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Abstract—Recurrent neural networks (RNNs) have been suc-
cessfully applied to communications channel equalization because
of their modeling capability for nonlinear dynamic systems. Major
problems of gradient-descent learning techniques commonly em-
ployed to train RNNs are slow convergence rates and long training
sequences required for satisfactory performance. This paper
presents decision-feedback equalizers using an RNN trained with
Kalman filtering algorithms. The main features of the proposed
recurrent neural equalizers, using the extended Kalman filter
(EKF) and unscented Kalman filter (UKF), are fast convergence
and good performance using relatively short training symbols.
Experimental results for various time-varying channels are pre-
sented to evaluate the performance of the proposed approaches
over a conventional recurrent neural equalizer.

Index Terms—Channel equalization, extended Kalman filter
(EKF), recurrent neural network (RNN), time-varying channel,
unscented Kalman filter (UKF).

I. INTRODUCTION

I T IS well known that linear equalizers do not perform well
on channels with deep spectral nulls or with nonlinear dis-

tortion [1]. However, nonlinear equalizers show better perfor-
mance than linear equalizers in applications where the channel
distortion is severe. A decision-feedback equalizer (DFE) is a
nonlinear equalizer. It is widely used in situations where the in-
tersymbol interference (ISI) is large. The DFE outperforms a
linear equalizer of equivalent complexity [2]. Furthermore, the
DFE can be used to increase the channel bit-rate capacity of
next-generation wireless mobile communication systems [3].

When neural networks are incorporated into the DFE, de-
cision-feedback neural equalizers [4] achieve significantly im-
proved performance in convergence speed and mean-squared
error (MSE) over the conventional DFE or the neural equal-
izer without decision feedback. Neural networks provide good
nonlinear mapping of the inverse model of the channel, and can
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handle uncertainty included in the received data. Feedforward
neural networks (FNNs) such as multilayer perceptrons (MLPs)
or radial basis function networks are mainly concerned with
equalizer design because of their structural simplicity [5], [6].
However, recent research results show that recurrent neural net-
works (RNNs) [7] are superior to FNNs in modeling nonlinear
systems and predicting time-series signals. The RNN has been
successfully applied to channel equalization of communication
systems [8]–[11].

Kechriotis et al. [8] showed that the RNN equalizer (RNE)
with a small number of neurons outperforms the linear trans-
versal equalizer (LTE) and the FNN equalizer for linear and
nonlinear channels. Ong et al. [9] also showed the decision-
feedback RNN equalizer (DFRNE) outperforms both the LTE
and the FNN equalizer, and the convergence rate of the DFRNE
is faster and more robust than that of the RNE. Some researchers
developed complex versions of the RNE based on a real-time re-
current learning (RTRL) algorithm to process complex signals
whose inputs, weights, and outputs, as well as activation func-
tions, are all complex-valued [12], [13].

Gradient-based learning approaches, back-propagation al-
gorithms, and RTRL [14] for training FNN and RNN are
commonly employed. Major disadvantages of gradient-based
methods are slow convergence rates and long training symbols
required for satisfactory performance of channel equalization;
another disadvantage is the vanishing-gradients problem. For
rapid channel equalization, Parisi et al. [10] exploited the
discriminative least-squares learning algorithm, minimizing
a cost function that is a measure of the classification error.
In [15], performance comparison among three RNEs trained
with RTRL indicated that the performance of these equalizers
is indistinguishable, and RTRL may not be optimal for those
equalizers.

Most equalization results published over the past few decades
have been limited to time-invariant channels. The channels
in real-life communications, like mobile communications,
have time-varying characteristics due to fading. Although the
classical equalizers perform well over fixed channels, they may
not be appropriate for fast-fading channels. In [16], adaptive
lattice DFEs have been developed for time-varying channels.
Recently, various equalizer structures for treating time-varying
channels have been reported in the literature [5], [17], [18].
The time-varying nature of fading channels can be interpreted
as a dynamic system with uncertainties in its coefficients.
Although an FNN [5] and fuzzy adaptive filter [17] have been
applied to the equalization of time-varying channels, they are
still static nonlinear models. Therefore, FNN or fuzzy adaptive
filter-based equalizers have implicit difficulty in dealing with
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Fig. 1. Digital communications system with DFE.

time-varying channels. This motivates us to use an RNN, rather
than static models such as FNN and fuzzy adaptive filter, for
time-varying channels.

