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Abstract

In this paper we present a documentation for an optimal filtering toolbox for the
mathematical software package Matlab. The toolbox features many filtering meth-
ods for discrete-time state space models, including the well-known linear Kalman
filter and several non-linear extensions to it. These non-linear methods are the
extended Kalman filter, the unscented Kalman filter, the Gauss-Hermite Kalman
filter and the third-order symmetric cubature Kalman filter. Algorithms for mul-
tiple model systems are provided in the form of an Interacting Multiple Model
(IMM) filter and it’s non-linear extensions, which are based on banks of extended
and unscented Kalman filters. Also included in the toolbox are the Rauch-Tung-
Striebel and two-filter smoother counter-parts for the filters, which can be used to
smooth the previous state estimates, after obtaining new measurements. The usage
and function of each method is illustrated with eight demonstration problems.
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Preface

Most of the software provided with this toolbox were originally created by Simo
Särkkä while he was doing research on his doctoral thesis (Särkkä, 2006) in the
Laboratory of Computational Engineering (LCE) at Helsinki University of Tech-
nology (HUT). This document has been written by Jouni Hartikainen at LCE dur-
ing spring 2007 with a little help from Simo Särkkä. Jouni also checked and com-
mented the software code thoroughly. Many (small) bugs were fixed, and also some
new functions were implemented (for example 2nd order EKF and augmented form
UKF). Jouni also provided the software code for first three demonstrations, modi-
fied the two last ones a bit, and ran all the simulations. In 2010, Arno Solin added
the cubature integration based methods to the toolbox.

First author would like to thank Doc. Aki Vehtari for helpful comments during
the work and for coming up with the idea of this toolbox in the first place. Prof.
Jouko Lampinen also deserves thanks for ultimately making this work possible.
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Chapter 1

Introduction

The term optimal filtering refers to methodology used for estimating the state of
a time varying system, from which we observe indirect noisy measurements. The
state refers to the physical state, which can be described by dynamic variables, such
as position, velocity and acceleration of a moving object. The noise in the mea-
surements means that there is a certain degree of uncertainty in them. The dynamic
system evolves as a function of time, and there is also noise in the dynamics of sys-
tem, process noise, meaning that the dynamic system cannot be modelled entirely
deterministically. In this context, the term filtering basically means the process of
filtering out the noise in the measurements and providing an optimal estimate for
the state given the observed measurements and the assumptions made about the
dynamic system.

This toolbox provides basic tools for estimating the state of a linear dynamic
system, the Kalman filter, and also two extensions for it, the extended Kalman
filter (EKF) and unscented Kalman filter (UKF), both of which can be used for
estimating the states of nonlinear dynamic systems. Also the smoother counterparts
of the filters are provided. Smoothing in this context means giving an estimate of
the state of the system on some time step given all the measurements including
ones encountered after that particular time step, in other words, the smoother gives
a smoothed estimate for the history of the system’s evolved state given all the
measurements obtained so far.

This documentation is organized as follows:

• First we briefly introduce the concept of discrete-time state space models.
After that we consider linear, discrete-time state space models in more detail
and review Kalman filter, which is the basic method for recursively solving
the linear state space estimation problems. Also Kalman smoother is intro-
duced. After that the function of Kalman filter and smoother and their usage
in this toolbox in demonstrated with one example (CWPA-model).

• Next we move from linear to nonlinear state space models and review the
extended Kalman filter (and smoother), which is the classical extension to
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CHAPTER 1. INTRODUCTION

Kalman filter for nonlinear estimation. The usage of EKF in this toolbox
is illustrated exclusively with one example (Tracking a random sine signal),
which also compares the performances of EKF, UKF and their smoother
counter-parts.

• After EKF we review unscented Kalman filter (and smoother), which is a
newer extension to traditional Kalman filter to cover nonlinear filtering prob-
lems. The usage of UKF is illustrated with one example (UNGM-model),
which also demonstrates the differences between different nonlinear filter-
ing techniques.

• We extend the concept of sigma-point filtering by studying other non-linear
variants of Kalman filters. The Gauss-Hermite Kalman filter (GHKF) and
third-order symmetric Cubature Kalman filter (CKF) are presented at this
stage.

• To give a more thorough demonstration to the provided methods two more
classical nonlinear filtering examples are provided (Bearings Only Tracking
and Reentry Vehicle Tracking).

• In chapter 4 we shortly review the concept multiple model systems in gen-
eral, and in sections 4.1 and 4.2 we take a look at linear and non-linear mul-
tiple model systems in more detail. We also review the standard method, the
Interacting Multiple Model (IMM) filter, for estimating such systems. It’s
usage and function is demonstrated with three examples.

Details of the toolbox functions can be found on the toolbox web page, or in
Matlab by typing help <function name>. The mathematical notation used
in this document follows the notation used in (Särkkä, 2006).

5



Chapter 2

Discrete-Time State Space
Models:
Linear Models

2.1 Discrete-Time State Space Models

In this section we shall consider models where the states are defined on discrete
time instances. The models are defined recursively in terms of distributions

xk ∼ p(xk |xk−1)

yk ∼ p(yk |xk),
(2.1)

where

• xk ∈ Rn is the state of the system on the time step k.

• yk ∈ Rm is the measurement on the time step k.

• p(xk |xk−1) is the dynamic model which charaterizes the dynamic be-
haviour of the system. Usually the model is a probability density (continous
state), but it can also be a counting measure (discrete state), or a combination
of them, if the state is both continuous and discrete.

• p(yk |xk) is the model for measurements, which describes how the mea-
surements are distributed given the state. This model characterizes how the
dynamic model is perceived by the observers.

A system defined this way has the so called Markov-property, which means that
the state xk given xk−1 is independent from the history of states and measurements,
which can also be expressed with the following equality:

p(xk |x1:k−1,y1:k−1) = p(xk |xk−1). (2.2)
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The past doesn’t depend on the future given the present, which is the same as

p(xk−1 |xk:T ,yk:T ) = p(xk−1 |xk). (2.3)

The same applies also to measurements meaning that the measurement yk is in-
dependent from the histories of measurements and states, which can be expressed
with equality

p(yk |x1:k,y1:k−1) = p(yk |xk). (2.4)

In actual application problems, we are interested in predicting and estimating
dynamic system’s state given the measurements obtained so far. In probabilistic
terms, we are interested in the predictive distribution for the state at the next time
step

p(xk |y1:k−1), (2.5)

and in the marginal posterior distribution for the state at the current time step

p(xk |y1:k). (2.6)

The formal solutions for these distribution are given by the following recursive
Bayesian filtering equations (e.g. Särkkä, 2007):

p(xk |y1:k−1) =

∫
p(xk |xk−1) p(xk−1 |y1:k−1) dxk−1 (2.7)

and
p(xk |y1:k) =

1

Zk
p(yk |xk) p(xk |y1:k−1), (2.8)

where the normalization constant Zk is given as

Zk =

∫
p(yk |xk) p(xk |y1:k−1) dxk. (2.9)

In many cases we are also interested in smoothed state estimates of previous
time steps given the measurements obtained so far. In other words, we are inter-
ested in the marginal posterior distribution

p(xk |y1:T ), (2.10)

where T > k. As with the filtering equations above also in this case we can
express the formal solution as a set of recursive Bayesian equations (e.g. Särkkä
et al., 2007):

p(xk+1 |y1:k) =

∫
p(xk+1 |xk) p(xk |y1:k) dxk

p(xk |y1:T ) = p(xk |y1:k)

∫ [
p(xk+1 |xk) p(xk+1 |y1:T )

p(xk+1 |y1:k)

]
dxk+1.

(2.11)
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2.2 Linear State Space Estimation

The simplest of the state space models considered in this documentation are linear
models, which can be expressed with equations of the following form:

xk = Ak−1 xk−1 + qk−1

yk = Hk xk + rk,
(2.12)

where

• xk ∈ Rn is the state of the system on the time step k.

• yk ∈ Rm is the measurement on the time step k.

• qk−1 ∼ N(0,Qk−1) is the process noise on the time step k − 1.

• rk ∼ N(0,Rk) is the measurement noise on the time step k.

• Ak−1 is the transition matrix of the dynamic model.

• Hk is the measurement model matrix.

• The prior distribution for the state is x0 ∼ N(m0,P0), where parameters
m0 and P0 are set using the information known about the system under the
study.

The model can also be equivalently expressed in probabilistic terms with dis-
tributions

p(xk |xk−1) = N(xk |Ak−1 xk−1,Qk−1)

p(yk |xk) = N(yk |Hk xk,Rk).
(2.13)

2.2.1 Discretization of Continuous-Time Linear Time-Invariant Sys-
tems

Often many linear time-invariant models are described with continous-time state
equations of the following form:

dx(t)

dt
= Fx(t) + Lw(t), (2.14)

where

• the initial conditions are x(0) ∼ N(m(0),P(0)),

• F and L are constant matrices, which characterize the behaviour of the
model, matrix Qc.

• w(t) is a white noise process with a power spectral density Qc.
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To be able to use the Kalman filter defined in the next section the model (2.14)
must be discretized somehow, so that it can be described with a model of the form
(2.12). The solution for the discretized matrices Ak and Qk can be given as (see,
e.g., Särkkä, 2007; Bar-Shalom et al., 2001).

Ak = exp(F ∆tk) (2.15)

Qk =

∫ ∆tk

0
exp(F (∆tk − τ)) L Qc LT exp(F (∆tk − τ))Tdτ, (2.16)

where ∆tk = tk+1 − tk is the stepsize of the discretization. In some cases the Qk

can be calculated analytically, but in cases where it isn’t possible, the matrix can
still be calculated efficiently using the following matrix fraction decomposition:(

Ck

Dk

)
= exp

{(
F L Qc LT

0 −FT

)
∆tk

}(
0
I

)
. (2.17)

The matrix Qk is then given as Qk = CkD
−1
k .

In this toolbox the discretization can be done with the function lti_disc,
which uses the matrix fractional decomposition.

2.2.2 Kalman Filter

The classical Kalman filter was first introduced by Rudolph E. Kalman in his sem-
inal paper (Kalman, 1960). The purpose of the discrete-time Kalman filter is to
provide the closed form recursive solution for estimation of linear discrete-time
dynamic systems, which can be described by equations of the form (2.12).

Kalman filter has two steps: the prediction step, where the next state of the
system is predicted given the previous measurements, and the update step, where
the current state of the system is estimated given the measurement at that time
step. The steps translate to equations as follows (see, e.g., Särkkä et al., 2007;
Bar-Shalom et al., 2001, for derivation):

• Prediction:

m−k = Ak−1 mk−1

P−k = Ak−1 Pk−1 AT
k−1 + Qk−1.

(2.18)

• Update:

vk = yk −Hk m−k

Sk = Hk P−k HT
k + Rk

Kk = P−k HT
k S−1

k

mk = m−k + Kk vk

Pk = P−k −Kk Sk KT
k ,

(2.19)

9



CHAPTER 2. DISCRETE-TIME STATE SPACE MODELS:
LINEAR MODELS

where

• m−k and P−k are the predicted mean and covariance of the state, respectively,
on the time step k before seeing the measurement.

• mk and Pk are the estimated mean and covariance of the state, respectively,
on time step k after seeing the measurement.

• vk is the innovation or the measurement residual on time step k.

• Sk is the measurement prediction covariance on the time step k.

• Kk is the filter gain, which tells how much the predictions should be cor-
rected on time step k.

Note that in this case the predicted and estimated state covariances on different
time steps do not depend on any measurements, so that they could be calculated
off-line before making any measurements provided that the matrices A, Q, R and
H are known on those particular time steps. Usage for this property, however, is
not currently provided explicitly with this toolbox.

It is also possible to predict the state of system as many steps ahead as wanted
just by looping the predict step of Kalman filter, but naturally the accuracy of the
estimate decreases with every step.

The prediction and update steps can be calculated with functions kf_predict
and kf_update.

2.2.3 Kalman Smoother

The discrete-time Kalman smoother, also known as the Rauch-Tung-Striebel-
smoother (RTS), (Rauch et al., 1965; Gelb, 1974; Bar-Shalom et al., 2001) can
be used for computing the smoothing solution for the model (2.12) given as
distribution

p(xk |y1:T ) = N(xk |ms
k,P

s
k). (2.20)

The mean and covariance ms
k and Ps

k are calculated with the following equations:

m−k+1 = Ak mk

P−k+1 = Ak Pk AT
k + Qk

Ck = Pk AT
k [P−k+1]−1

ms
k = mk + Ck [ms

k+1 −m−k+1]

Ps
k = Pk + Ck [Ps

k+1 −P−k+1] CT
k ,

(2.21)

where

• ms
k and Ps

k are the smoother estimates for the state mean and state covari-
ance on time step k.
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• mk and Pk are the filter estimates for the state mean and state covariance on
time step k.

• m−k+1 and P−k+1 are the predicted state mean and state covariance on time
step k + 1, which are the same as in the Kalman filter.

• Ck is the smoother gain on time step k, which tells how much the smooted
estimates should be corrected on that particular time step.

The difference between Kalman filter and Kalman smoother is that the recursion in
filter moves forward and in smoother backward, as can be seen from the equations
above. In smoother the recursion starts from the last time step T with ms

T = mT

and Ps
T = PT .

The smoothed estimate for states and covariances using the RTS smoother can
be calculated with the function rts_smooth.

In addition to RTS smoother it is possible to formulate the smoothing operation
as a combination of two optimum filters (Fraser and Potter, 1969), of which the
first filter sweeps the data forward going from the first measurement towards the
last one, and the second sweeps backwards towards the opposite direction.

It can be shown, that combining the estimates produced by these two filters
in a suitable way produces an smoothed estimate for the state, which has lower
mean square error than any of these two filters alone (Gelb, 1974). With linear
models the forward-backward smoother gives the same error as the RTS-smoother,
but in non-linear cases the error behaves differently in some situations. In this
toolbox forward-backward smoothing solution can be calculated with function
tf_smooth.

2.2.4 Demonstration: 2D CWPA-model

Let’s now consider a very simple case, where we track an object moving in two
dimensional space with a sensor, which gives measurements of target’s position in
cartesian coordinates x and y. In addition to position target also has state variables
for its velocities and accelerations toward both coordinate axes, ẋ, ẏ, ẍ and ÿ. In
other words, the state of a moving object on time step k can be expressed as a
vector

xk =
(
xk yk ẋk ẏk ẍk ÿk

)T
. (2.22)

In continuous case the dynamics of the target’s motion can be modelled as a linear,
time-invariant system

dx(t)

dt
=



0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0


︸ ︷︷ ︸

F

x(t) +



0 0
0 0
0 0
0 0
1 0
0 1


︸ ︷︷ ︸

L

w(t), (2.23)
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where x(t) is the target’s state on the time t and w(t) is a white noise process with
power spectral density

Qc =

(
q 0
0 q

)
=

(
0.2 0
0 0.2

)
. (2.24)

As can be seen from the equation the acceleration of the object is perturbed with a
white noise process and hence this model has the name continous Wiener process
acceleration (CWPA) model. There is also other models similar to this, as for
example the continous white noise acceleration (CWNA) model (Bar-Shalom et al.,
2001), where the velocity is perturbed with a white noise process.

The measurement matrix is set to

H =

(
1 0 0 0 0 0
0 1 0 0 0 0

)
, (2.25)

which means that the observe only the position of the moving object. To be able
to estimate this system with a discrete-time Kalman filter the differential equation
defined above must be discretized somehow to get a discrete-time state equation
of the form (2.12). It turns out, that the matrices A and Q can be calculated
analytically with equations (2.15) and (2.16) to give the following:

A =



1 0 ∆t 0 1
2 ∆t2 0

0 1 0 ∆t 0 1
2 ∆t2

0 0 1 0 ∆t 0
0 0 0 1 0 ∆t
0 0 0 0 1 0
0 0 0 0 0 1

 (2.26)

Q =



1
20 ∆t5 0 1

8 ∆t4 0 1
6 ∆t3 0

0 1
20 ∆t5 0 1

8 ∆t4 0 1
6 ∆t3

1
8 ∆tk 4 0 1

6 ∆t3 0 1
2 ∆t2 0

0 1
8 ∆t4 0 1

6 ∆t3 0 1
2 ∆t2

1
6 ∆t3 0 1

2 ∆t2 0 ∆t 0
0 1

6 ∆t3 0 1
2 ∆t2 0 ∆t

 q, (2.27)

where the stepsize is set to ∆t = 0.5. These matrices can also calculated using the
function lti_disc introduced in section 2.1 with the following code line:

[A,Q] = lti_disc(F,L,Qc,dt);

where matrices F and L are assumed to contain the matrices from equation (2.23).
The object starts from origo with zero velocity and acceleration and the process

is simulated 50 steps. The variance for the measurements is set to

R =

(
10 0
0 10

)
, (2.28)
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Figure 2.1: The real position of the moving object and the simulated measurements
of it using the CWPA model. The circle marks the starting point of the object.

which is relatively high so that the the difference between the filtering and smooth-
ing (described in next section) estimates becomes clearer. The real position of the
object and measurements of it are plotted in the figure 2.1.

The filtering is done with the following code fragment:

MM = zeros(size(m,1), size(Y,2));
PP = zeros(size(m,1), size(m,1), size(Y,2));

for i = 1:size(Y,2)
[m,P] = kf_predict(m,P,A,Q);
[m,P] = kf_update(m,P,Y(:,i),H,R);
MM(:,i) = m;
PP(:,:,i) = P;

end

In the first 2 lines the space for state mean and covariance estimates is reserved,
and the rest of the code contains the actual filtering loop, where we make the
predict and update steps of the Kalman filter. The variables m and P are assumed
to contain the initial guesses for the state mean and covariance before reaching the
for-statement. Variable Y is assumed to contain the measurements made from the
system (See the full source code of the example (kf_cwpa_demo.m) provided
with the toolbox to see how we generated the measurements by simulating
the dynamic system). In the end of each iteration the acquired estimates are
stored to matrices MM and PP, for which we reserved space earlier. The estimates
for object’s position and velocity with Kalman filter and are plotted in figure 2.2(a).
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Figure 2.2: (a) Estimates for position and velocity of the moving object using the
Kalman filter and CWPA model, and (b) Estimate for position and velocity of the
moving object using the RTS smoother and CWPA model.

The smoothed estimates for the state mean and covariance can be calculated
with the following code line:

[SM,SP] = rts_smooth(MM,PP,A,Q);

The calculated smoothed estimates for object’s position and velocity for the ear-
lier demonstration are plotted in figure 2.2(b). As expected the smoother produces
more accurate estimates than the filter as it uses all measurements for the estima-
tion each time step. Note that the difference between the smoothed and filtered
estimated would be smaller, if the measurements were more accurate, as now the
filter performs rather badly due to the great uncertaintity in the measurements. The
smoothing results of a forward-backward smoother are not plotted here, as the re-
sult are exactly the same as with the RTS smoother.

As one would expect the estimates for object’s velocity are clearly less accurate
than the estimates for the object’s position as the positions are observed directly
and the velocities only indirectly. If the velocities were also observed not only the
velocity estimates would get more accurate, but also the position ones as well.
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Chapter 3

Nonlinear State Space Estimation

In many cases interesting dynamic systems are not linear by nature, so the tradi-
tional Kalman filter cannot be applied in estimating the state of such a system. In
these kind of systems, both the dynamics and the measurement processes can be
nonlinear, or only one them. In this section, we describe two extensions to the
traditional Kalman filter, which can be applied for estimating nonlinear dynamical
systems by forming Gaussian approximations to the joint distribution of the state
x and measurement y. First we present the Extended Kalman filter (EKF), which
is based on Taylor series approximation of the joint distribution, and then the Un-
scented Kalman filter (UKF), which is respectively based on the unscented trans-
formation of the joint distribution. After UKF we review Gauss-Hermite Kalman
filter (GHKF) and third-order symmetric Cubature Kalman filter (CKF).

3.1 Extended Kalman Filter

3.1.1 Taylor Series Based Approximations

Next we present linear and quadratic approximations for the distribution of vari-
able y, which is generated with a non-linear transformation of a Gaussian random
variable x as follows:

x ∼ N(m,P)

y = g(x),
(3.1)

where x ∈ Rn, y ∈ Rm, and g : Rn 7→ Rm is a general non-linear function.
Solving the distribution of y formally is in general not possible, because it is non-
Gaussian for all by linear g, so in practice it must be approximated somehow. The
joint distribution of x and y can be formed with, for example, linear and quadratic
approximations, which we present next. See, for example, Bar-Shalom et al. (2001)
for the derivation of these approximations.
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3.1.2 Linear Approximation

The linear approximation based Gaussian approximation of the joint distribution
of variables x and y defined by equations (3.1) is given as(

x
y

)
∼ N

((
m
µL

)
,

(
P CL

CT
L SL

))
, (3.2)

where

µL = g(m)

SL = Gx(m) P GT
x (m)

CL = P GT
x (m),

(3.3)

and Gx(m) is the Jacobian matrix of g with elements

[Gx(m)]j,j′ =
∂gj(x)

∂xj′

∣∣∣∣∣
x=m

. (3.4)

3.1.3 Quadratic Approximation

The quadratic approximations retain also the second order terms of the Taylor
series expansion of the non-linear function:(

x
y

)
∼ N

((
m
µQ

)
,

(
P CQ

CT
Q SQ

))
, (3.5)

where the parameters are

µQ = g(m) +
1

2

∑
i

ei tr
{

G
(i)
xx(m) P

}
SQ = Gx(m) P GT

x (m) +
1

2

∑
i,i′

ei e
T
i′ tr

{
G

(i)
xx(m) P G

(i′)
xx (m) P

}
CQ = P GT

x (m),

(3.6)

Gx(m) is the Jacobian matrix (3.4) and G
(i)
xx(m) is the Hessian matrix of gi(·)

evaluated at m: [
G

(i)
xx(m)

]
j,j′

=
∂2gi(x)

∂xj ∂xj′
,

∣∣∣∣∣
x=m

. (3.7)

ei = (0 · · · 0 1 0 · · · 0)T is the unit vector in direction of the coordinate axis i.
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3.1.4 Extended Kalman filter

The extended Kalman filter (see, for instance, Jazwinski, 1966; Maybeck, 1982;
Bar-Shalom et al., 2001; Grewal and Andrews, 2001; Särkkä, 2006) extends the
scope of Kalman filter to nonlinear optimal filtering problems by forming a Gaus-
sian approximation to the joint distribution of state x and measurements y using
a Taylor series based transformation. First and second order extended Kalman fil-
ters are presented, which are based on linear and quadratic approximations to the
transformation. Higher order filters are also possible, but not presented here.

