
Parallel Solutions of Stochastic
Differential Equations

Agnes Koi Alexandersen

Master of Science in Physics and Mathematics

Supervisor: Arvid Næss, MATH

Department of Mathematical Sciences

Submission date: June 2015

Norwegian University of Science and Technology

Parallel Solutions of Stochastic
Differential Equations

Author:

Agnes Koi Alexandersen

Supervisor:

Arvid Naess

Department:

Department of Mathematical Science

June 2015

http://www.math.ntnu.no/~arvidn

“As far as the laws of mathematics refer to reality, they are not certain, and as far as

they are certain, they do not refer to reality.”

Albert Einstein

Preface

This report is my master thesis for the conclusion for the Master’s gram Industrial

Mathematics at the Norwegian University of Science and Technology (NTNU).

I would like to thank my supervisor Professor Arvid Næss for general guidance during the

semester, Lill Harriet Koi and Torodd Eriksen for proofreading this thesis and Professor

Anne Cathrine Elster and Thomas Løfsgaard Falch from the Department of Computer

and Information Science for helping me with some issues regarding GPU programming

and giving me access to one of their servers.

Abstract

A generalised Lotka-Volterra model for a pair of interacting populations of predator

and pray is studied with and without the predator being harvested. The Monte Carlo

method is introduced to propagate the initial distributions of the populations. The main

purpose of this work is to develop a more time efficient solution to the Lotka-Volterra

model and to see whether or not this is a good option to the path integration method.

To compare runtimes the algorithm is implemented using the Message Passing Interface

as well as on a GPU using CUDA.

Abbreviations

SDE Stochastic Differential Equation

MPI Message Passing Interface

CUDA Compute Unified Device Architecture

PDF Probability Density Function

GPU Graphics Processing Unit

API Application Programming Interface

iv

Symbols

R The set of real numbers

R+ The set of real positive numbers

C The set of complex numbers

Rn The cartesian product R× R× · · · × R︸ ︷︷ ︸
n times

v

Contents

Preface ii

Abstract iii

Abbreviations iv

Symbols v

Contents vi

1 Preliminaries 1

1.1 Basic Properties [1] . 1

1.2 Stochastic Processes [2] . 2

1.2.1 Markov Chains . 2

1.3 Brownian Motion [3] . 3

1.4 The Stochastic Differential Equation . 4

1.5 Itō’s Lemma . 4

1.6 Existence and Uniqueness of Solution [4] 5

1.7 The Fokker-Planck Equation [5] . 6

2 The Lotka-Volterra model 8

2.1 Introduction . 8

2.2 Harvesting . 10

2.3 Equilibrium Points and Stationary Solutions 12

3 Monte Carlo Methods 15

3.1 Introduction . 15

3.1.1 Random Numbers . 16

3.1.2 Monte Carlo Method [6] . 17

3.1.2.1 Weak Law of Large Numbers (WLLN) 18

3.1.2.2 The Strong Law of Large Numbers (SLLN) 19

3.1.2.3 Rate of Convergence . 19

3.1.2.4 Error estimates . 21

3.1.3 Kinetic Monte Carlo Method [7] 22

4 Parallel Computing 29

4.1 Introduction [8] [9] . 29

4.1.1 Terminology . 30

4.1.2 Speedup, Efficiency and Scalability 32

vi

4.1.3 Amdahl’s Law [8] . 33

4.1.4 Gustafson-Barsis’ law [8] . 35

4.2 Memory . 37

4.2.0.1 Data Structure Alignment 38

4.2.1 Shared Memory . 38

4.2.1.1 OpenMP [10] . 39

4.2.2 Distributed Memory . 39

4.2.2.1 MPI [11] . 40

4.2.3 CUDA [12] [13] . 41

4.2.4 Hybrid . 44

4.3 Parallel Monte Carlo . 44

4.3.1 MPI . 45

4.3.2 CUDA . 49

4.4 Results . 51

4.4.1 CUDA VS MPI . 51

4.4.2 Accuracy . 52

5 Conclusion 55

5.1 Summary . 55

5.1.1 Performance . 55

5.2 Further Research . 56

5.2.1 Code Optimisation . 56

5.2.2 Extend the Model . 57

A Source code 58

Bibliography 82

Chapter 1

Preliminaries

1.1 Basic Properties [1]

Let Ω be the sample space and A be an event in Ω. A probability has the following

properties

1. 0 ≤ P{A} ≤ 1,

2. P{Ω} = 1,

3. For each sequence A1, A2, . . . of mutually disjoint events the following holds

P
{ ∞⋃
i=1

Ai

}
=
∞∑
i=1

P{A}.

A probability density function (PDF) is a function that describes the likelihood for this

random variable to take on a given value. The PDF, P (x), of a continuous distribution

is defined as the derivative of the (cumulative) distribution function D(x),

D′(x) =
[
P (x)

]x
−∞

= P (x)− P (−∞) = P (x),

which implies that

D(x) = P (X ≤ x) =

∫ x

−∞
Pξdξ.

1

Chapter 1. Preliminaries 2

The PDF of the normal distribution is given by

f(x, µ, σ) =
1√

2πσ2
e−

(x−µ)2

2σ2 ,

where µ is the expectation and σ is the standard deviation of the distribution.

A key tool in the analysis of sums of independent random variables is the concept of

characteristic functions.

Definition 1.1. Given an Rd-valued random vector
−→
Z , the characteristic function of

−→
Z is given by

c(θ) = E
[
eiθ
−→
Z
]
,

for θ ∈ Rd.

Remark 1.1. When
−→
Z has a probability density function f , the characteristic function

is essentially its Fourier transform. i.e

c(θ) =

∫
Rd
eiθ
−→
Z f(
−→
Z)d
−→
Z .

1.2 Stochastic Processes [2]

A stochastic process is a mathematical model that evolves over time in a probabilistic

manner. It is a collection of random variables, representing the evolution of some system

of random values over time. It describes a process which, given an initial condition, can

evolve in several and often infinitely many directions. In this section some of the basic

concepts of probability theory is reviewed. We start by defining the concept of a Markov

chain which will be very important later on.

1.2.1 Markov Chains

A sequence x1, x2, . . . of random elements of some set is a Markov chain if the conditional

distribution of xn+1 given x1, x2, . . . , xn depends on xn only. The state space of the

markov chain is the set in which the xi take values. If the conditional distribution

of xn+1 given xn does not depend on n we say that the Markov chain has stationary

Chapter 1. Preliminaries 3

transition probabilities. This is the kind of Markov chains which will be used in the

Monte Carlo method introduced later in this report.

Definition 1.2. If for times 0 ≤ t1 < t2 < · · · < tm < tm+1 < ∞ with corresponding

spatial points x1, x2, . . . , xm ∈ Rn we have the equality

P (Xtm+1 ∈ S | Xt1 = x1 ∩ · · · ∩Xtm = xm) = P (Xtm+1 ∈ S | Xtm = xm), ∀S ∈ B(Rn),

the stochastic process Xt is called a Markov process. B(Rn) is the Borel set. If the same

property holds for non-negative integer times, the stochastic process is called a Markov

chain.

1.3 Brownian Motion [3]

The specific stochastic process which we will study in this project is a Brownian motion.

Definition 1.3. A real-valued stochastic process {B(t) : t ≥ 0} is called a Brownian

motion with start in x ∈ R if the following holds:

1. B0 = x.

2. The process has independent increments, i.e, for all times 0 ≤ t1 ≤ t2 ≤ · · · ≤

tn the increments B(tn) − B(tn−1), B(tn−1) − B(tn−2) , . . . , B(t2) − B(t1) are

independent random variables.

3. For all t ≥ 0 and h > 0, the increments B(t+ h)− B(t) are normally distributed

with expectation zero and variance h.

4. Almost surely, the function t→ B(t) is continuos.

We say that {B(t) : t ≥ 0} is a standard Brownian motion if x = 0.

One of the crucial facts about Brownian motion is that

(dB)2 = dt.

Chapter 1. Preliminaries 4

To partially justify this statement we compute the expected value of (Bt+δ −Bt)2:

E
[
(Bt+δ −Bt)2

]
= Var

[
(Bt+δ −Bt)

]
= δ.

1.4 The Stochastic Differential Equation

Throughout, the stochastic differential equations (SDE) will be interpreted in the Itô

sense. The class of SDE considered is of the following form

dYt = µ(Yt, t)dt+ σ(Yt, t)dWt, (1.1)

where Yt = (Y1,t, . . . , Yn,t)
T is the (n-dimensional) state space vector processes, Wt =

(W1,t, . . . ,Wm,t)
T is a standard (unit) scalar or vector (m-dimensional) Browninan mo-

tion process depending on the type of system being studied. The terms µ and σ are

often referred to as the drift term and the diffusion term, respectively.

By observing that in the absence of the term σ in (1.1) the solution Yt would have a

purely deterministic behaviour and in the absence of µ, dYt would be a pure white noise

process.

1.5 Itō’s Lemma

If a stochastic variable Yt satisfies the SDE given in (1.1), then given any function f(Yt, t)

which is twice differentiable with a continuous second derivative, we can write (by [14,

p.13] [15])

df(Yt, t) =

[(
∂

∂t
+ µ(Yt, t)

∂

∂Yt
+

1

2
σ2(Yt, t)

∂2

∂Y 2
t

)
f(Yt, t)

]
dt

+

[
σ(Yt, t)

∂

∂Yt
f

]
dWt.

(1.2)

Proof. A Taylor series expansion on f(Yt, t) yields

df(Yt, t) =

(
∂

∂Yt
dYt +

∂

∂t
dt+

1

2

∂2

∂Y 2
t

dY 2
t +

∂2

∂Yt∂t
dYtdt+

1

2

∂2

∂t2
+ . . .

)
f(Yt, t). (1.3)

Chapter 1. Preliminaries 5

The increment of the Wiener process is normally distributed with mean equal to zero

and variance equal to dt and we can hence write dWt = ε
√
dt. Introducing µ = µ(Yt, t)

and σ = σ(Yt, t) we can express (dYt)
2 as

(dYt)
2 = (µdt+ σdWt)

2 = µ2dt2 + σ2(dWt)
2 + 2µσdtdWt ≈ σ2(dWt)

2 = σ2ε2dt.

It can be shown that the variance of ε2dt is of order dt2 and that as a result of this, ε2dt

becomes nonstochastic and equal to its expected value of dt as dt tends to zero. Taking

limits as dYt and dt tend to zero in (1.3) and using this last result we obtain

df(Yt, t) =

(
∂

∂Yt
dYt +

∂

∂t
dt+

1

2

∂2

∂Y 2
t

σ2dt

)
f(Yt, t).

Substituting for dYt from (1.1) yields (1.2) and the proof is complete.

1.6 Existence and Uniqueness of Solution [4]

The conditions for existence and uniqueness of a solution of a SDE is given by the

following theorem:

Theorem 1.1. If the function µ, σ : Rn× [t0, T]→ Rn satisfies the following conditions

1. µ(y, t) and σ(y, t) are jointly L2-measurable in (y, t) ∈ Rn × [t0, T].

2. There exists a constant K > 0 such that

‖ µ(y, t)− µ(x, t) ‖ ≤ K ‖ y − x ‖,

‖ σ(y, t)− σ(x, t) ‖ ≤ K ‖ y − x ‖,

for all t ∈ [t0, T] and x, y ∈ Rn.

Chapter 1. Preliminaries 6

3. There exists a constant D > 0 such that

‖ µ(y, t) ‖2 ≤ D2(1+ ‖ y ‖2)

‖ σ(y, t) ‖2 ≤ D2(1+ ‖ y ‖2)

.

and in addition Yt0 is At0-measurable with E(‖ Yt0 ‖) <∞, the SDE (1.1) has a pathwise

unique solution Yt on [t0, T] with

sup
t0≤t≤T

E(‖ Yt ‖)2 <∞.

The last two requirements puts severe restrictions on the functions µ and σ. If the

solution is contained in some bounded closed subset of Rn and µ and σ are bounded

continuous functions with bounded derivatives on the same subset, then µ and σ satisfy

all the requirements. We will here forth assume that this holds such that a unique

solution of the SDE exists.

1.7 The Fokker-Planck Equation [5]

The Fokker-Planck (FP) equation describes physically the probability density of the

velocity of a particle. For the itō process given by the SDE

dXt = µ(Xt, t)dt+
√

2D(Xt, t)dWt,

where µ(Xt, t) is the drift term, D(Xt, t) is the diffusion coefficient and Wt is a Wiener

process, the one-dimensional FP equation for the PDF, f(x, t), of the random variable

Xt is given by

∂

∂t
f(x, t) = − ∂

∂x
[µ(x, t)f(x, t)] +

∂2

∂x2
[D(x, t)f(x, t)].

This can be extended to higher dimensions:

∂

∂t
f(x, t) = −

n∑
i=1

∂

∂xi
[µi(x, t)f(x, t)] +

n∑
i=1

n∑
j=1

∂2

∂xi∂xj
[Dij(x, t)f(x, t)]

Chapter 1. Preliminaries 7

where µ(Xt, t) is the drift vector and D(Xt, t) is the diffusion matrix.

Chapter 2

The Lotka-Volterra model

2.1 Introduction

The Lotka-Volterra (LV) model is the simplest model of predator-prey interactions. It

is based on linear per capita growth rates, and is given as

U̇ = −mU + kβUV,

V̇ = αV − βUV.
(2.1)

The model (2.1) describes oscillatory behaviour of the population sizes of two nonlinearly

interacting species (predator-prey or parasite-host pairs). In this case U(t) and V (t) are

the population sizes of the predator (or parasites) and prey (or host), respectively and

U̇(t) and V̇ (t) represents their growth rates over time. The preys are assumed to have

unlimited food supply, and to reproduce exponentially unless subject to predatation.

The term with α represents this exponential growth. mU represents the loss rate of the

predators due to either natural death or emigration and it leads to an exponential decay

in the absence of prey. The term βUV represents rate of predation upon the prey which

is assumed to be proportional to the rate at which the predators and the prey meet.

kβUV is the growth rate of the predator population.

The generalized Lotka-Volterra model can be governed by the following pair of differen-

tial equations:

8

Chapter 2. The Lotka-Volterra model [16] 9

U̇ = −mU + kβUV,

V̇ = αV [1 + h(t)]− βUV − γV 2.
(2.2)

The function h(t) simulates the influence of temporal variation in the environmental

conditions through those of the prey’s reproduction rate α. The term with V 2 governs

self-limitation in the growth of the prey population size in the absence of predators.

