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Abstract

Waterflooding is a commonly used operation in the oil industry. It is used to in-
crease oil recovery from the reservoir, and is considered as a secondary recovery
technique. In short, the reservoir is flooded with water to increase pressure, and to
displace oil from pore spaces. This thesis has explored three general methods for
optimizing this operation, with special attention paid to treatment of constraints.
As means of background theory, a brief introduction to petroleum engineering is
provided, the concept of dynamic optimization is stated, and reservoir simulation
is presented.

The three methods of interest are gradient-based control optimization, reactive
control, and techniques based on simulator-embedded constraints. The popularity
of gradient-based control optimization has grown during the last decade, and there
has been conducted a vast amount of research on the topic during this period. Such
optimization is usually referred to as adjont-based optimization, as efficient com-
putation of gradients serves as a prerequisite for the method to remain tractable for
reservoir optimization. Next, reactive control is widely used in the industry, and its
popularity is among others due to simplicity, robustness, and model-independence.
The last method considered is based on simulator-embedded constraints, which of
today is a relatively unexplored area. A new heuristic has however been developed
during this work, which combines output unconstrained control optimization and
simulator-embedded constraints.

The three general approaches are implemented using the Matlab Reservoir Simu-
lation Toolbox. A series of four case studies are employed to assess the merits of
the methods. In short, if geological uncertainty is put aside, gradient-based op-
timization appeared as the preferred method. Furthermore, the popularity of the
reactive control approach can be understood, as the method performed adequately
- keeping its simplicity in mind. The heuristic that was developed showed some
potential, but there are three issues at the current stage that must be addressed
and resolved.
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Sammendrag

Vanninjeksjon er en hyppig brukt metode i oljeindustrien for å øke utvinnings-
graden av reservoaret, og er regnet som en sekundær utvinningsmetode. Metoden
går ut på å flømme reservoaret med vann for å opprettholde trykk, og fortrenge
oljen gjennom porene i reservoarsteinen. Denne masteroppgaven har utforsket tre
metoder for å optimere denne prosessen, med fokus på å overholde begrensninger
i systemet. Fundamental reservoarteori, dynamisk optimering, og reservoar simu-
lering er beskrevet som bakgrunnsteori.

De tre metodene er gradient-basert kontroll optimering, reaktiv kontroll, og teknikker
som bygger på begrensninger innebygget i simulatoren. Gradient-basert optimer-
ing har i løpet av de siste tiårene opplevd økede popularitet, og det forskes mye
på dette per i dag. Slik optimering er ofte referert til som adjoint-basert optimer-
ing, fordi gradienter må kunne oppdrives effektivt for at denne fremgangsmåten
skal være praktisk gjennomførbar. Videre er reaktiv kontroll mye brukt i indus-
trien, som følge dens enkelthet, robusthet, og uavhengighet av modeller. Den siste
metoden som bygger på begrensinger innebygget i simulatoren er per i dag et lite
utforsket område. En ny heuristikk innenfor dette område har blitt utviklet i løpet
av arbeidet med masteroppgaven, og den bygger på en kombinasjon av ubegrenset
kontroll-optimering og begrensninger innebygget i simulatoren.

De tre metodene er implementert med Matlab Reservoir Simulation Toolbox. En
serie av fire case-studier er brukt for å evaluere egenskapene til metodene. Kort
oppsummert, hvis reservoar usikkerhet er satt til side, så fremstår gradient-basert
kontroll-optimering som den foretrukne metoden. Det er også lett å skjønne pop-
ulariteten til reaktiv kontroll, ettersom metoden presenterer jevnt over godt, tatt
dens enkelhet i betraktning. Heuristikken som ble utviklet klarte til en viss grad å
løse problemene, men det er på dette stadiet tre uløste problemer – hvilke må løses
for at metoden kan anses som nyttig.
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Chapter 1

Introduction

This thesis deal with methods for handling constraints in reservoir management,
focusing on optimization of the water-flooding process. To this end, three par-
ticular approaches is of interest, namely reactive control, constrained and uncon-
strained control optimization, and control optimization with simulator-embedded
constraints. It is assumed that the reader of this thesis has basic knowledge of
mathematical optimization. Vectors and matrices are not emphasized with bold
notation, but their dimensions are clarified when appropriate.

The thesis is outlined in the following manner:

• Chapter 1 gives a brief introduction to the oil industry and fundamental
reservoir theory. The waterflooding operation is outlined, together with the
concept of reservoir management.

• Chapter 2 is intended to give an introduction to dynamic optimization. This
is relevant for understanding possible optimization-strategies for reservoir
management.

• Chapter 3 includes general theory for reservoir simulation. The reservoir sim-
ulator Matlab Reservoir Simulation Toolbox (MRST) is treated separately,
because the numerical examples presented in Chapter 5 are implemented on
this simulator.

• Chapter 4 reviews different methods for optimizing the waterflooding opera-
tion, with special attention paid to treatment of constraints. Moreover, a new
heuristic alongside with an optimizer is developed, in an attempt to combine
existing methods.

• Chapter 5 presents the numerical examples, together with the results.

• Chapter 6 discusses the performance of the methods presented in Chapter 4,
based on the results obtained in Chapter 5.

• Chapter 7 contains the conclusion, and recommendations for future work.

1



Chapter 1. Introduction

1.1 Motivation
The U.S. Energy Information Agency (2013) projects that the worldwide demand
of energy will grow with 56 % between 2010 and 2040. They also estimates that the
energy supply will be divided almost equally between oil, gas, coal and other low
carbon sources. Moreover, Conti (2014) projects that the worldwide consumption
of petroleum and other liquid fuels will rise from 87 MMbbl/d in 20101, to 98
MMbbl/d in 2020, and 119 MMbbl/d in 2040, which indicates that oil and gas
will remain an important source of energy in the years to come. One way of
producing more oil is by increasing the recovery factor at existing fields, and to
ensure that new fields are planned with high recovery. This is especially relevant for
the Norwegian shelf which is considered mature, and many fields are in their tail-
production. To put things into perspective in terms of value, the famous Ekofisk-
field is estimated to contain 553.9 million Sm3 oil (Oljedirektoratet, 2015) including
oil already produced. It might seem that increasing the recovery factor of oil by
1% is small and negligible, but at an oil price of 80 dollar per barrel, this amount
of oil represents a value of almost three billion dollars.

1.2 Reservoir Fundamentals
The oil and gas industry is usually divided into three major segments, namely
upstream, midstream and downstream. The upstream segment involves exploration
and production (E&P), which include searching for potential new fields, drilling of
exploratory and production wells, and the production phase itself. The midstream
segment involves transportation, storage and wholesale marketing of crude and
refined products. The downstream sector commonly refers to refining of crude oil,
and processing and purifying of raw natural gas. The scope of this thesis lies within
the upstream segment.

The hydrocarbons, commonly referred to as oil and gas, are extracted from pools
below the surface, which is known as the reservoir. However, several conditions
must be met in order for the hydrocarbons to accumulate in the reservoir. The
first condition is that source rocks rich on organic matter are deposited over time.
Eventually, as this sedimentary layer is buried deep enough, a process that partially
may be caused by tectonic plate movement and newer deposits, the source rock is
exposed to high temperature and pressure. The source rock will at some point reach
its maturation, at which the hydrocarbons are expelled from the rock. Because
hydrocarbons usually are less dense than water, they naturally mitigate towards
the surface. During this travel they may pass through porous rock, namely the
reservoir rock. If a layer of impermeable rock surrounds the permeable reservoir
rock sufficiently, the hydrocarbons are trapped, and may accumulate. This process
can last for millions of years (Jahn et al., 2008). Common types of traps and
reservoir formations are shown in Figure 1.1.

1MMbbl/day denotes one million barrel per day

2



1.2 Reservoir Fundamentals

(a) Anticline trap (b) Fault trap

(c) Stratigraphic lense (d) Stratigraphic unconformities

Figure 1.1: Different reservoir traps (Nelson, 2012).

Permeability
The first key property for the reservoir rock is the permeability. It characterizes the
ability of a porous medium to transmit a single fluid through the interconnected
pores, which is completely filled with this fluid (Lie, 2014). More precise, the
permeability is the part of the proportionality constant in Darcy’s law which relates
discharge and fluid physical properties, to a pressure gradient applied to the porous
media. This means that permeability can only be defined together with fluid flow

~u = −K
µ
∇Φ

where K is the permeability, ~u is the superficial fluid flow velocity through the
porous medium, µ is the dynamic viscosity of the fluid, and ∇Φ is the applied
pressure or potential gradient. Even though the SI-unit for the permeability is
area [m2], it is commonly measured in Darcy [D] which is approximately

1 [D] ≈ 0.987× 10−12 [m2]

Because 1 Darcy is relatively high in a reservoir context, it is often specified in
milli-Darcy [mD] instead. The permeability for a conventional reservoir is typi-
cally in the range 0.1 mD - 20 D for liquid flow (Lie, 2014).

3



Chapter 1. Introduction

Denote that the permeability in certain directions tends to depend on the perme-
ability in other directions. It follows that that the permeability is a tensor, which
can be represented by a matrix. For a Cartesian grid, this matrix yields

K =

kxx kxy kxz
kyx kyy kyz
kzx kzy kzz


where the diagonal elements in the matrix represents direct flow in one direction,
caused by pressure drop in the same direction. The cross-terms represents cross-
flow, which is flow caused by pressure-drop in perpendicular directions to the flow.
Moreover, the medium is said to be isotropic if the permeability equals in horizontal
and vertical direction.

Permeability is a function of porosity, and if the flow is assumed laminar in a set
of capillary tubes, the Carman-Kozeny equation links the two properties by the
following relation

K = 1
8τA2

v

φ3

(1− φ)2

where τ is the rock tortuosity and Av is a specific surface area. The porous medium
is usually saturated with two or three phases (oil, water, gas) which alter its ability
to conduct fluids, thus reducing the effective permeability. The relative permeabil-
ity links the effective permeability to the absolute permeability as a dimensionless
ratio given by

kr,α = ke,α
K

where subscript r denotes relative permeability, e denotes effective permeability
and α denotes the phase.

Porosity
The second key property for the reservoir rock is the already mentioned porosity,
which is defined as a measure of the void space in a material

φ = Vv
Vb

= Vv
Vv + Vr

, φ ∈ [0, 1)

where Vv is the void volume, Vr is the volume of the rock, and Vb = Vr + Vv is the
bulk volume of the material. The porosity is for most naturally occurring rocks in
the range 0.1-0.4 (Lie, 2014). The void spaces in the rock can either be intercon-
nected pores, which allows for flow of fluids, or it can be disconnected pores, where
fluids are unable to flow. Disconnected pores are of no interest for flow simulation,
and for this reason one rather consider the effective porosity. This only accounts
for the void space of the interconnected pores. Furthermore, if the reservoir rock is

4



1.3 Production

compressible, the porosity depends on pressure. The rock compressibility is defined

cr = 1
φ

dφ
dp = d lnφ

dp

and the pressure-dependent porosity can be expressed

φ(p) = φ0e
cr(p−p0)

which within reservoir simulation is common to linearize

φ = φ0 (1 + Cr(p− p0))

To summarize, porosity and permeability are key parameters for the reservoir,
but their spatial distribution throughout the field are often poorly known. In
addition, position of seals, faults and other structural elements are also important
information that is difficult to determine. Uncertainties are further discussed in
Chapter 3.

1.3 Production
Put simply, the oil and gas is recovered by drilling wells into the reservoir, making
it able to flow out the reservoir through the wells. The production phase starts
once the first-oil flows through the well-bore for commercial purpose. The pro-
duction phase can roughly be broken down into three periods, namely the build-up
period, the plateau period, and the decline. During the build-up, the production
from newly drilled production wells (producers) are brought on stream, slowly
ramping up towards their designed capacity. The period when the facility runs at
full capacity is commonly known as the plateau phase, which maintains constant
production rate. New wells can also be brought on stream in this period, as other
wells starts to decline in their production. The plateau usually lasts for 2-5 years
(Jahn et al., 2008), but can also last longer, especially for gas-fields. Moreover,
the plateu-phase can be extended by applying secondary recovery techniques. The
final decline period, usually the longest in time, is the period where all production
wells will exhibit declining production. The production phases are visualized in
Figure 1.2.

Another common categorization of the production phase is based on the recovery
techniques involved. The primary recovery phase denotes the period where no ad-
ditional recovery techniques besides the original driving mechanism of the reservoir
is required. Typical driving mechanisms are

• Natural water displacing oil downward into the well

• Expansion of the natural gas in the cap at the top of the reservoir

• Expansion of gas initially dissolved in the crude oil

5



Chapter 1. Introduction

• Gravity drainage resulting from the movement of oil within the reservoir from
the upper to the lower parts where the wells are located

However, the pressure in the reservoir will at some point decline to a level that is
not sufficient to lift the oil to the surface. As of today, the primary recovery is
usually around 5-15% (Jahn et al., 2008).

The secondary phase attempts to maintain reservoir pressure, by supplying external
energy into the reservoir. Energy is supplied by injecting water (waterflooding), or
gas (natural gas re-injection) into the reservoir. Injected water aims to maintain
pressure and push the oil towards production wells. Injected gas supports the
pressure in the reservoir, thus acts as an artificial driving force. Water is usually
injected in the production zone, while gas is injected into the gascap. Even though
external energy is supplied, most of the oil still remain trapped in the pore spaces
after secondary recovery techniques has been applied. The total recovery usually
stays somewhere in the range 10-50% (Jansen, 2013).

Some field also takes further measures with a tertiary phase, which is also known as
enhanced oil recovery (EOR). At this stage, the goal is to increase the mobility of
the oil. The mobility can be increased by injecting steam, or possibly even fire into
the reservoir. An evident drawback from injecting fire is that some oil is burned
during the process. Injecting surfactants is also a possible method, as surface
tension is decreased. EOR techniques are usually applied to reservoirs where oil is
heavier than normal crude oil.

time

rate
plateau decline

economic threshold

abandonment

buildup

Figure 1.2: Production phases

Waterflooding
Special attention is paid to the waterflooding operation due to its importance for
this thesis. The main goal for the operation is to increase oil-production rate,
and ultimately the total recovery factor. This is achieved by means of voidage
replacement - namely to inject water into the reservoir to replace produced fluids.
The water is injected to increase or maintain reservoir pressure, and to displace oil
from the pore spaces. The concept of injecting water into the reservoir appeared

6



1.4 Reservoir Management

in the 1920s (SPE, 2014) to dispose saline water and brine that were produced
alongside with oil. However, it was quickly recognized that injecting water often
resulted in increased recovery, in reservoirs were the initial natural energy had
started to deplete. The fact that water is inexpensive, and often readily available
also drove the development of the technology. The reason for its efficiency to
displace oil were also discovered, which is due to the relative properties of water
compared to oil; such as viscosity, density and wetting. The geology of the reservoir
also affects the process. Waterflooding is an operation that usually takes decades
to complete, and the technology is used with success on almost all reservoir types,
all over the world. This include several fields on the Norwegian shelf, exemplified
by the Ekofisk field.

There exist many patterns for configuring the location of wells in a waterflooding
operation. One of the most common is the five-spot pattern, where four production
wells (producers) are located around an injecting well (injector). The inverted five-
spot pattern also appears frequently, where four injectors surround a producer.
It is important for the operation that water-breakthrough is delayed as long as
possible. The breakthrough occurs when injected water "breaks through" the rock,
and reach a producer. This event can severely affect the oil-displacement process.
However, smart-wells are often equipped with inlet control valves (ICV), to among
others, handle such events. The ICV is an active component, installed as part of a
well completion to partially or completely choke flow into a well. It is controlled to
maintain flow conformance, and as the reservoir depletes, to stop unwanted fluids
from entering the wellbore. The latter is exemplified by closing the ICV when
the water-cut exceeds a certain threshold. Peters et al. (2010) showed that for a
synthetic case, the optimized net present value for a flooding operation increased by
20%, using three ICV for each well instead of one. A schematic of the waterflooding
operation is given in Figure 1.3. In figure 1.4, the distribution of oil-saturation over
time is showed for a flooding operation simulated in MRST.

1.4 Reservoir Management
Uncertainties in the reservoir pose a great challenge, and it results from our inability
to fully characterize the reservoir and its flow processes. Reservoir management
is a dynamic process that aim to mitigate the effects of these uncertainties, by
optimizing reservoir performance through a systematic application of integrated
and multidisciplinary technologies. Reservoir management has been defined by
numerous authors over the years, and the following definition is proposed by Thakur
(1996).

Definition 1.4.1 (Reservoir Management). Sound reservoir-management practice
relies on use of financial, technological, and human resources, while minimizing
capital investments and operating expenses to maximize economic recovery of oil
and gas from a reservoir. The purpose of reservoir management is to control oper-
ations to obtain the maximum possible economic recovery from a reservoir on the
basis of facts, information, and knowledge.

7



Chapter 1. Introduction

78 Chapter 6

6.2 Two-phase flow: 1 smart injector and 1 smart producer

Figure 6.1: Schematic of water flooding with smart, horizontal wells.

Figure 6.1 shows a schematic of a horizontal, two-dimensional reservoir. A smart injector,
consisting of a number of segments, is located along the left edge. Similarly, a smart producer
is located along the right edge. In this section the scope for water flood optimization for a
setting similar to the one shown in the figure is investigated.

Reservoir model

The reservoir model considered in this section is horizontal, square, and two-dimensional.
The dimensions are 450×450×10

£
m3
¤
, modeled with 45×45×1 grid blocks. The reservoir

boundaries are no-flow boundaries, and the liquids in the reservoir are oil and water, having
a viscosity of 1 [mPa s]. The relative permeabilities are straight such that the total liquid
mobility is independent of saturation. Since only water and oil are present, low liquid com-
pressibilities of 1 × 10−10 £Pa−1¤ were used. The capillary pressure was taken to be zero.
As in Figure 6.1, the injector is located along the left and the producer along the right edge.
Each well was divided in 45 segments such that each grid block penetrated by a well repre-
sents one segment. Each segment was modeled as a separate well. Optimization was done
for three permeability fields, top views of which are shown in figure 6.2. The porosity dis-
tribution is homogeneous with φ = 0.2. Figure 6.2 also shows the well locations. In all
cases, the principal axes of the high permeability zones are aligned with the main flow direc-
tion. These types of heterogeneities have a large impact negative on the macro-scale sweep
efficiency, and on early water breakthrough and are in consequence important to investigate
[Brouwer et al. (2001), Brouwer and Jansen (2002)]. The main difference between the het-

Figure 1.3: The water-flooding principle for horizontal wells (Brouwer, 2004)

Furthermore, the concept of closed-loop reservoir management (CLRM) has been
around for years. This is often centered around attempts to improve reservoir
characterizations from a geological point of view, typically achieved by history
matching (Jansen, 2013). Here, measurements and previous inputs to the reservoir
are used to update numerical models. Moreover, the concept is also often seen in
connection with optimization of depletion strategies, such as waterflooding. Foss
and Jensen (2011) argues that, on a conceptual level, CLRM can be interpreted as
using real time data from multiple sources and mathematical models, to aid long-
term strategic decision making, and medium term operational decision making.
In this context, long term decisions include drainage strategies, technology and
infrastructure development, and is considered as life-cycle optimization of the asset.
Medium-term decisions involve well location, well design and targets for production
rates, typically on horizons between months and years.

In addition, they consider short term decisions with horizons from days to weeks as
(operational) production optimization. This is not reviewed further in this thesis,
see for instance Gunnerud (2011). A decision pyramid that illustrate these layers is
shown in Figure 1.5. It should be remarked that the layers are greatly interwoven,
as decisions in each layer may influence others. For instance, long term optimization
may impose constraints on lower-level decisions to avoid a short term strategy that
harms long term recovery. Consequently, there exist no clear distinction between
layers.

8



1.4 Reservoir Management

180 days

3 years 6 years

Well location

Figure 1.4: Oil-saturation distribution sampled in time, for five-spot waterflooding sim-
ulated in MRST. The model is proposed by Bellout et al. (2012). Producers are marked
with a red dot, and the injector with a blue dot.
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Figure 1.5: A multilevel control hierarchy illustrating the decision layers. Adapted from
(Foss and Jensen, 2011)
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Chapter 2

Dynamic Optimization

This chapter is concerned with theory that relates to dynamic optimization. It
has been has been necessary to understand this theory in order to work with the
problem description, and the tools required for doing so. In particular, it has
been decisive in order to develop a single shooting based optimizer for output-
unconstrained reservoir optimization, tightly interfaced to MRST. The optimizer
is presented in Section 4.3.1.

