
 

Abstract—Artificial Neural Networks (ANN) techniques have 
become very common as equalization solutions in several types of 
communication channels. These Neural Networks are presented 
in many topologies. The suitable choice of a topology for 
equalization purpose depends on different criteria such as: 
convergence rate, Bit Error Rate (BER), computational 
complexity, among many others. In this paper, it is investigated 
the behavior of a structure similar to a Decision Feedback 
Equalizer (DFE) employed to equalize time varying channels. 
The structure, a single recurrent perceptron, is based on a 
simplified Recurrent Neural Network (RNN). The Gauss-Newton 
algorithm has been used to estimate the synaptic weights of the 
perceptron during the training and testing phases. Despite the 
simplicity of implementation and low computational cost, it has 
been shown that the proposed topology presents some good 
comparative performance related to more complex structures 
based on Recurrent Neural Networks (RNN) and Multilayer 
Perceptrons (MLP) using Kalman Filters. 
 

Index Terms— Equalization, Gauss-Newton, Time Varying 
Channels.  

I. INTRODUCTION 

t is well known that in digital communications noise and 
Intersymbolic Interference (ISI) are the most common 

source of error in the detection process of symbols at the 
receiver. Typically the channel is dispersive and its frequency 
response is far from ideal. As a result of it, the transmitted 
pulses suffer shape distortion which affects its adjacent pulses, 
giving origin to ISI. Equalizers are used at the receiver in 
order to mitigate ISI effects caused by channel dispersion and 
multipath. Noise is frequently present in the received signal, 
and in general it has thermal origin, which is assumed to be 
Additive White Gaussian Noise (AWGN). AWGN effects can 
be minimized if a matched filter is implemented at the 
receiver and, in order to combat ISI effects, the receiver must 
also incorporate an equalizer. In practical applications, an 
optimized receiver is designed to deal with noise and 
channel’s dispersive effects [1]. 

Equalization can be basically divided in two categories: 
Maximum Likelihood Sequence Estimation (MLSE) and 
filtering equalization. MLSE techniques use statistics from 
data sequences send through the channel to estimate their 
impulse response, computational complexity in MLSE 
methods increase exponential with channel dispersion. If the 
size of the symbol alphabet is M and the number of symbols 

which contributes to ISI is L, then the Viterbi’s algorithm, for 
instance, involves a computational metric given by M(L+1)  for 
each received symbol [2]. 

 Filtering equalization methods use digital filters to 
compensate symbol distortions. The detector receives the 
symbols after demodulation and modifies them by an 
equalizer whose goal is mitigate ISI effects [2]. The filters 
employed in the equalization process can be either a linear 
filter such as Finite Impulsive Response (FIR) and Infinite 
Impulsive Response (IIR), or nonlinear filters in which a 
nonlinear function is added at the equalizer output, as shown 
in Fig. 1-b. Equalizers that use IIR topology with hard limit as 
nonlinearity in their output, are called Decision Feedback 
Equalizers (DFE) [3]. 

Due to their nonlinear characteristics, DFEs have a better 
performance in channels where spectral nulls are present [2].  
DFE can be specified using three parameters: m, n and d, 
which correspond to, respectively, the number of coefficients 
of the direct filter, number of coefficients of the feedback 
filter, and output delay [4]. 

 
It is widely known that Artificial Neural Networks (ANN) 

perform very well in tasks involving function approximation 
and in nonlinear mapping [5]. It is also know they are very 
useful in pattern recognition. For these reasons, neural 
network have become very popular as a solution for 
equalization problems [6] and [7]. Others works have also 
shown that recurrent ANN such as RNN outperform Feed 
Forward Neural Networks FNN, such as MLP [8]. This can be 
credited to the ability of RNN to use previous detected 
symbols to improve the estimation of present ones.  Simple 
topologies, built with a single layer comprising one or more 
percerptrons, have been tested and proved to outperform more 
complex structures such as Multilayer Perceptrons (MLP) and 
Recursive Multilayer Perceptrons (RMLP) [9][10]. 

