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ABSTRACT

Over the last 20-30 years, tlextended Kalman filte(EKF) has
become the algorithm of choice in numerous nonlinear estimation

and machine learning applications. These include estimating the
state of a nonlinear dynamic system as well estimating parametersg, o param

for nonlinear system identificatioreg, learning the weights of

a neural network). The EKF applies the standard linear Kalman
filter methodology to a linearization of the true nonlinear system.
This approach is sub-optimal, and can easily lead to divergence
Julier et al. [1] proposed thenscented Kalman filtefUKF) as

a derivative-free alternative to the extended Kalman filter in the
framework of state-estimation. This was extended to parameter-
estimation by Wan and van der Merwe [2, 3]. The UKF consis-
tently outperforms the EKF in terms of prediction and estimation
error, at an equal computational complexity @{L*)* for gen-

eral state-space problems. When the EKF is applied to parameter
estimation, the special form of the state-space equations allow
for an O(L?) implementation. This paper introduces tmuare-
root unscented Kalman filtgfSR-UKF) which is alsaO(L?) for
general state-estimation ad¥{ L?) for parameter estimation (note
the original formulation of the UKF for parameter-estimation was
O(L?)). In addition, the square-root forms have the added benefit
of numerical stability and guaranteed positive semi-definiteness of
the state covariances.

1. INTRODUCTION

The EKF has been applied extensively to the field of nonlinear es-
timation for bothstate-estimatiomnd parameter-estimatianThe
basic framework for the EKF (and the UKF) involves estimation of
the state of a discrete-time nonlinear dynamic system,

F(xk,ur) + v
H(Xk-) + ng,

1)
)

wherex,, represent the unobserved state of the systemis a
known exogenous input, and, is the observed measurement sig-
nal. Theprocessnoisev;, drives the dynamic system, and tbl-
servationnoise is given byn,. The EKF involves the recursive
estimation of the mean and covariance of the state under a Gaus
sian assumption.

In contrast, parameter-estimation, sometimes referred to as sys
tem identification, involves determining a nonlinear mappig=

Xk+1
Yk
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1L is the dimension of the state variable.

G (xx, w), wherex,, is the input,y;. is the output, and the nonlin-
ear mapG(-), is parameterized by the vecter. Typically, a train-
ing set is provided with sample pairs consisting of known input and
desired outputs{x, d; }. The error of the machine is defined as
e, = dr — G(xx, w), and the goal of learning involves solving
etergr in order to minimize the expectation of some
given function of the error. While a number of optimization ap-
proaches existe(g, gradient descent and Quasi-Newton methods),
parameters can be efficiently estimated on-line by writing a new
'state-space representation
Wk+1
dy,

Wi + Ik
G(xk,wk) + eg,

©)
4
where the parametess;, correspond to a stationary process with
identity state transition matrix, driven by process natge(the

choice of variance determines convergence and tracking perfor-
mance). The outpud, corresponds to a nonlinear observation on

Swy,. The EKF can then be applied directly as an efficient “second-

order” technique for learning the parameters [4].

2. THE UNSCENTED KALMAN FILTER

The inherent flaws of the EKF are due to its linearization approach
for calculating the mean and covariance of a random variable which
undergoes a nonlinear transformation. As shown in shown in [1,
2, 3], the UKF addresses these flaws by utilizing a deterministic
“sampling” approach to calculate mean and covariance terms. Es-
sentially,2L + 1, sigmapoints (L is the state dimension), are cho-
sen based on a square-root decomposition of the prior covariance.
These sigma points are propagated through the true nonlinearity,
without approximation, and then a weighted mean and covariance
is taken. A simple illustration of the approach is shown in Fig-
ure 1 for a 2-dimensional system: the left plot shows the true mean
and covariance propagation using Monte-Carlo sampling; the cen-
ter plots show the results using a linearization approach as would be
done in the EKF; the right plots show the performance of the new
“sampling” approach (note only 5 sigma points are required). This
approach results in approximations that are accurate to the third
order (Taylor series expansion) for Gaussian inputs for all nonlin-
earities. For non-Gaussian inputs, approximations are accurate to
at least the second-order [1]. In contrast, the linearization approach
of the EKF results only in first order accuracy.

