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Abstract

The thesis describes different approaches for solving numerically a PDE model
for the valuation and optimal operation of natural gas storage, characterized as a
Hamilton Jacobi Bellman (HJB) equation. The HJB equation is derived by for-
mulating the given natural gas storage problem as a stochastic control problem
and then applying the dynamic programming principle. We present three separate
numerical methods for solving the HJB equation, namely a standard upwind finite
difference method, and two new methods characterized as: (i) a semi-Lagrangian
time stepping method combined with a one dimensional finite element method, and
(ii) a two dimensional finite element method combined with finite difference dis-
cretization in time. The upwind finite difference method is shown to be consistent,
stable and monotone. These properties guarantee that the numerical solution con-
verge to the viscosity solution of the HJB equation, [19]. Numerical results suggest
that the two new methods converge to the same solution as the finite difference
method for a given test case.



Sammendrag

Denne oppgaven beskriver ulike numeriske metoder for å løse en PDE modell for
verdisetting og optimal styring av naturgasslagring, gitt som en Hamilton Jacobi
Bellman (HJB) likning. Likningen er utledet ved å først formulere problemstillin-
gen som et stokastisk kontrollproblem og deretter benytte dynamisk programmer-
ingsprinsippet. Vi presenterer tre ulike metoder for å løse denne likningen, nærmere
bestemt en standard oppvind differanse metode, og to nye metoder beskrevet som:
(i) en semi-Lagrangian tids-diskretiseringsmetode kombinert med endelig element
metode i en romlig retning, og (ii) en endelig elementmetode i to romlige retninger
kombinert med endelig differanse i tid. Det blir vist at differansemetoden er konsis-
tent, stabil og monoton, hvilket impliserer at den numeriske løsningen konvergerer
til viskositetsløsningen av HJB likningen, [19]. Numeriske resultater tyder p̊a at
de to nye metodene konvergerer mot samme løsning som differansemetoden for et
gitt test-problem.
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method; ṽk and v̂k represent the solutions of the P2-SLFE-method
and the finite difference method, respectively. No edge stabilization
is used (γ = 0). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

7.7 Verification of convergence to the viscosity solution for the P1-FE
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Chapter 1

Introduction

The real option of storing natural gas in the presence of uncertain gas prices is im-
portant in planning-models for the production of natural gas and allows industries
to exploit spot market variations and seasonal trends, [15]. As we will demonstrate,
the real option of storing natural gas can be modeled as a stochastic control prob-
lem from which a Hamilton Jacobi Bellman (HJB) equation is derived. This thesis
is concerned with the numerical solution of such models.

1.1 Previous Work

Thompson et al. [14] derive a natural gas storage model in the form of a HJB equa-
tion and propose a fully explicit finite difference scheme. Because of the hyperbolic
nature of the HJB equation, the need for stabilization techniques to prevent numer-
ical oscillations are addressed. Thompson et al. suggest a min-mod slope limiting
method to cope with this problem.

Forsyth and Chen [19] present an implicit semi-Lagrange time stepping scheme
combined with a finite difference method for the natural gas problem and show that
the scheme converges to the viscosity solution of the HJB equation by proving that
the scheme is consistent, stable and monotone. The semi-Lagrange time stepping
method is widely used in the field of numerical weather predictions [13] and is
known to be stabilizing for convection dominated problems.

1.2 The purpose of this thesis

• Provide modeling background and derive the HJB equation for the natural
gas storage problem.

• Study numerical methods for solving the given HJB equation and propose
new methods.

• Implement the methods in MATLAB and conduct numerical experiments.
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1.3 Contribution

After providing a modeling background for the HJB equation, we study an upwind
finite difference method which is shown to be consistent, stable and monotone
provided a linear CFL-condition. Then two new methods for this problem are
introduced:

(i) A semi-Lagrangian time stepping method in one spatial direction combined
with a finite element method in the other spatial direction. The method
is inspired from [19]. Another method that combines semi-Lagrangian time
stepping with finite elements is given in [18], however, in [18] finite elements
and semi-Lagrangian time stepping are applied in the same spatial direction.

(ii) A two dimensional finite element method combined with a finite difference
discretization in time. To cope with the issue of spurious oscillations we
have implemented the edge stabilization technique as given by Burman and
Hansbo [4].

1.4 Outline

Chapter 2 Some basic ideas from the field of stochastic control theory are in-
troduced. These ideas are applied in section 2.3 to derive a model for the
valuation and optimal operation of a natural gas storage facility in the form
of a Hamilton Jacobi Bellman equation.

Chapter 3 An upwind finite difference scheme is described and analyzed. The
scheme is shown to be consistent, stable and monotone provided a linear
CFL-condition.

Chapter 4 This chapter is to intended as a brief introduction to the finite element
method which will be used in the chapter 5.

Chapter 5 A semi-Lagrange time stepping combined with a finite element method
is presented. A fully implicit scheme is achieved via a linearization technique.

Chapter 6 We present a finite element method coupled with finite finite difference
time stepping. Edge stabilization [4] is implemented to prevent numerical
oscillations.

Chapter 7 Numerical experiments are conducted with a standard test case in the
literature.

Chapter 8 We summarize the work and give some concluding remarks.
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Chapter 2

Background

2.1 Stochastic control theory

Many real life phenomena, in which the random nature of certain quantities plays
a significant role, can be successfully modeled as a stochastic differential equation
(SDE). For instance, in finance, stochastic differential equations can be used to
describe the evolution of stock prices or commodity prices [12].

In the field of Stochastic control theory, one studies how the state of a sys-
tem, given as the solution of a system of SDE’s, is influenced by some controlled
parameter. The objective is typically to maximize (or minimize) some functional
that depends on the the state of the system by choosing the optimal value for the
controlled parameter. As described in [9, p. 27], a stochastic control problem is
characterized by the following features;

• State of the system: We consider a system X = (X1, X2 . . . , Xn) satisfying a
system of SDE’s. The state of the system at any time s ≥ 0 is given by X(s).

• Control : The system X is influenced by a controlled process α : s→ A ⊂ R.
The value of α at time s must be chosen by using only available information
at time s. In addition, α must satisfy certain constraints to be admissible.

• Performance criterion: The objective is to maximize (or minimize) some
functional P(X,α) over all admissible controls. Hence, a stochastic control
problem can be defined as finding an optimal control α∗, such that P(X,α∗)
is maximized (or minimized).

Let t, T ∈ R, such that 0 ≤ t < T . Let f : Rn × A → Rn be a given function
and let A represent the set of admissible control functions

A = {α : [t, T ]→ A |α(·) admissible}.

The dynamics of the state X of the system is dependent on the control process
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α(·) ∈ A and is given by the SDE

dX(s) = f(X(s), α(s), s)ds+ σ(X(s), s)dW(s), t < s < T (2.1)

X(t) = x, (2.2)

where dW(s) represents the standard increment of an n-dimensional Brownian
motion and σ is assumed to be a known deterministic function. The point (x, t) is
referred to as the initial state of the system.

A generic performance functional can be stated as

P[α(·)]x,t = E

[∫ T

t

r(X(s), α(s), s) ds

∣∣∣∣X(t) = x

]
, ∀α ∈ A. (2.3)

where r is some given function that typically represents cash flow or the instanta-
neous rate of change in some other desirable quantity that accumulates over the
time horizon [0, T ]. The requirements for a function α : T → R to be admissible is
problem dependent, e.g. A can depend on the initial state of the system.

In this work, we will consider the following stochastic optimal control problem;
For all initial states (x, t) ∈ Ω× [0, T ], find α∗ ∈ A such that

P[α∗(·)]x,t = sup
α∈A
P[α(·)]x,t, (2.4)

with Ω ⊂ Rn representing all possible values for x. The value function v : Ω ×
[0, T ]→ R is as

v(x, t) = sup
α∈A
P[α∗(·)]x,t, ∀(x, t) ∈ Ω× [0, T ]. (2.5)

Under certain assumptions, one can show via dynamic programming that the value
function satisfies the Hamilton Jacobi Bellman equation, which will be introduced
in the next section.

2.2 Dynamic Programming Principle and the
Hamilton Jacobi Bellman Equation

Bellman’s principle of optimality, also referred to as the dynamic programming
principle, see [2, p. 83], is stated as

Dynamic Programming Principle. An optimal policy has the property that
whatever the initial state and initial decision are, the remaining decisions must
constitute an optimal policy with regard to the state resulting from the first decision.

With respect to the optimal control problem (2.4) defined in the previous sec-
tion, the dynamic programming principle can be formulated mathematically as

v(x, t) = sup
α∈A

E

[∫ t+δt

t

(r(X(s), α(s), s) + v(Xα(t+ δt), t+ δt)) ds

]
, (2.6)
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where Xα(t + δt) represents the state of the system X at time t + δt and the
subscript α indicates that we have applied the control α(·) in the time interval
[t, t+ δt].

It can be shown that the value function v satisfies the Hamilton Jacobi Bellman
equation, stated as

−∂v
∂t

(x, t)− sup
a∈A

[Lav(x, t) + r(x, a, t)] = 0, (2.7)

where La is an operator including partial derivatives up to second order depending
on the control parameter a ∈ A. Equation (2.7) is derived from problem (2.4) using
the dynamic programming principle (2.6) and assuming that the value function is
sufficiently smooth [9]. We shall heuristically derive an instance of the Hamilton
Jacobi Equation in section 2.3 relating to the optimal control of a natural gas
storage facility.

2.3 Derivation of the Natural Gas Storage Model

We derive the Hamilton Bellman Jacobi equation for the valuation and optimal
operation of a gas storage facility, following Thompson et al. [14]. Similar models
can also be derived for the valuation and optimal operation of a hydro electrical
power plant [8], [5].

For the purposes of this model we think of a natural gas storage facility as being
essentially a storage unit from which gas can be injected and withdrawn at any
time. In order to maximize profits the operators of the facility wish to, roughly
speaking, sell gas when the price is high and buy gas when the price is low. We
introduce the following variables

• X - the price per unit of gas,

• Y - the amount of working gas in storage.

It is assumed that the facility can only be operated within a finite time horizon.
We let t denote the present time and we let T denote the end of the time horizon.
For any time s ∈ [t, T ], the price of unit gas and the amount of gas in storage is
expressed as X(s) and Y (s), respectively.

The policy chosen by the operators of the facility is represented by a control
function α : [t, T ] → R. That is, for each time s ∈ [t, T ] the value of the control
function α(s) represents the volume rate of gas being sold. We use the convention
that if α > 0, then gas is withdrawn from the facility and sold. On the other hand
if α < 0, then gas is being bought and injected into storage. For a control function
α(·) to be admissible we require that

amin(Y (s)) ≤ α(s) ≤ amax(Y (s)), ∀s ∈ [t, T ],

where amin and amax are known functions of Y representing the maximal injection
rate and the maximal withdrawal rate respectively. In the following we let

A(y) = {a ∈ R : amin(y) ≤ a ≤ amax(y)}, ,
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and we let A(y) represent the collection of all admissible control functions given
the initial level of gas Y (t) = y.

We assume that there is a leakage of gas represented by a deterministic function
λ, perhaps dependent on the control policy α and the amount of gas in storage.
The flow of gas out from storage, represented by the function f , is given by

f(Y (s), α(s), s) = λ(Y (s), α(s), s) + α(s) (2.8)

We are using the sign convention that if f > 0 then gas is flowing out from storage
and if f < 0 then gas is flowing into storage. Consequently, the rate of change in
the amount of gas in storage is given by dY

ds = −f . Let y represent the amount of
working gas presently in storage at time t. Then Y satisfies the following ODE, (in
infinitesimal form) :

dY (s) = −f(Y (s), α(s), s) ds t < s < T

Y (t) = y.
(2.9)

The price per unit of gas X is assumed to be a stochastic process satisfying an
SDE of the form

dX(s) = µ(X(s), s)ds+ σ(X(s), s)dW (s), t < s < T

X(t) = x,
(2.10)

where W represents a Wiener process.

DEFINITION. A real valued stochastic process W (t) is called a Wiener process,
or Brownian motion, if

1. W (0) = 0

2. each sample path is continuous

3. W (t) is N(0, t), (W is normally distributed with mean 0 and variance t)

4. W has independent increments

The revenue of the gas storage facility is defined as the present value of the sum
of all cash flow over the whole contract period. The cash flow, denoted r, is equal
to the value of the gas currently being bought or sold minus the value of the gas
currently being lost, that is

r(X(s), Y (s), α(s), s) =
(
α(s)− λ(Y (s), α(s), s)

)
X(s), ∀s ∈ [t, T ]. (2.11)

The present value of this cash flow is assumed to be given by

e−ρ(s−t)(α(s)− λ(Y (s), α(s), s))X(s),

where ρ denotes the risk free interest rate [6, p. 115]. Consequently, the present
value of the the sum of all cash flow over the whole contract period is equal to∫ T

t

e−ρ(s−t)r(X(s), Y (s), α(s), s) ds.
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The performance functional is given as

P[α(·)]x,y,t = E

[∫ T

t

e−ρ(s−t)r(X(s), Y (s), α(s), s) ds

∣∣∣∣X(t) = x, Y (t) = y

]
,

∀α ∈ A(y),
(2.12)

which associates with each admissible control α ∈ A(y) an expected revenue
P[α]x,y,t, given the initial state X(t) = x, Y (t) = y.

Remark 2.1. Note that with respect to generic performance functional (2.3), the
performance functional given by the previous equation has an extra discount factor
e−ρ(s−t).

