S1 = σ−1 ⊗ σ−1

(2) S2 = σHU ⊗ σLURU

(3) S3 = σLOLU ⊗ σHU

(4) S4 = σVU ⊗ σHO

(5) S5 = σLURU ⊗ σHU

(6) S6 = σHU ⊗ σLULO

(7) S7 = σUORU ⊗ σHU

(8) S8 = σHO ⊗ σUULU

(9) S9 = σHO ⊗ σVU

(10) S10 = σHU ⊗ σUORU

(11) S11 = σUULU ⊗ σHU

(12) Trp1 = id(1)⊗ σ2OT

(13) Trp2 = id(1)⊗ σ2TO

(14) Trp3 = σ2TO ⊗ id(1)

(15) Trp4 = id(1)⊗ σ2OU

(16) Trp5 = σ2OU ⊗ id(1)



(17) Trp6 = σ2OT ⊗ id(1)

Notation 4.1.2.59. Let

F(S) 2-Braids
Tetrahedralone(one half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.

Notation 4.1.2.60. Let

F(S) 2-Braids
Tetrahedralone(other half)

be the functor of strict monoidal cubical 2-categories to which, by means of the
universal property of F(S), the functor

S 2-Braids

corresponding to the 2-arrow of 2-Braids obtained by pasting together the following
2-arrows of 2-Braids gives rise.

Remark 4.1.2.61. The 2-arrows Tetrahedralone(one half) and Tetrahedralone(other half)
of 2-Braids express algebraically the two halves of the Roseman move known as the
saddle move, which allows us to replace

by the following, and vice versa.

Notation 4.1.2.62. Let

F(S) · · · F(S)

⊔
66 F(S)

i
F(S),66
1 i

F(S),66
66

be a diagram in Mon(2-Cat) which defines a coproduct of 66 copies of F(S).

Notation 4.1.2.63. Let⊔
66 F(S) 2-Braids

⊔
66 one half moves

denote the canonical functor of strict monoidal cubical 2-categories such that the
following hold.
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(1) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
1

⊔
66 one half moves

Bubbleone(one half)

(2) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
2

⊔
66 one half moves

Bubbletwo(one half)

(3) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
3

⊔
66 one half moves

Saddleone(one half)

(4) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
4

⊔
66 one half moves

Saddletwo(one half)

(5) The following diagram in Mon(2-Cat) commutes.



F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
5

⊔
66 one half moves

Saddlethree(one half)

(6) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
6

⊔
66 one half moves

Saddlefour(one half)

(7) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
7

⊔
66 one half moves

Tripleone(one half)

(8) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
8

⊔
66 one half moves

Tripletwo(one half)

(9) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
9

⊔
66 one half moves

Triplethree(one half)



(10) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
10

⊔
66 one half moves

Triplefour(one half)

(11) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
11

⊔
66 one half moves

Triplefive(one half)

(12) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
12

⊔
66 one half moves

Triplesix(one half)

(13) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
13

⊔
66 one half moves

Tripleseven(one half)

(14) The following diagram in Mon(2-Cat) commutes.



F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
14

⊔
66 one half moves

Tripleeight(one half)

(15) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
15

⊔
66 one half moves

Triplenine(one half)

(16) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
16

⊔
66 one half moves

Tripleten(one half)

(17) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
17

⊔
66 one half moves

Tripleeleven(one half)

(18) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
18

⊔
66 one half moves

Tripletwelve(one half)



(19) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
19

⊔
66 one half moves

Tetrahedralone(one half)

...

(66) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
66

⊔
66 one half moves

Tetrahedralfortyeight(one half)

Notation 4.1.2.64. Let⊔
66 F(S) 2-Braids

⊔
66 other half moves

denote the canonical functor of strict monoidal cubical 2-categories such that the
following hold.

(1) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
1

⊔
66 other half moves

Bubbleone(other half)

(2) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
2

⊔
66 other half moves

Bubbletwo(other half)



(3) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
3

⊔
66 other half moves

Saddleone(other half)

(4) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
4

⊔
66 other half moves

Saddletwo(other half)

(5) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
5

⊔
66 other half moves

Saddlethree(other half)

(6) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
6

⊔
66 other half moves

Saddlefour(other half)

(7) The following diagram in Mon(2-Cat) commutes.



F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
7

⊔
66 other half moves

Tripleone(other half)

(8) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
8

⊔
66 other half moves

Tripletwo(other half)

(9) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
9

⊔
66 other half moves

Triplethree(other half)

(10) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
10

⊔
66 other half moves

Triplefour(other half)

(11) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
11

⊔
66 other half moves

Triplefive(other half)



(12) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
12

⊔
66 other half moves

Triplesix(other half)

(13) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
13

⊔
66 other half moves

Tripleseven(other half)

(14) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
14

⊔
66 other half moves

Tripleeight(other half)

(15) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
15

⊔
66 other half moves

Triplenine(other half)

(16) The following diagram in Mon(2-Cat) commutes.



F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
16

⊔
66 other half moves

Tripleten(other half)

(17) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
17

⊔
66 other half moves

Tripleeleven(other half)

(18) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
18

⊔
66 other half moves

Tripletwelve(other half)

(19) The following diagram in Mon(2-Cat) commutes.

F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
19

⊔
66 other half moves

Tetrahedralone(other half)

...

(66) The following diagram in Mon(2-Cat) commutes.



F(S)
⊔

66 F(S)

2-Braids

i
F(S),66
66

⊔
66 other half moves

Tetrahedralfortyeight(other half)

Notation 4.1.2.65. Let

⊔
66 F(S) 2-Braids 2-Braids/R-moves

⊔
66 one half moves

⊔
66 other half moves

qR−moves

be a diagram in Mon(2-Cat) which defines a coequaliser.

Remark 4.1.2.66. The underlying category of 2-Braids/R-moves is exactly Braids/R-moves.
We shall, not, however, need this in our formal work, and omit a proof.

Remark 4.1.2.67. Let us regard a pair of 2-braids as equivalent if one can be
obtained from the other by a finite sequence of Roseman moves, namely any of the
Roseman moves Bubbleone, Bubbletwo, Saddleone, . . . , Saddlefour, Tripleone, . . . , Tripletwelve,
Tetrahedralone, . . . , Tetrahedraltwenty four. In other, we regard a pair of 2-braids as
equivalent if they are isotopic. The 2-arrows of 2-Braids/R-moves can be thought of as
arrows of 2-Braids, namely as 2-braids, up to isotopy.



4.2. Temperley-Lieb 2-categories and Markov trace
functors

We define a cubical 2-category 2-TL in two steps. On objects and 1-arrows, 2-TL is
identical to TL. We think of the 2-arrows of 2-TL as diagrammatic 2-tangles, which
for us are planes and pieces of spheres joining four diagrammatic tangles which we
depict as drawn on two of the pairs of opposite faces of a cube.

The first step is to define a cubical 2-category 2-TLdouble as the free strict monoidal
cubical 2-category on a monoidal datum M2-TL. The 2-arrows of 2-TL are generated
by those diagrammatic 2-tangles which we shall make use of in §4.3 to smoothen the
generating 2-arrows of 2-Braidsdouble.

To obtain 2-TL from 2-TLdouble, we glue in 2-arrows which we think of as those
diagrammatic 2-tangles which we shall make use of in §4.3 to smoothen the generating
2-arrows of 2-Braids which we think of as triple plane crossings. Formally, we express
this glueing by means of a colimit Mon(2-Cat).

Having defined 2-TL, we introduce the notion of a datum for smoothing of 2-braids.
Given such a datum S, we define from TL a 3-ring TL(S) in two steps, via a 3-ring
TL(S)pre. We think of the arrows of TL(S) as linearisations of diagrammatic 2-tangles.

Following this, we introduce the notion of a Markov trace datum with respect to
a 3-ring. Given such a datum T, we construct a functor of 3-rings from TL(S) to a
3-ring T defined by means of T. On arrows, we think of this functor as defining a
categorification to linearised diagrammatic 2-tangles of the Markov trace for linearised
diagrammatic tangles constructed in §3.2.

Just as in §3.2.4 and §3.2.5 for 2-rings, one can, given a 3-ring R, construct a datum
for smoothing of 2-braids from it, and construct a Markov trace datum from it. We
omit the details, which are a straightforward categorification of those of §3.2.4 and
§3.2.5.

Work on 2-categories of 2-tangles has been carried out previously. We refer the
reader to, for instance, the paper [1] of Baez and Langford, the earlier but erroneous
paper [5] of Fischer, and §6.2 of the book [3] of Carter and Saito. However, our work is
significantly different and novel in several ways. Perhaps the most important of these
differences is that our definition of 2-TL(S) is motivated by allowing us to carry out
the notion of smoothing of 2-braids which we introduce in §4.3, rather by considering
the higher categorical structures into which topological 2-tangles assemble.

4.2.1. The Temperley-Lieb 2-category

Notation 4.2.1.1. Throughout this section, we shall view the objects and arrows of
TL≤2 as objects and arrows of TL via the functor

TL≤2 TL.
canTL



Viewing the object 1 of TL≤2 as an object of TL in this way, we shall denote, for any
integer n ≥ 1, the object

1⊗TL · · · ⊗TL 1︸ ︷︷ ︸
n

of TL by n, and the object

1⊗TL(S) · · · ⊗TL(S) 1︸ ︷︷ ︸
n

of TL(S) by n.

Notation 4.2.1.2. Throughout this section, we view TL≤2 as a cubical 2-category
with no non-identity 2-arrows.

Notation 4.2.1.3. Let us denote the 1-arrow

2 2
CupAndCap

of TL≤2

by τ .

Notation 4.2.1.4. Let us denote by ∂(LowerRight) the functor

∂S TL≤2

corresponding to the following square in TL≤2.

2 2

2 2

id

τid

τ



Notation 4.2.1.5. Let us denote by ∂(UpperRight) the functor

∂S TL≤2

corresponding to the following square in TL≤2.

2 2

2 2

τ

τid

id

Notation 4.2.1.6. Let us denote by ∂(LowerLeft) the functor

∂S TL≤2

corresponding to the following square in TL≤2.

2 2

2 2

id

idτ

τ

Notation 4.2.1.7. Let us denote by ∂(UpperLeft) the functor

∂S TL≤2

corresponding to the following square in TL≤2.

2 2

2 2

τ

idτ

id

Notation 4.2.1.8. Let

∂S · · · ∂S

⊔
4 ∂S

i∂S,four1 i∂S,four4

be a diagram in 2-Cat which defines a coproduct of four copies of ∂S.



Notation 4.2.1.9. Let

S · · · S

⊔
4 S

iS,four1 iS,four4

be a diagram in 2-Cat which defines a coproduct of four copies of S.

Notation 4.2.1.10. Let

⊔
8 ∂S

⊔
4 S

⊔
4 ι

denote the canonical functor such that the following diagram in 2-Cat commutes for
every 1 ≤ j ≤ 4.

∂S
⊔

4 ∂S

S
⊔

4 S

i∂S,fourj

⊔
4 ιι

i∂S,fourj

Notation 4.2.1.11. Let

⊔
4 ∂S TL≤2

⊔
generators

denote the canonical functor such that the following hold.

(1) The following diagram in 2-Cat commutes.

∂S
⊔

4 ∂S

TL≤2

i∂S,four1

⊔
generators

∂(LowerRight)

(2) The following diagram in 2-Cat commutes.



∂S
⊔

4 ∂S

TL≤2

i∂S,four2

⊔
generators

∂(UpperRight)

(3) The following diagram in 2-Cat commutes.

∂S
⊔

4 ∂S

TL≤2

i∂S,four3

⊔
generators

∂(LowerLeft)

(4) The following diagram in 2-Cat commutes.

∂S
⊔

4 ∂S

TL≤2

i∂S,four4

⊔
generators

∂(UpperLeft)

Notation 4.2.1.12. Let

⊔
4 ∂S

⊔
4 S

TL≤2 2-TLdouble
≤2

⊔
4 ι

r
2-TL≤2

0

⊔
generators

r
2-TL≤2

1

be a co-cartesian square in 2-Cat.

Notation 4.2.1.13. We denote the 2-arrow of 2-TLdouble
≤2 corresponding to the functor

S 2-TLdouble
≤2

r
2-TLdouble

≤2

0 ◦ iS,four1

by LowerRight, or τLR for short, and depict it as follows.



Notation 4.2.1.14. We denote the 2-arrow of 2-TLdouble
≤2 corresponding to the functor

S 2-TLdouble
≤2

r
2-TLdouble

≤2

0 ◦ iS,four2

by UpperRight, or τUR for short, and depict it as follows.

Notation 4.2.1.15. We denote the 2-arrow of 2-TLdouble
≤2 corresponding to the functor

S 2-TLdouble
≤2

r
2-TLdouble

≤2

0 ◦ iS,four3

by LowerLeft, or τLL for short, and depict it as follows.



Notation 4.2.1.16. We denote the 2-arrow of 2-TLdouble
≤2 corresponding to the functor

S 2-TLdouble
≤2

r
2-TLdouble

≤2

0 ◦ iS,four3

by UpperLeft, or τUL for short, and depict it as follows.

Notation 4.2.1.17. We shall view the objects and arrows of TL≤2 as objects and
1-arrows of 2-TLdouble

≤2 , via the functor

TL≤2 2-TLdouble
≤2 .

r
2-TLdouble

≤2

1

Notation 4.2.1.18. Let

2-TLdouble
≤2 2-TLdouble

≤2 × 2-TLdouble
≤2 2-TLdouble

≤2
p

2-TLdouble
≤2

1 p
2-TLdouble

≤2

2

be a diagram in 2-Cat which defines a binary product.

Notation 4.2.1.19. Let

12-Cat 2-TLdouble
≤2 × 2-TLdouble

≤2
(1, 1)

be the canonical functor such that the following diagram in 2-Cat commutes.

12-Cat

2-TLdouble
≤2 2-TLdouble

≤2 × 2-TLdouble
≤2 2-TLdouble

≤2

1
(1, 1)

1

p
2-TLdouble

≤2

1 p
2-TLdouble

≤2

2



Definition 4.2.1.20. The Temperley-Lieb 2-category for 2-braids with double plane
crossings is, appealing to Fact 2.2.1.4, the free strict monoidal cubical 2-category on
the monoidal datum M2-TLdouble =

(
12-Cat, 2-TL

double
≤2 , (1, 1), 2

)
internal to 2-Cat.

Notation 4.2.1.21. We denote the Temperley-Lieb 2-category for 2-braids with
double plane crossings by 2-TLdouble. We denote by can2-TLdouble the canonical functor

2-TL≤2 2-TLdouble.

Notation 4.2.1.22. Let us denote by ∂τ 2,t1 the canonical functor of strict monoidal
cubical 2-categories

F(∂S) 2-TLdouble

to which the functor

∂S 2-TLdouble

corresponding to the following square of 1-arrows in 2-TLdouble gives rise, by means of
the universal property of F(∂S).

3 3

3 3

id(3)

τ2τ1

id(3)

Notation 4.2.1.23. Let us denote by ∂τ 2,t2 the canonical functor of strict monoidal
cubical 2-categories

F(∂S) 2-TLdouble

to which the functor

∂S 2-TLdouble

corresponding to the following square of 1-arrows in 2-TLdouble gives rise, by means of
the universal property of F(∂S).

3 3

3 3

id(3)

τ1τ2

id(3)



Notation 4.2.1.24. Let us denote by ∂τ 2,t3 the canonical functor of strict monoidal
cubical 2-categories

F(∂S) 2-TLdouble

to which the functor

∂S 2-TLdouble

corresponding to the following square of 1-arrows in 2-TLdouble gives rise, by means of
the universal property of F(∂S).

3 3

3 3

τ1

id(3)id(3)

τ2

Notation 4.2.1.25. Let us denote by ∂τ 2,t4 the canonical functor of strict monoidal
cubical 2-categories

F(∂S) 2-TLdouble

to which the functor

∂S 2-TLdouble

corresponding to the following square of 1-arrows in 2-TLdouble gives rise, by means of
the universal property of F(∂S).

