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The time-varying impulse response of rapidly fading mobile ~ However, many systems violate the time-invariance as-
communication channels is expanded over a basis of complexsymption. In cellular telephony, the multipath propaga-
exponentials that arise due to Doppler effects encountered with tion channel not only exhibits frequency selectivity, which

multipath propagation. Blind methods are reviewed for estimating . bol i f 1SN, b | h
the bases’ parameters and the model orders. Existing second-orderUS€S intersymbol interference (ISI), but also changes as

methods are critiqued and novel algorithms are developed for blind the mobile communicators move [1], [2], [7], [28], [37],
identification, direct, zero-forcing equalization and minimum mean [42]. Temperature and salinity variations cause underwater

square error (MMSE) equalization by combining channel diversity channels to vary [24], [25], [44], and fluctuations in the

with temporal (fractional sampling) and/or spatial diversity which ionosphere give rise to deep fades in the data received
becomes available with multiple receivers. lllustrative simulations . p 9 . P - .
are also presented. via microwave links [20], [35]. For channel variations with

Keywords—Adaptive equalizers, diversity methods, Doppler coherence time in the order of hundreds of symbols (slow

effect, fading channels, identification, least mean square methods,fading) adaptive variants of algo.rithms developeq fqr T
mobile communication, time-varying channels. systems offer a valuable alternative, although periodic re-

training is recommended to avoid runaway effects [2], [24],
[36], [42]. Recursive least-squares (RLS) and least mean-
square (LMS) are adaptive algorithms which are known
h A alld to diverge when channel variations exceed the algorithms’
(T1) systems have found widespread applications in time oo ergence time. In such cases explicit incorporation of

series modeling, econometrics, exploration seismology, andy,e channer's time-varying (TV) characteristics is called for.
equalization of communication channels, just to name a \inqt explicit models of TV communication channels
few. W't_h no access to th? Input, many t?l'nd methods oat the TV taps as uncorrelated stationary random pro-
have relied on statlongry h|gh-order stgtlstlcs [13]. [18], cesses which are assumed to be low-pass, Gaussian, with
[34]_, [_51] and cyclostationary or multivariate second-order zero mean (Rayleigh fading) or nonzero mean (Rician
Ztatlspcs 512]’ [_Mi]' [?’ﬁ]’ [43].’ [45]’TE52] of the ogtpl;]t . fading) depending on whether line-of-sight propagation is
ata in order io: 1) either estimate Tl systems or 2) their absent or present [6], [23] [25], [35], [50]. Correlations of

INVErses whenhlnput recovery 1S tthetulft|mate goalll. S.UCS.S_?HI' the unknown taps capture average channel characteristics
recovering schemes are important, for example, in Aigital o4 are ysed to track the channel’s time evolution using

broadcasting because transmission is not interrupted to tra'nKaIman filtering estimators [8], [9], [25], [50]. The unob-

new users entering the cell. Similarly, in wireless environ- . : : :
ments bandwidth is utilized efficiently when cold start-u servable channel statistics are either fixed to experimentally
y P computed values [8], [25] or estimated from the data during

is possible and in multipoint data networks throughput the decision directed mode [6], [2], [50]. Hidden Markov

Incréases and management overhead drops when tramm?nodels have also been used in modeling the tap variations
is obviated [18]. 3]
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is caused by a few strong reflectors and path delays exhibitequalization when the signal-to-noise ratio is high, while
variations due to the kinematics of the mobiles [1], [17], imposing minimal assumptions on the input. Representative
[28, p. 383], [39], [46], [47]. The TV taps are expressed simulations are given in Section VI, while conclusions,
as a superposition of TV bases (e.g., complex exponentialstopics not covered, and thoughts for future research are
when modeling Doppler effects) with Tl coefficients. By as- delineated in Section VII (more technical proofs can be
signing time variations to the bases, rapidly fading channels found in the Appendixes).

with coherence time as small as a few tens of symbols can Bold upper (lower) case will denote matrices (column
be captured. Such finitely parameterized expansions rendewectors). Prime will stand for Hermittian transpogefor

TV channel estimation tractable and have been previously conjugate,? for transpose,t for pseudo-inverseg for
used in modeling speech and economic time series [21], Kronecker productR for range, andV for null space.

[29]. They are also encountered in Doppler radar and sonar

applications when scintillating point targets give rise t0 || FapinG CHANNELS: RANDOM MODELS

delays which change (linearly or quadratically) with time

and cause Doppler shifts in the carrier frequency [38]. In In some communication schemes, unpredictable changes

in the medium warrant modeling the TV impulse response

[.28' p- 383], '.t is argued that such Dopp.Ie.r-mduced varia- (TVIR) h.(t; 7) as a stochastic process in the time variable
tions are equivalent to the random coefficient model since . . X

: : t. Using central limit theorem arguments, the TVIR is
narroyv-band GaQSS'an processes are well appro.X|mated byusually approximated as a complex Gaussian process. It
superimposed sinusoids having constant amplitudes andis common practice to assume the channel to be wide sense
random phases.

) . . stationary for a fixed lagr and uncorrelated for differ-
Time- and frequency-selective channels are special cases

of the basis expansion models considered here. Althou hent lags (i.e., wide sense stationary uncorrelated channel
. P o ' 9 (WSSUC) assumption) [35]. The channel spectral density
most existing blind equalization research has focused on

: R . for a fixed = is called the scattering functiof(w; 7),
frequency selective channels, modeling time-selective ef- . . S

: 4 . and it fully characterizes the second-order statistics of the
fects are well motivated due to local oscillator drifts and/or

relative motion encountered in mobile communications WSSUC. There are several other functions that rely on the
- ) . ' second-order statistics of the random channel. The integral
Finite basis expansions offer well-structured parsimo-

. : . L e Sc(w):= [ S(w; 7)dr is called the Doppler spectrum,
n;]ous H}Odfl'niyh'fhh aI.Iows ftor ?I:‘ndtldentmcatmnt OJI.TX q and its extent, the Doppler spread, is a measure of the
](f. a;nt:]e s'd n [47], (;S |mdp?r a?h eg ure \t/vast esal 'f. €0 channel's time variation. The so-called multipath inten-
Irst based on second- and fourin-oraer output COrTe1ations. i, 1 wfile () .= E|h.(¢; 7)|? describes how the output
The high-variance of high-order TV statistics with moderate ower varies as a function of the detayand the length of
data records, prompted recent second:order rr_1ethc.)ds.wh|clﬁs support is called the multipath spread and is a measure
rely on complementing the TV channel’s diversity with time of the average extent of the multipath
diversity (offered when oversampling the continuous-time '

output) and/or with spatial diversity (appearing when output The characterization of the random channel mainly has
X been used to analyze and simulate existing methods rather
data are collected from multiple antennas) [10], [16], [31] y 9

321 149 ' than to undo the TV distortion the fading channel has on
[ It],' [ th]. biecti f thi i . . q the input signal. However, recent work in [6], [25], and

IS e OBjective of ThiS paper 1o Teview, unify, an 50] has addressed the TV channel identification problem
extend these second-order diversity combining approache

for blind identificati d lizai ¢ finite | | y casting it in discrete time and using a Kalman filter to
or blind identification and equalization of finite impulse = "o "channel parameters.

response (FIR) TV communication channels where the vari- Consider the fading communication system model of
ation of the channel is modeled by a basis expansion. To pUtFig. 1 before the sampler with the input/output (/) re-
TV approaches in context, the random model is reviewed lationship

briefly in Section Il, followed by the basis expansion model

introduced in Section Ill. With the rapidly fading mobile 0
channel as a paradigm, subsequent presentation focuses on ze(t) = D s(Dhelt; t —1T2) +ve(t) @)
cyclostationary methods used to estimate the frequencies of l=—00

the Fourier bases. Section IV describes blind TV channel . . . .
estimation methods which utilize the whiteness of the input where S‘_‘bs"”m denotes conunu(cg:;s tméAt;T? 's the
and rely upon output samples collected at one or two convolut|02]gf the spectral F.)L"Sﬁ. (t(z,’e(;[)he v mpulse
sensors. A deterministic approach is also reviewed alongeSPonsefz"" (¢; 7), the receive-filterfe "' (¢), s(I) is the
with order selection techniques, which are developed to S€duence of input symbols, ang(t) is the noise process.
determine not only the channel memory, but also the num- !f the outputz.(¢) is sampled at the symbol raty/T,
ber of bases necessary in the expansion (this corresponds t§19- 1 can be simplified into Fig. 2 with an 1/O relation in
the number of dominant reflectors in a multipath terrain). discrete-time
Mean-square error (MSE, Wiener) equalizers are presented

