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This paper describes a Simulink laboratory package for teaching adaptive filtering concepts. Each
lab is designed to convey certain important features of a particular adaptive filter, and to provide
comparisons with similar adaptive filtering algorithms. The filters covered include the LMS,
nLMS, RLS, and GAL, as well as three members of the Kalman filter family and the particle filter.
In addition to learning adaptive filtering concepts, these labs also help to ensure a greater
familiarity with Simulink on the part of the student.

INTRODUCTION

IN RECENT YEARS, there has been a tremen-
dous growth in the utilization of MatLab for the
teaching of courses on digital signal processing,
control systems and communications. The em-
phasis of MatLab on vector mathematics makes
it especially well suited for this purpose, so its
popularity is of no surprise. However, the utiliza-
tion of Simulink for teaching DSP concepts has
been much lower, despite its appealing visual
nature and the ease of system construction that it
offers.

At the same time, adaptive filtering, while
already a subject of great importance, is becoming
even more prominent both as a result of the
development of cheaper computing power as well
as more powerful algorithms. Accordingly, a pack-
age of visually oriented lab exercises has been
created to illustrate specific concepts and algo-
rithms relating to adaptive signal processing.

The lab programs themselves are presented as
Simulink applications, in order to allow easy
access to the system parameters by students.
They can then manipulate these parameters in a
variety of ways and observe the results. The
accompanying exercises are meant to emphasize
specific features of the algorithm under study. The
package is of most value to the student when
complicated algorithms are being examined, such
as the particle filter. In these cases, the behaviour
of the algorithm can be examined without concern
for debugging problems or programming details. A
good, intuitive understanding of the material can
provide a foundation both for practical work, and
ultimately for a more abstract understanding as
well.

A further useful feature of the approach
outlined here is its modularity. The blocks
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provided in this package are reusable in other
contexts beyond the specific examples provided
by us. In other words, the Simulink models may
be used in other assignments set by the teacher or
for projects of particular interest to the student.

To increase the interactivity of the assignments,
we also take advantage of Simulink’s capability to
add user-defined system functions to perform
specific tasks. Students can build their own func-
tional blocks in order to solve some of the
problems, thus also developing some practical
programming skills. Assignments of this nature
emphasize the use of MatLab system functions
(S-functions), and may be written in either
MatLab or C-MEX files.

PACKAGE CONTENTS

The Simulink examples that are presented with
the package run through a variety of adaptive
filtering algorithms. These include not only the
well-known LMS and RLS algorithms, but also
order-recursive filters like gradient adaptive lattice
(GAL) filter. In addition, we include progressively
more advanced algorithms such as the unscented
Kalman filter and the particle filter (PF), both of
which are of relatively recent origin. Each filter
demonstration comes with a number of exercises
designed to illustrate key aspects of the filter’s
behaviour. By varying the model parameters,
students will be able to gauge system performance
under a variety of conditions.

An additional benefit to using Simulink is being
able to scale up simulations to the system-level
design. It allows the user to not only study the
filter by itself, but also as a component in a larger
system. For example, the role of adaptive filters in
communication systems is well known. Thus, a
straightforward application of the principles
discussed so far would be to integrate these algo-
rithms into such a system subject to both stationary
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Fig. 1. Wiener filter for channel equalizer.

and non-stationary channels. Further exercises/
applications will draw from additional problems
in communications, signal processing, and control
systems.

INTRODUCTORY LABS

These labs are meant to highlight some of the
basic characteristics of adaptive filtering algo-
rithms. Specifically, they will examine Wiener
filtering, LMS and normalized LMS (nLMS) as
well as the RLS and GAL (Gradient Adaptive
Lattice) filters [1]. To ensure that the differences
between these algorithms are well exemplified, two
different real-world applications are used through-
out these labs. These examples involve digital
equalization as well differential pulse code modu-
lation with backward adaptive prediction (DPCM-
APB), which is used in some speech coding appli-
cations [2]. The reason for these different algo-
rithms is two fold: both to highlight the differences
in adaptation performance, and to demonstrate
the multiple layers of signal processing that can
go into a real application. In the case of these two
examples, it is easy to see that the raw speech may
be encoded using one algorithm, while the trans-
mitter-receiver pair is based on an entirely different
algorithm. A worthwhile student exercise may then
be to build the entire system (speech coding and
equalization) from the blocks provided, and to
compare the outputs on a qualitative level.

