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Abstract

An asymptotic formula for the 2kth moment of a sum of multiplicative Stein-
haus variables is given. This is obtained by expressing the moment as a 2k-
fold complex contour integral, from which one can extract the leading order
term. The 2kth moment of a truncated characteristic polynomial of a unitary
matrix is also computed. This is done by expressing the moment as a com-
binatoric sum over a restricted region, and then invoking each restriction by
introducing some complex integral. This gives a 2k-fold integral that is very
similar to the 2kth moment of the sum of multiplicative Steinhaus variables,
which in turn gives an asymptotic relation between the two.

Similarly, an asymptotic formula is given for the 2kth moment of a sum of
multiplicative Rademacher variables, and the 2kth moment of the truncated
characteristic polynomial of a special orthogonal matrix is found. This gives
an asymptotic relation between these two.
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Sammendrag

Det utledes en asymptotisk formel for det 2kte momentet av en sum av mul-
tiplikative Steinhausvariabler. Dette gjøres ved å uttrykke momentet som
et multipelt, komplekst konturintegral, for s̊a å finne en asymptotisk formel
for dette integralet. I tillegg beregnes det 2kte momentet av det avkort-
ede, karakteristiske polynomet til en unitær matrise. Dette blir gjort ved
å uttrykke momentet som en kombinatorisk sum over et begrenset omr̊ade,
for s̊a å uttrykke hver begrensning ved hjelp av et komplekst konturintegral.
Dette gir et konturintegral, som ligner p̊a uttrykket for det 2kte momentet av
summen av multiplikative Steinhausvariabler, som igjen gir en asymptotisk
relasjon mellom de to.

P̊a samme måte utledes en asymptotisk formel for det 2kte momentet av
en sum av multiplikative Rademachervariabler, og det gis en formel for det
2kte momentet av det avkortede, karakteristiske polynomet til en spesiell-
ortogonal matrise. Dette gir en asymptotisk relasjon mellom de to.
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Preface

This master’s thesis was written during six months in the spring of 2015,
as the final part of the study program Industrial Mathematics, within Ap-
plied Physics and Mathematics at the Norwegian University of Science and
Technology (NTNU).

The initial goal of this thesis was to find asymptotic expressions for the
even moments of certain sums of random multiplicative functions using tech-
niques from complex analysis. It soon became clear that Winston Heap was
working on very similar things, and we therefore decided to combine our
work into an article. In our article we compute the mentioned asymptotics
in addition to the even moments of the truncated characteristic polynomial
of a unitary and a special orthogonal matrix. After about a months work my
thesis was therefore extended from analytic number theory to also deal with
some random matrix theory.

As all the main results I have proved during the writing of this thesis are
included in our article, this is the most essential part of my thesis, and it has
been included in its entirety. The style of writing in a mathematical article
is much more sparse than what one perhaps might expect from a masters
thesis, and I have therefore also included an additional chapter containing
a more detailed description of one of the derivations in our article. I have
also included an introduction that is meant for someone who isn’t already an
expert on the topics discussed in the article.

I would like to thank Kristian Seip and Andry Bondarenko for being
excellent supervisors. This thesis could not have been completed without
their very useful input and help. During the past months I have been lucky
enough to be able to write an article with Winston Heap, who I would like
to thank for having the patience to work with a masters student. It has been
a pleasure working with the three of you!
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Chapter 1

Introduction

1.1 Outline of thesis

All the main results of this thesis are included in the article [9], which is
included in its entirety as Chapter 2. In addition to the results in the article,
a more general introduction to the central topics is given in the rest of this
chapter, and in Chapter 3 one of the derivations in the article is presented in
more detail. This means that there naturally will be a lot of overlap between
Chapter 2 and the remaining chapters. In the rest of this text any mention
of “the article” refers to [9].

1.2 Notation

The following asymptotic notation is used.

f(x) = O(g(x)) as x → a ⇐⇒ ∃C > 0 : |f(x)| ≤ C|g(x)| ∀x near a,

where a ∈ R or a = ±∞. If a ∈ R,“x near a” means that this holds for all
x in some neighborhood of a. If a = +∞, “x near a” means that this holds
for all x ≥ x0 for some x0 ∈ R, and similarly for a = −∞. When it is clear
what a is, the above will be stated as f = O(g). In this text a is either +∞
(when considering e.g. a truncated sum) or 0 (when considering functions of
the type 1

s
near s = 0).

Further,

f(x) = o(g(x)) as x → a ⇐⇒ lim
x→a

f(x)

g(x)
= 0
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and

f(x) ∼ g(x) as x → a ⇐⇒ lim
x→a

f(x)

g(x)
= 1,

where a ∈ R or a = ±∞, as before. Also in these cases a will not be stated
explicitly unless it is unclear which value is considered.

Expectation will be denoted by E[·], possibly with a subscript to make it
extra clear which probability measure the expectation is taken with respect
to.

The expression
∏

p f(p) always denotes a product over all primes p.
When using product notation several times in the same term, the con-

vention is as follows. Instead of writing (
∏

i f(i)) (
∏

i g(i)), the parenthe-
ses are occasionally dropped. When the same index is used in two con-
secutive products it is then understood that this is the intended mean-
ing. Therefore

∏

i f(i)
∏

i g(i) = (
∏

i f(i))(
∏

i g(i)), but
∏

i f(i)
∏

j g(i, j) =
∏

i

(

f(i)
∏

j g(i, j)
)

. The same goes for more than two products. As soon as

an index is reused, all previous products are “ended”, i.e.
∏

i

∏

j f(i, j)
∏

j g(j) =
(

∏

i

∏

j f(i, j)
)(

∏

j g(j)
)

. Usually the intended meaning will be clear from

the context, and if there is some ambiguity the necessary parentheses are
included.

For a complex variable s the convention is to write ℜs = σ and ℑs = t,
i.e., s = σ + it.

1.3 Random multiplicative functions

1.3.1 Steinhaus variables

Let {Xp} be independent identically distributed random variables indexed by
the primes. Let each Xp be uniformly distributed on the complex unit circle,
that is, Xp is uniformly distributed on {eiθ : 0 ≤ θ < 2π}. For n ∈ N, let
n =

∏

p p
α(p) be its prime factorization. The random variables {Xp} are then

extended to all natural numbers, by defining Xn =
∏

p X
α(p)
p . This definition

gives that Xn is multiplicative in n. The variables {Xn}n are referred to as
multiplicative Steinhaus variables.

Denote the expectation with respect to this product measure by E[·].
Some basic properties of the Steinhaus variables are then that EXn = EXn =

2



0 and E|Xn|2 = 1 for all n ∈ N. This then gives that EXnXm = 1 if n = m
and zero otherwise.

The partial sums of Xn are of great interest. Specifically, consider the
sum

F (x) =
∑

n≤x

Xn. (1.1)

If one associates p−it with Xp for each prime p, this sum is expected to behave
similarly to the sum

∑

n≤x

n−it. (1.2)

In fact, one has that these two sums have the same moments, as
(

E

[

∣

∣

∣

∑

n≤x

Xn

∣

∣

∣

q
])1/q

=

(

lim
T→∞

1

T

∫ T

0

∣

∣

∣

∑

n≤x

n−it
∣

∣

∣

q

dt

)1/q

(1.3)

for all q > 0. Note that this is a special case of a more general result
with arbitrary coefficients. One way of showing this is by writing the sum
in (1.2) as a power series in (z1 = 2−it, z2 = 3−it, . . . , zm = p−it

m , . . . ),
and applying Birkhoff’s ergodic theorem to the ergodic flow (τ1, τ2, . . . ) 7→
(τ1p

−it
1 , τ2p

−it
2 , . . . ). Alternatively, one can adopt the method mentioned in

the article by showing the identity (1.3) first for even integer q and then
extending it to all q > 0 by using the Weierstrass approximation theorem.
This is done in [7].

The similarity of (1.2) and the Riemann zeta function is striking. As
always, the Riemann zeta function is given by

ζ(s) =
∞
∑

n=1

1

ns
(σ > 1) (1.4)

and by the analytic continuation of this for σ ≤ 1. This gives a meromorphic
function with a single simple pole at s = 1. In the rest of the complex plane
ζ is holomorphic. The expression in (1.4) is a Dirichlet series, and (1.2)
appears to be a partial sum of this series for σ = 01.

This comparison makes it natural to consider the sums (1.1)-(1.2) also
for other values of σ than σ = 0. Therefore, consider

Fσ(x) =
∑

n≤x

Xn

nσ
(1.5)

1But of course the full sum doesn’t converge for σ = 0
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and
∑

n≤x

1

nσ+it
.

It still holds that

(

E

[

∣

∣

∣

∑

n≤x

Xn

nσ

∣

∣

∣

q
])1/q

=

(

lim
T→∞

1

T

∫ T

0

∣

∣

∣

∑

n≤x

1

nσ+it

∣

∣

∣

q

dt

)1/q

, (1.6)

so it is clear that there is some connection between Fσ(x) and the partial
sums of the Riemann zeta function.

In practice, computing the odd moments in (1.6) turns out to be a
formidable task. On the other hand, for the even moments it is possible
to compute asymptotic expressions for the moments, which is one of the
main goals in this thesis.

It is also worthwhile mentioning the first moment in particular, as a
conjecture of Helson [8] states that the first moment for σ = 0 is o(

√
x).

In the article we present a conjecture stating that E
[∣

∣

∑

n≤x Xn

∣

∣

]

∼ C
√
x,

where the constant C is given to a reasonable accuracy.

1.3.2 Rademacher variables

Similarly, one can instead consider i.i.d random variables Yp that are uni-
formly distributed on {±1} and indexed by the primes. As before this is
extended to all n ∈ N by requiring Yn to be multiplicative, but now it is
also required that Yn is non-zero only if n is square-free. That is, Yn 6= 0 iff
|µ(n)| = 1. If n =

∏

p p
α(p) it is thus defined that

Yn = |µ(n)|
∏

p

Y α(p)
p .

The variables {Yn}n are referred to as multiplicative Rademacher variables,
and similarly as for the Steinhaus variables one has that EYn = 0 and EY 2

n =
1 for all square-free n ∈ N. One also has that EYnYm = 1 if n = m and n,m
are square-free, and zero otherwise.

Note that Yn ∈ R for all n ∈ N, and for square-free n one has |Yn| = 1.
In some sense one can therefore think of Rademacher variables as the real
version of Steinhaus variables.

4



As in the Steinhaus case, consider the moments of a sum of multiplicative

Rademacher variables, namely
(

E
[∣

∣

∑

n≤x Yn

∣

∣

q])1/q
. As before it is difficult

to compute this for odd q, but for the even moments one can compute an
asymptotic expression. This is done very similarly as for multiplicative Stein-
haus variables, and is another main goal of this thesis.

1.4 Random matrix theory

1.4.1 Unitary group

One says that an N ×N matrix M is unitary if M∗M = MM∗ = IN where
M∗ denotes the conjugate transpose of M . The group of unitary N × N
matrices is denoted by U(N).

As det(M∗) = det(M), one has that |det(M)| = 1 for all matrices M ∈
U(N). It can easily be shown that all eigenvalues of a unitary matrix have
absolute value 1. Indeed, let λ be an eigenvalue of M ∈ U(N), and let x be
a corresponding eigenvector. Then Mx = λx and x∗M∗ = λx∗. Multiplying
these two expressions together and using M∗M = I gives x∗x = |λ|2x∗x, so
one has |λ| = 1.

