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Problem Description

This thesis is about investigating the use of Isogeometric Analysis with divergence-
conforming spline spaces for solving incompressible Stokes flow problems. By means
of divergence-conforming spaces one may achieve pointwise fulfillment of the incom-
pressibility condition, and initial work published on this method have shown encourag-
ing results regarding stability and accuracy.





Abstract

In this thesis we look at how boundary value problems for partial differential equations
can be solved numerically using B-splines, or more generally NURBS, both to express
the geometry of the problem exactly and as a basis for a finite element approximation.
This is called isogeometric analysis, and we consider the theory behind the method as
well as aspects regarding implementation. We take a close look at the construction of
B-spline basis functions and geometries, and how the basis can be refined, leading up
to the construction of NURBS basis functions and geometries. The ubiquitous Poisson
problem is considered as a model problem, and a numerical solver for this problem is
implemented in MATLAB using Galerkin’s finite element method. We finally consider
a method for numerically solving the Stokes problem for incompressible fluid flow,
using divergence-conforming B-splines in an isogeometric setting. This method gives
a discrete velocity which is pointwise divergence-free, making the numerical solution
satisfy mass conservation in an exact sense. Numerical tests are performed, showing that
isogeometric analysis makes it possible to use exact geometry throughout the analysis
and provides great flexibility regarding refinement. The convergence properties of the
method for the Stokes problem are investigated numerically, with very good results for
the numerical velocity solution, but with a reduced convergence rate for the pressure
solution that is accounted for. The method is also tested on benchmark problems, the
results confirming the stability of the method.
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Sammendrag

I denne masteroppgaven ser vi på hvordan randverdiproblemer of partielle differensial-
ligninger kan løses numerisk ved å bruke B-splines, eller mer generelt NURBS, både til
å uttrykke problemets geometri eksakt og som basis for en tilnærmet løsning med ele-
mentmetoden. Dette blir kalt isogeometrisk analyse, og vi studerer teorien bak metoden
i tillegg til implementasjonsmessige aspekter. Vi går grundig gjennom oppbygningen av
B-spline basisfunksjoner og geometrier. Det allestedsnærværende Poisson-problemet er
brukt som modellproblem, og en numerisk løser for dette problemet er implementert i
MATLAB med bruk av Galerkins elementmetode. Vi ser til slutt på en metode for nu-
merisk løsning av Stokes-problemet for inkompressibel væskestrømning, der divergens-
konforme B-splines er brukt i en isogeometrisk setting. Denne metoden gir en diskret
hastighet som er punktvis divergensfri, noe som gjør at den numeriske løsningen opp-
fyller massebevarelse eksakt. Numeriske tester er utført, og disse viser at isogeometrisk
analyse gjør det mulig å bruke eksakt geometri gjennom hele analyseprosessen og gir
stor fleksibilitet hva angår forfining. Konvergensegenskapene til metoden for Stokes-
problemet er undersøkt numerisk, med svært gode resultater for den numeriske løsnin-
gen for hastighet, men med en redusert konvergensrate for trykkløsningen som blir gjort
rede for. Metoden er også testet på referanseproblemer med resultater som bekrefter
metodens stabilitet.
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Chapter 1
Introduction

1.1 Isogeometric analysis
Computer aided design (CAD) is the use of computers to construct and modify geomet-
ric objects. CAD is widely used in industry to give a description and a visualization of
the objects being designed. Computer aided engineering (CAE) is the use of computers
to perform engineering analysis on geometries. Some examples are stress analysis, ther-
mal and fluid flow analysis, dynamics and kinematics analysis and product optimization.
The physical phenomena being analysed are often modelled mathematically by bound-
ary value problems of partial differential equations. These problems must usually be
solved using a numerical method, especially in the case of complex geometries, and a
widely used method is the finite element method.

Finite element analysis (FEA) is often used as a part of the design process to control
and verify the design, and based on the analysis the design may be improved. However,
the technologies of FEA and CAD have been developed quite separately, and in order
to perform analysis on a CAD geometry it must be translated into a geometry suitable
for analysis. This translation process has proven to be time consuming [7, p. 2]. If the
design is improved multiple times on the basis of the analysis, it is obvious that a more
seamless integration of CAD and FEA would be preferable. In addition, the geometry
used for analysis is often an approximation to the CAD geometry which is viewed as
the exact geometry. This may introduce errors, e.g. [9] shows an example where using
an approximated geometry introduces unwanted numerical oscillations in the solution.

Pursuing the goal of bringing the CAD and FEA communities closer together, the
concept of isogeometric analysis was proposed in [18] as a way to perform finite ele-
ment analysis using the exact CAD geometry. The most widely used CAD technology
in engineering design is NURBS (non-uniform rational B-splines) [7, p. 7], and in iso-
geometric analysis NURBS basis functions are used both to represent the geometry and
as basis functions for finite element analysis. The methods and ideas of isogeometric
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Chapter 1. Introduction

analysis are described in the book "Isogeometric Analysis - Toward Integration of CAD
and FEA" [7] and much of the theory and implementation in this thesis is based on this
book.

1.2 The Stokes problem
The Stokes equations give a model for the flow of an incompressible fluid with constant
viscosity, in the case where the viscous forces dominate over the inertial forces [20].
This is characterized by a very small Reynolds number, for instance if the velocity or
the length scale of the flow is very small, or the viscosity is very large. A huge class
of numerical approximations of this problem is obtained using the framework of mixed
finite element methods [14]. Using this framework must, however, be done with some
care in order to guarantee stability and convergence of the method. Furthermore, a lot
of these methods give discrete solutions that are only approximately divergence-free,
which can be an issue [15, 21]. A method satisfying the stability requirements while
at the same time giving exact mass conservation is proposed in [11] in the context on
isogeometric analysis, with very promising results.

1.3 This thesis
Some familiarity with the finite element method is recommended before reading this
thesis, even though we go in some detail explaining the methods. In Chapter 2 the
theory of B-splines and NURBS will be treated in quite some depth, with a focus on
the properties that will be important for their use as finite element basis functions. We
will take a close look at spline spaces, as well as methods for refining the basis of a
given spline space. In Chapter 3 we use the NURBS basis functions in a finite element
implementation for the Poisson problem, according to the principles of isogeometric
analysis. In Chapter 4 we consider a method for numerically solving the Stokes problem
for incompressible fluid flow, using divergence-conforming spline spaces. Chapter 5
summarizes the results and contains the conclusion of this thesis.

This thesis is written as an extension of the work done in the specialization project
in numerical analysis [16], so much of what is presented here comes from this project.
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Chapter 2
B-splines and NURBS

In isogeometric analysis B-spline or NURBS basis functions are used both to define the
geometry and as the basis for the solution space in which we search for the numerical
solution of the problem at hand. This idea of using the same basis for the geometry and
the analysis is referred to as the isoparametric concept [7, p. 69]. The NURBS basis
functions are defined using the B-spline basis functions, and the former is actually a
generalization of the latter. Thus in order to use the NURBS basis functions we must
understand how the B-spline basis functions behave. In this chapter we take a thorough
look into the theory of B-splines and NURBS. We start by defining the B-spline basis
functions and explore some of their most important properties. We then consider spline
spaces, which the B-splines give a basis for, and spaces of spline derivatives. We also
consider the ways that the basis of a spline space can be refined, before we see how the
NURBS are constructed using B-splines.

2.1 B-splines

2.1.1 Definition

Spline functions and spline geometries are built from basis functions called B-splines.
We start by defining these basis functions.

Definition 2.1. Let p be a nonnegative integer and Ξ = [ξ1, ξ2, . . . , ξn+p+1] a vector of
real numbers that are nondecreasing with increasing index. The ith of the n B-splines
of degree p, denoted Ni,p,Ξ or simply Ni,p, is defined by the recursion

Ni,p (ξ) = ξ − ξi
ξi+p − ξi

Ni,p−1 (ξ) + ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1 (ξ) , ∀ξ ∈ R, (2.1.1)

3



Chapter 2. B-splines and NURBS

using the convention "0/0 = 0" and the base case

Ni,0 (ξ) =

1, if ξi ≤ ξ < ξi+1,

0, otherwise.
(2.1.2)

If a knot value is repeated r times in the knot vector we say that it has multiplicity
r. We say that a knot vector is open or p + 1-regular if the multiplicity of both the first
and the last knot is p + 1 and no knot has multiplicity larger than p + 1. In this thesis
we will only encounter open knot vectors.

Obviously division by zero may occur in Definition 2.1 in the case of repeated knots.
However, the zero convention "0/0 = 0" prevents this from creating any trouble, since
every time division by zero occurs we also multiply by zero. Indeed we can note the
following property:

Proposition 1. For p ≥ 1 we have that

ξi = ξi+p ⇒ Ni,p−1 (ξ) = 0,∀ξ ∈ R. (2.1.3)

Proof. The property is easily proved by induction. For p = 1 the result is obvious from
(2.1.2) since there is no ξ ∈ R such that ξi ≤ ξ < ξi+1 if we have ξi = ξi+1. Now
assume that (2.1.3) holds for p = k. From the monotonicity of the knot vector we
observe that if ξi = ξi+k+1 then ξi = ξi+k and ξi+1 = ξi+k+1. Thus (2.1.1) gives that
(2.1.3) holds for k + 1 by the following calculation for ξ ∈ R:

Ni,k (ξ) = ξ − ξi
ξi+k − ξi

Ni,k−1 (ξ) + ξi+k+1 − ξ
ξi+k+1 − ξi+1

Ni+1,k−1 (ξ)

= (ξ − ξi)
0
0 + (ξi+k+1 − ξ)

0
0 = 0.

Here we have used the induction hypothesis and the zero convention.

B-spline evaluation can of course be implemented using the recursion in Definition
2.1 with the zero convention. However, a much more efficient way of evaluating the
B-splines can be obtained using a matrix representation of the B-splines [22, Ch. 2] and
this is what we use in practice.

2.1.2 Basic properties of B-splines
We now consider some of the properties of B-splines that are important for their use as
finite element basis functions. The first property to note is the local support, which is
important in order to end up with a sparse system of linear equations when the B-splines
are used as a finite element basis.
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Proposition 2. A B-spline Ni,p satisfies

Ni,p (ξ) > 0, ξ ∈ (ξi, ξi+p+1) , (2.1.4)
Ni,p (ξ) = 0, ξ /∈ [ξi, ξi+p+1) , (2.1.5)

so the support of Ni,p is [ξi, ξi+p+1] and it is actually strictly positive on the interior of
the support.

Proposition 2 can be proved straightforwardly by induction, using the recurrence re-
lation in Definition 2.1 along with Proposition 1. An immediate consequence of Propo-
sition 2 is that given a knot interval [ξµ, ξµ+1), the p + 1 nonzero B-splines of degree p
on the interval are {Ni,p}µi=µ−p.

Another well known property of the B-splines is that they are piecewise polynomial
functions.

Proposition 3. A B-spline can be expressed by

Ni,p (ξ) =
i+p∑
j=i

P j
i,p (ξ)Nj,0 (ξ), (2.1.6)

where the P j
i,p are polynomials of degree at most p and Nj,0 are the piecewise constant

B-splines, i.e. the characteristic functions of the knot intervals.

Proof. To see that we can express the B-splines this way we use induction. It is trivial
that (2.1.6) holds for p = 0, since we can use P i

i,0 = 1 which is a polynomial of degree
0. Now if we assume that (2.1.6) holds for p = k − 1 we can write

Ni,k (ξ) = ξ − ξi
ξi+k − ξi

Ni,k−1 (ξ) + ξi+k+1 − ξ
ξi+k+1 − ξi+1

Ni+1,k−1 (ξ)

= ξ − ξi
ξi+k − ξi

i+k−1∑
j=i

P j
i,k−1 (ξ)Nj,0 (ξ) + ξi+k+1 − ξ

ξi+k+1 − ξi+1

i+k∑
j=i+1

P j
i+1,k−1 (ξ)Nj,0 (ξ)

= ξ − ξi
ξi+k − ξi

P i
i,k−1 (ξ)Ni,0 (ξ)

+
i+k−1∑
j=i+1

(
ξ − ξi
ξi+k − ξi

P j
i,k−1 (ξ) + ξi+k+1 − ξ

ξi+k+1 − ξi+1
P j
i+1,k−1 (ξ)

)
Nj,0 (ξ)

+ ξi+k+1 − ξ
ξi+k+1 − ξi+1

P i+k
i+1,k−1 (ξ)Ni+k,0 (ξ) ,

and we observe that the functions in front of the Nj,0 for all j ∈ {i, . . . , i + k} are the
(k − 1)th degree polynomials P j

i,k−1 multiplied by first degree polynomials, or sums of
such products. Hence we have kth degree polynomials P j

i,k such that (2.1.6) holds for
p = k.
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Chapter 2. B-splines and NURBS

Under the assumption of open knot vectors the B-spline basis {Ni,p}ni=1 is a partition
of unity, which is a useful property when used in finite element analysis.

Proposition 4. If the B-splines {Ni,p}ni=1 are constructed from an open knot vector, then

n∑
i=1

Ni,p (ξ) = 1, ∀ξ ∈ [ξ1, ξn+p+1) . (2.1.7)

Proof. We use the recurrence relation (2.1.1) and compute

n∑
i=1

Ni,p (ξ) =
n∑
i=1

ξ − ξi
ξi+p − ξi

Ni,p−1 (ξ) +
n∑
i=1

ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1 (ξ)

= ξ − ξ1

ξ1+p − ξ1
N1,p−1 (ξ) +

n∑
i=2

Ni,p−1 (ξ) + ξn+p+1 − ξ
ξn+p+1 − ξn+1

Nn+1,p−1 (ξ) .

If the knot vector is open we have that ξ1 = ξp+1 and ξn+1 = ξn+p+1, and by Proposition
1 this gives N1,p−1 (ξ) = Nn+1,p−1 (ξ) = 0. Hence

n∑
i=1

Ni,p (ξ) =
n∑
i=2

Ni,p−1 (ξ).

Now we can proceed in a similar fashion until we reach
n∑

i=p+1
Ni,0 (ξ). For every ξ ∈

[ξ1, ξn+p+1) there is exactly one index i such that ξi ≤ ξ < ξi+1, and since the knot
vector is open this index will satisfy p+ 1 ≤ i ≤ n, so clearly

n∑
i=1

Ni,p (ξ) =
n∑

i=p+1
Ni,0 (ξ) = 1, ∀ξ ∈ [ξ1, ξn+p+1) . (2.1.8)

Finally we state the important smoothness result which lets us know the smoothness
of the B-splines simply by looking at the knot vector.

Proposition 5. If a knot ξi has multiplicity r then all B-splinesNi,p areCp−r-continuous
at the knot ξi.

In the intervals between the knots the B-splines will be C∞, a consequence of being
represented by polynomials in these intervals as seen in Proposition 3. Figure 2.1.1 and
Figure 2.1.2 give an example of this continuity result. We see that with a double knot
at ξ = 1 as in Figure 2.1.1 the basis is C2−2 = C0-continuous at ξ = 1, while with a
single knot at ξ = 1 as in Figure 2.1.2 the basis is C2−1 = C1-continuous at ξ = 1.

6



2.1 B-splines

Figure 2.1.1: The quadratic B-splines for
the knot vector Ξ = [0, 0, 0, 1, 1, 2, 2, 2].

Figure 2.1.2: The quadratic B-splines for
the knot vector Ξ = [0, 0, 0, 1, 2, 2, 2].

2.1.3 The derivatives of the B-splines

The first order derivative of a B-spline Ni,p when p ≥ 1 is given by the formula

d

dξ
Ni,p (ξ) = p

ξi+p − ξi
Ni,p−1 (ξ)− p

ξi+p+1 − ξi+1
Ni+1,p−1 (ξ) . (2.1.9)

The B-splines Ni,0 are piecewise constant, so their derivatives will be identically zero.
Note that even though a B-spline might not be differentiable in the ordinary sense at
the knots, we define the derivative at the knots to be the limit of the derivative from the
right. We prove the formula (2.1.9), again using induction.

Proof. We know that the function Ni,1 is the piecewise linear "hat function" which has
the value 1 at ξi+1 and is 0 at all other knots. With this in mind it is clear that we have

d

dξ
Ni,1 (ξ) = 1

ξi+1 − ξi
Ni,0 (ξ)− 1

ξi+2 − ξi+1
Ni+1,0 (ξ) ,

when the derivative at the knots is defined as the limit of the derivative from the right.
Thus (2.1.9) holds for p = 1. We now consider p = k and assume that (2.1.9) holds for
p = k − 1. If we differentiate on each side of the recursion formula (2.1.1) we obtain

d

dξ
Ni,k (ξ) = 1

ξi+k − ξi
Ni,k−1 (ξ)− 1

ξi+k+1 − ξi+1
Ni+1,k−1 (ξ)

+ ξ − ξi
ξi+k − ξi

d

dξ
Ni,k−1 (ξ) + ξi+k+1 − ξ

ξi+k+1 − ξi+1

d

dξ
Ni+1,k−1 (ξ) .

