
Automatic Quality Control of Salmon
Using Machine Learning Algorithms based on

Input from a 3D Machine Vision System

Øystein Sture

Master of Science in Cybernetics and Robotics

Supervisor: Amund Skavhaug, ITK
Co-supervisor: John Reidar Mathiassen, SINTEF Fiskeri og Havbruk

Department of Engineering Cybernetics

Submission date: June 2015

Norwegian University of Science and Technology

Summary

Quality control of Atlantic salmon is currently a task performed manually by human oper-
ators. To stay competitive in an increasingly global market, it becomes necessary to take
advantage of technology to improve productivity and profitability. This is especially the
case in countries with high salary levels. In this thesis, a complete machine vision system
for 3D-imaging has been built and integrated for the purpose of quality control of Atlantic
salmon. The system is build using off-the-shelf hardware, and has been integrated us-
ing no external proprietary tools. The software for the acquisition was implemented with
real-time restrictions in mind. The end result is thus an affordable solution, which can be
deployed in an industrial environment without major investments.

An experiment was then performed on Atlantic salmon of different quality classes. The
obtained data was used to develop descriptors that capture enough information to separate
out lower classes of Atlantic salmon based on its appearance. The thesis focuses on two
primary causes of downgraded salmon; deformities and wounds. Deformities appear due
to skeletal deformations and inflammation. Wounds appear due to cuts and scrapes that
are infected by bacteria. Using geometric features and color information, two classifiers
was developed to handle each of these cases. The classifiers have been found to reliably
detect deformities and wounds in Atlantic salmon, and shows that 3D-imaging has great
potential within the field of automatic quality control of fish.

Sammendrag

Kvalitetskontroll av atlanterhavslaks er i dag en oppgave som blir utført manuelt. For å for-
sikre seg at nœringen holder seg konkurransedyktig i et økende internasjonalt marked, er
det nødvendig å anvende teknologi for å øke produktivitet og lønnsomhet. Dette er spesielt
tilfellet i land med høye lønnsnivå. I denne masteroppgaven har et komplett maskinsynsys-
tem for 3D-billedtakning blitt bygget og integrert med den hensikt å brukes til automatisk
kvalitetskontroll av atlanterhavslaks. Systemet er bygget ved bruk av lett tilgjengelige og
rimelige komponenter, og integrert uten bruk av fordyrende eksterne løsninger. Løsningen
er laget med fokus på effektivitet, slik at det kan tas i bruk i sanntidsapplikasjoner. Resul-
tatet er en rimelig løsning, som kan benyttes industrielt uten større investeringer i utstyr.

Et eksperiment ble utført ved bruk av maskinsynsystemet på atlanterhavslaks av forskjel-
lige kvalitetgraderinger. Det innhentende datasettet ble da brukt til å utvikle beskrivende
egenskaper med nok informasjon til å skille mellom graderingene basert på utseende.
Denne masteroppgaven fokuserer primœrt på to årsaker til nedgradering; deformiteter og
sårdannelser. Deformiteter oppstår ved deformering i skjelettet og betennelser, mens sår
oppstår som følge av bakteriell infeksjon. To klassifikatorer ble utviklet til å skille mel-
lom graderingene ved å bruke geometriske egenskaper og farger. Resultatene presentert
i denne oppgaven indikerer at de to klassifikatorene er i stand til å skille ut laks av la-
vere kvalitet med tilfredsstillende nøyaktighet. Den anvendte metodikken for øvrig viser
at 3D-maskinsyn har stort potensiale innen automatisk kvalitetskontroll av fisk.

Preface

This thesis was written during the final semester of the two-year Master’s programme
at the Department of Engineering Cybernetics at the Norwegian University of Science and
Technology (NTNU). The thesis was written in collaboration with SINTEF Fisheries and
Aquaculture, and was connected to a research project for quality grading and sorting of
salmon. I was first introduced to the project during an summer internship, where some of
the groundwork for this thesis was laid.

Originally, the focus of this thesis was more oriented towards developing new novel
classifiers for use in quality control, but more time was needed to complete the 3D scan-
ning and feature extraction aspects robustly. Therefore, this thesis focuses more on the lat-
ter than was originally envisioned. Nonetheless, the techniques employed are new within
the industry and serves as an important step towards realizing an industrial system for
grading and sorting salmon.

I would first like to thank my supervisor, Amund Skavhaug, for keeping me on track
with the written material and attempting to keep my stress levels in check. I would also
like to thank my co-supervisor at SINTEF, John Reidar Mathiassen for sharing his vast
experience in the topic of computer vision and generally giving sound advice for any tech-
nical hurdle. Additionally, I would like to thank my classmates and the rock climbing
team, for some great memories. Thanks to my parents, Edith and Helge, for being sup-
portive. Finally, I need to thank my girlfriend, Karina, for putting up with the long hours
and a general absence of mind.

Table of Contents

Summary 1

Sammendrag 2

Preface 3

Table of Contents 7

List of Tables 9

List of Figures 14

Abbreviations 15

1 Introduction 1
1.1 Background . 1

1.1.1 The Norwegian Seafood Industry 2
1.1.2 Common Defects in Farmed Salmon 4

1.2 Benefits of Further Automation . 6
1.3 Previous Work . 8
1.4 Price of Comparable Systems . 9
1.5 Related Work . 10
1.6 Goals and Objectives . 10
1.7 Structure of the Thesis . 11

2 Literature Review 13
2.1 Classical Statistical Learning . 13

2.1.1 Curse of Dimensionality . 14
2.1.2 Overfitting . 15
2.1.3 Cross-Validation . 15

2.2 Support Vector Machines (SVM) . 17
2.2.1 Linear SVM . 17
2.2.2 Nonlinear SVM . 19
2.2.3 VC Theory . 21
2.2.4 SVM: Advantages and Disadvantages 22

5

2.3 Numerical Geometry and Shape Recognition 23
2.3.1 Medial Axis Transform . 25

2.4 Geometric Transformations . 28

3 Equipment and Acquisition 31
3.1 Line Scanner Principles . 31
3.2 The Camera Rig . 32
3.3 Camera Triggering . 34
3.4 Calibration Routine . 36

3.4.1 Direct Linear Transformation (DLT) 39
3.4.2 Non-linear Optimization . 40
3.4.3 Misalignment Correction . 41
3.4.4 Speed Calibration . 41

3.5 Parallel Image Processing . 42
3.5.1 Bayer Filtering . 43
3.5.2 Coordinate Extraction . 44
3.5.3 Reflectance Properties . 45
3.5.4 GPU Code Optimization . 46
3.5.5 Color Images . 47

3.6 Polarization Filter . 48

4 Experiments and Feature Extraction 53
4.1 Quality Grading . 54

4.1.1 Humpback . 54
4.1.2 Wounds . 55

4.2 Point Cloud Post-Processing . 56
4.2.1 Statistical Outlier Removal . 56
4.2.2 Fin Removal . 59
4.2.3 Spline Re-sampling . 63

4.3 Medial Axis . 68
4.4 Geometric Feature Extraction . 69

4.4.1 Width . 71
4.4.2 Height . 72
4.4.3 Length . 73
4.4.4 Skewness . 74

4.5 Color Image Projection . 75
4.6 Color Feature Extraction . 76

5 Results 81
5.1 Method of Performance Evaluation . 81
5.2 Detecting Deformities . 82

5.2.1 Deformity Detection Using C-SVM with RBF Kernel 82
5.2.2 Deformity Detection Using Nearest Neighbor Classifier (NN) . . 87

5.3 Wound Detection . 87
5.3.1 Detection of Wounds Using SVM with RBF Kernel 88

5.4 Summary of Results . 93

6 Discussion 95
6.1 Methodology . 95

6.1.1 Line Scanning . 95
6.1.2 Camera Calibration . 96
6.1.3 Laser Extraction . 96

6.2 Features . 97
6.2.1 Symmetry . 97
6.2.2 Medial Axis . 97
6.2.3 Reflective Properties . 98

6.3 Attained Prediction Rates . 98
6.3.1 Deformity Detection . 99
6.3.2 Wound Detection . 99
6.3.3 Evaluation of 3D Machine Vision in Quality Control 99

6.4 Additional Remarks . 100
6.4.1 Performance . 100
6.4.2 Robustness . 100

7 Conclusion 103
7.1 Summary of Contributions . 104
7.2 Recommendations and Further Work . 105

Bibliography 107

Appendix 111
A Dataset . 111
B Camera Triggering (Arduino) 115
C Pruning and Spline Re-sampling (Matlab) 119

List of Tables

2.1 Homographic transformations. 30

5.1 Deformity Classification Results . 93
5.2 Wound Classification Results . 93

A1 Superior dataset 1/2 . 111
A2 Superior dataset 2/2 . 112
A3 Ordinary dataset . 113
A4 Production dataset . 114

9

List of Figures

1.1 Global statistics of commercial harvesting of aquaculture and aquatic wildlife
(Source: FAO). 2

1.2 Norwegian exports of salmon and trout (Source: SSB). 3
1.3 Vertebral column of salmon without signs of deformations (from Witten

et al. (2009)) . 5
1.4 Multiple extreme deformations of the vertebral column of an adult salmon

(from Fjelldal et al. (2012)) . 5
1.5 Comparison of a regular salmon with one that has a compressed vertebral

column, also known as short-tail (from Witten et al. (2005)). 6

2.1 A separation between two classes described in a two-dimensional feature
space. 14

2.2 Overfitting in the case of regression, the trend in the points might be better
described through a linear function than a curved function which correctly
minimizes the distance to each point. 15

2.3 The optimal hyperplane is the hyperplane that separates the classes with
the maximal margin. 17

2.4 The mapping Φ embeds the data into a higher-dimensional space where the
nonlinear pattern appears linearly (adapted from Shawe-Taylor and Cris-
tianini (2004)). 19

2.5 VC dimension example for linear separating functions in the plane (adapted
from Vapnik (1995)). 21

2.6 The four main shape representations (Adapted from Siddiqi and Pizer
(2008)). 24

2.7 Landmark points utilized by Misimi et al. (2008) in quality control of At-
lantic Salmon. 25

2.8 Example Voronoi diagram for eight discrete points in R2 27
2.9 The endpoints of lines at infinity forms a line in a 2D projective space,

similar to an horizon. 28

3.1 The basic concept of a line-scanner using a sheet of light laser and camera. 32
3.2 Overall steps of the procedure. 32
3.3 Conceptual sketch of the camera setup. Left illustration is as seen from

the front, and the right is seen from the side. 33

11

3.4 Photo of the camera rig whilst scanning two mackerel for a related exper-
iment. 34

3.5 Conceptual sketch of the triggering sequence. Not to scale. 35
3.6 The calibration object designed to calibrate all three cameras. 38
3.7 The stand used to calibrate the bottom cameras. The stand includes holes

for all cameras, to improve on misaligment issues that would occur by
simply placing the calibration object manually. 38

3.8 An laser image taken of the calibration object as seen when calibrating the
top camera. The image has been inverted to avoid the black background. . 38

3.9 The misalignment correction is performed by fitting each camera to a cir-
cle and translating to match. Note that the misalignment of the right cam-
era (in green) is worse than typical. The axes are specified in centimeters. 42

3.10 Illustration of Bayer pattern (RG) in the sensor array of a camera (adapted
from Wikipedia (2006)). 43

3.11 The bilinear interpolation pattern used. Two-way interpolation is used on
the red grid, and four-way (bilinear) interpolation is used in the cross-section. 44

3.12 A scan obtained of a salmon using a polarization filter. The lighter areas
on the back indicate missing coordinates (the points from the bottom are
seen through the gaps). 50

3.13 An image of Fish16 in the data set, obtained without a polarization filter.
Increased noise is present around fins and sharp edges due to reflections of
laser light. Left: Side view, Middle: back view, Right: tilted abdominal view 51

4.1 QR code pointing to the scan data located at http://ntnu-msc-oystestu.
s3-website-eu-west-1.amazonaws.com/. 54

4.2 Comparison of three salmon from the dataset. A: Salmon 5 with no de-
formities, B: salmon 32 with forward humpback, C: salmon 94 with a less
protruding hump (further back) . 55

4.3 All the wounds present in the dataset. 56
4.4 Histogram of 25 nearest neighbor means for fish16 in the data set 57
4.5 Fish16 after applying the statistical outlier filter. 58
4.6 The given anatomical names for the fins of salmon (adapted from an illus-

tration by Karen Uldall-Ekamn) . 59
4.7 Illustration of the fin removal steps applied to the anal fin of fish19 from

the data set. In A, the fin is detected by binning the coordinates along the
X-axis and calculating the spread in each bin. If enough bins are below the
threshold, an ellipse is fitted to one side of the slice as in B. In C a linear
regression is performed with b = 0 and origin at the center of the ellipse.
In D, the intercept point of the line and ellipse is calculated and the tangent
in that point is used to remove the fin. 61

4.8 The fin removal routine applied to a slice where a fin is detected on both
sides. 63

http://ntnu-msc-oystestu.s3-website-eu-west-1.amazonaws.com/
http://ntnu-msc-oystestu.s3-website-eu-west-1.amazonaws.com/

4.9 A case where significant noise is introduced into the 3D-model due to
reflections from the laser-line. The reflections hits the pelvic fin moving
into the frame. The middle and bottom images is the laser-line as seen by
the camera and a thresholded image, respectively. The laser images have
been inverted for viewability, which is why the laser-line appears to be
cyan instead of red. 65

4.10 Instances where pruning of the exterior features is necessary to obtain a
good spline approximation of the main curvature. The coordinates are
shown as well as the spline obtained after pruning. 66

4.11 Fig. A illustrates an instance where the spline will cut off the edge. Fig.
B illustrates an instance where pruning is not performed, as the entire pro-
truding feature is visible from the centroid. 68

4.12 Three instances of medial axis calculation. The horizontal medial axis is
displayed in green, while the discarded Voronoi vertices are shown in blue. 69

4.13 The directions of width and height of a salmon, as referred to in this section. 71
4.14 The vertex containing the radius of the largest embedded circle is used in

the calculation of the medial length, and as a separate feature. 72
4.15 The typical difference between the direct length from the left of the spline

to right of the spline and the length by tracing the medial axis. 73
4.16 The length of the salmon is represented through the medial length, which

traces through the center of the largest embedded circle for each slice. . . 73
4.17 The visible coordinates from each side is projected onto a 2D-plane. Left

figure displays the splitting method applied to a salmon from the dataset. . 76
4.18 Salmon 47 (A) and 104 (B) from the dataset, projected onto a 2D plane and

interpolated to ensure equidistant pixels. A is projected from the bottom
cameras, while B is projected from the top camera. Wounds are indicated
by a red circle. 77

4.19 Typical histogram for RGB wound pixels. The Y-axis indicates the number
of pixels with that value. 78

4.20 Typical histogram for HSL wound pixels. The Y-axis indicates the number
of pixels with that value. 78

4.21 Thresholding of the hue and luminosity applied to the image containing
all the wounds. 79

4.22 Morphological open operation applied to a salmon that has already been
thresholded to a binary image. 80

4.23 The convex hull of each connected region within the image. 80

5.1 Overall prediction rates from an exponential grid-search for the parameters
γ and C using 10x10 stratified cross-validation. 83

5.2 Fish10 from the superior dataset, where the gutting makes it appear as
deformed. 84

5.3 The parameter grid-search after removing three salmon from the superior
class. 84

5.4 Performing a wide-area grid search, to ensure that neighbouring regions
does not provide better results. The ranges are log2C = [−16, 60] and
log2γ = [−60, 16] for the left figure, and log2C = [60, 100] and log2γ =
[−60, 16] for the right figure. 85

5.5 A grid-search for the same range as figure 5.1, but with a smaller step size. 86
5.6 Parameter grid search using 50x8 cross-validation for mean RGB features. 88
5.7 Parameter grid search using 50x8 cross-validation for mean HSL features. 89
5.8 Parameter grid search using 50x8 cross-validation for mean and standard

deviation RGB features. 89
5.9 Parameter grid search using 50x8 cross-validation for mean and standard

deviation HSL features. 90
5.10 Parameter grid search using 50x8 cross-validation for mean, standard de-

viation and relative size (RGB). 90
5.11 Parameter grid search using 50x8 cross-validation for mean, standard de-

viation and relative size (HSL). 91
5.12 Salmon 48, 88 and 103 from top to bottom. These are the salmon with

wounds that are most commonly misclassified. 92

6.1 Scatter intensity for an offset of 8 for salmon 102 (top). 98
6.2 Scatter intensity for an offset of 8 for salmon 90 (bottom). 98

Abbreviations

CV = Cross validation
CPU = Central processing unit
DLT = Direct linear transformation
FAO = Food and Agriculture Orginization of the United Nations
FTE = Full time equivalent (employees)
GPU = Graphical processing unit
MAT = Medial axis transform
MLS = Moving least squares
SSB = Statistics Norway (ssb.no)
SVD = Singular value decomposition
SVM = Support vector machine

Chapter 1

Introduction

The aquaculture industry will become increasingly important in the years to come. The
industries that process the raw materials into seafood, are however faced with difficulties
in countries of high salary levels. There is often more economic incentive to either sell the
raw product, or process it abroad by freezing it (Egeness (2013)). To keep the refinement
of the seafood profitable locally in high-cost countries, automated systems must be used
to a larger degree to reduce the man-hours. A task that is performed manually today, is
the quality control of Atlantic Salmon. In this thesis a rig with multiple cameras is used to
produce accurate 3D-models of fish on a conveyor belt in real-time. Properties like color,
reflectance and the spatial information from the 3D-model can be utilized to devise an
automatic quality control system.
This chapter starts by providing a general background on the aquatic food industry and
proceeds to motivate the need to partly or fully automate these processes. It then brings
the reader up to speed with the state of this project and related projects. Afterwards,
the concrete goals for this thesis is listed. Finally, the overall structure of the thesis is
presented.

1.1 Background

The term aquaculture loosely refers to any farming of aquatic organisms. This includes
farmed fish, shellfish, shells, aquatic plants. The term farming applies when any growth
enhancing actions like breeding, feeding or protection from predators are applied. This
means that fishing of wild stock is not included in this term. This distinction is made be-
cause in most cases across the world, the wild populations of these categories has already
reached their peak sustainable output. This is illustrated in Figure 1.1, where the global
aquaculture production is plotted together with the catch obtained from wild stocks. Al-
though these numbers are most likely inaccurate and contains a wide variety of wildlife
outside the scope of this report, it shows a definitive trend. If food production from aquatic
sources is to increase further, farming techniques must be employed increasingly.
China is currently the worlds largest aquaculture producer overall, and almost dominates
several categories like carps and oysters. Norway and Chile are the largest producers of

1

Chapter 1. Introduction

1950 1960 1970 1980 1990 2000 2010

Years

0

50

100

150

200

M
ill
.
T
on
ne
s

Wild capture

Aquaculture production

Figure 1.1: Global statistics of commercial harvesting of aquaculture and aquatic wildlife (Source:
FAO).

salmon at 33% and 31%, respectively (Subasinghe (2005)).

Increased use of aquaculture has multiple implications for the fish/aquatic processing
and refinement industries. The first one being that there is an increased amount of plan-
ning possible with farmed resources, this allows for a steady supply of raw materials. A
production line or system can thus operate around the clock, increasing the profitability of
the investments into automatic equipment over manual work.
The second implication is that there will be a larger degree of diseases and malformation
due to the conditions of large-scale farming. One reason being that no natural selection
occurs, as the salmon are protected from dangers. Another reason is simply the close quar-
ters in which the fish reside. Some of the underlying issues can be improved by changing
the farming techniques, but it is impossible to completely emulate the conditions of the
wild. The systems in place, manual or automatic, must account for these imperfections.
Customers are very sensitive to color, shape and smell of the products they purchase, and
is thus directly linked to the value attributed to the end product.
A third implication is that the gross tonnage of fish that needs to be processed will neces-
sarily increase considerably to meet demands and keep the farming profitable. This puts
considerable strain on the parts of the supply chain where manual labor is employed.

1.1.1 The Norwegian Seafood Industry
The full seafood industry in Norway generated 46,5 billion NOK and kept about 47 400
full-time-equivalent (FTE) employees. These figures are roughly split in half between the

2

1.1 Background

aquaculture and fishing industries. Specifically, the fish farming industry employs about
5700 people, working in some 1200 fish farms. These farms are dominated by salmon
(Kristiansen (2014)). Norway is currently the sixth on the list of the world’s largest fish
farming nations. Figure 1.2 shows that the fish farming industry in Norway has had an
incredible growth in the later years. These numbers reflect a similar trend as in the global
aquaculture industry.

19
85

19
90

19
95

20
00

20
05

20
10

Years

0

200000

400000

600000

800000

1000000

T
on
ne
s

0

5000

10000

15000

20000

25000

30000

35000

40000

M
N
O
K

Salmon (Tonnes)

Trout (Tonnes)

Salmon (MNOK)

Trout (MNOK)

Figure 1.2: Norwegian exports of salmon and trout (Source: SSB).

While the fishing-based industry has a contribution to the gross domestic product
(GDP) per FTE well above the national average of 0.83 million NOK per FTE, the in-
dustry that deals with the refinement and processing of fish does not. The contribution
to GDP per FTE from fishing was 1.21 million NOK per FTE, while the fish processing
industry lies at 0.68 million NOK per FTE. The aquaculture breeding industries lies com-
fortably at 0.97 million NOK per FTE (Sandberg (2014)). These numbers are from 2012.
This clearly indicates that the part of the seafood industry that deals with the refinement
and processing of the raw products are facing more economic challenges. Note that these
numbers includes the full economic chain, which means that the fish farming industries
are rated higher due to more third-party expenses due to fish feed.

Another statistic that reflects parts of the same problem above, is that the salary costs
has increased significantly in the later years. In 2013 the salaries in Norway was 55%
higher than the average among the trade partners in the EU , and as a result the processing
industry has had problems with profitability for some time (Digre (2014)). Since this part
of the seafood industry generates less revenue per employee, there is tough competition

3

Chapter 1. Introduction

from other countries that has lower salaries. Shipping whole frozen fish to another country
for refinement might be more economically viable than doing the processing locally.

On a processing line with 80 to 120 tonnes salmon per shift (roughly 25000 units), two
to four employees must exclusively perform the task of quality grading. They work 7 hour
shifts, separating the salmon into three categories. The categories are superior, ordinary
and production, where the highest quality is superior and worst quality is production. The
classes of superior and ordinary salmon is much closer to each other than the production
salmon - as that class contains the fish that is considered unfit for consumption. Both
superior and ordinary salmon are used for human consumption. Typically, most of the
salmon are put in the superior class - approximately 90% to 97% (Misimi et al. (2008)). In
light of this, by reliable separating out this class through an automatic system - a fraction
of the manual labor is needed.

1.1.2 Common Defects in Farmed Salmon

Since salmon is a biological product, it has much variance in both appearance and quality.
In addition to this, the definition of the quality classes are not explicitly defined, and will
likely vary from company to company. It will also vary depending on which operator is
performing the grading. This section will generally define the classes of defects present
in farmed salmon which is applicable to this thesis. Defects not externally visible, such as
muscular defects for example, cannot be classified by a system exclusively relying on ex-
terior imaging. The possible defects that can be caught by such a system includes skeletal
deformation, sexual maturity and external blemishes - such as wounds.

Spinal Deformation

One of the possible defects in salmon is spinal deformation. The cause for the deformities
cannot be attributed directly to a single factor. It has been shown that parasitic and bac-
terial infections, malnutrition, incubation temperature, light conditions, water quality and
pollution all contribute towards the risk of developing such deformities (Vågsholm and
Djupvik (1998)). While combating the conditions leading to deformations is important to
improve the living conditions of farmed fish, the focus for this thesis will be major defor-
mations that affects the shape or symmetry of the salmon. Fjelldal et al. (2007) describes
three of the most common deformities in farmed salmon. They are compression, fusion
and dislocation. An X-ray of a salmon without any skeletal deformations can be seen in
figure 1.3, and one with an deformed spinal column in figure 1.4. Even if malformations
of the spinal column is present does not necessarily mean that it is externally visible - or
quality degrading. Externally visible deformations can occur when the severity causes the
spine to curve in an abnormal manner, for example through fusion and dislocation. An aim
in this thesis is to primarily look at two signs of deformations - humpback and short tail.
The first occurs as a result of an abnormal curvature of the spine, possibly in combination
with inflammation of the surrounding tissue. Short tail is the given name for compres-
sion throughout the entire vertebral column. Figure 1.5 shows a comparison of a regular
salmon and one with a compressed spine. The external result is a wider (taller), stunted,
appearance - which is where the name short tail comes from.

4

1.1 Background

Figure 1.3: Vertebral column of salmon without signs of deformations (from Witten et al. (2009))

Figure 1.4: Multiple extreme deformations of the vertebral column of an adult salmon (from Fjelldal
et al. (2012))

Depending on the severity of the deformations, the salmon is either classified as ordi-
nary or production. Salmon in the superior class is typically free from deformations, but
the separation between ordinary and superior is not cut and dry.

External Blemishes

In total there are a few common external blemishes to consider. The type that appears and
is handled in this thesis is wounds. This can either be old wounds or new wounds. Wounds
in salmon can appear in all sizes, and primarily occurs on the sides. When the salmon is
processed, the wounds can be healed - but still causes a downgrading of the quality due
to the scarring. The wounds themselves can start out as small scratches, which are then
infested by bacteria, causing the wounds to expand. In waters of high salinity, such as
seawater, the bacteria Moritella viscosa is found to be the largest cause of these wounds.
The outbreak of that type of bacteria often occur during periods of cold water, and is for
that reason called winter wounds or winter ulcers. The salmon can recover from these

5

Chapter 1. Introduction

Figure 1.5: Comparison of a regular salmon with one that has a compressed vertebral column, also
known as short-tail (from Witten et al. (2005)).

wounds as the water gets warmer, but the scarring remains.
Other external blemishes can occur, but will not be considered in this thesis. An ex-

ample of this can be sexual maturity, which changes the overall color of the salmon and
changes the taste of the meat. None of the salmon in this thesis exhibited this defect.

Class Definitions

The superior grade is defined to be salmon of streamlined shape, and no external blem-
ishes. The ordinary grade includes fish with minor defects such as unsymmetrical shape or
some imperfections such a minor external blemishes. Production constitutes the class of
all salmon that does not fall into the two previous categories. The production class is not
used for human consumption, and is either ground-up and used for other purposes or dis-
carded completely. The primary cause of being labeled as production is body deformities,
namely humpback and short tail (Misimi et al. (2006)). An aspect that makes classification
into these classes difficult, is that each type of defect might appear on the same subject.
The salmon might have an amount of deformity and blemishes that is within acceptable
limits for the ordinary class when looking at each defect separately. When the two defects
are combined on the same salmon, the verdict might change. An automatic quality control
system should therefore be able to account for such sliding combinations of the various
defects.

1.2 Benefits of Further Automation

Most low-hanging fruits for automation within the many industries has already been picked,
and the food industries are not an exception. The tasks involving object recognition and
decision making based on visual information has proven to be especially difficult. Humans
are inherently skilled at quickly determining what an object is and select a course of action
based on visual input. Transferring the same process to an artificial system is not simple.

6

1.2 Benefits of Further Automation

An algorithm seeking to perform the same tasks would need to compare to the human op-
erators in both quality and speed for it to be beneficial. Due to these difficulties, much of
sorting and processing of fish is still done manually. Compared to many other branches of
industry, the use of sensors in the fish processing industry is relatively moderate. This is
of course related to the fish processing industry not being at the front of the technological
development, and having a lower degree of automation than for instance the automotive
industry (Buljo et al. (2013))

Automation of industrial processes has been going on for decades. This has especially
been the case for high-cost countries, like Norway. Due to a high general level of salaries,
the potential gains from automating a process can be significant. In the short term, this
removes the need for certain jobs. In the long term the work force will adapt, however,
and become more competitive with cheap labor in low-cost countries. This motivates the
need for automation from the perspective of the local businesses. It also provides moti-
vation from an environmental perspective, as transporting raw materials across the world
has its toll on the environment. Refining the fish first removes the unnecessary part of
the fish, and only transports the valuable parts. There is also the case of shipping the fish
for processing, and then returning it back for sales in the original region - which can be
avoided if it were to be processed locally.