The chapter is organized in the following manner; First, the concept of dynamic
optimization is presented, and second, solution strategies are classified, whereas
some are outlined.

2.1 Formulation
Dynamic optimization problems are typically divided into two groups, namely opti-
mal control and parameter estimation. In both cases, the goal is to find a sequence
of free variables that minimizes the objective. The objective is a functional that
state the optimality of the trajectory of states, inputs and parameters. The optimal
control problem deals with determining future input control signals to the system.
The parameter estimation problem aims to estimate uncertain or even unknown
states and parameters, based on a sequence of previous measurements and control
inputs.

In either case, systems given by a fully implicit Differential-Algebraic Set of Equa-
tions (DAE) are considered. To keep it simple without loss of generality, the
systems are specified with initial conditions given at zero (t0 = 0). The initial
value problem (IVP) is given by

F (z(t), ż(t), u(t), p, t) = 0 (2.1a)
h(z(0)) = 0 (2.1b)

11



Chapter 2. Dynamic Optimization

where z(t) ∈ Rnz are the states, u(t) ∈ Rnu the controls, and p ∈ Rnp represents
model-parameters independent of time. The IVP is defined on the time-interval
t ∈ [t0 tf ]. The systems are also assumed to be time-invariant, such that the
time variable t does not appear explicitly in the model. In general, it is quite
difficult to analyze fully implicit DAEs, so instead only semi-explicit systems are
considered. The reason is that they possess a nice structure, in which the states z(t)
are partitioned into differential variables x(t) and algebraic (output) variables y(t).
Semi-explicit systems are still applicable for broad range of real physical processes
(Binder et al., 2001). The semi-explicit IVP reads

ẋ(t) = f(x(t), y(t), u(t), p) (2.2a)
x(0) = x0 (2.2b)

0 = g(x(t), y(t), u(t), p) (2.2c)

where (2.2a) denotes the system dynamics, (2.2b) the initial condition, and (2.2c)
denotes the algebraic equations.

Optimal Control Problem
The Optimal Control Problem (OCP) deals with finding an optimal sequence of
inputs to the system over a future horizon. The length of the horizon determines
how far the behavior of the system is predicted, subject to the input sequence. The
prediction is based on mathematical models. As mentioned initially, the optimality
of the control sequence is measured with a performance index, namely the objective
function. A possible formulation for the OCP reads

min
x,y,u,p

J(x(t), y(t), u(t), p) (2.3a)

s.t ẋ(t) = f(x(t), v(t), u(t), p, t) (2.3b)
x(0) = x0 (2.3c)
g(x(t), y(t), u(t), p) = 0 (2.3d)
c(x(t), y(t), u(t), p) ≤ 0 (2.3e)
ul ≤ u(t) ≤ uh (2.3f)
pl ≤ p ≤ ph (2.3g)
yl ≤ y(t) ≤ yh (2.3h)
xl ≤ x(t) ≤ xh (2.3i)
t ∈ [ts tf ]

where (2.3a) denotes the performance-index, (2.3b)-(2.3d) the system dynamics,
and (2.3e) specifies constraints on the trajectory. Furthermore, (2.3f)-(2.3i) bounds
the different variables to stay within specified regions. Typically, the objective
(2.3a) is given by a Bolza-functional

J(x(t), y(t), u(t), p) = E(x(tf ), y(tf ), u(tf ))
Mayer-term

+
∫ tf

t0

L((x(t), y(t), u(t)))
Lagrange-term

(2.4)
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2.1 Formulation

which consist of two terms, namely a Mayer-term and a Langrange-term. The La-
grange term contributes to the cost over the entire horizon, while the Mayer-Term
is treated as terminal cost. A control strategy that is based on the OCP is the
Model Predictive Control (MPC). At each timestep, the MPC solves a discretized
OCP, where the current state of the system is used as the initial condition (2.3c)
for the OCP1. Once the solution of the OCP has been obtained, the first entry in
control-sequence is applied to the system. At the next timestep, the initial condi-
tions for the OCP is updated, based on current measurements from the physical
system, and the problem is solved all over again. This way of continuously shifting
the horizon is known as the receding horizon principle. The MPC is among others
discussed by Foss and Heirung (2013), in which instructively merge optimization
and control theory, and by Rawlings and Mayne (2009) which provide an extensive
framework.

In context of reservoir management, the nonlinear model predictive control (NMPC)
is a state of the art tool to plan and support waterflooding operations. This is fur-
ther discussed in Section 4.1.

Moving Horizon Estimator
The second branch of dynamic optimization is the parameter estimation problem,
commonly known as the moving horizon estimator (MHE). Whereas the OCP
seeks to find a future control sequence, the MHE uses measurements from the
past, together with previous control signals, to estimate unknown states and/or
parameters. An important feature of the MHE is the ability to estimate both
states and parameters simultaneously, on-line, especially in the presence of noise.

Kühl et al. (2011) proposes the following approach; consider the semi-explicit IVP

ẋ(t) = f(x(t), y(t), u(t), p, w(t)) , x(t0) = x0 (2.5a)
0 = g(x(t), y(t), u(t), p) (2.5b)

γ(t) = h(x(t), y(t), p) (2.5c)

denote that this formulation include the output function γ, and also state-noise
w(t). The continuous model in Equation (2.5) is first transformed into a discrete
model, i.e

xk+1 = F (xk, yk, uk, p) + wk (2.6a)
0 = g(xk, yk, uk, p) (2.6b)
γk = h(xk, yk, p) (2.6c)

At time ti a horizon containing of N measurements {γi−N+1, γi−N+2, . . . , γi} is
considered. These measurements are taken at times ti−N+1 < . . . < ti. Here, the
length of the estimation horizon is te = ti−t(i−N+1), where i−N+1 , L is defined

1Strategies for solving the OCP are outlined in Section 2.1
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for ease of notation. The optimization problem of the MHE is then formulated in
a least-squares sense

min
xk,yk,p

(∣∣∣∣∣∣∣∣xL − x̃Lp− p̃L

∣∣∣∣∣∣∣∣2 +
i∑

k=L
||γk − h(xk, yk, p)||2

)
(2.7a)

s.t xk+1 = F (xk, yk, uk, p) (2.7b)
0 = g(xk, yk, uk, p) (2.7c)
pl ≤ pk ≤ ph (2.7d)
yl ≤ yk ≤ yh (2.7e)
xl ≤ xk ≤ xh (2.7f)

where the first part in 2.7a is known as the arrival cost. At each time ti, mea-
surements are updated, and the optimization is solved all over again. The MHE
is especially relevant for history matching in reservoir management. Ongoing mea-
surements and control inputs are used together with a mathematical model of the
reservoir, to estimate uncertain model parameters and reservoir states.

2.2 Solving Dynamic Optimization Problems

There exist several methods for solving DAE optimization problems. As an exten-
sion of calculus of variations, optimal control theory has become a branch of math-
ematical optimization for deriving optimal control laws. Optimal control laws can
either be obtained by Pontryagin’s minimum principle (Pontryagin, 1987), which is
a necessary condition for an optimum, or by solving the Hamilton-Jacobi-Bellman
(HJB) equation (Navasca and Krener, 2000). The latter is both a necessary and
sufficient condition for optimality when it is solved over the entire state space. Both
methods can be used to derive optimal control laws continuous in time, specified
by differential equations that describe the optimal path of the controlled variable.
As a results, these methods does not require a discretized mathematical model of
the system. However, these methods are not suitable for reservoir optimization.
The remainder of this chapter will instead focus on direct methods. To this end,
the concept of non-linear programming is needed, and is therefore presented first.

2.2.1 Non-Linear Programming

In mathematics, nonlinear programming (NLP) is the process of solving an opti-
mization problem. The problem is defined by a system of equalities and inequalities,
over a set of unknown real variables, along with an objective function to be maxi-
mized or minimized. The variable is here given by x ∈ Rn. Some of the constraints,
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or the objective function, are nonlinear. A common, general formulation reads

min
x

J(x) (2.8a)

s.t ci(x) = 0, i ∈ E (2.8b)
ci(x) ≤ 0, i ∈ I (2.8c)

where Equation (2.8a) is the objective, Equation (2.8b) represents equality con-
straints, and (2.8c) inequality constraints. The reader is referred to Nocedal and
Wright (1999) for further fundamental theory on mathematical optimization.

Several algorithms exists for solving NLP problems. If gradients are available,
sequential quadratic programming (SQP) (Gill et al., 2002; Schittkowski, 1986),
interior point (Kawajir et al., 2010) and generalized augmented Lagrangian (No-
cedal and Wright, 1999, chapter 17) are different approaches used to solve NLPs.
It goes without saying that gradients are crucial for these algorithms, both for run-
time performance and convergence properties. Methods for obtaining gradients are
evaluated in Appendix A.

NLP problems can also be solved by derivative-free optimization (DFO) algorithms.
These algorithms are practical for problems where gradients are not available. How-
ever, DFO algorithms suffer from many drawbacks, and are usually outperformed
by derivative-based algorithms2. As of today, there has yet to be discovered how
DFO algorithms can robustly handle general constraints. Moreover, according to
(Nocedal and Wright, 1999, pg. 221), derivitive-free algorithms are only effective
for small-scaled problem. An example of DFO is the well-known Nelder-Mead
algorithm (Nelder and Mead, 1965).

2.2.2 Direct Methods
A popular idea is to solve the dynamic optimization problem as a NLP problem.
Strategies built on this idea are known as direct methods. Because problems that
are continuous in time consists of infinitively many decision variables, they must
be discretized in time in order for a NLP algorithm to solve the problem. The
concept for all direct methods is to first discretize the problem, and then optimize
in the next step using NLP algorithms. This is why direct methods are refereed to
as discretize, then optimize methods.

Direct methods are divided into sequential and simultaneous approaches. In short,
sequential methods execute optimization and simulation sequentially, while simul-
taneous methods execute optimization and simulation simultaneously. For appli-
cations within the process industry, Binder et al. (2001) provides an extensive
description of problem formulations, and solution strategies. Indirect methods are
also included.

A key distinction between sequential and simultaneous approaches is that sequen-
tial methods strictly uses manipulated variables as optimization variables, whereas

2If gradients exits, and can be obtained sufficiently efficient.
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simultaneous methods also embeds discretized state variables as optimization vari-
ables. There also exists in-between solutions like the Multiple Shooting method,
which utilizes a trade-off between the sequential and simultaneous approach. So-
lution strategies for DAE Optimization problems are categorized in figure 2.1. A
neat summery of the approaches is provided by Binder et al. (2001):

• Sequential simulation and optimization
A numerical integrations method solves the model equations exactly in every
iteration of the optimization algorithm, given initial conditions and a set of
controls.

• Simultaneous simulation and optimization
State equations and control profiles are fully discretized. The resulting set of
equations and constraints then enter the transcribed optimization problem as
nonlinear constraints. These constraints are allowed to be violated during the
optimization procedure. At the solution however, they need to be satisfied.

Figure 2.1: Classification of DAE Optimization strategies. Adapted from (Biegler,
2010).

An advantage for all direct methods is that they directly find good approximated
solutions, feasible to the state equations. On the other hand, the quality of the
methods are subject to the level of accuracy when discretizing the controls, and
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possibly the states. The single shooting (SS), and the multiple shooting (MS)
method are presented in the upcoming sections.

2.2.3 Single Shooting
The direct single shooting method is a sequential strategy that transforms an in-
finite dimensional DAE optimization problem into a finite dimensional problem.
This is achieved by discretization of the control signal u(·). This is why the method
is also referred to as control vector parameterization (Sargent and Sullivan, 1978).
The single shooting method approximate the state-profiles by solving the DAE
with a suitable numerical scheme, given a set of parameterized controls. Conse-
quently, the states can be viewed as a function of the controls only, such that
state-variables are eliminated as decisions-variables in the OCP. The SS-algorithm
sequentially optimizes the parameterized controls, and solves the DAE. This proce-
dure is illustrated in figure 2.2. Denote that in practice, the DAE is often embedded
into a dedicated simulator, such that it is necessary to interface the NLP algorithm
with the simulator.

The first step when deriving the method is to divide the entire time-horizon [ts tf ]

Figure 2.2: The sequential strategy for the single shooting method. At each iteration,
a set of intermediate decision variables are generated by the NLP. These are given to a
suitable numerical DAE solver (the simulator), which compute the state-profiles. The
state profiles are then again fed back to the NLP, which computes a new set of decision
variables. In addition, the simulator must provide gradients if it is required by the NLP
algorithm.

into smaller segments

ts = t0 < t1 < ... < tN−1 < tN = tf (2.9)

For ease of notation, let the interval I = [t0 tN ] denote the entire horizon, and
let the interval Ii = [ti ti+1] denote a local interval. Next, the controls must
be discretized. To this end, a parameterization on the form ũ(t, q) is used, which
depends on the control-parameter vector q ∈ Rnq . The simplest parameterization
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is piecewise constant controls, which yields

ũ(t, q0, q1, . . . , qn−1) , qi, t ∈ Ii (2.10)

This type of parameterization also allow for more complex control trajectories.
However, only piecewise constant controls are considered in this thesis. In the OCP
defined in Equation (2.3), the objective function is comprised by state variables,
algebraic variables, and control inputs. As mentioned, state profiles are obtained
by solving the DAE based on the control-vector, such that the objective may be
viewed as a function of the controls only. Therefore, both the constraints and
objective may be seen as implicit functions of u(·). As such, the single shooting
approach allows for the compact NLP formulation

min
ũ

J(ũ) (2.11a)

s.t ci(ũ) = 0, i ∈ E (2.11b)
ci(ũ) ≤ 0, i ∈ I (2.11c)

where u ∈ RNnu . An appropriate NLP algorithm is used to solve the problem. The
single shooting approach leads to a small, unstructured problem, as the problem is
reduced in space, by eliminating state and algebraic variables as decision variables.

A drawback for the SS method is that it might not be suitable for unstable systems,
as state-profiles may be unbounded. In addition, as simulation is performed coher-
ently from t0 until tf , it is not possible to utilize parallelism to speed up simulation.
Parallelism is desirable for large-scale systems where simulation is computationally
expensive. On the other hand, the single shooting approach is often simple to im-
plement, and easy to understand. An illustration of the method is shown in Figure
2.3.

2.2.4 Multiple Shooting
A major drawback for the SS approach is that it may struggle when encountering
unstable, or even poorly conditioned dynamic systems (Biegler, 2010). In particu-
lar, this may lead to one of the three following issues; state-profiles that explodes,
failure of the DAE solver, or that the NLP solver experience troubles with conver-
gence. An elegant solution to this problem is to incorporate more state variables
into the NLP formulation - which is the idea behind the multiple shooting method.
The method is discussed in several papers, among others (Biegler, 2007), (Biegler
et al., 2002) and (Leineweber et al., 2003).

A relatively simple description of the method is proposed by Biegler (2010), which
starts out by dividing the time-interval into smaller segments. Unlike pure sequen-
tial approaches, MS solves an independent IVP for each shooting interval, based
on the DAE together with guessed initial conditions. Control-signals are treated
in the same manner as with SS, thus a control-vector parameterization is still ap-
plied. In addition, new equality constraints must be included to enforce that the
initial condition at each interval is equal to the state at the end of the trajectory at
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Figure 2.3: An illustration of a single shooting simulation. Here, both the controls and
the states are scalars, thus x, qi ∈ R. The states profile (illustrated in the upper graph)
is found by solving the DAE, given a set of parameterized controls (lower graph).

the previous interval. However, infeasible path algorithms may utilize that these
constraints can be violated during intermediate iterations. A possible multiple
shooting formulation reads

min
ũ

J(ũ) (2.12a)

s.t xi−1(ti−1) = xi0, i = 2, . . . , N (2.12b)
xi(0) = xi0 (2.12c)
uiL ≤ ui ≤ uiU , i = 1, . . . , N (2.12d)
xiL ≤ xi(ti) ≤ xiL, i = 1, . . . , N (2.12e)
ũiL ≤ ũi(ti) ≤ ũiL, i = 1, . . . , N (2.12f)

Together with the DAE system

ẋi(t) = f i
(
xi(t), yi(t), ũ

)
(2.12g)

xi(ti−1) = xi0 (2.12h)
gi
(
xi(t), yi(t), ũ

)
= 0, (2.12i)

t ∈ (ti−1, ti], i = 1, . . . , N

where ũ ∈ RNnu , Equation (2.12a) is the objective, (2.12b) the new equality con-
straints that enforces continuity across intervals, (2.12c) initial conditions, and
(2.12d) - (2.12f) bounds the variables ũ, y, x. Furthermore, Equation (2.12g) de-
notes the systems differential equations partitioned into intervals, (2.12h) gives
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initial conditions for each interval, and (2.12i) are algebraic equations partitioned
into intervals. A relative simple illustration of the Multiple Shooting method is
shown in Figure 2.4. The multiple shooting approach leads to a large, but struc-

x1
0

q0

q1

qN−1

t0 t1 t2 tN−1 tN

x(t)

t

t

ũ

x1
0

xN0

x1(t1)

x2(t2)
xN (tf )

Figure 2.4: Multiple Shooting applied to an unstable system. Adapted from (Biegler,
2010)

tured problem.
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Chapter 3

Reservoir Simulation

Reservoir simulation is a field within engineering aiming to simulate and predict
how fluids flows through porous media. A reservoir simulator is here a tool for
evaluating large-scale numerical models describing this subsurface flow. Simulation
of reservoirs started in mid 1950s (Lie, 2014), and the technique was to a large
degree developed during the 1970s and 1980s (Carlson, 2003). At the time, the
technique was the newest reservoir tool, and consequently it encountered a great
deal of skepticism. The technique has however matured over the years, and the
scepticism has slowly diminished. Reservoir simulation is today an important tool
for oil companies, providing qualitative and quantitative prediction of fluid flow.

3.1 Background
A major obstacle for reservoir engineering is the inability to directly reach the
reservoir, due to its location beneath the surface. The reservoir can be anything
between a small pocket of oil located right beneath the surface, to a huge reservoir
that stretches across several square kilometres, often under remote seas (Lie, 2014).
In contrast to topside facility equipment, the reservoir cannot be directly observed
nor manipulated. This poses a great challenge, because the reservoir properties
can only be determined to a certain degree. The information that can be assem-
bled from the reservoir with today’s technology, often restricts to seismic surveys,
measurements obtained from drilled wells, and rock samples. Unfortunately, this
information is highly uncertain. For instance, information obtained from a well is
only valid in a small region around the well, and the uncertainty increases with
the distance from the well. Seismic surveys can have more than one solution to a
particular set of data. Furthermore, as mentioned in Chapter 1, the spatial distri-
bution of important parameters such as porosity and permeability are also often
poorly known. The true model of the reservoir is consequently impossible to con-
struct, and the goal should rather be to keep the models as accurate as possible.

Lie (2014) argues that the reservoir models used in the early days of simulation
usually were a Cartesian two-dimensional grid, with somewhere around 102 − 103
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gridcells building the whole reservoir. As of today, the technology is able to handle
models with gridcells down to the meter scale, which can lead to models consisting
of millions of cells. He further argues that stratigraphic grids building the volu-
metric descriptions is the industry standard, but other more complex models based
on unstructured grid experience increasing popularity. See his publication for an
explanation of various types of grids.

Reservoir simulation has numerous areas of application, relevant for all phases of
the reservoir life cycle. In the preproduction phase, simulators can be used as a
supporting tool for determining the number of wells, and their location within the
field. They are also employed to help maximizing economic recovery, by generating
long-term depletion strategies for the reservoir. Bellout et al. (2012) even proposes
a joint optimization method for well placement and optimizing controls. Other
typical usages during preproduction is to help determining the original oil in place
(OOIP) and original gas in place (OGIP), figures which are of great significance
for long-term field development decisions. This can be exemplified by selection and
scaling of top-side facility equipment.

During the production phase, the operator typically seeks to maximize net present
value (NPV), delaying water-break through, maintaining reservoir pressure and
monitoring gas to oil ratio (GOR). Moreover, one is often interested in estimating
uncertain parameters through history matching. Reservoir simulators can be help-
ful tools for achieving these goals.

Reservoir simulation is dependent upon reliable reservoir models in order to provide
meaningful results. The conceptual model of the reservoir should include every rel-
evant aspect of the reservoir, such as its shape and location, fluids contained in the
field, properties of the reservoir rock, the natural driving mechanisms, and visual-
izations of flow patterns. However, reservoir properties changes with time, which
should be accounted for in the model. Good simulation results requires continuous
updates based on newly gathered information. From time to time this may even
require that the entire model must be discarded, and a new model must be built
up from scratch.