L
in Section V along with direct blind equalizers derived z(n) :Z h(n; Ds(n —1) + v(n),
in a deterministic framework. The latter lend themselves =0
naturally to adaptive schemes and allow almost perfect n=0,1,---,N—-1 (2)
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Fig. 1. Continuous-time TV communication system.
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Fig. 2. TV channel model.

where h(n; 1) := h.(nTy; IT,) is truncated to an ordek,
which is common practice in communications applications.
Note that if i(n; ) = h(l)Vn, then (2) yields a time in-
variant frequency selective channel and the 1/O relationship
becomess(n) = Y.~ h(l)s(n — 1) + v(n). On the other
hand, if L = 0, (2) yields a time selective channel with an
I/O relationship,z(n) = h(n)s(n)+wv(n). One approach in
characterizing the variation of the impulse respohge, [)

is to consider it as a stochastic process in the time index
In communications, tracking the variations of the channel
taps is of importance [35]. To this end, fitting parametric
models to the variation of the channel coefficients has
been proposed in [25] and [50]. In [50], the challenging
task of estimating random channel parameters from 1/O
data{s(n), z(n)} -4 has been tackled. The channel was
assumed to obey af. + 1) x 1 vector ARfp) model

p

h(n) =Y A(i)h(n — i) + u(n)
i=1
where h(n):=[h(n; 0)---h(n; L)]*, andu(n) is an in-
dependently, identically distributed (i.i.d) circular complex

©)

identity matrices in its first sub-block diagonal and zero
elsewhere, and :=[I0- - - 0]. Finally, a decision feedback

equalizer using the channel estimates is utilized to obtain
an estimate of the input (see [50] and references therein).

Ill. FADING CHANNELS. BASIS EXPANSION MODELS

Consider the random variation in one tafy, of a
multipath mobile radio channel [27], [28]

h(n; lo) = Z cq (lp)e’®e I 2/ A) cos(Zra/@)n (6)

q=1

where ¢, is the amplitude of thegth path, ¢, is a uni-
formly distributed random variable ifi0, 2x], A is the
wavelength corresponding to the carrier frequency, and
is the speed of the mobile [28, p. 382]. For sufficiently
large @), the amplitude of (6) approximates a Rayleigh
probability density function (pdf), and the power spectrum
of (6) provides a discrete approximation to experimentally
measured fading spectra which are of the fdf(w; ly) =
A(lo)[1 — (w — we)?A2 /v ~1/2, where A(ly) is a constant
determining the power of taf,, and w. is the carrier
frequency [27], [28].

As an alternative to the random channel assumption of
the previous section, wherk(rn; l) is a realization of a
stochastic process, the variation in the impulse response can
be captured deterministically by means of a basis expansion

Q
h(n; 1) = Z Eq(l)bq(”)

q=1

(7)

where the TI parameter@q(l)}?:l, together with the

bases~{bq(n)]»§=1 characterize the system. It is clear that

Gaussian vector process whose components are uncorre¢7) with k(1) :=c,(I)e’?s and b,(n) :=exp(jw,n) with

lated with each other. The coefficient matriceA(¢) }r_;
were estimated using the multichannel Yule—Walker equa-
tions
b
th(’/‘) = Z A(i)R}L}L(T — L) + 0'3(5(7'):[,
=1

7_:07"'7]7 (4)

where R;,,(7) := E[h(n)h/(n + 7)] is the channel cor-
relation matrix whose entries were estimated consistently
from output statistics conditioned on the input [50]. With
Ry (7) available, we can solve foA(4) using (4). Once

the AR parameter matrices are estimated, a Kalman filter

is employed to track the channel coefficients after casting
the AR model in (3) in a state-space form
h,,(n+1) =Ah,, + Ju(n)
w(n) =[s(n)---s(n — L), (n) +v(n) (5)
whereh,s(n) :=[h?(n)---h?(n—p+1)]T is the channel

state vector,4 is a constant matrix consisting of the AR
parameter matrice§A(¢)}-_, in its first block row,p — 1
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wq = (2mv/X) cos(2mq/Q}) have the same functional form

as the model in (6). In Fig. 3, we depict how time selec-
tivity, frequency selectivity, and time-frequency selectivity
manifest themselves in plots generated by (6), which is
subsumed by the basis expansion model discussed in this
section. As the number of pathg increases (chosen to
be ten in Fig. 3), the basis expansion model approximates
the well-known random coefficient fading models used to
simulate mobile communication channels [27], [28].

In summary, random coefficient models are used either
for identification of the model parameters, which determine
the evolution of the channel coefficients, from the stationary
moments of the output, or they are used for simulating
fading channels with certain spectral properties. Interest-
ingly, random coefficient models used to simulate mobile
channels can be obtained from the basis expansion model
with random parameters. In this paper we will focus on
terrains entailing only a few reflectors so that the Doppler
and multipath parameters can be considered deterministic.
We will rely on the basis expansion channel model to
perform blind identification and equalization.

1971
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Fig. 3. Fading channels generated by the basis expansion model.

A. Exponential Basis Expansion Model
To appreciate the usefulness of complex exponential

bases, consider a communication signal

o)

se(t) = Re{ej‘“'ft Z s(D)f8 (- 1T,)

transmitted through a TV multipath channel

ZA

wheres(l) are the input symbolg) is the number of paths,

and A4,(t), d,(t) denote each path’s TV attenuation and

delay, respectively. With reference to Fig. 1, we convolve
so(t) with £ (¢; 7) and remove the carrier to arrive at

the received signal-plus-noise model in baseband form:

re(t) = T2 Ag(t)se(t — dy(t)) + ve(t). To suppress

the additive white noise Gaussian (AWGN)?), we filter
r+(t) through the receive-filtef{"“*(¢) and obtain

ze(t)

ol

.f(g’lwec) (t _ T)CijdQ(T) d’/’]

£ 8 7) (1)

(D7 = 1T, = dy(7))

T,

+
(-DT.

fT f(h

ve(7) - fE(t — 7) df}. (8)

Let fo(t) V£ (¢—7) dr denote the time in-

Time Selective

: 250
150 200

0.5
Freq. (1 /TS)

100
Time (ms)

50

Time and Freq. Selective

750 200 2%
100
Time (mMs)

05 '
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a2) linearly varying delays across symbols (valid for
approximately constant path velocity), i.€,(l) =
vgl+¢4, Wherey, is proportional to the path velocity
and 7. This is a first-order approximation of the
delay variation. Existence of higher order terms
would yield polynomial phase signals, which brings
up the tradeoff between accuracy and complexity;
this is outside the scope of this paper.

Under al), we can pulld,(l) and d,(I) outside the
integral in (8), using the definition of:(¢) and after a
change of variables we have.(t) = 3, s(Dhq(t; t
IT,) + v.(t), Where

Z A (D) folt = 1T, — dy(1))e?*=4a D).

9)

After sampling the output at the symbol rate/7;
(fractional sampling will be considered in Section IV-B),
and using a2), we obtaih.(nT}; IT,) = 3.2, A (n -
Dfe(nT, — vy(n — 1) — €,) exp[jwery(n — l) + €] |
we further assume that the,(l) :=A4,(n — l)fg(nTs -
ve(n —1) —¢,) exp(jw.€,) IS approximately constant with
respect ton since it is changing slowly compared to the
exponential, we obtain

he(t; t —1T%)

Q .
=" hy(yeiee 0 (10)
q=1
with h(n; 1) :=h.(nTs; IT;) and w, :=w.1,. Notice that
with h, (1) :=h, (1) exp(—jw,l) we arrive at the basis ex-

pansion model in (7); so the exponentials’ dependence on
lag I can be included in the parameters, yielding an I/O

variant (TI) transmlt rece|ve filters in cascade, and assume g|ationship (see also Fig. 4)

the following:

al) constant attenuation and delay over a symbol, i.e.,

A (1) = const:= A, (1), for 7 € [(I — 1)T5, ITs],
d, (1) = const:=d, (1), for T € [(I — 1)1}, IT}];