II. SYSTEM MODELING 

This paper presents a DFE implemented with a hyperbolic 
tangent function as a nonlinear decision block during the 
learning or training step, as shown in Fig. 1a. This evolution is 
equivalent to a RNN with only one recurrent perceptron. Such 
architecture has been investigated by [9] and [11] in fixed 
channels equalization problems. The feedforward and 
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feedback coefficients constitute the synaptic weights of the 
recurrent perceptron. The results presented in [9] seem to 
prove that the insertion of a soft decision function (hyperbolic 
tangent function) at the forward filter output, during the 
training phase, improves the DFE performance. While during 
the test phase that decision function is changed to a hardlimit 
or sign function (hard decision). Fig. 1 shows the schematic 
for both phases of the equalization process using this kind 
neural equalizer or modified DFE structure. Based on [9], one 
infers that simple ANN structures can perform signal 
equalization with low computational effort. In order to testing 
the equalization performance of this model, we propose to use 
three types of discrete time varying channel models each one 
with three coefficients. The DFE parameters employed in all 
simulations in this works are: m = 3, n = 2 and d = 2. 

 
Fig. 1.  DFE schematics: (a) training; (b) testing 

  

    The signal produced by an information source, s(k), is a 
complex baseband 4-QAM. The generated signal s(k) goes 
through a discrete channel and then it is contaminated by 
AWGN. After being deteriorated by the channel 
characteristics the signal at the receiver, r(k), is then feed to 
the equalizer. The input signal r(k) is convolved with the feed-
forward filter coefficients and presented at its output, after the 
soft-decision, as a estimative now called u(k).   This 
estimative is feedback and then convolved with the feedback 
filter coefficients. Thus, the signal at the input of the 
perceptron, or equalizer, can be expressed as  

 

( ) [ ( ), ( 1), ( 2), ( 1), ( 2)]
T

x k r k r k r k u k u k= − − − −   (1) 

 
and the output, before the soft-decision, is provided by 
 

 ( ) ( )y k Wx k=          (2) 

 
where W is the weight coefficients matrix.  

 
During then training phase, the desired response is known a 

priori. Therefore the feedback signal u(k) must be equals to 

the signal of the desired output, in this case, for a delay d = 2, 
ˆ( ) ( 2)u k s k= − . Therefore 

( ) [ ( ), ( 1), ( 2), ( 3), ( 4)]
T

x k r k r k r k s k s k= − − − −      (3) 

 
The output y(k) passes through the decision device and its 

hyperbolic tangent function, resulting in the estimative of the 
desired signal. Once more, as d = 2, the estimative of the 
output   is given by    
 

ˆ( 2) tanh[ ( )] tanh[ ( )]s k y k Wx k− = =       (4) 

 
The weight coefficients matrix W of the neural-DFE is 

updated by a training algorithm in order to minimize the error 
signal �(k), by means of 
 

ˆ( ) ( 2) ( 2)k s k s kε = − − −       (5) 

 
In the testing phase, the output data are not known a priori, 

therefore the feedback signal u(k) must be equal to signal after 
the decision device, considering the delay d = 2. Thus, 

ˆ( ) ( 2)u k s k= − , obtained from (4) using    

 

ˆ ˆ( ) [ ( ), ( 1), ( 2), ( 3), ( 4)]
T

x k r k r k r k s k s k= − − − −        (6) 

 
The output y(k) passes through the decision device which in 

the testing phase is a hard-decision formed by the sign 
function. The result is the estimated signal 

 
      ˆ( 2) [ ( )] [ ( )]s k sig y k sig Wx k− = =       (7)   

 

III. LEARNING TECHNIQUE  

Methods based on the gradient present convergence rates of 
first order and can be very slow in equalization applications. 
Newton’s methods guarantee convergence rates of second 
order; however they present the inconvenience of calculating 
the Hessian and its inverse [12].   

Gauss-Newton method (GN) is used as a way to achieve 
convergence rates closed to second order with lower 
computation efforts when compared to Newton’s methods.  

