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Abstract

Stochastic Runge-Kutta (SRK) and stochastic partitioned Runge-Kutta (SPRK)
methods that conserve quadratic invariants when applied to stochastic ordinary
differential equations are studied. Conditions that guarantee the conservation of
quadratic invariants are found for the SRK and SPRK coefficients, and an existing
order theory based on rooted trees is generalized to SPRK methods. Using the
rooted tree theory it is shown that the majority of the order conditions of SRK and
SPRK methods are dependent when the methods conserve quadratic invariants.
Two new methods are constructed and their properties are verified numerically.
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Sammendrag
Stokastiske Runge-Kutta-metoder (SRK) og stokastiske partisjonerte Runge-Kutta-
metoder (SPRK) som bevarer kvadratiske invarianter studeres. Det blir funnet
betingelser på SRK og SPRK-koeffisientene som garanterer at kvadratiske invari-
anter blir bevart, og en eksisterende ordensteori basert på trær med røtter blir
generalisert til SPRK-metoder. Ved å bruke ordensteorien blir det bevist at de
fleste ordensbetingelsene til S(P)RK-metoder er avhengige av hverandre når meto-
dene bevarer kvadratiske invarianter. To nye metoder blir konstruert og testet
numerisk.
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1 Introduction
The subject of this thesis lies in the intersection of the two mathematical fields
geometric numerical integration and stochastic differential equations. Geometric
numerical integration is concerned with numerical methods that preserve the ge-
ometric properties of the exact flow of a differential equation. Examples of such
geometric properties are reversibility, volume preservation, symplecticity1 and in-
variants, though only the last two properties will make an appearance in this
paper.

Informally, an invariant is a property of the system that is conserved over time.
The total energy of a system and total linear and angular momentums are typical
examples of invariants stemming from the laws of physics. We can also image a
model of a chemical reaction where the total mass is preserved, or it may be true
that all solutions lie on the surface of a sphere in 3-dimensional space. These are all
examples of invariant quantities. The other geometric property, symplecticity, will
be discussed at the end of chapter 2. While preserving the geometric properties of
the flow can be important in its own right, it has also been shown that the structure
preserving numerical methods allow for more accurate long-term integration than
general purpose methods [7].

The goal has been to extend some of the theory from geometric numerical in-
tegration to stochastic differential equations (SDEs). These are differential equa-
tions that, informally, include some “randomness”, or more accurately where one
or more of the terms is a stochastic process. Typically, the random fluctuations
are modelled by white noise which can be thought of as the derivative of Brown-
ian motion, though other options such as jump processes are possible. Including
stochastic effects allows us to create more accurate models for systems that exhibit
similar random behaviour, with typical examples being the problem of option pric-
ing from financial mathematics, the Langevin equations in statistical physics and
the Kalman-Bucy filter. However, this comes at the expense of complexity. SDEs
are more difficult to analyze and solve than ODEs, and in most cases analytical
solutions cannot be found. Numerical methods then become valuable.

This paper is concerned with the creation of such methods, and we will proceed
as follows. In chapters 2 and 3 we present material from geometric numerical
integration and stochastic differential equations, respectively, and no new results
are given. Rather, their purpose is to introduce the ideas that are either necessary
or motivational for the rest of the paper. In chapter 2 we define invariants and
introduce known, deterministic, numerical methods that conserve specific types
of invariants. The numerical methods of the Runge-Kutta class are our tools of

1Sanz-Serna [13] uses the term symplecticness while Hairer, Lübich and Wanner [7] use sym-
plecticity. We have chosen to go with the latter.
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choice, both here and in the rest of the paper. At the end of the chapter we look
briefly at Hamiltonian systems, which is a class of problems from Hamiltonian
mechanics. Some of the numerical methods given in this chapter are, as we shall
see, particularly suited for solving these systems, and some of the example problems
at the end of this paper belong to this class.

Chapter 3 contains an overview of stochastic calculus, including the Wiener
process, stochastic integrals and stochastic differential equations. We wrote a
specialization project [1] covering much of the same material, and as such we have
chosen to present an abridged version this time.

My own work begins in chapter 4, where we expand the concepts from chapter
2 into the stochastic setting of chapter 3. We find the necessary conditions on the
stochastic Runge-Kutta (SRK) and stochastic partitioned Runge-Kutta (SPRK)
coefficients that guarantee the conservation of quadratic invariants. While doing
so we also find that no Itō SRK method of the general form studied in this pa-
per can conserve quadratic invariants, and for the rest of the paper we consider
Stratonovich SDEs.

Furthermore, we generalize an order theory based on rooted trees given in [6] to
SPRK methods. We then study what happens to the rooted trees when we require
the methods to conserve quadratic invariants, and we find that the majority of the
trees lead to dependent order conditions. For a strong order 1.5 SPRK method
with 1 stochastic process this reduces the number of order conditions from 140 to
10.

In chapter 5 we construct some new methods using the theory developed in
chapter 4. Stochastic versions of both the 4th order Gauss method and the
Störmer-Verlet methods are found, and their properties are verified numerically
in chapter 6.

We note that some of the results in this paper were reached independently by
Hong, Xu and Wang and published in a paper [8] during the course of this work.
Primarily this concerns Theorems 4.4 and 4.5 that are stochastic extensions of
theorems found in Hairer, Lubich and Wanner [7].
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2 Deterministic theory
In this chapter we give a quick overview of relevant definitions and results from the
theory of deterministic, ordinary differential equations (ODEs). For the sake of
brevity we focus on material that we need in later chapters, and we do not intend
to cover all the details. A complete presentation can be found in “Geometric
Numerical Integration” by Hairer, Lubich and Wanner [7]. We will use results
from there without further comments, although for the most relevant theorems we
give a direct reference to the book (HLW).

The main purpose of this chapter is to define invariants and present some known
numerical methods that conserve quadratic invariants for deterministic ODEs.
When we later create new methods we will start with some of these deterministic
methods and expand them to SRK methods. In fact, we will show that any SRK
method that conserves quadratic invariants must be built on a deterministic RK
method that conserves quadratic invariants. In the author’s opinion, it therefore
makes sense to start with methods that have already proven their worth, such as
the Gauss and Lobatto methods we present in this chapter.

At the end of the chapter we briefly discuss Hamiltonian systems. This is a
class of problems where the kind of structure preserving methods we discuss here
have been used with great success, and some of the example problems at the end
of this paper are stochastic Hamiltonian systems.

2.1 Invariants and flow
Our starting point is the system of ordinary differential equations (ODEs)

ẏ = f(y), y(t0) = y0 (2.1)

where y ∈ Rd and f : Rd → Rd is a sufficiently smooth function.
The flow over time t of (2.1) is a mapping φt defined by

φt(y0) = y(t) if y(0) = y0

for any point y0 in phase space. The flow thus describes the evolution of the system
as time passes given the initial condition, y0.

Definition 2.1. (Invariant) A function I : Rd → R is an invariant of (2.1) if

I(y(t)) = I(y(t0)) = Const

for all solutions of (2.1).

The next theorem follows immediately from the definition.
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Theorem 2.1. The function I(y) is an invariant of (2.1) if and only if

∇I(y)f(y) = 0, for all y. (2.2)

An invariant on the form I(y) = c>y for some constant vector c ∈ Rd is called
a linear invariant . Similarly, an invariant on the form Q(y) = y>Cy for some
constant, symmetric, square matrix C ∈ Rd×d is called a quadratic invariant. One
of the main goals of this paper is to construct numerical methods that conserve
quadratic invariants.

2.2 Runge-Kutta methods
All of the numerical methods considered in this paper belong to the class of Runge-
Kutta (RK) methods or their counterparts, the stochastic Runge-Kutta (SRK)
methods. Let us first recall the RK methods for the initial value problem (2.1).

An s-stage Runge-Kutta method for the numerical solution of (2.1) has the
form

Hi = yn + h
s∑
j=1

Aijf(Hj), i = 1, . . . , s (2.3a)

yn+1 = yn + h
s∑
i=1

bif(Hi). (2.3b)

for a matrix A ∈ Rs×s, vector b ∈ Rs and a step size h. We assume the ODEs to
be autonomous as we can always write ODEs on autonomous form by introducing
new variables.

The RK methods are uniquely determined by their Runge-Kutta coefficients
A and b, and it’s usually more convenient to present them as Butcher tableaus,
as shown in Table 1 for the general method (2.3). We will use this convenient
representation extensively.

All Runge-Kutta methods preserve linear invariants as for I(y) = d>y where d
is a constant vector we have

I(yn+1) = d>yn+1 = d>yn + h
s∑
j=1

bid
>f(Hi) = d>yn = I(yn),

where we have used that d>f(y) = 0 for all y by Theorem 2.1.
For quadratic and higher order invariants we have the following theorems.
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Table 1: Butcher tableau representation of the general s-stage Runge-Kutta
method (2.3).

A11 · · · A1s
... ... ...

As1 · · · Ass

b1 · · · bs

Theorem 2.2 (HLW IV Theorem 2.2). If the coefficients of a Runge-Kutta method
satisfy

biAij + bjAji = bibj, for all i, j = 1, · · · , s,

then it conserves quadratic invariants.

Theorem 2.3 (HLW IV Theorem 3.3). For n ≥ 3, no Runge-Kutta method can
conserve all polynomial invariants of degree n.

2.3 Collocation methods
The conditions on the Runge-Kutta coefficients given in Theorem 2.2 is just one
part of the puzzle. What further restrictions we should impose on the Runge-Kutta
coefficients to create satisfactory methods is a whole subject by itself. Order of
convergence is obviously important, and so is numerical stability. In this chapter
we present some known methods that have good order of convergence and con-
serve quadratic invariants. We also briefly explain the theory behind them, but
this is only tangentially related to our goals as our main interest is the methods
themselves. For more details see chapter II.1 in HLW [7].

The idea behind collocation methods is to choose a polynomial of degree s and
require the derivative of the polynomial to equal the derivative of the solution of
the differential equation at s points.

Definition 2.2. Let c1, c2, · · · , cs be distinct real numbers (usually 0 ≤ ci ≤ 1).
The collocation polynomial u(t) is a polynomial of degree s satisfying

u(t0) = y0,

u̇(t0 + cih) = f(u(t0 + cih)), i = 1, · · · , s, (2.4)

and the numerical solution of the collocation method is defined by y1 = u(t0 + h).
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Clearly, the linear polynomial u(t) = y0+(t−t0)k with k = f(y0+hc1k) satisfies
(2.4). Choosing, for example, c1 = 0 and c1 = 1 we recover the familiar explicit and
implicit Euler methods. These methods can be written as Runge-Kutta methods,
and the following theorem states that this is true for all collocation methods.

Theorem 2.4 (HLW II Theorem 1.4). The collocation method of Definition 2.2
is equivalent to the s-stage Runge-Kutta method (2.3) with coefficients

Aij =
∫ ci

0
`j(τ)dτ, bi =

∫ 1

0
`i(τ)dτ,

where `i(τ) is the Lagrange polynomial, `i(τ) = ∏
l 6=i(τ − cl)/(ci − cl).

Choosing c1, · · · , cs as the zeros of the sth shifted Legendre polynomial

ds

dxs
(xs(x− 1)s) ,

leads to the Gauss methods. It can be shown that these methods have order 2s and
preserve quadratic invariants. The 4th and 6th order Gauss methods are shown in
Tables 2 and 3, respectively.

Table 2: Gauss method of order 4.

1
4

1
4 −

√
3

6

1
4 +

√
3

6
1
4

1
2

1
2

Table 3: Gauss method of order 6.

5
36

2
9 −

√
15

15
5
36 −

√
15

30

5
36 +

√
15

24
2
9

5
36 −

√
15

24

5
36 +

√
15

30
2
9 +

√
15

15
5
36

5
18

4
9

5
18

Choosing c1 = 0, cs = 1 and the letting the remaining nodes be the zeros of

ds−2

dxs−2

(
xs−1(x− 1)s−1

)
(2.5)
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leads to the Lobatto IIIA methods. They have order 2s − 2, and together with
the Lobatto IIIB methods they form a class of partitioned Runge-Kutta methods
that we shall look at in later chapters. The second order Lobatto IIIA method is
the trapezoidal rule. The 4th order Lobatto IIIA method is shown in Table 4.

Table 4: Lobatto IIIA method of order 4.

0 0 0
5
24

1
3 − 1

24

1
6

2
3

1
6

1
6

2
3

1
6

The idea behind collocation methods can be modified to include a larger class
of methods.

Definition 2.3. Let c2, · · · , cs−1 be distinct real numbers (usually 0 ≤ ci ≤ 1),
and let b1, bs be two arbitrary real numbers. The corresponding discontinuous col-
location method is then defined via a polynomial of degree s− 2 satisfying

u(t0) = y0 − hb1(u̇(t0)− f(u(t0))
u̇(t0 + cih) = f(u(t0 + cih)), i = 2, · · · , s− 1,

y1 = u(t1)− hbs(u̇(t1)− f(u(t1))).

If b1 = bs = 0 we see that this reduces to the collocation methods. Similarly to
the collocation methods these can be written as Runge-Kutta methods.