Now, consider the characteristic polynomial of a matrix M ∈ U(N), given
by

Λ(z) = det(I − zM) =
N
∏

j=1

(1 − λjz) =
N
∏

j=1

(1 − eiθjz), (1.7)

where the product is over all eigenvalues of M , and it is used that any
eigenvalue can be expressed as λ = eiθ for some θ. If one multiplies out the
final expression in (1.7) one gets a polynomial in z of degree N , namely

Λ(z) =
N
∑

n=0

cM(n)(−z)n,

where the coefficients cM(n) are known as the secular coefficients. Next,
consider the truncated characteristic polynomial

ΛN ′(z) =
N ′
∑

n=0

cM(n)(−z)n, (1.8)

where N ′ ≤ N . Another main concern of this thesis is to find an expression
for the moments of this truncated characteristic polynomial.

5



1.4.2 Haar measure and expectations

In order to be able to talk about moments of the truncated characteristic
polynomial (1.8) one needs to introduce a probability measure. A natural
choice is to use Haar measure, as this has many desirable properties. The
existence and properties of Haar measure are given by Haar’s theorem.

Theorem (Haar’s theorem). Let G be a compact topological group. There

exists a probability measure m defined on the σ-algebra B(G) of Borel subsets
of G such that m(xE) = m(E) for all x ∈ G and all E ∈ B(G), and m is

regular. There is only one such regular rotation invariant probability measure

on (G,B(G)).

As U(N) is a compact topological group one can apply Haar’s theorem
to get a probability measure µ. Denote expectation with respect to µ by
EU(N)[·]. One can then consider the moments of the truncated characteristic

polynomial in (1.8), which are given by
(

EU(N) [|ΛN ′(z)|q]
)1/q

.
At this point it is worthwhile mentioning that there is a conjectured

connection between the Riemann zeta function and random matrix theory.
One of the most notable conjectures is the Hilbert-Pólya conjecture, which
states that the nontrivial zeroes of the Riemann zeta function share the same
distribution as the eigenvalues of some random matrix. Several interesting
results concerning this connection are mentioned in the introduction to our
article, see Section 1 of the article, and so they will not be repeated here.

Another goal of this thesis is to find an expression for the even moments
of the truncated characteristic polynomial of a unitary matrix. Given the
above connection it is not so surprising that this then leads to an asymptotic
relation between these moments and the even moments of the sum in (1.5).

1.4.3 Special Orthogonal group

If one instead considers real N ×N matrices which satisfy MMT = MTM =
IN , where MT is the transpose of M , one gets the orthogonal group O(N).
Consider the determinant of M ∈ O(N). As det(M) = det(MT ) one gets
(detM)2 = det(I) = 1. Now, M ∈ O(N) is a real matrix, so one must have
detM ∈ R. This in turn gives detM = ±1. Note that an orthogonal matrix
is just a real unitary matrix.

If one instead considers only those matrices in O(N) that have determi-
nant equal to +1 one gets the special orthogonal group SO(N). In particular

6



SO(2N) will be of interest.
As for the unitary group, Haar’s theorem gives the existence of Haar

measure on SO(2N). Let ESO(2N)[·] denote expectation with respect to Haar
measure on the special orthogonal group. The final goal of this thesis is
to find an expression for the even moments of the truncated characteristic
polynomial of a special orthogonal matrix of size 2N × 2N , i.e.,

(

ESO(2N)

[

|ΛN ′(z)|2k
])1/2k

, (1.9)

where the truncated characteristic polynomial ΛN ′(z) is defined as in (1.8).
This will give an asymptotic relation between the moments in (1.9) and the
corresponding even moments of sums of Rademacher variables.

In some sense it seems appropriate that there is a similar kind of rela-
tion between Steinhaus variables and U(N) as there is between Rademacher
variables and SO(2N). Rademacher variables take values on the real sub-
set of the complex unit circle, and orthogonal matrices are just real unitary
matrices. It is on the other hand not clear why one has to consider SO(2N)
instead of just O(N).

7
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MOMENTS OF RANDOM MULTIPLICATIVE FUNCTIONS AND
TRUNCATED CHARACTERISTIC POLYNOMIALS

WINSTON HEAP AND SOFIA LINDQVIST

Abstract. We give an asymptotic formula for the 2kth moment of a sum of
multiplicative Steinhaus variables. This was recently computed independently by
Harper, Nikeghbali and Radziwi l l. We also compute the 2kth moment of a trun-
cated characteristic polynomial of a unitary matrix. This provides an asymptotic
equivalence with the moments of Steinhaus variables. Similar results for multi-
plicative Rademacher variables are given.

1. Introduction

In the study of the Riemann zeta function there are two probabilistic heuristics
which have had significant recent attention. One of these is the use of random
multiplicative functions in problems of an arithmetic nature and the other is the use
of random matrix theory to model various statistics of the zeta function.

The study of random multiplicative functions was initiated by Wintner [23] when
he modelled the Möbius function as the multiplicative extension to the squarefree
integers of the random variables ǫp, each of which takes the values {±1} with equal
probability. This provided a model for the reciprocal of the Riemann zeta function
and hence an appropriate1 probabilistic interpretation of the Riemann hypothesis.
More recently, random models have been used in association with Dirichlet characters
in the work of Granville and Soundararajan (e.g. in [9, 10]) and also for the quantities
pit when p ranges over the set of primes [11, 18, 19].

The connection between the Riemann zeta function and random matrix theory is
well known and has been extensively studied. One of the more remarkable predictions
of random matrix theory is the Keating–Snaith conjecture [16] regarding the moments
of the zeta function. This states that

(1)
1

T

∫ T

0

|ζ(1
2

+ it)|2kdt ∼ a(k)g(k)(log T )k
2

2010 Mathematics Subject Classification. 11M50, 60G50, 11N64.
Research supported by grant 227768 of the Research Council of Norway.
1We say ‘appropriate’ here since previous models simply used a random ±1 as the coefficients

which, as objected to by Levy [21], did not take into account the multiplicative nature of the
problem.
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MOMENTS OF RANDOM MULTIPLICATIVE FUNCTIONS 2

where g(k) is a certain geometric factor involving the Barnes G-function and

(2) a(k) =
∏

p

(

1 − 1

p

)k2 ∞
∑

m=0

dk(p
m)2

pm

with dk(n) being the k-fold divisor function. In essence, the reasoning behind the
Keating–Snaith conjecture can be stated as follows. Since the zeros of the zeta
function are conjectured to share the same distribution as eigenvalues of a random
matrix in the CUE, it is reasonable to expect that the characteristic polynomial of
a matrix provides a good model to the zeta function in the mean. Thus, for an
appropriate choice of N one could expect

(3)
1

T

∫ T

0

|ζ(1
2

+ it)|2kdt ∼ a(k)EU(N)

[

|Λ(M, z)|2k
]

where Λ(M, z) denotes the characteristic polynomial of the matrix M and the ex-
pectation is over all unitary matrices of size N with respect to the Haar measure.

Recently, Conrey and Gamburd [7] showed that the asymptotic in (3) holds if
one both truncates the characteristic polynomial and replaces the zeta function by
a Dirichlet polynomial of length x = o(T 1/k). This allowed them to deduce that

lim
T→∞

1

T

∫ T

0

∣

∣

∣

∑

n≤x

n−1/2−it
∣

∣

∣

2k

dt ∼ a(k)c(k)(log x)k
2

, k ∈ N

where a(k) is given by (2) and c(k) is the volume of a particular polytope in R
k2.

This result may be stated in the more general framework of random multiplicative
functions as follows.

Given the set of primes, associate a set of i.i.d. random variables {Xp}, equidis-
tributed on the unit circle with variance 1. We extend these to the positive integers

by requiring that Xn is multiplicative; that is, if n =
∏

p p
α(p) then Xn =

∏

pX
α(p)
p .

We let E[·] denote the expectation. We refer to the Xn as multiplicative Steinhaus
variables. The association pit ↔ Xp is then seen to be more than just formal in light
of the identity

E

[

∣

∣

∣

∑

n≤x

Xn/n
σ
∣

∣

∣

2q
]

= lim
T→∞

1

T

∫ T

0

∣

∣

∣

∑

n≤x

n−σ−it
∣

∣

∣

2q

dt

which holds for all σ ∈ R and q > 0. This can be proved by first demonstrating it
for q ∈ N and then applying the Weierstrass approximation theorem to the function
f : y 7→ yq/2.

Our main aim is to extend the results of Conrey–Gamburd to more general σ,
in particular to σ = 0, and to exhibit the connection between moments of random
multiplicative functions and random matrix theory.
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Theorem 1. For fixed k ∈ N and 0 ≤ σ < 1/2 we have

(4) E

[

∣

∣

∣

∑

n≤x

Xn/n
σ
∣

∣

∣

2k
]

∼ a(k)β(k)

(1 − 2σ)2k−1

Γ(2k − 1)

Γ(k)2
xk(1−2σ)(log x)(k−1)2 .

where, a(k) is given by (2), β(1) = 1, and

β(k) =
1

(2πi)2k−1

∫

(b2k)

· · ·
∫

(b2)

[ k
∏

i=2

2k
∏

j=k+1

1

si + sj

]

es2+···+s2k

k
∏

j=2

dsj

2k
∏

j=k+1

dsj
sj

(5)

for k ≥ 2. Here,
∫

(bj)
=
∫ bj+i∞

bj−i∞
and bj > 0 for all j.

In the significant case σ = 0, Theorem 1 has been proved independently by Harper,
Nikeghbali and Radziwi l l [13]. It is of interest to note that the constant in their result
involves the volume of the Birkhoff polytope Bk. By comparing coefficients we get
that vol(Bk) = kk−1β(k). It is an open problem to determine a closed form for the
volume of the Birkhoff polytope [22] and a representation in terms of such contour
integrals may be new. A direct proof of the equation vol(Bk) = kk−1β(k) can be found
by applying the methods of section 4.2 to the formula for the Ehrhart polynomial
given in [4]. Also, our methods work equally well in the case σ = 1/2 and thus by
comparing coefficients with Theorem 2 of Conrey–Gamburd [7], we get a contour
integral representation for their constant (see equation (21)).

It should be noted that the expectation on the line σ = 0 counts the number of
solutions (mj) ∈ N2k to the equation m1m2 · · ·mk = mk+1 · · ·m2k with the restriction
1 6 mj 6 x. In the case k = 2, Ayyad, Cochrane and Zheng [2] computed this
quantity to a high accuracy. Theorem 1 therefore extends these results to k > 3,
although we do not achieve their level of accuracy. By including the extra condition
(mj , q) = 1 in the equation, a slight modification of our methods give the following
asymptotic formula for Dirichlet character sums.

Theorem 2. Let χ be a primitive Dirichlet character modulo q and suppose q has a

bounded number of prime factors. Then for fixed k ∈ N,

(6)

1

ϕ(q)

∑

χ 6=χ0

∣

∣

∣

∑

n≤x

χ(n)
∣

∣

∣

2k

∼ a(k)β(k)
∏

p|q

( ∞
∑

m=0

dk(p
m)2

pm

)−1
Γ(2k − 1)

Γ(k)2
xk(log x)(k−1)2

as x, q → ∞ with xk ≤ q where χ0 denotes the principal character.

Our results on the random matrix theory side are as follows. Let U(N) denote
the group of unitary matrices of size N . For a matrix M ∈ U(N) with eigenvalues
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(eiθj )Nj=1 let

Λ(z) = Λ(M, z) = det(I − zM) =

N
∏

j=1

(1 − eiθjz) =

N
∑

n=0

cM(n)(−z)n

where the cM(n) are the secular coefficients. For N ′ 6 N we consider the truncated
characteristic polynomial given by

ΛN ′(z) =
∑

n≤N ′

cM(n)(−z)n.

Let EU(N)[ · ] denote the expectation over U(N) with respect to Haar measure.

