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Abstract

In this thesis we model both dependent competing risks and semi-competing risks

by means of first passage times in a gamma process. In both cases, we consider a

terminal event, such as death of a person or component failure, and a non-terminal

event like for instance disease recurrence or preventive maintenance of a component.

We let the time to the terminal event equal the first passage time to a fixed level c

in a gamma process. The time to the non-terminal event is represented by the first

passage time to a stochastic level S. We have assumed that S is independent of the

gamma process so that we have random signs censoring.

In the competing risks case, a similar model based on Wiener processes has been

considered before. For semi-competing risks this is a new modelling approach, as

semi-competing risks data have mostly been analysed through copula models in

the past. We conduct simulation studies that show that the parameters in the

gamma process model can be estimated satisfactorily for both competing and semi-

competing risks data. The model is also applied to real datasets and seems to be

able to fit the data well, at least for certain chosen distributions of the random level

S. It is particularly interesting to note that our results for semi-competing risks are

consistent with earlier published results.
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Sammendrag

I denne masteroppgaven modellerer vi b̊ade avhengige konkurrerende risikoer og

semi-konkurrerende risikoer ved hjelp av tidspunkter for første krysning av visse

niv̊aer i en gammaprosess. I begge tilfeller betrakter vi en terminerende hendelse,

som for eksempel at en person dør eller at en komponent svikter, samt en ikke-

terminerende hendelse, slik som tilbakefall av en sykdom eller preventivt vedlikehold

av en komponent. Vi lar tiden til den terminerende hendelsen være lik tidspunktet

for første krysning av et bestemt niv̊a c i en gammaprosess. Tiden til den ikke-

terminerende hendelsen representeres av tidspunktet for første krysning av et annet,

stokastisk niv̊a S. Vi har antatt at S er uavhengig av gammaprosessen slik at vi

har random signs censoring.

For konkurrerende risikoer har en lignende modell basert p̊a Wienerprosesser blitt

studert tidligere. For semi-konkurrerende risikoer er dette en ny tilnærming, etter-

som data innen semi-konkurrerende risikoer stort sett har blitt modellert gjennom

copula-modeller frem til n̊a. Vi utfører simuleringsstudier som viser at parameterne

i gammaprosess-modellen kan estimeres p̊a tilfredsstillende vis, for b̊ade for data

innen konkurrerende og semi-konkurrerende risikoer. Modellen blir ogs̊a anvendt

p̊a reelle datasett og ser ut til å kunne tilpasses bra til dataene, i hvert fall for visse

utvalgte fordelinger av det tilfeldige niv̊aet S. Det er spesielt interessant å merke

seg at v̊are resultater for semi-konkurrerende risikoer er konsistente med tidligere

publiserte resultater.
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Chapter 1

Introduction

In survival analysis the goal is typically to model the time to failure, where failure

can be defined as any suitable event. An important aspect of survival analysis

is when there may be more than one event. Often, the occurrence of the first

event precludes the occurrence of any other event. This is called a competing risks

situation. For instance, one may wish to model the time to failure when this can

happen from more than one cause. To our knowledge, one of the first people to

apply competing risks theory was Daniel Bernoulli. In 1760 he tried to separate the

risk of dying due to smallpox from the risk of dying due to other causes [10]. Today,

in addition to being of use in many medical studies, the competing risks approach

has many applications in for instance reliability and maintenance analysis, actuarial

science and demography studies [23].

Many types of failure occur gradually through a degradation process [1]. To model

the time to such failures, one may use first passage times in stochastic processes.

These types of degradation models are widely used in reliability and maintenance

studies, and also in medicine and biomedical research. The most prevalent stochastic

process is perhaps the Wiener process. It has the pleasant property that the first

passage time to a specific level follows an inverse Gaussian distribution. However,

in many situations a gamma process may be more suitable [38]. This is because the

increments of the gamma process are always non-negative.

In this thesis, we will model dependent competing risks through first passage times

in a gamma process. More specifically, we will consider the setting where there

are two competing events: preventive maintenance (PM) and failure. It is natural

to assume that these two events are not independent. In that case, the marginal

distributions of the time to PM and the time to failure are not identifiable without

making any further assumptions [37]. The marginal distribution of the times to

failure could for instance be of interest as a basis for maintenance optimization. To

deal with this problem, it is assumed that the probability of experiencing a failure

or a PM is independent of the process, i.e. the age of the item. This means that

1



2 Chapter 1. Introduction

we have random signs censoring, and that the marginal distribution of the time to

failure is identifiable [7].

Everything that is described up to and including the previous paragraph was also

studied in my project thesis [35]. There, we let the time to failure be defined as

the time until the degradation process had reached a certain level, c. The time

to a preventive maintenance action was similarly defined as the time until another

level, s < c, was reached. The idea is that a signal indicating that something is

wrong with the item is emitted once it reaches level s, and there is only a certain

probability that this signal is detected. If it is, the process stops at s and a failure

is prevented. If not, the degradation process continues up to the critical threshold

c where the item fails. We will in the following refer to this as the basic model.

In this thesis, we want to extend the basic model by letting the level of potential

preventive maintenance (s) be a random variable (S). In this respect, the item will

fail if S > c or have a PM if S < c. This should make the model more flexible.

Skogsrud and Lindqvist studied an equivalent model, only with a Wiener process

instead of a gamma process [25][36]. They considered both a model with constant

s and models with random S. When applied to real data, a model with normally

distributed S seemed to provide the best fit. In my project thesis we used the same

datasets that they had used, and found out that the gamma process model with

fixed s resulted in a much better fit to the data than any of the Wiener process

models had done. We will now find out what the effect of randomizing S in the

gamma process model will be.

A gamma process model like the one we have described should also be of interest

with regards to semi-competing risks situations. In semi-competing risks one is of-

ten concerned with two types of events, terminal and non-terminal. The difference

between ordinary competing risks and semi-competing risks is that in semi compet-

ing risks one always gets to observe the time to the terminal event. Semi-competing

risks data often arise in medical research, where the non-terminal event may for

instance be disease recurrence, and the terminal event is typically death. The term

semi-competing risks was first introduced by Fine, Jiang and Chappell in 2001[12].

In most previous studies, semi-competing risks have been modelled by copula mod-

els. It should however not be a problem to model the dependency between the time

to the terminal and the time to the non-terminal event through a model such as the

gamma process model, if Cooke’s random signs censoring property [7] holds.
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In a way, this thesis therefore consists of two parts, one on competing risks and

one on semi-competing risks, but we will apply the same gamma process model to

both. An outline of the rest of the thesis is as follows: in chapter 2 some theory on

basic probability and reliability is introduced. This is followed by some theory on

competing risks in chapter 3 and on semi-competing risks in chapter 4. In chapter

5 the gamma process is presented. The chapter on competing risks and the chapter

on the gamma process, as well as the basic theory in chapter 2, is taken from

my project thesis [35] and repeated here for the sake of completeness. Once the

theoretical foundation has been laid, we move on to chapter 6 where we describe

the gamma process models that we will use in this thesis. In chapter 7 we explain

how to simulate data from these models and present some simulation studies, both

for competing risks data and semi-competing risks data. There, we also evaluate

how well the parameters of the models can be estimated. The models will then be

applied to some real datasets. This is done for competing risks in chapter 8 and

for semi-competing risks in chapter 9. Finally, in chapter 10 we discuss our results

and present some suggestions for further work. All data analysis is done with R (a

programming language and software environment for statistical computing [32]).





Chapter 2

Basic concepts

Before we describe our gamma process model for competing and semi-competing

risks, we will in this chapter present some basic theory from survival analysis and

probability theory. These are concepts that will be important throughout the thesis.

Most of this chapter is taken from the project thesis [35]. Supplementary theory

that is relevant to the thesis, but generally assumed to be known to the reader can

be found in appendix A.

2.1 Time to failure

In general, the data we deal with in survival analysis represent the time before

we observe a specific event or endpoint. For example we can study the number of

hours a machine is functioning before it breaks down or the number of days a patient

survives a terminal disease. This event time is often called the survival time or the

time to failure. The time to failure is usually denoted by the random variable T . T

will in most cases represent calendar time, but it may also denote other measures

such as the number of kilometres driven by a car, the number of times a machine

is started or the length of a crack.

2.2 Probability functions

Even though T may be a discrete variable, we will throughout this thesis assume that

T is continuously distributed with cumulative distribution function F (t) = P (T ≤
t). This is the probability that the event has occurred within the time interval

(0, t]. The probability density function of T is further given by f(t) = d
dt
F (t). The

survival function (or reliability function) is defined by S(t) = P (T > t). This is

the probability that the event does not happen within the time interval (0, t]. The

relations between the survival function, the distribution function and the probability

density function are as follows:

S(t) = 1− F (t), f(t) = − d

dt
S(t)

5
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Another useful function is the hazard function or the failure rate function λ(t). The

hazard function is defined by

λ(t) = lim
∆t→0

P (t < T < t+ ∆t|T > t)

∆t
=
f(t)

S(t)

λ(t) describes the probability of failing in a small interval, given that the item has

survived up to the starting point of the interval. An intuitive interpretation of

the failure rate is that it is the amount of risk an item is subject to at time t.

Furthermore, the cumulative hazard function is given by

Λ(t) =

∫ t

0

λ(u)du

A relation that is quite useful and that we will use later is the following

S(t) = e−
∫ t
0 λ(u)du = e−Λ(t) (2.1)

2.3 Censoring

By the term censoring we mean a condition where the value of a measurement or

observation is only partially known [33]. In survival analysis it is often the case

that one or more of the failure times will not be registered, and we then have what

we call a censored dataset (in contrast to a complete dataset). Censoring can either

be planned or out of our control. There are several types of censoring, but for the

purpose of this thesis we will only consider what is called right censoring, and more

specifically type I censoring. These terms are defined as follows:

• Right censoring: when the experiment is terminated before the item has

failed

• Type I censoring: a type of right censoring that occurs when all items are

activated at the same time, t = 0, and the experiment is terminated at time

t0. Here, only the lifetimes of the items that failed before t0 will be known

In censored datasets one often includes an indicator variable δi in addition to the

registered failure times. δi is defined by

δi =

{
1 if ti is a failure time

0 if ti is a censoring time
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2.4 Non-parametric estimators of S(t) and Λ(t)

Non-parametric estimators do not rely on any assumptions regarding the distribu-

tion of T , other than that it is continuous. The estimators presented here can be

used for both censored and uncensored data. We assume that two or more items

may not fail at the same time, nor can an item be censored at the same time as

another item fails.

2.4.1 The Kaplan-Meier estimator

To estimate the survival function, it is common in survival analysis to use the

Kaplan-Meier estimator. As done in [33], denote the observed times, either to

failure or to censoring, by ti, i = 1, ..., n. Let t(1) < t(2) < · · · < t(n) be the same

times sorted in ascending order. Define ni to be the number of items at risk (i.e.

functioning and still under observation) immediately before time t(i) and di to be

the number of failures at t(i). The Kaplan-Meier estimator is then defined by

Ŝ(t) =
∏

i;t(i)≤t

ni − di
ni

(2.2)

2.4.2 The Nelson-Aalen estimator

To estimate the cumulative hazard function Λ(t), one can use the Nelson-Aalen

estimator. This estimator can be deduced by the Kaplan-Meier estimator in (2.2)

and the relation in (2.1). The Nelson-Aalen estimator is defined by

Λ̂(t) =
∑
i;t(i)≤t

1

ni
(2.3)

As before, ni is the number of items at risk just before time ti.

2.5 Estimation of variance and confidence intervals

We will in this thesis use maximum likelihood estimation to find parameter estimates

in our models. The maximum likelihood procedure is described in appendix A.2.

In the following we will use θ to denote a vector of parameters, and θ̂ to denote a

vector of parameter estimates. No matter how efficient our parameter estimators

are, they are not exact. It is therefore of great interest to estimate their variances

and/or their corresponding confidence intervals. In this section we will describe two

methods of finding an estimate of the standard deviation of a parameter estimate,

SD(θ̂). The first is by the Hessian matrix, and the second is by bootstrapping. We
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will further present the standard confidence interval and the standard confidence

interval for positive parameters and how to construct them. In addition, we will

see how to find bootstrap confidence intervals. The theory in this section is in large

part from [5].

2.5.1 Estimating SD(θ̂) by the Hessian matrix

We begin by defining the Hessian matrix, sometimes just called the Hessian. The

Hessian is a square matrix of second-order partial derivatives of a function. When

the function in question is a log likelihood function, l(θ), the Hessian matrix will

be:

H(l) =



∂2l(θ)

∂θ2
1

∂2l(θ)

∂θ1 ∂θ2

· · · ∂2l(θ)

∂θ1 ∂θk

∂2l(θ)

∂θ2 ∂θ1

∂2l(θ)

∂θ2
2

· · · ∂2l(θ)

∂θ2 ∂θk
...

...
. . .

...

∂2l(θ)

∂θk ∂θ1

∂2l(θ)

∂θk ∂θ2

· · · ∂2l(θ)

∂θ2
k


One can note that this is the negative of the observed Fisher information matrix.

By taking the inverse of this Hessian matrix, the variance of each parameter θi, i =

1, ..., k can be estimated by the diagonal elements. Then, the square root of these

estimates will be estimators for SD(θ̂i), i.e.

ŜD(θ̂i) =
√
|H(l)|−1

ii (2.4)

In the simulation study in chapter 7 and the data analysis in chapters 8 and 9, we

will use this method of estimating SD(θ̂i). This is easily done in R, as the optim()

function calculates the Hessian matrix.

2.5.2 Estimating SD(θ̂) by bootstrapping

Another way to evaluate the accuracy of an estimator is by bootstrapping. The fol-

lowing theory is selected from chapter 9 in [14]. Assume that you have independent

observations x = x1, ..., xn from a population with cumulative distribution function

F . Assume further that you have made a parameter estimate θ̂ = t(x) (for example

an estimate of the mean of the distribution). Now, the idea of bootstrapping is to

make B bootstrap samples x∗b, b = 1, ..., B, all of size n. This can be done in several

ways. Here, we will focus on the non-parametric bootstrap. The advantage of the

non-parametric technique, is that we do not have to make any assumptions of the

distribution of x (in the parametric bootstrap we assume that the data comes from
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the distribution F , or at least that this provides a good representation of reality.

However, if this turns out to not be the case, the results of parametric bootstrapping

may be misleading).

Non-parametric bootstrapping

Let F̂ denote the empirical distribution of F . F̂ (t) of the observed data is defined

as 1
n

∑n
i=1 I{xi≤t}. The way we generate bootstrap samples non-parametrically is to

draw from this empirical distribution, i.e. draw with replacement from the original

data x = x1, ..., xn. From each bootstrap sample x∗b one can then find an estimate

for the parameter θ, θ̂∗(b).

Once the bootstrap estimates θ̂∗(b), b = 1, ...B have been found, one can calculate

the bias and the standard deviation of the estimator θ̂. The bias can be estimated

as the mean value of θ̂∗ − θ̂:

b̂ias =
B∑
b=1

(θ̂∗(b)− θ̂)
B

= θ̄∗ − θ̂

The bootstrap standard deviation is estimated by

ŜDB =

√√√√ 1

B − 1

B∑
b=1

(θ̂∗(b)− θ̄∗)2

where θ̄∗ = 1
B

∑B
b=1 θ̂

∗(b)

2.5.3 Confidence intervals from the Hessian matrix

General theory (for example [5] p. 472) states that if a maximum likelihood estima-

tor θ̂ is calculated from a large sample, then it is approximately normally distributed

with mean θ, i.e.
θ̂ − θ

ŜD(θ̂)
→ N(0, 1)

Here, N(0, 1) is the usual way to denote the normal distribution with mean 0 and

variance 1. It then follows that for a significance level α

P

−zα/2 < θ̂ − θ

ŜD(θ̂)
< zα/2

 ≈ 1− α

where ŜD(θ̂) is the estimate we found in (2.4) and zα/2 is the α/2 quantile in the

standard normal distribution. This gives what is called the (1 − α)100% standard
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confidence interval. We usually write

θ̂ ± zα/2ŜD(θ̂)

If we want to get a 95%= (1 - 0.05)100% standard confidence interval we use the

quantile z0.025 ≈ 1.96.

In the gamma process models that we shall explore later in this thesis, all of the

parameters should be positive. It is then common to use what we will call the

standard confidence interval for positive parameters. This interval is found by the

re-parameterization g(θ) = ln θ, which will result in only positive values in the

confidence intervals if θ itself also is positive. By the delta method (which is further

described in appendix A.4) it follows that

g(θ̂)− g(θ)

[g′(θ)]2 Var(θ̂)
→ N(0, 1) (2.5)

As mentioned above, we have g(θ̂) = ln θ̂. We then get:

[g′(θ)]
2

Var(θ̂) =
1

θ2
Var(θ̂)

The standard deviation is then the square root of this, that is

SD(ln θ̂) =
1

θ
SD(θ̂)

The relation in (2.5) still holds if we insert an estimate of SD(ln θ̂), namely 1

θ̂
ŜD(θ̂),

which in this case is the estimate we found in (2.4). Thus, for a large enough sample

size the confidence interval for g(θ) (and thereby also for θ), can be found from:

ln θ̂ − ln θ

1

θ̂
ŜD(θ̂)

→ N(0, 1)

If we for example let α = 0.05, the corresponding 95% confidence interval for ln θ

is given by

ln θ̂ ± 1.96
1

θ̂
ŜD(θ̂)
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By exponentiating this, we get the following 95% standard confidence interval for

the positive parameter θ

θ̂ exp

{
±1.96

1

θ̂
ŜD(θ̂)

}
(2.6)

2.5.4 Bootstrap confidence intervals

Confidence intervals can also be estimated by bootstrapping techniques. The per-

haps simplest two-sided (1-α)100% bootstrap confidence interval is the percentile

interval [q∗α/2, q
∗
1−α/2] where q∗α is the α-quantile in the distribution of θ̂∗. This es-

timate is often quite good, but is prone to bias and may provide too low coverage

[14]. There exist a wide range of other bootstrap confidence intervals that correct

for bias and/or skewness in the bootstrap distribution. Here, we will only compute

one of these, using the accelerated bias-corrected percentile method, BCa. The BCa

approach is often a lot better than the simple percentile method since the percentile

levels in the confidence intervals are corrected for bias and skewness. Instead of us-

ing the α
2

and the 1− α
2

quantiles in the distribution of θ̂∗, we now use the β1 and

β2 quantiles, where the βs are functions of a bias correction b, and an acceleration

a in the following manner [14]:

β1 = Φ

(
b+

b+ zα/2
1− a(b+ zα/2)

)
, β2 = Φ

(
b+

b+ z1−α/2

1− a(b+ z1−α/2)

)
Here, Φ is the standard normal cumulative distribution function. According to [14],

the simplest, non-parametric choices for b and a are

b = Φ−1
(
F̂ ∗(θ̂)

)

a =

∑n
i=1(θ̂(·) − θ̂(−i))

3

6
[∑n

i=1(θ̂(·) − θ̂(−i))2
]3/2

with θ̂(−i) being the parameter estimate computed without observation i and θ̂(·) =
1
n

∑n
i=1 θ̂(−i). Later in this thesis we will compute the BCa intervals by the script

in appendix D.2.5.





Chapter 3

Competing risks

In standard survival analysis one considers the time until failure of some item. Thus,

a failure is the only possible event. In many cases however, we would like to include

the possibility of different types of events. For example in medical studies one may

wish to model the time until recurrence of a disease or until death, whichever comes

first. One way to model this is by competing risks. We will in the following use the

same notation as in [23]. The chapter is taken from the project thesis [35].

3.1 Definition and model specification

Consider an item which can fail due to one out of k possible causes. For each item

we observe both the time to failure, T , and the failure cause, C ∈ {1, 2, ..., k}. A

useful approach in reliability applications of competing risks is the latent failure

time approach. One can imagine that each of the k failure types has an associated

potential failure time Tj, j = 1, ..., k. These k times are hypothetical failure times

that would have been realized if the other risks were not present, and they are

therefore called latent failure times. When all of the risks (or possible failure causes)

are present, the observed time to failure for the system is the smallest of the latent

failure times. That is, for each item we observe the pair (T,C), where T = minj Tj

and C = arg minj Tj.

3.1.1 Special case with two competing risks

In this thesis we will only consider a particular situation with two competing risks,

that is k = 2. Here, we let T1 denote the time until critical failure of a component

and T2 denote the time until preventive maintenance (PM), see figure 3.1. By

preventive maintenance we mean that the component is removed and maintained

prior to failure. In the following we will denote T1 by X and T2 by Z, as it was done

in [7]. The observed data will in this case be T = min(X,Z) = Y and C, where

C =

{
1 if there is a failure, i.e. X < Z

0 if there is a PM, i.e. X > Z

13
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In this model, the probability of observing Z is defined as q = P (Z < X), which

means that C = 1 with a probability 1− q and C = 0 with a probability q.

Figure 3.1: The lifetime (X) and the potential time to preventive maintenance
(Z). Figure copied from [24]

3.2 Probability functions

In the competing risks setting one needs to define functions for the probability

distributions that take the cause of failure into account.

3.2.1 Sub-functions

From observations on the form (T,C) one can in general only find the joint dis-

tribution of T and C. These joint distributions are described by what is called

sub-functions, as their density functions do not necessarily integrate to one. For

instance, the cumulative distribution function of (T,C) is called the sub-distribution

function, and for the jth cause this is expressed by:

F ∗j (t) = P (T ≤ t, C = j)

The sub-density function (when it exists) is found by differentiating the sub-distribution

function:

f ∗j (t) = F ∗′j (t)

In a similar manner, the sub-survival function for the jth cause is given by

S∗j (t) = P (T > t, C = j)

One should note that the probability of failing due to cause j is given by P (C =

j) = S∗j (0) = F ∗j (∞).

In the setting with only two competing risks, the sub-survival function for X is

written as S∗X(t) = P (Y > t, C = 1) = P (min(X,Z) > t,X < Z). Likewise, for Z

we get: S∗Z(t) = P (Y > t, C = 0) = P (min(X,Z) > t, Z < X).
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The joint distribution of (T,C) can also be described by the sub-hazard function

which is defined as follows:

λ∗j(t) = lim
∆t→0

P (T ≤ t+ ∆t, C = j|T > t)

∆t
=
f ∗j (t)

S(t)

This is sometimes called the cause specific hazard rate. The cumulative sub-hazard

function is defined as

Λ∗j(t) =

∫ t

0

λ∗j(u)du

3.2.2 Conditional sub-functions

The conditional sub-functions are sub-functions conditioned on the event that the

failure cause in question lead to the failure. More precisely, the conditional sub-

survival function is defined as

S̃j(t) = P (T > t|C = j) =
P (T > t, C = j)

P (C = j)
=
S∗j (t)

S∗j (0)

The conditional sub-distribution function is in a similar way given by

F̃j(t) = P (T ≤ t|C = j) =
P (T ≤ t, C = j)

P (C = j)
=

F ∗j (t)

F ∗j (∞)
(3.1)

When there are only two competing risks, the conditional sub-survival functions are

S̃X(t) =
S∗X(t)

S∗X(0)
and S̃Z(t) =

S∗Z(t)

S∗Z(0)

The concept of conditional sub-survival functions will be important when discussing

the property random signs censoring in section 3.5.

3.2.3 Sub-survival pair

We here define the term sub-survival pair for the special case with two competing

risks, as done in [7]. This term will be used later in relation to random signs

censoring.

Definition 3.1. Real functions S∗X(t) and S∗Z(t) form a sub-survival pair if

1. S∗X(t) and S∗Z(t) are non-negative, non-increasing real functions with S∗X(0) ≤
1 and S∗Z(0) ≤ 1

2. limt→∞ S
∗
X(t) = limt→∞ S

∗
Z(t) = 0

3. S∗X(0) + S∗Z(0) = 1



16 Chapter 3. Competing risks

3.3 Non-parametric estimation

For a given dataset, we want to estimate the sub-distribution functions and the

conditional sub-distribution functions. If we have these estimates, we can easily find

estimates for the sub-survival function and the conditional sub-survival function as

S∗j (t) = 1 − F ∗j (t) and S̃j(t) = 1 − F̃j(t) respectively. The theory in this section is

in large part from [22].

3.3.1 Estimating the sub-distribution function

An estimate of the sub-distribution function is provided by

F̂ ∗j (t) =

∫ t

0

Ŝ(u)dΛ̂∗j(u), j = 1, ..., k. (3.2)

Here, Ŝ(t) is an estimate of the marginal survival function S(t) and Λ̂∗j(t) is an

estimate of the cumulative sub-hazard function. The marginal survival function

S(t) is estimated by the Kaplan-Meier estimator from section 2.4.1. By simply

ignoring the observed failure causes we get the following estimate:

Ŝ(t) =
∏

i;t(i)≤t

n′i − d′i
n′i

where t(1) < ... < t(N) are the sorted failure or censoring times, d′i is the number

of failures at time t(i) and n′i is the number of individuals at risk at time t(i). A

non-parametric estimate of Λ∗j(t) is found by using the Nelson-Aalen estimator from

section 2.4.2:

Λ̂∗j(t) =
∑
i;ti≤t

δij
ni
, j = 1, ..., k

where ni is the number of individuals alive and not censored just prior to time

ti, and δij is the indicator function I(Ci = j). Inserted into (3.2), this gives the

following estimate for the sub-distribution function

F̂ ∗j (t) =
∑
i;ti≤t

Ŝ(ti)
δij
ni
, j = 1, ..., k

This is sometimes called the Aalen-Johansen estimator.
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3.3.2 Estimating the conditional sub-distribution functions

From equation (3.1) one might think that the conditional sub-distribution func-

tion should be estimated by ˆ̃Fj(t) =
F̂ ∗j (t)

F̂ ∗j (∞)
. However, the estimates of the sub-

distribution functions may not fulfil the property
∑k

j=1 F̂
∗
j (∞) = 1, so the following

re-normalization of the estimates is done:

F̂ ∗j (∞)′ =
F̂ ∗j (∞)∑k
j=1 F̂

∗
j (∞)

This ensures that
∑k

j=1 F̂
∗
j (∞)′ = 1. Estimates of the conditional sub-distribution

functions are then given by:

ˆ̃Fj(t) =
F̂ ∗j (t)

F̂ ∗j (∞)′

In the special case of only two competing risks, the re-normalization of the sub-

distribution function can be used as a non-parametric estimate of the probability

q = P (Z < X)

q̂ =
F̂ ∗Z(∞)

F̂ ∗X(∞) + F̂ ∗Z(∞)
(3.3)

The estimates of the conditional sub-distribution functions F̃X(t) and F̃Z(t) then

become
ˆ̃FX(t) =

F̂ ∗X(t)

1− q̂
and ˆ̃FZ(t) =

F̂ ∗Z(t)

q̂
(3.4)

In R we will compute these estimates by the function condSurv(), which is included

in appendix D.2.1.

3.4 The identifiability problem

As briefly mentioned earlier, a problem with the competing risks model is that

the distribution of the observable pair (T,C) does not in general determine the

distribution of the latent failure times T1, ..., Tk. We usually say that the joint and

marginal distributions of T1, ..., Tk are non-identifiable from observations of (T,C).

This issue was first noted by Cox in 1959 [9] and has later been studied in great

detail, especially by Tsiatis. To deal with the identifiability problem one needs to

impose some additional restrictions on the model. The simplest solution would be

to assume that the latent failure times are independent of each other, i.e. that the

competing risks act independently.
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In many cases, to assume independence is not reasonable. Often, the competing

events share some common factors such as the surrounding environment, the man-

ufacturer or what kind of maintenance is performed. Then, the rates of occurrence

for the different events are likely to affect each other. This is also the case in this

thesis, with the competing risks being preventive maintenance and critical failure.

If these events were independent, the rate of occurrence of critical failures would be

unaffected if we stopped doing any preventive maintenance, which does not make

sense. Another argument is that one would assume that the PM-team has some

knowledge about the state of the item during operation, and that this will affect

what moment they choose to do the PM (as they want to avoid failure). In these

situations one can use random signs censoring to deal with the identifiability prob-

lem. Unfortunately, the additional assumptions we make are non-testable when we

only have observations (T,C). More on this subject can be read in [37].

3.5 Random signs censoring

Random signs censoring (RSC) was first introduced by Cooke in 1993 as age-

dependent censoring [7]. The concept of RSC is that whether a component is

censored or not is independent of the age of the component. However, given that

the component is censored, the censoring time may depend on its age. In our setting

with only two competing risks, RSC can be defined as follows [26]:

Definition 3.2. Let (X,Z) be a pair of life variables. Then Z is called a random

signs censoring of X if the event {Z < X} is stochastically independent of X.

This means that PM is either done or not done on an item, independent of the time

X where the item will/would have failed. We can imagine that before the item fails,

it will emit a signal indicating that a failure is emerging. This is in many cases a

reasonable assumption to make. For instance, if the item in question is a machine,

typical signals may be excessive noise and/or vibration. If we were to consider a

human being in a medical study instead, symptoms of disease could serve as the

signal. We must further assume that the emitted signal will be discovered with a

probability that does not depend on the age of the item we are considering.

Random signs censoring implies that the marginal distribution of X is identifiable

[23]. The distribution of Z however, is in general not identifiable under these as-

sumptions, only the conditional distribution of Z given that Z < X. As noted

in [36], the definition of random signs censoring leads to the following conditional

distribution for X
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S̃X(t) = P (X > t|X < Z) =
P (X > t,X < Z)

P (X < Z)
= P (X > t) = SX(t) (3.5)

Thus, the marginal distribution of X actually is the same as the distribution of the

observed failure times. To later check whether our data is suited to fit to a random

signs distribution for (X,Z), we will use a theorem described in [7]:

Theorem 3.3. Let K1, K2 be a sub-distribution pair. Then the following are equiv-

alent:

1. There exists a pair (X,Z) of life variables such that Z is a random signs

censoring of X, and such that:

F ∗X(t) = K1(t), F ∗Z(t) = K2(t) for all t ≥ 0

2.
K1(t)

K1(∞)
<

K2(t)

K2(∞)
for all t > 0

The theorem says that a random signs distribution for (X,Z) exists if and only

if the conditional distribution function of X, F̃X(t), is below that of Z, F̃Z(t), for

all t [25]. Equivalently, a random signs distribution for (X,Z) exists if and only if

S̃Z(t) < S̃X(t) for all t.





Chapter 4

Semi-competing risks

A version of the competing risks problem that often arises in medical research and

clinical trials is semi-competing risks. In this chapter we will introduce the concept

of semi-competing risks and some modelling approaches.

4.1 Introduction

Semi-competing risks is a variation of ordinary competing risks. The term semi-

competing risks was first introduced by Fine, Jiang and Chappell in 2001 [12]. In

semi-competing risks, one often considers two types of events: non-terminal and

terminal. The difference from ordinary competing risks is that the focus is not

restricted to the first event. A non-terminal event may be censored by a terminal

event but not vice versa. That is, the non-terminal event does not prevent the

observation of the terminal event (as it would have done in ordinary competing

risks problems). Thereby, more information regarding event times is obtained with

semi-competing risks than with ordinary competing risks.

Figure 4.1: The illness-death model

Semi-competing risks has especially many applications in medicine. In medical

research and clinical trials one can often observe several distinct events related to

disease progression or a patient’s condition. This results in a set of numerous event

times. In this setting, a non-terminal event may for instance be disease recurrence,

while the terminal event typically is death or drop-out from the study. The semi-

competing risks problem is equivalent to the classical illness-death model, which

was introduced by Fix and Neyman in 1951 [13], see figure 4.1. The illness-death

model is further considered to be a special case of the multi-state models [39].

21
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Some examples of semi-competing risks models applied to medicine can be found

in cancer research. Typically, relapse is defined to be the non-terminal event while

death is the terminal event. This is for instance the case in the article by Fine,

Jiang and Chappell from 2001 [12] where a set of bone marrow transplant data is

analysed. Semi-competing risks problems also naturally arise in studies of ageing

(gerontology). The event death will often censor some other event that is under

study, like dementia (Alzheimer’s disease) or disability [39].

4.2 Notation

We will in this thesis only deal with two events in the semi-competing risks case,

one terminal and one non-terminal. Let T1 and T2 be the times of the terminal

event and the non-terminal event respectively. As in the competing risks case, we

choose to denote T1 by X and T2 by Z, even though we are no longer considering

preventive maintenance and critical failure as events. We may also wish to include

a time of censoring, τ , for cases where there is loss to follow up.

Let Y1 = min{Z,X, τ}, Y2 = min{X, τ}, δ1 = I{Z ≤ Y2} and δ2 = I{X ≤ τ},
where I is the indicator function. Now, as explained in the previous section, X is

always observed if we let the study go on long enough and there are no drop-outs. Z

however, may be prevented from happening by the occurrence of the terminal event.

Ideally, to make inferences on Z we would like to observe Zi for each individual i =

1, ..., n. In reality however, we only get to observe n i.i.d. copies of {Y1i, Y2i, δ1i, δ2i}.
There are six possible orders that Z,X and τ can occur in. Table 4.1 lists these

potential permutations and what kind of semi-competing risks data they will result

in.

Table 4.1: Possibilities of semi-competing risks data depending on the order of
the terminal and non-terminal events and when the observations are censored

Order Resulting data Case
Z, X, τ (Z, X, 1, 1) 1
X, Z , τ (X, X, 0, 1)

2
X, τ , Z (X, X, 0, 1)
Z, τ , X (Z, τ , 1, 0) 3
τ , Z, X (τ , τ , 0, 0)

4
τ , X, Z (τ , τ , 0, 0)

The permutation listed in the first row results in observations of both Z and X. We

will denote this as case 1. Furthermore, we can see that the order in the second and



Chapter 4. Semi-competing risks 23

third rows result in the same observations of only the time to the terminal event.

We refer to this as case 2. Similarly, the order in row number four will represent

case 3, and results in observations of the time to the non-terminal event and a

censoring time. The permutations of the bottom two rows will give the same set of

observations of only the censoring time τ . In the following, we will refer to this as

case 4. Thus, we have in total four possible scenarios.

In figure 4.2(b), an illustration of semi-competing risks data is given and compared

to simple right-censored data in figure 4.2(a) and ordinary competing risks data in

figure 4.2(c). The figures are taken from [18]. A dot represents the observation of

both Z and X. A vertical arrow indicates a censoring of X, while a horizontal arrow

indicates a censoring of Z. For example, in figure 4.2(b), subject 1 experienced the

non-terminal event and later the terminal event, so we observe both Z and X.

Subject 2 experienced the non-terminal event, but did not experience the terminal

event before the end of the study, so we observe Z and a censoring time τ . Subject

3 experienced the terminal event before it got to experience the non-terminal event,

so we only observe X and so on. Note that for the simple right-censored data in

4.2(a), the data points may be located anywhere in the first quadrant. For the

semi-competing risks data in 4.2(b), every realization must be above the diagonal

line. For the ordinary competing risks data in 4.2(c) we never observe Z and X

together, and so every point must be on the diagonal line.

Figure 4.2: Illustration of semi-competing risks data (b) compared to simple
right censored data (a) and ordinary competing risks data (c). Figure copied

from [18]

4.3 Approaches to semi-competing risks

While competing risks theory has been used in a wide range of applications and

studied in great detail, semi-competing risks models have not yet become that

popular. The reason for this is probably that for a long time there has not been any

appropriate way to make inferences with semi-competing risks data. The terminal
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and the non-terminal event can seldom be considered to be independent of each

other. Thus, we face the same kind of identifiability problem as in competing risks,

described in section 3.4. The extra information regarding the times to the terminal

events makes the semi-competing risks problem more complex to analyse.

During the past 15 years however, several semi-parametric models have been devel-

oped and successfully applied to semi-competing risks data for instance in [12], [30]

and [17]. These models are still relatively new, and some believe that they are too

sophisticated to catch on amongst a broad range of researchers [39]. To take the

dependent censoring into account, it is common to assume that the bivariate distri-

bution of non-terminal and terminal event times is a known copula. This may for

example be the gamma frailty copula [6]. The joint distribution (X,Z) is identifiable

in the upper wedge where Z < X, but the marginal distribution of the non-terminal

event Z is not identifiable without having to make additional assumptions.

In general one may say that there are two main approaches to semi-competing

risks: analysis by net quantities and analysis by crude quantities [31]. The two

approaches have also been denoted as models based on potential (latent) failure

times and models based on only observable quantities, respectively [39]. The point

of the following section is not to weigh in on the debate on which approach is better

to use, only to present the two approaches objectively. We will use both later in

the thesis.

4.3.1 Analysis by net quantities

The goal in many medical studies is to estimate patient survival. One then needs to

study the distribution of the terminal event, which is non-parametrically identifiable

in semi-competing risks. However, there are also many cases where it is of interest

to make inference on the marginal distribution of the time to the non-terminal event

[12]. This approach is often referred to as analysis based on net quantities. The

problem with estimating these net quantities is that the terminal event may occur

first, and thereby prevent the non-terminal event from happening. The Kaplan-

Meier estimate for P (Z > t) is often too optimistic, and does not take into account

the dependency between Z and X. One therefore needs to make further assumptions

in order to estimate the marginal distribution of the time to the non-terminating

event. The estimation of this quantity is somewhat controversial, as it depicts a

situation where the terminal event never will prevent the non-terminal event from

happening. Some [3] have argued that this has no root in reality. On the other hand,

Fine, Jiang and Chappell for instance argue that it is a useful quantity to estimate

in many respects. In [12] they state that it ”addresses the issue of [...] the behaviour
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of morbidity as a process distinct from mortality due to other causes.” An example

they use is cancer patients who have undergone bone marrow transplantation. In

that case, they state that it would be useful for the researchers to estimate the

marginal distribution to evaluate the efficacy of the treatment.

4.3.2 Analysis by crude quantities

Another approach has been to analyse semi-competing risks data as if they were

competing risks data, thereby ignoring the information after the first event. Typ-

ically, one then estimates functions such as the cause-specific hazard (which we

called the sub-hazard function in chapter 3) and the cumulative incidence func-

tion (which we called the sub-distribution function). This approach is often termed

analysis by crude quantities. The advantage of these quantities is that they are

non-parametrically identifiable. In addition, these functions take the presence of

the terminal event into account. The downside is that the marginal distributions

of Z or X cannot be targeted unless Z and X are independent. In that respect

one may say that the crude quantities reflect the observational process more than

the underlying distribution of the time to the event. One also needs to be a little

careful since these quantities may be susceptible to survival bias. This is because

they are conditional quantities (you condition on survival up to time t).

4.4 Non-parametric estimation of crude quantities

We will in the following use the theory from [31]. As in chapter 3, we let F ∗Z(t)

describe the distribution function of the non-terminating event in the presence of

the terminating event.

F ∗Z(t) = P (Z ≤ t,X > Z) (4.1)

Let λ∗Z(t) describe the instantaneous rate of the non-terminating event in the pres-

ence of the terminating event.

λ∗Z(t) = lim
h→0

P (t < Z < t+ h,X > Z|Z ≥ t,X ≥ t)

h
(4.2)

Now, we want to estimate these functions non-parametrically. This is essentially

done in the same manner as in section 3.3. Here, we will however use the notation

introduced for semi-competing risks data earlier in this chapter.

Let (as before) Y1 = min{Z,X, τ}, Y2 = min{X, τ}, δ1 = I(Z ≤ Y2), δ2 = I(X ≤ τ).

Moreover, let Vi(t) = I(Y1i ≥ t), N1,i(t) = I(Y1i ≤ t, δ1i = 1), N2,i(t) = I(Y1i ≤
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t, δ1i = 0, δ2i = 1). Let further V̄ (t) =
∑n

i=1 Vi(t), N̄1(t) =
∑n

i=1 N1,i(t) and N̄2(t) =∑n
i=1N2,i(t)

The non-parametric estimate for Λ∗Z(t) =
∫ t

0
λ∗Z(s)ds is given by an expression

similar to the Nelson-Aalen estimator

Λ̂∗Z(t) =
n∑
i=1

I(Y1i ≤ t, δ1i = 1)∑n
l=1 I(Y1i ≤ Y1l)

(4.3)

while for F ∗Z(t) it is

F̂ ∗Z(t) =

∫ t

0

ŜT (u−)dΛ̂∗Z(u)du (4.4)

where ŜT (t) is the Kaplan-Meier estimator for ST (t) based on {Y1i, I(Y1i < τi), i =

1, ..., n}

ŜT (t) =
∏
Y1i≤t

[
1− dN̄1(t) + dN̄2(t)

V̄ (Y1i)

]
In R we will use the script semiQuant to plot these estimates. semiQuant is included

in appendix D.2.3.
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The gamma process

In this chapter, we will introduce the gamma process and its properties. For a

definition of a stochastic process in general, see appendix A.3. After defining the

gamma process, we will move on to explore the distribution of the first passage time

to a specific threshold in this process. This chapter is taken from the project thesis

[35].

5.1 The gamma process

The gamma process was first suggested as a model for deterioration occurring ran-

dom in time by Abdel-Hameed in 1975 [38]. In contrast to the Wiener process, the

level of the gamma process is always non-decreasing. This makes the gamma pro-

cess suitable for modelling gradual damage accumulation over time, such as wear,

corrosion or fatigue. A thorough review of the applications of the gamma process

(and how these can be used to optimize maintenance) is given in [38]. There, the

following definition of a gamma process can be found:

Definition 5.1. A continuous time stochastic process {X(t), t ≥ 0} is a gamma

process with shape function v(t) > 0 and scale parameter u > 0 if

1. X(0) = 0 with probability 1

2. {X(t), t ≥ 0} has independent increments,

3. X(t)−X(s) is gamma distributed with shape parameter v(t)− v(s) and scale

parameter u for every 0 < s < t.

In accordance with definition 5.1, the probability density function of the gamma

process X(t) is simply given by

fX(t)(x) = Ga(x; v(t), u) (5.1)

whereGa(x; v(t), u) is the notation for the gamma distribution described in equation

(A.4). The mean and variance of X(t) is thus

E[X(t)] =
v(t)

u
, Var[X(t)] =

v(t)

u2

27
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Empirical studies have shown that the expected deterioration at time t often follows

a power law model [38]. Therefore, v(t) is in many cases chosen to be a function

on the form α · tβ, for some constants α > 0 and β > 0. The gamma process is

stationary if its expected value is linear, i.e. β = 1 and non-stationary if β 6= 1.

5.2 First passage time distribution of the gamma process

Figure 5.1: Illustration of a gamma process X(t) showing the connection be-
tween the critical threshold d and the first passage time Td

In the following we let X(t) be a gamma process with shape function v(t) and scale

parameter u describing the level of deterioration of an item. Let d be a constant,

deterministic threshold of the level of deterioration for which the item will fail. The

first passage time of the process X(t) is defined as the the time until it reaches the

threshold d. We denote this time by Td. In figure 5.1 the relation between the level

d and the first passage time Td is illustrated. The cumulative distribution function

for Td is found to be

FTd(t; v(t), u, d) = P (Td ≤ t)

= P (X(t) > d)

=

∫ ∞
x=d

fX(t)(x)dx

=
Γ(v(t), d · u)

Γ(v(t))
(5.2)
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where Γ(a, x) is the upper incomplete gamma function defined by Γ(a, x) =∫∞
z=x

za−1e−zdz. The corresponding survival function for Td is consequently

STd(t; v(t), u, d) = P (Td > t) = 1− FTd(t; v(t), u, d) = 1− Γ(v(t), d · u)

Γ(v(t))
(5.3)

A few examples of how this CDF may look is shown to the left of figure 5.2.

It can be shown (see for example [29] and [28]) that if v(t) is differentiable, the

probability density function of Td is given by

fTd(t; v(t), u, d) = v′(t) [Ψ(v(t))− log(d · u)]

(
1− Γ(v(t), d · u)

Γ(v(t))

)
+

v′(t)

v(t)2Γ(v(t))
(d · u)v(t)

2F2(v(t), v(t); v(t) + 1, v(t) + 1;−d · u) (5.4)

Here, Ψ(a) = d
da

ln Γ(a) = Γ′(a)
Γ(a)

is the digamma function, and 2F2() is the generalized

hypergeometric function of order (2,2). The generalized hypergeometric function of

order (p, q) is defined as

pFq(a1, ..., ap; b1, ..., bq; z) =
∞∑
k=0

(a1)k · · · (ap)k
(b1)k · · · (bq)k

zk

k!

where (x)n = Γ(x+n)
Γ(x)

is the Pochammer symbol. A few plots of the PDF is displayed

to the right of figure 5.2.

From the PDF of Td in equation (5.4) it can be seen that the scale parameter u

only appears together with the critical level d as the product d ·u. As noted in [29],

this means that we cannot estimate values for u and d separately. However, we can

without loss of generality set u = 1, since it only is a scaling factor and the level of

deterioration is a latent quantity. This leads to the density function

fTd(t; v(t), d) = v′(t) [Ψ(v(t))− log(d)]

(
1− Γ(v(t), d)

Γ(v(t))

)
+

v′(t)

v(t)2Γ(v(t))
(d)v(t)

2F2(v(t), v(t); v(t) + 1, v(t) + 1;−d) (5.5)

which is the one we will use later in this thesis.
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Figure 5.2: Examples of the CDF and PDF of the first passage time Td for
u = 1, α = 5, d = 5 and different values of β



Chapter 6

Gamma process models

We have now introduced the most important concepts of both competing and semi-

competing risks as well as the gamma process. In this chapter, we will define the

gamma process degradation models that we will be studying for the rest of the

thesis. These models represent an extended version of the model in my project

thesis [35]. The general principles of the models are the same both if we are dealing

with competing risks and semi-competing risks.

