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Fast Adaptive Digital Equalization
by Recurrent Neural Networks

Raffaele Parisi, Elio D. Di Claudio, Gianni Orlandi, and Bhaskar D. Rao

Abstract—In recent years, neural networks (NN’s) have been
extensively applied to many signal processing problems. In par-
ticular, due to their capacity to form complex decision regions,
NN’s have been successfully used in adaptive equalization of
digital communication channels. The mean square error (MSE)
criterion, which is usually adopted in neural learning, is not
directly related to the minimization of the classification error, i.e.,
bit error rate (BER), which is of interest in channel equalization.
Moreover, common gradient-based learning techniques are often
characterized by slow speed of convergence and numerical ill
conditioning. In this paper, we introduce a novel approach to
learning in recurrent neural networks (RNN’s) that exploits
the principle of discriminative learning, minimizing an error
functional that is a direct measure of the classification error.
The proposed method extends to RNN’s a technique applied with
success to fast learning of feedforward NN’s and is based on the
descent of the error functional in the space of the linear combi-
nations of the neurons (theneuron space); its main features are
higher speed of convergence and better numerical conditioning
w.r.t. gradient-based approaches, whereas numerical stability is
assured by the use of robust least squares solvers. Experiments
regarding the equalization of PAM signals in different transmis-
sion channels are described, which demonstrate the effectiveness
of the proposed approach.

I. INTRODUCTION

A DAPTIVE channel equalization is a major issue in digital
communications [2], [4], [24]. Fig. 1 depicts the typical

digital baseband transmission system; the channel model takes
into account the effects of the transmitter, the transmission
medium, and the receiver and is usually represented by a
finite impulse response (FIR) filter. The input to the channel
is assumed to be a sequence of independent symbols
extracted from a specified alphabet; the channel output
is corrupted by noise and is usually modeled as an
additive Gaussian white process. The transmission channel can
be affected by both linear and nonlinear distortion; in the first
case, intersymbol interference (ISI) occurs as a consequence of
the limited bandwidth of the channel and consists of spreading
of the received symbol energy through several time intervals.
In the second case, the channel cannot be considered linear
due to the presence of nonlinear devices (amplifiers working
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Fig. 1. Schematic of data transmission system.

in saturation, converters, ). The objective of equalization is
to reconstruct the transmitted sequence and combat the effects
of ISI and noise.

The equalization problem can be viewed from two different
viewpoints. Traditionally, equalization has been considered
equivalent to inverse filtering of the channel; this corresponds
to deconvolving the received sequence in order to reconstruct
the original message; therefore, the combination of channel
and equalizer should be as close as possible to an ideal delay
function [2], [24].

A different approach considers equalization as aclassifica-
tion problem [15], in which the objective is the separation
of the received symbols in the output signal space. In this
case, the full inversion of the channel is not required, and the
problem can be cast in the general framework of classification
techniques.

From both points of view, the NN approach to equalization
is well justified: in the first case, NN capability as universal
function approximators [9] could be exploited; in the second, it
is the well-known NN ability to perform classification tasks by
forming complex nonlinear decision boundaries. In particular,
it can be shown that feedforward NN’s [25] can implement
the maximuma posterioriprobability (MAP) symbol decision
equalizer [22]. For all these reasons, in recent years, NN’s
have been successfully applied to the equalization problem. In
particular, recurrent NN’s (RNN’s) [25] are attractive for the
presence of feedback and their small size [26].

The choice of the particular equalizer involves both the
architecture and the training algorithm. Linear equalizers have
been used for long time, mainly due to their simplicity and
theoretical tractability; for many typical situations, the use of
some form of nonlinearity is more appropriate [15].

NN equalizers work by processing linear combinations
of received samples passed through nonlinear “activation”
functions; learning consists in the determination of the “op-
timal” weights through the minimization of a specified error
functional, whose choice should be related to the particular
task considered. Most NN approaches use the mean square
error (MSE), which is not directly related to the classification
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error but rather to the quality of system identification. In
[19], a new error functional has been proposed that takes
directly into account the classification error; the new method
has been successfully applied to general classifier structures
and, in particular, to NN’s. Authors called this approach
discriminative learning.