Theorem 3. Let k ∈ N be fixed and suppose |z| > 1. Then for all N > k log x we

have

(7) EU(N)

[

|Λlog x(z)|2k
]

∼ β(k)

(1 − |z|−2)2k−1

Γ(2k − 1)

Γ(k)2
Fk(z)x2k log |z|(log x)(k−1)2

where β(k) is given by (5) and

Fk(z) =2F1(1 − k, 1 − k; 2 − 2k; 1 − |z|−2)(8)

with 2F1 being Gauss’ hypergeometric function.

One may notice a certain similarity between Theorems 1 and 3. Indeed, by in-
cluding the work of [7] in the case σ = 1/2 we have the following.

Corollary 1. Let k ∈ N be fixed and let zσ be any comlpex number such that |zσ| =
e1/2−σ. Then for 0 ≤ σ ≤ 1/2 and N > k log x we have

(9) E

[

∣

∣

∣

∑

n≤x

Xn/n
σ
∣

∣

∣

2k
]

∼ a(k)cσ(k)EU(N)

[

|Λlogx(zσ)|2k
]

where a(k) is given by (2) and

cσ(k) =











(

1−e2σ−1

1−2σ

)2k−1

Fk(e1/2−σ)−1, 0 ≤ σ < 1/2

1, σ = 1/2.

A problem which has garnered some attention recently is to determine the first
moment of

∣

∣

∑

n6xXn

∣

∣. A conjecture of Helson [14] states that this is o(
√
x), but

this seems doubtful now given the evidence in [5, 13]. Another motivation for the
present article was to provide a conjecture for the first moment via Corollary 1.

Let us then assume that Corollary 1 holds for 0 6 k < 1. Then (presumably) the
average on the right side of (9) can be taken over matrices of size N = log x which
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leads to a computation of the full characteristic polynomial. By an application of
Szegő’s Theorem, Chris Hughes has shown ([15], formula (3.177)) that for |z| < 1

(10) EU(N)

[

|Λ(z)|2s
]

∼
(

1

1 − |z|2
)s2

as N → ∞. On applying the functional equation

Λ(M, z) = detM(−z)NΛ(M †, 1/z)

with |z| = eσ−1/2 we obtain the following conjecture.

Conjecture 1. For 0 6 k < 1 and 0 6 σ < 1/2 we have

(11) E

[

∣

∣

∣

∑

n≤x

Xn/n
σ
∣

∣

∣

2k
]

∼ a(k)Fk(e1/2−σ)−1

(1 − e2σ−1)(k−1)2(1 − 2σ)2k−1
xk(1−2σ).

For k = 1/2 and σ = 0 we can compute the constants to a reasonable accuracy.
The arithmetic factor a(k) admits a continuation to real values of k via the formula

dk(pm) =

(

k + m− 1

m

)

=
Γ(k + m)

m!Γ(k)
.

We then find that a(1/2) = 0.98849... . The other constants are given by

F1/2(e
1/2)−1 =2F1(

1
2
, 1
2
; 1; 1 − e−1)−1 = agm

(

1 −
√

1 − 1
e
, 1 +

√

1 − 1
e

)

= 0.79099...

where agm(x, y) is Gauss’ arithmetic-geometric mean and
(

e

e− 1

)1/4

= 1.21250... .

Thus, on combining the constants we acquire the conjecture

(12) E

[

∣

∣

∣

∑

n≤x

Xn

∣

∣

∣

]

∼ 0.8769...
√
x.

One can instead consider multiplicative Rademacher variables. In this case, asso-
ciate a set of i.i.d. random variables {Yp}, which are ±1 with uniform probability,
to the set of primes. Extend this to all positive integers by requiring Yn to be multi-
plicative and non-zero only on the square free integers; that is, Yn = |µ(n)|

∏

p|n Yp.
Let

(13) b(k) =
∏

p

(

1 − 1

p

)k(2k−1) k
∑

i=0

(

2k

2i

)

1

pi
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and

(14) γ(k) =
1

(2πi)2k

∫

(b2k)

· · ·
∫

(b1)

∏

1≤i<j≤2k

1

si + sj

2k
∏

j=1

e2sjdsj,

where bj > 0 for all j. We then have the following result.

Theorem 4. For fixed k ∈ N, k > 2 we have

(15) E

[

∣

∣

∣

∣

∑

n≤x

Yn

∣

∣

∣

∣

2k
]

∼ γ(k)b(k)22kxk(log x)2k
2−3k.

Let SO(2N) denote the group of orthogonal 2N×2N matrices with determinant 1,
and let ESO(2N)[·] denote the expectation over SO(2N) with respect to Haar measure.

Theorem 5. Let k ∈ N be fixed and suppose z ∈ R, |z| > 1. Then for all N > k log x
we have

(16) ESO(2N)

[

|Λlogx(z)|2k
]

∼ γ(k)

(1 − |z|−1)2k
x2k log |z|(log x)2k

2−3k

where γ(k) is given by (14).

Corollary 2. For fixed k ∈ N, k > 2 and all N > k log x we have

E

[

∣

∣

∣

∑

n≤x

Yn

∣

∣

∣

2k
]

∼ b(k)22k(1 − e−1/2)2kESO(2N)

[

|Λlogx(e1/2)|2k
]

where b(k) is the arithmetic factor given by (13).

Similarly to the case of Steinhaus variables, we expect that the 1st moment is
∼ c

√
x for some constant c. Unfortunately we have not been able to find an analogue

of (10) for the special orthogonal group and so cannot make a precise conjecture.
For some recent results on the order of

∑

n≤x Yn see [12, 20].

2. Asymptotics for Steinhaus variables: Proof of Theorem 1

2.1. A contour integral representation for the expectation. We have

E

[

∣

∣

∣

∑

n≤x

Xn/n
σ
∣

∣

∣

2k
]

=
∑

n1···nk=
nk+1···n2k

nj≤x

1

(n1 · · ·n2k)σ
.

We invoke the condition nj ≤ x in each j by using the contour integral

(17)
1

2πi

∫

(b)

ys
ds

s
=

{

1, y > 1

0, y < 1
, (b > 0)
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with y = x/nj . For each j we take a specific line of integration bj . For reasons that
will become clear we take b1 = ǫ < 1 − 2σ if σ < 1/2 and b1 = 2 if σ = 1/2. In both
cases we may take the other lines to be sufficiently large so as to guarantee absolute
convergence; bj = 2 say (j = 2, . . . , 2k). This gives

E

[

∣

∣

∣

∑

n≤x

Xn/n
σ
∣

∣

∣

2k
]

=
∑

n1···nk=
nk+1···n2k

1

(n1 · · ·n2k)σ
1

(2πi)2k

∫

(b2k)

· · ·
∫

(b1)

2k
∏

j=1

(

x

nj

)sj dsj
sj

=
1

(2πi)2k

∫

(b2k)

· · ·
∫

(b1)

Fk(σ + s1, · · · , σ + s2k)
2k
∏

j=1

xsj
dsj
sj

.

where

Fk(z1, · · · , z2k) =
∑

n1···nk=
nk+1···n2k

1

nz1
1 · · ·nz2k

2k

.

Since the condition n1 · · ·nk = nk+1 · · ·n2k is multiplicative we may express Fk(z) as
an Euler product:

Fk(z1, . . . , z2k) =
∏

p

∑

m1+···+mk
=mk+1+···+m2k

1

pm1z1+···+m2kz2k

=
∏

p

(

1 +

k
∑

i=1

2k
∑

j=k+1

1

pzi+zj
+ O

(

∑ 1

pzi1+zj1+zi2+zj2

)

)

=Ak(z1, . . . , z2k)
k
∏

i=1

2k
∏

j=k+1

ζ(zi + zj)

(18)

where

(19) Ak(z1, . . . , z2k) =
∏

p

[ k
∏

i=1

2k
∏

j=k+1

(

1 − 1

pzi+zj

)]

·
∑

m1+···+mk
=mk+1+···+m2k

1

pm1z1+···+m2kz2k
.

Upon expanding the inner products and sum whilst referring to the middle line
of (18), we see that Ak(z1, . . . , z2k) is an absolutely convergent product provided
ℜ(zi + zj) > 1/2 for 1 ≤ i ≤ k, k + 1 ≤ j ≤ 2k.
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We now have

(20) E

[

∣

∣

∣

∑

n≤x

Xn/n
σ
∣

∣

∣

2k
]

=
1

(2πi)2k

∫

(b2k)

· · ·
∫

(b1)

Ak(σ + s1, . . . , σ + s2k)

×
k
∏

i=1

2k
∏

j=k+1

ζ(2σ + si + sj)
2k
∏

j=1

xsj
dsj
sj

.

2.2. The case σ = 1/2. Although the case σ = 1/2 has already been investigated
by Conrey-Gamburd [7], we will go over it with a proof that is instructive for the
case 0 ≤ σ < 1/2.

Set σ = 1/2 in (20). We write the resulting integral as

1

(2πi)2k

∫

(b2k)

. . .

∫

(b1)

Bk(s1, . . . , s2k)

k
∏

i=1

2k
∏

j=k+1

1

si + sj

2k
∏

j=1

eLsj
dsj
sj

where L = log x and

Bk(s1, . . . , s2k) = Ak(1
2

+ s1, . . . ,
1
2

+ s2k)

k
∏

i=1

2k
∏

j=k+1

(si + sj)ζ(1 + si + sj).

This function is holomorphic in a neighbourhood of (0, 0, . . . , 0) and the constant
term in its Taylor expansion about this point is given by Ak(1

2
, . . . , 1

2
).

We now make the substitution sj 7→ sj/L in each variable to give an integral of
the form

Lk2

(2πi)2k

∫

(c2k)

· · ·
∫

(c1)

Bk(s1/L, . . . , s2k/L)
k
∏

i=1

2k
∏

j=k+1

1

si + sj

2k
∏

j=1

esj
dsj
sj

.

First, note that we may shift the contours so as to be independent of L, to ℜ(sj) = 2
say. We now truncate the integrals at height T = o(L) and take a Taylor approxi-
mation to Bk(s) about the point (0, 0, . . . , 0). Then upon letting L → ∞ we see that
this integral is asymptotic to

Ak(1
2
, . . . , 1

2
)

Lk2

(2πi)2k

∫

(b2k)

· · ·
∫

(b1)

k
∏

i=1

2k
∏

j=k+1

1

si + sj

2k
∏

j=1

esj
dsj
sj

.

A short calculation gives Ak(1
2
, . . . , 1

2
) = a(k) where a(k) is given by (2). The re-

maining constant is given by

(21) α(k) :=
1

(2πi)2k

∫

(b2k)

· · ·
∫

(b1)

k
∏

i=1

2k
∏

j=k+1

1

si + sj

2k
∏

j=1

esj
dsj
sj

.
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We may express α(k) as a volume integral and hence recover the constant of
Theorem 2 in [7]. This is achieved by first writing (si + sj)

−1 =
∫∞

0
e−xij(si+sj)dxij

for each term in the product over i, j so that the full product is then given by a
k2-fold integral. Upon exchanging the orders of integration and applying (17) the
result follows.

2.3. The case 0 ≤ σ < 1/2. Returning to our expression for the expectation given
in (20), we first make the substitutions sj 7→ sj + 1 − 2σ for k + 1 ≤ j ≤ 2k. This
gives

(22) E

[

∣

∣

∣

∑

n≤x

Xn/n
σ
∣

∣

∣

2k
]

= xk(1−2σ)

(

1

2πi

)2k ∫

(c2k)

· · ·
∫

(b1)

×Ak(σ + s1, . . . , σ + sk, 1 − σ + sk+1, · · · , 1 − σ + s2k)

×
k
∏

i=1

2k
∏

j=k+1

ζ(1 + si + sj)

k
∏

j=1

xsj
dsj
sj

2k
∏

j=k+1

xsj
dsj

sj + 1 − 2σ

In the case σ = 1/2, the leading order term was essentially given by the poles at
sj = 0. In the present case we must first make the appropriate substitutions to bring
the leading order contributions to sj = 0. Only then can we make the substitution
sj 7→ sj/L.

