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Summary

Acoustic scattering has been thoroughly analyzed with the use of �nite element analysis
(FEA). The problem at hand is a coupled �uid-structure interaction problem on an
unbounded domain, where an object of elastic material is surrounded by �uid. Using
physical assumptions, the �uid is described by the wave equation which is transformed
to the Helmholtz equation. That is, the frequency domain is considered instead of the
time domain. In particular one is interested in the scattered pressure of a plane wave at
a far �eld point. The far �eld is computed by �rst computing the near �eld of the �uid
surrounding the object, and integrating this solution together with Green's function to
compute the scattered pressure at a far �eld point. This results in the so-called target
strength (TS) of an object. This is done for a series of frequencies in the lower spectrum,
such that the TS may be plotted over the frequency spectrum. It will also be possible to
plot the TS for a range of di�erent incident plane waves, in addition to measuring the TS
for a range of angles around the scatterer. As the domain is unbounded, one must create
an arti�cial boundary in order to use FEA. There exist several methods for ensuring that
the outgoing waves are not re�ected at this arti�cial boundary, including the PML method
after Bérenger, several absorbing boundary condition operators (ABC-operators) after
Enquist and Majda (among others), the use of Dirichlet-to-Neumann (DtN) operators
and �nally the use of so-called in�nite elements. A complete presentation of this analysis
of acoustic scattering with the use of in�nite elements has been presented by Frank
Ihlenburg. The same analysis using isogeometric analysis (IGA), will be presented. An
overview of IGA alongside the physical equations will be presented for completeness. A
complete program will be developed in MATLAB, and GLview Inova will be used as a
supplementary program for post processing.

The elastic object at hand is exactly represented by NURBS, and is thus especially suited
for IGA. Moreover, it has been shown that IGA is superior to the FEA when considering
spectrum analysis.

An extensive analysis of the spherical shell, where the 3D solution is known, will be
presented. First, the eigenvalues for the elastic spherical shell is computed, then the
acoustic scattering on a rigid sphere is analyzed and �nally the full problem is analyzed
where acoustic scattering of an elastic spherical shell is considered. All of this is computed
using IGA and compared to the known analytic solutions.

The workshop Benchmark Target Strength Simulation (BeTSSi) has been a forum for
the problem at hand, where several benchmark object has been analyzed by FEA and
other methods. The complexity of these objects varies all the way up to a full submarine
including torpedoes. Common for all objects is that no analytic solutions are found.
Comparisons using several methods have been presented in the BeTSSi conference, with
deviating results. The resulting TS graphs from IGA will be compared to existing meth-
ods.
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Sammendrag

Akustisk spredning har blitt grundig analysert med bruk av endelig element analyse
(FEA). Problemstillingen er et koblet interaksjonsproblem mellom et �uid og et elastisk
materiale, hvor det elastiske materialet er omgitt av �uidet. Med noen fysiske antagelser
beskrives �uidet med bølgeligningen som transformeres til Helmholtz ligning. Altså be-
traktes frekvensdomenet istedenfor tidsdomenet. Man er spesielt interessert i det spredte
trykket langt unna objektet. Dette beregnes ved å �nne løsningen nært objektet, for så å
integrere denne løsningen sammen med Green's funksjon. Dette resulterer i den såkalte
målstyrken (TS) til objektet. Denne beregningen blir gjort for en rekke frekvenser i det
nedre spektrum, slik at man kan plotte TS mot frekvensdomenet. Det er også mulig
å plotte TS for forskjellige innfallende plane bølger, samt å plotte TS for forskjellige
punkter rundt sprederen. Siden domenet er ubegrenset må man lage en kunstig rand for
å kunne bruke FEA. Det eksisterer �ere metoder for å sikre at ingen utgående bølger
re�ekteres fra denne kunstige randen. Dette inkluderer PML metoden til Bérenger, �ere
absorberende randebetingelser (ABC-operatorer) etter Enquist og Majda (blant �ere),
bruken av Dirichlet-til-Neumann (DtN) operatorer og de såkalte uendelige elementene.
En komplett analyse av akustisk re�eksjon med bruk av uendelige elementer har blitt
presentert av Frank Ihlenburg. Den samme analysen hvor isogeometrisk analyse (IGA)
brukes vil her bli presentert. En introduksjon til IGA sammen med de fysiske ligningene
vil også bli presentert. Det vil bli utviklet et komplett program i MATLAB, og GLview
Inova vil bli brukt til som et komplimenterende postprosesseringsprogram.

Det elastiske objektet representeres med NURBS, og er dermed spesielt egnet for IGA.
Videre har det blitt vist at IGA er bedre enn FEA for spektrum analyse. En grundig
analyse av et sfærisk skall, hvor den fulle 3D løsningen er kjent, vil bli presentert. Først
beregnes egenverdiene for det sfæriske skallet (som er elastisk), så analyseres akustisk
spredning på en fast sfære og til slutt analyseres akustisk spredning på det sfæriske
skallet. Alt dette blir beregnet med IGA og sammenlignet med kjente analytiske løsninger
og verdier.

Benchmark Target Strength Simulation (BeTSSi) er et forum for problemstillingen hvor
�ere standardmodeller har blitt analysert av FEA og andre metoder. Kompleksiteten av
disse modellene varierer helt opp til en full ubåt med indre strukturer som for eksempel
torpedoer. Felles for alle objekter er at ingen analytisk løsning er kjent. En sammenlign-
ing av forskjellige metoder anvendt på disse modellene har blitt presentert på BeTSSi
konferansene, med avvikende resultater. Resultatene fra IGA vil bli presentert opp mot
eksisterende resultater.
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Chapter 1

Introduction

1.1 Background

Acoustic scattering is a large �eld which has one of its application in the analysis of
scattering on submarines. The scattering problem is by no means limited to submarines,
as the physical phenomena occurs all around in nature. For instance, acoustic scattering
may be used to calculate the number of �sh in a �sh farming net [4]. Moreover, the �uid
to be analyzed is not limited to be water. For acoustic scattering problems, the Helmholtz
equation represents the governing equation for the �uid medium. The same equation in
vector form can govern electromagnetic waves ([5]). This will imply that much of the
work in this thesis can be used for the study of electromagnetic waves as well.

It is fair to say that the methods available for acoustic scattering (including FEM) are
not satisfactory for computation of large scale problems (due to the lack of computational
e�ciency). This thesis thus proposes the following problem description:

Investigate the contribution of IGA on acoustic scattering, and compare the
results with existing methods; in particular FEA.

The physical problem is given by the title, namely acoustic scattering. That is, sound

Elastic materialHomogeneous �uid

Γ

pinc

ps

Ω

Ω+

Figure 1.1: Illustration of the physical problem.

1



2 Introduction

Figure 1.2: Exact geometry of a spherical shell using 8 elements.

waves in some �uid is scattered by some object. In our case, the object is made of
an elastic material. The problem is illustrated in Figure 1.1 where the incoming sound
waves, pinc, originates from a point source far from this object such that the (spherical)
sound waves are quite accurate approximated by plane waves when the waves reaches the
proximity of the object. Waves scattered from the object are superimposed on the incident
plane waves, which potentially could hit the object once again. As pressure waves in the
�uid actuates elastic waves in the solid and vice versa, we get a �uid-structure interaction
problem. We shall assume the incoming wave to be periodic in time such that the system
will reach a steady-state solution. The goal is then to calculate the scattered wave ps at
an arbitrary far �eld point. Finally, to use FEM/IGA the domain must be �nite, which it
is not in this problem. A �ctitious boundary is thus needed, which must be implemented
in such a way that outgoing waves reaching this boundary are absorbed.

The geometry of the elastic object may be quite complex, but is typically exactly rep-
resented using Non-Uniform Rational B-Splines (NURBS). This fact, is one of the mo-
tivation of using IGA as it uses the same functions as basis function for analysis. The
spherical shell depicted in Figure 1.2 is an example of a geometry which has an exact rep-
resentation using NURBS, but is outside the space of standard �nite element geometries.
Moreover, IGA has proven to be superior to the classical FEA in the study of spectrum
analysis (the study of vibrations).

A natural application for the acoustic scattering on submarines is the �eld of shape
optimization. It will be illustrated that an increase in the frequency will require an corre-
sponding increase in the computational time for FEM/IGA. So as optimization requires
each iteration to be computed in a relatively small amount of time, it will restrict the
optimization application to the lower frequencies. It was shown in [6] that IGA is suited
for this analysis.

It has been shown that continuity of the basis functions plays an important role for
elliptical problems (for instance the Helmholtz equation), see [7] and [8]. This motivates
the use of IGA even further, as IGA enables the control of the continuity of the basis
function, even over element boundaries (in contrast with the C0-continuity restriction in
FEA). IGA has proven to be promising in a host of areas related to the problem at hand,
which yields further motivation in the use of IGA. For instance, in [9] the method was
shown to be suited for the more complex scenario of sound propagation through laminar
�ow.

In addition to IGA the so-called in�nite element method has been chosen to handle
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Figure 1.3: Exact geometry of BeTSSi model 1 using 9 elements.

Figure 1.4: Exact geometry of BeTSSi model 3 using 12 elements.

the boundary conditions at the arti�cial boundary. Typically the boundary element
method (BEM) has been used for this purpose with very good results. However, for
larger frequencies, BEM becomes computationally expensive. Both Burnett in [10] and
Gerdes and Demkowicz in [11] reports that the in�nite element method is superior to
BEM with respect to computational time for the same accuracy.

The Benchmark Target Strength Simulation (BeTSSi) is a workshop where several generic
submarine models are analyzed by participating companies. Two of these simpler models
are depicted in Figure 1.3 and Figure 1.4. The second of these workshops (description in
[12]) was held in Kiel (in Germany) the fall 2014.

One of the BeTSSi models will be analyzed, namely BeTSSi model 3 depicted in Fig-
ure 1.4. We shall here limit ourselves to analysis with hard walled boundary conditions
(HWBC).

A way more complex geometry is depicted in Figure 1.5 and illustrates the submarine
model in the BeTSSi workshop. When dealing with such complex geometries using
NURBS, one needs to introduce so called patches which glue together several NURBS
objects.
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Figure 1.5: The BeTSSi submarine geometry may be exactly represented by NURBS.

One of the main goals of this thesis is to consider the so-called target strength (TS) of
an object. This is a measure of the backscattered pressure from an object responding to
an incident pressure �eld.

1.2 Outline of the thesis

We shall start by presenting the governing physical equations in Chapter 2. This is
advantageus not only to give a precise mathematical de�nition of the equations involved,
but also to present the notation used in the thesis.

Using Kirchho��Love shell theory it is possible to create analytic solution to the acoustic
scattering problem on the spherical shell. Such analytic solution is essential to verify
the developed method, and was used to verify the FEM method implemented in [3].
This thesis goes a step further in presenting the full 3D analytic solution for the elastic
scattering problem of this spherical shell (Chapter 3). We are then able to compute
the analytic eigenvalues for the spherical shell and the exact back scattered pressure.
Moreover, we present some motivation for using the full 3D solution over the shell theory
solution. The di�erence between the two solutions is namely non trivial.

We shall then continue in Chapter 4 by setting the stage for IGA. We start by presenting
the basis functions involved, and then continue to illustrate IGA on elasticity problems.

A natural intermediate step between elastostatic analysis and elastodynamics analysis is
the analysis of vibrations. In addition to illustrate the mentioned advantage IGA poses
in this area, we shall analyze convergence of the eigenvalues computed by IGA for the
spherical shell. This is the topic of Chapter 5.

Before starting on the full structure-�uid interaction (FSI) problem, it is important to
establish good results for the in�nite element method. This method only applies for
the �uid, and it would thus be natural to investigate the scattering problem on rigid
objects �rst (that is, no structure-�uid interaction occurs). An introduction to the in�nite
element method alongside results for the scattering on rigid sphere will be presented in
Chapter 6.
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With the in�nite element method in our arsenal, we are now ready to consider the
structure-�uid interaction problem on unbounded domains. In Chapter 7, an extensive
analysis will be done for the spherical shell which will lay down a basis of understanding
of the convergence analysis.

The most time consuming part of the thesis is without any doubt the programming part.
With approximately 80 scripts and subroutines, and 150 functions, some 10,000 source
lines of code have been implemented. As a full description of the implementation would
be far to comprehensive for a thesis, only a summary of the important parts of the full
�uid-structure interaction program will be described. This is the topic of Chapter 8.

In Chapter 9 we present and discuss the results obtained for BeTSSi model 3 and the full
FSI problem on the spherical shell.

Finally in Chapter 10 we present the conclusions from the present work.

It must be noted that a huge amount of additional work has been moved to the appendix
part for the brevity of this thesis. This includes development of several analytic solutions
which has been crucial for the development of the implementations in MATLAB.





Chapter 2

Governing physical equations

The problem at hand is obviously time dependent. But we shall assume harmonic time
dependency, such that all scalar function F̂ = F̂ (x, t) may be written

F̂ (x, t) = F (x)e−iωt (2.1)

and corresponding for vector �elds F̂ = F̂ (x, t)

F̂ (x, t) = F (x)e−iωt

where ω is the angular frequency. We refer to this assumption as the harmonic time
dependency assumption. The sign in the exponential factor is just a matter of convention.
Burnett uses eiωt in [10], while Ihlenburg uses e−iωt in [3]. In this thesis, we shall use the
convention after Ihlenburg.

We start by following [3, pp. 1-4] in presenting the physical equation for the problem at
hand.

2.1 Acoustic waves

The �uid domain to be considered is homogeneous throughout the domain, and we shall
use simplifying assumption including linearization to end up with the wave equation.
From here, we move from the time domain to the frequency domain when using the
harmonic time dependency assumption.

2.1.1 The continuity equation

Let V be a volume element in the �uid domain with boundary ∂V and outward normal
vector n(x) where x ∈ ∂V . Denote by ρ(x, t) and V (x, t), the mass density of the �uid
in V and the velocity �eld of the �uid, respectively. Then, V · n denotes the velocity
of the normal �ux out of V through the boundary ∂V . Conservation of mass in V then
yields

∂

∂t

∫

V
ρ dV = −

∮
ρ (V · n) dS. (2.2)

7
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Gauss theorem in Equation (A.1) let us rewrite the right hand side as∮
ρ (V · n) dS =

∮
(ρV ) · n dS =

∫

V
∇ · (ρV ) dV

such that Equation (2.2) may be written as∫

V

∂ρ

∂t
+∇ · (ρV ) dV = 0.

As conservation of mass is supposed to hold for any (smooth enough) domain V it means
it has to be valid pointwise and we thus end up with the continuity equation

∂ρ

∂t
+∇ · (ρV ) = 0. (2.3)

2.1.2 Equation of motion

Newton's second law of motion implies that we have conservation of momentum. Thus,
any change of momentum in the control volume V must either be due to the momentum
leaving or entering the control volume, or the acts of external surface/volume forces acting
on the control volume. Mathematically, this may be written as

∂

∂t

∫

V
ρV dV = −

∮

∂V
(ρV )(V · n) dS −

∮

∂V
P (x, t)n dS +

∫

V
ρg dV (2.4)

were we have neglected viscous forces (note that this is a vector equation). The ith compo-
nent of the �rst term on the right hand side may (using Gauss theorem in Equation (A.1))
be written as ∮

∂V
(ρVi)V · n dV =

∮

∂V
(ρViV ) · n dV =

∫

V
∇ · (ρViV ) dV

where Vi denotes the i
th component of V . Using Equation (A.2), we have∮

∂V
P (x, t)n dS =

∫

V
∇P (x, t) dV .

Combining these surface integral transformations we may write the ith component of
Equation (2.4) as

∫

V

∂(ρVi)

∂t
−∇ · (ρViV ) +∇iP (x, t)− ρgi dV = 0.

Using the same argument as before we get

∂(ρVi)

∂t
−∇ · (ρViV ) = −∇iP (x, t) + ρgi.

Expanding left hand side yields

ρ
∂Vi
∂t

+
∂ρ

∂t
Vi +∇ · (ρV )Vi + (ρV ) · ∇Vi = −∇iP + ρgi.

such that we may use Equation (2.2) to eliminate the second and third term of left hand
side

ρ
∂Vi
∂t

+ (ρV ) · ∇Vi = −∇iP + ρgi.

Combining all components we arrive at Euler's equation

ρ
∂V

∂t
+ ρ(V · ∇)V = −∇P + ρg. (2.5)
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2.1.3 Helmholtz equation

We �rst need to linearize the continuity equation in Equation (2.3) and Euler's equation
in Equation (2.5). This is done by setting

P = P0 + P1, ρ = ρ0 + ρ1, and V = V 0 + V 1 (2.6)

where parameters with subscript 0 is equilibrium parameters and parameters with sub-
script 1 refer to small perturbed parameters. That is, we assume there is only a small
perturbation of a background �eld for the pressure, density and the velocity �eld. As-
suming there is no background velocity, we have V 0 = 0. We shall also assume the
background density to be constant, such that

∂ρ0

∂t
= 0 and ∇ρ0 = 0.

The background pressure �eld can only be due to the hydrostatic pressure from the
gravity force density (ρg = −ρge3) such that we have

P0 = Pa − ρzg.

where Pa is the (constant) background pressure at z = 0. This implies that

∂P0

∂t
= 0 and ∇P0 = ρg.

Euler's equation thus simpli�es to

ρ
∂V

∂t
+ ρ(V · ∇)V = −∇P1. (2.7)

The linearization procedure is then completed by inserting the expression in Equa-
tion (2.6), and neglect the terms of second order or higher. For the continuity equation
in Equation (2.3), we have

∂ρ1

∂t
+∇ · ((ρ0 + ρ1)V 1) = 0

which after linearization yields the linearized version of the continuity equation

∂ρ1

∂t
+ ρ0∇ · V 1 = 0. (2.8)

For the simpli�ed Euler equation in Equation (2.7) we get

(ρ0 + ρ1)
∂V 1

∂t
+ ρ(V 1 · ∇)V 1 = −∇P1

which after linearization yields the linearized version of the Euler equation

ρ0
∂V 1

∂t
= −∇P1. (2.9)

We shall assume a linear material law,

P = c2ρ ⇒ ∂P1

∂t
= c2∂ρ1

∂t
,
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where c is the speed of sound (material parameter which we assume to be constant).
Using Equation (2.8) and Equation (2.9), we get

∂2P1

∂t2
= c2∂

2ρ1

∂t2
= c2 ∂

∂t

(
∂ρ1

∂t

)
= c2 ∂

∂t
(−ρ0∇ · V 1) = −c2∇ ·

(
ρ0
∂V 1

∂t

)

= −c2∇ · (−∇P1) = c2∆P1

which is simply the classical wave equation for the pressure

1

c2

∂2P1

∂t2
= ∆P1. (2.10)

Inserting P1(x, t) = P̄1(x, k)e−iωt then yields the Helmholtz equation

∆P̂1 + k2P̂1 = 0

where k = ω
c
is called the wave number.

2.2 Linear elasticity

One important assumption for using linear elasticity is that only small deformations of
the material occurs. We will here not show in detail the derivation of the governing
equation for linearized elasticity, but we present the notation used in the formulation of
the isogeometric analysis.

The notations used, takes inspirations from [2]. In this section, the indices i, j, k and l
will denote a speci�c spatial direction. All calculations will be in three dimensions, such
that i, j, k, l = 1, 2, 3. Moreover, ui shall denote the i

th component of the vector u and
di�erentiation is denoted with a comma such that

ui,j = ui,xj =
∂ui
∂xj

.

Finally, we use the convention that if an index is repeated, it imply summation. That is,

σijnj = σi,1n1 + σi,2n2 + σi,3n3

and

σij,j + fi =
∂σi1
∂x1

+
∂σi2
∂x2

+
∂σi3
∂x3

+ fi.

Note that we do not sum over i in the latter example since the quantities are separated
by a plus sign. De�ne now the symmetric part of a general tensor A = [Aij] to be

A(ij) = A(ji) :=
Aij + Aji

2

and note that if B = [Bij] = [B(ij)] is a symmetric tensor, then

AijBij = A(ij)Bij. (2.11)

That is, we can combine the components of B which are equal to reduce redundant
computations.
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Let now σij denote the Cartesian components of the Cauchy stress tensor and let εij
denote the in�nitesimal strain tensor which is de�ned by

εij = u(i,j) =
ui,j + uj,i

2
.

We can now state the relation between εij as σij using the generalized Hooke's law as

σij = cijklεkl

where cijkl are elastic coe�cients. In the case of isotropic material, these coe�cients are
given by

cijkl = λδijδkl + µ (δikδjl + δilδjk)

where the Kronecker delta function is given by

δij =

{
1 i = j

0 otherwise

and the parameters λ and µ are the Lamé parameters which are expressed in terms of E
and ν (Young's modulus and Poisson's ratio respectively) by

λ =
νE

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
.

We are now ready to state the strong form of the linear elasticity problem in three
dimensions.

Let Ω ⊂ R3 be the domain with a boundary ∂Ω which is composed of two parts; ΓDi
and ΓNi . These are called Dirichlet and Neumann boundary conditions, respectively, and
satis�es

⋃3
i=1 ΓDi ∪ΓNi = ∂Ω and ΓDi ∩ΓNi = ∅. Moreover, let the functions fi : Ω→ R,

gi : ΓDi → R and hi : ΓNi → R be given. Then, �nd ui : Ω→ R such that

σij,j + fi = ρsui,tt in Ω, (2.12)

ui = gi on ΓDi , (2.13)

σijnj = hi on ΓNi , (2.14)

for i = 1, 2, 3.

Using the assumption of periodicity, we may insert ui → uie
−iωt (and fi → fie

−iωt) into
Equation (2.12). As σ is a linear function of ui, we get a common factor e−iωt which
simpli�es the equation to

σij,j + ω2ρsui = −fi in Ω. (2.15)





Chapter 3

Analytic solution for spherical shell

There are few known analytic solution to full 3D scattering problems, but for the spherical
shell, the exact solution is known (the exact solution is also known for a solid sphere,
but this case will not be considered). Whenever the spherical shell is analyzed, we shall
mainly use the parameters found in Table 3.1. It is typically also possible to construct
analytic solution to an in homogeneous Helmholtz equation by inserting an arbitrary
smooth solution and calculate the resulting right hand side. Correspondingly for elasticity
problems with body forces. However, for the homogeneous equations one does not have
this liberty. Elastic scattering on a spherical shell thus serves as a valuable test problem
before geometries with higher complexity may be analyzed.

3.1 Fundamental functions

Exact solutions for the spherical shell are heavily based on the spherical coordinate system
de�ned in Appendix B.3. Some fundamental functions then naturally arise, and we shall
brie�y present their notation in the following.

As the Bessel functions (or cylindrical harmonics) are implemented in MATLAB, we
shall use these functions as a starting point.

Table 3.1: Parameters for spherical shell.

Parameter Description

E = 2.07 · 1011Pa Young's modulus
ρs = 7669kg/m3 Density of solid
ρf = 1000kg/m3 Density of �uid
ν = 0.3 Poisson's ratio
cf = 1524m/s Fluid speed of sound
t = 0.15m Thickness of the shell
R = 5m Radius of the midsurface of the shell
Ro = 5.075m Outer radius of the shell
P0 = 1 Amplitude of incident wave

13
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3.1.1 Legendre polynomials

The Legendre polynomials are de�ned recursively by (cf. [13, p. 332])

(n+ 1)Pn+1(x) = (2n+ 1)xPn(x)− nPn−1(x)

starting with P0(x) = 1 and P1(x) = x. The �rst �ve of these two sets of functions are
illustrated in Figure 3.1. The solutions presented involving these functions appears as
Pn(cos θ), so we also plot these functions in Figure 3.2.

3.1.2 Bessel functions

The Bessel functions of the �rst kind are de�ned by

Jα(x) =
∞∑

m=0

(−1)m

m!Γ(m+ α + 1)

(x
2

)2m+α

,

while the Bessel functions of the second kind are de�ned by

Yα(x) =
Jα cos(απ)− J−α(x)

sin(απ)
,

where
Yn(x) = lim

α→n
Yα(x)

whenever n ∈ Z (cf. [13, p. 358]). The derivatives of these functions are given by

J ′α(x) =

{
1
2

(Jα−1 − Jα+1) α 6= 0

−J1(x) α = 0

and

Y ′α(x) =

{
1
2

(Yα−1 − Yα+1) α 6= 0

−Y1(x) α = 0.

The �rst �ve functions of these two sets of functions are illustrated in Figure 3.3 and
Figure 3.4, respectively.

We may now use these de�nitions to de�ne the spherical Bessel functions. The spherical
Bessel functions of the �rst kind are de�ned by (cf. [13, p. 437])

jn(x) =

√
π

2x
Jn+ 1

2
(x)

and the second kind are de�ned by

yn(x) =

√
π

2x
Yn+ 1

2
(x).

The �rst �ve functions of these two sets of functions are illustrated in Figure 3.5 and
Figure 3.6. The derivatives of these functions are simply found by the product rule

j′n(x) =

√
π

2x
J ′
n+ 1

2
(x)− 1

2

√
π

2

1

x3/2
Jn+ 1

2
(x)

and

y′n(x) =

√
π

2x
Y ′
n+ 1

2
(x)− 1

2

√
π

2

1

x3/2
Yn+ 1

2
(x).
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3.1.3 Spherical Hankel functions

The spherical Hankel functions of the �rst kind are now given by

hn(x) = jn(x) + iyn(x)

with a derivative given by

h′n(x) = j′n(x) + iy′n(x).

The spherical Hankel functions of the second kind are simply de�ned by

h(2)
n (x) = jn(x)− iyn(x).

As these solution will represent in-going waves in scattering problems, they will not be
used (They will be eliminated by the Sommer�eld condition, which we will come back
to).

3.2 Simplifying notations

In [14, pp. 12-20] the exact 3D elasticity solution for the spherical shell is presented.
We shall repeat the �nal formulas here, but will adopt them to the notation of the
thesis and do some simpli�cations in the expressions. As the formulas involved are quite
comprehensive, we shall start by de�ning some simplifying notation. For convenience, we
de�ne

Z(1)
n (x) = jn(x), and Z(2)

n (x) = yn(x),

such that we can de�ne

U
(i)
1 (x) = nZ(i)

n (x)− xZ(i)
n+1(x)

U
(i)
3 (x) = n(n+ 1)Z(i)

n (x)

T
(i)
11 (x) =

[
n2 − n− 1

2

(
β

α

)2

x2

]
Z(i)
n (x) + 2xZ

(i)
n+1(x)

T
(i)
13 (x) = n(n+ 1)

[
(n− 1)Z(i)

n (x)− xZ(i)
n+1(x)

]

T
(i)
21 (x) =

[
−n2 − 1

2

(
β

α

)2

x2 + x2

]
Z(i)
n (x)− xZ(i)

n+1(x)

T
(i)
23 (x) = −(n2 + n)

[
nZ(i)

n (x)− xZ(i)
n+1(x)

]

T
(i)
31 (x) =

[
n− 1

2
x2 +

(
α

β

)2

x2

]
Z(i)
n

(
α

β
x

)
− α

β
xZ

(i)
n+1

(
α

β
x

)

T
(i)
33 (x) = n(n+ 1)Z(i)

n (x)

T
(i)
41 (x) = (n− 1)Z(i)

n (x)− xZ(i)
n+1(x)

T
(i)
43 (x) =

(
n2 − 1− 1

2
x2

)
Z(i)
n (x) + xZ

(i)
n+1(x)
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where

α =
ω

c1

, β =
ω

c2

, c1 =

√
λ+ 2µ

ρs
, c2 =

√
µ

ρs
.

Moreover, we de�ne the coe�cients An, Bn, Cn and Dn by

A0 =

R2
o

2µ
T

(2)
11 (αRi)

∆0

, B0 = 0, C0 = −
R2

o

2µ
T

(1)
11 (αRi)

∆0

, D0 = 0

for n = 0 where

∆0 =

∣∣∣∣∣
T

(1)
11 (αRo) T

(2)
11 (αRo)

T
(1)
11 (αRi) T

(2)
11 (αRi)

∣∣∣∣∣ ,

and for n > 0 we have

An =
∆n1

∆n

, Bn =
∆n2

∆n

, Cn =
∆n3

∆n

, Dn =
∆n4

∆n

where

∆n =

∣∣∣∣∣∣∣∣∣

T
(1)
11 (αRo) T

(1)
13 (βRo) T

(2)
11 (αRo) T

(2)
13 (βRo)

T
(1)
11 (αRi) T

(1)
13 (βRi) T

(2)
11 (αRi) T

(2)
13 (βRi)

T
(1)
41 (αRo) T

(1)
43 (βRo) T

(2)
41 (αRo) T

(2)
43 (βRo)

T
(1)
41 (αRi) T

(1)
43 (βRi) T

(2)
41 (αRi) T

(2)
43 (βRi)

∣∣∣∣∣∣∣∣∣
(3.1)

∆n1 =
R2

o

2µ

∣∣∣∣∣∣∣

T
(1)
13 (βRi) T

(2)
11 (αRi) T

(2)
13 (βRi)

T
(1)
43 (βRo) T

(2)
41 (αRo) T

(2)
43 (βRo)

T
(1)
43 (βRi) T

(2)
41 (αRi) T

(2)
43 (βRi)

∣∣∣∣∣∣∣

∆n2 = −R
2
o

2µ

∣∣∣∣∣∣∣

T
(1)
11 (αRi) T

(2)
11 (αRi) T

(2)
13 (βRi)

T
(1)
41 (αRo) T

(2)
41 (αRo) T

(2)
43 (βRo)

T
(1)
41 (αRi) T

(2)
41 (αRi) T

(2)
43 (βRi)

∣∣∣∣∣∣∣

∆n3 =
R2

o

2µ

∣∣∣∣∣∣∣

T
(1)
11 (αRi) T

(1)
13 (βRi) T

(2)
13 (βRi)

T
(1)
41 (αRo) T

(1)
43 (βRo) T

(2)
43 (βRo)

T
(1)
41 (αRi) T

(1)
43 (βRi) T

(2)
43 (βRi)

∣∣∣∣∣∣∣

∆n4 = −R
2
o

2µ

∣∣∣∣∣∣∣

T
(1)
11 (αRi) T

(1)
13 (βRi) T

(2)
11 (αRi)

T
(1)
41 (αRo) T

(1)
43 (βRo) T

(2)
41 (αRo)

T
(1)
41 (αRi) T

(1)
43 (βRi) T

(2)
41 (αRi)

∣∣∣∣∣∣∣
.

The mechanical impedance is now de�ned by

Zn =
Ro

−iω
[
AnU

(1)
1 (αRo) + CnU

(2)
1 (αRo) +BnU

(1)
3 (βRo) +DnU

(2)
3 (βRo)

]

and the speci�c acoustic impedance is given by

zn = iρfcf
hn(kRo)

h′n(kRo)
.
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Table 3.2: Vibration of spherical shell in vacuum: Eigenvalues.

n ωn1 ωn2 ωn3 ωn4

0 1 756.512 808 126 260.364 283 252 500.986 439 378 745.996 169
1 2 150.627 736 67 515.475 434 126 228.461 764 135 011.522 862
2 764.120 551 2 963.645 770 67 557.845 627 126 165.580 365
3 907.966 763 3 957.249 140 67 621.308 959 126 073.458 170
4 972.169 223 5 003.665 721 67 705.755 978 125 954.457 998
5 1 017.829 344 6 068.816 531 67 811.042 230 125 811.341 874
6 1 065.383 457 7 142.244 424 67 936.989 482 125 647.053 072
7 1 124.910 447 8 219.893 517 68 083.387 218 125 464.535 596
8 1 202.487 436 9 299.877 139 68 249.994 352 125 266.603 859
9 1 301.807 206 10 381.189 705 68 436.541 152 125 055.861 655

10 1 424.763 754 11 463.235 315 68 642.731 323 124 834.661 792
11 1 571.893 542 12 545.628 972 68 868.244 217 124 605.095 229
12 1 742.817 050 13 628.103 050 69 112.737 138 124 368.999 333
13 1 936.628 939 14 710.459 324 69 375.847 706 124 127.977 066
14 2 152.185 866 15 792.542 594 69 657.196 233 123 883.421 272
15 2 388.286 746 16 874.225 327 69 956.388 103 123 636.540 322
16 2 643.769 233 17 955.398 269 70 273.016 103 123 388.382 902
17 2 917.551 993 19 035.964 470 70 606.662 699 123 139.860 776
18 3 208.646 463 20 115.835 338 70 956.902 215 122 891.769 039
19 3 516.153 537 21 194.927 938 71 323.302 920 122 644.803 765
20 3 839.254 092 22 273.163 098 71 705.428 985 122 399.577 175

3.3 Vibration of spherical shell in vacuum

The eigenvalues of a spherical elastic shell in vacuum is found by solving ∆n = 0 (given by
Equation (3.1)) for allmodes n. For each mode n there will be in�nitely many eigenvalues.
For a given n, we denote by ωnm the eigenvalue corresponding to the mth zero of ∆n.
The resulting eigenvalues seems to grow as n grows for large n (as shown in Figure 3.7).
In Table 3.2 we show the �rst 4 zeros of ∆n for n from 0 to 20. The �rst four (lowest)
eigenvalues are found to be ω21 = 764.12055, ω31 = 907.96676, ω41 = 972.16922 and
ω51 = 1017.829.

3.4 Scattering on a rigid sphere

Let the plane wave
pinc(r, θ) = P0eikz = P0eikr cos θ

be scattered on a sphere with radius R. The resulting scattered wave is then

ps∞(r, θ) = −P0

∞∑

n=0

in(2n+ 1)Pn(cos θ)
j′n(kR)

h′n(kR)
hn(kr).

For details of this solution see [3, p. 28].
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Figure 3.7: Vibrations of spherical shell in vacuum: All eigenvalues below 2 · 105,
which results in 1186 eigenvalues. The plot on the right shows a magni�cation of the
domain inside the dotted lines.

3.5 Scattering on elastic spherical shell

The full 3D exact solution to the elastic scattering problem is given by

p(r, θ) = ps,∞(r, θ) + ps,r(r, θ) (3.2)

where

ps,∞(r, θ) = −P0

∞∑

n=0

(2n+ 1)inPn(cos θ)
j′n(kRo)

h′n(kRo)
hn(kr)

and

ps,r(r, θ) =
P0ρfcf

(kRo)2

∞∑

n=0

in(2n+ 1)Pn(cos θ)hn(kr)

[h′n(kRo)]2(Zn + zn)
.

Here, ps,∞ represent a scattered wave from a rigid body, and ps,r represent the pressure
corresponding to the forced vibrations of the elastic body in �uid (loaded with the sum of
incident pressure pinc and the rigid body scattered pressure ps,∞) (see [14, p. 2] for more
details). Note that we do not include the incident pressure �eld pinc in p, as this �eld is
not present in the numerical solution. However, to compute the total physical pressure
at the wet surface this �eld must be included (in addition to the constant background
pressure).

In Figure 3.9 we plot the modulus of the function

F (k) = rfe
ikrfp(rf , αf , βf)

where P f is the far �eld point which depends on rf , αf and βf (cf. Figure 3.8). This plot
illustrates the complexity of the exact solution at hand. It seems to be discontinuous at
the eigenmodes (with wave numbers found in Table 3.3), but if zoomed in enough, we
observe the spikes to be smooth as well. As Figure 3.9 illustrates, we must magnify a lot
to show details of the higher eigenmodes. If such a detailed plot was to be illustrated using
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Figure 3.8: Scattering on elastic spherical shell: The spherical shell in the xz-
plane. Here with R = 5 and t = 0.25 (the calculations uses t = 0.15 and are here set to
0.25 only for visualization purposes).
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Figure 3.9: Scattering on elastic spherical shell: Far-�eld pattern of backscattered
pressure (we set αs = αf = π) for elastic spherical shell (monostatic calculation). The
plot on the right shows a magni�cation (in x-direction) of the domain inside the dotted
lines. The length of the domain of this plot is ∆k = 10−6.
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Figure 3.10: Scattering on elastic spherical shell: Scattering from elastic shell with
di�erent �uid densities.

uniform sampling, we would need several millions of samples. Due to the complexity of
the functions involved, this would be very time consuming, so it is more practical to use
non uniform sampling. Needless to say, to �nd these higher eigenmodes using a numerical
approximation will be very hard, even though we know a priori the exact location of the
analytic eigenmodes.

In Figure 3.10 we also show the e�ect of low density of the �uid. As we can see from
Table 3.3, the eigenmodes of a spherical shell surrounded by air (with low density) comes
close to the corresponding wave numbers for a spherical shell in vacuum. As Ihlenburg
points out, an increase in the density of the acoustic medium around the spherical shell
results in a larger shift to the left of the eigenmodes.

Ihlenburg uses a shell theory solution as a reference solution. The only di�erence will
then be the function Zn which in the case of shell theory is given by

Z0 =
Et [Ω2 − 2(1 + nu)]

iωR2 (1− ν2)

for n = 0 and

Zn =

∣∣∣∣
Ω2 − (1 + β2) (ν + λn − 1) −β2(ν + λn − 1)− (1 + ν)

−λn (β2(ν + λn − 1) + (1 + ν)) Ω2 − 2(1 + ν)− β2λn(ν + λn − 1)

∣∣∣∣

−iω

∣∣∣∣∣
Ω2 − (1 + β2) (ν + λn − 1) 0

−λn [β2(ν + λn − 1)(1 + ν)] −R2(1−ν2)
Et

∣∣∣∣∣

for n > 0, where

Ω =
Rω

cs
, ω = kcf , cs =

√
E

(1 + ν2)ρs
, λn = n(n+ 1) and β =

t√
12R

.
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Table 3.3: Spherical shell: Comparison of wave number of modes in the case of air
and water (ρf = 1 and ρf = 1000 respectively) and shall theory solution (for water) versus
the values for spherical shell in vacuum.

Vacuum ρf = 0 Air ρf = 1 Water ρf = 1000 Shell theory ρf = 1000

0.501 391 438 0.501 076 117 0.317 068 140 0.319 125 000
0.595 778 716 0.595 394 549 0.392 380 087 0.394 382 813
0.637 906 314 0.637 483 918 0.450 626 523 0.453 015 747
0.667 867 024 0.667 543 974 0.495 802 270 0.498 512 170
0.699 070 510 0.698 803 667 0.538 194 517 0.541 388 924
0.738 130 214 0.737 894 055 0.584 225 861 0.588 206 393
0.789 033 751 0.788 813 951 0.638 340 506 0.643 567 469
0.854 204 203 0.853 992 114 0.703 448 660 0.710 555 398
0.934 884 353 0.934 674 041 0.781 278 648 0.791 080 189
1.031 426 209 1.031 213 325 0.872 642 564 0.886 139 492
1.143 580 741 1.152 864 073 0.977 700 431 0.996 080 715
1.270 753 897 1.270 526 694 1.096 200 472 1.120 841 376
1.412 195 450 1.411 393 912 1.227 664 075 1.260 134 201
1.567 117 288 1.566 867 299 1.371 508 743 1.413 569 088
1.734 756 714 1.734 492 945 1.527 120 122 1.580 722 768
1.914 404 195 1.914 125 251 1.693 889 193 1.761 172 291
2.105 411 065 1.944 795 610 1.871 228 418 1.954 506 268
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Figure 3.11: Scattering on elastic spherical shell: Comparison between shell theory
solution and full 3D exact solution.
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Figure 3.12: Scattering on elastic spherical shell: Error between shell theory
solution and full 3D exact solution.