1972

L

(11)
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where k() is the number of conjugated (unconjugated)
hi(n) terms, so that, e.gmo1, (n) = E[z(n)], andmyy, (n; 7) =
E[z(n)x*(n + 7)]. In this notation, the dependence an
. E" v(n) will be dropped when the process is stationary. Clearly,
- f z(n) if the input has nonzero mean, the frequencies can be
. found by computing the Fourier Series @&[z(n)] =
ho(n) ps S [ ha(D)] exp(jwgn) + 1. A simple calcula-
tion on (11) will reveal that if any moment of the input is
Fig. 4. Multichannel discrete-time equivalent of a TV basis ex- zero, then the corresponding moment of the output will also
pansion model. b . . Q

e zero, thereby preventing us from estimating } __
The complex exponentials in (11) can be viewed as eachthe input is coming from a real, zero-mean constellation
path’s Doppler arising due to motion—an effect also en- such as binary PAM, them,, (0) # 0 and
countered in radar and sonar where moving targets in-
duce TV delays which for narrow-band signals manifest L
themselves as TV phases [38]. Since the same input is 02 (n; 0) =moa, (0) Y [Z hay (Dhg (l)]

modulated by different complex exponentials in Fig. 4, a1,g2=1 Li=0

some redundancy is introduced at the output which we call el watwa)n 4 moz, (0) (24)

channel (or Doppler) diversity, a term also used in [39] in

a time-frequency context. enables us to find the frequenci€y, y,, = {w, +
Our TV channel parametrization is not unique. An alter- wy,: g1, g2 = 1, ---, @}, since the only dependence of

native one is proposed in [40] as (14) onn is through the exponentials. The zero lag is

chosen for convenience, but if the term in the brackets
Z h s(n — 1)/ 4 oy(n) (12) in (14) is small for some paity, g2, then different lags
7 # 0 could be utilized. From},, ;,, it is possible to

wherer; is the delay (expressed in multiples of the symbol obtain {w,}, as follows: letw; < --- < wq. Then,

interval 73), and f; denotes the Doppler frequency shift 1H111(9q1+q2) = 2w; from which we can findu;. The next

(normalized by the symbol ratg/T}) of thelth path relative ~ smallest frequency is; + w2, from which w> could be

to the zeroth path. The I/O relation in (12) is simpler since found. Knowingw., we can discardw, from €2, +,,, since

it only involves a single sum, but it can be shown that the we do not know whether; +ws > 2ws, and findws; fme

basis expansion model can capture a more general class of1 +ws. This procedure enables the computatien } &

time variations, and hence (11) subsumes (12). In view of from the knowledge of2,, ..

this fact, we focus on the basis expansion model in (11). Unfortunately, for a class of important constellations (4-
In this paper, giverx(n), n =0, ---, N — 1, we would guadrature amplitude modulation (QAM), 16-QAM), due to

like to do the following : 1) estlmat@wq}q 1; 2) determine their symmetry, the unconjugated correlation of the input

the channel lengtt. and the number of baseg; and 3)  mo2,(0) = 0, thereforemqs, (n; 0) = 0 when the symbols

estimate{hq(l)}qQ:l, or the equalizerg(n; k) which, when are equiprobable. Thus, we are prompted to use

convolved with the data:(n), yield input estimateg(n),

and estimate the equalizer length First, we will address QL . o e
frequency estimation. mar, (n; 0) = 02 > > hg, (D, (/B0 4 o2

B. Estimating the Exponential Bases

In all the methods that follow, to estimate the Tl pa- which enables the estimation ofl;, g, :={w,, —
rameters{h,(1)}, we will assume the knowledge of the Qb ¢z = 1,---, Q}. Butit is not possible to obtain
bases. So for complex exponenual bases, the question of{wq}q 1 from €y, ¢, so higher order moments of the

estimating the frequenmeéwq} . from the outputz(n) output must be used. Due to their symmetry, all odd
in (11) needs to be addressed ordered moments of many constellations are zero, but their

The idea is to exploit the cyclostationarity of») and fourth-order moments are nonzero. It is possible to obtain
use its TV moments that only depend on the time index Qy4gotgstas =Wy +wg, +wg, + Wyt qLy 925 93, G4 =
through the complex exponentials [46]. The frequencies of 1, -~ > @} from LMo .(n; 0). The method discussed earlier

these exponentials are calculated from the so-called cyclicto obtain {wq} _; from Qg 4,4, can also be employed,
moments, the Fourier series of the TV moments (e.g., with slight mod|f|cat|ons to calculate the frequencies from

see [12] for detailed definitions). The inpstn) will be 4, +42+4s+4:- SiNCe second-order statistics generally have
assumed to be independent of the anSe), White, with lower variance than hlgher order StatistiCS, kn0W|Edge of
meany, and variances2. Let the difference frequencie8,, _,,, whose estimates rely on
N N second order statistics, can be incorporated in the above
m, (05 T, Trpr—1) =B (n) - (0 + 1) procedure [46].
z(n+7) (0 A+ Trga—1)] The frequencies can be obtained using sample estimates
(13) of the cyclic moments which are defined as the Fourier

GIANNAKIS AND TEPEDELENLIOGLU: BLIND IDENTIFICATION OF TIME-VARYING CHANNELS 1973



Series of (13) with respect ta. The estimators for the
cyclic moments are [12] m(y [ n)
N-1 w(n)
~ 1 [ NA——
My, (3 71, Teg—1):= N Z ' (n) - (n+ 1)
=0 hQ(l) I yQ(n)
cx(n 4+ 7)o x(n + Trai—1)
ceTien (15) Fig. 5. Tl SIMO model.

which can be computed efficiently by taking the fast Fourier
transform (FFT) of the output product. For example, in the
case of a pulse amplitude modulation (PAM) constellation,
as explained earlier in this section, the smallest frequency w0 1 [4g]: Sufficient conditions for  identifiabil-
can be obtained byy; = (1/2) arg min, [Moa, (c; 7). , Q _

. . N ; ity of {h,(D)}2, from mq, (n;7) are: 1) for every
Cyclic moment estimators are known to be asymptotically . 4 e N

. ) > fixed 7 the product sequenced, (n)b: (n + 7),q1,

normal and mean square consistent when the input has finite =~ 1..--.Q are linearly inde enderq12t' 2) the poly-
moments and the subchannels are of finite length, so thatthe’> = 5" y P ' poly

i = L =l — P
output satisfies the necessary mixing conditions [5], [12]. Eg\r?e'aliofgézg; %&Tg_hqa(lln)g é)q t;e Lproo’lucf;t dsoeqnuoénces

by, ()b}, (n + 7) are boundedv 7, and limy—_.o 1/N
SN Ub(n)b/(n) @ b*(n + 7)bT(n + 7)] is invertible,

n=0

Throughout the rest of the paper, the channel CoeﬁiCiemswhereb(n)::[bl (n)---bo(n)]L. 0
hqe(l) will be assumed to be deterministic, but some ap-
proaches (which we term “statistical”) will require the input
s(n) to be random and white. The bas@lsl(n)}qul are
assumed to be known.

problem, and the TV single-input single-output (SISO)
problem of this section can be solved by the same subspace
method.

IV. BLIND TV CHANNEL IDENTIFICATION

The method developed in [49] entails two steps: first
Tq40(7) IS Obtained frommy (n; 7), where we need 1),
since a matrix whose columns are formediy(n)b7, (n+
7) needs to be inverted. Secon{hq(l)}qQ:]L needs to be
recovered from-,, 4, (7), where 2) becomes necessary. The
) . nontrivial task of estimating the TV statistié;;, (n; 7) is

Here we will not necessarily assume the bases are com-pgndied by using an instantaneous estimaie)z* (n + 1),
plex expone_ntials, for reasons that will soon_be given. From 5nq consistency of,, ., (7) is established under 3), which
the correlations ofr(n) in (11), we can obtain requires some additional boundedness conditions on the

L bases, and 1) to hold in the limit.
9 " The problem with the method derived from Theorem 1

My, (n; 7) = Z s Z hg, (Dhg, (14 7) | b, (n) is that the linear independence assumption a2) on the bases

. is often not satisfied in practice. Nevertheless, the single
by, (n 4 7). (16) sensor approach illustrates nicely that TV channels offer
: . diversity not available with TI channels, and from this point

Given —may, (n; 7), i the product —sequences e hing identification based on second-order statistics
{bg, ()b, (. + 7), g1, 2 = L0, Q) are linearly o oagior for TV channels of structured variation than
mdepend.ent, by solvmg .th? linear equaﬂons n (16).we Tl channels. However, the linear independence condition
can obtf':u_n the (determlnlstlc) correlations of all possible necessary with a single sensor does not hold for complex
Tl coefficient pairs of channels exponentials, since for = 0, by (n)bf(n) = ba(n)bs(n) =

