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ABSTRACT

We study fundamental groups of topological spaces. In particular we will com-
pute the fundamental group of SO(3), the group of rotations in three dimensions,
by studying covering spaces. We will see that the fundamental group is isomor-
phic to Z2. This is of interest because of its relation to physics.

Norsk sammendrag:
Vi studerer fundamentalgrupper av topologiske rom. Spesielt vil vi regne ut
fundamentalgruppen til SO(3), gruppen av rotasjoner i tre dimensjoner ved å
studere overdekningsrom. Vi vil se at fundamental gruppen er isomorf med Z2.
Dette er interessant p̊a grunn av relasjonen til fysikk.
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CHAPTER 1

INTRODUCTION

The central idea behind algebraic topology is to associate a topological situation
to an algebraic situation, and study the simpler algebraic setup. To each topo-
logical space a group can be associated, such that homeomorphic spaces give rise
to isomorphic groups. To a map of spaces we can associate a homomorphism of
groups such that compositions of maps yield compositions of homomorphisms of
groups. Then anything we can say about a topological situation gives information
about the algebraic one.

In this thesis we will study the first and simplest realization of this idea, the
fundamental group of a space.

The fundamental group is a tool used for describing what a topological space
looks like. It creates an algebraic “image” of the space using loops in the space.
However, the group does not tell us everything about a space. So what does it
actually tell us? It detects holes—it tells us if our space has any sort of holes.

Then how do we detect these holes? Imagine you are living in a topological
space, e.g. a surface and you are totally blind. Your life and everything around
is restricted to it, and you are only able to walk on the surface. Then suppose
you want to get a feeling of what your world looks like. You cannot see, but
you want to know the properties of the surface, so you are equipped with a lasso
which serves as your detector. You have also been told that there may be some
dangerous traps out there, so you decide to stay where you are. Then you start
throwing your lasso in all directions, keeping track of where you might catch
something. In the end you will have created some sort of map which gives us
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information about the holes of the surface, the algebraic ‘image” creating the
fundamental group.

Our motivation for studying the fundamental group is to prove that the funda-
mental group of SO(3), the group of rotations, is a cyclic group of order two. In
physics applications this result is interesting to us because it is associated to spin
and spinor representations in quantum mechanics. It explains why a rotation
body can have a spin of half a quantum and no other fraction (see [6, p. 602]).

At the end of the thesis we will demonstrate this result practically by Dirac’s
scissors experiment.

In Chapter 2 we will define homotopy and present some group properties. Then
we will describe the fundamental group and properties related in Chapter 3. In
this chapter group homomorphisms will be presented, too. Chapter 4 describes
covering spaces that play an important role in computing fundamental groups,
and our main result will build upon this theory. In the end of the chapter we will
compute the fundamental group of the circle. In Chapter 5 we will introduce the
notion of homotopy equivalence, another tool used for computing fundamental
groups. Chapter 6 presents orthogonal groups and especially rotation groups,
which will lay the foundation for the last chapter. In this chapter we will compute
the fundamental group of SO(3). We will also introduce quaternions that we will
need for proving our main result.

Throughout this thesis we will assume the knowledge of basic group theory
and general topology. The exposure in Chapter 2 and 3 is closely related to [4].



CHAPTER 2

HOMOTOPY

2.1 Paths
We need to construct the group. All groups consists of elements and an opera-
tion that combines any two elements, and it turns out that the elements we are
considering are constructed from paths. The paths will essentially be the basis
for everything we talk about in this thesis.

Definition 2.1. Let X be a topological space. A path in X from x0 to x1 is a
continuous map f : I → X such that f(0) = x0 and f(1) = x1. We say that x0
is the initial point and x1 the final point.

x0 x1

f

Figure 2.1: A path in X from x0 to x1.

See Figure 2.1 for an illustration. Paths are our building blocks, and we want to
define an operation combining them. We can combine any two paths as long as
they have a common endpoint. The operation is called concatenation of paths
and defines a product given in the following definition:
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Definition 2.2. Let f : I → X be a path in X from x0 to x1 and g : I → X
be a path in X from x1 to x2. Then the product f ∗ g is defined to be the path
f ∗ g : I → X given by

f ∗ g(s) =
{

f(2s) for s ∈ [0, 1
2 ],

g(2s− 1) for s ∈ [ 1
2 , 1].

f

x0
x1

x2

g

Figure 2.2: Concatenation of f and g.

The function f ∗ g : I → X is well-defined and continuous (see Figure 2.2). The
continuity of f ∗ g comes from the fact that a function defined on the union of
two closed sets is continuous if it is continuous when restricted to each of the
closed sets separately. See the pasting lemma, [4, pp. 108–109].
Remark. f ∗ g is a path in X from x0 to x2, by going from x0 to x1 at twice the
speed (i.e. in half the time) by f , and then from x1 to x2 via g (again in half the
time).

Definition 2.3. Let x ∈ X. We define a constant path to be the path
ex : I → X carrying all of I to the point x.

Definition 2.4. Given a path f in X from x0 to x1, let f̄ be the path defined
by f̄(s) = f(1− s). It is called the reverse path of f .

In Theorem 2.14, we will see that the constant and reverse path will represent
the identity and the inverse element, respectively, in the construction of the
fundamental group.

2.2 Homotopy of paths
In general there are many paths on a topological space, in fact there can be too
many of them to consider them all separately. We want to bring paths that are
essentially the same together. If we can continuously deform one path into the
other, we say they are essentially the same. Such a deformation is called a path
homotopy between the two paths. This leads us to the following definition:
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Definition 2.5. Let f, f ′ : X → Y be continuous maps. A homotopy between
f and f ′ is a continuous map F : X × I → Y such that

F (x, 0) = f(x) and F (x, 1) = f ′(x)

for all x. Here I = [0, 1]. Then f is homotopic to f ′. We denote this by f ' f ′.

Remark. We can think of F as a family of maps {ft : X → Y | t ∈ I} connecting
f and f ′, and ft(x) = F (x, t). Then f0 = f and f1 = f ′. If t represents time,
then the homotopy F represents a continuous “deforming” of the maps, as t goes
from 0 to 1.

Definition 2.6. A continuous map f : X → Y is said to be null homotopic
if it is homotopic to a constant map.

Definition 2.7. Let f, f ′ : I → X be paths in X with same endpoints. A path
homotopy between f and f ′ is a continuous map F : I × I → X such that

(i) F (s, 0) = f(s) and F (s, 1) = f ′(s),

(ii) F (0, t) = x0 and F (1, t) = x1,

for each s ∈ I and each t ∈ I. When two paths f and f ′ are connected in this
way by a homotopy F , they are said to be path homotopic. We denote this by
f 'p f ′.

The first condition says that F represents a continuous way of deforming the
path f to the path f ′, and the second condition says that the end points of the
path remains fixed during the deformation. We can think of it as a “movie” or
a sequence of slides going from f to f ′ (see Figure 2.3). If such a continuous
deformation does not exists, we say they are non homotopic paths (see Figure
2.4).

F

s

t

x0 x1

f

f ′

Figure 2.3: Homotopic paths: In this figure we have a valid homotopy, a contin-
uous deformation of paths.
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x0 x1

f

f ′

Figure 2.4: Non homotopic paths: In this figure the problem is the hole in the
middle. Obviously we cannot have a continuous deformation.

Example 2.8. (Linear homotopies.) Let f and f ′ be any two paths in Rn
having the same endpoints x0 and x1. Then F (s, t) = (1 − t)f(s) + tf ′(s) is a
homotopy between f and f ′. We verify this:

(i) F (s, 0) = f(s) and F (s, 1) = f ′(s),

(ii) F (0, t) = (1− t)x0 + tx0 = x0 and F (1, t) = (1− t)x1 + tx1 = x1.

During the homotopy each point f(s) travels along a line segment to f ′(s) at
constant speed. It is called a straight line homotopy.

In particular, if U ⊂ Rn is convex, then any two paths f, g : I → U with same
endpoints are homotopic.

2.3 Equivalence relations
It is a well known fact that a congruence relation is an equivalence relation of an
algebraic structure, such as a group or a ring. Being homotopic is an equivalence
relation on the set of all continuous functions from X to Y . We will prove this
in the following lemma.

Lemma 2.9. The relations ' and 'p of homotopy are equivalence relations.

Proof. We need to verify the three properties of an equivalence relation, reflexi-
bility, symmetry and transitivity.

(1) (Reflexibility.) Let F (x, t) = f(x) be the constant homotopy. Then
f ' f . Similarly, let F (s, t) = f(s) be the constant path homotopy. Then
f 'p f .

(2) (Symmetry.) Let F be a homotopy between f and f ′. Then we can find
a homotopy G between f ′ and f , given by G(x, t) = F (x, 1 − t). If F is a
path homotopy, G is also. Let G be this path homotopy. Then we have

(i) G(s, 0) = F (s, 1) = f ′ and G(s, 1) = F (s, 0) = f,
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(ii) G(0, t) = F (0, 1− t) = x0 and G(1, t) = F (1, 1− t) = x1.

(3) (Transitivity.) Let F be a homotopy between f and f ′, and let G be a
homotopy between f ′ and f ′′. Then there exists a homotopy H between f
and f ′′ given by

H(x, t) =
{

F (x, 2t) for t ∈ [0, 1
2 ],

G(x, 2t− 1) for t ∈ [ 1
2 , 1].

These two definition agree for t = 1/2 since F (x, 2t) = f ′(x) = G(x, 2t−1),
and the map H is well-defined. Continuity of H is evident by the pasting
lemma. Since H is continuous on X × [0, 1

2 ] and X × [ 1
2 , 1], it is continuous

on X × I. If F and G are path homotopies, so is H. Let H : I × I → X be
this homotopy. Then

(i) H(s, 0) = F (s, 0) = f and H(s, 1) = G(s, 1) = f ′′,

(ii) H(0, t) = x0 and H(1, t) = x1.

Definition 2.10. Given a space and a homotopy in X, the homotopy class of a
path f in X, denoted [f ], is the subset of all paths in X which is path homotopic
to f . We write

[f ] = {g ∈ X | g 'p f}.

As mentioned at the beginning of this section, we will find it useful to collect those
paths that are essentially the same, and that is exactly what these homotopy
classes do. In Chapter 3 we will see that it is exactly these collections of paths
that will form the elements of the fundamental group.

So we consider the set of homotopy classes of paths. In order to have a group
structure of these classes, we have to define a group operation. Recall that we
defined a way to combine paths by an operation called concatenation of paths,
and it turns out that this operator ∗ induces a well-defined operation on the
path-homotopy classes, given by

[f ] ∗ [g] = [f ∗ g].

We verify this. Let f and g be as defined in Definition 2.2. Let F be a path
homotopy between f and f ′ and let G be a path homotopy between g and g′.
Then we can define a new homotopy

H(s, t) =
{

F (2s, t) for s ∈ [0, 1
2 ],

G(2s− 1, t) for s ∈ [ 1
2 , 1],

between f ∗ g and f ′ ∗ g′. To see this, we have
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(i) H(0, t) = F (0, t) = x0,

(ii) H(1, t) = G(1, t) = x2,

(iii) H(s, 0) =
{

F (2s, 0) = f(2s) for s ∈ [0, 1
2 ],

G(2s− 1, 0) = g(2s− 1) for s ∈ [ 1
2 , 1],

which is equal to the product f ∗ g,

(iv) H(s, 1) =
{

F (2s, 1) = f ′(2s) for s ∈ [0, 1
2 ],

G(2s− 1, t) = g′(2s− 1) for s ∈ [ 1
2 , 1],

which is equal to the product f ′ ∗ g′.

Since F (1, t) = x1 = G(0, t) for all t, the map H is well-defined; it is continuous
by the pasting lemma. The homotopy H is pictured in Figure 2.5.

f ′f

x0
x1

x2

g′

g

Figure 2.5: Illustration of homotopy between f ∗ g and f ′ ∗ g′ given f 'p f ′ and
g 'p g′.

The homotopy class of f ∗ g depends only on the homotopy class of f and g, so
the product [f ] ∗ [g] = [f ∗ g] is well defined.