3.2 Mathematical Modeling
This section is based on the two-phased isothermal flow model proposed by Lie
and Mallison (2013), and intends to briefly introduce mathematical modeling of
flow through porous medium. The two-phase model accounts for the fact that
the reservoir is filled with both hydrocarbons and water. The model could also
be extended to a multiphase model, where additional phases like a gaseous phase,
could be included. The fluids are referred to as phases if they are immiscible, and
separated by a sharp interface. A two-phase system is commonly divided into a
wetting1 and a non-wetting phase. This is on a micro-scale given by the contact
angle between the solid surface and the fluid-fluid interface. On a macro-scale

1Wetting denotes the ability of a fluid to maintain contact with a solid surface.
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however, both phases are assumed to be present at the same location. To this
end, the term saturation is used to denote the volumetric fraction that is occupied
by each phase. The saturations must always sum to unity, thus

∑
i Si = 1. For

the two-phased system composed of the wetting and non-wetting phase, this yields
Sw + Sn = 1. Now, a multiphase extension of Darcy’s laws founds the basis as the
first basic equation for reservoir modeling

~vα = −Kkrα
µα

(∇pα − ρα~gs) (3.1)

where α ∈ {w, n} denotes the wetting and non-wetting phases, ~vα is the superficial
fluid velocity, K is the permeability, krα the relative permeability, µ the fluid
viscosity, ~g the gravity vector, ρ density and p pressure. The second basic equation
is the mass conservation of each phase

∂(ραSαφ)
∂t

+∇ · (ρα~vα) = qα (3.2)

where qα denotes the fluid source/sink term that represents the wells which ei-
ther extract or inject fluids. Furthermore, interfacial tension may cause pressure
difference between the phases, known as the capillary pressure

pcnw = pn − pw
The capillary pressure is on a macro-scale often assumed to be a function of satu-
ration. It is common to reformulate the basic equations to flow equations for fluid
pressure, and transport equations for saturations, to help reveal their nature. A
manipulation of the equations leads to a system for one phase pressure and one
saturation. The capillary pressure appears explicitly in the latter, and the result-
ing equations are nonlinear and strongly coupled. The coupling can be reduced by
introducing a global pressure p = pn−pc. The complementary pressure pc contains
saturation dependent terms, which is defined

∇pc = fw∇pcnw, fw = λw
(λw + λn)

where fw is a dimensionless fractional-flow function that measures the fraction of
the total flow that contains the wetting phase. This is defined from the phase
mobilities

λα = krα
µα

For the incompressible and immicisble case, the basic equations can now be ex-
pressed in a so-called fractional form, which consists of an elliptic pressure equation

∇ · ~v = q, ~v = −K (λn + λw) +∇p+K(λW ρw + λnρn)~g (3.3)

where the total velocity reads ~v = ~vn + ~vw. The second basic equation becomes
the following parabolic saturation equation

φ
∂Sw
∂t

+∇ · fw(Sw) [~v +Kλn (ρw − ρn)~g +Kλn∇pcnw] = qw
ρw

(3.4)
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3.2.1 Multiphase, Multicomponent Flow
The two-phase equations describing immiscible flow may easily be extended to
include more phases. However, this leads to issues where parameters like relative
permeability can be more challenging to define. Each phase may consist of more
than one single chemical specie, which are grouped into fluid components. The
basic conservation laws are expressed for each component ` because components
may transfer between phases and change the composition

∂

∂t

(
φ
∑
α

c`αραSα

)
+∇ ·

(∑
α

c`αρα~vα

)
=
∑
α

c`αqα (3.5)

c`α denotes the mass fraction of component ` in phase α, ρα is the density of phase
α, ~vα is phase velocity, and qα is phase source. However, additional equations
are needed to the model, and closure relations such as PVT models and phase
equilibrium conditions are needed for specific fluid systems. Different choices for
closure relationships are appropriate for different reservoirs and different recovery
mechanisms.

3.2.2 Black-Oil Model
The black-oil model is the most common model within reservoir simulation. This
model uses a simple PVT description, where chemical species are lumped together
to form two components at surface conditions. The first component contains the
heavy hydrocarbon component, the oil, while the second contains the light com-
ponent, the gas. For these lumped components the chemical composition remain
constant for all times. Denote that the lightweight component may partially, or
completely, be dissolved in the oil phase at reservoir conditions. However, the liq-
uid and vapour phases of hydrocarbons do not dissolve in the water phase. For
many reasons, the black oil models are often formulated as conservation of volumes
at standard conditions, rather than conservation of component masses. This is
achieved by introducing the formation volume factors

Bα = Vα
Vαs

where Vα is the volume occupied by component α at reservoir condition, and Vαs
denotes the same volume at surface conditions. Similarly, the gas solubility factor
is given by

Rso = Vgs
Vos

and represents the the volume of the gas measured at standard conditions, dissolved
at reservoir conditions in a unit of stock-tank oil (at surface conditions). The
resulting conservation laws then reads

∂

∂t

(
φραs
Bα

S`

)
+∇

(
ραs
Bα

~v`

)
= qα α ∈ {o, w} (3.6a)
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∂

∂t

(
φρgs
Bg

Sg + φRsoρ
g
s

Bo
S`

)
+∇ ·

(
ρgs
Bg

~vg + Rsoρ
g
s

Bo
~v`

)
= qg (3.6b)

3.2.3 Well Model
The last important piece of the puzzle is the well model, which couples the reservoir
to the rest of the facility, by representing flow of fluids in and out of the reservoir.
Today, wells are built in any thinkable vertical and horizontal layout, but is in
the simplest form a vertical hole that penetrates the reservoir, in which fluids can
flow in and out. A well that penetrates several sedimentary layers in the reservoir
can also introduce cross-flow between layers. The well model intends to accurately
represent the flow through the wellbore, and should provide equations that relate
the pressure in the wellbore to the flow. In this way, the equations should compute
the flow if the pressures are known, and oppositely, compute the pressure if the
flow is known.

A volumetric discretization of the flow equations leads to a significant difference
between the average pressure in the perforated grid-block and the pressure in the
wellbore. As the size of the wellbore is relatively small compared to the grid-block,
a large pressure gradient appears in a small region inside the perforated block. The
common approach is to use either an analytical or a semi-analytical solution on the
form

−q = WI(pb − pwb) (3.7)

that relates wellbore pressure pwb to the numerically computed average perforated
grid-block pressure pb and the flow q. The term WI is the well index, representing
geometric characterizations of the well, and properties of the surrounding rock.
According to (Lie and Mallison, 2013) the most used well model assumes steady
state radial flow, and a 7-point finite difference characterization. For an isotropic
medium, on a Cartesian grid with cells ∆x×∆y ×∆z, this reads

WI = 2πK∆z
ln r0/rw

, r0 = 0.14(∆x2 + ∆y2) 1
2

where K is the permeability, rw the radius of the well and r0 the effective block
radius, at which the steady state pressure equals the computed block pressure.

3.2.4 Discretization
In order to numerically evaluate the reservoir equations on a computer they must be
discretized in both time and space. Commercial simulators often use fully implicit
discretization to solve the nonlinear system (3.6), but there also exists sequential
methods. These methods can vary in choice of primary unknowns, linearizion,
temporal and spatial discretization, and also the order of which the different steps
are applied to derive the set of discrete equations. An example of the latter is the
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implicit pressure, explicit saturation (IMPES) method which is an experimental
solver for compressible, miscible black-oil type flow and transport (Lie and Malli-
son, 2013). For further information regarding the IMPES method, and additional
information on typical explicit and implicit Euler discretization for reservoir sim-
ulation, see (Jansen, 2013, pg. 90-99). See (Gravdahl and Egeland, 2002, part 5)
for general numerical simulation.

3.3 MRST
The MATLAB Reservoir Simulation Toolbox (MRST) is an open-source reservoir
simulator, developed and distributed by SINTEF Applied Mathematics, under the
terms of GNU General Public License (GPL). Though it initially was intended as a
toolbox for rapid prototyping, demonstration of new simulation methods, and mod-
eling concepts on unstructured grids, it has been applied to large and complicated
grids with success. However, it is not intended to be as realistic and comprehen-
sive as commercial simulators like Eclipse (Schlumberger), Nexus (Haliburton) and
CMG Suite (CMG). An important drawback for most commercial simulators is
that the source code is not available for the user, implying that the simulator must
be treated as a black-box, containing possibly unknown logic. This is not ideal
from a research point-of-view. On the other hand, it is of great significance for
reproducibility of research, and for interpreting results, that MRST is open-source.

MRST consists of two main parts. The first part is the core, which offers the
following basic functionality (Lie et al., 2012)

• Grids: a common data structure and interface for all types of grids.

• Parameters: a data structure for petrophysical parameters, common inter-
face for fluid models, routines for setting and manipulating boundary condi-
tions, source/sinks, well models etc.

• Units: MRST works in strict SI-units, but supports conversion to and from
other unit system such as field units. Unless reading from en Eclipse input
format, the user is responsible for explicit conversion and consistency of units.

• Reservoir state: data structure for pressure, fluxes and saturations.

• Postprocessing: visualization routines for scalar cell and face data, and
also well information.

• Solvers: the toolbox contains several flow and transport solvers.

• Linear algebra: MRST relies on MATLAB’s built-in linear solvers, but
these can also be replaced by specialized solvers.

The second part consist of add-on modules, such as (Lie et al., 2012)

• Deck reader: contains support for input of complete simulation decks in
the ECLIPSE format, including input reading, conversion to SI units, and
construction of MRST objects for grids, fluids, rock properties, and wells.
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• Adjoint formulations: implements strategies for production optimization
based on adjoint formulations.

• Fully implicit solver: This module contains a set of fully implicit solvers
for a variety of flow problems, and uses automatic differentiation to calculate
Jacobians.

In order to describe the subsurface flow-process, MRST use two models (Lie et al.,
2012). The first is a mathematical flow model that describes how fluid flows through
a porous medium, consisting of partial differential equations based on mass conser-
vation of fluid phases, alongside with necessary constitutive equations. The second
is a geological model that describes the reservoir, which is built up as a grid, where
each grid-cell is populated with geophysical properties. The properties in the geo-
logical model are used as inputs to the flow model. The two models, in combination
with models of the wells, builds up the entire simulation model.

MRST also support automatic differentiation, such that derivatives can be com-
puted efficiently by either forward or adjoint sensitivity, outlined in Appendix A.
Efficient computation of gradients is especially relevant for gradient-based opti-
mization and history matching, applications that are important for most simula-
tors.

Control switching is implemented as a default option, in order to calculate feasi-
ble simulations with respect to well constraints, such as limitations on wellbore
pressure and maximum-flow. The concept of control switching is further discussed
in Section 4.2 as an instance of reactive control. However, there are only certain
constraints that can be specified in MRST, which is

• Maximum pressure for injectors

• Maximum rate for injectors, phase specific or for total liquid rate.

• Minimum pressure for producers

• Maximum rate for producers, phase specific or for total liquid rate.

For the work in this thesis, it is unfortunate that minimum rate constraints on pro-
ducers and injectors cannot be specified, because it negatively impacts the heuristic
presented in Section 4.3.2. The heuristic uses control switching in MRST to handle
output constraints.

3.3.1 Two-Phase Black-Oil Flow Model
The case studies in Chapter 5 are only concerned with two-phased black oil models,
consisting of a liquid oil-phase and an aqueous water phase. For a comprehensive
derivation of different flow-models used in MRST, the reader is referred to the
original publications (Lie, 2014), (Krogstad et al., 2015) and (Lie et al., 2012).
However, Codas et al. (2015) provides a neat summary of the two-phase black-oil
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flow model that is used for the cases in Chapter 5, which the remainder of this
chapter is based on. The two-phase model can be derived by considering the mass
conservation principle, and Darcy’s law together with the capillary pressure. The
continuous-time model reads

∂

∂t

(
φSα
Bα

)
= ∇ · (Tα∇Φα) + qα

Bα
, α ∈ P (3.8a)

Tα = kr,α
µαBα

k, α ∈ P (3.8b)

Φα = pα −
ρα
Bα
‖g‖ z, α ∈ P (3.8c)

Sw + So = 1 (3.8d)
pc,w = po − pw (3.8e)

The nomenclature for the symbols in Equation (3.8) is listed in Table 3.1.

Table 3.1: Nomenclature for two-phase flow model

Symbol Definition

P ∈ {o, w} The set of phases denoted as subscript, oil and water respectively

φ Rock porosity

Sα Fluid saturation

Bα Fluid formation volume factor

qα Volumetric flow rate

kr,α Fluids relative permeability

µα Fluid viscosity

pα Absolute pressure of fluid

ρα Density at standard conditions

‖g‖ Gravity absolute value

z Height, increases in the same direction as gravity

pc,w Capillary pressure between phases

Tα Fluid transmissibility

λα Fluid mobility (= kr,α
µαBα

)

Furthermore, the reservoir porous medium is denoted by Ω ∈ R3, in which the
model (3.8) is valid. It is assumed that φ, Bp and µp depend on po, while kr,p and
pc,w depend on Sw. The flow qp through the wells is a boundary condition, given
as a rate itself, or as well bottom hole pressures along with well equations, relating
both variables. The solution of a reservoir simulation are the functions po and Sw,
on the reservoir domain Ω, and on the time range (to, tf ], given initial conditions
po(t0) and Sw(t0).
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3.3.2 Discretization

As discussed in Section 3.2.4, the model defined in Equation (3.8) must be dis-
cretized in order to be numerically evaluated on a computer. To this end, it is dis-
cretized in space by the Control Volume Finite Element method (CVFE), while the
implicit integration scheme Backward-Euler (Gravdahl and Egeland, 2002) ensures
discretization in time. Furthermore, wells are linked to the reservoir by including
discrete well equations. The discrete model reads (Codas et al., 2015)

0 = 1
tk − tk−1

([
φiSiα
Biα

]
k

−
[
φiSiα
Biα

]
k−1

)
−

 ∑
j∈N(Ωi)

λi,jα T
i,j(Φjα − Φiα) + qiα

Biα


k

(3.9a)

0 =
qiα,k
Biα,k

−

[ ∑
w∈Wi

W I
w,iλ

w,i
α

(
pwbh − piα − ρiα ‖g‖ (zwbh − zi)

)]
k

(3.9b)

0 = 1−
(
Siw + Sio

)
k

(3.9c)
0 =

(
pic,w − pio + piw

)
k

(3.9d)

The nomenclature for the symbols used in (3.9) is listed in Table 3.2. The dis-
cretized system has four variables describing the reservoir conditions, namely the
saturations Siw,k, Sio,k and pressures pio,k, piw,k, for each step k and each block i.
In addition, one variable describes the well BHP. Using Equation (3.9b)-(3.9d),
the variables piw,k, Sio,k and qip,k are placed in (3.9a). This is possible due to the
approximation of the density in the well tubing in (3.9b) by the density of the
perforation grid-block. Thus, at each time instant, and in each grid block, one are
left with two equations and two variables (pio,k and Siw,k) describing the grid block
conditions, and |W| variables (pwbh) describing well conditions.
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Table 3.2: Nomenclature for the discretized two-phase flow model (3.9)

Symbol Definition

k Subscript, the time step in which the expression is evaluated

i ∈ G Superscript, expresses averaging on the corresponding variable in the grid block

i.e φi =
∫

Ωi
φdw/

∫
Ωi

1dw

G The set containing all grid blocks that constitute the reservoir domain Ω

N(Ωi) The set of neighboring grid block to Ωi

λi,jα Upstream mobility, where j ∈ N(Ωi). λi,jα = λjα if Φjα > Φiα, otherwise λ
i,j
α = λiα

T i,j Constant that depends on block geometry

Wi A set which can have cardinality 0 or 1, containing the well with a perforation in

the grid block i

W I
w,i Productivity index, dependent on the geometry of the well w in the grid block i

λi,jα Well perforation upstream mobility. It is the mobility of the associated perforation

grid block if the well is a producer, or the mobility if the injected fluid at the

perforation grid block condition if the well is an injector

pwbh Well bottom hole pressure measured at height zwbh

3.3.3 Implicit Simulation Step
First, let xk = (pio, Siw)k define the discrete reservoir state, where i ∈ G, and let
yk = (qwα , pwbh)k define the algebraic output variables, where α ∈ P and w ∈ W.
Given initial conditions xk−1, the solution of the simulation step must satisfy the
following DAE

0 = Rc(xk−1, xk, yk) (3.10a)

0 = qwα,k −
∑
i∈Gw

qiα,k α ∈ P, w ∈ W (3.10b)

0 = B(yk, uk) (3.10c)

where

• Rc in Equation (3.10a) equals (3.9a) after substituting in (3.9b)-(3.9d)

• Equation (3.10b) links the flow variables in yk to their corresponding perfo-
ration flow variables. The well perforation flow variables, obtained by (3.9b),
are related by their common well BHP. This is represented in an aggregated
way as 0 = Qw(xk, yk)
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• Equation (3.10c) implements one equality constraint for each well. It links
well variables yk to the well control target uk. A well control target is usually
a fixed BHP or flow during a time-step, therefor, these equations are linear
equalities.

• There are |P||G| + |P||W| + |W| variables, and the number of equations are
equal.

In each timestep, MRST solves (3.10) with Newton steps that yields

−Rlc = ∂Rlc
∂xl

∆lx+ ∂Rlc
∂yl

∆ly

−ql,wα,k +
∑
i∈Gw

ql,iα,k = ∂Qlw
∂xl

∆lx+ ∂Qlw
∂yl

∆ly

−Bl(yk, uk) = ∂Bl

∂yl
∆ly

For ease of notation, the set of equations described in Equations (3.10) are com-
pressed into

0 = R(xk−1, xk, vk, uk) (3.11)

The Newton-system can then be put as the following matrices

−Rl =


∂Rlc
∂xl

∂Rlc
∂yl

∂Qlw
∂xl

∂Qlw
∂yl

0 ∂Bl

∂yl


∆lx

∆ly

 (3.12)

the superscript variable l introduced in the latter equations represent the Newton
iteration number. For ease of notation, subscript k is removed. The variable ∆
represents the size of the Newton step. Furthermore, it is assumed that the Ja-
cobian

[
∂Rk
∂xk

, ∂Rk
∂vk

]
is non-signular, a property which can be ensured by proper

parameterization of the fluid model and reservoir discretization.

As most of the time for a reservoir optimization procedure is used to solve (3.12),
it is according to (Codas et al., 2015) important to tune the linear solvers cor-
rectly, and to configure automatic differentiation procedures correctly, to exploit
the sparsity of the Jacobian

[
∂Rlc
∂xl

]
.
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Chapter 4

Handling Constraints in
Reservoir Optimization

The overall goal for this thesis is to evaluate methods that deal with constraints
in optimization for reservoir management. The particular optimization problem of
interest is to manage well-trajectories in a medium term waterflooding operation,
by determining targets for pressures and rates. Three approaches are outlined
and reviewed in this chapter, which are constrained and unconstrained control
optimization, the reactive control strategy, and methods with simulator-embedded
constraints. In addition, an in-between strategy of unconstrained optimization and
simulator-embedded constrained is developed.

An important property that is exploited in this chapter is the time-varying mapping
between flow and pressure at the wellbore. This relation is given by the well model,
and a possible instant was given in Equation (3.7), which for convenience is restated

−q = WI(pb − pwb)

stating the relation between the average pressure pb in the perforated gridblock,
the bottom hole pressure pwb and the flow q. This is sketched for a producer and
an injector in Figure 4.1a and 4.1b, respectively.

There exist many possible constraints for wells in an oil-gathering production net-
work. Examples of constraints on a producer are:

• The pressure in the wellbore should not drop below a certain threshold, in
order to lift the fluid to the surface.

• The pressure in the wellbore should not be greater than the surrounding
reservoir pressure, as this reverses the flow-direction.

• There could also be constraints on the production facility, that requires that
either the total flowrate, or the rate of a particular phase, must be limited.
This constraint can appear on particular wells, on groups of wells, or on all
wells combined.
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Pressure

Rate

pmin pres

(a) Producer
Pressure

Rate

pres pmax

(b) Injector

Figure 4.1: Sketched relation between pressure and rate. Note that the flow is defined
positive out of the injector, and into the producer.

And likewise for an injector

• The pressure in the wellbore should not exceed a certain threshold, as this
may harm the reservoir by damaging the rock. In a long perspective, this
can affect long-term recovery issues.

• The pressure in the wellbore should not be lower than the surrounding reser-
voir pressure, as this reverses the flow-direction.

• The amount of available fluid to inject can be limited, such that the flowrate
must stay below a limit. This constraint can appear for particular wells, on
groups of wells, or all wells combined.

