


each of the terrain resolutions. What is of interest is how far apart the paths are and if
there is any difference in the optimal paths, which path is the shorter one. Trials here will
repeated many times over, with randomly selected start and end points. This way, we can
use statistics to see if the results are consistent and if not not, how much variation is there
in the data. Also important is to establish the computation time for each of the terrains, to
see how much increase in computation time changes as terrain resolution will increase.

6.1.1 First trial: 1 m, 2 m and 10 m resolutions

For the first trial, the terrain resolutions 1 m, 2 m and 10 m is used. Path planning are done
with random start and target points for paths. First, a start point is chosen at random from
the whole 26×26 km area. Another point is chosen as the target point. It is selected by
choosing a random direction from the point, and choosing a random distance between 2
and 4 km. The resulting point will be the target point. A subselection of the large 26×26
km terrain is chosen by finding the rectangle spanned by the start and end point in the 1
m resolution, and adding a 1000 m padding for the rectangle. To ensure that the region
will be uniquely defined in the 2 m and 10 m terrain, the limits are chosen so that they are
divisible by 10. All the coordinates from the 1 m terrain can therefore be converted to 2
m and 10 m terrain by dividing by 2 and 10 respectively.

With the subregions defined in all terrain resolutions, the respective elevation and terrain
types data can be used to create a speed map, as shown in figure 5.11. Generic graphs are
created of the sizes of the subregions, and the speed maps are used to assign weights to
the edges.

Path planning between the start and end points is used for finding the optimal paths in
each of the terrain resolution. For the experiment, the trial is repeated N = 30 times.
Paths from one of the cases are shown in figures 6.2a, 6.2b and 6.2c. Here, the optimal
paths in all terrains are almost exactly the same. This is a good illustration of a case where
hierarchical path planning would work very well, as the optimal path in the 1 m terrain
always is within a very small radius of both the 2 m terrain and 10 m terrain.

Another example where hierarchical path planning would not work as well can be seen
in figure 6.3. Here, the optimal paths in the 1 m terrain and 10 m terrain are located very
far apart. Any radius around the 10 m path that would cover the 1 m path would be so
large that it would cover most of the original terrain selection, making the hierarchical
approach essentially equal to the conventional path planning. Despite the large distance
between the paths, it could still be possible that a near optimal path could be found in the
neighborhood of the 10 m path. Further investigations into this can be seen in section 6.2.

Computation time

The first variable measured is the computation time. The time measured the time used for
the actual path planning algorithm to run. The computation times for each of the terrains
are given in figure 6.4. There is large spreads in the computation times, but as the start
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Figure 6.2: Close to identical optimal paths in 1 m, 2 m, and 10 m terrain resolutions.
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Figure 6.3: Optimal paths in 1 m terrain and 10 m terrain, with large distance between the paths
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Figure 6.4: Computation times of optimal paths in 1 m, 2 m and 10 m resolutions. N = 30 cases.

and endpoints are chosen randomly, the computation times for each individual case is not
expected to match the others which causes the spread. The figure illustrates well the large
differences in computation time between the terrains, with the 1 m terrain time almost
100 times larger than the 10 m computation time.

In figure 6.5, the relative computation times of the 2 m and 10 m optimal paths compared
to the 1 m optimal paths is shown for each path planning case. The 2 m optimal paths
has computation times around 22-24 % of the 1 m optimal paths. As seen there is a large
spread in the values however, with relative computation time spanning from 16 % to 30 %.
For the 10 m paths, the relative computation times are around 1 % of the 1 m computation
times, with a spread spanning from 0.5 % to 2 %. An small observation that can be made
is that for the given resolutions, there is a close to linear relationship between problem
size and computation times. The 2 m terrain have 25 % of the number of vertices and
edges of the 1 m terrain, and the 1 m terrain have 1 % of the number of vertices and edges
of the 1 m terrain.

Distance between paths

The distance between paths in different terrain resolutions will be important for perform-
ing hierarchical path planning. If the distance between the optimal paths in the 1 m terrain
and the lower resolution terrains are small, it will be more likely that the 1 m optimal path
will be within a certain radius of the paths in the lower resolution terrains.

The distances between the 1 m optimal path and the 2 m and 10 m optimal paths is shown
in figure 6.6. The distance between the 1 m and 2 m paths appear to be close to 0, and in
fact turns out to be exactly 0 for all the cases. The 1 m paths when transfered to the 2 m
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Figure 6.5: Relative computation times of optimal paths in 2 m and 10 m resolutions, relative to
the computation time of the 1 m optimal paths. N = 30 cases.
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Figure 6.6: Distance between 1 m optimal path and 2 m and 10 m optimal paths. N = 30 cases.

terrain are therefore identical to the 2 m paths.

In these cases, the 1 m optimal path could be found using any radius around the 2 m
optimal path. With a very small radius, the path planning in the 1 m terrain could be
performed very fast, most likely much faster than the 2 m optimal path planning, and
therefore give overall increase in performance. Experiment 2 will go further into this
question.

The 10 m optimal paths and the 1 m optimal paths are however not 0. The median is
close to 0, and in most cases are below 100 m average distance. This is an indication
of cases where a fixed radius path planning could yield good results. There are however
5 outliers with large distances between the paths, which shows that paths in different
terrain resolutions are not necessarily close. This can translate to suboptimal results using
hierarchical path planning as optimal paths aren’t in the neighborhood. How far from
optimum can however not be determined from the distances alone.

Path cost

For the paths found, the total cost of a path will be the time used to traverse the path.
The path costs are therefore measured in seconds. The costs of paths is therefore compa-
rable between different resolutions. However, the terrains will necessarily be somewhat
different as some speed information gets lost in lower resolutions.
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Figure 6.7: Costs of optimal paths in 1 m, 2 m and 10 m

For the paths in the first trials, the path costs are shown in figure 6.7. The 1 m and 2 m
costs appear similar, while the 10 m costs are a little higher. The costs of the 2 m and 10
m relative to the 1 m optimal paths are seen in figure 6.8. The 2 m paths are close to the
costs of the 1 m paths, while the 10 m path costs in general are larger, and they have a
larger spread in relative increase.
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6.2 Experiment 2: Hierarchical path planning

The second experiment will be the main experiment for testing the hierarchical path plan-
ning principles discussed in chapter 3. The experiments will use the same cases as in
experiment 1, and build directly on the results found in this experiment. The path plan-
ning performed in experiment 1 found optimal paths in the 1 m, 2 m and 10 m terrain.
As the path planning in the 2 m and 10 m terrain were considerably faster than the 1 m
terrain, the idea is to use the paths in the 2 m and 10 m terrain and create a new graph in
the 1 m terrain in the neighborhoods of these paths. This will reduce the size of the 1 m
graph, which means that faster path planning can be achieved.

6.2.1 Experiment setup

For both the 2 m terrain and the 10 m terrain, graphs are created in a fixed radius distance
around the corresponding optimal paths. For each of the terrain, 3 fixed radii are chosen,
to see how the radii affects the results.

From experiment 1, it was seen that the 2 m optimal paths were close to identical to the 1
m optimal paths. A consequence of this is that it allows for a small radius to be used, as
the 1 m optimal path will be within this radius. The radii chosen are therefore 10 m, 50 m
and 100 m. The 10 m radius has the risk of being to small, but it can be interesting to see
in how many cases the hierarchical path will be within this radius. The small radius also
means a small graph, potentially making the path planning algorithm run fast. With the
close distances between the paths seen in experiment 1, there does not appear to be need
for any radius larger than 50 m, but the 100 m radius is included for comparison. If this
is true, the 50 m and 100 m radius should yield very close results.

For the 10 m radius, the path distances were larger, but the majority had an average dis-
tance of less than 100 m. The 10 m radius would likely be to small to be of any use, and
the radii is instead increased to 50 m, 100 m and 200 m. These radii will not cover all the
distances shown in figure 6.6, and in these cases it will be interesting to see how the path
costs are affected.

An illustration of how the reduced graph is created using a path found in a coarse reso-
lution terrain is shown in figure 6.10, for 50 m and 200 m radius. The large reduction
in area can be seen, especially in the 50 m terrain, where the graph only covers a small
fraction of the original area, shown in black.