From the standpoint of biology we are only interested in the dynamics of model (2.2) in

the closed first quadrant R+ × R+.

The simplest model of this kind is given by

h(t) = ξ(t), (2.3)

where h(t) is a zero-mean ”physical” Gaussian white noise with the following properties

• 〈ξ(t)〉 = 0.

• 〈ξ(t)ξ(t+ τ)〉 = Dξδ(τ).

where angular brackets denote probabilistic averaging. Dξ is a positive constant related

to the strength of the diffusion process and δ(·) is the Dirac delta function. This model

only accounts for purely random variations. The system (2.2) and (2.3) may be studied

using the theory of Markov processes, which leads to the Fokker-Planck-Kolmogrov

(FKP) partial differential equation for the joint probability density function (PDF) of

the system’s state variables. It s possible to find an analytical solution to the specific

FKP equation for the stationary PDF pUV (u, v) of U(t) and V (t) corresponding to the

system (2.2) and (2.3).

Thus it seems appropriate to study the system (2.2) for a random h(t) with some ”hid-

den” periodicity, or for a periodic h(t) with some random disorder. One approach implies

just simple addition of a zero-mean Gaussian white noise ξ(t), to the sinusoid, i.e.,

h(t) = λ sin νt+ ξ(t). (2.4)

Chapter 2. The Lotka-Volterra model [16] 10

Another approach implies random white-noise temporal variation in the phase of the

sinusoid, i.e.,

h(t) = λ sinZ(t),

Ż = ν + ξ(t),
(2.5)

where ξ(t) is as mentioned above.

2.2 Harvesting

Threshold policy (TP) is a way to control the population dynamics. By introducing

harvesting every time the population is above a certain threshold, and removing it once

the population falls below that level, the population sizes can be controlled. There are

several ways to model the harvesting and the general model is given by

U̇ = −mU + kβUV − h1,

V̇ = αV [1 + h(t)]− βUV − γV 2 − h2,

where hi, i = 1, 2 are exploited terms of ith species standing for harvesting. We will now

have a closer look at this function and how it affects the dynamics of the system. Let

u denote the population of the species, T the population threshold and ε the harvesting

rate, a simple model for the harvesting would be

φ(u) =

 0 : u < T

ε : u ≥ T.

This function is discontinuous at u = T and is therefore not suitable for real-life appli-

cations. Another approach is to introduce a gradual increase in the harvesting rate as

the population increases above the threshold. Let ε denote the maximal harvesting rate

and α the threshold for where the maximal harvesting starts. The new model is given

by

Chapter 2. The Lotka-Volterra model [16] 11

ψ(u) =

0 : u < T

ε(u−T)
α−T : T ≥ u < α

ε : u ≥ α.

The last approach we will give here is to introduce a gradual continuos increase in the

harvesting rate, i.e.

H(u) =

 0 : u < T

h(u−T)
h+(u−T) : u ≥ T,

where h is the upper limit for the harvesting rate .

Introducing this to (2.2) yields

U̇ = −mU + kβUV −H(U),

V̇ = αV [1 + h(t)]− βUV − γV 2.
(2.6)

Figure 2.1 shows how these three different harvesting functions increases as a function

of u.

Figure 2.1: The three different harvesting functions with T = h = ε = 1, α = 1.5.

Chapter 2. The Lotka-Volterra model [16] 12

2.3 Equilibrium Points and Stationary Solutions

The deterministic system corresponding to (2.6) is given by

u̇ = −u[m− kβv]−H(u)

v̇ = v[α− βu− γv].
(2.7)

By restring us to the case where u < T , the harvesting function is equal to zero and

equation (2.7), becomes (2.2). In order to find the equilibrium points, we set the two

equations in (2.2) equal to zero and solve for U̇ and V̇ . The result is the two equilibrium

points (u, v) = (0, 0) and (u, v) = (0, αγ), where in both cases one or both of the species

are extinct. We are more interested in the equilibrium points where both species are

alive. We introduce a mapping x→ exp(x) which is a bijection from R to (0,∞) given

by

x = ln(u) y = ln(v).

Inserting this into (2.7) gives

ẋ = −m+ kβ exp(y)− H̃(x)

ẏ = α− β exp(x)− γ exp(y),
(2.8)

where H̃(x) is given by

H̃(x) =

 0 if x < ln(T)

h(1−T exp(−x))
h+(exp(x)−T) if x ≥ ln(T).

The restriction is now x < ln(T) and the equilibrium point is (x, y) = (ln(αβ−
γm
kβ2), ln(mkβ)).

A linearisation at this equilibrium point yields

ẋ
ẏ

 =

 0 m

γm
kβ − α −γm

kβ

x− ln(αβ −
γm
kβ2)

y − ln(m
kβ)

 .
The matrix in the above equation has the characteristic function λ2+ γm

kβ λ+m(α− γm
kβ) =

0. The roots of this equation are

Chapter 2. The Lotka-Volterra model [16] 13

λ± =
−γm
kβ ±

√(γm
kβ

)2 − 4m(α− γm
kβ)

2
. (2.9)

We are only interested in the equilibrium point which are physically acceptable, that is

u, v > 0, which is equivalent to (αβ −
γm
kβ2), mkβ > 0. If this is the case and all parameters

in the above equation are positive then Re(λ±) < 0 and the equilibrium point is stable

and therefore we can expect a global maximum of the probability distribution near this

point.

When applying Itō’s lemma to the logarithmic transformation Xt = ln(Ut) and Yt =

ln(Vt), and using that the SDE in the absence of the harvesting term with the function

h(t) as described by (2.3) we get

dXt = (−m+ kβ exp(Yt))dt

dYt = ((α− 1

2
α2Dξ)− β exp(Xt)− γ exp(Yt))dt+ α

√
DξdBt.

We can rewrite these equations to

dXt =
∂G(Xt, Yt)

∂Yt
dt

dYt = −
(
∂G(Xt, Yt)

∂Xt
− γ

kβ

∂G(Xt, Yt)

∂Yt

)
dt+ α

√
DξdBt,

where G(x, y) = kβ exp(y)−my + β exp(x)− ((α− 1
2α

2Dξ)− γm
kβ)x. Using the Fokker-

Planck equation it can be shown that the stationary solution is given by

pXY (x, y) = C exp

(
− 2γ

kβDξα2
G(x, y)

)
.

A critical point of G(x, y) and a global maximum is
(
x, y
)

=
(

ln(1
β (α − 1

2α
2Dξ −

γm
kβ)), ln(mkβ)

)
and it is found by solving ∂G(x,y)

∂x = 0 and ∂G(x,y)
∂y = 0. This equilib-

rium point is close to the equilibrium point found in (2.9) if Dξ is small.

Chapter 2. The Lotka-Volterra model [16] 14

(a) Without harvesting, ln(T) = 0. (b) With harvesting, ln(T) = 0.

(c) With harvesting, ln(T) = −1. (d) With harvesting, ln(T) = −1 and h = 2.

Figure 2.2: Phase diagram for (2.8) with α = 1, β = 1, γ = 1, m = 1 and k = 1.

From Figure 2.2 we can see that introducing harvesting does not affect the dynamics

of the system: There is still only one real-valued equilibrium point which is a stable

spiral point. We also notice that by changing the harvesting threshold to ln(T) = −1

the position of the equilibrium point is shifted towards a higher population of the preys.

This is not surprising as harvesting of the predators will favour the population of the

preys. By increasing the maximal harvesting rate h, more harvesting of the predators

is allowed and hence an increase in the preys population is expected. This is confirmed

in Figure 2.2d where the equilibrium point is shifted further in the same direction as it

was when changing the harvesting threshold.

Chapter 3

Monte Carlo Methods

Suppose that we want to compute the probability of a ”straight” in a hand of four cards

that are randomly dealt from a deck of 52 cards. This could be solved analytically,

but a more straightforward approach would be to deal a large number of hands and to

estimate the probability of a straight with the fraction of the hands on which straights

where dealt. This approach would take hours or maybe even days to complete in practice,

but with the use of computer power we could simulate this situation in seconds.

To improve the computation time we will introduce Monte Carlo simulation which does

several, and often millions, of independent computations. It is sometimes straightfor-

ward to have different processors compute different values, and then use an appropriate

(weighted) average of these values to produce a final answer. In this way, the communi-

cation between processors is minimised, so that parallel processing is easily facilitated.

Certain Monte Carlo algorithms are so ideally suited to parallel computation that they

would be labeled as ”embarrassingly parallelisable”.

3.1 Introduction

The expression Monte Carlo method (MC) is very general. They are a class of com-

putational techniques based on synthetically generating random variables to deduce

the implication of the probability distribution. The MC techniques are often the only

practical way to evaluate difficult integrals or to sample random variables governed by

15

Chapter 3. Monte Carlo Methods [17] 16

complicated probability density functions. The methods rely on repeated random sam-

pling to obtain the distribution of an unknown probabilistic entity. The methods vary,

but most of them follow a particular pattern

1. Define a domain for the possible inputs.

2. Generate random inputs from a probability distribution over the domain.

3. Perform a deterministic computation of the inputs.

4. Repeat for N trials.

5. Use the N trials to study the distribution of the statistics.

3.1.1 Random Numbers

Most of the Monte Carlo sampling techniques require a random number generator, which

generates uniform statically independent values on the half open interval [0, 1). Different

software libraries offers different random number generators such as CERNLIB and

CURAND. All of the algorithms produce a periodic sequence of numbers, and in order

to obtain effectively random number one must therefore not use more than a small

subset of a single period. A short period is therefore a problem for many of the random

number generators. Some of the simulation methods do not always require truly random

numbers to be useful and most of the useful techniques use deterministic, pseudorandom

sequences which makes it easy to test and re-run simulations. A quality that is necessary

to make good simulations is for the pseudorandom numbers to appear ”random enough”

in a certain sense.

The most common means of generating uniform random variables on a computer is to

use mathematical algorithms. The most widely used algorithms are linear congruential

generators. These algorithms follow recursions of the form

ui+1 = (aui + b) mod (m),

where

• u0 is the initial seed.

Chapter 3. Monte Carlo Methods [17] 17

• a is called the multiplier.

• b is called the increment.

• m is called the modulus.

Given this recursion we obtain our random numbers via

Ui =
ui
n
.

The sequences Ui can not be truly random. The hope is that if a, b and m are carefully

chosen, Ui can behave like a truly random uniform sequence.

We will use the C library function rand() which is based upon repeated addition and

shift to generate pseudo-random numbers and the CUDA library function cuRAND.

cuRAND uses the XORWOW algorithm which provides fast and simple random number

generators that seem to do very well on tests of randomness.

3.1.2 Monte Carlo Method [6]

The goal is to compute α = E[X], where X is a random variable that can be generated

in finite time on a computer. By generating independent and identically distributed

copies X1, X2, . . . , Xn of the random variable X, α can be found via

αn =
1

n
(X1 + · · ·+Xn).

In order to prove convergence of α we need to introduce some theorems and definitions.

Definition 3.1. Let (Zn : 1 ≤ n ≥ ∞) be a sequence of random variables. Then Zn

converges in probability to Z∞ as n→∞ if for each ε > 0,

p{|Zn − Z∞| > ε} → 0

as n→∞.

Chapter 3. Monte Carlo Methods [17] 18

3.1.2.1 Weak Law of Large Numbers (WLLN)

Let X1, X2, . . . be an independent and identically distributed sequence of random vari-

ables for which E[X1] <∞. Then

1

n
(X1 + · · ·+Xn)

P−→ E[X1]

as n → ∞. Hence, the WLLN establishes that αn
P−→ α as n → ∞ and hence that the

Monte Carlo method converges.

Theorem 3.1. (Markov’s inequality) Let W be a non-negative random variable. Then,

P (W > w) ≤ E[W]

w
.

Proof.

P (W > w) = E[I(W > w)].

since W/w ≥ 1 on {W > w} it follows that

E[I(W > w)] ≤ E[
W

w
]I(W > w)

≤ E[W]

w
.

Theorem 3.2. (Chebyshev’s inequality) Let Γ be a random variable for which var(Γ) <

∞. Then

P{|Γ− E[Γ]| > ε} ≤ var(Γ)

ε2
.

Proof. Use Markov’s Inequality and put W = (Γ− E[γ])2 and w = ε2.

We are now ready to prove the WLLN when var(X1) <∞.

Proof. (of the WLLN) Let Γ = X1 + · · ·+Xn. Using Chebychev’s Inequality on γ yields

P{|Γ− E[Γ]| > nε} ≤ var(Γ)

n2ε2
.

Chapter 3. Monte Carlo Methods [17] 19

Rewriting this we get

P

{∣∣∣Γ
n
− E[X1]

∣∣∣ > ε

}
≤ var(X1)

nε2
.

Next we use the fact that var(X1) <∞, and take the limit as n→∞:

P{
∣∣∣X1 + · · ·+Xn

n
− E[X1]

∣∣∣ > ε} ≤ var(X1)

nε2
→ 0.

By using the strong law of large numbers the convergence of the Monte Carlo method

can be shown in a stronger sense.

3.1.2.2 The Strong Law of Large Numbers (SLLN)

Definition 3.2. Let Zn, 1 ≤ n ≤ ∞ be a sequence of random variables. We say that

Zn converges almost surely to Z∞ as n→∞ if P{A} = 1, where A is the event defined

by

A = {ω : Zn(ω)→ Z∞(ω) as n→∞}.

Theorem 3.3. (SLLN) Let X1, X2, . . . be an independent and identically distributed

sequence of random variables for which [E] <∞. Then

1

n
(X1 + · · ·+Xn)

a.s.−−→ E[X1]

as n → ∞. Hence, the SLLN implies that the Monte Carlo method converges almost

surely as it follows that αn
a.s.−−→ α as n→∞.

The SLLN implies the WLLN and it is a more sophisticated result.

3.1.2.3 Rate of Convergence

To study the rate of convergence of the Monte Carlo method we need the central limit

theorem (CLT). We will first introduce the definition of convergence in distribution, or

equivalent, weak convergence, before introducing the theorem.

Chapter 3. Monte Carlo Methods [17] 20

Definition 3.3. Let Zn, 1 ≤ n ≤ ∞, be a sequence of random variables. We say that

Zn converges in distribution to Z∞ as n→∞ if

lim
n→∞

P{Zn ≤ z} → P{Z∞ ≤ z}

at each continuity point z of P{Z∞ ≤ ·}.

