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Application of Artificial Intelligence to Wireless Communications

Thomas W. Rondeau

(ABSTRACT)

This dissertation provides the theory, design, and implementation of a cognitive

engine, the enabling technology of cognitive radio. A cognitive radio is a wireless com-

munications device capable of sensing the environment and making decisions on how

to use the available radio resources to enable communications with a certain quality

of service. The cognitive engine, the intelligent system behind the cognitive radio,

combines sensing, learning, and optimization algorithms to control and adapt the

radio system from the physical layer and up the communication stack. The cognitive

engine presented here provides a general framework to build and test cognitive engine

algorithms and components such as sensing technology, optimization routines, and

learning algorithms. The cognitive engine platform allows easy development of new

components and algorithms to enhance the cognitive radio capabilities. It is shown

in this dissertation that the platform can easily be used on a simulation system and

then moved to a real radio system.

The dissertation includes discussions of both theory and implementation of the

cognitive engine. The need for and implementation of all of the cognitive components

is strongly featured as well as the specific issues related to the development of algo-

rithms for cognitive radio behavior. The discussion of the theory focuses largely on

developing the optimization space to intelligently and successfully design waveforms

for particular quality of service needs under given environmental conditions. The

analysis develops the problem into a multi-objective optimization process to optimize

and trade-off of services between objectives that measure performance, such as bit

error rate, data rate, and power consumption. The discussion of the multi-objective

optimization provides the foundation for the analysis of radio systems in this respect,

and through this, methods and considerations for future developments. The theo-

retical work also investigates the use of learning to enhance the cognitive engine’s

capabilities through feed-back, learning, and knowledge representation.

The results of this work include the analysis of cognitive radio design and imple-

mentation and the functional cognitive engine that is shown to work in both simula-

tion and on-line experiments. Throughout, examples and explanations of building and

interfacing cognitive components to the cognitive engine enable the use and extension

of the cognitive engine for future work.
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Chapter 1

Introduction to Cognitive Radio

With a growing demand and reliance on constant connectivity, the standard modes

of communication no longer apply. Of decreasing relevance are the models of a sin-

gle radio to perform a single task. The expansion of wireless access points among

coffee shops, airports, malls, and other public arenas is opening up new services and

possible applications. In the data market, new technologies such as the IEEE 802.16

“WiMAX” standard are being deployed, and mobile phone companies are offering

services to customers for wireless connectivity over their networks without reliance

on a WiFi access point. Meanwhile, I am currently writing in Ireland, whose citizens

reportedly text message more per capita than any other country.

All of these applications and technologies offer trade-offs in quality of service

and cost of service where quality of service is the effectiveness of the communications

provided time, data rates, form factor, and location. A person sending a text message

on a train is not expecting an immediate response, but a conference call set up over

a WiMAX connection better have real-time service.

The work of this dissertation addresses the use of cognitive radio technology to

provide quality of service of communications systems by adapting the physical (PHY)

and, to a small extent, Medium Access Control (MAC) layers. The major contribution

is the formalization of radio optimization as a multi-objective optimization problem

where radio resources are traded-off to affect a desired quality of service driven by

either a user or a specific application.

1.1 Brief Concept of Cognitive Radio

The terms knobs and meters come from classical transceivers with adjustable controls

(knobs) that control the radio’s operating parameters and meters which display cer-
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tain performance or operating parameters of the system. An example is a frequency

modulation (FM) broadcast receiver with a tuning knob to select which station to

tune to as well as equalizer knobs to adjust the sound quality. Meters might consist

of a received signal strength measure or simply a light showing if the station is being

received as mono or stereo sound.

In cognitive radio parlance, the waveform is the wireless signal transmitted that

represents the current settings of all of the radio’s knobs. Meters represent the met-

rics used in the optimization problem. Such knobs include the type of modulation

and modulation parameters, frequency channel, symbol rate, and channel and source

coding. Meters include bit error rate (BER), frame error rate (FER), signal power,

battery life, and computational resources.

1.2 Very Brief Cognitive Radio History

Early radios were designed with specific tasks in mind, such as an FM radio or

television receiver. Even many contemporary devices operate in this way, such as the

walkie-talkie and WiFi networks. Mobile phones share many of these same features

as dedicated to a single service, namely voice communications, but are branching

out more and more. Modern mobile phones generally support many different modes

or waveforms for different networks and frequency bands as well as the ability to

text message. Some are now equipped with Bluetooth and WiFi radios to extend

their use and capabilities to different services. These devices increased in complexity

by including such techniques as adaptive power control or modulation adaptation in

response to signal quality.

As both communications and computing technology advanced, it was inevitable

that the two continue to integrate, defining the field known today as software defined

radio (SDR). Communications devices are increasingly putting signal processing ca-

pabilities into software. As I will discuss in more detail later, the SDR offers many

advantages in waveform design and communications concepts. With the flexibility

SDRs offer, the next step was to utilize the computing power to adapt more of the

waveform, making better use of the available communication system.

Joe Mitola is credited as defining the field of cognitive radios [1] with an interest in

using the radio system as a personal assistant of sorts that intelligently reacts to the

user’s perceived needs. The concept of cognitive radios has since evolved towards a

more communications-centric view of the radio. With a reconfigurable SDR system,

a cognitive radio uses sensors to collect environmental information as well as an
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intelligent core to react to changes and challenges provided by the environment and

user needs. A cognitive radio reacts and adapts to changes in the environment to

provide continuous communications at a required quality of service (QoS).

For a comprehensive history and review of the goals of cognitive radio, the book

Cognitive Radio Technology provides the first published collection of cognitive radio

research [2]. Chapters cover many different areas of cognitive radios, including history,

policy and regulations, and implementation technology. The work that has developed

into the document was published in this volume. Another comprehensive source of

cognitive radio discussion is a set of papers published by Simon Haykin [3, 4]. I will be

referencing his work in the chapters to come. The other areas that are directly related

to the implementation of cognitive radio and cognitive radio-like technology include

the XG program, the IEEE 802.22 standard, and the IEEE P.1900 effort, now known

as Standards Coordinating Committee (SCC) 41. The XG program [5] is a dynamic

spectrum access (DSA) system that provides seamless communications while changing

frequencies to keep from interfering with other networks as well as taking interference.

The sensing, selection, and coordination of the use of radio spectrum, as well as a

workable system, are all significant advances in the field. The goal of the IEEE 802.22

standard is to use cognitive radio technology to make use of unused spectrum and

enable wireless regional area networks (WRAN) [6] while the IEEE SCC 41 works

on more general cognitive radio and dynamic spectrum access standardization efforts

[7].

1.3 Definition

The definition of cognitive radio has been under debate since its introduction. In

particular, much of the early work in cognitive radio deals with the concept of DSA,

that is, dynamically selecting frequency channels to enable spectrum sharing and

reuse. While this is one of the applications of cognitive radio, it is certainly not the

only one. The other aspects of cognitive radio develop more of a service-oriented

view of communications whereby the entire communications system is adapted to

offer better quality of service. The service model extends beyond the DSA model by

looking at the system performance and not just the slice of spectrum allocated.

Instead of worrying about exact definitions as they are argued in the standard-

ization bodies, the remainder of this document will deal with the goals of cognitive

radio. The goal is to build a flexible, reconfigurable radio that is guided by intelligent

processing to sense its surroundings, learn from experience and knowledge, and adapt
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the communications system to improve the use of radio resources and provide desired

quality of service.

1.4 The Thesis

To enable the goals of cognitive radio, this document discusses an architecture of a

cognitive engine to realize the necessary components of a cognitive radio. The cogni-

tive engine, at a minimum, is designed to coordinate a set of sensors, an optimization

routine, a learning and decision making system, and the underlying reconfigurable

radio system. In this document, I show the design and implementation details of the

cognitive engine components. Through the design of the cognitive engine, I discuss

different applications of artificial intelligence to solve the problems faced by a cogni-

tive radio and demonstrate how some of these methods improve communications.

1.5 Contributions

In this dissertation, I provide the following contributions to the subject:

1. A description and discussion of the artificial intelligence methods used in cog-

nitive radio research.

2. The design and development of a cognitive engine that provides a full cognitive

radio solution.

3. Details and discussion of the cognitive engine adaptation as a multi-objective

optimization problem.

4. A description of the physical layer as a set of objective functions, methods of

analyzing them, and ways they can be traded-off in the optimization system

depending on performance criteria. This discussion provides the analysis in the

physical layer, but the lessons learned through this will allow expansion of the

techniques to other aspects of radio adaptation.

5. The implementation of a highly flexible genetic algorithm to perform the multi-

objective optimization. The operation of the genetic algorithm optimization

system easily allows updates and additions to the optimization problem space

as well as the dynamic creation of chromosomes to represent the waveform, and

thus, it provides a solution independent of the search space and communications

system.
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6. The introduction of case-based decision theory to learn and improve cognitive

radio behavior.

7. A design and mechanism to easily introduce new cognitive radio methods and

components to test, experiment, and compare different solutions. The pro-

cess also has the benefit of allowing easy distribution and sharing of cognitive

components throughout a network, enabling knowledge sharing and distributed

processing among cognitive radios.

8. Results and experiments of the cognitive engine on a real software radio plat-

form. The cognitive engine is shown to easily support different cognitive radio

designs and to transition between a simulation environment and a real, over-

the-air radio system.

1.6 Contents

The flow of this dissertation begins by describing what a cognitive radio is and the

pieces that, together, make a cognitive radio. The basic processing elements and

their capabilities are implemented as modular components. Each component can be

developed and tested independently before integration with the rest of the engine.

This is discussed in detail in Chapter 2 and built upon throughout the rest of the

chapters.

Contributions to the cognitive radio theory include specific implementations of

artificial intelligence (AI) to radio optimization. Chapter 2 discusses the use of AI

within the context of wireless communications and reviews some of the work that has

developed here. Chapter 3 introduces the principles of SDR. While there is no new

theory added to the field of SDR, it is necessary to understand how they work in

order to support the remaining chapters. The chapters on AI and SDR lead to the

main theoretical focus of this work that includes radio optimization in Chapter 4, the

genetic algorithm optimization method in Chapter 5, and case-based decision theory

and decision making in Chapter 6 is used to improve the optimization.

Chapter 7 addresses the practical issue of controlling radio nodes in a network

during reconfiguration of the physical layer waveform. Following these concepts of

optimization and control with a cognitive engine, Chapter 8 provides a working ex-

ample of the developed cognitive engine and provides an experimental scenario to

understand the performance and behavior. Chapter 9 wraps up the dissertation by
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discussing a number of advanced topics and extensions to the theory and implemen-

tation provided here.
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Chapter 2

The Cognitive Engine: Artificial

Intelligence for Wireless

Communications

This chapter describes the function of a cognitive engine as well as the form and design

of the cognitive engine developed for this work. The description and development of

the cognitive engine leads to a more general treatment of the use of learning techniques

and artificial intelligence in wireless communications systems at the end of the chapter.

The cognitive engine (CE) design serves two simultaneous objectives:

1. Develop and apply cognitive radio algorithms

2. Deploy cognitive radio functionality

In particular, the actions of a cognitive radio (CR) follow the cognition cycle first

proposed by Mitola [8]: observe, orient, plan, decide, learn, and act. A revision of

the cognition cycle, first published in [9], is shown below in Figure 2.1. I use the

theoretical aspects of the cognition loop to develop the cognitive engine architecture

through this chapter.

2.1 Cognitive Radio Design

A cognitive radio is a flexible and intelligent radio capable of creating any waveform

and using any protocol supported by the radio hardware and software. Waveforms

consist of all of the parameters that define the way in which the radio transmits and

receives information, including transmitter power, operating frequency, modulation,
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Figure 2.1: CWT’s Cognition Cycle

pulse shape, symbol rate, coding, etc. Protocols are the rules by which network nodes

transfer information. A cognitive radio develops waveforms and chooses protocols in

real-time using artificial intelligence. These actions require three components:

1. Perception: Sensors that collect data on both external factors (channel con-

ditions, other radios, regulations, user needs) and internal factors (waveform

capabilities, available computational power, remaining battery power).

2. Conception: An intelligent core that learns and understands how to combine

knowledge from the sensing mechanism to aid the adaptation mechanism.

3. Execution: An optimization and adaptation mechanism that alters the radio’s

behavior.

Figure 2.2 presents a generic architecture for a cognitive radio. The cognitive

engine is a separate system within the total solution, which relies on information

from the user, radio, and policy domains for instructions on how to best control the

communication system. This structure works well as a generalized architecture as it

makes no recommendations about how the cognitive engine (and therefore the rest

of the cognitive radio) should behave while still mapping the interactions of the rest

of the systems. The communications system itself is shown as a simplified protocol

stack, again showing the independence of the cognitive engine from the overall system.

In Figure 2.2, there are three input domains that concern the cognitive radio.

The user domain tells the cognitive engine performance requirements of services and

applications. Service and application requirements are related to the quality of service
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Figure 2.2: Generic Cognitive Radio Architecture

measures of a communications system. As each application requires different QoS

concepts like speed and latency, this domain sets the performance goals of the radio.

The external environment and RF channel provide environmental context to the

radio’s transmission and reception behavior. Different propagation environments

cause changes in performance of waveforms and optimal receiver architectures. A

heavy multipath environment requires a more complex receiver than simple line of

sight only or log-normal models. The external radio environment also plays a sig-

nificant role in performance and adaptation. This environmental information helps

provide optimization boundaries on the decision making and waveform development.

Finally, the policy domain restricts the system to work within the boundaries and

limitations set by the regulatory bodies as interpreted by the policy engine. The

policy environment might determine a maximum amount of power a radio can use

in a given spectrum or other spectrum rights as compared with other users like the

recent proposal by the FCC for spectrum reuse in the 700 MHz band [10]. Important

regulatory action in the US includes the report and order on cognitive radio [11],

recent action against open source software for software radios [12], and the regulations

on Part 15 devices for use in unlicensed spectrum [13]. The rules from the FCC and

other regulatory bodies impose constraints on the optimization space with respect to

spectrum use and power.
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2.2 Cognitive Engine Design

To develop the cognitive capabilities of Figure 2.2, Figure 2.3 presents the architec-

ture of the cognitive engine. It includes a central component called the Cognitive

Controller that acts as the system kernel and scheduler to handle the input/output

and timing of the other attached components. The other major components include:

Sensors: collect radio/environmental data

Optimizer: given an objective and environment, create an optimized waveform

Decision Maker: coordinate information and decide on how to optimize and act

Policy Engine: enforce regulatory restrictions

Radio Framework: communicate with the radio platform to enable new waveforms

and pull information for the sensors

User Interface: provide control and monitor support to the cognitive engine

Each component is launched as a separate process that interfaces and exchanges

data between processes through some generic interface (i.e., sockets).

The architecture is designed around two important aspects. First, it allows de-

velopment, testing, and launching of each component separately for low coupling

between processes. This aspect also enables distributed processing, where different

components can reside on different processors or hosts with little change in behav-

ior. Second, this architecture enables the testing of different types of algorithms and

processes to realize different components. Many different sensors may be defined for

different purposes by different people and easily fit into the system, or different opti-

mization functions may be developed and compared. Through this architecture, both

research and development are encouraged.