7



Chapter 2. B-splines and NURBS

Using the induction hypothesis this gives that

dNi,k

dξ
(ξ) = 1

ξi+k − ξi
Ni,k−1 (ξ)− 1

ξi+k+1 − ξi+1
Ni+1,k−1 (ξ)

+ ξ − ξi
ξi+k − ξi

(
k − 1

ξi+k−1 − ξi
Ni,k−2 (ξ)− k − 1

ξi+k − ξi+1
Ni+1,k−2 (ξ)

)

+ ξi+k+1 − ξ
ξi+k+1 − ξi+1

(
k − 1

ξi+k − ξi+1
Ni+1,k−2 (ξ)− k − 1

ξi+k+1 − ξi+2
Ni+2,k−2 (ξ)

)
dNi,k

dξ
(ξ) = 1

ξi+k − ξi
Ni,k−1 (ξ)− 1

ξi+k+1 − ξi+1
Ni+1,k−1 (ξ)

+ k − 1
ξi+k − ξi

ξ − ξi
ξi+k−1 − ξi

Ni,k−2 (ξ)− k − 1
ξi+k+1 − ξi+1

ξi+k+1 − ξ
ξi+k+1 − ξi+2

Ni+2,k−2 (ξ)

+ k − 1
ξi+k − ξi+1

(
ξi+k+1 − ξ
ξi+k+1 − ξi+1

− ξ − ξi
ξi+k − ξi

)
Ni+1,k−2 (ξ) .

We would now like to add ξi+k−ξi
ξi+k−ξi

− ξi+k+1−ξi+1
ξi+k+1−ξi+1

in the above parentheses. This must,
however, be done with some care. Because of the zero convention "0/0 = 0", this
expression might not be zero if ξi = ξi+k or ξi+1 = ξi+k+1. Luckily in both those cases
we have ξi+1 = ξi+k from the monotonicity of the knot vector, and by Proposition 1 this
implies that Ni+1,k−2 (ξ) = 0. Hence equality still holds if we add ξi+k−ξi

ξi+k−ξi
− ξi+k+1−ξi+1

ξi+k+1−ξi+1
in the parentheses. Thus we obtain

d

dξ
Ni,k (ξ)

= 1
ξi+k − ξi

Ni,k−1 (ξ)− 1
ξi+k+1 − ξi+1

Ni+1,k−1 (ξ)

+ k − 1
ξi+k − ξi

ξ − ξi
ξi+k−1 − ξi

Ni,k−2 (ξ)− k − 1
ξi+k+1 − ξi+1

ξi+k+1 − ξ
ξi+k+1 − ξi+2

Ni+2,k−2 (ξ)

+ k − 1
ξi+k − ξi+1

(
ξi+k+1 − ξ
ξi+k+1 − ξi+1

− ξi+k+1 − ξi+1

ξi+k+1 − ξi+1
+ ξi+k − ξi
ξi+k − ξi

− ξ − ξi
ξi+k − ξi

)
Ni+1,k−2 (ξ)

= 1
ξi+k − ξi

Ni,k−1 (ξ)− 1
ξi+k+1 − ξi+1

Ni+1,k−1 (ξ)

+ k − 1
ξi+k − ξi

(
ξ − ξi

ξi+k−1 − ξi
Ni,k−2 (ξ) + ξi+k − ξ

ξi+k − ξi+1
Ni+1,k−2 (ξ)

)

− k − 1
ξi+k+1 − ξi+1

(
ξ − ξi+1

ξi+k − ξi+1
Ni+1,k−2 (ξ) + ξi+k+1 − ξ

ξi+k+1 − ξi+2
Ni+2,k−2 (ξ)

)
.

Finally we recognize the expressions in the parentheses above from the recursion for-
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2.2 Linear combinations of B-splines

mula (2.1.1) as Ni,k−1 (ξ) and Ni+1,k−1 (ξ) and we obtain

d

dξ
Ni,k (ξ) = k

ξi+k − ξi
Ni,k−1 (ξ)− k

ξi+k+1 − ξi+1
Ni+1,k−1 (ξ)

This shows that the formula (2.1.9) holds for all p ≥ 1.

2.2 Linear combinations of B-splines
Spline geometries can be defined by taking linear combinations of the B-splines. In this
thesis we will only consider one- and two-dimensional geometries, but the generaliza-
tion from two to three dimensions is fairly straightforward. We will throughout the rest
of this thesis assume that all knot vectors are open. This assumption was needed for the
B-spline basis to be a partition of unity as seen in Proposition 4, a property which is
needed when we use these functions as a basis for the finite element analysis. Assuming
open knot vectors also guarantees linear independence of the B-splines [22, Ch. 3].

2.2.1 Univariate spline functions
A linear combination of the B-spline basis functions v = ∑n

i=1 ciNi,p, ci ∈ R, is called
a spline function, or simply a spline. We now define the function space containing all
such linear combinations of a given B-spline basis.

Definition 2.2. Let p be a nonnegative integer and Ξ = [ξ1, . . . , ξn+p+1] an open knot
vector. We define the spline space Sp,Ξ on the interval [ξ1, ξn+p+1) by

Sp,Ξ := span
{
Ni,p|[ξ1,ξn+p+1)

}n
i=1

,

where Ni,p|[ξ1,ξn+p+1) means the B-spline Ni,p restricted to the interval [ξ1, ξn+p+1).

The B-splines are piecewise polynomial functions of degree at most p (Property 3),
so it is clear that Sp,Ξ contains piecewise polynomial functions of degree at most p. As
the knot vector is assumed to be open, the B-splines {Ni,p}ni=1 are linearly independent
on the interval [ξ1, ξn+p+1) [22, Ch. 3], so {Ni,p}ni=1 is in fact a basis for Sp,Ξ. Hence
the dimension of the space Sp,Ξ is simply

dimSp,Ξ = n = #Ξ− p− 1. (2.2.1)

Indeed, since n+ p+ 1 is the last index into Ξ, n is calculated by subtracting p+ 1 from
the number of elements in Ξ, denoted by #Ξ.

In general we can define spaces of piecewise polynomial functions with prescribed
smoothness in the following way:

9
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Definition 2.3. Let p be a nonnegative integer, ζ = {ζi}Ni=1 a strictly increasing se-
quence of real numbers and α = {αi}Ni=1 a sequence of integers such that αi ≥ −1 with
equality for i = 1 and i = N , i.e. α = {−1, α2, . . . , αi, . . . , αN−1,−1}. We then define
Spα(ζ) to be the linear space of piecewise polynomials of degree p on [ζ1, ζN) with αi
continuous derivatives at ζi. The elements of Spα(ζ) will belong to C |α| ([ζ1, ζN)) where

|α| := min
2≤i≤N−1

{αi}.

The sequence α is referred to as the regularity sequence, or the regularity vector.
Having αi = −1 in the definition above means that the elements of Spα(ζ) can have a
discontinuity at ζi, so there is no restriction on the smoothness at this point. Assuming
αi ≤ p for all i ∈ {2, . . . , N − 1} the dimension of the space Spα(ζ) is given by the
following formula [22, Ch. 3]

dimSpα(ζ) = (N − 1)p+ 1−
N−1∑
i=2

αi. (2.2.2)

For each subinterval [ζi, ζi+1) we have a polynomial of degree p contributing with p+ 1
degrees of freedom, and the total number of smoothness conditions is

∑N−1
i=2 (αi + 1).

Hence it is reasonable that we end up with (N − 1)(p + 1) −∑N−1
i=2 (αi + 1) = (N −

1)p + 1 −∑N−1
i=2 αi degrees of freedom in total. That the assumption αi ≤ p is needed

for the formula (2.2.2) to hold is clear from the following proposition.

Proposition 6. Let Spα(ζ) be a given space as defined in Definition 2.3, and let ᾱ and
ζ̄ be the subsequences obtained by removing all elements αi ≥ p from α and the corre-
sponding elements from ζ. Then we have that

Spᾱ(ζ̄) = Spα(ζ).

Hence requiring Cp-continuity or more at a point ζi will actually give C∞-continuity
for the elements of Spα(ζ) at ζi.

Proof. We first consider the case where αi ≤ p for all i ∈ {2, . . . , N − 1}. In this
case we can apply (2.2.2) for both spaces Spα(ζ) and Spᾱ(ζ̄) and note that they have the
same dimension. Clearly Spᾱ(ζ̄) ⊆ Spα(ζ) since elements of Spᾱ(ζ̄) will in fact be C∞-
continuous at ζj . Thus Spᾱ(ζ̄) is a subspace of Spα(ζ) with the same dimension, which
means that they must be the same space.

For the case where αi > p we let β be the sequence obtained by replacing with p all
elements αi > p in α, then clearly ᾱ = β̄. Now observe that

Spᾱ(ζ̄) ⊆ Spα(ζ) ⊆ Spβ(ζ),
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2.2 Linear combinations of B-splines

since we only remove continuity conditions as we go from left to right. However, using
the previous case and the fact that β̄ = ᾱ, we find that

Spβ(ζ) = Sp
β̄
(ζ̄) = Spᾱ(ζ̄).

Hence Spᾱ(ζ̄) ⊆ Spα(ζ) ⊆ Spᾱ(ζ̄) so the spaces must be equal.

One of the main features of B-splines is that they allow us to construct a basis for
any given space Spα(ζ) by choosing an appropriate open knot vector. From Proposition
6 we see that we can assume αi ≤ p− 1 without any loss of generality.

Theorem 1 (Curry-Schoenberg [8]). If we construct a knot vector Ξ = [ξ1, . . . , ξn+p+1]
by

Ξ =

 p+1︷ ︸︸ ︷
ζ1, . . . , ζ1,

p−α2︷ ︸︸ ︷
ζ2, . . . , ζ2, . . . ,

p−αi︷ ︸︸ ︷
ζi, . . . , ζi, . . . ,

p−αN−1︷ ︸︸ ︷
ζN−1, . . . , ζN−1,

p+1︷ ︸︸ ︷
ζN , . . . , ζN

 , (2.2.3)

then

Spα(ζ) = Sp,Ξ.

Proof. Indeed, Sp,Ξ ⊆ Spα(ζ) since the B-splines spanning Sp,Ξ satisfy the smooth-
ness conditions of the space Spα(ζ) (Proposition 5) and are piecewise polynomials of
degree p (Proposition 3). But from (2.2.1) the dimension of Sp,Ξ is n = 2 (p+ 1) +∑N−1
i=2 (p− αi)− (p+ 1) = 1 + (N − 1) p−∑N−1

i=2 αi, which is the same as the dimen-
sion of Spα(ζ) by (2.2.2). Thus Sp,Ξ is a subspace of Spα(ζ) with the same dimension,
which means that they must be the same space.

2.2.2 Bivariate spline functions
Let Spα(ζ) and Sqβ(γ) be given spline spaces. Using Theorem 1 we construct the
open knot vectors Ξ = [ξ1, . . . , ξn+p+1] and H = [η1, . . . , ηm+q+1] and we denote by
{Ni,p}ni=1 and {Mj,q}mj=1 the B-splines of Ξ and H respectively. We can now define the
tensor product B-splines by

Ni,j;p,q := Ni,p ⊗Mj,q, i = 1, . . . , n and j = 1, . . . ,m,

so for ξ, η ∈ R we have that Ni,j;p,q(ξ, η) = Ni,p(ξ)Mj,q(η). In the same way as for the
one dimensional case, a tensor product spline function v is a linear combination of the
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basis functions, i.e. v = ∑n
i=1

∑m
j=1 ci,jNi,j;p,q where ci,j ∈ R. The space of all such

linear combinations is the tensor product spline space defined by

Sp,qα,β(ζ,γ) := Spα(ζ)⊗ Spβ(γ) = span{Ni,j;p,q|Ω̂}
n,m
i,j=1, (2.2.4)

where Ω̂ = [ξ1, ξn+p+1) × [η1, ηm+q+1). Such a tensor product construction will make
the functions {Ni,j;p,q}n,mi,j=1 linearly independent on Ω̂, so we can note that

dimSp,qα,β(ζ,γ) = dimSpα(ζ) dimSpβ(γ).

The most important properties of the tensor product B-splines {Ni,j;p,q}n,mi,j=1 follow
directly from the univariate case. Using Proposition 2 we can observe that the support
of the basis function Ni,j;p,q is the rectangle [ξi, ξi+p+1]× [ηj, ηj+q+1], and also that it is
strictly positive on the interior of the support. It is also clear that the bivariate basis is a
partition of unity as well. Indeed, for any (ξ, η) ∈ [ξ1, ξn+p+1) × [η1, ηm+q+1) we have
that

n∑
i=1

m∑
j=1

Ni,j;p,q (ξ, η) =
n∑
i=1

Ni,p (ξ)
m∑
j=1

Mj,q (η) = 1.

The continuity properties of the basis functions and their partial derivatives are also easy
to deduce from the univariate case.

2.2.3 B-spline curves
For an integer d ≥ 2 a B-spline curve, or a spline curve, in Rd is defined by the B-spline
basis functions {Ni,p}ni=1, and corresponding control points {Bi}ni=1, where Bi ∈ Rd.
The spline curve is given parametrically by

C (ξ) =
n∑
i=1

Ni,p (ξ) Bi, ξ ∈ [ξ1, ξn+p+1) . (2.2.5)

In other words, a spline curve is an element of the space (Spα(ζ))d. It is clear form this
definition that the spline curves are piecewise polynomial curves, and also the continuity
properties follow directly from those of the B-spline basis functions. Linear interpola-
tion of the control points gives the control polygon. In the context of FEA, the images
of the knot intervals [ξi, ξi+1), i = 1, . . . , n + p, are referred to as elements, so the knot
locations define the element boundaries. We note that some elements might have zero
measure in the case of repeated knots.

The quadratic spline curve of the knot vector Ξ = [0, 0, 0, 1, 2, 3, 3, 4, 4, 4] with the
control points

[B1, . . . ,B7] =
[

0 1 2 1.5 3.5 4.5 3
1 −1 −0.5 1.5 0 3 2

]

12



2.2 Linear combinations of B-splines

Figure 2.2.1: An example of a quadratic spline curve. The control polygon is shown in black
and the knot locations are the red squares.

is shown in Figure 2.2.1, along with the control polygon. Since the knot vector is open,
the curve is interpolatory at the first and the last knot. We also notice that the curve
is C1-continuous at the knots with multiplicity 1 and only C0-continuous at the knot
ξ = 3 which has multiplicity 2. This is in accordance with Proposition 5 which states
that the basis functions (and hence any linear combination of these) is Cp−r-continuous
at a knot with multiplicity r.

2.2.4 B-spline surfaces
For an integer d ≥ 2 a tensor product B-spline surface in Rd is defined by the tensor
product B-splines {Ni,j;p,q}n,mi,j=1, and a control net {Bi,j}n,mi,j=1, where Bi,j ∈ Rd. The
spline surface is given parametrically by

S (ξ, η) =
n∑
i=1

m∑
j=1

Ni,j;p,q (ξ, η) Bi,j, (ξ, η) ∈ Ω̂, (2.2.6)

where Ω̂ = [ξ1, ξn+p+1) × [η1, ηm+q+1). Thus a spline surface is an element of the
space (Sp,qα,β(ζ,γ))d. What we now refer to as elements in a FEA setting are the images
of the rectangles [ξi, ξi+1) × [ηj, ηj+1) for i = 1, . . . , n + p and j = 1, . . . ,m + q,
the elements boundaries are thus defined by the knot vectors. Figure 2.2.2 gives an
example with polynomial orders p = q = 2, knot vectors Ξ = [0, 0, 0, 0.5, 1, 1, 1] and
H = [0, 0, 0, 1, 1, 1], and a control net given by

[B1, . . . ,B12] =
[
−1 −1 1 1 −1.5 −1.5 1.5 1.5 −2 −2 2 2
0 1 1 0 0 2 2 0 0 2 2 0

]
,

where the control points are numbered by the scheme A = n(j − 1) + i, so that BA =
Bi,j .
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Figure 2.2.2: An example of a B-spline surface along with the grid defined by the knot vectors.

Finally we make the observation that we can consider a B-spline surface given by
(2.2.6) as a linear combination of spline curves in one parameter as given by (2.2.5),
where the coefficients depend on the other parameter. What we mean by this is that we
can write

S (ξ, η) =
m∑
j=1

Mj,q (η)
n∑
i=1

Ni,p (ξ) Bi,j =
m∑
j=1

Mj,q (η) Cj (ξ), (2.2.7)

where each spline curve Cj , j = 1, . . . ,m, has control points {Bi,j}ni=1, and similarly
with the roles of ξ and η switched. This observation will be useful when we perform
refinement on the B-spline geometry, because it means that we can use the univariate
algorithms one direction at a time by refining each of the curves Cj .

2.3 Spaces of spline derivatives
Before the construction of divergence-conforming B-spline spaces for the Stokes prob-
lem in Chapter 4, we need to consider the spaces that the derivatives of splines form.
More specifically we consider the derivative operator for univariate splines and the di-
vergence operator for spline vector fields.

2.3.1 The derivative operator

Let the spline spaces Spα = Spα(ζ) and Sp+1
α+1 = Sp+1

α+1(ζ) constructed on the same parti-
tion ζ = {ζi}Ni=1 of the interval [ζ1, ζN) be given, where α + 1 is defined by

α + 1 = {−1, α2 + 1, . . . , αi + 1, . . . , αN−1 + 1,−1} .
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If we look at the knot vectors giving these spaces, it becomes clear from (2.2.3) that the
only difference between them is that the first and the last knot are repeated one more
time in the knot vector of Sp+1

α+1. Since Sp+1
α+1 has a knot vector with two more elements

and a polynomial degree one more than Spα, it follows that Sp+1
α+1 will have one more

basis function than Spα, so

dimSp+1
α+1 = dimSpα + 1. (2.3.1)

This can also be seen by using the formula (2.2.2) for the two spaces.
Now if we let v be a spline v ∈ Sp+1

α+1 it is clear that the derivative of v will be an
element of Spα, since dv

dξ
will be a piecewise polynomial function of one degree less than

v and with one less continuous derivative at each point ζi where 2 ≤ i ≤ N − 1. Thus
the derivative operator is a linear map d

dξ
: Sp+1

α+1 → Spα, and it is in fact surjective as
stated in the following proposition.