6.1 The basic model

The basic gamma process model from my master’s project is not the focus of this

thesis. Still, we wish to compare the results we get with the extended model to

the results obtained by the basic model. Therefore, the general principles of the

basic model will be repeated from the project thesis. Note that the basic model

will only be defined for ordinary competing risks data, not semi-competing risks

data. In particular, we only consider the situation described in section 3.1, where

a component either fails at time X or is given preventive maintenance at time Z.

In the basic model, we assume that the degradation of an item follows a gamma

process X(t) with shape function v(t) = αtβ. As discussed in section 5.2, we may

set the scale parameter u = 1 without loss of generality. The time to failure is equal

to the first passage time to a specific level c in the gamma process. The time to

preventive maintenance is equal to the first passage time to another, lower level s

(see figure 6.1).

In section 3.5 it was explained why it is plausible to assume that when the gamma

process reaches the level s, a signal indicating emerging failure is emitted. Whether

or not we observe this signal is determined by a draw that is independent of the

deterioration process. If the signal is detected, preventive maintenance will be

issued, and we observe Ts, the first passage time to the level s, and set Z = Ts. If

the signal is not detected, then the gamma process will continue until it reaches the

level c, where the item will fail. We then observe Tc, the first passage time to the

level c, and set X = Tc. In this case, one can imagine that Z = Tv, where v > c so

31
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Figure 6.1: Relation between the thresholds s and c and the first passage times
Ts and Tc in the basic gamma process model

that Z > X. This value Tv will never be observed and is only introduced in order to

have a completely described joint distribution of (X,Z). Since Z and X originate

from the same gamma process, they are dependent.

The probability of observing the emitted signal at level s will be equal to q = P (Z <

X). From the definition of random signs censoring in section 3.5, it is clear that

the basic gamma process model is a random signs censoring model. The potential

failure time X follows the distribution fTc(t; v(t), c) where fTc(·) is as defined in

equation (5.5). Note that for Z, fTs(t; v(t), s) is the conditional distribution of Z

given Z < X, and not the distribution of Z itself. fTs(·) is also given by equation

(5.5). The log-likelihood function for the basic model was deduced in the project

thesis, and is included in appendix F.2.

It should be mentioned that in addition to being used in the project thesis, an

equivalent model only with Wiener processes has been used before in an article by

Lindqvist and Skogsrud [25] and in a Master’s thesis by Skogsrud [36]. A similar

model has actually also been suggested by Horrocks and Thompson [16]. They

considered a Wiener process model for the health status of patients. Upon reaching

certain levels, the patients would either be discharged from the hospital or dead.
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In addition, when the health status reached an intermediate level, a decision to

transfer the patient was made with probability p. As it is pointed out in [25], this

corresponds to the situation in our model with PM possibly being done before the

level of failure is reached.

6.2 Extending the basic model

A possible extension of the basic gamma process model is to include random ef-

fects. One can often observe unexplained differences in the rate of degradation for

the items under study. These differences may be obvious, even though the items

under observation are identical, receive the same treatment and operate in the same

environment. A model that incorporates random effects, for instance frailty models,

allows for such unexplained differences.

Random effects are usually integrated in a model by making one or more parameters

into a random variable. In the basic gamma process model from the project thesis

there are many parameters to choose from. Here we will look more closely at letting

the threshold parameter s be random, just like in the article by Lindqvist and

Skogsrud [25] for the Wiener process model. We also mentioned it as a possibility

for the gamma process model in the project thesis, but there it was not further

explored. Of course, we could have chosen to let a different parameter be random,

but by choosing s we can compare our results with the ones in [25]. Before we define

our specific models, we present some of the work done on gamma process models

with a random threshold parameter in the past. There are many other possible

extensions of the basic model as well, some of these are discussed in section 10.2.

6.2.1 Gamma process models with random threshold

Models for the first passage time in a gamma process with random threshold is not a

new concept, it has been studied by many others. As mentioned in chapter 5, Abdel

Hameed was the first to suggest the gamma process as a model for deterioration

occurring random in time in 1975. He has since then used the gamma process as

a basis to develop multiple mathematical models for optimising time-based main-

tenance and condition-based maintenance [38]. Among these models, the case of

random failure threshold was studied. After Abdel Hameed, several other authors

have also studied the problem of finding the first passage time distribution to a ran-

dom level in the gamma process. A notable example, that is similar to our problem

can be found in an article by Paroissin and Salami from 2014 [29]. In their gamma

process model there is however only one threshold, which represents item failure, i.e.

there is no competing risk. In their article, they assign a probability distribution
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to the random threshold variable C. The distribution of C describes at what level

of degradation the item in question is most likely to fail. In particular, Paroissin

and Salami present models where C is exponentially or gamma distributed, and

independent of the gamma process. These distributions were chosen for practical

reasons so that an analytical expression for the first passage time distribution could

be found [29] (as we will see in section 6.4).

6.3 General description - random S models

Our goal is thereby to extend the basic gamma process model from the project

thesis by letting the level s be a random variable S (while the level c is still fixed).

This means in effect that the components (or people) under study are heterogeneous

with respect to the level S. In contrast, the level s was the same to all components

in the basic model. We will in the following refer to this new, extended model as

the random S model. Since we may choose several different distributions for S, we

will also often use the term random S models - in plural. At the end of the chapter

we will return to discussing how we may interpret the distribution of S.

As previously mentioned, we want to model both dependent competing risks and

semi-competing risks with the random S model. Now, in both of these settings we

have two types of events, non-terminal and terminal. For the semi-competing risks

case, this was described in detail in chapter 4. In the competing risks case we still

only consider the situation of PM (non-terminal event) versus component failure

(terminal event). Even though these two settings are quite different from each

other, the following fundamental principles of the model are the same regardless of

the setting.

First of all, we assume that the state of an item (or a person) follows a gamma

process, X(t), as defined in definition 5.1, with shape function v(t) = αtβ. As in

the basic model, we will let the scale parameter u = 1. Further, we will let the time

to the terminal event equal Tc, the first passage time to the level c. The time to

the non-terminal event will equal TS, the first passage time to the level S, where S

is stochastic. If TS is observed, we set Z = TS. Similarly, if Tc is observed we set

X = Tc. Furthermore, if we assume that S is independent of the gamma process,

we still have a random signs censoring model (in accordance with definition 3.2).

The event Z < X now corresponds to S < c, which is independent of Tc. Thus,

the only difference from the basic model in the project thesis is that S is a random

variable rather than a constant.
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In the following, we denote the probability density function of S by fS(s). Just as in

the basic model, the time to the terminal event follows the distribution fTc(t; v(t), c),

where fTc(·) is as defined in equation (5.5). Again we stress that for the time to the

non-terminal event, fTS(t; v(t), S) is the conditional distribution given that Z < X,

and not the distribution of Z itself.

In addition to being an extension of the basic model, the random S model can be

viewed as an extension of the one-threshold problem considered by Paroissin and

Salami in [29]. The main difference is of course the extra threshold, but another

distinction from that problem is that they used degradation data, where the degra-

dation process is observed at several points in time, whereas we are dealing with

lifetime data so that only the event times or first passage times are observed.

6.4 Random S model in the competing risks setting

We will now describe the model in the competing risks setting, and deduce some

relevant functions. As previously mentioned, we will consider the possibility of

failure at time X vs. preventive maintenance at time Z. We observe Z = Ts if

S < c and X = Tc if S > c.

For simplicity we begin by considering a situation where there are no censored

observations. We will later expand the model description to include the possibility

of censoring. Hence, what we observe is the pair (Y,C) where Y = min(Z,X) and

C is the cause variable given by:

C =

{
1 if X is observed

0 if Z is observed

We now want to find the joint distribution of (Y,C) in order to evaluate the likeli-

hood function of the model. Since the underlying process is the same for X and Z,

they share the same shape function v(t) and scale parameter u.

The contribution to the likelihood function when X is observed is the sub-density

function for X, f ∗X(x). To get the expression for this sub-density function, we will

follow the same steps as in the project thesis and first find the sub-survival function

S∗X(x) and then differentiate it. Because of the random signs property, the event

X < Z is independent of Tc and the expression for S∗X(x) becomes fairly straight
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forward, and similar to what it was in the basic model:

S∗X(x) = P (X > x,C = 1)

= P (X > x,X < Z)

= P (Tc > x, S > c)

= P (Tc > x)P (S > c)

= STc(x; v(x), c)(1− FS(c))

By differentiating, we get

f ∗X(x) = −S ′Tc(x; v(x), c)(1− FS(c))

= fTc(x; v(x), c)(1− FS(c)) (6.1)

where fTc(x; v(x), c) is the PDF defined in equation (5.5). As it is explained in the

thesis by Skogsrud [36], the sub-functions of Z are a little more complicated than

what they were in the basic model, since TS and S are not independent like they

were there. We get

S∗Z(z) = P (Z > z,C = 0)

= P (Z > z, Z < X)

= P (TS > z, S < c)

=

∫ c

0

P (TS > z, s ≤ S ≤ s+ ds)

=

∫ c

0

P (Ts > z, s ≤ S ≤ s+ ds)

=

∫ c

0

P (Ts > z)P (s ≤ S ≤ s+ ds)

=

∫ c

0

STs(z; v(z), s)fS(s)ds (6.2)

and by differentiating

f ∗Z(z) =

∫ c

0

fTs(z; v(z), s)fS(s)ds (6.3)

At this point we face a challenge, as integrating fTs(z; v(z), s) is no simple task.

The problem is similar to that studied by Paroissin and Salami in [29], but at the

same time significantly different. The model discussed there does not have any

competing risks, so it is the level c that is random and there are no other levels. In
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that case one can integrate from 0 to ∞ to find the first passage time distribution

to the random level. With ∞ as the upper limit, there are formulas, for instance in

[2], that could help us find the exact expression for f ∗Z(z), at least for some specific

choices of fS(s) like the exponential distribution or the gamma distribution.

The problem of finding an expression for f ∗Z(z) was also simpler in the Master’s

thesis by Skogsrud [36] where a Wiener process model with random level S was

considered. In that case, one could calculate the integral in (6.3) relatively easy with

certain distributions of S since fTs(·) was the inverse Gaussian distribution. In our

case, the situation seems to be a little more complicated because of the complexity

of fTs(·). A gamma process degradation model was also suggested by Park and

Padgett in [28], and they stated that ”Although we obtained the exact distribution

of the first passage time to the threshold, the distribution is so complicated that

it is very difficult to compute in practice”1. Therefore we will solve the integral

in (6.3) numerically. Even though this leads to some additional uncertainty, the

method may still provide good results.

It is however interesting to note that if we were to choose a uniformly distributed

S, we can obtain an analytical expression for f ∗Z(z). With S ∼ Unif(0, A), it can

be shown (Wolfram Alpha [42]) that∫
fTs(z; v(z), s)

1

A
ds

=
1

A

1

Γ(v(z))
v′(z)

(
−s

v(z)+1
2F2(v(z) + 1, v(z) + 1; v(z) + 2, v(z) + 2;−s)

(v(z) + 1)2

+G3,1
3,4

(
s

∣∣∣∣ 1, 2, 2

1, 1, v(z) + 1, 0

)
− sΓ(v(z), s) + Γ(v(z) + 1, s) + s log(s)Γ(v(z), s)

−sΨ(v(z))Γ(v(z), s) + Ψ(v(z))Γ(v(z) + 1, s) + log(s)Γ(v(z) + 1, 0, s)

)
+ constant

Here, Γ(x) is the gamma function as before, and Γ(a, x) is the incomplete gamma

function. Γ(a, x0, x1) denotes the generalized incomplete gamma function, Γ(a, x0)−
Γ(a, x1). Ψ(x) is still the digamma function and pFq(a1, ..., ap; b1, ..., bq; z) is the

generalized hypergeometric function of order (p, q). Gm,n
p,q

(
z
∣∣∣a1,...,apb1,...,bq

)
is the Meijer’s

1Park and Padgett ended up approximating the first passage time distribution of the gamma
process by an inverse Gaussion distribution.
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G function:

Gm,n
p,q

(
z

∣∣∣∣∣a1, . . . , ap

b1, . . . , bq

)
=

1

2πi

∫
L

∏m
j=1 Γ(bj − s)

∏n
j=1 Γ(1− aj + s)∏q

j=m+1 Γ(1− bj + s)
∏p

j=n+1 Γ(aj − s)
zs ds

This is a very general function that includes many special functions as particular

cases. It is even more general than the generalized hypergeometric function [41].

According to [15], the Meijer’s G-function is not yet implemented in R. Thus, we

are not able use this result directly after all.

We can now take a look at what the likelihood functions look like in the model with

random S. With observations of failure times x1, ..., xm and observations of time to

PM z1, ..., zn the likelihood function becomes the product of the sub-densities:

L =
m∏
i=1

f ∗X(xi)
n∏
j=1

f ∗Z(zj)

=
m∏
i=1

(1− FS(c))fTc(xi; v(xi), c)
n∏
j=1

f ∗Z(zj)

= (1− FS(c))m
m∏
i=1

{
v′(xi) [Ψ(xi)− log(c)]

(
1− Γ(v(xi), c)

Γ(v(xi))

)
+

v′(xi)

v(xi)2Γ(v(xi))
cv(xi) · 2F2(v(xi), v(xi); v(xi) + 1, v(xi) + 1;−c)

} n∏
j=1

f ∗Z(zj)

where f ∗Z(zj) is as given by equation (6.3), and will be different for each choice of

distribution fS(s). The corresponding log-likelihood function becomes

l = lnL

= m · ln(1− FS(c)) +
m∑
i=1

ln

{
v′(xi) [Ψ(xi)− log(c)]

(
1− Γ(v(xi), c)

Γ(v(xi))

)
+

v′(xi)

v(xi)2Γ(v(xi))
cv(xi)

2F2(v(xi), v(xi); v(xi) + 1, v(xi) + 1;−c)
}

+
n∑
j=1

f ∗Z(zj)

Including censoring

For many datasets, there will be some observations that are right censored, so that

we observe neither Z nor X, but rather a censoring time τ . This may for instance

be due to that items are removed from the study before it has ended, or that the

study has ended before PM or failure is observed for an item. The censoring time τ

may thereby vary for the different observations. This kind of censoring is assumed
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to occur independently of the gamma process. We now assume that we observe

failure times x1, ..., xm, times to PM z1, ..., zn and censoring times τ1, ..., τr. For the

censored observations we know that min(Z,X) > τ , but we do not know if a PM or

a failure would have happened had the censoring not occurred. As seen in section

A.2.1 in appendix A, the contribution to the likelihood function from the censored

observations will be given by the survival function. We get

P (X > τ, Z > τ) = P (Tc > τ, TS > τ)

=

∫ ∞
0

P (Tc > τ, TS > τ, s ≤ S ≤ s+ ds)

=

∫ c

0

P (Tc > τ, Ts > τ)fS(s)ds+

∫ ∞
c

P (Tc > τ, Ts > τ)fS(s)ds

=

∫ c

0

P (Ts > τ)fS(s)ds+ P (Tc > τ)

∫ ∞
c

fS(s)ds

=

∫ c

0

STs(τ ; v(τ), s)fS(s)ds+ STc(τ ; v(τ), c)(1− FS(c))

=

∫ c

0

(
1− Γ(v(τ), s)

Γ(v(τ))

)
fS(s)ds+

(
1− Γ(v(τ), c)

Γ(v(τ))

)
(1− FS(c))

(6.4)

The complete likelihood function with observations x1, ..., xm , z1, ..., zn and τ1, ..., τr

becomes

L =
m∏
i=1

f ∗X(xi)
n∏
j=1

f ∗Z(zj)
r∏

k=1

P (X > τk, Z > τk)

= (1− FS(c))m
m∏
i=1

{
v′(xi) [Ψ(xi)− log(c)]

(
1− Γ(v(xi), c)

Γ(v(xi))

)
+

v′(xi)

v(xi)2Γ(v(xi))
cv(xi)

· 2F2(v(xi), v(xi); v(xi) + 1, v(xi) + 1;−c)
} n∏

j=1

f ∗Z(zj)
r∏

k=1

P (X > τk, Z > τk)

(6.5)

where both f ∗Z(zj) and P (X > τk, Z > τk) will be different depending on the

distribution of S. The expression for f ∗Z(zj) is as before given in equation (6.3), while

P (X > τk, Z > τk) is given by (6.4). The corresponding log-likelihood function
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becomes

l = m · ln(1− FS(c)) +
m∑
i=1

ln

{
v′(xi) [Ψ(xi)− log(c)]

(
1− Γ(v(xi), c)

Γ(v(xi))

)
+

v′(xi)

v(xi)2Γ(v(xi))
cv(xi)

2F2(v(xi), v(xi); v(xi) + 1, v(xi) + 1;−c)
}

+
n∑
j=1

ln f ∗Z(zj) +
r∑

k=1

lnP (X > τk, Z > τk) (6.6)

The log-likelihood function in (6.6) will later be used to estimate the parameters

of the model with random S including censoring for competing risks data. Since

this function is pretty nasty to differentiate for most of the parameters, we will find

the parameter estimates numerically. The function we will use to do this in R is

condSurv() which again calls the optim()-function. It is the same function that

was used in the project thesis, but it has been expanded to handle the random S

models in addition to the basic model. The condSurv() function can be found in

appendix D.2.1.

6.4.1 Parametric estimation of conditional sub-survival functions in the

gamma process models

In later chapters (the simulation study and the data analysis) we will plot the

non-parametric estimates of the conditional sub-survival functions resulting from

equation (3.4) to check the random signs property, as described in section 3.5. We

will also estimate the parameters of the gamma process models. A way to check

how good our parameter estimates are is then to plot the parametrically estimated

conditional sub-survival curves and compare them to the non-parametric ones. As

noted in equation (3.5) random signs censoring implies that S̃X(t) = SX(t). Thus,

we can use ŜTc(t, v(t), c) as a parametric estimate for S̃X(t), where ŜTc(·) is the

distribution defined in equation (5.3) with inserted parameter estimates α = α̂, β =

β̂ and d = ĉ (and u = 1).

For Z there is no equivalent implication as (3.5). However, in section 3.3.2 we saw

that the non-parametric estimate of the conditional sub-distribution function was

given by

ˆ̃FZ(t) =
F̂ ∗Z(t)

q̂
or equivalently ˆ̃SZ(t) =

Ŝ∗Z(t)

q̂

where q̂ = ̂P (Z < X) = Ŝ∗Z(0). For our gamma process models we found in equation

(6.2) that Ŝ∗Z(t) =
∫ ĉ

0
ŜTs(t; v(t), s)f̂S(s)ds. Thus, this estimate will be different for
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each choice of distribution for S. Here ŜTs(·) again is the distribution defined in

equation (5.3), this time with with inserted parameter estimates α = α̂, β = β̂ and

d = ŝ (and u = 1). A parametric estimate of Ŝ∗Z(0) is ̂P (S < c) = F̂S(c), the

distribution function of S with inserted parameter estimates. Thus,

ˆ̃SZ(t) =
Ŝ∗Z(t)

Ŝ∗Z(0)
=

1

F̂S(c)

∫ ĉ

0

ŜTs(t; v(t), s)f̂S(s)ds

In R we will compute this using the function subdistrZ(), which is given in ap-

pendix D.2.2.

6.5 Random S model in the semi-competing risks setting

We will now consider model features that are special to the setting of semi-competing

risks. What is described in section 6.2 is still the basis of the model. Now, in

this situation the first passage time to the level c equals the time to the terminal

event and the first passage time to the level S equals the time to the non-terminal

event. As we recall from section 4.2, the data structure is different from that of

competing risks. This makes the likelihood function more complicated to deduce.

If we include the possibility of some observations being right censored, we have four

possible scenarios. These were presented in table 4.1, and we have to figure out how

the observations in each of these cases contribute to the likelihood.

1. Observe both Z and X

The probability of observing both Z = TS and X = Tc is equal to the proba-

bility that TS = t1, Tc = t2 and that S < c. Then, we have that t1 < t2 and

we can write:

P (t1 ≤ TS ≤ t1 + dt1, t2 ≤ Tc ≤ t2 + dt2, S < c)

=

∫ ∞
0

P (t1 ≤ TS ≤ t1 + dt1, t2 ≤ Tc ≤ t2 + dt2, S < c|S = s)fS(s)ds

=

∫ c

0

P (t1 ≤ TS ≤ t1 + dt1, t2 ≤ Tc ≤ t2 + dt2|S = s)fS(s)ds

Now, because S is independent of the process we can write Ts instead of TS

and delete ”|S = s”:

=

∫ c

0

P (t1 ≤ Ts ≤ t1 + dt1, t2 ≤ Tc ≤ t2 + dt2)fS(s)ds
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=

∫ c

0

fTs,Tc(t1, t2)fS(s)ds (6.7)

where fTs,Tc(t1, t2) is the joint distribution of (Ts, Tc). This distribution can be

found by using the fact that the gamma process has independent increments.

One can therefore imagine that after we have observed Ts = t1, a ”new”

gamma process begins from level s. This second process will determine the

distribution of Tc given Ts = t1. Thus,

fTs,Tc(t1, t2) = P (t1 ≤ Ts ≤ t1 + dt1, t2 ≤ Tc ≤ t2 + dt2)

= P (t1 ≤ Ts ≤ t1 + dt1)P (t2 ≤ Tc ≤ t2 + dt2|Ts = t1)

Here, P (t1 ≤ Ts ≤ t1 + dt1) = fTs(t1; v(t1), s) is known from before. From

definition 5.1 we know that X(t2) − X(t1) is gamma distributed with shape

parameter v(t2) − v(t1) whenever 0 ≤ t1 ≤ t2. Furthermore, we can write

Ts = t1, Tc = t1 + Tc−s, where Tc−s denotes the first passage time to level c

when beginning at level s instead of at 0. Tc−s follows the same first passage

time distribution fTd(·) as in equation (5.5) with shape function v(t2)− v(t1)

and d = c− s. If we write this out, we get

P (t2 ≤ Tc ≤ t2 + dt2|Ts = t1) = P (t2 − t1 ≤ Tc−s ≤ t2 − t1 + dt2)

= fTc−s(t2 − t1; v(t2)− v(t1), c− s) =
d

dt2

Γ(v(t2)− v(t1), c− s)
Γ(v(t2)− v(t1))

= v′(t2) [Ψ(v(t2)− v(t1))− log(c− s)]
(

1− Γ(v(t2)− v(t1), c− s)
Γ(v(t2)− v(t1))

)
+

v′(t2)

(v(t2)− v(t1))2Γ(v(t2)− v(t1))
(c− s)v(t2)−v(t1)

· 2F2(v(t2)− v(t1), v(t2)− v(t1); v(t2)− v(t1) + 1, v(t2)− v(t1) + 1;−(c− s))

Hence, we have found that

fTs,Tc(t1, t2) = fTs(t1; v(t1), s)fTc−s(t2 − t1; v(t2)− v(t1), c− s) (6.8)

where both fTs(t1; v(t1), s) and fTc−s(t2 − t1; v(t2) − v(t1), c − s) follow the

distribution given in equation (5.5) only with different input parameters.

By inserting (6.8) into (6.7), we get that the contribution to the likelihood

function if we observe both TS and Tc is∫ c

0

fTs(t1; v(t1), s)fTc−s(t2 − t1; v(t2)− v(t1), c− s)fS(s)ds



Chapter 6. Gamma process models 43

2. Observe only X

The probability of observing only X is equivalent to the probability of TS = t1,

Tc = t2 and that S > c. This causes t2 > t1 so that t1 is never observed. We

can write

P (t2 ≤ Tc ≤ t2 + dt2, S > c)

As S is independent of the process, we have

= P (t2 ≤ Tc ≤ t2 + dt2)P (S < c)

= fTc(t2; v(t2), c)(1− FS(c))

3. Observe only Z and a censoring time τ

We observe Z and a censoring time τ if TS < τ < Tc. Thereby we must have

that S < c and t1 < τ . The probability of observing this is

P (t1 ≤ TS ≤ t1 + dt1, Tc > τ)

=

∫ c

0

P (t1 ≤ TS ≤ t1 + dt1, Tc > τ |S = s)fS(s)ds

=

∫ c

0

P (t1 ≤ Ts ≤ t1 + dt1, Tc > τ)fS(s)ds

=

∫ c

0

P (t1 ≤ Ts ≤ t1 + dt1)P (Tc > τ |Ts = t1)fS(s)ds

=

[∫ c

0

fTs(t1; v(t1), s)P (Tc > τ |Ts = t1)fS(s)ds

]
dt1

Here,

P (Tc > τ |Ts = t1) = P (Tc − Ts > τ − t1|Ts = t1)

which, because of independent increments:

= P (Tc − Ts > τ − t1)

This we already have an expression for when c > s: P (Tc − Ts > τ − t1) =

STc−s(τ − t1; v(τ)− v(t1), c− s). Thus,

P (t1 ≤ TS ≤ t1 + dt1, Tc > τ)

=

∫ c

0

fTs(t1, v(t1), s)STc−s(τ − t1; v(τ)− v(t1), c− s)fS(s)ds
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4. Observe only a censoring time τ

The probability of only observing a censoring time τ equals the probability

that both TS and Tc are greater than τ . We write

P (TS > τ, Tc > τ) = P (TS > τ, Tc > τ, S > c) + P (TS > τ, Tc > τ, S < c)

= P (Tc > τ, S > c) + P (TS > τ, S < c)

= P (Tc > τ)(1− FS(c)) +

∫ c

0

P (Ts > τ)fS(s)ds

= STc(τ ; v(τ), c)(1− FS(c)) +

∫ c

0

STs(τ ; v(τ), s)fS(s)ds

In each of the four cases we get observations denoted in the following manner:

1. times to the non-terminating event, z1, ..., zn and corresponding times to the

terminating event xz1, ..., xzn

2. times to the terminating event x1, ..., xm

3. times to the non-terminating event zo1, ..., zos and corresponding censoring

times τo1, ..., τos

4. censoring times τ1, ..., τr

We obtain the complete likelihood function from multiplying the contributions from

all of the four cases together:

L =
m∏
i=1

(1− FS(c))fTc(xi; v(xi), c)

·
n∏
j=1

∫ c

0

fTs(zj; v(zj), s)fTc−s(xzj − zj; v(xzj)− v(zj), c− s)fS(s)ds

·
w∏
l=1

∫ c

0

fTs(zol; v(zol), s)STc−s(τol − zol; v(τol)− v(zol), c− s)fS(s)ds

·
r∏

k=1

[
STc(τk; v(τk), c)(1− FS(c)) +

∫ c

0

STs(τk; v(τk), s)fS(s)ds

]
(6.9)
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We get the log-likelihood function by taking the natural logarithm of the expression

in (6.9):

l = m · ln(1− FS(c)) +
m∑
i=1

ln {fTc(xi; v(xi), c)}

+
n∑
j=1

ln

{∫ c

0

fTs(zj; v(zj), s)fTc−s(xzj − zj; v(xzj)− v(zj), c− s)fS(s)ds

}

+
w∑
l=1

ln

{∫ c

0

fTs(zol, v(zol), s)STc−s(τol − zol; v(τol)− v(zol), c− s)fS(s)ds

}
+

r∑
k=1

ln

{[
STc(τk; v(τk), c)(1− FS(c)) +

∫ c

0

STs(τk; v(τk), s)fS(s)ds

]}
(6.10)

If there are no censored observations, we only get the first two types of observations,

namely times to the non-terminating event, z1, ..., zn and corresponding times to the

terminating event xz1, ..., xzn or only times to the terminating event x1, ..., xm. Then,

the log-likelihood function is simply

l = m · ln(1− FS(c)) +
m∑
i=1

ln fTc(xi; v(xi), c)

+
n∑
j=1

ln

{∫ c

0

fTs(zj; v(zj), s)fTc−s(xzj − zj; v(xzj)− v(zj), c− s)fS(s)ds

}
(6.11)

These are the log-likelihood functions that we will use later in the thesis to find pa-

rameter estimates in the gamma process models with random S for semi-competing

risks data. To do this we have implemented the function estSemi() in R, which in

turn calls the optim() function. The R-code for estSemi() is included in appendix

D.2.3.

6.5.1 Parametric estimation of crude and net quantities in the gamma

process models

As discussed in section 4.3, we will estimate both crude and net quantities in our

analysis of semi-competing risks data. Like [31], we are mainly interested in the

quantities associated with the time to the non-terminal event.

Crude quantities

The crude quantities that we will estimate are the cause specific hazard, described

by equation (4.2), and the cumulative incidence function from equation (4.1). In

section 4.4, non-parametric estimates of these quantities for the non-terminal event
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were given in equations (4.3) and (4.4) respectively. We have already presented a

parametric expression for the sub-survival function S∗Z(t) in equation (6.2), so the

parametric estimate of the cumulative incidence function is easily found to be

F̂ ∗Z(t) = 1− Ŝ∗Z(t) = 1−
∫ ĉ

0

ŜTs(t; v(t), s)f̂S(s)ds (6.12)

Here, ŜTs(·) and f̂S(·) denote the distribution in (5.3) and the chosen distribution

of S with inserted parameter estimates for α, β and the parameters associated with

fS(s). A parametric estimate for λ∗Z(t) can be found from

λ̂∗Z(t) =
f̂ ∗Z(t)

Ŝ(t)
(6.13)

where f̂ ∗Z(t) as before is the expression from (6.3) with inserted parameter estimates,

and

S(t) = P (Tc > t, TS > t)

= P (Tc > t)(1− FS(c)) +

∫ c

0

P (Ts > t)fS(s)ds

as shown earlier in this section. Hence

Ŝ(t) = ŜTc(t; v(t), c)(1− F̂S(c)) +

∫ ĉ

0

ŜTs(t; v(t), s)f̂S(s)ds

The cumulative hazard rate Λ̂∗Z(t) is found by integrating λ̂∗Z(t).

Net quantities

We have already got an expression for the marginal survival function of the time

to the terminal event, ŜX(t) = ŜTc(t; v(t), c). As mentioned in section 4.3.2 it

might also be of interest to estimate the marginal distribution of the time to the

non-terminal event. The marginal survival function of Z can in our case be found
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as

SZ(t) = P (TS > t)

=

∫ ∞
0

P (TS > t|S = s)fS(s)ds

=

∫ ∞
0

P (Ts > t)fS(s)ds

=

∫ ∞
0

STs(t; v(t), s)fS(s)ds (6.14)

The marginal hazard rate for Z can be expressed as

λZ(t) = lim
h→0

P (TS ≤ t+ ∆t, |TS > t)

∆t

= lim
h→0

P (t ≤ TS ≤ t+ ∆t)

∆tP (TS > t)

=
fTS(t; v(t), S)

STS(t; v(t), S)

=

∫∞
0
fTS(t; v(t), S|S = s)fS(s)ds∫∞

0
STS(t; v(t), S|S = s)fS(s)ds

=

∫∞
0
fTs(t; v(t), s)fS(s)ds∫∞

0
STs(t; v(t), s)fS(s)ds

(6.15)

Thereby, a parametric estimate of SZ(t) can be found by inserting parameter esti-

mates into the expression in (6.14), and similarly for λZ(t) by inserting parameter

estimates into (6.15). Following the same steps as above we find that a parametric

expression for the marginal hazard rate for X is given by

λX(t) =
fTc(t; v(t), c)

STc(t; v(t), c)
(6.16)

Both the crude and the net quantities will be estimated in R by the script semiQuant

which is included in appendix D.2.3.

6.6 Choice of distribution fS(s)

The distribution of S will have a different meaning or interpretation depending

on if we are in the competing risks setting or in the semi-competing risks setting.

In the competing risks case of PM vs. failure, the probability distribution of S

describes at what levels of degradation the signal that indicates an emerging failure

is most likely to be emitted. Hence, heterogeneity with respect to the level S may
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represent differences in maintenance policy. For instance, the distribution of S may

be interpreted as a distribution of when (at what levels) the maintenance crew will

check the item.

In the semi-competing risks situation the other hand, the distribution of S describes

the tendency of the non-terminal event. An example is if we consider the case when

the non-terminal event is cancer relapse and the terminal event is death. The

distribution of S then represents the tendency a patient has to relapse.

In either setting, one could say that the basic model is a special case of the random

S model. In the basic model, the distribution of S is discrete, and contains two

point probabilities. S can either take the value s with probability q, or another

value that is greater than c with probability 1 − q. If we denote this second level

by v we get the distribution

fS(s) =

{
s with probability q

v with probability 1− q
(6.17)

When we are to select a suitable distribution for S in the random S model, we first

of all need to have that P (S > 0) = 1 for all s, as 0 is the starting point of our

degradation process. We should also keep in mind that the distribution should not

contain too many parameters, as this will make parameter estimation more difficult.

Two very simple distributions that satisfy these criteria are the uniform distribution

(with lower limit = 0) and the exponential distribution. If S is uniformly distributed,

this would mean that it is equally likely for the non-terminal event to occur at

all times. An exponentially distributed S on the other hand suggests that it is

more likely to occur at the beginning of an item’s lifetime. For many applications,

neither of these choices are very realistic. If we for instance consider PM as the

non-terminal event, then ideally PM should be performed just before a critical

failure. In that sense, a gamma distribution or a lognormal distribution may be

more suitable choices. They would be more flexible too, as they can take on a range

of different shapes. One can use a similar argument if the non-terminal event is a

disease recurrence. For most illnesses, this is more likely to occur after some time

has passed from treatment.

As mentioned before, in [29] Paroissin and Salami selected the exponential and the

gamma distribution to make their PDF of the first passage time to the critical level

into an analytically solvable integral. In a similar manner, Skogsrud in her thesis

(with ordinary competing risks) [36] suggested two distributions that would make
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f ∗Z(z) with the Wiener process into pleasant expressions. She chose the uniform

distribution and a truncated normal distribution with mean just before the critical

level c. Neither of the Wiener-process models fitted the data very well, but the

models where S was normally distributed gave the best fit.

Here, we are not too constricted by having to choose distributions that will make

f ∗Z(z) in the competing risks case into a nice expression, as we will solve the asso-

ciated integral numerically. Still, one should not underestimate the advantage of a

simple distribution with few parameters. That is why we have ended up with choos-

ing to test the uniform, exponential, gamma and lognormal distributions. There

are probably several other distributions that also would be suitable.

6.6.1 Uniform S

We will first consider the case fS(s) ∼ Unif(0, A), A > c. We will from now on

refer to this as the uniform model. This situation is illustrated in figure 6.2. There,

two different realisations of s are marked. If s1 < c is drawn, we will observe only

Ts1 in the competing risks case, but both Ts1 and Tc in the semi-competing risks

case. If s2 > c is drawn, we will only observe the failure time Tc. Ts2 is never

observed.

Figure 6.2: Illustration of the case of a gamma process X(t) with a fixed level
c and a uniformly distributed level S on [0, A]
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When S is uniformly distributed, the density and distribution functions fS(s) and

FS(s) are simply

fS(s) =
1

A
(6.18)

FS(s) = P (S ≤ s) =
s

A
(6.19)

Thus, FS(c) = c
A

.

6.6.2 Exponentially distributed S

We now move on to a case where S is exponentially distributed with parameter λS,

S ∼ exp(λS). This situation is illustrated in figure 6.3. We will in the following

refer to this as the exponential model. Again, if s1 < c is drawn, we will observe

only Ts1 in the competing risks case, but both Ts1 and Tc in the semi-competing

risks case. If s2 > c is drawn, we will observe the failure time Tc, not Ts2 .

Figure 6.3: Illustration of the case of a gamma process X(t) with a fixed level
c and an exponentially distributed level S

When S is exponentially distributed, the PDF fS(s) and CDF FS(s) are given by

fS(s) = λSe
−λSs (6.20)

FS(s) = 1− e−λSs (6.21)
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so that FS(c) = 1− e−λSc.

6.6.3 Gamma distributed S

We now let S be gamma distributed with shape parameter αS and scale parameter

βS, S ∼ Ga(αS, βS). For the rest of the thesis we will refer to this as the gamma

model. An example of how this may look is given in figure 6.4. Here we have chosen

a gamma distribution with mean value = c and relatively small variance so that the

chance of the non-terminating event occurring very early or very late is small. Just

as before, we have marked two different realisations of s. If s1 < c is drawn, we will

observe Ts1 in the competing risks case or both Ts1 and Tc in the semi-competing

risks case. If s2 > c is drawn, we will observe the failure time Tc, never Ts2 .

Figure 6.4: Illustration of the case of a gamma process X(t) with a fixed level
c and a gamma distributed level S

With a gamma distributed S the PDF fS(s) and CDF FS(s) are given by

fS(s) =
βαSS

Γ(αS)
sαS−1 exp {−sβS} (6.22)

FS(s) = 1− Γ (αS, sβS)

Γ(αS)
(6.23)

where Γ (αS, sβS) as before is the upper incomplete gamma function.
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6.6.4 Lognormally distributed S

If S is lognormally distributed with shape parameter σS and scale parameter µS,

S ∼ lnN(µs, σ
2
S), then the situation may look something like in figure 6.5, depending

on the choice of parameter values. Just as in all of the other models we have

illustrated two different realisations of s. If s1 < c is drawn, we will observe Ts1 in

the competing risks case or both Ts1 and Tc in the semi-competing risks case. If

s2 > c is drawn, we will observe the failure time Tc, not Ts2 .

Figure 6.5: Illustration of the case of a gamma process X(t) with a fixed level
c and a lognormally distributed level S

The PDF fS(s) and CDF FS(s) in the lognormal model are given by

fS(s) =
1√

2πσSs
exp

{
−(ln s− µS)2

2σ2
S

}
(6.24)

FS(s) =
1

2
+

1

2
erf

[
ln s− µS√

2σS

]
= Φ

(
ln s− µS

σS

)
(6.25)

where erf(·) is the error function, and Φ(·) is the cumulative distribution function

of the standard normal distribution.



Chapter 7

Simulation studies

In this chapter we will conduct simulation studies with the random S models de-

scribed in chapter 6. The algorithms used to simulate data are also provided in this

chapter. For each dataset we generate, we will then estimate back the parameters

of the models by maximum likelihood estimation and evaluate the quality of these

estimates. We have chosen to only consider datasets including censored observa-

tions, because data without censoring is only a special (and simpler) version of the

case with censoring.

7.1 Random S models on competing risks data

We will begin by simulating ordinary competing risks data from the random S

models. Knowing the original parameter values, we may then see how good the

estimates we obtain from our maximum likelihood procedure are. In addition, we

will test how well the basic model from the project thesis is able to adapt to data

simulated from the random S models.

7.1.1 Simulation algorithm

The simulation procedure in the models with random level S including censoring

is quite similar to that of the basic model with censoring in the project thesis [35].

The difference is that instead of having a probability q that you observe a PM and

1−q that you observe a failure, you draw an S from the distribution fS(s) and then

if S < c you get a PM and if not you get a failure. The procedure to draw a sample

from the random S model in the competing risks case with censoring is shown in

algorithm 1.

This algorithm is implemented as the function simRandomS() in R, and can be found

in appendix D.1.2 (for fS(s) being the uniform, exponential, gamma or lognormal

distribution). To draw from the first passage time distributions fTs(z; v(z), s) and

fTc(x; v(x), c), the same algorithm as in the project thesis was used (see appendix

F.1). This is implemented as the function simdata() and given in appendix D.1.1.

53
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Algorithm 1 Algorithm to sample from the model with censoring and random S

1: S ∼ fS(s)
2: τ ∼ fτ (t)
3: if S < c then
4: Z ∼ fTS(z; v(z), S)
5: if Z < τ then
6: return Z
7: else
8: return τ
9: end if

10: else
11: X ∼ fTc(x; v(x), c)
12: if X < τ then
13: return X
14: else
15: return τ
16: end if
17: end if

The choice of distribution fτ (·) is arbitrary. We have selected a gamma distribution

with parameters that make approximately 10 % of the observations censored.

7.1.2 Simulation results - uniform model

In this simulation, we have chosen to simulate data from a gamma process with

parameter values α = 5, β = 1 and c = 5 and uniformly distributed S on [0, A],

where A = 10. This makes FS(c) = 0.50 and E[S] = c. An illustration of how the

sub-densities f ∗Z(t) and f ∗X(t) look with these parameter values is given in figure 7.1.

These curves are found from equations (6.1) and (6.3) with the expressions from

(5.5), (6.18) and (6.19) inserted. To calculate f ∗Z(t) we have used the integrate()

function in R. The first passage time distribution to the level c, fTc(t; v(t), c) from

equation (5.5), is plotted in the same figure for reference. As we can see, f ∗X(t) is

just a scaled down version of fTc(t; v(t), c), more accurately 0.5 · fTc(t; v(t), c). f ∗Z(t)

on the other hand has a shape that is influenced by the choice of distribution fS(s).

Using the simulation procedure from algorithm 1, we produced a dataset of N =

1000 observations. Of these, m = 441 were failure times, n = 455 were times to PM

and r = 104 were censoring times. As a simple check of our simulation procedure,

we have plotted the histograms of the simulated observations x1, ..., xm and z1, ..., zn

in figure 7.2 (we briefly ignore the censored observations).
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Figure 7.1: Sub-densities of X and Z when S is uniformly distributed on [0, A]
and the first passage time density to level c

Figure 7.2: Histograms of the empirical distributions of X (left) and Z (right)
along with the curves of the theoretical distributions in the model with uniform

S

We can compare the histograms to the the curves of the corresponding theoretical

distributions, which are plotted in red in the same figure. The theoretical distribu-

tions are given by the conditional sub-density functions of X and Z respectively.

From section 3.2.2, we know that for X this is just

f̃X(x) =
f ∗X(x)

P (X < Z)
=
fTc(x; v(x), c)(1− FS(c))

(1− FS(c))
= fTc(x; v(x), c) (7.1)
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For Z we get

f̃Z(z) =
f ∗Z(z)

P (Z < X)
=

∫ c
0
fTs(z; v(z), s)fS(s)ds

FS(c)
(7.2)

As we can see, the histograms and the theoretical curves match fairly well.

In order to fit our gamma process model to the data, we first need to check whether
ˆ̃SZ(t) < ˆ̃SX(t) for all t. Therefore, we have plotted the non-parametric estimates

of S̃Z(t) (thick line) and S̃X(t) (thin line) together to the left of figure 7.3. These

estimates were found by using equation (3.4). The inequality is clearly fulfilled for

most values of t (for t-values greater than ≈ 2.3 it is impossible to tell the curves

apart). As we can recall, ˆ̃SZ(t) < ˆ̃SX(t) means that we can fit a random signs

censoring model to these data.

Figure 7.3: Parametric and non-parametric estimates of the conditional sub-
survival functions for the data generated from the uniform model

To estimate the parameters of the uniform model, we used the condSurv() func-

tion, which again calls optim() to maximize the log-likelihood function in (6.6).

condSurv() is included in appendix D.2.1. From this function, we get maximum

likelihood estimates for all of the parameters, as well as standard deviations calcu-

lated from the Hessian matrix and limits for the 95% standard positive confidence

interval. The results are displayed in table 7.1, while the complete output from R

is given in appendix E.1.1.

From table 7.1 we can see that the differences between the correct and the esti-

mated parameter values are relatively small. The parameters α, c and A all seem to

have been a little over-estimated. Still, all of the 95% standard positive confidence
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Table 7.1: Maximum likelihood estimates of the parameters in the model with
uniformly distributed S. In addition, the correct values, standard deviations from
the Hessian matrix and 95% standard positive confidence intervals are included

Par. Correct value Est. St. deviation Lower bound Upper bound
α 5 5.4524 0.6608 4.2995 6.9143
β 1 0.9923 0.0445 0.9087 1.0835
c 5 5.3411 0.7079 4.1192 6.9254
A 10 10.8534 1.4963 8.2835 14.2207

intervals include the correct parameter values with good margin. β has the small-

est estimated standard deviation, as we also saw in the basic model in the project

thesis. The standard deviations for α and c are considerably larger, but the stan-

dard deviation of A is by far the largest. It is about twice as large as the standard

deviations for α and c, which seems logical as the parameter estimate itself is also

about twice as large.

Now, to further evaluate the fit of the model, we have plotted the non-parametrically

estimated conditional sub-survival curves (solid black lines) together with the para-

metrically estimated curves (dashed black lines) and the curves of the true condi-

tional sub-survival functions (solid red lines) to the right in figure 7.3. The para-

metric estimates are found from the expressions described in section 6.4.1. From

figure 7.3 we can see that they are quite close to the true and non-parametric ones.

This indicates that the estimates are good. For small t there is almost no observable

difference in the true and parametrically estimated curves. For higher values of t,

the difference seems to be slightly larger for the estimates of S̃X(t) than for the

estimates of S̃Z(t).