Combined rate constraints are however not considered further in this thesis.
Remark 4.1. The physical actuator that manipulates the well is usually a choke-
valve, and possibly an additional valve to control gas-lift. At a medium term
perspective the fast dynamics of the valve-control can be disregarded. Instead, it
is rather pressure or rate that is considered as the controlled variable.
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4.1 Constrained and Unconstrained Control Optimization

4.1 Constrained and Unconstrained Control Op-
timization

During the last decades there has been a tremendous evolution in terms of avail-
able computational power. This has made it possible to use complex optimization
algorithms in a broad range of applications. Typical large scale examples ranges
from crew scheduling issues in the airline business, to planning production levels
in the industry for several years ahead. Optimizing the waterflooding operation is
an example of the latter.

According to Jansen (2011), the first publication on gradient-based optimization of
waterflooding was proposed by Asheim (1988). They achieved NPV improvements
of 2-11% for a hypothetical case. Later followed (Virnovsky, 1991), (Zakirov et al.,
1996), (Sudaryanto and Yortsos, 2000), (Sudaryanto and Yortsos, 2001) and (Dolle
et al., 2002). Jansen further argues that the industry uptake of gradient-based
methods was almost not present until the terms smart field and smart wells ap-
peared in the industry, and the interest started to flourish. DFO has also been
considered for reservoir management, and Echeverría Ciaurri et al. (2010) demon-
strated the applicability of derivative-free methods for challenging problems.

Furthermore, Brouwer and Jansen (2004) shows how dynamic optimization can be
used to increase the NPV for a flooding-operation with smart-wells. They also
categorize how pressure and rate constraints, in addition to the discount factor,
impact the results of the optimization. Another interesting study was conducted
by Peters et al. (2010), which invited a group of different companies to perform
history matching and optimization of controls. A synthetic field was considered,
and the study is known as the Brugge Benchmark. The companies selected dif-
ferent approaches, ranging from adjoint-based optimization to strategies based on
neural networks. The outcome of the study showed big variations in the results ob-
tained, but most of the companies that went for adjoint-based optimization showed
promising results.

4.1.1 Optimization Problem
The optimality of the waterflooding operation is usually measured with a net
present value (NPV) function, and the objective is to maximize this function, sub-
ject to the operational constraints. To this end, the optimization variable u is
typically bottomhole pressures or flow set-points for wells. Jansen (2011) proposes
the following formulation for optimizing the waterflooding operation. First, let the
reservoir equations be given by

Rxk(uk, xk−1, xk) = 0, k = 1, 2, . . . ,K

where xk are the reservoir states, usually given by the pressure and saturation in
each gridcell. This equation can be seen as the part of Equation (3.11) that relates
the reservoir states between time-steps k. The initial conditions of the reservoir
is specified by x0 = x̆0, a vector of initial state variables. Furthermore, output
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equations in terms of well models are included to link the wells to the reservoir

Ryk(uk, xk, yk) = 0, k = 1, 2, . . . ,K

where Ryk(·) is a vector valued function, and y is a vector of output variables.
Equation (3.9b) is an example of such equation. Both input and output variables
are, as mentioned, rates and pressures down hole. Each phase (oil, gas, water)
may be considered as outputs for producers. Moreover, because most simulators
solve the reservoir equations implicitly, it follows that the Jacobians of partial
derivatives ∂Rxk

∂uk
,
∂Rxk
∂xk−1

and ∂Rxk
∂xk

tends to be available from the simulator. This is of
great significance for gradient calculation, which is further discussed in Appendix
A. Now, let the following general function represent the objective function

J(u1:K , y1:K(u1:K)) =
K∑
k=1

Jk(uk, yk)

where Jk is the contribution of J in each time-step k. The objective is typically
given as a NPV function. A common used function for a two-phased oil-water
system reads

J =
K∑
k=1

roqo,k − rwqo,w − riqi,k
(1 + b)

tk
τt

∆tk (4.1)

where r0 denotes the fixed oil price, rw and ri are the water production and the
water injection cost, respectively. These parameters are assumed to remain con-
stant over the horizon. The production-rates of oil and water are denoted by qo,k
and qw,k, and the injection-rate of water by qi,k. However, these variables are usu-
ally a subset of either the input variable u or the output variable y. To account
for depreciation, the discount rate b is added for a certain reference time τt. ∆tk
specifies the step-size for the kth step. Note that this size may vary between steps.

The beginning of this chapter introduced possible constraints on wells. To gener-
alize further, it can sometimes be desirable to also constrain reservoir states. Let
all such constraints be represented by the following equalities and inequalities

ck(uk, yk, xk) = 0, k = 1, 2, . . . ,K

dk(uk, yk, xk) ≥ 0, k = 1, 2, . . . ,K

The optimization problem is then summarized by

max
u1:K

K∑
k=1

Jk(uk, yk) (4.2a)

s.t Rxk(uk, xk−1, xk) = 0, k = 1, 2, . . . ,K (4.2b)
x0 = x̆0 (4.2c)
Ryk(uk, xk, yk) = 0, k = 1, 2, . . . ,K (4.2d)
ck(uk, yk, xk) = 0, k = 1, 2, . . . ,K (4.2e)
dk(uk, yk, xk) ≥ 0, k = 1, 2, . . . ,K (4.2f)
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where (4.2b) represents the reservoir equations, (4.2c) the initial condition of the
reservoir, (4.2d) output equations, (4.2e) equality constraints and (4.2f) inequality
constraints. The problem has the following dimensions

• n inputs, i.e. u ∈ Rn

• m states, i.e. x ∈ Rm

• p outputs, i.e. y ∈ Rp

• q equality constraints, i.e. c ∈ Rq

• r inequality constraints, i.e. d ∈ Rd

The gradient of Equation (4.2a) with respect to the controls reads

dJ
duk

= ∂Jk
∂uk

+
K∑
i=k

∂Ji
∂yi

(
∂yi
∂uk

+ ∂yi
∂xi

∂xi
∂uk

)
(4.3)

Assuming that the output equation (4.2d) is an explicit linear algebraic equation,
the terms ∂yi

∂uk
and ∂yi

∂xi
can be computed directly. The terms ∂Jk

∂uk
∂Ji
∂ui

are also easily
computed. On the other hand, the term ∂xi

∂uk
is not trivial to evaluate, because it

implies that the recursive system (4.2b) of discrete time differential equations must
be solved, to connect the state vectors xi at times i = k, k + 1, . . . ,K to the input
uk at time i = k. Therefore, gradients are usually computed by forward or adjoint
sensitivity equations, for reservoir optimization problems. Forward and adjoint
sensitivity, in addition to finite difference approximation of gradients, are included
in Appendix A. The Lagrangian for Problem (4.2) can be written as

L(x1:K , y1:K , u1:K , λg,1:K , λh,1:K , λc,1:K , µ1:K) =
K∑
k=1

Jk(uk, yk) (4.4)

−
K∑
k=1

λx,kR
x
k(uk, xk−1, xk)−

K∑
k=1

λy,kR
y
k(uk, xk, yk) (4.5)

−
K∑
k=1

λc,kck(uk, yk, xk)−
K∑
k=1

µkdk(uk, yk, xk)

where λx,k is the multiplier associated with the reservoir states, λy,k relates to
the output equations, λc,k relates to the equality constraints, and µk relates to the
inequality constraints. The KKT conditions for the problem can then be formulated

37



Chapter 4. Handling Constraints in Reservoir Optimization

(the notation 1 : k is left out for ease of notation)

∇uL(x∗, y∗, u∗, λ∗g, λ∗h, λ∗c , µ∗) = 0 (4.6a)
Rxk(u∗k, x∗k−1, xk

∗) = 0 k = 1, 2, . . . ,K (4.6b)
Ryk(u∗k, x∗k, y∗k) = 0 k = 1, 2, . . . ,K (4.6c)

ck(u∗k, y∗k) = 0 k = 1, 2, . . . ,K (4.6d)
dk(u∗k, y∗k, x∗k) ≥ 0 k = 1, 2, . . . ,K (4.6e)

µ∗k ≥ 0 k = 1, 2, . . . ,K (4.6f)
λ∗x,kR

x
k(u∗k, x∗k−1, xk

∗) = 0 k = 1, 2, . . . ,K (4.6g)
λ∗y,kR

y
k(u∗k, x∗k, y∗k) = 0 k = 1, 2, . . . ,K (4.6h)

λ∗c,kck(u∗k, y∗k, x∗k) = 0 k = 1, 2, . . . ,K (4.6i)

A suitable NLP algorithm is used to find a control sequence u∗ satisfying (4.6). If
the inequality constraints (4.2f) were not present, a control-sequence could instead
be found by solving the first-order necessary Euler-Lagrange equations.

Solving Problem (4.6) yields in an open-loop solution given by u∗. However, by
repeatedly re-solving the problem during the reservoirs life-cycle, and continuously
updating the initial state x0 based on newly gathered information from the real
field, the loop is closed by means of a NMPC, as outlined in Section 2.1.

4.1.2 Robust Optimization
Handling uncertainty was introduced as a great challenge for reservoir simulation
in Chapter 1 and 3. The parameters that are used to describe the reservoir, such
as permeability and porosity, are only estimates of the true values. According to
Jansen (2013), this is a large obstacle on the road to industry uptake of gradient-
based optimization methods. This problem is addressed by van Essen et al. (2009)
with a synthetic reservoir, commonly known as The Egg Model. They do not
consider a single deterministic reservoir, but instead an ensemble that consists of
100 different realizations of the permeability field. As such, multiple subsurface
models are present. They propose a method to maximize the expected value of the
production strategy, subject to all realizations. The traditional approach is rather
to optimize the NPV for a single deterministic realization, which they refer to as
Nominal Optimization (NO). The robust optimization problem reads

max
u1:K

Eθ
[
J(u1:k, y

1:Nr
1:k (u1:k), θ1:Nr )

]
≈ max

u1:K

1
Nr

Nr∑
i=1

J
(
u1:k, y

i
1:k(u1:k), θi

)
where θi are uncertain model parameters, and yi are output vectors of realization
i = 1, 2, . . . , Nr. They considered three strategies for optimizing the production
strategy, namely reactive control, nominal optimization and robust optimization.
See their publication for further information. However, it is worth mentioning that
the results of the study showed that it is beneficial to use robots optimization, rather
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4.1 Constrained and Unconstrained Control Optimization

than nominal optimization, in the presence of multiple geological realizations. Ac-
cording to Jansen (2013), not only is the mean recovery of the 100 simulations
highest with the robust strategy, the standard deviation is also the lowest. How-
ever, the robust approach comes at a price, as it needs to perform many additional,
costly simulations. Indeed, both forward and adjoint simulation are needed for all
geological realizations at each iteration.

To keep the scope of this thesis tractable, robust optimization has not been fur-
ther considered. However, a simplified version of the egg model has been used to
conduct numerical experiments, presented in Chapter 5.

4.1.3 REMSO
A particular algorithm made to solve problems like (4.2) is proposed by Codas et al.
(2015), with the reservoir multiple shooting optimization (REMSO) algorithm. It is
tailored to solve output constrained oil-reservoir control optimization problems, by
means of multiple shooting. REMSO is tightly interfaced to MRST, but can also be
programmed to interface other simulators. The following features are implemented:
• Reduced sequential quadratic programming (rSQP)

• The lift-opt trick (Albersmeyer and Diehl, 2010), alongside with a reduction
procedure.

• A multiplier-free penalty strategy to tune an `1 merit function for line-search

• Non-monotone linesearch strategy, commonly known as the watchdog strat-
egy (Nocedal and Wright, 1999, pg. 446). Used to prevent the Maratos-effect.

• Adjoint and forward sensitivity calculations as suitable.

• Damped BFGS (Nocedal and Wright, 1999, pg. 537) for updating the Hessian
approximation.

• Initial guesses of simulation profiles for each simulated point. The profiles
are based on a linear prediction of the simulation profiles x and y. See their
publication for further details, in particular Appendix A.

Codas et al. (2015) shows that the linear prediction drastically reduces the number
of required Newton-Iterations to solve the implicit simulation steps in MRST, see
section 3.3.3. REMSO formally solves the following problem

min
Θc

J =
∑
k∈K

Jk

(
xfk , yk, uκ(k)

)
(4.7a)

s.t xfk − xk+1 = 0, k ∈ K, (4.7b)

R
(
xk, x

f
k , yk, uκ(k)

)
= 0, k ∈ K (4.7c)

bxl ≤ xk ≤ bxu, k ∈ K (4.7d)
byl ≤ yk ≤ b

y
u, k ∈ K (4.7e)

bul ≤ uj ≤ buu, j ∈ U (4.7f)
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Chapter 4. Handling Constraints in Reservoir Optimization

for the simulation steps k ∈ K = {1, 2, . . . ,K}. The optimization variable Θc

consist of the control variables u, the initial states x, the final states xf , and the
algebraic output variables y.

The control is parameterized, and divided into nu steps, such that U = {1, 2, . . . , nu}
is the set of control periods. There is a surjective function that maps the simulation-
step indices to the control-step indices, κ : K → U . It follows that κ(k1) ≤ κ(k2)
if k1 < k2, thus nu ≤ K. Furthermore, Equation (4.7a) is the negative separa-
ble NPV function1. Equation (4.7b) represents the additional MS constraints that
enforces continuity over shooting intervals. Equation (4.7c) denotes the reservoir
dynamics defined in Section 3.3.3 with Equation (3.11). Equation (4.7d) specifies
bounds on reservoir states, Equation (4.7e) is an output constraint that bounds the
algebraic output well-variables, and Equation (4.7f) bounds the controlled variable
u. Thus, (4.7d)- (4.7f) can be viewed as part of (4.2f).

However, as the Jacobian [∂Rk
∂xf
k

, ∂Rk∂yk
] is assumed not-singular by construction, see

Section 3.3.3, yk and uk determine an unique solution due to the implicit function
theorem. Consequently, a reformulated optimization problem reads

min
Θ

J =
∑
k∈K

Jk
(
xk+1, yk, uκ(k)

)
(4.8a)

s.t xk+1 = Rxk
(
xk, uκ(k)

)
, k ∈ K (4.8b)

yk = Ryk
(
xk, uκ(k)

)
, k ∈ K (4.8c)

bxl ≤ xk ≤ bxu, k ∈ K (4.8d)
byl ≤ yk ≤ b

y
u, k ∈ K (4.8e)

bul ≤ uj ≤ buu, j ∈ U (4.8f)

Equation (4.8b) represents state-transitions, as xfk = xk+1, ensuring continuity
across shooting intervals. The algebraic output variables y are obtained by (4.8c).
The optimization variable is consequently reduced to Θ, which consists of x, v and
u

Codas et al. (2015) show that the multiple shooting approach requires the compu-
tationally expensive state sensitivity matrix, which often is why the single shooting
approach instead is favoured for reservoir optimization. The reader is referred to
their publication for techniques used to overcome these issues, but some advantages
of their approach are worth mentioning:

• The multiple shooting approach allows for parallelism opportunities, which
for large-scale reservoirs can be of great significance.

• It is trivial to implement state constraints on the shooting interval boundaries,
as these variables are independent decision variables with the MS approach.

• Numerical accuracy can be differentiated between the shooting intervals. As
most geological models are inaccurate in the first place, there is usually no

1max J(u) equals min −J(u), see Nocedal and Wright (1999).

40



4.1 Constrained and Unconstrained Control Optimization

need of calculating very accurate solutions towards the end of the horizon,
due to unavoidable error propagation throughout simulation.

• MS converges differently than SS, and can be faster.

REMSO is one of the methods that are used to solve the numerical examples in
Chapter 5. The REMSO implementation is distributed by (Codas, 2015). The
version that is used in this work simulates the reservoir in parallel.

4.1.4 IPOPT
The optimizer IPOPT (Kawajir et al., 2010) is also used to solve the numerical
examples in Chapter 5. It is included as a single shooting alternative to REMSO,
using output constrained adjoint-based optimization. Keeping the notation from
the previous section, IPOPT solves the following problem

min
u

J =
∑
k∈K

Jk
(
xk+1, yk, uκ(k)

)
(4.9a)

s.t xk+1 = Rxk
(
xk, uκ(k)

)
, k ∈ K (4.9b)

yk = Ryk
(
xk, uκ(k)

)
, k ∈ K (4.9c)

byl ≤ yk ≤ b
y
u, k ∈ K (4.9d)

bul ≤ uj ≤ buu, j ∈ U (4.9e)

In addition, state-constraints like (4.8d) could easily be included also in IPOPT.
They are however left out, because there is of no interest to bound the reservoir
states in the numerical examples in Chapter 5, and they have no further purpose for
the single-shooting approach. Unlike REMSO, a linear prediction of each simulated
step is not implemented, such that Newton-Iterations are not warm-started. As
a result, combined with the inability to parallelize simulation, it is expected that
IPOPT will be a relatively slow algorithm compared to REMSO.

The single shooting approach reduces the problem in space, as the decision variables
only consist of the parameterized controls, as outlined in Section 2.2.3. All other
variables and functions that depend on simulations, are calculated from a forward
simulation. Gradients are obtained through adjoint backward simulations.

IPOPT is downloaded as binaries, and easily linked to Matlab. A framework
that interfaces IPOPT to MRST, together with efficient calculation of gradients,
is distributed by Codas (2015).

41



Chapter 4. Handling Constraints in Reservoir Optimization

4.2 Reactive Control

Reactive control is a simple and intuitive heuristic for operating both producers
and injectors. Unlike other methods, this approach does not require complex op-
timization procedures. Its simplicity and fairly proven efficiency is among others
why this method is often a preferred practice in the industry. van Essen et al.
(2009) argues that the approach does not suffer from an inaccurate, or even com-
pletely wrong, geological model of the reservoir when it is applied to a real field.
This is because the strategy is model-free. Model-errors, such as deviations from
true permeability and porosity field, can possibly severely affect the performance
of controls optimized by model-based procedures.

It is typical to fix production wells at either maximum allowed rate, or at the min-
imum allowed BHP with the reactive strategy. Injectors can similarly be fixed at
maximum rate, or maximum pressure. Furthermore, it is common to shut down
the producer entirely when a certain condition is met, often when the water-cut
exceeds a specified threshold. This implies that the well is not longer profitable,
and only contributes negatively to the NPV. In reservoir simulation, the well can
also be shut exactly once it starts to contribute negatively to the NPV, account-
ing for the discount factor. If shut-in is not implemented, the method allows for
injecting water directly to a producer. This will, of course, negatively affect the
NPV, because both injecting water and handling produced water comes at a price.
The total injection rate should be scaled accordingly if the injectors are controlled
by rate, and producers are shut.

Reactive control can also be extended to comply with output constraints. For in-
stance, if a producer is operated by rate control, the minimum pressure limit can be
reached as the reservoir depletes and the surrounding pressure declines. A reactive
control strategy to handle this event can be to switch the well from rate control
to pressure control, in order to maintain the minimum required pressure. This is
illustrated in Figure 4.2. Similarly, if the well is operated by pressure control, it
can lead to a flowrate through the wellbore that exceeds a maximum rate limit. At
this point, the well can be switched from BHP control to rate control. Injectors can
be operated in the same manner, switching between rate and pressure control as
appropriate. This kind of reactive control is actually how MRST copes with output
constraints that are embedded directly into the simulator. Moreover, MRST can
switch to rate-control of specific phases (oil/gas/water) to handle phase-specific
rate constraints. Even though phase-specific rate control can be difficult to apply
at real fields2, it can easily be used for simulation based optimization.

Reactive control is a greedy approach, aiming to maximize current throughput of
fluids. This can contradict with long-term depletion strategies, as long-term recov-
ery can be damaged. A negative consequence that can follow from reactive control
is early water-breakthrough.

2It needs sufficiently accurate phase-specific flow measurements
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Rate

Pressure

Time

pmin

Figure 4.2: Control-switch based reactive control illustrated for a producer. The con-
trolled variable is highlighted in red.

4.2.1 Implementation
Reactive control is implemented and used for the numerical experiments in Chapter
5. It combines control-switching to handle constraints and shut-in of producers.
Moreover, wells are initially set to operate at their maximum/minimum allowed
limit in the following manner

• Producers controlled by BHP operate at the minimum allowed BHP.

• Producers controlled by rate (water/oil/both) operate at the maximum al-
lowed rate.

• Injectors controlled by BHP operate at the maximum allowed BHP.

• Injectors controlled by rate (water) operate at the maximum allowed rate.