Norwegian industries typically needs an edge other than strictly economic to be able to
compete. Being close to the source of the resource was a big advantage one or two decades
ago. Improved technology for freezing and storage in combination with cheap transport
costs, instead allowed the industry to ship the resources abroad for processing (Egeness
(2013)). This involves freezing the product once or twice, which affects the quality. As
a result of this, almost 80% of the salmon exported from Norway today is fresh whole
salmon to attempt to differentiate from the cheaper, frozen alternatives. Automating the
processing will speed up the process from receiving a fresh fish to the packaged fish. This
might yield some benefits in the shelf-life of the product. Pelagic fish, cod for example,
is mostly exported frozen due to lacking automated solutions. Although automation of
salmon processing has large potential, automating processing for pelagic fish is in its in-
fancy - and a prime target for this technology if it proves to be effective. Automation of
Salmon processing has come further, much due to the steadiness of supply from fish farms.

In Digre (2014) the notion is presented that introducing new technology in the fisheries
will reduce the number of employees, but not the expenses in salaries. The reasoning
is that the untrained labor is reduced, but that it comes with an increase in the areas of
automation and process control, where the salaries are higher. The motivation to automate
the processes should therefore lie in other areas, at least initially. There are potential
gains by introducing new technology in the improvement of product quality and improved
capacity due to the higher speed. An automated system is not subject to human error, and
has inherently less variability in output product. Additionally, the increased precision can
yield a better utilization of the raw product through a more correct sorting. If salmon from
Norway retains an impression of quality abroad, a higher price can be justified.

The salmon processing industry in Norway has equipment available to automate a va-
riety of single tasks. These machines are very specialized however, and requires manual

7

Chapter 1. Introduction

intervention to position and prepare the salmon between the various steps. Machine vision
can coordinate these systems with each other. A machine vision system placed somewhere
in the processing line not only provides immediate information to for example a quality
control system, but also to all machines further down-line. One can imagine a robotics
system being placed somewhere for example, where the visual system can be made much
simpler due to the fact that analysis on higher quality imaging has already been performed
earlier. The low involvement of robotics in food processing is also due to the fact that food
products, and seafood products particularly, are highly variable both in shape, size and
structure, which poses a major problem for the development of sensor systems (Litzen-
berger (2009))

In recent years, the speed of general purpose computers has steadily increased. Ad-
ditionally, the cost of high-speed cameras has dropped significantly. Combining these
two effects can make tasks involving visual information feasible from both economic and
computational standpoints. Solving these task with general purpose computers frees the
deployed systems from having specialized hardware, which would increase the cost sig-
nificantly. This project uses off the shelf hardware with a computer vision system built
from scratch to avoid using expensive, pre-built, systems.

If the approach used in this task proves to be successful, it could be an enabling tech-
nology for other applications. If the 3D-profiles can be used for visual inspection of fish,
there is nothing that prevents the same approach from being used in other applications.
One possibility is using the classifier to not only determine the quality of the fish, but also
output the concrete regions of poor quality. This information can be passed along to an-
other system capable of removing these regions, possible with the help of robotics.

Successful large scale development of automated solution can also be an attractive
technology to export to other nations. Exports of oil related technology is today the second
largest industry in Norway. Additionally, increasing the general activity level within the
field of machine vision can be a positive trend to further the general field of expertise in
Norway. The problems faced by the seafood industry are not unique, at least in Norway.
Many of the concepts explored in this thesis might also be directly or indirectly applicable
to other industries.

1.3 Previous Work
This section goes through the initial work done on this project by the author during his
summer internship at SINTEF and part-time during the fall of 2014. The intention is to
bring the reader up to speed with the state of the project when the undertaking of this
thesis was started. This is important, as the computer vision system was not in a state
where an experiment could immediately be scheduled. Due to this, much time was spent
on hardware interoperability and software development.

The primary purpose of the summer internship at SINTEF was to attempt to create a
system that could obtain a height profile of an object moved through a laser-line. Pre-
viously, the research done at SINTEF had used commercially developed systems for the

8

1.4 Price of Comparable Systems

same purpose. They realized that if broad implementation of their solutions was to be
obtained, the cost of the machine vision system would need to be brought down. Building
an in-house solution allowed the system to be tweaked to the needs of the application. The
goal during the summer internship of 2014 was to develop such a scanner from scratch
utilizing a single camera. This involved developing a camera calibration routine and a
library capable of computing the world coordinates in real-time. The goals were met, but
the performance obtained was lower than desired. While this is acceptable in an lab envi-
ronment, where the speed of the conveyor belt can be reduced - it is not acceptable in the
industry. Additionally, only scanning from one side was implemented. The old software
routines was the result of prototyping, and much needed to be rewritten or done another
way during the work on this thesis.

The calibration routine did not work as expected when applied to the bottom cameras.
The accuracy from cameras positioned at an angle, as opposed to directly from above, was
not within the desired limits and had to be improved during the thesis. Features critical to
the success of this thesis was lacking. The camera system used monochrome images and
did not output color images, which is needed in the classification of wounds. The camera
system was set at the same, fixed, frame-rate for each camera. This needed to change to a
system using explicit triggering, to properly synchronize the three cameras.

1.4 Price of Comparable Systems

The price of comparable, commercial, systems was an important factor in the decision to
create a 3D- scanner from scratch. An price estimate of an industrial range-scanner camera
is somewhere in the range 40 000 - 70 000 NOK without a lens. The upper part of this
range would be required to get a system that includes both range and color imaging. For
3D-scanning with full coverage using three cameras as in this thesis, the cost exceeds 200
000 NOK just for the equipment. The software needed to tie these cameras together adds
additional cost. The cost for the equipment used in this thesis, including three lasers, three
cameras and LED lights for illumination is well below 70 000 NOK.

If the price of the system can be reduced to a mere fraction of comparable systems, with
an acceptable accuracy, the threshold for implementing the system is lowered drastically.
Not only can the system be taken into use by different companies, but also at multiple
locations on the same processing line. This enables the availability of 3D-imaging as the
salmon is being processed. There is also nothing keeping the system from being used in
other industries with similar needs, but perhaps different margins than the salmon industry.

Another factor in the decision to develop the system from scratch, was that a much
higher degree of flexibility. If a feature one needs is missing from the industrial system,
there is not much one can do - except performing an expensive upgrade if possible. With
a custom designed system, one must invest time in development - but this is largely a
one-time cost. This allows to specialize the choice of optics and algorithms to the needs.
Additionally, having a cheaper system allows for more rapid upgrades as optics and camera
interfaces improve.

9

Chapter 1. Introduction

1.5 Related Work
In general, the Salmon can be divided into three groups according to external quality.
These are superior (no external blemishes), ordinary (minor degree of blemishes) and pro-
duction - where parts of the Salmon cannot be used for human consumption. Sorting
between the two classes superior/ordinary and production was performed at SINTEF Fish-
eries and Aquaculture previously. A quality grading system that utilized a single image
per Salmon from the side was used to obtain an estimated sorting reliability of 87% (Mis-
imi et al. (2006)). Only the shape, which was extracted from the outline of the 2D-image
- was considered. This was later applied to sorting between superior and ordinary using
the same approach, as the production class was found to appear in small quantities. The
sorting reliability between superior and ordinary was estimated to be 90% (Misimi et al.
(2008)). It should be noted that the difference between the classes of superior and or-
dinary are magnitudes smaller than the distance to the production class, which makes it
much more difficult to separate. These two cases are similar in the type of fish and the
quality grading classes.

A related project used a sheet-of-light laser and camera to obtain a height-profile of
pelagic fish from one side (Mathiassen et al. (2006)). The project used a commercial
system. It was a proof of concept for the technology, or approach, used in this thesis. The
conclusions of that study was that to obtain the speed necessary, image processing needed
to be offloaded on an GPU, which led to the work preceding this thesis.

1.6 Goals and Objectives
The following section lists the goals and objectives of this thesis.

• Implement a complete 3D machine vision system with emphasis on applicability to
industrial purposes, and not just laboratory experiments. This places constraints on
the real-time performance of the implementation.

• Resolve any practical issues with regards to the extracted point cloud, that makes
analysis of the geometry feasible. Emphasis is placed on the robustness and cor-
rectness of the point cloud with respect to feature extraction. There are no concrete
goals for this point, but justifies time spent on improving the approach as a whole
for future applications.

• Perform an experiment by scanning salmon, to obtain a dataset.

• Develop features that are able to describe the deformities present in salmon, and use
a classifier to separate between superior and the deformed salmon in ordinary/pro-
duction from the dataset.

• Implement detection of externally visible wounds, either as a separate routine or as
a part of the classifier used for deformity detection.

• Evaluate the methods used, and suggest future improvements to the general ap-
proach or implementation.

10

1.7 Structure of the Thesis

A big part of the challenge with the task at hand will be to compensate for the inherent
variation present in biological objects.

1.7 Structure of the Thesis
• Chapter 2: Contains a short literature review of machine learning, with emphasis on

support vector machines. Some discussion of why SVM is suitable for this project
is also found here. Some concepts within shape representation and geometrical
transformations are also introduced.

• Chapter 3: The equipment used and the steps necessary to acquire 3D-coordinates
of objects, is detailed.

• Chapter 4: In this chapter, the steps taken to improve the quality of the raw 3D
point cloud and the extraction of features for classification is described.

• Chapter 5: Using the geometric and color features, classifiers are trained and the
results of these are presented in this chapter along with some discussion and com-
mentary where necessary.

• Chapter 6: This chapter contains general discussion regarding the results obtained
and the strengths and weaknesses of the methods employed.

• Chapter 7: This final chapter summarizes the work and draws conclusions regard-
ing the importance of the findings. Recommendations for further work is presented.

• Appendices: There are three main appendices. A table of the dataset, with com-
ments, and two smaller code snippets performing specific functions. The remainder
of the implementation is too large to embed in the thesis.

11

Chapter 1. Introduction

12

Chapter 2

Literature Review

This chapter briefly introduces some of the key concepts used in this thesis.

2.1 Classical Statistical Learning

Generally, machine learning considers a set of n samples and from this tries to find patterns
or properties of this data. These patterns or properties can then be used to draw conclusions
regarding new samples. The type of machine learning considered in this thesis, is super-
vised learning - where each of the samples has a corresponding class. The overall goal
of this type of machine learning therefore becomes the problem of how to best separate
these classes. For most applications, simply separating the classes in the known, labeled,
set is not enough. One typically wants to find a pattern that provides the separation that
generalizes best to new samples.

x = [x1, x2, . . . , xd]
T (2.1)

The samples are described by a vector of features, which each describe some property
of the sample. These features can for example be measurements. The problem of sepa-
rating the classes becomes a problem of creating a d-dimensional boundary between the
samples. In this thesis, binary classification is considered, namely the separation of two
classes. In the two-dimensional case, a simple separation can be obtained through a linear
discriminant function, as shown in figure 2.1. Classical supervised learning finds such a
line, or hyperplane in a general dimensional space, such that the separation is optimal with
regards to some metric.

13

Chapter 2. Literature Review

Figure 2.1: A separation between two classes described in a two-dimensional feature space.

Supervised learning can be roughly be divided into two areas, one based on statistics
and one based on optimization. The class of learning algorithms in the statistical class
often assumes that the features follow some probability distribution, and the separating
hyperplane is optimally found with regards to this distribution. The class based on op-
timization makes no such assumption, but rather attempts to minimize some objective
function. This can for example be geometric distance between the samples. This thesis
employs the second strategy.

2.1.1 Curse of Dimensionality
A large part in developing a successful machine learning application is finding the best
features to describe the difference between the classes. One might think that adding new
features improves the performance of the resulting classifier indefinitely. This is unfor-
tunately not the case, even if each features provides new information, due to an effect
called the curse of dimensionality. Adding new features to the feature vector can add
new information, but also increases the dimensionality of the feature space. Consider a
two-dimensional feature space. If a feature is added to form a three-dimensional feature
vector, the feature space becomes cubic. If the number of samples stays the same, the
effective sample density is reduced exponentially. The predictive power of machine learn-
ing algorithms decreases as the sample densities becomes lower. Some algorithms are
better at handling low density feature spaces, but all are afflicted by it to some degree.
One therefore not only looks for features that provides new information regarding the two
classes, but the feature combination that provides the most information collectively within
a reasonable dimension.

14

2.1 Classical Statistical Learning

2.1.2 Overfitting

Another important concept in machine learning is that of overfitting. This occurs when
the machine learning algorithm starts to describe random error or noise instead of the
actual pattern. This makes the classifier become very adept at separating the samples in
the training set, but performs poorly when applied to new samples. That is, the classifier
memorizes the dataset instead of learning from it. A good example of overfitting can be
found from regression. Assume that one wants to fit a noisy dataset to some function.
If the degrees of freedom is high enough, and is fitted to the data without any form of
regularization - the result might become something like figure 2.2. The basic premise
of overfitting is the same for machine learning as for regression. Fortunately there are
methods that helps to manage this problem, as well as learning algorithms resistant to its
effect. One general method that can be applied is cross-validation.

Figure 2.2: Overfitting in the case of regression, the trend in the points might be better described
through a linear function than a curved function which correctly minimizes the distance to each
point.

2.1.3 Cross-Validation

When training a classifier, one needs some way to assess how that classifier will generalize
to new data. This is useful both for selecting the optimal model parameters, and estimat-
ing the performance of the overall classifier once the model parameters has been fixed.
The goal is therefore to predict the accuracy of a given model. Training a classifier and
estimating the accuracy on the same dataset introduces a bias into the calculation, as the
algorithm training the model knows the full set beforehand. In that instance, the accuracy
reflects how well one can specialize the model to the dataset, not how well it generalizes.
This leads directly to an overfitted model. To mitigate this one usually employs a scheme

15

Chapter 2. Literature Review

which divides the dataset into training sets and validation sets, where a subset of the data is
used exclusively for validation. This process can be repeated several times using a random
split of the data in for example 80% training set, and 20% validation set. The drawback
with this approach is that there is no guarantee that each sample in the dataset appears both
in the training and validation process.

Cross-validation approaches the problem slightly differently. It too, splits the data into
different subsets, but ensures that each subset is used both as a validation set and training
set. It does this by splitting the dataset into k subsets, which is used once as a validation
set. The model training is then performed on the remainder of the dataset. This is called
k-fold cross validation. Often chosen equal to 10, which means that the model training is
performed 10 times on 90% of the dataset, and validated on 10%. Each sample is then in
the validation set exactly one time. The predicted classes is then compared with the true
classes to form an accuracy estimate.

The 10-fold cross-validation is by many considered to be the standard procedure,
which works fairly well given that the size of the dataset is large compared to the vari-
ability of the samples. When this is not the case, one periodically experience a bad split,
where perhaps all the samples that describes a certain trait is placed into the validation
set simultaneously. In the face of this issue, one typically has two choices. Either re-
peat the experiment a certain amount of times and average the results, to reduce the effect
of a few bad splits. The bad splits that do occur does of course reduce the overall ac-
curacy slightly, but this is better than getting an overly optimistic estimate. The second
approach is to take the cross-validation to the extreme by selecting k = 1. This is known
as leave-one-out (LOO) cross-validation, and involves training a model on all the samples
except one - which is then used to validate. This completely negates the effect of a bad
split, unless a single sample is substantially different from the rest. For many applications,
this is not feasible - as the time it takes to train all those models might be unrealistically
high. In this thesis, the final model parameters is validated an additional time using LOO
cross-validation. The prototyping and model selection is done using other cross-validation
strategies however.

Not too many conclusive studies has been performed to evaluate the methods of as-
sessing classifier performance, as the error in part depends on the data set. Bouckaert and
Frank (2004) finds that performing a 10x10 cross-validation, yielded the best replicability
- in which the bad splits were minimized. The drawback of this is that the model needs to
be trained 100 times.

When the number of samples representing each class in the dataset is not of the same
number, one sometimes wants to ensure that each class is equally represented in both the
training and validation sets. This is called stratified cross-validation, and is simply done
by dividing the dataset by class, performing random splits, and merging the classes back
together. This avoids the situation where many samples from the class of least size is
placed into the validation set simultaneously. If the remaining samples from that class in
the training set is too low, the quality of the model will be poor and yield an unrealistically
low prediction rate for that class.

16

2.2 Support Vector Machines (SVM)

Figure 2.3: The optimal hyperplane is the hyperplane that separates the classes with the maximal
margin.

2.2 Support Vector Machines (SVM)
Support vector machines (SVM) is a type of classifier developed in the 1990s originally
intended for character and text recognition. SVM can be applied both to regression (SVR)
and classification of binary classes (SVC). Multiple classes can be taken into account by
utilizing multiple binary classifiers in so-called one-vs-all classification. When applied
to binary classification, the support vector machines seek to maximize the margin of the
an optimal hyperplane. The optimal hyperplane for a linearly separable set is defined as
the hyperplane that separates the two classes with maximal margin, as illustrated in in
figure 2.3. The support vectors are the data points that coincide with the margin. The as-
sumption is that the larger this margin becomes, so does the classifiers ability to generalize
to new data.

2.2.1 Linear SVM

The optimization problem for support vector classification will first be introduced for the
linear case, and then extended to the nonlinear case. Note that while the equations pre-
sented here are correct, they are not solved directly in practice. Implementing a solver
that effectively treats large datasets and features with many dimensions is difficult, and
requires different approaches and heuristics. The equations presented here best illustrates
the objective of SVM, without delving into too much detail.

SVM uses the dot product as a similarity measure. For linear SVM, this is simply the
dot product between two vectors in the input space, RN .

17

Chapter 2. Literature Review

〈w,x〉+ b, where w,x ∈ RN , b ∈ R, (2.2)

Where 〈·, ·〉 denotes the inner product, thus yielding a scalar value. The sign of this
can be used to realize a decision function

f(x) = sgn(〈w,x〉+ b), (2.3)

Given the training data X with binary class assignments y

X = (x1, y1) . . . (xL, yL) x ∈ Rn, y ∈ {+1,−1} (2.4)

A convex quadratic optimization problem for the optimal hyperplane in the case of a
linearly separable data set can be written as

minimize
w,b

1

2
‖w2‖

subject to yi[〈w,xi〉+ b] ≥ 1, i = 1 . . . L

(2.5)

The support vectors are the data points where the constraint is at equality. The in-
equality constraint ensures this by scaling w and b. The margin which is the distance from
the hyperplane to the closest points equals 1

‖w‖ . This result can be obtained by projecting
points on the margin of either side of the optimal hyperplane onto the normal vector w

‖w‖ of
the hyperplane. The distance from the margin on one side to the other is then 2

‖w‖ . It fol-
lows that maximizing this margin involves minimizing the length of w, which is reflected
in the objective function.

The constant on the right hand side of the inequality can be any positive number. The
positive constant is needed to ensure that both sides of the equations are scaled under
multiplication. Minimizing ‖w‖ using a constraint with > 0 would not yield meaningful
results, as the left hand side could be scaled freely. This can be seen by multiplying with a
number [0, 1], which can reduce the objective function indefinitely (Smola and Schölkopf
(1998)).

The dataset could be linearly unseparable however - perhaps due to noise, mislabel-
ing or nonlinear patterns. This causes the optimization problem to be unable to satisfy
the constraint - and becomes infeasible. To make the problem feasible, slack variables are
introduced which allows the constraint to be violated under a penalty to the objective func-
tion. This is known as a soft margin hyperplane. A parameter C > 0 is a given constant
that weights the penalty of samples on the wrong side of the hyperplane. Changing this
both changes the orientation and bias of the hyperplane, and is used as a tuning parameter
to reject outliers. A normal strategy is to keep C = 1 and then reduce it further if the
results are poor due to outliers or noise.

minimize
w,b,ξ

1

2
‖w2‖+ C

l∑
i=1

ξi

subject to yi[w · xi + b] ≥ 1− ξi
ξi ≥ 0

i = 1 . . . l

(2.6)

18

2.2 Support Vector Machines (SVM)

Figure 2.4: The mapping Φ embeds the data into a higher-dimensional space where the nonlinear
pattern appears linearly (adapted from Shawe-Taylor and Cristianini (2004)).

Many solvers can be used to solve this convex quadratic optimization problem. Usu-
ally it is solved on its dual quadratic form, by maximizing the Lagrangian multipliers.
Although the optimization problem can be solved using conventional quadratic solvers,
more heuristics are usually needed to form an efficient SVM training algorithm.

2.2.2 Nonlinear SVM
One of the great aspects of SVM is its ability to diversify. The same optimization can be
performed to find a nonlinear support vector classifier. The equations presented for the
linear case are remarkably similar to the nonlinear case in appearance. The major change
is that the dot product, which was performed on two vectors in RN for the linear case,
instead is performed in a general dot product space H. The type of dot product space is
defined by a mapping Φ : X → H, which maps the input space X to the feature space
H. This mapping is typically nonlinear. The similarity measure is defined through the dot
product of such a mapping of each element, which is called a kernel.

K(xi,xj) = 〈Φ(xi),Φ(xj)〉 (2.7)

This kernel dot product appears directly in both the dual optimization problem and the
resulting decision function. A simple way to think of kernels, is that a nonlinear kernel
transforms the data from its’ input space to another higher dimensional space - where
the feature vectors of the classes are linearly separable. Hyperplanes are still used for
nonlinear SVM, it is the input space that is mapped to an alternate feature space. Figure 2.4
illustrates this point. In theory, any dataset of two categories can always be separated
linearly by a hyperplane if the data is mapped nonlinearly to a sufficiently high dimension
(Duda et al. (2012)).

Below, three of the most common kernels are listed, where γ, r and d are kernel pa-
rameters.

1. Linear: K(xi,xj) = xTi xj

19

Chapter 2. Literature Review

2. Polynomial: K(xi,xj) = (γxTi xj + r)d, γ > 0

3. Radial basis function (RBF): K(xi,xj) = exp(−γ‖xi − xj‖2), γ > 0

The kernel and its parameters are specified manually, and are not free variables in the
optimization problem. These parameters are usually found by performing a exhaustive
grid-search of a wide range of parameter combinations. Cross-validation is performed
at each parameter combination to determine the best combination. For RBF, one would
search the parameter space of the regularization parameter C and kernel parameter γ.
Heuristics exist that attempts to point the search in the right direction. This however,
serializes the grid-search - at least to a certain degree. It is therefore more common to do
the exhaustive search by for example employing distributed computing.

RBF is often recommended as the first kernel to try, but its success depends on the
dataset itself. If the number of features is sufficiently high or the dataset is linearly sepa-
rable, other approaches might be better. The best combination of parameters for RBF are
guaranteed to not yield worse performance than linear SVM however (Hsu et al. (2003)).
This of course assumes that the best parameter combination is found through the grid-
search. The polynomial kernel is normally not used, as it has three tunable parameters
compared to two for RBF and one for linear SVM.

By defining the inner products in terms of the original space, the computational over-
head of moving to a higher dimensional space is kept much lower. The Gaussian RBF
kernel for example, transforms the input space to an Hilbert feature space of infinite di-
mensions. Only the dot product of this space is utilized in the computations, however. To
avoid confusion, a quick example using the RBF kernel for an input space in R is now
included.

K(xi, xj) = e−γ‖xi−xj‖2

= e−γ(xi−xj)
2

= e−γ(x
2
i+2xixj−x2

j)

The middle term involving both elements can now be separated out and expanded as a
Taylor series.

= e−γ(x
2
i−x

2
j)
∞∑
n=0

(2γxixj)
2

n!

It follows that this is result of an inner product of two vectors of infinite dimension.
The mapping applied to each input vector of the inner product is shown below.

Φ(x) = e−γ(x
2)
[
1,

√
2γ

1!
x,

√
(2γ)2

2!
x2, · · ·

]
This is known as the kernel trick, which allows the input vectors to be mapped to a

high-dimensional feature space without explicitly computing anything in that space. The
dot product in this space represents what the similarity value of the two vectors converges
to as the dimension goes to infinity. In fact, the Gaussian RBF kernel is a combination of
all polynomial kernels of positive degree. The linear kernel is actually a special case of
RBF.

20

2.2 Support Vector Machines (SVM)

Figure 2.5: VC dimension example for linear separating functions in the plane (adapted from Vapnik
(1995)).

2.2.3 VC Theory

An important property of SVM is that the complexity of the classifier is characterized
by the number of support vectors instead of the dimensionality of the high-dimensional
feature space. As a result, SVMs tends to have less problems with overfitting due to
dimensionality than other methods.

The development of this class of learning algorithm was motivated by advances within
statistical learning theory. In particular, the introduction of the Vapnik–Chervonenkis (VC)
dimension, which can estimate to which degree a classifier can generalize to unseen data.
The VC dimension itself is a scalar which places a bound on the risk achieved by a learning
algorithm (Vapnik (1995)), also referred to as the capacity of a classifier. In plain terms,
the VC dimension of a classifier model is the maximum number of points or vectors that
can separated (shattered) them into any combination of two classes. Figure 2.5 shows
an example using a linear discriminant function in the plane. The VC dimension in both
instances is equal to 3, as the points inside the ellipse cannot be separated from the left
and right point by a single, straight, line. By controlling the length of the weight vector
‖w‖ in SVM, the VC dimension can be controlled irrespective of the dimension of the
space (theorem 5.5 Smola and Schölkopf (1998)). The minimization of the weight vector
therefore also controls the capacity of the classifier. This is a central point, which explains
why the SVM has the ability to classify without overfitting even in conditions where the
dimension size outnumber the number of samples. SVM only uses a subset of the training
points closest to the hyperplane, the support vectors, to generate a decision boundary. It
therefore has a powerful ability to generalize.

Using VC theory, one can in theory estimate the kernel and kernel parameters that best
suits the dataset in terms of risk minimization. Normally, cross-validation is used instead
for the same purpose - as it does the same empirically.

21

Chapter 2. Literature Review

2.2.4 SVM: Advantages and Disadvantages
Advantages

• Effective in high dimensional spaces (resistant to overfitting)

• Effective in cases where number of dimensions is greater than the number of samples

• Memory efficient, as it only uses a subset of the training points for classification

• Kernels can change the behavior completely without changing the classifier itself

• No need to reduce dimensionality through PCA for example as opposed to other
algorithms that does not handle the curse of dimensionality (overfitting) inherently

Disadvantages

• Poor results if number of features much greater than samples

• No probability estimates, must be estimated by itself - which is computationally
expensive

• Dataset must be scaled before classifying and predicting

• Only directly applicable to binary classification

• Performance can vary greatly depending on the type of kernel chosen, and there is
not one best kernel for all problems.

The main reason for choosing this as the primary classifier type for this thesis is that
the number of features present in this thesis is quite large compared to the number of
samples. Other classifiers could still be utilized by using dimension reduction techniques.
The number of samples in total would still be much too low for most other classifiers,
however. One of very few alternatives would be the K-Nearest neighbor classification,
which simply uses the label of the K closest samples to determine the most probable label.
For further research, other classifiers can be considered - as the data set will increase when
the system is implemented industrially.

Another advantage is that there exists software that implements advanced solvers es-
pecially for training SVMs. In particular, an implementation by the name libsvm (Chang
and Lin (2011)) is widely recognized to be one of the best SVM implementations. It has
been under active development since 2000, and has stood the test of time. Simply apply-
ing traditional methods like Quasi-Newton directly does not scale well with the size of
the data set in terms of memory usage. To scale well, the problem must be decomposed
into multiple subproblems, which are solved one at a time for a few variables. Libsvm
bases itself on a solving strategy known as Sequential Minimal Optimization, which de-
composes the large problem into smaller subproblems. At each iteration a small problem
of a few variables is solved, without needing advanced optimization software. It includes
heuristics that both reduce training time by pruning unneeded elements (shrinking) and
intelligent caching of previous kernel values. The library itself is written in C++, but has a
wide range of interfaces. In this project, LabVIEW has been used for camera acquisition,

22

2.3 Numerical Geometry and Shape Recognition

general data processing and ties the various components developed in C++ and Matlab to-
gether. Unfortunately, the provided LabVIEW interface to libsvm was both outdated and
poorly designed. During this thesis a new interface was therefore developed and freely
released (available at http://www.github.com/oysstu/LabVIEW-libsvm).

2.3 Numerical Geometry and Shape Recognition
One of the aspects that is considered in this thesis to determine the quality of the salmon, is
the geometric data. The range-cameras provide an description of the shape of the salmon in
3-dimensional space. This data must interpreted in an invariant way to be able to compare
one with another. This interpretation should be invariant to the scaling of the object, as the
quality classes contains varying sizes. To be able to analyze and recognize the shape of
objects, one must first decide on a suitable geometric representation.

The main methods of shape representation in 2D and 3D can be divided into four
distinct groups (Siddiqi and Pizer (2008)). Each of these groups will briefly be introduced
in the context of shape recognition. One of the representations is then chosen based on its
applicability to shape recognition. Illustrations of each group can be seen in figure 2.6.