Theorem 2.11. If f, f ′ : X → Y are homotopic maps and g, g′ : Y → Z are
homotopic maps, then their compositions g◦f, g′ ◦f ′ : X → Z are also homotopic
maps.

Proof. Let F : X × I → Y be a homotopy between f and f ′ and G : Y × I → Z
be a homotopy between g and g′. We define a map H : X × I → Z by

H(x, t) = G(F (x, t), t).

Clearly, H is continuous. Moreover,

(i) H(x, 0) = G(F (x, 0), 0) = G(f(x), 0) = g(f(x)),

(ii) H(x, 1) = G(F (x, 1), 1) = G(f ′(x), 1) = g′(f ′(x)).

Thus, H is the required homotopy between g ◦ f and g′ ◦ f ′.
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2.4 Groupoid properties
In this section we will study the induced operation ∗ on the homotopy classes,
and its properties. However, first we need to make some definitions that we will
make use of in the upcoming theorem.

Definition 2.12. Let k : X → Y be a continuous map, and let F be a path
homotopy between the paths f and f ′. Then k ◦ F is a path homotopy in Y
between the paths k ◦ f and k ◦ f ′.

Definition 2.13. Let k : X → Y be a continuous map and let f and g be paths
in X such that f(1) = g(0). Then

k ◦ (f ∗ g) = (k ◦ f) ∗ (k ◦ g).

This equality follows at once from the definition of the product operation ∗.

Theorem 2.14. The operation ∗ has the following properties:

(1) (Associativity.) If both relations are defined, then

[f ] ∗ ([g] ∗ [h]) = ([f ] ∗ [g]) ∗ [h].

(2) (Right and left identities.) If f is a path in X from x0 to x1, then

[f ] ∗ [ex1 ] = [f ] and [ex0 ] ∗ [f ] = [f ].

(3) (Inverses.) Let f be a path in X from x0 to x1. Then

[f ] ∗ [f̄ ] = [ex0 ] and [f̄ ] ∗ [f ] = [ex1 ].

Before we start proving anything, we need to be clear on how we approach the
given properties. What does it mean for two homotopy classes to be equal?
Consider the classes [f ] and [g]. Since [f ] consists of all paths that are homotopic
to f , and [g] consists of all paths homotopic to g, then solving [f ] = [g] must be
the same as to show that f is homotopic to g.

Proof. To verify (1), we need to find a homotopy between [f ] ∗ ([g] ∗ [h]) and
([f ] ∗ [g]) ∗ [h]. For this proof we will find it convenient to use another notation
for the product f ∗ g than the one we are used to. Let [a, b] and [c, d] be two
intervals in R. Then we can construct a positive linear map p : [a, b]→ [c, d] that
is given by p(x) = mx+ k and maps a to c and b to d.
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Then the product f ∗ g can be described as follows: On [0, 1
2 ] it equals the

positive linear map of [0, 1
2 ] to [0, 1], followed by f ; and on [ 1

2 , 1] it equals the
positive linear map of [ 1

2 , 1] to [0, 1], followed by g.

Let f , g, and h be paths in X. The products f ∗ (g ∗h) and (f ∗ g)∗h are defined
precisely when f(1) = g(0) and g(1) = h(0). Further we define a “triple product”
of the paths f , g, and h: Choose points a and b of I so that 0 < a < b < 1.
Define a path ka,b in X as follows: On [0, a] it equals the positive linear map of
[0, a] to I followed by f ; on [a, b] it equals the positive linear map of [a, b] to I
followed by g; and on [b, 1] it equals the positive linear map of [b, 1] to I followed
by h. The path ka,b depends of course on the choice of the points a and b. But
its path homotopy class does not!

If we let c and d be another points of I with 0 < c < d < 1, and we manage
to show that kc,d is path homotopic to ka,b, we are done. The product f ∗ (g ∗ h)
is equal to ka,b in the case a = 1/2 and b = 3/4, while the product (f ∗ g) ∗ h
equals kc,d in the case c = 1/4 and d = 1/2.

Let p : I → I be a map, and restrict p to the intervals [0, a], [a, b] and [b, 1]. Then
it equals the positive linear maps of these onto the intervals [0, c], [c, d] and [d, 1],
respectively (see Figure 2.6). It follows at once that kc,d ◦ p equals ka,b. But p is
a path in I from 0 to 1, and so is the identity map i : I → I. Hence, there is a
path homotopy P in I between p and i. Then kc,d ◦ P is a path homotopy in X
between ka,b and kc,d.

a
s

u

b 1

c

d

1

Figure 2.6: Positive linear maps of intervals.
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We verify (2). Let e0 denote the constant path in I at 0, and let i : I → I denote
the identity map, which is a path in I from 0 to 1. Then e0 ∗ i is also a path in
I from 0 to 1 (see Figure 2.7).

1

1

s

u

u = (e0 ∗ i)(s)

u = i(s)

Figure 2.7: Observe e0 ∗ i going twice as “fast” relative to i.

Using Example 2.8 and the fact that I is convex we know there is a path
homotopy G in I between i and e0 ∗ i. Then we know that f ◦ G is a path
homotopy in X between the paths f ◦ i = f and

f ◦ (e0 ∗ i) = (f ◦ e0) ∗ (f ◦ i) = ex0 ∗ f.

We apply the same method using the fact that e1 denotes the constant path at 1.
Then i∗e1 is path homotopic in I to the path i, which gives us that [f ]∗[ex1 ] = [f ].

Finally, we verify (3). Let i be defined as before. We know that the reverse of i
is ī(s) = i(1− s) = 1− s. Then i ∗ ī is a path in I with endpoints at 0, and so is
the constant path e0 (see Figure 2.8).

1

1

s

u

u = e0(s)

u = (i ∗ ī)(s)

Figure 2.8: e0 and i ∗ ī are homotopic paths in I.

Again, using the fact that I is convex, there is a path homotopy H in I
between e0 and i ∗ ī. Then f ◦H is a path homotopy between f ◦ e0 = ex0 and

(f ◦ i) ∗ (f ◦ ī) = f ∗ f̄ .
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An entirely similar argument, using the fact that ī ∗ i is path homotopic in I
to e1, shows that [f̄ ] ∗ [f ] = [ex1 ].

We see that the preceding properties are very similar to the axioms of a group.
There is only one problem; the product [f ] ∗ [g] is not defined for every pair of
classes, but only for those pairs [f ], [g] for which f(1) = g(0). For every group all
the group axioms, namely closure, identity, associativity and invertibility must
be satisfied. However, in this case the closure property fails. These properties
are called the groupoid properties of ∗. To ensure closure, we need to make a
generalization.



CHAPTER 3

THE FUNDAMENTAL GROUP

Suppose we pick out a point x0 of X to serve as a “base point” and restrict
ourselves to those paths that begin and end at x0 (just choose ex0 = ex1). Then
we can multiply any path with each other because one path will start where the
last one ended, and we will automatically have a closed system. Associativity,
the existence of an identity element [ex0 ], and the existence of an inverse [f̄ ] for
[f ] are immediate. Then all the group axioms are satisfied, and the set of these
path homotopy classes form a group under ∗.

Definition 3.1. A loop in X is a continuous map f : I → X such that f(0) =
f(1).

Then two loops can be combined together in an obvious way; first travel along
the first loop, then along the second.

Definition 3.2. Let X be a topological space, and x0 a point in X. The
fundamental group of X is the set of path homotopy classes [f ] of loops
f : I → X based at x0, together with the operation ∗. We denote it by π1(X,x0).

x0

f

Figure 3.1: A loop based at x0.
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The fundamental group is also called the first homotopy group. It has a
generalization to homotopy groups πn(X,x0), defined for all n ∈ Z+, but we will
not study them in this thesis.

Definition 3.3. Given two loop classes [f ] and [g] we define:

(i) [f ] ∗ [g] = [f ∗ g].

(ii) The inverse of [f ] is given by [f−1], that is [f ]−1 = [f−1], where f−1(t) =
f̄(t) = f(1− t).

Definition 3.4. Let x0 ∈ X. We define a constant loop to be the loop
ex0 : I → X carrying all of I to the point x0.

Definition 3.5. A loop f is called nullhomotopic if it is homotopic to the
constant loop.

Example 3.6. Let Rn denote the Euclidean n-space. Then π1(Rn, x0) is the
trivial group. For if f is a loop in Rn based at x0, the straight line homotopy
is a path homotopy between f and the constant path at x0. Hence there is only
one homotopy class of loops. More generally, if X is any convex subset of Rn,
π1(X,x0) is the trivial group. In particular, a disk

Figure 3.2: Loop based at x0 in a disk.

has trivial fundamental group (see Figure 3.2). Lets choose some point x0 inside
it and look at loops based at this point. Then all loops at x0 are nullhomotopic.

How can we make a “movie” that continuously deforms these loops to the
constant loop? Imagine we can see every point from x0, and imagine a spider at
x0 collecting all the threads of its web to x0, at a constant rate.

3.1 Path connectedness and isomorphisms
Throughout the thesis, we only deal with path connected spaces when studying
fundamental groups. We therefore find it useful to define path connectedness.
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Definition 3.7. A space X is said to be path connected if there is a path
joining any two points in X.

Let X be path connected. Since X is path connected there exist a path α in X
connecting two point x0 and x1 in X. Then we can define a map between the
two fundamental groups whose loops are based at the respective points x0 and
x1 in X:

Definition 3.8. Let α be a path in X from x0 to x1. Then we have a map

α̂ : π1(X,x0)→ π1(X,x1)

given by

α̂([f ]) = [ᾱ] ∗ [f ] ∗ [α],

mapping a loop f based at x0 to a loop ᾱ ∗ (f ∗ α) based at x1. Hence α̂ maps
π1(X,x0) into π1(X,x1) as desired. The map α̂ is well defined since the operation
∗ is well defined.

x0

x1

f

ᾱ

α

Figure 3.3

We will show that the map is an isomorphism. Then using the fact that X is
path connected and that x0 and x1 are two arbitrary points in X, we know that
any path in X give rise to an isomorphism.

Theorem 3.9. The map α̂ is a group isomorphism.

Proof. The map α̂ is a group homomorphism, as is seen from

α̂([f ]) ∗ α̂([g]) = ([ᾱ] ∗ [f ] ∗ [α]) ∗ ([ᾱ] ∗ [g] ∗ [α])
= [ᾱ] ∗ [f ] ∗ [g] ∗ [α]
= α̂([f ] ∗ [g]).
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For α̂ to be an isomorphism we need to find an inverse of α̂. Let β denote the
reverse path ᾱ, a path from x1 to x0. Then β̂ is an inverse for α̂. Then for each
[h] of π1(X,x1), we have

[β̂]([h]) = [β̄] ∗ [h] ∗ [β] = [α] ∗ [h] ∗ [ᾱ],

α̂(β̂([h])) = [ᾱ] ∗ ([α] ∗ [h] ∗ [ᾱ]) ∗ [α] = [h].

Similarly, for each [f ] of π1(X,x0) we have

[α̂]([h]) = [ᾱ] ∗ [f ] ∗ [α] = [β] ∗ [f ] ∗ [β̄],

β̂(α̂([f ])) = [β̄] ∗ ([β] ∗ [f ] ∗ [β̄]) ∗ [β] = [f ].

Hence, α̂ is an isomorphism.

Corollary 3.10. if X is path connected and x0 and x1 are two points of X, then
π1(X,x0) is isomorphic to π1(X,x1).

Hence, letting X be path connected ensures us that the fundamental group is
independent of the base point. This is an important fact we will use throughout
the thesis when computing fundamental groups. Then for a path connected space
X we will denote its corresponding fundamental group by π1(X), omitting the
base point x0.

Example 3.11. Consider the punctured euclidean space, Rn \ (0). If n ≥ 1,
the space is path connected. Let x and y be two points in Rn different from 0.
Then we can join them by the path f : I → Rn \ (0) given by f(t) = (1− t)x+ ty
if the path does not go through the origin. Otherwise, we can join x and y by
two paths through a third point z.