I 1V n. This brings about looking for alternative ways of

Fare (T) = Z ha (DRE (L4 7), =1, 0. obtaining complementary diversity.
=0

A. Statistical Approach 1: One Sensor

a7 B. Statistical Approach 2: Two Sensors

o o Just like the TI case [15], [52], sampling faster than
The problem of obtaining{h,(1)};_; from (17) can be  the symbol rate creates diversity that enables the problem
solved with conventional subspace approaches;,if,(7) to be cast into a SIMO framework. Suppose(t) in
has been estimated from (16). Subspace approaches havgl) is sampled at a raté /T, where h.(t;t — IT})
been used to estimate a set of coprime TI channels excitedis given in (9). We obtain the discrete time model
by a common white inputs(n) (see Fig. 5) [33], [45].  w(n):=z.(nT.)/M) = 3, s()h(n; n—IM)-+v(n), where
Notice that the output auto and cross correlations of the p(n; [).=h.(nT,/M; IT,/M) and v(n):=v.(nT,/M).
single-input multiple-output (SIMO) system in Fig. 5 pro- Qversampling offers diversity manifested in th&/
vides (up to a scale) all possible deterministic correlations subprocesses defined 6™ (n) := z(nM +m— 1)}

. . m=1"
in (17) of a set of FIR channelg, (1)}, to be estimated.  |n the filterbank literature,z(™ (n) are termed the
Hence, both the problem of estimatirv[(j;zq(l)}?=1 from polyphase components af(n) and can be expressed
T4, (7), @s encountered in the TI SIMO blind identification in terms of the M subchannelsh(™)(n; 1) and the
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corresponding noise™(n) as

2 (n Z RO (n; Ds(n — 1) + o™ (n)

=0
m=1,---, M (18)
where R0 (n;1):=h(nM + m — 1;IM + m — 1):=h.
(Tu(nM+m—1)/M;T,(IM+m—1)/M) = 2| A (n—
Dfo(Ts(IM +m — 1) /M —dy(n — 1)) exp(jw.dy(n —1)).

Because the variation oft, and f, with respect ton is
often negligible relative to that of the exponential, it is
reasonable to assume the following:

a3.1) A,(n — 1) ~ A,();
a3.2) fo(T,(IM+m—1)/M—d,(n—-1))
m — 1)/M — d (1)).

~ fo(T(IM+

Based on al)-a3) we have

Z B (1)

RO (s 1) : (n=1, by(n) = iweran

(19)
where A{™(1) =

¢q) exp(jweey).
the M-channel datax(n):=

Ay Fo(T5(IM + m — 1)/M + vl —
Combining (18) and (19) and stacking
[w(l)(n) . x(]\l) (n)]T and

h, (D) =[P ---AM(D]T we obtain
Q L '
x(n) =3 |3 bl W s(n — )| +v7(n) (20)
gq=1 LI=0

where, as in (11), the exponentials’ dependencel as
absorbed in the TI vector impulse response.
Multichannel diversity can also be achieved by using
multiple antennas at the receiver [31], the number of
which will be denoted also by//. With the availability
of oversampling (time diversity) or multiple sensors (space
diversity) the following question arises: whati4,,;,, the
minimum M in order to guarantee identifiability without

The Fourier Series coefficients of the (almost) periodic
sequence of: in (21) are

Clmem) (s 7)
Q L
> bla—wy, +wg,) Y R — )R
q1,g2=1 1=0

c(DeI%eT 4+ §(a)ymyy, (1). (22)
Taking the z-transform of (22) with respect te= and
assuming thaty #£ 0, we arrive at the so-called cross-cyclic
spectrum

Simima) (o 2y =g2 — W +WQ2)H;2(MZ)

Z (e

q1,492=1
(eI ) H M) (¢TI [2),

a #0. (23)
Identification of the TI subchannel§hl™ (1)}M_, s
achieved by choosing the appropriate cyclesin the
cyclic spectra of (23) so that only a few unknown
terms out of the summation survive. In the $&f _,,,
defined in Section IlI-B, at least one difference (namely,
a = wg — wy) lets a single term survive out of (23), which
is the product H*("’Z)( *eiwa)HI™) (¢=i%a /7). In
Appendix | it is shown that this product enables estimation
of the subchannels corresponding to the minimum
and the maximum frequenciegh{"™ (1), hg")(l), m
1, ..., M}. After estimating all subchannels corresponding
to frequencies inf2,, _,,, that force all but one term in (23)
to be zero, it can be shown that there is a way to use (23)
by choosinga from Q,, _,, in decreasing order so that
the sum will only contain two products that have unknown
subchannels in it. This is all summarized in Theorem 2
(see Appendix | for a proof).

Theorem 2: For M = My, = 2, by(n) = exp(jwyn),
and any set of frequencies; < --- < wg, the following

restrictions on the frequencies of the exponential bases?is possible.

As we will see in Section IV-C, zero-forcing FIR solutions
require M,,;, to be on the order of). If the input can

be assumed to be white and random, on the other hand,

M, = 2, which does not depend @@ and motivates the
two-sensor approach of this section.

Consider the I/0 relation in (20). Givern™ (n), m =

-, M, n=0,---, N—1, awhite input sequencen),

and a distinct set of) cyclesw; < wy < -++, < wg, the
goal is to identify {h{™ (1), ¢ = 1, -+, Q, m = 1, 2}.
Since the input is white, the output correlations of the two
channels are

E [a:("“)(n)a:*("’Q)(n + T):|

Q L
St Y et Y A
q1,g2=1 =0
'G_jw”‘r—i-muv(’/'). (21)

GIANNAKIS AND TEPEDELENLIOGLU: BLIND IDENTIFICATION OF TIME-VARYING CHANNELS

1) To identify the subchannels” (1) for ¢, such that
there exists g, with wy, —w,, = Wy = Wy =

w,, [in other words, subchannelg”™ (1) for ¢, such
that there exists a that enables only one product to
survive out of (23)] with the choice = w,, — w,,.
The identifiability condition for these subchannels
is that {H{™ (z), m = 1, 2} are coprime for all

g € [1, Q).

After estimating all subchannels characterized in 1)
(among which are{hg”)(l), R, m = 1,2,

w(14

2)

to identify the remaining subchannels using
(S5 wg — wp DYy U S (wy
w1; z)}f;?;;. Identifiability is guaranteed if

H;("’Z)(z*e—j“‘@) andH ™ (c=iwn /z) are coprime
for my, mo = 1, 2, whenever there exists @ with
WQ — Wg, = Wg, — W1. O
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Multichannel diversity removes the severe conditions on
the basis functions from which [49] suffers. In addition
to allowing the minimum diversity X/,,,;,) for bases of
arbitrary frequencies, the two-cycle method also identifies
the channel coefficients by use of the cyclic correlations that
avoid the zero cycleu;, — wy, # 0). This makes additive
stationary noise tolerable down to low SNR'’s [12], a feature
also illustrated in the simulations.

C. Indirect Deterministic Approach

In this section we will show how, with sufficient diver-
sity, it is possible to estimate the subchannels and obtain
perfect estimates of the input in the absence of noise.
Similar to the approaches in [15] and [52] for Tl systems,
these (so called “deterministic”) methods do not require
the input to be white or random, thereby allowing the use
of coded inputs. Unlike the statistical approaches, reliable
identification will be possible with short data records if the
SNR is high enough.

First, we will discuss a subspace approach that we
term “indirect approach,” introduced in [31] and [32]. In
Section V-B, direct blind equalizers will be derived under
almost identical assumptions.

In order to cast (20) in matrix form, we let

. . i T
sq(n):= [e"“q"’s(n) AR PPy K)}

b, := [b7(0)---n7(L)]"

and define for each € [1, Q] the(L+ K +1)x M (K +1)
block Toeplitz matrix

hl(0) of
H, = T(h,):= [bI(L) - hI(L—K)|. (24)
07 n7(L)

Consider (20) in the noise-free case and form (fhé—
K) x M(K + 1) block Hankel data matrix

xT(N - 1) xI'(N -1-K)

X: : :

= : : =S,H (25)

x"(K) x(0)
where thgl N — K) x Q(L+ K +1) modulated input matrix
Sy and theQ(L + K + 1) x M (K + 1) channel matrixH
are given by

sT(N —1) SS(N -1
Si= | -
st (K) - sh(K)
S M So
H;
H=]|: (26)
Hq

In (26), {Sq}§?=1 are(N—K)x(L+K+1) Hankel matrices
constructed fromexp(jw,n)s(n), n = —L,---, N — 1.

1976

Under the following assumptions it will become possible
to estimate the channel matrid up to a@ x @ matrix
ambiguity ®, which agrees with the fact that for the TI
case (¢ = 1) the ambiguity is a scalar.

ad) N — K > M(K + 1), which is easily satisfied by
collecting sufficient data;

a5) H is at least fat, i.e., the quadruplg¥/, L, Q, K)
obeys

M(K+1)>Q(L+K+1).