The filtering model used in the EKF is

xk = f(xk−1, k − 1) + qk−1

yk = h(xk, k) + rk,
(3.8)

where xk ∈ Rn is the state, yk ∈ Rm is the measurement, qk−1 ∼ N(0,Qk−1)
is the process noise, rk ∼ N(0,Rk) is the measurement noise, f is the (possibly
nonlinear) dynamic model function and h is the (again possibly nonlinear) mea-
surement model function. The first and second order extended Kalman filters ap-
proximate the distribution of state xk given the observations y1:k with a Gaussian:

p(xk |y1:k) ≈ N(xk |mk,Pk). (3.9)

First Order Extended Kalman Filter

Like Kalman filter, also the extended Kalman filter is separated to two steps. The
steps for the first order EKF are as follows:

• Prediction:

m−k = f(mk−1, k − 1)

P−k = Fx(mk−1, k − 1) Pk−1 FT
x (mk−1, k − 1) + Qk−1.

(3.10)

• Update:

vk = yk − h(m−k , k)

Sk = Hx(m−k , k) P−k HT
x (m−k , k) + Rk

Kk = P−k HT
x (m−k , k) S−1

k

mk = m−k + Kk vk

Pk = P−k −Kk Sk KT
k ,

(3.11)
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where the matrices Fx(m, k−1) and Hx(m, k) are the Jacobians of f and h, with
elements

[Fx(m, k − 1)]j,j′ =
∂fj(x, k − 1)

∂xj′

∣∣∣∣∣
x=m

(3.12)

[Hx(m, k)]j,j′ =
∂hj(x, k)

∂xj′

∣∣∣∣∣
x=m

. (3.13)

Note that the difference between first order EKF and KF is that the matrices Ak and
Hk in KF are replaced with Jacobian matrices Fx(mk−1, k − 1) and Hx(m−k , k)
in EKF. Predicted mean m−k and residual of prediction vk are also calculated dif-
ferently in the EKF. In this toolbox the prediction and update steps of the first order
EKF can be computed with functions ekf_predict1 and ekf_update1, re-
spectively.

Second Order Extended Kalman Filter

The corresponding steps for the second order EKF are as follows:

• Prediction:

m−k = f(mk−1, k − 1) +
1

2

∑
i

ei tr
{

F
(i)
xx(mk−1, k − 1) Pk−1

}
P−k = Fx(mk−1, k − 1) Pk−1 FT

x (mk−1, k − 1)

+
1

2

∑
i,i′

ei e
T
i′ tr

{
F

(i)
xx(mk−1, k − 1)Pk−1F

(i′)
xx (mk−1, k − 1)Pk−1

}
+ Qk−1.

(3.14)

• Update:

vk = yk − h(m−k , k)− 1

2

∑
i

ei tr
{

H
(i)
xx(m−k , k) P−k

}
Sk = Hx(m−k , k) P−k HT

x (m−k , k)

+
1

2

∑
i,i′

ei e
T
i′ tr

{
H

(i)
xx(m−k , k) P−k H

(i′)
xx (m−k , k) P−k

}
+ Rk

Kk = P−k HT
x (m−k , k) S−1

k

mk = m−k + Kk vk

Pk = P−k −Kk Sk KT
k ,

(3.15)
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where matrices Fx(m, k−1) and Hx(m, k) are Jacobians as in the first order EKF,
given by Equations (3.12) and (3.13). The matrices F

(i)
xx(m, k−1) and H

(i)
xx(m, k)

are the Hessian matrices of fi and hi:[
F

(i)
xx(m, k − 1)

]
j,j′

=
∂2fi(x, k − 1)

∂xj ∂xj′

∣∣∣∣∣
x=m

(3.16)

[
H

(i)
xx(m, k)

]
j,j′

=
∂2hi(x, k)

∂xj ∂xj′

∣∣∣∣∣
x=m

, (3.17)

ei = (0 · · · 0 1 0 · · · 0)T is a unit vector in direction of the coordinate axis i, that
is, it has a 1 at position i and 0 at other positions.

The prediction and update steps of the second order EKF can be computed in
this toolbox with functions ekf_predict2 and ekf_update2, respectively.
By taking the second order terms into account, however, doesn’t quarantee, that
the results get any better. Depending on problem they might even get worse, as we
shall see in the later examples.

3.1.5 The Limitations of EKF

As discussed in, for example, (Julier and Uhlmann, 2004b) the EKF has a few
serious drawbacks, which should be kept in mind when it’s used:

1. As we shall see in some of the later demonstrations, the linear and quadratic
transformations produces realiable results only when the error propagation
can be well approximated by a linear or a quadratic function. If this condition
is not met, the performance of the filter can be extremely poor. At worst, its
estimates can diverge altogether.

2. The Jacobian matrices (and Hessian matrices with second order filters) need
to exist so that the transformation can be applied. However, there are cases,
where this isn’t true. For example, the system might be jump-linear, in which
the parameters can change abruptly (Julier and Uhlmann, 2004b).

3. In many cases the calculation of Jacobian and Hessian matrices can be a
very difficult process, and its also prone to human errors (both derivation
and programming). These errors are usually very hard to debug, as its hard to
see which parts of the system produces the errors by looking at the estimates,
especially as usually we don’t know which kind of performance we should
expect. For example, in the last demonstration (Reentry Vehicle Tracking)
the first order derivatives were quite troublesome to calcute, even though the
equations themselves were relatively simple. The second order derivatives
would have even taken many more times of work.
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3.1.6 Extended Kalman smoother

The difference between the first order extended Kalman smoother (Cox, 1964; Sage
and Melsa, 1971) and the traditional Kalman smoother is the same as the difference
between first order EKF and KF, that is, matrix Ak in Kalman smoother is replaced
with Jacobian Fx(mk−1, k− 1), and m−k+1 is calculated using the model function
f . Thus, the equations for the extended Kalman smoother can be written as

m−k+1 = f(mk, k)

P−k+1 = Fx(mk, k) Pk FT
x (mk, k) + Qk

Ck = Pk FT
x (mk, k) [P−k+1]−1

ms
k = mk + Ck [ms

k+1 −m−k+1]

Ps
k = Pk + Ck [Ps

k+1 −P−k+1] CT
k .

(3.18)

First order smoothing solutiong with a RTS type smoother can be computed with
function erts_smooth1, and with forward-backward type smoother the compu-
tation can be done with function etf_smooth1.

Higher order smoothers are also possible, but not described here, as they are
not currently implemented in this toolbox.

3.2 Demonstration: Tracking a random sine signal

Next we consider a simple, yet practical, example of a nonlinear dynamic system,
in which we estimate a random sine signal using the extended Kalman filter. By
random we mean that the angular velocity and the amplitude of the signal can vary
through time. In this example the nonlinearity in the system is expressed through
the measurement model, but it would also be possible to express it with the dynamic
model and let the measurement model be linear.

The state vector in this case can be expressed as

xk =
(
θk ωk ak

)T
, (3.19)

where θk is the parameter for the sine function on time step k, ωk is the angular
velocity on time step k and ak is the amplitude on time step k. The evolution
of parameter θ is modelled with a discretized Wiener velocity model, where the
velocity is now the angular velocity:

dθ

dt
= ω. (3.20)

The values of ω and a are perturbed with one dimensional white noise processes
wa(t) and ww(t), so the signal isn’t totally deterministic:

da

dt
= wa(t) (3.21)

dw

dt
= ww(t). (3.22)
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Thus, the continous-time dynamic equation can be written as

dx(t)

dt
=

0 1 0
0 0 0
0 0 0

x(t) +

0 0
1 0
0 1

w(t), (3.23)

where the white noise process w(t) has power spectral density

Qc =

(
q1 0
0 q2

)
. (3.24)

Variables q1 and q2 describe the strengths of random perturbations of the angular
velocity and the amplitude, respectively, which are in this demonstration are set to
q1 = 0.2 and q2 = 0.1. By using the equation (2.15) the discretized form of the
dynamic equation can written as

xk =

1 ∆t 0
0 1 0
0 0 1

xk−1 + qk−1, (3.25)

where ∆t is the step size (with value ∆t = 0.01 in this case), and using the
equation (2.16) the covariance matrix Qk−1 of the discrete Gaussian white noise
process qk−1 ∼ N(0,Qk−1) can be easily computed to give

Qk−1 =

1
3 ∆t3 q1

1
2 ∆t2 q1 0

1
2 ∆t2 q1 ∆t q1 0

0 0 ∆t q2

 . (3.26)

As stated above, the non-linearity in this case is expressed by the measurement
model, that is, we propagate the current state through a non-linear measurement
function h(xk, k) to get an actual measurement. Naturally the function in this case
is the actual sine function

h(xk, k) = ak sin(θk). (3.27)

With this the measurement model can be written as

yk = h(xk, k) + rk = ak sin(θk) + rk, (3.28)

where rk is white, univariate Gaussian noise with zero mean and variance σr = 1.
The derivatives of the measurement function with respect to state variables are

∂h(xk, k)

∂θk
= ak cos(θk)

∂h(xk, k)

∂ωk
= 0

∂h(xk, k)

∂ak
= sin(θk),

(3.29)
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so the Jacobian matrix (actually in this case, a vector, as the measurements are only
one dimensional) needed by the EKF can be written as

Hx(m, k) =
(
ak cos(θk) 0 sin(θk)

)
. (3.30)

We also filter the signal with second order EKF, so we need to evaluate the
Hessian matrix of the measurement model function. In this case the second order
derivatives of h with respect to all state variables can written as

∂2h(xk, k)

∂θk∂θk
= −ak sin(θk)

∂2h(xk, k)

∂θk∂ωk
= 0

∂2h(xk, k)

∂θk∂ak
= cos(θk)

∂2h(xk, k)

∂ωk∂ωk
= 0

∂2h(xk, k)

∂ωk∂ak
= 0

∂2h(xk, k)

∂ak∂ak
= 0.

(3.31)

With these the Hessian matrix can expressed as

Hxx(m, k) =

−ak sin(θk) 0 cos(θk)
0 0 0

cos(θk) 0 0

 . (3.32)

Note that as the measurements are only one dimensional we need to evaluate only
one Hessian, and as the expressions are rather simple the computation of this Hes-
sian is trivial. In case of higher dimensions we would need to evaluate the Hessian
for each dimension separately, which could easily result in high amount of dense
algebra.

In this demonstration program the measurement function (3.27) is computed
with the following code:

function Y = ekf_demo1_h(x,param)
f = x(1,:);
a = x(3,:);
Y = a.*sin(f);
if size(x,1) == 7

Y = Y + x(7,:);
end

where the parameter x is a vector containing a single state value, or a matrix con-
taining multiple state values. It is also necessary to include the parameter param,
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which contains the other possible parameters for the functions (not present in this
case). The last three lines are included for the augmented version of unscented
Kalman filter (UKF), which is described later in this document. The Jacobian
matrix of the measurement function (eq. (3.30)) is computed with the following
function:

function dY = ekf_demo1_dh_dx(x, param)
f = x(1,:);
w = x(2,:);
a = x(3,:);
dY = [(a.*cos(f))' zeros(size(f,2),1) (sin(f))'];

The Hessian matrix of the measurement function (eq. 3.32) is computed with the
following function:

function df = ekf_sine_d2h_dx2(x,param)
f = x(1);
a = x(3);
df = zeros(1,3,3);
df(1,:,:) = [-a*sin(f) 0 cos(f); 0 0 0; cos(f) 0 0];

These functions are defined in files efk_sine_h.m, ekf_sine_dh_dx.m and
ekf_sine_d2h_dx2.m, respectively. The handles of these functions are saved
in the actual demonstration script file (ekf_sine_demo.m) with the following
code lines:

h_func = @ekf_sine_h;
dh_dx_func = @ekf_sine_dh_dx;
d2h_dx2_func = @ekf_sine_d2h_dx2;

It is also important to check out that the implementation on calculating the
derivatives is done right, as it is, especially with more complex models, easy to
make errors in the equations. This can be done with function der_check:

der_check(h_func, dh_dx_func, 1, [f w a]');

The third parameter with value 1 signals that we want to test the derivative of
function’s first (and in this case the only) dimension. Above we have assumed,
that the variable f contains the parameter value for the sine function, w the angular
velocity of the signal and a the amplitude of the signal.

After we have discretized the dynamic model and generated the real states and
measurements same as in the previous example (the actual code lines are not stated
here, see the full source code at end of this document), we can use the EKF to get
the filtered estimates for the state means and covariances. The filtering (with first
order EKF) is done almost the same as in the previous example:

MM = zeros(size(M,1),size(Y,2)); PP =
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zeros(size(M,1),size(M,1),size(Y,2));

for k=1:size(Y,2)
[M,P] = ekf_predict1(M,P,A,Q);
[M,P] = ekf_update1(M,P,Y(:,k),dh_dx_func,R*eye(1),h_func);
MM(:,k) = M;
PP(:,:,k) = P;

end

As the model dynamics are in this case linear the prediction step functions exactly
the same as in the case of traditional Kalman filter. In update step we pass the
handles to the measurement model function and it’s derivative function and the
variance of measurement noise (parameters 6, 4 and 5, respectively), in addition
to other parameters. These functions also have additional parameters, which might
be needed in some cases. For example, the dynamic and measurement model func-
tions might have parameters, which are needed when those functions are called.
See the full function specifications in chapter 5 for more details about the parame-
ters.

With second order EKF the filtering loop remains almost the same with the
exception of update step:

MM2 = zeros(size(M,1),size(Y,2));
PP2 = zeros(size(M,1),size(M,1),size(Y,2));

for k=1:size(Y,2)
[M,P] = ekf_predict1(M,P,A,Q);
[M,P] = ekf_update2(M,P,Y(:,k),dh_dx_func,...

d2h_dx2_func,R*eye(1),h_func);
MM(:,k) = M; PP(:,:,k) = P;

end

The smoothing of state estimates using the extended RTS smoother is done
sameways as in the previous example:

[SM1,SP1] = erts_smooth1(MM,PP,A,Q);

With the extended forward-backward smoother the smoothing is done with the
following function call:

[SM2,SP2] = etf_smooth1(MM,PP,Y,A,Q,[],[],[],...
dh_dx_func,R*eye(1),h_func);

Here we have assigned empty vectors for parameters 6,7 and 8 (inverse prediction,
its derivative w.r.t. to noise and its parameters, respectively), because they are not
needed in this case.

To visualize the filtered and smoothed signal estimates we must evaluate the
measurement model function with every state estimate to project the estimates to
the measurement space. This can be done with the built-in Matlab function feval:
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Y_m = feval(h_func, MM);

The filtered and smoothed estimates of the signals using the first order EKF, ERTS
and ETF are plotted in figures 3.1, 3.2 and 3.3, respectively. The estimates pro-
duced by second order EKF are not plotted as they do not differ much from first
order ones. As can be seen from the figures both smoothers give clearly better es-
timates than the filter. Especially in the beginning of the signal it takes a while for
the filter to catch on to right track.

The difference between the smoothers doesn’t become clear just by looking
these figures. In some cases the forward-backward smoother gives a little better
estimates, but it tends to be more sensitive about numerical accuracy and the pro-
cess and measurement noises. To make a comparison between the performances of
different methods we have listed the average of root mean square errors (RMSE)
on 100 Monte Carlo simulations with different methods in table 3.1. In addition to
RMSE of each state variable we also provide the estimation error in measurement
space, because we might be more interested in estimating the actual value of signal
than its components. Usually, however, the primary goal of these methods is to
estimate the hidden state variables. The following methods were used:

• EKF1: First order extended Kalman filter.

• ERTS1: First order extended Rauch-Tung-Striebel smoother.

• ETF1: First order extended Forward-Backward smoother.

• EKF2: Second order extended Kalman filter.

• ERTS2: First order extended Rauch-Tung-Striebel smoother applied to sec-
ond order EKF estimates.

• ETF2: First order extended Forward-Backward smoother applied to second
order EKF estimates.

• UKF: unscented Kalman filter.

• URTS: unscented Rauch-Tung-Striebel smoother.

From the errors we can see that with filters EKF2 gives clearly the lowest errors
with variables θ and a. Due to this also with smoothers ERTS2 and ETF2 give
clearly lower errors than others. On the other hand EKF1 gives the lowest estima-
tion error with variable ω. Furthermore, with filters EKF1 also gives lowest error in
measurement space. Each smoother, however, gives approximately the same error
in measurement space. It can also be seen, that the UKF functions the worst in this
case. This is due to linear and quadratic approximations used in EKF working well
with this model. However, with more nonlinear models UKF is often superior over
EKF, as we shall see in later sections.

In all, none of the used methods proved to be clearly superior over the others
with this model. It is clear, however, that EKF should be preferred over UKF as
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Estimating a random Sine signal with extended Kalman filter.
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Figure 3.1: Filtered estimate of the sine signal using the first order extended Kalman
filter.

it gives lower error and is slightly less demanding in terms of computation power.
Whether first or second order EKF should be used is ultimately up to the goal of
application. If the actual signal value is of interest, which is usually the case, then
one should use first order EKF, but second order one might better at predicting new
signal values as the variables θ and a are closer to real ones on average.

3.3 Unscented Kalman Filter

3.3.1 Unscented Transform

Like Taylor series based approximation presented above also the unscented trans-
form (UT) (Julier et al., 1995; Julier and Uhlmann, 2004b; Wan and van der Merwe,
2001) can be used for forming a Gaussian approximation to the joint distribution
of random variables x and y, which are defined with equations (3.1). In UT we
deterministically choose a fixed number of sigma points, which capture the desired
moments (at least mean and covariance) of the original distribution of x exactly.
After that we propagate the sigma points through the non-linear function g and
estimate the moments of the transformed variable from them.

The advantage of UT over the Taylor series based approximation is that UT is
better at capturing the higher order moments caused by the non-linear transform, as
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Smoothing a random Sine signal with extended Kalman (RTS) smoother.
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Figure 3.2: Smoothed estimate of the sine signal using the extended Kalman (RTS)
smoother.

Method RMSE[θ] RMSE[ω] RMSE[a] RMSE[y]
EKF1 0.64 0.53 0.40 0.24
ERTS1 0.52 0.31 0.33 0.15
ETF1 0.53 0.31 0.34 0.15
EKF2 0.34 0.54 0.31 0.29
ERTS2 0.24 0.30 0.18 0.15
ETF2 0.24 0.30 0.18 0.15
UKF 0.59 0.56 0.39 0.27
URTS 0.45 0.30 0.30 0.15

Table 3.1: RMSEs of estimating the random sinusoid over 100 Monte Carlo simula-
tions.
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Figure 3.3: Smoothed estimate of the sine signal using a combination of two extended
Kalman filters.
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discussed in (Julier and Uhlmann, 2004b). Also the Jacobian and Hessian matrices
are not needed, so the estimation procedure is in general easier and less error-prone.

The unscented transform can be used to provide a Gaussian approximation for
the joint distribution of variables x and y of the form(

x
y

)
∼ N

((
m
µU

)
,

(
P CU

CT
U SU

))
. (3.33)

The (nonaugmented) transformation is done as follows:

1. Compute the set of 2n + 1 sigma points from the columns of the matrix√
(n+ λ) P:

x(0) = m

x(i) = m +
[√

(n+ λ) P
]
i
, i = 1, . . . , n

x(i) = m−
[√

(n+ λ) P
]
i
, i = n+ 1, . . . , 2n

(3.34)

and the associated weights:

W (0)
m = λ/(n+ λ)

W (0)
c = λ/(n+ λ) + (1− α2 + β)

W (i)
m = 1/{2(n+ λ)}, i = 1, . . . , 2n

W (i)
c = 1/{2(n+ λ)}, i = 1, . . . , 2n.

(3.35)

Parameter λ is a scaling parameter, which is defined as

λ = α2 (n+ κ)− n. (3.36)

The positive constants α, β and κ are used as parameters of the method.

2. Propagate each of the sigma points through non-linearity as

y(i) = g(x(i)), i = 0, . . . , 2n. (3.37)

3. Calculate the mean and covariance estimates for y as

µU ≈
2n∑
i=0

W (i)
m y(i) (3.38)

SU ≈
2n∑
i=0

W (i)
c (y(i) − µU ) (y(i) − µU )T . (3.39)

4. Estimate the cross-covariance between x and y as

CU ≈
2n∑
i=0

W (i)
c (x(i) −m) (y(i) − µU )T . (3.40)
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The square root of positive definite matrix P is defined as A =
√

P, where

P = AAT . (3.41)

To calculate the matrix A we can use, for example, lower triangular matrix of the
Cholesky factorialization, which can be computed with built-in Matlab function
chol. For convience, we have provided a function (schol, which computes the
factorialization also for positive semidefinite matrices.