The cost function in this work is the error between the 
corrected transmitted symbol and its estimative at the 
equalizer output, i.e. 

 
ˆ[ ( )] ( ) ( )e k s k s k dω = − −                        (8) 

 
where ˆ( )s k  the estimative of the transmitted signal at the 

equalizer output when it is operating in soft decision mode 
with hyperbolic tangent function. Thus, the error expression 
can be rewritten as  



 

[ ( )] tanh[ ( )] ( )e k Wx k s k dω = − −                 (9) 

The error function presented in (9) is used to form the 
Jacobian matrix employed in the Gauss-Newton algorithm. 
Each line of the Jacobian matrix corresponds to each training 
symbol m, for the weight vector at iteration k. Therefore, in 
the Jacobian matrix, the line number corresponds to the 
number of training symbols, and its column number is equal to 
the number of the equalizer coefficients. Each line of Jacobian 
matrix is computed using 

2
[

( )
{1 tanh ( )]} ( )

e m
Wx k x k

ω

∂
= −

∂
�

              (10) 

 Considering that in this paper, the DFE has five 
coefficients, then the Jacobian matrix at the time k, J(k),  can 
be represented by 
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       (11)   

 
Finally, the equalizer coefficients are updated according to 

Gauss-Newton iteration, 
 

 
1

( 1) ( )

ˆ{[ ( ) ( )] ( ) }{ ( ) ( )}
T T

k k

J k J k J k s k s k d

ω ω ω

−

+ − = Δ =

− − −

      (12)                 

 
It has been shown in [11] that the asymptotic analysis of the 

algorithm leads to computational complexity of the order O(l), 
where l is the number of symbols used for the algorithm. One 
can verify, in this case, that only two iterations are necessary 
to achieve a good estimative of the coefficients.  

IV. TIME VARIANTS CHANNEL MODELS 

As it was said before, in this paper it is evaluated the 
performance of the DFE presented in Fig. 1, training with GN 
algorithm. The DFE-GN is used to equalize 4-QAM signals 
which suffer the distortion imposed by three different kinds of 
time varying channels. Their models are presented in the 
following paragraphs.  

 
 Channel Model 1 - This channel model is described by the 

following transfer function:  
-1 -2

1 0 1 2( ) ( ) ( ) ( )H z   a t   a t z   a t z= + +               (13) 

where the coefficients ai(t) are varying in time. They are 

produced by a Markov chain process in which a white 
gaussian noise passes through a 2nd order Butterworth filter 
with cutoff frequency normalized according to the desired 
Doppler spread of the channel. This channel model has been 
proposed by [13], and there the authors used channels with the 
following features: bandwidth between 2 and 3kHz, 
transmission rate at 2400 bauds, and Doppler spreads of 
0.5Hz and 1Hz. 

 

Fig. 2 shows the variation of the channel coefficients along 
the time, for Doppler scattering of 1Hz. While Fig. 3 presents 
the scatter plots before the equalization takes place. The 
signal-to-noise ratios (SNR) are 12dB and 15dB. 

 

 Channel Model 2 - This channel model presents the same 
characteristics of the channel model 1, except for the fact that 
the first coefficient is constant and unitary. The channel has 
been analyzed in [14] for a Doppler frequency of 0.5Hz and it 
is described by the following transfer function: 

-1 -2
1 22 ( ) 1 ( ) ( )H z     a t z   a t z= + +    (14) 
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Fig. 2. Channel model 1, coefficient variations for Doppler spread of 1 Hz. 

 
 
Channel Model 3 - The channel discrete model consists of 

three coefficients with delays equal to a symbol period, and it 
is  

-1 -2
0 0 1 1 2 23 ( ) [ ( )] [ ( )] [ ( )]+H z c a t c a t  z  c a t  z+= + + +  (15) 

 
where  co = 0.3482, c1 = 0.8704 and  c2 = 0.3482. 
The transfer function H3(z) is derived from a fixed channel 
model recommended by the ITU for testing of equalizers and 
it is frequently cited in literature [2]. In order to tranform it in 
a time varying channel, the ai(t) coefficients employed in 
Channel Model 1 are added to the fixed values ci. However, in 
this case, the normalized cutoff frequency of the Butterworth 
filter is 0.1. This approach has been applied in [4] and 
proposed by [15].   
 

