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The time-varying impulse response of rapidly fading mobile
communication channels is expanded over a basis of complex
exponentials that arise due to Doppler effects encountered with
multipath propagation. Blind methods are reviewed for estimating
the bases’ parameters and the model orders. Existing second-order
methods are critiqued and novel algorithms are developed for blind
identification, direct, zero-forcing equalization and minimum mean
square error (MMSE) equalization by combining channel diversity
with temporal (fractional sampling) and/or spatial diversity which
becomes available with multiple receivers. Illustrative simulations
are also presented.
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I. INTRODUCTION

Blind techniques for identification of linear time-invariant
(TI) systems have found widespread applications in time
series modeling, econometrics, exploration seismology, and
equalization of communication channels, just to name a
few. With no access to the input, many blind methods
have relied on stationary high-order statistics [13], [18],
[34], [51] and cyclostationary or multivariate second-order
statistics [12], [14], [33], [43], [45], [52] of the output
data in order to: 1) either estimate TI systems or 2) their
inverses when input recovery is the ultimate goal. Such self-
recovering schemes are important, for example, in digital
broadcasting because transmission is not interrupted to train
new users entering the cell. Similarly, in wireless environ-
ments bandwidth is utilized efficiently when cold start-up
is possible and in multipoint data networks throughput
increases and management overhead drops when training
is obviated [18].
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However, many systems violate the time-invariance as-
sumption. In cellular telephony, the multipath propaga-
tion channel not only exhibits frequency selectivity, which
causes intersymbol interference (ISI), but also changes as
the mobile communicators move [1], [2], [7], [28], [37],
[42]. Temperature and salinity variations cause underwater
channels to vary [24], [25], [44], and fluctuations in the
ionosphere give rise to deep fades in the data received
via microwave links [20], [35]. For channel variations with
coherence time in the order of hundreds of symbols (slow
fading) adaptive variants of algorithms developed for TI
systems offer a valuable alternative, although periodic re-
training is recommended to avoid runaway effects [2], [24],
[36], [42]. Recursive least-squares (RLS) and least mean-
square (LMS) are adaptive algorithms which are known
to diverge when channel variations exceed the algorithms’
convergence time. In such cases explicit incorporation of
the channel’s time-varying (TV) characteristics is called for.

Most explicit models of TV communication channels
treat the TV taps as uncorrelated stationary random pro-
cesses which are assumed to be low-pass, Gaussian, with
zero mean (Rayleigh fading) or nonzero mean (Rician
fading) depending on whether line-of-sight propagation is
absent or present [6], [23] [25], [35], [50]. Correlations of
the unknown taps capture average channel characteristics
and are used to track the channel’s time evolution using
Kalman filtering estimators [8], [9], [25], [50]. The unob-
servable channel statistics are either fixed to experimentally
computed values [8], [25] or estimated from the data during
the decision directed mode [6], [9], [50]. Hidden Markov
models have also been used in modeling the tap variations
[3].

Statistical modeling is well motivated when TV path
delays arise due to a large number of scatterers (e.g., in
over-the-horizon communications). But recently determin-
istic basis expansion models have gained popularity for
cellular radio applications, especially when the multipath
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is caused by a few strong reflectors and path delays exhibit
variations due to the kinematics of the mobiles [1], [17],
[28, p. 383], [39], [46], [47]. The TV taps are expressed
as a superposition of TV bases (e.g., complex exponentials
when modeling Doppler effects) with TI coefficients. By as-
signing time variations to the bases, rapidly fading channels
with coherence time as small as a few tens of symbols can
be captured. Such finitely parameterized expansions render
TV channel estimation tractable and have been previously
used in modeling speech and economic time series [21],
[29]. They are also encountered in Doppler radar and sonar
applications when scintillating point targets give rise to
delays which change (linearly or quadratically) with time
and cause Doppler shifts in the carrier frequency [38]. In
[28, p. 383], it is argued that such Doppler-induced varia-
tions are equivalent to the random coefficient model since
narrow-band Gaussian processes are well approximated by
superimposed sinusoids having constant amplitudes and
random phases.

Time- and frequency-selective channels are special cases
of the basis expansion models considered here. Although
most existing blind equalization research has focused on
frequency selective channels, modeling time-selective ef-
fects are well motivated due to local oscillator drifts and/or
relative motion encountered in mobile communications.

Finite basis expansions offer well-structured parsimo-
nious modeling which allows for blind identification of TV
channels. In [47], this important feature was established
first based on second- and fourth-order output correlations.
The high-variance of high-order TV statistics with moderate
data records, prompted recent second-order methods which
rely on complementing the TV channel’s diversity with time
diversity (offered when oversampling the continuous-time
output) and/or with spatial diversity (appearing when output
data are collected from multiple antennas) [10], [16], [31],
[32], [49].

It is the objective of this paper to review, unify, and
extend these second-order diversity combining approaches
for blind identification and equalization of finite impulse
response (FIR) TV communication channels where the vari-
ation of the channel is modeled by a basis expansion. To put
TV approaches in context, the random model is reviewed
briefly in Section II, followed by the basis expansion model
introduced in Section III. With the rapidly fading mobile
channel as a paradigm, subsequent presentation focuses on
cyclostationary methods used to estimate the frequencies of
the Fourier bases. Section IV describes blind TV channel
estimation methods which utilize the whiteness of the input
and rely upon output samples collected at one or two
sensors. A deterministic approach is also reviewed along
with order selection techniques, which are developed to
determine not only the channel memory, but also the num-
ber of bases necessary in the expansion (this corresponds to
the number of dominant reflectors in a multipath terrain).
Mean-square error (MSE, Wiener) equalizers are presented
in Section V along with direct blind equalizers derived
in a deterministic framework. The latter lend themselves
naturally to adaptive schemes and allow almost perfect

equalization when the signal-to-noise ratio is high, while
imposing minimal assumptions on the input. Representative
simulations are given in Section VI, while conclusions,
topics not covered, and thoughts for future research are
delineated in Section VII (more technical proofs can be
found in the Appendixes).

