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1 Problem Description

Modern subsea production systems have pressure and temperature sensors installed through-
out the network. Flow meters, being more expensive and less reliable, are less frequently
installed. The modern subsea production system is monitored by feeding these measure-
ments to a virtual flow metering system that estimates the flows. Flow estimation is the
enabling technology for advanced monitoring systems such as flow assurance systems and
condition performance systems.

The performance of a virtual flow metering system is highly correlated with the amount of
uncertainty in the system. The uncertainty is normally categorized as measurement noise,
process disturbances, and model error. In subsea systems, engineers are mostly concerned
with measurement noise and model errors. As measurement noise (and sensor failure) are
easy for a human to characterize, model error is not. Unfortunately, models are infrequently
calibrated due to the expense of well testing. Thus, there is considerable uncertainty in the
models (which increases with time since the last well test). In any virtual flow metering
system it would be highly beneficial if poorly calibrated models were identified and weighed
less in the estimation problem.

1.1 Estimation

Consider the following flow estimation problem formulation. Let y ∈ Rny be a vector
of variables to be reconciled with corresponding measurements ȳ ∈ Rny . We denote the
difference between the reconciled and measured values with v, i.e. v = y− ȳ. Furthermore,
we denote with x ∈ Rnx the unmeasured variables that we want to estimate. To estimate x
we solve the following nonlinear programming problem

minimize
x,y,v,w

||v||2M + ||w||2N
subject to g(x,y) = w

y − ȳ = v

x ∈ X

(P)

where g : Rnx ×Rny → Rm are m maps between the reconciled (measured) variables y and
the unmeasured variables x; for example, g may contain difference equations resulting from
discretization of a continuous model. In general, g is a vector of nonlinear functions and,
hence, g(·) = w describes a nonconvex constraint set. The variables w ∈ Rm represent
model errors; in the case of a perfect model w = 0. The set X is a convex polytope which
may include linear constraints on the estimated variables x. Note that the measurements ȳ
are not considered variables in P. The vectors v and w are called residuals.
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The objective of P is a weighted least-squares quadratic function defined by the norms
||v||2M = vTMv and ||w||2N = wTNw, representing penalties on measurement and modelling
errors, respectively. The matrices M and N can be thought of as the inverse covariance
matrices for the measurement noise and model errors. Note that in a moving horizon
estimation (MHE) formulation the objective is typically augmented with an arrival cost
term [5].

1.2 Fault detection

Statistical methods may be used on the residuals v and w from P to detect “faults” (sen-
sor or model errors). These methods are usually formulated as an hypothesis test, with
predefined thresholds determining the outcome of the test. One such test is the general-
ized likelihood ratio (GLR) test. Refer to [3, 2] for more information on fault detection
algorithms.

1.3 Modelling

Consider a model of a subsea production systems with four topside wells connected to a
separator – modelled as in [1]. Assume that pressure (and temperature) sensors are located
in the downhole and wellhead of each well. In addition, pressure and production rate of all
phases (fluid components) are measured at the separator. Realistic characterizations of the
measurement uncertainty can be found in the literature [4, 6].

2 Assignment

The candidate is given the following assignments:

• Perform a literature study on state estimation with focus on moving horizon estimation
for nonlinear systems.

• Perform a brief literature study on fault detection and in particular hypothesis testing
using the generalized likelihood ratio test.

• Model the production system previously described. Characterize the measurement
noise of the sensors. Specify 2-3 test cases where one or several of the well models
change during the case to induce model error (for example by changing the oil density
parameter).

• Implement a MHE scheme for the production system model. Test it on the specified
cases. Discuss how the model error affects the estimator performance.

• Implement the preferred fault detection algorithm (for example GLR) for testing the
hypothesis that the models are accurate (or contrarily, not accurate). At selected
time instances, run the algorithm on the residuals resulting from the MHE to identify
poorly calibrated well models. Use the attained information to calibrate the model
in P. Assert the change in estimator performance with and without fault detection.
Comment on the difficulty of using algorithms for hypothesis testing.
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Abstract
In modern oil and gas industry, there is an increasing use of instrumentation. This lead to a
huge flow of information, which typically is not utilized to its full potential. By the use of
increasingly more complex Virtual Flow Metering (VFM) solutions, the gap between the
amount of data available and the amount of data utilized is reduced. VFM can contribute to
operational awareness and increased efficiency of the operations, which are qualities that
are becoming more and more important for the operators. The performance of a virtual
flow meter is, however, highly correlated with the accuracy of the system models. Un-
fortunately these system models are infrequently calibrated, and with increasingly more
complex VFM models, these calibrations become more and more difficult to perform. To
further develop the field of VFM, this process of maintaining the models needs to be im-
proved. In this thesis, a system that can potentially simplify this process is investigated.

This thesis presents an investigation on the use of state of the art fault diagnosis tech-
niques, to detect and identify poorly calibrated models used in virtual flow metering. With
the help of the information gathered from the fault diagnosis, an operator can potentially
pinpoint when and where maintenance of the model is needed. If successful this can lead
to a shift from recalibrating the entire system, to focusing on the parts of the model that
have been determined as weak links. By going straight for the weak link, the operator can
save substantial amounts of time and money, while the reliability of the system models is
simultaneously increasing. The investigation has been conducted by running test scenarios
on a simulator created during this thesis. The tests on this simulator were performed using
state of the art virtual flow meters, together with the fault diagnosis tools developed in this
thesis.

The results show that this idea has good potential, and should be further investigated. The
results showed this by successfully detecting and identifying poorly calibrated models for
simple test scenarios. That bein said, both of the developed fault diagnosis systems, still
have some drawbacks and unresolved issues, which makes them less suited for real appli-
cations. Several suggestions are, however, posted on how these issues can be resolved, and
recommendations are given regarding the direction of future investigations.
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Sammendrag
I dagens olje og gass industri, ser man en økt bruk av instrumentering. Dette gir en stor
strøm av informasjon, som ofte ikke blir brukt til sitt fulle potensiale. Ved bruk av Vir-
tual Flow Metering (VFM) løsninger kan noe av denne forskjellen mellom data tilgjen-
gelig og data brukt bli minket. VFM kan bidra til oversikt og økt produktivitet, som
er egenskaper med større og større betydning for operatørene av produksjonssystemene.
Ytelsen til VFM er dog nært knyttet til kvaliteten på systemmodellene. Disse model-
lene er dessverre sjelden kalibrert, og ettersom VFM løsningene blir mer komplekse, blir
også kalibreringen vanskeligere å gjennomføre. For å videreutvikle feltet VFM, så må
metoder bli funnet for å effektivisere denne prosessen. Denne oppgaven ser nærmere på
dette problemet.

Oppgaven presenterer forskning på bruken av moderne feildiagnostikk verktøy for detek-
sjon og identifisering av svakt kalibrerte deler av modellene brukt i VFM. Ved hjelp av
informasjonen samlet av feildiagnostikk verktøyet, så kan operatøren potensielt plassere
når og hvor vedlikehold av modellen bør gjøres. Sett at dette er vellykket, så kan dette
lede til ett skifte fra dagens situasjon, der man gjerne gjør en full systemrekalibrasjon, til
å fokusere på de delene av modellen som er påvist å være dårlig kalibrert. På det viset
spares både tid og penger for operatøren, i tillegg til å gi økt tillit til VFM løsningen.
Forskningen i denne oppgaven er utført ved å kjøre tester på en simulator med moderne
VFM løsninger og utviklede feildiagnostikkverktøy.

Resultatene viser at dette er et felt som viser godt potensiale, og bør forskes videre på.
Resultatene viser dette fordi, deteksjon og identifikasjon ble velykket gjenomført, for enkle
scenarioer. De implementerte verktøyene, har i dag flere problemer og svakheter som ville
gjort dem mindre egnet for bruk i en praktisk setting. Når det er sagt, er det ingen grunn til
å tro at disse problemene ikke kan bli løst, og mange forslag til hvordan dette kan gjøres
samt forslag til videre arbeid innen feltet har blitt presentert i denne oppgaven.
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Chapter 1
Introduction

This thesis describes the work done by the author on research for improving the existing
virtual flow metering techniques used in the oil and gas industry today. To motivate the
research done in this paper, this chapter presents some general background theory in the
fields of oil and gas production, and Virtual Flow Metering (VFM). Furthermore the cho-
sen scope of the assignment is presented, along with a presentation of the test system used
in this thesis, and a simple presentation of the structure of this paper.

1.1 Background

1.1.1 Oil and gas production, control and monitoring
This section is added to give the reader sufficient background information, to fully compre-
hend the problem that is being addressed in this thesis. It consists of two main elements,
namely a presentation of oil and gas production, with its control systems and monitoring
aspects, and a short introduction to the field of virtual flow metering. Before discussing
the production, and its control and monitoring aspects, a small paragraph will be devoted
to placing the production system in the complete oil and gas industry chain. The oil and
gas industry can generally be said to consist of three main segments, namely "upstream",
"midstream" and "downstream" (Petroleum Services Association of Canada, 2015), as il-
lustrated in figure 1.1.

• "Upstream" which consists of the exploration and extraction of the oil from the
reservoir. This is the segment that includes the oil and gas production system

• "Midstream" which usually is said to be the processing, and potentially storage of
the reservoir fluids

• "Downstream" part of the industry which consists of, the transportation, final re-
fining of the hydrocarbons, and the marketing of the final product

1
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Water bed
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Transport

Refinery Gas
Station

Upstream Mid stream Down stream

Figure 1.1: An illustration of the three main segments of the petroleum industry chain as given by
Petroleum Services Association of Canada (2015). Note that the upstream element is marked in red,
as it is this segment of the chain that is of primary interest in this thesis.
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Figure 1.2: Multi-level control hierarchy (Foss, 2012).

Oil and gas production can simply put be explained as the section located between the
reservoir and the platform, safely transporting the reservoir fluids from the reservoir to the
processing oil platform. This fluid transportation is driven by the large pressure difference
between reservoir pressure and platform pressure. For oil fields with decreasing reservoir
pressure this transportation can be further assisted by gas or water injection into the reser-
voir (Gunnerud and Foss, 2010), or by additional gas lift in the wells (Aamo et al., 2005).
After the reservoir fluids enter the platform they are separated through a sequence of sep-
arators, compressors, scrubbers, etc, to almost clean water, oil and gas.

Operating these production systems can be thought of as an optimization problem – to con-
tinuously utilize the maximum capacity of the processing plant, and hence producing the
maximum amount of hydrocarbons. The challenge consists of several elements, including

• Planning the layout of the production system, and long term operation strategy

• Allocating good locations for the production and injection wells
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1.1 Background

• Allocation of production from each well

• Optimally run the processing system

as explained in Foss (2012). This is illustrated in Figure 1.2.

Provided below is a list containing three of the four levels illustrated in Figure 1.2. In this
list the importance of knowing the well flow rates is pinpointed at each of these levels.

1. Control and Automation:
This level has the shortest time horizon and consists of several controllers for many
different instruments. A common denominator for many of these controls is that
the controlled property is the flow rate. For the controller to have any closed loop
feedback, this flow needs to be given as information to the controller.

2. Production Optimization:
Is the level that determines the optimal flow rate from each well, and how to set
the production valves to achieve this. To properly choose the valve openings, there
is a need for knowledge regarding the flow rate in each well with the current valve
opening.

3. Reservoir Management:
In this layer it is decided how to place any new wells, that is introduced to the
system. This is mostly based on information regarding the reservoir, and the flow of
hydrocarbons within it. Intuitively this level does not benefit much from real time
estimation or measurement of flow, however as stated in Heddle et al. (2012), this
information can contribute to more accurate reservoir simulation models leading to
more accurate information for depletion planning.

Furthermore, it should be noted that for the purpose of condition monitoring of the equip-
ment, measurements- or estimations of flow can be a strongly contributing factor (Bringedal
et al., 2010).

1.1.2 Virtual flow metering
In the previous section, the importance of knowing the well flow rates was stressed. In this
section, different approaches to estimating this flow is presented. Traditionally the flow
in the different wells were found through frequent well testing, and the assumption that
the conditions remained approximately unchanged between each well test (Melbøet al.,
2003). In addition to being poor approximations of the flow, this approach also required
temporary interruption of the production which is very costly.

It is also a procedure that becomes increasingly more costly as many of the new fields
are connected with existing production facilities through long tiebacks1. Well tests with a
longer tieback are costly, because it requires the reservoir fluid to be transported further,
leading to a more time consuming production interruption (Melbøet al., 2003). Another

1The connection between a new remote cluster of wells, and an existing production facility.
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Chapter 1. Introduction

approach is to implement a multi phase flow meter (MFM), which has the ability to mea-
sure the flow rate subsea with separate measurements for each component (gas, water and
oil). However these MFM’s are very costly, and prone to numerous faults, and failures that
would demand subsea intervention (Bringedal et al., 2010). In addition it is known that the
MFM’s provide measurements with very poor accuracy. This is also tested in section 3.1.2.

There are numerous extensions to these two approaches and other approaches to get ap-
proximations of the flow, however in this paper Virtual Flow Metering (VFM) is used
(Bringedal and Phillips, 2006). VFM is a technology that estimates the flow based on in-
formation provided by the measurements already available in the system. It can range from
any kind of model based methods to empirical black box methods (Cramer et al., 2009).
VFM has, from the perspective of the operator, low cost, with ease of implementation as
there is no need for extra hardware, only software simulations that use the measurements
already available (Melbøet al., 2003). A big drawback to VFM, however, is the cost of
maintaining an accurate model of the system (Bringedal and Phillips, 2006). This draw-
back forms the motivation for the extension of VFM investigated in this thesis.

1.2 Motivation and research objective
As stated above, a major drawback with the current VFM systems is the cost of maintain-
ing the models (in terms of time and money) . This maintenance is necessary, as the VFM
estimates its flow rates based on measurements and the models that relates these measure-
ments to the flow rates. This maintenance of the models is often conducted by doing well
tests, for the purpose of recalibrating the models, which is an approach that is both costly
and time consuming. This leads to large costs, or models that are not maintained properly,
which ultimately can make the VFM into a flow estimator that can not be relied upon.

In this thesis the theory of fault diagnosis using statistical detection algorithms, is at-
tempted transfered to the field of model validation, by detecting and identifying poorly
calibrated models in the VFM. This addition to the VFM can potentially give an added
reliability to the VFM, as the algorithm will notify the user when the model no longer
seems to be properly calibrated, which implies that unless the user has been notified, one
can with a much greater probability assume that the models in the VFM are still valid.
Furthermore, if the fault diagnosis can identify which part of the model that seems to be
poorly calibrated. It could save the user a lot of time and money, by reducing the need
for recalibrating the entire model. The time and money, could instead be focused on re-
calibrating the parts of the model that are identified to be poorly calibrated. All in all, the
goal is that with a working addition like this to VFM, one could improve reliability and
accuracy, and hence increase the value added by VFM systems.
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1.3 Scope and interpretation of the assignment

Goal of the assignment:
To improve current VFM solutions by introducing complementary and
unintrusive software for self-diagnosis via detection – and identification
of poor models. These findings will in turn be used to alert the user of
the VFM that estimates may be inaccurate and that model calibration
should be considered.

1.3 Scope and interpretation of the assignment
The goal of this thesis has been summarized by the table presenting the "Goal of the as-
signment" in the previous section. In addition a literature study on state estimation related
to nonlinear observers, and fault detections are to be conducted. Furthermore a simulator,
a MHE and a fault diagnosis algorithm is to be implemented.

For the purpose of keeping the thesis fairly concise, the following scope has been put on
the assignment:

• State estimators are implemented for the purpose of working as the VFM in the tests,
and to provide the fault diagnosis with necessary test variables for the diagnosis (see
section 2.2). This thesis will, however, not provide further development in the field
of state estimation for VFM. Tests will for that reason not be conducted with respect
to evaluating these estimators and their ability to estimate the states

• The goal of this thesis is to test the possibility – and potential of introducing statisti-
cal change detection algorithms as an extension to VFM. For the purpose of testing,
different versions of a fault diagnosis algorithm will therefor be created. However
the scope of these algorithms are purely for testing of the concept and will not be
created as a finished product.

• Any comprehensive tuning of either the state estimators or the fault diagnosis sys-
tems are defined to be outside of the scope for this thesis.

In short the scope of this thesis is not to create new and improved Virtual
Flow Metering algorithms, nor is it to create a fault diagnosis system to
supplement an existing VFM. It is a thesis that investigates the possi-
bilities, difficulties and the different approaches to such an extension of
Virtual Flow Metering.

1.4 Presentation of the system
As a test case for this thesis the system illustrated in figure 1.3 was created. It is a simplified
model of an oil and gas production system consisting of 4 well heads, and one separator.
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Chapter 1. Introduction

To keep the implementation simple, the wellheads are placed topside, removing the need
for a subsea manifold. The production system is equipped with pressure- and temperature
sensors located as illustrated in Figure 1.3, and flow rate measurements located after the
separator. These flow rate measurements can be assumed to be fairly accurate as they are
the equivalents to the export measurements on a real platform. The tests on this system
will at all times consider the processing/separation of the reservoir fluids in this system to
be instantaneous and perfectly executed. Thus removing the need to model the processing
system. For the test scenarios, the well chokes will be adjusted to excite the system.
Furthermore the model parameters defining the inflow from the reservoir (PI), the Gas
to Liquid Ratio (GLR) and valve equation coefficient (Cc), will be artificially changed –
creating the desired poor models in the estimators.
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1.4 Presentation of the system
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Figure 1.3: Illustration of the production system to be utilized as a test system. 4 wells with topside
wellheads and 1 separator.
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1.5 Structure of the thesis
To better understand how to go about reading this thesis a short guide is presented in this
section. It portrays what you can expect to find in each chapter, the objectives of each
chapter and how they are all related.

This thesis begins with the introduction to give some insight into the the problems that
are investigated in this thesis, and a short presentation of the test system. Chapter 2 is a
literature study that takes a closer look into the theory already present in the field of state
estimation and fault diagnosis. In addition a section on measurement errors, its charac-
teristics and normal accuracies have been added. Chapter 3 describes the system which
is used as a test case scenario, and presents how the mathematical model of the simulator
is constructed. The equations used in this simulator are also the same equations used in
the state estimators developed in Chapter 4. Chapter 4 presents the developed estimators
in the thesis. Chapter 5 is the equivalent to Chapter 4 for the development of the fault
diagnosis system. Chapter 6 present the motivation and results of the tests conducted to
investigate the implemented state estimators and fault diagnosis system. These results are
then analyzed in Chapter 7, together with a general discussion of virtual flow metering
with the extension of the fault diagnosis system. Chapter 8 concludes the thesis, and pro-
vides suggestions for future work in this field.