To satisfy (27), a minimumi{,;;, = ¢ + 1 chan-
nels are required with a minimum equalizer order
Kupiw = QL — 1 (in the Tl case,M,;,, = 2 and
Ko = L — 1 [45], [52)).
H is full rank, i.e., rankH) = Q(L+ K + 1) which
requires that transfer function§H\™(z), m €
[1, M]} are coprime for every fixeg. This is be-
cause, if the family of polynomial§H™ (z), m €
[1, M]} have common factors for some then,H,
will lose rank (see e.g., [45]), and hend#& will
have linearly dependent rows.
a7) Basesxp(jw,n) are sufficiently varying and(n)
is persistently exciting (p.e.) of sufficient order to
assure that rarfs,) = Q(L + K + 1). We stress
that s(n) can be either random or deterministic.

(27)

ab)

To determineH within the matrix ambiguity®, let us
consider (25) and the eigendecomposition

U
U
Under a7),R(U,) = R(H’). Since the signal subspace
is orthogonal to the noise subspacenife R(Uy), then
Hu = 0, and using (26)H,u = 0, forg = 1, ---, Q.
SinceH,, is a convolution operator, this can also be written
as 7(u)h, = 0, implying thath, € AN (7(u)) ¢
1, ---, @, where7 (u) is a block Toeplitz matrix as defined
in (24). Hence, if{flq}qul are basis vectors fok/ (7 (u)),
it follows that there exists a full-ran@¢ x @ matrix @ such
that

X'X = H'S,S,H = [U, U] E 8} [ (28)

[ - ho]® = [ - -ho). (29)

Let {]ﬁq}qQ:]L denote the null eigenvectors of (u),
and H, = 7(h,) and H be constructed exactly
like H, and H in (24) and (26). If we deconvolve
the data with G:=HT, we obtain: XG = S,(® ®
Iri+1)HG = Sy(® @ Irix41). The latter implies
thatSy = [S1 -~ Sg]:=Ss(® ® L4 x41) is such that

Q
=1
whereg;; is the (4, 7)th entry of . Keeping in mind that
S, is a matrix formed by the modulated input sequence
s(n) exp(jwgn), we can write (30) as
8(n):=[51(n) - 35(n)]" = ®E(n)s(n)  (31)
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where 3,(n) is an entry of S, and &(n):=[exp
(jwin) - - - exp(jweon)]¥. Equation (31) can be rearranged
to obtain

Q
s7Hn)s(n) — Z ¢, =0 (32)
q=1

whereg, is thegth column of®. Given {§(n)}1_;", (31),
and therefore (32), has a unique solution #¢n) and &
(see Appendix Il for a proof). Hence, (32) can be cast in a
matrix form to obtains(n) and ®, which after using (29)
yields H.

In summary, to estimat# and the input, we need to
perform a singular value decomposition (SVD) BAX to
find the vectom corresponding to the minimum eigenvalue
of X’X. Then another SVD is performed df(u), and
the @ vectors corresponding to its minimud singular
values yield estimates of the ambiguous cham@ﬁl,s}qQ:l.
Upon constructindgd as in (24), we deconvolve the data by
computinng{Jr to obtains(n). Based org(n), the unique
solution of (32) can be found by casting it in a matrix form
to obtain both® and the input estimates.

V. BLIND EQUALIZATION OF TV CHANNELS

In this section we will discuss methods for estimating the

input. Having the channel estimates available, maximum-
likelihood decoding can be used for that purpose. The
high computational complexity of Viterbi's algorithm is
even more pronounced for the TV model than the TI
case since the number of baggsas well as the channel
length L, affects the computational complexity. A decision
feedback scheme has been proposed in [46] in connection
with the exponential basis expansion model. Here we
will consider linear options: zero-forcing FIR equalizers
requiring enough diversity (at leadf > @) in Section V-
A and minimum mean square error (MMSE) solutions in
Section V-B. Optimally weighted equalizers and adaptive
algorithms which pertain to the direct blind equalization
method are presented in Sections V-C and V-D.

A. Direct Blind Equalization

This method estimates FIR zero-forcing equalizers that
yield perfect estimates in the absence of noise without
having to estimate the channel first. Similar to the indirect
method of Section IV-C no statistical assumptions on the
input are made. Estimation of the direct blind equalizers is

This method requires at least one vector in the noise |ess computationally demanding than the indirect method.

subspace, sd/(K + 1) > Q(L + K + 1) is necessary.
An alternative method described in Section V-B allows
H to be square and calculates the columns of its (right)
inverse (vectors of equalizer coefficients) directly, using
the structure of the input matrix.

D. Order Determination

Up to this point we have assumed that the channel order

L and the number of basésand K were known. To assert

Also, the linear form of the solution in this section enables
updating the equalizer estimates adaptively (see Section V-
D).
We seek x 1 FIR zero-forcing equalizerig’® (k)} X,

that satisfy (see also Fig. 6)

K

37 % (0 — K)glP k) =s(n — d)eS <D,

k=0

? Q

qg=1, --- (33)

that these blind methods are applicable, one needs to showvhered € [0, L + K] denotes a delay which is inherently

that it is possible to obtain these quantities from output
data. Using the rank properties of the output data m&rix
in (22), it is possible to obtain the channel ordeand the
number of bases) [10], [31].

Under a4)-a7), matriX in (25) has rankQ(L+ K +1).
With K; > K, denoting known upper bounds oA,
corresponding matriceX; and X, will have rankX;) =
Q(L+ K; +1),i=1, 2. It is thus possible to select the
orders L and @ using

_rankX;) — rankXs)
B K, — K
_rankX;)
Q

Q

L (K1 +1).

With @, L available, K is chosen to satisfy (29) for a
given M > Q + 1.

At low SNR'’s, noise will make it difficult to discern
small significant singular values &; andX, from large
insignificant ones. More elaborate tests involving informa-

tion theoretic criteria, such as the AIC, seem possible but

are beyond the scope of this paper.
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nonidentifiable in blind approaches.

To establish existence and uniqueness of such equalizers,
we needH in (26) to be fat or square so that@G that
satisfiesHG = T exists. The(q — 1)(L + K + 1) 4+ dth
column of G is [gX“(0)---gX““(K)]”. For the direct
blind equalization method, beyond assumptions a4), a6),
and a7), required also for indirect channel estimation, we
allow H to be square so that aB) (K +1) = Q(L+K+1)

[H in (26) is square] is permissible for the method to work.

In order to find the equalizersg{® (k)}, we first set
n=N—-1,---, K in (33) and collect equations to obtain

Xg(¥ = sl = B{s¥ (34)
where
0 = w70 700
s = [ejwqw—l—d)s( N—1-d)
.NOWAK—@sur—dﬂT
B( = diag| e/ (N 20 e (K )]

s i=[s(N—-1—d)-- s(K —d)]".
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—é— hy(n) el k)
v(n)
s(n) . ) . y(n) J_L x(n)
—* : : :Sj:l 153! —] g((,d)(k') )
: (L+K)
bo(n) ' bg'n) /@
(L+K) L+E
hg(n) e (k)
Fig. 6. Vector TV model and FIR vector equalizers.
We use MATLAB's notationX(i;: ¢z, :) to denote a sub- The periodicity requirement orxp(jw,n) assumed
matrix of X formed by thei; throughi, rows and all in Theorem 3 can always be satisfied df,, = w;.
columns of X. So we define This is possible by using the techniques in Section IlI-B,
with which we can easily infer the lowest frequency.
Xo,q:=X(d+1:N-K,?) Multiplying both sides of (20) withexp(—jwin) we can
Xg:=X(I:N-K—d, ) “shift” all frequencies by, so that the first basis function

(0,d) ._ R(d) N A of x(n) exp(—jwin) will be exp(jOn) = 1Vn, which is
B, 4 ' ]?qd (d+ LN - K, d+1:N - K) periodic with any period.
B{" =B (1:N-K —d, 1: N - K —d). (35) Requiringg: = 1, ¢» = Q, andd = L + K only enables
. . . o . . us to flndggoQL“‘) but this is not a real concern since,
Matrix Xg ¢ is X without its firstd rows, X4 is X without 0, L+B)
’ , equalizers corresponding to other delays

its lastd rows (likewise for the diagonal matrices, and the US'S%gl h I be found using (37
modulated input matrices ai®,, to be used in Appendix and bases (ot er columns @) can be foun using (37).
Strict inequality in a5) causes every equalizer vector