Bold upper (lower) case will denote matrices (column
vectors). Prime will stand for Hermittian transpose,for
conjugate, for transpose, for pseudo-inverse, for
Kronecker product, for range, and for null space.

II. FADING CHANNELS: RANDOM MODELS

In some communication schemes, unpredictable changes
in the medium warrant modeling the TV impulse response
(TVIR) as a stochastic process in the time variable
. Using central limit theorem arguments, the TVIR is

usually approximated as a complex Gaussian process. It
is common practice to assume the channel to be wide sense
stationary for a fixed lag and uncorrelated for differ-
ent lags (i.e., wide sense stationary uncorrelated channel
(WSSUC) assumption) [35]. The channel spectral density
for a fixed is called the scattering function ,
and it fully characterizes the second-order statistics of the
WSSUC. There are several other functions that rely on the
second-order statistics of the random channel. The integral

is called the Doppler spectrum,
and its extent, the Doppler spread, is a measure of the
channel’s time variation. The so-called multipath inten-
sity profile describes how the output
power varies as a function of the delay, and the length of
its support is called the multipath spread and is a measure
of the average extent of the multipath.

The characterization of the random channel mainly has
been used to analyze and simulate existing methods rather
than to undo the TV distortion the fading channel has on
the input signal. However, recent work in [6], [25], and
[50] has addressed the TV channel identification problem
by casting it in discrete time and using a Kalman filter to
track the channel parameters.

Consider the fading communication system model of
Fig. 1 before the sampler with the input/output (I/O) re-
lationship

(1)

where subscript denotes continuous time, is the
convolution of the spectral pulse , the TV impulse
response , the receive-filter , is the
sequence of input symbols, and is the noise process.
If the output is sampled at the symbol rate ,
Fig. 1 can be simplified into Fig. 2 with an I/O relation in
discrete-time

(2)
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Fig. 1. Continuous-time TV communication system.

Fig. 2. TV channel model.

where is truncated to an order ,
which is common practice in communications applications.
Note that if , then (2) yields a time in-
variant frequency selective channel and the I/O relationship
becomes . On the other
hand, if , (2) yields a time selective channel with an
I/O relationship, . One approach in
characterizing the variation of the impulse response
is to consider it as a stochastic process in the time index.
In communications, tracking the variations of the channel
taps is of importance [35]. To this end, fitting parametric
models to the variation of the channel coefficients has
been proposed in [25] and [50]. In [50], the challenging
task of estimating random channel parameters from I/O
data has been tackled. The channel was
assumed to obey an vector AR( ) model

(3)

where , and is an in-
dependently, identically distributed (i.i.d) circular complex
Gaussian vector process whose components are uncorre-
lated with each other. The coefficient matrices
were estimated using the multichannel Yule–Walker equa-
tions

(4)

where is the channel cor-
relation matrix whose entries were estimated consistently
from output statistics conditioned on the input [50]. With

available, we can solve for using (4). Once
the AR parameter matrices are estimated, a Kalman filter
is employed to track the channel coefficients after casting
the AR model in (3) in a state-space form

(5)

where is the channel
state vector, is a constant matrix consisting of the AR
parameter matrices in its first block row,

identity matrices in its first sub-block diagonal and zero
elsewhere, and . Finally, a decision feedback
equalizer using the channel estimates is utilized to obtain
an estimate of the input (see [50] and references therein).

III. FADING CHANNELS: BASIS EXPANSION MODELS

Consider the random variation in one tap,, of a
multipath mobile radio channel [27], [28]

(6)

where is the amplitude of the th path, is a uni-
formly distributed random variable in , is the
wavelength corresponding to the carrier frequency, and
is the speed of the mobile [28, p. 382]. For sufficiently
large , the amplitude of (6) approximates a Rayleigh
probability density function (pdf), and the power spectrum
of (6) provides a discrete approximation to experimentally
measured fading spectra which are of the form

, where is a constant
determining the power of tap , and is the carrier
frequency [27], [28].

As an alternative to the random channel assumption of
the previous section, where is a realization of a
stochastic process, the variation in the impulse response can
be captured deterministically by means of a basis expansion

(7)

where the TI parameters , together with the

bases characterize the system. It is clear that
(7) with and with

have the same functional form
as the model in (6). In Fig. 3, we depict how time selec-
tivity, frequency selectivity, and time-frequency selectivity
manifest themselves in plots generated by (6), which is
subsumed by the basis expansion model discussed in this
section. As the number of paths increases (chosen to
be ten in Fig. 3), the basis expansion model approximates
the well-known random coefficient fading models used to
simulate mobile communication channels [27], [28].

In summary, random coefficient models are used either
for identification of the model parameters, which determine
the evolution of the channel coefficients, from the stationary
moments of the output, or they are used for simulating
fading channels with certain spectral properties. Interest-
ingly, random coefficient models used to simulate mobile
channels can be obtained from the basis expansion model
with random parameters. In this paper we will focus on
terrains entailing only a few reflectors so that the Doppler
and multipath parameters can be considered deterministic.
We will rely on the basis expansion channel model to
perform blind identification and equalization.
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Fig. 3. Fading channels generated by the basis expansion model.

A. Exponential Basis Expansion Model

To appreciate the usefulness of complex exponential
bases, consider a communication signal

Re

transmitted through a TV multipath channel

where are the input symbols, is the number of paths,
and , denote each path’s TV attenuation and
delay, respectively. With reference to Fig. 1, we convolve

with and remove the carrier to arrive at
the received signal-plus-noise model in baseband form:

. To suppress
the additive white noise Gaussian (AWGN) , we filter

through the receive-filter and obtain

(8)

Let denote the time in-
variant (TI) transmit-receive filters in cascade, and assume
the following:

a1) constant attenuation and delay over a symbol, i.e.,
const. , for ,

const. , for ;

a2) linearly varying delays across symbols (valid for
approximately constant path velocity), i.e.,

, where is proportional to the path velocity
and . This is a first-order approximation of the
delay variation. Existence of higher order terms
would yield polynomial phase signals, which brings
up the tradeoff between accuracy and complexity;
this is outside the scope of this paper.