We are interested in the following stochastic control problem for each initial
state (x, y, t):

find α ∈ A(y): P[α∗(·)]x,y,t = sup
α∈A(y)

P[α(·)]x,y,t. (2.13)

Recall that the value function is given as

v(x, y, t) = sup
α∈A(y)

P[α(·)]x,y,t, ∀(x, y, t) ∈ Ω× [0, T ]. (2.14)

We will now proceed to derive heuristically a partial differential equation for the
value function v, following [9, p. 43], specifically we obtain the Hamilton Jacobi
Bellman equation (2.7). We will be needing the following well known result from
the theory of stochastic differential equations, as given in [6, p. 78].

ITO’S FORMULA. Let X = (X1, X2, . . . , Xn) represent an n-dimensional
stochastic process such that

dXi = µi(X(s), s)ds+

n∑
j=1

Gij(X(s), s)dWj for i = 1, . . . , n.

with µi(X(s), s) ∈ L1(0, T ) and Gij(X(s), s) ∈ L2(0, T ).

If u : Rn × [0, T ]→ R is continuous and the partial derivatives ∂u
∂t ,

∂u
∂xi

, ∂2u
∂xi∂xj

,

(i, j = 1, . . . , n) exist and are continuous, then

d(u(X1, . . . , Xn, s)) =
∂u

∂t
ds+

n∑
i=1

∂u

∂xi
dXi +

1

2

n∑
i,j=1

∂2u

∂xi∂xj

n∑
l=1

GilGjlds.

Suppose that that the operators of the gas storage facility applies the constant
control policy α ≡ a ∈ A(y) within the time interval [t, t + δt]. According to the
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dynamic programming principle (2.6), the value function satisfies the inequality

v(x, y, t) ≥ E

[∫ t+δt

t

(
e−ρ(s−t)r(X,Y, a, s) ds+ e−δtv(X(t+ δt), Y (t+ δt), t+ δt)

)
ds

]
.

(2.15)

Provided that the value function v is a sufficiently smooth function of x, y and t,
Ito’s formula implies that

dv(X(s), Y (s), s) =

(
∂v

∂t
+ µ

∂v

∂x
+

1

2
σ2 ∂

2v

∂x2
− f

∂v

∂y

)
ds + σ

∂v

∂x
dW (s). (2.16)

Remark 2.2. For notational convenience we have omitted to write out that the
partial derivatives ∂v

∂t ,
∂v
∂x ,

∂2v
∂x2 , ∂v

∂y appearing on the right hand side of the last equa-

tion are evaluated at the point (X(s), Y (s), s), the functions µ, σ are evaluated at
(X(s), s) and f is evaluated at (X(s), Y (s), a, s).

Inequality (2.15) can be rearranged as

0 ≥ E

[∫ t+δt

t

e−ρ(s−t)r ds+ e−ρδtδv − (1− e−ρδt)v

]
. (2.17)

with

δv := v(X(t+ δt), Y (t+ δt), t+ δt)− v(x, y, t).

From equation (2.16) we obtain

δv =

∫ t+δt

t

dv =

∫ t+δt

t

(
∂v

∂t
+ µ

∂v

∂x
+

1

2
σ2 ∂

2v

∂x2
− f ∂v

∂y

)
ds+

∫ t+δt

t

σ
∂v

∂x
dW (s).

By substituting the expression for δv given by the previous equation into (2.17)
and using that

E

[∫ t+δt

t

σ
∂v

∂x
dW (s)

]
= 0,

we obtain

0 ≥E

[ ∫ t+δt

t

e−ρ(s−t)r ds

+ e−ρδt
∫ t+δt

t

(
∂v

∂t
+ µ

∂v

∂x
+

1

2
σ2 ∂

2v

∂x2
− f ∂v

∂y

)
ds− (1− e−ρδt)v

]
.

Divide the previous inequality by δt and take the limit as δt goes to zero. Assuming
that lim

δt→0
and E[ · ] are interchangeable, we get

0 ≥E

[
lim
δt→0

1

δt

(∫ t+δt

t

e−ρ(s−t)r ds

+ e−ρδt
∫ t+δt

t

(
∂v

∂t
+ µ

∂v

∂x
+

1

2
σ2 ∂

2v

∂x2
− f ∂v

∂y

)
ds− (1− e−ρδt)v

)]
.
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Via the mean-value theorem, the previous equation implies that

0 ≥
(
∂v

∂t
+

1

2
σ2 ∂

2v

∂x2
+ µ

∂v

∂x
+ ρv

)
(x, y, t) + r(x, y, a, t)− f(y, a, s)

∂v

∂y
(x, y, t).

(2.18)

To obtain the last inequality we have also used the identity

lim
δt→0

1

δt
(1− e−ρδt) = ρ.

Since (2.18) is true for any admissible a ∈ A(y), we have

0 ≥
(
∂v

∂t
+

1

2
σ2 ∂

2v

∂x2
+ µ

∂v

∂x
− ρv

)
(x, y, t) + sup

a∈A(y)

(
r − f ∂v

∂y

)
(x, y, a, t). (2.19)

On the other hand, if the operators of the gas storage facility applies the optimal
policy α∗ within the interval [t, t + δt], it can be shown trough similar arguments
that

0 =

(
∂v

∂t
+

1

2
σ2 ∂

2v

∂x2
+ µ

∂v

∂x
− ρv

)
(x, y, t) + r(x, y, a∗, t)− f(y, a∗, t)

∂v

∂y
(x, y, t),

(2.20)

with

a∗ := α∗(t).

Inequality (2.19) and equation (2.20) together imply that v should satisfy

0 =

(
∂v

∂t
+

1

2
σ2 ∂

2v

∂x2
+ µ

∂v

∂x
− ρv

)
(x, y, t)

+ sup
a∈A(y)

(
r(x, y, a, t)− f(y, a, t)

∂v

∂y
(x, y, t)

)
.

The previous equation is formulated backwards in time, via the change of variable
τ = T − t, we get(

∂v

∂τ
− 1

2
σ2 ∂

2v

∂x2
− µ∂v

∂x
+ ρv

)
(x, y, τ)

= sup
a∈A(y)

(
r(x, y, a, τ)− f(y, a, τ)

∂v

∂y
(x, y, t)

)
.

(2.21)

2.4 Important assumptions about the NGS model

2.4.1 Boundary

In reality there is no upper bound on the price variable x. However, in our numerical
solution of (2.21) we can only consider a finite price range, so let xmax represent

17



the maximal allowed price. The gas inventory variable y has an upper bound,
represented by ymax, equal to the maximum storage capacity. In this work we
consider solving equation (2.21) on the domain [0, xmax]× [0, ymax]× [0, T ] and we
refer to

Ω = [0, xmax]× [0, ymax],

as the spatial domain. For convenience we assume through out this work that the
coefficients of (2.21) are scaled such that the spatial domain is equal to the unit
square, that is

xmax = ymax = 1.

The gas price process is assumed to be mean reverting. Let µ0 > 0 and let
x̄ ∈ (0, 1). A simple example of a mean reverting stochastic process is stated

dX(s) = µ0(X(s)− x̄) ds+ σ(X(s), s) dW (s),

which corresponds to setting

µ(X(s), s) = µ0(X(s)− x̄),

in equation (2.10). The process is called mean reverting because the gas price is
constantly drawn to the mean reversion level x̄ ∈ (0, 1) which corresponds to the
long term average market price. When the price process is mean reverting, we have
the following conditions on the boundaries x = 0 and x = 1

µ|x=0 ≥ 0,

µ|x=1 ≤ 0.
(2.22)

For the gas inventory process it is safe to assume that gas can only be pumped
into storage if the current level of gas is less than the maximum capacity. On the
other hand, gas can only be pumped out of the facility if there is any gas left in
inventory. This reasoning leads to the conditions

f |y=0 ≤ 0

f |y=1 ≥ 0,
(2.23)

where we recall that f represents the flow of gas out from storage, (2.8). Negative
values for f corresponds to gas being pumped in to storage and positive values for
f corresponds to gas being released.

In [14] and [19] it is argued without any real justification that

∂2v

∂x2
→ 0 as x→ xmax. (2.24)

However, the boundary x = xmax := 1 is assumed to be “far away” from the
realistic price range, so this condition might not have a big impact on the solution.

Condition (2.24) implies that the term σ2 ∂2v
∂x2 in equation (2.21) goes to zero as
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x → 1. As suggested by [5] this can be implemented by replacing σ with σ̂ such
that

σ̂(x) = σ(x), if x ∈ [0, 1− ε],
σ̂(x) = 0, if x ∈ [1− ε, 1],

where ε represents some small number. We will simply assume that σ → 0 as
x→ xmax. It is also assumed that σ → 0 as x→ 0. Consequently, equation (2.21)
is nearly hyperbolic close to the boundaries x = 0 and x = 1, (because the term

σ2 ∂2v
∂x2 vanishes), and boundary conditions needs only be prescribed at the inflow

part of the boundaries x = 0 and x = 1. However, condition (2.22) imply that the
boundaries x = 0 and x = 1 are outflow boundaries. That is, the flow field given
as

f = (µ,−f)>,

always points inwards to the domain. Hence, no boundary conditions are needed
for equation (2.21) at x ∈ {0, 1}. Because the diffusive term in (2.21) has no
component in the y-direction and the boundaries y = 0 and y = 1 are outflow
boundaries by condition (2.23), no boundary conditions are needed at y ∈ {0, 1}.

For simplicity we will apply the initial condition v(x, y, 0) = 0, as suggested
in [14]. Some alternative initial conditions are discussed in [19].

2.4.2 Bang-bang controls

The model can be split into two equations as follows

a∗ = arg sup
a∈A(y)

(
r(x, y, a∗, τ)− f(y, a∗, τ)

∂v

∂y
(x, y, t)

)
(2.25)

∂v

∂τ
=

(
1

2
σ2 ∂

2v

∂x2
+ µ

∂v

∂x
− ρv

)
(x, y, τ)− f(y, a∗, τ)

∂v

∂y
(x, y, t) + r(x, y, a∗, τ)

(2.26)

In [19] and [14] the chosen model for the gas leakage λ is of the form

λ(a) =

{
0 if a ≥ 0
k if a < 0

.

With this choice of λ, we get

r(x, a) = (a− λ(a))x,

f(a) = (a+ λ(a)),
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so the feedback control a∗ can be found by solving two linear sub-problems, corre-
sponding to a ≥ 0 and a < 0 respectively, given as

a∗1 = arg sup
a∈A(y)

(
ax− a∂v

∂y
(x, y, t)

)
, a ≥ 0

a∗2 = arg sup
a∈A(y)

(
(a− k)x− (a+ k)

∂v

∂y
(x, y, t)

)
a < 0

and then choose the best of these computed solutions:

a∗ = arg sup{(a∗1 − λ(a∗1))x− (a∗1 + λ(a∗1)), (a∗2 − λ(a∗2))x− (a∗2 + λ(a∗2))}

Since both sub-problems are linear in a it is easy to verify that the optimal control
only takes on values from the finite set {amin(y), 0, amax(y)}. Hence, the optimiza-
tion problem is solved by simply comparing the possible values of the expression
r(x, a)− f(a)∂v∂y for a ∈ {amin(y), 0, amax(y)}. That is,

a∗(x, y, τ) = arg sup
a∈{amin,0,amax}

((a− λ(a))x− (a+ λ(a)).

The controls are said to be of bang-bang type.
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Chapter 3

A Monotone Finite
Difference Scheme

We present a first order semi implicit finite difference scheme for solving equation
(2.21). In the spatial discretization we employ the standard first order upwinding
technique, as described in [10, p. 284]. The time discretization is implicit in the
price direction (x-direction) and explicit in the inventory direction (y-direction),
leading to a linear CFL-condition.

Even if the following method is only first order accurate it has other desirable
properties. The scheme is l∞-stable, consistent and monotone. As noted in [19],
these properties ensures that the numerical scheme converges to the viscosity solu-
tion of (2.21), which is the appropriate solution for stochastic control problems [9].
In addition, the finite difference method is generally easy to implement and vec-
torization of the method in MATLAB is straight forward.

We refer to [16] for an upwind finite volume method for the Hamilton Jacobi
Bellman equation.

3.1 Grid

Let (xi)
I
i=1, (yj)

J
j=1 and (τn)Nn=0, be sets of grid points such that

0 = x1 < x1 < · · · < xI−1 < xI = xmax := 1, (3.1)

0 = y1 < y1 < · · · < yJ−1 < yJ = ymax := 1, (3.2)

and

0 = τ0 < τ1 < · · · < τN−1 < τN = T, (3.3)

Fro simplicity, we assume that the grid points are uniformly spaced, that is

∆x = xi+1 − xi, i = 1, . . . , I,
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∆y = yj+1 − yj , j = 1, . . . , J,

and

∆τ = τn+1 − τn, n = 0, . . . , N.

for some ∆x > 0, ∆y > 0 and ∆τ > 0.

3.2 The upwinding technique

In order to introduce the upwind method, consider the following linear convection
diffusion equation

−σ ∂
2v

∂x2
+ b(x)

∂v

∂x
= 0. (3.4)

Let ṽ represent the numerical approximation of v to be defined. According to the
first order upwind method, the approximation ṽx of the convective term vx is given
by the following rule:

ṽx =
ṽ(x)− ṽ(x−∆x)

∆x
, if b > 0,

ṽx =
ṽ(x+ ∆x)− ṽ(x)

∆x
, if b < 0.