). (d)
From (34) and (35) it follows that to lie in an affine space [the set of all vectogs
satlsfymg Hg = e _1)(n4x+1)+d+1, Wheree, is a unit
Xo, dg(O) Bg?’ d)s(o)(d+1;N - K) vector with a 1 in itsrth position]. This gives us more
@ @) freedom in choosing the appropriate equalizer with good
Xagp =Bys*/(LN — K —d). (36) noise suppression characteristics. As mentioned in [14] and
© @ [15], if the noise is white, the equalizer with the minimum
We note thats'™(d + 1: N — K) = s'(1: N — K — d), norm will have minimum noise variance at its output.
which allows us to eliminate the input dependence from the
equations in (36) and obtain the cross relation B. Cylic MMSE Equalizers
. Consider the 1/O relation in (20). We wish to find, for
Bg‘?XO, dg;(i) _ Bé? d)nggc;)_ (37) I ion in (20) wi i

eachn, a vectorg(n) :=[g? (n; —K1)---gT7(n; K2)]* so

The pair of equalizer$g$), gfﬂ)) will be uniquely iden- that the following MSE is minimized:

tifiable (up to a scale) as the eigenvector corresponding to K
the minimum eigenvalue ok}’ % in E| Y g kx(n—k) - s(n) (39)
k=—K;
(0) . _ .
(0,d) (0,d) . (d) (0, d) g1 | The orthogonality principle yields
A1) 2841, 2 ' [B(ﬂ Xo,a = By, Xd} lg(d)] =0 X
2 2
! (38) E Z g (n; ky)x(n — k1) — s(n)] x'(n —ky) =0,
provided that the nuIIityu(Xq(%;g) = 1. The result is ke =—K
summarized in Theorem 3 (see Appendix Il for the proof). ko= —Ki, -, K. (40)

Theorem 3: Under a5), a6), and a7), considgr = 1,
g2 = Q,d =L+ K, andexp(jwy, n) = exp(juwg, (n +
L + K)). It then holds that/(X."$) = 1, and hence
(38) has a unique solution. If mstead of aB)(K + 1) >
Q(L+K +1) holds [H is fat), thenv( X" ) = 2[M (K +

We need to write the set of linear equations in (40) in matrix
form and in terms of the estimated channel parameters
{h,(),q=1,---,Q} and frequencies{wq}qul. To this
end, we define the following:

1) —Q(L+ K +1)]+1 > 1, and all vectors in the null X(n) =[x+ Ky)--x(n— K"
space ofX, q(f (‘2 yield equalizers which, when convolved (K14 Ko k1)x M
with the output data, yield perfect input estimates up to a iy

et e - P H, :=[h,(0)---hy(1)]" (41)
multiple of a known complex exponential sequence in the ~—
absence of noise. O (L+1)xM
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Bq(n);:diag(ejwq(nﬂﬁ)’ . ejwq(n*&)) (42)  C. Weighted Equalizers
s(n+Ky) - stn+ K, —L) Even WhenH_is square, the presence of multiple equaliz-
. . ers corresponding to different delays and bases can be used
: : to improve the multiple input estimates in the presence of
s(n—Kz) -+ s(n—K;—L) noise. By aligning, demodulating, and performing weighted
(43) combinations of the estimated columnsSyf one may get
better input estimates than using a single equalizer. Let

S(n):=

Using the definitions (41) and (43), it is easy to verify from

(20) that the following equation holds: QItAK Do K . .,
o s(n) = Z Z w(g )emIwar Z x' (n+d-— k)g((l (k)|
_ — q=1 d=0 k=0
X(n) = 221 B, (n)S(n)H, + V(n) (44) (50)
=
where V(n) is the corresponding noise matrix. Equation W&  wish  to mini]rpizlfz _the  cost funct2ion
(40) can be rewritten as J(w):=(1/N)limy o0 >, o> E[5(n) - s(n)|
with respect to the vector of  weights
Elved X" (n))ved X" (n))]g(n) = Elved X" (n))s"(n)] wi=[wl®” O -wg)) e wg“‘)]T, which
(45) after using (33) is
where ve€A) denotes the vector formed from 1 Q LK
_ = (d) ,—jwgn
concatenating the columns ok. We need to find an J(w) =N m B Z Z wg e
expression for ve&X(n)) using (44), and substitute g=1 d=0 ,
it into (45) in order to write g(n) in terms of i .
B,(n) and H,. Taking the transpose of (44) we have > VT(n+d - k)ga(k)| -(51)
—T k=0
vedXT(n)) = ved Yo H, ST(n)BZ (n) + VT(n)) =

Q =T T T T . If we constrain the sum of the elements wfto be one,
.ZF% vedH, S* (n)B, (Z)) + vedVi(n)). Using the then+w that minimizes (51) is given by (see Appendix V)
identity ve¢ ABC) = (C* ® A)vedB), we can conclude .
the above string of equalities by P A-11 2

XT(n) =H st vT 46 T oA °2
vec( (n)) o b(n)vec( (n)) + vec( (n)) (46) wherel is a vector of all onesA is a block diagonal matrix
— ini i Q inits di i i
whereH, (n) := EqQ:1 (Bq(n)®HqT). Assuming the noise containing the matrice$A,},_, in its diagonal, the, j)

is white, and using (45) and (46) we have element of which is
K

g(n) :[Hb(n)E[vec(sT(n))vec(sT(n))’] Hy(n) Adi= > [gg“(i)(kl)R,U(j — ity — k)
— k1, ko=0
+ O’EI:| le (n)E [VeC(ST(n))s* (n)] . (47) . g((lj)(k?) + g?;(])(kl)
Next, we defineZ:=(1/02)EveqST (n))veq ST (n))] R,(i—j+k — kQ)ggi>(k2)] (53)

and using (43) conclude thatis an(L + 1)(K; + K> +

1) x (L+1)(K; 4 K> +1) symmetric block Toeplitz matrix ~ and Ry, (7) := E[v(n)v'(n + 7)].

with a first block-row[I IV ... 1) ... 0], whereI” Notice that the optimum weights require the knowledge

denotes anL + 1) x (L + 1) matrix with ones on the  Of perfect equalizer values which cannot be obtained with

ith subdiagonal, and zero elsewhere. If we also define NOisy data. But with sufficiently high SNR, which enables

e:=(1/02)E[veq ST (n))s*(n)], we can express (47) as accurate equalizer estimates, the use of the weights often
, -1 improves the input estimates, as verified in our simulation

g(n) = [Hb(n)I’Hb(n)’ + %1} Hy(n)e.  (48)  ©xamples.

One can also obtain a closed form expression for the MMSE D. Adaptive Equalization

after substituting (48) into (39) One advantage of the direct method of Section V-B
O over the indirect method of Section IV-D is the fact that
E 2_ 201 N ’[H TH. (n) QI} equalizer estimates can be linearly related with the output
el 05[ Hy(n)' | o ()T Hp(n) + 2 data, and can be cast into an adaptive framework. The

adaptive method proposed to estimate the frequencies in
~Hy(n)e|. (49) [46] can be combined with what follows to construct an
algorithm where both the basis frequencies and the channel
In (47), an inversion takes place for each valuenof paéamett_ers gzn be e;snmate(: _onllr:e. t f K
unless the frequencies are commensurate, in which case qua lon ( ).can € recas 'n((fLi&}f) squares framewor
the matrix to be inverted is periodic. by setting the first coefficient of ;' o’ to one and can
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be rewritten astg = X = —x;, Where X is Xq(f qLQ“‘)
without its first column,x; is the vector containing the
elements of that column, ang is g(o LA \without its
first element. It is well known that RLS |s a recursive way
of computingg, s = (X X)~LX'x, which also solves the
least squares problem [22]. We use this algorithm to update
the vector of equalizer coefficients.

One could also be interested in using the computation-

ally less intensive LMS algorithm at the expense of less
accuracy and slower convergence.

In the absence of a
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training sequence (desired input), we consider the elementsrig. 7. Tl and TV algorithms on TV data.

of x; as our desired sequence that we would e, to
estimate. Herey, are the rows oft’ andg; is the estimate
of the vector of equalizer coefficients at tinie At each
iteration, the vector of equalizer coefficients is updated by
the relations
g1 = &t + pei 1M €t = &l — Ty (54)

where 1 is the step size parameter and; denotestth
scalar entry ofx;.

It should be noted that rapid variations of the channel are

taken care of by the bases, whereas slower changes in the
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parameters are tracked by the adaptive algorithm. Since therig g Estimation of basis frequencies.

variation is built in the model, the algorithms can operate
on longer data records with less worry about violating the
stationarity assumption.