In this paper, we focus on learning algorithms for the RNE
with suitably fast convergence and good tracking performance.
The extended Kalman filter (EKF) and unscented Kalman filter
(UKF) are proposed as training algorithms for the RNE. Ex-
perimental results for various time-varying channels are used
to evaluate the performance of the proposed approaches over a
conventional recurrent neural equalizer.

A brief explanation of the DFE and an RNN is given in
Section II. Training algorithms for a recurrent neural equalizer
based on Kalman filters are described in Sections III and
IV. Section V presents experimental results and performance
evaluation of equalization for various time-varying channels.
Conclusions are given in Section VI.

II. RNE WITH DECISION FEEDBACK

A. Decision-Feedback Equalizer

Fig. 1 shows a general model of a digital communications
system with a DFE. It includes both linear and nonlinear dis-
tortions. A sequence , extracted from a source of infor-
mation, is transmitted, and the transmitted symbols are then
corrupted by channel distortion and buried in additive white
Gaussian noise (AWGN).

The channel with nonlinear distortion is modeled as

(1)

where is a nonlinear distortion, is the linear finite impulse
response of the channel with length , is the sequence of
transmitted symbols, and is the AWGN with zero mean and
variance . If no nonlinear distortion exists, the channel model
simplifies to

(2)

The DFE is characterized by the three integers, , , and ,
known as the feedforward order, feedback order, and decision

Fig. 2. Structure of the RNE with decision feedback.

delay, respectively. The inputs to the DFE therefore consist of
the forward inputs
and feedback inputs . The
output of the DFE is , and it is passed through a decision
device to determine the estimated symbol . It is sufficient
to use feedback order [2], [19]

(3)

since the transmitted symbols contributing to decision of the
equalizer at time are given by

for the feedforward order [2].

B. Recurrent Neural Equalizer

RNNs have been successfully applied to channel equaliza-
tion of communication systems with a fully connected recur-
rent structure [8], [9], [11], or with one hidden layer [10]. We
consider an RNN model, the Elman network representing a sim-
plified RNN [7], [10], [20], that can present the standard state-
space representation for a dynamic system as an RNE. An archi-
tecture of the RNE using the Elman network is shown in Fig. 2,
where the bias inputs to the hidden and output layers are omitted
for simplicity. As depicted in Fig. 2, the RNE with decision feed-
back constitutes a fully connected recurrent network in cascade
to a feedforward network. The discrete state-space equation of
the RNE follows this form

(4)

(5)

In the above equations, and represent
the received input vector and the decision-feedback vector, re-
spectively. is the recurrent state vector coming
from the hidden layer, and is the network output.
The weight matrix connected to the hidden layer is defined as

, where
( and ). The weight vector linked
to the output layer is defined as . The
nonlinear activation function , applied to the hidden layer,
is the hyperbolic tangent function, and is a linear activation
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function. The matrix form of the RNE with decision-feedback
input , can be represented as

(6)

(7)

(8)

where unity is the bias input, and and are the deci-
sion device and the symbol estimated, respectively. The weight
parameters of the RNE are updated by a training algorithm, to
be described next.

III. TRAINING ALGORITHM USING EKF

For the training of RNNs, RTRL [14] and back-propagation
through time (BPTT) [21] are most commonly used in the litera-
ture. A major disfavor of these gradient-based approaches, such
as RTRL and BPTT, is slow convergence rate. In high-rate dig-
ital communication, fast convergence procedures are essential.

The training algorithms of the RNE can be regarded as param-
eter estimation for a nonlinear system. Among them, the EKF
is the best-known method, which is derived by linearizing the
system equations at each time step and applying the Kalman-
filter technique to the linearized system [22]. A key property
of the EKF is that it is the minimum-variance estimator for
the state of a nonlinear dynamical system. The EKF applied to
neural-network training leads to faster convergence than gra-
dient-based algorithms; also, it overcomes the vanishing-gra-
dient problem [7].