2.3 Component Descriptions

The following sections provide more detail into the purpose and design of the system

components.
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2.3.1 Sensors

Sensors collect data from the radio or other systems to describe and model the environ-

ment. Environmental data can include almost anything that will help the radio adjust

its behavior, including radio propagation, interference models (temperature), position

and location, time, and possible visual cues. The sensors collect the information by

any means available or necessary: developed by a third-party, pre-built libraries, or

specifically developed for use with the cognitive engine. In whatever manner the

data is collected, the important aspect of a sensor is having a standard approach to

how data is transferred to the cognitive controller. The application programmable

interface (API) is described as a simple state machine with a few important states:

• Initialization

• Wait for data request from cognitive controller

• Collect data and build model
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• Transfer model to cognitive controller

Initialization builds the proper interfacing to the cognitive controller. The sensor

then enters a wait state to listen to its interface for a request for data from the

cognitive controller. When the sensor receives a request, it performs its data collection

process, possibly by calling external libraries or applications, and then packages the

data into an eXtensible Markup Language (XML) format to describe the sensor data.

The XML data is transmitted to the cognitive controller, and the state machine

returns to its wait state.

Another look at the structure of a sensor is shown in Figure 2.4.

Interface description

external application,
library, etc.

sockets, SOAP, etc.

Sensor State Machine

Data collection library or
process API

XML Modeling

Figure 2.4: Sensor State Machine Architecture

Along with a standard interface to transfer information, the system also requires

a standard for encoding the information. As indicated above, this standard is XML.

The use of this standard satisfies a couple of competing goals. XML provides a method

of encoding data that is open, flexible to support new and developing sensors, and

it is both human and machine readable. XML also has a standardized format and

methods of verifying the format (via a document type definition (DTD)) to make

integration with the cognitive controller easy. The listing below shows the basics of

the XML sensor format.

<?xml version=‘‘1.0’’?>

<sensor>

<model-name>‘‘model-name’’< \model-name>
<data-tag type=‘‘type’’ size=‘‘size’’ unit=‘‘unit’’>‘‘value’’< \data-tag>
. . .

< \sensor>

The first line simply defines this as an XML v1.0 file. The next line says that this is

a model from a sensor process. The particular model name is then the character data
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of the “model-name” tag. The remaining tags contain the model data. The important

practice for proper representation of model data is shown in the fourth line where the

data type, size, and unit are defined. The specification of the data type can be any

type used by a particular database or language specific to the processing of the data.

For instance, data used with a MySQL database can have the type “int,” “float,” or

“char.” The size information indicates the number of items included in this data tag;

basically, this is defined to help represent vector data. If this attribute is ignored,

a value of “1” is assumed. The “size” attribute is an admittedly ugly method of

enabling lists or vectors of data that are comma- or space-separated values. The final

standard attribute describes the unit value the data represents such as dBm for power

of Hz for frequency.

The listing below shows an example of a possible model received from a power

spectral density (or energy detector) sensor. It contains one item that defines its

noise floor as -85 dBm and one signal present in the environment that has a received

amplitude of -50 dBm between the frequencies 449 MHz to 451 MHz.

<?xml version=‘‘1.0’’?>

<sensor name=‘‘psd’’>

<noise-floor type=‘‘double’’ size=‘‘1’’ unit=‘‘dBm’’>-85< \noise-floor>
<signal>

<amplitude type=‘‘float’’ size=‘‘1’’ unit=‘‘dBm’’>-50< \amplitude>
<fmin type=‘‘float’’ size=‘‘1’’ unit=‘‘Hz’’>449e6< \fmin>
<fmax type=‘‘float’’ size=‘‘1’’ unit=‘‘Hz’’>451e6< \fmax>

< \signal>
< \sensor>

Another important (possibly the most important) sensor is the sensor that collects

meter information from the system. This sensor collects the system information such

as noise power, signal power, bit error rate, battery life, or any other meter available.

<?xml version=‘‘1.0’’?>

<sensor name=‘‘meters’’>

<ber type=‘‘float’’ size=‘‘1’’>0< \ber>
<per type=‘‘float’’ size=‘‘1’’>0< \per>
<ebno type=‘‘float’’ size=‘‘1’’ units=‘‘dB’’>0< \ebno>
<tx signal power type=‘‘float’’ size=‘‘1’’ units=‘‘dBm’’>0< \tx signal power>

<rx signal power type=‘‘float’’ size=‘‘1’’ units=‘‘dBm’’>0< \rx signal power>

<noise power type=‘‘float’’ size=‘‘1’’ units=‘‘dBm’’>0< \noise power>
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< \sensor>

More information on these documents, format, and the inialization procedures are

provided later as the cognitive engine is further developed.

2.3.2 Optimizer

The optimization process takes environmental or user-oriented information from the

sensors or user interface to select or design a waveform that will maximize the per-

formance. Items that affect the optimization process include the user/application

needs, the physical (propagation) environment, available resources (e.g., spectrum),

and the regulatory environment. Given a required QoS, the cognitive engine asks the

optimizer to produce a waveform that comes as close to the QoS values as possible

with respect to the provided environmental data. Depending on the implementation,

the optimization may build a new waveform or select it from a list of pre-defined

waveforms designed for specific problems.

The optimization process makes up a large part of this work and will be discussed

in detail later, specifically in Chapter 5. Furthermore, there are many implemen-

tations of an optimization process with plenty of research in the field remaining. I

touch upon some of these techniques later in this chapter while the genetic algorithm

approach presented in Chapter 5 provides a complete implementation as a starting

point.

2.3.3 Decision Maker

The decision making component of the cognitive engine helps understand the infor-

mation provided by the sensors and helps make decisions about actions to take. The

decision maker uses the sensor information to determine if reconfiguration is required

due to poor performance or signs of decreasing performance. If optimization is re-

quired, the decision maker should also provide some context, such as an optimization

goal (e.g., high throughput or low battery consumption) or a time limit for when a

new waveform is required. The decision maker also uses past knowledge to provide

the optimization process with information to help it in its work.

The current method of decision making uses case-based decision theory (CBDT)

[14]. CBDT keeps a database of observed cases, the actions taken to respond to those

cases, and results of the action. When the sensor provides new data, the case that

is the most similar and most useful is chosen from the case-base as an action, or
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initial solution, to the optimization process. The decision maker then determines if

optimization needs to take place to build a better waveform, or it could decide instead

to use the waveform from the case-base and bypass the optimization process if the

waveform performs well or given lack of time to find an alternative solution.

The decision maker and CBDT are discussed in more detail in Chapter 6.

2.3.4 Policy Engine

The optimization process takes sensor data and creates a new waveform to meet some

specified QoS. However, before the waveform returned by the optimization process

can be sent to the radio, the cognitive controller must ensure it is legal with respect

to the local regulatory restrictions. The policy engine does just that. The policy

engine must test and authenticate a waveform. There are many ways to look at

this process, but most of them involve databases of regulatory policies that restrict

waveform transmission based on frequency and power with time as another possible

dimension.

An important aspect to policy engines is that they must meet two competing goals

within the cognitive radio world. First, it must be secure such that illegal waveforms

cannot be transmitted. Second, the policy engine must be liberal enough to allow

many different types of waveforms to run on the system as well as grow and change to

match changing regulatory environments. Both of the above objectives require some

form of authentication. The policy engine exists as an external component in the

generic cognitive radio of Figure 2.2 to help satisfy these requirements by allowing

verified third-party systems to function here. I will not pursue the problem of policy

and verification further except to use the work developed in [15].

2.3.5 Radio Framework

The radio framework is the component that translates between the cognitive engine

and the radio platform. This is effectively middleware between the generic represen-

tation used by the cognitive engine and the implementation-specific requirements of

different radio systems.

When the cognitive engine wants to reconfigure the radio’s waveform, it uses a

generic, communications theory representation in XML that is most likely meaningless

to the radio. The representation describes the physical layer behavior in terms of

communications concepts like symbol rate, modulation type, and carrier frequency.

The radio framework then translates these values to commands specific to the radio
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platform.

The mapping between the XML format to the radio-specific format is done by

first parsing the XML file from the cognitive engine and formatting the commands

used to configure the radio. The diagram in Figure 2.5 shows a generic interface for

performing the translation with different modules plugged into the system for each

different radio, as though they were device drivers.

Cognitive
Engine

XML
Implementation

File
Radio

Platofrm
(SDR)

C++

Java
Python

TCP/IP
TCP/IPXM

L P
ars
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Figure 2.5: Translation from XML Generic Format to Radio-specific Command

The radio framework used in this work is the GNU Radio software radio. This

radio is discussed in detail in Chapter 3. A simple Python XML parser reads the

XML format and builds a GNU Radio flowgraph. Scaperoth’s paper [16] provides

both the philosophy behind the use of XML for the interface language as well as the

starting point to the waveform representation. The following XML shows the latest

representation for describing a GNU Radio transceiver.

<?xml version=‘‘1.0’’ encoding=‘‘utf-8’’?>

<waveform type=‘‘digital’’>

<Tx>

<PHY>

<rf>

<tx freq>408500000< \tx freq>

<tx power>0.1< \tx power>

< \rf>
<mod>

<tx mod type=‘‘PSK’’>

<tx mod bits>1< \tx mod bits>

<tx mod differential>1< \tx mod differential>

< \tx mod>

<tx rolloff>0.35< \tx rolloff>

<tx bt>0.0< \tx bt>

<tx gray code>0< \tx gray code>

<tx symbol rate>200000< \tx symbol rate>

< \mod>
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< \PHY>
<LINK>

<frame>

<tx pkt size>1450< \tx pkt size>

<tx access code>0< \tx access code>

< \frame>
< \LINK>

< \Tx>
<Rx>

<PHY>

<rf>

<rx freq>408500000< \rx freq>

<rx gain>35< \rx gain>

< \rf>
<mod>

<rx mod type=‘‘PSK’’>

<rx mod bits>1< \rx mod bits>

<rx mod differential>1< \rx mod differential>

< \rx mod>

<rx rolloff>0.35< \rx rolloff>

<rx bt>0.0< \rx bt>

<rx gray code>0< \rx gray code>

<rx symbol rate>200000< \rx symbol rate>

< \mod>
<frame correlator>

<ACthreshold>-1< \ACthreshold>
< \frame correlator>

< \PHY>
<LINK>

<frame>

<rx pkt size>1450< \rx pkt size>

<rx access code>0< \rx access code>

< \frame>
< \LINK>

< \Rx>
< \waveform>

2.3.6 User Interface

The user interface has widely varying responsibilities depending on the cognitive radio

use-case. In one instance, it could be a control window where all actions and responses

are controlled by a human operator, such as with a public safety radio. For more
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consumer-related applications where the cognitive radio should react autonomously

and adapt based on the user and applications’ requirements, the user interface may

be a simple configuration window setting up certain parameters. It could even be

that there is no user interface and the cognitive engine simply acts on its own; the

most idealistic view of cognitive radio.

2.3.7 Cognitive Controller Configuration

An important aspect of the cognitive controller is its ability to use many different im-

plementations of the components described above. As discussed above, to enable this

capability, each component is defined around a basic state machine that interfaces be-

tween the controller and the component. The cognitive controller, then, is configured

through an XML file that defines which components are currently attached, as shown

below. The interfacing can be defined as any potential transport layer. For example,

in the current design, simple TCP sockets are used and defined by the hostname of

the system running the component and the port number the component is listening

to. This design makes it simple to distribute processes among networked nodes just

by changing the hostname. To do this, of course, the transport needs to be secure

and stable, issues I have not yet addressed in the programming.

<?xml version=‘‘1.0’’ encoding=‘‘utf-8’’?>

<cognitive-controller>

<knowledge-base>

interface information
< \knowledge-base>
<sensor>

<name>meters< \name>
interface information

< \sensor>
<sensor>

<name>psd< \name>
interface information

< \sensor>
<optimizer>

interface information
< \optimizer>
<radio>

interface information
< \radio>
<user-interface>
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interface information
< \user-interface>
<policy-engine>

interface information
< \policy-engine>

< \cognitive-controller>

In this listing, each type of component is defined. Because a cognitive radio will

likely have multiple input methods for gathering information, the cognitive controller

can define and connect to multiple sensors. Here, the cognitive radio has a sensor to

collect the PSD of the radio environment as well as a sensor that collects radio per-

formance meters. Each is described by a specific name which the cognitive controller

uses to identify the sensor when collecting information.

2.4 Artificial Intelligence for Wireless Communi-

cations

Successful cognitive radios are aware, can learn, and can take action for any situation

that might arise. Applications range from voice communications under low power

conditions, communications in high interference zones, to more complex, critical, and

hostile military networks of interoperating vehicles and soldiers with many different

network needs. A radio must respond to any of these scenarios and adapt its many

different parameters that define the radio’s waveform and protocols. These radios do

not just require learning; instead, they need highly sophisticated learning and decision

making capabilities.

Machine learning has been well documented and received both criticisms [17] and

praise [18]. Successful applications of AI are often limited to narrowly defined, well-

bounded applications. While waveform adaptation is a bounded problem, the tech-

nical demands for intelligence in a radio exceed those normally associated with suc-

cessful applications of classic artificial intelligence techniques such as expert systems

or neural networks. Waveform optimization requires stronger reasoning capabilities

and the potential to create and test new design solutions.

A common theme I will continue to develop is the combined use of both learning

and optimization processes. Feedback from a learning system can augment the op-

timization routines through comparisons between the radio’s actions and the desired

outcomes of the optimization. Furthermore, as touched upon in this chapter and
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developed in Chapter 6, a learning system can significantly aid decision making in

time-constrained situations. If the cognitive radio requires an immediate solution, the

learning system can provide a known working solution developed in the past. Given

time or lack of valid solutions, the optimization process can develop new solutions or

evolve old solutions for better operation.

Information and knowledge are both important concepts for a cognitive radio.

Information is data of the environment collected through the available sensors. Infor-

mation can include such items as position, interference, battery life, or performance

analysis. The information collected from the sensors feeds both the learning and the

optimization routines to help them make decisions. Knowledge is a concept devel-

oped from information. Knowledge is a useful representation of the information that

says something about what the information means. The sensors might provide the

cognitive radio with time and position information, but the radio needs to know what

that information might mean about potential use patterns and known problems, such

as areas of outage or high interference during a daily commute.

More information is good, but only if the cognitive engine can transform the

information into usable knowledge. Some sensors might provide a lot of information

such as ambient temperature, but if the models used to make decisions do not use

that information, the sensor adds no useful knowledge to the system. On the other

hand, sophisticated sensors that provide information about interference power over

a wide bandwidth can find immediate use by a cognitive radio seeking access to a

particular amount of spectrum.

2.5 Artificial Intelligence Techniques

Below, I list several AI techniques/areas receiving considerable attention in the lit-

erature on cognitive radio. I present and review a few particularly relevant papers

regarding each AI technique, specifically the papers that well represent the field or

that provide comprehensive background themselves.

There are a couple of well-known areas of AI techniques that I purposefully left

out. One large technique in signal processing is the Bayesian network. This powerful

learning technique based in Bayes’ theorem uses past experience to enhance future

decisions. The reason this technique is excluded from the following discussion is be-

cause there is little published work in the use of Bayesian networks in cognitive radio.

