
Penalty Function Approaches for
Proactive Fault-Tolerant Model Predictive
Control

Jon Håman Brusevold

Master of Science in Cybernetics and Robotics

Supervisor: Bjarne Anton Foss, ITK
Co-supervisor: Brage Rugstad Knudsen, ITK

Department of Engineering Cybernetics

Submission date: June 2015

Norwegian University of Science and Technology

NTNU Faculty of Information Technology,
Norwegian University of Science and Technology Mathematics and Electrical
 Engineering

 Department of Engineering Cybernetics

Master project

Name of candidate: Jon Håman Brusevold

Subject: Engineering Cybernetics

Title: On Penalty-Function Approaches For Fault-Taulerant Model-Predictive

Control
Title (in Norwegian): Penalty funksjon tilnærminger for feil tolerant model prediktiv regulering

The main task for this master project is to explore penalty function formulations for proactive model

predictive control (MPC) for handling incipient faults, in particular actuation faults. The project is

based on the idea using soft constraints with a penalty function for fault-tolerant MPC with an

economic criteria, so as to preserve the economics of a process during nominal operations, while

driving the system into a safety set in the event of an incipient fault. The project should focus on

linear time-invariant (LTI) systems.

Based on the project report entitled Fault-tolerant MPC for active mitigation of actuation faults in

process systems by the same candidate, the master project should explore the following topics:

1. Explore computational strategies for computing penalty parameters for exact penalty

functions with soft constraints for safety sets. In particular, implement and analyze an

approach using bi-level programming for designing penalty function for MPC.

2. Briefly explore and describe general methods for computing control invariant sets, and

describe how these sets enters into the FTMPC approach.

3. Consider and analyze stability properties of the proposed MPC approach.

4. Extend the proposed FTMPC scheme for nominal systems to be robust to disturbances.

5. Analyze and discuss criteria for optimal penalty formulations for safety sets with soft

constraints. That is, consider trade-offs between preserving economic operations of the

process and robustness of the controller by quickly driving the system into the stabilize region

for the faulty system.

6. Consider limitations on achievable performance for the proposed approach. In particular, for

LTI systems, consider approaches to compute and possibly constrain how far away the state

can move from the safety set while still being able to reach this set within the allowable time

(i.e., before the incipient fault is likely to occur).

The thesis report may include a draft paper to a selected conference with the main results.

Starting date: 12.01.2015

End date: 12.06.2015

Co-supervisor: Brage Rugstad Knudsen, Postdoc

Trondheim, 14.01.2015
Bjarne Foss

Professor/supervisor

2

Preface

This Master Thesis is written in the spring of 2015, and is the final result from my
five-year study at the Master of Technology program in Engineering Cybernetics
at the Norwegian University of Science and Technology (NTNU).

I would like to thank my supervisor Professor Bjarne A. Foss for constructive and
encouraging inputs and discussions. A special thank you goes to my co-supervisor
Postdoc Researcher Brage R. Knudsen. I am extremely grateful for all the valuable
inputs he has given me throughout my last year at NTNU. He has always been
available for answering questions, and has taken an active interest in my master
thesis. The development of the theory in this thesis is in collaboration with Brage,
and would not have been possible without his guidance. I would also like to thank
my fellow students in GG-44 for a great working environment, as well as valuable
discussions during the course of this work.

The report includes a draft paper with the main results submitted to the IEEE
Conference on Decision and Control 2015, and an additional paper is in the making.

Trondheim, 2015-06-10

Jon H̊aman Brusevold

i

ii

Abstract

In the event of actuator faults in systems, standard control algorithms might not
be sufficient for stabilizing the system and keeping the performance at an accept-
able level. Because of this, fault-tolerant control methods have been an active area
during the last decade, and several significant contributions to the reliability of
safety-critical systems have been made.

Model predictive control (MPC) has shown to be a powerful control scheme for
multi-variable control problems, and provide a natural framework for integrating
receding-horizon optimization, while also achieving system reconfiguration in the
event of faults. However, almost all the efforts on incorporating fault-tolerance in
MPC are focused on reactive fault-tolerance, which aim to handle a fault after it
has occurred. In contrast, proactive fault-tolerant control seeks to utilize an es-
timated, conservative time window between the warning of an incipient fault and
the time at which the faulty component is rendered useless to steer the state inside
a recoverable region before the fault occurs. As such, a proactive approach circum-
vents the issues of possible infeasibilities and destabilization often encountered in
reactive approaches, while allowing the system to continue operation during the
subsequent system repair.

Furthermore, economic MPC (EMPC) has received increasing attention in the re-
cent years. Rather than separating real-time optimization and control, an economic
MPC scheme merges dynamic economic operations with the feedback properties of
conventional MPC. However, there has not been paid much attention to including
fault-tolerance and economic optimization in a unified framework.

This thesis proposes a proactive EMPC algorithm for handling incipient faults,
that also takes economic profits in to account. The scheme utilizes an exact penalty
function to steer the system inside an invariant set ensuring stability during the
loss of actuation in the system. Additionally, the scheme is extended to be robust
in terms of handling unknown disturbances to the system, while still achieving the
desired fault-tolerance. Stability for the proposed scheme is proven, both for sys-
tems with and without disturbances. The merits and shortcomings of the proposed
scheme is demonstrated through several numerical examples.

iii

iv

Sammendrag

I et system hvor ett eller flere p̊adragsorgan feiler, er vanlige kontrollalgoritmer
ikke lenger tilstrekkelige for stabilisering av systemet. Dette har ført til økende
forskning p̊a feiltolerante kontrollsystemer i de siste ti årene.

Modell prediktiv regulering (MPC) har vist seg å være en fleksibel regulator for
multi-variable systemer, og gir et godt rammeverk for å integrere optimalisering
av systemdynamikken med feiltolerant kontroll. Hittil har nesten all forskning p̊a
feiltolerant MPC vært p̊a s̊akalte reaktive metoder, hvor m̊alet er å h̊andtere en
feil etter den har forekommet. I kontrast til dette er m̊alet med proaktive feiltoler-
ante metoder å utnytte tidsintervallet mellom en advarsel om en p̊abegynnende feil,
og tidspunktet da feilen faktisk skjer. Regulatoren vil i denne tidsperioden styre
systemet inn i et omr̊ade hvor de resterende p̊adragene er i stand til å stabilisere
systemet n̊ar feilen oppst̊ar. P̊a denne m̊aten unng̊ar proaktive metoder poten-
sielle ustabile systemresponser som ofte oppst̊ar med reaktive metoder, i tillegg til
å tillate kontinuerlig systemoperajon under p̊afølgende systemraperasjon.

Videre har økonomisk MPC (EMPC) f̊att økende oppmerksomhet de siste årene.
Isteden for å separere sanntidsoptimalisering og automatisk styring, er m̊alet med
EMPC å sl̊a disse sammen i et felles rammeverk. Det har generelt blitt utført lite
forskning p̊a å inkludere feiltoleranse i et slikt rammeverk.

Denne oppgaven presenterer en proactiv EMPC kontrollalgoritme for å h̊andtere
p̊abegynnende feil i systemer, samtidig som den tar den økonomiske gevinsten fra
systemet i betraktning. Metoden benytter en eksakt straffefunksjon til å styre
systemet inn i et invariant omr̊ade, der stabilitet under p̊adragsfeil er garantert.
Videre er algoritmen utvidet til å være robust i form av å h̊andtere forstyrrelser i
systemet, og samtidig oppn̊a ønsket feiltoleranse. Rapporten inneholder stabilitets-
bevis for metoden, b̊ade for systemer med og uten forstyrrelser. Teorien er illustrert
med nummeriske eksempler, og styrker og svakheter med metoden er diskutert.

v

vi

Contents

Preface . i
Abstract . ii
Sammendrag . iv
Abbreviations . x

1 Introduction 1
1.1 Faults and failures . 1
1.2 Model predictive control . 2
1.3 Economic model predictive control 3
1.4 Fault-tolerant control . 4

1.4.1 Fault modeling . 5
1.4.2 Fault-tolerant MPC . 5

1.5 Introducing the illustrative examples 8
1.5.1 System with two states, two inputs and one input dropout . . 8
1.5.2 System with two states, three inputs and two input dropouts 9

1.6 Report outline . 11

2 Invariant Set Theory and MPC Feasibility 13
2.1 Introduction . 13
2.2 Feasibility in MPC . 15
2.3 Defining the safety set . 16
2.4 Computing control invariant sets . 17
2.5 Numerical illustrative examples . 20

2.5.1 Example with two states, two inputs and one dropout 20
2.5.2 Example with two states, three inputs and two dropouts . . . 20

3 Soft Constraints and Penalty Functions 23
3.1 Introduction . 23
3.2 Exact penalty functions . 24
3.3 Soft constrains and penalty functions in MPC 25
3.4 Computing a lower bound for the penalty weight 28

3.4.1 Preliminaries . 29
3.4.2 Using bi-level and mixed integer programming 32
3.4.3 Adding an extra minimization problem 33
3.4.4 Adding an explicit LICQ constraint 34

vii

viii CONTENTS

3.5 Numerical illustrative examples . 36
3.5.1 Example with two states, two inputs and one dropout 36
3.5.2 Example with two states, three inputs and two dropouts . . . 36

4 Proactive Fault-tolerant Economic MPC 39
4.1 Introduction . 39
4.2 Approach . 41

4.2.1 Nominal operation . 41
4.2.2 Safe operation . 42
4.2.3 Fault operation . 44

4.3 Multiple actuator faults . 46
4.4 Stability . 48
4.5 Numerical illustrative examples . 51

4.5.1 Example with two states, two inputs and one dropout 51
4.5.2 Example with two states, three inputs and two dropouts . . . 54
4.5.3 Example with three states, three inputs and one dropout . . 57

5 Robust Proactive Fault-tolerant Economic MPC 61
5.1 Brief review of disturbance-handling in MPC 61
5.2 Tube-based robust economic MPC 62
5.3 Approach . 66

5.3.1 Fault-free operation . 66
5.3.2 Safe operation . 67
5.3.3 Fault operation . 68

5.4 Stability . 69
5.5 Numerical illustrative example . 70

6 Discussion 77
6.1 On the assumptions for the approach 77
6.2 Implementing the scheme and numerical results 79

6.2.1 Without disturbances . 79
6.2.2 With disturbances . 80

7 Conclusion 83

8 Future work 85

Bibliography 86

A MPC formulation 93
A.1 Compact quadratic cost formulation 93
A.2 Compact linear cost formulation . 94

B KKT-conditions 97

C Set operations 99

CONTENTS ix

D Discrete minimal-time control 101

E Conference paper 103

x CONTENTS

Abbreviations

FTC = Fault-tolerant control
FDI = Fault detection and isolation
MPC = Model predictive control
EMPC = Economic model predictive control
FTMPC = Fault-tolerant model predictive control
FTEMPC = Fault-tolerant economic model predictive control
RTO = Real-time optimization
RPI = Robust positively invariant
mRPI = Minimal robust control invariant
RCI = Robust control invariant
LP = Linear program
MILP = Mixed integer linear program
DMTC = Discrete minimal-time control

xi

xii CONTENTS

Chapter 1

Introduction

In safety-critical systems, it is crucial that some level of performance is maintained
in the event of faults. Systems such as chemical plants and nuclear power plants
need to have fault-handling as the top priority. Malfunctions in actuators greatly
reduce safety, and the economic losses can be severe. Fault-tolerant control (FTC)
schemes for handling these types of critical situations are therefore needed to avoid
potential catastrophic events.

This chapter gives a short introduction to the concepts, methodologies and nota-
tions used in this thesis, and provides the motivation for the proposed theory. In
particular, fault-tolerant model predictive control (FTMPC) is introduced, which
is a way of incorporating fault-tolerance in model predictive control (MPC). The
main contributions of this thesis are introduced, which will be built on throughout
the report. Since the thesis is a continuation of an earlier project by the same au-
thor, the explanations in this chapter will be rather brief, and the reader is referred
to the earlier project thesis contained in the digital attachments, for more detailed
descriptions. First, some basic definitions of faults and failures are provided.

1.1 Faults and failures

Isermann and Ballé (1997) define fault and failure, in compliance with the defi-
nitions given by the IFAC SAFEPROCESS technical committee, in the following
way:

Fault:
An unpermitted deviation of at least one characteristic property or parameter
of the system from the acceptable/usual/standard condition.

Failure:
A permanent interruption of a system’s ability to perform a required function
under specified operating conditions.

1

Chapter 1. Introduction

It is clear from the definition that a failure is a condition that is much more severe
than a fault. When a fault occurs in a component for example, the component may
still be usable, but becomes less effective. For a failure however, a totally different
component is needed to achieve the same objective. Failure might also lead to the
need for system shut-down. Throughout this report, a ”fault” will be used when
something is wrong with a component, and ”failure” will typically be described
as the system becoming unstable due to a fault not being compensated for by the
controller.

In addition, it is important to make the following distinction between an incipient
and an actual fault:

Incipient fault:
A fault that is about to occur. For example because of wear and tear on
components, or an actuator that is about to be taken out of action for main-
tenance.

Actual fault:
A fault that has occurred in the system, a sensor, or an actuator. This will
often times severely reduce the effectiveness of a controller, and may in the
worst cases lead to system failure.

Different types of actions need to be taken to avoid failure from actual and incipient
faults. The handling of actual faults has to rely on fast reconfiguration or robustness
of the controller. For incipient faults, however, it may sometimes be possible to
handle the fault or at least prepare the system for the upcoming fault before it
occurs. This will be introduced in Section 1.4.2 and is the main contribution of
this work.

1.2 Model predictive control

Model Predictive control is one of the most commonly used control algorithms for
multi-variable control problems. Mellichamp et al. (2010) summarizes the MPC
concept as follows: A multiple input, multiple output system is to be controlled
while satisfying constraints on the input and output variables. The algorithm uses a
model of the system to predict the future states. At each timestep, an optimization
problem is solved that takes future events into account and calculates a sequence
of control moves to take the system from the current state to the reference state
while minimizing some cost function. The first control move is then applied to
the system, and the whole problem is recomputed in the next timestep. The main
reason for the popularity of the MPC controller is its effectiveness in handling large
multi-variable systems with constraints on both inputs and states.

This section briefly describes the notations used for MPC in this thesis. It is
assumed that the reader is familiar with the general MPC principle and no detailed
explanation is therefore given. For a more detailed description, the reader is referred

2

1.3 Economic model predictive control

to Maciejowski (2002).

Consider the discrete linear system

xk+1 = Axk +Buk, (1.1)

with k ∈ {0, 1, . . . }, xk ∈ Rn is the system state, uk ∈ Rm is the control input,
A ∈ Rn×n and B ∈ Rm×n are constant matrices. The system is subject to linear
inequality constraints on the states and inputs:

x ∈ X , {x ∈ Rn | Dx ≤ d} (1.2a)

u ∈ U , {u ∈ Rm | Hu ≤ h} , (1.2b)

where d ∈ Rnd and h ∈ Rnh define the constraints, with nd and ng denoting the
number of state and input constraints, respectively. The matrices D ∈ Rnd×n and
H ∈ Rnh×m are the state and input constraint distribution matrices. At each
timestep, the following optimization problem is solved:

min
x,u

N−1∑

k=0

l (xk, uk) (1.3a)

s.t. xk+1 = Axk +Buk, ∀k ∈ {0, . . . , N − 1} (1.3b)

x0 = xinit, (1.3c)

xk ∈ X, ∀k ∈ {1, . . . , N − 1} (1.3d)

uk ∈ U, ∀k ∈ {0, . . . , N − 1} (1.3e)

xN ∈ Xterminal, (1.3f)

where x =
[
x1 x1 . . . xN

]T
, u =

[
u0 u1 . . . uN−1

]T
, and (x∗,u∗) denotes

the optimal solution to (1.3). Furthermore, l(xk, uk) is a stage cost function, typi-
cally defined as the quadratic difference between the predicted state of the system
and a reference state, or describing the economic profits/losses of the system. The
vector xinit is the current state of the system and N is the horizon. Equal predic-
tion and control horizon is assumed. Additionally, xN ∈ Xterminal defines a terminal
constraint for the problem, and is included for stability purposes, see Mayne et al.
(2000). This will be further explained in the case of an economic cost function in
Chapter 4.

At each timestep the input
ue(xinit) = u∗0 (1.4)

is applied to the system. The finite-horizon problem (1.3) is then repeatedly re-
optimized in a receding-horizon manner with current state (1.3c) updated through
measurements of x. State feedback is assumed in the rest of this thesis.

1.3 Economic model predictive control

MPC with a quadratic stabilizing/tracking cost function has been widely used over
the last decades. For a tracking MPC, the optimal reference state is typically gen-

3

Chapter 1. Introduction

erated by an external real-time optimization layer (RTO) and sent to be tracked
by the MPC. While the standard tracking MPC allows for tunable closed-loop re-
sponse, it may not be an adequate representation of managing real-time process
operation with respect to the process economic performance (Ellis and Christofides,
2014). A positive deviation from the reference may represent a profit, while a neg-
ative deviation from the reference may represent a loss (Siirola and Edgar, 2012).
Recently there has been increased attention to economic model predictive control
(EMPC), which contrary to separated RTO and MPC, merges dynamic economic
operations with the feedback properties of conventional MPC and incorporates an
economic cost in its formulation (Mayne, 2014; Amrit et al., 2011; Angeli et al.,
2012; Diehl et al., 2011).

However, unlike standard tracking MPC, stability results for EMPC is still a re-
searched topic. In standard MPC, the stability proof relies on the cost function
being positive definite and the cost function can therefore be used as a Lyapunov
function for the system. This is not the case in EMPC, and the same proof can not
be used. Nominal stability of EMPC has been proved for systems with a terminal
equality constraint, satisfying strong duality (Diehl et al., 2011) or strict dissi-
pativity (Angeli et al., 2012), or with a terminal cost and inequality constraints
for systems satisfying strict dissipativity (Amrit et al., 2011). Chapter 4 provides
more stability theory for EMPC, and in particular on how to use this theory in a
fault-tolerant context.

Furthermore, most research on EMPC has been aimed at nominal systems without
faults and disturbances. To the authors knowledge, few publications exist on how
to incorporate fault-tolerance and disturbance handling in EMPC. It has, however,
recently began to receive increasing attention. This thesis illustrates a scheme for
implementing fault-tolerance in an EMPC framework, which is also extended to
incorporate disturbance attenuation based on a recently published paper (Bayer
et al., 2014).

1.4 Fault-tolerant control

As earlier described, faults can cause severe failures in a system. A conventional
feedback control design might result in poor performance, or even instability for a
system that is affected by faults. A structured and robust fault-tolerant detection
and control scheme enhances reliability and continuity of system operations, both
for safety-critical processes and for chemical production and manufacturing (Zhang
and Jiang, 2008). This has motivated a considerable amount of research in the last
decade on how to incorporate fault-tolerance in controllers, and thereby have the
system retain an acceptable level of performance in the case of faults. Zhang and
Jiang (2008) define a fault-tolerant control system as a closed-loop control system
that can tolerate component malfunctions, while maintaining desirable performance
and stability properties. The design of these controllers are critical for reliable
operation of many systems. This section briefly introduces how to model faults

4

1.4 Fault-tolerant control

using mathematical equations, and describe how fault-tolerance can be included in
an MPC framework for handling both actual and incipient actuator faults.

1.4.1 Fault modeling

The focus of this thesis is to handle actuator faults, which need to be modeled in an
effective manner. The following notations for changes in system dynamics and con-
straints when a fault occurs are used. Given a fault in actuator j ∈ {1, 2, 3, . . .m},
the system is modeled as

xk+1 = Axk +Bjuk, (1.5)

where Bj ∈ Rm×n is a constant matrix describing how the system reacts to an
input when a fault in actuator j is present. The modeling of the constraints is
given by a change in the constraint set U, where Uj denotes the new constraints
after the impact of the fault. In the case of multiple faults, these are included in
addition to the original fault, e.g. Bji denotes a fault in actuator j and i.

1.4.2 Fault-tolerant MPC

Due to the receding-horizon nature of MPC, it allows for effective ways of incorpo-
rating fault-tolerance in the controller (Maciejowski, 1999). Its ability to efficiently
handle complex systems with hard control constraints and many inputs and out-
puts allows for direct on-line adaptation of the controller to faults in the system.
Faults are represented as constraints and/or a changes in the internal model in the
optimization problem, as described in the previous section. The MPC then effec-
tively computes a new control law to accommodate the fault. There are several
examples in the literature on the use of MPC in this context, including Miksch
et al. (2008).

Furthermore, active fault-tolerant control methods can broadly be classified as (Lao
et al., 2013):

• Reactive

• Proactive.

Reactive approaches try to minimize the impact of a fault after it occurs, relying
on a fault detection and isolation unit (FDI) and reconfiguration of the control
system. Proactive fault-tolerant control methods employ an FDI unit to detect
slowly developing, degradation of performance in process components, actuators
or sensors that indicates an incipient fault (Demetriou and Polycarpou, 1998),
together with a probabilistic prediction method for the time of the incipient fault,
e.g., Salfner and Malek (2007). Contrary to reactive methods, a proactive control
scheme takes proactive action to prevent negative impact of the predicted fault
situation. Proactive fault-tolerant methods is emerging as a complement to reactive
schemes for designing robust and effective fault control control. However, it is
important to emphasize that proactive approaches is intended only to supplement
reactive schemes capable of handling abrupt faults. A proactive method can, on

5

Chapter 1. Introduction

the other hand, be efficiently applied for maintaining process operation, minimize
down time or prevent shut-downs in terms of certain types of faults, and also to
perform scheduled maintenance. The next sections will elaborate on how to use
MPC for reactive and proactive FTC.

Reactive FTMPC

As earlier described, MPC allows for efficient reconfiguration to handle faults, and
in particular, actuator faults. Once a fault is detected and its magnitude is es-
timated, the MPC is reconfigured on-line to redistribute the task of the faulty
component to the remaining healthy ones. Given a detected actual fault in actua-
tor j, mathematically modeled as described in Section 1.4.1, the following measure
is taken in the MPC problem to compensate the fault. Recall the nominal MPC
formulation (1.3) for the fault-free system. By modifying the constraints as in
Section 1.4.1, the problem to be solved at each timestep becomes:

min
x,u

N−1∑

k=0

l (xk, uk) (1.6a)

s.t. xk+1 = Axk +Bjuk, ∀k ∈ {0, . . . , N − 1} (1.6b)

x0 = xinit, (1.6c)

xk ∈ X, ∀k ∈ {1, . . . , N − 1} (1.6d)

uk ∈ Uj , ∀k ∈ {0, . . . , N − 1} (1.6e)

xN ∈ X jterminal (1.6f)

which is then is then repeatedly re-optimized in a receding-horizon manner until
the fault is fixed, or an additional fault occurs. The term, xN ∈ X jterminal, is as
described in Section 1.2 a terminal constraint added for stability purposes.

Remark 1.1. Of course, this assumes that the remaining actuators are able to
control the faulty system when the fault occurs. This might not always be the case,
and the next section introduces proactive fault-tolerant control. This approach
aims to prepare the system for the fault before it occurs so that the remaining
actuators are in fact able to control the faulty system.

Proactive FTMPC

An actuator fault may cause loss of controllability at the current operating point
and thereby destabilize the system. This is due to the fact that when loss of actu-
ators occur, the region in which the system can be controlled will often be reduced
because the remaining actuators are not powerful enough to control the system
due to the nominal constraints on the inputs. This is a serious issue, especially
for open-loop unstable systems, which are dependent on effective control actions in
order to be kept stable. In such situations, a plant emergency mode or shut-down
is necessary in order to avoid component damage and safety threatening situations.

6

1.4 Fault-tolerant control

An alternative solution to this potential issue would be to operate the system within
a set that guarantees controllability for the different kinds of actuator faults. This
approach, however, would generally be conservative and detrimental for the nom-
inal economic operation of a system. If information about an upcoming fault is
available, another alternative is to employ a proactive scheme for actuator faults
(Lao et al., 2013), which is obtained by allowing the system to operate outside the
guaranteed stability region with one of the actuators inactive, but force the system
inside this region upon indication of an incipient fault. The proactive FTMPC
in Lao et al. (2013) uses Lypanunov-based MPC with predesigned controllers to
drive the system inside this safety system, while Bø and Johansen (2014) develops
a hybrid scheme with scenario based safety constraints and reconfigurable control.

The focus of this thesis is to formulate and analyze a proactive fault-tolerant eco-
nomic MPC (FTEMPC) scheme based on soft constraints and penalty functions
to obtain an efficient way of incorporating proactive fault-tolerance in an EMPC
framework. The basic idea is to separate the operation modes of the controller in
to the following categories:

• Nominal operation: When no fault or warning about an incipient fault is
present, the system will operate in nominal operation. The MPC will drive
the system to an optimal steady-state subject to a fault-free system and
nominal constraints.

• Safe operation: When a warning about a known incipient fault is received,
the system is driven into a safety set using soft constraints and a penalty
function, in which the remaining actuators can stabilize the system when the
fault occurs.

• Fault operation: When the fault actually occurs, the MPC formulation is
updated to include the constraints which are introduced by the fault, in the
same manner as for reactive fault-tolerant MPC described previously.

A rule for switching between MPC problems for nominal, safe-mode transition and
faulty operations is designed, based on the assumption of a separate available FDI
unit to indicate and distinguish incipient and actual faults. Criteria for how to
make sure that the system is driven into the safety set, and also how to define
and compute this safety set is analyzed. The approach relies on theory from the
following fields:

• Exact penalty functions (Pietrzykowski, 1969), used to compute a lower bound
on the penalty parameter in order to make sure that the system is steered
into the safety set upon warning of an incipient fault;

• Set theory, and in particular, invariant sets (Kerrigan and Maciejowski,
2000a) used for defining the safety set.

This theory will be provided in the following chapters before the main approach is
designed and analyzed both for systems with and without disturbances.

7

Chapter 1. Introduction

1.5 Introducing the illustrative examples

In order to illustrate the theoretic concepts, two recurring illustrative examples
are used throughout the thesis, where the different parts of the implementation
are described at the end of its respective chapter. The following cases will be
investigated:

• System with two states, two inputs and one input dropout;

• System with two states, three inputs and two input dropouts.

The end goal for each example is to have a working proactive fault-tolerant scheme
to handle incipient faults. Thus the safety sets as well as penalty functions need to
be designed. As can be seen, the focus has been put on systems with two states.
This is due to the fact that they are easily visualized in the plane, and provide a
good framework for illustration and discussion. The examples include only open-
loop unstable systems, i.e. linear system matrices with eigenvalues outside the unit
circle. The reason for this is that the regions in which a controller can stabilize
the system once a fault occurs change considerably more for these systems than for
systems that are open-loop stable. Thus, the examples will give a better illustration
for unstable systems.

