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Abstract- The evolutionary spectrum (ES) is a "time-varying 
power spectrum" of nonstationary random processes. Starting 
from an innovations system interpretation of the ES, we introduce 
the generalized evolutionary spectrum (GES) as a novel family 
of time-varying power spectra. The GES contains the ES and 
the recently introduced transitory evolutionav spectrum as special 
cases. We consider the problem of finding an innovations system 
for a process characterized by its correlation function, and we 
discuss the connection between GES analysis and the class of 
underspread processes. 

Furthermore, we show that another special case of the GES-a 
novel time-varying power spectrum that we call Weyl spec- 
trum-has substantial advantages over all other members of the 
GES family. The properties of the Weyl spectrum are discussed, 
and its superior performance is verified experimentally for syn- 
thetic and real-data processes. 

Index Terms-Nonstationary random processes, spectral anal- 
ysis, time-frequency analysis, time-varying systems. 

I. INTRODUCTION 
PECTRAL analysis of (wide-sense) stationary random 
processes by means of the power spectral density (PSD) 

is a useful concept. However, in many applications the signals 
must be modeled as nonstationary processes. Extensions of 
the PSD to nonstationary processes result in "time-varying 
power spectra" such as the Wigner-Ville spectrum [ 1]-[3], 
the physical spectrum [4], and the evolutionary spectrum (ES) 
[51-[191. 

This paper discusses and extends the ES. The original defi- 
nition of the ES is based on an expansion of the nonstationary 
random process under analysis into complex exponentials with 
uncorrelated, random, time-varying amplitudes [5 ] .  Altema- 
tively, the ES can be expressed via the transfer function of 
a linear time-varying (LTV) innovations system [51, 191, [lo]. 
Following the introduction of the ES by Priestley [5]-[7], nu- 
merous researchers have discussed the theoretical framework 
of the ES [2], [3], 181-[12], applications of the ES to special 
types of nonstationary processes [ 131, [ 141, and the estimation 
of the ES [15]-[18]. Furthermore, extensions to parametnc 
models have been established [19], and a concept dual to the 
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ES-the transitory evolutionary spectrum (TES)-has been 
introduced recently [20]. 

In this paper, motivated by the innovations system inter- 
pretation of the ES, we define the generalized evolutionary 
spectrum (GES) as a family of ti ying power spec- 
tra extending both the ES and the Subsequently, we 
concentrate on a specific member of the GES family-the 
novel Weyl spectrum-that has important advantages over all 
other GES members [21]. The paper is organized as follows. 
Section I1 reviews the ES. Section I11 reviews the TES and 
gives a novel innovations system interpretation of the TES. 
An important process classification (underspreadoverspread) 
[22]-1241 is considered in Section IV. The GES is introduced 
in Section V using the generalized Weyl symbol [25], and 
the properties of the GES are discussed. The construction 
of an innovations system and, specifically, the advantages of 
the positive semidefinite innovations system are considered in 
Section VI. In Section VII, we introduce the Weyl spectrum 
[21] as a new member of the GES family with substantial 
advantages over all other GES members. In Section VIII, our 
theoretical results are verified experimentally for synthetic and 
real-data processes. 

11. THE EVOLUTIONARY SPECTRUM 

A. The Stationary Case 

we first consider a zero-mean, wide-sense stationary random 
process ~ ( t )  with autocorrelation function r,(r) = E{z(t + 
T ) x * ( ~ ) }  and PSD' 

S,(f) = .I r,(r)e-32TfT d r  2 0. 

Since Jf S,(f) df = E{lx(t)12}, the PSD can be interpreted 
as a spectral distribution of the average power. It is related 
to an expansion* of the process ~ ( t )  into complex sinusoids 
e3 2. ir f t  [26] 

The ES can be motivated by the stationary case 

z ( t )  = X ( f ) e J 2 " f t  df (1) L 
where the expansion coefficients can be shown to be uncorre- 
luted, with the PSD as average intensity: 

(2) E { X ( f l ) X * ( f i ) )  = SZ(fl)S(fl - f 2 ) .  

Integrals are from -CO to 00 unless stated otherwise. 
*This expansion and similar expansions used in the following are to be 

interpreted in the mean-square sense [26]. 
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Let w set X ( f )  = N ( f ) A ( f ) ,  where N ( f )  denotes sta- 
tionary white noise with normalized average intensity, i.e., 
E{N( f i )N*( f z ) }  := S ( f 1  - f z ) ,  and A ( f )  is a deterministic, 
complex-valued weighting function. The left-hand side of (2) 
then becomes E { X ( f 1 ) X * ( f z ) }  = IA(f1)12S(fl - f 2 )  SO that 
the PSD is seen to be 

SZ(f) = IA(f)I2. (3) 

A second important interpretation of the PSD is obtained 
by representing the process x ( t )  as the output of a linear 
time-invariant (LTI) “innovations system” H whose input is 
stationary white noise n(t) [26]: 

~ ( t )  = (Hn)(t) = h(t - t’)n(t’) dt’ Ll 
with E{n(tl)n*(tz)) = S(t1 - t z ) .  The PSD then equals the 
magnitude squared of the system’s transfer function H ( f )  = st h(i)e-J2“ft dt 

SZ( f )  = IH(f)I2. (4) 

It is easily seen that H ( f )  = A ( f )  if we take N ( f )  to be 
the Fourier transform of n(t). Hence, the PSD expressions (3) 
and (4) are equivalent. 

B. Dejinition and Interpretation of the Evolutionary Spectrum 
We next consider a zero-mean, nonstationary random 

process x ( t )  with correlation function R,(tl, tz)  = 
E{x(tl)x*(t2)} [26]. Motivated by (l), we postulate an 
expansion of x ( t )  into complex sinusoids eJ2“ft 

x ( t )  = X t ( f ) e j z * f t  df s, 
where the expansion coefficients X t  ( f )  are time-varying but 
again assumed to be uncorrelated: 

E { X t ( f l ) X , * ( f Z ) }  = ES,(t, f M f l  - fz). (6) 

This constitutes an implicit definition of the ES.  In order 
to make this definition more precise, we set X t ( f )  = 
N ( f ) A ( t ,  f ) ,  where N ( f )  denotes stationary white noise with 
normalized average intensity and A(t,  f )  is a deterministic, 
complex-valued weighting function. The expansion (5) then 
becomes 

x ( t )  = N( f )A( t ,  f ) e J Z T f t  df (7) Jf 
and the left-hand side of (6) becomes E { X t ( f l ) X , * ( f z ) }  = 

ES,(t, f )  = IA(t, f ) I2 -  (8) 

With (7), it is easy to show that the process’s average instan- 
taneous power can be written as E{ lx(t)12} = sf IA(t, f ) l z  df 
so that the ES is a spectral distribution of the average instan- 
taneous power, i.e., Jf ES,(t, f )  df = E{lz(t)l2} (“marginal 
property”). 

IA(t,f1)12S(f1 - f 2 )  so that [51 

We now ask if the expansion (7) underlying the ES exists 
and is unique and how the ES can be derived given the correla- 
tion function R,(tl, t 2 ) .  Introducing $(t, f )  = A(t,  f ) e J 2 * f t ,  
(7) becomes 

4 4  = s, N(f)$( t ,  f )  df (9) 

and it is easily shown that the correlation function can be 
expressed as R,(tl, t z )  = sf d( t1 ,  f )d* ( tz ,  f )  d f .  In operator 
notation, this reads R, = QQ+, where R, is the correlation 
operator (i.e., the positive definite or semidefinite, self-adjoint 
linear operator whose kernel is R, ( t l , t~ ) ) ,  Q is the linear 
operator whose kernel is $(t, f ) ,  and ++ is the adjoint of the 
operator 9 [27]. Hence, for given correlation operator R,, CP 
is a solution to the factorization problem CP@+ = R,. Such 
a solution always exists since R, is positive semidefinite, but 
it is not unique: If CP is a solution, then so is & = CPU, 
where U is an arbitrary unitary operator (i.e., UU+ = I with 
I the identity operator). Hence, the ES as defined in (8) is not 
unique [5]; the specific ES obtained depends on the particular 
solution to the factorization problem (Pi@+ = R, . 

It is important to note that the interpretation of the ES 
as a time-varying power spectrum is restricted to the case 
where the “amplitude function” A(t,  f )  weighting the complex 
sinusoids eJz“ft  in (7) is slowly time-varying. Indeed, only in 
this case can the function $ ( t , f )  = A(t , f )eJ2“ft  in (9) be 
interpreted (as a function of t )  as a narrowband, amplitude- 
modulated signal (an “oscillatory function” [ 5 ] )  spectrally 
localized around f so that the parameter f in ES,(t, f )  = 
IA(t, f ) I 2  can be interpreted as “frequency” in a meaningful 
sense. This restriction amounts to a kind of quasistationarity 
assumption. 