3.3.2 The Matrix Form of UT

The unscented transform described above can be written conviently in matrix form
as follows:

X =
[
m · · · m

]
+
√
c
[
0
√

P −
√

P
]

(3.42)

Y = g(X) (3.43)

µU = Y wm (3.44)

SU = Y W YT (3.45)

CU = X W YT , (3.46)

where X is the matrix of sigma points, function g(·) is applied to each column of
the argument matrix separately, c = α2 (n+ κ), and vector wm and matrix W are
defined as follows:

wm =
[
W

(0)
m · · · W

(2n)
m

]T
(3.47)

W =
(
I−

[
wm · · · wm

])
× diag(W (0)

c · · ·W (2n)
c )

×
(
I−

[
wm · · · wm

])T
. (3.48)

See (Särkkä, 2006) for proof for this.

3.3.3 Unscented Kalman Filter

The unscented Kalman filter (UKF) (Julier et al., 1995; Julier and Uhlmann, 2004b;
Wan and van der Merwe, 2001) makes use of the unscented transform described
above to give a Gaussian approximation to the filtering solutions of non-linear op-
timal filtering problems of form (same as eq. (3.8), but restated here for convience)

xk = f(xk−1, k − 1) + qk−1

yk = h(xk, k) + rk,
(3.49)

where xk ∈ Rn is the state, yk ∈ Rm is the measurement, qk−1 ∼ N(0,Qk−1)
is the Gaussian process noise, and rk ∼ N(0,Rk) is the Gaussian measurement
noise.
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Using the matrix form of UT described above the prediction and update steps
of the UKF can computed as follows:

• Prediction: Compute the predicted state mean m−k and the predicted covari-
ance P−k as

Xk−1 =
[
mk−1 · · · mk−1

]
+
√
c
[
0
√

Pk−1 −
√

Pk−1

]
X̂k = f(Xk−1, k − 1)

m−k = X̂k wm

P−k = X̂k W [X̂k]
T + Qk−1.

(3.50)

• Update: Compute the predicted mean µk and covariance of the measurement
Sk, and the cross-covariance of the state and measurement Ck:

X−k =
[
m−k · · · m−k

]
+
√
c
[
0
√

P−k −
√

P−k

]
Y−k = h(X−k , k)

µk = Y−k wm

Sk = Y−k W [Y−k ]T + Rk

Ck = X−k W [Y−k ]T .

(3.51)

Then compute the filter gain Kk and the updated state mean mk and covari-
ance Pk:

Kk = Ck S−1
k

mk = m−k + Kk [yk − µk]

Pk = P−k −Kk Sk KT
k .

(3.52)

The prediction and update steps of the nonaugmented UKF can be computed
with functions ukf_predict1 and ukf_update1, respectively.

3.3.4 Augmented UKF

It is possible to modify the UKF procedure described above by forming an aug-
mented state variable, which concatenates the state and noise components together,
so that the effect of process and measurement noises can be used to better capture
the odd-order moment information. This requires that the sigma points generated
during the predict step are also used in the update step, so that the effect of noise
terms are truly propagated through the nonlinearity (Wu et al., 2005). If, however,
we generate new sigma points in the update step the augmented approach give the
same results as the nonaugmented, if we had assumed that the noises were additive.
If the noises are not additive the augmented version should produce more accurate
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estimates than the nonaugmented version, even if new sigma points are created
during the update step.

The prediction and update steps of the augmented UKF in matrix form are as
follows:

• Prediction: Form a matrix of sigma points of the augmented state variable
x̃k−1 =

[
xTk−1 qTk−1 rTk−1

]T as

X̃k−1 =
[
m̃k−1 · · · m̃k−1

]
+
√
c
[
0
√

P̃k−1 −
√

P̃k−1

]
, (3.53)

where

m̃k−1 =
[
mT
k−1 0 0

]T and P̃k−1 =

Pk−1 0 0
0 Qk−1 0
0 0 Rk−1

 . (3.54)

Then compute the predicted state mean m−k and the predicted covariance
P−k as

X̂k = f(Xx
k−1,X

q
k−1, k − 1)

m−k = X̂k wm

P−k = X̂k W [X̂k]
T ,

(3.55)

where we have denoted the components of sigma points which correspond
to actual state variables and process noise with matrices Xx

k−1 and Xq
k−1,

respectively. The state transition function f is also augmented to incorporate
the effect of process noise, which is now passed to the function as a second
parameter. In additive noise case the process noise is directly added to the
state variables, but other forms of noise effect are now also allowed.

• Update: Compute the predicted mean µk and covariance of the measurement
Sk, and the cross-covariance of the state and measurement Ck:

Y−k = h(X̂k,X
r
k−1, k)

µk = Y−k wm

Sk = Y−k W [Y−k ]T

Ck = X̂k W [Y−k ]T ,

(3.56)

where we have denoted the component of sigma points corresponding to
measurement noise with matrix Xr

k−1. Like the state transition function f
also the measurement function h is now augmented to incorporate the effect
of measurement noise, which is passed as a second parameter to the function.
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Then compute the filter gain Kk and the updated state mean mk and covari-
ance Pk:

Kk = Ck S−1
k

mk = m−k + Kk [yk − µk]

Pk = P−k −Kk Sk KT
k .

(3.57)

Note that nonaugmented form UKF is computationally less demanding than
augmented form UKF, because it creates a smaller number of sigma points during
the filtering procedure. Thus, the usage of the nonaugmented version should be
preferred over the nonaugmented version, if the propagation of noise terms doesn’t
improve the accuracy of the estimates.

The prediction and update steps of the augmented UKF can be computed
with functions ukf_predict3 and ukf_update3, respectively. These
functions concatenates the state variables, process and measurements noises to the
augmented variables, as was done above.

It is also possible to separately concatenate only the state variables and process
noises during prediction step and state variables and measurement noises during
update step. Filtering solution based on this formulation can be computed with
functions ukf_predict2 and ukf_update2. However, these functions create
new sigma points during the update step in addition to ones created during predic-
tion step, and hence the higher moments might not get captured so effectively in
cases, where the noise terms are additive.

3.3.5 Unscented Kalman Smoother

The Rauch-Rung-Striebel type smoother using the unscented transformation
(Särkkä, 2008) can be used for computing a Gaussian approximation to the
smoothing distribution of the step k:

p(xk|y1:T ) ∼ N(xk|ms
k,P

s
k), (3.58)

as follows (using again the matrix form):

• Form a matrix of sigma points of the augmented state variable x̃k−1 =[
xTk−1 qTk−1

]T as

X̃k−1 =
[
m̃k−1 · · · m̃k−1

]
+
√
c
[
0
√

P̃k−1 −
√

P̃k−1

]
, (3.59)

where

m̃k−1 =
[
mT
k−1 0

]T and P̃k−1 =

[
Pk−1 0

0 Qk−1

]
. (3.60)
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• Propagate the sigma points through the dynamic model:

X̃−k+1 = f(X̃x
k, X̃

q
k, k), (3.61)

where X̃x
k and X̃q

k denotes the parts of sigma points, which correspond to xk
and qk, respectively.

• Compute the predicted mean m−k+1, covariance P−k+1 and cross-covariance
Ck+1:

m−k+1 = X̃−xk+1 wm

P−k+1 = X̃−xk+1 W [X̃−xk+1]T

Ck+1 = X̃−xk+1 W [X̃x
k]T ,

(3.62)

where X̃−xk+1 denotes the part of propagated sigma points X̃−k+1, which cor-
responds to xk.

• Compute the smoother gain Dk, the smoothed mean ms
k and the covariance

Ps
k:

Dk = Ck+1[P−k+1]−1

ms
k = mk + Dk[m

s
k+1 −m−k+1]

Ps
k = Pk + Dk[P

s
k+1 −P−k+1]DT

k .

(3.63)

The smoothing solution of this augmented type RTS smoother can be com-
puted with function urts_smooth2. Also a nonaugmented version of this type
smoother has been implemented, and a smoothing solution with that can be com-
puted with function urts_smooth1.
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3.4 Gauss-Hermite Kalman Filter

3.4.1 Gauss-Hermite Cubature Transformation

To unify many of the filter variants, handling the non-linearities may be brought
together to a common formulation. In Gaussian optimal filtering — also called
assumed density filtering — the filtering equations follow the assumption that the
filtering distributions are indeed Gaussian (Maybeck, 1982; Ito and Xiong, 2000).

Using this setting the linear Kalman filter equations can now be adapted to the
non-linear state-space model. Desired moments (at least mean and covariance) of
the original distribution of x can be captured exactly by calculating the integrals

µU =

∫
f(x) N(x |m, P)dx

SU =

∫
(f(x)− µU ) (f(x)− µU ) T ×N(x |m, P)dx.

(3.64)

These integrals can be evaluated with practically any analytical or numeri-
cal integration method. The Gauss–Hermite quadrature rule is a one-dimensional
weighted sum approximation method for solving special integrals of the previous
form in a Gaussian kernel with an infinite domain. More specifically the Gauss–
Hermite quadrature can be applied to integrals of form∫ ∞

−∞
f(x) exp(−x2)dx ≈

m∑
i=1

wi f(xi), (3.65)

where xi are the sample points and wi the associated weights to use for the ap-
proximation. The sample points xi, i = 1, . . . ,m, are roots of special orthogonal
polynomials, namely the Hermite polynomials. The Hermite polynomial of de-
gree p is denoted with Hp(x) (see Abramowitz and Stegun, 1964, for details). The
weights wi are given by

wi =
2p−1p!

√
π

p2[Hp−1(xi)]2
. (3.66)

The univariate integral approximation needs to be extended to be able to suit the
multivariate case. As Wu et al. (2006) argue, the most natural approach to grasp
a multiple integral is to treat it as a sequence of nested univariate integrals and
then use a univariate quadrature rule repeatedly. To extend this one-dimensional
integration method to multi-dimensional integrals of form∫

Rn

f(x) exp(−xTx)dx ≈
m∑
i=1

wi f(xi), (3.67)

we first simply form the one-dimensional quadrature rule with respect to the first
dimension, then with respect to the second dimension and so on (Cools, 1997). We
get the multidimensional Gauss–Hermite cubature rule by writing
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∑
i1

wi1

∫
f(xi11 , x2, . . . , xn) exp(−x2

2 − x2
3 . . .− x2

n)dx2 . . . dxn

=
∑
i1,i2

wi1wi2

∫
f(xi11 , x

i2
2 , . . . , xn) exp(−x2

3 . . .− x2
n)dx3 . . . dxn

=
∑

i1,i2,...,in

wi1wi2 · · ·win f(xi11 , x
i2
2 , . . . , x

in
n ),

which is basically what we wanted in Equation (3.67). This gives us the product
rule that simply extends the one-dimensional quadrature point set of p points in one
dimension to a lattice of pn cubature points in n dimensions. The weights for these
Gauss–Hermite cubature points are calculated by the product of the corresponding
one-dimensional weights.

Finally, by making a change of variable x =
√

2
√

Σ + µ we get the Gauss–
Hermite weighted sum approximation for a multivariate Gaussian integral, where
µ is the mean and Σ is the covariance of the Gaussian. The square root of the
covariance matrix, denoted

√
Σ, is a matrix such that Σ =

√
Σ
√

ΣT.

∫
Rn

f(x) N(x | µ, Σ)dx ≈
∑

i1,i2,...,in

wi1,i2,...,in f
(√

Σ ξi1,i2,...,in + µ
)
, (3.68)

where the weight wi1,i2,...,in = 1
πn/2wi1 · wi2 · · ·win is given by using the one-

dimensional weights, and the points are given by the Cartesian product ξi1,i2,...,in =√
2 (xi1 , xi2 , . . . , xin), where xi is the ith one-dimensional quadrature point.

The extension of the Gauss–Hermite quadrature rule to an n-dimensional cuba-
ture rule by using the product rule lattice approach yields a rather good numerical
integration method that is exact for monomials

∏n
i=1 x

ki
i with ki ≤ 2p − 1 (Wu

et al., 2006). However, the number of cubature points grows exponentially as the
number of dimensions increases. Due to this flaw the rule is not practical in appli-
cations with many dimensions. This problem is called the curse of dimensionality.

3.4.2 Gauss-Hermite Kalman Filter

The Gauss–Hermite Kalman filter (GHKF) algorithm of degree p is presented be-
low. At time k = 1, . . . , T assume the posterior density function p(xk−1 | yk−1) =
N(mk−1|k−1,Pk−1|k−1) is known.

Prediction step:

1. Find the roots xi, i = 1, . . . , p, of the Hermite polynomial Hp(x).

2. Calculate the corresponding weights

wi =
2p−1p!

p2[Hp−1(xi)]2
.
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3. Use the product rule to expand the points to a n-dimensional lattice of pn

points ξi, i = 1, . . . , pn, with corresponding weights.

4. Propagate the cubature points. The matrix square root is the lower triangular
cholesky factor.

Xi,k−1|k−1 =
√

2Pk−1|k−1ξi + mk−1|k−1

5. Evaluate the cubature points with the dynamic model function

X∗i,k|k−1 = f(Xi,k−1|k−1).

6. Estimate the predicted state mean

mk|k−1 =

pn∑
i=1

wiX
∗
i,k|k−1.

7. Estimate the predicted error covariance

Pk|k−1 =

pn∑
i=1

wiX
∗
i,k|k−1X

∗T
i,k|k−1 −mk|k−1mk|k−1

T + Qk−1.

Update step:

1. Repeat steps 1–3 from earlier to get the pn cubature points and their weights.

2. Propagate the cubature points.

Xi,k|k−1 =
√

2Pk|k−1ξi + mk|k−1

3. Evaluate the cubature points with the help of the measurement model func-
tion

Yi,k|k−1 = h(Xi,k|k−1).

4. Estimate the predicted measurement

ŷk|k−1 =

pn∑
i=1

wiYi,k|k−1.

5. Estimate the innovation covariance matrix

Sk|k−1 =

pn∑
i=1

wiYi,k|k−1Yi,k|k−1
T − ŷk|k−1ŷk|k−1

T + Rk.
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6. Estimate the cross-covariance matrix

Pxy,k|k−1 =

pn∑
i=1

wiXi,k−1|k−1Yi,k|k−1
T −mk|k−1ŷk|k−1

T.

7. Calculate the Kalman gain term and the smoothed state mean and covariance

Kk = Pxy,k|k−1S
−1
k|k−1

mk|k = mk|k−1 + Kk(yk − ŷk|k−1)

Pk|k = Pk|k−1 −KkPyy,k|k−1Kk
T.

3.4.3 Gauss-Hermite Kalman Smoother

The Gauss–Hermite Rauch–Tung–Striebel smoother (GHRTS) algorithm (Särkkä
and Hartikainen, 2010) of degree p is presented below. Assume the filtering result
mean mk|k and covariance Pk|k are known together with the smoothing result
p(xk+1 | y1:T ) = N(mk+1|T ,Pk+1|T ).

1. Find the roots xi, i = 1, . . . , p, of the Hermite polynomial Hp(x).

2. Calculate the corresponding weights

wi =
2p−1p!

p2[Hp−1(xi)]2
.

3. Use the product rule to expand the points to a n-dimensional lattice of pn

points ξi, i = 1, . . . , pn, with corresponding weights.

4. Propagate the cubature points

Xi,k|k =
√

2Pk|kξi + mk|k.

5. Evaluate the cubature points with the dynamic model function

X∗i,k+1|k = f(Xi,k|k).

6. Estimate the predicted state mean

mk+1|k =

pn∑
i=1

wiX
∗
i,k+1|k.

7. Estimate the predicted error covariance

Pk+1|k =

pn∑
i=1

wiX
∗
i,k+1|kX

∗T
i,k+1|k −mk+1|kmk+1|k

T + Qk.
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8. Estimate the cross-covariance matrix

Dk,k+1 =
1

2n

2n∑
i=1

(
Xi,k|k −mk|k

)(
X∗i,k+1|k −mk+1|k

)
T.

9. Calculate the gain term and the smoothed state mean and covariance

Ck = Dk,k+1P
−1
k+1|k

mk|T = mk|k + Ck(mk+1|T −mk+1|k)

Pk|T = Pk|k + Ck(Pk+1|T −Pk+1|k)Ck
T.

39



CHAPTER 3. NONLINEAR STATE SPACE ESTIMATION

3.5 Cubature Kalman Filter

3.5.1 Spherical-Radial Cubature Transformation

As in the Gauss–Hermite cubature rule based Gauss–Hermite transformation the
spherical–radial cubature transformation utilizes the assumed density approach.
The integrals that need to be solved are the same Gaussian integrals, but the numer-
ical integration method differs from the product rule based Gauss–Hermite method.

The curse of dimensionality causes all product rules to be highly ineffective
in integration regions with multiple dimensions. To mitigate this issue, we may
seek alternative approaches to solving Gaussian integrals. The non-product rules
differ from product based solutions by choosing the evaluation points directly from
the domain of integration. That is, the points are not simply duplicated from one
dimension to multiple dimensions, but directly chosen from the whole domain.

We constrain our interest to integrals of form

I(f) =

∫
Rn

f(x) exp(−xTx)dx. (3.69)

We make a change of variable from x ∈ Rn to spherical coordinates, which lets us
split the integrand into two: a radial integral

I(f) =

∫ ∞
0

S(r) rn−1 exp(−r2)dr, (3.70)

and a spherical integral

S(r) =

∫
Sn

f(ry)dσ(y). (3.71)

The spherical integral (3.71) can be seen as a spherical integral with the unit
weighting function w(y) ≡ 1. Now the spherical and radial integral may be inter-
preted separately and computed with the spherical cubature rule and the Gaussian
quadrature rule respectively.

In a fully symmetric cubature point set equally weighted points are symmetri-
cally distributed around origin. A point u is called the generator of such a set, if
for the components of u =

(
u1, u2, . . . , ur, 0, . . . , 0

)
∈ Rn, ui ≥ ui+1 > 0, i =

1, 2, . . . , (r − 1). For example, we may denote [1] ∈ R2 to represent the cubature
point set {(

1
0

)
,

(
0
1

)
,

(
−1
0

)
,

(
0
−1

)}
,

where the generator is
(
1 0

)
T.

To find the unknowns of a cubature rule of degree d, a set of moment equa-
tions have to be solved. This, however, may not be a simple task with increasing
dimensions and polynomial degree. To reduce the size of the system of equations
or the number of needed cubature points (Arasaratnam and Haykin, 2009) use the
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invariant theory proposed by Sobolev (see Cools, 1997). The invariant theory dis-
cusses how to simplify the structure of a cubature rule by using the symmetries of
the region of integration. The unit hypercube, the unit hypersphere and the unit
simplex all contain some symmetry.

Due to invariance theory (Cools, 1997) the integral (3.71) can be approximated
by a third-degree spherical cubature rule that gives us the sum∫

Sn

f(ry)dσ(y) ≈ w
2n∑
i=1

f([u]i). (3.72)

The point set [u] is invariant under permutations and sign changes, which means
that a number of 2n cubature points are sufficient to approximate the integral. For
the above choice, the monomials yd11 y

d2
2 · · · ydnn , with the sum

∑n
i=1 di being an

odd integer, are integrated exactly.
To make this rule exact for all monomials up to degree three, we have to require

the rule to be exact for the even dimensions
∑n

i=1 di = {0, 2}. This can be
accomplished by solving the unknown parameters for a monomial function of order
n = 0 and equivalently for a monomial function of order n = 2. We consider the
two functions f(·) to be of form f(y) = 1, and f(y) = y2

1 . This yields the pair of
equations (Arasaratnam, 2009).

f(y) = 1 : 2nw =

∫
Sn

dσ(y) = An

f(y) = y2
1 : 2wu2 =

∫
Sn

y2
1dσ(y) =

1

n
An,

where An is the surface area of the n-dimensional unit sphere. Solving these
equations yields u2 = 1 and w = An

2n . Therefore the cubature points can be chosen
so that they are located at the intersection of the unit sphere and its axes.

The radial integral defined in Equation (3.70) can be transformed to a famil-
iar Gauss–Laguerre form (see Abramowitz and Stegun, 1964) by making another
change of variable, t = r2, which yields

∫ ∞
0

S(r) rn−1 exp(−r2)dr =
1

2

∫ ∞
0

S̃(t) t
n
2
−1 exp(−t)dt =

m∑
i=1

wi S̃(ti),

(3.73)
where ti is the ith root of Laguerre polynomial Lm(t) and the weights wi are

given by (Abramowitz and Stegun, 1964)

wi =
ti

(m+ 1)2(Lm+1(ti))2
.

A first-degree Gauss–Laguerre rule is exact for S̃(t) = {1, t} (or equivalently
S(r) = {1, r2}). Due to the properties of the spherical cubature rule presented
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earlier, the combined spherical–radial rule vanishes by symmetry for all odd de-
gree polynomials. Hence, to have the spherical–radial rule to be exact for all
polynomials up to degree three in x ∈ Rn it is sufficient to use the first degree
Gauss–Laguerre rule of the form (Arasaratnam, 2009)∫ ∞

0
S̃i(t) t

n
2
−1 exp(−t)dt = w1 S̃i(t1), i = {0, 1},

where S̃0(t) = 1 and S̃1(t) = t. The corresponding moment equations show
that the first-degree Gauss–Laguerre approximation is constructed using the point
t1 = n

2 and the weight w1 = Γ(n2 ), where Γ(·) is the Gamma function. The final
radial form approximation can be written using Equation (3.73) in the form∫ ∞

0
S(r) rn−1 exp(−r2)dr ≈ 1

2
Γ
(n

2

)
S

(√
n

2

)
. (3.74)

Now we have an approximation for the spherical integral in Equation (3.72),
where the third-degree rule is acquired by the cubature point set [1] and weight An

2n .
Here the surface area An of the n − 1 hypersphere equals 2 πn/2

Γ(n/2) , where Γ(·) is
the Gamma function. By applying the results derived for the spherical and radial
integral, we may combine Equations (3.72) and (3.74) to construct a third-degree
cubature approximation for (3.69), which yields the elegant solution

I(f) ≈
√
πn

2n

2n∑
i=1

f

(√
n

2
[1]i

)
.