We first extract the polar behaviour of the integrand. Write

(23) Gk,σ(s1, . . . , s2k) = Ak(σ + s1, . . . , σ + sk, 1 − σ + sk+1, . . . , 1 − σ + s2k)

×
k
∏

i=1

2k
∏

j=k+1

(si + sj)ζ(1 + si + sj)

so that our integral becomes

xk(1−2σ) 1

(2πi)2k

∫

(c2k)

· · ·
∫

(b1)

Gk,σ(s1, . . . , s2k)

k
∏

i=1

2k
∏

j=k+1

1

si + sj
×

× eL(s1+···+s2k)
k
∏

j=1

dsj
sj

2k
∏

j=k+1

dsj
sj + 1 − 2σ

.

The function Gk,σ(s1, . . . , s2k) is analytic in the region ℜ(si + sj) > −1/2 for 1 ≤ i ≤
k, k + 1 ≤ j ≤ 2k.

We now make the substitutions sj 7→ sj − s1 for k + 1 ≤ j ≤ 2k and si 7→ si + s1
for 2 ≤ i ≤ k. This gives an integral of the form
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xk(1−2σ) 1

(2πi)2k

∫

(d2k)

· · ·
∫

(b1)

Gk,σ(s1, s2 + s1 . . . , sk + s1, sk+1 − s1, . . . , s2k − s1)×

×
[ k
∏

i=2

2k
∏

j=k+1

1

si + sj

]

eL(s2+···+s2k)
ds1
s1

k
∏

j=2

dsj
sj + s1

2k
∏

j=k+1

dsj
sj(sj − s1 + 1 − 2σ)

.

Now, for j = 2, 3, . . . , 2k we let sj 7→ sj/L. This gives the integral

xk(1−2σ)L(k−1)2 1

(2πi)2k

∫

(e2k)

· · ·
∫

(b1)

Gk,σ(s1, s1 + s2/L, . . . , s1 + sk/L,−s1 + sk+1/L, . . . ,−s1 + s2k/L)×

×
[ k
∏

i=2

2k
∏

j=k+1

1

si + sj

]

es2+···+s2k
ds1
s1

k
∏

j=2

dsj
sj
L

+ s1

2k
∏

j=k+1

dsj
sj(

sj
L
− s1 + 1 − 2σ)

.

Once again, we may shift the lines of integration in the integrals over s2, s3, . . . , s2k
so as to be independent of L; back to ℜ(sj) = 2 say, and truncate the integrals at
some height T = o(L). From the definition of Gk,σ given in (23), we see that

lim
L→∞

Gk,σ(s1, s1 + s2/L, . . . , s1 + sk/L,−s1 + sk+1/L, . . . ,−s1 + s2k/L)

=Ak(σ + s1, . . . , σ + s1, 1 − σ − s1, . . . , 1 − σ − s1)

=Ak(0, . . . , 0, 1, . . . , 1)

=Ak(1
2
, . . . , 1

2
)

where in the last two lines we have used the symmetry of Ak. As previously claimed,
this last quantity is given by (2). The other limits are easily evaluated.

Thus, as L → ∞ we have

(24) E

[

∣

∣

∣

∑

n≤x

Xn/n
σ
∣

∣

∣

2k
]

∼ a(k)xk(1−2σ)L(k−1)2 1

(2πi)2k

∫

(b2k)

· · ·
∫

(b1)

[ k
∏

i=2

2k
∏

j=k+1

1

si + sj

]

es2+···+s2k
ds1

sk1(1 − 2σ − s1)k

k
∏

j=2

dsj

2k
∏

j=k+1

dsj
sj

.
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For the integral over s1 we push the line of integration to the far left encountering
a pole at s1 = 0. The integral over the new line vanishes in the limit and so

1

2πi

∫

(b1)

ds1
sk1(1 − 2σ − s1)k

=
1

(k − 1)!

dk−1

dsk−1
1

(

(1 − 2σ − s1)
−k

)
∣

∣

∣

∣

s1=0

=
1

(k − 1)!

Γ
(

k + (k − 1)
)

/Γ(k)

(1 − 2σ)2k−1

=
Γ(2k − 1)

Γ(k)2
1

(1 − 2σ)2k−1
.

The remaining integrals are given by β(k) of equation (5).
Note that although it appears as if one should be able to make the substitution

sj 7→ sj/L directly in (22) without first shifting the variables by s1, this is not the
case. Upon truncating the integrals at height T = o(L), the largest error terms arise
from the ζ-factors in Gk,σ when they are evaluated close to t = 0. For this to occur
in all terms of the form ζ(1 + (si + sj)/L) and ζ(1 + sj/L) for i = 2, . . . , k, j = k +
1, . . . , 2k, one must have ti ≈ −tj ≈ 0 for i = 2, . . . , 2k and j = k + 1, . . . , 2k. When
looking at the error arising from cutting some si at height T , this large contribution
clearly is excluded, as one has |ti| ≥ T ≫ 0 for this i. On the other hand, if one makes
the substitution sj 7→ sj/L directly in (22) and attempts to cut all integrals at height
T = o(L), a large error arises from ti ≈ −tj for i = 1, . . . , k and j = k + 1, . . . , 2k.

3. Character sums: sketch proof of Theorem 2

We shall only sketch the proof of Theorem 2 since it is very similar to the proof
of Theorem 1. Recall the orthogonality property of Dirichlet characters: for m,n
coprime to q

1

ϕ(q)

∑

χ

χ(m)χ(n) =

{

1 if m ≡ n mod q,

0 otherwise.

This implies that for all xk ≤ q

1

ϕ(q)

∑

χ

∣

∣

∣

∑

m≤x

χ(m)
∣

∣

∣

2k

=
1

ϕ(q)

∑

χ

∑

mi6x

χ(m1 · · ·mk)χ(mk+1 · · ·m2k)

=
∑

m1···mk=mk+1···m2k
mi6x

(mi,q)=1

1.
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On applying the line integral (17) we acquire

∑

m1···mk=mk+1···m2k
mi6x

(mi,q)=1

1 =
1

(2πi)2k

∫

(b2k)

· · ·
∫

(b1)

Hk,q(s1, . . . , s2k)

2k
∏

j=1

xsj
dsj
sj

where

Hk,q(s1, . . . , s2k) =
∑

m1···mk=mk+1···m2k

(mj ,q)=1

1

ms1
1 · · ·ms2k

2k

.

Expressing this as an Euler product gives

Hk,q(s1, . . . , s2k) =
∏

p|q

(

∑

m1+···+mk=
mk+1+···+m2k

1

pm1s1+···+m2ks2k

)−1
∏

p

∑

m1+···+mk=
mk+1+···+m2k

1

pm1s1+···+m2ks2k

=
∏

p|q

(

∑

m1+···+mk=
mk+1+···+m2k

1

pm1s1+···+m2ks2k

)−1

Ak(s1 . . . , s2k)
∏

i,j

ζ(si + sj)

=Ck,q(s1, . . . , s2k)
∏

i,j

ζ(si + sj),

say. Here, the function Ak(s1, . . . s2k) is that of equation (19). Since the number
of prime factors of q remains fixed, Ck,q(s1, . . . , s2k) is holomorphic in the same
regions as Ak(s1, . . . , s2k). The arguments of the previous section now follow, with
the arithmetic constant being given by

Ck,q(
1
2
, . . . , 1

2
) =Ak(1

2
, . . . , 1

2
)
∏

p|q

(

∑

m1+···+mk=
mk+1+···+m2k

1

pm1+···+mk

)−1

=a(k)
∏

p|q

( ∞
∑

n=0

dk(pm)2

pn

)−1

.

Now

1

ϕ(q)

∣

∣

∣

∑

n≤x

χ0(n)
∣

∣

∣

2k

=
1

ϕ(q)

∣

∣

∣

∑

n≤x
(n,q)=1

1
∣

∣

∣

2k

=
1

ϕ(q)

(ϕ(q)

q
x + O(2ω(q))

)2k
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where ω(q) represents the number of distinct prime factors of q. Since we’re assuming
ω(q) is bounded this last error term is O(1) as q → ∞. Hence,

1

ϕ(q)

∣

∣

∣

∑

n≤x

χ0(n)
∣

∣

∣

2k

∼
(

ϕ(q)

q

)2k−1
x2k

q
≤
(

ϕ(q)

q

)2k−1

xk.

Since this is of a lower order than the main term when ω(q) is bounded the result
follows.

4. Moments of the truncated characteristic polynomial in the

unitary case: Proof of Theorem 3

4.1. A formula for the expectation. We begin by recalling the definitions. Let
U(N) denote the group of unitary matrices of size N . For a matrix M ∈ U(N) with
eigenvalues (eiθj)Nj=1 let

Λ(z) = det(I − zM) =

N
∏

j=1

(1 − eiθjz) =

N
∑

n=0

cM(n)(−z)n.

The coefficients cM(n) are known as the secular coefficients. We have cM(0) = 1,
cM(1) = Tr(M) and cM(N) = det(M). In general, note that these coefficients
are symmetric functions of the eigenvalues. For N ′ ≤ N , consider the truncated
characteristic polynomial given by

ΛN ′(z) =
∑

n≤N ′

cM(n)(−z)n.

We will compute the expectation of this object as the following multiple contour
integral.

Proposition 3. Let k ∈ N. Then for all z ∈ C and N ≥ kL we have

EU(N)

[

|ΛL(z)|2k
]

=
1

(2πi)2k

∫

· · ·
∫

(u1 · · ·u2k)
−L

∏k
i=1

∏2k
j=k+1(1 − |z|2uiuj)

2k
∏

j=1

duj

uj(1 − uj)

where the integration is around small circles of radii less than min(|z|−1, 1).

Our plan is to expand |Λ(z)|2k, push the expectation through, and then use the
results of Diaconis-Gamburd [8] regarding the expectation of products of the coeffi-
cients cM(j). To state their result we must first detail some notation.

For an m×n matrix A denote the row and column sums by ri and cj respectively
and define the vectors

row(A) = (r1, . . . , rm),

col(A) = (c1, . . . , cn).
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Given two partitions µ = (µ1, . . . , µm) and µ̃ = (µ̃1, . . . , µ̃n) we let Nµµ̃ denote the
number of matrices A with row(A) = µ and col(A) = µ̃. The notation 〈1a12a2 · · · 〉
is used to represent a partition with a1 parts equal to 1, a2 parts equal to 2 etc. For
example, (5, 3, 3, 2, 1) = 〈1121324051〉.

Theorem ([8]). Let (aj)
l
j=1, (bj)

l
j=1 be sequences of nonnegative integers. Then for

N > max
(
∑l

j=1 jaj ,
∑l

j=1 jbj
)

we have

EU(N)

[ l
∏

j=1

cM(j)ajcM(j)bj
]

= Nµµ̃

where µ = 〈1a12a2 · · · 〉 and µ̃ = 〈1b12b2 · · · 〉.

On expanding the polynomial and pushing the expectation through we get

EU(N)

[

|ΛL(z)|2k
]

=
∑

n1,...,n2k≤L

EU(N)

[

cM(n1) · · · cM(nk)cM(nk+1) · · · cM(n2k)
]

zn1+···+nkznk+1+···+n2k

=EU(N)

[

|cM(L)|2k
]

|z|2kL

+ |z|(2k−2)L
∑

m6L
n6L−1

EU(N)

[

cM(L)k−1cM(m)cM(L)k−1cM(n)
]

zmzn + · · · .