Boundary representation
This method represents an object as a collection of surface points, surface elements
and curves. The normal along the surface and rate of change in curvature can thus be
used to distinguish between shapes. Typically, one utilizes a standard object of the
same topology and computes a smooth continuous mapping from the standard to the
object in question. This approach facilitates analysis of the shape from its exterior,
but does not take interior geometry into account. One can easily see applications in
recognition of rigid shapes based on this, but it faces problems in biological recog-
nition - where objects of different size and non- rigid deformation appears. An
example can be to track the movements of an object through rigid transformations
of a point cloud boundary.

Voxel displacement
The second representation also uses a standard object, which is deformed. The dif-
ference from the boundary representation, is that the interior of the object is divided
into a grid of points (voxels). The deformation of these voxels are then represented
by a displacement vector field. Information about the deformation of both the sur-
face and interior is therefore available. This representation is very dense, as each
voxel must be stored. Additionally, the displacement is typically modeled through
differential equations - which is computationally expensive. Voxel displacement
has been successfully used in alignment of 3D medical images (Studholme et al.
(1999)). These applications deal, not only with the surface of the patient, but also
the interior composition obtained with CT/MRI-scans. The voxel representation is
therefore well suited for these applications.

Landmark representation
This representation has the same idea as boundary representation, except points are
selected intelligently. The points can represent important geometric locations along

23

Chapter 2. Literature Review

Boundary Voxel displacement Landmark Medial

Figure 2.6: The four main shape representations (Adapted from Siddiqi and Pizer (2008)).

the boundary. Examples of such landmarks can be peaks and dips. Depending on
how these landmarks are selected, they can be applied in shape recognition. This
representation requires much heuristics for extraction of the landmarks, and is very
application-specific. Due to the sparseness of the landmarks, a bare minimum of
information is retained. The landmark representation has been applied successfully
in face recognition (Zhao et al. (2003)). In general this representation depends heav-
ily on the presence of good landmark candidates, which differ from application to
application.

Medial axis
The final representation presented is that of the medial axis transform. The result
of this transformation is a line inside the object, which branches outwards towards
protruding parts of the object. A point on the axis is a location where a hypersphere
that is tangent to the boundary in two or more locations can be inscribed within
the object. In other words, the medial axis is the points where the largest possible
hyperspheres can be placed inside the object. The full medial axis is the union of all
these points. Like the voxel displacement representation, the medial axis contains
information about both the surface and interior of an object.

The obvious choice would either be the landmark representation or the medial axis
representation. The landmark representation has been successfully applied previously in
automatic quality control of salmon from 2D-images (Misimi et al. (2008)). The land-
marks chosen can be seen in figure 2.7. They were the widest and narrowest part of the
fish, the width mid-way between these, and the lengths between them. This, in conjunc-
tion with the area of the front and back parts, contained enough information to separate
the classes. The same approach could be used for the 3D-model, possibly extended by
calculating the volumes instead of areas.

Medial transforms has been the subject of much research over the recent years. Me-
dial descriptions of shapes have gained significant momentum due to their invariance to
translation, rotation, scale and their ability to cope with moderate amounts of within-class
deformation (Macrini et al. (2008)). It additionally has, as a method, a much greater level
of generality to it than the landmark approach, which is very application-specific. The
implications of this is that one to a greater degree can use results from other applications
and can with more ease use the knowledge obtained in related applications.

24

2.3 Numerical Geometry and Shape Recognition

Figure 2.7: Landmark points utilized by Misimi et al. (2008) in quality control of Atlantic Salmon.

Although the work done in this thesis strives to represent the same information con-
tained in the landmark features, the 3D-model provides much more information about the
shape of the salmon than the 2D-images or one-sided 3D imaging used previously. Ex-
ploring a representation that captures more information is therefore interesting, especially
since the method itself contains a larger degree of generality.

2.3.1 Medial Axis Transform
In 1967, Blum suggested the notion of a medial loci, or medial axis as a representation
of the shape in 2D-objects extracted from images (Blum (1967)). Medial stems from the
latin word medialis, which roughly translated means ”in or near the middle”. It is used
in anatomy to describe the centerline of a body, much like a skeleton. It is this shape de-
scription that Blum aimed to obtain. The original definition of the medial axis transform
(MAT) was formulated through the concept of a grass-fire, or wave propagation originat-
ing from the borders of an object. If the borders of an object is set alight simultaneously,
the wave-fronts of the object would at some point meet near the middle. The collection of
all these fronts would form a continuous line with branches, which would be the medial
axis - or medial loci as it also is called.

A related idea is that of skeletonization, which can be computed by iteratively thinning
the boundary until a centerline remains. In image processing this can be done by traversing
the edge of the object, removing one pixel at a time. The result is not identical to the medial
axis, however. Additionally, it has limited utility in analyzing morphology because the
number of branches and configuration of the branches in the skeleton is highly sensitive
to boundary noise (Yushkevich (2009)). The order in which the pixels are processed in
a thinning operation, also affects the end result of the skeleton - which is undesirable.
The medial axis is also susceptible to boundary noise, but methods has been developed
that mitigates this problem (Katz and Pizer (2003)). Skeletonization can be affected by
rotation and scaling, which the medial axis transform is invariant to.

25

Chapter 2. Literature Review

The idea of wave propagation has been used directly to compute the medial axis by
simulating the partial differential equation (PDE) in Equation 2.8. Here, W is the bound-
ary, and −n is the inward normal. The union of all points where the fronts meet will form
the medial axis. Another popular method involves using an Euclidean distance transform
on the interior of the object, and calculating its gradient vector field. Thresholding this
vector field yields an approximation to the medial axis.

∂W

∂t
= −n (2.8)

A third method involves calculating the Voronoi diagram for the shape. Voronoi dia-
grams has been intensively researched for other applications within computational geom-
etry. It is therefore been well developed in terms of algorithms, both in terms of speed
and geometric stability. In plain terms, it divides the plane into regions according to the
nearest-neighbor rule. This is formally stated in Equation 2.9, where d(x,y) denotes the
Euclidean distance function.

Vk(p) =
⋂

q∈S−p
{x ∈ Rn|d(x, p) ≤ d(x, q)} (2.9)

The expression to the right of the intersection operator defines a closed half plane
bounded by the perpendicular bisector of p and q. The plane separates the points closest
to q and those closest to p. The intersection of such regions gives a convex polotype, or
convex polygon in two dimensions. Calculating this for all the points gives a structure
as seen in figure 2.8. Each point on an edge is equidistant from exactly two sites, and
each vertex is equidistant from at least three points. This property causes the edges and
vertices of the individual regions to match the neighboring regions exactly, which causes
the full region to be partitioned. This partition is called the Voronoi diagram, V (S), of
the finite point-set S. Although n sites give rise to O(n2) separators, only a linear amount
contributes to an edge in V(S) (Aurenhammer (1991)). Voronoi diagrams are used for
many purposes, one of them being a discrete approximation to the medial axis.

When applied in the context of the medial axis, the focus is on the edges interior to the
border defined by the points. The union of all the discrete vertices of the interior constitutes
a discrete medial axis. As the sampling density along the boundary uniformly approaches
infinity, the discrete medial axis will converge to the continuous skeleton (Schmitt (1989)),
and thus the medial axis obtained by the grass-fire flow. Extracting the medial axis from
the Voronoi diagram involves pruning the branches that represents insignificant boundary
information.

The approach using Voronoi will be used in this thesis. The primary reason for this
is that the shape will be obtained sparsely in the form of a point cloud. If the distance
transform were to be used, this sparseness would be lost - as the distance transform would
need to be computed for the interior of the object. The Voronoi diagram is calculated
directly from discrete points sampled along the boundary, and is therefore well suited
to applications involving point clouds. The calculation of the Voronoi diagram is done
through the qhull library (Barber et al. (1996)), which is widely used for this purpose. It
runs in O(nlogv) for 2D and 3D in the worst-case given a balance condition, where n
is the number of input points and v is the number of output vertices (processed points).

26

2.3 Numerical Geometry and Shape Recognition

Figure 2.8: Example Voronoi diagram for eight discrete points in R2

The balance condition imposes restrictions on the number of new facets and partitioned
points per processed point. Should the balance condition be broken the algorithm runs
in O(nfr/r), where n is the dimension, fr maximum number of facets of r vertices, and
v still the output vertices. In summary, the algorithm is effective up to 8 dimensions if
the balanced condition is upheld. It should still be efficient at 2D, and 3D given that the
number of points is relatively small. The conditions can be evaluated statistically.

Comparing the algorithmic complexity with other approaches is difficult in general,
as other algorithms not only operates on the boundary - but also the interior. The com-
putational complexity is therefore specified in terms of interior points in addition to the
boundary points. The approach is considered algorithmically robust and efficient com-
pared to other methods, however.

A weakness in the Voronoi approach, is that it is sensitive to the sampling density along
the boundary. There are two recommended sampling strategies to mitigate this problem.
The brute-force approach is to uniformly sample the boundary densely enough to capture
the most protruding features. Another approach is to dynamically sample the boundary
based on the rate of change along the edge - so-called non-uniform sampling. A sampling
theorem exists that places a lower bound on the number of samples in relation to the
curvature (Asada and Brady (1986)). In this thesis, the uniform sampling approach will
be used, as the boundary of a salmon is relatively smooth. The gain obtained by reducing
the amount of samples using the non-uniform approach is therefore limited. The Voronoi
diagram has good properties for 2D-shapes, and can be applied directly. It faces difficulties
when moving to 3D-shapes, however. That is not an issue, as this thesis will treat 2D cross-
sections of the salmon.

There is literature which suggests that shape representation of objects using medial loci
has similarities to the cognitive processing performed by the human brain when identifying
shapes.

27

Chapter 2. Literature Review

Figure 2.9: The endpoints of lines at infinity forms a line in a 2D projective space, similar to an
horizon.

2.4 Geometric Transformations

Camera calibration in general usually deals with the problem of estimating parameters
internal to the camera which distorts the output image in some way. A good calibration
is important as it can be used to correct for these imperfections, making the image more
similar to the actual scene. This is important in a wide range of applications - rigid shape
recognition to mention one. Rigid shape recognition is often done by extracting a series
of object keypoints, which is then matched against a database of known objects by rigidly
transforming the object. If the camera distorts the keypoints, the search for a known ob-
ject would suffer. Camera calibration is a wide topic, therefore this review section will
mostly focus on theory necessary to understand the thought behind choices made and the
implementation presented later.

An image represents a projection of the world onto a two-dimensional plane. One
must therefore first decide on a coordinate representation that is valid in both spaces. The
Euclidean representation is a familiar representation that is well suited to describe lengths,
angles and shapes. It does not represent the nature of projective spaces however. Two lines
that are parallel in an Euclidean space will remain so for eternity. In a projective space, on
the other hand, parallel lines meet at infinity. The Euclidean space Rn can be extended to a
projective space Pn by utilizing homogeneous coordinates. The Euclidean representation
in the plane, (x, y)T , thus becomes (x, y, 1)T . Using homogeneous coordinates, all scalar
multiples of these coordinates are equivalent. The Euclidean representation can thus be
obtained by normalizing with respect to the z-coordinate. Points at infinity is represented
by the coordinate triple (x, y, 0)T , as normalizing this brings the Euclidean representation
to infinity. In computer vision, the projective space is just a convenient representation
of the real world. The notion of points at infinity is there as limits, not because they
actually exist. In two-dimensional projective space, the points at infinity form a line,
while in three-dimensional projective space a plane is formed at infinity. To illustrate
this, see figure 2.9, where a 2D projective space is shown. Points that meet at the same
point at infinity are defined to be parallel. The geometry of the projective plane coupled
with a certain line at infinity is known as affine geometry, and a transformation relating
this geometry to another projective space with a different line at infinity is known as an
affine transformation (Hartley and Zisserman (2003)). A projective transformation does
not preserve angles, distances and ratios of distances - but does preserve straight lines. A
straight line will remain straight after a projective transformation. The importance of this is
of course that a relationship needs to be defined between the image and world coordinates.

Normally, the process of projecting a 3D world onto a 2D image is modeled by assum-

28

2.4 Geometric Transformations

ing that all light is projected through a single point in space which then intersects a 2D
plane - which is the image plane. This model is based on a camera where a ray of light
goes through an lens, and onto a film or sensor array. Assuming that all light goes through
the center of the lens is a reasonable simplification as the lens is much smaller than the
landscape itself. The result is a projection from P3 to P2 in which a dimension is lost.
There is clearly some ambiguity in this transformation, as one cannot reduce the dimen-
sion without losing a degree of freedom. In fact, using central projection though a point
(0, 0, 0, 1), all points with different final coordinate, the homogeneous coordinate, maps
onto the same point. That is, a 3D projective coordinate (X,Y, Z, T)T maps to (X,Y, Z)T

- dropping the final coordinate. This specific mapping can be represented through a 3 x 4
matrix P =

[
I3x3|03

]
. This matrix is known as the camera matrix. Knowing the camera

matrix exactly means that any projection of a point in space can be transformed to camera
coordinates through the linear mapping (x, y, w)T = P3x4(X,Y, Z, T)T . In general, the
camera matrix can take on any value, and will vary depending on the camera parameters
and position of the camera in relation to the world frame. Knowing the full camera matrix
is clearly a powerful tool to have. The ambiguity mentioned before stems from the fact that
a 2D image cannot reflect the depth in an image. If there are two cameras, both of which
has known camera matrices, the ambiguity can be resolved however. This is precisely what
is done within stereoscopic imaging, where multiple cameras sees a scene from multiple
angles, and generates a range estimate. This is done by computing a relationship between
the two camera matrices. The camera matrix P has 11 degrees of freedom, some of which
can be specified from the cameras data-sheets.

Homographic Transformations

Although the camera matrix fully describes the projection from world coordinates to im-
age coordinates, it is not needed for all camera projections. Take the imaging of a 2D
plane in a camera, for example. Because both the source and destination are in the plane,
a mapping relating R2 to P2 is needed. This leads to a group of transformations known
as projective transformations, or homographies. These transformations are presented in
table 2.1, and will briefly be introduced. The Euclidean transformation rotates and trans-
lates, and preserves the Euclidean metric space while doing so. The notation in the table
indicates that the upper left 2x2 matrix must be a valid rotation matrix, namely an orthog-
onal matrix such thatRTR = RRT = I . The rotation and translation is also performed by
similarity transforms, but this transformation can also apply an uniform scaling to the axes.
The affine transformation is the first transformation where the upper left 2x2 sub-matrix
can vary freely. Using the new degrees of freedom, the affine transform can deform an
object. It can be considered a composite transformation consisting of a rotation, scaling,
rotation back by the same angle, and finally another rotation A = R(θ)R(−φ)DR(φ),
D = diag(λ1, λ2). This result is obtained through the singular value decomposition
(SVD) of A (Hartley and Zisserman (2003)). Compared to the similarity transform, the
affine transformation can apply individual scaling to rotated axes, as opposed to an equal
scaling applied to the original axes. This transformation preserves parallel lines, scaling
of parallel lines, ratio of areas. Finally, the transformation with the most degrees of free-
dom in this group of transformations is the projective transformation. This transformation
applies a general linear transformation and a translation. The most important invariant

29

Chapter 2. Literature Review

Table 2.1: Homographic transformations.

Group Matrix # DoF Distortion Invariant properties

Translation

1 0 tx
0 1 ty
0 0 1

 2 Length, area, orientation

Euclidean

r11 r12 tx
r21 r22 ty
0 0 1

 3 Length, area

Similarity

sr11 sr12 tx
sr21 sr22 ty

0 0 1

 4 Shape

Affine

a11 a12 tx
a21 a22 ty
0 0 1

 6 Parallelism, ratio of areas

Projective

h11 h12 h13
h21 h22 h23
h31 h32 1

 8 Collinearity

property for there purposes of this thesis is that of collinearity. The other invariant prop-
erties of the projective transformation requires more knowledge of the geometry of the
projective space than the scope of this text. Collinearity is the property that points that can
be joined by a single line, remains so under the transformation. Basically, it means that
straight lines remains straight - but not necessarily in relation to other lines.

A projective transformation between two planes can be determined uniquely from four
point correspondences,with no three collinear on either plane. This stems from the fact that
there are eight degrees of freedom, and each point correspondence has two components.

30

Chapter 3

Equipment and Acquisition

This chapter takes the reader through the equipment used, and the steps necessary to trans-
form images into a 3D point cloud. First, the general principles behind line scanning is
introduced. The equipment and its configuration is then outlined. The calibration routine
to find the transformation from pixels in the images taken by the camera to real-world co-
ordinates is then described. Lastly the on-line processing, which is executed on a graphical
processing unit (GPU), is described conceptually. The post-prosessing applied to the raw
coordinate data is covered in chapter 4.

3.1 Line Scanner Principles
An illustration a basic line-scanner is shown in Figure 3.1. A laser that emits a line,
known as a sheet of light laser, is used to project a laser-line on the contours of the object.
A camera positioned at an angle is used to take an image of the laser-line. The angle is
necessary to give the camera perspective of the elevation, and thus a change in height of
the laser is reflected in a change in the image. The camera does not need much perspective
to be effective, and an angle of about 15 degrees was deemed to be sufficient for this
project. Designing with a greater angle increases the resolution by utilizing more pixels
to represent the same height. There is always a trade off between increased resolution and
computational load, as more pixels means more data to be processed. As this is the first
iteration of this type of equipment, the goals set were conservative - as the computational
load was unknown.

Each image taken by the camera corresponds to a collection of image coordinates in
the x-y plane at a discrete position along the z-axis. Scanning an object therefore involves
taking multiple such images and merging them to form the profile along the z-axis, which
is the axis along the direction of movement. The transformation from image coordinates to
world coordinates is done through a mathematical transformation which scales, translates
and rotates the image coordinates correctly. This transformation is determined through a
calibration routine, which is covered later.

The goal in building the camera rig is not to beat the commercial systems in terms of
accuracy, but to compete on price and flexibility. Additionally, the primary application

31

Chapter 3. Equipment and Acquisition

Figure 3.1: The basic concept of a line-scanner using a sheet of light laser and camera.

Figure 3.2: Overall steps of the procedure.

area is for fast-moving objects. This places further constraints on which commercial sys-
tems can be utilized due to the required frame-rate. The resolution of the scan along the
direction of movement z is determined by the acquisition speed of the system in relation
to the rate of movement of the object. Having a relatively uniform resolution along all
dimensions are normally preferable for most applications. The goal was to obtain a better
resolution than 2 mm per pixel along all dimensions.

The desired resolution in the xy-plane can be obtained by changing camera parameters
like the resolution, angle and distance from the object. An increase in the resolution along
the z-axis is directly correlated with how fast the system can process the frames, assuming
that the frame-rate in the cameras is not the limiting factor. The resolution along the y
axis in the image plane is hard to quantify as the first moment of intensity along the cross-
section of the laser-line is utilized to obtain sub-pixel accuracy for the height profile. More
details follows under section 3.5.

3.2 The Camera Rig
The cameras used are manufactured by Point Grey Research, the model is GS3-U3-23S6C-
C. The product sheet states that this camera can run at 162 frames per second (FPS) at full
resolution (1920x1200). This FPS increases when a smaller region of interest is specified,

32

3.2 The Camera Rig

Figure 3.3: Conceptual sketch of the camera setup. Left illustration is as seen from the front, and
the right is seen from the side.

and for this project the camera hardware can output well over 1000 FPS at the image sizes
used. The camera hardware is therefore not a limiting factor in this respect. Additionally,
the type of sensor used (Sony IMX174 CMOS) has very good noise rejection properties,
even when the exposure time is set very low.

The camera rig consists of three cameras and three lasers placed to cover an object
moving on the conveyor belt from all angles. A conceptual sketch of the layout is shown in
figure 3.3. The reason for opting for three cameras is not just the theoretical full coverage
of the object, but also out of necessity. Placing a camera directly beneath the conveyor belt
would pose problems in a practical situation since substances would be more likely to hit
the camera when falling down.
Each laser is placed perpendicular to the gap in the conveyor belts, while the cameras are
placed at an angle. The cameras are not spaced exactly 120 degrees however, as salmon
are roughly elliptical perpendicular to the direction of travel. Since the top camera covers
one entire side, the bottom cameras can be closer together as long as they still manage to
capture the sides of the object. To obtain better images from the bottom side of the salmon,
the two cameras on the bottom are closer together - around 90 degrees.

In addition to the lasers, the rig is equipped with a LED strip around the gap in the
conveyor belts. The LEDs and lasers are triggered every other frame. When color images
are obtained, the LEDs are on to provide enough illumination. A photo of the rig with the
LED strip active can be seen in figure 3.4. The LEDs are turned off again when an image
is taken of the laser-line to increase the contrast of the laser against the background. This
enables the system to keep the cameras running at a much lower exposure time than what
would be possible when not turning them off and on, thus increasing the frame rate. The
exposure time used for the experiment is set at 300 µs.

33

Chapter 3. Equipment and Acquisition

Figure 3.4: Photo of the camera rig whilst scanning two mackerel for a related experiment.

3.3 Camera Triggering
Explicit camera triggering is necessary for several reasons. The first reason being that
the conveyor belt might operate at variable speeds in industrial use. This is not by itself
enough to justify the implementation for this thesis alone, as that modification could be
added at a later point. The second reason, which is more substantial, is the fact that the
separate cameras has overlapping views and overlapping laser-lines. As there is a laser
projected from the direction of each camera, depending on the size of the object, the laser
lines might have significant overlap. Herein lies the problem, as the amount of overlap
varies, and is thus hard to correct for. Properties of the laser light reflection contains
valuable information about the surface of the object, and will be used to detect wounds.
This is possible due to different scattering of light in fleshy areas. A non-uniform intensity
across the laser line complicates the analysis using these features greatly, if not makes it
impossible. The third reason is a potential decrease in accuracy of the coordinates, as a
double laser line can saturate the camera pixels in the region of overlap - thus potentially
reducing the accuracy when calculating the mid-point of the laser. The effect of this is
untested, but avoiding it completely is wise as the problem varies with laser intensity,
exposure and camera gain. Additionally, if the lines are not completely overlapped, the
center of the laser line will be shifted from its location with respect to the true laser line.

The triggering is implemented on an Arduino Uno microcontroller board, which fea-
tures an Atmel ATmega328 chip. The board has 14 digital I/O pins, each of which outputs
5 V at a maximum of 4 mA. Each camera has an optical isolated input circuit designated

34

3.3 Camera Triggering

Figure 3.5: Conceptual sketch of the triggering sequence. Not to scale.

for triggering signals. Each triggering input is connected to a separate digital output on the
Arduino. An additional three pins are connected to each laser to be able to turn them on
slightly before the triggering signal is sent, as there might be some delay in turning them
on. Two LED strips, which covers a circle around the conveyor belt, are triggered by a
single output connected to a transistor per strip. This is needed because the digital outputs
of the Arduino are not capable of supplying enough current. The LED strips are supplied
externally by a 20V DC source, with a current of about 12 mA. The lasers are powered
directly from the Arduino digital outputs.

Trigging sequence

Figure 3.5 shows a sketch of the triggering sequence. The sequence itself is quite basic,
the full code is therefore included in full in appendix B. Each sequence captures one LED
image and one laser image per camera. The frame rates mentioned below therefore needs
to be halved to get the actual frame rate of the output coordinates. The laser frames are
obtained by sequentially enabling one of the lasers and cameras, thus avoiding the issues
with overlap. After the last camera has captured its laser image, all three cameras take
color image simultaneously with the LEDs enabled. The hard part is not implementing
the sequence itself, but getting the timing right, as the cameras spend an indeterminate
amount of time transferring the images. Time fluctuations can occur due to scheduling on
the computer, as a standard Windows 8 operating system is used in place of a real-time
system. The process is however set to higher than normal priority, to mitigate this effect.
If a triggering signal is sent before the camera is ready, the camera takes a new image as
soon as it is able. This makes tuning of the timing a matter of trial and error, while looking
at the output frame rates.

The resolution used for the experiment is set at 1280x192 pixels. The height was orig-
inally intended to be smaller, but was increased due to changes to the calibration object.
The calibration object used a larger space than intended, it was increased rather than re-
designing the object itself. In a future revision, a height of 128, or even 96, is obtainable.
This is important, as the width of the conveyor belt is expected to increase when applied
industrially. With 400 frames per second, each camera uses 400·1280·192 = 98.3 MB s−1

of continuous bandwidth to transfer the images. This is more than sufficient seeing as the

35

Chapter 3. Equipment and Acquisition

USB3 bus is theoretically rated at an effective bandwidth of 500 MB s−1. A more con-
servative estimate is 450 MB s−1 due to overhead, although the peak bandwidth can be
significantly lower at times. The cameras are connected to two distinct USB3 buses, one
internal bus and one external PCIe 2.0 bus through an expansion card. Camera 1 and 3
therefore share the same bus to minimize the reduction in obtainable frame rates due to the
sequential capture. The two cameras on the same bus are additionally left idle when the
other camera is taking a laser image due to overlap. By experimentally pushing the frame
rate as high as possible, nearly 600 frames per second was obtained before dropped frames
occurred. An estimate of the required bandwidth in that instance is 600 · 1280 · 192 · 2.5 =
369 MB s−1. Using a second expansion card could potentially increase the frame-rate
further due to a higher peak bandwidth available per camera. The frame rate for the ex-
periment was still set at 400 frames per second, as that is both safely below the limit and
provides more than enough resolution along the z-axis. At a reasonable speed for the con-
veyor belt in the lab, the resolution along the z-axis was measured to be 0.953 mm with
400 FPS, which is more than sufficient.

Image Embedding

As mentioned, every other frame received by the computer is a LED and laser frame. To
determine which is which, one has several options. The naive approach is to determine
what the first frame is by using the average intensity, and then assume that the frames
appear in alternating order. The reason for this being naive is that it is possible that a
frame is missed at some point, due to noise or other errors. Checking the intensity of every
frame introduces unnecessary computations and is not an option. The camera model used
supports embedding certain information, like timestamps, into the first bytes of the image.
It also has a few general purpose inputs in addition to the triggering input. The state of this
input can therefore be embedded into the into the image data. By connecting the power
signal of the lasers to the cameras in addition to the lasers themselves, the on/off status of
the laser is directly embedded in the image. This binary flag can then be extracted from
the image. After this state has been read, the bytes are set to zero to avoid interfering with
further processing.

3.4 Calibration Routine

To relate the extracted laser-line image coordinates to world coordinates, the cameras must
be calibrated. General calibration routines for 3D geometry normally utilize a plane with
a checkered pattern or similar, which is imaged multiple times - often at different angles
by rotating the object. This yields enough information to not only estimate the internal
parameters of the camera (intrinsic parameters) and parameters of camera position in re-
lation to the world frame (extrinsic parameters). Radial distortion is an effect that occurs
due to optics, which causes straight lines to be increasingly bent out of shape towards the
sides of the image. This effect will not be considered in this thesis, but can be added to
the developed routine in further work. The lenses utilized in this thesis has been found to
have little radial distortion, and the center of the image is utilized - minimizing this effect.

36

3.4 Calibration Routine

The calibration routine has been developed under the following simplifying assump-
tions. The world coordinate XY -plane is chosen to be perpendicular to the direction of
travel along the conveyor belt. The laser light is assumed to be projected along this line
onto the object in question. The laser-line in world coordinates therefore does not utilize
the third dimension along the Z-axis, which is described only by the traveled distance in
between two captured frames. The world coordinate plane can therefore be assumed to
not use three dimensions, but only two. This simplifies the calibration greatly, as one can
look for a transformation relating 2D points to 2D points. That is, we are looking for
a transformation that expresses the relationship from image coordinates to world coordi-
nates, Xw = HXc. To solve for the transformation matrix, H, one must know points in
both the world frame and image frame. This is where a calibration object comes in.

The calibration object, seen in figure 3.6, is used to relate the world coordinates to
image coordinates. The laser light is projected on to the jagged edges of the object. This
is then perceived by the camera, which can be used to extract the corresponding points
in the image plane. The peaks and bottoms of the spikes are used as coordinates. The
position of these extremities has been done quite robustly in the image plane by dividing
the image into sections with straight laser lines, which is then fitted to a line using least
squares regression. The intersect points of these lines are then found, which is used as the
corresponding point in the image plane to the known coordinate in the world plane. This
also gives the additional benefit of sub-pixel accuracy, as the intersect point is calculated
as a floating point number instead of an integer pixel location. An image taken of the
laser-line on the calibration object can be seen in figure 3.8, which has been inverted and
re-colored to remove the blackness of the background. Originally, the intent was to use the
stair-formed shape on the underside of the object for calibration of the bottom cameras.
During the early work on this thesis, it became clear that the short edges was too short for
the interpolation routine to yield good results. Since it was established that the top of the
calibration object worked quite well to calibrate the top camera, a stand was 3D-printed so
that the calibration object could be flipped upside-down towards the camera in question.
This stand can be seen in figure 3.7, along with the calibration object in the position used
to calibrate the lower left camera.

