
Improving on the Number Field Sieve

Per Kristian Ørke

Master of Science in Mathematics

Supervisor: Kristian Gjøsteen, MATH

Department of Mathematical Sciences

Submission date: May 2015

Norwegian University of Science and Technology

Abstract

We look at efficient methods for computing logarithms in finite fields of
any type. To achieve this, we first develop methods for factoring integers
and computing discrete logarithms in fields of prime order using algebraic
number theory. Then we show how this can be improved in the general
case.

Sammendrag

Vi studerer effektive metoder for å regne ut diskrete logaritmer i
vilk̊arlige, endelige kropper. For å oppn̊a dette, utvikler vi først metoder
for å faktorise heltall og regne ut diskrete logaritmer i primtallskropper
ved å benytte algebraisk tallteori. Deretter viser vi hvordan dette kan
forbedres i det generelle tilfellet.

1

Preface

During my year of writing this thesis, I have had limited contact with my super-
visor, Kristian Gjøsteen, due to his paternity leave. This has led to situations
in which I have been working on a certain problem for quite a long time, only to
realize the solution was completely trivial after talking to him for two minutes.
He was always able to understand my more or less vague questions, and in most
cases, he would immediately see the answer and guide me towards it. I am very
grateful for having such a nice supervisor.

Also deserving my gratitude are the graduates whose previous work on
the number field sieve I have built upon. Finally, I would like to thank the
Norwegian University of Science and Technology for offering me the opportu-
nity to study my favourite branch of science and and write this thesis.

2

Contents

1 Introduction 4

2 Algebraic theory 5
2.1 Number fields and number rings . 5
2.2 Dedekind domains . 6
2.3 Finite fields . 10
2.4 The norm . 11
2.5 First degree prime ideals . 12
2.6 The discriminant . 14
2.7 Module structure of number rings . 16

3 Factoring integers 18
3.1 General idea . 18
3.2 Sieving for smooth values . 19
3.3 Finding a square in Z . 20
3.4 Finding a square in Z[α] . 22

3.4.1 Exponent maps . 22
3.4.2 Quadratic characters . 25

3.5 The linear system . 26
3.6 The algorithm . 27
3.7 Complexity analysis . 28

4 Finding d-logs in fields of prime order 35
4.1 General idea . 35
4.2 Character maps . 37
4.3 The linear system . 39
4.4 The algorithm . 42
4.5 Some remarks . 42

5 Finding d-logs in more general finite fields 43
5.1 General idea . 43
5.2 Reducing the problem . 44
5.3 Logarithms of linear polynomials . 47
5.4 The algorithm . 48
5.5 Complexity analysis . 49

6 Concluding remarks 52

Bibliography 53

3

Chapter 1

Introduction

Several cryptographic systems and schemes are based on the assumptions that
integer factorization and discrete logarithm computation is far from trivial. A
standard example is the RSA cryptosystem, in which the public key contains
a product of large prime numbers. To break the system directly, one would
have to know the factorization. Similarly, the public key in the ElGamal cryp-
tosystem contains a group generator raised to a certain power, and one needs
to know the exponent, i.e. find the discrete logarithm, in order to decrypt.

A central objective in cryptography is therefore to analyze how difficult these
problems really are. If one can find polynomial time algorithms for factoring
integers and/or computing discrete logarithms, one would have to adjust these
cryptosystems or stop using them entirely. So trying to find the fastest such
algorithms possible is a vital part of modern cryptography.

Integer factorization and dicrete logarithm computation turn out to be closely
related, and some of the same algorithms can be used to attack both prob-
lems. In 1988, John Pollard introduced the number field sieve which exploits
algebraic number theory to factor integers faster than ever before. Daniel M.
Gordon adapted in 1992 the algorithm to the discrete logarithm problem for
prime fields, where it also became the fastest known method.

In 2013, Antoine Joux proposed a method for computing discrete logarithms
in fields of any order, which reduces the problem to computing certain discrete
logarithms in small underlying fields, and can therefore be built on top of the
number field sieve. The running time of this algorithm relative to the size of
the field was a significant improval of the prime case. In fact, it was later shown
that the algorithm could obtain so-called quasi-polynomial complexity in cer-
tain cases.

We will present and discuss all these algorithms in this thesis, along with
their theoretical foundations. We will also provide analyses of their complexities.

4

Chapter 2

Algebraic theory

This chapter will deal with algebraic concepts and theoretical mathematics that
will be necessary to understand the algorithms and proofs presented in later
chapters. All definitions and related results will be stated here and then re-
ferred to whenever needed.

Prerequisites for understanding this thesis is set theory, elementary num-
ber theory (modular arithmetic), linear algebra, basic abstract algebra (groups,
fields, rings, ideals, modules), some Galois theory and a certain amount of basic
calculus. We we will also assume knowledge of Zorn’s lemma.

2.1 Number fields and number rings
Let f ∈ Q[x] be a monic, irreducible polynomial of degree d, and assume α ∈ C
to be a root of f . Consider the field extension

Q[α] =
{
a0 + a1α+ . . .+ ad−1α

d−1 | ai ∈ Q ∀i
}

of the rational numbers. We will refer to this as a number field. An element
β ∈ Q[α] in a number field is an algebraic integer if there is a monic polynomial
g ∈ Z[x] such that β is a root of g.

Proposition 1. Let a
b ∈ Q with a, b ∈ Z and gcd(a, b) = 1 be an algebraic

integer. Then a
b ∈ Z.

Proof. Let

g(x) = xd
′
+
d′−1∑
i=0

cix
i

5

be the minimal polynomial of a
b over Z. We then have

g
(a
b

)
=
(a
b

)d′
+
d′−1∑
i=0

ci

(a
b

)i
= 0

=⇒
d′−1∑
i=0

ci
ai

bi
= −a

d′

bd′

=⇒
d′−1∑
i=0

cia
ibd
′−1−i = −a

d′

b

from multiplying each side by bd′−1. The left hand side is now a Z-linear com-
bination of elements in Z and is hence in Z, so the right hand side must also
be an integer. Since gcd(a, b) = 1, this implies b = ±1, which means that
a
b = ±a ∈ Z.

The collection of all algebraic integers in a number field Q[α] is denoted
OQ[α]. In other words, OQ[α] is the integral closure of Z in Q[α]. We will refer
to OQ[α] as a number ring, and it is in fact a subring of Q[α]. An important fact
about OQ[α] is that every non-zero proper ideal can be factored (uniquely) into
a product of prime ideals. This follows from the fact that the ring is a Dedekind
domain, a preperty we will now study in detail.

2.2 Dedekind domains
A Dedekind domain is an integral domain which is integrally closed, Noetherian
and in which every non-zero prime ideal is maximal. To show the unique factor-
ization property of Dedekind domains, we first need to establish a few lemmas.
We say that an ideal is pre-factorizable if it contains a product of non-zero prime
ideals and factorizable if it equals a product of prime ideals.

Lemma 2. Let D be a Dedekind domain. Then every non-zero ideal in D is
pre-factorizable.

Proof. Let M = {J ideal in D | J not pre-factorizable}. It is then sufficient
to show that this set is empty. We will assume that it is not and arrive at a
contradiction.

Observe that M is a poset under set inclusion. Let J1 ⊂ J2 ⊂ . . . be a chain
in M . Since D is Dedekind and hence Noetherian, there exists r such that
Jr = Jr+1 = . . ., this makes Jr an upper bound for the chain. Since every chain
then has an upper bound in M , Zorn’s lemma tells ut that M has a maximal
element A with respect to inclusion.

Clearly, A can not be a prime ideal, as it would then be trivially pre-
factorizable and not lie in M . Because of this, there must exist b1, b2 ∈ D

6

such that b1b2 ∈ A, but b1 6∈ A and b2 6∈ A. Otherwise, A would be prime by
definition. Let A1 = 〈b1〉 + A and A2 = 〈b2〉 + A. Clearly, we have A ⊂ A1
and A ⊂ A2, but there can not be equalities since b1 ∈ A1 and b2 ∈ A2, when
none of them were in A. Hence we have A (A1 and A (A2. But A was the
maximal element of M , so this must mean that A1 and A2 are not in M and
are therefore pre-factorizable. Say that

r∏
i=1

Pi ⊂ A1

s∏
j=1

Qj ⊂ A2

where Pi and Qj are prime ideals for all i and j.

We now claim that A1A2 ⊂ A. Let a1 ∈ A1 and a2 ∈ A2, i.e. there exists
c1, c2 ∈ D and a1

′, a2
′ ∈ A such that a1 = c1b1 + a1

′ and a2 = c2b2 + a2
′. Then

a1a2 = c1c2b1b2 + c2b2a1
′ + c1b1a2

′ + a1
′a2
′ ∈ A

since b1b2 ∈ A. This shows that A1A2 ⊂ A. Hence we have
r∏
i=1

Pi

s∏
j=1

Qj ⊂ A1A2 ⊂ A

and A is pre-factorizable, a contradiction since it is in M . We conclude that
M = ∅ and hence every ideal is pre-factorizable.

Lemma 3. Let D be a Dedekind domain and let P be a prime ideal in D. Let
K be the field of fractions of D and P ′ = {k ∈ K | kP ⊂ D}. Let I be an ideal
in D. Then IP ′ 6= I.

Proof. It is clear that D ⊂ P ′, but do we have equality? Let 0 6= a ∈ P . Lemma
2 tells us that 〈a〉 is pre-factorizable, so assume that

∏r
i=1 Pi ⊂ 〈a〉 where all

the Pi are prime ideals and the r is as small as possible.

Assume that Pi 6⊂ P ∀i. Then there exists ai ∈ Pi \ P for all i. But then

r∏
i=1

ai ∈
r∏
i=1

Pi ⊂ 〈a〉 ⊂ P ,

and since P is prime, there must be a j such that aj ∈ P . This is a contradic-
tion, so we know that there is a j such that Pj ⊂ P . Now, Pj is a prime ideal
and therefore maximal since D is a Dedekind domain. This means that P must
either be equal to Pj or the whole ring D. Since P is prime, we can conclude
that P = Pj .

7

Without loss of generality, we can assume that j = 1. Recall that r was
chosen as small as possible, therefore

∏r
i=2 Pi 6⊂ 〈a〉. So let b ∈ (

∏r
i=2 Pi) \ 〈a〉.

Consider the element b
a in K. This is not in D, since then we would have

a · ba = b ∈ 〈a〉, a contradiction. But

bP ⊂

(
r∏
i=2

Pi

)
P =

r∏
i=1

Pi ⊂ 〈a〉,

so for all p in P , there is a c in D such that bp = ca. Hence

b

a
· p = c ∈ D =⇒ b

a
P ⊂ D =⇒ b

a
∈ P ′

The conclusion is that D 6= P ′.

In a Noetherian ring, every ideal is finitely generated. So, since D is a
Dedekind domain, we have that I = 〈α1, . . . , αn〉 for some αi ∈ I. Now assume
that IP ′ = I, the opposite of what we are trying to show. Let k ∈ P ′. Then
kαi ∈ IP ′ = I ∀i, so we can express these elements using the set of generators:

kαi =
n∑
j=1

aijαj

where aij ∈ D ∀i, j. Define

δij =
{

1 if i = j

0 otherwise

and consider the matrix A =
(
kδij − aij

)
ij

where i and j range from 1 to n.
Then

A
(
αi
)
i

=
(
(k − aii)αi −

∑
j 6=i aijαj

)
i

=
(
kαi −

∑
j aijαj

)
i

=
(
kαi − kαi

)
i

=
(
0
)

From [4], we have that Bx = 0 =⇒ det(B)x = 0, so we have in our case that
det(A)αi = 0 ∀i. Since the αi are generators, they are non-zero, and since D is
an integral domain, we then have that det(A) = 0. Now consider the polyno-
mial g(X) = det

(
Xδij − aij

)
ij
∈ D[X], which is monic since X only appears

on the diagonal and never with any coefficient (other than 1) in front of it. We
have just shown that k is a root of this polynomial. Since D is integrally closed,
being a Dedekind domain, and k is the root of a monic polynomial over D, we
have that k ∈ D.

This means that P ′ ⊂ D and hence P ′ = D. But we have already seen that
this is not true, so we conclude that our assumption IP ′ = I was wrong.

8

We are ready for our main result concerning Dedekind domains.

Theorem 4. Let D be a Dedekind domain. Then every non-zero, proper ideal in
D is factorizable and its factorization into prime ideals is unique up to ordering.