Theorem 2.5 (HLW II Theorem 1.8). The discontinuous collocation method of
Definition 2.3 is equivalent to an s-stage Runge-Kutta method (2.3) with coeffi-
cients determined by c1 = 0, cs = 1, and

Ai1 = b1, Ais = 0, i = 1, · · · , s,
C(s− 2) and B(s− 2),

with the conditions C(q) and B(p) defined as

C(q) :
s∑
j=1

Aijc
k−1
j = cki

k
, k = 1, · · · , q,∀i

B(p) :
s∑
i=1

bic
k−1
i = 1

k
, k = 1, · · · , p.
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Now choose c1 = 0, cs = 1, b1 6= 0, and bs 6= 0. The class of Lobatto IIIB
methods is found by choosing c2, · · · , cs−1 as zeros of (2.5). Like the Lobatto IIIA
methods they have order of convergence 2s − 2. The second order Lobatto IIIA
method is the trapezoidal rule, and the 4th order Lobatto IIIB method in shown
in Table 5.

Table 5: Lobatto IIIB method of order 4.

0 0 0
5
24

1
3 − 1

24

1
6

2
3

1
6

1
6

2
3

1
6

2.4 Partitioned Runge-Kutta methods

Let us now consider differential equations in a partitioned form,

ẏ = f(y, z), ż = g(y, z), (2.6)

where y and z may be vectors, possibly of different dimensions.
Partitioned Runge-Kutta (PRK) methods are simply numerical schemes where,

at each step, yn+1 is found by one Runge-Kutta method and zn+1 is found by a dif-
ferent Runge-Kutta method. This was originally proposed for problems with stiff
and non-stiff parts, but with certain restrictions on the structure of the problem
(2.6) they also allow the construction of explicit methods that conserve quadratic
invariants on the form Q(y, z) = y>Dz, where D is a constant matrix of appro-
priate dimension. In particular, the Hamiltonian systems introduced in the next
chapter are of the form (2.6).

First let us define schemes of this type.

Definition 2.4. Let bi, Aij and b̂i, Âij be the coefficients of two Runge-Kutta meth-
ods (2.3). A partitioned Runge-Kutta method for the solution of (2.6) is given by
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Hi = yn + h
s∑
j=1

Aijf(Hj, Ĥj), i = 1, . . . , s (2.7a)

Ĥi = zn + h
s∑
j=1

Âijg(Hj, Ĥj), (2.7b)

yn+1 = yn + h
s∑
i=1

bif(Hi, Ĥi), (2.7c)

zn+1 = zn + h
s∑
i=1

b̂ig(Hi, Ĥi). (2.7d)

The corresponding Butcher tableau is shown in Table 6.

Table 6: Butcher tableau representation of a general PRK.

A11 · · · A1s Â11 · · · Â1s
... ... ... ... ... ...

As1 · · · Ass Âs1 · · · Âss

b1 · · · bs b̂1 · · · b̂s

Theorem 2.6 (HLW IV Theorem 2.4). If the coefficients of a partitioned Runge-
Kutta method (2.7d) satisfy

biÂij + b̂jAji = bib̂j, for i, j = 1, . . . , s, (2.8)
bi = b̂i, for i = 1, . . . , s, (2.9)

then it conserves quadratic invariants of the form Q(y, z) = y>Dz.
If the partitioned differential equation is of the special form ẏ = f(z), ż = g(y),

then condition (2.8) alone implies that invariants of the form Q(y, z) = y>Dz are
conserved.

A simple example of a partitioned Runge-Kutta method that conserves quadratic
invariants is the symplectic Euler method, which is simply the combination of the
implicit and explicit Euler methods. The coefficients are b1 = 1, A11 = 1, b̂1 = 1
and Â11 = 0 and the conditions in Theorem 2.6 are trivially satisfied.

The s-stage Lobatto IIIA and IIIB methods from the previous chapter can be
combined to form Lobatto IIIA-IIIB pairs.

Theorem 2.7 (HLW IV Theorem 2.3). The Lobatto IIIA-IIIB pair conserves all
quadratic invariants of the form Q(y, z) = y>Dz.
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Theorem 2.8 (HLW II Theorem 2.2). The partitioned Runge-Kutta method com-
posed of the s-stage Lobatto IIIA and the s-stage Lobatto IIIB method, is of order
2s-2.

The pair of 2-stage methods leads to the Störmer-Verlet method, shown in
Table 7. By the preceding theorems this is an order 2 PRK method that preserves
quadratic invariants. Similarly we can construct an order 4 PRK method by
combining the 3-stage Lobatto IIIA and IIIB methods, as shown in Table 8.

Table 7: Butcher tableau for the Störmer-Verlet method as a partitioned Runge-
Kutta method.

0 0 1
2 0

1
2

1
2

1
2 0

1
2

1
2

1
2

1
2

Table 8: Butcher tableau for the 3-stage Lobatto IIIA-IIIB pair.

0 0 0 1
6 −1

6 0
5
24

1
3 − 1

24
1
6

1
3 0

1
6

2
3

1
6

1
6

5
6 0

1
6

2
3

1
6

1
6

2
3

1
3

2.5 Symplecticity and Hamiltonian systems
Hamiltonian mechanics is a reformulation of classical mechanics and was first for-
mulated by William Rowan Hamilton in 1834 [13]. It allows us to compute the
dynamics of general mechanical systems by solving a system of differential equa-
tions derived from the Hamiltonian, which often represents the total mechanical
energy of the system.

Definition 2.5. Let Ω be a domain in the oriented Euclidean space R2d of the
points (p, q) = (p1, · · · , pd; q1, · · · , qd). If H is a sufficiently smooth real function
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defined in Ω, then the Hamiltonian system of differential equations with Hamilto-
nian H is, by definition, given by

ṗ = −Hq(p, q), q̇ = Hp(p, q), (2.10)

where Hq and Hp are the vectors of partial derivatives.

The variables qi and pi represent the generalized position coordinates and gen-
eralized momenta, respectively, for i = 1, . . . , d. The integer d is called the number
of degrees of freedom and Ω is the phase space.

Along the solution curves of (2.10) the Hamiltonian is an invariant. This follows
immediately from Theorem 2.1 and (2.10),

∂H

∂p

(
−∂H
∂q

)
+ ∂H

∂q

(
∂H

∂p

)
= 0.

If the Hamiltonian has the form

H(p, q) = T (p) + V (q)

it is called separable, and in a mechanical system T (p) and V (q) would represent
the kinetic and potential energy, respectively. For example, the Hamiltonian of an
N-body system is given by

H(p, q) = 1
2

N∑
i=1

1
mi

pTi pi +
N∑
i=2

i−1∑
j=1

Vij(||qi − qj||),

where Vij(r) are potential functions and mi is the mass of body i.
The Hamiltonian could also be non-autonomous (i.e. depend on time), but in

this paper we restrict ourselves to the autonomous case.
We note that the Hamiltonian is typically not a quadratic invariant and thus

not conserved by the methods in this paper. What is conserved, however, is the
symplecticity of the flow of Hamiltonian systems. For d = 1 symplecticity of the
flow means that the flow, φt, is area-preserving in the sense that for a bounded
subdomain Σ for which φt(Σ) is defined, Σ and φt(Σ) have the same oriented area.
In higher dimensions we consider the sum of the oriented areas of the projections of
the two-dimensional surface Σ onto the coordinate planes (pi, qi). Denote this sum
by m(Σ). If m(Σ) = m(φt(Σ)) then the transformation φt is called symplectic.

Sanz-Serna [13] notes that the area-preserving property means that asymp-
totically stable equilibria and limit cycles cannot occur, the Poincaré recurrence
holds, and “in fact, all properties specific to the Hamiltonian dynamics can be
derived from the preservation of area property. This is no surprise because the
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area-preserving character of the flow [. . . ] actually holds only for Hamiltonian
systems”.

It can be shown [2] that for Runge-Kutta methods, the conservation of quadratic
invariants implies that the method preserves the symplecticity of the Hamiltonian
system.
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3 Stochastic theory
We covered, among other things, basic probability theory, properties of Brownian
motion and the construction of the Itō integral in a specialization project [1], and
we have chosen not to repeat the presentation in detail. For example, we will
take the existence of stochastic integrals for granted, and definitions of filtrations
and martingales are assumed to be known. We will, however, define systems
of stochastic differential equations and discuss the differences between Itō and
Stratonovich integrals. The corresponding material in the specialization project
was based on Øksendal’s book “Stochastic Differential Equations” [12] which serves
as the primary source for this chapter as well.

In the last section we focus on multiple stochastic integrals. They are fre-
quently encountered when developing stochastic numerical methods, and defining
a convenient notation is well worth the effort.

3.1 Preliminaries
We assume we are working with a complete probability space (Ω,F , P ) where Ω
is a sample space, F is a σ-algebra and P is a probability measure. A stochastic
process is a parametrized collection of random variables

{X(t)}t∈T ,

where in this paper the parameter space T is the half-line [0,∞). For each “ex-
periment” ω ∈ Ω the function

t→ X(t, ω)

is called a path of X(t).
Let f : Rn → R be a Borel-measurable function and µX the distribution of X.

If
∫

Ω |f(X(ω))|dP (ω) <∞ then the number

E[f(X)] :=
∫

Ω
f(X(ω))dP (ω) =

∫
Rn
f(x)dµX(x)

is called the expectation of f(X).

Definition 3.1. (Brownian motion) A real-valued, scalar stochastic process
W (t) is called a Brownian motion or Wiener process if

1. W (t)−W (s) is normally distributed with mean 0 and variance t− s for all
t ≥ s ≥ 0,

2. for all times 0 < t1 < t2 < · · · < tn, the random variables W (t1),W (t2) −
W (t1), . . . ,W (tn)−W (tn−1) are independent.
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If W (0) = 0 then W is called standard Brownian motion.

The Brownian sample paths have unbounded variation and are nowhere differ-
entiable with probability 1 [10]. Using Kolmogorov’s continuuity theorem it can
be shown [12] that there exists a continuous version of Brownian motion, and we
will assume that we are always working with a continuous version.

3.2 Itō and Stratonovich integrals
Let us first consider scalar stochastic differential equations (SDEs) on the form,

dX(t) = f(t,X(t))dt+ g(t,X(t))dW (t), (3.1)
X(t0) = x0,

where W (t) is a Brownian motion. The coefficients f(t,X(t)) and g(t,X(t)) are
often referred to as the drift and diffusion coefficients, respectively.

Brownian motion is nowhere differentiable [10], so the differential form (3.1)
has to be interpreted as an abbreviation for the stochastic integral equation

X(t) = X(t0) +
∫ t

t0
f(s,X(s))ds+

∫ t

t0
g(s,X(s))dW (s) (3.2)

since the differentials have no meaning on their own.
Let us first look at a specific case with g(s,X(s)) = W (s),∫ T

0
W (s)dW (s).

We can approximate this integral by Riemann sums,

R :=
∑
k≥0

W (t∗k)(W (tk+1)−W (tk))

where t∗k = tk + λ(tk+1 − tk) and λ ∈ [0, 1]. Then

E
[∫ T

0
W (s)dW (s)

]
= E

∑
k≥0

W (tk + λ(tk+1 − tk))(W (tk+1)−W (tk))


=
∑
k≥0

(tk + λ(tk+1 − tk)− tk) = λT,

where we used the property E[W (t)W (s)] = min(s, t).
Unlike the case for the Riemann-Stieltjes integral, the value of the stochastic

integral depends on the choice of point t∗k. Two choices have proven particularly
useful:
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1. Taking the left end point, corresponding to λ = 0, leads to the Itō integral,
denoted by ∫ T

S
g(t,X(t)))dW (t).

2. Taking the mid point (λ = 1
2) corresponds to the Stratonovich integral, de-

noted by ∫ T

S
g(t,X(t)) ◦ dW (t).

Both integrals are used extensively, and the choice ultimately depends on the
modelling problem. Stratonovich calculus has the advantage that the chain rule
holds, while an advantage of the Itō integral is that it does not “look into the
future”. Specifically the Itō integral is a martingale, and also obeys certain simple
formulas

E

[∫ T

S
g(t,X(t))dW (t)

]
= 0,

E

∥∥∥∥∥
∫ T

S
g(t,X(t))dW (t)

∥∥∥∥∥
2
 =

∫ T

S
E
[
||g(t,X(t))||2

]
dt,

that are important in, for example, financial mathematics [3]. The latter is known
as the Itō isometry.

It can be shown [9] that the solutions of a scalar Stratonovich SDE

dX(t) = f(t,X(t))dt+ g(t,X(t)) ◦ dW (t)

also satisfy an Itō SDE with the same diffusion coefficient, g(t, x), but with a
modified drift coefficient,

f̄(t, x) = f(t, x) + 1
2g(t, x)∂g

∂x
(t, x)

This allows us to, given sufficiently smooth coefficient functions, work with what-
ever integral is most convenient.