C. Innovations System Interpretation 

system H to stationary white noise n(t) [28]: 
We can express x( t )  as the response of an LTV innovations 

x ( t )  = (Hn)(t) = H(t,t’)n(t’) dt’ (10) 
1 1  

with E{n(tl)n*(tz)} = 6(tl - t z ) .  

Calculating the correlation function of x ( t )  from (10) yields 

R,(tl,tZ) = 1, H(tl,t’)H*(tZ,t’) dt’ (11) 

so that the innovations system H is obtained as (nonunique) 
solution to the factorization problem HHS = R,, i.e., H is 
a “square root” of the correlation operator R, (cf. Section 
VI). It is easily shown that (10) is equivalent to (9), i.e., 
x ( t )  = lf N ( f ) $ ( t ,  f )  df with N ( f )  the Fourier transform 
of n(t) and $(t, f )  = s,, H ( t ,  t’)ej2“ft’ dt’. We then obtain 

A(t,  f )  = $(t, f ) e - j z T f t  

H ( t ,  t - 7)e-32“f.‘ d r  = 2 H(tr f )  = I  
where &(t, f )  is the time-varying transfer function of H as 
defined by Zadeh [29]. Hence, the ES can be reformulated 
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TABLE I 
DUALITY OF EVOLUTIONARY SPECTRUM AND TRANSITORY EVOLUTIONARY SPECTRUM (F DENOTES THE FOURIER TRANSFORM OPERATOR) 

as the squared magnitude of Zadeh’s transfer function of the 
innovations system H [ 5 ] ,  [91, [lo]: 

(12) ESz(t, f )  = IZH(t, f)I2. 
This result is very intuitive and extends the PSD expression (4) 
obtained in the stationary case. However, recall that the inter- 
pretation of the ES as a time-varying power spectrum requires 
A(t,  f )  to be slowly time-varying. Since A(t ,  f )  = Z H ( ~ ,  f ) ,  
this means that &(t, f )  should be slowly time-varying as 
well. Furthermore, (12) is intuitively meaningful only if the 
LTV system H acts as a weighting in the time-frequency (TF) 
domain, i.e., if the TF shifts caused by the innovations system 
H are small. These considerations will lead us to the class of 
underspread systems and processes discussed in Section IV. 

111. THE TRANSITORY EVOLUTIONARY SPECTRUM 

The transitoiy evolutionary spectrum (TES) has recently 
been introduced [20] as a time-varying spectrum that is dual 
to the ES (see Table I). The TES is matched to “quasiwhite” 
processes. 

A. The Nonstationary White Case 

We first consider a zero-mean, nonstationary white ran- 
dom process z ( t )  with correlation function R,(tl,tz) = 
qz(tl)6(tl - t z ) ,  where q,(t) 2 0 is the process’s average 
instantaneous intensity [26]. The process allows a trivial 
expansion into Dirac impulses 

z( t  ) = z(t)S(t’ - t )  d t  (13) ’ 1  
or, taking the Fourier transform 

X ( f )  = L ~ ( t ) e - ’ ~ “ ’ ~  d t .  (14) 

Here, the expansion coefficients z ( t )  are uncorrelated 

E{z(ti)z*(tz)} = q,(ti)S(t~ - t 2 ) .  (15) 

Let us set z ( t )  = n(t)a(t) ,  where n(t) is stationary white noise 
with normalized average intensity and a ( t )  is a deterministic 
function. The left-hand side of (15) is then E{z(t~)z*(ta)} = 
(a(t l)(2S(tl  - t z )  so that 

The relation z ( t )  = n(t)a(t)  can be interpreted in the sense 
that stationary white noise n(t)  is passed through a linear 
“frequency invariant” (LFI) system, i.e., an LTV system acting 
as a multiplier. This is dual to the interpretation of stationary 
processes in terms of an LTI innovations system (cf. Section 
11-A). 

B. Definition and Interpretation of the 
Transitory Evolutionary Spectrum 

process z ( t )  with correlation function R,(tl, t 2 ) .  Motivated 
by the expansion (14) in the nonstationary white case, let us 
postulate an expansion 

We next consider a zero-mean, nonsta 

(17) 

Here, n(t) is stationary white noise with average intensity one, 
a( t ,  f )  is a deterministic, complex-valued weighting function 
defined by z f ( t )  = n( t )a( t , f ) ,  and $( t , f )  = a ( t , f )  
e-J2“ft. The expansion coefficients zf ( t )  are frequency- 
varying but still assumed uncorrelated 

(18) E { z f ( t l ) q t 2 ) )  = TESZ(t1, f)J(t l  - t 2 ) .  

The frequency variation in z f ( t )  will be seen to imply a 
broadening of the Dirac impulses in (13). 

Equation (18) constitutes an implicit definition of the 
TES. With z f ( t )  = n( t )a( t , f ) ,  (18) can be rewritten as 
E{zf(tl)z?(t2)} = la(t1, f)lzSs(t1 - t 2 )  so that 

TESz(t, f )  = 146 f)12. (19) 

With (16), one can show that the TES is a temporal distribution 
of the average spectral energy density, i.e., the TES satisfies 
the “marginal property” s, TES,(t,f) d t  = E{JX(f)12}. 

Taking the inverse Fourier transform of (16) or (17), the 
process z(t’) is represented as 

z(t’) = ln ( t )<( t ’ ,  t )  d t  

where <(t’,t) = & $ ( t ; f ) e J 2 “ ” f  df = f [ a ( t , f ) e ~ ~ ~ ” ~ ~ f i  
eJ2?rt’f df. If a ( t ,  f )  is sZowly varying with respect to f ,  
then E(t’,t), as a function of t’, is localized about t’ = t 
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(in the limiting case where a(t ,  f )  = a(t),  we get <(t’, t )  = 
a(t)b(t’ - t)) .  The TES is then based on an expansion of 
x( t‘) into narrow pulses with uncorrelated coefficients, which 
justifies the interpretation of the TES parameter t as “time.” 
Note that the assumption that a( t ,  f )  is slowly varying with 
respect to f amounts to a “quasiwhiteness” property of ~ ( t ’ ) .  

With (17), the spectral correlation function Rx ( f i t  f z )  = 
E { X ( f l ) X * ( f 2 ) }  (which is related to the temporal correla- 
tion function R,(tl, t 2 )  by a 2-D Fourier transform) can be 
expressed as Rx(f1, f z )  = st $(t, f ~ ) $ * ( t ,  f z )  d t .  Hence, 
calculation of $(t, f )  given R,(tl, t 2 )  amounts to solving the 
factorization problem IkIkf = Rx, where Ik is the linear 
operator whose kernel is @ ( f ,  t )  = $(t, f ) .  Again, !I! always 
exists, but it is not unique; therefore, the TES as given by 
(19) is not unique either. 

C. Innovations System Interpretation 

We now establish a novel reformulation of the TES in terms 
of LTV innovations systems. In (lo), we have modeled x ( t )  
as the response of an LTV system H to stationary white noise 
n(t). Taking the Fourier transform of (10) with respect to t ,  
one reobtains (17) with $(t’, f )  = st H ( t ,  t ’ )e-JzTf t  d t  so 
that 

a(t,  f )  = $(i, f)e32.xft  

H ( t  + 7, t )e -J2TfT  d r  = &(t, f ) .  = I  
Hence, the amplitude function a( t ,  f )  can be interpreted as a 
time-varying transfer function &(t, f )  of H, which, however, 
is different from Zadeh’s function &(t, f )  arising in the case 
of the ES. With (19), the TES can be expressed as the squared 
magriitude of the new transfer function of the innovations 
system H: 

TES,(t, f )  = IZH(~,  f ) l z .  
Compared with (12), we see that the only difference between 
the ES and the TES is in the definition of the time-varying 
transffer function. This viewpoint will motivate the definition 
of the GES in Section V. 

The identity a ( t , f )  = Z ~ ( t , f )  suggests that & ( t , f )  
should be a smooth function of f as it was required for a( t ,  f ) .  
In addition, the interpretation of TES,(t, f )  via the transfer 
function of H is meaningful only if H acts as a weighting in 
the TF domain (i.e.* the TF shifts caused by H are negligible). 
This restriction was already encountered in the context of the 
ES and will be further considered in the next section. 