By making a change of variable we get the third-degree spherical–radial cuba-
ture rule for an arbitrary integral that is of form non-linear function× Gaussian. It
can be written as∫

Rn

f(x) N(x | µ, Σ)dx ≈
2n∑
i=1

wif
(√

Σ ξi + µ
)
,

where the cubature points are ξi =
√
n[1]i, the corresponding (equal) weights

wi = 1
2n and the points [1]i from the intersections between the Cartesian axes and

the n-dimensional unit hypersphere.
Note that the spherical–radial cubature transform coincide with the result of the

unscented transform when the unscented transform is done with parameter values
α = ±1, β = 0 and κ = 0.

3.5.2 Spherical-Radial Cubature Kalman Filter

The cubature Kalman filter (CKF) algorithm is presented below. At time
k = 1, . . . , T assume the posterior density function p(xk−1 | yk−1) =
N(mk−1|k−1,Pk−1|k−1) is known.

Prediction step:
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1. Draw cubature points ξi, i = 1, . . . , 2n from the intersections of the n-
dimensional unit sphere and the Cartesian axes. Scale them by

√
n. That

is

ξi =

{√
n ei , i = 1, . . . , n

−
√
n ei−n , i = n+ 1, . . . , 2n

2. Propagate the cubature points. The matrix square root is the lower triangular
cholesky factor.

Xi,k−1|k−1 =
√

Pk−1|k−1ξi + mk−1|k−1

3. Evaluate the cubature points with the dynamic model function

X∗i,k|k−1 = f(Xi,k−1|k−1).

4. Estimate the predicted state mean

mk|k−1 =
1

2n

2n∑
i=1

X∗i,k|k−1.

5. Estimate the predicted error covariance

Pk|k−1 =
1

2n

2n∑
i=1

X∗i,k|k−1X
∗T
i,k|k−1 −mk|k−1mk|k−1

T + Qk−1.

Update step:

1. Draw cubature points ξi, i = 1, . . . , 2n from the intersections of the n-
dimensional unit sphere and the Cartesian axes. Scale them by

√
n.

2. Propagate the cubature points.

Xi,k|k−1 =
√

Pk|k−1ξi + mk|k−1

3. Evaluate the cubature points with the help of the measurement model func-
tion

Yi,k|k−1 = h(Xi,k|k−1).

4. Estimate the predicted measurement

ŷk|k−1 =
1

2n

2n∑
i=1

Yi,k|k−1.
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5. Estimate the innovation covariance matrix

Sk|k−1 =
1

2n

2n∑
i=1

Yi,k|k−1Yi,k|k−1
T − ŷk|k−1ŷk|k−1

T + Rk.

6. Estimate the cross-covariance matrix

Pxy,k|k−1 =
1

2n

2n∑
i=1

Xi,k−1|k−1Yi,k|k−1
T −mk|k−1ŷk|k−1

T.

7. Calculate the Kalman gain term and the smoothed state mean and covariance

Kk = Pxy,k|k−1S
−1
k|k−1

mk|k = mk|k−1 + Kk(yk − ŷk

Pk|k = Pk|k−1 −KkPyy,k|k−1Kk
T.

3.5.3 Spherical-Radial Cubature Kalman Smoother

The cubature Rauch–Tung–Striebel smoother (CRTS) algorithm (see Solin, 2010)
is presented below. Assume the filtering result mean mk|k and covariance Pk|k are
known together with the smoothing result p(xk+1 | y1:T ) = N(mk+1|T ,Pk+1|T ).

1. Draw cubature points ξi, i = 1, . . . , 2n from the intersections of the n-
dimensional unit sphere and the Cartesian axes. Scale them by

√
n. That

is

ξi =

{√
n ei , i = 1, . . . , n

−
√
n ei−n , i = n+ 1, . . . , 2n

2. Propagate the cubature points

Xi,k|k =
√

Pk|kξi + mk|k.

3. Evaluate the cubature points with the dynamic model function

X∗i,k+1|k = f(Xi,k|k).

4. Estimate the predicted state mean

mk+1|k =
1

2n

2n∑
i=1

X∗i,k+1|k.

5. Estimate the predicted error covariance

Pk+1|k =
1

2n

2n∑
i=1

X∗i,k+1|kX
∗T
i,k+1|k −mk+1|kmk+1|k

T + Qk.
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6. Estimate the cross-covariance matrix

Dk,k+1 =
1

2n

2n∑
i=1

(
Xi,k|k −mk|k

)(
X∗i,k+1|k −mk+1|k

)
T.

7. Calculate the gain term and the smoothed state mean and covariance

Ck = Dk,k+1P
−1
k+1|k

mk|T = mk|k + Ck(mk+1|T −mk+1|k)

Pk|T = Pk|k + Ck(Pk+1|T −Pk+1|k)Ck
T.

3.6 Demonstration: UNGM-model

To illustrate some of the advantages of UKF over EKF and augmented form UKF
over non-augmented lets now consider an example, in which we estimate a model
called Univariate Nonstationary Growth Model (UNGM), which is previously used
as benchmark, for example, in Kotecha and Djuric (2003) and Wu et al. (2005).
What makes this model particularly interesting in this case is that its highly non-
linear and bimodal, so it is really challenging for traditional filtering techniques.
We also show how in this case the augmented version of UKF gives better per-
formance than the nonaugmented version. Additionally the Cubature (CKF) and
Gauss–Hermite Kalman filter (GHKF) results are also provided for comparison.

The dynamic state space model for UNGM can be written as

xn = αxn−1 + β
xn−1

1 + x2
n−1

+ γ cos(1.2(n− 1)) + un (3.75)

yn =
x2
n

20
+ vn, n = 1, . . . , N (3.76)

where un ∼ N(0, σ2
u) and vn ∼ N(0, σ2

u). In this example we have set the
parameters to σ2

u = 1, σ2
v = 1, x0 = 0.1, α = 0.5, β = 25, γ = 8, and N = 500.

The cosine term in the state transition equation simulates the effect of time-varying
noise.

In this demonstration the state transition is computed with the following func-
tion:

function x_n = ungm_f(x,param)
n = param(1);
x_n = 0.5*x(1,:) + 25*x(1,:)./(1+x(1,:).*x(1,:)) + 8*cos(1.2*(n-1));
if size(x,1) > 1 x_n = x_n + x(2,:); end

where the input parameter x contains the state on the previous time step. The
current time step index n needed by the cosine term is passed in the input parameter
param. The last three lines in the function adds the process noise to the state
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component, if the augmented version of the UKF is used. Note that in augmented
UKF the state, process noise and measurement noise terms are all concatenated
together to the augmented variable, but in URTS the measurement noise term is left
out. That is why we must make sure that the functions we declare are compatible
with all cases (nonaugmented, augmented with and without measurement noise).
In this case we check whether the state variable has second component (process
noise) or not.

Similarly, the measurement model function is declared as

function y_n = ungm_h(x_n,param)
y_n = x_n(1,:).*x_n(1,:) ./ 20;
if size(x_n,1) == 3 y_n = y_n + x_n(3,:); end

The filtering loop for augmented UKF is as follows:

for k = 1:size(Y,2)
[M,P,X_s,w] = ukf_predict3(M,P,f_func,u_n,v_n,k);
[M,P] = ukf_update3(M,P,Y(:,k),h_func,v_n,X_s,w,[]);
MM_UKF2(:,k) = M;
PP_UKF2(:,:,k) = P;

end

The biggest difference in this in relation to other filters is that now the predict step
returns the sigma points (variable X_s) and their weigths (variable w), which must
be passed as parameters to update function.

To compare the EKF and UKF to other possible filtering techniques we have
also used a bootstrap filtering approach (Gordon et al., 1993), which belongs to
class of Sequential Monte Carlo (SMC) methods (also known as particle filters).
Basically the idea in SMC methods that is during each time step they draw a
set of weighted particles from some appropriate importance distribution and after
that the moments (that is, mean and covariance) of the function of interest (e.g.
dynamic function in state space models) are estimated approximately from drawn
samples. The weights of the particles are adjusted so that they are approximations
to the relative posterior probabilities of the particles. Usually also a some kind
of resampling scheme is used to avoid the problem of degenerate particles, that
is, particles with near zero weights are removed and those with large weights are
duplicated. In this example we used a stratified resampling algorithm (Kitagawa,
1996), which is optimal in terms of variance. In bootstrap filtering the dynamic
model p(xk|xk−1) is used as importance distribution, so its implementation is
really easy. However, due to this a large number of particles might be needed for
the filter to be effective. In this case 1000 particles were drawn on each step. The
implementation of the bootstrap filter is commented out in the actual demonstration
script (ungm_demo.m), because the used resampling function (resampstr.m)
was originally provided in MCMCstuff toolbox (Vanhatalo and Vehtari, 2006),
which can be found at http://www.lce.hut.fi/research/mm/mcmcstuff/.
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Figure 3.4: First 100 samples of filtering results of EKF, augmented form UKF and
bootstrap filter for UNGM-model.

In figure 3.4 we have plotted the 100 first samples of the signal as well as
the estimates produced by EKF, augmented form UKF and bootstrap filter. The
bimodality is easy to see from the figure. For example, during samples 10−25 UKF
is able to estimate the correct mode while the EKF estimates it wrong. Likewise,
during steps 45− 55 and 85− 95 UKF has troubles in following the correct mode
while EKF is more right. Bootstrap filter on the other hand tracks the correct mode
on almost ever time step, although also it produces notable errors.

In figure 3.5 we have plotted the absolute errors and 3σ confidence intervals of
the previous figures filtering results. It can be seen that the EKF is overoptimistic in
many cases while UKF and boostrap filter are better at telling when their results are
unreliable. Also the lower error of bootstrap filter can be seen from the figure. The
bimodality is also easy to notice on those samples, which were mentioned above.

The make a comparison between nonaugmented and augmented UKF we have
plotted 100 first samples of their filtering results in figure 3.6. Results are very
surprising (although same as in Wu et al. (2005)). The reason why nonaugmented
UKF gave so bad results is not clear. However, the better performance of aug-
mented form UKF can be explained by the fact, that the process noise is taken into
account more effectively when the sigma points are propagated through nonlinear-
ity. In this case it seems to be very crucial, as the model is highly nonlinear and
multi-modal.
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Figure 3.5: Absolute errors of and 3σ confidence intervals of EKF, augmented form
UKF and bootstrap in 100 first samples.

Lastly in figure 3.7 we have plotted the mean square errors of each tested
methods of 100 Monte Carlo runs. Average of those errors are listed in table 3.2.
Here is a discussion for the results:

• It is surprising that the nonaugmented UKF seems to be better than EKF,
while in above figures we have shown, that the nonaugmented UKF gives
very bad results. Reason for this is simple: the variance of the actual signal is
approximately 100, which means that by simply guessing zero we get better
performance than with EKF, on average. The estimates of nonaugmented
UKF didn’t variate much on average, so they were better than those of EKF,
which on the other hand variated greatly and gave huge errors in some cases.
Because of this neither of the methods should be used for this problem, but
if one has to choose between the two, that would be EKF, because in some
cases it still gave (more or less) right answers, whereas UKF were practically
always wrong.

• The second order EKF were also tested, but that diverged almost instantly,
so it were left out from comparison.

• Augmented form UKF gave clearly the best performance from the tested
Kalman filters. As discussed above, this is most likely due to the fact that
the process noise terms are propagated through the nonlinearity, and hence
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Figure 3.6: Filtering results of nonaugmented UKF (UKF1) and augmented UKF
(UKF2) of 100 first samples.
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Method MSE[x]
UKF1 87.9
URTS1 69.09
UKF2 63.7
URTS2 57.7
EKF 125.9
ERTS 92.2
BS 10.2
GHKF 40.9
GHRTS 31.6
CKF 72.3
CRTS 71.4

Table 3.2: MSEs of estimating the UNGM model over 100 Monte Carlo simulations.

odd-order moment information is used to obtain more accurate estimates.
The usage of RTS smoother seemed to improve the estimates in general, but
oddly in some cases it made the estimates worse. This is most likely due to
the multi-modality of the filtering problem.

• The Gauss–Hermite method performed rather well in both filtering and
smoothing. This was mostly due to the degree of approximation as the rule
entailed 10 sigma points.

• The cubature Kalman filter gave results close to the UKF variants, which is
to no surprise as the filter uses similar sigma points.

• Bootstrap filtering solution was clearly superior over all other tested meth-
ods. The results had been even better, if greater amount of particles had been
used.

The reason why Kalman filters didn’t work that well in this case is because
Gaussian approximations do not in general apply well for multi-modal cases. Thus,
a particle filtering solution should be preferred over Kalman filters in such cases.
However, usually the particle filters need a fairly large amount of particles to be
effective, so they are generally more demanding in terms of computational power
than Kalman filters, which can be a limiting factor in real world applications. The
errors, even with bootstrap filter, were also relatively large, so one must be careful
when using the estimates in, for example, making financial decisions. In practice
this means that one has to monitor the filter’s covariance estimate, and trust the state
estimates and predictions only when the covariance estimates are low enough, but
even then there is a change, that the filter’s estimate is completely wrong.
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Figure 3.7: MSEs of different methods in 100 Monte Carlo runs.
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3.7 Demonstration: Bearings Only Tracking

Next we review a classical filtering application (see, e.g., Bar-Shalom et al., 2001),
in which we track a moving object with sensors, which measure only the bearings
(or angles) of the object with respect positions of the sensors. There is a one
moving target in the scene and two angular sensors for tracking it. Solving this
problem is important, because often more general multiple target tracking problems
can be partitioned into sub-problems, in which single targets are tracked separately
at a time (Särkkä et al., 2007).

The state of the target at time step k consists of the position in two dimensional
cartesian coordinates xk and yk and the velocity toward those coordinate axes, ẋk
and ẏk. Thus, the state vector can be expressed as

xk =
(
xk yk ẋk ẏk

)T
. (3.77)

The dynamics of the target is modelled as a linear, discretized Wiener velocity
model (Bar-Shalom et al., 2001)

xk =


1 0 ∆t 0
0 1 0 ∆t
0 0 1 0
0 0 0 1



xk−1

yk−1

ẋk−1

ẏk−1

+ qk−1, (3.78)

where qk−1 is Gaussian process noise with zero mean and covariance

E[qk−1q
T
k−1] =


1
3 ∆t3 0 1

2 ∆t2 0
0 1

3 ∆t3 0 1
2 ∆t2

1
2 ∆t2 0 ∆t 0

0 1
2 ∆t2 0 ∆t

q, (3.79)

where q is the spectral density of the noise, which is set to q = 0.1 in the simula-
tions. The measurement model for sensor i is defined as

θik = arctan

(
yk − siy
xk − six

)
+ rik, (3.80)

where (six, s
i
y) is the position of sensor i and rik ∼ N(0, σ2), with σ = 0.05

radians. In figure 3.8 we have plotted a one realization of measurements in radians
obtained from both sensors. The sensors are placed to (s1

x, s
1
y) = (−1,−2) and

(s2
x, s

2
y) = (1, 1).

The derivatives of the measurement model, which are needed by EKF, can be
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Figure 3.8: Measurements from sensors (in radians) in bearings only tracking prob-
lem .

computed as

∂hi(xk)

∂xk
=

−(yk − siy)
(xk − six)2 + (yk − siy)2

∂hi(xk)

∂yk
=

(xk − six)

(xk − six)2 + (yk − siy)2

∂hi(xk)

∂ẋk
= 0

∂hi(xk)

∂ẏk
= 0, i = 1, 2.

(3.81)

With these the Jacobian can written as

Hx(xk, k) =

 (xk−s1x)
(xk−s1x)2+(yk−s1y)2

−(yk−s1y)

(xk−s1x)2+(yk−s1y)2
0 0

(xk−s2x)
(xk−s2x)2+(yk−s2y)2

−(yk−s2y)

(xk−s2x)2+(yk−s2y)2
0 0

 . (3.82)

The non-zero second order derivatives of the measurement function are also rela-
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tively easy to compute in this model:

∂2hi(xk)

∂xk∂xk
=

−2(xk − six)

((xk − six)2 + (yk − siy)2)2

∂2hi(xk)

∂xk∂yk
=

(yk − siy)2 − (xk − six)2

((xk − six)2 + (yk − siy)2)2

∂2hi(xk)

∂yk∂yk
=

−2(yk − siy)
((xk − six)2 + (yk − siy)2)2

.

(3.83)

Thus, the Hessian matrices can be written as

Hi
xx(xk, k) =


−2(xk−six)

((xk−six)2+(yk−siy)2)2
(yk−siy)2−(xk−six)2

((xk−six)2+(yk−siy)2)2
0 0

(yk−siy)2−(xk−six)2

((xk−six)2+(yk−siy)2)2
−2(yk−siy)

((xk−six)2+(yk−siy)2)2
0 0

0 0 0 0
0 0 0 0

 , i = 1, 2.

(3.84)
We do not list the program code for the measurement function and it’s derivatives
here as they are straightforward to implement, if the previous examples have been
read.

The target starts with state x0 =
(
0 0 1 0

)
, and in the estimation we set

the prior distribution for the state to x0 ∼ N(0,P0), where

P0 =


0.1 0 0 0
0 0.1 0 0
0 0 10 0
0 0 0 10

 , (3.85)

which basically means that we are fairly certain about the target’s origin, but very
uncertain about the velocity. In the simulations we also give the target an slightly
randomized acceleration, so that it achieves a curved trajectory, which is approxi-
mately the same in different simulations. The trajectory and estimates of it can be
seen in figures 3.9, 3.10 and 3.11. As can be seen from the figures EKF1 and UKF
give almost identical results while the estimates of EKF2 are clearly worse. Es-
pecially in the beginning of the trajectory EKF2 has great difficulties in getting on
the right track, which is due to the relatively big uncertainty in the starting velocity.
After that the estimates are fairly similar.

In table 3.3 we have listed the root mean square errors (mean of position errors)
of all tested methods (same as in random sine signal example on page 25 with the
addition of UTF) over 1000 Monte Carlo runs. The numbers prove the previous
observations, that the EKF1 and UKF give almost identical performances. Same
observations apply also to smoothers. Had the prior distribution for the starting
velocity been more accurate the performance difference between EKF2 and other
methods would have been smaller, but still noticeable.
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Method RMSE
EKF1 0.114
ERTS1 0.054
ETF1 0.054
EKF2 0.202
ERTS2 0.074
ETF2 0.063
UKF 0.113
URTS 0.055
UTF 0.055
GHKF 0.107
GHRTS 0.053
CKF 0.108
CRTS 0.053

Table 3.3: RMSEs of estimating the position in Bearings Only Tracking problem over
1000 Monte Carlo runs. The Gauss–Hermite rule is of degree 3.

These observations also hold for the cubature methods. The Gauss–Hermite
Kalman filter and cubature Kalman filter give practically identical results as the
unscented filter.
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Figure 3.9: Filtering and smoothing results of first order EKF.
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Figure 3.10: Filtering and smoothing results of second order EKF.
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Figure 3.11: Filtering and smoothing results of UKF
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3.8 Demonstration: Reentry Vehicle Tracking

Next we review a challenging filtering problem, which was used in Julier and
Uhlmann (2004b) to demonstrate the performance of UKF. Later they released
few corrections to the model specifications and simulation parameters in Julier and
Uhlmann (2004a).

This example conserns a reentry tracking problem, where radar is used for
tracking a space vehicle, which enters the atmosphere at high altitude and very
high speed. Figure 3.12 shows a sample trajectory of the vehicle with respect to
earth and radar. The dynamics of the vehicle are affected with three kinds of forces:
aerodynamic drag, which is a function of vehicle speed and has highly nonlinear
variations in altitude. The second type of force is gravity, which causes the vehicle
to accelerate toward the center of the earth. The third type of forces are random
buffeting terms. The state space in this model consists of vehicles position (x1 and
x2), its velocity (x3 and x4) and a parameter of its aerodynamic properties (x5).
The dynamics in continuous case are defined as (Julier and Uhlmann, 2004b)

ẋ1(t) = x3(t)

ẋ2(t) = x4(t)

ẋ3(t) = D(t)x3(t) +G(t)x1(t) + v1(t)

ẋ4(t) = D(t)x4(t) +G(t)x2(t) + v2(t)

ẋ5(t) = v3(t),

(3.86)

where w(t) is the process noise vector, D(t) the drag-related force and G(t) the
gravity-related force. The force terms are given by

D(k) = β(t) exp

{
[R0 −R(t)]

H0

}
V (t)

G(t) = −Gm0

R3(t)

β(t) = β0 expx5(t),

(3.87)

whereR(t) =
√
x2

1(t) + x2
2(t) is the vehicle’s distance from the center of the earth

and V (t) =
√
x2

3(t) + x2
4(t) is the speed of the vehicle. The constants in previous

definition were set to

β0 = −0.59783

H0 = 13.406

Gm0 = 3.9860× 105

R0 = 6374.

(3.88)

To keep the implementation simple the continuous-time dynamic equations were
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discretized using a simple Euler integration scheme, to give

x1(k + 1) = x1(k) + ∆tx3(k)

x2(k + 1) = x2(k) + ∆tx4(k)

x3(k + 1) = x3(k) + ∆t(D(k)x3(k) +G(k)x1(k)) + w1(k)

x4(k + 1) = x4(k) + ∆t(D(k)x4(k) +G(k)x2(k)) + w2(k)

x5(k + 1) = x5(k) + w3(k),

(3.89)

where the step size between time steps was set to ∆t = 0.1s. Note that this might
be too simple approach in real world applications due to high nonlinearities in the
dynamics, so more advanced integration scheme (such as Runge-Kutta) might be
more preferable. The discrete process noise covariance in the simulations was set
to

Q(k) =

2.4064× 10−5 0 0
0 2.4064× 10−5 0
0 0 10−6

 . (3.90)

The lower right element in the covariance was initially in Julier and Uhlmann
(2004b) set to zero, but later in Julier and Uhlmann (2004a) changed to 10−6 to
increase filter stability.