Haykin, who has a history of work with these and other AI techniques in commu-

nications, cites the approach in his article on cognitive radar [4], but does not offer
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details for how to employ the technique. A few brief discussions of Bayesian networks

are seen in a few publications, and they are used in other aspects of communications

and signal processing, and so the technique will likely start making a serious impact

soon.

Another popular AI technique is the expert system. Expert systems have been

successful in some applications, particularly early in the development of AI such as the

DENDRAL project in organic chemistry [19]. Mitola address the concept of expert

systems at length in his dissertation on cognitive radio [1] in which he mentions the

ideas of “knowledge-engineering bottle necks and software of limited flexibility” due

to the needs of domain experts. There may exist limiting cases for the use of expert

systems, but it is not an independent approach to realizing cognitive radio.

The next few sections highlight different artificial intelligence techniques that use

information to make knowledgable decisions in the cognitive radio. As Arthur C.

Clarke famously said, “any sufficiently advanced technology is indistinguishable from

magic.” Likewise, it might be true that any sufficiently advanced signal processing

algorithm is indistinguishable from artificial intelligence.

2.5.1 Neural Networks

Neural networks are among the oldest form of AI in computer science, starting with

the mathematical formulation by McCulloch and Pitts [20]. They have come and gone

as a fad over the decades, but recent advances, both hardware and software, enable

their use in more applications. Of particular importance to cognitive radios, neural

networks provide a means for signal and modulation detection and classification.

Chan, et al. [21] did some of the early published work on signal classification

algorithms with decision theoretic and pattern matching. Both methods used time-

based statistics, and neither proved too robust under low SNR conditions. Azzouz

and Nandi then did some important work on the subject later [22] and did some

of the early work using neural networks as the signal processing technique of choice

that showed greater promise in classification of more signals under noisier conditions

[23]. The use of neural networks in modulation classification has since become as

well-accepted technique using both time-based statistics [24] and frequency analysis

[25] inputs.

Neural networks are really just glorified signal processing elements that perform

simple operations on data. However, the collection of artificial neurons and clever

learning algorithms allow networks to build and adapt to represent and process data
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in interesting ways. In signal classification, they take multiple noisy input items and

provide highly accurate (when built correctly) answers to the type of modulation

represented.

2.5.2 Hidden Markov Models (HMM)

In some circles, Hidden Markov Models (HMM) [26] might be considered artificial

intelligence, though I certainly would not categorize them as such. A HMM is a

processing tool that uses past data to help predict future actions. I discuss them

here because they are useful in communications and cognitive radios, and while this

section is all about AI techniques, there is no other place to put this.

The best reference to learn about how HMMs work is Rabiner’s tutorial [26].

Channel modeling has extensively used Markov models in research. Probably the

most famous is the two-state Gilbert-Elliot model [27] that describes a channel as in

either a good state or bad. When in one state, there is a probability of either staying

in that state or moving to the other state. The channel properties determine the type

of transition probabilities. Researchers have developed other, more extensive models,

and [28] provides a good comprehensive overview of these.

The idea of developing such a model lends itself to cognitive radios. Rieser and I

looked into using HMM’s in channel models using genetic algorithms as the training

method over the Baum-Welch algorithm [29] in order to develop compact channel

models based on information gathered in a live system to represent the current channel

statistics. The idea was to use the HMMs as a sensor to understand the channel

behavior in a cognitive engine, though the research was not taken much farther in

this direction.

Mohammad’s work used HMMs for a similar purpose, but was able to develop

classification schemes in order to use the models for decision making in a cellular net-

work [30]. The ability he developed to calculate a similarity distance between HMMs

provides promise for future implementation in a cognitive radio system, especially in

the context of the environmental modeling used in a case-based system as discussed

in Chapter 6.

2.5.3 Fuzzy Logic

Fuzzy logic is a famous technique that started during the early development of arti-

ficial intelligence [31, 32]. Because it deals extensively with uncertainty in decision

making and analysis, it has great potential for application to cognitive radio. How-
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ever, only a little work has so far been published in the field, notably by Baldo and

Zorzi [33]. Their implementation suggests some interesting applications, and the dis-

cussion points out larger uses than the specific application of adapting the TCP layer

used in the paper. A problematic aspect of this work is the amount of domain-specific

rules required. All implementations of AI require domain information, but fuzzy logic

must establish a rule related to the specific situation in which it is used and recalls

some of the limitations of expert systems, though still far more flexible and powerful.

Fuzzy logic has potential in either specific problem solving areas or as a subset or

part of a cognitive radio.

2.5.4 Evolutionary Algorithms

Christian Rieser and I pioneered the use of genetic algorithms [34, 35] early in cog-

nitive radio research [36, 37, 38], which this work extends. The basic principles, as

discussed throughout, are that the large search space involved in optimizing a radio

are more complex than many search and optimization algorithms can handle. Among

those algorithms that are suited to the task, evolutionary, specifically genetic, algo-

rithms offer a significant amount of power and flexibility. Cognitive radios are likely to

face dynamic environments and situations as well as radio upgrades due to advancing

technology, so genetic algorithms are particularly applicable.

Since then, Newman, et al. [39] have also contributed significantly to the use

of genetic algorithms for cognitive radios. As I will discuss in detail in Chapters 4

and 5, one of the main issues involved in successful genetic algorithm behavior is

the selection of the fitness, or objective, function(s). Newman’s work has developed

a single, linear objective function to combine the objectives of BER minimization,

power minimization, and throughput maximization.

Mähönen, et al. are also doing work using genetic algorithms for cognitive radio

[40]. The topic of their research discusses the use of a cognitive resource manager

(CRM) to select an algorithm from a toolbox of algorithms to solve a particular

problem. The paper specifically points out the use of genetic algorithms for multi-

dimensional problem analysis, which I address in Chapter 4 with the multi-objective

optimization analysis.

2.5.5 Case-Based Reasoning

The final traditional AI technique to discuss here is case-based reasoning (CBR)

[41]. CBR systems use past knowledge to learn and improve future actions. In these
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systems, a case-base stores actions and receives inputs from a sensor. Those inputs

help find the action in the case-base that best fits the information received by the

sensor. As mentioned previously, an optimization routine could, instead of designing

a new waveform, select a waveform from a pre-defined list. CBR is a method used to

make the associations. Although this may sound like an expert system, CBR systems

generally provide learning and feedback to continuously and autonomously improve

their performance. As information is received and actions taken, the results can help

the system improve its response the next time.

Another contribution from [39] develops a similar idea in the experiments they

run using previous knowledge to seed the next run of the genetic algorithm. The

cognitive radio remembers solutions found for one particular problem to apply to the

next problem to initialize the population with known successful chromosomes. The

population seeding in [39] resembles the case-based decision theory work presented

in Chapter 6. Their seeding concept uses a factor to calculate the expected change

in the environment between runs of the genetic algorithm to provide context for how

successful a new chromosome might be with respect to the new environment. I will

show later how the case-based work extends this idea by keeping a set of previous cases

observed and finding which case best matches the current environment as opposed to

assuming certain changes in the environment.

2.6 Conclusions

This chapter has introduced the concept of the cognitive engine as well as the im-

plementation I developed to realize the structure in an extensible, flexible platform.

The major components of the platform include: sensors, optimizer, decision maker,

policy engine, radio framework, and the user interface. The discussion of this chapter

focused mostly on defining the roles and responsibilities of each component to provide

the context from which to build a cognitive radio.

To realize a cognitive radio, AI provides many viable techniques and tools. I have

discussed many of these techniques with a brief literature review of each as related to

their application in cognitive radio. In later chapters, I use and develop these ideas

more in the design of the cognitive engine framework presented here.

My work deals largely in the optimization routine in Chapters 4 and 5 and on

the decision maker and learning routine in Chapter 6. From this introduction of the

cognitive radio and cognitive engine, the next chapter introduces the radio framework

required for use by the AI approaches in the later chapters.
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Chapter 3

Overview and Basics of Software

Defined Radios

The first part of this chapter covers a basic introduction to SDR but is not meant to

provide an in-depth analysis of the subject, new information, or research to the field.

In this chapter, I provide the necessary information on SDR technology to explain

why it is used as the implementation platform for the cognitive radio work including

benefits and potential problems. For a more complete coverage of SDR technology

as well as a comprehensive list of references in the field, see Reed [42] and Tuttlebee

[43]. The remainder of the chapter then provides an overview of the GNU Radio SDR

and the specific implementation of a GNU Radio transceiver used as the platform for

the cognitive radio experiments.

3.1 Background

A software defined radio is a radio system where the majority of physical layer sig-

nal processing is done in software. The signal processing encompasses modulation,

forward error correction, spreading, filtering, and phase, frequency, and timing syn-

chronization, and so on.

Figure 3.1 shows the concept of an ideal SDR where the received signal comes

in from an antenna, is converted to the digital domain via the analog to digital

converter (ADC) and the rest of the signal processing is done in software. Likewise,

the transmitter performs all the signal processing in software and sends the signal out

of the antenna via the digital to analog converter (DAC). Unfortunately, in this type

of system, the requirements of the ADC and DAC far exceed practical capabilities like

the dynamic range, sampling rates, and bandwidth (see [44] for details of ADC tech-
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nology). Likewise, there are performance limitations when running software instead

of hardware implementations of communications systems.

ADC
Software

DAC

Figure 3.1: Ideal SDR

Given the limitations of realizing the ideal SDR, hardware can perform some of the

signal manipulation while processors of different types, such as field programmable

gate arrays (FPGA), digital signal processors (DSP), and general purpose processors

(GPP) can handle other parts of the signal processing. Figure 3.2 shows a very

high-level view of a radio transmitter. A SDR architecture design must decide which

components should be in hardware or software, and what type of processors should

run the software based on design needs and trade-offs.

frequency
up-conversionPulse shapingmodulation

FEC encodinginterleaving MAC and network
layers

Figure 3.2: High-level Practical SDR

In the next two sections, I discuss SDR capabilities in order to make the decisions

about how to partition the SDR design for cognitive radio.

3.2 Benefits of Using SDR

Probably the largest benefit of SDR technology is the flexibility it offers. Developing

software to perform signal processing offers large opportunities for improving the de-

velopment cycle. From an operations standpoint, developing and debugging software
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is much easier, practical, and cost-effective over designing and producing hardware

such as an application-specific integrated circuit (ASIC) where the turn-around time

is long and expensive and a large barrier to entry into the field.

From a service provider’s perspective, SDR offers easy service upgrades and bug

fixes in deployed systems. If a new system or waveform is required, as long as there is

enough processor power, software updates can be pushed to a system operating in the

field [45]. A successful example of this was the recent upgrade of Vanu, Inc.’s mobile

base-stations that were running a global system for mobile communications (GSM)

system and were upgraded to support code division multiple access (CDMA) [46].

This capability saved time and cost of design and deployment as well as lowered the

costs to the service provider, who did not have to install a new system. Although

in the specific case of Vanu, Inc., the SDR is done primarily in general purpose

processors, many SDR platforms are being built around FPGA’s, which can easily

handle concepts like software upgrades when changes are infrequent and do not require

real-time adaptation of a waveform. While FPGA’s offer significant performance and

power, changes to the FPGA firmware can take on the order of seconds; an acceptable

lag when updating a system, but not quite for reconfiguration of a waveform in a

cognitive radio setting.

Another benefit following these two items is the concepts of reusability of software.

When written well with a concept of modular code, software can be ported between

processors with minimal rewriting required. Unfortunately, this is not entirely the

case in today’s FPGA-based SDR systems where the software language, generally

very high-speed integrated circuit hardware description language (VHDL), is too

low level and does not provide sufficient abstraction to be platform independent.

I suspect this will change as more influence from the computer science community

affects development practices in the SDR world. In the systems that are GPP based,

however, code portability is a major advantage.

Cognitive radio depends on having as much flexibility in waveform design and

reconfiguration as possible, and the more flexible the underlying platform, the more

useful the cognitive radio is. The case of cognitive radio, unlike over-the-air downloads

or service upgrades, requires real-time reconfiguration of much of, if not the entire,

waveform. For the reconfiguration, given current technology, a GPP should handle

the majority of the signal processing; that is, minimum hardware, maximum GPP.

Another benefit of SDR is that, being software already, it is easy to test individual

signal processing blocks, simulate performance and test behavior in a closed system

and then reuse the same software for a real, over-the-air system. Later in this chapter,
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I will discuss the GNU Radio SDR platform I use in which I simulate the performance

and then use the same transmitter and receiver for over-the-air experiments.

3.3 Problems Faced by SDR

Of course, all the benefits of SDR come with a cost, specifically in terms of power

consumption, speed, and efficiency. In hardware, the designer can optimize a circuit

or chip for a particular purpose that will provide the processing required at the

lowest possible power consumption, and hence the name application specific integrated

circuit. On the other hand, general purpose processors provide the flexibility and reuse

concepts discussed previously, but they do not achieve the same efficient performance

as a hardware system dedicated to a particular waveform.

Luckily, many of these problems identified here are engineering challenges that

cross a variety of disciplines. Processor technology is stepping up to the computing

challenges offered with multi-core techniques, advanced instruction sets like single

instruction multiple data (SIMD), and graphics processing unit (GPU) being used in

multimedia and physics processing [47]. Multi-core processors currently offer some

of the most incredible advances in general purpose computing power [48], especially

concepts like that used in the IBM CELL processor and future asymmetric multi-core

processors [49]; that is, different types of cores for different processing purposes. In

this type of design, GPP-like cores can provide logic and control while GPU-type

cores enable high-speed, efficient signal processing. A further advantage of multi-core

and multi-processors systems is that operations can take place in parallel.

Parallelization directly lends itself to SDR processing. First, parallelization allows

the receive and transmit paths to operate simultaneously. Second, when segmenting

a data stream into blocks of samples, different cores can process each block along

each path. With this structure, the SDR can process different tasks such as timing

synchronization, demodulation, decoding, and framing in parallel.

There will always be a need for some signal processing to take place in hardware

such as amplification and high frequency mixing. Other aspects will greatly benefit

from implementation in FPGAs while cognitive radio requires as much as possible in

the most flexible systems available. In the next section, the GNU Radio implemen-

tation provides an example of a GPP-based SDR useful in cognitive radio work.
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3.4 GNU Radio Design

One of the most popular SDR implementations is the GNU Radio [50], a GNU

(the clever recursive acronym for “GNU is Not Unix”) project of the Free Software

Foundation (FSF) to provide a GPP-based open source software defined radio. The

GNU Radio is a pure software package that provides signal processing blocks, discrete

components to perform a specific task. Each of these components is a C++ class

which a developer can connect to other blocks to create a flow graph. A block can be

a source with only output ports, a sink with just input ports, or a general block with

both inputs and outputs. Currently, the GNU Radio supports many signal processing

blocks and a number of waveforms. Blocks include finite impulse response (FIR) and

fast Fourier transform (FFT) filters, simple arithmetic operations, complex number

processing and transformations, frequency translation, and waveform-specific tech-

niques such as Costas loops [51, 52] and timing synchronization blocks such as the

Mueller and Müller synchronization block [53, 54].