3 3

3 3

τ2

id(3)id(3)

τ1

Notation 4.2.1.26. Let us denote by ∂τ 2,t5 the canonical functor of strict monoidal
cubical 2-categories

F(∂S) 2-TLdouble

to which the functor

∂S 2-TLdouble



corresponding to the following square of 1-arrows in 2-TLdouble gives rise, by means of
the universal property of F(∂S).

3 3

3 3

id(3)

τ2 ◦ τ1τ2 ◦ τ1

id(3)

Notation 4.2.1.27. Let us denote by ∂τ 2,t6 the canonical functor of strict monoidal
cubical 2-categories

F(∂S) 2-TLdouble

to which the functor

∂S 2-TLdouble

corresponding to the following square of 1-arrows in 2-TLdouble gives rise, by means of
the universal property of F(∂S).

3 3

3 3

id(3)

τ1 ◦ τ2τ1 ◦ τ2

id(3)

Notation 4.2.1.28. Let us denote by ∂τ 2,t7 the canonical functor of strict monoidal
cubical 2-categories

F(∂S) 2-TLdouble

to which the functor

∂S 2-TLdouble

corresponding to the following square of 1-arrows in 2-TLdouble gives rise, by means of
the universal property of F(∂S).



3 3

3 3

τ1

τ2τ1

τ2

Notation 4.2.1.29. Let us denote by ∂τ 2,t8 the canonical functor of strict monoidal
cubical 2-categories

F(∂S) 2-TLdouble

to which the functor

∂S 2-TLdouble

corresponding to the following square of 1-arrows in 2-TLdouble gives rise, by means of
the universal property of F(∂S).

3 3

3 3

τ1

τ1τ2

τ2

Notation 4.2.1.30. Let us denote by ∂τ 2,t9 the canonical functor of strict monoidal
cubical 2-categories

F(∂S) 2-TLdouble

to which the functor

∂S 2-TLdouble

corresponding to the following square of 1-arrows in 2-TLdouble gives rise, by means of
the universal property of F(∂S).

3 3

3 3

τ2

τ2τ1

τ1



Notation 4.2.1.31. Let us denote by ∂τ 2,t10 the canonical functor of strict monoidal
cubical 2-categories

F(∂S) 2-TLdouble

to which the functor

∂S 2-TLdouble

corresponding to the following square of 1-arrows in 2-TLdouble gives rise, by means of
the universal property of F(∂S).

3 3

3 3

τ2

τ1τ2

τ1

Notation 4.2.1.32. Let us denote by ∂τ 2,t11 the canonical functor of strict monoidal
cubical 2-categories

F(∂S) 2-TLdouble

to which the functor

∂S 2-TLdouble

corresponding to the following square of 1-arrows in 2-TLdouble gives rise, by means of
the universal property of F(∂S).

3 3

3 3

τ1

τ1 ◦ τ2τ1 ◦ τ2

τ2

Notation 4.2.1.33. Let us denote by ∂τ 2,t12 the canonical functor of strict monoidal
cubical 2-categories

F(∂S) 2-TLdouble

to which the functor

∂S 2-TLdouble



corresponding to the following square of 1-arrows in 2-TLdouble gives rise, by means of
the universal property of F(∂S).

3 3

3 3

τ2

τ2 ◦ τ1τ2 ◦ τ1

τ1

Notation 4.2.1.34. Let⊔
12 F(∂S) 2-TLdouble

⊔
generators

denote the canonical functor of strict monoidal cubical 2-categories such that the
following hold.

(1) The following diagram in Mon(2-Cat) commutes.

F(∂S)
⊔

12 F(∂S)

2-TLdouble

i
F(∂S),twelve
1

⊔
generators

∂(τ 2,t1 )

(2) The following diagram in Mon(2-Cat) commutes.

F(∂S)
⊔

12 F(∂S)

2-TLdouble

i
F(∂S),twelve
2

⊔
generators

∂(τ 2,t2 )

(3) The following diagram in Mon(2-Cat) commutes.

F(∂S)
⊔

12 F(∂S)

2-TLdouble

i
F(∂S),twelve
3

⊔
generators

∂(τ 2,t3 )



(4) The following diagram in Mon(2-Cat) commutes.

F(∂S)
⊔

12 F(∂S)

2-TLdouble

i
F(∂S),twelve
4

⊔
generators

∂(τ 2,t4 )

(5) The following diagram in Mon(2-Cat) commutes.

F(∂S)
⊔

12 F(∂S)

2-TLdouble

i
F(∂S),twelve
5

⊔
generators

∂(τ 2,t5 )

(6) The following diagram in Mon(2-Cat) commutes.

F(∂S)
⊔

12 F(∂S)

2-TLdouble

i
F(∂S),twelve
6

⊔
generators

∂(τ 2,t6 )

(7) The following diagram in Mon(2-Cat) commutes.

F(∂S)
⊔

12 F(∂S)

2-TLdouble

i
F(∂S),twelve
7

⊔
generators

∂(τ 2,t7 )

(8) The following diagram in Mon(2-Cat) commutes.



F(∂S)
⊔

12 F(∂S)

2-TLdouble

i
F(∂S),twelve
8

⊔
generators

∂(τ 2,t8 )

(9) The following diagram in Mon(2-Cat) commutes.

F(∂S)
⊔

12 F(∂S)

2-TLdouble

i
F(∂S),twelve
9

⊔
generators

∂(τ 2,t9 )

(10) The following diagram in Mon(2-Cat) commutes.

F(∂S)
⊔

12 F(∂S)

2-TLdouble

i
F(∂S),twelve
10

⊔
generators

∂(τ 2,t10 )

(11) The following diagram in Mon(2-Cat) commutes.

F(∂S)
⊔

12 F(∂S)

2-TLdouble

i
F(∂S),twelve
11

⊔
generators

∂(τ 2,t11 )

(12) The following diagram in Mon(2-Cat) commutes.

F(∂S)
⊔

12 F(∂S)

2-TLdouble

i
F(∂S),twelve
12

⊔
generators

∂(τ 2,t12 )



Notation 4.2.1.35. Let

⊔
12 F(∂S)

⊔
12 F(S)

2-TLdouble 2-TL

⊔
12 ι

r2-TL
0

⊔
12 generators

r2-TL
1

be a co-cartesian square in Mon(2-Cat).

Terminology 4.2.1.36. We refer to 2-TL as the Temperley-Lieb 2-category.

Notation 4.2.1.37. We denote the functor of strict monoidal 2-categories

2-TLdouble 2-TL
r2-TL
1

by can2-TL.

Notation 4.2.1.38. We denote the 2-arrow of 2-TL corresponding to the functor

S 2-TLdouble
r2-TL
0 ◦ iF(S),twelve1 ◦ canS

by τ 2,t1 , and depict it as follows.



Notation 4.2.1.39. We denote the 2-arrow of 2-TL corresponding to the functor

S 2-TLdouble
r2-TL
0 ◦ iF(S),twelve2 ◦ canS

by τ 2,t2 , and depict it as follows.

Notation 4.2.1.40. We denote the 2-arrow of 2-TL corresponding to the functor

S 2-TLdouble
r2-TL
0 ◦ iF(S),twelve3 ◦ canS

by τ 2,t3 , and depict it as follows.



Notation 4.2.1.41. We denote the 2-arrow of 2-TL corresponding to the functor

S 2-TLdouble
r2-TL
0 ◦ iF(S),twelve4 ◦ canS

by τ 2,t4 , and depict it as follows.



Notation 4.2.1.42. We denote the 2-arrow of 2-TL corresponding to the functor

S 2-TLdouble
r2-TL
0 ◦ iF(S),twelve5 ◦ canS

by τ 2,t5 , and depict it as follows.

Notation 4.2.1.43. We denote the 2-arrow of 2-TL corresponding to the functor

S 2-TLdouble
r2-TL
0 ◦ iF(S),twelve6 ◦ canS

by τ 2,t6 , and depict it as follows.



Notation 4.2.1.44. We denote the 2-arrow of 2-TL corresponding to the functor

S 2-TLdouble
r2-TL
0 ◦ iF(S),twelve7 ◦ canS

by τ 2,t7 , and depict it as follows.



Notation 4.2.1.45. We denote the 2-arrow of 2-TL corresponding to the functor

S 2-TLdouble
r2-TL
0 ◦ iF(S),twelve8 ◦ canS

by τ 2,t8 , and depict it as follows.

Notation 4.2.1.46. We denote the 2-arrow of 2-TL corresponding to the functor

S 2-TLdouble
r2-TL
0 ◦ iF(S),twelve9 ◦ canS

by τ 2,t9 , and depict it as follows.



Notation 4.2.1.47. We denote the 2-arrow of 2-TL corresponding to the functor

S 2-TLdouble
r2-TL
0 ◦ iF(S),twelve10 ◦ canS

by τ 2,t10 , and depict it as follows.

Notation 4.2.1.48. We denote the 2-arrow of 2-TL corresponding to the functor



S 2-TLdouble
r2-TL
0 ◦ iF(S),twelve11 ◦ canS

by τ 2,t11 , and depict it as follows.

Notation 4.2.1.49. We denote the 2-arrow of 2-TL corresponding to the functor

S 2-TLdouble
r2-TL
0 ◦ iF(S),twelve12 ◦ canS

by τ 2,t12 , and depict it as follows.



Remark 4.2.1.50. The underlying category of 2-TL is exactly TL. We shall, not,
however, need this in our formal work, and omit a proof.

4.2.2. The Temperley-Lieb 2-category with respect to a datum
for smoothing of 2-braids

Definition 4.2.2.1. A datum for smoothing of 2-braids consists of the following data.

(1) A 3-ring R. We shall also denote the cubical 2-category which is part of the
data of R by R.

(2) A pair A1 = (A1
0, A

1
1) of 1-arrows of R.

(3) A pair A2,d =
(
A2,d

1 , A2,d
2

)
of 2-arrows R.

(4) An 8-tuple

A2,t =
(
A2,t

1 , A
2,t
1 , A

2,t
2 , A

2,t
3 , A

2,t
4 , A

2,t
5 , A

2,t
6 , A

2,t
7 , A

2,t
8

)
of 2-arrows of R.

Notation 4.2.2.2. Throughout the remainder of this chapter, let S =
(
R, A1, A2,d, A2,t

)
be a datum for smoothing of 2-braids.

Notation 4.2.2.3. Appealing to Fact 2.1.3.16, let

R 2-TL(S)pre 2-TL
i
2-TL(S)pre,bi
1 i

2-TL(S)pre,bi
2

be a diagram in Ring(2-Cat) which defines a binary coproduct.



Terminology 4.2.2.4. We refer to 2-TL(S)pre as the pre-Temperley-Lieb cubical 2-
category with respect to S.

Notation 4.2.2.5. We denote the functor of 3-rings

2-TL 2-TL(S)pre
i
2-TL(S)pre,bi
2

by can2-TL(S)pre .

Notation 4.2.2.6. Let us denote the cubical 2-category which is part of the data of
2-TL(S)pre by 2-TL(S)pre.

Notation 4.2.2.7. Let

2-TL(S)pre 2-TL(S)pre × 2-TL(S)pre 2-TL(S)pre
p

2-TL(S)pre,bi
1 p

2-TL(S)pre,bi
2

be the diagram in 2-Cat which is part of the data of 2-TL(S)pre, which defines a binary
product.

Notation 4.2.2.8. Appealing to Fact 2.2.2.2, let us denote the free 3-ring on S by
F3−Ring(S).

Notation 4.2.2.9. Let σ be a 2-arrow of 2-TL. We then also denote by σ the canonical
functor of 3-rings

F3−Ring(S) TL(S)pre

to which the functor

S 2-TL(S)preσ

gives rise by means of the universal property of F3−Ring(S).

Notation 4.2.2.10. Let σ and τ be 2-arrows of 2-TL. Let us denote by (σ, τ) the
canonical functor of 3-rings

F3−Ring(S) 2-TL(S)pre × 2-TL(S)pre

such that the following diagram in Ring(2-Cat) commutes.

F3−Ring(S)

2-TL(S)pre 2-TL(S)pre × 2-TL(S)pre 2-TL(S)pre

i
TL(S),bi
1 ◦ σ

(σ, τ)
i
TL(S),bi
2 ◦ τ

p
2-TL(S)pre,bi
1 p

2-TL(S)pre,bi
2



We denote by σ ⊗ τ the 2-arrow of 2-TL(S)pre corresponding to the functor

S 2-TL(S)pre.
⊗TL(S) ◦ (σ, τ)

Remark 4.2.2.11. In this way, we in particular have a notion of multiplication of
2-arrows of 2-TL(S)pre, thought of as formal sums of diagrammatic tangles, by A2,d

1 ,
A2,d

2 , and A2,t
j all 1 ≤ j ≤ 8. This, for us, is the crucial difference between 2-TL(S)pre

and 2-TL.

Notation 4.2.2.12. Appealing to Fact 2.2.2.2, let us denote the free 3-ring on 12-Cat

by F3−ring(12-Cat).

Notation 4.2.2.13. Let us denote by

F3−ring(12-Cat) 2-TL(S)pre2

the canonical functor of 3-rings to which the functor

12-Cat 2-TL(S)pre
i
2-TL(S)pre,bi
2 ◦ 2

gives rise by means of the universal property of F3−ring(12-Cat).

Notation 4.2.2.14. Let us denote the source and target of the arrow A of R by
a0 and a1 respectively, and the source and target of the arrow B of R by b0 and b1
respectively.

Notation 4.2.2.15. Let us denote by

∂I 2-TL(S)pre

(
(a0 ⊗ 2)⊕ (b0 ⊗ 2), (a1 ⊗ 2)⊕ (b1 ⊗ 2)

)
the functor determined by the objects (a0 ⊗ 2)⊕ (b0 ⊗ 2) and (a1 ⊗ 2)⊕ (b1 ⊗ 2) of
2-TL(S)pre.

Notation 4.2.2.16. Appealing to Fact 2.2.2.2, let us denote the free 3-ring on ∂I by
F3−ring(∂I).

Notation 4.2.2.17. Let us denote by

F3−ring(∂I) 2-TL(S)pre

(
(a0 ⊗ 2)⊕ (b0 ⊗ 2), (a1 ⊗ 2)⊕ (b1 ⊗ 2)

)
the functor of 3-rings to which the functor

∂I 2-TL(S)pre

(
(a0 ⊗ 2)⊕ (b0 ⊗ 2), (a1 ⊗ 2)⊕ (b1 ⊗ 2)

)
gives rise by means of the universal property of F3−ring(∂I).



Notation 4.2.2.18. Appealing to Fact 2.1.3.16, let

F3−ring(∂I) 2-TL(S)pre 2-TL(S)

(2, 2)

can2-TL(S)

be a diagram, in which the unlabelled arrow is

F3−ring(∂I) 2-TL(S)pre,

(
(a0 ⊗ 2)⊕ (b0 ⊗ 2), (a1 ⊗ 2)⊕ (b1 ⊗ 2)

)
in Ring(2-Cat) which defines a coequaliser.

Remark 4.2.2.19. The idea of the construction of 2-TL(S) from 2-TL(S)pre is that
we identify both of the objects (a0 ⊗ 2)⊕ (b0 ⊗ 2) and (a1 ⊗ 2)⊕ (b1 ⊗ 2) of 2-TL(S)pre

with the object 2 of 2-TL(S)pre. This ensures that certain arrows of 2-TL(S) which we
shall make crucial use of in §3.3 are endomorphisms of 2, which we shall require in
order to exhibit M2-Braidsdouble as a monoidal datum for 2-TL(S).

The objects and 1-arrows of 2-TL(S) can be thought of in the same way as those
of TL(S). Because of the way in which we will make use of 2-TL(S) in §3.3, we shall
typically think of the 2-arrows of 2-TL(S) as formal linear combinations of diagrammatic
tangles, the coefficients of which are non-commutative polynomials in the variables
A2,d

1 , A2,d
2 , and A2,t

j for 1 ≤ j ≤ 8, built out of ⊕ and ⊗. There are, though, many
arrows of 2-TL(S) which are not of this form.

