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Channel Equalization Using Neural Networks: A Review

Kavita Burse, R. N. Yadav, and S. C. Shrivastava

Abstract—Equalization refers to any signal processing technique used
at the receiver to combat intersymbol interference in dispersive channels.
This paper reviews the applications of artificial neural networks (ANNs) in
modeling nonlinear phenomenon of channel equalization. The literature as-
sociated with different feedforward neural network (NN) based equalizers
like multilayer perceptron, functional-link ANN, radial basis function, and
its variants are reviewed. Feedback-based NN architectures like recurrent
NN equalizers are described. Training algorithms are compared in terms
of convergence time and computational complexity for nonlinear channel
models. Finally, some limitation of current research activities and further
research direction is provided.

Index Terms—Channel equalization, complex-valued neural networks
(NNs), functional-link artificial NN (FLANN), multilayer perceptron
(MLP), radial basis function (RBF).

I. INTRODUCTION

Designing equalizers for complicated, fast-varying channels is an
active area of academic research and development. In recent years, the
art of using artificial neural network (ANN) for wireless communica-
tions has been gaining momentum. Linear equalizers generally employ
linear filters with transversal or lattice structure and adaptation algo-
rithm such as recursive least square (RLS), least mean square (LMS),
fast RLS, square-root RLS, gradient RLS, etc. However, linear equal-
izers do not perform well on channels with deep spectral nulls. ANNs
are capable of forming arbitrarily nonlinear decision boundaries to
take up complex classification tasks [1]–[4]. This paper summarizes
the selected applications of ANN in modeling nonlinear phenomenon
of channel equalization. Equalization refers to any signal processing
technique used at the receiver to combat intersymbol interference (ISI)
in dispersive channels. Standard equalization techniques start by mod-
eling a communication channel as an adaptive filter with a specific
transfer function. The equalizer, which is part of the receiver, then es-
timates the parameters of this unknown transfer function, and attempts
to undo the effects of this time-varying channel distortion [5]. The
equalizer extracts the desired signal by applying adaptive algorithm
using neural network (NN), which minimizes the error between the
equalizer output and the delayed test signal, as depicted in Fig. 1. To
extract the phase characteristics of the channel from the received data,
it is necessary to use higher order statistics of the received signal. The
nonlinear function of the output of the NN equalizer gives rise to higher
order statistics of the received signal.

The channel, which may be linear or nonlinear, is modeled as a
finite-impulse response (FIR) filter whose transfer function is given by

H(z) =
N∑

i=0

h(i)z−i (1)
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Fig. 1. Block diagram of an adaptive equalizer.

Fig. 2. MLP structure.

where h(i) represent the channel tap values and N is the length of the
FIR channel model. The signal c(k) on passing through the channel is
further subjected to additive white Gaussian noise e(k) with zero mean
and variance σ2

n .
The input to the equalizer is given by

x(k) = c(k) + e(k). (2)

The remaining part of this paper is organized as follows.
Section II introduces the multilayer perceptron (MLP) equalizer, and its
merits and limitations are discussed. Section III reviews the literature
associated with functional-link ANN (FLANN) based equalizers. In
Section IV, the application of radial basis function (RBF) for channel
equalization is presented. Section V summarizes the literature associ-
ated with recurrent NN (RNN) based equalizer and its applications.
Section VI concludes this paper.

II. CHANNEL EQUALIZATION USING MLP

The multilayer structure of an MLP network shown in Fig. 2 is
composed of an input layer, an output layer, and one or more hid-
den layers. Through the multilayer structure one can attain nonlinear
mapping from input to output signals for nonlinear equalization [6].
Generally, the back propagation (BP) algorithm is used to train the
MLP networks [7]. One of the advantages of the BP algorithm is that
its hardware circuit can be easily realized. MLP equalizers are superior
to conventional transversal and decision feedback (DF) equalizers in
terms of the equalizer performance and symbol error rate (SER), but
they suffer from local minimum problem [8], [9].
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TABLE I
APPROXIMATE COMPUTATIONAL LOAD [18]

Zerguine [10] has proposed an MLP-based DF equalizer with lat-
tice filter to overcome the local minimum problem that improves the
performance of MLP, but at the cost of increased network complexity.

