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ABSTRACT

Over the last 20-30 years, theextended Kalman filter(EKF) has
become the algorithm of choice in numerous nonlinear estimation
and machine learning applications. These include estimating the
state of a nonlinear dynamic system as well estimating parameters
for nonlinear system identification (e.g., learning the weights of
a neural network). The EKF applies the standard linear Kalman
filter methodology to a linearization of the true nonlinear system.
This approach is sub-optimal, and can easily lead to divergence.
Julier et al. [1] proposed theunscented Kalman filter(UKF) as
a derivative-free alternative to the extended Kalman filter in the
framework of state-estimation. This was extended to parameter-
estimation by Wan and van der Merwe [2, 3]. The UKF consis-
tently outperforms the EKF in terms of prediction and estimation
error, at an equal computational complexity ofO(L3)1 for gen-
eral state-space problems. When the EKF is applied to parameter-
estimation, the special form of the state-space equations allows
for anO(L2) implementation. This paper introduces thesquare-
root unscented Kalman filter(SR-UKF) which is alsoO(L3) for
general state-estimation andO(L2) for parameter estimation (note
the original formulation of the UKF for parameter-estimation was
O(L3)). In addition, the square-root forms have the added benefit
of numerical stability and guaranteed positive semi-definiteness of
the state covariances.

1. INTRODUCTION

The EKF has been applied extensively to the field of nonlinear es-
timation for bothstate-estimationandparameter-estimation. The
basic framework for the EKF (and the UKF) involves estimation of
the state of a discrete-time nonlinear dynamic system,

xk+1 = F(xk;uk) + vk (1)

yk = H(xk) + nk; (2)

wherexk represent the unobserved state of the system,uk is a
known exogenous input, andyk is the observed measurement sig-
nal. Theprocessnoisevk drives the dynamic system, and theob-
servationnoise is given bynk. The EKF involves the recursive
estimation of the mean and covariance of the state under a Gaus-
sian assumption.

In contrast, parameter-estimation, sometimes referred to as sys-
tem identification, involves determining a nonlinear mappingyk =
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1
L is the dimension of the state variable.

G(xk;w), wherexk is the input,yk is the output, and the nonlin-
ear map,G(�), is parameterized by the vectorw. Typically, a train-
ing set is provided with sample pairs consisting of known input and
desired outputs,fxk;dkg. The error of the machine is defined as
ek = dk �G(xk;w), and the goal of learning involves solving
for the parametersw in order to minimize the expectation of some
given function of the error. While a number of optimization ap-
proaches exist (e.g., gradient descent and Quasi-Newton methods),
parameters can be efficiently estimated on-line by writing a new
state-space representation

wk+1 = wk + rk (3)

dk = G(xk;wk) + ek; (4)

where the parameterswk correspond to a stationary process with
identity state transition matrix, driven by process noiserk (the
choice of variance determines convergence and tracking perfor-
mance). The outputdk corresponds to a nonlinear observation on
wk. The EKF can then be applied directly as an efficient “second-
order” technique for learning the parameters [4].

2. THE UNSCENTED KALMAN FILTER

The inherent flaws of the EKF are due to its linearization approach
for calculating the mean and covariance of a random variable which
undergoes a nonlinear transformation. As shown in shown in [1,
2, 3], the UKF addresses these flaws by utilizing a deterministic
“sampling” approach to calculate mean and covariance terms. Es-
sentially,2L+ 1, sigmapoints (L is the state dimension), are cho-
sen based on a square-root decomposition of the prior covariance.
These sigma points are propagated through the true nonlinearity,
without approximation, and then a weighted mean and covariance
is taken. A simple illustration of the approach is shown in Fig-
ure 1 for a 2-dimensional system: the left plot shows the true mean
and covariance propagation using Monte-Carlo sampling; the cen-
ter plots show the results using a linearization approach as would be
done in the EKF; the right plots show the performance of the new
“sampling” approach (note only 5 sigma points are required). This
approach results in approximations that are accurate to the third
order (Taylor series expansion) for Gaussian inputs for all nonlin-
earities. For non-Gaussian inputs, approximations are accurate to
at least the second-order [1]. In contrast, the linearization approach
of the EKF results only in first order accuracy.

The full UKF involves the recursive application of this “sam-
pling” approach to the state-space equations. The standard UKF
implementation is given in Algorithm 2.1 for state-estimation, and
uses the following variable definitions:fWig is a set of scalar
weights (W (m)

0 = �=(L+�) ,W (c)
0 = �=(L+�)+(1��2+�),



Actual (sampling) Linearized (EKF) UT

y = f(x)
Py = A

T
PxA

�y = f(�x)

f(�x)

Y = f(X )