Another important aspect of designing the calibration object, is that collinearity is pre-
served through an projective transformation. This means, that to provide new information
between the world and camera frames - no more than two points should be collinear. This
is yet another reason the bottom stair-shape of the calibration object would not work well
to determine the projective transformation, as the points are relatively collinear. The top
side of the calibration object, has been designed with this in mind however.

The transformation that needs to be found is a projective transformation with 8 degrees
of freedom. An affine transformation, where h31 and hh32 is set to zero could also be used.
An affine transformation preserves parallelism however, and can therefore not be used to
describe the pinhole projection in a pinhole camera model. We need projective geometry
to represent such transformations. Another way to look at this is that an affine transfor-
mation preserves the ratio of areas throughout the image. Thinking of this intuitively, the
affine transformation will not be able to correctly transform the these areas from the cam-
era view to the world coordinates. This is due to the perspective of the camera. Areas
closer to the camera will for this reason appear larger than those further away. Apply-

37

Chapter 3. Equipment and Acquisition

Figure 3.6: The calibration object designed to calibrate all three cameras.

Figure 3.7: The stand used to calibrate the bottom cameras. The stand includes holes for all cameras,
to improve on misaligment issues that would occur by simply placing the calibration object manually.

Figure 3.8: An laser image taken of the calibration object as seen when calibrating the top camera.
The image has been inverted to avoid the black background.

38

3.4 Calibration Routine

ing an affine transformation to these areas will scale the areas by an equal amount thus
preserving the perceived difference in size. As the name indicates, the projective transfor-
mation is not afflicted by this, and must be used. During the prototyping stage, the affine
transformation was tested, and was able to obtain decent results from the top camera. The
two bottom cameras, which are placed at an angle, yielded worse results as expected due
to the increased perspective (or depth) in the image.

H =

h11 h12 h13
h21 h22 h23
h31 h32 1

The calibration object yields 7 point correspondences, which in turn yields 14 unique

variables since each point has an X and Y coordinate. Since we are solving for 8 vari-
ables in the transformation matrix, the problem is overdetermined. One must therefore use
methods in numerical optimization to find the transformation that minimizes the point cor-
respondences over a chosen metric. The algorithms of the numerical optimization routine
will be presented. It has two main steps. First, a linear system of equations is solved for
an initial transformation matrix. This matrix is then used as an initialization in a nonlinear
solver that further reduces the error by minimizing a cost function.

3.4.1 Direct Linear Transformation (DLT)

Assuming that we have exactly four points, the transformation matrix H can be solved
for exactly by the following linear procedure, known as the direct linear transformation.
First, the matrix H is written as a vector by specifying its row vectors as hj . Note that
i denotes the point correspondence, while c and w denotes the camera and world coordi-
nates, respectively. Xc,i denotes the full vector for point number i, while its individual
components is written as (xc,i, yc,i, wc,i)

T .

HXc =

hT1 Xc, i
hT2 Xc, i
hT3 Xc, i

Writing the cross product of the world coordinates Xw,i = (xw,i, yw,i, ww,i)

T and the
vector-notation above gives.

Xw ×HXc,i =

yw,ihT3 Xc,i − ww,ihT2 Xc,i

ww,ih
T
1 Xc,i − xw,ihT3 Xc,i

xw,ih
T
2 Xc,i − yw,ihT1 Xc,i

 = 0

This cross-product is clearly equal to zero as they are linearly dependent, and can be
set equal to zero. This expression can now be rewritten as below, by considering that
hTj Xc,i = XT

c,ihj . 0T −ww,iXT
c,i yw,iX

T
c,i

ww,iX
T
c,i 0T −xw,iXT

c,i

−yw,iXT
c,i xw,iX

T
c,i 0T

h1

h2

h3

 = 0. (3.1)

39

Chapter 3. Equipment and Acquisition

This final expression has the form Aih = 0 where each submatrix of Ai is equal to the
3 x 9 matrix above when Xc,i is expanded. The sub-matrices hj is also expanded to form
a vector with 9 elements, one for each element in the transformation matrix. This matrix
is linear in the elements of H, and can thus be solved using linear algebra. In reality, the
final row of equation 3.1 is not linearly independent, and is removed as it does not provide
any new information. Each point correspondence therefore gives an 2x9 matrix. Using
the concatenated set of equations from four points, this can be solved explicitly as an 8x9
linear system. The problem at hand is however, overdetermined. Although given no noise,
this could still be solved explicitly.

The overdetermined DLT problem is normally solved by minimizing the norm ‖Ah‖,
subject to the constraint ‖h‖ = 1. The solution to this has been found to be the unit
eigenvector of ATA with the smallest eigenvalue. This can be found directly from the
singular value decomposition (SVD) of A (A = UDVT), by selecting the column of V
that corresponds to the smallest singular value. The elements of that column can then be
rearranged to form the eight elements of the transformation matrix H. DLT minimizes
the algebraic error, which may not be the optimal solution with respect to geometric error.
DLT can be computed quickly due to the linear algebra and gives fairly good results, and is
for that reason often used as a initial step before improving the geometric distance through
nonlinear optimization.

Normalization

Before moving on to the next step in the calibration routine, normalization must be dis-
cussed. Algorithms that minimize geometric errors, are invariant to scaling which can be
represented through similarity transforms. The DLT algorithm, which bases itself on al-
gebraic minimization, is not. Therefore, before solving the system of equations in 3.1, a
normalizing transformation must be applied to the set of coordinates. After the transfor-
mation matrix H has been computed, it must be de-normalized to return to the original
space. The procedure below is applied to the world coordinates and image coordinates
individually, apart from DLT itself.

1. Translate coordinates so that the centroid (mean) is at the origin.

2. Scale points so that the average distance from the origin is
√

2.

3. Scale coordinates individually using the similarity transform obtained from the two
previous steps T = TscaleTtranslate

4. Calculate DLT

5. De-normalize H by calculating H = T−1w (HTc), where Tw and Tc is the similar-
ity transformation from before for world and camera coordinates, respectively.

3.4.2 Non-linear Optimization
Using the result from DLT as an initial starting point, a non-linear solver can be applied to
improve the result by minimizing some geometric error cost. In this thesis, we are strictly

40

3.4 Calibration Routine

interested in the transformation from image coordinates to world coordinates. The natu-
ral choice is to minimize the one-directional transformation error cost

∑
i

d(Xw,i, X̂w,i)
2.

Where d is the Euclidean distance norm and X̂w,i are the coordinates obtained through the
projective transformation below.

X̂′w,i = HXc,i

Which is then projected onto a 2D-plane by normalizing with respect to w-element.

X̂w,i =

x′w,i/w
′
w,i

y′w,i/w
′
w,i

1

 (3.2)

The one-directional cost is minimized by computing the world coordinates as above
using the Levenberg-Marquardt algorithm, which is an iterative non-linear solver for min-
imizimization of a sum of squares. It utilizes a combination of the Gauss-Newton method
and steepest descent. Any non-linear solver should be able to minimize the problem how-
ever, provided that DLT provides an adequate starting-point.

3.4.3 Misalignment Correction
As mentioned previously, the original intent was to calibrate the bottom cameras using the
bottom of the calibration object. Part of the idea with this approach was that the top and
one bottom camera could be calibrated simultaneously, thus reducing the misalignment.
Possibly also using the top camera calibration twice to relate the calibration of the two
bottom cameras. Unfortunately, this was not possible as the approach was scrapped. In-
stead, a routine was developed where a circular object is imaged in the laser after the initial
calibration. The coordinates from each camera individually, can then be fitted to a circle.
The center of the two bottom circles is then translated to the centroid of the circle fitted
to the top camera. The assumption here, is that the top camera has the most correct cal-
ibration, due to having the least perspective distortion. The amount of misalignment was
found to be minor however, as the coordinates mapped quite well to the same coordinate
system. An image of this procedure can be seen in figure 3.9. Note that this example has
slightly worse misalignment on one of the cameras than what is typical, but it illustrates
the procedure better than almost perfectly overlapping points. Typically, the misalignment
between the bottom cameras and the top camera is in the range of 0.01-0.05 centimeters.
Since the calibration routine involves moving the calibration object to a new position in
the stand, errors can easily be introduced if not careful. This is one of the drawbacks of
the current calibration routine. This can be improved on by having a fixed stand, instead
of the portable stand used for laboratory tests.

3.4.4 Speed Calibration
For this thesis, a conveyor belt of constant speed was used. The speed of the conveyor
belt was calibrated by scanning an object of known length. That length was divided by
the number of frames taken of the object to obtain the spacing between each frame. The

41

Chapter 3. Equipment and Acquisition

Figure 3.9: The misalignment correction is performed by fitting each camera to a circle and trans-
lating to match. Note that the misalignment of the right camera (in green) is worse than typical. The
axes are specified in centimeters.

calculated value was found to be 0.0953 mm between each frame. Industrially, this will be
replaced by a rotary encoder which passes the speed or distance traveled to the triggering
system, to ensure that the frames is taken at equal distance should the conveyor belt speed
vary. While the speed of the conveyor belt is supposed to run at a constant speed, it
was stopped and started between each scan - and might have a transient starting phase.
Additionally, the band might slip if the motors accelerate to quickly. The salmon was put
as far back on the conveyor belt as possible to attempt to mitigate this. If there is an effect
of this, it has not been large enough to be visible.

3.5 Parallel Image Processing
The resolution along the z-axis is directly linked to how fast the system can capture and
process the images from all three cameras. In controlled experiments, the speed of the
conveyor belt can be set lower to adjust the resolution as needed without changing acqui-
sition speed. The results of this project is very much intended to be put into practice on a
real processing line, where this is not an option. Parts of this project might also be re-used
for imaging of falling objects. In an effort to press the resolution as high as possible for
objects at high speeds, the parallel processing power of a graphical processing unit (GPU)
has been utilized. Not only would a CPU not be sufficient, even with all CPU cores work-
ing in parallel, it would also steal processing power from other tasks - like analysis of the
data.

Programming for a GPU requires a slightly different mindset than that of conventional
code. This section will introduce the reader to some concepts within GPU-programming.
The code will not be detailed in depth, but all the steps will be explained conceptually.
The implementation itself has been written using C++ AMP, which is a fairly high-level

42

3.5 Parallel Image Processing

Figure 3.10: Illustration of Bayer pattern (RG) in the sensor array of a camera (adapted from
Wikipedia (2006)).

GPU interface.

3.5.1 Bayer Filtering

When the work on this thesis started, some GPU code was already implemented by the au-
thor and a colleague (Andreas Ulvøen). It took monochrome (greyscale) images from the
camera, extracted a laser-line and transformed the image coordinates to world coordinates.
To enable the extraction of color images in addition to laser images, the monochrome
mode could not be used. Switching between the two modes every other frame would not
be feasible. Color images in cameras are normally captured using an array sensors, where
different sensors capture each of the color planes. This can be done by using the same
light-sensitive sensor, and filtering out the unwanted colors for each sensors. In RGB cam-
eras, green is normally overrepresented to mimic the physiology of the human retina -
which is more sensitive to green light. There are many arrangements of these color pixels
possible. A common arrangement is the Bayer filter - seen in figure 3.10.

To obtain color images in full resolution, various forms of interpolation can be used
to calculate the color values not obtained by that sensor. Cameras normally support this
operation in hardware on the camera itself using field-programmable gate arrays (FPGA).
This is convenient, as it frees the computer from performing the operation. Unfortunately,
this mode requires three times as much bandwidth due to the three color planes present at
each pixel. The result of an increase in the image size results in a reduction of attainable
frame rate, as the bus shared by the two cameras were already pushing the limit. For this
reason, a raw mode was instead used - where the intensity of each sensor is transferred.
This results in additional work for the computer, but can be accelerated by a GPU to make
this negligible.

As mentioned, to obtain a color image in full resolution - interpolation must be per-

43

Chapter 3. Equipment and Acquisition

Figure 3.11: The bilinear interpolation pattern used. Two-way interpolation is used on the red grid,
and four-way (bilinear) interpolation is used in the cross-section.

formed. This is known as debayering or demosaicing. The simplest, and fastest, method
is the nearest-neighbor method - which sets the missing color planes equal to an adjacent
pixel. While this could produce acceptable results, it would mean that every other red
or green column is an copy of the one before it (or interleaved from two columns). The
laser-line dominates the red spectrum, and could therefore be affected by this in terms
of accuracy. The next method on the complexity-ladder is interpolation, which is greatly
simplified when applied to elements of a rectangular equidistant grid, because the average
can be used in place of a weighted interpolation. The interpolation pattern used for the
red spectrum can be seen in figure 3.11. The pixels that fall on the rectangular grid of
the red pixels, are simply interpolated from the two closest neighbors. The pixels in the
cross-sections are calculated using four-way bilinear interpolation. The bottom row and
rightmost column are set using nearest-neighbor. More advanced methods available that
uses gradients, splines and bi-cubic interpolation to preserve more smoothness or finer de-
tails in an image. For this application the bilinear interpolation is sufficient however, as the
more advanced methods for the most part only improve the image in terms of aesthetics.

The laser frames are sent to the GPU to calculate the coordinates, among other things.
For this reason debayering of the red color plane is implemented on the GPU. This both
offloads much calculations from the CPU, and reduces the amount of data needed to be
transfered to the GPU. The color images are debayered on the CPU, which will be justified
in section 3.5.5.

3.5.2 Coordinate Extraction
Once the red spectrum of the images has been debayered, the extraction of the laser-line
can commence. The rotation of the cameras about their axis has been done so that the
laser-line is as horizontal as possible in the images, that is - perpendicular to the direc-
tion of travel. The extraction of the laser-line coordinates for this reason performed on a
per-column basis in the image. Doing this not only makes sense because of the aligned
laser-line, but also provides an excellent divisible unit on which the GPU can operate in
parallel. A single thread iterates over all the pixels in a column. It then calculates the

44

3.5 Parallel Image Processing

weighted average for the intensities and the pixel positions, ignoring any pixels below a
certain threshold. The threshold is necessary to remove background noise, and some of the
unwanted reflections. In this thesis, a threshold of 14 was utilized (where the maximum
value is 255). Adjusting this would however depend on the camera sensor noise and the
gain applied by the camera to the raw sensor values. In addition to this per-pixel threshold,
a column is required to have at least a certain pixels over the threshold to be used in a
coordinate calculation. This is done to avoid calculating a coordinate if a single pixel is
above the threshold. The multiplier is set at 5 in this thesis. The weighted average on the
pixels above the threshold is calculated according to equation 3.3, wherewi is the intensity
of a pixel and yi is the index.

x̄ =

∑n
i=1 wiyi∑n
i=1 wi

(3.3)

The result is the mean of the pixel indices, weighted by its intensity. This is then
used as the y-coordinate in the image plane. The x-coordinate is chosen as the index of
the column. Note that this yields a sub-pixel accuracy for the y-coordinate, unless all
of the intensity pixels are saturated. Now that an X and Y coordinate has been obtained
for the image plane, they can be transformed to world coordinates through the projective
transformation matrix found in the calibration, Xw = HXc. This matrix product, along
with the division required to normalize with respect to the last element is performed to
obtain the coordinates.

3.5.3 Reflectance Properties

The spatial coordinates have now been extracted from the laser image. There is, however,
more information contained in the raw image. How the laser light reflects or scatters when
it hits the surface, can provide valuable insight into the reflective qualities of the surface.
Three descriptors has been extracted per column which each convey some aspect of the
reflective properties.

1. Offset: The raw intensity value in the image a specified number of pixels from the
weighted mean. This provides information of how strong the laser light is on the
side of the actual peak of intensity.

2. Total: The sum of all pixel intensities above the threshold.

3. Beamwidths: The width returned is the smallest intensity width possible, in which
a user-specified percentage of the total intensity lie within. This yields a measure of
how centered the laser beam is at its region of highest intensity. Much of the same
information as the offset intensity is obtained from this, but more robustly.

These properties can be used in the detection of wounds, as the reflective properties
of the surface changes in the presence of a wound, open or not. Basically, any lack of the
regular scaled surface will yield a different scattering of light. More discussion regarding
these properties follow in the section about wound detection.

45

Chapter 3. Equipment and Acquisition

3.5.4 GPU Code Optimization

In GPU code, there are certain aspects that affect the performance of the program more
than on their CPU counterparts. To write an effective GPU program, these must be con-
sidered. While the implementation details is not specifically covered in this thesis, these
aspects has been considered thoroughly to minimize the computational requirements of
the GPU processing.

Global Memory Access

A GPU has multiple memory layers. The top layer is the global memory layer, which is
typically large - but the slowest to read and write to and from. One of the primary causes
of performance degradation in GPU code is poorly planned global memory access. If a
piece of data is needed once throughout the calculations, one cannot optimize the memory
access. If the very same element is used multiple times, however, one can cache the value
in a faster, more local, memory to avoid reading the same value from the slowest memory.
Reading local memory can be read in as little as four clock cycles, while a global memory
access can take as much as 400-600 cycles (Miller and Gregory (2012)). When this occurs
often, it starts to add up. Within the group of local memory, there is a type of memory
named shared memory. This is a type of memory which can be shared across threads.
This has specifically been utilized in the debayer implementation, where each red pixel is
read eight times during the interpolation of its neighboring pixels, and once for the pixel
location. The size of the shared memory is of course limited, and the image is therefore
divided into units of threads, called tiles, which cooperate on a certain region of the image
at a given time.

Coalesced Memory Access

In addition to reducing the total number of global memory accesses, one must also consider
if the reads or writes are coalesced or not. Reads from memory is typically performed in
blocks or chucks of a size determined by the architecture, a coalesced read is a read where
consecutive elements are read simultaneously. This is familiar to those proficient in pro-
gramming CPUs, as one typically tries to read an array row-wise because it is stored that
way in memory. The same consideration is necessary on the GPU, but becomes slightly
more involved when multiple threads reads memory. A specific example from this is the
column-wise division of the processing when extracting the laser line coordinates. One
might think that since each thread reads elements from a column, this principle is vio-
lated. It turns out, that this is actually not the case, because multiple threads are executing
the code simultaneously. The threads iterate through the code in a synchronized manner.
When a thread reads a pixel in its column, so does the neighboring threads. The compiler
is smart enough to realize that these reads are being done from the same region in memory,
and utilizes the same read for multiple threads. Iterating column-wise is therefore the op-
timal pattern for this case. Of course, this assumes that the indexing is performed equally
for each thread.

46

3.5 Parallel Image Processing

Divergent Code

To continue from the last point, there is another aspect that is important. GPUs are dif-
ferent from CPUs in the way they handle instructions. Conditional statements, like the
if sentence, introduces branching in the instructions. A GPU typically executes the same
instruction across on multiple data (SIMD), as the hardware is optimized for this pattern.
Specifically, the logic that handles instructions are typically shared across a certain num-
ber of threads. This means that if one thread branches, all other treads sharing the same
instruction unit must wait for the instructions in that branch to complete before continuing.
Reducing the use of divergent code means that less threads are left idle.

Performance

By using the raw images from a salmon obtained in the experiment, the performance of
the GPU library can be stated by running the frames through as fast as possible. Using
a salmon consisting of 848 frames, from three cameras, the processing time took 0.76 s
including transfer to and from the GPU. By extrapolating from this result, the library
should be capable of well above 1000 frames per second from each camera, which is
just the frames containing coordinates. The cameras must run at double that to output
coordinates at that rate. By analyzing the GPU workload, it can be concluded that most of
the time is spent transferring data over the PCI-e bus. The images are sent to the GPU in
batches of 16 frames from each camera. One such batch takes 6.6 ms on average. Of this
time, only 0.2 ms was spent processing. The rest of the time was spent on data transfer and
overhead. This means that more advanced computations can be put on the GPU without
affecting performance much, as long as the amount of data does not increase. The above
timings was obtained on a NVIDIA GTX 970 graphics card. The graphics card on the
camera rig is AMD R295x2, which should have better performance.

3.5.5 Color Images

Every other frame taken is one where the laser is turned off, and the LED strips surround-
ing the conveyor belt is turned on. This is referred to the color image. The laser-frames
are also color images, but since the ambient light is turned off - only the laser-light ap-
pears in relative darkness. The problem at hand is to somehow extract the color of the
salmon and imbue the spatial information with color information. A method where the
spatial information and color is not linked, is by simply taking one row from each color
frame and concatenate them to form the full image. Unfortunately, this means that the
perspective of the camera is preserved. While not problematic from the top camera, the
bottom cameras will have a skewed perspective. This becomes problematic for the image
processing related to wound detection. Due to the overlap between the bottom cameras,
it becomes hard to draw a line between the cameras to avoid processing the same region
twice. Additionally, the perspective causes the areas far away to become smaller. Instead
of doing the simple merging of images, one instead can assume that the closest pixel to the
weighted center of the laser-line does not change much from the laser-frame to the color-
frame. By picking out the same pixel in the color frame, one has the approximate color of
the spatial coordinate found in the previous frame. One can even compensate for the shift

47

Chapter 3. Equipment and Acquisition

from the laser-frame to the color-frame by interpolating between two laser-frames. This
has not been done in this thesis, as the frame-rate is quite high in relation to the speed of
the conveyor-belt, which minimizes this effect. If the coordinates become more sparse,
this might become necessary.

When picking out the corresponding pixel in the next color frame, there is still the
issue of debayer filtering to be resolved. This frame is naturally also in the raw format,
except now all three colors are needed instead of just red. At this stage, one could either
bayer-filter the entire color image, for example by utilizing the GPU again. Debayering
the full color image on the CPU would not yield the desired performance. What was done
instead, was to debayer on the CPU - but only the specific pixels needed. Since the GPU
processes the image column-wise, and the image has dimensions 1280x192, one only need
to debayer 1280 pixels. This is a massive reduction. The performance by doing this on the
CPU was more than acceptable, and avoids having to transfer the color images to the GPU
in addition to the laser images. The bulk of the time the GPU spends is on the data transfer.
This is therefore a good alternative. The debayering of specific pixels was implemented
by a colleague at SINTEF (Andreas Ulvøen).

3.6 Polarization Filter
A linear polarization filter is an optical component often used in photography to reduce
unwanted reflections of a certain type. Light can be regarded as a flow of photons, or
an electromagnetic wave. The waveform oscillates in an arbitrary direction perpendicu-
lar to the direction of travel. A polarization filter is placed in front of the camera lens,
and only allows the waves traveling in the same direction as the polarization direction to
pass through unaltered. All other waves will be attenuated by a factor of cos(θ), where
θ is the angle between the wave direction and the polarization direction. In an evenly il-
luminated space, the net result is a reduction of light by half. Rotating the filter adjusts
the polarization direction, which can be used to determine which reflections to remove.
The polarization filter on the lens is thus rotated so as to have a polarization direction
perpendicular to the polarization direction of the laser beam. This almost removes the
specular reflections - which for example occurs on wet, shiny or metallic surfaces. Only
light that has actually entered the surface, and thereby been diffused and depolarized, is
thus imaged. The effect of utilizing a polarization filter is a reduced dynamic range, but
more robustness with respect to wet and shiny surfaces. One can therefore focus on the
interesting illumination, e.g direct or scattered laser light.

The wet scales of Atlantic salmon polarizes reflected light. A polarization filter can
therefore be utilized to reduce the glare, which is caused by reflections aimed directly at
the camera lens. This is similar to the effect photographers experience while taking images
of water, or the skies. By orienting the filter perpendicular to the laser-line, much of the
direct reflections can be reduced. Initially, the camera rig was outfitted with a polarization
filter. Later in the project, it was decided that the experiment should proceed without such
filtering. The reason for this can be plainly seen in figure 3.12, where large parts of the
backside of the salmon is missing. This is due to the different reflective properties on the
backside, where there are no scales and a darker color. This effect can be mitigated slightly
by reducing the threshold utilized when calculating the weighted mean of the laser-line.

48

3.6 Polarization Filter

Figure 3.12 has the lowest threshold possible before background noise increases rapidly,
however.

The decision was therefore made to remove the polarization filters, and accept an in-
crease in noise levels and glare. The primary focus of this thesis is the analysis of the
shape features, and losing parts of the curvature of the back could potentially reduce the
effectiveness of the algorithms developed. One could of course assume that the curvature
approximately follows a circle or ellipse, but it is better to obtain true data instead of ex-
trapolating. Figure 3.13 displays a raw scan of the salmon denoted as fish16 in the dataset,
taken without a polarization filter. The patches that was previously void of coordinates,
is now filled. The increased noise levels is plainly visible around sharp edges, however.
The reason for this is that the camera to a larger degree captures light reflected off the fins
and the edge of the abdominal cut. In addition to the noise around the edges there is also
increased noise along the side of the salmon facing the top camera. The top camera has a
more direct orientation towards the scales of the salmon, and is thus more susceptible to
glare. This can be seen by tracing the middle image along the left edge, where the surface
appears to be wavy when the curvature should be smooth. Fortunately the noise does not
affect the entire top side, due to the lateral curvature. This noise can therefore be handled
in software with relative ease. The two bottom cameras are not affected by the glare effect
since they are positioned at an angle, when the most reflective scales are on the sides. A
possible future remedy for the glare effect is to add another camera and capture the upper
side similar to the bottom configuration, or increase the strength of the laser. In an in-
dustrial version of the scanner, it is suggested to have the polarization filter perpendicular
to the laser and a polarization filter on each lens, as originally intended, and to use more
powerful lasers so as to ensure a strongly observable laser line.

It should be noted that some of what appears to be noise behind the anal fin (hind ab-
dominal fin) of fish16 is due to innards captured while hanging down between the conveyor
belts.

49

Chapter 3. Equipment and Acquisition

Figure 3.12: A scan obtained of a salmon using a polarization filter. The lighter areas on the back
indicate missing coordinates (the points from the bottom are seen through the gaps).

50

3.6 Polarization Filter

Figure 3.13: An image of Fish16 in the data set, obtained without a polarization filter. Increased
noise is present around fins and sharp edges due to reflections of laser light. Left: Side view, Middle:
back view, Right: tilted abdominal view

51

Chapter 3. Equipment and Acquisition

52

Chapter 4

Experiments and Feature
Extraction

This chapter outlines the execution of the experiment and the treatment of the data ob-
tained. The data must be treated to extract features which can be used to separate the
classes. The goal here is to keep as much of the features that distinguishes the classes
as possible, while rejecting irrelevant data. A challenge in all machine learning tasks is
to find those features that best separate the samples. First, how the features are extracted
will be outlined and justified from previous work and practical considerations. After this,
the raw features are analyzed, which provides insight that can be used when deciding on
the type of classifier and its configuration. Some of the algorithms and features presented
here, are performed per frame. That is, a single slice in the XY-plane. The terms slice and
frame are used interchangeably to describe whenever this is done.

Note that all the salmon from the data set is available to be viewed online. The web
page features both still images and an interactive point cloud 3D-viewer. These point
clouds have a reduced density compared to the full point cloud (roughly 80% of the points).
The QR code in figure 4.1 can be used, or the URL in the caption. Additionally, a list of
all the salmon and their numbering with comments can be found in appendix A.

53

Chapter 4. Experiments and Feature Extraction

Figure 4.1: QR code pointing to the scan data located at http://ntnu-msc-oystestu.
s3-website-eu-west-1.amazonaws.com/.

4.1 Quality Grading

We will briefly re-iterate some aspects of the quality-degrading cases from the introduc-
tion, with salmon from the actual dataset. It should be noted that not all of the salmon from
the dataset have been useful with the goals of this thesis in mind. Some were damaged in
the gutting process itself, which was not considered in the design of the features. While
bad gutting technically can be detected by computer vision, the number of samples is low
and variability of the type of bad gutting large - causing that aspect to be put aside in this
thesis. Others contained melanin-spots in the fillets - which cannot be detected by external
vision, as one need to look inside the gutted portion of the salmon to see them. The focus
of this thesis has been externally observable deformities and wounds.

There are 45 salmon of the type superior, which serves as a base of comparison. These
are relatively free of deformities and completely free of wounds. From the ordinary class,
15 salmon contains deformities. The production class contains 10 salmon with deformi-
ties. In total, 15 salmon in the dataset contained wounds, all of them in the class pro-
duction. Fashioning wounds by cutting a wound-free salmon was attempted, but does not
work, as the appearance of the wounds changes due to long exposure with water, bacteria
and healing. The appearance of the wounds are dark, as opposed to the flesh - which is
light pink or red. Sometimes the wounds appear dark green, sometimes dark red.