Comparison to the fit of the basic model

It would be interesting to check how well the basic model from the project thesis

(with fixed level s) fits the data simulated from the uniform S model. It is reasonable

to expect that the basic model is not well suited for these data, as the distribution in

(6.17) is very different from the uniform distribution. We can compare the estimated

values for α, β and c with the true values as before, but the estimate of s will be

compared to E[S|S < c] and the estimate of q will be compared to FS(c). The

calculation of E[S|S < c] is shown in appendix B.1.1. The maximum likelihood

estimation using the log-likelihood function for the basic model with censoring from

equation (F.1) was done with the function condSurv(). It yielded the results shown

in table 7.2. The table contains parameter estimates, standard deviations, and lower
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and upper bounds for the 95% standard positive confidence intervals estimated from

the Hessian matrix. As before, the complete output from R is given in appendix

E.1.1.

Table 7.2: Maximum likelihood estimates of the parameters in the basic model
for the data simulated with uniform S. In addition: correct values, standard
deviations from the Hessian matrix and 95% standard positive confidence intervals

Par. Correct value Est. St. deviation Lower bound Upper bound
α 5 3.1295 0.5938 2.1576 4.5393
β 1 1.0570 0.0898 0.8949 1.2485
c 5 2.9403 0.6053 1.9640 4.4918
s (E[S|S < c]=)2.5 1.2397 0.3695 0.6913 2.2235
q (FS(c)=)0.5 0.4917 0.0166 0.4602 0.5252

Comparing the estimated parameter values to the true or expected ones in table 7.2,

it is clear that they are quite different from each other. The estimated parameter

values for α, c and s are quite far from the true or expected values, and they are all

underestimated. For these parameters, the true or expected values are not included

in the 95% standard positive confidence intervals. Still, the estimate of β is quite

close to its true value, and the estimate of q or FS(c) is quite accurate.

We can further evaluate the estimated conditional sub-survival curves based on the

parameter estimates in table 7.2. These curves are shown in figure 7.4 with dashed

black lines, along with the true conditional sub-survival curves from the uniform S

model in solid red lines and the non-parametrically estimated curves in solid black.

These parametrically estimated curves do not match the non-parametric curves as

well as the estimates from the uniform S model in figure 7.3 did. They deviate from

both the true and the non-parametric curves for both the smallest and the largest

t-values.

One can also compare the maximum log-likelihood values of the two models. The

basic model resulted in a value of -1087.523, while the uniform S model had a value

of -1064.135. Hence the uniform S model fits the data much better than the basic

model, as we expected.

7.1.3 Simulation results - exponential model

In the following simulation study, we have chosen parameter values α = 5, β =

1, c = 7 and λS = 0.1. This makes fS(s) equal to the expression in (6.20) and

FS(s) as in (6.21). With our chosen parameter values, FS(c) ≈ 0.50 and E[S] =
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Figure 7.4: Parametric and non-parametric estimates of the conditional sub-
survival functions for the data generated from the uniform model when the para-

metric estimates are from the basic model

10. A plot of the sub-density functions f ∗X(t) and f ∗Z(t) together with the first

passage time distribution to the level c from equation (5.5) is given in figure 7.5.

As we can see, also in this case f ∗X(t) = 0.5fTc(t; v(t), c), while the shape of f ∗Z(t)

is strongly influenced by the exponential distribution of S. To calculate f ∗X(t) we

used expression (6.1), and for f ∗Z(t) we have used the integrate() function in R on

the expression in equation (6.3).

Using the simRandomS() function from appendix D.1.2, we simulated N = m +

n + r = 1000 observations. In the resulting dataset we got m = 455 failure times,

n = 455 times to PM and r = 90 censored observations. The histograms of Z and

X are displayed in figure 7.6. In addition, the curves of the theoretical distributions

from equations (7.1) and (7.2) are plotted (ignoring the censored observations).

They fit the histograms reasonably well, and gives us reason to believe that the

data follow the intended distribution.

Next, we check if Cooke’s condition for a random signs censoring model holds
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Figure 7.5: First passage time density to the level c and sub-densities of Z and
X when S is exponentially distributed

Figure 7.6: Histograms of the empirical distributions of X (left) and Z (right)
along with the curves of the theoretical distributions in the model with exponen-

tial S

for this dataset by plotting the conditional sub-survival curves estimated non-

parametrically. The result is presented to the left of figure 7.7. Like in the uniform

case, these estimates are made by using equation (3.4). As we can see, ˆ̃SZ(t) (thick

line) lies below ˆ̃SX(t) (thin line) for all t, so the condition holds.

Thus, we can fit our exponential random S model to the data. By using the function

condSurv() in appendix D.2.1 to maximize the log-likelihood function from equation

(6.6) we get the results shown in table 7.3. There, the estimated parameter values
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Figure 7.7: Parametric and non-parametric estimates of the conditional sub-
survival functions for the data generated from the exponential model

are given together with the their true values, the estimated standard deviations

and the limits of the 95% standard positive confidence intervals calculated from the

Hessian matrix. The complete output from R is included in appendix E.1.2.

Table 7.3: Maximum likelihood estimates of the parameters in the model with
exponential S. In addition, the correct values, standard deviations from the

Hessian matrix and 95% standard positive confidence intervals are included

Par. Correct value Est. St. deviation Lower bound Upper bound
α 5 4.8895 0.5747 3.8834 6.1563
β 1 0.9943 0.0401 0.9188 1.0761
c 7 6.7068 0.7728 5.3510 8.4063
λS 0.1 0.0993 0.0129 0.0770 0.1280

Considering the parameter estimates provided in table 7.3, the estimation procedure

seems to work well also in the exponential model. The estimates are all close to

their true values, and well within their respective 95% confidence intervals. As

in the uniform model, the standard deviations of α and c are considerably larger

than that of β. The standard deviation of λS is also very small, but then so is the

parameter value itself. It is approximately 10% of the size of the parameter value.

Using the estimated values from table 7.3, we estimate the parametric conditional

sub-survival curves by the method explained in section 6.4.1. We plot them in the

same figure as the non-parametric and true curves. This is shown to the right of
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figure 7.7. As we can see, all of the curves lie closely together and there is almost

no difference between the parametrically estimated curves and the true ones.

Comparison to the fit of the basic model

It would be interesting to see how well the basic model would fit to these data

simulated from the exponential model. We expect the fit to be quite poor, as

an exponential distribution is very different from having the point probabilities

from (6.17). Maximizing the log-likelihood function in (F.1) using the function

condSurv(), we got the results shown in table 7.4. The complete output from R is

given in appendix E.1.2 and the calculation of E[S|S < c] is included in appendix

B.1.2.

Table 7.4: Maximum likelihood estimates of the parameters in the basic model
for the data simulated with exponential S. In addition: correct values, standard
deviations from the Hessian matrix and 95% standard positive confidence intervals

Par. Correct value Est. St. dev. Lower bound Upper bound
α 5 1.9437 0.3177 1.4109 2.6778
β 1 1.1759 0.0730 1.0411 1.3281
c 7 2.6866 0.4214 1.9756 3.6535
s (E[S|S < c] =)3.0950 0.8087 0.2088 0.4875 1.3415
q (P (S < c) =) 0.5 0.4838 0.0164 0.4527 0.5170

From table 7.4, we can see that the parameters α, c and s are all significantly

underestimated compared to the original or expected values. β on the other hand is

overestimated. Neither of these four parameters have their true or expected value

inside the estimated 95% standard positive confidence intervals. The 95% confidence

interval for q is the only one that contains its expected value.

Inserting the parameter estimates from table 7.4 into the functions in section 6.4.1,

we can plot the parametric conditional sub-survival curves and compare them to

the ones made with the true parameter values and the non-parametric curves. This

is done in figure 7.8. Here, it is obvious that the estimates from the basic model

do not fit the data very well. The parametrically estimated curves seem to have a

different shape than the true and non-parametric ones, both for Z and for X.

The poor fit of the basic model is further confirmed by the maximum log-likelihood

values. For the basic model the maximum value became -1314.095 whereas in the

exponential model it was -1275.883. In conclusion, the exponential model fits much

better, as we expected.
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Figure 7.8: Parametric and non-parametric estimates of the conditional sub-
survival functions for the data generated from the exponential model when the

parametric estimates are from the basic model

7.1.4 Simulation results - gamma model

In this case we have chosen parameter values α = 5, β = 1, c = 7, αS = 49
4

and

βS = 7
4
. Hence, we use the expressions for fS(s) and FS(s) from (6.22) and (6.23).

The chosen parameter values make FS(c) ≈ 0.54 and E[S] = c. A plot of the

sub-density functions f ∗X(t) and f ∗Z(t) along with fTc(t; v(t), c) for reference is given

in figure 7.9. f ∗X(t) is equal to 0.54fTc(t; v(t), c), while f ∗Z(t) is influenced by the

Ga(αs, βs)-distribution of S. As we can see, it has a completely different shape than

for instance when S was uniformly distributed in figure 7.1. To calculate f ∗Z(t) we

have used the integrate() function in R on the expression in (6.3). f ∗X(t) is found

from equation (6.1).

After simulating a dataset of N = m + n + r = 1000 observations we got m = 443

failure times, n = 460 times to PM and r = 97 censoring times. Histograms of the

observed x’es and z’s are given in figure 7.10 along with curves of the theoretical

distributions in red. The theoretical distributions are as before found from the
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Figure 7.9: First passage time density to the level c and sub-densities for Z
and X when S is gamma distributed

Figure 7.10: Histograms of the empirical distributions of X (left) and Z (right)
along with the curves of the theoretical distributions in the model with gamma

distributed S

expressions in (7.1) and (7.2). In both cases they seem to match the histograms

pretty well.

Also in this model we make a plot of the non-parametrically estimated conditional

sub-survival curves. These are made from using equation (3.4). The plot is given

to the left of figure 7.11. From this we can confirm that ˆ̃SZ(t) < ˆ̃SX(t) for all t, and

so our gamma process model can be fitted to the data.
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Figure 7.11: Parametric and non-parametric estimates of the conditional sub-
survival functions for the data generated from the gamma model

The resulting parameter estimates from the maximization of the log-likelihood func-

tion in (6.6) by the condSurv() function is given in table 7.5. The table also displays

the estimated standard deviations and the upper and lower limits of the 95 % stan-

dard positive confidence intervals. The output from R is provided in appendix

E.1.3.

Table 7.5: Maximum likelihood estimates of the parameters in the model with
gamma S. In addition, the correct values, standard deviations from the Hessian

matrix and 95% standard positive confidence intervals are included.

Par. Correct value Est. St. deviation Lower bound Upper bound
α 5 3.8414 1.0978 2.1939 6.7259
β 1 1.0534 0.1230 0.8380 1.3243
c 7 5.4587 1.3639 3.3450 8.9080
αS

49
4

=12.25 10.7625 3.5498 5.6384 20.5434
βS

7
4
=1.75 1.9160 0.5213 1.1241 3.2657

From table 7.5 we can see that the parameter estimates are quite good. All of

the true parameter values are within the estimated confidence intervals. We can

however note that the uncertainty in the estimates are larger than in the uniform

and the exponential models. This is natural considering that the gamma model

requires estimation of an additional parameter. Again the estimate of β has a fairly

low standard deviation, while it is larger for α and c. The standard deviations

for αS and βS are of similar size (relative to the size of the parameter estimates

themselves).
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To the right of figure 7.11, the parametrically estimated conditional sub-survival

curves from section 6.4.1 are plotted as black dashed lines together with the curves

made with the true parameter values in solid red. The curves match each other

fairly well. There is only a small difference between the true and the estimated

curves, and it actually looks like the estimated curves fit the non-parametric ones

even better than the true curves.

Comparison to the fit of the basic model:

We follow the same procedure as with the previous models and check how well the

basic model fits the data simulated from the gamma model. With a relatively narrow

gamma distributed S, we expect the basic model to fit better than to the data with

uniform or exponential S. The results from the maximum likelihood estimation

made with condSurv() are shown in table 7.6. The complete output from R can be

found in appendix E.1.3. E[S|S < c] has been calculated in appendix B.1.3.

Table 7.6: Maximum likelihood estimates of the parameters in the basic model
from the data simulated with gamma S. In addition: the correct values, standard
deviations from the Hessian matrix and 95% standard positive confidence intervals

Par. Correct value Est. St. dev. Lower bound Upper bound
α 5 3.5104 0.9537 2.6511 5.9786
β 1 1.0582 0.1158 0.8511 1.3157
c 7 4.9842 1.1823 3.1310 7.9344
s (E[S|S < c]=) 5.5270 3.8441 1.0322 2.2711 6.5066
q (P (S < c) =)0.54 0.5026 0.0166 0.4711 0.5363

The estimates in table 7.6 show the same tendency as we have seen earlier when we

have fitted the basic model to data from the random S model: α, c and s all seem

to be underestimated if we compare them to the original or expected parameter

values. The estimate of β on the other hand, is larger than its true value. This time

however, the true or expected values of all of the parameters except q are within

the estimated 95% standard positive confidence intervals.

We can further plot the parametrically estimated conditional sub-survival curves

and compare them to the true and non-parametric curves. This is done in figure

7.12. The parametric curves are found in the same manner as before, namely by

inserting the estimates from table 7.6 into the expressions from 6.4.1. Here, as

with the fit of the gamma model to the data, it actually seems like the parametric

estimates (in black dashed lines) are a little closer to the non-parametric curves (in

black solid lines) than the true ones (in red solid lines). However, if we compare this
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Figure 7.12: Parametric and non-parametric estimates of the conditional sub-
survival functions for the data generated from the gamma model when the para-

metric estimates are from the basic model

figure with the one on the right in figure 7.11, the fit of the basic model to the non-

parametric curves still looks slightly worse than the fit of the gamma model. But

overall, the fit seems to be very good. As we predicted, the basic model performs

better on the data from the gamma model than on the data from the uniform or

exponential model.

Finally, we compare the maximum log-likelihood values of the two models. The

maximum log likelihood value with the basic model was -1378.151, while with the

gamma model it was -1377.681. Thus there is only a very small difference in favour

of the model with gamma distributed S, which confirms what we saw on figure 7.12.

7.1.5 Simulation results - lognormal model

For the simulation study of the lognormal model, we have chosen parameter values

α = 5, β = 1, c = 7, µS = 2 and σS = 0.25. We will in the following use the

expressions for fS(s) and FS(s) from (6.24) and (6.25). This makes FS(c) ≈ 0.41

and E[S] ≈ 7.6.
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Figure 7.13: First passage time density to the level c and sub-densities for Z
and X when S is lognormally distributed

In figure 7.13 the sub-densities f ∗Z(t) and f ∗X(t) are plotted along with the first

passage time distribution to the level c, fTc(t; v(t), c). To calculate f ∗X(t) we have

as before used equation (6.1) and for f ∗Z(t) we have used the integrate() function

in R on equation (6.3). f ∗Z(t) looks somewhat similar in shape to what it did in

the gamma model, which is logical as the gamma distribution and the lognormal

distribution have similar shapes for the parameter values we have chosen.

Figure 7.14: Histograms of the empirical distributions of X (left) and Z (right)
along with the curves of the theoretical distributions in the model with lognormal

S
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We used algorithm 1 to simulate a dataset consisting of N = m + n + r = 1000

observations. We ended up with m = 463 failure times, n = 439 times to PM and

r = 98 censoring times. The histograms of x1, ...xm and z1, ..., zn are displayed in

figure 7.14. Ignoring the censored observations, they seem to match their theoretical

distributions made from (7.1) and (7.2) plotted in red quite well. Thus, there is no

reason to doubt our simulation procedure.

We want to check whether S̃Z(t) < S̃X(t) holds also in the lognormal model. The

non-parametrical estimates made with equation (3.4) are plotted to the left of figure

7.15, and we can see that the inequality is fulfilled for all t. We can thereby proceed

to fit the lognormal model to the data.

Figure 7.15: Parametric and non-parametric estimates of the conditional sub-
survival functions for the data generated from the lognormal model

The parameters of the model were estimated by maximizing the log-likelihood func-

tion from (6.6) by the function condSurv() described in appendix D.2.1. The re-

sulting estimates are displayed in table 7.7. There, the corresponding standard

deviations and the 95% standard positive confidence limits are given too. The

results as they were provided by R is included in appendix E.1.4.

The estimation procedure seems to work well also in the lognormal model. The

parameter estimates in table 7.7 are all fairly close to their true values, and the true

values are all contained in their respective 95% confidence intervals. The standard

deviations are of approximately the same size as in the gamma model. Also for

the parameters of the lognormal distribution, the size of the estimated standard

deviations seems to be reasonable (about 10-20% of the size of the parameter values).
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Table 7.7: Maximum likelihood estimates of the parameters in the model with
lognormal S. In addition, the correct values, standard deviations from the Hessian

matrix and 95% standard positive confidence intervals are included.

Par. Correct value Est. St. deviation Lower bound Upper bound
α 5 4.0681 1.0852 2.4117 6.8621
β 1 1.0851 0.1169 0.8786 1.3401
c 7 5.8791 1.3635 3.7316 9.2625
µS 2 1.7815 0.2313 1.3812 2.2979
σS 0.25 0.2433 0.0485 0.1646 0.3596

To the right of figure 7.15 the parameter estimates from table 7.7 have been used

in the expressions from section 6.4.1 to plot parametric estimates of the conditional

sub-survival curves (black dashed lines). In addition, the lines of the true conditional

sub-survival functions are plotted (red lines). The curves are all very close to each

other and hard to tell apart, indicating a very good fit.

Comparison to the fit of the basic model

Also for this model it is interesting to check how well the basic model would fit the

data compared to the lognormal model. The fit should not be too bad, considering

that the lognormal distribution we chose is relatively centred around a specific

value. The resulting estimates from maximizing the log-likelihood function in (F.1)

is given in table 7.8. The table also contains standard deviations as well as upper

and lower bounds for the 95% standard positive confidence intervals estimated from

the Hessian matrix. The calculation of E[S|S < c] is shown in appendix B.1.4. The

complete output from R is given in appendix E.1.4.

Table 7.8: Maximum likelihood estimates of the parameters in the basic model
from the data simulated with lognormal S. In addition: correct values, standard
deviations from the Hessian matrix and 95% standard positive confidence intervals

Par. Correct value Est. St. dev. Lower bound Upper bound
α 5 3.8198 0.9946 2.2931 6.3632
β 1 1.0916 0.1150 0.8880 1.3419
c 7 5.5070 1.2440 3.5370 8.5744
s (E[S|S < c] =) 5.8964 4.5920 1.1295 2.8355 7.4365
q (P (S < c) =)0.41 0.4835 0.0166 0.4520 0.5172

As in all of the previous models, the parameters α, c and s are underestimated.

However, like in the gamma model these parameters have their true or expected
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value inside the estimated 95% confidence interval. This is true also for the pa-

rameters β and q. Thus the fit of the basic model actually seems to be rather

good.

We can also evaluate the quality of the model fit of the basic model by comparing the

parametrically estimated conditional sub-survival curves with the non-parametric

and true ones. These are all plotted together in figure 7.16. As before, the para-

metric curves are made from plugging the parameter estimates of table 7.8 into the

expressions from section 6.4.1. In the figure, we can see that the curves lie very

closely together, and it is hard to tell them apart or say that the basic model is

worse than the lognormal.

Figure 7.16: Parametric and non-parametric estimates of the conditional sub-
survival functions for the data generated from the lognormal model when the

parametric estimates are from the basic model

Lastly, we compare the maximum log-likelihood values of the two models. With

the basic model we got a value of -1322.205, while with the lognormal model it was

-1321.492. Hence the models are almost equally good. The lognormal model is only

marginally better.
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7.1.6 Summary of simulation study - competing risks

From the simulation studies in sections 7.1.2, 7.1.3, 7.1.4 and 7.1.5, we have seen

that the parameter estimation worked fine for all of the four random S models.

The numerical integration discussed in section 6.3 does not seem to have caused

us considerable problems. The true parameter values were always well inside the

estimated 95% standard positive confidence intervals. We should thus be able to

trust the parameter estimates we obtain by maximizing the log-likelihood functions.

We saw that the uncertainty in the estimates were somewhat larger in the lognormal

and gamma models than in the uniform and exponential models. This is probably

due to the extra parameter.

In all of our simulation cases the model with the random S distribution correspond-

ing to the distribution that the data was simulated from was better than that of

constant s. This was especially true for the uniform and exponential models. Thus,

if the maintenance policy in fact is to perform PM randomly, and it is equally likely

to happen at any time, then you should use a model that takes this into account.

For most real applications however, PM is probably most likely to be performed at

a time when the component has reached a specific age, just before it is most likely

to fail. It should be mentioned that the difference between the fit of the gamma or

lognormal models and the fit of the basic model to data simulated from the gamma

or lognormal models respectively, was very small. This is probably due to that we

had chosen gamma and lognormal distributions with relatively small variance. In

figure 7.17 the chosen distributions of S in the four cases are plotted together.

Figure 7.17: fS(s) for the four random S models used in the simulation studies
for competing risks data



Chapter 7. Simulation studies 73

As an experiment we try to fit the lognormal model to the data simulated from

the uniform model. The results from this estimation are provided in table 7.9.

There, both parameter estimates, standard deviations estimated from the Hessian

matrix and limits for the 95% standard positive confidence intervals are given. The

complete output from R is shown in appendix E.1.1.

Table 7.9: Maximum likelihood estimates of the parameters in the model with
lognormal S. In addition, the correct values, standard deviations from the Hessian

matrix and 95% standard positive confidence intervals are included.

Par. Correct value Est. St. deviation Lower bound Upper bound
α 5 11.1281 2.3158 7.4008 16.7327
β 1 0.6964 0.0726 0.5676 0.8543
c 5 11.0919 2.3326 7.3451 16.7501
µS - 2.4282 0.2125 2.0455 2.8825
σS - 0.8031 0.0955 0.6361 1.0139

As we can see, the parameter estimates in table 7.9 turned out to be quite different

from the original values in the uniform model. This time α and c are significantly

larger than in the uniform model, while β is lower. To see how well this estimated

lognormal model fits to the data, we plot the parametrically estimated conditional

sub-survival curves and compare them to the true curves from the uniform model.

Once more we use the expressions provided in section 6.4.1 to make the parametric

curves. The resulting plot is shown in figure 7.18.

The fit of the lognormal model to the uniform data actually seems to be very good.

It is difficult to evaluate which of the models provides the closest fit to the non-

parametric estimates. The black dashed lines of the lognormal model in figure 7.18

or the black dashed lines of the uniform model to the right in figure 7.3. For S̃X(t)

it looks like the fit of the lognormal model is the best, but for S̃Z(t) the difference

is not that clear.

Moreover, the uniform model resulted in a maximum log-likelihood value of -

1064.135 while the lognormal model gave -1059.603, which is larger. This shows

the great flexibility of the lognormal model. It can both attain shapes that are

relatively wide and flat, and shapes that are quite narrow. The same is true for the

gamma distribution.
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Figure 7.18: Parametric and non-parametric estimates of the conditional sub-
survival functions for the data generated from the uniform model when the para-

metric estimates are from the lognormal model

7.2 Random S models on semi-competing risks data

We will now simulate semi-competing risks data from the four random S models.

We will then estimate back the parameter values and see how well they match with

the original values.

7.2.1 Simulation algorithm

When censoring is included there are four possible types of observations, as de-

scribed in chapter 4. In each of the four cases we get the following set of observa-

tions:

1. times to PM, z1, ..., zn and corresponding failure times xz1, ..., xzn

2. failure times x1, ..., xm

3. times to PM zo1, ..., zow and corresponding censoring times τo1, ..., τow

4. censoring times τ1, ..., τr
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Algorithm 2 Sample from the semi-competing risks model with random S includ-
ing censoring

1: S ∼ fS(s)
2: τ ∼ fτ (t)
3: if S < c then
4: Z ∼ fTS(z; v(z), S)
5: if Z < τ then
6: [XZ − Z] ∼ fTc−s(xz − z; v(xz)− v(z), c− S)
7: XZ = Z + [XZ − Z]
8: if XZ < τ then
9: return Z

10: return XZ

11: else
12: return Zo = Z
13: return τo = τ
14: end if
15: else
16: return τ
17: end if
18: else
19: X ∼ fTc(x; v(x), c)
20: if X < τ then
21: return X
22: else
23: return τ
24: end if
25: end if

A procedure to draw a sample from the random S model with censoring in the semi-

competing risks case is shown in algorithm 2. The algorithm is implemented as the

function simSemi() which can be found in appendix D.1.3. The simSemi() function

calls simdata() to draw from the first passage time distributions fTc(x; v(x), c) and

fTs(z; v(z), s), and simdata2() to draw from the first passage time distribution given

z = t1 and starting from level S = s, i.e. fTc−s(t− t1; v(t)− v(t1), c− s). simdata()

and simdata2() are given in appendix D.1.1. Also this time the distribution for τ is

chosen arbitrarily to make a suitable amount of censored observations. We have used

a gamma distribution with parameter values that make w + r equal approximately

10% of the total (m + n + w + r). Again, we perform simulation studies for both

uniform, exponential, gamma and lognormal S.
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7.2.2 Simulation results - uniform model

For this simulation study, we chose α = 5, β = 1, c = 5 and A = 10 as parameter

values, just like in the competing risks simulation study. The expressions for fS(s)

and FS(s) are again given by (6.18) and (6.19). We used algorithm 2 to simulate

N = m+ n+ w + r = 1000 observations. In the resulting dataset we had m = 446

observations of only the terminal event, n = 435 observations of both the non-

terminal and the terminal event, w = 33 observations of the non-terminal event and

a censoring time, and r = 86 observations of only the censoring time. As we can

recall, the log-likelihood function is now given by equation (6.11). The parameter

estimates from the maximum likelihood procedure in the function estSemi() from

appendix D.2.3, as well as standard deviations and lower and upper bounds for the

95% standard positive confidence intervals calculated from the Hessian matrix, are

given in table 7.10. The complete output from R is provided in appendix E.2.1.

Table 7.10: Maximum likelihood estimates of the parameters in the model with
uniformly distributed S. In addition, the correct values, standard deviations from
the Hessian matrix and 95% standard positive confidence intervals are included

Par. Correct value Est. St. deviation Lower bound Upper bound
α 5 4.3596 0.4279 3.5966 5.2845
β 1 1.0441 0.0381 0.9720 1.1216
c 5 4.1476 0.4507 3.3520 5.1320
A 10 8.3029 0.9495 6.6357 10.3890

From these results we can see that the estimation procedure seems to work rea-

sonably well also for semi-competing risks data when S is uniformly distributed.

All of the estimated parameter values are relatively close to the true ones, though

not as close as the estimates in the competing risks case in section 7.1.2. The true

parameter values are well within the estimated 95% standard positive confidence

intervals. The estimated standard deviations are a little smaller compared to what

they were for ordinary competing risks.

We have plotted the parametrically estimated and true marginal survival functions

SZ(t) and SX(t) together to the left of figure 7.19. As explained in section 6.5.1,

the parametric estimates are found from inserting the parameter estimates from

table 7.10 into equations (6.14) and (5.3), respectively. We have also plotted the

estimated and true marginal hazard functions λZ(t) and λX(t) together to the right

in the same figure. These were made from the expressions in (6.15) and (6.16). In

both of these plots there is some difference between the true curves (in red) and
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the estimated ones (in black). Still, they are generally quite close to each other and

follow the same shape. It seems like the estimated and true curves of the hazard

functions deviate more from each other with growing t. This is probably due to the

fact that there are very few observations that are greater than t ≈ 2. We can also

notice that the curves are slightly further apart for Z than for X.

Figure 7.19: True and estimated marginal survival functions SZ(t) and SX(t)
(left) and hazard functions λZ(t) and λX(t) (right) with uniform S

In addition, we have plotted the estimated crude quantities described in section 4.4,

i.e. the sub-distribution function and cumulative sub-hazard rate of Z, in figures

7.20 and 7.21. The parametrically estimated sub-distribution function for Z, F̂ ∗Z(t)

is found from the expression in (6.12), while the non-parametric estimate is given

by (4.4). As we can see from figure 7.20, the curves all match each other very well.

The true curve (red) is almost indistinguishable from the parametrically estimated

one (black, dashed). The fit to the non-parametric curve (black, solid) seems to be

very good.

When it comes to the cumulative sub-hazard rate, the parametric estimate was

found from inserting the parameter estimates into the expression in (6.13) and

integrating, while the non-parametric estimate was made by using equation (4.3).

Also these curves lie quite closely together, but there is a more distinct difference

between the true curve (red) and the parametrically estimated curve (black, dashed).

Also here we can notice that the difference between the true and the parametrically

estimated curves increases with the value of t. As mentioned earlier, this might be

due to that there are few observations for large t. Still, the curves both follow the

non-parametric curve quite closely.
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Figure 7.20: Parametric and non-parametric estimates of the sub-distribution
function for Z, F ∗Z(t), with uniform S

Figure 7.21: Parametric and non-parametric estimates of the cumulative sub-
hazard rate for Z, Λ∗Z(t) with uniform S

7.2.3 Simulation results - exponential model

As in the competing risks case, we chose α = 5, β = 1, c = 7 and λS = 0.1 as

parameter values. fS(s) and FS(s) are then given by equations (6.20) and (6.21).

In the resulting dataset from our simulation we had m = 442 observations of only

the terminal event, n = 444 observations of both the non-terminal and the terminal

event, w = 32 observations of the non-terminal event and a censoring time, and

r = 82 observations of only a censoring time. To estimate the parameters of the

exponential model we used the function estSemi() from appendix D.2.3 which again

calls the optim() function to maximize the log-likelihood function from equation

(6.11). Parameter estimates, along with standard deviations as well as lower and



Chapter 7. Simulation studies 79

upper bounds for the 95% standard positive confidence intervals calculated from

the Hessian matrix are given in table 7.11. The complete output from R can be

found in appendix E.2.2.

Table 7.11: Maximum likelihood estimates of the parameters in the model with
exponential S. In addition, the correct values, standard deviations from the

Hessian matrix and 95% standard positive confidence intervals are included

Par. Correct value Est. St. deviation Lower bound Upper bound
α 5 5.2065 0.5829 4.1808 6.4840
β 1 0.9677 0.0395 0.8932 1.0483
c 7 7.1727 0.7547 5.8361 8.8154
λS 0.10 0.0975 0.0119 0.0768 0.1237

From these results we can see that also with exponential S the estimation procedure

seems to work reasonably well for semi-competing risks data. In this case the

estimated standard deviations seem have approximately the same size as they did

in the competing risks setting in section 7.1.3. The estimated parameter values are

quite close to the true ones, and the true values are well within the estimated 95%

standard positive confidence intervals.

Figure 7.22: True and estimated marginal survival functions SZ(t) and SX(t)
(left) and marginal hazard functions λZ(t) and λX(t) (right) with exponential S

We have furthermore plotted the estimated and true marginal survival functions

SZ(t) and SX(t) together to the left in figure 7.22. These were found from equations

(6.14) and (5.3). We have also plotted the estimated and true marginal hazard

functions functions λZ(t) and λX(t) from equations (6.15) and (6.16) together to
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the right in the same figure. As we can see, the difference between the true and

the estimated curves, in red and black respectively, is very small. It is smaller

than what it was in the uniform model, which is logical considering how close

the estimated parameter values are to the original ones in table 7.11. Also here,

the difference seems to grow with larger t-values for the hazard functions. It is

additionally interesting to notice how the shapes of ŜZ(t) and λ̂Z(t) change with

the distribution of S. They are different from what they were in the uniform model.

We continue by plotting the estimated crude quantities. In figure 7.23, the sub-

distribution function for Z is shown. The parametric estimate of F ∗Z(t) is again

found from the expression in (6.12), while the non-parametric estimate is given by

(4.4). Just as in the uniform model, the curves all match each other very well. Again,

the true curve (red) is almost indistinguishable from the parametrically estimated

one (black, dashed). Moreover, the fit to the non-parametric curve (black, solid)

seems to be very good.

Figure 7.23: Parametric and non-parametric estimates of the sub-distribution
function for Z, F ∗Z(t) with exponential S

In figure 7.24 the cumulative sub-hazard rate of Z is illustrated. The parametric

estimate was once again found by using the expression in equation (6.13), while the

non-parametric estimate was made with equation (4.3). As we can see from the

figure, the curves all follow each other very closely. The difference between the true

curve (red) and the parametrically estimated curve (black, dashed) is not as large

as in the uniform model.
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Figure 7.24: Parametric and non-parametric estimates of the cumulative sub-
hazard rate for Z, Λ∗Z(t) with exponential S

7.2.4 Simulation results - gamma model

For the gamma model we kept using α = 5, β = 1, c = 7, αS = 49
4

and βS = 7
4

as parameter values. We used algorithm 2 to simulate a dataset of N = 1000

observations. In the resulting data we had m = 423 observations of only the time

to the terminal event, n = 463 observations of both times to the non-terminal event

and times to the terminal event, w = 24 observations of times to the non-terminal

event followed by a censoring time, and r = 90 observations of only the censoring

time. If we maximize the log-likelihood function from (6.11), with (6.22) and (6.23)

inserted for fS(s) and FS(s) we get the results displayed in table 7.12. There,

parameter estimates, standard deviations and lower and upper bounds for the 95%

standard positive confidence intervals calculated from the Hessian matrix are given.

For the complete output from the estSemi()-function, see appendix E.2.3.

Table 7.12: Maximum likelihood estimates of the parameters in the model with
gamma distributed S. In addition, the correct values, standard deviations from
the Hessian matrix and 95% standard positive confidence intervals are included

Par. Correct value Est. St. deviation Lower bound Upper bound
α 5 5.9776 0.9370 4.3964 8.1275
β 1 0.9631 0.0652 0.8435 1.0998
c 7 8.3849 1.1589 6.3951 10.9938
αS

49
4

= 12.25 13.0545 1.8600 9.8737 17.2602
βS

7
4

= 1.75 1.5483 0.2026 1.1981 2.0010
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These results also support that the estimation procedure seems to work well. The

estimated parameter values are close to the true ones, in fact closer than the esti-

mates from the ordinary competing risks case in section 7.1.4 were. The estimated

standard deviations are in general smaller than than what they were there for com-

peting risks, but larger than what they were in the uniform and exponential models.

Anyhow, the true parameter values are contained within the estimated 95% stan-

dard positive confidence intervals.

Also in this case we have plotted the estimated and true marginal survival functions

SZ(t) and SX(t) using the expressions in (6.14) and (5.3). These are shown together

to the left in figure 7.25. We have also plotted the estimated and true marginal

hazard functions functions λZ(t) and λX(t) together to the right in the same figure.

These were found using equations (6.15) and (6.16). We can see that in both of

these plots the true curves (in red) are very close to the estimated ones (in black).

As we have noticed in the previous models, the true and estimated curves of the

marginal hazard rates seem to deviate from each other when t grows large, however

only for X this time.

Figure 7.25: True and estimated marginal survival functions SZ(t) and SX(t)
(left) and hazard functions λZ(t) and λX(t) (right) with gamma distributed S

Following the same procedure as in the other models, we have also plotted the esti-

mated crude quantities. The true, parametric and non-parametric sub-distribution

functions for Z are shown together in figure 7.26. The parametric estimate of F ∗Z(t)

is found from the expression in (6.12), while the non-parametric estimate is given

by (4.4). Not surprisingly, the curves all match each other very well also for the

gamma model.
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The true, parametric and non-parametric cumulative sub-hazard functions for Z

are shown together in figure 7.27. As before, the parametric estimate was found

from inserting the estimated parameter values into the expression in (6.13) and

integrating, while the non-parametric estimate was made by using equation (4.3).

Also these curves are very similar to each other.

Figure 7.26: Parametric and non-parametric estimates of the sub-distribution
function for Z, F ∗Z(t) with gamma distributed S

Figure 7.27: Parametric and non-parametric estimates of the cumulative sub-
hazard rate for Z, Λ∗Z(t) with gamma distributed S

7.2.5 Simulation results - lognormal model

For the lognormal model we have α = 5, β = 1, c = 7, µS = 2 and σS = 0.25 as

parameter values. The PDF and CDF of the distribution of S are then given as

in equations (6.24) and (6.25). From the simulation we got m = 494 observations

of only times to the terminal event, n = 385 observations of both times to the



84 Chapter 7. Simulation studies

non-terminal and to the terminal event, w = 16 observations of times to the non-

terminal event and a censoring time, and r = 105 observations of only the censoring

time. The resulting estimates from the estSemi() function, along with standard

deviations and lower and upper bounds for the 95% standard positive confidence

intervals calculated from the Hessian matrix are given in table 7.13. The complete

output from R is given in appendix E.2.4.

Table 7.13: Maximum likelihood estimates of the parameters in the model
with lognormal S. In addition, the correct values, standard deviations from the

Hessian matrix and 95% standard positive confidence intervals are included

Par. Correct value Est. St. deviation Lower bound Upper bound
α 5 4.6975 0.5861 3.6784 5.9990
β 1 1.0109 0.0522 0.9135 1.1186
c 7 6.7394 0.7506 5.4176 8.3836
µS 2 1.9440 0.1113 1.7376 2.1749
σS 0.25 0.2564 0.0195 0.2209 0.2976

We can see that also in this model the estimation procedure with optim() seems to

work reasonably well. The estimated parameter values are quite close to the true

ones, actually closer than what they were in the competing risks case in section

7.1.5. The true values are comfortably inside the estimated 95% standard positive

confidence intervals. The standard deviations seem to be only of half the size as

those in the competing risks study as well as smaller than the ones in the gamma

model.

Figure 7.28: True and estimated marginal survival functions SZ(t) and SX(t)
(left) and marginal hazard functions λZ(t) and λX(t) (right) with lognormal S
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Also in this case we have estimated the net quantities described in section 6.5.1.

To the left in figure 7.28 we have plotted the estimated and true marginal survival

functions, SZ(t) from (6.14) and SX(t) from (5.3), together. We have also plotted

the estimated and true marginal hazard functions functions, λZ(t) from (6.15) and

λX(t) from (6.16), together to the right in the same figure. We can see that the true

curves (in red) are close to the estimated ones (in black). The difference between

the estimated and true curves seems to be slightly larger for X than for Z.

Next, we have plotted the estimated crude quantities, i.e. the sub-distribution

function and cumulative sub-hazard rate of Z in figures 7.29 and 7.30.

Figure 7.29: Parametric and non-parametric estimates of the sub-distribution
function for Z, F ∗Z(t) with lognormal S

Figure 7.30: Parametric and non-parametric estimates of the cumulative sub-
hazard rate for Z, Λ∗Z(t) with lognormal distributed S
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The parametrically estimated sub-distribution function for Z, F ∗Z(t), is found from

the expression in (6.12), while the non-parametric estimate is given by (4.4). When

it comes to the cumulative sub-hazard rate, Λ∗Z(t), the parametric estimate was

found from the expression in (6.13), while the non-parametric estimate was made

by using equation (4.3). As we can see from both figures, the curves all match

each other very well. The true curves (red) lie slightly below the parametric and

non-parametric estimates (black). For the sub-distribution function in figure 7.29

the parametric estimate seems to fit the non-parametric curve even better than

the curve made with the true parameter values. For the cumulative sub-hazard

rate in figure 7.30 it is more difficult to tell which of the curves that matches the

non-parametric one the best.

7.2.6 Summary of simulation study - semi-competing risks

Considering the simulation studies in sections 7.2.2, 7.2.3, 7.2.4 and 7.2.5, it is

clear that also for semi-competing risks data the maximum likelihood estimation

with the random S models produced good results. The true parameter values were

always well inside their corresponding 95% confidence intervals. As we saw for ordi-

nary competing risks, the estimated standard deviations in the gamma model were

slightly larger than in the uniform and the exponential models. For the lognormal

model however, the estimated standard deviations were of approximately the same

size as in the uniform and exponential models, even though it has one parameter

extra.

Furthermore, we have seen that for both crude and net quantities the parametrically

estimated curves matched the true curves very well. For the crude quantities we

in addition saw that the parametrically estimated curves fitted well to the non-

parametrically estimated ones. The deviation from the true curves that occurred

for larger t-values in the marginal hazard functions is most likely due to that there

are very few observations in that range.

The most important thing to take away from these simulation studies is that the

estimation procedure seems to work well, and we should be able to trust the results

we get when we apply the method to real data (provided that the datasets are large

enough).
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Data analysis - competing risks

In chapter 7 we saw that the estimation of the parameters in the random S model

described in chapter 6 worked well on simulated data. It would therefore be in-

teresting to see how well the model will fit to some real data. In this chapter we

will use a set of competing risks data which was also used in the project thesis [35].

Thereby we can compare the fit of the random S model to the fit of the basic model.

The dataset is included in appendix C.1.

8.1 VHF-data

These data are taken from [27]. The dataset contains the failure times of a com-

mercial airline’s ARC-1 VHF communication transmitter receivers. The transmitter

receivers were removed and sent to maintenance when it was assumed that they had

failed. For those that had failed, we denote the time of removal by X. For those

that had not yet failed, we denote the times by Z. In addition, the dataset contains

some censored observations. After 630 hours all of the remaining operating units

were removed (due to the airline policy). This is a type I censoring. We let this

time of removal be the censoring time τ . In total there are m = 218 observations

of X, n = 107 observations of Z and r = 44 observations of τ .

As mentioned in the chapter introduction, the basic gamma process model was fitted

to this dataset in the project thesis. We will repeat some of the results regarding the

fit of the basic model here, but for a complete record we refer to the project thesis

[35]. First of all, it was confirmed that Cooke’s condition for random signs censoring

models from section 3.5 holds for these data. ( ˆ̃SZ(t) < ˆ̃SX(t)). Next, the parameters

of the model were estimated. A table with these estimates, along with standard

deviations and upper and lower bounds for the 95 % standard positive confidence

intervals is included in appendix F.3. Upon plotting the parametric estimates of

the conditional sub-survival curves together with the non-parametric estimates it

was clear that the basic model provided a very good fit to the data. In fact, the

model fitted the data much better than any of the Wiener process models had done

in [36]. Out of the four Wiener process models tested by Skogsrud, it was the one
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with normally distributed S that provided the best fit, significantly better than the

basic Wiener process model with constant S. It will therefore be interesting to see

the effect of randomizing S in the gamma process model.

8.1.1 Uniform S

We first fitted the uniform S model to the VHF-data. This was done by maximizing

the log-likelihood function in equation (6.6), just as in the simulation studies. The

resulting estimates are shown in table 8.1, together with the standard deviations

and 95% standard positive confidence interval limits. The complete output from R

is included in appendix E.3.1.

Table 8.1: Maximum likelihood estimates of the parameters in the model with
uniform S for the VHF-data. In addition: the correct values, standard deviations

from the Hessian matrix and 95% standard positive confidence intervals

Parameter Estimate Standard deviation Lower bound Upper bound
α 0.0027 0.0003 0.0021 0.0035
β 0.9811 0.0231 0.9368 1.0275
c 0.3552 0.0823 0.2256 0.5593
A 1.1501 0.2856 0.7069 1.8711

Now, we cannot directly tell from this table whether this is a good model fit or not.

What we can note however, is that these parameter estimates are very different

from the estimates we obtained in the basic model (see table F.1 in appendix F.3).

In particular, the values of α and c are a lot smaller, while the estimate of β is

significantly larger. By looking at the correlation matrix for the parameters, which

can be found in the output from R shown in appendix E.3.1, it is not surprising

that if either α or c is much smaller than before, then this will be the case for the

other one as well, while the value of β will be much higher. There is an estimated

correlation between α and β of -0.596, while between α and c it is 0.372. The

correlation between β and c is estimated to be 0.460.

In the simulation studies we saw that trying to fit a model that does not suit the

data resulted in parameter estimates that were quite different from the ones in the

correct model. Considering how well the basic model fitted the VHF-data in the

project thesis, we might therefore suspect that the uniform model does not fit well.
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8.1.2 Exponential S

Next we can try to assume that S is exponentially distributed instead. We use the

log-likelihood function from (6.6) again on the VHF-data, which when maximized

produced the results in table 8.2. The table contains estimated parameter values,

standard deviations and 95% standard positive confidence interval limits estimated

from the Hessian matrix. The complete output from R is shown in appendix E.3.2.

Table 8.2: Maximum likelihood estimates of the parameters in the model with
exponential S for the VHF-data. In addition: the correct values, standard devi-
ations from the Hessian matrix and 95% standard positive confidence intervals

Parameter Estimate Standard deviation Lower bound Upper bound
α 0.0027 0.0003 0.0021 0.0035
β 0.9832 0.0230 0.9391 1.0293
c 0.3653 0.0822 0.2350 0.5679
λS 0.9989 0.2473 0.6149 1.6229

From the results in table 8.2, we can note that the estimates for α, β and c are of the

same magnitude as those provided by the uniform model. Thereby, these estimates

are also quite far from the ones found by the basic model. The estimated standard

deviations are in general very similar to those in the uniform model.

8.1.3 Gamma distributed S

We will now fit the model with gamma distributed S to the VHF-data. Table 8.3

provides the results from the parameter estimation using the log-likelihood function

in equation (6.6). In addition to the estimated parameter values, standard devia-

tions and bounds for the 95% standard positive confidence intervals are given. The

complete output from R can be found in appendix E.3.3.

