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A Statistical Discrete-Time Model
for the WSSUS Multipath Channel

Peter Hoeher, Member, IEEE

Abstract— The computation of the tap-gains of the discrete-
time representation of a slowly time-varying multipath channel
is investigated. Assuming the channel is wide-sense stationary
with uncorrelated scattering (WSSUS), a known Monte Carlo-
based method approximating the given scattering function (which
fully determines the WSSUS channel) is extended by including
filtering and sampling. The result is a closed-form solution for the
tap-gains. This allows the efficient simulation of the continuous-
time channel with, e.g., only one sample per symbol, and without
explicit digital filtering. Finally, further advantages and remarks
are indicated.

I. INTRODUCTION

UNDAMENTALLY, mobile radio communication chan-

nels are time-varying multipath channels. Since the per-
formance of digital radio communication systems is strongly
affected by multipath propagation in the form of scattering,
reflection, and refraction, it is necessary to investigate their sta-
tistical behavior, which leads to “suitable” stochastic channel
models.

The simplest nondegenerate class of processes which ex-
hibits uncorrelated dispersiveness in time delay and Doppler
shifts is known as the “wide-sense stationary uncorrelated
scattering” (WSSUS) model introduced by Bello [1], [2],
[3, ch. 7.1]. A linear superposition of uncorrelated echos is
assumed, and wide-sense stationarity (at least short term). This
simple analog channel model is fully determined by a two-
dimensional scattering function in terms of the echo delay 7
due to multipath, and the Doppler frequency fp due to the
vehicle movement.

We will further assume that the number of uncorrelated
paths is sufficiently large. Then, the quadrature components of
the impulse response are Gaussian distributed according to the
central limit theorem. A Gaussian WSSUS process (GWSSUS)
is even stationary (GSUS). It was shown that the GWSSUS
model fits to many channels of practical interest, such as the
land mobile radio channel [4], [5] which is of particular interest
in the following. It also applies to the troposcatter radio, HF
radio, and indoor radio channels, as well as to many others.

Recently, Schulze presented a stochastic, Monte Carlo-
based model to approximate the GWSSUS channel [6]. The
principle is the generation of a single arbitrary realization of
the GWSSUS process. Assuming ergodicity, each realization

Manuscript received March 26, 1991; revised August 2, 1991.

The author is with the Information Principles Research Lab, AT&T Bell
Laboratories, Murray Hill, NJ 07974, on leave from the Institute for Com-
munications Technology, German Aerospace Research Establishment, D-8031
Oberpfaffenhofen, Germany.

IEEE Log Number 9202462.

of the random process equivalently describes the channel.
This analog model is appropriate for computer simulations;
however, direct application requires sufficient oversampling
to resolve the echos. Section II gives a brief review of the
WSSUS channel model and Schulze’s approximation thereof,
and indicates implementation aspects in comparison to state
of the art processing.

In the early 1970’s, Forney proposed a discrete-time channel
model [7], [3, ch. 6.3], that combines the effects of the trans-
mitter filtering, the physical channel, the receiver filtering, and
(symbol) sampling. This discrete-time model, a FIR filter with
a tap-spacing according to the symbol period, is equivalent
for the input/output representation. Forney showed that the
optimum receiver filter is separable into a channel matched
filter and a whitening filter, and he proved that the sampled
output of the matched filter (and the output of any cascaded
spectral-null-free filter) provides a set of sufficient statistics.
Hence, this formulation is directly applicable for computer
simulation without any further approximations.

In this paper we apply Forney’s discrete-time representation
to Schulze’s Monte Carlo-based channel model, as introduced
in [8]. In Section III, closed-form solutions for the time-
varying FIR-filter tap-gains are derived and interpreted for
the case of an optimum receiver filter, which is matched to
the transmitter filter and the instantaneous channel impulse
response, and for the case of a receiver filter matched to
the transmitter filter only. Model inputs are the parameters
of the scattering function and the impulse response of the
transmitting filter.