Lemma 3.12. Let F : X → Y be continuous and onto. If X is path connected,
then Y is also.

Proof. Since f is onto there exist x1, x2 ∈ X such that f(x1) = y1 and f(x2) = y2
for any y1, y2 ∈ Y . If X is path connected there is a path g : I → X from x1 to
x2. Then the composition f ◦ g : I → Y is a path from y1 to y2, so Y is path
connected.

The map f : Rn \ (0)→ S1 given by f(x) = x
‖x‖ is continuous is surjective; hence

by Lemma 3.12 we know that S1 is path connected.
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3.2 Simply connected space
In a simply connected space we can continuously shrink any closed curve to a
point while remaining in the domain, so any loop based at x0 can be deformed
to the constant map at that point, to the identity element. Then the homotopy
class of each element is the same as the homotopy class of the identity element,
so there is only one homotopy class.

Definition 3.13. A space is called simply connected if it is path connected
and if π1(X,x0) is the trivial group. We denote this by writing π1(X,x0) = 0.

So the fundamental group can measure the extent to which a space fails to be
simply connected. Intuitively, the group gives us information about the holes in
the space; if no holes exist, the group is trivial and the space is simply connected.

Lemma 3.14. Let X be simply connected. Then any two paths in X having the
same initial and final points are path homotopic.

Proof. Let α and γ be two paths from x0 to x1. Then α ∗ γ̄ is a loop in X based
at x0. Since X is simply connected, the loop α ∗ γ̄ is path homotopic to the
constant loop ex0 . In particular, we get

[α ∗ γ̄] ∗ [γ] = [ex0 ] ∗ [γ] = [α].

Hence, it follows that [α] = [γ] and α 'p γ.

Example 3.15. The sphere S2 is simply connected because every loop on the
surface can be contracted to a point.

In fact, the spheres, Sn, for n ≥ 2 are simply connected spaces.

3.3 Induced homomorphisms
Group homomorphisms are maps that preserve group structure, and as with any
two groups we can find a homomorphism between them. Suppose we have a
continuous function h : X → Y . Then associated to h is a an algebraic analog,
h∗, which is a function between the corresponding fundamental groups. We will
take a look at the definition.

Definition 3.16. Let h : (X,x0) → (Y, y0) be a continuous map such that
h(x0) = y0. Then we define a map h∗ : π1(X,x0) → π1(Y, y0) given by
h∗([f ]) = [h ◦ f ]. Then h∗ is a homomorphism of fundamental groups called
the homomorphism induced by h.
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x0 y0

f

X

Y

h ◦ fh

Figure 3.4: Basepoint x0 in X mapped to y0, basepoint in Y .

As Figure 3.4 illustrates, if f is a loop in π1(X,x0), then h◦f is a loop in π1(Y, y0).
The map h∗ is well-defined, for if F is a path homotopy between the paths

f and f ′ in X, then we can “transfer” this homotopy over to a homotopy in Y ,
h ◦ F , that will define a path homotopy between the paths h ◦ f and h ◦ f ′. We
check that h∗ actually is a homomorphism:

h∗[f ∗ g] = h ◦ (f ∗ g),
h∗[f ] ∗ h∗[g] = (h ◦ f) ∗ (h ◦ g).

We already know that the identity
(h ◦ f) ∗ (h ◦ g) = h ◦ (f ∗ g)

holds, so h∗ is a homomorphism.

It is important to be aware of that the homomorphism h∗ not only depends on
the map h : X → Y but also on the choice of the base point x0. We may have
to consider different base points of X. Then we can not use the same symbol h∗
to stand for different homomorphisms. To distinguish them from each other, we
find it natural to use the notation (hx0)∗ for base point x0.

The induced homomorphism has two important properties that are given in the
following theorem:
Theorem 3.17. If h : (X,x0)→ (Y, y0) and k : (Y.y0)→ (Z, z0) are continuous,
then (k ◦ h)∗ = k∗ ◦ h∗. If idX : (X,x0)→ (X,x0) is the identity map, then idX∗
is the identity homomorphism.
Proof. By definition,

(k ◦ h)∗([f ]) = [(k ◦ h) ◦ f ],
(k∗ ◦ h∗)([f ]) = k∗(h∗([f ])) = k∗([h ◦ f ]) = [k ◦ (h ◦ f)].

Similarly, idX∗([f ]) = [idX ◦ f ] = [f ].



CHAPTER 4

COVERING SPACES

Covering spaces have many uses, especially in topology. Given a space X, we are
interested in spaces that “cover” X in a nice way. Our immediate goal is to use
them as a general tool for calculating fundamental groups of topological spaces
because there is an intimate connection between them. At the end of the chapter
we will use our knowledge of covering spaces to compute the fundamental group
of the circle S1.

Let p : C → B denote a covering map, where C and B denotes the covering
space and base space, respectively. Before we start looking at the definition and
what makes p a covering map, we will give a concrete example. Consider the
map p : R→ S1 of the real line onto a circle, in which we think of the real line as
an “infinite” spiral floating in the air. We imagine a projection map from R3 to
R2 given by (x, y, z) 7→ (x, y), mapping an infinite number of points to the same
point on the circle in the plane.
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( )
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C

B

Figure 4.1: Covering map of S1.

We can also imagine a ball circling down a spiral, and for every time the
ball reaches a new red neighbourhood, its shadow in the plane reaches the same
neighbourhood over and over again (see Figure 4.1).

Arithmetically, we can define this more precisely. Let us think of R as the real
line, and the circle being the interval I with 0 identified with 1 (see Figure 4.2).

−1 0 1 2−2

p
0 1

x

Figure 4.2: Covering map of S1.

We define p(x) = x (mod 1). Then we have

p(3.2) = 3.2 (mod 1) = 0.2 and p

(
7
5

)
= 7

5 (mod 1) = 2
5 .

There is another way of thinking of this map which is useful and uses some
abelian group theory. If we think of R as an additive abelian group, we can
consider the quotient R/Z, the space of cosets of Z in R, in which the elements
can be expressed as a+Z, a ∈ R. Then the space of all cosets, R/Z is isomorphic
to S1, because the cosets themselves are parametrised by elements belonging to
the interval I. We then have

R/Z ∼= S1 ∼= I with 0 identified with 1.
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Now, with that set up we can describe the covering map in an algebraic way:

p : R→ R/Z,

a projection map given by p(a) = a+ Z. Then

p

(
3
2

)
= 3

2 + Z = 1
2 + Z.

We are reducing the number (mod 1), removing an integer part. This is a typical
situation of a covering space mapping from a space to a quotient of the space.
The question is; what defines it to be a covering map, and not just any map? We
will take a look at the definition.

Definition 4.1. A covering space or cover of a space B is a space C together
with a map p : C → B such that the following hold:

(i) p : C → B is surjective.

(ii) Every point b0 ∈ B has an open neighbourhood U ⊂ B such that p−1(U)
is a disjoint union of open sets, Vα, each of which is mapped by p homeo-
morphically onto U .

(iii) p−1(b0) has the discrete topology.

p

U

p−1(U)
Vn

Figure 4.3: Covering map.

We often visualize the pre-image of U as a stack of slices, each slice being a copy
of U , floating in the air above U ; the map p squashes them all down onto U (see
Figure 4.3).
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Looking back at Figure 4.1, we can clearly see that it satisfies the conditions
for a covering space. If we let x be any point in the base B, representing the
circle, there is a discrete number of elements in p−1(x). We can also find an open
interval U around x in the base B such that p−1(U) is a disjoint union of open
sets in the covering space C, each of which a copy of U (the red neighbourhoods).
We will prove this more formally:

Theorem 4.2. The map p : R→ S1 given by

p(x) = (cos 2πx, sin 2πx)

is a covering map.

Proof. In this case we picture p as a function wrapping the real line R around
S1.

Let us consider the subset U of S1 consisting of those points having positive
x-coordinates. The pre-image p−1(U) consists of those points x ∈ R for which
cos 2πx is positive; that is, it is the union of the intervals

Vn =
(
n− 1

4 , n+ 1
4

)
,

for all n ∈ Z (see Figure 4.4).

−1 0 1 2−2
( ) )( )( ( ) )(
V−2 V−1 V0 V 1 V 2

p

Figure 4.4: Covering map of S1.

If we restrict ourselves to the closed intervals V̄n, the map is injective, because
sin 2πx is strictly monotonic on such an interval (see Figure 4.5).
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0.7 0.8 0.9 1 1.1 1.2 1.3

−1

−0.5

0

0.5

1 sin(2πx)
cos(2πx)

Figure 4.5: sin 2πx and cos 2πx for x ∈ V̄1.

Moreover, p : V̄n → Ū is surjective, and since V̄n is compact, p|V̄n is a home-
omorphism of V̄n with Ū . In particular, p|Vn is a homeomorphism of Vn with U .

We can easily apply the same arguments to the intersection of S1 with the upper
and lower open half-planes, and with the open left-hand half-plane. Hence,
p : R→ S1 is a covering map.

Corollary 4.3. If p : C → B is a covering map, then p is a local homeomorphism
of C with B.

That is, each point c ∈ C has a neighbourhood that is mapped homeomor-
phically by p onto an open subset of B.

4.1 Lifting properties
If p : C → B is a covering map, then what is the relationship between π1(C)
and π1(B)? To answer this, we will need to consider paths, and connect paths in
B to paths in C. We establish two important results related to this, called the
Path lifting property and the Homotopy lifting property.

C

p

��

X

f̃

<<

f
// B

The “lifting problem” is to decide when we can “lift” a map f : X → B to a map
f̃ : X → C, where p : C → B is given. What are the conditions for the diagram
to commute? We take a look at the following lemma:
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Lemma 4.4. (Path lifting property.) Let p : C → B be a covering map with
b0 ∈ B, c0 ∈ C such that p(c0) = b0. Given any path f : I → B beginning at
b0 there exists a unique path f̃ : I → C starting at c0 with the lifting property
p ◦ f̃ = f .

For a proof of Lemma 4.4 , see [4, pp. 342–343]. An illustration is pictured in
Figure 4.6:

f
f̃

p

c0

f̃

U1

Ũ1

b0

f

c

b

C

B

I

Figure 4.6: Illustration of Lemma 4.4.

Let b0 be any point in B, and c0 lying right above b0 in C such that p(c0) = b0.
Let f be a path in B beginning at b0. Then Lemma 4.4 says we can lift f to a
path f̃ in the covering space C such that is starts at c0. In other words, going
by f̃ to the point c, and then going down via p to b, will be the same as going to
b with f . In addition, we want c to be right above b.

How can we lift such a map? Let U1 be a neighbourhood of b0. Then
p−1(U1) = Ũ1 is a neighbourhood containing c0. In fact, the covering property
ensures that Ũ1 is an isomorphic copy of U1. Then consider the path obtained
by the intersection of U1 and f . We can lift it up to a path in C in a unique way
because p|Ũ1 is locally an isomorphism (go with (p|U)−1).

We repeat the process by considering neighbourhoods U2, U3, . . . , Un, until we
have gone through the whole path. We look at an example:

Example 4.5. Let p : R→ S1 be the covering of Theorem 4.2. We want to lift
paths in S1 to paths in R. Consider the path f : I → S1 beginning at b0 = (1.0)
given by f(s) = (cosπs, sin πs). Then f lifts to a path f̃(s) = s/2 beginning at
0 and ending at 1/2 (see Figure 4.7).
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−1 0 1 2
f̃

f

p

I

Figure 4.7: Lifting of a path in S1.

The second lemma we consider is constructed to support the picture of C lying
above B, by letting a homotopy in B to be moved “upstairs” to C:

Lemma 4.6. (Homotopy lifting property.) Let p : C → B be a covering map
such that p(c0) = b0. Let the map F : I×I → B be continuous, with F (0, 0) = b0.
Then there is a unique lifting of F to a continuous map

F̃ : I × I → C

such that F̃ (0, 0) = c0. If F is a path homotopy, then F̃ is a path homotopy.