Table 8.3: Maximum likelihood estimates of the parameters in the model with
gamma distributed S for the VHF-data. In addition: the correct values, standard
deviations from the Hessian matrix and 95% standard positive confidence intervals

Parameter Estimate Standard deviation Lower bound Upper bound
α 4.6497 0.0244 4.6021 4.6978
β 0.2397 0.0033 0.2334 0.2462
c 16.7151 0.0813 16.5565 16.8752
αS 121.9852 122.0926 17.1530 867.5086
βS 6.9725 7.1593 0.9319 52.1692
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It is clear that the parameter estimates in table 8.3 are very different from those in

the uniform and exponential models. These estimates for α, β and c are much closer

to the ones we got with the basic model in the project thesis. Another thing to

notice is that the estimated standard deviations for αS and βS are quite large. They

are of approximately the same magnitude as the parameter estimates themselves.

This further results in very wide standard positive confidence intervals for these

parameters. In such cases the standard positive interval is not suitable. For this

reason, we would like to calculate the confidence intervals in an alternative way,

namely by non-parametric bootstrapping as described in section 2.4.2.

Table 8.4: Bootstrapping results for the parameters in the gamma model for the
VHF data. Includes means, biases, standard deviations, 95% percentile intervals

and BCa intervals estimated by non-parametric bootstrapping

Par. MeanB Bias SDB Perc. int. BCa int.
α 4.6708 0.0211 0.1566 (4.3012, 5.0802) (4.3306, 5.1069)
β 0.2392 -0.0006 0.0064 (0.2237, 0.2544) (0.2231, 0.2542)
c 16.7190 0.0039 0.0976 (16.4699, 16.8971) (16.2054, 16.7831)
αs 121.9531 -0.0321 0.2025 (121.4852, 122.2910) (121.5666, 122.3566)
βs 6.9705 -0.0020 0.0419 (6.8913, 7.0500) (6.8805, 7.0384)

The results from the bootstrapping are shown in table 8.4. In this case we used

B = 500 bootstrap replications. According to [11] more than 200 replications are

seldom necessary, but we have the computer power to generate more. The R-code to

generate the bootstrap samples and the BCa intervals is provided in appendix D.2.5,

while the complete output from R is included in appendix E.6.1. As we can see from

the results, the non-parametric bootstrapping provides confidence intervals for αS

and βS that are much smaller than the ones we found by using the Hessian matrix in

table 8.3. Also the estimated standard errors are severely reduced, actually almost

too much. This may suggest that our maximum likelihood estimation has converged

too quickly. The optim() function seems to be quite sensitive to which parameter

values we pick as initial values and also to the lower and upper limits (which must

be set when using the ”L-BFGS-B” method as we are doing). It is therefore hard to

say how trustworthy these bootstrapping results are. For the parameters α, β and

c however, the results are quite similar to those obtained in table 8.3.

8.1.4 Lognormal S

Finally we fit the lognormal model to the VHF-data. Following the same procedure

as earlier, we maximized the log-likelihood function from equation (6.6) by using



Chapter 8. Data analysis - competing risks 91

the condSurv() function from appendix D.2.1. The resulting parameter estimates,

estimated standard deviations and 95 % standard positive confidence intervals can

be found in table 8.5. The complete results are given in appendix E.3.4.

Table 8.5: Maximum likelihood estimates of the parameters in the model with
lognormal S. In addition, the correct values, standard deviations from the Hessian

matrix and 95% standard positive confidence intervals are included.

Parameter Estimate Standard deviation Lower bound Upper bound
α 4.6831 0.0185 4.6471 4.7194
β 0.2385 0.0028 0.2331 0.2440
c 16.7205 0.0104 16.7002 16.7408
µS 2.8592 0.0243 2.8120 2.9072
σS 0.0904 0.0467 0.0328 0.2486

As we can see, the parameter estimates of α, β and c from table 8.5 are very close

to the ones in the basic and gamma models. Moreover, we can notice that this time

all of the standard deviations are estimated to be quite small relative to the size

of the parameters, which in turn provides very narrow standard positive confidence

intervals. This suggests that the parameter estimates are fairly accurate.

8.1.5 Comparison of model fits - VHF-data

We have seen that the uniform and the exponential models provided two model

fits that were very different from the basic model. The parameter estimates of the

gamma and the lognormal models on the other hand, were close to those of the

basic model, as well as to each other. That they are similar to each other is not so

surprising, as the fit of a gamma and a lognormal distribution in many cases will

be able to resemble one another, especially for such a modest sample size.

To compare the different model fits to each other, we can begin by examining the

maximum log-likelihood values. They are listed in table 8.6. From these values

we can confirm what we guessed earlier: the uniform and exponential models do

not suit the VHF-data well compared to the other models. Of the two, the uniform

model has the lowest maximum log-likelihood value and performs the worst. We can

also see that the fit of the basic, gamma and lognormal models are almost equally

good. Of the random S models, it is the lognormal model that performs the best,

but the basic model with fixed s actually seems to fit the data a tiny bit better.

The difference between the four random S models can be made even more clear by

considering the estimated distributions fS(s). One can for instance plot the four
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Table 8.6: Comparison of maximum log-likelihood values for the VHF-data
from the four random S models as well as the basic model from the project thesis

Model max logL
basic -2377.019

uniform -2389.049
exponential -2389.753

gamma -2377.063
lognormal -2377.047

distributions of S together in the same figure. This is done in figure 8.1. The

parameter estimate for s from the basic model is also marked in the same plot. Yet

again, the difference between the estimates in the uniform and exponential models

and the gamma and lognormal models is striking. As we can see, the basic estimate

of s is smaller than the mean values of S in the gamma and lognormal models. This

is natural since s corresponds to E[S|S < c] not E[S]. The four choices of fS(s)

indicate quite different maintenance policies for the VHF transmitter receivers.

Figure 8.1: Estimated distributions of S for the VHF-data in the four random
S models as well as the estimate of s from the basic model

We can in addition compare the estimates of FS(c) made with the different models.

The results are listed in table 8.7. There, we can see that all of the estimates of

FS(c) are actually quite similar to each other. Still, the estimates made with the

uniform and the exponential models, are a little smaller than the others. From the

project thesis we can recall that the non-parametric estimate was 0.3306. Compared

to this value, the lognormal model is the closest.
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Table 8.7: Estimated values of FS(c) for the VHF-data in the random S models
as well as in the the basic model

Model F̂S(c)
basic (q̂ =) 0.3159

uniform 0.3089
exponential 0.3057

gamma 0.3190
lognormal 0.3193

To further evaluate the fit of our random S models to the VHF-data we can consider

the plots of the parametrically estimated conditional sub-survival curves. From

before we know that these curves can be made from the expressions in section 6.4.1.

The resulting plots are given in figures 8.2 and 8.3.

Figure 8.2: Parametric and non-parametric estimates of the conditional sub-
survival functions from the uniform(left) and the exponential (right) models for

the VHF-data

The figures 8.2 and 8.3 confirm what we learned from the table of maximum log-

likelihood values (8.6). Considering figure 8.2 first, the parametrically estimated

conditional sub-survival curves of the uniform and exponential models are relatively

far form the non-parametrically estimated curves, both for Z (thick lines) and for

X (thin lines). The curves in the uniform model (to the left) display a slightly

closer fit than those in the exponential model (to the right). If we move on to

figure 8.3, we can see that the parametrically estimated curves of the gamma and

lognormal models are much closer to the non-parametric curves than the uniform

and exponential curves were. The difference between the fit of the gamma model (to

the left) and the lognormal model (to the right) is almost impossible to see. Both
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Figure 8.3: Parametric and non-parametric estimates of the conditional sub-
survival functions from the gamma(left) and the lognormal (right) models for the

VHF-data

models seem to fit very well to the data. It is logical that the models with a two-

parameter distribution for S are able to fit the data better than the one-parameter

distributions, as they are more flexible.

Since it is difficult to say which of the gamma, lognormal and the basic model that

suits the data the best, we choose to plot the parametrically estimated conditional

sub-survival functions of these three models together in the same figure. The para-

metrically estimated curves from the basic model were made in the project thesis

[35] and is reprinted here in figure 8.4.

As we can see, the three models all seem to fit well to the data. The curves of

the lognormal model completely overlap the curves of the gamma model, so these

models are both represented by the blue curves. The curves of the basic model

are drawn in black dashed lines. The lines of the parametric estimates of S̃X(t) are

almost identical, and it is hard to tell whether any of the three models is better than

the others. When it comes to the parametric estimates of S̃Z(t), there is a more

distinct difference for t > 200. The curve from the gamma and lognormal models

seems to lie a little further up (and thus closer to the non-parametric curve) than

the line from the basic model. Thus, based on this figure alone one may be tempted

to say that the gamma or the lognormal model is the best out of the three. On

the other hand, the maximum log-likelihood values suggested that the basic model

had a tiny advantage over the others. Overall it is difficult to make a judgement

with respect to which of the three models that is the best, since the difference is

so small. We should however keep in mind that computationally, the basic model
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Figure 8.4: Parametric and non-parametric estimates of the conditional sub-
survival functions from the gamma and lognormal(blue) and the basic (black)

models for the VHF-data

is simpler, even though the models have the same number of parameters. This is

because no numerical integration is required to calculate the log-likelihood function

in the basic model.

To summarize, it actually seems that for the VHF-data it was not necessary, or

even beneficiary, to randomize the level S in the gamma process model. In theory,

the random S extension of the basic model provides more flexibility, and as men-

tioned at the beginning of this chapter, randomizing S had a positive effect for the

corresponding Wiener process model on the VHF-data in [25]. At the same time,

we have to recall that the fit of the basic gamma process model was already very

good. The main reason for the ability of the gamma process models to fit so well to

the data over for instance the corresponding Wiener process models probably lies

in the shape function v(t).





Chapter 9

Data Analysis

- semi competing risks

In chapter 7 we also saw that our estimation method for the random S model

worked well for simulated semi-competing risks data. In this chapter we will apply

the random S gamma process model to two sets of real semi-competing risks data.

The first is related to patients with carcinoma of the lung, and does not contain any

censored observations. The second involves data on patients who have undergone

bone marrow transplants, and this dataset does contain censored observations. The

datasets are included in appendix C.2 and C.3 respectively.

9.1 Carcinoma data

This dataset is taken from [20]. It describes the survival times of people diagnosed

with inoperable carcinoma (a type of cancer) of the lungs that were treated by a

certain drug. We denote these observations by X. For some patients, treatment

was terminated or they started with a different kind of treatment instead (due to

specific kinds of disease progression). The time till these types of events are denoted

by Z. In addition, the dataset includes the eventual survival times of the patients

who ended or changed their treatment. We will denote these times by XZ . All

times are given as number of weeks. There are no censored observations.

The carcinoma data were also used in my project thesis for the basic gamma pro-

cess model [35]. The data were then treated as ordinary competing risks data,

thereby ignoring the information about the times of death for the patients that first

experienced the non-terminating event. When the data is treated like competing

risks data, and we plot the non-parametric estimates of the conditional sub-survival

curves, it is evident that ˆ̃SZ(t) < ˆ̃SX(t) for all t (see [35]). This suggests that we can

fit a random signs censoring model to the data. We will now fit the semi-competing

risks versions of the uniform, exponential, gamma and lognormal models without

censoring to the carcinoma dataset. In the dataset there are in total m = 33 obser-

vations of the survival times for the patients on the original treatment and n = 28
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observations of times of removal from the original treatment and thus also n = 28

subsequent death times. Thus the total number of observations is quite small.

9.1.1 Uniform S

We begin by assuming that S is uniformly distributed on [0, A]. We next insert this

choice of fS(s) into the log-likelihood function from equation (6.11). This function

may then be maximized for the carcinoma data by the estSemi() function, which

can be found in appendix D.2.3. By doing this, we obtained the parameter estimates

shown in table 9.1. In addition, the table presents the estimated standard deviations

as well as lower and upper bounds for the 95% standard positive confidence intervals

calculated from the Hessian matrix. The complete output from R is shown in

appendix E.4.1.

Table 9.1: Maximum likelihood estimates of the parameters in the model with
uniform S without censoring for the carcinoma data. In addition: standard
deviations from the Hessian matrix and 95% standard positive confidence intervals

Parameter Estimate Standard deviation Lower bound Upper bound
α 0.1676 0.1370 0.0337 0.8322
β 0.6878 0.1045 0.5107 0.9263
c 0.8027 0.6616 0.1596 4.0376
A 1.7488 1.4616 0.3398 8.9988

From the results in table 9.1 we can for instance note that the standard deviations in

general are of the same size order as the parameter estimates. We can also see that

the estimates of α, β and c are all very different from what they were in the project

thesis with the basic model [35]. However, this does not really tell us much, since

in that case the data were treated as competing risks data and all of the survival

times observed after the non-terminal event were ignored.

As in the simulation studies, we have plotted the estimated marginal survival func-

tions ŜZ(t) and ŜX(t). These were made from inserting the parameter estimates

from table 9.1 into equations (6.14) and (5.3). The resulting curves are shown to-

gether to the left of figure 9.1. We have also plotted the estimated marginal hazard

functions λ̂Z(t) and λ̂X(t) together to the right in the same figure. They were found

by using the expressions in (6.15) and (6.16). ŜZ(t) and λ̂Z(t) are plotted in thick

lines, while ŜX(t) and λ̂X(t) are plotted in thin lines.

(The estimated crude quantities will be plotted later, together with the estimates

from the other models).
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Figure 9.1: Estimated marginal survival functions ŜZ(t) and ŜX(t) (left) and
hazard functions λ̂Z(t) and λ̂X(t) (right) with uniform S

9.1.2 Exponential S

Next, we fit the model with exponential S to the data. The results from the max-

imum likelihood estimation procedure are shown in table 9.2. The table presents

the estimated parameter values and corresponding standard deviations, as well as

lower and upper bounds for the 95% standard positive confidence intervals calcu-

lated from the Hessian matrix. The complete output from estSemi() is shown in

appendix E.4.2.

Table 9.2: Maximum likelihood estimates of the parameters in the model with
exponential S without censoring for the carcinoma data. In addition: standard
deviations from the Hessian matrix and 95% standard positive confidence intervals

Parameter Estimate Standard deviation Lower bound Upper bound
α 0.1383 0.0962 0.0354 0.5405
β 0.7144 0.0920 0.5550 0.9196
c 0.6806 0.5028 0.1600 2.8957
λS 0.8824 0.6797 0.1950 3.9932

The estimated parameter values for α, β and c in table 9.2 are quite close to those

obtained in the uniform model in table 9.1. Also the corresponding estimated

standard deviations are of approximately the same size as they were there.

As in the simulation studies, we have plotted the estimated marginal survival func-

tions ŜZ(t) and ŜX(t) together. This is shown to the left in figure 9.2. The para-

metric estimate of SZ(t) was made from equation (6.14), while for SX(t) it is given
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by (5.3). We have also plotted the estimated marginal hazard functions λ̂Z(t) and

λ̂X(t) together to the right in the same figure. Like before, these functions were

estimated by using equation (6.15) and (6.16) respectively. In shape, the estimated

functions are quite similar to the ones estimated in the uniform model.

Figure 9.2: Estimated marginal survival functions ŜZ(t) and ŜX(t) (left) and
hazard functions λ̂Z(t) and λ̂X(t) (right) with exponential S

9.1.3 Gamma distributed S

We will now move on to the gamma model. Following the same procedure as

before, we can maximize the log-likelihood function from equation (6.11) by the

estSemi() function. The results are shown in table 9.3. The table presents the

estimated parameter values and corresponding standard deviations, as well as lower

and upper bounds for the 95% standard positive confidence intervals calculated

from the Hessian matrix. The complete output from R is given in appendix E.4.3.

Table 9.3: Maximum likelihood estimates of the parameters in the model with
gamma S without censoring for the carcinoma data. In addition: standard devi-
ations from the Hessian matrix and 95% standard positive confidence intervals

Parameter Estimate Standard deviation Lower bound Upper bound
α 2.1788 3.5832 0.0868 54.7135
β 0.3620 0.1850 0.1329 0.9858
c 5.6606 6.7956 0.5382 59.5333
αs 5.9301 4.5708 1.3091 26.8631
βs 0.9499 0.7051 0.2217 4.0692

As we can see from table 9.3, the estimates of α, β and c are all quite different from

the ones obtained by the uniform and exponential models. The values of α and c
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are a great deal larger, while the value of β is a lot smaller than in the two previous

models. Just as in the VHF data analysis, this has to do with the fact that all of

these parameters are strongly correlated to each other, so that a change in one of

them will generate a change in the other two as well. From the correlation matrix

in appendix E.4.3, we can for instance see that the correlation between α and β in

this case is estimated to be -0.992 and between α and c it is 0.997.

The standard deviations are also in this case estimated to be of the same magni-

tude as the parameter estimates themselves. Since the parameter estimates here are

considerably larger than in the two previous models, this causes the 95% standard

positive confidence intervals to be very wide. Recall that this also happened in the

competing risks gamma model when we analysed the VHF-data. As we did there,

we have used non-parametric bootstrapping to calculate alternative confidence in-

tervals. The results are shown in table 9.4. The output from R is given in appendix

E.6.2.1.

Table 9.4: Maximum likelihood estimates of the parameters in the gamma
model for the carcinoma data. In addition: means, biases, standard deviations,
95% percentile intervals and BCa intervals from non-parametric bootstrapping

Non-parametric
Par. Est. MeanB Bias SDB Percentile int. BCa int.
α 2.1788 3.0834 0.9045 2.4543 (0.1685, 8.1359) (0.1124, 7.4117)
β 0.3620 0.3902 0.0282 0.1371 (0.2230, 0.6874) (0.2291, 0.7246)
c 5.6606 7.1056 1.4450 4.4335 (0.8508, 14.9927) (0.5248, 14.1988)
αs 5.9301 6.6894 0.7593 3.1743 (1.7220, 14.1156) (1.4160, 12.7197)
βs 0.9499 1.1262 0.1763 0.6313 (0.3515, 2.8402) (0.3442, 2.8628)

Both the percentile intervals and the BCa intervals obtained in table 9.4 are nar-

rower than the standard positive intervals from table 9.3. However, they are still

quite wide. This suggests that there is considerable uncertainty regarding the pa-

rameter estimates of the gamma model. The range of estimated parameter values

in the bootstrap samples is quite wide. We can further notice that all of the pa-

rameters have an estimated positive bias. Many of these are quite large compared

to the size of the estimated standard errors.

As previously, we have plotted the estimated marginal survival functions ŜZ(t) from

(6.14) and ŜX(t) from (5.3). This is done to the left in figure 9.3. We have also

plotted the estimated marginal hazard functions λ̂Z(t) from (6.15) and λ̂X(t) from

(6.16) together to the right in the same figure. Again, λ̂Z(t) and ŜZ(t) are plotted

in thick lines while λ̂X(t) and ŜX(t) are plotted in thin lines.
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Figure 9.3: Estimated marginal survival functions ŜZ(t) and ŜX(t) (left) and
hazard functions λ̂Z(t) and λ̂X(t) (right) with gamma distributed S

9.1.4 Lognormal S

Finally, we fit the lognormal model to the carcinoma data. The results from the

maximum likelihood estimation procedure done with estSemi() are shown in table

9.5. The table presents the estimated parameter values and corresponding standard

deviations, as well as lower and upper bounds for the 95% standard positive con-

fidence intervals calculated from the Hessian matrix. For the complete output (as

given by R), see appendix E.4.4.

Table 9.5: Maximum likelihood estimates of the parameters in the model with
lognormal S without censoring for the carcinoma data. In addition: standard
deviations from the Hessian matrix and 95% standard positive confidence intervals

Parameter Estimate Standard deviation Lower bound Upper bound
α 1.8396 3.0683 0.0700 48.3595
β 0.3809 0.1923 0.1416 1.0248
c 5.0005 6.0727 0.4627 54.0431
µS 1.6562 1.2040 0.3984 6.8854
σS 0.4786 0.2054 0.2064 1.1099

These estimates are not that far from the ones obtained in the gamma model. Also

here the standard deviations are quite large and the standard positive confidence

intervals are very wide. Therefore, we have used non-parametric bootstrapping in

this model as well. The results are given in table 9.6, while the complete output

from R can be found in in appendix E.6.2.2.
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Table 9.6: Maximum likelihood estimates of the parameters in the lognormal
model for the carcinoma data. In addition: means, biases, standard deviations,
95% percentile intervals and BCa intervals from non-parametric bootstrapping

Par. Est. MeanB Bias SDB Percentile int. BCa int.
α 1.8396 3.1258 1.2861 2.6428 (0.1997, 7.9788) (0.1501, 7.8040)
β 0.3809 0.3941 0.0133 0.1394 (0.2253, 0.6768) (0.2302, 0.7067)
c 5.0005 7.1056 2.1051 4.7934 (1.0459, 15.3990) (0.8575, 14.7481)
µs 1.6552 1.7284 0.0722 0.8365 (0.1154, 2.8295) (0.0292, 2.7658)
σs 0.4786 0.4937 0.0151 0.1478 (0.2818, 0.8637) (0.3051, 0.9843)

In table 9.6 we can see many of the same tendencies as we saw in the gamma

model. The non-parametric bootstrapping provides us with confidence intervals

that are smaller than the standard positive ones from table 9.5, but they are still

quite wide. There is also a positive bias associated with each of the parameters

that for some of the parameters is quite large compared to the estimated standard

errors.

Figure 9.4: Estimated marginal survival functions ŜZ(t) and ŜX(t) (left) and
hazard functions λ̂Z(t) and λ̂X(t) (right) with lognormal S

As in the other cases, we have plotted the estimated marginal survival functions

ŜZ(t) and ŜX(t). The estimates were found using the expressions (6.14) and (5.3).

The curves are shown together, in thick and thin lines respectively, to the left in

figure 9.4. We have also estimated the marginal hazard functions using (6.15) and

(6.16). λ̂Z(t) (thick line) and λ̂X(t) (thin line) are plotted together to the right in

the same figure. The curves look very similar to the ones obtained by the gamma

model.
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9.1.5 Comparison of model fits - carcinoma data

We will in this section compare the four model fits to each other. To get an indica-

tion of which of the models that fits the carcinoma data the best, we can consider

the maximum log-likelihood values displayed in table 9.7. From this table we can

see that the maximum value is obtained with the lognormal model. The gamma

model is very close to having the same value, while the uniform and exponential

maximum log-likelihood values are a little lower, but still relatively close to the

others.

Table 9.7: Comparison of maximum log-likelihood values in the four random S
models for the carcinoma data

Model max logL
uniform -382.4325

exponential -382.9794
gamma -380.8140

lognormal -380.7409

To find out more with respect to the differences of the model fits, we can plot the

estimated marginal survival function for the time to the non-terminal event, ŜZ(t),

from all four models together. This is done in figure 9.5.

Figure 9.5: Comparison of parametrically estimated ŜZ(t) in the random S
models for the carcinoma data

As we can see, the uniform curve (orange) stands out from the others, and decreases

the fastest. The curves of the exponential model (red) is almost identical to that
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from the gamma model (blue), while the curve of the lognormal model (green) lies

a little further up than the rest.

The reason for the similarity in the model fits becomes more evident when we plot

the estimated distributions of S together. In figure 9.6 this is done. As we can see,

the main parts of the four densities lie much closer together than what they did for

the VHF data in figure 8.1. They also lie closer to zero. Moreover, the densities of

the gamma and lognormal distributions (in blue and green) are much wider than

what they were for the VHF-data. Thereby the uniform and exponential models

(in black and red), who have to be larger than 0 at t = 0, are not as different from

the gamma and lognormal distributions for the carcinoma data.

Figure 9.6: Comparison of f̂S(s) in the random S models for the carcinoma
data

Also for these data it might be of interest to compare the estimates of FS(c) made

with the different models. These are shown in table 9.8. The estimates are very

similar to each other, even though the exponential estimate is a little lower than

the others. From the project thesis we can recall that the non-parametric estimate

of q was 0.4581, which also is very close to the estimates in table 9.8.

Table 9.8: Comparison of the estimates of FS(c) in the four random S models
for the carcinoma data

Model FS(c)
uniform 0.4590

exponential 0.4515
gamma 0.4617

lognormal 0.4612
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We can further plot both the parametric and the non-parametric estimates of the

crude quantities F ∗Z(t) and Λ∗Z(t). As we can recall from section 6.5.1, the parametric

estimates can be found by equation (6.12) and integrating equation (6.13). How

to find the non-parametric estimates was given by (4.4) and (4.3). We plot these

parametric and non-parametric estimates together in the same figure. In figures 9.7

and 9.8 this is done with the four random S models.

Figure 9.7: Parametric and non-parametric estimates of the sub-distribution
function for Z, F ∗Z(t), for the carcinoma data

Figure 9.8: Parametric and non-parametric estimates of the cumulative sub-
hazard rate for Z, Λ∗Z(t), for the carcinoma data

For both the sub-distribution function and the cumulative sub-hazard rate, the fit

of the parametric curves seems to very good to the non-parametric estimate (in

black). The four parametric lines lie very close together, although in figure 9.8 they

seem to begin to spread as t grows and the number of observations gets lower. It is
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hard to tell from these figures if any of the models fit better than the others to the

data.

To summarize, we have seen that the four random S models seem to fit the carci-

noma data almost equally well. In spite of having quite different parameter esti-

mates for α, β and c, the uniform and exponential models seem to fit only slightly

worse to the data than the gamma and lognormal models, considering the maximum

log-likelihood values. We have also seen that the uncertainty in the parameter esti-

mates is relatively large in all four models. Many of the standard deviations are of

the size of the parameter estimates themselves. This causes large standard positive

confidence intervals. Also when bootstrapping is applied, we see that there is con-

siderable uncertainty in the estimates. Perhaps the dataset is too small to make any

proper inferences. Still, the estimates do not seem to be too bad, as the parametric

estimates of F ∗Z(t) and Λ∗Z(t) fit quite well to the non-parametric estimates.

9.2 Bone marrow transplant data

This dataset is collected from [19], and is also included in appendix C.3. The data

are originally from a study by Copeland et al [8]. The dataset contains observa-

tions of 137 patients that have undergone allogeneic bone marrow transplantation

as treatment for acute leukemia. The terminal event in this case is death, while the

non-terminal event is cancer relapse. For more information about the data and the

study, see [19]. As described in chapter 4, there are four possible types of observa-

tions when we are dealing with semi-competing risks data including censorings. For

this dataset we may observe:

1. Only X - time until death (from any cause)

2. Both Z and XZ - time to cancer relapse, and subsequent time of death

3. Both ZO and τO - time to cancer relapse, and then a censoring time

4. Only τ - censoring time

All times are measured in days from the time of transplantation. In the dataset

there are m = 41 observations of just death times, n = 40 observations of both

times to relapse and times to subsequent death, w = 2 observations of times to

relapse and then censoring times, and r = 54 observations of only censorings. Note

that also in this case the total number of observations is quite small compared to

the simulation studies, and that the percentage of censored observations is higher.

If we first treat the data as ordinary competing risks data, and ignore the extra infor-

mation that comes with semi-competing risks data, we can plot the non-parametric
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conditional sub-survival curves of Z and X in the same manner as before, using

equation (3.4). The results are shown in figure 9.9. There we can see that ˆ̃SZ(t)

(thick line) < ˆ̃SX(t) (thin line) for most t-values except the smallest.

Figure 9.9: Non-parametric conditional sub-survival functions ˆ̃SZ(t) and ˆ̃SX(t)
for the bone marrow transplant data

Since ˆ̃SZ(t) < ˆ̃SX(t) is a necessary condition for a random signs censoring model

(theorem 3.3), we want to investigate this further. We can make a plot of ˆ̃SX(t)−
ˆ̃SZ(t). This is done in figure 9.10. There, it is confirmed that ˆ̃SZ(t) < ˆ̃SX(t) holds

for t > 100. Since this is the majority of the t-values, our conclusion is that a

random signs censoring model can at least not be excluded from possibility.

The bone marrow transplant data were also studied in a semi-competing risks setting

by Fine, Jiang and Chappell in [12]. To handle the dependent censoring, it was

assumed that the bivariate distribution of X and Z was a known copula, more

specifically a gamma frailty copula. Among other quantities, they estimated the

marginal survivor function for the time to relapse. The resulting function is plotted

(solid line) in figure 9.11. The dashed lines represent the 95% confidence interval

limits, while the dotted line is the ordinary Kaplan-Meier estimate.

It will be interesting to see how the fit of our random S models will be compared to

this. Also in this case we will test the uniform, exponential, gamma and lognormal

distributions as fS(s).
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Figure 9.10: The difference ˆ̃SX(t)− ˆ̃SZ(t) plotted as a function of t for the bone
marrow transplant data

Figure 9.11: Estimate from [12] of the survivor function for the time to relapse
along with 95% confidence interval limits and the ordinary Kaplan-Meier estimate
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9.2.1 Uniform S

Just as with the other datasets, we begin by fitting the uniform model to the

data. We have used the function estSemi() to maximize the log-likelihood function

from equation (6.10). The results from the estimation procedure are shown in

table 9.9. The table presents the estimated parameter values and corresponding

standard deviations, as well as lower and upper bounds for the 95% standard positive

confidence intervals calculated from the Hessian matrix. For the complete output

from R, see appendix E.5.1.

Table 9.9: Maximum likelihood estimates of the parameters in the model with
uniform S for the bone marrow data. In addition, standard deviations from the

Hessian matrix and 95% standard positive confidence intervals are included

Parameter Estimate Standard deviation Lower bound Upper bound
α 0.0140 0.0064 0.0057 0.0343
β 0.5642 0.0466 0.4799 0.6633
c 0.2767 0.1310 0.1095 0.6996
A 0.6576 0.3352 0.2422 1.7859

Since this is the first model we fit to this dataset, we do not really have anything

to compare the parameter estimates to. Overall, the parameter estimates seem to

be quite small, a tendency that we have seen for the uniform model also for the

other datasets. None of the estimated standard deviations are particularly large

compared to the values of the parameters.

Figure 9.12: Estimated marginal survival functions ŜZ(t) and ŜX(t) (left) and
hazard functions λ̂Z(t) and λ̂X(t) (right) with uniform S
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As in the simulation studies, we have plotted the estimated marginal survival func-

tions ŜZ(t) and ŜX(t) using equations (6.14) and (5.3). The curves are shown

together to the left in figure 9.12. We have also plotted the estimated marginal haz-

ard functions λ̂Z(t) and λ̂X(t) from equations (6.15) and (6.16). These are displayed

together to the right, also in figure 9.12, in thick and thin lines respectively.

9.2.2 Exponential S

Next, we fit the exponential model to the data. The resulting parameter estimates

from the maximum likelihood procedure are shown in table 9.10. In addition, the

table contains the estimated standard deviations and lower and upper bounds for

the 95% standard positive confidence intervals calculated from the Hessian matrix.

The complete output form estSemi() can be found in appendix E.5.2.

Table 9.10: Maximum likelihood estimates of the parameters in the model with
exponential S for the bone marrow data. In addition, standard deviations from
the Hessian matrix and 95% standard positive confidence intervals are included

Parameter Estimate Standard deviation Lower bound Upper bound
α 0.0134 0.0057 0.0058 0.0310
β 0.5695 0.0459 0.4863 0.6669
c 0.2727 0.1179 0.1168 0.6364
λS 1.8243 0.8866 0.7037 4.7294

From the results in table 9.10 we can notice that the parameter estimates for α, β

and c are very close to those in the uniform model. This is not surprising, since

we have seen this happen both with the VHF-data and the carcinoma data. Also

the standard deviations in table 9.10 are of the same size as those in the uniform

model.

We continue by considering the net quantities. We plot the functions from (6.14)

and (5.3) with the parameter estimates from table 9.10, i.e. the estimated marginal

survival functions ŜZ(t) and ŜX(t). They are shown together to the left in figure

9.13. To the right in the same figure we plot the estimated marginal hazard functions

λ̂Z(t) and λ̂X(t) from (6.15) and (6.16). The functions for Z are plotted in thick

lines, while the functions for X are plotted in thin lines.

9.2.3 Gamma distributed S

We now move on to consider the gamma model. By inserting the Ga(αS, βS) distri-

bution as fS(s) in the log-likelihood function (6.10) and maximizing it numerically,

we get the results shown in table 9.11. The table displays the estimated parameter
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Figure 9.13: Estimated marginal survival functions ŜZ(t) and ŜX(t) (left) and
hazard functions λ̂Z(t) and λ̂X(t) (right) with exponential S

values and corresponding standard deviations, as well as lower and upper limits for

the 95% standard positive confidence intervals calculated from the Hessian matrix.

The complete output from R is given in appendix E.5.3.

Table 9.11: Maximum likelihood estimates of the parameters in the model with
gamma S for the bone marrow data. In addition, standard deviations from the

Hessian matrix and 95% standard positive confidence intervals are included

Parameter Estimate Standard deviation Lower bound Upper bound
α 4.8864 0.4992 3.9997 5.9697
β 0.1386 0.0125 0.1162 0.1653
c 12.0845 0.3303 11.4540 12.7496
αS 576.9046 17.6879 543.2574 612.6357
βS 47.6163 1.2183 45.2874 50.0651

Also here, we can see the same tendency as we have seen both in the VHF-data

analysis and in the carcinoma data analysis: the parameter estimates in the gamma

model are very different from those in the uniform and exponential models. At a

first glance, α̂S and β̂S may seem very large. However, they make Ê[S] ≈ 12.12

and V̂ar[S] ≈ 0.25 , which does not seem implausible. The estimated standard

deviations for all of the parameters are relatively small.

Again we have plotted the estimated marginal survival functions ŜZ(t) and ŜX(t)

using (6.14) and (5.3). They are displayed to the left in figure 9.14 in thick and thin

lines respectively. As we can see, they are almost identical. We have also plotted
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the estimated marginal hazard functions λ̂Z(t) (6.15) and λ̂X(t) (6.16) to the right

in the same figure.

Figure 9.14: Estimated marginal survival functions ŜZ(t) and ŜX(t) (left) and
hazard functions λ̂Z(t) and λ̂X(t) (right) with gamma distributed S

9.2.4 Lognormal S

Finally, we fit the lognormal model to the data. The results from the maximum

likelihood estimation procedure are shown in table 9.12. In addition to the actual

parameter estimates, the table presents the estimated standard deviations and lower

and upper bounds for the 95% standard positive confidence intervals calculated from

the Hessian matrix. The complete output from the estSemi() function can be found

in appendix E.5.4.

Table 9.12: Maximum likelihood estimates of the parameters in the model with
lognormal S for the bone marrow data. In addition, standard deviations from
the Hessian matrix and 95% standard positive confidence intervals are included

Parameter Estimate Standard deviation Lower bound Upper bound
α 4.9248 0.4273 4.1546 5.8377
β 0.1374 0.0126 0.1148 0.1645
c 12.0893 0.0570 11.9781 12.2016
µS 2.4940 0.0073 2.4797 2.5084
σS 0.0401 0.0120 0.0223 0.0723

Not surprisingly, these estimates of α, β and c are not that far from those obtained

in the gamma model. The estimated standard deviations are however a little smaller
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(relative to the size of the parameter estimates). This is also consistent with what

we have noticed earlier in the thesis.

The estimated marginal survival functions ŜZ(t) and ŜX(t) from (6.14) and (5.3)

are plotted together to the left in figure 9.15. We have also plotted the estimated

marginal hazard functions λ̂Z(t) and λ̂X(t) using (6.15) and (6.16) together to the

right in the same figure. Also here it is very difficult to tell the difference between

the functions for Z (thick lines) and the function for X (thin lines).

Figure 9.15: Estimated marginal survival functions ŜZ(t) and ŜX(t) (left) and
hazard functions λ̂Z(t) and λ̂X(t) (right) with lognormal S

9.2.5 Comparison of model fits - bone marrow transplant data

We will now compare the fits of the four random S gamma process models to

each other. As before, we can use the maximum log-likelihood values to get an

indication of which models fit the bone marrow data the best. Table 9.13 contains

the maximum log-likelihood values from each model .

Table 9.13: Comparison of maximum log-likelihood values from the random S
models for the bone marrow data

Model max logL
uniform -1000.186

exponential -1002.776
gamma -955.5955

lognormal -955.6274

From the values presented in table 9.13 we can see that the model with the largest

log-likelihood value is the gamma one. The lognormal model has a value that is just
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barely a little lower, while the values in the uniform and the exponential models are

considerably lower. This implies that the uniform and exponential models do not

fit the bone marrow transplant data as well as the gamma and lognormal models.

The difference between the models can be further studied graphically by plotting

the estimated fS(s) distributions. This is done in figure 9.16. In this case, the

distribution of S describes the tendency of experiencing a relapse. From the plot

we can see that the lognormal and gamma models (in green and blue, respectively)

have the main part of their densities far from where the exponential and uniform

models (red and black) have theirs. We can also notice that the variance in the

gamma and lognormal distributions is quite small.

Figure 9.16: Comparison of f̂S(s) in the random S models for the bone marrow
data

The shape of the estimated gamma and lognormal distributions suggests that a nor-

mal distribution should fit the data quite well. This was also the case for the VHF

data we saw in figure 8.1. As we can recall from the discussion on suitable distribu-

tions for S in chapter 6, we did not select the normal distribution mainly because

it may take on values < 0. A truncated normal distribution, like the one used by

Skogsrud and Lindqvist, was also discussed, but we chose to test the gamma and the

lognormal distributions instead, since they more naturally suited our requirements.

However, seeing the shape of the estimated distribution in figure 9.16, it would be

interesting to let fS(s) ∼ N(µS, σS) after all. For the gamma and lognormal dis-

tributions, the shapes in figure 9.16 are somewhat atypical, as they more usually

are skewed to some degree. The results obtained using the normal distribution as

fS(s) and maximizing the log-likelihood function in (6.10) are displayed in table

9.14. The complete results from R are included in appendix E.5.5.

As expected, the results in table 9.14 are very similar to those we got using the

gamma and lognormal ones. The values for α, β and c are very close to what they
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Table 9.14: Maximum likelihood estimates of the parameters in the model with
normal S for the bone marrow data. In addition, standard deviations from the

Hessian matrix and 95% standard positive confidence intervals are included

Parameter Estimate Standard deviation Lower bound Upper bound
α 4.9218 0.6373 3.8187 6.3436
β 0.1382 0.0061 0.1267 0.1508
c 12.1376 1.3475 9.7641 15.0881
µS 12.1620 1.3453 9.7914 15.1066
σS 0.5000 0.0799 0.3656 0.6839

were there, and the estimated parameters in fS(s) result in a distribution of S

that is almost identical to the gamma and lognormal curves in figure 9.16. We can

furthermore note that the maximum log-likelihood value with normally distributed

S is -955.5186. This is better than what we got from the gamma and lognormal

models in table 9.13, but still quite close to those values.

Figure 9.17: ŜZ(t) in each of the five random S models for the bone marrow
transplant data compared to the Kaplan-Meier estimate

The estimated marginal survivor functions for the time to relapse, ŜZ(t), from all five

models are plotted together in figure 9.17. Like for the carcinoma data, the uniform

curve (in orange) seems to decrease faster than the other curves. The curves of the

gamma (blue), lognormal (green) and normal (purple) models are almost identical

and difficult to tell apart. The exponential curve (in red) is slightly above the other

parametrically estimated curves. The Kaplan-Meier curve (in black) is far above

all of the parametric curves. It is obviously not a good estimate of the marginal
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survival function for the time to relapse, as it does not take into account the strong

dependency between the time to relapse and the time to death.

One should also perhaps discuss what we actually mean by the marginal survival

function for the time to relapse. It corresponds to a situation where death from any

other cause than leukaemia is preventable. Thus, the situation is not realistic, but

in order to evaluate the actual efficacy of the treatment, we need to estimate the

disease-free survival time in the absence of other failure types than relapse [12].

We can furthermore make plots of the parametric and non-parametric estimates

of the crude quantities F ∗Z(t) and Λ∗Z(t). As before, we make the respective non-

parametric estimates by using the expressions in equations (4.4) and (4.3), while

the corresponding parametric estimates are found from equation (6.12) and from

integrating equation (6.13). We make these estimates for the five random S models

and plot the results in in figures 9.18 and 9.19.

Figure 9.18: Parametric and non-parametric estimates of F ∗Z(t) for the bone
marrow transplant data

In general, the parametric curves seem to fit fairly well to the non-parametric curves.

We can see that the non-parametric curves for both F ∗Z(t) and Λ∗Z(t) flatten out rel-

atively early, since the majority of the observations are for smaller t-values. Hence,

it will be difficult for our parametric estimates to match the non-parametric ones

very closely. This also makes it difficult to evaluate which of the curves that matches

the non-parametric functions the best. We can further notice that the curves of the

gamma (blue), lognormal (green) and normal (purple) models lie on top of each

other and follow the same trajectory.
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Figure 9.19: Parametric and non-parametric estimates of Λ∗Z(t) for the bone
marrow transplant data

Also for these data it might be of interest to compare the estimates of FS(c) made

with the different models, even though we do not have any non-parametric estimate

to compare them to. These are shown in table 9.15.

Table 9.15: Comparison estimates of FS(c) in the random S models for the
bone marrow transplant data

Model P (S < c)
uniform 0.4208

exponential 0.3919
gamma 0.4809

lognormal 0.4831
normal 0.4805

In contrast to earlier, the estimates of FS(c) now seem to be quite different for the

respective models. Mainly, the estimates made with the uniform and exponential

models are considerably smaller than the ones made with the gamma, lognormal

and normal models.

Overall, we suspect that the gamma, lognormal and normal models provide an

overall better fit to the data than the exponential or uniform model, considering

the high maximum log-likelihood values. We therefore choose to compare these three

estimates more in detail to the one from the article by Fine, Jiang and Chappell

[12] by drawing them in the same plot. This is done to the left of figure 9.20. Still,

it is impossible to tell the curves of the gamma, lognormal and normal models from

each other, so they are all represented by the blue curve. The survival function

estimated by Fine, Jiang and Chappell (black) flattens out more than the curves
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estimated with our gamma, lognormal or normal S models. This is probably due to

that there are very few data points left when t > 1000. Still, our estimated function

is almost always inside the estimated 95% confidence interval in the black dashed

lines.

Figure 9.20: Estimate from the gamma, lognormal and normal models of the
marginal survival function for the time to relapse compared to the estimate from

[12] along with 95% confidence interval limits

To the right of figure 9.20, an indication of the variance in our estimates for the

normal model is shown. These purple curves are made by drawing the estimates of

SZ(t) obtained from 50 non-parametric bootstrap samples. As we can see, we get a

range of curves that is approximately as wide as the estimated confidence interval

by Fine, Jiang and Chappell in the black dashed lines.

In summary, the gamma, lognormal and normal models seem to suit the data almost

equally well and considerably better than the uniform and exponential models. This

is probably mostly because the uniform and exponential distributions have to have

non-zero probabilities at t close to zero. Additionally, these two models only have

one parameter, so they have limited flexibility. Out of the three best models, it

seems that the normal model has a slightly better overall fit than the two others.

It had the largest maximum log-likelihood value, and considering the plots of the

estimated distributions fS(s), a normal distribution would intuitively fit very well.

Still, to say exactly how well the normal model fits the data in general is difficult.

The comparison of the parametric and non-parametric estimates for F ∗Z(t) and Λ∗Z(t)

gave us some indication that the fit is at least not completely off, but the low number

of observations, in particular for t > 1000, made direct comparison tricky. At the

same time, we saw that our estimate for the marginal survival function for the time



120 Chapter 9. Data Analysis - semi competing risks

to relapse was consistent with that obtained by Fine, Jiang and Chappell in [12].

This may be interpreted as a confirmation that the model is quite good.

In the competing risks setting we saw that the basic model with a fixed level s

performed just as well, or even better, than the gamma and lognormal models.

This raises the question of whether such a model would do better also in the semi-

competing risks case. However, a constant s model in the semi-competing risks

setting, while possible, does not provide a satisfactory interpretation or description

of reality. In the bone marrow example, a fixed level s would mean that there is a

certain, constant probability q of relapsing and a probability of 1−q of dying before

a potential relapse. This in itself might not be such a bad assumption, but if we

keep in mind that in semi-competing risks we are often interested in the marginal

distribution of the time to relapse, then we face a problem. We then have to choose

a value v > c where relapse occurs if death is not present. A random S model fits

much better intuitively, letting the potential relapse occur at any time.



Chapter 10

Concluding remarks

In this final chapter, the main results of the thesis are discussed and summarized.

In addition, some suggestions for future work will be presented.

10.1 Discussion and main results

In this Master’s thesis we have studied a way to model both dependent competing

risks and semi-competing risks by means of first passage times in a gamma process.

The model we have considered is an extension of a model studied in my Master’s

project [35]. In both the competing risks case and the semi-competing risks case

there is a non-terminal event and a terminal event. These events are considered to

happen at specific points of some underlying degradation process. In the gamma

process model, the time to the non-terminal event is equal to the first passage time

to a stochastic level S. The time to the terminal event is represented by the first

passage time to a fixed level c. We have assumed that S is independent of the

gamma process, i.e. the age of the item under study. That means that we have

random signs censoring. As possible distributions for the level S we have tested the

uniform, the exponential, the gamma, the lognormal and (for one dataset) also the

normal distribution.

In the competing risks case, our motivation or main application has specifically

been the situation where there are two competing events, either failure or preventive

maintenance. If S < c we would get a PM, but if S > c we would get a failure. The

distribution of S represents when the maintenance crew is most likely to do a PM.