In Figure 3.11 we plot both our full 3D solution and this shell theory solution. The error
is signi�cant and is specially large at the eigenmodes. In Figure 3.12 a more informative
picture regarding the error is computed. Due to the large variation of the data sets, the
most reasonable norm is the absolute di�erence divided by the maximum absolute value.
That is, for two �nite data sets {xi} and {yi} the relative di�erence Ei for each pair
(xi, yi) is given by

Ei =
|xi − yi|

max(|xi|, |yi|)
(3.3)

We obviously also here see large errors at every eigenmode, but also elsewhere, the error is
signi�cant. In average, the error lies above 1%. In the applications of complex geometries,
this result would be acceptable, but we want to be able to perform convergence analysis
on this spherical shell where the obtained error may end up being far below 1%. This
way, we can draw conclusion of which sets of parameters increases the convergence rate
the most. The exactness of the solution is therefore considered to be of importance.





Chapter 4

Isogeometric analysis

Isogeometric analysis (IGA), is basically an extension of the �nite element method (FEM)
using non-uniform rational B-splines (NURBS) as basis functions. Being introduced in
2005 by Hughes et al. [1], followed by the book [2] in 2009, IGA tries to bridge the gap
between �nite element analysis and CAD design tools. The important future of IGA is
that it uses the same basis as CAD software for describing the given geometry, and thus
exact representation of the model is possible. It is therefore natural to include a section
considering this basis in the beginning before we set up the IGA for the problem at hand.
Note that only the relevant parts of the IGA will be presented, and even here we shall
be brief. This chapter assumes the reader is somewhat familiar which the �nite element
method.

4.1 B-splines

The NURBS basis is constructed by B-splines. So an understanding of B-splines is
crucial to understanding NURBS. Let p be the polynomial order, let n be the number of
basis functions and let Ξ = {ξ1, ξ2, . . . , ξn+p+1} be an ordered vector with non decreasing
elements, called knots (referred to as a knot vector). Then, the n B-splines, {Ni,p}i∈[1,n],
are recursively de�ned by

Ni,p(ξ) =
ξ − ξi
ξi+p − ξi

Ni,p−1(ξ) +
ξi+p+1 − ξ
ξi+p+1 − ξi+1

Ni+1,p−1(ξ).

where

Ni,0(ξ) =

{
1 if ξi ≤ ξ < ξi+1

0 otherwise.
(4.1)

This formula is referred to as Cox-deBoor formula, and the derivative of a spline may be
computed by

d

dξ
Ni,p(ξ) =

p

ξi+p − ξi
Ni,p−1(ξ)− p

ξi+p+1 − ξi+1

Ni+1,p−1(ξ). (4.2)

Throughout the project we shall use open knot vectors. That is, the �rst and last element
in the vector is repeated p + 1 times. Moreover, we shall use normalized knot vectors,

27



28 Isogeometric analysis

which simply spans from 0 to 1. Finally, a knot is said to have multiplicity m if it is
repeated m times in Ξ.

Some important properties of B-splines are given by the following (for proof, cf. [15]).

1. Ni,p are piecewise polynomials.

2. Ni,p depends only on the knots ξi, ξi+1, . . . , ξi+p+1.

3. In general Ni,p(ξ) ≥ 0, and if ξ 6∈ [ξi, ξi+p+1) then Ni,p(ξ) = 0.

4. If ξ ∈ [ξµ, ξµ+1) then Ni,p(ξ) = 0 if i < µ− p or i > µ.

5. If ξ ∈ (ξi, ξi+p+1) then Ni,p > 0.

6. If ξ̄ = ξj+1 = · · · = ξj+p < ξj+p+1 then Ni,p(ξ̄) = δij.

7. If a knot ξ̄ ∈ {ξi, . . . , ξi+p+1} has multiplicity m then Ni,p is p−m di�erentiable at
ξ̄.

8. B-splines satis�es the partition of unity property. That is,

n∑

i=1

Ni,p(ξ) = 1 ∀ξ, p.

9. B-splines forms a stable basis for piecewise polynomials.

To ease the understanding of B-splines we shall construct an illustrative example. Con-
sider quadratic B-splines (p = 2) with the knot vector Ξ = {0, 0, 0, 1, 2, 2, 3, 3, 3}. Note
that the use of a non-normalized knot vector is only for convenience and carries no im-
portance; the B-splines would have had the same characteristics if we divided all knots
by 3. Since |Ξ| = 10, the number of basis functions is given by n = |Ξ| − p − 1 = 6. In
Figure 4.1, Figure 4.2 and Figure 4.3, we have plotted not only the 6 basis functions of
second order, but also the functions of order zero and one needed to evaluate these basis
functions. By property 7 in the previous list, we see that N1,2 and N6,2 are discontinuous
at ξ = 0 and ξ = 3, respectively (p = 2 and m = 3 yields C−1 continuity in the end-
points). This is characteristic for all open knot vectors. Also note that the repeated knot
at ξ = 2 forces the function to have the Kronecker delta property; that is, Ni,p(ξj) = δij
if ξj has multiplicity m = p.

We may now de�ne a spline curve by

P (ξ) =
n∑

i=1

Ni,p(ξ)P i

where {P i}i∈[1,n] are the control points of the curve. To continue the example, consider
the control points P 1 = (5, 3), P 2 = (3, 2), P 3 = (1, 7), P 4 = (4, 3), P 5 = (7, 6) and
P 6 = (7, 1). Using the same basis functions {Ni,2}i∈[1,6] as in the previous example, we
get the curve depicted in Figure 4.4. In addition to the curve, the control polygon is
drawn, which is simply the piece wise linear curve between the ordered control points.
Note that the smoothness of the curve degrades at the point (4, 3). This is the result of
the repeated knot ξ = 2 which yields an interpolation e�ect, such that the control point
lies on the curve (which is also the case at the end points). Moreover, the control polygon
is tangential at all knots.
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Figure 4.1: Plot of the non-zero B-splines of order zero, where the knot vector is given
by Ξ = {0, 0, 0, 1, 2, 2, 3, 3, 3}. Note that Nj,0 ≡ 0 for j ∈ {1, 2, 5, 6, 7, 8}.
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(e) Plot of N6,1.

Figure 4.2: Plot of the non-zero B-spline basis functions (of �rst degree), where the
knot vector is given by Ξ = {0, 0, 0, 1, 2, 2, 3, 3, 3}. Note that Nj,1 ≡ 0 for j ∈ {1, 7}.
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(f) Plot of N6,2.

Figure 4.3: Plot of the 6 di�erent B-spline basis functions (of second degree), where the
knot vector is given by Ξ = {0, 0, 0, 1, 2, 2, 3, 3, 3}.
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(a) Curve and control polygon.
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(b) Curve and location of knots.

Figure 4.4: Plot of a spline curve. Since P 1 = (5, 2), this is the point where the curve
starts (ξ = 0).

4.1.1 B-spline knot insertion

Knot insertion is a process for which knots are inserted into the knot vector, which would
create more basis function without changing the geometry. This is a very important
concept as it allows us to enrich the basis without changing the geometry. Thus, knot
insertion corresponds to the classical h-re�nement procedure in FEM (re�ning the mesh).
This is because the knot vector de�nes the mesh; such that when more knots are inserted,
we get a more re�ned mesh.

The goal is to insert more knots into Ξ without changing the shape of the curve. We
shall do this by Böhm's method (cf. [15]) which does knot insertion by inserting one knot
at a time. Let Ξ′ be the new knot vector after a knot have been inserted into Ξ. Let
{Ni,p,Ξ}i∈[1,n] be the old basis (corresponding to Ξ) and {Ni,p,Ξ′}i∈[1,n+1] the new basis after

a knot has been inserted (note that since Ξ′ is known, the basis is completely determined).
We then want to �nd the new set of control points {P ′i}i∈[1,n+1] (here P

′
i ∈ Rd where d

is the dimension of the space for which the spline curve belongs) such that

P (ξ) =
n∑

i=1

Ni,p,Ξ(ξ)P i
!

=
n+1∑

i=1

Ni,p,Ξ′(ξ)P
′
i.

This results in a linear system of equation which could be solved by brute force. However,
Böhm method exploits the support property of B-splines to improve e�ciency. Assume
that the new knot ξ̄ is inserted in the interval [ξµ, ξµ+1]. Then

P ′i =





P i, if 1 ≤ i ≤ µ− p
ξ̄−ξi

ξi+p−ξiP i +
ξi+p−ξ̄
ξi+p−ξiP i−1, if µ− p+ 1 ≤ i ≤ µ

P i−1, if µ+ 1 ≤ i ≤ n+ 1.

Let's continue our example by inserting the knots ξ = 0.5 and ξ = 1.5 into our knot
vector. We then simply use Böhms method twice to calculate the new control points.
The curve with the mesh before and after the knot insertion is depicted in Figure 4.5. In
Figure 4.6 we see that the control polygon has changed. Indeed, it has moved towards
the curve where the re�nement has occurred, which is an other nice property of knot
insertion.
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(a) Curve with mesh before re�nement.
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(b) Curve with mesh after re�nement.

Figure 4.5: Mesh comparison for knot re�nement.
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(a) Curve and control polygon before re�ne-

ment.
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(b) Curve and control polygon after re�ne-

ment.

Figure 4.6: Control polygon comparison for knot insertion.

4.1.2 B-spline degree elevation

Having a basis of a higher order creates more accurate solution in FEM/IGA. Thus, we
want to have an algorithm which increase the order from p to p+m without changing the
geometry and the parametric space. Since the continuity at each knot must be preserved,
it follows from property 7 on page 28 that we must increase the multiplicity of each knot
by m. We also need to �nd the new set of control points. As for knot insertion, we must
�nd the new set of control points {Qi}i∈[1,n′] such that

P (ξ) =
n∑

i=1

Ni,p,Ξ(ξ)P i
!

=
n′∑

i=1

Ni,p+m,Ξ′(ξ)Qi =: Q(ξ).

Let S be an integer such that S + 1 is the number of unique knots in Ξ. Since Ξ is open
(ξ1 = · · · = ξp+1 and ξn+1 = · · · = ξn+p+1), it may be written on the form

Ξ = {ξ1, . . . , ξp+1︸ ︷︷ ︸
p+1

, ξp+2, . . . , ξn, ξn+1, . . . , ξn+p+1︸ ︷︷ ︸
p+1

}

= {u0, . . . , u0︸ ︷︷ ︸
p+1

, u1, . . . , u1︸ ︷︷ ︸
z1

, . . . , uS−1, . . . , uS−1︸ ︷︷ ︸
zS−1

, uS, . . . , uS︸ ︷︷ ︸
p+1

}
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where zi denotes the multiplicity of the knot with value ui for i = 1, . . . , S− 1. If we now
want to elevate the degree m times (from p to p+m), we get the new knot vector

Ξ′ = {ξ′1, . . . , ξ′p+1︸ ︷︷ ︸
p+1+m

, ξ′p+2, . . . , ξ
′
n′ , ξ

′
n′+1, . . . , ξ

′
n′+p+1+m︸ ︷︷ ︸

p+1+m

}

= {u0, . . . , u0︸ ︷︷ ︸
p+1+m

, u1, . . . , u1︸ ︷︷ ︸
z1+m

, . . . , uS−1, . . . , uS−1︸ ︷︷ ︸
zS−1+m

, uS, . . . , uS︸ ︷︷ ︸
p+1+m

}.

It is also easy to observe that the new number of basis functions is given by n′ = n+S ·m.
What remains to be found is the new set of control points {Qi}i∈[1,n′]. Several e�cient
algorithms exist for this purpose, but we shall follow the idea presented by Huang2004ede
et al. in [16]. Since the notation of the article does not correspond to the notation
presented here, a complete derivation of the algorithm will be presented here. Denote by
P (l) the l'th derivative of the spline curve of degree p (which will have degree p− l) such
that (using an inductive argument and Equation (4.2))

P (j)(ξ) =

n−j∑

i=1

Ni+l,p−j,Ξ(ξ)P j
i and Q(j)(ξ) =

n′−j∑

i=1

Ni+j,p+m−j,Ξ′(ξ)Q
j
i

where the coe�cients P j
i are de�ned recursively by

P j
i =

{
p+1−j

ξi+p+1−ξi+j
(
P j−1
i+1 − P j−1

i

)
if ξi+p+1 > ξi+j

0 if ξi+p+1 = ξi+j
(4.3)

for j > 0, starting with P 0
i = P i for j = 0. Correspondingly we have,

Qj
i =

{
p+m+1−j

ξ′i+p+m+1−ξ′i+j

(
Qj−1
i+1 −Qj−1

i

)
if ξ′i+p+m+1 > ξ′i+j

0 if ξ′i+p+m+1 = ξ′i+j.
(4.4)

Note that this implies the following useful formula we shall use later

Qj−1
i+1 = Qj−1

i +
ξ′i+1+p+m − ξ′i+j
p+m+ 1− j Q

j
i if ξ′i+p+m+1 > ξ′i+j. (4.5)

Since u0 = ξj+1 = ξj+1+1 = · · · = ξj+1+p−j < ξp+2 for 0 ≤ j ≤ p, property 6 on page 28
implies that

Ni+j,p−j,Ξ(u0) = δi+j,j+1.

Hence,

P (j)(u0) =

n−j∑

i=1

Ni+j,p−j,Ξ(u0)P j
i =

n−j∑

i=1

δi+j,l+1P
j
i = P j

1.

We have a corresponding result for Q(j) such that

P (j)(u0) = P j
1 and Q(j)(u0) = Qj

1.

Moreover, P (ξ) and Q(ξ) have the same geometry and parameterization (P (j)(ξ) =
Q(j)(ξ)), and we must therefore have

Qj
1 = P j

1 (4.6)
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for 0 ≤ j ≤ p.

De�ne

βi =
i∑

l=1

zl,

such that we have ui = ξβi+p+1 (the last of the repeated knot). Let p + 1 − zi ≤ j ≤ p
and 1 ≤ i ≤ S − 1, such that we only consider the case when the degree of P (j) satisfy
p− j ≤ zi − 1. Since the knot ui is repeated zi times, property 6 on page 28 now implies
that

Nî,p−j,Ξ(ui) = δî,βi+1+j,

such that

P (j)(ui) =

n−j∑

î=1

Nî+j,p−j,Ξ(ui)P
j

î
=

n−j∑

î=1

δî+j,βi+1+jP
j

î

= P j
βi+1

for p+ 1− zi ≤ j ≤ p and 1 ≤ i ≤ S − 1.

We note that ui = ξ′βi+p+1+m+im and that this knot has multiplicity zi + m in Ξ′. Again
we consider the indices i and j to satisfy p+ 1− zi ≤ j ≤ p and 1 ≤ i ≤ S − 1, such that
we only consider the case when the degree of Q(j) satisfy p+m− j ≤ zi +m− 1. Using
once again property 6 on page 28 we have

Nî,p+m−j,Ξ′(ui) = δî,βi+1+j,

such that

Q(j)(ui) =

n′−j∑

î=1

Nî+j,p+m−j,Ξ′(ui)Q
j

î
=

n′−j∑

î=1

δî+j,βi+1+jQ
j

î

= Qj
βi+1

for p+ 1− zi ≤ j ≤ p and 1 ≤ i ≤ S − 1. Using the fact that P (j)(ξ) = Q(j)(ξ), we have
obtained the formula

Qj
βi+1+im = P j

βi+1, p+ 1− zi ≤ j ≤ p, 1 ≤ i ≤ S − 1. (4.7)

Since P (ξ) has degree p it's (p + 1)'th derivative must be zero, and thus also the (p +
1)'th derivative of Q(ξ). Using property 4 on page 28 and letting ξ ∈ [ui, ui+1) =
[ξ′βi+p+1+m+im, ξ

′
βi+p+1+m+im+1), we have

0 = P (p+1)(ξ) = Q(p+1)(ξ) =

n′−(p+1)∑

î=1

Nî+p+1,m−1,Ξ′(ξ)Q
p+1

î

=

βi+m+im∑

î=βi+1+im

Nî+p+1,m−1,Ξ′(ξ)Q
p+1

î
,

which implies, that

Qp+1

î
= 0, βi + 1 + im ≤ î ≤ βi +m+ im,



34 Isogeometric analysis

1 2 3 4 5 6 7

1

2

3

4

5

6

(a) Curve and control polygon after degree

elevation.
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(b) Control polygon comparison showing the

corner cutting e�ect.

Figure 4.7: Control polygon comparison for degree elevation of a spline curve.

for 0 ≤ i ≤ S − 1. Using Equation (4.5) with j = p+ 1, we therefore have

Qp

î+1
= Qp

î
, βi + 1 + im ≤ î ≤ βi +m+ im, 0 ≤ i ≤ S − 1,

or equivalently

Qp
βi+1+im+k = Qp

βi+1+im, 1 ≤ k ≤ m, 0 ≤ i ≤ S − 1. (4.8)

In addition, we see from Equation (4.4) that Qp

î
= 0 whenever ξ′

î+p+m+1
= ξ′

î+p
. Since

the knots ui+1 are repeated zi+1 +m times in Ξ′ (starting at ξ′βi+1+p+im+m+1) we have

Qp
βi+1+im+k = 0, m+ 1 ≤ k ≤ m− 1 + zi+1, 0 ≤ i ≤ S − 1.

It turns out that these points are not needed.

So in summary, the algorithm does the following steps

1. Set P 0
i = P i for 1 ≤ i ≤ n.

2. Compute P j
1 for 0 ≤ j ≤ p and P j

βi+1 for p + 1 − zi ≤ j ≤ p and 1 ≤ i ≤ S − 1
using Equation (4.3).

3. Compute Qj
1 for 0 ≤ j ≤ p using Equation (4.6)

4. Compute Qj
βi+1+im for p+ 1− zi ≤ j ≤ p and 1 ≤ i ≤ S − 1 using Equation (4.7).

5. Compute Qp
βi+1+im+k for 1 ≤ k ≤ m and 0 ≤ i ≤ S − 1 using Equation (4.8).

6. Compute the new control points Qi = Q0
i backwards from Equation (4.5).

This algorithm may be optimized as discussed in [16], but will not be presented here as
the e�ciency of this algorithm is not of great importance for this thesis.

Continuing on our example, let's elevate the degree of the original spline curve by one
(from 2 to 3). As we can see in Figure 4.7a, the geometry of the curve has not changed
but the control polygon has changed. As we can see in Figure 4.7b only non-interpolating
control points in the control polygon have changed. Two new control points replaces each
of these control points such that we get a corner cutting e�ect in the control polygon.
This is why degree elevation of spline curves is called corner cutting.
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Figure 4.8: Graph of di�erential coe�cients of P (ξ) in the example.

In Figure 4.8 we have a graph which illustrates this process. The points which are colored
are used directly to compute coe�cients in the set {Qj

i}i,j (which have corresponding
colors in the graph in Figure 4.9). Except for P 2

3(0, 0) (which is set to zero because
ξ6 = ξ5) all points are thus needed.

In Figure 4.9 we have the next graph where we illustrate how the di�erential coe�cients of
Q(ξ) in red are �rst computed. The coe�cients in red computed (step 3), the coe�cients
in green are then computed (step 4) such that the coe�cients in yellow may be computed
(step 5). The rest of the coe�cients are computed by Equation (4.5). Note that Q2

5 is
not really needed.

4.1.3 Spline volumes

The extension to bivariate spline surfaces and trivariate spline volumes is straight forward
(we shall only consider volumes). Let {Ni,p}i∈[1,n], {Mj,q}j∈[1,m] and {Lk,p}k∈[1,l] be the
set of B-spline basis functions in ξ-, η- and ζ-direction, respectively. These set's have
their own degree (p, q and r, respectively) and knot vectors (Ξ, H and Z, respectively).
A spline volume is then de�ned by

V (ξ, η, ζ) =
n∑

i=1

m∑

j=1

l∑

k=1

Ni,p(ξ)Mj,q(η)Lk,r(ζ)P i,j,k.

We may extend our spline curve example into a volume by adding the knot vectors
H = {0, 0, 1, 1} and Z = {0, 0, 1, 1}. By adding appropriate control points we get the
spline volume in Figure 4.10. We have here in addition to the volume drawn the mesh
on top showing three elements.

Once again, we want to be able to re�ne this mesh into more elements without changing
the geometry. For spline volumes, this is done by re�ning the mesh in each parameter
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Figure 4.9: Di�erential coe�cients of Q(ξ) in the example.

(a) Spline volume. (b) Knots inserted in the ξ-direction.

(c) Knots inserted in the η-direction. (d) Knots inserted in the ζ-direction.

Figure 4.10: Spline volume and its knot insertions. We here choose to �rst insert knots
in the ξ-direction followed by the η- and ζ-direction, respectively.
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direction (in the ξ-, η- and ζ-direction). This re�ning process thus involves re�ning in
each direction separately. For each knot vector, we do knot insertion by Böhms method
once again. Here, we have to order the structure of the control points {P i,j,k} in a speci�c
way. As an example, say we want to insert s knots in the Ξ direction for a spline object
living in a d-dimensional space using Böhms method. We then want to �nd the new set
of control points

{
P ′i,j,k

}
such that

V (ξ, η, ζ) =
n∑

i=1

m∑

j=1

l∑

k=1

Ni,p,Ξ(ξ)Mj,q,H(η)Lk,r,Z(ζ)P i,j,k

!
=

n+s∑

i=1

m∑

j=1

l∑

k=1

Ni,p,Ξ′(ξ)Mj,q,H(η)Lk,r,Z(ζ)P ′i,j,k.

We shall use the ordering P̄ i = {P i,1,1,P i,2,1, . . . ,P i,m,1,P i,1,2, . . . ,P i,m,l}. We create a
new �ctitious spline curve given by

C̄(ξ) =
n∑

i=1

Ni,p,Ξ(ξ)P̄ i
!

=
n+s∑

i=1

Ni,p,Ξ′(ξ)P̄
′
i

where P̄
′
i is to be determined using Böhms method s times. Note that this spline curve is

in a (d·m·l)-dimensional space. Converting {P̄ ′i} back to the old structure, we obtain the
resulting {P ′i,j,k}. Similar procedure is done if knots are inserted in η- and ζ-direction.

Let's say we want to insert the knots {0.5, 1.5} in the ξ-direction (as we did for the spline
curve) and the knots {0.5} and {0.25, 0.5, 0.75} for the η- and ζ-direction, respectively.
The result (in Figure 4.10) is a re�ned mesh from 3 elements to 40 elements.

A corresponding procedure is done for degree elevation in spline volumes.

4.2 NURBS

With the B-splines in our arsenal, we are ready to present Non-Uniform Rational B-
Splines (NURBS). All though B-splines may represent many complex curves, there are a
class of curves which may not be represented exactly by B-splines, namely, conic sections
like circles. Such shapes are often used in engineering, and thus, an extension which
enables this would be valuable. NURBS enables us to tackle such geometries as well.

Let {wi}i∈[1,n] be a set of weights, and de�ne the weighting function by

W (ξ) =
n∑

î=1

Nî,p(ξ)wî.

The one dimensional NURBS basis functions can now be de�ned by

Rp
i (ξ) =

Ni,p(ξ)wi
W (ξ)

such that a NURBS curve may be expressed by

C(ξ) =
n∑

i=1

Rp
i (ξ)P i.
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Figure 4.11: NURBS representation of a unit circle with the corresponding control
polygon. The curve goes counter clockwise around the unit circle (which is a result of
the corresponding ordering in the control points), starts at (1, 0) and ends at (1, 0).

There are several ways to construct a circle using NURBS (but we need p ≥ 2). For
example, consider the knot vector Ξ = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4}, the weights given by
{wi}i∈[1,9] where

wi =

{
1√
2

for i even

1 otherwise.

and the control points P 1 = (0, 0), P 2 = (1, 1), P 3 = (0, 1), P 4 = (−1, 1), P 5 = (−1, 0),
P 6 = (−1,−1), P 7 = (0,−1), P 8 = (1,−1) and P 9 = (1, 0). This will produce the
unit circle which is depicted in Figure 4.11. Note that there is no non-repeated knot in
the knot vector, so we will have interpolation between the location of the knots and the
control polygon.

4.2.1 NURBS knot insertion

A d-dimensional NURBS curve is a projection of a (d+1)-dimensional B-spline curve (cf.
[2]). We may exploit this property to insert new knots into a NURBS.

Let's say we want to insert s new knots into a NURBS curve de�ned by the knot vector
Ξ, the control points {P i}i∈[1,n] = {(xi, yi)}i∈[1,n], and the weights {wi}i∈[1,n]. We then
construct a 3D B-spline curve with control points given by

{Qi}i∈[1,n] = {(wixi, wiyi, wi)}i∈[1,n] .

We now have a B-spline curve in 3D de�ned by Ξ (the same knot vector) and the
control points {Qi}i∈[1,n]. We may now insert knots using Böhms method as before,

which yields the extended knot vector Ξ′ and the new control points {Q′i}i∈[1,n+s] =
{(x′i, y′i, w′i)}i∈[1,n+s]. Projecting this B-spline curve back to a 2D NURBS with control
points given by

{P ′i}i∈[1,n+s] =

{(
x′i
w′i
,
y′i
w′i

)}

i∈[1,n+s]

and weights given by {w′i}i∈[1,n+s], we get the re�ned NURBS. To insert knots in a 3D
NURBS curve, we apply an analogous procedure to the control points {P i}i∈[1,n] =
{(xi, yi, zi)}i∈[1,n].
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(a) NURBS curve with knot locations after

re�nement.

−1 0 1

−1

0
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(b) NURBS curve and control polygon after

re�nement.

Figure 4.12: Knot insertion for a NURBS circle.

In Figure 4.12 we have inserted the knots {0.5, 0.5, 1.5, 2.25, 2.5, 2.75} into the NURBS
circle in Figure 4.11. Note that many of the same properties of B-spline curves are
preserved for the NURBS curve. Also note that the mesh is not changed by adding an
extra knot at ξ = 0.5, but we still have added a new basis function. A reduction of
continuity in the basis functions will here occur, but the continuity of the curve remains
the same.

4.2.2 NURBS volumes

As for spline volumes the extension to trivariate NURBS volumes is also straight forward.
Let {Ni,p}i∈[1,n], {Mj,q}j∈[1,m] and {Lk,p}k∈[1,l] be the set of B-spline basis functions in ξ-, η-

and ζ-direction, respectively. These set's have their own degree (p, q and r, respectively)
and knot vectors (Ξ, H and Z, respectively). The trivariate NURBS basis functions are
then de�ned by

Rp,q,r
i,j,k (ξ, η, ζ) =

Ni,p(ξ)Mj,q(η)Lk,r(ζ)wi,j,k
W (ξ, η, ζ)

(4.9)

where the weighting function is now given by

W (ξ, η, ζ) =
n∑

î=1

m∑

ĵ=1

l∑

k̂=1

Nî,p(ξ)Mĵ,q(η)Lk̂,r(ζ)wî,ĵ,k̂.

The partial derivatives of these functions are then given by the quotient rule. For example,
we have

∂Rp,q,r
i,j,k (ξ, η, ζ)

∂ξ
=
W (ξ, η, ζ)N ′i,p(ξ)−Wξ(ξ, η, ζ)Ni,p(ξ)

(W (ξ, η, ζ))2
Mj,q(η)Lk,r(ζ)wi,j,k (4.10)

where

Wξ(ξ, η, ζ) =
n∑

î=1

m∑

ĵ=1

l∑

k̂=1

N ′
î,p

(ξ)Mĵ,q(η)Lk̂,r(ζ)wî,ĵ,k̂

and

N ′i,p(ξ) =
dNi,p(ξ)

dξ
.
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Analogous expressions may be found for the partial derivatives with respect to η and ζ.

A 3D NURBS volume is now de�ned by

V (ξ, η, ζ) =
n∑

i=1

m∑

j=1

l∑

k=1

Rp,q,r
i,j,k (ξ, η, ζ)P i,j,k.

Knot insertion into such an object is once again done by inserting knots into a 4D B-
splines volume with control points

Qi,j,k = (wi,j,kxi,j,k, wi,j,kyi,j,k, wi,j,kzi,j,k, wi,j,k)

for i ∈ [1, n], j ∈ [1,m] and k ∈ [1, l]. Using the same procedure as in Subsection 4.1.3
we obtain the new set of control points Q′i,j,k = (x′i,j,k, y

′
i,j,k, z

′
i,j,k, wi,j,k) which after the

projection yields our new set of control points for the NURBS volume given by

{
P ′i,j,k

}
i,j,k

=

{(
x′i,j,k
w′i,j,k

,
y′i,j,k
w′i,j,k

,
z′i,j,k
w′i,j,k

)}

i,j,k

and a set of weights given by {w′i,j,k}i,j,k.
A corresponding procedure is done for degree elevation in NURBS volumes.

4.3 The weak form and Galerkin's method

The weak form of the problem is derived from the strong form. Typically, one de�nes
two classes of functions: Si denotes the solution space and Vi denotes the weighting
space for a given spatial component i. These spaces are made in order to handle non
homogeneous Dirichlet boundary conditions, but as we shall only consider homogeneous
Dirichlet boundary conditions, these spaces will be the same. That is, Si = Vi for
i = 1, 2, 3. Typically, Si is a subspace of the Sobolev space H1(Ω) (which consist of
all functions which have square-integrable derivatives) with a condition such that the
Dirichlet boundary condition is satis�ed.

As an introduction to isogeometric analysis we shall �rst consider the static linear elastic-
ity case. That is we let the right hand side of (2.12) be zero (no acceleration). Multiply
now each of the equations in (2.12) by a corresponding test functions vi ∈ Si and sum
these three equations into one single equation given by

viσij,j = −vifi

which can be written as

vi∇ · σ̄i = −vifi
where

σ̄i =



σi1
σi2
σi3


 .
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Integrating over the domain yields

∫

Ω

vi∇ · σ̄i dΩ = −
∫

Ω

vifi dΩ. (4.11)

Using formula Equation (A.3) we have

∫

Ω

∇vi · σ̄i dΩ =

∫

ΓNi

viσ̄i · n dΩ +

∫

Ω

vifi dΩ. (4.12)

Note that we only integrate over the Neumann part of the boundary since the integral over
the Dirichlet part of the boundary vanishes (the test function vi is zero at this boundary).
Also note that the domain of integration for the boundary integral is depending on i.
Returning to the index summation convention we may rewrite Equation (4.12) as

∫

Ω

vi,jσij dΩ =

∫

ΓNi

vi(σijnj) dΓ +

∫

Ω

vifi dΩ (4.13)

which using the boundary conditions, may be written as

∫

Ω

v(i,j)σij dΩ =

∫

ΓNi

vihj dΓ +

∫

Ω

vifi dΩ.

Note that since [σij] is a symmetric tensor, we have used Equation (2.11) to only write
the symmetric part of vi,j. If we now de�ne the space S = {u |ui ∈ Si} we can state the
weak formulation in a concise form: Find u ∈ S such that for all v ∈ S we have

a(v,u) = L(v)

where

a(v,u) =

∫

Ω

v(i,j)cijklu(k,l) dΩ (4.14)

and

L(v) =

∫

ΓNi

vihj dΓ +

∫

Ω

vifi dΩ.

Here we have used the relation σij = cijklεkl = cijklu(k,l).

We now want to transform this weak statement into a system of algebraic equations. We
here apply Galerkin's method and now turn to a �nite-dimensional subspace Sh ⊂ S.
The basis for this subspace is the presented NURBS basis. But note that we will have
vector valued control variables. The Galerkin approximation of the weak form is now
given by: Find uh ∈ Sh such that

a(vh,uh) = L(vh) (4.15)

for all vh ∈ Sh.

To �nd the system of algebraic equations we need to write uh as a linear combination
of the basis functions. First, let η = {1, . . . , nnp} (where nnp is the number of basis
functions) be the set containing the indices of all the functions in the NURBS basis
de�ning the geometry and let ηgi ⊂ η be the set containing the indices of all the basis
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functions that are non-zero on ΓD. Due to the homogeneous Dirichlet boundary condition,
we may write the ith component of vh and the jth component of uh as

vhi =
∑

A∈η−ηgi

RAciA and uhj =
∑

B∈η−ηgj

RBdjB (4.16)

respectively, where η−ηgi denotes set subtraction. Using the index summation convention
we may now write

vh = vhi ei and uh = uhjej (4.17)

where the unit vectors ei are given by

e1 =




1
0
0


 , e2 =




0
1
0


 , and e3 =




0
0
1


 .

The �nale step is now to insert Equation (4.17) (using Equation (4.16)) into Equa-
tion (4.15) such that we obtain a matrix formulation of the problem. Insertion yields

a


 ∑

A∈η−ηgj

RAciAei,
∑

B∈η−ηgi

RBdjBej


− L


 ∑

A∈η−ηgi

RAciAei


 = 0

which using the bilinearity of a and the linearity of L may be written as

∑

A∈η−ηgi

ciA


 ∑

B∈η−ηgi

a (RAei, RBej) djB − L (RAei)


 = 0.

Since the coe�cients ciA is arbitrary (the relation should hold for all vh ∈ Sh) the term
in the parentheses must vanish. That is, for all A ∈ η − ηgi and i = 1, 2, 3 we have

∑

B∈η−ηgi

a (RAei, RBej) djB = L (RAei) .

One should typically make a system of the ordering of these equations. That is, one
should create a function ID which collapse the indices i and A into a single index. A given
equation then has the index P = ID(i, A) and the index over all unknown components of
the displacement vectors are called Q = ID(j, B). The resulting system of equation may
then be written as

KU = F

where

K = [KPQ] ,

U = {dQ},
F = {FP},

and

KPQ = a (RAei, RBej) ,

FP = L(RAej),

dQ = djB.
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The matrix K is the so-called sti�ness matrix.

In the implementations, we shall use the indexing introduces in [17] rather than the index-
ing in [2], mainly because the �rst is arguably more clean. The most important di�erence
is the bandwidth, but MATLAB has e�cient algorithms to reduce the bandwidth to a
minimal in any case, so it poses no problems anyways. Typically, a section about this
indexing should be presented, but we shall for now only refer to [17] for details. Later,
when considering the �uid-structure interaction problem, we shall create an example to
illustrate the main idea.

4.4 Assembly

As for the �nite element method, one typically do not loop through the basis functions.
Rather, we loop through the elements constructing local sti�ness matrices and success-
fully place their contribution in the global sti�ness matrix. Let us �rst introduce some
notations. The elastic coe�cients are typically inserted in a matrix C called the elasticity
matrix. It is de�ned by

C =




c1111 c1122 c1133 c1123 c1113 c1112

c2222 c2233 c2223 c2213 c2212

c3333 c3323 c3313 c3312

c2323 c2323 c2312

symmetric c1313 c1312

c1212



,

or in our case, more explicitly by

C =




2µ+ λ λ λ 0 0 0
λ 2µ+ λ λ 0 0 0
λ λ 2µ+ λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ



.

Moreover, using Voigt notation, we de�ne the strain vector and the stress vector to be

ε(u) =




u1,1

u2,2

u3,3

u2,3 + u3,2

u3,1 + u1,3

u1,2 + u2,1




and σ =




σ11

σ22

σ33

σ23

σ13

σ12



.

Then
σ = Cε(u),

such that we may write the bilinear form in Equation (4.14) as

a(v,u) =

∫

Ω

ε(v)>Cε(u) dΩ.
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Also note that
ε(RAei) = BAei,

where

BA =




RA,1 0 0
0 RA,2 0
0 0 RA,3

0 RA,3 RA,2

RA,3 0 RA,1

RA,2 RA,1 0



. (4.18)

The entries in the global sti�ness matrix may then be written as

KPQ = a (RAei, RBej) = e>i

∫

Ω

B>ACBB dΩ ej.

Let Ωe be the domain of a given element, where the index e loops over all elements. The
support of the NURBS functions are highly localized. To reduce computations, we should
only integrate over functions which have support in Ωe. If we have nen such local shape
functions, and let a and b iterate over these functions, we may calculate the entries in
the local sti�ness matrix as

kepq = e>i

∫

Ωe
B>aCBb dΩ ej

where
p = nen(i− 1) + a and q = nen(j − 1) + b.

The local force vector may similarly be calculated by

f ep =

∫

ΓeNi

RAhi dΓ +

∫

Ωe

RAfi dΩ. (4.19)

The integration is done by quadrature formulas. One �rst maps to the parametric domain,
and then map this domain to a parent domain. The element in the parametric domain,
corresponding to Ωe, is given by

Ω̂e = [ξi, ξi+1]× [ηj, ηj+1]× [ζk, ζk+1].

In three dimensions we want to map this domain into the parent domain given by

Ω̃e = [−1, 1]× [−1, 1]× [−1, 1].

So given (ξ̃, η̃, ζ̃) ∈ Ω̃e, we calculate (ξ, η, ζ) ∈ Ω̂e by

ξ = ξi + (ξ̃ + 1)
ξi+1 − ξi

2
,

η = ηj + (η̃ + 1)
ηj+1 − ηj

2
,

ζ = ζk + (ζ̃ + 1)
ζk+1 − ζk

2
.

The Jacobian determinant for the parametric to parent mapping is thus given by

J2 =

∣∣∣∣∣∣∣

∂ξ

∂ξ̃

∂ξ
∂η̃

∂ξ

∂ζ̃
∂η

∂ξ̃

∂η
∂η̃

∂η

∂ζ̃
∂ζ

∂ξ̃

∂ζ
∂η̃

∂ζ

∂ζ̃

∣∣∣∣∣∣∣
=

1

8
(ξi+1 − ξi)(ηj+1 − ηj)(ζk+1 − ζk).
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Similarly, we need the Jacobian for the mapping from the physical domain into the
parametric domain. Given (ξ, η, ζ) ∈ Ω̂e, we calculate (x, y, z) = (x1, x2, x3) ∈ Ωe by

X =



x1

x2

x3


 =

n∑

i=1

m∑

j=1

l∑

k=1

Rp,q,r
i,j,k (ξ, η, ζ)P i,j,k =

nen∑

a=1

Ra(ξ, η, ζ)P a

where P i,j,k are the control points and R
p,q,r
i,j,k (ξ, η, ζ) are the NURBS basis functions which

are computed by Equation (4.9). We shall denote this transformation by X : Ω̂ → Ω.
Note that the last equality again comes from the highly localized support of the NURBS
basis. The Jacobian matrix is thus given by

J =



∂x1
∂ξ

∂x1
∂η

∂x1
∂ζ

∂x2
∂ξ

∂x2
∂η

∂x2
∂ζ

∂x3
∂ξ

∂x3
∂η

∂x3
∂ζ


 =

[
P 1, P 2, · · · , P nen

]




∂R1

∂ξ
∂R1

∂η
∂R1

∂ζ
∂R2

∂ξ
∂R2

∂η
∂R2

∂ζ
...

...
...

∂Rnen
∂ξ

∂Rnen
∂η

∂Rnen
∂ζ


 (4.20)

such that the Jacobian determinant of this transformation is given by

J1 = det(J)

where the derivatives of the NURBS basis functions are computed by Equation (4.10).
The matrix Ba contains derivatives of the NURBS functions w.r.t. physical coordinates.
So we need to �nd expressions for ∂R

∂xi
. By the chain rule we have

∂R

∂ξ
=
∂R

∂x1

∂x1

∂ξ
+
∂R

∂x2

∂x2

∂ξ
+
∂R

∂x3

∂x3

∂ξ
∂R

∂η
=
∂R

∂x1

∂x1

∂η
+
∂R

∂x2

∂x2

∂η
+
∂R

∂x3

∂x3

∂η
∂R

∂ζ
=
∂R

∂x1

∂x1

∂ζ
+
∂R

∂x2

∂x2

∂ζ
+
∂R

∂x3

∂x3

∂ζ
.