Each well switches control-mode within MRST when necessary, in order to comply
with output constraints. The producers are permanently shut for all remaining
simulation steps, if they at some point start to contribute negatively to the NPV.
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Chapter 4. Handling Constraints in Reservoir Optimization

4.3 Optimization Techniques with Simulator Em-
bedded Constraints

To the authors knowledge, there seems to exists little formal research on optimiza-
tion techniques with simulator-embedded constraints. However, reactive control
based on control-switching, as outlined previously in this chapter, are though im-
plemented on simulators like MRST and Eclipse. This leaves the simulator respon-
sible for handling the output constraints.

In the following sections, two other heuristics are presented, whereas the first is
developed during this work. This heuristic needs a modified NLP algorithm, which
is presented first. The major workload of this thesis was to implement the heuristic
and the NLP algorithm, as modifications deep within the software project (Codas,
2015), and MRST were needed. This required that large, multidisciplinary software
had to be explored and understood.

4.3.1 OSSO: an Output-unconstrained Single Shooting Op-
timizer

In order to implement the reformulation-based heuristic presented in Section 4.3.2,
it is necessary to interface MRST with an open-source optimization algorithm.
This is because modifications are needed within the optimizer to detect, and more
importantly, to handle control switching in forward simulations. For these reasons,
a new output unconstrained gradient-based optimizer is developed. The optimizer
REMSO is used as template. However, the complexity that comes with the multiple
shooting approach is undesirable in this context, especially because continuity of
state-profile cannot be ensured. This may cause that constraints are being violated
in an intermediate multiple shooting simulation, that would not be violated in a
consistent forward simulation. In particular, this can make the simulator switch
the controlled-target for a well, based on violated constraints that in reality would
be feasible in a single shooting simulation. Also, the large problem size that comes
with the multiple shooting approach sets high requirement on the hardware used
for optimization, due to the vast amount of memory needed.

With the above challenges in mind, the optimizer has been been modified to in-
terface MRST in a single shooting fashion. The new optimizer is from here on
denoted as Output unconstrained Single Shooting Optimizer (OSSO). Important
features that are reused from REMSO is a damped BFGS update of the Hessian
(Nocedal and Wright, 1999, pg. 537), and the third-order polynomial approxi-
mation of the linefunction. Gradients are still computed by forward or adjoint
sensitivity as appropriate, using the same framework developed by Codas et al.
(2015). In addition, the linear predictor is kept, providing each simulated point an
initial guess of the simulation profile. The watchdog strategy used in REMSO is
however removed. This is because it introduces unnecessary complexity, when one
of the goals is to keep the optimizer simple, in order to highlight it’s important
features related to control-switching. Instead, OSSO is implemented with a tradi-
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tional linesearch strategy, using a polynomial approximation of the line-function.
OSSO solves the following problem

min
u

J =
∑
k∈K

Jk
(
xk, yk, uκ(k)

)
(4.10a)

s.t xk+1 = Rxk (xk, uk) , k ∈ K (4.10b)
yk = Ryk(xk, uk), k ∈ K (4.10c)
bul ≤ uj ≤ buu, j ∈ U (4.10d)

where Equation (4.10b)-(4.10c) is solved with single shooting, based on the current
control vector uκ(k). Similarly to REMSO, (4.10a) denotes the negative NPV
function. However, MRST is allowed to switch the controlled variable at each step
k. Due to the single approach, the problem is reduced in space, as all variables
can be obtained through a forward simulation, given the controls. In each iterate,
the search direction ∆u is computed by solving a QP which is common for reduced
SQP algorithms (Schmid and Biegler, 1994; Nocedal and Wright, 1999). This reads

min
∆u

1
2∆uTM∆u+∇uJ∆u (4.11a)

s.t bul ≤ u+ ∆u ≤ buu (4.11b)
(4.11c)

in which the step ∆u honor the input constraint (4.10d). M is the approximated
hessian of the objective J . The QP problem given in (4.11) approximates the
NLP (4.10) in a neighborhood of the current iteration point, and consequently
convergence cannot be ensured from any starting point. Shorter steps may how-
ever improve the objective value at the iteration, and the length of the step ∆u
must be adjusted to ensure improvement with respect to the previous iteration.
Equation (4.11b) ensures that the algorithm never visit infeasible areas w.r.t the
input constraints.

As the problem is unconstrained in terms of violation of states and output variables,
the merit-function simply equals the objective function. The line-search strategy
on the merit is reused from the REMSO implementation (Codas, 2015), and Co-
das et al. (2015) proposes the following approach to approximate the line function
by a third-order polynomial: The line-function is evaluated at the bounds, and a
third-order polynomial is adjusted to the function values and directional gradients.
The minimum of the polynomial is evaluated, and a new function evaluation is
calculated at this point. If this point satisfies the Wolfe-conditions (Nocedal and
Wright, 1999, p. 33), the line-search procedure finished successfully. Otherwise
new polynomials are fit to the two new segments. A new function evaluation is
performed at the minimum of the polynomial for these segments. If neither point
still do not satisfies the the Wolfe-conditions, the process is repeated until a prede-
fined maximum of number of iterations is reached. The polynomial approximation
of the line-search is shown in Figure 4.3.
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Chapter 4. Handling Constraints in Reservoir Optimization

The linear predictor builds an estimate of the state difference ∆x and the output
difference ∆y in each major iteration, based on the (full step) point û = uk + ∆u,
thus

x̃ = xk + α∆x
ỹ = yk + α∆y

where α ∈ (0, 1] denotes possible backtrack. See Codas et al. (2015) for computa-
tion of ∆x and ∆y. x̃ and ỹ are given to MRST as initial guesses of the simulation
profiles, to warm-start the Newton-Iterations that solves the reservoir equations.
Remark that, if constraints are not embedded into MRST, OSSO works just as a

explain intuitively the building blocks of merit functions; how-
ever, tuning them is a complicated task.

We propose an exact l1-penalty function:

/q;sðHÞ ¼ wþ qðkcxk1 þ kcvk1Þ þ sx;>W b̂
x

l ;R
x; b̂

x

u

� �
þ sv;>W b̂

v

l ;R
v; b̂

v

u

� �
; ð20Þ

where W returns the elementwise absolute values of the constraint
violations. This merit function balances the objective and con-
straints in the problem given in Eq. 6.

The modified bounds ðb̂x

l ; b̂
x

u; b̂
v

l ; b̂
v

uÞ refer to ðbx
l � sx;bx

uþ
sx; bv

l � sv;bv
u þ svÞ, respectively (i.e., the relaxed bounds of the

elastic problems Eqs. 18 and 19).
One should tune the penalty parameters q,s to guarantee com-

patibility with the PRSQP steps. The compatibility condition
requires the decrease of a selected merit function along the
PRSQP step. This condition is achieved for sufficiently large pen-
alties (Schulz 1996). Leineweber (1998) suggests a usual choice
for the multipliers:

qi ¼

qi�1; if qi�1kcik1 � jki>cij þ 2q̂kcik1

jki>cij
kcik1

þ 3q̂; otherwise:

8>>><
>>>:

� � � � � � � � � � � � � � � � � � � ð21aÞ

si ¼ max
1

2
ðsi�1 þ jliþ1

u � liþ1
l jÞ; jliþ1

u � liþ1
l j

� �
; ð21bÞ

where c ¼ ðcx; cvÞ; k ¼ ðkx; kvÞ; s ¼ ðsx; svÞ, and q̂ is a positive
constant. The tuning procedures Eqs. 21a and 21b were proposed
in Biegler et al. (1997) and Powell (1978), respectively. Observe
that an estimate for k is not available. Nevertheless, the left-prod-
uct of the Lagrange multipliers and constraints are estimated from
the first-order optimality conditions:

k>c ¼ k
@c

@H
DH

¼ �DuTMDu� @w
@H

DH� ðlu;> þ ll;>ÞDH: ð22Þ

This penalty selection does not guarantee convergence in general.
To guarantee convergence, Leineweber (1998) suggests an algo-
rithm that increases further q if the norm of its associated con-

straints does not decrease after some iterations. However, with
high penalty parameters, the iterates are forced to remain close to
feasibility, possibly avoiding large steps in making progress to-
ward optimality. Consequently, notwithstanding rigorous tuning
procedures to guarantee convergence, the penalty parameter q is
allowed to decrease for efficiency reasons. Therefore, after the
suggestion proposed in Leineweber (1998), we allow q to assume
the lowest value given by the conditions (Eq. 21a) if kcik1 <

kci�1k1 and jki;>cij < jki�1;>ci�1j.
With an l1-merit function, steps that make good progress to

convergence might be rejected. Therefore, Chamberlain et al.
(1982) proposed a watchdog technique that extends the line-
search algorithm. The watchdog line search allows full-step
lengths during line search even though the merit function does not
decrease sufficiently. If this is the case, the watchdog saves the
current iterate and requires a recover and repair of the bad per-
formance in a future step. If, after some iterations, the required
progress is not achieved, the watchdog procedure restores the
saved state, and normal line-search is performed.

We implemented a one-step watchdog technique, as described
in Byrd and Nocedal (1990) with two modifications.

• If the full step makes a significant increase when compared
with the gradient at step-length zero, then the watchdog is
not started, and normal line search is enforced. The aim is to
diminish the number of failed watchdog steps.

• If the watchdog fails, the watchdog procedure restores the
initial point and not the intermediate point, even if this
decreases the merit function. This option reduces storage
and calculations.

Line Search on the Merit Function. After a suitable merit func-
tion is defined, a univariate optimization problem is solved to
determine a step length on the PRSQP direction. The formulation
of this problem is

min
ls

/q;sðĤÞ ð23aÞ

s:t:: Ĥ ¼ Hþ lsDH ð23bÞ

0 < ls � lmax; ð23cÞ

where H is the current estimate of the optimal solution, DH is the
PRSQP step, and /q;s is a merit function designed according to
the Globalization Strategy—Merit-Function Selection and Tuning
subsection. The maximum step length lmax is conditioned by the
hard bounds ðbH

l ;b
H
u Þ, and it is computed according to

max
lmax

lmax ð24aÞ

s:t: : bH
l � Hþ lmaxDH � bH

u ð24bÞ

0 < lmax � 1: ð24cÞ

Each objective-function evaluation of the problem in Eq. 23
requires a reservoir simulation, which is computationally demand-
ing. Nevertheless, one can parallelize this simulation for each
shooting interval in K and for each requested point in the search
line. Consequently, the required wall-clock time for simulations is
not proportional to the length of the prediction horizon and the
number of simulations, but proportional to a single-step cost, pro-
vided ideal parallelization.

We propose a line-search algorithm that approximates the line
function with a third-order polynomial. The first steps of the algo-
rithm are illustrated in Fig. 2. The line function is evaluated at the
bounds, and a third-order polynomial is adjusted to the function
values and directional gradients. The minimum of this polynomial
within the line is obtained, and a new function evaluation is calcu-
lated at this point. If this point satisfies the Wolfe conditions
(Nocedal and Wright 2006), the line-search procedure finishes
successfully; otherwise polynomials are fit to the two new seg-
ments. A new function evaluation is requested at the minimum of
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Fig. 2—Line-search algorithm. Approximation of the line func-
tion with a third-order polynomial.
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Figure 4.3: Third order polynomial approximation of the line function φ. The figure is
originally published in (Codas et al., 2015).

regular (output and state unconstrained) SQP-based algorithm. OSSO is outlined
in Algorithm 1. Remark that D(a; b) denotes the derivative of a in the direction
of b.

4.3.2 Heuristic Based on Problem Reformulation
A new heuristic for control optimization in reservoir management has been devel-
oped during this thesis. This is based on problem-reformulation, and simulator
embedded constraints. The concept is to leave the simulator responsible for han-
dling output constraints, while using an output-unconstrained optimizer to search
for the optimal control sequence. To this end, some of the complexity is removed
from the optimizer. If a control-sequence generated by the optimizer make the
simulator switch control during simulation, in order to handle output constraints,
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Algorithm 1: OSSO
Data: Simulator Υ(u, x̃, ỹ, J(·)), initial controls u0, objective function

J(u, x, y), optimality tolerance ε, Hessian initialization M0,
line-search parameter η

Result: u, x, y, J , M
Set i← 0;
if Initial guess of x and y not provided then

Compute (x0, y0, J0)← Υ
(
u0,∼,∼, J(·)

)
;

if Simulator switches control then
Return (u0, x0, y0, J0,M0);

end
end
repeat

Compute gradient ∇uJ by adjoint simulation;
Compute a step ∆u by solving the QP given in (4.11);
Update M i with BFGS ;
Set û = ui + ∆u;
Build linear prediction ∆x and ∆y based on û ;
Set x̃ = xi + ∆x;
Set ỹ = ui + ∆y;
Compute (xi, yi, J i)← Υ(û, x̃, ỹ);
if Simulator switches control then

Return (û, xi, yi, J i,M i);
end
if J(û) ≤ J(ui) + ηD(J(ui); ∆u) then

Set ui+1 ← û ;
else

Find αi by third-order polynomial approximation of J, such that;
û← ui + αi∆u;
(xi, yi, J i)← Υ(û, x̃, ỹ);
J(û) ≤ J(ui) + ηαiD(J(ui); ∆u);
Set ui+1 ← û;

end
i← i+ 1;

until ‖∆u‖ < ε;
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the gradient w.r.t the control-sequence can not be computed. This is because the
simulator changed what was the controlled variable, to become an algebraic vari-
able instead. This variable is rather calculated from the output well-equation. To
continue optimization at this stage, two options are considered. The first option is
to perform a backtrack operation along the current search direction3 ∆u by reduc-
ing the step-length parameter α, and check if the simulator still switches control
with the backtracked control sequence. If this do not occur, then optimization
may safely proceed in traditional manner. On the contrary, if control switching
still occurs, the second option is considered; namely to terminate the entire op-
timization problem at the current iterate, and start an entirely new optimization
with reformulated controls. The troublesome variable(s) are switched between rate
control and pressure control as appropriate. Backtracking is however not used for
the cases in Chapter 5.

The last trialpoint in the terminated optimization is used as the starting point
(x0, y0, u0) for the new problem. Constraints are implicitly handled, as the vi-
olated variable(s) becomes controlled variable(s) in the subsequent problem. As
mentioned earlier, a single phase (oil, water) can be rate controlled in MRST. The
heuristic is outlined in Algorithm 2.

The motivation for developing the heuristic is that handling output constraints
with a formal treatment in the NLP algorithm can be computationally demanding.
In addition, the heuristic may remove some of the complexity that are associated
with traditional constrained optimization.

An additional augmented version of the heuristic has also been tested in Chapter 5,
which uses optimized controls from a constrained optimzier, such as REMSO and
IPOPT, as the initial control. The hope for this version is that the ability to refine
control periods where it is appropriate may lead to higher NPV, without having to
solve a more complex problem from scratch. The approximated Hessian from the
initial constrained optimization is reused.

However, there are three major issues that must be addressed, which are discussed
in the upcoming sections.

Absence of certain output constraints
As discussed in Section 3.3, only certain constraints can be specified and handled
by MRST. The following constraints are troublesome:

• Minimum rate, producers and injectors

• Maximum pressure, producers

• Minimum pressure, injectors

This is clearly a challenge, because MRST is not able to handle them as output con-
straints. For instance, if a producer is controlled by rate, it is easy to ensure positive

3Each trial-point is found by the line-search procedure u = ui + α∆u
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Algorithm 2: Heuristic 1: Problem reformulation
Data: Simulator Υ(u, x̃, ỹ, J(·)), initial controls u0, objective J(u, x, y)
Result: u, x, y, J
Choose initial controls u0;
Set initial Hessian approximation M ← I;
Set x, y empty;
repeat

(J, u, x, y,M)← OSSO(J(·),Υ(·), u0, x, y,M);
if OSSO reports control switch in the forward model then

u0 ← Rebuild controls ;
M ← Initialize Hessian;

end
until OSSO returns without control-switching;

flow, because it is a free variable. However, if the same producer is controlled by
BHP, positive flow cannot be ensured because it is an output variable, which again
must be handled by output constraints. This becomes particularly cumbersome for
the heuristic, because all wells are allowed to switch between pressure-control and
rate-control. This is further discussed in Chapter 6.

Reformulation
It is not straight forward to reformulate the controls for the new optimization
problem. Note that the number of control periods j ∈ U often are smaller then
the number of simulation periods k ∈ K. As each control period contains a target
for each well, an optimization problem with nw wells and nu control periods has
nw × nu decision variables.

If control switching occur in a simulation step where the corresponding control
period only cover that particular step, the reformulation is simply to only switch the
wells that switched control during simulation. This does not affect the organization
of the control periods. However, if switching occur in a simulation step where the
corresponding control period cover multiple simulation steps, then several actions
are possible. The simplest is to keep the original organization of control periods also
in the reformulated problem, and switch the control mode for the troublesome well.
However, this strategy also influences the other simulation steps that are covered
by the control period, as the control is also switched for other simulation steps.
This can introduce undesirable effects. In particular, it can leave the heuristic
in a state where it continuously alternate between two (or more) formulations of
the optimization problem. This is a problem if it is not making progress towards
convergence.

Another possibility is to expand the number of control periods, aiming to keep the
reformulated controls feasible in the initial simulation of the restarted optimization.
In this way, earlier simulation steps in the control period that were not switched in
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the terminated optimization, are not affected by the reformulation. This strategy
is illustrated in the following example.

Example 4.3.1 (Control reformulation). Consider an optimization problem with
four simulation periods (K = 4), one control period (nu = 1), and only one well
controlled by rate (nw = 1). During a simulation called by the optimizer, the simu-
lator switches the well from rate control to pressure control in the third simulation
step. The control periods are reorganized in the following manner

Simulation period (k) 1 2 3 4
(Old) control period (j) 1 1 1 1
(New) control period (j) 1 1 2 2

where an additional control period has been added. The simulation steps that
followed after the third simulation step are also set to use the new control period.

Unfortunately, the number of the control periods can blow up by reformulating the
problem in this manner, which ultimately can result in nc = K. On the contrary,
the goal is to achieve the following:

• Counteract that the heuristic alternate between possible formulations.

• Refine control periods in segments where maintaining original control periods
may be difficult.

Hessian initialization

For both performance, and efficiency, it is important to reuse the Hessian approx-
imation obtained in the terminated optimization4. Unfortunately, there has not
been time during this work to perform a proper in-depth analysis of methods for
doing so. Instead, only a simple method has been used. Put simply, rows and
columns are interchanged as suitable, and the matrix is expanded when the num-
ber of control periods are increased. It is not argued that the approach taken is
necessarily a good one. In fact, the numerical cases in Chapter 5 showed that this
also may introduce problems, which is further discussed in Chapter 6.

First, the Hessian of the function f(u) with u ∈ Rn reads

H =



∂2f
∂u2

1

∂2f
∂u1u2

. . . ∂2f
∂u1un

∂2f
∂u2u1

∂2f
∂u2

2
. . . ∂2f

∂u2un
∂2f
∂u3u1

∂2f
∂u2

2
. . . ∂2f

∂u3un
...

...
. . .

...
∂2f
∂unu1

∂2f
∂unu2

. . . ∂2f
∂u2

n


The rows and columns in the Hessian directly related to the affected variable ui, are
set to an identity vector of appropriate dimension. The next example illustrates

4Keeping in mind that SQP-based algorithms use the Hessian to compute the search direction
∆u
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how the Hessian is initialized if the number of control periods are kept in the
reformulated problem

Example 4.3.2 (Hessian initialization, 1). Consider an optimization problem with
one simulation period (K = 1), one control period (nu = 1) and four wells (nw = 4),
all of which are controlled by BHP. During optimization, a simulation called by the
optimizer switches the third well to rate control, and the optimization is terminated
at the current iterate. M1 denotes the approximated Hessian at the terminated
point. The optimization is restarted with all wells controlled by BHP, except for
the third, which is now controlled by rate. The Hessian initialization M2 that is
provided to the optimizer then reads

m1,1 m1,2 m1,3 m1,4
m2,1 m2,2 m2,3 m4,4
m3,1 m3,2 m3,3 m4,4
m4,1 m4,2 m4,3 m4,4


︸ ︷︷ ︸

old approximation M1

−→


m1,1 m1,2 0 m1,4
m2,1 m2,2 0 m4,4

0 0 1 0
m4,1 m4,2 0 m4,4


︸ ︷︷ ︸

new approximation M2

The next example illustrates how the Hessian is initialized if the number of control
periods are increased during problem reformulation.