Behavior of the RNE depicted in Fig. 2 is described by the
following nonlinear discrete-time equations suitable for EKF
formulation:

(9)

(10)

where the vector is aggregated from the vectors, which play
a role as node inputs of the RNE

(11)

and the weights in (6) and (7) are reformulated as the weight
vector

(12)

Equation (9), known as the process equation, specifies the state
of the RNE when characterized as a stationary process cor-
rupted by process noise . The state of the system is given
by the weight parameters of the RNE, . Equation (10),
the measurement equation, represents the RNE’s desired output

as a nonlinear function of the weight vector and the
input vector to the nodes ; this equation is augmented by
a random measurement noise . The desired output
corresponds to in training mode, and to in de-
cision-directed mode. The learning problem of the RNE using
the EKF (RNE-EKF) is to find a weight vector that can mini-
mize the MSE of error vector , using all the observed data.

To prepare the application of the EKF to the state-space
model, the nonlinear function, for example, given in (10),

must be linearized, and the linearized model has the
derivative (or Jacobian) matrix for the outputs and
the weights of the system. The Jacobian is defined as
the partial derivatives of the outputs with respect to the
weights, as given by

(13)

where the th derivative vector can be defined as

(14)

The Jacobian is evaluated at , where
is the estimate of the weight vector computed by the EKF
at time , given the observed data up to time [28]. In
general, the EKF solution to the parameter-estimation problem
is given by the following recursion:

(15)

(16)

(17)

(18)

The parameter vectors and signal vectors in (15)–(18) are de-
scribed as follows:

-by- global scaling matrix;
-by- Kalman gain matrix;
-by-1 error vector;

estimate of the -by-1 weight vector ;
-by- measurement covariance matrix;

-by- process noise covariance matrix;
-by- approximate error covariance matrix.

The estimate , is a function of the Kalman gain matrix
. In the EKF algorithm, the measurement and process-

noise covariance matrices, and , are specified for all
training instances, and the approximate error-covariance matrix

is initialized at the beginning of training as follows:

(19)

(20)

(21)

Here the BPTT algorithm, which is an extension of the stan-
dard back-propagation algorithm [7], can be applied to compute
the Jacobian . According to the chain rule of calculus, the
partial derivative of the th output with respect to the weights
may computed as follows.

• At the output layer, for the weight linked between
the th output node and the th node of the hidden layer

(22)

where the induced local field
and is inputs (excluding bias) applied

to output neuron .
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• At the hidden layer, for the weight linked between
the th node of the hidden layer and the th input node

(23)

To use BPTT in real-time fashion, the truncated BPTT with
a truncation depth of steps, denoted by BPTT , is avail-
able [23]. For BPTT , we can recast the derivative matrix as
follows:

(24)

where is the contribution from the th step of back-prop-
agation to the computation of the whole derivative matrix. Exe-
cution of BPTT process requires storages of node inputs and
outputs, as well as the weights, for time steps [24]. In
practice, this may be handled efficiently by means of a circular
buffer. For the RNE-EKF, we choose for computational
efficiency.

IV. TRAINING ALGORITHM USING UKF

The EKF algorithm provides first-order approximations to
optimal nonlinear estimation through the linearization of the
nonlinear system. These approximations can include large er-
rors in the true posterior mean and covariance of the transformed
(Gaussian) random variable, which may lead to suboptimal per-
formance, and sometimes, filter divergence [25]. The UKF, first
proposed by Julier and Uhlmann [26] and further extended by
Wan and van der Merwe [25], [27], is an alternative to the EKF
algorithm [28]. The UKF provides third-order approximation of
process and measurement errors for Gaussian distributions, and
at least second-order approximation for non-Gaussian distribu-
tions. Consequently, the UKF may have better performance than
the EKF. In addition, the UKF does not require the computation
of Jacobians, needed for linearizing the process and measure-
ment equations. This leads to a simpler implementation devoid
of inverse matrix errors, but it requires more computational time
than the EKF.