And thus, we may write
[
∂R
∂x1
, ∂R

∂x2
, ∂R

∂x3

]
J =

[
∂R
∂ξ
, ∂R

∂η
, ∂R

∂ζ

]
. (4.21)

Multiplying with the inverse of the Jacobian, J−1, from the right, and taking the trans-
pose on each side of the equation �nally yields



∂R
∂x1
∂R
∂x2
∂R
∂x3


 = J−>



∂R
∂ξ
∂R
∂η
∂R
∂ζ


 . (4.22)

By successfully placing these expressions in the matrix B, we may �nally write

kepq = e>i

∫

Ω̃e
B>aCBb|J1||J2| dΩ̃ ej.

By carefully sequentially placing all values for a, b = 1, . . . , nen into the matrix B we can
compute the whole local sti�ness matrix in one go by

ke =

∫

Ω̃e
B>CB|J1||J2| dΩ̃.
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Figure 4.13: Cylinder with 4 elements.

The integrals are approximated with quadrature rules. If we want to approximate the
integral ∫

Ω̃

g(ξ̃, η̃, ζ̃) dΩ̃,

the approximation by Gaussian quadrature is given by

∫

Ω̃

g(ξ̃, η̃, ζ̃) dΩ̃ ≈
nq∑

q=1

ρqg(ξ̃q, η̃q, ζ̃q),

where nq are the number of integration points, and (ξ̃q, η̃q, ζ̃q) and ρq are given quadrature
points and weights, respectively.

A similar procedure as shown above is needed to approximate the integrals in Equa-
tion (4.19). The full expression will depend on which part of the surface we integrate
over.

As an example, consider the cylinder in Figure 4.13 where a constant (with value po)
normal traction is supposed to be applied on the outside surface of the cylinder (with no
body forces). The NURBS parametrization is such that ξ traverses the circumferential
direction, η traverses the length and ζ traverses the thickness. Hence, the tractions are
applied at the surface corresponding to ζ = 1. An integral over such a parameterized
surface is evaluated by (cf. [18])

∫

Ω

f dS =

∫

Ω̂

f(X(ξ, η, 1))

∥∥∥∥
∂X

∂ξ
× ∂X

∂η

∥∥∥∥ dξ dη (4.23)

where
∂X

∂ξ
=

[
∂x1

∂ξ
,
∂x2

∂ξ
,
∂x3

∂ξ

]
and

∂X

∂η
=

[
∂x1

∂η
,
∂x2

∂η
,
∂x3

∂η

]
.

Note that these vectors corresponds to the �rst and second column of the Jacobi matrix
J .
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As for the local sti�ness matrix, we can compute the corresponding contribution to the
load vector in one go as follows

f e =

∫ 1

−1

∫ 1

−1

[
R>
∣∣∣
ζ=1

h1, R
>
∣∣∣
ζ=1

h2, R
>
∣∣∣
ζ=1

h3

]> ∥∥∥∥
∂X

∂ξ
× ∂X

∂η

∥∥∥∥ |J2| dξ̃ dη̃

where

R> =
[
R1, R2, . . . , Rnen

]

and

J2 =
1

4
(ξi+1 − ξi)(ηj+1 − ηj).

Since we consider a normal traction we have

h1 = po cos(θ), h2 = po sin(θ), h3 = 0.

The integral may now be approximated by quadrature rules in two dimensions.

4.5 Post-processing

The dynamic visualizations are done in GLview Inova 9.1, while the static visualizations
are done in MATLAB. For the visualizations in GLview, we create so called .vtf �les
directly from MATLAB, and let GLview do the illustrations from here.

We print the nodes, the displacement and every component of the stress for each node
into such �les. In addition we calculate the von Mises stress given by

σv =

√
(σ11 − σ22)2 + (σ22 − σ33)2 + (σ11 − σ33)2 + 6(σ2

23 + σ2
13 + σ2

12)

2

which we shall use throughout the report in the visualizations.

One must make a grid in the classical FEM style in order to visualize the result. The
mesh is simply created by �nding the physical coordinates for each physical element.
Moreover, for each corner of an element in the parametric space, the displacement and
the components of stress can be calculated.

The NURBS mapping often contains singularities, but this is typically avoided as all
quadrature points lie on the interior of an element, whereas the singularities typically
exist at the boundary of an element. However, in the post-processing step, one evaluates
the result at each of the eight corners in each element. If there exist a singularity in the
mapping, and the inverse Jacobian must be computed (to �nd the derivatives) this will
then cause problems. In [19] an attempt to solve this problem using symbolic evaluation
of the B-spline basis function is presented. However, we shall simply evaluate these points
a small distance away from the singularity and use the result of an approximation. After
all, the objective is only visualization and not convergence analysis.

The details of the post-processing implementations have been omitted for brevity.
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4.6 Error analysis

It is always important to present some numerical evidence that the implementation is
correct. This is typically done by �nding an analytic solution, and analyze the convergence
of the numerical solution towards this analytic solution.

The energy norm is de�ned by

‖u− uh‖E =
√
a(u− uh,u− uh)

where we compute the bilinear form by

a(u− uh,u− uh) =

∫

Ω

ε(u− uh)>Cε(u− uh) dΩ

=

∫

Ω

[
ε(u)− ε(uh)

]>
C
[
ε(u)− ε(uh)

]
dΩ

=

nel∑

e=1

∫

Ωe

[
ε(u)− ε(uh)

]>
C
[
ε(u)− ε(uh)

]
dΩ,

using the same technique with transformation to the parent element for integration with
quadratures. Thus, we need to compute ε(u) in order to do the error analysis.

We shall let the maximal diameter1 of the elements (in the physical space) be noted by
h = hmax. We calculate this by looping through all the elements and �nding the largest
distance between diagonally opposite knot locations.

In [20] we �nd the following result: Let k be the highest degree of a complete polynomial
in the FE basis and denote by ‖u‖Hk+1 the Sobolev norm of order k + 1. For problems
where the solution is not su�ciently smooth, u 6∈ Hk+1 we have the error bound

‖u− uh‖E ≤ Chα‖u‖Hα+1

where
α = min{k, λ}

and λ is the strength of the singularity. Such that λ < k limits the rate of convergence
to the strength of singularity, rather than the polynomial order. This problem may be
resolved by using adaptive mesh re�nement to obtain α = k. That is, on could obtain the
same convergence as for su�ciently smooth solutions u. The investigation of adaptive
mesh re�nement (AMR) using T-splines was investigated in [21]. Moreover, the recent
RL-Bsplines was introduced in introduced in [22] followed by AMR analysis in [23] and
[24].

It has been shown in [7] and [8] that the use of the spline basis functions yields better
results. Although the order of convergence remains the same, the constant C is lowered.

The constant C is among other things dependent of the transformation from the para-
metric space to the physical space. It is not however depending on h. So as h become
smaller, we expect the convergence to be of order α. Of course, the analytic solution (and

1The maximal diameter of an element is de�ned to by the diameter of the smallest sphere (in 3D)
that can cover the element in the physical space.
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then also the norm) should be independent of h, so we shall divide by ‖u‖E to normalize
the error. Moreover, when we plot the results, we multiply by 100 to get the normalized
error in percentage.

We shall construct two test problems on a solid cylinder. The �rst is based on the Solid
circular cylinder problem found in [1], we then construct a more complex example which
we name Kneaded cylinder. We are then able to plot the convergence in the energy norm.
Using degree elevation, we expect the order of convergence to increase correspondingly
according to the mentioned result (with α = k as there are no singularities present).
Finally, we consider a test problem on a spherical shell.

4.6.1 Solid circular cylinder

Consider a cylinder with inner radius Ri, outer radius Ro and length L. The Solid circular
cylinder is subject to an internal constant pressure pi on the inner surface, and a external
constant pressure po on the outer surface. The two ends of the cylinder are �xed in the
axial direction z, and are otherwise considered free in the other two spatial dimensions.
The analytic solution is found in Appendix C.5 (and in [1]2) which we repeat here

ur(r) =
1

2

1

R2
o −R2

i

(
R2

i pi −R2
opo

λ+ µ
r +

R2
iR

2
o

µr
(pi − po)

)
, (4.24)

with the following stress �eld

σrr =
R2

i pi −R2
opo

R2
o −R2

i

+
R2

iR
2
opo −R2

iR
2
opi

R2
o −R2

i

1

r2

σθθ =
R2

i pi −R2
opo

R2
o −R2

i

+
R2

iR
2
opi −R2

iR
2
opo

R2
o −R2

i

1

r2

σzz =
2ν(R2

i pi −R2
opo)

R2
o −R2

i

σθz = 0

σrz = 0

σθr = 0.

The knot vector, control points and polynomial orders for the coarsest mesh are tabulated
in Appendix D.1. The meshes used in the analysis are found in Figure 4.14 where Ro = 2,
Ri = 1 and L = 5. Note that we start by inserting a knot ζ = 0.5 before re�ning uniformly
in all parameter direction. This is done since it is known that the solution only varies
radially (that is, in ζ-direction), and we get better numerical result by adding some extra
re�nement in this direction. Moreover, we use E = 13, ν = 0.3, pi = 1 and po = 0. The
solution is shown in Figure 4.15, where axisymmetric response is obtained. The resulting
convergence analysis plot is given in Figure 4.16, where we observe the convergence to
tend toward the expected order. As the quality of the numerical evidence is reduced with
the simplicity of the analytic solution, we shall now present a more complex case.

2The original article has a misprint in the analytic solution. The correct solution is

ur(r) =
1

E

PR2
i

R2
o −R2

i

(
(1− 2ν)(1 + ν)r +

R2
o(1 + ν)

r

)

which can be written as Equation (4.24) with pi = P and po = 0.
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(a) Mesh 1. (b) Mesh 2.

(c) Mesh 3. (d) Mesh 5.

Figure 4.14: Solid circular cylinder: Meshes.
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Figure 4.15: Solid circular cylinder: Visualization plot showing purely radial dis-
placement.
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Figure 4.16: Solid circular cylinder: Convergence plot.
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4.6.2 Kneaded cylinder

We consider here the same geometry as for the Solid circular cylinder (we also use the
same value for the parameters E and ν). To �nd an analytic solution on this domain, we
�nd a satisfactory solution with respect to some Dirichlet condition and use this to �nd
the body loading and other boundary conditions. Consider the solution

u =
Lν

πλ




sin
(
c1πz
L

)

sin
(
c2πz
L

)

sin
(
c3πz
L

)




where ci, i = 1, 2, 3, are some chosen integers. Obviously this solution satis�es pure
homogeneous Dirichlet conditions at both ends of the cylinder (at z = 0 and z = L).

The stress �eld is given in cylinder coordinates by (cf. Appendix B.2)

σrr = νc3 cos
(c3πz

L

)

σθθ = νc3 cos
(c3πz

L

)

σzz = (1− ν)c3 cos
(c3πz

L

)

σθz =
1

2
(1− 2ν)

[
c2 cos

(c2πz

L

)
cos θ − c1 cos

(c1πz

L

)
sin θ

]

σrz =
1

2
(1− 2ν)

[
c2 cos

(c2πz

L

)
sin θ + c1 cos

(c1πz

L

)
cos θ

]

σθr = 0.

and the body force �eld is given by

f =
π

2L




(1− 2ν)c2
1 sin

(
c1πz
L

)

(1− 2ν)c2
2 sin

(
c2πz
L

)

2(1− ν)c2
3 sin

(
c3πz
L

)


 .

Both these �elds are found using Maple. For the convergence analysis we shall consider
two cases. The �rst case, we set c1, c2, c3 = 1 and the second we set c1 = 7, c2 = 5, c3 = 1.
The meshes used in the analysis are found in Figure 4.17 where Ro = 2, Ri = 1 and
L = 5. Note that we start by inserting the knots η = 1

5
, 2

5
, 3

5
, 4

5
before re�ning uniformly

in all parameter direction. This is done since it is known that the solution only varies
with z (that is, in η-direction), and we get better numerical result by adding some extra
re�nement in this direction. Numerical solutions for the cases c1, c2, c3 = 1 and c1 =
7, c2 = 5, c1 = 1 are shown in Figure 4.18a and Figure 4.18b, respectively.

As for the Solid circular cylinder, we get good results for the case c1, c2, c3 = 1 as can be
seen in Figure 4.19. When we add more oscillation to the solution by increasing values
for the parameters c1, c2 and c3, we get a slower start for the convergence, but after some
re�nements, we eventually also here reproduce the expected convergence rates.
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(a) Mesh 1. (b) Mesh 2.

(c) Mesh 3. (d) Mesh 4.

Figure 4.17: Kneaded cylinder: Meshes.
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(a) c1, c2, c3 = 1 on mesh 3. (b) c1 = 7, c2 = 5, c3 = 1 on mesh 3.

Figure 4.18: Kneaded cylinder: Visualization plot of displacement colored by
the displacement in the vertical direction (z direction). Both simulations have used
p = q = r = 4.
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Figure 4.19: Kneaded cylinder: Convergence plot for the case c1, c2, c3 = 1.



Error analysis 55

10−0.4 10−0.3 10−0.2 10−0.1 100 100.1 100.2 100.3 100.4

10−2

10−1

100

101

102

hmax

N
or
m
al
iz
ed

en
er
gy

n
or
m

(%
)

p, q, r = 2

Line with slope 2
p, q, r = 3

Line with slope 3
p, q, r = 4

Line with slope 4

Figure 4.20: Kneaded cylinder: Convergence plot for the case c1 = 7, c2 = 5, c3 = 1.

4.6.3 Spherical shell

We shall consider a sphere with inner radius Ri and outer radius Ro. The spherical shell
is subject to an internal constant pressure pi on the inner surface, and a external constant
pressure po on the outer surface. The analytic solution is found in Appendix C.6 which
we repeat here

ur(r) =
1

R3
o −R3

i

(
R3

i pi −R3
opo

3λ+ 2µ
r +

1

4

R3
iR

3
o(pi − po)

µr2

)
.

with the following stress �eld (cf. Appendix B.2)

σrr =
1

R3
o −R3

i

(
R3

iR
3
o(po − pi)

r3
+R3

i pi −R3
opo

)

σθθ =
1

2

1

R3
o −R3

i

(
R3

iR
3
o(pi − po)

r3
+ 2R3

i pi − 2R3
opo

)

σφφ =
1

2

1

R3
o −R3

i

(
R3

iR
3
o(pi − po)

r3
+ 2R3

i pi − 2R3
opo

)

σθφ = 0

σrφ = 0

σrθ = 0.

For the convergence analysis, we shall use the data from Table 3.1 and the pressures are
chosen to be pi = 1 and po = 2. The NURBS data for the spherical shell is found in
Appendix D.5. Due to the spherical symmetry of the solution we start by some extra
re�nement in the radial direction. More speci�cally, we insert the knots ζ = 0.25, 0.5, 0.75.
In this section we want to show that it is possible to obtain superconvergence. That is,
by using a priori knowledge of the model (symmetry) we may adjust the re�nement to be
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Figure 4.21: Spherical shell: Convergence plot.

non-uniform in all parameter directions. We shall do the re�nement process by inserting
2s−1 − 1 in the ζ direction, and s − 1 knots in the other directions (here s is the mesh
number).

As we no longer use uniform mesh re�nement, there makes no more sense to plot the
error vs hmax. Rather, we plot vs the number of degrees of freedom neq (the total number
of equations which are to be solved). When doing a uniform mesh re�nement, one have
relation between the mesh parameter h = hmax and neq, namely (in 3D)

h ∼ 1

n
1/3
eq

such that the error is bounded by

‖u− uh‖E ≤ C ′n−k/3eq .

where C ′ is just a new constant independent of neq. For a uniform mesh re�nement we
thus expect the convergence to be of order −k/3 when plotting against the number of
degrees of freedom.

The resulting convergence analysis plot is given in Figure 4.21. We observe that the con-
vergence order is raised approximately one whole level (namely from−k/3 to−(k + 1)/3).



Chapter 5

Isogeometric analysis of vibrations

A fundamental mathematical assumption of this thesis, is the harmonic time dependency
assumption (see Equation (2.1)). When we transform our time dependent problem to a
frequency dependent problem, it is advantageous to analyze the phenomena of vibrations
(also named spectrum analysis). As it turns out, there are examples where IGA is demon-
strably better in this analysis compared to ordinary FEA. That is, one may wonder if
the NURBS basis functions (with their smooth properties) serve a better basis than the
typical Lagrange basis function which are commonly used in FEM. We shall illustrate
this improvement by an example taken from [2]. The work in [25] and [26] investigates
the improvement of IGA even further.

5.1 Longitudinal vibrations of an elastic rod

We shall consider an one dimensional rod of length L such that our spatial domain is
given by Ω = (0, L), where we apply homogeneous Dirichlet boundary conditions. That
is, u = 0 at Γ = ∂Ω = {0, L}. In one dimension Equation (2.12) reads

E
∂2u

∂x2
+ ω2ρu = 0 (5.1)

where it is assumed that E and ρ are constant throughout the domain. Proceeding in
the usual way, we construct a solution space S = {u|u ∈ H1(Ω), u|Γ = 0}. As we have
homogeneous Dirichlet boundary conditions, the weighted space V is identical to the
solution space S. We now multiply Equation (5.1) by an arbitrary v ∈ V and integrate
the resulting equation over the domain.

∫ L

0

vE
∂2u

∂x2
dx+ ω2

∫ L

0

vρu dx = 0

Using partial integration we get
[
vE

∂u

∂x

]L

0

−
∫ L

0

∂v

∂x
E
∂u

∂x
dx+ ω2

∫ L

0

vρu dx = 0

Exploiting now the fact that v(0) = v(L) = 0, the resulting weak form is given by

a(v, u)− ω2(v, ρu) = 0

57
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Figure 5.1: Longitudinal vibrations of an elastic rod: Comparison of FEM and
IGA. Note that the basis functions for both FEM and IGA are equal in the case p = 1.
The results are thus identical in this case.

where

a(v, u) =

∫ L

0

∂v

∂x
E
∂u

∂x
dx

(v, ρu) = ω2

∫ L

0

vρu dx

Turning now to the Galerkin formulation, we restrict ourselves to solution of the form

uh =

neq∑

A=1

NAdA and uh =

neq∑

B=1

NBdB

such that our eigenvalue problem now becomes: Find ωh ∈ R+ and uh ∈ Sh such that
for all vh ∈ Vh we have

a(vh, uh)− (ωh)2(uh, ρvh) = 0

In the analysis we use a nonlinear parametrization of the rod such that the control points
are uniformly placed in the physical space. As noted in [2], this result in better results
when studying structural vibrations.

Using a �nite number of NURBS basis functions1 (neq), we will get the same number of
eigenvalues ωhn.

The solution of the eigenvalue problem in Equation (5.1) is trigonometric equations. With
the boundary conditions we get the eigenfunctions un(x) = sin

(√
ρ
E
ωnx

)
and eigenvalues

ωn =
√

E
ρ
nπ
L
. We consider the case L = 1, ρ = 1, E = 1 and neq = 999. Then the

1As all the weights are 1, we actually only get simple B-splines; a subset of NURBS functions.
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eigenvalues are simply ωn = nπ. We want to compare these analytic eigenvalues to
our numerical eigenvalues ωhn, by looking at the ratio ωn/ω

h
n, which should tend to 1 as

the numerical solution becomes better. In Figure 5.1 we plot this ratio against the ratio
n/neq using standard Lagrange basis functions (FEM) and B-splines (IGA). A motivation
for using IGA in stead of FEM in this thesis is quite apparent in this plot. It should
be noted that the B-spline basis functions have larger support and the resulting matrix
would then be less sparse. This will in turn increase the computational time for �nding
the eigenvalues. So the smooth results of IGA comes at some cost in computational
time of solving the resulting system of equations. For a more detailed explanation of the
di�erent behaviors in Figure 5.1, we refer to Cotterell et al. [2].

5.2 Elastic vibration in 3D

Moving on to three dimensions, we multiply each of the equations in (2.15) by a corre-
sponding test functions vi ∈ Si and sum these three equations into one single equation
given by

viσij,j + ω2ρsviui = 0.

Note that we have set fi = 0 as we shall not consider any body forces.

Integration over the domain and using the same procedure as for the static linear elasticity
case, get the linear form

L(v) =

∫

ΓN

vihj dΓ.

and the bilinear form

a(v,u) =

∫

Ω

v(i,j)cijklu(k,l) dΩ− ω2ρs

∫

Ω

viui dΩ

where the only di�erence from before is the last term which will result in the mass matrix
M . So if K is the same sti�ness matrix as in the static linear elasticity case, we now
have the following eigenvalue problem: Find natural frequency ωhk ∈ R+ and eigenvectors
U k such that

(K − [ωhk ]2M )U k = 0

where (using the same notation as before) the mass matrix is given by

M = [MPQ]

and

MPQ = ρsei

∫

Ω

RARB dΩej.

As ei · ej = δij we may write

MPQ = ρsδij

∫

Ω

RARB dΩ.

In the same way the sti�ness element matrix could be computed in one go, so can the
element mass matrix :

me = ρs

∫

Ω̃e
blkdiag

(
R>R,R>R,R>R

)
|J1||J2| dΩ̃.
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Table 5.1: Parameters for circular plate.

Parameter Description

E = 30 · 109Pa Young's modulus
ρ = 2.32 · 103kg/m3 Density
ν = 0.2 Poisson's ratio
t = 0.02m Thickness of the plate
R = 2m Radius of plate

where (once again)
R> =

[
R1, R2, . . . , Rnen

]

and blkdiag() creates a block diagonal matrix with it's arguments on the diagonal.

5.2.1 Circular plate vibrating in vacuum

In [27, pp. 185-189] we �nd the exact Poisson-Kirchho� solution to the clamped circular
plate. One �nds the eigenvalues by �rst solving

i−nJn(ix)Jn−1(ix)− i−n−1Jn(x)Jn−1(ix) = 0, n = 0, 1, 2, . . .

where Jn are the mentioned Bessel functions of the �rst kind. This equation has in�nitely
many solution (as for the spherical shell), so we obtain a set of solutions {xnm}. The
eigenvalues are then given by βnm = xnm/R such that the natural frequencies may be
found by

ωnm = β2
nm

√
DE

ρt
, DE =

Et3

12(1− ν2)
. (5.2)

In [1] the notation Cnm = xnm/π has been used. In [27, p. 188] there is a misprint in
the �rst eigenfrequency: C01 = 1.015 where the true value is C01 = 1.0173886. Hughes et
al. copies this misprint in [1] such that he compares his result with ω01 = 53.863 when
the true value is ω01 = 54.117. Hence, in [1] there seems to be convergence to the wrong
result when this is not the case. The NURBS data for the coarsest geometry of the plate
shell may be found in Appendix D.4, here two parametrizations for the circular plate
is presented (cf. Figure 5.2a and Figure 5.2b). In [28] better convergence results was
shown for parametrization 2, but we shall restrict ourselves to the analysis on the �rst of
these parametrizations as the main objective is to compare with the results in [2]. Some
deviation in the comparison of the results occured, but the main trend is the same.

In Table 5.3 we show the p-convergence of the �rst 4 computed frequencies. The cor-
responding modes are shown in Figure 5.3. We can here observe that for axisymmetric
modes (ω0n, n = 0, 1, 2, . . . ) there is hardly any accuracy to be gained by increasing the
polynomial order in the angular direction (ξ-direction).

5.2.2 Spherical shell vibrating in vacuum

We shall repeat the analysis we did on the circular plate with the spherical shell with data
from Table 3.1. The NURBS data for the coarsest geometry of the spherical shell may
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Table 5.2: Circular plate: Eigenvalues.

n ωn1 ωn2 ωn3 ωn4

0 54.117 023 210.682 532 472.017 719 837.960 493
1 112.624 217 322.232 049 636.104 280 1 054.459 619
2 184.756 600 448.065 685 814.815 589 1 285.780 859
3 270.325 036 588.121 621 1 008.109 746 1 531.893 221
4 369.045 760 742.203 564 1 215.845 012 1 792.689 901
5 480.678 086 910.104 164 1 437.855 808 2 068.038 033
6 605.026 114 1 091.631 987 1 673.977 740 2 357.799 001
7 741.929 168 1 286.616 266 1 924.056 001 2 661.837 073
8 891.253 404 1 494.905 872 2 187.947 731 2 980.023 005
9 1 052.885 574 1 716.366 915 2 465.522 082 3 312.235 331

10 1 226.728 502 1 950.880 273 2 756.659 429 3 658.360 594
11 1 412.697 772 2 198.339 383 3 061.250 322 4 018.293 077
12 1 610.719 268 2 458.648 383 3 379.194 403 4 391.934 323
13 1 820.727 309 2 731.720 568 3 710.399 406 4 779.192 571
14 2 042.663 215 3 017.477 105 4 054.780 248 5 179.982 197
15 2 276.474 191 3 315.845 980 4 412.258 234 5 594.223 168
16 2 522.112 431 3 626.761 115 4 782.760 364 6 021.840 543
17 2 779.534 406 3 950.161 633 5 166.218 723 6 462.764 017
18 3 048.700 281 4 285.991 239 5 562.569 959 6 916.927 509
19 3 329.573 436 4 634.197 695 5 971.754 820 7 384.268 790
20 3 622.120 072 4 994.732 375 6 393.717 757 7 864.729 156

Table 5.3: Circular plate: Convergence of computed eigenfrequencies.

p q r ω01 ω11 ω21 ω02

2 2 2 254.838 778.860 2569.078 3456.036
2 3 2 54.424 138.174 400.934 214.661
3 3 2 54.424 117.358 196.698 214.661
3 4 2 54.253 116.359 187.731 211.796
4 4 2 54.253 112.954 185.972 211.796
4 5 2 54.203 112.801 185.475 210.912
5 5 2 54.203 112.783 185.218 210.912
5 6 2 54.177 112.728 185.122 210.803

exact 54.117 112.624 184.756 210.682

(a) Parametrization 1. (b) Parametrization 2.

Figure 5.2: Circular plate: Example of parametrizations of the circular plate.
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(a) Mode 1.

(b) Mode 2.

(c) Mode 4. (d) Mode 6.

Figure 5.3: Circular plate: Four vibration modes using p = 6, q = 6 and r = 2 with
parametrization 1.

Table 5.4: Spherical shell: Convergence of computed eigenfrequencies.

p q r ω21 ω31 ω41 ω51

2 2 2 777.802 1019.834 1379.161 2159.979
3 3 2 764.428 913.290 1000.350 1235.107
4 4 2 764.175 908.693 976.975 1038.282
5 5 2 764.123 908.041 972.766 1021.684

exact 764.121 907.967 972.169 1017.829

be found in Appendix D.5. In this analysis we shall insert the knots {1
8
, 3

8
, 5

8
, 7

8
} in the

ξ-direction and {0.25, 0.75} in the η-direction. We do not re�ne the mesh in ζ-direction.
This results in mesh 2 in Figure 5.4.

The results is shown in Table 5.4 where the exact eigenfrequencies are collected from
Table 3.2. As the spherical shell is not clamped, the �rst 6 modes (3 from translation and
3 from rotation) will correspond to eigenvalue equal zero. The �rst interesting mode is
thus vibration mode 7, which corresponds to ω21. Up to rotation, there is 4 identical other
modes (identical eigenvalues), such that the next mode is vibration mode 12 which then
corresponds to ω31. The �rst four unique modes up to rotation is shown in Figure 5.5.
We note that the accuracy decreases for modes with higher frequencies.
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(a) Mesh 1. (b) Mesh 2.

Figure 5.4: Spherical shell: The �rst two meshes with, respectively, 8 and 32 elements.

(a) Mode 7 corresponding to ω21. (b) Mode 12 corresponding to ω31.

(c) Mode 19 corresponding to ω41. (d) Mode 28 corresponding to ω51.

Figure 5.5: Spherical shell: First four unique (up to rotation) vibration modes using
p = 5, q = 5 and r = 2. The colors corresponds to displacement in the radial direction.





Chapter 6

Exterior Helmholtz problems

In this chapter we shall consider the discretization of the �uid on an unbounded domain.
As the �nite element method is based on boundary value problems, we need to introduce
an arti�cial boundary Γa (cf. Figure 6.1) where some sort of absorbing boundary condi-
tions (ABC) must be implemented. One such method is the recently developed perfectly
matched layer (PML) method after Bérenger (�rst introduced in [29] and [30]), where
an additional layer is added outside of Γa to absorb outgoing plane waves at Γa. It is
suggested that one can set Γa = Γ (where Γ is the boundary of the elastic body) such that
the FEM discretization of Ωa is avoided. This would in turn reduce the computational
time. In this chapter however, we shall implement the in�nite element method for the
domain Ω+

a .

The exterior Helmholtz problem is given by

∆p+ k2p = 0 in Ω+,

∂np = g on Γ,

∂p

∂R
− ikp = o(R−1) R→∞,

where the last equation is the Sommerfeld condition which insures that no waves are
re�ected from in�nity (for details see [3]).

Γ Γa
Ω

Ωa
Ω+
a

Figure 6.1: An arti�cial boundary Γa is introduced such that the exterior domain Ω+

is decomposed by the two domains Ωa (which is bounded by Γ and Γa) and Ω+
a . Thus,

Ω+ = Ωa ∪ Ω+
a .
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6.1 Weak formulation for the Helmholtz equation

As before, the weak form of the Helmholtz equation (which we have written in strong
form) is found by multiplying with a test function and integration over the domain.

∫

Ω+

q∆p+ k2qp dΩ = 0

Using Equation (A.4) we get

−
∫

Ω+

∇q · ∇p dΩ +

∫

∂Ω+

q∇p · n dΓ + k2

∫

Ω+

qp dΩ = 0.

Thus, ∫

Ω+

∇q · ∇p dΩ− k2

∫

Ω+

qp dΩ =

∫

∂Ω+

qg dΓ (6.1)

The weak formulation thus becomes: Find p ∈ H1+
w (Ω+) such that

b(q, p) = L(q), ∀q ∈ H1
w∗(Ω

+)

where

b(q, p) =

∫

Ω+

∇q · ∇p dΩ− k2

∫

Ω+

qp dΩ

and

L(q) =

∫

∂Ω+

qg dΓ.

The reason why we no longer can use the space H1(Ω+) for the trial and the test space,
is because Ω+ is unbounded. Before stating the de�nitions of these spaces, one needs
to understand the asymptotically behavior of the solution p at large r. In [31] Wilcox
shows that the scalar �eld p(r) satisfying the Helmholtz equation and the Sommer�eld
radiation conditions can be written on the form

p(r) =
eikr

r

∞∑

n=0

pn(θ, φ)

rn

which implies that |p| = O(r−1) asymptotically for large r. Considering a function which
represents this asymptotic property

f =
eikr

r

we observe that the L2 inner product does not exist. Indeed, if Γ is the unit sphere then

(f, f)L2 =

∫

Ω+

eikr

r

e−ikr

r
dΩ = 4π

∫ ∞

1

1

r2
r2 dr,

which is not �nite. The solution to the problem is to introduce weighted norms by de�ning
the inner product

(p, q)w =

∫

Ω+

wpq̄ dΩ, with w =
1

r2
.
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We may then de�ne the norm

‖p‖1,w =
√

(p, p)w + (∇p,∇p)w

such that the trial functions should satisfy ‖p‖1,w <∞. The integrals

∫

Ω+

pq̄ dΩ and

∫

Ω+

∇p∇q̄ dΩ

will be well de�ned if the test functions q are such that

(q, q)w∗ <∞, and (∇q,∇q)w∗ <∞

with the inner product

(p, q)w∗ =

∫

Ω+

w∗pq̄ dΩ, with w∗ = r2.

and corresponding norm

‖p‖1,w∗ =
√

(p, p)w∗ + (∇p,∇p)w∗

We thus de�ne the weighted Sobolev spaces

H1
w(Ω+) = {p : ‖p‖1,w <∞}, and H1

w∗(Ω
+) = {q : ‖q‖1,w∗ <∞}

Hence, the functions in the trial space are of order r−1 (or lower), in contrast to the
functions in the test space which are at most of order r−3.

These de�nitions will not ensure any trial function satisfy the Sommerfeld condition. Leis
solve this problem in [32] by modifying the trial space to be

H1+
w (Ω+) = {p : ‖p‖+

1,w <∞}

where

‖p‖+
1,w =

√
‖p‖2

1,w +

∫

Ω+

∣∣∣∣
∂p

∂r
− ikp

∣∣∣∣
2

dΩ.

For a more detailed discussion of the functional analysis involved in these spaces we refer
to [3, pp. 41-43].

6.2 In�nite elements

In the following, we shall follow [10] in deriving the weak formulation for in�nite elements
using a prolate spheroidal coordinate system. We shall present four in�nite element for-
mulations; Petrov-Galerkin conjugated, Petrov-Galerkin unconjugated, Bubnov-Galerkin
conjugated and Bubnov-Galerkin unconjugated (we shall refer to these methods as PGC,
PGU, BGC and BGU). The Petrov-Galerkin formulations are based on the weighted
Sobolev spaces after Leis [32]. It turns out that it is possible to create Bubnov-Galerkin
formulations as well when the integration in the weak formulation is understood in the
sense of the Cauchy principal value (consider [33] and [10] for details). The di�erence
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between the conjugated formulations and the unconjugated formulations is simply con-
jugations of the test functions in the weak formulation. The formulations are heavily
based on a prolate spheroidal coordinate system which is described in Appendix B.4 (this
appendix should be studied to understand details and notation in this section).

We shall �rst develop the weak formulation for the unconjugated cases (PGU and BGU),
and then present the conjugated cases (PGC and BGC).

The radial �shape functions� are given by

φn(r) =
eikr

rn
, n = 1, . . . , N. (6.2)

The weak formulating takes the form1: For all q ∈ V2, �nd p
N
h ∈ V1 such that

buc(q, p
N
h , ) = 〈g, q〉Γ,

where

buc(q, p) = lim
γ→∞

(∫

Ωγ

(∇q∇p− k2qp) dΩ−
∫

Sr̂

q∂np dΓ

)
, (6.3)

〈g, q〉Γ =

∫

Γ

gq dΓ.

Here, Sr̂ is the surface where r = r̂ and we can then recover the full domain by letting
r̂ → ∞. For the domain outside the arti�cial boundary (r = ra) we consider trial and
test functions of the form

q =
eikr

rn
fn(θ, φ), p =

eikr

rm
fm(θ, φ).

where the summation convention over the indices n = 1, . . . , N and m = 1, . . . , N is used
for BGC and BGU and over the indices n = 3, . . . , N + 2 and m = 1, . . . , N for PGC and
PGU.

Then, using the expression for the nabla operator found in Appendix B.4 we get

∇q · ∇p =
1

h2
r

∂q

∂r

∂p

∂r
+

1

h2
θ

∂q

∂θ

∂p

∂θ
+

1

h2
φ

∂q

∂φ

∂p

∂φ

=
(

ik − n

r

)(
ik − m

r

) e2ikr

rn+mh2
r

fnfm +
e2ikr

h2
θr
n+m

∂fn
∂θ

∂fm
∂θ

+
e2ikr

h2
φr

n+m

∂fn
∂φ

∂fm
∂φ

=
(r2 − f 2)(−(kr)2 − ikr(n+m) + nm)

r2(r2 − f 2 cos2 θ)

e2ikr

rn+m
fnfm

+
1

r2 − f 2 cos2 θ

e2ikr

rn+m

∂fn
∂θ

∂fm
∂θ

+
1

(r2 − f 2) sin2 θ

e2ikr

rn+m

∂fn
∂φ

∂fm
∂φ

which multiplied with the Jacobian J1 yields

∇q · ∇pJ1 =
(r2 − f 2)(−(kr)2 − ikr(n+m) + nm)

r2
sin θ

e2ikr

rn+m
fnfm

+ sin θ
e2ikr

rn+m

∂fn
∂θ

∂fm
∂θ

+
(r2 − f 2 cos2 θ)

(r2 − f 2) sin θ

e2ikr

rn+m

∂fn
∂φ

∂fm
∂φ

1We refer to [3, pp. 89-90] for the precise de�nition of the spaces V1 and V2.
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Also note that the term contributing to the mass matrix multiplied with the same Jaco-
bian yields

k2pqJ1 =
k2e2ikr

rn+m
(r2 − f 2 cos2 θ) sin θfnfm.

Consider �rst the boundary integral at Sr̂. In the limit r̂ →∞ we know that ∂np→ ∂rp.
Thus,

∫

Sr̂

q∂np dΓ =

∫ 2π

0

∫ π

0

(
ik − m

r̂

) e2ikr

r̂m+n
fnfmr̂

2 sin θ dθ dφ

=
(

ik − m

r̂

) 1

r̂m+n−2

∫ 2π

0

∫ π

0

fnfm sin θ dθ dφ

As m + n > 1 all terms of order O(r̂−(m+n−1)) vanish in the limit r̂ →∞, such that the
integral reduces to

∫

Sr̂

q∂np dΓ =
ike2ikr̂

r̂m+n−2

∫ 2π

0

∫ π

0

fnfm sin θ dθ dφ

Combining all of this into Equation (6.3) yields

buc(q, p) = lim
r̂→∞

{∫ r̂

ra

[
− k2

rn+m−2
− ik(n+m)

rn+m−1
+
nm+ f 2k2

rn+m

+
ikf 2(n+m)

rn+m+1
− nmf 2

rn+m+2

]
e2ikr dr

∫ 2π

0

∫ π

0

fnfm sin θ dθ dφ

+

∫ r̂

ra

e2ikr

rn+m
dr

∫ 2π

0

∫ π

0

∂fn
∂θ

∂fm
∂θ

sin θ dθ dφ

+

∫ r̂

ra

e2ikr

(r2 − f 2)rn+m−2
dr

∫ 2π

0

∫ π

0

∂fn
∂φ

∂fm
∂φ

1

sin θ
dθ dφ

−
∫ r̂

ra

e2ikrf 2

(r2 − f 2)rn+m
dr

∫ 2π

0

∫ π

0

∂fn
∂φ

∂fm
∂φ

cos2 θ

sin θ
dθ dφ

−
∫ r̂

ra

k2e2ikr

rn+m−2
dr

∫ 2π

0

∫ π

0

fnfm sin θ dθ dφ

+

∫ r̂

ra

k2f 2e2ikr

rn+m
dr

∫ 2π

0

∫ π

0

fnfm cos2 θ sin θ dθ dφ

− ike2ikr̂

r̂m+n−2

∫ 2π

0

∫ π

0

fnfm sin θ dθ dφ

}
.

De�ning the angular integrals

J (1)
mn =

∫ 2π

0

∫ π

0

fnfm sin θ dθ dφ, J (2)
mn =

∫ 2π

0

∫ π

0

∂fn
∂θ

∂fm
∂θ

sin θ dθ dφ

J (3)
mn =

∫ 2π

0

∫ π

0

∂fn
∂φ

∂fm
∂φ

1

sin θ
dθ dφ, J (4)

mn =

∫ 2π

0

∫ π

0

∂fn
∂φ

∂fm
∂φ

cos2 θ

sin θ
dθ dφ

J (5)
mn =

∫ 2π

0

∫ π

0

fnfm cos2 θ sin θ dθ dφ

(6.4)
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we can write

buc(q, p) = lim
r̂→∞

{
J (1)
mn

∫ r̂

ra

[
− k2

rn+m−2
− ik(n+m)

rn+m−1
+
nm+ f 2k2

rn+m

+
ikf 2(n+m)

rn+m+1
− nmf 2

rn+m+2

]
e2ikr dr + J (2)

mn

∫ r̂

ra

e2ikr

rn+m
dr

+J (3)
mn

∫ r̂

ra

e2ikr

(r2 − f 2)rn+m−2
dr − J (4)

mn

∫ r̂

ra

e2ikrf 2

(r2 − f 2)rn+m
dr

−J (1)
mn

∫ r̂

ra

k2e2ikr

rn+m−2
dr + J (5)

mn

∫ r̂

ra

k2f 2e2ikr

rn+m
dr − J (1)

mn

ike2ikr̂

r̂m+n−2

}
.