3.3 Stochastic differential equations
In the previous section we looked at scalar SDEs with a single stochastic process
to emphasize how the choice of midpoint leads to different stochastic integrals.
We would now like to define a more general class of vector SDEs with multiple
stochastic processes, and we first introduce a class of functions that serve as coef-
ficient functions in this definition. As mentioned at the beginning of the chapter
we assume concepts such as martingales and filtrations are known, alternatively
we refer to Øksendal [12].
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Definition 3.2. Let WH(S, T ) be the class of processes f(t, ω) ∈ R satisfying

f(t, ω) : [0,∞)× Ω→ R

such that

1. (t, ω)→ f(t, ω) is B×F-measurable, were B denotes the Borel σ-algebra on
[0,∞).

2. There exists an increasing family of σ-algebras Ht; t ≥ 0 such that

a) W (t) is a martingale with respect to Ht and
b) ft is Ht-adapted

3. P
[∫ T

S
f(s, ω)2ds <∞

]
= 1.

This choice of coefficient functions allows us to define the general class of multi-
dimensional Itō processes with multiple stochastic processes we will use in the rest
of the paper.

Definition 3.3. Let W (t) = (W1(t), . . . ,Wm(t)) be an m-dimensional Wiener
process and for each process gij(t, ω) ∈ WH for all i = 1, . . . , d and j = 1, . . . ,m
we assume

P
[∫ t

0
gij(s, ω)2ds <∞ for all t ≥ 0

]
= 1.

We also assume that fi(s, ω) is Ht-adapted for all i = 1, . . . , d and

P
[∫ t

0
|fi(s, ω)|ds <∞ for all t ≥ 0

]
= 1.

Then the following is a d-dimensional Itō process,

dX = fdt+ gdW (3.3)

where

X =


X1
...

Xd

 , f =


f1
...

fd

 , g =


g11 . . . g1m

...

gd1 . . . gdm

 , dW =


dW1
...

dWm

 .
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The definition also applies to Stratonovich integrals. It can be shown [9] that
the Stratonovich SDE corresponding to the Itō SDE (3.3) is

dX = fdt+ g ◦ dW (3.4)

where the modified drift coefficient is defined componentwise by

fi(t, x) = fi(t, x)− 1
2

d∑
j=1

m∑
k=1

gj,k(t, x)∂gj,k
∂xj

(t, x). (3.5)

The next theorem is called the Itō formula or Itō’s Lemma and is a key result
in stochastic calculus, serving the role of the chain rule for Itō processes.

Theorem 3.1 (Øksendal Theorem 4.2.1). Let

dX = fdt+ gdW

be a d-dimensional Itō process as above. Let h(t, x) = (h1(t, x), . . . , hp(t, x)) be a
C2 map from [0,∞)× Rd into Rp. Then the process

Y = h(t,X)

is again an Itō process, whose component number k, Yk, is given by

dYk = ∂hk
∂t

(t,X)dt+
∑
i

∂hk
∂xi

(t,X)dXi + 1
2
∑
i,j

∂2hk
∂xi∂xj

(t,X)dXidXj

where dWidWj = δijdt, dWidt = dtdWi = 0.

When doing numerical calculations it is important to know that an exact solu-
tions exists. We conclude this section with the following existence and uniqueness
result.

Theorem 3.2 (Øksendal Theorem 5.2.1). (Existence and uniqueness theo-
rem for stochastic differential equations)
Let T > 0 and f(·, ·) : [0, T ]×Rn → Rn, g(·, ·) : [0, T ]×Rn → Rn×m be measurable
functions satisfying

|f(t, x)|+ |g(t, x)| ≤ C(1 + |x|); x ∈ Rn, t ∈ [0, T ]

for some constant C, (where |g|2 = ∑ |gij|2) and such that

|f(t, x)− f(t, y)|+ |g(t, x)− g(t, y)| ≤ D|x− y|; x, y ∈ Rn, t ∈ [0, T ]
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for some constant D. Let Z be a random variable which is independent of the σ-
algebra F (m)

∞ generated by W (s, ·), s ≥ 0 and such that

E[|Z|2] <∞.

Then the stochastic differential equation

dX(t) = f(t,X(t))dt+ g(t,X(t))dW (t), 0 ≤ t ≤ T,X(0) = Z

has a unique t-continuous solution X(t, ω) with the property that X(t, ω) is adapted
to the filtration FZt generated by Z and W (s, ·); s ≤ t and

E
[∫ T

0
|X(t)|2dt

]
<∞. (3.6)

3.4 Multiple stochastic integrals
To simplify the presentation of multiple stochastic integrals in subsequent chapters
we will borrow a convenient notation from Kloeden and Platen (KP) [9].

We define a multi-index as a row vector

α = (j1, · · · , jl)

where

ji ∈ {0, 1, · · · ,m}

for i ∈ {1, 2, · · · , l} and with length l := l(α) ∈ {1, 2, · · · }. Denote byM the set
of all such multi-indices, i.e.

M = {(j1, · · · , jl) : ji ∈ {0, 1, · · · ,m} , i ∈ {1, · · · , l} , for l = 1, 2, · · · } ∪ {v} .

Here we have denoted the multi-index of length zero by v.
For α ∈M with l(α) ≥ 1 we define α− as the multi-index obtained by removing

the last component of α. We also introduce the notation that dW0 = ds. Now we
define multiple Itō integrals Iα recursively by

Iα : =


1 for l = 0,∫ t

0
Iα− dWjl(t) for l ≥ 1.

A very useful relation for our purposes exists between integrals of this type.
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Proposition 3.1 (KP Proposition 5.2.3). Let j1, . . . , jl ∈ {0, 1, . . . ,m} and α =
(j1, . . . , jl) ∈ M where l = 1, 2, 3, . . . . Denote by IA the indicator function of the
set A. Then

Wj(t)Iα =
l∑

i=0
I(j1,...,ji,j,ji+1,...,jl) +

l∑
i=1
I{ji=j 6=0}I(j1,...,ji−1,0,jj+1,...,jl). (3.7)

Corollary 3.1. Suppose that α = (j1, · · · , jl) with j1 = · · · = jl = j ∈ {0, · · · ,m}
where l ≥ 2. Then for t ≥ 0

Iα =


1
l!t
l for j = 0,

1
l

(
Wj(t)Iα− − tI(α−)−

)
for j ≥ 1.

(3.8)

For multiple Stratonovich integrals we have a similar definition,

Jα : =


1 for l = 0,∫ t

0
Jα− ◦ dWjl(t) for l ≥ 1.

The fact that the chain rule holds in Stratonovich calculus leads to simpler rela-
tionships between the Stratonovich integrals than the corresponding results for Itō
integrals.

Proposition 3.2 (KP Proposition 5.2.10). Let j1, . . . , jl ∈ {0, 1, . . . ,m} and α =
(j1, . . . , jl) ∈M where l = 1, 2, 3, . . . . Then

Wj(t)Jα =
l∑

i=0
J(j1,...,ji,j,ji+1,...,jl). (3.9)

Corollary 3.2. Suppose that α = (j1, · · · , jl) with j1 = . . . = jl = j ∈ {0, . . . ,m}
where l ≥ 0. Then for t ≥ 0

Jα = 1
l! (J(j))l. (3.10)
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4 Numerical methods
In this chapter we will consider numerical methods for the solution of d-dimensional
stochastic differential equations with m stochastic processes,

X(t) = x0 +
m∑
l=0

∫ t

t0
gl(X(s)) ? dWl(s), (4.1)

where gl : Rd → Rd. This is a slight reformulation of (3.3). We use the notation
?dW0(s) = ds and for l ≥ 0 we interpret ?dWl(s) in either the Itō, ?dWl(s) =
dWl(s), or Stratonovich, ?dWl(s) = ◦dWl(s), sense. Many of the following results
do not depend on the choice of stochastic integral.

The main theoretical result of this chapter is the generalization of the theory of
stochastic B-series in Debrabant and Kværnø [6] to stochastic, partitioned Runge-
Kutta (SPRK) methods. We also develop conditions for conservation of quadratic
invariants for both stochastic Runge-Kutta (SRK) methods and SPRK methods,
and show how the rooted trees in the order theory become “non-rooted” when
quadratic invariants are conserved. This greatly reduces the number of indepen-
dent order conditions. However, requiring the conservation of quadratic invariants
is in itself a strong requirement.

4.1 Assumptions and notation
In the following we use the discretization Ih = t0, t1, . . . , tN with t0 < t1 < · · · <
tN = T on the interval I = [t0, T ]. We will always assume a uniform step size that
we denote by h = tn+1− tn for n = 0, 1, . . . , N − 1. For our numerical methods we
write Y (tn) = Yn.

Furthermore, we shall assume that the coefficients gl satisfy the conditions of
the Existence and Uniqueness Theorem 3.2 for Itō SDEs. For Stratonovich SDEs
we must additionally require that the vectors g′lgl satisfy a Lipschitz and a linear
growth condition so the theorem can be applied with the modified drift coefficient
(3.5).

4.2 Convergence
When constructing a numerical method it is useful to have some measure of effi-
ciency of the method. For deterministic methods this is done through the order
of convergence, but in the stochastic setting there are several types of convergence
that make sense. To create an efficient method we must first ask ourselves what we
want our method to approximate, which in turn depends on the problem we wish
to model. In the literature there are two major types of convergence that dominate.
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Strong convergence where the individual sample paths are approximated, and weak
convergence where only the corresponding distributions are approximated. It is
easier to implement numerical methods constructed with respect to weak conver-
gence, and much computation time can be saved if we realize that our problem
does not need pathwise approximation.

However, in this paper we will only concern ourselves with strong convergence
and the development of strong methods. Let us first give a precise definition [6].
Definition 4.1. A time discrete approximation Y = (Yt)t∈Ih converges strongly,
respectively, in the mean square with order p to X as h→ 0 at time t ∈ Ih if there
exists a constant C and a finite δ0 > 0 such that

E||Y (t)−X(t)|| ≤ Chp, respectively,
√
E||Y (t)−X(t)||2 ≤ Chp

holds for each h ∈]0, δ0[.
The order p can be fractional since the root mean square order of the Wiener

process is h 1
2 . While we are interested in strong convergence, it is often easier

to work with mean square convergence. This is unproblematic since by Jensen’s
inequality we have

(E||Y (t)−X(t)||)2 ≤ E[||Y (t)−X(t)||2],

which shows that mean square convergence implies strong convergence of the same
order. We also see that if X(t) and Y (t) are deterministic this reduces to the
familiar, deterministic definition of convergence.

Definition 4.1 concerns global order, i.e. order at the end of the simulation
after a number of steps. When analyzing numerical methods it is usually more
convenient to find the error of a single step. Let lem(h; t, x) and lems(h; t, x) be
the mean and mean square local error of the method starting at the point (t, x)
with respect to the step size h,

lem(h; t, x) = E(Y (t+ h)−X(t+ h)|Y (t) = X(t) = x), (4.2)
lems(h; t, x) =

√
E((Y (t+ h)−X(t+ h))2|Y (t) = X(t) = x). (4.3)

The following theorem from Milstein [11] relates local order to global order of
accuracy.
Theorem 4.1. Suppose the one-step approximation Y (t+h) has order of accuracy
p1 for the mathematical expectation of the deviation and order of accuracy p2 for the
mean-square deviation; more precisely, for arbitrary t0 ≤ t ≤ t0 + T − h, x ∈ Rn

the following inequalities hold:

|lem(h; t, x)| ≤ K(1 + |x|2)1/2hp1 ,

lems(h; t, x) ≤ K(1 + |x|2)1/2hp2
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Also, let
p2 ≥

1
2 , p1 ≥ p2 + 1

2 .

Then for any N and k = 0, 1, . . . , N the following inequality holds:[
E|Y (tk)−X(tk)|2

]1/2
≤ K(1 + |X0|2)1/2hp2−1/2,

i.e. the order of accuracy of the method constructed using the one-step approxima-
tion Y (t+ h) is p = p2 − 1

2 .

4.3 Invariants for SDEs
We note that this and all subsequent chapters constitute our own work. We begin
by expanding some of the theory in chapter 2 to the stochastic setting of chapter
3, and the following is an extension of Theorem 2.1 to SDEs.

Theorem 4.2. The function I(y) is an invariant of (4.1) if and only if

∇I(y) · gl(y) = 0, l = 0, 1, . . . ,m, ∀y ∈ Rd (4.4)

Proof. We use Definition 2.1 of invariants and take the derivative with respect to
t,

Const. = I(x(t))

=⇒ 0 = dI(x(t))
dt

= ∇I(x(t))dx
dt

=⇒ 0 = ∇I(x(t))dx

We then insert the differential form of the SDE (4.1) to obtain

0 = ∇I(X(t))dX(t) = ∇I(X(t))
(

m∑
l=0

gl(X(t)) ? dWl(t)
)
.

BecauseWi andWj are independent for all i, j = 0, · · · ,m and i 6= j we must have

∇I(X(t))gl(X(t)) = 0, l = 0, 1, . . . ,m.