Computation time

In addition to the path planning itself which is expected to be faster than the path planning
in the full terrain, creating the reduced graphs also needs to be taken into account. These
are created based on the path specific to the case, the reduced graphs can not be created a
priori. The total computational cost for a hierarchical path that can be compared with an
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Figure 6.10: Creating graphs in fixed radius neighborhood of graphs

optimal path will therefore be given as

Computation time = Optimal path planning in coarse resolution
+ creation of reduced graph (6.1)
+ path planning in reduced graph

Comparing the improvement in computation time is done for each specific case with the
relative computation time, KT . This is the ratio between the total computation time in
(6.1) of the hierarchical path planning, and the computation time of the optimal path
planning.

KT =
Hierarchical computation time

Optimal computation time
(6.2)

Path cost

The path costs are also compared in a similar way to the computation time, with the
relative path cost KC defined as

KC =
Hierarchical path cost

Optimal path cost
(6.3)

The path cost will always be equal to, or larger than 1. A relative path cost equal to 1 is
the case where the hierarchical path is the optimal one.
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Distance measurement

The distance between the hierarchical paths and the optimal path defined in (4.8) is also
a variable that will be measured. This variable is however comparable between the cases,
as it does not depend on the length of the paths, but have been normalized with respect to
the path length.

6.2.2 Hierarchical paths using 2 m terrain

The hierarchical paths based on the 2 m terrain is the experiments that are expected to
have the largest resemblance between the hierarchical paths and the conventional paths.
This is due to the closeness between the 1 m and 2 m optimal paths from experiment 1.

Path cost

The first aspect of the hierarchical path planning is if the hierarchical paths are the optimal
paths, and if not how far they are from the optimal path. The costs of the optimal paths
in 1 m terrain together with the 2 m hierarchical paths is shown in figure 6.11. The 50 m
and 100 m paths have at least one measurement larger than any in the optimal path. The
10 m radius appears to have lower costs than the optimal paths, but this is due to three
infeasible cases where outliers with infinite cost were removed.

A box plot showing the relative increase in path costs compared to the optimal path is
shown in figure 6.12. The same three outliers are removed from the 10 m radius, leaving
paths with close to 0 increase in cost. The 50 m and 100 m paths also have a single
outlier, while the other cases are close to zero. A detailed plot with the outlier removed is
shown in figure 6.13. The 10 m radius path only have cost increases of less than 0.2 %,
while the 50 m radius also have single outlier with a 1.2 % increase in path cost. This is
a small increase in cost, but the other values have less than 0.1 % increase in cost, and it
is therefore considered an outlier. This outlier is however not in the 100 m radius path,
which only have increases of less than 0.1 % of the optimal path.

Computation times

The computation times of the 2 m hierarchical paths is shown in figure 6.14. As seen, the
computation times are reduced compared to the optimal path. The reduction varies with
the path radius, but all show computation times compared to the optimal path planning.

The relative computation times of the 2 m hierarchical paths compared to the 1 m optimal
paths are shown in figure 6.15. The 10 m paths have computation times centered around
25-30 % of the 1 m optimal path planning. Considering that the 2 m optimal path planning
had computation times of around 20-25 % of the 1 m optimal path, this is close to the
lower bound of what’s achievable.
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Figure 6.13: Relative costs of 2 m hierarchical paths, with outlier removed from 50 m and 100 m
radius paths. and 3 outliers removed from the 10 m radius path

For the 50 and 100 m radius paths, the costs increases, with the 50 m having the median at
35 % of the optimal cost, and the 100 m radius having the median at 45 %. Both values are
improvements to the optimal path planning, and with expected cost close to the optimal
paths.

Path similarity

The average distances between the hierarchical paths and the optimal curves are shown
in figure 6.16. The distances in most of the cases are very close to 0, but there are some
outliers. For the 50 and 100 m radius, the largest outlier is also the same outlier that
caused a 50 % increase in costs. However, the second outlier with average distance of 40
m can not be seen in the costs plot as an outlier. This shows that large distances does not
necessarily mean differences in cost. For the 10 m radius paths, average distances close
to, but not equal to 0 can be seen. The same pattern were also seen in the relative costs, but
the differences were negligible with increased costs below 0.2 %. The measured distances
here are therefore not important, as they lead to insignificant change.

6.2.3 Hierarchical paths using 10 m terrain

The optimal paths in the 1 m terrain and the 10 m terrain are at risk of being located further
apart than the 1 m and 2 m optimal paths, as seen from figure 6.6. Yet, large distance
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Figure 6.14: Computation time of 2 m hierarchical paths and the 2 m optimal path
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Figure 6.15: Relative computation time of the the 2 m hierarchical paths compared to the 2 m
optimal path
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Figure 6.16: Average distance between 2 m hiearchical paths, and 1 m optimal paths

between curves does not imply large difference in cost as seen from the 2 m hierarchical
paths, and the costs of the 10 m hierarchical paths can still be close to optimal.

Path costs

The path costs of the hierarchical paths based on the 10 m terrain are shown in figure 6.17.
For the 50 m path costs, there are 6 paths that were infeasible with infinite path costs that
were removed. For the 100 m paths, 1 path was infeasible. Besides these paths, the path
cost looks similar, with a slight increase increase in path cost the smaller the radius are.
The 50 m path costs appear smaller than the the other, but this is due to the removal of
some of the paths from the results.

A plot of the relative path costs of the hierarchical paths compared to the optimal paths
is seen in figure 6.18. The same infeasible paths are also removed here. For the 200 m
path, there are a tight group of 25 paths with costs within 0.5 % of the optimal path. The
remaining 5 can be seen spread with costs from 2 % to 12 % increase. For the 100 m
radius, the 75th percentile is still below 2 % increase, and the median is at 0 increase in
cost. Except for the infeasible paths, the other paths have increase below 12 % also. The
50 m radius have as mentioned 6 paths that were infeasible. The median is not at 0 as
with the others, and the 75th percentile is higher than 3 % increase. Still, there are no
measurements with higher values than 12 % increase in cost.
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Figure 6.18: Relative cost of 10 m hierarchical paths and 1 m optimal path. 1 infeasible path
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Figure 6.19: Computation time of 2 m hierarchical paths and the 2 m optimal path

Computation time

The total computation times for the 10 m hierarchical paths are shown in figure 6.19. The
results look similar to the 2 m computation times. The relative computation times of the
hiearchical paths compared to the optimal paths can be seen in figure 6.20. The 200 m
radius have the majority of computation times between 40 % and 75 % with median at
50 % of the optimal paths. There are also computation times spanning from only 15 %
to 110 %, meaning from an improvement by a factor of 6, to a computation time that
is worse than the optimal path planning. The relative computation times decreases with
the decrease in radius, and for the 100 m radius, the majority of the measurements are
located between 20 % and 45 % with a median of approximately 30 %. There is also a
further large decrease in computation times for the 50 m radius, with the majority of the
measurements between 10 % and 25 % and with a median of approximately 15 %.

Path distances

The average distances between the optimal paths and the 10 m hierarchical paths are figure
6.21. Unlike the hierarchical paths from the 2 m terrain, where the paths were very close
to each other with distances below 5 m except for 2 outliers, there is a large spread in
the distances for the 10 m hierarchical paths. The distances does not depend on the path
radii, as only minor differences can be seen between the different paths. The distances
are however similar to the distances seen between the 10 m optimal paths and the 1 m
optimal paths from experiment 1 and figure 6.6.
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Figure 6.20: Relative computation time of 10 m hierarchical paths compared to the 2 m optimal
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Figure 6.21: Average distance between 10 m hiearchical paths, and 1 m optimal paths
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Chapter 7
Extended experiments

With the experiments of chapter 6, a basis for the hiearchical path planning has been
established. There is still some possibilities for improving the results of the path planning.

In this chapter, the method of chapter 6 will be modified in two different ways to see how
the method could potentially be improved.

The first experiment is an experiment that uses the methods of experiment 2, but will
use only flat terrain selections. The goal of this experiment is to study the results of the
hierarchical path planning in the flatter terrain, and to see if the flatter terrain has any
affect on the paths in different terrain resolutions

The second experiment is to use 8-edge graphs instead of the 4-edge graph used until now.
THe motivation for this experiment is given in section 2.2.2, and the hypothesis is that 8-
edge graphs can lead to smaller distances between paths in different terrain resolutions,
and thus improve the optimality of paths found using the method.