We indicate that the FIR-filter is, in general, of infinite
length even for finite-length echo delays, and that the tap-
gains are correlated even under the supposition of uncorrelated
scattering. These results are of theoretical interest and, fur-
thermore, they may influence the filter and channel estimator
design. An application is given for a land-mobile radio channel
specified for the pan-European cellular GSM system [5].

A summary and concluding remarks appear in Section IV.

II. THE CONTINUOUS-TIME CHANNEL MODEL

A. WSSUS Channel Model

Throughout the paper we make use of the complex baseband
notation. Let f(7;t) denote the impulse response of the
channel, which is defined as the response at time ¢ to a
delta pulse which stimulated the channel at time ¢ — 7. The
channel is assumed to be linear and slowly time-varying.
Well-known “channel sounding” techniques for the direct
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estimation of f(¢;7) exists [2]. However, since the Doppler-
spread is embedded in the complex envelope of the time-
varying waveform, it is more suitable here to investigate the
spectrum S(7; fp) of f(7;¢) defined as

S(T;fD)Z/

—o0

+oo )
f(rit)e™ T dr O]

where fp is the Doppler frequency. The existence of (1) is
assumed.

Theoretically, (1) and equivalent representations [1], [2]
exactly describe the channel. However, from the practical
point of view a stochastic description is necessary, since scat-
tering, reflection, and inflection apparently causes a random,
incoherent superposition of an infinite number of echos [6].

Another problem is the nonstationarity of the channel. For
convenience, we adopt the useful separation into a “small-
area” description and a “large-area” description to avoid a
complicated channel model [2]. The small-area description,
which is investigated in the following, represents the effects
inside a limited area where wide-sense stationarity is assumed.

Because of the superposition, the quadrature components
of the channel impulse response are Gaussian distributed
according to the central limit theorem. Hence, it is sufficient to
determine mean and correlation function. Without restriction,
we assume in the following that the channel is zero mean
(“Rayleigh fading”). A direct path (“Rice fading”) has to
be considered separately. The autocorrelation of S(7; fp) is
defined by

Rs(r,7s fp, fp) = (S(73fp) - S*(7":fp)) (@

where (-) is the ensemble average and the asterisk is the
complex conjugate. Evaluation of (2) is difficult, but with
the assumptions of wide-sense stationarity (according to the
small-area description) and uncorrelated scattering, significant
reduction is achieved:

Rs(r,7's fp, fp) = 8(r = 7)8(fp ~ fp) - Ps(7's fp), (3)

where 6(t) is the delta function and Ps(7’; f;) is the delay-
Doppler power spectrum, or scattering function for short. This
WSSUS model, introduced by Bello [1], applies to many
channels of practical interest [2], [4], [5].

B. Monte Carlo Approximation of WSSUS Channel

In this subsection we briefly review Schulze’s model to
approximate the analog GWSSUS channel, and extend it to
include frequency hopping.

Suppose the channel is composed of NV echos. Each echo
has an individual null-phase 6, a delay 7,,, and rotates with
Doppler frequency fp,, where 6,, and 7,, and fp, are
continuous random numbers, and 1 < n < N. Hence, the
instantaneous channel impulse response can be written as [6]

N
1 : :
frit) = Jim =7 Do /O (=) (4

in the limit for N — oo. The factor \/1/N ensures con-
vergence as N — oo according to the central limit theorem,

n=1

in which case the quadrature components are Gaussian dis-
tributed.

Equation (4) is a phase modulation fading simulator [9,
fig. 1.7-1 (a)], and is based on the well-known principle
of generating colored Gaussian noise by superposition of
many sinusoids with uniformly distributed phases and random
frequencies according to the desired noise spectrum. Equation
(4) is two-dimensional, and is not restricted to deterministic
arrivals 7, and/or deterministic Doppler frequencies fp, .
Special cases of (4) include models by Iwasaki et al. [10]
(fp is stochatic, 7 = 0), Lee [11, fig. 1-17, p. 43] (7 is
deterministic, fp = 0), and Jakes [9, sec. 1.7.1] (fp is
deterministic, 7 = 0).