A
T
PxA

sigma points

true mean

UT mean

    and covariance
weighted sample mean

mean

UT covariance

covariance

true covariance

transformed
sigma points

����
����
����
����
����

����
����
����
����
����

����
����
����
����

�
�
�
�

�
�
�
�
�
�
�
������

�����
�����
�����

UKF

UKF mean

UKF covariance

Figure 1:Example of mean and covariance propagation. a) actual,
b) first-order linearization (EKF), c) new “sampling” approach (UKF).
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(L+ �) are scaling parameters. The constant�
determines the spread of the sigma points aroundx̂ and is usually
set to1e � 4 � � � 1. � is a secondary scaling parameter2. �
is used to incorporate prior knowledge of the distribution ofx (for
Gaussian distributions,� = 2 is optimal). Also note that we define
the linear algebra operation of adding a column vector to a matrix,
i.e. A� u as the addition of the vector to each column of the ma-
trix. The superior performance of the UKF over the EKF has been
demonstrated in a number of applications [1, 2, 3]. Furthermore,
unlike the EKF, no explicit derivatives (i.e., Jacobians or Hessians)
need to be calculated.

3. EFFICIENT SQUARE-ROOT IMPLEMENTATION

The most computationally expensive operation in the UKF cor-
responds to calculating the new set of sigma points at each time
update. This requires taking a matrix square-root of the state co-
variance matrix3, P 2 R

L�L , given bySST = P. An efficient
implementation using a Cholesky factorization requires in general
O(L3=6) computations [5]. While the square-root ofP is an in-
tegral part of the UKF, it is still the full covarianceP which is re-
cursively updated. In the SR-UKF implementation,Swill be prop-
agated directly, avoiding the need to refactorize at each time step.
The algorithm will in general still beO(L3), but with improved nu-
merical properties similar to those of standard square-root Kalman
filters [6]. Furthermore, for the special state-space formulation of
parameter-estimation, anO(L2) implementation becomes possi-
ble.

The square-root form of the UKF makes use of three linear
algebra techniques[5] nl.QR decomposition, Cholesky factor up-
datingandefficient least squares, which we briefly review below:

� QR decomposition.The QR decomposition or factorization
of a matrixA 2 R

L�N is given by,AT = QR, where
Q 2 R

N�N is orthogonal,R 2 R
N�L is upper triangu-

lar andN � L. The upper triangular part ofR, ~R, is

2We usually set� to 0 for state-estimation and to3 � L for parameter
estimation [1].

3For notational clarity, the time indexk has been omitted.
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Ykjk�1 = H[X kjk�1]
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i Yi;kjk�1 (10)

Measurement update equations:

P~yk ~yk =
2LX
i=0

W
(c)
i [Yi;kjk�1 � ŷ�k ][Yi;kjk�1 � ŷ�k ]T +Rn

Pxkyk =

2LX
i=0

W
(c)
i [Xi;kjk�1 � x̂�k ][Yi;kjk�1 � ŷ�k ]T (11)

Kk = PxkykP
�1
~yk ~yk

(12)

x̂k = x̂
�

k +Kk(yk � ŷ�k ) (13)

Pk = P
�

k �KkP~yk ~ykKT
k (14)

whereRv=process noise cov.,Rn=measurement noise cov.

Algorithm 2.1: Standard UKF algorithm.

the transpose of the Cholesky factor ofP = AAT , i.e.,
~R = ST , such that~RT ~R = AAT . We use the shorthand
notation qrf�g to donate a QR decomposition of a matrix
where only ~R is returned. The computational complexity
of a QR decomposition isO(NL2). Note that performing a
Cholesky factorization directly onP = AAT isO(L3=6)
plusO(NL2) to formAAT .

� Cholesky factor updating.If S is the original Cholesky fac-
tor of P = AAT , then the Cholesky factor of the rank-
1 update (or downdate)P � p

�uuT is denoted asS =
cholupdatefS;u;��g. If u is a matrix and not a vector,
then the result isM consecutive updates of the Cholesky
factor using theM columns ofu. This algorithm (available
in Matlab ascholupdate ) is onlyO(L2) per update.

� Efficient least squares.The solution to the equation
(AAT )x = ATb also corresponds to the solution of the
overdetermined least squares problemAx = b. This can be
solved efficiently using a QR decomposition with pivoting



(implemented in Matlab’s ’/’ operator).

The complete specification of the new square-root filters is
given in Algorithm 3.1 for state-estimation and 3.2 for paramater-
estimation. Below we describe the key parts of the square-root
algorithms, and how they contrast with the stardard implementa-
tions.

Square-Root State-Estimation:As in the original UKF, the
filter is initialized by calculating the matrix square-root of the state
covariance once via a Cholesky factorization (Eqn. 16). However,
the propagted and updated Cholesky factor is then used in sub-
sequent iterations to directly form the sigma points. In Eqn. 20
the time-updateof the Cholesky factor,S�, is calculated using a
QR decompostion of the compound matrix containing the weighted
propagated sigma points and the matrix square-root of the addi-
tive process noise covariance. The subsequent Cholesky update (or
downdate) in Eqn. 21 is necessary since the the zero’th weight,
W

(c)
0 , may be negative. These two steps replace thetime-update

of P� in Eqn. 8, and is alsoO(L3).
The same two-step approach is applied to the calculation of

the Cholesky factor,S~y, of the observation-error covariance in
Eqns. 25 and 26. This step isO(LM2), whereM is the obser-
vation dimension. In contrast to the way the Kalman gain is cal-
culated in the standard UKF (see Eqn. 12), we now use two nested
inverse (orleast squares) solutions to the following expansion of
Eqn. 12,Kk(S~ykST~yk ) = Pxkyk . SinceS~y is square and trian-
gular, efficient “back-substitutions” can be used to solve forKk
directly without the need for a matrix inversion.