In addition to these main chapters, it should be noted that a useful abbreviations table is
provided immediately preceding the introduction chapter, and there is an appendix con-
sisting of some general theory that might be useful background information for some parts
of the thesis. The appendix does also consist of a short documentation of the code attached
with this thesis, and a section that includes the plots that was not found important enough
to be included in the actual report.
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Chapter 2
Literature Review

This chapter presents some of the theory present in the fields of state estimation, fault
diagnosis and measurement error. The latter of which can be viewed as a side note to the
overall goal of the assignment, but it was included as the measurement errors plays a vital
role when estimating the states based on the measurements.

2.1 State estimation

This section presents some of the research in the field of state estimation and specifically
nonlinear observers. To limit the scope of this section, only Kalman filter based observers
and Moving Horizon Estimators (MHE) have been reviewed. It should, however, be noted
that there are numerous other alternatives to nonlinear observers, amongst others:

• Lyapunov-based observers (Gauthier et al., 1992)

• Extended Luenberg observers (Zeitz, 1987)

• Techniques based on transforming the nonlinear system to a suitable observer canon-
ical form where the observer design problem can be solved (Bestle and Zeitz, 1983).

For the course of this section, the system that is discussed will be formulated as shown in
(2.1).

xk+1 = fk(xk, uk) + wk

yk = hk(xk, uk) + vk
(2.1)

Any linear system would simply be a subcategory of this system, and any continuous sys-
tem can be discretized into this framework.
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ref u y
Controller Process

State estimator

x̂ Estimate
next x̂

Computed
K(t)

C
ŷ

Figure 2.1: Block diagram of a normal system with state observer. The state observer is drawn with
a time varying K(t) in mind. This K(t) can be the Kalman gain computed based on the equations
in this section.

2.1.1 Kalman filtering

The Kalman filter (Kalman, 1960) is the best known filter for recursive state estimation
in the industry today (Kang et al., 2013). It is an optimal recursive Bayesian estimator
that has the property of being optimal for for linear Gaussian problems. It is built up by
a set of recursive equations that results in the optimal "Kalman gain", which theoretically
minimizes the mean square error between the real states x and the estimated x̂.

The Kalman filter theory is based on a system of linear equations without inequality con-
straints, which places itself somewhat outside the scope of this thesis. There are however
numerous extension to the Kalman filter theory, which make it applicable to nonlinear
equations. In such cases, the Kalman gain is no longer necessarily optimal, but it still
might be a good observer gain. This section will begin with a short introduction of the
theory of normal linear Kalman filter – moving onwards to an introduction to the extended
Kalman filter (which is applied in this thesis). In Section 2.1.3 the information in this lit-
erature review, and in the literature review of MHE will be compared with respect to their
strengths and weaknesses.

xk+1 = Akxk + wk (2.2a)
yk = Ckxk + vk (2.2b)

Given a linear system like (2.2), with measurement noise vk and process disturbance wk
(both of which, white noise Gaussian signals) that corrupt the signal - one can statistically
determine an optimal observer gainK(t) for a state estimator like the one shown in Figure
2.1. This optimal gain is the so called Kalman gain, and it is given in equation 2.3. The
derivation of these equations and further information on general Kalman filter can be found
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Figure 2.2: Simple illustration of a basic Kalman filter (Brown and Hwang, 2012).

in Brown and Hwang (2012).

Kk = P−k C
T
k (CkP

−
k C

T
k +Rk)−1 (2.3)

Pk = (I −KkCk)P−k (2.4)

P−k+1 = AkPkA
T
k +Qk (2.5)

x̂k = x̂−k +Kk(yk − Ckx̂−k ) (2.6)
where

Qk = E
[
wkw

T
k

]
Rk = E

[
vkv

T
k

]
Pk = E

[
eke

T
k

]
Note that the elements on the diagonal of PK forms the squared estimation error

e2
k = (xk − x̂k)2

which is minimized with the Kalman gain. Figure 2.2 illustrates how these equations are
combined to form the linear Kalman filter.

For a nonlinear system of equations, no such universally optimal recursive Kalman equa-
tions are known. However the theory has been expanded to nonlinear systems by the use
of some alterations to the equations. In Table 2.1, 4 different estimators for nonlinear sys-
tems based on the Kalman filter has been presented. The first two filters (Extended and
Linearized) are both based on fitting the real nonlinear system into the linear assumption
of the Kalman filter. These kind of Kalman filter extension have been widely used, espe-
cially the extended Kalman filter, however the result from using the linearized version of
the system is strongly dependent on the degree of nonlinearity in the system (Brown and
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Chapter 2. Literature Review

State estimator Basic idea

Linearized Kalman filter
Linearize your entire
system of equations

Extended Kalman filter
Linearize continuously about
the current point in the trajectory.

Ensemble Kalman filter
Estimating a collection(ensemble) of
possible state values, and withdraw
statistical properties from the collection.

Unscented Kalman filter
Estimating a chosen set of
possible state values, and withdraw
statistical properties from the collection.

Table 2.1: Some nonlinear Kalman filters, as presented in Brown and Hwang (2012)

Hwang, 2012).

The Ensemble and Unscented Kalman filter, represents another approach in using the
Kalman way of thinking for state estimators. The main difference is that instead of com-
puting the error covariance matrix Pk algebraically, one approximates it based a set of
state estimates which is estimated at each iteration (Brown and Hwang, 2012).By doing it
this way the computing power needed for the algebraic operation is kept low, which can
be important for very large systems. Furthermore the probability distribution of the state
vector, is estimated through empirically sampling around the operating point, instead of
estimating it based on the assumption of local linearity around the operating point, which
can be very misleading.

The extended Kalman filter

"Extended Kalman filter is probably still the most robust and practical approach for most
problems" (Kang et al., 2013). This quote was taken from a survey on observers for nonlin-
ear dynamical system. It illustrates that when creating an observer for a nonlinear dynam-
ical system – it feels appropriate to discuss the Extended Kalman filter (EKF) . In addition
to being fairly easy to implement, the EKF can computationally speaking be fairly cheap,
especially if the Jacobian of the system is known, relieving the estimator of the task of nu-
merically linearizing the system at each point. That being said, the EKF does have some
drawbacks. In areas with a high degree of nonlinearity, state estimation from the EKF will
be poor (see Figure 2.3), furthermore convergence can generally not be guaranteed, and
for systems that cannot be supplied with analytical derivatives, it is computationally more
demanding than some of the alternatives (Kang et al., 2013).

The EKF is as explained above an extension to the Kalman filter which linearizes the sys-
tem of equations around each iterative estimation x̂k of the state. This way it approximates
local linear behavior around the operating point. With regards to the implementation of the
Kalman filter, this extension has no effect on the equations (2.3),(2.4) or (2.5). However,
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2.1 State estimation

as the system can no longer be formulated as (2.2) but rather as (2.1), Ck and Ak are no
longer available. These matrices are instead approximated through linearization at each
iteration as described in (2.7) and for the update of x̂k in (2.6) -Ckx̂−k is replaced with
h(x̂−k , u). Furthermore, x̂−k+1 = f(x̂k, uk) instead of x̂−k+1 = Akx̂k

Ak =
∂fk(x, u)

∂x

∣∣∣∣
x̂mhk

(2.7a)

Ck =
∂hk(x, u)

∂x

∣∣∣∣
x̂mhk

(2.7b)

(2.7c)

f(x)

x

p(f(x))

f(x)

p(x)

x

Linearized distribution 

Actual distribution 

Figure 2.3: Illustration of the effect of nonlinearity on the distribution of f(x). Notice how the
distribution of f(x) with the given distribution of x differs depending on whether or not f(x) is
linearized. Inspired by Thrun et al. (2005)

2.1.2 Moving horizon estimation

A Moving Horizon Estimator (MHE) is an optimization-based observer not unlike the
Kalman filter Kang et al. (2013). The similarities, differences and pros and cons, with
these two methods are discussed in Section 2.1.3. In this section an introduction to MHE
is presented.
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General introduction to moving horizon estimation

Moving Horizon Estimation mainly consist of three elements, stage cost, arrival cost and
constraints. Where the cost elements form the objective function, and the constraints
represents the relations given by the mathematical model, and possibly further constraints
that can contribute to restrict the size of the solution space. Together they form the general
optimization formulation given in (2.8) (Rao et al., 2003).

Φ∗T = min

T∑
k=T−N+1

Lk(wk, vk) + ZT−N (z) (2.8a)

s.t.
xk+1 = fk(xk, uk) + wk (2.8b)
yk = hk(xk, uk) + vk (2.8c)
xk ∈ X, vk ∈ V, wk ∈W (2.8d)
∀k ∈ (T −N + 1)...T (2.8e)

with the f(x) and h(x) stemming from the formulation posted in (2.1).

Stage cost (L(wk, vk)):
The stage costs (Lw and Lv) are the elements in the objective functions that put cost on
any error at each time step that is estimated and measured (Rao et al., 2003). How this
stage cost function is chosen can differ, as long as it is positive definite. A normal choice
is to choose a weighted sum of square function as the stage cost, which is shown below:

L = xTQx = ‖x‖2Q (2.9)

This is also the stage cost function chosen in this project:

Lw =
∑
k

‖wk‖2N and Lv =
∑
k

‖vk‖2M

Note: it is this kind of cost that the Kalman filter optimizes as well.

Arrival cost (Z(z)):
Optimally one would want to utilize the information from all the previous measurements
in the estimation of the states, which is known as a Full Information Estimator (FIE) (Rao
et al., 2001). In MHE, however, only a finite set of measurements (yk) are directly included
in the optimization formulation to reduce the computation cost, and improve the scalability
of the estimator (Rao et al., 2001). Arrival cost1 is the element that is added to the objective
function to summarize the effect of the discarded data (measurements prior to k = T −N )
on the current states (Qu and Hahn, 2009). In other words the arrival cost summarizes
the total cost that would accumulate from every stage k = {0, . . . , T −N − 1} for a
given choice of xT−N as illustrated in Figure 2.4. Notice how including the arrival cost
in the optimization in Figure 2.4, changes the optimal state estimates to fit better with the
complete set of measurements.

1Also known as Cost to come, and Cost to arrive (Rao et al., 2003)
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kT-N T

Arrival cost
Stage cost
Measurements (y)
Estimated states x (k > T-N)

xT-N

kT-N T

Figure 2.4: Arrival cost illustration. The arrival cost is illustrated by the pink area. In the first graph
xT−N is chosen to minimize the stage cost (yellow area), and in the second the xT−N is chosen
so that the sum of stage and arrival cost is minimized. Note that neither the dotted line nor the
measurements before t = T −N are known or estimated by an MHE.

By including an optimal arrival cost, the MHE would be equivalent to the FHE. A general
analytical expression for the arrival cost is, however, rarely available for nonlinear or con-
strained systems (Qu and Hahn, 2009). Which means that an approximation of the arrival
cost is needed.

There are several ways this approximation can be done, and two approaches are discussed
in this section. The most discussed method in the literature is based on the recursive al-
gebraic covariance matrix (Pk in (2.4)) of a Kalman filter based estimator. This is an
approach that stems from the fact that this kind of Kalman approach would give an exact
arrival cost for a linear system without inequality constraints, which gives reason to be-
lieve that an approach like this is a good approximation for the arrival cost of a nonlinear
system with inequality constraints as well.

This approximation of the arrival cost is implemented as shown in equation (2.10), (Rao
et al., 2003).

ẐT−N (z) = (z − x̂mhT−N )TΠ−1
T−N (z − x̂mhT−N ) + Φ̂T−N (2.10a)

ΠT = Q+ATΠT−1A
T
T −ATΠT−1C

T
T (R+ CTΠT−1C

T
T )−1CTΠT−1A

T
T (2.10b)

Where:

• z: is the chosen initial value in the current MHE.
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• x̂mhT−N : is the optimal xT−N estimated by moving horizon based on data before
t = T −N .

• ΠT : is the covariance matrix (PT+1) from Section 2.1.1. Found by combining
equations (2.3), (2.4) and (2.5)

• Ẑ : is the arrival cost

• Φ: is the objective function (as given in (2.8) )

• Φ̂T−N : is the objective function, found to be optimal at the MHE iteration when
t = T − N . This term is added as it plays a big role in the approximation of the
total arrival cost Z . However, in the optimization problem it is independent of all
of the decision variables, and hence works as a constant in the objective function.
This implies that in an actual implementation of the arrival cost, this element can be
omitted.

Note: Q,R,AT , CT are equivalent to the matrices described in Section 2.1.1.

A simpler approach to the arrival cost approximation is to assume that the previous esti-
mate of xT−N , is a sufficiently good estimation of the real xT−N . We name this previous
estimate x−T−N . The arrival cost is then approximated as θ̂T−N (z) = µ

∥∥z − x−T−N∥∥
(Alessandri et al., 2008). Where µ is a scalar, and z is the current estimate for xT−N .

Constraints:
These constraints consists of two main elements, namely the constraints that describe the
system (hereafter, named system constraints, e.g. xk+1 = f(xk)), and additional con-
straints to shrink the solution space. These additional constraints can be either hard con-
straints that cannot be broken, or asserted constraints to help the optimization solver find
the the correct solution, and/or find the solution faster. The system constraints are usually
equality constraints, while the additional constraints are inequality constraints.

2.1.3 Comparison of Kalman and MHE
Kalman filter and MHE has many of the same properties, qualities and disadvantages.
They are both optimization-based observers, which attempt to minimize the state estima-
tion error (ek = x̂k − xk). Usually, this is also achieved by minimizing the mean square
error of ek, however while this choice of cost function is predefined for the Kalman filter,
it is optional for the MHE. For a linear system without constraints (except for the sys-
tem "constraints") the optimal solution of the MHE is equivalent with the solution of the
Kalman filter – however "formulating the system with inequality constraints, prevents re-
cursive solutions such as Kalman filtering" (Rao et al., 2001). The same statement applies
with the introduction of nonlinear behavior of the system, one can then no longer apply
such an guarantied optimal recursive solution. Do note, however, that there are methods
based on the Kalman filter for nonlinear set of equations, there are also methods for adding
constraints to Kalman-based estimators (Kandepu et al., 2008a), (Kandepu et al., 2008b),
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2.2 Fault diagnosis

though it is somewhat less intuitive than what it is for MHE.

Which of the estimators EKF or MHE that is best for all purposes cannot be stated. How-
ever some advantages and disadvantages are stated in table 2.2.

+ EKF + MHE
Computationally cheaper than
MHE (Haseltine and Rawlings,
2003)

Intuitive handling of constraints,
(can potentially be handled by
Kalman-based approaches as well,
but less intuitive (Kandepu et al.,
2008b))

Simple implementation for prob-
lems without constraints

Versatile, can easily add additional
nonlinearity, additional constraints
etc.

Very much knowledge on EKF
available in the literature

Possibly better with local non-
linearities.(Haseltine and Rawlings,
2003)
Provides more intuitive model er-
ror parameters, or model parame-
ters for the fault diagnosis.

Table 2.2: Pros and cons EKF and MHE. Note that this is not meant to be any conclusion or indi-
cation to which of the estimators that is best, or even best for this thesis, it is simply a comparison
based on the available literature.

For the remainder of this thesis, there will be a primary focus on MHE, as it is this estima-
tor that was chosen to be the main estimator from the assignment text. For the purpose of
virtual flow metering, however, there is no reason to think, based on the research done in
this thesis, that a Kalman-based filter could not work just as well.

2.2 Fault diagnosis
Fault diagnosis is a field that employs various techniques of data handling to detect – and
analyze a fault2 that occur in a system. It is a science that is becoming increasingly more
relevant as more and more systems become autonomous, and the number of employed
personnel to monitor the systems is decreasing. This leads to large systems that cannot
possibly be monitored simply by human inspection of the measurement data. Add to this
challenge an ever increasing demand for improved performance, safety and reliability,
paints a good picture of why automatic detection and analysis of faults are getting increas-
ingly more attention (García and Frank, 1997).

2A fault is defined by Isermann and Ballé (1997) as: An unpermitted deviation of at least one characteristic
property or parameter of the system from the acceptable/usual/standard condition
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Figure 2.5: Simple illustration of a normal fault diagnosis system (Blanke et al., 2006).

In this paper the fault diagnosis is not going to be used in the traditional sense of detecting
physical faults that inflict the system. Rather, the same theory will be attempted utilized to
search for especially faulty parts of a mathematical model of the system. However to get a
general impression of the fault diagnosis techniques described in the literature this section
will cover the basic theory of general fault diagnosis applied to "normal" physical faults.

To limit the scope of this section, it includes only a short introduction of the elements in
fault diagnosis, a mention of some of the techniques in the literature, and finally a more
thorough introduction to Generalized Likelihood Ratio (GLR) test, which is the technique
utilized for fault detection in this paper.

2.2.1 Introduction to fault diagnosis

The overall concept of fault diagnosis consists of three central elements as stated in Blanke
et al. (2006)

• Fault Detection: Decide whether or not a fault has occurred.

• Fault Isolation: Find where or in what component the fault has occurred.

• Fault Identification and Estimation: Identify the fault, and estimate the magnitude
of that fault.
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2.2 Fault diagnosis

All these elements does not necessarily need to be contained in the fault diagnosis, how-
ever it shows the underlying idea, that a fault is detected and then analyzed.

Furthermore for any fault diagnosis system, three steps should be performed (Frank, 1996)

• Residual generation: Generation of signals that can reflect the fault.

• Residual evaluation: Evaluate the signals provided by the residual generator. De-
tecting fault, and determine time of occurrence.

• Fault analysis: Identification of fault, in addition to possibly determine magnitude
and cause of fault.

See Figure 2.5 for an illustration of the steps, note that in this illustration the two last steps
are combined into one decision system.

Residual generation

Residual generation is the process of creating good signals that can reflect the faults, and
at the same time not react to any unknown disturbances in the system which are not faults.
The techniques used for residual generation can be divided into three groups which are all
closely related (Frank, 1996)

• Parity space approach: Based on a so called parity check of the consistency be-
tween the model and the measurements from the system

• Observer-based approach: Based on the residuals between estimated measure-
ments and actual measurements

• Parameter estimation approach: Based on estimating the system parameters,
which often can be good physical indicators of what kind of error that has occurred

Note: these different techniques might have different strengths depending on the situa-
tion, and that the most efficient approach often is to use different residual generators in
combination (Frank, 1996). For more on these residual generators the reader is referred
to [(Delmaire et al., 1994) and (Chow and Willsky, 1984)] for the parity approach, [(Ding
et al., 1993)(time domain) and (Patton et al., 1989)(frequency domain)] for the observer-
based approach and (Isermann, 1993) for parameter estimation-based approaches.