In the case of Petrov-Galerkin formulations, all of these integrals exist as n+m > 3. For
the Bubnov Galerkin formulations, we must consider the special case n = m = 1 (the
integrals also exist for n + m = 3). We collect the problematic terms in the following
limit

L = lim
r̂→∞

[
J (1)
mn

∫ r̂

ra

− k
2e2ikr

rn+m−2
dr − J (1)

mn

∫ r̂

ra

k2e2ikr

rn+m−2
dr − J (1)

mn

ike2ikr̂

r̂m+n−2

]
.

Inserting n = m = 1 and performing integration yields

L = J
(1)
11 lim

r̂→∞

[
−2

∫ r̂

ra

k2e2ikr dr − ike2ikr̂

]

= J
(1)
11 lim

r̂→∞

[
ik
(
e2ikr̂ − e2ikra

)
− ike2ikr̂

]

.

which exist due to cancellation of oscillatory terms. Thus, the limit is

L = −J (1)
11 ike2ikra .

Integrals of the form
∫ ∞

ra

e2ikr

rn
dr =

1

rn−1
a

∫ ∞

1

e2ikraz

zn
dz, n ≥ 1

exist and may be computed. Indeed, the exponential integral function de�ned by

En(x) =

∫ ∞

1

e−xz

zn
dz

is implemented in MATLAB for n = 1, and using the recursive relation

En(x) =
1

n− 1

(
e−x − xEn−1(x)

)
, n = 2, 3, 4, . . .

found in [13, p. 229], we can compute the integrals by
∫ ∞

ra

e2ikr

rn
dr =

1

rn−1
a

En(−2ikra).

Writing out the recursive relation, one may also use the explicit formula

En(x) =
(−x)n−1

(n− 1)!
E1(x) + e−x

n−2∑

m=0

(−x)m

nPk(n− 1,m + 1)
(6.5)
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where

nPk(n, k) =
n!

(n− k)!
.

The other type of integrals are of the form
∫ ∞

ra

e2ikr

(r2 − f 2)rn
dr, n ≥ 0. (6.6)

One can show by induction that (for n ≥ 1)

1

(r2 − f 2)rn
=





1
fn+1

r
r2−f2 −

∑n−1
2

j=0
1

f2(j+1)rn−2j for odd n

1
fn

1
r2−f2 −

∑n−2
2

j=0
1

f2(j+1)rn−2j for even n

where

r

r2 − f 2
=

1

2

(
1

r − f +
1

r + f

)
and

1

r2 − f 2
=

1

2f

(
1

r − f −
1

r + f

)
.

As ∫ ∞

ra

e2ikr

r ± f dr = e∓2ikf

∫ ∞

1

e2ik(ra±f)z

z
dz = e∓2ikfE1(−2ik(ra ± f))

we can write the integrals in Equation (6.6) as a series of exponential integrals. Indeed,
for n odd we have the formula∫ ∞

ra

e2ikr

(r2 − f 2)rn
dr =

1

2fn+1

[
e2ikfE1(−2ik(ra − f)) + e−2ikfE1(−2ik(ra + f))

]

−
n−1
2∑

j=0

1

f 2(j+1)

1

rn−2j−1
a

En−2j(−2ikra)

and for n even we get
∫ ∞

ra

e2ikr

(r2 − f 2)rn
dr =

1

2fn+1

[
e2ikfE1(−2ik(ra − f))− e−2ikfE1(−2ik(ra + f))

]

−
n−2
2∑

j=0

1

f 2(j+1)

1

rn−2j−1
a

En−2j(−2ikra).

where we have included the case n = 0 (where we interpret the sum to be zero). More
compactly, we may write (for all n ≥ 0)
∫ ∞

ra

e2ikr

(r2 − f 2)rn
dr =

1

2fn+1

[
e2ikfE1(−2ik(ra − f))− (−1)ne−2ikfE1(−2ik(ra + f))

]

−
bn−1

2
c∑

j=0

1

f 2(j+1)

1

rn−2j−1
a

En−2j(−2ikra).

Using Equation (6.5), it is possible to write the last sum as

bn−1
2
c∑

j=0

1

f 2(j+1)

1

rn−2j−1
a

En−2j(−2ikra) = E1(−2ikra)

bn−1
2
c∑

j=0

1

f 2(j+1)

(2ik)n−2j−1

(n− 2j − 1)!

+ e2ikra

bn−1
2
c∑

j=0

n−2j−2∑

m=0

1

f 2(j+1)

(2ik)mrm+2j−n+1
a

nPk(n− 2j − 1,m+ 1)
.
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For large n, this formula su�ers from high precision loss when implemented with a given
precision. This is because the two terms in the last expression partly cancel each other out.
One thus needs to increase the �oating point precision correspondingly for an increase in
n. In MATLAB, this could be done by invoking MuPAD.

Using the following notation for the radial integrals

I(1)
n =

∫ ∞

ra

e2ikr

rn
dr I(2)

n =

∫ ∞

ra

e2ikr

(r2 − f 2)rn−1
dr, n ≥ 1

we may now write the bilinear form as (for n+m > 2)

buc(q, p) =J (1)
mn

[
−2k2I

(1)
n+m−2 − ik(n+m)I

(1)
n+m−1 + (nm+ f 2k2)I

(1)
n+m

+ikf 2(n+m)I
(1)
n+m+1 − nmf 2I

(1)
n+m+2

]
+ J (2)

mnI
(1)
n+m

+ J (3)
mnI

(2)
n+m−1 − J (4)

mnf
2I

(2)
n+m+1 + J (5)

mnk
2f 2I

(1)
n+m.

and for n = m = 1 we get

buc(q, p) =J
(1)
11

[
−2ikI

(1)
1 + (1 + f 2k2)I

(1)
2 + 2ikf 2I

(1)
3 − f 2I

(1)
4 − ike2ikra

]

+ J
(2)
11 I

(1)
2 + J

(3)
11 I

(2)
1 − J (4)

11 f
2I

(2)
3 + J

(5)
11 k

2f 2I
(1)
2 .

Let

fn =
∑

A∈ηa

e−ikrarnaRAcnA, fm =
∑

B∈ηa

e−ikrarma RBdmB

where ηa is the set containing the indices of all the basis functions that are non-zero on
Γa. Note that the scaling factors e−ikrarna and e−ikrarma must be used to get continuous
basis functions (as the NURBS basis functions satisfy the unity property inside of Γa,
so must the semi analytic basis functions outside of Γa). Using the bilinearity of buc we
obtain

∑

A∈ηa

N∑

n=1

cnA


∑

B∈ηa

N∑

m=1

e−2ikrarm+n
a dmBbuc(RA, RB)


 = 0.

As the surface integrals in Equation (6.4) will now be independent of the indices m and
n we now get (for n+m > 1)

buc(RA, RB) =J
(1)
AB

[
−2k2I

(1)
n+m−2 − ik(n+m)I

(1)
n+m−1 + (nm+ f 2k2)I

(1)
n+m

+ikf 2(n+m)I
(1)
n+m+1 − nmf 2I

(1)
n+m+2

]
+ J

(2)
ABI

(1)
n+m

+ J
(3)
ABI

(2)
n+m−1 − J (4)

ABf
2I

(2)
n+m+1 + J

(5)
ABk

2f 2I
(1)
n+m.

and in the case n = m = 1

buc(RA, RB) =J
(1)
AB

[
−2ikI

(1)
1 + (1 + f 2k2)I

(1)
2 + 2ikf 2I

(1)
3 − f 2I

(1)
4 − ike2ikra

]

+ J
(2)
ABI

(1)
2 + J

(3)
ABI

(2)
1 − J (4)

ABf
2I

(2)
3 + J

(5)
ABk

2f 2I
(1)
2 .
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where we have rede�ned the surface integral notations to be

J
(1)
AB =

∫ 2π

0

∫ π

0

RARB sin θ dθ dφ, J
(2)
AB =

∫ 2π

0

∫ π

0

∂RA

∂θ

∂RB

∂θ
sin θ dθ dφ

J
(3)
AB =

∫ 2π

0

∫ π

0

∂RA

∂φ

∂RB

∂φ

1

sin θ
dθ dφ, J

(4)
AB =

∫ 2π

0

∫ π

0

∂RA

∂φ

∂RB

∂φ

cos2 θ

sin θ
dθ dφ

J
(5)
AB =

∫ 2π

0

∫ π

0

RARB cos2 θ sin θ dθ dφ

(6.7)

The in�nite elements are thus only contributing whenever we have an element adjacent
to the boundary Γa. It is important to note that we now have increased the number of
degrees of freedom at the surface Γa from |ηa| to N |ηa|. Hence, the method of in�nite
elements adds a total of (N−1)|ηa| degrees of freedom. Due to redundancy, we should not
evaluate the full 3D NURBS function set at ζ = 1 as the 3D NURBS basis functions reduce
to a 2D NURBS surface in 3D. Rather, we loop over the surface elements which is then
done separate from the main matrix assembly. Thus, the procedure of adding contribution
from in�nite elements follows the procedure of applying Neumann conditions except that
we do not update the load vector F , rather, we now update the global matrix. As the
arti�cial boundary Γa at ζ = 1 (which is at ra in the prolate spheroidal coordinates) may
be parametrized by both (ξ, η) and (θ, φ) we have

dθdφ =

∣∣∣∣∣
∂θ
∂ξ

∂φ
∂ξ

∂θ
∂η

∂φ
∂η

∣∣∣∣∣ dξdη (6.8)

where

∂θ

∂ξ
=
∂θ

∂x

∂x

∂ξ
+
∂θ

∂y

∂y

∂ξ
+
∂θ

∂z

∂z

∂ξ
,

∂θ

∂η
=
∂θ

∂x

∂x

∂η
+
∂θ

∂y

∂y

∂η
+
∂θ

∂z

∂z

∂η
∂φ

∂ξ
=
∂φ

∂x

∂x

∂ξ
+
∂φ

∂y

∂y

∂ξ
+
∂φ

∂z

∂z

∂ξ
,

∂φ

∂η
=
∂φ

∂x

∂x

∂η
+
∂φ

∂y

∂y

∂η
+
∂φ

∂z

∂z

∂η

This may be written more densely by

[
∂θ
∂ξ

∂θ
∂η

∂φ
∂ξ

∂φ
∂η

]
=

[
∂θ
∂x

∂θ
∂y

∂θ
∂z

∂φ
∂x

∂φ
∂y

∂φ
∂z

]

∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

∂z
∂ξ

∂z
∂η


 (6.9)

where the partial derivatives with respect to the coordinate transformation is found in
Equation (B.34).

The derivatives of the basis functions may be computed by

[∂RA
∂θ
∂RA
∂φ

]
=

[
∂x
∂θ

∂y
∂θ

∂z
∂θ

∂x
∂φ

∂y
∂φ

∂z
∂φ

]

∂RA
∂x
∂RA
∂y
∂RA
∂z


 (6.10)

where the inverse partial derivatives with respect to the coordinate transformation is
found in Equation (B.33). However, as we shall parametrize the prolate spheroid such
that ξ = ξ(φ) and η = η(θ), we can simplify the formulas. As RA = RA(ξ, η) at the
surface Γa (that is, the basis functions are independent of ζ) we get

∂RA

∂θ
=
∂RA

∂ξ

dξ

dθ
+
∂RA

∂η

dη

dθ
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where
dξ

dθ
= 0 and

dη

dθ
=

(
dθ

dη

)−1

.

With a corresponding formula for the derivative with respect to φ we therefore have

∂RA

∂θ
=
∂RA

∂η

(
dθ

dη

)−1

and
∂RA

∂φ
=
∂RA

∂ξ

(
dφ

dξ

)−1

. (6.11)

With such a parametrization the four equations in Equation (6.9) reduces to

[
0 dθ

dη
dφ
dξ

0

]
=

[
∂θ
∂x

∂θ
∂y

∂θ
∂z

∂φ
∂x

∂φ
∂y

∂φ
∂z

]

∂x
∂ξ

∂x
∂η

∂y
∂ξ

∂y
∂η

∂y
∂ξ

∂y
∂η


 (6.12)

It is also possible to use the complex conjugate of the test functions. Instead of a bilinear
form, we then get a sesquilinear form. The weak formulating then takes the form2: For
all q ∈ V2, �nd p

N
h ∈ V1 such that

bc(q, p
N
h ) = 〈g, q〉Γ,

where

bc(q, p) = lim
γ→∞

(∫

Ωγ

(∇q̄∇p− k2q̄p) dΩ−
∫

Sr̂

q̄∂np dΓ

)
, (6.13)

〈g, q̄〉Γ =

∫

Γ

gq̄ dΓ.

We now get

∇q̄ · ∇p =
1

h2
r

∂q̄

∂r

∂p

∂r
+

1

h2
θ

∂q̄

∂θ

∂p

∂θ
+

1

h2
φ

∂q̄

∂φ

∂p

∂φ

=
(
−ik − n

r

)(
ik − m

r

) 1

rn+mh2
r

f̄nfm +
1

h2
θr
n+m

∂f̄n
∂θ

∂fm
∂θ

+
1

h2
φr

n+m

∂f̄n
∂φ

∂fm
∂φ

=
(r2 − f 2)((kr)2 + ikr(m− n) + nm)

r2(r2 − f 2 cos2 θ)

1

rn+m
f̄nfm

+
1

r2 − f 2 cos2 θ

1

rn+m

∂f̄n
∂θ

∂fm
∂θ

+
1

(r2 − f 2) sin2 θ

1

rn+m

∂f̄n
∂φ

∂fm
∂φ

which multiplied with the Jacobian J1 yields

∇q̄ · ∇pJ1 =
(r2 − f 2)((kr)2 + ikr(m− n) + nm)

r2
sin θ

1

rn+m
f̄nfm

+ sin θ
1

rn+m

∂f̄n
∂θ

∂fm
∂θ

+
(r2 − f 2 cos2 θ)

(r2 − f 2) sin θ

1

rn+m

∂f̄n
∂φ

∂fm
∂φ

2Again, we refer to [3, pp. 89-90] for the precise de�nition of the spaces V1 and V2.
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Also note that the term contributing to the mass matrix multiplied with the same Jaco-
bian yields

k2pq̄J1 =
k2

rn+m
(r2 − f 2 cos2 θ) sin θf̄nfm.

Consider �rst the boundary integral at Sr̂. In the limit r̂ →∞ we know that ∂np→ ∂rp
(as prolate spheroidal coordinates reduces to spherical coordinates in this limit). Thus,

∫

Sr̂

q̄∂nu dΓ =

∫ 2π

0

∫ π

0

(
ik − m

r̂

) 1

r̂m+n
f̄nfmr̂

2 sin θ dθ dφ

=
(

ik − m

r̂

) 1

r̂m+n−2

∫ 2π

0

∫ π

0

f̄nfm sin θ dθ dφ

As m + n > 1 all terms of order O(r̂−(m+n−1)) vanish in the limit r̂ →∞, such that the
integral reduces to

∫

Sr̂

q∂np dΓ =
ik

r̂m+n−2

∫ 2π

0

∫ π

0

f̄nfm sin θ dθ dφ

Combining all of this into Equation (6.13) yields

bc(q, p) = lim
r̂→∞

{∫ r̂

ra

[
k2

rn+m−2
+

ik(m− n)

rn+m−1
+
nm− f 2k2

rn+m

− ikf 2(m− n)

rn+m+1
− nmf 2

rn+m+2

]
dr

∫ 2π

0

∫ π

0

f̄nfm sin θ dθ dφ

+

∫ r̂

ra

1

rn+m
dr

∫ 2π

0

∫ π

0

∂f̄n
∂θ

∂fm
∂θ

sin θ dθ dφ

+

∫ r̂

ra

1

(r2 − f 2)rn+m−2
dr

∫ 2π

0

∫ π

0

∂f̄n
∂φ

∂fm
∂φ

1

sin θ
dθ dφ

−
∫ r̂

ra

f 2

(r2 − f 2)rn+m
dr

∫ 2π

0

∫ π

0

∂f̄n
∂φ

∂fm
∂φ

cos2 θ

sin θ
dθ dφ

−
∫ r̂

ra

k2

rn+m−2
dr

∫ 2π

0

∫ π

0

f̄nfm sin θ dθ dφ

+

∫ r̂

ra

k2f 2

rn+m
dr

∫ 2π

0

∫ π

0

f̄nfm cos2 θ sin θ dθ dφ

− ik

r̂m+n−2

∫ 2π

0

∫ π

0

f̄nfm sin θ dθ dφ

}
.

De�ning the angular integrals

J (1)
mn =

∫ 2π

0

∫ π

0

f̄nfm sin θ dθ dφ, J (2)
mn =

∫ 2π

0

∫ π

0

∂f̄n
∂θ

∂fm
∂θ

sin θ dθ dφ

J (3)
mn =

∫ 2π

0

∫ π

0

∂f̄n
∂φ

∂fm
∂φ

1

sin θ
dθ dφ, J (4)

mn =

∫ 2π

0

∫ π

0

∂f̄n
∂φ

∂fm
∂φ

cos2 θ

sin θ
dθ dφ

J (5)
mn =

∫ 2π

0

∫ π

0

f̄nfm cos2 θ sin θ dθ dφ

(6.14)
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and noticing cancellation of the two terms k2

rn+m−2 we can write

bc(q, p) = lim
r̂→∞

{
J (1)
mn

∫ r̂

ra

[
ik(m− n)

rn+m−1
+
nm− f 2k2

rn+m

− ikf 2(m− n)

rn+m+1
− nmf 2

rn+m+2

]
dr + J (2)

mn

∫ r̂

ra

1

rn+m
dr

+J (3)
mn

∫ r̂

ra

1

(r2 − f 2)rn+m−2
dr − J (4)

mn

∫ r̂

ra

f 2

(r2 − f 2)rn+m
dr

+J (5)
mn

∫ r̂

ra

k2f 2

rn+m
dr − J (1)

mn

ik

r̂m+n−2

}
.

All of these integrals exists, also for the case m = n = 1 as the term O(r−(n+m−1)) vanish
due to its numerator.

The radial integrals may be computed by
∫ ∞

ra

1

rn
dr =

1

rn−1
a

1

n− 1
, n > 1

and by the use of Laurent series (as f < ra) we get
∫ ∞

ra

1

(r2 − f 2)rn
dr =

1

r2+n−1
a

∞∑

j=0

(
f

ra

)2j
1

2j + n+ 1
.

Using the following notation for the radial integrals

I(1)
n =

∫ ∞

ra

1

rn
dr, n ≥ 2

I(2)
n =

∫ ∞

ra

1

(r2 − f 2)rn−1
dr, n ≥ 1

we may now write the sesquilinear form as (for n+m > 2)

bc(q, p) =J (1)
mn

[
ik(m− n)I

(1)
n+m−1 + (nm− f 2k2)I

(1)
n+m

−ikf 2(m− n)I
(1)
n+m+1 − nmf 2I

(1)
n+m+2

]
+ J (2)

mnI
(1)
n+m

+ J (3)
mnI

(2)
n+m−1 − J (4)

mnf
2I

(2)
n+m+1 + J (5)

mnk
2f 2I

(1)
n+m.

and for n = m = 1 we get

bc(q, p) =J
(1)
11

[
(1− f 2k2)I

(1)
2 − f 2I

(1)
4 − ik

]

+ J
(2)
11 I

(1)
2 + J

(3)
11 I

(2)
1 − J (4)

11 f
2I

(2)
3 + J

(5)
11 k

2f 2I
(1)
2 .

Let
fn =

∑

A∈ηa

e−ikrarnaRAc̄nA, fm =
∑

B∈ηa

e−ikrarma RBdmB

where (as before) ηa is the set containing the indices of all the basis functions that are
non-zero on Γa. Using the sequilinearity of bc we obtain

∑

A∈ηa

N∑

n=1

c̄nA


∑

B∈ηa

N∑

m=1

rn+m
a dmBbc(RA, RB)


 = 0.
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As the surface integrals in Equation (6.14) will now be independent of the indices m and
n we now get (for n+m > 1)

bc(RA, RB) =J
(1)
AB

[
ik(m− n)I

(1)
n+m−1 + (nm− f 2k2)I

(1)
n+m

−ikf 2(m− n)I
(1)
n+m+1 − nmf 2I

(1)
n+m+2

]
+ J

(2)
ABI

(1)
n+m

+ J
(3)
ABI

(2)
n+m−1 − J (4)

ABf
2I

(2)
n+m+1 + J

(5)
ABk

2f 2I
(1)
n+m.

and for n = m = 1 we get

bc(RA, RB) =J
(1)
AB

[
(1− f 2k2)I

(1)
2 − f 2I

(1)
4 − ik

]

+ J
(2)
ABI

(1)
2 + J

(3)
ABI

(2)
1 − J (4)

ABf
2I

(2)
3 + J

(5)
ABk

2f 2I
(1)
2 .

where the rede�ned surface integrals are the same as in Equation (6.7).

6.2.1 The multipole expansion

In [10] Burnett presents a multipole expansion in which the radial basis function in the
in�nite elements have poles at di�erent layers with radii rn, n = 1, . . . , N . That is,
instead of using the radial shape functions in Equation (6.2) we may use the following
de�nition

φn(r) = eik(r−rn)

N∑

n′=1

Hnn′

rn′
, n = 1, . . . , N.

where the coe�cients Hnn′ are determined in order to satisfy

φn(rn′) = δnn′ .

Hence, the coe�cients are determined from the relation

HS = I (6.15)

where

H =




H11 H12 . . . H1N

H21 H22 . . . H2N
...

... . . .
...

HN1 HN2 . . . HNN


 and S =




r−1
1 r−1

2 . . . r−1
N

r−2
1 r−2

2 . . . r−2
N

...
... . . .

...
r−N1 r−N2 . . . r−NN


 .

and I is the N ×N identity matrix. The coe�cients Hnn′ are thus given by H = S−1.

These basis functions di�ers from the classical FEM shape functions in that they have
global support (outside the arti�cial boundary Γa), but only the �rst basis function, φ1

are non zero at Γa. This property improves the sparsity of the global matrix, such that
this method improves performance. The accuracy however, seems to be unchanged. This
is to be expected as the basis functions spans the same space.

For the Petrov-Galerkin formulations, we must create a second set of basis functions (for
the test space), namely

ψn(r) = eik(r−rn)

N+2∑

n′=3

H ′nn′
rn′

, n = 3, . . . , N + 2.
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The coe�cients H ′nn′ are found in the same way as before but now with the matrix

S′ =




r−3
1 r−3

2 . . . r−3
N

r−4
1 r−4

2 . . . r−4
N

...
... . . .

...
r−N−2

1 r−N−2
2 . . . r−N−2

N


 .

instead of S. It should be noted that the condition number of the matrices S and S′

becomes very high for large N . To avoid precision loss when calculating the inverse, one
then needs to increase the precision in the �oating point operations. In MATLAB, we
use MuPAD to handle this issue.

In the numerical experiments, we shall use this multipole expansion.

6.3 Far-Field Pattern

We solve the problem inside an arti�cial boundary, and thus computing the so-called near
�eld. However, we are interested in the solution computed at a far �eld point r. To solve
this issue, one uses the integral solution given by (cf. [3, pp. 6-8])

p(r) =

∫

∂Ω

[
p(r′)

∂g(r, r′)

∂n′
− g(r, r′)

∂p(r′)

∂n′

]
dS(r′) (6.16)

where r′ a point on the surface ∂Ω and g is the free space Green's function de�ned (in
3D) by

g(r, r′) =
eik|r′−r|

4π|r′ − r| .

We thus need to compute the derivative of both Green's function and the numerical
solution for the pressure. We �nd

∂g(r, r′)

∂n′
= g(r, r′)

ik|r′ − r| − 1

|r′ − r|2 (r′ − r) · n′

where n′ lies on Γ pointing �into� Ω+. Ihlenburg de�nes the far-�eld pattern of a solution
p by

F
(r
r

)
= re−ikrp(r), r →∞.

When plotting this �eld, we take the absolute value. Thus, |F
(
r
r

)
| = |rp(r)| is simply

a scaling of the solution at a given radius r. Ihlenburg here uses an asymptotic approxi-
mation of the far �eld which is not at all necessary. This notation is only mentioned as
we want to compare with the results of Ihlenburg.

When computing the far-�eld backscattered pressure with Equation (6.16), it is important
to be aware of the potential source of error when the surface integral is approximated
using Gaussian quadratures. To illustrate this e�ect, we integrate the exact solution
at the boundary (using Gaussian quadratures) and compare the resulting backscattered
pressure (computed from Equation (6.16)) with the exact solution at the far �eld point.
In Figure 6.2 the relative absolute di�erence is plotted (using Equation (3.3)). Note
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Figure 6.2: Scattering on rigid sphere: Error in computing the far �eld point due
to Gaussian integration. The error is plotted against the number of Gauss points used
in the η-direction. The total number of surface Gauss points is found by multiplying
this number by 20. The re�nement is only executed in the η-direction of the sphere
(θ-direction) due to axisymmetry.

that due to symmetry, we only add new Gauss points in η-direction (where we start by
inserting 6 knots). We do no re�nement in the ξ-direction and will only use a total of 20
Gauss points in this direction. This is the reason why the error stabilizes at 10−5% since
there will be an error in the integration for this direction. No order elevation is used. As
we can see, we need to sample the solution with more points as the frequency increase.
Recall that the frequency is given by

f = 2πω, where ω = kcf .

Hence, an increase in the frequency yields an increase in the wave number. If h is the
distance between each evaluation point, one typically choose nres evaluation points per
wave length. That is,

nres =
λ

h

where

λ =
2π

k

is the wavelength. As noted by Ihlenburg in [3], one typically choose nres = 10 in practice.
This rule applies to one dimensional analysis using linear interpolation functions. As
we always use higher order functions at the surfaces, this rule will typically result in
redundancy of evaluation points. The computation of the backscattered pressure does
not serve as the most computationally expensive part, so to be on the safe side we shall
use nres = 12. We try to stay on the safe side here as no extensive analysis has been done
in this regards.



80 Exterior Helmholtz problems

Figure 6.3: Scattering on a rigid sphere. The water is here parametrized with 8
elements (like a spherical shell).

6.4 Scattering on a rigid sphere

Consider a rigid sphere with radius R = 5.075 surrounded by water with parameters
from Table 3.1. We shall consider scattering on this sphere from the incoming wave
pinc = P0eikz, where we let the amplitude be P0 = 1. In Section 3.4 the exact solution
to this problem is presented. We shall use this example as the �rst test problem for the
implementation of the in�nite elements. We will then let the arti�cial boundary Γa be a
sphere concentric with the rigid sphere with radius Ra = 6. And we shall use the BGU
formulation with N = 3 for the in�nite elements. The NURBS parametrization of this
domain is depicted in Figure 6.3. Mesh 1 is then created by order elevation to r = 2 in
ζ-direction, followed by the insertion of the knot ζ = 0.5. Mesh 2 and 3 are then created
by by adding 1 and 3 knots into the other parametric directions, respectively.

In Figure 6.4 we compare results from Mesh 1, 2 and 3 to the exact solution. What we
observe is that the accuracy of the solution decays for larger wave numbers. This is known
as the pollution e�ect and is discussed in [34]. It is there proven that it is impossible to
eliminate this pollution e�ect using FEM in two and more space dimensions. This is the
reason why FEM is not so suited for higher frequencies. To obtain accurate solutions for
higher wave numbers, more degrees of freedoms must be added, which in turn increases
the computational time.

6.5 Scattering on BeTSSi model 3

We shall now consider incoming waves from di�erent directions scattered by BeTSSi
Model 3. The original model is aligned with the x-axis, but we shall here without loss of
generality align the model with the z-axis. This is convenient as the prolate spheroidal
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Figure 6.4: Scattering on a rigid sphere: Convergence results.

coordinate system (used for in�nite elements) is also aligned with the z-axis. In addition
to this rotation, it is also convenient to enable translation of the model. That is, we want
to translate the origin of the model to a point x0.

If a plane wave is traveling in the direction k, then it can be written in the following form

pinc = P0eik·(x−x0)

Once again, in the numerical experiments we shall always use P0 = 1.

We shall consider the receiver of this wave to be located at

P far = rf(cos βf sinαf , sin βf , cos βfαf) + x0

x

z

y

P s

αs

βs

x

z

y

P far

αf

βf

Figure 6.5: Scattering on BeTSSi model 3: Aspect angle α and elevation angle β
for BeTSSi model 3 which is aligned with the z-axis. Note that x0 = 0.
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where αs and βs is aspect angle and the elevation angle, respectively (cf. Figure 6.5). A
plane wave originated from the source point (rs, αs, βs) point (and traveling towards x0),
thus have the wave number

k = −k cos βs sinαsex − k sin βsey − k cos βs sinαsez.

The normal derivative on the surface of any smooth geometry may be computed by

∂npinc = n · ∇pinc = ik · npinc

and the target strength (TS) is calculated by

TS = 20 log10

(
‖P far‖

|p(P far)|
P0

)
.

6.5.1 Constructing the mesh

The mesh is constructed by joining the NURBS surface of BeTSSi model 3 with a NURBS
surface of a prolate spheroid. The prolate spheroid is just a special example of the
more general ellipsoid which may exactly be parameterized by a NURBS surface (cf.
Appendix D.6). Both these surfaces has been parametrized with the same knot vector
Ξ (in the azimuthal direction). However, the parameter direction in the polar direction
(η-direction) has di�erent knot vectors for the two surfaces. To join these two surfaces
into a full 3D NURBS solid, one needs to insert the missing knots in order to create
identical knot vectors for the surfaces. The knot vectors in the η-direction for the two
surfaces are

HM3 = {0, 0, 0, 0.265, 0.265, 0.8, 0.8, 1, 1, 1}
and

Hspheroid = {0, 0, 0, 0.5, 0.5, 1, 1, 1}
for the surface of BeTSSi model 3 and the prolate spheroid, respectively. Thus, our initial
mesh has the knot vector

H = {0, 0, 0, η1, η1, η2, η2, η3, η3, 1, 1, 1}

with η1 = 0.265, η2 = 0.5 and η3 = 0.8. The use of repetitive knots is essential for BeTSSi
model 3 as there is C0-continuity in the exact geometry at these knots.

The parametrization in the radial direction (ζ-direction) adds the �rst degree of freedom
in construction the mesh. One could simply use a linear parametrization in this direction.
However, we shall choose a second degree NURBS parametrization for the ζ-direction.
We then need to insert an extra layer of control point between the two existing surfaces.
We shall use a set of control points which resembles the control points at the surfaces
of BeTSSi model 3 in such a way that the mesh lines in the ζ-direction is perpendicular
at the hemispherical ends (due to the lacking smoothness of BeTSSi model 3 it is not
possible to have perpendicularity everywhere). The resulting 3D mesh is depicted in
Figure 6.6. In Figure 6.7a we show the corresponding cross-section of the mesh in the
upper xz-plane. In the azimuthal direction (ξ-direction), we use uniform re�nement. It is
not necessarily the best to use uniform re�nement in the other two directions. The result
of purely uniform re�nement is depicted in Figure 6.7b. This results in areas where large
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Figure 6.6: Rigid scattering on BeTSSi model 3: The initial mesh of the �uid
surrounding BeTSSi model 3.

(a) Mesh 0

(b) Mesh 1 uniform parametrization

(c) Mesh 1 non uniform parametrization

Figure 6.7: Rigid scattering on BeTSSi model 3: Meshes of �uid, in the upper
xz-plane. The full 3D mesh is obtained by rotating this mesh about the major axis
(z-axis).
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elements occur. This is typically not wanted, and we shall therefore use non uniform
re�nement resulting in the mesh in Figure 6.7c. This mesh has been constructed in such
a way that we have uniform length of the elements along the polar direction at the prolate
spheroid. In the following we shall describe this process in detail where we try to �nd
the optimal mesh with respect to a uniform distribution of elements.

We only need to consider inserting knots in the NURBS curve where ζ = 1 and ξ = 0
(this will be the upper edge in Figure 6.7a) due to symmetry. Find �rst the physical
location of the knots η1, η2 and η3 such that the corresponding polar angles θ1, θ2 and θ3

in the prolate spheroidal coordinate system may be calculated. Calculate the arc length
between these angles with the following formula

L(a, b) =

∫ b

a

√(
∂x

∂θ

)2

+

(
∂y

∂θ

)2

+

(
∂z

∂θ

)2

dθ =

∫ b

a

√
r2

a − f 2 cos2 θ dθ.

which may not be written out in closed form (it may be written out in terms of the elliptic
integral, but we shall simply use numerical integration for evaluations). If s is the mesh
number, we shall insert

m(a, b) = d0.55sL(a, b)e
knots between the pair of angles (0, θ3), (θ3, θ2), (θ2, θ1) and (θ1, π). For mesh 1 (s = 1)
this implies a total of 39 new knots inserted in the η-direction (correspondingly, 16 knots
have been inserted in the ξ-direction and 4 knots in the ζ-direction). This results in a
almost uniform partition of the curve. A perfect partition of the curve imposes constraints
on the knots η1 and η3, but we want to choose these knots in BeTSSi model 3 in order
to obtain the optimal mesh. Consider the insertion of m(θ3, π) knots between the angles
θ3 and π (the larger hemisphere). We start with θprev = θ3, and looping through the
m(θ3, π) angles by �nding the next angle θ such that

L(θprev, θ) =
L(θ3, π)

m(θ3, π) + 1
.

We �nd this angle using the bisection method. We may now evaluate the Cartesian coor-
dinate [x, y, z]> of this angle, and use the built in MATLAB function fminsearchbnd
to �nd

η = min
η∈[0,1]

∥∥[x, y, z]> −X(0, η, 1)
∥∥ .

It is possible to optimize this last step by using Newton iteration as mentioned [1, p.
4191]. A corresponding procedure is done for the other intervals. The advantage of this
new mesh using non uniform re�nement is that we now get small areas in which we get
�too many� elements in contrast to areas in which we get too few elements. Finally,
consider the re�nement in the ζ-direction. As the intermediate layer of control points
between the surface of BeTSSi model 3 and the prolate spheroid is placed close to the
surface of BeTSSi model 3, a uniform re�nement in Z will result in a decreasing density
of elements from this surface. But we want the elements to form a uniform density
of elements throughout the mesh, so we employ non uniform mesh re�nement also in
this direction. In Figure 6.9 we plot the mesh for s = 2, 3, 4, 5. It should be noted
that uniform re�nement in ξ-direction does not imply uniform re�nement in the physical
azimuthal direction (φ-direction). However, as we can see in Figure 6.8, this is not far
from being the case.
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Figure 6.8: Rigid scattering on BeTSSi model 3: Visualization of the surface mesh
for the prolate spheroid surrounding BeTSSi model 3 corresponding to mesh 1.

This re�nement procedure could obviously have been improved if local re�nement was
possible. This could be done by T-splines (cf. [21]) or LR B-splines (cf. [20]), but this is
far beyond the scope of this thesis.
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(a) Mesh 2

(b) Mesh 3

(c) Mesh 4

(d) Mesh 5

Figure 6.9: Rigid scattering on BeTSSi model 3: Meshes of �uid, in the upper
xz-plane. The full 3D mesh is obtained by rotating this mesh about the major axis
(z-axis).



Chapter 7

Fluid-structure interaction

So far we have considered linear elasticity problems and exterior Helmholtz problems
separate. We shall now combine these two problems into a �uid-structure interaction
problem (FSI).

In [3, pp. 13-14] Ihlenburg brie�y derives the governing equations. We repeat them here
using similar notations as Ihlenburg:

σij,j + ω2ρsui = 0 in Ω (7.1)

ρfω
2uini −

∂p

∂n
=
∂pinc

∂n
on Γ (7.2)

σijninj + p = −pinc on Γ (7.3)

∆p+ k2p = 0 in Ω+, (7.4)

∂p

∂R
− ikp = o(R−1) R→∞, (7.5)

For the domain Ω we have shown that we obtain the weak formulation (see Equation (4.13)
with no body forces)

∫

Ω

vi,jσij − ρsω
2uiv̄i dΩ =

∫

Γ

vi(σijnj) dΓ. (7.6)

The integrand on the right hand side may be rewritten using Equation (7.3) in the
following way. Let hi be the components (in Cartesian coordinates) of the exterior traction
vector on Γ. That is to say,

hi = σijnj.

Consider a point P on Γ with normal vector n. We may then create a local orthogonal
coordinate system at this point with unit vectors en, et1 and et2 where the latter two
vectors represents the tangential basis vectors to the surface Γ.

As the scalar product is invariant to orthogonal transformations we get

hivi = hxvx + hyvy + hzvz = hnvn + ht1vt1 + ht2vt2 .

The pressure from the �uid only exerts forces normal to the surface Γ. The static equi-
librium condition for the traction at P is then

ht1 = 0, ht1 = 0, and hn = −(pinc + p).
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The scalar product may therefore be written as

hivi = −(pinc + p)vn = −(pinc + p)vini.

Equation (7.6) thus reduces to

∫

Ω

vi,jσij − ρsω
2uivi dΩ = −

∫

Γ

(pinc + p)vini dΓ. (7.7)

Moreover, from Equation (6.1)

∫

Ω+

∇q · ∇p− k2qp dΩ = −
∫

Γ

q
∂p

∂n
dΓ

where we have changed sign of the right hand side in order to get a normal vector that
points outwards. Using now Equation (7.2) we get

∫

Ω+

∇q · ∇p− k2qp dΩ = −
∫

Γ

q

(
ρfω

2uini −
∂pinc

∂n

)
dΓ. (7.8)

Scaling Equation (7.7) with the scaling factor ρfω
2 (for symmetry) we may add this

equation to Equation (7.8) to obtain

∫

Ω+

∇q · ∇p− k2qp dΩ + ρfω
2

(∫

Γ

quini dΓ +

∫

Γ

vinip dΓ

)

+ ρfω
2

∫

Ω

vi,jσij − ρsω
2uivi dΩ

= −ρfω
2

∫

Γ

pincvini dΓ +

∫

Γ

∂pinc

∂n
q dΓ

(7.9)

where n = {n1, n2, n3} points outwards from the solid. Ihlenburg now continues by
de�ning

B(U ,V) =

∫

Ω+

∇q · ∇p− k2qp dΩ + ρfω
2

(∫

Γ

quini dΓ +

∫

Γ

vinip dΓ

)

+ ρfω
2

∫

Ω

vi,jσij − ρsω
2uivi dΩ

and

(F ,V) = −ρfω
2

∫

Γ

pincvini dΓ +

∫

Γ

∂pinc

∂n
q dΓ

where U = (u, p) and V = (v, q). Moreover, de�ne the Sobolov spaces H = H1(Ωs) ×
H1+
w (Ω+) and H∗ = H1(Ωs)×H1

w∗(Ω
+). The weak formulation for the FSI problem then

becomes: Find all U ∈ H such that

B(U ,V) = (F ,V), ∀V ∈ H∗.