Proof. We first prove existence of the factorization. Mirroring the idea from the
proof of Lemma 2, we consider the set M = {J ideal in D | J not factorizable},
which we assume is non-empty. The exact same argument gives us a maximal
element A, which again can not be a prime ideal. All ideals are contained in a
maximal ideal, so let P be a maximal (and therefore prime) ideal with A ⊂ P .

1P = P ⊂ D and therefore 1 ∈ P ′, so A ⊂ AP ′. Also, PP ′ ⊂ D by
definition of P ′. In total, we have A ⊂ AP ′ ⊂ PP ′ ⊂ D. The second inclusion
is clearly strict, and from Lemma 3, we also have that the first inclusion is. So
we have A (AP ′ (D. Since A was the maximal element of M , this means
that AP ′ 6∈M . It is therefore factorizable, so assume

AP ′ =
r∏
i=1

Pi

Lemma 3 also tells us that P 6= PP ′. But clearly P ⊂ PP ′, so P (PP ′. Note
that PP ′ is an ideal in D. Since P was a maximal ideal, this means that we
must have PP ′ = D. But then

A = AD = APP ′ = P

r∏
i=1

Pi,

and hence A is factorizable, a contradiction. We conclude that M = ∅ and
hence every ideal is factorizable.

To prove uniqueness, assume that an ideal I has two factorizations

I =
r∏
i=1

Pi =
s∏
j=1

Qj ,

where Pi and Qj are prime ideals for all i and j. Assume without loss of
generality that r ≤ s. Using the properties of prime ideals, we get

r∏
i=1

Pi =
s∏
j=1

Qj ⊂ Q1 =⇒ P1 ⊂ Q1 or
r∏
i=2

Pi ⊂ Q1 =⇒ . . .

=⇒ P1 ⊂ Q1 or . . . or Pr ⊂ Q1

So assume without loss of generality that P1 ⊂ Q1. Every prime ideal in D is
maximal, so P1 is a maximal ideal. The inclusion then means that Q1 is equal
to either P1 or D, but since Q1 is prime, we must have P1 = Q1.

9

Now, mutiplying the two factorizations with P ′1, we get

P ′1

r∏
i=1

Pi = P ′1

s∏
j=1

Qj =⇒ P ′1P1

r∏
i=2

Pi = P ′1P1

s∏
j=2

Qj =⇒
r∏
i=2

Pi =
s∏
j=2

Qj

since P ′1P1 = D. We can continue eliminating prime ideals using the same
argument until we are left with Pr =

∏s
j=r Qj Assume that r < s. Then we can

use the argument again and multiply by P ′r to obtain

P ′rPr = P ′rPr

s∏
j=r+1

Qj =⇒ D =
s∏

j=r+1
Qj ,

an impossibility. Hence r = s. We have also shown that Pi = Qi for all i after
reordering. Therefore, the factorization is unique.

The important observation for us is that OQ[α] is a Dedekind domain. For
a proof of this, see [4]. This allows us to talk about factorization of ideals in
OQ[α] and also the concept ramification. Let p be a prime and

pOQ[α] =
∏
i

P fii

be the factorization of the ideal generated by p into prime ideals Pi. We say
that p is unramified if fi = 1 for all i, i.e. the ideal is ”square-free”.

2.3 Finite fields
Before proceeding with our number rings, we need to mention some topics on
finite fields. To perform computations in a finite field, we need to have a model
for it. For prime fields Fp we will use Zp, the integers modulo p with addition
and multiplication modulo p. For fields on the form Fpk , we will use the model
we already have for Fp together with an irreducible polynomial P over Fp[x] to
form the model Fp/〈P 〉. The context will decide whether we refer to the field
or the model throughout this thesis.

Given a finite field Fn, define the projective line P1(Fn) to be the set

P1(Fn) =
(
F2
n \ {(0, 0)}

)
/ ∼ ,

where (a, b) ∼ (c, d) ⇐⇒ ∃f ∈ F∗n such that (a, b) = f(c, d). Note that
{(f, 1)}f∈Fn ∪ {(1, 0)} is a set of representatives for P1(Fn). We will call this
representation the homogenous coordinates of P1(Fn). Consequently, we have
that

∣∣P1(Fn)
∣∣ = n+ 1.

10

Proposition 5. Let q be a prime and let {(α, β)} be the homogenous coordinates
of P1(Fq). Then the following equality holds in any field of cardinality q:

XY q −XqY =
∏

(α,β)

(βX − αY) (2.1)

Proof. Recall that
Xq −X =

∏
f∈Fq

(X − f)

Replacing X with X
Y , we obtain(

X

Y

)q
− X

Y
=
∏
f∈Fq

(
X

Y
− f

)

Multiplying each side by −Y q+1, we get

XY q −XqY = −Y
∏
f∈Fq

(X − fY)

= (0X − 1Y)
∏
f∈Fq

(1X − fY)

=
∏

(α,β)∈P1(Fq)

(βX − αY)

2.4 The norm
A concept that will be of great importance in the discussion of our algorithms,
is the norm of an element in a number field. We will first show that there are
exactly d embeddings of Q[α] in C that fix every element of Q: Let α1, . . . , αd
be the roots of f . Consider the d homomorphisms σi : Q[α] → C defined by
α 7→ αi. These are all embeddings, so there are at least d such. Now assume
that we have another one, namely a σd+1 that sends α to some β. If we write
f as

∑d
i=0 cix

i, we have that

f(β) =
d∑
i=0

ciβ
i =

d∑
i=0

ciσd+1(α)i =
d∑
i=0

σd+1(ci)σd+1
(
αi
)

= σd+1

(
d∑
i=0

ciα
i

)
= σd+1(f(α)) = σd+1(0)

= 0

Here we used that the ci are all in Q and hence will be fixed by σd+1. The
conclusion is that β is a root of f and therefore equals one of the αi, so σd+1 is

11

one of the d embeddings we already had. Hence there can be no more.

Now we are ready to give the definition. Let θ ∈ Q[α]. The norm of θ is

N(θ) =
d∏
i=1

σi(θ)

First observe that the norm function maps elements in Q[α] to Q and elements
in OQ[α] to Z. Note that if a+ bα is in Z[α], then

N(a+ bα) =
d∏
i=1

σi(a+ bα) =
d∏
i=1

(a+ bαi)

=
d∏
i=1

b
(a
b

+ αi

)
= −bd

d∏
i=1

(
−a
b
− αi

)
= −bdf

(
−a
b

)
(2.2)

since f(x) =
∏d
i=1 (x− αi).

The norm of an ideal in Z[α] is a notion closely related to the norm of
elements. We define the norm of an ideal I to be

N(I) = [Z[α] : I]

Ideals are then mapped to positive integers. We claim that for θ ∈ Z[α], we
have N(〈θ〉) = |N(θ)|. For a proof of this, see [2].

2.5 First degree prime ideals
Another important concept will be the set R(p), defined as

R(p) = {r ∈ {0, 1, ..., p− 1} | f(r) ≡ 0 (mod p)}

for a prime p. We first show that for the factors of N(a + bα), this set has a
special property.
Proposition 6. Let a+ bα ∈ Z[α] and let p be a prime number. Assume that p
does not divide b. Then p divides N(a+ bα) if and only if there is an r in R(p)
such that a ≡ −br (mod p).
Proof. Let r ∈ R(p) be such that a ≡ −br (mod p). Then

N(a+ bα) ≡ −bdf
(
−a
b

)
≡ −bdf

(
−−br

b

)
≡ −bdf(r) ≡ 0 (mod p)

from the definition of R(p) and since f is a polynomial. Assume now that p
divides N(a + bα), so, −bdf

(
−ab
)
≡ 0 (mod p). Since p - b, we have that

f
(
−ab
)
≡ 0 (mod p). Let r = −ab mod p. Then a ≡ −br (mod p) and f(r) ≡ 0

(mod p) since f is a polynomial.

12

When we get to our algorithms, we will only consider elements a + bα of
Z[α] such that gcd(a, b) = 1. Note that if p does indeed divide b, it cannot be a
factor of any such N(a+ bα). Proposition 6 states that if that was the case, we
would have an r ∈ R(p) such that a ≡ −br ≡ 0 (mod p). Hence, we would have
gcd(a, b) ≥ p > 1. Also note that we can only have one r such that a ≡ −br
(mod p). If a ≡ −br1 ≡ −br2 (mod p), we must have r1 ≡ r2 (mod p) since p
does not divide b. This is clearly impossible when r1 and r2 are both between
0 and p− 1.

The set R(p) is also connected to certain prime ideals in Z[α]. We first
observe that if N(P) is a prime number for an ideal P , then P is a prime ideal.
To see this, we have the following chain of implications

N(P) = p =⇒ [Z[α] : P] = p =⇒ Z[α]/P ∼= Zp
=⇒ Z[α]/P is a field =⇒ P is a maximal ideal
=⇒ P is a prime ideal

Conversely, we have that if P is a prime ideal, its norm must be a prime power.
If N(P) = pn for some prime p and some integer n, we say that P is an n’th
degree prime ideal. We will be particularly interested in first degree prime ide-
als, i.e. P such that N(P) = p. As noted, this is equivalent to Z[α]/P being
isomorphic to the field with p elements.

The crucial observation is that first degree prime ideals are in one-to-one
correspondence with pairs (p, r) such that r ∈ R(p). To see that a first degree
prime ideal admits such a pair, first note that, by definition, its norm is a prime
p. Then consider the homomorphism φ : Z[α] → Zp and let r = φ(α). Since
φ(1) = 1, we have

φ(f(α)) = φ

(
d∑
i=0

ciα
i

)
=
(

d∑
i=0

ciφ(α)i
)

mod p =
(

d∑
i=0

cir
i

)
mod p

= f(r) mod p

But f(α) = 0, and φ(0) = 0, so r must be a root of f modulo p. Hence r ∈ R(p).

To go from a pair (p, r) to a first degree prime ideal is quite similar. We
construct the homomorphism φ : Z[α]→ Zp sending α to r. Then we define P
to be ker(φ). Our map is clearly onto, so the first isomorphism theorem for rings
tells us that Z[α]/P is isomorphic to Zp. Hence N(P) = [Z[α] : P] = |Zp| = p
and P is a first degree prime ideal. We note that P is generated by p and α− r:
For all θ1, θ2 in Z[α], we have

φ(θ1p+ θ2(α− r)) = φ(θ1)φ(p) + φ(θ2)φ(α)− φ(θ2)φ(r)
= φ(θ1) · 0 + φ(θ2) · r − φ(θ2) · r
= 0,

13

so the ideal generated by p and (α−r) is contained in P . For the other inclusion,
assume that θ =

∑d−1
i=0 aiα

i ∈ P , i.e. φ(θ) ≡ 0 (mod p). Then there is an integer
k such that

kp = φ(θ) = φ

(
d−1∑
i=0

aiα
i

)
=
d−1∑
i=0

air
i

=⇒ kp+ θ =
d−1∑
i=0

air
i + θ

=⇒ θ = kp+
d−1∑
i=0

aiα
i −

d−1∑
i=0

air
i = kp+

d−1∑
i=0

ai
(
αi − ri

)
and (α− r) is clearly a factor in the sum. Therefore, θ = kp+γ(α− r) for some
γ ∈ Z[α].

The next observation will be used as part of a proof in a later chapter, so
we state is as a lemma:

Lemma 7. Let P be a first degree prime ideal in Z[α] corresponding to (p, r).
Then a+ br ≡ 0 (mod p) if and only if a+ bα ∈ P .

Proof. Assume there is a k in Z such that a+ br = kp. Then

a+ bα = a+ br + bα− br = kp+ b(α− r),

which is in P , since P is generated by p and (α− r). Now assume that a+ bα
is in P . Let γ be the map Z[α]→ Zp with kernel P . Since a+ bα ∈ P , we have
that

γ(a+ bα) = a+ br = 0

in Zp, which means that a+ br ≡ 0 (mod p).

2.6 The discriminant
We will need more facts about the structure ofOQ[α], but then we first need more
terminology. Let σ1, . . . , σd be the d embeddings of Q[α] in C. Given elements
θ1, . . . , θd ∈ Q[α], we define the discriminant of the elements, disc(θ1, . . . , θd),
to be the square of the determinant of the matrix with the element σi(θj) in
position ij. We will denote this matrix [σi(θj)], so

disc(θ1, . . . , θd) = |[σi(θj)]|2

We want to show that the discriminant maps into Q. To do this, we first observe

14

that

disc(θ1, . . . , θd) = |[σi(θj)]||[σi(θj)]| = |[σi(θj)]T ||[σi(θj)]| = |[σj(θi)][σi(θj)]|

=

∣∣∣∣∣
[

d∑
k=1

σk(θiθj)
]∣∣∣∣∣

Define the trace of an element θ ∈ Q[α] to be

T (θ) =
d∑
k=1

σk(θ)

Hence we can rewrite disc(θ1, . . . , θd) = |[T (θiθj)]|.