A. Complex MLP

For equalization of QAM signals, complex NN equalizers have been
proposed [11]. Researchers have designed a complex MLP and ex-
tended the BP algorithm to the complex domain [12], [13]. Two ap-
proaches for the development of the complex NN is discussed in [14].
The first one looks for fully complex activation functions, which can
satisfy a conflicting relationship between the boundedness and the dif-
ferentiability of a complex function. The second approach employs so
called “split” complex activation functions, where two conventional
real-valued activation functions process the in-phase and quadrature
component. Kim and Adali have presented a complex BP algorithm
using elementary transcendental functions (ETFs), which further sim-
plify the fully complex weight update formulas [15], [16]. The com-
plex ETFs provide well-defined derivatives for optimization of the fully
complex BP algorithm.

A new complex phase-invariant activation function, which satisfies
all the essential properties for a complex-valued activation function
has been proposed in [17] that uses a complex-valued exponential
activation function, which has singularity at infinity. The minimiza-
tion criterion uses a logarithmic error function that minimizes both
the errors in magnitude and phase. A complex version of the resilient
propagation (RPROP) has also been presented, which is used for real-
istic mobile systems [18]. RPROP is a local adaptive learning scheme
where the basic principle is to eliminate the harmful influence of the
size of the partial derivative on the weight step. The advantage of the
RPROP algorithm over BP algorithm is that it converges faster, and
thus, needs less training time. In complex RPROP (CRPROP), sepa-
rate update values for the real and imaginary parts of the weights are
computed. The adaptation effort is not blurred by unforeseeable gra-
dient behavior, because only the sign of the partial derivative is used
to perform both learning and adaptation. The equalizer is tested on
global system for mobile communications (GSM) channel modeled as
five-tap FIR filter. Performance comparisons made in terms of bit error
rates (BERs) and computational complexity show that the MLP net-
work trained with complex RPROP algorithm achieves approximately
as good BERs as the MLP network trained with complex BP, but with
smaller computational load, as shown in Table I.

B. Algorithms for Faster Convergence of MLP

The major limitation of the MLP network is its slow convergence
to a local or global minimum of the error performance surface. This
limitation is due to the reason that the BP algorithm operates on the basis
of first-order information, i.e., the gradient of error performance with
respect to its weight. The convergence can be accelerated by utilizing
the second-order information like the Hessian matrix, which is defined
as the second-order partial derivatives of the error performance surface

Fig. 3. FLANN structure.

TABLE II
COMPUTATIONAL COMPLEXITY EXAMPLE [26]

with respect to weights or the extended Kalman filter (EKF), unscented
Kalman filter (UKF), and the natural gradient (NG) descent algorithms.
Ibnkahla and Yuan [19] have applied the NG descent algorithm for
nonlinear satellite mobile channels and proved that its performance
is superior to the conventional BP algorithm. The error computation
for NG algorithm involves the calculation of inverse of the Fisher
information matrix, which is computationally costly for a large number
of neurons. Genetic algorithms [20] can also be used in solving the local
minimum problem and feature extraction tools, like wavelet transforms
can be incorporated in the receiver before applying NN.

III. FLANN-BASED EQUALIZER

A FLANN given in Fig. 3 can be used to build a nonlinear channel
equalizer. This network has a simple structure in which the nonlin-
earity is introduced by functional expansion of the input pattern by
trigonometric polynomials and other basis function such as Gaussian
or orthogonal polynomials such as Legendre and Chebyshev. The ma-
jor difference between the hardware structures of MLP and FLANN is
that FLANN only has input and output layers, and the hidden layers
are completely replaced by the nonlinear mappings [21], [22].

The advantage of Chebyshev NN (ChNN) over FLANN is that the
Chebyshev polynomials are computationally more efficient than us-
ing trigonometric polynomials to expand the input space for static
function approximation, as well as nonlinear dynamic system identifi-
cation. Patra and Kot [23] and Patra et al. [24] have used Chebyshev-
polynomial-based FLANN structure for channel equalization of four
quadratic-amplitude modulation (QAM) signals [23], [24].