Iv.  UNDERSPREAD SYSTEMS AND hOCESSES 

We have argued above that a meaningful interpretation of 
the ES in terms of a process expansion into uncorrelated 
narrowband signals is restricted to quasistationary processes, 
while the interpretation of the TES in terms of an expansion 
into uncorrelated short pulses is restricted to quasiwhite pro- 
cesses. These restrictions correspond to the requirement that 
the transfer functions &(ti f )  and 2 ~ ( t ,  f )  be smooth with 
respect to t and f ,  respectively, and that the innovations system 
H act as a pure TF weighting in the sense that it introduces 

Fig. 1. 
system H. 

Effective support of the spreading function of a self-adjoint LTV 

negligible TF displacements. For later use, we will now discuss 
characterizations of the TF displacements of the innovations 
system and of the correlation structure of the resulting process. 

A. Underspread Systems 

by the generalized spreading function 1231, 1251 
The TF shifts caused by an LTV system H are characterized 

S ~ ) ( T ,  v) = / H ( ” ) ( t ,  r)e-jZTvt d t  (20) 
t 

with 

H(”)( t ,T)  = H ( t f ( i  - a ) r , t -  (ita).). 

Here, r and v denote time lag and frequency lag, respectively, 
and a is a real parameter. Since the magnitude of S$’(r, v) 
is independent of a, we will use the simplified notation 
ISH(T,V)I = lS$)(~,v)l. For given (r,v), ~ S H ( T , V ) /  in- 
dicates how much the TF-shifted input signal (S,,,z)(t) = 
x ( t  - 7)eJZTvt  contributes to the output signal [25]. It follows 
that the TF shifts caused by an LTV system are crudely 
characterized by the effective support of lS~(7, v) 1 .  Let us 
define the “displacement spread” OH [23], [24] as the area of 
the smallest rectangle RH (centered about the origin of the 
(T,  v) plane) containing the effective support of IS, (7, v) 1, 
as shown in Fig. 1. A system H is called underspread if 
OH << 1, meaning that I S ~ ( 7 , v ) l  is concentrated about the 
origin of the (7, v) plane so that H causes only small TF 
shifts. Furthermore, an underspread system H will be called 
strictly underspread if RH is oriented parallel to the 7 and v 
axes, such that Ar = TH and AV = VH, where Ar, AV, TH, 

and ZIH are defined in Fig. 1.  Here, OH = 4mVH so that 
a system is strictly underspread if 47HW << 1. Quasi-LTI 
systems with small frequency shifts (small V H )  and quasi- 
LFI systems with small time shifts (small TH)  are potentially 
strictly underspread systems. 

B. Underspread Processes 
Quasistationary processes have small spectral correlation, 

whereas quasiwhite processes have small temporal correla- 
tion. These two situations are generalized by the concept of 
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underspread processes. We first define the expected ambiguity 
function (EAF) [22], [23] of a nonstationary process ~ ( t )  as 

- 

’) =E{(S-T/2,-L’/2 z> ’ T / 2 , V / 2  

where again (ST,L’x)( t )  = x ( l  - T ) ~ J ’ ~ ’ ‘ .  The E M  describes 
the average correlation of all TF locations separated by r 
in time and by U in frequency. Noting that the E M  is the 
spreading function (with a = 0) of the correlation operator 

we are led to define the 
TF correlation spread o, of ~ ( t )  as the displacement spread 
of the correlation operator, i.e., oz = o~,. Then, a process 
~ ( t )  is underspread if oz << 1 [22], [23], which means that the 
EAF is concentrated about the origin of the (7, v)-plane, and 
hence, that components of z ( t )  that are sufficiently separated 
in the TF plane will be nearly uncorrelated. 

The effective support of the EAF can also be described by 
the quantities r, = T R ~  and U ,  = VR, (see Fig. l), and ~ ( t )  
will be called strictly underspread if the correlation operator 
R, is strictly underspread, i.e., 4rzv, << 1. Two potential 
special cases of strictly underspread processes are quasista- 
tionary processes (with small U,) and quasiwhite processes 
(with small 7,). 

The TF shifts caused by the innovations system H are 
related to the TF correlation structure of the associated process 
z ( t ) .  It can be shown [23] that the correlation spread of 
z ( t )  is bounded in terms of the displacement spread of H as 
o, 5 4 0 ~ .  Hence, an underspread innovations system implies 
an underspread process. Conversely, if z ( t )  is (strictly) under- 
spread, then it is not true that every innovations system H is 
(Strictly) underspread, even though a (strictly) underspread H 
can always be found (see Section VI). 

R,, that is, &(T,u )  = S R , ( ~ , v ) ,  (0) 

A 

A a 

V. THE GENERALIZED EVOLUTIONARY SPECTRUM 

A. Definition and Interpretation 
The expressions ES,(t, f )  = l Z ~ ( t ,  f ) l z  and TES,(t, f )  = 

l Z ~ ( t ,  f ) I 2  suggest an extension of the ES and TES. Indeed, 
the time-varying transfer functions Z H ( ~ ,  f )  and Z H ( ~ ,  f )  are 
just two special cases of a family of time-varying transfer 
functions known as generalized Weyl symbol [23], [25] and 
defined as 

Lg’(t ,  f )  = 1 H ( ” ) ( t , ~ ) e ~ ~ ~ “ ~ ‘  d r  

where H ( “ ) ( ~ , T )  has been defined in (20). The transfer 
functions underlying the ES and the TES are reobtained with 
a = 1/2 and a = -1/2, respectively, i.e., 

T 

&(t,  f )  = LEi2)(t, f )  and Z’H(~, f )  = L&’/”(t, f ) .  

We now introduce the generalized evolutionary spectrum 
(GES) as [21] 

GESp)(t ,  f )  6 ILg)( t ,  f ) I 2 .  (21) 

The GES comprises the ES and TES as special cases with 
a = 1/2 and Q = -1/2, respectively: 

ES,(~, f )  = G E S ~ / ~ ) ( ~ ,  f )  

ms,(t, f )  = GES:-~/~)(~,  f ) .  

The definition of the GES in (21) contains a twofold ambiguity 
corresponding to the choice of the innovations system H and 
of the parameter a. This will be discussed in Sections VI and 
VII. 

For a strictly underspread process, one can always find an 
innovations system H that is strictly underspread (see Section 
VI); here, the primary effect of H is a TF weighting, or 
equivalently, the TF shifts caused by H are small. Let us for 
the moment assume that the GES is based on this H. 

The average energy content of a process z ( t )  around a 
TF analysis point ( t , f )  can be measured by the physica2 
spectrum [4] P,( t , f )  = E(l(z,g(’>f))l2}, where g(tif)(t’) = 
g(t’ - t)eJ2.ft’ with g(t’) being a normalized “window” or 
“test function” that is real-valued, even, and concentrated 
about the origin of the TF plane (note that g(t’ 
normalized too and is properly concen 
W point ( t ,  f)). For a strictly undersp 
H, it is proved in Appendix A that 

G E S ~ ) ( ~ ,  f )  M ~ ( t ,  f )  (22) 
which shows that the GES is here physically meaningful. For 
a = 0, (22) holds even when H is (weakly) underspread. 
Hence, the GES with cr = 0 is meaningful for a wider class 
of processes (see Section VII). 

From the fact that the right-hand side of the approximation 
(22) is independent of a, it follows that the GES based on 
a strictly underspread innovations system is approximately 
independent of Q, i.e., GESF1)( t , f )  M GESp2) 
us compare two GES that are based on the same ( 
derspread) innovations system H but have different a values. 
It can then be shown (see Appendix B) that the difference 
A(t, f )  = GESpl)(t,  f )  - GESpZ)(t ,  f )  is bounded both in 
a pointwise and an Lz-norm sense: 

lA(t, f ) l  5 rlAaI(4THUH)3 @2{R~/2} 
(23) 

llAll I ~ ~ ~ I A ~ I ( ~ T H ~ H ) ~ / ~  tr{R,) 
where Aa = a1 - o l 2 , ~  and L/H have been defined in 
Fig. 1, tr{.} denotes the trace of an operator [27], and Ri’2 is 
the positive semidefinite, self-adjoint operator square root of 
R, . Hence, for a strictly underspread innovations system, the 
choice of the GES parameter a is not critical. This is not true 
for weakly underspread processes since here no innovations 
system with small TH- exists. 

The generalized spreading function introduced in Section 
IV can be shown [23], [25] to be the 2-D Fourier transform 
of the generalized Weyl symbol underlying the definition of 
the GES: 

For an underspread H, S$’(r, U )  is concentrated about the 
origin of the (7, U )  plane, and thus (24) implies that @)(t ,  f ) ,  
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and hence GESp)(t, f ) ,  is a 2-D lowpass function (i.e., 
a smooth function). In particular, a small spread of H in 
the v direction implies that L g ) ( t ,  f )  and GESe)(t ,  f )  are 
smooth with respect to t ,  whereas a small spread in the T 

direction implies that LE)@,  f )  and GESp)(t, f )  are smooth 
with respect to f .  These are the two situations allowing a 
meaningful interpretation of the ES and TES, respectively. 
This is consistent, as the response of a quasi-LTI system to 
stationary white noise is a quasistationary process, and the 
response of a quasi-LFI system to stationary white noise is a 
quasiwhite process. 