VI. SIMULATIONS
In this section we illustrate some of the methods and al-

information to estimate it. The plot on the left shows that the
Fourier Series ofny1,(n; 0) has two peaks: one at=0
(due to the stationary noise) and the other 27 /50. The
plot on the right illustrates the estimation of the same cycle
with fourth-order cyclic moment at lag = 0 computed as

gorithms that are discussed and compare them. For this purthe FFT ofz*(n). We observe peaks at multiples &f/50.

pose we will need the foIIowing definitions: the output SNR
is defined as SNR= Y0 [ly(n)[I2/ 020 IIv(n)l2,
wherey(n) is the noise- -free output data, and the normalized
root mean square error (RMSE) between a veatand its
estimatea is computed as follows:

Z ||a,

where r stands for realization an& is the number of
realizations.

Unless otherwise indicatedy = 3 sensors were used
with a channel ordel. = 3. The @ = 2 bases were
chosen ag;(n) = 1 and bx(n) = exp(j(27/50)n). All

a,||?

RMSE =
acl?

(55)

The reduced variance of second order statistics relative to
fourth-order statistics is also apparent.

In Fig. 9, the five least significant singular values of the
matrix X are plotted forK = 8 (left) and K = 9 (right)
and for SNR’s of 50 and 25 dB. Onl§V = 150 samples
were used. The number of least significant singular values
(zero singular values in the case of no noise) determines the
rank of the noise free output data matrix, which, as shown
in Section IV-D, enables the estimation &f @, and K.
With an SNR= 50 dB, the insignificant singular values
are still discernible. As the SNR’s get lower (to 25 dB),
it becomes more difficult to tell how many zero singular
values there are since the noise not only increases them but
also perturbs their relative values. The standard deviation

plots except the eye diagrams are an average of 100 Monteof the singular values is also plotted around the mean which

Carlo runs unless otherwise indicated.

In Fig. 7, we illustrate how the blind algorithm that is
developed in [15] for TI channels compares with the one
proposed in Section V-A, when the data comes from a
rapidly fading TV channel. We see that the Tl algorithm
is not capable of equalizing th& = 150 symbols coming
from a 16-QAM constellation even with a high SNR of 45
dB. This motivating example demonstrates the inadequacy
of Tl equalization algorithms when applied to TV channels.

Fig. 8 illustrates the frequency estimation of Section IlI-
B using N = 1000 data at an SNR = 10 dB. Since there was
only one nonzero cyclgr /50, m;1(n; 0) provided enough

1980

was estimated from 100 realizations.

Fig. 10 illustrates the two sensor approach of Section V-
B, where the channel coefficients are estimated from the
cyclic correlations of the output. The RMSE between the
true channel coefficients corresponding {te"™ () m =
1, 2} is plotted versus SNR (200 Monte Carlo ruié,=
1000) and the number of data (500 Monte Carlo runs,
SNR = 20 dB). We see that (unlike the deterministic
methods) the channel estimates are consistent and improve
significantly with the number of data. In addition, the effect
of noise is minimal due to the use of nonzero cycles in the
cyclic correlations.
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Fig. 11. Before and after equalization. norm consistently outperform those obtained using (38).

The direct and minimum norm methods perform better than
Fig. 11 illustrates MMSE equalization for the estimated the method in [31] (I-gg) for low €25 dB) SNR's.

channel where the channel estimation was done with the To see how much the deterministic methods improve with
two-sensor approach. We show the eye diagram for theincreased data length, Fig. 13 compares the minimum norm,
symbol estimates at an SNR 25 dB. The unequalized  direct, and indirect methods. It is seen that the minimum
channel output is shown on the left plot; the right plot norm method benefits from the increase of the data length
is obtained by using the channel estimates obtained with 1,5re consistently than the other two methods. An SNR of
N = 5000 data points and then using the cyclic MMSE 55 4B was used.

equalizer of length 154, =7, K; = 7 in (39)]. Figs. 14-16 illustrate the performance of the adaptive
_In Fig. 12 thg d_etermmlstlc methods are compared. The algorithms proposed in Section V-D. Hefd = 8, and
direct method is implemented in two different ways. The .~ _ ' 147 — 3 were chosen. Fig. 14 shows the

:Iirsrtt %r;iérreezgg)ed_r;% ?riintjr;r:r(;ﬁ” ;Ser\c(’)a\\lzl:uastulk?szﬁgsstaeed eye diagrams for the output of an equalizer obtained with
9 ' PP the RLS algorithm. Fig. 15 illustrates the performance of

" H 11 0 - H .
d're(it) gg ) es'fmjatelm (37) and _So_lves (36) with respect the RLS algorithm by plotting the error of the equalizer
to g," constraining it to have minimum norm. MSE of  og1imates and also the error in the input estimates. Fig. 16
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linearly varying path delays. Doppler frequencies can be
estimated blindly using cyclic statistics, and channel orders
can be determined from rank properties of a received data
matrix.

Structured variations described by bases offer TV channel
diversity, which renders blind identification of TV models
SNy N easier than that of Tl models. When channel (or Doppler)

0274 SHA=OE 5 e 300 diversity is complemented by temporal or spatial diver-

Number of torations Number of terations sity (available with oversampling or multiple antennas),
Fig. 15. RLS with the number of iterations. blind estimators of TV channels along with direct equal-
izers become available even with minimal (persistence-of-

0.69 04 excitation) assumptions about the input and the bases. The
0.35 equalizers are Tl, multivariate, zero-forcing (in the absence
of noise), and lend themselves to optimally weighted and
adaptive algorithms. The latter provide fine tuning for
possible model mismatch of the bases, which capture the
0.15 nominal part of the rapidly fading channel. Exploitation of
NAsson the input’s whiteness reduces the amount of ;patip/temporal
0.65, 20 e w0 095, P e o diversity (only two sensors) needed to identify blindly TV

Number of iterations Number of iterations channels and mitigate their effects using MMSE equalizers.
Fig. 16. Performance of the LMS algorithm. The blind channel estimation and identification methods
presented in this paper relied on second-order output infor-
2 15 mation only. In [47], blind higher order statistical methods
. * e have been developed which rely on the independence of
1 ¥ Pere . the input but are capable of identifying TV channels using
Y ' £ ﬁ* single sensor data only. Following the start-up mode, blind
‘?* methods switch on to a decision-directed mode. Decision
o8]+ + o T 08 " feedback equalizers for the TV basis expansion model have
-1 f:u‘& -t :3;}& been reported in [46] along with adaptive methods for
~1.5, SNA=20.43 +o* - . s - - ! on-line estimation of the basis frequencies.
A number of interesting directions open up for future
Fig. 17. Zero-delay versus average equalizers. research: 1) performance analysis of the channel estimators,
especially when model perturbations due to synchroniza-
is the same as Fig. 15 except for the LMS algorithm. The tion effects and Doppler frequency drifts are present; 2)
RLS was initialized by, whereas the LMS was initialized  theoretical evaluation in terms of error probability for the
with the batch estimate obtained with the minimum number Zero-forcing equa"zers and experimenta| Comparisons with
of symbols N required by a4). the MSE equalizers; 3) extensions of blind methods to TV

In Fig. 17 effects of weighting of different equalizers on  pole-zero channel models; 4) exploitation of input redun-
the input estimates are demonstrated. Here the equalizergjancy in the form of short training sequences (semi-blind
weighted by the inverse of their norms (right) yielded better extensions), modulation, codes, or filterbanks in order to
estimates thalggo), the zero-delay equalizer (left). identify TV-basis expansion models without oversampling

These preliminary simulations illustrate the difference or deployment of multiple antennas. Such input-diversity
between the “statistical” and the “deterministic” approaches techniques have gained popularity recently for blind iden-
for the TV model we have justified and adopted. While tification of TI channels (see [4], [11], [19], [30], [41],
the former relies on cyclic correlations and is effected and [48], and references therein); 5) diversity techniques
minimally by the presence of noise, it needs relatively long for blind identification of random coefficient models and
data records for accurate estimates. The zero-forcing FIRperformance comparisons with the basis expansion models
solutions, on the other hand, yield good estimates at highusing real data.