Under a1), we can pull and outside the
integral in (8), using the definition of and after a
change of variables we have

, where

(9)
After sampling the output at the symbol rate

(fractional sampling will be considered in Section IV-B),
and using a2), we obtain

. If
we further assume that the

is approximately constant with
respect to since it is changing slowly compared to the
exponential, we obtain

(10)

with and . Notice that
with we arrive at the basis ex-
pansion model in (7); so the exponentials’ dependence on
lag can be included in the parameters, yielding an I/O
relationship (see also Fig. 4)

(11)
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Fig. 4. Multichannel discrete-time equivalent of a TV basis ex-
pansion model.

The complex exponentials in (11) can be viewed as each
path’s Doppler arising due to motion—an effect also en-
countered in radar and sonar where moving targets in-
duce TV delays which for narrow-band signals manifest
themselves as TV phases [38]. Since the same input is
modulated by different complex exponentials in Fig. 4,
some redundancy is introduced at the output which we call
channel (or Doppler) diversity, a term also used in [39] in
a time-frequency context.

Our TV channel parametrization is not unique. An alter-
native one is proposed in [40] as

(12)

where is the delay (expressed in multiples of the symbol
interval ), and denotes the Doppler frequency shift
(normalized by the symbol rate ) of the th path relative
to the zeroth path. The I/O relation in (12) is simpler since
it only involves a single sum, but it can be shown that the
basis expansion model can capture a more general class of
time variations, and hence (11) subsumes (12). In view of
this fact, we focus on the basis expansion model in (11).

In this paper, given , we would
like to do the following : 1) estimate ; 2) determine
the channel length and the number of bases; and 3)
estimate , or the equalizers which, when
convolved with the data , yield input estimates ,
and estimate the equalizer length. First, we will address
frequency estimation.

B. Estimating the Exponential Bases

In all the methods that follow, to estimate the TI pa-
rameters , we will assume the knowledge of the
bases. So for complex exponential bases, the question of
estimating the frequencies from the output
in (11) needs to be addressed.

The idea is to exploit the cyclostationarity of and
use its TV moments that only depend on the time index
through the complex exponentials [46]. The frequencies of
these exponentials are calculated from the so-called cyclic
moments, the Fourier series of the TV moments (e.g.,
see [12] for detailed definitions). The input will be
assumed to be independent of the noise , white, with
mean and variance . Let

(13)

where ( ) is the number of conjugated (unconjugated)
terms, so that, e.g., , and

. In this notation, the dependence on
will be dropped when the process is stationary. Clearly,
if the input has nonzero mean, the frequencies can be
found by computing the Fourier Series of

. A simple calcula-
tion on (11) will reveal that if any moment of the input is
zero, then the corresponding moment of the output will also
be zero, thereby preventing us from estimating . If
the input is coming from a real, zero-mean constellation
such as binary PAM, then and

(14)

enables us to find the frequencies
, since the only dependence of

(14) on is through the exponentials. The zero lag is
chosen for convenience, but if the term in the brackets
in (14) is small for some pair , then different lags

could be utilized. From it is possible to
obtain as follows: let . Then,

from which we can find . The next
smallest frequency is , from which could be
found. Knowing , we can discard from , since
we do not know whether , and find from

. This procedure enables the computation
from the knowledge of .

Unfortunately, for a class of important constellations (4-
quadrature amplitude modulation (QAM), 16-QAM), due to
their symmetry, the unconjugated correlation of the input

, therefore when the symbols
are equiprobable. Thus, we are prompted to use

which enables the estimation of
. But it is not possible to obtain

from , so higher order moments of the
output must be used. Due to their symmetry, all odd
ordered moments of many constellations are zero, but their
fourth-order moments are nonzero. It is possible to obtain

from . The method discussed earlier
to obtain from can also be employed,
with slight modifications, to calculate the frequencies from

. Since second-order statistics generally have
lower variance than higher order statistics, knowledge of
the difference frequencies , whose estimates rely on
second order statistics, can be incorporated in the above
procedure [46].

The frequencies can be obtained using sample estimates
of the cyclic moments which are defined as the Fourier
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Series of (13) with respect to. The estimators for the
cyclic moments are [12]

(15)

which can be computed efficiently by taking the fast Fourier
transform (FFT) of the output product. For example, in the
case of a pulse amplitude modulation (PAM) constellation,
as explained earlier in this section, the smallest frequency
can be obtained by .
Cyclic moment estimators are known to be asymptotically
normal and mean square consistent when the input has finite
moments and the subchannels are of finite length, so that the
output satisfies the necessary mixing conditions [5], [12].

IV. BLIND TV CHANNEL IDENTIFICATION

Throughout the rest of the paper, the channel coefficients
will be assumed to be deterministic, but some ap-

proaches (which we term “statistical”) will require the input
to be random and white. The bases are

assumed to be known.

A. Statistical Approach 1: One Sensor

Here we will not necessarily assume the bases are com-
plex exponentials, for reasons that will soon be given. From
the correlations of in (11), we can obtain

(16)

Given , if the product sequences
are linearly

independent, by solving the linear equations in (16) we
can obtain the (deterministic) correlations of all possible
TI coefficient pairs of channels

(17)

The problem of obtaining from (17) can be
solved with conventional subspace approaches if
has been estimated from (16). Subspace approaches have
been used to estimate a set of coprime TI channels excited
by a common white input (see Fig. 5) [33], [45].
Notice that the output auto and cross correlations of the
single-input multiple-output (SIMO) system in Fig. 5 pro-
vides (up to a scale) all possible deterministic correlations
in (17) of a set of FIR channels to be estimated.
Hence, both the problem of estimating from

, as encountered in the TI SIMO blind identification

Fig. 5. TI SIMO model.

problem, and the TV single-input single-output (SISO)
problem of this section can be solved by the same subspace
method.