4.2.3. Markov trace functors

Definition 4.2.3.1. Let R be a 3-ring. A Markov trace datum with respect to R
consists of the following data.

(1) A 3-ring T.

(2) A 1-arrow

1T 1T

γ

of T.

(3) A 4-tuple Γd = (Γd,1,Γd,2,Γd,3,Γd,4) of 2-arrows of T with the following bound-
aries.

1T 1T

Γd,1

1T 1T

id

γid

γ



of T.

1T 1T

Γd,2

1T 1T

γ

γid

id

of T.

1T 1T

Γd,3

1T 1T

id

idγ

γ

of T.

1T 1T

Γd,4

1T 1T

γ

idγ

id

of T.

(3) A 4-tuple Γd = (Γd,1,Γd,2,Γd,3,Γd,4) of 2-arrows of T with the following bound-
aries.

1T 1T

Γd,1

1T 1T

id

γid

γ

of T.



1T 1T

Γd,2

1T 1T

γ

γid

id

of T.

1T 1T

Γd,3

1T 1T

id

idγ

γ

of T.

1T 1T

Γd,4

1T 1T

γ

idγ

id

of T.

(4) A 12-tuple Γt = (Γt,1, . . . ,Γt,12) of 2-arrows of T with the following boundaries.

1T 1T

Γt,1

1T 1T

id

γγ

id

of T.

1T 1T

Γt,2

1T 1T

id

γγ

id



of T.

1T 1T

Γt,3

1T 1T

γ

idid

γ

of T.

1T 1T

Γt,4

1T 1T

γ

idid

γ

of T.

1T 1T

Γt,5

1T 1T

id

γ ◦ γγ ◦ γ

id

of T.

id 1T

Γt,6

1T 1T

id

γ ◦ γγ ◦ γ

id

of T.

1T 1T

Γt,7

1T 1T

γ

γγ

γ



of T.

1T 1T

Γt,8

1T 1T

γ

γγ

γ

of T.

1T 1T

Γt,9

1T 1T

γ

γγ

γ

of T.

1T 1T

Γt,10

1T 1T

γ

γγ

γ

of T.

1T 1T

Γt,11

1T 1T

γ

γ ◦ γγ ◦ γ

γ

of T.

1T 1T

Γt,12

1T 1T

γ

γ ◦ γγ ◦ γ

γ



of T.

(5) A 2-arrow

1T 1T

Γ

1T 1T

id

idid

id

of T.

Notation 4.2.3.2. Until further notice, let R be a 3-ring, and let T =
(
Tpre-sph, γ,Γd,Γt,Γ

)
be a Markov trace datum with respect to R.

Notation 4.2.3.3. Let ⊔
4 S Tpre-sph

⊔
Tr

denote the canonical functor such that the following diagram in 2-Cat commutes for
every 1 ≤ j ≤ 12.

S
⊔

4 S

Tpre-sph

iS,four1

⊔
4 TrΓd,j

Proposition 4.2.3.4. The following diagram in 2-Cat commutes.

⊔
4 ∂S

⊔
4 S

TL≤2 Tpre-sph

⊔
4 ι

⊔
4 Tr

⊔
4 generators

Tr≤2

Proof.

Notation 4.2.3.5. Appealing to Proposition 4.2.3.4, let us denote by

2-TLdouble
≤2 T

Tr≤2



the canonical functor such that the following diagram in 2-Cat commutes.

⊔
8 ∂S

⊔
8 S

TL≤2 2-TLdouble
≤2

Tpre-sph

⊔
8 ι

r
2-TLdouble

≤2

0

⊔
8 generators

r
2-TLdouble

≤2

1

⊔
8 Tr

Tr≤2

Tr≤2

Proposition 4.2.3.6. The following diagram in 2-Cat commutes.

1Cat 2-TLdouble
≤2 × 2-TLdouble

≤2

Tpre-sph × Tpre-sph

2-TLdouble
≤2 Tpre-sph

(1, 1)

Tr≤2 × Tr≤2

⊗Tpre-sph

2

Tr≤2

Corollary 4.2.3.7. The functor

2-TLdouble
≤2 Tpre-sph

Tr≤2

exhibits M2-TLdouble as a monoidal datum for Tpre-sph.

Notation 4.2.3.8. Appealing to Corollary 4.2.3.7, let

2-TLdouble Tpre-sphTr

denote the canonical functor of 3-rings to which the functor

2-TLdouble
≤2 Tpre-sph

Tr≤2

gives rise, by means of the universal property of 2-TLdouble.



Notation 4.2.3.9. Appealing to Fact 2.2.2.2, let us denote by F3−ring(S) the free
3-ring on S. Let us denote the canonical functor

S F3−ring(S)

by canF3−ring
(S).

Notation 4.2.3.10. Let

S · · · S

⊔
12 F3−ring(S)

i
F3−ring(S),twelve
1 i

F3−ring(S),twelve
12

be a diagram in Ring(2-Cat) which defines a coproduct of twelve copies of F3−ring(S).

Notation 4.2.3.11. Let ⊔
12 F3−ring(S) Tpre-sph

⊔
12 Tr

denote the canonical functor of 3-rings such that the following diagram in 2-Cat
commutes for every 1 ≤ j ≤ 12.

F3−ring(S)
⊔

12 F3−ring(S)

Tpre-sph

i
F3−ring(S),twelve
j

⊔
12 Tr

Γt,j

Proposition 4.2.3.12. The following diagram in Ring(Cat) commutes.

⊔
12 F(∂S)

⊔
12 F(S)

2-TLdouble T

⊔
12 ι

⊔
12 Tr

⊔
generators

Tr

Notation 4.2.3.13. Appealing to Proposition 4.2.3.12, let

2-TL Tpre-sphTr



denote the canonical functor of 3-rings such that the following diagram in Ring(2-Cat)
commutes. ⊔

12 F3−ring(S)
⊔

12 F3−ring(S))

2-TLdouble 2-TL

Tpre-sph

⊔
12 ι

r2-TL
0

⊔
12 generators

r2-TL
1

⊔
Tr

Tr

Tr

Notation 4.2.3.14. Let

2-TL(S)pre Tpre-sphTrS,pre-sph

denote the canonical functor of 3-rings such that the following diagram in Ring(2-Cat)
commutes.

R 2-TL(S)pre 2-TL

Tpre-sph

i
2-TL(S)pre,bi
1 i

2-TL(S)pre,bi
2

t TrS,pre-sph

Tr

Terminology 4.2.3.15. We refer to

2-TL(S)pre Tpre-sphTrS,pre-sph

as the pre-spherical Markov trace functor associated to T.

Notation 4.2.3.16. For every 1 ≤ j ≤ 4, let

F3−ring(S) Tpre-sph
Γd,j

denote the functor of 3-rings to which the functor



S Tpre-sph
Γd,j ◦ ι

gives rise, by means of the universal property of F3−ring(S).

Notation 4.2.3.17. For every 1 ≤ j ≤ 12, let

F3−ring(S) Tpre-sph
Γt,j

denote the functor of 3-rings to which the functor

S Tpre-sph
Γt,j ◦ ι

gives rise, by means of the universal property of F3−ring(S).

Notation 4.2.3.18. Let

F3−ring(S) · · · F3−ring(S)

⊔
16 F3−ring(S)

i
F3−ring(S),16
1

iS,1616

be a diagram in Ring(2-Cat) which defines a coproduct of 16 copies of F3−ring(S).

Notation 4.2.3.19. Let ⊔
12 F3−ring(S) Tpre-sph

⊔
16 ∂

denote the canonical functor of 3-rings such that the diagram

F3−ring(S)
⊔

16 F3−ring(S)

Tpre-sph

i
F3−ring(S),16
j

⊔
16 ∂

Γd,j

in 2-Cat commutes for every 1 ≤ j ≤ 4, and the diagram

F3−ring(S)
⊔

16 F3−ring(S)

Tpre-sph

i
F3−ring(S),16
j

⊔
16 ∂

Γt,j−4



in 2-Cat commutes for every 5 ≤ j ≤ 16.

Notation 4.2.3.20. Let us denote by⊔
16 F3−ring(S) F3−ring(S)

∇

the canonical functor of 3-rings such that the following diagram in Ring(2-Cat) com-
mutes for every 1 ≤ j ≤ 16.

F3−ring(S)
⊔

16 F3−ring(S)

Tpre-sph

i
F3−ring(S),16
j

∇
id

Notation 4.2.3.21. Let us denote by⊔
16 F3−ring(S) Tpre-sphΓ

the canonical functor of 3-rings to which the functor

S Tpre-sphΓ

gives rise.

Notation 4.2.3.22. Appealing to Fact 2.1.3.16, let

⊔
16 F3−ring(S) Tpre-sph Tpre

⊔
16 ∂

Γ ◦ ∇

canTpre

be a diagram in Ring(2-Cat) which defines a coequaliser.

Notation 4.2.3.23. Let us denote by

2-TL(S)pre TpreTrS,pre

the functor of 3-rings given by canTpre ◦ Tpre-sph.

Terminology 4.2.3.24. We refer to Tpre as the pre-Markov trace functor with respect
to T.

Notation 4.2.3.25. Appealing to Fact 2.2.2.2, let us denote the free 3-ring on 12-Cat

by F3−Ring(12-Cat).



Notation 4.2.3.26. Let us denote by

F3−ring(12-Cat) Tpre
1Tpre

the canonical functor of 3-rings to which the functor

12-Cat Tpre
1Tpre

gives rise, by means of the universal property of F3−ring(12-Cat).

Notation 4.2.3.27. Let us denote by

∂I Tpre
TrS,pre(a0 ⊕ b0) t TrS,pre(a1 ⊕ b1)

the canonical functor determined by the pair of objects TrS,pre(a0⊕b0) and TrS,pre(a1⊕b1)
of Tpre.

Notation 4.2.3.28. Appealing to Fact 2.2.2.2, let us denote the free 3-ring on 1∂I by
F3−Ring(∂I).

Notation 4.2.3.29. Let us denote by

F3−ring(∂I) Tpre
TrS,pre(a0 ⊕ b0) t TrS,pre(a1 ⊕ b1)

the canonical functor of 3-rings to which the functor

∂I Tpre
TrS,pre(a0 ⊕ b0) t TrS,pre(a1 ⊕ b1)

gives rise by means of the universal property of F3−ring(∂I).

Notation 4.2.3.30. Let us denote by

∂I Tpre
(1Tpre , 1Tpre)

the functor determined by the pair (1Tpre , 1Tpre) of objects of Tpre.

Notation 4.2.3.31. Let us denote by

F3−ring(∂I) Tpre
(1Tpre , 1Tpre)

the canonical functor of 3-rings to which the functor

∂I Tpre
(1Tpre , 1Tpre)

gives rise by means of the universal property of F3−ring(∂I).



Notation 4.2.3.32. Appealing to Fact 2.1.3.16, let

F3−ring(∂I) Tpre T

TrS,pre(a0 ⊕ b0) t TrS,pre(a1 ⊕ b1)

(1Tpre , 1Tpre)

canT

be a coequaliser diagram in Ring(2-Cat).

Remark 4.2.3.33. The idea of the construction of T from Tpre is that we identify
both of the objects TrS,pre(a0 ⊕ a1) and TrS,pre(b0 ⊕ b1) of Tpre with the object 1Tpre of
Tpre. The purpose of this is to ensure that the functor of 3-rings

2-TL(S)pre TpreTrS,pre

extends to a functor from

2-TL(S) T,

in the manner we shall now describe.

Proposition 4.2.3.34. The following diagram in 2-Cat commutes.

12-Cat 2-TL(S)pre

2-TL(S)pre T

(a0 ⊗ 2)⊕ (b0 ⊗ 2)

canT ◦ TrS,pre2

canT ◦ TrS,pre

Proposition 4.2.3.35. The following diagram in 2-Cat commutes.

12-Cat 2-TL(S)pre

2-TL(S)pre T

(a1 ⊗ 2)⊕ (b1 ⊗ 2)

canT ◦ TrS,pre2

canT ◦ TrS,pre

Proof. Entirely analogous to the proof of Proposition 4.2.3.34.

Corollary 4.2.3.36. The following diagram in Ring(2-Cat) commutes.



F3−ring(∂I) 2-TL(S)pre

2-TL(S)pre T

(
(a0 ⊗ 2)⊕ (b0 ⊗ 2)

)
t
(
(a1 ⊗ 2)⊕ (b1 ⊗ 2)

)
canT ◦ TrS,pre(2, 2)

canT ◦ TrS,pre

Notation 4.2.3.37. Appealing to Corollary 4.2.3.36, let

2-TL(S) T
TrS

denote the canonical functor of 3-rings such that the following diagram in Ring(Cat)
commutes.

2-TL(S)pre 2-TL(S)

T

can2-TL(S)

TrS

TrS,pre

Terminology 4.2.3.38. We refer to TrS as the Markov trace functor with respect to
T.

Remark 4.2.3.39. The Markov trace functor

2-TL(S) T
TrS

does not agree with the Markov trace functor

TL(S) T
TrS

on 1-arrows. The origin of this is in the passage from Tpre-sph to Tpre, which has as a
consequence that γ is forced to become equal to id(1Tpre).



4.3. The Kauffman 2-bracket invariant

Given a datum S for smoothing of 2-braids, we construct in a canonical way a strict
monoidal functor Smoothing from 2-Braids to 2-TL(S) which, on arrows, we think of as
‘smoothing’ a 2-braid to a formal linear sum of diagrammatic 2-tangles, categorifying
the smoothing functor which we constructed in §3.3. The construction of this functor,
and in particular the way in which we define smoothing of triple plane crossings, is
perhaps the heart of this thesis.

Our notion of smoothing of triple plane crossings is motivated entirely by topological
considerations. To smoothen a triple plane crossing, we choose, for each of three pairs
of planes involved, one of the two ways to smoothen their double plane crossing. We
then fit the pieces of planes which we otain together in a compatible way. Each triple
plane crossing has, in this way eight smoothings, rather than the two which we have
for a double plane crossing, or a crossing in the ordinary theory of braids. However,
the triple plane crossings do not give rise to the same smoothings. There are in fact
twelve possibilities, altogether.

Since each triple plane crossing gives rise to eight smoothings, we require eight
variables, A2,t

1 , . . . , A2,t
8 to keep track of them. We do so as follows. The choice of

smoothing for each of the pairs of crossings in the triple plane crossing can be kept
track of by a triple, each of entry of which is either A2,d

1 or A2,d
2 . We then simply pick

one way to assign the variables A2,t
1 , . . . , A2,t

8 to the eight possible such triples.

Given a Markov trace datum T, we combine our smoothing functor with the Markov
trace functor with respect to T constructed in §??, to define a strict monoidal functor
from 2-Braids to a 3-ring T which is constructed from the data of T. On 2-arrows,
we think of this functor as categorifying the Kauffman bracket functor which we
constructed in §3.3. We then demonstrate how this strict monoidal functor gives rise
to a functor from Braids/R-moves to T. On 2-arrows, we think of the construction of
last functor as a demonstration that we have constructed an invariant of 2-braids.

There is much which remains to be explored regarding our Kauffman 2-bracket
invariant. We have not had the opportunity yet to investigate its efficacy in detecting
interesting 2-braids which are not isotopic to trivial 2-braids. In particular, we are
very interested in using our invariant to detect 2-knottedness. However, considerable
work is first required to relate our 2-braid theory to 2-knot theory. There should be
a way to ‘close up’ our 2-braids to 2-knots, but this is a more subtle matter than in
ordinary braid and knot theory. In particular, it will almost certainly be necessary to
impose some restrictions on the possible boundaries of those 2-braids for which we
define ‘closing up’. Having now established a theoretical framework for a Kauffman
2-bracket invariant, which we believe to be robust, we plan in future work to explore
and refine it through calculating it for examples of 2-braids, once we understand better
how to obtain how to characterise such examples.