4.1.1 Humpback

One of the most visually recognizable form of deformity, is that of the humpback. This
occurs when the vertebra of the spine fuses together in a curved shape with a greater
roundness than normal. Although the humpback itself is one deformity, it is really its
affect on the symmetry of the salmon that causes it to be downgraded. This is also a safe
assumption with regards to healthy salmon, as they are streamlined to reduce resistance in
water. In captivity, there is no natural selection that singles out the salmon with bad backs,
so to speak. Figure 4.2 contains a direct comparison of one of the superior salmon, and

54

http://ntnu-msc-oystestu.s3-website-eu-west-1.amazonaws.com/
http://ntnu-msc-oystestu.s3-website-eu-west-1.amazonaws.com/

4.1 Quality Grading

two salmon from the dataset. A is a streamlined, well shaped salmon. B is one of the most
obvious cases of humpback in the dataset. C is another salmon with humpback, to show
that not all salmon with humpback in the dataset are close to the extreme of salmon 32. In
reality, the humpback deformity can be quite subtle, and not necessarily exclusive to the
front of the salmon. This is one of the aspects that makes the classification challenging.

Figure 4.2: Comparison of three salmon from the dataset. A: Salmon 5 with no deformities, B:
salmon 32 with forward humpback, C: salmon 94 with a less protruding hump (further back)

4.1.2 Wounds

Wounds in salmon can appear in all sizes, and primarily occurs on the sides. When the
salmon is processed, the wounds can be healed - but still causes a downgrading of the
quality due to the scarring. The wounds themselves can start out as small scratches, which
are then infested by bacteria, causing the wounds to expand. In waters of high salinity,
such as seawater, the bacteria Moritella viscosa is found to be the largest cause of these
wounds. The outbreak of that type of bacteria often occur during periods of cold water,
and is for that reason called winter wounds or winter ulcers. The salmon can recover from
these wounds as the water gets warmer, but the scarring remains.

The salmon with wounds in this thesis was obtained 10th of June, and therefore con-
sists of these type of healed wounds, not open wounds that are still infested. For that
reason, the work in this thesis on the detection of wounds should be revised in time using a
dataset consisting of both types of salmon. One can also devise a classifier which changes
depending on the time of year to account for the type of wounds most common. There
will naturally be a gradual shift in appearance depending on the temperature, which can
be accounted for. The wounds present in this thesis can be seen in figure 4.3.

55

Chapter 4. Experiments and Feature Extraction

Figure 4.3: All the wounds present in the dataset.

4.2 Point Cloud Post-Processing
This section details the post-processing performed on the point cloud. The first step in
any application utilizing point clouds is to reduce the effects of noise. In this thesis there
are two distinct types of noise. Statistical noise which materializes as isolated outliers,
and systematic noise - which occurs as a side effect of unwanted light. Statistical noise
can for example occur due to random anomalies in the camera sensors. This type of noise
typically affects each pixel independently. Since the extraction of the centerline of the
laser is performed by calculating the first moment, the effect of this is greatly reduced.
The threshold applied to each pixel keeps the average background noise at bay. While
the threshold multiplier, which enforces the requirement of a certain number of pixels
above the threshold, mitigates some of the effect of outliers. These two factors reduce the
statistical noise pertaining to the optics to an unnoticeable level. This leaves the effect of
systematic noise due to unwanted reflections. Additionally, actual physical characteristics
of the salmon might be unwanted in the point cloud for further analysis. As the salmon
scanned are already gutted, innards has the tendency to occasionally hang down from the
side of the salmon. The innards typically flaps about relative to the direction of movement,
causing a larger spatial impact on the point cloud than its size.

4.2.1 Statistical Outlier Removal

The first step used to filter unwanted noise is a statistical outlier filter. The basic premise
of the filter is quite simple. For each point in the dataset, the filter computes the mean
distance from that point to its K nearest neighbors - which is stored. The collection of the
mean distances for all the points is then assumed to follow a Gaussian distribution. The
mean and standard deviation for the collection of mean distances is then computed. All
points which lie outside a specified standard deviation multiplier is considered outliers,
and is removed.

56

4.2 Point Cloud Post-Processing

Figure 4.4: Histogram of 25 nearest neighbor means for fish16 in the data set

Figure 4.4 contains a histogram of the mean nearest neighbor distances forK = 25 for
a salmon in the dataset. Generally, it seems that the assumption of a normal distribution
is not far fetched. The selection of the K parameter is a matter of tweaking the number of
neighbors in relation to the density of points across the surface. It adjusts in a sense the
density required in a local feature for it to become permanent. A high K-value increases
the smoothness of the filter, but does increase the computational complexity. Higher values
of K does not necessarily produce better results, as the difference in density between
the actual surface and outliers is large. For the standard deviation threshold, an value
of 2.5 was selected, as values lower than 2 caused areas of lower density (on the back) to
disappear. Figure 4.5 displays the same salmon as in figure 3.13, after it has been processed
by the statistical outlier filter. The end result is a salmon where the spray of coordinates
surrounding the edges is almost completely removed, and the coordinates around the back
is preserved as opposed to the polarization filter.

The implementation of the statistical outlier filter used is from the point cloud library
(Rusu and Cousins (2011)), which is an open source initiative for large scale point cloud
processing. While the basic concept of this filter is easy to implement, the PCL library does
so by first sorting the point cloud into a tree structure - thus speeding up the search process.
Processing fish16, which consists of more than 1 million coordinates, takes 2.6 s on an
Intel i5-4670K 4.1GHz processor. It is possible to improve on this by either implementing
the algorithm on the GPU, or by utilizing the fact that the point cloud is semi-sorted.
The point cloud is completely sorted along the z-axis, since each frame results in a single
slice. The coordinates for the top camera is sorted along the x-direction as the image
columns is perpendicular to the conveyor belt. The two bottom cameras are also likely to
be partially sorted along the x-axis depending on the curvature of the object. By utilizing
this information it is possible to speed up the nearest neighbor search significantly.

57

Chapter 4. Experiments and Feature Extraction

Figure 4.5: Fish16 after applying the statistical outlier filter.

58

4.2 Point Cloud Post-Processing

Figure 4.6: The given anatomical names for the fins of salmon (adapted from an illustration by
Karen Uldall-Ekamn)

4.2.2 Fin Removal
It became clear early on that the fins posed a problem in the extraction of geometric fea-
tures. Both because of the irregularities introduced into the point cloud due to the sharp,
protruding, nature of the fins and its variability. The fins can move, curl in on itself, or
vary in size altogether. This causes an issue in the geometric analysis, as they introduce
a varying geometric element outside of the actual curvature or form of the salmon. For
this reason, an algorithm has been developed to remove the fins consistently, and taking
the curvature of the salmon into account while doing so. This algorithm is important to
facilitate proper analysis of the symmetry, or lack thereof - as the fin interferes with the
general curvature of the salmon. The algorithm is only applied to the region of the salmon
where the fins are located. This is to avoid interpreting the gutted part of the abdomen as
a fin. Only the anal fin, dorsal fin and adipose fins are considered, as those are the most
protruding ones. The pelvic fin and pectoral fins are normally more aligned with the body,
and does not pose a problem. The fins in question can be seen in figure 4.6.

The algorithm consists of an initial step where a naive detection of the fins is performed
by looking at how spread the coordinates in a single slice is along the Y -axis. This is
computed by first sorting the coordinates in increasing X-direction. The coordinates are
then placed into bins of 0.2 cm. For each of these groups, the interquartile range along
the Y-axis is computed. The interquartile range is the difference between the upper and
lower quartile. This is known as a trimmed or truncated estimator of range, as it basically
discards 25% of the data in both directions. It is thus one of the most basic forms of
robustness for this type of calculation. For the case of the fins, the interquartile range is
roughly equal to taking the difference of the top and bottom of the fin. If five consecutive
bins on either side of the slice is below a threshold of 1.5 cm, the frame is assumed to
contain a fin. The reason why this basic detection works, is that the curvature of the
body of the salmon, excluding the fin, increases rapidly thus exceeding the interquartile
threshold.

Once a fin has been detected, the coordinates that falls in the bins and are under the
threshold are temporarily removed from the active set. The remaining coordinates is then
split about the mean X-value. The coordinates on the side of the mean facing the fin is then

59

Chapter 4. Experiments and Feature Extraction

fitted to an ellipse. The fitEllipse routine in the OpenCV library (Bradski (2000)) is used
for this purpose, which implements an algorithm that minimizes the algebraic distance of
the ellipse. This algorithm is quite fast, but breaks down completely in the face of high
levels of noise or a large difference in the two principal directions. The side of the salmon
facing the back of the salmon maintains a high level of roundness throughout, usually
close to a circle. Fitting an ellipse to this was never found to be a problem. The side facing
the abdomen, which is gutted, was sometimes found to be problematic in the elliptical
fit. This occurred when the gutted part was long and thin, without a roundness to the
curvature (i.e. two lines that almost meet at a point). The solution found was to include
coordinates past the mean X value, thus including more of the curvature towards the back.
No breakdowns was observed after doing this in the dataset. Further experimentation is
necessary to determine if moving to a slower more robust algorithm is warranted.

After the elliptical fit, a linear regression is performed on the binned coordinates that
was removed, with the constraint that it should pass through the center of the ellipse. The
idea here is to determine the general direction of the fin. The linear regression is performed
using a standard least squares procedure. The intersect point (x0, y0) of the ellipse and the
line is then found using the equation in 4.1, where a and b are the major and minor axis
of the ellipse. Since the quadrant is unknown, the intersect point with the closest metric
distance is used. Note that this equation finds the intersect point for an non-rotated ellipse
centered at the origin. The slope found through the linear regression is therefore evaluated
at a point either to the far left or right (along the x-axis) depending on which side the fin
is on. The corresponding point is then translated by (xc, yc), which is the center-point
of the ellipse. The point is then rotated clockwise by the angle of the ellipse found in the
elliptical fit. This ensures that the point from the linear regression is in the same coordinate
frame as the unrotated, centered ellipse.

xp = ± ab√
a2y20 + b2x20

x0

yp = ± ab√
a2y20 + b2x20

y0

(4.1)

The intersect point should be roughly positioned at the location where the fin meets
the body. The tangent of the ellipse in that point is then found using equation 4.2. Here
(xp, yp) is the intersect point on the ellipse found previously.

ytan = − b
2xp
a2yp

x+
b2

yp
(4.2)

The tangent found is the tangent of the non-rotated, non-translated ellipse. Instead of
rotating all (x, y) points to this reference frame, the line is rotated back to the original
reference frame. This is done by simply rotating the orthogonal basis vectors and re-
solving for the parametric equation of the line in the new reference frame.

a′ = − acos(θ) + sin(θ)

−asin(θ) + cos(θ)

b′ = yc − a′xc
y′ = a′x+ b′

(4.3)

60

4.2 Point Cloud Post-Processing

Figure 4.7: Illustration of the fin removal steps applied to the anal fin of fish19 from the data set. In
A, the fin is detected by binning the coordinates along the X-axis and calculating the spread in each
bin. If enough bins are below the threshold, an ellipse is fitted to one side of the slice as in B. In C a
linear regression is performed with b = 0 and origin at the center of the ellipse. In D, the intercept
point of the line and ellipse is calculated and the tangent in that point is used to remove the fin.

Finally, this tangent is used to define a cutting plane on the original coordinate set
containing both the binned and un-binned coordinates.

This process is applied to all the slices which has been selected due to being below
the binned threshold. There is, however, a high likelihood that some frames has not been
processed due to being above the threshold - even if a fin is present. The solution to this
is to find the closest slices that has been processed on both sides, and use their tangents to
define the cutting for the frames in between. The most straightforward way to accomplish
this is to define an average plane between the two tangents, thus spanning an approximate
cutting plane. A better method, which is used instead, is to interpolate the angle of the
normals of the two nearest tangents. The intercept points are also interpolated to calculate
the bias of the tangent. If multiple frames are mussing, this forms a twisted plane - which
follows the movement of the fin frame-to-frame. Additionally, this interpolation procedure
is also applied between the edges of the fin-region and the nearest bin to the edge. This
removes the fin as it gradually starts to form.

61

Chapter 4. Experiments and Feature Extraction

Algorithm 1 One-Sided Single Frame Fin Removal (Left)
1: procedure Q = QUARTILEBINS(X, Y)
2: Q← {}
3: bins← divide coordinates into equally sized bins by X
4: for all bin ∈ bins do
5: Q1← Compute lower quartile (25th percentile)
6: Q3← Compute upper quartile (75th percentile)
7: if (Q3−Q1) < QThreshold then
8: Q← Q ∪ bin
9: else

10: breakreturn
11: procedure INDICES = FINREMOVAL(X, Y)
12: I← {} // Index set of indices to keep
13: X, Y← Sort (X,Y) by X in ascending order
14: Q← QuartileBins(X, Y)
15: if SIZE(Q) > 5 then
16: width, height, angle, cx, cy← FitEllipse({X \Q} ≤Mean(X \Q))
17: slope← LinearLeastSq(Q− {cx, cy}) with constraint b = 0
18: xp, yp ← Calculate intersect point of slope and ellipse according to 4.1
19: a, b← Calculate tangent at (xp, yp) according to 4.2
20: arot, brot ← Rotate a, b according to 4.3
21: for i← 0 to length(X)-1 do
22: // Evaluate tangent with each X-coordinate in the set
23: y← arotX(i) + brot
24: // Evaluate which side of the tangent the coordinate is
25: isLeft← arot ≥ 0 ∧ y ≥ Y (i) ∨ arot ≤ 0 ∧ y ≤ Y (i)
26: // Keep coordinate if it is on the correct side of the tangent
27: if isLeft then
28: I = I ∪ i

62

4.2 Point Cloud Post-Processing

Tangents

Left Ellipse

Right Ellipse

Points

Removed Points

Figure 4.8: The fin removal routine applied to a slice where a fin is detected on both sides.

4.2.3 Spline Re-sampling
As mentioned in the literature review section, the Voronoi diagram is sensitive to both
noise and sample density along the boundary. The sample density varies depending on
the perspective and overlap between the cameras. This is a common problem in point
cloud processing, and a technique often employed is moving least squares (MLS). MLS is
based on local fitting of the surface to a polynomial in the least squares sense, and can be
used to interpolate and re-sample irregularly distributed points. While this method has the
potential to work very well, it was found that the computational complexity far exceeds
the real-time requirements of this application. Part of the reason for this is that the local
search radius had to be set quite high to counteract the effect of the induced noise due to
glare and reflections. The implementation of MLS used was from the Point Cloud Library,
which does not exploit the inherent structure due to the laser-scanner obtaining one slice at
a time. An future implementation exploiting this property, implemented on a GPU, could
obtain enough throughput for a real-time application on dense point clouds.

Instead of the MLS, a re-sampling and data-smoothing is performed in the form of
a spline interpolation. This is done for all 2D-slices in the XY-plane where the Voronoi
diagram is needed. The drawback of this is that one of the spatial dimensions is not
utilized. A counterpoint to this argument is that impact of noise is worst in regions of
reflections and glare, and neighboring slices will also inhibit the same structured noise
characteristics - thus limiting the usefulness of that spatial dimension. This is also the
reason the search radius had to be set quite high with the MLS routine.

To be able to perform the re-sampling using splines, one must first place the points
into its correct sequence along the boundary. Two main approaches was considered in this
regard. The first being an iterative procedure, where the order of the points is determined

63

Chapter 4. Experiments and Feature Extraction

by traversing the edge. This can be done by employing an nearest neighbor procedure,
which can be enhanced to select the correct path by considering the curvature of the pre-
vious points to determine in which direction to move. This has been done in Liu and Ye
(2011), where a snake model is used to follow a gradient flow by attributing the points
with a certain attraction. With a real time application in mind, a simpler alternative was
followed. Due to the removal of the fins, the coordinates as seen from the center of a slice
is fairly regular. In light of this the coordinates can be parameterized using polar coordi-
nates centered at the centroid of the slice. For the most part, this gives a good indication
of the sequence. The exception to this is where the curvature bounds back on itself as seen
from the inside. This occurs rarely after the removal of the fins, but three main exceptions
to this has been observed.

1. The laser-line can be reflected off its actual position onto something further up in
the image. This has been observed to sometimes happen if the pelvic fin is directed
outwards, as opposed to flat alongside the body as seen in figure 4.9. This might be
a result of the fish being frozen with the fin in an abnormal position. What happens
specifically, is that the reflection of laser-light on the fin is mistaken as height by the
coordinate transformation. This therefore produces a spray of coordinates directed
upwards. It should be noted that this was not a problem before removing the polar-
ization filter, as the reflections were reduced sufficiently to be below the threshold.
Part of the reason for this problem might be that the fleshy part of the cut is exposed
as a flat, light surface which causes the light to scatter more.

2. Sometimes the innards of the salmon will hang out due to the gutting. In the exper-
iments this was done intentionally to simulate real-world conditions. Coordinates
below the conveyor belt plane in the Y-direction are removed, but some remains is
still left over that can make an impact on the spline. This can be seen in figure 4.10
under subfigures A, C, E, F, G and I. The coordinates facing downwards on the left
side ends abruptly because something has been hanging down and been removed at
a threshold (subfigure A has lower threshold for illustration purposes). Although
some of these will produce a perfectly good spline without modifying the dataset, it
will skew the spline slightly outwards.

3. The final disturbance in the point cloud occurs due to the pectoral fin being angled
outwards as a opposed to along the body, similar to the first case. The pectoral
fin does not produce the same type of reflections as in the first case however. The
reason for this is that the pectoral fin has a darker color, and thus reflects less light.
Additionally, it is angled more towards the laser-line. The disturbance is therefore
mostly due to the presence actual fin in the laser-line, as opposed to a reflection. It
could potentially be handled similarly to the dorsal, adipose and anal fin with the
tangent approach. Since the problem is intermittent and has less of an impact, it
could be overkill however. Additionally, the curvature surrounding the pectoral fin
has less regularity than the three fins handled by the ellipse-tangent algorithm due
to gutting.

In these cases, the sequence sorted by the angle θ would no longer coincide with the or-
der of points along the boundary (in that region). These features must therefore be pruned,

64

4.2 Point Cloud Post-Processing

Figure 4.9: A case where significant noise is introduced into the 3D-model due to reflections from
the laser-line. The reflections hits the pelvic fin moving into the frame. The middle and bottom
images is the laser-line as seen by the camera and a thresholded image, respectively. The laser
images have been inverted for viewability, which is why the laser-line appears to be cyan instead of
red.

as they are unneeded and unwanted in further analysis. Figure 4.10 displays some ex-
amples of features which must be pruned, and the spline result after successfully pruning.
Algorithm 2 contains pseudocode for the procedure, and the implementation in Matlab can
be found in appendix C. Note that the pseudocode does not handle the polar coordinates
wrapping around.

The basic premise is to detect the regions of the XY-slice where following an increasing
sequence of θ causes ρ to change abruptly. This is an indication of multiple surfaces, or
layers being present in that direction. If that region is above a certain size, measured by the
angle from region start to end, an outwards pruning is performed. Since these unwanted
features are based on the presence of actual objects such as fins, the observation is that
the unwanted coordinates are never directed inwards. This observation is used to make the
spline follow the inner path, ignoring the outer surface. This is done naively by calculating
the mean ρ for the region, and discarding the points outside that threshold. This procedure
is only performed once. The remaining set of coordinates is then used to calculate a
spline approximation. The residuals of the spline approximation is studied to look for
both outliers and inliers. These are iteratively removed while the spline is retrained and
residuals recomputed. Note that the threshold for removing these are set quite high to
avoid removing too many points and the performance penalty of training many splines.
In fact, this iterative procedure has become largely redundant after adding the statistical
outlier removal.

65

Chapter 4. Experiments and Feature Extraction

Figure 4.10: Instances where pruning of the exterior features is necessary to obtain a good spline
approximation of the main curvature. The coordinates are shown as well as the spline obtained after
pruning.

66

4.2 Point Cloud Post-Processing

Algorithm 2 Spline Pruning and Spline Re-sampling
1: procedure (Xspl, Yspl) = SLICESPLINE(X, Y)
2: Calculate centroid of X,Y and translate all points so that it is at the origin
3: Express the coordinates on polar form ρ and θ
4: Sort by increasing θ and apply same indexing to ρ,X, Y
5: Calculate difference between each subsequent value of ρ
6: Smooth local variations by running ∆ρ through an averaging filter
7: I ← {}
8: if any ∆ρ > ρ threshold then
9: Divide into regions of θ that exceeds the threshold

10: Merge regions that are within a small distance of each other (∆θ < 2°)
11: Ignore small regions (∆θ < 5°)
12: for all remaining regions do
13: Calculate mean ρ for the region
14: I ← I ∪ {i | ρ >mean(ρ) }
15: X← {X \X(I)}
16: Y ← {Y \ Y (I)}
17: Pad end of X,Y with coordinates from the start to ensure a smooth start/end
18: Fit spline to data with the ordering of points found
19: while abs(spline residuals) > residual threshold do
20: Remove points exceeding residual threshold
21: Fit spline to new dataset
22: Xspl, Yspl ← Evaluate spline at equidistant points

67

Chapter 4. Experiments and Feature Extraction

Finally, the spline is sampled equidistantly with sufficient samples to calculate the
medial axis. The theory behind splines is a large topic by itself. For the purposes of
this thesis, considering the splines as an interpolation that ensures smooth derivatives of a
certain order is sufficient. The representation chosen in polar coordinates from the centroid
definitively has its benefits in speed and simplicity. There are however, some cases where
this representation will not yield good results. Figure 4.11A illustrates the main case for
this. If the upper abdominal flap curves in on itself quite sharply. The lower flap is then
cut off by the pruning procedure, due to not being visible. Even if it was not cut off, the
spline would not follow the curvature perfectly due to the coordinates being in the wrong
sequence. Sub-figure B is not a case of the spline failing, but shows that the pruning will
not be performed from any visible part as seen from the centroid.This case is not a problem
in further analysis, as shall be seen as the extraction of features are detailed.

Figure 4.11: Fig. A illustrates an instance where the spline will cut off the edge. Fig. B illustrates an
instance where pruning is not performed, as the entire protruding feature is visible from the centroid.

4.3 Medial Axis
Using the re-sampled coordinates, the Voronoi diagram can be computed. The vertices
of the Voronoi diagram that are internal to the boundary forms the discrete medial axis.
Even though the spline smooths the boundaries significantly, any slightly unevenness will
cause the medial axis to branch out. This is simply one of the properties of the medial
axis. The part of the medial axis that is of interest in this thesis, however. It is the medial
axis that extends horizontally that will be extracted. The idea is to use the medial axis
as a more correct measurement of height of the salmon than simply utilizing a the direct
distance from the back to abdomen. Using this definition, the pose of the salmon does not
matter - as tracing the horizontal medial axis will approximately yield the true height. The
abdominal cavity contains open space after being gutted. The idea presented is that even
if the abdominal flap is compressed, the medial axis will in turn curve more upwards due

68

4.4 Geometric Feature Extraction

Figure 4.12: Three instances of medial axis calculation. The horizontal medial axis is displayed in
green, while the discarded Voronoi vertices are shown in blue.

to the increased width (Y-axis), thus producing a longer horizontal medial axis than the
direct distance. This will then yield a height that is more similar to the salmon, when fully
extended - as opposed to lying on a conveyor belt.

To obtain the horizontal medial axis, the branches of the medial axis that extend to the
upper and lower boundary must be pruned. For this purpose, algorithm 3 was developed.
First, the Voronoi vertices external to the boundary of the slice is removed. A search is
then started for the horizontal axis around the middle, in a node that has both an entry and
exit node close to the horizontal plane. This avoids starting the algorithm off on a vertical
branch of the medial axis. A search is then performed in both directions, choosing the
path that minimizes the difference in angle from the previous node to the next one. This
causes the search to follow the medial axis that extends along the major axis. Additionally,
there are some constraints imposed on the overall angle, to avoid choosing a branch that
is close to vertical. Figure 4.12 displays some examples of the medial axis calculation
and horizontal selection. Sub-figure B shows an example of a more compressed form
when compared to sub-figure A. The medial axis clearly curves upwards as a result, thus
producing a longer medial compared to the direct distance. Sub-figure C shows an instance
where the curvature of the salmon is cut a bit short due to missing data points. This causes
the medial axis to branch out to the points where the curvature changes. While not a
large problem, as shall be seen in the extraction of the height feature. The extraction of
geometrical features from the medial axis is covered in the next section.

4.4 Geometric Feature Extraction

This section covers the extraction of the concrete geometric features used in the classifi-
cation, based on the medial axis and re-sampled spline. Width and height are referred to
frequently in this section, and applies to the distance in Y and X directions respectively
(see figure 4.13).

69

Chapter 4. Experiments and Feature Extraction

Algorithm 3 Selection of Horizontal Medial Axis
1: Input: Voronoi Vertices (V), Voronoi Edges (E)
2: Output: Horizontal Medial Axis Vertices (H)
3: procedure (H) = HORIZONTALMEDIALAXIS(V,E)
4: H← {}
5: // Find starting node
6: V,E← Voronoi vertices and edges inside the polygon defining the boundary
7: i← calculate index of mean(V.x)
8: while no]E(i) within both ±45° and ±45°+ 180° do
9: i← next vertex below mean

10: // Iterate downwards from starting node
11: istart, iprev ← i
12: i←] E(i) closest to an angle of 180°
13: while any]E(i)−]E(iprev) < threshold do
14: H = H ∪ i
15: iprev ← i
16: i← next vertex with least difference in angle
17: // Iterate upwards from starting node
18: iprev ← istart
19: i←] E(istart) closest to an angle of 0°
20: while any]E(i)−]E(iprev) < threshold do
21: H = H ∪ i
22: iprev ← i
23: i← next vertex with least difference in angle

70

4.4 Geometric Feature Extraction

Figure 4.13: The directions of width and height of a salmon, as referred to in this section.

4.4.1 Width

As the salmon is lying on its side, one could compute the width quite accurately by tak-
ing the difference between the upper and lower coordinate of the Y-axis. Alternatively
computing the difference between the top coordinate and the plane of the conveyor belt,
possibly from the spline as a robustness measure. An alternative route was taken, in which
the maximum inscribed circle of the medial axis was found instead. An example of this,
for a single slice, can be seen in figure 4.14. The width is thus extracted as the diameter
of the maximum inscribed circle. When the smoothness of the spline approximation is
high, as in this thesis, the benefit of using this definition of width is reduced. It does how-
ever provide more robustness in the instances where the spline curves outwards locally.
It is therefore a more general robustness measure for the width than simply relying on
the spline smoothness. Additionally, the maximum inscribed circle needs to be computed
regardless as it is used in the extraction of other features.

71

Chapter 4. Experiments and Feature Extraction

Figure 4.14: The vertex containing the radius of the largest embedded circle is used in the calcula-
tion of the medial length, and as a separate feature.

4.4.2 Height

The height of the salmon is the distance from the abdomen to its back. It is only used
sparingly as a direct feature, as composite features are preferred to keep the dimensionality
of the feature space low. It is aggregated in further features that attempts to describe the
symmetry of the salmon, however. The medial height is therefore calculated for all the
slices, although a sub-sampling the slices will most likely also be sufficient. In addition
to this, the medial vertex that embeds the largest circle within the boundary is computed.
Figure 4.14 displays an example of this circle. The direct medial height and the radius
of the largest embedded circle is used as a direct feature for equidistant slices across the
salmon. The reason for this is that the other features developed are intended to be invariant
to the size of the salmon, and does not detect if a sample should be downgraded due to
its absolute size. Examples of this are sample number 40 and 76 in the dataset, which are
instances where the size of the salmon is too small to be usable even though no deformities
are present. During the trials, as few as 3 to 5 equidistant slices throughout the length of
salmon was an sufficient number to provide the desired effect.

The typical difference between the length of the medial axis and the direct length
between the sides of the salmon is shown in figure 4.15. The length along horizontal
medial axis typically is the same as the direct length at the start and beginning of the
salmon, as the slices there are more circular. In the middle, the length by tracing the
horizontal medial axis becomes longer due to the gutting and pose. This is the whole
point of using the medial axis for this purpose. By calculating the length along medial
axis, an attempt is made to compensate for the effect lying on a flat surface has on the
measurement.

72

4.4 Geometric Feature Extraction

Figure 4.15: The typical difference between the direct length from the left of the spline to right of
the spline and the length by tracing the medial axis.

Note that at each end of the horizontal medial axis, the radius is added to the length
calculation.