For a proof of Lemma 4.6, see [4, pp. 343–344]. An illustration is pictured in
Figure 4.8.

p

c0

f̃

b0

f

g

g̃

F̃

F

s

t

gs

Figure 4.8: An illustration of Lemma 4.6.

Let p : C → B be a covering space, and let p(c0) = b0. Let f and g be homotopic
paths in B, starting at b0 with homotopy F .
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Then from Lemma 4.6 we know that there is a unique homotopy F̃ from the
lifts of f and g to c0 starting at c0.

We want to show that f̃ and g̃ are homotopic. To do this we consider the
intermediate path gs which is a part of the “movie” going from g to f . Then lift
gs for each s ∈ [0, 1] to g̃s in C. In total we are lifting the homotopy F .

Theorem 4.7. Let p : C → B be a covering map such that p(c0) = b0. Let f
and g be two paths in B beginning at b0 and ending at b1. Let f̃ and g̃ be their
respective liftings to paths in C beginning at c0. If f and g are path homotopic,
then f̃ and g̃ are path homotopic and end at the same point of C.

Proof. Let f and g be path homotopic and let F : I × I → B be the homotopy
between them. Since the paths begin at b0 we know that F (0, 0) = b0. Let
F̃ : I × I → C be the lifting of F to C. Then we know that F̃ (0, 0) = c0. By
Lemma 4.6, F̃ is a path homotopy, such that F̃ (0× I) = {c0} and F̃ (1× I) is a
one-point set {c1}.

Consider the restriction map F̃ |I × 0 of F̃ to the bottom edge of I × I. This
is a path in C beginning at c0 that is a lifting of F |I × 0. Since lifting of paths
are unique, we must have F̃ (s, 0) = f̃(s). Similarly, F̃ |I × 1 is a path on C that
is a lifting of F |I × 1, and it begins at c0 because F̃ (0× I) = {c0}. Again, since
liftings are unique, F̃ (s, 1) = g̃(s). Hence, both f̃ and g̃ end at c1, and F̃ is a
path homotopy between them.

Definition 4.8. Let p : C → B be a covering map such that p(c0) = b0. Given
an element [f ] of π1(B, b0), let f̃ be the lifting of f to a path in C that begins at
c0. Let the map

φ : π1(B, b0)→ p−1(b0)

be such that φ([f ]) denotes the end point f̃(1) of f̃ . Then φ is a well-defined set
map. We call φ the lifting correspondence derived from the covering map p.

Theorem 4.9. Let p : C → B be covering map such that p(c0) = b0. If C is
path connected, then the lifting correspondence

φ : π1(B, b0)→ p−1(b0)

is surjective. If C is simply connected, it is bijective.

Proof. Let C be path connected, and let c1 ∈ p−1(b0). Then there is a path f̃ in
C from c0 to c1. Then f = p◦ f̃ is a loop in B at b0 and φ([f ]) = c1 by Definition
4.8.

Suppose C is simply connected. Let [f ] and [g] be two elements of π1(B, b0)
such that φ([f ]) = φ([g]). Let f̃ and g̃ be the liftings of f and g, respectively,
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to paths in C that begin at c0. Then, by Theorem 4.7, f̃(1) = g̃(1). Then by
Lemma 3.14 there is a path homotopy F̃ in C between f̃ and g̃. Then p ◦ F̃ is a
path homotopy in B between f and g. Since simply connectedness implies path
connectedness we have that φ is both surjective and injective; hence we have a
bijective correspondence.

4.2 The fundamental group of S1

We have already seen that the the map R → S1 defines a covering map of S1.
To visualize this, we think of the real line as an “infinite” spiral (see Figure 4.1)
as we did before, covering the circle and mapping an infinite number of points to
the same point on the circle. Using Theorem 4.9, and the fact that R is simply
connected we might suggest that the fundamental group is the integers, Z.

Consider S1 after we have identified 0 with 1, and parametrize from 0 to 1. We
want to describe loops on S1 and we find it natural to choose 0 = 1 as our base
point (see Figure 4.9).

1
2

3
4

1
4

0

f2(t)

f1(t)

Figure 4.9: Paths f1 and f2 going around the circle once, and twice, respectively.

We define the loop f1 such that f1(t) = t. As t ranges from 0 to 1, f1 goes
once around the circle in the positive direction. We then define f2 such that
f2(t) = 2t (mod 1) going around the circle twice. More generally, we have
fn(t) = nt (mod 1). Further there is no need to restrict ourselves to positive
multiplies. Then f−1(t) = −t (mod 1) is a path going once around the circle in
the negative direction.

What does the multiplication look like? The product f1 ∗ f−2 is a loop going
once around the circle in the positive direction, and then it goes around twice in
the negative direction. In total the path has gone once in the negative direction;
hence the loop must be homotopic to f−1. Remember, in turns of the fundamental
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group we are not multiplying the loops themselves, but the homotopy classes of
the loops. In general we have:

[fm] ∗ [fn] = [fm+n].

The operation on the elements acts as to adding the integer indices.
Then all loops in S1 are characterized by the number of times they wind

around the origin. A positive integer i is isomorphic to a loop winding i times
counterclockwise; similarly for negative integers winding clockwise. The concate-
nation of loops in π1(S1) is equivalent to addition of integers in Z.

Theorem 4.10. The fundamental group of S1 is isomorphic to the additive group
of integers, Z.

Proof. We need to show that the map θ : Z → π1(S1) mapping an integer n to
the homotopy class of the loop fn(s) is an isomorphism.

We have already seen in Theorem 4.2 that the map p : R → S1 given by p(s) =
(cos 2πs, sin 2πs) is a map covering S1.

Using the fact that S1 is path connected, we can choose the base point to be
any point on S1. We choose fn(s) = (cos 2πns, sin 2πns) be a loop in S1 based
at (1, 0), winding around the circle n times. Let f̃n : I → R be the path starting
at 0 and ending at n, defined by f̃n(s) = ns. Then f̃n is a lifting of fn = p ◦ f̃n.

Set θ(n) = [p ◦ g̃], g̃ a path in R from 0 to n. Then g̃ is homotopic to f̃n by
the straight-line homotopy defined in Example 2.8. Hence p ◦ g̃ is homotopic to
p ◦ f̃n = fn by Theorem 4.7 and the definition of θ(n) holds.

We verify that θ is an isomorphism. Let πm : R→ R be defined by πm(x) = x+m.
Then f̃m ∗ (πm ◦ f̃n) is a path in R from 0 to n+m. The image of this path under
p is θ(n+m), the homotopy class of the loop in S1 going around the circle n+m
times. The image is in fact fn ∗ fm, so θ(m+ n) = θ(m) ∗ θ(n).

What is left is to show that θ is a bijection. Let fn be as before, and let [fn]
represent an element of π1(S1). By Lemma 4.4 we have a lift f̃n starting at 0
and ending at some integer n, since p ◦ f̃n(1) = fn(1) = (1, 0) and p−1(1, 0) = Z.
Then we have θ(n) = [p ◦ f̃n] = [fn].

We show that θ is injective. Let θ(m) = θ(n). Then fn 'p fm. Let F be the
homotopy between fn and fm. By Lemma 4.6 the homotopy lifts to a homotopy
F̃ starting at 0, and from Theorem 4.7, the lifted paths end at the same point,
so m = n.
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HOMOTOPY EQUIVALENCE

We have now seen that working with covering spaces is a useful tool for studying
the fundamental group of a space. Another method that we will use for study-
ing fundamental groups is called homotopy equivalence. It provides a way for
reducing the problem of computing the fundamental group of a space to that of
computing fundamental group of some other space—preferably one that is more
familiar.

To take an everyday example, there are many ways to draw the letters of the
alphabet. One way is to draw them either thick or thin. The thin letter X will
obviously be a subspace of the thick letter X, and we can continuously shrink the
thick letter to the thin one. We will think of this shrinking process as taking place
during a time interval t ∈ I, and it will define a family of functions ft : X→ X,
letting ft(x) be the point to which a point x ∈ X has moved at time t. Examples
like these will lead us to the following definitions:

Definition 5.1. If A ⊂ X, a retraction of X onto A is a continuous map
r : X → A such that r(a) = a for all a ∈ A (i.e. r|A is the identity map of A).

We think of it as a continuous map of X onto a subspace A, leaving each point
of the subspace fixed.

Definition 5.2. Let A ⊂ X. A continuous map

H : X × I → X

is a deformation retraction of X onto a subspace A if the following holds:
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(i) H(x, 0) = x and H(x, 1) ∈ A for all x ∈ X,

(ii) H(a, t) = a for all a ∈ A.

The subspace A is called a deformation retract of X. The map r : X → A
defined by H(x, 1) is a retraction of X onto A, and H is a homotopy between
idX and the map j ◦ r, where j : A→ X is the inclusion map.

A deformation retraction is a homotopy between the identity map on X and a
retraction. It captures the idea of continuously shrinking a space X to a subspace
A (see Figure 5.1). A retraction however, does not need to be a deformation
retraction. We take a look at an example.

Example 5.3. Let x0 ∈ X, and {x0} be a retraction of X. Then the map
r : X → {x0} satisfies r(x0) = x0.

For {x0} to be a deformation retract of X there has to be a map H : X × I → X
such that H(x, 0) = x, H(x, 1) = x0 and H(x0, t) = x0 for all t ∈ I. This gives us
a homotopy between idX and a constant map at x0. A space X with a homotopy
satisfying these properties is called a contractible space as we will see later in
the chapter.

X

A

Figure 5.1: Deformation retraction: X retracts to subset A

Definition 5.4. Given two spaces X and Y , we say they are homotopy equiv-
alent if there exist continuous maps f : X → Y , g : Y → X such that g ◦ f is
homotopic to idX and f ◦ g is homotopic to idY . The maps f and g are called
homotopy equivalences, and each is said to be a homotopy inverse of the
other.
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Looking closer at these definitions, we observe that if A is a deformation retract
of X, then A must be homotopy equivalent to X. Let j : A→ X be the inclusion
map and r : X → A be a retraction map. Then the composite map r◦j equals the
identity map of A, and j ◦r is homotopic to the identity map of X by hypothesis.
This is an important fact, and we will use it later in the chapter (see Example
5.12).

Definition 5.5. Two spaces, X and Y that are homotopy equivalent are said
to have the same homotopy type. These are spaces that can be deformed
continuously into one another. We write X ' Y .

5.1 Homotopy equivalence and homeomorphism
A homeomorphism is related to homotopy equivalence, but it is important to
be able to distinguish them from each other. We look closer at the definition.

Definition 5.6. Let X and Y be topologically spaces and let f : X → Y be
a bijection. If both the function f and the inverse function f−1 : Y → X are
continuous, then f is called a homeomorphism.

In fact, every homeomorphism f : X → Y is a homotopy equivalence: simply
take g = f−1. However, the converse is not true in general. Take a solid disk
and the single point as an example. They are homotopy equivalent (deform the
disk along radial lines continuously to a point). On the other hand, they are not
homeomorphic (there is no bijection between them).

A homeomorphism preserves the topological structure involved and is “stronger”
in the sense that the deformation is bijective. Homotopy allows squashing and
does not require the spaces to have the same dimension.

Example 5.7. Let X be the letter “X” and Y be the letter “Y”. Then X and
Y are homotopy equivalent, but they are not homeomorphic.

(Sketch proof.) Let f : X → Y map the three segments of “X” onto the “Y”
letter in a obvious way, and let it map the fourth segment to the centre point.
Let g : Y → X be the mapping of “Y” onto three segments of “X”. Then f and
g are both continuous. The map f is surjective, but not injective, while the map
g is injective, but not surjective. Now, the compositions g ◦ f and f ◦ g are both
easily seen to be homotopic to idX and idY , respectively, so “X” and “Y” are
homotopy equivalent.

However, “X” and “Y” are not homeomorphic. To see this, removing the
point at the centre of the “X” gives us a space with four connected components,
while removing any point from “Y” gives at most three connected components.
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Theorem 5.8. Homotopy equivalence is an equivalence relation on topological
spaces.

Proof. We need to verify the three properties, reflexibility, symmetry and tran-
sitivity.