This was also modelled by Lindqvist and Skogsrud with Wiener processes in [25].

We first applied our random S gamma process model to simulated data in order

to evaluate the quality of the parameter estimates found by maximum likelihood

estimation. For all four choices of fS(s) the estimation worked well, and produced

estimates that were close to the true parameter values.

The model was later applied to a real dataset, the VHF data. Out of the four

random S cases, the lognormal and gamma models seemed to fit the data the best.

In comparison, the uniform and exponential models did not seem to fit to the data

121
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well. The interpretation of this aligns with our intuition: the maintenance crew

should check an item at a time close when it is expected to fail, not at the beginning

of its lifespan. What is perhaps surprising, is that randomization of S did not seem

to yield an improvement of the model fit, even though the random S model is more

advanced. In the data analysis of the VHF data we saw that the basic model with

constant level S resulted in a maximum log-likelihood value that was slightly higher

than those from the gamma and lognormal models. This indicates that there are

not that big individual differences with regards to the maintenance policy of the

items in the VHF-data.

These results are consistent with what we observed in the simulation studies. For

the datasets that we simulated with relatively narrow gamma and lognormal distri-

butions for S, the basic model also seemed to fit the data quite well. Even though

the differences between the fit of the gamma, lognormal and basic models were

very small, the basic model was in our case preferred because of its simplicity. In

contrast, in Skogsrud’s thesis the conclusion for the same dataset was that random-

ization of S was beneficial, but that was with models based on Wiener processes. It

is the shape function v(t) = αtβ in the gamma process that seems to provide a great

deal of flexibility to our model. The gamma process is furthermore better suited

to model gradual accumulation of damage over time because of its non-negative

increments.

The gamma process model was applied to semi-competing risks data as well. Semi-

competing risks data frequently arise in medical research and clinical trials. Typi-

cally the data consist of times to a non-terminal event like recurrence of some disease,

and times to a terminal event, like death. Thus, we are not considering the events

PM or failure any more, and the interpretation of the model is obviously not the

same as in the competing risks case. Semi-competing risks data have mostly been

analysed through copula models in the past. We noticed that the semi-competing

risks data also seem to fit Cooke’s criteria for random signs censoring when the

conditional sub-survival curves are plotted as if the data were ordinary competing

risks data. Therefore it should not be a problem to apply our gamma process model

to semi-competing risks. In that way, we model the dependency of the time to the

non-terminal event and the time to the terminal event through the gamma process

instead of a copula. The tendency of the non-terminal event is modelled through

the distribution of S.

In the same manner as in the competing risks case, we first tested the model on

simulated data. Also here, the method of maximum likelihood estimation worked
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well for all of the four distributions of S. We then applied the model to two real

datasets. The first was the carcinoma dataset, and the second was the bone marrow

transplant data. For both of these datasets, the gamma and lognormal models

seemed to have the best fit to the data. The uniform and exponential models

performed poorly on the bone marrow transplant data, similar to what we saw in

the competing risks case with the VHF data. For the carcinoma data however,

they actually did not seem to be that bad. Looking more closely at the estimated

distributions for S, we saw that the expected values of S were closer together

than what they were for the other datasets, and that the gamma and lognormal

distributions had quite large variances. Recall that the non-terminal event in this

case was to be taken off a certain drug due to disease progression. It seems plausible

that this can happen quite early and at a wide range of times.

For the bone marrow transplant data, the estimated gamma and lognormal distri-

butions looked strikingly like an ordinary normal distribution. For this reason, we

chose to fit the gamma process model with normally distributed S to the data as

well. The resulting parameter estimates were very similar to those obtained by the

gamma and lognormal models, but the maximum log-likelihood value was a little

higher for the normal model. Visually, there were almost no observable differences

in the estimates made with the three models. It is however difficult to say exactly

how well the models fit the data overall. It was hard to directly compare parametric

estimates of the crude quantities to non-parametric ones, because for a large part

of the range of t there were very few observations. Still, the fit seemed to be rela-

tively good. More convincing is the fact that our estimate for the marginal survival

function for the time to relapse looked like it was consistent with that obtained by

Fine, Jiang and Chappell in [12].

Since we only have tested the gamma process model on a few datasets, we cannot

say anything definite about how good the model is. Moreover, we have judged

the fit of the models mostly by looking at plots. There are more formal ways

to measure goodness-of-fit. However, the results we have seen are promising. In

general, they imply that the gamma process model with random level S is a good

way to model both competing and semi-competing risks. The main strength of the

gamma process model is its flexibility, mainly due to the power-law shape function,

but also the possibility of choosing different probability distributions for S. For

most purposes we would recommend using a flexible distribution for S with (at

least) two parameters, like the gamma, lognormal or normal distributions. We have

seen in the simulation study that for data that actually stem from a model where S

is uniformly distributed, the lognormal model is still very good. Of course, to find
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this model useful one has to accept the concept of random signs censoring. Like all

other approaches, random signs censoring is based on non-testable assumptions.

10.2 Further work

In this thesis we chose to extend the basic gamma process model from the project

thesis by letting the level S be random. Here, we present and discuss some other

possible extensions of the basic gamma process model.

10.2.1 Random level c

As mentioned in chapter 6, we could let a different parameter than s be random.

A possibility that would flip the situation around, is to let s be fixed while C is

random. This problem would be very similar to the one we have considered with

random S, but the model interpretation would be different. For instance, if we

look at the competing risks setting of PM vs. failure, the individual heterogeneity

would no longer be with respect to different maintenance policies. The situation

now would be that C can range from 0 to ∞, and if it is below s we observe a

failure, while if it is above s we observe a PM. Thus, the distribution of C would

describe at what level of degradation the item in question is most likely to fail.

Opposite random signs?

As previously explained, Z is a random signs censoring of X if the event Z < X is

independent of X. This was clearly fulfilled in the case with random S as P (Z <

X) = P (S < c) and S was independent of the process. Now, with random C

instead, Z will no longer be a random signs censoring of X, since the event X < Z

is dependent of X. But in this case we may choose to consider X to be a random

signs censoring of Z instead. Then it would be the marginal distribution of Z that

is identifiable. That would mean that the conditional sub-survival curve of Z needs

to dominate that of X.

It is more difficult to find realistic applications of this model, especially within a

reliability context. One example (provided by Cooke [7]) is from a medical cohort

study. Cooke suggests that this may be a suitable model if we let Z denote the

time from a patient enters a study till the study ends. All of the patients have been

treated for some life-threatening disease. The study will end at a predetermined

time that is the same for all patients under observation, but they will all have

entered the study at different times. Let X denote the time till death for those

patients that died. Now, it is plausible that whether the patients respond to the
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treatment (and thus do not die during the course of the study) is independent of

the time they entered the study.

10.2.2 Random scale

A different way of incorporating a random effect into the model, is to replace the

scale parameter u by w · u where w is a random effect. Actually, this is not that

different from letting one of the thresholds c or s be random, since u always appears

together with these thresholds in the likelihood function as the product u · c or u · s.
The difference is that u appears in both f ∗Z(z) and f ∗X(x) not just one of them as

c or s does. Thus, the speed of the overall process is the random quantity here.

Letting the scale parameter u in a gamma process be a random variable is also done

by Lawless and Crowder in [21]. In their example, they let w be gamma distributed,

w ∼ Ga(γ−1, δ). This implies that w has mean δ
γ

and variance δ
γ2

. We will in the

following denote the gamma process by Y (t), and follow the same steps as in [21].

Then, the conditional density f(y|w) ∼ Ga(y;wu, v(t)), and it follows that

f(y) =

∫ ∞
0

f(y|w)f(w)dw = B(v(t), δ)−1(γu−1)δ
yv(t)−1

(y + γu−1)v(t)+δ

where B(v(t), δ) = Γ(v(t))Γ(δ)
Γ(δ+v(t))

is the beta function.

Furthermore, one can note that the mean and variance of Y (t) is given by

E[Y (t)] =
γv(t)

u(δ − 1)
for δ > 1

Var[Y (t)] =
γ2v(t)(v(t) + δ − 1)

u2(δ − 1)2(δ − 2)
for δ > 2

We can now make a note about parameterization: γ and u always appear together

as γ ·u−1. We may therefore choose to just write u, and in the case of no covariates,

let u = 1 as in the basic model. Alternatively, one could let γ = δ and include the

constant term γ in u. In this case w will have mean 1 and variance δ−1. This is

often what is done in gamma frailty models, and we choose to do it here as well, so

f(y) = B(v(t), δ)−1(δu−1)δ
yv(t)−1

(y + δu−1)v(t)+δ

An interesting side-note: In [29] Paroissin and Salami also suggest a model with

random effects and refer to this paper by Lawless and Crowder, but they let u itself
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be gamma distributed, and never introduce w. Then, u disappears from the PDF,

while both γ and δ are kept.

Now, we are interested in the distribution of the first passage time to a certain level

yF :

FT (t) = P (T ≤ t) = P (y ≥ yF ) = 1− F
(
uyF

v(t)

)
(At this point we stop following the steps in [21]). If we now denote uyF

v(t)
by x, F is

the distribution

F2v(t),2δ = I 2v(t)x
2v(t)x+2δ

(
2v(t)

2
,
2δ

2

)
= I v(t)x

v(t)x+δ

(v(t), δ)

Here, I is the regularized incomplete beta function, so that:

I v(t)x
v(t)x+δ

(v(t), δ) =
B
(

v(t)x
v(t)x+δ

, v(t), δ
)

B (v(t), δ)

where B(z, a, b) =
∫ z

0
ta−1(1 − t)b−1dt is the incomplete beta function. Inserting

back for x we get

I uyF

uyF+δ

(v(t), δ) =
B
(

uyF

uyF+δ
, v(t), δ

)
B (v(t), δ)

Again we can see that the scale parameter u only appears together with the random

threshold yF . We may therefore choose to set u = 1, and use

FT (t) = 1−
B
(

yF

yF+δ
, v(t), δ

)
B (v(t), δ)

(This notation is maybe a little confusing, since we are saying that u = 1 when we

are considering the case ”random scale parameter u”. However, we have to recall

that we introduced the parameter w on which the randomness was placed...)
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Figure 10.1: CDF (left) and PDF (right) for the first passage time with gamma
distributed U for different values of β

To find the PDF of the first passage time, one may for instance use Wolfram Alpha

[43] to get

fT (t) =
∂

∂t

(
1− I yF

yF+δ

(v(t), δ)

)
= −v′(t) log

(
yF

yF + δ

)
I yF

yF+δ

(v(t), δ)

+ v′(t)

(
yF

yF + δ

)v(t)
Γ(v(t))2

B(v(t), δ)
· 3F̃2

(
v(t), v(t), 1− δ; v(t) + 1, v(t) + 1;

yF

yF + δ

)
+ v′(t) [Ψ(v(t))−Ψ(v(t) + δ)] I yF

yF+δ

(v(t), δ)

Here, pF̃q(a1, ..., ap; b1, ..., bq; z) denotes the regularized generalized hypergeometric

function = pFq
Γ(b1)···Γ(bq)

.

A few examples of how the CDF and PDF for the first passage time may look is

shown in figure 10.1. From here one can easily find the likelihood function for the

model.

10.2.3 Covariates

It might also be of interest to study the effect of covariates on our model. There are

several ways to incorporate covariates into the gamma process model, as there are

more than one parameter that may be modelled by a covariate-dependent expres-

sion. Aalen and Gjessing [1] distinguish between two types of covariates: 1) those

that only represent measures of how far the underlying process has advanced (e.g.

threshold level) and 2) those that have causal influences on the development (e.g.

drift parameter in a Wiener process).
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One option, that has been studied by Lawless and Crowder in [21], is to let the

scale parameter u depend on a vector of covariates x, u = u(x). Alternatively,

Bagdonavicius and Nikulin [4] include covariates in their model via an accelerated

life test model, replacing v(t) by v(tex
Tρ). This is however computationally more

difficult. By letting u be a function of covariates, the covariates only affect the

scaling of the degradation process, not the shape function. A natural choice might

be u(x) = exp(ρ′x) where ρ is a vector of regression coefficients.

Putting the covariates on u is effectively the same as putting them on the critical

threshold c or s. As we also mentioned in the discussion of random effects, u and

c or s always appear together as the product u · c or u · s in the first passage time

distribution. The scale parameter u is the same in both f ∗X(xi) and f ∗Z(zj), while

the critical threshold is c in f ∗X(xi) and s in f ∗Z(zj). Therefore, the covariates have

quite different meanings depending on which parameter they are assigned to.

For instance, we may first consider including covariates in the parameter c. If we

let 0 be the starting point of the degradation process for all items, we may use

covariates on c to vary the level where the failures occur. For example it might

be natural to assume that a smoking patient with a heart disease may reach the

critical level faster than one who doesn’t smoke, and that a patient that is regularly

working out will reach the level slower than an inactive patient.

Covariates on the level s on the other hand, provide information about the main-

tenance policy of the item. For example in medicine this level may describe the

level where a disease is diagnosed and treatment is started. Then, patients who are

examined more often are more likely to be diagnosed at an early stage and have a

lower level s than those that only rarely are examined.

Choosing to let u depend on covariates has yet another implication. If the levels c

and s are both fixed, as well as the probability q, the covariates in u say something

about the overall speed of the process, i.e. both the time till it reaches s and till it

reaches c. Covariates may also enter the model through the parameter q. This will

have similar effect as putting them on s. One could for example say that a person

who is examined more often has a greater probability q of detecting a signal that

something is wrong than others.

10.2.4 Other options

There is a great number of other possibilities that may be explored. Some of them

have already been mentioned in either this thesis or the project thesis.
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Of course other distributions for S could be considered. An idea related to this, is

to let the lower limit in the uniform distribution be different from 0. This would

probably yield better results for the uniform model. Still, it is hard to imagine that

this would be better than using for instance a lognormal distribution for most cases.

Another suggestion is to consider models with more than two competing risks. One

could imagine a situation where there are k competing risks or events that could

happen before the item potentially failed, not just PM. This would however not be

a case of random signs censoring any more.

Another possibility, which was also mentioned in the project thesis, is to experiment

with different shape functions for v(t). An alternative is for instance v(t) = eα+βt.

One could also let the parameters α or β in the shape function v(t) be random

quantities. This is more computationally difficult and does not provide a similar

intuitive interpretation as letting a threshold parameter be random.

Finally, another field it would be interesting to explore with the gamma process

models is that of maintenance optimization. There are many examples of gamma

process models used in maintenance optimization in [38]. In our model one could for

instance optimize the level of preventive maintenance, S. If one simply lets failure

be much more expensive than a PM, then of course the closer S is to c the better.

A more advanced problem is to let the cost of PM increase with S so that an S

very close to c not necessarily is the best solution.
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Appendix A

Basic theory

In this appendix, some important basic theory in statistics is included. This is

theory that is assumed to be known to the reader. The appendix was written for

the project thesis [35].

A.1 Probability distributions

In this section the probability distributions that we will use in the thesis are pre-

sented, along with some of their key properties. The theory is in large part selected

from [40] unless stated otherwise.

A.1.1 The (continuous) uniform distribution

The probability density function of the uniform distribution is defined as

f(x) =
1

B − A
for A ≤ x ≤ B

The density function of the continuous uniform distribution is constant in the closed

interval [A,B]. If A = 0 and B = 1 the density is called the standard uniform

distribution

f(x) =

{
1 if 0 ≤ x ≤ 1

0 otherwise

A.1.2 The normal distribution

The normal distribution is a very central probability distribution in the field of

statistics. It is sometimes also called the Gaussian distribution. The probability

density function of the normal distribution with mean µ and variance σ2 is given

by

f(x;µ, σ2) =
1√
2πσ

e−(x−µ)2/(2σ2), −∞ < x <∞ (A.1)

The parameters µ and σ2 are also described as the location and scale parameter,

respectively. The usual notation to say that a random variable X is normally
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distributed with parameters µ and σ2 is X ∼ N(µ, σ2). If µ = 0 and σ2 = 1 we get

what is called the standard normal distribution

f(x;µ, σ2) =
1√
2π
e−x

2/2, −∞ < x <∞ (A.2)

A.1.3 The exponential distribution

The probability density function of the exponential distribution for a random vari-

able X is given as

f(x;λ) =

{
λe−λx if x ≥ 0

0 otherwise
(A.3)

λ is often called the rate parameter of the distribution.

A.1.4 The gamma distribution

In the following, we will use the same notation as in [38]. The probability density

function of a gamma distributed random variable X with shape parameter v > 0

and scale parameter u > 0 is

Ga(x; v, u) =
uv

Γ(v)
xv−1 exp{−ux}I(0,∞)(x) (A.4)

Here, I(0,∞)(x) = 1 if x ∈ (0,∞) and I(0,∞)(x) = 0 if x 6∈ (0,∞) and Γ(a) =∫∞
z=0

za−1e−zdz is the gamma function for a > 0.

A.1.5 The lognormal distribution

If a random variable X is lognormally distributed with parameters µ and σ, then

by definition lnX is normally distributed with mean µ and standard deviation σ.

We can write

lnX = µ+ σZ

where Z follows the standard normal distribution. For the lognormal distribution

the probability density function is given by

f(x;µ, σ2) =
1√

2πxσ
e−(lnx−µ)2/(2σ2), x > 0 (A.5)
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A.2 Maximum likelihood estimation

The theory in this section is selected from [5] with supplements from [33]. Informally

speaking, the maximum likelihood estimate for a parameter θ is the point at which

the observed sample is the most likely. This is the estimate that maximizes the

likelihood function L(θ; t) for some fixed observations t. If we have an i.i.d. sample

t1, ..., tn with probability density function f(t; θ1, ..., θk), the likelihood function is

defined by

L(θ; t) = L(θ1, ..., θk; t1, ..., tn) =
n∏
i=1

f(ti; θ1, ..., θk)

If the likelihood function is differentiable in θi, the possible maximum likelihood

estimators are given by

∂

∂θi
L(θ; t) = 0, i = 1, ..., k (A.6)

We then have to check whether these possible candidates are global maxima.

It is often hard to do the differentiation in equation (A.6), and more convenient to

work with the log-likelihood function:

l(θ; t) = logL(θ; t) =
n∑
i=1

log f(ti; θ1, ..., θk) (A.7)

Since the extrema of L(θ; t) and logL(θ; t) coincide, we will get same MLEs. These

can be found either analytically or numerically by solving the system of equations

resulting from ∂
∂θi
l(θ; t) = 0. In this thesis we will use the optim() function in R to

calculate the MLEs for our data.

A.2.1 Maximum likelihood estimation for censored data

If the dataset you wish estimate parameters from is censored, the likelihood function

needs to be slightly modified. For the censored observations all we know is that the

survival times are larger than the observed censoring times. Therefore we partition

the data into two disjoint sets, one containing the failure times t1, ..., tn and one

containing the censoring times τ1, ..., τr. For the censored observations we replace

the PDF by the survival function in the likelihood function. Hence, the modified
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likelihood function becomes:

L(θ; t) = L(θ1, ..., θk; t1, ..., tn, τ1, ..., τr)

=
n∏
i=1

f(ti; θ1, ..., θk)
r∏
j=1

S(τj; θ1, ..., θk) (A.8)

A.3 Stochastic processes

The following description is found in [34]. A stochastic process {X(t), t ∈ T} is

a collection of random variables, where t usually is time. The set T is called the

index set of the process. When T is a countable set, the stochastic process is said to

be a discrete-time process and when T is an interval of the real line, the stochastic

process is said to be a continuous-time process. In reliability applications where

the lifetime of an item is of interest, one will usually use a continuous stochastic

process. X(t) is often referred to as the state of the process at time t. Some basic

concepts for describing stochastic processes are:

• Independent increments When a stochastic process is said to have inde-

pendent increments, it means that the number of events that occur in disjoint

time intervals are independent.

• Stationary increments The process can also have stationary increments,

which means that the distribution of events that occur in any interval of time

depends only on the length of the time interval and not on the interval’s

distance from the origin.

In this thesis we focus on a special case of a continuous-time stochastic process,

namely the gamma process (see chapter 5).

A.4 The delta method

The following description of the delta method is from [5]. The delta method provides

a way to find the distribution of a function of a random variable. The method is

based on using Taylor series approximations of the mean and the variance of the

function of the random variable. Suppose that we have a random variable X with

mean θ 6= 0 and a function g(·). A first-order approximation of g(X) is then

g(X) = g(θ) + g′(µ)(X − θ)
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Thus, we can say that

E[g(X)] ≈ g(θ)

Furthermore,

Var[g(X)] ≈ E([g(X)− g(θ)]2)

≈ [g′(θ)]2Var(X)

These estimates are used in the delta method which is described in the following

way (p. 243 in [5]):

Let Yn be a sequence of random variables that satisfies
√
n(Yn − θ) → N(0, σ2) in

distribution. For a given function g and a specific value of θ, suppose that g′(θ)

exists and is not 0. Then

√
n[g(Yn)− g(θ)]→ N(0, σ2[g′(θ)]2) in distribution
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Additional calculations

In this appendix we have included some additional calculations.

B.1 Calculating E[S|S < c]

In the simulation studies of chapter 7 we compare the estimates of s from the basic

gamma process model to E[S|S < c] in the random S models. For all of the random

S models we have that

P (S > s|S < c) =
P (s < S < c)

P (S < c)
=

∫ c
s
fS(s)ds

FS(c)
(B.1)

Further,

P (s ≤ S ≤ S + ds|S < c) =
d

ds
(1− P (S > s|S < c)) (B.2)

and

E[S|S < c] =

∫ c

0

sP (s ≤ S ≤ S + ds|S < c)ds (B.3)

We insert for fS(s) and FS(c) in the four models:

B.1.1 Uniform S

With uniform S we have that fS(s) and FS(s) are given by equations (6.18) and

(6.19). Hence, according to (B.1)

P (S > s|S < c) =

∫ c
s

1
A
ds

c
A

=
c− s
c

This makes (B.2)

P (s ≤ S ≤ S + ds|S < c) =
d

ds
(1− c− s

c
) =

1

c

and (B.3)

E[S|S < c] =

∫ c

0

s
1

c
ds =

[
s2

2c

]c
0

=
c

2

141
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With the inserted parameter values from the simulation study in section 7.1.2 we

get

E[S|S < c] =
5

2
= 2.5

B.1.2 Exponential S

With exponential S we have that fS(s) and FS(s) are given by equations (6.20) and

(6.21). Hence, according to (B.1)

P (S > s|S < c) =

∫ c
s
λSe

−λS ·sds

1− e−λS ·c
=
e−λS ·s − e−λS ·c

1− e−λS ·c

This makes (B.2)

P (s ≤ S ≤ S + ds|S < c) =
d

ds
(1− e−λS ·s − e−λS ·c

1− e−λS ·c
) =

λSe
−λS ·s

1− e−λS ·c

and (B.3)

E[S|S < c] =

∫ c

0

s
λSe

−λS ·s

1− e−λS ·c
ds =

1

λS
− c

eλS ·c − 1

With the inserted parameter values from the simulation study in section 7.1.3 we

get

E[S|S < c] =
1

0.1
− 7

e0.1·7 − 1
= 3.0950

B.1.3 Gamma distributed S

With gamma distributed S we have that fS(s) and FS(s) are given by equations

(6.22) and (6.23). Hence, according to (B.1)

P (S > s|S < c) =

∫ c
s

β
αS
S

Γ(αS)
sαS−1e−βS ·sds

1− Γ(αS ,βS ·c)
Γ(αS)

=

β
αS
S

Γ(αS)
(sαS(βS · s)−αSΓ(αS,−βS · s)− cαS(βS · c)−αSΓ(αS,−βS · c))

1− Γ(αS ,βS ·c)
Γ(αS)

This makes (B.2)

P (s ≤ S ≤ S + ds|S < c) =
d

ds
(1− P (S > s|S < c)) =

βαSS sαS−1eβS ·s

Γ(αS)− Γ(αS, βS · c)
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and (B.3)

E[S|S < c] =
βαSS

Γ(αS)− Γ(αS, βS · c)

∫ c

0

ssαS−1eβS ·sds

1

Γ(αS)− Γ(αS, βS · c)

(
−(βSc)

αS(βS · c)−αSΓ(αS + 1, βS · c)
βS

+
Γ(αS + 1)

βS

)
=

Γ(αS + 1)− Γ(αS + 1, βS · c)
βS(Γ(αS)− Γ(αS, βS · c))

With the inserted parameter values from the simulation study in section 7.1.4 we

get

E[S|S < c] =
Γ(12.25 + 1)− Γ(12.25 + 1, 1.75 · 7)

1.75(Γ(12.25)− Γ(12.25, 1.75 · 7))
= 5.5270

B.1.4 Lognormal S

With lognormal S we have that fS(s) and FS(s) are given by equations (6.24) and

(6.25). Hence, according to (B.1)

P (S > s|S < c) =

∫ c
s

1
s
√

2πσS
e

(ln s−µS)2

2σ2
S ds

Φ
(

ln c−µS
σS

)
=

1

Φ
(

ln c−µS
σS

) [−1

2
erf

(
µS − ln c√

2σS

)
+

1

2
erf

(
µS − ln s√

2σS

)]
This makes (B.2)

P (s ≤ S ≤ S+ds|S < c) =
d

ds
(1−P (S > s|S < c)) =

1

Φ
(

ln c−µS
σS

) 1

s
√

2πσS
e

(µS−ln s)2

2σ2
S

and (B.3)

E[S|S < c] =

∫ c

0

s
1

Φ
(

ln c−µS
σS

) 1

s
√

2πσS
e

(µS−ln s)2

2σ2
S ds

= −

eµS+
σ2S
2 erf

(
µS+σ2

S−ln(s)√
2σS

)
erf

(
ln(c)−µS√

2σS

)
+ 1


c

0

=
eµS+

σ2S
2

(
1− erf

(
µS+σ2

S−ln(c)√
2σS

))
1− erf

(
µS−ln(c)√

2σS

)
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With the inserted parameter values from the simulation study in section 7.1.5 we

get

E[S|S < c] =
e2+ 0.252

2

(
1− erf

(
2+0.252−ln(7)√

20.25

))
1− erf

(
2−ln(7)√

20.25

) = 5.8964
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Data sets

We have used two of the same datasets as in the project thesis, the VHF-data and

the carcinoma data. In addition, a set containing bone marrow transplant data is

included for the data analysis of semi-competing risks with censored observations.

The data sets are further described in chapters 8 and 9 of the thesis.

C.1 VHF data

This data set is from [27].

Table C.1: Observations of times to failure X from the VHF data

16 224 16 80 128 168 144 176 176 568
392 576 128 56 112 160 384 600 40 416
408 384 256 246 184 440 64 104 168 408
304 16 72 8 88 160 48 168 80 512
208 194 136 224 32 504 40 120 320 48
256 216 168 184 144 224 488 304 40 160
488 120 208 32 112 288 336 256 40 296
60 208 440 104 528 384 264 360 80 96
360 232 40 112 120 32 56 280 104 168
56 72 64 40 480 152 48 56 328 192
168 168 114 280 128 416 392 160 144 208
96 536 400 80 40 112 160 104 224 336
616 224 40 32 192 126 392 288 248 120
328 464 448 616 169 112 448 296 328 56
80 72 56 608 144 408 16 560 144 612
80 16 424 264 256 528 56 256 112 544
552 72 184 240 128 40 600 96 24 184
272 152 328 480 96 296 592 400 8 280
72 168 40 152 488 480 40 576 392 552
112 288 168 352 160 272 320 80 296 248
184 264 96 224 592 176 256 344 360 184
152 208 160 176 72 584 144 176 - -

145
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Table C.2: Observations of times to censoring Z from the VHF data

368 136 512 136 472 96 144 112 104 104
344 246 72 80 312 24 128 304 16 320
560 168 120 616 24 176 16 24 32 232
32 112 56 184 40 256 160 456 48 24
200 72 168 288 112 80 584 368 272 208
144 208 114 480 114 392 120 48 104 272
64 112 96 64 360 136 168 176 256 112
104 272 320 8 440 224 280 8 56 216
120 256 104 104 8 304 240 88 248 472
304 88 200 392 168 72 40 88 176 216
152 184 400 424 88 152 184 - - -

C.2 Carcinoma data

This dataset is from [20].

Table C.3: Observations of times to failure X from the carcinoma data

0.43 3.86 11.14 29.14 61.68
2.86 6.14 13.0 29.71 66.57
3.14 6.86 14.43 40.57 68.71
3.14 9.0 15.71 48.57 68.99
3.43 9.43 18.43 49.43 72.86
3.43 10.71 18.57 53.86 72.86
3.71 10.86 20.71 - -

Table C.4: Observations of times to censoring Z from the carcinoma data. The
numbers in parenthesis are the times to failure for the censored observations XZ

0.14 (3.0) 1.86 (12.14) 6.0 (38.0) 16.57 (45.0) 26.00 (53.86)
0.14 (12.43) 3.0 (7.86) 6.14 (9.29) 17.29 (24.14) 27.57 (49.71)
0.29 (1.14) 3.0 (13.86) 8.71 (20.43) 18.71 (29.43) 32.14 (63.86)
0.43 (17.14) 3.29 (10.57) 10.57 (25.0) 21.29 (26.71) 33.14 (99.0)
0.57 (4.43) 3.29 (34.43) 11.86 (17.29) 23.86 (29.0) 47.29 (48.71)
0.57 (5.43) 6.0 (7.86) 15.57(21.57) - -
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C.3 Bonemarrow transplant data

This data is taken from [19]. In the thesis, we have only used the data from columns

2–6 .

g - disease group
1 - ALL

2 - AML low-risk

3 - AML high-risk
T1 - Time (in days) to death or on time study time

T2 - Disease-free survival time (time to relapse, death or end of study)

δ1 - Death indicator
1 - Dead

0 - Alive
δ2 - Relapse indicator

1 - Relapsed

0 - Disease-free
δ3 - Disease-free survival indicator

1 - Dead or relapsed

0 - Alive disease-free
TA - Time (in days) to acute graft-versus-host disease

δA - Acute graft-versus-host disease indicator
1 - Developed acute graft-versus-host disease

0 - Never developed acute graft-versus-host disease
TC - Time (in days) to chronic graft-versus-host disease

δC - Chronic graft-versus-host disease indicator
1 - Developed chronic graft-versus-host disease

0 - Never developed chronic graft-versus-host disease
TP - Time (in days) to return of platelets to normal levels

δP - Platelet recovery indicator
1 - Platelets returned to normal levels

0 - Platelets never returned to normal levels
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Table C.5: Data on 137 bone marrow transplant patients

g T1 T2 δ1 δ2 δ3 TA δA TC δC TP δP

1 2081 2081 0 0 0 67 1 121 1 13 1

1 1602 1602 0 0 0 1602 0 139 1 18 1

1 1496 1496 0 0 0 1496 0 307 1 12 1

1 1462 1462 0 0 0 70 1 95 1 13 1

1 1433 1433 0 0 0 1433 0 236 1 12 1

1 1377 1377 0 0 0 1377 0 123 1 12 1

1 1330 1330 0 0 0 1330 0 96 1 17 1

1 996 996 0 0 0 72 1 121 1 12 1

1 226 226 0 0 0 226 0 226 0 10 1

1 1199 1199 0 0 0 1199 0 91 1 29 1

1 1111 1111 0 0 0 1111 0 1111 0 22 1

1 530 530 0 0 0 38 1 84 1 34 1

1 1182 1182 0 0 0 1182 0 112 1 22 1

1 1167 1167 0 0 0 39 1 487 1 1167 0

1 418 418 1 0 1 418 0 220 1 21 1

1 417 383 1 1 1 417 0 417 0 16 1

1 276 276 1 0 1 276 0 81 1 21 1

1 156 104 1 1 1 28 1 156 0 20 1

1 781 609 1 1 1 781 0 781 0 26 1

1 172 172 1 0 1 22 1 172 0 37 1

1 487 487 1 0 1 487 0 76 1 22 1

1 716 662 1 1 1 716 0 716 0 17 1

1 194 194 1 0 1 194 0 94 1 25 1

1 371 230 1 1 1 371 0 184 1 9 1

1 526 526 1 0 1 526 0 121 1 11 1

1 122 122 1 0 1 88 1 122 0 13 1

1 1279 129 1 1 1 1279 0 1279 0 22 1

1 110 74 1 1 1 110 0 110 0 49 1

1 243 122 1 1 1 243 0 243 0 23 1

1 86 86 1 0 1 86 0 86 0 86 0

1 466 466 1 0 1 466 0 119 1 100 1

1 262 192 1 1 1 10 1 84 1 59 1

1 162 109 1 1 1 162 0 162 0 40 1

1 262 55 1 1 1 262 0 262 0 24 1

1 1 1 1 0 1 1 0 1 0 1 0

1 107 107 1 0 1 107 0 107 0 107 0
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Table C.5: (continued)

g T1 T2 δ1 δ2 δ3 TA δA TC δC TP δP

1 269 110 1 1 1 269 0 120 1 27 1

1 350 332 1 0 1 350 0 350 0 33 1

2 2569 2569 0 0 0 2569 0 2569 0 21 1

2 2506 2506 0 0 0 2506 0 2506 0 17 1

2 2409 2409 0 0 0 2409 0 2409 0 16 1

2 2218 2218 0 0 0 2218 0 2218 0 11 1

2 1857 1857 0 0 0 1857 0 260 1 15 1

2 1829 1829 0 0 0 1829 0 1829 0 19 1

2 1562 1562 0 0 0 1562 0 1562 0 18 1

2 1470 1470 0 0 0 1470 0 180 1 14 1

2 1363 1363 0 0 0 1363 0 200 1 12 1

2 1030 1030 0 0 0 1030 0 210 1 14 1

2 860 860 0 0 0 860 0 860 0 15 1

2 1258 1258 0 0 0 1258 0 120 1 66 1

2 2246 2246 0 0 0 52 1 380 1 15 1

2 1870 1870 0 0 0 1870 0 230 1 16 1

2 1799 1799 0 0 0 1799 0 140 1 12 1

2 1709 1709 0 0 0 20 1 348 1 19 1

2 1674 1674 0 0 0 1674 0 1674 0 24 1

2 1568 1568 0 0 0 1568 0 1568 0 14 1

2 1527 1527 0 0 0 1527 0 1527 0 13 1

2 1324 1324 0 0 0 25 1 1324 0 15 1

2 957 957 0 0 0 957 0 957 0 69 1

2 932 932 0 0 0 29 1 932 0 7 1

2 847 847 0 0 0 847 0 847 0 16 1

2 848 848 0 0 0 848 0 155 1 16 1

2 1850 1850 0 0 0 1850 0 1850 0 9 1

2 1843 1843 0 0 0 1843 0 1843 0 19 1

2 1535 1535 0 0 0 1535 0 1535 0 21 1

2 1447 1447 0 0 0 1447 0 220 1 24 1

2 1384 1384 0 0 0 1384 0 200 1 19 1

2 414 414 1 0 1 414 0 414 0 27 1

2 2204 2204 1 0 1 2204 0 2204 0 12 1

2 1063 1063 1 0 1 1063 0 240 1 16 1

2 481 481 1 0 1 30 1 120 1 24 1

2 105 105 1 0 1 21 1 105 0 15 1
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Table C.5: (continued)

g T1 T2 δ1 δ2 δ3 TA δA TC δC TP δP

2 641 641 1 0 1 641 0 641 0 11 1

2 390 390 1 0 1 390 0 390 0 11 1

2 288 288 1 0 1 18 1 100 1 288 0

2 522 421 1 1 1 25 1 140 1 20 1

2 79 79 1 0 1 16 1 79 0 79 0

2 1156 748 1 1 1 1153 0 180 1 18 1

2 583 486 1 1 1 583 0 583 0 11 1

2 48 48 1 0 1 48 0 48 0 14 1

2 431 272 1 1 1 431 0 431 0 12 1

2 1074 1074 1 0 1 1074 0 120 1 19 1

2 393 381 1 1 1 393 0 100 1 16 1

2 10 10 1 0 1 10 0 10 0 10 0

2 53 53 1 0 1 53 0 53 0 53 0

2 80 80 1 0 1 10 1 80 0 80 0

2 35 35 1 0 1 35 0 35 0 35 0

2 1499 248 0 1 1 1499 0 1499 0 9 1

2 704 704 1 0 1 36 1 155 1 18 1

2 653 211 1 1 1 653 0 653 0 23 1

2 222 219 1 1 1 222 0 123 1 52 1

2 1356 606 0 1 1 1356 0 1356 0 14 1

3 2640 2640 0 0 0 2640 0 2640 0 22 1

3 2430 2430 0 0 0 2430 0 2430 0 14 1

3 2252 2252 0 0 0 2252 0 150 1 17 1

3 2140 2140 0 0 0 2140 0 220 1 18 1

3 2133 2133 0 0 0 2133 0 250 1 17 1

3 1238 1238 0 0 0 1238 0 250 1 18 1

3 1631 1631 0 0 0 1631 0 150 1 40 1

3 2024 2024 0 0 0 2024 0 180 1 16 1

3 1345 1345 0 0 0 32 1 360 1 14 1

3 1136 1136 0 0 0 1236 0 140 1 15 1

3 845 845 0 0 0 845 0 845 0 20 1

3 491 422 1 1 1 491 0 180 1 491 0

3 162 162 1 0 1 162 0 162 0 13 1

3 1298 84 1 1 1 1298 0 1298 0 1298 0

3 121 100 1 1 1 28 1 121 0 65 1

3 2 2 1 0 1 2 0 2 0 2 0
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Table C.5: (continued)

g T1 T2 δ1 δ2 δ3 TA δA TC δC TP δP

3 62 47 1 1 1 62 0 62 0 11 1

3 265 242 1 1 1 265 0 210 1 65 1

3 547 456 1 1 1 547 0 130 1 24 1

3 341 268 1 1 1 21 1 100 1 17 1

3 318 318 1 0 1 318 0 140 1 12 1

3 195 32 1 1 1 195 0 195 0 16 1

3 469 467 1 1 1 469 0 90 1 20 1

3 93 47 1 1 1 93 0 93 0 28 1

3 515 390 1 1 1 515 0 515 0 31 1

3 183 183 1 0 1 183 0 130 1 21 1

3 105 105 1 0 1 105 0 105 0 105 0

3 128 115 1 1 1 128 0 128 0 12 1

3 164 164 1 0 1 164 0 164 0 164 0

3 129 93 1 1 1 129 0 129 0 51 1

3 122 120 1 1 1 122 0 122 0 12 1

3 80 80 1 0 1 21 1 80 0 0 1

3 677 677 1 0 1 677 0 150 1 8 1

3 73 64 1 1 1 73 0 73 0 38 1

3 168 168 1 0 1 168 0 200 1 48 1

3 74 74 1 0 1 29 1 74 0 24 1

3 16 16 1 0 1 16 0 16 0 16 0

3 248 157 1 1 1 248 0 100 1 52 1

3 732 625 1 1 1 732 0 732 0 18 1

3 105 48 1 1 1 105 0 105 0 30 1

3 392 273 1 1 1 392 0 122 1 24 1

3 63 63 1 0 1 38 1 63 0 16 1

3 97 76 1 1 1 97 0 97 0 97 0

3 153 113 1 1 1 153 0 153 0 59 1

3 363 363 1 0 1 363 0 363 0 19 1
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R functions

In this appendix we present the functions that were used to generate the results

from the simulation study in chapter 7 and the data analyses in chapters 8 and 9.

A lot of the code is just expanded from the project thesis and written exactly as

in [36] so that the results of the gamma process models could be compared directly

with the Wiener process models of Skogsrud and Lindqvist.

D.1 Simulation

In this section, the code for simulating data from the gamma process is shown.
The function simdata() simulates data from the first passage time distribution
of the gamma process. This function is used by the programs simRandomS() and
simSemiCens() which respectively simulate competing risks data and semi-competing
risks data from the gamma process models defined in chapter 6. In addition,
simSemiCens() uses the function simdata2() to draw from the first passage time
distribution to the level c given z = t1 and starting from level s.

D.1.1 Simulation from first passage time distribution

simdata = function(a,b,d,N){

# Purpose: simulate data from the distribution of the first passage time

# in a gamma process (f(t)) with shape function v(t) = a*t^b,

# scale parameter u = 1 and critical level d

# Input:

# - a: parameter value (alpha in the thesis)

# - b: parameter value (beta in the thesis)

# - d: critical level

# - N: number of samples

# Output:

# - T: vector of N samples from f(t)

# first define a grid of possible values for t

# (NB: has to be adjusted to match the parameter values!)

t = seq(0,4,0.01)

# generate N t-values from f(t) by the inverse transformation method

tsamples = c()

for(n in 1:N){
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unif = runif(1,0,1)

ti = 0

tj = 0

for(i in 1:length(t)){

F = pgamma(d, a*t[i]^b,lower = FALSE)

if(F > unif){

tj = t[i]

ti = t[i-1]

uj = F

ui = pgamma(d, a*t[i-1]^b,lower = FALSE)

break

}

}

tsamples[n] = (uj - unif)/(uj - ui)*ti + (unif - ui)/(uj - ui)*tj

}

T = tsamples

}

simdata2 = function(a,b,c,S,N,t1){

# Purpose: simulate data from the distribution of the first passage

# time in a gamma process (f(t)) with shape function v(t) =

# a*t^b, scale parameter u = 1 and critical level c starting

# at level S and time z = t1 (f(t1) = S)

# Input:

# - a : parameter value (alpha in the thesis)

# - b : parameter value (beta in the thesis)

# - c : critical level

# - S : starting point

# - t1 : starting time

# - N : number of samples

# Output:

# - T : vector of N samples from f(t)

# Define a grid of possible values for t

# (NB: has to be adjusted to match the parameter values!)

t = seq(t1+0.01,4,0.01)

# generate N t-values from f(t) by the inverse transformation method

tsamples = c()

for(n in 1:N){

unif = runif(1,0,1)

ti = 0

tj = 0

for(i in 2:length(t)){

F = pgamma(c-S, a*t[i]^b- a*t1^b,lower = FALSE)

if(F > unif){

tj = t[i]

ti = t[i-1]
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uj = F

ui = pgamma(c-S, a*t[i-1]^b-a*t1^b,lower = FALSE)

break

}

}

tsamples[n] = (uj - unif)/(uj - ui)*ti + (unif - ui)/(uj - ui)*tj

}

T = tsamples

}

D.1.2 Random S models - competing risks

simRandomS = function(c, s,a, b,q, mu_s, sigma_s, A, alpha_s,beta_s,

lambda_s, type, N){

# Purpose: simulate N samples from a gamma process model with censoring

# (ordinary competing risks data)

# Input:

# - c: critical level in the gamma process

# - a: parameter value (alpha in the thesis)

# - b: parameter value (beta in the thesis)

# - N: number of samples

# - type: if type = "unif": simulate from uniform model where S is

# uniformly distributed on (0,A)

# if type = "expon": simulate from the exponential model

# where S is exponentially distributed

# with parameter lambda_s

# if type = "gamma": simulate from the gamma model where S

# is gamma distributed with shape para-

# meter alpha_s and scale parameter

# beta_s

# if type ="lognorm": simulate from the lognormal model where

# S is lognormally distributed with para-

# meters mu_s and sigma_s

# if type = "const": simulate from the basic model where S

# has value s and q is the probability

# of observing Z.

# Output:

# - data: data consisting of a column T of times and a column C of

# indication variables

# - x : vector of observations from X (C=1)

# - z : vector of observations from Z (C=2)

# - tau : vector of censored observations (C=3)

x = c()

z = c()

tau = c()

j = 1

k = 1
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l = 1

C = c()

T = c()

for(i in 1:N){

if(type == "unif"){

S = runif(1, min =0, max=A)

if(S < c){

q = 1

}else {

q = 0

}

} else if(type == "gamma"){

S = rgamma(1, alpha_s, beta_s)

if(S < c){

q = 1

}else {

q = 0

}

} else if(type == "expon"){

S = rexp(1, lambda_s)

if(S < c){

q = 1

}else {

q = 0

}

} else if(type == "lognorm"){

S = rlnorm(1, mu_s, sigma_s)

if(S < c){

q = 1

}else {

q = 0

}

} else if(type == "const"){

S = s

q = q

} else{

print("wrong input type")

break

}

u = runif(1,0,1)

Tau = rgamma(1,1,0.1)

# NB! these parameters need to be adjusted depending on the model!

if(u < q){

time = simdata(a,b,S,1)

if(time < Tau){

z[j] = time
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T[i] = z[j]

C[i] = 2

j = j+1

}else{

tau[l] = Tau

T[i] = tau[l]

C[i] = 3

l = l+1

}

}

else{

time = simdata(a,b,c,1)

if(time < Tau){

x[k] = time

T[i] = x[k]

C[i] = 1

k = k+1

}else{

tau[l] = Tau

T[i] = tau[l]

C[i] = 3

l = l+1

}

}

}

data = data.frame(T=T,C=C)

sorted = sort(T, index = TRUE)

data.sort = data[sorted$ix,]

list(x = x, z = z, tau = tau, data = data.sort)

}

D.1.3 Random S models - semi-competing risks

simSemiCens = function(c, a, b, A, lambda_s, alpha_s, beta_s,mu_s,

sigma_s, type, N){

# Purpose: simulate N samples from a gamma process model with censoring

# (semi-competing risks data)

# Input:

# - c: critical level in the gamma process

# - a: parameter value (alpha in the thesis)

# - b: parameter value (beta in the thesis)

# - N: number of samples

# - type: if type = "unif": simulate from uniform model where S is

# uniformly distributed on (0,A)

# if type = "expon": simulate from the exponential model

# where S is exponentially distributed

# with parameter lambda_s

# if type = "gamma": simulate from the gamma model where S is
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# gamma distributed with shape parameter

# alpha_s and scale parameter beta_s

# if type ="lognorm": simulate from the lognormal model where

# S is lognormally distributed with para-

# meters mu_s and sigma_s

# Output:

# - x : vector of observations X

# - z : vector of observations Z

# - x_z : vector of observations X_Z following Z

# - z_o : vector of observations Z_o

# - tau_o: vector of censored observations following Z_o

# - tau : vector of censored observations

x = c()

z = c()

x_z = c()

z_o = c()

tau_o = c()

tau = c()

j = 1

k = 1

l = 1

r =1

for(i in 1:N){

if(type == "unif"){

S = runif(1, min =0, max=A)

if(S < c){

q = 1

}else {

q = 0

}

} else if(type == "expon"){

S = rexp(1, lambda_s)

if(S < c){

q = 1

}else {

q = 0

}

} else if(type == "gamma"){

S = rgamma(1, alpha_s, beta_s)

if(S < c){

q = 1

}else {

q = 0

}

} else if(type == "lognorm"){
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S = rlnorm(1, mu_s, sigma_s)

if(S < c){

q = 1

}else {

q = 0

}

} else{

print("wrong input type")

break

}

u = runif(1,0,1)

Tau = rgamma(1,1,0.1)

# NB! Needs to be adjusted depending on the distribution

if(u < q){

t1 = simdata(a,b,S,1)

if(t1 < Tau){

t2 = simdata2(a,b,c,S,1,t1)

if(t2 < Tau){

z[j] = t1

x_z[j] = t2

j = j +1

}else{

z_o[r] = t1

tau_o[r] = Tau

r = r+1

}

} else{

tau[l] = Tau

l = l+1

}

}else{

time = simdata(a,b,c,1)

if(time < Tau){

x[k] = time

k = k+1

} else{

tau[l] = Tau

l = l+1

}

}

}

list(x=x, z=z ,x_z=x_z, z_o=z_o, tau_o=tau_o, tau=tau)

}
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D.2 Estimation

The parameter estimation is done by the optim() function in R. In the competing
risks case this is called by the function condSurv(), which also is used to make
non-parametric estimates of the conditional sub-survival functions. To make these
estimates, the function subdistrZ() is also needed. In the semi-competing risks
case, optim() is called by the function estSemi() to do the parameter estimation.
To make estimates and plots of the crude and net quantities, we use the script
semiQuant.