Chapter 8

Computational aspects

In Figure 8.1 we give an overview of the code for the full �uid structure interaction
program for both monostatic and bistatic cases. The only part which is not parallelized
is the initialization part of the code. The time elapsed by this part is negligible in
comparison with any other part of the program, so any e�ort for optimizing this part was
omitted. In the following we shall brie�y present the main content of each step.

8.1 Initialization

The initialization part consist of de�ning all relevant parameters and constructing the
mesh for analysis. To create the IGA mesh, we �rst import data for the coarsest mesh of
the NURBS object (i.e. data set's found in Appendix D). One typically �rst constructs
the NURBS object for the solid domain as this domain should be the exact representation
of the given object. In contrast, we have more degrees of freedom when construction the
�uid mesh. The mesh for the �uid domain must be constructed by �nding a suitable
spheroid which may be wrapped closely around the obstacle without creating to much
of a distortion in the resulting mesh (see Subsection 6.5.1). Although it may certainly
be possible, it has not been implemented an automated algorithm for �nding such a
spheroid. So in the analysis, we have found the �uid mesh by trial and failure. When the
two meshes have been constructed (two NURBS patches) one has many opportunities of k-
re�nement. The two algorithms elevateNURBSdegree and insertKnotsInNURBS
have been implemented for this purpose (see Subsection 4.2.2). Typically we order elevate
�rst to the desired degrees in ξ-, η- and ζ-direction. Then we insert the desired number
of knots in the desired locations (creating more elements for analysis). From this point,
we are able to create the IGA mesh. We �rst construct an ordering of the available
NURBS basis functions, then we construct a connectivity array which for each element
links every basis functions having support on this element. From here, it is important
to have knowledge if there is any periodicity involved for the NURBS patch. If this is
the case, one must �nd the overlapping control points causing the periodicity. There
could potentially be more than two control points at the same physical location. In any
case, de�ne the control point with lowest index to be the �parent function� and the rest
�children functions�. Then one constructs an array mapping all children functions to the
parent function. This array is then used to modify the mentioned connectivity array. In
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Start

Initialization

Build structural matrices

Build �uid matrices

Add contribution

from in�nite elements

Loop through

angles αs and βs

Build loading vector

and add contribution

from coupling conditions

Solve system

Loop through

angles αf and βf

Compute backscat-

tered pressure

Stop

Figure 8.1: The FSI program: The �owchart of the full FSI program analyzing both
monostatic and bistatic cases. The boxes with rounded corners are parallelized.
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addition to keeping track of the indices for the parent functions, one must also store the
indices for the children functions as these degrees of freedom must be removed from the
global system matrix.

8.2 Structural matrices and �uid matrices

When constructing the sti�ness matrix and the mass matrix, we create four arrays for
these two matrices. The �rst two arrays will contain the indices (columns and rows) in
the global matrix. The other two arrays stores the contribution at these indices for each
of the two matrices. We continue by creating an array of Gaussian quadrature points
and weights. The code supports 64 Gaussian quadrature points per direction such that
one is able to evaluate a 3D IGA element at 643 = 262144 points. However, one typically
determines the number of control points by the NURBS degree for each of the parameter
directions. More speci�cally, if the degree in ξ direction is p, then we use p+1 quadrature
points in this direction. Thus, we have (p+1)(q+1)(r+1) quadrature points per volume
element.

It is very important to note that the global sti�ness matrix is very sparse. Not only is
it a huge advantage in MATLAB to have the matrix in sparse format when solving the
linear system, but also when assembling the matrix. If the matrix is made sparse only
after assembly, then the initialization would require MATLAB to allocated place for a
full sti�ness matrix. This is very memory consuming and should be avoided if one wants
to run the program with many degrees of freedom. A matrix in sparse format contains 3
columns; the �rst two represent the indices in the matrix and the third column represent
the corresponding value. The problem of preallocation may be solved by �rst construct
these three columns in three arrays. By noting that each element sti�ness matrix has
[3(p+ 1)(q + 1)(r + 1)]2 number of components, we initialize the arrays by the following.

n_en = (p+1)*(q+1)*(r+1);
sizeOfk_e = (3*n_en)^2;
indices = zeros(3*n_en,noElems);
spIdxRow = zeros(sizeOfk_e,noElems);
spIdxCol = zeros(sizeOfk_e,noElems);
Kvalues = zeros(sizeOfk_e,noElems);

Note that we initialize these �vectors� in matrix form as this allows us to easily parallelize
using parfor in MATLAB.

Note that we do not here sum overlapping element matrices, but this is automatically
done when the sparse function is called in MATLAB.

K = sparse(spIdxRow,spIdxCol,values);

That is, there will be index combinations which will repeat and therefore this method
would require a lot more memory. Using server with 256GB memory space, one is able to
run this implementation with up to 106 degrees of freedom, which is more than enough
for this thesis. Thus, the results evaluated for this thesis is done relatively fast.

The other obvious method is simply using
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K(sctrB,sctrB) = K(sctrB,sctrB) + k_e;

which typically results in the MATLAB warning �This sparse indexing expression is likely
to be slow�. In [35] it is described how one could optimize the assembly, and in [36]
we �nd theory around e�ciently use of quadrature for NURBS. In [37] a new stack
based representation of the sparse matrix is presented, which could speed up the matrix
assembly part. This is however outside the scope of this thesis, and is therefore not
included.

We are now ready to loop through all structure elements and calculate their contribution
to the sti�ness and mass matrix. For each element in this loop (which is parallelized) we
must loop through all quadrature points. For each quadrature point in this inner loop,
we evaluate all the NURBS basis functions which have support on the current element.
The Jacobian is then computed (by Equation (4.20)) in order to �nd the derivative of
the basis functions with respect to physical coordinates (Equation (4.22)) which is then
used to �nd the strain matrix B (Equation (4.18)). Note that if body forces is to be
applied to the solid, these will be calculated in this same loop. So one must not mistake
the part of building the loading vector with the implementation of body forces. However,
we never encounter body forces in the analysis of acoustic scattering, but it has been
implemented anyways as some static elasticity problems involving body forces has been
analyzed in this thesis (the Kneaded cylinder in Subsection 4.6.2 and Scordelis-Lo Roof
in Appendix C.1.1).

After looping through all elements, one creates the sparse matrices K and M using the
sparse function in MATLAB. These matrices are then added (with a scaling factor for
the mass matrix). The reason why they are not added during calculation is simply to
create a more general function which handles the elastostatic case as well (no construction
of the mass matrix).

The next step is to construct the matrices for the �uid part of the domain. The setup is
almost identical to the case for the structure matrices. However, we are now working with
scalar valued domain instead of a vector valued domain. This will a�ect the indexing.
In addition, the bilinear form is di�erent for the two cases. After computing the �uid
matrices, the result is added to the global matrix.

8.3 Contribution from in�nite elements

The in�nite elements are implemented using the multi-pole expansion after Burnett
in [10]. We generalize this work, which was based on the BGU formulation, to the
other three formulations BGC, PGU and PGC (see Section 6.2).

One �rst needs to locate the indices for the NURBS basis functions having support on
the arti�cial boundary Γa. In addition, the radial integrals in the bilinear or sesquilinear
form must be computed (depending on which in�nite element formulation is chosen).
Finally, one must compute the coe�cients used for the radial basis functions in the
in�nite elements (from the relation Equation (6.15)). These two last step su�ers from
round o� errors for a high number of in�nite element radial basis functions N . The way
to solve this is to increase the precision using the mentioned MuPAD in MATLAB.
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We are now ready to loop through all surface elements on Γa. Once again, for each
element, we have an inner loop over all quadrature points. And for each quadrature
points, the NURBS basis functions are evaluated, such that the Jacobi matrix can be
computed. This is in turn used to compute the derivative with respect to the prolate
spheroidal coordinates. In this regards it has been implemented a function which evalu-
ates (r, θ, φ) for a given point (x, y, z) (using the relations in Equation (B.32)). Moreover,
the derivatives of (r, θ, φ) with respect to (x, y, z) must be computed (using the relations
in Equation (B.34)). We may then compute the derivatives of (r, θ, φ) w.r.t, the surface
parameters ξ and η using Equation (6.12). These derivatives are �nally used to evaluate
the derivatives of the basis functions with respect to the angles θ and φ using Equa-
tion (6.11). This enables us to compute the contributions to the surface integrals J

(1)
AB,

J
(2)
AB, J

(3)
AB, J

(4)
AB and J

(5)
AB (expressions in Equation (6.7)). Note that we do not compute the

full bilinear or sesquilinear form in this inner loop, as the radial integrals is independent
of the angular coordinates (to avoid redundant computations). After looping through the
quadrature points, we continue the loop on the current element and evaluates the bilinear
or the sesquilinear form. This is done by looping through all radial basis functions in the
in�nite elements. The result is then collected and added to the global matrix.

8.4 Loading vector and coupling condition

The coupling conditions connects the two spaces for the solid domain and the �uid do-
main. This involves a coupling of two NURBS objects. The implementations assume the
surfaces to be connected have the same NURBS parametrization. It also assumes the
NURBS patches to be parametrized in such a way that these surfaces are given at ζ = 0
for the �uid and ζ = 1 for the solid. This causes restriction in the re�nement process; if
we want to, say, insert a knot in the ξ direction, or order elevate in this direction in the
�uid, we must do the same re�nement process in the solid.

Keeping these remarks in mind, we start again by constructing the surface mesh. This
mesh is constructed on the basis of the surface at ζ = 1 for the solid. We then loop
through these surface elements, and for each element we must loop through the quadrature
points. For each such quadrature point we now evaluate 2D NURBS functions, as we
know the 3D NURBS functions reduce to 2D NURBS functions when ζ is constant.
This obviously saves a lot of computations. Once again, these evaluations are used to
compute the (2D) Jacobian which is in this case not used to evaluate derivatives of the
NURBS functions w.r.t. physical coordinates, as they do not appear in the coupling
conditions. The Jacobian is only used to compute the cross product needed to compute
the surface integral (see Equation (4.23)). This cross product is also needed to determine
the normal vector in the coupling term in the FSI bilinear form (Equation (7.9)). As we
want this normal vector to point out from the solid domain, and we consider the NURBS
parametrization of the solid domain, the normal vector is given by

n =

∂X
∂ξ
× ∂X

∂η∥∥∥∂X∂ξ × ∂X
∂η

∥∥∥

for right hand oriented NURBS parametrization. It is here assumed that the parametriza-
tion is orientable. The parametrization is right hand oriented whenever det(J) > 0
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throughout the domain. If det(J) < 0 throughout the domain, we simply need to change
the sign of the normal vector in the expression above.

We continue by computing the physical coordinates in order to evaluate the given incident
�eld pinc and its derivative. The result is then collected and added to the global matrix.
Note that the other contributions to the global matrix is independent of the incident �eld
such that they only need to be computed once (thus we store this part). Moreover, if
only hard walled boundary conditions are considered (only �uid, and no coupling), then
there is no update in the global matrix in this loop. If a direct solver is chosen, one may
split the loop over the angles αs and βs such that the factorization is only done once.

8.5 Solving the system

If there are many angles to be analyzed, the loops over these angles should be parallelized.
However, if one only consider few angles (for instance the bistatic case when only one
pair of αs and βs is considered), one should take the parallelization over the loop which
runs through the surface elements.

When a direct solver is to be used, the backslash operator in MATLAB will elegantly
solve the problem in a e�cient way. However, if the LU factorization may be reused
(which is the case when no coupling is present) one should use the build in lu function.
If the LU factorization is reused, one should no longer parallelize over the angles as this
would require the LU factorization to be copied in each thread (a wast amount of extra
memory is thus acquired). More details on the subject can be found in [38].

For a given incident �eld, consider now the full global matrix. We should then remove
the degrees of freedom corresponding to all children functions. After this is done, we may
now investigate the resulting structure of the global matrix A.

In Figure 8.2 we show the results of typing spy(A) in MATLAB (with additional e�ects
added). The function gives an overview of the location of the nonzero entries in the global
matrix. This result comes from elastic scattering on a spherical shell, where the mesh
is simply a union of two spherical shells; one for the solid and the other for the �uid.
In particular, the polynomial degree for the solid is ps = qs = rs = 2 and for the �uid
pf = qf = 2 and rf = 1. No re�nement is done on the coarsest mesh (cf. Figure 6.3),
except for two knots in the radial direction for both the solid and the �uid (namely ζ = 1

3

and ζ = 2
3
). That is, the number of basis functions in the solid are ns = 9, ms = 5

and ls = 5 (originally 3) and nf = 9, mf = 5 and ls = 4 (originally 3) for the �uid (cf,
Appendix D.5). Due to periodicity, some of these basis functions should be considered
as the same. For a given set of basis functions in the radial direction we get nsms = 45
basis functions in the solid (and correspondingly in the �uid). Due to gluing, this number
reduces to 26. The number represent the width of the �squares� showing up all over the
matrix. Obviously we get 26ls = 130 basis functions for each of the spatial components
of the solid, such that there is in total 390 degrees of freedom in the solid. Moreover, we
see 26lf = 104 basis functions for the �nite element (FE) part of the �uid. As we use
N = 3 basis functions in the radial direction for the in�nite elements, we can observe an
additional 26(N − 1) = 52 basis functions corresponding to the in�nite elements (IE).
The total number of degrees of freedom for this mesh is thus 390 + 104 + 52 = 546. Also
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A =

x component y component z component

Solid

Coupling

Fluid (FE)

Fluid (IE)

∫

Ω+

∇q · ∇p− k2qpdΩ + ρfω
2

(∫

Γ

quini dΓ +

∫

Γ

vinip dΓ

)

+ ρfω
2

∫

Ω

vi,jσij − ρsω
2uivi dΩ

= −ρfω
2

∫

Γ

pincvini dΓ +

∫

Γ

∂pinc

∂n
q dΓ

Figure 8.2: Elastic scattering on spherical shell: Location of non zero entries in
the sparse global matrix A. The polynomial degree is 2 in every parameter directions for
both the solid and the �uid except in the radial direction for the �uid (where it is 1). The
number of radial basis functions for the in�nite elements is N = 3. The only h-re�nement
has been in the radial direction; there has been inserted 2 knots in the radial direction
for both the solid and the �uid.
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A =

Figure 8.3: Elastic scattering on spherical shell: The same global matrix as in
Figure 8.2, but with permutations in the solid part of the matrix to reduce bandwidth.

note that we get d ·1+1 ·d = 6 such �squares� in the coupling area (recall that d = 3 is the
number of physical dimensions we use). Without this coupling part, the system becomes
decoupled, and one end up solving two separate problems in one go (this is actually a
good test for developing the procedure of �uid-structure interaction problems).

In Figure 8.3 we show another con�guration of the indexing of the NURBS basis function
in the solid. Here the �rst three indices corresponds to the x, y and z component of
the displacement �eld for the �rst NURBS basis function. This results in a smaller
bandwidth. However, MATLAB uses its own permutation algorithm when a direct solver
is applied, so the ordering is not so important.

8.6 Computation of backscattered pressure

Again we loop through the surface elements at Γ and use Equation (6.16) to compute
the backscattered pressure. The main di�erence from the computation of the coupling
conditions, is that we here need to compute the derivative. Thus, the full 3D NURBS is
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needed in order to compute the Jacobian matrix.

If there are many angles to be analyzed, the two loops over these angles should be
parallelized. However, if one only consider few angles (for instance the bistatic case when
only one pair of αs and βs is considered), one should take the parallelization over the
loop which runs through the surface elements.





Chapter 9

Numerical examples

We shall here present results obtained for the scattering on BeTSSi model 3 using hard
walled boundary conditions (HWBC), and then continue with the �uid structure inter-
action (FSI) problem on the spherical shell. Unless stated otherwise, the results uses
second order NURBS in all parameter directions, we set N = 3 (number of radial shape
functions in the in�nite elements) and we shall use the layers rm = mra for m = 1, . . . , N
(this is what Burnett suggested in [10]). No thorough analysis was made on the position
of these layers, but when considering BeTSSi model 3, changes in rm did not notably
change the results (this was also commented by Burnett). Placing the layers very close to
the object, or very far from the object did however reduce the accuracy of the results. So
we shall use the convention after Burnett. Moreover, the position of the arti�cial bound-
ary Γa is also lacking a thorough analysis. Some investigation revealed that a somewhat
increase in the accuracy was obtained if the density of the elements remained constant.
This however, drastically increased the computational time, and was thus not considered
to be advantageous.

9.1 Scattering on BeTSSi model 3

We shall present both bistatic and monostatic results of scattering on BeTSSi model
3. The main theme in the results will be the pollution e�ect as the results become less
accurate for high frequencies using the same mesh. It will illustrate the importance of
mesh re�nement for the increase in the frequency.

In all results, we have set the elevation angle of the incident wave and the far �eld point
to be zero, that is βs = 0 and βf = 0.

Most of the results will be compared with results obtained from Ilkka Karasalo and Martin
Østberg at FOI1. They have proposed several methods for solving the scattering problems
including the boundary element method (FOI4). For BeTSSi model 3, they exploit the
axisymmetry to reduce the computational time, such that the obtained results may not
be compared to the obtained results in this thesis when conserning computational time.
However, we shall use the results from FOI as reference solutions.

1FOI, Totalförsvarets forskningsinstitut, is the Swedish Defence Research Agency.
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9.1.1 The near �eld

For illustrative purposes we start by plotting (the real part of) the near �eld for f = 500Hz
and f = 1kHz, and for the aspect angles αs = 240◦ and αs = 300◦. In Figure 9.1 and
Figure 9.2 we consider f = 500Hz with the aspect angles αs = 240◦ and αs = 300◦,
respectively. The incident wave at aspect angle αs = 240◦ arrives normal to the surface
of BeTSSi model 3 only at one point, namely a point on the larger hemisphere. From
here the scattered waves form a locally spherical wave pattern, as expected. What is
peculiar about these plots is the �shadow� area behind BeTSSi model 3 where one should
expect lower pressure. Instead we see waves forming with higher amplitude compared to
the other scattered wave. This is because these waves do not represent the total pressure
�eld2, rather they represents the canceling part of the incident wave such that the total
�eld indeed is reduced in this area. We call this area the shadow area, as the model
casts a shadow behind itself. All of these e�ects are also observed when αs = 300◦ in
Figure 9.2. The corresponding two plots for f = 1kHz in Figure 9.3 and Figure 9.4
shows the same behavior, with a doubling in the number of waves. However, for higher
frequencies, special lines of di�raction patterns emerges in the shadow area.

9.1.2 Bistatic scattering

Bistatic scattering consist of analyzing a single incident wave on the obstacle, and measure
the scattered pressure in a series of far-�eld points. We shall consider bistatic scattering
for incident waves with aspect angles αs = 240◦ and αs = 300◦, and for the frequencies
100Hz, 500Hz and 1kHz. For all these 6 cases we compare with the results obtained by
FOI.

In Figure 9.5 and Figure 9.6 we consider the two cases for f = 100Hz. At such a low
frequency, we observe very good results. Even mesh 1 yields a tolerable result. However,
increasing the frequency to 500Hz we see in Figure 9.5 and Figure 9.6 that a corresponding
increase in the number of elements is needed. In the �nal increase of the frequency to
1kHz the accuracy of the results fall correspondingly. This seems to be dominant in
the area αf ∈ [120◦, 300◦]. The angle αs lies in this interval, and as we shall see, the
monostatic analysis on the same frequency reveals the same loss of accuracy for the full
set of angles αs. In other words, using the chosen set of parameters (mesh, polynomial
order, etc.), considering the same aspect angle for the incident wave and the far-�eld
point yields slower convergence. Note that mesh 5 is the most re�ned mesh available for
a direct solver with the equipment at hand.

Finally, for illustration purposes, we plot the bistatic pressure also for a set of angles
βs which then results in a 3D plot. In Figure 9.11 we consider αs = 240◦ and add the
geometry of BeTSSi model 3 as a location reference (this geometry is scaled up in order
to make it visible). In Figure 9.12 we plot the full set of elevation angles βf . The similar
case for αs = 300◦ are depicted in Figure 9.13 and Figure 9.14.

2Which we here de�ne to be the superposition of the incident �eld and the scattered pressure.
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Shadow area

pinc

Figure 9.1: Scattering on BeTSSi model 3: The near �eld of BeTSSi model 3 with
f = 500Hz on mesh 5. The aspect angle for the incident wave is αs = 240◦. Mesh 5 is
illustrated in Figure 6.9.

pinc

Figure 9.2: Scattering on BeTSSi model 3: The near �eld of BeTSSi model 3 with
f = 500Hz on mesh 5. The aspect angle for the incident wave is αs = 300◦. Mesh 5 is
illustrated in Figure 6.9.
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pinc

Figure 9.3: Scattering on BeTSSi model 3: The near �eld of BeTSSi model 3 with
f = 1kHz on mesh 5. The aspect angle for the incident wave is αs = 240◦. Mesh 5 is
illustrated in Figure 6.9.

pinc

Figure 9.4: Scattering on BeTSSi model 3: The near �eld of BeTSSi model 3 with
f = 1kHz on mesh 5. The aspect angle for the incident wave is αs = 300◦. Mesh 5 is
illustrated in Figure 6.9.
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Figure 9.5: Bistatic scattering on BeTSSi model 3: The bistatic TS of BeTSSi
model 3 with f = 100Hz. The aspect angle for the incident wave is αs = 240◦. Mesh 1
and mesh 2, 3, 4 and 5 are illustrated in Figure 6.7c and Figure 6.9, respectively.
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Figure 9.6: Bistatic scattering on BeTSSi model 3: The bistatic TS of BeTSSi
model 3 with f = 100Hz. The aspect angle for the incident wave is αs = 300◦. Mesh 1
and mesh 2, 3, 4 and 5 are illustrated in Figure 6.7c and Figure 6.9, respectively.
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Figure 9.7: Bistatic scattering on BeTSSi model 3: The bistatic TS of BeTSSi
model 3 with f = 500Hz. The aspect angle for the incident wave is αs = 240◦. Mesh 1
and mesh 2, 3, 4 and 5 are illustrated in Figure 6.7c and Figure 6.9, respectively.
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Figure 9.8: Bistatic scattering on BeTSSi model 3: The bistatic TS of BeTSSi
model 3 with f = 500Hz. The aspect angle for the incident wave is αs = 300◦. Mesh 1
and mesh 2, 3, 4 and 5 are illustrated in Figure 6.7c and Figure 6.9, respectively.
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Figure 9.9: Bistatic scattering on BeTSSi model 3: The bistatic TS of BeTSSi
model 3 with f = 1kHz. The aspect angle for the incident wave is αs = 240◦. Mesh 2, 3,
4 and 5 are illustrated in Figure 6.9.
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Figure 9.10: Bistatic scattering on BeTSSi model 3: The bistatic TS of BeTSSi
model 3 with f = 1kHz. The aspect angle for the incident wave is αs = 300◦. Mesh 2, 3,
4 and 5 are illustrated in Figure 6.9.
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Figure 9.11: Bistatic scattering on BeTSSi model 3: The bistatic TS of BeTSSi
model 3 with f = 100Hz on mesh 1. The aspect angle for the incident wave is αs = 240◦.
The plot spans elevation angles βf from −20◦ to 20◦ and the whole range of aspect angles
in steps of 0.25◦ (results in 232, 001 evaluation points). Mesh 1 is illustrated in Figure 6.7c.

Figure 9.12: Bistatic scattering on BeTSSi model 3: The bistatic TS of BeTSSi
model 3 with f = 100Hz on mesh 1. The aspect angle for the incident wave is αs = 240◦.
The plot spans the whole range of elevation angles and of aspect angles in steps of 0.25◦

(results in 1, 038, 961 evaluation points). Mesh 1 is illustrated in Figure 6.7c.
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Figure 9.13: Bistatic scattering on BeTSSi model 3: The bistatic TS of BeTSSi
model 3 with f = 100Hz on mesh 1. The aspect angle for the incident wave is αs = 300◦.
The plot spans elevation angles βf from −20◦ to 20◦ and the whole range of aspect angles
in steps of 0.25◦ (results in 232, 001 evaluation points). Mesh 1 is illustrated in Figure 6.7c.

Figure 9.14: Bistatic scattering on BeTSSi model 3: The bistatic TS of BeTSSi
model 3 with f = 100Hz on mesh 1. The aspect angle for the incident wave is αs = 300◦.
The plot spans the whole range of elevation angles and of aspect angles in steps of 0.25◦

(results in 1, 038, 961 evaluation points). Mesh 1 is illustrated in Figure 6.7c.
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Figure 9.15: Monostatic scattering on BeTSSi model 3: The monostatic TS of
BeTSSi model 3 with f = 100Hz. Mesh 1 and mesh 2, 3, 4 and 5 are illustrated in
Figure 6.7c and Figure 6.9, respectively.

9.1.3 Monostatic scattering

In monostatic scattering we consider the case αf = αs and βf = βs. Due to the geometry
of BeTSSi model 3, one expects peaks at incident waves which hits the scatterer normal
to the broadsides (as noted in [12]). A simple trigonometric calculation then reveals these
angles to be

α(1)
s,max =

π

2
− tan−1

(
Ro1 −Ro2

L−Ro1 −Ro2

)
= 1.522054475 = 87.20729763◦,

α(2)
s,max =

3π

2
+ tan−1

(
Ro1 −Ro2

L−Ro1 −Ro2

)
= 4.761130832 = 272.7927024◦,

where Ro1 = 5 and Ro2 = 3 is the outer radius of the larger and smaller hemisphere, re-
spectively, and L = 49 is the total length of BeTSSi model 3 (including the hemispheres).
Both of these predictions are veri�ed in the results.

In Figure 9.15 we consider monostatic scattering with f = 100Hz. For such a low frequen-
cies we obtain very good results, even for mesh 1. Increasing the frequency to f = 500Hz,
we observe in Figure 9.16 that we need a corresponding increase in the number of elements
to reach the same accuracy. Unfortunately we have no data sets from FOI to compare
with for these two cases. Finally, increasing the frequency to 1kHz we can compare the
results to FOI (Figure 9.17), and we do not reach convergence on mesh 5. It is assumed
that the resolution of the mesh is too low to obtain good results at this frequency. That
is, our results su�ers from the pollution e�ect.
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Figure 9.16: Monostatic scattering on BeTSSi model 3: The monostatic TS of
BeTSSi model 3 with f = 500Hz. Mesh 1 and mesh 2, 3, 4 and 5 are illustrated in
Figure 6.7c and Figure 6.9, respectively.
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Figure 9.17: Monostatic scattering on BeTSSi model 3: The monostatic TS of
BeTSSi model 3 with f = 1kHz. Mesh 3, 4 and 5 are illustrated in Figure 6.9.
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9.2 FSI of the spherical shell

We now turn to the �uid-structure interaction (FSI) problem on a spherical shell where
we want to compare FEA and IGA. It turns out that the results on the spherical shell
using FEA from [3] has been lost3, so it is not so easy to visualize the comparison between
the two methods. Ihlenburg exploits the symmetry in the problem by eliminating one
dimension (namely the azimuth dimension) with the use of a Fourier expansion. This has
not been done in this thesis as the aim is to develop a generic program which could handle
non-symmetric geometries. Thus, any comparison with the data sets from Ihlenburg
would not be perfectly valid.

In order to compare the �nite element method (FEM) and IGA on the scattering problem
on the spherical shell, we shall transform the NURBS mesh to a classical FEM mesh. We
start with an arbitrary IGA mesh, for instance mesh 3 and 4 in Figure 9.18a and Fig-
ure 9.18c. These two meshes will be transformed to the meshes depicted in Figure 9.18b
and Figure 9.18d, respectively. This is done by repeating every knot in the IGA mesh
such that every internal knot has multiplicity p in the ξ-direction and correspondingly
in the other two directions. To get the polygon elements, we simply project every con-
trol point which does not lie on the surface, to the surface of its corresponding polygon
element. Finally, all weights are set to be 1. Due to the repeating of knots in the FEM
mesh, we increase the number of degrees of freedom (dofs). We want to do analysis of
FEM and IGA where both methods use the same number of dofs. We thus construct
matching IGA and FEM meshes w.r.t. dofs (see Figure 9.19). We shall call these IGA
meshes mesh 3' and mesh 4'.

It should be noted that the FEM analysis will be completed with the Bernstein basis
instead of the classical Lagrange basis. However, both of these set of functions spans the
same spaces, such that the results should be identical.

Unless stated otherwise, we place the arti�cial boundary at ra = 6 and use N = 3
radial shape functions in the in�nite elements. Moreover, we shall mainly use the BGU
formulation for the in�nite elements.

In Figure 9.20 and Figure 9.21 we compare FEA and IGA on mesh 3/4 and mesh 3'/4',
respectively. In addition we add the results from the IGA mesh 3 with repeated knots,
to investigate the importance of the exact geometry. We shall refer to this as the IGA
mesh with C0-continuity.

At the coarse FEM mesh 3 and IGA mesh 3' we �rst observe a large deviation from
the exact solution at higher wave numbers for FEA, but also for the IGA C0-continuity
mesh. The corresponding IGA C1-continuity mesh has much better results in this area.
We continue to observe a shift in the lower eigenmodes for FEA. This shift is also present
for the IGA mesh with C0-continuity when comparing to IGA mesh 3 (all though not
to the same extent). We could therefore argue that reduction in the continuity and the
non-exactness of the geometry, shifts the eigenmodes to the right. One might wonder
whether or not this is due to the same e�ect observed from the vibration of the one
dimensional elastic rod in Section 5.1. It should be noted the results for the IGA mesh
with C1-continuity are also shifted to the right compared with the exact solution, but
the shift is reduced. This could be due to the fact that we have C0-continuity at η = 0.5

3Private communication with Frank Ihlenburg, May 2015
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(a) Mesh 3. (b) FEM equivalent of mesh 3.

(c) Mesh 4. (d) FEM equivalent of mesh 4.

Figure 9.18: FSI of the spherical shell: Mesh 3 and 4 for spherical shell with its
corresponding equivalent FEM mesh.
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(a) FEM mesh 3. (b) IGA mesh 3'.

(c) FEM mesh 4. (d) IGA mesh 4'.

Figure 9.19: FSI of the spherical shell: FEM mesh 3 and 4 with corresponding
IGA mesh with matching number of dofs. For each knot that has been inserted in the ξ
direction in the FEM mesh (and repeated p), it must be inserted p knots in the original
mesh to match the number of dofs (correspondingly in the other directions).
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Figure 9.20: FSI of the spherical shell: A comparison of FEM and IGA on mesh 3
and mesh 3', respectively. IGA C0 on mesh 3, FEM mesh 3 and IGA mesh 3' are depicted
in Figure 9.18a, Figure 9.18b and Figure 9.19b, respectively. The exact solution is given
in Equation (3.2).

also for these meshes, but this is because the NURBS geometry is constructed in such a
way4.

In Figure 9.21 we observe better results from all three cases, but still we can see a shift
in the eigenmodes when the continuity is reduced. In Figure 9.22 we zoom in on the �rst
4 eigenmodes where we can observe the shift to be greatest for FEA. The shift is also
here observed for the C0-continuity mesh, and the magnitude of the shift grows for higher
eigenmodes. The shift is therefore not connected to the exactness of the geometry alone,
it is also connected to the continuity of the basis functions.

We shall end the analysis on the spherical shell by considering convergence. We shall
do this by constructing a pivot mesh which all results will be compared to. From the
coarsest mesh for the spherical shell (Figure 5.4a), we insert (uniformly) two knots in the
ζ-direction for the �uid. No knots have been inserted in the ζ-direction for the solid. Due
to axisymmetry, only 12 knots are inserted in the ξ-direction5 (for both solid and �uid).
Finally, 60 knots are inserted in η-direction for both the �uid and the solid.

In Figure 9.23 we order elevate6 the NURBS order in ζ-direction (only) in the �uid.
Not only is the accuracy greatly increased from order 1 to 2, but also from 2 to 3,
indicating the importance of good resolution in the �uid. By comparison in Figure 9.23,
an corresponding order elevation in the solid hardly improves the result, at least not from

4We also have C0-continuity for ξ = 0.25, 0.5, 0.75, but the solution is constant in this direction, so it
should not matter.

5The reason to insert any knots at all in this case, is to obtain more Gauss points for the integration
of the constant functions in this direction. It could also have been solved by using more than p+1 Gauss
points in the ξ-direction.

6Note that we order elevate before inserting any knots.
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Figure 9.21: FSI of the spherical shell: A comparison of FEM and IGA on mesh 4
and mesh 4', respectively. IGA mesh IGA C0 on 4, FEM mesh 4 and mesh 4' are depicted
in Figure 9.18c, Figure 9.18d and Figure 9.19d, respectively. The exact solution is given
in Equation (3.2).
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Figure 9.22: FSI of the spherical shell: Close-up on the comparison of FEM and
IGA on mesh 4 and mesh 4', respectively. IGA mesh C0 on 4, FEM mesh 4 and IGA
mesh 4' are depicted in Figure 9.18c, Figure 9.18d and Figure 9.19d, respectively. The
exact solution is given in Equation (3.2).
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Figure 9.23: FSI of the spherical shell: Convergence plot considering order elevation
in �uid (radial direction). The error is calculated by Equation (3.3) based on the exact
solution in Equation (3.2).

the second order NURBS used in the pivot mesh.

Continuing the analysis on the in�nite elements, we observe the importance of using
more than one basis function in the in�nite elements in Figure 9.25. No improvement
was made by increasing this number to 6 using the other parameters from the pivot mesh.
In Figure 9.26 we compare the di�erent in�nite elements formulations. We observe the
unconjugated versions to be superior to the conjugated versions.

9.3 General remarks

In [10] Burnett suggest that the arti�cial boundary Γa should be placed (on average) λ
2

away from the object. That is, he suggest that this boundary to be placed closer at higher
frequencies. This rule would be hard to impose on BeTSSi model 3 simply because BeTSSi
model 3 di�ers to much from a prolate spheroid. This is a drawback, as it could be easy to
draw a convex surface around BeTSSi model 3 which would nearly be a constant distance
from the object surface Γ. The promising method of PML (Perfectly matched layers)
after Bérenger (in [29] and [30]) manages to do just that, create a perfectly matched layer
of �uid between Γa and Γ. In principle, this should be possible for the in�nite element
method (as long as Γa is made convex). However, this requires the use of a more general
coordinate system (rather then the prolate spheroidal coordinate system). This topic has
been somewhat investigated in Appendix B.1.1.

As we did not achieve completely satisfactory accuracy in the numerical simulation of the
BeTSSi model 3 using HWBC, we did not make anyattempt to do the full FSI problem
of this model. This problem consist of BeTSSi model 3 being �lled with water, such that
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Figure 9.24: FSI of the spherical shell: Convergence plot considering order eleva-
tion in solid. The error is calculated by Equation (3.3) based on the exact solution in
Equation (3.2).
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Figure 9.25: FSI of the spherical shell: Enrichment of basis functions in radial
direction in the in�nite elements. The error is calculated by Equation (3.3) based on the
exact solution in Equation (3.2).
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Figure 9.26: FSI of the spherical shell: Di�erence in the in�nite element formulation.
The error is calculated by Equation (3.3) based on the exact solution in Equation (3.2).

we have a interaction between �uid and the solid both inside and outside the shell. We
must thus not only add structural elements, but also �uid elements inside the shell. The
number of elements for mesh 5 (M3) then easily rises above one million, and will thus be
outside the capacity of our direct solver.

The simulation using mesh 5 with HWBC has been using a server with 256GB available
memory. With 700, 000 elements (mesh 5), about 50% of this memory is used. The
memory consumption is very expensive as the system of linear equation is solved by
a direct solver. In MATLAB, a LU-factorization is made, and this is very memory
consuming. An iterative iterative solver should be implemented to solve the issue. Not
only will the memory consumption problem be eliminated, but we should also be able
to speed up the solution process, as we do not require machine epsilon precision of the
solution (after all, a 1% error in the result is considered to be very good). For classical
elasticity problems on bounded domain, the global matrix is symmetric and positive
de�nite (SPD). However, when introducing the in�nite elements, the mass matrix is no
longer positive de�nite, and neither is the resulting global matrix. This is the reason
we may not use Cholesky factorization as a direct method. Moreover, this is the reason
we we may not use the conjugate gradient (CG) method as this method also requires
the matrix to be SPD. We must therefore go to other more general iteration techniques
which typically have slower convergence rates. MATLAB has a built in routine for the
GMRES method, which is designed for large sparse systems. Although CG cannot be
used, there exist CG similar methods which does not require the matrix to be positive
de�nite. Some of these methods are compared in [39], BiCGStab is also a natural choice
to be investigated. The global matrix often turns out to be badly conditioned for iterative
techniques. One should apply some preconditioning to this matrix before applying for
instance GMRES. This typically results in a comprehensive analysis, which we shall
suggest as future work.





Chapter 10

Conclusion

We have observed that IGA is well suited for �nding eigenvalues of elastodynamical prob-
lems. Results from [2] were replicated, and corresponding results on the spherical shell
turn out to result in the same type of convergence on a coarse mesh. Such convergence
would be hard to obtain using the FEA on such a coarse mesh, as the exactness of the
geometry then plays an important role.

We have seen that IGA and the four presented in�nite element formulations work very
well on acoustic scattering for low wave numbers. Among the in�nite element formu-
lations, the unconjugated version gave the best results, and it seems to be reasonable
to choose N = 3 basis functions for the radial shape functions in the in�nite elements.
No signi�cance was observed by changing the location of the multipole layers in the in�-
nite elements. Moreover, the movement of the arti�cial boundary farther away from the
scatterer increased the accuracy given that the density of the elements was held constant.

As for the FEA, IGA also su�ers from the pollution e�ect at high frequencies. This will
always be a problem, and for the higher frequency spectrum, other methods should be
used.

When comparing FEA and IGA on the FSI problem on a spherical shell, we observed an
advantage for the exact geometry IGA introduce, but also an advantage in its ability for
controlling the continuity. The shift of the eigenmodes was greatly reduced using IGA
with higher continuity.

When considering the �uid structure interaction problem, we observed that the resolution
in the �uid was of greater importance than the resolution in the solid when re�nement
in the radial direction was considered.

In [10] Burnett concludes by stating that �Structural acoustic modeling with this in�nite
element is several orders of magnitude faster than the BEM for the same accuracy. Ex-
perience with both methods has revealed that the BEM limits practical 3-D problems to
low frequencies and simple structures, whereas this in�nite element approach can handle
the full range of frequencies and structural complexities that are encountered in purely
structural analysis, at little additional cost.� The majority of implementations in the
�eld uses BEM for handling unbounded domains when FEM is used. It should therefore
be an improvement to use the in�nite element method instead. To add the contribution
from IGA are then considered to be an extra boost in the accuracy for this �eld.
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10.1 Future work

The largest obstacle encountered in this thesis is obviously the memory consumption
using a direct solver. To continue to more complex geometries, and perhaps considering
higher frequencies, it is essential to get rid of this obstacle. One should therefore turn to
iterative techniques where preconditioning should be analyzed.

There are many parameters which deserves a thorough analysis. As mentioned, this
includes the location of the layers of the multipole expansion in the in�nite element, the
number of radial shape functions used in the in�nite elements, and the location of the
arti�cial boundary.

All of the implementations used in this thesis have been implemented in MATLAB. For
optimization purposes, several parts of the code could have been implemented in C++.
This especially concerns the implementation of the B-splines.