A software-only SDR does little actual radio communications without a means to

get to and from the radio frequency (RF) domain. A device is required to do convert

between the analog, RF domain and the digital, software world. These devices are

referred to as either air interfaces of RF front-ends. A parallel project with the GNU

Radio to provide an air interface is the Universal Software Radio Peripheral (USRP)

[55]. The USRP is a board that does basic intermediate frequency (IF) processing

of up and down conversion, decimation and interpolation, and filtering. Along with

the USRP board are a set of daughterboards to perform the final analog up and

down conversion, filtering, and amplification. The USRP provides the air interface

to convert between the digital baseband processed in the SDR and the analog, RF

domain. While the USRP and GNU Radio are parallel development projects, they

do not necessarily depend on one another as other SDR platform use the USRP (e.g.,

[56, 57]) and other RF front ends can run GNU Radio as the signal processing system.

The GNU Radio approach draws the line in Figure 3.2 between the pulse shape

filter and the frequency up-conversion block. Minimal code runs on the USRP; its

responsibilities only cover the final stages of filtering, interpolation/decimation, and

up-/down-conversion. The GNU Radio handles the rest of the signal processing to

fall in line with the general principle of GNU Radio: flexible, easy to program, and

available software for anyone to build SDR waveforms. Therefore, the responsibilities

of the USRP only account for those parts of the waveform that are, to a great extent,

required for any given waveform. Along with this, the USRP also follows open source

Thomas W. Rondeau 29



rules, so all of the code is published and available and anyone is allowed to modify it

to perform more processing in the USRP if they so desire.

The flow graph design of the GNU Radio allows for abstraction and visualization.

Once instantiated, a signal processing block becomes an object, or node, in the graph.

From a graph theory perspective, these graphs are simple, flat graphs with no loops

that have at least one source and one sink. Information starts from the source, flows

sequentially though the remaining blocks in the graph until it terminates at a sink.

Types of sources and sinks include vectors to input or output raw data, files to read

and write from a disk, Ethernet to read and write from a network card, generalized

signal source blocks for creating sinusoidal signals or noise-like signals, and the USRP

to transmit and receive data over this device. A flow graph may include many paths

and many sources and sinks so long as there are no loops and there is a connection to

each input and output port. Figure 3.3 shows a simple flow graph that reads a signal

from a file, filters it, mixes it with a sinusoidal tone, and simultaneously outputs it

to a USRP and stores it to another file.

gr_sig _source_c (usrp.dac_freq()/interp ,
1000,gr.GR _SIN_WAVE, 1, 0)

gr_file _source(gr.sizeof_gr_complex,
"input.dat") gr_fir_filter_ ccf(1, taps)

taps = gr_firdes.low _pass(1, 0.2, 0.1)

gr_multiply_cc( )

usrp.sink_c(0, interp )

gr_file _sink(gr.sizeof_gr_complex,
"output.dat")

Figure 3.3: Simple GNU Radio Flow Graph Representation

The graph reads a complex waveform from a file “input.dat,” filters it with a filter

defined using normalized frequency such that the complex envelope of the signal is

between ±0.5 with a sampling rate of 1. The low-pass filter is designed with respect

to the normalized frequency with a bandwidth of 0.2 and a transition width of 0.1.

The filtered signal is mixed with a 1 kHz complex sinusoid of ±1 V and 0 V DC offset.

The mixed signal is then stored in a file “output.dat” and passed to a USRP sink to

transmit over the air. The USRP takes the parameter interp to set the interpolation

rate required to match the 128 Msps DAC. Not shown are some of the other commands
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required to properly set up the USRP to transmit on a particular frequency.

Another property of the flow graph blocks is that developers can build hierarchical

blocks that encompass many lower-level blocks. This capability enhances the levels

of abstraction in the software. For example, the current GNU Radio distribution

includes a differential binary phase shift keying (DBPSK) modulator as a hierarchical

block of blocks that perform tasks like symbol mapping, differential encoding, and

root raised cosine (RRC) pulse shaping.

3.4.1 Flow Graph for Simulation and Experimentation

One of the benefits of a GPP-based SDR is the easy transition between testing and

operation. In this section, I describe the flow graph for the transmitter and receiver

paths of the SDR used in the experiments of Chapter 8. The design and implemen-

tation is such that the endpoints of either chain may connect to any source for the

receiver or sink for the transmitter. As such, I have a system where I can run the

transmitter into a simulated channel model and then directly into the receiver chain.

With this setup, I can test the properties of the system in a known environment. It is

then a trivial switch to replace the channel with a USRP sink or source so the trans-

mitter sends the same signals over the air to be received by another USRP running

the receiver flow graph.

The simulation design is shown in the following figures. Figure 3.4 gives the big

picture of the simulation and is made up of many GNU Radio blocks as well as

some hierarchical blocks, represented as shaded blocks. The simulation generates a

signal using txpath. The bandwidth of the overall simulation is set in the next two

resampling blocks. The process of interpolating adds samples to a digital signal, which

increases the sampling rate by the interpolation factor. This process has the effect

of increasing the bandwidth of the overall system. The tx resample block performs

both interpolation and decimation to allow fractional changes in the symbol rate and

first sets the bandwidth of the signal based on the waveform parameter, and interp

sets the overall bandwidth of the system, providing a “spectrum” for the simulated

transceiver and interferers to share and interact within. The tx mix block up-converts

the transmitted signal to some frequency set by the numerically controlled oscillator

(NCO) tx nco within the system bandwidth. The up-converted signal goes through

a channel model described in Figure 3.5 with added interference signals at some

bandwidth and center frequency of their own. The signal is then passed to the receiver

chain. The receiver first down-converts the signal from the center frequency back to
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baseband, goes through a channel filter that resamples in reverse of tx resample and

interp. After filtering and resampling, the resulting signal is the transmitted signal

plus noise plus any interference energy that exists within the signal bandwidth. The

received signal then goes into rxpath where it is demodulated. Out of the channel

filter, noise pwr calculates the noise power of the channel. The block rss calculates

the received signal strength. Both of these calculations are described below, and

together, they are used to calculate the SNR. Finally, the system calculates the BER

by taking in the transmitted bits and compares them to the bits received after passing

through the channel and demodulator. The first one thousand bits of the input are

dropped to ignore any transients in the system.

   transmit_path (
       mod_class,
       options)

signal_ tx signal_ tx signal_ tx

channel_model

gr_sig _source_c  (
        1,

gr.GR _SIN_WAVE,
tx _frequency,

        1.0,
        0.0)

gr_multiply_cc( )
gr_ rational

           _ resampler_ccf(
      I, D )

gr_ interp _fir_filter(
      bandwidth,
      taps )

gr_sig _source_c  (
    1,

gr.GR _SIN_WAVE,
tx _frequency,

    1.0,
    0.0)

gr_multiply_cc( )blks.rational_resampler_ccf(
    D, I*bandwidth )

receive_path(
demod_class,
rx _callback,

    options

gr_probe_avg_mag_sqrd_c

gr_probe_noise_power_c  ( )

gr_ber_calc ( )

rss

noise_ pwr

rxpath rx _resample rx _mix

rx _nco

channeltxpath tx _resample interp tx _mix

tx _ncober interferer 1, 2, . . .

.  .  .

Figure 3.4: Radio Simulation Model; white boxes indicate low-level blocks while
shaded blocks indicate hierarchical blocks

The channel model of Figure 3.5 adds Gaussian white noise at a given noise voltage

calculated from the simulation’s noise floor, and a frequency offset used to represent

frequency differences between the transmitter and receiver. The path loss is simply

modeled as a multiplier with a constant value calculated externally that represents

the distance, given a particular path loss model. The channel model is easily extended

to include multipath by using a FIR filter with a given set of taps. All of the values

that the channel model uses are passed externally to allow representation of different
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mathematical models.

gr_noise_source_c  (
gr.GR _GAUSSIAN ,

        noise_voltage)

gr_sig _source_c  (
       1,

gr.GR _SIN_WAVE,
       frequency_offset,
       1.0,
       0.0)

gr_add_cc( ) gr_multiply_cc( ) output portinput port

noise_adder mixer_offset

noise freq _offset

gr_multiply_cc( )

pathloss

pathloss

Figure 3.5: Simulation Channel Model Flow Graph

Figure 3.6 shows the flow graph used to create interference signals. A signal is

modulated with any digital modulator from the GNU Radio blocks, given a specific

amplitude for a comparative power, interpolated to give it a specific bandwidth,

and mixed with a normalized frequency offset to offset its place in the spectrum’s

simulation.

mod
    gr_vector_source_b (
        random,
       True)

gr_multiply_const_cc(a)
  gr_ interp _fir_filter (
      bandwidth,
      taps)

    gr_sig _source_c  (
        1,

gr.GR _SIN_WAVE,
tx _frequency,

        1.0,
        0.0)

gr_multiply_cc( )

mix

nco

interpampmodulatorsrc
output port

Figure 3.6: Flow Graph of Simulated Interferer

The final hierarchical blocks are the transmit and receive paths. They are not

shown in figures here due to their simplicity. All they do is wrap a modulator or

demodulator into a block that has accessor functions that read and write data from a

higher layer while the modulators, hierarchical blocks themselves, are part of the stan-

dard distribution of GNU Radio. I provide a performance analysis of the simulation

system in Appendix A
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3.4.2 Available Knobs and Meters

The knobs of Table 3.1 are available to the simulation.

Table 3.1: Knobs and Meters Available to the GNU Radio Simulation
Knob Name Knob Settings
Modulation (D)BPSK, (D)QPSK, (D)8PSK, GMSK
Transmit Power 0 - 20 (dBm)
Symbol Rate 0.125, 0.25, 0.5, 1 (normalized sps)
Pulse shaping 0.1 - 1.0, steps of 0.01
Normalized frequency -1.0 - 1.0, steps of 0.01
Frame Size 100 - 1500, steps of 1

Meters
Received signal strength (dBm)
Noise power (dBm)
Bit error rate
Packet error rate
path loss
signal to noise ratio

The meters are calculated as follows. The system estimates the noise power during

dead-time on the channel. If the received signal strength is less than some specified

threshold, the system assumes there are no transmitting radios and can therefore

calculate the noise power in the channel. The noise power is the variance of the sam-

ples calculated using Knuth’s online (that is, it can be calculated on streaming data)

algorithm [58]. The listing (in Python) of the algorithm is provided here. Of course,

the variance calculation collapses to the average magnitude squared calculation when

the mean of the signal is 0.

def variance(data):

count = 0

mean = 0

sum = 0

for x in data:

count += 1

delta = x - mean

mean = mean + delta/count

sum += delta*(x - mean)

variance = sum/(count - 1)

In the GNU Radio block for calculating the variance, the number of items available

for processing is a variable passed to the function. The loop is calculated over all of

the available items, then the variance is calculated before the block exits.
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The received signal strength is first calculated by taking the average magnitude

squared of the samples when the transmitter is known to be running. However, this

estimation is biased by the noise power, especially at low SNRs, so the final signal

strength estimation is shown in equation 3.1, which, by subtracting the noise power,

provides a good estimation of the signal strength (see EbN0 plots in Appendix A).

P = 10 log10

(
1

K

K−1∑
i=0

|xi|2 − n

)
dBm (3.1)

Where the xi’s are the time samples in millivolts and n is the estimated noise

power in milliwatts. The GNU Radio block that implements the average magnitude

squared simple calculates the norm of each complex signal and uses a single pole

infinite impulse response (IIR) filter to average the results.

Path loss and EbN0 are easy to estimate since the radios know the transmitted

power and received power, the difference is therefore the path loss, and the radio has

already estimated both the received power and noise power. Both of these values are

then converted into the energy per bit (Eb) and noise energy (N0) to more accurately

reflect the modulation behavior. The simulation calculates Eb from the signal power

by dividing by the bit rate, Rb = kRs where k is the number of bits per symbol

and Rs is the symbol rate. The calculation of the noise energy comes from dividing

the received power by the receiver bandwidth. In this case, the simulation is all in

the digital domain, so the noise power reflects the amount of power in the symbol

sampling interval, or the number of samples per symbol. The noise energy then comes

from calculating N0 = N/sps, the noise power divided by the number of samples per

symbol.

The BER calculation is a more complicated meter. Figure 3.4 shows a BER

calculation block (gr ber calc) with an input from the transmit path and one from

the receive path. The BER is not simply a comparison of the transmitted and received

bits as a one-to-one comparison because of the delay introduced by the blocks in the

flow graph. The received bits are therefore delayed some amount from the transmitted

bits. Furthermore, I observed that the delay is different between different types of

modulations, changes with the symbol rate, and, for some types of modulations, the

delay is not consistent between runs (GMSK, for instance, would have a delay of 7 or

8 samples during any given run). As such, the BER calculation block calculates and

compensate for the delay. To do this, it waits to see a particular start code from both

the transmitter and receiver and calculates the difference in samples between them.

To avoid the problem of losing the start code in the noise, the start code packet is
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always transmitted with a much higher SNR (near infinite in the simulation by setting

the noise voltage to 0).

The BER estimation works well in the simulation, though the over-the-air proce-

dure has not been developed. For performing the analysis over the air, more synchro-

nization is required between the transmitter and receiver and a procedure is required

to know the actual transmitted bits for proper comparison. The transmitted bits

could be known at the beginning, but synchronization is required if a packet is lost.

The bits could be calculated using a seed passed in the packet, which could be cor-

rupted itself, or a secondary transmit path, such as over Ethernet, could be used

with guaranteed fidelity, although this still requires synchronization. When a packet

is lost, it is due to either corruption in the access code or the header, and the BER

calculation needs to account for the lost bits without assuming all the bits in the

packet were lost.

There are many ways to solve the problem of over-the-air BER testing, and many

systems implement BER tests, but the problem has not been solved in GNU Radio.

Because I can get the performance analysis in the simulation, though, I do not solve

this problem here and rely on packet errors as a performance measure during my

over-the-air experiments. The packet error rate is an easy calculation because the

packet numbers are included with the packets. The PER is calculated by knowing

the number of packets transmitted from the packet number (or by being told) as

well as the number of good packets received, which is determined by a 32-bit cyclic

redundancy check (CRC).

Finally, the interference power is performed using a simple energy detector. The

receiver opens up its bandwidth to sample the entire band of interest, and, knowing

the noise power from above, finds the frequencies where the signals rise a certain

threshold (e.g., 5 or 10 dB) above the noise floor and when the signals fall below

the threshold. These frequencies are stored along with the average power between

them to build an interference “map” of the channel. The cognitive radio can then

use the map to understand the interference potential in a given bandwidth. Chapter

2 discussed the use of these meters in the cognitive engine and presented the XML

format used to represent the information.

3.5 Conclusions

This chapter provides both a basic review of software radio technology and introduces

the SDR system used later in the experiments. The GNU Radio platform solves a
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number of problems in working with SDR. First, it provides an affordable platform

(free software plus inexpensive hardware) that is open and therefore transparent to

analysis as well as upgrades. I wrote large portions of the digital communications

capabilities in the current GNU Radio distribution because I needed them to per-

form my experiments, which also allowed me to contribute work back to the SDR

community. Furthermore, the publicly available revision logs of the software and

the open software platform enable the use of the scientific method for SDR and CR

experiments. Anyone can use the same software platform to test or compare results

With the available GNU Radio platform and a description of the knobs and me-

ters, the next chapter introduces the concept of waveform optimization that uses the

information from the meters to make decisions on how to tune the knobs.
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Chapter 4

Optimization of Radio Resources

As shown in the previous chapter, a cognitive radio uses AI to adapt and optimize the

performance of a radio platform, specifically an SDR. In this chapter, I will explain the

concepts of radio resource optimization with a particular interest in understanding

the physical layer in terms of objective functions. The discussion herein sets up

optimization of a certain set of objectives and how to analyze them properly. Although

this chapter includes only a subset of the total possible objectives along with some

basic approximations, I hope that the fundamentals presented here will enable further

extension and enhancement as more information and capabilities arise.