(3.5)

Let

vi := ṽ(xi), for i = 1, . . . , I,

define the operators (·)+ and (·)− such that

a+ = max(a, 0), a− = min(a, 0), ∀a ∈ R,

and let the difference operators D+
x and D−x be given as

D+
x ṽ(x) =

1

∆x
(ṽ(x+ ∆x)− ṽ(x)), D−x ṽ(x) =

1

∆x
(ṽ(x)− ṽ(x−∆x)).

By using the standard central difference approach to approximate the diffusive
term in equation (3.4) and the upwind method, given by (3.5), to approximate the
convective terms, we end up with the following numerical scheme:

−σD+
x (D−x vi) + b(xi)

+D−x vi + b(xi)
−D+

x vi = 0, i = 1 . . . , I − 1.

Remark 3.1. We observe that

D+
x (D−x vi) =

vi+1 − 2vi + vi−1

∆x2
.
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3.3 Numerical scheme

In the previous section we introduced the upwind method for a one dimensional
linear convection diffusion equation. We will now proceed to apply the method on
equation (2.21), which we restate here for convenience:(

∂v

∂τ
− 1

2
σ2 ∂

2v

∂x2
− µ∂v

∂x
+ ρv

)
(x, y, τ) =

sup
a∈A(y)

(
r(x, y, a, τ)− f(y, a, τ)

∂v

∂y
(x, y, t)

)
. (3.6)

We assume, for simplicity, that σ and µ only depend on x. In what follows, we will
use the notation

µi = µ(xi), σi = σ(xi),

and

fn+1
j (a) = f(yj , τn+1, a), rn+1

ij (a) = r(xi, yj , τn+1, a).

Let the difference operators D+
y and D−y be defined such that

D+
y v(x, y, τ) = v(x, y + ∆y, τ)− v(x, y, τ), D−y v(x, y, τ) = v(x)− v(x, y −∆y, τ).

By following the same discretization procedure as in the previous section for each
direction x, y and τ , we obtain from equation (3.6) the numerical scheme:

vn+1
i,j − vni,j

∆τ
− σiD+

x (D−x v
n+1
i,i )− µ+

i D+
x v

n+1
i,j − µ

−
i D−x v

n+1
i,j =

max
a∈A(yj)

(
rnij(a)− fnj (a)+D−vni,j − fnj (a)−D+

y v
n
i,j

)
,

(3.7)

for i = 0, . . . , I, j = 0, . . . , J and n = 0, . . . , N − 1.

Remark 3.2. We have treated the convective term f ∂v∂y and the term r(x, y, a, τ)

in equation (3.6) explicitly, that is, in equation (3.7), these terms are evaluated at
τ = τn instead of τ = τn+1.

Remark 3.3. As we will show in the next subsection, no boundary conditions are
needed for (3.7), provided that σ(0) = σ(1) = 0, µ(0) ≥ 0, µ(1) ≤ 0, f|y=0

≤ 0 and
f|y=1

≥ 0.

3.3.1 Boundary

At the boundaries x = 1 and x = 0, we apply the conditions

σ1 = 0, σI = 0,
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(recall section 2.4.1), and it is assumed that

µ1 ≥ 0, µI ≤ 0,

so for i = 1 and i = I, respectively, the scheme given by (3.7) reads

vn+1
1,j − vn1,j

∆τ
− µ+

1 D+
x v

n+1
1,j = max

a∈A(yj)

(
rn1,j(a)− fnj (a)+D−vn1,j − fnj (a)−D+

y v
n
1,j

)
,

(3.8)

and

vn+1
I,j − vnI,j

∆τ
− µ−0 D−x v

n+1
I,j = max

a∈A(yj)

(
rnI,j(a)− fnj (a)+D−vnI,j − fnj (a)−D+

y v
n
I,j

)
.

(3.9)

At the boundaries y = 0 and y = 1, it is assumed that

fn0 (a) ≤ 0, fnJ (a) ≥ 0,

so for j = 0 and j = J , the scheme (3.7) reads

vn+1
i,1 − vni,0

∆τ
− σiD+

x (D−x v
n+1
i,1 )− µ+

i D+
x v

n+1
i,1 −µ

−
i D−x v

n+1
i,1

= max
a∈A(yj)

(
rni,1(a)− fnj (a)D+

y v
n
i,1

)
(3.10)

and

vn+1
i,J − vni,J

∆τ
− σiD+

x (D−x v
n+1
i,J )− µ+

i D+
x v

n+1
i,J −µ

−
i D−x v

n+1
i,J

= max
a∈A(yj)

(
rni,J(a)− fnj (a)D−y v

n
i,J

)
(3.11)

3.4 Monotonicity

In this section we will show that, provided a linear CFL-condition (3.13), the
numerical scheme (3.7) is monotone. That is, if u and v are solutions of (3.7), then

v0 ≥ u0 =⇒ vn ≥ un ∀n > 0, (3.12)

provided that

∆τ‖f‖∞ ≤ ∆y. (3.13)

Remark 3.4. The inequalities in (3.12) are to be intended component vice.
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The proof is by induction, suppose that vn ≥ un and choose i∗, j∗ such that

(i∗, j∗) = arg min
i,j

(vn+1
i,j − u

n+1
i,j ). (3.14)

The numerical scheme (3.7) can be rewritten as

vn+1
i,j −∆τ(σiD

+
x (D−x vi) + µ+

i D+
x vi + µ−i D−x vi) = vni,j + H̃(vni,j), (3.15)

with

H̃(vni,j) = max
a∈A(yj)

(
rnij(a)− fnj (a)+D−vni,j − fnj (a)−D+

y v
n
i,j

)
.

By writing out all the terms in equation (3.15), we get

vn+1
i,j −∆τ

(
σi
vn+1
i+1,j − 2vn+1

i,j + vn+1
i−1,j

∆x2
+ µ+

i

vn+1
i+1,j − v

n+1
i,j

∆x
+ µ−i

vn+1
i,j − v

n+1
i−1,j

∆x

)
= vni,j + H̃(vni,j),

which can be rewritten as

vn+1
i,j

∆τ

∆x

(
∆x

∆τ
+

2σi
∆x

+ µ+
i − µ

−
i

)
− vn+1

i+1,j

∆τ

∆x

( σi
∆x

+ µ+
i

)
−vn+1

i−1,j

∆τ

∆x

( σi
∆x
− µ−i

)
= vni,j + H̃(vni,j).

(3.16)

By rearranging the terms in the last equation, we get

vn+1
i,j = c1

(
vni,j + c2v

n+1
i+1,j + c3v

n+1
i−1,j

)
+ c1H(vni,j) (3.17)

with

c1 =
∆x
∆τ(

∆x
∆τ + 2σi

∆x + µ+
i − µ

−
i

) , c2 =
∆τ

∆x

( σi
∆x

+ µ+
i

)
, c3 =

∆τ

∆x

( σi
∆x
− µ−i

)
,

(3.18)

and it can be easily checked that c1, c2 and c2 are non-negative. We observe that
H̃(vni,j) can be written as

H̃(vni,j) = max

(
rnij(a)− 1

∆y

(
vni,j |fnj (a)|+ vni,j−1f

n
j (a)+ − vni,j+1f

n
j (a)−

))
,

hence

H̃(vni,j)− H̃(uni,j) ≥min
(

H̃(vni,j)− H̃(uni,j)
)

≥ 1

∆y
min

(
− (vni,j − uni,j)|fnj (a)|+ (vni,j − uni,j−1)fnj (a)+

− (vni,j+1 − uni,j+1)fnj (a)−
)
. (3.19)
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From the previous inequality and the fact that vn ≥ un, we get

H̃(vni,j)− H̃(uni,j) ≥ −
1

∆y
(vni,j − uni,j)|fnj |∞, (3.20)

with

|fnj |∞ := max
a

(fnj (a)).

From equation (3.17) and inequality (3.20), it follows that

vn+1
i,j − u

n+1
i,j = c1

(
vni,j − uni,j + c2(vn+1

i+1,j − u
n+1
i+1,j) + c3(vn+1

i−1,j − u
n+1
i−1,j)

)
+ c1∆τ(H(vni,j)−H(vni,j))

≥ c1
(
vni,j − uni,j + c2(vn+1

i+1,j − u
n+1
i+1,j) + c3(vn+1

i−1,j − u
n+1
i−1,j)

)
− c1

∆τ

∆y
(vni,j − uni,j)‖fnj ‖∞

= c1
(
c2(vn+1

i+1,j − u
n+1
i+1,j) + c3(vn+1

i−1,j − u
n+1
i−1,j)

)
+ c1(vni,j − uni,j)(1−

∆τ

∆y
‖fnj ‖∞),

so provided that

∆τ‖fnj ‖∞ ≤ ∆y, (3.21)

the following inequality holds

vn+1
i,j − u

n+1
i,j ≥ c1c2(vn+1

i+1,j − u
n+1
i+1,j) + c1c3(vn+1

i−1,j − u
n+1
i−1,j).

The previous inequality together with (3.14) implies that

vn+1
i∗,j∗ − u

n+1
i∗,j∗ ≥ c1c2(vn+1

i∗,j∗ − u
n+1
i∗,j∗) + c1c3(vn+1

i∗,j∗ − u
n+1
i∗,j∗),

which can be rearranged into

(1− c1(c2 + c3))vn+1
i∗,j∗ ≥ (1− c1(c2 + c3))un+1

i∗,j∗ .

From the definition of c1, c2 and c3, given by (3.18), it follows that

(1− c1(c2 + c3)) > 0,

this concludes the proof.

3.5 Stability

Let v represent a solution of (3.7). Provided that the CFL-condition (3.13) is
satisfied, there exists C > 0, independent of ∆x,∆y and ∆τ , such that

‖vn‖∞ ≤ C
(
‖v0‖∞ + ‖r‖∞

)
, ∀n > 0. (3.22)
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The proof is by induction. Let (i, j) = arg max
i,j

(vni,j), equation (3.16) implies

that

vn+1
i,j ≤ v

n
i,j + ∆τ H̃(vni,j).

By writing out the term H̃(vni,j) in the last inequality, we get

vn+1
i,j ≤ v

n
i,j + ∆τmax

a

(
rnij(a)− 1

∆y

(
vni,j |fnj (a)|+ vni,j−1f

n
j (a)+ − vni,j+1f

n
j (a)−

))
= vni,j + ∆τrnij(a

∗)− ∆τ

∆y

(
vni,j |fnj (a∗)|+ vni,j−1f

n
j (a∗)+ − vni,j+1f

n
j (a∗)−

)
= vni,j(1−

∆τ

∆y
|fnj (a∗)|) + ∆τ

(
vni,j−1f

n
j (a∗)+ − vni,j+1f

n
j (a∗)−

)
+ ∆τrnij(a

∗).

(3.23)

Suppose that (3.13) is satisfied, since fnj (a∗)+ ≥ 0, −fnj (a∗)− ≥ 0 and we have

chosen i, j such that vn+1
i,j = max

i,j
vn+1
i,j , inequality (3.23) implies that

max
i,j

(vn+1
i,j ) ≤ ∆τ

(
‖fn‖∞max

i,j
(vni,j) + ‖rn‖∞

)
.

By choosing (i, j) = arg min
i,j

(vni,j) it follows by similar arguments that

min
i,j

(vn+1
i,j ) ≥ ∆τ

(
‖fn‖∞min

i,j
(vni,j) + ‖rn‖∞

)
.

The last two inequalities together implies that

‖vn+1‖∞ ≤ ∆τ (‖fn‖∞|vn|∞ + ‖rn‖∞)

≤ ∆y|vn|∞ + ∆τ‖rn‖∞,

where we have used (3.13) to obtain the last inequality. From the last inequality
it follows that

‖vn+1‖∞ ≤ ∆y(∆y‖vn−1‖∞ + ∆τ‖rn−1‖∞) + ∆τ‖τn‖∞
= ∆y2‖vn−1‖∞ + ∆y∆τ‖rn−1‖∞ + ∆τ‖rn‖∞

≤ ∆yk+1‖v0‖∞ +

n∑
k=0

∆yk∆τ‖rn−k‖,

since ∆y ≤ ymax := 1, the last inequality implies that

‖vn+1‖∞ ≤ C
(
‖v0‖∞ + ‖r‖∞

)
,

with C = max(T, 1). This concludes the proof.
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3.6 Consistency

We prove that the scheme given by (3.7) is consistent, provided that the exact
solution of (3.6), denoted v(x, y, τ), is sufficiently smooth.

Suppose that v is second order differentiable in x, first order differentiable in y
and τ , then Taylor’s theorem implies that

∂v

∂τ
(xi, yj , τn) =

vni,j − v
n−1
i,j

∆τ
+O(∆τ),

∂2v

∂x2
(xi, yj , τn) = D+

x (D−x v
n
i,j) +O(∆x2),

∂v

∂x
(xi, yj , τn) = D−x v

n
i,j +O(∆x),

∂v

∂x
(xi, yj , τn) = D+

x v
n
i,j +O(∆x),

∂v

∂y
(xi, yj , τn) = D+

y v
n
i,j +O(∆y),

∂v

∂y
(xi, yj , τn) = D−y v

n
i,j +O(∆y).

(3.24)
Let the functional H(·) be defined such that

H(v)(x, y, τ) = sup
a∈A(y)

(
r(x, y, a, τ)− f(y, a, τ)

∂v

∂y
(x, y, t)

)
.