One of the obvious next steps is to consider local re�nement. This improvement will not
solve the pollution e�ect. It is more aimed at re�ning in areas containing singularities,
which is not a problem for scattering problems. However, when constructing the mesh,
local re�nement can be advantageous for obtaining the most uniform mesh. Moreover,
in [11] Gerdes showed that an a-posteriori error estimation for adaptive mesh re�nement
is necessary for a successful large scale implementation of the in�nite element method.
As mentioned, several strategies for local mesh re�nement has been presented for IGA,
which will form a basis for the additional implementations needed to couple IGA with
the in�nite elements.

The in�nite element method is only one of many other methods to handle absorbing
boundary conditions. The methods which could reduce the number of elements in the
outer �uid domain would be advantageous. Especially the PML method could be inter-
esting to investigate in this regard. That being said, there is still a lot of analysis to be
done for the in�nite element. For instance, whether it is possible to use a more general
coordinate system which could move the arti�cial boundary closer to the scatterer.

The mentioned evaluation of the radial integrals in the in�nite element for the uncon-
jugated version su�ers from precision loss for high number n. It should be investigated
if it is possible to resolve this problem without having to invoke MuPAD in MATLAB.
One needs to simulate on very coarse mesh if the evaluation time of this procedure using
MuPAD is of any signi�cance, but more robust algorithms is always appreciated. In [10,
p. 2812] Burnett only mentioned this method as an alternative to the use of Fourier
transform for evaluation these integrals. It would be interesting to investigate if this
method su�ers from the same obstacle.

For higher frequencies other techniques must be introduced. One such method consid-
ering asymptotic analysis of path approximations is presented in [40]. Moreover, the
most used techniques in the BeTSSi community for the involved models is the Kirchho�
approximation. For details consider [41], [42] and [43].



Appendix A

Gauss theorem and its implications

Gauss theorem is given by
∮

∂V
Ψ · n dS =

∫

V
∇ ·Ψ dV . (A.1)

A.1 Gauss theorem for scalar functions

Let {ei}i=1,2,3 be the standard basis for the euclidean space and let Ψ = ψei for some
i ∈ {1, 2, 3}. Then

∮

∂V
ψei · n dS =

∫

V
∇ · ψei dV

m∮

∂V
ψni dS =

∫

V
∂xiψ dV .

Since this holds for all i ∈ {1, 2, 3}, we have three equations which we may combine as
follows

{∮

∂V
ψn1 dS,

∮

∂V
ψn2 dS,

∮

∂V
ψn3 dS

}
=

{∫

V
∂x1ψ dV ,

∫

V
∂x2ψ dV ,

∫

V
∂x3ψ dV

}

m∮

∂V
ψ {n1, n2, n3} dS =

∫

V
{∂x1ψ, ∂x2ψ, ∂x3ψ} dV

m∮

∂V
ψn dS =

∫

V
∇ψ dV . (A.2)

A.2 Green's �rst identity

Green's �rst identity is simply Gauss theorem applied to Ψ = ψΦ where Φ = ∇φ.
Insertion of the identity

∇ · (ψΦ) = ∇ψ ·Φ + ψ∇ ·Φ
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into Gauss theorem yields

∫

Ω

ψ∇ ·Φ dV = −
∫

Ω

∇ψ ·Φ dV +

∫

∂Ω

ψΦ · n dS. (A.3)

As ∇ ·Φ = ∇ · ∇φ = ∆φ, we arrive at Green's �rst identity

∫

Ω

ψ∆φ dV = −
∫

Ω

∇ψ · ∇φ dV +

∫

∂Ω

ψ∇φ · n dS. (A.4)



Appendix B

Coordinate systems

B.1 General 3D coordinate system

We shall now consider the general 3D coordinate system, which one may reduce to the the
cylindrical coordinate system and the spherical coordinate system. Let the coordinate
system be de�ned by

r =



x(ξ, η, ζ)
y(ξ, η, ζ)
z(ξ, η, ζ)


 : R3 → R3,



ξ
η
ζ


 7→ r(ξ, η, ζ).

We shall frequently use the scaling lengths de�ned by

hξ =

∥∥∥∥
∂r

∂ξ

∥∥∥∥ =

√(
∂x

∂ξ

)2

+

(
∂y

∂ξ

)2

+

(
∂z

∂ξ

)2

hη =

∥∥∥∥
∂r

∂η

∥∥∥∥ =

√(
∂x

∂η

)2

+

(
∂y

∂η

)2

+

(
∂z

∂η

)2

(B.1)

hζ =

∥∥∥∥
∂r

∂ζ

∥∥∥∥ =

√(
∂x

∂ζ

)2

+

(
∂y

∂ζ

)2

+

(
∂z

∂ζ

)2

.

The standard basis vectors in this general coordinate system are then

eξ =
1

hξ

∂r

∂ξ
, eη =

1

hη

∂r

∂η
, eζ =

1

hζ

∂r

∂ζ
.

We now want to develop an expression for the nabla operator in terms of these unit
vectors. In our coordinate system, the nabla operator is de�ned by

∇f = eξgξ + eηgη + eζgζ.

where gξ, gη and gζ are functionals of f which are to be determined.

Moreover, the nabla operator satisfy

df = ∇f · dr,

123
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where (by the chain rule)

dr =
∂r

∂ξ
dξ +

∂r

∂η
dη +

∂r

∂ζ
dζ

= hξeξdξ + hηeηdη + hζeζdζ.

Using the chain rule once again, we also have

df =
∂f

∂ξ
dξ +

∂f

∂η
dη +

∂f

∂ζ
dζ.

Combining the equations for df we get the relation

∂f

∂ξ
dξ +

∂f

∂η
dη +

∂f

∂ζ
dζ = (eξgξ + eηgη + eζgζ) · (hξeξdξ + hηeηdη + hζeζdζ) (B.2)

= hξ(gξ + eξ · eηgη + eξ · eζgζ)dξ (B.3)

+ hη(eξ · eηgξ + gη + eη · eζgζ)dη (B.4)

+ hζ(eξ · eζgξ + eη · eζgη + gζ)dζ (B.5)

where we have used the fact that eξ ·eξ = 1, eη ·eη = 1 and eζ ·eζ = 1. As the coe�cients
in front of dξ, dη and dζ must be the same on both side, we get a system of equations
given by

gξ + eξ · eηgη + eξ · eζgζ =
1

hξ

∂f

∂ξ

eξ · eηgξ + gη + eη · eζgζ =
1

hη

∂f

∂η

eξ · eζgξ + eη · eζgη + gζ =
1

hζ

∂f

∂ζ
.

(B.6)

Introducing the notation

Eξη = eξ · eη, Eξζ = eξ · eζ, Eηζ = eη · eζ
the system in Equation (B.6) is given by can be written as




1 Eξη Eξζ

Eξη 1 Eηζ

Eξζ Eηζ 1





gξ
gη
gζ


 =




1
hξ

∂f
∂ξ

1
hη

∂f
∂η

1
hζ

∂f
∂ζ


 .

As the determinant of this system of equation is given by

∆ = 1− E2
ξη − E2

ξζ − E2
ηζ + 2EξηEξζEηζ

we may write the solution as



gξ
gη
gζ


 =



a11 a12 a13

a21 a22 a23

a31 a32 a33







1
hξ

∂f
∂ξ

1
hη

∂f
∂η

1
hζ

∂f
∂ζ




where the coe�cients aij are given by the symmetric matrix

[aij] =
1

∆




1− E2
ηζ EξζEηζ − Eξη EξηEηζ − Eξζ

EξζEηζ − Eξη 1− E2
ξζ EξηEξζ − Eηζ

EξηEηζ − Eξζ EξηEξζ − Eηζ 1− E2
ξη
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Let's verify this calculation by �nding the nabla operator in the spherical coordinate
system. Letting ξ correspond to the azimuthal angle φ, η the polar angle θ and ζ the
radial direction r, we have the relations

x = ζ sin η cos ξ

y = ζ sin η sin ξ

z = ζ cos η.

As the spherical coordinate system is an orthogonal coordinate system, we get Eξη = 0,
Eξζ = 0 and Eηζ = 0. Thus,

gξ =
1

hξ

∂f

∂ξ
, gη =

1

hη

∂f

∂η
, gζ =

1

hζ

∂f

∂ζ
.

By computation, we �nd

hξ = ζ sin η, hη = ζ, hζ = 1.

Thus,

∇f =
1

ζ sin η

∂f

∂ξ
eξ +

1

ζ

∂f

∂η
eη +

∂f

∂ζ
eζ

=
∂f

∂r
er +

1

r

∂f

∂θ
eθ +

1

r sin θ

∂f

∂φ
eφ,

which is the familiar expression for the nabla operator in spherical coordinates.

B.1.1 Extended NURBS coordinate system

In this section we shall explore the possibility to have a more general coordinate system
for the in�nite elements. All though the prolate spheroidal coordinate system helps reduce
the number of elements needed to circumference a long obstacle compared to the spherical
coordinate system, it is still not ideal with respect to this problem. It is possible to de�ne
a coordinate system such that we get

inf
x∈Γ
‖x− y0‖ = inf

y∈Γa

‖x0 − y‖ ∀x0 ∈ Γ, and ∀y0 ∈ Γa.

That is, we can have the surface Γa at a constant distance from the surface Γ (if Γ
is convex1). However, is it possible to de�ne a in�nite element formulation on such a
coordinate system? The most intuitive coordinate system would satisfy the property
that for all points on Γa the normal vector is parallel to the �radial� unit vector for this
coordinate system. This would however make the integration in the weak formulation
hard as the nabla operator would not be separable, and we may no longer integrate
analytically in the �radial� direction. In the following we shall consider another option
which results in a separable nabla operator.

Let's build upon the theory developed in Appendix B.1 where we shall assume that
the NURBS parametrization at hand has a �radial� parameter ζ, such that ξ and η

1If this is not the case, an intermediate convex surface must be inserted between Γ and Γa in the
NURBS patch.
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corresponds to �angular� parameters. This will typically be the case when considering
shell objects, where ζ will run through the thickness of the elastic material. We know
that at any given value ζ̄ the NURBS solid in 3D reduces to a NURBS surface in 3D.
This is in particular true for ζ̄ = 1, which will be our arti�cial boundary Γa. We shall
assume, without loss of generality, that the NURBS surface Γa fully encloses the origin.
Finally, we assume the surface Γa to be a convex surface. We now want to extend the
NURBS parametrization also for ζ > 1. In particular we de�ne (for ζ > 1)

r =



x(ξ, η, ζ)
y(ξ, η, ζ)
z(ξ, η, ζ)


 : R3 → R3,



ξ
η
ζ


 7→ s(ζ)r̄(ξ, η).

where r̄ is the NURBS 3D surface at ζ = 1 and the scaling function s is strictly increasing
and satis�es s(1) = 1. Thus, for any ζ > 1 we simply get a scaled version of Γa from the
origin with the scaling factor s(ζ).

Continuing on the notation from Appendix B.1, our new coordinate system has the
following nice property

hξ = s(ζ)

∥∥∥∥
∂ r̄

∂ξ

∥∥∥∥ , hη = s(ζ)

∥∥∥∥
∂ r̄

∂η

∥∥∥∥ , hζ = s′(ζ) ‖r̄‖ .

From this we observe that the unit vectors eξ, eη and eζ are all independent of ζ. More-
over, Eξη, Eξζ and Eηζ (and thus also the determinant ∆) will also be independent of ζ.
The resulting nabla operator will then be separable, which we will take advantage of. In
this context we de�ne

h̄ξ =

∥∥∥∥
∂ r̄

∂ξ

∥∥∥∥ , h̄η =

∥∥∥∥
∂ r̄

∂η

∥∥∥∥ , h̄ζ = ‖r̄‖

such that hξ = s(ζ)h̄ξ, hη = s(ζ)h̄η, hζ = s′(ζ)h̄ζ. We may now easy see that the nabla
operator is separable as it is now given by (for ζ > 1)

∇ =

(
a11

s(ζ)h̄ξ

∂

∂ξ
+

a12

s(ζ)h̄η

∂

∂η
+

a13

s′(ζ)h̄ζ

∂

∂ζ

)
eξ

+

(
a21

s(ζ)h̄ξ

∂

∂ξ
+

a22

s(ζ)h̄η

∂

∂η
+

a23

s′(ζ)h̄ζ

∂

∂ζ

)
eη

+

(
a31

s(ζ)h̄ξ

∂

∂ξ
+

a32

s(ζ)h̄η

∂

∂η
+

a33

s′(ζ)h̄ζ

∂

∂ζ

)
eζ

=
1

s(ζ)h̄ξ
(a11eξ + a21eη + a31eζ)

∂

∂ξ

+
1

s(ζ)h̄η
(a12eξ + a22eη + a32eζ)

∂

∂η

+
1

s′(ζ)h̄ζ
(a13eξ + a23eη + a33eζ)

∂

∂ζ

=
1

s(ζ)
∇S +

1

s′(ζ)
a
∂

∂ζ

where

∇S =
1

h̄ξ
(a11eξ + a21eη + a31eζ)

∂

∂ξ
+

1

h̄η
(a12eξ + a22eη + a32eζ)

∂

∂η
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and

a =
1

h̄ζ
(a13eξ + a23eη + a33eζ) .

We note that (for any normal vector n on the surface Γa) we have

a · n =
a33

h̄ζ
eζ · n. (B.7)

and

‖a‖ =
1

h̄ζ

√
a33.

Moreover, we note that in the case eξ ⊥ eζ and eη ⊥ eζ (for example when Γa is a
sphere), this vector reduces to a = a33eζ/h̄ζ.

Using the expression for the Jacobian matrix in Equation (4.20) we get

|det(J)| = [s(ζ)]2s′(ζ)

∥∥∥∥
∂ r̄

∂ξ
× ∂ r̄

∂η

∥∥∥∥ h̄ζn · eζ.

We may therefore write
dΩ = [s(ζ)]2s′(ζ)h̄ζdSdζ

where

dS =

∥∥∥∥
∂ r̄

∂ξ
× ∂ r̄

∂η

∥∥∥∥n · eζdξdη.

We also note that a surface where ζ = const, the surface element is

dΓ = [s(ζ)]2
∥∥∥∥
∂ r̄

∂ξ
× ∂ r̄

∂η

∥∥∥∥ dξdη =
[s(ζ)]2

n · eζ
dS.

Hence, both ∇S and dS are independent of ζ which enables us to separate the integral
in the weak form.

B.1.2 Weak formulation for in�nite elements

We shall use the most natural choice of the scaling function, namely s(ζ) = ζ. This
simpli�cations result in the following

∇ =
1

ζ
∇S +

eζ
Ra

∂

∂ζ
, where ∇S =

eξ
h̄ξ

∂

∂ξ
+
eη
h̄η

∂

∂η

and

dΩ = ζ2RadS, dΓ = ζ2dS, where dS =

∥∥∥∥
∂ r̄

∂ξ
× ∂ r̄

∂η

∥∥∥∥ dξdη.

In order to use the extended NURBS coordinate system, we have to modify the �radial
shape functions� which Ihlenburg presents on the form

φn(r) =
eikr

rn
, n = 1, . . . , N.

We can not simply replace r with ζ here, as the latter is dimensionless and invariant of
the size of the object. Note that the wave number k has dimension m−1, so we must
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scale ζ by a parameter with dimension m. To get correspondence with these functions in
spherical coordinate system, we have to scale with the �radius� of the arti�cial boundary,
Ra. This quantity must be independent of the angular parameters in order to make
separable functions (the average distance from the origin to the surface Γa may be the
most natural choice). That is,

φ̃(ζ) =
eiRakζ

(Raζ)n
, n = 1, . . . , N. (B.8)

The weak formulating takes the form: For all v ∈ V1, �nd u
N
h ∈ V1 such that

buc(u
N
h , v) = 〈g, v〉Γ,

where

buc(v, u) = lim
γ→∞

(∫

Ωγ

(∇v∇u− k2vu) dΩ−
∫

Sγ

v∂nu dΓ

)
, (B.9)

〈g, v〉Γ =

∫

Γ

gv dΓ.

Here, Sγ is the surface where ζ = γ and we can then recover the full domain by letting
γ → ∞. For the domain outside the arti�cial boundary (ζ = 1) we consider trial and
test functions of the form

u =
eiRakζ

ζm
fm(ξ, η), v =

eiRakζ

ζn
fn(ξ, η),

where we have baked the constants Rn
a and Rm

a from the radial shape functions in Equa-
tion (B.8), into fn and fm respectively. As these functions are separable, we get

∇v · ∇u =

(
1

ζ
∇Sv +

eζ
Ra

∂v

∂ζ

)
·
(

1

ζ
∇Su+

eζ
Ra

∂u

∂ζ

)

=
e2iRakζ

ζm+n+2
∇Sfm · ∇Sfn +

e2iRakζ

R2
aζ
m+n

(
iRak −

n

ζ

)(
iRak −

m

ζ

)
fmfn.

and

v∂nu = v∇u · n = v

(
1

ζ
∇Su+

eζ
Ra

∂u

∂ζ

)
· eζ =

v

Ra

∂u

∂ζ

=

(
iRak −

m

ζ

)
e2iRakζ

Raζm+n
fnfm.

Consider �rst the boundary integral at Sγ

∫

Sγ

v∂nu dΓ =

∫

Sγ

(
iRak −

m

ζ

)
e2iRakζ

Raζm+n
fnfmζ

2 dS

=

(
iRak −

m

γ

)
e2iRakγ

Raγm+n−2

∫

Γa

fnfm dS
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As m+ n > 1 all terms of order O(γ−(m+n−1)) vanish in the limit γ →∞, such that the
integral reduces to ∫

Sγ

v∂nu dΓ =
ike2iRakγ

γm+n−2

∫

Γa

fnfm dS

Combining all of this into Equation (B.9) yields

buc(v, u) = lim
γ→∞

{
Jmn

∫ γ

1

e2iRakζ

ζm+n
dζ

+Imn

∫ γ

1

e2iRakζ

ζm+n

[
−2(Rakζ)2 − iRakζ(n+m) + nm

]
dζ

−Imn
iRake2iRakγ

γm+n−2

}

where

Imn =

∫

Γa

1

Ra

fmfn dS, Jmn =

∫

Γa

Ra∇Sfm · ∇Sfn dS (B.10)

Thus, we get the same radial integrals as before. It remains to consider the case n =
m = 1. As

L = lim
γ→∞

[
−2(Rak)2I11

∫ γ

1

e2iRakζ dζ − iRakI11e2iRakγ

]

= lim
γ→∞

[iRakI11( e2iRakγ − e2iRak
)
−iRakI11e2iRakγ

]

= −iRakI11e2iRak.

we get the bilinear form

buc(v, u) = JmnEm+n + Imn[−2(Rak)2Em+n−2 − iRak(n+m)Em+n−1 + nmEm+n]

where En = En(−2iRak). And for the special case n = m = 1 we get

buc(v, u) = J11E2 + I11[−2iRakE1 + E2 − iRake2iRak]

Let
fn =

∑

A∈ηa

RAcnA, fm =
∑

B∈ηa

RBdmB

where ηa is the set containing the indices of all the basis functions that are non-zero on
Γa. Using the bilinearity of buc we obtain (for ζ > 1)

∑

A∈ηa

N∑

n=1

cnA


∑

B∈ηa

N∑

m=1

dnAbuc(RA, RB)


 = 0.

As the surface integrals in Equation (B.10) will now be independent of the indices m and
n we now get (for n+m > 1)

buc(RA, RB) = JABEm+n + IAB[−2(Rak)2Em+n−2 − iRak(n+m)Em+n−1 + nmEm+n]

and in the case n = m = 1

buc(RA, RB) = JABE2 + IAB[−2iRakE1 + E2 − iRake2iRak]
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where we have rede�ned the surface integral notations to be

IAB =

∫

Γa

1

Ra

RARB dS, JAB =

∫

Γa

Ra∇SRA · ∇SRB dS

This formulation has proven to work for a sphere when the �radius� Ra for the arti�cial
boundary is constant. In [10] Burnett writes that the scattered pressure �eld exterior to
a spherical Γa may be written as

p =
eikr

r

∞∑

n=0

Fn(θ, φ; k)

rn

where we have adjusted the sign in the exponential function to match the convention
in [3] and this thesis. It has been proven that this series has nice convergence properties
and the functions Fn(θ, φ; k) for n > 0 may be determined by the recursive relation

2iknFn =

[
n(n− 1) +

1

sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

sin2 θ

∂2

∂φ2

]
Fn−1.

Here F0 is simply the radiation pattern which in this thesis has the name Fk.

Correspondingly, in the prolate spheroidal coordinate system the series

p =
eikr

r

∞∑

n=0

Gn(θ, φ; k)

rn

also converges absolutely and uniformly for any point outside Γa with a six-term recursion
formula for the functions Gn(θ, φ; k).

To prove the convergence of such series for the coordinate system discussed in this section
is outside the scope of this thesis. Due to the lacking mathematical foundation of this
in�nite element formulation and the time constraint of the thesis, this formulation was
not analyzed further in this thesis.

The motivation of introducing the extended NURBS coordinate system is to be able
to control the arti�cial boundary Γa. This allows us to control the size of the �uid
domain which would in turn enable us to reduce redundant �uid elements. Ihlenburg
uses a prolate spheroid as the arti�cial boundary around his �Mock shell� (depicted in
Figure B.1) in [3]. As the �Mock shell� is a convex surface, one could have a uniform
thickness of the �uid around the shell by the extended NURBS coordinate system, and
thus reducing the �uid computational domain to an ideal size.

B.2 The cylindrical coordinate system

The cylindrical coordinate system is simply an extension of the polar coordinate system,
which from standard Cartesian coordinates is given by the transformation

x = r cos θ

y = r sin θ
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Figure B.1: The mock shell.

x

y

θ

ex−ex

ey

eθ er

sin θ cos θ

co
s
θ

si
n
θθ

θ

Figure B.2: Decomposition of the standard unit vectors in the polar coordinate system
to the standard unit vectors in the Cartesian coordinate system.
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such that

r =
√
x2 + y2

θ = atan2(y, x)

where

atan2(y, x) =





arctan( y
x
) if x > 0

arctan( y
x
) + π if x < 0 and y ≥ 0

arctan( y
x
)− π if x < 0 and y < 0

π
2

if x = 0 and y > 0

−π
2

if x = 0 and y < 0

unde�ned if x = 0 and y = 0

.

By this we �nd

∂r

∂x
= cos θ,

∂r

∂y
= sin θ

∂θ

∂x
= −1

r
sin θ,

∂θ

∂y
=

1

r
cos θ.

So for a scalar valued function ψ we get (using the chain rule)

∂ψ

∂x
=
∂ψ

∂r

∂r

∂x
+
∂ψ

∂θ

∂θ

∂x
= cos θ

∂ψ

∂r
− 1

r
sin θ

∂ψ

∂θ
∂ψ

∂y
=
∂ψ

∂r

∂r

∂y
+
∂ψ

∂θ

∂θ

∂y
= sin θ

∂ψ

∂r
+

1

r
cos θ

∂ψ

∂θ

(B.11)

Moreover, by decomposing the standard unit vectors in the polar coordinate system to
the standard unit vectors in the Cartesian coordinate system (cf. Figure B.2) we get

er = cos θex + sin θey

eθ = − sin θex + cos θey.

Hence, for any vector valued function in two dimensions

Ψ = Ψxex + Ψyey = Ψrer + Ψθeθ

we get the relations (by comparing each component)

Ψx = Ψr cos θ −Ψθ sin θ

Ψy = Ψr sin θ + Ψθ cos θ.
(B.12)

By a corresponding argument, we have

ex = cos θer − sin θeθ

ey = sin θer + cos θeθ
(B.13)

such that

Ψr = Ψx cos θ + Ψy sin θ

Ψθ = −Ψx sin θ + Ψy cos θ.
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All of these relation also holds for cylindrical coordinates as the z variable is the same
for both coordinate systems.

Using Equation (B.11), Equation (B.12) and Equation (B.13) we get

∇ψ =
∂ψ

∂x
ex +

∂ψ

∂y
ey +

∂ψ

∂z
ez =

∂ψ

∂r
er +

1

r

∂ψ

∂θ
eθ +

∂ψ

∂z
ez (B.14)

∆ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
=

1

r

∂

∂r

(
r
∂ψ

∂r

)
+

1

r2

∂2ψ

∂θ2
+
∂2ψ

∂z2
(B.15)

∇ ·Ψ =
∂Ψx

∂x
+
∂Ψy

∂y
+
∂Ψz

∂z
=

1

r

∂(rΨr)

∂r
+

1

r

∂Ψθ

∂θ
+
∂Ψz

∂z
(B.16)

∆Ψ =

(
∆Ψr −

1

r2
Ψr −

2

r2

∂Ψθ

∂θ

)
er +

(
∆Ψθ −

1

r2
Ψθ +

2

r2

∂Ψr

∂θ

)
eθ + ∆Ψzez (B.17)

For axisymmetric problems, it is also convenient to write the stress �eld and the strain
�eld in terms of polar coordinates. Recall that




σ11

σ22

σ33

σ23

σ13

σ12




= C




ε11

ε22

ε33

2ε23

2ε13

2ε12




=




2µ+ λ λ λ 0 0 0
λ 2µ+ λ λ 0 0 0
λ λ 2µ+ λ 0 0 0
0 0 0 µ 0 0
0 0 0 0 µ 0
0 0 0 0 0 µ







ε11

ε22

ε33

2ε23

2ε13

2ε12



.

such that if the stress �eld is given, we may invert the elasticity matrix to �nd the strain
�eld. We note that

C−1 =
1

E




1 −ν −ν 0 0 0
−ν 1 −ν 0 0 0
−ν −ν 1 0 0 0
0 0 0 1

µ
0 0

0 0 0 0 1
µ

0

0 0 0 0 0 1
µ



.

In [44, p. 19] we �nd the transformation formula for the stress tensor from an arbitrary
coordinate system to another. If ei and e

′
i represents the basis vectors of these two

coordinate systems and the stress �eld is known in the �rst coordinate system, then the
stress �eld in terms of the second coordinate system is found by

σ′ij = αikαjlσkl

where

αij = cos(e′i, ej) = e′i · ej
represents the cosine of the angle between the axis corresponding to the vectors ei and
e′i, respectively. Letting e′1 = er, e

′
2 = er and e

′
3 = ez (the basis vectors in cylindrical

coordinates), and {e1, e2, e3} the standard basis vectors in Cartesian coordinates, we �nd
(using Equation (B.13))

[αij] =




cos θ sin θ 0
− sin θ cos θ 0

0 0 1


 .
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This yields the following relations

σrr = σ11 cos2 θ + σ22 sin2 θ + σ12 sin(2θ)

σθθ = σ11 sin2 θ + σ22 cos2 θ − σ12 sin(2θ)

σzz = σ33

σθz = σ23 cos θ − σ13 sin θ

σrz = σ23 sin θ + σ13 cos θ

σrθ = −1

2
σ11 sin(2θ) +

1

2
σ22 sin(2θ) + σ12 cos(2θ)

The inverse relations are found to be

σ11 = σrr cos2 θ + σθθ sin2 θ − σrθ sin(2θ)

σ22 = σrr sin2 θ + σθθ cos2 θ + σrθ sin(2θ)

σ33 = σzz

σ23 = σθz cos θ + σrz sin θ

σ13 = −σθz sin θ + σrz cos θ

σ12 =
1

2
sin(2θ)σrr −

1

2
sin(2θ)σθθ − cos(2θ)σrθ.

Moreover, we have 


σrr

σθθ
σzz

σθz

σrz

σrθ




= C




εrr

εθθ
εzz

2εθz

2εrz

2εrθ



, (B.18)

where (see [45] for details)

εrr =
∂ur

∂r

εθθ =
1

r

(
∂uθ
∂θ

+ ur

)

εzz =
∂uz
∂z

εθz =
1

2

(
∂uθ
∂z

+
1

r

∂uz
∂θ

)

εrz =
1

2

(
∂ur

∂z
+
∂uz
∂r

)

εrθ =
1

2

(
1

r

∂ur

∂θ
+
∂uθ
∂r
− uθ

r

)
.

(B.19)

B.3 The spherical coordinate system

There are several conventions for de�ning the spherical coordinate system, but we shall
here follow the ISO standard (International Organization for Standardization), which is
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the convention often used in physics. The reason why the mathematical convention of the
spherical coordinate system is not used (where the angle θ is preserved in the xy-plane as
in polar coordinates) is because of the existing literature on the subject of this thesis (in
particular [3]). The spherical coordinate system is de�ned by the transformation (from
the standard Cartesian coordinates)

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ

such that

r =
√
x2 + y2 + z2

θ = arccos

(
z√

x2 + y2 + z2

)

φ = atan2(y, x).

By this we �nd

∂r

∂x
= sin θ cosφ,

∂r

∂y
= sin θ sinφ,

∂r

∂z
= cos θ

∂θ

∂x
=

1

r
cos θ cosφ,

∂θ

∂y
=

1

r
cos θ sinφ,

∂θ

∂z
= −1

r
sin θ

∂φ

∂x
= −1

r

sinφ

sin θ
,

∂φ

∂y
=

1

r

cosφ

sin θ
,

∂φ

∂z
= 0.

So for a scalar valued function ψ we get (using the chain rule)

∂ψ

∂x
=
∂ψ

∂r

∂r

∂x
+
∂ψ

∂φ

∂φ

∂x
+
∂ψ

∂θ

∂θ

∂x
= sin θ cosφ

∂ψ

∂r
− 1

r

sinφ

sin θ

∂ψ

∂φ
+

1

r
cos θ cosφ

∂ψ

∂θ
∂ψ

∂y
=
∂ψ

∂r

∂r

∂y
+

1

r

cosφ

sin θ

∂ψ

∂φ
+
∂ψ

∂θ

∂θ

∂y
= sin θ cosφ

∂ψ

∂r
+
∂ψ

∂φ

∂φ

∂y
+

1

r
cos θ sinφ

∂ψ

∂θ
∂ψ

∂z
=
∂ψ

∂r

∂r

∂z
+
∂ψ

∂φ

∂φ

∂z
+
∂ψ

∂θ

∂θ

∂z
= cos θ

∂ψ

∂r
− 1

r
sin θ

∂ψ

∂θ

∂θ

∂z

(B.20)

Moreover, by decomposing the standard unit vectors in the polar coordinate system to
the standard unit vectors in the Cartesian coordinate system we get

er = sin θ cosφex + sin θ sinφey + cos θez

eθ = cos θ cosφex + cos θ sinφey − sin θez

eφ = − sinφex + cosφey.

Hence, for any vector valued function in two dimensions

Ψ = Ψxex + Ψyey + Ψzez = Ψrer + Ψφeφ + Ψθeθ

we get the relations (by comparing each component)

Ψx = Ψr sin θ cosφ+ Ψθ cos θ cosφ−Ψφ sinφ

Ψy = Ψr sin θ sinφ+ Ψθ cos θ sinφ−Ψφ cosφ

Ψz = Ψr cos θ −Ψθ sin θ.

(B.21)
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By a corresponding argument, we have

ex = sin θ cosφer + cos θ cosφeθ − sinφeφ

ey = sin θ sinφer + cos θ sinφeθ + cosφeφ

ez = cos θer − sin θeθ.

(B.22)

such that

Ψr = Ψx sin θ cosφ+ Ψy sin θ sinφ+ Ψz cos θ

Ψθ = Ψx cos θ cosφ+ Ψy cos θ sinφ−Ψz sin θ

Ψφ = −Ψx sinφ+ Ψy cosφ.

Using Equation (B.20), Equation (B.21) and Equation (B.22) we get

∇ψ =
∂ψ

∂x
ex +

∂ψ

∂y
ey +

∂ψ

∂z
ez =

∂ψ

∂r
er +

1

r

∂ψ

∂θ
eθ +

1

r sin θ

∂ψ

∂φ
eφ (B.23)

∆ψ =
∂2ψ

∂x2
+
∂2ψ

∂y2
+
∂2ψ

∂z2
(B.24)

=
1

r2

∂

∂r

(
r2∂ψ

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂ψ

∂θ

)
+

1

r2 sin2 θ

∂2ψ

∂φ2
(B.25)

∇ ·Ψ =
∂Ψx

∂x
+
∂Ψy

∂y
+
∂Ψz

∂z
=

1

r2

∂(r2Ψr)

∂r
+

1

r sin θ

∂(Ψθ sin θ)

∂θ
+

1

r sin θ

∂Ψφ

∂φ
(B.26)

∆Ψ =

(
∆Ψr −

2

r2
Ψr −

2

r2 sin θ

∂(Ψθ sin θ)

∂θ
− 2

r2 sin θ

∂Ψφ

∂φ

)
er (B.27)

+

(
∆Ψθ −

1

r2 sin2 θ
Ψθ +

2

r2

∂Ψr

∂θ
− 2 cos θ

r2 sin2 θ

∂Ψφ

∂φ

)
eθ (B.28)

+

(
∆Ψφ −

1

r2 sin2 θ
Ψφ +

2

r2 sin θ

∂Ψr

∂φ
+

2 cos θ

r2 sin2 θ

∂Ψθ

∂φ

)
eφ (B.29)

We may also for the spherical coordinates �nd the relation between the stress �elds as
we did for the cylindrical coordinates in Appendix B.2. In spherical coordinates we get

[αij] =




sin θ cosφ sin θ sinφ cos θ
cos θ cosφ cos θ sinφ − sin θ
− sinφ cosφ 0


 .

Which yields the relation 


σrr

σθθ
σφφ
σθφ
σrφ

σrθ




= D




σ11

σ22

σ33

σ23

σ13

σ12




where

D =




sin2 θ cos2 φ sin2 θ sin2 φ cos2 θ sin 2θ sinφ sin 2θ cosφ sin2 θ sin 2φ
cos2 θ cos2 φ cos2 θ sin2 φ sin2 θ − sin 2θ sinφ − sin 2θ cosφ cos2 θ sin 2φ

sin2 φ cos2 φ 0 0 0 − sin 2φ
−1

2
cos θ sin 2φ 1

2
cos θ sin 2φ 0 − sin θ cosφ sin θ sinφ cos θ cos 2φ

−1
2

sin θ sin 2φ 1
2

sin θ sin 2φ 0 cos θ cosφ − cos θ sinφ sin θ cos 2φ
1
2

sin 2θ cos2 φ 1
2

sin 2θ sin2 φ −1
2

sin 2θ cos 2θ sinφ cos 2θ cosφ 1
2

sin 2θ sin 2φ
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The inverse relation is found by inverting the matrix D.

D−1 =




sin2 θ cos2 φ cos2 θ cos2 φ sin2 φ − cos θ sin 2φ − sin θ sin 2φ sin 2θ cos2 φ
sin2 θ sin2 φ cos2 θ sin2 φ cos2 φ cos θ sin 2φ sin θ sin 2φ sin 2θ sin2 φ

cos2 θ sin2 θ 0 0 0 − sin 2θ
1
2

sin 2θ sinφ −1
2

sin 2θ sinφ 0 − sin θ cosφ cos θ cosφ sinφ cos 2θ
− sin θ sin 2φ −1

2
sin 2θ cosφ 0 sin θ sinφ − cos θ sinφ cos 2θ cosφ

1
2

sin2 θ sin 2φ 1
2

cos2 θ sin 2φ −1
2

sin 2φ cos θ cos 2φ cos 2φ sin θ 1
2

sin 2θ sin 2φ




Moreover, we have 


σrr

σθθ
σφφ
σθφ
σrφ

σrθ




= C




εrr

εθθ
εφφ
2εθφ
2εrφ
2εrθ



, (B.30)

where (see [45] for details)

εrr =
∂ur

∂r

εθθ =
1

r

(
∂uθ
∂θ

+ ur

)

εφφ =
1

r sin θ

(
∂uφ
∂φ

+ ur sin θ + uθ cos θ

)

εθφ =
1

2r

(
1

sin θ

∂uθ
∂φ

+
∂uφ
∂θ
− uφ cot θ

)

εrφ =
1

2

(
1

r sin θ

∂ur

∂φ
+
∂uφ
∂r
− uφ

r

)

εrθ =
1

2

(
1

r

∂ur

∂θ
+
∂uθ
∂r
− uθ

r

)
.

(B.31)

B.4 The prolate spheroidal coordinate system

The prolate spheroidal coordinate system is an extension of the spherical coordinate
system. It is de�ned by the relations

x =
√
r2 − f 2 sin θ cosφ

y =
√
r2 − f 2 sin θ sinφ

z = r cos θ

with foci located at z = ±f . Note that we de�ne r ≥ f such that the coordinate system
reduces to the spherical coordinate system when f = 0. Using this condition, we may
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establish the following inverse formulas

r =
1√
2

√
Tf +

√
T 2
f − 4f 2z2

θ = arccos




√
2z√

Tf +
√
T 2
f − 4f 2z2




φ = atan2(y, x).

(B.32)

where Tf = Tf (x, y, z) = x2 + y2 + z2 + f 2.

The derivatives are found to be

∂x

∂r
=
r sin θ cosφ√

r2 − f 2
,

∂y

∂r
=
r sin θ sinφ√
r2 − f 2

,
∂z

∂r
= cos θ

∂x

∂θ
=
√
r2 − f 2 cos θ cosφ,

∂y

∂θ
=
√
r2 − f 2 cos θ sinφ,

∂z

∂θ
= −r sin θ

∂x

∂φ
= −

√
r2 − f 2 sin θ sinφ,

∂y

∂φ
=
√
r2 − f 2 sin θ cosφ,

∂z

∂φ
= 0.

(B.33)

and

∂r

∂x
=

xr

2r2 − Tf
,

∂r

∂y
=

yr

2r2 − Tf
,

∂r

∂z
=
z

r

r2 − f 2

2r2 − Tf
∂θ

∂x
=

xz

r sin θ(2r2 − Tf )
,

∂θ

∂y
=

yz

r sin θ(2r2 − Tf )
,

∂θ

∂z
=

1

r sin θ

(
z2

r2

r2 − f 2

2r2 − Tf
− 1

)

∂φ

∂x
= − y

x2 + y2
,

∂φ

∂y
=

x

x2 + y2
,

∂φ

∂z
= 0.

(B.34)

Using Equation (B.1) we have

hr =

√
r2 − f 2 cos2 θ

r2 − f 2

hθ =
√
r2 − f 2 cos2 θ

hφ =
√
r2 − f 2 sin θ

As the prolate spheroidal coordinate system is an orthogonal coordinate system, the
general nabla operator developed in Appendix B.1 reduces to

∇ =
er

hr

∂

∂r
+
eθ
hθ

∂

∂θ
+
eφ
hφ

∂

∂φ

The determinant of the jacobian in Equation (4.20) may now be written as

J1 = hrhθhφ =
(
r2 − f 2 cos2 θ

)
sin θ

The surface Jacobian at a given (constant) r = r̂ is

JS = hθhφ =
√
r2 − f 2 cos2 θ

√
r2 − f 2 sin θ.
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Note that
lim
r̂→∞

JS = r̂2 sin θ.

That is, in the limit r̂ → ∞ the surface Jacobian of the prolate spheroidal coordinate
system is the same as the surface Jacobian of the spherical coordinate system.





Appendix C

Analytic solutions and convergence

analysis

When a �nite element method program is developed it is crucial to get numerical evidence
through analytic solution and benchmark solutions. In this appendix we develop some
analytic solution which will be used to verify the correctness of the implementations. We
have also tested the program on some well known benchmark solutions. Some results of
these studies have been moved to this appendix to reduce the size of the main text.