4.1 Objective Space

The objective space defines the radio resources used to determine radio behavior.

A radio consumes resources while communicating, therefore depriving other radios

access to those same resources. Spectrum is the key communications resource and is

a reusable resource by sharing in space, time, and transmit power. Spectrum sharing

and reuse is accomplished through numerous techniques such as spatial distribution

like cellular infrastructures or beam-forming antennas [59]. In both the time and

frequency domains, DSA technology is developing to provide intelligent schemes that

use spectrum during times when other users or primary users are silent [5]. Concepts

such as an ultra-wideband underlay, spread spectrum, and interference temperature

are all methods that manage transmit power to allow coexistence with other radio

systems [3, 60]. The task is then to properly use the resources to provide appropriate

sharing among all radios while maintaining the proper level of QoS.

Each user has a different and subjective perspective on quality of service based

on the radio’s performance. A user may require high data rates, low latency, or long

38



battery life depending on the situation for which he or she is using the radio service.

Video conferencing requires high data rates and low latency, while voice calls require

low latency but have significantly relaxed requirements for average throughput. On

the other hand, checking stock prices or even email has low requirements for speed.

Meanwhile, sitting on a train on my way home from work and realizing that I have

just forgotten the power cable to my mobile phone will make me prefer low power

consumption and longer up-time.

Each node in a network can look at resource allocation as an optimization problem

with two potential goals. First, it can attempt to optimize the use of the resources

from the perspective of maximizing its own use of resources and therefore its own

ability to communicate; this would be called a greedy approach. The other way is

to look at resource utilization from a needs perspective; that is, resources are sought

only to support the needs of the service. More resource utilization is wasteful while

less harms the quality of service. Resource allocation on either side of what is required

is inefficient. Of course, there is a third way of looking at resource allocation, and

this is to look at it from a global perspective where the utilization of resources by all

nodes is taken into account [61]. While there is significant benefit to this approach,

my argument and analysis come down to the personal perspectives on the quality

of service offered, which is therefore to see how well the radios use the resources to

provide the QoS desired by the user. By maintaining the balance between the use

of resources to provide the QoS as well as avoiding over-use of resources, a cognitive

radio provides users with proper service while minimizing resource consumption and

so allowing others their share of the resources.

Another way to look at this is to consider the objective analysis of resources. If

a service requires high data rates, low bit error rates, and low latency yet keeps an

eye on the power consumed by the radio while using a particular waveform, the radio

has the potential to balance these requirements and design a waveform that properly

meets all of the objectives. High transmit power and high-order modulation and

coding schemes may provide high throughput, but the power to transmit the signal

and the power to receive the signal make the waveform inefficient. The waveform has

not met the power consumption objective. On the other hand, another modulation,

coding, and frequency could provide a slightly lower data rate but with much better

power performance. Because of the uneven tradeoff, the second waveform wins out

as a better use of resources while maximizing the QoS.

Unfortunately, simple BER or SINR calculations do not tell the entire picture

of the waveform and the QoS. Bit error rate in a voice system does not necessarily

Thomas W. Rondeau 39



relate to the quality of service if a poor vocoder (voice coding/decoding) is used or

the propagation path has high burst errors. Many factors impact the resulting QoS of

wireless communications systems, and so joint optimization and analysis are required.

From this discussion, it follows that the optimization of radio resource allocation is

a multi-objective problem: the analysis of multiple-objectives on the decision making

process (also know as a many-objective problem). The next section discusses the

concept of multi-objective optimization and the objectives used in the optimization

of a radio’s PHY layer.

4.2 Multi-objective Optimization: Objective Func-

tions

Multi-objective optimization has a long history in mathematics, operations research,

and economics. A relatively old book by Hwang and Syeed [62] provides a com-

prehensive mathematical introduction to the study of multi-objective optimization. I

introduced this concept for wireless communications in [38] and reproduce and extend

that discussion here. Zitzler [63] gives an overview of multi-objective problems and

presents the basic formula for defining a multi-objective decision making (MODM)

problem as shown in equation 4.1.

min/max ȳ = f(x̄) = [f1(x̄), ..., fn(x̄)]

subject to: x̄ = (x1, x2, ..., xm) ∈ X

ȳ = (y1, y2, ..., yn) ∈ Y

(4.1)

This equation defines n dimensions in the search space where each objective func-

tion fn(x̄) evaluates the nth objective. The set x̄ defines the set of input parameters

that the algorithm has control over, and ȳ is the set of objectives computed by the

objective functions. Both of these may be constrained to some space, X and Y ,

depending on real-world constraints like available radio resources (ȳ) or radio capa-

bilities (x̄). The solutions to multi-objective problems lie on the Pareto front, which

is the set of input parameters, x̄, that defines the non-dominated solutions, ȳ, in any

dimension. A key factor in multi-objective problems is that many, if not all, objec-

tives compete for dominance. For example, it is impossible to both minimize BER

and minimize transmit power. Multi-objective optimizations often consist of such

trade-offs in goals when finding the best solutions available [64, 63]. In the above
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example, the cognitive radio has a trade-off space where it wants to maximize the

throughput but must minimize the power consumption. Each of the extremes lie on

the Pareto front while a compromise solution between the extremes is where the radio

will attempt to operate as it maximizes the QoS and minimizes resource consumption.

The following sections describe the different objectives currently identified and

defined. For each objective, I list the required knobs, meters, and other objective

functions the objective requires. When an objective depends on another objective,

the knobs of meters used by the dependent objective are not listed. As an example,

all BER calculations depend on the signal to noise ratio where the signal power is

a function of the transmitter power (a knob) and path loss (a meter). The system

noise floor is a meter and the noise power in the channel depends on the channel

bandwidth, which is another objective function. Since the cognitive engine can change

the bandwidth by adjusting the filters and the symbol rate, neither of these are listed

as direct dependencies of the BER objective because they are already linked due to

the bandwidth as an objective dependency.

Except when otherwise noted, I took most of these functions straight out of a

standard communications text such as Proakis or Couch [65, 66].

4.2.1 Bit Error Rate (BER)

Dependencies

Knobs: transmitter power, modulation type

Meters: noise power, channel type, path loss

objectives: bandwidth

Definitions

γ = energy per bit to noise energy ration (EbN0)

PT = transmit power (effective isotropic radiated power (EIRP)) (dBm)

L = estimated path loss (dB)

B = bandwidth calculated as in section 4.2.3 (Hz)

M = number of symbols in the modulation’s alphabet

Rs = symbol rate (sps)

N0 = noise floor (J)

Bit error rate (BER) is an important objective for all digital communications’

needs. It provides a baseline for the amount of information transferred, and so un-

derstanding it in light of the design of a waveform under certain channel conditions is
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therefore necessary. Unfortunately, BER calculations depend heavily on the type of

channel and type of modulation, and so the cognitive engine must know the formula

for each modulation type the radio is capable of using and the channel types it is

likely to see during operation. In this section, I have collected a number of bit error

rate formulas that I have programmed into the cognitive engine.

To predict the BER of a waveform under a given set of conditions, the cognitive

engine requires knowledge of certain environmental conditions. All BER calculations

depend fundamentally on the signal to noise ratio (SNR) at the receiver. When cal-

culating the BER, however, the cognitive engine does so knowing the transmitter

power as a knob that it can set. The cognitive engine therefore needs an estimation

of the noise power in the channel as well as the path loss of the channel. Furthermore,

since the noise power changes with the channel bandwidth, the cognitive radio must

have an estimate of the noise floor for use in the calculation of the noise power given

the bandwidth. With this knowledge, the cognitive engine, knowing the transmitted

power, the path loss, and the noise floor, can estimate the received power and noise

power for the BER calculation. The cognitive engine will also require an understand-

ing of the type of channel. For the purposes of this work, I am focusing on additive

white Gaussian Noise (AWGN) channels, though I have provided formulas to calcu-

late BER in Rayleigh, Rician, and Nakagami-m fading channels as well in Appendix

B. This decision was made largely because I have no sensor available in the cognitive

engine that can determine the channel type, though there are methods of doing this

as well as using channel impulse responses for the estimation of BER [67].

Another missing part of these BER calculations is the effect of an interferer. It

is not a simple matter of using SINR instead of SNR in the BER calculations since

the BER equations depend on the noise power having a Gaussian distribution where

interference power does not. The inclusion of interference power is complicated and

dependent on the types of signals in use (except in such cases as CDMA [68]). Cur-

rently, the cognitive engine does not have the capabilities to make this kind of distinc-

tion in its optimization process; however, significant work has gone into developing

signal and modulation classification schemes from [69] to [24], and the addition of

this information could lead to a better understanding of the BER due to SINR.

As a quick side-note, while the normal representations of BER formulas tend to use

the Q-function, all of the equations listed here use the complimentary error function

(erfc). I use this representation because of a few simply approximations I have for

the erfc function from [70, 71]. To review:

Thomas W. Rondeau 42



Q(x) =
1

2
erfc

(
x√
2

)
=

1√
2π

∫ ∞
x

exp
(
−t2/2

)
dt (4.2)

For x ≥ 3:

erfc(x) =
exp (−x2)

x
√
π

(
1− 1

2x2
+

(1)(3)

22x4
− (1)(3)(5)

23x6
+ ...

)
(4.3)

For x < 3:

erfc(x) = 1− 2√
π

∞∑
n=0

(−1)nx2n+1

n!(2n+ 1)
(4.4)

Each of these equations is easily coded into a simple algorithm to iterate over a

certain number of items in the series. A very close approximation can be achieved

with 10 items for equation 4.3 and for 40 items in equation 4.4. Figure 4.1 shows

the exact plot of the erfc function compared to the estimate for 0 ≤ x ≤ 5 along

with the percent error. There is a small spike in the estimation at x = 3 of 0.01%

due to a discontinuity at the point where one estimation ends and the other picks up.

This can be adjusted by changing where the formulas trade off and by increasing the

number of items in the series for equation 4.4. Decker addresses the problem of using

his approximation for values smaller than 3 in his paper [70]. So although equation

4.4 is capable of representing the complimentary error function for increasingly large

values of x, the number of items in the series must grow as well while equation 4.3

represents the erfc function for large values of x in a simpler series formula for a

more efficient calculation.

I point this out because of the different considerations that have to go into the

definition of the objective functions. Accuracy in the modeling is only one consid-

eration while issues of computation time can impact the overall effectiveness of the

objective in the optimization process.

The signal power is calculated from the waveform’s transmit power and the esti-

mated path loss in the channel. The noise power in the channel is calculated from

the bandwidth of the waveform and the noise floor. The BER formulas are presented

using EbN0, or the ratio of the energy per bit to the noise power spectral density, as

the standard representation of the signal quality. If S is the signal power, then the

energy per symbol is S/Rs, since the symbol rate is the inverse of the symbol time.

The energy per bit is the energy per symbol divide by the number of bits per symbol,

or log2(M). The waveform sets the transmitted signal power, so the received signal

strength is approximated by equation 4.5 where PT is the transmitted power and L
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Figure 4.1: Comparison of the Exact erfc Function to the Estimation

is the path loss.

S = PT − L (dBm) (4.5)

The noise power spectral density is the noise per Hz, calculated in equation 4.6,

where kB is Boltzmann’s constant (1.38 × 10−23 J/K) and T is the system noise

temperature (K). The noise power in the channel is the noise power spectral density

over the channel bandwidth, B.

N0 = kBT (J)

N = 10 log10(BN0) + 30 (dBm)
(4.6)

The EbN0 is a measurement independent of the signal bandwidth as given in

equation 4.7, where S −N is the SNR.

EbN0 = γ = 10 log10

(
B

Rs log2(M)

)
+ (S −N) (dB) (4.7)

Each of the equations below provides the formula for BER calculation of a par-

ticular modulation given an AWGN channel.

GMSK (non-coherent demodulator):

Pe =
1

2
exp (−αγ) (4.8)

Where α is an adjustment factor to the energy based on the BT factor of the

Gaussian filter [72]. Table 4.2.1 provides estimates of α over some values of BT based

on the work of Murota and Hirade [73].
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Table 4.1: GMSK BER Correction Value
BT α

0.1 0.25
0.2 0.60
0.3 0.77
0.4 0.90
0.5 0.95
0.6 0.97
0.7 0.98
0.8 0.99

BPSK:

Pe =
1

2
erfc (

√
γ) (4.9)

M -PSK (M > 2):

Pe =
1

log2 (M)
erfc

(
sin
( π
M

)√
log2M

√
γ
)

(4.10)

DBPSK:

Pe =
1

2
exp (−γ) (4.11)

DQPSK:

Pe = QM (a, b)− 1

2
I0 (ab) exp

(
−a

2 + b2

2

)

a =

√√√√2γ

(
1−

√
1

2

)

b =

√√√√2γ

(
1 +

√
1

2

) (4.12)

Where QM (a, b) is the Marcum Q-function and I0 (ab) is the modified Bessel

function of the first kind and order zero [65].

Unfortunately, there is no formula for the performance of D8PSK. In the objective

analysis of this modulation, I have assumed it will perform like 8PSK with a 2 dB

loss in the SNR.
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4.2.2 Signal to Interference Plus Noise Ratio (SINR)

Dependencies

Knobs: transmit power

Meters: noise power, path loss

Objectives: interference, bandwidth

Definitions

PT = EIRP (dBm)

L = estimated path loss (dB)

N = noise power as calculated in equation 4.6 (dBm)

I = interference power as calculated in section 4.2.8 (dBm)

Equation 4.6 provides the noise power and equation 4.20 provides the interference

power in the bandwidth of the signal. The received power is then calculated using the

estimated path loss from the meters and the transmitter power of the new waveform

as in equation 4.5. The SINR calculation is shown in equation 4.13 where the noise

power and interference power are summed in the linear domain (mW).

i = 10
I
10 (mW)

n = 10
N
10 (mW)

SINR = (PT − L)− 10 log10(i+ n) (dBm)

(4.13)

4.2.3 Bandwidth (Hz)

Dependencies

Knobs: modulation type, symbol rate, pulse shape filter

Meters: none

Objectives: none

Definitions

k = number of bits per symbol

Rs = symbol rate (sps)

α = property of the pulse shape filter (roll-off factor in RRC or bandwidth-time

product in a Gaussian filter)

Thomas W. Rondeau 46



Instead of using the raised cosine Nyquist pulse shaping, a root-raised cosine filter

in both the transmitter and receiver provides a more practical implementation. Over

the air, the pulse is shaped by a single RRC filter while the second RRC filter in the

receiver shapes the received signal as though it was passed through a single raised

cosine filter to reduce the intersymbol interference (ISI). Many narrowband digital

modulations use RC pulses, including the M -PSK waveforms used in this work. For

these, the approximate null-to-null bandwidth is calculated in equation 4.14. In this

equation, the roll-off factor of the RRC filter is defined as α.