On taking N > kL the condition of the Theorem is satisfied for all terms in the sum,
and can thus be applied.

Consider the first term. Note that we may write

EU(N)

[

|cM(L)|2k
]

|z|2kL =
∑

(mij)ki,j=1∈Bk(L)

z(
∑k

i=1

∑k
j=1 mij)z(

∑k
j=1

∑k
i=1 mij)

=
∑

(mij)ki,j=1∈Bk(L)

|z|2
∑k

i=1

∑k
j=1 mij

where

Bk(L) =

{

(mij) ∈ Z
k2

>0 :

k
∑

j=1

mij = L;

k
∑

i=1

mij = L
}

.
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Similarly, for the second term we may write

|z|(2k−2)L
∑

m6L
n6L−1

EU(N)

[

cM(L)k−1cM(m)cM(L)k−1cM(n)
]

zmzn

=
∑

m6L
n6L−1

∑

(mij )ki,j=1∈Ck(L,m,n)

z
∑k

i=1

∑k
j=1 mijz

∑k
i=1

∑k
j=1 mij

where

Ck(L, m, n) =

{

(mij) ∈ Z
k2

>0 :

k
∑

j=1

mij = L for 0 6 i 6 k − 1,

k
∑

j=1

mkj = m;

k
∑

i=1

mij = L for 0 6 j 6 k − 1,

k
∑

i=1

mik = n

}

.

This set is empty unless m = n in which case we can write the second term as a sum
of |z|2. Continuing in this fashion we see that

(25) EU(N)

[

|ΛL(z)|2k
]

=
∑

(mij )ki,j=1∈Dk(L)

|z|2
∑k

i=1

∑k
j=1 mij

where

Dk(L) =

{

(mij) ∈ Z
k2

>0 :
k
∑

j=1

mij 6 L;
k
∑

i=1

mij 6 L
}

.

We now invoke the conditions
∑

mij 6 L with the formula

(26)
1

2πi

∫

|u|=ε

um−L du

u(1 − u)
=

{

1, m 6 L
0, m > L

which follows on expanding (1 − u)−1 as a geometric series. This gives

EU(N)

[

|ΛL(z)|2k
]

=
∑

mij>0

|z|2
∑k

i=1

∑k
j=1 mij

1

(2πi)2k

∫

|u2k|=ε2k

· · ·
∫

|u1|=ε1

×

× um11+m12+···+m1k−L
1 um21+m22+···+m2k−L

2 · · ·umk1+mk2+···+mkk−L
k

× um11+m21+···+mk1−L
k+1 um12+m22+···+mk2−L

k+2 · · ·um1k+m2k+···+mkk−L
2k

2k
∏

j=1

duj

uj(1 − uj)
.

On collecting like powers and computing the geometric series we acquire Proposition
3.
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4.2. Asymptotics for the multiple contour integral. Denote the integral in
Proposition 3 by I. Thus,

I =
1

(2πi)2k

∫

· · ·
∫

(u1 · · ·u2k)
−L

∏k
i=1

∏2k
j=k+1(1 − |z|2uiuj)

2k
∏

j=1

duj

uj(1 − uj)

where the contours of integration are positively oriented circles of radii |uj| = εj.

We choose 1/|z|2 < ε1 < 1/|z|, εj = ε−1
1 |z|−2δ

1/L
j (j = k + 1, . . . , 2k) and εj = ε1δ

1/L
j

(j = 2, . . . , k) with δj < 1/|z|L. With these choices of εj the conditions of Proposition
3 are satisfied, provided |z| > 1. We will now perform similar manipulations to those
in section 2.3

First, let uj 7→ u−1
1 |z|−2uj for j = k + 1, . . . , 2k. Then

I =
x2k log |z|

(2πi)2k

∫

· · ·
∫

(u1−k
1 u2 · · ·u2k)−L

∏k
i=1

∏2k
j=k+1(1 − u−1

1 uiuj)

k
∏

j=1

duj

uj(1 − uj)

2k
∏

j=k+1

duj

uj(1 − u−1
1 |z|−2uj)

.

Now let uj 7→ u1uj for j = 2, . . . , k. After a bit of rearranging we have

I =
x2k log |z|

(2πi)2k

∫

· · ·
∫

(u2 · · ·u2k)−L

∏k
i=2

∏2k
j=k+1(1 − uiuj)

du1

u1(1 − u1)

k
∏

j=2

duj

uj(1 − u1uj)

2k
∏

j=k+1

duj

uj(1 − uj)(1 − u−1
1 |z|−2uj)

.

Consider the integral with respect to u2, . . . , u2k:

J :=
1

(2πi)2k−1

∫

· · ·
∫

(u2 · · ·u2k)
−L

∏k
i=2

∏2k
j=k+1(1 − uiuj)

k
∏

j=2

duj

uj(1 − u1uj)

2k
∏

j=k+1

duj

uj(1 − uj)(1 − u−1
1 |z|−2uj)

.

The contours of integration are given by circles of radii εj = δ
1/L
j , j = 2, . . . , 2k. We

may now choose the δj to be small but independent of L since this does not alter
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the value of the integral. Then, writing J in its parametrised form gives

J =
1

(2π)2k−1

∫ π

−π

· · ·
∫ π

−π

(δ2 · · · δ2k)−1e−iL(θ2+···+θ2k)

∏k
i=2

∏2k
j=k+1(1 − (δiδj)1/Leiθi+iθj)

k
∏

j=2

dθj

(1 − u1δ
1/L
j eiθj )

2k
∏

j=k+1

dθj

(1 − δ
1/L
j eiθj )(1 − u−1

1 |z|−2δ
1/L
j eiθj )

.

Performing the substitutions θj 7→ θj/L and writing cj = log δj we have

J =
L(k−1)2

(2π)2k−1

∫ πL

−πL

· · ·
∫ πL

−πL

e−(c2+iθ2+···+c2k+iθ2k)

∏k
i=2

∏2k
j=k+1L(1 − e(ci+iθi+cj+iθj)/L)

k
∏

j=2

dθj
(1 − u1e(cj+iθj)/L)

2k
∏

j=k+1

dθj

L(1 − e(cj+iθj)/L)(1 − u−1
1 |z|−2e(cj+iθj)/L)

.

We now divide by L(k−1)2 and take the limit as L → ∞. By an argument involving
dominated convergence we may pass the limit through the integral. Then, since
L(1 − e−z/L) ∼ z, we acquire

J ∼ L(k−1)2

(1 − u1)k−1(1 − u−1
1 |z|−2)k

1

(2π)2k−1

∫ ∞

−∞

· · ·
∫ ∞

−∞

e−(c2+iθ2+···+c2k+iθ2k)

∏k
i=2

∏2k
j=k+1(−ci − iθi − cj − iθj)

k
∏

j=2

dθj

2k
∏

j=k+1

dθj
(−cj − iθj)

.

Finally, we let θj 7→ −θj . Upon noting that −cj is postive, we see that this last
integral is the parametrised form of β(k) of equation (5). Therefore,

I ∼ β(k)x2k log |z|L(k−1)2 1

2πi

∫

1

(1 − u1)k(1 − u−1
1 |z|−2)k

du1

u1
.

It remains to show that

I1 :=
1

2πi

∫

1

(1 − u1)k(1 − u−1
1 |z|−2)k

du1

u1
=

1

2πi

∫

uk−1
1

(1 − u1)k(u1 − |z|−2)k
du1

=
1

(1 − |z|−2)2k−1

Γ(2k − 1)

Γ(k)2
Fk(z)

(27)

where

Fk(z) =2F1(1 − k, 1 − k; 2 − 2k; 1 − |z|−2)(28)

and 2F1 is the usual hypergeometric function.
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Note that in I1 we are still integrating over a circle of radius ε < 1/|z| since we
made no substitutions in the variable u1. Thus, the only contribution is from the
pole at u1 = |z|−2. Therefore,

I1 =
1

(k − 1)!

dk−1

duk−1

(

uk−1

(1 − u)k

)
∣

∣

∣

∣

u=|z|−2

=
1

(k − 1)!

k−1
∑

m=0

(

k − 1

m

)

dm

dum

[

(1 − u)−k
] dk−1−m

duk−1−m

[

uk−1
]

∣

∣

∣

∣

u=|z|−2

=
1

Γ(k)

k−1
∑

m=0

(

k − 1

m

)

· Γ(k + m)/Γ(k)

(1 − |z|−2)k+m
· Γ(k)

Γ(m + 1)
|z|−2m

=
1

(1 − |z|−2)k
· 1

Γ(k)

k−1
∑

m=0

(−1)m
(

k − 1

m

)

Γ(k + m)

Γ(m + 1)

(

1

1 − |z|2
)m

.

(29)

As a quick aside, we note that

(30)
1

Γ(k)

k−1
∑

m=0

(−1)m
(

k − 1

m

)

Γ(k + m)

Γ(m + 1)

(

1

1 − |z|2
)m

= 2F1

(

1 − k, k; 1; 1/(1 − |z|2)
)

and that this can be written in terms of the Legendre polynomials Pn(x) via the
formula (see [3], section 3.2)

2F1(−λ, λ + 1; 1; z) = Pλ(1 − 2z).

Continuing with our manipulations, the last line of equation (29) may be rewritten
as

(31)
|z|2k

(|z|2 − 1)2k−1

1

Γ(k)

k−1
∑

m=0

(−1)m
(

k − 1

m

)

Γ(2k − 1 −m)

Γ(k −m)
(1 − |z|2)m

=
|z|2k

(|z|2 − 1)2k−1

Γ(2k − 1)

Γ(k)2

k−1
∑

m=0

(1 − k)m
m!

(1 − k)m
(2 − 2k)m

(1 − |z|2)m

where (x)m is rising factorial or Pochammer symbol defined by

(x)m =

{

1, m = 0,

x(x + 1) · · · (x + m− 1), m > 1.

This last sum is the hypergeometric function 2F1(1 − k, 1 − k; 2 − 2k; 1 − |z|2). By
formula (18) in section 2.9 of [3] we have

2F1(1 − a, 1 − b; 2 − c; z) = (1 − z)b−1
2F1(a + 1 − c, 1 − b; 2 − c; z/(z − 1)).
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On applying this the result follows.

5. Moments of Rademacher variables: Proof of Theorem 4

5.1. A contour integral representation for the norm. Note that E [Yn1 · · ·Yn2k
] =

1 if n1 · · ·n2k is a square number and ni is square-free for i = 1, . . . , 2k, and otherwise
it equals zero. Therefore we have

E

[

∣

∣

∣

∣

∑

n≤x

Yn

∣

∣

∣

∣

2k
]

=
∑

n1···n2k square
nj≤x

|µ(n1)| · · · |µ(n2k)|.

As earlier we invoke the condition nj ≤ x in each j by using (17) with y = x/nj . For
each j we integrate along the lines bj = 2. This gives

E

[

∣

∣

∣

∣

∑

n≤x

Yn

∣

∣

∣

∣

2k
]

=
∑

n1···n2k square
|µ(nj)|=1

1

(2πi)2k

∫

(b2k)

· · ·
∫

(b1)

2k
∏

j=1

(

x

nj

)sj dsj
sj

=
1

(2πi)2k

∫

(b2k)

· · ·
∫

(b1)

Fk(s1, . . . , s2k)

2k
∏

j=1

xsj
dsj
sj

(32)

where

Fk(z1, . . . , z2k) =
∑

n1···n2k square

|µ(n1)| · · · |µ(n2k)|
ns1
1 · · ·ns2k

2k

.