The third experiment is motivated by the results of the 2 m hierarchical paths of exper-
iment 2. The 1 m and 2 m optimal paths were in most cases identical, and this can be
utilized. As the 1 m path can be expected to be close to the 1 m optimal path, instead of
using the 10 m terrain to find a path in the 1 m terrain neighborhood, the 2 m terrain can
be used instead, yielding faster computation. The 2 m paths can thereafter be used to find
the final 1 m path. The reduced size of each of the subproblems can yield lower overall
computation times.

7.1 Experiment 3: Hierarchical path planning in flat ter-
rain

The second experiment is an experiment that will investigate how the flatness of the terrain
will affect the the path planning. The hypothesis to be tested is derived from section 5.2.2,
where the coarser resolution terrain is missing slopes details that exist in the finer terrain.
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Figure 7.1: Slopes in a flat terrain selection

The hypothesis is that if the terrain is flat, the difference between the different resolution
terrains will be smaller, and the cost and distance between paths in different terrain will
be smaller. The terrain types don’t have the same level of details, and is this is handled
with the downsampling algorithm discussed in section 5.2.

7.1.1 Experiment setup

The goal of the experiment is to investigate if flat terrain will increase the optimality of the
hierarchical path planning. Experiment 3 and figure 6.16 shows that the 2 m hierarchical
paths in most cases are close to optimal, and little could be gained in flat terrain. The
10 m terrain hierarchical paths are further from the optimal paths, both in distance and
in cost, and has the potential for improvement. This experiment will therefore compare
hierarchical paths based on the 10 m terrain to the 1 m optimal paths.

The terrain selections are chosen manually from the available terrain to find the flattest
areas suitable for testing. The start and target points are then chosen from within these
subsections. An example on one of these selections can be seen in figure 7.1, which
contains smaller areas of steep terrain compared to the example selection shown in figure
5.6.

The hierarchical radius will be set to 100 m, as this showed reasonable performance in
experiment 3, both regarding time and optimality. The measured variables will be the
distance between the paths and the cost for the 1 m optimal, 10 m optimal and the hierar-
chical path based on the 10 m optimal path. The experiment will be repeated for a total
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Figure 7.2: Flat terrain: all distances

of N = 12 cases. As these are manually selected, these cases are not used in any of the
other experiments which are all chosen at random.

7.1.2 Distance between paths

The first variable measured is the distance between paths, and this can be seen in figure
7.2. As seen, there is a single outlier where the 1 m optimal path, and the 10 m optimal
paths have an average distance of D = 175 m. The same outlier is also seen in the
hierarchical paths.

A plot of the distances with the outliers removed is shown in figure 7.3. Compared to the
distances of the regular hierarchical paths of figures 6.16 and 6.21, the distances between
the 1 m and the 10 m optimal paths are greatly reduced, showing that the optimal paths
are closer to each other in the flat terrain. The distances vary from 2 m to 12 m, all of
which are well within the hierarchical path radius of 100 m. The optimal paths in the 1 m
terrain is therefore expected to be within the radius of the 10 m optimal paths, which will
make the hierarchical paths the optimal paths.

The distances between the 1 m optimal paths and the 1 m hierarchical paths are smaller,
with all average distances at D = 3 or less, with the median being D = 0 distance. A
distance of 0 means that the paths are identical, and thus the costs will be equal.
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Figure 7.3: Flat terrain: distances with outlier removed

7.1.3 Relative costs

The relative costs of the 10 m optimal paths and the 1 m hierarchical paths compared to
the 1 m optimal path are shown in figure 7.4. The 10 m have costs centered around 98 % -
100 % of the cost of the 1 m path costs, with some outliers further away. However, all the
hierarchical path costs except for one outlier, are exactly identical to the 1 m optimal path
cost. From the distances, it was seen that some of the paths were identical, but not all.
This means that there are different paths that have identical costs. As discussed in section
2.2.2, different paths can be optimal with equal costs, and the paths in this experiment is
a result of this.

The outlier of the hierarchical paths have an increase of 0.8 % in cost, which in practice
is a negligible difference. This outlier is also the same outlier as in the distances. This
shows how a large distance between curves does not necessarily mean a difference in cost.

The overall results of the experiments shows that for the flat terrain, the paths in different
terrain resolutions can be expected to be close to each other. The hierarchical paths will
therefore be the optimal paths in these cases. In the cases where the paths differ, the
difference in cost between the terrains will be relatively small, and the hierarchical paths
are expected to be close to optimal in these cases anyway.
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Figure 7.5: Computation times of 1 m optimal paths and 2 m hierarchical paths, 4 and 8 edge
graphs.

7.2 Experiment 4: Comparison of 4 edge and 8 edge graphs

The following experiment will look at how 8 edge graphs compare to the 4 edge graphs.

The experiment is performed by creating 8 edge graphs for a subset of the cases of ex-
periment 2, and repeating the path planning. The results of the 8 edge path planning can
be compared directly with the results of experiment 2. The primary purpose of the ex-
periment is to determine if the distance between graphs in different terrain resolutions is
smaller than for the 4 edge graphs. In relation to the path distance, how the distance influ-
ence the cost of the 8 edge hierarchical paths compared to the optimal 1 m 8 edge path is
also interesting. Due to the double number of edges of the 8 edge graph, the computation
time for the 8 edge graph can be affected.

7.2.1 2 m terrain

The computation time for the 2 m terrain is seen in figure 7.5, both for the 4 edge terrain
and for the 8 edge terrain. The 4 edge results are a subset of the results from experiment 2,
while the 8 edge results are the results for the same cases with 8 edge graphs. The results
show that the computation times are in general similar to the computation times of the 4
edge terrain, despite the increased number of edges.

The relative computation time of the hierarchical paths compared to the optimal paths in
each of the graph types are shown in figure 7.6. The results shows that the relative com-
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Figure 7.6: Relative computation time of 2 m hierarchical paths compared to 1 m optimal paths,
4 and 8 edge graphs.

putation times of the 8 edge hierarchical paths are larger than the corresponding relative
computation times in the 4 edge terrain. The relative computation times also have a larger
spread than the 4 edge times.

In the 2 m terrain, the average distance between the hierarchical paths and the 1 m optimal
paths for both the 4 and 8 edge graphs are shown in figure 7.7. The 4 edge graphs have
0 distance between the hierarchical paths, except for an outlier in both the cases which
means the paths found are the optimal paths. The 8 edge paths have small distances of
10-20 m between the paths in most of the cases, which is a worse result than in the 4 edge
case.

The relative cost of both the 4 edge and 8 edge hierarchical paths in the 2 m terrain are
shown in figure 7.8. The results corresponds with the average distances for the graphs,
which showed that the hierarchical paths were identical to the optimal paths, and therefore
have has equal cost. The 8 edge paths were not identical to the optimal paths, which shows
in the relative costs. The costs of the hierarchical paths are around 20 % higher than the
costs of the hierarchical paths, which is a relativly large increase in cost. In none of the
cases were the costs identical, which means that the optimal path were never found in the
neighborhood of a 2 m optimal path. The path radius does not matter either, as the results
are similar for both the 50 m and 100 m paths.
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Figure 7.7: Average distance between 1 m optimal paths and 2 m hierarchical paths, 4 and 8 edge
graphs
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Figure 7.9: Computation times of 1 m optimal paths and 10 m hierarchical paths, 4 and 8 edge
graphs.

10 m terrain

The computation times of the 10 m hierarchical paths shows the same tendencies as the
2 m hierarchical paths, with the computation times being similar for the the 4 and 8 edge
graphs, with the 8 edge slightly higher. The relative computation times of the hierarchical
paths compared to the optimal paths are closer for the 10 m hierarchical paths than for the
2 m terrain, and both have equal spread in the relative computation times, but the 8 edge
computation are still higher than the 4 edge times.

The distances between the 10 m hierarchical paths and the 1 m optimal paths are seen
in figure 7.11. The 8 edge distances are significantly smaller than for the 4 edge graphs,
which in contrast with the distances for the 2 m hierarchical paths. The 4 edge graphs
have distances between 0 and 200 m, while the 8 edge have distances lower than 40 m,
with the median close to 0 m distance, except for two outliers.