B. Properties 

In the following, we discuss some important properties of 
the GES. 

1) Consistency: For a stationary process, the GES can 
be shown to reduce to the PSD and to be independent of 
t ,  GESe)(t ,  f )  S,( f ) .  For a nonstationary white process, 
the GES reduces to the average instantaneous intensity and is 
independent of f ,  GES?)(t, f )  = q,(t). For a stationary white 
process with S,(f) = q z ( t )  NO, the GES is constant over 
the entire TF plane, GES?) (t ,  f )  = No. 

2)  Positivity: The GES is real-valued and nonnegative 

3) Self-Adjoint Innovations System: It can be shown that 
L k ” ) ( t , f )  = LJ;l“(t , f) ,  where H+ is the adjoint of H. 
Hence, the GES with parameters a and -a are identical for 
a self-adjoint innovations system H: 

G E S ~ ) ( ~ ,  f )  2 o. 

H = H+ =+ GES:-~)(~, f )  = G E S ~ ) ( ~ ,  f ) .  

In particular, H = H+ implies ES,(t, f )  = TES,(t, f ) .  Thus, 
even though the ES and TES are based on different expansion 
models, they will produce identical results if they are based on 
a sel€-adjoint innovations system (which can always be found; 
see Section VI). 

4)  Murginals: The ES has correct time marginals 

GESp/2)(t, f )  df = E{lz(t)12} 

while the TES has correct frequency marginals 

1 GES:-’12)(t, f )  d t  = E{lX(f)I2}. 

If (and only if) the innovations system is normal, HH+ = 
H+H, then both the ES and the TES will satisfy both marginal 
properties, i.e., we also have 1 GESLL/2)(t,f) dt =E{IX(f)I2} and 

GES$-’/’)(t, f )  df =E{lz(t)I2}. 

It can be shown that underspread systems are approximately 
normal [23]. 

FOK a # *1/2, the marginal properties will not be sat- 
isfied exactly, but they will be approximately satisfied for 
strictly underspread innovations systems. Indeed, the deviation 
between the time marginal of the GES and the expected 

A instantaneous power ~ , ( t )  = Jf G E S ~ ) ( ~ ,  f )  df-~{lz(t)l2) 
can be bounded as 

where TH and Q have been defined in Fig. 1. 
Similarly, the deviation between the frequency marginal 
of the GES and the expected spectral energy density 
A2(f) 2 J,GES?)(t,f) dt-E{IX(f)12} can be boundedas 

Note that the above bounds correctly reflect the fact that the 
ES (a  = l /2) has correct time marginals, while the TES 
(a  = -1/2) has correct frequency marginals. 

5)  Finite Support: From the marginal and positivity prop- 
erties, it follows that the GES with a = f 1 / 2  and normal H 
satisfies the following “strong” finite support properties: 

For la1 5 1/2 and normal H, the GES satisfies the following 
“weak” finite support properties: 

E{lz(t)12} = 0, t $! [ t l , t 2 1  ==+ 

E{lX(f)I2) = 0, f 4 [fl,f21 - GESf’(t, f )  = 0, t 4 [ti, t21 

GES?)(t, f )  = 0, f 4 [fl, f21.  

6) TF Sh@ and Scaling Covariance: Let GESp)(t, f )  be 
based on an innovations system H,. If ~ ( t )  is shifted in 
time by T and in frequency by v ,  i.e., Z ( t )  = (S,,,z)(t) = 
z( t  - T)eJ2?”‘t, then the correlation operator of the shifted 
process 5( t )  is Rj: = S,,,R,S:,, and a specijic innovations 
system of Z ( t )  is Hj: = S,,,H,S:,. If (and only if,) the 
innovations system used for calculating the GES of Z ( t )  is 
chosen as Hj: = Hj:, then the GES of the shifted process is 
an appropriately shifted GES 

By choosing the respective positive semidefinite innovations 
systems for both x ( t )  and 5(t)  (see Section VI), it is guaran- 
teed that He = Hj: so that the above “covariance property” 
will always be satisfied. In a similar manner, it can be shown 
that the GES will satisfy the covariance property with respect 
to a TF scaling 

if it is based on the positive semidefinite innovations system. 
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7)  LTV System: If z ( t )  is transformed by a positive 
semidefinite LTV system K with kernel K ( t ,  t‘) 

y(t) = (Kz)(t) = 1, K(t,t’)z(t’) dt’ 

then the correlation operator of the transformed process y ( t )  
is R, = KR,K = KH,H;K, where H, is an innovations 
system of ~ ( t ) .  For reasons to be explained in Section VI, 
we choose H, to be the positive semidefinite innovations 
system, and we look for the positive semidefinite innovations 
system H, of y ( t ) .  Let us assume that K and H, are 
jointly strictly underspread in the sense that the effective 
supports of their spreading functions are both bounded by 
the same rectangular region that is parallel to the 7 and v 
axes and whose area is much less then 1 (this requires that 
both systems K and H, are individually strictly underspread, 
i.e., 47H,1/H, << I and 47KVK << 1). It can then be 
shown that H, M K1/2H,K1/2 and Lg!,2HzKl,2(t, f )  M 

so that the GES of y(t) is 
L(”) K1,2 ( t ,  wk: ( t ,  m5g!!2 ( t ,  f )  = @(t,  f)@: ( t ,  f )  ~ 3 1 ,  

GESp)(t> f )  ILg!,2HzKl,2(ti f>l’ 
M ILl;)(t,f)Lg:(t>f)l2 
= l@)(t, f ) l z  G E S ~ ) ( ~ ,  f ) .  (2s) 

Thus, the GES of the output process is approximately equal 
to the GES of the input process multiplied by the squared 
magnitude of the generalized Weyl symbol of the LTV system 
K. This relation suggests to interpret the effect of K as a 
TF weighting characterized by ILg)( t ,  f )  1’. It generalizes the 
relation S,(f) = IG(f)12S,(f) obtained when a stationary 
process is transformed by an LTI system with transfer function 
G ( f )  and the relation q y ( t )  = Im(t)1’qX(t) obtained when a 
nonstationary white process is transformed by an LFI system 
with multiplier function m( t) .  

VI. THE FACTORIZATION PROBLEM 
For given correlation operator R, , the innovations systems 

H are defined by (1 1) or equivalently 

HH’ = R,. (26) 

The solution to this factorization problem is not unique. 
Indeed, if H is a valid innovations system satisfying (26), and 
if U is an arbitrary unitary operator (satisfying UU+ = I), 
then H = HU is an innovations system as well: HH+ = 
HUU+H+ = HH’ = R,. 

In the stationary case, the innovations systems H are time 
invariant and have identical transfer function magnitude. A 
similar situation exists in the nonstationary white case. How- 
ever, in the general nonstationary case, different choices of 
H will lead to different generalized Weyl symbol magnitudes 
and, hence, to different GES results. This ambiguity of the 
GES definition can be resolved by imposing certain constraints 
on H. For example, the Wold-Crame‘r ES [9], [lo] is obtained 
with a causal H. In this section, however, we will discuss the 
advantages of the positive semidefinite H. 

It is reasonable to adopt the “maximally underspread” 
innovations system H for which TF displacement efsects are 
minimized (see Section IV). This system primarily produces a 
TF weighting that can be described by the squared magnitude 
of the generalized Weyl symbol, which is the GES. This 
permits the interpretation of the GES as an average TF energy 
distribution and is also consistent with the conditions that 
Z ~ ( t , f )  and &( t , f )  be smooth with respect to t and f ,  
respectively. In the following, the maximally underspread H 
will be defined as the H minimizing the TF displacement 
radius 

- 

where T is an arbitrary normalization time constant and 

- ~ ~ 7 ’ l s H ( T ,  .)I2 d7 dv 

r‘ l l I & ( r ,  d r  civ 

(27) 

~ ~ v 2 1 . S K ( ~ ,  . ) I 2  d r  dv 
T A  
vH - l l l s H ( r ,  .)I2 d r  dv 

measure the extension of the spreading function 
v direction, respectively. The minimization of PH will be 
performed within the class of normal H (satisfying HH+ = 
HSH). A normal system is advantageous since here both 
marginal properties are satisfied by both the ES and the TES 
(see Section V-B). Any normal innovations system H allows 
a polar decomposition [27] 

where H, (satisfying H,H$ = R,) is the positive semidefi- 
nite, self-adjoint operator square root of R,, H, = R;I2, and 
U is a unitary operator constrained by the normality of H. 
The kernel of H, is 

M 

H p ( t ,  t’) = c .Jx,urc(t)uZ(t’) 
k = l  

where Xk 2 0 are the eigenvalues and U k ( t )  are the eigen- 
functions of the correlation operator R,. 

