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Summary

Uncertainty poses a major concern in reservoir management. To maximize pro-

duction, engineers and geoscientists use numerical models of the reservoir to

simulate the production process in advance, and mathematical optimization is

used to find an optimal recovery strategy. However, acquiring an accurate de-

scription of a subsurface hydrocarbon reservoir is impossible, and hence these

models are highly susceptible to uncertainty. With uncertainties present in the

model, it is hard to know what the optimal production configuration is, as the

actual outcome might be different from the prediction. The standard approach

to this issue is to use the expected values of the uncertain parameters when solv-

ing the optimization problem, which basically ignores the uncertainty.

This thesis addresses the uncertainty problem in reservoir management. A method-

ology for handling optimization problems containing uncertain parameters, called

stochastic programming, is introduced. The reservoir control optimization prob-

lem is formulated using this framework, and it is argued for why it is necessarily

better than a regular deterministic formulation. A case study regarding a realis-

tic reservoir model with uncertainties is carried out, showing how the stochastic

solution yields higher expected return and fewer constraint violations than the

deterministic solution. Moreover, it is explained how stochastic programming

can be used to control risk when making decisions based on uncertain informa-

tion.
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Sammendrag

En stor utfordring innenfor olje- og gassproduksjon er usikkerhet. For å sikre

maksimal utvinning bruker petroleumsingeniørene numeriske modeller av reser-

voaret til å simulere produksjonen på forhånd, og ved hjelp av matematisk op-

timalisering bestemmes en optimal utvinningsstrategi. Det er derimot umulig

å lage en korrekt kunstig fremstilling av et oljereservoar som befinner seg flere

kilometer under havbunnen, altså er disse modellene sterkt beheftet med usikker-

het. Usikkerhet gjør det vanskelig å bestemme en optimal konfigurasjon av

produksjonssystemet, ettersom virkeligheten kan være noe helt annet enn det

modellene tilsier. En vanlig måte å håndtere dette på er å bruke forventningsver-

diene til de usikre parameterne, men sannheten er at denne metoden ignorerer

usikkerheten.

Denne oppgaven tar for seg usikkerhetsproblemet i reservoaroptimalisering,

eng. reservoir management. Leseren introduseres for en metodikk som kan

brukes til å håndtere optimaliseringsproblemer med usikre parametere, kalt stokastisk

programmering. Dette rammeverket brukes til å formulere et produksjonsopti-

maliseringsproblem, hvor det argumenteres for hvorfor dette nødvendigvis er

bedre enn en standard deterministisk formulering. I et realistisk case-studie

som tar for seg en usikker reservoarmodell, vises det at den stokastiske løsnin-

gen gir bedre avkastning og færre brudd på begrensningene enn den determin-

istiske løsningen. Videre forklares det hvordan stokastisk programmering kan

brukes til å kontrollere risiko i en beslutningsprosess basert på usikker infor-

masjon.
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Chapter 1

Introduction

1.1 Background

The petroleum sector is the largest industry in the world in terms of dollar value.

Not only is fossil fuels the world’s most important energy source, oil is also the

feedstock of a wide range of chemical products that are critical in today’s so-

ciety. Since the discovery of the Ekofisk field in the North Sea in 1969, oil and

gas has been Norway’s main source of income, and is by many considered to be

the cornerstone of the nation’s welfare state. Over a 40 year period the oil and

gas industry has created values worth today’s equivalent of 10 000 billion NOK,

and in 2013 the industry alone stood for 22 % of the added value in the country.1

In light of these numbers, huge sums are invested in the development of petroleum

technology. A lot of the research is aimed at improving extraction strategies for

subsurface oil reservoirs, usually referred to as reservoir management, as there

are big potential savings and earnings from improving production by even just

a little. This area of research has made mathematical optimization find its way

into petroleum engineering, merging the fields of classical geosciences and cy-

1Figures are collected from www.regjeringen.no
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bernetics into what we call reservoir control optimization.

Uncertainty poses a major concern in oil and gas production. The production

configuration is based on geological models that are highly susceptible to un-

certainty, thus it is crucial to handle this effectively. To maximize production,

the system will often be operating on its processing capacity constraints. If the

controller setpoints used to achieve this come from solving a mathematical op-

timization problem containing uncertain parameters, the constraints might ac-

tually be violated without anyone knowing. This can result in increased wear on

equipment and eventually failure, which again poses a safety issue. Moreover,

constraint violations could also cause the system to unnecessarily underper-

form. All in all, it is very difficult to make informed decisions under uncertain

conditions.

Handling uncertainty in oil and gas production is receiving increased atten-

tion, for several reasons. Stricter requirements to health, safety and environ-

ment make it totally necessary to account for uncertainty, and not to mention,

be aware of where the uncertainties appear in the system. As in all sectors, there

is also big interest in being able to monitor and control risk, both financial and

safety related. As seen from the downturn in the oil and gas industry at the time

of writing, the uncertain market has huge impacts on the companies who make

a living of it.

1.2 Objective

This work addresses how uncertainty can be incorporated in reservoir manage-

ment. The focus is given to the uncertainties related to the geological mod-

els used for conducting the reservoir control optimization. The reader is intro-

2



duced to the framework that deals with optimization under uncertainty, called

stochastic programming, and how this can be applied to oil and gas produc-

tion optimization. The aim is to give the reader an overlying understanding

of how uncertainty can be explicitly included in a mathematical optimization

problem, how this differs from regular deterministic optimization, and to con-

vey the main advantages of using such an approach. The thesis also serves as a

theoretical introduction to reservoir simulation.

Several challenges come up when including uncertainty. First of all, uncertainty

is represented using stochastic (random) variables that must be treated differ-

ently from deterministic variables. Moreover, evaluating stochastic functions

often lead to extensive computations, e.g. multidimensional integrals. There is

also no straight forward way of extending a deterministic optimization problem

to include uncertainty, thus formulating a stochastic programming problem can

be difficult.

1.3 Previous work

Regarding earlier literature, a fair amount of research has been made to reser-

voir management under uncertainty. However, most of it is related to deci-

sion making in long-term field planning, and the theory is often adapted from

portfolio analysis. Less work is available on incorporating uncertainty directly

in reservoir control optimization. When there is uncertainty in the geological

model, it has become fairly standard to visualize this using multiple realizations,

but these are rarely included all the way through the mathematical optimiza-

tion.
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1.4 Structure of the report

The thesis report is structured as follows. Ch. 2 introduces the reader to reser-

voir simulation, explaining how it is done and why it is important. The reservoir

management concept is elaborated on in Ch. 3, and the stochastic program-

ming framework for optimization under uncertainty is introduced and linked to

the reservoir optimal control problem. Ch. 4 gives a literature review on previ-

ous work done on reservoir management under uncertainty. In Ch 5, the theory

in Ch. 3 is applied in a realistic case study to promote the strength of stochastic

programming and its wide area of application.
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Chapter 2

Introduction to Reservoir

Simulation

For an Exploration & Production (E&P) company, the phase between the discov-

ery of a possible hydrocarbon reservoir and the actual drilling and subsequent

production is critical. The company needs to analyze and evaluate the chance

of success, as the cost of drilling a well is in the hundred million dollar class, thus

the prize of making a mistake is high. They also need to determine how much

oil they can expect to extract from the reservoir, and decide whether it will be

profitable to produce it. After the production has started, the engineers and

geoscientists must analyze the development in the reservoir in order to main-

tain maximal oil recovery. In order to conduct these analyzes the company uses

advanced simulation tools to visualize the subsurface conditions. This is called

reservoir simulation, and is considered to be one of the most important engi-

neering areas in the E&P sector. This chapter covers the most basic parts of

reservoir simulation. The target is to convey the main purposes and explain the

central building blocks in the implementation.
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2.1 What is reservoir simulation?

Reservoir simulation is a technique where a numerical model is used to describe

a hydrocarbon reservoir’s geological and petrophysical properties, with the pur-

pose of predicting dynamic behavior in the reservoir over time. Reservoir simu-

lation is one of the most important tools for supporting reservoir management,

i.e., to maintain an optimal configuration of the production facilities to maxi-

mize oil recovery (see Ch. 3).

2.2 Building a geological model

Creating a numerical model of a petroleum reservoir is a highly extensive task,

and requires collection and interpretation of a multitude of information. Ob-

taining geophysical data requires careful planning and can be very time con-

suming. Furthermore, the information must be transferred to the model in an

efficient manner.

2.2.1 Data gathering

Seismic surveys play an important role in identifying the extent of the reservoir

and recognizing rock layers. Seismic data can also help naming the rock types

in the reservoir and identifying fractures and faults. However, shooting seismic

surveys is expensive and time consuming, and the resolution is limited (usu-

ally in the ten meters scale, Lie (2014)). Well logs are carried out by lowering

various measuring tools into the wells, and provide very accurate information.

The main drawback is that the information is valid only in a certain vicinity

of the wells. Collecting core samples from the reservoir can be used to verify

measurements, but suffers from the same downside as well logs. By combin-

ing information from all of these utilities, the engineers can start developing an

artificial replica of the real reservoir, carefully choosing the data they consider

6



to be the most reliable. If available, they can enhance the information received

from measurements by looking at the production history of the particular field,

and run well tests. Everything contributes to the big puzzle, but it is quite obvi-

ous that obtaining an exact representation of the whole reservoir is impossible.

Large uncertainties are attached to the numerical model, as will be further dis-

cussed in Ch. 3.

2.2.2 Discretization

A reservoir model must link the geological and petrophysical data to the reser-

voir geometry. To make this doable, the reservoir model is discretized in space

and represented as a volumetric grid. Each cell in the grid is considered a rep-

resentative elementary volume (REV), in which all rock and fluid properties (see

Sections 2.3-2.4) are fixed in space, meaning they are the same for the whole cell

(they can still change with time). The REV principle is illustrated in Figure 2.1.

The information gathered as discussed in Section 2.2.1 is used to populate the

different cells in the grid, thus resulting in complete reservoir description. The

process of assigning parameter values to the grid cells is a challenging process,

as local measurements must be upscaled to grid size. This introduces uncer-

tainty, which is the topic of Ch. 3. With the grid filled up, the simulator uses the

information to solve fundamental differential equations across the cells. These

equations arise from physical laws, e.g. conservation of mass (the continuity

equation), Darcy’s law (the equation of flow) and pressure-volume or pressure-

density relationships (the equation of state), and must be discretized in time

and space to fit the grid structure. Given boundary conditions, the equations

are solved for every time step in a given horizon, creating a picture of how fluids

flow within the reservoir. This is explained in detail in Section 2.5.
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2.2.3 Grid types

There are many ways to design a grid, and the choice is usually a trade-off be-

tween accuracy and computational efficiency. According to Lie and Mallison

(2013), the most widely used grid type in industrial applications is the strati-

graphic grid, which is designed to emphasize that the majority of reservoirs

consist of several sediment layers. The layers, often called beds, have usually

been subject to different wear and erosion, leading to fractures and faults, and

the stratigraphic grid is meant to capture this in a clear manner. The most com-

mon form of stratigraphic grids is the corner-point grid. A corner-point grid

uses hexahedronal cells that are aligned such that they can be numbered us-

ing logical (i , j ,k) notation. Figure 2.2a and 2.2b show corner-point grids in two

and three dimensions, respectively. Notice the five distinct faults in Figure 2.2a.

Another type of stratigraphic grid with increasing popularity is the unstructured

Perpendicular Bisector (PEBI) grid. Cells in a PEBI grid can have any shape and

can be arranged to fit any reservoir geometry. The cells can also be refined in

areas where a special orientation is needed, for example around a well, as dis-

played in Figure 2.3.
2 KNUT-ANDREAS LIE AND BRADLEY T. MALLISON

Figure 1. A representative elementary volume is the smallest volume over
which a measurement can be made and be representative of the whole, here
illustrated for porosity.

Although its SI-unit is m2, permeability is commonly represented in units Darcy1. Perme-
ability is often positively and strongly correlated to porosity, but because the orientation and
interconnection of pores are essential to flow, it is seldom a direct function of porosity. In
general, K is a tensor and we say that the medium is isotropic (as opposed to anisotropic) if
K can be represented as a scalar function. Moreover, due to transitions between different rock
types, the permeability may vary rapidly over several orders of magnitude, local variations in
the range 1 mD to 10 D are not unusual in a typical field.

This description of a reservoir and its petrophysical parameters is usually developed through
a complex workflow that involves a multitude of data sources that span a large variety of
spatial (and temporal) scales, from knowledge of the geologic history of the surrounding basin,
via seismic and electromagnetic surveys and study of geological analogues (rock outcrops),
to rock samples extracted from exploration and production wells. All this information is
accumulated and presented as input to the reservoir simulation in the form of a geo-cellular
model (volumetric grid) that describes the geometry of the reservoir rock. Each grid cell is
assumed to be an REV and provides the petrophysical properties that are needed as input to
the simulation model, primarily porosity and permeability. Hence, the grid is closely attached
to the parameter description and cannot be easily adjusted to provide a certain numerical
accuracy as it can in many other fluid dynamics applications.