C.1 Shell obstacle course

Exact solution in terms of shell analysis have been presented in [46]. For a more detailed
problem description than presented here, we refer to [2] or [46].

C.1.1 Scordelis-Lo Roof

Mesh 1, 2, 3 and 6 are shown in Figure C.2. The data for the coarsest mesh (mesh 1)
can be found in Appendix D.3 with φ = 40◦ and θ = π

2
− φ. Note that due to symmetry,

only one quadrant is analyzed. In Figure C.3 we plot the convergence of the displacement
(absolute value) at the mid span of the side edge. A visualization of the result is presented
in Figure C.1a.

C.1.2 Pinched hemisphere

A thin hemisphere is pinched at antipodal points of the equator with equal but opposite
directed forces. The equator is else considered to be free, and the north pole is �xed. Mesh
1, 2, 3 and 6 are shown in Figure C.4. Note that due to symmetry, only one quadrant is
analyzed. In Figure C.5 we plot the convergence of the displacement (absolute value) at
the point load. The plot is almost identical to the one presented by Hughes et al. in [2],
the largest di�erence is the quartic case where we have established a better approximation

141
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(a) Scordelis-Lo Roof. (b) Pinched hemisphere.

(c) Pinched cylinder.

Figure C.1: Shell obstacle course: Displacement plots. For Scordelis-Lo roof (a), the
countours are based on the displacement in the direction of the gravity loading (scaling
factor 20 is used). For the pinched hemisphere (b), the contours are based on the dis-
placement in the inward directed point load (scaling factor 33.3 is used). For the pinched
cylinder (c), the contours are based on the displacement in the direction of the point load
(scaling factor 3 · 106 is used). The polynomial order p = q = 5 and mesh 4 was used in
all cases (where convergence is obtained).



Shell obstacle course 143

(a) Mesh 1. (b) Mesh 2.

(c) Mesh 3. (d) Mesh 6.

Figure C.2: Scordeli-Lo Roof: Meshes. If s is the mesh number, then the number
of inserted knots in ξ- and η-direction is given by 2s−1 − 1. Thus, the number of surface
control points per side (in ξ- and η-direction) is given by n = m = 2s−1 + p = 2s−1 + q.
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Figure C.3: Scordeli-Lo Roof: Convergence plot.
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(a) Mesh 1. (b) Mesh 2.

(c) Mesh 3. (d) Mesh 6.

Figure C.4: Pinched hemisphere: Meshes. If s is the mesh number, then the number
of inserted knots in ξ- and η-direction is given by 2s−1 − 1. Thus, the number of surface
control points per side (in ξ- and η-direction) is given by n = m = 2s−1 + p = 2s−1 + q.

on mesh 11. In Figure C.6 we plot the convergence (of the same displacement) with only
one NURBS element when p = q is elevated. After 10 elevations we basically have
achieved the desired result, which shows the elegance of the isogeometric analysis as it
easily allows us to elevate the order without changing the geometry. Once again, we have
obtained the same results as in [2], except for p = q = 4. A visualization of the result is
presented in Figure C.1b.

C.1.3 Pinched cylinder

A thin cylindrical shell is pinched at its midspan with a corresponding equal but opposite
directed force on the opposite side of the cylinder. The two ends of the cylinder are
supported by rigid diaphragms. Mesh 1, 2, 3 and 7 are shown in Figure C.7. Note that
due to symmetry, only one octant is analyzed. In Figure C.8 we plot the convergence
of the displacement (absolute value) at the point load. The plot is once again almost
identical to the one presented by Hughes et al. in [2]. The number of control points per

1As this is the only point which is notably di�erent from our results, this may simply be a printing
error in [2].
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Figure C.5: Pinched hemisphere: Convergence plot.
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Figure C.6: Pinched hemisphere: Convergence plot using only one NURBS element
(note that r = 2 is constant in this analysis such that we have l = 3).
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(a) Mesh 1. (b) Mesh 2.

(c) Mesh 3. (d) Mesh 7.

Figure C.7: Pinched cylinder: Meshes. If s is the mesh number, then the number
of inserted knots in ξ- and η-direction is given by 2s−1 − 1. Thus, the number of surface
control points per side (in ξ- and η-direction) is given by n = m = 2s−1 + p = 2s−1 + q.

side should be di�erent for the cubic and quartic case for mesh 6 (respectively n = 35
and n = 36) so this must be a print error in [2].

A visualization of the result is presented in Figure C.1c.

C.2 Helmholtz equation

We shall now solve Helmholtz equation given by

∆u+ k2u = 0

in spherical coordinates assuming the solution to have the form u = f(r)g(θ)h(φ). The
Laplace operator in spherical coordinates takes the form

∆u(r, θ, φ) =
1

r2

[
∂

∂r

(
r2∂u

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

sin2 θ

∂2u

∂φ2

]
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Figure C.8: Pinched cylinder: Convergence plot.

Thus, inserting u = f(r)g(θ)h(φ) into

1

r2

[
∂

∂r

(
r2∂u

∂r

)
+

1

sin θ

∂

∂θ

(
sin θ

∂u

∂θ

)
+

1

sin2 θ

∂2u

∂φ2

]
+ k2u = 0

and dividing the resulting equation by f(r)g(θ)h(φ) we get

1

r2

[
1

f

d

dr

(
r2 df

dr

)
+

1

g

1

sin θ

d

dθ

(
sin θ

dg

dθ

)
+

1

h

1

sin2 θ

d2h

dφ2

]
+ k2 = 0

or [
1

f

d

dr

(
r2 df

dr

)
+ k2r2

]
sin2 θ +

1

g
sin θ

d

dθ

(
sin θ

dg

dθ

)
= −1

h

d2h

dφ2
.

As the left hand side only depends on r and θ and the right hand side only depends
on φ, each side must be equal to a separation constant, call it γ1. The equation is thus
separated into the equations

d2h

dφ2
+ γ1h = 0

and
1

f

d

dr

(
r2 df

dr

)
+ k2r2 =

1

sin2 θ

[
γ1 − sin θ

1

g

d

dθ

(
sin θ

dg

dθ

)]
.

The latter equation may once again, using the same argument, be separated in two new
equations by a separation constant γ2

d

dr

(
r2 df

dr

)
+ (k2r2 − γ2)f = 0

and

sin θ
d

dθ

(
sin θ

dg

dθ

)
+ (γ2 sin2 θ − γ1)g = 0.
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We have now reduced the problem to three separate ordinary di�erential equations

d

dr

(
r2 df(r)

dr

)
+ (k2r2 − γ2)f(r) = 0 (C.1)

sin θ
d

dθ

(
sin θ

dg(θ)

dθ

)
+ (γ2 sin2 θ − γ1)g(θ) = 0 (C.2)

d2h(φ)

dφ2
+ γ1h(φ) = 0. (C.3)

As we only consider domains enclosing the origin, we must have the periodic condition
h(0) = h(2π). If γ1 = 0, h is just the constant function (as the linear term must vanish
due to the periodic condition). In all other cases it must be of the form

h(φ) = C1e−rφ + C2erφ

where r =
√−γ1 could be a complex constant. The harmonic time dependency assump-

tion her implies that γ1 = m2, for some m ∈ Z \ {0}. Due to symmetry, we can rede�ne
constants C1 and C2 such that m is only positive. Hence, if m = 0 (γ1 = 0) then h is the
constant function, and if m ∈ N then

h(φ) = C1e−imφ + C2eimφ.

Consider now equation Equation (C.2) with γ1 = m2. We use the transformation w =
cos θ (such that 1− w2 = sin2 θ) to obtain

(1− w2)
d2g(w)

dw2
− 2t

dg(w)

dw
+

(
γ2 −

m2

1− w2

)
g(w) = 0.

for γ2 = n(n+1) where n ∈ N0, this is the Legendre's equation
2 which have the associated

Legendre functions
gmn(θ) = Pm

n (cos θ)

as solutions. These functions are de�ned from the Legendre polynomials Pn(t) by

Pm
n (w) = (1− w2)m/2

dmPn(t)

dwm
0 ≤ m ≤ n.

Finally if γ2 = n(n+1), Equation (C.1) is the spherical Bessel equation with the spherical
Bessel functions as solutions

f(r) = Anjn(kr) +Bnyn(kr).

The full solution of Helmholtz equation is then, by superposition, given by

u(r, θ, φ) =
∞∑

n=0

(Anjn(kr) +Bnyn(kr))
n∑

m=0

Pm
n (cos θ)(Cnme−imφ +Dnmeimφ)

=
∞∑

n=0

(Anjn(kr) +Bnyn(kr))
n∑

m=−n
Pm
n (cos θ)C∗nme−imφ

Recalling the de�nition of the spherical Hankel functions of �rst and second kind (h
(1)
n (x)

and h
(2)
n (x), respectively) we may write

u(r, θ, φ) =
∞∑

n=0

(A∗nh
(1)
n (kr) +B∗nh

(2)
n (kr))

n∑

m=−n
Pm
n (cos θ)C∗nme−imφ.

2The nontrivial question why γ2 must take these values will not be answered here. The reader is
advised to turn to more advanced literature.
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C.3 Analytic solutions of elasticity problem

In this section we shall present the �rst steps in solving the scattering problem on a
spherical shell. For the full treatment of the problem, cf. [14].

We start by writing Equation (2.15) in vector form. We thus need to rewrite σij,j in
therms of the vector solution u. Recall that

σij = cijklεkl = [λδijδkl + µ (δikδjl + δilδjk)] εkl

where

εij =
ui,j + uj,i

2
.

Hence,



σ1j,j

σ2j,j

σ3j,j


 =

3∑

j=1



σ1j,j

σ2j,j

σ3j,j


 =

3∑

j=1

3∑

k=1

3∑

l=1

1

2




[λδ1jδkl + µ (δ1kδjl + δ1lδjk)] (uk,jl + ul,jk)
[λδ2jδkl + µ (δ2kδjl + δ2lδjk)] (uk,jl + ul,jk)
[λδ3jδkl + µ (δ3kδjl + δ3lδjk)] (uk,jl + ul,jk)




=



µ(2u1,11 + u2,21 + u1,22 + u3,31 + u1,33) + λ(u1,11 + u2,12 + u3,13)
µ(u2,11 + u1,12 + 2u2,22 + u3,32 + u2,33) + λ(u1,21 + u2,22 + u3,23)
µ(u3,11 + u1,13 + u3,22 + u2,23 + 2u3,33) + λ(u1,31 + u2,32 + u3,33)




=



µ(u1,11 + u1,22 + u1,33) + (µ+ λ)(u1,11 + u2,12 + u3,13)
µ(u2,11 + u2,22 + u2,33) + (µ+ λ)(u1,21 + u2,12 + u3,23)
µ(u3,11 + u3,22 + u3,33) + (µ+ λ)(u1,31 + u2,12 + u3,33)




where we in the �nale step have assumed the mixed partial derivatives to be equal (that
is ui,kl = ui,lk ∀i, l, k = 1, 2, 3).

Note that the ith component of ∆u = {∆u1,∆u2,∆u3}> is given by

(∆u)i = ui,11 + ui,22 + ui,33

and the ith component of ∇(∇ · u) is given by

[∇(∇ · u)]i = ∇(u1,1 + u2,2 + u3,3) = u1,i1 + u2,i2 + u3,i3.

Thus,
µ∆u+ (λ+ µ)∇(∇ · u) + ρsω

2u = 0. (C.4)

From here, we assume the solution to take the form

u = ∇Φ +∇×Ψ (C.5)

which inserted in Equation (C.4) yields

µ∆(∇Φ +∇×Ψ) + (λ+ µ)∇(∇ · (∇Φ +∇×Ψ)) + ρsω
2(∇Φ +∇×Ψ) = 0.

Using the relations

∇ · ∇Φ = ∆Φ, ∇× (∇Φ) = 0, ∇ · (∇×Ψ) = 0,

∆(∇Φ) = ∇(∆Φ), ∆(∇×Ψ) = ∇× (∆Ψ)
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we get

µ∆(∇Φ +∇×Ψ) + (λ+ µ)∇(∆Φ + 0) + ρsω
2(∇Φ +∇×Ψ) = 0.

m
∇(µ∆Φ) +∇× (µ∆Ψ) + (λ+ µ)∇(∆Φ) + ρsω

2∇Φ + ρsω
2∇×Ψ = 0.

m
∇((2µ+ λ)∆Φ + ρsω

2Φ)+∇× (µ∆Ψ + ρsω
2Ψ) = 0.

De�ning the longitudinal wave velocity and shear wave velocity by

c1 =

√
λ+ 2µ

ρs

and c2 =

√
µ

ρs

, (C.6)

respectively, we arrive at

∇(c2
1∆Φ + ω2Φ) +∇× (c2

2∆Ψ + ω2Ψ) = 0.

which is satis�ed if
∆Φ + α2Φ = 0 and ∆Ψ + β2Ψ = 0

where
α =

ω

c1

and β =
ω

c2

.

Hence, we have arrived at two Helmholtz equation where the second is in vector form.
Obviously, the vector form result in three Helmholtz equation in scalar form (one for each
of the three components of Ψ). Hence, if we have the solution to the Helmholtz, we have
found the scalar potential Φ and the vector potential Ψ. The solution of Equation (C.4)
is then computed by Equation (C.5).

C.4 Elasticity problems in Cartesian coordinates

We start by exploring analytic solutions on the simplest domain, namely a rectangular
prism. Its width in x-, y-, and z-direction is wx, wy and wz, respectively. That is,

Ω = (0, wx)× (0, wy)× (0, wz)

On this domain, we shall present four analytic solution, where we let wx = 4, wy = 2 and
wz = 1. Each solution will provide evidence for di�erent aspects of a �nite element method
program. In all test cases we shall construct solution which have homogeneous Dirichlet
boundary conditions at x = 0. In the �rst case we have non homogeneous Neumann
conditions on the remaining sides, while the remaining three cases have homogeneous
Dirichlet boundary conditions on the whole boundary. Given a solution, we use Maple
to �nd the corresponding boundary conditions and body loadings.

Some meshes are shown in Figure C.9. Note that we insert the knots {0.25, 0.5, 0.75}
in ξ-direction (x-direction) and the knot 0.5 in η direction (y-direction). This is done
to get an ideally aspect ratio, which is the measure of a mesh element's deviation from
having all sides of equal length. One can observe that one might get a slow start in the
convergence if the aspect ratio is very high.
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(a) Mesh 1. (b) Mesh 2.

(c) Mesh 3. (d) Mesh 5.

Figure C.9: Rectangular prism: Meshes.

The �rst case (named Rectangular prism 1) is given by

u =




1
5
xy(2ν2x2 − 6ν2z2 − 4νx2 + 15νz2 − 6z2)

1
10
x2(νx2 − 3νz2 − 2x2 + 6z2)

−3
5
x2yz(ν − 2)


 . (C.7)

The analysis is done with �rst, second and third order NURBS, so since the analytic
solution has a fourth order polynomial in the y direction, the solution is not in the search
space Sh. The convergence plot is presented in Figure C.10.

Consider now the solution (rectangular prism 2)

u =



x(x− wx)y(y − wy)z(z − wz)
x(x− wx)y(y − wy)z(z − wz)
x(x− wx)y(y − wy)z(z − wz)


 . (C.8)

It does indeed satisfy homogeneous Dirichlet conditions with a rather ugly resulting
function f . As this solution only has degree two for each polynomial in each of the
spatial direction, the solution is an element in the search space Sh if second or higher
order NURBS is used. We should thus expect the numerical solution to be exact (to
machine precision) for these cases. This is indeed the case as well. The convergence for
�rst order NURBS are illustrated in Figure C.11.

By multiplying the solution in (C.8) by another factor x,

u =



x2(x− wx)y(y − wy)z(z − wz)
x2(x− wx)y(y − wy)z(z − wz)
x2(x− wx)y(y − wy)z(z − wz)


 , (C.9)

we get a solution which should not be in the search space Sh unless we use third order
(or higher) NURBS, and this is indeed the case. The homogeneous Dirichlet boundary
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Figure C.10: Rectangular prism 1: Convergence plot.
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Figure C.11: Rectangular prism 2: Convergence plot.
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Figure C.12: Rectangular prism 3: Convergence plot.

condition of course still hold, but now we have an even more complex function f . The
convergence plot is given in Figure C.12.

All of the discussed solutions have been polynomial solution, and would thus potentially
be in the solution space Sh if we elevate the order of the NURBS. Thus, the solutions
presented so far does not �t so much for analysis on the higher order elevation of NURBS.
A trigonometric solution given by

u =




sin
(

4πx
wx

)
sin
(

3πy
wy

)
sin
(

2πz
wz

)

sin
(

4πx
wx

)
sin
(

3πy
wy

)
sin
(

2πz
wz

)

sin
(

4πx
wx

)
sin
(

3πy
wy

)
sin
(

2πz
wz

)


 , (C.10)

will also satisfy homogeneous Dirichlet boundary conditions at the boundary. The con-
vergence plot is given in Figure C.13. It does now not matter how many times we order
elevate as the exact solution will never lie in the search space.

C.5 Elasticity problem in cylindrical coordinates

We shall here develop an analytic solution to the static elasticity problem given by

µ∆u+ (λ+ µ)∇(∇ · u) = 0 (C.11)

(cf. Equation (C.4)) in cylindrical coordinates where we shall assume

u = urer, (C.12)
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Figure C.13: Rectangular prism 4: Convergence plot.

where ur = ur(r, θ). That is, we only look for displacement solutions which are purely
radial and independent of the z direction. Using Equation (B.17) we therefore get

∆u =

(
∆ur −

1

r2
ur

)
er +

2

r2

∂ur

∂θ
eθ.

Moreover, using Equation (B.16) we get

∇ · u =
1

r

∂(rur)

∂r
,

such that (using Equation (B.14)) we get

∇(∇ · u) =
∂

∂r

(
1

r

∂(rur)

∂r

)
er +

1

r

∂

∂θ

(
1

r

∂(rur)

∂r

)
eθ.

The θ-component of Equation (C.11) is thus given by

µ
2

r2

∂ur

∂θ
+ (λ+ µ)

1

r

∂

∂θ

(
1

r

∂(rur)

∂r

)
= 0.

Assuming the solution to take the form ur = F (r)G(θ) (separation of variables) we get

2µF (r)G′(θ) + (λ+ µ)G′(θ)
d(rF (r))

dr
= 0

If G′(θ) = 0 the solution ur is only depending on the radial variable, and this equation is
trivially satis�ed. We shall later consider this case. Assume now that G′(θ) 6= 0. Then,
we �nd the solution

F (r) = Cr4ν−3. (C.13)
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The r-component of Equation (C.11) is given by

µ

(
1

r

∂

∂r

(
r
∂ur

∂r

)
+

1

r2

∂2ur

∂θ2
− 1

r2
ur

)
+ (λ+ µ)

∂

∂r

(
1

r

∂(rur)

∂r

)
= 0, (C.14)

where we have expanded the expression of ∆ur in terms of polar coordinates using Equa-
tion (B.14). Inserting the solution Equation (C.13) into this equation yields

G′′(θ) + [4(1− ν)]2G(θ) = 0,

which result in trigonometric solutions. The �nal solution is thus

ur(r, θ) = r4ν−3 (C1 cos [4(1− ν)θ] + C2 sin [4(1− ν)θ]) .

One typically want the periodicity condition ur(r, 0) = ur(r, 2πn) to hold. But such a
condition will add a constraint on the parameter ν. This is not of our interest, and the
solution is thus disregarded.

Let's now consider the case G′(θ) = 0, which corresponds to a purely radial displacement
�eld which is only depending on the radius. That is ur = ur(r). We may then without
loss of generality write ur = F (r). Equation Equation (C.14) then reduces to

µ

(
1

r

d

dr
(rF ′(r))− 1

r2
F (r)

)
+ (λ+ µ)

d

dr

(
1

r

d(rF (r))

dr

)
= 0.

By expanding (and using the fact that λ+ 2µ 6= 0) we get the equation

F ′′(r) +
1

r
F ′(r)− 1

r2
F (r) = 0,

which admits solution of the form

F (r) = C1r +
C2

r
.

The �nale solution is thus simply

ur(r) = C1r +
C2

r
.

C.5.1 Solid circular cylinder

Consider now the Solid circular cylinder subject to internal and/or external pressure.
These condition are given by

σrr(Ro) = −po and σrr(Ri) = −pi.

From Equation (B.19), we get εzz = 0,

εrr =
∂ur

∂r
= C1 −

C2

r2

and

εθθ =
1

r

(
∂uθ
∂θ

+ ur

)
= C1 +

C2

r2
,
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such that (using Equation (B.18))

σrr = (λ+ 2µ)εrr + λεθθ + λεzz = 2(λ+ µ)C1 − 2µ
C2

r2
.

Hence, we must solve

2(λ+ µ)C1 − 2µ
C2

R2
o

= −po

2(λ+ µ)C1 − 2µ
C2

R2
i

= −pi,

which yields

C1 =
1

2

R2
i pi −R2

opo

(λ+ µ)(R2
o −R2

i )
and C2 =

1

2

R2
iR

2
o(pi − po)

µ(R2
o −R2

i )
.

The full determined solution is thus

ur(r) =
1

2

1

R2
o −R2

i

(
R2

i pi −R2
opo

λ+ µ
r +

R2
iR

2
o

µr
(pi − po)

)
.

with the following stress �eld

σrr =
R2

i pi −R2
opo

R2
o −R2

i

+
R2

iR
2
opo −R2

iR
2
opi

R2
o −R2

i

1

r2

σθθ =
R2

i pi −R2
opo

R2
o −R2

i

+
R2

iR
2
opi −R2

iR
2
opo

R2
o −R2

i

1

r2

σzz =
2ν(R2

i pi −R2
opo)

R2
o −R2

i

σθz = 0

σrz = 0

σrθ = 0.

C.6 Elasticity problem in spherical coordinates

We shall here develop analytic solutions to the elasticity problem for both the static case
and the dynamic case, starting with the static case.

C.6.1 The static case

We shall assume the solution of Equation (C.11) to admit purely radial solutions which
only depends on the radius. That is,

u = urer, (C.15)

where ur = ur(r). Using Equation (B.29) we therefore get

∆u =

(
∆ur −

2

r2
ur

)
er.
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Moreover, using Equation (B.16) we get

∇ · u =
1

r2

∂(r2ur)

∂r
,

such that (using Equation (B.14)) we get

∇(∇ · u) =
∂

∂r

(
1

r2

∂(r2ur)

∂r

)
er.

The r-component of Equation (C.11) is given by

µ

(
1

r2

∂

∂r

(
r2∂ur

∂r

)
− 2

r2
ur

)
+ (λ+ µ)

∂

∂r

(
1

r2

∂(r2ur)

∂r

)
= 0, (C.16)

where we have expanded the expression of ∆ur in terms of spherical coordinates using
Equation (B.23).

Let now F (r) = ur. Then

µ

(
1

r2

d

dr

(
r2F ′

)
− 2

r2
F

)
+ (λ+ µ)

d

dr

(
1

r2

d(r2F )

dr

)
= 0,

which reduces to

F ′′ +
2

r
F ′ − 2

r2
F = 0.

and admits solutions of the form

F (r) = C1r +
C2

r2
.

We now want to determine the constants C1 and C2 using the following boundary condi-
tions

σrr(Ro) = −po and σrr(Ri) = −pi.

From Equation (B.31), we get

εrr =
∂ur

∂r
= C1 −

2C2

r3
,

εθθ =
1

r
ur = C1 +

C2

r3
,

and

εφφ =
1

r
ur = C1 +

C2

r3
,

such that (using Equation (B.30))

σrr = (λ+ 2µ)εrr + λεθθ + λεφφ

= (λ+ 2µ)

(
C1 −

2C2

r3

)
+ 2λ

(
C1 +

C2

r3

)

= (3λ+ 2µ)C1 −
4µ

r3
C2.
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Hence, we must solve

(3λ+ 2µ)C1 −
4µ

R3
o

C2 = −po

(3λ+ 2µ)C1 −
4µ

R3
i

C2 = −pi,

which yields

C1 =
R3

i pi −R3
opo

(3λ+ 2µ)(R3
o −R3

i )
and C2 =

1

4

R3
iR

3
o(pi − po)

µ(R3
o −R3

i )
.

The full determined solution is thus

ur(r) =
1

R3
o −R3

i

(
R3

i pi −R3
opo

3λ+ 2µ
r +

1

4

R3
iR

3
o(pi − po)

µr2

)
.

with the following stress �eld

σrr =
1

R3
o −R3

i

(
R3

iR
3
o(po − pi)

r3
+R3

i pi −R3
opo

)

σθθ =
1

2

1

R3
o −R3

i

(
R3

iR
3
o(pi − po)

r3
+ 2R3

i pi − 2R3
opo

)

σφφ =
1

2

1

R3
o −R3

i

(
R3

iR
3
o(pi − po)

r3
+ 2R3

i pi − 2R3
opo

)

σθφ = 0

σrφ = 0

σrθ = 0.

C.6.2 The dynamic case

Recall from Equation (C.4) that the dynamic case of the linear elasticity problem is given
by

µ∆u+ (λ+ µ)∇(∇ · u) + ρsω
2u = 0.

The r-component of this equation is now given by

µ

(
1

r2

∂

∂r

(
r2∂ur

∂r

)
− 2

r2
ur

)
+ (λ+ µ)

∂

∂r

(
1

r2

∂(r2ur)

∂r

)
+ ρsω

2ur = 0. (C.17)

Let now F (r) = ur. Then

µ

(
1

r2

d

dr

(
r2F ′

)
− 2

r2
F

)
+ (λ+ µ)

d

dr

(
1

r2

d(r2F )

dr

)
+ ρsω

2F = 0,

which reduces to

F ′′ +
2

r
F ′ +

(
ρsω

2 − 2

r2

)
F = 0.

Using a simple scaling (with x =
√
rhosωr) this is actually the spherical Bessel equation

(with n = 1). The solution is thus

F (r) = C1j1(
√
ρsωr) + C2y1(

√
ρsωr).
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We now want to determine the constants C1 and C2 using the following boundary condi-
tions

σrr(Ro) = −po and σrr(Ri) = −pi.

From Equation (B.31), we get

εrr =
∂ur

∂r
= C1

√
ρsωj

′
1(
√
ρsωr) + C2

√
ρsωy

′
1(
√
ρsωr),

εθθ =
1

r
ur =

C1

r
j1(
√
ρsωr) +

C2

r
y1(
√
ρsωr),

and

εφφ =
1

r
ur =

C1

r
j1(
√
ρsωr) +

C2

r
y1(
√
ρsωr),

such that (using Equation (B.30))

σrr = (λ+ 2µ)εrr + λεθθ + λεφφ

= (λ+ 2µ) (C1
√
ρsωj

′
1(
√
ρsωr) + C2

√
ρsωy

′
1(
√
ρsωr))

+ 2λ

(
C1

r
j1(
√
ρsωr) +

C2

r
y1(
√
ρsωr)

)

=

[
(λ+ 2µ)

√
ρsωj

′
1(
√
ρsωr) +

2λ

r
j1(
√
ρsωr)

]
C1

+

[
(λ+ 2µ)

√
ρsωy

′
1(
√
ρsωr) +

2λ

r
y1(
√
ρsωr)

]
C2.

Hence, we must solve
[
(λ+ 2µ)

√
ρsωj

′
1(
√
ρsωRo) +

2λ

Ro

j1(
√
ρsωRo)

]
C1

+

[
(λ+ 2µ)

√
ρsωy

′
1(
√
ρsωRo) +

2λ

Ro

y1(
√
ρsωRo)

]
C2 = −po

[
(λ+ 2µ)

√
ρsωj

′
1(
√
ρsωRi) +

2λ

Ri

j1(
√
ρsωRi)

]
C1

+

[
(λ+ 2µ)

√
ρsωy

′
1(
√
ρsωRi) +

2λ

Ri

y1(
√
ρsωRi)

]
C2 = −pi.

for the constants C1 and C2. For brevity we write the full solution as

ur(r) = C1j1(
√
ρsωr) + C2y1(

√
ρsωr).

with the following stress �eld

σrr = (λ+ 2µ)
√
ρsω (C1j

′
1(
√
ρsωr) + C2y

′
1(
√
ρsωr)) +

2λ
(
C1j1(

√
ρsωr) + C2y1(

√
ρsωr)

)

r

σθθ = λ
√
ρsω (C1j

′
1(
√
ρsωr) + C2y

′
1(
√
ρsωr)) +

(2λ+ 2µ)
(
C1j1(

√
ρsωr) + C2y1(

√
ρsωr)

)

r

σφφ = λ
√
ρsω (C1j

′
1(
√
ρsωr) + C2y

′
1(
√
ρsωr)) +

(2λ+ 2µ)
(
C1j1(

√
ρsωr) + C2y1(

√
ρsωr)

)

r
σθφ = 0

σrφ = 0

σrθ = 0.





Appendix D

Data for NURBS geometries

In this appendix the data for NURBS volumes will be presented. For consistency we shall
always let ζ run through the thickness of the geometries. We often place axisymmetric
objects along the z-axis, but as some models are initially aligned with another axis (for
instance model 3), we shall use this convention for consistency. In the analysis of in�nite
elements using prolate spheroidal coordinate system, one needs to have the object aligned
with the z-axis. This is done by a simple transformation in the physical coordinates. In
Figure D.3, some additional geometries are depicted. As the analysis of these cases have
been omitted from the thesis, so has the data sets. The data sets may be given on request.

D.1 Solid cylinder

A cylinder with inner radius Ri, outer radius Ro and length L may be represented by
NURBS with knot vectors tabulated in Table D.1 and control points tabulated in Ta-
ble D.2. Note that we let the length of the cylinder be aligned with the z-axis. An
example of this generic geometry is illustrated in Figure D.1a.

D.2 Quarter of a hemisphere

A quarter of a hemisphere with inner radius Ri and outer radius Ro may be represented
by NURBS with knot vectors tabulated in Table D.3 and control points tabulated in
Table D.4. The singularity points (of the mapping) is placed on the z-axis such that ξ
traverses the azimuth angle and η traverses the polar angle. An example of this generic
geometry is illustrated in Figure D.1b.

Table D.1: Solid cylinder: Knot vectors.

Direction Order Knot vector
ξ p = 2 Ξ = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4}
η q = 1 H = {0, 0, 1, 1}
ζ r = 1 Z = {0, 0, 1, 1}
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(a) Solid cylinder: Ri = 1, Ro = 2 and

L = 5.

(b) Quarter of a hemisphere: Ri = 9.96
and Ro = 10.04.

(c) Quarter of a cylinder: Ri = 298.5,
Ro = 301.5 and L = 600/2.

(d) Spherical shell: Ri = 4.925 and Ro =
5.075.

(e) Parametrization 1 of circular plate:

R = 2 and t = 0.3.
(f) Parametrization 2 of circular plate:

R = 2 and t = 0.3.

Figure D.1: NURBS geometries.
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(a) Ellipsoid: cx = 4, cy = 1 and cz = 2.

(b) BeTSSi Model 1: L = 40, t = 0.02 and Ro = 3.

(c) BeTSSi Model 3: L = 41, t = 0.008, Ro1 = 5 and Ro2 = 3.

Figure D.2: NURBS geometries.



164 Data for NURBS geometries

(a) A torus.

(b) The �Horse shoe�.

(c) A wine glass.

Figure D.3: NURBS geometries.
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Table D.2: Solid cylinder: Control points and weights.

i j P i,j,1 P i,j,2 wi,j,1 wi,j,2
1 1 (Ri, 0, 0) (Ro, 0, 0) 1 1

2 1 (Ri, Ri, 0) (Ro, Ro, 0) 1/
√

2 1/
√

2
3 1 (0, Ri, 0) (0, Ro, 0) 1 1

4 1 (−Ri, Ri, 0) (−Ro, Ro, 0) 1/
√

2 1/
√

2
5 1 (−Ri, 0, 0) (−Ro, 0, 0) 1 1

6 1 (−Ri,−Ri, 0) (−Ro,−Ro, 0) 1/
√

2 1/
√

2
7 1 (0,−Ri, 0) (0,−Ro, 0) 1 1

8 1 (Ri,−Ri, 0) (Ro,−Ro, 0) 1/
√

2 1/
√

2
9 1 (Ri, 0, 0) (Ro, 0, 0) 1 1
1 2 (Ri, 0, L) (Ro, 0, L) 1 1

2 2 (Ri, Ri, L) (Ro, Ro, L) 1/
√

2 1/
√

2
3 2 (0, Ri, L) (0, Ro, L) 1 1

4 2 (−Ri, Ri, L) (−Ro, Ro, L) 1/
√

2 1/
√

2
5 2 (−Ri, 0, L) (−Ro, 0, L) 1 1

6 2 (−Ri,−Ri, L) (−Ro,−Ro, L) 1/
√

2 1/
√

2
7 2 (0,−Ri, L) (0,−Ro, L) 1 1

8 2 (Ri,−Ri, L) (Ro,−Ro, L) 1/
√

2 1/
√

2
9 2 (Ri, 0, L) (Ro, 0, L) 1 1

Table D.3: Quarter of a hemisphere: Knot vectors.

Direction Order Knot vector
ξ p = 2 Ξ = {0, 0, 0, 1, 1, 1}
η q = 2 H = {0, 0, 0, 1, 1, 1}
ζ r = 1 Z = {0, 0, 1, 1}

Table D.4: Quarter of a hemisphere: Control points and weights.

i j P i,j,1 P i,j,2 wi,j,1 wi,j,2
1 1 (Ri, 0, 0) (Ro, 0, 0) 1 1

2 1 (Ri, Ri, 0) (Ro, Ro, 0) 1/
√

2 1/
√

2
3 1 (0, Ri, 0) (0, Ro, 0) 1 1

1 2 (Ri, 0, Ri) (Ro, 0, Ro) 1/
√

2 1/
√

2
2 2 (Ri, Ri, Ri) (Ro, Ro, Ro) 1/2 1/2

3 2 (0, Ri, Ri) (0, Ro, Ro) 1/
√

2 1/
√

2
1 3 (0, 0, Ri) (0, 0, Ro) 1 1

2 3 (0, 0, Ri) (0, 0, Ro) 1/
√

2 1/
√

2
3 3 (0, 0, Ri) (0, 0, Ro) 1 1
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Table D.5: Part of a cylinder: Knot vectors.

Direction Order Knot vector
ξ p = 2 Ξ = {0, 0, 0, 1, 1, 1}
η q = 1 H = {0, 0, 1, 1}
ζ r = 1 Z = {0, 0, 1, 1}

Table D.6: Part of a cylinder: Control points and weights.

i j P i,j,1 P i,j,2 wi,j,1 wi,j,2
1 1 (xi1, 0, zi1) (xo1, 0, zo1) 1 1
2 1 (xi2, 0, zi2) (xo1, 0, zo2) w w
3 1 (xi3, 0, zi3) (xo1, 0, zo3) 1 1
1 2 (xi1, L, zi1) (xo1, L, zo1) 1 1
2 2 (xi2, L, zi2) (xo1, L, zo2) w w
3 2 (xi3, L, zi3) (xo1, L, zo3) 1 1

D.3 Part of a cylinder

A part of a cylinder which spans the polar angles [θ, θ+φ] of a cylinder with inner radius
Ri, outer radius Ro and length L may be represented by NURBS with knot vectors
tabulated in Table D.5 and control points tabulated in Table D.6. The parametrization
starts at the polar angle θ and ends at θ + φ. The following notations has been used

xi1 = Ri cos θ, xi2 = Ri

(
cos θ − sin θ tan

φ

2

)
, xi3 = −Ri cos(φ+ θ)

xo1 = Ro cos θ, xo2 = Ro

(
cos θ − sin θ tan

φ

2

)
, xo3 = −Ro cos(φ+ θ)

zi1 = Ri sin θ, zi2 = Ri

(
sin θ + cos θ tan

φ

2

)
, zi3 = Ri sin(φ+ θ)

zo1 = Ro sin θ, zo2 = Ro

(
sin θ + cos θ tan

φ

2

)
, zo3 = Ro sin(φ+ θ)

and the nontrivial weight is calculated by

w = cos
φ

2
.

Note that we let the length of the cylinder be aligned with the y-axis. An example of
this generic geometry is illustrated in Figure D.1c where φ = π

2
and θ = 0.

D.4 Circular plate

A circular plate with radius R and thickness t may be represented by NURBS with
knot vectors tabulated in Table D.7 and control points tabulated in Table D.10 (refered
to as parametrization 1). An other parametrization of the same geometry has knot
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Table D.7: Circular plate parametrization 1: Knot vectors.

Direction Order Knot vector
ξ p = 2 Ξ = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4}
η q = 1 H = {0, 0, 1, 1}
ζ r = 1 Z = {0, 0, 1, 1}

Table D.8: Circular plate parametrization 1: Control points and weights.

i j P i,j,1 P i,j,2 wi,j,1 wi,j,2
1 1 (0, 0, 0) (0, 0, t) 1 1

2 1 (0, 0, 0) (0, 0, t) 1/
√

2 1/
√

2
3 1 (0, 0, 0) (0, 0, t) 1 1

4 1 (0, 0, 0) (0, 0, t) 1/
√

2 1/
√

2
5 1 (0, 0, 0) (0, 0, t) 1 1

6 1 (0, 0, 0) (0, 0, t) 1/
√

2 1/
√

2
7 1 (0, 0, 0) (0, 0, t) 1 1

8 1 (0, 0, 0) (0, 0, t) 1/
√

2 1/
√

2
9 1 (0, 0, 0) (0, 0, t) 1 1
1 2 (R, 0, 0) (R, 0, t) 1 1

2 2 (R,R, 0) (R,R, t) 1/
√

2 1/
√

2
3 2 (0, R, 0) (0, R, t) 1 1

4 2 (−R,R, 0) (−R,R, t) 1/
√

2 1/
√

2
5 2 (−R, 0, 0) (−R, 0, t) 1 1

6 2 (−R,−R, 0) (−R,−R, t) 1/
√

2 1/
√

2
7 2 (0,−R, 0) (0,−R, t) 1 1

8 2 (R,−R, 0) (R,−R, t) 1/
√

2 1/
√

2
9 2 (R, 0, 0) (R, 0, t) 1 1

vectors tabulated in Table D.9 and control points tabulated in Table D.8 (refered to
as parametrization 2). From the second parametrization we see that such a plate (or
the topological identical cylinder) may be reprecented by one NURBS element. Note
that we let the thickness of the disk be aligned with the z-axis. Also note that (for
visualization purposes) the knot η = 0.5 has been inserted in Figure D.1e and the knots
ξ = 0.25, 0.5, 0.75 and η = 0.25, 0.5, 0.75 has been inserted in Figure D.1f. A central
di�erence between these two parametrizations is the location of the singularity of the
mapping. In parametrization 1, there is singularities along the axisymmetric axis, while
the singularities of the second parametrization is located at the four combinations of
ξ = 0, 1 and η = 0, 1.

Table D.9: Circular plate parametrization 2: Knot vectors.

Direction Order Knot vector
ξ p = 2 Ξ = {0, 0, 0, 1, 1, 1}
η q = 2 H = {0, 0, 0, 1, 1, 1}
ζ r = 1 Z = {0, 0, 1, 1}
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Table D.10: Circular plate parametrization 2: Control points and weights.

i j P i,j,1 P i,j,2 wi,j,1 wi,j,2
1 1 (R, 0, 0) (R, 0, t) 1 1

2 1 (R,−R, 0) (R,−R, t) 1/
√

2 1/
√

2
3 1 (0,−R, 0) (0,−R, t) 1 1

1 2 (R,R, 0) (R,R, t) 1/
√

2 1/
√

2

2 2 (0, 0, 0) (0, 0, t)
√

2− 1
√

2− 1

3 2 (−R,−R, 0) (−R,−R, t) 1/
√

2 1/
√

2
1 3 (0, R, 0) (0, R, t) 1 1

2 3 (−R,R, 0) (−R,R, t) 1/
√

2 1/
√

2
3 3 (−R, 0, 0) (−R, 0, t) 1 1

Table D.11: Spherical shell: Knot vectors.