A reduced DF-FLANN (RDF-FLANN) structure to lower the hard-
ware cost without sacrificing system performance is proposed in [25]
and the RDF-CFLANN-based equalizer is proposed in [26]. In the
RDF-CFLANN structure, the output signals are directly fed to the in-
put layer of the NN, instead of being taken as the input signals of
the network. Performance comparisons made in terms of computa-
tional complexity for a particular case of four QAM signals shows
that computational complexity of RDF-CFLANN is 30% less than
CFLANN [26]. This is shown in Table II.
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Fig. 4. RBF network.

Although FLANN-based equalizers exhibit better performance than
MLP, its potential drawback is that as the input space dimensionality of
the network is enlarged to reduce the BER, the complexity increases.

IV. RBF-BASED EQUALIZER

RBFs have been applied in the area of NNs where they are used
as a replacement for the sigmoidal transfer function [27]–[29]. Such
networks have three layers: the input layer, the hidden layer with the
RBF nonlinearity, and a linear output layer, as shown in Fig. 4. Because
of the obvious reasons, the most popular choice for the nonlinearity
is the Gaussian function. The RBF equalizer classifies the received
signal according to the class of the center closest to the received vector.
The output of the RBF NNs provides an attractive alternative to MLP
and FLANN for channel equalization problems because the structure
of the RBF network has a close relationship to Bayesian methods for
channel equalization and interference rejection problems. Simulations
performed on time-varying channels using a Rayleigh fading channel
model to compare the performance of RBF with an adaptive maximum-
likelihood sequence estimator (MLSE) show that the RBF equalizer
produces superior performance with less computational complexity
[30]–[32].

Chen et al. [33] and Cha and Kassam [34] have independently pro-
posed a complex RBF (CRBF) network, which is an extension of
its real counterpart. The stochastic-gradient training algorithm (with
Gaussian basis function) is used for training the aforementioned net-
work. Many techniques have been developed in literature to tackle
the problem of blind equalization using RBF [35]–[37]. A new fully
complex learning algorithm for the feedforward NN (FNN) is the ex-
treme learning machine (ELM) [38], [39], which can give better per-
formance than traditional tuning-based learning methods for FNNs in
terms of generalization and learning speed. ELM proposed by Huang
et al. is a single hidden-layer FNN in which input weights and
hidden-layer biases are randomly chosen based on some continuous
distribution probability, and the output weights are then analytically
calculated.

Unlike the BP algorithm that cannot be used to train the threshold
networks, ELM reaches good solutions analytically. The learning speed
of ELM is extremely fast compared to other traditional methods, as
shown in Table III.

TABLE III
TIME COMPARISON OF EQUALIZERS [40]

TABLE IV
COMPARISON OF EQUALIZER COMPLEXITY [43]

A. Growing and Pruning RBF Networks

RBF network learning algorithm, called minimal resource allocation
network (MRAN) was developed by Yingwei et al. [41]. Complex
MRAN (CMRAN) algorithm is proposed in [42] in which the network
begins with no hidden neurons. The algorithm adds new hidden neurons
or adjusts the existing network parameters according to the training data
received. The algorithm incorporates a pruning strategy that is used to
remove the hidden neurons that do not contribute significantly to the
output. The aforementioned algorithms are not fully complex, but use
a split-complex approach, where the RBF activation function remains
real, and the real and imaginary part of the input signal is processed
separately.

A complex-valued growing and pruning (CGAP) RBF NN for com-
munication channel equalization of four QAM and 16 QAM signal is
proposed in [43]. By linking the significance of a neuron to the equal-
ization accuracy, a growing and pruning strategy for a CRBF NN is
derived. Further, for growing and pruning, the nearest neuron (based on
the Euclidean distance to the latest input data) is tested for its signifi-
cance, resulting in a more compact network. When there is no growing
or pruning, a complex EKF is used to adjust the RBF network param-
eters. The performance of the CGAP-RBF equalizer is compared with
several other equalizers such as CMRAN, CRBF, and with several non-
linear, complex channel equalization problems. The results presented
in Table IV show that the CGAP-RBF equalizer is superior to other
equalizers in terms of SER and network complexity.

The performance of RBF NN equalizers can be further enhanced by
fuzzy logic methodology of approximate reasoning to develop neuro-
fuzzy systems for solving real-world problems effectively [44], [45].
Batch processing algorithms can be replaced by sequential learning
algorithms [46] in which the complete dataset is not required for train-
ing, but data for learning are either used one by one or in small blocks.
Thus, sequential learning algorithms do not require retraining for every
set of new data as compared to the batch learning algorithms.