Now assume ∇I(X(t))gl(X(t)) 6= 0 for one or more l. Again using the indepen-
dence of the Wi’s there must be a t such that

0 6= ∇I(X(t))
(

m∑
l=0

gl(X(t)) ? dWl(t)
)

= ∇I(X(t))dX(t).

and we have I(X(t)) 6= Const. which contradicts the assumption that I(X(t)) is
an invariant.
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Corollary 4.1. If I(y) is an invariant of the ODE

dy = f(y)dt

then I(y) is an invariant of the SDE

dX(t) = f(X(t))dt+ αf(X(t)) ? dW (t)

for α ∈ R.

4.4 Stochastic Runge-Kutta methods
The class of Stochastic Runge-Kutta (SRK) methods is a fairly straightforward
generalization of Runge-Kutta methods. The main principle remains the same.
A number of intermediate steps are calculated and the next step is a weighted
average of the intermediate steps.

We note that, as in the deterministic case, we can always write SDEs on au-
tonomous form by introducing new variables. Thus we will limit ourselves to the
autonomous case, but the results also apply to non-autonomous SDEs.

For the solution of SDEs on the form (4.1) we define s-stage SRK methods

Yn+1 = Yn +
m∑
l=0

s∑
j=1

γ
(l)
j gl(Hj), (4.5a)

for n = 0, 1, . . . , N − 1, tn ∈ Ih, initial condition Y0 = x0 and with stage values

Hi = Yn +
m∑
l=0

s∑
j=1

Z
(l)
ij gl(Hj). (4.5b)

For m = 0 this is almost the definition of a deterministic Runge-Kutta method
(2.3), except the matrix Z(0) and vector γ(0) are now functions of h. For m > 0 we
must include stochastic processes to approximate the stochastic integrals, which
is the motivation behind the following definition from [6].

Denote by Ξ a set of families of measurable mappings,

Ξ : = {{φ(h)}h≥0 : φ(h) : Ω→ R is A− B-measurable ∀h ≥ 0}, (4.6)

and by Ξ0 the subset of Ξ defined by

Ξ0 : = {{φ(h)}h≥0 ∈ Ξ : φ(0) ≡ 0}.

We then have

γ(l) ∈ Ξs
0, Z(l) ∈ Ξs×s

0
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for l = 0, 1, . . . ,m.
It is sometimes more convenient to write (4.5) on matrix form

Yn+1 = Yn +
m∑
l=0

(
γ(l)> ⊗ Id

)
gl (H) ,

with stage values

H = 1s ⊗ Yn +
m∑
r=0

(
Z(r) ⊗ Id

)
gr (H) ,

where 1s = (1, . . . , 1)> ∈ Rs and

gl(H) =
(
gl (H1)> , . . . , gl (Hs)>

)>
,

for l = 0, . . . ,m.
The Butcher tableau is extended in an obvious way, as shown in Table 9.

Of course, the RK coefficients are now functions of the step size and stochastic
integrals, but for simple methods where the meaning is obvious we will leave out
the step size and stochastic integrals when writing the Butcher tableau.

Table 9: Butcher tableau representation of a general SRK (4.5) with s stages and
m stochastic processes.

Z
(0)
11 · · · Z

(0)
1s Ẑ

(m)
11 · · · Ẑ

(m)
1s

... ... ... · · · ... . . . ...

Z
(0)
s1 · · · Z(0)

ss Ẑ
(m)
s1 · · · Ẑ(m)

ss

γ
(0)
1 · · · γ(0)

s · · · γ̂
(m)
1 · · · γ̂(m)

s

Next we will find conditions of the SRK coefficients that guarantee the conser-
vation of linear and quadratic invariants. The first result is trivial.

Theorem 4.3. All stochastic Runge-Kutta methods preserve linear invariants.

Proof. Let I(y) = d>y where d is a constant vector be an invariant. We then have

I(Yn+1) = d>Yn+1 = d>Yn +
m∑
l=0

s∑
i=1

γ
(l)
i d
>gl(Hi) = d>Yn = I(Yn),

where we have used that ∑m
l=0 d

>gl(y) = 0 for all y by Theorem 4.2.
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Let us look at quadratic invariants, I(y) = y>Cy where C is a constant square
matrix of appropriate dimension.

Theorem 4.4. If a SRK-method (4.5) satisfies γ(l)
i Z

(k)
ij +γ

(k)
j Z

(l)
ji = γ

(l)
i γ

(k)
j for all

i, j = 1, . . . , s and k, l = 0, . . . ,m then it conserves quadratic invariants, I(y) =
y>Cy.

Proof. That I(y) is an invariant implies that ∑m
l=0(gl(y)>Cy+y>Cgl(y))?dWl = 0

for all y. By the independence of the Wiener processes this implies gl(y)>Cy +
y>Cgl(y) = 0 for l = 0, 1, . . . ,m.

I(Yn+1) = Y >n+1CYn+1 = Y >n CYn +
s∑
j=1

[
Y >n C

(
m∑
k=0

γ
(k)
j gk(Hj)

)]

+
s∑
i=1

( m∑
l=0

γ
(l)
i gl(Hi)

)>
CYn


+

s∑
i=1

(
m∑
l=0

γ
(l)
i gl(Hi)

)>
C

s∑
j=1

(
m∑
k=0

γ
(k)
j gk(Hj)

)

We can use (4.5b) to eliminate Yn.

Y >n+1CYn+1 = Y >n CYn +
s∑
j=1

(Hj −
m∑
l=0

s∑
i=1

Z
(k)
ji gl(Hi)

)>
C

(
m∑
k=0

γ
(k)
j gk(Hj)

)
+

s∑
i=1

( m∑
l=0

γ
(l)
i gl(Hi)

)>
C

Hi −
m∑
k=0

s∑
j=1

Z
(k)
ij gk(Hj)


+

s∑
i=1

(
m∑
l=0

γ
(l)
i gl(Hi)

)>
C

s∑
j=1

(
m∑
k=0

γ
(k)
j gk(Hj)

)

= Y >n CYn +
m∑
l=0

s∑
i=1

(
γ

(l)
i

(
H>i Cgl(Hi) + gl(Hi)>CHi

))
−

s∑
i=1

s∑
j=1

m∑
k=0

m∑
l=0

(γ(l)
i Z

(k)
ij + γ

(k)
j Z

(l)
ji − γ

(l)
i γ

(k)
j )gl(Hi)>Cgk(Hj)
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4.5 Stochastic partitioned Runge-Kutta methods
We now assume that the SDE (4.1) is partitioned into

dY =
m∑
l=0

gl(Yt, Zt) ? dWl, (4.7a)

dZ =
m∑
l=0

ĝl(Yt, Zt) ? dWl. (4.7b)

The dimensions of Y and Z are not required to be equal.
Solving for Y and Z with different SRK methods leads to stochastic partitioned

Runge-Kutta (SPRK) methods on the form

Hi = Yn +
m∑
l=0

s∑
j=1

Z
(l)
ij gl(Hj, Ĥj), (4.8a)

Ĥi = Zn +
m∑
l=0

s∑
j=1

Ẑ
(l)
ij ĝl(Hj, Ĥj), (4.8b)

Yn+1 = Yn +
m∑
l=0

s∑
i=1

γ
(l)
i gl(Hj, Ĥj), (4.8c)

Zn+1 = Zn +
m∑
l=0

s∑
i=1

γ̂
(l)
i ĝl(Hj, Ĥj), (4.8d)

for i = 1, . . . , s.
We also assume that the system has a quadratic invariant I(y, z) = y>Dz for

a matrix D of the appropriate dimension, and we want to find conditions on the
coefficients that allow (4.8) to conserve this quadratic invariant, i.e. such that
I(Yn+1, Zn+1) = I(Yn, Zn).
Theorem 4.5. If the coefficients of the stochastic partitioned Runge-Kutta method
(4.8) satisfy

γ̂
(l)
i = γ

(l)
i ∀i = 1, . . . , s and ∀l = 0, 1, . . . ,m, (4.9)

γ
(l)
i γ̂

(k)
j = γ̂

(k)
j Z

(l)
ji + γ

(l)
i Ẑ

(k)
ij ∀i, j = 1, . . . , s and ∀k, l = 0, 1, . . . ,m (4.10)

then it preserves quadratic invariants on the form I(y, z) = y>Dz.
If (4.7) is on the special form

dY =
m∑
l=0

gl(Zt) ? dWl,

dZ =
m∑
l=0

ĝl(Yt) ? dWl,

then only condition (4.10) is required.



28 4 NUMERICAL METHODS

Proof. That I(y) is an invariant implies that dI(y, z) = ∑m
l=0(gl(y, z)Dz+yDĝl(y, z))?

dWl = 0, and by the independence of the Wiener processes we have gl(y, z)Dz +
yDĝl(y, z) = 0 for l = 0, 1, . . . ,m and for all y and z. Inserting (4.8c) and (4.8d)
into I(Yn+1, Zn+1) we get

I(Yn+1, Zn+1) = Y >n+1DZn+1 = Y >n CZn +
s∑
j=1

[
Y >n D

(
m∑
k=0

γ̂
(k)
j ĝk(Hj, Ĥj)

)]

+
s∑
i=1

( m∑
l=0

γ
(l)
i gl(Hi, Ĥi)

)>
DZn


+

s∑
i=1

(
m∑
l=0

γ
(l)
i gl(Hi, Ĥi)

)>
D

s∑
j=1

(
m∑
k=0

γ̂
(k)
j ĝk(Hj, Ĥj)

)

From (4.8a) and (4.8b) we have Yn = Hi −
∑m
l=0

∑s
j=1 Z

(l)
ij gl(Hj, Ĥj) and a similar

expression for Zn, and we insert these on the right hand side,

Y >n+1DZn+1 = Y >n DZn

+
s∑
j=1

(Hj −
m∑
l=0

s∑
i=1

Z
(l)
ji gl(Hi, Ĥi)

)>
D

(
m∑
k=0

γ̂
(k)
j ĝk(Hj, Ĥj)

)
+

s∑
i=1

( m∑
l=0

γ
(l)
i gl(Hi, Ĥi)

)>
D

Ĥi −
m∑
k=0

s∑
j=1

Ẑ
(k)
ij ĝk(Hj, Ĥj)


+

s∑
i=1

(
m∑
l=0

γ
(l)
i gl(Hi, Ĥi)

)>
D

s∑
j=1

(
m∑
k=0

γ̂
(k)
j ĝk(Hj, Ĥj)

)

= Y >n DZn +
s∑
i=1

m∑
l=0

[
γ̂

(l)
i H

>
i Dĝl(Hi, Ĥi) + γ

(l)
i gl(Hi, Ĥi)>DĤi

]
+

s∑
i=1

s∑
j=1

m∑
k=0

m∑
l=0

[(
γ

(l)
i γ̂

(k)
j − γ̂

(k)
j Z

(l)
ji − γ

(l)
i Ẑ

(k)
ij

)
gl(Hi, Ĥi)>Dĝk(Hj, Ĥj)

]

If γ̂(l)
i = γ

(l)
i then

s∑
i=1

m∑
l=0

[
γ̂

(l)
i H

>
i Dĝl(Hi, Ĥi) + γ

(l)
i gl(Hi, Ĥi)>DĤi

]
=

s∑
i=1

m∑
l=0

γ
(l)
i

[
H>i Dĝl(Hi, Ĥi) + gl(Hi, Ĥi)>DĤi

]
= 0,

where we have used that y>Dg(y, z) + ĝ(y, z)>Dz = 0 for all y and z by the
definition of the invariant. Condition (4.10) then follows.
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Proving the special case only requires us to note that the assumption gl(z)Dz+
yDĝl(y) = 0 for all y and z implies that gl(z)Dz = −yDĝl(y) = Const. Because
this is true for y = 0 and z = 0 we must have gl(z)Dz = −yDĝl(y) = 0, and
condition (4.9) is no longer required.

4.6 Stochastic B-series for partitioned Runge-Kutta meth-
ods

The theory of B-series and rooted trees developed by J.C. Butcher [5] for the nu-
merical analysis of deterministic ODEs has been extended, by various authors [6],
to stochastic Stratonovich and Itō SDEs for both weak and strong convergence.
Debrabant and Kværnø [6] note that the construction of the B-series does not de-
pend on the choice of Itō or Stratonovich integrals, or strong or weak convergence,
and they give a unifying theory for the construction of stochastic B-series. The
work in this section is based on their approach, and our aim is to slightly generalize
the theory to more easily find order conditions for SPRK methods. We do this in
a general setting of q partitions, but the primary concern in this paper is SPRK
methods on the form (4.8) where there are only 2 partitions.

We thus consider a system of q stochastic processes with m diffusion terms,

X(1)(h) = x
(1)
0 +

m∑
l=0

∫ h

0
g1,l(X(1)(s), X(2)(s), . . . , X(q)(s)) ? dWl(s),

X(2)(h) = x
(2)
0 +

m∑
l=0

∫ h

0
g2,l(X(1)(s), X(2)(s), . . . , X(q)(s)) ? dWl(s),

...

X(q)(h) = x
(q)
0 +

m∑
l=0

∫ h

0
gq,l(X(1)(s), X(2)(s), . . . , X(q)(s)) ? dWl(s).