Theorem 3.4. (Central Limit Theorem) Let Xn, n ≥ 1, be a sequence of independent

and identically distributed random variables with 0 < var(X1) = σ2 < ∞. Then the

following holds

lim
n→∞

X1 . . . Xn − nE[X1]√
nσ

⇒ N(0, 1),

where N(0, 1) is a normal random variable with mean zero and a unit variance.

Proof. We put

X̃i =
Xi − E[X1]

σ
,

where X1, X2, . . . is a sequence of independent and identically distributed random vari-

ables with 0 ≤ σ2 = var(x) < ∞. We note that E[X̃i] = 0 and var(X̃i) = E[X̃i
2
] = 1.

This implies that

E
[
eiθX̃i

]
= 1− θ2

2
+O(θ2)

as θ →∞. Hence

E
[
e
iθ
X1+···+Xn−nE[X1]√

nσ

]
= E

[
e
iθ

∑n
j=1

X̃j√
n

]
= E

[n∏
j=1

e
iθ
X̃j√
n

]
.

Since the expectations are independent and the distributions are identical we get

=
n∏
j=1

E
[
e
iθ
X̃j√
n

]
=

(
E
[
e
iθ
X̃1√
n

])n
=
(

1− θ2

2n
+O(

1

n
)
)n
→ e−

θ2

2 .

Next we note that for a N(0, 1) random variable, e−
θ2

2 is the characteristic function and

hence

lim
n→∞

X1 + · · ·+Xn − nE[X1]√
nσ

⇒ N(0, 1).

Chapter 3. Monte Carlo Methods [17] 21

The CLT implies that

lim
n→∞

n
1
2 (αn − α)⇒ σN(0, 1).

This tells us that the rate of convergence for the Monte Carlo method is n−
1
2 , so if the

computations requires high accuracy, the method is not suitable.

3.1.2.4 Error estimates

As we proved earlier, the rate of convergence of the Monte Carlo method is slow and

the error estimate is therefore of interest. We return to the CLT and assume that our

goal is to compute α = E[X], where 0 < σ2 = var(x) < ∞. Suppose that we run n

independent experiments and thereby generating independent and identically distributed

copies X1, X2, . . . , Xn. Our estimator becomes

αn =
1

n
(X1 + · · ·+Xn).

Using the CLT we get that for any x ≥ 0,

lim
n→∞

P
{
− z ≤ n

1
2

σ
(αn − α) ≤ z

}
→ P{−z ≤ N(0, 1) ≤ z}.

If we choose z such that P{−z ≤ N(0, 1) ≤ z} = 1− δ. The event given by

{
− z ≤ n

1
2

σ
(αn − α) ≤ z

}
is identical to {

α ∈
[
αn −

σz√
n
, αn +

σz√
n

]}
,

which implies that we may conclude that

lim
n→∞

P
{
α ∈

[
αn −

σz√
n
, αn +

σz√
n

]}
⇒ 1− δ.

This implies that the random interval
[
αn − σz√

n
, αn + σz√

n

]
contains the parameter α

with a probability of 1− δ. We call the interval a 100(1− δ)% confidence interval for α.

Chapter 3. Monte Carlo Methods [17] 22

Thus, the error estimates associated with Monte Carlo computations have their basis in

the statistical notion of confidence intervals.

As σ2 is rarely known a priori we can use the estimate

sn =

√√√√ 1

n− 1

n∑
i=1

(Xi − αn)2

which gives us the following

lim
n→∞

P
{
α ∈

[
αn −

zsn√
n
, αn +

zsn√
n

]}
→ 1− δ.

3.1.3 Kinetic Monte Carlo Method [7]

The kinetic Monte Carlo (KMC) method is a Monte Carlo method which is intended to

simulate the time evolution of some processes which typically occur with a given known

rate in nature. These rates are the input to the KMC algorithm and the method itself

cannot predict them. The algorithm reads as follows

1. Set the time t = 0.

2. Form a list of all possible rates in the system ki.

3. Calculate the cumulative function Ki =
∑i

j=1 kj for i = 1, . . . , N , where N is te

total number of transitions.

4. Get a random uniform number, u, from the half open interval (0, 1].

5. Find the i for which Ki−1 < uKN ≤ Ki. This is the event to carry out i.

6. Carry out event i.

7. Get a new uniform number u′ ∈ (0, 1].

8. Increase the time with ∆t = K−1N ln(1
u′), i.e t = t+ ∆t.

9. Recalculate all rates ki which may have changed due to the transitions. If ap-

propriate, remove or add new transitions i. Update N and the list of events

accordingly.

10. Return to step 2.

Chapter 3. Monte Carlo Methods [17] 23

Example 3.1. We want to solve the simplified version of the Lotka-Volterra equations

given in (2.2). We ignore the term which governs self-limitation in the growth rate of

the prey population size in the absence of predators. The system of differential equations

now reads

U̇ = −mU + kβUV = U(−m+ kβV) = f(U, V),

V̇ = αV [1 + h(t)]− βUV = V (α(1 + h(t))− βU) = G(U, V).
(3.1)

We let h(t) be the zero-mean ”physical” Gaussian white noise given in (2.3). The pro-

cedure is as follows

1. Catalog all the rates ki for system i, where ki is the transition of the system from

i to j.

2. Partial sum the rates, sj =
∑j

i=1 ki, j = 1 . . . n.

3. Choose a uniform random variable u from (0, 1) and find j such that sj−1 < usn ≤

sj.

4. Update all ki for state j.

5. Choose a uniform random variable b from (0, 1) and calculate the time step given

by ∆t = − ln(b)/sn.

6. Repeat from step one till the required time span is covered.

Chapter 3. Monte Carlo Methods [17] 24

0 50 100 150 200 250
0

50

100

150

200

250

Lotka−Volterra simulation using KMC

Prey Population

P
re

d
a
to

r
p
o
p
u
la

ti
o
n

0 5 10 15 20 25 30
0

50

100

150

200

250

Lotka−Volterra simulation using KMC

P
o
p
u
la

ti
o
n

Time

Prey population

Predator population

Figure 3.1: Simulation of the simplified Lotka-Volterra model using the KMC algo-
rithm. The number of time steps used is 5000, α = 2, β = 0.05, γ = 1.5 and the initial

prey and predator populations are 50.

Chapter 3. Monte Carlo Methods [17] 25

To locate the critical points of (3.1) we solve U̇ = 0 and V̇ = 0

U(−m+ kβV) = 0

V (α(1 + h(t))− βU) = 0

=⇒ U =
α(1 + h(t))

β
, V =

m

kβ
and U = 0, V = 0,

where the first equilibrium point is co-existence and the latter equilibrium point is ex-

tinction of both the species [18] .

Definition 3.4. The stability matrix, also called the community matrix is given by

A(U∗, V ∗) =

∂Uf ∂V f

∂Ug ∂V g

 ,

where (U∗, V ∗) is the equilibrium point.

Theorem 3.5. The steady state solutions U∗ and V ∗ are stable if the trace and the

determinant of the community matrix are negative and positive respectively.

Proof. Recall that the characteristic polynomial of a square matrix A is defined to be

p(λ) = Det(A− λI).

For the 2× 2 matrix A given by

A =

a b

c d

 , (3.2)

we have

p(λ) =

∣∣∣∣∣∣a− λ b

c d− λ

∣∣∣∣∣∣ = λ2 − (a+ d)λ+ (ad− bc).

If we now recall that the trace of a matrix is defined to be the sum of its diagonal

elements, we get that Tr(A) = a + d and Det(A) = ad − bc. Introducing these to the

equation of the characteristic polynomial yields p(λ) = λ2A − Tr(A)λ + Det(A). The

eigenvalues are the roots of p(λ), so the quadratic formula immediately gives us that

the eigenvalues will be real if and only if the discriminant Tr(A)2 − 4 Det(A) > 0. The

conditions for the signs in the case of real eigenvalues are as follows

Chapter 3. Monte Carlo Methods [17] 26

• If Det(A) < 0, the eigenvalues are real and of opposite sign and the phase portrait

is a saddle, which is always unstable.

• If 0 < D < T 2/4, the eigenvalues are real, distinct and of the same sign. The

phase portrait is a stable node if T < 0 and an unstable node if T > 0.

• If 0 < T 2/4 < D, the eigenvalues are neither real nor purely imaginary and the

phase portrait is a stable spiral if T < 0 and an unstable spiral if T > 0.

Det(A)

Tr(A)

Nodal sink Nodal source

Spiral sink Spiral source

Saddle

Figure 3.2: The trace-determinant diagram.

Example 3.2. (3.1 cont.) To determine the stability of the equilibrium points we need

to study the community matrix.

A(U∗, V ∗) =

−m+ kβV kβU

−βV α− βU

 .

The trace and the determinant becomes

Det(A(U∗, V ∗)) = (−m+ kβV ∗)(α− βU∗) + β2kV ∗U∗,

Tr(A(U∗, V ∗)) = −m+ kβV ∗ + α− βU∗.

Let us start with the stability analysis of the trivial solution of U∗ = 0 and V ∗ = 0, which

means extinction of both species. One has Tr(A(0, 0)) = −m + α and Det(A(0, 0)) =

Chapter 3. Monte Carlo Methods [17] 27

−mα. Since m > 0 and α > 0, Det(A(0, 0)) < 0 so extinction of both species never

occurs in our model.

The semi-trivial solutions are given by U∗ = 1 and V ∗ = 0 or U∗ = 0 and V ∗ = 1

and they mean that one of the species are extinguished. We start with the extinction of

species one, one has Tr(A(0, 1)) = −m+ α + kβ and Det(A(0, 1)) = (−m+ kβ)α. For

these solutions to be stable, it is necessary that kβ > m regardless of the value of α. A

similar analysis with the species two extinction lead us to conclude that the solution is

stable for α < β regardless of the value of m.

The non-trivial solution (U∗, V ∗) = (αβ ,
m
kβ) leads to Det(A(U∗, V ∗)) = αm and Tr(A(U∗, V ∗)) =

0, so the solution is stable as α and m are both positive. The system of equations given

in (3.1) are separable which means that the system can be solved by direct integration.

Dividing the first equation by the second equation we find the solution

dU
dt
dV
dt

=
U(−m+ kβV)

V (α− βV)

dU

dV
=

U

(α− βU)

V

(−m+ kβV)

=⇒
∫

α

U
− βdU =

∫
kβ − m

V
dV

C = α ln(U)− βU +m ln(V)− kβV,

where C is a constant.

The level sets for z = α ln(U)− βU +m ln(V)− kβV is given in 3.3

Chapter 3. Monte Carlo Methods [17] 28

0 1 2 3 4 5 6 7 8
0

1

2

3

4

5

6

7

8

Prey

P
re

d
a
to

r

Level curves of the function f(x,y)=log(y)−y+log(x)−x

Figure 3.3: Predator-Prey dynamics as described by the level curves of a conserved
quantity. The values used for the constants are α = β = k = m = 1. There are

equilibrium points at U = 0, V = 0 and U = 1,V = 1.

Chapter 4

Parallel Computing

The speed of computation plays a vital role in many different fields of science and parallel

computing is often necessary for a program to complete within a required period of time.

For example in financial markets, a tenth of a second can mean hundreds of thousands

of dollars.

Parallel computing operates on the principle that large problems often can be divided

into smaller problems, which can be solved concurrently. In the simplest sense, parallel

computing is the simultaneous use of multiple compute resources to solve a computa-

tional problem

4.1 Introduction [8] [9]

When the GPU was created, its main purpose was to improve the graphic experience

in game consoles. In the beginning, the functionality was limited to accelerating the

memory-intensive work of texture mapping and rendering polygons, but within this

wealthy industry there was a demand for powerful and inexpensive hardware that was

highly parallel and could offer high data throughput. The programmable shader was

introduced in the early 2000’s, giving the user more control and abilities to manipulate

data and the GPU obtained more and more CPU-like capabilities. These new capabilities

made it possible to program algorithms for non-graphical applications on the GPU.

The reason why a GPU can achieve high performance is due to its parallel structure.

In contrast to CPUs, a GPU consists of hundreds, even thousands of multi-processors.

29

Chapter 4. Parallel Computing 30

Although the performance of each multi-processor is usually inferior to CPU, the overall

performance can outreach it. However, in order to get this performance improvement

the algorithm need to be parallel. We call an algorithm parallel if it contains segments

that are independent.

Traditionally, to solve a problem, an algorithm is constructed and implemented as a serial

stream of instructions. These instructions are executed sequentially on a computer, only

one instruction at a time.

Parallel computing, on the other hand, uses many parallel processing streams to solve

a problem. This is realised by breaking the problem into parallel parts where each part

of the algorithm can be executed simultaneously and often independently.

The advantage of parallel programming over serial computing is increased computing

performance. It allows one to solve problems that don’t fit on a single CPU and problems

that can’t be solved in a reasonable amount of time. By using parallel computing we

can solve larger problems, the same problem faster or we can solve more cases of the

same problem. The three main techniques to improve parallel performance are reducing

latency, increasing throughput and reducing CPU power consumption. These three

factors are often interrelated so the total efficiency is maximised when they are balanced.

Amdahl’s law and Gustafsons-Barsis’ Law reflects two different goals for optimising.

4.1.1 Terminology

Parallel computer programs are more difficult to write than sequential programs, because

concurrency introduces new classes of potential software bugs, of which race conditions

are the most common. Race conditions [19] arise when an application depends on the

sequence or timing of processes or threads for it to operate properly. We call a race con-

dition critical when the result is an invalid execution or contains bugs, and non-critical

when the results contains unanticipated behaviour. Race conditions have a reputation

of being difficult to reproduce and debug, since the end result is nondeterministic and

depends on the relative timing between interfering threads.

Example 4.1. Suppose that we have P processes and that each process j generates a

sequence {Xj
i : 0 ≤ i < n}. Suppose next that we want our final sequence to be the

sum of the P sequences at each point i. One way to solve this is to let each process add

Chapter 4. Parallel Computing 31

their Xi to the i’th position in the final sequence, which will minimise the total memory

requirement. Each process performs a read followed by a write and a problem arises as

the value in the i’th position can be changed by another process between the read and

the write. This is a typical example of a race condition. The correct way of doing this

is by letting each process generate the sequence and write it to it’s own memory space

before one of the processes calculates the average over each of the i’th positions. This

will require (P −1)n time more memory than the first approach and the efficiency of the

program will decrease drastically, but it is necessary to avoid a race condition.