Fig. 4 shows the variation of coefficients values for AWGN 



 

standard deviation of 0.3, while Fig. 5 presents the respective 
scatter plots for SNR equal to 6dB and 12dB. 

 
Fig. 3.  Channel Model 1 - Scatter Diagram for Doppler spread of 1Hz:  

 a)  SNR  12 dB;  b) SNR  15 dB. 
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Fig. 4. Channel Model 3-   Standard deviation of 0.3. 

 

 
Fig. 5. Scatter plots for Channel Model 3. Standard deviation of 0.3:   

a) SNR 6dB;  b) SNR 12dB. 

V. PERFORMANCE EVALUATION 

In order to compare the DFE-GN performance against other 
types of neural-equalizer proposed in the literature, two 
approaches were chosen during the testing phase. 

 

In the first approach, the coefficients of the neural-equalizer 
proposed, DFE-GN, are frozen after a training period and then 
kept frozen during the testing phase. In the second approach, 

the coefficients are continuously updated by the GN algorithm 
in an attempt to tracking channel variations. For each 
sequence of testing symbols with identical amount of training 
symbols, a new Jacobiana matrix are computed and used for 
update the coefficients. The performance improvement, when 
achieved by the use of the second approach, is discussed 
separately for each channel model.  

 

Channel Model 1 - For this channel model, the best results 
were obtained with 20 training symbols. In order to make the 
results comparable with [4], the ratio between training and 
testing symbols was fixed in 10. Therefore, for each SNR, 500 
sequences were sent, each one with 20 symbols for training 
plus 200 symbols for testing, rendering in total 110.000 
symbols tested for each value of SNR. 

 

Simulations were performed considering both approaches 
during the testing phase. Fig. 6 shows that, for a Doppler 
spread of 1Hz, the use of GN algorithm to track channel 
variations provides a better result when compared to the 
approach of frozen coefficients after training. Therefore, for 
this kind of channel, we decide to employ the first approach in 
order to compare the DFE-GN with other topologies.  

 
Fig. 7 shows the DFE-GN performance against the RNE-

EKF, RNE-UKF e DFRNE neural equalizers proposed by [3]. 
The Doppler spread in this case was set to 1Hz.  
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Fig.6. Channel Model 1 - BER comparison between frozen and varying 

coefficients for a Doppler spread of 1Hz. 

 
Based on this result, we can verify for Channel Model 1 

that the DFE-GN presents better performance when compared 
to RNE-EKF, RNE-UKF and DFRNE, for values of SNR 
lower than 11dB. But for SNR above 11dB, the proposed 
equalizer deteriorated its performance. That seems to indicate 
they are not suitable for fast fading channels.  

 

Channel Model 2- For this channel model, the length of the 
training symbol sequence was also defined empirically. The 
best empirical result was once again 20 symbols. In order to 
make the results comparable with [14], the ratio between 



 

training and test symbols was fixed in 10. Therefore, for 
different SNR, 500 sequences were sent through the channel, 
each one with 20 symbols for training plus 200 symbols for 
testing. Again, the total amount symbols tested for each value 
of SNR was 110.000. 

 

Fig. 8 presents the simulation results for a time varying 
coefficients with Doppler spread of 0.5Hz. There is an 
inversion of performance at SNRs around 10dB. For SNRs 
smaller than 10dB the improvement of performance with the 
tracking coefficients is not significant, on the other hand, for 
SNRs greater than 12dB, the improvement of the performance 
with the frozen coefficients is considerable. Thus, in this case, 
the choice is made in favor of keeping the coefficients frozen 
during the testing phase. 

 

The topologies proposed in [14], trained by GEKF and 
RTRL learning algorithm, are used as benchmark for 
evaluation of Channel Model 2.  In that article the authors set 
the Doppler frequency to 0.5Hz.  