Although rectilinear and curvilinear grids are sometimes used for reservoir simulation,
they are seldom sufficient to accurately describe the volumetric structures of a reservoir.
Instead, the industry standard is to use so-called stratigraphic grids that are designed to
reflect that reservoirs are usually formed through deposition of sediments and consist of stacks
of sedimentary beds with different mixtures of solid particles of varying sizes that extend in
the lateral direction. Because of differences in deposition and compaction, the thickness and
inclination of each bed will vary in the lateral directions. Parts of the beds may have been
weathered down or completely eroded away, and the layered structure of the beds may have
been disrupted due to geological activity, introducing fractures and faults. For the purpose

1The precise definition of 1 Darcy (≈ 0.987 · 10−12 m2) involves transmission of a fluid with viscosity 1 cp
through a homogeneous rock at a speed of 1 cm/s by a pressure gradient of 1 atm/cm.

Figure 2.1: Rock properties such as porosity are assumed constant within a REV
(Lie and Mallison, 2013)

8



64 3 Grids in Subsurface Modeling

a) The whole model with active and inactive
cells and four regions of interest marked in dif-
ferent colors

b) Zoom of the red region with
pillars and corner-points shown
as red circles

c) The magenta region with col-
oring according to cell volumes,
which vary by a factor 700.

d) The blue region in which fault faces
have been colored gray and the corre-
sponding grid lines have been colored blue.

e) The green cross-section with coloring according to layer number from top to
bottom of the model.

Fig. 3.19. Detailed view of subsets from the Norne simulation model.

(a) 2D corner-point grid

64 3 Grids in Subsurface Modeling

a) The whole model with active and inactive
cells and four regions of interest marked in dif-
ferent colors

b) Zoom of the red region with
pillars and corner-points shown
as red circles

c) The magenta region with col-
oring according to cell volumes,
which vary by a factor 700.

d) The blue region in which fault faces
have been colored gray and the corre-
sponding grid lines have been colored blue.

e) The green cross-section with coloring according to layer number from top to
bottom of the model.

Fig. 3.19. Detailed view of subsets from the Norne simulation model.

(b) 3D corner-point grid

Figure 2.2: Reservoirs modeled with corner-point grids (Lie, 2014)

Figure 2.3: PEBI grid with local refinement around wells (Adamson and Crick,
1996)
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2.3 Rock properties

A hydrocarbon reservoir is a subsurface area of porous rocks having oil and/or

gas trapped within the pores. The rocks have many properties that affect how

fluids flow inside the reservoir, thus these are important to obtain and include in

the model. This section covers the most central rock properties when working

with reservoir modeling.

2.3.1 Porosity

Porosity is a dimensionless quantity defined as the fraction of the bulk volume

that is occupied by pores (voids), i.e., the volumetric void space in the rock.

Porosity is usually assigned the letter φ, and is related to a material’s compress-

ibility in the following way:

cr = 1

φ

dφ

dp
= dln(φ)

dp
(2.1)

where cr is the compressibility and p is the overall reservoir pressure (Lie, 2014).

If the compressibility can be assumed to be constant, Eq. (2.1) can be solved for

the porosity to obtain

φ(p) =φ0ecr (p−p0) (2.2)

It is also common to use a linearization of Eq. (2.2), giving (Lie, 2014)

φ(p) =φ0
[
1+ cr (p −p0)

]
(2.3)

In a porous reservoir rock, the void space may be filled with water, oil or gas,

thus the porosity is directly proportional to production potential. This is why

porosity is considered one of the most crucial parameters when exploring a

reservoir. Porosity cannot be measured directly, but must be estimated from
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other measurable quantities. The most widely used principles today are called

density porosity and neutron porosity. These are investigated in detail here, the

reader should refer to Smithson (2012) for a detailed explanation. Figure 2.4

illustrates the porosity property.

Figure 2.4: Porosity is determined by the pore and grain size distribution (Smith-
son, 2012)

2.3.2 Permeability

Permeability is the ability of a porous material to transmit fluid, i.e., the ease

of which fluid can pass through it. Permeability is usually denoted the letter K ,

and is measured as the area of open pore space in the cross section that faces, or

is perpendicular to, the direction of flow (Nolen-Hoeksema, 2014). Hence, its SI

unit of measurement is m2. However, it is more common to use the darcy unit (1

D ≈ 1 ·0.987−12 m2), named after the French scientist Henry Darcy. It is normal

that the permeability varies widely within a reservoir, and ranges from 1 mD to

10 D are not unusual. Permeability appears in Darcy’s law, which describes the

steady-state flow of single-phase fluid through porous media (Lie and Mallison,

2013):

~v =−K

µ
∇Φ (2.4)
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where ~v is the superficial velocity, µ is the viscosity, ρ is the density and ∇Φ
is the pressure gradient (i.e. ∇Φ = ∇p −ρ||~g ||z, where ||~g || is the gravity con-

stant and z is the height value). Permeability is closely related to porosity, and

high porosity often implies high permeability. However, this is not always the

case, as high permeability is also a matter of connectivity, i.e., how well the pores

are connected to each other enabling fluid to flow in between. Assuming lami-

nar (streamline) flow, permeability and porosity is related through the Carman-

Kozeny equation

K = 1

8τA2
v

φ3

(1−φ)2 (2.5)

where τ is the tortuosity, meaning the ratio between the actual distance traveled

and the straight-line distance (also called arc-chord ratio) and Av is the specific

surface area (internal surface per unit bulk volume). It is important to empha-

size that permeability is a scalar only in the case of an isotropic (as opposed to

anisotropic) medium. In general, fluid will flow easier in one direction through a

material than another, meaning a tensor is required to fully describe the perme-

ability. Also, permeability as described in this section is actually called absolute

permeability. In the context of multi-phase flow, it is important to separate be-

tween absolute permeability and relative permeability (see Section 2.5.1). Fig-

ure 2.5 displays the principle of permeability.

2.3.3 Hydrocarbon saturation

The hydrocarbon saturation is a property that renders how much of a porous

rock that is occupied by hydrocarbons, i.e. the fraction of the rock filled with oil

or gas. Thus, the saturation is a dimensionless number in the range [0,1], just

like porosity. The equation describing saturation uses the fact that as water in

a porous rock is displaced by oil, the conductivity in the rock decreases. This
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Figure 2.5: Permeability is the ability for fluid to flow through a porous material
(Nolen-Hoeksema, 2014)

relationship is displayed in Eq. (2.6), which is called Archie’s Law:

Ct = Sn
wφ

mCw (2.6)

where Ct is the conductivity of the oil-bearing rock sample, Sw is the water sat-

uration, φ is the porosity and Cw is the pore water conductivity. The saturation

exponent, n, expresses the increased difficulty for an electrical current to pass

through the rock sample as it becomes desaturated, i.e. as the water is replaced

by non-conductive oil. A typical value is n = 2.1 The cementation exponent,

m, expresses how the connectivity of the pore structure affects the conductiv-

ity, as the rock itself is assumed to not conduct electricity. A common value is

m = 2.1 Most logging tools measure resistivity, the reciprocal of conductivity,

hence Equation (2.6) is usually inverted to (Frank Jahn, Mark Cook, 2008)

Rt = S−n
w φ−mRw (2.7)

where Rt and Rw is the formation and water resistivity, respectively. The water

saturation is easily extracted as

1Values are collected from the Schlumberger Oilfield Glossary, http://www.glossary.
oilfield.slb.com/
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Sw = n

√
Rw

φmRt
(2.8)

Since saturation is a fraction, the hydrocarbon saturation is obviously found as

Sh = 1−Sw (2.9)

2.4 Fluid properties

In order to model fluid flow in a reservoir, it is not enough to have knowledge of

the reservoir rocks. The flow is also highly dependent fluid characteristics, thus

these are also important to obtain.

2.4.1 Viscosity

Viscosity is a measure of a fluid’s resistance to shear stress, although commonly

referred to as "thickness". High viscosity indicates a thick (viscous) fluid, such

as oil, while low viscosity indicates a thin fluid, such as air. Viscosity is usually

derived through the so-called moving plate model. Consider a plate sliding on

the floor, with fluid underneath. When the plate moves, the fluid is subject to a

shear stress defined by

τ= F

A
(2.10)

where F is the horizontal component of the force used to move the plate and

A is the plate’s area. The shear stress creates a velocity profile where the fluid

has the same velocity as the plate on top, denoted u, and zero velocity at the

bottom (see Figure 2.6). This is called the no-slip condition. Sir Isaac Newton

postulated in 1687 a differential equation relating the shear stress τ to the fluid

velocity gradient (White, 2003)
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τ=µdu

dy
(2.11)

where y is the vertical distance away from the floor. The proportionality con-

stant is the fluid’s viscosity, also referred to as the dynamic viscosity. The viscos-

ity of a given fluid varies highly with temperature and slightly with pressure.

Figure 2.6: The velocity profile in the fluid as the plate moves with velocity u
(adapted from White (2003))

2.4.2 Relative permeability

When several phases (e.g. oil, gas, water) are present in a fluid, this usually in-

hibits flow. Thus, when considering multi-phase flow, the permeability (abso-

lute permeability) property must be extended to be phase dependent. This is

done by introducing the relative permeability, usually denoted krα, of phase α.

The relative permeability is a dimensionless number in the interval [0,1] that

reflects the proportion of the absolute permeability of that phase at total sat-

uration (i.e. if it was the only phase present) that is effective in the fluid. The

product of the relative permeability and the absolute permeability is called the

effective permeability, denoted kα, thus the following relationship is applicable:

15



krα = kα
K

(2.12)

A single-phase fluid has relative permeability equal to 1. However, in a multi-

phase, the sum of the relative permeabilities is less than unity because of in-

termolecular forces between the phases present. That is, for an oil-water-gas

system, for instance, then

kr o +kr w +kr g < 1 (2.13)

Relative permeability is usually regarded as a function of saturation only, and

some approximative models that relate these two properties exist. Nonetheless,

relative permeability is usually obtained by performing laboratory experiments

on core samples from the reservoir (Frank Jahn, Mark Cook, 2008). Figure 2.7

shows a typical diagram for the relative permeabilities in a fluid consisting of oil

and gas. Sor is the residual oil saturation, i.e. the saturation at which no more oil

can be recovered. Sg c is the critical gas saturation, i.e. the saturation at which

the gas becomes mobile, hence able to flow.

Figure 2.7: Relative permeability curve for oil and gas (www.petrowiki.org)
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2.5 Modeling flow in porous media

Sections 2.3 and 2.4 cover the most central rock and fluid properties in reser-

voir modeling. These properties are important for understanding the differ-

ential equations used to describe fluid flow in a reservoir. While there is a lot

of material available in the literature, this section covers the most widely used

flow models in reservoir simulation. For a comprehensive review the reader is

encouraged to consult Chen et al. (2006).

2.5.1 Two-phase flow

There are many ways to describe the flow of fluids in porous media, and it is all

about making assumptions that are reasonable to the problem at hand to limit

the complexity in the equations. This work focuses mainly on two-phase flow,

where the fluid is assumed to be comprised of two immiscible phases, typically

oil and water. The immiscible property means that the different phases don’t

mix together and form a solution. Recall that Equation (2.9) assumes immisci-

bility. Water is often referred to as the wetting phase and oil as the non-wetting

phase (Chen et al., 2006). Recalling Darcy’s law for single-phase flow (2.4), the

two-phase extension is easily derived as (Lie and Mallison, 2013)

~vα =−krαK

µα
∇Φα (2.14)

where α ∈ {o, w} is the phase indicator and krα is the relative permeability for

phase α. Notice that the relative permeability is used as a scaling factor for the

absolute permeability. Moreover, the principle of mass conservation applies to

each phase, i.e.,

∂(ραSαφ)

∂t
=−∇ρα~vα+qα (2.15)
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where qα is the mass flow rate of phase α per unit volume. Equations (2.14) and

(2.15) together with the saturation equation (2.9) and the principle of capillary

pressure, i.e.

pc = po −pw (2.16)

is what constitutes the model for two-phase immiscible flow through porous

media (Codas et al. (2015), Chen et al. (2006)). Furthermore, φα and µα are as-

sumed to be functions of po , whereas krα and pc are functions of Sw . The so-

lution of a reservoir simulation are thus po and Sw as functions of space and

time, given initial conditions po(t0) and Sw (t0), and boundary conditions as

constraints on qα and the corresponding well equations (Codas et al., 2015).

There are several ways to rewrite the system (2.9, 2.14-2.16), see Section 2.3.2 in

Chen et al. (2006). A common reformulation is to have a flow equation for fluid

pressure and transport equations for saturations (Lie and Mallison, 2013).

2.5.2 Discretization and numerical solution

In order for the reservoir simulator to solve the flow equations across the model’s

grid structure, the system (2.9, 2.14-2.16) must be discretized in time and space.