The unscented transform (UT) is a method for calculating
the statistics of a random variable which undergoes a nonlinear
transformation [26]. Consider an -by-1 random variable that
is nonlinearly transformed to yield a random variable through
a nonlinear function, . In order to calculate the statis-
tics of , a matrix of sigma vectors is formed as the
following:

(25)

where and covariance are the mean and covariance of ,
respectively, and is a scaling factor. The
constant determines the spread of the sigma points around

; it is set equal to a small positive value, typically in the range
. The constant is a secondary scaling factor that

is usually set to . The sigma points are propagated
through the nonlinear function

(26)

This propagation produces a corresponding vector set that can
be used to estimate the mean and covariance matrix of the non-
linear transformed vector . We can approximate the mean and
covariance matrix of using a weighted sample mean and co-
variance of the posterior sigma points [25]

(27)

(28)

where the weighting factors are given by

(29)

In the above equations, the superscripts and refer to the
mean and covariance, respectively. is used to take account
of prior knowledge on the distribution of , and is the
optimal choice for Gaussian distributions.

From the state-space model of the RNN given in (9) and (10),
the cost function to be minimized in the MSE sense is

(30)

If the measurement-noise covariance is a constant diag-
onal matrix, it cancels out in the algorithm, and therefore,
can be set arbitrarily. The process-noise covariance

affects the convergence rate and the tracking
performance. We define as

(31)

where is often referred to as the forgetting factor,
in recursive least-squares (RLS) algorithms [28].

The UKF effectively evaluates the Jacobian through its
sigma-point propagation, without the need to perform any
analytical differentiation. Specific equations for the RNE using
the UKF (RNE-UKF) algorithm are summarized below.

The weight vector of the RNE-UKF and the covariance ma-
trix are initialized with

(32)

(33)

The sigma-point calculation is given by

(34)

(35)

(36)

(37)
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The measurement-update equations are

(38)

(39)

(40)

(41)

(42)

The weight vector of the RNE-UKF is updated online with the
above equations.

V. PERFORMANCE EVALUATION FOR

TIME-VARYING CHANNELS

A. Time-Varying Channel Models

For equalization simulations, we consider three types of
time-varying channel models: linear and nonlinear time-varying
channels, as well as a fading channel.

Channel Model 1: A linear time-invariant channel model is a
nonminimum-phase channel with transfer function

where the channel impulse response is . We
use , which is generally used for
channel equalization in the literature [8], [10], [29], because this
type of channel is encountered in real communication systems.
In these simulations, our interests also includes time-varying
channels. For the purpose of a time-varying channel, the transfer
function above is modified as

where the added channel coefficients are
varying with time . The time-varying coefficients are generated
by the application of a second-order Markov model, in which a
white Gaussian noise source drives a second-order Butterworth
lowpass filter, as found in [5] and [16]–[18]. In our simulations,
a second-order Butterworth filter with cutoff frequency 0.1 is
used. The colored Gaussian sequences used as time-varying co-
efficients are independently generated with various standard
deviations . In the following, time-varying coefficients have
Gaussian distribution with mean and variance dependent on

. Readers can find the source code for this kind of time-varying
coefficients in [17].

Channel Model 2: The nonlinear channel used in [8] and [10]
is modeled as

where a nonlinearity is applied to the output of a linear filter,
whose transfer function and time-varying coefficients are the
same as Channel Model 1. This channel is often encountered
in satellite communication links, as mentioned in [8].

Fig. 3. Convergence properties of equalizers with Channel Model 1 under
SNR = 16 dB.

Channel Model 3: The transfer function of a discrete-time
channel model is described by

This channel model represents a fading channel with
varying with time . These time-varying coefficients are gen-
erated by convolving white Gaussian noise and a Butterworth
filter, the same as Channel Model 1. The bandwidth of the
Butterworth filter determines the relative bandwidth (fading
rate) of the channel. We assume that we have a nominal 2 kHz
channel, 2400 symbols/s sampling rate, and a second-order
Butterworth filter having a 3 dB bandwidth of 0.5 or 1.0 Hz.
This time-varying scenario for fading channels was used in [5],
[16], and [18].

