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Unscented Kalman Filtering for Additive Noise Case:
Augmented versus Nonaugmented

Yuanxin Wu, Dewen Hu, Member, IEEE, Meiping Wu, and Xiaoping Hu

Abstract—This paper concerns the unscented Kalman filtering
(UKEF) for the nonlinear dynamic systems with additive process and
measurement noises. It is widely accepted for such a case that the
system state needs not to be augmented with noise vectors and the
resultant nonaugmented UKF yields similar, if not the same, re-
sults to the augmented UKEF. In this letter, we find that under the
condition of n + k = const, the basic difference between them
is that the augmented UKF draws a sigma set only once within a
filtering recursion, while the nonaugmented UKF has to redraw a
new set of sigma points to incorporate the effect of additive process
noise. This difference generally favors the augmented UKF in that
the odd-order moment information is partly captured by the non-
linearly transformed sigma points and propagated throughout the
recursion. The simulation results agree well with the analyses.

Index Terms—Dynamic system, unscented Kalman filtering, un-
scented transformation.

1. INTRODUCTION

N LIGHT OF the intuition that to approximate a probability

distribution is easier than to approximate an arbitrary non-
linear transformation, Julier and Uhlmann [1], [2] invented the
unscented transformation (UT) to make probabilistic inference.
Eliminating the cumbersome derivation and evaluation of Jaco-
bian/Hessian matrices, the UT-based unscented Kalman filter
(UKF) is much easier to implement and performs better than the
EKF. The original UKF was first formulated in its augmented
form (1)—(3). It is believed that for the special (but often found)
case, where process and measurement noises are additive, the
computational complexity can be reduced by using the nonaug-
mented form, which presumably yields similar results [3], if not
the same. The nonaugmented UKF has been accepted and em-
ployed to analyze the practical systems [4], [5]. In this letter, we
will show that this assumption is not quite correct and that the
nonaugmented UKF usage can lead to noticeable losses in ac-
curacy. The contents are organized as follows. Section II shows
the conditionally equivalent relationship between the nonaug-
mented and augmented UTs. This will facilitate the discussions
about the UKF, which is essentially a natural extension of the
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UT to recursive estimation. Section III analyzes and compares
the nonaugmented and augmented UKFs. Section IV examines
a representative example in the signal processing community
to support our findings, and the conclusions are drawn in Sec-
tion V.

II. UNSCENTED TRANSFORMATION

Consider a one-step nonlinear transformation with additive
noise

y=f(z)+w (1)

where x is an n X 1 random vector with mean & and covariance
P,,and w is an m x 1 zero-mean noise vector with covariance
@ that is uncorrelated with z. The problem is to calculate the
mean § and covariance P, of y. Note that here, neither 2 nor w
is restricted to be Gaussian as long as their mean and covariance
are given. Equation (1) can be reformulated through the state
augmentation method as

y* =1z )
where the augmented random vector is 2 = [T wT]T, and
the new nonlinear transformation is defined as f*(z*) =

f([z" wT]") = f(x) 4+ w. The problem now is to calculate
the mean ¢ and the covariance Py. of y*.

A. Nonaugmented UT

1)  The random vector x is approximated by 27 + 1 sym-
metric sigma points

K
:A W:

Xo=% 0 (n+k)

. 1
Xi:x"i'( (’rL—I—K)Pm)iWi—m; 1=1,...,n

. 1

Xi+n—fv—( (n+H)Pz)in+n—m
3)

where (v/P); is the ith column of the matrix square
root of P, and W; is the weight associated with the ¢th
sigma point. The scalar & is a scaling parameter that is
usually set to 0 or 3 — n, [2], [3]. Note that if « is set to
0, the sigma points and their weights will be related to
n, the dimension of z. kK = 3 —n is selected so that the
fourth-order moment information is mostly captured in
the true Gaussian case [2]. In general, other choices of
x would lead to better or worse results, depending on
specific characteristics of the integrand [6].

2)  Instantiate each point through the function to yield a
set of transformed sigma points

¥ = f(xi)- 4
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3) The mean ¢ is given by the weighted average of the
transformed points
2n
§=> Wi (5)
=0
4)  The covariance P, is the weighted outer product of the
transformed points plus the noise covariance
2n
Py=> Wiy —i)(v - 9" +Q (©)
1=0

B. Augmented UT
1)

The augmented random vector z® is approximated by
2(n + m) + 1 symmetric sigma points in (7), shown
at the bottom of the page, where the weight W;* and
scalar kK are counterparts of W; and « in (3). Note that

2% = [27 0157 and

}, 1=1,...,n

P,

(o

|:(\/E)i

Omxl

0n><m

(v Pypa); 0

®)

Onxl

|:(\/Q)i—n

Substituting (8) into (7) yields (9), shown at the bottom
of the page.