Digital equalization

The digital equalization problem is presented
for several of the algorithms considered in this
package [1]. For each case the underlying problem
is the same, which allows for easy comparisons of
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the different filters. Real, binary data is passed
through a channel with an impulse response of:

h(k) = %(”COS(%UC—Z))), k=1,2,3

0, otherwise
(1)

in which the parameter W controls the amount of
distortion produced by the channel. The distortion
increases with W, as does the condition number of
the autocorrelation matrix of the received signal.
Thus this parameter exercises some control over
the quality of the channel output.

The optimal solution of this channel equalizer is
the well-known Wiener solution, which is:

Wo = RiiPu 2)

where R, is autocorrelation matrix of the received
signal, and pg,, is cross correlation vector of the
desired output and the received signal. If the
desired signal has a unit power, then the minimum
square error (MSE) is:

L 3)

The Wiener filter solution for the equalizer gives
the students the theoretical performance, which
can be readily compared with the MSE perfor-
mances of each of the filters in a variety of noise
and channel conditions.

Through Simulink’s graphical user interface
(GUI), the system can be built by click-and-drag
mouse operations similar to what we usually draw
with pencil and paper as shown in Figs 1 and 2.

As mentioned before, the first LMS filter exer-
cise also demonstrates the binary communications

Fig. 2. LMS adaptive filter for channel equalizer.
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Fig. 3. LMS learning curves for ;= 0.075 averaged over 200 trials. As can be seen here, the convergence depends on the value of W.

channel (Fig. 2). Users can easily access the
significant parameters and most importantly
make use of comparative studies between a
number of other filters using this same problem.

In this and related experiments, students can
achieve a good intuitive understanding of the
performance of the various algorithms by chan-
ging the channel distortion levels and the learning
rate. This introduces the students to the differences
and potential pitfalls of each approach.

The equalization exercises also allow for the
running of multiple, independent trials so as to
compare overall system performance through
learning curves. Sample results are shown in the
following graphs, which were produced by varying
the filter learning rate p and the channel parameter
W. In Fig. 3 for example, the LMS filter is used,
and the learning rate is held constant at ;4 =0.075
while W is changed; the results are averaged over
200 trials. The plot in Fig. 4 shows the opposite
scenario, where u changes and W does not.

As mentioned before, this group of labs also
includes other filters as well, which operate on
the same problem described here. Figures 5 and 6

show some typical results that students should be
able to achieve for the RLS and GAL filters.

Speech coding

In some speech communications applications,
where the channel may involve several links,
DPCM coding using backward adaptive filtering
is utilized [2]. This is so because of the need to
reduce buffering times, and to eliminate the need
to transmit side information such as the predictor
coefficients. It is well known that the LMS filter is
what is typically used for this application, however
any other prediction filter may be used as well.
This results in an attractive lab problem, since the
DPCM-APB algorithm is quite simple to imple-
ment and also provides a straightforward example
of a non-stationary problem.

As in the previous labs, which dealt with digital
equalization, students will be expected to compare
the performance of several different algorithms. In
this case, the quality of the output is ultimately
determined by its variance. A more accurate
predictor produces smaller errors, which means
increased compression. Of course, students
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Fig. 4. LMS learning curves for W = 3.1 averaged over 200 trials. In this case, it can be seen in addition to determining convergence
speed, p also determines whether convergence occurs at all.
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Fig. 5. RLS learning curves given that the initial error covariance estimate is o> = 0.001. Notice that the learning curves are not as
dependent on W here as they are for the LMS filter.

should still compare output against the input
according to both qualitative and quantitative
criteria.

ADVANCED LABS

Beyond the algorithms that have been discussed
so far are others that are less well suited to the
applications showcased in the introductory labs.
These include the Kalman filter, the Extended
Kalman filter, as well as the Particle Filter, all of
which are used in a different fashion than either the
LMS, RLS or GAL filters. As a result, a set of
additional Simulink labs has been provided to
demonstrate both the application of these filters,
as well as to show some of the significant differ-
ences in their behaviour.

The Kalman filter

Kalman filters are a significant topic in them-
selves, and an in-depth study of related algorithms
and applications goes well beyond the scope of
an introductory course on adaptive filtering.
However, it is nonetheless an essential topic in

such a syllabus. To this end, three different
members of the Kalman filter family are examined
in the labs provided with this package. These are
the Kalman filter itself, the extended Kalman
filter, and the unscented Kalman filter.