The amplitude weights of the complex sinusoids are not a
function of the delay power spectrum or the Doppler spectrum
[1], [12], [3], but are all equal. Their values, 1/\/N, are chosen
so that the total average power is one, independent of the
number of echos, N. The reason why we do not want the
amplitudes to become involved is that the WSSUS model is
statistically completely determined by the scattering function,
and not primarily by the amplitudes and delays of the different
paths. In this sense (4) differs from quadrature amplitude
modulation fading simulators [9, fig. 1.7-1 (b)] investigated
by Bello [1] and Turin et al. [12], among others {3}, [4]. Also,
the latter models are limited to produce rational forms of the
fading spectrum [9], whereas the spectra encountered in mobile
radio are generally nonrational [9].

In Appendix I, we show that the scattering function,
Ps(r; fp), is proportional to the probability density function
(pdf) p(7, fp). Hence, a simulation run is initialized by
realizing 7, and fp_ according to p(T, fp), and 6,, according
to a uniform distribution in [0, 27), where 1 < n < N. Then,
(4) approximates the GWSSUS model, and is exact provided
that N approaches infinity.

Note that the realization of the random process has to be
computed before the simulation starts. It contains, on the
average, the same statistics as any other realization of possible
outcomes because of ergodicity. In practice, however, for small
N, it is advisable to compute new random samples from
time to time, because this improves the statistic. Computing a
new realization is equal to perfect frequency hopping (FH).
It is straightforward to extend (4) to the case of real FH
(i.e., hopping in a finite bandwidth), which is of practical
interest in modem design. Since a carrier frequency shift,
frop(t), corresponds to a rotation in the time domain, f(7;t)-
exp(J27 frop(t)7), we obtain

N
1
f(rit) = Nli_{n - Zej(emzvrfont+27rfhop(t)rn). 8(T = 7).
>V n=1
O

Note that (5) is of marginable extra complexity compared to
4.

The technique of realizing (4) and (5) by generating nomi-
nally uniformly distributed, pseudo-random variates and the
weighting of such variates to establish the required distribution
function is the basis of Monte Carlo simulation [13], [14].
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Implementation aspects and a comparison with other channel
models are discussed in the next subsection.

C. Implementation Aspects and Comparison with
Common Channel Model

As indicated, the phases 6,,, the Doppler frequencies fp,,
and the delays 7,,, where 1 < n < N, have to be established
with distributions p(#) and p(7, fp), respectively, before the
simulation starts. As usual, we assume 7 and fp to be mutually
independent (2], [5], hence p(7, fp) reduces to the product of
two first-order (marginal) pdf’s p(7) and p(fp), where p(7)
is proportional to the delay power spectrum, and p(fp) is
proportional to the Doppler power spectrum, as derived in
Appendix I. According to the Monte Carlo principle, it is
convenient to establish a (portable) uniformly distributed noise
generator with outputs u,, € [0,1), and to calculate v, by a
functional transformation

Un = go(Un) = Pv_l(un); 0<u,<1 ©)

where v, is a substitute for 8, fp,, and 7,, respectively,
and the memoryless nonlinearity g, (u,) is the inverse of the
desired cumulative distribution function (cdf) [14].

As a first example, consider the one-sided exponentially
distributed pseudo-random variate v, = T,, a model which
is often used for the delay power spectrum [4], [5]:

—7/b
s

p-(t)=a-e for0<7<e. @)

Direct application of (6) leads to

gr (un) = —b-log,(1 = un (1~ e™/")) ®
-b-log, (1 — u,), for ¢ > b. ©)

X

Another example is the so called “Jakes spectrum”, which
models the Doppler power spectrum in isotropic scattering

(vn = fDn) (9], [4], [5):
1

T Dmac\/ 1 = (FD/ FDmae)’
955 (Un) = [Dpar €08 2Tn);  |fD| < fDpux =0/A  (11)

where fp_ . is the maximum Doppler frequency, which
depends on the vehicular velocity v and the wavelength A. We
refer to these examples in Section III-C. Now let us relate (4)
and (5) to the quadrature amplitude modulation fading model,
which is commonly used, and can be written as [1], [12], [3]

pr(fD) = (10)