(1) (Reflexibility.) Given X, we must show X ' X. The identity map
idX : X → X is a homeomorphism, and thus a homotopy equivalence.

(2) (Symmetry.) Given X ' Y , we must show Y ' X. Suppose f : X → Y
is a homotopy equivalence. Then from Definition 5.4, f has a homotopy
inverse g. Then g : Y → X is a homotopy equivalence with homotopy
inverse f .

(3) (Transitivity.) Given X ' Y and Y ' Z, we must show X ' Z. Suppose
f : X → Y is a homotopy equivalence with homotopy inverse g, and
h : Y → Z is a homotopy equivalence with homotopy inverse k. Then,
using Theorem 2.11 (and the associativity of compositions) it follows that
h ◦ f : X → Z is a homotopy equivalence with homotopy inverse g ◦ k.

5.2 Induced isomorphisms
We studied homomorphisms of groups in Chapter 3. There we only considered
maps f : X → Y that were continuous. Let us now extend their properties and
consider the two cases in which we both have a homeomorphism and a homotopy
equivalence. Then the maps will induce an isomorphism of fundamental groups.

Theorem 5.9. Let h : (X,x0) → (Y, y0) be a homeomorphism. Then the map
h∗ : π1(X,x0)→ π1(Y, y0) is an isomorphism.

Proof. We know that h∗ is a homomorphism. What is left is to check that h∗ is
bijective. Let h−1 : (Y, y0) → (X,x0) be the inverse of h. From Theorem 3.17
we have h−1

∗ ◦ h∗ = (h−1 ◦ h)∗ = idX∗. Similarly, h∗ ◦ h−1
∗ = (h ◦ h−1)∗ = idY ∗,

where idY is the identity map of (Y, y0). Since idX∗ and idY ∗ are the identity
homomorphisms of the group π1(X,x0) and π1(Y, y0), respectively, h−1

∗ is the
inverse of h∗. Hence, h∗ is an isomorphism.

Example 5.10. The fundamental group of the torus, π1(S1 × S1) = Z×Z. For
a proof, see [4, p. 372]. Since we already have seen that π1(S1) = Z we conclude
that the torus is not homeomorphic to the circle.
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Theorem 5.11. Let f : X → Y be a continuous map such that f(x0) = y0. If f
is a homotopy equivalence, then f∗ : π1(X,x0)→ π1(Y, y0) is an isomorphism.

Proof. Let g : Y → X be a homotopy inverse for f . Consider the maps

(X,x0) f−→ (Y, y0) g−→ (X,x1) f−→ (Y, y1)

where g(y0) = x1 and f(x1) = y1. Then we can study the corresponding induced
homomorphisms of groups:

π1(X,x0)
(fx0 )∗−−−−→ π1(Y, y0) g∗−→ π1(X,x1)

(fx1 )∗−−−−→ π1(Y, y1).

Since f and g are homotopy equivalences, we have that the map

g ◦ f : (X,x0) −→ (X,x1)

is homotopic to the identity map idX . Then there is a path α in X such that

(g ◦ f)∗ = α̂ ◦ (idX)∗ = α̂, (5.1)

and it follows that the homomorphism

(g ◦ f)∗ = g∗ ◦ (fx0)∗ (5.2)

is an isomorphism.
Similarly, because f ◦ g is homotopic to the identity map idY , the homomor-

phism

(f ◦ g)∗ = (fx1)∗ ◦ g∗ (5.3)

is an isomorphism.
Then (5.2) implies that g∗ is surjective, and (5.3) implies that g∗ is injective,

so g∗ is an isomorphism. By combining (5.2) and (5.1) we conclude that

(fx0)∗ = (g∗)−1 ◦ α̂,

so that (fx0)∗ is an isomorphism.

Example 5.12. A solid ball deformation retracts to a point, so it must also be
homotopy equivalent to a point. Since the ball is a subset of Rn, we know from
Example 3.6 that its fundamental group is trivial. Then, from Theorem 5.11
the same must be for the one-point space. We observe that R2 \ (0) deforma-
tion retracts to S1, so it must also be homotopy equivalent to S1. Hence, the
fundamental group of R2 \ (0) must be isomorphic to Z.
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5.3 Contractible spaces
In Example 5.12 we stated that the solid ball was homotopy equivalent to a point.
We will prove that any space having these properties, is a contractible space.
Intuitively, a contractible space is one that can be continuously shrunk to a point.
It is a stronger condition than simply connectedness and does not allow holes of
any dimension. Remember that the sphere is simply connected, even though it
has a “hole” in the hollow center. We start looking at the definition.

Definition 5.13. A space X is said to be contractible if the identity map
idX : X → X is nullhomotopic.

Example 5.14. R is contractible. We have to show there exist a homotopy F
between the identity map idR and the constant map e0(x) = 0. We choose our
homotopy to be F : R× I → R such that

F (x, 0) = x and F (x, 1) = 0

for each x ∈ R. The map F (x, t) = (1 − t) · idR(x) = (1 − t)x is well-defined,
continuous, and satisfies the conditions.

In fact, Rn is contractible, and any convex subset U ⊂ Rn is contractible. In
particular, the disk in Example 3.6 is contractible.

Theorem 5.15. A space is contractible if and only if it has the homotopy type
of a point.

Proof. ⇒ Let X be a contractible space. Then we have that idX is homotopic
to a constant map f : X → X such that f(x) = x0. Consider a one-point space
{x0}. Then we have a map from X to {x0}. If j : {x0} → X is the inclusion
map, then f ◦ j = id{x0}, so they are trivially homotopic. Further, j ◦ f = f and
since f ' idX , then j ◦ f ' idX and X is homotopy equivalent to a one-point
space.
⇐ Let X be homotopy equivalent to a one-point space Y = {y0}. Then there

exist maps f : X → Y and g : Y → X such that f ◦ g ' idY and g ◦ f ' idX .
Since Y only consists of one point, g(y0) = x0 for some x0 ∈ X. For all x ∈ X
we have g ◦ f(x) = g(y0) = x0. Then g ◦ f must be the constant map. Since
g ◦ f ' idX , idX must be homotopic to the constant map.

From Theorem 5.11, we know that the fundamental groups of a contractible space
and a one-point space are isomorphic. Since the fundamental group of a one-point
space is trivial (see Example 5.12), it follows immediately that the same must
hold for a contractible space.

Now, what do we mean by saying that the fundamental group of a space X is
trivial? Given an element [f ] ∈ X there has to exist a homotopy between f and
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ex0 , the identity element. We will prove that such a homotopy exists, but to do
that we need to make use of a result that we will prove in the following theorem:

Theorem 5.16. A contractible space is path connected.

Proof. Let a homotopy G : X×I → X such that G(x, 0) = idX and G(x, 1) = x0
for some fixed x0 ∈ X. For any point x ∈ X, the function f(t) = G(x, t) takes
I into X and satisfies f(0) = x and f(1) = x0. Consequently every x ∈ X is
connected by a path to x0, so it must be path connected.

This is obvious since every point will be contracted to a fixed point x0, and we
therefore have a path from every point to the fixed point. Let f and g be two
such paths. If we then go f , followed by the reverse ḡ, we have a path between
any two points.

Theorem 5.17. The fundamental group of a contractible space X is trivial.

Proof. Since X is contractible, we know that X is path connected. Then all
groups are isomorphic, independent of the based point. Consider the group
π1(X), and choose the basepoint x0 to be the contraction point of X. Since
X is contractible, we know that a homotopy between idX and ex0 exists. Let
H : X × I → X be this homotopy such that

H(x, 0) = idX(x) = x and H(x, 1) = ex0(x)

for each x. Let f be a loop, and let [f ] ∈ π1(X). If we show [f ] = [ex0 ] we are
done.

We need to find a homotopy between f and ex0 . Let F : I × I → X be a
homotopy given by

F (s, t) = H(f(s), t).

Then we have

(i) F (s, 0) = H(f(s), 0) = f(s) for all s,

(ii) F (s, 1) = H(f(s), 1) = ex0(f(s)) = x0 for all s,

(iii) F (0, t) = H(f(0), t) = H(x0, t) for all t,

(iv) F (1, t) = H(f(1), t) = H(x0, t) for all t.

There is no reason for H(x0, t) = x0. Hence, we need to modify F :

Let n : I → I × I be a path in I × I such that n(0) = (0, 0) and n(1) = (1, 0)
(travelling along the bottom edge). Further, let φ : I → I × I be another path
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such that φ(0) = (0, 0) and φ(1) = (1, 0) (travelling first up the left edge, then
along the top edge, and down the right edge). Since I × I is convex, we have a
homotopy G : I × I → I × I between them. It has the following properties:

(i) G(0, t) = (0, 0) and G(1, t) = (1, 0) for all t,

(ii) G(s, 0) = (s, 0) and G(s, 1) = φ(s) for all s.

Let us now define F ′ : I × I → X to be the homotopy given by

F ′(s, t) = F (G(s, t)).

It has the following properties:

(i) F ′(0, t) = F (G(0, t)) = F (0, 0) = H(f(0), 0) = f(0) = x0 for all t,

(ii) F ′(1, t) = F (1, 0) = H(f(1), 0) = f(1) = x0 for all t,

(iii) F ′(s, 0) = F (s, 0) = H(f(s), 0) = f(s) for all s,

(iv) F ′(s, 1) = F (φ(s)).

We are still not there. If we let Φ : I → X be a path such that Φ(t) = H(x0, t)
we get that F (φ(s)) = (Φ ∗ ex0) ∗ Φ̄). We verify this:

We need to choose a bracketing for φ(s): let us suppose that we concatenate
the left hand side and top first, and then concatenate the result with the right
and side. Then we get

φ(s) =


(0, 4s) for s ∈ [0, 1

4 ],
(4s− 1, 1) for s ∈ [ 1

4
1
2 ],

(1, 2− 2s) for s ∈ [ 1
2 , 1].

Then from the definition of F we know that

F (φ(s)) =


F (0, 4s) = H(f(0), 4s) = H(x0, 4s) = Φ(4s) for s ∈ [0, 1

4 ],
F (4s− 1, 1) = H(f(4s− 1), 1) = x0 for s ∈ [ 1

4 ,
1
2 ],

F (1, 2− 2s) = Φ(2− 2s) = Φ−1(2s− 1) for s ∈ [ 1
2 , 1].

which gives us that F (φ(s)) = (Φ ∗ ex0) ∗ Φ̄.
From the construction of the fundamental groups we know that the concate-

nation (Φ ∗ ex0) ∗ Φ̄ is homotopic to ex0 . We denote this homotopy by H ′ . Then
we can ensure that H ′(0, t) = x0 and H

′(1, t) = x0 for all t.
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By concatenating F ′ and H
′ , we obtain a homotopy

F ′′(s, t) =
{

F ′(s, 2t) for t ∈ [0, 1
2 ],

H ′(s, 2t− 1) for t ∈ [ 1
2 , 1].

Then we get

(i) F
′′(0, t) = x0 for all t,

(ii) F ′′(1, t) = x0 for all t,

(iii) F
′′(s, 0) = F

′(s, 0) = f(s) for all s,

(iv) F
′′(s, 1) = H ′(s, 1) = ex0(s) = x0 for all s.

Hence, we have a homotopy between the loops f and ex0 and we conclude that
π1(X) = 0.
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CHAPTER 6

ROTATION GROUPS

When we think of rotation, there are many associations that come to mind. A
child would probably associate it to a carousel or roller coaster, while others
probably think of wheels running or the earth rotating. These are all rotations
in three dimensional space that we will study in the following chapters.

6.1 Orthogonal groups
We start by defining the orthogonal group. We recall that an orthogonal matrix
is a matrix whose column vectors are mutually orthonormal. Let Rn×n be the
set of all real n× n matrices. Then we denote

O(n) = {R ∈ Rn×n | RTR = RRT = I and det(R) = ±1}

where the group operation is given by matrix multiplication.

Theorem 6.1. The set O(n) is a group under matrix multiplication.