Proposition 7. The image of the derivative operator d
dξ

: Sp+1
α+1 → Spα is the entire

codomain Spα, i.e.

d

dξ
Sp+1

α+1 :=
{
dv

dξ
: v ∈ Sp+1

α+1

}
= Spα.

Proof. We have already established that dv
dξ
∈ Spα for any v ∈ Sp+1

α+1, so d
dξ
Sp+1

α+1 ⊆ Spα.
Thus the result can be shown by comparing the dimensions of the spaces. From linear
algebra we know that the dimension of the space Sp+1

α+1 must be equal to the sum of
the dimensions of the kernel and the image of the derivative operator, so we have the
relationship

dimSp+1
α+1 = dim

{
v ∈ Sp+1

α+1 : dv
dξ

= 0
}

+ dim
{
d

dξ
Sp+1

α+1

}
.

The only splines v that satisfy dv
dξ

= 0 are the piecewise constants, but v ∈ Sp+1
α+1 im-

plies that v is C0-continuous because αi ≥ −1 gives αi + 1 ≥ 0. Hence the kernel{
v ∈ Sp+1

α+1 : dv
dξ

= 0
}

consists of the constants on the interval [ζ1, ζN) and has thus di-
mension one, which gives

dimSp+1
α+1 = 1 + dim

{
d

dξ
Sp+1

α+1

}
.

Comparing this to the result (2.3.1), it is clear that d
dξ
Sp+1

α+1 has the same dimension as
Spα and they must therefore be the same space.

Let the B-spline bases of the spaces Spα and Sp+1
α+1 be denoted by

{
Nα+1
i,p+1

}n+1

i=1
and{

Nα
i,p

}n
i=1

respectively. If we have a spline v ∈ Sp+1
α+1 given by the coefficients {ci}n+1

i=1 ,
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we might be interested in the explicit representation of dv
dξ

as a spline in Spα and find
coefficients {c̃j}nj=1 such that for any ξ ∈ R we have that

n∑
j=1

c̃jN
α
j,p(ξ) =

n+1∑
j=1

cj
d

dξ
Nα+1
j,p+1(ξ). (2.3.2)

By requiring that (2.3.2) holds at n points ξ∗i , i = 1, . . . , n, we obtain the following
linear system of equations for the coefficients c̃j:

n∑
j=1

c̃jN
α
j,p(ξ∗i ) =

n+1∑
j=1

cj
d

dξ
Nα+1
j,p+1(ξ∗i ), i = 1, . . . , n. (2.3.3)

Defining the matrices A =
{
Nα
j,p (ξ∗i )

}n,n
i,j=1

and B =
{
d
dξ
Nα+1
j,p+1 (ξ∗i )

}n,n+1

i,j=1
, and the

coefficient vectors c̃ = {c̃j}nj=1 and c = {cj}n+1
j=1 , we can write (2.3.3) in matrix form as

Ac̃ = Bc. (2.3.4)

In order for the matrix A to be nonsingular we have to choose the interpolation points
ξ∗i in such a way that ξi < ξ∗i < ξi+p+1 for i = 1, . . . , n, however ξ∗i = ξi is allowed
whenever ξi = ξi+p [22, Chap. 10]. Here the ξi are the knots of the knot vector Ξp+1

α+1
for the space Sp+1

α+1. This can be achieved by letting the ξ∗i be the n first knot averages of
Ξp+1

α+1 defined by ξ∗i = (ξi+1 + . . . + ξi+p+1)/(p + 1) for i = 1, . . . , n. With this choice
we obtain from (2.3.4) that

c̃ = A−1Bc.

This means that the matrix D ∈ Rn×(n+1) defined by

D = A−1B (2.3.5)

is the matrix representation of the differentiation operator d
dξ

: Sp+1
α+1 → Spα.

2.3.2 The divergence operator
Let Spα and Sp+1

α+1 be the same as above, and let Sqβ = Spβ(γ) and Sq+1
β+1 = Sp+1

β+1(γ) be
constructed in the same manner dependent on the regularity sequence β, the polyno-
mial degree q and the partition γ = {γi}Mi=1 of the interval [γ1, γM). We denote by{
Nα
i,p

}n
i=1

,
{
Nα+1
i,p+1

}n+1

i=1
,
{
Mβ

j,q

}m
j=1

and
{
Mβ+1

j,q+1

}m+1

j=1
the bases of Spα, Sp+1

α+1, Sqβ and

Sq+1
β+1 respectively. Now consider the linear space of spline vector fields given by

Sp+1,q
α+1,β × S

p,q+1
α,β+1 := Sp+1,q

α+1,β (ζ,γ)× Sp,q+1
α,β+1 (ζ,γ) ,

where the bivariate spline spaces are defined by (2.2.4). Like for the derivative operator
we determine the image of the divergence operator in the following proposition.
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2.3 Spaces of spline derivatives

Proposition 8. The image of the divergence operator div : Sp+1,q
α+1,β × S

p,q+1
α,β+1 → Sp,qα,β is

the entire codomain Sp,qα,β, i.e.

div
(
Sp+1,q

α+1,β × S
p,q+1
α,β+1

)
:=
{

div v : v ∈ Sp+1,q
α+1,β × S

p,q+1
α,β+1

}
= Sp,qα,β.

Proof. That div
(
Sp+1,q

α+1,β × S
p,q+1
α,β+1

)
⊆ Sp,qα,β is clear by the same reasoning we did in

the one dimensional case. We can therefore prove the statement by showing that for any
w ∈ Sp,qα,β there exists a v ∈ Sp+1,q

α+1,β × S
p,q+1
α,β+1 such that div v = w. Indeed if w ∈ Sp,qα,β

we can express w in terms of the basis functions by

w (ξ, η) =
n∑
i=1

m∑
j=1

cijN
α
i,p (ξ)Mβ

j,q (η)

=
m∑
j=1

Mβ
j,q (η)

n∑
i=1

cij
2 N

α
i,p (ξ) +

n∑
i=1

Nα
i,p (ξ)

m∑
j=1

cij
2 M

β
j,q (η).

Now
∑n
i=1

cij
2 N

α
i,p (ξ) will be a spline in Spα for all indices j, and

∑m
j=1

cij
2 M

β
j,q (η) will

be a spline in Sqβ for all i. Thus applying Proposition 7 in both parametric directions and
we obtain

w (ξ, η) =
m∑
j=1

Mβ
j,q (η) ∂

∂ξ

n+1∑
i=1

ĉijN
α+1
i,p+1 (ξ) +

n∑
i=1

Nα
i,p (ξ) ∂

∂η

m+1∑
j=1

c̃ijM
β+1
j,q+1 (η)

= ∂

∂ξ

n+1∑
i=1

m∑
j=1

ĉijN
α+1
i,p+1 (ξ)Mβ

j,q (η)
+ ∂

∂η

 n∑
i=1

m+1∑
j=1

c̃ijN
α
i,p (ξ)Mβ+1

j,q+1 (η)


= div
n+1∑
i=1

m∑
j=1

ĉijN
α+1
i,p+1 (ξ)Mβ

j,q (η) e1 +
n∑
i=1

m+1∑
j=1

c̃ijN
α
i,p (ξ)Mβ+1

j,q+1 (η) e2

 .
Here e1 and e2 are the usual basis vectors of R2 so that{

Nα+1
i,p+1M

β
j,qe1

}n+1,m

i,j=1
∪
{
Nα
i,pM

β+1
j,q+1e2

}n,m+1

i,j=1

is a basis for the space Sp+1,q
α+1,β×S

p,q+1
α,β+1, and we have found a v ∈ Sp+1,q

α+1,β×S
p,q+1
α,β+1 such

that div v = w which completes the proof as w was arbitrary.

We can also for any v ∈ Sp+1,q
α+1,β × Sp,q+1

α,β+1 find an explicit representation of div v
as an element of Sp,qα,β given by the coefficients {wij}n,mi,j=1. This is done by writing v in
terms of coefficients {uij}n+1,m

i,j=1 and {vij}n,m+1
i,j=1 as

v(ξ, η) =
n+1∑
i=1

m∑
j=1

uijN
α+1
i,p+1 (ξ)Mβ

j,q (η) e1 +
n∑
i=1

m+1∑
j=1

vijN
α
i,p (ξ)Mβ+1

j,q+1 (η) e2,
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Chapter 2. B-splines and NURBS

which gives

divv =
m∑
j=1

Mβ
j,q (η) ∂

∂ξ

n+1∑
i=1

uijN
α+1
i,p+1 (ξ) +

n∑
i=1

Nα
i,p (ξ) ∂

∂η

m+1∑
j=1

vijM
β+1
j,q+1 (η)

=
m∑
j=1

Mβ
j,q (η)

n∑
i=1

ũijN
α
i,p (ξ) +

n∑
i=1

Nα
i,p (ξ)

m∑
j=1

ṽijM
β
j,q (η)

=
n∑
i=1

m∑
j=1

(ũij + ṽij)Nα
i,p (ξ)Mβ

j,q (η).

Here we have used the method of Section 2.3.1 for each j in the ξ-direction and for each
i in the η-direction. This means that if Dξ and Dη are the differentiation matrices defined
by (2.3.5) for the spaces Sp+1

α+1 and Sq+1
β+1 respectively, and we organize the coefficients

in the vectors

W =
[
w1,1 · · · wn,1 · · · w1,m · · · wn,m

]T
,

U =
[
u1,1 · · · un+1,1 · · · u1,m · · · un+1,m

]T
,

V =
[
v1,1 · · · vn,1 · · · v1,m+1 · · · vn,m+1

]T
,

then we have the relation

W =
[

Im ⊗Dξ Dη ⊗ In
] [ U

V

]
.

Here In ∈ Rn×n and Im ∈ Rm×m are identity matrices, and ⊗ denotes the Kronecker
tensor product. Thus the matrix D ∈ R(nm)×((n+1)m+n(m+1)) defined by

D =
[

Im ⊗Dξ Dη ⊗ In
]

(2.3.6)

is the matrix representation of the divergence operator div : Sp+1,q
α+1,β × S

p,q+1
α,β+1 → Sp,qα,β.

2.4 Refinement
In isogeometric analysis the B-spline or NURBS basis functions are used both to repre-
sent the geometry and as a basis for the solution space in which we seek an approxima-
tion to the solution. In order to get good approximations it is essential that we are able
to refine the basis so that the finite dimensional solution space approaches the actual
solution space. One of the strengths and key features of isogeometric analysis is that
refinement can be performed while keeping the geometry exact. In ordinary finite ele-
ment analysis the refinement methods are h-refinement where the size of the elements is
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2.4 Refinement

decreased, and p-refinement where the order of the basis is increased. In isogeometric
analysis the tools for performing refinement is knot insertion and order elevation. These
operations provide more flexibility than simple h- and p-refinement, we can for example
control the continuity of the basis at the knots.

2.4.1 Knot insertion for B-spline curves
Let C be a spline curve given by (2.2.5) defined by the knot vector Ξ = [ξ1, . . . , ξn+p+1].
One way to enrich the basis by which the curve is represented is to insert new knots
into Ξ obtaining a new knot vector Ξ̄ =

[
ξ̄1, . . . , ξ̄m+p+1

]
, m ≥ n, which contains all

elements found in Ξ. We assume as before that Ξ is open, and for our purpose we can
also assume that the new knot vector Ξ̄ contains the same p+ 1 knots as Ξ at each end.
We now want to represent the curve using the new knot vector Ξ̄, and thereby the new
basis functions N̄j,p, j = 1, . . . ,m. This is achieved by writing the original B-splines as
elements of the space spanned by the new basis functions, i.e.

Ni,p =
m∑
j=1

αi,p (j) N̄j,p, (2.4.1)

where the αi,p (j), i = 1, . . . , n, j = 1, . . . ,m, are the spline coefficients. This can be
done because the new spline space contains the original space when the new knot vector
contains all elements of the original knot vector. Inserting (2.4.1) into (2.2.5) we have
for any ξ ∈ [ξ1, ξn+p+1) =

[
ξ̄1, ξ̄m+p+1

)
that

C (ξ) =
n∑
i=1

 m∑
j=1

αj,p (i) N̄j,p (ξ)
Bi =

m∑
j=1

N̄j,p (ξ)
n∑
i=1

αi,p (j) Bi =
m∑
j=1

N̄j,p (ξ) B̄j.

Thus, choosing new control points

B̄j =
n∑
i=1

αi,p (j) Bi, (2.4.2)

we have a representation of the curve by the B-splines of new knot vector Ξ̄. Since
the parameter ξ is the same in both representations and the parameter space is the same
due to the common knots at the ends, we have that the curve remains unchanged both
geometrically and parametrically.

The algorithm for computing the new control points B̄j is referred to as the Oslo
algorithm [22, Ch. 4.2]. This algorithm is based on a recurrence relation for the coef-
ficients αj,p (i) similar to the recurrence relation in Definition 2.1 of the B-splines. We
have that

αi,p (j) = ξ̄j+p − ξi
ξi+p − ξi

αi,p−1 (j) + ξi+p+1 − ξ̄j+p
ξi+p+1 − ξi+1

αi+1,p−1 (j) ,

19



Chapter 2. B-splines and NURBS

starting with αi,0 (j) = Ni,0
(
ξ̄j
)
. A proof of this relation can be found in [25]. In

[22, Chap 4.2] the Oslo algorithm is obtained by adapting the B-spline evaluation al-
gorithms to knot insertion. With this algorithm we can compute the knot insertion ma-
trix A = {αi,p (j)}m,nj,i=1 ∈ Rm×n from the knot vector Ξ to the new knot vector Ξ̄.
Then if we organize the control points in matrices B = [B1, . . . ,Bn]T ∈ Rn×d and

B̄ =
[
B̄1, . . . , B̄m

]T
∈ Rm×d, where d is the dimension, we obtain from (2.4.2) the

relation
B̄ = AB. (2.4.3)

Figure 2.4.1 and Figure 2.4.2 give an example of knot insertion performed on the
spline curve from Figure 2.2.1. The knots 1.5 and 2.5 are inserted with multiplicity one,
extending the original knot vector Ξ = [0, 0, 0, 1, 2, 3, 3, 4, 4, 4] to the new knot vector
Ξ̄ = [0, 0, 0, 1, 1.5, 2, 2.5, 3, 3, 4, 4, 4]. Figure 2.4.1 shows the original spline curve along
with the knot locations and the control polygon, and the original basis functions are also
shown. Figure 2.4.2 gives the same plots after the knot insertion. We observe that the
new basis is Cp−1 = C1-continuous at the inserted knots, as expected when the knots
are inserted with multiplicity one.

2.4.2 Knot insertion for B-spline surfaces
For knot insertion on a tensor product B-spline surface we use the observation made at
the end of Section 2.2.4, that we can view the spline surface as a linear combination of
spline curves. If we for instance want to change the knot vector Ξ in the ξ-direction to
Ξ̄ by inserting knots, we can express the B-spline surface by (2.2.7) and perform knot
insertion for each of the curves Cj . This gives

S (ξ, η) =
m∑
j=1

Mj,q (η)
n∑
i=1

Ni,p (ξ) Bi,j =
m∑
j=1

Mj,q (η)
n̂∑
î=1

N̄î,p (ξ) B̄î,j

=
n̂∑
î=1

m∑
j=1

N̄î,p (ξ)Mj,q (η) B̄î,j,

where the new control net
{
B̄î,j

}
is obtained from (2.4.3) as

[
B̄1,j, . . . , B̄n̂,j

]T
= AΞ[B1,j, . . . ,Bn,j]T , j = 1, . . . ,m. (2.4.4)

Here AΞ is the knot insertion matrix from Ξ to Ξ̄. In a similar fashion we can insert
knots intoH getting the new knot vector H̄ and the representation

S (ξ, η) =
n̂∑
î=1

m̂∑
ĵ=1

N̄î,p (ξ) M̄ĵ,q (η) B̂î,ĵ, (2.4.5)
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2.4 Refinement

Figure 2.4.1: Knot insertion: The original
spline curve with knot locations (squares)
and control points (circles). The original ba-
sis functions are shown beneath.

Figure 2.4.2: Knot insertion: The refined
spline curve with knot locations (squares)
and control points (circles). The refined ba-
sis functions are shown beneath.

[
B̂î,1, . . . , B̂î,m̂

]T
= AH

[
B̄î,1, . . . , B̄î,m

]T
, i = 1, . . . , n̂. (2.4.6)

Here we have performed the knot insertion first in the ξ-direction and then in the η-
direction, but if we did it the other way around we would get the same result, a con-
sequence of the linear independence of the B-splines. Indeed, if we started in the η-
direction we would get a representation of the same surface by

S (ξ, η) =
n̂∑
î=1

m̂∑
ĵ=1

N̄î,p (ξ) M̄ĵ,q (η) B̃î,ĵ,

where the B-spline basis functions would be the same as in (2.4.5) because the knot
vectors and polynomial orders are the same. Hence

n̂∑
î=1

N̄î,p (ξ)
m̂∑
ĵ=1

M̄ĵ,q (η)
(
B̂î,ĵ − B̃î,ĵ

)
= 0,
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Chapter 2. B-splines and NURBS

Figure 2.4.3: The B-spline surface from Figure 2.2.2 after inserting simple knots at 0.2 and 0.8
in Ξ, and at 0.5 inH.

and the linear independence of the N̄î,p gives that
∑m̂
ĵ=1 M̄ĵ,q (η)

(
B̂î,ĵ − B̃î,ĵ

)
= 0 for

all î, which by the linear independence of the M̄ĵ,q yields B̂î,ĵ − B̃î,ĵ = 0 for all î and
ĵ. This shows that the resulting control net would be the same in both cases.