∑P
j=0X

j
1

∑P
j=0X

j
2

∑P
j=0X

j
3

. . .
∑P

j=0X
j
n

Serial

X1
1 X1

2 X1
3

. . . X1
n

X2
1 X2

2 X2
3

. . . X2
n

...
. . .

XP
1 Xp

2 XP
3

. . . XP
n

Parallel

Figure 4.1: The figure illustrates that the parallel version requires (P − 1)n times
more memory that the serial version in order to avoid race conditions.

The time it takes to complete a task is called latency. The scale can be anywhere from

nanoseconds to years, but it has units of time. The lower latency the better optimised

is the program.

Throughput is the term for at which rate a series of tasks can be completed. It has units

of work per unit time and the larger throughput the better. When referring to memory

or communication transactions, a related term is bandwidth which refers to throughput

rates that have a frequency-domain interpretation.

Throughput and latency are related so that an optimisation that improves throughput

may increase the latency.

Chapter 4. Parallel Computing 32

4.1.2 Speedup, Efficiency and Scalability

Two important metrics related to performance and parallelism are speedup and effi-

ciency.

The speedup of a program is defined by the following formula

SN =
T1
TN

, (4.1)

where

• S is the speedup.

• T1 is the latency of the program with one processor.

• TN is the latency of the program running with N processors.

The ideal speedup is called linear and it occurs when S = N . Linear speedup is rare

in practice, since there are extra work involved in distributing work to processors and

coordinating them. When the speedup exceeds the number of processes we call it super-

linear and when the number of processes exceeds the speedup we call it sub-linear.

SN

6

Number of processors

-�
�
�
�
�
�
�
�
�
�
�
�
�
�
�
��

Linear speedup
Super-linear speedup

Sub-linear speedup

Figure 4.2

Chapter 4. Parallel Computing 33

As communication among different processes only can be done through message passing,

the overhead communication will often be a benchmark for where increasing the number

of processes will not affect the runtime in the same manner as before.

The efficiency of a program is defined by

E =
SN
N

=
T1
NTN

, (4.2)

and it measures return on hardware investment. The ideal efficiency is 1, which corre-

sponds to linear speedup.

4.1.3 Amdahl’s Law [8]

Amdahl’s law reflects how the program run faster with the same workload. It predicts

the maximum expected improvement of a program using multiple processors as the

speedup is limited by the sequential fraction of the program. Amdahl argued that the

execution time, T , of a program falls into two categories

• Time spent doing non-parallelisable serial work, Wserial.

• Time spent doing parallelisable work, Wparallel.

These gives us the following times for sequential and parallel execution

T1 = Wserial +Wparallel

TN ≥Wserial +
Wparallel

N
,

where N is the number of processors.

Chapter 4. Parallel Computing 34

?

T
im

e

Paralleisable work

Serial work

N = 1 N = 2 N = 4 N = 8

Figure 4.3: In Amdahl’s law, speedup is limited by the non-parallelisable serial portion
of the code.

If we let f denote the non-parallelisable serial fraction and p the parallelisable fraction

of the total work, the following hold

Wserial = fT1

Wparallel = pT1.

Plugging these relations into the definition of speedup yields Amdahl’s Law

SN =
1

1− p+ p
N

.

If we let the number of parallel threads increase, we will get the limit of the speedup

lim
N→∞

SN =
1

1− p
=

1

f
= S∞.

This implies that it is always sufficient to have a finite number of parallel threads to

achieve good performance as the speedup is limited by the fraction of the work that

is not parallelisable. If for example the parallelisable portion of the code is 0.90 the

speedup can reach 10, while for algorithms with a parallelisable portion of 0.99 the

speedup is limited by 100. It is therefore noteworthy that the sequential percentage of

the algorithm have a severe impact on the speedup of the algorithm.

Chapter 4. Parallel Computing 35

Figure 4.4: The figure shows the effect of multiple processors on speedup for different
percentages of the parallel portion of the code.

The reality is even worse than predicted by Amdahl’s law due to load balancing, schedul-

ing, cost of communications and input/output.

4.1.4 Gustafson-Barsis’ law [8]

John Gustafsons suggested that the speedup should be measured by scaling the prob-

lem to the number of processors rather than by fixing the problem size. Experience

indicates that as computers get new capabilities, applications change to exploit these

features which contradicts Amdahl’s laws view on programs as fixed and the computer

as changeable.

Gustafson-Barsis’ law is based upon that as computers get more powerful the problem

sizes grow and as the problem sizes grow, the work required for the parallel part of the

problem frequently grows much faster than the serial part. This implies that as the

problem size grows the serial fraction decreases and hence the speedup improves.

Gustafson-Barsis’ law is given by

SN = N − f(N − 1).

Chapter 4. Parallel Computing 36

?

T
im

e

Paralleisable work

Serial work

N = 1 N = 2 N = 4 N = 8

Figure 4.5: Gustafson-Barsis’s law states that if the problem size increases with N
while the serial portion grows slowly or remains fixed, speedup grows as processes are

added.

The difference between these two laws lies in whether you want your program to run

faster with the same workload or to run in the same time with a larger workload.

Example 4.2. We compare Amdahl’s law and Gustafson-Barsis’s law for a code with a

parallelisable fraction of 0.5.

Chapter 4. Parallel Computing 37

Amdahls

Fixed work

Gustafson-Barsis

Fixed work per processor

S1 S2 S4

SN = 1

1− p+ p
N

S2 =
1

1− 0.5 + 0.5
2

= 1.33

S4 =
1

1− 0.5 + 0.5
4

= 1.6

S1

S2

S4

SN = N − f(N − 1)

SN = 2− 0.5(2− 1) = 1.5

SN = 4− 0.5(4− 1) = 2.5

Figure 4.6: Comparison of Amdahl’s and Gustafson-Barsis’s law

Concurrent programming languages, libraries, APIs, and parallel programming models

have been created for programming parallel computers. These can generally be divided

into classes based on the assumptions they make about the underlying memory archi-

tectures. We will now introduce the parallel programming techniques used to make the

Monte Carlo algorithm more time efficient.

4.2 Memory

The main memory in a parallel computer is either shared memory or distributed mem-

ory and the largest and fastest computers in the world today exploit both shared and

distributed memory architectures. When writing parallel programs the memory layout

is extremely important and it is crucial to handle memory with care to achieve good

performance.

The amount of memory required can be greater for parallel codes than serial codes, due

to the need to replicate data and for overheads associated with parallel support libraries

Chapter 4. Parallel Computing 38

and subsystems. Communication and synchronisation between the different subtasks are

typically some of the greatest obstacles to getting good parallel program performance.

For short running parallel programs, there can actually be a decrease in performance

compared to a similar serial implementation. The overhead costs associated with setting

up the parallel environment, task creation, communications and task termination can

comprise a significant portion of the total execution time for short runs.

4.2.0.1 Data Structure Alignment

Data structure alignment is the way data is arranged and accessed in computer memory.

When a computer performs a read or a write to a memory address, it will be done in

chunks of size s. The system’s performance can be increased by putting the data at a

memory address equal to some multiple of s due to the way the CPU handles memory.

This is what we refer to as data alignment. Data structure padding means inserting some

meaningless bytes between the end of the last data structure and the start of the next

in order to get the data aligned.

Example 4.3. Suppose the computer’s size is 4 bytes and we want to read a 4 byte

message from memory. The data to be read should be at a memory address which is

some multiple of 4. If the data starts at address 10 the computer has to read two chunks

from memory. If the data had been correctly aligned, the data’s address had started at

12, and only one chunk had to be read from memory.

4.2.1 Shared Memory

In a shared memory model tasks share a common address space, which they asyn-

chronously can read and write to.

P P P P

Memory

Figure 4.7: All processors have access to a pool of shared memory.

Chapter 4. Parallel Computing 39

The shared memory component can be a shared memory machine and/or GPUs. A

thread, short for thread of execution are a way for a program to divide itself into two or

more simultaneously running tasks. In general a thread is contained inside a process and

different threads within the same process share the same resources. Threads communi-

cate with each other through global memory. This requires synchronisation constructs

to ensure that shared data structures is only modified by one thread at a time. Two of

the most widely used shared memory APIs are POSIX Threads and OpenMP.

4.2.1.1 OpenMP [10]

OpenMP is a set of compiler directives and library routines used for multithreaded

parallel processing. It is a method of parallelising where a master thread forks a specified

number of slave threads and the system divides a task among them. The threads then run

concurrently, with the runtime environment allocating threads to different processors.

Master Thread
��

��

�� @@

@@

@@
Thread 1

@@

@@

@@ ��

��

��

Thread 2

Figure 4.8: The master thread forks a specified number of threads. Each thread
performs the task given before they assemble.

4.2.2 Distributed Memory

The distributed memory component is the network of multiple shared memory/GPU

machines, in which each processor has its own private memory.

Chapter 4. Parallel Computing 40

P P P P

M M M M

Network

Figure 4.9: Memory is local to each processor.

Each processor works on its section of the problem and they can only operate on local

data. If remote data is required, the processes must communicate to move data from

one machine to another. The communication is often referred to as message passing

over a network and the most widely used message-passing API is the Message Passing

Interface (MPI).

Grid of Problem to be solved

CPU #3 works on this

area of the problem

CPU #1 works on this

area of the problem

CPU #4 works on this

area of the problem

CPU #2 works on this

area of the problem

-� y

6

?

x 6
?

exchange 6
?

exchange

-�

exchange

-�

exchange

Figure 4.10: The figure shows how a grid of problem can be solved using 4 CPUs.

4.2.2.1 MPI [11]

MPI is a message passing paradigm of parallelism. You have one root process which

spawns programs among all the processes within the same communicator. The root

process is often referred to as the master process. All the threads in the system is

independent and hence the only way of communication between them is through message

Chapter 4. Parallel Computing 41

passing over the network. The network bandwidth and throughput is therefore one of

the most crucial factor in MPI implementation’s performance.

When setting up the MPI environment a communicator is formed around all of the

processes that where spawned. The foundation of communication is built upon send

and receive operations among processes. Each process has it’s own rank and we often

refer to the process with rank zero as the root or the master. A process may send a

message to another process by providing the rank of the process and a unique tag to

identify the message. The receiver can then post a receive for a message with a given tag,

and then handle the data accordingly. The communication operations are divided into

two blocks: collective and point-to-point communications. A collective communication

involves communication among all processes in a process group (often all processes in

the communicator) whereas a point-to-point communication involves communication

between two specific processes.

When running a MPI program you can choose how many processes you want your

program to run on and if your code is well optimised the runtime will decrease as

the number of processes increase. Most of the computers and laptops contains 2 or 4

processors, which in many cases is not enough. The use of servers is therefore sometimes

needed.

4.2.3 CUDA [12] [13]

For our GPU implementation we target NVIDIA GPUs with its programming platform

named CUDA. CUDA is a Simultaneous multithreading paradigm of parallelism. It uses

state of the art graphics processing unit (GPU) architecture to provide parallelism. A

GPU contains blocks of set of cores working on same instruction in a lock-step fash-

ion. Hence, if all the threads in a system do a lot of identical work, you can benefit

performance wise by using CUDA.

In CUDA, the host refers to the CPU and its memory, while the device refers to the

GPU and its memory. We are dealing with heterogeneous computing which refers to a

system that uses more than one kind of processors. Parallel portions of an application

are executed on the device as kernels. The kernel executes the same code on a large

batch of parallel threads.

Chapter 4. Parallel Computing 42

CUDA organizes a parallel computation using the abstractions of threads, blocks and

grids. These can be defined as follows

Thread An execution of a kernel with a given index. Each thread uses its index to

access elements in an array such that all of the threads cooperatively processes the

entire data set. It allows programs to transparently scale to different GPUs.

Warp A warp is a group of 32 threads. There is a limit to the number of warps that can

be achieved on each streaming multiprocessor. This limit depends on the device

properties.

Block A block is a group of threads. The dimensions of the different blocks must be

equal and coordination among the threads can be achieved by synchronisation

which makes a thread stop at a certain point until all the other threads in the

same block reach the same point.

Grid A grid is a group of blocks. It is not possible to obtain synchronisation among

the different blocks.

When running a CUDA program you have to specify the grid and block dimensions for

the kernels. It is difficult to determine which combination of dimensions that will give

the best performance, and the best way to find it is by trial and error.

Chapter 4. Parallel Computing 43

Device

Grid 1

Block

Block

Block

Block

Block

Block

(1,1)

(0,1)

(1,0)

(0,0)

(1,2)

(0,2)

Thread (1,0)

����������9

XXXXXXXXXXz

Thread Thread Thread Thread Thread

Thread Thread Thread Thread Thread

Thread Thread Thread Thread Thread

(2,0)

(1,0)

(0,0)

(2,1)

(1,1)

(0,1)

(2,2)

(1,2)

(0,2)

(2,3)

(1,3)

(0,3)

(2,4)

(1,4)

(0,4)

Figure 4.11: CUDA thread model. Each kernel is assigned a grid. Each grid contains
a number of blocks. Each block contains threads (512 maximum per block).

When using CUDA it is extremely important to handle memory with care. There are

several different CUDA memory types and the choice of which one to use will affect the

performance of the program.

Global Memory The global memory is slow compared to the other memory types. It

requires sequential and aligned (coalesced) read and writes to be fast. A coalesced

memory transaction is one in which all of the threads in a half-warp access global

memory at the same time. The correct way to do it is to have consecutive threads

access consecutive memory addresses.

Texture Memory The texture memory is read only which means that the data in the

memory cannot be edited directly, only read by the threads. Texture memory is

written by the host, and read by the device.

Chapter 4. Parallel Computing 44

Constant Memory Constant memory is used for data that will not change over the

course of a kernel execution. In some situations, using constant memory rather

than global memory will reduce the required memory bandwidth.

Shared Memory Shared Memory is fast, but it is subject to bank conflicts[19]. Shared

memory arrays are subdivided into smaller subarrays called banks, where different

banks can be accessed simultaneously. If two or more addresses of a memory

request are in the same bank, the access is serialised and this is what is called a

bank conflict. Threads within the same block have two main ways to communicate

data with each other. The fastest way would be to use shared memory. If you only

need the threads to share a small amount of data at any given time, using shared

memory is by far the fastest and most convenient way to do it.

4.2.4 Hybrid

A combination of the different programming models is called a hybrid model. Two

popular examples of a hybrid model is using MPI with CUDA and MPI with OpenMP.

