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Abstract 

 
In this work, two Kalman filters variants are applied to recurrent neural network 
training. The Unscented Kalman Filter (UKF) has been presented outperforming 
the Extended Kalman filter (EKF). Due to this a comparison between GARCH 
model and a neural network using EKF and UKF was implemented to 
heteroscedasticity time series prediction. Our experimental results and analysis 
confirm that a neural network using UKF perform better prediction than the other 
approach. 
 
 
1. Introduction  
 
The Extended Kalman Filter (EKF) was successfully applied to the estimation of 
parameters of neural networks [1] [2] [3]. It was shown that the statistics 
estimated by the EKF can be used to estimate sequentially the structure (number 
of hidden neurons and connections) and the parameters of feedforward networks 
[4], recurrent [5] and Radial Basis Function (RBF). The Unscented Kalman filter 
estimator has been presented [6] [7] with results that exceed the performance of 
the EKF state estimation in nonlinear. In the estimation of parameters of the 
feedforward neural networks UKF is comparable or slightly better than the EKF 
[8], with the significant advantage that it does not require the calculation of the 
Jacobian of the neural network.  
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Consider the dynamic system of nonlinear discrete time at which the signal (or 
series) unobserved ( )x t  is modeled as a Markov process [9] with initial 

distribution ( )( )0p x  and transition equation: 

( ) ( ) ( )( ) ( )1 , 1x t f x t u t q t= − − + ,                                                                       (1a) 
 
where ( )u t  denotes the input that is exogenous known. The observations are 

assumed conditionally independent given the state ( )x t : 

 ( ) ( )( ) ( )y t h x t r t= + .                                                                                         (1b) 
 
The noise process ( )q t  guides the dynamic system, while the noise observation is 

given by ( )r t . The Minimum Mean Squared Error (MMSE ) of the state ( )x t  of 
the system state discrete-time nonlinear (1) satisfies the conditions that the 
estimation error ( ) ( ) ( )ˆx t x t x t= −%  is not biased ( ) 0E x t⎡ ⎤ =⎣ ⎦%  and also orthogonal 

to the observation ( )y t , ie. ( ) ( ) 0TE x t y t⎡ ⎤ =⎣ ⎦% . The EKF and the UKF provide a 

MMSE of state ( )x t  using the state predictor-corrector scheme as shown in 
Figure-1. 
 

 
Figura-1 Structure recursive predictor-corrector of the Kalman filter. 

 
Given the state estimator ( )ˆ 1x t −  and its covariance ( )1xP t − , obtained from the 

information set until time step ( )1t − : ( ) ( ) ( ){ }1 1 , 2 ,..., 1tY y y y t− = − , the filter 
predicts the future state using the process model and knowledge about the 
distribution of the noise process. The predicted mean and covariance are ideally: 
 ( ) ( ) 1ˆ tx t E x t Y−

−⎡ ⎤= ⎣ ⎦ ,                                                                                          (2a) 

( ) ( ) ( )( ) ( ) ( )( ) 1ˆ ˆ
T

x tP t E x t x t x t x t Y− − −
−

⎡ ⎤= − −⎢ ⎥⎣ ⎦
.                                                             (2b) 

 
The estimator ( )x̂ t  and its covariance ( )xP t  are obtained by the update 

(correction) of the state prediction ( ) ( )( )ˆ , xx t P t− −  with the current observation 

( )y t : 

( ) ( ) ( ) ( ) ( )( )ˆ ˆ ˆx t x t K t y t y t− −= + − ,                                                                      (3a) 

( ) ( ) ( )1
xy yK t P t P t−= ,                                                                                           (3b) 

Initialize Predict Update
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( ) ( ) ( ) ( ) ( )1 1 T
x x yP t P t K t P t K t− −= − ,                                                                     (3c) 