Additionally, in order to illustrate how the approach scales for larger systems, a
system with three states is also studied in Chapter 4. The three aforementioned
examples illustrate the approach for systems without disturbances. Additional
theory is needed to implement the approach for systems with disturbances, an
example illustrating the approach for this case is included in Chapter 5 after the
required theory is presented.

1.5.1 System with two states, two inputs and one input
dropout

This example illustrates the scheme for a system with two states, two inputs and
a single actuator dropout.

System description

Consider the linear time-invariant discrete system

xk+1 = Axk +Buk, (1.7)

where x ∈ R2 is the system state and u ∈ R2 is the system input. A and B are
constant matrices given as

A =

[
1.3337 0.9443
0.5902 1.3337

]
(1.8)

B =

[
−0.2572 −0.3817
−0.2665 −0.1954

]
. (1.9)

8

1.5 Introducing the illustrative examples

The eigenvalues of A are 2.0802 and 0.5872, and so the system is open-loop unstable.
The constraints on x and u are

x ∈ X =

{
x |

[
0
0

]
≤
[
x1

x2

]
≤
[
6
6

]}
(1.10)

u ∈ U =

{
u |

[
0
0

]
≤
[
u1

u2

]
≤
[

5
15

]}
(1.11)

The objective is to design a proactive fault-tolerant economic MPC that is able to
accommodate incipient and actual faults by driving the system into a safety set
before the fault occurs while still optimizing process economics.

Economic cost function

The following economic cost function is used in the MPC formulation

J =

N−1∑

k=0

l (xk, uk) =

N−1∑

k=0

(−qxk + ‖Ruk‖1) , (1.12)

where N = 10, q =
[
10 10

]
, R =

[
3 0
0 1

]
. Note that this is a linear, not positive

definite function, as is the case for most economic cost functions.

Fault modeling

Consider a situation where the second actuator u2 has a dropout at time tf , the
warning about the incipient fault is received at t′. Due to the complete dropout of
the second actuator, the input constraints after the fault has occurred are given by

u ∈ U2 =

{
u |

[
0
0

]
≤
[
u1

u2

]
≤
[
5
0

]}
(1.13)

and the input matrix becomes

B2 =

[
−0.2572 0
−0.2665 0

]
. (1.14)

As described in Section 1.4.2, both the safety set subject to a dropout of the
second actuator, as well as a penalty function that guarantees that the system
will be steered into the safety set, need to be defined. This is done in Chapters 2
and 3 before the complete implementation of the control scheme is implemented in
Chapter 4.

1.5.2 System with two states, three inputs and two input
dropouts

This example illustrates the scheme for a system with two states, three inputs and
two actuator dropouts.

9

Chapter 1. Introduction

System description

Consider the linear time-invariant discrete system

xk+1 = Axk +Buk, (1.15)

where x ∈ R2 is the system state, u ∈ R2 is the system input. A and B are constant
matrices given as

A =

[
1.1494 0.3349
0.4465 1.1717

]
(1.16)

B =

[
−0.0660 −0.4636 −0.2286
−0.0966 −1.0303 −0.1502

]
. (1.17)

The eigenvalues of A are 0.7737 and 1.5474, and so the system is open-loop unstable.
The constraints on x and u are

x ∈ X =

{
x |

[
0
0

]
≤
[
x1

x2

]
≤
[
15
15

]}
(1.18)

u ∈ U =

u |

0
0
0

 ≤

u1

u2

u3

 ≤

25
10
5

 (1.19)

Economic cost function

The following economic cost function is used in the MPC formulation

J =

N−1∑

k=0

l (xk, uk) =

N−1∑

k=0

(−qxk + ‖Ruk‖1) , (1.20)

where N = 10, q =
[
10 10

]
, R =

1 0 0
0 1 0
0 0 1

.

Fault modeling

The situation considered is a dropout of actuator 2, followed by an additional
dropout of actuator 1. The constraint on the input introduced by the first fault is
given by

u ∈ U2 =

u |

0
0
0

 ≤

u1

u2

u3

 ≤

25
0
5

 (1.21)

and the input matrix becomes

B2 =

[
−0.0660 0 −0.2286
−0.0966 0 −0.1502

]
. (1.22)

10

1.6 Report outline

Additionally, when actuator 1 has a dropout, the constraints on the inputs become

u ∈ U12 =

u |

0
0
0

 ≤

u1

u2

u3

 ≤

0
0
5

 (1.23)

And the input matrix

B12 =

[
0 0 −0.2286
0 0 −0.1502

]
. (1.24)

As for the previous example, the safety set and the penalty function are computed
in Chapters 2 and 3, respectively, before the complete implementation of the control
scheme is implemented in Chapter 4.

1.6 Report outline

The report is organised as follows: Chapter 2 defines various types of invariant
sets and their importance in MPC design, and in particular for defining the safety
set in the proactive FTEMPC scheme. The chapter also presents algorithms for
computing these sets, and designs the safety set for the two recurring examples.
Chapter 3 gives an introduction and describes the theory of soft constraints and
penalty functions in MPC. A method for computing a lower bound on the penalty
parameter is described and analyzed, and applied to the recurring examples. Fur-
thermore, the proactive FTEMPC approach is described in detail in Chapter 4 for
disturbance-free systems, where the recurring examples are fully implemented as
well as an additional example. The scheme is extended to systems with bounded
disturbances in Chapter 5, and includes an illustrative example. Finally, a discus-
sion of the results and the assumptions that were made are included in Chapter 6,
and Chapter 7 concludes the report and outlines potential future work.

11

Chapter 1. Introduction

12

Chapter 2

Invariant Set Theory and
MPC Feasibility

Section 1.4.2 briefly introduced proactive FTEMPC, where the objective is to take
proactive action and thereby guarantee stability of the system when an actuator
fault occurs. The safety set was defined to be a set where the remaining actua-
tors are able to control the system once one, or possibly multiple actuators have
dropouts. This chapter is focused on positively invariant set theory, and the fea-
sibility of the MPC problem. It will be clear that positively invariant sets play
an important part when it comes to MPC feasibility and for designing the safety
set. First, the definitions for the most important types of positively invariant sets
used in this thesis are given, followed by criteria for feasibility in MPC and how to
choose the safety set. The last section describes general algorithms for computing
these sets.

2.1 Introduction

The properties of positively invariant sets are involved in many different problems
in control theory. Given a dynamic system, a subset of the state space is said to
be positively invariant if it has the property that, if it contains the system state
at some time, then it will contain it also in the future (Blanchini, 1999). This
provides important insights to system behavior, especially for constrained systems.
In general, given a constrained dynamic system, not all trajectories originating from
an initial state that satisfies the constraints will continue to satisfy these constraints
in the future. However, if the initial state satisfies its constraints and lies in a
positively invariant set, one can then guarantee that all trajectories originating
from this initial condition will satisfy the constraints for all time. Definition 2.1
defines a positively invariant set. Let Ω and Ξ denote any arbitrary subsets of Rn,
and N+ the set of positive integers.

Definition 2.1 (Positively invariant set (Blanchini, 1999)). The non-empty set

13

Chapter 2. Invariant Set Theory and MPC Feasibility

Ω ⊂ Rn is positively invariant for the autonomous system xk+1 = f(xk) if and only
if ∀x0 ∈ Ω, the system evolution satisfies xk ∈ Ω,∀k ∈ N+.

Furthermore, many systems have clearly defined hard constraints on both the states
and inputs. The objective in constrained control is to design controllers such that
for a given initial condition, the controller is able to control the system while sat-
isfying the constraints. In these types of problems, one often considers control
invariant sets in order to effectively design control laws. A subset of the state
space is said to be control invariant if there exists a control law that will keep all
trajectories originating from the set inside the same set while satisfying the con-
straints. By determining the aforementioned set, one can define operating regions
where the constraints are sure to be satisfied.

Definition 2.2 (Control invariant set (Blanchini, 1999)). The non-empty set Ω ⊂
Rn is a control invariant set for the system xk+1 = f(xk, uk) if and only if there
exists a feedback control law uk = g(xk) such that Ω is a positively invariant set
for the closed-loop system xk+1 = f(xk, g(xk)) and uk ∈ U,∀xk ∈ Ω.

Additionally, one is often interested in finding the largest control invariant set
containing all control invariant sets, this set is of great importance when design-
ing operating regions for a system, and in particular, in MPC. This leads to the
definition of the maximal control invariant set.

Definition 2.3 (Maximal control invariant set (Blanchini, 1994)). The non-empty
set C∞(Ω) is the maximal control invariant set contained in Ω for the system
xk+1 = f(xk, uk) if and only if C∞(Ω) is control invariant and contains all control
invariant sets contained in Ω, i.e. Ξ is control invariant only if Ξ ⊆ C∞(Ω) ⊆ Ω

In MPC, control invariant set theory is critical for ensuring feasibility of the MPC
problem and has been very successful in providing sufficient nominal and robust
feasibility and stability conditions (Mayne et al., 2000). This is due to the fact
that state and control constraints can be satisfied if and only if the initial state
belongs to a control invariant set for the system Kerrigan and Maciejowski (2000a).
Furthermore, in the case of actuator faults, one can think of the current state of the
system when the fault occurs as the initial state for the new, faulty system. It is
therefore critical that the system operates in a control invariant set subject to the
constraints introduced by the fault, when the fault occurs. This will be important
for determining the safety set.

For systems that are affected by disturbances, the aforementioned definitions are
adapted in the following way. Let wk ∈W ∈ Rp denote the disturbance at time k,
where W denotes the set of possible values for the disturbances.

Definition 2.4 (Robust positively invariant set, (Kerrigan and Maciejowski, 2000a)).
The non-empty set Ω ⊂ Rn is robust positively invariant for the system xk+1 =

14

2.2 Feasibility in MPC

f(xk, wk) if and only if ∀x0 ∈ Ω and ∀wk ∈ W, the system evolution satisfies
xk ∈ Ω,∀k ∈ N+.

Definition 2.5 (Robust control invariant set (Kerrigan and Maciejowski, 2000a)).
The set Ω ⊂ Rn is a robust control invariant set for the system xk+1 = f(xk, uk, wk)
if and only if there exists a feedback control law uk = h(xk) such that Ω is a robust
positively invariant set for the closed-loop system xk+1 = f(xk, h(xk), wk) and
uk ∈ U,∀xk ∈ Ω.

Definition 2.6 (Maximal robust control invariant set (Kerrigan and Maciejowski,
2000a)). The set C̃∞(Ω) is the maximal robust control invariant set contained in Ω
for the system xk+1 = f(xk, uk, wk) if and only if C̃∞(Ω) is robust control invariant
and contains all the robust control invariant sets contained in Ω.

Additionally, the use of positively invariant sets for control design is dependent on
the existence of algorithms for computing these sets. There exist several contri-
butions to this field, including Kerrigan and Maciejowski (2000a); Athanasopoulos
and Bitsoris (2010); Scibilia et al. (2011). A general framework for these compu-
tations are given in Section 2.4.

2.2 Feasibility in MPC

The definitions in the previous section are key ingredients for analyzing the feasi-
bility and stability of MPC. This section presents some general well-known results
for nominal MPC feasibility. Consider again the MPC problem defined in Chapter
1, repeated here for convenience:

min
x,u

N−1∑

k=0

l (xk, uk) (2.1a)

s.t. xk+1 = Axk +Buk, ∀k ∈ {0, . . . , N − 1} (2.1b)

x0 = xinit, (2.1c)

xk ∈ X, ∀k ∈ {1, . . . , N − 1} (2.1d)

uk ∈ U, ∀k ∈ {0, . . . , N − 1} (2.1e)

xN ∈ Xterminal. (2.1f)

Often one is interested in obtaining the set of states for which the MPC problem
is feasible, as is the case when defining the safety set. The admissible set, ZN , of
the MPC problem is the set of states and inputs that satisfies all constraints, i.e.

ZN = {x0,u | ∃x such that (x,u) satisfies (2.1b)− (2.1f)} (2.2)

The set of feasible states, denoted the feasible set XN , can therefore be interpreted
as the orthogonal projection of ZN onto Rn (Kerrigan and Maciejowski, 2000a)

XN = {x0 | such that (x,u) ∈ ZN} , (2.3)

15

Chapter 2. Invariant Set Theory and MPC Feasibility

where the subscript is included to stress the dependence on N .

Remark 2.1. Note the difference between X and XN . The former denotes the
allowable states without considering the other constraints. The latter denotes the
allowable states where the rest of the constraints are also satisfied.

As mentioned in Section 2.1, the MPC problem is feasible if and only if the initial
state belongs to a control invariant set for the system. From Definition 2.3 it is
therefore clear that the initial state needs to lie in the maximal control invariant
set. Hence, the problem is feasible if and only if

x0 ∈ C∞(X). (2.4)

However, due to the finite-horizon nature of MPC, the control at the next time
instant could be different from the previously computed value, even without dis-
turbances (Kerrigan and Maciejowski, 2000a). This can result in a situation where
x1 ∈ X \ XN , which will result in an infeasible problem at the next time instant.
Additionally, it is possible that the feasible set is not a subset of the maximum
control invariant set, which will result in a trajectory that does not stay in C∞(X),
i.e. x1 ∈ XN * C∞(X), and the MPC problem will become infeasible at the next
timestep.

It is critical to design the MPC such that it is feasible for all time in order to avoid
situations where the MPC is no longer able to find an admissible control input. A
well known result that guarantees this to hold is by choosing a control invariant
terminal set xN ∈ Xterminal (Mayne et al., 2000). The feasible set will then be
control invariant and can be interpreted as the maximal controlled invariant set by
means of the MPC with prediction horizon N and terminal set Xterminal (Scibilia
et al., 2011).

Thus by choosing an initial condition for the system that lies in the maximum con-
trol invariant set, as well as by choosing a control invariant terminal set, the MPC
will be feasible for all time and thereby guarantee stability. Note that the same
result may be achieved by using a terminal cost or a long prediction horizon Mayne
et al. (2000). However, this thesis will focus on the use of a terminal constraint.
This will be clear in Chapter 4, where a terminal constraint is used to guarantee
stability for economic MPC.

2.3 Defining the safety set

As described in the previous section, positively invariant sets play an important
part in the theory of feasibility for the MPC problem. It was shown that the MPC
problem is feasible if the initial condition lies in a control invariant set for the
system, and that it is feasible for all time if it is initially feasible and the terminal

16

2.4 Computing control invariant sets

constraint is chosen to be a control invariant set. This section describes the choice
of the safety set Sj based on the aforementioned invariant set theory.

In Section 1.4.2, a loss of actuators was described to change the operating conditions
of the system, and thus also often the set in which the MPC problem is feasible.
Recall the reactive reconfiguration of the MPC in order to compensate for a fault
in actuator j, as introduced in Chapter 1:

min
x,u

N−1∑

k=0

l (xk, uk) (2.5a)

s.t. xk+1 = Axk +Bjuk, ∀k ∈ {0, . . . , N − 1} (2.5b)

x0 = xinit, (2.5c)

xk ∈ X, ∀k ∈ {1, . . . , N − 1} (2.5d)

uk ∈ Uj , ∀k ∈ {0, . . . , N − 1} (2.5e)

xN ∈ X jterminal. (2.5f)

The admissible set when a fault has occurred is therefore given by

ZjN = {x0,u | ∃x such that (x,u) satisfies (2.5b)− (2.5f)}. (2.6)

The feasible set XjN denoting the set of states in which the MPC problem is feasible
for a fault in actuator j is therefore defined as

XjN =
{
x | such that (x,u) ∈ ZjN

}
, (2.7)

where it is assumed that the terminal set in (2.5f) is control invariant, so that the
problem is feasible for all time. As for the nominal case, this set can be interpreted
as the maximal control invariant set by means of the terminal set X jterminal and
horizon N . From this, it is clear that the safety set needs to be defined as

Sj = XjN . (2.8)

Then, by making sure that the system operates in Sj when the fault in actuator
j occurs, the MPC problem with the fault present will be feasible for all time.
The next section describes a general framework for the computation of the control
invariant sets in order to represent the safety sets.

2.4 Computing control invariant sets

The previous section defined the safety set to be the feasible set for the MPC prob-
lem when a fault has occurred, which can be thought of as the maximal control
invariant set with respect to the constraints introduced by the fault. This section
describes a general framework for the computation of the aforementioned set. An
approach for directly computing the set of states for which the MPC problem is

17

Chapter 2. Invariant Set Theory and MPC Feasibility

feasible, would be to directly project (2.2) onto Rn. That is, to eliminate u from
the constraints, and represent the same constraints by x. One would then find the
set of states for which the constraints are satisfied for the prediction horizon. With
this approach, the computation of the feasible set relies essentially on the efficiency
of projection algorithms. However, these projections tend to become computation-
ally demanding as the prediction horizon increases (Scibilia et al., 2011). As such,
most methods rely on iterative approaches where less demanding operations are
repeated until the set is found, see e.g. Scibilia et al. (2011); Kerrigan and Ma-
ciejowski (2000a); Athanasopoulos and Bitsoris (2010)

The focus of this chapter is to describe a general iterative framework to develop
such algorithms, rather than a detailed description of the algorithms themselves,
which would require the introduction of several additional theoretic concepts, and
is therefore outside the scope of this thesis. However, most algorithms in the liter-
ature rely on this framework and it is therefore of great value for the development
of algorithms. The following definition is essential for the development of the afore-
mentioned framework.

Definition 2.7 (One-step set (Blanchini, 1994)). The non-empty set Q (Ω) is
defined as the set of states in Rn for which an admissible control input exists which
will drive the system to Ω in one step, i.e.

Q (Ω) , {xk ∈ Rn | ∃uk ∈ U such that f(xk, uk) ∈ Ω} . (2.9)

The key ingredients for implementing the iterative algorithms are procedures for
computing:

• The one-step set Q(·) (Definition 2.7);

• The intersection of two sets;

• Equality of sets or whether a set is a subset of another.

Several methods exist for these computations, and they often vary for different
algorithms. However, they are relatively straightforward for LTI systems subject
to constraints on the states and control inputs (Kerrigan and Maciejowski, 2000a).

The one-step set may be computed using projection methods. Projection algo-
rithms were mentioned earlier to be computationally demanding. However, note
that this is a projection for a single timestep rather than for the whole prediction
horizon, and the procedure is therefore less demanding. A common way of com-
puting this projection is by Fourier-Motzkin elimination, which is the equivalent of
Gaussian elimination for solving a set of linear inequalities, see e.g. (Keerthi and
Gilbert, 1987). Another commonly used approach for computing the one-step set
is via Minkowski summation, see e.g. Scibilia et al. (2011). The intersection of two
sets as well as equality and subsets tests can be done by the methods layed out in
Fukuda (2004).

18

2.4 Computing control invariant sets

X1

X2

X3

X4 = XN

Xterminal

Figure 2.1: Illustration of the convergence of Algorithm 2.1 to the feasible set for
a prediction horizon of N = 4.

Given that methods for the aforementioned computations are available, the fea-
sible set, i.e. the maximal control invariant set for the system by means of the
constraints, can be computed by the following algorithm

Algorithm 2.1 (Scibilia et al. (2011)). The feasible set, XN , of a system can be
computed via the following iterative procedure:

1. Initialize the set X0 = Xterminal and set i = 0.

2. Compute the one step set Q (Xi).

3. Compute the intersection Q (Xi) ∩ X and set Xi+1 = Q (Xi) ∩ X.

4. If i=N or Xi = Xi+1 then terminate and set XN = Xi. Else, set i=i+1, go to
step 2.

Figure 2.1 illustrates the idea in Algorithm 2.1. The feasible set is of great impor-
tance when it comes to defining operating regions to guarantee MPC feasibility.
However, the representation of the set often becomes complex for systems with
many states. Several approximation methods which aim to approximate the set
using less complex presentations have emerged in the literature. The objective is
to find simpler polytopic representations in order to reduce computational load.
The reader is referred to Scibilia et al. (2011) for a more detailed explanation.

19

Chapter 2. Invariant Set Theory and MPC Feasibility

2.5 Numerical illustrative examples

This section contains computations of the safety sets for the examples introduced
in Chapter 1, based on the theory described in this chapter. The sets are computed
as maximal control invariant sets using the Multi Parametric Toolbox 3 (MPT3)1.

2.5.1 Example with two states, two inputs and one dropout

Using MPT3, the resulting safety set is defined by

S2 =

x :

0.6202 0.7845
−1 0
0 −1

x ≤

1.7060
0
0

 , (2.10)

and is plotted in Figure 2.2 together with the nominal state constraints and the
feasible set for the healthy system. Due to the fact that it is the most powerful
actuator that has a dropout, the feasible set shrinks considerably. It is critical that
the system operates in the set S2 when the dropout of the second actuator occurs.
The failure to steer the system into this set before the fault occurs will result in
destabilization of the process.

x1

x
2

0 1 2 3 4 5 6
0

1

2

3

4

5

6

XN

X

S2

Figure 2.2: Numerical example of the nominal feasible set and the safety set for a
single actuator dropout.

2.5.2 Example with two states, three inputs and two dropouts

This example considers a situation with multiple actuator dropouts. It is therefore
necessary to compute multiple safety sets. A safety set for the first fault, i.e. the

1Available for download at http://people.ee.ethz.ch/~mpt/3/

20

http://people.ee.ethz.ch/~mpt/3/

2.5 Numerical illustrative examples

dropout of actuator two, as well as the safety set for a situation where both actuator
one and two are rendered useless, is considered.

The safety set for the dropout of actuator two, S2, is computed to be

S2 =

x :

0.7465 0.6654
−1 0
0 −1

x ≤

7.6579
0
0

 . (2.11)

When in addition actuator one has a dropout, the safety set becomes

S12 =

x :

0.7465 0.6654
−1 0
0 −1

x ≤

2.4721
0
0

 . (2.12)

As can be seen in Figure 2.3, the feasible set shrinks considerably in the case of
multiple dropouts. It is necessary that the system operates in the set S2 when the
first fault occurs, and in the set S12 when the additional fault occurs, in order to
avoid an unstable system response.

x1

x
2

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

XN = X

S2

S12

Figure 2.3: Numerical example of multiple safety sets for multiple actuator
dropouts.

21

Chapter 2. Invariant Set Theory and MPC Feasibility

22

Chapter 3

Soft Constraints and Penalty
Functions

In Chapter 1.4.2, penalty functions were mentioned to be an important ingredient
for the proactive fault-tolerant scheme described in this thesis. This chapter de-
scribes the theory of penalty functions, and in particular exact penalty functions.
The first section introduces the main concept and contains a brief background re-
view, while the following sections focus on the use of penalty functions in MPC.
A method for computing a lower bound for the penalty weight to guarantee ex-
actness is presented, and the last section contains computations for the recurring
illustrative examples.

3.1 Introduction

Penalty functions have been a part of the literature on constrained optimization
for decades. Their most common use is in methods for solving nonlinear and non-
smooth optimization problems (Fletcher, 1987), as well as for handling infeasibility
issues in MPC (Kerrigan and Maciejowski, 2000b), which is the main focus of this
chapter. In MPC, a problem occurs if a disturbance or a change in operating con-
ditions drives the plant into a state where the control problem is infeasible and the
MPC is not able to compute a new control input. A systematic method for dealing
with infeasibility is by the use of soft constraints, where the constraints are allowed
to be violated, but the violation is penalized in the cost function.

It is important to distinguish input constraints from state constraints. The input
constraints arise from physical limitations of the actuators such as valve saturations,
and it is always advantageous to enforce them in the control law. State constraints,
on the other hand, are often not due to physical limitations, but rather they are
included to maintain the process in a desired operating regime (Scokaert and Rawl-
ings, 1999). As will be seen, this is clearly the case for the defined safety set for
the proactive FTEMPC scheme introduced in Section 2.3, as this is a desired (and

23

Chapter 3. Soft Constraints and Penalty Functions

also necessary) operating region for when a known fault occurs.

Additionally, it is desirable that the solution to the soft-constrained problem is
the same as the solution to the original hard-constrained problem, if the latter is
feasible. This is important in order to avoid unnecessary violations. The theory of
exact penalty functions can be used to compute a lower bound for the constraint
violation weight such that equality is guaranteed (Fletcher, 1987). A method for
this computation is described in Section 3.4.

3.2 Exact penalty functions

This section briefly describes the basic theory of penalty functions, and states the
basic well-known result that guarantees exactness of a penalty function, thereby
ensuring that the solutions to the soft- and hard constrained problem are equal.

Consider the constrained optimization problem:

min
x

V (x)

s.t. G(x) ≤ 0,
(3.1)

where V (x) is the cost function, and G(x) defines the constraints. The correspond-
ing non-smooth penalty function minimization is:

min
x

V (x) + µ
∥∥G(x)+

∥∥ , (3.2)

where µ is the constraint violation penalty weight and G(x)+ = max(G(x)i, 0).
The vector G(x)+ contains the values of the constraint violations for a given x.

In the penalty function problem (3.2), the constrained optimization problem has
been reformulated to an unconstrained problem where violations of the original
constraints are allowed, but penalized. These penalty functions are exact in the
sense that the solution to the original minimization problem is the same as for the
reformulated penalty function minimization for sufficiently large µ.

The objective is thus to find a lower bound for the penalty parameter that ensures
exactness. First, the concept of the dual norm needs to be introduced, which is an
essential component in the theory of exact penalty functions. For any given norm
‖·‖, there is a corresponding norm ‖·‖D that is called the dual norm and is defined
by (Kerrigan and Maciejowski, 2000b)

||ν||D = max
||λ||≤1

ν′λ. (3.3)

It can be shown that the the dual of ‖·‖1 is ‖·‖∞ and vice versa. ‖·‖2 is its own
dual. Using the concept of the dual norm, the following theorem from Fletcher
(1987) explains the criteria for a penalty function to be exact.

24

3.3 Soft constrains and penalty functions in MPC

Theorem 3.1 (Exact penalty function). If the penalty weight µ ≥ ‖λ∗‖D and
G(x) ≤ 0, then the solution x∗ to (3.2) is equal to the solution of (3.1).

See (Fletcher, 1987, Chapter 14) for proof.

Nocedal and Wright (2006) describes this in the following way: At a solution of the
optimization problem, x∗, any move into the infeasible region is penalized enough
so that it produces an increase in the cost function to a value greater than the
value at x∗, thereby forcing the minimum to lie at x∗. This means that the penalty
term in the objective function will increase the overall cost more than what can be
gained in the original cost term by violating the constraint.