(4.11)

Denote the dimension ofX(k) by dk. The deterministic term is represented by l = 0,
such that dW0(s) = ds, and the integral w.r.t. the Wiener process is interpreted
as either an Itō integral, ?dWl(s) = dWl(s), or a Stratonovich integral, ?dWl(s) =
◦dWl(s). We also define the vector of initial values, x0 = [x(1)

0 , x
(2)
0 , . . . , x

(q)
0 ].

Our first goal is to find B-series representations of (4.11), and we begin by
assuming X(k)(h) can be written as a B-series B(k)(φ, x0;h),

B(k)(φ, x0;h) =
∑
τ∈Tk

α(τ) · φ(τ)(h) · F (τ)(x0),

where we define the mapping φ : T → Ξ as
φ(∅)(h) ≡ 1, φ(τ)(0) ≡ 0, ∀τ ∈ T \ {∅}, k = 1, . . . , q.
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The terms α(τ) are combinatoric terms, while φ(τ)(h) are stochastic integrals and
F (τ)(x0) are the elementary differentials. We note that Ξ was defined in (4.6). If
φ : T → Ξs then B(φ, x0;h) = [B(φ1, x0;h), . . . , B(φs, x0;h)]>.

Our definitions for trees and elementary differentials are similar to those in [6],
but in the case of SPRK methods it is also necessary to keep track of the individual
partitions.

Definition 4.2. (Trees) The set of shaped, rooted trees

T = {∅} ∪ T1 ∪ T2 ∪ · · · ∪ Tq

where

T1 = {∅} ∪ T1,0 ∪ T1,1 ∪ · · · ∪ T1,m

T2 = {∅} ∪ T2,0 ∪ T2,1 ∪ · · · ∪ T2,m
...

Tq = {∅} ∪ Tq,0 ∪ Tq,1 ∪ · · · ∪ Tq,m

is recursively defined as follows:

(a) The graph k,l = [∅]k,l with only one vertex of shape k and color l belongs to Tk,l.
Let τ=[τ1, τ2, . . . , τκ]k,l be the tree formed by joining the subtrees τ1, τ2, . . . , τκ
each by a single branch to a common root of shape k and color l.

(b) If τ1, τ2, . . . , τκ ∈ T , then τ = [τ1, τ2, . . . , τκ]k,l ∈ Tk,l.

Definition 4.3. (Elementary differentials) For a tree τ ∈ T the elementary
differential is a mapping F (τ): Rqd → Rd defined recursively by

(a) F (∅)(x0) = x
(k)
0 , ∅ ∈ Tk2,

(b) F ( k,l)(x0) = gk,l(x0),

(c) If τ = [τ1, τ2, . . . , τκ]k,l ∈ Tk,l, then

F (τ)(x0) = g
(κ)
k,l (x0)(F (τ1)(x0), F (τ2)(x0), . . . , F (τκ)(x0)).

Fundamental for this work is the following lemma which says that if Y (k)(h)
can be written as a B-series, then f(Y (1)(h), . . . , f(Y (q)(h))) can also be written
as a B-series. This is a trivial extension of the lemma found in [6].

2The meaning of this notation is that when we take the sum of all tress in Tk we define
F (∅)(x0) = x

(k)
0 .
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Lemma 4.1. If Y (k)(h) = B(k)(φ, x0;h) are some B-series and f ∈ C∞(Rd×q,Rd),
then f(Y (1)(h), . . . , f(Y (q)(h)))) can be written as formal series of the form

f(Y (1)(h), . . . , Y (q)(h)) =
∑
u∈Uf

β(u) · ψφ(u)(h) ·G(u)(x0), (4.12)

where Uf is a set of trees derived from T, by

(a) [∅]f ∈ Uf , and if τ1, τ2, . . . , τκ ∈ T , then [τ1, τ2, . . . , τκ]f ∈ Uf .

(b) G([∅]f )(x0) = f(x0) and
G(u = [τ1, τ2, . . . , τκ]f )(x0) = f (κ)(x0)(F (τ1)(x0), . . . , τκ(x0)).

(c) β([∅]f ) = 1 and β(u = [τ1, τ2, . . . , τκ]f ) = 1
r1!r2!...rq !

∏κ
j=1 α(τj), where r1, r2, . . . , rq

count equal trees among τ1, τ2, . . . , τκ.

(d) ψφ([∅]f )(h) ≡ 1 and
ψφ(u = [τ1, τ2, . . . , τκ]f )(h) = φ(τ1)(h)� φ(τ2)� · · · � φ(τκ)(h).

In the theorem above we have used the notation � for the Hadamard-product3.

Definition 4.4. The order of a tree τ ∈ T ∪ Uf is defined by

ρ(∅) = 0, ρ([τ1, . . . , τκ]f ) =
κ∑
i=1

ρ(τi),

ρ(τ = [τ1, . . . , τκ]k,l) =
κ∑
i=1

ρ(τi) +

1 for l = 0,
1
2 otherwise

If we apply Lemma 4.1 to the functions gk,l in (4.11) we get

gk,l(X(1)(h), . . . , X(q)(h)) =
∑

u∈Ugk,l

β(u) · ψφ(u)(h) ·G(u)(x0).

Clearly, by the definitions of trees, Tk,l, and elementary differentials, F (τ)(x0), we
can write this as

gk,l(X(1)(h), . . . , X(q)(h)) =
∑
τ∈Tk,l

α(τ) · φ′k,l(τ)(h) · F (τ)(x0), (4.13)

if we also define α(τ) as

α(∅) = 1, α( k,l) = 1, α(τ = [τ1, . . . , τκ]k,l) = 1
r1!r2 . . . rq!

κ∏
j=1

α(τj),

3The Hadamard-product is also known as the Schur-product or element-by-element product.
We use the notation � instead of the usual ◦ to avoid confusion with the Stratonovich integral.
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where r1, r2, . . . , rq count equal trees among τ1, τ2, . . . , τκ. From Lemma 4.1 we
also have

φ′k,l(τ)(h) =

1, if τ = k,l,∏κ
i=1 φ(τi)(h), if τ = [τ1, . . . , τκ]k,l ∈ Tk,l.

We now write the exact solutions (4.11) as B-series and use (4.13) to obtain

∑
τ∈Tk

α(τ) · φ(τ)(h) · F (τ)(x0) = x
(k)
0 +

m∑
l=0

∑
τ∈Tk,l

α(τ) ·
∫ h

0
φ′k,l(τ)(s) ? dWl(s)F (τ)(x0).

Comparing term by term we see that

φ(∅)(h) ≡ 1, and φ(τ)(h) =
∫ h

0
φ′k,l(τ)(s) ? dWl(s)

for τ ∈ Tk,l, l = 0, 1, . . . ,m, k = 1, . . . , q.

With induction on τ we have proven the following Theorem:

Theorem 4.6. The exact solutions of (4.11) can be written as B-series Bk(φ, x0;h)
with

φ(∅)(h) ≡ 1, φ( k,l)(h) = Wl(h),

φ(τ = [τ1, τ2, . . . , τκ]k,l)(h) =
∫ h

0

κ∏
j=1

φ(τj(s)) ? dWl(s),

τ ∈ Tk,l, k = 1, . . . , q, l = 0, 1, . . . ,m.

We must also find a similar result for the numerical solutions. For the solution
of (4.11) we use the s-stage SPRK method

Hk = 1s ⊗ Yk,n +
m∑
r=0

(
Z(k,r) ⊗ Id

)
gk,r(H1, . . . , Hq) (4.14)

Yk,n+1 = Yk,n +
m∑
l=0

(
(γ(k,l))> ⊗ Id

)
gk,l(H1, . . . , Hq) (4.15)

for k = 1, · · · , q.

Theorem 4.7. If the coefficients Z(k,l) ∈ Ξs×s
0 and γ(k,l) ∈ Ξs

0, then the numerical
solutions Yk,1 as well as the stage values can be written in terms of B-series

Hk = Bk(Ψ, x0;h), Yk,1 = Bk(Φ, x0;h)



4.6 Stochastic B-series for partitioned Runge-Kutta methods 33

for all k, with

Ψ(∅)(h) ≡ 1s, Ψ( k,r)(h) = Z(k,r)1s, (4.16a)
Ψ(τ = [τ1, . . . , τκ]k,r)(h) = Z(k,r) (Ψ(τ1)(h)� · · · �Ψ(τκ)(h)) (4.16b)

and

Φ(∅)(h) ≡ 1, Φ( k,l)(h) = γ(k,l)1s (4.17a)
Φ(τ = [τ1, . . . , τκ]k,l)(h) = γ(k,l) (Ψ(τ1)(h)� · · · �Ψ(τκ)(h)) (4.17b)

Proof. Write Hk as B-series,

Hk =
∑
τ∈Tk

α(τ) (Ψ(τ)(h)⊗ 1dk
)� (1s ⊗ F (τ)(x0),

for k = 1, · · · , q. Inserted into (4.14) and using (4.13) this gives

Hk = 1s ⊗ xk,0 +
m∑
r=0

∑
τ∈Tk,r

α(τ)
((
Z(k,r) ·Ψ′k,r(τ)(h)

)
⊗ 1dk

)
� (1s ⊗ F (τ)(x0))

A term by term comparison yields (4.16). The proof of (4.17) is similar.

For the mean, (4.2), and mean square, (4.3), local error we then find by Theo-
rems 4.6 and 4.7

lem(h; t, x) =
q∑

k=1

∑
τ∈Tk

α(τ) · E(Φ(τ)(h)− φ(τ)(h)) · F (τ)(x),

lems(h; t, x) =

√√√√√E
 q∑
k=1

∑
τ∈Tk

α (τ) · (Φ (τ) (h)− φ (τ) (h)) · F (τ) (x)
2

.

Finally, applying Theorem 4.1 from Milstein we find the conditions for mean square
global order p,

Φ(τ)(h) = φ(τ)(h) +O(hp+ 1
2 ), (4.18a)

E[Φ(τ)(h)] = E[φ(τ)(h)] +O(hp+1). (4.18b)

In Table 10 we have listed the 4 different tree shapes allowed by trees with up
to 3 nodes. This includes all the trees needed for methods of order 1.
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Table 10: Trees, τ , with of to 3 nodes. The B-series B(φ, x0;h) and B(Φ, x0;h)
correspond to the exact and numerical solution, respectively.

τ φ Φ∫ h

0
dWl1(s) γ(k1,l1)1s

∫ h

0

∫ s1

0
dWl2(s2)dWl1(s1) γ(k1,l1)Z(k2,l2)1s

∫ h

0

∫ s1

0
dWl1(s2)

∫ s1

0
dWl2(s2)dWl1(s1) γ(k1,l1)

(
Z(k2,l2)1s

)
�
(
Z(k3,l3)1s

)

∫ h

0

∫ s1

0

∫ s2

0
dWl3(s3)dWl2(s2)dWl1(s1) γ(k1,l1)

(
Z(k2,l2)Z(k3,l3)1s

)

4.7 Dependent order conditions

While the order theory based on B-series makes it trivial to find the order con-
ditions, the number of order conditions for SPRK methods becomes quite large
even for relatively modest order. We want to explore which order conditions are
automatically fulfilled or depend on each other when the conditions for preserving
quadractic invariants in Theorem 4.5 are fulfilled.

In 1991 Sanz-Serna and Abia [14] found these dependent trees in the deter-
ministic case, and in particular found that the order conditions can be written
in terms of non-rooted trees. Inspired by an approach in chapter IV.7 of [7] we
will prove this for SPRKs on the form (4.8), which corresponds to a system (4.11)
with two partitions, q = 2, in the order theory. Let us first write the conditions in
Theorem 4.7 in terms of the i’th elements of the vectors Φ(τ)(h) and Ψ(τ)(h),

Ψi(∅)(h) ≡ 1, Ψi( k,l)(h) =
s∑
j=1

Z
(k,l)
ij ,

Ψi(τ = [τ1, . . . , τκ]k,l)(h) =
s∑
j=1

Z
(k,l)
ij

κ∏
k=1

Ψj(τk)(h), (4.19)
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and

Φi(∅)(h) ≡ 1, Φi( k,l)(h) =
s∑
i=1

γ
(k,l)
i ,

Φi(τ = [τ1, . . . , τκ]k,l)(h) =
s∑
i=1

γ
(k,l)
i

κ∏
k=1

Ψi(τk)(h). (4.20)

Furthermore, let

u = [u1, . . . , uκ1 ]k1,l1
, v = [v1, . . . , vκ2 ]k2,l2

,

be two trees. The Butcher product is defined by

u ◦ v = [u1, . . . , uκ1 , v]k1,l1 .

Multiply both sides of (4.10) in Theorem 4.5 by ∏κ1
k1=1 Ψi(uk1)(h)∏κ2

k2=1 Ψj(vk2)(h)
and sum over all i, j = 1, . . . , s,∑

i

γ
(l)
i

κ1∏
k1=1

Ψi(uk1)(h)
∑

j

γ̂
(k)
j

κ2∏
k2=1

Ψj(vk2)(h)
 =

∑
i,j

(
γ̂

(k)
j Z

(l)
ji + γ

(l)
i Ẑ

(k)
ij

) κ1∏
k1=1

Ψi(uk1)(h)
κ2∏
k2=1

Ψj(vk2)(h)

Using (4.19) and (4.20) we get the following lemma.