Because v satisfies the equation

(
∂v

∂τ
− 1

2
σ2 ∂

2v

∂x2
− µ∂v

∂x
+ ρv

)
(x, y, τ)−H(v)(x, y, τ) = 0,

there holds∫ τn+1

τn

(
∂v

∂τ
− 1

2
σ2 ∂

2v

∂x2
− µ∂v

∂x
+ ρv

)
(x, y, τ) dτ −

∫ τn+1

τn

H(v)(x, y, τ) dτ = 0.

By approximating the two integrals in the last equation with the right end point
rule and the left endpoint rule, respectively, we get

v(x, y, τn+1)− v(x, y, τn+1)−∆τ

(
1

2
σ2 ∂

2v

∂x2
+ µ

∂v

∂x
− ρv

)
(x, y, τn+1)

−∆τH(v)(x, y, τn) = O(∆τ2),

which can be rewritten as

v(x, y, τn+1)− v(x, y, τn+1)

∆τ
−
(

1

2
σ2 ∂

2v

∂x2
+ µ

∂v

∂x
− ρv

)
(x, y, τn+1)

−H(v)(x, y, τn) = O(∆τ).
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From the previous equation and (3.24), it follows that

en+1
i,j :=

(
v(xi, yj , τn+1)− v(xi, yj , τn+1)

∆τ
−
(

1

2
σ2 ∂

2v

∂x2
+ µ

∂v

∂x
− ρv

)
(xi, yj , τn+1)

−H(v)(xi, yj , τn)

)
−
(
vn+1
i,j − vni,j

∆τ
− σiD+

x (D−x v
n+1
i,i )− µ+

i D+
x v

n+1
i,j

− µ−i D−x v
n+1
i,j − H̃(vni,j)

)
= H̃(vni,j)−H(v)(xi, yj , τn) +O(∆x+ ∆τ).

We have∣∣H̃(vni,j)−H(v)(xi, yj , τn)
∣∣ ≤max

a∈Aj

∣∣∣∣H̃(vni,j)−H(v)(xi, yj , τn)H

∣∣∣∣
≤max
a∈Aj

∣∣∣∣− fnj (a)+D−vni,j − fnj (a)−D+vni,j

+ fnj (a)
∂v

∂y
(xi, yj , τn)

∣∣∣∣
= max
a∈Aj

(
|fnj (a)|O(∆y)

)
=O(∆y).

This concludes the proof.

3.7 Implementation

The numerical scheme given by (3.7) can be rewritten in matrix form as follows

1

∆τ
(vn+1 − vn) + Avn+1 = rn + Cnvn, n = 0, . . . , N − 1, (3.25)

where v0 is a given initial solution. Before we define the vectors vn+1,vn and rn

and the matrices A and Cn, appearing in the last equation, let

m = I · J,

and define the function ξ(x, y, τ), such that

ξni,j = arg sup
(
rnij(a)− fnj (a)+D−vni,j − fnj (a)−D+

y v
n
i,j

)
. (3.26)

In equation (3.25) we have introduced the solution vector vn ∈ Rm, for n =
0, . . . , N , given as

vn = (vn1,1, . . . v
n
I,1, v

n
1,2, . . . v

n
I,2, . . . , v

n
1,J . . . v

n
I,J)>,

the vector rn ∈ Rm, for n = 0, . . . , N , given as

rn = (r∗,n1,1 , . . . r
∗,n
I,1 , r

∗,n
1,2 , . . . r

∗,n
I,2 , . . . , r

∗,n
1,J . . . r

∗,n
I,J )>, r∗,ni,j = r(xi, yj , ξ

n
i,j , τn),
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the matrix A ∈ Rm×m, defined as

A =


A1 0 . . . 0
0 A2 . . . 0
...

...
. . .

...
0 0 . . . AJ

 , (3.27)

where each block Aj ∈ RI×I , for j = 1, . . . , J , is given as

Aj =− 1

∆x2



−2σ1 σ1

σ2 −2σ2 σ2

σ3
. . .

. . .

. . .
. . . σI−1

σI −2σI



− 1

∆x



−µ1 µ1

−µ−2 (µ−2 − µ
+
2 ) µ+

2

−µ−3 (µ−3 − µ
+
3 ) µ+

3

. . .
. . .

. . .
. . . µ+

I−1

−µI µI


, (3.28)

and the matrix Cn ∈ Rm×m, for n = 1, . . . , N , defined such that

Cn =


Cn1
> 0 . . . 0

0 Cn2
> . . . 0

...
...

. . .
...

0 0 . . . CnI
>

 ,

where each block Cni ∈ RJ×J , for i = 1, . . . , I, is given as

Cni =
1

∆y



−f∗,n1 f∗,n1

−f∗,n,+2 (f∗,n,+2 − f∗,n,−2 ) f∗,n,−2

−f∗,n,+3 (f∗,n,+3 − f∗,n,−3 ) f∗,n,−2

. . .
. . .

. . .
. . . fn,∗,−J−1

−fn,∗J fn,∗J


,

with

f∗,n,+j = f(xi, yj , τn, ξ
n
i,j)

+, f∗,n,−j = f(xi, yj , τn, ξ
n
i,j)
−.
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In algorithm (1) we have tried to summarize the main flow of a MATLAB
program that computes the solution of (3.25), with initial solution equal to zero
for simplicity. We introduce the vector ξn ∈ Rm, for n = 0, . . . , N , given as

ξn = (ξn1,1, . . . ξ
n
I,1, ξ

n
1,2, . . . ξ

n
I,2, . . . , ξ

n
1,J . . . ξ

n
I,J)>,

and we let Im represent the m×m identity matrix.

Algorithm 1 Algorithm for computing the solution of scheme (3.25)

v0 ← 0
for n = 0, . . . , N − 1 do

ξn ← ComputeFeedbackControl(vn, r, f)
rn ← AssembleLoadVector(ξn)
Cn ← AssembleConvectionMatrix(ξn, f)
vn+1 ← (Im + ∆τA)\ (vn + ∆τ(Cnvn + rn))

end for

Remark 3.5. The procedure ComputeFeedbackControl(vn, r, f) in algorithm
1 solves the optimization problem given by (3.26), for i = 1, . . . , I and j = 1, . . . , J ,
and returns the result as an m× 1 array.

Remark 3.6. We have assumed for simplicity that the coefficients µ and σ needed
to assemble the matrix A, see (3.28), does not depend on τ . However, if σ and/or
µ should depend on τ , we simply add a line of code within the for-loop of algorithm
and replace A with An+1 at each time step, with An+1 defined as in (3.27)- (3.28)
with σ and µ evaluated at τ = τn+1.
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Chapter 4

The Finite Element method
(1D)

We introduce the finite element method for a transient convection diffusion reaction
problem in one space dimension. The method will be applied for solving (2.7) in
the price direction (x-direction) in chapter 5. For the presentation of the finite
element method it will be sufficient to consider a test problem of the form

∂v

∂τ
− 1

2
σ2 ∂

2v

∂x2
− µ∂v

∂x
= r, in (0, 1)× T, (4.1)

with boundary and initial conditions given as

σ
∂v

∂x
= 0, on {0, 1}, (4.2)

v = 0, for t = 0, (4.3)

with µ, σ, r ∈ L2([0, 1]× T) being square integrable functions in x and τ .

4.1 Weak Formulation

Equation (4.1) can be rewritten as

∂v

∂τ
− 1

2

∂

∂x

(
σ2 ∂v

∂x

)
− µ̃ ∂v

∂x
= r, in (0, 1)× T, (4.4)

with

µ̃ = µ− σ∂σ
∂x
. (4.5)

Let w : (0, 1)→ R represent a test function, residing in some space V to be defined.
Upon multiplying equation (4.4) by w and integrating the resulting equation with
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respect to x over the domain (0, 1), we get∫ 1

0

(
∂v

∂τ
− 1

2

∂

∂x

(
σ2 ∂v

∂x

)
− µ̃ ∂v

∂x

)
w dx =

∫ 1

0

rw dx.

Via integration by parts, the previous equation becomes∫ 1

0

(
∂v

∂τ
w +

1

2
σ2 ∂v

∂x

∂w

∂x
− µ̃ ∂v

∂x
w

)
dx− 1

2

∣∣∣∣1
0

σ2 ∂v

∂x
w =

∫ 1

0

rw dx

The boundary condition (4.2) implies that the term
∣∣1
0
σ2 ∂v

∂xw = 0 in the last equa-
tion. Let

V = H1(0, 1) := {w : (0, 1)→ R : w ∈ L2(0, 1) : wx ∈ L2(0, 1)},

with wx representing the derivative of w in the sense of distributions [10, p. 18].
The weak formulation of (4.1), see [10, p. 120], is stated

∀t ∈ T find v(τ) ∈ V :

∫ 1

0

∂v

∂τ
w dx+ a(v, w) = R(w), ∀w ∈ V, (4.6)

in which the bilinear form a(·, ·) and the linear functional R(·), are given as

a(v, w) =

∫ 1

0

1

2
σ2 ∂v

∂x

∂w

∂x
dx−

∫ 1

0

µ̃
∂v

∂x
w dx, ∀v, w ∈ V,

R(w) =

∫ 1

0

rw dx, ∀w ∈ V.

4.2 Approximation

Roughly speaking, the idea of the finite element method is to replace the space V
by a finite dimensional approximation Vh ⊂ H1 and then find the best solution
of problem (4.6) in the space Vh. The space Vh is typically a space of picewise
polynomials. We will now proceed to define a family of such spaces.

Let N be a positive integer and let (xi)
N
i=0 ⊂ (0, 1) be a collection of points

called vertices such that

0 = x0 < x1 < · · · < xN < xN+1 = 1.

Let Th represent a collection of the subintervals Ki = (xi, xi+1), with the subscript
h of Th representing the positive real number such that

max
i

(xi+1 − xi) = h.

The subintervals Ki = (xi, xi+1) ∈ Th are called elements. We define the following
family of spaces

Xr
h = {vh ∈ C0([0, 1]) : vh|K ∈ Pr(K)∀K ∈ Th}.
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with Pr(K) representing the space of polynomials with degree less than or equal
to r on K ⊂ Ω̂.

Let Nh = dim(Vh) and let (ϕi)
Nh
i=1 be a basis for Vh such that

ϕi(Xj) = δij , i, j = 1, . . . , Nh, (4.7)

where the points (Xj)
Nh
j=1 are called nodes. Each basis function ϕi is uniquely

determined by (4.7) if each element K ∈ Th contains exactly nr = dim(Pr) nodes.
For instance, in the case of linear elements, (r = 1), we have

ϕi|K ∈ P1(K),

which is equivalent to

∃ai, bi ∈ R : ϕi|K = aix+ bi,

so we need dim(P1) = 2 nodes in K to determine ϕi|K via (4.7). Consequently, for
linear elements, the nodes coincides with the vertices (xi)

N
i=1, which gives 2 nodes

on each element. For higher order polynomial elements we need to add additional
points, see figure 4.1.

(a) Linear element (P1). (b) Quadratic element (P2). (c) Cubic element (P3).

Figure 4.1: Node placement on a generic element Ki = [xi, xi+1] ∈ Th, for linear,
quadratic and cubic elements. Nodes displayed as black dots.

For all vh ∈ Vh there exist coefficients (vi)
N
i=1 ⊂ R, such that

vh(x, τ) =

N∑
i=1

vi(τ)ϕi(x). (4.8)

Let v(τ) = (v1(τ), v2(τ), . . . , vN (τ)). The approximation of problem (4.6) in the
space Vh = Xr

h, is stated

∀τ ∈ T find v(τ) ∈ RN :

N∑
i=1

∂vi
∂τ

∫ 1

0

ϕiϕj +

N∑
i=1

vi a(ϕi, ϕj) = R(ϕj), for j = 1, 2, . . . , N.
(4.9)

Problem (4.9) is called semi-discrete as it is discretized in the variable x and con-
tinuous in τ .
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4.3 Stabilization

It is well known that the standard finite element approximation (4.9) may be numer-
ically unstable for convection dominated problems of the form (4.1) as numerical
oscillations are produced . We have chosen to apply the edge stabilization method
as described by Burman and Hansbo [4] and we shall further discuss the method
in the two dimensional case in section 6.3, which is a more natural setting for the
presentation of the method. In one space dimension [11], the edge stabilization
method reduces to replacing the bilinear form a(·, ·) with ah(·, ·) given as

ah(v, w) = a(v, w) + sh(v, w), ∀v, w ∈ V,

with

sh(v, w) =

Nh∑
i=1

γh2

[
∂v

∂x

]
i

[
∂w

∂x

]
i

. (4.10)

In the previous equation, the operator [ · ]i evaluates the jump of a function across
the vertice xi, that is [

∂v

∂x

]
i

=
∂v

∂x

∣∣∣∣
x+
i

− ∂v

∂x

∣∣∣∣
x−
i

,

and γ ∈ (0, 1) is a free parameter. With edge stabilization problem (4.9) becomes

∀τ ∈ T find v(τ) ∈ RNh :

Nh∑
i=1

∂vi
∂τ

∫ 1

0

ϕiϕj +

Nh∑
i=1

vi a(ϕi, ϕj) +

Nh∑
i=1

vi sh(ϕi, ϕj) = R(ϕj), j = 1, . . . , Nh.