Direction Order Knot vector
ξ p = 2 Ξ = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4}
η q = 2 H = {0, 0, 0, 1, 1, 2, 2, 2}
ζ r = 1 Z = {0, 0, 1, 1}

D.5 Spherical shell

A spherical shell with inner radius Ri and outer radius Ro may be represented by NURBS
with knot vectors tabulated in Table D.11 and control points tabulated in Table D.12.
The singularity points (of the mapping) is placed on the x-axis such that ξ traverses
around this x-axis and η traverses around the y-axis. Since ξ traverses angles from 0 to
2π, η only need to traverse angles from 0 to π (and not 2π). An example of this generic
geometry is illustrated in Figure D.1d.

Table D.12: Spherical shell: Control points and weights.

i j P i,j,1 P i,j,2 wi,j,1 wi,j,2
1 1 (−Ri, 0, 0) (−Ro, 0, 0) 1 1

2 1 (−Ri, 0, 0) (−Ro, 0, 0) 1/
√

2 1/
√

2
3 1 (−Ri, 0, 0) (−Ro, 0, 0) 1 1

4 1 (−Ri, 0, 0) (−Ro, 0, 0) 1/
√

2 1/
√

2
5 1 (−Ri, 0, 0) (−Ro, 0, 0) 1 1

6 1 (−Ri, 0, 0) (−Ro, 0, 0) 1/
√

2 1/
√

2
7 1 (−Ri, 0, 0) (−Ro, 0, 0) 1 1

8 1 (−Ri, 0, 0) (−Ro, 0, 0) 1/
√

2 1/
√

2
9 1 (−Ri, 0, 0) (−Ro, 0, 0) 1 1

1 2 (−Ri, Ri, 0) (−Ro, Ro, 0) 1/
√

2 1/
√

2
2 2 (−Ri, Ri, Ri) (−Ro, Ro, Ro) 1/2 1/2

3 2 (−Ri, 0, Ri) (−Ro, 0, Ro) 1/
√

2 1/
√

2
4 2 (−Ri,−Ri, Ri) (−Ro,−Ro, Ro) 1/2 1/2

5 2 (−Ri,−Ri, 0) (−Ro,−Ro, 0) 1/
√

2 1/
√

2
Continued on next page
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Table D.12 � continued from previous page

i j P i,j,1 P i,j,2 wi,j,1 wi,j,2
6 2 (−Ri,−Ri,−Ri) (−Ro,−Ro,−Ro) 1/2 1/2

7 2 (−Ri, 0,−Ri) (−Ro, 0,−Ro) 1/
√

2 1/
√

2
8 2 (−Ri, Ri,−Ri) (−Ro, Ro,−Ro) 1/2 1/2

9 2 (−Ri, Ri, 0) (−Ro, Ro, 0) 1/
√

2 1/
√

2
1 3 (0, Ri, 0) (0, Ro, 0) 1 1

2 3 (0, Ri, Ri) (0, Ro, Ro) 1/
√

2 1/
√

2
3 3 (0, 0, Ri) (0, 0, Ro) 1 1

4 3 (0,−Ri, Ri) (0,−Ro, Ro) 1/
√

2 1/
√

2
5 3 (0,−Ri, 0) (0,−Ro, 0) 1 1

6 3 (0,−Ri,−Ri) (0,−Ro,−Ro) 1/
√

2 1/
√

2
7 3 (0, 0,−Ri) (0, 0,−Ro) 1 1

8 3 (0, Ri,−Ri) (0, Ro,−Ro) 1/
√

2 1/
√

2
9 3 (0, Ri, 0) (0, Ro, 0) 1 1

1 4 (Ri, Ri, 0) (Ro, Ro, 0) 1/
√

2 1/
√

2
2 4 (Ri, Ri, Ri) (Ro, Ro, Ro) 1/2 1/2

3 4 (Ri, 0, Ri) (Ro, 0, Ro) 1/
√

2 1/
√

2
4 4 (Ri,−Ri, Ri) (Ro,−Ro, Ro) 1/2 1/2

5 4 (Ri,−Ri, 0) (Ro,−Ro, 0) 1/
√

2 1/
√

2
6 4 (Ri,−Ri,−Ri) (Ro,−Ro,−Ro) 1/2 1/2

7 4 (Ri, 0,−Ri) (Ro, 0,−Ro) 1/
√

2 1/
√

2
8 4 (Ri, Ri,−Ri) (Ro, Ro,−Ro) 1/2 1/2

9 4 (Ri, Ri, 0) (Ro, Ro, 0) 1/
√

2 1/
√

2
1 5 (Ri, 0, 0) (Ro, 0, 0) 1 1

2 5 (Ri, 0, 0) (Ro, 0, 0) 1/
√

2 1/
√

2
3 5 (Ri, 0, 0) (Ro, 0, 0) 1 1

4 5 (Ri, 0, 0) (Ro, 0, 0) 1/
√

2 1/
√

2
5 5 (Ri, 0, 0) (Ro, 0, 0) 1 1

6 5 (Ri, 0, 0) (Ro, 0, 0) 1/
√

2 1/
√

2
7 5 (Ri, 0, 0) (Ro, 0, 0) 1 1

8 5 (Ri, 0, 0) (Ro, 0, 0) 1/
√

2 1/
√

2
9 5 (Ri, 0, 0) (Ro, 0, 0) 1 1

D.6 Ellipsoid

An ellipsoid (surface) with semi principle axes cx, cy and cz may be represented by NURBS
with knot vectors tabulated in Table D.13 and control points tabulated in Table D.14.

The singularity points (of the mapping) is placed on the z-axis such that ξ traverses
around this z-axis and η traverses around the y-axis. Since ξ traverses angles from 0 to
2π, η only need to traverse angles from 0 to π (and not 2π). An example of this generic
geometry is illustrated in Figure D.1d.
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Table D.13: Ellipsoid: Knot vectors.

Direction Order Knot vector
ξ p = 2 Ξ = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4}
η q = 2 H = {0, 0, 0, 1, 1, 2, 2, 2}

It should be noted that when prolate spheroids are considered, we shall use cx = cy such
that the spheroid is aligned with the z-axis. Moreover, the parameter ξ will resemble the
azimuth angle φ while the parameter η will resemble the polar angle θ (but will travel in
the opposite direction).

It is also possible to create an ellipsoid with only three elements in η-direction (but no
further reduction in the number of elements in this direction). It would then be possible
to construct a more suited parametrization for the prolate spheroid when analyzing model
1. As this model was not analyzed in the thesis this parametrization has been omitted.

Table D.14: Ellipsoid: Control points and weights.

i j P i,j wi,j
1 1 (0, 0,−cz) 1

2 1 (0, 0,−cz) 1/
√

2
3 1 (0, 0,−cz) 1

4 1 (0, 0,−cz) 1/
√

2
5 1 (0, 0,−cz) 1

6 1 (0, 0,−cz) 1/
√

2
7 1 (0, 0,−cz) 1

8 1 (0, 0,−cz) 1/
√

2
9 1 (0, 0,−cz) 1

1 2 (cx, 0,−cz) 1/
√

2
2 2 (cx, cy,−cz) 1/2

3 2 (0, cy,−cz) 1/
√

2
4 2 (−cx, cy,−cz) 1/2

5 2 (−cx, 0,−cz) 1/
√

2
6 2 (−cx,−cy,−cz) 1/2

7 2 (0,−cy,−cz) 1/
√

2
8 2 (cx,−cy,−cz) 1/2

9 2 (cx, 0,−cz) 1/
√

2
1 3 (cx, 0, 0) 1

2 3 (cx, cy, 0) 1/
√

2
3 3 (0, cy, 0) 1

4 3 (−cx, cy, 0) 1/
√

2
5 3 (−cx, 0, 0) 1

6 3 (−cx,−cy, 0) 1/
√

2
7 3 (0,−cy, 0) 1

8 3 (cx,−cy, 0) 1/
√

2
9 3 (cx, 0, 0) 1

1 4 (cx, 0, cz) 1/
√

2
Continued on next page



BeTSSi Model 1 171

Table D.14 � continued from previous page

i j P i,j wi,j
2 4 (cx, cy, cz) 1/2

3 4 (0, cy, cz) 1/
√

2
4 4 (−cx, cy, cz) 1/2

5 4 (−cx, 0, cz) 1/
√

2
6 4 (−cx,−cy, cz) 1/2

7 4 (0,−cy, cz) 1/
√

2
8 4 (cx,−cy, cz) 1/2

9 4 (cx, 0, cz) 1/
√

2
1 5 (0, 0, cz) 1

2 5 (0, 0, cz) 1/
√

2
3 5 (0, 0, cz) 1

4 5 (0, 0, cz) 1/
√

2
5 5 (0, 0, cz) 1

6 5 (0, 0, cz) 1/
√

2
7 5 (0, 0, cz) 1

8 5 (0, 0, cz) 1/
√

2
9 5 (0, 0, cz) 1

D.7 BeTSSi Model 1

BeTSSi Model 1 is de�ned with the following parameters: The outer radius of the hemi-
spherical endcap Ro, the thickness t and the distance between the endcap and the �at end
L1. This model may be represented by NURBS with knot vectors tabulated in Table D.15
and control points tabulated in Table D.16.

An example of this generic geometry is illustrated in Figure D.2b with parameters used
in the BeTSSi community.

The following notations has been used.

� Dependent parameters for the outer surface

y1 =
Ro

20
(8−

√
29)

z1 =
Ro

10
(2 +

√
29)

z2 = z1 −
y1

z1

(
3Ro

4
− y1

)

w1 = cos
θ1

2
, where θ1 = cos−1

(
4y1

3Ro

)

1In the BeTSSi description, L de�nes the total length of the model. We here choose this other
convention just for convenience.
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Table D.15: BeTSSi Model 1: Knot vectors.

Direction Order Knot vector
ξ p = 2 Ξ = {0, 0, 0, 1, 1, 2, 2, 3, 3, 3}
η q = 2 H = {0, 0, 0, η1, η1, η2, η2, 1, 1, 1}
ζ r = 1 Z = {0, 0, 1, 1}

� Dependent parameters for the inner surface

x1 =
√
R2

i − t2

x2 = x1 −
t

x1

(Ri − t)

z5 =
√
R2

i − t2

z6 = z5 −
t

z5

(Ri − t)

y4 =
1

2

(
Ro

2
+Ri

)

y3 =
−b−

√
b2 − 4ac

2a
, where a = 1 +

(
2z5

Ro − 2t

)2

, b = −Ro

(
2z5

Ro − 2t

)2

,

and c =
R2

o

4

(
2z5

Ro − 2t

)2

− y2
4

z3 =
√
y2

4 − y2
3

z4 = z3 −
y3

z3

(y4 − y3)

w2 = cos
θ2

2
, where θ2 = cos−1

(
y3

y4

)

w3 = cos
θ3

2
, where θ3 = cos−1

(
t

Ri

)
.

Table D.16: BeTSSi Model 1: Control points and weights.

i j P i,j,1 P i,j,2 wi,j,1 wi,j,2
1 1 (t− L,Ro/2, 0) (−L,Ro/2, 0) 1 1
2 1 (t− L,Ro/2, 0) (−L,Ro/2, 0) w2 w1

3 1 (t− L,Ro/2, 0) (−L,Ro/2, 0) 1 1
4 1 (t− L,Ro/2, 0) (−L,Ro/2, 0) 1 1
5 1 (t− L,Ro/2, 0) (−L,Ro/2, 0) 1 1
6 1 (t− L,Ro/2, 0) (−L,Ro/2, 0) w2 w1

7 1 (t− L,Ro/2, 0) (−L,Ro/2, 0) 1 1
1 2 (t− L, y4, 0) (−L, 3

4
Ro, 0) 1 1

2 2 (t− L, y4, z4) (−L, 3
4
Ro, z2) w2 w1

3 2 (t− L, y3, z3) (−L, y1, z1) 1 1
4 2 (t− L, y3, 0) (−L, y1, 0) 1 1

Continued on next page
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Table D.16 � continued from previous page

i j P i,j,1 P i,j,2 wi,j,1 wi,j,2
5 2 (t− L, y3,−z3) (−L, y1,−z1) 1 1
6 2 (t− L, y4,−z4) (−L, 3

4
Ro,−z2) w2 w1

7 2 (t− L, y4, 0) (−L, 3
4
Ro, 0) 1 1

1 3 (t− L,Ri, 0) (−L,Ro, 0) 1 1

2 3 (t− L,Ri, z6) (−L,Ro, Ro) w3 1/
√

2
3 3 (t− L, t, z5) (−L, 0, Ro) 1 1
4 3 (t− L, t, 0) (−L, 0, 0) 1 1
5 3 (t− L, t,−z5) (−L, 0,−Ro) 1 1

6 3 (t− L,Ri,−z6) (−L,Ro,−Ro) w3 1/
√

2
7 3 (t− L,Ri, 0) (−L,Ro, 0) 1 1
1 4 (−L/2, Ri, 0) (−L/2, Ro, 0) 1 1

2 4 (−L/2, Ri, z6) (−L/2, Ro, Ro) w3 1/
√

2
3 4 (−L/2, t, z5) (−L/2, 0, Ro) 1 1
4 4 (−L/2, t, 0) (−L/2, 0, 0) 1 1
5 4 (−L/2, t,−z5) (−L/2, 0,−Ro) 1 1

6 4 (−L/2, Ri,−z6) (−L/2, Ro,−Ro) w3 1/
√

2
7 4 (−L/2, Ri, 0) (−L/2, Ro, 0) 1 1
1 5 (0, Ri, 0) (0, Ro, 0) 1 1

2 5 (0, Ri, z6) (0, Ro, Ro) w3 1/
√

2
3 5 (0, t, z5) (0, 0, Ro) 1 1
4 5 (0, t, 0) (0, 0, 0) 1 1
5 5 (0, t,−z5) (0, 0,−Ro) 1 1

6 5 (0, Ri,−z6) (0, Ro,−Ro) w3 1/
√

2
7 5 (0, Ri, 0) (0, Ro, 0) 1 1

1 6 (x2, Ri, 0) (Ro, Ro, 0) w3 1/
√

2
2 6 (x2, Ri, z6) (Ro, Ro, Ro) w2

3 1/2

3 6 (x2, t, z5) (Ro, 0, Ro) w3 1/
√

2
4 6 (x2, t, 0) (Ro, 0, 0) w3 1

5 6 (x2, t,−z5) (Ro, 0,−Ro) w3 1/
√

2
6 6 (x2, Ri,−z6) (Ro, Ro,−Ro) w2

3 1/2

7 6 (x2, Ri, 0) (Ro, Ro, 0) w3 1/
√

2
1 7 (x1, t, 0) (Ro, 0, 0) 1 1

2 7 (x1, t, 0) (Ro, 0, 0) w3 1/
√

2
3 7 (x1, t, 0) (Ro, 0, 0) 1 1
4 7 (x1, t, 0) (Ro, 0, 0) 1 1
5 7 (x1, t, 0) (Ro, 0, 0) 1 1

6 7 (x1, t, 0) (Ro, 0, 0) w3 1/
√

2
7 7 (x1, t, 0) (Ro, 0, 0) 1 1
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Table D.17: BeTSSi Model 3: Knot vectors.

Direction Order Knot vector
ξ p = 2 Ξ = {0, 0, 0, 1, 1, 2, 2, 3, 3, 4, 4, 4}
η q = 2 H = {0, 0, 0, η1, η1, η2, η2, 1, 1, 1}
ζ r = 1 Z = {0, 0, 1, 1}

D.8 BeTSSi Model 3

BeTSSi Model 3 is de�ned with the following parameters: The outer radii of the hemi-
spherical endcaps Ro1 and Ro2, the thickness t and the distance between the endcaps L2.
This model may be represented by NURBS with knot vectors tabulated in Table D.17
and control points tabulated in Table D.18. The following notations has been used

Ri1 = Ro1 − t, Ri2 = Ro2 − t, Rim =
Ri1 +Ri2

2
, Rom =

Ro1 +Ro2

2
.

Note that the mock shell used in [3] is almost a special case of model 3 with Ro1 = Ro2.
The only di�erence would be that the mock shell has di�erent thickness in the hemispheres
and the cylinder while this model has uniform thickness. An example of this generic
geometry is illustrated in Figure D.2c with parameters used in the BeTSSi community.

Table D.18: BeTSSi Model 3: Control points and weights.

i j P i,j,1 P i,j,2 wi,j,1 wi,j,2
1 1 (−L−Ri1, 0, 0) (−L−Ro1, 0, 0) 1 1

2 1 (−L−Ri1, 0, 0) (−L−Ro1, 0, 0) 1/
√

2 1/
√

2
3 1 (−L−Ri1, 0, 0) (−L−Ro1, 0, 0) 1 1

4 1 (−L−Ri1, 0, 0) (−L−Ro1, 0, 0) 1/
√

2 1/
√

2
5 1 (−L−Ri1, 0, 0) (−L−Ro1, 0, 0) 1 1

6 1 (−L−Ri1, 0, 0) (−L−Ro1, 0, 0) 1/
√

2 1/
√

2
7 1 (−L−Ri1, 0, 0) (−L−Ro1, 0, 0) 1 1

8 1 (−L−Ri1, 0, 0) (−L−Ro1, 0, 0) 1/
√

2 1/
√

2
9 1 (−L−Ri1, 0, 0) (−L−Ro1, 0, 0) 1 1

1 2 (−L−Ri1, Ri1, 0) (−L−Ro1, Ro1, 0) 1/
√

2 1/
√

2
2 2 (−L−Ri1, Ri1, Ri1) (−L−Ro1, Ro1, Ro1) 1/2 1/2

3 2 (−L−Ri1, 0, Ri1) (−L−Ro1, 0, Ro1) 1/
√

2 1/
√

2
4 2 (−L−Ri1,−Ri1, Ri1) (−L−Ro1,−Ro1, Ro1) 1/2 1/2

5 2 (−L−Ri1,−Ri1, 0) (−L−Ro1,−Ro1, 0) 1/
√

2 1/
√

2
6 2 (−L−Ri1,−Ri1,−Ri1) (−L−Ro1,−Ro1,−Ro1) 1/2 1/2

7 2 (−L−Ri1, 0,−Ri1) (−L−Ro1, 0,−Ro1) 1/
√

2 1/
√

2
8 2 (−L−Ri1, Ri1,−Ri1) (−L−Ro1, Ro1,−Ro1) 1/2 1/2

9 2 (−L−Ri1, Ri1, 0) (−L−Ro1, Ro1, 0) 1/
√

2 1/
√

2
1 3 (−L,Ri1, 0) (−L,Ro1, 0) 1 1

2 3 (−L,Ri1, Ri1) (−L,Ro1, Ro1) 1/
√

2 1/
√

2
Continued on next page

2In the BeTSSi description, L de�nes the total length of the model. We here choose this other
convention just for convenience.
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Table D.18 � continued from previous page

i j P i,j,1 P i,j,2 wi,j,1 wi,j,2
3 3 (−L, 0, Ri1) (−L, 0, Ro1) 1 1

4 3 (−L,−Ri1, Ri1) (−L,−Ro1, Ro1) 1/
√

2 1/
√

2
5 3 (−L,−Ri1, 0) (−L,−Ro1, 0) 1 1

6 3 (−L,−Ri1,−Ri1) (−L,−Ro1,−Ro1) 1/
√

2 1/
√

2
7 3 (−L, 0,−Ri1) (−L, 0,−Ro1) 1 1

8 3 (−L,Ri1,−Ri1) (−L,Ro1,−Ro1) 1/
√

2 1/
√

2
9 3 (−L,Ri1, 0) (−L,Ro1, 0) 1 1
1 4 (−L/2, Rim, 0) (−L,Rom, 0) 1 1

2 4 (−L/2, Rim, Rim) (−L,Rom, Rom) 1/
√

2 1/
√

2
3 4 (−L/2, 0, Rim) (−L, 0, Rom) 1 1

4 4 (−L/2,−Rim, Rim) (−L,−Rom, Rom) 1/
√

2 1/
√

2
5 4 (−L/2,−Rim, 0) (−L,−Rom, 0) 1 1

6 4 (−L/2,−Rim,−Rim) (−L,−Rom,−Rom) 1/
√

2 1/
√

2
7 4 (−L/2, 0,−Rim) (−L, 0,−Rom) 1 1

8 4 (−L/2, Rim,−Rim) (−L,Rom,−Rom) 1/
√

2 1/
√

2
9 4 (−L/2, Rim, 0) (−L,Rom, 0) 1 1
1 5 (0, Ri2, 0) (−L,Ro2, 0) 1 1

2 5 (0, Ri2, Ri2) (−L,Ro2, Ro2) 1/
√

2 1/
√

2
3 5 (0, 0, Ri2) (−L, 0, Ro2) 1 1

4 5 (0,−Ri2, Ri2) (−L,−Ro2, Ro2) 1/
√

2 1/
√

2
5 5 (0,−Ri2, 0) (−L,−Ro2, 0) 1 1

6 5 (0,−Ri2,−Ri2) (−L,−Ro2,−Ro2) 1/
√

2 1/
√

2
7 5 (0, 0,−Ri2) (−L, 0,−Ro2) 1 1

8 5 (0, Ri2,−Ri2) (−L,Ro2,−Ro2) 1/
√

2 1/
√

2
9 5 (0, Ri2, 0) (−L,Ro2, 0) 1 1

1 6 (Ri2, Ri2, 0) (Ro2, Ro2, 0) 1/
√

2 1/
√

2
2 6 (Ri2, Ri2, Ri2) (Ro2, Ro2, Ro2) 1/2 1/2

3 6 (Ri2, 0, Ri2) (Ro2, 0, Ro2) 1/
√

2 1/
√

2
4 6 (Ri2,−Ri2, Ri2) (Ro2,−Ro2, Ro2) 1/2 1/2

5 6 (Ri2,−Ri2, 0) (Ro2,−Ro2, 0) 1/
√

2 1/
√

2
6 6 (Ri2,−Ri2,−Ri2) (Ro2,−Ro2,−Ro2) 1/2 1/2

7 6 (Ri2, 0,−Ri2) (Ro2, 0,−Ro2) 1/
√

2 1/
√

2
8 6 (Ri2, Ri2,−Ri2) (Ro2, Ro2,−Ro2) 1/2 1/2

9 6 (Ri2, Ri2, 0) (Ro2, Ro2, 0) 1/
√

2 1/
√

2
1 7 (Ri2, 0, 0) (Ro2, 0, 0) 1 1

2 7 (Ri2, 0, 0) (Ro2, 0, 0) 1/
√

2 1/
√

2
3 7 (Ri2, 0, 0) (Ro2, 0, 0) 1 1

4 7 (Ri2, 0, 0) (Ro2, 0, 0) 1/
√

2 1/
√

2
5 7 (Ri2, 0, 0) (Ro2, 0, 0) 1 1

6 7 (Ri2, 0, 0) (Ro2, 0, 0) 1/
√

2 1/
√

2
7 7 (Ri2, 0, 0) (Ro2, 0, 0) 1 1

8 7 (Ri2, 0, 0) (Ro2, 0, 0) 1/
√

2 1/
√

2
9 7 (Ri2, 0, 0) (Ro2, 0, 0) 1 1





Appendix E

Source code

The complete source code is far to comprehensive to be included in this thesis. However,
we shall present the implementation of the NURBS routine in some detail as this is a
fundamental function of the analysis. In addition we add the routine which create global
matrices. We shall here not go into details. The source code, alongside instruction of
how to use, may be given on request.

E.1 B-spline implementation

When we want to evaluate a B-spline at a �xed ξ it is important to note that it is very
redundant to evaluate all n basis function. This is due to the small support of each
function. In fact, it turns out that only (at most) p+ 1 basis functions are non-zero at ξ.
It is then important to only use these function to have an e�cient code. One typically
implements a function which �nds the knot span corresponding to a given ξ. Due to the
ordering of the knot vector, we may use a binary search algorithm for �nding this span.
The span will be de�ned by the index i corresponding to the last basis function which is
non-zero at ξ. The following listing represents the algorithm called findKnotSpan and
is listed in Listing E.1.

As an example, if p = 2 and n = 8 and we want to evaluate a B-spline with the knot
vector Ξ = {0, 0, 0, 0.1, 0.5, 0.5, 0.8, 0.9, 1, 1, 1}, we get the index i = 3 if ξ = 0.09, i = 6
if ξ = 0.5 and i = n = 8 if ξ = 0.9 or ξ = 1.

We are now ready to implement a program which evaluates B-splines using the previous
routine. When the recursion formula is used to evaluate the p + 1 functions which are
non-zero at ξ, the function Ni,0 is the only function of order zero which is non-zero at ξ.
Everything is thus build from this function, such that we get the graph in Figure E.1.

It is then clear that we need two loops. The outer loop should iterate over the columns
of this graph and the inner loop should iterate over the rows. The output of the function
Bspline_basis is simply an array N which contains the p + 1 functions which are
evaluated at ξ. To save memory one should also store the intermediate values Ni−j+k,j−1

in this same array. Thus, we need to store N(k−1) to compute N(k) (which we store
in the variable saved). Here, j is the loop index of the outer loop, while k is the loop
index of the inner loop. The �rst iteration (when p = 0) should be done separate.

177
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Ni,0 Ni−1,1 Ni−2,2 · · · Ni−p+1,p−1 Ni−p,p

Ni,1 Ni−1,2 · · · Ni−p+2,p−1 Ni−p+1,p

Ni,2 · · · Ni−p+3,p−1 Ni−p+2,p

.

.

.

.

.

.

.

.

.

Ni,p−1 Ni−1,p

Ni,p

Figure E.1: B-splines evaluation graph when the p+1 non-zero basis functions are to be
evaluated at a given ξ. The values colored red is used to calculate the nonzero derivatives
at the same ξ.

We will �nally need to compute the corresponding derivatives. Once again, only p + 1
derivatives will be nonzero at ξ. Let N_tilde be an array containing the red values in
the previous graph. The full function is found in Listing E.2.

E.2 NURBS implementation

We may now insert all of this into a routine which computes the nonzero NURBS ba-
sis functions at a given point (ξ, η, ζ) and the corresponding nonzero derivatives. This
function is called NURBS3DBasisDers. After �nding the nonzero B-spline functions
and their corresponding derivatives as discussed above, it continues by �rst �nding the
function W and its corresponding derivatives.

Note the use of the index A which is convenient when weights is located in an long array
(which is the format we shall use when doing the IGA analysis). Finally, the function
can now compute the NURBS basis alongside the corresponding derivatives.

Note the use of the intermediate variables fac and NML which is used to avoid redundant
computations. The index counter loops over the nen = (p+ 1) · (q+ 1) · (r+ 1) nonzero
functions. The full function is found in Listing E.3.

E.3 Building global matrices

The function buildGlobalMatrices builds any �uid or solid matrix used in this
thesis. When dynamics is considered, the mass matrix will also be computed. Finally,
if any bodyforces are applied, a corresponding loading vector will be constructed. As
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an example of use, consider any analysis concerning �nding eigenvalues for elasticity
problems. Then we use the function as follows.

options = {'operator', 'linearElasticity',...
'fieldDimension', 3,...
'buildMassMatrix', 1};

[K, M, ~] = buildGlobalMatrices(varCol, options);

The partial di�erential equation resulting in the global matrix is the linear elasticity
equation. Hence, we set 'operator' to be 'linearElasticity'. If the Helmholtz
equation was to be solved, the 'operator' is set to be 'Laplace'. The option
'fieldDimension' is only added for generality if other operators where to be imple-
mented. Indeed, the solution for the linear elasticity operator is always vector valued (in
2D/3D), while the solution for the Laplace operator is scalar valued. Finally, we ask the
function to build the mass matrix, as eigenvalues concerns with dynamics. The struct
varCol simply collects all variables associated with the NURBS mesh. The full function
is listed in Listing E.4

Listing E.1: findKnotSpan.m

function i = findKnotSpan(n, p, xi, Xi)
% This routine finds the knot span corresponding to a given value xi.
% The method uses a sequencial search algorithm

% Input
% n: the number of control points
% p: the degree of the B−Spline
% xi: the value for which we want to find the knot span
% Xi: an open knot vector of size n+p+1

% Output
% i: index of knot such that xi is an element in [Xi(i) Xi(i+1))

% Check for xi = Xi(end)
if xi == Xi(end)

i = n;
return;

end

low = p;
high = n + 1;
mid = floor((low + high) / 2);
while xi < Xi(mid) || xi >= Xi(mid+1)

if xi < Xi(mid)
high = mid;

else
low = mid;

end
mid = floor((low + high) / 2);

end

i = mid;
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Listing E.2: Bspline_basisDers.m

function [N, dNdxi] = Bspline_basisDers(i, xi, p, Xi)
% This routine compute the p+1 nonzero basis functions and corresponding
% derivatives at xi

% Input
% i: knot span index corresonding to xi
% p: the degree of the B−Spline/NURBS
% xi: the value for which we want to evaluate the Bspline
% Xi: an open knot vector of size n+p+1

% Output
% N: array of the p+1 B−spline functions evaluated at xi

N = zeros(1,p+1);
N(1) = 1;
saved = 1;

for j = 2:p+1
% For k = 1 there is no dependence on N(k−1) of the previous run.
for k = 1:j

% Compute N_{i−j+k,j−1} according to the Cox−deBoor formula
temp = 0;
if k ~= j

temp = (Xi(i+k)−xi)/(Xi(i+k)−Xi(i−j+k+1))*N(k);
end
if k ~= 1

temp = temp + (xi−Xi(i−j+k))/(Xi(i+k−1)−Xi(i−j+k))*saved;
end
saved = N(k);
N(k) = temp;

end
if j == p

N_tilde = N(1:end−1);
end

end
if p == 1

N_tilde = 1;
end

dNdxi = zeros(1,p+1);
dNdxi(1:p) = −p*N_tilde./(Xi(i+1:i+p)−Xi(i−p+1:i));
dNdxi(2:p+1) = dNdxi(2:p+1) + p*N_tilde./(Xi(i+1:i+p)−Xi(i+1−p:i));

Listing E.3: NURBS3DBasis.m

function [R, dRdxi, dRdeta, dRdzeta] = NURBS3DBasis(xi, eta, zeta, ...
p, q, r, Xi, Eta, Zeta, weights)

% This routine compute the (p+1)(q+1)(r+1) nonzero NURBS functions
% and corresponding derivatives at (xi, eta, zeta)

% Input
% (xi,eta,zeta): evaluation point
% p,q,r: NURBS degrees
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% Xi, Eta, Zeta: knot vectors
% weights: NURBS weights

% Output
% R, dRdxi, dRdeta, dRdzeta: array of the (p+1)(q+1)(r+1) NURBS
% functions and its derivativeswhich
% are nonzero at (xi,eta,zeta)

n = length(Xi) − (p+1);
m = length(Eta) − (q+1);
l = length(Zeta) − (r+1);

i1 = findKnotSpan(n, p, xi, Xi);
i2 = findKnotSpan(m, q, eta, Eta);
i3 = findKnotSpan(l, r, zeta, Zeta);

[N, dNdxi] = Bspline_basisDers(i1, xi, p, Xi);
[M, dMdeta] = Bspline_basisDers(i2, eta, q, Eta);
[L, dLdzeta] = Bspline_basisDers(i3, zeta, r, Zeta);

R = zeros(1, (p+1)*(q+1)*(r+1));
dRdxi = zeros(1, (p+1)*(q+1)*(r+1));
dRdeta = zeros(1, (p+1)*(q+1)*(r+1));
dRdzeta = zeros(1, (p+1)*(q+1)*(r+1));

W = 0;
dWdxi = 0;
dWdeta = 0;
dWdzeta = 0;

for k3 = 1:r+1
A3 = i3 − r + k3 − 1;
for k2 = 1:q+1

A2 = i2 − q + k2 − 1;
for k1 = 1:p+1

A1 = i1 − p + k1 − 1;
A = (m*n)*(A3−1) + n*(A2−1) + A1;
weight = weights(A);

W = W + N(k1) *M(k2) *L(k3) *weight;
dWdxi = dWdxi + dNdxi(k1)*M(k2) *L(k3) *weight;
dWdeta = dWdeta + N(k1) *dMdeta(k2)*L(k3) *weight;
dWdzeta = dWdzeta + N(k1) *M(k2) *dLdzeta(k3)*weight;

end
end

end

counter = 1;
for k3 = 1:r+1

A3 = i3 − r + k3 − 1;
for k2 = 1:q+1

A2 = i2 − q + k2 − 1;
for k1 = 1:p+1

A1 = i1 − p + k1 − 1;
A = (m*n)*(A3−1) + n*(A2−1) + A1;
fact = weights(A)/(W*W);
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NML = N(k1)*M(k2)*L(k3);
R(counter) = NML*fact*W;

dRdxi(counter) = (dNdxi(k1) *M(k2)*L(k3)*W − ...
NML*dWdxi)*fact;

dRdeta(counter) = (dMdeta(k2) *N(k1)*L(k3)*W − ...
NML*dWdeta)*fact;

dRdzeta(counter) = (dLdzeta(k3)*N(k1)*M(k2)*W − ...
NML*dWdzeta)*fact;

counter = counter + 1;
end

end
end

Listing E.4: buildGlobalMatrices.m

function [K, M, F] = buildGlobalMatrices(varCol, newOptions)
% Create IGA global matrices
% Implemented for linear elasticity operator and the laplace operator, with
% possibility of computing the mass matrix and loading vector from body
% force. Thus, the function handles both static and dynamic linear
% elasticity, laplace− and poisson equation, and dynamic versions of these.

%% Interpret input arguments

% set default values
options = struct('operator','Laplace',...

'fieldDimension',1,...
'buildMassMatrix',0,...
'applyBodyLoading',0);

% read the acceptable names
optionNames = fieldnames(options);

% count arguments
nArgs = length(newOptions);
if round(nArgs/2) ~= nArgs/2

error('Must have propertyName/propertyValue pairs')
end

for pair = reshape(newOptions,2,[]) %# pair is {propName;propValue}
inpName = pair{1}; %# make case insensitive

if any(strcmp(inpName,optionNames))
options.(inpName) = pair{2};

else
error('%s is not a recognized parameter name',inpName)

end
end

%% Extract all needed data from options and varCol
d = options.fieldDimension;

Xi = varCol.nurbs.knots{1};
Eta = varCol.nurbs.knots{2};
Zeta = varCol.nurbs.knots{3};
p = varCol.nurbs.degree(1);
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q = varCol.nurbs.degree(2);
r = varCol.nurbs.degree(3);

index = varCol.index;
noElems = varCol.noElems;
elRangeXi = varCol.elRangeXi;
elRangeEta = varCol.elRangeEta;
elRangeZeta = varCol.elRangeZeta;
element = varCol.element;
weights = varCol.weights;
controlPts = varCol.controlPts;
runInParallell = varCol.runInParallell;
noCtrlPts = varCol.noCtrlPts;
noDofs = varCol.noDofs;

if strcmp(options.operator,'linearElasticity')
C = varCol.C;

else
C = 0; % Will not be used

end

%% Preallocation and initiallizations
n_en = (p+1)*(q+1)*(r+1);

spIdxRow = zeros((d*n_en)^2,noElems);
spIdxCol = zeros((d*n_en)^2,noElems);
Kvalues = zeros((d*n_en)^2,noElems);

if options.buildMassMatrix
Mvalues = zeros((d*n_en)^2,noElems);

end
if options.applyBodyLoading

F_indices = zeros(d*n_en,noElems);
Fvalues = zeros(d*n_en,noElems);

end

[W3D,Q3D] = gaussianQuadNURBS(p+1,q+1,r+1);

%% Build global matrices
parfor (e = 1:noElems, runInParallell)

idXi = index(e,1);
idEta = index(e,2);
idZeta = index(e,3);

Xi_e = elRangeXi(idXi,:);
Eta_e = elRangeEta(idEta,:);
Zeta_e = elRangeZeta(idZeta,:);

J_2 = ...
0.125*(Xi_e(2)−Xi_e(1))*(Eta_e(2)−Eta_e(1))*(Zeta_e(2)−Zeta_e(1));

sctr = element(e,:);
pts = controlPts(sctr,:);
sctr_k_e = zeros(1,d*n_en);
for i = 1:d

sctr_k_e(1+(i−1)*n_en:i*n_en) = sctr+(i−1)*noCtrlPts;
end
k_e = zeros(d*n_en);



184 Source code

if options.buildMassMatrix
m_e = zeros(d*n_en);

end
if options.applyBodyLoading

f_e = zeros(d*n_en,1);
end

for gp = 1:size(W3D,1)
pt = Q3D(gp,:);
wt = W3D(gp);

xi = parent2ParametricSpace(Xi_e, pt(1));
eta = parent2ParametricSpace(Eta_e, pt(2));
zeta = parent2ParametricSpace(Zeta_e,pt(3));

[R_fun, dRdxi, dRdeta, dRdzeta] = NURBS3DBasis(xi, eta, zeta, ...
p, q, r, Xi, Eta, Zeta, weights);

J = pts'*[dRdxi' dRdeta' dRdzeta'];
J_1 = det(J);
dRdX = J'\[dRdxi; dRdeta; dRdzeta];

switch options.operator
case 'linearElasticity'

B = strainDispMatrix3d(n_en,dRdX);
k_e = k_e + B' * C * B * abs(J_1) * J_2 * wt;
if options.buildMassMatrix

m_e = m_e + blkdiag(R_fun'*R_fun, R_fun'*R_fun, ...
R_fun'*R_fun) * abs(J_1) * J_2 * wt;

end
case 'laplace'

k_e = k_e + dRdX'*dRdX* abs(J_1) * J_2 * wt;
if options.buildMassMatrix

m_e = m_e + R_fun'*R_fun * abs(J_1) * J_2 * wt;
end

end

if options.applyBodyLoading
v = R_fun*pts;
f_gp = varCol.f(v(1),v(2),v(3));
f_e = f_e + [f_gp(1)*R_fun'; f_gp(2)*R_fun'; ...

f_gp(3)*R_fun'] * abs(J_1) * J_2 * wt;
end

end

spIdxRow(:,e) = copyVector(sctr_k_e,d*n_en,1);
spIdxCol(:,e) = copyVector(sctr_k_e,d*n_en,2);
Kvalues(:,e) = reshape(k_e, (d*n_en)^2, 1);

if options.buildMassMatrix
Mvalues(:,e) = reshape(m_e, (d*n_en)^2, 1);

end
if options.applyBodyLoading

F_indices(:,e) = sctr_k_e';
Fvalues(:,e) = f_e;

end
end
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%% Collect data into global matrices (and load vector)
if options.applyBodyLoading

F = vectorAssembly(Fvalues,F_indices,noDofs);
end

K = sparse(spIdxRow,spIdxCol,Kvalues);
if options.buildMassMatrix

M = sparse(spIdxRow,spIdxCol,Mvalues);
else

M = [];
end

if min(size(K)) < noDofs
K(noDofs,noDofs) = 0;
if options.buildMassMatrix

M(noDofs,noDofs) = 0;
end

end
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