 

where ( ) ( ) 1ˆ ty t E y t Y−
−⎡ ⎤= ⎣ ⎦  and ( ) ( ) ( )( ) ( ) ( )( ) 1ˆ ˆ

T

y tP t E y t y t y t y t Y− −
−

⎡ ⎤= − −⎢ ⎥⎣ ⎦
 

are the prediction of the observation ( )y t  and its covariance. The conditioned 

correlation is given by ( ) ( ) ( )( ) ( ) ( )( ) 1ˆ ˆ
T

xy tP t E x t x t y t y t Y− −
−

⎡ ⎤= − −⎢ ⎥⎣ ⎦
. These 

equations depend on the predicted values of the first two moments ( )x t  and ( )y t , 
give the set of observations 1tY − . 
In this paper we will consider training a recurrent neural network autoregressive 
nonlinear endogenous inputs (Non-linear Autoregressive with exogenous inputs – 
NARX), using the EKF and UKF. The results of the predictions obtained from the 
NARX network training with the EKF and UKF are compared with the results of 
GARCH (Generalized Autoregressive Conditional Heteroscedasticity). 
 
 
2. State space model of recurrent neural network NARX 
 
NARX model of a dynamic system is given by: 
( ) ( ) ( ) ( ) ( )( )1 , , , 1 , ,y uy t f y t y t u t u t= − −Δ − −ΔK K , 

 
where ( )y t  corresponds to the real output of the system (without noise), ( )u t  the 
known entry at time t, uΔ  and yΔ are the orders of inputs and outputs and ( )⋅f  is 
a nonlinear function. We will consider an autoregressive model with nonlinear 
exogenous inputs for which we give the name of NARX_RMPL, i.e. NARX 
Recurrent Multilayer Perceptron. Let us assume that the model has two layers of 
neurons (Figure-2), an output layer having a linear activation function. The output 
of the i-th neuron of the hidden NARX_RMPL network is given by (4). 

( )1 1 0 ,
1 1 1

, , tanh
y u un

i t t i i il t l ij j t
l j

b b y b uτ τ
τ

φ
Δ Δ

− − − −
= = =

⎧ ⎫⎪ ⎪= + +⎨ ⎬
⎪ ⎪⎩ ⎭

∑ ∑∑y u b .                                        (4) 

 

where ( ) ( )1 1
1

y

T

t yy t y t− ×Δ
⎡ ⎤= − −Δ⎣ ⎦y L  denotes the network vector of previous  

outputs, ( ) ( )1 1
1

y

TT T
t uu t u t− ×Δ

⎡ ⎤= − − Δ⎣ ⎦u L  is the vector of previous  inputs and 

0 1 11y u u

T

i i i i i inb b b b bΔ Δ
⎡ ⎤= ⎣ ⎦b L L denotes the weight vector of hidden neurons. 

The estimation of parameters of a recurrent neural network can be placed in a 
structural form of nonlinear state estimation, from the definition of state space 
model of dynamic networks. The state vector x is obtained by increasing the base 
state y [5], which in our case is defined as the outputs of previous recurrent  
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network, with the parameter vector w. Since w denotes the vector of unknown size 
of the network weights. 
( ) ( ) ( )( ) ( ) ( ) ( )( )1 , 1 , ~ 0,x t x t u t q t q t N Q t= Φ − − + ,                                   (5a) 

( ) ( ) ( ) ( ) ( ) ( )( ), ~ 0,y t H t x t r t r t N R t= + .                                                   (5b) 
 
    
 
 
 
 
 
 

 
 
 
 
 
 
 
 

Figure-2 NARX recurrent neural network. 
 
 
Equation (5a) describes the time evolution of the augmented state x, while 
equation (5b) selects the current output of the network as the observation. The 
process noise ( )q t  and observation noise ( )r t  are assumed to be jointly 

independent, white, and Gaussian with known covariances ( )Q t  and ( )R t , 
respectively. 