This result also holds true if different penalty parameters are used for each con-
straint, thus the penalty parameter needs to be larger than the Lagrangian mul-
tiplier for its respective violated constraint, see Janesch and Santos (1997). This
will be useful when computing a lower bound for the penalty weight in Section 3.4.

3.3 Soft constrains and penalty functions in MPC

This section presents the use of soft constraints and penalty functions in MPC. A
potential problem with the penalty minimization problem (3.2) from the previous
section is that it is non-smooth, which is not always easy to solve. One can overcome
this by introducing slack variables, which is a way of rewriting the penalty function
formulation to a smooth formulation that still yields the same results. Problem
(3.2) is rewritten to:

min
x,ε

V (x) + µ ‖ε‖

s.t. G(x) ≤ ε
ε ≥ 0,

(3.4)

where ε are the slack variables representing the constraint violations, i.e. ε = 0
if the constraints are satisfied. As can be seen in the optimization problem (3.4),
non-zero values of ε are penalized in the objective function. Figure 3.1 illustrates
the concept of an exact penalty function for this reformulation with a quadratic
cost function and an `1-penalty function. As can be seen from the figure, a large
enough penalty value produces an increase in the cost function when constraints are
violated. However, for a smaller penalty parameter, the violation is not penalized
enough to produce this increase, and the problem has an optimal value outside the
feasible area.

For compactness of notation, a recasted compact form of the MPC problem is used,

25

Chapter 3. Soft Constraints and Penalty Functions

x∗

V (x) + µ ‖ε‖1
µ ‖ε‖1

V (x)

x

(a) A large enough value of µ such that the
penalty function is exact.

x∗

V (x) + µ ‖ε‖1

µ ‖ε‖1

V (x)

x

(b) A too small value of µ such that the
penalty function is inexact.

Figure 3.1: Illustration showing the comparison between an exact and an inexact
penalty function for a quadratic cost. The gray area represents the feasible region.

as described in Appendix A. The soft constrained MPC problem is then stated as:

min
u,ε

lc(x0,u) + φ(ε)

s.t. x0 = xinit,

Gu ≤W + Ex0 + θ(ε)

ε ≥ 0,

(3.5)

where φ(ε) : Rdε 7→ R is the penalty function, and θ(ε) : Rdε 7→ Rq is the constraint
function. The scalar dε denotes the number of rows in ε, i.e. ε ∈ Rdε and the scalar
q denotes the number of rows in G, i.e. the number of constraints in the problem.

The penalty functions that appear frequently in the MPC literature are the `1-
penalty function, the `∞-penalty function and the quadratic penalty function:

`1(x, ε) = µ ‖ε‖1 , (3.6)

`∞(x, ε) = µ ‖ε‖∞ , (3.7)

`22(x, ε) = µ ‖ε‖22 . (3.8)

These are briefly presented in the following sections in order to give an overview
and to introduce their drawbacks and advantages. The following notations are
used: The matrix Iq denotes the identity matrix with q diagonal elements, and the
vector 1q denotes a vector of ones in Rq.

26

3.3 Soft constrains and penalty functions in MPC

`1-penalty function

The `1-penalty function penalizes the sum of the constraint violations over the
prediction horizon, and is included in the MPC formulation in the following way:

min
u,ε

lc(x0,u) + µ ‖ε‖1
s.t. x0 = xinit,

Gu ≤W + Ex0 + Iqε

ε ≥ 0,

(3.9)

where ε is a vector of q rows, i.e. dε = q. The multiplication of ε with the
identity matrix will become clear in Section 3.4. Note, however, that this does
not change the problem. The `1 norm penalty function increases the number of
decision variables in the optimization problem by the number of constraints that
are relaxed, and will therefore increase computational load. Although it is shown in
Rao et al. (1998) that the addition of the `1 optimization variables can be handled
at virtually no additional computational cost if the problem structure is utilized in
the solver.

`∞-penalty function

The `∞ penality function penalizes the value of the the largest constraint violation
that is predicted to occur over the prediction horizon and is included in the MPC
optimization problem in the following way:

min
x0,u

lc(u, ε) + µ ‖ε‖∞
s.t. x0 = xinit,

Gu ≤W + Ex0 + ε

ε ≥ 0,

(3.10)

where ε is a vector with q rows. Note that this is a non-smooth optimization prob-
lem due to the ‖ε‖∞ term. This can be rewritten to a smooth form by (Maciejowski,
2002):

min
x0,u

lc(x0,u) + µε

s.t. x0 = xinit,

Gu ≤W + Ex0 + 1qε

ε ≥ 0,

(3.11)

where ε is a scalar, i.e. dε = 1. The `∞-penalty norm only increases the number
of decision variables in the optimization problem by 1. For this reason, `∞ norm
penalty functions are often preferred. However, the `∞ norm can result in unex-
pected behavior and poor performance if it is used to soften an output constraint
for which there is an inverse response (Hovd and Stoican, 2014). A method for min-
imizing this problem is provided in Hovd and Braatz (2001) using time dependent
weights. However, this will not be investigated further in this thesis.

27

Chapter 3. Soft Constraints and Penalty Functions

`22 penalty function

The quadratic penalty function penalizes the squared value of the constraint vio-
lation:

min
u,ε

lc(x0,u) + µ ‖ε‖22
s.t. x0 = xinit,

Gu ≤W + Ex0 + Iqε

ε ≥ 0,

(3.12)

where ε is a vector of q rows. A drawback of the quadratic penalty function is that
if the constraints are active, then for all finite values of µ this formulation will result
in them being violated to some extent, even if such violation is not necessary. Thus,
it is not possible to make the quadratic penalty function exact. This is due to the
fact that the penalty function formulation (3.2) will be smooth with a quadratic
penalty function and it is the non-smoothness of the penalty function which allows
it to be exact (Kerrigan and Maciejowski, 2000b). Thus, the essential property of
the `1 and `∞-penalty functions, which allows them to be made exact, is that they
have a discontinuity in slope at the zero value of the slack variables. To this end,
Theorem 3.1 yields an important result for a penalty function to be exact when
using either the `1 or the `∞-penalty function:

• By using the penalty function φ(ε) = µ ‖ε‖1, the penalty function is exact
when µ ≥ max

λ
‖λ‖∞.

• By using the penalty function φ(ε) = µ ‖ε‖∞, the penalty function is exact
when µ ≥ max

λ
‖λ‖1.

Another important property of the `1-penalty function is that, because it penalizes
the sum of constraint violations over the whole horizon, an exact penalty parameter
will in fact produce a minimal time response of the controller for steering the system
into the feasible region. This is elaborated on in Chapter 4.

As described, a sufficiently high value of the linear term in the penalty function will
ensure that the penalty function is exact. However, a too large term is generally
not desirable, since it may lead to unnecessarily violent control which may be
harmful to the actuators. Therefore one would wish to find the minimal values that
guarantee exactness, which corresponds to the largest dual norm of the Lagrangian
multiplier as defined in Theorem 3.1. This is a non-convex optimization problem
which in general has been considered intractable, and is not straightforward to
compute (Hovd and Stoican, 2014). The next section presents a method based on
two recently published papers.

3.4 Computing a lower bound for the penalty weight

It is desirable that the solution to the soft-constrained MPC problem and the so-
lution to the original hard-constrained MPC problem only differs if the original

28

3.4 Computing a lower bound for the penalty weight

problem is infeasible. Section 3.2 provided a criteria for the penalty parameter
value for this to hold, i.e. that the value of the penalty parameter needs to be
greater than the largest value of the dual norm of the Lagrangian multiplier. How-
ever, in MPC, the Lagrangian multipliers are dependent on the current state of
the system (Kerrigan and Maciejowski, 2000b). It is therefore necessary to com-
pute the Lagrangian multipliers for the whole feasible set of the hard-constrained
problem. As noted in Kerrigan and Maciejowski (2000b), a naive and impractical
solution would be to grid the state space region of interest and compute the optimal
Lagrange multipliers at each point. This would be a computationally heavy ap-
proach, and does not guarantee that a solution is found. Kerrigan and Maciejowski
(2000b) propose a method that solves a series of linear programs to find a lower
bound, however, this approach makes some heavy assumptions for the system con-
straints. This section presents a method based on two recently published papers,
Hovd (2011); Hovd and Stoican (2014), that relaxes these assumptions.

3.4.1 Preliminaries

This section gives the necessary preliminaries and notations used for solving the
optimization problem that yields the largest Lagrangian multipliers used for de-
signing penalty parameters. The method formulates the search for the largest
Lagrangian multiplier as a bi-level program reformulated to a mixed integer lin-
ear program (MILP). Additionally, the approach relies on the theory of polyhedral
norms (Anderson and Osborne, 1976) in order to provide a general framework
for the computation and thereby avoiding separate optimization problems for each
type of penalty function. The basics of bi-level programming and polyhedral norms
are presented in the following sections.

Bi-level programming

Bi-level optimization is a type of optimization where the constraints of the main
problem involve the solution solution of another optimization problem. The nota-
tions in this section are taken from Hovd and Stoican (2014). A general form of
this type of problem is the following:

min
y

VU (y, z) (3.13a)

s.t. (3.13b)

GUI(y, z) ≤ 0 (3.13c)

GUE(y, z) = 0 (3.13d)

min
z

VL(y, z) (3.13e)

s.t. (3.13f)

GLI(y, z) ≤ 0 (3.13g)

GLE(y, z) = 0, (3.13h)

where y ∈ Rn1 and z ∈ Rn2 . The variables of problem (3.13) are divided into two
classes, namely the upper-level variables y, and the lower-level variables z. The

29

Chapter 3. Soft Constraints and Penalty Functions

functions VU : Rn1 × Rn2 7→ R and VL : Rn1 × Rn2 7→ R are the upper-level and
lower-level objective functions respectively. The functionsGUI : Rn1×Rn2 7→ Rm11 ,
GUE : Rn1 × Rn2 7→ Rm12 are the upper-level constraints and GLI : Rn1 × Rn2 7→
Rm21 , GLE : Rn1×Rn2 7→ Rm22 are the lower-level constraints (Colson et al., 2005).

When the lower-level problem is convex and regular, it can be replaced by its
Karush-Kuhn-Tucker (KKT) conditions (see Appendix B). Replacing the lower
level problem of (3.13) by its KKT-conditions yields:

min
y,z,λ,γ

VU (y, z) (3.14a)

s.t. (3.14b)

GUI(y, z) ≤ 0 (3.14c)

GUE(y, z) = 0 (3.14d)

λ ≥ 0 (3.14e)

GLI(y, z) ≤ 0 (3.14f)

GLE(y, z) = 0 (3.14g)

λ×GLI(y, z) = 0 (3.14h)

∇zL (y, z, λ, γ) = 0, (3.14i)

where L (y, z, λ, γ) is the Lagrangian of the lower level problem and λ is the vector
of Lagrangian multipliers for the lower level problem. The × symbol indicates that
the kth element of the vector λ of Lagrangian multipliers is multiplied with the
kth constraint in the lower level inequality constraints. Notice that this problem
is non-convex due to the complementary condition (3.14h) where two decision-
variables are multiplied. Fortuny-Amat and McCarl (1981) suggests a technique to
reformulate the problem in to a convex mixed integer linear program using binary
variables. Applying this approach gives:

min
y,z,λ,γ,s

VU (y, z) (3.15a)

s.t. (3.15b)

GUI(y, z) ≤ 0 (3.15c)

GUE(y, z) = 0 (3.15d)

λ ≥ 0 (3.15e)

λ ≤Ms (3.15f)

GLI(y, z) ≤ 0 (3.15g)

GLE(y, z) = 0 (3.15h)

GLI(y, z) ≥ −M(1− s) (3.15i)

∇zL (y, z, λ, γ) = 0 (3.15j)

s ∈ {0, 1}l, (3.15k)

where M is a sufficiently large scalar and l is the number of inequality constraints
in the lower level problem. Note that the complimentary condition (3.14h) is

30

3.4 Computing a lower bound for the penalty weight

replaced by conditions (3.15f) and (3.15i). Problems (3.14) and (3.15) yield the
same result through suitable combinations of binary variables s ∈ {0, 1}l, which is
an optimization variable. si = 1 represents the constraint GLI(y, z)i as active and
λi inactive. si = 0 yields GLI(y, z)i inactive and λi active. Thus, the non-convex
complementary condition has been rewritten as two convex constraints. This result
will be used to formulate the search for the maximum Lagrangian multiplier as a
MILP.

Polyhedral norms

It is desirable to state the optimization problem used to compute the largest La-
grangian multipliers using a general formulation, rather than separate formulations
for each norm (e.g. seperate for `1 and `∞). For this, Hovd and Stoican (2014)
proposes to use polyhedral norms. The soft constraint and the penalty function is
restated in the following more general way:

φ(ε) = FTε ε, (3.16)

θ(ε) = Gεε, (3.17)

where FTε and Gε are designed based on the penalty function that is considered,
most typically `1 or `∞. As will be shown, by using the more general and flexible
form, there is no need for separate formulations for the different norms, and they
can all be included in the same framework. The definition of the polyhedral norm
becomes useful

Definition 3.1 (Blanchini (1995)). Having a polyhedral set given in the form
{x : (Gx)i ≤ 1, i = 1 . . . n}, its associated polyhedral norm is defined as Ψ(G, x) =
max
i=1...n

(Gx)i where n denotes the number of rows in matrix G.

Additionally, as noted in Hovd and Stoican (2014), one can without loss of gener-
ality state Fε from Equation (3.16) as

Fε = µ1dε . (3.18)

The criteria for an exact penalty function from Theorem 3.1 can now be stated as
follows:

Corollary 3.1. (Hovd and Stoican, 2014) Functions φ(ε) and θ(ε) written as in
(3.16) and (3.17) assure an exact correspondence between the hard constrained and
the soft constrained problem if

µ ≥ max
λ

Ψ(GTε , λ) (3.19)

See Hovd and Stoican (2014) for proof. This condition includes the classical `1
and `∞ conditions for exact hard constraints described in Section 3.2, i.e., that
the weight µ on the linear term of the penalty function has to be larger than the
maximal value of the dual norm of the Lagrangian multipliers of the corresponding
hard-constrained optimization problem:

31

Chapter 3. Soft Constraints and Penalty Functions

• For `1-penalty: dε = q and by taking θ(ε) = Iqε one has that φ(ε) = µ1Tdεε =

µ ‖ε‖1 where µ ≥ max
λ

Ψ(ITq , λ) = max
λ
‖λ‖∞;

• For `∞ penalty: dε = 1 and by taking θ(ε) = 1qε one has that φ(ε) = µε =
µ ‖ε‖∞ where µ ≥ max

λ
Ψ(1Tq , λ) = max

λ
‖λ‖1.

Thus, by defining the constraint function θ(ε) and the criteria in Corollary 3.1 with
polyhedral norms, the criteria in Theorem 3.1 is implicitly taken into account. Also
note that, as stated in Section 3.2, one only needs to find the Lagrangian multipliers
for the constraints that are softened. This may be done by setting the elements i Gε
corresponding to a non-softened constraint to zero, and the elements corresponding
to a softened constraint to one. Notice then that slack is only allowed on the
allowed softened constraints in (3.5), and also that max

λ
Ψ(GTε , λ) from Corollary

3.1 will ignore the non-softened constraints. Hence, only the Lagrangian multipliers
corresponding to the softened constraints are evaluated in the criteria in Corollary
3.1.

3.4.2 Using bi-level and mixed integer programming

Hovd (2011) introduces an approach for computing the maximum Lagrangian mul-
tipliers of the MPC problem in order to find a lower bound for the penalty pa-
rameter that satisfies Theorem 3.1. However, this approach is computationally de-
manding and Hovd and Stoican (2014) further develops this approach to increase
numerical ”quality” and computation speed. This section begins by describing the
first approach in order to illustrate the basic idea, and continues to describe the
improved and more efficient approach.

The objective is to find a lower bound on the penalty parameter µ that guaran-
tees exactness of the penalty function. This can be done by solving the bi-level
program:

max
x0

Ψ(GTε , λ) (3.20a)

s.t. (3.20b)

min
u

lc(x0,u) (3.20c)

s.t. (3.20d)

Gu ≤W + Ex0, (3.20e)

where λ is the vector of Lagrangian multipliers for the MPC problem and u is the
solution of the MPC problem. Note that this problem is not well-defined until the
KKT-conditions for the MPC problem replace the lower level problem. This yields:

32

3.4 Computing a lower bound for the penalty weight

max
x0,u,λ

Ψ(GTε , λ) (3.21a)

s.t. (3.21b)

Gu−W − Ex0 ≤ 0 (3.21c)

λ ≥ 0 (3.21d)

∇ulc(u, x0) +GTλ = 0. (3.21e)

λ× (Gu−W − Ex0) = 0. (3.21f)

As mentioned in the previous chapter, this problem is non-convex. By applying
the same reformulation as described earlier, the problem becomes:

max
x0,u,λ,s

Ψ(GTε , λ) (3.22a)

s.t. (3.22b)

Gu−W − Ex0 ≤ 0 (3.22c)

Gu−W − Ex0 ≥ −M(1− s) (3.22d)

λ ≥ 0 (3.22e)

λ ≤Ms (3.22f)

∇u`(u, x0) +GTλ = 0 (3.22g)

s ∈ {0, 1}q. (3.22h)

Although the KKT conditions for the MPC problem (the lower-level problem)
uniquely determine the optimal u, they do not uniquely determine the Lagrangian
multipliers λ. As noted in Hovd and Stoican (2014), this will result in unnecessarily
large λs, bounded only by M . As earlier described, the goal is to find the smallest
λs that fulfill the KKT conditions for the MPC problem. In Hovd (2011), this is
done by adding an extra minimization problem to (3.22).

3.4.3 Adding an extra minimization problem

An alternative approach to handle the non-uniqueness of the Lagrangian multipli-
ers is to add an extra minimization problem, which will compute unique Lagrangian
multipliers as described in Hovd (2011). Consider again the problem (3.22). Fol-

33

Chapter 3. Soft Constraints and Penalty Functions

lowing the aforementioned approach yields:

max
x0,u,λ,s

Ψ(GTε , λ) (3.23a)

s.t. (3.23b)

Gu−W − Ex0 ≤ 0 (3.23c)

Gu−W − Ex0 ≥ −M(1− s) (3.23d)

min
λ

Ψ(GTε , λ) (3.23e)

s.t. (3.23f)

λ ≥ 0 (3.23g)

λ ≤Ms (3.23h)

∇u`(x0,u) +GTλ = 0 (3.23i)

s ∈ {0, 1}q, (3.23j)

which can be solved by following the previously described procedure for recasting
a bi-level program to a MILP. However, this approach introduces many additional
variables during the recasting procedure, which will increase computational time
and might also decrease numerical quality. The next section describes an approach
originally published in Hovd and Stoican (2014), which circumvents this issue.

3.4.4 Adding an explicit LICQ constraint

As described, the Lagrangian multipliers are not necessarily uniquely defined for
the MILP (3.22). In the previous section, this was solved by adding additional
minimization subproblems such that the minimum multiplier is selected from the
space of available solutions. However, the reformulation introduces many additional
decision variables, and the problem can therefore become computationally heavy
for large systems with long prediction horizons. Hovd and Stoican (2014) builds
on this approach and introduces concepts that will improve computation speed
and increase numerical accuracy by explicitly defining the LICQ condition, defined
below, as a constraint in the optimization problem (3.22). This will guarantee
uniqueness of the solution.

Definition 3.2. (Nocedal and Wright, 2006, Chapter 12). For an active set, the
LICQ holds if the set of active constraint gradients is linearly independent.

As long as the set of active constraint gradients respects the LICQ, uniqueness of
the solution is guaranteed. The approach in this section exploits the structure of
the constraint matrix G, so that only a subset of constraints, which respect the
LICQ, are chosen in the optimization problem.

Consider the constraint matrix G, and note that at timestep k, only x0 and the
sequence of inputs u0, . . . , uk appear in the constraints. This means that G has a
lower triangular structure, see Figure 3.2. Each block Rk describes the kth order

34

3.4 Computing a lower bound for the penalty weight

𝑅1

𝑅2

𝑅𝑁

𝑞1 ×𝑚

𝑞2 ×𝑚

𝑞𝑁 ×𝑚

Figure 3.2: The constraint matrix, G. From Hovd(2014)

constraints and has qk rows and km columns, where m denotes the number of
inputs in the system. This yields the following result that guarantees the LICQ to
hold for different subsets of active constraints (Hovd and Stoican, 2014). Let ik
denote the number of constraints selected from each block Rk. Then the conditions

0 ≤ ik ≤ min(qk, km),

k∑

j=0

ij ≤ km, ∀k = 1, . . . , N. (3.24)

define all the selections of constraints which can satisfy the LICQ. The reasoning
for the first condition is as follows: from a collection of ’y’ rows where only the first
’x’ elements in each row are non-zero, at most ’min(x, y)’ rows can be selected and
still be linearly independent. For the second condition note that from the first q1

rows one can select at most m, from the first q1 + q2 rows one can select at most
2m and from the first q1 + · · · + qN rows one can select at most Nm rows. See
Hovd and Stoican (2014) for a more detailed proof.

Finally, including the LICQ condition (3.24) in the optimization problem (3.22)
yields:

max
j=1...dε

max
x0,u,λ,s

Ψ(GTε , λ) (3.25a)

s.t. (3.25b)

Gu−W − Ex0 ≤ 0 (3.25c)

Gu−W − Ex0 ≥ −M(1− s) (3.25d)

λ ≥ 0 (3.25e)

λ ≤Ms (3.25f)

∇ul(u, x0) +GTλ = 0 (3.25g)

0 ≤
tk∑

i=τk−1

si ≤ min(qk, km),

τk∑

i=1

si ≤ km (3.25h)

s ∈ {0, 1}q, (3.25i)

where τk = q1 + · · ·+ qk for any k = 1, . . . , N and one has to solve dε subproblems
to solve the overall problem. The first max operator comes from the definition of

35

Chapter 3. Soft Constraints and Penalty Functions

the polyhedral norm and the order of the max operators are switched, see Hovd
and Stoican (2014). By solving problem (3.25) one can guarantee that the solution
satisfies LICQ due to the inclusion of the LICQ constraint (3.25h) and thus the
solution is unique.

The procedure for computing the maximum Lagrangian multipliers may be sum-
marized as follows:

1. Recast the MPC problem in to compact form, i.e. design matrices H, F , G,
E and W and make sure that G is in lower block triangular form;

2. Design Gε and Fε so that they represent the penalty function used in the
MPC problem;

3. Solve (3.25).

The rest of this thesis assumes that this approach will give an accurate computation
of the largest Lagrangian multipliers for the MPC problem. Numerical issues that
can arise are discussed in Hovd and Stoican (2014).

3.5 Numerical illustrative examples

This section provides the computation of the penalty parameters to be used in
the recurring illustrative examples. The previous sections described a method for
guaranteeing that no constraints are violated when using soft constraints, unless
the problem is infeasible. This is critical when using soft constraints to steer the
system into the safety set, as mentioned in Section 1.4.2, and will become clear in
Chapter 4. For now, the computation of the largest Lagrangian multipliers for the
safety sets computed in Section 2.5 are provided. The computation is restricted to
finding the largest ‖λ‖∞, due to the fact that an `1-penalty function will be used.

3.5.1 Example with two states, two inputs and one dropout

Solving the optimization problem (3.25) using CPLEX1, with the safety set (2.10)
as state constraints, and the nominal input constraints (1.11), yields

max
x∈S2,u∈U

‖λ‖∞ = 25.14. (3.26)

A value of µ = 26 will therefore be used as the penalty parameter in order to
guarantee exactness of the penalty function.

3.5.2 Example with two states, three inputs and two dropouts

Due to the inclusion of two different safety sets, i.e. one for each fault scenario, one
needs to compute a penalty parameter for each set. The penalty parameter for the

1The code is included in the digital attachments.

36

3.5 Numerical illustrative examples

first fault (actuator two dropout) is computed by the optimization problem (3.25)
using the set S2 as state constraints the with the nominal inputs constraints. The
penalty parameter for the second fault, however, needs to be computed by using
S12 as the state constraint, but with the input constraints introduced by the dropout
of actuator 2. This yields the following values:

max
x∈S2,u∈U

‖λ‖∞ = 61.66, (3.27)

max
x∈S12,u∈U2

‖λ‖∞ = 50.5235. (3.28)

The values µ2 = 62 and µ12 = 51 will therefore used as penalty parameters.

37

Chapter 3. Soft Constraints and Penalty Functions

38

Chapter 4

Proactive Fault-tolerant
Economic MPC

The previous chapters described the necessary theory for designing penalty func-
tions and safety sets for the proposed proactive FTEMPC scheme. This chapter
describes the scheme in detail. First, a quick introductory section including as-
sumptions and a stability note is included. The main approach is then described
before the extension of the scheme to multiple actuator faults is elaborated on and
stability of the scheme is proved. The last section includes an implementation of
the scheme to the recurring illustrative examples, as well as for a larger system
with three states.

4.1 Introduction

The approach was briefly introduced in Chapter 1, where the different operating
modes of the scheme were defined to nominal operation, safe operation and fault
operation. These are elaborated on in Section 4.2. Several assumptions are made
in the design of the scheme, which are stated the following section.

Assumptions

The scheme is designed for discrete linear time invariant systems with a convex
economic cost function, and possible extensions to nonlinear systems are discussed
in Chapter 6. Furthermore, the approach in this chapter assumes that no distur-
bances are present in the system, Chapter 5 extends the scheme to be robust in
terms of disturbances.

A critical criterion for the scheme to work is that the system is controllable in the
different operating modes. Therefore the following assumption is made:

Assumption 4.1. The nominal system (A,B) and the faulty system (A,Bj) are
controllable, and N is chosen sufficiently large such that all admissible initial states

39

Chapter 4. Proactive Fault-tolerant Economic MPC

x can be steered to an admissible economic steady-state point (x′s, u
′
s) within N

steps while satisfying the given state and input constraints.

Assumption 4.1 ensures that the system can be steered from any admissible initial
state x to an admissible steady-state x′s in N timesteps. It is important to em-
phasize that it is assumed that this condition holds for any admissible economic
steady-state point, as the latter is changed by the introduction of safety constraints.

Additionally, state feedback is assumed for the system. That is, all states are per-
fectly measured without errors. Also, it is assumed that the FDI provides instant
and accurate information about an actual fault and that either historical data or
the FDI provides warning of faults that are about to occur.