The relative costs of the 10 m hierarchical paths for the 4 and 8 edge paths are shown in
figure 7.12. As in the case of the 2 m hierarchical paths, the relative costs of the paths have
relative costs of 15-20 % more than the optimal paths, with all the paths having at least 10
% increase in cost. The 4 edge paths on the other hand have costs closer to optimal, with
10 % increase in cost at highest and median less than 1 % increase from the optimum.
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Figure 7.10: Relative computation times in 10 m terrain, 4 and 8 edge graphs.
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Figure 7.11: Average distance between 1 m optimal paths, and 10 m hierarchical paths, 4 and 8
edge graphs
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7.3 Experiment 5: Multiple level hierarchy

From experiment 1 in 6.1, it was observed that in all cases of the path planning, the
1 m optimal paths and the 2 m optimal paths were identical. Further, in experiment 3
the consequence of this observation was seen, as the hierarchical paths based on the 2
m terrain with any fixed radius gives the optimal path. In the same experiments, the
reduction in computation cost was not large. The optimal path planning in the 2 m terrain
has a computation cost of approximately 1

4
of the path planning in the 1 m terrain. In

addition to this computation cost, there is also a cost of creating the hierarchical graphs,
and as this cost depends on the size of the path radius and can be high. On top of that,
the path planning in the reduced 1 m terrain is performed, taking a significantly amount
of time. There is a significant reduction in time, but this can be improved.

As seen, all the hierarchical paths are optimal, and the increased radius is therefore not
needed. With the 10 m radius, the creation of the 1 m terrain and the path planning in the
reduced 1 m graphs is quick compared to the 2 m path planning. The overall reduction
in computation time is significant, and from the experiments the paths are highly reliable.
The 10 m hierarchical path planning is more unreliable, but it is in the order of 100 times
faster than the 1 m path planning, as seen in experiment 1, figure 6.5a.

There are two important effects that can be drawn from this

• Similarity between 1 m and 2 m optimal paths

• Fast calculation of 10 m optimal paths

7.3.1 Combining 10 m, 2 m and 1 m terrains

A method for utilizing these effects, is to combine all three terrain resolutions. First a
coarse path can be found in the 10 m terrain. From the results of 6.2, this is known to
be quick to perform compared to path planning in other terrains. A hierarchical graph in
the 1 m terrain can be created covering a fixed radius around this hierarchical path. This
radius can be chosen to be very small as the 1 m and 2 m paths are expected to be similar.
The final graph in the 1 m terrain will therefore cover a small area, and thus be fast to use
for path planning.

If the statement about the closeness of the 1 m and 2 m optimal paths holds, it can be
expected that this approach will yield as good results as the 10 m direct hierarchical
approach. If the increased hierarchy level leads to increased time consumption, or if the
proposed method is faster than the traditional approach can be tested.

The experiment is setup to use a selection of the already tested cases of experiments 1 and
2. There will be a total of N = 10 cases run for obtaining the results. The creation of the
2 m terrain hierarchical graph is done using the radii from experiment 2, 50 m, 100 m and
200 m. The radius of the second level in the hierarchy is chosen to be 20 m. It is more
likely that any deviations from the optimal path will arise at the hierarchy level above,
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and thus the radius is set low to investigate how much of an improvement in computation
time can be achieved.

As the distance between paths is of less importance for this experiment, this variable will
not be measured. The variables measured are therefore the time consumption, which is
the objective of the experiment to reduce, and the relative cost of the paths.

7.3.2 Results

The computation times of the experiments are shown in figure 7.13, and the relative im-
provement of the method compared to the 10 m hierarchical paths are shown in figure
7.14. The increase in performance is largest for the 200 m radius paths, with the compu-
tation time running at 40-45 % of the original time, which is a significant improvement.
This improvement is not relative to the 1 m optimal path planning, and compared to that
would be even larger.

The relative improvements decreases with decreasing path radius. At 100 m, running
times of 55-60 % is still a significant improvement, but at 50 m radius, the running times
are at 80 %, and the point of the multiple level hierarchy is starting to diminish. It is
nonetheless an improvement, and it has the fastest computations of all the cases.

The costs of the multiple level paths relative to the 10 m hierarchical paths are shown in
figure 7.15. As predicted, the costs of the multiple level paths are identical to the paths
found with the hierarchical 10 m radius path planning. There is one outlier in the 50 m
radius terrain however, but the difference in cost is small at only 0.8 %.

The results shows that the use of multiple level hierarchies as used in these tests, in fact
can yield an increase in computation performance while maintaining optimality.
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Chapter 8
Discussion

In this chapter, a discussion of the results of the 5 experiments is done. It includes a
review of the results and discussions about limitations of the results, and what parts can
be generalized.

8.1 Hierarchical path planning

The computation times shown in experiment 1 shows how computationally expensive path
planning problems can be, with the longest computation times of more than 2 hours. This
shows the importance of either smaller problems or faster algorithms. For an autonomous
ground vehicle that will have to perform path planning in real time, the time available for
computation can be limited. By increasing the performance of the path planning, more
computation time can be freed to other tasks, or the path planner can potentially deal with
larger problem sizes.

8.1.1 2 m hierarchical path planning

In the terrain data given in this experiment, the closeness of the 1 m and 2 m optimal
interesting, as it is the best possible case for performing hierarchical path planning where
either the entire 1 m optimal path is within a neighborhood of a 2 m optimal graph.

The closeness of the 1 m and 2 m paths leads to good results with regard to optimality of
paths. This is partly be due to the fact that the size difference between the 1 m and 2 m
terrain is small, especially compared to the 1 m and 10 m terrains. Another point could be
that the provided terrain data does not feature many details smaller than 2 m that would
be lost from the 1 m terrain to the 2 m terrain. This could be due to the physical terrain
which perhaps does not have many features like this, and this not have to hold for other
terrain selections. Other possible error sources could be preprocessing of the terrain data
which could affect features of the terrain that can’t be controlled.
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Despite the good results, there was an outlier in the path costs, where a path had almost
60 % increase in path cost for the hierarchical path compared to the optimal path. This is
a single case, and no other cases come close to it. This illustrates that even though many
trials points to a certain result, there are never any guarantees that it will always work.

A consequence of this is that any definite conclusions for example regarding path radii in
general should be avoided, as this can depend on the terrain data. In these experiments,
all the radii gave close to optimal paths, but for example using a 10 m radius for the path
planning should not be done without knowing beforehand if it should work. The reason
for the choice were the observed distances between the optimal paths, but if none such
tests can be performed, larger radius paths will be a safer choice.

The reduction in computation time were not a large reduction, but all the tested radii
gave expected computation of less than half of the optimal path planning, and lower for
the smaller radii. Considering how safe the 2 m paths were for this terrain, the 2 m
hierarchical path planning could be a good alternative. Even with the inclusion of the
large deviation of the outlier, the expected value will be close to 0 increase in path cost.

8.1.2 10 m hierarchical path planning

The 10 m hierarchical paths are more interesting to analyze than the 2 m paths due to the
larger deviations. Where the 2 m always are close to the 1 m paths, this is not the case for
the 10 m paths. However, as seen from the results of the experiment, it is possible with
large distances between paths and while they still have approximately the same costs.

For the 10 m terrain paths, the effect of the radius was also seen clearer. The computation
time increase with the increase in path radius as expected like with the 2 m paths. Unlike
the 2 m paths, the optimality of the 10 m paths were affected by the radius, with the path
cost decreasing with increasing path radius.

All radii had paths with outliers in the cost of up to 12 % increase. For most of the cases
however, the costs were within 0.5 %, 2 % and 3 % of the optimum for the 200 m, 100 m
and 50 m radius respectively. These values can be considered acceptable for all practical
purposes. When taking the outliers into account, the expected increase in cost will still be
relatively low.

8.1.3 Infeasible hierarchical paths

An issue observed both for the 2 m hierarchical paths and the 10 m hierarchical paths
was the occurrence of infeasible paths. The A* algorithm guarantees a solution if it
exist[10], as the infeasible paths in reality are regular paths that contains at least one
edge with weight many orders of magnitude larger than feasible edges. Any feasible path
will therefore have a lower total cost, and A* will return such a path if it exists. The
infeasible paths will therefore be cases where no feasible path exist in the given fixed
radius neighborhood around a higher level path.

86



As the costs is infinite in these cases, they can be identified. In such a case, the graph can
be extended to include a larger radius neighborhood, and repeat the path planning. With
the A* algorithm, this can be modified to allow the existing path planning to be reused
for the extended graph, and thus reducing the additional time needed.