4.3 Parallel Monte Carlo

If we want to compute some unknown quantity µ, a standard Monte Carlo would tell

us to obtain some large number n of samples, X1, . . . , Xn, where each random variables

have mean m and variance v. The next step will be to estimate µ by the estimator

E = 1
n

∑n
i=1Xi. This estimator would have bias m− µ, and variance v

n .

If we now have k processors available, the simplest idea is to run the same program as

described in the previous section on each of the k processors. Each processor j then

produces n samples, compute their average Ej , and reports the result back to the master

processor. The master processor then average these k results to obtain the final result

Ē =
1

k

k∑
j=1

Ej .

Chapter 4. Parallel Computing 45

This final result will have mean m and variance v
kn . The result is equivalent to the result

we would have obtained by running our program on a single processor for k times as

long and we have thus obtained a linear speed-up.

We want to make two parallel versions of the algorithm produced in Example 3.1, one

using MPI and the other using CUDA.

4.3.1 MPI

We let each process be responsible of propagating the same initial distribution over the

same time interval n independent times. Each process finds the average of their results

and sends it back to the master process by using the MPI library function MPI Reduce.

This function takes an array of input elements on each process and returns an array of

output elements to the root process. The output elements contain the reduced result.

The prototype of the function looks like this:

MPI Reduce(

void∗ send data,

void∗ recv data,

int count,

MPI Datatype datatype,

MPI Op op,

int root,

MPI Comm communicator)

The send data parameter is an array of elements of type datatype that each process

wants to reduce. The recv data is only relevant on the process with a rank of root and

contains the reduced result. The length of the array is count. The op parameter is

the operation that you wish to apply to your data. Custom reduction operations can

be defined, but MPI contains a set of communication reduction operations that can be

used. Among these we find MPI MAX, MPI MIN and MPI SUM.

Below is an illustration of the communication pattern of MPI Reduce where we want to

sum up an array of integers from each process.

Chapter 4. Parallel Computing 46

����
0 5

HHH
HHH

HHH

����
1 2

\
\
\\

����
2 1

�
�
��

����
3 4
���

���
���

�
�

�
�MPI SUM

����
0 12

����
0 5 2

HH
HHH

HHHH

����
1 2 7

\
\
\\

����
2 1 1

�
�
��

����
3 4 3
��

���
����

�
�

�
�MPI SUM

����
0 12 13

We compare the run times of the two programs by letting the serial program propagate

n independent distributions and by running the parallel program for different number

of processors. The results are shown in Table 4.1.

Number of simulations Serial (s) n = 2 (s) n = 4 (s) n = 8 (s) n = 16 (s) n = 32 (s)

2000 3.934607 2.002540 1.032375 0.553108 0.516247 0.294940

4 000 7.874334 3.979395 2.024673 1.043744 1.018425 0.762433

8 000 15.666488 7.926271 3.974366 2.023714 1.315159 0.762604

16 000 31.395772 15.706708 7.914551 3.986790 3.067251 2.021594

32 000 62.192365 31.469908 15.797379 7.963596 7.733702 6.024957

40 000 82.526232 38.398987 20.975954 10.412540 7.636600 7.013166

Table 4.1: The runtime of the serial and the parallel versions of the code. The number
of time steps used is 5000, α = 2, β = 0.05, γ = 1.5 and the initial prey and preda-
tor populations are 50. Each combination of processors and number of independent
simulations are run ten times and the results given are the average over the ten runs.

One of the biggest impact on MPI-programs performance is communication and the MC

methods do not require a lot of communication. Hence the MC methods are well suited

for the Message Passing Interface.

Chapter 4. Parallel Computing 47

Figure 4.12: The two figures show the runtime of the program with different combi-
nations of number of simulations and number of processes.

Chapter 4. Parallel Computing 48

From Table 4.1, Figure 4.12 and Figure 4.13 we can conclude that we have almost

achieved a linear speedup. The delay in the parallel program is due to the communication

which has to be done between all the processes and the root process at the end of each

run. The more processes we use and the larger number of simulations we have, the

communication which has to be done increases. We can also notice that when the

number of processes exceeds 8, the linearity vanishes and we do not get the same effect

on the run time as we did for the smaller numbers of processes.

Figure 4.13: The figure shows the speedup of the program with different combinations
of number of simulations and number of processes. The formula used to calculate the

speedup is given by (4.1).

Chapter 4. Parallel Computing 49

Figure 4.14: The figure shows the efficiency of the program with different combina-
tions of problem number of simulations and number of processes. The formula used to

calculate the efficiency is given by (4.2).

From Figure 4.14 we can see that the efficiency decreases as the number of processes

increases. This is expected due to the extra work involved in distributing work to the

different processes and the work coordinating them. We concluded from Figure 4.13

that the linearity in the speedup vanishes when we exceed 8 processes and this coincide

with Figure 4.14 as the efficiency drops below 1 at this point.

4.3.2 CUDA

The next attempt is to make the code parallel by using CUDA. We let each thread do one

propagation of the initial distribution and then we find the average of the distributions

within each block before returning to the host. To do this we make use of shared memory

which is faster than global memory. A profitable way of performing computation on the

device is therefore by partitioning the data into subsets that fit into shared memory.

Each thread block handles each data subset by loading the subset from global memory

to shared memory using multiple threads to exploit memory-level parallelism. Each

thread block then performs the necessary computations before copying the results back

Chapter 4. Parallel Computing 50

to global memory. As we saw in Example 4.1.2 the amount of shared data will be a lot

to handle for the GPU and will therefore affect the performance of the program.

We encountered some problems when trying to write this parallel code. The first and

biggest problem is that the program runs out of shared memory. With the same number

of time steps as used in the MPI version we run out of memory with only one thread in

each block. One solution to this problem turned out to be removing the use of shared

memory and using global memory instead. Global memory is normally slower than

shared memory, but we concluded that this was the best way to fix the problem.

Number of threads Number of blocks Number of simulations Run time (s)

32 16 512 0.117434

32 32 1 024 0.287328

64 64 4 096 1.106318

128 64 8 192 2.202157

256 128 32 768 13.570726

512 64 32 768 13.508272

1 024 32 32 768 13.269728

2 048 16 32 768 13.465909

4 096 8 32 768 13.113456

8 192 4 32 768 13.344003

16 384 2 32 768 13.433822

Table 4.2: The runtime of the CUDA versions of the code. The number of time steps
used is 5000, α = 2, β = 0.05, γ = 1.5 and the initial prey and predator populations
are 50. Each combination of number of threads and blocks are run ten times and the

results given are the average over the ten runs.

We ran out of memory when trying to run the code for a number of simulations bigger

than 32768. We can conclude from Table 4.2 that the best runtime for the biggest

number of simulations is achieved when we use the combination of 8 blocks with 4096

threads in each block.

Chapter 4. Parallel Computing 51

4.4 Results

Serial program

Generate N random walks

Find the average

MPI program

Initialise P processes

?
Each process

Generate N/P random walks

Find the average

Send results to master process

?
Master process

Calculate the global average

CUDA program
CPU

Initialise B blocks each

consisting of T threads

?
GPU

Generate T random walks

?
CPU

Copy results from GPU

Calculate the global average

Figure 4.15: The program flow of the different programs. The blue boxes are serial
work and the green boxes are work done in parallel.

4.4.1 CUDA VS MPI

It is not straightforward to compare CUDA and MPI as they are two different paradigm

of parallelism. The best way of comparing the two methods is by comparing the best

possible runtime for the two versions for the same number of simulations. When running

a CUDA program the number of threads and number of blocks are normally set to be

a power of two. Hence the runtimes of the CUDA version is for approximate the given

number of simulation.

Number of simulations MPI (s) CUDA (s)

4 000 0.762433 1.106318

8 000 0.762604 2.202157

16 000 6.024957 13.113456

Table 4.3: Comparison of the runtime of the two parallel versions of the KMC algo-
rithm.

We can conclude from Table 4.3 that the CUDA program is slower than the MPI pro-

gram. The main reason for this is that in the MPI program only one averaging over all

Chapter 4. Parallel Computing 52

the processes has to be preformed, whereas in the CUDA program the averaging is done

on the CPU with no use of parallelism. The CUDA program therefore requires more

memory space and more computations has to be performed.

The MPI program is run on NTNU’s cluster Kongull, which is a CentOS 5.3 Linux

cluster running Rocks. The cluster has 113 nodes consisting of 4 I/O and 108 compute

nodes.

4.4.2 Accuracy

To determine the accuracy of the KMC method we return to the simplified LV model

V̇ = αV − βV U

U̇ = βUV − γU.
(4.3)

Eliminating time from the two differential equations above yields

dU

dV
=
U(βV − γ)

V (α− βU)
,

which leads to
dU

U
(α− βU) =

dV

V
(βV − γ),

whose solutions are closed curves. Integrating both sides of the above equation gives us

the solution

C = −βV + γ ln(V)− βU + α ln(U),

where C is a constant which is conserved on each curve. The constant depends only on

initial conditions and not on time.

We use MPI to solve 4.3 and compare the results to the solution given above for different

numbers of simulations. If we let Ũ and Ṽ be the estimated population sizes of the

predators and the preys, respectively, we define the error, e, to be

e = max
i∈[0,n]

|C −
(
− βṼi + γ ln(Ṽi)− βŨi + α ln(Ũi)

)
|.

Chapter 4. Parallel Computing 53

The ideal situation would be that the error tends to zero as the number of simulations

increases.

Number of simulations Error

100 1.6566

1000 1.4067

5 000 1.3829

10 000 1.3555

20 000 1.3453

30 000 1.3304

40 000 1.3229

50 000 1.3197

60 000 1.3150

70 000 1.3149

80 000 1.3107

90 000 1.3105

100 000 1.3102

Table 4.4: The table shows the error for the KMC method for the given number of
simulations. The initial populations are 50, α = 2, β = 0.05, γ = 1.5 and the number

of time steps is 5000.

Figure 4.16: The figure shows the accuracy of the KMC method for the given number
of simulations.

Chapter 4. Parallel Computing 54

We can conclude from Table 4.4 and Figure 4.16 that the error decreases as the number

of simulations increases. We would have hoped that the error tended more rapidly

towards zero.

Figure 4.17: The figure shows how the difference in the accuracy decreases as the
number of simulations increases.

We can see from Figure 4.17 that the difference in the accuracy tends towards zero as

the number of simulations increases. The KMC method will therefore not achieve a

significantly better accuracy by increasing the number of simulations above 100000. As

we saw earlier, the run time for the serial KMC program was 82.526232 seconds for

40000 simulations. Hence, in order to achieve the best accuracy in a reasonable amount

of time, the use of parallel programming is necessary.

In order to determine whether or not the KMC algorithm described in this report is a

good option to the path integration method, the accuracy of the path integration method

needs to be studied. The path integration method is described and an algorithm is given

in [16] and [20]. As the algorithm given in these two master theses where not described

in detail we where not able to get some proper accuracy results when running the code.

Chapter 5

Conclusion

The main purpose of this work was to develop a more time efficient solution to the Lotka-

Volterra model. To compare runtimes, in addition to the serial version, the algorithm was

implemented using the Message Passing Interface as well as on a GPU using CUDA. By

comparing the best runtime for the three versions we concluded that the KMC method

is best suited for the message passing interface. We have studied the accuracy of the

KMC method and it turned out that there was a limit for which increasing the number

of simulations did not affect the accuracy significantly. In order to reach this limit in a

reasonable amount of time the use of parallel programming is essential.

5.1 Summary

5.1.1 Performance

In the MPI version we assigned an equal amount of work to each process which means

that the program will be load balanced. The MC method used, turned out to be optimal

for parallel programming as the computations performed are independent.

As is common for GPU implementation we assigned one random walk to each thread.

Due to the problem we encountered while writing this code we believe that there is still

considerable potential for optimising the GPU program.

55

Chapter 5. Conclusion 56

5.2 Further Research

The topics of further research can be divided into two main categories; code optimisation

and extending the model.

5.2.1 Code Optimisation

In the MPI code the efficiency can be improved by the use of MPI-IO. MPI-IO lets

the processes access files all together at the same time which allows read and write

operations to be performed in parallel. As the program works now, the writing to a text

file is done by only one process and we can hence expect an increase in the efficiency by

making this parallel.

When writing the GPU code we found several issues. The main issue was that each

thread block required too much shared data. This problem proved to be difficult to

solve. The first attempt to solve this was to reduce the number of threads in each block.

This attempt did not fix the problem. To fix the problem the use of global memory was

introduced. Global memory is normally slower than shared memory so with respect to

code efficiency we first suggest looking at returning to shared memory. To reduce the

amount of shared memory required by the program one may consider a hybrid solution

combining MPI and CUDA. In our code we are taking the average over all the results

from the threads on the CPU. A more efficient way of doing this, would have been to

divide this work among the threads. The averaging takes about 95% of the runtime

so changing this will definitively have a positive effect on the performance. We have

chosen to let each thread do one propagation of the initial distributions. By assigning

multiple propagation to each thread and let each thread find the average over its own

results before writing the results to global memory, we can reduce the amount of global

memory needed and the program will hence be able to run for bigger problem sizes.

To determine whether or not the KMC method is a good alternative to the path in-

tegration method the difference in the accuracy between these two methods needs to

be studied. Some further research of the accuracy of the path integration method is

therefore needed to draw a conclusion to this question.

Chapter 5. Conclusion 57

5.2.2 Extend the Model

There are several versions of the Lotka-Volterra model, some more difficult to solve than

others. The code could have been fitted better to the real life situation by including

more variables which are affecting the two species as well as including other species that

they interact with. The more dimensions your problem has the harder it is to make the

code parallel and the focus has therefore only been on the 2D problem. In conclusion

there are many possibilities to expand the underlying mathematical model.

Appendix A

Source code

/∗This i s the source code used to perform the Lotka−Vol te r ra

s imu la t i on us ing the time algor i thm of KMC .