The full UKF involves the recursive application of this “sam-
pling” approach to the state-space equations. The standard UKF
implementation is given in Algorithm 2.1 for state-estimation, and
uses the following variable definitions{1V;} is a set of scalar

weights V™ = A/(L+X), W = A/(L+A) +(1—a?+8),
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Figure 1:Example of mean and covariance propagation. a) actual,
b) first-order linearization (EKF), c) new “sampling” approach (UKF).

W™ =W =1/{2(L+ N} i=1,...,20). A= (L +
k)—Landy = /(L + \) are scaling parameters. The constant
determines the spread of the sigma points araumadd is usually
settole — 4 < a < 1. k is a secondary scaling paraméte

is used to incorporate prior knowledge of the distributioxgfor
Gaussian distributiong, = 2 is optimal). Also note that we define
the linear algebra operation of adding a column vector to a matrix
i.e. A + u as the addition of the vector to each column of the ma-
trix. The superior performance of the UKF over the EKF has been
demonstrated in a number of applications [1, 2, 3]. Furthermore
unlike the EKF, no explicit derivatives.€., Jacobians or Hessians)
need to be calculated.

3. EFFICIENT SQUARE-ROOT IMPLEMENTATION

The most computationally expensive operation in the UKF cor-
responds to calculating the new set of sigma points at each tim
update. This requires taking a matrix square-root of the state cq

D

Initialize with:

%0 = E[xo0] Po = E[(x0 — %o)(x0 — %0)]

= ®)

Fork € {1,..., 00},

Calculate sigma points:

X1 = [fik—l Xk—1 +YVPro1 X1 —7 Pk—1:| 6)

Time update:
Xije—1 = F[X 1, u5-1] )
2L
Xy = Z Wi(m)Xi*,k\k—l (8)

=0

2L
Py =Y WA weer — X5 1A kot — %517 +RY

=0

SX k-1 = [f(;: X, +7VPr X _7\/1)1;] 9)
Vipe—1 = H[X ;4]
2L
Ve =3 W™V (10)

=0

Measurement update equations:

2L
Py = > W Wikkor = 95 1Vikie—r — 951" +R”

i=0
2L

Poye = WXkt — %5 WViwi—r — 9217 (1)
i=0

Ki =P,y P35, (12)

Xk =%, + Ke(yr —¥1) (13)

P, =P, — KiPy, 5. K¢ (14)

whereRY =process noise coR"=measurement noise cov.

variance matri¥, P € REX% | given bySS? = P. An efficient
implementation using a Cholesky factorization requires in general
O(L?/6) computations [5]. While the square-root Bfis an in-
tegral part of the UKF, it is still the full covariand® which is re-
cursively updated. In the SR-UKF implementati@nyill be prop-

agated directly, avoiding the need to refactorize at each time step.

The algorithm will in general still b&(L?), but with improved nu-
merical properties similar to those of standard square-root Kalman
filters [6]. Furthermore, for the special state-space formulation of
parameter-estimation, af(L?) implementation becomes possi-
ble.

The square-root form of the UKF makes use of three linear
algebra techniques[5] nQR decompositignCholesky factor up-
datingandefficient least squaresvhich we briefly review below:

e QR decompositionThe QR decomposition or factorization
of a matrix A € RI*Y is given by, AT = QR, where
Q € RY*Y is orthogonal R € RV ** is upper triangu-
lar and N > L. The upper triangular part &R, R, is

2We usually sek to 0 for state-estimation and % — L for parameter
estimation [1].
3For notational clarity, the time indeéxhas been omitted.

Algorithm 2.1: Standard UKF algorithm.

the transpose of the Cholesky factorBf = AAT, i.e,

R = ST, such thaR”R = AAT. We use the shorthand
notation gf-} to donate a QR decomposition of a matrix
where onlyR is returned. The computational complexity
of a QR decomposition i© (N L?). Note that performing a
Cholesky factorization directly o = AAT is O(L?/6)
plusO(NL?) toformAAT.

Cholesky factor updatindf S is the original Cholesky fac-
tor of P = AAT, then the Cholesky factor of the rank-
1 update (or downdate + /vuu” is denoted a$§ =
cholupdat¢S, u, £v}. If u is a matrix and not a vector,
then the result is\/ consecutive updates of the Cholesky
factor using theV/ columns ofu. This algorithm (available
in Matlab ascholupdate ) is only O(L?) per update.