N
f(rit) = Zﬂn(t)ejo"(t)ﬁ(t — Ta(1))

n=1

(12)

where (3,(t), 0n(t), and 7,(t) are the N path amplitudes,
phases, and delays, respectively. From the implementation
aspect, two solutions of (12) are conceivable: the first solu-
tion is an alternative Monte Carlo approach, however, this
requires that both a first-order distribution (here: p()) and a
(Doppler) power spectrum have to be specified, which is much
more involved [14]; the second solution is to filter each tap
¢, (t) independently according to the desired Doppler power
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spectrum. This requires N independent filters. We refer to this
as the “filter approach” afterwards. We claim that the Monte
Carlo model includes the following advantages compared to
the filter approach.

1) The computation is faster, because it is not necessary
to explicitly implement a digital filter. Also, only uniformly
distributed inputs u,, are required during the simulation setup,
instead of Gaussian variates during the simulation run (despite
this, in both cases further reduction is possible by generating
channel samples according to the sampling theorem, and to
interpolate them).

2) The filter design is easier, and reduces to the computation
of transformation (6). This design rule is much easier than
common (IIR or FIR) filter design rules, which typically
involve cascading, decimation and interpolation, or a fre-
quency transformation. Concerning the Doppler spread, the
filter design is in the frequency domain. Numerical instabili-
ties principally do not occur even for a very low cutoff-
frequency/symbol-rate ratio.

3) The filter design is believed to be exacter for comparable
numerical effort. The (7, fp)-variates are weighted according
to the distribution p(7, fp). A relatively low number of
realizations, N, is sufficient to guarantee that the moments
of the realization are close to the moments of the desired
distribution. Also, the cutoff frequency, fp,_.., is exact.

4) The Monte Carlo model is easier to handle and more flex-
ible. This is especially obvious in the case of (real or perfect)
FH, which can be achieved at marginal overhead. Real FH is
difficult to achieve in the filter approach, because changing the
system state and acquiring acquisition are difficult if one does
not want running multiple correlated channels in parallel.

To manifest these statements, we show some numbers to
give an idea of the complexity: eighth-order IIR filters [15] or
sixty fourth order FIR filters are reported in the literature to
model a flat fading channel, whereas only about N = 10 echos
are necessary! to generate the Rayleigh fading process with the
proposed Monte Carlo approach. Both models, an eighth-order
IR filter realized with four cascaded second-order subfilters
in third-canonical form [15] and the Monte Carlo model of
interest [6], were programmed as COMPLEX FUNCTION’s in
Fortran. On a SUN SPARK station 2, the average CPU time for
10° subroutine calls (i.e., the generation of 10° realizations of
a complex Rayleigh fading process, without any interpolation
to speed up) was found to be 182.2 s for the first model, and
about half of the time (89.4 s) for the latter model with N = 10
echos. (The effort is almost linear in /N. The numbers include
initialization, and are obtained for an optimized compiler. No
sine/cosine tables were used. Double precision was found to
be necessary for the first model. No FH included.) Hence,
despite advantages 2—4 noted above, computation is faster for
Rayleigh fading. If the channel is frequency-selective and/or
with real FH, the advantages are even more obvious.

For all the variants discussed so far, whether based on (4) or
(12), an (exact) equivalent discrete-time channel representation
can be computed, which allows simulations with down to one
sample per symbol, without quantization of the echo delays.

!From the work of Bennet and Slack it follows that the Rayleigh approxi-
mation is quite good for N > 6 [9, pp. 68—69].
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III. THE DISCRETE-TIME CHANNEL MODEL

In this section we derive and compare the equivalent
discrete-time channel models for the cases of an optimum
receiver filter and a suboptimum receiver filter, respectively,
on the basis of the Monte Carlo approximation.