Proof. It is obvious that we have an identity element I since the inverse is equal
to the transpose, so every element has an inverse. Since matrix multiplication is
associative, it is clear that O(n) is associative. What is left is to show that O(n)
is closed and has determinant ±1.

To prove that O(n) is closed, we consider two arbitrary elements, R, P ∈ O(n).
Then we have the following:
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(RP )(RP )T = RPPTRT

= RRT

= I.

Hence, (RP )T = (RP )−1 and O(n) is closed under matrix multiplication.

From the properties of determinants, we know that det(R) = det(RT ) and
det(RP ) = det(R) det(P ). Let R ∈ O(n) and observe the following:

det(R)2 = det(R) det(RT )
= det(RRT )
= det(I)
= 1.

Hence, det(R)2 = 1, so all matrices must have determinant ±1.

6.2 Rotation groups
If we further restrict ourselves to those matrices having determinant 1 we get a
subgroup SO(n) ⊂ O(n). This is obvious, since det(R) = det(P ) = 1 implies
that det(RP ) = 1, so it is closed. The group is also referred to as the rotation
group, since in dimensions two and three, its elements are rotations around a
point and a line, respectively. In general the group acts on Rn and is the group
of all rotations of Rn.

Definition 6.2. The group SO(n) ⊂ O(n) is called the rotation group.

Given two rotations, a composition results in another rotation, and given a ro-
tation we can always find the inverse by rotating in the opposite direction. The
identity matrix is indeed a rotation, the trivial one. Since matrix multiplication
is associative, rotations obey this property, too.

The algebraic structure of SO(n) is coupled with a topological structure. Per-
forming operations as multiplication and finding inverses are continuous func-
tions, which give us a topological group. The group is in fact a Lie group since
operations also are smooth.
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In this thesis, we will look at rotation groups, and especially we will study the
SO(3) group. In the next chapter we will find its corresponding fundamental
group.

However, to get a good grip of what we are working with, we turn to lower
dimensions and start by looking at 2× 2 matrices, and the SO(2) group.

6.3 The SO(2) group

We start by looking at an example:

Example 6.3. Let A be a symmetric 2 × 2 matrix. Using linear algebra, we
can find a basis of eigenvectors, β = {e1, e2} such that the matrix P = [e1, e2] is
orthogonal. Consider the following system:

3x2 + 10xy + 3y2 = 8⇒
[
x y

] [3 5
5 3

] [
x
y

]
= 8. (6.1)

A function of the form (6.1) is called a quadratic form and represents a conic
section. The equation can be written in matrix form as xTAx = 8, A being our
symmetric matrix.

Since A is symmetric, A is also orthogonal diagonalizable, which means that
A = PDP−1 = PDPT , where D is a diagonal matrix, and P is an orthogonal
eigenvalue matrix.

Having done some linear algebra we get the matrix

P =
[

1√
2 − 1√

2
1√
2

1√
2

]
.

What kind of curve are we studying? Solving problems like these are based
on simplifying the quadratic form xTAx by making a substitution x = PX,
expressing the variables (x, y) in terms of new variables (X,Y ). We obtain a new
quadratic form which is easier to recognize and sketch;

8X2 − 2Y 2 = 8⇒ X2 −
(
Y

2

)2
= 1.

We recognize this as the equation of a hyberbola. However, by the substitution
we also changed the coordinate system from (x, y) to (X,Y ). We have pictured
the hyperbola in the originally coordinate system (x, y) in Figure 6.1.
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Figure 6.1: Hyperbola formed by a conic section.

To summarize, we started with an equation that was hard to interpret, and after
some linear algebra and a substitution we obtained a generalized equation that
we could recognize. But what has this to do with the SO(2) group? The matrix
P used in the substitution acts as to rotate the coordinate system. The orthonor-
mal vectors in P form a basis for R2, and by multiplying with P we obtain a new
axis system which is rotated relatively to the original xy-axes. We know that
every rotation maps an orthonormal basis to another orthonormal basis, and this
is exactly what happens.

In Example 6.1 the axis system is rotated 45◦ relative to the original one:

P =
[

1√
2 − 1√

2
1√
2

1√
2

]
=
[
cos 45◦ − sin 45◦
sin 45◦ cos 45◦

]
.

We are ready to construct our 2× 2 rotation matrices in SO(2).

Definition 6.4. If P is a matrix such that P ∈ SO(2), then P can be written
on the following from:

P (θ) =
[
cos θ − sin θ
sin θ cos θ

]
.

P has the effect of rotating the xy-axes of a coordinate system counterclockwise
through positive angles θ.
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Remark. We observe that all matrices on the form P are orthogonal, just multiply
the column vectors. We also see they have determinant 1 by the trigonometric
identity cos2 θ + sin2 θ = 1.
Note. Although we in Example 6.1 observe that the rotation matrices represent
arbitrary rotations of the axes about the origin, it is worth mentioning that a
rotation P also acts as to rotate points in the plane counterclockwise through
positive angles θ about the origin. It is also this last approach we choose when
describing rotations in this thesis.

Definition 6.5. Let P ∈ SO(2). Then P rotates column vectors by means of
the following matrix multiplication,[

x′

y′

]
=
[
cos θ − sin θ
sin θ cos θ

] [
x
y

]
,

where the coordinates (x′, y′) of the point (x, y) after rotation are

x′ = x cos θ − y sin θ,

y′ = x sin θ + y cos θ.

Example 6.6. Rotate the point
(

1
2 ,
√

3
2

)
3π/2 around the unit circle. Then we

have

P

(
3π
2

)
=
[

0 1
−1 0

]
,

and the coordinates after rotation are

x′ = 1
2 · 0−

√
3

2 · −1 =
√

3
2 ,

y′ = 1
2 · −1 +

√
3

2 · 0 = −1
2 .

6.3.1 Commutativity of SO(2)
Is SO(2) abelian? We consider two elements of SO(2):

P =
[
cos θ − sin θ
sin θ cos θ

]
, R =

[
cosφ − sinφ
sinφ cosφ

]
We have to check commutativity of P and R:
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PR =
[
cos θ − sin θ
sin θ cos θ

] [
cosφ − sinφ
sinφ cosφ

]
=
[
cos θ cosφ− sin θ sinφ − cos θ sinφ− sin θ cosφ
sin θ cosφ+ cos θ sinφ − sin θ sinφ+ cos θ cosφ

]
=
[
cos(θ + φ) − sin(θ + φ)
sin(θ + φ) cos(θ + φ)

]
.

We swap the elements, and get:

RP =
[
cosφ − sinφ
sinφ cosφ

] [
cos θ − sin θ
sin θ cos θ

]
=
[
cos(θ + φ) − sin(θ + φ)
sin(θ + φ) cos(θ + φ)

]
.

The elements in SO(2) commute; hence SO(2) is abelian.

6.3.2 Fundamental group of SO(2)
From complex analysis we learn that every complex number z = x + iy can be
represented by a 2× 2 matrix,

A =
[
a −b
b a

]
.

Specially, we have that every complex number eiθ = cos θ+ i sin θ, also known as
the elements of U(1), can be represented by the 2× 2 matrix,

A′ =
[
cos θ − sin θ
sin θ cos θ

]
.

We also know from complex analysis that the geometric description of multipli-
cation of unit complex numbers is rotation around the unit circle. In fact we
have a bijective correspondence,

eiθ ↔
[
cos θ − sin θ
sin θ cos θ

]
,

between U(1) and the SO(2) group.
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Geometrically, we observe that U(1) is the unit circle

S1 = {z ∈ C | |z| = 1},

which makes it clear that the circle group is, by the correspondence above, iso-
morphic to the group SO(2), and hence,

π1(SO(2)) ∼= π1(S1) = Z.

6.4 The SO(3) group
As we saw in the previous section, it was quite easy to construct elements for
SO(2). On the contrary, for SO(n) as n grows larger, determinants get quite
harder to compute and thus it is more difficult to check whether a matrix is in
SO(n) or not. However, since we already know what elements in SO(2) look like,
we try to insert one into a 3× 3 matrix.

Consider the matrices,

P (θ) =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

 , R(θ) =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


and

Q(θ) =

 cos θ 0 sin θ
0 1 0

− sin θ 0 cos θ

 .
Since PTP = RTR = QTQ = I and det(P ) = det(R) = det(Q) = 1 the matrices
are elements in SO(3).

In fact, many copies of n-dimensional rotations are found within (n+1)-dimensional
rotations, as subgroups. Each embedding leaves one direction fixed, as in case
of R3 which fixes a unique one-dimensional linear subspace of R3. This is called
the axis of rotation. Any rotation in three dimensions can be represented by
a pair (u, θ), consisting of a unit vector u indicating the direction of the axis of
rotation, together with an angle of rotation θ about the axis.
Note. The matrix R defined above is a rotation about the positive x-axis by angle
θ, P is the rotation about the positive z-axis and Q is the rotation about the
positive y-axis.
Note. Rotation of vectors in R3 appears counterclockwise when u points towards
the observer (right-hand rule), and the angle θ is positive.
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6.4.1 Determining the angle and the axis

Given a matrix R it can be difficult to find the pair (u, θ).
We know that a vector u parallel to the axis of rotation has to satisfy

Ru = u

since u is fixed by the rotation. We may rewrite this equation as

Ru = Iu⇒ (R− I)u = 0.

Hence, to find u is the same as to find the nullspace of R− I.

To find θ, pick a vector v perpendicular to the rotation axis. Then θ is the angle
between v and Rv.

Of course, there are other ways as well. We take a look at an example.

Example 6.7. Consider the matrix,

M =

0 −1 0
1 0 0
0 0 1

 .
We can check that M−1 = MT and det(M) = 1, so M ∈ SO(3), and we also
observe that it leaves the z-axis fixed.

To find θ, we observe what M does to an arbitrary vector v = (1, 1, 0) in the
xy-plane:

Mv =

0 −1 0
1 0 0
0 0 1

1
1
0

 =

−1
1
0

 .
We know that θ is the angle between (1, 1, 0) and (−1, 1, 0). Since the dot product
of the two vectors is 0, the vectors are orthogonal, which means that θ is equal
to π/2.

6.4.2 Non-commutativity of SO(3)

We have already seen that SO(2) is abelian. Does the same hold for SO(3)? We
consider P , R ∈ SO(3) with
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PR =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1

1 0 0
0 cos θ − sin θ
0 sin θ cos θ


=

cos θ − sin θ cos θ sin2 θ
sin θ cos2 θ − sin θ cos θ

0 sin θ cos θ

 .
We swap the elements, and get:

RP =

1 0 0
0 cos θ − sin θ
0 sin θ cos θ

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


=

 cos θ − sin θ 0
sin θ cos θ cos2 θ − sin θ

sin2 θ sin θ cos θ cos θ

 .
So elements in SO(3) do not in general commute and SO(3) is not abelian.
However, it is worth mentioning that there do exist commutative subgroups of
SO(n) for all n. We look at an example:

Example 6.8. The subgroup of SO(3) consisting of the matrices of the form

P =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


is commutative. They are rotations in the xy-plane which we have already seen
are commutative.
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CHAPTER 7

THE FUNDAMENTAL GROUP
OF SO(3)

We want to compute the fundamental group of SO(3), and for this we want
to use our knowledge of covering spaces. We will in particular study the map
p : S3 → SO(3). We also assume that it is well known that SO(3) is path
connected.

To help us on the way, we will find it useful to define something called quater-
nions that are used for representing elements in SO(3).

7.1 Quaternions
We all know from complex analysis that complex numbers can be used to repre-
sent rotations in the plane. The mathematician William Hamilton found a way
to represent rotations in R3. He already knew that complex numbers could be
interpreted as points in the plane, so he wanted to find a way to do the same for
points in R3. He defined a number system that extended the complex numbers
called quaternions.

Although we shall use them to represent matrix rotations in this thesis, they
also find uses in applied mathematics, such as three dimensional computer graph-
ics, robots, navigation, orbital mechanics of satellites etc. They are easier to deal
with, and hence often preferred in real-world applications.
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Definition 7.1. Quaternions form a four-dimensional associative normed divi-
sion algebra over the real numbers, denoted H, and represents a four dimensional
real vector space R4 with basis 1, i, j and k.