8.1.4 Overall performance of the hierarchical path planning

From the results of experiment 1 and 2, there is a clear improvement in computation times
from all the setups chosen. Largest improvement were observed using the 10 m terrain
together with the 1 m terrain and using smaller radii. The computational performance
should not depend much on the terrain selection used, as this depends mostly on problem
size. However, given different terrains, the chosen radii or terrain resolutions might need
to be changed, and this will affect the performance of the hierarchical path planning.

The results presented in experiment 1 and 2 can in general be said to be good results with
regards to optimality. The 2 m hierarchical paths found are expected to find paths that
is either optimal, or with marginal increases in cost. The 10 m radius, should however
be avoided as it in several cases yields infeasible paths. The reason for including the
10 m path radius was the observation that in these specific cases for this specific terrain
selection, the 1 m and 2 m paths were always close. This does not have to be the case in
every terrain type, and there is no guarantee that this will continue to occur in this terrain
selection either. In the cases where this does not occur, the paths will necessarily be not
optimal. With the 50 m and 100 m, the increased terrain size leaves more room for finding
the 1 m hierarchical path, and are more flexible.

The use of the 50 m and 100 m radii yielded approximately equal results, while the 100 m
radius had approximately twice the computation time. The experiments also shows that
all radii are at risk of having outliers with large increases on cost. It could have been
interesting to also have included a 200 m radius for the experiments, but it would not have
contributed significantly to the results for two reasons. First of all, all experiments points
to an approximate linear relationship between problem size and computation time. A 200
m radius path would therefore be close to the 1 m optimal path planning in performance,
which would mean that the optimal path planning would be preferred as it guarantees
optimality. Second, any general conclusions could not have been made. There is only a
single outlier that is left in the 100 m radius, and if this is removed or not with the 200 m
radius, this result wouldn’t be enough to generalize in any way.

Any larger radii will mean that the performance gain will In the specific cases investigated,
the 50 m radius will be the better choice, but the 100 m radius could have

To summarize the results: There are two observations that can be made

• Close to optimal performance in majority of cases investigated.

• Outliers with large increase in cost, and possibly infeasible paths.

The close to optimal performance here also includes the outliers from the 10 m paths with
less than 12 % increase in paths. The expected increase in costs in these cases would be
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around 2-3 %.

As all the results have been compared to the optimal solutions, the optimality of paths
is accurately measurable. In real world applications where the A* algorithm is used, the
use is often conducted with a heuristic that increases computation speeds, while returning
near-optimal paths. As

The focus of this report has been on measuring the optimality of solutions, as this is the
single most important measure for how well the method performs. In real life applications,
the optimality is not always needed, and near-optimal paths can be good enough. Cost
increases around 2-3 % or even 12 % compared to the absolute optimal path, can therefore
be insignificant as such deviations from the optimum can be expected anyway. In such
cases, the hierarchical path planning with the coarsest terrain resolution with lowest radii
can be used, as the large computation time decrease outweighs the need for optimal paths.

In other cases, optimal paths are more critical, but in these cases, hierarchical path plan-
ning using finer terrain resolutions can give very close to optimal paths while at the same
time improving the computation time.

As with the outliers, these seem to be a problem that can arise at times using hierarchical
path planning, and they are not easily mitigated using larger radii. The appearance of
an outlier on rare occasions can for many purposes be acceptable, as most of the cases
yield overall good results. There is no way of telling when such an outlier has occurred
unless it is compared with the explicit optimal cost. Using conventional near-optimal path
planning in the same type of terrain, there will also be a risk of such outliers occurring,
and in such cases the outliers can be acceptable.

8.2 Improved hierarchical path planning

In addition to the general tests of the hierarchical path planning, the additional experi-
ments have contributed to the overall results of the hierarchical path planning.

8.2.1 Flat terrain

The flat terrain originated as a hypothesis that the reason for the largest deviations in path
distances and costs arises due to slope details that are lost when moving from a fine to a
coarse terrain resolution. Using flat terrain with a minimum of such terrain details should
therefore improve the results of the regular hierarchical path planning.

The distances between the optimal paths in the 1 m and the 10 m terrain were seen to
reduced compared to the random paths. Where the regular paths were below 70 m distance
between the paths with the majority below 50 m, the flat terrain paths are below 12 m
distance. The flat terrain does however have one outlier at 180 m distance, but the regular
paths has 5 outliers between 100 m and 900 m distance. The regular hierarchical path
planning does consist of 30 cases, and not 11 though, so the numbers are not directly
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comparable, Using these paths leads to hierarchical paths with average distances below
3 m, in addition to the 180 m outlier. The costs of the hierarchical paths are all exactly
zero, except for the outlier case where the path has an increased cost of less than 1 %. The
large outliers that were seen in the 2 m and the 10 m are not observed in the flat terrain
cases, and could potentially arise here too. However, with the flat terrain, the areas which
are inaccessible are greatly reduced, and the possibilities for such large deviations to arise
decreases. With flat terrain, the regular terrain speeds dominate the overall speeds, and
this ensures that consistent path costs can be expected.

These results are a large improvement on the results of the 10 m hierarchical paths. This
goes to show that for the flat terrain, the hierarchical approach is a very good choice, and
can be expected to return the optimal paths in most cases, or paths close to these in cost.
These results are also not specific to the terrain selection used, but can be generalized to
be used with any terrain selection where the terrain is flat. This can typically be farmland
and mountain plateaus in Norway, and for example deserts and steppes in other parts of
the world.

In cases where parts of an area is flat, the path planning can be divided into the separate
areas, where for example the flat parts have a lower radius and uses a coarser terrain for
hierarchical path planning than the other parts. Another possibility could also be to use
hierarchical path planning for the plat terrain, and use conventional path planning for the
remaining parts for increased performance.

8.2.2 8 edge graphs

The 8 edge path planning were performed in both 2 m terrain and 10 m terrain. The
motivation was to investigate if the use of 8 edge graphs would decrease the distances
between the optimal paths in different resolutions, and thus increasing the likelihood of
the hierarchical paths being the optimal paths.

For the 2 m paths are for the most part identical with the 1 m paths, and are for that reason
not very interesting. For the 10 m paths on the other hand, there are many cases where
there 1 m optimal paths and the 10 m optimal paths are located far apart.

From the results, there was a clear reduction in the distance between the hierarchical paths
based on the 10 m terrain with the 8 edge graphs, with the majority of the measurements
below 50 m average distances, where the measurements for the 4 edge graphs was at 200
m. This is a clear improvement, but that is also the only result that shows any improvement
over the 4 edge graphs. The 2 m paths in the 4 edge graphs have approximately 0 distance
to the 1 m optimal paths, while the 8 edge graphs have distances of 10-20 m to the optimal
8 path. A clear degradation of the results.

The computation times for the 8 edge graphs are close to but still higher than the cor-
responding 4 edge results. This is an indication that the A* algorithm converges to the
solution faster with the 8 edge graphs, as it contains twice the number of edges, as much
as twice the computation time could have been expected.
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The reduced distances for the 8 edge graphs have not improved the costs of the hierarchi-
cal paths. Where most of the regular hierarchical paths are close to optimal, the 8 edge
graphs have an increase in costs of at least 10 %, with the majority centered around 20
% increase in cost. This large increase means that the method in it’s current form is not
suitable for path planning. The bad results can point to a systematic error in the imple-
mentation, but it can be difficult to say with certainty. The only real result here is the
decreased distance for the 10 m paths which means it can be worth looking into the 8
edge graphs in the future. The result on itself however is not of much use as it does not
lead to decreased computation time, nor cost.

8.2.3 Multiple level hierarchy

The use of multiple levels in the hierarchy was an idea for reducing the computaitional
cost to a minimum to see how much that potentially can be gained, and to see if the
resulting paths are as good as the ones from the hierarchical paths in experiment 2.

As the results showed, the computation times could be reduced to as much as 40-45% of
the regular hierarchical path planning. This result was for the 200 m radius however, and
the performance increase was not as high for the other terrain resolutions, but all yielded
decreases from the regular hierarchical path planning.

The costs of the paths were identical to the regular hierarchical paths. This is a result of
the similarity between the 1 m and 2 m paths, that are expected to be close to identical.
In general, each terrain level added would contribute to the increase in total cost, but in
this case, the 2 m paths are approximately equal to the 1 m paths, and the added cost is
negligible compared to the cost due to the 10 m hierarchical paths.