On a different note, we conjecture that our invariant can be significantly improved
by introducing a notion of writhe for 2-braids. We feel that we understand how to do
this, and plan to return to this in future work.



4.3.1. Smoothing functor

Notation 4.3.1.1. Let S =
(
R, A1, A2,d, A2,t

)
be a datum for smoothing of 2-braids.

Notation 4.3.1.2. Let us denote by Smoothing(LowerOverRightOver) the functor

S 2-TL(S)

corresponding to the 2-arrow(
A2,d

1 ⊗ id
(
id(2)

))
⊕
(
A2,d

2 ⊗ LowerRight
)

of 2-TL(S).

Notation 4.3.1.3. Let us denote by Smoothing(UpperOverRightUnder) the functor

S 2-TL(S)

corresponding to the 2-arrow(
A2,d

1 ⊗ id
(
id(2)

))
⊕
(
A2,d

2 ⊗ UpperRight
)

of 2-TL(S).

Notation 4.3.1.4. Let us denote by Smoothing(LowerUnderRightUnder) the functor

S 2-TL(S)

corresponding to the 2-arrow(
A2,d

2 ⊗ id
(
id(2)

))
⊕
(
A2,d

1 ⊗ LowerRight
)

of 2-TL(S).

Notation 4.3.1.5. Let us denote by Smoothing(UpperUnderRightOver) the functor

S 2-TL(S)

corresponding to the 2-arrow(
A2,d

2 ⊗ id
(
id(2)

))
⊕
(
A2,d

1 ⊗ UpperRight
)

of 2-TL(S).



Notation 4.3.1.6. Let us denote by Smoothing(LowerOverLeftUnder) the functor

S 2-TL(S)

corresponding to the 2-arrow(
A2,d

2 ⊗ id
(
id(2)

))
⊕
(
A2,d

1 ⊗ LowerLeft
)

of 2-TL(S).

Notation 4.3.1.7. Let us denote by Smoothing(UpperOverLeftOver) the functor

S 2-TL(S)

corresponding to the 2-arrow(
A2,d

2 ⊗ id
(
id(2)

))
⊕
(
A2,d

1 ⊗ UpperLeft
)

of 2-TL(S).

Notation 4.3.1.8. Let us denote by Smoothing(LowerUnderLeftOver) the functor

S 2-TL(S)

corresponding to the 2-arrow(
A2,d

1 ⊗ id
(
id(2)

))
⊕
(
A2,d

2 ⊗ LowerLeft
)

of 2-TL(S).

Notation 4.3.1.9. Let us denote by Smoothing(LowerUnderLeftUnder) the functor

S 2-TL(S)

corresponding to the 2-arrow(
A2,d

1 ⊗ id
(
id(2)

))
⊕
(
A2,d

2 ⊗ UpperLeft
)

of 2-TL(S).

Notation 4.3.1.10. Let ⊔
8 S 2-TL(S)

⊔
8 Smoothing

denote the canonical functor such that the following hold.



(1) The following diagram in 2-Cat commutes.

S
⊔

8 S

Braids≤2

iS,eight1

⊔
8 Smoothing

Smoothing(LowerOverRightOver)

(2) The following diagram in 2-Cat commutes.

S
⊔

8 S

Braids≤2

iS,eight2

⊔
8 Smoothing

Smoothing(UpperOverRightUnder)

(3) The following diagram in 2-Cat commutes.

S
⊔

8 S

Braids≤2

iS,eight3

⊔
8 Smoothing

Smoothing(LowerUnderRightUnder)

(4) The following diagram in 2-Cat commutes.

S
⊔

8 S

Braids≤2

iS,eight4

⊔
8 Smoothing

Smoothing(UpperUnderRightOver)

(5) The following diagram in 2-Cat commutes.

S
⊔

8 S

Braids≤2

iS,eight5

⊔
8 Smoothing

Smoothing(LowerOverLeftUnder)



(6) The following diagram in 2-Cat commutes.

S
⊔

8 S

Braids≤2

iS,eight6

⊔
8 Smoothing

Smoothing(UpperOverLeftOver)

(7) The following diagram in 2-Cat commutes.

S
⊔

8 S

Braids≤2

iS,eight7

⊔
8 Smoothing

Smoothing(LowerUnderLeftOver)

(8) The following diagram in 2-Cat commutes.

S
⊔

8 S

Braids≤2

iS,eight8

⊔
8 Smoothing

Smoothing(UpperUnderLeftOver)

Proposition 4.3.1.11. The following diagram in 2-Cat commutes.

⊔
8 ∂S

⊔
8 S

Braids≤2 2-TL(S)

⊔
8 ι

⊔
8 Smoothing

⊔
8 generators

Smoothing

Notation 4.3.1.12. Appealing to Proposition 4.3.1.11, let us denote by

2-Braidsdouble
≤2 2-TL(S)

Smoothing

the canonical functor such that the following diagram in 2-Cat commutes.



⊔
8 ∂S

⊔
8 S

Braids≤2 2-Braidsdouble
≤2

2-TL(S)

⊔
8 ι

r
2-Braidsdouble

≤2

0

⊔
8 generators

r
2-Braidsdouble

≤2

1

⊔
8 Smoothing

Smoothing

Smoothing

Proposition 4.3.1.13. The following diagram in 2-Cat commutes.

1Cat 2-Braidsdouble
≤2 × 2-Braidsdouble

≤2

2-TL(S)× 2-TL(S)

2-Braidsdouble
≤2 2-TL(S)

(1, 1)

Smoothing × Smoothing

⊗2-TL(S)

2

Smoothing

Corollary 4.3.1.14. The functor

2-Braidsdouble
≤2 2-TL(S)mult

Smoothing

exhibits M2-Braidsdouble as a monoidal datum for 2-TL(S)mult.

Notation 4.3.1.15. Appealing to Corollary 4.3.1.14, let

2-Braidsdouble 2-TL(S)mult
Smoothing

denote the canonical functor of strict monoidal cubical 2-categories to which the
functor

2-Braidsdouble
≤2 2-TL(S)

Smoothing

gives rise, by means of the universal property of 2-Braidsdouble.



Notation 4.3.1.16. Let us denote by Smoothing(TwoUnOnce) the canonical functor
of strict monoidal cubical 2-categories

F(∂S) 2-TL(S)mult

to which the functor

S 2-TL(S)

corresponding to the 2-arrow(
A2,t

5 ⊗ id
(
id(3)

))
⊕
(
A2,t

1 ⊗ τ
2,t
1

)
⊕
(
A2,t

6 ⊗ τ
2,t
2

)
⊕
(
A2,t

7 ⊗ τ
2,t
4

)
⊕
(
A2,t

2 ⊗ τ
2,t
5

)
⊕
(
A2,t

3 ⊗ τ
2,t
9

)
⊕
(
A2,t

8 ⊗ τ
2,t
10

)
.⊕
(
A2,t

4 ⊗ τ
2,t
12

)
Notation 4.3.1.17. Let us denote by Smoothing(OneOnceTwice) the canonical functor
of strict monoidal cubical 2-categories

F(∂S) 2-TL(S)mult

to which the functor

S 2-TL(S)

corresponding to the 2-arrow(
A2,t

1 ⊗ τ
2,t
1

)
⊕
(
A2,t

2 ⊗ τ
2,t
6

)
⊕
(
A2,t

3 ⊗ τ
2,t
7

)
⊕
(
A2,t

4 ⊗ τ
2,t
11

)
⊕
(
A2,t

5 ⊗ id
(
id(3)

))
⊕
(
A2,t

6 ⊗ τ
2,t
2

)
⊕
(
A2,t

7 ⊗ τ
2,t
3

)
⊕
(
A2,t

8 ⊗ τ
2,t
8

)
.

Notation 4.3.1.18. Let us denote by Smoothing(TwoUnTwice) the canonical functor
of strict monoidal cubical 2-categories

F(∂S) 2-TL(S)mult

to which the functor

S 2-TL(S)

corresponding to the 2-arrow(
A2,t

1 ⊗ τ
2,t
9

)
⊕
(
A2,t

2 ⊗ τ
2,t
12

)
⊕
(
A2,t

3 ⊗ τ
2,t
1

)
⊕
(
A2,t

4 ⊗ τ
2,t
5

)
⊕
(
A2,t

5 ⊗ τ
2,t
4

)
⊕
(
A2,t

6 ⊗ τ
2,t
10

)
⊕
(
A2,t

7 ⊗ id
(
id(3)

))
⊕
(
A2,t

8 ⊗ τ
2,t
2

)
.



Notation 4.3.1.19. Let us denote by Smoothing(OneTwiceOnce) the canonical functor
of strict monoidal cubical 2-categories

F(∂S) 2-TL(S)mult

to which the functor

S 2-TL(S)

corresponding to the 2-arrow(
A2,t

1 ⊗ τ
2,t
7

)
⊕
(
A2,t

2 ⊗ τ
2,t
11

)
⊕
(
A2,t

3 ⊗ τ
2,t
1

)
⊕
(
A2,t

4 ⊗ τ
2,t
6

)
⊕
(
A2,t

5 ⊗ τ
2,t
3

)
⊕
(
A2,t

6 ⊗ τ
2,t
8

)
⊕
(
A2,t

7 ⊗ id
(
id(3)

))
⊕
(
A2,t

8 ⊗ τ
2,t
2

)
.

Notation 4.3.1.20. Let us denote by Smoothing(TwoOnceUn) the canonical functor
of strict monoidal cubical 2-categories

F(∂S) 2-TL(S)mult

to which the functor

S 2-TL(S)

corresponding to the 2-arrow(
A2,t

1 ⊗ id
(
id(3)

))
⊕
(
A2,t

2 ⊗ τ
2,t
2

)
⊕
(
A2,t

3 ⊗ τ
2,t
4

)
⊕
(
A2,t

4 ⊗ τ
2,t
10

)
⊕
(
A2,t

5 ⊗ τ
2,t
1

)
⊕
(
A2,t

6 ⊗ τ
2,t
5

)
⊕
(
A2,t

7 ⊗ τ
2,t
9

)
⊕
(
A2,t

8 ⊗ τ
2,t
12

)
.

Notation 4.3.1.21. Let us denote by Smoothing(OneUnTwice) the canonical functor
of strict monoidal cubical 2-categories

F(∂S) 2-TL(S)mult

to which the functor

S 2-TL(S)

corresponding to the 2-arrow(
A2,t

1 ⊗ id
(
id(3)

))
⊕
(
A2,t

2 ⊗ τ
2,t
2

)
⊕
(
A2,t

3 ⊗ τ
2,t
3

)
⊕
(
A2,t

4 ⊗ τ
2,t
8

)
⊕
(
A2,t

5 ⊗ τ
2,t
1

)
⊕
(
A2,t

6 ⊗ τ
2,t
6

)
⊕
(
A2,t

7 ⊗ τ
2,t
7

)
⊕
(
A2,t

8 ⊗ τ
2,t
11

)
.



Notation 4.3.1.22. Let us denote by Smoothing(TwoTwiceUn) the canonical functor
of strict monoidal cubical 2-categories

F(∂S) 2-TL(S)mult

to which the functor

S 2-TL(S)

corresponding to the 2-arrow(
A2,t

1 ⊗ τ
2,t
2

)
⊕
(
A2,t

2 ⊗ id
(
id(3)

))
⊕
(
A2,t

3 ⊗ τ
2,t
10

)
⊕
(
A2,t

4 ⊗ τ
2,t
4

)
⊕
(
A2,t

5 ⊗ τ
2,t
5

)
⊕
(
A2,t

6 ⊗ τ
2,t
1

)
⊕
(
A2,t

7 ⊗ τ
2,t
12

)
⊕
(
A2,t

8 ⊗ τ
2,t
9

)
.

Notation 4.3.1.23. Let us denote by Smoothing(OneUnOnce) the canonical functor
of strict monoidal cubical 2-categories

F(∂S) 2-TL(S)mult

to which the functor

S 2-TL(S)

corresponding to the 2-arrow(
A2,t

1 ⊗ τ
2,t
2

)
⊕
(
A2,t

2 ⊗ id
(
id(3)

))
⊕
(
A2,t

3 ⊗ τ
2,t
8

)
⊕
(
A2,t

4 ⊗ τ
2,t
3

)
⊕
(
A2,t

5 ⊗ τ
2,t
6

)
⊕
(
A2,t

6 ⊗ τ
2,t
1

)
⊕
(
A2,t

7 ⊗ τ
2,t
11

)
⊕
(
A2,t

8 ⊗ τ
2,t
7

)
.

Notation 4.3.1.24. Let us denote by Smoothing(TwoOnceTwice) the canonical func-
tor of strict monoidal cubical 2-categories

F(∂S) 2-TL(S)mult

to which the functor

S 2-TL(S)

corresponding to the 2-arrow(
A2,t

1 ⊗ τ
2,t
12

)
⊕
(
A2,t

2 ⊗ τ
2,t
9

)
⊕
(
A2,t

3 ⊗ τ
2,t
5

)
⊕
(
A2,t

4 ⊗ τ
2,t
1

)
⊕
(
A2,t

5 ⊗ τ
2,t
10

)
⊕
(
A2,t

6 ⊗ τ
2,t
4

)
⊕
(
A2,t

7 ⊗ τ
2,t
2

)
⊕
(
A2,t

8 ⊗ id
(
id(3)

))
.



Notation 4.3.1.25. Let us denote by Smoothing(OneTwiceUn) the canonical functor
of strict monoidal cubical 2-categories

F(∂S) 2-TL(S)mult

to which the functor

S 2-TL(S)

corresponding to the 2-arrow(
A2,t

1 ⊗ τ
2,t
11

)
⊕
(
A2,t

2 ⊗ τ
2,t
7

)
⊕
(
A2,t

3 ⊗ τ
2,t
6

)
⊕
(
A2,t

4 ⊗ τ
2,t
1

)
⊕
(
A2,t

5 ⊗ τ
2,t
8

)
⊕
(
A2,t

6 ⊗ τ
2,t
3

)
⊕
(
A2,t

7 ⊗ τ
2,t
2

)
⊕
(
A2,t

8 ⊗ id
(
id(3)

))
.

Notation 4.3.1.26. Let us denote by Smoothing(TwoTwiceOnce) the canonical func-
tor of strict monoidal cubical 2-categories

F(∂S) 2-TL(S)mult

to which the functor

S 2-TL(S)

corresponding to the 2-arrow(
A2,t

1 ⊗ τ
2,t
10

)
⊕
(
A2,t

2 ⊗ τ
2,t
4

)
⊕
(
A2,t

3 ⊗ τ
2,t
2

)
⊕
(
A2,t

4 ⊗ id
(
id(3)

))
⊕
(
A2,t

5 ⊗ τ
2,t
12

)
⊕
(
A2,t

6 ⊗ τ
2,t
9

)
⊕
(
A2,t

7 ⊗ τ
2,t
5

)
⊕
(
A2,t

8 ⊗ τ
2,t
1

)
.

Notation 4.3.1.27. Let us denote by Smoothing(OneOnceUn) the canonical functor
of strict monoidal cubical 2-categories

F(∂S) 2-TL(S)mult

to which the functor

S 2-TL(S)

corresponding to the 2-arrow(
A2,t

1 ⊗ τ
2,t
8

)
⊕
(
A2,t

2 ⊗ τ
2,t
3

)
⊕
(
A2,t

3 ⊗ τ
2,t
2

)
⊕
(
A2,t

4 ⊗ id
(
id(3)

))
⊕
(
A2,t

5 ⊗ τ
2,t
11

)
⊕
(
A2,t

6 ⊗ τ
2,t
7

)
⊕
(
A2,t

7 ⊗ τ
2,t
6

)
⊕
(
A2,t

8 ⊗ τ
2,t
1

)
.



Notation 4.3.1.28. Let⊔
12 F(S) 2-TL(S)mult

⊔
Smoothing

denote the canonical functor such that the following hold.