There are several ways to do this, the two most widely used being finite differ-

ences methods and finite element methods (Chen et al., 2006). Codas et al. (2015)

contains a full discretization, including well models, where the Control Volume

Finite Element Method is used for the space discretization and a Backward Euler

Implicit Integration approach for the time discretization. Before the equations

are stated, some new notation must be introduced. Let Bα =Vα/Vαs be the vol-

ume formation factor for phase α, where Vα and Vαs are the fluid bulk volumes

at reservoir and stock tank conditions, respectively. Moreover, let λα = krα
µαBα

be

the fluid mobility. The discretized system can be written (Codas et al. (2015),
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notation slightly adapted)

0 = 1

tk − tk−1

([
φi Si

α

B i
α

]
k

−
[
φi Si

α

B i
α

]
k−1

)
−

[ ∑
j∈N (Ωi )

λ
i , j
α T i , j

(
Φ

j
α−Φi

α

)
+ q i

α

B i
α

]
k

(2.17)

0 =
q i
α,k

B i
α,k

−
[ ∑

w∈W i

W I
w,iλ

w,i
α

(
pw

bh −p i
α−ρi

α||~g ||
(
zw

bh − zi
))]

k

(2.18)

0 = 1−
[

Si
w +Si

o

]
k

(2.19)

0 =
[

p i
c −p i

o +p i
w

]
k

(2.20)

Some further explanation is needed to understand Equations (2.17)-(2.20). Let

Ω= {Ωi }, i ∈G be the reservoir domain, whereΩi is a grid block and G is the set

containing all grid blocks comprisingΩ. The set N (Ωi ) contains all neighboring

grid blocks toΩi . Thus, the superscripts i and j are spatial indices, whereas the

subscript k is the time step index. Moreover,λi , j is called the upstream mobility,

meaning λi , j =λ j ifΦ j
α >Φi

α or otherwise λi , j =λi . T i , j is a constant. Equation

(2.18) contains some new well variables, where the set W i composes all wells

perforating grid block Ωi . λw,i
α is the upstream mobility of well perforation i

and pw
bh is the bottomhole pressure (BHP) in well w , measured at height zw

bh.

W I
w,i is a productivity constant. Equations (2.18)-(2.20) can be used to replace

p i
w,k , Si

o,k and q i
α,k in Equation (2.17). At each time step, two equations with two

reservoir variables (p i
o,k and Si

w,k ) and |W | well variables must be solved for all

grid blocks.
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2.5.3 The black-oil model

The most widely used flow model in reservoir simulation is the black-oil model.

This is a three-phase model, where the regular hydrocarbon phase is divided

in two; oil and gas. At surface conditions these two are completely undissolved

(separated), while at reservoir conditions the gas can be dissolved in the oil, par-

tially or completely. The third phase is water, which is always undissolved from

the hydrocarbon phases. Recalling the volume formation factors explained in

Section 2.5.2 and introducing the gas solubility factor Rso = Vg s/Vos (i.e. the

volume of gas dissolved in the oil at reservoir conditions), the black-oil model

equations are written (Lie and Mallison, 2013)

∂

∂t

(φραs
Bα

Sl
)+∇· (ραs

Bα
~vl

)= qα, α= o, w (2.21)

∂

∂t

(φρg
s

B g
Sg + φRsoρ

g
s

Bo
Sl

)+∇· (ρg
s

Bg
~vg + Rsoρ

g
s

Bo
~vl

)= q g (2.22)

which must be expressed for each fluid component l present. Most commercial

reservoir simulators have solvers for black-oil equations.

2.6 Reservoir simulation software

There are several reservoir simulation softwares available on the market, both

commercial and open-source. The most widely recognized is ECLIPSE from the

oil field services company Schlumberger. It has been continuously developed in

over 30 years and is considered by many to be the industry leader. ECLIPSE sup-

ports virtually all reservoir types, including unconventional fields (e.g. shale oil

and gas), in addition to a multitude of options for Enhanced Oil Recovery (EOR)

methods (e.g. gas injection) and field development strategies. Other commer-

cial simulators are Nexus, owned by the oil field services company Halliburton,
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MoReS from Shell and the General Purpose Research Simulator (GPRS), devel-

oped at Stanford University.

2.6.1 Matlab Reservoir Simulation Toolbox

All simulations in this work are performed using the Matlab Reservoir Simula-

tion Toolbox (MRST). This is a free open-source program developed by SINTEF

Applied Mathematics and published in 2009 under the terms of the GNU Gen-

eral Public License. MRST has received increased attention since its release,

mostly due to its low-threshold interface and relatively low requirements to pro-

cessing capacity. MRST comprises mainly two parts; a core and a set of add-on

modules. The core consists of basic routines for creating grids and assigning

petrophysical properties, and contains solvers for incompressible, immiscible

and simple single-phase and two-phase flow equations. The add-on modules

are extensions of the core with more advanced functionality, typically solvers

to more complex models (e.g. black-oil) as well as support for other reservoir

model formats, e.g. ECLIPSE. For a complete list of available add-on function-

ality, consult section 1.4 in Lie (2014). Figure 2.8 displays the structure of MRST.

Figure 2.8: Structure of MRST (Krogstad et al., 2015)
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Chapter 3

Reservoir Management under

Uncertainty

Uncertainty poses a big challenge in oil and gas production. Despite very ac-

curate measuring tools, highly advanced modeling software and the best pro-

fessional expertise, it is quite obvious that obtaining a correct description of a

subsurface reservoir is impossible. This means that the information that en-

gineers and geoscientists use to plan and execute the production is uncertain,

i.e., it is not necessarily correct. This chapter addresses the uncertainty prob-

lem in reservoir management. The goal is to give the reader an overlying un-

derstanding of where the uncertainties come from, how they are identified and

visualized, and last but not least, methods for handling the uncertainties. First,

the reader is introduced to the concept of reservoir management, and its strong

relation to production optimization. The optimal control problem for reservoir

optimization is formulated and explained. In Section 3.3 the reader is intro-

duced to how uncertainty can be included in optimization problems, and how

they can be solved using stochastic programming. The methods discussed have

existed for quite a while, but have seen limited use in oil and gas production.
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3.1 Reservoir Management

Reservoir management is a very important area of oil and gas production. It is

an extensive topic that has received a lot of research attention for many decades,

thus there is very much material available in the literature. While there are many

different explanations accessible, they all have a lot in common, and the follow-

ing definition seeks to capture the most important purpose.

Definition. Reservoir management is the flow of multi-disciplinary decisions re-

garding the operation of an oil field’s production facilities, with the purpose of

maximizing hydrocarbon recovery.

To better understand what kind of decisions reservoir management involves,

the reader should be familiar with the bigger picture of hydrocarbon production

systems. While it is desirable to control all parts of the system simultaneously,

this has not yet been possible to achieve due to size and complexity challenges.

However, the various parts of most oil and gas systems have big differences in

time constants. For example, a reservoir has much slower dynamics than the

wells used to extract the oil. This makes it reasonable to divide the control sys-

tem into several layers, and place them in a hierarchical manner. Figure 3.1 dis-

plays the four levels in process control systems, with typical decisions and cor-

responding time scales listed on the sides of each level. Ideally, there are bidi-

rectional connections between all levels. The bottom level is called Control and

Automation and is where the classical controllers (e.g. Proportional-Integral-

Derivative controllers (PID)) are found, in addition to more advanced Model

Predictive Control (MPC) algorithms. Above Control and Automation there is

Production Optimization, which will be further discussed in Section 3.2. This

level constitutes what is called short term optimization, and involves decisions

such as deciding injection rates and routing well streams between pipelines

(Foss, 2012). In the literature, these decisions are sometimes included in the
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reservoir management domain, thus there is a strong coupling and a blurry bor-

der between these two levels. As seen, Reservoir Management decisions typi-

cally lie in the time scale of months. This includes planning wells (type, location

etc.), supporting drilling operations and executing recompletions, to name a

few. The top level is Asset Management, and covers the long term planning and

strategy making. During exploration, this typically means planning and execut-

ing seismic surveys. When a discovery has been made, it involves developing

a depletion plan for the reservoir and choosing a suitable Enhanced Oil Recov-

ery technique, if needed. Moreover, Asset Management also covers investment

strategies, transportation and export, and legal relationships. Note that there

are other classifications of the process control hierarchy available in the litera-

ture, e.g. in Seborg et al. (2011).

Figure 3.1: The process control hierarchy (Foss and Jensen, 2011)
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3.2 Production optimization

Production optimization is concerned with how to use the existing production

facilities to ensure maximal recovery. That is, given a certain configuration of

production equipment (injectors and producers with fixed locations), how should

these be tuned to maximize oil production?

3.2.1 Producing an oil field

According to Van Essen et al. (2010), there are two main stages in the produc-

tion phase. In the first stage, it is the reservoir pressure itself that acts as the

main driving force for the well flows. The clue is that the bottomhole pres-

sure in the production wells must be lower than the reservoir pressure in order

to make oil flow into the wells, and it is the magnitude of this pressure differ-

ence that determines the flow rates. As the reservoir is drained, the pressure

drops, and hence this difference decreases. To sustain the reservoir pressure,

fluid is injected via dedicated injection wells. The injected fluid, usually water,

is also meant to "push" the remaining oil in the reservoir towards the producers,

which is called sweeping the reservoir. This technique is referred to as water-

flooding. Eventually the water front itself will reach the producers, recognized

as the wells producing less oil and noticeably more water. This is called the

water-breakthrough. It is obviously desirable to delay the water-breakthrough

as much as possible, and this is perhaps the main purpose of production op-

timization. Figure 3.2 illustrates the principle of waterflooding on a simplified

reservoir with two horizontal wells (one injector and one producer). As seen, the

water front does not move uniformly towards the producer. This is because of

heterogeneity in the rock permeability, i.e., fluids flow easier some places than

others. Notice the water-breakthrough on the picture to the right.
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Figure 3.2: The waterflooding principle (Van Essen et al., 2010)

3.2.2 A reactive production strategy

Figure 3.2 illustrates a common production strategy, where the producer is kept

open until the water-breakthrough occurs, at which it is shut in. This is called

a reactive approach. The water-breakthrough is usually recognized as a prede-

fined water-cut ratio, typically 80-90 %. This value indicates when it is no longer

profitable to produce from the well in question, thus it varies from well to well

and reservoir to reservoir. For example, several wells on the Brage field in the

North Sea produces more than 90 % water and consequently less than 10 % oil.

The reactive production approach has the advantage of not requiring a reservoir

model, but often suffers from leading to non-optimal oil recovery. Figure 3.2 ex-

emplifies this by showing that after the wells are shut in, there are still significant

amounts of oil left in the reservoir.

3.2.3 Model based production optimization

This work focuses on model based production optimization, i.e., formulating

the problem as a mathematical optimization problem. This section uses the

problem setup in Codas et al. (2015), with a slight simplification. Let K =
{1, ...,K } be the prediction horizon with K time steps, and U = {1, ...,U } the con-

trol horizon with U steps. Moreover, define the state vector x = {xk } = {p i
o,k ,Si

w,k },k ∈
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K , i ∈ G and the control vector u = {u j }, j ∈ U . That is, the states are oil pres-

sure and water saturation for all grid cells Ωi , i ∈ G , where G is the set contain-

ing all grid cells comprising the reservoir domain Ω. The control variables are

typically fixed bottom hole pressures or output flow rates on the wells, or a com-

bination of the two. For each time step k ∈K , there is a surjective function κ(k)

mapping the time step to the correct control step, as there can be fewer con-

trol steps than time steps. Furthermore, define the vector v = {q w
α,k , pw

bh,k },k ∈
K , w ∈ W ,α ∈ {o, w} of well variables, where W is the set of wells. Given initial

condition x0, the optimal control problem is formulated as

min
u∈R|W |

∑
k∈K

Jk (vk ,uκ(k)) (3.1a)

subject to xk+1 = Rx (xk ,uκ(k)),k ∈K (3.1b)

vk = Rv (xk ,uκ(k)),k ∈K (3.1c)

bx
l ≤ xk ≤ bx

u ,k ∈K (3.1d)

bv
l ≤ vk ≤ bv

u ,k ∈K (3.1e)

bu
l ≤ uκ(k) ≤ bu

u ,k ∈K (3.1f)

The reservoir functions Rx (xk ,uκ(k)) and Rv (xk ,uκ(k)) are equivalent to the sys-

tem (2.17)-(2.20). Rv (xk ,uκ(k)) also includes one equality constraint for each

well, relating vk to the corresponding control target uκ(k). Equations (3.1d)-

(3.1e) are called output constraints, whereas Eq. (3.1f) obviously is the input

constraint. For a well controlled by bottomhole pressure, the output constraint

is typically a limit on the flow, and vice versa. The objective function Jk (vk ,uκ(k))

can be any optimization target, e.g. Net Present Value (NPV) or cumulative oil

production (in which cases (3.1) becomes a maximization problem). A common
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way to calculate NPV is (Lorentzen et al., 2009)

NPV = ∑
k∈K

∆t
qoro −qw rw −qi ri

(1+b/100)tk
(3.2)

where∆t is the size of each time step (usually number of days), qo is the oil pro-

duction rate (usually Sm3/day or STB/day), ro is the oil price (usually USD/Sm3

or USD/STB), qw is the water production rate, rw is the cost of producing water,

Qi is the injection rate, ri is the injection cost, b is the discount rate and tk is the

elapsed time.

3.2.4 Solution of reservoir control optimization problems

In general, performing a full reservoir simulation over the whole prediction hori-

zon is a computationally intensive task. Thus, solving reservoir optimal control

problems is even more demanding, as optimization algorithms require many

simulations in order to find an optimal solution. In so-called direct methods,

the optimal control problem (3.1) is transformed into a Nonlinear Programming

(NLP) problem (Codas et al., 2015). The NLP problem is usually solved with

a gradient-based algorithm, in which the optimal solution is found by search-

ing along the ascending (or descending) direction of the objective function. For

each iteration, the reservoir must be simulated for the current control guess to

evaluate the output values, from which the algorithm computes the next step.