Example 4.3.3 (Hessian initialization, 2). Consider an optimization problem with
five simulation periods (K = 5), two control period (nu = 2) and two wells (nw =
2), all of which are controlled by BHP. The periods are organized in the following
manner

Simulation period (k) 1 2 3 4 5
Control period (j) 1 1 1 2 2

During optimization, a simulation called by the optimizer switches the second well
to rate control at the second simulation step, and the optimization is terminated
with the current approximated Hessian M1. The optimization is restarted with
all wells controlled by BHP, except for the second well in the (newly appended)
second control period, which is now controlled by rate. Note that what was the
second control period in the previous formulation now has shifted to become the
third control period. The control periods are reorganized in the following manner

Simulation period (k) 1 2 3 4 5
Control period (j) 1 2 2 3 3

And the Hessian initialization M2 that is provided to the optimizer reads


m1,1 m1,2 m1,3 m1,4
m2,1 m2,2 m2,3 m4,4
m3,1 m3,2 m3,3 m4,4
m4,1 m4,2 m4,3 m4,4


︸ ︷︷ ︸

old Hessian M1

−→


m1,1 m1,2 0 0 m1,3 m1,4
m2,1 m2,2 0 0 m2,3 m2,4

0 0 1 0 0 0
0 0 0 1 0 0

m3,1 m3,2 0 0 m3,3 m3,4
m4,1 m4,2 0 0 m4,3 m4,4


︸ ︷︷ ︸

new Hessian M2
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However, it can be argued the both the upper-left and lower-left block matrix
that is reused in Example 4.3.3 is wrong. They are based on contributions from
simulation periods controlled by different control-periods, in the restarted problem.
An idea that has not been further explored in this work, is to scale these values
accordingly. Another simple idea for improvement, is related to the identity block
matrix in the center. If some wells are not switched in the control period, there
should be possible to reuse information for these wells.

It was also considered to approximate affected rows in the Hessian by finite differ-
ence. Although, this may not be tractable when the number of controls nu×nw is
large. The last problem to be mentioned, is that the BFGS in OSSO is not allowed
to correct the Hessian, if a restarted problem is infeasible in the initial run. This
can typically occur if a control period cover multiple simulation steps.

4.3.3 Combining Unconstrained Optimization and Reactive
Control

There exists at least one additional heuristic based on simulator-embedded con-
straints. Kourounis et al. (2014) proposes an heuristic for output constrained op-
timization problems, where an output unconstrained optimization is performed
first. When the initial optimization has converged, the forward model is run once
more using the optimized controls from the output unconstrained optimization.
However, during the final forward simulation, output constrained are handled by
control-switching in the simulator. In this way, the computational effort for the
heuristic is only a little more than that required for optimizing the first problem, as
only one additional forward run of the model is required. For further information
about implementation, and the method itself, the reader is referred to the original
publication.

Even though this heuristic is clearly approximate, the authors argue that is has
some potential advantages over formal methods. The heuristic treatment allows
the simulator to switch controls at any time step during simulation. In some sense,
the heuristic enables a more fine-grained response, which can be viewed as having
many more control variables (although not formally optimized).

To assess the merits of the heuristic, they compare it against a formal treatment
of the constraint within the optimizer SNOPT (Gill et al., 2002). To this end, a
series of four case studies are considered, which are simulated on the automatic
differentiation-based compositional flow simulator AD-GPRS5. Two of the cases
are small and simple grids in two dimensions, while the remaining two are more
complicated grids. In the simple cases, they found that the formal treatment out-
performed the heuristic. In the other cases, the heuristic generated better results
in terms of run-time and NPV.

Their heuristic is implemented, and used to solve the numerical experiments in the
next chapter. The version that is implemented is outlined in Algorithm 3.

5Stanford’s Automatic Differentiation-based General Purpose Research Simulator
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Algorithm 3: Heuristic 2: Output constrained optimization and reactive
control. (Kourounis et al., 2014)
Data: Simulator Υ(·), initial controls u0, objective J(·)
Result: u, x, y, J
Solve an output unconstrained optimization problem;
û ← OSSO(J(·),Υ(·), u0);
Perform a forward run with simulator embedded output constraints, using
the unconstrained optimized controls;
(u, x, y, J))← Υ(û)
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Chapter 5

Numerical Results

Four numerical cases are proposed in this chapter to evaluate the methods that
were presented in Chapter 4. The first (case A) is a simple two-dimensional 10×10
grid, intended to verify the implementation of OSSO. The second (case B) uses the
same grid to investigate the merits of methods in the presence of output constraints.
Two additional cases are included to evaluate the methods on more realistic models.
Hereby, a five-spot model proposed by Bellout et al. (2012) (case C), and one layer
of a single geological realization of the egg model (case D).

The objective function for all cases is a scaled NPV function, similar to the one
given in Equation (4.1). The fixed oil price is set to ro = 1 for each std m3 oil,
water handling cost rw = 0.1, and water injection cost ri = 0.1. The discount
factor is set to b = 0.1. During optimization, all variables1 are scaled to prevent
bad performance, as the initial Hessian approximation and convergence conditions
depends on this (Codas et al., 2015). The scaling factors are manually decided after
exploring the problems beforehand. To mimic reality, The NPVs could also easily
be scaled to realistic values in terms of dollar per barrel, if this were preferable.
The optimality-tolerance for REMSO is set to 10−4, see (Codas et al., 2015, Case
and Results) for more information, and 10−4 for OSSO and IPOPT.

The simulations are performed on a Dell OptiPlex 9020 workstation, with 16 GB
RAM, and an Intel Core i7-4770 quad processor at 3.4 GHz. Simulations are
implemented using Matlab2014a and MRST2014b. QP’s in OSSO are solved with
Matlab’s embedded solver quadprog.

In figures showing well-trajectories, a red line is used for controlled variables, while
a blue line is used for well-variables that are calculated algebraically from well
equations. Moreover, a small circle (o) is used to indicate the beginning of a
control period, in order to visualize the degrees of freedom for the problem. A
small cross (x) is used to indicate each simulation step. Water-rate is denoted by
WRAT, oil-rate by ORAT, and control periods by CP. A star behind a number in
result-tables indicates that this number was the limiting factor for the optimization

1controls, states, well variables, NPV
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Table 5.1: The methods used to optimize the numerical examples in Chapter 5.

# ID Explanation Reference

1 IPOPT Output constrained gradient-based optimization (SS) Section 4.1.4

2 REMSO Output constrained gradient-based optimization (MS) Section 4.1.3

3 OSSO Output unconstrained gradient-based optimization (SS) Section 4.3.1

4 RC1 Reactive control with control switching and well-shut in Section 4.2

5 RC2 Same as RC1, but with the initial control provided by Section 4.3.3

an output unconstrained optimization with OSSO

6 REF1 Reformulation-based heuristic Section 4.3.2

7 REF2 Same as REF1, but initial controls provided by Section 4.3.2

a constrained optimization by REMSO

procedure.

A summary of the methods that are used to optimize the cases is found in Table
5.1. The organization of simulation steps and control periods is explained for all
cases in Appendix B.2.
Remark 5.1. Due to the run-time associated with the optimization on the available
equipment, there has not been time to perform Monte-Carlo like simulations of the
algorithms. As a valid quantitative analysis should be based on a representative
amount of samples, including different parameter-settings and starting points, the
numerical examples must rather be interpreted as an aid to prove concepts, in a
qualitative fashion.
Remark 5.2. A direct comparison between REMSO/IPOPT and the other ap-
proaches is not entirely fair, because REMSO and IPOPT are the only algorithms
that are restricted to use the original control-periods. The other algorithms may
refine the periods as appropriate during forward simulation, or when reformulating
the problem.
Remark 5.3. Plots of well-trajectories optimized with REMSO is obtained by run-
ning a forward simulation using the optimized controls, rather then plotting the
MS simulation directly.
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5.1 Case A: Simple 10x10 Grid - Output Uncon-
strained

The first case is mainly proposed to ensure correct implementation of the out-
put unconstrained optimizer OSSO. The problem is also solved with IPOPT and
REMSO for verification purposes. A simple two-dimensional 10× 10 grid is chosen
to keep the complexity at a minimum. It is equipped with one producer and one
injector, both controlled by BHP, and their location are shown in Figure 5.1. In the
base case, the producer is set to operate at 150 bar, and the injector at 240. The
horizon is divided into 40 simulation steps and four control periods. See Appendix
B.2.

The input constraints for the problem are listed in Table 5.2. The pressure in
all grid-blocks is initialized at 234 bar, and the blocks are populated with equal
petrophysical properties. The complete dataset for the reservoir is listed in Table
B.1. The NPV was scaled with a factor of 105 during optimization. The results

Injector

Producer

0 50 100 150 200

50

100

150

200

Figure 5.1: Case A: Grid. Also used for Case B

Table 5.2: Case A: Constraints

Wellname BHP WRAT ORAT
min max min max min max

Producer 150 240 −∞ ∞ −∞ ∞
Injector 150 240 −∞ ∞

of the experiment are listed in Table 5.3.

Is is straight away observed that all algorithms find the same solution. This indi-
cates that OSSO is implemented correctly.

The well trajectories in Figure 5.2 shows that the producer is kept on the minimum
allowed pressure in the optimized case, while the injecting pressure is somewhat
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Figure 5.2: Case A: Optimized well trajectories. Equal for REMSO, IPOPT and OSSO.

lowered from the base-case, and decreases further with time. Figure 5.3 illustrates
that all algorithms make huge NPV improvement during the first iterations, while
smaller steps are taken afterwards.

As expected, the efficiency of both REMSO and OSSO increase as they progress, il-
lustrated in Figure 5.4. Towards the end, when small steps ∆u are taken, the mean
of the newton iterations closes down to one, indicating almost perfect efficiency.
On the contrary, IPOPT needs roughly the same amount of Newton-Iterations for
each simulated point.

Table 5.3: Case A: Optimization results

Algorithm NPV (×105) Time [min] Iterations CP

Base case 1.1527
1 REMSO 3.1930 6.5 38 4
2 IPOPT 3.1930 11.3 37 4
3 OSSO 3.1930 6.1 33 4

The distribution of oil saturation and pressure (the reservoir states) for the
optimized case is shown in Figure 5.5.
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Figure 5.3: Case A: Progress of objective for the iterations
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Figure 5.4: Case A: Efficiency of the algorithms. Each marked point indicates the mean
number of Newton Iterations (for all timesteps) to solve the reservoir equations.
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Figure 5.5: Case A: Oil saturation and pressure distribution at the end of the horizon,
for the optimized case.

5.2 Case B: Simple 10x10 Grid - Output Con-
strained

This case is proposed to investigate the methods ability to handle output con-
straints, on a simple reservoir. To this end, the reservoir from Section 5.1 is reused.
Because Figure 5.2 showed that the optimal solution for the output unconstrained
case exceeded a production rate of 100 m3 water per day, the constraint is set to 50
m3/day. This accounts for 40 constraints in total, one for each time-step. The con-
straints are listed in Table 5.4. For the base-case, the wells are again operated at
150 and 240 bar. This control is however not feasible w.r.t the output constraints.
The organization of the horizon and control periods are the same as in the previous

Table 5.4: Case B: Constraints

Wellname BHP WRAT ORAT
min max min max min max

Producer 150 240 -∞ 50 -∞ ∞
Injector 150 240 ∞ ∞

case, see Appendix B.2. The results of the experiment are presented in Table 5.5.
REMSO and IPOPT finds the same optimal solution, but REMSO used approxi-
mately half the time spent by IPOPT. The scaled NPV obtained by RC1 is 96.1%
of the solution found by IPOPT and REMSO, and the solution of RC2 is 99.8%
of the same figure. However, RC2 needs the additional time required by OSSO to
converge, whereas RC1 only need a single forward simulation. Furthermore, REF1
and REF2 were limited to 45 iterations, because they started to alternate between
formulations, apparently not making progress towards convergence. Nevertheless,
REF1 obtained higher NPV than REMSO and IPOPT. REF2 generated the high-
est for this case, slightly improving the starting point from REMSO.
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Table 5.5: Case B: Optimization results

Algorithm NPV (×105) Time [min] Iterations CP Reformulations

Base case 1.1527
1 REMSO 3.1620 3.1 31 4 ∼
2 IPOPT 3.1620 6 18 4 ∼
4 RC1 3.0401 0.2 ∼ ∼ ∼
5 RC2 3.1549 6.5 33 ∼ ∼
6 REF1 3.1715 8.3 45* 24 30
7 REF2 3.1735 6.5 45* 17 12

The well trajectories for REMSO/IPOPT, RC1 and REF1 are shown in Figure 5.7.
For REF1 and RC1, this figure illustrates how a well-variable can alternate between
being controlled, and calculated from output equations. The well-trajectories for
the remaining methods RC2 and REF2 are included in Appendix B.3. The pressure
and distribution of oil-saturation in the reservoir is shown in Figure 5.6 for two of
the optimized cases.
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Figure 5.6: Case B: Oil saturation and pressure distribution after optimization
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(e) REF1
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Figure 5.7: Case B: Optimized well trajectories
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5.3 Case C: Five Spot Model
As introduced in Section 1.3, the five spot pattern is frequently used for waterflood-
ing operations. The pattern is in this case applied to a synthetic two-dimensional
60 × 60 grid proposed by Bellout et al. (2012). The reservoir covers an area of
almost 2.1 km2, with a thickness of 24 m. The reservoir, together with the location
of the wells, is shown in Figure 5.8. The reservoir is simulated for 156 steps, divided
into 24 control periods, see Appendix B.2. Unlike the previous cases, the porosity
and permeability parameters varies throughout the grid, shown in Figure 5.9.

Figure 5.9b illustrates that the injector is placed in a high-permeability zone. Be-
cause the producer PROD2 is located nearby the injector, it is expected that this
producer will experience early water-breakthrough. On the contrary, due to its lo-
cation and the permeability-field, PROD1 is expected to produce for a longer time,
before the breakthrough occur. The complete dataset for the reservoir is listed in
Table B.2 in Appendix B. All wells are controlled by BHP. For the base-case, the

INJ1

PROD1 PROD2

PROD3 PROD4

0 500 1000 1500

500

1000

1500

Figure 5.8: Case C: The five spot model

producers are operated at 170 bar, and the injector at 180. Output constraints are
included, specifying maximum allowed production rate of water for all producers.
The constraints are present for all simulation-steps, which adds up to 624 output
constraints in total, summarized in Table 5.6. The results of the optimization are
found in Table 5.7.

IPOPT, REMSO, and OSSO2 were limited to 100 iterations. IPOPT achieved
the highest NPV, and converged after 59 iterations. REMSO did not converge,
but needed considerably less wall-clock time for the 100 iterations it did perform,
than IPOPT used for 59. However, close inspection of the well-trajectories for
IPOPT in Figure 5.11b reveals that the producer PROD2 injects oil around day

2Needed by RC2
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5.3 Case C: Five Spot Model

Table 5.6: Case C: Constraints

Wellname BHP WRAT ORAT
min max min max min max

Prod1 150 200 −∞ 100 −∞ ∞
Prod2 150 200 −∞ 100 −∞ ∞
Prod3 150 200 −∞ 100 −∞ ∞
Prod4 150 200 −∞ 100 −∞ ∞
Inj1 150 200 −∞ ∞
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Figure 5.9: Case C: Permeability and porosity

2500-3500. This also occur with the controls found by REMSO and REF2. The
well-trajectories are infeasible, and is further discussed in the next chapter.

RC1 generated higher NPV than RC2, even though RC2 is based on the optimized
control from OSSO.

REF1 was allowed to iterate for a while, but was manually haltered once there
was discovered that it alternated between formulations, apparently not making
progress. It also expanded the number of control periods from 24 to 61. REF2
slightly managed to improve the solution computed by REMSO, but all the while
REMSO was prematurely haltered, this does necessarily not have to mean any-
thing.

All methods managed to more than double the NPV of the base case. The signif-
icance of the varying permeability field is visualized in Figure 5.10, showing the
distribution of pressure and oil saturation at the end of the horizon. Note that the
high-permeability zone around the injector is almost completely saturated with wa-
ter. All well-trajectories are included in Appendix B.3. Remark that the rate-axis
in these figures is restricted to 600 m3/day, to better reveal the difference between
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Chapter 5. Numerical Results

Table 5.7: Case C: Optimization results

Algorithm NPV (×106) Time [min] Iterations CP Reformulations

Base case 4.2639
1 REMSO 9.5764 76 100* 24 ∼
2 IPOPT 9.6353 474 59 24 ∼
4 RC1 9.5589 3 ∼ ∼ ∼
5 RC2 9.5131 310 100* ∼ ∼
6 REF1 9.5786 470 150* 61 39
7 REF2 9.5851 101 115 30 7

trajectories.
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Figure 5.10: Case C: Reservoir states at the end of the horizon.
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Figure 5.11: Case C: Optimized well trajectories for PROD1 and PROD2
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5.4 Case D: The Egg Model

5.4 Case D: The Egg Model
The Egg Model, which was introduced in Section 4.1.2, is a synthetic reservoir
proposed by Jansen et al. (2004). The model consists of 60× 60× 7 = 25.200 grid
cells, of which 18.553 cells are active. As the non-active cells are at the outside of the
model, surrounding the active cells, the active cells forms the shape of an egg - hence
its name. In most publications, the model has been used to simulate two-phase
(oil-water) flow. Because the model has no aquifer or gas cap, primary production
is almost negligible, and the production mechanism is waterflooding, with the aid
of eight injectors and four producers. A random permeability realization of the
model is shown in Figure 5.12.

fields are almost two dimensional. A sample of six
realizations (each consisting of seven layers) is dis-
played in Figure 1. The combination of the determin-
istic and the ‘stochastic’ model results in an

ensemble of 101 permeability realizations which,
together with the other reservoir and fluid proper-
ties, forms the ‘standard Egg Model’ as described in
this article.

In most publications, the Egg Model has been used
to simulate two-phase (oil-water) flow. Because the
model has no aquifer and no gas cap, primary produc-
tion is almost negligible, and the production mecha-
nism is water flooding with the aid of eight injection
wells and four production wells, see Figure 2. Unfortu-
nately, the details of the parameter settings in the var-
ious publications using the Egg Model are not always
identical. Differences concern fluid parameters, grid
cell sizes, well operating constraints, and production
periods. In addition, the parameter settings have not
always been fully documented which sometimes
makes it difficult, or even impossible, to reproduce the
numerical results of those publications. Therefore, in
this article we present a ‘standard version’ of the Egg
Model which is meant to serve as a standard test case
in future publications. The parameters of the standard
model have been listed in Table 1. Figure 3 displays
the relative permeabilities and the associated frac-
tional flow curve.

Figure 1. Six randomly chosen realizations, displaying the typical structure of high-permeability meandering channels in a low-
permeability background. The vertical scale is exaggerated with a factor two.

Table 1. Reservoir and fluid properties.

Symbol Variable Value SI units

h Grid-block height 4 m
Dx, Dy Grid-block length/width 8 m
φ Porosity 0.2 –
co Oil compressibility 1.0 9 10�10 Pa�1

cr Rock compressibility 0 Pa�1

cw Water compressibility 1.0 9 10�10 Pa�1

lo Oil dynamic viscosity 5.0 9 10�3 Pa s
lw Water dynamic viscosity 1.0 9 10�3 Pa s
k0
ro End-point relative permeability, oil 0.8 �

k0
rw End-point relative permeability, water 0.75 �

no Corey exponent, oil 4.0 �
nw Corey exponent, water 3.0 �
Sor Residual-oil saturation 0.1 �
Swc Connate-water saturation 0.2 �
pc Capillary pressure 0.0 Pa
p
^

R Initial reservoir pressure (top layer) 40 9 106 Pa
Sw,0 Initial water saturation 0.1 �
qwi Water injection rates, per well 79.5 m3/day
pbh Production well bottom-hole pressures 39.5 9 106 Pa
rwell Well-bore radius 0.1 m
T Simulation time 3600 day

Figure 2. Reservoir model displaying the position of the
injectors (blue) and producers (red). The vertical scale is
exaggerated with a factor two.