We assume a linear modulation scheme. In Fig. 1, {I;}
is the complex data sequence, g(t) is the time-invariant
impulse response of the transmitter filter, s(¢) and r(¢) is the
transmitted and received signal, respectively, n(t) an additive
white Gaussian noise process, and T is the symbol duration.
The time-variant overall transmitter plus channel impulse
response is

+o0
W(rit) = g(t) » f(rit) = / ot — ') f(es0)dr'. (13)

—0o0

A. Optimum Adaptive Receiver Filter

The optimum receiver filter is known to be a matched
filter (MF) adapted to h(r;t) [7], [3], provided the maximum
Doppler frequency is much smaller than the data rate (slow
channel assumption). The MF output,

e = y(thr) = y(t = kT) = Y I; - o9 -}
J

provides a set of sufficient statistics after symbol-rate sam-
pling, compare Fig. 1(a). The sampled impulse response of
the overall channel including transmitter filter, the physical
channel, and the receiver filter

(14)

R +oo
$?=$gﬂ)=/ h*(r = T ter)
—o0

‘(T — kT;thr) dr = 2979 (15)

is the sampled time-variant autocorrelation of A(7; t|x7), where
k is the time index and | = k — j the time dispersion. nj, in
(14) is the colored noise process of the MF output. Because
of symmetry, the z-transform of xg)

L
z) = Z xg)z_l = Fi(z)  Fp(z71)
1=—1L
factors into Fi(z) and F}; (27), where Fi(z) is a polynomial
of degree L, with L being a positive integer such that z( )
zero for |I| > L. The corresponding time function is f,g ) w1th
0 <! < L, and is related to a:,(:) according to [3]

Zf])*_

A filter with z-transform 1/ F™* (z‘l) after the MF decorrelates
the noise sequence 7}, and is thus called a whitening filter
(WF). Usually, the minimum phase condition is selected out
of the 2% possibilities [7], [3]. The overall impulse response
is f,gl), 0 <1 < L, and the WF output signal is

(16)

gD <L a7

L
2% = Z f,E” Ty +

=0

(18)

Y Hﬁf

h(r;t)

(a)
T .
2w - oo }——(?—Lg'(—ﬂ»\——%
2(t)
(1)
hiotat(T51)
(b)

Fig. 1. Overall baseband model for communication over WSSUS fading
multipath channels with transmitter filtering, WSSUS channel, additive noise,
receiver filtering with (a) optimum or (b) nonadaptive filter and sampling.

7l = emt/T

Fig. 2. Equivalent discrete-time channel model which represents the overall
transmission model.

where {7} is, by definition, a white noise process. (14) and
(18) are known as the equivalent discrete-time channel models
with colored or white noise [7], [3], respectively, see Fig. 2.
The f,gl) are the L + 1 complex tap-gains of this FIR-filter
representation, where 0 < [ < L. Note that the tap-spacing is
exactly the sampling period (27! = ¢=7%7/T),

Now, we are able to apply the discrete-time representation
to Schulze’s channel model. Applying Parseval’s theorem to
(15), we obtain

+oo
p_ 1 I
%/_OOI e(w

where w = 2nf, and Hy(w) is the Fourier transform of
h{(t; kT) with

|Hi ()|

e Tdw;  JIISL  (19)

= |GW)I* - |Fx(@)]*.

G(w) is the Fourier transform of the transmitter filter g(¢),
and Fj(w) is the instantaneous channel transfer function of
f(r;t) given by

(20)

Fr(w) = hm LX:eﬂ"eﬂ’rf""kT —jwTn 21
n—l
and hence
N N
2
|Fe(w)* = Z Z
ea(sn ) (an—fnmwTe—jw(rn—rmx 22)

Substitution of (20) and (22) into (19) yields

: 3 (Bn=6m) pi27(fD, —f D kT
eSS

= lim
n=1m=1

+DO . -
: / |G(w)[e™ D dw  (23)
-0

-0



HOEHER: WSSUS MULTIPATH CHANNEL

or in shorthand notation

N N
o1 -
o = lim <3 3" 500~ . f, — f.0h)

n=1m=1

’ \IJ(%(Z),g(t)) (24)
with
Fl) = Tm — T +1T (25)
E(0n — Om, fp, — fDm,k‘) = I(0n—0m)i27(fD, —fD, )KT

(26)

+oo
U(7(1),9(t)) = % / IG(w)[zej‘“*(’) dw.
B 27

Equation (27) is a Fourier integral and can, therefore, be
simplified as follows: |G(w)|? = Giotai(w) corresponds to
the time function

9(t) x g* (=) = geotal(t), (28)
and hence
U(7(1), 9(t)) = geotal(t)]e=(1)- (29
Finally, we obtain
N N
o0 = lim L3S0, fo, K)o (F(D). (30)

Grotal(t) is the impulse response of transmitter and receiver
filtering.