Since H, is fixed, the unitary factor U minimizing the TF 
displacement radius & remains to be chosen. It is shown in 
Appendix C that the solution to this problem is the identity 
operator up to a trivial phase factor that will be set to 1 
in the following, i.e., Uopt = I [30]. Thus, the innovations 
system with minimum TF displacement radius is the positive 
semidefinite root of R,: 

Hopt = H, = R;/’. 

We note that this maximally underspread innovations system 
will lead to a generalized Weyl symbol and, in turn, a GES 
that is maximally smooth (cf. Section V-A). 

Using the positive semidefinite root of R, as innovations 
system has another important advantage. Consider a unitary 
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transformation of the process, i.e., ?(t) = (Uz)(t) ,  where 
UU+ = I. The correlation operator of the new process Z ( t )  is 
R, = UR,U+, and its positive semidefinite root is given by 
H, = UH,U+, where H, is the positive semidefinite root of 
R,. This relation between the innovations systems of z( t )  and 
Z ( t )  was seen in Section V-B to guarantee the shift covariance 
and scaling covariance properties of the GES when U is a TF 
shift operator and TF scaling operator, respectively. Positive 
semidefinite factorization is thus consistent with unitary signal 
transformations. This is not generally true for other types of 
factorizations. 

VII. THE WEYL SPECTRUM 

A. Definition and Interpretation 

The definition of the GES in Section V contained a twofold 
ambiguity, namely, the choice of the parameter a and that 
of the innovations system H. We now consider the case 
cr = 01, where the geineralized Weyl symbol reduces to the Weyl 
symbol, L H ( ~ ,  f )  == L g ) ( t ,  f )  [31]-[34]. Furthermore, for 
reasons explained in the previous section, we adopt the positive 
semidefinite root H, = RS” of the correlation operator R, as 
the innovations system. These two choices result ia a member 
of the GES family given by3 

WS,(t , f )  fi GESLo)(t,f)l = L & ( t , f )  
H=H, 

This time-varying power spectrum will be called the Weyl 
spectrum (WS) [21]. Because it is the GES with a = 0 that 
uses the positive semidefinite innovations system, the WS is 
uniquely defined for given R,. It has important advantages 
over all other GES members obtained for a # 0 and/or 
H # R;/’: 

The approximation GESp)(t ,  f )  M E{1(z,g(t>f))12} (see 
Section V-A) iimparting an energetic interpretation to the 
GES holds for Q # 0 only if the process z ( t )  is strictly 
underspread. In contrast, the WS will satisfy the above 
approximation even if ~ ( t )  is merely weakly underspread, 
i.e., if ~7, << I but not 4 7 % ~ ~  << 1. Hence, the WS is 
physically meaningful for a broader class of processes. In 
particular, the WS is much better suited to processes with 
“chirp components” (appearing as slanted structures in 
the TF plane) than is the ES or the TES. Some examples 
will be shown in Section VIII. 
The WS is based on the positive semidefinite innovations 
system that introduces minimal TF displacement effects. 
This favors the interpretation of the WS as a proper 
time-varying power spectrum. In addition, the use of the 
positive semidefinite innovations system is a prerequisite 
€or covariance properties with respect to unitary signal 
transformations such as TF shifts or TF scalings (see 
Section VI). 

Note that the Weyl symbol of Self-adjoint operators is real-valued so that 
ILH,(t, f)I2 = Lhp( t?  f). 

The WS is based on the Weyl symbol (generalized Weyl 
symbol with Q = 0) whose symmetric structure leads 
to important advantages over generalized Weyl symbols 
with a # 0. This entails corresponding advantages of the 
WS over other members of the GES family. In particular, 
the WS satisfies certain covariance properties that are not 
satisfied by the GES with Q # 0, as detailed further 
below. 

B. Properties 
We now discuss the properties of the WS in more detail. 

Since the general properties of the GES have been discussed 
in Section V-B, we concentrate on WS properties that are not 
satisfied by other GES members. 

1) TF Coordinate Transforms: There exist a class of 
unitary signal transformations U corresponding to area- 
preserving, affine TF coordinate transforms ( t ,  f )  -+ (at+bf- 
7, et + df - U )  with det(z 1) = ad - bc = 1. Specific signal 
transformations U depend on the TF coordinate transform 
parameters a, b , c , d , 7 ,  and U [35]. The WS satisfies the 
following general covariance property with respect to the 
unitary transformations U:  

q t )  = (Ux)(t) * 
WS,(t,f) = WS,(at + b f  - 7,ct  + df - U ) .  (29) 

Important special cases are listed in the following. For any 
set of parameters a , b , c , d , ~ ,  and U with ad - be = 1, the 
corresponding signal transformation U can be composed of 
some of these special transformations. 

TF Shifts: 

TF Scalings: 

q t )  = m z ( a t )  * WS,(t,f) = ws, 

q t )  = eJT‘Ct2x(t) =$ WS,(t, f )  = WS,(t, f - et) .  

Chirp Multiplication: 

Chirp Convolution: 

Fourier Transform: 

Z ( t )  = f i x ( & )  =+ WS,(t,f) = ws, 

We emphasize that the GES with a # 0 satisfies only the 
covariance properties with respect to TF shifts and TF scalings 
provided that the innovations systems of ~ ( t )  and 5(t)  are 
related as H, = UH,U+ (see Section V-B). The general 
covariance property (29) will not be satisfied for a # 0. 
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2) Marginals: For the important class of (weakly) under- 
spread processes, the marginal properties will be satisfied by 
the WS in an approximate manner. Specifically, the deviation 
between the time marginal of the WS and the expected 
instantaneous power a1(t) 2 sf WS,(~, f )  - ~ { l z ( t ) l z }  
can be bounded as 

lA,(t)l 5 &AV c2 112 tr2{Ri/2} 
Rz 

IlAlll L 2 . i r a  cR;/2 tr{R,} 

and the deviation between the frequency marginal 
of the WS and the expected spectral energy density 
A,(!) 2 s, WS,(t, f )  d t  - E{lX(f)I2} can be bounded as 

lA2(f)l I8.irA.r ci1,2 tr2{R$l2} 

IlA2ll 5 2 ~ 6  r R 1 / 2  tr{R,}. 

Here, AV and AI- have been defined in Fig. 1. Since e R ; / 2  << 
1 for underspread processes, these bounds imply the approxi- 
mate validity of the marginal properties. Note that for the GES 
with a f 0, approximate validity of the marginal properties 
required z ( t )  to be strictly underspread in general (see Section 
V-B). 

3)  Superposition Law: Let 

k = l  

be the sum of N uncorrelated, zero-mean processes z k ( t ) .  

Since RZkrZ1(t,t’) = E{xk(t)x;( t ’ )}  = 0 for k # I ,  one 
has R, = E:=’=, R,, . In general, there is no simple way to 
express an innovations system of x ( t )  in terms of innovations 
systems of the component processes z k ( t ) .  However, if the 
realizations of the xk ( t )  belong to orthogonal signal spaces, 
then it can be shown that the positive semidefinite root of R, 
(cf. Section VI) is equal to the sum of the positive semidefinite 
roots of the R,, , i.e., Hp,, = Er=’=, Hp,,,,. By the linearity 
of the Weyl symbol, we then obtain 

r N  

N 

k = l  
N N  

k = l  1 = 1  
k# l  

With the assumption that the realizations of the processes 
x k ( t )  are TF disjoint (which then also implies that they 
belong to orthogonal signal spaces [36]), the cross terms 
~LH*,+ ,  ( t ,  ~ ) L H , , , ,  ( t ,  f )  with k 1 vanish since the 
LH,,,, ( t ,  f )  do not overlap. We then obtain the superposition 
law 

# 

N 

wsX( t>  f )  = wsZk (t ,  f ) ’  (30) 
k = l  

In practice, the zk(t)  will typically be effectively TF disjoint 
rather than exactly TF disjoint, in which case (30) is valid in 
an approximate sense. 