This sequential procedure is called Single Shooting (SS).

Obtaining gradients

A gradient-based algorithm needs to evaluate the derivatives of the objective

and constraint functions with respect to the control variables. The most com-

mon approach for obtaining the gradients is to solve a system of adjoint equa-

tions (see Jansen (2011) for a comprehensive overview). Usually, obtaining the
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gradient of the objective function, as well as simple bounds on the control in-

put, is an easy linear operation. However, output constraints pose an issue as

they are often nonlinear functions of the current simulation result. That is, they

depend not only on the control inputs, but also on the state variables. Limits on

the oil production rate for a single well or the total water production rate for a

group of wells are examples of nonlinear output constraints (Codas et al., 2015).

In a Single Shooting setting, each output constraint require one additional ad-

joint computation (Codas et al., 2015). A possible way to overcome this is to

lump the constraints into one, but this also introduces new infeasibility issues.

REMSO

REMSO is an optimization algorithm for MRST developed by PhD student An-

dres Codas at the Norwegian University of Science and Technology. It is an ab-

breviation for Reservoir/Reduced Multiple Shooting Optimization, and can be

used to solve optimal control problems for oil and gas applications. REMSO

uses a Multiple Shooting (MS) strategy, which is an alternative to Single Shoot-

ing that deals with the main drawbacks. In MS, the prediction horizon is divided

into several intervals, each of which is solved as an independent initial value

problem (IVP). The advantage is that the state variables are explicitly available

at certain points in the prediction horizon (namely as the initial conditions for

each interval), which makes the output constraints become simple bounds. As

the intervals are independent, they can be simulated in parallel, utilizing mul-

ticore computer processors. The challenge of Multiple Shooting is to match the

separate IVP solutions to form a single feasible optimal solution. Figure 3.3 illus-

trates the difference between the two methods. The REMSO optimization pack-

age also offers functionality to solve optimization problems with Single Shoot-

ing. The software is published under the GNU General Public License 1.

1Download is available from https://github.com/iocenter/remso
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Figure 3.3: Single Shooting vs Multiple Shooting (Codas et al., 2015)

3.3 Optimization under uncertainty

As mentioned earlier, huge uncertainties accompany the reservoir model used

in the optimal control problem. Even though today’s measuring tools are very

accurate, the main problem is that it is impossible to achieve measurements

from every cubic centimeter of a reservoir that is located thousands of meters

below the sea floor with lateral extension of several kilometers. This means that

local measurements must be extended through the reservoir volume, which ob-

viously introduces a lot of uncertainty. Also, even though measuring instru-

ments provide accurate data, there is always error that contributes to the total

model uncertainty.

The optimal control problem (3.1) is based on an uncertain reservoir model.

This means that the optimal control law obtained when solving the problem

might not give the predicted production scheme at all. One can say that it lacks

robustness to geological uncertainty. Now, let’s look at how uncertainty can be

31



explicitly accounted for in optimization, and how this can make the solution

robust.

3.3.1 Introducing uncertainty to the problem

Consider the following unconstrained optimization problem

min
u∈Rn

J (u) (3.3)

for some input u ∈ Rn and the objective J (u) being the cumulative Net Present

Value, negated so that (3.3) can be formulated as a minimization problem. The

problem (3.3) is purely deterministic, meaning that J has a real numbered value

for any given u. Now, say that the objective is also dependent on a vector of

uncertain parameters ξ ∈ Rm .2 In an oil and gas application this could be rock

properties, e.g. permeability or porosity, or an economic measure, e.g. oil price.

The problem is now

min
u∈Rn

J (u,ξ) (3.4)

Since ξ is a stochastic variable, it can take any value within the so-called uncer-

tainty set Ξ ⊂ Rm (also called the support of the random variable). This means

that the objective is no longer uniquely determined for a given u, i.e., instead of

mapping to a real numbered NPV, it maps to an NPV distribution. The input u

is called a decision, and different decisions will typically give different distribu-

tions, as illustrated on Figure 3.4.

Stochastic variables require different treatment than real variables, thus the stochas-

tic problem (3.4) cannot be solved with the same algorithms as the deterministic

problem (3.3). A common way to overcome this is to use the expected values of

2This work considers real-valued stochastic variables. In general, ξ can be complex.
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Figure 3.4: Different decisions lead to different distributions of the objective
(adapted from Daniel Kuhn, EPFL)

the uncertain parameters, and thereby transform the stochastic problem to a

deterministic problem where the conventional methods apply. That is, to solve

the problem

min
u∈Rn

J
(
u,E

[
ξ
])

(3.5)

However, this approach basically ignores the uncertainty. The solution of (3.5)

tells us how the NPV can be maximized given that the uncertain parameters are

what we think they are. It does not say anything about how the solution will

work if they are not. If the variance of ξ is large, then the solution of (3.5), which

is referred to as the deterministic solution, is almost guaranteed to be misguid-

ing. Thus, the uncertainty should be treated in a better way. According to Van

Essen et al. (2009) there are two ways to deal with uncertainty in modeling and

control: reducing the uncertainty itself or reducing the sensitivity to the uncer-

tainty. The most widely used method to reduce uncertainty in a reservoir model

is called history matching, and is briefly discussed in Section 3.3.2. When talk-
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ing about reducing the sensitivity to uncertainty, it means handling the uncer-

tain parameters explicitly in the optimization. The framework that covers this is

called stochastic programming, and is the topic of Section 3.3.3.

3.3.2 History matching

History matching has become a widely used methodology for reducing uncer-

tainty in a reservoir model. Briefly explained, history matching is the act of iter-

atively adjusting the parameters in a reservoir model to reproduce known pro-

duction data. One usually distinguishes between manual and automatic history

matching. The manual approach is when an engineer or geoscientist adjust the

parameters based on knowledge and experience. This can work very well for

smaller problems where the number of parameters to adjust is manageable, but

for large-scale reservoir models it is unrealistic. Automatic history matching is

based on general parameter estimation techniques, where an objective func-

tion to be minimized is formulated, usually as an error term between reference

(production data) and measurement (model output), e.g. least squares. It is be-

yond the scope of this thesis to go into further details on parameter estimation

methods. The reader is referred to Ioannou et al. (1996) for a full overview.

Closed-Loop Reservoir Management

The combination of automatic history matching and dynamic optimization has

received increased attention over the last decade, usually under the name Closed-

Loop Reservoir Management (CLRM). With CLRM, the reservoir model is up-

dated before it is passed to the optimizer, and this is done repetitively at a fre-

quency that fits the purpose of the model (i.e. it can be both short-term and

long-term). Several research articles discuss this implementation of reservoir

management, see e.g. Foss and Jensen (2011), Lorentzen et al. (2009) and Brouwer

and Naevdal (2004). Figure 3.5 illustrates two possible implementations of CLRM.
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Option (a) uses history matching to update the model once every year, with sev-

eral input calculations (optimization steps) in between update. Option (b) up-

dates the model for every input step.

Figure 3.5: Closed-Loop Reservoir Management (Foss and Jensen, 2011)

3.3.3 Stochastic programming

The solution to the deterministic problem (3.5) maximizes NPV when the uncer-

tain parameters are equal to their expected values. As already mentioned, this

does not provide useful insight to the problem. Consider instead the following

formulation,

min
u∈Rn

E
[

J (u,ξ)
]

(3.6)

i.e., to maximize the expected NPV over the uncertainty space spanned by ξ.

Note the difference from Eq. (3.5), as
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E
[

J (u,ξ)
] 6= J

(
u,E

[
ξ
])

(3.7)

in general. The expected value operator in Eq. (3.6) is called a decision crite-

rion, as it reflects what the decision maker considers to be a desired property

of the objective distribution. The expected value is the most widely used de-

cision criterion in stochastic programming applications, for a good reason. In

applications where the decision is repeated many times, the Law of Large Num-

bers guarantees that the observed outcome average will tend to the expected

value. Hence, in such cases it makes sense to optimize the expected value and

not care so much about individual variations. Generally in applications where

the decision maker does not have to be risk averse, the expected value approach

is a good way of handling uncertainties. In general, it can be replaced with any

statistical measure, some of which are listed in Table 3.1.

Table 3.1: Popular decision criteria

Name Minimization problem formulation3

Variance min
u∈Rn

Var
[

J
]

Mean-Variance
Functional

min
u∈Rn

λE
[

J
]+ (1−λ)Var

[
J
]

Value-at-Risk min
u∈Rn

VaRη
[

J
]= min

γ

{
γ : Prob(J ≤ γ) ≥ η}

Conditional Value-
at-Risk

min
u∈Rn

CVaRη
[

J
]= E[J |J ≥ VaRη

[
J
]]

Worst case min
u∈Rn

sup
ξ∈Ξ

[
J
]

This work uses the expected value as the optimization target in the examples.

For more details on each of the listed decision criteria, consult Midttun (2014).

Some further explanation is given in Section 3.5.

3The objective function J (u,ξ), here referred to as J for simplicity, is here a cost or a loss
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3.4 Solution of stochastic optimization problems

The obvious question after introducing the concept of optimization under un-

certainty is how such problems can be solved. That is, how to solve Eq. (3.6).

The main concern is what to do with the expected value term. For simple prob-

lems, it might be possible to find the solution analytically. If this is not possible,

which is the case in almost all reservoir applications, then it must be approxi-

mated. This section addresses the most widely used approximation technique

in reservoir management.

3.4.1 The realizations ensemble

From a reservoir management perspective, uncertainty means that there are an

infinite amount of models that could fit the measurement data available. To

make this manageable, the standard approach is to discretize the uncertainty

set Ξ. That is, the uncertain reservoir is modeled as a finite set of possible re-

alizations, or scenarios. This set is often called the realizations ensemble. The

realizations ensemble can be generated in several ways depending on the infor-

mation available. An experienced geologist can create the scenarios manually

based on his knowledge of the reservoir in question. Another possibility is to

create the ensemble using a computer program. Figure 3.6 displays nine re-

alizations of a fictive reservoir’s permeability field, randomly chosen from an

ensemble of 100. Notice that the permeability varies quite a lot among them.

However, it is clear that the highly permeable channels are vertically aligned,

which is a useful observation.

Regardless of which method is used to generate the possible scenarios, it is im-

possible to tell which of the realizations that is the true model. In fact, none of

them are actually true, but if previous production data is available or the geo-

37



Figure 3.6: Nine realizations of a reservoir’s permeability field

scientists have detailed knowledge of the reservoir, it might be possible to tell

which of the realizations that are most likely to be close to the truth. This is

called ranking the realizations (see Deutsch and Srinivasan (1996) or Ch. 4).

Given a set of Nr realizations ξ= {
ξ1,ξ2, ...,ξNr

}
, the expected value term in Eq.

(3.6) can be replaced with the sum of possible scenarios weighted by their re-

spective probabilities. That is,

E[J (u,ξ)] =
Nr∑

n=1
pn J (u,ξn) (3.8)

where
∑Nr

n=1 pn = 1. This is called the finite scenario approximation. In the spe-

cial case of equiprobable realizations, Eq. (3.8) becomes the Sample Average

Approximation (SAA),

E[J (u,ξ)] = 1

Nr

Nr∑
n=1

J (u,ξn) (3.9)
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which is a Monte Carlo method. Equiprobable here means that the realizations

ξn , n = 1, ..., Nr are independent identically distributed (IID).

Choice of sample size

Obviously, a finite set of scenarios will never render the truth completely. How-

ever, if the ensemble is big enough, it is a question of whether it is a good enough

representation of the true reservoir. For the SAA approach, it is known from sta-

tistical theory that the expected variance of the sample average is inversely pro-

portional to the number of samples. That is, for J Nr (u,ξ) = 1
Nr

∑Nr
n=1 J (u,ξn) then

Var
[

J Nr (u,ξ)
]
= 1

Nr
Var

[
J (u,ξ)

]
. This means that the standard deviation decays

by a factor of 1p
Nr

. Thus, for every 100 samples added the accuracy is improved

by 0.1 (Shapiro and Philpott, 2007). In real applications, a set of 100 realizations

is usually considered satisfactory (Van Essen et al., 2009).

3.5 Handling output constraints

When optimizing under uncertainty, output constraints pose an issue because

the uncertainty makes it difficult to know whether they will actually be satisfied

or not. A typical example in oil and gas production optimization is the water

handling problem. A production system typically has an upper water process-

ing capacity, meaning the total rate of water coming from the producers must

obey this constraint. If the producers are controlled by bottomhole pressure, for

instance, uncertainty makes it hard to accurately predict what the actual output

water rate will be. Thus, output constraints must be treated with care. Stochas-

tic programming allows for handling output constraints in the same way as the

objective function, i.e., using statistical measures as listed in Table 3.1. Let us

look closer into what this involves.
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3.5.1 The robust solution

When optimizing on a finite set of reservoir realizations, a possible approach is

to require the output constraints to be satisfied for all realizations. This is called

robust or worst case constraint handling. Formulating the ensemble optimiza-

tion problem with robust constraint handling is straight forward. Consider the

following set of equations, where the SAA approximation is used for the objec-

tive function:

min
u∈R|W |

1

Nr

Nr∑
n=1

∑
k∈K

Jk (vk,n ,uκ(k)) (3.10a)

subject to xk+1,n = Rx
n(xk,n ,uκ(k)), k ∈K , n = 1, ..., Nr (3.10b)

vk,n = Rv
n (xk,n ,uκ(k)), k ∈K , n = 1, ..., Nr (3.10c)

bx
l ≤ xk,n ≤ bx

u , k ∈K , n = 1, ..., Nr (3.10d)

bv
l ≤ vk,n ≤ bv

u , k ∈K , n = 1, ..., Nr (3.10e)

bu
l ≤ uκ(k) ≤ bu

u , k ∈K (3.10f)

The bound constraints on x and v must hold for all realizations n = 1, ..., Nr .