(4.11)

4.4 Matrix Formulation

Equation (4.11) can be rewritten in matrix from as follows

Mv(τ) + Av(τ) = r. (4.12)

In the previous equation we have introduced the mass matrix

M = [mi,j ], mi,j =

∫ 1

0

ϕiϕj , (4.13)

the stiffness matrix

A = [ai,j ], ai,j = ah(ϕi, ϕj), (4.14)

and the load vector

r = (r1, r2, . . . , rNh
)>, rj = R(ϕj). (4.15)
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nq ξk wk
1-point rule 0 2

(1/6, 1/6) 1/3
3-point rule (2/3, 1/6) 1/3

(1/6, 2/3 1/3
(1/3, 1/3) −27/48

4-point rule (1/5, 3/5) 25/48
(1/5, 1/5) 25/48
(3/5, 1/5) 25/48

Table 4.1: Gauss quadrature rules for the reference interval (−1, 1).

4.5 Implementation

In order to apply the finite element method, we need to write procedures for assem-
bling the mass matrix M, the stiffness matrix A and the load vector r, introduced
in the previous section. We describe in the following subsections how this imple-
mented in our code.

4.5.1 Computation of integrals

Consider an element K = (xi, xi+1) ∈ T . The integral of a function f over K can
be transformed to an integral over the reference element K̂ = [−1, 1] via the linear
mapping

FKi
(ξ) = xi +

1

2
(ξ + 1)(xi+1 − xi).

That is, by taking x = FKi(ξ), we obtain∫ xi+1

xi

f(x) dx =
|Ki|

2

∫ 1

−1

f̂(ξ) dξ, (4.16)

with

f̂(ξ) := f(FKi(ξ)), |Ki| = xi+1 − xi.

The last integral can be computed via some numerical quadrature rule, that is

∫ 1

−1

f̂(ξ) ≈
Nq∑
q=1

wkf̂(ξk),

where (w1, . . . , wNq
) and (ξ1, . . . , ξNq

) are the quadrature weights and the quadra-
ture points respectively, see table 4.1.
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4.5.2 Assembly of matrices

We shall now describe the algorithms for assembling the mass matrix M, the stiff-
ness matrix A and the load vector r. The entry Mij of the mass matrix can be
split into several terms corresponding to each interval (xi, xi+1) ∈ Th as follows

mi,j =

N∑
i=0

∫ xi+1

xi

ϕiϕj .

Clearly, only the terms where both ϕi and ϕj have support in K are non-zero in
the previous equation, hence

mi,j =

∫ xi

xi−1

ϕiϕj dx+

∫ xi+1

xi

ϕiϕj dx.

The integrals in the last equation can be computed analytically or via the method
described in the previous subsection. In our implementation we have computed
all integrals by numerical quadrature. Note that the Nq-point quadrature rules in
table 4.1, (Nq = 1, 3, 4), are exact for 2Nq − 1 polynomials. In algorithm 2 we
have written a basic procedure to assemble the mass matrix by looping over all the
elements in Th.

Algorithm 2 Assembly of the mass matrix

for (xi, xi+1) ∈ Th do
mii ← mii +

∫ xi+1

xi
ϕiϕi dx

mi,i+1 ← mi,i+1 +
∫ xi+1

xi
ϕiϕi+1 dx

mi+1,i+1 ← mi+1,i+1 +
∫ xi+1

xi
ϕi+1ϕi+1 dx

mi+1,i ← mi+1,i +
∫ xi+1

xi
ϕi+1ϕi dx

end for
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Chapter 5

A Semi-Lagrange Finite
Element Method

We observe that equation (2.7) can be formulated equivalently as

∂v

∂τ
+ Lv(x, y, τ) + f(y, a∗, τ)

∂v

∂y
(x, y, τ) = r(x, y, a∗, τ), (5.1)

a∗(x, y, τ) = arg sup
a∈A(y)

(
−f(y, a, τ)

∂v

∂y
(x, y, τ) + r(x, y, a, τ)

)
, (5.2)

with the differential operator L defined such that

Lv(x, y, τ) := −1

2
σ2(x)

∂2v

∂x2
(x, y, τ)− µ(x)

∂v

∂x
(x, y, τ) + ρ v(x, y, τ).

Remark 5.1. In general σ and µ can be functions of x and τ , however, to make
the presentation of the method more readable we assume throughout this chapter
that σ and µ only depend on x.

We shall deal with equations (5.1) and (5.2) seperately in the following sections.
In section 5.1 we describe how to solve the optimization problem (5.2), in the
succseding section a numerical scheme is developed for equation (5.1). We introduce
the set of discrete points (τn)Nn=0 in the τ -direction, defined such that

0 = τ0 ≤ τ1 ≤ · · · ≤ τN = T.

For convenience we assume that the points are uniformly spaced such that

∆τ = τn+1 − τn n = 1, . . . , N − 1.

Similarly, let (yj)
J
j=1 represent a set of uniformly spaced points in the y-direction,

such that

0 = y1 ≤ y2 ≤ · · · ≤ yJ = 1, ∆y = yj+1 − yj .

The partition of the x-direction into a set of elements Th = (Ki)
Nh
i=1 is defined as

in the previous section.

39



5.1 Linearization

In the following arguments we assume for simplicity that the function f only de-
pends on a. We claim that the feedback control a∗, given by (5.2), can be consis-
tently approximated as

a∗(x, y, τ) = arg sup
a∈A(y)

(
v(x, y −∆τf(a), τ −∆τ) + ∆τ r(x, y, a, τ)

)
+O(∆τ),

(5.3)

assuming that the value function v is sufficiently smooth.
Let a ∈ A, let τ ′ ∈ [0, T ] and let ya(τ) represent a path in the (y, τ)-plane such

that

ya(τ) = y + (τ − τ ′)f(a).

Evaluating a∗(·) given by (5.2), at the point (x, y, τ ′), we have

a∗(x, y, τ ′) = arg sup
a∈A(y)

(
−f(a)

∂v

∂y
(x, y, τ ′) + r(x, a)

)
= arg sup

a∈A(y)

(
−∂v
∂τ

(x, y, τ ′)− f(a)
∂v

∂y
(x, y, τ ′) + r(x, a)

)
= arg sup

a∈A(y)

(
−dv
dτ

(x, ya(τ ′), τ ′) + r(x, a)

)
. (5.4)

To obtain second of the previous equalities we have used the fact that ∂v
∂τ (x, y, τ ′)

is independent of a. The succeeding equality follows from the identity

dv

dτ
(x, ya(τ ′), τ ′) =

∂v

∂τ
(x, ya(τ ′), τ ′) + f(a)

∂v

∂y
(x, ya(τ ′), τ ′), (5.5)

and the fact that ya(τ ′) = y. If the value function v is first order continuous in y
and τ , there holds

dv

dτ
(x, y, τ ′) =

v(x, y, τ ′)− v(x, y −∆τf(a), τ ′ −∆τ)

∆τ
+O(f(a)∆τ + ∆τ).

By taking τ ′ = τn+1 and substituting the expression for dv
dτ (x, y, τ ′) given by the

previous equation into (5.4), we get

a∗(x, y, τn+1) = arg sup
a∈A(y)

(
− v(x, y, τn+1)− v(x, y −∆τf(a), τn)

∆τ
+ r(x, y, a, τ)

+O(f(a)∆τ + ∆τ)

)
= arg sup

a∈A(y)

(
v(x, y −∆τf(a), τn) + ∆τ r(x, y, a, τ)

)
+ |f |∞O(∆τ)

= arg sup
a∈A(y)

(
v(x, y −∆τf(a), τn) + ∆τ r(x, y, a, τ)

)
+O(∆τ).
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The last equality follows from the fact that multiplying the expression inside the
supremum with ∆τ > 0 does not change the optimal point of the supremum and
the fact that v(x, y, τn+1) is independent of a. In the previous equation we require
that the point y−∆τf(a) remain inside the domain. This condition can be enforced
by replacing A(y) with Ã(y,∆τ), given as

Ã(y,∆τ) = {a ∈ A(y) : 0 ≤ y −∆τf(a) ≤ 1}. (5.6)

We have Ã(y,∆τ) ⊂ A(y)∀∆τ > 0 and Ã(y, 0) = A(y).

5.2 Derivation of the numerical scheme

In this section we develop a numerical discretization of the equation

∂v

∂τ
(x, y, τ) + f(y, a∗, τ)

∂v

∂y
(x, y, τ) + Lv(x, y, τ) = r(x, y, a∗, τ), (5.7)

assuming that the feedback control a∗ can be approximated trough solutions ob-
tained from previous time steps, e.g. (5.3). The idea is to combine the terms
∂v
∂τ − f

∂v
∂y in equation (5.7) into a material derivative dv

dτ , as shown in the previous
section. The resulting equation can be solved by the finite element method intro-
duced in chapter 4 and a suitable time integration method. Chen and Forsyth [19]
present a similar method using a monotone finite difference method in the price
direction. T.Ware [18] present a finite element, finite difference semi-Lagrangian
method, however, in this method the semi-Lagrange method is used in the price
direction.

Let x ∈ [0, 1] and let Y (τ) represent a path in the (y, τ)-plane satisfying

dY

dτ
(τ) = f(a∗(x, Y (τ), τ)),

Y (τn+1) = yj ,
(5.8)

where yj represents a grid point. The chain rule states that

dv

dτ
(x, Y (τ), τ) =

∂v

∂τ
(x, Y (τ), τ) + f(a∗)

∂v

∂y
(x, Y (τ), τ).

By substituting the identity given by the previous equation into (5.7), we get

dv

dτ
(x, Y (τ), τ) + Lv(x, Y (τ), τ) = r(x, y, a∗, τ). (5.9)

For all n ≥ 0 let Yd(x; yj , τn+1) represent the departure point at τ = τn of the path
given by (5.8), that is

Yd(x; yj , τn+1) = yj −
∫ τn+1

τn

f(a∗(x, Y (τ), τ)) dτ.
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The value of Yd(x; yj , τn+1) can be approximated via the right end point rule as
follows

Yd(x; yj , τn+1) ≈ yj −∆τf(ξn+1
j (x)), (5.10)

where ξn+1
j (x) represents an approximation of the feedback control a∗(x, yj , τn+1),

depending only on solutions from previous time steps. More precisely, let vh rep-
resent a numerical approximation of the value function, then via (5.3), we have

ξn+1
j (x) = arg sup

a∈A(yj)

(
vh(x, yj −∆τf(a), τn) + ∆τ r(x, yj , a, τn+1)

)
.

The term dv
dτ in equation (5.9) can be approximated with the first order back-

ward difference method as follows

dv

dτ
(x, Y (τ), τ)

∣∣∣∣
τ=τn+1

≈ v(x, yj , τn+1)− v(x, Yd(x; yj , τn+1), τn)

∆τ
.

By substituting the approximation given by the previous equation into equation
(5.9) evaluated at τ = τn+1, we get

v(x, yj , τn+1)− v(x, Yd(x; yj , τn+1), τn)

∆τ
+ Lv(x, yj , τn+1) = r(x, yj , ξ

n+1
j (x), τn+1).

(5.11)

We will now proceed with the discretizaztion of equation (5.11) in the price
direction (x-direction), for which we will apply the finite element method intro-
duced in the previous chapter. Upon multiplying (5.11) with a test function w and
integrating the resulting equation with respect to x, we get∫ 1

0

v(x, yj , τn+1)− v(x, Yd(x; yj , τn+1), τn)

∆τ
w(x) dx−

∫ 1

0

Lv(x, yj , τn+1)w(x) dx

=

∫ 1

0

r(x, yj , ξ
n+1
j (x), τn+1)w(x) dx.

(5.12)

For notational convenience let vnj (x) := v(x, yj , τn+1) represent the continuous
solution in x to be found for each pair (j, n) ∈ I = {1, . . . , J} × {0, . . . , N}. With
V = H1, the weak formulation of (5.11) is stated: for all (j, n) ∈ I find vn+1

j (x) ∈ V
such that∫ 1

0

vn+1
j (x)− v(x, Yd(x; yj , τn+1), τn)

∆τ
w(x) dx+ ah(vn+1

j , w) = R(w; yj , τn+1),

∀w ∈ V .
(5.13)

with

ah(v, w) =

∫ 1

0

(
1

2
σ2 ∂v

∂x

∂w

∂x
− µ̃ ∂v

∂x
w + ρvw

)
dx+ sh(v, w), (5.14)
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and

R(w; yj , τn+1) =

∫ 1

0

r(x, yj , ξ
n+1
j (x), τn+1)w dx. (5.15)

Remark 5.2. Recall that the function µ̃ appearing in equation (5.14) is given by
(4.5) and that the stabilization term sh(v, w) is given by (4.10).

As described in the previous chapter, an approximate solution of (5.13) is sought
in the finite dimensional subspace Vh = Xr

h ⊂ V with dim(Vh) = Nh. Let (ϕi)
Nh
i=1

represent the Lagrangian basis for Vh. The numerical approximation of vnj (x) :=
v(x, yj , τn+1), denoted vh(x, yj , τn+1) for each discrete point (yj , τn+1) in the (y, τ)-

plane, is expressed as a linear combination of the basis functions (ϕi)
Nh
i=1. That is,

vh(x, yj , τn+1) =

Nh∑
i=1

vn+1
i,j ϕi, for n = 0, . . . , Nτ − 1, j = 1, . . . , J,

where the vector of unknown coefficients vn+1
j = (vn+1

1,j , . . . , vn+1
Nh,j

), for each (j, n) ∈
I, solves the following problem: find vn+1

j ∈ RNh such that

N∑
i=1

vn+1
i,j

∫ 1

0

ϕiϕs dx+ ∆τ

N∑
i=1

vn+1
i,j ah(ϕi, ϕs) = ∆τR(ϕs; yj , τn+1)

−
∫ 1

0

vh(x, Yd(x; yj , τn+1), τn)ϕs dx, for s = 1, . . . , Nh.