4 )  Deterministic Signal Components: Let us now assume 
that zk(t)  = a k s k ( t ) ,  i.e., 

N 

z ( t )  = C c v k S k ( t )  (31) 
k=l 

with deterministic, orthonormal signals s k  ( t )  and uncorrelated, 
zero-mean random factors Qk with powers p i  = E{lak12}.  
The positive semidefinite innovations system of x k  ( t )  is given 
by Hp,,,(t,t’) = p ~ s k ( t ) s ; ( t ’ ) .  If the s k ( t )  are TF disjoint in 
the sense that their Wigner distributions W,, ( t ,  f )  [36]-[40] 
do not overlap, then we obtain with (30) 

N 

k = l  

5 )  Chirp Processes: The WS feature 
tration for “chirp processes” correspo 
tures in the TF plane. Let us consider a chirp process x ( t )  = 
cvtu(t)PCt2 with zero-mean random factor cv and determinis- 
tic envelope w( t ) .  The WS is obtained as 

WS,(t,f) = p:W:(t,f - et)  

where W,(t, f )  is the Wigner distribution of w( t ) .  This result 
shows that the WS of a chirp process is well concentrated 
along the instantaneous frequency f,(t) = et. This can be gen- 
eralized to multicomponent chirp signals whose components 
are approximately nonoverlapping in the TF plane [see (31)l. 
Numerical examples illustrating these results are provided in 
Section VIII. 

C. Comparison with the Wigner-%le Spectrum 

The Wigner-Ville spectrum (WVS) [1]-131 is an important 
time-varying spectrum defined as the Weyl symbol of the 
correlation operator 

The WVS satisfies many desirable properties; in particular, it 
is unitarily related to the correlation function R, ( t l ,  t z ) ,  and 
it satisfies both marginal properties. However, it may assume 
negative values [4 11. 

z ( t ) ,  the WS and 
WVS yield very similar results. Indeed, for R, underspread, 
it can be shown (using techniques similar to those used in 
Appendices A and B) that L i ; 1 2 ( t ,  f )  M L R , ( ~ ,  f ) ,  i.e., 
taking the square root of the correlation operator is approx- 
imately compensated by taking the square of the resulting 
Weyl symbol. Hence 

In the case of an underspread pr 

wsz(t,f) = Lk;/2(t,f) LR,(t, f )  = Wz(t, f ) .  

Note that the approximate equivalence of the WS and WVS 
for an underspread process implies that the WVS of an 
underspread process is approximately nonnegative. 
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Fig. 2. 
Magnitude of EAF (a hatched square of area I is included in this and subsequent plots to allow an assessment of the process’s underspread property). 

Synthetic process consisting of three “parallel” chirp signals. (a) WS. (b) ES/TES with positive semidefinite innovations system. (c) WVS. (d) 
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Fig. 3.  
system. (c) WVS. (d) EAF magnitude. 

Synthetic process consisting of three “nonparallel” chirp signals and a Gaussian signal. (a) WS. (b) ES/TES with positive semidefinite innovations 

Although the WS and WVS are similar for underspread 
processes, they may be quite different otherwise. Let us 
reconsider the multicomponent process in ( 3  1) consisting 
of deterministic, TF disjoint signals Sk ( t )  with statistically 
independent random factors a k .  WS and WVS are here 
obtained as [cf. (3%)] 

N 

k=l 
N 

k l  

We see that the WVS is given by a weighted superposition 
of the Wigner distributions of the individual components, 
whereas in the WS, these Wigner distributions are squared. 
This squaring entails a sharper representation of the process 
components in the WS (see Section VIII). 

VIII. NUMERICAL SIMULATIONS 

We now apply the WS and GES to the TF analysis of 
synthetic and real-data processes. The duration of all processes 
considered is 128 s,amples. Our first example, which is shown 
in Fig. 2, illustrates the superiority of the WS over other 
memlbers of the GES family in the case of chirp processes. The 
(synthetic) random process under analysis is of the type (31); it 
consists of three TFT-shifted windowed “parallel” chirp signals 
s k ( t )  = w(t - t k ) e  yTc(t-tk)zeJ2Tfkt with identical chirp rates 
c and statistically independent amplitude factors cXk with equal 

average powers. The EAF in part (d) shows that this process 
is reasonably underspread but not strictly underspread. As a 
consequence, the WS performs satisfactorily, whereas the ES 
(simultaneously the TES due to the use of the positive semidef- 
inite innovations system) totally fails to resolve the three 
chirp components. The WVS, which is shown for comparison, 
performs satisfactorily as well. Fig. 3 shows that the good 
performance of the WS extends to the case where the overall 
process is not underspread but all process components are TF 
disjoint and individually underspread. The process underlying 
Fig. 3 consists of three windowed “nonparallel” chirp signals 
s k ( t )  = w(t)eJTckt2 (with different chirp rates Ck) and a 
Gaussian signal, again with statistically independent amplitude 
factors a k .  Note that the E S m S  does not correctly indicate 
the frequency modulation of the three chirp components. 

Whereas the WS and the ES/TES yielded dramatically 
different results in Figs. 2 and 3, Fig. 4 shows that these 
spectra become very similar for strictly underspread processes. 
The process under analysis, whose correlation function was 
constructed using the TF synthesis method proposed in [42], 
consists of three uncorrelated random components appearing 
as smooth structures in the TF plane. The EAF shows that the 
process is indeed strictly underspread. The strong similarity 
of the WS and the ES/TES corroborates the approximate Q- 

invariance of the GES in the case of strictly underspread 
processes (see Section V-A). The WS and ES/TES are also 
very similar to the WVS, as predicted in Section VII-C. 

Fig. 5 corroborates the approximation (25) for the GES of a 
filtered process. The three-component process ~ ( t )  from Fig. 4 



1530 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL 45, NO 6, JUNE 1997 

Fig 4 Strictly underspread synthetic process. (a) WS (b) ES/TES with posibve semdefinite innovations system (c) WVS (d) EAF magnitude. 

I f  

. .  - -  
spreading finctibn of K .  

was filtered by an LTV system K in order to isolate the middle 
component. Comparing the spreading function of K with the 
EAF of ~ ( t )  [which is shown in Fig. 4(d)], we see that z ( t )  
and K are jointly underspread, which is the condition for the 
approximation (25). Fig. 5 shows that the WS of the output 
process (Kz)(t) is indeed approximately equal to the WS of 
the input process z ( t )  multiplied by the squared Weyl symbol 
of the LTV system K.  Similar results (which are not shown) 
are obtained for the ES/TES. 

We finally applied the WS, ES, and TES to cylinder pressure 
signals measured in the course of combustion cycles in a car 
engine4 [43], [44]. This process is well described by the mul- 
ticomponent process model discussed in Section VII-B [see 
(31)]. The signal corresponding to a given combustion cycle 
consists of several resonant components (due to knocking). 
Within one cycle, the resonance frequencies decrease with 
time due to the decreasing gas temperature. All spectra shown 
are based on an estimate of the process’ correlation function 
that was derived from 149 realizations corresponding to 149 
different combustion cycles. Fig. 6 shows that the resulting 
WS is considerably more concentrated than the EWES.  In 
particular, the ES/TES does not clearly indicate the decrease 
of the resonance frequencies. Fig. 6 also shows that the results 
obtained with the positive semidefinite innovations system are 
much better than those obtained with the causal innovations 
system. Finally, it is seen that the WS shows better TF 
concentration and contains smaller interference terms than the 
WVS . 

4We are grateful to D. Konig and J F. Bohme and to Volkswagen for 
making these data accessible to us 

Fig. 5. LTV filtering of the strictly underspread process from Fig 4. (a) Squared Weyl symbol of LTV filter K (b) WS of input process [see Fig. 4(a)] 
multiplied by squared Weyl symbol of K (approximation to WS of filter output process). (c) Exact WS of filter output process. (d) Magnitude of 

IX. CONCLUSIONS 
We have introduced and studied a family of time-varying 

spectra called generalized evolutionary spectrum (GES). While 
two prominent special cases of the GES are the classical 
evolutionary spectrum and the recently introd 
evolutionary spectrum, we have shown that another special 
case of the GES-the novel Weyl spectrum (WS)-features 
significant advantages over all other GES members. 

Based on the definition of the GES in terms of an in- 
novations system of the process under analysis, we have 
furthermore shown the importance of an underspread property 
for a satisfactory interpretation of the GES as a time-varying 
spectrum. Here again, the WS is advantageous since it merely 
requires the process to be underspread, whereas the other GES 
members require the process to be strict1 rspread. 

We have also shown and verified by ations that in 
the underspread case, the WS is approximately identical to 
the Wigner-Ville spectrum; for deterministic s 
nents, however, it is more concentrated than the 
spectrum. 