The determination of equalizer weights is essentially an
optimization issue. Today, high-speed data transmission over
distorting channels is a commonly encountered situation; fast
optimization methods for the design of the “optimal” equalizer
are thus required. In the case of a “neural equalizer,” due
to its inherently nonlinear nature, the need of fast and stable
training algorithms is particularly important. Many different
approaches to NN learning exist. The main problems are
usually the slow rate of convergence and the occurrence of
local minima; both these drawbacks are essentially due to the
high degree of nonlinearity of the error surface. Moreover, a
recent analysis [23] has demonstrated that learning in NN’s
is very often an ill-conditioned problem since the Hessian
matrix [6] is badly ill conditioned; this implies that a maximum
likelihood (ML) weight identification problem may suffer from
lack of information (e.g., theFisher’s information matrixmay
be nearly singular [3], [17]).

Most common learning techniques involve the use of the
gradient of the specified error functional (likebackpropagation
[5] in feedforward NN’s). Gradient-based approaches, even if
they are computationally simpler, are characterized by low
rates of convergence and may not be suitable in applications
where fast convergence is required. In analogy with the
signal processing field, least squares (LS) methods could
be envisaged to speed up convergence; in any event, the
application of LS concepts to highly nonlinear structures like
NN’s requires an appropriate treatment.

In the present paper, we introduce a novel LS-based learn-
ing method for fully recurrent networks that minimizes the
classification error through application of the discriminative
learning criterion. The proposed approach is able to provide
higher speed of convergence w.r.t. gradient-based solutions;
moreover, it overcomes the difficulties related with ill con-
ditioning that is typical of NN learning, giving learning
procedures that are numerically stable and robust. The re-
sulting discriminative least squares(DLS) learning approach
can be successfully applied to the problem of digital equal-
ization. In the following, we review some neural approaches
to equalization present in the literature (Section II), and we
introduce the new method, which takes into account both
the requirements of minimum classification error and high
speed of convergence (Section III). Finally, we apply it to
the equalization of PAM signals in some typical transmission
channels (Section IV).

II. NEURAL APPROACHES TOEQUALIZATION

Traditional approaches consider equalization to be an in-
verse filtering problem, and the equalizer should approximate
the inverse of the distorting channel. This approach in digital
communications can be more complex than necessary; due
to the quantized nature of the transmitted symbols, in order

to equalize the channel, it is sufficient to ensure that the
decision on the equalizer output is correct. This means that
equalization can be viewed also as ageometricalproblem,
consisting of correctly establishing the boundaries of the
decision regions in the output signal space. This interpretation
was first pointed out in [13] and [15] and corresponds to
considering equalization as a classification problem. The use
of NN’s is justified by noting that in most cases, the boundaries
of the optimal decision regions are highly nonlinear, thus
requiring the use of nonlinear classifiers, even with linear
channels.

Many possible approaches to neural equalization have been
developed in the last few years. Kirklandet al. [20] applied
feedforward NN’s to equalize the digital microwave radio
channel in the presence of multipath fading.

Penget al. [21] modified the nonlinear activation function of
the classical multilayer perceptron in order to take into account
signals typically encountered, namely, PAM and QAM.

Kechriotis et al. [26] applied fully recurrent NN’s trained
with the real-time recurrent-learning algorithm (RTRL) [25]
to the equalization of nonminimum phase, partial response,
and nonlinear channels; they compared their neural equalizer
to linear FIR equalizers trained with the Kalman algorithm.
Moreover, with a proper modification of the error functional,
they extended their analysis to the case of blind equalization
[17].

Changet al. [27] introduced a neural-based decision feed-
back equalizer to perform equalization of indoor radio channel.
The new structure advantageously compares to the classical
decision feedback equalizer [24].

In [28], a wavelet NN [18] trained with the recursive least
squares (RLS) algorithm [17] was used to equalize a nonlinear
transmission channel. Later, the same authors successfully
applied their idea to satellite channels [30].

Al-Mashouqet al. [29] used a feedforward NN to perform
both equalization and decoding in the presence of severe
ISI conditions; their equalizer outperforms classical structures
formed by cascading a linear equalizer and a decoder.

All these papers showed that NN’s can be successfully
applied to the problem of equalization; in particular, recur-
rent NN’s are characterized by feedback, which makes them
attractive in the presence of channels with deep spectral nulls
[26].

As a matter of fact, most training algorithms for RNN’s are
gradient-based, and this is in contrast with the requirements
of fast equalization. For an extensive review of gradient-based
approaches to the training of dynamic RNN’s, see [31].

The interpretation of channel equalization as classification in
symbol space [22] also enables the use of neural architectures
that make use of explicit clustering of input patterns during
learning, such as radial basis function (RBF) and wavelet
networks [18], [25].