4.4.3 Length

The length of the salmon is another feature extracted. This is perhaps the feature where
the pose of the salmon has the most impact, due to the salmon possibly being bent in
either direction while traveling across the conveyor belt. To counteract this effect, the
length of the salmon is calculated by adding the distances between the center of the largest
embedded circles for all slices. This is performed from the tip of the salmon, to the slice
which has the smallest area towards the end. Finding an ending slice that is fairly constant
across the salmon is important, as the fin itself can be curled and bent. Depending on the
stiffness of the fin, it can also fall down slightly while passing over the space between the
conveyor belts. Since the segmentation of the salmon depends on the object being above
a certain height, as seen from the top camera, it introduces a variability in where the last
frame will be. It might cut off before the actual fin has passed as a result. This is avoided
by utilizing the slice of smallest area, which provides a relatively static point of reference.
An illustration of the medial length can be seen in figure 4.16, along with the starting and
ending slices. The length itself is calculated by linearly interpolating from center to center
between the frame and summing the lengths between all frames.

Figure 4.16: The length of the salmon is represented through the medial length, which traces through
the center of the largest embedded circle for each slice.

73

Chapter 4. Experiments and Feature Extraction

Given enough samples in the dataset, one could potentially feed SVM with a large-
dimensional feature vector - and leave it up to RBF to find a nonlinear pattern among the
samples. As it is, this is an option that cannot even be considered due to the small size of
the current dataset. It might be a viable solution when employed in an industrial scanner
with access to 3D scans of thousands of salmon in each quality grad. For this thesis, it is
better to direct the classifier in the right direction, as the pattern RBF finds might not be
the one that generalizes best with so few samples.

Medial Contour Length

In addition to the medial length that passes through the interior of the salmon, the length
length along the contour is also extracted. This is done by using the medial heights and
the known distance between each frame to sum over linear interpolation as in the previous
length feature. The idea with this feature is that the less symmetry the salmon has, the
longer the trace of the heights becomes in relation to the direct length. With the fins re-
moved, this becomes viable as a feature. In fact, this feature is one of the more contributing
features towards classifying deformities.

4.4.4 Skewness
As the lack of symmetry is important in detecting deformities, another feature was devel-
oped to attempt to fill the gaps where the medial contour length could not separate the
classes. This feature revolves around the skewness of the height instead of the contour
length. Skewness is a measure of asymmetry of probability distributions in statistics. Pri-
marily for unimodal, asymmetrical distributions - as the results becomes hard to interpret
in multi-modal distributions. There are many different formulations that attempt to de-
scribe skewness. A recurring theme is the use of the third central moment. Pearson’s
moment coefficient of skewness is defined in equation 4.4.

γ1 = E
[
(
X − µ
σ

)3
]

=
µ3

σ3
(4.4)

Replacing the third central moment and the standard deviation with their sample coun-
terparts yields the following expression for sample skewness.

β1 =
m3

s3
=

1
N

n∑
i=1

(xi − x̄)2[
1

n−1

n∑
i=1

(xi − x̄)2
]3/2 (4.5)

This definition of skewness is intended to be calculated for a randomly distributed
variable. It does not, however assume that the variable follows a specific distribution.
Calculating this for all of the heights will not yield the desired results, as the notion of
front and back of the salmon will be lost. Instead, the salmon is divided into front and
back at the middle of the length calculated previously. The skewness is then calculated for
each of the halves, and used as features.

While healthy salmon are symmetrical about its width (lateral), it is not completely
symmetrical along the length axis (longitudinal). The back part of the salmon is typically

74

4.5 Color Image Projection

slightly more stretched than the front part. One can imagine that this is a result of natural
evolution to reduce the resistance in water. Regardless of the reason, this means that what
we are looking for in these symmetric features are not really a perfect symmetry of the
salmon. Instead, we are looking for some sign of abnormalities - which typically means
that the shape is uneven as opposed to streamlined.

4.5 Color Image Projection
The color and reflectance information has been extracted and designated a coordinate in
the point cloud. Analyzing the color composition of the cloud directly proves difficult
due to the spatial components. Instead, the point cloud can be projected into one or more
2D-images for further analysis. Operating on a regular image improves the speed of the
algorithms, but more importantly - allows usage of image processing algorithms such as
morphology and filtering without reinventing the wheel. Optimally, the projection would
preserve the surface area of the salmon in the 2D-projection. Doing this would map the
spatial component to the 2D-plane in addition to the spectral information. This could be
used to obtain an accurate notion of size in the analysis, for example the size of a wound.
Practically, this could be implemented by estimating the surface normals and scale the
2D image locally based on the angle between the plane and the normal. An alternative
approach could be to project the surface onto the inside of an cylinder containing the
salmon - which can be unwrapped to form a 2D-surface. In this thesis, a simpler strategy
is followed. This is partly due to time constraints, but also due to the fact that all salmon
with wounds in the dataset was classified as production. Obtaining an accurate size of
the wounds is therefore not of great importance. The important aspect is to detect the
wounds regardless of the size. The strategy employed is to project the side facing upwards
to one plane, and the bottom to another. For the top plane this involves exclusively the top
camera, while on the bottom one must combine the two cameras placed at an angle. The
projection itself is quite simple, as the plane of projection is aligned with the Cartesian
coordinate system. The projection is therefore done by simply stripping the Y-coordinate.

To determine which of the two planes the pixels are projected onto, a line is drawn
between the leftmost and rightmost points of the spline. This works quite well as the
spline has a high degree of smoothness, and thus the turning point at the edges will be
the best representation for where the curvature bends back on itself. The pixels above the
line are projected to the top plane, while the bottom pixels are projected downwards. Only
the top camera is considered for the upwards projection, since its perspective should cover
the side in its entirety. This keeps noise from the bottom cameras interfering with the top
projection. A split is also performed between the bottom cameras, for different reasons.
The bottom cameras are adjusted so that the middle of the conveyor belt and towards the
camera is in focus. Instead of using the pixels from each camera to effectively double up
on the density, a split is performed around x = 0 (with some added overlap). This avoids
utilizing blurred pixels that are the furthest away, and instead use the pixels of the closest
camera. The pixel density is high enough regardless.

Once the projection is done, linear interpolation is performed on the scatted coordi-
nates in the XZ-plane, to obtain an equidistant grid suitable for image analysis. For con-
venience, the sample density along the X-axis is chosen to be the same as along the Z-axis

75

Chapter 4. Experiments and Feature Extraction

Separator

Spline

Top

Bottom

Figure 4.17: The visible coordinates from each side is projected onto a 2D-plane. Left figure
displays the splitting method applied to a salmon from the dataset.

so that a re-sampling along the Z-axis is unnecessary. This means that a 1D-interpolation
is performed per slice for each projection. This approach is quite fast, but means that
the spatial component along the length of the salmon is not utilized. General scattered
2D-interpolation routines are based on a triangulation of all points to decide which pix-
els to interpolate from. This is dreadfully slow when applied to the number of points
present in the 3D-model, even if performed on a section at a time. Alternatives to the
1D-interpolation could be to implement a scattered interpolation on the GPU, once again
by utilizing the sorted z-axis. Another approach could be to project the points onto a fixed
grid of fine resolution, and use a convolution filter to smooth out missing pixels. The 1D-
interpolation has proven to yield acceptable results due to the denseness of the samples,
and an effective 2D-interpolating implementation is therefore left to future work. The re-
sult of the interpolation and projection from the bottom and top can be seen in figure 4.18,
although for two different salmon.

4.6 Color Feature Extraction

In this section, the steps taken to extract features used in the classification of wounds will
be detailed. There are two separate images to process for each salmon, as the projection
in the previous section extracted two sides. The first step will be to reduce the number of
pixels that needs to be processed in a classifier. While the machine learning algorithms
used in this thesis is quite fast, classifying all the pixels individually would be too compu-
tationally expensive. The strategy is therefore to first reduce the full image to a few regions
where the likelihood of a wound existing is higher. This is done by imposing a threshold
on the color values, thus excluding regions not wound-like.

76

4.6 Color Feature Extraction

Figure 4.18: Salmon 47 (A) and 104 (B) from the dataset, projected onto a 2D plane and interpolated
to ensure equidistant pixels. A is projected from the bottom cameras, while B is projected from the
top camera. Wounds are indicated by a red circle.

By looking at the color images produced by the projection, the observation was made
that the wounds are relatively dark. When looking at a histogram of the RGB values in
a wound, one can see that all three are fairly close together. The colors ranges from a
slight red to a brown, with some instances of green and yellow. Simply thresholding based
on the red spectrum would not obtain good results, as the entire red spectrum can appear
in the rest of the fish, even if the color is not dominated by red. One needs to threshold
the redness, but take the other two spectrum into account while doing so. Hue-saturation-
luminosity (HSL) is a cylindrical-coordinate representation of the RGB colors. Of these,
hue describes the color in terms of an angle, where red, green and blue are spaced furthest
apart. A dark brown color will for example mostly be in the red-yellow region of the
color wheel. Typical histogram for the RGB and HSL values for wounds can be seen in
figure 4.19 and figure 4.20, respectively.

77

Chapter 4. Experiments and Feature Extraction

Figure 4.19: Typical histogram for RGB wound pixels. The Y-axis indicates the number of pixels
with that value.

Figure 4.20: Typical histogram for HSL wound pixels. The Y-axis indicates the number of pixels
with that value.

Thresholding hue to be in the range 0 to 60 and 230 to 255 yields the result in fig-
ure 4.21. The upper range of this threshold is to include the pixels that tends towards the
yellow and green hue. An threshold on 0 to 100 for luminosity also gave good results, as
it removed some of the brighter spots (i.e a direct reflection). An alternative to using the
hue would be to normalize the red spectrum with respect to the the green and blue, seeing
that the red spectrum is either equal or dominant relative to the other two for wounds.

78

4.6 Color Feature Extraction

Figure 4.21: Thresholding of the hue and luminosity applied to the image containing all the wounds.

The rest of the salmon typically has scattered values that are within the range, with the
occasional exception. The exceptions occur mainly around the fins, head or sometimes
the abdominal flap, where sometimes a small clustering of values will occur. One cannot
assume that a simple threshold will yield a perfect separation due to reflections and vari-
ability of the colors present. Before worrying about the clustered values, let us remove
the small scattered points. By considering the pixels within the threshold and binary true,
and the values outside the threshold as false, this can be done by using image morphology.
Erosion is a morphologic operation where a pixel is set to the minimum of its surround-
ing pixels, the size of the filter (size of neighborhood) determines how many coarse the
removal is. Dilation is the opposite operation, where a point is set to the maximum of
its neighborhood. In essence, these two operations either shave off pixels around edges
or add pixels around edges, respectively. The erosion is clearly capable of removing the
small pixels scattered about. By itself it would also remove the clustered values partially,
however. The solution is to perform an open operation, where an erosion is followed by
a dilation. This is performed iteratively. The end result is the removal of small regions
and protruding features - but the larger objects are kept. The result of this operation on a
salmon can be seen in figure 4.23.

Now, these regions must be separated in some manner. This could be done by for ex-
ample looking at the connectivity. Imagine that the clustered values are close together, but
not connected. This would be problematic. To counter this, the convex hull is computed
for each of the connected regions. The convex hull for 2D is the smallest polygon that
encloses the object without curving inwards. That is, any straight line joining the edges
of the polygon does not leave the region. The convex hulls that overlaps are merged, and
thus resolves the problem with dis-connectivity of composite regions.

Before proceeding to the analysis of each region, to attempt to determine if it is a
wound or not, some areas can be pruned by looking at some features of the convex hulls.
Firstly, the regions below a certain area can be pruned. This is primarily to remove the
scattered points remaining after the open operation. Secondly, the wounds are typically

79

Chapter 4. Experiments and Feature Extraction

Figure 4.22: Morphological open operation applied to a salmon that has already been thresholded
to a binary image.

Figure 4.23: The convex hull of each connected region within the image.

fairly circular due to the nature of bacterial growth. Using this, areas that are more elon-
gated along one direction can be pruned. Elongation can for example be represented as
the ratio of the largest diameter to the smallest diameter, which is what is done in this
thesis. An upper threshold for the elongation ratio is set at 3. Typically, the wounds are
much lower - but some margin is factored in to avoid cutting off wounds that are a result
of merged convex hulls. The purpose is mainly to remove some of the regions that are
sometimes detected along the abdominal flap and along the gills.

For each of the remaining regions, the mean and standard deviation of each color spec-
trum is extracted (RGB/HSL). Additionally, the relative size of the pixels below threshold
in a region and the total size of the image is computed. Unless the wound is recent formed
it should have fairly large impact on the surrounding tissue. This can be seen in figure 4.3,
where one clearly can see that even the small wounds has an surrounding area that is af-
fected by the bacterial growth. Using the size as a feature is therefore not intended to filter
out smaller wounds, but to include a sense of the amount of impact on the salmon. The
classification will be done both with and without this feature for completeness.

80

Chapter 5

Results

The following chapter presents the results obtained by training a classifier using the fea-
tures outlined earlier. In the following chapter the class containing salmon with deformities
is labeled as true, and the superior class as false. Each feature is scaled from -1 to 1, as
both classifiers used are sensitive to scaling. Not performing scaling could result in one
feature dominating the others.

5.1 Method of Performance Evaluation
To select model parameters and evaluate the classifier performance, one must ensure that
the estimates are unbiased. This becomes challenging for such a small data set, as dividing
the dataset up in a validation and training set can reduce the performance of the classifier
due to the decreased training set. Still, it should be done to provide a pessimistic rate. The
dataset is therefore split into 80% training set and 20% validation set in some of the tests.
The model parameters for SVM with the RBF kernel, γ and C, is selected by performing
10x10 fold stratified cross-validation on the training set. The optimal combination of γ and
C is chosen as the ones that produce the highest average rate. The grid search is performed
exponentially using base 2 (2x) over the range log2C = [−4, 40] and log2γ = [−30, 4]
with a step size of 2 for both parameters.

The selected parameter combination is used to train a model using the full training
set, which is validated on the 20% set. The primary point of doing this is to decouple the
selection of model parameters and the validation set, otherwise the accuracy calculated
would be unrealistically high as the model parameters are specialized to the entire dataset.
To minimize the effect of a few good or bad splits, the process of training and validation is
repeated 100 times. This is most likely overkill, but the training process is quite fast due
to the small dataset. The prediction rates are finally averaged and used as a performance
metric.

Both datasets are unbalanced, which means that an overall rate would favor the class
with the most samples. The average rate is calculated by averaging the prediction rate
for each of the classes. This is preferred in this case, as the performance of the class
with least samples is as important - if not more important - than the class with the most

81

Chapter 5. Results

samples. In this thesis, a high detection rate of the deformities and wounds are preferred.
Downgrading a salmon too many is better than allowing salmon of poor quality into the
superior class. Ultimately, the downgraded class would be sorted manually to decide the
possible applications. The downgraded class consists of a fraction of the total salmon
moving through the processing facility, which means that the amount of manual processing
is already reduced by singling out poor quality salmon. In each trial, the performance of the
best average case is stated through true positive rate and true negative rates, which reflects
the rate of correct prediction within each class. The percentage of misclassification per
class can from this be calculated by subtracting the true rates from one.

5.2 Detecting Deformities
This section presents the prediction rates of the classifiers trained to detect deformities.
The feature vector used throughout this section can be seen below. Trials using subsets of
this feature vector was attempted, but delivered inferior results - and will not be presented.

x = [Lmedial, Lcontour, βback, βfront, Rmax,Hmedial]
T (5.1)

Where

• Lmedial : The medial length found by tracing the centers of the largest embedded
circles.

• Lcontour : The length of the contour found by tracing the medial widths along the
salmon.

• βfront, βback : The skewness of the largest embedded circles, calculated from the
front and back parts of the salmon. Divided at the middle of the medial length.

• Rmax : The radius of the largest embedded circles (widths), extracted at five equidis-
tant points along the medial length.

• Hmedial : The medial heights, extracted at five equidistant points along the medial
length.

5.2.1 Deformity Detection Using C-SVM with RBF Kernel
The dataset is both unbalanced in numbers, since the superior class consist of 45 samples
and the downgraded class 25 samples. To counter this while training a model, one typically
ensures that the misclassification penalty evens this balance out. This can be done by
setting the misclassification cost per class so that it fulfills N1/N2 = C2/C1, where N is
the class size and C the misclassification cost attributed to the class.

The above approach is correct if one wants to maximize the overall prediction rate.
A problem with this approach is that one then trains a model for the relative sizes of the
classes present in the training set, which might not reflect the relative class frequency in the
real world. In fact, the fraction of the various classes can have much variation depending
on time of year and which facility it originates from. Since the dataset at hand does not

82

5.2 Detecting Deformities

reflect the a-priori probability, which is an unknown quantity anyway, one cannot train a
model so that the classes are completely equally weighted anyway. We do know, however,
that the downgraded class will have a much higher misclassification cost attributed with
it to ensure that the superior class is free from deformities. For this reason, the cost for
the class with deformities is set to 10 times the superior class. This causes a drop in the
correctness of the samples labeled superior, but yields a better true positive rate. In the
future, this can be revised when the training set becomes larger - as a few outliers has less
of an affect on overall performance.

Figure 5.1: Overall prediction rates from an exponential grid-search for the parameters γ and C
using 10x10 stratified cross-validation.

Figure 5.1 shows examples of the result obtained by performing a grid-search over
the parameters using a 10x10 cross-validation. The prediction rates obtained are 89.1%
true positive and 88.4% true negative. The observation was made, by re-training with new
random splits multiple times, that some of the salmon in the superior set was classified
consistently as production/ordinary. Upon inspection of the salmon in question, traits that
might be considered similar to those in the downgraded classes was found. This stems
from the fact that the classes are not based on hard criteria, but a rough description of what
is acceptable quality and not. The boundary between superior and lower grades is therefore
not an exact science. With a large dataset, these outliers will be placed less emphasis on
- as the majority of the class has a good separation. In interest of seeing if the detection
rate of the deformed salmon can be increased, the salmon in question were removed from
the superior set. This of course skews the result, but feels justified as these samples looked
very similar to the milder cases in ordinary/production.

83

Chapter 5. Results

Figure 5.2: Fish10 from the superior dataset, where the gutting makes it appear as deformed.

One particular example which should be pointed out is salmon 10 in figure 5.2, where
the gutting is irregular towards the head. The cut is deeper, causing the front part of th
abdominal flap to protrude more than usual. The features and classifier mistakes this for
a wider front, which causes a misclassification. The features has not been developed to
handle this, and must be handled in further work. Possibly by using the volume of the
front part instead of the widths as a feature.

In addition to salmon 10, number 11 and 19 were also removed due to having a slight
humpback. These can be seen in the online viewer. When these three samples were re-
moved, the true positive prediction class (deformities) increased significantly. This oc-
curred because the classifier has an easier time finding a separating hyperplane in the
high-dimensional space given less outliers. This could also be observed through the train-
ing times for the classifier, which was reduced significantly after removing these three
samples. Running a new 10x10 stratified cross-validation yields a true positive rate of
95.2% and true negative rate of 94.5%. Clearly an improvement. The new parameter
grid-search results can be seen in 5.3.

Figure 5.3: The parameter grid-search after removing three salmon from the superior class.

84

5.2 Detecting Deformities

Separate validation set 80/20 and 90/10

Now, the same experiment is performed with a decoupled model training set and com-
pletely separate validation set. The dataset is split 80/20, and cross-validation is performed
repeatedly on the training set to select the best parameters on average. Those parameters
are then used to train a model using the full training set, and validated on the smaller val-
idation set. The expectation is that the prediction rates will drop, both because the model
parameter selection and validation set is decoupled, but also due to the reduced size of the
training set. The obtained prediction rates are 78.3% and 94.4% for true positive and true
negative, respectively. The class consisting of the least samples is hit the hardest, which
comes as no surprise seeing as that class was quite small to begin with.

Attempting to increase the weighting of that class beyond 10 to attempt to skew the re-
sults towards a higher true positive rate yields the following results. Increasing the weight
to 100, yields slight increase in true positive rate to 81,5% and true negative remains at
94.4%. The worry is that the data set is too small to be split into multiple parts, getting
a few bad splits will reduce the prediction rates significantly. Re-running the experiment
with a 90% training set and 10% validation also only yielded an slight increase. The rates
increased to 82.9% and 94.6%, true and false positive rates respectively. Performing an
extended grid-search with a reduced resolution gave the grid-search results in figure 5.4.
The step size used was set at 8, as even this resolution took several hours to complete.
The left figure shows the same area as previously, just a bit extended. The figure to the
right shows the curvature of the grid-search past the cutoff point of C. This proves that
increasing the value of C, which is where the previous grid-search cut off the plateau, does
not increase the rates.

Figure 5.4: Performing a wide-area grid search, to ensure that neighbouring regions does not provide
better results. The ranges are log2C = [−16, 60] and log2γ = [−60, 16] for the left figure, and
log2C = [60, 100] and log2γ = [−60, 16] for the right figure.

While the results obtained so far are acceptable, some explanation for the much lower
rate was searched for. Performing the grid-search with the same range as originally, but
with a finer grid yields the resulting parameter-space in figure 5.5. Looking at this result, it
appears that the parameter combinations providing the highest prediction rates are placed
at the very edge of the region that yields acceptable rates. The optimal model parameters

85

Chapter 5. Results

are simply chosen as the maximizer of the average predicted rate, which would select these
locations. This does not seem very robust in face of a changing training set, such as when
doing the 80/20 or 90/10 splits. This is because a changing training set might shift the peak
away from the view, which would cause the result to be very suboptimal on the training
set.

Instead, the model parameter selection should select a value that provides a high pre-
diction rate, while being robustly placed. There are many ways this could be implemented.
One approach could be to make the parameter combinations prediction rates be dependent
on the surrounding parameter combinations, similar to a 2D-filter in image processing. In-
stead of implementing a general approach, we will simply pick a value manually which has
sufficient surrounding support. The parameters picked are log2C = 23 and log2γ = −8,
as these are placed on the highest ridge interior to the plateau. Running a 90/10 split
for this using the same amount of iterations as before (100), yields a true positive rate of
86.2% and true negative rate of 92.5%. One can immediately see that choosing the safe
parameters yielded a better overall result, even though it had a suboptimal value on the
grid-search. This obviously stems from the fact that the parameter space is skewed some-
what under some of the random splits, causing the rate to plummet for the entire validation
set. Using the optimal parameters calculated using cross validation for the entire dataset
(log2C = 16, log2γ = −12), the 90/10 split yields 94.4% true positive and 94.3% true
negative. These rates are biased, as the model parameters are tailored to the dataset. The
maximum, stable, rate most likely lies somewhere between the two results.

Figure 5.5: A grid-search for the same range as figure 5.1, but with a smaller step size.

It should also be said, that with a larger dataset the optimal parameter would most
likely be more robust in a grid search. In this case however, with an dataset of this size

86

5.3 Wound Detection

that has a high degree of variability, it causes problems. Especially the samples of the true
class (deformities) seeing as they are assigned a higher misclassification penalty.

Leave-one-out cross-validation

Leave-one-out cross-validation is not afflicted with a bad split, and utilizes the dataset to
the maximum - as it uses every single element once as a validation sample. First, the LOO
cross-validation is performed on the safe values of log2C = 23 and log2γ = −8 from
before. This yields the rates 86.3% true positive and 92.7% true negative.

Running the leave-one-out cross-validation with the biased parameter values of log2C =
16 and log2γ = −12 yields the following rates. True positive 95.5% and true negative
95.1%. This is from the parameter combination on top of the ridge, which represents an
optimistic separation rate.

The LOO cross-validation yields slightly better results due to having more samples
available for each training of the model. These results were also obtained using an added
misclassification weight for the true class of 100. Higher weights than this does not im-
prove the rates.

5.2.2 Deformity Detection Using Nearest Neighbor Classifier (NN)
The results will now be validated by using a different machine learning algorithm, the
nearest neighbor classifier. This classifier does not have the same good generalization
properties as SVM when the size of the feature vector increases due to the curse of di-
mensionality, but can in many cases yields good results. For datasets that are small in
comparison to the feature size, the nearest neighbor classifier is often considered along
with SVM as the best choice. The distance measure used is the Euclidean norm. Run-
ning a leave-one-out classification using NN yields a true positive rate of 85.2% and true
positive of 97.5%. As we can see, the true positive rate is very high. This is partly due
to not being able to weight the true class more than the false class, both to make up for
the size difference and to skew the result towards the detection of deformities. One can
for example add a weight to the Euclidean distance depending on the class to skew the re-
sult towards a positive rate. Alternatively, one can subsample the larger dataset to provide
an even comparison. Regardless, the results obtained here clearly indicate that the result
obtained previous using SVM are largely correct.

Using a K-Nearest neighbor classifier (KNN) with K > 1 did not yield better results.
Most likely because the density in the feature space is already low, which means that there
might not be enough clustering of the two classes.

5.3 Wound Detection
This section deals with the detection of wounds, which is treated through a separate clas-
sifier. The wounds has less variability than the deformations, and we can therefore start
out with a few features, and add more features as necessary. For the deformation this was
not possible, as the diversity of the samples required a certain number of features to be
anywhere near acceptable rates. The samples that has wounds are assigned the true class

87

Chapter 5. Results

label, indicating a downgraded salmon. The number of wounds present in the dataset is 15.
Due to the smaller size of this dataset, decoupling the parameter selection and validation
set will not be performed. A regular repeated cross-validation should give a good indica-
tion of the attainable rates, albeit a bit optimistic. The number of regions detected that are
not wounds is 125, which makes up the false class. The dataset is therefore unbalanced.
The false regions are obtained by performing the thresholding and pruning as outlined
in section 4.6 on all the salmon in the dataset without wounds. That is, the salmon in
production/ordinary without wounds are also used in obtaining the data for the false class.

5.3.1 Detection of Wounds Using SVM with RBF Kernel

First, the SVM classifier will be used once again with the RBF kernel. An 8-fold cross-
validation will be performed, which means that only one validation set contains a single
sample from the wound-class. The 8-fold cross-validation is repeated 50 times for each
trial, to minimize the effect of bad splits of the dataset. All models in this section are
trained using class weights only to make up for the difference in size (N1/N2 = C2/C1),
without any additional added weight as done for the deformity detection.

Mean RGB/HSL values

First, the classification will be done using mean RGB values. The feature-vector is thus as
follows.

x = [µR, µG, µB]T (5.2)

Figure 5.6: Parameter grid search using 50x8 cross-validation for mean RGB features.

The per class prediction rates for the best average rate are 89.5% true positive and
82.2% true negative. Next, cross-validation is repeated using the HSL representation.

x = [µH , µS , µL]T (5.3)

88

5.3 Wound Detection

Figure 5.7: Parameter grid search using 50x8 cross-validation for mean HSL features.

The prediction rates for each of the classes are 92.4% true positive, 73.7% true neg-
ative. We can see that the wound detection for both RGB/HSL is fairly successful, but
many regions are falsely detected as wounds, especially for HSL.

Mean RGB/HSL values and standard deviations

The standard deviation adds a description of how spread the color values are within each
region. A wound should dominate within the area, causing less spread in the color values.

x = [µR, µG, µB , σR, σG, σB]T (5.4)

Figure 5.8: Parameter grid search using 50x8 cross-validation for mean and standard deviation RGB
features.

The per-class rates are 98.1% true positive and 74.3% true negative. The wound detec-
tion has improved, but comes with a number of misclassified regions that are not wounds.

Once again, cross-validation is repeated with standard deviations using the HSL rep-
resentation.

89

Chapter 5. Results

x = [µH , µS , µL, σH , σS , σL]T (5.5)

Figure 5.9: Parameter grid search using 50x8 cross-validation for mean and standard deviation HSL
features.

The result using HSL is less skewed towards the true class, with 93.0% true positive
and 83.7% true negative. This causes the average rate to increase.

Mean RGB/HSL values and standard deviations with relative size

The relative size of the regions compared to the total size of the salmon is added as an
additional feature.

x = [µR, µG, µB , σR, σG, σB ,
Nwound

Ntotal
]T (5.6)

Figure 5.10: Parameter grid search using 50x8 cross-validation for mean, standard deviation and
relative size (RGB).

90

5.3 Wound Detection

Adding the size parameter results in a general increase in the rates to 95.6% true posi-
tive and 92.9% true negative. And now, for the HSL representation.

x = [µH , µS , µL, σH , σS , σL,
Nwound

Ntotal
]T (5.7)

Figure 5.11: Parameter grid search using 50x8 cross-validation for mean, standard deviation and
relative size (HSL).