Figure 2.4.3 shows the grid of the B-spline surface from Figure 2.2.2 after knot
insertion, the surface is the same as before, but the basis used to express it is refined.

2.4.3 Order elevation for B-spline curves
Another way to enrich the basis by which a curve given by (2.2.5) is represented is to
elevate the order or degree of the basis functions. This is done by finding a new knot
vector Ξ̄ and new control points Bj , j = 1, . . . , n̄, such that we can write

C (ξ) =
n∑
i=1

Ni,p (ξ) Bi =
n̄∑
j=1

Nj,p+t (ξ) B̄j = C̄ (ξ) , (2.4.7)

and thus obtain the curve C̄ which is geometrically and parametrically identical to C
but represented by B-spline basis functions of degree p + t, t ∈ N. The new knot
vector contains no new knot values, but the existing knot values will have to be repeated
in order to keep the curve at the same level of continuity. The theory behind order
elevation, or degree elevation, is explained in [24] and an algorithm for performing
order elevation is given. The algorithm uses an approach where the spline curve is
decomposed into several Bézier curves which are all order elevated, and finally excess
knots are removed.

Figure 2.4.4 and Figure 2.4.5 give an example of order elevation performed on the
spline curve from Figure 2.2.1. The order is increased from p = 2 to p = 3. Figure 2.4.1
shows the original spline curve along with the knot locations and the control polygon,
and the original basis functions are also shown. Figure 2.4.5 gives the same plots after
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2.4 Refinement

Figure 2.4.4: Order elevation: The original
spline curve with knot locations (squares)
and control points (circles). The original ba-
sis functions are shown beneath.

Figure 2.4.5: Order elevation: The refined
spline curve with knot locations (squares)
and control points (circles). The refined ba-
sis functions are shown beneath.

the order has been increased. We see from these figures that the continuity properties of
the basis are preserved.

2.4.4 Order elevation for B-spline surfaces
The order elevation of a tensor product B-spline surface is derived in a similar fashion
as the knot insertion for the surface, using the observation at the end of Section 2.2.4.
We express the B-spline surface by (2.2.7) and perform order elevation for each of the
curves Cj . Using (2.4.7) we obtain

S (ξ, η) =
m∑
j=1

Mj,q (η)
n∑
i=1

Ni,p (ξ) Bi,j =
m∑
j=1

Mj,q (η)
n̂∑
î=1

Nî,p+t (ξ) B̄î,j

=
n̂∑
î=1

m∑
j=1

Nî,p+t (ξ)Mj,q (η) B̄î,j,
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where t ≥ 0 is the increase in degree, and if we increase the degree in the η-direction
by s ≥ 0 in the same way, we get

S (ξ, η) =
n̂∑
î=1

m̂∑
ĵ=1

Nî,p+t (ξ)Mĵ,q+s (η) B̂î,ĵ.

Again the order in which we perform the order elevation does not matter. We end up
with the same knot vectors and polynomial orders, hence the same B-spline basis func-
tions, and by the uniqueness of the tensor product B-spline representation the control
net is the same, as was shown when dealing with knot insertion.

2.5 NURBS
Using only spline geometries we are not able to represent important geometric objects
such as circles and other conic sections exactly. A generalization of the B-spline ba-
sis functions that solves this problem is given by the Non-Uniform Rational B-Spline
(NURBS) basis functions.

2.5.1 NURBS basis functions
The NURBS basis functions are defined as follows:

Definition 2.4. Given a polynomial degree p, a knot vector Ξ = [ξ1, . . . , ξn+p+1] and
a sequence of positive real numbers {wi}ni=1, we define the ith Non-Uniform Rational
B-Spline (NURBS) by

Rp
i (ξ) := Ni,p (ξ)wi∑n

î=1 Nî,p (ξ)wî
, ∀ξ ∈ [ξ1, ξn+p+1) (2.5.1)

where the Ni,p is the ith B-spline of degree p as defined in Definition 2.1. A number wi
is referred to as the ith weight.

Since the B-splines are piecewise polynomials, it is clear that the NURBS basis
functions are piecewise rational functions. Choosing all the weights equal to w, and
assuming the knot vector to be open, we note that for any ξ ∈ [ξ1, ξn+p+1)

Rp
i (ξ) = Ni,p (ξ)wi∑n

î=1Nî,p (ξ)wî
= Ni,p (ξ)w
w
∑n
î=1Nî,p (ξ) = Ni,p (ξ) ,

since the B-spline basis is a partition of unity (Proposition 4). The NURBS basis func-
tions are thus a generalization of the B-splines. Like the B-spline basis, the NURBS
basis is also a partition of unity:

n∑
i=1

Rp
i (ξ) =

n∑
i=1

Ni,p (ξ)wi∑n
î=1Nî,p (ξ)wî

=
∑n
i=1Ni,p (ξ)wi∑n
î=1Nî,p (ξ)wî

= 1, ∀ξ ∈ [ξ1, ξn+p+1) .
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2.5 NURBS

Finally we note that the derivatives of the NURBS basis functions can be calculated
from the derivatives of the B-splines. Differentiating (2.5.1) using the quotient rule we
obtain

d

dξ
Rp
i (ξ) = wi

d
dξ
Ni,p (ξ)∑n

î=1Nî,p (ξ)wî −Ni,p (ξ)∑n
î=1

d
dξ
Nî,p (ξ)wî(∑n

î=1Nî,p (ξ)wî
)2 ,

and the derivatives of the B-splines can be calculated using (2.1.9).
In the same way as we did for B-splines we can define tensor product NURBS basis

functions by

Rp,q
i,j (ξ, η) := Rp

i (ξ)Rq
j (η) = Ni,p (ξ)Mj,q (η)wi,j

W (ξ, η) , ∀(ξ, η) ∈ Ω̂, (2.5.2)

where Ω̂ = [ξ1, ξn+p+1) × [η1, ηm+q+1), and the weighting function W (ξ, η) is defined
by

W (ξ, η) =
∑n

î=1

∑m

ĵ=1Nî,p (ξ)Mĵ,q (η)wî,ĵ, ∀(ξ, η) ∈ Ω̂.

2.5.2 NURBS geometries
We can write the expressions for NURBS geometries in the same way as for B-spline
geometries using the NURBS basis functions (2.5.1) and (2.5.2). NURBS curves are
thus given by

C (ξ) =
n∑
i=1

Rp
i (ξ) Bi, ξ ∈ [ξ1, ξn+p+1), (2.5.3)

and NURBS surfaces by

S (ξ, η) =
n∑
i=1

m∑
j=1

Rp,q
i,j (ξ, η) Bi,j, (ξ, η) ∈ Ω̂, (2.5.4)

where Ω̂ = [ξ1, ξn+p+1) × [η1, ηm+q+1). Figure 2.5.1 shows an example of a NURBS
surface in R2 along with the grid lines defined by the knot vectors. The polynomial
degrees are p = 2 and q = 1, the knot vectors Ξ = [0, 0, 0, 1, 1, 2, 2, 2] and H =
[0, 0, 1, 1], and the control points and weights are given by

[B1, . . . ,B10] =
[

1 1 0 −1 −1 2 2 0 −2 −2
0 1 1 1 0 0 2 2 2 0

]
,

[w1, . . . , w10] =
[

1 1√
2 1 1√

2 1 1 1√
2 1 1√

2 1
]
,
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Figure 2.5.1: An example of a NURBS surface along with the grid defined by the knot vectors.

where we have used the numbering scheme A = n(j−1)+ i. The data of this geometry
is obtained without too much trouble using the templates and techniques described in
[7, Ch. 2.4]. One of the advantages of using NURBS is that we can represent conic
sections exactly. The geometry in Figure 2.5.1 is an example of this with its circular
edges.

The NURBS geometries can also be obtained via projective transformations of B-
spline geometries [7, Ch. 2.2]. If we have a B-spline geometry in Rd+1, this can be
projected in a certain way to get a NURBS geometry in Rd, the Rd+1-geometry is re-
ferred to as the projective geometry. If we for instance have a projective B-spline curve
Cw(ξ) in Rd+1 defined by the projective control points Bw

i ∈ Rd+1, the control points
for the Rd NURBS curve are given by

(Bi)j = (Bw
i )j/wi, j = 1, . . . , d, (2.5.5a)

wi = (Bw
i )d+1, (2.5.5b)

where (Bi)j denotes the jth component of the control point Bi. In R3 this corresponds
to projecting the control points onto the plane z = 1 along rays through the origin. The
same transformation can be applied to every point on the projective curve to obtain the
NURBS curve, which is then given by

(C (ξ))j = (Cw (ξ))j

/
n∑
i=1

Ni,p (ξ)wi, j = 1, . . . , d.

This formulation is equivalent to the definition (2.5.3).
Even though we use only the definition (2.5.3) to compute points on NURBS ge-

ometries, the geometric viewpoint comes in handy when we want to refine the NURBS
basis. We can actually use the refinement methods for B-spline geometries discussed in
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Figure 2.5.2: The NURBS surface from Figure 2.5.1 after inserting simple knots at 0.5 and 1.5
in Ξ, and at 0.5 inH.

Section 2.4 to refine the NURBS basis by applying the methods to the projective geom-
etry. If we have for instance a NURBS curve defined by control points Bi and weights
wi we can find the projective control points using (2.5.5) by

(Bw
i )j = wi(Bi)j, j = 1, . . . , d, (2.5.6a)

(Bw
i )d+1 = wi. (2.5.6b)

We can then apply the refinement method on the projective curve and get the control
points and weights of the refined NURBS curve using (2.5.5). This procedure is the
same for NURBS surfaces, we simply transform each control point in the same way.
Figure 2.5.2 shows the grid of the NURBS surface from Figure 2.5.1 after knot insertion,
the surface is the same as before, but the basis used to express it is refined.
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Chapter 3
The Poisson Problem

In this thesis the Poisson problem is primarily used as a model problem to describe the
method of isogeometric analysis. However, the Poisson problem is an important prob-
lem in itself, and it has important applications in e.g. electrostatics and fluid mechanics
where it is used to find potential functions. In fact it follows from the Stokes equations
that the pressure of the flow satisfies a special case of the Poisson equation called the
Laplace equation, which is useful if boundary conditions are given in terms of pressure
[20]. Also solvers for the Poisson problem often generalizes quite easily to solving
the biharmonic equation. This equation can be used to find the streamfunction or the
vorticity of a flow [20].

3.1 Discretizing the problem

3.1.1 Strong form
We consider the Poisson problem on a domain Ω ⊂ Rd, where d is the dimension and the
physical domain Ω is given as a B-spline or NURBS geometry. This means that Ω is the
image of the parametric domain Ω̂ under a geometrical mapping x : Ω̂→ Ω defined by
(2.2.5), (2.2.6), (2.5.3), (2.5.4) or similar expressions for d ≥ 3. The parametric domain
Ω̂ is the d-dimensional hyperrectangle defined by end values of the knot vectors.

For the Poisson problem we seek to find a function u : Ω̄→ R such that

∆u+ f = 0 in Ω, (3.1.1a)
u = g on ΓD, (3.1.1b)

∇u · n = h on ΓN , (3.1.1c)

where ΓD ∪ ΓN = Γ = ∂Ω, ΓD ∩ ΓN = ∅, ΓD 6= ∅ and n is the outward unit normal
vector of ∂Ω. The Dirichlet boundary condition (3.1.1b) is specified by a given function
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g : ΓD → R, and the Neumann boundary condition (3.1.1c) by the given function
h : ΓN → R. For simplicity we will assume g = 0 in this report, but the general case
can be handled without too much trouble using a so called lifting function. Another type
of boundary condition that is worth mentioning is the Robin condition, which gives the
value of βu +∇u · n, for some constant β, on a part ΓR of the boundary. This type of
boundary condition is handled in a quite similar fashion as the Neumann condition.

The standard way of solving the Poisson problem numerically using finite element
analysis is by use of the Galerkin method. We first find the weak formulation of (3.1.1),
then approximate the infinite-dimensional function spaces by finite-dimensional ones
and finally a system of linear equations is obtained and solved.

3.1.2 Weak form
To find the weak formulation of (3.1.1), we multiply both sides of (3.1.1a) with an
arbitrary test function v, and integrate over Ω. This gives∫

Ω

v∆udΩ = −
∫
Ω

vfdΩ,

and integrating by parts using Green’s identity yields∫
Ω

∇v · ∇udΩ =
∫
Ω

vfdΩ +
∫

ΓD

v (∇u · n) dΓ +
∫

ΓN

v (∇u · n) dΓ.

If we assume that v|ΓD = 0 and use the Neumann boundary condition (3.1.1c) we end
up with ∫

Ω

∇v · ∇udΩ =
∫
Ω

vfdΩ +
∫

ΓN

vhdΓ.

In order for these integrals to make sense, v and its first order derivatives must be square-
integrable. We have also used that v|ΓD = 0. We will therefore require that

v ∈ V = H1
ΓD(Ω) =

{
v ∈ H1(Ω) : v|ΓD = 0

}
,

where H1(Ω) is the Sobolev space H1(Ω) = {v ∈ L2 (Ω) : Dαv ∈ L2 (Ω) , ∀ |α| ≤ 1}.
We will also be searching for the solution u in the same space V . Hence the weak
formulation of (3.1.1) can be stated as follows: Find u ∈ V such that

a(v, u) = L(v), ∀v ∈ V , (3.1.2)

where a (v, u) =
∫
Ω
∇v · ∇udΩ and L (v) =

∫
Ω
vfdΩ +

∫
ΓN
vhdΓ. From the linearity of

the integral and the differential operators and the commutativity of the dot product it
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follows that a(·, ·) is bilinear and symmetric and that L(·) is linear. It can be shown that
a(·, ·) is also continuous and coercive, and L(·) is also continuous [26, Ch. 3.4]. With
V being a closed subspace of the Hilbert space H1(Ω) and thus a Hilbert space itself,
the Lax-Milgram Lemma [26, Ch. 3.5] applies and guarantees the existence of a unique
solution to (3.1.2).

3.1.3 Galerkin’s method
The idea of Galerkin’s method is to use a finite-dimensional subspace Vh to approximate
the search and test space V . Isogeometric analysis follows the isoparametric concept
where the same basis is used for both geometry and analysis. Thus the solution space
Vh is chosen to be the space spanned by the NURBS or B-spline basis functions NA

for A = 1, . . . , nnp, where nnp is the number of basis functions. Note that we use
the notation NA for the basis functions whether they are the B-spline basis funcitons
Ni,p(ξ) or Ni,j;p,q(ξ, η), or the NURBS basis functions Rp

i (ξ) or Rp,q
i,j (ξ, η). Strictly

speaking the basis functionsNA should be functions of the physical parameter x defined
as compositions NA ◦x−1, where x−1 is the inverse of the geometrical mapping, but we
commit the notational crime of denoting both functions by NA. Now the homogeneous
Dirichlet boundary condition (3.1.1b) where g = 0 can be incorporated into the solution
space simply by reducing the basis to the functions for which NA|ΓD = 0. If we reorder
these basis functions using the indices Ã such that NÃ|ΓD = 0 for Ã = 1, . . . , neq, we
have that any function vh ∈ Vh can be represented by

vh =
neq∑
Ã=1

NÃcÃ

for some constants cÃ.
We can now make an approximation to the weak formulation (3.1.2), called the

Galerkin problem: Find uh ∈ Vh such that

a
(
vh, uh

)
= L

(
vh
)
, ∀vh ∈ Vh. (3.1.3)

Now Vh is in turn a closed subspace of the Hilbert space V , and the Lax-Milgram
Lemma guarantees the existence of a unique solution to the problem (3.1.3) as well.
Writing uh as uh = ∑neq

B̃=1NB̃dB̃, where dB̃ are the unknown control variables, and
using the linearity of a we require that

a

vh, neq∑
B̃=1

NB̃dB̃

 =
neq∑
B̃=1

a
(
vh, NB̃

)
dB̃ = L

(
vh
)
, ∀vh ∈ Vh.

From the linearity of a(·, ·) and L(·) it follows that the above equation will be satisfied
by any linear combination of elements of Vh that satisfy the equation. Since the basis
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functions NÃ span Vh and are linearly independent, we have that for the equality to
hold for all v ∈ Vh it is sufficient and necessary that it holds for all the basis functions.
Hence the Galerkin problem (3.1.3) is equivalent to

neq∑
B̃=1

a (NÃ, NB̃) dB̃ = L (NÃ) , Ã = 1, . . . , neq.