Residual evaluation and fault analysis

Residual evaluation and fault analysis is the process of determining whether – and where
a fault has occurred. This detection and analysis needs to be able to determine that a
fault has occurred without making false alarms when a fault has not occurred. To achieve
this, choose appropriate thresholds for detection. It can be done in several different ways
(Frank, 1996), below some approaches are listed

• Threshold logic, (see Ding and Frank (1991))
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• Statistical decision theory (see Basseville and Nikiforov (1993))

• Fuzzy decision making (see Sauter et al. (1994))

• Neural networks (see Sorsa and Koivo (1993))

In this paper the statistical decision theory is the only approach applied, and the only one
that is discussed. For further information on the alternatives, the reader is referred to the
citations in the bullet list above.

2.2.2 Fault detection using GLRT
Generalized Likelihood Ratio Test (GLRT) is simply put a method that determines if the
measurements and inputs are more likely to correlate with an alternative model better than
the original null-hypothesisH0 model.

Independent and Identically Distributed residuals

For the statistical change detection algorithms related to GLRT, there is a general prereq-
uisite that the residuals which are diagnosed are Independent, and Identically Distributed
(IID). Which more or less means that each residual sample ε [k] should be uncorrelated
with the previous samples ε [k − τ ]. However, this can in many cases be a fairly rough
approximation, and it should be noted that with increasing correlation in the residuals, the
quality of the fault detection algorithms are decreasing. To reduce the effect of this cor-
relation, a technique called white filtering can be applied on the residuals as explained in
Hansen and Blanke (2012). This works as a preprocessing of the signals to improve the
performance of the fault detection algorithm. This white filtering attempts to remove the
deterministic element of the residuals, leaving only white noise, which has no correlation
with previous residual samples. One approach for creating such a white filter can be a
Finite Impulse Response representation of a linear estimator

ε̃[k] = ε[k]−
J∑
j=1

ajε[k − j]

With a chosen size of the filter J , which in practice usually does not have to be to large
Hansen and Blanke (2013)

For the remainder of this thesis, the residuals are assumed IID.

Log likelihood ratio

The likelihood ratio forms the basis for the GLRT and is a statistical property that com-
pares consistency of the decision variables z with the "null model" and an alternative
model. Where the "null hypothesis" H0, is that z is described by the null model, and the
alternative hypothesis H1 is that the alternative model is a better fit for z. The models are
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from this point and on described by their model parameters Θ0 and Θ1.

The log likelihood ratio is found by the following relation:

D = log
P (z; Θ1)

P (z; Θ0)
(2.11)

Which has the following properties:

• if z is more likely to belong to Θ0, then D < 0

• if z is more likely to belong to Θ1, then D > 0

Cumulative sum

Cumulative Sum (CUSUM) is based on the log likelihood ratio, and forms the foundation
of GLRT (Blanke et al., 2006). Unlike GLRT this method needs an alternative model as
proposed in the log likelihood ratio section. It is built up by the following function

S(k) =

k∑
i=1

ln
P (z(i); Θ1)

P (z(i); Θ0)
(2.12)

Which is simply the sum of the log likelihood ratio at each sample z. This S(k) is then
used in the test-statistic g(k)

g(k) = S(k)−m(k) =

k∑
i=j

ln
P (z(i); Θ1)

P (z(i); Θ0)
(2.13)

m(k) = min
1≤j≤k

S(j) (2.14)

Which is used to decide whether or not to keepH0

if:g(k) ≤ h acceptH0

if:g(k) > h acceptH1

(2.15)

To lessen the computational cost of this likelihood test, a horizon (ND := horizon of
detection algorithm) is usually added to S(k). This is done by choosing j in (2.14) in the
range of

[
k −ND + 1, k

]
instead of

[
1, k

]
.

Determine a good threshold h

To determine a good threshold h in (2.15), there are several approaches as described in Sec-
tion 2.2.1. The approach presented in this section is inspired by Willersrud et al. (2014a).

There is no obvious way to intuitively choose a good h, based on a desired behavior of
the hypothesis-test. However, given a PDF (f(x)) one can scientifically calculate a good
threshold h based on a desired sensitivity of the hypothesis test. More precisely, one can
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h1 h2

f1(g(k))

f2(g(k))

P (g(k) < h|H0) = 95%

g(k)

Figure 2.6: Two different possibilities for a distribution, illustrating how the distribution can signif-
icantly change the choice of h, given a desired PFA = 0.05 = 5%

choose how low one wants the probability for accepting H1 given H0 (PFA := P false
alarm ), and calculate the exact h that assures this probability. Without using any specific
PDF, the idea is shown in equation (2.16) which is solved for h.

1− F (h,Θ) = P (g > h|H0) = PFA (2.16)

F (h,Θ) =

∫ h

0

f(g,Θ)dg = P (g < h|H0)

F (h,Θ) is the cumulative PDF of g(k) given H0, Θ := distribution parameters (e.g. µ
and σ in the normal distribution (Walpole, 2012)).

GLRT

It is above illustrated how one can use the log likelihood ratio to detect if the samples z(i)
seem to have a better fit with Θ1 than Θ0, when the alternative model Θ1 is known. This
section describes how one can adjust the CUSUM method to work when the alternative
model is not known.

The element of the CUSUM method that cannot be utilized when the alternative model is
not known is Θ1. An estimated Θ̂1 is instead implemented. This Θ̂1 is not set prior to the
test, but chosen at each iteration to best fit the model with the data in the the test window
ND. In other words it is a method that determines how well the data fits the "null model"
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Θ0 compared to the best possible alternative model Θ̂1
3. This is implemented as

Skj (θ1) =

k∑
i=j

log
pθ1(z(i))

pθ0(z(i))
(2.17)

g(k) = max
k−ND+1≤j≤k

max
θ1

Skj (θ1) (2.18)

as given by Blanke et al. (2006).

General implementation of a GLR-test

1. Determine the "test-variable"
This implies choosing good test-variables/residuals to be taken into the GLR-test as
explained in 2.2.1.

2. Find a good probability distribution to describe the random "test-variable"
To determine the probability that a certain sample z(i) of the random variable Z are
consistent with a model presented by Θ. The model needs to have a known/esti-
mated probability distribution.

3. Choose a desired probability for false alarms to occur PFA
Choose the probability for the test to accept H1, given it is H0. In other words
choose how certain one wish to be before rejecting the null hypothesis and accept
the alternative hypothesis.

4. Choose a good fit for the probability distribution of the test statistic g(k)
To be able to scientifically choose a good threshold h based on a desired PFA, a
distribution of the test statistic g(k) is needed. Figure 2.6 illustrates the importance
of knowing the distribution of g(k) when one attempts to choose a good h.

5. Based on PFA and the chosen distribution of g(k), calculate the corresponding
h.
When one has the equations for the probability distribution of g(k) and the needed
certainty to acceptH1, the threshold h can be found.

6. Insert the distribution of the decision variables into equation (2.17). From the
previous points a density function for the null model and alternative model has been
created. This should be inserted in equation (2.17). Furthermore optimal Θ1 should
be found algebraically if possible, and hence removing the maxΘ1 element of (2.18).

7. Set up the comparison of the test statistic g(k) and threshold h
As done in (2.15)

3it should be noted that if the "null model" is a perfect model, then the alternative model Θ̂1 would be equal
to Θ0
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Execution of GLRT

Depending on the dimension of the decision variables and their distribution, the actual
execution, and the functions will vary somewhat. However looking behind the specific
details, the GLRT execution can be described by the algorithm 1.

Algorithm 1: Basic idea of a simple single variate GLR-test (Blanke et al., 2006)
Given:
A sequence of data z(1), . . . , z(k) with probability density function pθ(z)
depending on the scalar parameter θ;
A threshold h;
Compute: g(k) using (2.17) and (2.18) ;
Decide to:
if g(k) ≤ h then

acceptH0;
else

acceptH1;
end

2.2.3 Fault identification

This part is about using the statistically optimal µ1 of the PDF f(x, µ, S) found in the fault
detection algorithm, to determine what the fault is, as opposed to only knowing, that there
is a fault. In the case of this project, this forms the difference between simply detecting
that the model is poor, to hopefully isolating which part of the model that is poor. The
approach to do this identification/isolation, is based on a technique shown in Willersrud
et al. (2014b).

Smearing

Before introducing the fault identification algorithm, a concept known as smearing needs
to be introduced (Narasimhan and Jordache, 1999). Optimally one could wish that if a
fault occurred in one part of the model (indexed with i), then, that corresponding residual
signal wi would increase respectively. Given a system like this, it would be simple to
always identify the fault. However because smearing this is not the case. The fault from
one of part of the system will be distributed to all of the residuals that has correlation with
the faulty part of the system. The concept of smearing is illustrated with Example 1.
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Example 1 Given a optimization system on the form

J∗ = min
w1, w2

w2
1 + w2

2

s.t.

g1(x) = w1

g2(x) = w2

Assume g2(xtrue) = 0 and that g1(xtrue) = 1. Which means that the the true
solution implies wtrue1 = 1. However because w1 and w2 are related through
x, some of the "error" is moved from w1 through w2. By analyzing g1 and
g2 it is found that the relationship between w1 and w2 is given such that any
decrease in w1 entails a increase of twice the magnitude in w2

w1 = wtrue1 − ξ =⇒ w2 = 2ξ

This leads to:

w∗1 = 0.8

w∗2 = 0.4

This shows that any model error will naturally be "smeared" / distributed to
other model error parameters in the system. Even in the cases like this where
the decrease in the current model error parameter w1 are smaller than the
increase of the other (w2). An illustration of this example is shown in Figure
2.7.

Fault identification based on residual vector direction.

If the distribution of the alternative model were known, a CUSUM test could have been
used to detect which element of the model that is "faulty". This is not the case in this
project, however something might be found that can distinguish the possible "faulty" com-
ponents of the model from each other. The technique presented here is based on the as-
sumption that given a certain fault – something can be said about the expected direction of
the complete vector µ1 − µ0. Using this, one can potentially identify the fault.

The identification process is done by solving

i∗D = arg max
i

DT
i (µD1 − µ0)

DT
i Di

(2.19)

Di :=
KDΓD,i
||KDΓD,i||

(2.20)

Where ΓD,i represents any knowledge of the direction to which the elements of θ1 change
from θ0 given a certain fault, and KD is a weighting matrix that tells the optimization
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Figure 2.7: Illustration of example 1. There will always be some distribution (smearing) of the error
related to one function in the model.

formulation approximately how much each element of θ changes given a fault (compared
to each other). This concept has been illustrated with Figure 2.8, and through example 2.
Note that the identification algorithm used in this thesis and illustrated in Figure 2.8, is
extended from (Willersrud et al., 2014b), by the addition of making the vector comparison
between DT

i and (µD1 − µ0) independent of sign. This is done by reformulating (2.19) to:

i∗D = arg max
i

||DT
i (µD1 − µ0)||
DT
i Di

Example 2 Given a θ =
[
θ1 θ2 θ3

]
, and a set of possible faults i ∈

{1, 2, 3}, with the knowledge that

• given fault number 1, then all the elements of θ will increase, which
implies ΓD,1 =

[
1 1 1

]T
.

• given fault number 2, then θ2 will increase and θ1 will decrease, and the
direction of θ3 is not known. Which implies ΓD,2 =

[
−1 1 0

]T
• given fault number 3, ΓD,3 =

[
−1 −1 1

]T
• Furthermore, although it is hard to determine the relative magnitude of

the change KD, it is approximately known that changes in θ1 and θ2
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D1

D2

D∗2

D∗1

∆µ(w)
w1

w2

Figure 2.8: Illustration of the fault identification algorithm, in this case, i∗D = 1, because the test-
variable vector ∆µ(w) fits best with D∗

1 , which is the negative of D1.

are approximately equal in magnitude, whilst θ3 changes about 100
times more in magnitude than the other two. This leads to KD =[
1 1 1

100

]T
2.3 Measurement error, sensitivity and its characteristics
In state estimation, there is as previously stated two main sources for error, namely mea-
surement error and model error. Although model error is the main focus of this paper, it
makes sense to cover some theory about the measurement error as well. This section will
cover the various elements that together form the total measurement error, the nomencla-
ture in the field of measurement error, and a short summary of normal accuracies of some
measurement sensors4.

2.3.1 Nomenclature in the field of measurement error
This section is added to better understand the terms that are used to describe the measure-
ment error, both in this paper and more importantly in the data sheets of measurement
sensors.

4also called transmitters, transducers and indicators
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Terms related to the uncertainty of measurements, are often used interchangeably, although
they in fact represents different aspects of uncertainty (Webster and Eren, 2014). This
should be avoided as it creates confusion and sometimes completely wrong statements. To
clear this up, a list of some general expressions are defined below. All these explanation-
s/definitions are based on Webster and Eren (2014).

• Accuracy: is the closeness of a measurement to the value defined to be the true
value. An accuracy of ±5% generally implies that almost all of the time (e.g 99%
of the time) its indication is within 5% of the "true value"

• Uncertainty: is the negative equivalent of Accuracy, the distance of the measurement
from the true value. Note however that Uncertainty is unambiguous, while Accuracy
is not, (e.g what is twice the accuracy of ±2%? Is it ±1% or ±4%?)

• Sensitivity : An expression of the influence an error source has on a test or measured
result.

• Precision: is a term that too often is misused as a synonym to accuracy, which is
not the case. Precision describes the repeatability of the measurements, which can
be seen as the variance of the measurements. It differs as a term from accuracy and
uncertainty because the mean of the measurements does not necessarily represent
the "true value". This is explained further in Section 2.3.2 and Figure 2.9

• Discrimination: The discrimination is the smallest increment possible from the sen-
sor. (E.g, discrimination of 0.1, would mean there is no output between 2.4 and 2.5,
x = 2.432 becomes x = 2.4)

• Resolution: A synonym to discrimination

• Error: The difference between the measured and true value

Understanding the data sheets that presents the accuracy of the sensors is important as
there can be massive differences depending on how you understand the numbers presented.
This is explained in Table 2.3, by some examples of different accuracy description from
different suppliers and data sheets.
Note: the Best Fit Straight Line (BFSL) description of accuracy (shown in Table 2.3) can

be misleading. It essentially describes only one part of the uncertainty, namely the linearity
(which is described in the section below). However given an accuracy of ±x%BFSL, one
should usually understand it as a measure of the total accuracy, and interpret it as ±x%FS
with the linearity approximated by BFSL. This should however be verified by reading an
explanation in the respective data sheet (if present). The reason as to why BFSL is added
is probably because the linearity aspect of the uncertainty often plays a dominating role in
the total uncertainty.

2.3.2 The elements of measurement error
Some terms are previously defined to help understand the description of measurement er-
ror provided in the data sheets of instruments. In this section the different elements that
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Presentation Description Comment
±x [unit] Absolute value

±x%
Accuracy depending
on the magnitude of the
measured value.

±x%FS

% of Full Scale (Lipták, 1995).
Indicates accuracy as
±x×100%

xmax
where xmax

is the maximum value in the
range of the sensor.

Note that there
is often a significant
difference between
±x% and %FS.
Note also that this
is often related to linearity

±x%FS(O/R)
% of Full Scale (Output/Range).
Exactly the same as
±x%FS

±x%BFSL

Best Fit Straight Line
Usually same as %FS with
the added information of how
the nonlinear relationship
is approximated, see sec 2.3.2

±x% of calibrated span

You can adjust the
range of your transmitter
yourself, which opens
up for significantly more
accurate measurements

Table 2.3: Various approaches for presenting accuracy (RDP group, 2005)
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contribute to the measurement error is described.

The actual error of a measurement can be divided into two main elements, namely sys-
tematic error (bias), and random error (noise). Where the precision presented in the list
above only describes the the random error part of the total error. For an illustration of this
concept see Figure 2.9.

The systematic error generally results from poor calibration, from degradation of the sen-
sor over time, or from changes in the condition under which the sensor operates. It is
therefore important to periodically recalibrate the sensor to keep this systematic error at a
minimum.

Random error (precision)

Systematic 
error (bias)

True Value

Measured Values

Mean 

Figure 2.9: Illustration of the two elements of a measurement error. Adapted from Webster and
Eren (2014)

For now the different elements of the actual measurement error has been described. This
next part will present the elements that are responsible for the error in the first place. Sev-
eral sources for error exist. To name some; error of nonlinearity, error from hysteresis,
zero stability, discrimination, saturation and drift (Webster and Eren, 2014). However,
only the error of nonlinearity is described further, as this can generally contribute most to
the total uncertainty. It is also often the only source of error that is highlighted when the
accuracy is described in the data sheets of measurement instruments.

When a measurand is being measured, what happens, is in fact that an instrument detects
and reacts in some way on the property being measured, the instrument will then send
out some kind of signal (normally current or voltage5). This signal is then interpreted to
give us information on the property that is being measured. The relationship between the
measured property and the electrical signal, however, is rarely as nice as one would like
it to be. This relationship and the desired relationship forms the foundation of Error of

5depending on whether it is a transmitter or transducer
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nonlinearity6. The interpretation of the transmitted signal are generally assumed linear
with the measured property. However this is often not the case, and the deviation from
approximated linear relationship to the actual (nonlinear) relationship is called Error of
nonlinearity. See Figure 2.10 for illustration of the phenomena.

Best Straight Line

Real relationship

Output

Input

FS (full scale)

Vfs

Error

Figure 2.10: Illustration of error from nonlinearity, and best fit straight line. Adapted from RDP
group (2005)

2.3.3 Typical uncertainties of measurement sensors in the market to-
day

This section consists of a short survey on the accuracies of measurement instruments in
the market today. It is based on a chosen selection of instruments used in the oil and gas
industry (or at least can be used in the oil and gas industry). The data is shown in Table
2.4, and all the presented information is based on the data sheets for the respective sensors.

The instruments presented in Table 2.4 are all directly relevant for this project, and covers
all the measurements used in this thesis, namely topside single phase flow measurements,
pressure transmitters and temperature transmitters (both for topside and subsea).

6also called Linearity
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Measurand Accuracy Range (selected) Supplier
(Model)

Note

Pressure ±0.25% FS
(BFSL)

0...
{138, 207 or 345} bar

PSI-Tronix
(PT-L1)

Pressure ±0.2% BFSL 0....
{350 or 400} bar

Honeywell
(425)

Particularly usefull
for drilling, but can
potentially be used in
production as well.

Pressure ±0.25% of
calibrated
span

Adjustable up to
350bar

Rosemount
(4600)

Note that this per-
centage is of cal-
ibrated span which
can be significantly
better than full scale.