The prediction rates are 97.8% true positive and 89.8% true negative. Due to the
high amounts of repetitions per cross-validation, these results are stable even if the cross-
validation is repeated. Three of the salmon with wounds have much higher misclassifica-
tion counts than the rest. These are number 48, 88 and 103. An image of these salmon and
their respective wounds can be seen in figure 5.12. All three are fairly small, but the most
likely reason for being misclassified is the lack of a redness. Salmon 49 has an almost
black area without any redness, which is rather tricky to separate from the black areas on
the black. Salmon 88 has redness in the wound, but the size is fairly small. Salmon 103 has
the probably most serious misclassification, due to the size of the wound. This wound has
more of a milky quality than red, and is for that reason misclassified. This could perhaps
be redeemed through a larger dataset with more wounds of this type.

91

Chapter 5. Results

Figure 5.12: Salmon 48, 88 and 103 from top to bottom. These are the salmon with wounds that are
most commonly misclassified.

Due to the strongly unbalanced nature of the dataset, the nearest neighbor classifier
did not produce acceptable results using the Euclidean distance norm. A LOO was also
performed for the final feature set for RGB and HSL, using an conservative parameter
combination of log2C = 23 and log2γ = −8. This is the same as the safe parameters
for the deformity classifier, as they seemed to be in a safe location for the wounds as
well. Note that this dataset is even smaller than the deformity dataset, and the 90/10
split was therefore not performed as the class containing the wounds is simply too small.
Also, as was pointed out - the method of selecting the optimal parameter combination
does not work if the parameter space changes significantly for some data splits. The LOO
parameters placed sub-optimally, and is not expected to be the true rate, but is supplied
as a lower bound on the rates. This is better than simply stating the optimistic rates, with
parameters tailored to the dataset. The rates for the LOO cross-validation can be found in
the table of results.

92

5.4 Summary of Results

5.4 Summary of Results
The main results found for both the deformities and wounds will now be summarized in
tables, for convenience.

Table 5.1: Deformity Classification Results

Description Method Training Set % Tr. Positive Tr. Negative
Full dataset 10x10 CV 100% 89.1% 88.4%
Reduced dataset 10x10 CV 100% 95.2% 94.5%
First Split 10x10 CV 80% 78.3% 94.4%
C1 = 100 10x10 CV 80% 81.5% 94.4%
C1 = 100 10x10 CV 90% 82.9% 94.6%
Using safe parameters 10x10 CV 90% 86.2% 92.5%
Using biased parameters 10x10 CV 90% 94.4% 94.3%
Using safe parameters LOO CV 90% 86.3% 92.7%
Using biased parameters LOO CV 90% 95.5% 95.1%
Nearest Neighbor LOO CV 100% 85.2% 97.5%

Table 5.2: Wound Classification Results

Color Space Features Tr. Positive Tr. Negative
RGB µ 89.5% 82.2%
HSL µ 92.4% 73.7%
RGB µ, σ 98.1% 74.3%
HSL µ, σ 93.0% 83.7%
RGB µ, σ,Nw/NT 95.6% 92.9%
HSL µ, σ,Nw/NT 97.8% 89.8%
RGB LOO (suboptimal) µ, σ,Nw/NT 85.7% 96.8%
HSL LOO (suboptimal) µ, σ,Nw/NT 80.0% 93.9%

93

Chapter 5. Results

94

Chapter 6

Discussion

This chapter briefly discusses aspects of the thesis, with focus on the general approach,
methods employed, and the results.

6.1 Methodology

This section discusses the general approach and methods used in this thesis. Throughout
this thesis, many choices have been made regarding which method to use. Some choices
was done experimentally by implementing the alternatives, and weighing them directly.
Other choices had to be made without attempting the alternatives, due to time constraints.
As this thesis consists of many individual boxes that needs to be ticked to form a full, func-
tional system, simplicity was often favored over complex solutions. The simpler solutions
also often made sense from a performance perspective.

6.1.1 Line Scanning

The decision of using the principal approach of line scanning preceded this thesis, and as
such the discussion of which technology to use has not been integral part of the work itself.
The primary considerations for choosing this technology over other technologies, is cost,
simplicity and applicability. The line scanner has no need for specialized sensors or equip-
ment, only off-the-shelf cameras and lasers, this drives the cost down to a reasonable level.
One of the primary objectives of this thesis is to provide a cheaper alternative to commer-
cial systems, after all. The simplicity of the method was an important consideration, as
the system needed to be implementable without having a doctorate in the respective field.
The method also needed to be applicable to objects moving on a conveyor belt. Many
methods run at a slower acquisition rate, but with a wider field of view. That would not be
applicable to capture the underside of the salmon, as the space between the conveyor belts
is tight. Additionally, color information is needed to determine the quality in many cases.
Using technologies with other sensor types would need to have cameras in addition to the
range sensors, to capture this information. By switching between the color and laser, both

95

Chapter 6. Discussion

is obtained - and in the same coordinate system. Other technologies does not tick these
boxes as well as the line scanning approach.

6.1.2 Camera Calibration

The calibration routine uses state of the art algorithms. The implementation is therefore
founded in solid theory. The original idea was to use a calibration object in which multiple
cameras could be calibrated simultaneously. This was both the intention for the purpose of
simplicity, but also to ensure that the coordinate space from each of the cameras coincided.
Moving the calibration object about introduces a degree of human error, although mini-
mized by having a stand with fixed points. The misalignment correction was introduced
to mitigate this problem. While it does so successfully, it might be an idea to revise the
calibration object such that it works with the original goals in mind. One approach could
be to have a larger calibration object in the distance of the conveyor belt, which then could
be moved through the laser-line by the conveyor belt. This would not only introduce the
possibility of calibrating all cameras at the same time, but also improve on the number of
point correspondences. The current calibration object yields 7 coordinate correspondences
in the XY-plane, which gives 14 points. The projective transformation has 8 degrees of
freedom. The problem is overdetermined, but more could potentially improve accuracy.

In this thesis, speed calibration is performed by scanning an object of known size and
calculating the correct spacing of frames in relation to frame rate. An automatic routine for
this was not developed, as future applications will undoubtedly utilize a rotary encoder to
be able to deal with changing speeds of the conveyor belt. As the rotary encoders typically
can be calibrated separately, such a feature is unnecessary.

Accuracy

Not much discussion has been performed throughout this thesis regarding the accuracy
of the calibration routine. While the accuracy of the calibration routine itself has been
measured to be in range of ±0.02 to 0.04 cm, this accuracy will not be the case for the
point cloud. While it might hold true for certain surfaces, it most certainly is not for the
salmon. The curvature and reflective properties of the salmon causes variations in the
laser line that cannot be calibrated away. This is due to optical issues, and will largely be
improved by reintroducing the polarization filters - but with a stronger laser.

6.1.3 Laser Extraction

Extracting the center of the laser-line using a weighted first moment works very well. It
is possible however, that other strategies could provide a better result. One thought is to
use higher order moments, or ensuring that the laser-line the calculation is performed on
consists of connected pixels, i.e outliers are ignored. One can also consider other image
processing techniques. As the image is already on a GPU, the cost of performing additional
image operations is very low.

96

6.2 Features

6.2 Features

Some discussion of the features used in the classification follows. A general remark is that
one needs to be careful when evaluating the effectiveness of each individual feature for
small datasets. A higher rate might simply mean that the feature is more tailored to the
dataset itself.

6.2.1 Symmetry

The skewness and medial contour length attempt to capture the asymmetry in the salmon.
The salmon are not completely symmetrical about the longitudinal direction however, as
the back-part is smaller. What these features are looking for is a lack of a streamlined
shape. This means that one cannot simply deduce the symmetry from mapping the front
half onto the back half. Experiments were made where this was attempted by scaling and
re-sampling one half onto the other, but initial results was poor and further attempts was
stopped. The basic idea is maybe worth pursuing in the future however, perhaps also by
introducing concepts from fluid dynamics to describe how streamlined the salmon is. The
natural shape of salmon should minimize the resistance in water. Using the medial axis,
one could straighten the salmon to compensate for pose, and run a simplified simulation.
This might not be feasible for gutted salmon, however.

Neither of skewness and medial contour take the placement of the asymmetry into
account. Having such a feature would require some kind of spatial component in addition
to the symmetry feature, which would increase the number of features drastically. Due
to the small amount of samples, the symmetry needed to be represented through as few
degrees of freedom as possible.

6.2.2 Medial Axis

Experiments with and without features based on the medial axis resulted in a lower pre-
diction rate without the medial axis. Based on the dataset available it seems to have an
advantage. Tests was performed replacing the medial width, height and length with its
corresponding direct measurements. Collectively this reduced the prediction rate to 74%
true positive. If the features based on the medial axis generalizes to larger datasets remains
to be seen. During the testing of removing and combining various geometric features, the
medial contour length was found to be the absolute best single feature in the feature vector
for describing the deformities. It seems that the length around the contour describes de-
formities well. This intuitively stems from the fact that lack of a streamlined shape causes
unnecessary curvature, which causes the contour length to increase.

Although the medial axis took much time to implement correctly, especially consider-
ing the spline interpolation necessary. It was completely worth it. One of the primary goals
of the thesis was to compensate for the inherent variation present in biological subjects.
The medial axis causes the size metrics used to be largely invariant to the pose and curl of
the salmon, which would otherwise be hard to do robustly.

97

Chapter 6. Discussion

6.2.3 Reflective Properties

Originally, the intention was to use reflective properties of the laser line in the detection
of wounds. Features that could be considered in this regard is the sum of intensities per
column, the intensity at a certain offset and the width of the most intense of the laserline.
Unfortunately, removing the polarizing filter caused these to be unstable, and was left
unused. Figure 6.1 shows an instance where the scatter value (offset) would still be usable
- which illustrates the usefulness of these reflective properties. The wound is clearly visible
as a bright spot. Figure 6.2 shows an instance where it would not be so useful, and might in
fact do more harm than good. It seems that the offset, as imaged here, suffers more on the
bottom of the salmon due to the angle of the cameras. The beamwidths on the other hand,
suffered more on top due to the direct glare towards the top camera causing the witdth of
the beam to seem much wider. Both of these reflective properties were found to be very
useful when the polarization filter was used, which is why it is be mentioned here.

Figure 6.1: Scatter intensity for an offset of 8 for salmon 102 (top).

Figure 6.2: Scatter intensity for an offset of 8 for salmon 90 (bottom).

6.3 Attained Prediction Rates

Generally, the obtained prediction rates are quite satisfactory. Caution has been advised
several times however. The most optimistic rates are obtained when the model param-
eters are not decoupled from the validation set. What this essentially does is leave two
degrees of freedom to improve the performance of the classifier to known samples. The
C parameter is adjusted to optimally account for outliers in the dataset, and γ adjusts how
much influence a single training sample has. The cross-validation decouples the training
of the model from the validation set, but the parameters are selected as the overall result

98

6.3 Attained Prediction Rates

of the entire cross validation. That is, for each parameter combination - a cross-validation
is performed on the entire available dataset.

The 80/20 and 90/10 splits performed for the deformation classification yields more
correct rates - but are most likely a bit pessimistic due to the small size of the dataset. Due
to the small size of the dataset, there was also problems with the training set occasionally
selecting an optimal parameter combination that performed poorly for the validation set.
This will be much more stable with a larger dataset, as the number of outliers and cluster-
ing will be more settled. The proof for this is clear, as selecting a suboptimal parameter
combination for the full dataset yielded better results than selecting the optimal parameter
combination as the maximizer of the average rate at each repeated 80/20 split.

6.3.1 Deformity Detection
The performance can be thought to lie somewhere between the biased parameters and safe
non-optimal parameters. The true positive rate therefore lies somewhere between 95.5%
and 86.3%. The true negative rate lies somewhere between 95.1% and 92.7%. The results
are satisfactory, but it remains to see if the same results will be obtained for a larger dataset.

6.3.2 Wound Detection
The results obtained from the wound detection are also quite good. The attained rates
seem to be the best for RGB. As with the deformity detection, the rates lie somewhere
between the optimistic and pessimistic rates. This means that the true positive lies some-
where between 95.6% and 85.7%. The true negative lies between 92.9% and 96.8%. The
pessimistic rates yielded a true negative that is higher than the optimistic rates. This comes
from the fact that the optimistic parameter combination is chosen as the average of the true
positive and true negative rates. The choice of safe parameters simply happened to favor
the true negative rate. If one truly wants to maximize the true positive rate, one should
perhaps place extra emphasis on the true negative rate. As mentioned previously, the over-
all rate, which is the maximizer of the prediction rate of all samples regardless of class -
cannot be used for an unbalanced dataset. The result would be skewed towards the larger
class every time. The rates found also needs to be verified on a larger dataset before one
can be absolutely sure of the attained rates are correct.

The results for wound detection are generally also satisfactory, but can definitiely be
improved on. One aspect that was not used in the rejection of wounds is the placement.
One can most likely improve the rate significantly by ignoring the head and the abdominal
flap. That is, by either removing these regions previous to the classification - or including
some distance metric in the feature vector.

6.3.3 Evaluation of 3D Machine Vision in Quality Control
While performing quality control using 3D machine vision generally introduces more
complexity into the extraction of features and system as a whole, it is also an enabling
technology. It is an important step along the way to replace human workers completely.
While the features extracted from the point cloud in this thesis might not be the features
that end up being optimal in the long run, the information is there. The first step to replace

99

Chapter 6. Discussion

the human component in any machine vision task, is to provide the same sensory input
as humans. Humans have stereoscopic vision, which enables us to perceive depth. The
line-scanner is just an alternative route to obtain this information. Having full coordinate
coverage around the salmon means that one can obtain the same information as a human
picking up the object to study its underside.

Having the full coordinate profile enables the use of methods that would otherwise
be inaccessible. The fin removal procedure would not be possible to the same degree of
confidence without knowing the curvature on both sides. The medial length, tracing the
center of the salmon to account for the pose and curvature would not be possible without
depth information.

It is when this system is implemented in a factory, scanning several thousand salmon
per day, one truly can explore the possibilities with respect to different features and clas-
sifiers. One benefit of this machine vision system is that it is non-intrusive. It can be
implemented in a factory and then gradually take over as the machine learning algorithms
has been improved to the point where it can take over.

6.4 Additional Remarks

6.4.1 Performance
While the performance of the acquisition-part of the thesis has been covered briefly, the
performance of the analysis and feature extraction has not been covered. While the meth-
ods employed has partially been selected with respect to their computational complexity,
the implementation itself has not been optimized to a large degree. The features has been
a result of experimentation and prototyping, and pre-maturely optimizing them was there-
fore avoided. The spline re-sampling routine was perhaps the component that had the
worst performance. It was found however, that this was largely due to the interface used
in LabVIEW to communicate with Matlab (ActiveX). This should therefore not be a prob-
lem once it is implemented in LabVIEW or C++. There are also many parameters that
can be tweaked to make the analysis quicker. Reducing the spline sample density will for
example cause the Voronoi-diagram to be computed quicker. The current implementation
samples the boundary quite densely. Another possibility is to not perform the full analysis
for every frame, as has been done here. The features should not require the amount of
density along the length the salmon for them to be effective.

The components of the classification was implemented individually by reading and
writing data to disk, to avoid recomputing everything every time a change was made. For
this reason, it is hard to provide a performance metric of the implementation of feature
extraction and analysis.

6.4.2 Robustness
The robustness of the methods used has not been discussed to a great degree. One benefit
of developing this system without a polarization filter, which caused more noise, is that
the approach should be very robust when applied to a system with polarization filters.
One aspect that was found to be problematic was once again the spline. The system is

100

6.4 Additional Remarks

quite sensitive to the spline smoothness. Striking a balance between a spline that rejects
unwanted features and optical noise, while being flexible enough to capture the edge was
difficult. Especially with respect to the abdominal flap, which is much more protruding
than the other features (fins excluded). The spline representation is also not very general
considering that a polar representation is used. For this reason, implementing re-sampling
through another method should perhaps be considered. Previously, moving least squares
(MLS) was suggested as an alternative if a fast implementation could be made, perhaps on
the GPU.

Another aspect of this thesis is the application of automatic quality control to gutted
salmon. Applying quality control to un-gutted salmon would reduce the variability. In
fact, the polar representation used for the spline was originally designed to be used for
un-gutted salmon, where the salmon is mostly elliptical in shape. A benefit of considering
gutted salmon, is that applying the same techniques to un-gutted salmons should be robust.
This would not necessarily be the case the other way around.

101

Chapter 6. Discussion

102

Chapter 7

Conclusion

In this thesis, a complete machine vision system for 3D-imaging has been built and inte-
grated for the purpose of quality control of Atlantic salmon. The system is build using
off-the-shelf hardware, and has been integrated using no external proprietary tools. The
software for the acquisition was implemented with real-time restrictions in mind. The
result is thus an affordable solution, which can be deployed in an industrial environment
without major investments. An experiment was then performed on Atlantic salmon of dif-
ferent quality classes. The obtained data was then used to develop descriptors that capture
enough information to separate out lower classes of Atlantic salmon based on appearance.

Based on the results presented in chapter 5 and the following discussion in Chap-
ter 6, the main conclusion of this thesis is that 3D machine vision has clear benefits over
one-sided imaging. While the 2D counterpart is much cheaper in terms of computational
complexity, offloading the image processing to a GPU makes the increased workload man-
ageable. Based on the available dataset, the geometric features developed attains a high
level of separation between the superior and ordinary/production classes. Although the
size of the dataset is at the limit of what is advisable, the results have been verified using
known methods for classification accuracy estimation. The classification has primarily
been performed using Support Vector Machines (SVM) with a nonlinear kernel function
(RBF), which is currently one of the most popular classifiers when the dataset is small
in relation to the dimensionality of the features. The geometric classification results has
also been verified using nearest-neighbor classification, which provided slightly worse -
but comparable results. Verifying with a second machine learning algorithm reinforces the
belief that these results will generalize well to a real-world situation.

The additional effort put into the use of the medial axis, which possesses a skeleton-like
approximation, was found to be well worth the effort. Features based on the medial axis
are invariant to both the flex and pose of the salmon. The belief is therefore that the medial
axis helped counteract the impact of the inherent variability of biological matter. One
should be careful when concluding the effectiveness of features based on a small dataset,
as in this thesis however. When working with a small dataset, one always runs the risk of
specializing the selected features to the available data. In this thesis, the luxury of having
enough available data to set aside a dataset not used for development of the features was
not feasible. Determining the effectiveness of the current features and developing better

103

Chapter 7. Conclusion

features is therefore left to further work, when a larger dataset is obtained. Based on the
preliminary results found during this thesis however, the future looks optimistic.

The work performed regarding wound detection proves that it is possible to detect
wounds on both sides using the color information alone. A series of simple image pro-
cessing steps to segment possible wounds, followed by a classifier, proved to be a good
approach. Similar to the detection of deformities, the wound detection needs a larger
dataset to ultimately conclude on the effectiveness, as the color of wounds can vary greatly
depending on the depth and age of the wound.

To the authors knowledge, 3D imaging has not been utilized with full 360° coverage in
automatic quality control in the aquatic food industries. This statement is based on recent
review papers. The 360° 3D technology enables the quality control system not only to see
what the human operators see today, but also the side that is obscured from view. This has
as a major impact on wound detection, as the entirety of the salmon is visible. An algo-
rithm was for example developed to remove the effect of the most protruding fins on the
shape analysis. This would not be possible with the same level confidence, from a single
perspective - as the curvature on both sides of the fin would not be known. Additionally,
having a full and detailed colored 3D model of the fish, coupled with deformation-invariant
representation is an enabling technology. It enables practical solutions for more challeng-
ing grading tasks for salmon in the future, as well as future novel applications in fish
processing as a whole.

7.1 Summary of Contributions
In this section, a short summary is presented of the contributions that is perceived to be
the most important.

• An implementation that efficiently extracts and transforms the raw images obtained
from the cameras to world coordinates by utilizing a graphical processing unit.
While implementing code for a GPU is not difficult in itself, implementing effi-
cient code on the GPU requires knowledge of how it operates. While the GPU code
is not extraordinary on a global scale, it lowers the threshold for third party partners
to take 3D-imaging into use.

• Algorithms for making the point cloud more suitable for analysis was implemented.
This was done through statistical filtering and removal of unwanted features, such
as fins. The medial axis was computed, which has clear advantages in shape recog-
nition.

• During the development of the features used in the classification, many alternatives
were attempted. The features found gives further projects a starting point, or bench-
mark, in the search for alternative or better features.

• Alternatives to many of the chosen strategies were presented. Some of the alterna-
tives were not followed either because of time constraints or the fear that the algo-
rithm would prove to be too computationally intensive for an real-time application.
This provides a path of improvement for further work.

104

7.2 Recommendations and Further Work

• The thesis proves that 3D scanning in 360°has a place in automatic quality control.
With improvements in the performance of computers, faster and cheaper camera
hardware, the concept can only improve in its applicability.

• The results obtained in deformity and wound detection proves that the features found
are able to separate the classes in the dataset with an acceptable accuracy.

The software implementation responsible for acquiring images at high speed, which
has been developed and refined during this thesis, will be partly or fully used by an external
company for industrial use in the beginning of 2016. This would not be possible if the
implementation was not optimized with real-time use in mind. The findings in this thesis
will also be published in a scientific journal in collaboration with SINTEF.

7.2 Recommendations and Further Work
As this thesis spans a wide range of techniques, many of the approaches has more complex
alternatives that needs to be explored. Implementation-time was weighted against the
obtainable results, due to the time constraints imposed.

• The largest concern in this thesis is the size of the dataset. As this thesis deals
exclusively with objects that are biological - the variations in the dataset are large
compared to the number of samples. The results at this stage can therefore only
serve as an indication of obtainable prediction rate, and not something conclusive.
Having a larger dataset would enable further experimentation with both features and
classifiers without worrying that the result is skewed due to being tailored to the
samples present in the dataset.

• Experiments with more robust methods of extracting the center-point of the laser-
line is recommended, at least if the polarization filter ends up not being used. The
current method uses a weighted first moment to determine the center. If the laser
hits a surface at an angle, this would skew the center-point towards that side. This
could also be improved on by experimenting more with optics, i.e. stronger laser in
conjunction with a polarization filter.

• To obtain a color image in 2D, a simple perspective projection was performed onto a
plane from the bottom and top of the salmon. This works, but does not preserve the
surface areas completely. Wounds at an angle will therefore appear to have a smaller
surface area than in reality. An area-preserving projection can for example be done
by calculating the normal vector on the surface before projecting and stretching the
image to compensate.

• In this thesis, a spline interpolation was performed for each cross section of the
salmon. This decouples the spline interpolation from utilizing spatial information
along the length of the salmon. Moving least squares (MLS) was attempted as an
alternative, but was found to perform poorly to obtain the degree of smoothness
desired. An implementation of moving least squares on the GPU would be a possible
course of action.

105

Chapter 7. Conclusion

• The wound classification in this thesis proceeded using only color information.
Originally, the idea was to use how the laser reflects off the surface as another means
to detect wounds. Removing the polarization filter induced too much noise for this to
be an option. The polarization filter should therefore be reintroduced with a stronger
laser. The features used in wound classification can then be re-evaluated.

• Develop a new calibration object, that perhaps is moved along the conveyor belt
as opposed to placed statically. This enables all cameras to be calibrated at once,
negating any misalignment. This removes the need to perform a separate routine
after the main calibration to account for misalignment.

106

Bibliography

Asada, H., Brady, M., 1986. The curvature primal sketch. Pattern Analysis and Machine
Intelligence, IEEE Transactions on (1), 2–14.

Aurenhammer, F., 1991. Voronoi diagramsa survey of a fundamental geometric data struc-
ture. ACM Computing Surveys (CSUR) 23 (3), 345–405.

Barber, C. B., Dobkin, D. P., Huhdanpaa, H., 1996. The quickhull algorithm for convex
hulls. ACM Transactions on Mathematical Software (TOMS) 22 (4), 469–483.

Blum, H., 1967. A transformation for extracting descriptors of shape.

Bouckaert, R. R., Frank, E., 2004. Evaluating the replicability of significance tests for
comparing learning algorithms. In: Advances in knowledge discovery and data mining.
Springer, pp. 3–12.

Bradski, G., 2000. Dr. Dobb’s Journal of Software Tools.

Buljo, J., Gjerstad, T., Caldwell, D., et al., 2013. Robotics and automation in seafood pro-
cessing. In: Robotics and Automation in the Food Industry. Current and Future Tech-
nologies. Woodhead Publishing.

Chang, C.-C., Lin, C.-J., 2011. Libsvm: a library for support vector machines. ACM Trans-
actions on Intelligent Systems and Technology (TIST) 2 (3), 27.

Digre, H., 2014. Profitable refinement of seafood in norway (loennsom foredling av sjoe-
mat i norge). Tech. Rep. A26355, SINTEF.

Duda, R. O., Hart, P. E., Stork, D. G., 2012. Pattern classification. John Wiley & Sons.

Egeness, F.-A., 2013. Chinese production of frozen filetproducts from cod (kinesisk pro-
duksjon av fryste filetprodukter av torsk). Tech. rep., Nofirma.no.
URL http://www.nofima.no/filearchive/Rapport%2026-2013.pdf

Fjelldal, P., Hansen, T., Breck, O., Ørnsrud, R., Lock, E.-J., Waagbø, R., Wargelius, A.,
Eckhard Witten, P., 2012. Vertebral deformities in farmed atlantic salmon (salmo salar
l.)–etiology and pathology. Journal of Applied Ichthyology 28 (3), 433–440.

107

http://www.nofima.no/filearchive/Rapport%2026-2013.pdf

Fjelldal, P. G., Hansen, T. J., Berg, A. E., 2007. A radiological study on the development
of vertebral deformities in cultured atlantic salmon (salmo salar l.). Aquaculture
273 (4), 721 – 728.
URL http://www.sciencedirect.com/science/article/pii/
S0044848607005662

Hartley, R., Zisserman, A., 2003. Multiple view geometry in computer vision. Cambridge
university press.

Hsu, C.-W., Chang, C.-C., Lin, C.-J., et al., 2003. A practical guide to support vector
classification.

Katz, R. A., Pizer, S. M., 2003. Untangling the blum medial axis transform. International
Journal of Computer Vision 55 (2-3), 139–153.

Kristiansen, J. E., 2014. This is norway 2014. Statistics Norway, SSB, ISBN 978-82-537-
8978-1.
URL https://www.ssb.no/en/befolkning/
artikler-og-publikasjoner/this-is-norway-2014

Litzenberger, G., 2009. World robotics, industrial robots. International Federation of
Robotics (IFR) Statistical Department.

Liu, S., Ye, Y., 2011. Point cloud segmentation using gradient vector flow snake. In: Infor-
mation Science and Technology (ICIST), 2011 International Conference on. IEEE, pp.
1114–1118.

Macrini, D., Siddiqi, K., Dickinson, S., 2008. From skeletons to bone graphs: Medial
abstraction for object recognition. In: Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on. IEEE, pp. 1–8.

Mathiassen, J., Jansson, S., Veliyulin, E., Njaa, T., Lønseth, M., Bondø, M., Østvik,
S., Risdal, J., Skavhaug, A., 2006. Automatic weight and quality grading of whole
pelagic fish. In: In Proceedings NFTC 2006, the 1st Nor-Fishing Technology Confer-
ence, Trondheim, Norway.

Miller, A., Gregory, K., 2012. C++ AMP. Pearson Education.

Misimi, E., Erikson, U., Skavhaug, A., 2008. Quality grading of atlantic salmon (salmo
salar) by computer vision. Journal of food science 73 (5), E211–E217.

Misimi, E., Mathiassen, J. R., Erikson, U., Skavhaug, A., 2006. Computer vision based
sorting of atlantic aslmon (salmo salar) according to shape and size. In: Proceedings of
International Conference on Computer Vision Theory and Applications, VISAPP 2006.
Vol. 1. pp. 265–270.

Rusu, R. B., Cousins, S., May 9-13 2011. 3D is here: Point Cloud Library (PCL). In: IEEE
International Conference on Robotics and Automation (ICRA). Shanghai, China.

108

http://www.sciencedirect.com/science/article/pii/S0044848607005662
http://www.sciencedirect.com/science/article/pii/S0044848607005662
https://www.ssb.no/en/befolkning/artikler-og-publikasjoner/this-is-norway-2014
https://www.ssb.no/en/befolkning/artikler-og-publikasjoner/this-is-norway-2014

Sandberg, M. G., 2014. Profitability and employment in the norwegian sea-food industry
(verdiskapning og sysselsetting i norsk sjoematnaering). Tech. Rep. A26088, SINTEF.
URL http://www.fhf.no/prosjektdetaljer/?projectNumber=
900899

Schmitt, M., 1989. Some examples of algorithms analysis in computational geometry by
means of mathematical morphological techniques. In: Geometry and robotics. Springer,
pp. 225–246.

Shawe-Taylor, J., Cristianini, N., 2004. Kernel methods for pattern analysis. Cambridge
university press.