V. RNN-BASED NEURAL EQUALIZER

RNNs, often generalized as IIR filters with feedback, as shown in
Fig. 5, are known to outperform FNNs such as MLP or RBF net-
works [47], [48]. Although the classical equalizers perform well over
fixed channels, they may not be appropriate for fast-fading channels.
The time-varying nature of fading channels can be interpreted as a
dynamic system with uncertainties in its coefficients [49]. RNN with
their ability to learn nonlinear mappings of arbitrary complexity may
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Fig. 5. Recurrent NN.

prove invaluable toward the solution of the challenging nonlinear blind
equalization. Thus, RNN has been successfully applied to channel
equalization of communication systems [50]–[52]. The RNN equalizer
(RNE) with a small number of neurons outperforms the FNN equalizer
for linear and nonlinear channels. Kechriotis et al. [47] have shown that
nonlinear adaptive filters based on RNN can be used for both trained
adaptation and blind equalization.

However, the RNE is very unstable due to its IIR structure. Ong
et al. [53] proposed an adaptive DF recurrent neural equalizer, which
not only models the IIR structure, but also overcomes the instabil-
ity of the RNN-based equalizer. The BER performances for the non-
linear channel comprising high-density magnetic recording systems
indicate that as the nonlinear distortion increases, the DFRNE outper-
forms the RNE and the DFE using MLP. Several algorithms have been
proposed for training RNNs. The most widely used algorithm is the
real-time recurrent learning (RTRL) algorithm and its complex ver-
sion [54], [55]. Gradient-based learning approaches for training RNN
are discussed in [56]. Major disadvantages of gradient-based methods
are slow convergence rates and long training symbols required for satis-
factory performance of channel equalization. Another disadvantage is
the vanishing-gradients problem. A complex bilinear RNN (BLRNN)
for equalization of a digital satellite channel is proposed in [57]. Since
the BLRNN is based on bilinear polynomial, it can be used to model
highly nonlinear systems, with time series more effectively. In [58],
the focus is on learning algorithms for the RNE with suitably fast con-
vergence and good tracking performance using relatively short training
symbols. The EKF and UKF are used as training algorithms for the
RNE [59], [60]. Results support the superiority of the UKF to the EKF
in compensating the effect of non-Gaussian impulsive noise such as
acoustic underwater channels and indoor wireless channels [61].

The EKF-based learning algorithms have drawbacks of high com-
putational complexity and sensitivity to initial parameter selection.
Gauss–Newton method training algorithm to achieve convergence rates
close to second order with lower computation efforts is proposed
in [62]. In this type of equalizer, a DFE is used with a soft-decision
function (hyperbolic tangent function) at the forward filter output, dur-
ing the training phase, which is replaced by hard limit or sign function
(hard decision) during testing phase. Only two iterations are necessary
to achieve a good estimative of the coefficients. A suitable and more
generalized activation function can greatly improve the NNs’ perfor-
mance. In recent years, some researchers have devoted themselves to
design new generalized activation functions to improve the capacity of

NN [63]. Stability of the system and convergence rate are two main
issues while designing RNNEs. Unsupervised nonlinear blind equal-
ization based on a fuzzy structure [64], [65] and a prediction criterion
field that can be implemented in a simple way in a hardware device
could be a future research direction.

VI. CONCLUSION

In this paper, we have discussed various NN architectures and learn-
ing methods for solving the problem of channel equalization. The main
drawback of the NN equalizers is the large computational complexity
due to extensive training. The MLP network is simple to implement,
but usually requires long training time. The main limitation of FLANN
structure is that as the number of nodes in the input signal space
is increased, the computational complexity increases. RBF-based NN
equalizers are an attractive alternative and have successfully being
applied for blind equalization. RNN-based equalizers, generalized as
IIR filters, outperform feedforward NNs, including MLP, RBF, and
FLANN. They are especially suitable for equalization of fading chan-
nels. The future research approach could be designing new generalized
activation functions to improve the capacity of NN, implementations of
neurofuzzy systems, and development of algorithms and NN structures
to equalize time-varying channels with faster convergence and simpler
architecture.
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