Using the relatively simple mass-spring system,
the performance differences between the three
filters are readily highlighted. In this case, both a
linear and a non-linear system are considered. In
the former example, the state and observation
equations are given by [3]:

dxl(t)
dt [ 0 1] [xl(t)]
do) | |—? =20 ][ w0

dt
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Fig. 6. GAL learning curves for p= 0.5. It is apparent that the learning curves are not strongly affected by the parameter W.
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Fig. 7. The non-adaptive DPCM coder and decoder using a sine-wave source. The unit delay in the encoder can be replaced by an
adaptive filter in order to test other algorithms.

where x| (f) measures the displacement, x(¢) is the
velocity, ¢ is the damping ratio, and w is the
natural frequency of the system. The term w(z) is
used to indicate the process noise, and the final
term F indicates the driving force (which in this
case is produced by the mass). Students can
manipulate these parameters, and the Kalman
filter parameters as well in order to determine
how the algorithm performs under a variety of
conditions, including model mismatches.

The non-linear system model is similar, but
assumes no knowledge of the damping ratio (, so
it is now included as a state variable. This produces
the non-linear state equation shown in Equation
(6) and the accompanying observation equation
given in (7):

dxy (1) ]
dt xa(7)
d%(’) — | =1 (6) = 252 () s ()
dxs(t) 0
L dt |
0 0]
+ |1 |w()+ | F (6)
0 0
xl(l)_
y()=[1 0 0] x2(r) (7)
x3(2) |

the damping ratio ¢. The examples for both
the UKF and EKF in this package make use of
this model, allowing for valuable comparisons. In
particular, students will be able to discover that
while the UKF performs better if accurate know-
ledge about the system is available, it is less robust
than the EKF in the presence of noise model
mismatches.

It is worth noting that all of these Kalman filter
algorithms are implemented as MatLab S-func-
tions. As a result, it is very easy for students to
modify the code in order to produce and compare
other Kalman-based algorithms (e.g. information
filtering, square-root filtering, etc). No model
modifications need be made in this eventuality.

The particle Filter

The particle filter is related to the Kalman filter
in that both are Bayesian filters. Like the Kalman
filter, the particle filter is also suitable for state-
space modeling, but is particularly useful for
nonlinear or non-Gaussian problems [4]. In
contrast to linear Gaussian models there is no
explicit optimum solution. Instead the problem is
solved through the iterative construction of the
state variable probability density functions
through Monte-Carlo sampling and re-sampling.

In the example provided in our package, we
developed a particle filtering model for a wireless
channel tracking problem. Despite the difficulty of
the actual problem, the state-space model is rela-
tively simple and is given by:

{ X = Bxi1 +wi (8)
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Fig. 8. The Linear Kalman Filter with the mass-spring system. Both the spring system and Kalman filter are implemented as MatLab
S-functions.
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Fig. 9. State values versus time for the UKF filter. For even small mismatches in the model process noise, the damping constant state
parameter may not converge.

Where x; is the channel state, and s, is the
transmitted signal. The term w, represents the
process noise, which is sub-Gaussian in nature.
The final term, v, represents the observation noise,
which is generated using a Middleton Class A
model. The factor 3 is a constant, and from real-
life problems of this type, has been experimentally
measured as being approximately 0.99 [5].

In this lab (see Fig. 10) the modulated data is
transmitted across a non-Gaussian, time-varying
channel, and the particle filter is applied in order to
perform semi-blind tracking of the commun-
ications channel. Tracking and performance can
be monitored by the students, as can the effects of
varying the system parameters (e.g. the number of
particles, etc). Unlike the other labs, this assign-
ment is not comparison-based, but is instead a
demonstration of the capabilities and behaviour
of the algorithm in question.

IMPLEMENTATION

Many of the labs described in this paper make use
of algorithms that are already available in MatLab.
This is a sensible approach, since in those particular
cases there is no need to modify the existing
material. It is also hoped that students will become
familiar enough with the Simulink blocksets to use
them effectively. However, there are number of labs
that do not use pre-existing Simulink blocks. These
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include the GAL experiments, as well as those
relating to the Kalman filter and its variations
and finally, the particle filter. In these cases, no
adequate Simulink block was available for the
specific needs of the experiment. As a result, the
algorithms in question were implemented as
customized S-functions in either MatLab or C.

Since the use of S-functions is itself a topic that
students should become familiar with, most of
the aforementioned algorithms were implemented
in MatLab code rather than C. The MatLab
programs are much easier to read and modify,
and so are themselves suitable for assignments
requiring the implementation of some variation
of the original filter. This is of particular interest
with regards to the Kalman filter family, since
there are several variations that may be of interest
to the student or instructor (e.g. square-root filter,
information filter, etc.).