(1) The following diagram in 2-Cat commutes.

F(S)
⊔

12 F(S)

2-TL(S)mult

i
F(S),twelve
1

⊔
12 Smoothing

Smoothing(TwoUnOnce)

(2) The following diagram in 2-Cat commutes.

F(S)
⊔

12 F(S)

2-TL(S)mult

i
F(S),twelve
2

⊔
12 Smoothing

Smoothing(OneOnceTwice)

(3) The following diagram in 2-Cat commutes.

F(S)
⊔

12 F(S)

2-TL(S)mult

i
F(S),twelve
3

⊔
12 Smoothing

Smoothing(TwoUnTwice)

(4) The following diagram in 2-Cat commutes.

F(S)
⊔

12 F(S)

2-TL(S)mult

i
F(S),twelve
4

⊔
12 Smoothing

Smoothing(OneTwiceOnce)



(5) The following diagram in 2-Cat commutes.

F(S)
⊔

12 F(S)

2-TL(S)mult

i
F(S),twelve
5

⊔
12 Smoothing

Smoothing(TwoOnceUn)

(6) The following diagram in 2-Cat commutes.

F(S)
⊔

12 F(S)

2-TL(S)mult

i
F(S),twelve
6

⊔
12 Smoothing

Smoothing(OneUnTwice)

(7) The following diagram in 2-Cat commutes.

F(S)
⊔

12 F(S)

2-TL(S)mult

i
F(S),twelve
7

⊔
12 Smoothing

Smoothing(TwoTwiceUn)

(8) The following diagram in 2-Cat commutes.

F(S)
⊔

12 F(S)

2-TL(S)mult

i
F(S),twelve
8

⊔
12 Smoothing

Smoothing(OneUnOnce)

(9) The following diagram in 2-Cat commutes.



F(S)
⊔

12 F(S)

2-TL(S)mult

i
F(S),twelve
9

⊔
12 Smoothing

Smoothing(TwoOnceTwice)

(10) The following diagram in 2-Cat commutes.

F(S)
⊔

12 F(S)

2-TL(S)mult

i
F(S),twelve
10

⊔
12 Smoothing

Smoothing(OneTwiceUn)

(11) The following diagram in 2-Cat commutes.

F(S)
⊔

12 F(S)

2-TL(S)mult

i
F(S),twelve
11

⊔
12 Smoothing

Smoothing(TwoTwiceOnce)

(12) The following diagram in 2-Cat commutes.

F(S)
⊔

12 F(S)

2-TL(S)mult

i
F(S),twelve
12

⊔
12 Smoothing

Smoothing(OneOnceUn)

Proposition 4.3.1.29. The following diagram in Mon(Cat) commutes.

⊔
12 F(∂S)

⊔
12 F(S)

2-Braidsdouble 2-TL(S)mult

⊔
12 ι

⊔
12 Smoothing

⊔
generators

Smoothing



Notation 4.3.1.30. Appealing to Proposition 4.3.1.29, let

2-Braids 2-TL(S)mult
Smoothing

denote the canonical functor of strict monoidal cubical 2-categories such that the
following diagram in Mon(2-Cat) commutes.

⊔
12 F(∂S)

⊔
12 F(S)

2-Braidsdouble 2-Braids

2-TL(S)mult

⊔
12 ι

r2-Braids
0

⊔
12 generators

r2-Braids
1

⊔
12 Smoothing

Smoothing

Smoothing

4.3.2. The Kauffman 2-bracket

Notation 4.3.2.1. Let FMon(S) denote the free strict monoidal cubical 2-category on
S.

Remark 4.3.2.2. Let F3−ring(S) denote the free 3-ring on I. Appealing to Fact 2.2.3.4,
we have that F3−ring(S) can be viewed as the free 3-ring on FMon(S).

Notation 4.3.2.3. For 1 ≤ j ≤ 2, let

F3−ring(S) T
TrS ◦ Smoothing ◦ Bubblejth(one half)

be the functor of 3-rings to which, by means of the universal property of F3−ring(S) as
the free 3-ring on FMon(S), the strict monoidal functor

FMo\(S) Tmult
TrS ◦ Smoothing ◦ Bubblejth(one half)

gives rise.

Notation 4.3.2.4. For 1 ≤ j ≤ 4, let

F3−ring(S) T
TrS ◦ Smoothing ◦ Saddlejth(one half)



be the functor of 3-rings to which, by means of the universal property of F3−ring(S) as
the free 3-ring on FMon(S), the strict monoidal functor

FMo\(S) Tmult
TrS ◦ Smoothing ◦ Saddlejth(one half)

gives rise.

Notation 4.3.2.5. For 1 ≤ j ≤ 12, let

F3−ring(S) T
TrS ◦ Smoothing ◦ Triplejth(one half)

be the functor of 3-rings to which, by means of the universal property of F3−ring(S) as
the free 3-ring on FMon(S), the strict monoidal functor

FMo\(S) Tmult
TrS ◦ Smoothing ◦ Triplejth(one half)

gives rise.

Notation 4.3.2.6. For 1 ≤ j ≤ 48, let

F3−ring(S) T
TrS ◦ Smoothing ◦ Tetrahedraljth(one half)

be the functor of 3-rings to which, by means of the universal property of F3−ring(S) as
the free 3-ring on FMon(S), the strict monoidal functor

FMo\(S) Tmult
TrS ◦ Smoothing ◦ Tetrahedraljth(one half)

gives rise.

Notation 4.3.2.7. For 1 ≤ j ≤ 2, let

F3−ring(S) T
TrS ◦ Smoothing ◦ Bubblejth(other half)

be the functor of 3-rings to which, by means of the universal property of F3−ring(S) as
the free 3-ring on FMon(S), the strict monoidal functor

FMo\(S) Tmult
TrS ◦ Smoothing ◦ Bubblejth(other half)

gives rise.



Notation 4.3.2.8. For 1 ≤ j ≤ 4, let

F3−ring(S) T
TrS ◦ Smoothing ◦ Saddlejth(other half)

be the functor of 3-rings to which, by means of the universal property of F3−ring(S) as
the free 3-ring on FMon(S), the strict monoidal functor

FMo\(S) Tmult
TrS ◦ Smoothing ◦ Saddlejth(other half)

gives rise.

Notation 4.3.2.9. For 1 ≤ j ≤ 12, let

F3−ring(S) T
TrS ◦ Smoothing ◦ Triplejth(other half)

be the functor of 3-rings to which, by means of the universal property of F3−ring(S) as
the free 3-ring on FMon(S), the strict monoidal functor

FMo\(S) Tmult
TrS ◦ Smoothing ◦ Triplejth(other half)

gives rise.

Notation 4.3.2.10. For 1 ≤ j ≤ 48, let

F3−ring(S) T
TrS ◦ Smoothing ◦ Tetrahedraljth(other half)

be the functor of 3-rings to which, by means of the universal property of F3−ring(S) as
the free 3-ring on FMon(S), the strict monoidal functor

FMo\(S) Tmult
TrS ◦ Smoothing ◦ Tetrahedraljth(other half)

gives rise.

Notation 4.3.2.11. Let

F3−ring(S) · · · FM3−ring(S)

⊔
66 FMon(S)

i
F3−ring(S),66
1 i

F3−ring(S),66
66

be a diagram in 2-Cat which defines a coproduct of 66 copies of F3−ring(S).



Notation 4.3.2.12. Let

⊔
66 F3−ring(S) T

⊔
66 Tr

S ◦ Smoothing ◦ R-moves(one half)

denote the canonical functor such that the following hold.

(1) The following diagram in 2-Cat commutes for 1 ≤ j ≤ 2.

F3−ring(S)
⊔

66 F3−ring(S)

T

i
F3−ring(S),66
j

⊔
66 Tr

S ◦ Smoothing ◦ R-moves(one half)
Bubblejth(one half)

(2) The following diagram in 2-Cat commutes for 1 ≤ j ≤ 4.

F3−ring(S)
⊔

66 F3−ring(S)

T

i
F3−ring(S),66
j

⊔
66 Tr

S ◦ Smoothing ◦ R-moves(one half)
Saddlejth(one half)

(3) The following diagram in 2-Cat commutes for 1 ≤ j ≤ 12.

F3−ring(S)
⊔

66 F3−ring(S)

T

i
F3−ring(S),66
j

⊔
66 Tr

S ◦ Smoothing ◦ R-moves(one half)
Triplejth(one half)

(4) The following diagram in 2-Cat commutes for 1 ≤ j ≤ 48.

F3−ring(S)
⊔

66 F3−ring(S)

T

i
F3−ring(S),66
j

⊔
66 Tr

S ◦ Smoothing ◦ R-moves(one half)
Tetrahedraljth(one half)



Notation 4.3.2.13. Let

⊔
66 F3−ring(S) T

⊔
66 Tr

S ◦ Smoothing ◦ R-moves(other half)

denote the canonical functor such that the following hold.

(1) The following diagram in 2-Cat commutes for 1 ≤ j ≤ 2.

F3−ring(S)
⊔

66 F3−ring(S)

T

i
F3−ring(S),66
j

⊔
66 Tr

S ◦ Smoothing ◦ R-moves(other half)
Bubblejth(other half)

(2) The following diagram in 2-Cat commutes for 1 ≤ j ≤ 4.

F3−ring(S)
⊔

66 F3−ring(S)

T

i
F3−ring(S),66
j

⊔
66 Tr

S ◦ Smoothing ◦ R-moves(other half)
Saddlejth(other half)

(3) The following diagram in 2-Cat commutes for 1 ≤ j ≤ 12.

F3−ring(S)
⊔

66 F3−ring(S)

T

i
F3−ring(S),66
j

⊔
66 Tr

S ◦ Smoothing ◦ R-moves(other half)
Triplejth(other half)

(4) The following diagram in 2-Cat commutes for 1 ≤ j ≤ 48.

F3−ring(S)
⊔

66 F3−ring(S)

T

i
F3−ring(S),66
j

⊔
66 Tr

S ◦ Smoothing ◦ R-moves(other half)
Tetrahedraljth(other half)



Notation 4.3.2.14. Appealing to Fact 2.1.3.16, let

⊔
66 F3−ring(S) T Tinv

TrS ◦ Smoothing ◦ R-moves(one half)

TrS ◦ Smoothing ◦ R-moves(other half)

qinv

be a coequaliser diagram in Ring(2-Cat).

Notation 4.3.2.15. Let us denote by

2-Braids Tinv
multK

the strict monoidal functor qinv ◦ TrS ◦ Smoothing.

Terminology 4.3.2.16. We refer to

2-Braids Tinv
multK

as the Kauffman 2-bracket.

Proposition 4.3.2.17. The following diagram in Mon(2-Cat) commutes.

⊔
66 FMon(S) 2-Braidsdouble

2-Braids Tinv
mult

⊔
66 (one half moves)

K
⊔

66 (other half moves)

K

Notation 4.3.2.18. Appealing to Proposition 4.3.2.17 and the universal property of
2-Braids/R-moves, let us denote by

2-Braids/R-moves Tinv
mult

K/R-moves

the canonical strict monoidal functor such that the following diagram in Mon(2-Cat)
commutes.

2-Braids 2-Braids/R-moves

Tinv
mult

qR−moves

K/R-moves
K



Terminology 4.3.2.19. We refer to the functor

2-Braids/R-moves Tinv
mult

K/R-moves

as the Kauffman 2-bracket invariant of 2-braids.

Remark 4.3.2.20. In our construction of K/R-moves, we defined Tinv by forcing the
Markov traces of the smoothings of both sides of every Roseman move to be equal.
This is conceptually correct, but, as in the construction we gave of the Kauffman
bracket invariant

Braids/R-moves Tinv,
K/R-moves

we might hope that, by making use of Proposition 2.1.3.21, it would suffice to force
the Markov traces of the smoothings of both sides of only some of Roseman move to
be equal.

Though we omit a formal proof, we believe that, by virtue of Proposition 2.1.3.21, it
suffices to force the Markov traces of the smoothings of the following Roseman moves
to become equal: one of the bubble moves, one of the saddle moves, and three of the
triple moves (such as Tripleone, Tripletwo, and Triplethree). We do not believe it necessary
to force the Markov traces of the smoothings of both sides of any of tetrahedral moves
to become equal. This is analogous to the fact that it is not necessary to force the
Markov traces of the smoothings of both sides of any of the R3 moves to become equal
in the construction of

Braids/R-moves Tinv.
K/R-moves

Remark 4.3.2.21. To arrive at an explicit description of Tinv, it suffices, given Remark
??, to calculate the Markov traces of the smoothings of the following Roseman moves
to become equal: one of the bubble moves, one of the saddle moves, and three of
the triple moves (such as Tripleone, Tripletwo, and Triplethree). Whilst we shall omit the
details, we believe that these calculations yield the following.

(1) We have that Smoothing ◦ Bubbleone(one half) is equal to the following 2-arrow
of TL(S).

(((
A2,d

1 ◦ver A
2,d
1

)
◦hor

(
A2,d

1 ◦ver A
2,d
1

))
⊗ id

(
id(2)

))
⊕
(((

A2,d
2 ◦ver A

2,d
2

)
◦hor

(
A2,d

2 ◦ver A
2,d
2

))
⊗
((
τLR ◦ver τUR

)
◦hor

(
τLL ◦ver τUL

)))



Hence TrS ◦ Smoothing ◦Bubbleone(one half) is equal to the following 2-arrow of T.

(
A2,d

1

)4 ⊕ (A2,d
2

)4
γ4

We have that TrS ◦ Smoothing ◦ Bubbleone(other half) is equal to the 2-arrow

id
(
id(2)

)
of TL(S). Hence TrS ◦ Smoothing ◦ Bubbleone(other half) is equal to the 2-arrow

1

of T.

(2) We have that Smoothing ◦ Saddleone(one half) is equal to the following 2-arrow
of TL(S).(((

A2,d
1 ◦ver A

2,d
1

)
◦hor

(
A2,d

1 ◦ver A
2,d
1

))
⊗ id

(
id(2)

))
⊕
(((

A2,d
2 ◦ver A

2,d
1

)
◦hor

(
A2,d

2 ◦ver A
2,d
1

))
⊗
(
τUR ◦hor τUL

))
⊕
(((

A2,d
1 ◦ver A

2,d
2

)
◦hor

(
A2,d

1 ◦ver A
2,d
2

))
⊗
(
τLR ◦hor τLL

))
⊕
(((

A2,d
2 ◦ver A

2,d
2

)
◦hor

(
A2,d

2 ◦ver A
2,d
2

))
⊗
((
τUR ◦ver τLR

)
◦hor

(
τUL ◦ver τLL

)))

Hence TrS ◦ Smoothing ◦ Saddleone(one half) is equal to the following 2-arrow of T.(
A2,d

1

)4 ⊕ ((A2,d
1

)2(
A2,d

2

)2 ⊕ (A2,d
1

)2(
A2,d

2

)2)
γ2 ⊕

(
A2,d

1

)4
γ4

We have that Smoothing ◦ Saddleone(other half) is equal to the following 2-arrow
of TL(S).(((

A2,d
2 ◦hor A

2,d
1

)
◦hor

(
A2,d

1 ◦hor A
2,d
2

))
⊗ id

(
id(2)

))
⊕

((((
A2,d

1 ◦hor A
2,d
2

)
◦hor

(
A2,d

1 ◦ver A
2,d
2

))
⊕
(((

A2,d
2 ◦hor A

2,d
1

)
◦hor

(
A2,d

2 ◦ver A
2,d
1

))
⊗
(
τUR ◦hor τLL

)))

⊕
(((

A2,d
1 ◦hor A

2,d
2

)
◦hor

(
A2,d

2 ◦ver A
2,d
1

))
⊗
((
τUR ◦hor τLL

)
◦hor

(
τUR ◦hor τLL

)))



Hence TrS ◦ Smoothing ◦ Saddleone(other half) is equal to the following 2-arrow of
T.