SNR’s with short data records, but their noise tolerance is
rather small.
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APPENDIX |
VII. CONCLUSIONS AND FUTURE DIRECTIONS PROOF OF THEOREM 1

Finitely parameterized basis expansions turn SISO TV We will use the notatior¥ (u) to denote a convolution
systems into multivariate Tl systems with inputs formed matrix with Toeplitz structure associated with the vector
by modulating a single input with the bases. Fourier basesu, whose first column isfu’ ---0]%, and first row is
are well motivated for modeling rapidly fading mobile com-  [w(0) -+ O]ix (1), Wherew(0) is the first element of
munication channels when multipath propagation caused byu. The dimensions depend on the size of the vector that
a few dominant reflectors gives rise to (Doppler-induced) 7 (u) is multiplying and will be clear from the context.
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a) Letw,, andw,, be a pair such thaf'r* ™) (w,, — where
Weis 7) = o2HE ™ (eI ) HT (e [2) in (23), ) _ [0 [ypiwal ... oo™ g)eiwa0] "
Then, sincel{Y () and HL?(2) are coprime, the following h, [h (L)e’*@™ - hy " (0)e’ Q}

: * m m m Jw +T
holds: ( ) |:h( ) ( ) Jwg,lo...h(Q_)l(L)eju.Q,lL}
Sk D (wy, — w3 2) _ HY (e 7% /2) o
2 19 — - B (56) *(m) . (m) jwg0 3 (m) jwgL
S Mo —wns2) HE (e /2) H" =T (10 g et
T m jwa_1 m jwa_1 T
Define ™) (a): =[O ™ (s —L) -+ - Cmma) (o H; >:=T<[h§ H(Lyeleam (™ (0)el+o0] )
DY, the (3L + 1) x (L + 1) matrix CIY:=T
(C;f;} 1>(qu wg,)), and hg’l"). A <m>(L) Jwas L /<m> and vector c,,, =, contains the inversez-transform
(0)ei«s20]T m = 1, 2. Cross-multiplying in (56) taking Of S Nwg — wa2). I HE™(zreiwe) and
the inversez-transform of both sides, and casting the H{™)(c™9%a /z) are coprime, the2L + 1) x (2L + 2)
resulting convolutions in matrix form we obtain matrix H(ml '™2) in (59) has full row rank, which will
enable us to determirie("”’"’Z) up to a scale ambiguity.
1,1 2,1 h(2) t
|:C§cac7 ) —ci )} [hﬁb} =0. (57) After estlmatlng{h(m) ( ) K™, m = 1, 2}, we can
q1

o _ _ _ _ repeat the same procedure wﬁh("’) O, K@), m =
Trle(ngolutlon in (57) is unlque up to a scale, since if 1, 2). This tlmelsa(;l k)(wQ_w?” 2) might contain a sum
{Hy "(2)} channels also satisfy (56), then of three products( b)ut if thi(s i)s the case one of the products

: - : has to involve{h," hy™ (1), m = 1, 2} which has

Héf)(e_]% /%) = H‘g)(eﬂ% /%) been esumateg Pro((:()aediQng(i)H this faéhiin, all subchan-

HE (™3 [2)  HE (eI [2) nels can be estimated provided thak, " (z*¢9~<)
and the numerators and denominators of both sides mus@nd H{™(c~#n /z) are coprime form,, my = 1,2,
be equal. This is easily shown by factoring the numerator Whenever there exists @ with wg — wg, = wy, —wi. U
and the denominator polynomials into théirfactors. We
showed how to estimatéh{"™ (1), m = 1, 2}. Subchan-  APPENDIX Il
nels corresponding tg, can be estimated with a similar UNIQUENESS PROOF OF (32)
procedure. As mentioned in Section V-B, without loss of generality

b) We showed in a) how to estimafé™ (1), 1™ (1), we will assumed = wy < -+ < wg. Suppose now, in
m = 1,2} using glm ,mz)(wQ — wi;7), since only the addition to s(n) and ®, §(n) and & also satisfy (31).

. . Relating them, we have
pair wg andw; can give rise to the differenceg — w;. 9 ’

Consider nowSSr ™ (wo — wa; 2). If wg, ws is the X 5(n)
only pair of frequencies that has the difference, — &8 ¢(n) =E(n) S(n) (60)
wy, then SST ™) (o — wo; z) is the product of two =F —~—

polynomials, one of which is known. This will enable
estimating {h™ (1), m = 1, 2}. If, on the other hand,
wg — we = wg—1 — w1 (the only other pair that could
possibly give rise to this difference), then we have the

provided thats(n) is nonzero. Equating the first element of
both sides in (60), and likewise the last elements, we obtain

sum of two products of polynomials where two of the four Q
polynomials are known a(n) =Y Faem =) Fouelm=e)myn  (61)
- —t
S (wq = ws; 2)
=0 [H*("lz)(7*e—1wzg) éml)(e—jwq /) WhereFi_j denotes thé:, j)_ele_ment of matri¥ defined in_
' (60). Using the last equality in (61) we can relate the first
+H;(f’f)(z*e_“"o?*l)Hf"“)(e‘J“Qfl/z)}. (58) and last columns oF and write it forn =1, ---, N—1to

obtain the matrix equation (62) as shown at the bottom of
After taking the inverse-transform of both sides, (58) can the next page. Equation (62) has a unique solution (up to a

be cast in matrix form, scale) withg:= 1, = Fgg andF1y = -+ = Fg_19 =0
(ma) due to the Vandermonde structureBfin (62) and the fact
[H*(mz) H(ml)] E ' —c (59) that its first and last columns are identical. This means the
-9 Q("'f) e first and the last elements of (60) are equaldt@and are
HG ) (H/—; independent ofr. Thus, (60) implies that(n) = 8Vn,
s hi{™1. ™2 ~

2, Q-1 andF = SI; hence,® = 9. O
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APPENDIX Il
PROOF OF THEOREM 2

Assume first thaH is square. The nullity of
0,d d 0,d 0,d 0,d d d
X0 = [BYSOD -0 - BY s s

~—

0,d
S0

H o
15 2] (63)
(0,d)

is one if and only if the nullity ofS;,” ¢, is one becaus&l

is full rank and square. Because matfx in (26) is full
rank,Sé?j‘Q might lose rank only if columns of one portion
are linearly dependent with columns of the other portion.
Note that matrices[Sgo’d)---SgJ’d)] and [Sgd)---Sg)]
shareQ(L + K — d + 1) columns. Careful examination
of S\ in (63) will reveal that they involve the products
Bfl‘é)SfI?’ 9 and —Bfﬁ’ d)SfI‘;), which havelL + K —d+1
columns in common. Sal L + K is a necessary

condition for 1/(2\’(1(?7’;2) = 1. But other products such

as By TOSE ) and B OIS could also
have common columns. In fact, ékp(jw,, n) is periodic

with period L + K, the first column ofB{5+")s{ #4150

is identical with the last column oy “ s+
wheneverw,, +wg, = wq, + wq,. Choosingw,, = w; and
wg, = wg Will ensurew,, = wy, wy, = wg, and along with
d = L + K, will guarantee tha’r/(SEI?j‘ég) = 1, therefore
1/(.?\’(1(?7’;2) = 1.

If M(K +1) > QL + K + 1) (H is fat), then
relying on a6) and using the Sylvester inequality, we
get rankx O LHEY = 90(L + K + 1) — 1, therefore,

a1, a2 .
V(B0 = oMK + 1) — rank XD 5Ty =

1,q2
MK +1)~Q(L+K +1)]+1 > 1, where the inequality
(

follows from M(K + 1) > Q(L + K + 1).

O

APPENDIX IV
DERIVATION OF OPTIMUM WEIGHTS

We wish to minimize (51) subject to the constraint
SO A wd = 1. We will use the method of
Lagrange multipliers to solve this constrained optimization
problem (e.g., [22, pp. 557-560]). The constafithas no
affect on the relative weightmgz), since the scaling o# is
absorbed into the Lagrange multiplier. By writing (51) as

a term times its conjugate and moving the expected value

inside we can express it as

Q L+K
>3 wu)
g=1 i,j=0

K

> g V)R — itk = ka)gd) (k)

k1, ka=0
(64)

where we used(1/N) YNt exp(j(wg, — wg)n) =

6(wy, —wy, ) aNdR,(7) := E[v(n)v'(n+7)]. The objective
function to be minimized now becomes
J(w)=wiBw —ywl1 (65)
where~ is the Lagrange multiplier that will determine the
scaling ofw to fit the constraintB is a block diagonal
matrix containing the matrice{qu}qQ:]L in its diagonal, and
the [B,];; is given by the sum inside the brackets in (64).
SinceB is not Hermitian-symmetricB’ # B), we write
B=A+D=i(B +B)+3i(B -B)
whereA is Hermitian symmetric anD is Hermittian anti-
symmetric. Because (51), and therefore (64), is real, and
due to the Hermitian antisymmetry &, w/Dw is purely
imaginary; thus it follows thaww’'Dw = 0. Retaining the
Hermitian part ofB amounts to an extra term in (53) to
guarantegAl];; = [A]7;. Now we use the standard result
Vw(w' Aw) = 2Aw for a Hermitian matrixA [22] to take

the gradient of the objective function in (65) and equate it
to zero

VwT(w)=2Aw —~v1=0. (66)
Equation (66) enables us to solve fer which, after
imposing the constraint, leads to (52) and (53). O
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