This is a system of linear equations, and if we define K =
[
KÃ,B̃

]
= [a (NÃ, NB̃)],

d = [dB̃] and F = [FÃ] = [L (NÃ)] we can write the system in matrix form by Kd = F.
Thus the Galerkin problem (3.1.3) is equivalent to finding d ∈ Rneq such that

Kd = F. (3.1.4)

The matrix K is often referred to as the stiffness matrix, the vector F as the force vector
and the vector d as the displacement vector. With a(·, ·) being bilinear, coercive and
symmetric, it is not difficult to show that the matrix K is symmetric, positive definite
[26, Ch. 4.1]. Solving the system (3.1.4) for d we find the unknown control variables,
and the numerical solution is finally given by

uh =
neq∑
Ã=1

NÃdÃ. (3.1.5)

It should be noted that since the NURBS-basis is not interpolatory at the knots, the
control variables dÃ have no direct interpretation, as opposed to ordinary FEA where
the dÃ would be the values of the numerical solution at the nodes.

3.2 Implementation of numerical solver
We now want to implement a numerical solver for the Poisson problem (3.1.1) in the
two-dimensional case by assembling and solving the linear system (3.1.4). Implement-
ing a solver for the case d = 1 is easy in comparison, because both the indexing and
computing the integrals simplify a lot, and generalizing a 2D solver to higher dimen-
sions is not very hard but gives more indices to handle. Thus considering the two-
dimensional case is reasonable.

Assume the domain Ω is given as a NURBS surface defined by the knot vectors
Ξ = [ξ1, . . . , ξn+p+1] and H = [η1, . . . , ηm+q+1], with corresponding polynomial orders
p and q, a set of control points {Bi,j}n,mi,j=1 and a set of weights {wi,j}n,mi,j=1. In principle
we could let Ω be a three-dimensional NURBS surface by letting the control points
be elements of R3 and compute the relevant integrals as surface integrals, however for
simplicity and visualization purposes we will assume Bi,j ∈ R2. We have then that

Ω =
{
x ∈ R2 : x = S (ξ, η) , ξ ∈ (ξ1, ξn+p+1) , η ∈ (η1, ηm+q+1)

}
,
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where S (ξ, η) is given by (2.5.4). Thus Ω is given as the image of the rectangle
(ξ1, ξn+p+1) × (η1, ηm+q+1) under the mapping (ξ, η) 7→ x = S(ξ, η). The rectangle
(ξ1, ξn+p+1)× (η1, ηm+q+1) is referred to as the parametric domain, while Ω is referred
to as the physical domain. The elements, or the physical elements, are defined as the
images of parametric elements [ξi, ξi+1)× [ηj, ηj+1) under the geometrical mapping.

3.2.1 Index handling by connectivity arrays

The basis functions we consider are the Rp,q
i,j given by (2.5.2), where i = 1, . . . , n and

j = 1, . . . ,m. These basis functions are tensor products of the univariate basis functions
Ni,p(ξ) and Mj,q(η) multiplied by the weight and divided by a weighting function. The
pair of indices (i, j) is called the NURBS coordinates, and they refer to the univariate
basis functions that correspond to the bivariate basis function. If we introduce the global
numbering

A = n(j − 1) + i, (3.2.1)

we can denote the basis functions by NA = Rp,q
i,j . To keep track of the NURBS co-

ordinates of a given basis function NA, we use the NURBS coordinates array INC. It
is constructed such that INC(A, 1) = i and INC(A, 2) = j. A useful observation is
that the NURBS coordinates of a basis function give the indices of the knots where the
support of the function begins in each parametric direction, this is due to Property 2 and
the tensor product nature of the basis.

Since we are assuming open knot vectors, we know that there will be elements of
zero measure at the ends of the knot vectors, so these are disregarded. Thus we are only
numbering the elements Ωe that correspond to a parametric element [ξi, ξi+1)×[ηj, ηj+1)
for which p+ 1 ≤ i ≤ n and q + 1 ≤ j ≤ m. These are numbered by

e = (j − q − 1)(n− p) + (i− p).

Given a parametric element [ξi, ξi+1) × [ηj, ηj+1) we know from Proposition 2 that a
tensor product Nα,p(ξ)Mβ,q(η) has support on the element if and only if i− p ≤ α ≤ i
and j − q ≤ β ≤ j. Thus for each element the only basis functions Rp,q

α,β(ξ, η) =
Nα,p(ξ)Mβ,q(η)wi,j

W (ξ,η) that have support on the element are the nen = (p + 1)(q + 1) basis
functions for which i − p ≤ α ≤ i and j − q ≤ β ≤ j. These are referred to as local
basis functions and they are given local numbers b according to the numbering scheme

b = (p+ 1) (j − β) + (i− α) + 1 = (p+ 1) jloc + iloc + 1. (3.2.2)

Here we have defined the local indices iloc = i−α and jloc = j−β such that 0 ≤ iloc ≤ p
and 0 ≤ jloc ≤ q. The local basis function numbers are thus incremented starting at
α = i, β = j and counting backwards first in α, then in β. With the global numbering
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given by (3.2.1), we note that the global basis function number of the function with
NURBS coordinates (α, β) is given by

B = n (β − 1) + α = n (j − 1) + i− n (j − β)− (i− α) = A− jlocn− iloc,

where A is the global basis function number of NA = Rp,q
i,j . The element nodes array

IEN is used to keep track of the global basis function numbers of the local basis func-
tions on a given element. Given an element e and a local number b, the global number
is given by B = IEN(b, e).

The above formulas and an algorithm for setting up the connectivity arrays INC and
IEN are presented in [7, App. A].

3.2.2 Assembling the linear system

The stiffness matrix

If we denote the elements by Ωe, e = 1, . . . , nel, where nel is the number of elements,
the entries of the stiffness matrix K ∈ Rnnp×nnp can be written

KA,B = a (NA, NB) =
∫
Ω

∇NA · ∇NBdΩ =
nel∑
e=1

∫
Ωe
∇NA · ∇NBdΩ,

splitting the integral over Ω into a sum of integrals over the elements Ωe. This means that
we can loop through the elements adding contributions to the integral as we go. Because
of the local support of the basis functions, the element integrals

∫
Ωe∇NA · ∇NBdΩ will

be zero for a lot of functions NA and NB. From Section 3.2.1 we have that the basis
functions with support on element e are the NA with A = IEN(a, e) for a = 1, . . . , nen,
where nen = (p+ 1)(q + 1) is the number of local basis functions. Thus we have that

Ke
a,b :=

∫
Ωe
∇NIEN(a,e) · ∇NIEN(b,e)dΩ, a, b = 1, . . . , nen (3.2.3)

are the only contributions we have from element e to the stiffness matrix K. Hence the
integrals can be computed and stored in the element stiffness matrix Ke =

[
Ke
a,b

]nen
a,b=1

,
and then the contributions of this matrix is added to the global stiffness matrix. We
also note that if the element Ωe has zero measure, any integral over the element is zero
and the matrix Ke = 0, this will happen whenever ξi = ξi+1 or ηj = ηj+1 for the
corresponding parametric element [ξi, ξi+1)× [ηj, ηj+1).
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The force vector

In the same fashion as for the stiffness matrix we can write the elements of the force
vector F as

FA = L (NA) =
∫
Ω

NAfdΩ +
∫

ΓN

NAhdΓ =
nel∑
e=1

∫
Ωe
NAfdΩ + IeΓN (NA)

.
Here IeΓN (NA) denotes the contribution from the element Ωe to the integral

∫
ΓN NAhdΓ.

Using the same argument as for the stiffness matrix regarding the support of the basis
functions, we can define an element force vector Fe ∈ Rnen with entries given by

F e
a :=

∫
Ωe
NIEN(a,e)fdΩ + IeΓN

(
NIEN(a,e)

)
. (3.2.4)

The contribution IeΓN

(
NIEN(a,e)

)
to the integral

∫
ΓN NIEN(a,e)hdΓ is zero for most of

the elements Ωe. With open knot vectors we need only compute these contributions for
the elements whose corresponding parametric element [ξi, ξi+1)× [ηj, ηj+1) is such that
i = p+ 1, i = n, j = q + 1 or j = m so that a part of the element boundary is a part of
the boundary ∂Ω of the physical domain, we must also check if this part is a part of the
Neumann boundary ΓN .

Gaussian quadrature

The nq-point Gaussian quadrature rule can be stated as∫ 1

−1
F
(
ξ̃
)
dξ̃ ≈

nq∑
i=1

WiF
(
ξ̃i
)

(3.2.5)

with the remainder

Rnq =
∫ 1

−1
F
(
ξ̃
)
dξ̃ −

nq∑
i=1

wiF
(
ξ̃i
)

= 22nq+1(nq!)4

(2nq + 1) [(2nq)!]3
F (2nq) (τ) , τ ∈ (−1, 1).

(3.2.6)
These formulas are produced using the Legendre polynomials Lnq(ξ̃) which are orthog-
onal with respect to the inner product (F,G) =

∫ 1
−1 F

(
ξ̃
)
G
(
ξ̃
)
dξ̃, and normalized by

Lnq(1) = 1. The quadrature point ξ̃i is the i-th zero of the polynomial Lnq , and the
weights are given by Wi = 2

(1−ξ̃2
i )[Lnq ′(ξ̃i)]2 [1, p. 887]. Using (3.2.6) we note that

the Gaussian quadrature gives the exact value of the integral for polynomials of degree
not exceeding 2nq − 1, since the (2nq)th derivative will then be identically zero. For
two-dimensional integrals we can use (3.2.5) in each direction and obtain

1∫
−1

1∫
−1

F
(
ξ̃, η̃

)
dξ̃dη̃ ≈

nq∑
i=1

mq∑
j=1

WiWjF
(
ξ̃i, η̃j

)
. (3.2.7)
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This formula will be exact if F (ξ̃, η̃) is a tensor product of polynomials of degree not
exceeding 2nq − 1 and 2mq − 1 respectively.

We now want to apply Gaussian quadrature to compute integrals over arbitrary phys-
ical elements. In order to do this the physical element Ωe is pulled back first to the
parametric element Ω̂e = (ξi, ξi+1) × (ηj, ηj+1) and then to the bi-unit parent element
Ω̃e = (−1, 1)×(−1, 1). More specifically if we have an integral over a physical element,
we can perform a change of variables using the geometrical mapping x(ξ), ξ = [ξ, η]T ,
and obtain ∫

Ωe
F (x) dx =

∫
Ω̂e

F (x)
∣∣∣∣∣det

(
∂x
∂ξ

)∣∣∣∣∣ dξ,
where ∂x

∂ξ
is the Jacobian matrix of the geometrical mapping. Now we can transform

this integral to an integral over the parent element using the affine mapping given by

ξ = 1
2

[
ξi+1 − ξi 0

0 ηi+1 − ηi

]
ξ̃ + 1

2

[
ξi+1 + ξi
ηi+1 + ηi

]
, (3.2.8)

which gives ∫
Ωe
F (x) dx =

∫
Ω̃e

F (x)
∣∣∣∣∣det

(
∂x
∂ξ

∂ξ

∂ξ̃

)∣∣∣∣∣ dξ̃,
where the integrand varies with ξ̃ =

[
ξ̃, η̃

]T
through the geometrical mapping and

the affine mapping (3.2.8). Such an integral can be approximated using the Gaussian
quadrature formula given by (3.2.7).

Shape function routine

The integrals
∫

Ωe NIEN(a,e) (x) f (x) dx and
∫

Ωe ∇NIEN(a,e) (x) · ∇NIEN(b,e) (x) dx will
be computed using Gaussian quadrature, so we need to compute the values of the rel-
evant basis functions, their derivatives and also the determinant of the Jacobian ∂x

∂ξ
∂ξ

∂ξ̃
,

at given quadrature points (ξ̃, η̃). We also need to compute x for evaluation of f(x).
This is done by a shape function routine. The algorithm for such a routine is given in
[7, App. 3.A] for the three-dimensional case, and can with little effort be adapted to
the two-dimensional case. In this section we will, however, develop the formulas from
scratch in order to obtain a matrix-based algorithm which avoids for-loops for use in
MATLAB, and also to give a proof of the algorithm.

If we use the numbering given in (3.2.1) for the control points and apply what we
know about the support of the basis functions, the geometrical mapping can be expressed
locally for element number e as

x (ξ) =
n∑
i=1

m∑
j=1

Rp,q
i,j (ξ) Bi,j =

nnp∑
A=1

NA (ξ) BA =
nen∑
a=1

NIEN(a,e) (ξ) BIEN(a,e), ξ ∈ Ω̂e.
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Defining the matrix Be =
[
BIEN(1,e), . . . ,BIEN(nen,e)

]T
∈ Rnen×2 and the vector Ne =[

NIEN(1,e), . . . , NIEN(nen,e)
]T
∈ Rnen , which contain the relevant control points and basis

functions respectively, this can be written

x (ξ) = (Be)TNe (ξ) , (3.2.9)

Differentiating with respect to ξ gives us the Jacobian matrix of the geometrical map-
ping:

∂x
∂ξ

= (Be)T ∂Ne

∂ξ
. (3.2.10)

The chain rule gives that
∂Ne

∂ξ
= ∂Ne

∂x
∂x
∂ξ
,

and if the geometrical mapping is invertible at ξ, the derivatives with respect to the
physical variables are given by

∂Ne

∂x
= ∂Ne

∂ξ

(
∂x
∂ξ

)−1

. (3.2.11)

Now we only need formulas for Ne and ∂Ne

∂ξ
. To obtain these we take a similar

approach as for the geometrical mapping above. If the NURBS coordinates of the ele-
ment Ωe are (i, j), the functions NA,p (ξ)MB,q (η) with support on the element Ωe are
the Nα,p (ξ)Mβ,q (η) for which i − p ≤ α ≤ i and j − q ≤ β ≤ j. Using the local
numbering b = (p+ 1) (j − β) + (i− α) + 1 from (3.2.2) the elements of Ne can be
written

NIEN(b,e) (ξ) = Nα,p (ξ)Mβ,q (η)wα,β
n∑̂
i=1

m∑̂
j=1

Nî,p (ξ)Mĵ,q (η)wî,ĵ
= Nα,p (ξ)Mβ,q (η)wIEN(b,e)

i∑
î=i−p

j∑
ĵ=j−q

Nî,p (ξ)Mĵ,q (η)wIEN(b,e)

.

(3.2.12)
If we now define the vectors N (ξ),W ∈ Rnen by

N (ξ)T = (3.2.13)
[Ni,p (ξ)Mj,q (η) · · ·Ni−p,p (ξ)Mj,q (η) · · ·Ni,p (ξ)Mj−q,q (η) · · ·Ni−p,p (ξ)Mj−q,q (η)],

W = [wi,j, . . . , wi−p,j, . . . , wi,j−q, . . . , wi−p,j−q] =
[
wIEN(1,e), . . . , wIEN(nen,e)

]T
,

we use (3.2.12) to observe that we can write

Ne = diag (W)N
WTN

, (3.2.14)
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where diag (W) ∈ Rnen×nen is a matrix with the vector W along the main diagonal.
Differentiating this with respect to ξ using the quotient rule yields

∂Ne

∂ξ
=

diag (W) ∂N
∂ξ

(
WTN

)
− diag (W)NWT ∂N

∂ξ

(WTN )2

= diag (W)

(
WTN

)
I −NWT

(WTN )2
∂N
∂ξ

. (3.2.15)

We can see from the definition (3.2.13) that ∂N
∂ξ
∈ Rnen×2 is given by

∂N
∂ξ

=



Ni,p
′ (ξ)Mj,q (η) Ni,p (ξ)Mj,q

′ (η)
...

...
Ni−p,p

′ (ξ)Mj,q (η) Ni−p,p (ξ)Mj,q
′ (η)

...
...

Ni,p
′ (ξ)Mj−q,q (η) Ni,p (ξ)Mj−q,q

′ (η)
...

...
Ni−p,p

′ (ξ)Mj−q,q (η) Ni−p,p (ξ)Mj−q,q
′ (η)


. (3.2.16)

NowN and ∂N
∂ξ

can be computed by evaluation of univariate B-splines and their deriva-
tives according to the formulas in Section 2.1.

The computations of the shape function routine can now be summarized in the fol-
lowing steps:

• Given a quadrature point ξ̃ = (ξ̃, η̃) ∈ Ω̃e compute the corresponding point ξ =
(ξ, η) ∈ Ωe by (3.2.8).

• Evaluate the non-zero univariate B-splines and their derivatives at ξ and η ac-
cording to the formulas in Section 2.1, and multiply them together forming the
matrices N and ∂N

∂ξ
defined by (3.2.13) and (3.2.16).

• Compute the matrices Ne and ∂Ne

∂ξ
by (3.2.14) and (3.2.15) respectively.

• Compute the point x ∈ Ωe corresponding to the quadrature point by (3.2.9), and
the Jacobian ∂x

∂ξ
of the geometrical mapping by (3.2.10).

• Compute the derivatives with respect to the physical variables using (3.2.11).

• Compute the Jacobian determinant by det
(
∂x
∂ξ

∂ξ

∂ξ̃

)
= (ξi+1−ξi)(ηj+1−ηj)

4 det
(
∂x
∂ξ

)
.