B =
Rs

2
K (1 + α) (Hz)

where K is the number of frequency dimensions

K = 1 for M -PSK and M -QAM signals

K = M for M -FSK

(4.14)

With Gaussian-shaped filters, specifically in GMSK, α represents the bandwidth-

time product defined for the 3 dB cut-off frequency of the Gaussian filter. Admittedly,

taking this as a formula for the bandwidth is not a fair comparison to the null-to-null

formula used for the RRC filters. Unfortunately, though, there is no good closed-

form solution to make the same bandwidth comparison, and instead of going with

a tabularized approach, I have decided to stick with this formula. By introducing

this incorrect comparison, it will allow me to see any effects of miscalculations in the

objective functions for the decision-making process. Also, since the cognitive engine

is designed for flexibility in the objective functions, it is trivial to fix this later with

a new, more accurate objective function.

B = αRs (Hz) (4.15)

4.2.4 Spectral Efficiency (bits/Hz)

Dependencies

Knobs: modulation type, symbol rate

Meters: none

Objectives: bandwidth
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Definitions

k = number of bits per symbol

Rs = symbol rate (sps)

B = bandwidth calculated as in section 4.2.3 (Hz)

Spectral efficiency represents the amount of information transferred in a given

channel and is measured in bits per second per Hertz (bps/Hz). Although this con-

cept is directly related to both bandwidth and throughput rates, I have developed it as

a separate objective in order to represent the quality of service needs more thoroughly.

When choosing to measure spectral efficiency, it offers another dimension to deter-

mine how suited the waveform is to a particular need between bandwidth occupancy

and data rates. Minimizing bandwidth would push the optimization to use a small

symbol rate and a conservative bandwidth modulation like GMSK, while maximizing

throughput would push for high symbol rates and high-order modulations. Spectral

efficiency helps shape the decision space by biasing the solution towards a symbol rate

and modulation type that provides high bandwidth efficiency and produce better data

rates for a given spectrum.

η =
Rsk

B
(bps/Hz) (4.16)

4.2.5 Throughput

Dependencies

Knobs: modulation type, symbol rate, number of bits per packet

Meters: none

Objectives: bit error rate

Definitions

l = number of bits per packet (bits)

Pe = bit error rate as defined in section 4.2.1

Rb = bit rate (bps)

Rs = symbol rate (sps)

k = number of bits per symbol

Throughput is a measure of the amount of good information received. This defini-

tion distinguishes throughput from data rate in that data rate is simply a measure of
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the rate data arrives with no consideration for transmission errors. There are many

papers available to describe throughput estimations for networks that include retrans-

mission of bad packets. I will circumvent the complexities of that kind of analysis by

assuming no retransmissions and furthermore no coding, so a single bit error leads

to a packet error. These assumptions are made because the SDR platform used in

the experiments does not support these capabilities yet. Although this models the

behavior of the given SDR system, the error rate will be much larger than it would

be in a system with proper channel coding and protocols. Finally, I assume uni-

form distribution of bit errors. Once again, it is clear that this formulation does not

model all environments and networks properly and could benefit from adding more

comprehensive and advanced objective functions.

The probability of a packet error, or the packet error rate, is shown in equation

4.17.

Pp = 1− (1− Pe)l (4.17)

For each correctly received packet, l bits are received over a time period of l/Rb

where Rb = kRs. On average, then, for a packet error rate of Pp, the bit rate is

modified by the probability of receiving a good packet, 1− Pp.

Rth = Rb(1− Pp) = Rb(1− Pe)l (bps) (4.18)

This objective directly relies on the BER, so using these two objectives together

doubly weights minimizing the bit error rate. While this might be a desirable result

for some situations, my initial tests on the performance show that the pressure the

cognitive engine forces solutions to use low-order modulations to improve the BER

despite the benefit of using higher-order modulations with little to no affect on the

BER performance under higher SNR conditions. I prefer to keep the objectives as

separate as possible in order to more easily adjust selection pressure depending on

QoS requirements. In the implementation, I am currently using a simplified version

of the throughput calculation that only relies on the raw data rate. This objective

can be paired with the BER objective in different ratios to provide a proper balance.

Equation 4.19 shows the simple throughput objective.

Rth = kRs = Rb (bps) (4.19)
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4.2.6 Power

Dependencies

Knobs: Transmit power

Meters: none

Objectives: none

Definitions

PT = transmit power (dBm)

There are two ways to look at power as a resource. The first way is to think

about power in terms of how the radio transmitter uses the external power in the

spectrum. In this manner of speaking, power is a shared resource by all radio nodes,

so radios should strive to reduce their transmission power. This objective balances

efforts to reduce BER or maximize SINR. The transmitted power used here refers to

power of the signal sent to the antenna. In all of the calculations here, though, I have

assumed EIRP such as when calculating the received power for the BER equations.

In these calculations, I am assuming a 0 dB gain antenna, so the two are the same.

The assumption is based on the lack of the antenna as a knob or even a parameter

in the current analysis. In a more developed system that either has a static antenna

gain or a smart antenna capable of doing beam-forming, the antenna gain would be

used here to add to the transmit power as well as in the BER equations to calculated

the EIRP.

4.2.7 Computational Complexity

Dependencies

Knobs: modulation type, symbol rate

Meters: none

Objectives: none

Definitions

k = number of bits per symbol

Rs = symbol rate (sps)
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The second way to analyze power is to measure it in terms of power consumption

by a radio. Each waveform consumes a certain amount of power relative to the

processes required to transmit and receive information correctly. For example, non-

coherent reception requires less processing power than a coherent receiver, which

performs the frequency and phase correction, and faster symbol rates require faster

processing speed, and therefore more power. The total power consumed includes

all aspects of the transmitter and receiver of a waveform, including the transmitter

power. However, the last objective in section 4.2.6 takes care of that in its own way

so this second objective does not need to account for it.

As I am dealing with SDR technology, power consumption maps almost directly

to the computational complexity of an algorithm. The mapping between these is not

straight-forward, especially with low-power states and techniques in most processors

and hardware. Furthermore, different processors and implementations of the same

waveform may consume different amounts of power. Unfortunately, a generalized

solution or straight-forward mathematical equation to understand or model the power

consumption does not exist.

To solve this problem, I am forced to analyze the power consumption in terms

of strict computational complexity of the known SDR modes. That is, I break each

piece of a waveform is down to its components, figure out the computational resources

required to run these components, and then put together a look-up table for a given

waveform’s power requirements. Luckily, the task is simpler than trying to measure

all possible waveforms since the great majority of the differences exist within the

modulator and demodulator. These discrete values are easily calculated and used in

a database for use by the optimizer. The computational analysis for the GNU Radio

modulators used here is presented in Appendix C.

The other aspect of computational power is mainly due to the sampling rate

required. In this case, the symbol rate directly defines the sampling rate and therefore

the computational power required for a waveform.

All other aspects of the waveform involved in this work do not lead to an increase

in computational power, though other concepts such as channel coding, source coding,

interleaving, or spreading will certainly affect this objective.

4.2.8 Interference

Dependencies

Knobs: frequency
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Meters: interference map

Objectives: bandwidth

Definitions

fc = center frequency of waveform (Hz)

I(f) = interference power at frequency f from interference map (mW)

B = bandwidth calculated as in section 4.2.3 (Hz)

The calculation of interference power is different than SINR from an objective

perspective: SINR helps the cognitive engine decide if it is good for the waveform to

transmit on this frequency. The interference objective looks at the use of the spectrum

from the external perspective to see how much overlap exists between competing

signals for the same spectrum. Focusing on this objective biases the cognitive engine

away from using a waveform that conflicts with another user for the sake of the

resources and not the capabilities of the waveform.

Looking at interference as a secondary user, instead of using this as an objective

function, the cognitive engine could use this concept as a constraint on the objective

space. A map of known primary user signals [74] would represent frequencies that

are absolutely off limits for transmission. Therefore, the cognitive engine would not

simply try to avoid interference-prone spectrum, but it would be forced to not use

the spectrum.

Ipwr = 10 log10

(
1

B

∫ fc+B/2

fc−B/2
I(f)df

)
(dBm) (4.20)

4.3 Multi-Objective Optimization: A Different Per-

spective

The previous sections described the objective functions I am focusing on in this work.

When reviewing these, there is overlap as well as interactions among certain ob-

jectives. When any one objective is optimized, it affects the performance of some

other objectives, either positively or negatively. I find it constructive to graphically

represent these interactions to understand the complexity of the multi-objective en-

vironment. In Figure 4.2, I have listed each objective as a node and two types of

edges between nodes. Solid edges with arrows define a direct relationship between

two objectives, where one objective depends on the other objective being pointed to.

The dashed edges with no directivity indicate some indirect dependence through one
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or more knobs. For example, BER, bandwidth, spectral efficiency, throughput, and

computational complexity all depend on the type of modulation used, so changing

the modulation affects all of these objectives in some way.

BER Throughput

Computational
Complexity

Spectral
Efficiency

SINR

Bandwidth

Power

Interference

Direct objective dependency

Indirect dependency through
one or more knobs

Figure 4.2: Objective Function Dependencies

4.4 Multi-objective Analysis

Equation 4.1 provides the basic formula to describe a multi-objective optimization

problem, and the preceding sections describe a set of possible objectives when opti-

mizing the PHY layer of a radio. What remains is to understand how the cognitive

engine can use these to analyze the behavior of different waveforms and select the

best one. The method of performing this analysis is a large factor in the success of a

multi-objective optimization problem.

4.4.1 Utility Functions

The most straight-forward method of selection is to build a single utility function that

combines the objectives into one number. The algorithm can then easily rank the

solutions and select the solution that maximizes (or minimizes) the utility function.

Utility functions are a core research area in economics and operations research. My

intent here is to provide a few possible and popular methods of utility function design

and a brief analysis of their properties.
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The most basic utility function is the weighted-sum approach, shown in equation

4.21 and using the definitions from equation 4.1. In this equation, U is an overall

metric of performance. The weights, wi, applied to each function, fi, are a weighting

of importance, or preference, of the objective.

U =
N∑
i=1

wifi(x̄) (4.21)

I have dealt with the concept of the weighted-sum and problems of normalization

in [2]. While popular in engineering problems, it has many draw backs. One of

the most significant problems is that this form of utility assumes additivity between

each objective, where each objective is independent of the others and can be simply

summed together. As discussed throughout and shown in Figure 4.2, the objective

functions developed for waveform optimization are not independent. The economic

literature on utility functions spends a significant amount of time on this concept and

the development of utility functions with respect to the relationship of goods in the

analysis [75].

A development slightly beyond the weighted sum utility function is the linear-

logarithmic, or Cobb-Douglas, function in equation 4.22, where U is the utility, qi is

the value of quantity or objective i, and βi is an adjustment coefficient for quantity i.

lnU =
n∑
i=1

βi ln qi (4.22)

The linear-logarithmic utility function, like the weighted-sum, assumes additivity

but is slightly more useful because it shapes the results using the logarithmic function.

One important element of the weighted-sum is that the linear relationships often find

optimums at the extreme edges. The logarithmic function provides convexity to the

optimization curve that helps avoid this problem.

In the linear-logarithmic function, βi is equivalent to the weights wi in equation

4.21; I use the change of notation for consistency with the literature. The weights are

important because, as suggested above, different users and applications have prefer-

ences in the quality of services provided by the communications system. This concept

leads to the use of consumer preference in economics, where the preferences indicate

an indifference curve. The indifference curves represents a trade-off in the amount

of any one objective such that the consumer is indifferent to which point is selected.

Different users and applications have different requirements, and will therefore be

represented by different indifference curves in the objective space. Objectives in the
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waveform analysis can show both substitutive and complimentary affects. For exam-

ple, an application may be willing to substitute bit errors for higher data rates, but at

some point the BER can only go so high before coding, retransmission, or the appli-

cation can no longer handle the errors. At this point, BER becomes complimentary

to throughput because no data rate can make up for the high numbers of bit errors.

Another well-known function is the constant-elasticity-of-substitution (CES) func-

tion of equation 4.23.

U =

(
n∑
i=1

βiq
−ρ
i

)−1/ρ

(4.23)

Here ρ = (1 − σ)/σ and σ is the elasticity between items, which indicates how

much one item can be substituted for another (an elasticity of 1 indicates perfect sub-

stitution). This function does not assume the inputs are independent and provides

more flexibility to the input values. Because of the dependencies between objectives

in the waveform optimization, the CES function suggests a better fit to the represen-

tation of utility, which would require an analysis of the elasticity value to use. One

potential problem is that this function, as its name says, uses a constant value of the

elasticity for all objectives. If one value fits the problem domain, then this is not a

problem. However, a more appropriate representation of utility might allow for dif-

ferent values of elasticity between objectives. This suggestion is problematic because

then each elasticity value needs to be known and understood, and the value suggests

a heavy dependence on domain knowledge, though perhaps this could be learned by

the cognitive radio.

Again, I only introduce these functions to show a sample of the functions provided

in economic research, but I cannot properly do justice to it here. Much more study

is required in to relate these two fields and find the most appropriate representation

to use in optimization routines of waveforms. Specifically, how the coefficients are

developed or derived.

4.4.2 Population-Based Analysis

Another popular method of evaluating performance in a multi-objective problem

space is using population-based analysis and Pareto-ranking. I will show in Chapter

5 how this concept lends itself nicely to genetic algorithm optimization. Fonseca and

Fleming have done a lot of work in this area [64] as well as many other researchers

using genetic algorithms for multi-objective analysis.
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The Pareto-ranking analysis takes a set, or population, of possible solutions to a

multi-objective problem and looks to see which members are non-dominated; that is,

which members of the population outperform others in all dimensions. I provide a

more mathematical definition to this concept in Chapter 5. In Pareto-ranking, each

potential solution is ranked relative to other solutions. In a search or optimization

algorithm, the idea is to push for better and better solutions until they lie on the

optimal Pareto front. This set of solutions represents a trade-off space among all

objectives. The final step of the algorithm is to select the solution that best represents

the desired trade-off, which is done through some subjective or weighted analysis

process to find the proper trade-off space. Park, et al. produced recent results on the

use of Pareto ranking genetic algorithms for optimization of 3G systems [76].

While multi-objective problem solvers have often used Pareto-ranking, Purshouse

and Fleming [77] suggested that this form of analysis works well for a small number

of objective functions (two to three) but not as well for larger numbers of objectives,

(what they call a “many-objective” problem). Hughes later tested this hypothesis

with an experiment to compare different methods of solving multi-objective problems

with various numbers of objectives using evolutionary algorithms [78].

The other two methods for multi-objective analysis suggested by Hughes include

multiple single objective Pareto sampling (MSOPS) and repeated single objective

(RSO). The MSOPS approach first calculates all of the objectives for each member

of the population, and then builds a matrix where the columns represent the objec-

tives, and the rows represent each of the individual’s rank for each objective. The

individuals’ scores are ranked in each objective giving the highest ranking individual

a score of 1 and then counted up over all the members in the population (i.e., the

worst performing member is given a rank of the population size). The population

members are then assigned a rank according to the number of objectives each excels

in.

The RSO approach evolves a population multiple times using a single, different

objective each time. The dominant members from each run are kept for use in the

final analysis of the Pareto set.