In order to use optim() one needs to have the expressions for the log-likelihood func-
tions of the different models. These are calculated by the functions lklhBasic(),
lklhUnif(), lklhExp(), lklhGam() and lklhLognorm() in the competing risks case
and by lklhUnifSemi(), lklhExpSemi(), lklhGamSemi(), lklhLnormSemi() and
lklhNormSemi() in the semi-competing risks case.

Furthermore, bootstrap estimates for the VHF-data and the carcinoma data are
found using the script in D.2.5.

D.2.1 Competing risks case

condSurv = function(data, p0=NULL, upper=NULL, lower=NULL, type="plot"){

# Purpose: plot the non-parametric estimates of the conditional sub-

# survival functions of X and Z by using the method described

# in Lawless(2003). In addition it can estimate parameters in

# the gamma process models: basic, uniform, exponential,

# gamma and lognormal

# Input:

# data - data-frame on the form [t,C] where t is a column of sorted

# failure times and C is a column of failure modes; C = 1 means

# failure (X), C = 2 means PM (Z) and C = 3 means censoring (tau)

# p0 - vector of starting values for estimation of parameters by one

# of the gamma process models. Default is p0 = NULL, which is

# used when there is no estimation, only plots of the non-

# parametric estimates of the conditional sub-survival functions

# of X and Z

# lower -vector of lower parameter values for estimation. Default is

# NULL, used in the basic model or when there is no estimation,

# only plots of the non-parametric estimates of the conditional

# sub-survival functions of X and Z

# upper -vector of upper parameter values for estimation. Default is

# NULL, used in the basic model or when there is no estimation,

# only plots of the non-parametric estimates of the conditional

# sub-survival functions of X and Z

# type - string that states which of the gamma process models the data

# should be fitted to. Possibilities: "const"(basic model),

# "unif", "expon", "gamma", "lognorm". Default is "plot" which

# means no estimation, only plots of the non-parametric
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# estimates of the conditional sub-survival functions of X and Z

# Output:

# Default is only plots of the non-parametric estimates of the condi-

# tional sub-survival functions of X(thin line) and Z(thick line). If

# estimation by one of the gamma process models is performed, the

# output is a list consisting of:

# par - estimated parameters

# std - standard deviation of the estimates, based on the Hessian

# logL - value of log-likelihood function for the estimated parameters

# cor - matrix of correlations between the parameters

# lower - lower bound in a 95% standard positive confidence interval

# upper - upper bound in a 95% standard positive confidence interval

# In addition, parametric estimates of the conditional sub-survival

# functions of X (thin dotted line) and Z (thick dotted line) are

# plotted in the same plot as the non-parametric estimates.

N = length(data[,1])

C = data[,2]

t = data[,1]

# make columns deltaix and deltaiz:

# (to estimate the non-parametric conditional sub-distr. functions)

n = c() # number at risk

deltaix = c()

deltaiz = c()

d = c()

ix = c()

n[1] = N

ix[1] = 1

if(C[1] == 1){

deltaix[1] = 1

deltaiz[1] = 0

} else if(C[1]==2){

deltaix[1] = 0

deltaiz[1] = 1

} else{

deltaix[1] = 0

deltaiz[1] = 0

}

j = 2

for(i in 2:N){

n[i] = N -i +1

if(t[i] != t[i-1] && C[i] != 3){

ix[j] = i

j = j+1

} else{
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j = j

}

if(C[i] == 1){

deltaix[i] = 1

deltaiz[i] = 0

} else if(C[i] == 2){

deltaix[i] = 0

deltaiz[i] = 1

} else{

deltaix[i] = 0

deltaiz[i] = 0

}

}

# find the column d which shows number of items failing at time t

j = 1

for(i in 1:(N+1)){

if(i == ix[j]){

d[i] = sum(deltaix[ix[j]:ix[j+1]]) + sum(deltaiz[ix[j]:ix[j+1]])-1

if(j < (length(ix)-1)){

j = j+1

} else{

j = j

}

} else{

d[i]= 0

}

}

ix.n = length(ix)

index = ix[ix.n]

d[index] = 1

d.ny = d[1:N]

p = (n - d.ny)/n

S = cumprod(p)

nelson.x = deltaix/n

nelson.z = deltaiz/n

px = c()

pz = c()

if(deltaix[1] == 1){

px[1] = nelson.x[1]

pz[1] = 0

} else{

px[1] = 0

pz[1] = nelson.z[1]

}
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for(i in 2:N){

if(deltaix[i] == 1){

px[i] = S[i-1]*nelson.x[i]

pz[i] = 0

} else{

px[i] = 0

pz[i] = S[i-1]*nelson.z[i]

}

}

Fx = cumsum(px)

Fz = cumsum(pz)

Sx = 1 - Fx

Sz = 1 - Fz

n = 0

m = 0

x = c()

z = c()

tau = c()

tellerx = 1

tellerz = 1

tellertau = 1

# make the vectors x and z from the indexing in the data

for(i in 1:N){

if(C[i] == 1){

x[tellerx] = t[i]

tellerx = tellerx +1

} else if (C[i] == 2){

z[tellerz] = t[i]

tellerz = tellerz + 1

} else{

tau[tellertau] = t[i]

tellertau = tellertau + 1

}

}

if(is.null(tau)==T){ tau = 0}

n = length(z)

m = length(x)

r = length(tau)

if(type =="const"){

opt = optim(par =p0, fn=lklhBasic, x=x,z=z,tau=tau,method="BFGS",

hessian = T)
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p = opt$par

SZ.hat = subdistrZ(p,t,type="const")

}else if(type == "unif"){

opt = optim(par = p0, fn=lklhUnif, x = x, z=z, tau = tau, method =

"L-BFGS-B", lower = lower, upper = upper, hessian = T)

p = opt$par

SZ.hat = subdistrZ(p, t, type = "unif")

}else if(type == "gamma"){

opt = optim(par = p0 , fn=lklhGam, x = x, z=z, tau = tau,method =

"L-BFGS-B", lower = lower, upper = upper, hessian = T)

p = opt$par

SZ.hat = subdistrZ(p, t, type = "gamma")

}else if(type == "expon"){

opt = optim(par = p0, fn=lklhExp, x = x, z=z, tau = tau,method =

"L-BFGS-B", lower = lower, upper = upper, hessian = T)

p = opt$par

SZ.hat = subdistrZ(p, t, type = "expon")

}else if(type == "lognorm"){

opt = optim(par = p0, fn=lklhLognorm, x = x, z=z, tau = tau,

method = "L-BFGS-B", lower = lower,upper =upper, hessian=T)

p = opt$par

SZ.hat = subdistrZ(p, t, type = "lognorm")

}else if(type == "plot"){

}else{

stop("wrong type input")

}

# non-parametric estimate

q = Fz[N]/(Fx[N] + Fz[N])

Fx.cond = Fx/(1-q)

Fz.cond = Fz/q

Sx.cond = 1-Fx.cond

Sz.cond = 1-Fz.cond

if(type =="const" || type == "unif" || type == "gamma"

|| type == "expon" || type == "lognorm"){

SX.hat = pgamma(p[3],p[1]*t^p[2])

}

plot(t,Sx.cond,type="s", ylab = "Sj(t)", ylim = c(0,1))

lines(t, Sz.cond, type="s", lwd =2)

# Results from estimation

if(type != "plot"){

lines(t,SX.hat, type = "l", lty = 2)

lines(t,SZ.hat, type = "l", lty = 2, lwd = 2)
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std = sqrt(solve(opt$hessian))

lower = p*exp(-1.96*diag(std)/p)

upper = p*exp(1.96*diag(std)/p)

list(par = opt$par, std = diag(std), logL = -opt$value, cor =

cov2cor(solve(opt$hessian)), lower = lower, upper = upper)

}

}

D.2.2 Functions used by the estimation function condSurv()
(competing risks)

subdistrZ = function(p, t, type) {

# Purpose: estimate the conditional sub-survival function for Z in the

# gamma process models

# Input:

# p - vector of values for the parameters in the desired model

# t - vector of times

# type - string that states which of the gamma process models SZ.hat

# should be estimated from. The possibilities are: "const"

# (basic), "unif", "expon", "gamma" and "lognorm"

# Output:

# SZ.hat - estimated conditional sub-survival function for Z

int = c()

if(type == "unif"){

const = p[4]/p[3]

funk = function(s, p, t){

pgamma(s, p[1]*t^p[2])*1/p[4]

}

}else if(type == "gamma"){

const = 1/pgamma(p[3],p[4],p[5])

funk = function(s, p,t){

pgamma(s, p[1]*t^p[2])*dgamma(s,p[4],p[5])

}

}else if(type == "expon"){

const = 1/pexp(p[3],p[4])

funk = function(s, p,t){

pgamma(s, p[1]*t^p[2])*dexp(s,p[4])

}

}else if(type == "lognorm"){

const = 1/plnorm(p[3],p[4],p[5])

funk = function(s, p,t){

pgamma(s, p[1]*t^p[2])*dlnorm(s,p[4],p[5])

}

}else if(type == "const"){

s = p[4]

SZ.hat = pgamma(s,p[1]*t^p[2])
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}

if(type != "const"){

for(i in 1:length(t)){

int[i] = integrate(funk, lower = 0.01, upper = p[3], p = p,

t = t[i])$value

}

SZ.hat = int*const

}

SZ.hat

}

lklhBasic = function(param,x,z,tau){

# Purpose: find an expression for the log-likelihood function in the

# basic model for competing risks data, with censoring

# Input:

# - param: vector of starting values for the parameters a,b,c,s and q

# - x : vector of observations of times to failure

# - z : vector of observations of times to PM

# - tau : vector of censored observations

# Output:

# - -lnL: minus the log-likelihood function, which will be minimized

# by optim() in condSurv()

m = length(x)

n = length(z)

r = length(tau)

a = param[1]

b = param[2]

c = param[3]

s = param[4]

q = param[5]

xdensity = c()

zdensity = c()

taudensity = c()

require(hypergeo)

# Contribution from X

for(i in 1:m){

xp = x[i]

up = c(a*xp^b,a*xp^b)

lo = c(a*xp^b+1,a*xp^b +1)

nder = b*a*xp^(b-1)

psi = digamma(a*xp^b)

fun = genhypergeo(up,lo,-c,tol=0, maxiter=2000, check_mod=TRUE,

polynomial=FALSE, debug=FALSE, series=TRUE)
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xdensity[i] = nder*(psi-log(c))*pgamma(c,a*xp^b) +

(nder/((a*xp^b)^2*gamma(a*xp^b)))*((c)^(a*xp^b))*fun

}

# Contribution from Z

for(j in 1:n){

zp = z[j]

up = c(a*zp^b,a*zp^b)

lo = c(a*zp^b+1,a*zp^b +1)

nder = b*a*zp^(b-1)

psi = digamma(a*zp^b)

fun = genhypergeo(up,lo,-s,tol=0, maxiter=2000, check_mod=TRUE,

polynomial=FALSE, debug=FALSE, series=TRUE)

zdensity[j] = nder*(psi-log(s))*pgamma(s,a*zp^b) +

(nder/((a*zp^b)^2*gamma(a*zp^b)))*((s)^(a*zp^b))*fun

}

# Contribution from tau

for(k in 1:r){

tau_p = tau[k]

taudensity[k] = (1-q)*pgamma(c,a*tau_p^b) + q*pgamma(s,a*tau_p^b)

}

-(m*log(1-q)+sum(log(xdensity))+n*log(q)+sum(log(zdensity))+

sum(log(taudensity)))

}

lklhUnif = function(param,x,z,tau){

# Purpose: find an expression for the log-likelihood function in the

# uniform model for competing risks data with censoring

# Input:

# - param: vector of starting values for the parameters a,b,c and A

# - x : vector of observations of times to failure

# - z : vector of observations of times to PM

# - tau : vector of censored observations

# Output:

# - -lnL: minus the log-likelihood function, which will be minimized

# by optim() in condSurv()

a = param[1]

b = param[2]

c = param[3]

A = param[4]

m = length(x)

n = length(z)

r = length(tau)

xdensity = c()

zdensity = c()
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taudensity = c()

require(hypergeo)

for(i in 1:m){

# Contribution from X

xp = x[i]

up = c(a*xp^b,a*xp^b)

lo = c(a*xp^b+1,a*xp^b +1)

nder = b*a*xp^(b-1)

psi = digamma(a*xp^b)

fun = genhypergeo(up,lo,-c,tol=0, maxiter=2000, check_mod=TRUE,

polynomial=FALSE, debug=FALSE, series=TRUE)

xdensity[i] = (nder*(psi-log(c))*pgamma(c,a*xp^b) +

(nder/((a*xp^b)^2*gamma(a*xp^b)))*((c)^(a*xp^b))*fun)

*(1-c/A)

}

for(j in 1:n){

# Contribution from Z

zp = z[j]

up = c(a*zp^b,a*zp^b)

lo = c(a*zp^b+1,a*zp^b +1)

nder = b*a*zp^(b-1)

psi = digamma(a*zp^b)

zdensity[j] = integrate(uniffunc, lower = 0.01, upper = c, a = a, b =

b, z = zp,up = up, lo = lo, nder = nder, psi = psi, A =

A)$value

}

for(k in 1:r){

# Contribution from tau

tau_p = tau[k]

integral = integrate(tauUnif, lower = 0.01, upper = c, a = a, b = b,

tau = tau_p, A = A)$value

taudensity[k] = (1-c/A)*pgamma(c,a*tau_p^b) + integral

}

-(sum(log(xdensity))+sum(log(zdensity))+sum(log(taudensity)))

}

uniffunc = function(s,a, b, z, up, lo, nder, psi,A){

(nder*(psi-log(s))*pgamma(s,a*z^b) +

(nder/((a*z^b)^2*gamma(a*z^b)))*((s)^(a*z^b))*genhypergeo(up,lo,-s,tol=0,

maxiter=2000, check_mod=TRUE,polynomial=FALSE,debug=FALSE,series=TRUE))

*1/A

}

tauUnif = function(s, a,b,tau,A){

pgamma(s, a*tau^b)*1/A

}

lklhExp = function(param,x,z,tau){
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# Purpose: find an expression for the log-likelihood function in the

# exponential model for competing risks data with censoring

# Input:

# - param: vector of starting values for the parameters a,b,c and

# lambda_s

# - x : vector of observations of times to failure

# - z : vector of observations of times to PM

# - tau : vector of censored observations

# Output:

# - -lnL: minus the log-likelihood function, which will be minimized

# by optim() in condSurv()

a = param[1]

b = param[2]

c = param[3]

lambda_s= param[4]

m = length(x)

n = length(z)

r = length(tau)

xdensity = c()

zdensity = c()

taudensity = c()

require(hypergeo)

for(i in 1:m){

# Contribution from X

xp = x[i]

up = c(a*xp^b,a*xp^b)

lo = c(a*xp^b+1,a*xp^b +1)

nder = b*a*xp^(b-1)

psi = digamma(a*xp^b)

fun = genhypergeo(up,lo,-c,tol=0, maxiter=2000, check_mod=TRUE,

polynomial=FALSE, debug=FALSE, series=TRUE)

xdensity[i] = (nder*(psi-log(c))*pgamma(c,a*xp^b) +

(nder/((a*xp^b)^2*gamma(a*xp^b)))*((c)^(a*xp^b))*fun)

*(1-pexp(c,lambda_s))

}

for(j in 1:n){

# Contribution from Z

zp = z[j]

up = c(a*zp^b,a*zp^b)

lo = c(a*zp^b+1,a*zp^b +1)

nder = b*a*zp^(b-1)

psi = digamma(a*zp^b)

zdensity[j] = integrate(expfunc, lower = 0.01, upper = c, a = a,b = b,

z = zp,up = up, lo = lo, nder = nder, psi = psi,lambda_s
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= lambda_s)$value

}

for(k in 1:r){

# Contribution from tau

tau_p = tau[k]

integral = integrate(tauExp, lower = 0.01, upper = c, a = a, b = b,

tau = tau_p, lambda_s = lambda_s)$value

taudensity[k] = (1-pexp(c,lambda_s))*pgamma(c,a*tau_p^b) + integral

}

-(sum(log(xdensity))+sum(log(zdensity)) +sum(log(taudensity)))

}

expfunc = function(s,a, b, z, up, lo, nder, psi,lambda_s){

(nder*(psi-log(s))*pgamma(s,a*z^b) +

(nder/((a*z^b)^2*gamma(a*z^b)))*((s)^(a*z^b))*genhypergeo(up,lo,-s,

tol=0,maxiter=2000, check_mod=TRUE,polynomial=FALSE, debug=FALSE,

series=TRUE))*(dexp(s,lambda_s))

}

tauExp = function(s, a,b,tau,lambda_s){

pgamma(s, a*tau^b)*dexp(s,lambda_s)

}

lklhGam = function(param,x,z,tau){

# Purpose: find an expression for the log-likelihood function in the

# gamma model for competing risks data, with censoring

# Input:

# - param: vector of starting values for the parameters a,b,c, alpha_s

# and beta_s

# - x : vector of observations of times to failure

# - z : vector of observations of times to PM

# - tau : vector of censored observations

# Output:

# - -lnL: minus the log-likelihood function, which will be minimized

# by optim() in condSurv()

a = param[1]

b = param[2]

c = param[3]

alpha_s= param[4]

beta_s = param[5]

m = length(x)

n = length(z)

r = length(tau)

xdensity = c()

zdensity = c()

taudensity = c()
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require(hypergeo)

for(i in 1:m){

# Contribution from X

xp = x[i]

up = c(a*xp^b,a*xp^b)

lo = c(a*xp^b+1,a*xp^b +1)

nder = b*a*xp^(b-1)

psi = digamma(a*xp^b)

fun = genhypergeo(up,lo,-c,tol=0, maxiter=2000, check_mod=TRUE,

polynomial= FALSE, debug=FALSE, series=TRUE)

xdensity[i] = (nder*(psi-log(c))*pgamma(c,a*xp^b) +

(nder/((a*xp^b)^2*gamma(a*xp^b)))*((c)^(a*xp^b))*fun)

*(1-pgamma(c,alpha_s,beta_s))

}

for(j in 1:n){

# Contribution from Z

zp = z[j]

up = c(a*zp^b,a*zp^b)

lo = c(a*zp^b+1,a*zp^b +1)

nder = b*a*zp^(b-1)

psi = digamma(a*zp^b)

zdensity[j] = integrate(gamfunc,lower = 0.01, upper = c, a = a, b = b,

z = zp, up = up, lo = lo, nder = nder, psi = psi,

alpha_s = alpha_s, beta_s = beta_s)$value

}

for(k in 1:r){

# Contribution from tau

tau_p = tau[k]

integral = integrate(tauGam, lower = 0.01, upper = c, a = a, b = b,

tau =tau_p, alpha_s = alpha_s, beta_s = beta_s)$value

taudensity[k] = (1-pgamma(c,alpha_s,beta_s))*pgamma(c,a*tau_p^b)

+ integral

}

-(sum(log(xdensity))+sum(log(zdensity)) +sum(log(taudensity)))

}

gamfunc = function(s,a, b, z, up, lo, nder, psi,alpha_s, beta_s){

(nder*(psi-log(s))*pgamma(s,a*z^b) +

(nder/((a*z^b)^2*gamma(a*z^b)))*((s)^(a*z^b))*genhypergeo(up,lo,-s,

tol=0, maxiter=2000, check_mod=TRUE,polynomial=FALSE, debug=FALSE,

series=TRUE))*(dgamma(s,alpha_s,beta_s))

}

tauGam = function(s, a,b,tau,alpha_s, beta_s){

pgamma(s, a*tau^b)*dgamma(s,alpha_s,beta_s)

}

lklhLognorm = function(param,x,z,tau){
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# Purpose: find an expression for the log-likelihood function in the

# lognormal model for competing risks data, with censoring

# Input:

# - param: vector of starting values for the parameters a,b,c, mu_s

# and sigma_s

# - x : vector of observations of times to failure

# - z : vector of observations of times to PM

# - tau : vector of censored observations

# Output:

# - -lnL: minus the log-likelihood function, which will be minimized

# by optim() in condSurv()

a = param[1]

b = param[2]

c = param[3]

mu_s= param[4]

sigma_s = param[5]

m = length(x)

n = length(z)

r = length(tau)

xdensity = c()

zdensity = c()

taudensity = c()

require(hypergeo)

for(i in 1:m){

# Contribution from X

xp = x[i]

up = c(a*xp^b,a*xp^b)

lo = c(a*xp^b+1,a*xp^b +1)

nder = b*a*xp^(b-1)

psi = digamma(a*xp^b)

fun = genhypergeo(up,lo,-c,tol=0, maxiter=2000, check_mod=TRUE,

polynomial=FALSE, debug=FALSE, series=TRUE)

xdensity[i] = (nder*(psi-log(c))*pgamma(c,a*xp^b) +

(nder/((a*xp^b)^2*gamma(a*xp^b)))*((c)^(a*xp^b))*fun)

*(1-plnorm(c,mu_s,sigma_s))

}

for(j in 1:n){

# Contribution from Z

zp = z[j]

up = c(a*zp^b,a*zp^b)

lo = c(a*zp^b+1,a*zp^b +1)

nder = b*a*zp^(b-1)

psi = digamma(a*zp^b)

zdensity[j] = integrate(lnormfunc, lower = 0.01, upper = c, a = a,
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b = b,z = zp, up = up, lo = lo, nder = nder, psi = psi,

mu_s = mu_s, sigma_s = sigma_s)$value

}

for(k in 1:r){

# Contribution from tau

tau_p = tau[k]

integral = integrate(tauLogN, lower = 0.01, upper = c, a = a, b = b,

tau = tau_p, mu_s = mu_s, sigma_s = sigma_s)$value

taudensity[k] = (1-plnorm(c,mu_s,sigma_s))*pgamma(c,a*tau_p^b)

+ integral

}

-(sum(log(xdensity))+sum(log(zdensity)) +sum(log(taudensity)))

}

lnormfunc = function(s,a, b, z, up, lo, nder, psi,mu_s, sigma_s){

(nder*(psi-log(s))*pgamma(s,a*z^b) +

(nder/((a*z^b)^2*gamma(a*z^b)))*((s)^(a*z^b))*genhypergeo(up,lo,-s,

tol=0,maxiter=2000, check_mod=TRUE,polynomial=FALSE, debug=FALSE,

series=TRUE))*(dlnorm(s,mu_s,sigma_s))

}

tauLogN = function(s, a,b,tau,mu_s, sigma_s){

pgamma(s, a*tau^b)*dlnorm(s,mu_s,sigma_s)

}

D.2.3 Semi-competing risks case

estSemi = function(x,z,x_z,z_o=0,tau_o=0,tau=0, p0, upper, lower, type) {

# Purpose: estimate parameters in any of the gamma process models:

# uniform, exponential, gamma, lognormal and normal

# for semi-competing risks data

#

# Input:

# data - event times x, z, x_z, z_o, tau_o, tau

# (only x, z, and x_z if no censoring)

# p0 - vector of starting values for estimation of the parameters in

# one of the gamma process models

# lower - vector of lower parameter estimates

# upper - vector of upper parameter estimates

# type - string that states which of the gamma process models the data

# should be fitted to. Possibilities: "unif", "expon", "gamma",

# "lognorm", "norm".

# Output:

# The output is a list consisting of:

# par - estimated parameters

# std - standard deviation of the estimates, based on the Hessian

# logL - value of log likelihood function for the estimated parameters

# cor - matrix of correlations between the parameters

# lower - lower bound in a 95% standard positive confidence interval

# upper - upper bound in a 95% standard positive confidence interval



174 Appendix D. R functions

if(type == "unif"){

opt = optim(par = p0, fn=lklhUnifSemi, x = x, z = z, xz = x_z, z_o =

z_o, tau_o = tau_o, tau = tau, method = "L-BFGS-B",

lower = lower, upper = upper, hessian = T)

}else if(type == "gamma"){

opt = optim(par = p0, fn=lklhGamSemi, x = x, z = z, xz = x_z, z_o =

z_o, tau_o = tau_o, tau = tau, method = "L-BFGS-B",

lower = lower, upper = upper, hessian = T)

}else if(type == "expon"){

opt = optim(par = p0, fn=lklhExpSemi, x = x, z = z, xz = x_z, z_o =

z_o, tau_o = tau_o, tau = tau, method = "L-BFGS-B",

lower = lower, upper = upper, hessian = T)

}else if(type == "lognorm"){

opt = optim(par = p0, fn=lklhLnormSemi, x = x, z = z, xz = x_z, z_o =

z_o, tau_o = tau_o, tau = tau, method = "L-BFGS-B",

lower = lower, upper = upper, hessian = T)

}else if(type == "norm"){

opt = optim(par = p0, fn=lklhNormSemi, x = x, z = z, xz = x_z, z_o =

z_o, tau_o = tau_o, tau = tau, method = "L-BFGS-B",

lower = lower, upper = upper, hessian = T)

} else{

stop("wrong type input")

}

p = opt$par

std = sqrt(solve(opt$hessian))

lower = p*exp(-1.96*diag(std)/p)

upper = p*exp(1.96*diag(std)/p)

list(par = opt$par, std = diag(std), logL = -opt$value, cor =

cov2cor(solve(opt$hessian)), lower = lower, upper = upper)

}

# semiQuant

# Script to estimate crude + net quantities for semi-competing risks data

# Crude quantities:

# Parametric and non-parametric estimates of F^*_Z(t) and Lambda^*_Z(t)

# Net quantities:

# The marginal survivor functions of Z and X and the marginal hazard rates

# of Z and X

# Non-parametric estimates require the following data:

# - T: vector of min(Z,X,tau), sorted from lowest to highest

# - delta: vector of indicator variables corresponding to the entries

# in T, delta=1 if the non-terminal event has happened,

# delta = 0 if not

# - cens: vector of indicator variables corresponding to the entries in
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# T, cens = 1 if both X and Z were censored, cens=0 if not

# Parametric estimates require:

# - t : vector of t-values where the functions should be estimated

# - p_unif : vector of parameter estimates in the uniform model

# - p_exp : vector of parameter estimates in the exponential model

# - p_gam : vector of parameter estimates in the gamma model

# - p_lnorm : vector of parameter estimates in the lognormal model

# Non-parametric curves, expressions from section 4.4

# Kaplan Meier estimate of S_T(t)

N = length(T)

n = c() # number at risk

deltaix = c()

d = c()

ix = c()

n[1] = N

ix[1] = 1

if(cens[1]== 0){

deltaix[1] = 1

} else{

deltaix[1] = 0

}

j = 2

for(i in 2:N){

n[i] = N -i +1

if(T[i] != T[i-1] && cens[i] ==0){

ix[j] = i

j = j+1

} else{

j = j

}

if(cens[i]== 0){

deltaix[i] = 1

} else{

deltaix[i] = 0

}

}

j = 1

for(i in 1:(N+1)){

if(i == ix[j]){

d[i] = sum(deltaix[ix[j]:ix[j+1]]) -1

if(j < (length(ix)-1)){

j = j+1

} else{

j = j
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}

} else{

d[i]= 0

}

}

ix.n = length(ix)

index = ix[ix.n]

d[index] = 1

d.ny = d[1:N]

p = (n - d.ny)/n

S = cumprod(p)

# make Nelson-Aalen type estimate of Lambda^*_Z(t)

N_A = c()

for(t in 1:length(T)){

teller = c()

for(i in 1:length(T)){

if((T[i] < T[t] || T[i] == T[t]) && delta[i] ==1){

teller[i] = 1

} else{

teller[i] = 0

}

}

bidrag = teller/n

N_A[t] = sum(bidrag)

}

# make estimate of F^*_Z(t)

FZ.star = c()

for(j in 1:length(T)){

sum_tot = 0

for(i in 1:length(T)){

if((T[i] < T[j] || T[i] == T[j])){

sum_tot = sum_tot + S[i]*teller[i]/n[i]

}

}

FZ.star[j] = sum_tot

}

# parametric estimates of crude quantities

F1_unif = c()

F1_exp = c()

F1_gam = c()

F1_lnorm = c()

funcUnif = function(s, t, p){

(1-pgamma(s, p[1]*t^p[2]))*1/p[4]



Appendix D. R functions 177

}

funcExp = function(s, t, p){

(1-pgamma(s, p[1]*t^p[2]))*dexp(s, p[4])

}

funcGam = function(s, t, p){

(1-pgamma(s, p[1]*t^p[2]))*dgamma(s, p[4], p[5])

}

funcLnorm = function(s,t, p){

(1-pgamma(s, p[1]*t^p[2]))*dlnorm(s, p[4], p[5])

}

for(i in 1:length(t)){

tp = t[i]

F1_unif[i] = integrate(funcUnif, lower= 0.01, upper = p_unif[3], p=

p_unif, t= tp)$value

F1_exp[i] = integrate(funcExp, lower= 0.01, upper = p_exp[3], p=

p_exp, t= tp)$value

F1_gam[i] = integrate(funcGam, lower= 0.01, upper = p_gam[3], p=

p_gam, t= tp)$value

F1_lnorm[i] = integrate(funcLnorm, lower= 0.01, upper = p_lnorm[3],

p=p_lnorm, t= tp)$value

}

f1_unif = c()

f1_exp = c()

f1_gam = c()

f1_lnorm = c()

funcUnif2 = function(s, t, p, nder, psi, up, lo){

(nder*(psi-log(s))*pgamma(s,p[1]*t^p[2]) +

(nder/((p[1]*t^p[2])^2*gamma(p[1]*t^p[2])))*((s)^(p[1]*t^p[2]))

*genhypergeo(up,lo,-s,tol=0, maxiter=2000, check_mod=TRUE,polynomial=

FALSE, debug=FALSE, series=TRUE))*1/p[4]

}

funcExp2 = function(s, t, p, nder, psi, up, lo){

(nder*(psi-log(s))*pgamma(s,p[1]*t^p[2]) +

(nder/((p[1]*t^p[2])^2*gamma(p[1]*t^p[2])))*((s)^(p[1]*t^p[2]))

*genhypergeo(up,lo,-s,tol=0, maxiter=2000, check_mod=TRUE,polynomial=

FALSE,debug=FALSE, series=TRUE))*dexp(s, p[4])

}

funcGam2 = function(s, t, p, nder, psi, up, lo){

(nder*(psi-log(s))*pgamma(s,p[1]*t^p[2]) +

(nder/((p[1]*t^p[2])^2*gamma(p[1]*t^p[2])))*((s)^(p[1]*t^p[2]))

*genhypergeo(up,lo,-s,tol=0, maxiter=2000, check_mod=TRUE,polynomial=

FALSE,debug=FALSE, series=TRUE))*dgamma(s, p[4],p[5])

}

funcLnorm2 = function(s, t, p, nder, psi, up, lo){

(nder*(psi-log(s))*pgamma(s,p[1]*t^p[2]) +
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(nder/((p[1]*t^p[2])^2*gamma(p[1]*t^p[2])))*((s)^(p[1]*t^p[2]))

*genhypergeo(up,lo,-s,tol=0, maxiter=2000, check_mod=TRUE,polynomial=

FALSE,debug=FALSE, series=TRUE))*dlnorm(s, p[4],p[5])

}

for(i in 1:length(t)){

tp = t[i]

up_unif = c(p_unif[1]*tp^p_unif[2],p_unif[1]*tp^p_unif[2])

lo_unif = c(p_unif[1]*tp^p_unif[2]+1,p_unif[1]*tp^p_unif[2] +1)

nder_unif = p_unif[2]*p_unif[1]*tp^(p_unif[2]-1)

psi_unif = digamma(p_unif[1]*tp^p_unif[2])

up_exp = c(p_exp[1]*tp^p_exp[2],p_exp[1]*tp^p_exp[2])

lo_exp = c(p_exp[1]*tp^p_exp[2]+1,p_exp[1]*tp^p_exp[2] +1)

nder_exp = p_exp[2]*p_exp[1]*tp^(p_exp[2]-1)

psi_exp = digamma(p_exp[1]*tp^p_exp[2])

up_gam = c(p_gam[1]*tp^p_gam[2],p_gam[1]*tp^p_gam[2])

lo_gam = c(p_gam[1]*tp^p_gam[2]+1,p_gam[1]*tp^p_gam[2] +1)

nder_gam = p_gam[2]*p_gam[1]*tp^(p_gam[2]-1)

psi_gam = digamma(p_gam[1]*tp^p_gam[2])

up_lnorm = c(p_lnorm[1]*tp^p_lnorm[2],p_lnorm[1]*tp^p_lnorm[2])

lo_lnorm = c(p_lnorm[1]*tp^p_lnorm[2]+1,p_lnorm[1]*tp^p_lnorm[2] +1)

nder_lnorm = p_lnorm[2]*p_lnorm[1]*tp^(p_lnorm[2]-1)

psi_lnorm = digamma(p_lnorm[1]*tp^p_lnorm[2])

f1_unif[i] = integrate(funcUnif2, lower= 0.01, upper = p_unif[3], p =

p_unif, t= tp, nder = nder_unif, psi = psi_unif, up =

up_unif, lo = lo_unif)$value

f1_exp[i] = integrate(funcExp2, lower= 0.01, upper = p_exp[3], p =

p_exp, t= tp, nder = nder_exp, psi = psi_exp, up = up_exp,

lo = lo_exp)$value

f1_gam[i] = integrate(funcGam2, lower= 0.01, upper = p_gam[3], p =

p_gam, t= tp, nder = nder_gam, psi = psi_gam, up = up_gam,

lo = lo_gam)$value

f1_lnorm[i] = integrate(funcLnorm2, lower= 0.01, upper = p_lnorm[3], p

= p_lnorm, t= tp, nder = nder_lnorm, psi = psi_lnorm, up

= up_lnorm, lo = lo_lnorm)$value

}

s_ny_unif = c()

s_ny_exp = c()

s_ny_gam = c()

s_ny_lnorm = c()

tauUnif = function(s,t,p){

pgamma(s, p[1]*t^p[2])*1/p[4]

}
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tauExp = function(s, t,p){

pgamma(s, p[1]*t^p[2])*dexp(s,p[4])

}

tauGam = function(s, t, p){

pgamma(s, p[1]*t^p[2])*dgamma(s,p[4],p[5])

}

tauLnorm = function(s, t,p){

pgamma(s, p[1]*t^p[2])*dlnorm(s,p[4],p[5])

}

for(k in 1:length(t)){

tp = t[k]

integral_unif = integrate(tauUnif, lower = 0.01, upper = p_unif[3], p =

p_unif, t = tp)$value

integral_exp = integrate(tauExp, lower = 0.01, upper = p_exp[3], p =

p_exp, t = tp)$value

integral_gam = integrate(tauGam, lower = 0.01, upper = p_gam[3], p =

p_gam, t = tp)$value

integral_lnorm = integrate(tauLnorm, lower = 0.01, upper = p_lnorm[3], p

= p_lnorm, t = tp)$value

s_ny_unif[k] = (1-p_unif[3]/p_unif[4])*pgamma(p_unif[3],p_unif[1]

*tp^p_unif[2])+ integral_unif

s_ny_exp[k] = (1-pexp(p_exp[3],p_exp[4]))*pgamma(p_exp[3],p_exp[1]

*tp^p_exp[2]) + integral_exp

s_ny_gam[k] = (1-pgamma(p_gam[3],p_gam[4],p_gam[5]))

*pgamma(p_gam[3],p_gam[1]*tp^p_gam[2]) + integral_gam

s_ny_lnorm[k] = (1 plnorm(p_lnorm[3],p_lnorm[4],p_lnorm[5]))

*pgamma(p_lnorm[3],p_lnorm[1]*tp^p_lnorm[2])+ integral_lnorm

}

lambda1_unif = f1_unif /s_ny_unif

lambda1_exp = f1_exp /s_ny_exp

lambda1_gam = f1_gam /s_ny_gam

lambda1_lnorm = f1_lnorm /s_ny_lnorm

require(caTools)

Lambda_unif = c()

Lambda_exp = c()

Lambda_gam = c()

Lambda_lnorm = c()

for(i in 1:length(t)){

t_vec = t[1:i]

lambda_vec_unif = lambda1_unif[1:i]

lambda_vec_exp = lambda1_exp[1:i]

lambda_vec_gam = lambda1_gam[1:i]

lambda_vec_lnorm = lambda1_lnorm[1:i]
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Lambda_unif[i] = trapz(t_vec,lambda_vec_unif)

Lambda_exp[i] = trapz(t_vec,lambda_vec_exp)

Lambda_gam[i] = trapz(t_vec,lambda_vec_gam)

Lambda_lnorm[i] = trapz(t_vec,lambda_vec_lnorm)

}

plot(T,FZ.star,type="s", ylim =c(0,1), ylab =expression(F[Z]^"*"),

xlab = "t")

lines(t,F1_unif,lty=2 ,col ="orange")

lines(t,F1_exp,lty=2, col ="red")

lines(t,F1_gam,lty=2, col = "blue")

lines(t,F1_lnorm,lty=2, col = "forestgreen")

legend(60,1, c(expression(paste("unif ",hat(F)[Z]^"*"*(t))),

expression(paste("exp ",hat(F)[Z]^"*"*(t))),

expression(paste("gamma ",hat(F)[Z]^"*"*(t))),

expression(paste("lognorm ",hat(F)[Z]^"*"*(t))),

expression(paste("non-par ",hat(F)[Z]^"*"*(t)))), lty=c(2,2,2,2,1),

lwd=c(1,1,1,1,1),col=c("orange", "red", "blue", "forestgreen","black"),

bty ="n",cex=0.9)

plot(T,N_A,type="s", ylim =c(0,1.5), ylab =expression(Lambda[Z]^"*"),

xlab = "t")

lines(t,Lambda_unif,lty = 2, col ="orange")

lines(t,Lambda_exp,lty = 2, col ="red")

lines(t,Lambda_gam,lty = 2, col = "blue")

lines(t,Lambda_lnorm,lty = 2, col = "forestgreen")

legend(0,1.5, c(expression(paste("unif ",hat(Lambda)[Z]^"*"*(t))),

expression(paste("exp ",hat(Lambda)[Z]^"*"*(t))),

expression(paste("gamma ",hat(Lambda)[Z]^"*"*(t))),

expression(paste("lognorm ",hat(Lambda)[Z]^"*"*(t))),

expression(paste("non-par ",hat(Lambda)[Z]^"*"*(t)))), lty=c(2,2,2,2,1),

lwd=c(1,1,1,1,1),col=c("orange", "red", "blue", "forestgreen","black"),

bty ="n",cex=0.9)

# parametric estimates if net quantities

SZ_unif = c()

SZ_exp = c()

SZ_gam = c()

SZ_lnorm = c()

funk_unif = function(s, p, t){

pgamma(s, p[1]*t^p[2])*dunif(s,0,p[4])

}

funk_exp = function(s, p, t){

pgamma(s, p[1]*t^p[2])*dexp(s,p[4])

}

funk_gam = function(s, p, t){

pgamma(s, p[1]*t^p[2])*dgamma(s,p[4],p[5])
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}

funk_lnorm = function(s, p, t){

pgamma(s, p[1]*t^p[2])*dlnorm(s,p[4],p[5])

}

for(i in 1:length(t)){

SZ_unif[i] = integrate(funk_unif, lower = 0, upper = Inf, p = p_unif,

t = t[i])$value

SZ_exp[i] = integrate(funk_exp, lower = 0, upper = Inf, p = p_exp,

t = t[i])$value

SZ_gam[i] = integrate(funk_gam, lower = 0, upper = 100, p = p_gam,

t = t[i])$value

SZ_lnorm[i] = integrate(funk_lnorm, lower = 0, upper = Inf, p = p_lnorm,

t = t[i])$value

}

# OBS: integratiion does not work for all datasets or parameter values.

# If not, try with a large number instead of Inf as upper limit

SX_unif = pgamma(p_unif[3], p_unif[1]*t^p_unif[2])

SX_exp = pgamma(p_exp[3], p_exp[1]*t^p_exp[2])

SX_gam = pgamma(p_gam[3], p_gam[1]*t^p_gam[2])

SX_lnorm = pgamma(p_lnorm[3], p_lnorm[1]*t^p_lnorm[2])

pdf_x_unif = c()

pdf_x_exp = c()

pdf_x_gam = c()

pdf_x_lnorm = c()

pdf_z_unif = c()

pdf_z_exp = c()

pdf_z_gam = c()

pdf_z_lnorm = c()

funk2_unif = function(s,p, t, up, lo, nder, psi){

(nder*(psi-log(s))*pgamma(s,p[1]*t^p[2]) +

(nder/((p[1]*t^p[2])^2*gamma(p[1]*t^p[2])))*((s)^(p[1]*t^p[2]))

*genhypergeo(up,lo,-s,tol=0, maxiter=2000, check_mod=TRUE,polynomial=

FALSE, debug=FALSE, series=TRUE))*dunif(s,0,p[4])

}

funk2_exp = function(s,p, t, up, lo, nder, psi){

(nder*(psi-log(s))*pgamma(s,p[1]*t^p[2]) +

(nder/((p[1]*t^p[2])^2*gamma(p[1]*t^p[2])))*((s)^(p[1]*t^p[2]))

*genhypergeo(up,lo,-s,tol=0, maxiter=2000, check_mod=TRUE,polynomial=

FALSE, debug=FALSE, series=TRUE))*(dexp(s,p[4]))

}

funk2_gam = function(s,p, t, up, lo, nder, psi){

(nder*(psi-log(s))*pgamma(s,p[1]*t^p[2]) +

(nder/((p[1]*t^p[2])^2*gamma(p[1]*t^p[2])))*((s)^(p[1]*t^p[2]))
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*genhypergeo(up,lo,-s,tol=0, maxiter=2000, check_mod=TRUE,polynomial=

FALSE, debug=FALSE, series=TRUE))*(dgamma(s,p[4],p[5]))

}

funk2_lnorm = function(s,p, t, up, lo, nder, psi){

(nder*(psi-log(s))*pgamma(s,p[1]*t^p[2]) +

(nder/((p[1]*t^p[2])^2*gamma(p[1]*t^p[2])))*((s)^(p[1]*t^p[2]))

*genhypergeo(up,lo,-s,tol=0, maxiter=2000, check_mod=TRUE,polynomial=

FALSE,debug=FALSE, series=TRUE))*(dlnorm(s,p[4],p[5]))