A quick note on stability for economic MPC

In Chapter 1, it was noted that stability for economic MPC schemes is still a
researched area, but that several contributions have been made to prove stability
of the scheme. In this thesis, the stability proof of economic MPC is based on the
approach in Diehl et al. (2011), where an economically optimal state is included
as a terminal state in the optimization problem. The optimal steady-state xs is
computed by {

min
x,u

l (x, u) | x, u ∈ X× U, x = Ax+Bu

}
. (4.1)

In Diehl et al. (2011), it is shown that this guarantees stability under certain as-
sumptions. This thesis therefore incorporates the following notation for the EMPC
problem:

min
x,u

N−1∑

k=0

l (xk, uk) (4.2a)

s.t. xk+1 = Axk +Buk, ∀k ∈ {0, . . . , N − 1} (4.2b)

x0 = xinit, (4.2c)

xk ∈ X, ∀k ∈ {1, . . . , N − 1} (4.2d)

uk ∈ U, ∀k ∈ {0, . . . , N − 1} (4.2e)

xN = xs, (4.2f)

where l (xk, uk) is an economic cost function, not necessarily positive definite.

Remark 4.1. In correspondence with the control invariant terminal set described
in Chapter 2, a terminal steady-state is also control invariant from the definition of
a control invariant set. The steady-state is computed with constraints taken into
account, and so there exists a control law satisfying the constraints that will keep
the system at the steady-state once it is reached.

40

4.2 Approach

4.2 Approach

This section describes the main approach by providing explanations of the different
operating modes, and formulates the MPC problems that are solved to compute
control laws based on the current mode of the controller.

The absolute time of the system is denoted by t, while the time relative to MPC
computations at the current time instant is denoted by k. The following time
instants are defined:

• The controller receives information about an incipient fault at t′.

• The estimated time instant for the actual fault occurrence is denoted tf.

• The fault is fixed and the actuator is brought back to normal at tfix.

Figure 4.1 illustrates the approach. The system operates at a nominal steady-
state point in the nominal feasible set, Xnom

N , until warning of an incipient fault is
received, in which it is steered into the safety set and reaches a temporary steady-
state which optimizes economics subject to the safety set constraint. When the
fault occurs, the system is still stabilizable, due to the fact that the current state
lies in the safety set. The system is steered to the economically optimal steady-state
satisfying the constraints introduced by the fault.

Xnom
N

xnoms

xsafes

Sj

xfaults

Figure 4.1: Schematic illustration of the proposed scheme

4.2.1 Nominal operation

Under nominal operating conditions, the goal is to compute a feedback control for
the system at hand that satisfies nominal state and input constraints. As described
in the previous section, a terminal constraint will be used to guarantee stability.
Given the system,

xk+1 = Axk +Buk (4.3)

with constraints

x ∈ X, (4.4)

u ∈ U, (4.5)

41

Chapter 4. Proactive Fault-tolerant Economic MPC

the optimal steady-state xnom
s is given by

{
min
x,u

l (x, u) | x, u ∈ X× U, x = Ax+Bu

}
. (4.6)

The optimal feedback is thus achieved by solving at every timestep:

Pnom : min
x,u

N−1∑

k=0

l (xk, uk) (4.7a)

s.t. xk+1 = Axk +Buk, ∀k ∈ {0, . . . , N − 1} (4.7b)

x0 = xinit, (4.7c)

xk ∈ X, ∀k ∈ {1, . . . , N − 1} (4.7d)

uk ∈ U, ∀k ∈ {0, . . . , N − 1} (4.7e)

xN = xnom
s . (4.7f)

The solution u∗0 = unom
e (xinit) is computed by the MPC problem (4.7) and applied

to the system in a receding-horizon manner until warning of an incipient fault is
received. It is clear that under nominal operating conditions, when no faults are
incipient nor present, this is just the standard EMPC problem.

4.2.2 Safe operation

As soon as a warning of an incipient fault is received, from e.g. an FDI, historical
data or scheduled maintenance, the system needs to be steered into a safety set
where the MPC problem, when the fault occurs, is feasible. The safety set, Sj ,
defined as a control invariant set when actuator j renders inactive, as described in
Section 2.3, may be written as

Sj = {x | Djx ≤ dj}, (4.8)

where Dj ∈ Rqs×n, dj ∈ Rqs , and qs defines the number of constraints defining the
polytopic safety set. The set is chosen as outlined in Chapter 2 and needs to be
computed for all different combinations of actuator dropouts, however, by offline
computation. Furthermore, the new temporary steady-state included in the safety
set, xsafe

s is computed by

{
min
x,u

l (x, u) | x, u ∈ X× U, Djx ≤ dj , x = Ax+Bu

}
. (4.9)

The set Sj will often be a strict subset of Xnom
N , and thereby render (4.7) infeasible

when operating at steady-state xnom
s if imposed directly as constraints in Pnom at

time t′ for all k. Hence, the constraints (4.8) must be imposed through a penalty
function, or equivalently, through soft constraints with a penalty norm. Due to
the possibility of choosing a penalty parameter that makes the `1-penalty function

42

4.2 Approach

exact, this is the choice of penalty function. The following problem is solved in
order to steer the system into the safety set:

Psafe : min
x,u

N−1∑

k=0

l (xk, uk) + µ

N−1∑

k=1

‖εk‖1 (4.10a)

s.t. xk+1 = Axk +Buk, ∀k ∈ {0, . . . , N − 1} (4.10b)

x0 = xinit, (4.10c)

xk ∈ X, ∀k ∈ {1, . . . , N − 1} (4.10d)

uk ∈ U, ∀k ∈ {0, . . . , N − 1} (4.10e)

Djxk ≤ dj + εk ∀k ∈ {1, . . . , N − 1} (4.10f)

εk ≥ 0 ∀k ∈ {1, . . . , N − 1} (4.10g)

xN = xsafe
s , (4.10h)

where the penalty parameter µ is chosen so that the penalty function is exact. The
solution u∗0 = usafe

e (xinit) is applied to the system in a receding-horizon manner.
The soft-constraint formulation (4.10) is equivalent with optimizing a non-smooth
penalty function, as described in Section 3.2, subject to the remaining constraints.

Remark 4.2. Note that the terminal constraint (4.10h) without the soft safety set
constraint (4.10f) and the penalty function in (4.10a), is not enough by itself to
drive the system into the safety set. This is due to the fact that without (4.10f)
and the penalty in (4.10a), the optimal state is indeed the nominal steady-state
xnom

s and one can therefore not guarantee that the first control action computed
by the MPC problem at each timestep begins to steer the system to xsafe

s . The
control actions that will drive the system to xsafe

s are always being postponed and
might then actually never be implemented. This motivates the inclusion of the soft
constraint with exact penalty function in (4.10), which makes xsafe

s the optimal
steady-state and thus the safety set is reached before the end of the prediction
horizon N .

Remark 4.3. Enforcing hard constraints Djxk ≤ dj for k ≥ tf − t′ would not
change the optimal solution (x∗,u∗, ε∗) when the penalty function is exact. If
ε∗k = 0,∀k ≥ tf − t′ is a feasible solution to Psafe, then exactness of the penalty
function will ensure that this indeed is the solution to Psafe.

In addition to its exactness properties, the `1-penalty function is chosen for the
following reason. When a fault is about to occur, it is often desirable to steer the
system into the safety set as quickly as possible. This is especially true when the
exact occurrence of the fault is not known in advance. For this, the following is
proposed:

Proposition 4.1. If Assumption 4.1 holds, and µ > µ∗, where µ∗ is a lower thresh-
old value to ensure that the penalty function is exact, then the solution (x∗,u∗, ε∗)
to the reformulated `1 exact penalty function in Psafe will steer the state xk inside
Sj in the minimum number of timesteps.

43

Chapter 4. Proactive Fault-tolerant Economic MPC

Proof. With a sufficiently large penalty parameter µ > µ∗, a feasible solution
(x̂, û, 0) to the soft constrained problem (4.10), obtained by reformulation of an
exact, non-smooth penalty function, satisfies the KKT conditions of the corre-
sponding hard-constrained problem if (x̂, û, 0) is a feasible solution to this prob-
lem. If (x̂, û, 0) is infeasible for (4.10), the exactness of the penalty function (4.10a)
will ensure constraint satisfaction, i.e. the KKT condition, for those constraints in
(4.10) that can be satisfied, i.e. the time-varying slack variables ε∗k = 0,∀k ≥ k̄ for
some k̄ > 0. Consequently, the `1 exact penalty function will yield ε∗k > 0 only for
those k in (4.10f) that would yield infeasibility for the hard constraint Djxk ≤ dj ,
thereby ensuring that these constraints are violated only if necessary, and hence in
the minimum number of timesteps k̄. The assumption of convexity of the l(x, u)
ensures global optimality of the solution (x∗,u∗, ε∗).

Thus, by using an exact `1-penalty function, the system is steered into the safety
set in the minimum amount of timesteps. This is clearly advantageous and the
most safe action to take when a fault is about to occur.

Furthermore, it is important to distinguish between two scenarios relating the es-
timated fault-time tf to the prediction horizon N : If tf > t′+N , then feasibility of
Psafe at time t′ will ensure xk ∈ Sj within tf. Else, if tf ≤ t′+N then a check of ε∗

from the solution of Psafe at time t′ must be made. Let ε∗tf|t′ be the value of slack

vector ε∗k at prediction time k = tf−t′ computed at sample time t′. If ε∗tf|t′ > 0, the
state cannot reach Sj within the estimated time tf of actuator fault, in which the
system must be shut down or switched to an emergency mode. Otherwise, ε∗tf|t′ = 0,
and the state is steered inside Sj within time tf.

Remark 4.4. Note that the region in which the MPC is able to control the system
when a certain fault is present might not necessarily change when a fault occurs.
In these cases, nominal and safe operation will be the same and no proactive action
is needed. However, for open-loop unstable systems that require certain actuator
power to keep the system stable, it is very likely that this region will shrink. Safe
operation then guarantees feasibility of the problem when the fault occurs, which
would otherwise not be possible.

4.2.3 Fault operation

Assuming that the system enters the safety set before the fault occurs, the handling
of the fault is the same as for a reactive scheme, i.e. that the system model and
constraints are updated to represent the new system dynamics introduced by the
fault. A new optimal steady-state, xfault

s , is computed by

{
min
x,u

l (x, u) | x, u ∈ X× Uj , x = Ax+Bju

}
. (4.11)

Note that adding the safety set as a constraint in problem (4.11) would not change
the solution, the steady-state is computed with respect to the input constraints

44

4.2 Approach

introduced by the fault, and will therefore implicitly lie in the feasible set for the
constrained system, i.e. the safety set. The MPC problem becomes:

Pfault : min
x,u

N−1∑

k=0

l (xk, uk) (4.12a)

s.t. xk+1 = Axk +Bjuk, ∀k ∈ {0, . . . , N − 1} (4.12b)

x0 = xinit, (4.12c)

xk ∈ X, ∀k ∈ {1, . . . , N − 1} (4.12d)

uk ∈ Uj , ∀k ∈ {0, . . . , N − 1} (4.12e)

Djxk ≤ dj ∀k ∈ {1, . . . , N − 1} (4.12f)

xN = xfault
s , (4.12g)

where the solution u∗0 = ufault
e (xinit) is applied to the system in a receding-horizon

manner. Note that the hard safety set constraint (4.12f) may be dropped due to
the presence of the terminal constraint (4.12g). If (4.12f) is not present in the
problem, the solution will still not yield a trajectory that leaves the safety set as
this would yield infeasibility and thereby fail to satisfy the terminal constraint.

Remark 4.5. It is important to be aware of the subtle difference between an actual
and an incipient fault. The MPC problem is only updated to compensate for the
fault dynamics once the fault has actually occurred. Upon warning of the fault
and before the fault occurs, the faulty dynamics has not yet been introduced to
the MPC problem and the only change in the control dynamics is the addition of
the soft safety set constraint.

The FTMPC scheme can be summarized as follows.

Algorithm 4.1. The following steps comprise the proactive FTEMPC scheme:

1. Offline: Compute the safety set using invariant set computation methods as
described in Chapter 2.

2. Offline: Compute the largest Lagrangian multiplier for the hard safety con-
straint using the method presented in Chapter 3.

3. Online: In nominal operation, solve Pnom and apply the input unom
e (xinit) to

the system in a receding-horizon manner.

4. Online: In safety operation, that is, when warning about an incipient fault
i received, solve Psafe and apply the input usafe

e (xinit) to the system in a
receding-horizon manner.

5. Online: When the fault occurs, solve Pfault and apply the input ufault
e (xinit)

to the system in a receding-horizon manner.

6. Online: When the fault is fixed, go to step 3.

45

Chapter 4. Proactive Fault-tolerant Economic MPC

4.3 Multiple actuator faults

The previous section described the overall proposed approach for dealing with
incipient faults, and focused on single actuator dropouts. This section describes
how to incorporate handling of multiple actuator faults. The following notations
are used. For scenarios where only single dropouts are considered, the notations
are as in the previous section. That is, a warning about the fault is received at
time t′, and is estimated to occur at tf. It will be clear from the context which
actuator the fault has occurred in. Additional notations are needed for situations
with multiple faults. The time of warning about an incipient fault in actuator j
is denoted t′j and the fault is estimated to occur at tfj , for which the problems

Psafe
j′ and Pfault

j are solved, respectively. Additionally, the problem solved for safe
operation for a current fault in actuator j, and an incipient fault in actuator i is
denoted Psafe

ji′ . The problem solved for a fault in both actuator j and i is denoted

Pfault
ji .

Consider Figure 4.2, which shows the different combinations of available actuators
of a system with three inputs. In the case of multiple actuator faults, safety sets
and penalty parameters need to be computed for all these possible combinations.
That means that one has to take each possible sequence of events into account when
designing the scheme. A fault in actuator 1 followed by a fault in actuator 2, or a
fault in actuator 2 followed by a fault in actuator 1, would yield the same safety set,
S12. However, the two scenarios would yield different Lagrangian multipliers for
the hard-constrained safety set. This is due to the fact that different actuators are
used in the two scenarios for steering the system into the safety set, which yields
different costs in the objective function. Thus, one needs to compute safety sets
for all ”nodes” in Figure 4.2, and different Lagrangian multipliers for all ”vertices”
in order to guarantee exactness of the penalty function in safety operation. For
large systems, this might be a long procedure. However, all computations are done
offline, and should therefore not be an issue in most cases.

Figure 4.3 illustrates safety sets for different combinations of faults, i.e. a fault
in actuator 1, a fault in actuator 2, and a fault in both actuator 1 and 2. As
illustrated, the safety sets quickly shrink when multiple faults are present. Note
that the safety set S12 is a subset of both safety sets, S1 and S2. When an additional
fault occurs, it is treated in the same manner as for a single dropout, but with only
the remaining actuators used to steer the system into the safety set. The following
sequence of events describe the approach:

1. Warning of fault in actuator 1 is received at time t′1, the input is computed by
Psafe

1′ and the system is driven to the safety set by S1 using all m actuators.

2. Fault 1 occurs at time tf1, the input is computed by Pfault
1 and the controller

is able to stabilize the system with the remaining m− 1 actuators.

3. Warning about fault 2 at time t′2, the input is computed by Psafe
12′ and the

system is driven to the safety set S12, using only the available m−1 actuators,

46

4.3 Multiple actuator faults

{1,2,3}

{1,2}

{1}

{}

{1,3} {2,3}

{2} {3}

Figure 4.2: Illustration of different available actuator subsets for a system with
three inputs. For example, a dropout of actuator 1 would result in the subset
{2, 3} as the available actuators.

where the system is stabilizable for a dropout of both actuator 1 and 2.

4. Fault 2 occurs at time tf2, the input is computed by Pfault
12 , and the controller

is able to stabilize the system with the remaining m− 2 actuators.

5. The procedure is repeated for additional faults. Obviously, if no actuators
remain, emergency mode is necessary.

6. When faults are fixed, the system returns to the state it was in before the
respective fault occurred.

Thus, one can think of additional incipient faults as a single dropout, but with the
available actuators comprising the ”current” system. For example, in the case of a
fault in actuator 1 and an incipient fault in actuator 2, the current system would
be the system with a fault in actuator 1.

It is important to note that when linear economic cost functions are used in the
MPC, the system will often operate on the boundary of the feasible set, i.e. the
safety set when a fault is present. This will in many cases cause the input con-
straints to being active. Thus, when an additional fault is about to occur, there
might not exist enough actuation power to steer the system into a new safety set,
since the maximum amount of actuation power is already being spent on keeping
the system on the boundary. It is therefore often advantageous to tighten the
safety sets by a small amount, such that the input constraints are not active on
the boundary of the safety set. The next section analyzes the stability properties
of the scheme.

47

Chapter 4. Proactive Fault-tolerant Economic MPC

S12

S1

S2

Xnom
N

Figure 4.3: Illustration of the safety sets for faults in different actuators.

4.4 Stability

The stability proof is based on the approach in Diehl et al. (2011), and is only
shown for the `1-penalty function. Additionally, it is without loss of generality
based on a single actuator dropout. Although the computation of the lower bound
on the penalty parameter, i.e. µ > ||λ||D, holds for any convex objective function,
the following additional assumption for the stage cost l(x, u) is made in order to
prove stability for the scheme.

Assumption 4.2. If l(x, u) contains other than linear terms, these must be strictly
convex, and a constraint qualification, e.g. Slater’s condition (Boyd and Vanden-
berghe, 2004), must additionally be satisfied at the optimal steady-state point.

If l(x, u) is a linear, economic objective function, the MPC problems (4.7), (4.10)
and (4.12) resort to linear programs (LPs), in which strong duality holds (Boyd and
Vandenberghe, 2004, Ch. 5). The additional assumption of a constraint qualifica-
tion assures strong duality to hold at optimal steady-state. If l(x, u) is quadratic, R
must be positive definite for quadratic terms uTRu, and a constraint qualification,
e.g. Slater’s condition, must in addition be satisfied for strong duality to hold.

In order to analyze stability of the proposed proactive FTEMPC scheme, three sce-
narios need to be considered and the ”rotated” stage costs are introduced (Diehl
et al., 2011),

Lnom(x, u) = l(x, u) + (x−Ax−Bu)′λnom
s − l(xnom

s , unom
s), (4.13a)

Lsafe(x, u, ε) = lsafe(x, u, ε) + (x−Ax−Bu)′λsafe
s − l(xsafe

s , usafe
s), (4.13b)

Lfault(x, u) = l(x, u) + (x−Ax−Bju)′λfault
s − l(xfault

s , ufault
s). (4.13c)

where

lsafe(x, u, ε) , l(xk, uk) + µ

qs∑

i=1

εik (4.14)

48

4.4 Stability

is the point-wise in time stage cost (4.10a) as a function of x, u and ε with `1-
penalty. Moreover, λnom

s , λsafe
s and λfault

s are Lagrangian multipliers for the LTI
steady-state model such that strong duality holds for the three steady-state prob-
lems (4.6), (4.9) and (4.11), respectively. Note that strong duality holds by As-
sumption 4.2, and that by allowing slack on the constraint Hjx ≤ hj only up to
N − 1, the steady-state problem of Psafe is independent of ε.

Lemma 4.1. The following relates the rotated costs (4.13) and the respective MPC
problems:

1. Solving Pnom in (4.7) with objective (4.7a) replaced with

Ṽ nom
N (xinit) = min

N−1∑

k=0

Lnom(xk, uk)

gives equal solution.

2. Solving Psafe in (4.10) with the objective (4.10a) replaced with

Ṽ safe
N (xinit) = min

N−1∑

k=0

Lsafe(xk, uk, εk)

gives equal solution.

3. Solving Pfault in (4.12) with the objective (4.12a) replaced with

Ṽ fault
N (xinit) = min

N−1∑

k=0

Lfault(xk, uk)

gives equal solution.

Proof. All the three rotated costs are point-wise in time summed from k = 0
to N − 1, and the respective MPC optimization problems have terminal equality
constraint. The results hence follows immediately from Lemma 2 in Diehl et al.
(2011).

The above lemma is used directly to prove nominal stability of the proposed proac-
tive FTEMPC scheme, that is, for nominal model and no disturbances.

Theorem 4.1. (Nominal stability): If Assumption 4.1 and 4.2 hold, and µ > µ∗

such that the `1-penalty function in (4.10) is exact, then the following stability
properties hold:

1. (Nominal operations): xnom
s is an asymptotically stable steady-state point of

the closed-loop system xk+1 = Axk + Bunom
e (xinit) with Lyapunov function

Ṽ nom
N (xinit) and region of attraction Xnom

N .

49

Chapter 4. Proactive Fault-tolerant Economic MPC

2. (Safe operations): At time t′, if (a) t′ + N ≤ tf and εtf|t′ = 0, or (b) if
tf > t′ + N , the system will be steered inside the safety set within the tf, in
which xsafe

s is an asymptotically stable steady-state point of the closed-loop
system xk+1 = Axk + Busafe

e (xinit) with Lyapunov function Ṽ safe
N (xinit) and

region of attraction Xnom
N .

3. (Fault operations): xfault
s is an asymptotically stable steady-state point of

the closed-loop system xk+1 = Axk + Bju
fault
e (xinit) with Lyapunov function

Ṽ fault
N (xinit) and region of attraction Sj

Proof. A sketch of the proof is given for the three parts individually.

Part 1): Recursive feasibility of Pnom is ensured by the terminal equality constraint
xN = xnom

s and Assumption 4.1. Furthermore, Assumption 4.2 ensures strong
duality to hold at steady-state xnom

s . Hence, it can be verified that Ṽ nom
N (xinit)

satisfies the properties of a Lyapunov function (Diehl et al., 2011, Th. 1), and in
particular that

Ṽ nom
N (Ax+Bunom

e (xinit)) ≤ Ṽ nom
N (xinit)− Lnom(x, unom

e (xinit)) (4.15a)

≤ Ṽ nom
N (xinit)− β(|x− xnom

s |)) (4.15b)

for all x ∈ Xnom
N , and for a K∞-function β(·). This proves part 1) of the theorem.

Part 2): Let 0 < k̄ ≤ tf − t′ be an integer, such that ε∗k|t′ = 0 for all k ≥ k̄. At

sample time t′, let {ε0|t′ , ε1|t′ , . . . , εk̄−1|t′ , 0, . . . , 0} be a feasible sequence of slack
variables, and let u a feasible control sequence. Applying the feedback control law
usafe

e (xinit) at time t′, then at time t′+1, the sequence {ε1|t′ , . . . , εk̄−1|t′ , 0, 0, . . . , 0}
and {u1, u2, . . . , uN−1, u

safe
s } will be feasible with x̃ = Ax+ Busafe

e (xinit) as initial
condition. This follows from the terminal equality constraint (4.10h) and by requir-
ing zero slack on the constraints Hjx ≤ hj at the end of the horizon. Feasibility
of Psafe for all sample times t ≥ t′ and for all initial states x ∈ Xnom

N follows by
induction.

For the two scenarios of tf relative to N , the following holds; (a) If t′ + N ≤ tf
and ε∗tf|t′ = 0, then by the recursive feasibility, exactness of the penalty term, and
Proposition 4.1, the number of positive slack vectors will decrease by one for each
receding-horizon iteration, decreasing the total magnitude of the `1-penalty term.
Hence if ε∗tf|t′ = 0, then xk will be steered into Sj within tf, and indeed x ∈ Sj for

all sample times t ≥ tf due to the positive invariance of Sj . If tf > t′ + N , then
it follows immediately that xk ∈ Sj within time tf by feasibility of Psafe at sample
time t′, and by the same arguments as above. Asymptotic stability of xsafe

s from
switching to Psafe at time t′ can then be established by using Ṽ safe

N (xinit) for all
x ∈ Xnom

N , and establishing an inequality similar to (4.15) with Lsafe(xk, uk, εk) and

a K∞-function β̃(·).

Part 3): If the MPC problem Psafe with control law usafe
e (xinit) is able to steer

50

4.5 Numerical illustrative examples

the system state xk inside Sj within time tf, then for all initial states x ∈ Sj ,
using the same arguments as in part 1) and in (Diehl et al., 2011, Th. 1), it holds
that xfault

s is an asymptotically stable steady-state point of the closed-loop system
xk+1 = Axk +Bju

fault
e (xinit) with region of attraction Sj .

4.5 Numerical illustrative examples

This section completes the implementation of the proactive FTEMPC scheme for
the illustrative examples. Additionally, an example with a system with three states
is included in order to illustrate how the scheme scales for larger systems. All
simulations are performed using YALMIP (Löfberg, 2004).

4.5.1 Example with two states, two inputs and one dropout

Both the safety set and the exact penalty parameter needed for this example have
been computed in the previous chapters. These parameters are now used in order
to fully implement the scheme for this system.

As described in the previous sections, the system operates in nominal operation
where the MPC problem Pnom is solved in a receding-horizon manner until a warn-
ing about an incipient fault is received. It is assumed that at time t′ = 20, the
warning is received from one of the methods mentioned in Chapter 1 in which the
MPC controller switches to the optimization problem Psafe, in order to steer the
system into the pre-computed safety set, S2. At time tf = 40, actuator 2 renders
completely inactive and the MPC controller switches to the optimization problem
Pfault. The fault is fixed at tfix = 60, and the MPC controller switches back to the
original problem, Pnom.

The optimal steady-states for the different operation cases are computed by the op-
timization problems (4.6), (4.9), (4.11), respectively, for use as terminal constraints,
as described in Chapter 4.1:

xnom
s =

[
3.75 6

]T
, (4.16)

xsafe
s =

[
0.6043 1.6960

]T
, (4.17)

xfault
s =

[
1.8580 0.7058

]T
. (4.18)

Figure 4.4 shows the system states over time, Figure 4.5 shows the input, and
Figure 4.6 shows the state trajectory in the plane. The system operates in the
economic optimal point, xnom

s , until the controller receives information about the
upcoming fault. The system is then driven into Sj , and reaches the temporary
steady-state point xsafe

s . Observe that it is crucial to compute max
x∈S2,u∈U

‖λ‖∞, since

a smaller µ might not guarantee that the system is driven into the set Sj , where the
MPC controller retains feasibility when the system is affected by the fault. When
the fault occurs, the system is steered to the new economic optimal steady-state

51

Chapter 4. Proactive Fault-tolerant Economic MPC

point, xfault
s . At sample time t = tfix, actuator u2 is fixed and nominal operation is

resumed, the system is driven back to its original optimal steady-state point xnom
s .