His results confirmed his hypothesis that the MSOPS and RSO approaches outper-

form the Pareto ranking approach. His results also show that the MSOPS approach

outperforms the RSO approach. While presenting the evidence, he indicates that this

is only proof for the limited problem set he used, and, without mathematical proof,

each problem might require a different method. Because each of these methods listed

here is applicable to use with a genetic algorithm, the basic formulation developed in
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the next chapter for the application of a genetic algorithm for waveform adaptation

holds, and so it will be interesting in future work to develop and compare different

methods of objective analysis.

The remaining issue of performing population analysis is the selection of the best

solution from the optimized Pareto front that best represents the desired quality of

service. One way to do this would be to utilize one of the utility functions that com-

bines multiple objectives into a single objective to build a ranking scheme, although

this concept faces the same challenge of representation and combination of dissimilar

but dependent objectives as discussed previously.

Another method of selection is called Pareto algebra introduced by Geilen, et al.

[79]. Pareto algebra assumes a set of possible non-dominated choices that have a

preference value related to some application. A good example from their paper is the

decision for buying a television depends on the purpose of the television; whether it

is for television viewing, video, or gaming. They then develop an algebra to select

the TV that, based on certain properties, best satisfies the family’s preference. One

of the biggest drawbacks to this technique is the need for a large amount of domain

knowledge. The impacts and relationships to the objective space must be known a

priori to develop the algebra. I can see where this technique could be used in the

waveform optimization problem by understanding preference relationships between

objectives such as throughput, error rates, etc., but as my intent is to build a generic

platform for the analysis of the interactions and behaviors, I have not gone towards

this development yet.

There are many concepts of multi-objective ranking and analysis from many dif-

ferent problem domains. I have discussed issues of modeling and analyzing multiple

objective problems. I still see a lot to be learned from many of these techniques and

benefits from them in the application to the waveform optimization. I will use this

discussion in my development of the genetic algorithm optimization routine, although

the research is ongoing to fully solve this problem. The cognitive engine this disserta-

tion discusses will provide the platform by which this problem can be addressed and

more fully understood.

4.5 Conclusion

This chapter has discussed the concept of multi-objective optimization, both from

the theoretical perspectives and the use of this type of analysis to optimize wave-

forms for a cognitive radio. While discussing the possible objectives and defining the
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mathematical basis for the multi-objective analysis, I have tried to point out where

improvements in the math may lead to better solutions as they better represent the

problem space. This leads to a bigger question of mathematical modeling and uncer-

tainty in cognitive radio systems: how much information is required to make a good

decision? Likewise, how much gain comes from more complex analysis? These are

interesting research questions beyond the scope of this present work, which is aiming

to provide the basic method of analysis and methodology required to perform full

waveform optimization in a cognitive radio.

The next chapter deals with the use of genetic algorithms to solve the multi-

objective problem. In it, I provide a more mathematical definition and analysis of

the Pareto-front and Pareto-ranking. I also provide the means by which the current

implementation of the genetic algorithm handles the waveform optimization.
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Chapter 5

Genetic Algorithms for Radio

Optimization

In Chapter 4, I developed the problem of waveform optimization as multi-objective.

While they are not the only means of solving multi-objective problems, genetic and

evolutionary algorithms have continuously proven themselves to excel in this respect

[78]. The application of genetic algorithms to multi-objective problems has been the

focus of much of the research literature, as evident in the current and past proceed-

ings of Genetic and Evolutionary Computation Conference (GECCO) [80]. I use

genetic algorithms because of their robust search and optimization capabilities and

flexibility in their representation of the search space and search parameters. Without

reproducing the entire body of knowledge on the subject, which I leave to the classic

text of Goldberg [34] or the proceedings of GECCO, I start this chapter with a brief

introduction to genetic algorithm implementation with a small well-known example

before presenting the methods used in the use of genetic algorithms on waveform

optimization. Much of this chapter also appears in my published work in [2, 38].

5.1 A Brief Review

In their most simplistic form, genetic algorithms (GA) are single-objective search and

optimization algorithms. Common to all GAs is the chromosome definition: how the

data are represented; the genetic operations of crossover and mutation; the selection

mechanism for choosing the chromosomes that will survive from generation to gen-

eration; and the evaluation function used to determine the fitness of a chromosome.

All of these operations are described in [34].

A genetic algorithm encodes a set of input parameters that represent possible
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solutions into a chromosome. The evaluation stage develops a ranking metric of

chromosome fitness for each individual, which then determines their survival to the

next generation. Optimization progresses through finding genes that provide higher

fitness for the chromosome in which it is found. The fitness calculation is often done

through some absolute metric such as cost, weight, or value by which the algorithm

can rank the success of an individual. Selection is the technique by which more fit

individuals are selected for survival to reproduce for the next generation while less fit

chromosomes are killed off. An algorithm terminates when it reaches a desired level

of fitness in the population, a single member exceeds a desired fitness, the fitness

plateaus for a certain number of generations, or through a simple criteria based on a

maximum number of generations. The algorithm then takes the most fit individual

of the last generation as the solution.

To understand each of these concepts more clearly, I will develop a genetic algo-

rithm to solve the knapsack problem next.

5.2 Simple Example - Knapsack Problem

To explain the operation of a simple GA, I examine the knapsack problem [81],

which is a classic NP-complete problem [82] and also called the subset-sum problem

(SSP). The knapsack problem takes a set of items, each with a weight and profit,

and tries to fit as many of these items into the knapsack to maximize the profit

while coming as close to, but not exceeding, the maximum weight the knapsack can

hold. Mathematically, the knapsack problem is shown in equation 5.1, where K is

the maximum weight the knapsack can hold and Ns is the number of items in the

set, S. The problem is represented by a weight vector, w̄, a profit vector, p̄, and a

knapsack vector, x̄. The values wi and pi represent the weight and profit of item i,

and the knapsack vector item xi is a 1 if the item is included in the knapsack and a

0 if not.

max
N∑
i=1

xipi

subject to:
N∑
i=1

xiwi ≤ K

(5.1)
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Chromosome: The problem consists of choosing the right set of items to place in

the knapsack, so the chromosome represents the vector x and consist of 1’s and 0’s,

as shown in Figure 5.1, where a 1 indicates the item is present in the knapsack and

0 indicating the item is absent.

x0 x1 x2 .  .  . xNs - 1

Figure 5.1: Chromosome Representation of Knapsack Item Vector

Selection: Parents are select based on their fitness in the population, usually with

some randomness to allow less fit individuals a chance of survival. The theory is

based on Holland’s original work on the subject [35] where schemata define discrete

sections of chromosomes. An overall unfit chromosome may still include one or two

highly fit schemata, so preserving some of these and allowing them to create offspring

gives those schemata the chance to survive and combine with other good schemata to

form a much more fit chromosome in the next generation. Fit parents carrying their

genes to the next generation provide exploitation of current good genes while allowing

unfit members and random schemata into the generational mix provides exploration

of the search space. These two concepts help define the search capabilities where good

exploitation will help converge quickly to a solution, though the solution may be in a

local optimum. Exploration using more random genes helps search wider and farther

in the search space, but can slow convergence. Balancing out how selection takes

place as well as properties such as the number of parents to kill during a generation

affect the performance of the algorithm but are likewise dependent on the problem

space. De Jong analyzed five selection methods in his doctoral dissertation to provide

more understanding of this affect [83].

For the knapsack problem, I employ the standard roulette wheel selection tech-

nique. Goldberg [34], again, is the source to go to for this, though I will say a few

words here as explanation. In the roulette wheel selection, the fitness values of all

chromosomes are normalized such that the sum of the fitness of the population is 1.0.

The selection method calculates a random number from 0 to 1, and, if the fitness val-

ues are thought of as making a roulette wheel, whichever points on the roulette wheel

are around the random value is the selected chromosome. Figure 5.2 illustrates the

technique where 6 individuals have fitness values of 0.15, 0.30, 0.20, 0.25, 0.07, 0.03.

A random value of 0.61 is created as the ranking metric, which lies in the individual

with fitness 0.20 as this wheel is shown.
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Figure 5.2: Example of Roulette Wheel Selection in a GA

Crossover: Crossover is performed on two parents to form two new offspring. The

GA compares a randomly selected value against a crossover probability that is a prop-

erty of the GA. If the random number is less than the crossover probability, crossover

is performed; otherwise, the offspring are identical to the parents. If crossover oc-

curs, one or more crossover points are generated, which determines the position in

the chromosomes where parents exchange genes. Typically, crossover probability is

around 0.90 to 0.95, making for high probability of performing crossover. The number

of crossover points used is low and usually 1.

Figure 5.3 illustrates the crossover operation of a simple eight-item knapsack prob-

lem with 2 crossover points. The genes after the first crossover point and before the

second crossover point are interchanged in the parents to form the new offspring.

Mutation: After the offspring are generated from selection and crossover, the off-

spring chromosomes may be mutated. Like crossover, there is a mutation probability.

If a randomly selected floating point value is less than the mutation probability, mu-

tation is performed on the offspring; otherwise, no mutation occurs. Mutation is

performed by randomly selecting a gene in the offspring’s chromosome and gener-

ating a new value based on some probability density function (often a uniform or

Gaussian distribution). In the knapsack problem, a gene may be reset to either a 1 or

0 at random. Other techniques simply invert the gene. The probability of mutation

is usually set very low, less than 0.10.
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Figure 5.3: Parent Chromosomes Crossover at Points 2 and 6 to Create Offspring
Chromosomes

Evaluate: Evaluation is probably the most important piece of the GA aside from

the initial chromosome definition. Choice of the fitness evaluation is vital to conver-

gence on a highly-fit solution. In this knapsack problem, the fitness definition is given

by equation 5.1 where the total profit of the solution is the fitness. The constraint

condition tests if the weight of the selected items exceed the maximum knapsack

weight. If this occurs, there are a few choices in how the algorithm responds. The

algorithm can simply set the chromosome fitness to 0 as a penalty, greatly reducing

its chances of reproducing, and thereby removing it from the gene pool. This method

has the drawback that the genetic material is completely removed from the popu-

lation and reduces the overall pool of potential solutions, reduces selection pressure

for better genes, and hurts the performance. Another method is to mutate genes in

the illegal chromosome until the chromosome meets the weight requirements. In this

case, it is best to simply set a gene to 0 instead of random mutation because the goal

is to reduce the weight. This keeps genes in the population as potential parents.

Results: Single-objective optimization cases lend themselves to easy performance

analysis. The results are often illustrated by a graph like in Figure 5.4 to see how the

fitness of the population evolves over the generations, which plots the best, worst,

and average fitness for each generation.

The results of the GA are shown in Figure 5.4 using a crossover probability of

0.95, a mutation probability of 0.1, and 1 crossover point. There are 20 members

of the population where 15 members are replaced by offspring each generation. The

algorithm self-terminated after 5000 generations. The 100-item knapsack is created

by using a uniformly distributed random number between 0 and 1 for both the profit

Thomas W. Rondeau 63



and weight vectors. The maximum weight the knapsack can hold is the sum of the

weights of the knapsack items multiplied by another uniform random number between

0 and 1 such that the maximum weight of the knapsack is always less than or equal

to the weight of all of the items.

Figure 5.4: Performance Graph of the Knapsack Problem

The results of the algorithm for this particular knapsack problem show the typical

trend in these types of optimization processes. The first generation, which was ran-

domly generated, had poor performance but the best member quickly climbed during

the first few dozen generations. A “knee” occurs in the early generations and ends

around generation 1000 where the upwards climb slows down. Over the next couple

of thousand generations, the fitness of the best member levels off and does not gain

much. Though progress slows down, the fitness still climbs every few generations. At

the end, the algorithm is still climbing slowly, and it is likely that the best solution

from this generation is not the optimal solution to the problem, although it is likely

very close.

In fact, the last point is highly significant in GA theory. Holland’s work [35]

proved that a GA will always converge on the optimal solution; however, it can never

guarantee convergence within a certain time limit. Of course, for NP-complete prob-
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lems, the optimal solution is unknowable through anything other than a full search.

Similarly, the optimal solution is not necessarily the goal of real-world optimization

problems, which may be interested more in quickly optimized solutions that approach

the optimal solution.

The idea of suboptimal (but approaching optimal) solutions is true for the wave-

form optimization problem where the cognitive engine must produce a waveform

under real-time constraints. Instead, the cognitive engine needs better responses as

opposed to a best response for the immediate future. Genetic algorithms quickly im-

prove their performance in the first few generations as seen in the performance with

the knapsack problem. By generation 1000, the algorithm has already produced a

useful solution. If time and resources permit, the genetic algorithm can search for

increasingly better solutions until the answer is required. Other techniques I will dis-

cuss in later chapters such as case-based decision theory and distributed computing

that can farther improve performance.

5.3 Multi-Objective GA

Chapter 4 developed radio optimization as a multi-objective problem and provided a

few objectives to use for the optimization. As discussed in section 4.4, a population-

based methods are popular for solving multi-objective problems such as the Pareto

ranking approach. Population-based analysis lends itself easily to genetic algorithm

solvers, and indeed, GAs are well suited to multi-dimensional optimization due to the

parallel evaluation in many dimensions. Genetic algorithms also allow easy imple-

mentation of constraints about the problem [63, 84].

To review the argument in Chapter 4, in effective wireless communications, the

waveform properties affect the radio’s behavior in many dimensions such as BER,

bandwidth, power consumption, and throughput rates. Each of these dimensions

has some relationship to the QoS, and these relationships change in their relative

importance depending on the application being used. For example, large file transfers

suggest a need for low BER and high data rate, but a video conference has more

demands on delay than BER. Since these goals often compete with each other, as in

minimizing a BER and minimizing power at the same time, waveform optimization

requires joint optimization of many objectives, and a genetic algorithm is a powerful

approach to autonomously adapting waveforms, a multi-objective genetic algorithm

(MOGA).

Different selection and evaluation methods have been proposed for MOGAs [85,
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86]. Many methods try to combine the evaluations along the different dimensions

into a single metric [62]; this method breaks down in cases where the values of the

dimensions can vary greatly in magnitude (BER of 10−6 versus data rate of 106),

and normalizing each dimension requires a large amount of domain knowledge, which

might be difficult to obtain [63] or may change over time. Other methods involve

competition between population members and incrementing the fitness function of

the winner for each objective dominated by the winning member [85]. Horn [87]

extends this idea by pairing off two opposing individuals against a larger pool of

chromosomes from the population. Each member of the pair competes with each

member of the pool. The individual who wins the most competitions against the

pool is deemed better fit and survives to the next generation.

Before moving any farther along, I want to lay down a few definitions for the per-

formance analysis. The general analysis comes down to finding the non-dominated

solutions in the solution space, known as the Pareto front. These solutions are non-

dominated when optimization in any objective negatively impacts at least one other

objective. The Pareto-ranking approach uses the concepts of inferiority and superior-

ity. These definitions assume a minimization problem where u < v means u is more fit

than v. I make this clarification because of possible confusion with the terms inferior

and superior or when performing a maximization problem. Summarizing from [64]:

Inferiority: ū is said to be inferior to v̄ iff v̄ is partially less than ū :

∀i = 1, ..., n, vi ≤ ui ∧ ∃i = 1, ..., n : vi < u

That is, if any of the n objectives of v is less than any objective of u, then u is inferior

to v.