The non-zero derivatives of the discretized dynamic equations with respect to
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state variables are straightforward (although rather technical) to compute:

∂x1(k + 1)

∂x1(k)
= 1

∂x1(k + 1)

∂x3(k)
= ∆t

∂x2(k + 1)

∂x2(k)
= 1

∂x2(k + 1)

∂x4(k)
= ∆t

∂x3(k + 1)

∂x1(k)
= ∆t ∗( ∂D(k)

∂x1(k)
x3(k) +

∂G(k)

∂x1(k)
x1(k) +G(k))

∂x3(k + 1)

∂x2(k)
= ∆t ∗( ∂D(k)

∂x2(k)
x3(k) +

∂G(k)

∂x2(k)
x1(k))

∂x3(k + 1)

∂x3(k)
= ∆t ∗( ∂D(k)

∂x3(k)
x3(k) +D(k)) + 1

∂x3(k + 1)

∂x4(k)
= ∆t ∗( ∂D(k)

∂x4(k)
x3(k))

∂x3(k + 1)

∂x4(k)
= ∆t ∗( ∂D(k)

∂x5(k)
x3(k))

∂x4(k + 1)

∂x1(k)
= ∆t ∗( ∂D(k)

∂x1(k)
x4(k) +

∂G(k)

∂x1(k)
x2(k))

∂x4(k + 1)

∂x2(k)
= ∆t ∗( ∂D(k)

∂x2(k)
x4(k) +

∂G(k)

∂x2(k)
x2(k) +G(k))

∂x4(k + 1)

∂x3(k)
= ∆t ∗( ∂D(k)

∂x3(k)
x4(k))

∂x4(k + 1)

∂x4(k)
= ∆t ∗( ∂D(k)

∂x4(k)
x4(k) +D(k)) + 1

∂x4(k + 1)

∂x5(k)
= ∆t ∗( ∂D(k)

∂x5(k)
x4(k))

∂x5(k + 1)

∂x5(k)
= 1,

(3.91)

where the (non-zero) derivatives of the force, position and velocity related terms
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with respect to state variables can be computed as

∂R(k)

∂x1(k)
= x1(k)

1

R(k)

∂R(k)

∂x2(k)
= x2(k)

1

R(k)

∂V (k)

∂x3(k)
= x3(k)

1

V (k)

∂V (k)

∂x4(k)
= x4(k)

1

V (k)

∂β(k)

∂x5(k)
= β(k)

1

R(k)

∂D(k)

∂x1(k)
= − ∂R(k)

∂x1(k)

1

H0
∗D(k)

∂D(k)

∂x2(k)
= − ∂R(k)

∂x2(k)

1

H0
∗D(k)

∂D(k)

∂x3(k)
= β(k) exp

{
[R0 −R(k)]

H0

}
∂V (k)

∂x3

∂D(k)

∂x4(k)
= β(k) exp

{
[R0 −R(k)]

H0

}
∂V (k)

∂x4

∂D(k)

∂x5(k)
=
∂β(k)

x5(k)
exp

{
[R0 −R(k)]

H0

}
V (k)

∂G(k)

∂x1(k)
=

3Gm0

(R(k))4

∂R(k)

∂x1(k)

∂G(k)

∂x2(k)
=

3Gm0

(R(k))4

∂R(k)

∂x2(k)
.

(3.92)

The prior distribution for the state was set to multivariate Gaussian, with mean and
covariance (same as in Julier and Uhlmann (2004b))

m0 =


6500.4
349.14
−1.8093
−6.7967

0



P0 =


10−6 0 0 0 0

0 10−6 0 0 0
0 0 10−6 0 0
0 0 0 10−6 0
0 0 0 0 1

 .

(3.93)

In the simulations the initial state were drawn from multivariate Gaussian with
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mean and covariance

m0 =


6500.4
349.14
−1.8093
−6.7967
0.6932



P0 =


10−6 0 0 0 0

0 10−6 0 0 0
0 0 10−6 0 0
0 0 0 10−6 0
0 0 0 0 0

 ,

(3.94)

that is, vehicle’s aerodynamic properties were not known precisely beforehand.
The radar, which is located at (sx, sy) = (R0, 0), is used to measure the range

rk and bearing θk in relation to the vehicle on time step k. Thus, the measurement
model can be written as

rk =
√

(x1(k)− sx)2 + (x2(k)− sy)2 + q1(k)

θk = tan−1

(
x2(k)− sy
x1(k)− sx

)
+ q2(k),

(3.95)

where the measurement noise processes q1(k) and q2(k) are Gaussians with zero
means and standard deviations σr = 10−3km and σθ = 0.17mrad, respectively.
The derivatives of θk with respect to state variables can computed with equations
(3.81). For rk the derivatives can be written as

∂rk
∂x1(k)

= x1(k)
1

rk
∂rk

∂x2(k)
= x2(k)

1

rk
.

(3.96)

In the table 3.4 we have listed the RMS errors of position estimates with tested
methods, which were

• EKF1: first order extended Kalman filter.

• ERTS: first order Rauch-Tung-Striebel smoother.

• UKF: augmented form unscented Kalman filter.

• URTS1: unscented Rauch-Tung-Striebel smoother with non-augmented
sigma points.

• URTS2: unscented Rauch-Tung-Striebel smoother with augmented sigma
points.
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Figure 3.12: Sample vehicle trajectory, earth and position of radar in Reentry Vehicle
Tracking problem.

• UTF: unscented Forward-Backward smoother.

Extended Forward-Backward smoother was also tested, but it produced in many
cases divergent estimates, so it was left out from comparison. Second order EKF
was also left out, because evaluating the Hessians would have taken too much work
while considering the fact, that the estimates might have gotten even worse.

From the error estimates we can see, that EKF and UKF — and the other
methods as well — give almost identical performances, altough in the article (Julier
and Uhlmann, 2004b) UKF was clearly superior over EKF. The reason for this
might be the fact that they used numerical approximations (central differences) for
calculating the Jacobian in EKF rather than calculating the derivatives in closed
form, as was done in this demonstration.

In figure 3.13 we have plotted the mean square errors and variances in estimat-
ing x1, x3 and x5 with EKF and ERTS over 100 Monte Carlo runs. It shows that
using smoother always gives better estimates for positions and velocities, but for
x5 the errors are practically the same after∼ 45 seconds. This also shows that both
methods are pessimistic in estimating x5, because variances were bigger than the
true errors. Figures for x2 and x4 are not shown, because they are very similar to
the ones of x1 and x3. Also by using UKF and URTS the resulting figures were in
practically identical, and therefore left out.
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Method RMSE
EKF1 0.0084
ERTS 0.0044
UKF 0.0084
URTS1 0.0044
URTS2 0.0044
UTF 0.0044
GHKF 0.0084
GHRTS 0.0049
CKF 0.0084
CRTS 0.0049

Table 3.4: Average RMSEs of estimating the position in Reentry Vehicle Tracking
problem over 100 Monte Carlo runs. The Gauss–Hermite rule is of degree 3.
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Figure 3.13: MSEs and variances in estimating of x1, x3 and x5 using EKF and
ERTS over 100 Monte Carlo runs.
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Chapter 4

Multiple Model Systems

In many practical scenarios it is reasonable to assume that the the system’s model
can change through time somehow. For example, a fighter airplane, which in nor-
mal situation flies with stabile flight dynamics, might commence rapid maneuvers
when approached by a hostile missile, or a radar can have a different SNR in some
regions of space than in others, and so on. Such varying system characteristics
are hard to describe with only a one certain model, so in estimation one should
somehow take into account the possibility that the system’s model might change.

We now consider systems, whose current model is one from a discrete set of
n models, which are denoted by M = {M1, . . . ,Mn}. We assume that for each
model M j we have some prior probability µj0 = P{M j

0}. Also the probabilities
of switching from model i to model j in next time step are assumed to be known
and denoted by pij = P{M j

k |M
i
k−1}. This can be seen as a transition probabil-

ity matrix of a first order Markov chain characterizing the mode transitions, and
hence systems of this type are commonly referred as Markovian switching sys-
tems. The optimal approach to filtering the states of multiple model system of this
type requires running optimal filters for every possible model sequences, that is, for
n models nk optimal filters must be ran to process the kth measurement. Hence,
some kind of approximations are needed in practical applications of multiple model
systems.

filtering problems is the Generalized Pseudo-Bayesian (GPB) algorithms ( In
this section we describe the Interacting Multiple Model (IMM) filter (Bar-Shalom
et al., 2001), which is a popular method for estimating systems, whose model
changes according to a finite-state, discrete-time Markov chain. IMM filter can
also be used in situations, in which the unknown system model structure or it’s
parameters are estimated from a set of candidate models, and hence it can be also
used as a method for model comparison.

As previously we start with linear models, and after that we review the EKF and
UKF based nonlinear extensions to the standard IMM-filter through demonstrating
filtering problems.
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4.1 Linear Systems

We can now modify the equations of linear systems described in (2.12) to have
form

xk = Aj
k−1 xk−1 + qjk−1

yk = Hj
k xk + rjk,

(4.1)

where now we have denoted by j the model (or mode) which is in effect during the
time step k− 1. Conditioned on the currently active mode we can use the classical
Kalman filter (section 2.1.2) for estimating the state of the system on each time
step. However, the active mode of the system is not usually known, so we must
estimate it also.

4.1.1 Interacting Multiple Model Filter

IMM-filter (Bar-Shalom et al., 2001) is a computationally efficient and in many
cases well performing suboptimal estimation algorithm for Markovian switching
systems of type described above. Basically it consists of three major steps: inter-
action (mixing), filtering and combination. In each time step we obtain the initial
conditions for certain model-matched filter by mixing the state estimates produced
by all filters from the previous time step under the assumption that this particular
model is the right model at current time step. Then we perform standard Kalman
filtering for each model, and after that we compute a weighted combination of up-
dated state estimates produced by all the filters yielding a final estimate for the state
and covariance of the Gaussian density in that particular time step. The weights are
chosen according to the probabilities of the models, which are computed in filtering
step of the algorithm.

The equations for each step are as follows:

• Interaction:

The mixing probabilities µi|jk for each model M i and M j are calculated as

c̄j =

n∑
i=1

pijµ
i
k−1, (4.2)

µ
i|j
k =

1

c̄j
pijµ

i
k−1, (4.3)

where µik−1 is the probability of model M i in the time step k − 1 and c̄j a
normalization factor.
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Now we can compute the mixed inputs (that is, means and covariances) for
each filter as

m0j
k−1 =

n∑
i=1

µ
i|j
k mi

k−1, (4.4)

P0j
k−1 =

n∑
i=1

µ
i|j
k ×

{
Pi
k−1 +

[
mi
k−1 −m0j

k−1

] [
mi
k−1 −m0j

k−1

]T}
,(4.5)

where mi
k−1 and Pi

k−1 are the updated mean and covariance for model i at
time step k − 1.

• Filtering:

Now, for each model M i the filtering is done as[
m−,ik ,P−,ik

]
= KFp(m

0j
k−1,P

0j
k−1,A

i
k−1,Q

i
k−1), (4.6)[

mi
k,P

i
k

]
= KFu(m−,ik ,P−,ik ,yk,H

i
k,R

i
k), (4.7)

where we have denoted the prediction and update steps (equations (2.18) and
(2.19)) of the standard Kalman filter with KFp(·) and KFu(·), correspond-
ingly. In addition to mean and covariance we also compute the likelihood of
the measurement for each filter as

Λik = N(vik; 0,Sik), (4.8)

where vik is the measurement residual and Sik it’s covariance for model M i

in the KF update step.

The probabilities of each model M i at time step k are calculated as

c =

n∑
i=1

Λik c̄i, (4.9)

µik =
1

c
Λik c̄i, (4.10)

where c is a normalizing factor.

• Combination:

In the final stage of the algorithm the combined estimate for the state mean
and covariance are computed as

mk =
n∑
i=1

µikm
i
k, (4.11)

Pk =
n∑
i=1

µik ×
{

Pi
k

[
mi
k −mk

] [
mi
k −mk

]T}
. (4.12)
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In this toolbox prediction and updates steps of the IMM-filter can be computed
with functions imm_kf_predict and imm_kf_update. For convience we
have also provided function imm_filter, which combines the two previously
mentioned steps.

4.1.2 Interacting Multiple Model Smoother

Likewise in the single model case also it is useful to smooth the state estimates
of the IMM filter by using all the obtained measurements. Since the optimal
fixed-interval smoothing with n models and N measurements requires running
nN smoothers we must resort to suboptimal approaches. One possibility (Helmick
et al., 1995) is to combine the estimates of two IMM filters, one running forwards
and the other backwards in time. This approach is restricted to systems having
invertible state dynamics (i.e. system for which the inverse of matrix Aj in (4.1)
exists), which is always the case for discretized continuous-time systems.

First we shall review the equations for the IMM-filter running backwards in
time, and then the actual smoothing equations combining the estimates of the two
filters.

Backward-time IMM-filter

Our aim is now to compute the backward filtering density p(xk|yk:N ) for each time
step, which is expressed as a sum of model conditioned densities:

p(xk|yk:N ) =
n∑
j=1

µb,jk p(xjk|yk:N ), (4.13)

where µb,jk is the backward-time filtered model probability of M j
k . In the last time

step N this is the same as the forward filter’s model probability, that is, µb,jN = µjN .
Assuming the model conditioned densities p(xjk|yk:N ) are Gaussians the backward
density in (4.13) is a mixture of Gaussians, which is now going to be approximated
with a single Gaussian via moment matching.

The model conditioned backward-filtering densities can be expressed as

p(xjk|yk:N ) =
1

c
p(yk:N |xjk)p(x

j
k|yk+1:N ), (4.14)

where c is some normalizing constant, p(yk:N |xjk) the model-conditioned measure-
ment likelihood and p(xjk|yk+1:N ) is the model-conditioned density of the state
given the future measurements. The latter density is expressed as

p(xjk|yk+1:N ) =

n∑
i=1

µ
b,i|j
k+1p(x

j
k|M

i
k+1,yk+1:N ), (4.15)
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where µb,i|jk+1 is the conditional model probability computed as

µ
b,i|j
k+1 = P{M i

k+1|M
j
k ,yk+1:N} (4.16)

=
1

aj
pb,kij µ

b,i
k+1, (4.17)

where aj is a normalization constant given by

aj =
n∑
i=1

pb,kij µ
b,i
k+1. (4.18)

The backward-time transition probabilities of switching from model M i
k+1 to

model M j
k in (4.17) and (4.18) are defined as pb,kij = P{M j

k |M
i
k+1}. The prior

model probabilities can be computed off-line recursively for each time step k as

P{M j
k} =

n∑
i=1

P{M j
k |M

i
k−1}P{M i

k−1} (4.19)

=
n∑
i=1

pijP{M i
k−1} (4.20)

and using these we can compute pb,kij as

pb,kij =
1

bi
pjiP{M j

k}, (4.21)

where bi is the normalizing constant

bi =

n∑
j=1

pjiP{M j
k}. (4.22)

The density p(xjk|M
i
k+1,y

N
k+1:N ) is now approximated with a Gaussian

N(xk|mb,i
k|k+1,P

b,−(i)
k|k+1), where the mean and covariance are given by the Kalman

filter prediction step using the inverse of the state transition matrix:[
m̂b,i
k , P̂

b,i
k

]
= KFp(m

b,i
k+1,P

b,i
k+1, (A

i
k+1)−1,Qi

k+1). (4.23)

The density p(xjk|yk+1:N ) in (4.15) is a mixture of Gaussians, and it’s now approx-
imated with a single Gaussian as

p(xjk|yk+1:N ) = N(xjk|m̂
b,0j
k , P̂b,0j

k ), (4.24)

where the mixed predicted mean and covariance are given as

m̂b,0j
k =

n∑
i=1

µ
b,i|j
k+1m̂

b,i
k (4.25)

P̂b,0j
k =

n∑
i=1

µ
b,i|j
k+1 ·

[
P̂b,i
k +

(
m̂b,i
k − m̂b,0j

k

)(
m̂b,i
k − m̂b,0j

k

)T]
(4.26)
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Now, the filtered density p(xjk|yk:N ) is a GaussianN(xk|mb,j
k ,Pb,j

k ), and solv-
ing it’s mean and covariance corresponds to running the Kalman filter update step
as follows: [

mb,j
k ,Pb,j

k

]
= KFu(m̂b,0j

k , P̂b,0j
k ,yk,H

j
k,R

j
k). (4.27)

The measurement likelihoods for each model are computed as

Λb,ik = N(vb,ik ; 0,Sb,ik ), (4.28)

where vb,ik is the measurement residual and Sb,ik it’s covariance for modelM i in the
KF update step. With these we can update the model probabilities for time step k
as

µb,jk =
1

a
ajΛ

b,i
k , (4.29)

where a is a normalizing constant

a =

m∑
j=1

ajΛ
b,i
k . (4.30)

Finally, we can form the Gaussian approximation to overall backward filtered dis-
tribution as

p(xk|yk:N ) = N(xk|mb
k,P

b
k), (4.31)

where the mean and covariance are mixed as

mb
k =

n∑
j=1

µb,jk mb,j
k (4.32)

Pb
k =

n∑
j=1

µb,jk

[
Pb,j
k +

(
mb,j
k −mb

k

)(
mb,j
k −mb

k

)T]
. (4.33)

4.1.3 Two-filter based fixed-interval IMM-Smoother

We can now proceed to evaluate the fixed-interval smoothing distribution

p(xk|y1:N ) =
n∑
j=1

µs,jk p(xjk|y1:N ), (4.34)

where the smoothed model probabilities are computed as

µs,jk = P{M j
k |y1:N} (4.35)

=
1

d
djµ

j
k, (4.36)

where µjk is the forward-time filtered model probability, dj the density
dj = p(yk+1:N |M j

k ,y1:k) (which is to be evaluated later) and d the normal-
ization constant given by

d =

n∑
j=1

djµ
j
k. (4.37)
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The model-conditioned smoothing distributions p(xjk|y1:N ) in (4.34) are ex-
pressed as a mixtures of Gaussians

p(xjk|y1:N ) =

n∑
i=1

µ
s,i|j
k+1p(x

i|M j
k+1,y1:n), (4.38)

where the conditional probability µs,i|jk+1 is given by

µ
s,i|j
k+1 = P{M i

k+1|M
j
k ,y1:n} (4.39)

=
1

dj
pjiΛ

ji
k (4.40)

and the likelihood Λjik by

Λjik = p(yk+1:N |M j
k ,M

i
k+1,y1:k). (4.41)

We approximate this now as

Λjik ≈ p(x̂
b,i
k |M

j
k ,M

i
k+1,x

j
k), (4.42)

which means that the future measurements yk+1:N are replaced with the n
model-conditioned backward-time one-step predicted means and covariances
{m̂b,i

k , P̂
b,i
k }

n
r=1, and y1:k will be replaced by the n model-conditioned forward-

time filtered means and covariances {mi
k|Pi

k}nr=1. It follows then that the
likelihoods can be evaluated as

Λjik = N(∆ji
k |0, D

ji
k ), (4.43)

where

∆ji
k = m̂b,i

k −mj
k (4.44)

Dji
k = P̂b,i

k + Pj
k. (4.45)

The terms dj can now be computed as

dj =
n∑
i=1

pjiΛ
ji
k . (4.46)

The smoothing distribution p(xjk|M
i
k+1,y1:N ) of the state matched to the models

M j
k and M i

k+1 over two successive sampling periods can be expressed as

p(xjk|M
i
k+1,y1:N ) =

1

c
p(yk+1:N |M i

k+1,xk)p(x
j
k|y1:k), (4.47)
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where p(yk+1:N |M i
k+1,xk) is the forward-time model-conditioned filtering dis-

tribution, p(xjk|y1:k) the backward-time one-step predictive distribution and c a
normalizing constant. Thus, the smoothing distribution can be expressed as

p(xjk|M
i
k+1,y1:N ) ∝ N(xk|m̂b,i

k , P̂
b,i
k ) ·N(xk|mi

k,P
i
k) (4.48)

= N(xk|ms,ji
k ,Ps,ji

k ), (4.49)

where

ms,ji
k = Ps,ji

k

[(
Pi
k

)−1
mi
k +

(
P̂b,i
k

)−1
m̂b,i
k

]
(4.50)

Ps,ji
k =

[(
Pi
k

)−1
+
(
P̂b,i
k

)−1
]−1

. (4.51)

The model-conditioned smoothing distributions p(xjk|y1:N ), which were ex-
pressed as mixtures of Gaussians in (4.38), are now approximated by a single
Gaussians via moment matching to yield

p(xjk|y1:N ) ≈ N(xjk|m
s,j
k ,Ps,j

k ), (4.52)

where

ms,j
k =

n∑
i=1

µ
s,i|j
k+1m

s,ji
k (4.53)

Ps,j
k =

n∑
i=1

µ
s,i|j
k+1 ·

[
Ps,ij
k +

(
ms,ij
k −ms,j

k

)(
ms,ij
k −ms,j

k

)T]
. (4.54)

With these we can match the moments of the overall smoothing distribution to give
a single Gaussian approximation

p(xk|y1:N ) ≈ N(xk|ms
k,P

s
k), (4.55)

where

ms
k =

n∑
j=1

µs,jk ms,ji
k (4.56)

Ps
k =

n∑
j=1

µs,jk ·
[
Ps,j
k +

(
ms,j
k −ms

k

)(
ms,j
k −ms

k

)T]
. (4.57)

These smoothing equations can be computed with function imm_smooth.
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4.1.4 Demonstration: Tracking a Target with Simple Manouvers

A moving object with simple manouvers can be modeled by a Markovian switching
system, which describes the normal movement dynamics with a simple Wiener
process velocity model (see section 2.2.9) with low process noise value, and the
manouvers with a Wiener process acceleration model (see section 2.1.4) with high
process noise value. In the following we shall refer the former as model 1 and the
latter as the model 2, which could actually also be a velocity model, but we use
acceleration model instead to demonstrate how models with different structure are
used in this toolbox.