∗/

#inc lude <s t d l i b . h>

#inc lude <s t d i o . h>

#inc lude <math . h>

#inc lude <s tdboo l . h>

#inc lude <time . h>

#inc lude <sys / time . h>

// Pr int the t o t a l time used by the program

void p r in t t ime (s t r u c t t imeva l s t a r t , s t r u c t t imeva l end) {

long i n t ms = ((end . t v s e c ∗ 1000000 + end . tv us e c) −

(s t a r t . t v s e c ∗ 1000000 + s t a r t . t v u s e c)) ;

double s = ms/1 e6 ;

p r i n t f (”Time : %f s \n” , s) ;

}

double un i f o rm d i s t r i bu t i on (i n t rangeLow , i n t rangeHigh)

{

double myRand = rand () / (1 . 0 + RANDMAX) ;

re turn myRand ;

}

58

Appendix. Source code 59

i n t ∗ f i nd g eq (double ∗ array , double cond i t ion , i n t s i z e)

{

i n t ∗ output = (i n t ∗) mal loc (s i z e o f (double) ∗ s i z e) ;

i n t po in t e r = 0 ;

f o r (i n t i = 0 ; i < s i z e ; i++)

{

output [i] = 0 ;

i f (array [i] >= cond i t i on)

{

output [po in t e r] = i ;

po in t e r ++;

}

}

re turn output ;

}

double ∗ cumsum(double ∗ k , i n t s i z e)

{

double ∗ output = mal loc (s i z e o f (double) ∗ s i z e) ;

output [0] = k [0] ;

f o r (i n t i = 1 ; i < s i z e ; i++)

{

output [i] = output [i−1]+k [i] ;

}

re turn output ;

}

void KMC(in t Nt , double alpha , double beta , double gamma, i n t p r e y i n i t ,

i n t p r eda t o r i n i t , i n t runs)

{

double ∗ T = malloc (s i z e o f (double) ∗(Nt+1)) ;

double ∗ prey = mal loc (s i z e o f (double) ∗(Nt+1)) ;

double ∗ predator = mal loc (s i z e o f (double) ∗(Nt+1)) ;

f o r (i n t i = 0 ; i < Nt+1; i++){

T[i] = 0 ;

predator [i] = 0 ;

prey [i] = 0 ;

}

double k [3] ;

Appendix. Source code 60

double ∗ s ;

double u ;

i n t ∗ index ;

i n t x , y ;

f o r (i n t j =0; j<runs ; j++)

{

x = p r e y i n i t ;

y = p r e d a t o r i n i t ;

prey [0] = x ;

predator [0] = y ;

T[0]=0 ;

double cur r en t t ime = 0 ;

f o r (i n t i = 0 ; i < Nt ; i++) {

k [0] = alpha ∗x ;

k [1] = beta ∗x∗y ;

k [2] = gamma∗y ;

s = cumsum(k , 3) ;

u = un i f o rm d i s t r i bu t i on (0 , 1) ;

index = f i nd geq (s , s [2] ∗ u , 3) ;

switch (index [0]) {

case 0 :

x = x+1;

break ;

case 1 :

i f (x > 1)

{

x = x−1;

y = y+1;

}

break ;

d e f au l t :

i f (y>1)

y = y−1;

}

prey [i +1] += x ;

predator [i +1] += y ;

double dt = −l og (1−u) / s [2] ;

Appendix. Source code 61

cur r en t t ime += dt ;

T[i +1] = cur r ent t ime ;

}

}

f o r (i n t i =0; i<Nt ; i++){

prey [i] = prey [i] / runs ;

predator [i] = predator [i] / runs ;

T[i] = T[i] / runs ;

}

FILE ∗ f i l e = fopen (”KMC. txt ” , ”w”) ;

i f (f i l e == NULL)

{

p r i n t f (”Error opening f i l e !\n”) ;

e x i t (1) ;

}

f o r (unsigned i n t j = 0 ; j < Nt ; j ++) {

f p r i n t f (f i l e , ”%f %f %f \n” , T[j] , prey [j] , predator [j]) ;

}

f c l o s e (f i l e) ;

}

i n t main (i n t argc , char ∗∗ argv) {

/∗

argv [1] = Number o f time s t ep s

argv [2] = Alpha , the ra t e constant o f prey reproduct ion

argv [3] = Beta , the ra t e constant o f prey death and predator

reproduct ion

argv [4] = Gamma, the ra t e constant o f predator death

argv [5] = I n i t i a l prey populat ion

argv [6] = I n i t i a l predator populat ion

argv [7] = Number o f independent s imu la t i on s

∗/

i f (argc !=8)

p r i n t f (”Need 6 inputs : Nt ,

alpha ,

beta ,

gamma,

i n i t i a l prey and i n i t i a l predator populat ions ,

Appendix. Source code 62

number o f s imu la t i on s f o r each proce s s \n”) ;

s t r u c t t imeva l s ta r t , end ;

gett imeofday(&sta r t , NULL) ;

KMC(a t o i (argv [1]) , a t o f (argv [2]) , a t o f (argv [3]) , a t o f (argv [4]) , a t o i (

argv [5]) ,

a t o i (argv [6]) , a t o i (argv [7])) ;

gett imeofday(&end , NULL) ;

p r i n t t ime (s ta r t , end) ;

e x i t (0) ;

}

code/KMC serial

/∗

This source code performs the Lotka−Vol te r ra Predator−Prey s imu la t i on

us ing the r e s i d en c e time algor i thm of KMC and the Message Pass ing

I n t e r f a c e i s used

to p a r a l l e l i s e the code . The Lotka−Vol te r ra model f o r a 2 s p e c i e s (prey−

predator)

system i s g iven by

dx/dt = alpha ∗x−beta ∗x∗y−H(y)

dy/dt = k∗beta ∗x∗y−m∗y

∗/

#inc lude <s t d l i b . h>

#inc lude <s t d i o . h>

#inc lude <math . h>

#inc lude <s tdboo l . h>

#inc lude <time . h>

#inc lude <sys / time . h>

#inc lude <mpi . h>

Appendix. Source code 63

// Global v a r i a b l e s

i n t rank , // MPI rank

s i z e , // Number o f MPI p ro c e s s e s

dims [2] , // Dimensions o f MPI g r id

coords [2] , // Coordinate o f t h i s rank in MPI gr id

pe r i od s [2] = {0 ,0} ; // P e r i o d i c i t y o f g r id

MPI Comm cart comm ; // Cartes ian communicator

// MPI i n i t i a l i z a t i o n , s e t t i n g up c a r t e s i a n communicator

void i n i t mp i (i n t argc , char ∗∗ argv) {

MPI Init(&argc , &argv) ;

MPI Comm size (MPICOMMWORLD, &s i z e) ;

MPI Comm rank(MPICOMMWORLD, &rank) ;

MPI Dims create (s i z e , 2 , dims) ;

MPI Cart create (MPICOMMWORLD, 2 , dims , per iods , 0 , &cart comm) ;

MPI Cart coords (cart comm , rank , 2 , coords) ;

}

// Pr int the t o t a l time used by the program

void p r in t t ime (s t r u c t t imeva l s t a r t , s t r u c t t imeva l end) {

long i n t ms = ((end . t v s e c ∗ 1000000 + end . tv us e c) −

(s t a r t . t v s e c ∗ 1000000 + s t a r t . t v u s e c)) ;

double s = ms/1 e6 ;

p r i n t f (”Time : %f s \n” , s) ;

}

// Returns a random numer from a uniform d i s t r i b u t i o n

double un i f o rm d i s t r i bu t i on (i n t rangeLow , i n t rangeHigh)

{

double myRand = rand () / (1 . 0 + RANDMAX) ;

re turn myRand ;

}

/∗ Returns the l i n e a r i n d i c i e s cor re spond ing to the e n t r i e s o f the array

which

s a t i s f i e s the g iven cond i t i on ∗/

i n t ∗ f i nd g eq (double ∗ array , double cond i t ion , i n t s i z e)

Appendix. Source code 64

{

i n t ∗ output = (i n t ∗) mal loc (s i z e o f (double) ∗ s i z e) ;

i n t po in t e r = 0 ;

f o r (i n t i = 0 ; i < s i z e ; i++)

{

output [i] = 0 ;

i f (array [i] >= cond i t i on)

{

output [po in t e r] = i ;

po in t e r ++;

}

}

re turn output ;

}

// Returns a vec to r conta in ing the cumulat ive sum of the e lements o f the

array k

double ∗ cumsum(double ∗ k , i n t s i z e)

{

double ∗ output = mal loc (s i z e o f (double) ∗ s i z e) ;

output [0] = k [0] ;

f o r (i n t i = 1 ; i < s i z e ; i++)

{

output [i] = output [i−1]+k [i] ;

}

re turn output ;

}

/∗ Harvest ing based upon a gradual cont inous i n c r e a s e in the harve s t ing

ra t e as a

func t i on o f the populat ion s i z e ∗/

double H(double y)

{

double T = 1 ;

double h = 1 ;

re turn (h∗(y−T) /(h+y−T)) ;

}

/∗ Perform the Lotka−Vol te r ra Prey−Predator s imu la t i on us ing the r e s i d en c e

time

algor i thm of KMC ∗/

Appendix. Source code 65

void KMC(in t Nt , double alpha , double beta , double gamma, double k , double

m,

i n t p r e y i n i t , i n t p r eda t o r i n i t , i n t runs)

{

//Pre−a l l o c a t i n g ar rays f o r time s t ep s and the popu la t i ons o f

predator s and preys

double ∗ T = malloc (s i z e o f (double) ∗(Nt+1)) ;

double ∗ prey = mal loc (s i z e o f (double) ∗(Nt+1)) ;

double ∗ predator = mal loc (s i z e o f (double) ∗(Nt+1)) ;

double ∗ T f i n a l = mal loc (s i z e o f (double) ∗(Nt+1)) ;

double ∗ p r e y f i n a l = mal loc (s i z e o f (double) ∗(Nt+1)) ;

double ∗ p r e d a t o r f i n a l = mal loc (s i z e o f (double) ∗(Nt+1)) ;

// I n i t i a l i z i n g the ar rays

f o r (i n t i =0; i<Nt ; i++){

prey [i] = 0 ;

predator [i] = 0 ;

T[i] = 0 ;

}

double r a t e s [4] ;

double ∗ s ;

double u ;

i n t ∗ index ;

i n t x , y ;

f o r (i n t j =0; j<runs ; j++)

{

x = p r e y i n i t ;

y = p r e d a t o r i n i t ;

T[0]=0 ;

prey [0] += x ;

predator [0] += y ;

double cur r en t t ime = 0 ;

f o r (i n t i = 0 ; i < Nt ; i++) {

// Ca l cu l a t ing the t r a n s i t i o n to perform

ra t e s [0] = alpha ∗x ;

Appendix. Source code 66

r a t e s [1] = beta ∗x∗y+gamma∗x∗x ;

r a t e s [2] = k∗beta ∗x∗y ;

r a t e s [3] = m∗y+H(y) ; // H i s the harve s t ing o f predator s

s = cumsum(rate s , 4) ;

u = un i f o rm d i s t r i bu t i on (0 , 1) ;

index = f i nd geq (s , s [3] ∗ u , 4) ;

switch (index [0]) {

case 0 :

x = x+1;

break ;

case 1 :

i f (x > 1)

{

x = x−1;

}

break ;

case 2 :

y=y+1;

d e f au l t :

i f (y>1)

y = y−1;

}

// Updating the popu la t i ons

prey [i +1] += x ;

predator [i +1] += y ;

// Ca l cu l a t ing the time step

double dt = −l og (1−u) / s [2] ;

cu r r en t t ime += dt ;

T[i +1] = cur r ent t ime ;

}

}

f o r (i n t i =0; i<Nt ; i++){

prey [i] = prey [i] / (s i z e ∗ runs) ;

predator [i] = predator [i] / (s i z e ∗ runs) ;

T[i] = T[i] / (s i z e ∗ runs) ;

}

// Sum up a l l the runs performed by each proce s s

MPI Reduce (prey , p r e y f i n a l , Nt , MPI DOUBLE, MPI SUM, 0 , cart comm) ;

Appendix. Source code 67

MPI Reduce (predator , p r e d a t o r f i n a l , Nt , MPI DOUBLE, MPI SUM, 0 ,

cart comm) ;

MPI Reduce (T, T f ina l , Nt , MPI DOUBLE, MPI SUM, 0 , cart comm) ;

// Write the r e s u l t s to a f i l e which w i l l be used to c r e a t e p l o t s

us ing MATLAB

i f (rank==0)

{

FILE ∗ f i l e = fopen (”KMC mpi . txt ” , ”w”) ;

i f (f i l e == NULL)

{

p r i n t f (”Error opening f i l e !\n”) ;

e x i t (1) ;

}

f o r (unsigned i n t j = 0 ; j < Nt ; j ++) {

f p r i n t f (f i l e , ”%f %f %f \n” , T f i n a l [j] , p r e y f i n a l [j] ,

p r e d a t o r f i n a l [j]) ;

}

f c l o s e (f i l e) ;

}

}

i n t main (i n t argc , char ∗∗ argv) {

/∗

argv [1] = Number o f time s t ep s

argv [2] = Alpha , the ra t e constant o f prey reproduct ion

argv [3] = Beta , the ra t e constant o f prey death and predator

reproduct ion

argv [4] = Gamma, the ra t e constant o f predator death

argv [5] = k , predator populat ion growth ra t e due to predat ion

argv [6] = m, ra t e o f predator d e c l i n e in absence o f prey

argv [7] = I n i t i a l prey populat ion

argv [8] = I n i t i a l predator populat ion

argv [9] = Number o f independent s imu la t i on s f o r each proce s s

∗/

i f (argc !=10){

Appendix. Source code 68

p r i n t f (”Need 9 inputs : Nt , alpha , beta , gamma, k , m, i n i t i a l prey

and i n i t i a l ”

” predator populat ions , number o f s imu la t i on s f o r each

proce s s \n”) ;

e x i t (0) ;

}

i n i t mp i (argc , argv) ;

s t r u c t t imeva l s ta r t , end ;

i f (rank == 0)

gett imeofday(&sta r t , NULL) ;

KMC(a t o i (argv [1]) , a t o f (argv [2]) , a t o f (argv [3]) , a t o f (argv [4]) , a t o f (

argv [5]) ,

a t o f (argv [6]) , a t o i (argv [7]) , a t o i (argv [8]) , a t o i (argv [9])) ;

i f (rank == 0) {

gett imeofday(&end , NULL) ;

p r i n t t ime (s ta r t , end) ;

}

MPI Final ize () ;

e x i t (0) ;

}

code/KMC mpi.c

/∗This i s the source code used to perform the Lotka−Vol te r ra s imu la t i on

us ing

the time algor i thm of KMC .