Siddiqi, K., Pizer, S., 2008. Medial representations: mathematics, algorithms and applica-
tions. Vol. 37. Springer Science & Business Media.

Smola, A. J., Schölkopf, B., 1998. Learning with kernels. Citeseer.

Studholme, C., Hill, D. L., Hawkes, D. J., 1999. An overlap invariant entropy measure of
3d medical image alignment. Pattern recognition 32 (1), 71–86.

Subasinghe, R., 2005. Aquaculture topics and activities. state of world aquaculture.
URL http://www.fao.org/fishery/topic/13540/en

Vågsholm, I., Djupvik, H., 1998. Risk factors for spinal deformities in atlantic salmon,
salmo salar l. Journal of fish diseases 21 (1), 47–54.

Vapnik, V., 1995. The nature of statistical learning theory. Springer Science & Business
Media.

Wikipedia, 2006. Bayer pattern on sensor profile.
URL http://commons.wikimedia.org/wiki/File:Bayer_pattern_
on_sensor_profile.svg#/media/File:Bayer_pattern_on_sensor_
profile.svg

Witten, P. E., Gil-Martens, L., Hall, B. K., Huysseune, A., Obach, A., et al., 2005. Com-
pressed vertebrae in atlantic salmon salmo salar: evidence for metaplastic chondrogen-
esis as a skeletogenic response late in ontogeny. Dis. Aquat. Org 64, 237–246.

Witten, P. E., Gil-Martens, L., Huysseune, A., Takle, H., Hjelde, K., 2009. Towards a
classification and an understanding of developmental relationships of vertebral body
malformations in atlantic salmon (salmo salar l.). Aquaculture 295 (1), 6–14.

Yushkevich, P. A., 2009. Continuous medial representation of brain structures using the
biharmonic pde. NeuroImage 45 (1), S99–S110.

Zhao, W., Chellappa, R., Phillips, P. J., Rosenfeld, A., Dec. 2003. Face recognition: A
literature survey. ACM Comput. Surv. 35 (4), 399–458.
URL http://doi.acm.org/10.1145/954339.954342

109

http://www.fhf.no/prosjektdetaljer/?projectNumber=900899
http://www.fhf.no/prosjektdetaljer/?projectNumber=900899
http://www.fao.org/fishery/topic/13540/en
http://commons.wikimedia.org/wiki/File:Bayer_pattern_on_sensor_profile.svg#/media/File:Bayer_pattern_on_sensor_profile.svg
http://commons.wikimedia.org/wiki/File:Bayer_pattern_on_sensor_profile.svg#/media/File:Bayer_pattern_on_sensor_profile.svg
http://commons.wikimedia.org/wiki/File:Bayer_pattern_on_sensor_profile.svg#/media/File:Bayer_pattern_on_sensor_profile.svg
http://doi.acm.org/10.1145/954339.954342

110

Appendix

A Dataset
Red sample numbers indicates that the salmon has been completely unused. I.e a defect
not considered in this thesis.

Table A1: Superior dataset 1/2

Sample number Comments
Salmon 1 -
Salmon 2 -
Salmon 3 -
Salmon 4 Has a tendency to be wrongly classified due to an abnormal shape

at the middle (high middle back). Kept in final dataset.
Salmon 5 -
Salmon 6 -
Salmon 7 -
Salmon 8 -
Salmon 9 -
Salmon 10 Deep cut during gutting at head, detected as humpback due to in-

creased width of the abdominal flap. Removed from final dataset.
Salmon 11 Signs of humpback. Removed from the final dataset.
Salmon 12 -
Salmon 13 -
Salmon 14 -
Salmon 15 -
Salmon 16 -
Salmon 17 -
Salmon 18 -
Salmon 19 Signs of humpback. Removed from the final dataset.
Salmon 20 -
Salmon 21 -
Salmon 22 -
Salmon 23 -
Salmon 24 -

111

Table A2: Superior dataset 2/2

Sample number Comments
Salmon 41 Innards hanging out at the hind part of the abdominal cut.
Salmon 42 Signs of humpback, often misclassified. Kept in final dataset.
Salmon 43 -
Salmon 44 -
Salmon 45 -
Salmon 46 -
Salmon 53 Signs of humpback.
Salmon 54 -
Salmon 55 -
Salmon 56 -
Salmon 57 Weak humpback
Salmon 58 -
Salmon 59 -
Salmon 60 -
Salmon 61 -
Salmon 62 Appears to have humpback
Salmon 63 -
Salmon 64 -
Salmon 65 -
Salmon 66 Appears to have humpback
Salmon 67 -

112

Table A3: Ordinary dataset

Sample number Defects
Salmon 25 Bad gutting behind anal fin, scraped shells left side (dark regions)
Salmon 26 Slight humpback
Salmon 27 No specific deformities, generally deformed
Salmon 28 Slight humpback
Salmon 29 Humpback
Salmon 30 Possibly downgraded due to bad gutting or abnormal size
Salmon 31 Humpback
Salmon 32 Humpback
Salmon 33 Possible scaling left side
Salmon 34 Humpback
Salmon 68 Small deformation (humpback)
Salmon 69 Small deformation (wide back half)
Salmon 70 Small deformation (abnormal shape)
Salmon 71 Small deformation (humpback)
Salmon 72 Small deformation (thin, abnormal shape)
Salmon 77 Melanin spots (inside)
Salmon 78 Melanin spots (inside)
Salmon 79 Melanin spots (inside)
Salmon 80 Melanin spots (inside)
Salmon 81 Melanin spots (inside)
Salmon 92 Small deformation (thin)
Salmon 93 Small deformation (humpback, thick)
Salmon 94 Small deformation (uncertain, slight humpback and thick)
Salmon 95 Small deformation (wide back half, short back half)
Salmon 96 Small deformation (humpback, wide front)
Salmon 97 Melanin spots (inside)
Salmon 98 Melanin spots (inside)
Salmon 99 Melanin spots (inside)
Salmon 100 Melanin spots (inside)

113

Table A4: Production dataset

Sample number Defects
Salmon 35 Humpback
Salmon 36 Bad gutting
Salmon 37 Humpback, scraped shells
Salmon 38 Small wound
Salmon 39 Wound, humpback
Salmon 40 Small size
Salmon 47 Wound, humpback, thin backside
Salmon 48 Humpback, small wound
Salmon 49 Wound
Salmon 50 Scraped shells
Salmon 51 Wound, humpback
Salmon 52 Scraped shells
Salmon 73 Bad gutting
Salmon 74 Bad gutting
Salmon 75 Bad gutting
Salmon 76 Bad gutting, small size
Salmon 82 Large deformations
Salmon 83 Large deformations
Salmon 84 Large deformations
Salmon 85 Large deformations
Salmon 86 Large deformations
Salmon 87 Wounds
Salmon 88 Wounds
Salmon 89 Wounds
Salmon 90 Wounds
Salmon 91 Wounds
Salmon 101 Wounds
Salmon 102 Wounds
Salmon 103 Wounds
Salmon 104 Wounds
Salmon 105 Wounds

114

B Camera Triggering (Arduino)

1 / / C o n t a i n s t h e code t o t r i g g e r t h e l a s e r and cameras i n d i v i d u a l l y
2 / / I n d i v i d u a l t r i g g i n g i s done t o a v o i d l a s e r−l i n e o v e r l a p
3

4 / / Note1 : t r a n s f e r o v e r l a p s wi th e x p o s u r e i n camera mode 14 f o r p t .←↩
g rey

5 / / Note2 : LED T r a n s f e r r e q u i r e s more t ime t h a n t h e l a s e r f rames , a s ←↩
t h e y a r e c a p t u r e d a t t h e same t ime − w h i l e l a s e r images a r e t a k e n ←↩
s e q u e n t i a l l y

6

7 t y p e d e f c o n s t u n s i g n e d i n t c u i n t ;
8

9 # d e f i n e FPS 400 / / T a r g e t f p s
10 # d e f i n e EXPOSURE TIME 300 / / Camera e x p o s u r e t ime (m i c r o s e c o n d s)
11

12 / / E s t i m a t e o f t h e t ime t h e camera sp en ds on d a t a t r a n s f e r a f t e r ←↩
c a p t u r e

13 # d e f i n e DATA TRANSFER LASER 400
14 # d e f i n e DATA TRANSFER LED 1000
15

16 / / S t a t e s
17 # d e f i n e LASERREADY 0
18 # d e f i n e TAKELASERIMAGE 1 1
19 # d e f i n e TAKELASERIMAGE 2 2
20 # d e f i n e TAKELASERIMAGE 3 3
21 # d e f i n e LEDREADY 4
22 # d e f i n e TAKELEDIMAGE 5
23 # d e f i n e DELAY STATE 6
24

25 / / Ou tpu t PIN IDs
26 # d e f i n e CAM1 10 / / RIGHT CAMERA PIN
27 # d e f i n e CAM2 11 / / TOP CAMERA
28 # d e f i n e CAM3 12 / / LEFT CAMERA
29 # d e f i n e LASER1 3 / / RIGHT LASER
30 # d e f i n e LASER2 4 / / TOP LASER
31 # d e f i n e LASER3 2 / / LEFT LASER
32 # d e f i n e LED 6
33

34 # d e f i n e N CAM 3 / / Number o f cameras
35

36 / / Timing (i n m i c r o s e c o n d s)
37

38 / / T o t a l r e q u e s t e d p e r i o d
39 PERIOD = (1000000UL / FPS) * 2 ;
40 / / Smal l d e l a y a p p l i e d between t u r n i n g l a s e r on and c a p t u r e
41 c u i n t WAIT_LASER_ONOFF = 5 0 ;
42 / / Allow f o r e x p o s u r e t ime between l a s e r images
43 c u i n t WAIT_AFTER_LASERIMAGE = EXPOSURE_TIME + WAIT_LASER_ONOFF ;
44 / / Allow t h e l a s e r images t o be t r a n s f e r e d
45 c u i n t WAIT_AFTER_LEDREADY = DATA_TRANSFER_LASER + WAIT_LASER_ONOFF ;
46 / / Allow t ime f o r bo th t r a n s f e r and e x p o s u r e
47 c u i n t WAIT_AFTER_LEDIMAGE = EXPOSURE_TIME + DATA_TRANSFER_LED ;
48 / / Delay b e f o r e l a s e r t r i g g e r i n g b e g i n s
49 c u i n t WAIT_AFTER_LASERREADY = 5 0 ;

115

50

51 / / Add up t h e d e l a y s so f a r , and use i t t o d e f i n e t h e w a i t b e f o r e ←↩
s t a r t i n g a new grab s e q u e n c e

52 c u i n t TIMESPENT = N_CAM * (WAIT_AFTER_LASERIMAGE)
53 + WAIT_AFTER_LEDREADY
54 + WAIT_AFTER_LEDIMAGE
55 + WAIT_AFTER_LASERREADY ;
56 c u i n t DELAYTIME = PERIOD − TIMESPENT ;
57

58 / / Wait t ime between s t a t e s
59 i n t waitTimes [] = {
60 WAIT_AFTER_LASERREADY ,
61 WAIT_AFTER_LASERIMAGE ,
62 WAIT_AFTER_LASERIMAGE ,
63 WAIT_AFTER_LASERIMAGE ,
64 WAIT_AFTER_LEDREADY ,
65 WAIT_AFTER_LEDIMAGE ,
66 DELAYTIME
67 } ;
68

69 / / The s e t u p f u n c t i o n r u n s once when you p r e s s r e s e t o r power t h e boa rd
70 vo id setup () {
71 pinMode (CAM1 , OUTPUT) ;
72 pinMode (CAM2 , OUTPUT) ;
73 pinMode (CAM3 , OUTPUT) ;
74 pinMode (LASER1 , OUTPUT) ;
75 pinMode (LASER2 , OUTPUT) ;
76 pinMode (LASER3 , OUTPUT) ;
77 pinMode (LED , OUTPUT) ;
78 }
79

80 / / I n i t i a l s t a t e
81 i n t state = LASERREADY ;
82

83 / / I n i t i a l t i m e r v a l u e
84 u n s i g n e d long lastFrameTime = micros () ;
85

86 / / Loop t h r o u g h t h e s t a t e machine
87 vo id loop ()
88 {
89 / / A b s o l u t e v a l u e due t o c o u n t e r r e s e t t i n g a f t e r ˜70 m i n u t e s
90 i f (abs (micros () − lastFrameTime) > waitTimes [state])
91 {
92 lastFrameTime += waitTimes [state] ;
93 StateMachine () ;
94 }
95 }
96

97 vo id StateMachine ()
98 {
99 s w i t c h (state) {

100 c a s e LASERREADY :
101 readyCamera (CAM1) ;
102 readyCamera (CAM2) ;
103 readyCamera (CAM3) ;
104 setLED (LOW) ;
105 state = TAKELASERIMAGE_1 ;

116

106 b r e a k ;
107

108 c a s e TAKELASERIMAGE_1 :
109 setLaser (LASER1 , HIGH) ;
110 delayMicroseconds (WAIT_LASER_ONOFF) ;
111 takePicture (CAM1) ;
112 state = TAKELASERIMAGE_2 ;
113 b r e a k ;
114

115 c a s e TAKELASERIMAGE_2 :
116 setLaser (LASER2 , HIGH) ;
117 delayMicroseconds (WAIT_LASER_ONOFF) ;
118 setLaser (LASER1 , LOW) ;
119 takePicture (CAM2) ;
120 state = TAKELASERIMAGE_3 ;
121 b r e a k ;
122

123 c a s e TAKELASERIMAGE_3 :
124 setLaser (LASER3 , HIGH) ;
125 delayMicroseconds (WAIT_LASER_ONOFF) ;
126 setLaser (LASER2 , LOW) ;
127 takePicture (CAM3) ;
128 state = LEDREADY ;
129 b r e a k ;
130

131 c a s e LEDREADY :
132 readyCamera (CAM1) ; / / Cam1 r e a d y f o r t r i g g i n g
133 readyCamera (CAM2) ; / / Cam2 r e a d y f o r t r i g g i n g
134 readyCamera (CAM3) ; / / Cam3 r e a d y f o r t r i g g i n g
135 delayMicroseconds (WAIT_LASER_ONOFF) ; / / Added d e l a y t o e n s u r e c o r r e c t←↩

image embedding
136 setLaser (LASER1 ,LOW) ; / / Turn o f f l a s e r 1
137 setLaser (LASER2 ,LOW) ; / / Turn o f f l a s e r 1
138 setLaser (LASER3 ,LOW) ; / / Turn o f f l a s e r 1
139 setLED (HIGH) ; / / Turn on l e d
140 state = TAKELEDIMAGE ;
141 b r e a k ;
142

143 c a s e TAKELEDIMAGE :
144 takePicture (CAM1) ; / / T r i g g e r cam1
145 takePicture (CAM2) ; / / T r i g g e r cam2
146 takePicture (CAM3) ; / / T r i g g e r cam3
147 state = DELAY_STATE ;
148 b r e a k ;
149

150 c a s e DELAY_STATE :
151 state = LASERREADY ;
152 b r e a k ;
153 }
154 }
155

156 vo id takePicture (i n t cameraNumber) {
157 digitalWrite (cameraNumber , LOW) ;
158 }
159

160 vo id readyCamera (i n t cameraNumber) {
161 digitalWrite (cameraNumber , HIGH) ;

117

162 }
163

164 vo id setLaser (i n t laserNumber , i n t set) {
165 digitalWrite (laserNumber , set) ;
166 }
167

168 vo id setLED (i n t set) {
169 digitalWrite (LED , set) ;
170 }

118

C Pruning and Spline Re-sampling (Matlab)

1 f u n c t i o n [X_spl , Y_spl] = SliceSpline (X , Y , n_eval , p , d_rho_threshold←↩
, rho_residual_threshold)

2 % Dimens ions : [Cam] [X] , [Cam] [Y]
3

4 % F l a t t e n t o 1D
5 X = r e s h a p e (X , numel (X) , 1) ;
6 Y = r e s h a p e (Y , numel (Y) , 1) ;
7

8 % Remove p o i n t s where Y i s NaN
9 X = X (˜ i s n a n (Y)) ;

10 Y = Y (˜ i s n a n (Y)) ;
11

12 %% Curve p a r a m e t e r i z a t i o n
13 % T r a n s l a t e p o i n t s a round c e n t r o i d
14 c = [mean (Y) , mean (X)] ;
15 cx = X − c (2) ;
16 cy = Y − c (1) ;
17

18 % P o l a r c o o r d i n a t e s
19 [th ,rho] = c a r t 2 p o l (cx ,cy) ;
20 th (th < 0) = th (th < 0) + 2* p i ;
21 rho_mean = mean (rho) ;
22 n_samples = s i z e (X , 1) ;
23

24 % S o r t by a s c e n d i n g t h e t a , a p p l y same i n d e x i n g t o rho , X, Y
25 [th , th_I] = s o r t (th) ;
26 rho = rho (th_I) ;
27 X = X (th_I) ;
28 Y = Y (th_I) ;
29

30 % Find r e g i o n s o f d i s c o n t i n u i t y (i n rho) , smooth d i f f r e s u l t (padded t o
31 % i n i t i a l i z e f i l t e r) . E x t r a c t t h e o r i g i n a l s e q u e n c e .
32 d_rho = d i f f ([rho ; rho (1)]) ;
33 windowSize = 2 0 ;
34 b = (1 /windowSize) *ones (1 ,windowSize) ;
35 d_rho_smooth = f i l t e r (b , 1 , abs ([d_rho (end−windowSize : end) ; d_rho ; d_rho←↩

(1 :windowSize)])) ;
36 d_rho_smooth = d_rho_smooth (windowSize+1: end−windowSize−1) ;
37

38 % Find smoothed i n d i c e s t h a t e x c e e d s t h e t h r e s h o l d
39 d_rho_threshold = d_rho_threshold * max (rho_mean , 3) ;
40 d_rho_above_I = f i n d (d_rho_smooth > d_rho_threshold) ;
41 th_above = th (d_rho_above_I) ;
42

43 % D i s c o n t i n u i t y d e t e c t e d ?
44 i f (˜ i s e m p t y (th_above))
45 % Find s t a r t and end of c o n t i n o u s r e g i o n s
46 d_theta_above = d i f f (th_above) ;
47

48 % Merge r e g i o n s i f t h e y a r e s e p a r a t e d by l e s s t h a n a c e r t a i n a n g l e
49 threshold_sep_angle = 5* p i / 1 8 0 ;
50 d_theta_sameregion = d_theta_above < threshold_sep_angle ;
51

119

52 % Check i f t h e r e g i o n bounds a round
53 region_islooped = abs ((th_above (end) − th_above (1) − 2* p i)) < ←↩

threshold_sep_angle ;
54

55 % I n d i c e s o f s e p a r a t i o n (i n t h e o r i g i n a l a r r a y)
56 region_indices = f i n d (˜d_theta_sameregion) ;
57 region_temp = z e r o s (s i z e (region_indices , 1) *2 , 1) ;
58 f o r i = 1 : 2 : s i z e (region_temp , 1)
59 region_temp (i) = d_rho_above_I (region_indices (uint16 (i / 2))) ;
60 region_temp (i+1) = d_rho_above_I (region_indices (uint16 (i / 2)) + ←↩

1) ;
61 end
62

63 region_separator = [d_rho_above_I (1)−1; region_temp ; d_rho_above_I (←↩
end) + 1] ;

64

65 c l e a r region_indices region_temp
66

67 % The number o f r e g i o n s i s e q u a l t o t h e number o f b o u n d a r i e s (−1)
68 % I f i t l o o p s around , t h e two c l o s e s t a r e a s w i l l be merged (−1 i f ←↩

t r u e)
69 % L a s t i n d e x i s a l l o c a t e d f o r l o o p e d a r e a
70 n_disc_regions = f l o o r (s i z e (region_separator , 1) / 2) ;
71 i f (region_islooped)
72 n_disc_regions = n_disc_regions − 1 ;
73 end
74

75 disc_area = cell (n_disc_regions , 1) ;
76

77 % Get t h e i n d i c e s a s s o c i a t e d wi th each d i s c o n t i n u o u s a r e a
78 i f (region_islooped)
79 % E x t r a c t t h e b e g i n n i n g and en d i ng i n d i c e s
80 disc_area{end} = [region_separator (end) :n_samples , 1 :←↩

region_separator (1)] ;
81 region_separator (end) = [] ;
82 region_separator (1) = [] ;
83 end
84

85 % S e t i n d i c e s f o r non−l o op ed r e g i o n s
86 f o r i = 1 : (n_disc_regions − region_islooped)
87 % Lower bound must be s h i f t e d one p o s i t i o n due t o d i f f
88 lower_bound = region_separator (i*2 − 1) ;
89 upper_bound = region_separator (i*2) ;
90 disc_area{i} = lower_bound :upper_bound ;
91 end
92

93 % I g n o r e s m a l l a r e a s (l e s s t h a n a c e r t a i n amount)
94 threshold_min_area = 2* p i / 1 8 0 ;
95 disc_area (a l l (cellfun (@isempty , disc_area) , 2) , :) = []
96 area_th_sz = cellfun (@ (x) abs (th (x (end)) − th (x (1))) , disc_area) ;
97 disc_area = disc_area (area_th_sz > threshold_min_area) ;
98

99 % Pad r e m a i n i n g r e g i o n s a b i t , t o improve t h e r e g u l a r i t y o f t h e mean←↩
v a l u e

100 th_padding = 5* p i / 1 8 0 ;
101 n_disc_padding = round (th_padding * n_samples / (2* p i)) ;
102

120

103 % For each r e g i o n , s ave i n d i c e s t o remove (above mean))
104 padded_area_remove = [] ;
105 f o r i = 1 : s i z e (disc_area , 1)
106 disc_start = disc_area{i} (1) ;
107 disc_end = disc_area{i} (end) ;
108 padded_area = [disc_start − n_disc_padding : disc_start−1, . . .
109 disc_area{i} , . . .
110 disc_end+1 : disc_end + n_disc_padding] ;
111

112 % I f padded i n d e x e x c e e d s n sample , r o l l a round
113 idx_above = padded_area > n_samples ;
114 padded_area (idx_above) = padded_area (idx_above) − n_samples + 1 ;
115 idx_below = padded_area < 1 ;
116 padded_area (idx_below) = padded_area (idx_below) + n_samples − 1 ;
117

118 % Remove p o i n t s above mean i n r e g i o n (one−s i d e d , o u t w a r d s)
119 rho_mean_area = mean (rho (padded_area)) ;
120 padded_area_remove = [padded_area_remove , padded_area (rho (←↩

padded_area) > rho_mean_area)] ;
121 end
122 % Remove t h e p o i n t s
123 X (padded_area_remove) = [] ;
124 Y (padded_area_remove) = [] ;
125 end
126

127 n_samples = s i z e (X , 1) ;
128

129 %% S p l i n e f i t
130

131 % Add padd ing t o e n s u r e smooth s p l i n e
132 n_padding = round (0 . 2 * n_samples) ;
133 X_padded = [X (end−n_padding+1: end) ; X ; X (1 :n_padding)] ;
134 Y_padded = [Y (end−n_padding+1: end) ; Y ; Y (1 :n_padding)] ;
135

136 % S e t up p a r a m e t e r i z a t i o n from 0 t o 1 , w i t h o u t t h e padd ing (e x t e n d r a n g e←↩
)

137 % beyond 0 and 1 f o r t h e padded samples .
138 t_padding_down = l i n s p a c e (−n_padding / (n_samples−1) , −1/(n_samples−1) , ←↩

n_padding) ;
139 t_padding_up = l i n s p a c e (1 + 1 / (n_samples−1) , 1 + n_padding / (n_samples−1)←↩

, n_padding) ;
140 t = [t_padding_down , l i n s p a c e (0 , 1 , n_samples) , t_padding_up] ;
141

142 %% S p l i n e f i t u s i n g r o b u s t n e s s measure (t o l e r a n c e)
143 % D ef in e t o l e r a n c e i n t e r m s of rho
144 [˜ , avg_rho] = c a r t 2 p o l (X , Y) ;
145 avg_rho = mean (avg_rho) ;$
146 tol = p * max (avg_rho , 4) ;
147

148 [spl1 , values] = spaps (t , [X_padded ' ; Y_padded '] , tol) ;
149

150 X_values = values (1 , :) ' ;
151 Y_values = values (2 , :) ' ;
152 [˜ , rho_values] = c a r t 2 p o l (X_values , Y_values) ;
153 [˜ , rho_padded] = c a r t 2 p o l (X_padded , Y_padded) ;
154 rho_residuals = rho_padded − rho_values ;
155

121

156 X_padded_removed = X_padded ;
157 Y_padded_removed = Y_padded ;
158

159 % I t e r a t i v e l y remove samples t h a t e x c e e d s t h e r e s i d u a l t h r e s h o l d (F a s t ←↩
s e l e c t i v e RANSAC)

160 rho_residual_threshold = rho_residual_threshold * max (avg_rho , 5) ;
161

162 w h i l e (any (abs (rho_residuals) > rho_residual_threshold))
163 % Remove r e s i d u a l s f u r t h e r o u t t h a n t h r e s h o l d
164 rho_residual_below_I = abs (rho_residuals) < rho_residual_threshold ;
165 X_padded_removed = X_padded_removed (rho_residual_below_I) ;
166 Y_padded_removed = Y_padded_removed (rho_residual_below_I) ;
167 t = t (rho_residual_below_I) ;
168

169 % Re−t r a i n
170 [spl1 , values_new] = spaps (t , [X_padded_removed ' ; Y_padded_removed←↩

'] , tol) ;
171

172 % C a l c u l a t e new r e s i d u a l s
173 X_values = values_new (1 , :) ' ;
174 Y_values = values_new (2 , :) ' ;
175 [˜ , rho_values] = c a r t 2 p o l (X_values , Y_values) ;
176 [˜ , rho_padded] = c a r t 2 p o l (X_padded_removed , Y_padded_removed) ;
177 rho_residuals = rho_padded − rho_values ;
178 end
179

180 % E v a l u a t e s p l i n e w i t h i n s p l i n e i n t e r v a l (0−1)
181 t_eval = l i n s p a c e (max (1 /n_eval , min (t)) , min (1− (1/n_eval) , max (t)) , ←↩

n_eval) ;
182 XY_spl = fnval (spl1 , t_eval) ;
183 X_spl = XY_spl (1 , :) ' ;
184 Y_spl = XY_spl (2 , :) ' ;
185

186 end

122

	Summary
	Sammendrag
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Abbreviations
	Introduction
	Background
	The Norwegian Seafood Industry
	Common Defects in Farmed Salmon

	Benefits of Further Automation
	Previous Work
	Price of Comparable Systems
	Related Work
	Goals and Objectives
	Structure of the Thesis

	Literature Review
	Classical Statistical Learning
	Curse of Dimensionality
	Overfitting
	Cross-Validation

	Support Vector Machines (SVM)
	Linear SVM
	Nonlinear SVM
	VC Theory
	SVM: Advantages and Disadvantages

	Numerical Geometry and Shape Recognition
	Medial Axis Transform

	Geometric Transformations

	Equipment and Acquisition
	Line Scanner Principles
	The Camera Rig
	Camera Triggering
	Calibration Routine
	Direct Linear Transformation (DLT)
	Non-linear Optimization
	Misalignment Correction
	Speed Calibration

	Parallel Image Processing
	Bayer Filtering
	Coordinate Extraction
	Reflectance Properties
	GPU Code Optimization
	Color Images

	Polarization Filter

	Experiments and Feature Extraction
	Quality Grading
	Humpback
	Wounds

	Point Cloud Post-Processing
	Statistical Outlier Removal
	Fin Removal
	Spline Re-sampling

	Medial Axis
	Geometric Feature Extraction
	Width
	Height
	Length
	Skewness

	Color Image Projection
	Color Feature Extraction

	Results
	Method of Performance Evaluation
	Detecting Deformities
	Deformity Detection Using C-SVM with RBF Kernel
	Deformity Detection Using Nearest Neighbor Classifier (NN)

	Wound Detection
	Detection of Wounds Using SVM with RBF Kernel

	Summary of Results

	Discussion
	Methodology
	Line Scanning
	Camera Calibration
	Laser Extraction

	Features
	Symmetry
	Medial Axis
	Reflective Properties

	Attained Prediction Rates
	Deformity Detection
	Wound Detection
	Evaluation of 3D Machine Vision in Quality Control

	Additional Remarks
	Performance
	Robustness

	Conclusion
	Summary of Contributions
	Recommendations and Further Work

	Bibliography
	Appendix
	Dataset
	Camera Triggering (Arduino)
	Pruning and Spline Re-sampling (Matlab)