Instantiate each point through the new function to yield
a set of transformed sigma points

]7 t=n+1,...,n+m.

2)
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3) The mean * is the weighted average of the trans-

formed points
2(n+m)

P= > Wi
1=0
Substituting (9) and (10) yields
P=We e (xg) + YW £ () + £ (X))

=1

+ Z W (Xan) + 14 (X r2nem) ]
=1
m+ K* . 1

T&) + S+ )

N Z 1 o+ (Varm+wP) )

(n+m+ n“)Pm) )] .(12)

e i

As compared with (5), the following equation

(11)

_n—l-m—l-ﬁa

2n
ga = Z) = Z WL'YZ
1=0
. 1
o 1(@) 2(n + k)

+f (i (Vornr) )] a3
is satisfied if and only if
nd+k=ntm+r®2C. (14)

That is to say, the sums n + x and n + m + k“ are

yi= () - (10) identical and independent of the state dimension.
Ka
a — s a W(l —
Xo =% 0 (n+m+ K2)
a ~a a a 1
xi ="+ (Vin+m+r P ). = SEwrey =Lt ™
a ~a a a 1
Xitn4m =& — (\/(n tm+ ks )Pfﬂa i i+n+m 2(TL +m+ Ii"’)
[z K
@ — Wa =
Xo _Omxj O 7 (n4m+ k)
. [+ (n+m+li“)PI) } " 1
Xi = v Wi =
I O x1 2(n+m+ k%)
. - (ViormEeor) . 1 .
Xi—l—n_ Ole i+n 2(n+m+f€"’)7 'L—l7 .., Nn ]—17 ,m. (9)
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4) The covariance P is the weighted outer product of the
transformed points

2(n+m)
a a T
PyzzW% 9°) (v —9°)
= ZW“ RGO
2(n+m)
+ > WEaE - (=9 (a5)
1=2n+1
With (14) assumed, the first term on the right side be-
comes
C—m-—n R R
ZW“ W =) (= )T = (/@) — )
x (f( +ZW — i) (flxi) = )" (16)

and the second term is

2(n+m)
> oWEGE-i 6F =)
1=2n+1
=30 22 {11 - A1) - 7T +0W/Q Q)T
= U@ -9 U@ -9 +Q. amn
Therefore
= > Wi(f0) =) (f) =D + Q=P (18)
1=0

In summary, the UT is configurable with the free parameter
. Except the condition that (14) is satisfied, the nonaugmented
UT will be different from the augmented UT. Coincidently, the
common version of the UT selects C = 3, [2], [7] which leads
to equivalence of the nonaugmented and augmented UTs. In this
case, Kk = 3 — n and k* = 3 — n — m. For other versions, such
as the simplex UT [2, App. III] and the UT that uses k = 0 [2,
Sec. III] and [8], it will be another story. The discussions in the
next section are made about the common UT.

III. UKF

The UKF is a straightforward extension of the UT to the re-
cursive estimation [1], [2]. For the sake of brevity, we prefer to
treat the UT as a “black box” rather than to get involved in de-
tails again, as in Section II.

The prediction of the resulting UKF, whether based on
the nonaugmented UT or the augmented UT, consists of two
concatenated UTs: one for the process function (the first UT)
directly followed by the other for the measurement function
(the second UT). The second UT for the measurement function
makes a difference between the nonaugmented UKF and aug-
mented UKF. For the nonaugmented UKF, readers are referred
to the addition of the noise covariance in (6). The transformed
sigma points in the first UT only reflect the statistical infor-
mation in f(z) and do not consider the effect of the process

noise at all [see the derivations from (3)—(5)]. So, just before
the second UT, the nonaugmented UKF has to' redraw a new
set of sigma points to incorporate the effect of additive process
noise ([3], Table 7.3.2). Regarding the augmented UKF, the
transformed sigma points in the first UT for the process function
can be retained and then propagated through the measurement
equation ([2], Step 5 of Fig. 7). By doing so, the computation
of redrawing sigma points is spared, and more importantly,
the odd-moment information is partly captured? and well
propagated throughout one filtering recursion. In contrast,
because of having to use the redrawn symmetric sigma points,
the nonaugmented UKF is unable to propagate odd-moment
information. Although the transformed sigma points of the first
UT do capture the odd-moment information, the indispensable
regeneration of a new sigma set for the second UT interrupts its
propagation. Expectably, the augmented UKF would be iden-
tical to the nonaugmented UKF if the odd-moment information
was intentionally abandoned through redrawing a new sigma
set in the second UT.