Now we claim that the trace maps into Q. We study the number field Q[θ],
which is a subfield of Q[α]. Let d′ = [Q[θ] : Q] and let σ′1, . . . , σ′d′ be the
embeddings of Q[θ] in C. We use the notation t(θ) =

∑d′

i=1 σ
′
i(θ). Now, the

minimal polynomial of θ over Q will look like
∏d′

i=1 (x− σi(θ)). The coefficient
in front of xd′−1 will then be t(θ), so we conclude that t(θ) lies in Q.

Lemma 8. T (θ) = d
d′ t(θ).

Proof. From Galois theory, we know that every embedding σ′ of Q[θ] in C
extends to exactly d

d′ embeddings of Q[α] in C, i.e. embeddings σ such that
σ(γ) = σ′(γ) ∀γ ∈ Q[θ].. Let σ′j be extended to σ(j−1) d

d′+1, σ(j−1) d
d′+2, . . . , σj d

d′

for j ∈ {1, . . . , d′}. Then we have

T (θ) =
d∑
i=1

σi(θ) =
d′∑
j=1

d
d′∑
k=1

σ(j−1) d
d′+k

(θ)

=
d′∑
j=1

d
d′∑
k=1

σ′j(θ) =
d′∑
j=1

d

d′
σ′j(θ) = d

d′

d′∑
j=1

σ′j(θ)

= d

d′
t(θ)

We conclude from the lemma that the trace is a product of rational numbers
and hence itself lies in Q. Since disc(θ1, . . . , θd) = |[T (θiθj)]|, and [T (θiθj)]
only consists of rational elements, we have shown that disc(θ1, . . . , θd) ∈ Q.
Furthermore, if θi is an algebraic integer for all i, we have that disc(θ1, . . . , θd) ∈
Z, see [3]. We will use the discriminant and the properties we have proven about
it, to show that OQ[α] is in fact a free Z-module.

15

2.7 Module structure of number rings
Lemma 9. Let θ ∈ Q[α]. Then there exists m ∈ Z such that mθ ∈ OQ[α].

Proof. Let g(x) =
∑d′

i=0 aix
i ∈ Z[x] be such that g(θ) = 0. Define m = ad′ and

h(x) = xd
′ +

∑d′−1
i=0 aim

(d′−1−i)xi. Then h(x) is a monic polynomial in Z[x]
and

h(mθ) = (mθ)d
′
+
d′−1∑
i=0

aim
(d′−1−i)(mθ)i = md′θd

′
+
d′−1∑
i=0

aim
(d′−1)θi

= m(d′−1)
mθd′ +

d′−1∑
i=0

aiθ
i

 = m(d′−1)
d′∑
i=0

aiθ
i = m(d′−1)g(θ)

= 0

Hence, mθ is an algebraic integer.

Lemma 10. There exists a basis for Q[α] over Q where all basis elements are
algebraic integers.

Proof. Let {θ1, . . . , θd} be a basis for Q[α] over Q. For i = 1, . . . d, let mi ∈ Z
be such that miθi ∈ OQ[α] using Lemma 9. Let m =

∏d
i=1 mi. Since OQ[α] is

a ring, and all integers are algebraic integers, mθi is in OQ[α] for all i. Hence,
we have a basis {mθ1, . . . ,mθd} for Q[α] over Q where all basis elements are in
OQ[α].

We will proceed to show that there are free Z-modules M1 and M2, both of
rank d, such that M1 ⊂ OQ[α] ⊂ M2. Since submodules of free Z-modules are
themselves free Z-modules of smaller or equal rank, this will prove that OQ[α]
is a free Z-module of rank d.

Using Lemma 10, let {θi}di=1 be a basis for Q[α] over Q such that θi ∈
OQ[α] ∀i. Define

M1 =
d⊕
i=1

Zθi

We have Zθi ∼= Z ∀i, so M1 is a free Z-module of rank d. Again, since OQ[α] is
a ring, we have M1 ⊂ OQ[α]. We will construct M2 using M1, but we will need
a result about the discriminant.

Proposition 11. Let {θi}di=1 be a basis for Q[α] over Q consisting only of
algebraic integers. Let θ ∈ OQ[α] and denote disc(θ1, . . . , θd) by disc. Then
there exist m1, . . . ,md ∈ Z such that

θ = m1
θ1

disc + . . .+md
θd

disc

16

Proof. We write θ as a linear combination of the basis elements: θ =
∑d
i=1 xiθi,

xi ∈ Q ∀i. Now we apply our embeddings σi to get d equations on the form

σi(θ) = σi

(
d∑
i=1

xiθi

)
=

d∑
i=1

σi(θi)xi

We write these equations as the linear system Ax = b where A = [σi(θj)], x =
(xi)di=1 and b = (σi(θ))di=1. Denote by Aj the matrix where the j’th column of
A is replaced by b. Cramer’s Rule gives us the solution xj = |Aj |

|A| . Observe that
|A|2 = disc, so

discxj = |A|2xj = |A|2 |Aj |
|A|

= |A||Aj |

Since σ maps any algebraic integer to another one, we have that |A| and |Aj | are
both in OQ[α], and hence discxj ∈ OQ[α]. But we know that both disc and xj
are rational, so their product is also in Q. And since we have from Proposition
1 that the only rational numbers that are algebraic integers are the integers
themselves, we must have discxj ∈ Z ∀i. Define mj = discxj for j = 1, . . . , d.
Then

m1
θ1

disc + . . .+md
θd

disc = x1θ1 + . . . xdθd = θ

Since the θi are all algebraic integers, we have from Section 2.6 that disc ∈ Z.
Define M2 = 1

discA, i.e.

M2 =
d⊕
i=1

Z
θi

disc

Proposition 11 tells us that OQ[α] ⊂ M2. Again, M2 is clearly a free Z-module
of rank d. Hence, we have achieved the ”squeezing” M1 ⊂ OQ[α] ⊂M2 and can
conclude that OQ[α] is a free Z-module of rank d.

17

Chapter 3

Factoring integers

3.1 General idea
The number field sieve (NFS-fact) is an algorithm for factoring integers. Assume
that n ∈ Z is not a power of a prime. (If it was, the prime would be relatively
easy to find). We attempt to find x, y ∈ Z such that x2 ≡ y2 (mod n). Then it
is quite likely that gcd(x− y, n) is a non-trivial factor of n.

Let f ∈ Z[x] be monic and irreducible of degree d. Let m ∈ Z be such that
f(m) ≡ 0 (mod n). Let α ∈ C be a root of f . Consider the projection map
π : Z→ Zn and the homomorphism

φ : Z[α]→ Zn
α 7→ m mod p

The NFS-fact attempts to find a square in Z (say x2) and a square in Z[α] (say
β2) such that φ

(
β2) = π

(
x2). If we can find this connection, we have also

found the congruence we wanted: Simply let y ∈ Z be such that π(y) = φ(β).
Then

π
(
y2) = π(y)2 = φ(β)2 = φ

(
β2) = π

(
x2) ,

which means that x2 ≡ y2 (mod n).

So how do we search for such elements? Observe that if the square in Z
is on the form x2 =

∏
(a,b)∈S (a+ bm) and the square in Z[α] is on the form

18

β2 =
∏

(a,b)∈S (a+ bα) for the same set S ⊂ Z× Z, then

φ
(
β2) = φ

 ∏
(a,b)∈S

(a+ bα)

 =
∏

(a,b)∈S

φ(a+ bα) =
∏

(a,b)∈S

((a+ bm) mod n)

=

 ∏
(a,b)∈S

(a+ bm)

 mod n = π

 ∏
(a,b)∈S

(a+ bm)


= π

(
x2)

So finding squares on this form will be sufficient.

Now we need to know how to find the set S. Assume that we have a set
T ⊂ Z× Z, with gcd(a, b) = 1 ∀(a, b) ∈ T , such that we know the factorization
of both a + bm and N(a + bα) for all (a, b) in T . We then proceed to find
a subset S ⊂ T that satisfies four criteria. Two of these together assure that∏

(a,b)∈S (a+ bm) is a square in Z, while the last two together make it very
likely that

∏
(a,b)∈S (a+ bα) is a square in Z[α]. Finding a subset that satisfies

all these criteria can be formulated as finding a linearly dependent subset of
certain vectors e(a, b) defined for all (a, b) in T . In particular, the vectors are
defined over Z2 in such a way that a subset S ⊂ T satisfies a criterion if and
only if

∑
(a,b)∈S e(a, b)i = 0 for certain i’s.

In addition to all the missing details here, it still remains to explain where
we get the set T from. This is done through a couple of sieving procedures, from
which the algorithm gets its name. Also, it is not obvious how we should choose
or find the parameters f , d, m and α. We will elaborate on all this, present the
algorithm and analyze its complexity.

3.2 Sieving for smooth values
As explained in Section 3.1, we need to start by finding a set T ⊂ Z × Z such
that we know the factorization of a + bm and N(a + bα) for all (a, b) in T . In
fact, we want to require that the factorizations yield only small primes, since
this will speed up the algorithm. So let y be an integer. We say that an integer
is y-smooth if all of its prime factors p satisfy p ≤ y. Thus we want T such that
a+ bm and N(a+ bα) are y-smooth for all (a, b) in T . We now need to decide
which pairs of integers (a, b) we should search through. Let u be an integer
whose optimal value will be discussed later. We require |a| ≤ u and 0 < b ≤ u.
There is no need for checking negative b’s, because then −(a + bm) would al-
ready have been checked, and clearly this is y-smooth if and only if a + bm is
y-smooth. Furthermore, we should only search among pairs with gcd(a, b) = 1.
Again, if k ∈ {2, . . . , y} is a common factor, then a+bm

k would already have been
checked and is y-smooth if and only if a+ bm is.

19

We have to do two different searches, first for a set T1 such that all a+ bm
are y-smooth, then for a set T2 such that all N(a+ bα) are y-smooth. The set
T will then quite simply be T = T1 ∩ T2. The first search will be called the
rational sieve and the second one the algebraic sieve.

Let us begin with the rational sieve. We call the set

{p prime | p ≤ y}

the rational factor base. For a possible b, we list the values a+bm for all possible
a. Now, a prime p divides a+bm if and only if a ≡ −bm (mod p) (by definition),
so we start by calculating −bm. Then, for a prime p in the factor base, we find
all a such that the congruence holds. For any such a, we find the corresponding
entry in the list and divide it out with p as many times as possible. After we
have done this for all p in the factor base, we locate the entries in the list that
are equal to ±1. (Since we have divided out by all our small primes, any entry
that is not equal to ±1 can not originally have been y-smooth.) We save the
corresponding pairs (a, b). This procedure is repeated for all possible b, and we
end up with the set T1.

The algebraic sieve is similar, but we cannot use the same congruence. Recall
from Section 2.5 the set R(p). Define the algebraic factor base to be the set

{(p, r) | p prime, r ∈ R(p)}

We use the same idea as in the rational sieve. Fix a b, list the values N(a+ bα)
for all possible a. For a pair (p, r) in the factor base, we find all a such that
a ≡ −br (mod p). Again, divide out the corresponding entries in the list with
the highest possible power of p. When this is done for all possible (p, r), we
locate the entries that are equal to ±1 and save the corresponding pairs (a, b).
After doing this for all possible b, we have found the set T2. Notice that whenever
we come across a prime p that divides b, we can just skip it, as there can be no
possible a with p | N(a + bα) in this case. This is because if b ≡ 0 (mod p),
then

p | N(a+ bα) ⇐⇒ a ≡ 0 (mod p) ⇐⇒ p | gcd(a, b)

and we don’t consider such pairs (a, b).

As noted, we can now find the set T by calculating T = T1 ∩ T2.

3.3 Finding a square in Z
We have found a set T where both a+ bm and N(a+ bα) are y-smooth for all
(a, b) in T . Now we want a subset S ⊂ T such that

∏
s∈S (a+ bm) is a square

in Z and
∏
s∈S (a+ bα) is a square in Z[α]. We will deal with these tasks sepa-

rately, so let’s first consider the rational side.