The use of the multiple level hierarchical path planning also adds complexity to the prob-
lem, with new path radius parameters that are needed. In the cases investigated here, this
was relatively simple as the 2 m hierarchical path experiments had shown that the hierar-
chical path planning were successful even with paths down to 10 m. Because of this, the
path radius for the 2 m terrain were set to 20 m as this was expected to give good results,
and so it did. When this is not the case however, care must be taken in choosing these
parameters too.

Lastly, the use of multiple level hierarchy demonstrates that the method works good with
adding several fine resolutions as lower levels in the hierarchy. There would in principle
not be any problems with using the existing results for adding even more detailed terrain
data, and finding a hierarchical path here. In a real life situation with detailed terrain data
becoming available as a vehicle moves, this is a great advantage as the recalculation of
the path can be computationally heavy, and using existing path planning results greatly
decrease this problem.
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8.3 Summary

Overall, the hierarchical path planning can be said to yield promising results. The average
computation times have been reduced in all cases tested, and most of the results have
been close to optimal. There is still a challenge left with large outliers, but if that risk is
accepted, the hierarchical path planning can be expected to give good results.

Based on the experiments, it can be hard to draw any general conclusions to how much
improvement can be expected. For a setup similar to this with the same relative problem
sizes, the performance can be expected to be similar to here. However, using different
terrain selections, choosing the radius can be hard, and can change much from what works
here, and the performance will change. If the number of large outliers gets too high, the
added computation time of the conventional path planning can be worth the cost if the
hierarchical path integrity gets too low.

The specific results of these experiments can only be used with this particular terrain pro-
vided, and other terrain selections can give worse results. However, the analysis provided
has a value in itself as it shows some of the potential in the hierarchical path planning.
The experiments are all consistent with regards to the computation time and the size of the
individual problems, with all results pointing to a linear relationship within the range of
experiments tested here. This can be valuable as it makes it possible to predict how much
improvement the hierarchical approach can mean in a specific case, relative to running a
conventional path planning algorithm.

Another result that can be of value can be seen from the case with the 10 m hierarchical
paths. Here, a fine and a coarse terrain were used in hierarchical path planning, and the
optimal paths differ, causing the hierarchical paths to have increased costs. The simple
observation that increased radius decreases the average cost is a result that might seem
obvious, yet is still important. If this was not the case, the hierarchical path planning
would be hard to predict, and if the behavior of the method can not be predicted, it will
be of little value in practice. With reduced cost with increased radius, the path radius as a
tuning parameter between reducing expected cost, and reducing computation time, which
makes the method flexible.

Lastly, the flat terrain results gives some insight to further analysis of paths that can be
conducted. With the flat terrain, the closeness and costs of the hierarchical paths was
improved. This result can be directly utilized for parts of a terrain selection, with for
example reduced radius for increased performance in the flat parts. The results here also
helps with better understanding of why and when deviations between paths occur, and
that this will not happen where the terrain is flat, but rather where there are large slopes
and infeasible terrain because of it.

91



92



Chapter 9
Conclusion

The goal of this report was to develop a method for performing hierarchical path plan-
ning with terrain data of different levels of detail. The procedure includes a method for
automatical terrain analysis and path planning, and a specific method for creating a hier-
archy of terrain data in different resolutions, and using the hierarchy for finding a detailed
path based on coarse terrain data, using a fixed radius search area. The method is flexible
with regards to using existing results for performing path planning in increasingly detailed
terrain dat.

Experiments with real terrain data given in different resolutions has been performed,
comparing the hierarchical path planning procedure with a conventional path planning
approach. For the given terrain data, the results show that the computation performance
is improved using the hierarchical method, while the majority of the paths are close to
optimal. The computation times were as high as 5 times faster than the conventional path
planning on average, and this should be achieved with a similar setup. The paths had costs
higher than the optimal paths, but due to only experimenting with one terrain no absolute
conclusions can be drawn about the optimality in the general case.

There are some outliers with large deviations, which shows that the method can be vul-
nerable differences between the terrain levels.

Two additional improvements were investigated. Using multiple level hierarchy demon-
strated that increased performance can be achieved, without degrading the path cost. Us-
ing 8 edge graphs instead of 4 edge graphs, did however not show any improvements in
the experiments, neither in computation performance nor in optimality.

An investigation was also performed using only flat terrain selections. In these exper-
iments, there were no significant differences between the hierarchical and the optimal
paths showing how the flatness of terrain has an impact on the success of the hierarchical
approach to path planning.

93



9.1 Further work

The experiments performed are all based on terrain from within a limited area, which
means the variation in terrain data will be limited. To obtain more general results, the
experiments should be repeated with a larger selection of different terrain types to see
if the results holds, and to see how this effects the parameters chosen, such as terrain
resolutions used and the path radii.

The outliers detected in some cases does appear to be present throughout all experiments,
except in the experiments using the flat case. A measurement for the uncertainty of the
hierarchical paths that could detect when the hierarchical path is expected to be close to
the optimal, and when it is at risk of deviating would be a measurement that would make
the hierarchical path planning more reliable.

As the hierarchical path planning in the flat terrain improved the optimality of the paths
greatly, the flatness around a path potentially gives an indication of the integrity of the
path. Another possibility is to find a direct measurement between the differences of the
different terrain levels. It seems plausible that similar terrain levels can lead to more
similar paths than terrain levels with large differences.

A possible method for increasing path planning performance could be to use a dynami-
cal path radius instead of a fixed radius. This can allow sections of the terrain that are
considered certain with smaller radius than the more uncertain one. For example, based
on the flat terrain results, it would be possible to use a small radius in flat sections as the
hierarchical paths are certain. Other examples could be roads, as these are the fastest way
through terrain, and are therefore more certain than other terrain types.
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Appendix A
Greens theorem in area calculations

A.1 Green’s theorem

Green’s theorem gives the relationship between a line integral around a simple closed
curve C and a double integral over the plane region D bounded by C [1]. The theorem is
as follows:

Let R be a regular, closed region in the xy-plane whose boundary, C, consists of one or
more piecewise, smooth, simple closed curves that are positively oriented with respect to
R. If F = F1(x, y)i + F2(x, y)j is a smooth vector field then∮

C
F1(x, y)dx+ F2(x, y)dy =

∫∫
R

(
∂F2

∂x
− ∂F1

∂y

)
dA (A.1)

A.2 Greens area formula

Green’s theorem can be used in a special form for calculating the area within a simple
closed curve, in a formula called Green’s area formula. Using Green’s theorem and defin-
ing a vector field F = 1

2
(−yi + xj), the result is

∂F2

∂x
− ∂F1

∂y
=

1

2

(
∂x

∂x
− ∂(−y)

∂y

)
= 1

Therefore, with the selected vector field, the form of (A.1) is
1

2

∮
C
−y dx+ x dy =

∫∫
R

dA (A.2)

As
∫∫

R
dA is the area of the region R, (A.2) can be written as

Area of R =
1

2

∮
C
−y dx+ x dy (A.3)
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Figure A.1: An area R with boundary C

which is known as Green’s area fomula. For a closed curve in the plane, this formula will
provide a way of calculating the area within the curve.

A.3 Line integral for straight edges

The line integral

∫
E

−y dx+ x dy (A.4)

for straight edges shown in figure 4.3, can be calculated directly by a simple observation.
The edges are either north-south edges, meaning dx = 0 and x is constant, or the edges
are east-west edges and dy = 0 and y is constant.