( ) ( ) ( )ˆ ˆy t H t x t− −= ,                                                                                              (6a) 

( ) ( ) ( ) ( ) ( )T
y xP t H t P t H t R t−= + ,                                                                       (6b) 

( ) ( ) ( )t
xy xP t P t H t−= .                                                                                            (6c) 

 
Due to the linearity of the observation equation (5b), the prediction of the 
observation ( )ŷ t− , its covariance ( )yP t  and cross correlation ( )xyP t , necessary to 
update the filter in step (3) are given by: 
 

( )

( )
( )

( )
( )

( )

( )

( ) ( )
( )

1 0
0

, ,
0

1 0

y

y
t

w
y

w

y t q t
y t

Q t
x t q Q t

Q t
y t

q tt

⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥−⎢ ⎥ ⎢ ⎥ ⎡ ⎤⎢ ⎥ ⎢ ⎥= = = ⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎣ ⎦− Δ +⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥

⎣ ⎦⎢ ⎥⎣ ⎦w

M M ,               

1z−  

1z−  

1z−  

1z−  

( )y t  

( )

( )u t  

( )

M  

( )y t

M  

( )y t

M  
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            ( ) ( )( )

( ) ( ) ( )( )
( )

( )
( )

, ,

1
,

1y

f y t u t w t

y t
x t u t

y t

t

⎡ ⎤
⎢ ⎥

−⎢ ⎥
⎢ ⎥Φ = ⎢ ⎥
⎢ ⎥− Δ +
⎢ ⎥
⎢ ⎥⎣ ⎦w

M  and 

( )1

1
0

0
0

y w

T

n

H

× Δ +

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥=
⎢ ⎥
⎢ ⎥
⎢ ⎥⎣ ⎦

M  

 
The problem of parameter estimation and state of the recurrent neural network 
NARX_RMLP is therefore reduced the spread of the state ( )x t  through non-

linear dynamic equation (5a) so as to obtain the prediction ( ) ( )( )ˆˆ ,x t P t− −  [5]. 

 
 
3. Nonlinear Bayesian Filters 
 
Let us consider two different approaches to the estimation of a non-linear and 
apply them to the estimation of NARX recurrent neural network. As we saw in the 
previous section, the remaining problem to be solved is the estimation of statistics 
of a random variable propagated through a nonlinear transformation. Let us define 
the problem more generally. Suppose x is a random variable with mean x̂  and 
covariance xP . A random variable y is related to x through  the nonlinear function 

( )y f x= . We want to calculate the mean ŷ  and covariance yP  of y. Note that 
the derived solutions could be easily applied to the prediction of the state (2) 
introducing the substitutions ( )1x x t→ −  and ( )y x t→ . 
 
3.1 Extended Kalman Filter 
There are two basic assumptions in the derivation of the Kalman filter. The first is 
that the system is described by a model of linear state space and the second is that 
the noises are white and Gaussian with zero mean, and they are also assumed to 
be uncorrelated with each other and with the initial state. When these assumptions 
are satisfied, the Kalman filter is optimal in the sense of mean square error. When 
the system under consideration is nonlinear, the first condition is violated and the 
extended Kalman filter (EKF) is applied as a sub-optimal filter. In the EKF the 
nonlinear terms are approximated by linear terms of first order using Taylor 
expansion. To begin, consider a nonlinear system described as: 
( ) ( ) ( ) ( )tt h t t t= +y x r                                                                                            (7) 

( ) ( ) ( ) ( )1 1,tt f t t t t+ = + +x x q                                                                               (8) 
 
Equations (7) and (8) are the non-linear equivalents of the equations (1a) and (1b).  
They are the equations of measurement and process for the nonlinear case, where 

th  and tf  are functions of nonlinear vectors of the state. Operating as stated  
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above, we have made two linear equations by using the Taylor series expansion of 
( )ˆ 1t t −x and ( )ˆ t tx  as follows, respectively: 

( )( ) ( )( ) ( ) ( ) ( )( )ˆ ˆ1 1t t th t h t t t t t t= − + − − +x x H x x K                       (9) 

( )( ) ( )( ) ( ) ( ) ( )( )ˆ ˆ1,t t tf t f t t t t t t t= + + − +x x F x x K                                           (10) 

 
where the Jacobian matrices ( )1,t t t+F  and ( )t tH  are defined as: 

( )
( )( )ˆ

1, t
t

f t t
t t

∂
+ =

∂

x
F

x
  and   ( )

( )( )ˆ 1t
t

h t t
t

∂ −
=

∂

x
H

x
. 