Pressure ±0.1%FS 0− 690bar Emerson
(220-30-020)

Especially created
for subsea monitor-
ing .

Temperature ±0.3◦C calibrated between
−40, 125

Roxar (Sen-
Corr PTPT)

Specifically intended
for subsea measur-
ing. Also a pressure
transmitter

Temperature ±0.05% of
calibrated
span

Adjustable up to
850◦C

ABB
(TTF300)

Note that the mini-
mal span is of 10◦C

Temperature ±0.02% of
calibrated
span

Adjustable up to
850◦C

Rosemount
(3144P)

Note that the mini-
mal span is of 10◦C

Liquid mass
flow

±0.1% of ac-
tual measured
value 950 −
430000kg/h

Honeywell Ver-
saFlow Coriolis
1000

Both gas and
liquid

Gas mass flow ±0.5% of ac-
tual measured
value

950− 430000kg/h Honeywell
VersaFlow
Coriolis 1000

Both gas and liquid

Liquid mass
flow

±0.1% of ac-
tual measured
value

Tube diameter be-
tween 3mm− 50mm
Not sure about kg/h

Foxboro Cori-
olis CFT51

Both gas and liquid

Gas mass flow ±0.5% of ac-
tual measured
value

Tube diameter be-
tween 3mm− 50mm
Not sure about kg/h

Foxboro Cori-
olis CFT51

Both gas and liquid

Table 2.4: Given accuracies from some suppliers. Note that there is often a large selection of ranges
on the transmitters, but only the relevant ranges has been picked out in this table.
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Modeling

This chapter presents the modeling and implementation of the system that was introduced
in Section 1.4. The first section of this chapter presents the modeling of the system, includ-
ing the equations chosen, and a description of the phenomena that have been included and
those which have been omitted. Furthermore, a section on modeling of the measurement
noise is added as an extension to the theory described in Chapter 2. The modeling of this
system is adapted from the models of Aamo et al. (2005).

• Test case:
In this project, an oil production system as shown in Figure 1.3 is used as a test case.
It consists of 4 wells and pipelines running through chokes to a separator . It is a
test case that is simplified by disregarding elements such as subsea manifold, risers,
etc. It is simply 4 wells that goes directly to 4 topside (surface) wellheads and from
there merge into one pipeline which leads to the separator.

• Scenario:
This experiment will be performed by artificially introducing realistic measurement
errors, and more importantly, artificially introducing model errors. The model errors
are introduced by changing some of the model parameters of the simulator to inflict
errors in the models used in the state estimators. The task is then to detect that the
model has become poorly calibrated, and identify which part(s) of the model that
has (have) become poorly calibrated. The specific scenarios that will be tested are
presented in Chapter 6.

3.1 Modeling of the system
For a system like this there will always be additions that can be made to further increase the
complexity of the simulator. However to simplify the model, and to more easily highlight
the effects that are to be investigated in this project, some natural components on a subsea
production system have been omitted. The phenomena that is added have been listed
below:
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• Inflow to the well from the reservoir

• Pressure loss due to elevation in pipeline

• Mass conservation in the pipeline from bottom hole to choke valve at the surface

• Pressure loss over choke valve

• Pressure after choke valve is equal for all flows that merge into the separator

The assumptions relevant for the test case have been listed below

• Constant and known GOR and WC for all wells

• Linear relationship between pressure difference P res−PBH and inflow to the well

• No manifold, no subsea wellheads, to simplify the model, and decrease the number
of "sub models" and variables.

• Negligible pipeline between choke valve (wellhead) and separator

• Instant separation of oil, gas and water in the separator

• Any pressure loss due to friction in the pipelines is incorporated into the valve equa-
tion of the wellhead

• Ideal gas law valid for the gas component of the reservoir fluid

3.1.1 System equations
In this section the mathematical modeling of the system is presented. To ease the under-
standing of the buildup of this model, Figure 3.1 is presented below.

Variables
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pres "Known" Reservoir
pBH Measured Bottom Hole
pWH Measured Wellhead (before choke)
psep Measured/Known Separator
GOR "Known" and constant Gas Oil Ratio
WC "Known" and constant Water Cut
qBHo,w,g Unknown Inflow Bottom Hole
qWH
o,w,g Unknown Flow out from wellhead
u Known Input to the choke valves from con-

trol system
PI "Known" and constant Inflow parameter
Cc "Known" and constant Valve coefficient

Table 3.1: The variables in the model have been listed in this table, to give an overview of what is
known, and what is not. Notice that a distinction has been made a between "Known" and Known.
This distinction was made because the parameters that are characterized as Known, is infact known
and can be controlled by the user, while the ones that are characterized with "Known", are only
assumed to be known, but in a real situation they would only be approximations.

Surface

SeaBed

Resservoir rock

1) Inflow bottom hole

2) Flow in
pipe

3) Flow over well
head choke

4) "Manifold" and
seperator

Wells

Figure 3.1: Simplified illustration of one well, and how this thesis separates the entire system into
submodules (1,2,3 and 4). These submodules are presented with equations in Section (3.1.1).
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Chapter 3. Modeling

Note: the water and oil are hereafter are consider to be one identity, namely liquid - rep-
resented below by x2 and qBH/WH

l . For that reason it is no longer relevant to talk about
WC and GOR as properties of the flow1 - and instead a new property is introduced, namely
Gas to Liquid Ratio (GLR). Below the relations with GLR are stated:

GLR =
qg
ql

=
qg

qo(1 + WC
100−WC )

= GOR
100−WC

100

= GOR(1− WC
100

) (3.1a)

qg = GLR× ql (3.1b)

qg =
GLR

GLR + 1
qc (3.1c)

ql =
1

GLR + 1
qc (3.1d)

Note: GLR, GOR and WC are all mass fractions in this thesis, as opposed to the norm
which seems to be volume fraction (at standard conditions). This is a choice made, because
this thesis always work with the fluids in mass, hence removing the need for conversion
between volume fraction and mass fraction.

Inflow bottom hole:

qBHl = PI(pres − pBH) (3.2a)

qBHg = GLR× qBHl (3.2b)

• PI: is a constant parameter

• qc: is the total mass flow (including gas, oil and water)

Flow in pipes:
The following equations are inspired by Aamo et al. (2005), however adjustments have
been made, as there is no added gas lift in this system.

ẋ1 = qBHg − qWH
g (3.3a)

ẋ2 = qBHl − qWH
l (3.3b)

where

qBHl = qBHo + qBHw

qWH
g =

x1

x1 + x2
qWH
c

qWH
l =

x2

x1 + x2
qWH
c

• qc: total mass flow rate

• x1, x2 : accumulated mass in the well - gas and liquid respectively.
1For more on these properties look to Appendix 1.1
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3.1 Modeling of the system

Flow over wellhead choke:
For the wellhead choke, a simple, but widely used valve equation is used. It should be
noted, however, that there are many potential issues not accounted for in this model of the
valve - such as: cooling over choke, critical flow and turbulence in the gas downstream of
the valve.

qWH
c = CWH

c

√
ρm(pWH − psep) u (3.4a)

pWH ≥ psep
where

ρm =
x1 + x2

LtAt
(3.4b)

pWH =
RTt
M

x1

LtAt − νlx2
10−5 (3.4c)

pBH = pWH + ρmgLt10−5 (3.4d)

• ρm := density of oil/gas/water mix at the wellhead.

• Lt, At := the length and cross section of the well

• pWH : pressure at the top of the tubing, directly before choke valve

• psep: pressure by the separator which assumed equal to that of the pressure directly
after the choke valve

• νl: specific volume of the liquid

• M : molar weight of the gas

• R : gas constant

• TW : Temperature in the well

• u : opening of valve, in the range [0, 1]

Note that (3.4c) and (3.4d) are not directly related to the flow over the choke, but stems
from pressure loss due to elevation, and for (3.4c), pressure found through the ideal gas
law.

Collection of flow from all wells, and through separator:
Because this thesis assumes no manifold, and instant separation of the oil/gas/water mix-
ture in the separator – this submodule is fairly easy, it is simply a sum of the inflows.

qlg =

4∑
i=1

qWH,i
g

qll =

4∑
i=1

qWH,i
l

(3.5)
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Chapter 3. Modeling

• n := # wells

• qWH,i
l/g := the flow through the choke of well i

• WCi := the water cut of the liquid entering well i

• qlg/l := flow of gas/liquid leaving the separator.

3.1.2 Measurement noise.
In Table 2.4 a survey on the measurement accuracies declared by the suppliers were pre-
sented. The instruments were all presented with ranges within which the suppliers guar-
antee that the measurements will be (95% (or 99.7%) of the time). It did, however, not
proclaim how the error was distributed, and whether or not it was white noise. For the
remainder of this thesis the measurement error is modeled as Gaussian zero mean white
noise. The standard deviation of the measurement noise inserted into the simulator is also
set based on the provided accuracies in Table 2.4.

In this section these measurement error models are tested, by analyzing measurements
provided from an operative oil platform. The results found in this measurement analysis
will also be compared to the provided accuracy in Table 2.4. It should, however, be noted
that the instruments used to provide the measurements in this analysis are not the same as
the instruments shown in the table.

Results

Provided with this analysis are two tables and two figures. Table 3.2 presents the standard
deviation of the (approximately) normally distributed measurement errors, and Table 3.3
summarizes the most important results from this analysis. Figure 3.2 shows a subset of the
measurements presented in Table 3.2, namely

• Temperature measurements wellhead

• Pressure bottom hole

• Oil flow, exported

• Gas flow, exported.

The first column presents the measurement signal and the estimated true values (based on
moving horizon filter) which is subtracted from the measurements to obtain the noise com-
ponent of the measurements. The second column presents the distribution of the residual
y− ŷ, where y is the provided measurements, and ŷ is the estimated true value. Along with
the distribution is a fitted normal distribution to illustrate the closeness of the measurement
residual distribution to a normal distribution. The third column provides the power spectral
density (PSD) of y− ŷ, which is provided to analyze the assumption that the measurement
error is white.
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3.1 Modeling of the system
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Figure 3.2: Analysis of operational measurement data, for the purpose of determining the charac-
teristics of the noise. The actual standard deviations are presented in Table 3.2. MA := Moving
Average, PSD := Power Spectral Density. Note that to save space, only the bottom plots have an
xlabel, these xlabels are valid for every plot in that column. The different lengths of the PSD’s comes
as a result of different samplings rate.

Figure 3.3 is more of a side note that illustrates the accuracy of flow measurements taken
subsea, with a multi phase meter. Measurements like these are not used in this thesis, and
is for that reason not relevant with respect to choosing good artificial measurement noise
introduced to the simulator. It is, however, of interest as these measurements measures the
same states that are estimated in this thesis, (as discussed in the introduction).

Discussion of measurement error analysis

In this section the results shown in Section 3.1.2 are analyzed and discussed. Note: If there
is a bias error in the measurements, this bias will be removed together with the true value
when this method of extracting the measurement error is used. Which means that the error
extracted from these signals is in fact only the precision (random error) component of the
measurement error - not the complete measurement error (see Section 2.3.2). However,
as nothing more is known about the system than the measurement signals provided, the
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Chapter 3. Modeling

T [◦C] P [bar] Gas Flow [Sm3/h] Liq Flow [Sm3/h]
Bottom Hole 0.0006 0.0022
Upstream WH 0.0170 0.016
DownStream WH 0.0166 0. 0689
Annulus 0.0684 0. 0008
Well 751.7 (≈ 2.2%) 0.97 (≈ 9.7%)
Export 2087 (≈ 0.3%) 1.81 (≈ 0.6%)a

Table 3.2: Standard deviation of measurement noise, found through analysis of data provided from
a operational platform. See Figure 3.2. Note that the percentages are percent of the actual flow.

aNote that this signal had a lot of process dynamics in the measurement - making it harder to extract the noise
from the signal see Figure 3.2. The noise has been attempted withdrawn, however the quality of this extraction
is poor, and it is reason to believe that the σ found in Table 3.2 for liquid (oil) flow export is artificially large.

• All the measurements seem to have distributions similar
to a normal distribution.
• It is difficult to verify that the noise act as white noise,
but it seams reasonable to believe that, at least the tem-
perature and pressure measurements, can be modeled as
white - which is discussed further in 3.1.2
• Small random error in the pressure- and temperature
measurements. Somewhat larger for flow measurements,
but the random error found for these measurements are
also more uncertain.

Table 3.3: Main results from Section 3.1.2

random error is the only thing that can be extracted, and hence the only component used
in the analysis that is conducted in this section.

This discussion is separated into three main part, namely

• A standard deviation comparison with the values provided in Table 2.4

• A discussion on the assumption of Gaussian white noise

• A small discussion of the measurements done on subsea multi phase flow measure-
ments.

The standard deviation (σ) of the distributed measurement error describes the precision
of the measurements, however, the accuracies presented in Table 2.4 are not presented
in standard deviation. Instead they are presented with a range within which most of the
measurement errors will be distributed. Assuming that this range is defined with a 95%
certainty (which it is defined to be in some of the cases) then each end of this range rep-
resents ±2σ. It should also be noted that the accuracy provided in the data sheets also
accounts for error from bias, which is not accounted for in the results of this section.
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Figure 3.3: Measurement noise of gas and oil measurement conducted subsea with a multiphase
flow measurement system.

From the accuracy found in the data sheets, the different suppliers (except Rosemount)
only guarantees measurement error with standard deviation of σ = 0.2%∗FS/2 ≈ 0.4bar.
This is considerably higher uncertainty than all of the pressure measurements provided in-
dicate. In the case of Rosemount, the accuracy is decided based on the calibrated range of
the pressure measurements, which could potentially lead to accuracies in the same range
as the measurements provided in this test indicate. The temperature measurements are
generally said to have good accuracy by the suppliers, this corresponds well with the mea-
surements analyzed in this thesis. For the uncertainties in the flow, only the exported flow
measurement are relevant. For the exported flow, it can be seen that the standard deviation
of the gas flow is within reasonable magnitude compared to that of the accuracy stated
by the suppliers for similar instruments. For the oil flow on the other hand, the accuracy
seems to be considerably worse than that of the accuracy stated by the suppliers. The σ
found through this analysis, however, might be drastically overestimated as the extraction
of the noise from the measurements were particularly difficult for the oil flow. This be-
cause there were considerably more activity in the actual (estimated) true flow than what
was the case in any of the other estimates (which can be seen from Figure 3.2).
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Chapter 3. Modeling

This analysis also covers the characteristics of the measurement noise, through the dis-
tribution plots and power spectral density plots in Figure 3.2. Based on the data, it can
be observed that, there seems to be no reason to think that the measurement noise from
any of the instruments are better characterized by any other distribution than the Gaussian
distribution. The minor deviations from the Gaussian distribution in the temperature mea-
surement and gas flow can be defended by the fact that they have a smaller sample size.
For the oil flow the lack of consistency can be explained by a poor estimation ŷ, and hence
a poor extraction of the noise.

The Power Spectral Density (PSD) of a zero mean white noise signal is expected to be a
constant line. Any deviation from a constant line would be an indication that the samples
of the noise are correlated. In practice no finite sequence of samples will give a constant
level over all the frequencies in the PSD, however, the degree to which there seem to be a
lack of any peaks in the PSD gives a strong indication on the whiteness of the signal. The
measurement errors analyzed in this section, all seem to have slight peaks towards 0 Hz.

Whether or not these peaks stem from dynamics in the process that was not successfully
removed during the noise extraction, or from actual correlations in the noise is no easy task
to determine. However, it is not unreasonable to believe that some of the correlations in
the measurement noise comes as a result of process dynamics transfered to the estimated
measurement noise. This is especially relevant for the flow measurements as the extraction
of the measurement noise was harder with these measurements. Assuming that the peak
towards zero can be defended by remaining process dynamics still present in the estimated
noise (y − ŷ), one can for the temperature and pressure measurements safely approximate
white noise characteristics. In the case of the flow measurements, however, the analysis
done in this thesis does not form enough of a basis to conclude in any direction whether or
not the measurement noise can be characterized as white noise.

Figure 3.3, presents the measurements of flow done by a subsea multiphase flow meter
(Falcone and Hewitt, 2002). It provides the user with the same information as the VFM,
but based on actual measurements from an instrument placed physically somewhere in the
production line between the reservoir and the platform (usually by manifolds (High et al.,
1995), but can also be placed by each single wellhead.). The field of multiphase flow
meters (MFM) was briefly presented in Section 1.1, in this presentation the MFM were
presented as an alternative to VFM, it should, however, be stressed that it can also be used
as a significant asset to a VFM system.

Looking at Figure 3.3, it is evident that the measurements from these kind of instruments
are imprecise. For the oil flow presented in the figure it shows that one must expect random
error up to ±3Sm3/h = ±30% of the true flow. This is not counting possible additional
bias error. The precision of the gas flow seems to be a little bit better, but one would still
have to expect random error up to ±6% of the true flow. Although a plot is not added
for the PSD, tests have been conducted, and both seem to be fairly consistent with white
noise.
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3.2 Implementation

AT 0.12 m
LT 2000 m
rt 61.8 mm
Cc 0.5060
psep 50 bar
pres [2.5, 2.55, 2.60, 2.45] 102bar
R 8.3145
M 0.020 06 kg/mol
g 9.81 m/s2

TT 350 K
ρo 900 kg/m3 (Jahn et al., 2008)
ρw 1000 kg/m3

Table 3.4: Parameters used in the simulations. Chosen arbitrarily in the scope of reasonable values.

3.2 Implementation
There will be implemented two simulators based on the model presented above.

• Standard approach: using the equation of Section 3.1.1, in a differential solver in
matlab (in this project ode45)

• Alternative approach: solving a feasibility problem, with the constraints being the
equations of Section 3.1.1.

In both of the implementations, the parameters are given as shown in Table 3.4.

With the standard implementation there cannot be any direct inequalities, which means
that equation (3.4a) is changed to

qWH
c = CWH

c

√
max(ρm(pWH − psep), 0) u

The standard implementation is validated in Section 3.2.1 with respect to steady state
calculations of the equations, and intuitive understanding of the behavior in a well.