The approach is compared with an open-loop discrete minimal-time control (DMTC)
computed by the optimization problem in Appendix D. The two approaches use an
equal number of timesteps to reach Sj , while it can be seen that the minimal-time
approach renders a different trajectory. In the remaining examples of this thesis,
this comparison is not made. However, note that due to the theory presented in
Proposition 4.1, the same result can be shown for the other examples.

With the proactive fault-tolerant MPC scheme, the system is able to retain sta-
bility after actuator 2 has a dropout, which would not be possible if the system
was not steered into the safety set before the fault occurred. Nominal operation is
resumed when the fault is fixed.

52

4.5 Numerical illustrative examples

0 10 20 30 40 50 60 70 80

0

2

4

6

Time

V
a
lu
e

x1

0 10 20 30 40 50 60 70 80

0

2

4

6

Time

V
a
lu
e

x2

Figure 4.4: The state response of the system. The critical time instants t′ = 20,
tf = 40, tfix = 60 are marked by vertical lines.

0 10 20 30 40 50 60 70 80

0

5

10

15

u1

Time

V
a
lu
e

0 10 20 30 40 50 60 70 80

0

5

10

15

u2

Time

V
a
lu
e

Figure 4.5: The input to the system. The critical time instants t′ = 20, tf = 40,
tfix = 60 are marked by vertical lines.

53

Chapter 4. Proactive Fault-tolerant Economic MPC

0 1 2 3 4 5 6
0

1

2

3

4

5

6

x1

x
2

x
nom
s

x
safe
s

x
fault
s

DMTC

t < t′

t′ ≤ t < tf

tf ≤ t < tfix

t ≥ tfix

Figure 4.6: State-trajectory showing the different phases of the system evolution,
as well as the optimal steady-state points. The state in each timestep is marked
for both trajectories in the phase where the system is steered to the safety-set.
Note that the first steps in this phase are equal for both trajectories, and that the
DMTC marks (red) are difficult to notice below the blue marks.

4.5.2 Example with two states, three inputs and two dropouts

In the previous chapters, the safety sets as well as the exact penalty parameters
have been computed for this example. However, as noted in Section 4.3, the safety
sets have to be tightened by a small amount in order to avoid the input constraints
being active on the boundary. This is done in the simulations, and as will be
seen, this will cause the system to not operate on the boundaries. Recall that
the scenario is focused on a situation with two actuator dropouts, the first being
actuator 2, and the second being actuator 1.

As in the previous example, the optimization problem Pnom is solved in a receding-
horizon manner until warning about a fault is received. The controller is warned
about the first incipient fault at t′2 = 20, and the MPC controller switches to the
optimization problem Psafe

2′ in order to steer the system into the safety set S2. The
fault occurs at tf2 = 40 for which the MPC problem to be solved is switched to
Pfault

2 . At time t′1 = 60, the warning about a new fault in actuator 1 is received.
The controller should then steer the system into the safety set S12, which is done by
solving Psafe

2′1 . The fault in actuator 1 occurs at tf1 = 80 and the controller switches
to solve the optimization problem Pfault

21 . The faults are fixed simultaneously and
the optimization to be solved switches back to Pnom at tfix = 100.

54

4.5 Numerical illustrative examples

The following optimal steady-states are computed:

xnom
s =

[
15 6.1264

]T
, (4.19)

xsafe2
s =

[
8.5022 1.6699

]T
, (4.20)

xfault2
s =

[
4.5631 6.0890

]T
, (4.21)

xsafe12
s =

[
0.4106 2.9539

]T
, (4.22)

xfault12
s =

[
0.4106 2.9539

]T
. (4.23)

Figure 4.7 shows the system states over time, Figure 4.8 shows the input, and Figure
4.9 shows the state trajectory in the plane. Note that the input constraints are
never active in their maximal value in steady-state, which is the result of the safety
set tightening described in Section 4.3. The optimal steady-states in each operation
are marked in Figure 4.9. Note that actuator 1 is already inactive when the fault
occurs, hence xsafe12

s = xfault12
s . This is not necessary for stability, but yields a

larger profit for the system with this particular cost function in this example. It
is clear that the system effectively steers the state into the respective safety sets,
and stabilizes the system once the faults occur.

55

Chapter 4. Proactive Fault-tolerant Economic MPC

0 20 40 60 80 100 120

0

5

10

15

Time

V
a
lu
e

x1

0 20 40 60 80 100 120

0

5

10

15

Time

V
a
lu
e

x2

Figure 4.7: The state response of the system. The critical time instants t′2 = 20,
tf2 = 40, t′1 = 60, tf1 = 80 and tfix = 100 are marked by vertical lines.

0 20 40 60 80 100 120

0

10

20

u1

Time

V
a
lu
e

0 20 40 60 80 100 120

0

10

20

u2

Time

V
a
lu
e

0 20 40 60 80 100 120

0

10

20

u3

Time

V
a
lu
e

Figure 4.8: The input to the system. The critical time instants t′2 = 20, tf2 = 40,
t′1 = 60, tf1 = 80 and tfix = 100 are marked by vertical lines.

56

4.5 Numerical illustrative examples

0 2 4 6 8 10 12 14 16
0

2

4

6

8

10

12

14

16

x1

x
2

t < t
′

2

t
′

2 ≤ t < tf2

tf2 ≤ t < t
′

1

t
′

1 ≤ t < tf1

tf1 ≤ t < tfix

tfix ≤ t

Figure 4.9: The trajectory of the system when multiple faults occur. The blue
circles represent the optimal steady-states in each operation.

4.5.3 Example with three states, three inputs and one dropout

This example illustrates how the scheme scales for larger systems, and implements
the scheme on a 3× 3 system with 3 inputs.

System description

Consider again a discrete linear time invariant system

xk+1 = Axk +Buk, (4.24)

where x ∈ R3 is the state and u ∈ R3 is the input. The system matrix is given by

A =

1.2218 0.0277 0.0218
0.0295 1.3340 0.9445
0.0183 0.5903 1.3338

 . (4.25)

The eigenvalues of A are 2.0820, 1.2204 and 0.5871 and so the system is open-loop
unstable. The input matrix in nominal operation by

B =

0.2214 0.0036 0.0046
0.0026 0.2572 0.3818
0.0015 0.2665 0.1955

 . (4.26)

57

Chapter 4. Proactive Fault-tolerant Economic MPC

The nominal constraints on the states and inputs are given by

x ∈ X =

x |

0
0
0

 ≤

x1

x2

x3

 ≤

4
3
4

 (4.27)

u ∈ U =

u |

−5
−5
−15

 ≤

u1

u2

u3

 ≤

5
5
15

 . (4.28)

The objective is to minimize the cost function

N−1∑

k=0

l(xk, uk) =

N−1∑

k=0

(−qxk) , (4.29)

while being able to handle an incipient fault in actuator 3. The weight q =[
1 1 1

]
is used, and a prediction horizon of N = 5. A shorter horizon than

in the previous examples is chosen due to the fact that the computations of the
penalty parameter took long to find a solution for longer horizons. As noted in
Chapter 2, this is due to the fact that the safety set gets complex for higher di-
mensional systems. The number of constraints at each timestep are multiplied by
the prediction horizon, and a longer horizon will therefore yield a larger problem to
solve. This could potentially be improved by using an approximation of the safety
set as noted in Chapter 2, but this is not investigated further.

Fault modeling

The situation considered is a complete dropout of actuator 3. The fault introduces
new constraints on the system, given by

u ∈ U3 =

u |

−5
−5
0

 ≤

u1

u2

u3

 ≤

5
5
0

 . (4.30)

Safety set and penalty parameter

The safety set, S3, is computed as the maximal control invariant set using MPT3,
as in Section 2.5. However, the set is represented as a polytope with 14 constraints,
and the values are therefore not given here.

Solving the optimization problem (3.25) yields the following maximum Lagrangian
multiplier

max
x∈S3,u∈U

‖λ‖∞ = 1.7664 (4.31)

The penalty parameter µ = 2 > 1.7664 is used in the simulations.

58

4.5 Numerical illustrative examples

Implementation

It is assumed that at time t′ = 20, a warning of an incipient fault, in which the
MPC controller switches to the optimization problem Psafe, in order to steer the
system into the pre-computed safety set, S3. At time tf = 40, actuator 2 renders
completely inactive and the MPC controller switches to the optimization problem
Pfault. The fault is fixed at tfix = 70, and the MPC controller switches back to the
original problem, Pnom.

The optimal steady-state for the different operations are

xnom
s =

[
4 3 4

]T
(4.32)

xsafe
s =

[
4 1.8 0.62

]T
(4.33)

xfault
s =

[
4 1.8 0.62

]T
. (4.34)

When the warning of the incipient fault is received at t′ = 20, input u3 takes
significant proactive action in order to steer the system into S3. Note that xsafe

s =
xfault
s . This is similar to the situation for the second fault in Section 4.5.2, and is

simply due to the fact that u3 is inactive at the optimal steady-state point inside
the safety set before the fault occurs, even though it does not need to. Thus, the
optimal steady-state does not change when it renders unusable at t3 = 40. The
system is driven back to its nominal optimal steady-state when the fault is fixed
at tfix = 70.

Figures 4.10 and 4.11 show that the controller is able to take proactive actions
and stabilize the system once the fault occurs. This example illustrates how the
scheme scales for higher dimensional systems, and provided a note that the offline
computation of the penalty parameter quickly get heavy as the safety set gets more
complex.

59

Chapter 4. Proactive Fault-tolerant Economic MPC

0 10 20 30 40 50 60 70 80

0

2

4

6

Time

V
a
lu
e

x1

0 10 20 30 40 50 60 70 80

0

2

4

6

Time

V
a
lu
e

x2

0 10 20 30 40 50 60 70 80

0

2

4

6

Time

V
a
lu
e

x3

Figure 4.10: The state response of the system. The critical time instants t′ = 20,
tf = 40, tfix = 70 are marked by vertical lines.

0 10 20 30 40 50 60 70 80

−15

−10

−5

0

5

u1

Time

V
a
lu
e

0 10 20 30 40 50 60 70 80

−15

−10

−5

0

5

u2

Time

V
a
lu
e

0 10 20 30 40 50 60 70 80

−15

−10

−5

0

5

u3

Time

V
a
lu
e

Figure 4.11: The input to the system. The critical time instants t′ = 20, tf = 40,
tfix = 70 are marked by vertical lines.

60

Chapter 5

Robust Proactive
Fault-tolerant Economic
MPC

Chapter 4 described a proactive approach for guaranteeing feasibility subject to
a predicted incipient fault in an actuator. However, the approach only consid-
ered nominal systems without disturbances, which is unrealistic for many pro-
cesses. This chapter describes how the scheme can be extended to be robust to
unknown but bounded disturbances. First, a short review of commonly used ro-
bustness strategies for both standard tracking MPC as well as for economic MPC
are described. One of these approaches is then applied together with the proactive
FTEMPC scheme in order to handle disturbances in the system. The last sec-
tion includes a note on stability for the proposed robust proactive fault-tolerant
economic MPC scheme.

5.1 Brief review of disturbance-handling in MPC

Several methods for designing tracking MPC to be robust to disturbances are avail-
able in the literature. A frequently used approach is the min-max method, where
the control tries to minimize the worst-case cost that could result from a future
disturbance sequence by solving a min-max optimization problem, see e.g. Magni
and Scattolini (2007); Raimondo et al. (2009); Lee and Yu (1997); Bemporad et al.
(2003). In general, these schemes are computationally heavy, since the size of the
optimization problem required grows exponentially with the increase in prediction
horizon (Lee and Yu, 1997).

An approach based on constraint tightening is described in Richards and How
(2006) and Marruedo et al. (2002), where the nominal constraints are tightened
in a manner that guarantees that the real system with disturbances will satisfy

61

Chapter 5. Robust Proactive Fault-tolerant Economic MPC

the nominal constraints. This approach circumvents the aforementioned computa-
tional complexity, as only the nominal MPC problem with tightened constraints is
solve online. However, the constraint sets will shrink drastically with the increase
in prediction horizon (Yu et al., 2010).

For linear systems with additive disturbances, Mayne et al. (2005) introduce a new
constraint tightening, tube-based scheme, which does not increase the computa-
tional burden, and prevents shrinking the constraint sets drastically. The scheme
utilizes, in addition to the input computed by the nominal MPC, a feedback control
law that aims to minimize the difference between the real system and the nominal
disturbance-free system. It is shown that the state of the real system is kept within
a ”tube” around the trajectory of the nominal system state, hence the name tube
MPC.

Robustness of economic MPC controllers is an active research area which recently
has received increasing attention. Huang et al. (2012) presents a stability result
for robust economic MPC, however, the formulation is related to tracking MPC.
In Hovgaard et al. (2011), a scenario based approach is used for uncertain systems
to minimize the energy consumption of a refrigeration system, while also taking
probabilistic constraints into account. The authors focus on a special class of lin-
ear cost functions, and show their results and theory on different applications, but
they do not provide any stability or optimality results. Another idea is presented
in Muller et al. (2012), where the robustness properties at of steady-state under
disturbed constraints is considered, however, no disturbances are considered within
the system dynamics, only the constraints are assumed to be uncertain. In Bayer
et al. (2014), the authors present a tube-based approach to achieve robustness of
economic MPC subject to unknown but bounded disturbances on the states. The
approach builds on the methods presented in Mayne et al. (2005) for tracking MPC,
and the authors shows how it can be modified to be used within EMPC. The next
section will focus on describing this latter approach, which in Section 5.3 will be
applied to the proactive FTEMPC scheme to make it robust to disturbances.

5.2 Tube-based robust economic MPC

The main idea in tube MPC is to ignore the disturbance in the MPC formulation,
and have the MPC computing an optimal control law and trajectory for the system
without disturbances. Then, in order to counteract the effect of disturbances, an
additional controller is designed to force the trajectory to lie as closely as possible
to the nominal disturbance-free trajectory. It can then be shown that the real
trajectory will lie in a ”tube” (neighborhood) around the nominal trajectory, and
thus the error is bounded (Mayne et al., 2005). In Chapter 2, positively invariant
sets was shown to be a key ingredient in the design of feasible operating regions
for the system. As will be seen, this is also the case in the design of tube-based
control. For tube MPC, the objective is to design the controller such that the error
lies in a positively invariant set, denoted an invariant error set, which is described

62

5.2 Tube-based robust economic MPC

in the next section.

First, a few notations need to be introduced. Φ ∼ Θ denotes the Pontryagin
difference between the two sets Φ and Θ. KΩ denotes the multiplication of a
matrix K and a set Ω, and lastly Φ ⊕ Θ denotes the Minkowski sum of the two
sets Φ and Θ, see Appendix C for clarification. The notation |z|Θ is defined to be
the distance from a point z to a set Θ. The set W ∈ Rp denotes the set of possible
disturbance-values.

Invariant error sets

Consider the linear time-invariant disturbance-affected discrete-time system

x̄k+1 = Ax̄k +Būk + wk, (5.1)

where A ∈ Rn×n, B ∈ Rm×n, x̄ ∈ Rn is the system state, ū ∈ Rm is the input and
w ∈ Rp is the disturbance. The bar notation is used to distinguish the system with
disturbances from the disturbance-free system given by

xk+1 = Axk +Buk. (5.2)

It is assumed that there is no model mismatch between the disturbance-free and
the real system, i.e. the matrices A and B are the same in both systems. Due to
the unknown disturbances in the real system dynamics (5.1), it is impossible to
predict the exact system states at future time instants. However, the idea in tube
MPC is to determine an invariant set of the error between the real system (5.1)
and the associated disturbance-free system (5.2), which will define a bound on the
error. The error is defined as

ek = x̄k − xk, (5.3)

and hence the error dynamics are described by

ek+1 = x̄k+1 − xk+1. (5.4)

In order to derive bounds on the error, recall the concept of robust control invariant
sets defined in Definition 2.5. Based on this definition, one can make the following
adaption to robust error sets.

Definition 5.1 (Robust Control Invariant Set for Error System (Bayer et al.,
2014)). A set Ω ∈ Rn×n is robust control invariant (RCI) for the error system
(5.4) if and only if there exists a feedback control law ūk = φ (uk, x̄k, xk) such that
for all x̄k, xk ∈ X resulting in ek ∈ Ω, all uk ∈ U, and all wk ∈ W, it holds that
ek+1 ∈ Ω and ūk ∈ U.

The objective is hence to design a control law such that Ω is an RCI-set (and thus
bounds the error) for the error system (5.4). As described in Bayer et al. (2014),
this is achieved by implementing a control law on the form

ūk = φ (uk, x̄k, xk) = ue(xinit) +K (x̄k − xk) (5.5)

63

Chapter 5. Robust Proactive Fault-tolerant Economic MPC

where ue(xinit) is the optimal input computed by the MPC for the disturbance-free
system (5.2) and the second term is an additional error feedback term in order to
compensate for the disturbance. The matrix K is chosen such that A + BK has
all eigenvalues strictly inside the unit-circle, e.g. from linear quadratic control or
pole placement, see e.g. Kalman et al. (1960).

Note that, if no disturbance is present, then x̄k = xk and the the error will always
be zero, thus ūk = uk. The above procedure results in the following error dynamics

ek+1 = (A+BK) ek + wk. (5.6)

This means that the computation of an RCI set Ω for the error system (5.4) boils
down to determining an robust positively invariant (RPI) set as in Definition 2.4
for the error dynamics (5.6).

In order to find an upper bound on the error, it is necessary to compute the smallest
RPI set for the error dynamics that contains all the possible values for the error.
The following definition becomes useful:

Definition 5.2 (Minimal RPI (mRPI) Set (Rakovic et al., 2003)). The mRPI set
Ω∞ is the RPI set in Rn×n that is contained in every closed RPI set of (5.6).

The minimal RPI set for the system (5.4) is given by (Rakovic et al., 2003)

Ω∞ ,
∞∑

i=0

(A+BK)EW (5.7)

i.e. the set of all possible states for the error system (5.6). This set is bounded due
to the fact that (A+BK) has by design only stable eigenvalues. See e.g. Rakovic
et al. (2003) for a method to approximate the set Ω∞.

Thus, by using the control law given by (5.5), the error between the real and the
nominal system is bounded, and the bound can be computed by using invariant
set theory.

Resulting control law

Within the framework of robust MPC, the open-loop optimization will be per-
formed for the disturbance-free system and the sequence of inputs u is the opti-
mization variable. The feedback control law (5.5), will as described, bound the
error between the real system (5.1) and the disturbance-free system (5.2) to a set
Ω∞, i.e. ek ∈ Ω∞ for all k = 0, 1, One can therefore guarantee that the state x̄
of the real system will always be within a compact RCI set Ω∞ around the state x of
the disturbance-free system. However, when optimizing over the disturbance-free
system, one still wants to guarantee that the real constraints are satisfied. Thus
the constraints for the disturbance-free system need to be tightened accordingly,

64

5.2 Tube-based robust economic MPC

such that (Bayer et al., 2014)

X̄ = X ∼ Ω, (5.8)

Ū = U ∼ KΩ. (5.9)

It can be shown that if xk ∈ X̄ then xk ⊕ Ω∞ ∈ X, and consequently x̄k ∈ X.
The same argument can be used to show that ūk ∈ U (Chisci et al., 2001). Hence
the nominal constrains are satisfied under the bounded disturbances. By replacing
the constraints on x and u by the tightened constraints (5.8) and (5.9), the MPC
problem for the system under disturbances becomes:

min
x,u

N−1∑

k=0

l (xk, uk) (5.10a)

s.t. xk+1 = Axk +Buk, ∀k ∈ {0, . . . , N − 1} (5.10b)

x0 = xinit, (5.10c)

xk ∈ X̄, ∀k ∈ {1, . . . , N − 1} (5.10d)

uk ∈ Ū, ∀k ∈ {0, . . . , N − 1} (5.10e)

xN = xs, (5.10f)

where xs is computed by the steady-state minimization
{

min
x,u

l (x, u) | x, u ∈ X̄× Ū, x = Ax+Bu

}
. (5.11)

Figure 5.1 illustrates the concept of tube-based MPC. One can see that the actual
trajectory lies in a compact set around the trajecory of the disturbance-free system.

Remark 5.1. In Bayer et al. (2014), the authors note that the steady-state com-
puted by the optimization problem (5.11), might not be optimal to use as a terminal
constraint when disturbances are present. In fact, a different steady-state might
result in better average performance, and a new steady-state optimization problem
is presented, which replaces (5.11). It is outside the scope of this thesis to investi-
gate the average performance of the scheme, which is more of an economic MPC
topic than that of fault-tolerant control. However, note that the robust proactive
economic fault-tolerant control scheme presented in the next section could easily
be improved by following the procedure in Bayer et al. (2014) to improve average
performance.

The final control law is given by Equation (5.5). The procedure for implementing
the tube-based robust economic MPC will thus be to

Algorithm 5.1 (Tube-based robust economic MPC). The following steps comprise
the tube-based robust EMPC scheme

1. Offline: Compute the error feedback gain K such that A+BK has eigenvalues
strictly inside the unit circle;

65

Chapter 5. Robust Proactive Fault-tolerant Economic MPC

x̄0 = x0

x̄1

x̄2

x1

x2

Ω∞

u0

ū0

u1

ū1

Figure 5.1: Illustration of the economic tube MPC. Adapted from Bayer et al.
(2014).

2. Offline: Compute the minimal RPI set Ω∞ for the error system (5.6);

3. Offline: Tighten the constraints according to (5.8) and (5.9);

4. Offline: Compute the optimal steady-state from (5.11);

5. Online for all k = 0, 1, . . . : compute the optimal disturbance-free feedback
control law ue(xinit) from the MPC problem (5.10) and apply to system (5.2);

6. Online: for all k = 0, 1, . . . : Apply ūk from Equation (5.5) to the real system.

5.3 Approach

This section describes the extension of the proactive fault-tolerant MPC scheme
to be robust to additive and bounded disturbances by implementing the widely
used tube MPC approach described in the previous section. This is done by using
Algorithm 5.1 for the different operating modes of the proactive FTEMPC con-
troller. The following section will describe the approach. No detailed description
of the fault-tolerant approach other than the needed modifications for robustness
is included, as these are given in Chapter 4.

5.3.1 Fault-free operation

For the fault-free operation case, the approach to achieve robustness to disturbances
will be the same as for the standard tube economic MPC described in Section 5.2.
Thus, one needs to compute the feedback gain matrix K and the minimal error
robust positively invariant set, Ω∞. The constraints on x and u are tightened
according to (5.8) and (5.9), respectively. The final optimization problem to be

66

5.3 Approach

solved at each iteration for fault-free operation is therefore given by:

Pnom
robust : min

x,u

N−1∑

k=0

l (xk, uk) (5.12a)

s.t. xk+1 = Axk +Buk, ∀k ∈ {0, . . . , N − 1} (5.12b)

x0 = xinit, (5.12c)

xk ∈ X̄, ∀k ∈ {1, . . . , N − 1} (5.12d)

uk ∈ Ū, ∀k ∈ {0, . . . , N − 1} (5.12e)

xN = xnom
s , (5.12f)

where xnom
s is computed by the steady-state minimization

{
min
x,u

l (x, u) | x, u ∈ X̄× Ū, x = Ax+Bu

}
. (5.13)

The feedback law thus becomes

ūk = φnom (unom
e (xinit), x̄k, xk) = unom

e (xinit) +K (x̄k − xk) , (5.14)

where unom
e (xinit) is computed by the MPC problem (5.12) in a receding-horizon

manner until warning about incipient fault occurs.

5.3.2 Safe operation

For safe operation, a few additional modifications need to be made. First, in
addition to tightening of the nominal constraints, a new safety set S̄j also needs to
be computed. This is done in the same manner as for the disturbance-free safety
set, but with the tightened constraint sets Ūj and X̄j as inputs. These are made
precise in Section 5.3.3. The safety set is then defined as the polytopic constraint

S̄j =
{
x | D̄jx ≤ d̄j

}
. (5.15)

The optimization problem to be solved at each iteration for safe operation is there-
fore given by:

Psafe
robust : min

x,u

N−1∑

k=0

l (xk, uk) + µ

N−1∑

k=1

‖εk‖1 (5.16a)

s.t. xk+1 = Axk +Buk, ∀k ∈ {0, . . . , N − 1} (5.16b)

x0 = xinit, (5.16c)

xk ∈ X̄, ∀k ∈ {1, . . . , N − 1} (5.16d)

uk ∈ Ū, ∀k ∈ {0, . . . , N − 1} (5.16e)

D̄jxk ≤ d̄j + εk ∀k ∈ {1, . . . , N − 1} (5.16f)

εk ≥ 0 ∀k ∈ {1, . . . , N − 1} (5.16g)

xN = xsafe
s , (5.16h)

67

Chapter 5. Robust Proactive Fault-tolerant Economic MPC

where the penalty parameter µ is designed to be exact, and the steady-state point
xsafe

s is computed from
{

min
x,u

l (x, u) | x, u ∈ X̄× Ū, D̄jx ≤ d̄j , x = Ax+Bu

}
. (5.17)

The feedback law hence becomes

ūk = φsafe
(
usafe
e (xinit), x̄k, xk

)
= usafe

e (xinit) +K (x̄k − xk) , (5.18)

where usafe
e is computed from the MPC problem (5.16) in a receding-horizon manner

until the fault actually occurs.

5.3.3 Fault operation

Several additional modifications need to be made in the case of fault operation.
Due to the change in operating conditions, i.e. change in the input matrix B for
actuator faults, a new error feedback gain matrix Kj needs to be computed. This
can be done in the same manner as forK, but by using the modified input matrix Bj
instead of B. Thus, Kj is designed such that A+BjKj has its eigenvalues strictly
inside the unit circle. The error dynamics in fault operation is consequently given
by

ek+1 = (A+BjKj) ek + wk. (5.19)

for which an mRPI set Ωj∞ can be computed. Additionally, due to the change in
the constraint set U imposed by the fault, the new constraint set Uj needs to be
tightened according to

Ūj = Uj ∼ KjΩ
j
∞. (5.20)

and the state constraints according to

X̄j = X ∼ Ωj∞. (5.21)

The disturbance-free MPC optimization problem to be solved is then given by:

Pfault
robust : min

x,u

N−1∑

k=0

l (xk, uk) (5.22a)

s.t. xk+1 = Axk +Bjuk, ∀k ∈ {0, . . . , N − 1} (5.22b)

x0 = xinit, (5.22c)

xk ∈ X̄j , ∀k ∈ {1, . . . , N − 1} (5.22d)

uk ∈ Ūj , ∀k ∈ {0, . . . , N − 1} (5.22e)

D̄jx ≤ d̄j ∀k ∈ {1, . . . , N − 1} (5.22f)

xN = xfault
s , (5.22g)

where xfault
s is computed by the steady-state minimization

{
min
x,u

l (x, u) | x, u ∈ X̄j ∩ S̄j × Ūj , x = Ax+Bju

}
. (5.23)

68

5.4 Stability

The final feedback control law thus becomes

ūk = φfault
(
ufault
e (xinit), x̄k, xk

)
= ufault

e (xinit) +Kj (x̄k − xk) . (5.24)

where ufault
e (xinit) is computed by the MPC problem (5.22) in a receding-horizon

manner until the fault is fixed.