20

Denote by π(y) the number of primes in the rational factor base. Assume
that we have |T | > π(y)+1. (Whether this is true will be affected by how u and
y are chosen, which will be discussed later.) Now, from the rational sieve, we
have the factorization of every a+ bm in T in terms of our primes p1, . . . , pπ(y).
Define maps

ep : T → Z
(a, b) 7→ ordp(a+ bm)

Also define

ep0 : (a, b) 7→
{

1 if a+ bm > 0
−1 otherwise

Now, for all (a, b) in T , consider the vector

e1(a+ bm) = (ep0(a+ bm) mod 2, . . . , epπ(y)(a+ bm) mod 2)

in Zπ(y)+1
2 . (The significance of the subscript 1 will be made clear in a later

chapter.) Define B = π(y) + 1. We now have |T | > B vectors in ZB2 , and hence
we are guaranteed to have dependent vectors. So let S1 be a subset of T such
that

∑
(a,b)∈S1

e1(a+ bm) = 0. We have∑
(a,b)∈S1

ordpj (a+ bm) mod 2 = 0 ∀j,

which means that for all j, we can find an integer sj such that∑
(a,b)∈S1

ordpj (a+ bm) = 2sj

Now we can actually conclude that
∏

(a,b)∈S1
(a+ bm) is a square in Z! Because

∏
(a,b)∈S1

(a+ bm) =
∏

(a,b)∈S1

 k∏
j=0

p
ordpj (a+bm)
j

 =
k∏
j=0

 ∏
(a,b)∈S1

p
ordpj (a+bm)
j


=

k∏
j=0

p

∑
(a,b)∈S1

ordpj (a+bm)
j =

k∏
j=0

p
2sj
j =

k∏
j=0

(psjj)2

=

 k∏
j=0

p
sj
j

2

We have thus used the set of y-smooth values to produce a square on the form
we presented in Section 3.1.

21

3.4 Finding a square in Z[α]
3.4.1 Exponent maps
On the rational side, we were ”lucky”: Having enough smooth values was suf-
ficient for finding a square. Now that we start working in Z[α], we find that
things are not so simple. In fact, it turns out that the best we can hope for
are necessary conditions. As explained in Section 3.1, we will develop two such
criteria and convince ourselves that they together will almost guarantee the ex-
istence of a square on the form we want.

The first criterion is reminiscent of what we did on the rational side, we
attempt to find certain ”exponents” that sum up to 0. If we try the exact same
idea, and use our factorizations of the N(a+ bα), we will end up with a set S∗2
such that

∏
(a,b)∈S∗2

N(a+ bα) is a square in Z, but that’s not what we’re after
since it turns out not to be sufficient to conclude that

∏
(a,b)∈S∗2

(a+ bα) is a
square in Z[α].

We will still use the exponent of a prime p in the factorization of N(a+ bα),
but in order to utilize it, we need to associate it not only with p, but with a
certain element of R(p). Recall from Proposition 6 that p divides N(a+ bα) if
and only if there is an r in R(p) such that a ≡ −br (mod p). This r will then
clearly be unique. Define ep,r : Z[α]→ Z by

ep,r : (a+ bα) 7→
{

ordp (N(a+ bα)) if a ≡ −br (mod p)
0 otherwise.

We trivially observe that

|N(a+ bα)| =
∏
(p,r)

pep,r(a+bα)

The idea behind this is that if ep,r turned out to be a group homomorphism, we
could prove a necessary condition for the squareness property, stated below as
Theorem 15. Unfortunately, this is not the case. However, we can still obtain
the result by finding a group homomorphism that ”imitates” ep,r in a sense that
will become clear. Recall the notion of first degree prime ideals in Z[α] from
Chapter 2, specifically that they correspond to pairs (p, r). We want to use this
correspondence when finding the mentioned group homomorphism.

Proposition 12. Let P ⊂ Z[α] be a prime ideal. Then there exists a group
homomorphism lP : Q[α]∗ → Z such that:

1. If 0 6= β ∈ Z[α], then lP (β) ≥ 0.

2. If 0 6= β ∈ Z[α], then lP (β) > 0 if and only if β ∈ P .

22

3. If β ∈ Q[α]∗, then {P prime ideal | lP (β) 6= 0} is a finite set and∏
P prime ideal

in Z[α]

N(P)lP (β) = |N(β)|

For a proof of Proposition 12, see [2]. These lp’s have some interesting
properties regarding first degree prime ideals that we will exploit.

Lemma 13. Let a, b ∈ Z be such that gcd(a, b) = 1. Let P ⊂ Z[α] be a prime
ideal that is not of first degree. Then lP (a+ bα) = 0.

Proof. Assume lP (a + bα) 6= 0. Then, by Proposition 12, part 1, we have that
lP (a+ bα) > 0. Proposition 12, part 2, now gives us that a+ bα ∈ P . Consider
the projection map

π : Z[α]→ Z[α]/P
θ 7→ θ + P =: θ̄

Since a + bα ∈ P , we have π(a + bα) = 0̄. Z[α]/P is a finite field, so assume
Z[α]/P ∼= Fpk . We claim that p - b. Assume that p | b. Then p | bα, so bα ∈ P
and π(bα) = 0̄. Now,

π(a) = π(a+ bα− bα) = π(a+ bα)− π(bα) = 0̄− 0̄ = 0̄

Hence, a ∈ P and p | a. But then gcd(a, b) ≥ p > 1, a contradiction. We
conclude that p - b and thus b /∈ P , which means π(b) 6= 0̄. Then π(b) has an
inverse in Z[α]/P , we define it to be b̂. This gives us

π(α) = π(bα)π(b)−1 = (π(a+ bα)− π(a))π(b)−1 =
(
0̄− ā

)
b̂ = −āb̂,

which is an element in Fp. Hence, all linear combinations of powers of α, i.e. all
elements in Z[α], are also mapped to Fp by π. π is surjective, so we conclude
that

Fp ∼= π (Z[α]) = Z[α]/P ∼= Fpk

Hence, k = 1 and P is a first degree prime.

This is then used to show that lp ”imitates” ep,r:

Proposition 14. Let a, b ∈ Z such that gcd(a, b) = 1. Let P ⊂ Z[α] be a first
degree prime ideal corresponding to (p, r). Then lP (a+ bα) = ep,r(a+ bα).

Proof. Let us start by showing that lP (a+bα) = 0 if and only if ep,r(a+bα) = 0.
By Proposition 12, part 2, lP (a + bα) 6= 0 ⇐⇒ a + bα ∈ P . By Lemma
7, a + bα ∈ P ⇐⇒ a + br ≡ 0 (mod p). By definition, a + br ≡ 0
(mod p) ⇐⇒ ep,r(a+ bα) 6= 0.

23

We now let a + bα be any element of Z[α]. Proposition 12, part 3, states
that ∏

P prime ideal
N(P)lP (a+bα) = |N(a+ bα)|

Lemma 13 tells us that the exponent on the left hand side is non-zero only for
first degree ideals. We also use our factorization of N(a+ bα) and obtain∏

P fdpi
N(P)lP (a+bα) =

∏
(p,r)

pep,r(a+bα)

Let p be fixed. Then we are left with∏
P with
N(P)=p

plP (a+bα) =
∏
r

pep,r(a+bα)

Hence, by comparing powers,∑
P with
N(P)=p

lP (a+ bα) =
∑
r

ep,r(a+ bα)

Now, we know that we can have at most one r such that a + br ≡ 0 (mod p)
and therefore ep,r(a+ bα) 6= 0 by definition. So there is an r such that∑

P with
N(P)=p

lP (a+ bα) = ep,r(a+ bα)

We utilize the first part of this proof, that the maps have exactly the same
zeroes, and find that lP (a + bα) = ep,r(a + bα) where P corresponds to (p, r).
This equality, together with lP∗(a + bα) = 0 = ep,r∗(a + bα) for all other first
degree prime ideals with N(P ∗) = p, gives us what we wanted to show.

Now we are ready to prove the first necessary condition for squareness in
Z[α]:
Theorem 15. Let S be a subset of Z×Z such that

∏
(a,b)∈S (a+ bα) is a square

in Q[α]. Let p be a prime number and r ∈ R(p). Then∑
(a,b)∈S

ep,r(a+ bα) ≡ 0 (mod 2)

Proof. Let γ in Q[α] be such that
∏

(a,b)∈S (a+ bα) = γ2. Note that the group
operation in Z is written additively, while in Q[α]∗ it is written multiplicatively.
Since lP is a homomorphism, and using Proposition 14, we obtain

∑
(a,b)∈S

ep,r(a+ bα) =
∑

(a,b)∈S

lP (a+ bα) = lP

 ∏
(a,b)∈S

(a+ bα)


= lP

(
γ2) = lp(γ) + lp(γ) = 2lP (γ)

≡ 0 (mod 2)

24

So one method for testing the squareness of our product is the following: For
a bunch of primes p and corresponding integers r, check that(∑

(a,b)∈S ep,r(a+ bα)
)

mod 2 always equals 0. Still, this can only gives us
a square in Q[α], and we want a square in Z[α]. But if γ2 is a square in Q[α],
then f ′(α)2γ2 is a square in Z[α], see [2]. For the rest of the text, we will ignore
this factor for simplicity.

3.4.2 Quadratic characters
The next property that a square in Z[α] has, is related to the Legendre symbol.
In Z, we observe that if there is a prime p such that

(
l
p

)
= −1, the integer l

cannot be a square. If it was, say l = r2, we would trivially have l ≡ r2 (mod p)
and so

(
l
p

)
= 1. Hence, the more primes p we test without the corresponding

Legendre symbol being equal to −1, the more convinced we should be that l
actually is a square in Z. This is the basic idea we want to generalize.

Theorem 16. Let S be a subset of Z×Z such that
∏

(a,b)∈S (a+ bα) is a square
in Z[α]. Let q be an odd prime and s an element of R(p) such that a+ bs 6≡ 0
(mod q) for all (a, b) in S. Then∏

(a,b)∈S

(
a+ bs

q

)
= 1

Proof. Let γ in Z[α] be such that
∏

(a,b)∈S (a+ bα) = γ2. Define the ring
homomorphism

ω : Z[α]→ Zq
α 7→ s mod q

Let Q = ker(ω). By definition, we have that Q is the first degree prime ideal
corresponding to (q, s). We now observe that

ω

 ∏
(a,b)∈S

(a+ bα)

 =
∏

(a,b)∈S

(ω(a+ bα)) =
∏

(a,b)∈S

(a+ bs) 6≡ 0 (mod q)

since our assumption was that none of the (a+ bs) were congruent to 0 modulo
q. Hence, by definition of Q,

∏
(a,b)∈S (a+ bα) = γ2 is not in Q. So γ is not in

Q either. This means that we can use γ2 and γ as arguments in the map

χQ : Z[α]\Q→ {±1}

θ 7→
(
ω(θ)
q

)

25

We have that

χQ

 ∏
(a,b)∈S

(a+ bα)

 =

ω
(∏

(a,b)∈S (a+ bα)
)

q


=
(∏

(a,b)∈S (a+ bs)
q

)

=
∏

(a,b)∈S

(
a+ bs

q

)

But also,

χQ
(
γ2) =

(
ω
(
γ2)
q

)
=
(
ω(γ)2

q

)
= 1

The proposition follows.

So we now have another method of convincing ourselves that a given product
is a square. Namely, we choose a lot of primes q outside the factor base, with cor-
responding integers s, and check that we never end up with

∏
(a,b)∈S

(
a+bs
q

)
=

−1. It it possible to show that
⌈ 3 lnn

ln 2
⌉

primes is a good estimate for how many
such primes we need, see [2]. Note that when we include f ′(α)2 as a factor, we
need to assume that f ′(s) 6≡ 0 (mod q) for Theorem 16 to hold.

3.5 The linear system
We now feel, for all practical purposes, that we have developed sufficient criteria
for squareness both in Z and in Z[α]. What we want now is a method that given
the set T we found in Section 3.2, produces a subset S ⊂ T that satisfies all
these criteria at once. We would also like the method to be fast and easy to use.

Recall the mapping e1 from Section 3.3. We used this to define vectors in Z2,
one for each pair (a, b) in T , such that we could search through them for a linear
depency. Such a depency would provide us with a product

∏
(a,b)∈S1

(a+ bm)
satisfying our criterion. We want to transform the other criteria into linear
problems over Z2, so that we can solve them all simultaneously. Let’s start with
the exponent map criterion, which is quite similar. Let C be the size of the
algebraic factor base and define

e2 : T → ZC2
(a, b) 7→ (ep1,r1(a+ bα) mod 2, . . . , epC ,rC (a+ bα) mod 2)

Now the criterion stated at the end of Subsection 3.4.1 can be satisfied by con-
sidering the set {e2(a, b)}(a,b)∈T and finding a linearly dependent subset.