Theorem 1 [49]: Sufficient conditions for identifiabil-
ity of from are: 1) for every
fixed the product sequences

are linearly independent; 2) the poly-
nomials , do not
have common roots; and 3) the product sequences

are bounded , and

is invertible,
where .

The method developed in [49] entails two steps: first
is obtained from , where we need 1),

since a matrix whose columns are formed by
needs to be inverted. Second, needs to be

recovered from , where 2) becomes necessary. The
nontrivial task of estimating the TV statistics is
handled by using an instantaneous estimate ,
and consistency of is established under 3), which
requires some additional boundedness conditions on the
bases, and 1) to hold in the limit.

The problem with the method derived from Theorem 1
is that the linear independence assumption a2) on the bases
is often not satisfied in practice. Nevertheless, the single
sensor approach illustrates nicely that TV channels offer
diversity not available with TI channels, and from this point
of view blind identification based on second-order statistics
is easier for TV channels of structured variation than
TI channels. However, the linear independence condition
necessary with a single sensor does not hold for complex
exponentials, since for ,

. This brings about looking for alternative ways of
obtaining complementary diversity.

B. Statistical Approach 2: Two Sensors

Just like the TI case [15], [52], sampling faster than
the symbol rate creates diversity that enables the problem
to be cast into a SIMO framework. Suppose in
(1) is sampled at a rate , where
is given in (9). We obtain the discrete time model

, where
and .

Oversampling offers diversity manifested in the
subprocesses defined as .
In the filterbank literature, are termed the
polyphase components of and can be expressed
in terms of the subchannels and the
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corresponding noise as

(18)

where

.
Because the variation of and with respect to is
often negligible relative to that of the exponential, it is
reasonable to assume the following:

a3.1) ;
a3.2)

.

Based on a1)–a3) we have

(19)

where
. Combining (18) and (19) and stacking

the -channel data and
we obtain

(20)

where, as in (11), the exponentials’ dependence onis
absorbed in the TI vector impulse response.

Multichannel diversity can also be achieved by using
multiple antennas at the receiver [31], the number of
which will be denoted also by . With the availability
of oversampling (time diversity) or multiple sensors (space
diversity) the following question arises: what is , the
minimum in order to guarantee identifiability without
restrictions on the frequencies of the exponential bases?
As we will see in Section IV-C, zero-forcing FIR solutions
require to be on the order of . If the input can
be assumed to be white and random, on the other hand,

, which does not depend on and motivates the
two-sensor approach of this section.

Consider the I/O relation in (20). Given
, a white input sequence ,

and a distinct set of cycles , the
goal is to identify .
Since the input is white, the output correlations of the two
channels are

(21)

The Fourier Series coefficients of the (almost) periodic
sequence of in (21) are

(22)

Taking the -transform of (22) with respect to and
assuming that , we arrive at the so-called cross-cyclic
spectrum

(23)

Identification of the TI subchannels is
achieved by choosing the appropriate cyclesin the
cyclic spectra of (23) so that only a few unknown
terms out of the summation survive. In the set ,
defined in Section III-B, at least one difference (namely,

) lets a single term survive out of (23), which
is the product . In
Appendix I it is shown that this product enables estimation
of the subchannels corresponding to the minimum
and the maximum frequencies:

. After estimating all subchannels corresponding
to frequencies in , that force all but one term in (23)
to be zero, it can be shown that there is a way to use (23)
by choosing from in decreasing order so that
the sum will only contain two products that have unknown
subchannels in it. This is all summarized in Theorem 2
(see Appendix I for a proof).

Theorem 2: For , ,
and any set of frequencies , the following
is possible.

1) To identify the subchannels for , such that
there exists a with

[in other words, subchannels for such
that there exists a that enables only one product to
survive out of (23)] with the choice .
The identifiability condition for these subchannels
is that are coprime for all

.
2) After estimating all subchannels characterized in 1)

(among which are ),
to identify the remaining subchannels using

. Identifiability is guaranteed if

and are coprime
for , whenever there exists a with

.
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Multichannel diversity removes the severe conditions on
the basis functions from which [49] suffers. In addition
to allowing the minimum diversity ( ) for bases of
arbitrary frequencies, the two-cycle method also identifies
the channel coefficients by use of the cyclic correlations that
avoid the zero cycle ( ). This makes additive
stationary noise tolerable down to low SNR’s [12], a feature
also illustrated in the simulations.

C. Indirect Deterministic Approach

In this section we will show how, with sufficient diver-
sity, it is possible to estimate the subchannels and obtain
perfect estimates of the input in the absence of noise.
Similar to the approaches in [15] and [52] for TI systems,
these (so called “deterministic”) methods do not require
the input to be white or random, thereby allowing the use
of coded inputs. Unlike the statistical approaches, reliable
identification will be possible with short data records if the
SNR is high enough.

First, we will discuss a subspace approach that we
term “indirect approach,” introduced in [31] and [32]. In
Section V-B, direct blind equalizers will be derived under
almost identical assumptions.

In order to cast (20) in matrix form, we let

and define for each the
block Toeplitz matrix

...
...

...

...
. . .

...

(24)

Consider (20) in the noise-free case and form the
block Hankel data matrix

...
...

... (25)

where the modulated input matrix
and the channel matrix

are given by

...
...

...

... (26)

In (26), are Hankel matrices
constructed from .