The focus has been on single actuator faults, but note that the scheme can be
extended to multiple faults as described in Section 4.3, by tightening all safety sets
in the manner presented in this chapter.

5.4 Stability

Section 5.3 described how the tube-based MPC approach can be used for the pro-
posed proactive FTEMPC scheme to guarantee stability when the system is affected
by additive and bounded disturbances. This section will provide a stability proof
for the overall scheme.

Theorem 5.1. (Robust stability): If Assumption 4.1 and 4.2 hold, and µ > µ∗

such that the `1-penalty function in (5.16) is exact, and the disturbance is bounded,
then the following stability properties hold:

1. (Robust Nominal operations): Anom = {xnom
s } × {xnom

s } ⊕ Ω∞ is asymptoti-
cally stable for the composite system x̄k+1 = Ax̄k+Bφnom (unom

e (xinit), x̄k, xk)+
wk and xk+1 = Axk +Bunom

e (xinit) with region of attraction X̄nom
N × X̄nom

N ⊕
Ω∞.

2. (Robust Safe operations): At time t′, if (a) t′ + N ≤ tf and εtf|t′ = 0, or
(b) if tf > t′ + N , the system will be steered inside the safety set within
time tf, in which Asafe =

{
xsafe

s

}
×
{
xsafe

s

}
⊕ Ω∞ is asymptotically stable

for the composite system x̄k+1 = Ax̄k +Bφsafe
(
usafe
e (xinit), x̄k, xk

)
+wk and

xk+1 = Axk +Busafe
e (xinit) with region of attraction X̄nom

N × X̄nom
N ⊕ Ω∞.

3. (Robust Fault operations): Afault =
{
xfault

s

}
×
{
xfault

s

}
⊕Ωj∞ is asymptotically

stable for the composite system x̄k+1 = Ax̄k +Bjφ
fault

(
ufault
e (xinit), x̄k, xk

)
+

wk and xk+1 = Axk +Bju
fault
e (xinit) with region of attraction S̄j × S̄j ⊕Ωj∞.

Proof. Stability for the disturbance-free system can be proved in the same manner
as in Chapter 4, thus the optimal steady-state points xnom

s , xsafe
s xfault

s are asymp-
totically stable for the disturbance-free system for the different plant operations.
Concerning the stability of the composite system (5.1) and (5.2), the proof is based
on the proof in Bayer et al. (2014), and is repeated for the three operations.

1. (Robust Nominal operations): As x̄k = xk+ek and ek ∈ Ω∞ for all 0 ≤ t < t′

and t ≥ tfix, it follows that

|x̄k|{xnom
s }⊕Ω∞

≤ |xk − xnom
s | ≤ βnom (|x0 − xnom

s | , t)

69

Chapter 5. Robust Proactive Fault-tolerant Economic MPC

where βnom is a class KL function. Using this result, one obtains

|xk, x̄k|Anom
= |xk − xnom

s |+ |xk|{xnom
s }⊕Ω∞

≤2βnom (|x0 − xnom
s | , t) ≤ 2βnom

(
|x0, x̄0|Anom

, t
)

for all 0 ≤ t < t′ and and t ≥ tfix. This proves part 1 of the theorem.

2. (Robust Safe operations) Similarly, for all t′ ≤ t < tfault

|x̄k|{xsafe
s }⊕Ω∞

≤
∣∣xk − xsafe

s

∣∣ ≤ βsafe

(∣∣x0 − xsafe
s

∣∣ , t
)

where βsafe is a class KL function. Using this result, one obtains

|xk, x̄k|Asafe
=
∣∣xk − xsafe

s

∣∣+ |xk|{xsafe
s }⊕Ω∞

≤2βsafe

(∣∣x0 − xsafe
s

∣∣ , t
)
≤ 2βsafe

(
|x0, x̄0|Asafe

, t
)

for all t′ ≤ t < tfault, which proves part 2 of the theorem.

3. (Robust Fault operations) As x̄k = xk+ek and ek ∈ Ωj∞ for all tfault ≤ t < tfix,
it follows that

|x̄k|{xfault
s }⊕Ωj∞

≤
∣∣xk − xfault

s

∣∣ ≤ βfault

(∣∣x0 − xfault
s

∣∣ , t
)

where βfault is a class KL function. Using this result, one obtains

|xk, x̄k|Afault
=
∣∣xk − xfault

s

∣∣+ |xk|{xfault
s }⊕Ωj∞

≤2βfault

(∣∣x0 − xfault
s

∣∣ , t
)
≤ 2βfault

(
|x0, x̄0|Afault

, t
)

for all tfault ≤ t < tfix. This proves the last part of the theorem, and hence
completes the proof.

5.5 Numerical illustrative example

This example illustrates the concept of using a tube MPC approach for making the
proactive FTEMPC scheme robust to additive and bounded disturbances. MPT3
is used for all set-operations, and simulations are performed with YALMIP.

System description

Consider again the system in Section 1.5.1. The FTEMPC successfully stabilized
the system and steered the state within a safety set. This section considers the
same system, but with a change in constraints1 and when a bounded disturbance

1The constraints in the aforementioned example do not contain the origin when tightened,
which would mean in a practical sense that the actuators could not be turned off, and is therefore
unrealistic. This example therefore considers the system where negative values are allowed in the
nominal case. This will cause the tightened constraints to contain the origin.

70

5.5 Numerical illustrative example

is present. The system with disturbance will be denoted the ”real” system and is
given by

x̄k+1 = Ax̄k +Būk + wk, (5.25)

where x̄ ∈ R2, ū ∈ R2, w ∈W ∈ R2, A and B are as defined in Section 1.5.1. The
disturbance set is given by

W =

{
w ∈ R2 :

[
−0.12
−0.12

]
≤
[
w1

w2

]
≤
[
0.12
0.12

]}
. (5.26)

The constraints are given by

x ∈ X =

{
x ∈ R2 |

[
−6
−6

]
≤
[
x1

x2

]
≤
[
6
6

]}
, (5.27)

u ∈ U =

{
u ∈ R2 |

[
−5
−15

]
≤
[
u1

u2

]
≤
[

5
15

]}
. (5.28)

The objective is to minimize the cost function

N−1∑

k=0

l(xk, uk) =

N−1∑

k=0

(−qxk) , (5.29)

while being able to handle an incipient fault in actuator 2 and attenuating distur-
bances. The weight q =

[
1 1 1

]
is used. The disturbance is implemented as a

random vector with values between −0.12 ≤ w ≤ 0.12 at each timestep.

Fault modeling

The same time instants for the fault warning, fault occurrence and fault fix are
used, i.e. the warning is received at t′, u2 = 0 for tf ≤ t < tfix where t′ = 20,
tf = 40 and tfix = 60. The new input constraints due to the presence of the fault
are given by

u ∈ U2 =

{
u ∈ R2 |

[
−5
0

]
≤
[
u1

u2

]
≤
[
5
0

]}
. (5.30)

Error feedback gains and mRPI computations

The error feedback gains K and K2 are computed by linear quadratic control using
the dlqr command in MATLAB with A as the system matrix, B and B2 as the
respective input matrices and with identity weights on both states and inputs. This
results in:

K =

[
1.2706 1.6836
1.4200 1.6805

]
, (5.31)

K2 =

[
2.7445 3.4417

0 0

]
. (5.32)

The mRPI sets for the error system, Ω∞ and Ω2
∞, are computed from the toolbox

described in Riverso et al. (2013). These sets are represented as polytopes with
many constraints and are therefore not given here.

71

Chapter 5. Robust Proactive Fault-tolerant Economic MPC

Constraint tightening

As described throughout the chapter, it is necessary to tighten the constraints.
Following the procedure outlined in Section 5.3, yields:

X̄ = X ∼ Ω∞ =

x :

1 0
0 1
−1 0
0 −1

x ≤

5.7057
5.7121
5.7057
5.7121

, (5.33)

X̄2 = X ∼ Ω2
∞ =

x :

1 0
0 1
−1 0
0 −1

x ≤

5.6582
5.7239
5.6582
5.7239

, (5.34)

Ū = U ∼ KΩ∞ =

u :

1 0
0 1
−1 0
0 −1

u ≤

4.463
14.44
4.463
14.44

, (5.35)

Ū2 = U2 ∼ K2Ω2
∞ =

u :

1 0
0 1
−1 0
0 −1

u ≤

3.865
0

3.865
0

. (5.36)

Safety set and penalty parameter

The nominal safety set S2 is computed using the nominal constraints as inputs. It
is only computed for illustrative purposes, and is not used in the simulations. The
tightened safety set S̄2 is computed using MPT3 with the tightened constraints X̄2

and Ū2 as inputs, which yields

S̄2 =

x :

0.6202 0.7845
−0.6202 −0.7845

1 0
0 1
−1 0
0 −1

x ≤

1.3188
1.3188
5.6582
5.7239
5.6582
5.7239

. (5.37)

The nominal safety set, as well as the tightened safety set is included in Figure
5.2. Due to the tightening of the safety set and change in objective function, a new
penalty parameter needs to be computed. Solving the optimization problem (3.25)
with the aforementioned constraints, yields

max
x∈S̄2,u∈Ū

‖λ‖∞ = 26.92. (5.38)

A penalty value of µ = 27 > 26.92 is used in the simulation.

72

5.5 Numerical illustrative example

x1

x
2

-6 -4 -2 0 2 4 6
-6

-4

-2

0

2

4

6

X X̄

S2

S̄2

Figure 5.2: Illustration of the nominal and tightened safety sets, as well as the
nominal and tightened state constraint sets.

Steady-state computations

The following optimal steady-states are computed for the different operations,
which are used as terminal constraints

xnom
s =

[
3.442 5.712

]T
, (5.39)

xsafe
s =

[
1.5833 0.4166

]T
, (5.40)

xfault
s =

[
1.4370 0.5451

]T
. (5.41)

Implementation

The controller operates in nominal operation where the MPC problem Pnom
robust is

solved in a receding-horizon manner, and the control law (5.14) is applied to the
system until a warning about an incipient fault is received. At time t′ = 20, a
warning is received of an incipient fault in actuator 2 in which the MPC controller
switches to the optimization problem Psafe

robust and applies the control law (5.18), in
order to steer the system into the pre-computed, tightened safety set, S̄2. At time
tf = 40, actuator 2 renders completely inactive and the MPC controller switches
to the optimization problem Pfault

robust, and the control law (5.24) is applied to the
system. The fault is fixed at tfix = 60, and the MPC controller switches back to
the original problem, Pnom

robust.

Figures 5.3 and 5.4 show the state evolution and the input, respectively. Figure
5.5 shows the trajectory of the system, and Figure 5.6 shows the error in the plane
between the real and the disturbance-free system, i.e. e1 = x̄1−x1 and e2 = x̄2−x2.
It is clear that the error never exceeds the pre-computed bounds, which corresponds

73

Chapter 5. Robust Proactive Fault-tolerant Economic MPC

to the result in Figure 5.3, where the real system is kept within a tube around the
disturbance-free system. The tightening of the input constraints also results in the
nominal input constraints never being violated, as seen in Figure 5.4. However,
note also that the error bound in Figure 5.6 might be conservative as the error
states never reach the boundary.

As in the disturbance-free example in Section 4.5.1, the controller is able to steer
the system inside a safety set upon warning of the fault, and stabilize the system
once the fault occurs.

74

5.5 Numerical illustrative example

0 10 20 30 40 50 60 70 80

0

2

4

6

Time

V
a
lu
e

x1

Bounded error
x1

x̄1

0 10 20 30 40 50 60 70 80

0

2

4

6

Time

V
a
lu
e

x1

Bounded error
x2

x̄2

Figure 5.3: The blue line shows the state evolution of the real system, x̄, while the
black line shows the state evolution of the disturbance-free system, x. Notice that
the real system evolution lies in a tube around the disturbance-free response.

0 10 20 30 40 50 60 70 80

−10

0

10

u1

Time

V
a
lu
e

0 10 20 30 40 50 60 70 80

−10

0

10

u2

Time

V
a
lu
e

Figure 5.4: The input to the system. The horizontal black lines symbolize the nom-
inal input constraints. It is clear that the nominal input constraints are satisfied
due to the tightening of constraints.

75

Chapter 5. Robust Proactive Fault-tolerant Economic MPC

−6 −4 −2 0 2 4 6

−6

−4

−2

0

2

4

6

x1

x
2

t < t
′

t
′ ≤ t < tf

tf ≤ t < tfix

t ≥ tfix

Figure 5.5: The system trajectory. The inner yellow region represents the tightened
safety set.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

e1

e
2

(a) Error trajectory in nominal and safe op-
eration.

−0.3 −0.2 −0.1 0 0.1 0.2 0.3

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

e1

e
2

(b) Error trajectory in fault operation.

Figure 5.6: The trajectory of the error between the real and the disturbance-free
system and the respective invariant sets for the error systems. The response is
separated into two different plots, due to the different values of the error bound
(Ω∞ and Ω2

∞) for the different operations.

76

Chapter 6

Discussion

This thesis describes a proactive fault-tolerant economic MPC approach, including
stability proofs and numerical examples to illustrate the scheme. This chapter
includes a discussion of the results, and the assumptions made for the development
of the FTEMPC scheme.

6.1 On the assumptions for the approach

As noted in Section 4.1, several assumptions are made in order for the scheme to
work. A critical assumption is that the system is assumed to be controllable for all
the operations of the controller. However, the assumptions of controllability would
be needed for any type of controller, and is therefore not discussed further since it
does not contribute to the discussion of the scheme.

State feedback is assumed throughout the thesis, which is often not available for
real systems. In the case of output feedback where some states would need to be
estimated, and uncertainty in the measurements are present, the scheme would
need to be adapted. Due to the fact that linear economic objective functions are
used, the optimal steady-state will often lie on the boundary of the safety set in
safe and fault operations. Thus, uncertainty in the exact value of the states could
potentially lead to a response where the system is perturbed outside the safety set
in fault operation, and an infeasible MPC problem would occur. This is clearly
not a desired situation, since this would lead to instability for many systems. Ad-
ditional tightening of the safety set might therefore be needed to ensure that the
system does not exit the set due to model uncertainty. This is a matter of making
the scheme robust to noise on the measurements and uncertainty in the model,
which is an important extension.

Furthermore, it is assumed that information about incipient faults are available.
Clearly, one can not always make sure that this holds. However, for slowly de-
grading performance in actuators, as well as for scheduled maintenance where the

77

Chapter 6. Discussion

actuator is taken out of action at a known time instant, one can often make sure
that this information is available. Additionally, as noted, several history-based
approaches are available for this type of estimation. In the case where sudden
complete dropouts of actuators without warning is possible, the system should al-
ways be operating in the safety set to ensure stability when the fault occurs. Note
that in this case, a reactive reconfiguration of the controller would still be neces-
sary, since the proactive scheme only prepares the system for a fault, and is not
sufficient by itself for fault-tolerant control.

Another critical assumption is the instant detection and accurate estimation of an
actual fault, which makes it possible for instant reconfiguration of the MPC prob-
lem in order to handle the fault. Realistically, fault detection schemes will use a
certain amount of timesteps before the fault is detected. Thus, there is a critical
time window after the fault occurs until it is detected. Since there will be a severe
model mismatch between the MPC and the real system in this time period, there
is a chance that the system will be steered outside the safety set and become un-
stable. This is due to the fact that, even though the system operates in a control
invariant set, the MPC does not compute the control law to keep the system inside
this set. This further motivates the fact that reactive reconfiguration is necessary
in addition to the proactive part of the FTEMPC. The scheme therefore needs to
be adapted to handle this issue. However, the time it takes for an FDI unit to
detect a fault is often correlated with its severity, and since the scheme mostly
deals with complete dropouts, the assumption of quick detection is often valid.

The scheme is designed for linear systems. In the case of nonlinear systems, several
extensions and adaptations are needed. The computation method of the penalty
parameter described in Chapter 3, will no longer yield a correct lower bound, since
it relies on a convex MPC problem for which the KKT-conditions guarantees a
unique global optimal solution. A nonlinear system will yield a non-convex MPC
problem, and the approach can no longer be used to find the global maximum Lan-
grangian multiplier. Additionally, the computation of control invariant sets were
mentioned in Chapter 2 to be easily implemented for linear system. For nonlinear
systems, however, this is not the case. The scheme therefore relies on the develop-
ment of computational methods for control invariant sets for nonlinear systems.

A possible alternative to the computation of control invariant safety sets, is to
directly penalize the input corresponding to the actuator with an incipient fault,
using an exact penalty function. In order to yield a feasible solution while still
minimizing the use of the penalized input, the MPC should compute a trajectory
which implicitly enters the safety set. This can be thought of as a ”soft” shut-down
of the actuator, thereby circumventing the feasibility issues of abruptly rendering it
unusable, and should yield a similar trajectory as when steering the system in to a
pre-computed safety set. This might be a better approach in the case of nonlinear
systems, and is mentioned as potential future work in Chapter 7.

78

6.2 Implementing the scheme and numerical results

6.2 Implementing the scheme and numerical re-
sults

This section discusses the implementation of the scheme and considerations relating
maximizing profit and safe operation of the system.

6.2.1 Without disturbances

The thesis contains two recurring illustrative examples, illustrating single and mul-
tiple actuator dropouts, as well as two additional examples to illustrate how the
scheme scales for larger systems, and how the scheme is extended to handle distur-
bances. The examples illustrate that the system is steered into a safety set using
the designed exact penalty function, and that the controller is able to stabilize
the system once the fault occurs. The approach outlined in Diehl et al. (2011)
for ensuring economic MPC stability was implemented together with the scheme.
Note that the inclusion of a terminal constraint is a conservative criteria, making
the feasible set in all operations smaller. However, EMPC has received increasing
attention in the last years, and as the development of EMPC continues, this criteria
might be possible to relax. An approach for relaxing this criteria is described in
Angeli et al. (2012).

Furthermore, the example in Section 4.5.1 compares the trajectory of the exact
penalty approach for steering the system into the safety set to a minimum time ap-
proach. The two approaches use the same amount of timesteps to reach the safety
set, however with different trajectories. This confirms Proposition 4.1, that the
choice of an exact `1-penalty function results in the minimum amount of timesteps
to reach the safety set during safe operation of the controller. This is clearly ad-
vantageous in situations where the exact time instant of the fault is not available,
and only an estimate of the time of occurrence is known. On the other hand, if the
exact time instant for the fault occurrence for the fault was known in advance, one
could possibly compute the number of timesteps needed to reach the safety set,
and have the system just reach the set in time before the fault occurs. This would
let the system operate at the nominal economic optimal state for a longer time
period, and hence yield larger economic profits. However, there is a clear trade-off
between making sure the safety set is reached before the fault occurs, and delaying
the steering process. The idea of delaying the safety process of steering the system
to the safety set is generally non robust in terms of small model mismatches or un-
certainty in the estimate of the fault occurrence, as this could hamper the system
in reaching the safety set in time. Thus, for realistic implementations, the safest
approach would be to reach the safety set as quickly as possible.

Additionally, it is important to consider how far away from the safety set the system
is allowed to operate in nominal operation. The further away from the safety set
the system operates, the longer it will take for it to be reached. Thus, if the time
window between the warning of the fault and the occurrence of the fault is small,

79

Chapter 6. Discussion

the system might not reach the safety set before the fault occurs if it operates in
a nominal state that is far away from the safety set. Again, there will always be
a trade-off between safety and profitability, and this is something that should be
taken in to account if the scheme were to be implemented on a real system. The
larger the aforementioned time window is, the further away from the set the system
can operate while still making sure it will be reached before the fault occurrence.

The example in Section 4.5.2 illustrates the approach for multiple faults, and the
simulations confirm the theory from Section 4.3. By designing safety sets and
penalty functions for each possible scenario, the scheme is effectively extended to
handle multiple faults. This was expected, as the extension is simply a repetition
of the implementation process for each possible fault scenario. However, it was
noted that the safety sets needed to be reduced by a small amount to avoid the
input constraints being active. This is due to the fact that active inputs are at
their maximum values, and when warning of a new incipient fault is received, there
might not be enough remaining actuation to steer the system into the new safety
set. It is therefore critical to tighten the safety set in cases where multiple faults
are possible.

In Section 4.5.3, the scheme was implemented on a larger, 3 × 3 system. The
representation of the safety set was observed to quickly get more complex as the
number of states in the system increased, making the number of constraints needed
to represent the set larger. This severely increases the offline computation time of
the Lagrangian multipliers to compute the penalty parameter µ, as the increase
in constraints are multiplied by the length of the horizon. This motivates the de-
velopment of approximation methods for invariant sets that represent the sets by
fewer constraints, as noted in Section 2.4. The scheme was effectively applied to
the larger system once the offline computations were made. Thus, the main chal-
lenge of implementing the scheme for larger systems is the efficiency of the offline
computations for µ to be exact. With the current rapid increase in computational
power and the developments of algorithms for these computations, their accuracy
might be a reasonable assumption.

Section 4.2.3 also notes that the feasible region might not change when an actu-
ator drops out. The system will then already be operating in the safety set, and
no additional action is needed. However, it is important to note that the feasible
set might change, and failure to prepare the system for a fault may result in an
unstable system response.

6.2.2 With disturbances

In Chapter 5, the scheme is extended to handle unknown but bounded additive
disturbances on the states. The widely used tube MPC approach is implemented
to make the scheme robust to these disturbances. The constraints are tightened
according to a computed error bound and an additional term in the feedback law is
included that aims to minimize the error between the real and the disturbance-free

80

6.2 Implementing the scheme and numerical results

system. The example in Section 5.5 illustrates that the extended scheme effectively
attenuates the unknown disturbances by forcing the system to lie in a tube around
the disturbance-free system. It is also observed that the error never exceeds the
computed error bound, which confirms the theory on error invariant sets presented
in Chapter 5. Thus, all properties such as the minimum time result using the ex-
act `1-penalty function still holds when implementing the scheme on disturbance
affected systems. This clearly motivates the choice of using tube MPC in contrast
to other disturbance attenuation schemes together with the proactive FTEMPC
scheme.

However, the estimation of the error bound might be conservative due to the fact
the bound is never reached, as can be seen in Figure 5.6. Furthermore, the more
conservative the bound, the more the constraints are tightened, making the feasible
regions for both nominal, safe, and fault operation smaller. It is outside the scope
of this thesis to further investigate tube MPC as an isolated scheme, but it is noted
that the accuracy of the error bound estimation is critical for ensuring robustness,
while not tightening the constraints more than necessary. Additionally, it is eco-
nomically desirable that the scheme can be improved by following the method in
Bayer et al. (2014) for computing more economically optimal steady-state points
for systems affected by disturbances.

The scheme relies on theory from several research areas, i.e. designing exact penalty
functions, invariant sets, and theory from economic MPC. Different challenges in
all areas exist. However, several references were given for new and prospering the-
ory for handling these challenges, and assuming these areas continue to grow at
the current rate, the scheme shows promising results. Not many proactive schemes
exist in the literature, expect for the Lyapunov MPC in Lao et al. (2013) and the
hybrid scheme of Bø and Johansen (2014). Thus, the proposed proactive FTEMPC
approach differs from most schemes in the literature in that it takes proactive action
to prepare the system for a fault rather than only relying on reactive fault-tolerance.

81

Chapter 6. Discussion

82

Chapter 7

Conclusion

This thesis describes a proactive fault-tolerant economic model predictive control
approach for handling incipient actuator faults, while still maintaining economic
operation of the system. The theory required for developing the proposed scheme,
and the key ingredients in the approach are presented in their respective chapters.
Two recurring examples are used throughout the thesis that illustrate the theory
as it is presented, before these examples are implemented with the final scheme.
Additional examples were included in order to show how the approach scales for
larger systems, as well as to illustrate the extension to incorporating disturbance
attenuation in the approach. The numerical examples show that the approach is
an effective way of dealing with incipient actuator dropouts, and that by using
soft constraints and exact penalty functions, the system is effectively steered into
a pre-computed safety set where the controller is able to stabilize the system once
the fault occurs. Stability was proven under certain assumptions, both for systems
with and without disturbances.

Furthermore, it was noted that the main challenge of implementing the proposed
scheme on larger systems was the offline computations for computing a lower bound
on the penalty parameter. This was due to the fact that the number of constraints
in the problem increases with the number of states and inputs, which severely in-
creases the problem size. Additionally, invariant sets for representing the safety set
quickly become complex for larger systems, which also contributes to a significant
increase in the number of constraints. Methods for approximating these sets should
therefore be implemented for larger systems, in order to reduce computational load,
as well as for increasing numerical accuracy.

As discussed in Chapter 6 the scheme relies on theory from several different re-
search areas, i.e. theory for designing exact penalty functions, invariant sets and
from economic MPC. Assuming that these research fields continue to expand, the
scheme shows promising results.

83

Chapter 7. Conclusion

84

Chapter 8

Future work

The assumptions made for the development of the proposed proactive fault-tolerant
economic MPC scheme might not be realistic for all systems. Several extensions
and adaptations are needed when these assumptions are no longer valid. The
assumptions were discussed in Section 6.1, and future work therefore includes ex-
tending the scheme to relax these assumptions. Additionally, the computations for
designing the penalty parameter became demanding for larger systems. This was
especially true when the representation of the control invariant safety set became
complex. Future work therefore includes implementing methods for simpler ap-
proximations of these sets.

Furthermore, extending the approach to work for nonlinear systems requires signifi-
cant additional work. As mentioned in Chapter 6, this will require a new method for
computing maximum Lagrangian multipliers, as the approach described in Chapter
3 is restricted to linear systems. Additionally, methods for computing control in-
variant sets for nonlinear systems, or an approach that directly penalizes the input
corresponding to the actuator with an incipient fault should be developed.

It was also noted that it is economically desirable to compute new steady-state val-
ues when the scheme is used on systems with disturbances. Thus, future work also
includes implementing the approach outlined in Bayer et al. (2014) for computing
new optimal steady-states.