(5.16)

The initial solution vh(x, y, τ0) = v0 is a given function. We have assumed that the
boundary conditions satisfy (4.2).

Remark 5.3. The point Yd(x; yj , τn+1) equation (5.16) does in general not cor-
respond to a grid point, so the value of vh(x, Yd(x; yj , τn+1), τn), appearing on the
right hand side of the previous equation, cannot be directly computed. We will
therefore resort to an interpolation method to compute vh(x, Yd(x; yj , τn+1), τn). In
our implementation we have used linear interpolation.

5.3 Implementation

Equation (5.16) can be written more compactly in matrix form. For each (j, n) ∈
{1, . . . , J} × {1, . . . , Nτ}, the vector of unknown coefficients vj is given by

Mvn+1
j + ∆τAvn+1

j = Ln+1
j , (5.17)

where M and A represents the mass matrix and the stiffness matrix respectively,
recall section 4.2. The vector Ln+1

j = ([Ln+1
j ]1, [L

n+1
j ]2, . . . , [L

n+1
j ]Nh

) on the right
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hand of the last equation is defined such that

[Ln+1
j ]s = ∆τR(ϕs; yj , τn+1)−

∫ 1

0

vh(x, Yd(x; yj , τn+1), τn)ϕs dx, s = 1, . . . , Nh.

(5.18)

By writing out the definition for R(ϕs; yj , τn+1) in the previous equation, the ex-
plicit expression for [Ln+1

j ]s is

[Ln+1
j ]s =

∫ 1

0

r(x, yj , ξ
n+1
j (x), τn+1)ϕs dx−

∫ 1

0

vh(x, Yd(x; yj , τn+1), τn)ϕs dx,

(5.19)

As indicated by our notation, the load vector Ln+1
j needs to be calculated once

for each time step and each grid point in the y-direction. In order to approximate
the integrals that defines Ln+1

j , we need to evaluate vh(x, Yd(x; yj , τn+1), τn) and

r(x, yj , ξ
n+1
j (x), τn+1) at some carefully chosen points. To maximize accuracy and

efficiency, these points are chosen as the Gaussian quadrature points. In the follow-

ing we let (xq)
Nq

q=1 represent the collection of quadrature points for all the elements
in the partition Th.

In algorithm 3 we have tried to summarize the main flow of the MATLAB
program that computes the solution of (5.17). The first line of the most inner for-
loop of algorithm 3 computes the approximation of the feedback control for each
quadrature point xq. This approximation is then used to calculate the departure
point Yd in the following line. In the next line of code the interpolated value of
the solution at (xq, Yd, τn) is computed. This interpolated value is needed for the
computation of the load vector, (via Gaussian quadrature), as explained above.

Algorithm 3 Algorithm for computing the solution of the Semi Lagrange Finite
Element scheme (SLFE) given by (5.16)

M← AssembleMassMatrix( )
A← AssembleStiffnessMatrix(σ, µ, ρ)
v0
h(x, y) = v0(x, y) . initialize solution

for n = 0, . . . , Nτ − 1 do
for j = 1, . . . , J do

for q = 1, . . . , Nq do
ξnj (xq)← ComputeFeedbackControl(vn, r, f)

Yd ← yj −∆τf(ξn+1
j (xq))

vnh(xq, Yd)← InterpolateSolution(vnh , xq, Yd)
end for
Ln+1
j ← AssembleLoadVector(vnh , ξn+1

j )

vn+1
j ← (M + ∆τA)\Ln+1

j

end for
end for
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Remark 5.4. In algorithm 3 we have assumed that σ, µ are functions of x and
that ρ is a contant. If for instance σ and µ depend on τ then the stifness matrix
must be assembled once per time step.
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Chapter 6

A Finite Element Method
(2D)

The idea of the semi Lagrange method introduced in the previous chapter works
well when the equation of interest is only first order in y and τ . In this chapter we
allow for the possibility of having diffusion also in the y-direction. Let

x = (x, y)>,

we consider the equation

∂v

∂τ
(x, τ)− div(D∇v)(x, t) + ρv(x, t) + sup

a∈A
[f(x, a, τ) · ∇v(x, τ) + r(x, a, τ)] = 0.

(6.1)

In the previous equation we have introduced the diffusion matrix D and the vector
valued function f , given respectively as

D(x, τ) =
1

2

(
σ1(x, τ)2 0

0 σ2(x, τ)2

)
,

and

f(x, a, τ) = (f1(x, a, τ), f2(x, a, τ))>,

where σ1, σ2, f1 and f2 are given square integrable functions.

Equation (2.21) relating to the natural gas storage model in section (2.3) can
be recovered from (6.1) by choosing σ2 ≡ 0, f1 = −µ + σ and f2 = a + λ(a). On
the other hand, equation (6.1) with σ2 > 0 could be derived from the natural gas
storage model by adding a white noise term to the leakage function λ(·), which
might be reasonable if the leakage of gas depends on several unknown factors.
Therefore, it might be reasonable to consider the gas inventory as a stochastic
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process of the form

dY (s) = f2(Y (s), α(s), s) ds+ σ2(Y (s), s) dW (s), t < s ≤ T,
Y (t) = y.

Assuming that the price process is given as

dX(s) = f1(X(s), s) ds+ σ1(X(s), s) dW (s), t < s ≤ T,
X(t) = x,

then Ito’s formula states that

dv(X(s), Y (s), s) =

(
∂v

∂t
+ f · ∇v +

1

2
div(D∇v)

)
ds+D∇v dW (s),

∀s[t, T ].

and it can be shown by the same reasoning as in section (2.3) that the value function
satisfies (6.1), assuming that the value function is sufficiently smooth.

As in the previous chapter, before we do anything to equation (6.1), we split
(6.1) into to parts:

∂v

∂τ
− div(D∇v) + ρv + f(x, a∗, τ) · ∇v = r(x, a∗, τ), (6.2)

a∗(x, τ) = arg sup
a∈A(x)

(−f(x, a, τ)∇v + r(x, a∗, τ)) , (6.3)

and we assume that the feedback control a∗(x, τ) can be approximated using only
solutions obtained from previous time steps. In sections 6.1 to 6.4 we develop a
numerical scheme for (6.2). Problem (6.3) is treated in section 6.5. The boundary
and initial conditions of (6.2) are assumed, for simplicity, to be given as

(D∇v) · n = 0, on ∂Ω, (6.4)

v = 0, for τ = 0. (6.5)

Remark 6.1. Consider the original problem given by equation (2.21), such that
the diffusion matrix is given as

D =

(
σ2(x, τ) 0

0 0

)
.

The boundary condition (6.4) is a relaxation of the condition σ|x=1
= 0, ( and

different from the condition vxx = 0 ) discussed in section 2.4.1. However, we can
choose to have the boundary x = 1 as far away as we like. That is, we choose xmax

to be “far away” from the realistic price range and then scale the equation such
that xmax = 1. Consequently, the boundary condition (6.4) should not make much
difference.
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6.1 Weak formulation

Let V represent a space of test functions to be defined. Upon multiplying equation
(6.2) with w ∈ V and integrating the resulting equation over the spatial domain,
we get ∫

Ω

(
∂v

∂τ
− div(D∇v) + ρv + f · ∇v

)
w dΩ =

∫
Ω

rw dΩ. (6.6)

If F : Ω → R2 is a sufficiently regular vector function, the divergence theorem
states that ∫

Ω

div(F) dΩ =

∫
∂Ω

F · n dγ. (6.7)

Using the divergence theorem, the following relation can be obtained

−
∫

Ω

div(D∇v)w dΩ =

∫
Ω

(D∇v) · ∇w dΩ−
∫
∂Ω

(D∇v) · n dγ.

By substituting the identity given by the previous equation into (6.6), we get∫
Ω

(
∂v

∂τ
+ div(D∇v) + ρv + f · ∇v

)
w dΩ−

∫
∂Ω

(D∇v) · n dγ =

∫
Ω

rw dΩ. (6.8)

The boundary condition (6.4) implies that∫
∂Ω

(D∇v) · n dγ = 0.

Let

V = H1(Ω) := {v : Ω→ R s.t. v ∈ L2(Ω),
∂v

∂x
,
∂v

∂y
∈ L2},

the weak formulation of (6.2) is stated

∀τ ∈ T find v ∈ V :

∫
Ω

∂v

∂τ
w + b(v, w; a∗, τ) = R(w; a∗, τ), ∀w ∈ V, (6.9)

with

b(v, w ; a∗, τ) =

∫
Ω

(∇v · D(x, τ)∇w + (f(x, a∗(x, τ), τ) · ∇v)w + ρvw) dx, (6.10)

R(w ; a∗, τ) =

∫
Ω

r(x, a∗(x, τ), τ), τ)w dx. (6.11)

Remark 6.2. For notational convenience we have omitted to write out that the
functions v and w with respective gradients ∇v and ∇w are evaluated at x in the
last two equations.

49



6.2 Approximation

Let Th represent a triangulation of the domain Ω, depending on the positive pa-
rameter h, with the following properties:

• Th is a collection of triangles such that ∪
K∈Th

K = Ω̄.

• Each element K ∈ Th is made up of three straight lines such that K is closed;

K = K̄, and K has a non empty interior;
◦
K 6= ∅.

• If K1,K2 ∈ Th are distinct elements then
◦
K1 ∩

◦
K2 = ∅.

• If K1,K2 ∈ Th are distinct elements then K1∩K2 is either empty, a common
vertex or a common side.

• h = max
K∈Th

diam(K), with diam(K) := max(‖x1 − x2‖ : x1,x2 ∈ K).

We define the following family of subspaces of V

Xr
h = {v ∈ C0(Ω) : v|K ∈ Pr(K)∀K ∈ Th}.

with Pr(K) representing the space of polynomials with degree less than or equal
to r on K ⊂ Ω. Take Vh = Xr

h, problem (6.9) is approximated as

∀t ∈ T find vh(t) ∈ Vh :

∫
Ω

∂vh
∂t

wh + b(vh, wh) = R(wh), ∀wh ∈ Vh. (6.12)

Let Nh = dim(Vh) and let {ϕi}Nh
i=1 represent a basis for Vh, such that

ϕi(Nj) = δij , i, j = 1, . . . , Nh, (6.13)

where the points {Nj}Nh
j=1 ⊂ Ω̄ are reffered to as nodes. In order to ensure that

the basis functions {ϕi}Nh
i=1 are uniquely defined by equation (6.13), each element

K ∈ Th must contain exactly nr = dim(Pr) nodes. In general we have

nr = (r + 1)(r + 2)/2.

For linear elements, (r = 1), each node has (1 + 1)(1 + 2)/2 = 3 nodes which are
typically located at the coners of each triangle, see figure 6.1.

(a) Linear Element (P1) (b) Quadratic Element (P2) (c) Cubic Element (P3)

Figure 6.1: P1, P2 and P3 triangular elements with nodes (degrees of freedom)
displayed in black.
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Let the time dependent coefficients (v1(τ), v2(τ), . . . , vNh
(τ)) ∈ RNh be such

that

vh(x, τ) =

Nh∑
i=1

vi(τ)ϕi(x) ∀τ ∈ T. (6.14)

By choosing wh = ϕj in (6.12) we see that v(τ) = (v1(τ), v2(τ), . . . , vNh
(τ)) is the

solution of the following problem:

∀τ ∈ T find v(τ) = (v1(τ), v2(τ), . . . , vNh
(τ)) ∈ RNh :

Nh∑
i=1

∂vi(τ)

∂τ

∫
Ω

ϕiϕj +

Nh∑
i=1

vi(τ)b(ϕi, ϕj ; a
∗, τ) = R(ϕj ; a

∗, τ), j = 1, . . . , Nh.

(6.15)

6.3 Stabilization

It is well known that convection dominated equations, such as (6.2), may results
in numerically oscillating solutions when solved by the standard finite element
method, [4]. Many stabilization methods have been proposed to cope with this
problem, see [1]. We have chosen to apply the edge stabilization method described
in [4], also known as the continuous interior penalty method. This stabilization
method works well with transient problems as it does depend on time derivatives
or source terms, hence the resulting semi-discretization can be solved using stan-
dard finite difference techniques [3]. The bilinear form b(·, · ; a∗, τ) is replaced by
bh(·, · ; a∗, τ) given as

bh(v, w; a∗, τ) = b(v, w, a∗, τ) + sh(v, w), ∀v, w ∈ Vh,

with

sh(v, w) =
∑
E∈Eh

∫
E

γh2
[
∇v · n

]
E

[
∇w · n

]
E
, ∀v, w ∈ Vh.

In the previous equation Eh represents the collection of edges in Th, the vector n is
the unit normal to E (with arbitrary sign) and the operator [ · ]E is defined as the
jump across the edge E

[∇v · n]E = ∇v · n
∣∣
E+ −∇v · n

∣∣
E− .

The edge stabilization method introduces extra diffusion where the gradient of
the numerical solution has high jumps and vanishes in areas where the solution is
sufficiently smooth, that is if [∇v · n]E = 0. We observe that if v ∈ H2, such that
v has continuous first derivatives almost everywhere, then

sh(v, w) = 0, ∀w ∈ V.
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With edge stabilization problem (6.15) becomes

∀τ ∈ T find v(τ) ∈ RN :

N∑
i=1

∂vi
∂τ

(τ)

∫ 1

0

ϕiϕj +

N∑
i=1

vi(τ) bh(ϕi, ϕj ; a
∗, τ) = R(ϕj ; a

∗, τ), for j = 1, . . . , N.