Lemma 4.2. If a SPRK method on the form (4.8) preserves quadratic invariants,
i.e. satisfies the conditions in Theorem 4.5, then for all u ∈ Tk1,l1 and v ∈ Tk2,l2

Φ(u)(h) · Φ(v)(h) = Φ(u ◦ v)(h) + Φ(v ◦ u)(h)

for all k1, k2 = 1, 2 and l1, l2 = 0, 1, . . . ,m.

A corresponding result can be obtained for the exact solution.

Lemma 4.3. For Stratonovich SDEs on the form (4.7) we have for all u ∈ Tk1,l1

and v ∈ Tk2,l2

φ(u)(h) · φ(v)(h) = φ(u ◦ v)(h) + φ(v ◦ u)(h)

for all k1, k2 = 1, 2 and l1, l2 = 0, 1, . . . ,m.
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Proof. Write X(t) = (X(1)(t), X(2)(t)) where

X(1)(t) =
∫ t

0
g1,l1(X(t)) ◦ dWl1(s),

X(2)(t) =
∫ t

0
g2,l2(X(t)) ◦ dWl2(s),

are 1-dimensional stochastic processes. We are working with Stratonovich calculus
so the chain rule applies [9],

d(x1(t)x2(t))
dt

= x2(t)dx1(t)
dt

+ x1(t)dx2(t)
dt

.

Inserting the stochastic processes X(1)(t) and X(2)(t) on differential form and in-
tegrating both sides we find

X(1)(t)X(2)(t) = X(1)(0)X(2)(0) +
∫ t

0
X(2)(s)g1,l1(X(s)) ◦ dWl1(s)

+
∫ t

0
X(1)(s)g2,l2(X(s)) ◦ dWl2(s). (4.21)

Let u = [u1, . . . , uκ1 ]k1,l1 ∈ Tk1,l1 and v = [v1, . . . , vκ2 ]k2,l2 ∈ Tk2,l2 . Let X1(t) =
φ(u)(t) and X2(t) = φ(v)(t) into (4.21) we obtain,

φ(u)(t)φ(v)(t) =
∫ t

0
φ(v)(s)

κ1∏
i=1

φ(ui)(s)dWl1(s)

+
∫ t

0
φ(u)(s)

κ2∏
i=1

φ(vi)(s)dWl2(s)

= φ(u ◦ v)(t) + φ(v ◦ u)(t),

where we have used Theorem 4.6 and the fact that φ(τ)(0) = 0 by definition.

As illustrated in Table 11, when we take the Butcher product of two arbitrary
trees u = [u1, . . . , uκ1 ]k1,l1 and v = [v1, . . . , vκ2 ]k2,l2 we connect the root nodes of u
and v. The roots of u ◦ v and v ◦ u are the roots of u and v, respectively. In other
words, the trees u ◦ v and v ◦ u have the same structure, but differ only in the
choice of root node. From Lemmas 4.2 and 4.3 we see that the order conditions
obtained from the trees u ◦ v and v ◦ u are dependent.

In Table 12 we give some examples of trees that lead to dependent order con-
ditions. Clearly, if either the order condition for u ◦ v or v ◦ u and the order
conditions for the lower order trees are satisfied, then order condition for v ◦ u or
u ◦ v, respectively, is also satisfied.

We can turn this observation into a general result, but we will first prove the
following lemma.
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Table 11: Butcher products of trees u = [u1, · · · , uκ1 ]k1,l1 and v = [v1, . . . , vκ2 ]k2,l2 .

u v u ◦ v v ◦ u

uκ1. . .u1 vκ2. . .v1 vuκ1. . .u1 uvκ2. . .v1

Lemma 4.4. If γ(l) = γ̂(l), i.e condition (4.9) in Theorem 4.5 is satisfied then two
trees that only differ by the shape of the root node have equal order conditions.

Proof. This follows directly from Theorems 4.6 and 4.7 by applying the condition
γ(l) = γ̂(l).

Let |τ | denote the number of nodes in the tree τ ∈ T . The next theorem
shows that when the method conserves quadratic invariants the trees become “non-
rooted“, and, under certain conditions, also ”shapeless“.

Theorem 4.8. Assume the coefficients of a SPRK method on the form (4.8) satisfy
the conditions in Theorem 4.5, i.e. the method conserves quadratic invariants. Let
τ ∈ T be a tree with |τ | = n nodes for some n ∈ {1, 2, . . .}, and assume the order
condition (4.18) for τ is satisfied. Furthermore, assume the order conditions are
satisfied for all trees with n − 1 or less nodes. Then the order conditions for all
trees that only differ from τ by choice of the root node are also satisfied.

Furthermore, if condition (4.9) in Theorem 4.5 is satisfied then the order con-
ditions for all trees that can be obtained from τ by changing the shape of the nodes
and/or choosing a different node as root node are satisfied.

Proof. The proof for |τ | < 2 is trivial. Let τ = [τ1, · · · , τκ]k,l be an arbitrary
tree with |τ | ≥ 2 and denote the root node by τ 0. Choose subtrees vi = τi and
ui = [τ1, · · · , τi−1, τi+1, · · · , τκ]k,l for i ∈ {1, · · · , κ}, denote the root nodes of the
subtrees τi by τ 0

i and let m(τ) be the number of trees τi, i.e. m(τ) = κ. We note
that {τ 0

1 , · · · , τ 0
κ} form the set of all nodes adjacent to τ 0. Furthermore, let τ have

|τ | = n nodes, and assume that the order conditions for all trees with less than n
nodes are satisfied.

Now define the transformation πi : T → T such that πi(τ) is the tree obtained
from τ by choosing the node τ 0

i as root. Then the order conditions obtained from
τ = ui ◦ vi and πi(τ) = vi ◦ ui are dependent by Lemmas 4.2 and 4.3, and if one of
them is satisfied the others are automatically satisfied.

We have proven that all trees that can be obtained from one tree τ by choosing
as root node any node adjacent to τ 0 lead to dependent order conditions. Because
this is true for all τ ∈ T it is also true for all πi(τ), i.e. the order conditions
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Table 12: Dependent trees.

u v u ◦ v v ◦ u

obtained from πi(τ) and πj(πi(τ)), j = 1, . . . ,m(πi(τ)) are dependent. By repeated
application of this argument we have proven the first part of the lemma.

To prove the second part we first note that if γ(l) = γ̂(l) then by Lemma 4.4
the order conditions of two trees that only differ by the shape of the root are the
same. Let τ be a tree with n nodes and let v be an arbitrary tree that differs from
τ by choice of the root node and/or the shape of the nodes. We will prove that if
the order conditions of τ are satisfied, then so are the order conditions of v.

We can assume that v has the same root node as τ , because by assumption
v can be obtained from τ by choosing a different root node and/or changing the
shape of the nodes, and we have already proven that choosing a different root node
leads to dependent order conditions. So let τ and v differ only by the shape of the
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nodes. Let S = {n1, n2, . . . , nr} be the set of nodes that differ in shape from the
nodes of v, and denote the root node of τ by n0. Let τ ∗ be the tree obtained from τ
by choosing n1 as the root node. We have already proven that the order condition
for τ ∗ is then satisfied. Furthermore, n1 is now the root node, and by changing
the shape of n1 we obtain a new tree, τ ∗n1 . By Lemma 4.4 the order condition for
τ ∗n1 is automatically satisfied. By choosing the original root, n0, as the root of τ ∗n1

we get a new tree, τn1 , and the order condition of τn1 is satisfied. What we have
obtained is a tree, τn1 , that only differs from τ by the shape of the node n1, and
we have shown that if the order condition for τ is satisfied, then so is the order
conditions for τn1

Repeating this process, starting from τn1 , we can change the shape of all the
nodes in S until we obtain v.

We will give an example of how Theorem 4.8 can be used. Assume we want
to construct an order 1.5 SPRK method that preserves quadratic invariants and
that both conditions (4.9) and (4.10) are satisfied. The method will solve SODEs
of the form (4.7), which corresponds to a system with 2 partitions in the order
theory (4.11). We will also assume a single stochastic process, m = 1, with the
usual representation of black deterministic nodes and white stochastic nodes.

Strong order 1.5 requires all trees up to order 2, and we list all trees where
all nodes are of shape 1 in Table 13. Every node can have one of two shapes, so
for every tree in Table 13 with n nodes there are 2n trees for a total of 140 trees.
However, by Theorem 4.8 we know that it is enough to consider only one shape.
In Table 14 we list the trees that remain after applying Theorem 4.8. We see that
we are left with 10 trees that cannot be obtained from each other by a change of
root node. This is a dramatic reduction from the intial 140 trees.
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Table 13: All trees of order 2 or less with nodes of shape 1.

ρ(τ) τ
1
2

1 ,

3
2 , , ,

2 , , , , , , , , ,

Table 14: Non-superfluous trees of order 2 or less.

ρ(τ) τ

1
2

1 ,

3
2 ,

2 , , , ,
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5 Constructing new methods

In the previous chapter we developed the order theory and found conditions for
conserving quadratic invariants. We now turn to the problem of putting it all to-
gether and creating new methods. It turns out that any SRK method, partitioned
or not, that conserves quadratic invariants must be based on a deterministic RK
method that does the same. This is simply a consequence of the conditions on
the Runge-Kutta coefficients for the deterministic methods being a subset of the
conditions for the stochastic methods. In the case of partitioned methods this
follows from the conditions in Theorem 2.6 being a subset of the conditions in
Theorem 4.5. For this reason we find it natural to base any new methods on
known, deterministic RK methods that conserve quadratic invariants.

5.1 Itō stochastic Runge-Kutta methods

We look at Itō SRK methods (4.5) with two stages and a single stochastic process.
The goal is to find coefficients that satisfy both the order conditions (4.18) for
strong order 1 and the conditions for conserving quadratic invariants in Theorem
4.4. From the latter theorem we find the following conditions,

γ
(0)
1 Z

(0)
11 = 1

2(γ(0)
1 )2, (5.1a)

γ
(1)
1 Z

(1)
11 = 1

2(γ(1)
1 )2, (5.1b)

γ
(0)
2 Z

(0)
22 = 1

2(γ(0)
2 )2, (5.1c)

γ
(1)
2 Z

(1)
22 = 1

2(γ(1)
2 )2, (5.1d)

γ
(0)
1 Z

(0)
12 + γ

(0)
2 Z

(0)
21 = γ

(0)
1 γ

(0)
2 , (5.1e)

γ
(1)
1 Z

(1)
12 + γ

(1)
2 Z

(1)
21 = γ

(1)
1 γ

(1)
2 , (5.1f)

γ
(0)
1 Z

(1)
11 + γ

(1)
1 Z

(0)
11 = γ

(0)
1 γ

(1)
1 , (5.1g)

γ
(0)
1 Z

(1)
12 + γ

(1)
2 Z

(0)
21 = γ

(0)
1 γ

(1)
2 , (5.1h)

γ
(1)
1 Z

(0)
12 + γ

(0)
2 Z

(1)
21 = γ

(1)
1 γ

(0)
2 , (5.1i)

γ
(0)
2 Z

(1)
22 + γ

(1)
2 Z

(0)
22 = γ

(0)
2 γ

(1)
2 . (5.1j)
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From (4.18) we find the order conditions for Itō strong order 1,

γ
(0)
1 + γ

(0)
2 = h, (5.2a)

γ
(1)
1 + γ

(1)
2 = I(1), (5.2b)

γ
(1)
1 (Z(1)

11 + Z
(1)
12 ) + γ

(1)
2 (Z(1)

21 + Z
(1)
22 ) = I(1,1), (5.2c)

E
[
γ

(1)
1 (Z(0)

11 + Z
(0)
12 ) + γ

(1)
2 (Z(0)

21 + Z
(0)
22 )

]
= 0, (5.2d)

E
[
γ

(1)
1 (Z(1)
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12 )2 + γ

(1)
2 (Z(1)

21 + Z
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22 )2

]
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E
[
γ
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1 (Z(1)

11 + Z
(1)
12 ) + γ

(0)
2 (Z(1)

21 + Z
(1)
22 )

]
= 0, (5.2f)

E
[
γ

(1)
1 Z

(1)
11 (Z(1)

11 + Z
(1)
12 ) + γ

(1)
2 Z

(1)
21 (Z(1)

11 + Z
(1)
12 )

+γ(1)
1 Z

(1)
12 (Z(1)

21 + Z
(1)
22 ) + γ

(1)
2 Z

(1)
22 (Z(1)

21 + Z
(1)
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]
= 0. (5.2g)

However, we find that there are no 2-stage, strong order 1 Itō SRK methods of the
form (4.5) that conserve quadratic invariants. We can show this by substituting
the conditions (5.1b), (5.1f) and (5.1d) into order condition (5.2c),

1
2
(
γ

(1)
1

)2
+ γ

(1)
1 γ

(1)
2 − γ

(1)
2 Z

(1)
21 + γ

(1)
2 Z

(1)
21 + 1

2
(
γ

(1)
2

)2
=

1
2(γ(1)

1 + γ
(1)
2 )2 = 1

2I
2
(1) 6= I(1,1)

This result can be extended to s-stage methods.
Theorem 5.1. There are no Itō stochastic Runge-Kutta methods on the general
form (4.5) of strong order 1 or greater that preserve quadratic invariants.
Proof. Order conditions corresponding to (5.2b) and (5.2c) are, respectively,

s∑
i=1

γ
(1)
i = I(1),

s∑
i=1

γ
(1)
i

s∑
j=1

Z
(1)
ij = I(1,1).