APPENDIX A 
PROOF OF APPROXIMATIO 

In order to prove5 (22), we first note tha f )p}  = 
E{J(Hn,g(t>f))12} with g( t ’ f ) ( t ’ )  = g(t’ - ’ can be 

5The basic technique of proof used here and also in Appendix B has been 
developed in [23]. We note that other bounds and approximations mentioned 
in this paper can be derived in a similar manner. 
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Fig. 6.  
innovations system with (d) a = 0, (e) a = 1 /2 ,  and (f) a = -1/2. (g) WVS. (h) EAF magnitude. 

Cylinder pressure process. (a) Typical process realization. (b) WS. (c) ES/TES with positive semidefinite innovations system. (d)-(f) GES with causal 

refornnulated as be bounded as 

where: A,(r, v) is the ambiguity function [40], [451 of g ( t ) .  

. 11 - Ag(,#, y’)e32a~(a)(T,Y,T’,,’) I dr dv] dr‘ dv‘ 
Similarly, using (24), the GES can be written as 

GESp)(t, f )  = ILg)(t ,  f ) 1 2  

where we have used ISH(T,V)~ 5 tr{RL’2) [23]. Since the = 1 l1, l, v)s&(r’, 
e’j2‘7r((T’-T)f-(Y’-U)t) domain of integration is very concentrated around the origin, 

we use the approximation A,(r, v) M 1 [a more rigorous 
but lengthier derivation could be given by using a higher 
order Taylor expansion of A,(T, v) around (0,O)l. Furthermore, 
using 

r du dr’ dv’. eJ27TCY(T‘L’’-TL’) d 

The difference &(t,  f )  = E{ [(x, ~ ( ~ 1 f ) ) l ~ )  - GESp)(t ,  f )  
can hence be expressed as 

where $ ( C Y )  (7, v, r’, V I )  = r’v - 7 ~ ’  - a(rv’ + r’v + r’v’) and 
the domains of integration are (7, v) E [-m, 4 x [-m, m] 
and (T’,  v’) E [-2r~, 27H] x [-am, 2-1 since H is assumed 
to be strictly underspread. The magnitude of Ao(t, f )  can now 

(on the integration domain) leads, after integrating, to the final 
bound l A ~ ( t ,  f ) l  5 E with E M 8 ~ ( 1  + 21al)a& tr2{R?}. 
This bound approaches zero with decreasing spread OH of the 
innovations system, which proves the approximation (22). 
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APPENDIX B 
PROOF OF THE BOUNDS (23) 

The difference between two GES based on the same inno- 
vations system H can be expressed as 

~ ( t ,  f )  = G E S ? ~ ) ( ~ ,  f )  - G E S ? ~ ) ( ~ ,  f )  

1 . [l - e j 2 ~ A c r ( ~ ‘ ~ ‘ - ~ v )  

,32T[ (v -Y ‘ ) t - (T -T‘ ) f l  d r dv dr’ dv’ 

where we have used (24) and the relation S g 2 ) ( r , v )  = 
S g l ) ( r ,  v)e32TTvA“ with Aa = a1 - a2. The magnitude of 
A(t,  f )  can then be bounded as 

I1 - ej27rAff(T‘v‘-Tv) I d r  dv dr‘ dv‘ 

. 1 sin[nAa(r’v’ - rv)] I d r  dv dr’ dv’. 

We now assume that H is strictly underspread, which means 
that the (effective) support of S$’(r, v) is enclosed by the 
rectangle [ -TH, 7 - ~ ]  x [ -VH , UH], which limits the domain of 
integration accordingly. Using I sin xi 5 1x1 and the fact that 
1~’v’ - rvI 5 2THvH within the domain of integration, we 
further obtain 

TH vH 

lA(t) f ) l  5 n/Aal  47HvH lTH LvH .)I dr dv 

TH VH 

’ LTH I,,, ISH(r’, v’)l d7’ dv’. 

Using (SH(T, v)] I tr{Rk12} [23], it follows that 
Tn VH lT,, lvH ISH(r,v)l dr dv 

This finally yields the first bound in (23) lA(t, f ) l  5 

We next consider the L2-norm of A(t,  f ) .  With (24) and 
T /  ACr I ( 4 T ~ m ) ~ t r ’ {  R;l2}. 

Schwarz’ inequality, we obtain 

where the relation Sg2)(r, U )  = S$l’(r, v)eJ27r“va” has 
been used. With sin2 x 5 x2  and the fact that 1rvSr’vfrv’I 5 
8733% within the domain of integration, we further obtain 

2TH 2 V H  

/27H 
1 I A I I 5 16T2 (A a )  (4TH V H  ) 

]SH(T’, d)I2 dr’ dv’ d~ dv 
. K: Lv: l 2  

= 64.rr2 ( A Q ) ~  ( 4 r ~ v ~ ) ~ t r ~  { R,} 

where we have used sT sv I S ~ ( r , v ) l ~  dr dv = llH1I2 = 
tr{R,}.This proves the second bound in (23). 

APPENDIX C 
MINIMIZATION OF THE DISPLACEMENT RADIUS 

Following [30], we shall minimize the squared TF displace- 

ment radius & = $ +T2z with rA and v& defined in (27), 
under the side constraint of a normal innovations system H: 

__ - - 

Hopt = a arg min pH. 2 

HH+ =H+H 

We use the polar decomposition (28) H = H,U, where 
H, = RA/’. The kernel of H, is 

k = l  

where XI, and u k ( t )  are the (known) eigenvalues and eigen- 
functions, respectively, of R,. Since H is assumed normal, 
the kernel of the unitary operator U must be of the form 

00 

U(t , t ’ )  = ej“”ul,(t)u;(t’) 
k=l 

with arbitrary cpk. Hence, the kernel of the innovations system 
H = H,U is 

00 

H(t , t ’ )  = .Jxrce”%k(t)U;( t ’ ) .  (33) 
k = l  

Since the X k  and u k ( t )  are given, our minimization is only 
with respect to the eigenvalue phases pk. 

We first consider the minimization of z. The denom- 
inator of r& [see (27)] is sT sv I S ~ ( r , v ) 1 ~  dr dv = st s,, IH(t,t’)I2 d t  dt’ = x k ,  which is independent 
of the jDk.  Hence, it suffices to minimize the numerator of 

- 
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- TA, which can be rewritten as 

/ / r 2 / S ~ ( r ,  . ) I 2  d r  dv = ( t  - t’)21H(t,t’)12 d t  dt’ 
r v  441 

= 11, t21H(t,t’)I2 d t  dt’ 

- 2&qt,t’)l2 d td t ’  

+ 11, t’2IH(t,t’)12 d t  dt’. 

The fiirst and the last term can again be shown to be indepen- 
dent of the cpk. Thus, our minimization problem reduces to 
the miaximization of the quantity 

M == // tt’lH(t,t’)I2 d t  dt’ 

which, after a few manipulations using the eigendecomposition 
(33), can be written as 

t t’ 

0 0 0 0  

k=l1=1 

with m~ == l l tuk( t )ur( t )  d t  2 0. l 2  
Since mk~ 2 0, M is maximized for cos(cpk - c p l )  = 1, 
which implies that all cpk are identical, i.e., cpk = cpo, where 
cpo is arbitrary. Inserting .- in (33), we see that the optimum 
system minimizing *r& is given by Hopt = ejqO H, . The same 
solutilon is obtained when is minimized instead of z, 
and thus, Hopt minimizes the squared TF displacement radius 

REFERENCES 
[I] Vi‘. Martin and P. Flandrin, “Wigner-Ville spectral analysis of nonsta- 

tionary processes,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 
33, pp. 1461-1470, 1985. 

[2] P. Flandrin, “Time-dependent spectra for nonstationary stochastic pro- 
c’esses,” in Time and Frequency Representation of Signals and Systems, 
G. Longo and B. Picinbono, Eds. Vienna, Austria: Springer, 1989, pp. 
69-124. 

[3] P. Flandrin and W. Martin, “The Wigner-Ville spectrum of nonstation- 
ary random signals,” in The Wigner Distribution-Theory and Applica- 
tions in Signal Processing, W. Mecklenbrauker and F. Hlawatsch, Eds. 
Amsterdam, the Netherlands: Elsevier, 1997, pp. 21 1-267. 

[4] Vi‘. D. Mark, “Spectral analysis of the convolution and filtering of non- 
stationary stochastic processes,” J .  Sound Vib., vol. 11, no. 1, pp. 19-63, 
1970. 

[5] M. B. Priestley, “Evolutionary spectra and non-stationary processes,” J .  
Roy. Stat. Soc. B, vol. 27, no. 2, pp. 204-237, 1965. 

[6] --, “Power spectral analysis of non-stationary random processes,” 
J .  Sound. Vib., vol. 6, pp. 86-97, 1967. 

[7] --, Spectral Analysis and Time Series. London, U.K.: Academic, 
1981. 