The robust solution makes sense to use in applications where constraint viola-

tions are critical, for example if they are directly related to safety. For the water

handling problem, however, requiring the processing capacity to be satisfied for

all realizations might result in an overly conservative solution, as any protruded

scenarios will have large impacts on the solution. It is often desirable to be as

close to the capacity limit as possible, and with the robust solution there is a

chance that the actual response ends up too far away.
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3.5.2 Chance constraints

An alternative to the robust formulation is to require the output constraints to

be satisfied with a certain probability. In a general uncertain setting, given a

constraint function c(x,ξ), instead of requiring c(x,ξ) ≤ 0 the chance constraint

approach is to instead require

Prob(c(x,ξ) ≤ 0) ≥ η (3.11)

where η is typically 90-95 %. Chance constraints can be expressed using the

Value-at-Risk (cf. Table 3.1), as Eq. (3.11) is equivalent to

VaRη(c(x,ξ)) ≤ 0 (3.12)

The Value-at-Risk is a measure that is used a lot in the financial sector, for ex-

ample when optimizing a portfolio of stocks. Explained with words, the VaR at

level η ∈ [0,1] is a measure of the value for which the probability that the target

will be less than or equal to this value is greater than or equal to η 4. Figure 3.7

illustrates the VaR principle.

Figure 3.7: The Value-at-Risk (adapted from Daniel Kuhn, EPFL)

For the chance constraint formulation (3.12), the Value-at-Risk is only a mea-

sure of how certain a decision maker can be of not violating the constraint. It

does not say what happens if the constraint actually ends up with being breached.

4The notation for the confidence level, here η, varies slightly in the literature
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Hanssen et al. (2014) recommend using the expansion of Value-at-Risk, namely

the Conditional Value-at-Risk (CVaR), to deal with this. The CVaR at level η ∈
[0,1] is defined as the conditional expectation of the target above the corre-

sponding VaR. That is, in the current context, the expected value of the con-

straint function, given that it is violated. With the CVaR formulation, the deci-

sion maker has an idea of what to expect if the constraint ends up being violated.

We say that the CVaR regards the tail of the distribution. Cf. Table 3.1, the CVaR

is expressed

CVaRη(c(x,ξ)) = E[c(x,ξ)|c(x,ξ) ≥ VaRη(c(x,ξ))] (3.13)

The general and more rigorous definition is

CVaRη(c(x,ξ)) = inf
β∈R

{
β+ 1

1−ηE
[
max

(
c(x,ξ)−β,0

)]}
(3.14)

Figure 3.8 illustrates the CVaR’s position relative to the VaR. Furthermore, the

CVaR is easily discretized over the realizations ensemble via the Sample Average

Approximation (Hanssen et al., 2014):

CVaRη(c(x,ξ)) =β+ 1

Nr (1−η)

Nr∑
n=1

[
max

(
c(x,ξn)−β,0

)]
(3.15)

where the max() expression can be replaced by introducing

zn ≥ c(x,ξn)−β (3.16a)

zn ≥ 0 (3.16b)

Using Equations (3.15)-(3.16), the ensemble optimization problem is formu-
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lated as

min
u∈R|W |

1

Nr

Nr∑
n=1

∑
k∈K

Jk (vk,n ,uκ(k)) (3.17a)

subject to xk+1,n = Rx
n(xk,n ,uκ(k)), k ∈K , n = 1, ..., Nr (3.17b)

vk,n = Rv
n (xk,n ,uκ(k)), k ∈K , n = 1, ..., Nr (3.17c)

βx
u + 1

Nr (1−η)

Nr∑
n=1

zx
u,n ≤ 0, k ∈K , n = 1, ..., Nr (3.17d)

xk,n −bx
u −βx

u ≤ zx
u,n , k ∈K , n = 1, ..., Nr (3.17e)

zx
u,n ≥ 0, n = 1, ..., Nr (3.17f)

βx
l +

1

Nr (1−η)

Nr∑
n=1

zx
l ,n ≤ 0, k ∈K , n = 1, ..., Nr (3.17g)

−xk,n +bx
l −βx

l ≤ zx
l ,n , k ∈K , n = 1, ..., Nr (3.17h)

zx
l ,n ≥ 0, n = 1, ..., Nr (3.17i)

βv
u + 1

Nr (1−η)

Nr∑
n=1

zv
u,n ≤ 0, k ∈K , n = 1, ..., Nr (3.17j)

vk,n −bv
u −βv

u ≤ zv
u,n , k ∈K , n = 1, ..., Nr (3.17k)

zv
u,n ≥ 0, n = 1, ..., Nr (3.17l)

βv
l +

1

Nr (1−η)

Nr∑
n=1

zv
l ,n ≤ 0, k ∈K , n = 1, ..., Nr (3.17m)

− vk,n +bv
l −βv

l ≤ zv
l ,n , k ∈K , n = 1, ..., Nr (3.17n)

zv
l ,n ≥ 0, n = 1, ..., Nr (3.17o)

bu
l ≤ uκ(k) ≤ bu

u , k ∈K (3.17p)

Notice that the lower and upper bounds on both x and v must be treated with

separate CVaR formulations. That is, (3.17d)-(3.17f) represent the upper bound

cu(x,ξn) = xk,n −bx
u ≤ 0, whereas (3.17g)-(3.17i) represent the lower bound
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cl (x,ξn) = −xk,n +bx
l ≤ 0. Correspondingly, (3.17j)-(3.17l) represent the upper

bound cu(v,ξn) = vk,n −bv
u ≤ 0 and (3.17m)-(3.17o) represent the lower bound

cl (v,ξn) =−vk,n +bv
l ≤ 0.

Figure 3.8: The Conditional Value-at-Risk (adapted from Daniel Kuhn, EPFL)

Convexity and coherence

For a linear function c(x,ξ) and normally distributed ξ, the VaR constraint (3.12)

becomes a second order cone constraint, i.e., a convex function. However, for

non-linear functions it is non-convex. As shown in Shapiro and Philpott (2007),

the CVaR is a convex approximation of the VaR. Unlike VaR, the CVaR also re-

spects the subadditivity property, i.e., CVaR(X +Y ) ≤ CVaR(X )+CVaR(Y ). This

makes the CVaR a coherent risk measure, as it satisfies the four axioms of transla-

tion invariance, subadditivity, positive homogeneity and monotonicity (Artzner

et al., 1999). In the literature, the Conditional Value-at-Risk is sometimes re-

ferred to as the expected shortfall or Average Value-at-Risk.
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Chapter 4

Literature Review: Reservoir

Management under Uncertainty

This chapter contains a literature review of related work on reservoir manage-

ment under uncertainty. A decent amount of research has been made to this

topic, as uncertainty poses a major concern when planning and operating a hy-

drocarbon reservoir.

In Jonsbråten (1998) a model for optimizing decisions in oil field operation is de-

veloped. The objective is to maximize the expected Net Present Value of the oil

field given that the future oil price is uncertain. The problem contains both con-

tinuous and binary decision variables, making it a Mixed Integer Programming

(MIP) problem. The author uses a stochastic programming approach to the op-

timization problem, where the uncertain oil price parameter is approximated

with a finite scenario aggregation with weighted probabilities. The solution is

based on an algorithm called the Progressive Hedging Algorithm, extended to

handling MIPs.
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Goel and Grossmann (2004) proposes an optimal investment- and operational

planning strategy for an offshore gas field. The uncertainty considered in this

paper lies in the quality of the reservoirs. Even though seismic data can provide

strong indications of the size and deliverability of a reservoir, the measurements

are always subject to uncertainty and the truth is not revealed until after big in-

vestments have been made. The model proposed by the authors is a multi-stage

stochastic program with conditional non-anticipativity constraints, where the

objective is to maximize expected NPV. By using a finite scenario approxima-

tion for the reservoir uncertainties and a linear reservoir model, it can be solved

as a standard Mixed Integer Linear Programming (MILP) problem. Another al-

gorithm based on decomposition is also proposed. Applied to several examples

the results are significantly higher expected NPV compared to a deterministic

approach, and a lower risk for getting negative NPV values. A similar study were

performed by Tarhan et al. (2009) where a duality-based branch-and-bound al-

gorithm was used to solve for the optimal infrastructure of an offshore oil field,

with the objective of maximizing expected NPV.

Capolei et al. (2014) introduces a risk oriented approach to production opti-

mization by using the mean-variance (MV) criterion. As distinct from previous

work were the expected NPV is maximized in an uncertain environment, the au-

thors here uses a bi-criterion objective function where also the variance (hence

the risk) of the NPV is included explicitly. This differs from certainty equivalence

optimization and robust production optimization, none of which account for

risk directly. The mean-variance optimization strategy is tested in two extensive

cases, where the uncertainty lies in the estimated permeability of an oil reser-

voir. This is realized with 100 potential scenarios, and the optimization problem

is solved as an open-loop optimal control problem. The results reveal that the

MV approach gives significantly lower risk (i.e. smaller standard deviation in
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NPV) with only slightly lower expected return. The authors also propose that

the mean-variance rule should be considered in closed-loop reservoir manage-

ment as well as general Economic Nonlinear Model Predictive Control.

Aanonsen et al. (1995) examines the problem of choosing optimal well loca-

tions. This is a very important decision, as the result can have million dollar con-

sequences, but also very difficult due to uncertainties in the reservoir descrip-

tion. The authors begin by presenting some of the core principles in stochastic

programming, including expected values and chance constraints. They further

present three examples of how to optimize well locations under uncertainty.

The first example considers the locations of one injection well and one pro-

duction well. The uncertainty in the reservoir model is related to the density,

length and and sealing effect of small, sub-seismic faults. They are modeled as

stochastic variables for transmissibility through the faults, length of the faults

and distance between the faults, all of them assumed to have Gaussian proba-

bility distributions. The objective is to maximize Expected Net Present Barrels

(ENPB). After running 50 Monte Carlo simulations, three equally good maxima

are found, all better than the initial guess. Example 2 considers the optimal

location of one injection well in a fluvial reservoir where there are already 6 pro-

duction wells. It is desired that the well hits a channel so that the injection fluid

will transport as much oil as possible to the production well, and thus the opti-

mization criterion is expected channel volume between injector and producer.

The uncertainty lies in the probability of hitting a channel, and the optimal so-

lution is a trade-off between expected channel volume and the probability of

hitting. The example is later expanded to include the chance of blocking faults

between the wells. In example 3, the authors look into the uncertainties asso-

ciated with the deposition of channel sands, with the response variable being

ENPB like in example 1.
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Deutsch and Srinivasan (1996) address a very interesting technique for han-

dling uncertainties in reservoir models. While it is common to visualize the

uncertainty by generating possible scenarios or realizations of the reservoir, a

common problem in practical applications is that only a small number of the

available realizations are actually considered. This can be due to the compu-

tational effort required to simulate every possible scenario, or the time it takes

to professionally inspect all of them, or both. The authors propose a method

for ranking the available realizations, so that the most important ones (e.g. the

expected and bounding cases) can be included in the decision making. To cre-

ate this ranking, they introduce the concept of a ranking statistic, which is a

measure to decide whether a realization should receive a high or low ranking.

Several ranking statistics are proposed, including simple summary statistics like

net-to-gross ratio, net pore volume and average permeability. The idea is that

after the realizations have been ranked, only the necessary ones will be used

in more extensive simulations. The authors apply this in a synthetic reservoir

example with uncertainty in lithology, porosity and permeability. From 250 re-

alizations of the reservoir, five different response variables are proposed as pos-

sible ranking statistics, and these are compared to another six statistical ranking

measures. They conclude that the net-to-gross ratio is the overall best ranking

measure, considering both the true and the statistical ranking. By introducing

loss functions they are able to quantify the benefit of using three ranked real-

izations of the available 250, instead of picking three random ones. The result

shows a significant improvement when using the ranked realizations.