(6.16)

6.4 Time Discretization

To obtain a fully discretized scheme it remains to discretize (6.16) in time. If we
apply the backward Euler method, we get

N∑
i=1

vn+1
i − vni

∆τ

∫ 1

0

ϕiϕj +

N∑
i=1

vi(τ) bh(ϕi, ϕj ; a
∗, τn+1) = R(ϕj ; a

∗, τn+1)

Let vn := v(τn), then vn for n = 1, . . . , Nτ solves the following linear system

1

∆τ
M(vn+1 − vn) + An+1vn+1 = rn+1, (6.17)

in which we have introduced the mass matrix

M = [mi,j ], mi,j =

∫
Ω

ϕiϕj ,

the stiffness matrix

An+1 = [bn+1
i,j ], bn+1

i,j = bh(ϕi, ϕj , a
∗|τ=τn+1

, τn+1),

and the load vector

rn+1 = (rn+1
1 , rn+1

2 , . . . , rn+1
Nh

)>, rn+1
j = R(ϕj , a

∗|τ=τn+1
, τn+1).

We observe that the stiffness matrix An+1 and the load vector rn+1 are dependent
on τn+1 and a∗(x, τn+1), therefore it must be assembled once per time step.

6.5 Solving the Optimization problem

In the following arguments we assume for simplicity that f only depends on a. To
approximate the feedback control a∗(x, τ), one possibility is to use the linearization
technique described in section 5.1. That is,

a∗(x, τn+1) = arg sup
a∈A(x)

(
vh(x−∆τ f(a) + ∆τ r(x, a, τn+1)

)
+O(∆τ). (6.18)

Remark 6.3. Note that since the finite element approximation is continuous in
x, the expression vh(x−∆τ f(a) in the previous equation makes sense even if the
point x−∆τ f(a) does not coincide with a node coordinate.
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In the previous equation we require, as in section 5.1, that

x−∆τ f(a) ∈ Ω, (6.19)

in other words the point x−∆τ f(a) cannot go outside the domain. This condition
is enforced by replacing A(x) with Ã(x,∆τ), given as

Ã(x,∆τ) = {a ∈ A(x) : x−∆τ f(a) ∈ Ω}. (6.20)

In the preceding sections of this chapter we tried to emphasis in our notation
that b(· , · ; a∗, τ), given as

b(ϕi, ϕj ; a
∗, τ) =

∫
Ω

(∇ϕi · D∇ϕj + (f(a∗) · ∇ϕi)ϕj + ρϕiϕj) dx,

∀ϕi, ϕj ∈ Vh, (6.21)

and R(· ; a∗, τ), given as

R(ϕj ; a
∗, τ) =

∫
Ω

r(x, a∗(x, τ), τ)ϕj , ∀ϕj ∈ Vh, (6.22)

are dependent on the feedback control a∗(x, τ) and τ . So in order to approximate
the integrals appearing in the last two equations, we must evaluate the feedback
control at some carefully chosen points. To maximize accuracy and efficiency, these
points are chosen via the Gaussian quadrature method.

6.6 Numerical computation of integrals

When implementing the finite element method it is convenient to compute integrals
using some numerical quadrature rule. Suppose that we want to integrate the
function f over the triangle element K. A generic quadrature rule is stated

∫
K

f(x) ≈ 1

2

nq∑
k=1

f(xk)wk. (6.23)

The numbers (wk)nqk=1 and (xk)nqk=1 are called the quadrature weights and quadra-
ture points respectively. In general, the quadrature weights and quadrature points
are different for each triangle K ∈ T . Therefore, quadrature rules are typically
given on the reference element K̂ having corner coordinates (0, 0), (0, 1) and (1, 0).
We report in table 6.1, Gaussian quadrature rules up to order 6, corresponding to
the reference element. The value 1

2 appearing on the right hand side of equation

(6.23) is equal to the area of the reference element K̂.
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nq (x̂, ŷ) w
1-point rule (1/3, 1/3) 1

(1/6, 1/6) 1/3
3-point rule (2/3, 1/6) 1/3

(1/6, 2/3 1/3
(1/3, 1/3) −27/48

4-point rule (1/5, 3/5) 25/48
(1/5, 1/5) 25/48
(3/5, 1/5) 25/48

Table 6.1: Gauss quadrature rules for the reference triangle.

6.6.1 Mapping from the triangular reference element

Figure 6.2: Mapping F̂ (x̂, ŷ) := (g(x̂, ŷ), h(x̂, ŷ))> from the reference element K̂
(left) to a physical element K (right).

Mapping coordinates from the reference element K̂ to the physical element, see fig-
ure, can be achieved via the P1 shape functions (ϕi)

3
i=1 provided that the triangles

have straight boundaries. Define the transformation x = g(x̂, ŷ), y = h(x̂, ŷ), such
that

g(x̂, ŷ) =

3∑
j=1

Xjϕ̂j(x̂, ŷ), h(x̂, ŷ) =

3∑
j=1

Yjϕ̂j(x̂, ŷ). (6.24)

The Jacobian matrix J is defined

J =

[
∂x
∂x̂

∂x
∂ŷ

∂y
∂x̂

∂y
∂ŷ

]
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Via (6.24), the explicit entries of J are given by

J11 =

3∑
j=1

Xj
ϕ̂j
∂x̂
, J12 =

3∑
j=1

Xj
ϕ̂j
∂ŷ
,

J21 =

3∑
j=1

Yj
ϕ̂j
∂x̂
, J23 =

3∑
j=1

Yj
ϕ̂j
∂ŷ
,

The derivatives of the p1 hat functions are

ϕ̂1

∂x̂
= −1,

ϕ̂1

∂ŷ
= −1,

ϕ̂2

∂x̂
= 1,

ϕ̂2

∂ŷ
= 0,

ϕ̂3

∂x̂
= 0,

ϕ̂3

∂ŷ
= 1,

we obtain

J =

[
X2 −X1 X3 −X1

Y2 − Y1 Y3 − Y1

]
.

6.6.2 Transformation of integrals

The Jacobian matrix, defined in the previous section, can be used to transform
the integral of a function f over any triangular element K ∈ T to an integral over
the reference element K̂. Once the integral domain is transformed to the reference
element, we can apply the quadrature rules from section 6.6. We have∫

K

f(x, y) dΩ =

∫
K̂

f̂(x̂, ŷ)|J | dΩ̂, (6.25)

where |J | denotes the determinant of J and

f̂(x̂, ŷ) = f(g(x̂, ŷ), h(x̂, ŷ)).

We will frequently be evaluating integrals that involves the gradient operator
∇ = ( ∂

∂x ,
∂
∂y ). The chain rule gives

∂f

∂x
=
∂f

∂x̂

∂x̂

∂x
+
∂f

∂ŷ

∂ŷ

∂x
,

∂f

∂y
=
∂f

∂x̂

∂x̂

∂y
+
∂f

∂ŷ

∂ŷ

∂y
.

The previous pair of equations is equivalent to the following relation [10]

∇f = J−T ∇̂f, (6.26)

where J−T denotes the inverse transpose of the Jacobian matrix and ∇̂ = ( ∂
∂x̂ ,

∂
∂ŷ )

is the gradient operator with respect to the reference coordinates (x̂, ŷ). The ex-
plicit expression for J−T is given by

J−T =
1

|J |

[
J22 −J21

−J12 J11

]
.
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Suppose that we want to evaluate the integral

I =

∫
K

∇v(x, y) · ∇u(x, y) dΩ.

Let

f(x, y) := ∇v(x, y) · ∇u(x, y),

via (6.25) we have∫
K

∇v(x, y) · ∇u(x, y) dΩ =

∫
K

f(x, y) dΩ

=

∫
K̂

f̂(x̂, ŷ) |J |dΩ̂

=

∫
K̂

∇v̂(x̂, ŷ) · ∇û(x̂, ŷ)|J | dx̂dŷ.

Using relation (6.26) we have

∇v̂(x̂, ŷ) = J−T ∇̂v̂(x̂, ŷ), ∇û(x̂, ŷ) = J−T ∇̂û(x̂, ŷ).

Assuming that the derivatives ∂v̂
∂x̂ ,

∂v̂
∂ŷ ,

∂ŵ
∂x̂ ,

∂ŵ
∂ŷ can be computed, we can apply one

of the quadrature rules from table 6.1 to compute

I ≈
nq∑
k=1

wk

[(
J22

∂v̂

∂x̂
(x̂k, ŷk)− J21

∂v̂

∂ŷ
(x̂k, ŷk)

)(
J22

∂û

∂x̂
(x̂k, ŷk)− J21

∂û

∂ŷ
(x̂k, ŷk)

)
+

(
−J12

∂v̂

∂x̂
(x̂k, ŷk) + J11

∂v̂

∂ŷ
(x̂k, ŷk)

)(
−J12

∂û

∂x̂
(x̂k, ŷk) + J11

∂û

∂ŷ
(x̂k, ŷk)

)]
.

6.7 Implementation

We recall that the fully discrete scheme for solving (6.2) is given as

1

∆τ
M(vn+1 − vn) + An+1vn+1 = rn+1. (6.27)

One of the main tasks of our finite element program is to assemble the matrices
M,An+1 and the vector rn+1 appearing in the previous equation. We have have
obtained a reasonably efficient programs in MATLAB by vectorization of all matrix
assembly procedures. For a guide to efficient implementation of the finite element
method in MATLAB, we refer to [7].

In algorithm 4 we have tried to summarize the main flow of the program for
solving the full problem (6.1). In the first line of code the mass matrix is assembled.
Since the mass matrix is the same for each time step it can be assembled before the
time iteration starts. In the next line of code the solution vector is initialized. The
first line of code inside the time loop represents the procedure for approximating
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the feedback control which we denote by ξn+1. The feedback control ξn+1 is ap-
proximated by using the numerical solution from the previous time step as decribed
in section 6.5. In the next two lines we have written procedures for assembly of the
stiffness matrix An+1 and the load vector rn+1 that takes the approximation ξn+1

as one of its input.

Algorithm 4 Algorithm for computing the solution of scheme (6.27)

M← AssembleMassMatrix( )
v0 ← 0
for n = 1, . . . , Nτ do

ξn+1 ← ComputeFeedbackControl(vn)
An+1 ← AssembleStiffnessMatrix(ξn+1)
rn+1 ← AssembleLoadVector(ξn+1)
vn+1 ← (M + ∆τAn+1)\rn+1

end for
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Chapter 7

Numerical Results

In the previous chapters we have provided a presentation of three different nu-
merical methods for solving the Hamilton Jacobi Bellman equation related to the
optimal operation of a natural gas storage facility. In this chapter we will try out
the methods on some test problems. We will refer to the semi-Lagrange finite ele-
ment method introduced in chapter 5 as the SLFE - method and we will refer to
the finite element method introduced in chapter 6 as the FE - method.

7.1 A “realistic” test case

We consider the case described in [14] and [19] relating to the Texas based Stratton
Ridge salt cavern gas storage facility. For a derivation of the model we refer to [14],
for computational purposes, the model is summarized below:

• v(x, y, 0) = 0, initial condition

• T = 1, time horizon

• xmax = 12, maximum price

• ymax = 2000, maximum storage capacity

• µ(x) = 2.38(x− 6), drift term in the gas price process (mean reverting)

• σ(x) = 0.59x, volatility of gas price

• ρ = 0.1, the risk free interest rate

• amin(y) =
√

1
y+25000 −

1
500 , maximal injection rate of gas

• amax(y) = 2041.4
√
y, maximal withdrawal rate of gas

• λ(a) =

{
0 if a ≥ 0
−365 · 1.7 if a < 0

, leakage of gas
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• r(x, a) = 1000(a− λ(a)), cash flow

• f(a) = a+ λ(a), gas flow

The resulting Hamilton Belmann Jacobi equation is stated

∂v

∂τ
− 1

2
σ2 ∂

2v

∂x2
− µ∂v

∂x
+ ρv − sup

a∈A(y)

(
1000(a− λ(a))x− (a+ λ(a))

∂v

∂y

)
= 0.

(7.1)

Figure (7.1) display the numerical solution of the value function and the opti-
mal control respectively, obtained with the semi-Lagrangian finite element method
(SLFE) introduced in chapter 5 using P1-elements. For a given amount of gas in
storage we observe that the optimal policy depends on the price of gas such as
one would expect. That is, when the price is “high” the optimal policy is to sell
and when the price is “low” the optimal policy is to buy. We also observe that
the policy of doing nothing, (a∗ = 0), is optimal when the price of gas is close to
average market price (x = 6). We have also performed the above test case with
the finite element method (FE) presented in chapter 6 for P1 and P2 elements and
produced similar results. However, according to our experiments, the FE method
does not always work properly without the edge stabilization technique and the
solution may develop spurious oscillations, see figure 7.2. The SLFE method seems
to run fine without edge stabilization according to experiments.

Remark 7.1. As described in section 2.4.1, equation (7.1) can be scaled such that
the spatial domain Ω = [0, xmax]× [0, ymax] is equal to the unit square. However, in
figure 7.1 we have plotted the numerical solution on the actual domain. In all the
remaining experiments of this chapter, the spatial domain is scaled into the unit
square.

Remark 7.2. We have observed, trough experiments with the code, that the amount
of stabilization required depends on the precision of the quadrature rule used to
evaluate integrals. In general we see that higher precision quadrature leads to less
need for stabilization.