The variance of process noise for model 1 is set to

Q1
c =

(
q1 0
0 q1

)
=

(
0.01 0

0 0.01

)
(4.58)

and for model 2 to

Q2
c =

(
q2 0
0 q2

)
=

(
1 0
0 1

)
(4.59)

In both cases the measurement model is the same as in the section 2.1.4 (that is,
we observe the position of the object directly) with the exception that the variance
of the measurements is now set to

R =

(
0.1 0
0 0.1

)
. (4.60)

The time step size is set to ∆t = 0.1. The true starting state of the system is set to

x0 =
[
0 0 0 −1 0 0

]
, (4.61)

which means that the object starts to move from origo with velocity −1 along the
y-axis. The model transition probability matrix is set to

Φ =

(
0.98 0.02
0.02 0.98

)
, (4.62)

which means that both models have equal probability of shifting to another model
during each sampling period. The prior model probabilities are set to

µ0 =
[
0.9 0.1

]
. (4.63)

In software code the filtering loop of IMM filter can be done as follows:

for i = 1:size(Y,2)
[x_p,P_p,c_j] = imm_predict(x_ip,P_ip,mu_ip,p_ij,ind,dims,A,Q);
[x_ip,P_ip,mu_ip,m,P] = imm_update(x_p,P_p,c_j, ...

ind,dims,Y(:,i),H,R);
MM(:,i) = m;
PP(:,:,i) = P;
MU(:,i) = mu_ip';
MM_i(:,i) = x_ip';
PP_i(:,i) = P_ip';

end
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The variables x_ip and P_ip contain the updated state mean and covariance
for both models as cell arrays. The cell arrays are used because the size of the
state variable can vary between different models. For example, in this example
the models have 4 and 6 state components. Similarly, the variables x_p and P_p
contain the predicted state means and covariances. Likewise, the model parameters
(variables A,Q,H and R) are all cell arrays containing the corresponding model
parameters for each model. The variable mu_ip contains the probability estimates
of each model as a regular array, which is initialized before the filtering loop with
the prior probabilities of models (eq. (4.70)). The variable p_ij is the model
transition probability matrix (4.69) as a regular Matlab matrix. The vector c_j
contains the normalizing constants computed during the prediction step (eq. (4.3)),
which are needed during the update step in eqs. (4.10) and (4.10). The variable
ind is a cell array containing vectors, which map the state variables of each model
to state variables of the original system under the study. For example, for model 1
the vector is [1 2 3 4]’ and for model 2 [1 2 3 4 5 6]’. The purpose of
this might seem a bit unclear for systems like these, but for more complex models
we must know how the state variables are connected as they are not always in the
same order and some components might be missing. The variable dims contains
the number of dimensions in the original system under the study, which in this case
is 6. The last five lines of code store the estimation results for each time step.

The smoothing can be done with the function call

[SM,SP,SM_i,SP_i,MU_S] = imm_smooth(MM,PP,MM_i,PP_i,MU,p_ij, ...
mu_0j,ind,dims,A,Q,R,H,Y);

where the variable mu_0j contains the prior model probabilities. The overall
smoothed state estimates are returned in variables SM and SP, and the model-
conditioned smoothed estimates in variables SM_i and SP_i. The variable MU_S
contains the calculated smoothed model probabilities.

The system is simulated 200 time steps, and the active model during the steps
1 − 50, 71 − 120 and 151 − 200 is set to model 1 and during the steps 51 − 70
and 121 − 150 to model 2. The purpose of forcing the model transitions instead
of simulating them randomly is to produce two manouvers, which can be used
to demonstrate the properties of IMM-filter. It also reflects the fact that in real
problems we do not know the model transition probability matrix accurately. The
figures 4.1, 4.2 and 4.3 show the true trajectory of the object and the measurements
made of it. The two manouvers can be clearly seen. Figures also show the filtering
and smoothing results produced by Kalman filter and (RTS) smoother using the
models 1 and 2 separately (figures 4.1 and 4.2, correspodingly) as well as the
estimates produced by the IMM filter and smoother (figure 4.3). In figure 4.4 we
have plotted the filtered and smoothed estimates of the probabilities of model 1 in
each time step. It can be seen that it takes some time for the filter to respond to
model transitions. As one can expect, smoothing reduces this lag as well as giving
substantially better overall performance.

74



CHAPTER 4. MULTIPLE MODEL SYSTEMS

−25 −20 −15 −10 −5 0 5
−10

−5

0

5

10

15

20

25

30

Estimates produced by Kalman filter using the model 1.

 

 
Measurement

True trajectory

Filtered

Smoothed

Figure 4.1: Tracking results of Kalman filter and smoother with model 1 in Tracking
a Target with Simple Manouvers example.

The illustrate the performance differences between different models we have
listed the MSE errors of position estimates for each model in the table 4.1. From
these it can be seen that the estimates of Kalman filter with model 1 are clearly
much worse than with model 2 or with the IMM filter. On the otherhand, the
difference between the KF with model 2 and the IMM filter is smaller, but still
significant in the favor of IMM. This is most likely due to fact that model 2 is more
flexible than model 1, so model 2 is better in the regions of model 1 than model 1 in
the regions of model 2. The bad performance of the model 1 can be seen especially
during the manouvers. The IMM filter combines the properties of both models in
a suitable way, so it gives the best overall performance. The effect of smoothing to
tracking accuracy is similar with all models.

4.2 Nonlinear Systems

The non-linear versions of IMM filter and smoother reviewed in previous section
can be obtained simply by replacing the Kalman filter prediction and update steps
(in eqs. (4.7), (4.7), (4.23) and (4.27)) by their extended Kalmam filter or unscented
Kalman filter counterparts, which were reviewed in sections 2.2.2 and 2.2.6. These
algorithms are commonly referred as IMM-EKF and IMM-UKF. Naturally this
approach introduces some error to estimates of already suboptimal IMM, but can

75



CHAPTER 4. MULTIPLE MODEL SYSTEMS

−25 −20 −15 −10 −5 0 5
−10

−5

0

5

10

15

20

25

30
Estimates produced by Kalman filter using the model 2.

 

 
Measurement

True trajectory

Filtered

Smoothed

Figure 4.2: Tracking results of Kalman filter and smoother with model 2 in Tracking
a Target with Simple Manouvers example.

Method MSE
KF1 0.1554
KS1 0.0314
KF2 0.0317
KS2 0.0071
IMM 0.0229
IMMS 0.0057

Table 4.1: Average MSEs of estimating the position in Tracking a Target with Simple
Manouvers example over 1000 Monte Carlo runs.
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Figure 4.3: Tracking results of IMM filter and smoother in Tracking a Target with
Simple Manouvers example.
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Figure 4.4: Filtered and smoothed probability of model 1 in each time step in Track-
ing a Target with Simple Manouvers example.
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still provide sufficient accuracy with suitable models. filter based IMM filter for
estimating more models, but that approach is not currently

The prediction and update steps of IMM-EKF is provided by functions
eimm_predict and eimm_update, and smoothing can be done with
function eimm_smooth. The corresponding functions for IMM-UKF are
uimm_predict, uimm_update and uimm_smooth.

4.2.1 Demonstration: Coordinated Turn Model

A common way of modeling a turning object is to use the coordinated turn model
(see, e.g., Bar-Shalom et al., 2001). The idea is to augment the state vector with
a turning rate parameter ω, which is to be estimated along with the other system
parameters, which in this example are the position and the velocity of the target.
Thus, the joint system vector can be expressed as

xk =
(
xk yk ẋk ẏk ωk

)T
. (4.64)

The dynamic model for the coordinated turns is

xk+1 =


1 0 sin(ωk ∆t)

ωk

cos(ωk ∆t)−1
ωk

0

0 1 1−cos(ωk ∆t)
ωk

sin(ωk ∆t)
ωk

0

0 0 cos(ωk ∆t) − sin(ωk ∆t) 0
0 0 sin(ωk ∆t) cos(ωk ∆t) 0
0 0 0 0 1


︸ ︷︷ ︸

Fk

xk +


0
0
0
0
1

 vk, (4.65)

where vk ∼ N(0, σ2
ω) is univariate white Gaussian process noise for the turn rate

parameter. This model is, despite the matrix form, non-linear. Equivalently, the
dynamic model can be expressed as a set of equations

xk+1 = xk +
sin(ωk ∆t)

ωk
ẋk +

cos(ωk ∆t)−∆t

ωk
ẋk

yk+1 = yk +
1− cos(ωk ∆t)

ωk
ẋk +

sin(ωk ∆t)

ωk
ẏk

ẋk+1 = cos(ωk ∆t)ẋk − sin(ωk ∆t)ẏk

ẏk+1 = sin(ωk ∆t)ẋk + cos(ωk ∆t)ẏk

ωk+1 = ωk + vk

. (4.66)

The source code of the turning model can found in the m-file f_turn.m. The
inverse dynamic model can be found in the file f_turn_inv.m, which basically
calculates the dynamics using the inverse Fk in eq. (4.65) as it’s transition matrix.
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To use EKF in estimating the turning rate ωk the Jacobian of the dynamic model
must be computed, which is given as

Fx(m, k) =


1 0 sin(ωk ∆t)

ωk

cos(ωk ∆t)−1
ωk

∂xk+1

∂ωk

0 1 1−cos(ωk ∆t)
ωk

sin(ωk ∆t)
ωk

∂yk+1

∂ωk

0 0 cos(ωk ∆t) − sin(ωk ∆t)
∂ẋk+1

∂ωk

0 0 sin(ωk ∆t) cos(ωk ∆t)
∂ẏk+1

∂ωk

0 0 0 0 1

 , (4.67)

where the partial derivatives w.r.t to turning rate are

∂xk+1

∂ωk
=
ω∆t cos(ωk ∆t)− sin(ωk ∆t)

ω2
k

ẋk −
ωk ∆t sin(ωk ∆t) + cos(ωk ∆t)− 1

ω2
k

ẏk

∂yk+1

∂ωk
=
ωk ∆t sin(ωk ∆t) + cos(ωk ∆t)− 1

ω2
k

ẋk −
ωk ∆t cos(ωk ∆t)− sin(ωk ∆t)

ω2
k

ẏk

∂ẋk+1

∂ωk
= −∆t sin(ωk ∆t)ẋk −∆t cos(ωk ∆t)ẏk

∂ẏk+1

∂ωk
= −∆t cos(ωk ∆t)ẋk −∆t sin(ωk ∆t)ẏk.

(4.68)

The source code for calculating the Jacobian is located in the m-file f_turn_dx.m.
Like in previous demonstration we simulate the system 200 time steps with

step size ∆t = 0.1. The movement of the object is produced as follows:

• Object starts from origo with velocity (ẋ, ẏ) = (1, 0).

• At 4s object starts to turn left with rate ω = 1.

• At 9s object stops turning and moves straight for 2 seconds with a constant
total velocity of one.

• At 11s objects starts to turn right with rate ω = −1.

• At 16s object stops turning and moves straight for 4 seconds with the same
velocity.

The resulting trajectory is plotted in figure 4.5. The figure also shows the mea-
surements, which were made with the same model as in the previous example, that
is, we observe the position of the object directly with the additive noise, whose
variance in this case is set to σ2

r = 0.05.
In the estimation we use the following models:

1. Standard Wiener process velocity model (see, for example, section 2.2.9)
with process noise variance q1 = 0.05, whose purpose is to model the rela-
tively slow turns. This model is linear, so we can use the standard Kalman
filter for estimation.
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2. A combination of Wiener process velocity model and a coordinated turn
model described above. The variance of the process noise for the velocity
model is set to q2 = 0.01 and for the turning rate parameter in the turning
model to qω = 0.15. The estimation is now done with both the EKF and
UKF based IMM filters as the turning model is non-linear. However, as
the measurement model is linear, we can still use the standard IMM filter
update step instead of a non-linear one. In both cases the model transition
probability matrix is set to

Φ =

(
0.9 0.1
0.1 0.9

)
, (4.69)

and the prior model probabilities are

µ0 =
[
0.9 0.1

]
. (4.70)

model (in case of ω = 0)

In software code the prediction step of IMM-EKF can be done with the function
call

[x_p,P_p,c_j] = eimm_predict(x_ip,P_ip,mu_ip,p_ij,ind, ...
dims,A,a_func,a_param,Q);

which is almost the same as the linear IMM-filter prediction step with the exception
that we must now also pass the function handles of the dynamic model and it’s
Jacobian as well as their possible parameters to the prediction step function. In
above these are the variables A, a_func and a_param which are cell arrays
containing the needed values for each model. If some of the used models are
linear (as is the case now) their elements of the cell arrays a_func and a_param
are empty, and A contains the dynamic model matrices instead of Jacobians. The
prediction step function of IMM-UKF has exactly the same interface.

The EKF based IMM smoothing can be done with a function call

[SMI,SPI,SMI_i,SPI_i,MU_S] = eimm_smooth(MM,PP,MM_i,PP_i,MU,p_ij, ...
mu_0j,ind,dims,A,ia_func, ...
a_param,Q,R,H,h_func,h_param,Y);

where we pass the function handles of inverse dynamic models (variable
ia_func) for the backward time IMM filters as well as Jacobians of the dynamic
models (A) and their parameters (a_param), which all are cell arrays as in the
filter described above. Sameway we also pass the handles to the measurement
model functions (h_func) and their Jacobians (H) as well as their parameters
(h_param). UKF based IMM smoothing is done exactly the same.

In figure 4.6 we have plotted the filtered and smoothed estimates produced all
the tested estimation methods. It can be seen that the estimates produced by IMM-
EKF and IMM-UKF are very close on each other while IMM-UKF still seems to
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Method MSE
KF 0.0253
KS 0.0052
EIMM1 0.0179
EIMMS1 0.0039
UIMM1 0.0155
UIMMS1 0.0036

Table 4.2: Average MSEs of estimating the position in Tracking Object with Simple
Manouvers example over 100 Monte Carlo runs.

be a little closer to the right trajectory. The estimates of standard KF differ more
from the estimates of IMM-EKF and IMM-UKF and seem to have more problems
during the later parts of turns. Smoothing improves all the estimates, but in the
case of KF the estimates are clearly oversmoothed.

The estimates for probability of model 2 produced by IMM-EKF and IMM-
UKF are plotted in figure 4.7. The filtered estimates seem to be very close on each
other whereas the smoothed estimates have little more variation, but neither one of
them don’t seem to be clearly better. The reason why both methods give about 50%
probability of model 2 when the actual model is 1 can be explained by the fact that
the coordinated turn model actually contains the velocity model as it’s special case
when ω = 0. The figure 4.7 shows the estimates of the turn rate parameter with
both IMM filters and smoothers, and it can be seen that smoothing improves the
estimates tremendously. It is also easy to see that in some parts IMM-UKF gives a
little better performance than IMM-EKF.

In table 4.2 we have listed the average MSEs of position estimates produced by
the tested methods. It can be seen, that the estimates produced by IMM-EKF and
IMM-UKF using the combination of a velocity and a coordinated turn model are
clearly better than the ones produced by a standard Kalman filter using the velocity
model alone. The performance difference between IMM-EKF and IMM-UKF is
also clearly noticable in the favor of IMM-UKF, which is also possible to see in
figure 4.6. The effect of smoothing to estimation accuracy is similar in all cases.

4.2.2 Demonstration: Bearings Only Tracking of a Manouvering Tar-
get

We now extend the previous demonstration by replacing the linear measurement
model with a non-linear bearings only measurement model, which were reviewed
in section 2.2.9. The estimation problem is now harder as we must use a non-linear
version of IMM filter update step in addition to the prediction step, which was used
in the previous demonstration.

The trajectory of the object is exactly the same as in the previous example. The
sensors producing the angle measurements are located in (s1

x, s
1
y) = (−0.5, 3.5),
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Figure 4.5: Object’s trajectory and a sample of measurements in the Coordinated turn
model demonstration.
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Figure 4.6: Position estimates in the Coordinated turn model demonstration.
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Figure 4.7: Estimates for model 2’s probability in Coordinated turn model demon-
stration.
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Figure 4.8: Estimates of the turn rate parameter ωk in the Coordinated turn model
demonstration.
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Figure 4.9: Object’s trajectory and positions of the sensors in Bearings Only Tracking
of a Manouvering Target demonstration.

(s2
x, s

2
y) = (−0.5, 3.5), (s3

x, s
3
y) = (7,−3.5) and (s4

x, s
4
y) = (7, 3.5). The trajec-

tory and the sensor positions are shown in figure 4.9. The standard deviation of the
measurements is set to σ = 0.1 radians, which is relatively high.

The function call of IMM-EKF update step is of form

[x_ip,P_ip,mu_ip,m,P] = eimm_update(x_p,P_p,c_j,ind,dims, ...
Y(:,i),H,h_func,R,h_param);

which differs from the standard IMM filter update with the additional parameters
h and h_param, which contain the handles to measurement model functions and
their parameters, respectively. Also, the parameter H now contains the handles to
functions calculating the Jacobian’s of the measurement functions. In IMM-UKF
the update function is specified similarly.

The position of the object is estimated with the following methods:

• EKF and EKS: Extended Kalman filter and (RTS) smoother using the same
Wiener process velocity model as in the previous demonstration in the case
standard Kalman filter.

• UKF and UKS: Unscented Kalman filter and (RTS) smoother using the same
model as the EKF.
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Figure 4.10: Filtered and smoothed estimates of object’s position using all the tested
methods in Bearings Only Tracking of a Manouvering Target demonstration.

• IMM-EKF and IMM-EKS: EKF based IMM filter and smoother using the
same combination of Wiener process velocity model and a coordinated turn
model as was used in the previous demonstration in the case of IMM-EKF
and IMM-UKF.

• IMM-UKF and IMM-UKS: UKF based IMM filter and smoother using the
same models as IMM-EKF.

A sample of trajectory estimates are plotted in figure 4.10. The estimates are
clearly more inaccurate than the ones in the previous section. In figure 4.11 we
have plotted the estimates of model 2’s probability for IMM-EKF and IMM-UKF.
The figure look very similar to the one in the previous demonstration, despite the
non-linear and more noisy measurements. Also the turn rate estimates, which are
plotted in figure 4.12, are very similar to the ones in the previous section with
exception that now the difference between the smoothed estimates of IMM-EKF
and IMM-UKF is bigger.

In table 4.3 we have listed the average mean square errors of position estimates
over 100 Monte Carlo runs. It can be observed that the estimates of EKF and UKF
are identical in practice, which is to be expected from Bearings Only Tracking
demonstration. The difference between IMM-UKF and IMM-EKF has grown in
the favor of IMM-UKF, whereas the accuracy of IMM-EKF is now more close to

86



CHAPTER 4. MULTIPLE MODEL SYSTEMS

0 20 40 60 80 100 120 140 160 180 200

0

0.2

0.4

0.6

0.8

1

 

 

True

IMM−EKF

IMM−EKS

IMM−UKF

IMM−UKS

Figure 4.11: Estimates for model 2’s probability in Bearings Only Tracking of a
Manouvering Target demonstration.
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Figure 4.12: Estimates for the turn rate parameter ωk in Bearings Only Tracking of a
Manouvering Target demonstration
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Method MSE
EKF 0.0606
ERTS 0.0145
UKF 0.0609
URTS 0.0144
IMM-EKF 0.0544
IMM-EKS 0.0094
IMM-UKF 0.0441
IMM-UKS 0.0089

Table 4.3: Average MSEs of estimating the position in Bearings Only Tracking of a
Manouvering Target example over 100 Monte Carlo runs.

the ones of EKF and UKF. On the other hand the smoothed estimates of IMM-UKF
and IMM-EKF are still very close to one another, and are considerably better than
the smoothed estimates of EKF and UKF.

It should be noted that the performance of each tested method could be tuned
by optimizing their parameters (e.g. variance of process noise of dynamic models,
values of model transition matrix in IMM etc.) more carefully, so the performance
differences could change radically. Still, it is clear that IMM filter does actually
work also with (atleast some) non-linear dynamic and measurement models, and
should be considered as a standard estimation method for multiple model systems.
Also, one should prefer IMM-UKF over IMM-EKF as the performance is clearly
(atleast in these cases) better, and the implementation is easier, as we have seen in
the previous examples.
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Chapter 5

Functions in the Toolbox

5.1 Discrete-time State Space Estimation

5.1.1 Linear Kalman Filter

kf_predict

kf_predict
Perform Kalman Filter prediction step. The model is
Syntax: [X,P] = KF_PREDICT(X,P,A,Q,B,U)

Input:

X Nx1 mean state estimate of previous step
P NxN state covariance of previous step
A Transition matrix of discrete model (optional, default

identity)
Q Process noise of discrete model (optional, default zero)
B Input effect matrix (optional, default identity)
U Constant input (optional, default empty)

Output: X Predicted state mean
P Predicted state covariance
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kf_update

kf_update
Kalman filter measurement update step. Kalman Filter model is
Syntax: [X,P,K,IM,IS,LH] =

KF_UPDATE(X,P,Y,H,R)

Input:

X Nx1 mean state estimate after prediction step
P NxN state covariance after prediction step
Y Dx1 measurement vector.
H Measurement matrix.
R Measurement noise covariance.