Under the following assumptions it will become possible
to estimate the channel matrix up to a matrix
ambiguity , which agrees with the fact that for the TI
case ( ) the ambiguity is a scalar.

a4) , which is easily satisfied by
collecting sufficient data;

a5) is at least fat, i.e., the quadruplet
obeys

(27)

To satisfy (27), a minimum chan-
nels are required with a minimum equalizer order

(in the TI case, and
[45], [52]).

a6) is full rank, i.e., rank which
requires that transfer functions

are coprime for every fixed. This is be-
cause, if the family of polynomials

have common factors for some, then,
will lose rank (see e.g., [45]), and hence will
have linearly dependent rows.

a7) Bases are sufficiently varying and
is persistently exciting (p.e.) of sufficient order to
assure that rank . We stress
that can be either random or deterministic.

To determine within the matrix ambiguity , let us
consider (25) and the eigendecomposition

(28)

Under a7), . Since the signal subspace
is orthogonal to the noise subspace, if , then

, and using (26), , for .
Since is a convolution operator, this can also be written
as , implying that

, where is a block Toeplitz matrix as defined
in (24). Hence, if are basis vectors for ,
it follows that there exists a full-rank matrix such
that

(29)

Let denote the null eigenvectors of ,
and and be constructed exactly
like and in (24) and (26). If we deconvolve
the data with , we obtain:

. The latter implies
that is such that

(30)

where is the th entry of . Keeping in mind that
is a matrix formed by the modulated input sequence

, we can write (30) as

(31)
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where is an entry of and
. Equation (31) can be rearranged

to obtain

(32)

where is the th column of . Given , (31),
and therefore (32), has a unique solution for and
(see Appendix II for a proof). Hence, (32) can be cast in a
matrix form to obtain and , which after using (29)
yields .

In summary, to estimate and the input, we need to
perform a singular value decomposition (SVD) on to
find the vector corresponding to the minimum eigenvalue
of . Then another SVD is performed on , and
the vectors corresponding to its minimum singular
values yield estimates of the ambiguous channels .
Upon constructing as in (24), we deconvolve the data by
computing to obtain . Based on , the unique
solution of (32) can be found by casting it in a matrix form
to obtain both and the input estimates.

This method requires at least one vector in the noise
subspace, so is necessary.
An alternative method described in Section V-B allows

to be square and calculates the columns of its (right)
inverse (vectors of equalizer coefficients) directly, using
the structure of the input matrix.

D. Order Determination

Up to this point we have assumed that the channel order
and the number of basesand were known. To assert

that these blind methods are applicable, one needs to show
that it is possible to obtain these quantities from output
data. Using the rank properties of the output data matrix
in (22), it is possible to obtain the channel orderand the
number of bases [10], [31].

Under a4)–a7), matrix in (25) has rank .
With denoting known upper bounds on ,
corresponding matrices and will have rank

, . It is thus possible to select the
orders and using

rank rank

rank

With , available, is chosen to satisfy (29) for a
given .

At low SNR’s, noise will make it difficult to discern
small significant singular values of and from large
insignificant ones. More elaborate tests involving informa-
tion theoretic criteria, such as the AIC, seem possible but
are beyond the scope of this paper.

V. BLIND EQUALIZATION OF TV CHANNELS

In this section we will discuss methods for estimating the
input. Having the channel estimates available, maximum-
likelihood decoding can be used for that purpose. The
high computational complexity of Viterbi’s algorithm is
even more pronounced for the TV model than the TI
case since the number of bases, as well as the channel
length , affects the computational complexity. A decision
feedback scheme has been proposed in [46] in connection
with the exponential basis expansion model. Here we
will consider linear options: zero-forcing FIR equalizers
requiring enough diversity (at least ) in Section V-
A and minimum mean square error (MMSE) solutions in
Section V-B. Optimally weighted equalizers and adaptive
algorithms which pertain to the direct blind equalization
method are presented in Sections V-C and V-D.

A. Direct Blind Equalization

This method estimates FIR zero-forcing equalizers that
yield perfect estimates in the absence of noise without
having to estimate the channel first. Similar to the indirect
method of Section IV-C no statistical assumptions on the
input are made. Estimation of the direct blind equalizers is
less computationally demanding than the indirect method.
Also, the linear form of the solution in this section enables
updating the equalizer estimates adaptively (see Section V-
D).

We seek FIR zero-forcing equalizers
that satisfy (see also Fig. 6)

(33)

where denotes a delay which is inherently
nonidentifiable in blind approaches.

To establish existence and uniqueness of such equalizers,
we need in (26) to be fat or square so that a that
satisfies exists. The th
column of is . For the direct
blind equalization method, beyond assumptions a4), a6),
and a7), required also for indirect channel estimation, we
allow to be square so that a5)
[ in (26) is square] is permissible for the method to work.

In order to find the equalizers we first set
in (33) and collect equations to obtain

(34)

where

diag
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Fig. 6. Vector TV model and FIR vector equalizers.

We use MATLAB’s notation to denote a sub-
matrix of formed by the through rows and all
columns of . So we define

(35)

Matrix is without its first rows, is without
its last rows (likewise for the diagonal matrices, and the
modulated input matrices are , to be used in Appendix
III).

From (34) and (35) it follows that

(36)

We note that ,
which allows us to eliminate the input dependence from the
equations in (36) and obtain the cross relation

(37)

The pair of equalizers will be uniquely iden-
tifiable (up to a scale) as the eigenvector corresponding to
the minimum eigenvalue of in

(38)
provided that the nullity . The result is
summarized in Theorem 3 (see Appendix III for the proof).

Theorem 3: Under a5), a6), and a7), consider ,
, , and
. It then holds that , and hence

(38) has a unique solution. If instead of a5),
holds ( is fat), then

, and all vectors in the null
space of yield equalizers which, when convolved
with the output data, yield perfect input estimates up to a
multiple of a known complex exponential sequence in the
absence of noise.