Referring to Section II, the principle of the UT is to capture
the first two moments of the random vector (z or %) via a set of
sigma points. However, it should be made clear that with another
set of sigma points capturing extra statistical information other
than mean and covariance instead, the UT would hopefully yield
better results. This is a natural conclusion that can be readily
deduced from the Monte Carlo method [10], which represents
a distribution by a collection of samples from that distribution.
Therefore, the difference in drawing sigma points between the
two versions of UKF generally favors the augmented UKF in
that the extra odd-order moment information is partly captured
by the nonlinearly transformed sigma points in the first UT and
propagated throughout the whole recursion.

IV. EXAMPLE

Both nonaugmented and augmented UKFs are applied to
the univariate nonstationary growth model (UNGM) [11]. The
discrete-time dynamic system equation for this model can be
written as

= 05201 + 25#:55_1 +8cos (1.2(n — 1)) + un
ZU2
yn—%+vn n=1...,N (19)

where the process noise wu,, and measurement noise v,, are both
Gaussian noises with zero mean and unity variance. The refer-
ence data were generated using o = 0.1 and N = 500. The
bimodality makes this problem more difficult to address using
conventional methods.?

The initial conditions were g = 0, Py = 1. The performance
of the two UKFs was compared using the mean squared error
(MSE) defined by MSE = = SV (2, — )2

'Unfortunately, the sigma points redrawing was neglected in tackling prac-
tical systems [4], [5].

2Formally proving that the transformed sigma points can capture significant
odd-moment information would, in general, be rather involved. In [9], we pre-
sented a one-dimensional example and examined the third-order moment infor-
mation (skew).

3Admittedly, the UKF’s performance for this example may be unsatisfactory
since a Gaussian approximation is implicitly made to the posterior distribution.
However, it did not hinder the comparison of two versions of UKFs hereafter.
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Fig. 1. MSE:s across 50 random runs.
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Fig. 2. Mean and standard variance of MSEs.

A large number of computer runs were carried out. Fig. 1 plots
the MSEs for 50 random runs. Fig. 2 plots the mean and stan-
dard variance of the MSEs. The nonaugmented UKF’s MSE is
nearly twice as much as that of the augmented UKF, and the
standard variance is also evidently smaller for the augmented
UKEF. As discussed above, the superiorities of the augmented
UKEF are mainly owed to its capability in capturing and propa-
gating odd-moment information throughout one filtering recur-
sion. The augmented UKF with an unnecessary sigma set regen-
eration inserted was also simulated and yielded, as expected, the
same results as the nonaugmented UKF.

The computation time of the nonaugmented UKEF is half of
that of the augmented UKF in our simulation. One of the main
computational disadvantages of the augmented UKF is that
there are more sigma points that have to be propagated through
the nonlinear process and measurement equations. Referring to
(3) and (9), however, the arithmetic operations for the last extra
2m sigma points in (9) can be efficiently reduced using the
results of the first sigma point (. On the other hand, for the
dynamic system with uncorrelated process and measurement
noises, in the above example, for instance, the computation
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complexity can be further lowered by calculating low-dimen-
sional matrix square roots instead. Equipped with the optimized
implementation, the augmented UKF promises to yield better
performance with comparable computational expense.

V. CONCLUSIONS

In this letter, we have analyzed and compared two alterna-
tive versions of UT-based filters for the nonlinear dynamic
system with additive noises: the nonaugmented UKF and the
augmented UKF. We proved that the nonaugmented UT is
identical to the augmented counterpart only if n 4+ x = const is
satisfied. We pointed out that the basic difference between the
augmented and nonaugmented UKFs is that the former draws
sigma points only once in a recursion, while the latter has to
redraw a new set of sigma points to incorporate the effect of
additive process noise. This difference generally favors the
augmented UKF in that the odd-order moment information is
captured by the transformed sigma points and well propagated
within one recursion. On the other hand, if a new (but unneces-
sary) set of sigma points were redrawn in the augmented UKF,
it would be identical to and yield exactly the same results as the
nonaugmented UKF. The simulation results of a representative
example agree well with our conclusions.
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