B. Experimental Results

The performance of the RNE-EKF and the RNE-UKF is com-
pared with that of the DFRNE [9] using a fully recurrent net-
work trained with RTRL. In our simulations, all the equalizers
have three forward inputs and two decision-feedback
inputs for the RNE-EKF and the RNE-UKF. Decision
delay is set to for the following simulations. For compar-
ison, the network structure is set to four neurons (32 weights) for
the DFRNE, and three hidden neurons and one output neuron
(31 weights) for both the RNE-EKF and the RNE-UKF. Infor-
mation symbols from uniformly distributed binary phase-shift
keying (BPSK) signals in presence of ISI and AWGN is used in
the simulations. In the DFRNE, the learning rate is 0.1, and this
value ensures a stable convergence. The parameters are chosen
as , , and for the RNE-EKF, and

and for the RNE-UKF. All the parameters
herein are chosen suboptimally through trial and error.

Convergence behaviors of the three neural equalizers aver-
aged over 200 independent trials for Channel Model 1, with

, are depicted in Fig. 3. Each run has a different BPSK
random sequence and random starting weights for all the neural
equalizers. An SNR of 16 dB is applied. We observe that the
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Fig. 4. Convergence properties of equalizers with Channel Model 2 under
SNR = 16 dB.

Fig. 5. BER performance of RNEs with Channel Model 1.

MSE curves of the RNE-EKF and the RNE-UKF are not distin-
guishable, and both the RNE-EKF and the RNE-UKF outper-
form the DFRNE. This shows that Kalman filter-trained RNEs
have an improvement in terms of both the convergence speed
and the steady-state MSE. For Channel Model 1, MSE value of
the DFRNE reaches around dB after 3000 training sym-
bols. On the other hand, MSE values of the RNE-EKF and the
RNE-UKF fall below dB after approximately 500 training
symbols. As shown in Fig. 4, Channel Model 2 behaves in a
similar way. Fast convergence rates of the equalizers come from
the superiority of Kalman-filtering algorithms for parameter es-
timation over gradient-based algorithms like RTRL.

For bit-error rate (BER) performance of Channel Models 1
and 2, we set and SNR = 6 to 16 dB at 2 dB inter-
vals. Figs. 5 and 6 show the BER performance for the three
equalizers for Channel Models 1 and 2, averaged over 10 in-
dependent trials. In each trial, the first 100 symbols are used
for training, and the next symbols are used for testing. The

Fig. 6. BER performance of RNEs with Channel Model 2.

weight vectors of the equalizers are frozen after the training
stage, and then the test is continued. It is clear that both the
RNE-EKF and the RNE-UKF show better performance than the
DFRNE. The RNE-UKF is marginally better than the RNE-EKF
for both linear and nonlinear time-varying channels. This is a re-
markable performance, because many reported results on con-
ventional equalizers require long training sequences (more than
1000) to achieve a satisfactory BER.

We next set SNR at 16 dB and perform simulations for var-
ious ranging from 0.05 to 0.3 in order to show BER perfor-
mance of channels 1 and 2 for different values of . For each

value, 200 independent runs employing 200 training symbols
and test symbols are performed. Average BER and standard
deviation of BER with respect to different standard deviation
are displayed in Fig. 7(a) and (b). From the average and stan-
dard deviation values of BER, we observe the following: 1) in
terms of average BER, Kalman filter-based equalizers are su-
perior to the DFRNE, and the RNE-UKF performs better than
the RNE-EKF; 2) in terms of standard deviation of BER, the
Kalman filter-based equalizers are more robust with respect to
AWGN than the DFRNE, and performance of the RNE-UKF is
better than that of the RNE-EKF.