Output:

X Updated state mean
P Updated state covariance
K Computed Kalman gain
IM Mean of predictive distribution of Y
IS Covariance or predictive mean of Y
LH Predictive probability (likelihood) of measurement.

kf_lhood

kf_lhood
Calculate likelihood of measurement in Kalman filter. If and X and P
define the parameters of predictive distribution (e.g. from KF_PREDICT)
Syntax: LH = KF_LHOOD(X,P,Y,H,R)

Input:

X Nx1 state mean
P NxN state covariance
Y Dx1 measurement vector.
H Measurement matrix.
R Measurement noise covariance.

Output: LH Likelihood of measurement.
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kf_loop

kf_loop
Calculates state estimates for a set measurements using the Kalman filter.
This function is for convience, as it basically consists only of a space
reservation for the estimates and of a for-loop which calls the predict and
update steps of the KF for each time step in the measurements.
See also: KF_PREDICT, KF_UPDATE
Syntax: [MM,PP] = KF_LOOP(X,P,H,R,Y,A,Q)

Input:

X Nx1 initial estimate for the state mean
P NxN initial estimate for the state covariance
H DxN measurement matrix
R DxD measurement noise covariance
Y DxM matrix containing all the measurements.
A Transition matrix of the discrete model (optional, default

identity)
Q Process noise of the discrete model (optional, default

zero)
MM Filtered state mean sequence
MM Filtered state mean sequence

Output: MM Filtered state mean sequence
PP Filtered state covariance sequence

rts_smooth

rts_smooth
Rauch-Tung-Striebel smoother algorithm. Calculate "smoothed" sequence
from given Kalman filter output sequence by conditioning all steps to all
measurements.
Syntax: [M,P,S] = RTS_SMOOTH(M,P,A,Q)

Input:

M NxK matrix of K mean estimates from Kalman filter
P NxNxK matrix of K state covariances from Kalman Filter
A NxN state transition matrix or NxNxK matrix of K state

transition matrices for each step.
Q NxN process noise covariance matrix or NxNxK matrix of

K state process noise covariance matrices for each step.

Output:
M Smoothed state mean sequence
P Smoothed state covariance sequence
D Smoother gain sequence
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tf_smooth

tf_smooth
Two filter linear smoother algorithm. Calculate "smoothed" sequence from
given Kalman filter output sequence by conditioning all steps to all mea-
surements.
Syntax: [M,P] = TF_SMOOTH(M,P,Y,A,Q,H,R,

[use_inf])

Input:

M NxK matrix of K mean estimates from Kalman filter
P NxNxK matrix of K state covariances from Kalman Filter
Y Sequence of K measurement as DxK matrix
A NxN state transition matrix.
Q NxN process noise covariance matrix.
H DxN Measurement matrix.
R DxD Measurement noise covariance.
use_inf If information filter should be used (default 1)

Output: M Smoothed state mean sequence
P Smoothed state covariance sequence

5.1.2 Extended Kalman Filter

ekf_predict1

ekf_predict1
Perform Extended Kalman Filter prediction step.
Syntax: [M,P] = EKF_PREDICT1(M,P,

[A,Q,a,W,param])

Input:

M Nx1 mean state estimate of previous step
P NxN state covariance of previous step
A Derivative of a() with respect to state as matrix, inline

function, function handle or name of function in form
A(x,param) (optional, default eye())

Q Process noise of discrete model (optional, default zero)
a Mean prediction E[a(x[k-1],q=0)] as vector, inline func-

tion, function handle or name of function in form
a(x,param) (optional, default A(x)*X)

W Derivative of a() with respect to noise q as matrix, in-
line function, function handle or name of function in form
W(x,param) (optional, default identity)

param Parameters of a (optional, default empty)

Output: M Updated state mean
P Updated state covariance
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ekf_predict2

ekf_predict2
Perform Extended Kalman Filter prediction step.
Syntax: [M,P] = EKF_PREDICT2(M,P,

[A,F,Q,a,W,param])

Input:

M Nx1 mean state estimate of previous step
P NxN state covariance of previous step
A Derivative of a() with respect to state as matrix, inline

function, function handle or name of function in form
A(x,param) (optional, default identity)

F NxNxN Hessian matrix of the state transition function
w.r.t. state variables as matrix, inline function, function
handle or name of function in form F(x,param) (optional,
default identity)

Q Process noise of discrete model (optional, default zero)
a Mean prediction E[a(x[k-1],q=0)] as vector, inline func-

tion, function handle or name of function in form
a(x,param) (optional, default A(x)*X)

W Derivative of a() with respect to noise q as matrix, in-
line function, function handle or name of function in form
W(x,k-1,param) (optional, default identity)

param Parameters of a (optional, default empty)

Output: M Updated state mean
P Updated state covariance
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ekf_update1

ekf_update1
Extended Kalman Filter measurement update step. EKF model is
Syntax: [M,P,K,MU,S,LH] =

EKF_UPDATE1(M,P,Y,H,R, [h,V,param])

Input:

M Nx1 mean state estimate after prediction step
P NxN state covariance after prediction step
Y Dx1 measurement vector.
H Derivative of h() with respect to state as matrix, inline

function, function handle or name of function in form
H(x,param)

R Measurement noise covariance.
h Mean prediction (innovation) as vector, inline function,

function handle or name of function in form h(x,param).
(optional, default H(x)*X)

V Derivative of h() with respect to noise as matrix, inline
function, function handle or name of function in form
V(x,param). (optional, default identity)

param Parameters of h (optional, default empty)

Output:

M Updated state mean
P Updated state covariance
K Computed Kalman gain
MU Predictive mean of Y
S Predictive covariance of Y
LH Predictive probability (likelihood) of measurement.
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ekf_update2

ekf_update2
Extended Kalman Filter measurement update step. EKF model is
Syntax: [M,P,K,MU,S,LH] =

EKF_UPDATE2(M,P,Y,H,H_xx,R,
[h,V,param])

Input:

M Nx1 mean state estimate after prediction step
P NxN state covariance after prediction step
Y Dx1 measurement vector.
H Derivative of h() with respect to state as matrix, inline

function, function handle or name of function in form
H(x,param)

H_xx DxNxN Hessian of h() with respect to state as matrix,
inline function, function handle or name of function in
form H_xx(x,param)

R Measurement noise covariance.
h Mean prediction (measurement model) as vector, inline

function, function handle or name of function in form
h(x,param). (optional, default H(x)*X)

V Derivative of h() with respect to noise as matrix, inline
function, function handle or name of function in form
V(x,param). (optional, default identity)

param Parameters of h (optional, default empty)

Output:

M Updated state mean
P Updated state covariance
K Computed Kalman gain
MU Predictive mean of Y
S Predictive covariance Y
LH Predictive probability (likelihood) of measurement.
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erts_smooth1

erts_smooth1
Extended Rauch-Tung-Striebel smoother algorithm. Calculate "smoothed"
sequence from given Kalman filter output sequence by conditioning all
steps to all measurements.
Syntax: [M,P,D] = ERTS_SMOOTH1(M,P,A,Q,

[a,W,param,same_p])

Input:

M NxK matrix of K mean estimates from Unscented Kalman
filter

P NxNxK matrix of K state covariances from Unscented
Kalman Filter

A Derivative of a() with respect to state as matrix, inline
function, function handle or name of function in form
A(x,param) (optional, default eye())

Q Process noise of discrete model (optional, default zero)
a Mean prediction E[a(x[k-1],q=0)] as vector, inline func-

tion, function handle or name of function in form
a(x,param) (optional, default A(x)*X)

W Derivative of a() with respect to noise q as matrix, in-
line function, function handle or name of function in form
W(x,param) (optional, default identity)

param Parameters of a. Parameters should be a single cell array,
vector or a matrix containing the same parameters for each
step or if different parameters are used on each step they
must be a cell array of the format { param_1, param_2,
...}, where param_x contains the parameters for step x as
a cell array, a vector or a matrix. (optional, default empty)

same_p 1 if the same parameters should be used on every time step
(optional, default 1)

Output:
K Smoothed state mean sequence
P Smoothed state covariance sequence
D Smoother gain sequence
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etf_smooth1

etf_smooth1
Two filter nonlinear smoother algorithm. Calculate "smoothed" sequence
from given extended Kalman filter output sequence by conditioning all
steps to all measurements.
Syntax: [M,P] = ETF_SMOOTH1(M,P,Y,A,Q,ia,W,aparam,

H,R,h,V,hparam,same_p_a,same_p_h)

Input:

M NxK matrix of K mean estimates from Kalman filter
P NxNxK matrix of K state covariances from Kalman Filter
Y Measurement vector
A Derivative of a() with respect to state as matrix, inline

function, function handle or name of function in form
A(x,param) (optional, default eye())

Q Process noise of discrete model (optional, default zero)
ia Inverse prediction function as vector, inline function,

function handle or name of function in form ia(x,param)
(optional, default inv(A(x))*X)

W Derivative of a() with respect to noise q as matrix, in-
line function, function handle or name of function in form
W(x,param) (optional, default identity)

aparam Parameters of a. Parameters should be a single cell array,
vector or a matrix containing the same parameters for each
step or if different parameters are used on each step they
must be a cell array of the format { param_1, param_2,
...}, where param_x contains the parameters for step x as
a cell array, a vector or a matrix. (optional, default empty)

H Derivative of h() with respect to state as matrix, inline
function, function handle or name of function in form
H(x,param)

R Measurement noise covariance.
h Mean prediction (measurement model) as vector, inline

function, function handle or name of function in form
h(x,param). (optional, default H(x)*X)

V Derivative of h() with respect to noise as matrix, inline
function, function handle or name of function in form
V(x,param). (optional, default identity)

hparam Parameters of h. See the description of aparam for the
format of parameters. (optional, default aparam)

same_p_aIf 1 uses the same parameters on every time step for a
(optional, default 1)

same_p_hIf 1 uses the same parameters on every time step for h
(optional, default 1)

Output: M Smoothed state mean sequence
P Smoothed state covariance sequence
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5.1.3 Unscented Kalman filter

ukf_predict1

ukf_predict1
Perform additive form Unscented Kalman Filter prediction step.
Syntax: [M,P] = UKF_PREDICT1(M,P,

[a,Q,param,alpha,beta,kappa,mat])

Input:

M Nx1 mean state estimate of previous step
P NxN state covariance of previous step
a Dynamic model function as a matrix A defining linear

function a(x) = A*x, inline function, function handle or
name of function in form a(x,param) (optional, default
eye())

Q Process noise of discrete model (optional, default zero)
param Parameters of a (optional, default empty)
alpha Transformation parameter (optional)
beta Transformation parameter (optional)
kappa Transformation parameter (optional)
mat If 1 uses matrix form (optional, default 0)

Output: M Updated state mean
P Updated state covariance

ukf_predict2

ukf_predict2
Perform augmented form Unscented Kalman Filter prediction step for
model
Syntax: [M,P] = UKF_PREDICT2(M,P,a,Q,

[param,alpha,beta,kappa])

Input:

M Nx1 mean state estimate of previous step
P NxN state covariance of previous step
a Dynamic model function as inline function, function han-

dle or name of function in form a([x;w],param)
Q Non-singular covariance of process noise w
param Parameters of a (optional, default empty)
alpha Transformation parameter (optional)
beta Transformation parameter (optional)
kappa Transformation parameter (optional)
mat If 1 uses matrix form (optional, default 0)

Output: M Updated state mean
P Updated state covariance
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ukf_predict3

ukf_predict3
Perform augmented form Unscented Kalman Filter prediction step for
model
Syntax: [M,P,X,w] = UKF_PREDICT3(M,P,a,Q,R,

[param,alpha,beta,kappa])

Input:

M Nx1 mean state estimate of previous step
P NxN state covariance of previous step
a Dynamic model function as inline function, function han-

dle or name of function in form a([x;w],param)
Q Non-singular covariance of process noise w
R Measurement covariance.
param Parameters of a (optional, default empty)
alpha Transformation parameter (optional)
beta Transformation parameter (optional)
kappa Transformation parameter (optional)
mat If 1 uses matrix form (optional, default 0)

Output:

M Updated state mean
P Updated state covariance
X Sigma points of x
w Weights as cell array {mean-weights,cov-weights,c}
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ukf_update1

ukf_update1
Perform additive form Discrete Unscented Kalman Filter (UKF) measure-
ment update step. Assumes additive measurement noise.
Syntax: [M,P,K,MU,S,LH] =

UKF_UPDATE1(M,P,Y,h,R,param,
alpha,beta,kappa,mat)

Input:

M Mean state estimate after prediction step
P State covariance after prediction step
Y Measurement vector.
h Measurement model function as a matrix H defining linear

function h(x) = H*x, inline function, function handle or
name of function in form h(x,param)

R Measurement covariance.
param Parameters of a (optional, default empty)
alpha Transformation parameter (optional)
beta Transformation parameter (optional)
kappa Transformation parameter (optional)
mat If 1 uses matrix form (optional, default 0)

Output:

M Updated state mean
P Updated state covariance
K Computed Kalman gain
MU Predictive mean of Y
S Predictive covariance Y
LH Predictive probability (likelihood) of measurement.
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ukf_update2

ukf_update2
Perform augmented form Discrete Unscented Kalman Filter (UKF) mea-
surement update step. Assumes additive measurement noise.
Syntax: [M,P,K,MU,IS,LH] =

UKF_UPDATE2(M,P,Y,h,R,param,
alpha,beta,kappa,mat)

Input:

M Mean state estimate after prediction step
P State covariance after prediction step
Y Measurement vector.
h Measurement model function as a matrix H defining linear

function h(x) = H*x+r, inline function, function handle or
name of function in form h([x;r],param)

R Measurement covariance.
param Parameters of a (optional, default empty)
alpha Transformation parameter (optional)
beta Transformation parameter (optional)
kappa Transformation parameter (optional)
mat If 1 uses matrix form (optional, default 0)

Output:

M Updated state mean
P Updated state covariance
K Computed Kalman gain
MU Predictive mean of Y
S Predictive covariance Y
LH Predictive probability (likelihood) of measurement.
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ukf_update3

ukf_update3
Perform augmented form Discrete Unscented Kalman Filter (UKF) mea-
surement update step. Assumes additive measurement noise.
Syntax: [M,P,K,MU,IS,LH] =

UKF_UPDATE3(M,P,Y,h,R,X,w,param,
alpha,beta,kappa,mat,sigmas)

Input:

M Mean state estimate after prediction step
P State covariance after prediction step
Y Measurement vector.
h Measurement model function as a matrix H defining linear

function h(x) = H*x+r, inline function, function handle or
name of function in form h([x;r],param)

R Measurement covariance.
X Sigma points of x
w Weights as cell array {mean-weights,cov-weights,c}
param Parameters of a (optional, default empty)
alpha Transformation parameter (optional)
beta Transformation parameter (optional)
kappa Transformation parameter (optional)
mat If 1 uses matrix form (optional, default 0)

Output:

M Updated state mean
P Updated state covariance
K Computed Kalman gain
MU Predictive mean of Y
S Predictive covariance Y
LH Predictive probability (likelihood) of measurement.
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urts_smooth1

urts_smooth1

Syntax: [M,P,D] = URTS_SMOOTH1(M,P,a,Q,
[param,alpha,beta,kappa,mat,same_p])

Input:

M NxK matrix of K mean estimates from Unscented Kalman
filter

P NxNxK matrix of K state covariances from Unscented
Kalman Filter

a Dynamic model function as a matrix A defining linear
function a(x) = A*x, inline function, function handle or
name of function in form a(x,param) (optional, default
eye())

Q NxN process noise covariance matrix or NxNxK matrix of
K state process noise covariance matrices for each step.

param Parameters of a. Parameters should be a single cell array,
vector or a matrix containing the same parameters for each
step, or if different parameters are used on each step they
must be a cell array of the format { param_1, param_2,
...}, where param_x contains the parameters for step x as
a cell array, a vector or a matrix. (optional, default empty)

alpha Transformation parameter (optional)
beta Transformation parameter (optional)
kappa Transformation parameter (optional)
mat If 1 uses matrix form (optional, default 0)
same_p If 1 uses the same parameters on every time step (optional,

default 1)
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urts_smooth2

urts_smooth2
Unscented Rauch-Tung-Striebel smoother algorithm. Calculate
"smoothed" sequence from given Kalman filter output sequence by
conditioning all steps to all measurements.
Syntax: [M,P,S] = URTS_SMOOTH2(M,P,a,Q,

[param,alpha,beta,kappa,mat,same_p])

Input:

M NxK matrix of K mean estimates from Unscented Kalman
filter

P NxNxK matrix of K state covariances from Unscented
Kalman Filter

a Dynamic model function as inline function, function han-
dle or name of function in form a([x;w],param)

Q Non-singular covariance of process noise w
param Parameters of a. Parameters should be a single cell array,

vector or a matrix containing the same parameters for each
step, or if different parameters are used on each step they
must be a cell array of the format { param_1, param_2,
...}, where param_x contains the parameters for step x as
a cell array, a vector or a matrix. (optional, default empty)

alpha Transformation parameter (optional)
beta Transformation parameter (optional)
kappa Transformation parameter (optional)
mat If 1 uses matrix form (optional, default 0)
same_p If 1 uses the same parameters on every time step (optional,

default 1)

Output:
K Smoothed state mean sequence
P Smoothed state covariance sequence
D Smoother gain sequence
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utf_smooth1

utf_smooth1
Two filter nonlinear smoother algorithm. Calculate "smoothed" sequence
from given extended Kalman filter output sequence by conditioning all
steps to all measurements.
Syntax: [M,P] = UTF_SMOOTH1(M,P,Y,

[ia,Q,aparam,h,R,hparam,
alpha,beta,kappa,mat,same_p_a,same_p_h])

Input:

M NxK matrix of K mean estimates from Kalman filter
P NxNxK matrix of K state covariances from Kalman Filter
Y Measurement vector
ia Inverse prediction as a matrix IA defining linear function

ia(xw) = IA*xw, inline function, function handle or name
of function in form ia(xw,param) (optional, default eye())

Q Process noise of discrete model (optional, default zero)
aparam Parameters of a (optional, default empty)
h Measurement model function as a matrix H defining linear

function h(x) = H*x, inline function, function handle or
name of function in form h(x,param)

R Measurement noise covariance.
hparam Parameters of h (optional, default aparam)
alpha Transformation parameter (optional)
beta Transformation parameter (optional)
kappa Transformation parameter (optional)
mat If 1 uses matrix form (optional, default 0)
same_p_aIf 1 uses the same parameters on every time step for a

(optional, default 1)
same_p_hIf 1 uses the same parameters on every time step for h

(optional, default 1)

Output: M Smoothed state mean sequence
P Smoothed state covariance sequence

105



CHAPTER 5. FUNCTIONS IN THE TOOLBOX

ut_transform

ut_transform
... For default values of parameters, see UT_WEIGHTS.
Syntax: [mu,S,C,X,Y,w] = UT_TRANSFORM(M,P,g,

[param,alpha,beta,kappa,mat],n,X,w)

Input:

M Random variable mean (Nx1 column vector)
P Random variable covariance (NxN pos.def. matrix)
g Transformation function of the form g(x,param) as matrix,

inline function, function name or function reference
param Parameters of g (optional, default empty)
alpha Transformation parameter (optional)
beta Transformation parameter (optional)
kappa Transformation parameter (optional)
mat If 1 uses matrix form (optional, default 0)
X Sigma points of x
w Weights as cell array {mean-weights,cov-weights,c}

Output:

mu Estimated mean of y
S Estimated covariance of y
C Estimated cross-covariance of x and y
X Sigma points of x
Y Sigma points of y
w Weights as cell array {mean-weights,cov-weights,c}

ut_weights

ut_weights
Computes unscented transformation weights.
Syntax: [WM,WC,c] = ut_weights(n,alpha,beta,kappa)

Input:

n Dimensionality of random variable
alpha Transformation parameter (optional, default 0.5)
beta Transformation parameter (optional, default 2)
kappa Transformation parameter (optional, default 3-n)

Output:
WM Weights for mean calculation
WC Weights for covariance calculation
c Scaling constant
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ut_mweights

ut_mweights
Computes matrix form unscented transformation weights.
Syntax: [WM,W,c] = ut_mweights(n,alpha,beta,kappa)

Input:

n Dimensionality of random variable
alpha Transformation parameter (optional, default 0.5)
beta Transformation parameter (optional, default 2)
kappa Transformation parameter (optional, default 3-size(X,1))

Output:
WM Weight vector for mean calculation
W Weight matrix for covariance calculation
c Scaling constant

ut_sigmas

ut_sigmas
Generates sigma points and associated weights for Gaussian initial distri-
bution N(M,P). For default values of parameters alpha, beta and kappa see
UT_WEIGHTS.
Syntax: X = ut_sigmas(M,P,c);

Input:
M Initial state mean (Nx1 column vector)
P Initial state covariance
c Parameter returned by UT_WEIGHTS

Output: X Matrix where 2N+1 sigma points are as columns

5.1.4 Cubature Kalman Filter

ckf_transform

ckf_transform

Syntax: [mu,S,C,SX,W] = CKF_TRANSFORM(M,P,g,param)

Input:

M Random variable mean (Nx1 column vector)
P Random variable covariance (NxN pos.def. matrix)
g Transformation function of the form g(x,param) as matrix,

inline function, function name or function reference
param Parameters of g (optional, default empty)

Output:

mu Estimated mean of y
S Estimated covariance of y
C Estimated cross-covariance of x and y
SX Sigma points of x
W Weights as cell array
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ckf_update

ckf_update
Perform additive form spherical-radial cubature Kalman filter (CKF) mea-
surement update step. Assumes additive measurement noise.
Syntax: [M,P,K,MU,S,LH] =

CKF_UPDATE(M,P,Y,h,R,param)

Input:

M Mean state estimate after prediction step
P State covariance after prediction step
Y Measurement vector.
h Measurement model function as a matrix H defining linear

function h(x) = H*x, inline function, function handle or
name of function in form h(x,param)

R Measurement covariance.
param Parameters of h.