∗/

#inc lude <cuda . h>

#inc lude <s t d l i b . h>

#inc lude <s t d i o . h>

#inc lude <math . h>

#inc lude <s tdboo l . h>

Appendix. Source code 69

#inc lude <time . h>

#inc lude <sys / time . h>

#inc lude <curand . h>

#inc lude <curand kerne l . h>

#de f i n e DIM 8 // Total number o f runs i s DIM∗ runs

#de f i n e Nt 5000

#de f i n e Dt 40000 // DIM∗Nt

#de f i n e runs 4

// Pr int the t o t a l time used by the program

void p r in t t ime (s t r u c t t imeva l s t a r t , s t r u c t t imeva l end) {

long i n t ms = ((end . t v s e c ∗ 1000000 + end . tv us e c) −

(s t a r t . t v s e c ∗ 1000000 + s t a r t . t v u s e c)) ;

double s = ms/1 e6 ;

p r i n t f (”Time : %f s \n” , s) ;

}

// Pr int the average t o t a l time used by the program

void p r i n t t ime ave rag e (s t r u c t t imeva l s t a r t , s t r u c t t imeva l end , i n t

number of runs) {

long i n t ms = ((end . t v s e c ∗ 1000000 + end . tv us e c) −

(s t a r t . t v s e c ∗ 1000000 + s t a r t . t v u s e c)) ;

double s = ms/(1 e6∗number of runs) ;

p r i n t f (”Time : %f s \n” , s) ;

}

/∗ Returns the i n d i c e s cor re spond ing to the e n t r i e s o f the array which

s a t i s f i e s the

g iven cond i t i on ∗/

d e v i c e i n t ∗ f i nd g eq (double ∗ array , double cond i t i on)

{

i n t ∗ output = (i n t ∗) mal loc (s i z e o f (i n t) ∗3) ;

i n t po in t e r = 0 ;

f o r (i n t i = 0 ; i < 3 ; i++)

Appendix. Source code 70

{

output [i] = 0 ;

i f (array [i] >= cond i t i on)

{

output [po in t e r] = i ;

po in t e r ++;

}

}

re turn output ;

}

// Returns a vec to r conta in ing the cumulat ive sum of the e lements o f the

array k

d e v i c e double ∗ cumsum(double ∗ k)

{

double ∗ output = (double ∗) mal loc (s i z e o f (double) ∗3) ;

output [0] = k [0] ;

f o r (i n t i = 1 ; i < 3 ; i++)

{

output [i] = output [i−1]+k [i] ;

}

re turn output ;

}

//Dec lare the CUDA kerne l

g l o b a l void KMC(double ∗T, double ∗prey , double ∗predator , double

alpha ,

double beta , double gamma, i n t p r e y i n i t , i n t p r eda t o r i n i t , curandState ∗

s t a t e s ,

unsigned long seed)

{

s h a r e d double T shared [runs ∗Nt] ;

s h a r e d double prey shared [runs ∗Nt] ;

s h a r e d double predator shared [runs ∗Nt] ;

double k [3] ;

double ∗ s ;

f l o a t u ;

i n t ∗ index ;

Appendix. Source code 71

i n t id = threadIdx . x ;

c u r and i n i t (seed , id , 0 , &s t a t e s [id]) ;

curandState l o c a l S t a t e = s t a t e s [id] ;

i n t x , y ;

x = p r e y i n i t ;

y = p r e d a t o r i n i t ;

T shared [id ∗Nt]=0;

prey shared [id ∗Nt] = x ;

predator shared [id ∗Nt] = y ;

double cu r r en t t ime = 0 ;

f o r (i n t i = 0 ; i < Nt ; i++) {

k [0] = alpha ∗x ;

k [1] = beta ∗x∗y ;

k [2] = gamma∗y ;

s = cumsum(k) ;

u = curand uni form(& l o c a l S t a t e) ;

index = f i nd geq (s , s [2] ∗ u) ;

switch (index [0]) {

case 0 :

x = x+1;

break ;

case 1 :

i f (x > 1)

{

x = x−1;

y = y+1;

}

break ;

d e f au l t :

i f (y>1)

y = y−1;

}

prey shared [id ∗(Nt)+i +1] = x ;

predator shared [id ∗(Nt)+i +1] = y ;

double dt = −l og (1−u) / s [2] ;

cu r r en t t ime += dt ;

Appendix. Source code 72

T shared [id ∗(Nt)+i +1] = cur r en t t ime ;

}

sync th r ead s () ;

i f (id ==0){

i n t cur r ent run = blockIdx . y+blockIdx . x∗gridDim . x ;

f o r (i n t i =0; i<Nt ; i++){

prey [cur r ent run ∗(Nt)+i] = 0 ;

predator [cu r r ent run ∗(Nt)+i] = 0 ;

T[cur r ent run ∗(Nt)+i] = 0 ;

f o r (i n t j =0; j<runs ; j++){

prey [cur r ent run ∗(Nt)+i] += prey shared [(Nt) ∗ j+i] ;

predator [cu r r ent run ∗(Nt)+i] += predator shared [(Nt) ∗ j+i

] ;

T[cur r ent run ∗(Nt)+i] += T shared [(Nt) ∗ j+i] ;

}

prey [cur r ent run ∗(Nt)+i] = prey [cur r ent run ∗(Nt)+i] / runs ;

predator [cu r r ent run ∗(Nt)+i] = predator [cu r r ent run ∗(Nt)+i] /

runs ;

T[cur r ent run ∗(Nt)+i] = T[cur r ent run ∗(Nt)+i] / runs ;

}

}

}

i n t main (i n t argc , char ∗∗ argv) {

double alpha = 2 ; // The ra t e constant o f prey reproduct ion

double beta = 0 . 0 5 ; // The ra t e constant o f prey death and predator

reproduct ion

double gamma= 1 . 5 ; // The ra t e constant o f predator death

i n t p r e y i n i t= 50 ; // I n i t i a l prey populat ion

i n t p r e d a t o r i n i t= 50 ; // I n i t i a l predator populat ion

s t r u c t t imeva l s ta r t , end ;

// A l l o ca t e ar rays on host

double ∗ T host = (double ∗) mal loc (s i z e o f (double) ∗Dt) ;

Appendix. Source code 73

double ∗ prey hos t = (double ∗) mal loc (s i z e o f (double) ∗Dt) ;

double ∗ preda to r hos t = (double ∗) mal loc (s i z e o f (double) ∗Dt) ;

// A l l o ca t e array on dev i ce

double ∗T, ∗prey , ∗ predator ;

cudaError t e r r = cudaMalloc ((void ∗∗) &T, Dt∗ s i z e o f (double)) ;

p r i n t f (”CUDA malloc T: %s \n” , cudaGetErrorStr ing (e r r)) ;

e r r = cudaMalloc ((void ∗∗) &prey , Dt∗ s i z e o f (double)) ;

p r i n t f (”CUDA malloc prey : %s \n” , cudaGetErrorStr ing (e r r)) ;

e r r = cudaMalloc ((void ∗∗) &predator , Dt∗ s i z e o f (double)) ;

p r i n t f (”CUDA malloc predator : %s \n” , cudaGetErrorStr ing (e r r)) ;

/∗ f o r (i n t i =0; i<Dt ; i++){

prey hos t [i] = 0 ;

p r eda to r hos t [i] = 0 ;

T host [i] = 0 ;

}∗/

// Copy ar rays to CUDA dev i ce

e r r = cudaMemcpy(T, T host , Dt∗ s i z e o f (double) , cudaMemcpyHostToDevice)

;

p r i n t f (”Copy T to dev i ce : %s \n” , cudaGetErrorStr ing (e r r)) ;

e r r = cudaMemcpy(predator , predator host , Dt∗ s i z e o f (double) ,

cudaMemcpyHostToDevice) ;

p r i n t f (”Copy predator to dev i c e : %s \n” , cudaGetErrorStr ing (e r r)) ;

e r r = cudaMemcpy(prey , prey host , Dt∗ s i z e o f (double) ,

cudaMemcpyHostToDevice) ;

p r i n t f (”Copy prey to dev i c e : %s \n” , cudaGetErrorStr ing (e r r)) ;

curandState ∗ devStates ;

cudaMalloc(&devStates , DIM∗ s i z e o f (curandState)) ;

gett imeofday(&sta r t , NULL) ;

dim3 threadsPerBlock (a t o i (argv [6]) , 1) ;

dim3 gr id (DIM, 1) ;

Appendix. Source code 74

KMC<<<1,10>>>(T, prey , predator , alpha , beta , gamma, p r e y i n i t ,

p r eda t o r i n i t ,

devStates , time (NULL)) ;

e r r = cudaThreadSynchronize () ;

p r i n t f (”Run ke rne l : %s \n” , cudaGetErrorStr ing (e r r)) ;

// Retr i eve r e s u l t from dev i ce and s t o r e i t in host array

e r r = cudaMemcpy(T host , T, Dt∗ s i z e o f (double) , cudaMemcpyDeviceToHost)

;

p r i n t f (”Copy T o f f o f dev i c e : %s \n” , cudaGetErrorStr ing (e r r)) ;

e r r = cudaMemcpy(predator host , predator , Dt∗ s i z e o f (double) ,

cudaMemcpyDeviceToHost) ;

p r i n t f (”Copy predator o f f o f dev i c e : %s \n” , cudaGetErrorStr ing (e r r)) ;

e r r = cudaMemcpy(prey host , prey , Dt∗ s i z e o f (double) ,

cudaMemcpyDeviceToHost) ;

p r i n t f (”Copy prey o f f o f dev i c e : %s \n” , cudaGetErrorStr ing (e r r)) ;

gett imeofday(&end , NULL) ;

p r i n t t ime (s ta r t , end) ;

f o r (i n t i =0; i<Nt ; i++){

f o r (i n t j =1; j<DIM; j++){

T host [i] += T host [i +j ∗Nt] ;

p rey hos t [i] += prey hos t [i +j ∗Nt] ;

p r eda to r hos t [i] += predato r hos t [i +j ∗Nt] ;

}

T host [i] = T host [i] / (DIM) ;

prey hos t [i] = prey hos t [i] / (DIM) ;

p r eda to r hos t [i] = preda to r hos t [i] / (DIM) ;

}

FILE ∗ f i l e = fopen (”KMC mpi . txt ” , ”w”) ;

i f (f i l e == NULL)

{

p r i n t f (”Error opening f i l e !\n”) ;

e x i t (1) ;

}

Appendix. Source code 75

f o r (unsigned i n t j = 0 ; j < Nt ; j ++) {

f p r i n t f (f i l e , ”%f %f %f \n” , T host [j] , p rey hos t [j] ,

p r eda to r hos t [j]) ;

}

f c l o s e (f i l e) ;

// Cleanup

cudaFree (T) ;

cudaFree (prey) ;

cudaFree (predator) ;

e x i t (0) ;

}

code/KMC cuda shared.cu

/∗This i s the source code used to perform the Lotka−Vol te r ra s imu la t i on

us ing the time algor i thm of KMC .

∗/

#inc lude <cuda . h>

#inc lude <s t d l i b . h>

#inc lude <s t d i o . h>

#inc lude <math . h>

#inc lude <s tdboo l . h>

#inc lude <time . h>

#inc lude <sys / time . h>

#inc lude <curand . h>

#inc lude <curand kerne l . h>

#de f i n e DIM 16384 // Number o f threads

#de f i n e Nt 5000 // Time s t ep s

#de f i n e runs 2 // Number o f Blocks

// Pr int the t o t a l time used by the program

void p r in t t ime (s t r u c t t imeva l s t a r t , s t r u c t t imeva l end) {

long i n t ms = ((end . t v s e c ∗ 1000000 + end . tv us e c) −

Appendix. Source code 76

(s t a r t . t v s e c ∗ 1000000 + s t a r t . t v u s e c)) ;

double s = ms/1 e6 ;

p r i n t f (”Time : %f s \n” , s) ;

}

// Pr int the average t o t a l time used by the program

void p r i n t t ime ave rag e (s t r u c t t imeva l s t a r t , s t r u c t t imeva l end , i n t

number of runs) {

long i n t ms = ((end . t v s e c ∗ 1000000 + end . tv us e c) −

(s t a r t . t v s e c ∗ 1000000 + s t a r t . t v u s e c)) ;

double s = ms/(1 e6∗number of runs) ;

p r i n t f (”Time : %f s \n” , s) ;

}

/∗ Returns the i n d i c e s cor re spond ing to the e n t r i e s o f the array which

s a t i s f i e s the g iven cond i t i on ∗/

d e v i c e i n t ∗ f i nd g eq (double ∗ array , double cond i t i on)

{

i n t ∗ output = (i n t ∗) mal loc (s i z e o f (i n t) ∗3) ;

i n t po in t e r = 0 ;

f o r (i n t i = 0 ; i < 3 ; i++)

{

output [i] = 0 ;

i f (array [i] >= cond i t i on)

{

output [po in t e r] = i ;

po in t e r ++;

}

}

re turn output ;

}

// Returns a vec to r conta in ing the cumulat ive sum of the e lements o f the

array k

d e v i c e double ∗ cumsum(double ∗ k)

{

double ∗ output = (double ∗) mal loc (s i z e o f (double) ∗3) ;

output [0] = k [0] ;

f o r (i n t i = 1 ; i < 3 ; i++)

{

Appendix. Source code 77

output [i] = output [i−1]+k [i] ;

}

re turn output ;

}

//Dec lare the CUDA kerne l

g l o b a l void KMC(double ∗T, double ∗prey , double ∗predator , double

alpha , double beta , double gamma, i n t p r e y i n i t , i n t p r eda t o r i n i t ,

curandState ∗ s t a t e s , unsigned long seed)

{

double k [3] ;

double s [3] ;

f l o a t u ;

i n t index [3] ;

i n t id = blockIdx . x ∗blockDim . x + threadIdx . x ;

c u r and i n i t (seed , id , 0 , &s t a t e s [id]) ;

curandState l o c a l S t a t e = s t a t e s [id] ;

i n t x , y , po in t e r ;

x = p r e y i n i t ;

y = p r e d a t o r i n i t ;

T[id ∗Nt]=0;

prey [id ∗Nt] = x ;

predator [id ∗Nt] = y ;

double cu r r en t t ime = 0 ;

f o r (i n t i = 0 ; i < Nt ; i++) {

k [0] = alpha ∗x ;

k [1] = beta ∗x∗y ;

k [2] = gamma∗y ;

s [0] = k [0] ;

f o r (i n t j = 1 ; j < 3 ; j++)

s [j] = s [j−1]+k [j] ;

u = curand uni form(& l o c a l S t a t e) ;

Appendix. Source code 78

po in t e r = 0 ;

f o r (i n t j = 0 ; j < 3 ; j++){

index [j] = 0 ;

i f (s [j] >= s [2] ∗ u) {

index [po in t e r] = j ;

po in t e r ++;