Simulation using optimization

The alternative implementation is to simulate the system using an optimization approach
without objective function, (also called a feasibility problem). With this approach, the
equations of the model is implemented as constraints to the feasibility problem. The differ-
ential equations ((3.3b) and (3.3a)) are implemented in the feasibility problem constraints
by the use of Euler’s method2 (xk+1 = xk+dtf(xk)) (Egeland and Gravdahl, 2002). This
way of implementing the model is validated by comparing the simulation results with the
results of the standard implementation. The implementation as a optimization problem is
given as in (3.6)

2Also called Euler’s standard method or forward method.
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min
x

0,

x =
[
qBH,ig/l,k ; qWH,i

c/g/l,k; pWH,i
k ; pBH,ik ; xi1,k+1; xi2,k+1; ρim,k; qlg/l,k

]
∀i ∈ {1, 2, 3, 4} , k ∈ 0...N − 1

s.t

xi1,0 and xi2,0 is given ∀i
qBH,il,k = PIi(pres,i − pBH,ik ), ∀i, k ∈ 0...N − 1 (3.6a)

qBH,ig,k = GLRqBH,il,k , ∀i, k ∈ 0...N − 1 (3.6b)

qWH,i
c,k = CWH,i

c

√
ρm(pWH,i

k − psep) uik, ∀i, k ∈ 0...N − 1 (3.6c)

qWH,i
g,k =

xi1,k
xi1,k + xi2,k

qWH,i
c , ∀i, k ∈ 0...N − 1 (3.6d)

qWH,i
l,k =

xi2,k
xi1,k + xi2,k

qWH,i
c,k , ∀i, k ∈ 0...N − 1 (3.6e)

ρim,k =
xi1,k + xi2,k
LtAt

, ∀i, k ∈ 0...N − 1 (3.6f)

pWH,i
k =

RT it
M

xi1,k
LtAt − νilxi2,k

10−5, ∀i, k ∈ 0...N − 1 (3.6g)

pBH,ik = pWH,i
k + ρmgLt10−5, ∀i, k ∈ 0...N − 1 (3.6h)

xi1,k+1 = xi1,k + (qBH,ig,k − qWH,i
g,k ) ∗∆t, ∀i, k ∈ 0...N − 1 (3.6i)

xi2,k+1 = xi2,k + (qBH,il,k − qWH,i
l,k ) ∗∆t, ∀i, k ∈ 0...N − 1 (3.6j)

qlg =

4∑
i=1

qWH,i
g,k (3.6k)

qll =

4∑
i=1

qWH,i
l,k (3.6l)

pWH,i
k ≥ psep, ∀i, k ∈ 0...N − 1

pres,i ≥ pBH,ik , ∀i, k ∈ 0...N − 1

xi1,k ≥ 0, ∀i, k ∈ 0...N − 1

xi2,k ≥ 0, ∀i, k ∈ 0...N − 1

Note that the following syntax is used in this paper

x =
[
xik
]
, ∀i ∈ 1, ..., I, k ∈ 1, ...., N

=
[
x1

1, ...., x
1
N , x

2
1, ...., x

2
N , · · · , xI1, ...xIN

]T
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3.2 Implementation

Where k ∈ 1 ... N , are the time steps of the problem. For the sake of simulation, this
time horizon can be set to k = 0, implying that the the simulation is done iteratively by
solving (3.6) at each time step. However the optimization problem is formulated with this
time horizon as the same equations will be utilized in the estimators, which do need a time
horizon.

Equations ((3.6a),(3.6b),(3.6f),(3.6h),(3.6i),(3.6j),(3.6l),(3.6k)) are all linear and are im-
plemented by Ax = b, the inequalities ((3.6c)), (3.6d),(3.6e),(3.6g)) are implemented by
Ax ≤ b. The remaining equations are nonlinear equalities, and are implemented as they
are with (c(x) = 0). Additionally, these equations are differentiated and supplemented to
the solver3. The derivatives are given by the Jacobian matrix

J(x) =


J1

J2

J3

J4


J1(x) =

[
0 0 1 0 0

− 1
2Ccρmu√

ρ(pWH−psep)
0 0 0

− 1
2Cc(p

WH−psep)u√
ρ(pWH−psep)

0 0

]
J2(x) =

[
0 0 −x1

x1+x2
1 0 0 0

−qWH
c

x1+x2
+

x1q
WH
c

(x1+x2)2
x1q

WH
c

(x1+x2)2 0 0 0
]

J3(x) =
[
0 0 −x2

x1+x2
0 1 0 0

x2q
WH
c

(x1+x2)2
−qWH

c

x1+x2
+

x2q
WH
c

(x1+x2)2 0 0 0
]

J4(x) =
[
0 0 0 0 0 1 0 −RTt

M(LtAt−νlx2)10−5 −RTtνlx1

M(LtAt−νlx2)2 10−5 0 0 0
]

3.2.1 Validation of the model

In this thesis, no real data are available for performing the validation. This means that
the validation will be more of a test to check that the model has been implemented cor-
rectly and that one gets the expected results. The validation is essentially split up in two
categories; dynamical and steady state validation.

• Steady state validation is a test that is conducted to check that the steady state value
is correct. This is something that can be compared to the model as one can quite
easily find steady state values from the equations in the model.

• Dynamic validation is tests that investigates whether or not any transients and dy-
namical behavior is as expected from our intuitive understanding of the system.

Note: This validation is performed on the model of one single well. This is done because
the part of merging the flows from the wells is simply a matter of adding the flows together
- which is considered to be a simple operation, and hence not requiring validation.

3supplemented to drastically decrease the run time
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Variable chosen value
pres 250 bar
GOR 0.22
WC 70%

Table 3.5: Variables chosen for steady state validation of well model

Variable Matlab implmentation Maple calculation difference (%)
pBH 197.91 197.91 0
pWH 95.502 95.502 0

qWH
c = qBHc 3.8987 3.8987 0

ρm 521.95 521.95 0
x2 1.1744 1.1744 0

Table 3.6: Steady state validation. Comparing results from calculation of the steady state equations
(performed in maple), and the results from the simulated Matlab implementation.

Steady state validation

As stated earlier, there is no real data, with which to compare the model. This validation
will cover whether or not the implemented dynamical model gives the same steady state
values, as the equations in the mathematical model presented in this section.

To analyze the steady state value of the set of equations given in this model, ẋ1 and ẋ2 is
set to zero, leaving qBHg = qWH

g and qBHl = qWH
l =⇒ qBHc = qWH

c .
Furthermore in steady state the relationship between x1 and x2 is known and constant,
which means that x1 should not be counted as an individual independent variable, but
rather as a function of x2.

x1 = x2 · GLR

For the steady state analysis 5 variables (pBH , pWH , qBHc , ρm, x2) calculated from
equations ((3.2a), (3.4c), (3.4d), (3.4a), (3.4b) ) are compared with the corresponding
values found from simulation of the implemented model. For the steady state analysis,
the parameters are given as in Table 3.4 and 3.5.

The results of the steady state comparison is shown in Table 3.6. These results cannot ver-
ify the equations, but the steady state behavior of the implemented dynamical simulator is
now validated compared to the steady state solution of the equations in 3.1.

Dynamical validation

In the dynamic validation, two scenarios are tested (decrease in valve opening, and de-
crease in reservoir pressure). The comparison between the simulated- and expected are
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3.2 Implementation

Change in conditions Expected outcome
Actual outcome
from the simulation

Ramp decrease
in valve opening.
Total decrease of 50%

Greater pressure drop over valve
=⇒ increase in pWH .

Decrease in qWH
c , and

similar decrease in qBHc
with some delay.
Increase of pBH expectation
(because of equation (3.2a)).
Increase of x2 =⇒ increase
of ρm, (because of
equation (3.4c))

Everything did correspond
with the expectations, as can
be seen from Figure 3.4

Ramp decrease
in reservoir pressure.
Total decrease of 10%

Decrease in pBH , decrease in qBHc
=⇒ decrease in qWH

c

decrease in x2 =⇒ decrease in
ρm. Decrease in pWH (because
of (3.4c))

Everything did correspond
with the expectations.
The results are shown in
Figure C.1, which can
be found in the appendix.

Table 3.7: Dynamical validation, expected dynamical effect, and actual effect from simulation

discussed in Table 3.7, and the simulated results are shown in Figure 3.4 and C.1. To
conclude, it can be said that with this implementation of the model it was not observed
any unexpected phenomena, hence it seems reasonable to state that the dynamics of this
simulator has been validated.
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Figure 3.4: Dynamical validation. The results from simulation of the implemented model.
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Chapter 4
Estimation

Buildup of the simulator was explained in the previous chapter. This simulator is meant
to represent a real life system, and is created to produce realistic measurement data for
testing of the state estimators and fault diagnosis tools that are created in this thesis. This
chapter describes the buildup of the observers created for this thesis, with a primary focus
on the Moving Horizon Estimator (MHE).

The system is defined with the following measurements

yk =
[
pWH,i
k ; pBH,ik ; qlg/l,k

]
(4.1)

In addition, temperatures can usually be measured for such a system. This is, however, not
used in the equations of our model, and hence not included in our measurement vector y.

4.1 Extended Kalman filter equation

This thesis has a focus on using MHE as state estimator and using some of the information
from the output of that estimator to detect model errors using fault diagnosis algorithms.
For the purpose of showing that any state estimator, alsostate estimators not based on
MHE, can be applied with the fault diagnosis algorithm, an Extended Kalman filter has
been implemented. EKF is a natural choice for the alternative estimator as it is relatively
easily implemented, and it is a widely known state estimator (Kang et al., 2013).

In the implementation of the Kalman filter in this thesis it makes sense to separate the
states into two categories – algebraic and differential states (respectively ξk and xk) (Kühl
et al., 2011). Where the algebraic states (ξ) are only set based on algebraic relations, while
the differential states (xk) enters differential equations as well. The system can then be
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presented with the following formulation

xk+1 = f(xk, ξk, u)

0 = g(xk, ξk, u)

yk = h(xk, ξk, u)

(4.2)

In the formulation of (3.6) this would imply that

xk =
[
xi1,k; xi2,k

]

f =

[
eq (3.6i)
eq (3.6j)

]
, ξk =



qBH,ig/l,k

qWH,i
c/g/l,k

pWH,i
k

pBH,ik

ρim,k
qlg/l,k


, g =



eq (3.6a)
eq (3.6b)
eq (3.6c)
eq (3.6d)
eq (3.6e)
eq (3.6f)
eq (3.6g)
eq (3.6h)
eq (3.6k)
eq (3.6l)


, h =


pWH,i
k

pBH,ik

qlg,k
qll,k



From Section 2.1.1 it is known that an EKF is built up with the following set of equations

Kk = P−k C
T
k (CkP

−
k C

T
k +Rk)−1

x̂k = Kk(yk − c(xk))

Pk = (I −KkCk)P−k

P−k+1 = AkPkA
T
k +Qk

x̂−k+1 = f(xk, ξk(xk), u)

Where Rk and Qk are chosen covariance matrices (chosen time invariant in this case) for
the measurement noise vk and process noise wk respectively
Ak and CK is given as in (2.7), which for this system makes

Ak =
df(xk, ξk(xk), uk)

dxk

∣∣∣∣
x̂k

=

1 + (
dqBHg,k

dx1
− dqWH

g,k

dx1
) ·∆t (

dqBHg,k
∂x2
− dqWH

g,k

dx2
) ·∆t

(
dqBHl,k

dx1
− dqWH

l,k

dx1
) ·∆t 1 + (

dqBHl,k
∂x2
− dqWH

l,k

dx2
) ·∆t


Ck =

dh(xk, ξk(xk))

dxk

∣∣∣∣
x̂k

This set of equations are then implemented in a similar way to the loop in Figure 2.2.
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4.2 Moving horizon estimation

4.2 Moving horizon estimation
Moving Horizon Estimation (MHE) is a strong optimization-based estimation technique,
which was presented in the the literature review (Section 2.1). In this thesis two variations
of MHE has been implemented.

• The first, which is also the one that was indicated in the problem task, is a MHE
where the system of equations has been given some degree of freedom by introduc-
ing parameters for process noise (model error). The MHE will then minimize the
sum of the estimated measurement error and the estimated model error.

• The second approach comes as a response to the wish for a more intuitive approach
to the fault identification discussed in Section 2.2. It is a MHE that estimates the
parameters1 in the system along with the states.

These parameter estimates, work in the same way as the model error parameters in the
sense that they provide some slack in the estimation for potential errors in the model. The
difference is how the slack is implemented in the two. These two implementations are
presented in the remainder of this section.

4.2.1 MHE with slack for model error
The first MHE in this project is implemented with the general formulation given as

min
x,yMH ,v,w,x0

‖v‖2M + ‖w‖2N + Z(x0) (4.3a)

s.t.

g(x,x0) = w (4.3b)

yMH = h(x,x0)

yMH − y = v (4.3c)
x ∈X (4.3d)

The formulation given as in (4.3) is a general formulation that is posted as help for under-
standing the MHE. The actual implementation is in fact very similar to the implemented
simulator in Section 3.1, with some extension that is discussed below.

The difference between the optimization formulation of Section 3, and this MHE can be
summarized with the following additions:

• Addition of measurements and measurement error: which is achieved in the MHE
by the following addition to the problem formulation of (3.6)

yMH − y = v (4.4)

where yMH are the estimated measurements, and y are the actual measurements.
1parameters that were given by the operator in the first MHE approach
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x ∈ RNstates·NH States given as in (3.6)
yMH ∈ RNy·NH Estimated measurements given as in (4.1)
v ∈ RNy·NH Measurement error
w ∈ R5·Nwells·NH Model error
x0 ∈ RNwells·2 The chosen initial value, separated from x because

of its unique position in the arrival cost.
g(x,y,x0) ∈ RNeqs·NH The model equations given in (3.6) where x0 is a

constant in (3.6), but a variable in the MHE
Z(x0) ∈ R1 Arrival cost
NH Horizon of the MHE
Nstates # of states, in this case is 10 ·Nwells + 2.
Ny # of measurements, in this case 2 ·Nwells + 2.
Neqs # of equations, in this case 10 ·Nwells + 2.

Table 4.1: Explanation of variable in (4.3), note that these vectors each include every time step of
the estimation horizon.

• Addition of the model error parameterswij,k: where i := well number, j := equation
number, and k := time instant. It is implemented as shown in the modified (3.6c)
below

qWH,i
c,k =

1

10
CWH,i
c

√
ρm102(102pWH,i

k − psep) uik
+ wi1,k, ∀i, k ∈ (t−NH + 1), ..., t (4.5)

Equal additions of the model error parameters ( wi2,k, w
i
3,k, w

i
4,k, w

i
5,k ) are done

with equation ( (3.6g), (3.6a), (3.6b) and (3.6h) ) respectively. These equations
are chosen to have the slack provided by w as they have the possibilities for mis-
calibrations, and/or are approximations, while the remaining relationships (equa-
tions) are considered to be exact relationships, and any slack variables on these
relationships are considered to be an unnecessary and incorrect addition of degrees
of freedom in the system.

• Addition of an objective function, and of initial x0 as an estimated state:
The objective function implemented in this MHE consists of three elements, namely
stage cost on the measurement error (v), stage cost on the model error (w) and ar-
rival cost on x0. The arrival cost can, as discussed in the literature review, be approx-
imated in many different ways, the simplest of which beingZ(x0) = µ

∥∥x0 − xMH
T−NH+1

∥∥,
with µ ∈ R1, and xMH

T−NH is the estimated state from the previous iteration of the
MHE, that correspond to the same time instant as x0. Despite the fact that using
(2.10) will most likely lead to a better arrival cost and consequently an increase in
the performance of the MHE, the simple formulation is implemented in this thesis.
This is done due to the ease of implementation, and the fact that the performance of
the state estimator is not of primary concern in this paper. This arrival cost together
with the stage costs result in the following objective function that is to be minimized
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4.3 Moving horizon estimation with parameter estimation

(Φ∗T = minz ΦT )

ΦT = ‖v‖2M + ‖w‖2N + µ
∥∥x0 − xMH

T−NH

∥∥ (4.6)

With

z = [x; x0; w; v]

x0 =
[
xi1,0; xi2,0

]
∀i ∈ {1, 2, 3, 4}
w =

[
wij,k; w11,k; w12,k

]
∀i ∈ {1, 2, 3, 4} , k ∈ L, ..., t, j ∈ 1 , ... , 10

L := t−NH + 1, t := current iteration of the estimation ,
NH := length of MHE Horizon

and M and N are chosen weighting matrices for v and w respectively.

Furthermore it should be noted that for numeric reasons the equations have been scaled to
be of approximately the same magnitude.

4.3 Moving horizon estimation with parameter estima-
tion

The MHE formulation presented in this section is, as previously indicated, not created pri-
marily for its ability to estimate the states (x), but rather the adjoining parameter estimates
(p). The system parameters estimated with this approach, is experienced by the author
to give a more intuitive approach to the detection- and identification of faults that is pre-
sented in Chapter 5. The theory that this estimator is based on is given in Kühl et al. (2011).

This formulation of the MHE has many common elements with the formulation stated in
Section 4.2.1. The main distinctions are; removal of w both from the constraint equations
((3.6c), (3.6g), (3.6a), (3.6b), (3.6h)) and from the objective function (4.6), reformulation
of the parameters from given constants to estimated "states", (which also entails a small ad-
dition to the objective function to smoothen the parameter estimations (Kühl et al., 2011) ).

Note: the removal of all the model error parameters (w) is not necessarily the best ap-
proach (Kühl et al., 2011). Nevertheless it is the approach applied in this thesis. This
was chosen to limit the number of parameters that the model error could be distributed to.
However, there might be possible to achieve better results by including some additional
slack through w, but this has not been tested in this thesis.

And the actual changes from the optimization formulation presented in 4.2.1 are:

• Removal of all the w’s as stated earlier
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• Addition of p as an optimization variable in equation (3.6c), (3.6a) and (3.6b), as
presented below:

qWH,i
c,k =

1

10
CWH,i
c

√
ρm102(102pWH,i

k − psep) uik

qBH,il,k =
1

10
PIi(pres,i − 102pBH,ik ), ∀i, k ∈ L, ..., t (4.7a)

qBH,ig,k = GLRi10qBH,il,k ∀i, k ∈ L, ..., t (4.7b)

(4.7c)

• Corresponding change in the Jacobian function, which for the purpose of keeping
the paper somewhat tidy, has been placed in appendix B.1

• Addition of p to the objective function:

ΦT = ‖v‖2M + µp
∥∥p− pMH

∥∥+ µ
∥∥x0 − xMH

T−NH

∥∥ (4.8)

Where pMH is the previously estimated p

The new optimization variables z are given as

z = [x; x0; p; v]

p =
[
CWH,1
c , · · · , CWH,Nw

c , PI1, · · · , PINw ,GLR1, · · · , GLRNw
]T

Nw := # of wells

with p ∈ RNw·3.