26

The quadratic character criterion concerns finding a product that equals 1,
but we will transform that problem into finding a sum that equals 0, so that
we can use the same method as above. Given a prime q outside the algebraic
factor base and an integer s in R(q), define e(q,s)

3 : T → Z2 by

e
(q,s)
3 : (a, b) 7→

0 if
(
a+bs
q

)
= 1

1 if
(
a+bs
q

)
= −1

We extend this to D =
⌈ 3 lnn

ln 2
⌉

primes and define

e3 : T → ZD2
(a, b) 7→

(
e

(q1,s1)
3 (a, b), . . . , e(qD,sD)

3 (a, b)
)

The crucial observation is that∏
(a,b)

(
a+ bs

q

)
= 1 ∀(q, s) ⇐⇒

∑
(a,b)

e3(a, b) = 0,

so we have achieved what we wanted and can solve this criterion together with
the two others.

What we want is a subset S of T such that
∑

(a,b)∈S ei(a, b) = 0 for i being
both 1, 2 and 3. Clearly, we can solve these in a common matrix. Define

e : T → ZB+C+D
2

(a, b) 7→ (e1(a, b), e2(a, b), e3(a, b))

Considering all the vectors e(a, b) for (a, b) in T will reduce the problem of
finding a subset that satisfies all three criteria to finding a linearly dependent
subset of these vectors. We are guaranteed to find this if |T | > B + C + D.
Whether this is true, depends on our parameter choices, and will be elaborated
on in Section 3.7.

Such a subset S will thus guarantee that
∏

(a,b)∈S (a+ bm) is a square in Z
and make it highly likely that

∏
(a,b)∈S (a+ bα) is a square in Z[α]. Note that in

order to use the method presented in Section 3.1, we need a way of calculating
the square roots of these products. In Z, this is straightforward, as we already
know the factorization of all the a + bm. However, in Z[α], we only know the
factorization of the ideal generated by the product. For an explanation on how
to then find the square root, see [2].

3.6 The algorithm
To summarize everything we’ve done in this chapter, we present the step-by-
step algorithm for finding a non-trivial factor of an integer n with the number

27

field sieve.

Let d, u, y ∈ N be such that n > d2d2 .

1. Find an integerm and a polynomial f ∈ Z[x] such that f(m) ≡ 0 (mod n).
Decide on a root α ∈ C of f .

2. Using the sieving procedures described, find a set T ⊂ Z×Z such that for
all (a, b) in T , we have that gcd(a, b) = 1, |a| ≤ u, 0 < b ≤ u, a + bm is
y-smooth and N(a+ bα) is y-smooth.

3. Solving the linear system described, find a subset S of T such that∑
(a,b)∈S e(a, b) = 0.

4. Try to find a square root β of f ′(α)2∏
(a,b)∈S (a+ bα) in Z[α]. If no such

β is found, return to step 3 and find a new dependency.

5. Find a square root x of f ′(m)2∏
(a,b)∈S (a+ bm) in Z.

6. Calculate a = gcd(x − φ(β), n). If a 6= 1 and a 6= n, return a. If not,
return to step 3 and remove one element of S from T .

3.7 Complexity analysis
Let’s first discuss how we should choose f , m and α. To optimize the running
time, we want f to have small coefficients. Given d, we define m = b d

√
nc. Then

we express n in base m, i.e. n =
∑d
i=0 cim

i such that ci < m ∀i. Define

f =
d∑
i=0

cix
i

Then we have f(m) = n ≡ 0 (mod n), as we wanted.

It is clear that steps 2, 3 and 4 in the NFS-fact are the most time-consuming.
We will estimate the running time of step 2, and then argue that this step dom-
inates steps 3 and 4. Hence we will conclude that the running time of the entire
algorithm can be estimated by the running time of step 2.

We will introduce some special notation to ease matters a bit. Expressions
on the form

Ln(v; c) := ec(lnn)v(ln lnn)1−v

will appear with different parameters c and v throughout the analysis. The
special case Ln

(1
2 ; 1
)

will be written as just Ln.

28

First, we will establish a general result about finding smooth numbers. Sup-
pose that we are checking random numbers smaller than or equal to x for y-
smoothness. Denote by ψ(x, y) the number of such smooth integers. The prob-
ability that a random integer between 1 and x is y-smooth is then ψ(x,y)

x . So, if
we want to find t y-smooth integers, we expect to check about tx

ψ(x,y) integers.
We investigate the special case t = y.
Proposition 17.

yx

ψ(x, y) ≥ L
√

2
x

For a proof, see [2]. If we assume that we will always have to check at least
the expected number of integers, this proposition provides a lower bound for
the running time of such a selection. Note that the choice for y that achieves
equality in the proposition is y = L

1√
2

x .

We will now use Proposition 17 result to prove a lemma that seems rather
technical, but which turns out to be both applicable and understandable in the
context of our algorithm.
Lemma 18. Assume n > d2d2 . Assume u(n, d) ≥ 2 and y(n, d) ≥ 2. Let
x = 2(d+ 1) d

√
n2ud+1 and assume u2ψ(x,y)

x ≥ y. Then

2 ln u ≥ d ln d+
√

(d ln d)2 + 4 ln
(
d
√
n
)

ln ln
(
d
√
n
)

Proof. The last assumption implies that u2 ≥ yx
ψ(x,y) . which we know from

Proposition 17 is greater than or equal to L
√

2
x . We therefore obtain

ln
(
u2) ≥ ln

(
L
√

2
x

)
=⇒ 2 ln u ≥

√
2 ln x ln ln x

=⇒
√

2 ln u ≥
√

ln x ln ln x
=⇒ 2(ln u)2 ≥ ln x ln ln x

Just like ln t, t
ln t is an increasing function (when t ≥ e), so we can divide

each side of the inequality by its own logarithm. We calculate ln
(
2(ln u)2) =

ln 2 + 2 ln ln u and ln(ln x ln ln x) = ln ln x+ ln ln ln x to obtain
2(ln u)2

ln 2 + 2 ln ln u ≥
ln x ln ln x

ln ln x+ ln ln ln x
Now, since ln ln ln x ≥ ln 2, we get

2(ln u)2

2 ln ln u ≥
ln x ln ln x

ln ln x

=⇒ (ln u)2

ln ln u ≥ ln x = ln
(

2(d+ 1) d
√
n2ud+1

)
= ln 2 + ln(d+ 1) + 2

d
lnn+ (d+ 1) ln u

≥ 2
d

lnn+ (d+ 1) ln u

29

Finally, we apply Lemma 10.9 in [2] with k ≥ d+ 1 and l ≥ 2 ln (d
√
n) to obtain

what we wanted.

We are now ready to start the analysis of step 2 in the NFS-fact algorithm.
We start by finding a lower bound for the time taken by this step using the
lemma we just proved. To be guaranteed the existence of a linearly dependent
set in step 3, we need the number of rows in the matrix to exceed the number of
columns. We will use this assumption in our argument. So what is the number
of rows? We have one row for each pair (a, b) in T , so we need to estimate the
cardinality of T , namely, how many smooth integers we find. Recall that the
probability of a random integer smaller than or equal to x being y-smooth was
ψ(x,y)
x . We check approximately u2 such integers in step 2. Hence, we can expect

to find u2ψ(x,y)
x y-smooth integers. We will make the heuristic assumption that

this is in fact the number of integers that we find, and hence also the number
of rows. Since the numbers B, C and D are all bounded by y, we can say that
the number of columns is approximately y. So having at least as many rows as
columns is the same as having

u2ψ(x, y)
x

≥ y

We note that this looks similar to one of the assumptions in Lemma 18.

But in order to apply Lemma 18, we need x to be expressed in a certain
way using n, d and u. Let us try to estimate this number. First observe that
checking both a+ bm and N(a+ bα) for y-smoothness is the same as checking
(a + bm)N(a + bα). What is the largest value of (a + bm)N(a + bα) that we
check? Recall that the coefficients of f are bounded by m and that m < d

√
n.

Also, recall from Section 3.2 that we only check pairs (a, b) where both integers
are smaller than or equal to u. Finally, recall (2.2), that told us we can express
N(a+ bα) as

N(a+ bα) = (−b)df
(
−a
b

)
= ad − cd−1a

d−1b+ cd−2a
d−2b2 − . . .+ (−1)d−1c1ab

d−1 + (−1)dc0b
d

So we can deduce that

N(a+ bα) ≤ ud +mud + . . .+mud︸ ︷︷ ︸
d

= ud(1 + dm) ≤ ud(m+ dm)

= udm(d+ 1)

and hence

(a+ bm)N(a+ bα) ≤ (u+ um)udm(d+ 1) = ud+1(m+ 1)m(d+ 1)
≤ ud+1(2m)m(d+ 1) = 2(d+ 1)m2ud+1

≤ 2(d+ 1) d
√
n2ud+1

30

So all numbers we check are lower than or equal to this number. Hence, we can
use

x = 2(d+ 1) d
√
n2ud+1

This is exactly what we required, so we can use Lemma 18 and conclude that,
with our parameters,

2 ln u ≥ d ln d+
√

(d ln d)2 + 4 ln
(
d
√
n
)

ln ln
(
d
√
n
)

Since et is an increasing function, we can raise e to each side and keep the
inequality. We get

u2 ≥ exp
(
d ln d+

√
(d ln d)2 + 4 ln

(
d
√
n
)

ln ln
(
d
√
n
))

We know that the running time of step 2 is u2, since this is approximately the
number of integers we check for smoothness, and now we have calculated a lower
bound for this number expressed by n and d. We have therefore established our
first result regarding the complexity of the NFS-fact. Now we want to show
that this lower bound is in fact achievable with the right choices of u and y,
and that the algorithm is likely to succeed with these parameters. Then we can
conclude that this is the optimal running time for step 2.

Once again our argument will be based on the number of rows and columns
in the matrix in step 3, but this time we will show and use that with our special
choice of u and y, the number of rows will be larger than or equal to the num-
ber of columns plus the maximal number of times we perform step 3. If we can
show this, we will be able to conclude that we are guaranteed to find a linear
dependency every single time, even though we remove one row every time step
6 does not produce a non-trivial factor of n. This will convince us that we are
likely to find a non-trivial factor eventually.

Let us start with the choices of u and y. It is clear that if we choose u to be
the square root of the optimal running time, we will obtain this running time.
So let

u0 = exp
(

1
2

(
d ln d+

√
(d ln d)2 + 4 ln

(
d
√
n
)

ln ln
(
d
√
n
)))

In fact, this will also be our choice for y0. Let x0 = 2n d
√
n2u0

d+1. We will need
u and y to be a bit larger in order to apply our argument, because with these
choices, we have

u0
2ψ(x0, y0)
x0

= y
1+o(1)
0 ,

and we will see later that we need some sort of inequality. Therefore, let ε > 0,
let

u = y = exp
(

1 + ε

2

(
d ln d+

√
(d ln d)2 + 4 ln

(
d
√
n
)

ln ln
(
d
√
n
)))

,

31

and let x = 2n d
√
n2ud+1. Note that y1+ε

0 = y0 (and hence also u1+ε
0 = u0)

and x1+ε
0 ≥ x. This means that ln(y) = ln

(
y1+ε

0
)

= (1 + ε) ln(y0) and ln(x) ≤
ln
(
x1+ε

0
)

= (1 + ε) ln(x0). We thus have

ln(x)
ln(y) ≤

(1 + ε) ln(x0)
(1 + ε) ln(y0) = ln(x0)

ln(y0)
This now leads to

ψ(x, y)
x

≥
(
ψ(x0, y0)

x0

)1+o(1)

From this we get

u2ψ(x, y)
x

≥
(
u2ψ(x0, y0)

x0

)1+o(1)

=
(
u

2(1+ε)
0 ψ(x0, y0)

x0

)1+o(1)

=
((
u2ε

0
) u2

0ψ(x0, y0)
x0

)1+o(1)

=
((
u2ε

0
)
y

1+o(1)
0

)1+o(1)

=
((
u2ε

0
)
y0
)1+o(1) =

(
y1+2ε

0
)1+o(1)

=
((

y
1

1+ε

)1+2ε
)1+o(1)

=
(
y

1+2ε
1+ε

)1+o(1)

> y1+o(1)

Recall that we used u2ψ(x,y)
x as an estimate for the number of rows in the matrix

in step 3, and now we have an inequality involving that number. What is the
number of columns? Recall from Section 3.5 that this is B + C + D. We first
note that B = π(y) + 1 ≤ y. Since we can find at most d roots of f given any
modulus,

C ≤ dπ(y) ≤ dy ≤ y lnn = y1+o(1)

Furthermore, D ≤ 3 lnn = yo(1). In total,

B + C +D = y1+o(1)