[8] R.. M. Loynes, “On the concept of the spectrum for non-stationary 
processes,” J .  Roy. Srat. Soc. B, vol. 30, no. 1, pp. 1-30, 1968. 

[9] D. Tjestheim, “Spectral generating operators for non-stationary pro- 
csesses,” Adv. Appl. Prob., vol. 8, pp. 831-846, 1976. 

[lo] G. MClard, “PropriCtCs du spectre Cvolutif d’un processus non- 
stationnaire,” Ann. Inst. H. Poincari B, vol. XIV, no. 4, pp. 41 1 4 2 4 ,  
1978. 

[1 11 F. Battaglia, “Some extensions of the evolutionary spectral analysis of 
a stochastic process,” Bull. Unione Matematica Italiana, vol. 16-B, no. 
5, pp. 115411166, 1979. 

I1 21 G. MClard and A. de Schutter-Herteleer. “Contributions to evolutionary - -  
spectral theory,” J. Roy. Stat. Soc. B, vol. 10, pp. 41-63, 1989. 

[13] J. K. Hammond, Y. H. Tsao, and R. F. Harrison, “Evolutionary spectral 
density models for random processes having a frequency modulated 
srructure,” in Proc. IEEE ICASSP, Boston, MA, 1983, pp. 261-264. 

[14] J. K. Hammond and R. F. Harrison, “Wigner-Ville and evolutionary 
spectra for covariance equivalent non-stationary random processes,” in 
Proc. ZEEE ICASSP, Tampa FL, vol. 3, Apr. 1985, pp. 1025-1028. 

[15] A. S. Kayhan, L. F. Chaparro, and A. El-Jaroudi, “Wold-Cramer 
evolutionary spectral estimators,” in Proc. 1992 IEEE-SP Int. Symp. 
Time-Frequency Time-Scale Analysis, Victoria, B.C., Canada, Oct. 1992, 

[ 161 K. Riedel, “Optimal data-based kernel estimation of evolutionary spec- 
tra,” IEEE Trans. Signal Processing, vol. 41, pp. 2439-2447, July 1993. 

[17] S. I. Shah, L. F. Chaparro, and A. S. Kayhan, “Evolutionary maxi- 
mum entropy spectral analysis,” in Proc. IEEE ICASSP-94, Adelaide, 
Australia, Apr. 1994, vol. IV, pp. 285-288. 

[I81 A. S. Kayhan, A. El-Jaroudi, and L. F. Chaparro, “Evolutionary pe- 
riodogram for nonstationary signals,” IEEE Trans. Signal Processing, 
vol. 42, pp. 1527-1536, June 1994. 

[ 191 Y. Grenier, “Parametric time-frequency representations,” in Traitement 
du SignaVSignal Processing, J. L. Lacoume, T. S. Dnrani, and R. Stora, 
Eds. 

[20] C. S. Detka and A. El-Jaroudi, “The transitory evolutionary spectrum,” 
in Proc. IEEE ICASSP, Adelaide, Australia, vol. IV, Apr. 1984, pp. 
289-292. 

[21] G. Matz, F. Hlawatsch, and W. Kozek, “Weyl spectral analysis of 
nonstationary random processes,” in Proc. IEEE UK Symp. Applicu- 
tions Time-Frequency Time-Scale Methods, Aug. 1995, Univ. Warwick, 
Coventry, U.K., pp. 120-127. 

[22] W. Kozek, F. Hlawatsch, H. Kirchauer, and U. Trautwein, “Correlative 
time-frequency analysis and classification of nonstationary random 
processes,” in Proc. 1994 IEEE-SP Int. Symp. Time-Frequency Time- 
Scale Analysis, Oct. 1994, Philadelphia, PA, pp. 417420. 

[23] W. Kozek, “Matched Weyl-Heisenberg expansions of nonstationary en- 
vironments,” Ph.D. dissertation, Vienna Univ. Technol., Vienna, Austria, 
Mar. 1997; also appeared as Tech. Rep. 96A, NUHAG, Dept. Math., 
Univ. Vienna, Sept. 1996. 

[24] ~, “On the transfer function calculus for nnderspread LTV chan- 
nels,” IEEE Trans. Signal Processing, vol. 45, pp. 219-223, Jan. 1997. 

[25] -, “On the generalized Weyl correspondence and its application 
to time-frequency analysis of linear, time-varying systems,” in Proc. 
IEEE-SP Int. Symp. Time-Frequency Time-Scale Anal., Victoria, B.C., 
Canada, Oct. 1992, pp. 167-170. 

1261 A. Papoulis, Probability, Random Variables, and Stochastic Processes, 
3rd ed. 

1271 A. W. Naylor and G. R. Sell, Linear Operator Theory in Engineering 
and Science, 2nd ed. 

1281 H. CramCr, “On some classes of nonstationary stochastic processes,” in 
Proc. 4th Berkeley Symp. Math. Stat. Prob., 1961, vol. 2, pp. 57-78. 

1291 L. A. Zadeh, “Frequency analysis of variable networks,” Proc. IRE, vol. 
76, pp. 291-299, Mar. 1950. 

1301 F. Hlawatsch and W. Kozek, “Time-frequency weighting and displace- 
ment effects in linear, time-varying systems,” in Proc. IEEE ISCAS, San 
Diego, CA, May 1992, pp. 1455-1458. 

[31] W. Kozek, “Time-frequency signal processing based on the 
Wigner-Weyl framework,” Signal Processing, vol. 29, no. 1, pp. 
77-92, Oct. 1992. 

[32] G. B. Folland, Harmonic Analysis in Phase Space. Princeton, NJ: 
Princeton Univ. Press, 1989. 

[33] R. G. Shenoy and T. W. Parks, “The Weyl correspondence and time- 
frequency analysis,” IEEE Trans. Signal Processing, vol. 42, pp. 
318-331, Feb. 1994. 

[34] A. J. E. M. Janssen, “Wigner weight functions and Weyl symbols of 
nonnegative definite linear operators,” Philips J.  Res., vol. 44, pp. 7 4 2 ,  
1989. 

[35] -, “On the locus and spread of pseudo-density functions in the 
time-frequency plane,’’ Philips J.  Res., vol. 37, pp. 79-110, 1982. 

[36] F. Hlawatsch and P. Flandrin, “The interference structure of the Wigner 
distribution and related time-frequency signal representations,” in The 
Wigner Distribution-Theory and Applications in Signal Processing, W. 
Mecklenbrauker and F. Hlawatsch, Eds. Amsterdam, the Netherlands: 
Elsevier, 1997, pp. 59-133. 

[37] T. A. C. M. Claasen and W. F. G. Mecklenbrauker, “The Wigner distri- 
bution-A tool for time-frequency signal analysis; Part I: Continuous- 
time signals,” Philips J. Res., vol. 35, no. 3, pp. 217-250, 1980. 

[38] L. Cohen, Time-Frequency Analysis. Englewood Cliffs, NJ: Prentice- 
Hall, 1995. 

[39] P. Flandrin, Temps$+quence. Paris, France: Hermks, 1993. 
[40] F. Hlawatsch and G. F. Boudreaux-Bartels, “Linear and quadratic time- 

frequency signal representations,” IEEE Signal Processinfi Mag., vol. 9, 

pp. 115-118. 

Amsterdam, the Netherlands: North Holland, 1987. 

New York: McGraw-Hill, 1991. 

New York: Springer, 1982. 

pp.*21-67, Apr. 1992. 
1411 P. Flandrin, “On the positivity of the Wigner-Ville spectrum,” Signal 

Processing, vol. 11, no. 2, pp-. 187-189, i986. 



1534 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 6, JUNE 1997 

[42] F. Hlawatsch and W. Kozek, ‘Second-order time-frequency synthesis 
of nonstationary random processes,” IEEE Trans Inform. Theory, vol 

Franz Hlawatsch (M’88), for a photograph and biography, see p 315 of the 
Febmaw 1997 issue of this TRANSACTIONS 

41, pp. 255-267, Jan. 19$5 
1431 D Konir and J F Bohme, “Application of cyclostationary and time- - -  _ _  

frequency signal analysis to car engine diagnosis,” Proc. IEEE ICASSP, 
Adelaide, Australia, vol. IV, Apr. 1994, pp. 149-152. 

[44] D. Konig, Analyse nichtstationurer Triebwerkssignale insbesondere 
solcher klopfender Betriebszustande. Diisseldorf, Germany: VDI- 
Verlag, 1996. 

[45] P. M. Woodward, Probability and Information Theory with Application 
10 Radar. London, U.K.: Pergamon, 1953. 

. .  
methods. communication with emphasis on statistical concepts. 