The signal processing field has inspired a number of neural
learning techniques; in particular, the analogy with adaptive
filters has led researchers to consider the use of LS concepts
to speed up learning in feedforward architectures. Several
approaches of this kind have been presented in the literature,
and a review can be found in [33].
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In the following, a new LS-based fast approach to the train-
ing of recurrent NN’s is introduced; the described algorithm
extends to recurrent structures the concept ofneuron space
descent proposed in [33]. Taking into account the objective
of direct minimization of the classification error, the new
approach is interpreted as a supervised symbol clustering
procedure, coupled with a statistically robust LS fitting [1], that
can be successfully applied to the digital equalization problem.

III. N OVEL APPROACH: DISCRIMINATIVE

LEAST SQUARES (DLS) LEARNING

As already pointed out, two main issues are considered
in this paper: the choice of a proper error functional, which
takes directly into account the objective of minimum error
classification, and the need of fast convergence procedures for
high-rate digital equalization. Let us consider these aspects
separately.

A. Discriminative Learning

In this section, we briefly recall the fundamental concepts
of discriminative learning introduced in [19] and which will
be used in the following; interested readers can refer to [19]
for more details.

Learning in NN’s consists of the minimization of a specified
error functional, whose choice depends on the particular task
under consideration; the most common choice is the MSE,
which offers desirable properties of smoothness and mathemat-
ical tractability. For classification purposes, the minimization
of the MSE can be inconsistent with the objective of minimum
error probability [19]. The need for a smooth and differentiable
error functional, depending on the probability of misclassifi-
cation involved in the decision process, can be satisfied in the
following way.

Suppose that the aim of training is to associate an input
pattern to one of possible classes. As a first step,
discriminant functions , depending on the parameters

, are introduced; they can be, for example, the outputs of a
NN, whereas can be the network weight vector.

The second step is the choice of an appropriate misclas-
sification measure, which is continuous with respect to the
weights ; a possible definition is

(1)

where is a positive number. Equation (1) gives a measure
of the classification error when the input belongs to the
th class; in the simple case of two classes, it reduces to

the difference between the outputs; therefore,
means misclassification, whereas implies a correct
decision.

As a third step, the following error functional is defined as
a function of the misclassification measure.

(2)

Fig. 2. Scheme of the RNN used as equalizer.

where is a differentiable zero-one function, like a sigmoid
or an exponential. The objective of learning is thus the
minimization of the error functional w.r.t. the weights,
which can be performed by applying well-known methods in
optimization theory.

This formulation allows us to express the minimum classi-
fication error (orBayes minimum risk) directly in terms of the
functionals when the discriminant functions give
exactly thea posterioriprobability of the th class given ; this
means that the minimum classification probability objective is
conditioned on the choice of the correct discriminant functions.
Due to their function approximation capabilities, NN’s with
the proper number of units are potentially able to converge to
the true minimum Bayes risk [19]. The application of this new
approach to multilayer perceptrons has led to positive results in
classification and speech recognition experiments, solving the
inconsistency between an MSE-based learning and the desired
minimization of the misclassification probability [19].

B. Least Squares Learning Algorithm

Learning in NN’s is a nonlinear optimization problem. The
determination of the optimal weights for the task of interest
is performed by a proper algorithm of descent on the surface
defined by the specified error functional; in this work, we
will adopt for the expression given by (2). The learning
method proposed in this paper is based on the separability of
the neuron model in a linear and a nonlinear part. This partic-
ular feature allows to apply linear LS techniques with a proper
preliminary treatment of the nonlinearities: theneuron space
approach. Extensive description of this general method in the
case of feedforward NN’s has been given in [33]; in particular,
it has been demonstrated that the neuron space approach is
equivalent to amodified Newton’s method[6] in weight space,
where a proper well-conditioned approximation of the Hessian
is used. In this section, we show how this approach can be
extended to RNN’s, giving the high convergence rates needed
in fast equalization. A preliminary description of the algorithm
can be found in [32].

1) The Network Model:The structure being considered is
depicted in Fig. 2 and consists of a fully connected RNN
in cascade to a feedforward network. In the following, we
will refer to the case in which both the recurrent and the
feedforward parts consist of a single layer of memoryless
nonlinearities. This structure is similar to the Elman net [12],
with the addition of the feedforward part having the role of
decisor.
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The network implements the following nonlinear discrete-
time dynamical system.

(3)

where and are the functionals modeled by the internal and
the output sections, respectively, and , , and are
column vectors representing, respectively, thestateof the net,
the external input (e.g., channel outputnoise), and the output
(e.g., estimated symbol) at time( ).