It seems to be important to indicate the properties and
conclusions from (30). The first term, 2(6, fp, k), determines
the dynamics of the discrete-time model, whereas.the second
term, giotal{Tm — 7n + IT'), determines the spread in /. Note
that for a given ! only the difference 7,,, — 7, is of significance,
and contributes to one or more tap-gains, depending on g(t).
Assume 7(l) #4T V¥V m # n, where 7 is an arbitrary integer,
ie., 7(I) is not a multiple of the sampling period 1" for all
pairs of echos (m,n), m # n. In this case the tap-gains are
correlated, hence the discrete-time model does not satisfy the
uncorrelated scattering condition even for uncorrelated echos.
The reason is that the continuous-time random process T is
represented by a discrete-time process with spacing 7.

Another important results concerns the number of tap-gains,
L + 1. If G(w) is bandlimited, g(t) is unlimited in time and,
therefore, L is infinite even for a finite maximum echo delay
[16]. In contrast, if g(t) is time-limited, L is finite if the
maximum echo delay is finite too. Since the decay of the tails
of w,&l) (and hence the “practical” length of L) depends on the
channel bandwidth, it may be advisable for realizations to use
a “smooth” transmitting pulse with a small time/bandwidth
product, such as a Gaussian pulse. We give examples in
Appendix II.
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B. Mismatched (Fixed) Receiver Filter

The matched filter receiver is difficult to implement (the
filter must be adaptive), to simulate (the number of operations
in direct application is quadratic in N), and to analyze (the
relation between x‘,gl) and fk(l) is nonlinear). Furthermore, a
perfect adaptation has been assumed so far.

It may also be advisable to investigate the case of a
fixed receiving filter. One reason is that low-cost receivers
sometimes make use of a nonadaptive receiving filter, e.g.,
which is matched to the fixed transmitting filter. This setup,
which is optimal for slow flat fading, is investigated in the
following, see Fig. 1(b). Similarities and differences to the
matched filter approach are indicated.

Another reason is that the receiver filter often has to be
simulated separately, e.g., to simulate a nonperfect adaptation.
In this case, the receiving filter in Fig. 1(b) has to be replaced
by an ideal low-pass filter. This setup has been investigated in
[16], and can be applied to the following results with minor
changes.

For a fixed receiving filter g*(—7) and with (4) the overall
impulse response can be written as

Piotal(T5t) = f(75t) * g(7) % g (—7)
f(758) * geotar(7)
N
lim —

N—oo /N 1
n=

(0,42 t
EJ( +enfot) gtotal(T - Tn)-

@G

Let L_ and L, be positive integers such that hioeai(7;) is
zero outside —(L_)T < t < (L4)T. Hence, assuming symbol

rate sampling,2 t = kT, we obtain in former notation
Ly
2k = Z JARD RN (32)
I=—L_
with
£ = heoa(IT; KT)
1 X
= lim — ¢i(6n+27fp, kT) - Gtotal({T — Tn)-
N-ooo \/N ;

(33)

ng in (32) is a sample of the noise process n(t) * g*(—t).
If n(t) is white, and if gioral(t) satisfies the first Nyquist-
criterion, then ny = 7 also is white. Equation (32) is referred
to as the equivalent discrete-time model for the case of a
fixed receiver filter. Compared to the matched filter receiver
case the inner sum in (30) is simply dropped. Among the
differences are that, in general, precursors occur in the case
of a fixed receiver filter (L_ # 0). Also, the response is not
minimum phase, and cannot optimized to be so. Furthermore,
thie relationship between f,gl) and f(r;t) now is linear. Hence,
fi» is a complex, zero mean Gaussian process, i.c., the
amplitude is Rayleigh distributed, and the phase is uniformly

2Extension to oversampling is straightforward. The output process does not

necessarily provide a set of sufficient statistics. The z;’s in Figs. 1(a) and 1(b)
have not the same value.
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Fig. 3. Scattering function for a typical bad case in urban and suburban
areas as specified for GSM.

distributed. The additive noise process is white only under
special conditions.