4.3.1 The choice of MHE parameters
Choosing the weighting matrices and scalars in the objective function of the MHE’s is
essentially a tuning problem. As the actual performance of the the estimators are outside
the scope of this thesis, this tuning has been conducted fairly roughly. However this section
presents how the MHE parameters NH , µ and µp for the MHE with parameter estimation
were chosen.

• The estimation horizon: NH determines how far back one evaluates the measure-
ments 2. The longer the horizon is, the more information is used as basis for the state
and parameter estimation, which in turn usually implies better estimations. However
increased NH leads to increased computation time, and it weakens the assumption
of constant model parameters (p) during the estimation horizon.
As a rule of thumb for a MPC (Model Predictive Control) prediction horizon, the
horizon need to be at least 2-3 times the size of the dominant time constant (Love,
2007). Due to the similarities of the optimization problems in MHE an MPC, this
rule of thumb is assumed transferable to the MHE problem. Based on this the dom-
inant time constant for the system were found in to be approximately τmax = 50s

2The lost information from the any time step before this, is attempted summarized in the arrival cost.

54



4.3 Moving horizon estimation with parameter estimation

(see Figure 4.1). As can be seen from Figure 4.2, however, it seems that a smaller
horizon is prudent for this particular case. For the purpose of the experiments con-
ducted in this thesis, NH is chosen to be:

NH = 20s

• The weights µ and µp: These two parameters are indicators on how certain one is
that the last estimate of x0 and p were correct, and the cost to deviate from these
estimates. Figure 4.3 and 4.4 show an analysis of these parameters which led to the
following choice for parameters µ := 1, µp := 2. Tests were not conducted with
such a scientific approach for the weighting matrix M , it was chosen based on the
degrees of importance of the different measurements in the system.
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Figure 4.1: An illustration of how the time constant was determined.
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Figure 4.2: Plots showing the performance of the state and parameter estimator as a function of
NH , given good initial guesses on the parameters and x0, and some added "measurement" noise.
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Figure 4.3: Plots showing the performance of the state and parameter estimator as a function of µp,
given good initial guesses on the parameters and x0, and some added "measurement" noise.
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Figure 4.4: Plots showing the performance of the state and parameter estimator as a function of µ,
given good initial guesses on the parameters and x0, and some added "measurement" noise.
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Chapter 5
Fault Diagnosis

This chapter presents the fault diagnosis systems used in this thesis. Two approaches to the
fault diagnosis are developed, where the main difference is the choice of test-variables1, as
discussed in Chapter 4. The assignment text was originally stated with an MHE consisting
of model error parameters (w) as described in Chapter 4. Through the development of
this thesis, however, it was decided by the author that it is more intuitive to use parameter
estimates as test-variables.This is further discussed in Section 7.1. Both approaches are
developed and described in this section, however the implementation of the parameter-
based fault diagnosis system, is conducted with more care, as this is the primary fault
diagnosis system of this thesis. Figure 5.1 illustrates how the fault diagnosis system is
implemented in the complete VFM system. Note that in this illustration, the residual(test-
variable) generator is defined as the parameter estimator, however the approach with model
error parameters (w) as test-variables, is implemented with the VFM in exactly the same
way.

1also described as residuals
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State estimation

Fault Diagnosis

State estimatior

GLRT
Parameter
estimator

yk

Θ0

x̂k

pk

Alarm

i∗D

Figure 5.1: Illustration of the setup for the data flow used in most of this thesis. Notice how the
state estimation is parallel to (independent of) the fault diagnosis despite the fact that the parameter
estimator is usually a state estimator as well. i∗D := fault ID, Θ0 := parameters provided to the state
estimator by the operator.

5.1 Fault detection

Fault detection is, as explained in Section 2.2, the process of determining whether or not
there is reason to think that a fault has occurred. To do this, a test statistic g(k) is calcu-
lated based on a "known" distribution of the test-variables (model error parameters (w) or
system parameters (p)). In this paper, the test-variables (both p and w) are approximated
to have a multivariate normal distribution2, which has the PDF:

f(x, µ, S) = (2π)−k/2|S|−1/2e−1/2(x−µ)TS−1(x−µ) (5.1)

Using this in the equation (2.18) and solving for maxθ1 one gets the equation for g(k):

g(k) = max
k−ND+1≤j≤k

k∑
i=j

(z(i)− µ1)TS−1(z(i)− µ1)

−
k∑
i=j

(z(i)− µ0)TS−1(z(i)− µ0) (5.2)

µ1 =
1

k − j + 1

k∑
i=j

z(i) (5.3)

Derivation. of equation (5.2) and (5.3)

2Note that if one wish to approximate the test-variables as a t-distribution, look to Willersrud et al. (2014a)
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From 2.18 it is known that:

Skj (θ1) =

k∑
i=j

log
pθ1(z(i))

pθ0(z(i))

g(k) = max
k−ND+1≤j≤k

max
θ1

Skj (θ1)

inserting f(x, µ, S) from (5.1), for pθ(z(i)) in equation (2.17), with the changing compo-
nent of the distribution being µ. This gives:

g(k) = max
k−ND+1≤j≤k

log
maxµ1

∏k
i=j f(z(i), µ1, S)∏k

i=j f(z(i), µ0, S)

= max
k−ND+1≤j≤k

log
maxµ1

e
−1
2

∑k
i=j(z(i)−µ1)TS−1(z(i)−µ1)

e
−1
2

∑k
i=j(z(i)−µ0)TS−1(z(i)−µ0)

(5.4)

Furthermore the property of maxµ1 can be found analytically by the following relation-
ship:

max
µ1

e−
1
2

∑k
i=j(z(i)−µ1)TS−1(z(i)−µ1)

=⇒ min
µ1

k∑
i=j

(z(i)− µ1)TS−1(z(i)− µ1)

=⇒ µ∗1 =
1

k − j + 1

k∑
i=j

z(i)

Using this µ1 one has eliminated the optimization property maxµ1
from (5.4), and after

further simplification through the use of logarithmic properties:

log
ea

eb
= log(ea)− log(eb) = a− b

One gets

g(k) = max
k−ND+1≤j≤k

k∑
i=j

(z(i)− µ1)TS−1(z(i)− µ1)

−
k∑
i=j

(z(i)− µ0)TS−1(z(i)− µ0)

µ1 =
1

k − j + 1

k∑
i=j

z(i)

as stated in (5.2).
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Figure 5.2: A schematic illustrations of the steps in the fault diagnosis system used in this thesis.

5.2 Implementation of fault diagnosis using w as test-variables
The choice of test-variables does not change the actual implementation of the fault de-
tection and identification much. The detection is implemented with the test statistic from
(5.4), combined with the test variables z(t) = w̄, where w̄i := mean of the model er-
rors over the horizon of the MHE, at the i-th iteration of the moving horizon estimator.
A threshold h for the hypothesis test were found through trial and error. A more elegant
approach for finding h is explained in 2.2.2 and implemented for the parameter estimation
approach. Due to limited time, however, this was not done with this approach. The covari-
ance matrix S of w is approximated to be a diagonal matrix.

Note: this approximation of zero covariance between the model errors is far from the
case3, but a simplification to simplify the implementation.

5.2.1 Implementation of the identification signatures
As stated above, it was decided that using test-variables from parameter estimation, would
provide a more intuitive fault identification process. It does, however, not imply that fault
identification cannot be done with w̄ as test-variables. This section presents the signatures
in w̄ from the different "faults". These relations are found through tests, by asserting the
faults on the system, and documenting the corresponding test-variables w̄. The signatures
which are used to create Γ and KD for (2.19), are posted in table 5.1 and 5.2.

3due to smearing, as discussed in 2.2.3
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∆PI ∆GLR ∆CC
w1

1 + + +
w2

1 + + +
w1

2 + + -
w2

2 - - -
w1

3 + o +
w2

3 o o +
w1

4 o + -
w2

4 + - -
w1

5 + + -
w2

5 - o -

Table 5.1: Direction of change given an increase of the respective parameters (changes in well 1).
In the case of decrease, this table is negated (approximately true, however, it does not seem to be the
truth always). Note that this table comes as a result of tests. This table is to be used for the creation
of ΓD in (2.19)

wi weighting
w1

1 0.5
w2

1 0.5
w1

2 1
w2

2 1
w1

3 10
w2

3 10
w1

4 10
w2

4 1
w1

5 1/2
w2

5 1/2

Table 5.2: Approximate relative weighting, based on test runs with faults. This table is to be used
for the creation of KD in (2.19)
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5.3 Implementation of fault diagnosis using p as test-variables

In this section the implementation of the fault diagnosis system using test-variables from
parameter estimation is presented. The difference between the two approaches are quite
limited. Both are based on fault detection through GLRT, and fault identification through
the technique presented in Section 2.2.3. However, a more thorough analysis are done
with regards to determine the distribution of the test-variables p and test-statistic g(k),
for this approach (see Section 7.1 for a discussion on why this implementation of fault
diagnosis has been prioritized). The results from this distribution analysis are shown in
Figure 5.3 and 5.4, and are applied in the choice of S in (5.4) and in the calculation of h
from (2.16). Figure 5.3 illustrates the distribution of the error in the estimated parameters,
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C
c
, well number1, µ = −0.00026, σ = 0.0011

estimation error
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GLR, well number1, µ = −0.00011, σ = 0.00054

estimation error

Figure 5.3: Distribution of p̃ = p − p∗ (the parameter estimation error). This distribution is found
through 5 runs of the of parameter estimation with fairly good initial guess of parameters and nor-
mally distributed measurement noise.

found through several simulations with added measurement error. These distributions were
the best fit to the datasets retrieved from the simulations, however, for a nicer distribution
it is approximated as zero mean normal distribution (µp̃ = 0) and the standard deviations
(σ) are assumed to be a bit bigger than what is given in the figure. The chosen σ’s are
shown in Table 5.3.
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Cipc PIi GLRi

σ 0.0015 0.002 0.0006

Table 5.3: Chosen values for σ, based on the analysis from Figure 5.3

5.3.1 Determining a good value for the threshold (h)

This section is added to support the choice of the threshold (h). The threshold is important
as it defines how sensitive the GLRT is. This threshold is found through the probability
distribution of g(k) and a desired PFA. Where PFA is the probability of false alarm, and
the probability distribution of g(k) is approximated through Monte Carlo simulations, as
shown in Figure 5.4.
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Figure 5.4: Distribution of g(k), which is used to determine a good threshold (h). Log-normal
distribution was found to be the best fit.

The test statistic g(k) was found to be distributed similar to a log-normal probability dis-
tribution, with the parameters presented in Table 5.4. For a log-normal distribution, the
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µ σ
1.92 0.92

Table 5.4: Parameters chosen for the log-normal PDF of the test statistic g(k), given a GLRT horizon
(ND) of ND = 10 (see Section 2.2.2).

PFA h
5% 30.9
1% 57.7
0.1% 116

Table 5.5: Selection of h given various PFA

PDF is given as: (Walpole, 2012)

f(x;µ, σ) =

{
1√

2π σx
e−

1
2σ2

[ln(x)−µ]2 , x ≥ 0

0, x < 0

Unlike with a Weibull distribution, where one can determine an explicit function for h
by inserting f(x;µ, σ) into (2.16) (Willersrud et al., 2014a), it is not possible to do the
same with a log normal distribution as F (x;µ, σ) is a function of the Gauss error function
( 2√

π

∫ x
0
e−t

2

dt). However, h still has a unique value that solves equation (2.16) , and this
value is found in this thesis through the Matlab function icdf(PD,1−PFA)4. Some samples
that was found for h at different PFA, are presented in Table 5.5.

4With, PD, being a probability distribution object.
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Chapter 6
Numerical Study

This chapter covers the experiments performed to test the theory in this thesis. It consists
of two main sections, one to describe the different test cases and the motivation behind
them. The other section presents the results of those tests. To summarize the information
in this rather long chapter Table 6.1 and Table 6.6 have been created for the test case
section and the result section respectively.

6.1 Presentation of the test cases
This thesis consists of two main topics, namely

• State estimation for the purpose of virtual flow metering

• Statistical fault diagnosis for the purpose of detecting poorly calibrated models.

The work done with state estimation in this thesis is not new (Grimstad et al., 2015). For
that reason, testing the performance of the state estimators created in this thesis would give
little new insight – and hence, no such tests have been included in this thesis. The focus of
this chapter has instead been to test the use of statistical fault detection and identification
techniques to detect poorly calibrated parts of the model. This is a field that, to the authors
knowledge, has not been done with virtual flow metering for subsea production systems
before.

All the tests in this chapter, except for test case 1, were performed on fault diagnosis us-
ing MHE with parameter estimation (see Chapter 5 for more information). Test case 1
was performed on fault diagnosis using MHE with model error parameters (w), however
this approach was decided to entail a less intuitive approach for fault identification. Only
one test was therefore performed, to test the possibility of doing fault diagnosis with this
approach. The rest of the tests were performed using MHE with parameter estimation as
residual generator.
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CaseId Description Input Sequence

1 Fault diagnosis using w as
test-variable

t(s)

PI
GLR

Cc

2a
2b
2c

Only error in well 1
• perr = GLR
• perr = PI
• perr = Cc

u1

t(s)

p

2d Only error in well 1
• Cc u3

t(s)

p
u2

3a
3b
3c

Error in well 1
• p1, p2 = Cc, GLR
• p1, p2 = PI, Cc
• p1, p2 = GLR, PI

u1

t(s)

p1

p2

4
Realistic use case, slow in-
crease of GLR well 1. With
re-calibration 4 times.

u1

t(s)

GLR

Table 6.1: Presentation of the test cases performed in Chapter 6

See Section 7.2.1, for further information on why the approach of test case 1 has been
considered to be less intuitive.

Note that throughout this chapter, all changes in the parameters are termed a fault. What’s
being tested is actually the possibility to detect poorly calibrated models. The reason why
a change in a parameter is labeled as a fault, is that such a change in a parameter implies
that parts of the model in the state estimator, become less accurate, and hence needs to be
detected as poorly calibrated.

6.1.1 Fault diagnosis using w as test-variables

This section presents a superficial study of fault diagnosis using w (from the formulation
in (4.2)) as test-variable (see Chapter 5). This approach to fault diagnosis on an oil and gas
production system, has been given less priority in this thesis as presented above. This is
mainly due to the fact that, for this approach to work, a fault signature matrix ΓD, must be
selected. No viable approaches have, however, been identified for finding such a signature
matrix ΓD.
The one test that was performed using this approach, has been given a ΓD that was deter-
mined through testing (as described in Section 5.2.1), which is a viable approach when one
is dealing with a simulator, but not as viable for a real system. (This is discussed further
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6.1 Presentation of the test cases

in Section 7.2.1)

Test case 1

t(s)

PI

GLR

Cc

Figure 6.1: Test case 1: Illustration of input sequence

What: This test is a collection of sequential errors happening on the parameters in the
system (see figure in Table 6.1). As this approach to fault diagnosis has not been the focus
of this thesis, some simplifications have been done to this test.

1. It is assumed previously determined that the fault occurred in well 1. This assump-
tion is based on the fact that, although it has not been done by the author, it seems
reasonable to believe (based on a superficial analysis of w) that it is possible to
pinpoint the well in which the incident occurred.

2. To simplify the system the number of wells has been reduced from 4 to 2.

3. No changes in the valve openings (ui) during the test.

This test has been executed with the parameters shown in Table 6.2, and ΓD , KD derived
from Table 5.1 and 5.2 (see Section 5.2).

Parameter Value
Error −50%
ND 10
Nwells 2
h 0.1

Table 6.2: Test case 1: Parameters chosen. Note that the fractional error on the parameters are equal
(−50% on all of them). Error presented in relative change from nominal parameter value.

Why: This test is performed to get an indication on whether or not this approach can
be used on a system like this, given that a good signature matrix is provided (which as
described above, is not easy). The test consists of three sequential "faults" (one for each
parameter

[
Cc PI GLR

]
) to test the performance of this approach on each type of fault.

69



Chapter 6. Numerical Study

6.1.2 Fault diagnosis using p as test-variables
In this section several tests are performed to test the ability of the fault diagnosis systems
based on the estimated parameters p =

[
Cc PI GLR

]
. Using this approach to fault

diagnosis, several tests are performed to analyze the algorithm’s ability to detect and iden-
tify the faults. The tests are set up to test and highlight different properties and potential
flaws in the implemented fault diagnosis system. Note that the goal of these tests are not
to evaluate the performance of this specific implementation, but to map the possibilities,
flaws, and pitfalls of implementing a fault diagnosis algorithm on a system like this. In this
section there are three main categories of tests performed, each with a specific purpose:

2. Simple tests with one fault, with or without changes in u

3. More faults at the same time

4. A realistic use case to illustrate the possibility of fault detection and identification.

Test case 2: Basic tests

u1

t(s)

p

250 750 2000 2500 3500

Figure 6.2: Test case 2: Illustration of input sequence. p := the parameter that is being tested.

What: Test case 2 is a set of 3 cases (2 a,b,c) that tests the three respective parameters[
GLR PI Cc

]
. The cases are set up with three main points of interest to test basic

capabilities of the complete fault diagnosis system:

1. Test the algorithm’s capability of detecting and identifying a fault occurring without
any other changes to the system. Time span 250 < t < 750

2. Test the effect of changes in u (wellhead valve opening) on the test statistic g(k).
Time span 3500 < t < 3600

3. Test the algorithms capability of detecting and identifying a fault occurring while u
changes simultaneously. This part is especially important as it is reasonable to think
that most changes in the parameters happens together with dynamics in the system.
Time span 2000 < t < 2500

Why: This test investigates the use of the fault diagnosis on fairly basic test cases. The
reason for starting with basic tests is the idea that one should start with simple tests, and
increase the complexity of the tests until the system no longer performs up to the expected
standards – hereby determining what’s working, and what is not.
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6.1 Presentation of the test cases

Parameter Value
Error +20%
ND 10
Nwells 4
h 116

Table 6.3: Test case 2: Parameters chosen, equal for all of the tests in test case 2. Error presented in
relative change from nominal parameter value

Test case 2d: Slightly less basic test

u3

t(s)

p

u2

250 750 2000 2500 3500

Figure 6.3: Test case 2d: Illustration of input sequence, p := the parameter that is being tested

What: Test case 2d, is a supplement of test case 2, that changes 1 parameter in one well. It
differs from 2a-2c, however, as it includes changes in the valve opening of both well 2 and
well 3, and not in well 1. In this exact test case, Cc in well 1 is changed simultaneously as
a change in the valve of well 2, as shown in Figure 6.3. In addition the valve of well 3 is
changed at the end of the horizon.