Using a matrix formulation, forward propagation through
the internal and the output blocks can be represented by

(4)

and

(5)

respectively. In the preceding formulas, and are the
weight matrices of the internal and the output sections,and

are the outputs of the linear combinations (e.g., the inputs
of the nonlinearities), 1 is the bias input, andis a place holder
for the selected neuron activation sigmoidal-type function.

Learning in recurrent networks can be performed follow-
ing several possible approaches. Among them the Real-Time
Recurrent-Learning (RTRL) is probably the most popular [8];
it consists in the minimization of the error functional based on
an instantaneous estimate of the gradient, and gives a structure
operating in real time.

The approach herein described gets inspiration from thetime
unfolding technique [25], which expands the network through
a number of subsequent time steps. Learning on the unfolded
network could be performed by thebackpropagation through
time (BPTT) approach [11], which is an extension of the
classical backpropagation algorithm to recurrent architectures;
this method is in contrast with the on-line requirements of the
training process. We propose a different solution that, although
it is on-line, has been demonstrated to provide higher rate of
convergence and better numerical properties w.r.t. gradient-
based solutions [33].

2) Definitions: We first describe the epochwise form of the
algorithm; later, we will show how the update of the weights
can be made in real time. Referring to a single epoch of length

, we introduce the following matrices:
1-matrix U, containing the external inputs

(6)

2-matrix containing the internal states

(7)

3-matrix containing the linear outputs of the generic layer

(8)

can refer either to the internal or to the output layer.
At the beginning of each epoch, it is supposed that weight

matrices and were either set by a previous iteration of
the algorithm or properly initialized from scratch. The initial
state and the input matrix for the present epoch

are also assumed known. Forward equations
(4) and (5) are then used to compute matrices
and , thus establishing a consistent set of
input-state and state-output relationships.

3) The Neuron Space Approach:The neuron space ap-
proach consists of two steps. The first step estimates the
“optimal” for each layer by performing a descent of the
error surface in the space of the’s (the neuron space). This
can be accomplished by introducing a properdirection matrix

, as described by

(9)

where is thestep-size[6], which is also called thelearning
rate in the neural field. Different choices of are possible, as
is known from optimization theory [6]. The simplest choice is
the opposite of thegradient matrix1 ; in this case, we get

(10)

At each iteration, the gradient of the error is subtracted to the
actualY, giving the estimate (gradient descentin neuron
space). The expressions for the partial derivatives ofcan be
obtained by applying the chain rule of derivatives [5], [25].

With respect to feedforward NN’s [33], a proper treatment
is required by the state variables’s, which in the next step are
fed back to the input. Namely, we compute a set of perturbed

’s from

(11)

The second step is the computation of the new weights; after an
entire epoch, the following systems are solved in the LS sense
for the weight matrices of the internal and output sections.

(12)

(13)

After weights have been computed, a new input is presented,
and the algorithm proceeds. At the beginning, both the weights
and the state are initialized to small random values; this has
been proven effective during simulations.

1The gradient matrixrYE is defined byfrYEgij = @E=@yij , where
yij are the elements of the matrixY.
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4) Remarks:The perturbation of the state expressed by (11)
is consistent with the approach followed for the summation
variables ’s. It can be viewed as an example ofcoordinate
descentmethod [6], which sequentially minimizes the error
with respect to different subsets of unknowns; in this sense,
the learning process is a sequence of steps in which weights
and state variables are alternately corrected until convergence
is reached.

The neuron space method is based on the proper perturba-
tion of an epochof consistent system equations [see (10)],
followed by a LS fitting procedure [(12) and (13)], which
aims to restore consistency after the perturbation by changing
neuron weights. Systems (12) and (13) can be solved by any
LS algorithm, like the QR or the singular value decompositions
[7]. Readers interested in local convergence issues may refer
to [33]. Here, we make several remarks.

1) Any local minimum of the chosen error functional w.r.t.
weights is also astable pointfor the descent equations
in the neuron space since the sequence of instantaneous
gradient estimates in the neuron space becomes statis-
tically orthogonal to the columns of system matrices in
LS equation sets [1], [17].

2) The descent in the neuron space is mathematically
equivalent to amodified Newton’s methodwith a block-
shaped positive semidefinite (and almost always positive
definite) matrix playing the role of the Hessian [33].

3) The mathematical properties of this matrix near a local
minimum are directly determined by thesensitivityof
the error functional w.r.t. weights, as expected asymp-
toptically in a well-posed ML identification problem
[3].