}

for(i in 1:length(t)){

tp = t[i]

up_unif = c(p_unif[1]*tp^p_unif[2],p_unif[1]*tp^p_unif[2])

lo_unif = c(p_unif[1]*tp^p_unif[2]+1,p_unif[1]*tp^p_unif[2] +1)

nder_unif = p_unif[2]*p_unif[1]*tp^(p_unif[2]-1)

psi_unif = digamma(p_unif[1]*tp^p_unif[2])

fun_unif = genhypergeo(up_unif,lo_unif,-p_unif[3],tol=0, maxiter=2000,

check_mod=TRUE,polynomial=FALSE, debug=FALSE, series=TRUE)

pdf_x_unif[i] = (nder_unif*(psi_unif-log(p_unif[3]))

*pgamma(p_unif[3],p_unif[1]*tp^p_unif[2]) +

(nder_unif/((p_unif[1]*tp^p_unif[2])^2*gamma(p_unif[1]

*tp^p_unif[2])))*((p_unif[3])^(p_unif[1]*tp^p_unif[2]))

*fun_unif)

pdf_z_unif[i] = integrate(funk2_unif, lower = 0, upper = Inf p = p_unif,

t = tp, up = up_unif, lo = lo_unif, nder = nder_unif,

psi = psi_unif,subdivisions=2000)$value

up_exp = c(p_exp[1]*tp^p_exp[2],p_exp[1]*tp^p_exp[2])

lo_exp = c(p_exp[1]*tp^p_exp[2]+1,p_exp[1]*tp^p_exp[2] +1)

nder_exp = p_exp[2]*p_exp[1]*tp^(p_exp[2]-1)

psi_exp = digamma(p_exp[1]*tp^p_exp[2])

fun_exp = genhypergeo(up_exp,lo_exp,-p_exp[3],tol=0, maxiter=2000,

check_mod=TRUE,polynomial=FALSE, debug=FALSE, series=TRUE)

pdf_x_exp[i] = (nder_exp*(psi_exp-log(p_exp[3]))

*pgamma(p_exp[3],p_exp[1]*tp^p_exp[2]) +

(nder_exp/((p_exp[1]*tp^p_exp[2])^2*gamma(p_exp[1]

*tp^p_exp[2])))*((p_exp[3])^(p_exp[1]*tp^p_exp[2]))

*fun_exp)

pdf_z_exp[i] = integrate(funk2_exp, lower = 0, upper = Inf, p = p_exp,

t = tp, up = up_exp, lo = lo_exp, nder = nder_exp, psi =

psi_exp,subdivisions = 10000)$value

up_gam = c(p_gam[1]*tp^p_gam[2],p_gam[1]*tp^p_gam[2])

lo_gam = c(p_gam[1]*tp^p_gam[2]+1,p_gam[1]*tp^p_gam[2] +1)

nder_gam = p_gam[2]*p_gam[1]*tp^(p_gam[2]-1)

psi_gam = digamma(p_gam[1]*tp^p_gam[2])

fun_gam = genhypergeo(up_gam,lo_gam,-p_gam[3],tol=0, maxiter=2000,
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check_mod=TRUE,polynomial=FALSE, debug=FALSE, series=TRUE)

pdf_x_gam[i] = (nder_gam*(psi_gam-log(p_gam[3]))

*pgamma(p_gam[3],p_gam[1]*tp^p_gam[2]) +

(nder_gam/((p_gam[1]*tp^p_gam[2])^2

*gamma(p_gam[1]*tp^p_gam[2])))*((p_gam[3])

^(p_gam[1]*tp^p_gam[2]))*fun_gam)

pdf_z_gam[i] = integrate(funk2_gam, lower = 0, upper = Inf, p = p_gam,

t = tp, up = up_gam, lo = lo_gam, nder = nder_gam, psi

= psi_gam,subdivisions=8000)$value

up_lnorm = c(p_lnorm[1]*tp^p_lnorm[2],p_lnorm[1]*tp^p_lnorm[2])

lo_lnorm = c(p_lnorm[1]*tp^p_lnorm[2]+1,p_lnorm[1]*tp^p_lnorm[2] +1)

nder_lnorm = p_lnorm[2]*p_lnorm[1]*tp^(p_lnorm[2]-1)

psi_lnorm = digamma(p_lnorm[1]*tp^p_lnorm[2])

fun_lnorm = genhypergeo(up_lnorm,lo_lnorm,-p_lnorm[3],tol=0, maxiter =

2000, check_mod=TRUE,polynomial=FALSE, debug=FALSE, series

=TRUE)

pdf_x_lnorm[i] = (nder_lnorm*(psi_lnorm-log(p_lnorm[3]))

*pgamma(p_lnorm[3],p_lnorm[1]*tp^p_lnorm[2]) +

(nder_lnorm/((p_lnorm[1]*tp^p_lnorm[2])^2

*gamma(p_lnorm[1]*tp^p_lnorm[2])))*((p_lnorm[3])

^(p_lnorm[1]*tp^p_lnorm[2]))*fun_lnorm)

pdf_z_lnorm[i] = integrate(funk2_lnorm, lower = 0, upper = Inf, p =

p_lnorm, t = tp, up = up_lnorm, lo = lo_lnorm, nder =

nder_lnorm, psi =psi_lnorm, subdivisions=10000)$value

}

# OBS: integration does not work for all datasets or parameter values.

# If not, try with a large number instead of Inf as upper limit

haz_z_unif = pdf_z_unif/SZ_unif

haz_z_exp = pdf_z_exp/SZ_exp

haz_z_gam = pdf_z_gam/SZ_gam

haz_z_lnorm = pdf_z_lnorm/SZ_lnorm

haz_x_unif = pdf_x_unif/SX_unif

haz_x_exp = pdf_x_exp/SX_exp

haz_x_gam = pdf_x_gam/SX_gam

haz_x_lnorm = pdf_x_lnorm/SX_lnorm

D.2.4 Functions used by the estimation function estSemi()
(semi-competing risks)

lklhUnifSemi = function(param,x,z,xz,z_o,tau_o, tau){

# Purpose: find an expression for the log-likelihood function in the

# uniform model for semi-competing risks data, with or

# without censoring

# Input:
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# - param: vector of starting values for the parameters a,b,c and A

# - x : vector of observations of times to terminal event

# - z : vector of observations of times to non-terminal event

# - xz : vector of observations of times to terminal event (belonging

# to the z’s)

# - z_o : vector of observations of times to non-terminal event

# - tau_o: vector of censored observations (belonging to the z_o’s)

# - tau : vector of censored observations

# (z_o, tau_o and tau are all = 0 if there is no censoring)

# Output:

# - -lnL: minus the log-likelihood function, which will be minimized

# by optim() in estSemi()

# to make the code easier to read we denote the parameters by:

a = param[1]

b = param[2]

c = param[3]

A = param[4]

m = length(x)

n = length(z)

w = length(z_o)

r = length(tau)

density_x = c()

density_zx = c()

density_tau = c()

density_zo = c()

require(hypergeo)

for(i in 1:m){

# case 1: observe only x

xp = x[i]

up = c(a*xp^b,a*xp^b)

lo = c(a*xp^b+1,a*xp^b +1)

nder = b*a*xp^(b-1)

psi = digamma(a*xp^b)

fun = genhypergeo(up,lo,-c,tol=0, maxiter=2000, check_mod=TRUE,

polynomial= FALSE, debug=FALSE, series=TRUE)

density_x[i] = (nder*(psi-log(c))*pgamma(c,a*xp^b) +

(nder/((a*xp^b)^2*gamma(a*xp^b)))*((c)^(a*xp^b))*fun)

*(1-c/A)

}

for(j in 1:n){

# case 2: observe z and x

zp = z[j]

x_zp = xz[j]
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up_z = c(a*zp^b,a*zp^b)

lo_z = c(a*zp^b+1,a*zp^b +1)

nder_z = b*a*zp^(b-1)

psi_z = digamma(a*zp^b)

up_xz = c(a*x_zp^b - a*zp^b,a*x_zp^b- a*zp^b)

lo_xz = c((a*x_zp^b - a*zp^b)+1,(a*x_zp^b-a*zp^b) +1)

nder_xz = b*a*x_zp^(b-1)

psi_xz = digamma(a*x_zp^b - a*zp^b)

density_zx[j] = integrate(unifZXfunc, lower = 0.01, upper = c, a = a,

b = b ,c=c, z = zp, up_z = up_z, lo_z = lo_z, nder_z

= nder_z, psi_z = psi_z, A = A, x_z = x_zp,up_xz =

up_xz, lo_xz = lo_xz, nder_xz = nder_xz, psi_xz =

psi_xz)$value

}

if(length(z_o) ==1 && z_o ==0){

density_zo = 1

}else{

for(l in 1:w){

# case 3: observe z_o and censoring time tau_o

z_op = z_o[l]

tau_op = tau_o[l]

up = c(a*z_op^b,a*z_op^b)

lo = c(a*z_op^b+1,a*z_op^b +1)

nder = b*a*z_op^(b-1)

psi = digamma(a*z_op^b)

density_zo[l] = integrate(unifZOfunc, lower= 0.01, upper = c, a = a,

b = b, c = c, z= z_op, tau = tau_op, up = up, lo =

lo, nder = nder, psi = psi, A = A)$value

}

}

if(length(tau) ==1 && tau ==0){

density_tau = 1

}else{

for(k in 1:r){

# case 4: observe only tau

tau_p = tau[k]

integral = integrate(unifTAUfunc, lower = 0.01, upper = c, a = a, b =

b, tau = tau_p, A=A)$value

density_tau[k] = (1-c/A)*pgamma(c,a*tau_p^b) + integral

}

}

-(sum(log(density_x))+sum(log(density_zx))+ sum(log(density_zo)) +

sum(log(density_tau)))
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}

unifTAUfunc = function(s, a,b,tau,A){

pgamma(s, a*tau^b)*1/A

}

unifZOfunc = function(s, a, b, c, z, tau, up, lo, nder, psi, A){

(nder*(psi-log(s))*pgamma(s,a*z^b) +

(nder/((a*z^b)^2*gamma(a*z^b)))*((s)^(a*z^b))*genhypergeo(up,lo,-s,tol=0,

maxiter=2000, check_mod=TRUE,polynomial=FALSE,debug=FALSE, series=TRUE))

*pgamma(c-s, a*tau^b - a*z^b)*1/A

}

unifZXfunc = function(s,a, b,c, z, up_z, lo_z, nder_z, psi_z,A, x_z,up_xz,

lo_xz, nder_xz, psi_xz){

(nder_z*(psi_z-log(s))*pgamma(s,a*z^b) +

(nder_z/((a*z^b)^2*gamma(a*z^b)))*((s)^(a*z^b))*genhypergeo(up_z,lo_z,

-s,tol=0, maxiter=2000, check_mod=TRUE,polynomial=FALSE, debug=FALSE,

series=TRUE))*(nder_xz*(psi_xz-log(c-s))*pgamma(c-s,a*x_z^b- a*z^b) +

(nder_xz/((a*x_z^b-a*z^b)^2*gamma(a*x_z^b-a*z^b)))

*((c-s)^(a*x_z^b-a*z^b))*genhypergeo(up_xz,lo_xz,-(c-s),tol=0,

maxiter=2000, check_mod=TRUE,polynomial=FALSE, debug=FALSE,

series=TRUE))*1/A

}

lklhExpSemi = function(param,x,z,xz,z_o,tau_o, tau){

# Purpose: find an expression for the log-likelihood function in the

# exponential model for semi-competing risks data, with or

# without censoring

# Input:

# - param: vector of starting values for the parameters a,b,c and

# lambda_S

# - x : vector of observations of times to terminal event

# - z : vector of observations of times to non-terminal event

# - xz : vector of observations of times to terminal event (belonging

# to the z’s)

# - z_o : vector of observations of times to non-terminal event

# - tau_o: vector of censored observations (belonging to the z_o’s)

# - tau : vector of censored observations

# (z_o, tau_o and tau are 0 if there is no censoring)

# Output:

# - -lnL: minus the log-likelihood function, which will be minimized

# by optim() in estSemi()

# to make the code easier to read we denote the parameters by:

a = param[1]

b = param[2]

c = param[3]

lambda_s = param[4]
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m = length(x)

n = length(z)

w = length(z_o)

r = length(tau)

density_x = c()

density_zx = c()

density_tau = c()

density_zo = c()

require(hypergeo)

for(i in 1:m){

# case 1: observe only x

xp = x[i]

up = c(a*xp^b,a*xp^b)

lo = c(a*xp^b+1,a*xp^b +1)

nder = b*a*xp^(b-1)

psi = digamma(a*xp^b)

fun = genhypergeo(up,lo,-c,tol=0, maxiter=2000, check_mod=TRUE,

polynomial=FALSE, debug=FALSE, series=TRUE)

density_x[i] = (nder*(psi-log(c))*pgamma(c,a*xp^b) +

(nder/((a*xp^b)^2*gamma(a*xp^b)))*((c)^(a*xp^b))*fun)

*(1-pexp(c,lambda_s))

}

for(j in 1:n){

# case 2: observe z and x

zp = z[j]

x_zp = xz[j]

up_z = c(a*zp^b,a*zp^b)

lo_z = c(a*zp^b+1,a*zp^b +1)

nder_z = b*a*zp^(b-1)

psi_z = digamma(a*zp^b)

up_xz = c(a*x_zp^b - a*zp^b,a*x_zp^b- a*zp^b)

lo_xz = c((a*x_zp^b - a*zp^b)+1,(a*x_zp^b-a*zp^b) +1)

nder_xz = b*a*x_zp^(b-1)

psi_xz = digamma(a*x_zp^b - a*zp^b)

density_zx[j] = integrate(expZXfunc, lower = 0.01, upper = c, a = a,

b = b, c=c, z = zp, up_z = up_z, lo_z = lo_z, nder_z

= nder_z, psi_z = psi_z, lambda_s = lambda_s, x_z =

x_zp,up_xz = up_xz, lo_xz = lo_xz, nder_xz = nder_xz,

psi_xz = psi_xz)$value

}

if(length(z_o) ==1 && z_o ==0){

density_zo = 1

}else{
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for(l in 1:w){

# case 3: observe z and censoring time tau

z_op = z_o[l]

tau_op = tau_o[l]

up = c(a*z_op^b,a*z_op^b)

lo = c(a*z_op^b+1,a*z_op^b +1)

nder = b*a*z_op^(b-1)

psi = digamma(a*z_op^b)

density_zo[l] = integrate(expZOfunc, lower= 0.01, upper = c, a = a,

b = b, c = c, z= z_op, tau = tau_op, up = up, lo = lo,

nder = nder, psi = psi, lambda_s =lambda_s)$value

}

}

if(length(tau) ==1 && tau ==0){

density_tau = 1

}else{

for(k in 1:r){

# case 4: observe only tau

tau_p = tau[k]

integral = integrate(expTAUfunc, lower = 0.01, upper = c, a = a, b = b,

tau = tau_p, lambda_s=lambda_s)$value

density_tau[k] = (1-pexp(c,lambda_s))*pgamma(c,a*tau_p^b) + integral

}

}

-(sum(log(density_x))+sum(log(density_zx))+ sum(log(density_zo)) +

sum(log(density_tau)))

}

expTAUfunc = function(s, a,b,tau,lambda_s){

pgamma(s, a*tau^b)*dexp(s,lambda_s)

}

expZOfunc = function(s, a, b, c, z, tau, up, lo, nder, psi, lambda_s){

(nder*(psi-log(s))*pgamma(s,a*z^b) + (nder/((a*z^b)^2*gamma(a*z^b)))*

((s)^(a*z^b))*genhypergeo(up,lo,-s,tol=0, maxiter=2000, check_mod=TRUE,

polynomial=FALSE,debug=FALSE, series=TRUE))*pgamma(c-s, a*tau^b - a*z^b)

*dexp(s,lambda_s)

}

expZXfunc = function(s,a, b,c, z, up_z, lo_z, nder_z, psi_z,lambda_s, x_z,

up_xz, lo_xz, nder_xz, psi_xz){

(nder_z*(psi_z-log(s))*pgamma(s,a*z^b)+(nder_z/((a*z^b)^2*gamma(a*z^b)))

*((s)^(a*z^b))*genhypergeo(up_z,lo_z,-s,tol=0,

maxiter=2000,check_mod=TRUE,polynomial=FALSE,debug=FALSE,series=TRUE))*

(nder_xz*(psi_xz-log(c-s))*pgamma(c-s,a*x_z^b- a*z^b) +

(nder_xz/((a*x_z^b-a*z^b)^2*gamma(a*x_z^b-a*z^b)))

*((c-s)^(a*x_z^b-a*z^b))*genhypergeo(up_xz,lo_xz,-(c-s),tol=0, maxiter=

2000, check_mod=TRUE,polynomial=FALSE, debug=FALSE, series=TRUE))
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*dexp(s,lambda_s)

}

lklhGamSemi = function(param,x,z,xz,z_o,tau_o, tau){

# Purpose: find an expression for the log-likelihood function in the

# gamma model for semi-competing risks data, with or

# without censoring

# Input:

# - param: vector of starting values for the parameters a,b,c,alpha_S

# and beta_S

# - x : vector of observations of times to terminal event

# - z : vector of observations of times to non-terminal event

# - xz : vector of observations of times to terminal event (belonging

# to the z’s)

# - z_o : vector of observations of times to non-terminal event

# - tau_o: vector of censored observations (belonging to the z_o’s)

# - tau : vector of censored observations

# (z_o, tau_o and tau are 0 if there is no censoring)

# Output:

# - -lnL: minus the log-likelihood function, which will be minimized

# by optim() in estSemi()

# to make the code easier to read we denote the parameters by:

a = param[1]

b = param[2]

c = param[3]

alpha_s = param[4]

beta_s = param[5]

m = length(x)

n = length(z)

w = length(z_o)

r = length(tau)

density_x = c()

density_zx = c()

density_tau = c()

density_zo = c()

require(hypergeo)

for(i in 1:m){

#case 1: observe only x

xp = x[i]

up = c(a*xp^b,a*xp^b)

lo = c(a*xp^b+1,a*xp^b +1)

nder = b*a*xp^(b-1)

psi = digamma(a*xp^b)
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fun = genhypergeo(up,lo,-c,tol=0, maxiter=2000, check_mod=TRUE,

polynomial= FALSE, debug=FALSE, series=TRUE)

density_x[i] = (nder*(psi-log(c))*pgamma(c,a*xp^b) +

(nder/((a*xp^b)^2*gamma(a*xp^b)))*((c)^(a*xp^b))*fun)

*(1-pgamma(c,alpha_s,beta_s))

}

for(j in 1:n){

# case 2: observe z and x

zp = z[j]

x_zp = xz[j]

up_z = c(a*zp^b,a*zp^b)

lo_z = c(a*zp^b+1,a*zp^b +1)

nder_z = b*a*zp^(b-1)

psi_z = digamma(a*zp^b)

up_xz = c(a*x_zp^b - a*zp^b,a*x_zp^b- a*zp^b)

lo_xz = c((a*x_zp^b - a*zp^b)+1,(a*x_zp^b-a*zp^b) +1)

nder_xz = b*a*x_zp^(b-1)

psi_xz = digamma(a*x_zp^b - a*zp^b)

density_zx[j] = integrate(gamZXfunc, lower = 0.01, upper = c, a = a,

b = b, c = c, z = zp, up_z = up_z, lo_z = lo_z,

nder_z = nder_z, psi_z = psi_z, alpha_s = alpha_s,

beta_s = beta_s, x_z = x_zp, up_xz = up_xz, lo_xz =

lo_xz, nder_xz = nder_xz, psi_xz = psi_xz)$value

}

if(length(z_o) ==1 && z_o ==0){

density_zo = 1

}else{

for(l in 1:w){

# case 3: observe z and censoring time tau

z_op = z_o[l]

tau_op = tau_o[l]

up = c(a*z_op^b,a*z_op^b)

lo = c(a*z_op^b+1,a*z_op^b +1)

nder = b*a*z_op^(b-1)

psi = digamma(a*z_op^b)

density_zo[l] = integrate(gamZOfunc, lower= 0.01, upper = c, a = a,

b = b, c = c, z= z_op, tau = tau_op, up = up, lo =

lo, nder = nder, psi = psi, alpha_ =alpha_s, beta_s

= beta_s)$value

}

}

if(length(tau) ==1 && tau ==0){

density_tau = 1
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}else{

for(k in 1:r){

# case 4: observe only tau

tau_p = tau[k]

integral = integrate(gamTAUfunc, lower = 0.01, upper = c, a = a,b = b,

tau = tau_p, alpha_s=alpha_s, beta_s = beta_s)$value

density_tau[k] = (1-pgamma(c,alpha_s,beta_s))*pgamma(c,a*tau_p^b)

+ integral

}

}

-(sum(log(density_x))+sum(log(density_zx))+ sum(log(density_zo))

+ sum(log(density_tau)))

}

gamTAUfunc = function(s, a,b,tau,alpha_s,beta_s){

pgamma(s, a*tau^b)*dgamma(s,alpha_s,beta_s)

}

gamZOfunc = function(s, a, b, c, z, tau,up,lo,nder,psi,alpha_s,beta_s){

(nder*(psi-log(s))*pgamma(s,a*z^b) + (nder/((a*z^b)^2*gamma(a*z^b)))*

((s)^(a*z^b))*genhypergeo(up,lo,-s,tol=0, maxiter=2000, check_mod=TRUE,

polynomial=FALSE,debug=FALSE,series=TRUE))*pgamma(c-s, a*tau^b - a*z^b)

*dgamma(s,alpha_s, beta_s)

}

gamZXfunc = function(s,a, b,c, z, up_z, lo_z, nder_z, psi_z, alpha_s,

beta_s, x_z, up_xz, lo_xz, nder_xz, psi_xz){

(nder_z*(psi_z-log(s))*pgamma(s,a*z^b) + (nder_z/((a*z^b)^2

*gamma(a*z^b)))*((s)^(a*z^b))*genhypergeo(up_z,lo_z,-s,tol=0, maxiter

=2000, check_mod=TRUE,polynomial=FALSE, debug=FALSE, series=TRUE))

*(nder_xz*(psi_xz-log(c-s))*pgamma(c-s,a*x_z^b- a*z^b) +

(nder_xz/((a*x_z^b-a*z^b)^2*gamma(a*x_z^b-a*z^b)))

*((c-s)^(a*x_z^b-a*z^b))*genhypergeo(up_xz,lo_xz,-(c-s),tol=0,maxiter

=2000,check_mod=TRUE,polynomial=FALSE, debug=FALSE, series=TRUE))

*dgamma(s,alpha_s,beta_s)

}

lklhLnormSemi = function(param,x,z,xz,z_o,tau_o, tau){

# Purpose: find an expression for the log-likelihood function in the

# lognormal model for semi-competing risks data, with or

# without censoring

# Input:

# - param: vector of starting values for the parameters a,b,c,mu_S

# and sigma_S

# - x : vector of observations of times to terminal event

# - z : vector of observations of times to non-terminal event

# - xz : vector of observations of times to terminal event (belonging

# to the z’s)
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# - z_o : vector of observations of times to non-terminal event

# - tau_o: vector of censored observations (belonging to the z_o’s)

# - tau : vector of censored observations

# (z_o, tau_o and tau are 0 if there is no censoring)

# Output:

# - -lnL: minus the log-likelihood function, which will be minimized

# by optim() in estSemi()

# to make the code easier to read we denote the parameters by:

a = param[1]

b = param[2]

c = param[3]

mu_s = param[4]

sigma_s = param[5]

m = length(x)

n = length(z)

w = length(z_o)

r = length(tau)

density_x = c()

density_zx = c()

density_tau = c()

density_zo = c()

require(hypergeo)

for(i in 1:m){

# case 1: observe only x

xp = x[i]

up = c(a*xp^b,a*xp^b)

lo = c(a*xp^b+1,a*xp^b +1)

nder = b*a*xp^(b-1)

psi = digamma(a*xp^b)

fun = genhypergeo(up,lo,-c,tol=0, maxiter=2000, check_mod=TRUE,

polynomial= FALSE, debug=FALSE, series=TRUE)

density_x[i] = (nder*(psi-log(c))*pgamma(c,a*xp^b) +

(nder/((a*xp^b)^2*gamma(a*xp^b)))*((c)^(a*xp^b))*fun)

*(1-plnorm(c,mu_s,sigma_s))

}

for(j in 1:n){

# case 2: observe z and x

zp = z[j]

x_zp = xz[j]

up_z = c(a*zp^b,a*zp^b)

lo_z = c(a*zp^b+1,a*zp^b +1)

nder_z = b*a*zp^(b-1)

psi_z = digamma(a*zp^b)
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up_xz = c(a*x_zp^b - a*zp^b,a*x_zp^b- a*zp^b)

lo_xz = c((a*x_zp^b - a*zp^b)+1,(a*x_zp^b-a*zp^b) +1)

nder_xz = b*a*x_zp^(b-1)

psi_xz = digamma(a*x_zp^b - a*zp^b)

density_zx[j] = integrate(lnormZXfunc,lower = 0.01, upper = c, a = a,

b = b,c=c, z = zp, up_z = up_z, lo_z = lo_z, nder_z

= nder_z, psi_z = psi_z,mu_s=mu_s, sigma_s = sigma_s,

x_z = x_zp, up_xz = up_xz, lo_xz = lo_xz, nder_xz =

nder_xz, psi_xz = psi_xz)$value

}

if(length(z_o) ==1 && z_o ==0){

density_zo = 1

}else{

for(l in 1:w){

# case 3: observe z and censoring time tau

z_op = z_o[l]

tau_op = tau_o[l]

up = c(a*z_op^b,a*z_op^b)

lo = c(a*z_op^b+1,a*z_op^b +1)

nder = b*a*z_op^(b-1)

psi = digamma(a*z_op^b)

density_zo[l] = integrate(lnormZOfunc, lower= 0.01, upper = c, a = a,

b = b, c = c, z= z_op, tau = tau_op, up = up, lo = lo,

nder = nder, psi = psi, mu_s = mu_s, sigma_ s=

sigma_s)$value

}

}

if(length(tau) ==1 && tau ==0){

density_tau = 1

}else{

for(k in 1:r){

# case 4: observe only tau

tau_p = tau[k]

integral = integrate(lnormTAUfunc, lower = 0.01, upper = c, a = a,

b = b, tau = tau_p, mu_s=mu_s, sigma_s = sigma_s)$value

density_tau[k] = (1-plnorm(c,mu_s,sigma_s))*pgamma(c,a*tau_p^b)

+ integral

}

}

-(sum(log(density_x))+sum(log(density_zx))+ sum(log(density_zo))

+ sum(log(density_tau)))

}

lnormTAUfunc = function(s, a,b,tau,mu_s,sigma_s){
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pgamma(s, a*tau^b)*dlnorm(s,mu_s,sigma_s)

}

lnormZOfunc = function(s, a, b, c, z, tau, up, lo,nder,psi,mu_s,sigma_s){

(nder*(psi-log(s))*pgamma(s,a*z^b) + (nder/((a*z^b)^2*gamma(a*z^b)))

*((s)^(a*z^b))*genhypergeo(up,lo,-s,tol=0, maxiter=2000, check_mod=TRUE,

polynomial=FALSE,debug=FALSE,series=TRUE))*pgamma(c-s, a*tau^b - a*z^b)

*dlnorm(s,mu_s, sigma_s)

}

lnormZXfunc = function(s,a, b,c, z, up_z, lo_z, nder_z, psi_z, mu_s,

sigma_s, x_z, up_xz, lo_xz, nder_xz, psi_xz){

(nder_z*(psi_z-log(s))*pgamma(s,a*z^b) + (nder_z/((a*z^b)^2

*gamma(a*z^b)))*((s)^(a*z^b))*genhypergeo(up_z,lo_z,-s,tol=0, maxiter

=2000, check_mod=TRUE,polynomial=FALSE, debug=FALSE, series=TRUE))

*(nder_xz*(psi_xz-log(c-s))*pgamma(c-s,a*x_z^b- a*z^b) +

(nder_xz/((a*x_z^b-a*z^b)^2*gamma(a*x_z^b-a*z^b)))*((c-s)^(a*x_z^b-

a*z^b))*genhypergeo(up_xz,lo_xz,-(c-s),tol=0, maxiter=2000,

check_mod=TRUE,polynomial=FALSE, debug=FALSE, series=TRUE))

*dlnorm(s,mu_s,sigma_s)

}

lklhNormSemi = function(param,x,z,xz,z_o,tau_o,tau){

# Purpose: find an expression for the log-likelihood function in the

# normal model for semi-competing risks data, with or

# without censoring

# Input:

# - param: vector of starting values for the parameters a,b,c,mu_S

# and sigma_S

# - x : vector of observations of times to terminal event

# - z : vector of observations of times to non-terminal event

# - xz : vector of observations of times to terminal event (belonging

# to the z’s)

# - z_o : vector of observations of times to non-terminal event

# - tau_o: vector of censored observations (belonging to the z_o’s)

# - tau : vector of censored observations

# (z_o, tau_o and tau are 0 if there is no censoring)

# Output:

# - -lnL: minus the log-likelihood function, which will be minimized

# by optim() in estSemi()

# to make the code easier to read we denote the parameters by:

a = param[1]

b = param[2]

c = param[3]

mu_s = param[4]

sigma_s = param[5]

m = length(x)
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n = length(z)

w = length(z_o)

r = length(tau)

density_x = c()

density_zx = c()

density_tau = c()

density_zo = c()

require(hypergeo)

for(i in 1:m){

# case 1: observe only x

xp = x[i]

up = c(a*xp^b,a*xp^b)

lo = c(a*xp^b+1,a*xp^b +1)

nder = b*a*xp^(b-1)

psi = digamma(a*xp^b)

fun = genhypergeo(up,lo,-c,tol=0, maxiter=2000, check_mod=TRUE,

polynomial= FALSE, debug=FALSE, series=TRUE)

density_x[i] = (nder*(psi-log(c))*pgamma(c,a*xp^b) +

(nder/((a*xp^b)^2*gamma(a*xp^b)))*((c)^(a*xp^b))*fun)

*(1-pnorm(c,mu_s,sigma_s))

}

for(j in 1:n){

# case 2: observe z and x

zp = z[j]

x_zp = xz[j]

up_z = c(a*zp^b,a*zp^b)

lo_z = c(a*zp^b+1,a*zp^b +1)

nder_z = b*a*zp^(b-1)

psi_z = digamma(a*zp^b)

up_xz = c(a*x_zp^b - a*zp^b,a*x_zp^b- a*zp^b)

lo_xz = c((a*x_zp^b - a*zp^b)+1,(a*x_zp^b-a*zp^b) +1)

nder_xz = b*a*x_zp^(b-1)

psi_xz = digamma(a*x_zp^b - a*zp^b)

density_zx[j] = integrate(normZXfunc,lower = 0.01, upper = c, a = a,

b = b,c=c, z = zp, up_z = up_z, lo_z = lo_z, nder_z

= nder_z, psi_z = psi_z,mu_s=mu_s, sigma_s = sigma_s,

x_z = x_zp, up_xz = up_xz, lo_xz = lo_xz, nder_xz =

nder_xz, psi_xz = psi_xz)$value

}

if(length(z_o) ==1 && z_o ==0){

density_zo = 1

}else{

for(l in 1:w){
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# case 3: observe z and censoring time tau

z_op = z_o[l]

tau_op = tau_o[l]

up = c(a*z_op^b,a*z_op^b)

lo = c(a*z_op^b+1,a*z_op^b +1)

nder = b*a*z_op^(b-1)

psi = digamma(a*z_op^b)

density_zo[l] = integrate(normZOfunc, lower= 0.01, upper = c, a = a,

b = b, c = c, z= z_op, tau = tau_op, up = up, lo = lo,

nder = nder, psi = psi, mu_s = mu_s, sigma_ s=

sigma_s)$value

}

}

if(length(tau) ==1 && tau ==0){

density_tau = 1

}else{

for(k in 1:r){

# case 4: observe only tau

tau_p = tau[k]

integral = integrate(normTAUfunc, lower = 0.01, upper = c, a = a,

b = b, tau = tau_p, mu_s=mu_s, sigma_s = sigma_s)$value

density_tau[k] = (1-pnorm(c,mu_s,sigma_s))*pgamma(c,a*tau_p^b)

+ integral

}

}

-(sum(log(density_x))+sum(log(density_zx))+ sum(log(density_zo))

+ sum(log(density_tau)))

}

normTAUfunc = function(s, a,b,tau,mu_s,sigma_s){

pgamma(s, a*tau^b)*dnorm(s,mu_s,sigma_s)

}

normZOfunc = function(s, a, b, c, z, tau, up, lo,nder,psi,mu_s,sigma_s){

(nder*(psi-log(s))*pgamma(s,a*z^b) + (nder/((a*z^b)^2*gamma(a*z^b)))

*((s)^(a*z^b))*genhypergeo(up,lo,-s,tol=0, maxiter=2000, check_mod=TRUE,

polynomial=FALSE,debug=FALSE,series=TRUE))*pgamma(c-s, a*tau^b - a*z^b)

*dnorm(s,mu_s, sigma_s)

}

normZXfunc = function(s,a, b,c, z, up_z, lo_z, nder_z, psi_z, mu_s,

sigma_s, x_z, up_xz, lo_xz, nder_xz, psi_xz){

(nder_z*(psi_z-log(s))*pgamma(s,a*z^b) + (nder_z/((a*z^b)^2

*gamma(a*z^b)))*((s)^(a*z^b))*genhypergeo(up_z,lo_z,-s,tol=0, maxiter

=2000, check_mod=TRUE,polynomial=FALSE, debug=FALSE, series=TRUE))

*(nder_xz*(psi_xz-log(c-s))*pgamma(c-s,a*x_z^b- a*z^b) +

(nder_xz/((a*x_z^b-a*z^b)^2*gamma(a*x_z^b-a*z^b)))*((c-s)^(a*x_z^b-

a*z^b))*genhypergeo(up_xz,lo_xz,-(c-s),tol=0, maxiter=2000,
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check_mod=TRUE,polynomial=FALSE, debug=FALSE, series=TRUE))

*dnorm(s,mu_s,sigma_s)

}

D.2.5 Bootstrapping

## non-parametric bootstrapping for the VHF data

# requires the sorted VHF data, here denoted data.sort_vhf

# column 1 contains event times t

# column 2 contains cause variable C, where C =1 means failure,

# C = 2 means PM and C = 3 means censoring

# number of bootstrap samples

B = 500

bootestimates = c()

b = 0

while(b < B){

# sample index values

ind = sample(seq(1,369),369,replace =TRUE)

# make bootstrap data sample

nydata = data.sort_vhf[ind,]

N = length(nydata[,1])

C = nydata[,2]

t = nydata[,1]

x = c()

z = c()

tau = c()

tellerx = 1

tellerz = 1

tellertau = 1

# make the vectors x and z from the indexing in the data

for(i in 1:N){

if(C[i] == 1){

x[tellerx] = t[i]

tellerx = tellerx +1

} else if (C[i] == 2){

z[tellerz] = t[i]

tellerz = tellerz + 1

} else{

tau[tellertau] = t[i]

tellertau = tellertau + 1

}

}

if(is.null(tau)==T){ tau = 0}

#vhf start-values (gamma model)
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p0 = c(4.65,0.24,16.7,122,6.97)

#ERROR HANDLING

out <- tryCatch({

# gamma model

opt = optim(par = p0 , fn=lklhGam, x = x, z=z, tau = tau, method =

"L-BFGS-B", lower = c(4, 0.15, 15, 116, 5.5),

upper = c(5.8,0.3,19,125, 8.0),control =list(parscale =

c(1,0.1,1,10,1)),hessian=T)

},

error=function(e) {

message("could not estimate")

return(NULL)

},

finally = {

message("trial completed")

}

)

if(is.null(out)==F){

message("estimation successful")

p = out$par

bootestimates = rbind(bootestimates,p)

b = b+1

}

}

## non-parametric bootstrapping of carcinoma data

# requires the carcinoma data as a table where each

# individual’s data is registered in a row.

# first column = time to the non-terminal event Z,

# second column = time to the terminal event X_Z.

# if only the terminal event is observed:

# first column = second column = X

# third column = delta, indicator variable which = 1 if the non-terminal

# event is observed and = 0 else

# number of bootstrap samples

B = 500

bootestimates = c()

b = 0

while(b < B){

#sample index values without replacement

ind = sample(seq(1,61),61,replace =TRUE)

# make bootstrap data sample

nydata = data[ind,]

N = length(nydata[,1])



Appendix D. R functions 199

x = c()

z = c()

xz = c()

tellerx = 1

tellerz = 1

# make the vectors x and z from the indexing in the data

for(i in 1:N){

if(nydata[i,3] == 0){

x[tellerx] = nydata[i,1]

tellerx = tellerx +1

} else if (nydata[i,3] == 1){

z[tellerz] = nydata[i,1]

xz[tellerz] = nydata[i,2]

tellerz = tellerz + 1

}

}

m = length(x)

n = length(z)

# carcinoma start-values

# for the gamma model use

# p0 = c(2.18,0.36,5.66,5.93,0.95)

# for the lognormal model use

p0 =c(1.84,0.38,5.00,1.66,0.48)

#ERROR HANDLING

out <- tryCatch({

# gamma model

# opt = optim(par = p0, fn=lklhGamSemi, x = x, z=z, xz = xz, z_o = 0,

tau_o = 0, tau = 0,method = "L-BFGS-B", lower=c(0.1,0.2,0.1,0.1,0.1),

upper= c(10,0.8,15,15,2.9), hessian=T)

# lognormal model

opt = optim(par = p0, fn=lklhLnormSemi, x = x, z=z, xz = xz,z_o = 0,

tau_o=0, tau=0, method = "L-BFGS-B", lower=c(0.1,0.2,0.1,0.001,0.1),

upper= c(8,0.9,16,3,1),hessian=T)

},

error=function(e) {

message("could not estimate")

return(NULL)

},

finally = {

message("trial completed")

}

)
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if(is.null(out)==F){

message("estimation successful")

p = out$par

bootestimates = rbind(bootestimates,p)

b = b+1

}

}

boot.BCa = function(x ,th0, th, stat, conf = 0.95){

# Purpose: calculate BCa intervals

# Input:

# x - table of data, e.g. carcinoma data or vhf data

# th0 - observed parameter values from data

# th - matrix of bootstrap replicates

# if gamma model:

# col1: alpha, col2: beta, col3: c, col4: alpha_s col5: beta_s

# if lognormal model:

# col1: alpha, col2: beta, col3: c, col4: mu_s col5: sigma_s

# stat - function that calculates the parameter estimates

# Output:

# list of original parameter estimates and the estimated

# BCa confidence intervals

n = nrow(x) # number of observations

B = 500 # number of bootstrap replicates

alpha = (1 + c(-conf, conf))/2

zalpha = qnorm(alpha)

#bias correction factor for each parameter

b1 = qnorm(sum(th[,1] < th0[1])/B)

b2 = qnorm(sum(th[,2] < th0[2])/B)

b3 = qnorm(sum(th[,3] < th0[3])/B)

b4 = qnorm(sum(th[,4] < th0[4])/B)

b5 = qnorm(sum(th[,5] < th0[5])/B)

#acceleration factor for each parameter

sub_est = c()

for(i in 1:n){

sub_est = rbind(sub_est,stat(x[-i,]))

}

L1 = mean(sub_est[,1]) - sub_est[,1]

L2 = mean(sub_est[,2]) - sub_est[,2]

L3 = mean(sub_est[,3]) - sub_est[,3]

L4 = mean(sub_est[,4]) - sub_est[,4]

L5 = mean(sub_est[,5]) - sub_est[,5]

a1 = sum(L1^3)/(6*sum(L1^2)^1.5)
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a2 = sum(L2^3)/(6*sum(L2^2)^1.5)

a3 = sum(L3^3)/(6*sum(L3^2)^1.5)

a4 = sum(L4^3)/(6*sum(L4^2)^1.5)

a5 = sum(L5^3)/(6*sum(L5^2)^1.5)

#BCa conf limits

beta1 = pnorm(b1 + (b1 + zalpha)/(1 - a1*(b1 + zalpha)))

beta2 = pnorm(b2 + (b2 + zalpha)/(1 - a2*(b2 + zalpha)))

beta3 = pnorm(b3 + (b3 + zalpha)/(1 - a3*(b3 + zalpha)))

beta4 = pnorm(b4 + (b4 + zalpha)/(1 - a4*(b4 + zalpha)))

beta5 = pnorm(b5 + (b5 + zalpha)/(1 - a5*(b5 + zalpha)))

limits1 = quantile(th[,1], beta1, type = 6)

limits2 = quantile(th[,2], beta2, type = 6)

limits3 = quantile(th[,3], beta3, type = 6)

limits4 = quantile(th[,4], beta4, type = 6)

limits5 = quantile(th[,5], beta5, type = 6)

return(list("est1" = th0[1], "BCa1" = limits1,

"est2" = th0[2], "BCa2" = limits2,

"est3" = th0[3], "BCa3" = limits3,

"est4" = th0[4], "BCa4" = limits4,

"est5" = th0[5], "BCa5" = limits5))

}

# two alternative definitions of the function stat():

# one for ordinary competing risks (VHF-data):

stat = function(x){

# Purpose: computes the statistic theta, in our case alpha, beta,

# c, and the parameters in the distribution of S for

# ordinary competing risks data

# Input:

# x - reduced sample

# Output:

# p - vector of parameter estimates

nydata = x

N = length(nydata[,1])

C = nydata[,2]

t = nydata[,1]

x = c()

z = c()

tau = c()

tellerx = 1

tellerz = 1

tellertau = 1
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# make the vectors x, z and tau from the indexing in the data

for(i in 1:N){

if(C[i] == 1){

x[tellerx] = t[i]

tellerx = tellerx +1

} else if (C[i] == 2){

z[tellerz] = t[i]

tellerz = tellerz + 1

} else{

tau[tellertau] = t[i]

tellertau = tellertau + 1

}

}

if(is.null(tau)==T){ tau = 0}

#vhf start-values (gamma model)

p0 = c(4.65,0.24,16.7,122,6.97)

# error handling

estOK = 0

while(estOK < 1){

out <- tryCatch({

# VHF gamma model

opt = optim(par = p0 , fn=lklhGam, x = x, z=z, tau = tau,method =

"L-BFGS-B", lower = c(4, 0.15, 15, 116, 5.5),

upper = c(5.8,0.3,19,125,8.0), control =list(parscale =

c(1,0.1,1,10,1)),hessian=T)

},

error=function(e) {

message("estimation failed")

return(NULL)

},

finally = {

message("trial completed")

}

)

if(is.null(out)==F){

message("estimation successful")

p = out$par

estOK = 1

}

}

return(p)

}

# and one for semi-competing risks data without censoring (carcinoma):

stat = function(x){

# Purpose: computes the statistic theta, in our case alpha, beta,
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# c, and the parameters in the distribution of S for

# semi-competing risks data

# Input:

# x - reduced sample

# Output:

# p - vector of parameter estimates

nydata = x

N = length(nydata[,1])

x = c()

z = c()

xz= c()

tellerx = 1

tellerz = 1

# make the vectors x,z and xz from the indexing in the data

for(i in 1:N){

if(nydata[i,3] == 0){

x[tellerx] = nydata[i,1]

tellerx = tellerx +1

} else if (nydata[i,3] == 1){

z[tellerz] = nydata[i,1]

xz[tellerz] = nydata[i,2]

tellerz = tellerz + 1

}

}

m = length(x)

n = length(z)

# carcinoma start-values

# gamma model

# p0 = c(2.18,0.36,5.66,5.93,0.95)

# lognormal model

p0 =c(1.84,0.38,5.00,1.66,0.48)

estOK = 0

while(estOK < 1){

#ERROR HANDLING

out <- tryCatch({

# gamma model

# opt = optim(par = p0, fn=lklhGamSemi, x = x, z=z, xz = xz,z_o= 0,

tau_o = 0, tau = 0, method ="L-BFGS-B", lower=c(1,0.2,1,1,0.1),

upper= c(3,0.9,6,6,2),hessian=T)

# lognormal model

opt = optim(par = p0,fn=lklhLnormSemi, x=x, z=z, xz = xz,z_o= 0,
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tau_o=0,tau=0 method="L-BFGS-B", lower = c(0.1,0.2,0.1,0.1,0.1),

upper = c(8,0.8,16,3,0.8),hessian=T)

},

error=function(e) {

message("could not estimate")

return(NULL)

},

finally = {

message("trial completed")

}

)

if(is.null(out)==F){

message("estimation successful")

p = out$par

estOK = 1

}

}

return(p)

}
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Output from R

In this appendix the outputs from R of the estimation done in chapters 7, 8 and 9
are displayed.