Efficient least squareslhe solution to the equation
(AAT)x = A”b also corresponds to the solution of the
overdetermined least squares probl&m = b. This can be
solved efficiently using a QR decomposition with pivoting



(implemented in Matlab’s '/ operator). Initialize with:

The complete specification of the new square-root filters is| %o = E[xo] So = chol{]E[(xo — %o)(x0 — fco)T]} (16)
given in Algorithm 3.1 for state-estimation and 3.2 for paramater-

estimation. Below we describe the key parts of the square-rootFork € {1,..., 00},
algorithms, and how they contrast with the stardard implementa
tions. Sigma point calculation and time update:

Square-Root State-Estimation:As in the original UKF, the R . R
filter is initialized by calculating the matrix square-root of the state| ~ X#-1 = [Xe—1 Xp—1+7Sk Xp_1 — 7S] a7
covariance once via a Cholesky factorization (Eqn. 16). However] X7 .1 = F[X_1,u;_1] (18)
the propagted and updated Cholesky factor is then used in sub- oL
sequent iterations to directly form the _sigma points. In Eqgn. 20 %, = ZWi(m)Xi*,k\k—l (19)
the time-updateof the Cholesky factorS ™, is calculated using a P

QR decompostion of the compound matrix containing the weighted
propagated sigma points and the matrix square-root of the add
tive process noise covariance. The subsequent Cholesky update (or
downdate) in Eqn. 21 is necessary since the the zero'th weight,
W, may be negative. These two steps replacetithe-update SXpko1 = [Xy Xp +9S; %; — 7S] (22)
of P~ in Egn. 8, and is als®(L?).

s =qr{[\/ch> (Ko s — 1) VRv]} (20)
Sy = cholupdate{s,; L Xow — %5, W(@} 1)

The same two-step approach is applied to the calculation of V-1 = H[X k1] (23)
the Cholesky factorSy, of the observation-error covariance in R (m)
Eqns. 25 and 26. This step (LM ?), where M is the obser- Vi = ZWi Viklk—1 (24)
vation dimension. In contrast to the way the Kalman gain is cal- =0

culated in the standard UKF (see Eqn. 12), we now use two nestedyieasurement update equations:
inverse (orleast squaressolutions to the following expansion of

Eqn. 12,K(Sy, ST ) = Py,y,.. SinceSy is square and trian- - .
gular, efﬁcie(nghbgélg-substitﬁ)t,i%ns” can be used to solve Kir Sy, = qr{ {\/ W Vo k — i) VR?]} (25)
directly without the need for a matrix inversion.

Finally, the posterior measurement update of the Cholesky fact Sy = Ch0|Update{syk » Yoo — ¥k » Wo(c)} (26)
tor of the state covariance is calculated in Egn. 30 by applgihg oL
sequential Cholesky downdatesS§ . The downdate vectors are _ ©)ry. T TEe &7
the columns olU = K Sy, . Thiszregplaces the posterior update of Py ; Wi iie—1 = % ki1 = 3] ")
P in Egn. 14, and is als®@ (LM *). T

Square-Root Paramete(r-Estir)nation:The parameter-estimation Ki = (Pxyy, /S3,)/ S5 (28)
algorithm follows a similar framework as that of the state-estimatio Xe =%, +Ke(yr —31)
square-root UKF. However, a( M L?) algorithm, as opposed to U = K,Ss (29)
O(L?), is possible by taking advantage of theear state transi- Yk
tion function. Specifically, the time-update of the state covariance Si. = cholupdate{S; , U, -1} (30)

is given simply byPy, = Pw,_, + Rj_;. Now, if we apply an
exponential weighting on past ditahe process noise covariance i —
is given byR% = (Al — 1)Pw,, and the time update of the Algorithm 3.1: Square-Root UKF for state-estimation.
state covariance becomes,

Pv_vk = Pwk—l + (/\J_ais - 1)Pwk71 = )‘I_{}JSPwkfl . (15)

whereRY =process noise coR."=measurement noise cov.