Now it only remains to calculate how many times we perform step 3. We go back
to this step every time step 6 fails to find a non-trivial factor of n. An upper
bound for the number of times this happens is (lnn)O(1) = yo(1) [2]. Hence, the
number of columns plus the number of times we perform step 3 is y1+o(1), which
is the right hand side of last inequality in the previous paragraph. The left hand
side was the number of rows. We have therefore shown exactly what we wanted.
As mentioned above, we can now conclude that there are enough rows in the
matrix to be guaranteed a linear dependency every time we perform step 3. We
then feel convinced that one of these will lead to a non-trivial factorization in
step 6. So the algorithm works with these optimal choices for u and y. We let
ε tend to 0 when n goes to ∞ and write

u = y = exp
((

1
2 + o(1)

)(
d ln d+

√
(d ln d)2 + 4 ln

(
d
√
n
)

ln ln
(
d
√
n
)))

32

Up to this point, we have worked with a fixed d. Now we want to optimize this
parameter as well and gain the optimal running time for any given n. The best
we could do with a given d was

exp
(
d ln d+

√
(d ln d)2 + 4 ln

(
d
√
n
)

ln ln
(
d
√
n
))

To minimize the radicand, we would like the two summands to be of approxi-
mately the same size. We conjecture that if d ≈ 3

√
lnn

ln lnn , we will obtain what
we want. In the following calculations, we ignore small, constant factors. With
our choice of d, we obtain

ln d ≈ 1
3 ln

(
lnn

ln lnn

)
= ln lnn− ln ln lnn ≈ ln lnn

Also, d2 ≈ 3
√

(lnn)2

(ln lnn)2 . This means that

(d ln d)2 ≈ 3

√
(lnn)2

(ln lnn)2 (ln lnn)2 = 3
√

(lnn (ln lnn)2)2

On the other side, we have

ln
(
d
√
n
)

= 1
d

lnn ≈ lnn 3
√

ln lnn
3
√

lnn
= 3
√

(lnn)2 ln lnn

and so we get

ln ln
(
d
√
n
)
≈ 1

3 ln
(
(lnn)2 ln lnn

)
≈ 2 ln lnn+ ln ln lnn ≈ ln lnn

Finally,

4 ln
(
d
√
n
)

ln ln
(
d
√
n
)
≈ 3
√

(lnn)2 ln lnn ln lnn = 3
√

(lnn(ln lnn)2)2,

and we have justified our conjecture. By considering the expression for the
optimal running time given n and d, we can make the approximation more
precise:

d =
(

3
√

3 + o(1)
)

3

√
lnn

ln lnn
will minimize the running time. With this choice, the expressions for u and y
simplify to

u = y = Ln

(
1
3 ; 3

√
8
9

)

So, given n, we can choose d, u, and y such that the running time of step 2
becomes

u2 =
(
Ln

(
1
3 ; 3

√
8
9

))2

= Ln

(
1
3 ; 4

3
√

9

)

33

It only remains to show that this is the dominating step in the algorithm. It can
be shown that the running time of step 3 and step 4 are y2, see [2]. Hence, no
step increases the complexity of the algorithm significantly. We conclude that
the optimal running time for the NFS-fact is, heuristically,

Ln

(
1
3 ; 4

3
√

9

)
= e4 3

√
lnn(ln lnn)2

9 (3.1)

A similar, but easier algorithm, the quadratic sieve, has complexity Ln =
e
√

lnn ln lnn. If we compare these two, we find that

4 3

√
lnn(ln lnn)2

9 ≤
√

lnn ln lnn ⇐⇒ 4
3
√

9
(lnn) 1

3 (ln lnn) 2
3 ≤ (lnn) 1

2 (ln lnn) 1
2

⇐⇒ (lnn) 1
6 (ln lnn)− 1

6 ≥ 4
3
√

9

⇐⇒ lnn
ln lnn ≥

(
4

3
√

9

)6
= 4096

81

So when n is sufficiently large, the number field sieve is superior.

34

Chapter 4

Finding d-logs in fields of
prime order

4.1 General idea
As mentioned in the introduction, the main concepts of the NFS-fact can also be
applied to discrete logarithm problems. This number field sieve (NFS-dlog) is
similar in both setup, execution and analysis, and will therefore be more briefly
discussed than the NFS-fact. However, there are some complicating issues, for
instance that we need to find higher powers than only squares. This will also
require some new concepts.

Let p be a prime number and consider the finite field Fp. Let t be an element
of F∗p, considered as an integer modulo p, and let g be an element of the subgroup
generated by t. In other words, there is an integer z such that tz ≡ g (mod p).
We want to find the smallest such integer, and we denote it by logt g. In other
words,

z ≡ logt g (mod p− 1)

Due to certain complications, we instead try to find congruences on the form
z ≡ logt g (mod l), where l is a prime divisor of p−1 and then solve the original
problem through application of the Chinese Remainder Theorem.

As before, we need f ∈ Z[x] to be monic and irreducible of degree d, m ∈ Z
to be such that f(m) ≡ 0 (mod p) and α ∈ C to be a root of f . This time, we
try to find an l’th power in Z (say xl) and an l’th power in Z[α] (say βl) that
are connected in a certain way. Again, consider the projection map π : Z→ Zp
and the homomorphism

φ : Z[α]→ Zp
α 7→ (m mod p)

35

The relation we are looking for this time is π
(
xl
)

= txtgφ
(
βl
)

for some xt.

When we have found our l’th powers, it is clear that π
(
xl
)

= π(x)l and
φ
(
βl
)

= φ(β)l are themselves l’th powers in Zp, say kl1 and kl2. The equation
π
(
xl
)

= txtgφ
(
βl
)

then tells us that txtg =
(
k1k
−1
2
)l and hence txtg is also an

l’th power. Specifically, we have that there is an s in Z such that

txtg ≡ sl (mod p− 1)

But since txtg is in 〈t〉, we must also have s ∈ 〈t〉. In other words, there is an r
such that s ≡ tr (mod p−1). If we write g as tlogt g, we thus have txttlogt g ≡ trl
(mod p− 1). Considering the exponents, we obtain

xt + logt g ≡ rl (mod p− 1)

Any congruence that holds modulo p − 1 will trivially hold for any divisor of
p− 1, so xt + logt g ≡ rl (mod l). But rl ≡ 0 (mod l), so

xt ≡ − logt g (mod l)

We will then have found the logarithm modulo l. If we can do this for all prime
divisors of p− 1, we end up with a system of linear congruences on the form

x ≡ logt g (mod l)

where the product of the moduli is p − 1. Therefore, we can easily apply the
Chinese Remainder Theorem and find an integer z such that

z ≡ logt g (mod p− 1),

which is the discrete logarithm we were trying to find.

This time, we observe that if our l’th powers are on the form

xl = txtg
∏

(a,b)∈T

(a+ bm)xa,b ,

βl =
∏

(a,b)∈T

(a+ bα)xa,b

36

in Z and Z[α] respectively, we will have

π
(
xl
)

= π

txtg ∏
(a,b)∈T

(a+ bm)xa,b


= π (txtg)π

 ∏
(a,b)∈T

(a+ bm)xa,b


= txtgφ

 ∏
(a,b)∈T

(a+ bα)xa,b


= txtgφ(βl)

since φ(α) = π(m) and t, g ∈ Fq. So we will search for such a set T ⊂ Z × Z.
What remains to explain is how to find the integers xt and xa,b.

4.2 Character maps
We find T in exactly the same way as in the NFS-fact, using sieving techniques.
As we will see in Section 4.3, finding l’th powers in Z is simple. Unfortunately,
using the norm we can only directly find an element in OQ[α] such that the
ideal generated by it is an l’th power. This is not sufficient, but we will find
another necessary condition which will mirror the quadratic characters from the
NFS-fact.

For the remainder of this chapter, let l be a divisor of p− 1. Let

Γ =
{
γ ∈ OQ[α] | N(γ) 6= 0 (mod l)

}
We want to find an integer ε such that γε ≡ 1 (mod l) ∀γ ∈ Γ. This turns out
to be possible if l has a certain property we discussed in Section 2.3, namely
being unramified. Assume that l is unramified and let ε = lcm

{
|(OQ[α]/Li)∗|

}
,

where the Li are the prime ideals in the factorization of the ideal generated by
l. Since any

∣∣(OQ[α]/Li)∗
∣∣ divides this ε by construction, we have ri such that

ε = ri
∣∣(OQ[α]/Li)∗

∣∣. Then for all γ in Γ, we have

γε + Li = (γ + Li)ε = (γ + Li)ri|(OQ[α]/Li)∗|

= ((γ + Li)|(OQ[α]/Li)∗|)ri = (1 + Li)ri

= 1 + Li

Hence γε − 1 ∈ Li for all i, which means that γε − 1 ∈
⋂
i Li. But⋂

i

Li =
∏
i

Li = lOQ[α]

37

since l is unramified. Hence γε − 1 ∈ lOQ[α] and therefore γε ≡ 1 (mod l).

Define

λ : Γ→ lOQ[α]/l
2OQ[α]

γ 7→ [γε − 1]

We proceed to show that λ is a homomorphism.

λ (γγ̂) = [(γγ̂)ε − 1] = [(γεγ̂ε − 1) + (1− 1) + (γε − γε) + (γ̂ε − γ̂ε)]
= [(γεγ̂ε − γε − γ̂ε + 1) + (γε − 1) + (γ̂ε − 1)]
= [(γε − 1) (γ̂ε − 1) + (γε − 1) + (γ̂ε − 1)]
= [(γε − 1) (γ̂ε − 1)] + [(γε − 1)] + [(γ̂ε − 1)]

We claim that the first summand equals 0. Since (γε − 1) and (γ̂ε − 1) are both
in lOQ[α], there are ω and ω̂ in OQ[α] such that γε − 1 = lω and γ̂ε − 1 = lω̂.
Then (γε − 1) (γ̂ε − 1) = l2ωω̂, which lies in l2OQ[α]. Hence

λ (γγ̂) = [(γε − 1)] + [(γ̂ε − 1)] = λ(γ) + λ (γ̂)

and λ is a homomorphism.

The interesting thing about of λ is that it maps l’th powers in OQ[α] to
0. Because of the homomorphism property, we have λ

(
γl
)

= lλ(γ) = 0 since
λ(γ) ∈ lOQ[α]/l

2OQ[α].

We will now split λ into d maps by showing that lOQ[α]/l
2OQ[α] has a free

module structure. We start by observing that it has a natural Z-module struc-
ture, given by k[lθ] := [(kl)θ]. This can be extended into a Zl-module structure
by trying to define (k mod l)[lθ] := [(kl)θ]. But is this well-defined? Assume
k1 mod l = k2 mod l, i.e. k1− k2 = rl for some r in Z. Then

(k1l)θ − (k2l)θ = (k1 − k2)lθ = rl2θ = l2(rθ) ∈ l2OQ[α]

Hence [(k1l)θ] = [(k2l)θ], and the module structure is well-defined.

Recall from Section 2.7 that OQ[α] is a free Z-module. Hence

OQ[α] ∼= Z⊕ . . . ⊕ Z︸ ︷︷ ︸
d

=⇒ lOQ[α] ∼= lZ⊕ . . . ⊕ lZ︸ ︷︷ ︸
d

=⇒ l2OQ[α] ∼= l2Z⊕ . . . ⊕ l2Z︸ ︷︷ ︸
d

From module theory, we then know that

lOQ[α]/l
2OQ[α] ∼= lZ/l2Z⊕ . . .⊕ lZ/l2Z︸ ︷︷ ︸

d

∼= Zl ⊕ . . .⊕ Zl︸ ︷︷ ︸
d

38

In other words, lOQ[α]/l
2OQ[α] is a free Zl-module of rank d. It therefore has a

basis {[lθi]}di=1, where θi ∈ OQ[α] ∀i, as a Zl-module.

Let

µ : lOQ[α]/l
2OQ[α] → Zl ⊕ . . .⊕ Zl︸ ︷︷ ︸

d

[lθ] 7→ (k1 mod l, . . . , kd mod l)

where the ki mod l are the coefficients of lθ relative to its basis, i.e.

[lθ] =
d∑
i=1

(ki mod l)[lθi]

Let pi denote the projections

pi : Zl ⊕ . . .⊕ Zl︸ ︷︷ ︸
d

→ Zl

(r1 mod l, . . . , rd mod l) 7→ ri mod l

We now consider the compositions λi = pi ◦ µ ◦ λ. We then have

[γε − 1] = λ(γ) =
d∑
i=1

pi(µ(λ(γ)))[lθi] =
d∑
i=1

λi(γ)[lθi]

for all γ in Γ. This can be rewritten as

γε − 1 ≡
d∑
i=1

λi(γ)lθi (mod l2)

λ, µ and pi are all homomorphisms, so the λi are also homomorphisms.