85

Chapter 8. Future work

86

Bibliography

Amrit, R., Rawlings, J. B., and Angeli, D. (2011). Economic optimization us-
ing model predictive control with a terminal cost. Annual Reviews in Control,
35(2):178–186.

Anderson, D. and Osborne, M. (1976). Discrete, linear approximation problems in
polyhedral norms. Numerische Mathematik, 26(2):179–189.

Angeli, D., Amrit, R., and Rawlings, J. B. (2012). On average performance and
stability of economic model predictive control. IEEE Transactions on Automatic
Control, 57(7):1615–1626.

Athanasopoulos, N. and Bitsoris, G. (2010). Invariant set computation for con-
strained uncertain discrete-time linear systems. In Decision and Control (CDC),
2010 49th IEEE Conference on, pages 5227–5232. IEEE.

Bayer, F. A., Müller, M. A., and Allgöwer, F. (2014). Tube-based robust economic
model predictive control. Journal of Process Control, 24(8):1237–1246.

Bemporad, A., Borrelli, F., and Morari, M. (2003). Min-max control of constrained
uncertain discrete-time linear systems. Automatic Control, IEEE, 48(9):1600–
1606.

Blanchini, F. (1994). Ultimate boundedness control for uncertain discrete-time
systems via set-induced lyapunov functions. IEEE Transactions on Automatic
Control, 39(2):428–433.

Blanchini, F. (1995). Nonquadratic Lyapunov functions for robust control. Auto-
matica, 31(3):451–461.

Blanchini, F. (1999). Set invariance in control. Automatica, 35(11):1747–1767.

Boyd, S. and Vandenberghe, L. (2004). Convex Optimization. Cambridge Univer-
sity Press, New York.

Bø, T. I. and Johansen, T. A. (2014). Dynamic Safety Constraints by Scenario
Based Economic Model Predictive Control. In IFAC World congress, number
2009.

87

BIBLIOGRAPHY

Chisci, L., Rossiter, J. A., and Zappa, G. (2001). Systems with persistent distur-
bances: predictive control with restricted constraints. Automatica, 37(7):1019–
1028.

Colson, B., Marcotte, P., and Savard, G. (2005). Bilevel programming: A survey.
4OR, 3(2):87–107.

Demetriou, M. A. and Polycarpou, M. P. (1998). Incipient fault diagnosis of dy-
namical systems using online approximators. IEEE Transactions on Automatic
Control, 43(11):1612–1617.

Diehl, M., Amrit, R., and Rawlings, J. B. (2011). A Lyapunov function for economic
optimizing model predictive control. IEEE Transactions on Automatic Control,
56(3):703–707.

Ellis, M. and Christofides, P. D. (2014). Economic Model Predictive Control with
Time-Varying Objective Function for Nonlinear Process Systems. AIChE Jour-
nal, 60(2):507–519.

Fletcher, R. (1987). Practical Methods of Optimization. John Wiley & Sons, second
edition.

Fortuny-Amat, J. and McCarl, B. (1981). A representation and economic interpre-
tation of a two-level programming problem. Journal of the operational Research
Society, pages 783–792.

Fukuda, K. (2004). Frequently asked questions in polyhedral computation.
Technical report [Online]. http://www.ifor.math.ethz.ch/~fukuda/polyfaq/
polyfaq.html.

Hovd, M. (2011). Multi-level programming for designing penalty functions for mpc
controllers. In Proceedings of the 18th IFAC World Congress, volume 18, pages
6098–6103.

Hovd, M. and Braatz, R. D. (2001). Handling state and output constraints in mpc
using time-dependent weights. In American Control Conference, 2001. Proceed-
ings of the 2001, volume 3, pages 2418–2423. IEEE.

Hovd, M. and Stoican, F. (2014). On the design of exact penalty functions for
MPC using mixed integer programming. Computers & Chemical Engineering,
70(5):104–113.

Hovgaard, T. G., Larsen, L. F., and Jørgensen, J. B. (2011). Robust economic mpc
for a power management scenario with uncertainties. In Decision and Control
and European Control Conference (CDC-ECC), 2011 50th IEEE Conference on,
pages 1515–1520. IEEE.

Huang, R., Biegler, L. T., and Harinath, E. (2012). Robust stability of economically
oriented infinite horizon nmpc that include cyclic processes. Journal of Process
Control, 22(1):51–59.

88

http://www.ifor.math.ethz.ch/~fukuda/polyfaq/polyfaq.html
http://www.ifor.math.ethz.ch/~fukuda/polyfaq/polyfaq.html

BIBLIOGRAPHY

Isermann, R. and Ballé, P. (1997). Trends in the application of model-based fault
detection and diagnosis of technical processes. Control Engineering Practice,
5:709–719.

Janesch, S. and Santos, L. (1997). Exact penalty methods with constrained sub-
problems. Investigacióon Operativa, 7:55–65.

Kalman, R. E. et al. (1960). Contributions to the theory of optimal control. Bol.
Soc. Mat. Mexicana, 5(2):102–119.

Keerthi, S. and Gilbert, E. (1987). Computation of minimum-time feedback control
laws for discrete-time systems with state-control constraints. Automatic Control,
IEEE Transactions on, 32(5):432–435.

Kerrigan, E. and Maciejowski, J. (2000a). Invariant sets for constrained nonlinear
discrete-time systems with application to feasibility in model predictive control.
Proceedings of the 39th IEEE Conference on Decision and Control, 5:4951–4956.

Kerrigan, E. and Maciejowski, J. (2000b). Soft constraints and exact penalty
functions in Model Predictive Control. In Proc. of the UKACC International
Conference on Control, Cambridge, UK.

Lao, L., Ellis, M., and Christofides, P. (2013). Proactive fault-tolerant model
predictive control. AIChE J., 59(8), 2810–2820.

Lee, J. H. and Yu, Z. (1997). Worst-case formulations of model predictive control
for systems with bounded parameters. Automatica, 33:763–781.

Löfberg, J. (2004). Yalmip : A toolbox for modeling and optimization in MATLAB.
In Proceedings of the CACSD Conference, Taipei, Taiwan.

Maciejowski, J. M. (1999). Modelling and predictive control: Enabling technologies
for reconfiguration. Annual Reviews in Control, 23:13–23.

Maciejowski, J. M. (2002). Predictive Control: With Constraints. Prentice Hall.

Magni, L. and Scattolini, R. (2007). Robustness and robust design of mpc for
nonlinear discrete-time systems. In Findeisen, R., Allgöwer, F., and Biegler,
L., editors, Assessment and Future Directions of Nonlinear Model Predictive
Control, volume 358 of Lecture Notes in Control and Information Sciences, pages
239–254. Springer Berlin Heidelberg.

Marruedo, D. L., Alamo, T., and Camacho, E. (2002). Input-to-state stable mpc for
constrained discrete-time nonlinear systems with bounded additive uncertainties.
In Decision and Control, 2002, Proceedings of the 41st IEEE Conference on,
volume 4, pages 4619–4624. IEEE.

Mayne, D., Rawlings, J., Rao, C., and Scokaert, P. (2000). Constrained model
predictive control: Stability and optimality. Automatica, 36(6):789–814.

89

BIBLIOGRAPHY

Mayne, D. Q. (2014). Model predictive control: Recent developments and future
promise. Automatica, 50(12):2967–2986.

Mayne, D. Q., Seron, M. M., and Raković, S. (2005). Robust model predictive
control of constrained linear systems with bounded disturbances. Automatica,
41(2):219–224.

Mellichamp, D. A., Edgar, T. F., Doyle, F. J., and Seborg, D. E. (2010). Process
Dynamics and Control. John Wiley & Sons.

Miksch, T., Gambier, A., and Badreddin, E. (2008). Real-time implementation
of fault-tolerant control using model predictive control. World Congress, pages
11136–11141.

Muller, M., Allgower, F., et al. (2012). Robustness of steady-state optimality in
economic model predictive control. In Decision and Control (CDC), 2012 IEEE
51st Annual Conference, pages 1011–1016. IEEE.

Nocedal, J. and Wright, S. (2006). Numerical Optimization. Springer Science &
Business Media.

Pietrzykowski, T. (1969). An exact potential method for constrained maxima.
SIAM Journal of Numerical Analysis, 19(2):786–789.

Raimondo, D. M., Limon, D., Lazar, M., Magni, L., and ndez Camacho, E. F.
(2009). Min-max Model Predictive Control of Nonlinear Systems: A Unifying
Overview on Stability. European Journal of Control, 15(1):5–21.

Rakovic, S., Kerrigan, E., Kouramas, K., and Mayne, D. (2003). Approximation
of the minimal robustly positively invariant set for discrete-time lti systems with
persistent state disturbances. In Decision and Control, 2003. Proceedings. 42nd
IEEE Conference on, volume 4, pages 1515–1520. IEEE.

Rao, C. V., Wright, S. J., and Rawlings, J. B. (1998). Application of Interior-
Point Methods to Model Predictive Control. Journal of Optimization Theory
and Applications, 99(3):723–757.

Richards, A. and How, J. (2006). Robust stable model predictive control with
constraint tightening. In American Control Conference, 2006, number 4, pages
6–pp. IEEE.

Riverso, S., Battocchio, A., and Ferrari-Trecate, G. (2013). Pnpmpc toolbox.

Salfner, F. and Malek, M. (2007). Using hidden semi-Markov models for effective
online failure prediction. In Proc. of the IEEE Symp. on Reliable Distributed
Systems, pages 161–174.

Scibilia, F., Olaru, S., and Hovd, M. (2011). On feasible sets for MPC and their
approximations. Automatica, 47(1):133–139.

90

BIBLIOGRAPHY

Scokaert, P. O. M. and Rawlings, J. B. (1999). Feasibility issues in linear model
predictive control. AIChE Journal, 45(8):1649–1659.

Siirola, J. J. and Edgar, T. F. (2012). Process energy systems: Control, economic,
and sustainability objectives. Computers and Chemical Engineering, 47:134–144.

Yu, S., Bohm, C., Chen, H., and Allgower, F. (2010). Robust model predictive
control with disturbance invariant sets. In American Control Conference (ACC),
2010, pages 6262–6267. IEEE.

Zhang, Y. and Jiang, J. (2008). Bibliographical review on reconfigurable fault-
tolerant control systems. Annual Reviews in Control, 32(2):229–252.

91

BIBLIOGRAPHY

92

Appendix A

MPC formulation

This chapter describes the compact MPC formulations used in this thesis.

A.1 Compact quadratic cost formulation

Consider the following MPC problem with quadratic cost:

min
x,u

N−1∑

k=0

xTkQxk + uTkRuk (A.1a)

s.t. xk+1 = Axk +Buk, ∀k ∈ {0, . . . , N − 1} (A.1b)

x0 = xinit, (A.1c)

xk ∈ X, ∀k ∈ {1, . . . , N − 1} (A.1d)

uk ∈ U, ∀k ∈ {0, . . . , N − 1} (A.1e)

xN ∈ Xterminal, (A.1f)

where Q ∈ Rn×n, R ∈ Rm×m are the weights. The sets X and U are compact sets
defining the constraints on the states and inputs. By recasting

xk+1 = Axk +Buk,∀k ∈ {0, . . . , N − 1} (A.2)

to

x = Ãx0 + B̃u, (A.3)

where

Ã =

A
A2

A3

...
AN

,

93

Chapter A. MPC formulation

B̃ =

B
AB B
A2B AB B

...
...

...
. . .

AN−1B AN−2B AN−3B . . . B

,

x =

x1

x2

x3

...
xN

,

and

u =

u0

u1

u2

...
uN−1

,

and using

Q̂ = diag(Q,Q, . . . , Q),

R̂ = diag(R,R, . . . , R),

the MPC problem can be reformulated to a dense QP problem of the form

min
u

J = 0.5uTHu + xT0 Fu

s.t. x0 = xinit,

Gu ≤W + Ex0,

(A.4)

where

H = B̂T Q̂B̂ + R̂, (A.5)

F = ÂT Q̂B̂ (A.6)

And G,W,E are designed to include the constraints (A.1c)-(A.1f).

A.2 Compact linear cost formulation

Consider the MPC problem (A.1), but with a linear cost function

N−1∑

k=0

l (xk, uk) =

N−1∑

k=0

(−qxk + ‖Ruk‖1) , (A.7)

94

A.2 Compact linear cost formulation

Where q ∈ Rn and R ∈ Rm×m. This can be recast by using the matrices Ã and B̃
from the previous section. The cost function is rewritten as

N−1∑

k=0

(−qxk + ruk) = −Q̃x + R̃u = −Q̃(Ãx0 + B̃u) + R̃u (A.8)

=
(
R̃− Q̃B̃

)
u− Q̃Ãx0 (A.9)

Where r ∈ Rm contains the diagonal elements of R,

Q̂ = diag(q, q, . . . , q),

R̂ = diag(r, r, . . . , r),

and x, u is as defined in the previous section. Equation (A.8) can then be written
as

N−1∑

k=0

(−qxk + ruk) = Hu− Fx0, (A.10)

where

H = R̃− Q̃B̃ (A.11)

F = Q̃Ã. (A.12)

Rewriting the `1 norm

In order to express the `1 norm in the cost function (A.7) in compact form, it needs
to be rewritten using additional variables and constraints. Defining

u = u+ − u− (A.13)

yields the following cost function with constraints

N−1∑

k=0

l (xk, uk) =

N−1∑

k=0

(
−qxk + r(u+

k + u−k)
)
, (A.14)

u+ ≥ 0 (A.15)

u− ≥ 0 (A.16)

This yields the following compact form of the optimization problem (A.1) with the
linear cost function (A.7).

min
u

H
(
u+ + u−

)
− Fx0

s.t. x0 = xinit,

Gu ≤W + Ex0,

u = u+ − u−,

u+ ≥ 0,

u− ≥ 0.

(A.17)

95

Chapter A. MPC formulation

96

Appendix B

KKT-conditions

Given the optimization problem

min
x

V (x)

s.t. Gi(x) = 0 ∀i ∈ E
Gi(x) ≤ 0 ∀i ∈ I.

(B.1)

The solution x∗ has to satisfy the Karush-Kuhn-Tucker (KKT) conditions.

Theorem B.1 (KKT-conditions, (Nocedal and Wright, 2006)). Suppose that x∗

is a local solution of (B.1), that the function V and Gi in (B.1) are continuously
differentiable and that the LICQ holds at x∗. Then there is a Lagrange multiplier
vector λ∗, with components λ∗i , i ∈ E ∪ I such that the following conditions are
satisfied at (x∗, λ∗).

∇xL (x∗, λ∗) = 0 (B.2a)

Ge(x
∗) = 0 ∀i ∈ E , (B.2b)

Gi(x
∗) ≤ 0 ∀i ∈ I, (B.2c)

λ∗i ≥ 0 ∀i ∈ I, (B.2d)

λ∗iGi(x
∗) = 0 ∀i ∈ E ∪ I. (B.2e)

The KKT-conditions are first-order necessary conditions for a constrained opti-
mization problem. However, if the problem is convex and regular which is the case
in this thesis, they are also sufficient for a global optimum (Nocedal and Wright,
2006).

97

Chapter B. KKT-conditions

98

Appendix C

Set operations

Given two sets Ω and Φ, the Pontryagin difference is defined as

Ω ∼ Φ , {ω ∈ Rn | ω + φ ∈ Ω, ∀φ ∈ Φ} . (C.1)

Similarly, the Minkowski sum is defined as

Ω⊕ Φ , {ω + φ | ω ∈ Ω, φ ∈ Φ} . (C.2)

The multiplication of a set Ω by a matrix A denotes a mapping of all its elements

AΩ , {c | ∃ω ∈ Ω, c = Aω} . (C.3)

99

Chapter C. Set operations

100

Appendix D

Discrete minimal-time
control

The minimal time required to steer a linear system from an initial given feasible
state x0, inside a compact set S = {x|Hx ≤ h}, with the initial state x0 /∈ S, can
be computed by the following MILP:

min

N∑

k=1

−wkyk (D.1a)

s.t. xk+1 = Axk +Buk, ∀k ∈ {0, . . . , N − 1} (D.1b)

x0 = given, (D.1c)

xk ∈ X, ∀k ∈ {0, . . . , N − 1} (D.1d)

uk ∈ U, ∀k ∈ {0, . . . , N − 1} (D.1e)

Hxk ≤ h+M(1− yk), ∀k ∈ {0, . . . , N} (D.1f)

N∑

k=0

yk ≥ 1, (D.1g)

yk = {0, 1}. ∀k ∈ {0, . . . , N} (D.1h)

In (D.1), wk is a sequence of positive, strictly increasing weights, e.g. wk := k, and
M is a big-M parameter. If (D.1) has an integer feasible solution, the minimum
time tmin to get the state xk inside the set S is given by the integer kmin for which
the binary yk first takes the value 1, i.e. tmin = {kmin|yk = 1, ∀k ≥ kmin}. Observe
that the negativity in (D.1a) ensures that the system stays in S for all positive times
when first inside.

101

Chapter D. Discrete minimal-time control

102

Appendix E

Conference paper

The following paper was submitted to the IEEE Conference on Decision and Con-
trol 2015.

103

An exact penalty-function approach to proactive fault-tolerant economic
MPC

Brage Rugstad Knudsen and Jon H. Brusevold

Abstract— Integration of fault tolerant control and receding
horizon optimization is a powerful approach to include fault
handling and dynamic economic optimization of a system.
Proactive fault-tolerant model predictive control (FTMPC)
seeks to utilize an estimated, conservative time window between
the warning of an incipient fault in the system and the
time at which the faulty component is rendered useless, to
steer the state inside a recoverable region before the fault
occurs. As such, a proactive FTMPC circumvents the issues
of possible infeasibilities and destabilization often encountered
in reactive approaches, while allowing the system to continue
economic operation during the subsequent system repair. In this
paper, we propose a proactive FTMPC scheme for incipient
actuator faults by using an exact penalty function to steer
the system inside an invariant set ensuring stability during
the loss of actuation in the system. We consider the approach
for linear systems operated with an economic MPC controller,
thereby allowing the computation a lower bound for the penalty
parameter to ensure exactness of the penalty function. We show
nominal asymptotic stability of the proposed FTMPC scheme,
and illustrate the approach by a numerical example.

I. INTRODUCTION

Fault tolerance in dynamic system optimization is im-
portant both for the safety and economic optimality of the
operations. A structured and robust fault-tolerant detection
and control scheme enhances reliability and continuity of
system operations, both for safety-critical processes and for
chemical production and manufacturing [1]. Model predic-
tive control (MPC) is an extensively used optimization-
based control scheme, due to its ability to efficiently handle
complex systems with hard control constraints and many
inputs and outputs [2]. These features of MPC also al-
low for direct adaptation of the controller to faults in the
system, by being an optimal-control scheme solved online
[3]. Recently, however, there has been increased attention to
economic model predictive control (EMPC), which contrary
to separated real-time optimization (RTO) and MPC, merges
dynamic economic operations with the feedback properties of
conventional MPC [2], [4], [5], [6]. Combing fault-tolerance
in an EMPC scheme hence is an attractive approach to design
fault-tolerant, receding-horizon based economic operations
of a system.

Active fault-tolerant control methods can broadly be clas-
sified as reactive or proactive methods [7]. Reactive ap-
proaches try to minimize the impact of a fault after it
occurs, relying on a fault detection and isolation unit (FDI)

Both authors are with Department of Engineering Cybernetics, Norwe-
gian University of Science and Technology. Corresponding author: Brage
R. Knudsen (brage.knudsen@itk.ntnu.no) Support from NFR
grant 228460/030 and from Cybernetica AS is gratefully acknowledged.

and reconfiguration of the control system. Proactive fault-
tolerant control methods employ an FDI unit to detect
slowly developing, degradation of performance in process
components, actuators or sensors that indicates an incipient
fault [8], together with a probabilistic prediction method
for the time of the incipient fault, e.g., [9], and, contrary
to reactive methods, a proactive control action to prevent
negative impact of the predicted fault situation. Proactive
fault-tolerant methods is emerging as a complement to reac-
tive schemes for designing robust and effective fault control,
though it is important to emphasize that proactive approaches
is intended only to supplement reactive schemes capable
of handling abrupt faults. A proactive method can, on the
other hand, be efficiently applied for maintaining process
operation, minimize down time or prevent shut-downs in
terms of certain types of faults, and also to perform scheduled
maintenance.

In this paper, we focus on fault-tolerant MPC for handling
incipient actuator faults. An actuator fault may cause loss
of controllability at the current operating point and thereby
destabilize the system. An alternative would be to operate
the system within a set that guarantees feasibility for kinds
of actuator faults. This latter approach, however, would
generally be conservative and detrimental for the nominal
economic operation of a system. A proactive FTMPC scheme
for actuator faults [7], is obtained by allowing the system to
operate outside the guaranteed stability region with one of
the actuators inactive, but force the system inside this region
upon indication of an incipient fault. The proactive FTMPC
in [7] uses Lypanunov-based MPC with predesigned con-
trollers to drive the system inside this safety system, while
[10] develops a hybrid scheme with scenario based safety
constraints and reconfigurable control. Further approaches
that address actuator faults within an MPC scheme include
among others [11], which is based on set-invariance concept
to manage actuator fault occurrences, and the approach in
[12] based on a bank of state estimators to match different
fault situations. See also [1] and reference therein.

The proactive FTMPC scheme proposed in this paper
builds upon [7], but applies EMPC with an exact penalty
function to steer the state inside a safety set upon warn-
ing of an incipient actuator fault. A rule for switching
between MPC problems for nominal, safe-mode transition
and faulty operations is designed, based on the assumption
of a separate available FDI unit to indicate and distinguish
incipient and actuals fault. The proposed scheme allows
for offline computation of a lower bound for the penalty
parameter, thereby preventing unnecessary aggressive and

violent control action to steer the system inside the safety
region, and allowing the system to retain economic operation
during the time of loss in actuation. The paper is organized
as follows: In Section II we present the problem and the set-
up of the proposed proactive FTMPC scheme. Section II-A
describes the computation of penalty parameters, and Section
III analysis the stability properties of the controller. Section
IV presents a numerical example to illustrate the proposed
scheme, while Section V ends the paper with concluding
remarks.

II. PROBLEM DESCRIPTION

We consider proactive fault-tolerant MPC for linear
discrete-time systems,

xk+1 = Axk +Buk, (1)

where xk ∈Rn is the system state, uk ∈Rm with m > 1 is the
input, and where A ∈ Rn×n and B ∈ Rn×m. During nominal
operations, the economics of the system are optimized by
solving at each sample time t the economic optimization
problem Pnom(x):

V nom
N (x) = min

N−1

∑
k=0

l(xk,uk) (2a)

s.t. xk+1 = Axk +Buk, k = 0, . . . ,N−1 (2b)
x0 = x, (2c)

(xk,uk) ∈ Ynom, k = 0, . . . ,N−1 (2d)
xN = xnom

s , (2e)

where x is the current state of the system, and where the set

Ynom = {(x,u) ∈ Rn×m|Dx+Hu≤ d} (3)

defines point-wise in time polytopic constraints on the states
and inputs, including lower and upper bounds on the states
and inputs (i.e. Ynom is a compact set). Furthermore, l(x,u)
is an economic stage cost function, which we assume to be
convex. The terminal equality constraint (2e) is defined by
the solution (xnom

s ,unom
s) of the corresponding steady-state

problem

min{l(x,u) | x = Ax+Bu, (x,u) ∈ Ynom}. (4)

We assume that (xnom
s ,unom

s) uniquely solves (4) with objec-
tive value l(xnom

s ,unom
s). Operation of the system in faulty

and nominal mode imposes different state and/or input
constraints, as well as modified control matrix B j if actuator
j is rendered useless. These varying constraints gives dif-
ferent optimal steady-state points. Let u = (u0,u1, . . . ,uN−1)
denote a feasible input sequence for (2). The set Xnom

N of
admissible states for Pnom(x) is then obtained by project-
ing the set of admissible inputs and initial states Znom

N =
{(x0,u) | ∃ x1, . . . ,xN satisfying (2b)–(2e)} onto Rn. We al-
low the system (1) to be unstable, but we make the following
stabilizability assumption.
Assumption 1. The nominal system (A,B) and the faulty
system (A,B j) are controllable, and N is chosen sufficiently
large such that all admissible initial states x can be steered

to an admissible economic steady-state point (x′s,u
′
s) within

N steps will satisfying the given state and input constraints.
Assumption 1 ensures that the system can be steered from

any admissible initial state x to an admissible steady-state x′s
in N timesteps. It is important to emphasize that we assume
this condition to hold for any admissible economic steady-
state point, as the latter is changed by the introduction of
safety constraints. Corresponding to the conventional MPC
control law, only the first move unom

e (x) := u∗0 of the optimal
input sequence of u∗ is applied to the system. The finite-
horizon problem (2) is then repeatedly reoptimized in a
receding horizon manner with current state (2c) updated
through measurements of x. Note that the set Xnom

N is
positively (or forward) invariant due to the imposed ter-
minal equality constraint (2e), i.e. x ∈ Xnom

N implies (Ax+
Bunom

e (x)) ∈ Xnom
N [6].

Our objective is to construct a proactive fault-tolerant
economic MPC controller that allows continued (suboptimal)
economic operations of the system in the presence of an
incipient actuator fault. The following proactive scheme is
considered: At time t ′, an FDI unit indicates an incipient
fault in actuator j ∈ {1 . . .m} and a conservative estimate
tf of the time when the fault will occur. For simplicity,
we consider only the fault scenario where the controller
is rendered completely inactive, although the scheme can
easily be extended to fault scenarios where the actuator loses
a fraction of its maximum actuation. In the time window
tf− t ′, the MPC controller must steer the system from its
nominal economic steady-state point xnom

s to a controllable
set S j ⊂ Rn with actuator j inactive as illustrated in Fig. 1.
In [7], this is performed by assuming that (Lyapunov-based)
controllers, u = h0(x) and u = h j(x), can be designed such
that u = h0(x) first drives the state inside the stabilizable
region within tf, while u = h j(x) subsequently stabilizes
asymptotically the origin of the faulty closed-loop system.

Xnom
N

xnoms

xsafes

Sj

xfaults

Fig. 1. Schematic illustration of proposed proactive FTMPC scheme.