 
Ignoring higher order terms in Taylor expansions above, the measurement 
equations and nonlinear process can be approximated as follows: 
( ) ( ) ( ) ( ) ( )tt t t t t= + +y H x u r ,                                                                            (11) 

( ) ( ) ( ) ( ) ( )1 1,nt t t t t t+ = + + +x F x v q ,                                                                (12) 
where: 
( ) ( )( ) ( ) ( )ˆ ˆ1 1t nt h t t t t t= − − −u x H x  and ( ) ( )( ) ( ) ( )ˆ ˆ1 1,t tt f t t t t t t= − − +v x F x . 

 
The algorithm of the extended Kalman filter can be represented as: 
Computing the Kalman gain 

( ) ( ) ( )
( ) ( ) ( ) ( )

1
1

T
t

T
t t

t t t
t

t t t t t
−

=
− +

P H
K

H P H R
                                                                 (13) 

Update (correct) measures 
( ) ( ) ( ) ( ) ( )ˆ ˆ ˆ1 1tt t t t t t h t t⎡ ⎤= − + − −⎣ ⎦x x K y x           (14) 

( ) ( ) ( ) ( ) ( )1 1tt t t t t t t t= − − −P P K H P                                                            (15) 
Update time (prediction)     
( ) ( )ˆ ˆ1 tt t f t t+ =x x                                                                                              (16) 

( ) ( ) ( ) ( ) ( )1 1, 1,T
t tt t t t t t t t t+ = + + +P F P F Q                                                    (17)   

Tabela-1 Extended Kalman filter equations. 
 
Comparing the equations of the Kalman filter with those of the EKF in Table-1, 
only a few differences are noted. First, the linear terms ( ) ( )ˆ 1t t t −H x  and 

( ) ( )ˆ1,t t t t t+F x  presented in the Kalman filter are changed by ( )( )ˆ 1th t t −x  and 

( )( )ˆ 1tf t t −x  in the EKF, respectively. The state transition matrix ( )1,t t+F  and 

the measure matrix ( )tH  are also changed in the Kalman filter, respectively,  by  
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the Jacobian matrices ( )1,t t t+F  and ( )t tH  in the EKF. The matrices of 
derivatives must be recalculated for each iteration of the Kalman filter.  
 
3.2 Unscented Kalman Filter 
Julier and Uhlmann [6][7] proposed the Unscented Transformation to calculate 
the statistics of a variable x propagated through a nonlinear function ( )f=y x . 
Consider the propagation of a random variable x (dimension L) through a non-
linear function, ( )f=y x . Assuming that x has mean x  and covariance xP . To 
calculate the statistics of y, we build the matrix ℵwith 2L + 1 sigma vectors iℵ  
according to the following equations: 

0 ,ℵ = x                                                                                                                  (18) 

( )( ) , 1,..., ,i
i

L i Lλℵ = + + =xx P                                                                  (19) 

( )( ) , 1,..., 2 ,i
i L

L i Lλ
−

ℵ = − + =xx P                                                              (20) 

 
where ( )2 L Lλ α κ= + −   is the scaling parameter. 
The constantα determines the dispersion of the sigma points around x , is usually 
set as a small positive value ( )41 10α −≤ ≤ . The constant κ  is the second  scaling 
parameter, which is usually set to be 3 – L [1], β  is used to incorporate a priori 
knowledge of the distribution of x (to Gaussian distributions, 2β =  is optimum). 