Since the condition n1 · · ·n2k being square is multiplicative we may express Fk(z) as
an Euler product:

Fk(z1, . . . , z2k) =
∏

p

∑

m1+···+m2k even
06mj61

1

pm1z1+···m2kz2k

=
∏

p

(

1 +
∑

1≤i<j≤2k

1

pzi+zj
+ O

(

∑ 1

pzi1+···+zi4

)

)

=Bk(z1, . . . , z2k)
∏

1≤i<j≤2k

ζ(zi + zj)

where

Bk(z1, . . . , z2k) =
∏

p

[

∏

1≤i<j≤2k

(

1 − 1

pzi+zj

)

]

·
∑

m1+···+m2k even
06mj61

1

pm1z1+···+m2kz2k
.
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Similarly as in the proof of Theorem 1 we get that Bk(z) is an absolutely convergent
product provided ℜ(zi + zj) > 1/2 for 1 ≤ i < j ≤ 2k.

Now we make the substitution sj 7→ sj + 1/2 for j = 1, . . . , 2k in the second line
of (32) to get

E

[

∣

∣

∣

∣

∑

n≤x

Yn

∣

∣

∣

∣

2k
]

= xk 1

(2πi)2k

∫

(b′1)

· · ·
∫

(b′2k)

Gk(s1, . . . , s2k)
∏

1≤i<j≤2k

1

si + sj

2k
∏

j=1

xsj
dsj

sj + 1
2

where we define

Gk(z1, . . . , z2k) = Bk(s1 + 1/2, . . . , s2k + 1/2)
∏

1≤i<j≤2k

ζ(1 + si + sj)(si + sj).

The function Gk(z) is analytic in the region ℜ(zi + zj) > −1/2 for 1 ≤ i < j ≤ 2k,
and Gk(0, . . . , 0) = Bk(1/2, . . . , 1/2). Finally we make the substitution sj 7→ sj/L
for j = 1, . . . , 2k to get

xkL2k2−3k 1

(2πi)2k

∫

· · ·
∫

Gk(s1/L, . . . , S2k/L)
∏

1≤i<j≤2k

1

si + sj

2k
∏

j=1

esj
dsj

sj/L + 1
2

.

Shift the lines of integration to be independent of L, say back to ℜ(sj) = 2 for
j = 1, . . . , 2k and truncate each line at height T = o(L). Computing the Taylor
expansions and then taking the limit as L → ∞ gives

E

[

∣

∣

∣

∣

∑

n≤x

Yn

∣

∣

∣

∣

2k
]

∼ b(k)22kxkL2k2−3kγ(k)

where b(k) = Bk(1/2, . . . , 1/2) is the arithmetic factor given in (13) and γ(k) is the
integral given by (14).

6. Moments of the truncated characteristic polynomial in the

special orthogonal case: Proof of Theorem 5

6.1. A formula for the expectation. As for the U(N) case we begin by expressing
the expectation as a multiple contour integral.

Proposition 4. Let k ∈ N, L > 1. Then for all z ∈ R and N ≥ kL we have

ESO(2N)

[

ΛL(z)2k
]

=
1

(2πi)2k

∫

· · ·
∫

(u1 · · ·u2k)
−L

∏

1≤i<j≤2k(1 − z2uiuj)

2k
∏

j=1

duj

uj(1 − uj)

where the integration is around small circles of radii less than min(|z|−1, 1).
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To prove this we must use an alternative method to before since there is no anal-
ogous result of Diaconis–Gamburd [8] for the special orthogonal group. Instead, we
use the following result of Conrey-Farmer-Keating-Rubinstein-Snaith.

Theorem ([6]). Let dµ denote the Haar measure on SO(2N). Then for m > 1 we

have
∫

SO(2N)

Λ(w1) · · ·Λ(wm)dµ =

wN
1 · · ·wN

m





∑

ǫj∈{1,−1}

(

m
∏

j=1

w
Nǫj
j

)

∏

1≤i<j≤m

1

1 − w−ǫi
i w

−ǫj
j



 .

To begin with, we use the integral

(33)
1

2πi

∫

(c)

eY sds

s
=

{

1, Y > 0

0, Y < 0
(c > 0)

to write

ΛL(z) =
1

2πi

∫

(c)

Λ(ze−s)eLs
ds

s

for each of the factors ΛL(z). Pushing through the expectation then gives

ESO(2N)

[

ΛL(z)2k
]

=
1

(2πi)2k

∫

(c2k)

· · ·
∫

(c1)

E

[

2k
∏

i=1

Λ(ze−si)

]

2k
∏

i=1

eLsi
dsi
si

where, for reasons that will become apparent, we take c1 > c2 > · · · > c2k >
max{0, log |z|} and ci − ci−1 > 2 log |z| for i = 2, . . . , 2k. Using the theorem with
wi = ze−si for i = 1, . . . , 2k then gives

ESO(2N)

[

ΛL(z)2k
]

=
∑

ǫj∈{1,−1}

1

(2πi)2k

∫

(c2k)

· · ·
∫

(c1)

|z|2Nk

(

2k
∏

i=1

zNǫie−Nǫisi

)

×

×
∏

1≤i<j≤2k

1

1 − z2eǫisi+ǫjsj

2k
∏

j=1

e(L−N)sj
dsj
sj

.

We would like to show that any term with ǫj = 1 for some j ∈ {1, . . . , 2k} gives
zero contribution. To this end, let n = min{j ∈ {1, . . . , 2k} : ǫj = 1}. When
integrating over s1, . . . , sn−1 we only need to keep track of the highest power of esn .
For the s1 integral, write

1

1 − z2e−s1+ǫjsj
=
∑

m≥0

z2mem(−s1+ǫjsj)
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for j = 2, . . . , 2k. Using (33) we see that m ≤ L in each sum, so the highest possible
contribution of powers of esn is eLsn. Further, as ǫ2 = · · · = ǫn−1, this integral
contributes a nonpositive power of es2 , . . . , esn−1.

Continuing in this fashion and integrating s2, . . . , sn−1, we deduce that one is left
with

1

(2πi)2k−n+1

∫

(c2k)

· · ·
∫

(cn+1)

(

∫

(cn)

2k
∏

j=n+1

1

1 − z2esn+ǫjsj
e(L−2N)sn

(

e(n−1)Lsn + · · ·
) dsn
sn

)

×

×
(

2k
∏

j=n+1

zNǫje(L−N−Nǫj)sj

)

∏

n+1≤i<j≤2k

1

1 − z2eǫisi+ǫjsj

2k
∏

j=n+1

dsj
sj

multiplied by some power of z, where the additional terms in
(

e(n−1)Lsn + · · ·
)

are
all lower powers of esn . For the innermost integral, expanding the factors in power
series gives

1

2πi

∫

(cn)

2k
∏

j=n+1

1

1 − z2esn+ǫjsj
e(L−2N)sn

(

e(n−1)Lsn + . . .
) dsn
sn

=
1

2πi

∫

(cn)

(

2k
∏

j=n+1

z−2e−sn−ǫjsj
∑

m≥0

x−2me(−sn−ǫjsj)m

)

e(L−2N)sn
(

e(n−1)Lsn + . . .
) dsn
sn

.

The highest possible power of esn amongst all terms is e(2k−n+(n−1)L+L−2N)sn which
is negative for N ≥ Lk and L > 1. By (33) all terms are thus zero.

This leaves

ESO(2N)

[

ΛL(z)2k
]

=
1

(2πi)2k

∫

(c2k)

· · ·
∫

(c1)

∏

1≤i<j≤2k

1

1 − z2e−si−sj

2k
∏

j=1

eLsj
dsj
sj

.

In order to arrive at the contour integral, we expand each factor of the product as

1

1 − z2e−si−sj
=
∑

mij≥0

z2mije(−si−sj)mij .

Separating the integrals and using (33) then gives

ESO(2N)

[

ΛL(z)2k
]

=
∑

(mij )2ki,j=1∈Ak(L)

z2
∑

1≤i<j≤2k mij

where

Ak(L) =

{

(mij) ∈ Z
k(2k−1)
≥0 :

i−1
∑

j=1

mji +

2k
∑

j=i+1

mij ≤ L, i = 1, . . . , 2k

}

.
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As for U(N) we invoke the conditions
∑

mij ≤ L with the formula (26), giving

ESO(2N)

[

ΛL(z)2k
]

=
∑

mij≥0

z2
∑

1≤i<j≤2k mij
1

(2πi)2k

∫

|u2k|=ε2k

· · ·
∫

|u1|=ε1

×

u
m12+m13+···+m1,2k−L
1 u

m12+m23+···+m2,2k−L
2 · · ·um1,2k+m2,2k+···+m2k−1,2k−L

2k

2k
∏

j=1

duj

uj(1 − uj)
.

On collecting like powers and computing the geometric series we aquire Proposition
4.

6.2. Asymptotics for the multiple contour integral. Denote the integral in
Proposition 4 by I. Again we perform manipulations similar to those in section 4.2.

Let uj 7→ |z|−1uj for j = 1, . . . , 2k. Then

I =
x2k log |z|

(2πi)2k

∫

· · ·
∫

(u1 · · ·u2k)−L

∏

1≤i<j≤2k(1 − uiuj)

2k
∏

j=1

duj

uj(1 − |z|−1uj)
.

Next, let uj 7→ u
1/L
j for j = 1, . . . , 2k. This gives

I =
x2k log |z|

(2πi)2k

∫

· · ·
∫

(u1 · · ·u2k)
−1

∏

1≤i<j≤2k(1 − (uiuj)1/L)

2k
∏

j=1

duj

Luj(1 − |z|−1u
1/L
j )

which can be expressed as

I

x2k log |z|L2k2−3k
=

1

(2πi)2k

∫

· · ·
∫

(u1 · · ·u2k)
−1

∏

1≤i<j≤2k L(1 − (uiuj)1/L)

2k
∏

j=1

duj

uj(1 − |z|−1u
1/L
j )

.

Here, the contours wind around the origin L times. We now choose the radii of the
contours to be independent of L and then write the integral in parametrised form.
Upon taking the limit as L → ∞ and pushing the limit through the integrals we
acquire

I ∼ x2k log |z|L2k2−3k

(1 − |z|−1)2k
γ(k)

where γ(k) is given by (14).

7. Concluding remarks

Admittedly, our evidence for Conjecture 1 is rather weak and there is a certain
level of ambiguity in choosing the size N of the matrices. However, it is interesting
that for our choice of N = log x the random matrix expectation seems to capture the
phase change that we expect to see from the expectation of the Steinhaus variables.
Indeed, if the conjecture holds for k = 1/2, then we can obtain the order of magnitude
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predicted by the conjecture for 0 6 k 6 1 using Hölders inequality since we know
the value at k = 1. Also, it seems a little strange, but not impossible, that one could
obtain more than square-root cancellation in the case k = 1/2 as conjectured by
Helson.

Finally, we note the following argument taken from [5] which gives an upper bound
on the Steinhaus expectation for k = 1/2. Let 0 6 u, v < 1 and let Sx =

∑

n6xXn.
By the Cauchy–Schwarz inequality we have

E
[

|Sx|
]2

6E
[

|(1 − uX2)(1 − vX3)Sx|2
]

· E
[

|(1 − uX2)(1 − vX3)|−2
]

=
1

(1 − u2)(1 − v2)
E
[

|(1 − uX2)(1 − vX3)Sx|2
](34)

Now,

E
[

|(1 − uX2)(1 − vX3)Sx|2
]

=E

[

(

1 − 2uℜ(X2) + u2 − 2vℜ(X3) + 4uvℜ(X2)ℜ(X3) − 2u2vℜ(X3)

+ v2 − 2uv2ℜ(X2) + u2v2
)

|Sx|2
]

∼x
(

1 − u + u2 − 2
3
v + 2

3
uv − 2

3
u2v + v2 − uv2 + u2v2

)

.