The periodicity requirement on assumed
in Theorem 3 can always be satisfied if .
This is possible by using the techniques in Section III-B,
with which we can easily infer the lowest frequency.
Multiplying both sides of (20) with we can
“shift” all frequencies by , so that the first basis function
of will be , which is
periodic with any period.

Requiring , , and only enables
us to find , but this is not a real concern since,

using , equalizers corresponding to other delays
and bases (other columns of) can be found using (37).

Strict inequality in a5) causes every equalizer vector
to lie in an affine space [the set of all vectors

satisfying , where is a unit
vector with a 1 in its th position]. This gives us more
freedom in choosing the appropriate equalizer with good
noise suppression characteristics. As mentioned in [14] and
[15], if the noise is white, the equalizer with the minimum
norm will have minimum noise variance at its output.

B. Cylic MMSE Equalizers

Consider the I/O relation in (20). We wish to find, for
each , a vector so
that the following MSE is minimized:

(39)

The orthogonality principle yields

(40)

We need to write the set of linear equations in (40) in matrix
form and in terms of the estimated channel parameters

and frequencies . To this
end, we define the following:

(41)
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diag (42)

...
...

...

(43)

Using the definitions (41) and (43), it is easy to verify from
(20) that the following equation holds:

(44)

where is the corresponding noise matrix. Equation
(40) can be rewritten as

vec vec vec

(45)

where vec denotes the vector formed from
concatenating the columns of . We need to find an
expression for vec using (44), and substitute
it into (45) in order to write in terms of

and . Taking the transpose of (44) we have

vec vec

vec vec . Using the
identity vec vec , we can conclude
the above string of equalities by

vec vec vec (46)

where . Assuming the noise
is white, and using (45) and (46) we have

vec vec

vec (47)

Next, we define vec vec
and using (43) conclude that is an

symmetric block Toeplitz matrix
with a first block-row , where
denotes an matrix with ones on the
th subdiagonal, and zero elsewhere. If we also define

vec , we can express (47) as

(48)

One can also obtain a closed form expression for the MMSE
after substituting (48) into (39)

(49)

In (47), an inversion takes place for each value of,
unless the frequencies are commensurate, in which case
the matrix to be inverted is periodic.

C. Weighted Equalizers

Even when is square, the presence of multiple equaliz-
ers corresponding to different delays and bases can be used
to improve the multiple input estimates in the presence of
noise. By aligning, demodulating, and performing weighted
combinations of the estimated columns of, one may get
better input estimates than using a single equalizer. Let

(50)

We wish to minimize the cost function
¸

with respect to the vector of weights
, which

after using (33) is

(51)

If we constrain the sum of the elements of to be one,
then that minimizes (51) is given by (see Appendix IV)

(52)

where is a vector of all ones, is a block diagonal matrix
containing the matrices in its diagonal, the
element of which is

(53)

and .
Notice that the optimum weights require the knowledge

of perfect equalizer values which cannot be obtained with
noisy data. But with sufficiently high SNR, which enables
accurate equalizer estimates, the use of the weights often
improves the input estimates, as verified in our simulation
examples.

D. Adaptive Equalization

One advantage of the direct method of Section V-B
over the indirect method of Section IV-D is the fact that
equalizer estimates can be linearly related with the output
data, and can be cast into an adaptive framework. The
adaptive method proposed to estimate the frequencies in
[46] can be combined with what follows to construct an
algorithm where both the basis frequencies and the channel
parameters can be estimated online.

Equation (38) can be recast in a least squares framework
by setting the first coefficient of to one and can
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be rewritten as , where is
without its first column, is the vector containing the
elements of that column, and is without its
first element. It is well known that RLS is a recursive way
of computing , which also solves the
least squares problem [22]. We use this algorithm to update
the vector of equalizer coefficients.

One could also be interested in using the computation-
ally less intensive LMS algorithm at the expense of less
accuracy and slower convergence. In the absence of a
training sequence (desired input), we consider the elements
of as our desired sequence that we would like to
estimate. Here, are the rows of and is the estimate
of the vector of equalizer coefficients at time. At each
iteration, the vector of equalizer coefficients is updated by
the relations

(54)

where is the step size parameter and denotes th
scalar entry of .

It should be noted that rapid variations of the channel are
taken care of by the bases, whereas slower changes in the
parameters are tracked by the adaptive algorithm. Since the
variation is built in the model, the algorithms can operate
on longer data records with less worry about violating the
stationarity assumption.

VI. SIMULATIONS

In this section we illustrate some of the methods and al-
gorithms that are discussed and compare them. For this pur-
pose we will need the following definitions: the output SNR
is defined as SNR ,
where is the noise-free output data, and the normalized
root mean square error (RMSE) between a vectorand its
estimate is computed as follows:

RMSE (55)

where stands for realization and is the number of
realizations.

Unless otherwise indicated, sensors were used
with a channel order . The bases were
chosen as and . All
plots except the eye diagrams are an average of 100 Monte
Carlo runs unless otherwise indicated.

In Fig. 7, we illustrate how the blind algorithm that is
developed in [15] for TI channels compares with the one
proposed in Section V-A, when the data comes from a
rapidly fading TV channel. We see that the TI algorithm
is not capable of equalizing the symbols coming
from a 16-QAM constellation even with a high SNR of 45
dB. This motivating example demonstrates the inadequacy
of TI equalization algorithms when applied to TV channels.

Fig. 8 illustrates the frequency estimation of Section III-
B using data at an SNR = 10 dB. Since there was
only one nonzero cycle , provided enough

Fig. 7. TI and TV algorithms on TV data.

Fig. 8. Estimation of basis frequencies.

information to estimate it. The plot on the left shows that the
Fourier Series of has two peaks: one at
(due to the stationary noise) and the other . The
plot on the right illustrates the estimation of the same cycle
with fourth-order cyclic moment at lag computed as
the FFT of . We observe peaks at multiples of .
The reduced variance of second order statistics relative to
fourth-order statistics is also apparent.