Finally, the posterior measurement update of the Cholesky fac-
tor of the state covariance is calculated in Eqn. 30 by applyingM
sequential Cholesky downdates toS�k . The downdate vectors are
the columns ofU = KkS~yk . This replaces the posterior update of
Pk in Eqn. 14, and is alsoO(LM2).

Square-Root Parameter-Estimation:The parameter-estimation
algorithm follows a similar framework as that of the state-estimation
square-root UKF. However, anO(ML2) algorithm, as opposed to
O(L3), is possible by taking advantage of thelinear state transi-
tion function. Specifically, the time-update of the state covariance
is given simply byP�

wk
= Pwk�1

+Rr
k�1. Now, if we apply an

exponential weighting on past data4, the process noise covariance
is given byRr

k = (��1
RLS � 1)Pwk

, and the time update of the
state covariance becomes,
P
�

wk
= Pwk�1

+ (��1
RLS � 1)Pwk�1

= ��1
RLSPwk�1

: (15)

This translates readily into the factored form,S�wk
= �

�1=2

RLS Swk�1

(see Eqn. 33), and avoids the costlyO(L3) QR and Cholesky based
updates necessary in the state-estimation filter. ThisO(ML2) time
update step has recently been expanded by the authors to deal with
arbitrary diagonal noise covariance structures [7].

4. EXPERIMENTAL RESULTS

The improvement in error performance of the UKF over that of the
EKF for both state and parameter-estimation is well documented
[1, 2, 3]. The focus of this section will be to simply verify the
equivalent error performance of the UKF and SR-UKF, and show
the reduction in computational cost achieved by the SR-UKF for

4This is identical to the approach used in weighted recursive least
squares (W-RLS).�RLS is a scalar weighting factor chosen to be slightly
less than 1,i.e. �RLS = 0:9995.

5Redraw sigma points to incorporate effect of process noise.
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Sigma point calculation and time update:
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U = KkS~yk (29)

Sk = cholupdate
�
S
�

k ; U ; -1
	

(30)

whereRv=process noise cov.,Rn=measurement noise cov.

Algorithm 3.1: Square-Root UKF for state-estimation.

parameter-estimation. Figure 2 shows the superior performance of
UKF and SR-UKF compared to that of the EKF on estimating the
Mackey-Glass-30 chaotic time series corrupted by additive white
noise (3dB SNR). The error performance of the SR-UKF and UKF
are indistinguishable and are both superior to the EKF. The compu-
tational complexity of all three filters are of the same order but the
SR-UKF is about 20% faster than the UKF and about 10% faster
than the EKF.

The next experiment shows the reduction in computational cost
achieved by the square-root unscented Kalman filters and how that
compares to the computational complexity of the EKF for parameter-
estimation. For this experiment, we use an EKF, UKF and SR-UKF
to train a 2-12-2 MLP neural network on the well knownMackay-
Robot-Arm6 benchmark problem of mapping the joint angles of a
robot arm to the Cartesian coordinates of the hand. The learning
curves (mean square error (MSE) vs. learning epoch) of the dif-
ferent filters are shown in Figure 3. Figure 4 shows how the com-

6http://wol.ra.phy.cam.ac.uk/mackay
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whereRe=measurement noise cov (this can be set to an arbitrary
value,e.g., :5I.)

Algorithm 3.2: Square-Root UKF for parameter-estimation.
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Figure 2:Estimation of the Mackey-Glass chaotic time-series (mod-
eled by a neural network) with the EKF, UKF and SR-UKF.

putational complexity of the different filters scale as a function of
the number of parameters (weights in neural network). While the
standard UKF isO(L3), both the EKF and SR-UKF areO(L2).
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Figure 3: Learning curves for Mackay-Robot-Arm neural network
parameter-estimation problem.
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Figure 4:Computational complexity (flops/epoch) of EKF, UKF and
SR-UKF for parameter-estimation (Mackay-Robot-Arm problem).

5. CONCLUSIONS

The UKF consistently performs better than or equal to the well
known EKF, with the added benefit of ease of implementation in
that no analytical derivatives (Jacobians or Hessians) need to be
calculated. For state-estimation, the UKF and EKF have equal
complexity and are in generalO(L3) . In this paper, we intro-
duced square-root forms of the UKF. The square-root UKF has bet-
ter numerical properties and guarantees positive semi-definiteness
of the underlying state covariance. In addition, for parameter-
estimation an efficientO(L2) implementation is possible for the
square-root form, which is again of the same complexity as effi-
cient EKF parameter-estimation implementations.
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