After doing these computations the shape function routine returns the point x in physical
space corresponding to the quadrature point, the vector Ne containing the values of the
basis functions at x, the matrix ∂Ne

∂x whose rows are the gradients of the basis functions
at x and the Jacobian determinant det

(
∂x
∂ξ

∂ξ

∂ξ̃

)
.
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Neumann boundary conditions

In Section 3.2.2 we saw that if the NURBS coordinates (i, j) of an element Ωe is such
that i = p + 1, i = n, j = q + 1 or j = m, then we have to compute a contribu-
tion IeΓN

(
NIEN(a,e)

)
from element e to the integral

∫
ΓN NIEN(a,e)hdΓ if the Neumann

boundary ΓN intersects the element boundary. If for example the parametric element is
given by [ξi, ξi+1)× [ηm, ηm+1), then the part of the element boundary [ξi, ξi+1)× ηm+1
corresponds to a part of the domain boundary ∂Ω, and if this part is contained in the
Neumann boundary ΓN 1, the contribution IeΓN

(
NIEN(a,e)

)
can be computed as a line

integral by

IeΓN

(
NIEN(a,e)

)
=
∫ ξi+1

ξi
h (x (ξ, ηm+1))NIEN(a,e) (x (ξ, ηm+1))

∥∥∥∥∥dxdξ (ξ, ηm+1)
∥∥∥∥∥

2
dξ

=
∫ 1

−1
h
(
x
(
ξ
(
ξ̃, 1

)))
NIEN(a,e)

(
x
(
ξ
(
ξ̃, 1

))) ξi+1 − ξi
2

∥∥∥∥∥dxdξ
(
ξ
(
ξ̃, 1

))∥∥∥∥∥
2
dξ̃.

Similar integrals are obtained in the three other cases i = p + 1, i = n, j = q + 1, and
for "corner elements" where for example i = n and j = q + 1, the contribution may
consist of two such integrals. These integrals can be computed using one-dimensional
Gaussian quadrature as given by (3.2.5). The shape function routine can without much
difficulty be adapted to compute the relevant values for these integrals, instead of the
Jacobian determinant the 2-norm of the parametrization is computed since they are line
integrals.

One way to identify the Neumann part of the boundary is the following: For the
lower edge of the rectangular reference domain [ξ1, ξn+p+1) × [η1, ηm+q+1), i.e. the
edge where η = η1, we assign a vector ΞNeu,lower of the same size as the knot vector Ξ
containing boolean entries, such that if ξNeu,lower

i and ξNeu,lower
i+1 both have the value true

it means that the segment [ξi, ξi+1)× η1 corresponds to a part of the Neumann boundary
ΓN . We then assign three more such vectors for the three remaining edges.

Assembling the stiffness matrix and the force vector

Since the rows of the matrix ∂Ne

∂x contains the gradients of the NIEN(a,e) in the order
a = 1, . . . , nen we see from (3.2.3) that we can write the element stiffness matrix as

Ke =
∫
Ωe

∂Ne

∂x

(
∂Ne

∂x

)T
dx.

1We assume for simplicity that the part is a subset of the Neumann boundary whenever the intersection
is non-empty.
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Chapter 3. The Poisson Problem

Similarly we observe from (3.2.4) that the element force vector can be written

Fe =
∫
Ωe
f (x) Ne (x) dx + IeΓN (Ne) .

Thus, using the Gaussian quadrature formulas, we finally obtain

Ke ≈
nq∑
i=1

mq∑
j=1

WiWj
∂Ne

∂x
(
ξ̃i, η̃j

)(∂Ne

∂x
(
ξ̃i, η̃j

))T
,

Fe ≈
nq∑
i=1

mq∑
j=1

WiWjf
(
x
(
ξ̃i, η̃j

))
Ne

(
x
(
ξ̃i, η̃j

))
+ IeΓN (Ne) ,

where IeΓN (Ne) is the Neumann contribution which is computed by one-dimensional
Gaussian quadrature. With the element stiffness matrix and force vector computed, their
contributions to the global stiffness matrix and force vector respectively can be added
using the global indices A = IEN (a, e) and B = IEN (b, e) for a, b = 1, . . . , nen. It is
important to note that the global stiffness matrix K should be stored as a sparse matrix,
since most of its elements are zero due to the local support of the basis functions.

3.2.3 Imposing boundary conditions and solving the linear system
The stiffness matrix K computed by the assembly process of Section 3.2.2 is an nen ×
nen-matrix containing a(NA, NB) for all basis functionsNA andNB,A,B = 1, . . . , nen.
However the stiffness matrix K in the linear system (3.1.4), which is the system we need
to solve, is an neq × neq-matrix containing a(NÃ, NB̃) for the basis functions NÃ and
NB̃, Ã, B̃ = 1, . . . , neq. If we look back to Section 3.1.3 we see that theNÃ are the basis
functions that vanish when restricted to the Dirichlet boundary ΓD. This means that in
order to obtain the stiffness matrix for the linear system, we need to identify the basis
function numbers A of the basis functions that are non-zero on the Dirichlet boundary
and remove the corresponding rows and columns of the stiffness matrix obtained in the
assembly. We also need to remove the corresponding entries of the assembled force
vector F.

Since the matrix K is symmetric positive definite, the linear system (3.1.4) can be
solved efficiently both by direct methods, for example using Cholesky factorization, or
by iterative methods like the conjugate gradient method.

3.3 Numerical experiments

3.3.1 The Poisson problem on the unit square
We now want to test the numerical solver on problems where we know the exact solu-
tion. A simple case is when Ω is the unit square [0, 1]2 given as a NURBS surface by the
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3.3 Numerical experiments

knot vectors Ξ = H = [0, 0, 1, 1], the polynomial orders p = q = 1, the control points

[B1,1,B2,1,B1,2,B2,2] =
[

0 1 0 1
0 0 1 1

]
and the weights wi,j = 1. The functions f

and h are given by

f (x, y) = 2π2 sin (πx) sin (πy)
h (x, y) = −π sin (πx) cos (πy)

and ΓN is the part of the boundary where y = 0. In this case the exact solution is given
by u (x, y) = sin πx sin πy. By inserting the knot values i/N for i = 1, . . . , N − 1,
N ∈ N, in both Ξ andH we obtain a grid of N2 equally sized elements. The numerical
solution and the error for N = 5 is shown in Figure 3.3.1.

If we now want a better approximation we can use the three refinement techniques
of isogeometric analysis, h-, p- and k-refinement. We can move around in the so called
hpk-refinement space with h−1, p and k along the axes, where h is a length parameter
describing the size of the elements, p is the polynomial order of the basis and k is the
number of continuous derivatives at the knots. Note that the level of continuity k is
limited by the polynomial order by k ≤ p − 1. We have actually one hpk-space for
each dimension, but we choose to have the same values of h, p and k in both directions.
In this case the element size is naturally described by h = 1/N , and since we inserted
single knots into a C0-basis of polynomial orders p = q = 1, the solution shown in
Figure 3.3.1 is at the refinement level h−1 = 5, p = 1 and k = 0. We can perform
h-refinement by choosing N = 25 instead and thus get smaller elements, this results in
the solution and the error shown in Figure 3.3.2. In p-refinement we insert knots with
N = 5 and then use order elevation to increase the polynomial orders, the resulting
solution and the error when the orders are increased to p = q = 3 is given in Figure
3.3.3, the basis is still C0 at the knots since the order elevation preserves the lack of
continuity. If we instead increase the order to p = q = 3 before we insert the knots
with N = 5 we have k-refinement, in which case the basis becomes C2-continuous at
the knots. The resulting solution and the error after this k-refinement is shown in Figure
3.3.4. In this way we have enforced C2 continuity of the numerical solution and we
notice from the plot of the error that it appears to be smoother than the error plot in
Figure 3.3.3.

We note that the number of degrees of freedom, or the number of linear equations,
neq are 20, 600, 210 and 42 in the respective cases, which illustrates the fact that k-
refinement increases the number of equations considerably less than pure p-refinement.
Since the convergence rate of the method only depends on the polynomial degree and
not the continuity [7, Ch. 3.B], this illustrates a great advantage with isogeometric
analysis compared to traditional FEA: It can converge at the same rate with a lot less
unknowns.
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Chapter 3. The Poisson Problem

Figure 3.3.1: Poisson problem on the unit square: The numerical solution (left) and the error
(right) for the refinement level h−1 = 5, p = 1 and k = 0.

Figure 3.3.2: Poisson problem on the unit square: The numerical solution (left) and the error
(right) for the refinement level h−1 = 25, p = 1 and k = 0.

Figure 3.3.3: Poisson problem on the unit square: The numerical solution (left) and the error
(right) for the refinement level h−1 = 5, p = 3 and k = 0.
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3.3 Numerical experiments

Figure 3.3.4: Poisson problem on the unit square: The numerical solution (left) and the error
(right) for the refinement level h−1 = 5, p = 3 and k = 2.

3.3.2 The Poisson problem on an annular NURBS surface
We would also like to test the solver on a slightly more exotic domain. To do this we let
Ω be given by the NURBS geometry in Figure 2.5.1 from Section 2.5.2. The functions
f and h are given by

f (x, y) = 4π2
(
x2 + y2

)
sin

(
π
(
x2 + y2

))
− 4π cos

(
π
(
x2 + y2

))
h (x, y) = 0

and ΓN is the part of the boundary where y = 0, i.e. at the straight edges. In this case
the exact solution is given by u (x, y) = sin (π (x2 + y2)). We insert knots such that the
knot spans are 0.1 in the parameter space for both Ξ and H, and then elevate the order
such that p = q = 2. The resulting numerical solution and the error are shown in Figure
3.3.5.
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Figure 3.3.5: Poisson problem on a NURBS surface: The numerical solution (left) and the error
(right).
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Chapter 4
The Stokes Problem

We now consider the two-dimensional Stokes system which gives a model for the flow
of an incompressible fluid with constant viscosity µ for which the viscous forces dom-
inate over the inertial forces [20]. It should be noted that the method described in this
chapter generalizes to the three-dimensional case [11], however the concepts are very
similar so for simplicity we only consider the two-dimensional case in this thesis.

4.1 Discretizing the problem

4.1.1 Strong form

Given a physical domain Ω ⊂ R2 and a function f ∈ (L2(Ω))2 we want to find a velocity
field u : Ω̄→ R2 and a pressure field p : Ω̄→ R that satisfy

− µ∇2u +∇p = f in Ω, (4.1.1a)
∇ · u = 0 in Ω, (4.1.1b)

u = 0 on ∂Ω. (4.1.1c)

We assume that the physical domain Ω is the image of the parametric domain Ω̂ =
(0, 1)2 under a piecewise smooth geometrical mapping G : Ω̂→ Ω that has a piecewise
smooth inverse, typically a B-spline or NURBS mapping. Thus the physical variables
x is related to the parametric variables ξ by x = G(ξ).

The condition (4.1.1b) is referred to as the incompressibility condition and it models
the mass conservation of the fluid. The homogeneous Dirichlet boundary conditions
given by (4.1.1c) are called no-slip boundary conditions in the context of fluid flow. We
note that the pressure p can only be determined up to a constant. A common way to
normalize the pressure is to require that the pressure has a zero average over Ω.
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Chapter 4. The Stokes Problem

4.1.2 Weak form
To obtain the weak form of (4.1.1) we first multiply (4.1.1a) by an arbitrary vector-
valued test function v using the scalar product, and integrate over Ω. This gives

−µ
∫
Ω

v · ∇2udΩ +
∫
Ω

v · ∇pdΩ =
∫
Ω

v · fdΩ,

where∇2u is a vector containing the Laplacian of the components of u. Using Green’s
identity this can be written

µ
∫
Ω

∇u : ∇vdΩ−
∫
Ω

p div vdΩ =
∫
Ω

v · fdΩ + µ
∫
∂Ω

n · ∇u · vdΓ−
∫
∂Ω

p (v · n) dΓ,

where ∇u and ∇v are second order tensors with columns being the gradients of the
components. For a discussion on tensors and tensor algebra see e.g. [19, Ch. 4]. For the
incompressibility condition (4.1.1b) we multipy by another test function q, and integrate
over Ω, obtaining

−
∫
Ω

q div udΩ = 0.

Assuming v|∂Ω = 0 we end up with

µ
∫
Ω

∇u : ∇vdΩ−
∫
Ω

p div vdΩ =
∫
Ω

v · fdΩ,

−
∫
Ω

q div udΩ = 0.

These calculations will hold for any test functions v ∈ V0 and q ∈ Q0, where

V0 = H1
0 (Ω) :=

{
v ∈

(
H1 (Ω)

)2
: v|∂Ω = 0

}

Q0 = L2
0 (Ω) :=

q ∈ L2 (Ω) :
∫
Ω

qdΩ = 0

 .
Using these test function spaces as search spaces, we want to find u ∈ V0 and p ∈ Q0
such that

a (u,v) + b (v, p) = f (v) , ∀v ∈ V0, (4.1.2a)
b (u, q) = 0, ∀q ∈ Q0, (4.1.2b)
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where we have defined the bilinear forms a(·, ·) and b(·, ·) by

a (u,v) = µ
∫
Ω

∇u : ∇vdΩ,

b (v, q) = −
∫
Ω

q div vdΩ.

The problem (4.1.2) is a saddle point problem, for which the existence and uniqueness
conditions are well known, see e.g. [14] which studies this particular case of the Stokes
problem as an example. With V0 = H1

0 (Ω) and Q0 = L2
0 (Ω) the problem (4.1.2) does

indeed have a unique solution (u, p).

4.1.3 The discrete problem
We finally obtain the discretized problem by letting Vh0 and Qh0 be finite dimensional
subspaces of V0 and Q0 respectively, depending on a length parameter h, and we want
to find uh ∈ Vh0 and ph ∈ Qh0 such that

a
(
uh,vh

)
+ b

(
vh, ph

)
= f

(
vh
)
, ∀vh ∈ Vh0 , (4.1.3a)

b
(
uh, qh

)
= 0, ∀qh ∈ Qh0 . (4.1.3b)

Now if we have bases {NA}
nu
eq

A=1 and {NC}
npeq
C=1 for the spaces Vh0 and Qh0 respectively,

we can write uh ∈ Vh0 and ph ∈ Qh0 uniquely in terms of coefficients UA and PC as

uh =
nu
eq∑

A=1
NAUA ph =

npeq∑
C=1

NCPC .

Since a(·, ·) and b(·, ·) are bilinear we only need (4.1.3) to hold for all the basis functions
and we obtain the equivalent system of linear equations

nu
eq∑

A=1
a (NA,NÃ)UA +

npeq∑
C=1

b (NÃ, NC)PC = f (NÃ) , Ã = 1, . . . , nu
eq,

nu
eq∑

A=1
b (NA, NC̃)UA = 0, C̃ = 1, . . . , npeq.

If we define the matrices A = [a (NA,NÃ)]n
u
eq

Ã,A=1 and B = [b (NA, NC̃)]n
p
eq ,n

u
eq

C̃,A=1 , and the

vectors F = [f (NÃ)]n
u
eq

Ã=1, U = [UÃ]n
u
eq

Ã=1 and P = [PC̃ ]n
p
eq

C̃=1, we can write this in the
compact form [

A BT

B 0

] [
U
P

]
=
[

F
0

]
. (4.1.4)
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The conditions for existence and uniqueness of the discrete system are discussed in
e.g. [14]. An important condition guaranteeing the stability of the discrete system is the
inf-sup condition, or the Babuška-Brezzi condition [2, 5], given by

inf
q∈Qh0\{0}

sup
v∈Vh0 \{0}

b (v, q)
‖q‖L2‖v‖H1

≥ β > 0,

where β is a constant independent of the parameter h. Finite elements satisfying this
conditions are called stable finite elements. In general the velocity solution uh of (4.1.3)
will not satisfy the incompressibility condition div uh = 0 exactly. This will however
be the case if we have that {

div v : v ∈ Vh0
}
⊆ Qh0 .

Then div uh will always be an element of Qh0 , which by (4.1.3b) is orthogonal to all
other elements of Qh0 , and hence div uh = 0 since Qh0 is a Hilbert space.

Different choices of velocity/pressure-spaces (Vh0 ,Qh0) give rise to different finite
elements. A popular choice is the Taylor-Hood velocity/pressure pair [14]. This will
give finite element spaces that are inf-sup stable, but the discrete velocity will not be
exactly divergence-free. NURBS generalizations of the Taylor-Hood elements have
been studied and tested in [3] and [6] in the context of isogeometric analysis. In this
thesis we will consider a family of velocity/pressure-pairs (Vh0 ,Qh0) that will both be inf-
sup stable and give velocity approximations that are pointwise divergence-free. These
velocity/pressure pairs were proposed in [6] and their stability and convergence analysis
is given in [11] for the more general case of the Darcy-Stokes-Brinkman equations or
generalized Stokes equations.

4.1.4 Velocity and pressure spaces on the parametric domain
We start the construction of our finite element search and test spaces by defining the
velocity/pressure-pair on the parametric domain Ω̂, first without boundary conditions.
Being in the context of isogeometric analysis we let the finite element spaces be spline
spaces. More specifically, given two partitions ζ and γ of the interval (0, 1), nonnegative
integers p, q and continuity sequences α,β according to the requirements in Definition
2.3, our choice of parametric velocity/pressure spaces is given by

V̂h := Sp+1,q
α+1,β(ζ,γ)× Sp,q+1

α,β+1(ζ,γ), (4.1.5a)

Q̂h := Sp,qα,β(ζ,γ). (4.1.5b)

The construction of the spline spaces is detailed in Section 2.2. We note that for p = q
and |α| = |β| = −1 the space V̂h gives the Raviart-Thomas element [27]. How-
ever such a choice of V̂h does not give an H1-conforming approximation, since the
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velocity space will be discontinuous, and it is therefore not a popular choice for the
Stokes problem. In this thesis we will only consider conforming elements, so we as-
sume |α|, |β| ≥ 0. The pair (4.1.5) can also be referred to as compatible B-spline
spaces, because they have the same mathematical structure as the spaces they approx-
imate. In the same way that the divergence operator maps H1(Ω̂) continuously onto
L2(Ω̂), it maps V̂h continuously onto Q̂h as seen in Proposition 8. This preservation of
structure is explained thoroughly in [12].