To steer the system state xk inside a safe, controllable
set within the estimated time tf of failure of actuator j we
propose to use exact penalty functions [13]. Let

S j = {x | G jx≤ f j} (5)

define a controllable safety set S j with actuator j rendered
inactive, with G j ∈ Rq×n. This set can either be defined by
operators of the plant or the system, in terms of known, con-
servative safety constraints on the state or a set of controlled

variables, or it may defined by the N-step stabilizable set for
xfault

s subject to the constraints by an actuator fault, which
is control invariant and a subset of the maximum control
invariant set with the same constraints, see [14], [15]. We
will focus on latter definition of S j, and assume this can
be computed by for instance the method in [16]. The set
S j will normally be a strict subset of Xnom

N and thereby
render (2) infeasible when operating at steady state xnom

s
if imposed directly as constraints in Pnom(x) at time t ′ for
all k. Hence, we must impose the constraints (5) through
a penalty function, or equivalently, through soft constraints
with a penalty norm.

At time t ′ when the MPC controller receives information
about an incipient fault in actuator j, we switch to a transition
problem Psafe(x) to drive the system to a safe mode:

V safe
N (x) = min

N−1

∑
k=0

l(xk,uk)+µ ||ε||1 (6a)

s.t. xk+1 = Axk +Buk, k = 0, . . . ,N−1 (6b)
x0 = x, (6c)

(xk,uk) ∈ Ynom, k = 0, . . . ,N−1 (6d)
G jxk ≤ f j + εk, k = 0, . . . ,N−1 (6e)

εk ≥ 0, k = 0, . . . ,N−1 (6f)

xN = xsafe
s (6g)

where εk are time-varying, nonnegative q-dimensional slack
variables, penalized by the `1 penalty function with penalty
parameter µ > 0. We confine the penalty function to the `1
norm, while the scheme may be extended to any `p norm
subject to certain modifications. The new steady-state point
xsafe

s must satisfy xsafe
s ∈ S j, and is obtained by solving the

constrained steady-state problem

min{l(x,u) | x = Ax+Bu, (x,u) ∈ Ynom∩S j}. (7)

We denote the optimal objective value of (7) l(xsafe
s ,usafe

s).
Solving Psafe(x) in a receding horizon defines the im-
plicit feedback control law usafe

e (x) := usafe
0 as described for

Pnom(x) above.
The soft-constraint formulation (6) is equivalent

with optimizing the nonsmooth penalty function
min∑N−1

k=0 l(xk,uk) + µ ∑ ||max(0,cI (x))||1 subject to
the remaining constraints in (6), where cI is a vector-
function representation of the constraints (5) written in
non-positive inequality form. A penalty function F(x,µ) is
termed exact if, for a parameter choice µ > µ∗ where µ∗ > 0
is a certain threshold value, the solution of an unconstrained
problem minx F(x,µ) is either a KKT point of the original
constrained problem, or infeasible stationary points [13],
[17]. The same condition for exactness of a penalty function
continuous to hold for a smooth, constrained reformulation
as in (6), see [18], [19]. For reformulated penalty functions
with slack variables and soft constraints, exactness of the
penalty function hence implies that the soft and the hard
constrained problem only differs if the hard-constrained
problem is infeasible [20].

Proposition 1. If Assumption 1 holds, and µ > µ∗, where µ∗
is a lower threshold value to ensure that the penalty function
is exact, then the solution (x∗,u∗,ε∗) to the reformulated `1
exact penalty function Psafe(x) will steer the state xk inside
S j in the minimum number of timesteps.

Proof. With a sufficiently large penalty parameter µ > µ∗,
a feasible solution (x̂, û,0) to the soft constrained problem
(6), obtained by reformulation of an exact, non-differentiable
penalty function, satisfies the KKT conditions of the corre-
sponding hard-constrained problem if (x̂, û,0) is a feasible
solution to this problem. If (x̂, û,0) is infeasible for (6), the
exactness of the penalty function (6a) will ensure constraint
satisfaction, i.e. the KKT condition, for those constraints in
(6e) that can be satisfied, i.e. the time-varying slack variables
ε∗k = 0,∀k ≥ k̄ for some k̄ > 0. Consequently, the `1 exact
penalty function will yield ε∗k > 0 only for those k in (6e) that
would yield infeasibility for the hard constraint G jxk ≤ f j,
thereby ensuring that these constraints are violated only if
necessary, and hence in the minimum number of timesteps
k̄. The assumption of convexity of the l(x,u) ensures global
optimality of the solution (x∗,u∗,ε∗).

Conditions for exactness of penalty function and a tech-
nique for computing µ is given in Section II-A. For the
proposed proactive FTMPC approach, we distinguish be-
tween two scenarios relating the estimated fault time tf to the
prediction horizon N: If tf > t ′+N, then feasibility of Psafe(x)
at time t ′ will ensure xk ∈ S j within tf. Else, if tf ≤ t ′+N we
must include a check of ε∗ from the solution of Psafe(x) at
time t ′. Let ε∗tf|t ′ be the value of slack vector ε∗k at prediction
time k = tf− t ′ computed at sample time t ′. If ε∗tf|t ′ > 0, the
state cannot reach S j within the estimated time tf of actuator
fault, in which the system must be shut down or switched
to an emergency mode. Otherwise, ε∗tf|t ′ = 0, and the state is
steered inside S j within time tf.

Remark 1. Enforcing hard constraints G jxk ≤ f j for k≥ tf−t ′

would not change the optimal solution (x∗,u∗,ε∗) when the
penalty function is exact. If ε∗k = 0,∀k ≥ tf− t ′ is a feasible
solution to Psafe(x), then exactness of the penalty function
will ensure this indeed is the solution to Psafe(x).

Unless the system must shut-down due to failure of the
MPC controller with Psafe(x) to steer the system state inside
S j before the estimated failure time of actuator j, the MPC
controller can continue economic operation of the system
inside the safety set until the fault occurs. We assume that
the FDI unit alerts the MPC controller when (if) the actuator
actually fails or is taken out of operation to be replaced.
At this time instant, denoted tfa, the LTI model and input
constraints are updated to account for the loss of actuation,
in which the MPC controller switches to the optimization
problem Pfault(x) :

V fault
N (x) = min

N−1

∑
k=0

l(xk,uk) (8a)

s.t. xk+1 = Axk +B juk, k = 0, . . . ,N−1 (8b)

x0 = x, (8c)
(xk,uk) ∈ Y j, k = 0, . . . ,N−1 (8d)

G jxk ≤ f j, k = 0, . . . ,N−1 (8e)

xN = xfault
s (8f)

Y j contains updated input constraints, and the new optimal
steady-state point, xfault

s , is computed correspondingly to (4)
and (7),

min{l(x,u) | x = Ax+B ju, (x,u) ∈ Y j ∩S j}. (9)

with optimal objective value l(xfault
s ,ufault

s). Observe that
xfault

s 6= xsafe
s only if usafe

s 6= 0 computed by (7). We define the
implicit feedback control law obtained by solving Pfault(x)
in receding horizon fashion for ufault

e (x) := ufault
0 as described

for Pnom(x) above. The EMPC controller operates the system
in this fault-updated safe mode until the faulty actor has been
replaced or inspected, in which nominal economic operations
of the system is retained by switching to solving Pnom(x) in
each sample time t.

A. Computing the penalty parameter

A critical criteria for the proposed approach is that the
system enters the safety set S j before the fault occurs. This
requires the penalty function (6) to be exact, which means
that the solution to the soft and the hard constrained problem
only differs if the hard-constrained problem is infeasible.
Selecting a numerical value for µ may be difficult. It is
generally undesirable to assign an arbitrary high value to this
parameter to ensure exactness of the penalty function, as this
may lead to violent control action and possibly be harmful to
the actuators [21]. We therefore seek to find a lower bound
on µ in order to guarantee that the penalty function is exact.
We first introduce the concept of the dual norm which is an
essential component in the theory of exact penalty functions.

For every norm ‖·‖, there exists a dual norm, ‖·‖D, defined
as [22]

||ν ||D = max
||λ ||≤1

ν ′λ (10)

In particular, the dual of ‖·‖1 is ‖·‖∞, and the dual of ‖·‖∞
is ‖·‖1. A well-known result for the exactness of penalty
functions is that the penalty parameter, µ , needs to be
larger than the value of the dual norm of the Lagrangian
multiplier for the hard constrained problem [22, Th. 14.3.1].
For exactness of the `1 penalty function, the penalty function
is hence exact if µ > µ∗ = max‖λ‖∞. Consequently, to
compute µ∗ for (6a), the maximum value of the `∞ norm of
the Lagrangian multipliers for the hard-constrained problem
for all initial states x∈ S j needs to be calculated. To this end,
we use the approach in [21], which is based on reformulation
of a bi-level program to a mixed-integer linear programming
(MILP) for computing µ∗. Note that these computation must
be performed for each safety set S j for faults in different
actuators j, however, by an offline computation. Furthermore,
note that we only need to include the Lagrangian multipliers
for the constraints that are softened [19].

III. STABILITY

Nominal stability of EMPC has been proved for systems
with a terminal equality constraint, satisfying strong duality
[6] or strict dissipativity [5], or with a terminal cost and in-
equality constraints for systems satisfying strict dissipativity
[4]. In this paper, we base the stability proof on the approach
in [6], and show only for the `1 penalty function.
Assumption 2. If l(x,u) contains other than linear terms,
these must be strictly convex, and a constraint qualification,
e.g. Slater’s condition, must additionally be satisfied at the
optimal steady-state point.

If l(x,u) is a linear, economic objective function, the MPC
problems (2), (6) and (8) resort to linear programs (LPs), in
which strong duality holds [23, Ch. 5]. If l(x,u) is quadratic,
e.g. uT

k Ruk, then R must be positive definite. The additional
assumption of a constraint qualification assures strong duality
to hold at optimal steady state.

To analyze the stability properties of the proposed FTMPC
scheme we introduce ”rotated” stage costs [6],

Lnom(x,u) = l(x,u)+(x−Ax−Bu)′λ nom
s −

l(xnom
s ,unom

s),

(11a)

Lsafe(x,u,ε) = lsafe(x,u,ε)+(x−Ax−Bu)′λ safe
s −

l(xsafe
s ,usafe

s),

(11b)

Lfault(x,u) = l(x,u)+(x−Ax−B ju)′λ fault
s −

l(xfault
s ,ufault

s),

(11c)

where lsafe(x,u,ε) := l(xk,uk)+µ ∑q
i=1 εik is the point-wise in

time stage cost (6a) as a function of x,u and ε with `1 penalty.
Moreover, λ nom

s ,λ safe
s and λ fault

s are Lagrangian multipliers
for the LTI steady-state model such that strong duality
holds for the three steady-state problems (4), (7) and (9),
respectively. Note that strong duality holds by Assumption 2,
and that by allowing slack on the constraint G jx≤ f j only up
to N−1, the steady-state problem of Psafe(x) is independent
of ε .
Lemma 1. The following relates the rotated costs (11) and
the respective MPC problems:

1) Solving Pnom(x) in (2) with objective (2a) replaced
with Ṽ nom

N (x) = min∑N−1
k=0 Lnom(xk,uk) gives equal so-

lution.
2) Solving Psafe(x) in (6) with the objective (6a) replaced

with Ṽ safe
N (x) = min∑N−1

k=0 Lsafe(xk,uk,εk) gives equal
solution.

3) Solving Pfault(x) in (8) with the objective (8a) replaced
with Ṽ fault

N (x) = min∑N−1
k=0 Lfault(xk,uk) gives equal so-

lution.

Proof. All the three rotated costs are point-wise in time
summed from k = 0 to N − 1, and the respective MPC
optimization problems have terminal equality constraint. The
results hence follows immediately from Lemma 2 in [6].

The above lemma is used directly to prove nominal
stability of the proposed proactive FTMPC scheme, that is,
for nominal model and no disturbances.

Theorem 1. (Nominal stability): If Assumption 1 and 2 hold,
and µ > µ∗ such that the `1-penalty function in (6) is exact,
then the following stability properties hold:

1) (Nominal operations): xnom
s is an asymptotically stable

steady-state point of the closed-loop system xk+1 =
Axk +Bunom

e (x) with Lyapunov function Ṽ nom
N (x) and

region of attraction Xnom
N .

2) (Safe operations): At time t ′, if (a) t ′ + N ≤ tf and
εtf|t ′ = 0, or (b) if tf > t ′+N, the system will be steered
inside the safety set within the tf, in which xsafe

s is an
asymptotically stable steady-state point of the closed-
loop system xk+1 = Axk + Busafe

e (x) with Lyapunov
function Ṽ safe

N (x) and region of attraction Xnom
N .

3) (Fault operations): xfault
s is an asymptotically stable

steady-state point of the closed-loop system xk+1 =
Axk +Bufault

e (x) with Lyapunov function Ṽ fault
N (x) and

region of attraction S j

Proof. A sketch of the proof is given for the three parts
individually. Part 1): Recursive feasibility of Pnom(x) is
ensured by the terminal equality constraint xN = xnom

s and
Assumption 1. Furthermore, Assumption 2 ensures strong
duality to hold at steady state xnom

s . It can hence be verified
that Ṽ nom

N (x) satisfies the properties of a Lyapunov function
[6, Th. 1], and in particular that

Ṽ nom
N (Ax+Bunom

e (x))≤ Ṽ nom
N (x)−Lnom(x,unom

e (x)) (12a)
≤ Ṽ nom

N (x)−β (|x− xnom
s |)) (12b)

for all x∈Xnom
N , and for a K∞-function β (·). This proves part

1) of the theorem.
Part 2): Let 0 < k̄ ≤ tf − t ′ be an integer, such

that ε∗k|t ′ = 0 for all k ≥ k̄. At sample time t ′, let
{ε0|t ′ ,ε1|t ′ , . . . ,εk̄−1|t ′ ,0, . . . ,0} be a feasible sequence
of slack variables, and let u a feasible control sequence.
Applying the feedback control law usafe

e (x) at time t ′, then
at time t ′ + 1, the sequence {ε1|t ′ , . . . ,εk̄−1|t ′ ,0,0, . . . ,0}
and {u1,u2, . . . ,uN−1,usafe

s } will be feasible with
x̃ = Ax + Busafe

e (x) as initial condition. This follows
from the terminal equality constraint (6g) and by requiring
zero slack on the constraints G jx ≤ f j at the end of the
horizon. Feasibility of Psafe(x) for all sample times t ≥ t ′

and for all initial states x ∈ Xnom
N follows by induction.

For the two scenarios of tf relative to N, the following
holds; (a) If t ′+N ≤ tf and ε∗tf|t ′ = 0, then by the recursive
feasibility, exactness of the penalty term, and Proposition
1, the number of positive slack vectors will decrease by
one for each receding horizon iteration, decreasing the total
magnitude of the `1 penalty term. Hence if ε∗tf|t ′ = 0, then
xk will be steered S j within tf, and indeed x ∈ S j for all
sample times t ≥ tf due to the positive invariance of S j. If
tf > t ′+N, then it follows immediately that xk ∈ S j within
time tf by feasibility of Psafe(x) at sample time t ′, and by the
same arguments as above. Asymptotic stability of xsafe

s from
switching to Psafe(x) at time t ′ can then be established by
using Ṽ safe

N (x) for all x∈Xnom
N , and establishing an inequality

similar to (12) with Lsafe(xk,uk,εk) and a K∞-function β̃ (·).

Part 3): If the MPC problem Psafe(x) with control law
usafe

e (x) is able to steer the system state xk inside S j within
time tf, then for all initial states x ∈ S j, using the same
arguments as in part 1) and in [6, Th. 1], it holds that xfault

s
is an asymptotically stable steady-state point of the closed-
loop system xk+1 = Axk +Bufault

e (x) with region of attraction
S j.

We comment that a asymptotic stability of Psafe(x) may
also be achieved by using the approach in [4].

IV. NUMERICAL EXAMPLE

In this section, we illustrate the proposed FTMPC scheme
by a two-dimensional example. The N-step stabilizable sets
are calculated using toolbox available at 1. All simulations
are performed in YALMIP [24], while CPLEX is used to
solve the MILP for defining µ . The LTI system is open-loop
unstable and defined by the matrices

A =

[
1.3337 0.9443
0.5902 1.3337

]
, B =

[
−0.2572 −0.3817
−0.2665 −0.1954

]
, (13)

and designed with the economic objective function
N−1

∑
k=0

l (xk,uk) =
N−1

∑
k=0

(−qxk + ruk) , (14)

where N = 10, q =
[
10 10

]
, r =

[
3 1

]
. The constraints on

x and u are[
0
0

]
≤
[

x1
x2

]
≤
[

6
6

]
,

[
0
0

]
≤
[

u1
u2

]
≤
[

5
15

]
. (15)

We will consider the scenario where the actuator u2 has a
dropout, i.e. u2 = 0 for t f ≤ t < tfix. The MPC is warned
about the incipient fault at t ′ = 20, at tf = 40 the fault
hits the system and u2 is rendered unusable. Finally, the
fault is repaired at tfix = 60. From the computation of µ∗ =
maxx∈S j ‖λ‖∞ by the approach outlined Section II-A, we set
µ = 20.

Fig. 2 shows the system trajectory by using the approach
described in Section II-A. The system operates in the eco-
nomic optimal point, xnom

s =
[
6 3.75

]T , until the controller
receives information about the upcoming fault. The system is
then driven into S j, and reaches the temporary steady-state
point xsafe

s =
[
0.6043 1.6960

]T . Observe that it is crucial
to compute maxx∈S j ‖λ‖∞, since a smaller µ might not
guarantee that the system is driven into the set S j, where the
MPC controller retains feasible when the system is affected
by the fault. When the fault occurs, the MPC is switched
to Pfault(x) , in which the faulty model is updated and the
system is steered to the new economic optimal steady-state
point, xfault

s =
[
1.8580 0.7048

]T . At sample time t = tfix,
actuator u2 is fixed and nominal operation is resumed, and
the system is driven back to its original optimal steady-state
point xnom

s . We compare our approach with an open-loop
discrete minimal-time control (DMTC) computed by (16)
in the Appendix. The two approach uses equal number of
timesteps to reach S j, while it can seen that the minimal-time

1http://www-control.eng.cam.ac.uk/eck21/matlab/invsetbox/

0 1 2 3 4 5 6
0

1

2

3

4

5

6

x1

x
2

x
nom
s

x
safe
s

x
fault
s

t < t′

t′ ≤ t < tf

tf ≤ t < tfix

t ≥ tfix

DMTC

Fig. 2. State-trajectory showing the different phases of the system evolu-
tion, as well as the optimal steady-state points. The outer area represents the
feasible set for nominal operation and the inner area (triangle) represents
the feasible set after the fault, S j . Warning about incipient fault is given at
sample time t ′, the fault occurs at time tf and is repaired by time tfix. The
red line shows the state trajectory for an open-loop, discrete minimum time
control (DMTC) to reach S j , computed by (16) in the Appendix.

approach renders a different trajectory. This follows from
the well-known property that discrete minimal-time control
is not necessarily bang-bang.

V. CONCLUDING REMARKS

In this paper, a novel proactive FTMPC scheme for
incipient actuator faults based on exact penalty functions has
been presented. The EMPC-based control scheme was shown
to provide asymptotic stability of the economic steady-state
points provided that steering the system inside the safety set
within the estimated fault time actually is feasible. Further
research includes extending the scheme to be robust in terms
of handling disturbances on the system.

REFERENCES

[1] Y. Zhang and J. Jiang, “Bibliographical review on reconfigurable fault-
tolerant control systems,” Annual Reviews in Control, vol. 32, no. 2,
pp. 229–252, 2008.

[2] D. Q. Mayne, “Model predictive control: Recent developments and
future promise,” Automatica, vol. 50, no. 12, pp. 2967–2986, 2014.

[3] J. M. Maciejowski, “Modelling and predictive control: Enabling tech-
nologies for reconfiguration,” Annual Reviews in Control, vol. 23, pp.
13–23, 1999.

[4] R. Amrit, J. B. Rawlings, and D. Angeli, “Economic optimization
using model predictive control with a terminal cost,” Annual Reviews
in Control, vol. 35, no. 2, pp. 178–186, 2011.

[5] D. Angeli, R. Amrit, and J. B. Rawlings, “On average performance and
stability of economic model predictive control,” IEEE Transactions on
Automatic Control, vol. 57, no. 7, pp. 1615–1626, 2012.

[6] M. Diehl, R. Amrit, and J. B. Rawlings, “A Lyapunov function for
economic optimizing model predictive control,” IEEE Transactions on
Automatic Control, vol. 56, no. 3, pp. 703–707, 2011.

[7] L. Lao, M. Ellis, and P. D. Christofides, “Proactive fault-tolerant model
predictive control,” AIChE Journal, vol. 59, no. 8, 2013.

[8] M. A. Demetriou and M. P. Polycarpou, “Incipient fault diagnosis of
dynamical systems using online approximators,” IEEE Transactions
on Automatic Control, vol. 43, no. 11, pp. 1612–1617, 1998.

[9] F. Salfner and M. Malek, “Using hidden semi-Markov models for
effective online failure prediction,” in Proc. of the IEEE Symp. on
Reliable Distributed Systems, 2007, pp. 161–174.

[10] T. I. Bø and T. A. Johansen, “Dynamic Safety Constraints by Scenario
Based Economic Model Predictive Control,” in IFAC World congress,
no. 2009, 2014.

[11] G. Franze, F. Tedesco, and D. Famularo, “Actuator Fault Tolerant Con-
trol: A Receding Horizon Set-Theoretic Approach,” IEEE Transactions
on Automatic Control, 2014, (to appear).

[12] A. Yetendje, M. M. Seron, and J. A. D. Doná, “Robust multiactuator
fault-tolerant MPC design for constrained systems,” International
Journal of Robust and Nonlinear Control, vol. 23, no. 16, pp. 1828–
1845, 2013.

[13] T. Pietrzykowski, “An exact potential method for constrained max-
ima,” SIAM Journal of Numerical Analysis, vol. 19, no. 2, pp. 786–
789, 1969.

[14] E. Kerrigan and J. Maciejowski, “Invariant sets for constrained non-
linear discrete-time systems with application to feasibility in model
predictive control,” in Proc. of IEEE Conf. on Decision and Control,
2000, pp. 4951–4956.

[15] F. Blanchini, “Set invariance in control,” Automatica, vol. 35, no. 11,
pp. 1747–1767, 1999.

[16] F. Scibilia, S. Olaru, and M. Hovd, “On feasible sets for MPC and
their approximations,” Automatica, vol. 47, no. 1, pp. 133–139, 2011.

[17] G. Di Pillo and L. Grippo, “Exact penalty functions in constrained
optimization,” SIAM Journal on Control and Optimization, vol. 27,
no. 6, pp. 1333–1360, 1989.

[18] E. Kerrigan and J. Maciejowski, “Soft constraints and exact penalty
functions in Model Predictive Control,” in Proc. of the UKACC
International Conference on Control, Cambridge, UK, 2000.

[19] S. Janesch and L. Santos, “Exact penalty methods with constrained
subproblems,” Investigacióon Operativa, vol. 7, pp. 55–65, 1997.

[20] P. O. M. Scokaert and J. B. Rawlings, “Feasibility issues in linear
model predictive control,” AIChE Journal, vol. 45, no. 8, pp. 1649–
1659, 1999.

[21] M. Hovd and F. Stoican, “On the design of exact penalty functions
for MPC using mixed integer programming,” Computers & Chemical
Engineering, vol. 70, no. 5, pp. 104–113, 2014.

[22] R. Fletcher, Practical Methods of Optimization, 2nd ed. John Wiley
& Sons, 1987.

[23] S. Boyd and L. Vandenberghe, Convex Optimization. New York:
Cambridge University Press, 2004.

[24] J. Lø fberg, “YALMIP : A toolbox for modeling and optimization in
MATLAB,” in Proc.of the CACSD Conference, Taipei, Taiwan, 2004.

APPENDIX

The minimal time required to steer a linear system from
an initial given feasible state x0, inside a compact set S =
{x|Gx ≤ f}, with the initial state x0 /∈ S, can be computed
by the following MILP:

min
N

∑
k=1
−wkyk (16a)

s.t. xk+1 = Axk +Buk, k = 0, . . . ,N−1 (16b)
x0 = given, (16c)

(xk,uk) ∈ Ynom, k = 0, . . . ,N−1 (16d)
Gxk ≤ f +M(1− yk), k = 1, . . . ,N (16e)

N

∑
k=0

yk ≥ 1 (16f)

yk = {0,1}, k = 1, . . . ,N (16g)

In (16), wk is a sequence of positive, strictly increasing
weights, e.g. wk := k, and M is a big-M parameter. If (16)
has an integer feasible solution, the minimum time tmin to
get the state xk inside the set S is given by the integer
kmin for which the binary yk first takes the value 1, i.e.
tmin = {kmin|yk = 1, ∀k ≥ kmin}. Observe that the negativity
in (16a) ensures that the system stays in S for all positive
times when first inside.

	Preface
	Abstract
	Sammendrag
	Abbreviations
	Introduction
	Faults and failures
	Model predictive control
	Economic model predictive control
	Fault-tolerant control
	Fault modeling
	Fault-tolerant MPC

	Introducing the illustrative examples
	System with two states, two inputs and one input dropout
	System with two states, three inputs and two input dropouts

	Report outline

	Invariant Set Theory and MPC Feasibility
	Introduction
	Feasibility in MPC
	Defining the safety set
	Computing control invariant sets
	Numerical illustrative examples
	Example with two states, two inputs and one dropout
	Example with two states, three inputs and two dropouts

	Soft Constraints and Penalty Functions
	Introduction
	Exact penalty functions
	Soft constrains and penalty functions in MPC
	Computing a lower bound for the penalty weight
	Preliminaries
	Using bi-level and mixed integer programming
	Adding an extra minimization problem
	Adding an explicit LICQ constraint

	Numerical illustrative examples
	Example with two states, two inputs and one dropout
	Example with two states, three inputs and two dropouts

	Proactive Fault-tolerant Economic MPC
	Introduction
	Approach
	Nominal operation
	Safe operation
	Fault operation

	Multiple actuator faults
	Stability
	Numerical illustrative examples
	Example with two states, two inputs and one dropout
	Example with two states, three inputs and two dropouts
	Example with three states, three inputs and one dropout

	Robust Proactive Fault-tolerant Economic MPC
	Brief review of disturbance-handling in MPC
	Tube-based robust economic MPC
	Approach
	Fault-free operation
	Safe operation
	Fault operation

	Stability
	Numerical illustrative example

	Discussion
	On the assumptions for the approach
	Implementing the scheme and numerical results
	Without disturbances
	With disturbances

	Conclusion
	Future work
	Bibliography
	MPC formulation
	Compact quadratic cost formulation
	Compact linear cost formulation

	KKT-conditions
	Set operations
	Discrete minimal-time control
	Conference paper