The use of MatLab code is not always practical
of course, and so some C-code is used to imple-
ment certain labs. This is the case for the particle
filter, which is implemented entirely in C owing
to the relative slowness of MatLab implementa-
tions. The only other filter implemented in C is
the GAL filter, which again runs much faster in
C than in MatLab. However, in the case of the
GAL, a MatLab version of this algorithm is also
provided for purposes of demonstration. A
comparison of the running times of the two
approaches is instructive.
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Fig. 10. The particle filter state tracking system for wireless communications.
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Fig. 11. State tracking using a particle filter. The particles are distributed around the state variable. The solid line shows the actual
channel state and the gray squares show the distribution of the particles.

CONCLUSIONS

The goal of this project has been to demon-
strate some of the important concepts that are
central to a foundational course on adaptive
signal processing. At the same time, we desired
that these concepts be discussed in a visually
concrete manner that demonstrated both the
applications themselves as well as their structure.
To this end, Simulink’s block diagram structure
and modularity were found to be very useful,
producing easy to understand yet functional
system models. In addition, the labs that have
been provided with this package can be readily

modified for the purposes of further explorations
of the material.

Beyond the teaching of adaptive filtering, we feel
that these labs have the added benefit of helping
students learn a software package that they are
likely to use outside of a university setting. Simu-
link is often used in industry for a wide variety of
applications, including those relating to telecom-
munications and signal processing, so it is impor-
tant that students familiarize themselves with it in
addition to their other studies. As a result, we have
chosen to implement labs that, in addition to
teaching the DSP-related material, also highlight
some of the useful features of Simulink as well.

REFERENCES

1. S. Haykin, Adaptive Filter Theory, 4th Ed., Upper Saddle River, NJ: Prentice-Hall (2002).
2. K. Sayood, Introduction to Data Compression, 2nd Ed., San Francisco, CA: Morgan-Kaufman

(2000).

3. A. K. M. Azad, M. O. Tokhi, A. Pathania and M. H. Shaheed, A MatLab/Simulink based
environment for intelligent modelling and simulation of flexible manipulator systems, Proc. 2004
American Society for Engineering Education Conf. & Exposition, 20-23 June, 2004, Utah, USA.

4. S. Arulampalam, S. R. Maskell, N. J.Gordon and T. Clapp, A tutorial on particle filters for on-line
nonlinear/non-Gaussian Bayesian tracking, IEEE Trans. Signal Processing, 50, 2002, pp. 174-188.

5. S. Haykin, K. Huber and Z. Chen, Bayesian sequential state estimation for wireless communication,
IEEE Trans. Wireless Communication, 140, 2004, pp. 107-113.

Lili Jiang received her BA and MA degrees in electrical and electronic engineering from
Harbin Institute of Technology, Heilongjiang, PR China. She has worked on commun-
ication systems in industry for 9 years, and has also been a lecturer on communication and
control engineering at Northern Jiaotong University in Beijing for 3 years. Her current
research interests include communication systems and cognitive radio.

Karl Wiklund has received the B.Eng.Scty. and M.A.Sc. degrees from McMaster Uni-
versity, and is currently a Ph.D. student at that institution. He has also been employed as a
Defence Research Assistant at Defence Research Establishment Atlantic (DREA) in



A Simulink Laboratory Package for Teaching Adaptive Filtering Concepts

Dartmouth, Nova Scotia where he worked on problems relating to sonar signal processing.
Currently he is working on developing acoustic simulation software for the automatic
testing of hearing aid algorithms, although his other interests include signal processing
applications relating sonar, geophysics, and neural networks.

Simon Haykin received his B.Sc. (First-Class Honours) in 1953, Ph.D. in 1956, and D.Sc. in
1967, all in Electrical Engineering from the University of Birmingham, England. In 1980, he
was elected Fellow of the Royal Society of Canada. He was awarded the McNaughton
Gold Medal, IEEE (Region 7), in 1986. He is currently a University Professor in the
Department of Electrical and Computer Engineering, McMaster University. He is a fellow
of the IEEE, fellow of the Royal Society of Canada, and recipient of the honourary degree
of Doctor of Technical Sciences from ETH, Zurich, Switzerland. Dr. Haykin is the author/
editor of over 500 technical papers and over 40 books, including the popular undergraduate
and graduate textbooks Adaptive Filter Theory (Prentice-Hall, 4th Ed., 2002), Neural
Networks: A Comprehensive Foundation (Prentice-Hall, 2nd Ed., 1999), Communication
Systems (Wiley, 4th ed., 2001) and Signal and Systems co-authored with Barry VanVeen
(Wiley, 2nd Ed., 2003). He is also the first recipient of the Henry Booker Medal, which was
awarded by URSI in 2002.

579