The integral A.4 over a single edges is∫
Ei

−y dx+ x dy = −y0∆x+ x0∆y (A.5)

For the edges, ∆x and ∆y are given as:

i = 1 : ∆x = 0 ∆y = −d (A.6)
i = 2 : ∆x = d ∆y = 0 (A.7)
i = 3 : ∆x = 0 ∆y = d (A.8)
i = 4 : ∆x = −d ∆y = 0 (A.9)
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The line integral over each of the edge types are therefore given by:

Wi =

∫
Ei

−y dx+ x dy =


−x0 · d j = 1

−y0 · d j = 2

x0 · d j = 3

y0 · d j = 4

A.4 Line integral for diagonal edges

The line integral

∫
E

−y dx+ x dy (A.10)

for diagonal edges shown in figure 4.4, is calculated using a parametrization of the edges.
With a parametrization

r(t) =

[
x(t)
y(t)

]
, a ≤ t ≤ b, (A.11)

an integral ∫
E

F1(x, y) dx+ F2(x, y) dy =

∫
E

F · dr (A.12)

can be calculated [1] as ∫ b

a

F(r(t)) · dr
dt
dt (A.13)

With a parametrization, the integral (A.10) is therefore calculated as

∫ b

a

(
−y(t)

dx

dt
+ x(t)

dy

dt

)
dt (A.14)

For each of the edge types shown in figure 4.4, a parametrization is selected

r5(t) =

[
x0 + t
y0 − t

]
,

dr5
dt

=

[
1
−1

]
r6(t) =

[
x0 − t
y0 − t

]
,

dr6
dt

=

[
−1
−1

]
r7(t) =

[
x0 − t
y0 + t

]
,

dr7
dt

=

[
−1
1

]
r8(t) =

[
x0 + t
y0 + t

]
,

dr8
dt

=

[
1
1

]
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for 0 ≤ t ≤ d.

Evaluating the integrals:∫
E1

−y dx+ x dy =

∫ d

0

−(y0 − t) + (x0 + t)(−1) dt = (−x0 − y0)d (A.15)∫
E2

−y dx+ x dy =

∫ d

0

−(y0 − t)(−1) + (x0 − t)(−1) dt = (−x0 + y0)d (A.16)∫
E3

−y dx+ x dy =

∫ d

0

−(y0 + t)(−1) + (x0 − t) dt = (x0 + y0)d (A.17)∫
E4

−y dx+ x dy =

∫ d

0

−(y0 + t) + (x0 + t) dt = (x0 − y0)d (A.18)
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Appendix B
MATLAB implementations

In this appendix, the most central implementations for

B.1 Terrain analysis

The following code is the main parts of the implementation of the automatic terrain anal-
ysis used for path planning.

Code B.1: Code for downsampling terrain types data

1 f u n c t i o n t e r r a i n N e w = downsampleTer ra inTypes ( t e r r a i n , N)
2 [ Nrows , Ncols ] = s i z e ( t e r r a i n ) ;
3

4 % Not i n use
5 t e r r a i n D e s c r i p t i o n s = { ’ ocean ’ , ’ road ’ , ’ s p o r t s a r e n a ’ , . . .
6 ’ u rban ’ , ’ marsh ’ , ’ f o r e s t ’ , ’ f a r m l a n d ’ , ’ q u a r r y ’ , . . .
7 ’ r i v e r ’ , ’ s t r e a m ’ , ’ l a k e ’ , ’ i n d u s t r i a l ’ , ’ open ’ } ;
8

9 t e r r a i n T y p e F r o m P r i o r i t y = . . .
10 [2 10 9 11 1 12 8 4 6 5 13 7 3] − 1 ;
11 p r i o r i t i e s = [5 1 13 8 10 9 12 7 3 2 4 6 1 1 ] ;
12 newNcols = f l o o r ( Ncols /N) ;
13 newNrows = f l o o r ( Nrows /N) ;
14

15 t e r r a i n N e w = ones ( newNrows , newNcols ) ;
16 f o r row = 1 : Nrows /N
17 f o r c o l = 1 : Ncols /N
18 subRows = N∗ ( row−1) +1:N∗ ( row−1)+N;
19 subCo l s = N∗ ( co l −1) +1:N∗ ( co l −1)+N;
20 b l o c k = t e r r a i n ( subRows , subCo l s ) ;
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21 h i g h e s t P r i o r i t y = min ( min ( p r i o r i t i e s ( b l o c k + 1)
) ) ;

22 t e r r a i n N e w ( row , c o l ) = . . .
23 t e r r a i n T y p e F r o m P r i o r i t y ( h i g h e s t P r i o r i t y ) ;
24 end
25 end
26 end

Code B.2: Code for calculating slopes using elevation data

1 f u n c t i o n s l o p e s = f i n d S l o p e s ( h e i g h t s , t e r r a i n R e s o l u t i o n )
2 [ gx , gy ] = g r a d i e n t ( h e i g h t s ) ;
3 g r a d i e n t s = s q r t ( gx . ˆ 2 + gy . ˆ 2 ) ;
4 s l o p e s = a t a n ( g r a d i e n t s / t e r r a i n R e s o l u t i o n ) ;
5 end

Code B.3: Code for quantizing the calculated slopes to the Go, Go slow or the No-go category.

1 f u n c t i o n s l o p e s Q u a n t = q u a n t i z e S l o p e s ( s l o p e s )
2 % 1 = 0−15
3 % 2 = 15−25
4 % 3 = 25+
5 [ Nrows , Ncols ] = s i z e ( s l o p e s ) ;
6 s l o p e s Q u a n t = z e r o s ( Nrows , Ncols ) ;
7 s l o w L i m i t = 15∗ p i / 1 8 0 ;
8 noGoLimit = 25∗ p i / 1 8 0 ;
9

10 f o r row =1: Nrows
11 f o r c o l =1: Ncols
12 i f s l o p e s ( row , c o l ) > s l o w L i m i t
13 i f s l o p e s ( row , c o l ) > noGoLimit
14 s l o p e = 3 ;
15 e l s e
16 s l o p e = 2 ;
17 end
18 e l s e
19 s l o p e = 1 ;
20 end
21 s l o p e s Q u a n t ( row , c o l ) = s l o p e ;
22 end
23 end
24 end

Code B.4: Code for creating a speed map using the quantized slopes and the terrain types

1 f u n c t i o n speedMap = crea teSpeedMap ( s l o p e s Q u a n t ,
t e r r a i n T y p e s )

104



2 t e r r a i n D e s c r i p t i o n s = { ’ ocean ’ , ’ road ’ , ’ s p o r t s a r e n a ’ , . . .
3 ’ u rban ’ , ’ marsh ’ , ’ f o r e s t ’ , ’ f a r m l a n d ’ , ’ q u a r r y ’ , . . .
4 ’ r i v e r ’ , ’ s t r e a m ’ , ’ l a k e ’ , ’ i n d u s t r i a l ’ , ’ open ’ } ;
5 t e r r a i n S p e e d s = 1 / 3 . 6 ∗ [ 1 e−12 , 30 , 25 , 1e−12 , 15 , 5 , 20 ,

1e−12 , 1e−12 , 1e−12 , 1e−12 , 1e−12 , 1 5 ] ;
6 t e r r a i n S p e e d M a p = t e r r a i n S p e e d s ( t e r r a i n T y p e s +1) ;
7

8 [ Nrowst t , N c o l s t t ] = s i z e ( t e r r a i n T y p e s ) ;
9 [ Nrowssq , Nco l s sq ] = s i z e ( s l o p e s Q u a n t ) ;

10 Nrows = min ( Nrowst t , Nrowssq ) ;
11 Ncols = min ( N c o l s t t , Nco l s sq ) ;
12 speedMap = z e r o s ( Nrows , Ncols ) ;
13 f o r row =1: Nrows
14 f o r c o l =1: Ncols
15 s w i t c h s l o p e s Q u a n t ( row , c o l )
16 c a s e 1
17 % go
18 speed = t e r r a i n S p e e d M a p ( row , c o l ) ;
19 c a s e 2
20 % goSlow
21 speed = min ( t e r r a i n S p e e d M a p ( row , c o l ) ,

5 / 3 . 6 ) ;
22 speed ( speed == 0) = 1e−12;
23 c a s e 3
24 % noGo
25 speed = 1e−12;
26 i f ( t e r r a i n S p e e d M a p ( row , c o l ) == 3 0 / 3 . 6 )
27 speed = 5 / 3 . 6 ;
28 end
29 end
30 speedMap ( row , c o l ) = speed ;
31 end
32 end
33 end

B.2 A* search algorithm

A* search algorithm implementation. The algorithm uses a graph class which is a standard
graph implementation of a directed graph with weighted edges, and is not included in this
report. The version showed assumes a 4 edge graph structure. The algorithm uses a binary
heap for the openSet which is a min priority queue. The binary heap is a common data
structure often used for min priority queues. For details on implementation of graph and
binary heap structures, see [6].
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,

1 f u n c t i o n s h o r t P a t h = A s t a r S h o r t P a t h ( graph , s t a r t N o d e ,
t a r g e t N o d e )

2 % A s t a r S h o r t P a t h f i n d s t h e a p p r o x i m a t e l y s h o r t e s t p a t h
3 % from s t a r t N o d e t o t a r g e t N o d e
4