Then every quaternion may be expressed as a linear combination

q = t1 + xi+ yj + zk,

for t, x, y, z ∈ R. It is easy to check that the basis element 1 is the identity
element of H, so multiplication by 1 leaves the element fixed.

Definition 7.2. A quaternion q ∈ H is written as

q = t+ xi+ yj + zk,

for t, x, y, z ∈ R.

Definition 7.3. We define the conjugate of q to be

q̄ = t− xi− yj − zk,

for t, x, y, z ∈ R. Conjugation is an involution, meaning that conjugating the
element twice, returns the original element.

Remark. We can write the elements as quadruples:

H = {(t, x, y, z) | t, x, y, z ∈ R}.

Then the basis elements are:

1 = (1, 0, 0, 0),

i = (0, 1, 0, 0),

j = (0, 0, 1, 0),

k = (0, 0, 0, 1).

7.1.1 Multiplication of basis elements
We all know from complex analysis that a complex number of the form z = t+xi,
t, x ∈ R satisfies the equation i2 = −1. How does this relate to quaternions?
Hamilton studied this for many years, and finally he came up with an answer
that turned out to be the great breakthrough in quaternion theory.
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Definition 7.4. Every quaternion z = t+ xi+ yj + zk satisfies the identity

i2 = j2 = k2 = ijk = −1.

Then it follows immediately that the products of the basis elements will satisfy

ij = k, ji = −k,

jk = i, kj = −i,

ki = j, ik = −j,

and multiplication of quaternions is non-commutative.

7.1.2 Multiplication and addition of quaternions
Let q1 = t1 + x1i + y1j + z1k and q2 = t2 + x2i + y2j + z2k. The product q1q2,
called the Hamilton product is defined as follows:

q1q2 = (t1 + x1i+ y1j + z1k)(t2 + x2i+ y2j + z2k)
= t1t2 + t1x2i+ t1y2j + t1z2k

+ x1t2i+ x1x2i
2 + x1y2ij + x1z2ik

+ y1t2j + y1x2ji+ y1y2j
2 + y1z2jk

+ z1t2k + z1x2ki+ z1y2kj + z1z2k
2.

It is a product of basis elements. From Definition 7.4 and using the distributive
law, we get:

q1q2 = (t1 + x1i+ y1j + z1k)(t2 + x2i+ y2j + z2k)
= t1t2 − x1x2 − y1y2 − z1z2

+ (t1x2 + x1t2 + y1z2 − z1y2)i
+ (t1y2 − x1z2 + y1t2 + z1x2)j
+ (t1z2 + x1y2 − y1x2 + z1t2)k.

Let q1 = t1 + x1i + y1j + z1k and q2 = t2 + x1i + y1j + z1k. Then addition of
quaternions is defined as follows:

q1 + q2 = (t1 + x1i+ y1j + z1k) + (t2 + x2i+ y2j + z2)k
= (t1 + t2) + (x1 + x2)i+ (y1 + y2)j + (z1 + z2)k.
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7.1.3 Scalar and vector parts
Having quaternions written on the form above, can make the computations very
long and complicated, so we want to give another way to represent them.

Definition 7.5. An element of the form t+ 0i+ 0j+ 0k is called a real quater-
nion, and an element of the form 0+xi+yj+zk, is called a pure quaternion. If
t+xi+yj+zk is any quaternion, then t is called the scalar part, and xi+yj+zk
is called the vector part.

Then we can write any quaternion as

q = (t, ~v),

for q ∈ H, t ∈ R, ~v ∈ R3.

Then addition and multiplication are as follows:

q1 + q2 = (t1, ~v1) + (t2, ~v2)
= (t1 + t2, ~v1 + ~v2),

q1q2 = (t1, ~v1)(t2, ~v2)
= (t1t2 − ~v1 · ~v2, t1 ~v2 + t2 ~v1 + ~v1 × ~v2).

where “ · ” is the dot product, and “×” is the cross product.

7.1.4 Unit quaternions
As mentioned in the beginning of the chapter we will use quaternions to represent
rotations, but there are only some special quaternions that are used for this
purpose. They are called unit quaternions and these are the only quaternions
we will consider in this thesis.

Definition 7.6. We define the norm of q to be

N(q) =‖q‖ =
√
t2 + x2 + y2 + z2 ∈ R.

Definition 7.7. A unit quaternion is a quaternion of norm 1.

Using conjugations and norms of quaternions makes it possible to define the
reciprocal of a quaternion:
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Definition 7.8. The reciprocal of q is defined to be

q−1 = q̄

‖q‖2

Then for unit quaternions we know that

q−1 = q̄

‖q‖2 = q̄.

This will we make use of later when we present a conjugation by a quaternion q.

Recall that the sphere S3 is the set of points in R4 such that

t2 + y2 + z2 + t2 = 1.

This gives us the opportunity to identify the set of all unit quaternions with S3.
In particular, S3 forms a group (a Lie group) under multiplication:

S3 = {q ∈ H∗ | qq̄ = 1},

where H∗ = H \ (0) is the multiplicative group of all non-zero quaternions.

By representing a unit quaternion on the form q = (t, ~v) , we can think of the
vector part as being the axis about which a rotation occurs, and the scalar part
as the amount of rotation that occurs about the given axis.

In fact, there is an explicit expression of a unit quaternions, representing a
rotation of an angle θ around a unit vector u, given by

q = cos θ2 + u sin θ2 . (7.1)

7.2 Computing the fundamental group of SO(3)
As we have seen earlier, any rotation in R3 can be represented as a combination
of a unit vector u, indicating the direction of axis of rotation, and a scalar θ, the
angle describing the magnitude of the rotation about the axis.

Until now we have only looked at matrices whose axis of rotation is around the
x−, y− and z-axes. We want to construct a rotation matrix whose axis of rotation
is around an arbitrary unit vector u.

Let u = (u1, u2, u3) be this unit vector. Then choose two unit orthonormal
vectors v = (v1, v2, v3) and w = (w1, w2, w3) such that u = v × w. The set
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(v, w, u) forms an oriented orthonormal basis of R3. If we combine them into a
matrix

Su =

v1 w1 u1
v2 w2 u2
v3 w3 u3


we obtain an element Su ∈ SO(3):

STu Su =

v1 v2 v3
w1 w2 w3
u1 u2 u3

v1 w1 u1
v2 w2 u2
v3 w3 u3


=

v · v v · w v · u
w · v w · w w · u
u · v u · w u · u


=

1 0 0
0 1 0
0 0 1

 = I.

So the orthonormal columns of Su imply that STu Su = I. Then STu = S−1
u , so

SuS
T
u = (STu )T (STu ) = I, so the columns of STu are also an orthonormal basis.

The columns of STu is equal to the rows of Su. Hence, the rows of Su are also
orthogonal, and we get in particular:

(row i) · (row j) =
{

1 if i = j,
0 if i 6= j.

Then we compute SuSTu :

SuST
u =

v1 w1 u1
v2 w2 u3
v3 w3 u3

v1 v2 v3
w1 w2 w3
u1 u2 u3


=

(row 1)Su · (row 1)Su (row 1)Su · (row 2)Su (row 1)Su · (row 3)Su

(row 2)Su · (row 1)Su (row 2)Su · (row 2)Su (row 2)Su · (row 3)Su

(row 3)Su · (row 1)Su (row 3)Su · (row 2)Su (row 3)Su · (row 3)Su


=

1 0 0
0 1 0
0 0 1

 = I.

What is left is to check that det(Su) = 1. From the crossproduct u = v × w we
know that we can write u as

u = (v2w3 − v3w2, v3w1 − v1w3, v1w2 − v2w1).
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Similarly, for v = w × u and w = u× v we know that

v = (u3w2 − u2w3, w3u1 − w1u3, u2w1, u1w2),

w = (u2v3 − u3v2, u3v1 − u1v3, u1v2 − u2v1).
Then by the evaluating the determinant, we get

det(Su) =

∣∣∣∣∣∣
v1 w1 u1
v2 w2 u2
v3 w3 u3

∣∣∣∣∣∣ = v1 ·
∣∣∣∣w2 u2
w3 u3

∣∣∣∣− w1 ·
∣∣∣∣v2 u2
v3 u3

∣∣∣∣+ u1 ·
∣∣∣∣v2 w2
v3 w3

∣∣∣∣
= v1 · v1 − w1 · (−w1) + u1 · u1

= v2
1 + w2

1 + u2
1 = 1.

The last equality comes the fact that STu is orthogonal.

Further we consider the map: h : R3 → SO(3) that maps u ∈ R3 to an element
in SO(3), given by

u 7→ SuPθS
T
u ,

where

Pθ =

cos θ − sin θ 0
sin θ cos θ 0

0 0 1


is the rotation matrix around the z-axis.

We set R = SuPθS
T
u . After some long computation, we get

R =

v1 w1 u1
v2 w2 u3
v3 w3 u3

cθ −sθ 0
sθ cθ 0
0 0 1

v1 v2 v3
w1 w2 w3
u1 u2 u3

 (7.2)

=

 cθ + u2
1(1− cθ) u1u2(1− cθ)− u3sθ u1u3(1− cθ) + u2sθ

u1u2(1− cθ) + u3sθ cθ + u2
2(1− cθ) u2u3(1− cθ)− u1sθ

u1u3(1− cθ)− u2sθ u2u3(1− cθ) + u1sθ cθ + u2
3(1− cθ)

 ,
where cθ = cos θ, sθ = sin θ, a matrix whose rotation is by angle θ leaving axis u
fixed.

We see that the resultant matrix is independent of the vectors v and w; their
coordinates vanishes by the crossproduct terms earlier and the fact that Su is
orthogonal.
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7.2.1 Quaternion representation
Recall from Section 7.1.4 that unit quaternions consist of a rotation vector u
and a rotation angle θ. Therefore we also call them rotation quaternions, and
we shall show that they give another way to represent the rotation matrix (7.2)
leaving u fixed.

We identify S3 ⊆ R4 with the unit quaternions and identify R3 with the pure
quaternions. Such a unit quaternion q induces a rotation of R3, though not
simply by multiplication as with matrices. The product of q and a member of R3

may not belong to R3. A rotation in SO(3) by q requires a conjugation with q,
given by

r 7→ qrq−1,

for its representation.

In Section 7.1.4 we mentioned that there is an explicit formula of q given by (7.1).
But why by the argument θ/2? We conjugate by q and see what happens. To
make computations easier, we set u = i. Then using the Hamilton product, we
get

pq(r) = qrq−1

=
(

cos θ2 + i sin θ2

)
(xi+ yj + zk)

(
cos θ2 − i sin θ2

)
= i

((
sin2 θ

2 + cos2 θ

2

)
x

)

+ j

(
y cos2 θ

2 − y sin2 θ

2 − 2z sin θ2 cos θ2

)
+ k

(
z cos2 θ

2 − z sin2 θ

2 + 2y sin θ2 cos θ2

)
= ix+ j(y cos θ − z sin θ) + k(z cos θ + y sin θ).

The result is a quaternion that fixes the x-axis and acts as to rotate through an
angle θ, which is exactly what we want. Hence θ/2 seems to be a good choice.
We take a look at an example:
Example 7.9. Use quaternions to rotate the point x = (1, 0, 0) π/6 around the
z-axis.

We need to determine the rotation quaternion. Since θ = π
6 and u = (0, 0, 1)

we get q = cos π
12 + (0, 0, 1) sin π

12 =
√

6+
√

2
4 +

(
0, 0,

√
6−
√

2
4

)
. The desired rota-

tion can be applied to the vector r = (1, 0, 0), considered as a pure quaternion in
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R3. A computation show that pq(r) =
(√

3
2 ,

1
2 , 0
)

, the new position vector after
rotation, which also is a member of R3.

Consider the map pq : H → H, given by r 7→ qrq−1 sending r ∈ R3 to qrq−1.
Then qrq−1 will also be a member of R3. We prove this:

Let pq(r) = qrq−1. Set r = xi+ yj + zk. Then consider the rotation represented
by the rotation vector ~u = i+ j + k and angle θ = 2π

3 . Using (7.1) for q we get

q = 1 + i+ j + k

2 .