(
A2,d

1

)2(
A2,d

2

)2 ⊕ ((A2,d
1

)2(
A2,d

2

)2 ⊕ (A2,d
1

)2(
A2,d

2

)2)
γ2 ⊕

(
A2,d

1

)2(
A2,d

2

)2
γ4

(3) We have that Smoothing ◦Tripleone(one half) is equal to the following 2-arrow of



TL(S).

((
(A2,d

1 ◦ver A
2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
1 ) ◦hor (A2,t

1 ◦ver A
2,t
1 ) ◦hor (A2,d

2 ◦ver A
2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
2 )
)

⊗
(
id
(
id(3)

)))
⊕
((

(A2,d
2 ◦ver A

2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
2 ) ◦hor (A2,t

5 ◦ver A
2,t
5 ) ◦hor (A2,d

2 ◦ver A
2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
2 )
)

⊗
((

(τUR ⊗TL 1) ◦ver (τLR ⊗TL 1)
)
◦hor

(
τ 2,t1 ◦ver τ

2,t
1

)
◦hor

(
(1⊗TL τLL) ◦ver (1⊗TL τUL)

)))
⊕
((

(A2,d
1 ◦ver A

2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
1 ) ◦hor (A2,t

2 ◦ver A
2,t
2 ) ◦hor (A2,d

1 ◦ver A
2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
1 )
)

⊗
((

(1⊗TL τLR) ◦ver (1⊗TL τUR)
)
◦hor

(
τ 2,t2 ◦ver τ

2,t
2

)
◦hor

(
(τUL ⊗TL 1) ◦ver (τLL ⊗TL 1)

)))
⊕
((

(A2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
1 ) ◦hor (A2,t

3 ◦ver A
2,t
3 ) ◦hor (A2,d

2 ◦ver A
2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
2 )
)

⊗
((
τ 2,t4 ◦ver τ

2,t
3

)))
⊕
((

(A2,d
2 ◦ver A

2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
2 ) ◦hor (A2,t

7 ◦ver A
2,t
7 ) ◦hor (A2,d

2 ◦ver A
2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
2 )
)

⊗
((

(τUR ⊗TL 1) ◦ver (τLR ⊗TL 1)
)
◦hor

(
τ 2,t9 ◦ver τ

2,t
7

)
◦hor

(
(1⊗TL τLL) ◦ver (1⊗TL τUL)

)))
⊕
((

(A2,d
1 ◦ver A

2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
1 ) ◦hor (A2,t

4 ◦ver A
2,t
4 ) ◦hor (A2,d

1 ◦ver A
2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
1 )
)

⊗
((

(1⊗TL τLR) ◦ver (1⊗TL τUR)
)
◦hor

(
τ 2,t10 ◦ver τ

2,t
8

)
◦hor

(
(τUL ⊗TL 1) ◦ver (τLL ⊗TL 1)

)))
⊕
((

(A2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
2 ) ◦hor (A2,t

6 ◦ver A
2,t
6 ) ◦hor (A2,d

1 ◦ver A
2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
1 )
)

⊗
((

(τUR ⊗TL 1) ◦ver (1⊗TL τLR) ◦ver (1⊗TL τUR) ◦ver (τLR ⊗TL 1)
)
◦hor

(
τ 2,t5 ◦ver τ

2,t
6

)
◦hor

(
(τUL ⊗TL 1) ◦ver (1⊗TL τLL) ◦ver (1⊗TL τUL) ◦ver (τUR ⊗LL 1)

)))
⊕
((

(A2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
2 ) ◦hor (A2,t

8 ◦ver A
2,t
8 ) ◦hor (A2,d

1 ◦ver A
2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
1 )
)

⊗
((

(τUR ⊗TL 1) ◦ver (1⊗TL τLR) ◦ver (1⊗TL τUR) ◦ver (τLR ⊗TL 1)
)
◦hor

(
τ 2,t12 ◦ver τ

2,t
11

)
◦hor

(
(τUL ⊗TL 1) ◦ver (1⊗TL τLL) ◦ver (1⊗TL τUL) ◦ver (τUR ⊗LL 1)

)))



Hence TrS ◦ Smoothing ◦ Triplleone(one half) is equal to the following 2-arrow of T.(
A2,d

1

)4(
A2,d

2

)4(
A2,t

1

)2 ⊕ (A2,d
1

)4(
A2,d

2

)4(
A2,t

3

)2
γ2

⊕
((
A2,d

1

)4(
A2,d

2

)4(
A2,t

5

)2 ⊕ (A2,d
1

)4(
A2,d

2

)4(
A2,t

2

)2
⊕
(
A2,d

1

)4(
A2,d

2

)4(
A2,t

7

)2 ⊕ (A2,d
1

)4(
A2,d

2

)4(
A2,t

4

)2)
γ6

⊕
((
A2,d

1

)4(
A2,d

2

)4(
A2,t

6

)2 ⊕ (A2,d
1

)4(
A2,d

2

)4(
A2,t

8

)2)
γ10

We have that Smoothing ◦ Tripleone(other half) is equal to the following 2-arrow of
TL(S).((

(A2,d
2 ◦hor A

2,d
1 ) ◦hor (A2,d

2 ◦hor A
2,d
1 ) ◦hor (A2,d

2 ◦hor A
2,d
1 )
)
⊗ id

(
id(3)

))
⊕
(((

(A2,d
1 ◦hor A

2,d
2 ) ◦hor (A2,d

2 ◦hor A
2,d
1 ) ◦hor (A2,d

2 ◦hor A
2,d
1 )
)

⊕
(
(A2,d

2 ◦hor A
2,d
1 ) ◦hor (A2,d

2 ◦hor A
2,d
1 ) ◦hor (A2,d

1 ◦hor A
2,d
2 )
))

⊗
((

(τUR ⊗TL 1) ◦hor (τLL ⊗TL 1)
)))

⊕
((

(A2,d
1 ◦hor A

2,d
2 ) ◦hor (A2,d

1 ◦hor A
2,d
2 ) ◦hor (A2,d

2 ◦hor A
2,d
1 )
)

⊗
((

(τUR ⊗TL 1) ◦hor (τLL ⊗TL 1)
)
◦hor

(
(1⊗TL τUR) ◦hor (1⊗TL τLL)

)))
⊕
((

(A2,d
2 ◦hor A

2,d
1 ) ◦hor (A2,d

1 ◦hor A
2,d
2 ) ◦hor (A2,d

1 ◦hor A
2,d
2 )
)

⊗
((

(1⊗TL τUR) ◦hor (1⊗TL τLL)
)
◦hor

(
(τUR ⊗TL 1) ◦hor (τLL ⊗TL 1)

)))
⊕
((

(A2,d
1 ◦hor A

2,d
2 ) ◦hor (A2,d

1 ◦hor A
2,d
2 ) ◦hor (A2,d

1 ◦hor A
2,d
2 )
)

⊗
((

(τUR ⊗TL 1) ◦hor (τLL ⊗TL 1)
)
◦hor

(
(1⊗TL τUR) ◦hor (1⊗TL τLL)

)
◦hor

(
(τUR ⊗TL 1) ◦hor (τLL ⊗TL 1)

)))

Hence TrS ◦ Smoothing ◦Tripleone(other half) is equal to the following 2-arrow of T.(
A2,d

1

)3(
A2,d

2

)3 ⊕ ((A2,d
1

)3(
A2,d

2

)3 ⊕ (A2,d
1

)3(
A2,d

2

)3)
γ2

⊕
((
A2,d

1

)3(
A2,d

2

)3 ⊕ (A2,d
1

)3(
A2,d

2

)3)
γ4 ⊕

(
A2,d

1

)3(
A2,d

2

)3
γ6



(4) We have that Smoothing ◦ Tripletwo(one half) is equal to the following 2-arrow
of TL(S).

((
(A2,d

1 ◦ver A
2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
1 ) ◦hor (A2,t

2 ◦ver A
2,t
2 ) ◦hor (A2,d

1 ◦ver A
2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
1 )
)

⊗
(
id
(
id(3)

)))
⊕
((

(A2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
2 ) ◦hor (A2,t

6 ◦ver A
2,t
6 ) ◦hor (A2,d

1 ◦ver A
2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
1 )
)

⊗
((

(τUR ⊗TL 1) ◦ver (τLR ⊗TL 1)
)
◦hor

(
τ 2,t1 ◦ver τ

2,t
1

)
◦hor

(
(1⊗TL τLL) ◦ver (1⊗TL τUL)

)))
⊕
((

(A2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
1 ) ◦hor (A2,t

1 ◦ver A
2,t
1 ) ◦hor (A2,d

2 ◦ver A
2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
2 )
)

⊗
((

(1⊗TL τLR) ◦ver (1⊗TL τUR)
)
◦hor

(
τ 2,t2 ◦ver τ

2,t
2

)
◦hor

(
(τUL ⊗TL 1) ◦ver (τLL ⊗TL 1)

)))
⊕
((

(A2,d
1 ◦ver A

2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
1 ) ◦hor (A2,t

4 ◦ver A
2,t
4 ) ◦hor (A2,d

1 ◦ver A
2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
1 )
)

⊗
((
τ 2,t4 ◦ver τ

2,t
3

)))
⊕
((

(A2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
2 ) ◦hor (A2,t

8 ◦ver A
2,t
8 ) ◦hor (A2,d

1 ◦ver A
2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
1 )
)

⊗
((

(τUR ⊗TL 1) ◦ver (τLR ⊗TL 1)
)
◦hor

(
τ 2,t9 ◦ver τ

2,t
7

)
◦hor

(
(1⊗TL τLL) ◦ver (1⊗TL τUL)

)))
⊕
((

(A2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
1 ) ◦hor (A2,t

3 ◦ver A
2,t
3 ) ◦hor (A2,d

2 ◦ver A
2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
2 )
)

⊗
((

(1⊗TL τLR) ◦ver (1⊗TL τUR)
)
◦hor

(
τ 2,t10 ◦ver τ

2,t
8

)
◦hor

(
(τUL ⊗TL 1) ◦ver (τLL ⊗TL 1)

)))
⊕
((

(A2,d
2 ◦ver A

2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
2 ) ◦hor (A2,t

5 ◦ver A
2,t
5 ) ◦hor (A2,d

2 ◦ver A
2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
2 )
)

⊗
((

(τUR ⊗TL 1) ◦ver (1⊗TL τLR) ◦ver (1⊗TL τUR) ◦ver (τLR ⊗TL 1)
)
◦hor

(
τ 2,t5 ◦ver τ

2,t
6

)
◦hor

(
(τUL ⊗TL 1) ◦ver (1⊗TL τLL) ◦ver (1⊗TL τUL) ◦ver (τUR ⊗LL 1)

)))
⊕
((

(A2,d
2 ◦ver A

2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
2 ) ◦hor (A2,t

7 ◦ver A
2,t
7 ) ◦hor (A2,d

2 ◦ver A
2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
2 )
)

⊗
((

(τUR ⊗TL 1) ◦ver (1⊗TL τLR) ◦ver (1⊗TL τUR) ◦ver (τLR ⊗TL 1)
)
◦hor

(
τ 2,t12 ◦ver τ

2,t
11

)
◦hor

(
(τUL ⊗TL 1) ◦ver (1⊗TL τLL) ◦ver (1⊗TL τUL) ◦ver (τUR ⊗LL 1)

)))



Hence TrS ◦ Smoothing ◦ Triplletwo(one half) is equal to the following 2-arrow of T.(
A2,d

1

)4(
A2,d

2

)4(
A2,t

2

)2 ⊕ (A2,d
1

)4(
A2,d

2

)4(
A2,t

4

)2
γ2

⊕
((
A2,d

1

)4(
A2,d

2

)4(
A2,t

6

)2 ⊕ (A2,d
1

)4(
A2,d

2

)4(
A2,t

1

)2
⊕
(
A2,d

1

)4(
A2,d

2

)4(
A2,t

8

)2 ⊕ (A2,d
1

)4(
A2,d

2

)4(
A2,t

3

)2)
γ6

⊕
((
A2,d

1

)4(
A2,d

2

)4(
A2,t

5

)2 ⊕ (A2,d
1

)4(
A2,d

2

)4(
A2,t

7

)2)
γ10

We have that Smoothing ◦Tripletwo(other half) is equal to the following 2-arrow of
TL(S).((

(A2,d
2 ◦hor A

2,d
1 ) ◦hor (A2,d

2 ◦hor A
2,d
1 ) ◦hor (A2,d

1 ◦hor A
2,d
2 )
)
⊗ id

(
id(3)

))
⊕
(((

(A2,d
1 ◦hor A

2,d
2 ) ◦hor (A2,d

2 ◦hor A
2,d
1 ) ◦hor (A2,d

1 ◦hor A
2,d
2 )
)

⊕
(
(A2,d

2 ◦hor A
2,d
1 ) ◦hor (A2,d

2 ◦hor A
2,d
1 ) ◦hor (A2,d

2 ◦hor A
2,d
1 )
))

⊗
((

(τUR ⊗TL 1) ◦hor (τLL ⊗TL 1)
)))

⊕
((

(A2,d
1 ◦hor A

2,d
2 ) ◦hor (A2,d

1 ◦hor A
2,d
2 ) ◦hor (A2,d

1 ◦hor A
2,d
2 )
)

⊗
((

(τUR ⊗TL 1) ◦hor (τLL ⊗TL 1)
)
◦hor

(
(1⊗TL τUR) ◦hor (1⊗TL τLL)

)))
⊕
((

(A2,d
2 ◦hor A

2,d
1 ) ◦hor (A2,d

1 ◦hor A
2,d
2 ) ◦hor (A2,d

2 ◦hor A
2,d
1 )
)

⊗
((

(1⊗TL τUR) ◦hor (1⊗TL τLL)
)
◦hor

(
(τUR ⊗TL 1) ◦hor (τLL ⊗TL 1)

)))
⊕
((

(A2,d
1 ◦hor A

2,d
2 ) ◦hor (A2,d

1 ◦hor A
2,d
2 ) ◦hor (A2,d

2 ◦hor A
2,d
1 )
)

⊗
((

(τUR ⊗TL 1) ◦hor (τLL ⊗TL 1)
)
◦hor

(
(1⊗TL τUR) ◦hor (1⊗TL τLL)

)
◦hor

(
(τUR ⊗TL 1) ◦hor (τLL ⊗TL 1)

)))

Hence TrS ◦ Smoothing ◦Tripletwo(other half) is equal to the following 2-arrow of T.(
A2,d

1

)3(
A2,d

2

)3 ⊕ ((A2,d
1

)3(
A2,d

2

)3 ⊕ (A2,d
1

)3(
A2,d

2

)3)
γ2

⊕
((
A2,d

1

)3(
A2,d

2

)3 ⊕ (A2,d
1

)3(
A2,d

2

)3)
γ4 ⊕

(
A2,d

1

)3(
A2,d

2

)3
γ6



(5) We have that Smoothing ◦ Triplethree(one half) is equal to the following 2-arrow
of TL(S).