(35)

In this last line we have expanded the square of Sx and used

E

[

∑

m,n≤x

XamXbn

]

=
∑

am=bn
m,n6x

1 ∼ 1

ab
x.

For 0 6 u, v < 1, the minimum of the function

f(x, y) =
1 − u + u2 − 2

3
v + 2

3
uv − 2

3
u2v + v2 − uv2 + u2v2

(1 − u2)(1 − v2)

is found to be ≈ 0.8164965809.... Taking square roots gives

E
[

|Sx|
]

6 (1 + o(1)) · 0.903...
√
x.

Of course, further optimisations may prove to disprove conjecture (12).
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Chapter 3

Derivation of Theorem 1:
taking the limit as L → ∞

3.1 Outline

In the proof of Theorem 1 in the article, we say that we truncate the integrals
at height T = o(L), which then makes it safe to take the limit as L → ∞.
This gives equation (24) in the article. In this chapter a similar truncation
and the resulting limit are performed in full detail by using Taylor series,
which gives an explicit error term. In the rest of this chapter, set L = log x.

Define

Ik(x) =
x(1−2σ)k

(2πi)2k

∫

(b2k)

· · ·
∫

(b1)

Ak(σ+s1, . . . , σ+sk, 1−σ+sk+1, . . . , 1−σ+s2k)

k
∏

i=1

2k
∏

j=k+1

ζ(1 + si + sj)
k
∏

j=1

xsj
dsj
sj

2k
∏

j=k+1

xsj
dsj

sj + 1 − 2σ
(3.1)

with b1 = ǫ < 1 − 2σ and bj = 2 for j = 2, · · · , 2k and

Ak(z1, · · · , z2k) =
∏

p

[

k
∏

i=1

2k
∏

j=k+1

(

1 − 1

pzi+zj

)

]

·
∑

m1+...+mk
=mk+1+···+m2k

1

pm1z1+···+m2kz2k
.

(3.2)
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Referring to equation (22) in the article this gives

E

[

∣

∣

∣

∑

n≤x

Xn/n
σ
∣

∣

∣

2k
]

= Ik(x). (3.3)

The goal is to show that this is asymptotically equal to a(k)g(k)x(1−2σ)kL(k−1)2 ,
where a(k) is the usual arithmetic factor

a(k) =
∏

p

(

1 − 1

p

)k2 ∞
∑

m=0

dk(pm)2

pm
, (3.4)

dk(n) =
∑

n1···nk=n 1 is the k-fold divisor function, and

g(k) =
1

(2πi)2k

∫

(b2k)

· · ·
∫

(b2)

(
∫

(b1)

ds1
sk1(1 − 2σ − s1)k

)

×
k
∏

i=2

2k
∏

j=k+1

1

si + sj
es2+···s2k

k
∏

j=2

dsj

2k
∏

j=k+1

dsj
sj

. (3.5)

Substitute sj 7→ sj + s1 for j = 2, . . . , k and sj 7→ sj − s1 for j =
k + 1, . . . , 2k. The necessity of this substitution will become clear when
computing the error term from the truncation. This gives

Ik(x) =
x(1−2σ)k

(2πi)2k

∫

(c2k)

· · ·
∫

(c2)

∫

(b1)

Ak(σ + s1, σ + s2 + s1, . . . , σ + sk + s1, 1− σ + sk+1 − s1, . . . , 1− σ + s2k − s1)

k
∏

i=2

2k
∏

j=k+1

ζ(1 + si + sj)
2k
∏

j=k+1

ζ(1 + sj)
ds1
s1

k
∏

j=2

xsjdsj
sj + s1

2k
∏

j=k+1

xsjdsj
sj + 1 − 2σ − s1

(3.6)

where cj = bj − b1 = 2 − ǫ for j = 2, . . . , k and cj = bj + b1 = 2 + ǫ for
j = k + 1, . . . , 2k.

From here the first step is to cut the integrals over s2, . . . , s2k at some
height T = C. Then the correct power of L is extracted by substituting
sj 7→ sj/L for j = 2, . . . , 2k. Because the integrals are cut at an appropriate
height one can express the integrand as a Taylor series to get the leading
order term.
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3.2 Truncation error

The integrals in (3.1) are not absolutely convergent, so one can therefore not
bound the truncation error directly. Instead the same smoothing technique as
in [4, Chapter II.5] and [1] is used. Namely, we first integrate the expression
for Ik(x) with respect to x, then cut the integrals at the desired height and
finally take the derivative with respect to x.

Integrating with respect to x gives

∫ x

0

Ik(t)dt =
1

(2πi)2k

∫

(c2k)

· · ·
∫

(c2)

∫

(b1)

Ak(. . . )
k
∏

i=2

2k
∏

j=k+1

ζ(1 + si + sj)

2k
∏

j=k+1

ζ(1 + sj)
x1+(1−2σ)k+s2+···+s2k

1 + (1 + 2σ)k + s2 + · · · + s2k

ds1
s1

k
∏

j=2

dsj
sj + s1

2k
∏

j=k+1

dsj
sj + 1 − 2σ − s1

. (3.7)

At this point, one would like to cut the integrals over s2, . . . , s2k at some
height T = C. In order to avoid a too high error term from the fac-
tor x1+(1−2σ)k+s2+···+s2k one first has to shift the lines of integration over
s2, · · · , s2k to dj = 2L−1, which can be done, as the integrals are absolutely
convergent. The error terms after cutting the integrals at height C will be
of the form

∫

(d2k)

· · ·
∫ dj+i∞

dj+iC

· · ·
∫

(d2)

∫

(b1)

(· · · ) (3.8)

and
∫

(d2k)

· · ·
∫ dj−iC

dj−i∞

· · ·
∫

(d2)

∫

(b1)

(· · · ) (3.9)

for j = 2, · · · , 2k, with the integrand the same as in (3.7).
In order to bound these error terms the following estimates will be used

to bound the zeta function terms. The Laurent series of ζ(1 + s) is given by
[2, Formula (2.1.16)]

ζ(1 + s) =
1

s
+ γ + O(|s|) (3.10)

where γ is Euler’s Gamma constant. This will be used for |s| ≤ C, which
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gives ζ(1 + s) = 1
s

+ O(1). For |s| near zero it will be used that

ζ(1 + s) =
∞
∑

n=1

1

n1+s
≪

∞
∑

n=1

1

n1+σ
≪ 1

σ
. (3.11)

The last relation in the above can be shown using e.g. Euler summation [3,
p. 54].

For |s| large, the following theorem is used.

Theorem 3.1 (Theorem 3.5 in [2]). We have

ζ(s) = O(log |t|) (3.12)

uniformly in the region

1 − A

log t
≤ σ ≤ 2 (t > t0)

where A is any positive constant and t0 is a fixed constant.

Note that there exist stronger results for the region σ > 1, to which this
will be applied, in e.g. [6]. As such an improvement will not have any effect
on the order of the error term, the bound in (3.12) is sufficient.

It is instructive to consider three different cases before computing the
full error. First, consider the integral (3.8) integrated only over those regions
where |ti+tj| > t0 and |tj| > t0 for i = 2, . . . , k and j = k+1, . . . , 2k. Bound-
ing |x1+(1−2σ)k+s2+···+s2k | = x1+(1−2σ)k+d2+···+d2k ≪ x1+(1−2σ)k and Ak(. . . ) ≪
11, and using Theorem 3.1 for all zeta-terms gives that this is

≪ x(1−2σ)k+1

∫

· · ·
∫ k
∏

i=2

2k
∏

j=k+1

log |ti + tj|
2k
∏

j=k+1

log |tj|

1

|1 + s2 + · · · + s2k|
|ds1|
|s1|

k
∏

j=2

|dsj|
|sj + s1|

2k
∏

j=k+1

|dsj|
|sj + 1 − 2σ − s1|

. (3.13)

The remaining integral can be bounded independently of x, as b1 = ǫ is
independent of x. The integral converges in the mentioned region, giving an
error O(x1+(1−2σ)k).

1See the discussion after Equation (19) in the article
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Next, consider the region where L−a ≤ |t2 + t2k| ≤ t0, and |ti + tj| > t0,
|tj| > t0 for all other values of i, j. Further, assume |tj − t2k| > t0 for
j = k + 1, . . . , 2k − 1. The integral over s2 is then of length less than
t0 = O(1). For the factor ζ(1 + s2 + s2k), (3.10) is used to give

ζ(1 + s2 + s2k) ≪ 1

|s2 + s2k|
≪ 1

|t2 + t2k|
≪ La,

and for the other zeta terms the bound in Theorem 3.1 is used as before.
When integrating over s2 in this region one can essentially use the M-L
inequality to replace all instances of s2 by −s2k and multiply by the length
of the integral. This leaves an error

≪ x1+(1−2σ)kLa

∫

· · ·
∫ k
∏

i=3

2k
∏

j=k+1

log |ti + tj|
2k
∏

j=k+1

log |tj|
2k−1
∏

j=k+1

log |tj − t2k|

1

|1 + (1 − 2σ)k + s3 + · · · + s2k−1|
1

|s1 − s2k|
|ds1|
|s1|

k
∏

j=3

|dsj|
|sj + s1|

2k
∏

j=k+1

|dsj|
|sj + 1 − 2σ − s1|

(3.14)

where the integral converges in the mentioned region, and is independent of
x once more, to give an error O(x1+(1−2σ)kLa).

Thirdly, consider the region where |t2 + t2k| ≤ L−a and |ti + tj| > t0,
|tj| > t0, |tj − t2k| > t0 as before. Using (3.11) gives ζ(1 + s2 + s2k) ≪ L in
this region. When integrating over s2 the M-L inequality is used again, to give
something very similar to (3.14), except that the length over the s2-integral
is O(L−a). This gives an error O(x1+(1−2σ)kLL−a) = O(x1+(1−2σ)kL1−a).

One could continue like this to bound each region separately, but it is
clear that the above three tricks should cover everything. Depending on our
choice of a, the largest error term will occur in one of the following cases.

(i) |ti + tj| ≤ L−a and |tj| ≤ L−a for as many as possible terms.

(ii) L−a ≤ |ti + tj| ≤ t0 and L−a ≤ |tj| ≤ t0 for as many as possible terms.

So far it hasn’t been specified which integral is being truncated, so assume
that the s2-integral is cut. This gives that |t2| > C, and choosing C = 2t0
gives |t2| > 2t0. It is clearly not possible to have |t2 + tj| ≤ t0 and |tj| < t0 at
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the same time as |t2| > 2t0. This gives that there are at most k2 − k ζ-terms
that contribute a factor L in the first case, and a factor La in the second
case. The remaining k ζ-terms can be bounded by Theorem 3.1.

In the first case, the integrals over s3, · · · , s2k are each of length O(L−a),
and the M-L inequality will give 2k − 2 factors L−a. In the second case
each of these 2k − 2 integrals are of length O(1). In both cases the final
integrals over s1, s2 are convergent and can be bounded independently of x.
Combining this gives an error

O
(

x1+(1−2σ)k
(

La(k2−k) + Lk2−k−2a(k−1)
))

.