The egg model 193

ª 2014 The Authors.
Geoscience Data Journal published by Royal Meteorological Society and John Wiley & Sons Ltd. Geoscience Data Journal 1: 192–195 (2014)

Figure 5.12: A geological realization of the full egg model, with injectors (blue) and
producers (red). The vertical scale is exaggerated with a factor two. (Jansen et al., 2004)

INJ1
INJ2

INJ3
INJ4

INJ5

INJ6
INJ7

INJ8

PROD1

PROD3

PROD2

PROD4

0 100 200 300 400 500
0

100

200

300

400

500

(a) Well location

mD
100

1000

10000

(b) Permeability field

Figure 5.13: Case D: The egg model implemented MRST

Due to the wall-clock time required to optimize the model on the available
equipment, only one of the seven vertical layers is used. This comes with an
additional advantage, as cross-flow between layers does not have to be considered
for wells with flow-rate near zero. Codas et al. (2015) mentioned this as a problem.
The model that is implemented in MRST is shown in Figure 5.13.
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Chapter 5. Numerical Results

The injectors are operated by rate, and the producer are operated by BHP. In
order to maintain waterflooding as the primary production method, the pressure-
bounds on the producers are set conservatively around the initial reservoir pressure
of 400 bar. In the base-case, the producers are set to 395 bar, and the injectors
are set to 5 m3/day. As the previous case showed the importance of bounding
rates below for BHP controlled wells, output constraints are incorporated for all
producers, for both the oil and the water phase. This accounts for3 1200 output
constraints. Output constraints on the allowed pressure-region for the injectors
are also included, yielding 2400 additional constraints4. In total, 3600 output
constraints are present. Note that, as outlined in Section 4.3.2, all these constraints
cannot be ensured by REF1 and REF2. The constraints are summarized in Table
5.8. The results of the experiment are listed in Table 5.9, and they highlight some

Table 5.8: Case D: Constraints

Wellname BHP WRAT ORAT
min max min max min max

All 4 producers 390 410 0 ∞ 0 ∞
All 8 injectors 390 410 0 20

Table 5.9: Case D: Optimization results

Algorithm NPV (×106) Time [min] Iterations CP Reformulations

Base Case 2.3186
1 REMSO 3.1091 265 100* 10 ∼
2 IPOPT 3.0027 1180 100* 10 ∼
4 RC1 2.4872 2 ∼ ∼ ∼
5 RC2 2.2983 516 100* ∼ ∼
6 REF1 2.9213 460 55 47 30*
7 REF2 2.0163 480 141 80 30*

important issues. First, it is again observed that REMSO and IPOPT generates
the highest NPV, where REMSO is superior in terms of wall-clock time. RC1
and RC2 only manages to slightly improve the NPV, compared to the base case.
Nevertheless, the most interesting result is that REF2 generates a lower NPV
compared to the base-case, even though the optimal solution from REMSO is used.
Another important observation is that the solution found by REF1 is infeasible
(negative rates), see Figure 5.15e and 5.15f. Both issues are further discussed in
the next chapter.

3Four wells, lower constraints for oil rate and water rate, 150 steps, i.e 4× 2× 150 = 1200.
4Eight wells, upper and lower constrains, 150 steps, i.e 8× 2× 150 = 2400.
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5.4 Case D: The Egg Model

Figure 5.15 shows the well trajectories for PROD2 and INJ1, for REMSO, RC2 and
REF1. Well-trajectories for IPOPT, RC1 and REF2 are found in Appendix B.3.
Distribution of pressure and oil-saturation is shown in Figure 5.14, illustrating the
impact of the varying permeability field etc.

Oil saturation, REMSO
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bar
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Figure 5.14: Case D: Pressure and oil saturation after 10 years. Optimized with REMSO
and RC1

71



Chapter 5. Numerical Results

0 500 1000 1500 2000 2500 3000 3500

−20

0

20

Well: PROD2

q
0
 (

m
3
/d

a
y
)

0 500 1000 1500 2000 2500 3000 3500
−20

0

20

q
w
 (

m
3
/d

a
y
)

0 500 1000 1500 2000 2500 3000 3500

390

400

410

Days

b
h

p
 (

b
a

r)

(a) REMSO

0 500 1000 1500 2000 2500 3000 3500

−20

0

20

Well: INJECT1

q
0
 (

m
3
/d

a
y
)

0 500 1000 1500 2000 2500 3000 3500
−20

0

20

q
w
 (

m
3
/d

a
y
)

0 500 1000 1500 2000 2500 3000 3500

390

400

410

Days

b
h

p
 (

b
a

r)
(b) REMSO

0 500 1000 1500 2000 2500 3000 3500

−20

0

20

Well: PROD2

q
0
 (

m
3
/d

a
y
)

0 500 1000 1500 2000 2500 3000 3500
−20

0

20

q
w
 (

m
3
/d

a
y
)

0 500 1000 1500 2000 2500 3000 3500
0

200

400

Days

b
h

p
 (

b
a

r)

(c) RC2

0 500 1000 1500 2000 2500 3000 3500

−20

0

20

Well: INJECT1

q
0
 (

m
3
/d

a
y
)

0 500 1000 1500 2000 2500 3000 3500
−20

0

20

q
w
 (

m
3
/d

a
y
)

0 500 1000 1500 2000 2500 3000 3500

390

400

410

Days

b
h

p
 (

b
a

r)

(d) RC2

0 500 1000 1500 2000 2500 3000 3500

−20

0

20

Well: PROD2

q
0
 (

m
3
/d

a
y
)

0 500 1000 1500 2000 2500 3000 3500
−20

0

20

q
w
 (

m
3
/d

a
y
)

0 500 1000 1500 2000 2500 3000 3500

390

400

410

Days

b
h

p
 (

b
a

r)

(e) REF1

0 500 1000 1500 2000 2500 3000 3500

−20

0

20

Well: INJECT1

q
0
 (

m
3
/d

a
y
)

0 500 1000 1500 2000 2500 3000 3500
−20

0

20

q
w
 (

m
3
/d

a
y
)

0 500 1000 1500 2000 2500 3000 3500

390

400

410

Days

b
h

p
 (

b
a

r)

(f) REF1

Figure 5.15: Case D: Well trajectories for REMSO, RC2 and REF1
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Chapter 6

Discussion

The merits of the methods that were presented in Chapter 4 are assessed in this
chapter, based on the numerical results in Chapter 5. Each case is first discussed
individually, and a final comparison follows towards the end.

Case A
The results indicated that OSSO was implemented correctly, as the algorithm found
the same control-sequence as REMSO and IPOPT. In terms of runtime, OSSO was
the fastest algorithm to converge, slightly faster than REMSO. Their performance
relative to IPOPT, are most likely due to the reduced simulation effort, illustrated
in Figure 5.4. This highlights the importance of warm-starting Newton-Iterations.
Furthermore, as a forward simulation only took a couple of seconds, the paral-
lelism opportunity that comes with the MS-approach in REMSO, did not realize
its potential, due to the overhead needed for this small-sized problem. This is
emphasized by the fact that the single shooting based OSSO converged faster. To
this end, the problem should probably be of a certain size for the parallelism to be
beneficial.

The second important result is found in Figure 5.3, which shows that the algorithms
make huge NPV improvement during the first iterations. If constraints-violations
are put aside, as both IPOPT and REMSO are infeasible-path algorithms, this
suggest that good solutions can be found relatively quick. Consequently, there
may not always be necessary to let the gradient-based algorithms iterate with very
tight convergence criteria.

Case B
This case was intended to investigate the methods ability to handle output con-
straints. RC1 was of course the fastest method in terms of wall-clock time, as only
one forward simulation is required. In addition, the scaled NPV found by RC1
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Chapter 6. Discussion

was only 4% lower than the value found by REMSO and IPOPT. This indicates
that the simple reactive control heuristic can be used to quickly find better well-
trajectories than the base case. Furthermore, the second reactive strategy RC2
slightly improved the NPV compared to RC1, but at the price of the additional
run-time required by OSSO.

REF1 generated the highest NPV, but also spent the most amount of time. In
fact, as the heuristic seemed to alternate between formulations, it was limited to
45 iterations in total. Already at this stage, this indicates a major drawback for
the heuristic, as it did not manage to converge. This can maybe be resolved, or
improved, by addressing two of issues outlined in Section 4.3.2, namely how to
reformulate the problem, and how to reuse the approximated Hessian. The latter
is particularly important, as the matrix is used to determine the search-direction in
the restarted problem. Furthermore, the number of control periods were expanded
from 4 to 24, drastically increasing the number of decision variables, making the
problem harder to solve. Lastly, the reformulation based heuristic REF2 was also
tried as means of improving the controls found by REMSO, of which it slightly
managed.

Case C
The first key observation in this case is the benefit of the parallelism in the multiple
shooting approach, as REMSO only used 79 minutes for 100 iterations. IPOPT
needed on the other hand 474 minutes for 59 iterations. This does not tell the
entire truth, as IPOPT could be improved by warm-starting Newton-Iterations in
MRST. However, based on these observations, it is likely to believe that parallelism
is of significant importance for problems where simulations are computationally ex-
pensive

The second key observation is that the controls found by REMSO, IPOPT, and
REF2 resulted in infeasible well-trajectories. Indeed, the producer PROD2 started
to inject oil after around 2500 days. These trajectories can obviously not be
achieved on a real field. A lesson learned is that there should be incorporated
output constraints on the minimum allowed flow-rate, for wells controlled by BHP.
Another approach to prevent this issue is to use a-priori knowledge of the system
to adjust the feasible pressure region for BHP-controlled wells. Such knowledge
can for instance be obtained by running forward simulations in advance.

RC1 obtained surprisingly satisfactory NPV, all the while it only needs a single
forward simulation. The NPV obtained by RC2 was in fact worse, but this can
possibly be explained by the fact that also the well-trajectories found by OSSO
was infeasible. Nevertheless, Figure B.5 shows that PROD2 was shut after about
1700 days due to the amount of water produced relative to oil. This illustrates the
necessity of shutting the well to prevent unprofitable "short-circuiting" between in-
jectors and producers.

REF1 expanded the number of control periods from 24 to 61, more than doubling
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the number of decision variables. Consequently, as the number of controls increases,
more local minimums can be introduced, and the problem gets gradually harder to
solve.

The results also confirmed the expectations, namely that PROD2 experienced early
water-breakthrough for all methods, while it never occurred for PROD1. RC2 han-
dled this by shutting PROD2 entirely, while IPOPT and REMSO handled it by
increasing the controlled pressure, to lower the flow. This even resulted in the
negative flow discussed previously.

Case D
REMSO and IPOPT showed their strength on the Egg-Model, and obtained the
highest NPV by far. REMSO was again superior in terms of wall-clock time, using
only 265 minutes, whereas IPOPT needed 1180 minutes for the same number of
iterations. However, there were two important findings. The first is that REF1
found infeasible well-trajectories for almost all 12 wells. This is because a lower-
limit on rate cannot be included as a constraint in MRST, see Section 3.3 and 4.3.2.
To this end, positive flow-rate cannot be ensured for BHP-controlled wells. This
can also occur if a rate controlled well switches to BHP control. If there had been
time, this feature could maybe have been implemented in MRST, as the simulator
is open-source. This includes making MRST able to handle minimum rate con-
straints on producers and injectors, handle maximum pressures for producers, and
minimum pressure for injectors. Expansion of control-periods in combination with
frequent control-switching make the well trajectories for REF1 and REF2 appear
chaotic.

The second important finding was that REF2 generated a lower NPV than the base
case, even though the controls optimized by REMSO was used as starting point.
This manifests a weakness of the reformulation based heuristic, namely that the
outcome is not deterministic.

OSSO also computed infeasible well trajectories, but it was expected that this
might happen, as output constraints are not present. This affects the RC2 heuris-
tic, as negative production rate implies that the corresponding producers are shut
immediately, shown in Figure 5.15c. It even resulted in a NPV that were lower than
for the base-case. This is a drawback for the RC2 heuristic that was not discussed
by Kourounis et al. (2014), which originally proposed the heuristic. This could to
a large degree been prevented by choosing the input BHP constraints wisely, or by
using strictly rate-controlled wells.

Final Comparison
The adjoint-based methods REMSO and IPOPT consistently found good solutions
in terms of NPV. In particular, Case D showed their strength in presence of multi-
ple output constraints. Moreover, case A indicated that the overhead with the MS
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approach means that parallelism is probably not beneficial if simulations are very
cheap. Furthermore, case C and D showed REMSO’s ability to efficiently handle
output constraints on slightly larger problems. This is one of the advantages of
the MS-approach, because constraints on algebraic output variables and reservoir
states are easily included as bounds on decision variables in each shooting interval.
Lastly, the benefit of warm-starting Newton-Iterations in MRST was confirmed for
REMSO and OSSO.

The reactive approach RC1 were in all cases able to improve the NPV for the base
case. In case B and C, the NPV was also surprisingly close to those obtained by
REMSO and IPOPT. Considering that the approach is model-independent, and
only require one forward simulation when implemented on a computer, it is easy
to understand its popularity in the industry. Moreover, RC2 provided higher NPV
than RC1 in case B and D. However, as revealed in case D, the controls obtained
by output unconstrained optimization may yield infeasible well-trajectories, if not
input constraints for the initial optimization are carefully chosen. This again may
impact RC2 unnecessarily. A final remark on the reactive control approach, sup-
ported by Figure 5.6, 5.10, and 5.14 is that it often leaves the reservoir in a state
of higher pressure, compared to gradient-based procedures. This suggest that the
initial energy in the reservoir is not utilized as efficient as with other approaches.

The major workload during this work was to develop, and especially implement the
reformulation-based heuristic. However, case D stated a major drawback, namely
that the outcome of the approach is completely indeterministic. Moreover, in
order to provide feasible results on realistically scaled problems, minimum rate
constraints should be implemented in MRST, ensuring that producers can not act
as injectors, and vice versa. For adjoint-based optimization, it is usual to use more
refined simulation steps at the beginning of each control-period. This may not
be appropriate for the reformulation based heuristic, as control-periods are most
likely changed anyway. It also remain to be figured out how different reformula-
tions can be applied, and how the Hessian can be initialized properly, to improve
the heuristics convergence properties.
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Chapter 7

Conclusion

This thesis have showed that it is possible to solve an output constrained control
optimization problem for reservoir waterflooding, with a heuristic that continu-
ously reformulates the problem. To this end, an output unconstrained NLP
algorithm is used. However, this method achieved lower NPV than adjoint-based
optimization approaches for the realistically sized problems. Besides the relatively
low complexity, it was not discovered any significant advantages. It might be that
some positive aspects can be revealed in the future, but this would require that the
three issues at the current stage are addressed and resolved. These issues centers
around how to reformulate the problem, and how reuse the approximated Hessian,
in addition to equip MRST with additional functionality to handle more types of
constraints.

It was also observed that the simple reactive control in many cases perform ad-
equately compared to gradient-based optimization algorithm, especially when ac-
counting for its simplicity and model-independence.

If aspects regarding reservoir uncertainty are put aside, then the adjoint-based
optimization algorithms IPOPT and REMSO generated higher NPV than reactive
control for all cases considered in this work. They appear as the preferred methods,
especially in the presence of multiple output constraints.
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Chapter 7. Conclusion

7.1 Future Work
A natural extension of this work is to address the three major issues related to
the reformulation based heuristic. It can be investigated how different methods to
initialize the Hessian affect the heuristic, and possible strategies for how to refor-
mulate the problem. In addition, MRST can be equipped with the functionality
to handle additional constraints, see Section 3.3. If these issues are resolved, an
analysis of how the heuristic handles different problems can be considered.

Another interesting possibility, which there already has been conducted studies on,
is how gradient-based approaches are affected by different types of problems and
constraints. For instance, when should wells be operated by BHP, and when by
rate. Advantages and drawback can be classified.

There has also been thought of a way to extend the NLP into a MINLP. If the reser-
voir is explored beforehand, one can estimate when water-breakthrough is likely to
occur. To this end, discrete decision-variables can be included at certain points in
the horizon, deciding if a well should be entirely shut or remain open.
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Appendix A

Sensitivities

A key ingredient for every gradient-based optimization algorithm is quite obviously
the gradient itself. These algorithms typically requires gradients with respect to
both the objective and the constraining functions. Sufficiently accurate gradients
are necessary in order for the algorithms to converge successfully, while the time
spent on obtaining them is crucial for the overall run-time performance.

A.1 Background
The gradient is defined

Definition A.1.1 (gradient). The gradient is a generalization of the derivative for
a one-dimensional scalar function, extended to multidimensional functions. For a
function f : RN → R in a rectangular coordinate system, the gradient yields

∇f =
[
∂f
∂x1

∂f
∂x2

. . . ∂f
∂xN

]
(A.1)

This appendix is concerned with three methods in particular for calculating gradi-
ents, namely the method of finite differences, the forward method, and the adjoint
method. Whereas the first method only computes an approximation of the gra-
dient, the forward and the adjoint method differentiate the objective analytically,
by application of the chain rule. The theory for the method of finite differencing
is widespread, and can be found in almost every book that deals with numerical
analysis. However, because Kraaijevanger et al. (2013) presents all methods of
interest in a concise manner, suitable for dynamic optimization, it is used as the
main reference for this appendix.

Recall the semi-explicit system defined in Section 2.1. The parameter vector p, and
the algebraic variables v are neglected throughout this Appendix for simplicity. Let
the discrete state transition function be given by

xi+1 = f i(xi, ui) , i = 0, 1, . . . , N − 1 (A.2)
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with the states xi ∈ Rnx and the controls ui ∈ Rnu . Next, define the following
vectors

x =


x1

x2

...
xN

 , u =


u0

u1

...
uN−1

 (A.3)

such that the discrete system (A.2) can be compressed into one "super" function

F (x, x0, u) = 0 (A.4)

with initial conditions x0. More specifically, the super function F represents

F (x, x0, u) =


x1 − f0(x0, u0)
x2 − f1(x1, u1)

...
xN − fN−1(xN−1, uN−1)

 (A.5)

In either case of optimal control or parameter estimation, the objective is to min-
imize an objective-function. For discrete systems this function is separable, and
given by

min J(x, u) = J(x(u), u) =
N∑
i=1

J i(xi, ui) (A.6)

The first step is to differentiate the cost-function with respect to the controls, by
the use of the rule for total derivatives, which states

Definition A.1.2 (Total derivative). For a function M(t, p1, p2, . . . , pn), the total
derivative rule is given by

dM
dt = ∂M

∂t
+

n∑
i=1

∂M

∂pi

dpi
dt (A.7)

such that (A.6) becomes

d
duJ(x(u), u) = ∂J

∂u
+ ∂J

∂x

dx
du = Ju + Jx

dx
du (A.8)

where Ju and Jx denotes the Jacobian of J with respect to u and x, respectively.
Furthermore, the matrix

dx
du =

(
∂xi
∂uj

)
(A.9)

is the matrix of partial derivatives of the states x with respect to the controls
u. This matrix is significant for both the forward and the adjoint method. In
the following sections, the three mentioned methods are presented and evaluated.
However, only a discrete derivation is included for the forward and the adjoint
method, see for instance (Bradley, 2013) for a continuous derivation.
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A.2 Finite Differences
The method of finite differences is by far the simplest approach for approximating
derivatives. This method treats the objective function as a black-box that is capable
of computing the function values J(u), given the input u. Unlike exact methods,
the content of J itself is not required, only its value subject to the argument.

In short, the gradient is approximated by perturbing J in the direction of interest,
and the difference of the objective value is divided by the size of the perturbation.
The method is closely related to the definition of a derivative, which is given by

Definition A.2.1 (Derivative). The derivative of a function f is defined by the limit

df
du = f ′(u) = lim

h→0

f(u+ h)− f(u)
h

(A.10)

The concept of Big Oh is in addition required to classify the advantages and draw-
backs for the method. Let the Big Oh be denoted by O. Avigad and Donnelly
(2004) proposes the following definition

Definition A.2.2 (O notation). If f and g are functions, the notation f(u) =
O(g(u)) is used to express the fact that f ’s rate of growth is no bigger than that
of g, in the following sense

f(u) = O(g(u)) means ∃ c ∀u such that (|f(u)| ≤ c · |g(u)|) (A.11)

Loosely speaking, f = O(u), indicates that the growth rate of f is no bigger than
the asymptotic growth rate of u, which is linear. Likewise, g = O(u2) indicates that
the growth rate of g is no bigger than the growth rate of u2, which is quadratic.
Now, let the forward difference formula be given by the following Theorem A.2.1.

Theorem A.2.1. (Forward Difference) The forward difference method approximates
the derivative of a function f by the expression

f ′(ui) ≈
f(ui + δui)− f(ui)

δui

with approximation error

e = O(δui)

Proof. Expand the function f at ui+1 about ui by it’s Taylor Series

f(ui + δui) = f(ui) + δui
∂f

∂u

∣∣∣∣
ui

+ δu2
i

2!
∂2f

∂u2

∣∣∣∣
ui

+ δu3
i

3!
∂3f

∂u3

∣∣∣∣
ui

+ . . .
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by rearranging terms and dividing by δx, this Taylor Series can be rearranged into
the following

f(ui + δui)− f(ui)
δui

− ∂f

∂u

∣∣∣∣
u

= δui
2!