We can write the latter condition as
s∑
i=1

γ
(1)
i Z

(1)
ii +

s∑
i=2

i−1∑
j=1

(
γ

(1)
i Z

(1)
ij + γ

(1)
j Z

(1)
ji

)
= I(1,1)

From Theorem 4.4 we have the relations γ(1)
i Z

(1)
ij = γ

(1)
i γ

(1)
j −γ

(1)
j Z

(1)
ji and γ(1)

i Z
(1)
ii =

1
2

(
γ

(1)
i

)2
, and we obtain

s∑
i

(
γ

(1)
i

)2
+

s∑
i=2

i−1∑
j=1

(
γ

(1)
i γ

(1)
j

)
= 1

2

(
s∑
i=1

γ
(1)
i

)2

= 1
2I

2
(1) 6= I(1,1)
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However, this result suggests that there may be Stratonovich methods that
conserve quadratic invariants, because in the Stratonovich case 1

2J
2
(1) = J(1,1), as

required.

5.2 A Stratonovich stochastic Gauss method
From (4.18) we find that the order conditions for strong order 1 Stratonovich SRK
methods are

γ
(0)
1 + γ

(0)
2 = h (5.3a)

γ
(1)
1 + γ

(1)
2 = J(1) (5.3b)

γ
(1)
1 (Z(1)

11 + Z
(1)
12 ) + γ

(1)
2 (Z(1)

21 + Z
(1)
22 ) = J(1,1) = 1

2J
2
(1) (5.3c)

E
[
γ

(1)
1 (Z(0)

11 + Z
(0)
12 ) + γ

(1)
2 (Z(0)

21 + Z
(0)
22 )

]
= 0 (5.3d)

E
[
γ

(1)
1 (Z(1)

11 + Z
(1)
12 )2 + γ

(1)
2 (Z(1)

21 + Z
(1)
22 )2

]
= 0 (5.3e)

E
[
γ
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12 ) + γ
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2 (Z(1)
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22 )

]
= 0 (5.3f)

E
[
γ

(1)
1 Z
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(1)
21 (Z(1)
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]
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From the proof of Theorem 4.4 we see that (5.3c) is automatically fulfilled if the
conditions for conserving quadratic invariants (5.1) are satisfied.

We now turn to the problem of finding a SRK method of strong order 1 that
conserves quadratic invariants. The conditions in Theorem 4.4 with k, l = 0 are
exactly the same as those found for deterministic RK methods, and for this reason
we find it convenient to use a known method from the deterministic theory as our
starting point. We will choose the 4th order Gauss method introduced in Chapter
2.3 with the coefficients

1
4

1
4 −

√
3

6

1
4 +

√
3

6
1
4

1
2

1
2

The deterministic conditions (5.1a), (5.1c) and (5.1e) are now obviously sat-
isfied. Next we look at the conditions that link the stochastic and deterministic
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coefficients together, (5.1g)-(5.1j),

1
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With these coefficients the final 3 conditions are trivially satisfied.
When solving the order conditions we will assume that γ(1)

i = βiJ(1) with βi ∈ R

for i = 1, 2. This means that E[γ(1)
i ] =E[Z(1)

ij ] = 0 for i, j = 1, 2, and conditions
(5.3d) and (5.3f) are immediately satisfied. From (5.3b) we have β1 = 1− β2, and
from the proof of Theorem 5.1 we already know that (5.3c) is satisfied. Condition
(5.3e) becomes

E
β1J

3
(1)

(
1
2β1 + 1

2β2 −
1√
3
β2

)2

+ β2J
3
(1)

(
1
2β1 + 1√

3
β1 + 1

2β2

)2
 = 0,

and (5.3g) similarly takes the form f(β1, β2)E[J3
(1)] = 0. We gather the results in

a theorem.

Theorem 5.2. Let γ(l) = β(l)Wl(h), Z(l) = A(l)Wl(h) for β(l) ∈ Rs, A(l) ∈ Rs×s

and l = 0, 1. The Stratonovich SRK method with coefficients

1
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6
a
2

(
1
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)
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1
4 +
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6
1
4

(
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)
a 1

2(1− a)
1
2

1
2 a 1− a

for some a ∈ R has strong order of convergence 1 and conserves quadratic
invariants of the form Q(y) = y>Cy.

While a can be chosen freely we will limit ourselves to |a| ≤ 1. Whether or not
large values of |a| can lead to other problems, such a poor numerical stability, was
not studied.
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5.3 A stochastic Störmer-Verlet method

Using the Störmer-Verlet method as a starting point we create a 2-stage, strong
order 1 SPRK method for a partitioned system of Stratonovich SDEs with a 1-
dimensional Wiener process. This corresponds to s = 2, q = 2, m = 1 in the order
theory developed in chapter 4.6. It turns out that there is only one such method,
which is just a trivial extension of the original method.

Theorem 5.3. Let γ(k,l) = β(k,l)Wl(h), Z(k,l) = A(k,l)Wl(h) for β(k,l) ∈ Rs, A(k,l) ∈
Rs×s, k = 1, 2 and l = 0, 1. The Stratonovich SPRK method with coefficients

0 0 0 0 1
2 0 1

2 0
1
2
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2

1
2

1
2

1
2 0 1

2 0
1
2

1
2

1
2

1
2

1
2

1
2

1
2

1
2

has strong order of convergence 1 and conserves quadratic invariants of the
form Q(y, z) = y>Dz.

Proof. We will choose the Störmer-Verlet scheme, shown in Table 15 as a Butcher
tableau, as a starting point.

Table 15: Butcher tableau for the Störmer-Verlet method as a partitioned Runge-
Kutta method.

0 0 1
2 0

1
2

1
2

1
2 0

1
2

1
2

1
2

1
2
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Using Theorems 4.6 and 4.7 we can write the order conditions

J(l) = γ(k,l)12, l = 0, 1, k = 1, 2 (5.4a)
J(1,1) = γ(k1,1)Z(k2,1)12, k1, k2 = 1, 2 (5.4b)

0 = E
[
γ(k1,0)Z(k2,1)12

]
, k1, k2 = 1, 2 (5.4c)

0 = E
[
γ(k1,1)Z(k2,0)12,

]
k1, k2 = 1, 2 (5.4d)

0 = E
[
γ(k1,1)

(
Z(k2,1)12

) (
Z(k3,1)12

)]
, k1, k2, k3 = 1, 2 (5.4e)

0 = E
[
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(
Z(k2,1)Z(k3,1)12

)]
, k1, k2, k3 = 1, 2 (5.4f)

We also want our method to conserve quadratic invariants, and from Theorem 4.5
we have the conditions

γ
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The purely deterministic conditions are, of course, satisfied, but we must determine
the vectors γ(k,1) and matrices Z(k,1) for k = 1, 2. We will assume that γ(k,1)

i =
b

(k,1)
i J(1) where b(k,1)

i ∈ R for k = 1, 2 and i = 1, 2. Similarly we assume that
Z

(k,1)
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ij J(1) where A(k,1)

ij ∈ R for k = 1, 2 and i, j = 1, 2. Order conditions
(5.4c) and (5.4d) are then trivially satisfied as they become C · E

[
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]
= 0 for

some real number C. Similarly, conditions (5.4e) and (5.4f) become C ·E
[
J3

(1)

]
= 0

and are also trivially satisfied. From (5.5a) we have γ(1,1)
i = γ

(2,1)
i for i = 1, 2, and

from (5.4a) we get γ(1,1)
2 = J(1) − γ(1,1)

1 .

From (5.5b) we get 12 conditions when we ignore the 4 purely deterministic
conditions. After using γ(2,1) = γ(1,1), inserting the coefficients from the Störmer-
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Verlet scheme and simplifying we get
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The last 4 conditions above are automatically satisfied by the first 8.
Finally, from (5.4b) we get 2 conditions after noting that γ(1,1) = γ(2,1),
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The first condition implies that γ(1,1)
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2J(1) and the second condition becomes
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The deterministic Störmer-Verlet method allows an explicit formulation for
systems of the form ẏ = f(z), ż = g(y). A similar explicit formulation can be
found in the stochastic case. Applying the stochastic Störmer-Verlet method to a
system of the form

Y (t) = y0 +
∫ t

0
f1(Z(s))ds+

∫ t

0
g1(Z(s)) ◦ dW (s) (5.6a)

Z(t) = z0 +
∫ t

0
f2(Y (s))ds+

∫ t

0
g2(Y (s)) ◦ dW (s) (5.6b)
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we get a scheme

Zn+1/2 = Zn + 1
2hf2(Yn) + 1

2J(1)g2(Yn)

Yn+1 = Yn + hf1(Zn+1/2) + J(1)g1(Zn+1/2)

Zn+1 = Zn + 1
2h (f2(Yn) + f2(Yn+1)) + 1

2J(1) (g2(Yn) + g2(Yn+1)) (5.7)

Clearly, (5.7) is an explicit scheme.

5.4 Extending known deterministic methods
The results in the previous subsections suggest a more general result.
Theorem 5.4. Let J(0) = h, γ(k,0) = b(k)J(0) and Z(k) = A(k,0)J(0) for k = 1, 2 be
the RK coefficients of a deterministic PRK scheme of at least order 1 that conserves
quadratic invariants Q(y, z) = y>Dz. Then the Stratonovich SPRK method with
γ(k,l) = b(k)J(l) and Z(k,l) = A(k)J(l) for k = 1, 2 and l = 0, 1 is of strong order 1
and conserves Q(y, z).
Proof. From Theorem 4.5 we find the conditions for preserving quadratic invari-
ants,
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where we have written γ(m,l) = b(m)J(l) and Z(m,l) = A(m)J(l). By assumption this
is true for the deterministic method, i.e. for J(l) = J(k) = h, and then clearly also
true for all k, l = 0, 1. The SPRK then conserves quadratic invariants.

We can write the order conditions as

J(l) = b(k)1sJ(l), l = 0, 1, k = 1, 2 (5.8a)
J(1,1) = γ(k1,1)Z(k2,1)1s, k1, k2 = 1, 2 (5.8b)
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]
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Condition (5.8a) is satisfied for l = 0 by assumption, and thus clearly also for
l = 1. The latter 4 conditions are trivially satisfied because odd powers of the
Wiener process have expected value 0. From the proof of Theorem 5.1 we know
that (5.8b) is satisfied if the method conserves quadratic invariants.
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6 Numerical results
In this chapter we run some numerical tests using the stochastic Gauss and stochas-
tic Störmer-Verlet methods we found in chapter 5. We numerically verify that they
are of strong order 1 and conserve quadratic invariants.

6.1 Example 1: A non-linear test equation
To numerically test the order of convergence of the stochastic Gauss method we
apply it to the test problem

dX(t) =
(1

2X(t) +
√
X(t)2 + 1

)
dt+

√
X(t)2 + 1dW (t), X(0) = 0.

This is an Itō SDE taken from Kloeden and Platen [9] with exact solution X(t) =
sinh(t+W (t)). Because we use a Stratonovich method we must first find the cor-
responding Stratonovich SDE with the same solution. By the conversion formula
(3.5) we find the modified drift coefficient

f̄(t, x) = f(t, x)− 1
2g(t, x)∂g(t, x)

∂x

=
(1

2x+
√
x2 + 1

)
− 1

2
√
x2 + 1 x√

x2 + 1
=
√
x2 + 1,

and the Stratonovich SDE is given by

dX(t) =
√
X(t)2 + 1dt+

√
X(t)2 + 1 ◦ dW (t), X(0) = 0. (6.1)

We calculate 10,000 sample paths of (6.1) on the time interval I = [0, 0.1] with
step sizes h = 0.1 · 2−k for k = 5, . . . , 9 and compare it with the exact solution.
The result is shown in Figure 1.

6.2 Example 2: Synchrotron oscillations
For the stochastic Störmer-Verlet method we look at set of equations from particle
physics [15]. A storage ring is a particular type of cyclic particle accelerator where
the kinetic energy is kept constant. Assume a reference particle travels with fixed
energy along the design orbit of the storage ring. We consider another particle
under the influence of fluctating electromagnetic fields, and this particle will per-
form stochastically perturbed oscillations with regards to the reference particle.
The energy or phase oscillations with respect to the reference particle are called
synchrotron oscillations.
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Figure 1: The order of convergence of the stochastic Gauss method. The dashed
line is a reference line with slope 1.