}

}

// index = f i nd geq (s , s [2] ∗ u) ;

switch (index [0]) {

case 0 :

x = x+1;

break ;

case 1 :

i f (x > 1)

{

x = x−1;

y = y+1;

}

break ;

d e f au l t :

i f (y>1)

y = y−1;

}

prey [id ∗(Nt)+i +1] = x ;

predator [id ∗(Nt)+i +1] = y ;

double dt = −l og (1−u) / s [2] ;

cu r r en t t ime += dt ;

T[id ∗(Nt)+i +1] = cur r en t t ime ;

}

sync th r ead s () ;

}

i n t main (i n t argc , char ∗∗ argv) {

double alpha = 2 ; // The ra t e constant o f prey reproduct ion

double beta = 0 . 0 5 ; // The ra t e constant o f prey death and predator

reproduct ion

double gamma= 1 . 5 ; // The ra t e constant o f predator death

Appendix. Source code 79

i n t p r e y i n i t= 50 ; // I n i t i a l prey populat ion

i n t p r e d a t o r i n i t= 50 ; // I n i t i a l predator populat ion

s t r u c t t imeva l s ta r t , end ;

// A l l o ca t e ar rays on host

double ∗ T host = (double ∗) mal loc (s i z e o f (double) ∗Nt∗DIM∗ runs) ;

double ∗ prey hos t = (double ∗) mal loc (s i z e o f (double) ∗Nt∗DIM∗ runs) ;

double ∗ preda to r hos t = (double ∗) mal loc (s i z e o f (double) ∗Nt∗DIM∗ runs) ;

// A l l o ca t e array on dev i ce

double ∗T, ∗prey , ∗ predator ;

cudaError t e r r = cudaMalloc ((void ∗∗) &T, Nt∗DIM∗ runs ∗ s i z e o f (double))

;

p r i n t f (”CUDA malloc T: %s \n” , cudaGetErrorStr ing (e r r)) ;

e r r = cudaMalloc ((void ∗∗) &prey , Nt∗DIM∗ runs ∗ s i z e o f (double)) ;

p r i n t f (”CUDA malloc prey : %s \n” , cudaGetErrorStr ing (e r r)) ;

e r r = cudaMalloc ((void ∗∗) &predator , Nt∗DIM∗ runs ∗ s i z e o f (double)) ;

p r i n t f (”CUDA malloc predator : %s \n” , cudaGetErrorStr ing (e r r)) ;

/∗ f o r (i n t i =0; i<Nt∗DIM∗ runs ; i++){

prey hos t [i] = 0 ;

p r eda to r hos t [i] = 0 ;

T host [i] = 0 ;

}∗/

// Copy ar rays to CUDA dev i ce

e r r = cudaMemcpy(T, T host , Nt∗DIM∗ runs ∗ s i z e o f (double) ,

cudaMemcpyHostToDevice) ;

p r i n t f (”Copy T to dev i ce : %s \n” , cudaGetErrorStr ing (e r r)) ;

e r r = cudaMemcpy(predator , predator host , Nt∗DIM∗ runs ∗ s i z e o f (double) ,

cudaMemcpyHostToDevice) ;

p r i n t f (”Copy predator to dev i c e : %s \n” , cudaGetErrorStr ing (e r r)) ;

Appendix. Source code 80

e r r = cudaMemcpy(prey , prey host , Nt∗DIM∗ runs ∗ s i z e o f (double) ,

cudaMemcpyHostToDevice) ;

p r i n t f (”Copy prey to dev i c e : %s \n” , cudaGetErrorStr ing (e r r)) ;

curandState ∗ devStates ;

cudaMalloc(&devStates , DIM∗ s i z e o f (curandState)) ;

gett imeofday(&sta r t , NULL) ;

//dim3 threadsPerBlock (a t o i (argv [6]) , 1) ;

//dim3 gr id (DIM, 1) ;

i n t threadsPerBlock = DIM;

i n t b lock = runs ;

KMC<<<block , threadsPerBlock>>>(T, prey , predator , alpha , beta , gamma,

p r e y i n i t , p r eda t o r i n i t , devStates , time (NULL)) ;

e r r = cudaThreadSynchronize () ;

p r i n t f (”Run ke rne l : %s \n” , cudaGetErrorStr ing (e r r)) ;

// Retr i eve r e s u l t from dev i ce and s t o r e i t in host array

e r r = cudaMemcpy(T host , T, Nt∗DIM∗ runs ∗ s i z e o f (double) ,

cudaMemcpyDeviceToHost) ;

p r i n t f (”Copy T o f f o f dev i c e : %s \n” , cudaGetErrorStr ing (e r r)) ;

e r r = cudaMemcpy(predator host , predator , Nt∗DIM∗ runs ∗ s i z e o f (double) ,

cudaMemcpyDeviceToHost) ;

p r i n t f (”Copy predator o f f o f dev i c e : %s \n” , cudaGetErrorStr ing (e r r)) ;

e r r = cudaMemcpy(prey host , prey , Nt∗DIM∗ runs ∗ s i z e o f (double) ,

cudaMemcpyDeviceToHost) ;

p r i n t f (”Copy prey o f f o f dev i c e : %s \n” , cudaGetErrorStr ing (e r r)) ;

f o r (i n t i =0; i<Nt ; i++){

f o r (i n t j =1; j<DIM∗ runs ; j++){

T host [i] += T host [i +j ∗Nt] ;

p rey hos t [i] += prey hos t [i +j ∗Nt] ;

p r eda to r hos t [i] += predato r hos t [i +j ∗Nt] ;

}

T host [i] = T host [i] / (DIM∗ runs) ;

p rey hos t [i] = prey hos t [i] / (DIM∗ runs) ;

Appendix. Source code 81

preda to r hos t [i] = preda to r hos t [i] / (DIM∗ runs) ;

}

gett imeofday(&end , NULL) ;

p r i n t t ime (s ta r t , end) ;

FILE ∗ f i l e = fopen (”KMC mpi . txt ” , ”w”) ;

i f (f i l e == NULL)

{

p r i n t f (”Error opening f i l e !\n”) ;

e x i t (1) ;

}

f o r (unsigned i n t j = 0 ; j < Nt ; j ++) {

f p r i n t f (f i l e , ”%f %f %f \n” , T host [j] , p rey hos t [j] ,

p r eda to r hos t [j]) ;

}

f c l o s e (f i l e) ;

// Cleanup

cudaFree (T) ;

cudaFree (prey) ;

cudaFree (predator) ;

e x i t (0) ;

}

code/KMC cuda global.cu

Bibliography

[1] Bertrand Delgutte. Random variables and probability density functions, 2000. URL

http://web.mit.edu/~gari/teaching/6.555/lectures/ch_pdf_sw.pdf.

[2] Karl Sigman. Discrete-time markov chains, 2009. URL http://www.columbia.

edu/~ks20/stochastic-I/stochastic-I-MCI.pdf.

[3] Petere Mörters and Yuval Peres. Brownian motion. Draft Version,

http://www.stat.berkeley.edu/ peres/bmbook.pdf, May 2008.

[4] Steven P. Lalley. Stochastic differential equations, May 2012. URL http://galton.

uchicago.edu/~lalley/Courses/385/SDE.pdf.

[5] Utz von Wagner Wolfram Martens. On the solution of high dimensional

fokker planck equations using orthogonal polynomial expansion, 2010. URL

http://onlinelibrary.wiley.com/store/10.1002/pamm.201010121/asset/

257_ftp.pdf;jsessionid=B74C331A9356E98D89EFB8CAB0B54B04.f04t04?v=

1&t=ianlfr20&s=311b3bf08345b2d09536220314f3e60fdc7b59ee.

[6] J. Kenneth Shultis William L. Dunn. Exploring Monte Carlo Mathods. Academpic

Press, 2012.

[7] Arthur F. Voter. Introduction to the kinetic monte carlo method, 2005. URL

http://www.fml.t.u-tokyo.ac.jp/~izumi/CMS/MC/Introduction_kMC.pdf.

[8] Amdahl’s law vs. gustafson-barsis’ law, october 2013. URL http://www.drdobbs.

com/parallel/amdahls-law-vs-gustafson-barsis-law/240162980.

[9] Haizhen Wu. Parallel computing using gpus. Mas-

ter’s thesis, School of Engineering and Computer Science.,

http://ecs.victoria.ac.nz/foswiki/pub/EResearch/EcsTeslaResource2010/Parallel.Computing.Using.Graphics.Cards.pdf,

March 2011.

82

http://web.mit.edu/~gari/teaching/6.555/lectures/ch_pdf_sw.pdf
http://www.columbia.edu/~ks20/stochastic-I/stochastic-I-MCI.pdf
http://www.columbia.edu/~ks20/stochastic-I/stochastic-I-MCI.pdf
http://galton.uchicago.edu/~lalley/Courses/385/SDE.pdf
http://galton.uchicago.edu/~lalley/Courses/385/SDE.pdf
http://onlinelibrary.wiley.com/store/10.1002/pamm.201010121/asset/257_ftp.pdf;jsessionid=B74C331A9356E98D89EFB8CAB0B54B04.f04t04?v=1&t=ianlfr20&s=311b3bf08345b2d09536220314f3e60fdc7b59ee
http://onlinelibrary.wiley.com/store/10.1002/pamm.201010121/asset/257_ftp.pdf;jsessionid=B74C331A9356E98D89EFB8CAB0B54B04.f04t04?v=1&t=ianlfr20&s=311b3bf08345b2d09536220314f3e60fdc7b59ee
http://onlinelibrary.wiley.com/store/10.1002/pamm.201010121/asset/257_ftp.pdf;jsessionid=B74C331A9356E98D89EFB8CAB0B54B04.f04t04?v=1&t=ianlfr20&s=311b3bf08345b2d09536220314f3e60fdc7b59ee
http://www.fml.t.u-tokyo.ac.jp/~izumi/CMS/MC/Introduction_kMC.pdf
http://www.drdobbs.com/parallel/amdahls-law-vs-gustafson-barsis-law/240162980
http://www.drdobbs.com/parallel/amdahls-law-vs-gustafson-barsis-law/240162980

Bibliography 83

[10] Blaise Barney. Openmp, 2015 May. URL https://computing.llnl.gov/

tutorials/openMP/.

[11] Blaise Barney. Message passing interface (mpi), May 2015. URL https://

computing.llnl.gov/tutorials/mpi/.

[12] nvidia developer. Cuda c programming guide, march 2015. URL http://docs.

nvidia.com/cuda/cuda-c-programming-guide/index.html#axzz3YmH7CfR0.

[13] Cyril Zeller. Cuda c/c++ basics, 2011. URL http://www.nvidia.com/docs/IO/

116711/sc11-cuda-c-basics.pdf.

[14] Karl Sigman. Introduction to stochastic integration.

http://www.columbia.edu/ ks20/FE-Notes/4700-07-Notes-Ito.pdf, 2007.

[15] Sebastian Jaimungal. Stochastic calculus main results.

http://www.utstat.utoronto.ca/sjaimung/protected/mmf1952/notes/StochasticCalculus.pdf,

2006.

[16] Gaute Halvorsen. Numerical solution of stochastic differential equations by use of

path integration. Master’s thesis, NTNU, October 2011.

[17] F. James. Monte carlo theory an practice, 1980. URL http://gruppo3.ca.infn.

it/defalco/fisica/james-mc.pdf.

[18] Marc R. Roussel. Stability analysis for odes, 2005. URL http://people.uleth.

ca/~roussel/nld/stability.pdf.

[19] Christopher Cooper. Gpu computing with cuda. Pdf, Boston University,

http://www.bu.edu/pasi/files/2011/07/Lecture31.pdf, August 2011.

[20] Agnes Koi Alexandersen. Numerical solution of stochastic differential equations.

Master’s thesis, NTNU, 2014.

https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/openMP/
https://computing.llnl.gov/tutorials/mpi/
https://computing.llnl.gov/tutorials/mpi/
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#axzz3YmH7CfR0
http://docs.nvidia.com/cuda/cuda-c-programming-guide/index.html#axzz3YmH7CfR0
http://www.nvidia.com/docs/IO/116711/sc11-cuda-c-basics.pdf
http://www.nvidia.com/docs/IO/116711/sc11-cuda-c-basics.pdf
http://gruppo3.ca.infn.it/defalco/fisica/james-mc.pdf
http://gruppo3.ca.infn.it/defalco/fisica/james-mc.pdf
http://people.uleth.ca/~roussel/nld/stability.pdf
http://people.uleth.ca/~roussel/nld/stability.pdf

	Preface
	Abstract
	Abbreviations
	Symbols
	Contents
	1 Preliminaries
	1.1 Basic Properties intro
	1.2 Stochastic Processes chapman
	1.2.1 Markov Chains

	1.3 Brownian Motion Brownian
	1.4 The Stochastic Differential Equation
	1.5 Itō's Lemma
	1.6 Existence and Uniqueness of Solution exsol
	1.7 The Fokker-Planck Equation fokker

	2 The Lotka-Volterra model
	2.1 Introduction
	2.2 Harvesting
	2.3 Equilibrium Points and Stationary Solutions

	3 Monte Carlo Methods
	3.1 Introduction
	3.1.1 Random Numbers
	3.1.2 Monte Carlo Method weaklaw
	3.1.2.1 Weak Law of Large Numbers (WLLN)
	3.1.2.2 The Strong Law of Large Numbers (SLLN)
	3.1.2.3 Rate of Convergence
	3.1.2.4 Error estimates

	3.1.3 Kinetic Monte Carlo Method kmcintro

	4 Parallel Computing
	4.1 Introduction amdahl gpu
	4.1.1 Terminology
	4.1.2 Speedup, Efficiency and Scalability
	4.1.3 Amdahl's Law amdahl
	4.1.4 Gustafson-Barsis' law amdahl

	4.2 Memory
	4.2.0.1 Data Structure Alignment
	4.2.1 Shared Memory
	4.2.1.1 OpenMP OpenMP

	4.2.2 Distributed Memory
	4.2.2.1 MPI MPItutorial

	4.2.3 CUDA CUDA CUDAbasic
	4.2.4 Hybrid

	4.3 Parallel Monte Carlo
	4.3.1 MPI
	4.3.2 CUDA

	4.4 Results
	4.4.1 CUDA VS MPI
	4.4.2 Accuracy

	5 Conclusion
	5.1 Summary
	5.1.1 Performance

	5.2 Further Research
	5.2.1 Code Optimisation
	5.2.2 Extend the Model

	A Source code
	Bibliography