For Channel Model 3, we test channel-tracking performance
for the three RNEs, because tracking is a steady-state phenom-
enon, to be contrasted with convergence, which is a transient
phenomenon [28]. As we expected, the RNE-EKF and the
RNE-UKF provide faster channel-tracking capabilities than
the corresponding DFRNE. Fig. 8(a) shows a fading-channel
prototype drawn at fading rate of 0.5 Hz (upper figure) and the
absolute values of the root of (lower
figure), so that a burst of errors may be associated with rapid
changes of these roots. The equalizers are in training phase
until , and then the equalizers are switched to tracking
phase at . In Fig. 8(a), channel-tracking properties for
three equalizers are evaluated in both the training phase and
tracking phase at an SNR of 16 dB. This result verifies that the
convergence properties of the RNE-EKF and the RKE-UKF
are much lower than that of the DFRNE for both training and
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Fig. 7. BER performance comparison with changing standard deviation of
time-varying channels. (a) Average BER versus standard deviation. (b) Standard
deviation of BER versus standard deviation.

tracking phases. Moreover, the RNE-UKF presents a margin-
ally faster recovery than the RNE-EKF. The BER performance,
with fading rates of 0.5 and 1.0 Hz, is illustrated in Fig. 9. BER
performances are averaged over 100 independent trials, where
100 training symbols and test symbols are employed. Un-
like simulations for Channel Models 1 and 2, all the equalizers
still update their weight vectors to track fading characteristics
of the channel. BER performance reveals that the DFRNE is
not appropriate for fast-fading channel equalization, since the
DFRNE failed to equalize this channel. On the other hand, the
Kalman filter-based equalizers show good channel-tracking
performance. Like previous results for Channel Models 1 and
2, the results depict the superiority of the RNE-UKF compared
with the RNE-EKF, with respect to both fading rates of 0.5 and
1.0 Hz. It can be noted that the superiority of the RNE-EKF
and the RNE-UKF compared with the DFRNE has consistency
in both channel-tracking performance and BER performance.

Fig. 8. Channel tracking performance for Channel Model 3. (a) Channel
characteristics drawn over fading rate 0.5 Hz. (b) Tracking properties under
SNR = 16 dB.

From simulation results of different time-varying channels,
we may conclude that the RNE-EKF and the RNE-UKF are
more suitable for time-varying communication environments
than the DFRNE [9], which outperformed conventional DFEs
based on the LMS or RLS algorithms, as well as conventional
neural equalizers for both linear and nonlinear fixed channels.

C. Comparison of Computational Complexity

The computational complexity is one of the important issues
in implementing channel equalizers. In this paper, we represent
the computational complexity in terms of the number of states

and weights . The computational time of the RTRL in-
creases in the order , and that of the EKF and the
UKF increases in the order and , respectively [7],
[25]. Although the EKF and the UKF are more expensive than
the RTRL in computational complexity, they lead to better con-
vergence rate, MSE level, and BER, compared with the RTRL.
There is an implementation versus complexity tradeoff in using
EKF and UKF algorithms. As the network size grows, the com-
putational expense required to train transmitted symbols also
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Fig. 9. BER performance for Channel Model 3. (a) Fading rate 0.5 Hz.
(b) Fading rate 1 Hz.

increases. Fortunately, the RNE employing the EKF and the
UKF uses only a small number of neurons, and also needs rel-
atively short training symbols at the training stage. One notes
that the computational complexity of the UKF can be reduced
by using the square-root UKF algorithm [25]. Its computational
complexity can be reduced to , i.e., the same level as the
EKF algorithm.

VI. CONCLUSIONS

We have presented RNEs with decision feedback trained
with Kalman filters, called the RNE-EKF and the RNE-UKF,
for channel equalization over BPSK signals. The performance
of the equalizers presented in this paper has been assessed for
equalization of linear and nonlinear time-varying channels, and
has been compared with that of the DFRNE. Simulation results
showed that the RNE-EKF and the RNE-UKF performed
better than the DFRNE in terms of convergence rate, BER

performance, and tracking capability. The RNE-UKF showed
robust and marginally better performance than the RNE-EKF,
even though the computational cost of the former was greater.
Moreover, the proposed equalizers required relatively short
training sets (100 or 200 symbols) to attain good performance,
because of the Kalman filter algorithms, by virtue of their fast
convergence. This fast convergence rate may be suitable for
high-rate channel equalization. If techniques such as whitening
the received data are applied to RNEs, better performance is
expected. In short, we conclude that the RNE-EKF and the
RNE-UKF are more suitable for time-varying communication
environments than existing conventional equalizers or feedfor-
ward neural equalizers.
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