C. Example

As an example, Fig. 3 shows the scattering function of a
land-mobile fading channel for a typical bad case in urban
and suburban areas, as specified by CEPT-COST 207 for the
pan-European cellular mobile system GSM [5]. Concerning
the delay power spectrum, clusters with one-sided exponential
delay are considered with a maximum delay of 10 ys:

(r) = Aexp(—7/us), 0<T<5us
PIT)=90.54exp(5 — T/us), Sus <7 <10 ps.

The “Jakes spectrum” serves to model the Doppler power
spectrum for the early isotropically arriving echos, whereas
Gaussian shapes better reflect a preferred direction of the
late echos [4], {5], as shown in (35) at the bottom of the
page where G(A, fi,f) = Aexp(—(fp — f1)*/(2/3)),
B, =B -10dB, C; = C - 15dB.

The corresponding profiles of the equivalent discrete-time
channel model with fixed receiving filter, (33), are presented
in Fig. 4 for rectangular pulses, in Fig. 5 for raised-cosine
pulses with rolloff » = 0.25, and in Fig. 6 for Gaussian pulses
with oy = 0.3279T, which corresponds to an overall 99%
bandwidth of 1.25/T. In each case, symbol rate sampling
with T' = 3.7 us is assumed [5]. N = 500 was chosen for
illustration purposes. The advantage of using Gaussian pulses
instead of raised-cosine pulses is obvious.

G4

IV. SUMMARY AND CONCLUSION

This paper applies the Monte Carlo-based analog channel
model (6] to the discrete-time channel representation (7], [3]-
We started with a short review of the WSSUS channel
model, and its direct Monte Carlo approximation. Then, we
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Fig. 4. Doppler power spectrum of f,(‘_l) ,—1 <1< 4, for a typical bad case
in urban and suburban areas (rectangular pulses, T = 3.7 ps, N = 500).

Fig. 5. Doppler power spectrum of f,(CD, —1 <1 < 4, for a typical bad case

in urban and suburban areas (raised cosine pulses, 7 = 0.25, T = 3.7 us,
N = 500).
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Fig. 6. Doppler power spectrum of f,(ﬁl), —1 < 1 < 4, for a typical bad case

in urban and suburban areas (Gaussian pulses, oy = 0.3279T, T' = 3.7 ps,
N = 500).

compared this model with other models and paid special
attention to its advantages. Further, the equivalent discrete-

A/\1= (fp/ fDuac)’

»(fp) =4 G(B,-0.8fp,_..,0.05fp

max ? max

)+ G(B1,04fp,,.,,0.1fD,..) 0.5ps <7 <2ps
G(C, 0'7fDmaxa O.IfDm“) + G(Cl, —0.4fDmax,0.15fDmax) T > 2 Uus,

0<7<0.5pus
(35)
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time channel model of the input/output description including
filtering and sampling was derived and compared for the cases
of an optimum adaptive, and a fixed receiving filter. Examples
were applied to a terrestrial cellular mobile radio channel.

We indicated that the “FIR”-representation of the discrete-
time channel model is of infinite length when the transmitter
filter is bandlimited. Hence, from the practical point of view
pulses with a small time/bandwidth product are advantageous.

Also, we indicated the correlation between the complex tap-
gains even for uncorrelated scattering on the physical channel.
The knowledge of this correlation may improve a channel
estimator. On the other side, it makes the analysis of the
transmission system more involved.

We believe that the proposed model is faster than other
approaches (no explicit digital filtering, no oversampling,
uniform random variables during the simulation setup instead
of Gaussian random variables during the simulation run),
easier and exacter to design (simple transformation rule, exact
cutoff frequency, no quantization of the echo delays 7,), and
finally easier to handle and more flexible (easy frequency
hopping). Further reduction in complexity seems feasible by
making use of more advanced Monte Carlo techniques such
as importance sampling.