In order to maintain both stability and pointwise mass conservation when imposing
boundary conditions, it is essential that we have the relation{

div v : v ∈ V̂h0
}

= Q̂h0

for the discrete velocity/pressure pair (V̂h0 , Q̂h0) satisfying the boundary conditions. We
should therefore choose the pressure space to be the image of the velocity space under
the divergence operator. In the case of slip boundary conditions, i.e. u · n = 0 on ∂Ω,
this is no problem. Indeed we have that

{
div v : v ∈ V̂h,v · n|∂Ω̂ = 0

}
=

q ∈ Q̂h :
∫
Ω̂

qdΩ̂ = 0

 .
The proof of this relation can be found in [6]. Thus we choose in this case the veloc-

ity space Vh0 to be
{
v ∈ V̂h : v · n|∂Ω̂ = 0

}
and

{
q ∈ Q̂h :

∫̂
Ω
qdΩ̂ = 0

}
as the pressure

space Qh0 .
The case of no-slip boundary conditions is however more tricky. This is due to the

relation

{
div v : v ∈ V̂h,v|∂Ω̂ = 0

}
=

q ∈ Q̂h :
∫
Ω̂

qdΩ̂ = 0, q(xi) = 0, i = 1, . . . , 4

 ,
(4.1.6)

where xi are the corners of the parametric domain Ω̂, again the proof is given in [6]. This
relation suggests that we choose a pressure space of functions that are zero at the corners
of the parametric domain. There is of course no reason why the exact pressure solution
of (4.1.2) should be zero at the corners of Ω̂, and hence this choice of discrete pressure
space will restrict the accuracy of the pressure solution in the L2-norm to first order. In
[6] two different solutions to this problem are proposed, one of which uses T-splines to
construct a compatible pressure space. Another way to deal with this problem is to im-
pose the no-slip boundary conditions weakly using Nitsche’s penalty method, this is the
approach taken in [11]. We then use the discrete velocity space

{
v ∈ V̂h : v · n|∂Ω̂ = 0

}
as in the case of slip boundary conditions, but the bilinear form a(·, ·) is modified using
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a penalty parameter in a way that preserves consistency and stability. More on weak
imposition of Dirichlet boundary conditions can be found in [4].

In this thesis we have only implemented the straightforward case suggested by the
relation (4.1.6). Thus we use the discrete velocity/pressure pair (Vh0 ,Qh0) given by

V̂h0 :=
{
v ∈ V̂h : v|∂Ω̂ = 0

}
, (4.1.7a)

Q̂h0 :=

q ∈ Q̂h :
∫
Ω̂

qdΩ̂ = 0, q(xi) = 0, i = 1, . . . , 4

 . (4.1.7b)

4.1.5 Velocity and pressure spaces on the physical domain
We now want to construct compatible discrete velocity and pressure spaces (Vh,Qh) on
the physical domain Ω in such a way that the divergence operator maps Vh continuously
onto Qh. This is done by mapping the parametric spaces V̂h and Q̂h in the way that is
done in [11]. This means that we define our discrete velocity and pressure spaces by

Vh :=
{(

(DG) v̂
det (DG)

)
◦G−1 : v̂ ∈ V̂h

}
, (4.1.8a)

Qh :=
{(

q̂

det (DG)

)
◦G−1 : q̂ ∈ Q̂h

}
, (4.1.8b)

where DG denotes the Jacobian matrix of the geometrical mapping G. We map the
velocity and pressure spaces with boundary conditions in exactly the same way, so we
define

Vh0 :=
{(

(DG) v̂
det (DG)

)
◦G−1 : v̂ ∈ V̂h0

}
, (4.1.9a)

Qh0 :=
{(

q̂

det (DG)

)
◦G−1 : q̂ ∈ Q̂h0

}
. (4.1.9b)

These spaces will satisfy the necessary boundary conditions on the physical domain.
Indeed for corresponding elements v ∈ Vh0 and v̂ ∈ V̂h0 we have that v|∂Ω = 0 if and
only if v̂|∂Ω̂ = 0 since the geometrical mapping G is invertible. Also, we have for
corresponding elements q ∈ Qh0 and q̂ ∈ Q̂h0 that∫

Ω

qdΩ =
∫
Ω̂

q̂

det (DG) |det (DG)| dΩ̂,

so assuming the Jacobian determinant has no sign changes in Ω̂ then
∫

Ω qdΩ = 0 if and
only if

∫
Ω̂ q̂dΩ̂ = 0.
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We note that the mapping used in (4.1.8a) and (4.1.9a) to map the velocity spaces
is the Piola transform. The reason for using this Piola mapping is that it preserves the
divergence of the vector field in the following way:

Proposition 9. Let v̂ : Ω̂ → R2 be a vector field on the parametric domain and let
v : Ω→ R2 be defined by the Piola mapping

v =
(

(DG) v̂
det (DG)

)
◦G−1, (4.1.10)

where G : Ω̂→ Ω is the transformation from the parametric variables ξ = (ξ, η) to the
physical variables x = (x, y). We then have that

div v = 1
det (DG) d̂iv v̂.

Here div and d̂iv denote the divergence operators with respect to physical and para-
metric variables respectively.

Proof. The relation (4.1.10) can be written

v̂ = det (DG) (DG)−1 (v ◦G) ,[
v̂1
v̂2

]
=
[ ∂y

∂η
v1 − ∂x

∂η
v2

−∂y
∂ξ
v1 + ∂x

∂ξ
v2

]
,

and direct computation using the chain rule gives

∂v̂1

∂ξ
= ∂2y

∂ξ∂η
v1 −

∂2x

∂ξ∂η
v2 + ∂x

∂ξ

∂y

∂η

∂v1

∂x
+ ∂y

∂ξ

∂y

∂η

∂v1

∂y
− ∂x

∂ξ

∂x

∂η

∂v2

∂x
− ∂x

∂η

∂y

∂ξ

∂v2

∂y
,

∂v̂2

∂η
= − ∂2y

∂η∂ξ
v1 + ∂2x

∂η∂ξ
v2 −

∂x

∂η

∂y

∂ξ

∂v1

∂x
− ∂y

∂ξ

∂y

∂η

∂v1

∂y
+ ∂x

∂ξ

∂x

∂η

∂v2

∂x
+ ∂x

∂ξ

∂y

∂η

∂v2

∂y
.

Hence we arrive at

d̂iv v̂ = ∂v̂1

∂ξ
+ ∂v̂2

∂η
=
(
∂x

∂ξ

∂y

∂η
− ∂x

∂η

∂y

∂ξ

)(
∂v1

∂x
+ ∂v2

∂y

)
= det (DG) (div v) ,

which completes the proof.

As an immediate consequence of Proposition 9 and (4.1.6) we have that{
div v : v ∈ Vh0

}
= Qh0

when the pressure space Qh0 is defined as in (4.1.9b). Thus we obtain both stability and
pointwise mass conservation on the physical domain Ω.
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4.2 Implementation of numerical solver

Recall that our parametric velocity/pressure pair (V̂h, Q̂h) was defined in (4.1.5) by

V̂h = Sp+1,q
α+1,β(ζ,γ)× Sp,q+1

α,β+1(ζ,γ),
Q̂h = Sp,qα,β(ζ,γ).

As seen in Section 2.3.2 we have a basis for V̂h given by
{
Nα+1
i,p+1M

β
j,qe1

}n+1,m

i,j=1
∪{

Nα
i,pM

β+1
j,q+1e2

}n,m+1

i,j=1
, and a basis for Q̂h given by

{
Nα
i,pM

β
j,q

}n,m
i,j=1

, using the notation

introduced in Section 2.3.2. We introduce single indices A and C for the bases of V̂h
and Q̂h in a similar way that we did in Section 3.2.1 for the Poisson equation by ordering
the basis functions in the following way:{

N̂A

}
nu
np

A=1

=
{
Nα+1

1,p+1M
β
1,qe1, . . . , N

α+1
n+1,p+1M

β
1,qe1, . . . , N

α+1
1,p+1M

β
m,qe1, . . . , N

α+1
n+1,p+1M

β
m,qe1,

Nα
1,pM

β+1
1,q+1e2, . . . , N

α
n,pM

β+1
1,q+1e2, . . . , N

α
1,pM

β+1
m+1,q+1e2, . . . , N

α
n,pM

β+1
m+1,q+1e2

}
,{

N̂C

}
npnp
C=1

=
{
Nα

1,pM
β
1,q, . . . , N

α
n,pM

β
1,q, . . . , N

α
1,pM

β
m,q, . . . , N

α
n,pM

β
m,q

}
,

where nu
np = (n+ 1)m+ n(m+ 1) and npnp = nm.

Now the physical velocity and pressure spaces Vh andQh were defined in (4.1.8) by
transforming the spaces V̂h and Q̂h using invertible linear mappings. Hence we obtain
bases for these spaces by transforming the parametric bases using the same mappings,
i.e. the bases of Vh and Qh are given by

{NA}
nu
np

A=1 =
{(

(DG) N̂A

det (DG)

)
◦G−1

}nu
np

A=1
,

{NC}
npnp
C=1 =

{(
N̂C

det (DG)

)
◦G−1

}npnp
C=1

.

Thus any v ∈ Vh and any q ∈ Qh can be uniquely represented by coefficients
{
V h
A

}nu
np

A=1

and
{
Qh
C

}npnp
C=1

as

v =
nu
np∑

A=1
NAV

h
A , q =

npnp∑
C=1

NCQ
h
C .
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4.2 Implementation of numerical solver

4.2.1 Assembling the linear system
With bases of the discrete velocity and pressure spaces at hand we can assemble the
linear system (4.1.4). Note that even though the system (4.1.4) is defined using the bases
of the spaces Vh0 and Qh0 satisfying the boundary conditions, we will instead construct
the matrices and vectors for the bases of Vh andQh and impose the boundary conditions
later. This is the same as we did when implementing the Poisson solver. The assembly
of the matrices will be done in much the same manner as for the Poisson equation, by
creating element matrices using the knowledge of the support of the basis functions, and
computing the integrals by Gauss quadrature. Apart from the fact that we here have three
different bivariate spline spaces to handle simultaneously, the main difference from what
we did for the Poisson equation will be that the basis functions on the physical domain
are not mapped using pointwise mappings. We will therefore focus on the consequences
of this to our implementation.

First we consider the matrix B whose entries can be written

BC,A = b (NA, NC) = −
∫
Ω

NCdiv (NA) dΩ = −
∫
Ω

N̂C d̂iv
(
N̂A

)
det (DG)2 dΩ

= −
∫
Ω̂

N̂C d̂iv
(
N̂A

)
|det (DG)| dΩ̂,

using Proposition 9 and integration by substitution. Now for every A, d̂iv
(
N̂A

)
can

be represented as an element of Q̂h using the method described in Section 2.3.2. If D
is the matrix representation of the div operator as defined in (2.3.6) we have that the
coefficients of d̂iv

(
N̂A

)
will be contained in the Ath column of D. This gives that

BC̃,A =
∫
Ω̂

N̂C̃

|det (DG)|

npnp∑
C=1

N̂CDC,AdΩ̂ = −
npnp∑
C=1

DC,A

∫
Ω̂

N̂C̃N̂C

|det (DG)|dΩ̂. (4.2.1)

Defining the pressure mass matrix Mp =
[
Mp

C,C̃

]npnp
C,C̃=1

by

Mp

C,C̃
=
∫
Ω

NCNC̃dΩ =
∫
Ω

N̂CN̂C̃

det (DG)2dΩ =
∫
Ω̂

N̂CN̂C̃

|det (DG)|dΩ̂,NA

we can recognize that (4.2.1) describes the matrix product

B = −MpD.

Thus B can be calculated by computing the pressure mass matrix and the matrix repre-
sentation D of the div operator.
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In order to compute the matrix A given by the entries

AÃ,A = a (NA,NÃ) =
∫
Ω

∇NA : ∇NÃdΩ

we need to express the gradient matrices ∇NA by the parametric basis functions N̂A

and their derivatives with respect to the parametric variables. Now if v̂ : Ω̂ → R2 is a
vector field on the parametric domain and v : Ω→ R2 is defined by the Piola mapping
(4.1.10), then the chain rule gives

∇v = (DG)−T ∇̂v = (DG)−T ∇̂
(

DG
det (DG) v̂

)
,

where ∇̂ is the gradient operator with respect to parametric variables. Carrying out the
differentiation we find that this gives

∇v = (DG)−T

det (DG)

((
∇̂v̂− ∇ det (DG)

det (DG) v̂T
)

(DG)T +
[

(D2x) v̂ (D2y) v̂
])
,

where D2x and D2y are the Hessian matrices of the physical variables x and y with
respect to the parametric variables. The gradient of the Jacobian determinant is given
by

∇ det (DG) =
 ∂2x

∂ξ2
∂y
∂η

+ ∂x
∂ξ

∂2y
∂ξ∂η
− ∂2x

∂ξ∂η
∂y
∂ξ
− ∂x

∂η
∂2y
∂ξ2

∂2x
∂ξ∂η

∂y
∂η

+ ∂x
∂ξ

∂2y
∂η2 − ∂2x

∂η2
∂y
∂ξ
− ∂x

∂η
∂2y
∂ξ∂η

 .
Thus the gradient matrices∇NA are given by

∇NA =
(DG)−T

det (DG)

((
∇̂N̂A −

∇ det (DG)
det (DG) N̂T

A

)
(DG)T +

[
(D2x) N̂A (D2y) N̂A

])
.

The basis functions on the parametric domain and their derivatives can be computed in
the same way as for the Poisson equation.

Note that if we solve a problem where Ω = Ω̂, the assembly of A simplifies a lot,
since the geometrical mapping G will be the identity mapping. Therefore a specialized
solver should be implemented in such cases.
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4.2 Implementation of numerical solver

4.2.2 Imposing boundary conditions and solving the linear system
Recall that our discrete velocity and pressure spaces satisfying the boundary conditions
are defined in (4.1.9) by mapping the parametric spaces given in (4.1.7) as

V̂h0 :=
{
v ∈ V̂h : v|∂Ω̂ = 0

}
,

Q̂h0 :=

q ∈ Q̂h :
∫
Ω̂

qdΩ̂ = 0, q(xi) = 0, i = 1, . . . , 4

 ,
where the points xi are the corners of the parametric domain Ω̂.

Imposing homogeneous Dirichlet boundary conditions for the velocity is done in
the same way as we did for the Poisson equation by identifying the basis functions
N̂A that have non-zero values on the boundary, setting their coefficients equal to zero,
and removing in A the corresponding rows and columns and in B the corresponding
columns. For the pressure space we note that all the basis functions N̂C will be zero at
the corners xi except the four that have indices C = 1, C = n, C = n(m− 1) + 1 and
C = nm. We will therefore have to remove their corresponding rows in B.

The last condition we need to impose on the discrete system is the zero mean value
of the pressure, i.e. we require the discrete pressure solution ph to satisfy

∫
Ω

phdΩ =
∫
Ω

npnp∑
i=1

NCPCdΩ =
npnp∑
i=1

PC

∫
Ω

NCdΩ = 0.

Defining the vector J = [
∫
Ω NCdΩ]n

p
np

C=1 this can be written JTP = 0. Now if we have
the system [

A BT

B 0

] [
U
P

]
=
[

F
0

]
(4.2.2)

before we have imposed the zero mean condition, this needs to be augmented using
the equation JTP = 0. Let C∗ be any index into J (except those corresponding to the
corner basis functions) and denote by JC∗ element number C∗ in J and by BC∗ column
number C∗ in BT . Observing that BT

C∗U = 0 is one of the equations in the system
(4.2.2) and using that JTP = 0 we have from (4.2.2) that[

A BT − 1
JC∗

BC∗JT

B− 1
JC∗

JBT
C∗ 0

] [
U
P

]
=
[

F
0

]
. (4.2.3)

In this system the variable PC∗ is eliminated since column number C∗ of the matrix
BT − 1

JC∗
BC∗JT will consist of only zeros. Hence we solve (4.2.3) for all unknown

variables except PC∗ and then find PC∗ from the equation JTP = 0.
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After imposing the necessary conditions on our discrete system we end up with the
system (4.1.4), i.e.

[
A BT

B 0

] [
U
P

]
=
[

F
0

]

where A is symmetric positive definite, and knowing that the system has a unique so-
lution, the entire matrix must be symmetric positive definite. Thus the system can be
solved efficiently by both direct and iterative methods. An efficient iterative method is
the Uzawa algorithm, see e.g. [13], which utilizes the fact that the system can be de-
coupled into the equation

(
BA−1BT

)
P = BA−1F for the pressure unknowns and the

equation AU = F−BTP for the velocity unknowns.

4.3 Numerical experiments

We now want to verify the method by applying our solver to problems where the so-
lution is known. We also solve benchmark problems that are known to cause dramatic
failures for unstable discretizations. Recall from Section 4.1.4 that our method is spec-
ified by two partitions ζ and γ of the interval (0, 1), polynomial degrees p, q and reg-
ularity sequences α,β. Since discrete solutions of high continuity is a key feature of
isogeometric analysis, we will use discrete spaces of maximal continuity in all our tests.
Using spline spaces with maximal continuity can be referred to as the k-method, and
it has been shown that the k-method has better approximation properties than classical
finite element methods using C0 basis functions [10]. Maximal continuity is obtained
using the regularity sequences

α = {−1, p− 1, p− 1, . . . , p− 1, p− 1,−1},
β = {−1, q − 1, q − 1, . . . , q − 1, q − 1,−1}.