Corre et al. (2000) examine the major uncertainties in reservoir management

related to geophysics, geology and engineering dynamics. Their approach for

handling these is to obtain information about the relevant probability distribu-

tions and use it to conduct a risk analysis in order to make better decisions. To
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provide the basis for the risk analysis, the potential uncertainties are quantified

in terms of their impact on a decision criterion through a so-called integrated

assessment. This is carried out in a case study, which the authors divide into

four major steps. In the first step they obtain the distribution of Gross Rock Vol-

ume (GRV). Step two consists of finding the distributions of Original Oil In Place

(OOIP) and Original Gas In Place (OGIP). The parameters describing field ge-

ometry, seismic facies, rock types and measures of porosity, net-to-gross ratio,

permeability and saturation are assumed uncertain. The parameters and their

respective uncertainties sets are used as input to a flow simulation software. In

step 3 the most relevant realizations from step 2 are extracted using some of the

principles covered in Deutsch and Srinivasan (1996), i.e. the 10, 50 and 90 per-

cent quantiles, among others. These are further integrated with uncertainties

regarding dynamic parameters in step 4, i.e. permeabilities and faults transmis-

sivity, to name a few. The results that underlie the risk analysis are a probability

distribution of final recoverable reserves, statistical cumulative production pro-

files and probability estimation of product plateau duration.

Da Cruz et al. (2004) introduce the concept of a quality map, which is a 2D rep-

resentation of the reservoir with regards to several uncertain parameters. The

quality map shows how good an area is for production, measured in expected

cumulative oil production of a single well after a certain time of production. In

an example they show how the quality map incorporates both top depth, oil

volume, horizontal permeability and vertical permeability. In a case study the

quality map is created from 50 stochastic realizations of a reservoir, and the ex-

pected profit is compared to using a single deterministic model. The result is

a significant increase when accounting for the uncertainty. However, the result

from using a single reservoir representation can be improved by choosing a rep-

resentative realization from the quality maps. The article also covers ranking of
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realizations, like Corre et al. (2000) and Deutsch and Srinivasan (1996).

Zafari and Reynolds (2005) use the Ensemble Kalman Filter (EnKF) to assess

uncertainties in reservoir description. The EnKF is a subcategory of particle fil-

ters that has received increased attention over the last decade, mostly due to

its suitable application to large scale problems. Unlike the classic Kalman Fil-

ter, the EnKF computes error predictions by using Monte Carlo methods on an

ensemble of possible state variables. This makes it well suited for handling a

large set of reservoir realizations (see Evensen (2003) for a thorough derivation

of the EnKF). In a synthetic case study the EnKF is used to estimate several reser-

voir parameters, with good results. They also show how the EnKF can provide

unreliable results when the uncertain parameter has a multimodal probability

distribution.

Wang et al. (2009) treat the EnKF as an optimization algorithm rather than a

state estimation algorithm. This is compared to more conventional optimiza-

tion algorithms when solving a closed-loop optimization problem. Here, the

steepest ascent algorithm is superior to the EnKF. However, by using the EnKF

for data assimilation (like Zafari and Reynolds (2005)) and steepest ascent for

the production optimization, the authors are able to estimate reservoir param-

eters very accurate.

Van Essen et al. (2009) is a highly topical article on Robust Optimization (RO) of

oil and gas production under geological uncertainty. They consider an optimal

control problem where the objective is to maximize the Net Present Value of a

petroleum reservoir by controlling waterflooding, i.e. to delay the water break-

through and maximize the sweeping. The controlled variables are rates on a

number of injection and production wells. The authors explain how the optimal
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control problem is formulated, and include some theory on the how their opti-

mization algorithm works. A case study is carried out on an oil/water reservoir

with eight injection wells and four production wells. The geological uncertainty

in the reservoir description is represented by 100 possible scenarios (the real-

ization ensemble), where the fact that no measurements were available makes

them equiprobable. Three distinct methods are proposed for the maximization

of NPV; a reactive approach, a nominal optimization approach (NO) and a ro-

bust optimization approach. In the reactive strategy, the production wells are

shut in once the total production is no longer profitable, which is decided to be

when the water cut (WC) reaches 87 %. This approach has the advantage of not

requiring a system model, but is usually too conservative. The NO approach is

deterministic and only considers a single realization, but since no realization is

more likely than another the optimization procedure is run on all 100 realiza-

tions. The RO approach maximizes the expected NPV by considering the entire

set of possible scenarios. The solution must be valid for all of the realizations.

Based on the results, the probability density functions and cumulative distri-

bution functions for the three solution techniques are approximated. The RO

approach has a significantly higher expected NPV than the other two, with a

lower variance as well. This is cross-validated on a new and independent set of

100 reservoir realizations, with a very similar outcome confirming the previous

finding. The authors emphasize that their conclusions are valid only under the

assumption that the realizations ensemble is a good representation of the true

reservoir.

Peters et al. (2010) present a summary of a benchmark project conducted for

the SPE Applied Technology Workshop on closed-loop reservoir management

in June 2008. The purpose of the project was to investigate the combination of

flooding optimization and history matching on a synthetic oil field, called the
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Brugge field, and propose a closed-loop optimal waterflooding strategy for the

future. The geological model of the Brugge reservoir was created in advance by

the research organization TNO and contained synthetic well-log data, structure,

seismic data and production history for the past 10 years. The task for the par-

ticipants in the benchmark study (nine different universities/companies) was

to estimate certain parameters with history matching, that being permeability,

porosity and net-to-gross thickness ratio, in combination with flooding opti-

mization, to provide an optimal waterflooding strategy for the next 20 years.

In order to make the strategy closed-loop, the control profiles were tested on

the "true" reservoir, evaluated in terms of receiving observations and then up-

dated. Because of practical limitations and time constraints only one iteration

was possible, thus the control strategy was divided in two; one for the first 10

years and one for the second (remaining) 10 years. The Brugge field was mod-

eled as a typical North Sea Brent oil field, represented with 20 million grid cells

of average size 50 × 50 × 0.25 m. 30 wells were present; 20 producers and 10

injectors. The participants were provided 104 different realizations of the reser-

voir with respect to facies, porosity, Net-To-Gross ratio (NTG), water saturation

and permeability. How the set of realizations was used in the data assimilation,

and the method for performing the history matching, varied over the different

participants. This was also the case for the optimization part. About one-half

of the participants had in common that they performed the optimization in a

robust way by considering more than one realization. How these were chosen

from the set of history matched scanarios varied from choosing 10 at random,

using the mean model to considering the whole ensemble, among others. The

results were measured as total realized NPV of the field, and the contributors

were also asked to provide the root-mean-squared error of their respective pro-

duction data. All in all, the results were quite similar, with a spread in order of

10 %. The study clearly showed that those who had used three control intervals
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per well instead of one gained significantly higher NPV. It also showed that the

increase in NPV after the first period observations were given, and the model

was updated accordingly, was significant.

Van Essen et al. (2010) extend the Dynamic Real Time Optimization (D-RTO)

approach used for production optimization. The authors emphasize that un-

certainty in reservoir models typically leads to poor short term predictions, and

that this limits the profitability of a general D-RTO approach. They propose

a closed-loop combination of D-RTO and MPC, using locally identified, linear

models in the MPC. In this way smaller, short term prediction models are com-

bined with the full, long term reservoir model. The MPC controller tracks the

reference input, which is desired flow rates on the production wells. The model

in the MPC is updated repetitively using a subspace identification method for

parameter estimation. A case study is performed on a fictive reservoir model

with eight injectors and four producers, where the control target is to maxi-

mize NPV. The result from using the proposed control scheme is compared to

an open-loop D-RTO approach without MPC tracking, showing a significant im-

provement (594 M$ against 558 M$) over a time span of 4000 days.
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Chapter 5

Case study: Reservoir

Optimization

This chapter addresses a case study regarding reservoir optimization. It con-

cerns a fictive oil reservoir, the so-called Egg Model, which has an uncertain

permeability field. The objective is to maximize the Net Present Value of the

reservoir over a time span of 10 years by using an optimal waterflooding strat-

egy. The control variables are the rate of injected water for the injection wells

and bottomhole pressure for the production wells, which is a realistic setting.

The study may be regarded as twofold. In the first part, uncertainty is excluded

and the problem is solved as a deterministic optimization problem. This is done

in both an output unconstrained and constrained manner. In the constrained

example, a base case is included for comparison to reveal the benefit of using

mathematical optimization in reservoir management. The second part is about

uncertainty handling. The aim is to show the benefit of treating uncertainty

explicitly by optimizing over multiple realizations. All simulations are done in

MATLAB 2014a with MRST 2014a and problem setups from the REMSO opti-
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mization toolbox. The optimization is performed with Single Shooting using

the IPOPT software1. The computer used for conducting the simulations is a

HP Optiplex 9020 desktop with an Intel Core i7-4770 @ 3.4 GHz processor and

16 GB RAM.

5.1 The Egg Model

The Egg Model is a synthetic reservoir model developed by Maarten Zandvliet

and Gijs van Essen as a part of their PhD theses at the Delft University of Tech-

nology (Jansen et al., 2014). It has been used in several research publications on

reservoir management and oil and gas production optimization. The Egg Model

consists of a 60× 60× 7 grid structure, where the active cells form an egg-like

shape. It is a channelized oil-water reservoir with 12 wells total; eight injectors

and four producers. To represent the uncertainty related to the permeability, the

Egg Model includes 100 additional realizations of the permeability field, mak-

ing the model well suited for work on uncertainty handling. The Egg Model is

available for download at the 3TU.Datacentrum repository, 2 and includes files

for supporting all of the most widely recognized reservoir simulators. Table 5.1

summarizes some of the important reservoir properties. An extended list can

be found in Jansen et al. (2014). Notice that the injectors are controlled by rate

and the producers by BHP.

The Egg Model is simplified in this work to reduce the computational effort re-

quired for simulation. This is done by removing six of the seven horizontal layers

that comprise the reservoir, reducing the model total size with a factor of seven.

Figure 5.1 displays the single layer Egg Model along with the different well posi-

tions. Notice the highly permeable channels going in the vertical direction.

1https://projects.coin-or.org/Ipopt
2http://data.3tu.nl/repository/uuid:916c86cd-3558-4672-829a-105c62985ab2
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Table 5.1: Reservoir properties for the Egg Model

Property Value SI unit
Grid block height 4 m
Grid block length 8 m
Grid block width 8 m
Porosity 0.2 -
Initial reservoir pressure 40 ·106 Pa
Initial water saturation 0.1 -
Water injection rates 79.5 m3/day
Production well bottom hole pressures 39.5 ·106 Pa

Figure 5.1: Permeability plot of the simplified Egg Model

5.2 Case 1: A deterministic optimization approach

The deterministic case study is done by selecting only one permeability realiza-

tion. There is no information available that can be used to rank the realizations,

thus they are considered equiprobable. In this section, realization number 50 is

chosen from the ensemble of 100. The purpose of the deterministic case study is

to show the application of MRST and REMSO/IPOPT to find an optimal water-

flooding strategy for a realistic reservoir model, and evaluate the solution over
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the 10 year production period.

5.2.1 Output unconstrained problem

Consider first an output unconstrained formulation, meaning the well output

variables are unbounded. The control input is constrained, as this has little ef-

fect on the simulation time. The prediction horizon is partitioned in K = 150

steps of unequal length, the first steps being 1, 4, 10 and 15 days and the re-

maining steps all being 30 days. One year is considered to be 360 days in this

case study. The control horizon is divided into U = 10 equal periods of 360 days,

meaning the wells are adjusted once a year. As there are 12 wells, the control

vector has dimension u ∈ R12, where the first eight entries are the water injec-

tion rates and the remaining four are the producer bottom hole pressures. The

state vector contains the reservoir pressure and water saturation for all grid cells

(i.e. two states per grid cell). The single layer Egg Model contains 2491 active

grid cells, thus the state vector has the dimension x ∈ R4982. The vector of alge-

braic variables contains output water rate, oil rate and bottomhole pressure for

all 12 wells, i.e. v ∈R36. For the initial conditions on the state and control vector,

the values from Table 5.1 are used, i.e. x0 = [400, . . . ,400,0.1, . . . ,0.1]> and u0 =
[79.5, . . . ,79.5,395, . . . ,395]> where the pressures are scaled to bars. The lower

bounds on the control vector are 2 Sm3/day for the injectors and 380 bars for

the producers, whereas the corresponding upper bounds are 500 Sm3/day and

420 bars, i.e. bu
l = [2, . . . ,2,380, . . . ,380]> and bu

u = [500, . . . ,500,420, . . . ,420]>.

The pressure state is bounded below with zero, but has no upper bound. The

saturation is constrained to be in the interval [0,1]. Thus, bx
l = [0, . . . ,0,0, . . . ,0]>

and bx
u = [∞, . . . ,∞,1, . . . ,1]>. As this section considers an output unconstrained

formulation, there are no bounds on v . Using the framework from Section 3.2.3,
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the optimization problem is formulated as

min
u∈R12

∑
k∈K

Jk (vk ,uκ(k)) (5.1a)

subject to xk+1 = Rx (xk ,uκ(k)),k ∈K (5.1b)

vk = Rv (xk ,uκ(k)),k ∈K (5.1c)

bx
l ≤ xk ≤ bx

u ,k ∈K (5.1d)

bu
l ≤ uκ(k) ≤ bu

u ,k ∈K (5.1e)

where J (v,u) is the negated NPV, calculated from Eq. (3.2) with ro = 1.0, rw =
0.01, ri = 0.01 and b = 0. That is, no discount factor is included in this study.

The NPV values are later scaled to represent an oil price of 65 USD/STB which

is the Brent Crude price at the time of writing.