5 % I n i t i a l i z i n g d a t a
6 cameFrom = z e r o s ( g raph . numCols∗ graph . numRows , 1 ) ;
7 c l o s e d S e t = z e r o s ( g raph . numRows∗ graph . numCols , 1 ) ;
8 c o s t = 1 e15∗ ones ( g raph . numCols∗ graph . numRows , 1 ) ;
9 openSe t = BinaryHeap ( g raph . numRows , g raph . numCols ) ;

10 openSe t . i n s e r t ( s t a r t N o d e , g raph . h e u r i s t i c ( s t a r t N o d e ,
t a r g e t N o d e ) ) ;

11 c o s t ( s t a r t N o d e ) = 0 ; % minimum c o s t from s t a r t t o s t a r t
12 s h o r t P a t h = −1;
13

14 % Running s e a r c h
15 w h i l e openSe t . s i z e ˜= 0
16 c u r r e n t N o d e = openSe t . e x t r a c t M i n ( ) ;
17 i f c u r r e n t N o d e == t a r g e t N o d e
18 s h o r t P a t h = r e c o n s t r u c t P a t h ( cameFrom ,

t a r g e t N o d e ) ;
19 r e t u r n
20 end
21

22 c l o s e d S e t ( c u r r e n t N o d e ) = 1 ;
23

24 f o r i = 1 : 4
25 ne ighbourEdge = graph . edgeLookup ( cu r r en tNode , i )

;
26 i f ne ighbourEdge == −1
27 c o n t i n u e ;
28 end
29

30 n e i g h b o u r = graph . E ( ne ighbourEdge , 2 ) ;
31 i f c l o s e d S e t ( n e i g h b o u r )
32 c o n t i n u e
33 end
34

35 t e n t a t i v e C o s t = c o s t ( c u r r e n t N o d e ) + graph . E (
ne ighbourEdge , 3 ) ;

36 i f ˜ openSe t . isMember ( n e i g h b o u r ) | | . . .
37 t e n t a t i v e C o s t < c o s t ( n e i g h b o u r )
38 cameFrom ( n e i g h b o u r ) = c u r r e n t N o d e ;
39 c o s t ( n e i g h b o u r ) = t e n t a t i v e C o s t ;
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40 f u t u r e C o s t = t e n t a t i v e C o s t + graph .
h e u r i s t i c ( ne ighbour , . . .

41 t a r g e t N o d e ) ;
42 i f ˜ openSe t . isMember ( n e i g h b o u r )
43 openSe t . i n s e r t ( ne ighbour , f u t u r e C o s t ) ;
44 e l s e
45 openSe t . dec reaseNode ( ne ighbour ,

f u t u r e C o s t ) ;
46 end
47 end
48 end
49 end
50 end

B.3 Path evaluation

The following code is the implementation of area between two generic paths with the
same start and end points.

Code B.5: Code for calculation of area between paths. Uses code B.6 for the specific area calcu-
lation.

1 f u n c t i o n [ areaTemp , k e y P o i n t s ] = a r e a B e t w e e n P a t h s ( graphA ,
graphB , pathA , pathB )

2 p o i n t s A = graphA .V( pathA , : ) ;
3 p o i n t s B = graphB .V( pathB , : ) ;
4 t e r r a i n S i z e = max ( graphA . t e r r a i n S i z e , graphB .

t e r r a i n S i z e ) ;
5

6 i f graphA . t e r r a i n S i z e > graphB . t e r r a i n S i z e
7 p o i n t s B = a r r a y f u n ( @coor1to10 , p o i n t s B ) ;
8 p o i n t s B = u n i qu e ( po in t sB , ’ rows ’ , ’ s t a b l e ’ ) ;
9 e l s e i f graphA . t e r r a i n S i z e < graphB . t e r r a i n S i z e

10 p o i n t s A = a r r a y f u n ( @coor1to10 , p o i n t s A ) ;
11 p o i n t s A = u n i que ( po in t sA , ’ rows ’ , ’ s t a b l e ’ ) ;
12 end
13

14 [ k e y P o i n t s , iA , iB ] = i n t e r s e c t ( po in t sA , po in t sB , ’ rows
’ , ’ s t a b l e ’ ) ;

15 [ iA , iB ] = r e m o v e C r o s s i n g S e c t i o n s ( k e y P o i n t s , iA , iB ) ;
16

17 d i f f I B = d i f f ( iB ) ;
18 d i f f I A = d i f f ( iA ) ;
19 loopsNum = 0 ;
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20 areaTemp = 0 ;
21 f o r i = 1 : l e n g t h ( d i f f I B )
22

23 i f d i f f I A ( i ) == 1 && d i f f I B ( i ) == 1
24 c o n t i n u e
25 e l s e
26 loopsNum = loopsNum +1;
27 fromA = iA ( i ) ;
28 toA = iA ( i +1) ;
29 fromB = iB ( i ) ;
30 toB = iB ( i +1) ;
31

32 s e c t i o n A = p o i n t s A ( fromA : toA , : ) ;
33 s e c t i o n B = f l i p u d ( p o i n t s B ( fromB : toB −1 , : ) ) ;
34 c losedLoop = [ s e c t i o n A ; s e c t i o n B ] ;
35

36 areaTemp ( loopsNum ) = areaFromClosedCurve (
c losedLoop ( : , 1 ) , c lo sedLoop ( : , 2 ) ) ;

37 end
38 end
39 areaTemp = areaTemp ∗ ( t e r r a i n S i z e ˆ 2 ) ;
40 end

Code B.6: Implementation of Green’s area formula for closed curves with straight or diagonal
edges. Used by code B.5

1 f u n c t i o n A = areaFromClosedCurve ( y , x )
2 % I m p l e m e n t a t i o n o f Green ’ s a r e a fomula f o r a r e a s wi th

4 and 8 edge
3 % t y p e b o u n d a r i e s
4 A = 0 ;
5 i f ( x ( 1 ) == x ( end ) && y ( 1 ) == y ( end ) )
6 dx = d i f f ( x ) ;
7 dy = d i f f ( y ) ;
8 A = 0 ;
9 f o r i = 1 : l e n g t h ( dx )

10 i f ( dx ( i ) == 0 | | dy ( i ) == 0) % edge = 4
11 W = ( x ( i ) ∗dy ( i ) − y ( i ) ∗dx ( i ) ) ;
12 e l s e
13 i f dx ( i ) > 0 && dy ( i ) < 0 % edge = 8
14 W = −x ( i ) − y ( i ) ;
15 e l s e i f dx ( i ) < 0 && dy ( i ) < 0
16 W = −x ( i ) + y ( i ) ;
17 e l s e i f dx ( i ) < 0 && dy ( i ) > 0
18 W = x ( i ) + y ( i ) ;
19 e l s e i f dx ( i ) > 0 && dy ( i ) > 0
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20 W = x ( i ) − y ( i ) ;
21 end
22 end
23 A = A + 0 . 5∗W;
24 end
25 A = abs (A) ;
26 end
27

28 end

B.4 Hierarchical path planning implementation

The following function is the essence in how the hierarchical path planning is imple-
mented. Given a graph, a path in this graph and a desired path radius, this function creates
a mask of the area within the given radius of the specified path. This mask is then used
for creating a graph, only including the masked areas. This is supported directly by the
graph class, and all other processes such as terrain analysis and path planning are exactly
as before.

Code B.7: Code for creating a mask covering the area within a desired radius of the given path.

1 f u n c t i o n mask = c r e a t e M a s k ( graph , pa th , r a d i u s )
2 mask = z e r o s ( g raph . numRows , g raph . numCols ) ;
3 f o r i = 1 : l e n g t h ( p a t h )
4 coo r = graph .V( p a t h ( i ) , : ) ;
5 row = coor ( 1 ) ;
6 c o l = coo r ( 2 ) ;
7 r o w S t a r t = max ( 1 , row−r a d i u s ) ;
8 rowEnd = min ( g raph . numRows , row+ r a d i u s ) ;
9 c o l S t a r t = max ( 1 , co l−r a d i u s ) ;

10 colEnd = min ( g raph . numCols , c o l + r a d i u s ) ;
11 mask ( r o w S t a r t : rowEnd , c o l S t a r t : co lEnd ) = 1 ;
12 end
13 end
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