E.1 Simulation study - competing risks data

E.1.1 Uniform model

# simulate data from the uniform model

> data = simRandomS(c=5, a=5, b=1, A=10, type="unif", N= 1000)

# estimate back parameters in the uniform model

> est = condSurv(data$data, p0 = c(5,1,5,10), upper = c(10,2,14,21),

lower = c(0.1, 0.1, 0.1, 0.1), type = "unif")

> est

$par

a b c A

[1] 5.4523584 0.9922765 5.3410719 10.8534050

$std

a b c A

[1] 0.66080023 0.04452704 0.70786746 1.49632582

$logL

[1] -1064.135

$cor

a b c A

a 1.0000000 -0.8330705 0.9908657 0.9613122

b -0.8330705 1.0000000 -0.8172470 -0.7944439

c 0.9908657 -0.8172470 1.0000000 0.9696615

A 0.9613122 -0.7944439 0.9696615 1.0000000

$lower

a b c A

[1] 4.2995289 0.9087313 4.1192124 8.2834507

$upper

a b c A

[1] 6.914295 1.083502 6.925365 14.220692

205
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# estimate parameters in the basic model

> est = condSurv(data$data, p0 = c(5,1,5,2.5,0.5), type = "const")

> est

$par

a b c s q

[1] 3.1295303 1.0569807 2.9402547 1.2397494 0.4916526

$std

a b c s q

[1] 0.59378262 0.08979711 0.60534262 0.36949203 0.01656229

$logL

[1] -1087.523

$cor

a b c s q

a 1.000000000 -0.946311551 0.99114616 0.989286165 -0.008901023

b -0.946311551 1.000000000 -0.93067702 -0.951793358 0.006570545

c 0.991146161 -0.930677019 1.00000000 0.979165674 -0.010723955

s 0.989286165 -0.951793358 0.97916567 1.000000000 -0.002721713

q -0.008901023 0.006570545 -0.01072395 -0.002721713 1.000000000

$lower

a b c s q

[1] 2.1576110 0.8948512 1.9639730 0.6912563 0.4602390

$upper

a b c s q

[1] 4.5392612 1.2484848 4.4018416 2.2234568 0.5252103

# estimate parameters in the lognormal model

> est = condSurv(data$data, p0 = c(11.13,0.70,11.09,2.43,0.80),

upper = c(14,1.2,14,3,2), lower = c(6, 0.2, 6, 1,0.1), type = "lognorm")

> est

$par

a b c mu_s sigma_s

[1] 11.128125 0.696360 11.091949 2.428168 0.803065

$std

a b c mu_s sigma_s

[1] 2.31583549 0.07263501 2.33263146 0.21247678 0.09551545

$logL

[1] -1059.603

$cor

a b c mu_s sigma_s

a 1.0000000 -0.9535293 0.9979581 0.9853627 -0.8178452
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b -0.9535293 1.0000000 -0.9467626 -0.9322216 0.8832165

c 0.9979581 -0.9467626 1.0000000 0.9874022 -0.8016723

mu_s 0.9853627 -0.9322216 0.9874022 1.0000000 -0.7602878

sigma_s -0.8178452 0.8832165 -0.8016723 -0.7602878 1.0000000

$lower

a b c mu_s sigma_s

[1] 7.4007912 0.5676049 7.3450929 2.0454699 0.6360747

$upper

a b c mu_s sigma_s

[1] 16.7326935 0.8543217 16.7501391 2.8824683 1.0138958

E.1.2 Exponential model

# simulate data from the exponential model

> data = simRandomS(c=7, a=5, b=1, lambda_s= 1/10, type="expon", N= 1000)

# estimate back parameters in the exponential model

> est = condSurv(data$data, p0 = c(5,1,7,1/10), upper = c(10,2,14,2),

lower = c(0.1, 0.1, 0.1, 0.1), type = "expon")

> est

$par

a b c lambda_s

[1] 4.88950331 0.99432575 6.70684906 0.09927012

$std

a b c lambda_s

[1] 0.57471754 0.04007560 0.77282409 0.01286032

$logL

[1] -1275.883

$cor

a b c lambda_s

a 1.0000000 -0.8271299 0.9865128 -0.9241595

b -0.8271299 1.0000000 -0.7689095 0.7379054

c 0.9865128 -0.7689095 1.0000000 -0.9300622

lambda_s -0.9241595 0.7379054 -0.9300622 1.0000000

$lower

a b c lambda_s

[1] 3.88339664 0.91879998 5.35098278 0.07700952

$upper

a b c lambda_s

[1] 6.1562711 1.0760598 8.4062734 0.1279654

# estimate parameters in the basic model
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> est = condSurv(data$data, c(5,1,7,3.095,0.5), type ="const")

> est

$par

a b c s q

[1] 1.9437458 1.1758608 2.6866071 0.8086558 0.4837551

$std

a b c s q

[1] 0.31773190 0.07302182 0.42138276 0.20884065 0.01640193

$logL

[1] -1314.095

$cor

a b c s q

a 1.000000000 -0.919613573 0.979214577 0.9810371646 -0.0078037306

b -0.919613573 1.000000000 -0.861597818 -0.9098558256 0.0059129113

c 0.979214577 -0.861597818 1.000000000 0.9583941200 -0.0093735074

s 0.981037165 -0.909855826 0.958394120 1.0000000000 -0.0008053892

q -0.007803731 0.005912911 -0.009373507 -0.0008053892 1.0000000000

$lower

a b c s q

[1] 1.4109004 1.0411054 1.9755790 0.4874514 0.4526522

$upper

a b c s q

[1] 2.6778275 1.3280582 3.6535403 1.3415168 0.5169951

E.1.3 Gamma model

# simulate data from the gamma model

> data = simRandomS(c=7, a=5, b=1, alpha_s = 49/4, beta_s = 7/4, type=

"gamma", N= 1000)

# estimate back parameters in the gamma model

> est = condSurv(data$data, p0= c(5,1,7,49/4,7/4),upper = c(10,2,14,30,5),

lower = c(0.1, 0.1, 0.1, 0.1, 0.1), type = "gamma")

> est

$par

a b c alpha_s beta_s

[1] 3.841355 1.053434 5.458698 10.762508 1.916018

$std

a b c alpha_s beta_s

[1] 1.0977941 0.1229922 1.3639332 3.5498189 0.5212722

$logL

[1] -1377.681
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$cor

a b c alpha_s beta_s

a 1.00000000 -0.97948828 0.9950966 0.6714026 -0.07583677

b -0.97948828 1.00000000 -0.9617708 -0.7207250 -0.01662397

c 0.99509664 -0.96177082 1.0000000 0.6186256 -0.14635505

alpha_s 0.67140261 -0.72072498 0.6186256 1.0000000 0.68581919

beta_s -0.07583677 -0.01662397 -0.1463551 0.6858192 1.00000000

$lower

a b c alpha_s beta_s

[1] 2.1939211 0.8379626 3.3450328 5.6383868 1.1241316

$upper

a b c alpha_s beta_s

[1] 6.725861 1.324311 8.907950 20.543389 3.265742

# estimate parameters in the basic model

> est = condSurv(data$data, p0 = c(5,1,7,5.53,0.54), type ="const")

> est

$par

a b c s q

[1] 3.5104217 1.0581961 4.9842110 3.8440807 0.5026315

$std

a b c s q

[1] 0.95373452 0.11583314 1.18229470 1.03224219 0.01656741

$logL

[1] -1378.151

$cor

a b c s q

a 1.0000000000 -0.9815935010 0.9950038321 9.961205e-01 -1.688666e-04

b -0.9815935010 1.0000000000 -0.9675099177 -9.722442e-01 1.901939e-04

c 0.9950038321 -0.9675099177 1.0000000000 9.925339e-01 -2.778626e-04

s 0.9961205257 -0.9722441573 0.9925339245 1.000000e+00 2.017399e-05

q -0.0001688666 0.0001901939 -0.0002778626 2.017399e-05 1.000000e+00

$lower

a b c s q

[1] 2.6511119 0.8510979 3.1310323 2.2710817 0.4711237

$upper

a b c s q

[1] 5.9786254 1.3156556 7.9343785 6.5066185 0.5362594



210 Appendix E. Output from R

E.1.4 Lognormal model

# simulate data from the lognormal model

> data = simRandomS(c=7, a=5, b=1, mu_s = 2, sigma_s = 0.25, type =

"lognorm", N= 1000)

# estimate back parameters in the lognormal model

> est = condSurv(data$data,p0 =c(5,1,7,2,0.25),upper = c(8,1.5,10,3,0.5),

lower =c(2, 0.5, 4, 1, 0.1)type = "lognorm")

> est

$par

a b c mu_s sigma_s

[1] 4.0680990 1.0850722 5.8791031 1.7815489 0.2433203

$std

a b c mu_s sigma_s

[1] 1.08516998 0.11685029 1.36351485 0.23133096 0.04848929

$logL

[1] -1321.492

$cor

a b c mu_s sigma_s

a 1.0000000 -0.9787560 0.9948124 0.9931416 -0.5205515

b -0.9787560 1.0000000 -0.9605370 -0.9581883 0.5697002

c 0.9948124 -0.9605370 1.0000000 0.9989595 -0.4598813

mu_s 0.9931416 -0.9581883 0.9989595 1.0000000 -0.4471489

sigma_s -0.5205515 0.5697002 -0.4598813 -0.4471489 1.0000000

$lower

a b c mu_s sigma_s

[1] 2.4117282 0.8786016 3.7315732 1.3812386 0.1646442

$upper

a b c mu_s sigma_s

[1] 6.8620622 1.3400634 9.2625418 2.2978770 0.3595923

# estimate parameters in the basic model

> est = condSurv(data$data, c(5,1,7,5.9,0. 41), type ="const")

> est

$par

a b c s q

[1] 3.8198416 1.0916439 5.5070490 4.5919598 0.4834896

$std

a b c s q

[1] 0.99455512 0.11496758 1.24401946 1.12946991 0.01663226

$logL

[1] -1322.205
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$cor

a b c s q

a 1.0000000000 -0.9804360788 0.994967310 0.995419276 -0.0002700728

b -0.9804360788 1.0000000000 -0.965549136 -0.969437219 -0.0001650704

c 0.9949673105 -0.9655491358 1.000000000 0.991965660 -0.0018542618

s 0.9954192758 -0.9694372190 0.991965660 1.000000000 0.0019528383

q -0.0002700728 -0.0001650704 -0.001854262 0.001952838 1.0000000000

$lower

a b c s q

[1] 2.2930722 0.8880434 3.5369793 2.8354818 0.4519651

$upper

a b c s q

[1] 6.363162 1.341924 8.574432 7.436512 0.517213

E.2 Simulation study - semi-competing risks data

E.2.1 Uniform model

# simulate data from the uniform model

> data = simSemiCens(c=5,a=5,b=1,A=10,type="unif",N=1000)

# estimate back parameters in the uniform model

> est = estSemi(x=data$x, z=data$z, x_z=data$x_z, z_o=data$z_o, tau_o=

data$tau_o, tau=data$tau, p0=c(5,1,5,10), upper= c(7,1.2,7,12),

lower=c(3,0.6,3,8), type="unif")

> est

$par

a b c A

[1] 4.359639 1.044099 4.147613 8.302907

$std

a b c A

[1] 0.42793742 0.03812465 0.45065301 0.94949841

$logL

[1] -1226.953

$cor

a b c A

a 1.0000000 -0.8307446 0.9884136 0.9470393

b -0.8307446 1.0000000 -0.8007250 -0.7687389

c 0.9884136 -0.8007250 1.0000000 0.9575824

A 0.9470393 -0.7687389 0.9575824 1.0000000

$lower

a b c A
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[1] 3.5966318 0.9719865 3.3520495 6.6357077

$upper

a b c A

[1] 5.284514 1.121563 5.131993 10.388985

E.2.2 Exponential model

# simulate data from the exponential model

> data = simSemiCens(c=7,a=5,b=1,lambda_s=1/10,type="expon",N=1000)

# estimate back parameters in the exponential model

> est = estSemi(x=data$x, z=data$z, x_z=data$x_z, z_o=data$z_o, tau_o=

data$tau_o, tau = data$tau, p0 = c(5,1,7,1/10), upper =

c(6,1.2,8,0.15), lower=c(4,0.6,6,0.05), type="expon")

> est

$par

a b c lambda_s

[1] 5.20652289 0.96767871 7.17269943 0.09751067

$std

a b c lambda_s

[1] 0.58286753 0.03952583 0.75465342 0.01185323

$logL

[1] -1554.162

$cor

a b c lambda_s

a 1.0000000 -0.8883496 0.9892632 -0.9188265

b -0.8883496 1.0000000 -0.8381623 0.7937611

c 0.9892632 -0.8381623 1.0000000 -0.9246157

lambda_s -0.9188265 0.7937611 -0.9246157 1.0000000

$lower

a b c lambda_s

[1] 4.18075254 0.89322804 5.83612312 0.07683863

$upper

a b c lambda_s

[1] 6.4839716 1.0483349 8.8153756 0.1237441

E.2.3 Gamma model

# simulate data from the gamma model

> data = simSemiCens(c=7,a=5,b=1,alpha_s=49/4, beta_s =7/4 ,type="gamma",

N=1000)

# estimate back parameters in the gamma model

> est = estSemi(x=data$x, z=data$z, x_z=data$x_z, z_o=data$z_o, tau_o=
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data$tau_o, tau=data$tau, p0=c(5,1,7,49/4,7/4), upper=

c(7,1.2,9,14,2), lower=c(3,0.6,5,10,1), type="gamma")

> est

$par

a b c alpha_s beta_s

[1] 5.977629 0.963138 8.384926 13.054532 1.548342

$std

a b c alpha_s beta_s

[1] 0.93699944 0.06519331 1.15889965 1.86004242 0.20261157

$logL

[1] -1292.934

$cor

a b c alpha_s beta_s

a 1.0000000 -0.9522623 0.9939360 0.6262215 -0.3606337

b -0.9522623 1.0000000 -0.9239829 -0.7029166 0.2014730

c 0.9939360 -0.9239829 1.0000000 0.5960365 -0.4004466

alpha_s 0.6262215 -0.7029166 0.5960365 1.0000000 0.4939645

beta_s -0.3606337 0.2014730 -0.4004466 0.4939645 1.0000000

$lower

a b c alpha_s beta_s

[1] 4.3964265 0.8434726 6.3951477 9.8736505 1.1980611

$upper

a b c alpha_s beta_s

[1] 8.127522 1.099781 10.993802 17.260162 2.001035

E.2.4 Lognormal model

# simulate data from the lognormal model

data = simSemiCens(c=7, a=5, b=1, mu_s = 2, sigma_s=0.25,type="lognorm",

N = 1000)

# estimate back parameters in the lognormal model

> est = estSemi(x=data$x, z=data$z, x_z=data$x_z, z_o=data$z_o, tau_o=

data$tau_o, tau=data$tau, p0=c(5,1,7,2,0.25), upper=

c(7,1.2,9,4,0.4), lower=c(3,0.6,5,0.1,0.1), type="lognorm")

> est

$par

a b c mu_s sigma_s

[1] 4.6975142 1.0108667 6.7393923 1.9440112 0.2563841

$std

a b c mu_s sigma_s

[1] 0.58611658 0.05222002 0.75064433 0.11133174 0.01948182
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$logL

[1] -1277.885

$cor

a b c mu_s sigma_s

a 1.0000000 -0.9233959 0.9887799 0.9822202 -0.3662678

b -0.9233959 1.0000000 -0.8757601 -0.8659999 0.4780673

c 0.9887799 -0.8757601 1.0000000 0.9944276 -0.3265499

mu_s 0.9822202 -0.8659999 0.9944276 1.0000000 -0.2772342

sigma_s -0.3662678 0.4780673 -0.3265499 -0.2772342 1.0000000

$lower

a b c mu_s sigma_s

[1] 3.6784117 0.9135265 5.4176482 1.7376021 0.2209071

$upper

a b c mu_s sigma_s

[1] 5.9989586 1.1185789 8.3836024 2.1749395 0.2975585

E.3 Data analysis - VHF data

For this dataset we obtained better results using the parscale option in the optim()
function, which is not built in in the general condSurv() function. Therefore the
call to optim() including parscale is shown instead of the call to condSurv(). To
plot the conditional sub-survival curves for the VHF-data, run condSurv() with
these calls to optim() instead of the ones given in section D.2.1.

E.3.1 Uniform model

> opt = optim(par = c(0.01, 0.98, 0.36, 1.2), fn=lklhUnif, x = vhf_x, z =

vhf_z, tau = vhf_tau, method="L-BFGS-B", lower=c(0.001,0.6,0.3,1),

upper =c(0.05,1,1,3),control =list(parscale = c(0.01,0.1,1,1)),

hessian=T)

> p = opt$par

> hessian = opt$hessian

> std = sqrt(solve(hessian))

# make confidence intervals

> lower = p*exp(-1.96*diag(std)/p)

> upper = p*exp(1.96*diag(std)/p)

> list(par = p, std = diag(std), logL = -opt$value, cor =

cov2cor(solve(hessian)),lower=lower, upper = upper)

$par

a b c A

[1] 0.002722714 0.981088504 0.355242005 1.150123081

$std

a b c A

[1] 0.0003483071 0.0231150675 0.0822655982 0.2855749231
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$logL

[1] -2389.049

$cor

a b c A

a 1.0000000 -0.5964609 0.3723681 0.3516705

b -0.5964609 1.0000000 0.4599028 0.4371730

c 0.3723681 0.4599028 1.0000000 0.9453478

A 0.3516705 0.4371730 0.9453478 1.0000000

$lower

a b c A

[1] 0.002118892 0.936813132 0.225633023 0.706948153

$upper

a b c A

[1] 0.003498607 1.027456405 0.559301475 1.871117557

E.3.2 Exponential model

> opt = optim(par = c(0.005, 0.98, 0.37, 0.99), fn=lklhExp, x = vhf_x, z=

vhf_z,tau=vhf_tau,method ="L-BFGS-B",lower=c(0.001,0.6,0.25,0.4),

upper =c(0.05,1.1,1,1.5),control=list(parscale =

c(0.01,0.1,0.1,0.1)),hessian=T)

> p = opt$par

> hessian = opt$hessian

> std = sqrt(solve(hessian))

# make confidence intervals

> lower = p*exp(-1.96*diag(std)/p)

> upper = p*exp(1.96*diag(std)/p)

> list(par = p, std = diag(std), logL = -opt$value, cor =

cov2cor(solve(hessian)),lower=lower, upper = upper)

$par

a b c lambda_s

[1] 0.002707739 0.983180717 0.365285487 0.998944840

$std

a b c lambda_s

[1] 0.0003430045 0.0229936331 0.0822246500 0.2473211100

$logL

[1] -2389.753

$cor

a b c lambda_s

a 1.0000000 -0.6071946 0.3603825 -0.3329657

b -0.6071946 1.0000000 0.4575940 -0.4235559

c 0.3603825 0.4575940 1.0000000 -0.9193817
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lambda_S -0.3329657 -0.4235559 -0.9193817 1.0000000

$lower

a b c lambda_s

[1] 0.00211241 0.93913051 0.23497736 0.61488678

$upper

a b c lambda_s

[1] 0.003470845 1.029297117 0.567856776 1.622885417

E.3.3 Gamma model

> opt = optim(par = c(4.65,0.24,16.7,122,6.97), fn=lklhGam, x = vhf_x, z=

vhf_z, tau = vhf_tau ,method = "L-BFGS-B", lower =

c(4, 0.15, 15, 116, 5.5),upper = c(5.8,0.3,19,125, 8.0),control =

list(parscale = c(1,0.1,1,10,1)),hessian=T)

> p = opt$par

> hessian = opt$hessian

> std = sqrt(solve(hessian))

# make confidence intervals

> lower = p*exp(-1.96*diag(std)/p)

> upper = p*exp(1.96*diag(std)/p)

> list(par = p, std = diag(std), logL = -opt$value, cor =

cov2cor(solve(hessian)),lower=lower, upper = upper)

$par

a b c alpha_s beta_s

[1] 4.6497239 0.2397269 16.7150800 121.9852362 6.9725385

$std

a b c alpha_s beta_s

[1] 2.441352e-02 3.276978e-03 8.129194e-02 1.220926e+02 7.159346e+00

$logL

[1] -2377.063

$cor

a b c alpha_s beta_s

a 1.0000000 -0.5482942 0.172615257 -0.17335662 -0.174087725

b -0.5482942 1.0000000 0.271445958 0.45925493 0.457740950

c 0.1726153 0.2714460 1.000000000 0.01069039 0.005923669

alpha_s -0.1733566 0.4592549 0.010690392 1.00000000 0.999968524

beta_s -0.1740877 0.4577410 0.005923669 0.99996852 1.000000000

$lower

a b c alpha_s beta_s

[1] 4.6021188 0.2333893 16.5565048 17.1530264 0.9318971
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$upper

a b c alpha_s beta_s

[1] 4.6978214 0.2462366 16.8751741 867.5085978 52.1691632

E.3.4 Lognormal model

> opt = optim(par = c(4.69,0.24,16.7,2.86,0.09),fn=lklhLognorm, x = vhf_x,

z=vhf_z, tau = vhf_tau,method = "L-BFGS-B", lower =

c(4,0.15,15,2,0.05),upper = c(6,0.3,20,3.5, 0.15),control =

list(parscale = c(1,0.1,1,1,0.1)),hessian=T)

> p = opt$par

> hessian = opt$hessian

> std = sqrt(solve(hessian))

# make confidence intervals

> lower = p*exp(-1.96*diag(std)/p)

> upper = p*exp(1.96*diag(std)/p)

> list(par = p, std = diag(std), logL = -opt$value, cor =

cov2cor(solve(hessian)),lower=lower, upper = upper)

$par

a b c mu_s sigma_s

[1] 4.68309217 0.23851057 16.72049151 2.85920420 0.09036403

$std

a b c mu_s sigma_s

[1] 0.018456329 0.002782282 0.010374313 0.024293375 0.046665438

$logL

[1] -2377.047

$cor

a b c mu_s sigma_s

a 1.00000000 -0.33659890 -0.04916612 0.02344246 0.02651393

b -0.33659890 1.00000000 0.02887839 -0.44233645 -0.47016611

c -0.04916612 0.02887839 1.00000000 0.04145266 0.01676736

mu_s 0.02344246 -0.44233645 0.04145266 1.00000000 0.96433663

sigma_s 0.02651393 -0.47016611 0.01676736 0.96433663 1.00000000

$lower

a b c mu_s sigma_s

[1] 4.64705712 0.23311916 16.70017022 2.81198347 0.03284077

$upper

a b c mu_s sigma_s

[1] 4.7194067 0.2440267 16.7408375 2.9072179 0.2486439
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E.4 Data analysis - Carcinoma

E.4.1 Uniform model

> est = estSemi(x = car_x, z = car_z, x_z = car_xz, p0 =

c(0.17,0.69,0.80,1.75), upper= c(0.2,0.9,1,2), lower=

c(0.01,0.2,0.1,0.2), type ="unif")

> est

$par

a b c A

[1] 0.1675556 0.6877733 0.8027270 1.7487681

$std

a b c A

[1] 0.1370179 0.1044886 0.6615942 1.4616310

$logL

[1] -382.4325

$cor

a b c A

a 1.0000000 -0.9347591 0.9549628 0.9416651

b -0.9347591 1.0000000 -0.8039725 -0.7927773

c 0.9549628 -0.8039725 1.0000000 0.9860752

A 0.9416651 -0.7927773 0.9860752 1.0000000

$lower

a b c A

[1] 0.03373489 0.51065295 0.15959118 0.33984409

$upper

a b c A

[1] 0.8322207 0.9263279 4.0376331 8.9988025

E.4.2 Exponential model

> est = estSemi(x = car_x, z = car_z, x_z = car_xz, p0 =

c(0.14,0.71,0.68,0.88), upper= c(0.2,0.9,1,1), lower=

c(0.01,0.2,0.1,0.05), type ="expon")

> est

$par

a b c lambda_s

[1] 0.1383447 0.7143961 0.6806455 0.8824024

$std

a b c lambda_s

[1] 0.09619097 0.09202761 0.50281925 0.67967161

$logL
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[1] -382.9794

$cor

a b c lambda_s

a 1.0000000 -0.9081362 0.9336541 -0.9072017

b -0.9081362 1.0000000 -0.7212055 0.7040949

c 0.9336541 -0.7212055 1.0000000 -0.9686767

lambda_s -0.9072017 0.7040949 -0.9686767 1.0000000

$lower

a b c lambda_s

[1] 0.03540882 0.55499157 0.15999036 0.19499141

$upper

a b c lambda_s

[1] 0.5405219 0.9195849 2.8956639 3.9931704

E.4.3 Gamma model

> est = estSemi(x = car_x, z = car_z, x_z = car_xz, p0 =

c(2.18,0.36,5.66,5.93,0.95), upper= c(3,0.9,6,6,2), lower=

c(1,0.2,1,1,0.1), type ="gamma")

> est

$par

a b c alpha_s beta_s

[1] 2.1788318 0.3619981 5.6606065 5.9300986 0.9499155

$std

a b c alpha_s beta_s

[1] 3.5832024 0.1850263 6.7956321 4.5707542 0.7050852

$logL

[1] -380.814

$cor

a b c alpha_s beta_s

a 1.0000000 -0.9924300 0.9967761 0.8189348 -0.6963824

b -0.9924300 1.0000000 -0.9810184 -0.8375437 0.6499930

c 0.9967761 -0.9810184 1.0000000 0.8028775 -0.7196085

alpha_s 0.8189348 -0.8375437 0.8028775 1.0000000 -0.1673029

beta_s -0.6963824 0.6499930 -0.7196085 -0.1673029 1.0000000

$lower

a b c alpha_s beta_s

[1] 0.08676663 0.13293150 0.53822717 1.30908397 0.22174800

$upper

a b c alpha_s beta_s

[1] 54.7135263 0.9857905 59.5333491 26.8631118 4.0692113
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E.4.4 Lognormal model

> est = estSemi(x = car_x, z = car_z, x_z = car_xz, p0 =

c(1.84,0.38,5,1.66,0.48), upper=c(2,0.9,6,3,0.5), lower=

c(0.1,0.2,0.1,0.1,0.1), type ="lognorm")

> est

$par

a b c mu_s sigma_s

[1] 1.8396373 0.3809158 5.0004989 1.6561903 0.4785995

$std

a b c mu_s sigma_s

[1] 3.0683398 0.1923464 6.0726554 1.2040146 0.2054011

$logL

[1] -380.7409

$cor

a b c mu_s sigma_s

a 1.0000000 -0.9924649 0.9964698 0.9938461 -0.7964774

b -0.9924649 1.0000000 -0.9804023 -0.9772638 0.8162346

c 0.9964698 -0.9804023 1.0000000 0.9977106 -0.7791034

mu_s 0.9938461 -0.9772638 0.9977106 1.0000000 -0.7593330

sigma_s -0.7964774 0.8162346 -0.7791034 -0.7593330 1.0000000

$lower

a b c mu_s sigma_s

[1] 0.06998146 0.14157945 0.46268644 0.39837651 0.20637374

$upper

a b c mu_s sigma_s

[1] 48.359459 1.024844 54.043057 6.885362 1.109916

E.5 Data analysis - Bone marrow transplant

For this dataset we obtained better results using the parscale option in the optim()
function, which is not built in in the general estSemi() function. Therefore the call
to optim() including parscale is shown instead of the call to estSemi().

E.5.1 Uniform model

> opt = optim(par = c(0.01,0.56,0.28,0.66), fn=lklhUnifSemi, x = x,

z=z, xz = x_z, z_o = z_o, tau_o = tau_o, tau = tau,method =

"L-BFGS-B",lower=c(0.01,0.1,0.1,0.1), upper= c(0.1,0.6,0.3,0.8),

control =list(parscale = c(0.01,0.1,0.1,0.11)),hessian=T)

> p = opt$par

> hessian = opt$hessian

> std = sqrt(solve(hessian))

# make confidence intervals

> lower = p*exp(-1.96*diag(std)/p)



Appendix E. Output from R 221

> upper = p*exp(1.96*diag(std)/p)

> list(par = p, std = diag(std), logL = -opt$value, cor =

cov2cor(solve(hessian)), lower=lower, upper = upper)

$par

a b c A

[1] 0.01402081 0.56418105 0.27672411 0.65761364

$std

a b c A

[1] 0.006393862 0.046571754 0.130954706 0.335198531

$logL

[1] -1000.186

$cor

a b c A

a 1.0000000 -0.8659325 0.7135718 0.6934817

b -0.8659325 1.0000000 -0.3091098 -0.2965781

c 0.7135718 -0.3091098 1.0000000 0.9704298

A 0.6934817 -0.2965781 0.9704298 1.0000000

$lower

a b c A

[1] 0.005735822 0.479902062 0.109452023 0.242152394

$upper

a b c A

[1] 0.03427289 0.66326087 0.69963289 1.78588239

E.5.2 Exponential model

> opt = optim(par = c(0.01,0.57,0.27,1.82), fn=lklhExpSemi, x = x,

z=z, xz = x_z, z_o = z_o, tau_o = tau_o, tau = tau,method =

"L-BFGS-B",lower=c(0.01,0.1,0.1,0.1), upper= c(0.1,0.6,0.5,2),

control =list(parscale = c(0.01,0.1,0.1,1)),hessian=T)

> p = opt$par

> hessian = opt$hessian

> std = sqrt(solve(hessian))

# make confidence intervals

> lower = p*exp(-1.96*diag(std)/p)

> upper = p*exp(1.96*diag(std)/p)

> list(par = p, std = diag(std), logL = -opt$value, cor =

cov2cor(solve(hessian)), lower=lower, upper = upper)

$par

a b c lambda_s

[1] 0.01336946 0.56948652 0.27267194 1.82434961

$std
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a b c lambda_s

[1] 0.005731145 0.045864928 0.117917819 0.886649699

$logL

[1] -1002.776

$cor

a b c lambda_s

a 1.0000000 -0.8684087 0.6667413 -0.6359217

b -0.8684087 1.0000000 -0.2561493 0.2421727

c 0.6667413 -0.2561493 1.0000000 -0.9452784

lambda_s -0.6359217 0.2421727 -0.9452784 1.0000000

$lower

a b c lambda_s

[1] 0.00577057 0.48632734 0.11682316 0.70373500

$upper

a b c lambda_s

[1] 0.03097483 0.66686545 0.63643189 4.72941023

E.5.3 Gamma model

> opt = optim(par = c(4.9,0.14,12.1,577,47.6), fn=lklhGamSemi, x = x,

z=z, xz = x_z, z_o = z_o, tau_o = tau_o, tau = tau, method =

"L-BFGS-B",lower=c(4.3,0.1,5,570,46.2),upper=c(5,0.2,18,590,50.1),

control =list(parscale = c(1,0.1,1,100,10)),hessian=T)

> p = opt$par

> hessian = opt$hessian

> std = sqrt(solve(hessian))

# make confidence intervals

> lower = p*exp(-1.96*diag(std)/p)

> upper = p*exp(1.96*diag(std)/p)

> list(par = p, std = diag(std), logL = -opt$value, cor =

cov2cor(solve(hessian)), lower=lower, upper = upper)

$par

a b c alpha_s beta_s

[1] 4.8864181 0.1385993 12.0844878 576.9045891 47.6163380

$std

a b c alpha_s beta_s

[1] 0.4992233 0.0124735 0.3303465 17.6879044 1.2182979

$logL

[1] -955.5955

$cor

a b c alpha_s beta_s
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a 1.0000000 -0.9348778 0.6419044 0.6337955 -0.6231028

b -0.9348778 1.0000000 -0.4538495 -0.4501035 0.4400281

c 0.6419044 -0.4538495 1.0000000 0.9777696 -0.9676827

alpha_s 0.6337955 -0.4501035 0.9777696 1.0000000 -0.9748611

beta_s -0.6231028 0.4400281 -0.9676827 -0.9748611 1.0000000

$lower

a b c alpha_s beta_s

[1] 3.9996832 0.1161861 11.4540488 543.2574121 45.2873590

$upper

a b c alpha_s beta_s

[1] 5.9697432 0.1653361 12.7496266 612.6357367 50.0650888

E.5.4 Lognormal model

> opt = optim(par = c(4.9,0.14,12.1,2.5,0.04), fn=lklhLnormSemi,x =x,

z=z, xz = x_z, z_o = z_o, tau_o = tau_o, tau =tau, method =

"L-BFGS-B",lower=c(4.2,0.1,11.5,2.3,0.03), upper=

c(5.1,0.2,12.7,2.7,0.07), control = list(parscale =

c(1,0.1,1,1,0.01)), hessian=T)

> p = opt$par

> hessian = opt$hessian

> std = sqrt(solve(hessian))

# make confidence intervals

> lower = p*exp(-1.96*diag(std)/p)

> upper = p*exp(1.96*diag(std)/p)

> list(par = p, std = diag(std), logL = -opt$value, cor =

cov2cor(solve(hessian)),lower=lower, upper = upper)

$par

a b c mu_s sigma_s

[1] 4.92479405 0.13744123 12.08933865 2.49402800 0.04010462

$std

a b c mu_s sigma_s

[1] 0.42730602 0.01259533 0.05700354 0.00731558 0.01204682

$logL

[1] -955.6274

$cor

a b c mu_s sigma_s

a 1.00000000 -0.95128927 0.074676287 -0.01817957 -0.447598489

b -0.95128927 1.00000000 -0.023523498 0.06277815 0.490623767

c 0.07467629 -0.02352350 1.000000000 0.63769614 -0.007057255

mu_s -0.01817957 0.06277815 0.637696138 1.00000000 0.282806130

sigma_s -0.44759849 0.49062377 -0.007057255 0.28280613 1.000000000
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$lower

a b c mu_s sigma_s

[1] 4.1546183 0.1148445 11.9781264 2.4797306 0.0222588

$upper

a b c mu_s sigma_s

[1] 5.8377436 0.1644841 12.2015835 2.5084078 0.0722582

E.5.5 Normal model

> opt = optim(par = c(4.92,0.138,12.14,12.16,0.500), fn=lklhNormSemi, x

= x, z=z, xz = x_z, z_o = z_o, tau_o = tau_o, tau = tau, method

= "L-BFGS-B", lower = c(4.58,0.11,10.1,10.2,0.41), upper =

c(5.65,0.17,14.2,14.5,0.59),control =list(parscale =

c(1,0.1,1,1,0.01)),hessian=T)

> p = opt$par

> hessian = opt$hessian

> std = sqrt(solve(hessian))

# make confidence intervals

> lower = p*exp(-1.96*diag(std)/p)

> upper = p*exp(1.96*diag(std)/p)

> list(par = p, std = diag(std), logL = -opt$value, cor =

cov2cor(solve(hessian)), lower=lower, upper = upper)

$par

a b c mu_s sigma_s

[1] 4.9217850 0.1382357 12.1376051 12.1620335 0.5000000

$std

a b c mu_s sigma_s

[1] 0.63725305 0.00614991 1.34752248 1.34533469 0.07989731

$logL

[1] -955.5186

$cor

a b c mu_s sigma_s

a 1.0000000 -0.5751481 0.9319768 0.9436757 0.5253518

b -0.5751481 1.0000000 -0.3105646 -0.3496774 -0.2262832

c 0.9319768 -0.3105646 1.0000000 0.9996007 0.5392284

mu_s 0.9436757 -0.3496774 0.9996007 1.0000000 0.5052717

sigma_s 0.5253518 -0.2262832 0.5392284 0.5052717 1.0000000

$lower

a b c mu_s sigma_s

[1] 3.8186551 0.1266925 9.7640609 9.7914410 0.3655527

$upper

a b c mu_s sigma_s

[1] 6.3435861 0.1508307 15.0881338 15.1065669 0.6838958
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E.6 Bootstrapping results

Here we present the bootstrapping results obtained in the data analysis for the
different datasets. The estimates were found by running the bootstrapping scripts
and bca() function given in appendix D.2.5. In each case the parameter estimates
of the bootstrap samples are stored in the table bootestimates, where column 1 is
for the parameter α, column 2 is for β, column 3 is for c and columns 4 and 5 are
for the parameters in the distribution of S (αS and βS for the gamma model, µS
and σS for the lognormal model.

E.6.1 VHF-data

E.6.1.1 Gamma model

# means

> mean(bootestimates[,1])

[1] 4.670817

> mean(bootestimates[,2])

[1] 0.2391655

> mean(bootestimates[,3])

[1] 16.71901

> mean(bootestimates[,4])

[1] 121.9531

> mean(bootestimates[,5])

[1] 6.970546

# biases

> mean(bootestimates[,1])-4.6497239

[1] 0.02109318

> mean(bootestimates[,2])-0.2397269

[1] -0.0005614308

> mean(bootestimates[,3])-16.7150800

[1] 0.003931557

> mean(bootestimates[,4])-121.9852362

[1] -0.03212197

> mean(bootestimates[,5])- 6.9725385

[1] -0.001992295

# standard deviatons

> sd(bootestimates[,1])

[1] 0.1566409

> sd(bootestimates[,2])

[1] 0.006375413

> sd(bootestimates[,3])

[1] 0.09760275

> sd(bootestimates[,4])

[1] 0.2024508

> sd(bootestimates[,5])

[1] 0.041866

# percentile intervals
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> quantile(bootestimates[,1], c(0.025,0.975))

2.5% 97.5%

4.301195 5.080174

> quantile(bootestimates[,2], c(0.025,0.975))

2.5% 97.5%

0.2237287 0.2544450

> quantile(bootestimates[,3], c(0.025,0.975))

2.5% 97.5%

16.46989 16.89710

> quantile(bootestimates[,4], c(0.025,0.975))

2.5% 97.5%

121.4852 122.2910

> quantile(bootestimates[,5], c(0.025,0.975))

2.5% 97.5%

6.891271 7.050023

# BCa intervals

$BCa1

2.854359% 97.81792%

4.330626 5.106896

$BCa2

2.342231% 97.33243%

0.2231252 0.2541578

$BCa3

0.2144287% 86.28735%

16.20541 16.78309

$BCa4

4.130605% 98.54297%

121.5666 122.3566

$BCa5

1.747657% 96.44248%

6.880526 7.038442

E.6.2 Carcinoma data

E.6.2.1 Gamma model

# means

> mean(bootestimates[,1])

[1] 3.083362

> mean(bootestimates[,2])

[1] 0.3901593

> mean(bootestimates[,3])

[1] 7.105571

> mean(bootestimates[,4])

[1] 6.689408
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> mean(bootestimates[,5])

[1] 1.126241

# biases

> mean(bootestimates[,1])-2.1788318

[1] 0.9045303

> mean(bootestimates[,2])-0.3619981

[1] 0.02816118

> mean(bootestimates[,3])-5.6606065

[1] 1.444965

> mean(bootestimates[,4])-5.9300986

[1] 0.7593093

> mean(bootestimates[,5])-.9499155

[1] 0.1763256

# standard deviations

> sd(bootestimates[,1])

[1] 2.454286

> sd(bootestimates[,2])

[1] 0.1370978

> sd(bootestimates[,3])

[1] 4.43352

> sd(bootestimates[,4])

[1] 3.174334

> sd(bootestimates[,5])

[1] 0.6313188

# percentile intervals

> quantile(bootestimates[,1], c(0.025,0.975))

2.5% 97.5%

0.1684627 8.1358613

> quantile(bootestimates[,2], c(0.025,0.975))

2.5% 97.5%

0.2230286 0.6873895

> quantile(bootestimates[,3], c(0.025,0.975))

2.5% 97.5%

0.8508462 14.9927268

> quantile(bootestimates[,4], c(0.025,0.975))

2.5% 97.5%

1.721951 14.115596

> quantile(bootestimates[,5], c(0.025,0.975))

2.5% 97.5%

0.3515232 2.8402181

# BCa intervals

$BCa1

0.3202994% 92.34479%

0.112385 7.411666

$BCa2

3.977196% 98.51485%

0.2290606 0.7246130
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$BCa3

0.1455884% 89.33868%

0.5248217 14.1988195

$BCa4

0.8019389% 94.45508%

1.415969 12.719724

$BCa5

2.571154% 97.57069%

0.3441586 2.8628440

E.6.2.2 Lognormal model

# means

> mean(bootestimates[,1])

[1] 3.125752

> mean(bootestimates[,2])

[1] 0.3941494

> mean(bootestimates[,3])

[1] 7.105593

> mean(bootestimates[,4])

[1] 1.728427

> mean(bootestimates[,5])

[1] 0.4936811

# biases

> mean(bootestimates[,1])-1.8396373

[1] 1.286115

> mean(bootestimates[,2])-0.3809158

[1] 0.01323355

> mean(bootestimates[,3])-5.0004989

[1] 2.105094

> mean(bootestimates[,4])-1.6561903

[1] 0.0722367

> mean(bootestimates[,5])-0.4785995

[1] 0.01508161

# standard deviations

> sd(bootestimates[,1])

[1] 2.642797

> sd(bootestimates[,2])

[1] 0.1393561

> sd(bootestimates[,3])

[1] 4.793424

> sd(bootestimates[,4])

[1] 0.8365234

> sd(bootestimates[,5])

[1] 0.1478255
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# percentile intervals

> quantile(bootestimates[,1], c(0.025,0.975))

2.5% 97.5%

0.1997137 7.9787774

> quantile(bootestimates[,2], c(0.025,0.975))

2.5% 97.5%

0.2253478 0.6768152

> quantile(bootestimates[,3], c(0.025,0.975))

2.5% 97.5%

1.045873 15.398952

> quantile(bootestimates[,4], c(0.025,0.975))

2.5% 97.5%

0.1154208 2.8294860

> quantile(bootestimates[,5], c(0.025,0.975))

2.5% 97.5%

0.2817967 0.8636517

# BCa intervals

$BCa1

0.6823396% 94.08371%

0.1500916 7.8040416

$BCa2

5.101903% 98.89132%

0.2301596 0.7066866

$BCa3

0.4625833% 92.62239%

0.8575269 14.7481291

$BCa4

0.5641228% 92.40937%

0.02915044 2.76575410

$BCa5

5.088519% 98.91761%

0.3051378 0.9842683





Appendix F

Basic model results

In this appendix some of the results from the data analysis in the Master’s project

[35] is repeated. We begin by showing how to generate first passage times in the

gamma process (copied from the project thesis).

F.1 Simulation of first passage times

In chapter 5 we found the cumulative distribution function of the first passage time

in the gamma process. In order to simulate the gamma process models, we first need

a method of sampling from this first passage time distribution. One way to do this

is by using the probability integral transform, also called the inverse transformation

method.

F.1.1 The probability integral transform

The probability integral transform is a general method for simulating random vari-

ables with continuous distribution functions [34]. The main idea is that if T is

a continuous random variable with cumulative distribution function F (t), then

u = F (t) ∼ Unif[0,1]. Assuming that F (t) has an inverse, we then have that

t = F−1(u) ∼ F (t). Thus, the approach is as follows:

1. Generate a random number u from the standard uniform distribution Unif [0, 1]

2. Calculate the value of t such that F (t) = u⇒ F−1(u) = t

3. Then t is a random variable with the same distribution as F (t).

However, since our target distribution FT (t) (see equation (5.2)) is difficult to invert,

an approximate technique built on linear interpolation will be used. This method

is for instance described in chapter 6 in [14]. By using this technique, we have to

search across a predetermined set of values for t. This means that we have to make

sure that the chosen grid of t-values span all of the support of f(t). For each chosen

grid point we can calculate ui = F (ti). Then, we can draw U ∼ Unif[0, 1] and

linearly interpolate between the two nearest grid points so that ui ≤ uj :

T =
uj − U
uj − ui

ti +
U − ui
uj − ui

tj
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The degree of accuracy of this approach can be improved by increasing the number

of grid points. In summary, a procedure to generate N samples from our target

distribution with critical level d and shape function v(t) = α·tβ is shown in algorithm

3. This algorithm is implemented in the function simdata() which is included in

Algorithm 3 Algortihm to sample from FT (t; v(t), d)

1: Define a grid t of possible values for t
2: for n=1 to N do
3: U ∼ Unif[0,1]
4: for i=1 to length(t) do
5: u[i] = FT (t[i]; v(t[i]), d)
6: if u[i] > U then
7: T[n] = u[i]−U

u[i]−u[i-1]t[i-1] + U−u[i-1]
u[i]−u[i-1]t[i]

8: break
9: end if

10: end for
11: end for

appendix D.1.1.

F.2 Log-likelihood function for the basic model

l = ln L

= m · ln(1− q) +
m∑
i=1

ln

{
v′(xi) [Ψ(xi)− log(c)]

(
1− Γ(v(xi), c)

Γ(v(xi))

)
+

v′(xi)

v(xi)2Γ(v(xi))
cv(xi)

2F2(v(xi), v(xi); v(xi) + 1, v(xi) + 1;−c)
}

+ n · ln(q) +
n∑
j=1

ln

{
v′(zj) [Ψ(zj)− log(s)]

(
1− Γ(v(zj), s)

Γ(v(zj))

)
+

v′(zj)

v(zj)2Γ(v(zj))
sv(zj)

2F2(v(zj), v(zj); v(zj) + 1, v(zj) + 1;−s)
}

+
r∑

k=1

ln

[
(1− q)

(
1− Γ(v(τk), c)

Γ(v(τk))

)
+ q

(
1− Γ(v(τk), s)

Γ(v(τk))

)]
(F.1)
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F.3 Fit of basic model to VHF data

Using the condSurv() function on the log-likelihood function in (F.1) for the VHF-

data produced the results in table F.1.

Table F.1: Maximum likelihood estimates of the parameters α, β, c, s and q in
the basic model for the VHF data. In addition, standard deviations from the

Hessian matrix and 95% confidence intervals are included.

Parameter Estimate Standard deviation Lower bound Upper bound
α 3.8029 0.3138 3.2350 4.4704
β 0.2535 0.0120 0.2310 0.2783
c 14.7400 0.0770 14.5898 14.8917
s 13.7092 1.3046 11.3765 16.5202
q 0.3159 0.0294 0.2632 0.3791
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