Solution

The solution algorithm is set up to terminate when reaching a convergence tol-

erance of 10−7 or 100 iterations. In this case the maximum number of iterations

is reached, meaning the algorithm has not converged to a local optimum un-

der the given tolerance. However, a feasible solution is found. To evaluate this

solution, the reservoir is simulated again for this control input. The result is dis-

played in Figure 5.2, showing the well outputs from the first producer (the rates

are converted to STB/day). The graphs reveal some strange behavior, with neg-

ative production rates of both oil and water. A negative oil production means

that the producer is "creating" oil and injecting it into the reservoir. The reason

this happens is that when there are no output constraints, the algorithm finds

it lucrative to inject created oil and produce it at a later time. When a well is
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producing mostly water, it is also beneficial for the solver to invert the output to

turn the costs of producing water into profits. This is obviously not possible in

reality, thus the unconstrained solution is not implementable, nor does it pro-

vide us with useful insight. Output plots for the remaining wells are enclosed in

Appendix B.1.
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Figure 5.2: Unconstrained output plot from Producer 1

5.2.2 Output constrained problem

In this section, constraints on the well outputs are added to the optimization

problem (5.1). This involves a minimum oil production rate of 2 Sm3/day (≈
12.6 STB/day) and a minimum water production rate of 0 Sm3/day. The injec-

tion wells are not given any output constraints (i.e. no bounds on the bottom-

hole pressure). The output constraints are implemented as bounds on v , i.e.

bv
l = [−∞, . . . ,−∞,0, . . . ,0,−∞, . . . ,−∞,2, . . . ,2,−∞, . . . ,−∞,−∞, . . . ,−∞]> and

bv
u = [∞, . . . ,∞,∞, . . . ,∞,∞, . . . ,∞,∞, . . . ,∞,∞, . . . ,∞,∞, . . . ,∞]>. Since v con-

tains the water injection rates and the producer BHP’s, which are both con-

trolled variables with constraints in u, these are not constrained in v to pre-

60



vent unnecessary adjoint computations (by setting them to ±∞ the algorithm

removes them). The problem is solved using the same formulation as in Sec-

tion 5.2.1 with the additional constraints on v , and the same algorithm options.

Also here the maximum number of 100 iterations is reached instead of the given

tolerance of 10−7. As the algorithm has not converged to a local optimum, the

solution is by definition not optimal. It will, however, be referred to as "the op-

timized" solution here. To evaluate the optimized solution, a base case is also

included for comparison. The base case is created by setting a constant water

rate of 2 Sm3/day on the injectors and a constant bottomhole pressure of 400

bars on the producers. The resulting outputs from Producer 1 are depicted in

Figure 5.3, a full overview of the simulation results is found in Appendix B.2.
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Figure 5.3: Constrained output plot from Producer 1

As seen, the negative output rates are gone, and the plots provide a realistic pro-

duction scenario. Looking at the top graph, the oil production in the base case

lies higher than the optimized case for more than seven years. The base case

also produces less water. For the optimized solution, the bottomhole pressure

drops as the total production increases from around 1500 days, which is consis-
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tent. During the last year, the oil production drops significantly while the wa-

ter production increases, indicating a water breakthrough at around 3240 days.

The base case solution does not account for output constraints, and is seen to

violate the lower bound of 2 Sm3/day (12.6 STB/day) at around 2800 days. How-

ever, it does not go below zero, so the violation does not cause an issue. Fig-

ure 5.4 shows the total production of oil and water (i.e. summed over all four

producers), revealing that the optimized solution produces significantly more

of both. Furthermore, Figure 5.5 shows the development in NPV for the two

cases, where the y-axis values have been scaled according to an oil price of 65

USD/STB. A clear increase in NPV is seen all the way through the time horizon,

with a flat out at the very end, which is recognized as a positive curvature. Again,

the optimized solution has a clearly better return, showing the potential gain in

using mathematical optimization in oil and gas production. Finally, Figure 5.6

plots the water saturation at six different times during the 10 year production

period. Notice how the waterfronts spread out from the injectors towards the

producers.
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Figure 5.4: Total production plots for the constrained case
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Figure 5.5: Net Present Value for the constrained case

5.3 Case 2: Optimization with multiple realizations

As described in Section 5.1, the permeability of the Egg Model is uncertain,

which is represented with an ensemble of 100 realizations. In this section, the

theory presented in Sections 3.3-3.4 is applied to the Egg Model, with intent to

show the benefit of using stochastic programming in a realistic reservoir opti-

mization scenario. Because of the extreme computational effort required for

doing a full optimization on all 100 realizations, only the 10 first are used in this

study. This is considered enough to demonstrate the principles, and can easily

be extended to include the whole ensemble. The solutions are still evaluated

for all 100 realizations, as this only requires simulation and not optimization.

Moreover, as the output unconstrained case in Section 5.2 provided a practically

infeasible solution, a purely unconstrained case is not included in the multiple

realizations examples.
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(a) 1 day (b) 1 year

(c) 3 years (d) 5 years

(e) 7 years (f) 10 years

Figure 5.6: Water saturation as the Egg field is produced
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5.3.1 Evaluating the deterministic solution

The deterministic solution from Section 5.2.2 is found by considering only one

realization of the permeability. Let us now see how this solution performs when

simulated for all 100 realizations, that is, how it performs when evaluated on an

uncertain reservoir model. Figures 5.7-5.8 contain the 100 different outcomes

of Producer 1 and Injector 1, where the black lines are the mean values of the

respective variables. Observe that roughly 50 % of the predicted oil production

scenarios are infeasible with negative rates. As this cannot happen in reality,

it proves the fact that the deterministic solution will have a very unpredictable

outcome. The output bottomhole pressure on Injector 1 is reasonable for all

scenarios. The output plots from the other wells are enclosed in Appendix B.3.
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Figure 5.7: Producer 1 for the deterministic solution

Figure 5.9a plots the development in NPV over the time horizon, scaled with a

factor corresponding to an oil price of 65 USD/STB. There is an evident spread

among the scenarios, and after 10 years the difference between the highest and

lowest cumulative NPV is more than three million USD. Over a time span of 10
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Figure 5.8: Injector 1 for the deterministic solution

years it is, however, hard to say if this is significant or not. Figure 5.9b shows a

histogram plot of the final NPV (after 10 years). The distribution is reminiscent

of a normal distribution. The expected NPV after 10 years is 17.51 million USD,

and the standard deviation is 0.68 million USD.
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Figure 5.9: Net Present Value for the deterministic solution
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5.3.2 Robust solution

The deterministic optimization problem has the objective of maximizing the

Net Present Value of the Egg field over the 10 year prediction horizon. How-

ever, the control profile that maximizes the NPV of one reservoir realization will

probably not maximize the NPV of the next realization. Thus, as explained in

Ch. 3, what we seek is the control profile that maximizes the expected NPV over

the whole ensemble. Since the realizations of the Egg Model are considered

equiprobable, the Sample Average Approximation applies in this case. More-

over, as discussed in Section 3.5, there are several ways to handle output con-

straints when optimizing on multiple reservoir realizations. Because an uncon-

strained formulation resulted in negative output flow rates, which cannot hap-

pen in reality, this section considers the robust or worst case formulation, where

one requires that the constraints are satisfied for all realizations. In this case it

means that there can be no negative rates for any of the scenarios. The robust

optimization problem is formulated using the framework from Section 3.5.1,

with Nr = 100. The prediction and control horizons are the same as in problem

(5.1), as well as the bounds on the control input and state vector.

min
u∈R12

1

100

100∑
n=1

∑
k∈K

Jk (vk,n ,uκ(k)) (5.2a)

subject to xk+1,n = Rx
n(xk,n ,uκ(k)), k ∈K , n = 1, ...,100 (5.2b)

vk,n = Rv
n (xk,n ,uκ(k)), k ∈K , n = 1, ...,100 (5.2c)

bx
l ≤ xk,n ≤ bx

u , k ∈K , n = 1, ...,100 (5.2d)

bv
l ≤ vk,n ≤ bv

u , k ∈K , n = 1, ...,100 (5.2e)

bu
l ≤ uκ(k) ≤ bu

u , k ∈K (5.2f)
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The actual implementation has Nr = 10, i.e. only the first 10 realizations are

used for the optimization. The algorithm is set up with a convergence tolerance

of 10−7 or 100 iterations. Again, the maximum number of iterations is reached

before the convergence condition. The solution is then simulated for all 100

realizations as in Section 5.3.1. The predicted production scenarios are shown

in Figure 5.10. The produced oil graph has a clearly lower spread than for the

deterministic solution in Figure 5.7. Even though the solution is based on only

10 realizations, there are almost no negative output rates. It is interesting, how-

ever, that the robust solution actually gets a few scenarios with negative water

production, whereas the deterministic solution has none. There is, on the other

hand, no guarantee that this would be the case if the deterministic solution was

based on any other realization in the ensemble. The injection plot in Figure 5.11

looks somewhat similar to Figure 5.8. The bottomhole pressure is slightly higher

in the robust case. The remaining well plots are enclosed in Appendix B.4.
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Figure 5.10: Producer 1 for the robust solution

The NPV development and final NPV histogram are displayed in Figure 5.12.

The cumulative NPV graph is seen to have lower spread than for the determin-
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Figure 5.11: Injector 1 for the robust solution

istic solution, and the development is the same for all scenarios for about 1000

days. The difference between the highest and lowest final NPV scenario is 1.64

million USD. From Figure 5.12b, the distribution looks like a skew normal dis-

tribution. The expected NPV at the end of the 10 year production period is 19.15

million USD with a standard deviation of 0.44 million USD.
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Figure 5.12: Net Present Value for the robust solution
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5.3.3 Comparison of solutions

Figure 5.13 shows the average total amounts of produced oil, produced water

and injected water for the 10 year period. The robust solution is seen to yield

a slightly higher total production on average of both oil and water, but also

requires 2000 barrels more of injected water. However, this bar plot does not

show the spread in the respective values, thus it does not provide very much in-

sight. In addition, the negative oil production from the deterministic solution

will have a negative contribution to the total production figure.
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Figure 5.13: Average total production/injection figures for the deterministic and
robust solutions

The optimization target in this case study is the Net Present Value of the Egg

reservoir. Thereby, the NPV plots for the two approaches are directly compa-

rable, and give reliable pictures of how well they perform. Figure 5.14 shows

the cumulative NPV graphs for the deterministic and robust solution plotted

together. The upper and lower dotted lines are the 90th and 10th quantiles, re-

spectively. The robust solution has a more desirable curvature, as the steeper

increase means the production is generating profits faster. The curve is almost
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flat at the end of the prediction horizon, meaning the field’s profitability has

reached a maximum (with the given configuration).
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Figure 5.14: Cumulative NPV plots for the deterministic and robust solution.
The dotted lines are the 90th and 10th quantiles of the respective distributions

Furthermore, Figure 5.15 shows the histograms for the final NPV values together.

The robust solution has a clearly higher expected NPV (1.63 million USD) than

the deterministic, as well as lower variance. A box plot can provide a deep com-

parison, and has sometimes better readability than the histogram. Looking at

Figure 5.16, the red lines are the medians of the final NPV for the robust and

deterministic solution. The blue boxes around the medians are defined by the

25th and 50th quantiles, i.e., 50 % of the probability masses are contained in the

boxes. The dotted lines lead to the respective maxima and minima. Notice how

the quantiles are tighter wrapped around the median for the robust solution.

Also, the box plot clearly shows that the median for the robust solution is better

than the best case scenario for the deterministic solution. All in all the robust

solution appears superior to the deterministic.
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Figure 5.15: Histogram plots of the NPV at the end of the production period
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Figure 5.16: Box plot comparison of final NPV for the two solutions

Comparing constraint violations

The preceding comparison shows that optimizing over the realizations ensem-

ble gives a solid increase in expected Net Present Value. Furthermore, Figure

5.17 shows an overview of how many production scenarios that contain one or
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more instances of negative rates, for the deterministic and robust solution. Even

though the robust solution is based on only 10 realizations, there are very few

constraint violations for the oil production, cf. Figure 5.17a. For Producer 1, the

robust solution has 8 scenarios that breach the zero border, whereas the deter-

ministic solution has 55. For Producer 2, the robust solution has 8 violations and

the deterministic has none. For Producer 3 and 4, the robust solution has only

valid scenarios, whereas the deterministic solution has 49 and 29 violations, re-

spectively. For the water production, however, the deterministic solution gives

only one scenario on Producer 4 with negative rates, cf. Figure 5.17b. The robust

solution has 8 and 13 for Producer 1 and 2, respectively, and none for Producer

3 and 4. Note that the y-axes are scaled differently in the oil and water case. It

is also important to remember that the outcomes could be very different if the

deterministic solution was based on any other realization.
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Figure 5.17: Bar plot comparison of scenarios with negative production

The most important results from this section are gathered in Table 5.2.
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Table 5.2: Results of the stochastic case study

Deterministic Robust
Expected NPV
(million USD)

17.51 19.15 (+ 11.4 %)

Standard dev. NPV
(million USD)

0.68 0.44 (- 35.3 %)

Constraint violations
(# scenarios)

Oil

Prod. 1 55 8
Prod. 2 0 13
Prod. 3 49 0
Prod. 4 29 0

Water

Prod. 1 0 8
Prod. 2 0 13
Prod. 3 0 0
Prod. 4 1 0
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Chapter 6

Discussion

6.1 Result evaluation

6.1.1 Deterministic case, output unconstrained

The case study in Ch. 5 considers first a deterministic problem formulation, i.e.

a formulation considering a single realization of the reservoir, with no output

constraints. The solution algorithm does not converge within the given limit of

100 iterations. By inspection of the progress log provided by the algorithm, the

tolerance of 10−7 is too tight for the solution to converge in 100 iterations. A

tolerance set to 10−4, on the other hand, would have given convergence. For an

economic objective function like Net Present Value, which has unit USD, 10−4

is considered tight enough to call the solution a local optimum. Hence, 10−4

would be a better choice of convergence tolerance in this case. However, a fea-

sible solution is still found from the 100 iterations. This solution, here referred

to as the "optimized" solution, results in a production scenario with negative

rates on oil and water. This happens because the unconstrained formulation

enables the solver to "create" oil that can be produced again at a later time.