∂2f

∂u2

∣∣∣∣
u

+ δu2
i

3!
∂3f

∂u3

∣∣∣∣
u

+ . . .︸ ︷︷ ︸
Truncation Error

For smooth functions, where higher order derivatives exists, the first term of the
truncation error characterizes the order of magnitude of the error, as this term
dominates the other terms if the step size δui is sufficiently small. This implies
that the error is O(δu). Then

f ′(ui) = ∂f

∂u

∣∣∣∣
ui

= f(ui + δui)− f(ui)
δui

+O(δui)

An important implication from Theorem A.2.1 is that the approximation error
of the forward difference approximation increases with the step-size δu. Indeed,
if δu → 0, then the approximated gradient by the forward difference equals its
derivative, stated in definition A.2.1.

The last step is to extend the forward difference formula for scalar functions in
Theorem A.2.1, to fit dynamic optimization problems. Let the unit vector for all
the controls j = 1, 2, . . . , nu be defined û1, together with an appropriate sized scalar
δj ∈ R+. The forward difference method then reads

dJ
du ≈

[
J(u+δ1û1)−J(u)

δ1

J(u+δ2û2)−J(u)
δ2

. . .
J(u+δnu ûnu )−J(u)

δnu

]
∈ Rnu (A.12)

Similarly, the objective J can be perturbed in the opposite direction, resulting in
the backward difference method

dJ
du ≈

[
J(u)−J(u−δ1û1)

δ1

J(u)−J(u−δ2û2)
δ2

. . .
J(u)−J(u−δnu ûnu )

δnu

]
(A.13)

The last method to be considered is the central difference method, which perturbs
the function of interest in both forward and backward direction

dJ
du ≈

[
J(u+ 1

2 δ1û1)−J(u− 1
2 δ1û1)

δ1
. . .

J(u+ 1
2 δnu ûnu )−J(u− 1

2 δnu ûnu )
δnu

]
(A.14)

Lynch (2005) shows that the approximation error of the backward difference method
also is O(δui), while the approximation error for the central method is O(δu2

i ).
Both the forward and backward method require (nu + 1) simulator runs, while
the central method require (2nu + 1). However, the latter usually results in more
accurate approximation. The computational cost grows asymptotically linear with
dim(u) for all methods.

An important drawback for all finite difference method is the trickiness of selecting
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proper perturbation-sizes δj . At one hand, the perturbation size must be chosen
big enough to overcome numerical noise, while at the same time be kept small
enough to make satisfactory approximations. On the contrary, as stated in the
beginning, the advantage for this class of methods is its simplicity and ease of
implementation. An illustration of the three finite difference methods is shown
in Figure A.1. Note that one should chose the particular finite difference method

J(u)

u u uδ δ δ

Figure A.1: A scalar illustration of the forward, backward and central finite difference
method, respectively. The derivative is approximated as the slope of the red line.

with care for constrained optimization. For instance, if the the input u represents
the water-height in an open tank of water with wall-height x̄, forward difference
cannot be applied if x = x̄, as x̄ represents a hard-bound. In this case, backward
difference must be applied.

A.3 Forward Sensitivity
Unlike the finite difference methods, the forward sensitivity method utilizes analyti-
cal differentiation of the system equations (A.4) in order to compute the derivatives.
More specifically, it solves the sensitivity equation forward in time. The key ele-
ment in this approach is the construction of the sensitivity matrix defined in (A.9),
namely

S = dx
du

As the goal is to construct the sensitivity matrix S, the first step is to differentiate
(A.4)

Fxdx+ Fudu = 0

where Fx and Fu denotes the Jacobians of the super-function F. Then, by rear-
ranging (A.4), it can be observed that S must satisfy the sensitivity equation

FxS = −Fu

Assuming that the matrix Fx is invertible, the sensitivity equation can be solved
for S

S = −F−1
x Fu
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and finally, an expression for the total derivative is obtained by substituting the
latter expression of S into equation (A.8)

dJ
du = Ju + JxS = Ju − JxF−1

x Fu (A.15)

For ease of notation, define the following expressions

Ak = ∂fk

∂xk
, Bk = ∂fk

∂xk−1

such that Fx can be compactly formulated in the following manner, due to its
special structure

Fx =


A1 0 . . . 0
B2 A2

. . . . . .
0 BN AN


Similarly, define

Dk = ∂fk

∂uk

In order to express the jacobian Fu as the block-diagonal matrix

Fu =


D1 0 . . . 0
0 D2

...
. . .

0 DN


The sensitivity matrix S can now be seen as a block matrix consisting of block
components Sk,l, where

Sk,l = ∂xk

∂ul
k, l = 1, 2, . . . , N

xk is independent of ul when l > k, thus

Sk,l = 0 ∀l > k

such that S has a lower triangular block structure, hence

S =


S1,1 S1,2 . . . S1,N

S2,1 S2,2

...
. . .

SN,1 SN,N

 =


S1,1 0 . . . 0
S2,1 S2,2

...
. . . 0

SN,1 SN,N


When constructing S for a given index k, firstly the matrices Ak, Bk and Dk are
constructed to obtain Sk,l for all 1 ≤ l ≤ k. This is obtained by the following
equations

AkSk,k = −Dk (A.16a)
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BkSk−1,l +AkSk,l = 0 1 ≤ l < k (A.16b)
The computational effort of this method is proportional dim(u).

A.4 Adjoint Sensitivity
The adjoint sensitivity, or backward sensitivity, is also based on analytical differ-
entiation by the chain rule. The first step is to define

λ = JxF
−1
x (A.17)

then (A.17) is inserted into equation (A.15) to obtain
dJ
du = Ju − λFu

The row vector λ is commonly called the adjoint vector, and can be viewed as the
solution of the adjoint equation

λFx = Jx (A.18)
As both sides of (A.18) are row vectors, they are often transposed into more con-
venient column vectors, thus

FTx λ
T = ∇xJ (A.19)

And it can be observed that once Fx and ∇xJ are specified, Equation (A.19)
represents a linear system on the common form Ax = b. However, the linear system
indicates that the computational effort of (A.19) is independent of the dimension
of u. This suggests that the adjoint method is very efficient when the number of
controls are large compared to the number of states in the system.

Due to the block-structure of Fx, the solution of (A.18) reduces to the following
recurrence. A derivation is attached in Appendix A.4.1.

λNAN = ∂J

∂xN
(A.20a)

λiAi + λi+1Bi+1 = ∂J

∂xi
i = N − 1, . . . , 1 (A.20b)

in the recurrence above, λi is the adjoint vector λ that corresponds to the state-
transition function at timestep i. When solving the recurrence given in (A.20),
one should denote that this must be performed backwards in time, because the set
of equations are specified at the boundary N . Indeed, once (A.20a) is solved for
the last adjoint vector λN , one can successively solve (A.20b) for the remaining
adjoint vectors λi, starting at index i = N − 1, and setting i = i − 1 until i = 1.
This approach for assembling the adjoint-vectors reflects why this method often
is referred to as the backward sensitivity method. An additional note regarding
the adjoint-method, is that it requires that all state vectors xi must be stored in
a table during a forward simulation run. Then, during the "backward"-run, all
adjoint-vectors are assembled from Equation A.20, and finally the gradients are
calculated from Equation (A.19).
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A.4.1 Derivation
Let the states be denoted by xi ∈ Rnx , where x0 denotes the initial condition.
Furthermore, let the transition function at each step be defined by xi = f i(xi−1, ui),
with u as the manipulated variable. Given initial state x0, and a set of control-
vectors ui, the final state xN at the end of the horizon is reached by successively
computing the step-transition function

x1 = f1(x0, u1)
x2 = f2(x1, u2)

...
xN = fN (xN−1, uN )

Let the Lagrangian1 L be defined by

L =
N∑
i=1

Ji(xi, ui)− λTi (xi − f i(xi−1, ui)) (A.21)

where λTi ∈ R1×nx is the vector of Lagrange multipliers, in this setting referred to
as Adjoints. The next step is to take the total derivative of (A.21) with respect to
a control vector uj

d
duj L =

N∑
i=1

∂J i

∂xi
dxi

duj + ∂J i

∂ui
dui

duj − λ
T
i

(
dxi

duj −
∂f i

∂xi−1
dxi−1

duj −
∂f i

∂ui
dui

duj

)

the term dui
duj is equal to zero unless i = j. In that case, dui

duj = I, the identity
matrix with proper dimension. Thus, the equation is restated

d
duj L =

N∑
i=1

[
∂J i

∂xi
dxi

duj − λ
T
i

(
dxi

duj −
∂f i

∂xi−1
dxi−1

duj

)]
+ ∂Jj

∂uj
+ λTj

∂f j

∂uj

rearranging the terms

d
duj L =

N∑
i=1

[(
∂J i

∂xi
− λTi

)
dxi

duj + λTi
∂f i

∂xi−1
dxi−1

duj

]
+ ∂Jj

∂uj
+ λTj

∂f j

∂uj

and splitting up into two sums

d
duj L =

N∑
i=1

[(
∂J i

∂xi
− λTi

)
dxi

duj

]
+

N∑
i=1

[
λTi

∂f i

∂xi−1
dxi−1

duj

]
+ ∂Jj

∂uj
+ λTj

∂f j

∂uj

1denote that xi − f i(xi−1, ui) = 0 by its definition, such that this term always adds exactly
zero to the Lagrangian
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Next, the last index from the first sum is extracted

d
duj L =

N−1∑
i=1

[(
∂J i

∂xi
− λTi

)
dxi

duj

]
+
(
∂JN

∂xN
− λTN

)
dxN

duj

+
N∑
i=1

[
λTi

∂f i

∂xi−1
dxi−1

duj

]
+ ∂Jj

∂uj
+ λTj

∂f j

∂uj

Shifting index in the second summation

d
duj L =

N−1∑
i=1

[(
∂J i

∂xi
− λTi

)
dxi

duj

]
+
(
∂JN

∂xN
− λTN

)
dxN

duj

+
N−1∑
i=0

[
λTi+1

∂f i+1

∂xi
dxi

duj

]
+ ∂Jj

∂uj
+ λTj

∂f j

∂uj

extracting the first index from the second sum

d
duj L =

N−1∑
i=1

[(
∂J i

∂xi
− λTi

)
dxi

duj

]
+
(
∂JN

∂xN
− λTN

)
dxN

duj

+
N−1∑
i=1

[
λTi+1

∂f i+1

∂xi
dxi

duj

]
+ λT1

∂f1

∂x0
dx0

duj + ∂Jj

∂uj
+ λTj

∂f j

∂uj

here it can be denoted that x0 and uj are independent, such that the term λT1
∂f1

∂x0
dx0

duj =
0 for all j - and this term can safely be eliminated. Then

d
duj L =

N−1∑
i=1


(
∂J i

∂xi
− λTi + λTi+1

∂f i+1

∂xi

)
︸ ︷︷ ︸

θ1,i

dxi

duj


+
(
∂JN

∂xN
− λTN

)
︸ ︷︷ ︸

θ2

dxN

duj + ∂Jj

∂uj
+ λTj

∂f j

∂uj

(A.22)

Computing the total derivative dxi/duj can indeed be troublesome. The idea with
the adjoint-method is to construct all λi such that θ1,i and θ2 is equal to zero ∀ i.
This eliminates the need of computing dxi/duj in the first place. These conditions
are formally stated

∂JN

∂xN
− λTN = 0 (A.23a)

∂J i

∂xi
− λTi + λTi+1

∂f i+1

∂xi
= 0 (A.23b)

The boundary of (A.23) is specified at the endpoint N - thus λTN is the first mul-
tiplier to be computed - using (A.23a). Then, the remaining multipliers λTi are
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computed backwards in time, for i = N − 1, N − 2, . . . , 2, 1 with equation (A.23b).

Finally, the gradient are computed from the remaining terms of (A.22). This cor-
responds to solving the linear system

d
du1L = ∂J1

∂u1 + λT1
∂f1

∂u1

...
d

duN L = ∂JN

∂uN
+ λTN

∂fN

∂uN

which in a general form yields
d

duj L = ∂Jj

∂uj
+ λTj

∂f j

∂uj
(A.24)

Comment

This approach requires the construction of the matrices Ai, Bi, J ix and J iu, which
are given by

Ai = ∂fi+1

∂xi =



∂xi+1
1

∂xi1

∂xi+1
1

∂xi2
. . .

∂xi+1
1

∂xinx

∂xi+1
2

∂xi1

∂xi+1
2

∂xi2

∂xi+1
2

∂xinx

...
. . .

...

∂xi+1
nx

∂xi1
. . . . . .

∂xi+1
nx

∂xinx


∈ Rnx×nx , i = 1, 2, . . . , N − 1

Bi = ∂fi

∂ui =



∂xi1
∂ui1

∂xi1
∂ui2

. . .
∂xi1
∂uinu

∂xi2
∂ui1

∂xi2
∂ui2

∂xi2
∂uinu

...
. . .

...

∂xinx
∂ui1

. . . . . .
∂xinx
∂uinu


∈ Rnx×nu , i = 1, 2, . . . , N

(A.25)

J ix = ∂Ji

∂xi =
[
∂Ji

∂xi1

∂Ji

∂xi2
. . . ∂Ji

∂xinx

]
∈ R1×nx , i = 1, 2, . . . , N

J iu = ∂Ji

∂ui =
[
∂Ji

∂ui1

∂Ji

∂ui2
. . . ∂Ji

∂uinu

]
∈ R1×nu , i = 1, 2, . . . , N

(A.26)
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To conclude, by constructing the matrices in (A.25) and (A.26), preferably by
utilizing automatic differentiation, one is able to compute the solution of (A.24)
by first computing all λi from (A.23).
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Appendix B

Additional Experiment
Information

B.1 Dataset Tables

Table B.1: Case A and B: Reservoir and fluid properties

Variable Value Unit

Grid block height 20 m
Grid block width 20 m
Grid block length 20 m
Porosity 0.3 -
Permeability 0.9869 -
Initial reservoir pressure 234 bar
Water density 1080 kg/m3

Oil density 962 kg/m3

Oil compressibility 6.65× 10−10 Pa−1

Water compressibility 4.28× 10−10 Pa−1

Rock compressibility 3× 10−10 Pa−1

Reference pressure 234 bar
Initial water saturation 0.15 -
Well-bore radius 0.15 m
Simulation time 1835 day
NPV Scaling 10−4 -
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Table B.2: Case C: Reservoir and fluid properties

Variable Value Unit

Grid dimension (w× l× h) 60× 60× 1 -
Grid block width 24 m
Grid block length 24 m
Grid block height 24 m
Initial reservoir pressure 170.4947 bar
Water density 1037.84 kg/m3

Oil density 786.5 kg/m3

Oil compressibility - Pa−1

Water compressibility 4.5998× 10−10 Pa−1

Rock compressibility 4.408× 10−10 Pa−1

Reference pressure 1 atm
Initial water saturation 0.1030 -
Well-bore radius 0.0953 m
Simulation time 4380 day
NPV Scaling 10−7 -

Table B.3: Case D: Reservoir and fluid properties

Variable Value Unit

Grid block height 4 m
Grid block length/width 8 m
Porosity 0.2 -
Oil compressibility 1× 10−10 Pa−1

Rock compressibility 0 Pa−1

Water compressibility 1× 10−10 Pa−1

Oil dynamic viscosity 5× 10−3 Pa s
Water dynamic viscosity 1× 10−3 Pa s
Water saturation 0.1 -
Initial reservoir pressure 400 bar
Initial water saturation 0.1 -
Well-bore radius 0.1 m
Simulation time 3600 day
NPV Scaling 10−5 -
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B.2 Simulation Periods

Case A & B
The horizon is divided into 40 simulation steps, accounting for 1320 days, with four
control periods (nu = 4). The simulation steps and control periods are organized
in the following manner

Time step k (1 : 2) + α (3 : 5) + α (6 : 10) + α
Step duration (days) 10 20 50

Total duration 20 60 250
Control period j β β β

where α and β is such that

α ∈ {0, 10, 20, 30}
β ∈ {1, 2, 3, 4}

and the pairing

(α, β) ∈ { (0, 1) , (10, 2) , (20, 3) , (30, 4) }

Case C
The reservoir is simulated for 12 years, divided into 156 simulation periods and
24 control periods. The first 12 control periods are organized such that they each
cover 6 simulation steps

Time step k 1 + α 2 + α 3 + α 4 + α 5 + α 6 + α
Step duration (days) 4 5 10 18 36 73
Control period j β β β β β β

where

α ∈ {0, 6, 12, . . . , 66}
β ∈ {1, 2, 3, . . . , 12}

such that the pair

(α, β) ∈ { (0, 1) , (6, 2) , (12, 3) , . . . , (66, 12) }

Each of the first 12 control period cover 4+5+10+18+36+73 = 146 days, which
sums up to 146 × 12 = 1752 days for all 12 profiles. In this way, the beginning of
each control period is simulation with higher resolution.

Similarly, the remaining 12 control periods each cover seven simulation steps

Time step k 1 + γ 2 + γ 3 + γ 4 + γ 5 + γ 6 + γ 7 + γ
Step duration (days) 4 5 10 18 36 73 73
Control period j κ κ κ κ κ κ κ
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where

γ ∈ {72, 79, 86, . . . , 149}
κ ∈ {13, 14, 15, . . . , 24}

such that the pair

(γ, κ) ∈ { (72, 13) , (79, 14) , (86, 15) , . . . , (149, 24) }

Each of the latter 12 control period cover 4 + 5 + 10 + 18 + 36 + 73 + 73 = 219 days,
which adds up to 2628 days for all twelve periods. All 24 control profiles accounts
for 1752 + 2628 = 4380 days in total, i.e. 12 years (4380/365 = 12).

Case D
The horizon is divided into 150 simulation periods with 10 control periods. Each
control period cover 15 simulation steps, in the following manner

Time step k 1 + α 2 + α 3 + α (4 : 15) + α
Step duration (days) 1 4 10 30

Total duration 1 4 10 330
Control period j β β β β

where

α ∈ {0, 15, 30, . . . , 135}
β ∈ {1, 2, 3, . . . , 15}

such that the pair

(α, β) ∈ { (0, 1) , (15, 2) , . . . , (135, 15)}

B.3 Figures
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Figure B.1: Case B: Additional well trajectories
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Figure B.2: Case C: REMSO
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Figure B.3: Case C: IPOPT
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Figure B.4: Case C: RC1

103



0 500 1000 1500 2000 2500 3000 3500 4000

0

200

400

600
Well: PROD1

q
0
 (

m
3
/d

a
y
)

0 500 1000 1500 2000 2500 3000 3500 4000
−50

0

50

100

q
w
 (

m
3
/d

a
y
)

0 500 1000 1500 2000 2500 3000 3500 4000

160

180

200

Days

b
h

p
 (

b
a

r)

0 500 1000 1500 2000 2500 3000 3500 4000

0

200

400

600
Well: PROD2

q
0
 (

m
3
/d

a
y
)

0 500 1000 1500 2000 2500 3000 3500 4000
−50

0

50

100

q
w
 (

m
3
/d

a
y
)

0 500 1000 1500 2000 2500 3000 3500 4000
0

100

200

Days

b
h

p
 (

b
a

r)

0 500 1000 1500 2000 2500 3000 3500 4000

0

200

400

600
Well: PROD3

q
0
 (

m
3
/d

a
y
)

0 500 1000 1500 2000 2500 3000 3500 4000
−50

0

50

100

q
w
 (

m
3
/d

a
y
)

0 500 1000 1500 2000 2500 3000 3500 4000

150

160

170

180

190

200

Days

b
h

p
 (

b
a

r)

0 500 1000 1500 2000 2500 3000 3500 4000

0

200

400

600
Well: PROD4

q
0
 (

m
3
/d

a
y
)

0 500 1000 1500 2000 2500 3000 3500 4000
−50

0

50

100

q
w
 (

m
3
/d

a
y
)

0 500 1000 1500 2000 2500 3000 3500 4000

150

160

170

180

190

200

Days

b
h

p
 (

b
a

r)

0 500 1000 1500 2000 2500 3000 3500 4000

0

200

400

600
Well: INJ1

q
0
 (

m
3
/d

a
y
)

0 500 1000 1500 2000 2500 3000 3500 4000

0

1000

2000

3000

q
w
 (

m
3
/d

a
y
)

0 500 1000 1500 2000 2500 3000 3500 4000

150

160

170

180

190

200

Days

b
h

p
 (

b
a

r)

Figure B.5: Case C: RC2
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Figure B.6: Case C: REF1
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Figure B.7: Case C: REF2
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Figure B.8: Case D: Well trajectories for IPOPT, RC2 and REF2
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