((
(A2,d

2 ◦ver A
2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
2 ) ◦hor (A2,t

5 ◦ver A
2,t
5 ) ◦hor (A2,d

2 ◦ver A
2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
2 )
)

⊗
(
id
(
id(3)

)))
⊕
((

(A2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
1 ) ◦hor (A2,t

1 ◦ver A
2,t
1 ) ◦hor (A2,d

2 ◦ver A
2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
2 )
)

⊗
((

(τUR ⊗TL 1) ◦ver (τLR ⊗TL 1)
)
◦hor

(
τ 2,t1 ◦ver τ

2,t
1

)
◦hor

(
(1⊗TL τLL) ◦ver (1⊗TL τUL)

)))
⊕
((

(A2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
2 ) ◦hor (A2,t

6 ◦ver A
2,t
6 ) ◦hor (A2,d

1 ◦ver A
2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
1 )
)

⊗
((

(1⊗TL τLR) ◦ver (1⊗TL τUR)
)
◦hor

(
τ 2,t2 ◦ver τ

2,t
2

)
◦hor

(
(τUL ⊗TL 1) ◦ver (τLL ⊗TL 1)

)))
⊕
((

(A2,d
2 ◦ver A

2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
2 ) ◦hor (A2,t

7 ◦ver A
2,t
7 ) ◦hor (A2,d

2 ◦ver A
2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
2 )
)

⊗
((
τ 2,t4 ◦ver τ

2,t
3

)))
⊕
((

(A2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
1 ) ◦hor (A2,t

3 ◦ver A
2,t
3 ) ◦hor (A2,d

2 ◦ver A
2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
2 )
)

⊗
((

(τUR ⊗TL 1) ◦ver (τLR ⊗TL 1)
)
◦hor

(
τ 2,t9 ◦ver τ

2,t
7

)
◦hor

(
(1⊗TL τLL) ◦ver (1⊗TL τUL)

)))
⊕
((

(A2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
2 ) ◦hor (A2,t

8 ◦ver A
2,t
8 ) ◦hor (A2,d

1 ◦ver A
2,d
1 ◦ver A

2,d
1 ◦ver A

2,d
1 )
)

⊗
((

(1⊗TL τLR) ◦ver (1⊗TL τUR)
)
◦hor

(
τ 2,t10 ◦ver τ

2,t
8

)
◦hor

(
(τUL ⊗TL 1) ◦ver (τLL ⊗TL 1)

)))
⊕
((

(A2,d
1 ◦ver A

2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
1 ) ◦hor (A2,t

2 ◦ver A
2,t
2 ) ◦hor (A2,d

1 ◦ver A
2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
1 )
)

⊗
((

(τUR ⊗TL 1) ◦ver (1⊗TL τLR) ◦ver (1⊗TL τUR) ◦ver (τLR ⊗TL 1)
)
◦hor

(
τ 2,t5 ◦ver τ

2,t
6

)
◦hor

(
(τUL ⊗TL 1) ◦ver (1⊗TL τLL) ◦ver (1⊗TL τUL) ◦ver (τUR ⊗LL 1)

)))
⊕
((

(A2,d
1 ◦ver A

2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
1 ) ◦hor (A2,t

4 ◦ver A
2,t
4 ) ◦hor (A2,d

1 ◦ver A
2,d
2 ◦ver A

2,d
2 ◦ver A

2,d
1 )
)

⊗
((

(τUR ⊗TL 1) ◦ver (1⊗TL τLR) ◦ver (1⊗TL τUR) ◦ver (τLR ⊗TL 1)
)
◦hor

(
τ 2,t12 ◦ver τ

2,t
11

)
◦hor

(
(τUL ⊗TL 1) ◦ver (1⊗TL τLL) ◦ver (1⊗TL τUL) ◦ver (τUR ⊗LL 1)

)))



Hence TrS ◦ Smoothing ◦Tripllethree(one half) is equal to the following 2-arrow of T.(
A2,d

1

)4(
A2,d

2

)4(
A2,t

5

)2 ⊕ (A2,d
1

)4(
A2,d

2

)4(
A2,t

7

)2
γ2

⊕
((
A2,d

1

)4(
A2,d

2

)4(
A2,t

1

)2 ⊕ (A2,d
1

)4(
A2,d

2

)4(
A2,t

6

)2
⊕
(
A2,d

1

)4(
A2,d

2

)4(
A2,t

3

)2 ⊕ (A2,d
1

)4(
A2,d

2

)4(
A2,t

8

)2)
γ6

⊕
((
A2,d

1

)4(
A2,d

2

)4(
A2,t

2

)2 ⊕ (A2,d
1

)4(
A2,d

2

)4(
A2,t

4

)2)
γ10

We have that Smoothing ◦ Triplethree(other half) is equal to the following 2-arrow
of TL(S).((

(A2,d
1 ◦hor A

2,d
2 ) ◦hor (A2,d

2 ◦hor A
2,d
1 ) ◦hor (A2,d

2 ◦hor A
2,d
1 )
)
⊗ id

(
id(3)

))
⊕
(((

(A2,d
2 ◦hor A

2,d
1 ) ◦hor (A2,d

2 ◦hor A
2,d
1 ) ◦hor (A2,d

2 ◦hor A
2,d
1 )
)

⊕
(
(A2,d

1 ◦hor A
2,d
2 ) ◦hor (A2,d

2 ◦hor A
2,d
1 ) ◦hor (A2,d

1 ◦hor A
2,d
2 )
))

⊗
((

(τUR ⊗TL 1) ◦hor (τLL ⊗TL 1)
)))

⊕
((

(A2,d
2 ◦hor A

2,d
1 ) ◦hor (A2,d

1 ◦hor A
2,d
2 ) ◦hor (A2,d

2 ◦hor A
2,d
1 )
)

⊗
((

(τUR ⊗TL 1) ◦hor (τLL ⊗TL 1)
)
◦hor

(
(1⊗TL τUR) ◦hor (1⊗TL τLL)

)))
⊕
((

(A2,d
1 ◦hor A

2,d
2 ) ◦hor (A2,d

1 ◦hor A
2,d
2 ) ◦hor (A2,d

1 ◦hor A
2,d
2 )
)

⊗
((

(1⊗TL τUR) ◦hor (1⊗TL τLL)
)
◦hor

(
(τUR ⊗TL 1) ◦hor (τLL ⊗TL 1)

)))
⊕
((

(A2,d
2 ◦hor A

2,d
1 ) ◦hor (A2,d

1 ◦hor A
2,d
2 ) ◦hor (A2,d

1 ◦hor A
2,d
2 )
)

⊗
((

(τUR ⊗TL 1) ◦hor (τLL ⊗TL 1)
)
◦hor

(
(1⊗TL τUR) ◦hor (1⊗TL τLL)

)
◦hor

(
(τUR ⊗TL 1) ◦hor (τLL ⊗TL 1)

)))

Hence TrS ◦ Smoothing ◦ Triplethree(other half) is equal to the following 2-arrow of
T. (

A2,d
1

)3(
A2,d

2

)3 ⊕ ((A2,d
1

)3(
A2,d

2

)3 ⊕ (A2,d
1

)3(
A2,d

2

)3)
γ2

⊕
((
A2,d

1

)3(
A2,d

2

)3 ⊕ (A2,d
1

)3(
A2,d

2

)3)
γ4 ⊕

(
A2,d

1

)3(
A2,d

2

)3
γ6
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A.1. Synthetic category theory

In Chapter 3, we make use of various constructions in Cat, the category of categories.
In fact, our work can be thought of as carried out in a synthetic theory of the category
of categories, namely in a formal language, such as a flavour of type theory, in which
various fundamental category theoretic notions are taken as primitive, and rules
are given which allow one to carry out various category theoretic constructions. In
particular, it can be carried out in any category admitting the same constructions as
Cat.

In this section, we outline informally those synthetic constructions and assumptions
governing Cat that we have in mind. We take as given, as we do throughout this work,
a meta-category theory allowing us to express those categorical notions we require.
This meta-category theory is, from a foundational point of view, constructive in a very
strong sense, and predicative. We assume that it has a notion of equality of functors
that is reflexive, symmetric, and transitive, as usual for such a notion. It is only in
Chapter 2 that we shall make use of our meta-category theory beyond the use of it
that we make in this appendix. In Chapter 3 we work entirely with Cat, whilst in
Chapter 4 we work entirely with 2-Cat, which we shall discuss in the next section.

Terminology A.1.1.1. We refer to an object of Cat as a category.

Remark A.1.1.2. In this section, when we refer to a category, we shall always mean a
category in this sense, rather than in the sense of our meta-category theory. Elsewhere
in this work, it will always be clear from the context which sense we have in mind.

Terminology A.1.1.3. We refer to an arrow of Cat as a functor.

Remark A.1.1.4. We adopt the same convention when referring to functors as that
described in Remark A.1.1.2 when referring to categories.

Assumption A.1.1.5. There is a category 1, which is a final object of Cat.

Terminology A.1.1.6. Let A be a category. We refer to a functor

1 A

as an object of A.

Assumption A.1.1.7. There is a category I, together with a functor

1 I0

and a functor

1 I.1



Terminology A.1.1.8. Let A be a category. We refer to a functor

I A

as an arrow of A.

Terminology A.1.1.9. Let A be a category. Let

I A
f

be an arrow of A. We refer to the object of A given by

1 I
f ◦ 0

as the source of f . We refer to the object of A given by

1 I
f ◦ 1

as the target of f .

Notation A.1.1.10. Let A be a category. Let f be an arrow of A. Let a0 denote the
source of f , and let a1 denote the target of f . We often denote f as follows.

a0 a1
f

Assumption A.1.1.11. There is a diagram

1 I

I I 0t1 I

0

rI0t1I01

rI0t1I1

in Cat which defines a co-cartesian square.

Assumption A.1.1.12. The category I 0t1 I has an arrow s such that the diagrams

1 I

I I 0t1 I

0

s0

rI0t1I1



and

1 I

I I 0t1 I

1

s0

rI0t1I0

in Cat commute.

Notation A.1.1.13. Let A be a category. Let f and g be arrows of A such that the
source of g is equal to the target of f . In other words, the following diagram in Cat
commutes.

1 I

I A

0

g1

f

We denote by g ◦ f the canonical functor such that the following diagram in Cat
commutes.

1 I

I I 0t1 I

A

0

rI0t1I01

rI0t1I1

g

f

g ◦ f

Remark A.1.1.14. It follows immediately from the definition of g ◦ f that the source
of g ◦ f is equal to the source of f , and that the target of g ◦ f is equal to the target
of g.

Terminology A.1.1.15. Let A be a category. Let f and g be arrows of A such that
the source of g is equal to the target of f . We refer to the arrow g ◦ f of A as the
composition of f and g.

Remark A.1.1.16. Let A be a category. Let f0 and g0 be arrows of A such that the
source of g0 is equal to the target of f0. Let f1 and g1 be arrows of A such that the
source of g1 is equal to the target of f1. Suppose that f0 is equal to f1, and that g0 is



equal to g1. It follows immediately from the universal property of I 0t1 I that g1 ◦ f1
is equal to g0 ◦ f0.

Assumption A.1.1.17. Let A be a category. Composition of arrows of A is associa-
tive. In other words, given arrows f , g, and h of A such that the source of g is equal
to the target of f , and the source of h is equal to the target of g, then (h ◦ g) ◦ f is
equal to h ◦ (g ◦ f).

Remark A.1.1.18. We shall implicitly make use of Assumption A.1.1.17 throughout
this work, without further mention, by omitting parentheses when we work with
compositions of three or more arrows of a category.

Assumption A.1.1.19. Let A be a category. Let a be an object of A. There is an
arrow of A whose source is a, and whose target is a.

Terminology A.1.1.20. Let A be a category. Let a be an object of A. We refer
to the arrow id(a) of A to which the rule of Assumption A.1.1.19 gives rise as the
identity arrow with respect to a.

Notation A.1.1.21. Let A be a category. Let a be an object of A. We denote the
identity arrow with respect to a by id(a).

Remark A.1.1.22. Let A be a category. Let a be an object of A. Appealing to
the universal property of 1, an arrow whose source is a and whose target is a can be
constructed, such that Assumption A.1.1.25 holds. Since we shall not make use of this
specific construction, we prefer to take the rule of Assumption A.1.1.19 as primitive.

Assumption A.1.1.23. Let A be a category. Let

a0 a1
f

be an arrow of A. Then f ◦ id(a0) is equal to f .

Assumption A.1.1.24. Let A be a category. Let

a0 a1
f

be an arrow of A. Then id(a1) ◦ f is equal to f .

Assumption A.1.1.25. Let A be a category. Let a0 and a1 be objects of A. Suppose
that a0 is equal to a1. Then id(a0) is equal to id(a1).

Assumption A.1.1.26. There is an object ∂I of Cat.

Assumption A.1.1.27. Let A be a category. Given a pair of objects of A, there is a
functor

∂I A.



Remark A.1.1.28. If we assume that there is a coproduct of two copies of 1 and
1 in Cat, then an object of Cat with the property of ∂I can be constructed, and
hence Assumption A.1.1.27 is not necessary. However, we prefer to make Assumption
A.1.1.27 in any case, as we shall only appeal directly to the rule it introduces.

Assumption A.1.1.29. Let A be a category. Let a0, a1, a2, and a3 be objects of A.
Let

∂I A
f

be the functor determined by a0 and a1 by means of the rule of Assumption A.1.1.27.
Let

∂I A
g

be the functor determined by a2 and a3 by means of the rule of Assumption A.1.1.27.
Suppose that a0 is equal to a2, and that a1 is equal to a3. Then f is equal to g.

Assumption A.1.1.30. The category Cat has those finite coproducts, coequalisers,
and pushouts that we make use of in this work.

Assumption A.1.1.31. The category Cat has those finite products which we make
use of in this work.

A.2. Synthetic cubical 2-category theory

In Chapter 4, we make use of various constructions in the category 2-Cat of cubical
2-categories. Just as our work with Cat can, as discussed in §A.1, be thought of as
carried out synthetically, so our work with 2-Cat can be thought of as carried out in a
synthetic theory of the category of cubical 2-categories. In particular, it can be carried
out in any category admitting the same constructions as
twocat.

In this section, we outline informally those synthetic constructions and assumptions
governing 2-Cat that we have in mind. We take as given the same meta-category
theory as mentioned at the beginning of §A.1. By a 2-category, we shall always mean
a strict 2-category.

Cubical 2-categories are also known as edge-symmetric double categories. The notion
of a cubical 2-category differs from that of a globular 2-category, the latter being by
far the better known of the two, in that the 2-arrows are thought of as squares rather
than as globes. A globular 2-category can be viewed as a cubical 2-category in which
all squares have identity vertical (say) arrows.

Nevertheless, if one assumes cubical 2-categories to be equipped with a little more
structure than we do here, that of connections, then the category of cubical 2-categories
is in fact equivalent to the category of globular 2-categories, as demonstrated for



instance in the paper [2] of Brown and Mosa. However, depending on the purpose to
which they are put, one of the two notions can be much more natural than the other.
As we explain elsewhere in this work, we regard the use of cubical rather than globular
2-categories as essential to the framework of Chapter 4.

Terminology A.1.2.1. We refer to an object of 2-Cat as a cubical 2-category.

Terminology A.1.2.2. We refer to an arrow of 2-Cat as a functor.

Remark A.1.2.3. Arrows of 2-Cat are also sometimes known as 2-functors, or strict
2-functors.

Assumption A.1.2.4. There is a cubical 2-category 1, which is a final object of
2-Cat.

Terminology A.1.2.5. Let A be a cubical 2-category. We refer to a functor

1 A

as an object of A.

Assumption A.1.2.6. There is a cubical 2-category I, together with a functor

1 I0

and a functor

1 I.1

Terminology A.1.2.7. Let A be a cubical 2-category. We refer to a functor

I A

as a 1-arrow of A.

Terminology A.1.2.8. Let A be a cubical 2-category. Let

I A
f

be a 1-arrow of A. We refer to the object of A given by

1 I
f ◦ 0

as the source of f . We refer to the object of A given by

1 I
f ◦ 1

as the target of f .



Notation A.1.2.9. Let A be a cubical 2-category. Let f be a 1-arrow of A. Let
a0 denote the source of f , and let a1 denote the target of f . We often denote f as
follows.

a0 a1
f

Assumption A.1.2.10. There is a diagram

1 I

I I 0t1 I

0

rI0t1I01

rI0t1I1

in 2-Cat which defines a co-cartesian square.

Assumption A.1.2.11. The cubical 2-category I 0t1 I has a 1-arrow s such that the
diagrams

1 I

I I 0t1 I

0

s0

rI0t1I1

and

1 I

I I 0t1 I

1

s1

rI0t1I0

in 2-Cat commute.

Notation A.1.2.12. Let A be a cubical 2-category. Let f and g be 1-arrows of A
such that the source of g is equal to the target of f . In other words, the following
diagram in 2-Cat commutes.