We conjugate r by q:

pq(r) = qrq−1

= 1 + i+ j + k

2 (xi+ yj + zk)1− i− j − k
2 .

After a lengthy computation we get

pq(xi+ yj + zk) = zi+ xj + yk,

an element that obviously belongs to R3.

Therefore pq : R3 → R3 is a linear transformation. With the standard R3 basis,
pq can be regarded as a 3× 3 matrix.

To find pq, we observe what the transformation does to each of the the basis
elements of R3. For the first basis element we get:

pq(i) = (t+ xi+ yj + zk)(i)(t− xi− yj − zk)
= i(x2 + t2 − y2 − z2)

+ j(xy + tz + zt+ yx)
+ k(xz − ty + zx− yt).

Similarly, for the second basis element:

pq(j) = (t+ xi+ yj + zk)(j)(t− xi− yj − zk)
= i(yx− zt− tz + xy)

+ j(y2 − z2 + t2 − x2)
+ k(yz + zy + tx+ xt).
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And finally, for the third basis element:

pq(k) = (t+ xi+ yj + zk)(k)(t− xi− yj − zk)
= i(zx+ yt+ xz + ty)

+ j(zy + yz − xt− tx)
+ k(z2 − y2 − x2 + t2).

In total we get the matrix with respect to the basis,

pq =

t2 + x2 − y2 − z2 2(xy − tz) 2(xz + ty)
2(xy + tz) t2 − x2 + y2 − z2 2(yz − tx)
2(xz − ty) 2(yz + tx) t2 − x2 − y2 + z2

 .
What does pq represent? By (7.1) we set t = cos θ/2, x = u1 sin θ/2,
y = u2 sin θ/2 and z = u3 sin θ/2, and insert the change of variables into pq.

Given that the entries in pq can be enumerated as in the matrix below,1 4 7
2 5 8
3 6 9


then by the change of variables we get a new matrix p′q whose entries are as
follows:

(1’) t2 + x2 − y2 − z2 = cos2 θ
2 + u2

1 sin2 θ
2 − u

2
2 sin2 θ

2 − u
2
3 sin2 θ

2 = 1+cos θ
2 +

1−cos θ
2 (2u2

1 − 1) = cos θ + u2
1(1− cos θ).

(2’) 2(xy + tz) = 2(u1u2 sin2 θ
2 + cos θ2u3 sin θ

2 ) = 2(u1u2
1−cos θ

2 + u3
sin θ

2 ) =
u1u2(1− cos θ) + u3 sin θ.

(3’) 2(xz − ty) = 2(u1u3 sin2 θ
2 − cos θ2u2 sin θ

2 ) = 2(u1u3
1−cos θ

2 − u2
sin θ

2 ) =
u1u3(1− cos θ) + u2 sin θ.

(4’) 2(xy − tz) = 2(u1u2 sin2 θ
2 − cos θ2u3 sin θ

2 ) = 2(u1u2
1−cos θ

2 − u3
sin θ

2 ) =
u1u2(1− cos θ)− u3 sin θ.

(5’) t2 − x2 + y2 − z2 = cos2 θ
2 − u

2
1 sin2 θ

2 + u2
2 sin2 θ

2 − u
2
3 sin2 θ

2 = 1+cos θ
2 +

1−cos θ
2 (2u2

2 − 1) = cos θ + u2
2(1− cos θ).

(6’) 2(yz + tx) = 2(u2u3 sin2 θ
2 + cos θ2u1 sin θ

2 ) = 2(u2u3
1−cos θ

2 + u1
sin θ

2 ) =
u2u3(1− cos θ) + u1 sin θ.

(7’) 2(xz + ty) = 2(u1u3 sin θ
2

2 + cos θ2u2 sin θ
2 ) = 2(u1u3

1−cos θ
2 + u2

sin θ
2 ) =

u1u3(1− cos θ) + u2 sin θ.
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(8’) 2(yz − tx) = 2(u2u3 sin θ
2

2 − cos θ2u1 sin θ
2 ) = 2(u2u3

1−cos θ
2 − u1

sin θ
2 ) =

u2u3(1− cos θ)− u1 sin θ.

(9’) t2 − x2 − y2 + z2 = cos θ2
2 − u2

1 sin θ
2

2 − u2
2 sin θ

2
2 + u2

3 sin θ
2

2 = 1+cos θ
2 +

1−cos θ
2 (2u2

3 − 1) = cos θ + u2
3(1− cos θ).

Then by the change of variables we get

p′q =

1′ 4′ 7′
2′ 5′ 8′
3′ 6′ 9′


=

 cθ + u2
1(1− cθ) u1u2(1− cθ)− u3sθ u1u3(1− cθ) + u2sθ

u1u2(1− cθ) + u3sθ cθ + u2
2(1− cθ) u2u3(1− cθ)− u1sθ

u1u3(1− cθ)− u2sθ u2u3(1− cθ) + u1sθ cθ + u2
3(1− cθ)

 ,
where cθ = cos θ and sθ = sin θ. This is exactly the same matrix R as we de-
rived earlier from the product SuRθSTu , a matrix whose rotation is by angle θ
leaving axis u fixed. We call pq the quaternion derived rotation matrix and
pq ∈ SO(3).

Remark. A rotation through angles between 0 and π corresponds to the point on
the opposite side of the origin, at the same distance from the origin.
Let us consider the quaternion −q on the opposite side of the origin given by

−q = cos
(
θ

2 + π

)
+ u sin

(
θ

2 + π

)
. (7.3)

If we insert (7.3) for q in the matrix pq we will actually get the same rotation
matrix as we did when we inserted (7.1) .

This can also be seen from the fact that the rotation is expressed as pq(r) =
qrq−1 and we have p−q(r) = (−q)r(−q)−1 = qrq−1 which implies that −q is
mapped to the same rotation. Then, either we rotate through an angle of π, or
we rotate through an angle of −π, we still get the same rotation.

Then we have a two-to-one map and a continuous function

p : S3 → SO(3) (7.4)

given by p(q) = pq.
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Further we want to convince ourselves that p is surjective. Let pq ∈ SO(3), and
let us claim that q maps to pq. From (7.4) it is clear that we have such a function
satisfying p(q) = pq.

We also know that for every rotation in R3 there is a quaternion that repre-
sents it, given by (7.1). Hence, we are convinced, and p is surjective.

Moreover, p is a group homomorphism:

pq1q2(r) = q1q2r(q1q2)−1 = q1q2rq
−1
2 q−1

1 ,

pq1 ◦ pq2(r) = pq1(pq2(r)) = pq1(q2rq
−1
2 ) = q1q2rq

−1
2 q−1

1 .

Hence, pq1q2 = pq1pq2 and the structure is preserved.

By the map pq(r) = qrq−1 we easily observe that p(q) = I ⇔ q = ±1. Then by
the first isomorphism theorem, the induced map

p̃ : S3/{1,−1} ∼−−→ SO(3)

is a group isomorphism.

Definition 7.10. The projective space RP 3 is the quotient space obtained from
S3 by identifying each point q ∈ S3 with its antipodal point −q.

We know that the projective map π : S3 → RP 3 ∼= S3/{1,−1} is a double
covering map identifying antipodal points of S3. Hence, by the commutative
diagram,

S3

p

zz

π

��

SO(3) RP 3
p̃

oo

p = p̃ ◦ π is a double covering map, identifying antipodal points on the surface of
S3.

We now use Theorem 4.9. Since S3 is simply connected, the lifting correspondence

φ : π1(SO(3))→ p−1(pq)

is a bijective correspondence.
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Since p−1(pq) is a two element set, we know that π1(SO(3)) is a group of
order two.

Let G = {e, a} be a group of order two, and let e be the identity element. Then
we have the following: Since e is the identity element, we have e ∗ x = x ∗ e = x
for all x ∈ {e, a}. Then we get the multiplication table

∗ e a
e e a
a a

.

Since a is a nontrivial element, a has an inverse a′ such that a′ ∗a = a∗a′ = e.
In our case, a′ must be either e or a. Since a′ = e does not work, we must have
a′ = a, and we complete the table,

∗ e a
e e a
a a e

.

We know that Z2 = {0, 1} under addition modulo 2 is a group. By our argu-
ments, its table must be the one above with e replaced by 0, and a by 1.

This shows that the fundamental group of SO(3) is Z2.

As we mentioned in the introduction, this result is related to physics; more specif-
ically that a rotating object only can have spin equal to a half. An illustration of
this, called Dirac’s scissors experiment, was performed by the Nobel laureate
in physics P.A.M. Dirac at lectures in the 1930’s (see [3, p. 39]). In fact, there
are several ways to demonstrate this practically (see [2, pp. 166–167]). We will
explain Dirac’s scissors experiment, but first we need to make some considera-
tions.

We want to consider an element of the group. A generator for π1(SO(3)) is
any closed curve obtained by projecting any curve connecting antipodal points
in S3 down to SO(3). Consider the semicircle

{cos θ + i sin θ ∈ S3 | 0 ≤ θ ≤ π},

the intersection of S3 with the upper half of the xy-plane. This maps by p to a
loop in SO(3) and represents a nontrivial element of π1(SO(3)). We look at what
it does to an arbitrary element in R3. Let r = xi+yj+ zk and q = cos θ+ i sin θ.
Then we have
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pq(r) = qrq−1

= (cos θ + i sin θ)(xi+ yj + zk)(cos θ − i sin θ)
= i((sin2 θ + cos2 θ)x)

+ j(y cos2 θ − y sin2 θ − 2z sin θ cos θ)
+ k(z cos2 θ − z sin2 θ + 2y sin θ cos θ)

= ix+ j(y cos 2θ − z sin 2θ) + k(z cos 2θ + y sin 2θ)

Hence, it fixes the complex plane on so only acts on the jk-plane. For q =
yj + zk we have

pq(r) = qrq−1

= (cos θ + i sin θ)(yj + zk)(cos θ − i sin θ)
= j(x cos2 θ − x sin2 θ − 2y sin θ cos θ)

+ k(y cos2 θ − y sin2 θ + 2x sin θ cos θ)
= j(x cos 2θ − y sin 2θ) + k(y cos 2θ + x sin 2θ),

which tells us that q = cos θ + i sin θ acts on the jk-plane as to rotate through
2θ. Since θ ∈ [0, π], it follows that the nontrivial element of π1(SO(3)) is given
by a path of rotations about a given axis whose angle ∈ [0, 2π].

Further we let the rotation to be around the z-axis and let r(t) be counter-
clockwise rotation in the xy-plane through the angle 2πt, r a loop representing
the nontrivial element of π1(SO(3)).

Since π1(SO(3)) is a group of order two, it follows that the loop f = r ∗ r
must be homotopic to the constant loop e ∈ SO(3), f a loop whose value f(t) is
the rotation of angle 4πt.

Let f be this loop, and let [f ] ∈ π1(SO(3)). Since [f ] = [e] we have a homotopy

F : I × I → SO(3)

such that

(i) F (s, 0) = e and F (s, 1) = f(s),

(ii) F (0, t) = e and F (1, t) = e.

With this set up we are ready to demonstrate the experiment.

Dirac’s scissor experiment. Take two threads and attach one end of them to
the two inside rings of a pair of scissors. Attach the other ends to some fixed
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objects in the room, e.g. two chairs (see Figure 7.1). Then rotate the scissors
one complete turn, i.e. 360◦. Then, while keeping the object stationary, try to
untangle the threads. Although patience is a good thing, it will not help you,
you will either way be unable to do this no matter how long you try. However,
if you rotate the scissors one more time in the same direction, that means two
complete turns in total, you will actually be able to untangle them, keeping in
mind to hold the scissors stationary as you are doing it. Then what does this tell
us? Well, by rotation not once, but two complete turns around the same axis,
we got back to where we started, and hence we have a cyclic group of order two,
whose generator is a loop of rotation around an axis of angle 2π.

S
Figure 7.1: Dirac’s scissors experiment.
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