For an l’th power in OQ[α], we then have that λi
(
γl
)

= pi
(
µ
(
λ
(
γl
)))

=
pi(µ(0)) = pi((0, . . . , 0)) = 0 for all i. We thus have a new necessary requirement
for an element in OQ[α] being an l’th power, one that we can check in Zl. This
we will utilize in our linear system.

4.3 The linear system
In a similar fashion to what we did in the NFS-fact, we now construct vectors
associated to each element in T using three different maps. Define

v1 : T → ZBl
(a, b) 7→ (ep0(a+ bm) mod l, . . . , epπ(y)(a+ bm) mod l),

39

then

v2 : T → ZCl
(a, b) 7→ (ep1,r1(a+ bα) mod l, . . . , epC ,rC (a+ bα) mod l)

and finally

v3 : T → Zdl
(a, b) 7→ (λ1(a+ bα), . . . , λd(a+ bα))

We put all this together in the map

v : T → ZB+C+d
l

(a, b) 7→ (v1(a, b), v2(a, b), v3(a, b))

Furthermore, we let

v(t) = (ordp0(t), . . . , ordpπ(y)(t), 0, . . . , 0),
v(g) = (ordp0(g), . . . , ordpπ(y)(g), 0, . . . , 0)

be vectors of length B + C + d.

Now define A =
(
v(t) v(a, b)1 . . . v(a, b)|T |

)
and solve

Ax ≡ −v(g) (mod l)

We end up with a solution with |T | + 1 coordinates that we will write as
x ≡

(
xt, x(a,b)1 , . . . , x(a,b)|T |

)
. The properties of the solution are the follow-

ing:
vqj (t)xt +

∑
(a,b)∈T

vqj (a+ bm)xa,b + vqj (g) ≡ 0 (mod l)

for all qj in the rational factor base,∑
(a,b)∈T

vQj (a+ bα)xa,b ≡ 0 (mod l)

for all Qj in the algebraic factor base and∑
(a,b)∈T

λi(a+ bα)xa,b ≡ 0 (mod l)

for all character maps λi.

We now define

δ = txtg
∏

(a,b)∈T

(a+ bm)xa,b

γ =
∏

(a,b)∈T

(a+ bα)xa,b

40

Because of the abovementioned properties, we have

δ =

∏
j

q
vqj (t)
j

xt∏
j

q
vqj (g)
j

∏
(a,b)∈T

∏
j

q
vqj (a+bm)
j

xa,b

=
∏
j

q
vqj (t)xt+vqj (g)+

∑
(a,b)∈T

vqj (a+bm)xa,b
j

We recognize the exponent(s) as the expression(s) above that were congruent
to 0 modulo l, hence there is an rj for each j such that the exponent equals rj l.
We get

δ =
∏
j

q
rj l
j =

∏
j

q
rj
j

l

The conclusion is that δ is an l’th power in Z. Similarly, we have

〈γ〉 =
∏

(a,b)∈T

∏
j

Q
vQj (a+bα)
j

xa,b

=
∏
j

Q

∑
(a,b)∈T

vQj (a+bα)xa,b
j

=
∏
j

Q
sj l
j =

∏
j

Q
sj
j

l

and thus the ideal generated by γ is an l’th power in OQ[α]. This is necessary
for γ being an l’th power in OQ[α], which is what we want.

Using the homomorphism property of the character maps, we get

λi(γ) = λi

 ∏
(a,b∈T)

(a+ bα)xa,b
 =

∑
(a,b∈T)

λi ((a+ bα)xa,b)

=
∑

(a,b∈T)

xa,bλi(a+ bα),

which, as previously shown, is congruent to 0 modulo l for all λi. It turns out
that this is not likely to happen if γ is not an l’th power in OQ[α], so together
with the observations made in the previous paragraph, we consider this sufficient
to conclude that this is in fact the case. As was the case with the NFS-fact, we
need to multiply all l’th powers with f ′(α)l to be guaranteed that they are l’th
powers in Z[α].

41

4.4 The algorithm
We summarize our work with this algorithm describing how to find the discrete
logarithm of g with base t in a field with p elements.

Let d, u, y ∈ N be such that p > 2d.

1. Find an integer m and a polynomial f ∈ Z[x] such that f(m) ≡ 0 (mod p).
Decide on a root α ∈ C of f .

2. Using the sieving procedures described, find a set T ⊂ Z×Z such that for
all (a, b) in T , we have that gcd(a, b) = 1, |a| ≤ u, 0 < b ≤ u, a + bm is
y-smooth and N(a+ bα) is y-smooth.

3. Find a prime divisor l of p− 1.

4. Solving the linear system described, find x such that
f ′(m)txtg

∏
(a+ bm)xa,b and f ′(α)

∏
(a+ bα)xa,b are l’th powers in Z and

Z[α] respectively.

5. Repeat steps 3 and 4 until all prime divisors of p− 1 have been used.

6. Use the Chinese Remainder Theorem to solve the system of congruences
xt ≡ − logt g (mod l), return the solution.

4.5 Some remarks
It would seem from our description that we can only find the discrete logarithm
when both t and g are smooth, since we need to know their factorizations. But
in fact, it will suffice that they have smooth preimages under φ, see [6].

The complexity analysis of the NFS-dlog is quite similar to the NFS-fact.
The dominating step in the previous analysis is exactly the same as step 2 in
this algorithm. Elsewhere, n is just replaced by p. We should point out that the
linear system in the NFS-dlog will require a bit more work, as it is solved over
Zl and not Z2. Still, it should not dominate the other steps in the algorithm.
See [6] for clarification on this.

42

Chapter 5

Finding d-logs in more
general finite fields

5.1 General idea
Similar to the way the idea of the NFS-fact was extended to a new problem, it
is possible to extend the idea of the NFS-dlog to finding discrete logarithms in
other finite fields than the prime ones. Recall from Section 2.3 that if n is not a
prime, we can not use Zn as a model for Fn as we have done so far. We would
therefore need some new ideas. One such algorithm is described in [5]. The lin-
ear system and the properties of the solution are quite similar to the NFS-dlog,
but the details are a lot more complicated. Furthermore, this turns out not to
be the most efficient algorithm for the general discrete logarithm problem. In
this chapter, we will present an algorithm running in quasi-polynomial time.

We want to find discrete logarithms in a field Fq2k . Elements in this field
will be represented by polynomials over Fq2 of degree less than k. So let

P =
D∑
i=0

aiX
i

(of degree D) and Q be elements in F∗q2k such that P is in the subgroup gener-
ated by Q, i.e. there is an integer s such that Qs = P in the field. We denote
by logQ(P) the smallest such integer.

The idea is to express logQ(P) as a linear combination of logarithms of lower
degree polynomials. Then we repeat the process on the new polynomials until
we have written logQ(P) as a linear combination of only linear polynomials. If
we can then show that we can compute the logarithms of linear polynomials,
we have succeeded in finding the logarithm we wanted.

43

For this algorithm to work, we need to consider fields on the form Fq2k . In
addition, we require that there exist polynomials h0 and h1 over Fq2 of small
degree such that h1X

q − h0 has an irreducible factor of degree k. This means
that h1X

q − h0 ≡ 0, and so
Xq ≡ h0

h1
(5.1)

5.2 Reducing the problem
Recall from Proposition 5 that

XqY −XY q =
∏

(α,β)∈P1(Fq)

(βX − αY)

Let A =
(
a b
c d

)
be a matrix defined over Fq. Letting X = aP + b and

Y = cP + d in the equality, we obtain

(aP + b)q(cP + d)− (aP + b)(cP + d)q =
∏

(α,β)

(β(aP + b)− α(cP + d))

=
∏

(α,β)

((−cα+ aβ)P − (dα− bβ))

(5.2)

Notice that:

A−1
(
α
β

)
= 1
ad− bc

(
d −b
−c a

)(
α
β

)
= 1
ad− bc

(
dα− bβ
−cα+ aβ

)
Hence, which factors appear in the right hand side of (5.2) depends on the set
{A−1(P1(Fq))} ⊂ P1(Fq2).

Let’s study the right hand side of (5.2) some more. We want to take the
terms in front of P out of the product. To do this, we obviously divide out by
(−cα+ bβ) in every factor. We have to be careful, though, because one of those
terms may be 0. If there is such a factor, it will look like (−cα+ aβ)P − (dα−
bβ) = 0P − (dα− bβ) = −(dα− bβ), so we divide out by this constant instead.
We then end up with a product on the form λ

∏
i (P − fi), where λ ∈ Fq2 ,

fi ∈ Fq2 for all i and there are either q or q + 1 terms in the last product. So
the equations now look like:

(aP + b)q(cP + d)− (aP + b)(cP + d)q = λ
∏
i

(P − fi), (5.3)

Now, let’s focus on the left hand side of (5.3). To ease notation, we make the
following definitions:

ã := aq

44

P̃ (X) :=
D∑
i=0

ãiX
i

Then the left hand side of (5.3) becomes

(aP + b)q(cP + d)− (aP + b)(cP + d)q

= (aqP q + bq) (cP + d)− (aP + b) (cqP q + dq)
=
(
ãP̃ (Xq) + b̃

)
(cP + d)− (aP + b)

(
c̃P̃ (Xq) + d̃

)
Now we use (5.1). We get(

ãP̃ (Xq) + b̃
)

(cP + d)− (aP + b)
(
c̃P̃ (Xq) + d̃

)
=
(
ãP̃

(
h0

h1

)
+ b̃

)
(cP + d)− (aP + b)

(
c̃P̃

(
h0

h1

)
+ d̃

)
If we write this out as a fraction, we can clearly obtain hD1 as the denominator
by multiplying terms in the numerator by powers of h1. Then the numerator
will be a polynomial where the highest degree term will be either hD0 (which has
degree (1 + deg(h0))D) or hD1 (which has degree (1 + deg(h1))D), so its degree
is (1 + max{deg(h0),deg(h1)})D.

We say that a polynomial is n-smooth if it can be factored into polynomials
that are all of degree n or lower. Since h0 and h1 are of low degrees, the degree
of the numerator on the left hand side of (5.3) is a low multiple of D. It is then
not too unlikely that it is

⌈
D
2
⌉
-smooth. If the numerator is in fact

⌈
D
2
⌉
-smooth,

we can write the left hand side of (5.3) as
∏

j
Pj

hD1
, where the Pj are polynomials

of degree
⌈
D
2
⌉

or lower. Taking the logarithm, we obtain

logQ
(∏

j Pj

hD1

)
= logQ

∏
j

Pj

− logQ
(
hD1
)

=
∑
j

logQ(Pj)−D logQ(h1)

Taking the logarithm on the other side of (5.3) yields

logQ

(
λ
∏
i

(P − fi)
)

= logQ(λ) +
∑
i

logQ(P − fi)

In total, we have the following equation:∑
j

logQ(Pj)−D logQ(h1)− logQ(λ) =
∑
i

logQ(P − fi) (5.4)

We are getting closer to expressing the logarithm of P in terms of logarithms
of ”smaller” polynomials. The idea now is to find several equalities (5.4) such
that a certain linear combination of them would leave only logQ(P) on the right

45

hand side. To do this, we first go through all matrices (we will make clear which
matrices to choose from in Section 5.5) and form the corresponding equalities
(5.3). We check which left hand sides are

⌈
D
2
⌉
-smooth and keep the matrices

that correspond to those equalities. Let’s call the matrices A1, . . . , Ar and the
left hand sides of the corresponding equalities (5.4) LS1, . . . , LSr.