parameter-estimation. Figure 2 shows the superior performance of
UKF and SR-UKF compared to that of the EKF on estimating the
Mackey-Glass-30 chaotic time series corrupted by additive white
noise (3dB SNR). The error performance of the SR-UKF and UKF
re indistinguishable and are both superior to the EKF. The compu-
tional complexity of all three filters are of the same order but the
SR-UKEF is about 20% faster than the UKF and about 10% faster
than the EKF.
4. EXPERIMENTAL RESULTS The next experiment shows the reduction in computational cost
achieved by the square-root unscented Kalman filters and how that
compares to the computational complexity of the EKF for parameter-
estimation. For this experiment, we use an EKF, UKF and SR-UKF
to train a 2-12-2 MLP neural network on the well knoMackay-
Robot-Armi benchmark problem of mapping the joint angles of a
robot arm to the Cartesian coordinates of the hand. The learning
4This is identical to the approach used in weighted recursive least CUrves (mean square error (MSE) vs. learning epoch) of the dif-
squares (W-RLS\\ s is a scalar weighting factor chosen to be slightly ~ ferent filters are shown in Figure 3. Figure 4 shows how the com-
less than li.e. Agprs = 0.9995.
SRedraw sigma points to incorporate effect of process noise. Shttp://wol.ra.phy.cam.ac.uk/mackay

This translates readily into the factored fori8y,, = A,;;/; Swi_1

(see Eqgn. 33), and avoids the cosflyL®) QR and Cholesky based
updates necessary in the state-estimation filter. D&/ L?) time
update step has recently been expanded by the authors to deal wit
arbitrary diagonal noise covariance structures [7].

The improvement in error performance of the UKF over that of the
EKF for both state and parameter-estimation is well documented
[1, 2, 3]. The focus of this section will be to simply verify the

equivalent error performance of the UKF and SR-UKF, and show
the reduction in computational cost achieved by the SR-UKF for




Initialize with:
Wo = E[w] Sw, = choI{E[(w — Wo)(w — wo)T]} (31)
Fork € {1,..., 00},
Time update and sigma point calculation:
Wy = Wi_1 (32)
- —-1/2
ka = )‘RLS ka—l (33)
Whiik—1 = [v“v,: Wi, + 78w, Wi — fySv_Vk] (34)
Dyjr—1 = Gxp, Wek—1] (35)
. 2L
d = Z Wi(m)Di,k\k—l (36)
=0
Measurement update equations:
Sa, = qr{ [\/WI@ [Dl:u,k - ak] \/Re]} 37)
Sa, = cholupd e{ —d °)
d, = pdate Sa, , Do,r —dr , Wy (38)
2L .
Pu,a, =) WO, kpe—1 = Wi l[Dik—r — di]” (39)
=0
Ki = (Pwya,/S4,)/Sa, (40)
W = VAV,; + ’Ck(dk — &k) (41)
U = KiSa, (42)
Sw, = cholupdate{S,,, , U, -1} (43)
whereR°®=measurement noise cov (this can be set to an arb
value,e.g, .51.)

Algorithm 3.2: Square-Root UKF for parameter-estimation.
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Figure 2:Estimation of the Mackey-Glass chaotic time-series (mod-
eled by a neural network) with the EKF, UKF and SR-UKF.
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putational complexity of the different filters scale as a function of
the number of parameters (weights in neural network). While the
standard UKF ig)(L?), both the EKF and SR-UKF a@(L?).

traryof the underlying state covariance.
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Figure 3: Learning curves for l\ﬂ%\“ﬁRay—Robot—Arm neural network
parameter-estimation problem.
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Figure 4: Computational cOI& R8s poch) of EKF, UKF and
SR-UKF for parameter-estimation (Mackay-Robot-Arm problem).

5. CONCLUSIONS

The UKF consistently performs better than or equal to the well
known EKF, with the added benefit of ease of implementation in
that no analytical derivatives (Jacobians or Hessians) need to be
calculated. For state-estimation, the UKF and EKF have equal
complexity and are in gener&(L®) . In this paper, we intro-
duced square-root forms of the UKF. The square-root UKF has bet-
ter numerical properties and guarantees positive semi-definiteness
In addition, for parameter-
estimation an efficien®(L?) implementation is possible for the
square-root form, which is again of the same complexity as effi-
cient EKF parameter-estimation implementations.
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