Why: Several tests with small additions to complicate the basic tests that were performed
in Section 6.1.2. This was done to search for any further complication in the fault diagno-
sis. All of these tests are not presented in this section, but this test is added as it involves
some interesting results.

Test case 3: Several faults simultaneously

What: Test case 3 is an extension of test case 2, with similar changes in the parameters.
The property that is being tested in this case is how the fault diagnosis algorithm handles
several faults in the system at the same time. For the scope of this case, only 2 parameters
have been changed simultaneously. This test case is set up with three main points of
interest:

1. Simultaneous change in two parameters, Time span 250 < t < 750
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u1

t(s)

p1

p2

250 750 1500 2200 3000

Figure 6.4: Test case 3: Illustration of input sequence. p1,2 := the two parameters that is being
tested.

2. Change in one parameter followed by a change in the other parameter (before the
first parameter is changed back to nominal state), Time span 1500 < t < 2200

3. Two active "faults" (changed parameters), when one of the parameters is reset to
nominal state, leaving only one active "fault". Time span 2200 < t < 3000

Why: It is already known that the identification algorithm will only identify 1 fault as it
simply finds the one fault that seems to be most consistent with the changes in the test
variables (p =

[
GLRi PIi Cc,i

]
). The result of this test is therefore not expected to be

an identification of both faults, but rather an experiment to see which one, if an any, of the
two faults that is identified as the fault.

Parameter Value
Error +20%
ND 10
Nwells 4
h 116

Table 6.4: Test case 3: Parameters chosen. Error presented in relative change from nominal param-
eter value.

Test case 4: Realistic use case simulation

What: The case is based on a continuously increasing parameter (in this case GLR in well
1). This change in the parameter is not known by the state estimator (which assumes the
parameters Θ0 to be true) and hence there will be a degradation of the flow estimates1. Be-
cause of the fault diagnosis system, however, an operator will at some points be informed
that there is a high likelihood that the expected parameters Θ0 are no longer correct. The
operator in this example will then follow Procedure 2, to adjust these parameters.

1See illustration of how the state estimator in VFM are assumed decoupled from the state- and parameter
estimator used in the fault diagnosis system. Figure 5.1
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6.1 Presentation of the test cases

u1

t(s)

GLR

Figure 6.5: Test case 4: Illustration of input sequence

Why: Test case 4, is an example created to test a more realistic use of the fault diagnosis
algorithm on a virtual flow metering (VFM) system – as opposed to the previous cases
where the tests have been performed to determine weaknesses and strengths of the fault
diagnosis system. This test case is more of an example to show the potential of this fault
diagnosis addition to VFM, and to test how the system performs in a more realistic situa-
tion.

Procedure 2: OperatorProcedure

1) Operator is alarmed that one- or several models are probably poorly calibrated;
2) Gets information on which parameter that is poorly calibrated, and an estimated
value for that parameter;
3) Waits until the fault diagnosis algorithm has produced 30 consecutive time steps
with the same identified parameter;
4) Re-calibrates the parameters Θ0 with the new estimate on the poorly calibrated
parameter (in this case GLR well 1);

Parameter Value
End error +50%
ND 10
Nwells 4
h 116× 1.5

Table 6.5: Test case 4: Parameters chosen. Error presented in the total change from start until the
end in percentage of nominal parameter value. Note that the threshold is slightly increased in this
test to reduce the frequency of recalibration.

The state estimator applied for the VFM in this case is an Extended Kalman Filter, while
the state- and parameter estimator used for the fault diagnosis system is a MHE. This is
done to illustrate that the actual implementation of the state estimator is irrelevant to the
fault diagnosis system. The state estimator could also have been a MHE.
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6.2 Results
This section presents the results of the tests presented in Section 6.1. For a summary of
the results presented in this section see Table 6.6.

Test Main result
1 Detects and identifies all the faults.
2

• Faults from changes in GLR are detected and identified
correctly

• Faults from changes in PI are detected and identified al-
most correctly, with a drawback that it takes time to "un-
detect" the fault

• Faults from changes in Cc are detected and identified al-
most correctly, with the exception that it never "undetects"
the fault that occurred simultaneously with changes in u

• Faults from changes in Cc are detected correctly, but
misidentified when there is a simultaneous change in the
valve opening of another well. The fault is, furthermore,
never "undetected" similar to that of test case 2c.

3 Only one fault identified. Mainly identifies one of the correct
parameters that are "faulty". Always return to nominal state after
both the parameters are reset to nominal state.

4 Fault diagnosis system detects and identifies fault. This is used
efficiently to keep the residual between real and estimated flow
at a relatively speaking low level (below 10% of true flow).

Table 6.6: A short summary of the results presented in Section 6.2.

6.2.1 Fault diagnosis using w as test-variables
Test case 1: Test with w as test variables

Figure 6.6 presents the performed test, where g(k) is the test statistic presented in Section
5.1, which eventually detects the faults. It shows that the faults are detected, and identified.
There are some delay both before the faults are detected, and from the fault is removed
until the algorithm no longer detects a fault. It can also be observed that "faults" in GLR
and PI have a much smaller effect on g(k), than that of Cc.
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Figure 6.6: Test case 1: A GLR-test run with w as input and the fault identification as presented
in Section 2.2.3. Knowledge that the fault is in well number one, is assumed apriori known, in the
identification algorithm.

6.2.2 Fault diagnosis using p as test-variables
This section presents the results from test case 2,3,4 as they are all performed based on
GLRT with the parameters p =

[
Cc PI GLR

]
as test variables.

Test case 2: Basic tests

The results from test case 2 are presented in Figure 6.7 to 6.9, with the addition of Figure
6.10 and 6.11 to further illustrate the results from the tests.

Figure 6.7, 6.8 and 6.9 present plots showing the general performance of the fault diagnosis
algorithm, on faults from changes in the three parameters. It is observed that the algorithm
in this case detects and identifies faults from changes in GLR well, and fairly well on faults
from changes in PI. It also correctly detects and identifies the faults from changes in Cc,
but after the simultaneous change in Cc and u the algorithm never "undetects" the fault.
It is also observed that the detection algorithm generally is not affected much by changes
in u, with the exception of situations when it is combined with changes in Cc. It is also
observed that for changes in Cc and PI, the time for "undetection" is fairly long and that
in this period the identification algorithm is somewhat unpredictable.
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Figure 6.7: Test case 2a: fault in GLR of well one. Note: "other" refers to a detected error in another
well.
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Figure 6.8: Test case 2b: fault in PI of well one. Note: "other" refers to a detected error in another
well.
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Figure 6.9: Test case 2c: fault in Cc of well one. Note: "other" refers to a detected error in another
well.

Figure 6.10 shows that the estimated parameters PI and Cc (of well 1) never return to the
real parameters after the simultaneous change in Cc and u. This observation can safely be
stated as the reason for the constant fault detection in test case 2c. Figure 6.11 shows how
changes in one of the actual system parameters, is reflected upon the estimated system
parameters. The main observation from this plot is the correlation between the estimated
parameters, and how changes in GLR do not seem to have any significant impact on the
estimates of PI, and Cc.
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Figure 6.10: Test case 2c supplement: constant error in parameter estimation after simultaneous
changes in u and Cc
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Figure 6.11: Test case 2 supplement: Illustration of the correlation between the estimated parame-
ters
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Test case 2d: slightly more complicated addition to test case 2

Figure 6.12 illustrates the slightly more complex test case 2d, which is complicated with
additional changes in u in other wells. This exact test has been chosen because it is the
only scenario that presents a situation where the fault is in fact completely mis-identified.
Several similar tests were also performed, but not included in this thesis, because they
did not bring much new information. This test, shows that the identified fault is never
unidentified (similar to the results of 2c), in addition it identifies the fault to be associated
with the wrong well.
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Figure 6.12: Test case 2d: fault in Cc of well 2.

Test case 3: Several faults simultaneously

In this case three different tests have been run (3a, 3b and 3c). Each of the tests did, how-
ever, not give much new insight – thus to limit the scope of this section, only the figure
illustrating 3a is included in this section (see Appendix C.2 for the other two figures).

From all the figures it can be derived that a common denominator is the fact that the
identification algorithm for the most part chooses one of the two correct faults. It is also
observed that the fault diagnosis system always return back to nominal state after both the
faults are reset.

Going a bit more into detail, it can be seen that the identification algorithm, as it is im-
plemented now seems to have problems identifying a fault as GLR – especially as long
as the effect from some other changed parameter is still present. This becomes especially
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evident in Figure C.3, where the the PI parameter is reset to nominal state, while the GLR
parameter remains changed/(in a fault state). In that case it took a long time (approx 250 s)
until the algorithm identified the fault as changed GLR, instead of changed PI or another
parameter.

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.5

1
Error sequence

C
c/G

LR

 

 
C

c

GLR

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

200

400

g(
k)

Test statistic g(k)

 

 
g(k)
h

0 500 1000 1500 2000 2500 3000 3500 4000 4500

C_{pc}

PI    

GLR   

Other 

time(s)

 

 

Fault occurred
Fault detected

Figure 6.13: Test case 3a: Fault in both Cc and GLR parameter of well one. No change in u.

Test case 4: Realistic use case simulation

Figure 6.14 shows the simulation of test case 4. The figure illustrates how the increasing
GLR parameter leads to increasing error in VFM of the bottom hole gas flow (qBHg ), up
until a point (shown with the dashed red line) where the GLR parameter is re-calibrated
with the estimated GLR parameter. This procedure repeats itself 4 times as the GLR pa-
rameter simply continues to increase.

The results show a working fault detection algorithm that is able to provide the operator
with the detection of the fault, identification of the fault and provide a good estimate of
the magnitude. It also shows that after recalibration has been performed the test-statistic
goes back to nominal state, and the alarm is turned off again. An additional plot is also
added to this section, namely Figure 6.15, which presents the corresponding g(k) for the
simulation shown in Figure 6.14. This figure is added to illustrate the uncertainty related
to this fault detection with the current implementation. This issue will be discussed in
Section 7.2.3, with a focus on how Independent and Identically Distributed test variables,
could contribute to improving the variance of g(k).
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Figure 6.14: Test case 4: Illustration of a realistic use case. Note that in reality the time span of this
would be considerably longer.
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6.3 Runtime analysis

This section includes a brief presentation of the computation time, which is added for
the purpose of illustrating the scalability of the estimators, and the general processing
time needed for the different state estimators. Whether the estimators were used as state
estimators in the VFM or for residual generation in the fault diagnosis system is irrelevant
for this section.
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Figure 6.16: Runtime anlysis of the estimators: Notice how the Kalman filter is significantly faster.
The times referred to in the ylabel is the average time of estimation for each time step.

The runtime analysis shown in Figure 6.16, shows the runtime as a function of "number of
wells" and of "estimation horizon" (for the MHE estimators).

• The top row presents the runtimes for the MHE state and parameter estimator from
Section 4.3.1

• The second row presents the runtimes for the MHE with model error parameters
from Section 4.2.1
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• The third row presents the runtimes of the extended Kalman filter as a function of
the number of wells in the system

From observing the figure it becomes evident that:

• The runtime of the EKF is considerably lower than that of the two MHE approaches.
Furthermore, it can be seen that the increase in runtime with increase in number of
wells, seems to be a slowly increasing linear function.

• The runtime of the two MHE’s, both seem to be in the same range of runtimes, but
MHE with parameter estimation seems to have some problems when the horizon
is too short. Apart from this phenomena, both of the MHE’s seem to increase with
increases in both horizon time and number of wells. The increase seems to be linear.
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Chapter 7
Discussion

The main goal of this thesis was to investigate the possibility of expanding the field of
Virtual Flow Metering (VFM) with statistical change detection algorithms based on infor-
mation from state of the art moving horizon estimators. The outcome of this investigation
is discussed in this chapter.

7.1 Estimation
In this thesis, no performance tests were performed on the state estimators created (ex-
tended Kalman filter, MHE with- or without parameter estimation). No comparison of the
performance between the respective state estimators are therefore discussed in this section.
The experience obtained throughout the work with these estimators will, however, be dis-
cussed with respect to the estimators working as state estimators and as residual generator
for the fault diagnosis system.

In Section 2, a table showing some of the pros and cons associated with EKF and MHE
were presented from a theoretical viewpoint. These points form the framework for the
discussions in this section.

Some of the points in Table 2.2, were related to the performance and will not be discussed
in this thesis, but the following three points will be discussed further based on the experi-
ence gained during this work.

• Computationally cheaper with EKF: Looking to Section 6.3, this statement seems
to be truthful, at least for the implementations in this thesis. It becomes very clear
in Figure 6.16, that there is a significantly longer processing time when using the
MHE’s than it is with EKF. Furthermore, it seems that this difference is increasing
with increasing dimension of the system (increase in number of wells). This can
be an issue as real systems tend to be larger than the test case used in this thesis.
That being said, there has not been put enough effort into making these approaches
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efficient, that one can rule out MHE as a sufficiently efficient estimator. With some
additional solving tools, the MHE’s could potentially perform with a computational
efficiency that competes with the efficiency of EKF (Kühl et al., 2011).

• Simple implementation for unconstrained problems with EKF: The system shown
in this thesis can be estimated without the use of inequality constraints, which has
been done in the implementation of the EKF. Based on the authors experience, this
point has proven to be true. There is a significantly smaller effort needed for im-
plementation of the EKF than what can be said for the MHE. Especially when the
derivatives of the functions need to be provided (which is the case in this thesis, to
achieve an acceptable computation time). This is mainly because the MHE (imple-
mented in this thesis) needs to get the linear constraints and the Jacobian as matri-
ces. These matrices become very large, and although they are handled by Matlab
through the use of sparse matrices, it becomes fairly difficult for the user to keep
track of where in the matrix all the functions need to be placed.

• Test-variables from the MHE might be more intuitive for the implementation
of the fault diagnosis system: This property has not been investigated properly,
as there has been no attempt to utilize the EKF as a residual generator (see Figure
2.5 for information on residual generators). It is the author’s opinion, however, that
there is no reason to think that EKF (or any other Kalman based estimator) cannot
be utilized as a residual generator. Especially because any Kalman based estimator
can in fact be used as a parameter estimator (Van Der Merwe and Wan, 2001) in a
similar way to how the MHE was applied in this thesis.

To conclude this section of the analysis, the recommendation of the author is that future
investigations in fault diagnosis used for model error detection, is focused towards Kalman
filter based estimators. This is mainly because the MHE demands more effort into the
implementation and that the increasing computing time might become an issue as the
dimension of the system is increasing. In return there does not seem to be any particular
advantages with MHE (for this purpose) that can outweigh these disadvantages.

7.2 Fault diagnosis
Fault diagnosis is usually used to detect physical faults in the system, which is done by
detecting deviations from the "normal" behavior as a result of faults in the physical sys-
tem. In this thesis however, the "fault" is in fact errors in the model and not in the physical
system. This section discusses the results from testing the fault diagnosis systems created
for this thesis – both with regards to testing the performance of the fault diagnosis systems,
and with respect to its performance as a supplement to the VFM.

This section has become quite extensive as there are a lot of results to discuss. Accordingly
the section is divided into several subsections.

• A short discussion on the fault diagnosis using w as test-variables
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• Discussion on the fault diagnosis using p as test-variables.

• An additional section that highlights the most important phenomena

Note: the system used for testing in this thesis is fairly simple, and hence the fault diagno-
sis would be significantly more difficult in a real life application.

7.2.1 Fault diagnosis using w as test-variables, discussion of the test
cases

The analysis in this section is somewhat limited because only one test was performed on
the fault diagnosis system using model error parameters (w) as test-variables. This comes
as a result of the fact that, defining the necessary fault signature matrix ΓD (described in
Section 2.2.3) has proven to be problematic. Had this problem been solved, this approach
would still be less intuitive than the fault diagnosis system using the system parameters
(p) as test-variables, hence the choice was taken to prioritize fault diagnosis based on p.

This section will start by explaining and discussing this decision in more detail. For the
fault identification algorithm to work, there is a need to identify a certain fault signature
that relates the different faults to the test variables. This signature is presented in ΓD as
explained in Section 2.2.3. It has, however, not been determined any viable approaches to
set a good ΓD for the test-variables w. As long as there is no good way to determine a
sufficiently good signature matrix, this approach of fault diagnosis cannot be applied, as it
would not be able to identify the poorly calibrated model.

The technique used to find ΓD with w as test-variables in this thesis, was to run tests on
the simulator that introduced changes in the various parameters, and then documenting the
effect on w. This is a viable approach for a test on a simulator, but in a real system it is
less viable.

If a ΓD could be found without to much effort from the user, then this approach could
probably perform just as well as any other approach. Some suggestions as to how this ΓD
could be found in a real system includes:

• Determining it analytically, by investigating the equations

• Determining it based on tests on a simulator for the respective system

Both of this methods have, however, serious drawbacks.

• Doing it analytically seems very difficult due to a considerable degree of smearing
(as described in 2.2.3) in the error parameters (w)

• Doing it by simulation, depend on a very precise simulator to provide a sufficiently
good ΓD

It is also worth noting that the signatures of faults in GLR and PI, seem to be very similar
– creating the need for a very precise ΓD. It is also not unreasonable to believe that the
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true ΓD is dependent on the conditions of the system, implying that ΓD can vary over time.

Despite these issues, one test were performed to investigate the possibilities of this ap-
proach, given that one had already managed to provide a good ΓD. This test, analyzed
whether or not the algorithm was able to detect and identify the fault when one of the
system parameters was changed. Test case 1 showed good results, as the algorithm man-
aged to detect and identify the faults. Especially the results for detecting and identifying
the poorly calibrated Cc’s showed to be good. Based on the fact that there were many
simplifications and assumptions present in this test, however, one should not conclude that
using w as test-variables is the best approach. The results rather state that there might
be possibilities and strengths associated with this approach that can be utilized if one was
able to efficiently determine a good ΓD.

7.2.2 Fault diagnosis using p as test-variables, discussion of the test
cases

The tests performed in this section are all based on the parameters p =
[
Cc PI GLR

]
as test-variables in the fault diagnosis algorithm. This approach embodies the advantage
that it is more intuitive in its implementation of the fault identification algorithm and the
disadvantage that an already nonlinear optimization problem becomes more nonlinear.
Which is the case because the two linear equations (3.6a) and (3.6b) in the original MHE
formulation become nonlinear in the MHE with parameter estimation formulation. This
challenge might also lead to a higher degree of non-convexity in the optimization problem,
which the phenomena in test case 2 c and d might be an indicator of.

Test case 2: Basic tests

This test case illustrates many important results relevant for the discussion.