Remark 7.3. According to our observations, the P1−FE method seems to be more
robust than the P2 − FE method. For instance, we have observed that the P2-FE
method may become unstable if the time step is very small compared to the mesh
size.

Remark 7.4. For the SLFE method and finite difference method we have enforced
the condition σ → 0 at the boundary x = xmax, as discussed in section 2.4.1. This
is implemented by simply setting σ equal to zero in the interval [xmax −∆x, xmax].
For the FE-method we have simply used the natural boundary condition (6.4).

7.2 Testing the convergence rate

In this section we try to compute the convergence rate of our method with respect
to the test case described in the previous section. However, these results are just
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estimates and may be inaccurate if the numerical error is not within the asymptotic
region.

The convergence rate of a numerical scheme can be approximated by succes-
sively decreasing the discretization parameters and comparing subsequent solu-
tions. We will now describe the general methodology with respect to the finite
element method presented in chapter 6. Suppose that the error of the numerical
solution uh compared to the exact solution u is on the form

‖u− uh‖ ∼ ∆τ + hβ ,

where ‖·‖ is some suitable norm and β is the convergence rate to be found, we have
implicitly assumed in the previous equation that the backward Euler method gives
first order convergence in τ . Let h0 represent the size of the initial triangulation
and consider a sequence of triangulations (Thk

)∞k=1 such that hk+1 = αhk with α ∈
(0, 1). Take ∆τk ∼ (hk)β and let ũk represent the numerical solution corresponding
to the dicretization parameters (hk,∆τk). If the sequence ũk converges smoothly
towards the solution u with a rate equal to β, there is a number C > 0 independent
of hk such that

‖ũk − u‖ = C(hk)β . (7.2)

The last equation implies that

‖ũk−1 − u‖
‖ũk − u‖

=

(
hk−1

hk

)β
= αβ−1,

so that

β =
1

lnα
ln
‖ũhk−1

− u‖
‖ũhk

− u‖
.

We assume that the following approximation is valid as hk goes to zero

‖ũk−1 − ũk‖ ≈ ‖ũk−1 − u‖,

such that

β ≈ 1

lnα
ln
‖ũhk−1

− ũk‖
‖ũhk

− ũk+1‖
. (7.3)

Alternatively we could use the approximation

β ≈ 1

lnα
ln
‖ũhk−1

− ũ0‖
‖ũhk

− ũ0‖
,

where ũ0 represents a numerical solution corresponding to a very fine discretization.

7.2.1 FE method

In tables 7.1 we have used (7.3) to approximate β. The error is defined as the
difference between subsequent solutions measured in the L2 − norm measured at
the last time step τ = 0.25.
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∆τ h error ×106 relative error rate (β)
0.1250 0.0500 5.6203 2.3257 5.9879
0.0625 0.0354 0.7055 0.0980 2.1639
0.0312 0.0250 0.3333 0.0424 1.9976
0.0156 0.0177 0.1668 0.0206 2.4592
0.0078 0.0125 0.0711 0.0087
0.0039 0.0088

Table 7.1: Verification of the convergence rate β̂ = 2 for the p1-FE method. with
α = 0.7071. The stabilization parameter is γ = 0.5

∆τ h error ×106 relative error rate (β)
0.1250 0.0500 1.5656 0.2774 3.4525
0.0625 0.0397 0.7051 0.0979 3.2370
0.0312 0.0315 0.3338 0.0425 3.0100
0.0156 0.0250 0.1665 0.0206 3.6672
0.0078 0.0198 0.0714 0.0087
0.0039 0.0157

Table 7.2: Verification of the convergence rate β̂ = 3 for the p2-FE method. with
α = 0.7937. The stabilization parameter is γ = 0.02

7.2.2 FE-Semi-Lagrangian

Since we have used a linear scheme in the y and τ direction and the finite element
method only in the price direction (x-direction), we assume that the error is on the
form

‖u∆x,∆y,∆τ − u‖ = ∆xβ + ∆τ + ∆y,

where ∆x now represents size of Th defined in section 4.2, i.e. ∆x = h. Consider
the sequence (∆xk)∞k=1 such that ∆xk = α∆xk−1, take ∆τ ∼ ∆xβ , ∆y ∼ ∆xβ and
let ũk represent the solution corresponding to ∆xk. We have

‖ũk − u‖ = C(∆xk)β , (7.4)

and as in the previous section

β ≈ 1

lnα
ln
‖ũk−1 − ũk‖
‖ũk − ũk+1‖

.

We have used the following norm to measure the error:

‖ũ− u‖ = max
1≤j≤J

√∫ 1

0

(ũ(x, yj , T )− u(x, yj , T ))2 dx,

with T = 0.25.
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∆x ∆y ∆τ error relative error rate (β)
0.0833 0.2000 0.2000 5.7630 0.1154 1.0657
0.0589 0.1000 0.1000 2.0515 0.0791 1.7141
0.0417 0.0500 0.0500 0.7127 0.0437 1.8863
0.0295 0.0250 0.0250 0.2743 0.0227 1.9119
0.0208 0.0125 0.0125 0.1401 0.0117
0.0147 0.0063 0.0063

Table 7.3: Verification of the convergence rate β = 2 for the p1-SLFE method with
α = 0.7071. No edge stabilization is used (γ = 0).

∆x ∆y ∆τ error 106 relative error rate (β)
0.0833 0.2000 0.2000 2.8867 0.1152 1.5972
0.0661 0.1000 0.1000 1.9946 0.0790 2.5648
0.0525 0.0500 0.0500 1.1019 0.0437 2.8203
0.0417 0.0250 0.0250 0.5730 0.0228 2.9015
0.0331 0.0125 0.0125 0.2952 0.0117

Table 7.4: Verification of the convergence rate β = 3 for the p2-SLFE method with
α = 0.7937. No edge stabilization is used (γ = 0).

7.3 Verification of convergence to the viscosity so-
lution

Because the finite difference method presented in chapter 3 is monotone, stable
and point vise consistent, it is guaranteed to converge to the viscosity solution of
(7.1), [19]. We can use this knowledge to verify that the SLFE method and the
FE-method also converges correctly. This verification is conducted by comparing
subsequent solutions of the finite difference method with the two other methods.
If the numerical methods converge to the same solution we should observe that the
difference between the solutions decreases as the discretization parameters are de-
creased. The results from experiments with the SLFE method and the FE-method
with P1 and P2 elements are shown in tables 7.5, 7.6, 7.7, and 7.8. The discretiza-
tion parameters of the methods are halved at each iteration and we observe that
the difference between the solutions, measured in the ‖·‖2-norm, decreases approx-
imately with a factor of 0.5 for each iteration, expect for the P2-FE method where
the rate seems to decrease slightly. The difference in the solutions are computed
at the last time step, τ = 0.25.

Remark 7.5. The boundary conditions at x = 1 for the FE method is slightly
different from the finite difference method and the SLFE method, see remark 7.4,
so we only measure the difference in the solutions on a subset Ω̃ = [1, 0.8]×[0, 1] ⊂ Ω
of the domain, in tables 7.7 and 7.8.
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∆x ∆y ∆τ ‖ṽk − v̂k‖2 × 105 ‖ṽk − v̂k‖2/‖ṽk‖2
0.2500 0.2500 0.0217 3.6270 0.0385
0.1250 0.1250 0.0109 0.9193 0.0105
0.0625 0.0625 0.0055 0.3695 0.0044
0.0312 0.0312 0.0027 0.1565 0.0019
0.0156 0.0156 0.0014 0.0941 0.0011

Table 7.5: Verification of convergence to the viscosity solution for the P1-SLFE
method; ṽk and v̂k represent the solutions of the P1-SLFE-method and the finite
difference method, respectively. No edge stabilization is used (γ = 0).

∆x ∆y ∆τ ‖ṽk − v̂k‖2 × 105 ‖ṽk − v̂k‖2/‖ṽk‖2
0.2500 0.2500 0.0217 2.6209 0.0276
0.1250 0.1250 0.0109 2.6088 0.0292
0.0625 0.0625 0.0055 1.1006 0.0129
0.0312 0.0312 0.0027 0.5215 0.0062
0.0156 0.0156 0.0014 0.2569 0.0031

Table 7.6: Verification of convergence to the viscosity solution for the P2-SLFE
method; ṽk and v̂k represent the solutions of the P2-SLFE-method and the finite
difference method, respectively. No edge stabilization is used (γ = 0).

h ∆x ∆y ∆τ ‖ṽk − v̂k‖2 × 106 ‖ṽk − v̂k‖2/‖ṽk‖2
0.2500 0.2500 0.2500 0.0217 5.7630 0.5089
0.1250 0.1250 0.1250 0.0109 2.0515 0.2546
0.0625 0.0625 0.0625 0.0055 0.7127 0.1001
0.0312 0.0312 0.0312 0.0027 0.2743 0.0404
0.0156 0.0156 0.0156 0.0014 0.1401 0.0208

Table 7.7: Verification of convergence to the viscosity solution for the P1-FE
method; ṽk and v̂k represent the solutions of the P1-FE-method and the finite
difference method, respectively. The stabilization parameter is γ = 0.5.

h ∆x ∆y ∆τ ‖ṽk − v̂k‖2 × 105 ‖ṽk − v̂k‖2/‖ṽk‖2
0.2500 0.2500 0.2500 0.0217 6.1515 0.0976
0.1250 0.1250 0.1250 0.0109 2.4646 0.0387
0.0625 0.0625 0.0625 0.0055 1.3265 0.0203
0.0312 0.0312 0.0312 0.0027 0.8325 0.0127
0.0156 0.0156 0.0156 0.0014 0.6745 0.0102

Table 7.8: Verification of convergence to the viscosity solution for the P2-FE
method; ṽk and v̂k represent the solutions of the FE-method and the finite dif-
ference method, respectively. The stabilization parameter is γ = 0.02.
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(a) Value function

(b) Optimal control

Figure 7.1: Numerical solution of the value function and the optimal control policy
evaluated at τ = 1. The discretization parameters are ∆x = xmax/20,∆y =
ymax/20 and ∆τ = T/200.
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(a) FEM P2 with no stabilization γ = 0.

(b) FEM P2 with stabilization γ = 0.02

Figure 7.2: Numerical solution of the value function after 10 time steps, with
h = 0.04 and ∆τ = 0.0156. When we remove the edge stabilization, spurious
oscillations are observed in the solution. The oscillations starts in x = 0, where
there is least diffusion. Similar observation are made with P1 elements. We found
that the stabilization parameters γ = 0.02 and γ = 0.5 worked well for P1 and P2

elements respectively.
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Chapter 8

Conclusion

8.1 Summary

This thesis has described three separate numerical methods for solving numerically
the Hamilton Jacobi Bellman equation (2.21) relating to the valuation and optimal
operation of a natural gas storage:

(i) A semi implicit upwind finite difference method was introduced in chapter 3.
The method was shown to be consistent, monotone and ‖·‖∞-stable provided
a linear CFL condition (3.13). Even if this method is only first order accurate
it is attractive from a practical point of view as it is very easy to implement,
numerical oscillations cannot occur due to the upwind technique and the
numerical solution converges to the viscosity solution of 2.21, [19].

(ii) A semi-Lagrange finite element method based on the method developed by
Forsyth and Chen [19] was decribed in chapter 5. A linearization technique,
described in section 5.1 was used to obtain a fully implicit method. We
discussed the possibility of adding stabilization in the price direction in section
4.3, however, in our numerical experiments this was not necessary.

(iii) A finite element method based on a triangulation of the domain in the x and y
directions and a backward finite difference discretization in time was presented
in chapter 6. To prevent numerical oscillations, the method was stabilized
with the edge stabilization technique, described in [4]. Numerical results
indicate that the edge stabilization method successfully prevent numerical
oscillations, see figure 7.2.

All the methods were successfully implemented in MATLAB and in chapter 7 we
have conducted numerical experiments with respect to a standard test case in he
literature, see [14], [19], [17]. The numerical results provided in tables 7.5, 7.6,
7.7, and 7.8, indicate that the three methods converge to the same solution for the
given test case.
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8.2 Challenges

A substantial amount of the work in this thesis has gone to the implementation
of the numerical schemes in MATLAB. In particular, the implementation of the
finite element method presented in chapter 6 required a lot of work, as we have
implemented the possibility of higher order elements and vectorization of the ma-
trix assembly procedures. When implementation of the edge stabilization method
described in section 6.3, it is necessary to obtain the indices of the elements that
are connected to a given edge. This information is in general not provided in a
standard mesh data structure. For this, we found that the triangulation class in
MATLAB was particularly useful.

8.3 Future Work

• The test case in section 7 is very simple. It is possible to obtain a more
realistic model by incorporating seasonal effects in the model and price jumps,
as suggested in [19] and [14].

• We have restricted the dicretization of the temporal variable to first order
methods. More accurate time stepping techniques such as the theta method
or Runge-Kutta schemes could be tried out.

• Apart from the upwind finite difference method presented in chapter 3 this
thesis has been very practical in nature and it remains to properly analyze
theoretically the methods that were introduced in chapters 5 and 6.

• The features of equation (2.21) are very different in each spatial direction. It
could therefore be reasonable to apply a fractional step method in time that
divides the differential operator into two parts corresponding to each spatial
direction. In this way, the two resulting sub problems can be discretized
independently with specialized methods.

• One of the advantages with the finite element method is the possibility of
locally refining the grid in areas where the discretization error is estimated
to be large. Grid refinement can take place subdividing triangles into smaller
triangles or increasing the degree of the basis functions in some elements. We
did not have time to try out this these techniques.
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