APPENDIX [
PROOF OF p(T, fp) ~ Ps(r; fp)

In the following we prove that the joint probability density
function p(r, fp) is proportional to the scattering function
Ps(t; fp) [8], [6], where 7 is the echo delay and fp is the
Doppler frequency.

We start with the autocorrelation of the system function
F(f;t), defined as

Re(f, £ 6,4) = (F(f52) - F*(f'3#) (36)
compare (2). For the WSSUS process it follows that
Rp(A) =(F(f;t) - F*(f -t -4)) (37

with @ = f — f' and A = ¢t —¢/. F(f;t) can be approximated
arbitrarily well by

N
1 L .
F(f;t) = § :e]ekeJQ""kate-]2ﬂ'lec
k=1

(38)

if the number of echos, N, approaches infinity, see (4) and
(21). After substitution in (37) and splitting it follows that

1 N N
R = (3 3
k=11=1,l#k
. @36k =01) o327 ((fp,, —fp,)t+fp, B)

. e~ 32m(f(me—m)+0m)

N
+ Z ej21rkaA . e"j2779‘7'k>_
k=1
(39)

If the terms are statistically independent and identically dis-
tributed with zero mean, the double sum is zero, and we
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obtain

k=1

N
Rp(4) = %<Z€j"’"f“e"'2"“” > (40)

Because of the linearity, ensemble average and summation
are exchangeable, and because of the identical distribution it
follows that

Rp(Q;A) = (2" /on 8= 020y (41)
and finally, with the definition of the first joint moment
+oc  ptoo . , . ,
Rp(;A) = / / p(r', fp)e? ™ IpBe=2m 0 4f 1 '
-0 —00
(42)

Since Rp(%; A) and Ps(7'; f,) are related by [1]

+oo  ptoo
Re(@8) = [ [ pa(rri syt U app ar,
T 43)
a comparison with (42) leads to the desired result:
Ps(7; fp) ~ p(7, fp)

By integration over fp and 7, we obtain that the mutual pdf’s
p(7) and (fp) are proportional to the delay power spectrum
Pg(7) and the Doppler power spectrum Ps(fp), respectively.

QED (44)

APPENDIX I
EXAMPLES FOR x,ﬁ”,\l\ <L

In this Appendix we give examples of the sampled autocor-

relation :rg ,|Ul < L, for several transmitting filters g(¢).

A. For a time-limited pulse

I¢]

1
g(t) = =rect(t/T), grotai(t) =1— %,  for[t|<T
T T
(45)
we obtain from (30):
20 =
L 2(6, o, k) - (1— '*”)') for |7(1)| < T
N—oo anlmzl_ »JJDs T ) <14
0 else
(46)
If the maximum echo delay is finite, €.g.
ATax = MaX |7y — T| < 00 (47

then xg) is zero for |I| > L = [ATmax/T, where [7] is the
smallest integer greater or equal to 7,7 > 0, since
17O = |Tm =T +IT| ST (48)

from (46).
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B. For a Bandlimited Nyquist-Pulse with Cosine Rolloff r [3]

sinwt/T cosrnt/T
growat(t) = Wt/é 1- (27~t//T)2’ “9)
we obtain from (30):
@ _ . 1 o
oy = Jim < Zl X_jlzw, fp.k)
sinr?(yll)_/lr“n_ cosrmt /T 50)

it (/T 1— (2r7(1)/T)2

L is unbounded, at least theoretically, as long as 7(I) is not
a multiple of T for all pairs of echos. Note that the tails of
mg) decay as 1/73. The effective number of echos grows with
decreasing rolloff r, that is, with more bandwidth efficiency.

C. For a Gaussian Pulse with Variance o?

(t) = L ex i (51)
Gtotal = 27”7? p 20_?
we obtain from (30):
" TR
o) = lim Zl Z_la(o,fn,k)
N 2
R SO LUV S
V2no? 20}

The decay is exponential, which is much faster than with
cosine rolloff Nyquist-pulses. This example shows that partial
response pulses are of practical interest for data transmission
over frequency-selective channels.
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