5) Block Recursive Least Squares (BRLS) Solution:In this
section, we show how by use of a QR-based RLS solution
[17], the algorithm can be rendered on-line (e.g., can
be chosen). Suppose that at the generic th step, the QR
decomposition [7] of the solving system has been computed;
then, the new input at time can be appended to the triangular
factor and the following system formed for the generic
layer.

(14)

In preceding formula, vector is defined as
for the internal layer and as

for the output layer; is a properforgetting
factor. Initially, diag , where is a small number,
and .

During learning, matrix is computed by multiplication

(15)

where matrix comes from the QR decomposition of
the coefficient matrix at the preceding step.

C. Neural Classification as Multiple Robust
Least Squares Fitting

In this section, we will briefly show how the proposed
neural approach to digital equalization can be embodied in
the framework ofrobust LS fitting[1].

The neuron space approach fits in a LS manner the back-
propagated residuals over the forward propagated inputs at
each layer in order to update the weights [5], [33].

However, the classification problem also has a striking
resemblance also with the robust LS fitting problem. In robust
LS, “target signals” belong to a mixture of two different
distributions, only one of which is of interest for modeling,
whereas the other is acontaminating, unknown distribution
within a gross-errorassumption [1].

In equalization problems, we are dealing instead with a
mixture ofseveraldistributions, each generated by one symbol
sequence projected onto the output signal space. Only one
distribution at a time is present at the equalizer output and is
of interest for the definition of the optimal decision boundaries
[19], [22]. At the beginning of learning, the neuron weights
are far from optimal values, and large errors are present
at the network outputs, which can fool or slow down the
descent when using a Newton-type algorithm [6], [33]. Explicit
clustering of the input space (like in classical RBF network
training [25]) may help to attain convergence, but it can be
slow.

A well-known alternative approach for quickly fitting (in
the LS sense) data drawn from a mixture is to recognize
well-behaved equations having relatively small fitting er-
rors and use them only for optimization; the others are
discarded by means of adaptiveunderweightingof error resid-
uals (iteratively reweighted LS, IRLS) [1], [10], [14]. Neuron
nonlinearities and the backpropagation formula [5], in fact,
play together the role of theinfluence functionsused in
robust LS fitting. The derivative of a sigmoidal-type activation
function is bell-shaped around the bias term and underweights
any backpropagated error that exceeds the range of the nonlin-
earity. Outputs belonging to different but statistically separable
distributions produce significant backpropagated errors (and
weight changes) only in those neurons that are involved in the
determination of the decision boundaries.

IV. EXPERIMENTAL RESULTS

In this section, we describe the results obtained by ap-
plying the proposed approach to the equalization of typical
linear and nonlinear channels. In particular, we considered
some test channels described in [26], where a gradient-based
approach—real time recurrent learning (RTRL)—was used.
Simulations have been set up so that results can be compared
directly with those reported in [26]. We will consider for
simplicity the case of 2-PAM signals where symbols are
randomly extracted from the alphabet ; extension to
higher signal constellations is possible by using the complex
model for the neuron [16]. In all the experiments, a network
with three recurrent units and two outputs and the values

and of the learning parameters were used.



2736 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 11, NOVEMBER 1997

Fig. 3. ChannelH1(z) = 1 + 0:7z�1. Plot of the decimal logarithm of the BER versus the SNR. o: after 20 samples in the learning phase. x:
after 50 samples.�: after 100 samples.

Fig. 4. ChannelH2(z) = 0:3482 + 0:8704z�1 + 0:3482z�2. Plot of the decimal logarithm of the BER versus the SNR. o: after 100 samples in the
learning phase. x: after 200 samples.�: after 300 samples.+: after 500 samples.

Experiment 1: In the first test, we considered a channel
with transfer function ; this is a simple
minimum-phase channel that can be used as a preliminary
test. The networks were trained with sequences of 20, 50 and
100 symbols at different noise levels; the BER for each value
of signal-to-noise ratio (SNR) was evaluated on more
received symbols and averaged over 20 realizations. Fig. 3
shows the curves of the average BER versus the SNR while

varying the length of the training phase. These curves can be
directly compared with those presented in [26], where 2000
symbols were used for learning; it can be seen that the new
approach is able to provide the same performance with only
100 samples. No cases of ill-convergence were observed.

Experiment 2: The second example is a linear
nonminimum-phase channel with transfer function

; as pointed
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Fig. 5. ChannelH3(z) = 1 � 2z�1 + z
�2. Plot of the decimal logarithm of the BER versus the SNR. o: after 50 samples in the learning phase.

x: after 100 samples.