Output:

M Updated state mean
P Updated state covariance
K Computed Kalman gain
MU Predictive mean of Y
S Predictive covariance Y
LH Predictive probability (likelihood) of measurement.
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crts_smooth

crts_smooth
Cubature Rauch-Tung-Striebel smoother algorithm. Calculate "smoothed"
sequence from given Kalman filter output sequence by conditioning all
steps to all measurements. Uses the spherical- radial cubature rule.
Syntax: [M,P,D] = CKF_SMOOTH(M,P,a,Q,

[param,same_p])

Input:

M NxK matrix of K mean estimates from Cubature Kalman
filter

P NxNxK matrix of K state covariances from Cubature
Kalman Filter

a Dynamic model function as a matrix A defining linear
function a(x) = A*x, inline function, function handle or
name of function in form a(x,param) (optional, default
eye())

Q NxN process noise covariance matrix or NxNxK matrix of
K state process noise covariance matrices for each step.

param Parameters of a. Parameters should be a single cell array,
vector or a matrix containing the same parameters for each
step, or if different parameters are used on each step they
must be a cell array of the format { param_1, param_2,
...}, where param_x contains the parameters for step x as
a cell array, a vector or a matrix. (optional, default empty)

same_p If 1 uses the same parameters on every time step (optional,
default 1)

Output:
M Smoothed state mean sequence
P Smoothed state covariance sequence
D Smoother gain sequence
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sphericalradial

sphericalradial
Apply the spherical-radial cubature rule to integrals of form: int f(x) N(x |
m,P) dx
Syntax: [I,x,W,F] = sphericalradial(f,m,P[,param])

Input:

f Function f(x,param) as inline, name or reference
m Mean of the d-dimensional Gaussian distribution
P Covariance of the Gaussian distribution
param Parameters for the function (optional)

Output:

I The integral
x Evaluation points
W Weights
F Function values

5.1.5 Gauss-Hermite Kalman Filter

gh_packed_pc

gh_packed_pc
Packs the integrals that need to be evaluated in nice function form to ease
the evaluation. Evaluates P = (f-fm)(f-fm)’ and C = (x-m)(f-fm)’.
Syntax: pc = GH_PACKED_PC(x,fmmparam)

Input: x Evaluation point
fmmparamArray of handles and parameters to form the functions.

Output: pc Output values

gh_transform

gh_transform

Syntax: [mu,S,C,SX,W] = GH_TRANSFORM(M,P,g,p,param)

Input:

M Random variable mean (Nx1 column vector)
P Random variable covariance (NxN pos.def. matrix)
g Transformation function of the form g(x,param) as matrix,

inline function, function name or function reference
p Number of points in Gauss-Hermite integration
param Parameters of g (optional, default empty)

Output:

mu Estimated mean of y
S Estimated covariance of y
C Estimated cross-covariance of x and y
SX Sigma points of x
W Weights as cell array
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ghkf_predict

ghkf_predict
Perform additive form Gauss-Hermite Kalman Filter prediction step.
Syntax: [M,P] = GHKF_PREDICT(M,P,

[f,Q,param,p])

Input:

M Nx1 mean state estimate of previous step
P NxN state covariance of previous step
f Dynamic model function as a matrix A defining linear

function f(x) = A*x, inline function, function handle or
name of function in form f(x,param) (optional, default
eye())

Q Process noise of discrete model (optional, default zero)
param Parameters of f (optional, default empty)
p Degree of approximation (number of quadrature points)

Output: M Updated state mean
P Updated state covariance

ghkf_update

ghkf_update
Perform additive form Gauss-Hermite Kalman filter (GHKF) measurement
update step. Assumes additive measurement noise.
Syntax: [M,P,K,MU,S,LH] =

GHKF_UPDATE(M,P,Y,h,R,param,p)

Input:

M Mean state estimate after prediction step
P State covariance after prediction step
Y Measurement vector.
h Measurement model function as a matrix H defining linear

function h(x) = H*x, inline function, function handle or
name of function in form h(x,param)

R Measurement covariance
param Parameters of h
p Degree of approximation (number of quadrature points)

Output:

M Updated state mean
P Updated state covariance
K Computed Kalman gain
MU Predictive mean of Y
S Predictive covariance Y
LH Predictive probability (likelihood) of measurement.
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ghrts_smooth

ghrts_smooth
Gauss-Hermite Rauch-Tung-Striebel smoother algorithm. Calculate
"smoothed" sequence from given Kalman filter output sequence by con-
ditioning all steps to all measurements.
Syntax: [M,P,D] = GHRTS_SMOOTH(M,P,f,Q,

[param,p,same_p])

Input:

M NxK matrix of K mean estimates from Gauss-Hermite
Kalman filter

P NxNxK matrix of K state covariances from Gauss-
Hermite filter

f Dynamic model function as a matrix A defining linear
function f(x) = A*x, inline function, function handle or
name of function in form a(x,param) (optional, default
eye())

Q NxN process noise covariance matrix or NxNxK matrix of
K state process noise covariance matrices for each step.

param Parameters of f(.). Parameters should be a single cell ar-
ray, vector or a matrix containing the same parameters
for each step, or if different parameters are used on each
step they must be a cell array of the format { param_1,
param_2, ...}, where param_x contains the parameters for
step x as a cell array, a vector or a matrix. (optional, de-
fault empty)

p Degree on approximation (number of quadrature points)
same_p If set to ’1’ uses the same parameters on every time step

(optional, default 1)

Output:
M Smoothed state mean sequence
P Smoothed state covariance sequence
D Smoother gain sequence

hermitepolynomial

hermitepolynomial
Forms the Hermite polynomial of order n.
Syntax: p = hermitepolynomial(n)
Input: n Polynomial order
Output: p Polynomial coefficients (starting from greatest order)
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ngausshermi

ngausshermi
Approximates a Gaussian integral using the Gauss-Hermite method in
multiple dimensions: int f(x) N(x | m,P) dx
Syntax: [I,x,W,F] = ngausshermi(f,p,m,P,param)

Input:

f Function f(x,param) as inline, name or reference
n Polynomial order
m Mean of the d-dimensional Gaussian distribution
P Covariance of the Gaussian distribution
param Optional parameters for the function

Output:

I The integral value
x Evaluation points
W Weights
F Function values
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5.2 Multiple Model Systems

5.2.1 IMM Models

imm_filter

imm_filter
IMM filter prediction and update steps. Use this instead of separate pre-
diction and update functions, if you don’t need the prediction estimates.
Syntax: [X_i,P_i,MU,X,P] =

IMM_FILTER(X_ip,P_ip,MU_ip,p_ij,
ind,dims,A,Q,Y,H,R)

Input:

X_ip Cell array containing Nĵ x 1 mean state estimate vector for
each model j after update step of previous time step

P_ip Cell array containing Nĵ x Nĵ state covariance matrix for
each model j after update step of previous time step

MU_ip Vector containing the model probabilities at previous time
step

p_ij Model transition matrix
ind Indices of state components for each model as a cell array
dims Total number of different state components in the com-

bined system
A State transition matrices for each model as a cell array.
Q Process noise matrices for each model as a cell array.
Y Dx1 measurement vector.
H Measurement matrices for each model as a cell array.
R Measurement noise covariances for each model as a cell

array.

Output:

X_p Updated state mean for each model as a cell array
P_p Updated state covariance for each model as a cell array
MU Model probabilities as vector
X Combined state mean estimate
P Combined state covariance estimate
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imm_predict

imm_predict
IMM filter prediction step.
Syntax: [X_p,P_p,c_j,X,P] =

IMM_PREDICT(X_ip,P_ip,MU_ip,p_ij,ind,dims,A,Q)

Input:

X_ip Cell array containing Nĵ x 1 mean state estimate vector for
each model j after update step of previous time step

P_ip Cell array containing Nĵ x Nĵ state covariance matrix for
each model j after update step of previous time step

MU_ip Vector containing the model probabilities at previous time
step

p_ij Model transition probability matrix
ind Indexes of state components for each model as a cell array
dims Total number of different state components in the com-

bined system
A State transition matrices for each model as a cell array.
Q Process noise matrices for each model as a cell array.

Output:

X_p Predicted state mean for each model as a cell array
P_p Predicted state covariance for each model as a cell array
c_j Normalizing factors for mixing probabilities
X Combined predicted state mean estimate
P Combined predicted state covariance estimate
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imm_smooth

imm_smooth
Two filter fixed-interval IMM smoother.
Syntax: [X_S,P_S,X_IS,P_IS,MU_S] =

IMM_SMOOTH(MM,PP,MM_i,PP_i,
MU,p_ij,mu_0j,ind,dims,A,Q,R,H,Y)

Input:

MM NxK matrix containing the means of forward-time IMM-
filter on each time step

PP NxNxK matrix containing the covariances of forward-
time IMM-filter on each time step

MM_i Model-conditional means of forward-time IMM-filter on
each time step as a cell array

PP_i Model-conditional covariances of forward-time IMM-
filter on each time step as a cell array

MU Model probabilities of forward-time IMM-filter on each
time step

p_ij Model transition probability matrix
mu_0j Prior model probabilities
ind Indices of state components for each model as a cell array
dims Total number of different state components in the com-

bined system
A State transition matrices for each model as a cell array.
Q Process noise matrices for each model as a cell array.
R Measurement noise matrices for each model as a cell ar-

ray.
H Measurement matrices for each model as a cell array
Y Measurement sequence

Output:

X_S Smoothed state means for each time step
P_S Smoothed state covariances for each time step
X_IS Model-conditioned smoothed state means for each time

step
P_IS Model-conditioned smoothed state covariances for each

time step
MU_S Smoothed model probabilities for each time step
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imm_update

imm_update
IMM filter measurement update step.
Syntax: [X_i,P_i,MU,X,P] =

IMM_UPDATE(X_p,P_p,c_j,ind,dims,Y,H,R)

Input:

X_p Cell array containing Nĵ x 1 mean state estimate vector for
each model j after prediction step

P_p Cell array containing Nĵ x Nĵ state covariance matrix for
each model j after prediction step

c_j Normalizing factors for mixing probabilities
ind Indices of state components for each model as a cell array
dims Total number of different state components in the com-

bined system
Y Dx1 measurement vector.
H Measurement matrices for each model as a cell array.
R Measurement noise covariances for each model as a cell

array.

Output:

X_i Updated state mean estimate for each model as a cell array
P_i Updated state covariance estimate for each model as a cell

array
MU Estimated probabilities of each model
X Combined state mean estimate
P Combined state covariance estimate
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5.2.2 EIMM Models

eimm_predict

eimm_predict
IMM-EKF filter prediction step. If some of the models have linear dynam-
ics standard Kalman filter prediction step is used for those.
Syntax: [X_p,P_p,c_j,X,P] =

EIMM_PREDICT(X_ip,P_ip,
MU_ip,p_ij,ind,dims,A,a,param,Q)

Input:

X_ip Cell array containing Nĵ x 1 mean state estimate vector for
each model j after update step of previous time step

P_ip Cell array containing Nĵ x Nĵ state covariance matrix for
each model j after update step of previous time step

MU_ip Vector containing the model probabilities at previous time
step

p_ij Model transition matrix
ind Indices of state components for each model as a cell array
dims Total number of different state components in the com-

bined system
A Dynamic model matrices for each linear model and Ja-

cobians of each non-linear model’s measurement model
function as a cell array

a Function handles of dynamic model functions for each
model as a cell array

param Parameters of a for each model as a cell array
Q Process noise matrices for each model as a cell array.

Output:

X_p Predicted state mean for each model as a cell array
P_p Predicted state covariance for each model as a cell array
c_j Normalizing factors for mixing probabilities
X Combined predicted state mean estimate
P Combined predicted state covariance estimate
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eimm_smooth

eimm_smooth
EKF based two-filter fixed-interval IMM smoother.
Syntax: [X_S,P_S,X_IS,P_IS,MU_S]

= EIMM_SMOOTH(MM,PP,
MM_i,PP_i,MU,p_ij,mu_0j,ind,dims,
A,a,a_param,Q,R,H,h,h_param,Y)

Input:

MM Means of forward-time IMM-filter on each time step
PP Covariances of forward-time IMM-filter on each time step
MM_i Model-conditional means of forward-time IMM-filter on

each time step
PP_i Model-conditional covariances of forward-time IMM-

filter on each time step
MU Model probabilities of forward-time IMM-filter on each

time step
p_ij Model transition probability matrix
ind Indices of state components for each model as a cell array
dims Total number of different state components in the com-

bined system
A Dynamic model matrices for each linear model and Ja-

cobians of each non-linear model’s measurement model
function as a cell array

a Cell array containing function handles for dynamic func-
tions for each model having non-linear dynamics

a_param Parameters of a as a cell array.
Q Process noise matrices for each model as a cell array.
R Measurement noise matrices for each model as a cell ar-

ray.
H Measurement matrices for each linear model and Jaco-

bians of each non-linear model’s measurement model
function as a cell array

h Cell array containing function handles for measurement
functions for each model having non-linear measurements

h_param Parameters of h as a cell array.
Y Measurement sequence

Output:

X_S Smoothed state means for each time step
P_S Smoothed state covariances for each time step
X_IS Model-conditioned smoothed state means for each time

step
P_IS Model-conditioned smoothed state covariances for each

time step
MU_S Smoothed model probabilities for each time step
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eimm_update

eimm_update
IMM-EKF filter measurement update step. If some of the models have
linear measurements standard Kalman filter update step is used for those.
Syntax: [X_i,P_i,MU,X,P] =

IMM_UPDATE(X_p,P_p,c_j,ind,dims,Y,H,h,R,param)

Input:

X_p Cell array containing Nĵ x 1 mean state estimate vector for
each model j after prediction step

P_p Cell array containing Nĵ x Nĵ state covariance matrix for
each model j after prediction step

c_j Normalizing factors for mixing probabilities
ind Indices of state components for each model as a cell array
dims Total number of different state components in the com-

bined system
Y Dx1 measurement vector.
H Measurement matrices for each linear model and Jaco-

bians of each non-linear model’s measurement model
function as a cell array

h Cell array containing function handles for measurement
functions for each model having non-linear measurements

R Measurement noise covariances for each model as a cell
array.

param Parameters of h

Output:

X_i Updated state mean estimate for each model as a cell array
P_i Updated state covariance estimate for each model as a cell

array
MU Estimated probabilities of each model
X Combined updated state mean estimate
P Combined updated covariance estimate
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5.2.3 UIMM Models

uimm_predict

uimm_predict
IMM-UKF filter prediction step. If some of the models have linear dynam-
ics standard Kalman filter prediction step is used for those.
Syntax: [X_p,P_p,c_j,X,P] =

UIMM_PREDICT(X_ip,P_ip,
MU_ip,p_ij,ind,dims,A,a,param,Q)

Input:

X_ip Cell array containing Nĵ x 1 mean state estimate vector for
each model j after update step of previous time step

P_ip Cell array containing Nĵ x Nĵ state covariance matrix for
each model j after update step of previous time step

MU_ip Vector containing the model probabilities at previous time
step

p_ij Model transition matrix
ind Indices of state components for each model as a cell array
dims Total number of different state components in the com-

bined system
A Dynamic model matrices for each linear model as a cell

array
a Dynamic model functions for each non-linear model
param Parameters of a
Q Process noise matrices for each model as a cell array.

Output:

X_p Predicted state mean for each model as a cell array
P_p Predicted state covariance for each model as a cell array
c_j Normalizing factors for mixing probabilities
X Combined predicted state mean estimate
P Combined predicted state covariance estimate
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uimm_smooth

uimm_smooth
UKF based two-filter fixed-interval IMM smoother.
Syntax: [X_S,P_S,X_IS,P_IS,MU_S]

= UIMM_SMOOTH(MM,PP,
MM_i,PP_i,MU,p_ij,mu_0j,ind,dims,A,a,
a_param,Q,R,H,h,h_param,Y)

Input:

MM Means of forward-time IMM-filter on each time step
PP Covariances of forward-time IMM-filter on each time step
MM_i Model-conditional means of forward-time IMM-filter on

each time step
PP_i Model-conditional covariances of forward-time IMM-

filter on each time step
MU Model probabilities of forward-time IMM-filter on each

time step
p_ij Model transition probability matrix
ind Indices of state components for each model as a cell array
dims Total number of different state components in the com-

bined system
A Dynamic model matrices for each linear model and Ja-

cobians of each non-linear model’s measurement model
function as a cell array

a Cell array containing function handles for dynamic func-
tions for each model having non-linear dynamics

a_param Parameters of a as a cell array.
Q Process noise matrices for each model as a cell array.
R Measurement noise matrices for each model as a cell ar-

ray.
H Measurement matrices for each linear model and Jaco-

bians of each non-linear model’s measurement model
function as a cell array

h Cell array containing function handles for measurement
functions for each model having non-linear measurements

h_param Parameters of h as a cell array.
Y Measurement sequence

Output:

X_S Smoothed state means for each time step
P_S Smoothed state covariances for each time step
X_IS Model-conditioned smoothed state means for each time

step
P_IS Model-conditioned smoothed state covariances for each

time step
MU_S Smoothed model probabilities for each time step
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uimm_update

uimm_update
IMM-UKF filter measurement update step. If some of the models have
linear measurements standard Kalman filter update step is used for those.
Syntax: [X_i,P_i,MU,X,P] =

IMM_UPDATE(X_p,P_p,c_j,ind,dims,Y,H,R)

Input:

X_p Cell array containing Nĵ x 1 mean state estimate vector for
each model j after prediction step

P_p Cell array containing Nĵ x Nĵ state covariance matrix for
each model j after prediction step

c_j Normalizing factors for mixing probabilities
ind Indices of state components for each model as a cell array
dims Total number of different state components in the com-

bined system
Y Dx1 measurement vector.
H Measurement matrices for each model as a cell array.
h Measurement mean
param parameters
R Measurement noise covariances for each model as a cell

array.

Output:

X_i Updated state mean estimate for each model as a cell array
P_i Updated state covariance estimate for each model as a cell

array
MU Probabilities of each model
X Combined state mean estimate
P Combined state covariance estimate
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5.3 Other Functions

der_check

der_check
Evaluates function derivative analytically and using finite differences. If
no output arguments are given, issues a warning if these two values differ
too much.
Syntax: [D0,D1] = DER_CHECK(F,DF,INDEX,

[P1,P2,P3,...])

Input:
F Name of actual function or inline function in form

F(P1,P2,...)
DF Derivative value as matrix, name of derivative function or

inline function in form DF(P1,P2,...).
INDEX Index of parameter of interest. DF should Calculate the

derivative with recpect to parameter Pn, where n is the
index.

Output: D0 Actual derivative
D1 Estimated derivative

lti_disc

lti_disc
Discretize LTI ODE with Gaussian Noise. The original ODE model is in
form
Syntax: [A,Q] = lti_disc(F,L,Qc,dt)

Input:

F NxN Feedback matrix
L NxL Noise effect matrix (optional, default identity)
Qc LxL Diagonal Spectral Density (optional, default zeros)
dt Time Step (optional, default 1)

Output: A Transition matrix
Q Discrete Process Covariance

lti_int

lti_int
Integrates LTI differential equation
Syntax: [x,P,A] = lti_int(x,P,F,L,Q,T)
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schol

schol
Compute lower triangular Cholesky factor L of symmetric positive
semidefinite matrix A such that
Syntax: [L,def] = schol(A)
Input: A Symmetric pos.semi.def matrix to be factorized

Output: L Lower triangular matrix such that A=L*L’ if def>=0.
def Value 1,0,-1 denoting that A was positive definite, positive

semidefinite or negative definite, respectively.

gauss_pdf

gauss_pdf
Calculate values of PDF (Probability Density Function) of multivariate
Gaussian distribution
Syntax: [P,E] = GAUSS_PDF(X,M,S)

Input:
X Dx1 value or N values as DxN matrix
M Dx1 mean of distibution or N values as DxN matrix.
S DxD covariance matrix

Output: P Probability of X.
E Negative logarithm of P

gauss_rnd

gauss_rnd
Draw N samples from multivariate Gaussian distribution
Syntax: X = GAUSS_RND(M,S,N)

Input:
M Dx1 mean of distibution or K values as DxK matrix.
S DxD covariance matrix
N Number of samples (optional, default 1)

Output: X Dx(K*N) matrix of samples.
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rk4

rk4
Perform one fourth order Runge-Kutta iteration step for differential equa-
tion
Syntax: [x,Y] = rk4(f,dt,x, [P1,P2,P3,Y])

Input:

f Name of function in form f(x,P(:)) or inline function tak-
ing the same parameters. In chained case the function
should be f(x,y,P(:)).

dt Delta time as scalar.
x Value of x from the previous time step.
P1 Values of parameters of the function at initial time t as a

cell array (or single plain value). Defaults to empty array
(no parameters).

P2 Values of parameters of the function at time t+dt/2 as a
cell array (or single plain value). Defaults to P1 and each
empty (or missing) value in the cell array is replaced with
the corresponding value in P1.

P3 Values of parameters of the function at time t+dt. Defaults
to P2 similarly to above.

Y Cell array of partial results y1,y2,y3,y4 in the RK algo-
rithm of the second parameter in the interated function.
This can be used for chaining the integrators. Defaults to
empty.

Output: x Next value of X
Y Cell array of partial results in Runge-Kutta algorithm.

resampstr

resampstr

Syntax:
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