The leading order term for the full integral will be of order O
(

x1+(1−2σ)kL(k−1)2
)

,

so one needs to choose a in such a way that

a(k2 − k) < (k − 1)2,

k2 − k − 2a(k − 1) < (k − 1)2.
(3.15)

The first requirement reduces to a ≤ 1 − 1
k

and the second requirement
reduces to a > 1

2
. Choosing e.g a = 3

5
then gives a lower order error for

k ≥ 3.
The above gives a bound for the error introduced from cutting the s2-

integral. Similarly, the truncation error from the integrals over s3, . . . , s2k
can be bounded, to give

∫ x

0

Ik(t)dt =
1

(2πi)2k

∫ d2k+iC

d2k−iC

· · ·
∫ d2+iC

d2−iC

∫

(b1)

Ak(. . . )
k
∏

i=2

2k
∏

j=k+1

ζ(1+si+sj)

2k
∏

j=k+1

ζ(1+sj)
x1+(1−2σ)k+s2+···+s2k

1 + (1 − 2σ)k + s2 + · · · + s2k

ds1
s1

k
∏

j=2

dsj
sj + s1

2k
∏

j=k+1

dsj
sj + 1 − 2σ − s1

+ O
(

x1+(1−2σ)kLa(k2−k) + x1+(1−2σ)kLk2−k−2a(k−1)
)

(3.16)
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3.3 Taylor series

The next step is to expand the integrand in (3.16) as a Taylor series in L.
In order to do this, substitute sj 7→ sj/L for j = 2, . . . , 2k. This gives

∫ x

0

Ik(t)dt =
x1+(1−2σ)kL(k−1)2

(2πi)2k

∫ b2k+iT

b2k−iT

· · ·
∫ b2+iT

b2−iT

∫

(b1)

Ak(σ+s1, σ−s1+s2/L, . . . , σ−s1+sk/L, 1−σ−s1+sk+1/L, . . . , 1−σ−s1+s2k/L)

k
∏

i=2

2k
∏

j=k+1

1

Lζ

(

1 +
si + sj

L

) 2k
∏

j=k+1

1

Lζ
(

1 +
sj
L
)

es2+···+s2k

1 + (1 − 2σ)k + s2+···+s2k
L

ds1
s1

k
∏

j=2

dsj
sj
L

+ s1

2k
∏

j=k+1

dsj
sj
L

+ 1 − 2σ − s1

+ O
(

x1+(1−2σ)kLa(k2−k) + x1+(1−2σ)kLk2−k−2a(k−1)
)

where bj = 2 for j = 2, . . . , 2k as before, and T = CL.
As T = O(L) one can use (3.10) to get 1

L
ζ(1+(si+sj)/L) = 1

si+sj
+O

(

1
L

)

and 1
L
ζ(1 + sj/L) = 1

sj
+ O

(

1
L

)

for i = 2, . . . , k and j = k + 1, . . . , 2k. The

remaining terms in the integrand are all nicely bounded as L → ∞, so
replacing 1

L
ζ(1 + (si + sj)/L) by 1

si+sj
everywhere, and 1

L
ζ(1 + sj/L) by 1

sj

everywhere introduces an error O(x1+(1−2σ)kL(k−1)2−1).
For Ak(· · · ) one has that limL→∞ Ak(σ + s1, σ − s1 + s2/L, . . . , σ + s1 +

sk/L, 1−σ−s1 +sk+1/L, . . . , 1−σ−s1 +s2k/L) = Ak(σ+s1, · · · , σ+s1, 1−
σ − s1, · · · , 1 − σ − s1) = a(k) by (3.2) and (3.4). Expanding the remaining
terms that depend on L as a Taylor series in L−1 then gives

∫ x

0

Ik(t)dt =
a(k)x1+(1−2σ)kL(k−1)2

(1 + (1 − 2σ)k)(2πi)2k

∫ b2k+iT

b2k−iT

· · ·
∫ b2+iT

b2−iT

∫

(b1)

k
∏

i=2

2k
∏

j=k+1

1

si + sj

es2+···+s2k
ds1

sk1(1 − 2σ − s1)k

k
∏

j=2

dsj

2k
∏

j=k+1

dsj
sj

+ O
(

x1+(1−2σ)k
(

La(k2−k) + Lk2−k−2a(k−1) + L(k−1)2−1
))

. (3.17)

It now only remains to extend the integrals back to the full vertical lines,
and then take the derivative with respect to x. Extending the integrals
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back to their full height gives error terms of the form (3.8)-(3.9), where the
integrand is equal to the integrand in (3.17), the truncation is at height T
instead of C, and one has ℜsj = bj = 2 instead of ℜsj = 2

L
for j = 2, . . . , 2k.

In order to bound these terms, one essentially uses that 1
|si+s|

≪ 1
|σi+σj |+|ti+tj |

and then treats the cases |ti+tj| < |σi+σj| = O(1) and |ti+tj| > |σi+σj| sep-
arately. In all cases one gets an error of lower order than x1+(1−2σ)kL(k−1)−1,
so the integrals can be extended back to their full height.

3.4 Derivation with respect to x

Combining the definition of g(k) in (3.5) and the manipulations in the pre-
vious section gives

∫ x

0

Ik(t)dt =
x1+(1−2σ)k

1 + (1 − 2σ)k
L(k−1)2a(k)g(k)

+ O
(

x1+(1−2σ)k
(

L(k−1)2−1 + La(k2−k) + Lk2−k−2a(k−1)
))

. (3.18)

Using (3.18) with x + h and x, and subtracting, one arrives at

∫ x+h

x

Ik(t)dt =
(x + h)1+(1−2σ)k

1 + (1 − 2σ)k
(log(x + h))(k−1)2a(k)g(k)

− x1+(1−2σ)k

1 + (1 − 2σ)k
(log x)(k−1)2a(k)g(k)

+ O
(

x1+(1−2σ)k
(

L(k−1)2−1 + La(k2−k) + Lk2−k−2a(k−1)
))

, (3.19)

where h is chosen in such a way that h = O(x). Then, using

f(x + h) − f(x) = hf ′(x) + h2

∫ 1

0

(1 − t)f ′′(x + th)dt (3.20)

with f(x) = x1+(1−2σ)k

1+(1−2σ)k
L(k−1)2a(k)g(k) gives

∫ x+h

x

Ik(t)dt = a(k)g(k)hx(1−2σ)kL(k−1)2

+O
(

x1+(1−2σ)k
(

L(k−1)2−1 + La(k2−k) + Lk2−k−2a(k−1)
))

+O
(

h2x(1−2σ)k−1L(k−1)2
)
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and then

Ik(x) = a(k)g(k)x(1−2σ)kL(k−1)2 + O
(

hx(1−2σ)k−1L(k−1)2 + h−1L
)

+ O
(

h−1x1+(1−2σ)k
(

L(k−1)2−1 + La(k2−k) + Lk2−k−2a(k−1)
))

, (3.21)

with L =
∫ x+h

x
|Ik(t) − Ik(x)|dt.

At this point it is needed that Ik is increasing in x. To see this, expand
the powers on the left in (3.3) and push the expectation through. This is
then a multiple sum of non-negative terms. The terms are non-negative
because E

∏

i Xi

∏

i X i is either 0 or 1 for finite products (see Section 1.3.1).
Increasing x then adds more terms, so Ik(x) ≤ Ik(y) if x ≤ y. Therefore,

∫ x+h

x

|Ik(t) − Ik(x)|dt ≤
∫ x+h

x

Ik(t)dt−
∫ x

x−h

Ik(t)dt,

and if one uses (3.20) and similarly

f(x) − f(x− h) = hf ′(x) − h2

∫ 1

0

(1 − t)f ′′(x− th)dt

for f(x) = x1+(1−2σ)k

1+(1−2σ)k
(log x)(k−1)2a(k)g(k) together with (3.19), one then gets

L ≪ x1+(1−2σ)k
(

L(k−1)2−1 + La(k2−k) + Lk2−k−2a(k−1)
)

+ h2x(1−2σ)k−1L(k−1)2 .

The term h−1L in (3.21) is then included in the other error terms. Finally,
choosing h = xL−1/2 gives

Ik(x) = a(k)g(k)x(1−2σ)k(log x)(k−1)2

+O
(

x(1−2σ)k
(

(log x)(k−1)2−1/2 + (log x)a(k
2−k)−1/2 + (log x)k

2−k−1/2−2a(k−1)
))

for 1
2
< a < 1 and k ≥ 1

1−a
. As mentioned previously, choosing e.g. a = 3

5

gives
Ik(x) ∼ a(k)g(k)x(1−2σ)k(log x)(k−1)2

for k ≥ 3. The case k = 1 can be easily computed and the case k = 2 has
been computed to a greater accuracy in [5], so it doesn’t matter that these
cases are lost here.
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3.5 Shifting the variables by s1

To get from (3.1) to (3.6) the substitutions sj 7→ sj + s1 for j = 2, . . . , k and
sj 7→ sj − s1 for j = k + 1, . . . , 2k were made. These substitutions might
have seemed somewhat unmotivated at the time, but the necessity of the
substitutions becomes clear when considering the error introduced in Section
3.2. Here it was essential that one couldn’t have |tj + ti| < t0 and |tj| < t0
for i = 2, . . . , k and j = k + 1, . . . , 2k all at the same time. This was ensured
by always cutting some integral at a height greater than t0.

If one tries to do the same things directly to the integral in (3.1), the
equivalent region contributing a large error will be |ti+tj| < t0 for i = 1, . . . , k
and j = k + 1, . . . , 2k. But even though some integral is cut, all of these
inequalities can be satisfied at once. This in turn results in an error term
larger than the main order term, so one doesn’t get any results from this.

3.6 Rademacher case

The derivation in the Rademacher case is very similar to the derivation in
the Steinhaus case, so it will not be repeated here in any greater detail than
presented in Section 5 of the article.

It is still worthwhile noting why the error term is small enough also in the
Rademacher case. As before, the main error term will come from all ζ-factors
being evaluated near zero. For the Rademacher expression this translates to
|ti + tj| < t0 for 1 ≤ i < j ≤ 2k. If one has |tj| > C = 2t0 for some j these
conditions can’t all be fulfilled at once, which makes the truncation possible.
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Chapter 4

Final comments

4.1 Higher accuracy

The results in theorems 1 and 4 in the article are both asymptotic results.
For Theorem 1 in the article an explicit error term is given in Chapter 3. In

[5], Ayyad–Cochrane–Zheng show that E

[

∣

∣

∣

∑

n≤x Xn

∣

∣

∣

4
]

= Ax2 log x+Bx2 +

o(x2) with explicit constants A and B. It is interesting to see if one could
obtain a similar polynomial for general k, i.e. something like

E

[

∣

∣

∣

∑

n≤x

Xn

∣

∣

∣

2k
]

= A(k−1)2x
2k(log x)(k−1)2 +A(k−1)2−1x

2k(log x)(k−1)2−1 + · · ·

· · · + A1x
2k log x + A0x

2k + o
(

x2k
)

(4.1)

for explicit constants Ai, i = 0, . . . , (k − 1)2, and a similar expression for
σ 6= 0.

If one follows the exact same procedure as in Chapter 3, with σ = 0, it is
not immediately clear how to be more precise for the truncation error in Sec-
tion 3.2, but for the Taylor series in Section 3.3 one could in principle include
more terms in the Taylor expansion to get a more precise result. If one were
to do this, the limit for the number of terms in the polynomial (4.1) will

come from the error O
(

x2k(log x)a(k
2−k)−1/2) + x2k(log x)k

2−k−1/2−2a(k−1)
)

.

Choosing a very close to 1, one sees that the best obtainable error term

is o
(

x2k(log x)k
2−3k+2

)

, which holds for k > 1
1−a

. Nevertheless, this means
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that one in principle could obtain the first k coefficients in (4.1) for large k,
by including more terms in the Taylor expansion.
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