( )( )
i

L λ+ xP  is the i-th column of the square root of the matrix(i.e., lower 

triangular Cholesky factorization).  
Each sigma point is propagated through the function ( )⋅f  to produce the 
transformed set of sigma points ( )0ℵ=ℑ fi  and the mean y  of a transformed 
distribution is estimated by: 

( ) ( ) ( ) ( )( )
2

, ,
0 1

1. .
2

L L

i i x i x i
i i

W f x f x L s f x L s
L L
λ λ λ
λ λ= =

= ℘ = + − + + + +
+ +∑ ∑y  

 
The covariance estimator obtained by the unscented transform is given by: 

( )( ) ( )( ) ( )( )

( ) ( ) ( )

( ) ( )( ) ( )( )

2

0

, ,
1

, ,
1

ˆ ˆ

1 . .
2

1 . .                    (21)
2

L TT
i i i

i
L T

x i x i
i

L T

x i x i
i

W f x f x
L

f L s f L s
L

f L s f L s
L

λ
λ

λ λ
λ

λ λ
λ

=

=

=

= ℘ − ℘ − = − − +
+

⎛ ⎞+ + + + + +⎜ ⎟
⎝ ⎠+

⎛ ⎞+ − + − − + −⎜ ⎟+ ⎝ ⎠

∑

∑

∑

yP y y y y

x x

x y x y

 
 



3682                                                                                               M. A. de Oliveira 
 
 
The estimation of states and parameters of NARX neural network (state space 
model given by (8)) using the unscented Kalman filter consists to apply the 
unscented transformation in the dynamic equation (5a) so that to obtain the 
prediction ( )−−

kk Px ˆ,ˆ . The predicted statistics are updated with the current 
observation ( )ty  substituting (6) in the data update steps equations (3). 
 
 
4. GARCH Models 
 
The generalized ARCH model, known as GARCH was first proposed by 
Bollerslev in 1986. This model is the most used model for the volatility and the 
GARCH (1,1) is the most common. The equation for the process GARCH (1,1) is 
given by:  

2
0 1 1 1 1t t th hα α ε β− −= + +                                                                                           (22) 

 
The important point is that the conditional variance tε  is given by 2

1t t tE hε− ⎡ ⎤= =⎣ ⎦
. 

 
4.1 Test for non-linearity 
In the analysis of heteroscedastic series, before beginning a search for a general 
specification to find a model that fit your particular data set, it is important to test 
for nonlinearity [10] [11] [12] [13]. Tests to check non-linearity have been most 
used are the Brock, Dechert, and Scheinkman [1987], the test of McLeod and Li 
[1983], a test developed by Hsieh [1989] and a test suggested by Teräsvirta, Lin 
and Granger [1993]. In this paper we consider the test of McLeod and Li. 
In the estimation of an ARMA model, the autocorrelation function (ACF) can 
help select the values of p and q, and the ACF of the residuals is an important 
diagnostic tool. Unfortunately, the ACF as used in linear models can lead to false 
conclusions in nonlinear models. The reason is that the autocorrelation 
coefficients measure the degree of linear association between ty  and t iy −

. Thus, 
the ACF may fail to detect important nonlinear relationships in the data. Having 
interest in nonlinear relationships of the data, a useful diagnostic tool is to 
examine the ACF of squares and cubes of a series of values. 
The test McLeod-Li (1983) seeks to determine whether there are significant 
autocorrelations in the squared residuals of a linear equation. To perform the test 
is to estimate the series model using the best linear fit and identify the residuals t̂e . 
As in a formal test for ARCH errors, we construct the autocorrelations of squared 
residuals. Making iρ  denote the sample correlation coefficient between the 
residuals 2

t̂e  and 2
t̂ ie −

we use the Ljung-Box statistic to determine whether the 
squared residuals exhibit serial correlation.  
Consequently, we have: 

( ) ( )1
2 .

n
i

i
Q T T

T i
ρ

=

= +
−∑

                                                                                      (23) 
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 The value of Q has an asymptotic distribution 2χ  with n degrees of freedom if 
the sequence { }2

t̂e  is non-correlated. Reject the null hypothesis is equivalent to 

accepting that the model is nonlinear. Alternatively, one can estimate the 
regression: 2 2 2

0 1 1ˆ ˆ ˆt t n t n te e eα α α ν− −= + + + +K . If there is no non-linearity, 1α  to  nα  
are statistically equal to zero. With a sample of T residues, if not non-linearities, 
the statistical test 2TR  converges to a distribution 2χ  with n degrees of freedom. 
This test has substantial power to detect various forms of non-linearity. However, 
the actual shape of the nonlinearity is not specified by the test. Reject the null 
hypothesis of linearity does not tell the nature of the nonlinearity present in the 
data. 
 