The equations are derived from a stochastically perturbed Hamilitonian func-
tion of a pendulum [15]

H(p, x, t) = p2

2 − ω
2(1 + λAξA(t)) cos(x) + ω2 sin(x)λPhξPh(t). (6.2)

Here x is the longitudinal phase difference between the particle and the reference
particle travelling along the design orbit, and p is proportional to the energy de-
viation of the particle from the reference particle. The stochastic terms λAξA(t)
and λPhξPh(t) are called amplitude noise and phase noise respectively.

We will consider the case of pure phase noise, λA = 0, and we write ξPh(t) =
W (t). The equations of motion are then

dp = −ω2 sin(x)dt− λPhω2 cos(x) ◦ dW (t), dx = pdt, (6.3)

and we solve them using the stochastic Störmer-Verlet scheme shown in Table 5.3.
Because the system is on the special form (5.6) we can use the explicit formu-

lation (5.7). For the phase noise (6.3) this is simply

Xn+1/2 = Xn + 1
2hPn,

Pn+1 = Pn − hω2 sin(Xn+1/2)− J(1)λPhω
2 cos(Xn+1/2),

Xn+1 = Xn + 1
2h (Pn + Pn+1) .
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We calculate 10,000 sample paths on the interval I = [0, 0.1] for each of the
step sizes h = 0.1 ·2−k for k = 8, 9, . . . , 12. The parameters are set to ω = 40π and
λPh = 10−4, and we use initial values X(0) = 0 and P (0) = 0. Lacking an exact
solution we apply the Stratonovich Heun scheme [4] with the step size h = 0.1·2−18

as a reference method. The order plot is shown in Figure 2
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Figure 2: The order of convergence of the stochastic Störmer-Verlet method. The
dashed line is a reference line with slope 1.

In the deterministic theory it has been proven [7] that structure preserving
methods allow for more accurate long-term integration, and we would like to see
how the stochastic Störmer-Verlet behaves over large time intervals. For each
method we calculate the average of 1,000 sample paths, use a step size h = 0.1 and
integrate to the time T = 10, 000. In Figure 3 we show the error in the Hamiltonian
as a function of time for the Stratonovich Heun and stochastic Störmer-Verlet
schemes, respectively. Of course, the Hamiltonian is not a quadratic invariant and
we do not expect the Störmer-Verlet method to conserve it, but in the deterministic
theory it has been shown (see chapter IX in [7]) that symplectic methods4 conserve
a modified Hamiltonian. Figure 3 b) suggests that this might also be the case for

4As mentioned in chapter 2.5, all RK methods that conserve quadratic invariants are sym-
plectic when applied to Hamiltonian systems.
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the stochastic Störmer-Verlet method.

6.3 Example 3: A rigid body problem
The rigid body problem is based on a deterministic problem in [7]. Let X =
(X1, X2, X3)> and let W be a 1-dimensional Wiener process. The motion in 3
dimensions of a free rigid body with center of mass at the origin is described by
the equations

dX = A(X)Xdt+ g(X) ◦ dW (6.4)

with

A(X) =


0 X3/I3 −X2/I2

−X3/I3 0 X1/I1

X2/I2 −X1/I1 0


and some function g(X). In the following we will use the initial value x0 =
(cos(1.1), 0, sin(1.1))> and the principal moments of inertia I1 = 2, I2 = 1 and
I3 = 2/3. Furthermore, all methods use the step size h = 0.1 and end time
T = 10.

For g(x) = 0 this reduces to the deterministic problem described in [7] with
invariants I(X) = X2

1 +X2
2 +X2

3 and

H(X) = 1
2

(
X2

1
I1

+ X2
2
I2

+ X3

I3

)
.

The solutions thus lie on the intersection between the sphere given by I(X) and
the ellipsoid given by H(X). Figure 4 shows the result using the 4th order Gauss
method. The blue ellipsoid corresponds to the invariant H(X) while the gold
sphere corresponds to the invariant I(X). The solution is shown as white pearls,
one for each step. As expected, the solution lies on the intersection between the
sphere and ellipsoid, indicating that both invariants are conserved.

By Corollary 4.1 the choice g(X) = A(X)X leads to an SDE with the same two
invariants. The result of solving this with the stochastic Gauss method is shown
in Figure 5, and, as we can see, the method conserves both invariants.

We can also choose g(X) such that the system has only one of the two invari-
ants. With g(X) = (g1(X), g2(X), g3(X))> we find

∇I(X)g(X) = 2 (X1g1(X) +X2g2(X) +X3g3(X))

and

∇H(X)g(X) = 1
2

(
X1g1(X) + 2X2g2(X) + 4

3X3g3(X)
)
.
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Figure 3: The error in the Hamiltonian as a function of time is shown for the
synchrotron problem solved with a) the Stratonovich Heun method and b) the
stochastic Störmer-Verlet method. For both methods we show an average of 1,000
sample paths, using a step size of 0.1 and integrating to T = 10, 000. The stochastic
Störmer-Verlet scheme shows much better long term behaviour when applied to
this sample problem.
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Choosing, for example, g(X) = (X2,−X1, 0)> we see that I(X) remains an invari-
ant while H(X) does not. This situation is shown in Figure 6 where the solution
remains on the sphere given by I(X), as expected.

As a comparison we apply the Euler-Maruyama method to the problem with
g(X) = A(X)X. The system has two invariants, but as we can see in Figure 7,
neither of them are conserved by this method.

6.4 Example 4: The outer solar system
We look at a Hamiltonian system describing the motion of the five outer planets
relative to the Sun. This is an N -body problem taken from chapter I.2.4 in [7],
and it has the form

H(p, q) = 1
2

5∑
i=0

1
mi

p>i pi −G
5∑
i=1

i−1∑
j=0

mimj

||qi − qj||
, (6.5)

where p and q are supervectors composed of the vectors pi, qi ∈ R3 for i =
0, 1, . . . , 5. The vectors pi and qi represent the moment and position, respectively,
of planet i in 3-dimensional space. Furthermore, G is the gravitational constant,
mi is the mass of planet i and the norm is the Euclidean norm. The Sun and the
inner planets are taken together and are represented as i = 0.

We add a stochastic term to the Hamiltonian equations such that the moment
and position vectors become, respectively,

dq = Hp(p, q)dt+ αHp(p, q)dWt, (6.6b)
dp = −Hq(p, q)dt− αHq(p, q)dWt, (6.6a)

where Hq = ∇qH = (∂H/∂q)> and Hp = ∇H = (∂H/∂p)> are the column vectors
of partial derivatives and α ∈ R.

From (6.5) and (6.6) we get the equations of motion

dqi = 1
mi

pi(dt+ αdWt), (6.7a)

dpi = −G
5∑

j=0,j 6=i

mimj(qi − qj)
||qi − qj||3

(dt+ αdWt). (6.7b)

The Hamiltonian (6.5) is an invariant of this system becauseH ′(p, q) = (∂H/∂p, ∂H/∂q)
and

∂H

∂p

(
−∂H
∂q

dt− α∂H
∂q

dWt

)>
+ ∂H

∂q

(
∂H

∂p
dt+ α

∂H

∂p
dWt

)>
= 0.
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(a)

(b)

Figure 4: The rigid body problem with g(X) = 0 solved with the deterministic
4th order Gauss method. Both invariants are conserved.
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(a)

(b)

Figure 5: The rigid body problem with g(X) = A(X)X and solved with the
stochastic Gauss method. Both invariants are conserved.
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(a)

(b)

Figure 6: The rigid body problem with g(X) = (X2,−X1, 0)> and solved with the
stochastic Gauss method. The system has only one invariant in this case, drawn
as a gold sphere, and we see that it is conserved by the method.
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(a)

(b)

Figure 7: The rigid body problem with g(X) = A(X)X and solved by the Euler-
Maruyama method. The system has two invariants, but neither of them are con-
served.
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Similarly to the deterministic case we can show that the total linear momentum,
P = ∑5

i=0 pi, and angular momentum L = ∑5
i=0 qi × pi are invariants of (6.6). For

the total linear momentum we have

dP = −G
5∑
i=1

5∑
j=0,j 6=i

mimj(qi − qj)
||qi − qj||3

(dt+ αdWt)

= −G
5∑
i=1

i−1∑
j=0

mimj ((qi − qj) + (qj − qi))
||qi − qj||3

(dt+ αdWt) = 0,

and for the angular momentum we have

dL

dt
=

5∑
i=0

dqi
dt
× pi +

5∑
i=0

qi ×
dpi
dt

dL =
5∑
i=0

(pi(dt+ αdWt))× pi +
5∑
i=1

qi ×

−G 5∑
j=0,j 6=i

mimj(qi − qj)
||qi − qj||3

(dt+ αdWt)


=
5∑
i=0

(pi × pi) (dt+ αdWt)

−G
5∑
i=1

5∑
j=0,j 6=i

mimj

||qi − qj||3
(qi × ((qi − qj)) (dt+ αdWt))

= −G
5∑
i=1

5∑
j=0,j 6=i

mimj

||qi − qj||3
(qi × (qi − qj)) (dt+ αdWt)

= −G
5∑
i=1

i−1∑
j=0

mimj

||qi − qj||3
((qi ×−qj) + (qj ×−qi)) (dt+ αdWt)

= 0.

We note that linear momentum and angular momentum are 3-dimensional vectors,
and for both vectors we then have 3 invariants, one for each dimension.

We solve (6.7) using the stochastic Störmer-Verlet method. For the values of the
gravitational constant, masses of the planets, initial positions and initial momenta
used in this problem we refer to chapter I.2.4 in Hairer, Lubich and Wanner [7]. We
use the step size h = 200, α = 1 and integrate to time T = 1, 000, 000. The result
is shown in Figure 8. We note that the stochastic effect is not readily apparent in
this plot.

When studying the invariants we integrate to time T = 20, 000, 000 to better
observe their longterm behaviour. In Figure 9 we show the error of the Hamil-
tonian. While H is an invariant it is not a quadratic invariant, and thus not
conserved by the stochastic Störmer-Verlet method.
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The errors in the total angular momentum and total linear momentum appear
to be conserved, however, as seen in Figure 10. While there is some error, it is on
the scale of 10−17 for all the invariants. We attribute this to numerical imprecision.

For comparison we implemented the Stratonovich Heun method. The Hamil-
tonian is shown in Figure 11. The stochastic effect on the error is noticeably
smaller, but it appears that that system is gradually losing energy, i.e. that H is
decreasing.

We know that the total linear momentum is conserved as the Stratonovich
Heun method belongs to the SRK class which conserves all linear invariants. The
angular momentum is a quadratic invariant and is not conserved, as shown in
Figure 12.

Figure 8: The motion of the 5 outer planets as described by the outer solar system
problem in example 4. The system is solved with the stochastic Störmer-Verlet
method using a step size of h = 200 and the end time T = 1, 000, 000.
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Figure 9: The error in the Hamiltonian as a function of time when applying the
stochastic Störmer-Verlet scheme to the outer solar system problem in example 4.
We see that the Hamiltonian is not conserved, as expected.
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Figure 10: The errors in the invariants as functions of time when applying the
stochastic Störmer-Verlet scheme to the outer solar system problem in example
4. The errors in the 3 dimensions of the total linear momentum are P1 (red),
P2 (magenta) and P3 (black). The errors for the total angular momentum are
L1 (yellow), L2 (cyan) and L3 (blue). We attribute these very small errors to
numerical imprecision.
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Figure 11: The error in the Hamiltonian as a function of time when applying the
Stratonovich Heun scheme to the outer solar system problem in example 4. We
see that H is not conserved by the Stratonovich Heun method.
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Figure 12: The errors in the 3 dimensions of the total angular momentum as a
function of time when applying the Stratonovich Heun scheme to the outer solar
system problem in example 4. Here shown as P1 (red), P2 (black) and P3 (blue).
We see that these invariants are not conserved.
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7 Final remarks

7.1 Summary
We have extended some results from geometric numerical integration to stochastic
differential equations. For stochastic Runge-Kutta (SRK) and stochastic parti-
tioned Runge-Kutta (SPRK) methods we found necessary conditions for the con-
servation of quadratic invariants, and we also showed that the Itō SRK methods
of the form we considered in this paper cannot conserve such invariants. We then
expanded the order theory based on rooted trees to cover SPRK methods, and
we showed how the majority of the order conditions are dependent if the SPRK
method conserves quadratic invariants. Together, these results build the frame-
work that allows us to construct new SRK and SPRK methods.

We then constructed some new methods of strong order 1 based on existing,
deterministic methods. A general result was also found that lets us expand any
known RK method of at least order 2 that conserves quadratic invariants to an
order 1 Stratonovich SRK method that does the same. Finally, we ran numerical
tests where we verified the order and that the methods indeed conserve quadratic
invariants.

7.2 Future work
There are predominantly two sets of problems I would have liked to have explored
further, but could not find the time for during the work on this thesis.

• Use the theoretical framework developed in this thesis to construct higher
order methods and methods that allow multiple stochastic processes.

• Explore the benefits of these methods when applied to stochastic Hamil-
tonian systems. A good starting point would be expanding the results in
chapter IX of [7] to a stochastic setting.
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