1. Working detection and identification of the faults with and without changes in
u:
Although there are some minor mis-identifications, and a fairly long time for "unde-
tection", (especially for the changes in PI and Cc), it is apparent that the algorithm
for the most part manages to detect and correctly identify the source of the fault (mis
calibration). For more complex problems, it is the author’s opinion that the identi-
fication algorithm could be improved correspondingly to still achieve good results.
This improvement can for instance be to include more information like measurement
error, known correlations between the parameters, and possibly more functions and
measurements (e.g. temperature relationships). These possible improvements have
not been tested in this thesis, but constitute, in the author’s opinion, possible up-
grades with great potential.

2. Steady state deviation between real and estimated parameters after simultane-
ous changes in Cc and u:
In test case 2c, a situation occurred in which the parameters PI, and Cc never re-
turned to their original state, leaving the fault (changed Cc) constantly detected even
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after the fault had been removed (Cc were changed back). This phenomena is further
discussed in 7.2.3. In addition to the fact that the optimization algorithm seems to
find a local solution instead of the correct solution, it is interesting to consider when
this happens. It only seem to happen when there is a change in the valve opening u
simultaneously with change in the parameter Cc. This is interesting as changes in u
did not seem to have any measurable effect on the parameter estimates, when there
were no simultaneous change in Cc. Looking at this from a physical point of view, it
can possibly be explained by the closeness of the two "variables" in equation (4.5).
A change in Cc would give the exact same effect on qWH

c as an identical change in
u. When there is no simultaneous change in Cc, however, no such effect on the Cc
estimate can be detected from changes in u.

3. Performance of detection and identification of faults from changes in GLR
compared to changes in PI and Cc:
From the tests performed in this section it is clear by looking at Figure 6.11 that
there is a considerable difference between how the changes in the different param-
eters affect each other’s estimates. It becomes evident that changes in the real PI
and Cc affect the estimates of the other parameters considerably more than changes
in GLR1. This result indicates that this fault diagnosis approach is especially good
at detecting and identifying changes in GLR. This might come as a result of the
fact that both Cc and PI directly affects the flow in the well, while GLR affects the
composition of the fluid flowing, making PI and Cc more tightly connected.

Note that the tests performed in this case are all performed with changes in well 1. This is
only done for convenience, the changes could have been in any of the other wells as well.
Furthermore, unlike in test case 1, the fault diagnosis system has no apriori knowledge
regarding the location of the changed parameters. In fact, each time the algorithm indicates
that the fault occurred in the parameter "other" (in the figures) it implies that the fault has
been (wrongly) identified to be in one of the other wells.

Test case 2d: changes in different valve openings

This test was performed to determine the effect of changes in valve openings in different
wells than well 1. For the most part it showed (through tests that are not attached in this
report) that the changes in u had negligibly effect. In the case of simultaneous changes
in Cc of well 1 and changes in u of well 2, however, a mis-identification of the fault was
observed. The fault was identified to arise from the same well that changed the valve
opening. This is an interesting observation, as it highlights the difficulties with changes
in u in parallel with changes in Cc. The connection between Cc and u seems to create
significant issues for the fault diagnosis system.

Test case 3: Several faults simultaneously

This scenario tests the response to introducing several faults at the same time in the fault di-
agnosis system. As stated earlier it is already known that with the identification algorithm

1 Note that this distribution of the error can be described as smearing (presented in Section 2.2.3)
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implemented in this thesis, it is not possible to identify two different faults simultaneously.
Hence, this test was not created to test if both the faults could be identified, but rather to
see how the system reacted to a scenario with more than one fault.

From the results it is determined that the fault diagnosis system handled several faults
fairly well. Most of the time it correctly identified one of the faults that was present, as
opposed to an alternative result that could have been that the combination of the two faults
led to a set of test-variables that was more consistent with a third type of fault (hence
identifying a fault that was not present at all.) Furthermore, the faults were detected and
"undected" within a reasonable time, similar to the tests in Section 7.2.2.

Test case 4: Realistic use case simulation

This test case was created to illustrate the fault diagnosis algorithm in a more realistic sce-
nario, both to illustrate the possibilities of the fault diagnosis system combined with VFM
and to investigate a more realistic scenario. From this test-case, three main observation
can be discussed

• Provides significant help to an operator:
As a test to illustrate an actual use case of the fault diagnosis system, it can safely be
said to have given the imaginary operator valuable help to decide when and where
re-calibration was needed, which in turn helped to keep the state estimation within
a reasonable degree of uncertainty. It should, however, be noted that this was a
fairly simple example, performed on a scenario with changes in GLR (known from
previous tests to be the parameter, of the 3 parameters, that is best detected and
identified).

• Simple case, but still considerable uncertainty in the test statistic g(k):
Looking at Figure 6.15, it is evident that there are large oscillations in the test statis-
tic that is used to detect the fault. These spikes would all signal for a fault, but
because the operator delays any decision until there are 30 consecutive steps with
the same identified fault, these spikes do not effect the actual use case shown in
Figure 6.14. This is nevertheless not a desirable behavior and should be addressed.
Why this happens and possible solutions are discussed further in Section 7.2.3.

• Difficulties in correctly identifying the fault:
In this test there was an additional barrier present - that the operator needed 30 con-
secutive time steps with the same fault identification to do recalibration. This barrier
made sure that the correct parameters were at all instances re-calibrated. However
it should be noted that the system detected the fault long before there seemed to be
enough of a parameter residual (p∗ − p̂) to correctly identify the fault. This led
to many different temporary "identifications" before, it was correctly identified af-
ter 30 consecutive time-steps with identical identifications. For the purpose of an
actual implementation, this would be too much of an uncertainty and possible im-
provements would have to be evaluated and performed. Such improvements could
potentially be expansion of the identification algorithm as suggested in Section 8.1.
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7.2.3 Fault diagnosis, discussion of the most important discoveries

This section presents three phenomena revealed in the test cases of Chapter 6, that are con-
sidered to be of special interest. These phenomena are therefore highlighted, and described
in more detail in this section.

Lack of IID

As stated in Chapter 2, a prerequisite for optimal performance of the fault detection tech-
nique used in this thesis is that the test-variables are IID (Independent and identically
distributed). This is not the case in this thesis, which becomes especially apparent in
test case 4. In that test case there were large oscillations which lead to a big variance in
the test statistic, as observed in Figure 6.15. Optimally with no correlation between the
test-variables at the current time step and the previous, such large and deterministic os-
cillations would disappear, leading to a more stable fault diagnosis algorithm. For future
implementations, this is considered by the author to be one of the more crucial elements for
improvement. The reader is referred to Hansen and Blanke (2012) for more information
on white filtering for the purpose of making the test-variables IID.

Possibility for local solutions, due to non convexity

Local minimum

Global minimum

Figure 7.1: Illustration of the possibility for local minimum, which can be drastically different from
the global minimum.

In test case 2c and 2d, it was observed that a problem arose, when the change in Cc
occurred simultaneously with changes in u. This problem was caused by the fact that the
estimated parameter used in the fault diagnosis system did not return to their correct value
after the change in Cc had been reset. It seemed as though the MHE found a different
optimal solution for the parameters. This is a problem that can potentially be a massive
uncertainty with this kind of fault diagnosis. If it cannot be guaranteed that such a false
solution does not occur, it makes it harder to trust the output of the algorithm. There can
be two possible reasons for this alternative solution provided by the MHE.

• One is that there might be more than one equally good solution as the problem is
over determinated
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• The other and more likely reason is that the optimization has found a local solution
instead of the global solution (see Figure 7.1), which can happen for these kind of
non convex problems.

Globally solving non-convex optimization problems is not a simple task. In fact, as stated
by Murty and Kabadi (1987), finding a global minimum of a non-convex NLP is a NP-
complete problem, implying that there are no techniques that solve such a problem in
polynomial time. There are techniques, however, that can help improve the the probability
of finding the global solution, e.g. use of heuristic methods for choosing various initial
guesses provided to the optimization algorithm. No such techniques have been deployed
in this thesis, but it is the author’s opinion that this is one of the more crucial points for
future implementations, as such local solutions procure false alarms, which degrade the
performance of the fault diagnosis system.

Weaknesses and strength in the two approaches

Through the tests performed in this thesis there seem to be a clear indication that the two
approaches for fault detection have different strengths and weaknesses. Fault diagnosis
based on the model error parameters w, seemed to be good at detecting and identifying
poorly calibrated Cc. While the fault diagnosis system based on the system parameters p,
seemed to be especially good at detecting and identifying poorly calibrated GLR, it did
also seem to be fairly good at detecting and identifying poorly calibrated PI. The fact that
they embody different strengths can potentially be a good thing. If both of these systems
were to be combined (as stated in Section 2), it could make for a much better fault diag-
nosis system. This combination requires, however, an efficient way of determining ΓD for
the fault diagnosis system using w as test-variable.

That being said, with the current issues with the implementation of an identification algo-
rithm. The fault diagnosis system based on p is the recommended approach, of the two
MHE’s, for future investigations.

Smearing of the test-variables

As stated earlier, there is a significant degree of smearing in both the approaches of residual
generation. This is a factor that complicates the process of identifying the poorly calibrated
models. This smearing is essentially what makes the process of determining ΓD for fault
diagnosis using w so complicated, and a big part of the uncertainty in the fault identifica-
tion process using p as test-variables. Learning how the model error is distributed in the
"slack variables" (p and w), would significantly help the process of identifying the faults.
Furthermore it could help to pinpoint which "faults" that can be identified with certainty,
and which "faults" that have greater uncertainty when identified.
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From the tests conducted in this thesis, it can be concluded that both of the fault diagnosis
systems have potential. Test cases demonstrated that it is possible to detect and identify
poorly calibrated models for simple test cases. Both of the approaches have, however,
some drawbacks and unresolved issues. Because of these limitations, the implementations
could not be used in a real system as of now, nor is it known for a fact that the issues can
be resolved in the future. This leads to suggestions for future improvements and imple-
mentations, which in many ways, can be seen as the main results of this thesis. These
improvements have been presented in section 8.1 and 7.2.3, and it is not considered un-
likely that the issues can be resolved by the help of some of these suggestions.

Operators or VFM vendors that evaluate this supplement to VFM products will find that
more research is needed to improve its robustness/reliability. If the fault diagnosis system
was to be implemented, it would be for the purpose of increasing the reliability of the
models. If the fault diagnosis system is unreliable itself, however, this would not lead to
any improvement of the VFM. With the current implementation many false alarms would
be raised and many mis-identification occur – all of which contributing to make the fault
diagnosis system unreliable, and unfit for an actual implementation.

To conclude, no fault diagnosis system, satisfactory for implementation in a production
environment has been created, nor has it been proven that such a system can be made.
However positive results have been found, indicating the potential of the fault diagnosis
systems, and suggestions have been posted for further investigation of this concept.

To continue this work, and preserve the knowledge obtained during this thesis work.
Bjarne Grimstad and the author have started to draft a paper with preliminary results to
be published in an international conference.
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8.1 Future work
This section lists the possibilities for future work, that are considered by the author to be
most promising:

• Investigate the possibilities of using a Kalman filter-based residual generator as op-
posed to the MHE.

• If investigations are continued with MHE as residual generator: focus on MHE with
parameter estimation, or focus on how to determine sufficiently good ΓD for the
approach with w as test-variables. To continue with testing on the approach with w
as test-variable without the knowledge that, ΓD can be found efficiently, gives little
contribution to the development of this VFM expansion.

• Improve the identification algorithm with improved signature matrix ΓD and pos-
sibly expanded test variables to include measurement error v. Potentially also ex-
panded by introducing new functions related to temperature etc.

• Improve the test-variables (residuals) by pre-processing them with a whitening filter
as explained in section 2.2.2, and discussed in 7.2.3.

• Get some external simulator, or measurements from a real scenario, with parameters
that are known to have been re-calibrated. This is crucial to provide more reliability
to the test results.

• Develop more robust solvers with respect to avoiding local solutions, as discussed in
7.2.3. Note that the techniques do not necessarily need to be applied constantly, but
could possibly be an extension to check the solution in the case of fault detection.
This way one would save computation time and possibly still avoid false alarms. If
the solution was found to be local and not global, no alarm would be raised, and the
fault diagnosis system do not loose credibility.
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Appendix A
General background theory

This chapter contains some general background theory to support the theory presented in
the principal part of this paper.

A.1 Reservoir fluid composition
The fluid that is streaming up from the reservoir will not be pure, gas, oil or water. It
will be a mixture of the three. When considering the mixture of fluids that originates
from the reservoir, two parameters are usually considered to fundamentally describe the
composition. Water Cut (WC) and Gas to Oil Ratio (GOR).

• WC: Water cut describes the fraction of water in the liquid comprised of water and
oil (Jahn et al., 2008). Whether the fraction is in mass fraction, or volumetric frac-
tion at standard conditions is relevant and needs to be decided to keep consistency.
In this thesis, WC is chosen to be the mass fraction. In other words

WC =
qw [kg/s]

(qw + qo) [kg/s]
× 100% (A.1)

• GOR: Gas Oil Ratio refers to the relationship between the gas produced and oil
produced (Jahn et al., 2008). This parameter is like WC chosen to present the mass
fraction, and not the volumetric fraction at standard conditions.

GOR =
qg [kg/s]

qo [kg/s]
(A.2)

A.1.1 Properties of hydrocarbon fluids

Density of the fluid is a central element in the modelling of the system. For this project
there are 3 important densities that stands out.
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• ρw ≈ 1000 kg/m3, assumed incompressible, which means that it is not effected by
temperature or pressure (not strictly true, but a decent approximation)

• ρo ≈ 900 kg/m3, assumed incompressible as well, the density does however vary
much dependent of the kind of oil. The assumption of incompressible fluid is much
weaker with the oil than with the water.

• ρg = MP
zRT , where z is the compressibility factor (also known as gas-deviation fac-

tor). Is the most uncertain aspect, but it will be in the range of [0.9 1] for the
conditions that are relevant in our case. In the case of standard conditions, and
approximately methane as the gas we have ρg ≈ 0.7 kg/m3

Methane at 25oC 

z

p [bara]

1

0.9

150 300

Figure A.1: Approximate illustration of the compressibility factor of methane at 25 ◦C
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Appendix B

Implementation of estimators,
supplement

B.1 Moving horizon estimator implementation

The implementation is explained in Section 4.3. This section presents the Jacobian func-
tion provided with this implementation, which were excluded from the Section 4.3 to save
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limit the size of that section.

z = [x; x0; p; v]

J(z) =


J1,x, J1,x0

, J1,(p,v)

J2,x, J2,x0
, J2,(p,v)

J3,x, J3,x0
, J3,(p,v)

J4,x, J4,x0 , J4,(p,v)

J5,x, J5,x0 , J5,(p,v)

J6,x, J6,x0
, J6,(p,v)


J1,x(z) =

[
0 0 1 0 0

− 1
2Ccρmu√

ρ(pWH−psep)
0 0 0

− 1
2Cc(p

WH−psep)u√
ρ(pWH−psep)

0 0

]
J2,x(z) =

[
0 0 −x1

x1+x2
1 0 0 0

−qWH
c

x1+x2
+

x1q
WH
c

(x1+x2)2
x1q

WH
c

(x1+x2)2 0 0 0
]

J3,x(z) =
[
0 0 −x2

x1+x2
0 1 0 0

x2q
WH
c

(x1+x2)2
−qWH

c

x1+x2
+

x2q
WH
c

(x1+x2)2 0 0 0
]

J4,x(z) =
[
0 0 0 0 0 1 0 −RTt

M(LtAt−νlx2)10−5 −RTtνlx1

M(LtAt−νlx2)2 10−5 0 0 0
]

J5,x(z) =
[
0 1 0 0 0 0 10PI 0 0 0 0 0

]
J6,x(z) =

[
1 −10GLR 0 0 0 0 0 0 0 0 0 0

]
J1,(p,v)(z) =

[
Cpc PI GLR v

− 1
10

√
ρm102(102pWH − psep)u 0 0 0

]
J2,(p,v)(z) =

[
0 0 0 0

]
J3,(p,v)(z) =

[
0 0 0 0

]
J4,(p,v)(z) =

[
0 0 0 0

]
J5,(p,v)(z) =

[
0 − 1

10 (pres − 102pBH) 0 0
]

J6,(p,v)(z) =
[
0 0 −10qBHl 0

]
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Appendix C
Additional Plots

This section presents plots, that were not considered to be as relevant as the ones that were
included in the principal part of this thesis. The plots are presented within section that
indicate which section they are meant to supplement.

C.1 Validation of simulator model
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Figure C.1: Dynamical validation from section 3.2.1. This time with change in reservoir pressure.

C.2 GLRT with parameters as test variable, results
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Figure C.2: Test case 3b: Fault in both Cc and GLR parameter of well one. No change in u.
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Figure C.3: Test case 3c: Fault in both Cc and GLR parameter of well one. No change in u.
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Appendix D
Matlab scripts and functions

This chapter is added to give a brief overview on how the code used in this thesis was
built up. It will not contain any scripts or function (this can be found in a separate zip-file
handed in along with this thesis.). See figure D.1 for a brief summary of the complete code.
In the item list below a short description of each box is given. For further information, look
at the code handed, and the documentation for each script/function.

• Main script/ test cases: For every test that is run, some input was needed for the
estimators, fault diagnosis algorithm and for the simulator. This information is cre-
ated in the main script (in reality there are a set of different scripts, but they serve
the same purpose.). The output from the simulators, estimators and fault diagnosis,
is also analyzed in this box.

• Simulator ode45: A simple simulator that is not used much, but created mostly to
verify the simulator based on optimization (the one explained in section 3).

• Simulator based on optimization: A simulator of the system that is implemented
(as the one explained in section 3). The actual optimization is done through "opti-
toolbox".

• Opti-toolbox: An external toolbox (Currie and Wilson, 2012), that works as a
framework for utilizing open source optimization solvers. In this thesis IPOPT
(Wachter and Biegler, 2006) has been chosen as the solver.

• MHE: The two different implementations of MHE described in section 4.

• Fault diagnosis: The algorithm that includes "Generalized Likelihood Ratio Test"
and the fault identification algorithm explained in section 2.2.3.

• Kalman Filter: An interface to use the EKF program that is provided externally.
This Box also include all the functions related to this system

• EKF: Externally created EKF framework (Nithya V S, 2009).

109



Maingscriptg/g
testgcases

Simulatorg
basedgongoptim

Optig-g
toolbox

EKF

Kalmang
filter

MHEg(w/og
paramgest)

Faultg
Diagnosis

Simulatorg
ode45

Figure D.1: A general description of the Matlab code used in this thesis. Note that the boxes in red
("EKF" and "opti-toolbox") are both external programs.
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