Also, unless otherwise specified, we use uniform partitions ζ = γ = {i/N}Ni=0 for
some N ∈ N. A natural length parameter describing the element sizes is then h = 1/N .

4.3.1 The Stokes problem on the unit square

We first test our solver on a manufactured solution presented in [6]. Consider the Stokes
system (4.1.1) on the parametric domain Ω = Ω̂ = (0, 1)2 with kinematic viscosity
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4.3 Numerical experiments

Figure 4.3.1: Stokes problem on the unit square: The streamlines of the exact velocity solution
u (left) and the exact pressure p (right).

µ = 1 and a load f = −∇2ū +∇p̄ with

ū =
[

2exx2y(x− 1)2 (y − 1) (2y − 1)
−exxy2 (x− 1) (y − 1)2 (x (x+ 3)− 2)

]
,

p̄ = − 424 + 156e+
(
y2 − y

) (
−456 + ex

(
456 + x2

(
228− 5

(
y2 − y

))
+2x

(
y2 − y − 228

)
+ 2x3

(
y2 − y − 36

)
+ x4

(
y2 − y + 12

)))
.

We impose no-slip boundary conditions and normalize the pressure by requiring a zero
mean value over Ω. The exact solution is given by (u, p) = (ū, p̄), for which the
streamlines and pressure is shown in Figure 4.3.1.

In order to investigate the convergence rate of the method we have solved the prob-
lem using different values of h and calculated the H1(Ω)-seminorm and the L2(Ω)-norm
of the velocity error u−uh, as well as the L2(Ω)-norm of the pressure error p− ph. We
have also measured the L2(Ω)-norm of div uh to verify that it is in fact exactly zero in
all of Ω, at least up to floating point truncation errors. Table 4.1 shows the results for
p = q = 1, p = q = 2 and p = q = 3 respectively, and as an example where p 6= q it
gives the results for p = 2 and q = 3. Figure 4.3.2 give logarithmic plots of the errors
for the four cases, visualizing the results in the tables. We see that the order of con-
vergence for the discrete velocity solution is the same as the polynomial degree of the
discretization for the H1-seminorm, and one more than the polynomial degree for the
L2-norm. Thus the results display optimal convergence rates for the discrete velocity
solution. For the discrete pressure solution we observe that the order of convergence is
restricted to one, regardless of polynomial degree. This is due to the fact that we enforce
zero pressure at the corners when this clearly is not the case for the exact solution. Note
however that there are several solutions to this problem, as explained in Section 4.1.4,
though these are not implemented here. The tables also confirm that the divergence of
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Chapter 4. The Stokes Problem

(a) (b)

(c) (d)

Figure 4.3.2: Stokes problem on the unit square: Convergence plots for different choices of
polynomial degrees: (a) p = q = 1, (b) p = q = 2, (c) p = q = 3 and (d) p = 2, q = 3.

the velocity solution is zero apart from floating point truncations errors. We can observe
that the value of ||div uh||L2(Ω) roughly doubles as the number of degrees of freedom
doubles, as would be expected for the error made due to floating point truncation.

4.3.2 The Stokes problem on an annular NURBS surface

We now want to test the method on a physical domain different from the parametric
domain. Let Ω be the first quadrant part of an annulus centered at the origin with inner
radius ri = 1 and outer radius ro = 2, described in polar coordinates by the inequalities
1 < r < 2 and 0 < θ < π/2. The example NURBS mapping given in Section 2.5.2
is easily modified to obtain the geometrical mapping G : Ω̂ → Ω. In order to get a
manufactured solution of (4.1.1) with no-slip boundary conditions on this domain we
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4.3 Numerical experiments

Table 4.1: Stokes problem on the unit square: Convergence rates and norm of the divergence.

Polynomial degrees p = q = 1.
h 1/4 1/8 1/16 1/32 1/64
|u− uh|H1(Ω) 5.55e-2 2.79e-2 1.40e-2 6.98e-3 6.49e-3
order - 0.99 1.00 1.00 1.00
||u− uh||L2(Ω) 4.11e-3 1.05e-3 2.63e-4 6.58e-5 1.65e-5
order - 1.97 1.99 2.00 2.00
||p− ph||L2(Ω) 1.71e-2 5.38e-3 2.11e-3 9.68e-4 4.73e-4
order - 1.67 1.35 1.12 1.03
||div uh||L2(Ω) 2.39e-17 1.41e-17 2.42e-17 4.35e-17 8.27e-17

Polynomial degrees p = q = 2.
h 1/4 1/8 1/16 1/32 1/64
|u− uh|H1(Ω) 9.24e-3 2.24e-3 5.56e-4 1.39e-4 3.46e-5
order - 2.04 2.01 2.00 2.00
||u− uh||L2(Ω) 3.87e-4 4.44e-5 5.40e-6 6.69e-7 8.35e-8
order - 3.12 3.04 3.01 3.00
||p− ph||L2(Ω) 4.25e-3 1.95e-3 9.74e-4 4.87e-4 2.43e-4
order - 1.12 1.00 1.00 1.00
||div uh||L2(Ω) 6.64e-17 4.45e-17 5.49e-17 8.71e-17 1.72e-16

Polynomial degrees p = q = 3.
h 1/4 1/8 1/16 1/32 1/64
|u− uh|H1(Ω) 9.10e-4 1.23e-4 1.62e-5 2.09e-6 2.64e-7
order - 2.89 2.92 2.96 2.98
||u− uh||L2(Ω) 3.28e-5 2.35e-6 1.59e-7 1.02e-8 1.03e-9
order - 3.80 3.89 3.95 3.32
||p− ph||L2(Ω) 2.39e-3 1.24e-3 6.23e-4 3.11e-4 1.56e-4
order - 0.95 1.00 1.00 1.00
||div uh||L2(Ω) 9.00e-17 1.70e-16 8.79e-17 1.35e-16 2.48e-16

Polynomial degrees p = 2, q = 3.
h 1/4 1/8 1/16 1/32 1/64
|u− uh|H1(Ω) 8.41e-3 2.04e-3 5.03e-4 1.25e-4 3.13e-5
order - 2.05 2.02 2.00 2.00
||u− uh||L2(Ω) 3.60e-4 4.06e-5 4.90e-6 6.06e-7 7.56e-8
order - 3.15 3.05 3.01 3.00
||p− ph||L2(Ω) 3.40e-3 1.56e-3 7.79e-4 3.89e-4 1.95e-4
order - 1.12 1.00 1.00 1.00
||div uh||L2(Ω) 8.50e-17 6.15e-17 5.98e-17 9.61e-17 1.77e-16
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Figure 4.3.3: Stokes problem on a NURBS surface: The streamlines of the exact velocity solu-
tion u on the NURBS surface Ω.

construct a potential function φ and choose

ū =
[

∂φ
∂y

−∂φ
∂x

]

as our exact velocity solution, thus satisfying the incompressibility condition div ū = 0.
The condition that ū|∂Ω = 0 will then mean that the gradient of φ must be zero on the
boundary, which will be the case if the derivative in two linearly independent directions
is zero. We therefore construct a potential φ which is constant on ∂Ω and has a zero
normal derivative there. Using polar coordinates this is not too hard, and we choose
here the potential

φ (r, θ) = (r − 1)2(2− r)2 (1− cos 4θ) ,

which gives in Cartesian coordinates

φ (x, y) = 8x2y2
(

1− 1√
x2 + y2

)2( 2√
x2 + y2 − 1

)2

.

Now we can choose any pressure p̄ having a zero average on Ω, and obtain our right hand
side by f = −∇2ū +∇p̄, here we have used the zero pressure p̄ = 0. With this choice
of f the solution to problem (4.1.1) with no-slip boundary conditions is (u, p) = (ū, p̄).
The domain Ω and the velocity streamlines of the exact solution ū is shown in Figure
4.3.3.

In the same way as we did for the Stokes problem on the unit square we have calcu-
lated the norms of the errors for decreasing element size h and for different polynomial
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degrees p and q. Table 4.2 shows the results for the cases p = q = 1, p = q = 2,
p = q = 3 and p = 2, q = 3. Figure 4.3.4 gives a visualization of the numbers by
showing convergence plots for the different cases. For the velocity solutions we observe
the same optimal convergence rates. However, for the pressure solution we do not have
the same first order convergence as we had in Section 4.3.1, this is of course because
the exact solution p happens to be zero at the points corresponding to the four corners of
the parametric domain. We observe that the order of convergence for the pressure hints
toward the optimal order of one more than the polynomial degree of the discretization,
though we get even better approximations due to the rather banal choice of p̄ = 0 as
manufactured solution. We could of course choose another p̄, but since "guessing" the
correct value at the corner is quite unrealistic anyway we focus more on the obtained
velocity solution. As for the divergence of the discrete velocity we observe the same
behaviour as before, and conclude that it is zero apart from floating point truncation
errors.

4.3.3 Lid-driven cavity flow
We also want to investigate the performance of the method by solving the lid-driven
cavity flow benchmark problem which is known to cause dramatic failure in unstable
formulations [3]. Consider the Stokes problem (4.1.1) on the unit square, i.e. Ω = Ω̂ =
(0, 1)2, with f = 0 and no-slip boundary conditions on all edges except the top edge
where y = 1, here we impose that the velocity is directed in the positive x-direction
with unitary length. This models a two-dimensional Stokes flow in a rectangular cavity
driven only by the motion of the lid of the cavity. The non-homogeneous Dirichlet
boundary conditions are imposed in the usual way using a lifting function.

Figure 4.3.5 shows the streamlines of the numerical velocity solution for different
levels of refinement. We see that the solutions appear stable, showing no spurious os-
cillations. The method also captures the characteristic Moffatt eddies [23] in the lower
corners already for quite coarse meshes using polynomial degree p = q = 2, for the
coarsest mesh and lowest polynomial degree we see that these are lost. The Moffatt
eddies actually appear in infinite sequences of eddies of rapidly decreasing size [23].
However, taking a closer look at the lower left corner in Figure 4.3.6, we see no traces
of the second eddy which would have appeared even closer to the corner. Thus we need
an even finer discretization to reveal the second eddy. This is a typical example where
methods for local refinement would be ideal, but that is beyond the scope of this thesis.

4.3.4 Two-sided lid-driven cavity flow
We also consider a version of lid-driven cavity flow where two edges are moving. Con-
sider the Stokes problem (4.1.1) with Ω = (−1, 1)× (−3, 3) and f = 0 but with no-slip
boundary conditions only on the vertical edges of the domain where x = −1 and x = 1,
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Table 4.2: Stokes problem on a NURBS surface: Convergence rates and norm of the divergence.

Polynomial degrees p = q = 1.
h 1/4 1/8 1/16 1/32 1/64
|u− uh|H1(Ω) 9.43e-1 4.75e-1 2.38e-1 1.19e-1 5.94e-2
order - 0.99 1.00 1.00 1.00
||u− uh||L2(Ω) 7.62e-2 1.91e-2 4.79e-3 1.20e-3 2.99e-4
order - 1.99 2.00 2.00 2.00
||p− ph||L2(Ω) 1.76e-1 4.39e-2 1.10e-2 2.72e-3 6.81e-4
order - 2.00 2.01 2.00 2.00
||div uh||L2(Ω) 3.96e-16 1.67e-16 3.02e-16 5.34e-16 1.11e-15

Polynomial degrees p = q = 2.
h 1/4 1/8 1/16 1/32 1/64
|u− uh|H1(Ω) 1.20e-1 2.81e-2 6.95e-3 1.73e-3 4.33e-4
order - 2.10 2.02 2.00 2.00
||u− uh||L2(Ω) 7.42e-3 7.03e-4 8.17e-5 1.00e-5 1.25e-6
order - 3.40 3.11 3.02 3.01
||p− ph||L2(Ω) 3.15e-2 8.95e-4 5.77e-5 4.29e-6 3.43e-7
order - 5.14 3.96 3.75 3.65
||div uh||L2(Ω) 6.89e-16 3.16e-16 5.41e-16 1.00e-15 1.71e-15

Polynomial degrees p = q = 3.
h 1/4 1/8 1/16 1/32 1/64
|u− uh|H1(Ω) 3.11e-2 1.57e-3 1.58e-4 1.87e-5 2.30e-6
order - 4.31 3.31 3.08 3.03
||u− uh||L2(Ω) 3.70e-3 8.38e-5 3.83e-6 2.20e-7 2.96e-8
order - 5.46 4.45 4.12 2.90
||p− ph||L2(Ω) 1.28e-2 5.07e-5 8.13e-7 2.16e-8 7.66e-10
order - 7.98 5.96 5.23 4.82
||div uh||L2(Ω) 8.47e-16 7.12e-16 1.11e-15 1.54e-15 3.06e-15

Polynomial degrees p = 2, q = 3.
h 1/4 1/8 1/16 1/32 1/64
|u− uh|H1(Ω) 5.68e-2 9.91e-3 2.26e-3 5.54e-4 1.38e-4
order - 2.52 2.13 2.03 2.01
||u− uh||L2(Ω) 6.16e-3 4.86e-4 5.15e-5 6.17e-6 7.64e-7
order - 3.66 3.24 3.06 3.01
||p− ph||L2(Ω) 3.21e-2 8.46e-4 5.20e-5 3.73e-6 2.89e-7
order - 5.25 4.02 3.80 3.69
||div uh||L2(Ω) 6.55e-16 5.27e-16 6.05e-16 1.32e-15 2.10e-15
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4.3 Numerical experiments

(a) (b)

(c) (d)

Figure 4.3.4: Stokes problem on a NURBS surface: Convergence plots for different choices of
polynomial degrees: (a) p = q = 1, (b) p = q = 2, (c) p = q = 3 and (d) p = 2, q = 3.

and with prescribed velocities of unitary length moving in opposite tangential directions
on the horizontal edges of the domain. This models a two-dimensional Stokes flow in
a rectangular cavity driven by the motion of both the lid and bottom of the cavity. For
this problem we use partitions of the form ζ = {i/2N}2N

i=0 and γ = {i/6N}6N
i=0 for the

ξ-direction and the η-direction of Ω̂ respectively, in order to get square h-by-h elements
on Ω, where h = 1/N .

Figure 4.3.7 shows the streamlines of the discrete velocity and the discrete pressure
obtained when h = 1/16, and gives a plot of the divergence. We also found that the
L2-norm of the divergence was 6.27e − 16. Again we conclude that the divergence is
indeed zero apart from floating point truncation errors. In [17] analytical solutions for
the streamlines are obtained, and comparing these with the streamlines in Figure 4.3.7
we observe that they are practically the same. In [6] the same benchmark problem is
solved using a modified pressure space that gives optimal order convergence, comparing
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(a) (b)

(c) (d)

Figure 4.3.5: Lid-driven cavity flow: The streamlines for different levels of refinement: (a)
p = q = 1, h = 1/16, (b) p = q = 2, h = 1/16, (c) p = q = 1, h = 1/128 and (d)
p = q = 2, h = 1/128.

that solution with the solution in Figure 4.3.7 we see that the streamlines are very similar
but the pressure is not the same.
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4.3 Numerical experiments

Figure 4.3.6: Lid-driven cavity flow: The first Moffatt eddy in the lower left corner when
p = q = 2 and h = 1/128.
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Figure 4.3.7: Two-sided lid-driven cavity flow: Streamlines and pressure of the numerical so-
lution for p = q = 3 and h = 1/16 (left), and the divergence of the discrete velocity field
(right).
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Chapter 5
Conclusion

In this thesis we have seen how boundary value problems for partial differential equa-
tions can be solved numerically using isogeometric analysis, where we use B-spline
basis functions, or more generally NURBS, both to express the geometry of the prob-
lem and as a basis for a finite element approximation. We have taken a close look at the
construction and theory of splines and NURBS, including methods of basis refinement
that make it possible to keep the exact geometry while the finite element spaces are
refined. This is in contrast to classical finite element methods, where the geometry of
the problem is often approximated using better approximations as the solution space is
refined, thus changing the geometry during refinement.

Challenges regarding implementation have also been addressed, and a numerical
solver of the two-dimensional Poisson problem has been implemented and tested us-
ing MATLAB. The Poisson problem serves as a model problem, and the numerical
solver can be extended in many ways. Both more general boundary conditions and the
multi-dimensional case can be handled without too much trouble, and the method and
implementation is a great foundation for solving other partial differential equations.

Finally we have considered a method for numerically solving the Stokes problem
for incompressible fluid flow, using divergence-conforming spline spaces. We have
seen that this method gives a discrete velocity which is pointwise divergence-free, so
the numerical solution satisfy mass conservation in an exact sense which is important
in many applications. The method also displays very good stability and convergence
properties.

Our results show that NURBS basis functions appear to work well in a finite element
setting, and that they make it possible to use exact geometry throughout the analysis.
We have also shown that isogeometric analysis provides great flexibility when it comes
to refinement of the basis, in that we can control both polynomial degree and continuity
in a very natural way. We have seen that this flexibility allows for the construction of
compatible discrete velocity and pressure spaces for the Stokes equations, preserving
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the structure of the continuous problem and providing a stable numerical method. The
convergence properties of this method have been investigated numerically, with very
good results for the numerical velocity solution but a reduced convergence rate for the
pressure solution which is accounted for. The method has also been tested on benchmark
problems, and the results confirm the stability of the method.
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