Fig. 6. Nonlinear channel. Plot of the decimal logarithm of the BER versus the SNR. o: after 500 samples in the learning phase. x: after 1000 samples.

out in [26], this type of channel is closer to those encountered
in real communication systems. Learning was performed on
sequences of 100, 200, 300, and 500 samples. Fig. 4 depicts
the curves of the mean BER versus the SNR. With respect to
the gradient approach of [26], the proposed method is able to
substantially reduce the number of training samples required
to get the same BER. In addition, in this case, convergence
was reached in all trials, demonstrating the robustness of
the proposed method.

Experiment 3: As a third test, we considered the partial
response channel described by .

This channel has a double zero on the unit circle; the problem
is badly ill conditioned due to the minimax property of the
eigenvalues of the correlation matrix of received signals and
the small energy available at frequencies near the nulls of the
transfer function [17]. It is well known that gradient-based
methods have in this case serious problems of convergence
[33]. The robustness of the proposed approach in this situation
is instead confirmed by Fig. 5, showing the average BER
curves obtained after 50 and 100 samples in the training phase.
With respect to the curves depicted in [26], the new method is
able to get superior performance in terms of both the number



2738 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 45, NO. 11, NOVEMBER 1997

of samples necessary and the minimum SNR to get a prefixed
BER (12.5 dB against 20 dB to obtain BER ). The
performance improvement may be explained by the higher
speed of convergence of second-order methods and the good
numerical conditioning of the proposed approach [6] [33].

Experiment 4: The last experiment deals with a typical
nonlinear channel (see [26]), The network input is
described by , where is the
output of the linear channel

. In addition, in this case, the BRLS algorithm
requires a lower number of iterations (500 versus 2000) to
get about the same performance of RTRL in terms of BER
(Fig. 6).

Some performance issues should be addressed in detail,
namely, the practical requirements for fast learning, the com-
putational cost per training and the regularity of the algorithm
dependence graph. Most equalizers work in real time in the
presence of nonstationary channels (mobile radio, cellular
telephone, ). Efficiency in data transmission also requires
that a small percentage of symbols is used as a preamble for
training; therefore, high rate of convergence is a prerequisite
for the functionality of the equalizer. The proposed architecture
exhibits a convergence speed of the same order as traditional
linear equalizers so that message structure and communication
efficiency can be both preserved even in demanding packet and
mobile radio applications. The computational cost per iteration
of a Newton-type algorithm is higher than that of gradient-
based approaches. Nevertheless, as shown in [33], since the
total number of iterations necessary for the convergence is
much lower, the overall cost for the training is reduced.
In addition, the RTRL algorithm is known to be relatively
expensive [31]; in fact, given a fully connected neuron layer
having inputs and outputs, at each time step, the forward
propagation, the gradient computation, the weight update,
andeach relaxation steprequire all operations. The
discriminative LS algorithm computes instead the new weights
by QR updating and back substitution, each having
complexity [7]. We remark that RTRL requires average
iterations for each weight computation; therefore, its order of
complexity reaches just that of the LS approach, without giving
the benefits of super linear convergence rate [33]!

A disadvantage of Newton-type algorithms is the peak
computing power required to the processor during learning.
However, the dependence graph of the proposed algorithm,
which is based on QR decomposition and back substitution, is
amenable to regular implementation on parallel array proces-
sors [17]. In addition, the demodulation task after learning is
simply the forward propagation pass through the network and
does not require dedicated hardware. It can be also noted that
all experimental tests were performed with a fixed learning
rate, thus enabling an effective parallel processing.

V. CONCLUSION

This paper has introduced a new approach to adaptive digital
channel equalization that makes use of recurrent neural net-
works. Previous approaches were based on the minimization
of the mean square error (MSE) performed by a gradient

descent procedure. The MSE is not necessarily related with the
classification error—bit error rate (BER)—that is considered
in equalization problems; moreover, the use of gradient-
based learning techniques is often hampered by slow speed
of convergence and numerical ill conditioning. Overcoming
these difficulties, the proposed method minimizes an error
functional that is a direct measure of the BER. Moreover,
the determination of the optimal weights is performed by a
procedure (gradient descent in neuron space) that is faster and
numerically more stable and robust with respect to traditional
gradient-based schemes. Experimental tests conducted on
2-PAM signals for different channels have confirmed the better
performance of the novel algorithm.
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