In Fig. 9, the five least significant singular values of the
matrix are plotted for (left) and (right)
and for SNR’s of 50 and 25 dB. Only samples
were used. The number of least significant singular values
(zero singular values in the case of no noise) determines the
rank of the noise free output data matrix, which, as shown
in Section IV-D, enables the estimation of, , and .
With an SNR dB, the insignificant singular values
are still discernible. As the SNR’s get lower (to 25 dB),
it becomes more difficult to tell how many zero singular
values there are since the noise not only increases them but
also perturbs their relative values. The standard deviation
of the singular values is also plotted around the mean which
was estimated from 100 realizations.

Fig. 10 illustrates the two sensor approach of Section IV-
B, where the channel coefficients are estimated from the
cyclic correlations of the output. The RMSE between the
true channel coefficients corresponding to

is plotted versus SNR (200 Monte Carlo runs,
) and the number of data (500 Monte Carlo runs,

SNR dB). We see that (unlike the deterministic
methods) the channel estimates are consistent and improve
significantly with the number of data. In addition, the effect
of noise is minimal due to the use of nonzero cycles in the
cyclic correlations.
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Fig. 9. Order determination.

Fig. 10. Two sensor (statistical) approach.

Fig. 11. Before and after equalization.

Fig. 11 illustrates MMSE equalization for the estimated
channel where the channel estimation was done with the
two-sensor approach. We show the eye diagram for the
symbol estimates at an SNR dB. The unequalized
channel output is shown on the left plot; the right plot
is obtained by using the channel estimates obtained with

data points and then using the cyclic MMSE
equalizer of length 15 [ , in (39)].

In Fig. 12 the deterministic methods are compared. The
direct method is implemented in two different ways. The
first one, referred to as “direct,” uses what is suggested
right before (38). The “min-norm” approach substitutes the
“direct” estimate in (37) and solves (36) with respect
to constraining it to have minimum norm. MSE of

Fig. 12. Direct, indirect, and minimum norm methods versus
SNR.

Fig. 13. Performance versus number of data.

Fig. 14. RLS algorithm, approximate initialization.

the input estimates are plotted for two different equalizer
lengths . The number of data used for these
estimates was only . Equalizers with minimum
norm consistently outperform those obtained using (38).
The direct and minimum norm methods perform better than
the method in [31] (l-gg) for low ( 25 dB) SNR’s.

To see how much the deterministic methods improve with
increased data length, Fig. 13 compares the minimum norm,
direct, and indirect methods. It is seen that the minimum
norm method benefits from the increase of the data length
more consistently than the other two methods. An SNR of
25 dB was used.

Figs. 14–16 illustrate the performance of the adaptive
algorithms proposed in Section V-D. Here , and

and were chosen. Fig. 14 shows the
eye diagrams for the output of an equalizer obtained with
the RLS algorithm. Fig. 15 illustrates the performance of
the RLS algorithm by plotting the error of the equalizer
estimates and also the error in the input estimates. Fig. 16

GIANNAKIS AND TEPEDELENLIOǦLU: BLIND IDENTIFICATION OF TIME-VARYING CHANNELS 1981



Fig. 15. RLS with the number of iterations.

Fig. 16. Performance of the LMS algorithm.

Fig. 17. Zero-delay versus average equalizers.

is the same as Fig. 15 except for the LMS algorithm. The
RLS was initialized by , whereas the LMS was initialized
with the batch estimate obtained with the minimum number
of symbols required by a4).

In Fig. 17 effects of weighting of different equalizers on
the input estimates are demonstrated. Here the equalizers
weighted by the inverse of their norms (right) yielded better
estimates than , the zero-delay equalizer (left).

These preliminary simulations illustrate the difference
between the “statistical” and the “deterministic” approaches
for the TV model we have justified and adopted. While
the former relies on cyclic correlations and is effected
minimally by the presence of noise, it needs relatively long
data records for accurate estimates. The zero-forcing FIR
solutions, on the other hand, yield good estimates at high
SNR’s with short data records, but their noise tolerance is
rather small.

VII. CONCLUSIONS AND FUTURE DIRECTIONS

Finitely parameterized basis expansions turn SISO TV
systems into multivariate TI systems with inputs formed
by modulating a single input with the bases. Fourier bases
are well motivated for modeling rapidly fading mobile com-
munication channels when multipath propagation caused by
a few dominant reflectors gives rise to (Doppler-induced)

linearly varying path delays. Doppler frequencies can be
estimated blindly using cyclic statistics, and channel orders
can be determined from rank properties of a received data
matrix.

Structured variations described by bases offer TV channel
diversity, which renders blind identification of TV models
easier than that of TI models. When channel (or Doppler)
diversity is complemented by temporal or spatial diver-
sity (available with oversampling or multiple antennas),
blind estimators of TV channels along with direct equal-
izers become available even with minimal (persistence-of-
excitation) assumptions about the input and the bases. The
equalizers are TI, multivariate, zero-forcing (in the absence
of noise), and lend themselves to optimally weighted and
adaptive algorithms. The latter provide fine tuning for
possible model mismatch of the bases, which capture the
nominal part of the rapidly fading channel. Exploitation of
the input’s whiteness reduces the amount of spatio/temporal
diversity (only two sensors) needed to identify blindly TV
channels and mitigate their effects using MMSE equalizers.

The blind channel estimation and identification methods
presented in this paper relied on second-order output infor-
mation only. In [47], blind higher order statistical methods
have been developed which rely on the independence of
the input but are capable of identifying TV channels using
single sensor data only. Following the start-up mode, blind
methods switch on to a decision-directed mode. Decision
feedback equalizers for the TV basis expansion model have
been reported in [46] along with adaptive methods for
on-line estimation of the basis frequencies.