 
5. Experiment 
 
The data set is the set of values of the daily price of 60kg sack of soybeans in the 
period from 07/29/1997 to 11/28/2003, totaling 1575 values in Figure-3 is shown 
a representation of all data. 
These data were separated into two parts: the training set and test set. The training 
set includes 1000 data from 07/29/1997 until 08/09/2001 and was used for the 
estimation of the GARCH model and the training of neural networks using the 
EKF and UKF. The test set includes data 08/10/2001 to 28/10/2003, totaling 575 
values, and was used for comparison of different approaches. 
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Figure-3 Series of values of the daily price of 60Kg sack of soybean. Source: CEPEA/ESALQ 
(R$ /sc 60 kg) 
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Figure 4 shows the logarithmic difference of the price of 60Kg soybean sack. 
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Figure-4 Series of daily returns of 60Kg sack of soybean. 

 
Specifying an AR ([1]) model  to represent the series of daily returns of the price 
of 60kg sack of soybeans, we found that this model is no correlation of the 
squared residuals. 
The result of the McLeod-Li test for the series DLSOJA AR ([1]) for five lags: 
 

n Q Sig. 
1 25.15323 0.00000
2 155.0258 0.00000
3 161.9376 0.00000
4 173.8994 0.00000
5 205.2077 0.00000

 
Therefore, we reject the null hypothesis that is equivalent to accepting that the 
model is nonlinear. The estimation of parameters of an AR ([1])-GARCH (1,1) 
model for this series of daily returns of soybean RSOJA produces the following 
results: 

2
1 1 , sen. .do.t t t tRSOJA RSOJAφ ε ε−= + ∼ ( )0; tN h ,  

2
0 1 1 1t t th hα α ε β− −= + + . 

 
Parameters Coefficient Standard Error Estat. z Sig. 
1φ  0.309594 0.039205 7.897 0.0000 

0α  4.08E-06 1.56E-06 2.618 0.0088 

1α  0.261741 0.054845 4.772 0.0000 
β  0.747039 0.041938 17.813 0.0000 

Table-2 Parameters an model statistics AR([1])-GARCH(1,1). 
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A network NARX_RMPL (2-4-1) was sequentially trained as a predictor of one 
step ahead of the series th  using 1500 samples. The training was stopped after 
20,000 iterations. After training, the recurrent network was iterated and the 
outputs were compared using the test series the normalized root mean squared 
error (NRMSE): 

( )
( )

2

1
2

1

N
i ii

N
ii

y y
NRMSE

y y
=

=

−
=

−
∑
∑

%
, 

 
where iy  is the current output, iy%  is the output of the model, y  is the average of 
values iy , (i = 1, 2, ..., N). The experiment was repeated 35 times with random re-
initialization for each run. Table-3 shows the average of NRMSE of independents 
runs performed. The UKF parameters were chosen as 1α = , 0β =  and 2κ = . 
These parameters are optimal for the scalar case [14]. 
 
 

Method Mean 
(NRMSE) 

Variance 
(NRMSE) 

 

UKF 0.38765 0.0631 
EKF 0.39658 0.0956 

GARCH (1,1) 0.42127 0.0732 
Tabela-3 Comparison of methods for predicting the heteroscedastic series (daily return of the sack 

of soybeans). 
 
 
6. Conclusion  
 
In this study, we found that a neural network trained with the unscented Kalman 
filter showed a better prediction than the RN trained with the EKF and the 
GARCH model. Although UKF does not require the calculation of the Jacobian, a 
limitation of the implementation of UKF is the need to choose the three unscented 
transformation parameters (α , β  and κ ). The optimal selection depends on the 
problem and still not fully understood.  
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