To find the desired linear combination, we solve a linear system. Given Ai,
we define a vector v(Ai) indexed by the elements of P1(Fq2) in the following
way:

v(A)(f,1) =
{

1 if logQ(P − f) appears on the right hand side of (3)
0 otherwise

v(A)(1,0) =
{

1 if there are only q terms on the right hand side of (3)
0 otherwise

We proceed to form the matrix H whose columns are the vectors v(Ai). The
important assumption is now that this matrix has full rank q2 + 1 over Z. This
will allow us to always find a linear combination of the columns that equals a
certain vector, namely v defined by:

vγ,δ =
{

1 if (γ, δ) = (0, 1)
0 otherwise

In other words, we solve the system Hx = v. So let x = (x1, . . . , xr) be a
solution to this system. This means that:

r∑
i=1

xiv(Ai)(0,1) = 1

r∑
i=1

xiv(Ai)(f,1) = 0 ∀f 6= 0 ∈ Fq2

r∑
i=1

xiv(Ai)(1,0) = 0

Before we apply the solution, let’s rewrite the right hand sides of the equalities
(5.4) using the vectors v(Ai). We have∑

i

logQ(P − fi) =
∑
f∈Fq2

v(A)(f,1) logQ(P − f) + v(A)(1,0)

46

Now we multiply equation i with xi and add them all together:

r∑
i=1

xi(LSi) =
r∑
i=1

xi

 ∑
f∈Fq2

v(A)(f,1) logQ(P − f) + v(A)(1,0)


=
(

r∑
i=1

xiv(Ai)(0,1)

)
logQ(P − 0)

+
∑
f 6=0

(
r∑
i=1

xiv(Ai)(f,1)

)
logQ(P − f) +

r∑
i=1

xiv(Ai)(1,0)

= logQ(P) +
∑
f 6=0

0 + 0

= logQ(P)

As expected, only the logarithm of P remains on the right hand side.

We have thus expressed logQ(P) as a linear combination of the left hand
sides. The left hand sides themselves are linear combinations of the logarithms
of polynomials of smaller degree, logQ(h1) and the logarithms of elements in
Fq2 . As stated in Section 5.1, we now repeat this process until we have a linear
combination of only logarithms of linear polynomials and logQ(h1). The next
problem we will discuss is therefore how to find those logarithms explicitly.

5.3 Logarithms of linear polynomials
We now want to calculate logQ(X − f) for all f ∈ Fq2 and also logQ(h1). We
use a similar strategy as above to begin with. Using X instead of P , equation
(5.3) becomes:

(aX + b)q(cX + d)− (aX + b)(cX + d)q = λ
∏
i

(X − fi)

Again, we only use equations where the numerator on the left hand side is
smooth. The smoothness limit this time is

⌈
deg(X)

2

⌉
=
⌈ 1

2
⌉

= 1, which means
that the numerator can be factored into linear polynomials. Hence, we obtain
a system of equations on the following form:

∑
j

logQ(X − fj)−D logQ(h1)− logQ(λ) =
∑
i

logQ(X − fi) (5.5)

Now, we have the logarithms of linear polynomials (and h1) on both sides
of these equations. This means that we don’t need to form a new system like
we did above, but we can find the logarithms by solving this system directly.
Note that this is the part of the algorithm where we actally use the basis for the

47

logarithm, namely Q. The λ’s (and possibly some of the linear polynomials) lie
in Fq2 , and there we can compute logarithms much more efficiently. Let

l :=

∣∣∣F∗q2k

∣∣∣∣∣∣F∗q2

∣∣∣ ,

then we know that Ql ∈ F∗q2 . Computing logQl(λ) in this smaller field yields

λ =
(
Ql
)log

Ql
(λ) = Ql log

Ql
(λ)

and hence we have found the logarithm of λ in Fq2k . Using these values, we
solve the system defined by the equations (5.5) to find the logarithms of all the
linear polynomials and h1. Again, this step relies on a heuristic stating that the
corresponding matrix has maximal rank over Z.

As already mentioned, we now have the tools to compute the logarithm of
P . By applying the algorithms several times, we obtain

logQ(P) =
∑
j

aj logQ(Pj) + b logQ(h1) +
∑
k

logQ(λk)

=
∑
j

aj

(∑
l

al logQ(Pl) + c logQ(h1) +
∑
m

logQ(λm)
)

+ a logQ(h1) +
∑
k

logQ(λk) = . . .

=
∑
i

ai logQ(X − fi) + a logQ(h1) +
∑
n

λn

where fi and λn are in Fq2 . Inserting the computed values for logQ(X−fi) and
logQ(h1), we obtain the solution explicitly.

5.4 The algorithm
The algorithm for computing the discrete logarithm of P with base Q in a field
with q2k elements is as follows.

Let h0 and h1 such that Xq ≡ h0
h1

.

1. Solving the linear system described, express logQ(P) as a linear combina-
tion of logarithms of polynomials of at most half the degree of P .

2. Repeat step 1 with the new polynomials used instead of P .

3. Repeat step 2 until all remaining polynomials are linear.

48

4. Solving the linear system described, compute the discrete logarithms of
the linear polynomials obtained in step 3.

5. Compute logQ(P) as a linear combination of the discrete logarithms pro-
duced in step 4.

5.5 Complexity analysis
Let’s first consider how many matrices we have to check. When calculating
equation (5.3), we want to require that all factors on the right hand side are
different. How can make sure that this is the case? Well, if a matrix A has full
rank, the set

{
A−1(P1(Fq))

}
will consist of q + 1 different elements. However,

if A does not have full rank, some of them might be equal. So we require that
our matrices must have full rank, i.e. det(A) 6= 0. Hence, we choose matrices
in the set

GL
(
2, q2) =

{
A ∈M2×2(Fq2) | det(A) 6= 0

}
If we have already found a matrix that gives us a smooth numerator on the left
hand side, we want to avoid checking matrices that yield the same factors on
the right hans side, as these will not contribute to the linear system. Can we in
any way characterize some such classes of matrices? Assume that a matrix is a
scalar multiple of another one, i.e. there is an m in Fq2 such that:(

a′ b′

c′ d′

)
= m

(
a b
c d

)
The right hand side of equation (5.2) corresponding to the first matrix is∏

(α,β)

((−c′α+ a′β)P − (d′α− b′β)) =
∏

(α,β)

((−mcα+maβ)P − (mdα−mbβ))

= m
∏

(α,β)

((−cα+ aβ)P − (dα− bβ)),

which is a scalar multiple of the right hand side of equation (5.2) corresponding
to the second matrix. In other words, the two matrices yield exactly the same
factors in equation (5.3). So we want to treat matrices that are scalar multiples
of each other as ”the same” and just check one of them. Observe that

A = mA′ ⇐⇒ A = (mI)A′ ⇐⇒ A(A′)−1 = mI ⇐⇒ A(A′)−1 ∈ Z(2, q2)

where Z(2, q2) = {A ∈ GL(2, q2) | ∃m ∈ Fq2 such that A = mI}. Therefore,
we choose matrices from the set PGL(2, q2) = GL(2, q2)/Z

(
2, q2) and we avoid

checking a bunch of matrices that won’t give us anything new.

49

So multiplying matrices by scalars (diagonal matrices) does not change the
corresponding factors. What if we multiply by a matrix over Fq? Assume that
there are f1, f2, f3, f4 in Fq such that:(

a′ b′

c′ d′

)
=
(
f1 f2
f3 f4

)(
a b
c d

)
Denote the matrices A′, B and A, respectively. We must have det(B) 6= 0,
otherwise we would have det (A′) = det(B) det(A) = 0, and we only consider
invertible matrices now. Since B has full rank and is defined over Fq, we have
that {

B−1(P1(Fq))
}

=
{(

f4α− f2β
−f3α+ f1β

)}
(α,β∈P 1(Fq))

= P1(Fq)

Now, we evaluate the right hand side of equation (5.2) corresponding to A′. We
have∏

(α,β)

((−c′α+ a′β)P − (d′α− b′β))

=
∏

(α,β)

((−(f3a+ f4c)α+ (f1a+ f2c)β)P − ((f3b+ f4d)α− (f1b+ f2d)β))

=
∏

(α,β)

(−f3aα− f4cα+ f1aβ + f2cβ)P − (f3bα+ f4dα− f1bβ − f2dβ))

=
∏

(α,β)

((−c(f4α− f2β) + a(−f3α+ f1β))P − (d(f4α− f2β)− b(−f3α+ f1β)))

Using the set equality above, we know that as (α, β) ranges over P1(Fq), so
does (f4α−f2β,−f3α+ f1β). Hence, by reordering the factors in some way, we
obtain∏

(α,β)

((−c′α+ a′β)P − (d′α− b′β)) =
∏

((α,β)

((−cα+ aβ)P − (dα− bβ)),

which is the right hand side of equation (5.2) corresponding to A. So the two
matrices yield the same factors in equation (5.3).

Once again, we would then like to avoid checking both A and A′. In order
to identify them, we observe that

A = FA′ ⇐⇒ A (A′)−1 = F ⇐⇒ A (A′)−1 ∈ PGL(2, q),

so we can now restrict us to picking matrices from Pq = PGL
(
2, q2) /PGL(2, q)

without losing anything.

We need to know how many matrices there are in Pq. It is known that∣∣PGL (2, qi)∣∣ = q3i − qi, so we get

|Pq| =
∣∣PGL (2, q2)∣∣
|PGL(2, q)| = q6 − q2

q3 − q
= q3 + q

50

This fact is used as the basis of the heuristic argument presented in [1], which
attempts to show that the matrix H indeed has full rank. The argument is
quite unrigorous and the conclusion is not very close to what we really want,
so it will we skipped here. Still, the assumption that H has full rank seems to
be true experimentally. Because it is vital to the algorithm, we point out that
producing a more rigorous argument is important for the development of this
method.

How much time does step 1 take? Well, we need to go through all matrices
in Pq and check their corresponding equations for smoothness. This can be done
in polynomial time in q and D ≤ k. It is known that the linear system can be
solved with O

(
q5) operations, see [1]. In total, we have that the cost of one

iteration of the algorithm is polynomial in q and k.

Since steps 2 and 3 only involve repeating step 1, the big question is how
many times this first step is performed. We first need to find out how many
terms there are in the sum on the left hand side of equation (5.4). Recall
that the product of the polynomials Pi is a polynomial of degree at most (1 +
max{deg(h0),deg(h1)})D. There are therefore at most

(1 + max{deg(h0),deg(h1)})D = O(D)

polynomials in the sum. Note that in this ”worst” case, we would actually end
up with only linear polynomials and hence be done. Still, we will assume that
we can have this many polynomials in every iteration and that we only halve
the degree of the polynomials every time. The quasi-polynomial result will still
be obtainable.

So each equation has O(D) polynomials on the left hand side, but how many
equations do we need? Since H has rank q2 +1, we need at most q2 +1 = O

(
q2)

columns to form a linear combination that equals v. Each column corresponds
to an equation that we will use, so there are O

(
q2) such equations. Each of

those contains O(D) polynomials, as shown above, so we express a logarithm as
a linear combination of

O
(
q2D

)
= O

(
q2k
)

polynomials every time we perform step 1. Hence, every iteration of this step
generates O

(
q2k
)

new iterations.

But when does this stop? If we halve the degree every time, we reach step
3 at most log2(D) = O(log2(k)) times. The total number of iterations of step
1 is then less than

(
q2k
)O(log2(k)). The running time of every iteration was

polynomial in q and k, so the total running time for finding a discrete logarithm
in Fq2k becomes

max{q, k}O(log2(k)), (5.6)

which is quasi-polynomial in q and k.

51

Chapter 6

Concluding remarks

The recent developments in integer factorization and dicrete logarithm compu-
tation are quite impressive. In just the last 25 years, methods for solving these
problems have achieved significantly lower running time than one could previ-
ously hope for. Still, no one is able to produce a polynomial time algorithm for
either of these problems that can finally put an end to the search. So maybe it’s
just not possible? And even if it is, as long as the world’s finest mathematicians
are unable to do it, who can then break the cryptosystems?

Readers of this thesis might notice that as the algorithms we study get faster
and seemingly more applicable, the level of rigorousness decreases and heuristics
take over. There are also still a lot of situations in which our algorithms are
inapplicable and/or inefficient, and several of the ”good” results only hold under
special assumptions. There is therefore significant work yet to be done, both in
analyzing, implementing and improving these algorithms.

52

Bibliography

[1] Razvan Barbulescu, Pierrick Gaudry, Antoine Joux, and Emmanuel Thomé.
A quasi-polynomial algorithm for discrete logarithm in finite fields of small
characteristic. In Advances in Cryptology — EUROCRYPT 2014, Lecture
Notes in Computer Science. Springer, 2014.

[2] J.P. Buhler, Jr. H.W. Lenstra, and Carl Pomerance. Factoring integers with
the number field sieve. In The Development of the Number Field Sieve.
Springer, 1993.

[3] Daniel A. Marcus. Number Fields. Universitext. Springer, 1977.

[4] Jürgen Neukirch. Algebraic number theory. Grundlehren der mathematis-
chen Wissenschaften. Springer, 1999.

[5] Oliver Schirokauer. Using number fields to compute logarithms in finite
fields. Mathematics of Computation, 69(231), 2000.

[6] Oliver Schirokauer. The impact of the number field sieve on the discrete
logarithm problem in finite fields. In Algorithmic Number Theory, volume 44
of Mathematical Sciences Research Institute Publications. MSRI, 2008.

53