A number of interesting directions open up for future
research: 1) performance analysis of the channel estimators,
especially when model perturbations due to synchroniza-
tion effects and Doppler frequency drifts are present; 2)
theoretical evaluation in terms of error probability for the
zero-forcing equalizers and experimental comparisons with
the MSE equalizers; 3) extensions of blind methods to TV
pole-zero channel models; 4) exploitation of input redun-
dancy in the form of short training sequences (semi-blind
extensions), modulation, codes, or filterbanks in order to
identify TV-basis expansion models without oversampling
or deployment of multiple antennas. Such input-diversity
techniques have gained popularity recently for blind iden-
tification of TI channels (see [4], [11], [19], [30], [41],
and [48], and references therein); 5) diversity techniques
for blind identification of random coefficient models and
performance comparisons with the basis expansion models
using real data.

APPENDIX I
PROOF OF THEOREM 1

We will use the notation to denote a convolution
matrix with Toeplitz structure associated with the vector

, whose first column is , and first row is
, where is the first element of

. The dimensions depend on the size of the vector that
is multiplying and will be clear from the context.
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a) Let and be a pair such that
in (23).

Then, since and are coprime, the following
holds:

(56)

Define
, the matrix

, and
. Cross-multiplying in (56), taking

the inverse -transform of both sides, and casting the
resulting convolutions in matrix form we obtain

(57)

The solution in (57) is unique up to a scale, since if
channels also satisfy (56), then

and the numerators and denominators of both sides must
be equal. This is easily shown by factoring the numerator
and the denominator polynomials into theirfactors. We
showed how to estimate . Subchan-
nels corresponding to can be estimated with a similar
procedure.

b) We showed in a) how to estimate

using , since only the
pair and can give rise to the difference .
Consider now . If , is the
only pair of frequencies that has the difference

, then is the product of two
polynomials, one of which is known. This will enable
estimating . If, on the other hand,

(the only other pair that could
possibly give rise to this difference), then we have the
sum of two products of polynomials where two of the four
polynomials are known

(58)

After taking the inverse-transform of both sides, (58) can
be cast in matrix form,

(59)

where

and vector contains the inverse -transform
of . If and

are coprime, the
matrix in (59) has full row rank, which will

enable us to determine up to a scale ambiguity.

After estimating , we can

repeat the same procedure with

. This time, might contain a sum
of three products, but if this is the case one of the products
has to involve which has
been estimated. Proceeding in this fashion, all subchan-
nels can be estimated provided that

and are coprime for ,
whenever there exists a with .

APPENDIX II
UNIQUENESSPROOF OF (32)

As mentioned in Section V-B, without loss of generality
we will assume . Suppose now, in
addition to and , and also satisfy (31).
Relating them, we have

(60)

provided that is nonzero. Equating the first element of
both sides in (60), and likewise the last elements, we obtain

(61)

where denotes the element of matrix defined in
(60). Using the last equality in (61) we can relate the first
and last columns of and write it for to
obtain the matrix equation (62) as shown at the bottom of
the next page. Equation (62) has a unique solution (up to a
scale) with and
due to the Vandermonde structure ofin (62) and the fact
that its first and last columns are identical. This means the
first and the last elements of (60) are equal toand are
independent of . Thus, (60) implies that ,
and ; hence, .
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APPENDIX III
PROOF OF THEOREM 2

Assume first that is square. The nullity of

(63)

is one if and only if the nullity of is one because
is full rank and square. Because matrix in (26) is full
rank, might lose rank only if columns of one portion
are linearly dependent with columns of the other portion.
Note that matrices and
share columns. Careful examination
of in (63) will reveal that they involve the products

and , which have
columns in common. So is a necessary
condition for . But other products such

as and could also
have common columns. In fact, if is periodic
with period , the first column of

is identical with the last column of
whenever . Choosing and

will ensure , , and along with
, will guarantee that , therefore

.
If ( is fat), then

relying on a6) and using the Sylvester inequality, we
get rank , therefore,

rank
, where the inequality

follows from .

APPENDIX IV
DERIVATION OF OPTIMUM WEIGHTS

We wish to minimize (51) subject to the constraint
. We will use the method of

Lagrange multipliers to solve this constrained optimization
problem (e.g., [22, pp. 557–560]). The constanthas no
affect on the relative weights , since the scaling of is
absorbed into the Lagrange multiplier. By writing (51) as
a term times its conjugate and moving the expected value

inside we can express it as

(64)

where we used
and . The objective

function to be minimized now becomes

(65)

where is the Lagrange multiplier that will determine the
scaling of to fit the constraint, is a block diagonal
matrix containing the matrices in its diagonal, and
the is given by the sum inside the brackets in (64).
Since is not Hermitian-symmetric ( ), we write

where is Hermitian symmetric and is Hermittian anti-
symmetric. Because (51), and therefore (64), is real, and
due to the Hermitian antisymmetry of, is purely
imaginary; thus it follows that . Retaining the
Hermitian part of amounts to an extra term in (53) to
guarantee . Now we use the standard result

for a Hermitian matrix [22] to take
the gradient of the objective function in (65) and equate it
to zero

(66)

Equation (66) enables us to solve for which, after
imposing the constraint, leads to (52) and (53).
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Cihan Tepedelenliŏglu was born in Ankara,
Turkey, in 1973. He received the B.S. degree
with highest honors from Florida Institute of
Technology, Melbourne, in 1995 and the M.S.
degree from the University of Virginia, Char-
lottesville, in 1998, both in electrical engineer-
ing.

Since 1995 he has been working as a Teaching
and Research Assistant at University of Virginia
and is currently a Ph.D. student in the CCSP
Labaratory. His research interests include statis-

tical signal processing, system identification, time-varying systems, and
equalization of fading channels in digital communications.

1986 PROCEEDINGS OF THE IEEE, VOL. 86, NO. 10, OCTOBER 1998