1 I

I A

0

g1

f



We denote by g ◦ f the canonical functor such that the following diagram in 2-Cat
commutes.

1 I

I I 0t1 I

A

0

rI0t1I01

rI0t1I1

g

f

g ◦ f

Remark A.1.2.13. It follows immediately from the definition of g ◦ f that the source
of g ◦ f is equal to the source of f , and that the target of g ◦ f is equal to the target
of g.

Terminology A.1.2.14. Let A be a cubical 2-category. Let f and g be 1-arrows of
A such that the source of g is equal to the target of f . We refer to the 1-arrow g ◦ f
of A as the composition of f and g.

Remark A.1.2.15. Let A be a cubical 2-category. Let f0 and g0 be 1-arrows of A
such that the source of g0 is equal to the target of f0. Let f1 and g1 be 1-arrows of
A such that the source of g1 is equal to the target of f1. Suppose that f0 is equal to
f1, and that g0 is equal to g1. It follows immediately from the universal property of
I 0t1 I that g1 ◦ f1 is equal to g0 ◦ f0.
Assumption A.1.2.16. Let A be a cubical 2-category. Then composition of 1-arrows
of A is associative. In other words, given 1-arrows f , g, and h of A such that the
source of g is equal to the target of f , and the source of h is equal to the target of g,
then (h ◦ g) ◦ f is equal to h ◦ (g ◦ f).

Remark A.1.2.17. We shall implicitly make use of Assumption A.1.2.16 throughout
this work, without further mention, by omitting parentheses when we work with
compositions of three or more arrows of a cubical 2-category.

Notation A.1.2.18. Let A be a cubical 2-category. Let a be an object of A. Let p
denote the canonical functor

I 1

to which the universal property of 1 gives rise. We denote the 1-arrow

I A
a ◦ p

of A by id(a).



Terminology A.1.2.19. Let A be a cubical 2-category. Let a be an object of A. We
refer to the 1-arrow id(a) of A as the identity 1-arrow with respect to a.

Remark A.1.2.20. It follows immediately from the definition of id(a), appealing to
the universal property of 1, that the source of id(a) is a, and that the target of id(a)
is a.

Assumption A.1.2.21. Let A be a cubical 2-category. Let

a0 a1
f

be a 1-arrow of A. Then f ◦ id(a0) is equal to f .

Assumption A.1.2.22. Let A be a cubical 2-category. Let

a0 a1
f

be a 1-arrow of A. Then id(a1) ◦ f is equal to f .

Assumption A.1.2.23. Let A be a cubical 2-category. Let a0 and a1 be objects of
A. Suppose that a0 is equal to a1. Then id(a0) is equal to id(a1).

Assumption A.1.2.24. There is an object ∂I of 2-Cat.

Assumption A.1.2.25. Let A be a cubical 2-category. Given a pair of objects of A,
there is a functor

∂I A.

Remark A.1.2.26. If we assume that there is a coproduct of two copies of 1 and 1
in 2-Cat, then an object of 2-Cat with the property of ∂I can be constructed, and
hence Assumption A.1.2.25 is not necessary. However, we prefer to make Assumption
A.1.2.25 in any case, in order to be able to appeal directly to the rule it introduces.

Assumption A.1.2.27. Let A be a cubical 2-category. Let a0, a1, a2, and a3 be
objects of A. Let

∂I A
f

be the functor determined by a0 and a1 by means of the rule of Assumption A.1.2.25.
Let

∂I A
g

be the functor determined by a2 and a3 by means of the rule of Assumption A.1.2.25.
Suppose that a0 is equal to a2, and that a1 is equal to a3. Then f is equal to g.



Remark A.1.2.28. Thus far, our synthetic theory of 2-Cat is identical, up to a couple
of changes of terminology, to the our synthetic theory of Cat. Thus, appealing to
Assumption A.1.2.71, any construction which can be carried out in Cat can be carried
out in 2-Cat.

Assumption A.1.2.29. There is a cubical 2-category S, together with four functors

1 S,

which we denote by nw, ne, sw, and se, and four functors

I S,

which we denote by n, s, w, and e, and whose sources and targets satisfy those equalities
which allow us to depict these 1-arrows as follows.

nw ne

sw se

n

ew

s

Terminology A.1.2.30. Let A be a cubical 2-category. We refer to a functor

S A

as a 2-arrow of A.

Terminology A.1.2.31. Let A be a cubical 2-category. Let σ be a 2-arrow of A. We
refer to the 1-arrow

I Aσ ◦ n

as the north face of σ. We refer to the 1-arrow

I Aσ ◦ e

as the east face of σ. We refer to the 1-arrow

I Aσ ◦ w

as the west face of σ. We refer to the 1-arrow

I Aσ ◦ s

as the south face of σ.



Notation A.1.2.32. Let A be a cubical 2-category. Let

S Aσ

be a 2-arrow of A. Let a0, a1, a2, and a3 be objects of A, and let f0, f1, f2, and f3
be 1-arrows of A whose sources and targets satisfy those equalities which allow us to
depict them as follows.

a0 a1

a2 a3

f0

f1f2

f3

Suppose that the north face of σ is equal to f0, that the east face of σ is equal to f1,
that the west face of σ is equal to f2, and that the south face of σ is equal to f3. We
then depict σ as follows.

a0 a1

σ

a2 a3

f0

f1f2

f3

Assumption A.1.2.33. There is a diagram

I S

S S nts S

n

rSntsS
0

s

rSntsS
1

in 2-Cat which defines a co-cartesian square.

Assumption A.1.2.34. The cubical 2-category S nts S has a 1-arrow sver such that
the diagrams

I S

S S nts S

n

svern

rSntsS
1



and

I S

S S nts S

s

svers

rSntsS
0

in 2-Cat commute.

Notation A.1.2.35. Let A be a cubical 2-category. Let σ and τ be 2-arrows of A
such that the north face of τ is equal to the south face of σ. In other words, the
following diagram in 2-Cat commutes.

I S

S S nts S

n

τs

σ

We denote by τ ◦ver σ the canonical functor such that the following diagram in 2-Cat
commutes.

I S

S S nts S

A

n

rSntsS
0s

rSntsS
1

τ

σ

τ ◦ver σ

Remark A.1.2.36. It follows immediately from the definition of τ ◦ver σ that the
north face of τ ◦ver σ is equal to the north face of σ, and that the south face of τ ◦ver σ
is equal to the south face of τ .

Terminology A.1.2.37. Let A be a cubical 2-category. Let σ and τ be 2-arrows of
A such that the north face of τ is equal to the south face of σ. We refer to the 2-arrow
τ ◦ver σ of A as the vertical composition of σ and τ .

Remark A.1.2.38. Let A be a cubical 2-category. Let σ0 and τ0 be 2-arrows of A
such that the north face of τ0 is equal to the south face of σ0. Let σ1 and τ1 be 2-arrows



of A such that the north face of τ1 is equal to the south face of σ1. Suppose that σ0
is equal to σ1, and that τ0 is equal to τ1. It follows immediately from the universal
property of S nts S that τ1 ◦ver σ1 is equal to τ0 ◦ver σ0.

Assumption A.1.2.39. Let A be a cubical 2-category. Then vertical composition of
2-arrows of A is associative. In other words, given 2-arrows σ, τ , and υ of A such that
the north face of τ is equal to the south face of σ, and the north face of υ is equal to
the south face of τ , then (υ ◦ver τ) ◦ver σ is equal to υ ◦ver (τ ◦ver σ).

Remark A.1.2.40. We shall implicitly make use of Assumption A.1.2.39 throughout
this work, without further mention, by omitting parentheses when we work with
vertical compositions of three or more 2-arrows of a cubical 2-category.

Assumption A.1.2.41. Let A be a cubical 2-category. Let σ and τ be 2-arrows of
A such that the north face of τ is equal to the south face of σ. Then the west face of
τ ◦ver σ is the composition of the west faces of σ and τ , and the east face of τ ◦ver σ is
the composition of the east faces of σ and τ .

Assumption A.1.2.42. Let A be a cubical 2-category. Let

a0 a1
f

be a 1-arrow of A. Then there is a 2-arrow of A whose north face is f , whose south
face is f , whose west face is id(a0), and whose east face is id(a0).

Terminology A.1.2.43. Let A be a cubical 2-category. Let

a0 a1
f

be a 1-arrow of A. We refer to the 2-arrow of A to which f gives rise, by means of the
rule of Assumption A.1.2.42, as the vertical identity with respect to f .

Notation A.1.2.44. Let A be a cubical 2-category. Let

a0 a1
f

be a 1-arrow of A. We denote the vertical identity with respect to f by idver(f).

Assumption A.1.2.45. Let A be a cubical 2-category. Let

a0 a1

σ

a2 a3

f0

f1f2

f3

be a 2-arrow of A. Then σ ◦ idver(f0) is equal to σ.



Assumption A.1.2.46. Let A be a cubical 2-category. Let

a0 a1

σ

a2 a3

f0

f1f2

f3

be a 2-arrow of A. Then idver(f3) ◦ σ is equal to σ.

Assumption A.1.2.47. Let A be a cubical 2-category. Let f0 and f1 be 1-arrows of
A. Suppose that f0 is equal to f1. Then idver(f0) is equal to idver(f1).

Assumption A.1.2.48. There is a diagram

I S

S S wte S

w

rSwteS
0

e

rSwteS
1

in 2-Cat which defines a co-cartesian square.

Assumption A.1.2.49. The cubical 2-category S wte S has a 1-arrow shor such that
the diagrams

I S

S S wte S

w

shorw

rSwteS
1

and

I S

S S wte S

e

shorw

rSwteS
0

in 2-Cat commute.

Notation A.1.2.50. Let A be a cubical 2-category. Let σ and τ be 2-arrows of A
such that the west face of τ is equal to the east face of σ. In other words, the following
diagram in 2-Cat commutes.



I S

S S wte S

w

τe

σ

We denote by τ ◦hor σ the canonical functor such that the following diagram in 2-Cat
commutes.

I S

S S wte S

A

w

rSwteS
0e

rSwteS
1

τ

σ

τ ◦hor σ

Remark A.1.2.51. It follows immediately from the definition of τ ◦hor σ that the
west face of τ ◦hor σ is equal to the west face of σ, and that the east face of τ ◦hor σ is
equal to the east face of τ .

Terminology A.1.2.52. Let A be a cubical 2-category. Let σ and τ be 2-arrows of
A such that the west face of τ is equal to the east face of σ. We refer to the 2-arrow
τ ◦hor σ of A as the horizontal composition of σ and τ .

Remark A.1.2.53. Let A be a cubical 2-category. Let σ0 and τ0 be 2-arrows of A
such that the west face of τ0 is equal to the east face of σ0. Let σ1 and τ1 be 2-arrows
of A such that the west face of τ1 is equal to the east face of σ1. Suppose that σ0
is equal to σ1, and that τ0 is equal to τ1. It follows immediately from the universal
property of S wte S that τ1 ◦hor σ1 is equal to τ0 ◦hor σ0.

Assumption A.1.2.54. Let A be a cubical 2-category. Then horizontal composition
of 2-arrows of A is associative. In other words, given 2-arrows σ, τ , and υ of A such
that the west face of τ is equal to the east face of σ, and the north face of υ is equal
to the south face of τ , then (υ ◦hor τ) ◦hor σ is equal to υ ◦hor (τ ◦hor σ).

Remark A.1.2.55. We shall implicitly make use of Assumption A.1.2.54 throughout
this work, without further mention, by omitting parentheses when we work with
horizontal compositions of three or more 2-arrows of a cubical 2-category.



Assumption A.1.2.56. Let A be a cubical 2-category. Let σ and τ be 2-arrows of
A such that the west face of τ is equal to the east face of σ. Then the north face of
τ ◦hor σ is the composition of the north faces of σ and τ , and the south face of τ ◦hor σ
is the composition of the south faces of σ and τ .

Assumption A.1.2.57. Let A be a cubical 2-category. Let

a0 a1
f

be a 1-arrow of A. Then there is a 2-arrow of A whose west face is f , whose east face
is f , whose north face is id(a0), and whose south face is id(a1).

Terminology A.1.2.58. Let A be a cubical 2-category. Let

a0 a1
f

be a 1-arrow of A. We refer to the 2-arrow of A to which f gives rise, by means of the
rule of Assumption A.1.2.57, as the horizontal identity with respect to f .

Notation A.1.2.59. Let A be a cubical 2-category. Let

a0 a1
f

be a 1-arrow of A. We denote the horizontal identity with respect to f by idhor(f).

Assumption A.1.2.60. Let A be a cubical 2-category. Let

a0 a1

σ

a2 a3

f0

f1f2

f3

be a 2-arrow of A. Then σ ◦ idhor(f2) is equal to σ.

Assumption A.1.2.61. Let A be a cubical 2-category. Let

a0 a1

σ

a2 a3

f0

f1f2

f3

be a 2-arrow of A. Then idhor(f1) ◦ σ is equal to σ.



Assumption A.1.2.62. Let A be a cubical 2-category. Let f0 and f1 be 1-arrows of
A. Suppose that f0 is equal to f1. Then idhor(f0) is equal to idhor(f1).

Assumption A.1.2.63. Let A be a cubical 2-category. Let σ0, σ1, σ2, and σ3 be
2-arrows of A such that we have those equalities of faces which allow us to depict these
2-arrows as follows. We omit labels for the objects and 1-arrows.

σ0 σ1

σ2 σ3

Then the 2-arrow
(σ3 ◦hor σ2) ◦ver (σ1 ◦hor σ0)

of A is equal to the 2-arrow

(σ3 ◦ver σ1) ◦hor (σ2 ◦hor σ0)

of A.

Terminology A.1.2.64. The rule which Assumption A.1.2.63 introduces is known
as the interchange or exchange axiom.

Remark A.1.2.65. We shall implicitly make use of Assumption A.1.2.63, sometimes
in combination with Assumption A.1.2.39 and/or Assumption A.1.2.54, throughout this
work, without further mention, in the form that the 2-arrows obtained by composing,
also known as pasting, together an m by n rectangular grid of 2-arrows in any of the
possible ways are all equal, allowing us to omit to single out one of these possibilities.

Assumption A.1.2.66. There is a cubical 2-category ∂S.

Assumption A.1.2.67. Let A be a cubical 2-category. Let f0, f1, f2, and f3 be
1-arrows of A whose sources and targets satisfy those equalities which allow us to
depict them as follows.

a0 a1

a2 a3

f0

f1f2

f3

There is a functor

∂S A.



Remark A.1.2.68. If we assume that we have certain finite colimits involving 1 and
I in 2-Cat, then an object of 2-Cat with the property of ∂S can be constructed, and
hence Assumption A.1.2.67 is not necessary. However, we prefer to make Assumption
A.1.2.67 in any case, in order to be able to appeal directly to the rule it introduces.

Assumption A.1.2.69. Let A be a cubical 2-category. Let f0, f1, f2, and f3 be
1-arrows of A whose sources and targets satisfy those equalities which allow us to
depict them as follows.

a0 a1

a2 a3

f0

f1f2

f3

Let g0, g1, g2, and g3 be 1-arrows of A whose sources and targets satisfy those equalities
which allow us to depict them as follows.

b0 b1

b2 b3

g0

g1g2

g3

Let

∂S Aσ

be the functor determined by f0, f1, f2, and f3 by means of the rule of Assumption
A.1.2.67. Let

∂S Aτ

be the functor determined by g0, g1, g2, and g3 by means of the rule of Assumption
A.1.2.67. Suppose that fj is equal to gj for every 1 ≤ j ≤ 4. Then σ is equal to τ .

Notation A.1.2.70. We denote by ι the functor

∂S S

determined by the 1-arrows n, e, w, and s of S.

Assumption A.1.2.71. The category 2-Cat has those finite coproducts, coequalisers,
and pushouts that we make use of in this work.

Assumption A.1.2.72. The category 2-Cat has those finite products which we make
use of in this work.
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