 

Fig. 9 reveals that DFE-GN outperforms in unquestionable 
way more complex RNN trained by GEKF and RTRL, for all 
range of SNR under test. Due to its extreme simplicity in 
implementation and significantly lower computational cost, 
the DFE-GN seems to be an outstand solution for the 
equalization of varying channels such as Channel Model 2. 

 

 Channel Model 3 - Initially was carried out simulation 
fixing SNR in 16dB and varying the standard deviation of 
AWGN source from the Markov chain. The values of 
standard deviation under testing were: 0.05, 0.1, 0.15, 0.2, 
0.25, and 0.3, using 100 symbols for training and 1000 
symbols for testing.  Two hundred iterations were performed, 
like in [4]. 

Fig. 10 shows the simulation result for the coefficients 
behavior in the testing phase. One can verify that the DFE-GN 
does not have significant improvement in the performance 
when the GN algorithm attempts to track the variations of the 
channel. Considering that this small improvement does not 
worth to pay the price of computational cost, the decision was 
made to keep the coefficients frozen in testing phase, for this 
channel model. 

 

Fig. 11 shows the DFE-GN performance, for Channel 
Model 3, when compared to other topologies proposed by [4], 
i.e.: DFRNE, RNE-EKF, and RNE-UKF. In this case, the 
SNR is set to 16dB for a variable standard deviation. It is 
important to emphasize that the standard deviation affects 
directly the channel variations.   
 

Clearly the DFE-GN outperforms all other RNNs for the 
entire range of standard deviation under test. 

 

The last evaluation is a comparison in terms of BER 

performance among different RNNs. The SNR, in this case, 
ranges from 4dB to 18dB, in steps of 2dB. The following 
parameters were considered during the simulations: standard 
deviation set to 0.1, 100 training symbols, and 100.000 testing 
symbols.  The DFN-GN coefficients were frozen after the 
training phase. After 10 statistically independent experiments, 
the average value of the BER was obtained. This procedure is 
similar to the one carried out in [4]. Afterwards, the results 
were compared to those presented by [4]. Fig. 12 summarizes 
these results. 
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Fig. 7. Channel Model 1 - BER comparison for Doppler spread of 1Hz. 
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Fig. 8. Channel Model 2- BER  for a Doppler spread of 0.5Hz. 
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Fig. 9. Channel Model 2 - BER  for a Doppler spread 0.5Hz 

 

Again, the DFE-GN outperformed the topologies DFRNE, 



 

RNE-EKF, and RNE-UKF, for all range of SNR under test. 
Once more, considering the simplicity of the structure and the 
involved computational cost, we can infer that the neural-
equalizer with Gauss-Newton training algorithm is a 
promising equalization solution for channel such as Channel 
Model 3. 
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Fig. 10. Channel Model 3 - BER x Std. Deviation comparison for 

frozen and varying coefficients. 
 

0.05 0.1 0.15 0.2 0.25 0.3
10

-6

10
-5

10
-4

10
-3

10
-2

STANDARD DEVIATION

B
E

R
 

 

 

DFE-GN
DFRNE
RNE-EKF
RNE-UKF

 
 

Fig.11. Channel Model 3 - BER x Std. Deviation, comparison 
among different topologies. 
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Fig. 12. Channel Model 3 - BER x SNR, comparison among 

different topologies. 

 

VI. CONCLUSIONS AND REMARKS 

This paper presented the behavior of a neural-equalizer in 
an attempt to mitigate the severe distortion imposed by time-
varying channels to 4-QAM signal. The topology is a simple 
recurrent perceptron, derived from DFE, employing the well 
know Gauss-Newton algorithm during the training phase, and 
as an alternative for tracking in testing phase. 

Its performance for different channel models revealed that 
this type of topology is a promising solution for channels with 
moderate time-varying conditions (slow fading). In this 
situation, it has been shown that the DFE-GN outperformed 
complex ANN topologies when comparison was made. 
However, for fast-fading channel, the neural-equalizer failed 
in part to achieve reasonable results.   
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