Recalling Figure 5.2, the water production becomes negative at the last control
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period (i.e. 3240 days). Because the NPV formula (3.2) penalizes water produc-

tion, the solver inverts the well output towards the end when the water cut is

high, thereby turning the costs into profits. As one of the main purposes of do-

ing reservoir simulation is to gain insight to the problem and learn about the

reservoir, the unconstrained solution is rather useless.

6.1.2 Deterministic case, output constrained

In the unconstrained case in Section 5.2.1, the problem is that the solution yields

negative output rates, which will never happen in reality. Thus, in order to pro-

vide realistic production scenarios, the output rates must be constrained to pos-

itive values. Theoretically, a negative production means that the bottomhole

pressure in the producer is lower than the reservoir pressure, which is techni-

cally possible, but unlikely and most importantly unwanted. The fact that the

solver "creates" oil and water is impossible, of course, so the negative rates must

be prohibited. Thus, the deterministic problem is extended with lower bounds

on the oil and water production. The solution algorithm is set up with the same

tolerance of 10−7, which again is too tight for the solver to converge. The opti-

mized solution is simulated together with a base case using a constant BHP on

the producers and a constant water rate on the injectors. Recalling Figure 5.7,

the oil production for both solutions is less than 40 barrels a day for the whole

prediction period. This is considered low. For comparison, several oil fields in

the North Sea have wells that deliver more than 10 000 barrels a day. This is

somewhat irrelevant as the Egg Model is a fictive reservoir and the production

figures cannot be directly compared to real-life fields. Moreover, the Egg model

is simplified in this case study, resulting in even lower outputs than if all seven

layers are included. Furthermore, the results reveal that the optimized solution

gives increased return compared to the base case, here in terms of an increased

final NPV of 2 million USD, or approximately 12 %. In terms of the real oil indus-
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try, this is a huge improvement implying a multi-million (or even multi-billion)

dollar benefit. If all seven layers of the Egg were included, there is reason to

believe the enhancement would have been even greater. However, also here it

is important to keep in mind that the Egg Model is a fictive reservoir, and the

results here might not be obtainable in a real oil field application. Nonetheless,

the numbers do demonstrate the possible gain in using mathematical optimiza-

tion in reservoir management.

6.1.3 Stochastic case

In Section 5.3 the uncertainty in the Egg Model’s permeability field is included

in the analysis. When evaluating the deterministic solution, which is based on

only one realization of the permeability, over the whole ensemble of 100 real-

izations, it turns out that more than 50 % of the scenarios have negative oil pro-

duction. That is, the uncertainty renders the deterministic solution unimple-

mentable with more than 50 % probability. This is, of course, under the assump-

tion that one of the realizations in the ensemble is the "real" reservoir and that

they are all equiprobable (see Section 6.2). What would actually happen if the

deterministic solution was attempted implemented is hard to say, it might just

have been impossible to achieve the requested bottomhole pressures, or they

might cause other outputs than predicted. Regardless, the results in this report

show that uncertainty can have big impacts on the production performance,

and that it causes major feasibility issues. To prevent the negative production

under the uncertain conditions, the robust formulation requires the outputs to

be positive for all realizations considered. This would normally be the whole

ensemble, but is restricted to 10 realizations in this work to reduce the compu-

tational effort required for including them all. It also maximizes the expected

NPV over the ensemble subset. The robust solution is also simulated for all 100

realizations, and the results are remarkable. Recalling Figure 5.14, the robust
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solution yields an increase in expected final NPV of another 1.64 million USD,

or 11.4 %, which is nothing else but exceptional. Again, given that the Egg Model

is not a real reservoir, this might not be obtainable in an actual application. In

addition, as clearly seen from Figure 5.15, the variability in the final NPV is sig-

nificantly lower for the robust solution. It is often desirable to reduce the spread

in possible outcomes when dealing with uncertainty, thus the lower variance is

considered a strength. In applications that are especially sensitive to variations,

the variance may be included in the objective function as a trade-off with the

expected value. This is called the mean-variance functional (see Capolei et al.

(2014) or Ch. 4). In this case, the variance is not explicitly included, but is still re-

duced as a result for incorporating the uncertainty. Furthermore, by comparing

constraint violations, the robust solution is seen to give very few scenarios with

negative production, cf. Figure 5.17. If all 100 realizations had been used in the

optimization, the robust solution would have had none, obviously. In this way,

the robust problem formulation has removed the feasibility issues with the de-

terministic solution, in addition to giving increased expected return with higher

confidence. Since the optimization problem as formulated in Ch. 5 makes it

optimal with negative production if unconstrained, the robust or worst case de-

cision criterion is the only one that is reasonable to use. It makes no sense to

allow negative rates in a certain percentage of the scenarios, thus the CVaR for-

mulation is inappropriate for this type of constraint. CVaR is better suited for

handling upper bounds, see Section 7.2.

6.2 Assumptions

Some important assumptions are made for the case study in Ch. 5. First off,

the uncertainty is related to the permeability only. In real reservoir manage-

ment applications, there are uncertainties attached to several other rock (and
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also fluid) parameters. Hanssen et al. (2014) consider uncertainties in the Gas

Oil Ratio (GOR) and water cut of wells, for instance (see Ch. 4 for a summary).

The future oil price is another example of a parameter that is highly uncertain

in reality. Jonsbråten (1998) includes this in the analysis (see Ch. 4). Incorporat-

ing uncertainties from multiple sources complicates the optimization problem,

and so it is not uncommon to consider only the main sources of uncertainty

that have the most impact on the objective. Given that the uncertain param-

eter is the permeability, this work uses a given set of 100 realizations that is

downloaded together with the rest of the model. That is, no consideration is

given to how the realizations are created, and they are therefore assumed to be

equiprobable. As mentioned in Section 6.1, the result interpretations are based

on the assumption that one of the realizations in the ensemble is the real per-

meability field. In a real application, this will almost certainly never be true, and

we can never know what the actual reservoir looks like exactly. The point of the

realizations ensemble, however, is for it to be comprehensive enough to be a

good representation of the uncertainty, even though a discretization can never

reproduce an exact picture of reality, only an approximation.
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Chapter 7

Conclusion

7.1 Summary and concluding remarks

This thesis addresses reservoir management, with particular focus on how to

account for uncertainty when performing control optimization. An introduc-

tion to reservoir simulation is given, covering the most central building blocks

of a geological model and the fundamental differential equations for describing

multi-phase fluid flow in porous rocks. The reservoir management concept is

explained, and the strong relation to production optimization is clarified. The

reservoir control optimization problem is defined, with a brief overview of solu-

tion methods. Stochastic programming theory is introduced, emphasizing the

main difference from deterministic optimization. A literature review on previ-

ous work done on reservoir management under uncertainty is performed. The

covered theory is applied in a case study on reservoir optimization. The reser-

voir encountered is the famous Egg Model, simplified to reduce computational

load. The reservoir model has uncertainty attached to the permeability, repre-

sented with an ensemble of 100 realizations. The problem is first solved as a

deterministic optimization problem considering a single realization. The solu-

tion is then evaluated over the full set of realizations, which yields unrealistic
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production scenarios with many constraint violations. A new solution based on

multiple realizations is found, using a robust treatment of output constraints.

By comparison, the robust solution is seen to give higher expected return, lower

variability and almost no constraint violations.

Based on the covered theory and the results obtained in this thesis, it is con-

cluded that stochastic programming is superior to its deterministic counter-

part in reservoir optimization problems containing uncertain parameters. The

framework enables a highly structured approach to complex problems, where

the decision maker can choose what the desired statistical property of the so-

lution is. By optimizing over the realizations ensemble, the robust solution is

able to increase the expected final Net Present Value with 11.4 %, which in a real

oil field application could imply several billion dollars over 10 years. Stochas-

tic programming also offers a very elegant way of handling output constraints

when they are affected by uncertainty. With the chance constraint approach,

the degree of risk aversion can be directly controlled with the α parameter. This

is a very powerful tool not only in production optimization, but also in all kinds

of business planning. With the tight oil market as seen at the time of writing,

risk management is crucial, and stochastic programming is highly applicable to

this discipline.

7.2 Recommendations for further work

Stochastic programming allows for explicit treatment of uncertainty in opti-

mization problems. In the case study in Ch. 5, this is used to require the output

rates to be non-negative for all realizations included. But, as explained in Ch.

3, stochastic programming can also be used to control risk. This can be im-

plemented, for example, through the CVaR measure. However, because it never
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makes sense to allow negative production rates, the CVaR approach is not suited

for the problem encountered here. When solving the robust optimization prob-

lem, no upper bounds are set for the producer outputs. Even though the ob-

tained production rates are well within reasonable limits, it would be a natural

extension of the problem to include an upper processing capacity constraint for

the total water production. For this type of constraint, the CVaR or any other

probabilistic criterion would be a very suitable candidate for the violation han-

dling. Future work on stochastic reservoir control optimization should consider

a problem formulation where the lower bounds are treated in a robust fashion,

and the upper bounds are treated in a probabilistic manner where the conser-

vativeness can be directly controlled.
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Appendix A

Acronyms

CDF Cumulative Distribution Function

CLRM Closed-Loop Reservoir Management

CVaR Conditional Value-at-Risk

D-RTO Dynamic Real-Time Optimization

E&P Exploration & Production

EnKF Ensemble Kalman Filter

EOR Enhanced Oil Recovery

GOR Gas Oil Ratio

GRV Gross Rock Volume

IID Independent Identically Distributed

IVP Initial Value Problem

MILP Mixed Integer Linear Programming

MIP Mixed Integer Programming
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MPC Model Predictive Control

MRST Matlab Reservoir Simulation Toolbox

MS Multiple Shooting

MV Mean-Variance

NLP Nonlinear Programming

NO Nominal Optimization

NPV Net Present Value

NTG Net-To-Gross

OGIP Original Gas In Place

OOIP Original Oil In Place

PDF Probability Density Function

PEBI Perpendicular Bisector

PID Probportional-Integral-Derivative

RO Robust Optimization

SAA Sample Average Approximation

SS Single Shooting

STB Stock Tank Barrel

VaR Value-at-Risk

WC Water Cut
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Appendix B

Simulation results

B.1 Extended results from Section 5.2.1
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Figure B.1: Unconstrained output plot from the four producers
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Figure B.2: Unconstrained output plot from the eight injectors
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B.2 Extended results from Section 5.2.2
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Figure B.3: Constrained output plot from the four producers
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Figure B.4: Constrained output plot from the eight injectors
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B.3 Extended results from Section 5.3.1
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Figure B.5: Production scenarios with the deterministic solution
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Figure B.6: Injection scenarios with the deterministic solution
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B.4 Extended results from Section 5.3.2

0 500 1000 1500 2000 2500 3000 3500

q
o

il
 [

S
T

B
/d

a
y
]

-200

0

200
Production well 1

0 500 1000 1500 2000 2500 3000 3500

q
w

a
te

r [
S

T
B

/d
a

y
]

-50

0

50

Time [days]

0 500 1000 1500 2000 2500 3000 3500

B
H

P
 [

b
a

r]

395

400

405

0 500 1000 1500 2000 2500 3000 3500

q
o

il
 [

S
T

B
/d

a
y
]

-200

0

200
Production well 2

0 500 1000 1500 2000 2500 3000 3500

q
w

a
te

r [
S

T
B

/d
a

y
]

-100

0

100

Time [days]

0 500 1000 1500 2000 2500 3000 3500

B
H

P
 [

b
a

r]

395

400

405

0 500 1000 1500 2000 2500 3000 3500

q
o

il
 [

S
T

B
/d

a
y
]

0

100

200
Production well 3

0 500 1000 1500 2000 2500 3000 3500

q
w

a
te

r [
S

T
B

/d
a

y
]

0

50

100

Time [days]

0 500 1000 1500 2000 2500 3000 3500

B
H

P
 [

b
a

r]

395

400

405

0 500 1000 1500 2000 2500 3000 3500

q
o

il
 [

S
T

B
/d

a
y
]

0

100

200
Production well 4

0 500 1000 1500 2000 2500 3000 3500

q
w

a
te

r [
S

T
B

/d
a

y
]

0

50

100

Time [days]

0 500 1000 1500 2000 2500 3000 3500

B
H

P
 [

b
a

r]

390

400

410

Figure B.7: Production scenarios with the robust solution
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Figure B.8: Injection scenarios with the robust solution
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