Superiority: ū is superior to v̄ iff v̄ is inferior to ū.

Non-inferiority: ū and v̄ are non-inferior to one another if v̄ is neither inferior

nor superior to ū.

Pareto ranking then ranks each member of the population by the number of in-

dividuals to which the given member is superior. After some number of generations,

the algorithm must return a specific solution, but the population is ranked in terms of

Pareto dominance where, ideally, the population represents points along the optimal

Pareto front. In this case, if each is Pareto optimal, each population member will

be superior to none, and therefore each population will have a ranking of 0. In the

end, then, the algorithm needs some method of selecting the member from the final
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population. I will discuss this as I build up the particular implementation of the

MOGA for waveform optimization in the next section.

5.4 Wireless System Genetic Algorithm

The wireless system genetic algorithm (WSGA) is a MOGA designed to optimize a

waveform by modeling the physical radio system as a biological organism and opti-

mizing its performance through genetic and evolutionary processes. In the WSGA,

radio behavior is interpreted as a set of PHY-layer parameters as traits or genes of a

chromosome. Other general radio functional parameters (such as antenna configura-

tion, voice coding, encryption, equalization, retransmission requests, and spreading

technique/code) are also identified as possible chromosome genes for future growth as

the SDR platforms develop to support each of these traits. Expansion of PHY-layer

parameters is a horizontal growth while the MOGA method can also extend vertically

to higher layers such as the MAC or network layer. Extension to the higher layers will

require proper understanding of the objective function analysis of these layers, the ge-

netic representation of the adjustable parameters, and the available communications

platform capable of reconfiguration in the layers.

The WSGA makes use of the concepts developed in the last few chapters. The

currently available knobs and meters for the simulation environment are given in

Table 3.1 and later for the over-the-air experiments in Table 8.22, and the objective

functions are given in section 4.2. The WSGA uses a Pareto ranking selection method

similar to [64], but with a few adjustments. First, the WSGA awards points for every

objective an individual wins. By doing this, the algorithm has a bit more granularity

in how it ranks individuals, especially when two objectives are directly competing,

such as BER and power. With these two objectives, the only way to improve or

dominate another solution is through a change in the modulation since power and

BER are direct trade-offs, so inferiority does not properly allow these objectives to

be compared. Second, the WSGA ranks members by the number of members the

individual dominates in each objective to make a maximization problem (whereas

Fonseca and Fleming rank the individuals by how many members dominate them

and thus perform a minimization problem).

Crossover and mutation are simple implementations of these mechanisms. The

WSGA uses one crossover point chosen as uniform random numbers with a static

probability of crossover occurring. The crossover probability is an input parameter

to the algorithm as is the number of crossover points, though I have kept it at 1.
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Mutation is also a single point operation chosen from a uniform random number with

a static probability of crossover occurring. Future enhancements to the WSGA can

include adaptive adjustment of crossover and mutation probabilities as well as the

population size during the optimization process for higher convergence efficiency and

accuracy.

The use of constraints to a multi-objective problem as shown in equation 4.1

gives the WSGA the opportunity to incorporate regulatory and physical restrictions

during chromosome evolution. If a trait determined by the chromosome exceeds the

limits of the radio’s capabilities, like finding a center frequency outside the tunable

range of the radio, or breaks the law by transmitting too much power in a band,

then the WSGA applies penalties to the chromosome. A common penalty method

for illegal chromosomes is to set the fitness of the chromosome to zero [88], basically

nullifying its chance to survive to the next generation. I found that this reduces

selection of good genes that might exist in otherwise illegal parents. To avoid losing

the genetic material, I force random mutations on the gene until it is legal, thus

preserving large portions of the chromosome structure as well as introducing legal

genes into the population. A more focused mutation could also be implemented

where mutations occur on specific genes causing the illegal performance, thus not

wasting time performing mutations on otherwise legal genes.

A final implementation problem involves optimization as a network. The WSGA

provides a waveform optimized to a single radio node. For the new waveform to be of

any use, all other nodes on the network must also use the new waveform. The concept

of waveform distribution, issues of optimizing for a number of nodes, and discussion

about distributing the processing throughout the network are discussed in Chapter

7.

5.4.1 Details on Chromosome Structure

The WSGA’s chromosome structure differs from most traditional GAs because of

the variable number of bits used to represent any gene. Most GAs use a single data

type or number of bits per gene, but to better represent various radio capabilities,

the WSGA uses a flexible representation. For example, a radio might be capable of

thousands of center frequencies over multiple GHz but only has a few modulations

from which to choose. The chromosome can therefore give a large number of bits to

the frequency gene and a small number to the modulation gene and transmit power

gene as shown in Figure 5.5. A key result of this structure is that it makes the GA
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independent of what radio it is optimizing.

g0 g1 g20 g21. . . g22 g23 g24 . . .

. . . gN-5 gN-4 gN-3 gN-2 gN-1gN-6

Frequency Modulation

Transmit Power

220 = 1x106 values 24 = 16 values
26 = 64 values

Figure 5.5: Representation of the WSGA’s Chromosome with Variable Bit Represen-
tations of Genes

The variable bit representation is a result of the SDR platform definition file [16].

The platform definition file includes an XML file that looks very similar to the XML

listing in section 2.3.5 to represent the waveform bounds as well as a DTD file to

represent the basic waveform structure. Instead of providing an explicit value for

each knob, though, the definition XML file provides the range of values each knob

may have. The definition file can be thought of as representing the possible genes

in the chromosome while the waveform XML file represents the specific gene. As

an example, the following listing is the representation of the frequency range from a

definition file for a radio capable of transmitting from 400 MHz to 500 MHz in steps

of 1 kHz and from 2.3 GHz to 2.5 GHz in steps of 100 kHz. It also says that the

radio can transmit in the 400 MHz range from 0 to 100 dBm in steps of 0.1 dBm and

at 2.3 GHz from 0 to 20 dBm in steps of 0.1 dBm. This XML example shows how

both continuous values as well as discrete jumps in values can be represented. The

full XML listing is located in Appendix D.

...

<Tx>

<PHY>

<rf>

<tx freq>

<min unit=‘‘kHz’’>400000< \min>
<max unit=‘‘kHz’’>500000< \max>
<step unit=‘‘kHz’’>1< \step>

< \tx freq>

<tx power>
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<min unit=‘‘dBm’’>0< \min>
<max unit=‘‘dBm’’>100< \max>
<step unit=‘‘dBm’’>0.1< \step>

< \tx power>

< \rf>
<rf>

<tx freq>

<min unit=‘‘kHz’’>2300000< \min>
<max unit=‘‘kHz’’>2500000< \max>
<step unit=‘‘kHz’’>100< \step>

< \tx freq>

<tx power>

<min unit=‘‘dBm’’>0< \min>
<max unit=‘‘dBm’’>20< \max>
<step unit=‘‘dBm’’>0.1< \step>

< \tx power>

< \rf>
...

The XML file provides the bounds and step size, and therefore the number of

bits required to represent any possible genetic value for the knob in the chromosome.

The DTD file provides the minimum representation of the waveform to structure the

chromosome and understand how to parse the XML file. A brief slice of the DTD file

is shown next while the the full listing is in Appendix D. The WSGA uses the DTD

representation to know what genes are available and builds each gene from the XML

file above. The logic to accomplish this first parses the XML and DTD files into trees

that can be walked. The algorithm removes and elements that contain #PCDATA,

which indicates that the element contains data (and is therefore a min, max, or step

element). The algorithm then walks the DTD tree looking for leaf nodes on the tree,

which are now the elements that describe the trees after the min, max, and step

elements are removed. Each of the leaf nodes are names of genes. Each gene has a

the minimum and maximum value it can contain as well as a step value between the

two endpoints. The range represented is easily calculated as (max−min)/step and a

dlog2()e of this value provides the minimum number of bits required to represent the

possible values of the gene. Likewise, this information is used in reverse to decrypt

the genetic code; the bits representing the gene is an index of step number of steps

above the min value. As long as the result is less than max, the gene representation

is valid.

Any time more than one node of the same name exists, an index is used to address
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the gene. Multiple nodes of this sort are used when continuous ranges do not exist

in a radio, such as support for different frequency bands. The number of nodes is

indexed into a set of bits and the rest of the gene is made up of the minimum number

of bits required to represent the maximum range of any of the nodes. The index

position then identifies which range should be used to decrypt the gene.

This method to build chromosomes allows easy representation of a radio’s capabil-

ities in XML. The genetic algorithm behaves exactly the same regardless of the radio

attached as long as the description is valid in the XML file. The XML and DTD are

powerful tools to represent the radio that effectively allows the genetic algorithm to

design itself around the radio system, making it truly platform independent.

<!ELEMENT waveform (Tx,Rx)>

<!ATTLIST waveform type #CDATA ‘‘analog/digital’’>

<!ELEMENT Tx (PHY,LINK)>

<!ELEMENT PHY (rf,mod)>

<!ELEMENT rf (tx freq+,tx power+)>

<!ELEMENT tx freq (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT step (#PCDATA)>

<!ELEMENT tx power (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT step (#PCDATA)>

...

5.4.2 Objective Function Definition

XML and DTD files provide the mechanism for generic representation of radio plat-

form capabilities. The next part of the cognitive engine GA implementation is the

definition of the objective functions. As discussed in the previous chapter, there are

many different objective functions and different implementations of the functions. I

presented a few of the objective functions I have thus far developed as well as a couple

of different ways of looking at the functions. The objective functions, like the radio

platform, are likely to improve mathematically and representationally over time. It

is important, then, that the cognitive engine can be easily adapted to new objective

functions.

Again, DTD and XML play their role in this problem along with the use of shared
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object libraries. The GA is fed the objective functions in the form of an XML file

that describes what functions the library holds. The library is compiled as a shared

object library that allows dynamic, run-time linking. The GA can then link to the

library, pull out the required objectives, and close the library as required. Then, when

new objectives are introduced or better mathematical representations are found for

the existing objectives, the library can be recompiled separately from the rest of the

cognitive engine and transmitted to the cognitive radios for the next optimization

process. The XML file that the GA receives contains the list of functions available,

so during evaluation, the objective functions are referenced by name in the library.

The library processes the objective and returns a solution. The important aspect of

this is in the function prototype. Each function representation is in the form:

float < functionname >(radio hw def *knobs, radio meters *meters)

The radio hw def data structure is a class that contains the information to map the

chromosome representation to the radio platform capabilities. The structure is built

from the XML and DTD files that define the chromosome as discussed previously.

The radio meters is a simple data structure that holds the results of the objective

function calculations. Each function returns a real number as part of its result. The

WSGA is a maximization problem, and to allow the generic, dynamic representation

of fitness values, this value is a representation of the performance of the objective

function as a maximization metric. Simply put, when an objective function should

be maximized (e.g., throughput, SINR), the returned fitness is the objective itself.

When the objective should be minimized (e.g., BER, power), the returned fitness is

the inverse of the objective. These fitness values are then stored as credits to represent

an individuals fitness. The ranking and selection is based off the values of the credits,

which, again, are designed to be compared in a maximization problem. Meanwhile,

each member holds a copy of its meters data structure used in the post analysis of the

algorithm’s performance, both by myself as well as for use in the cognitive engine’s

learning routine.

5.4.3 Optimal Individual Selection

Pareto ranking only goes so far as to provide a population of optimal/near-optimal

and non-dominated individuals. However, from this point, the algorithm needs to

return a single, final individual as the solution to the optimization problem. The

Pareto front offers a range of solutions that represent different QoS values. I repeat
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here an example I used in [2] with BER and power optimization. Figure 5.6 shows a

solution space for bit error rate and power. The optimization goals are to produce a

waveform with low BER and low transmit power. Figure 5.6 shows 5 solutions, labled

A through E, resulting from the availability of three different modulations, BPSK,

8PSK, and QAM16, under SNR conditions of 0 to 12 dB. With the two objectives

listed, solutions A, B, and C fall on the Pareto front because any improvement in

BER would cause an increase in transmit power. Solution D and E are, in this case,

suboptimal and not on the Pareto front. Any of solutions A, B, or C could be selected

based on the optimization criteria, but not all represent certain other properties not

specified in the optimization function definition. For instance, BER and power are

objectives, yet the quality of service would suffer more from a higher BER than a

higher transmit power, so this removes solution A as a candidate. The choice is more

narrow between solutions B and C and depend on what property ranks higher; is the

extra 1.5 dB power increase worth the decrease in BER from 10−5 to 2× 10−7? If a

third objective such as throughput were added to the optimization problem, solutions

D and E are now contenders since they dominate the BPSK modulation scheme in

this objective. Again, however, selection from this set is based on quality of service

goals by how much importance is given to data rate, power consumption, and BER.
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Figure 5.6: Potential Solutions for Optimization of BER and Power; solutions A, B,
and C lie on the Pareto front

As discussed in section 4.4, there are many different methods for developing an
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optimization function that provides a ranking method, and therefore the ability in the

algorithm to select one individual solution. For the purposes of this dissertation, I first

normalize the credit values returned from the fitness functions. The normalization is

done by keeping track of the maximum value any objective receives throughout the

generations. I then use the weights of the objective functions as preference factors in

a simple linear-logarithmic utility function of equation 5.2.

f =

NO∑
i=1

wi ln

(
ci
λi

)
(5.2)

This equation calculates the fitness of an individual over NO objectives where each

objective has a credit score, ci, a preference weight, wi, and a normalization factor,

λi. The individual in the population with the maximum fitness, f is selected as the

solution of the algorithm for implementation on the radio.

This sets up the design of the cognitive engine’s WSGA. Chapter 8 provides exam-

ples of of this in operation, after the rest of the cognitive engine design is discussed.

5.5 Conclusions

With the multi-objective waveform optimization problem as well as the range of

possible knobs and meters available on a radio platform, the genetic algorithm is

a solution to both effective optimization and generic representation to make it an

excellent choice to use for cognitive radio work. In this chapter, I have presented the

basics of what makes the GA such a powerful search and optimization tool as well

as explained how it was developed for the cognitive raido problems. The particular

aspects of the GA implementation include the generic representation and definition

of the chromosomes to allow it to operate on different systems, the equally flexible

definition and implementation of the objective functions, and the methodology behind

performing the GA operations and making selections. As I have discussed, there

remains advances to be made in the evaluation functions as the relationships are

better understood and developed. I will show both the successful implementation of

the WSGA in Chapter 8 as well as point out the symptoms of the performance that

some of the advancements could correct. Before presenting the operational cognitive

engine or WSGA, the next couple chapters finish off the necessary theory and design

work required for the full cognitive engine.
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Chapter 6

Decision Making with Case-based

Learning

Decision making is a complex part of the cognitive radio design. A cognitive radio

uses environmental and behavioral information about a radio performance or user

requirements to make decisions on how to adapt. Decisions can include what pa-

rameters to adapt, if adaptation is required, or even the method by which to adapt.

My goal in this chapter is to introduce one particular use of decision making in cog-

nitive radios: augmenting optimization through past knowledge. Given changes in

the environment, the decision making system uses past knowledge to aid the genetic

algorithm optimization process by providing goals and by seeding the population to

best reach the desired goals. The basics of this concept were first published in [89].

Goldberg introduces the concept of knowledge-based technique in his book [34].

In the introduction to it, he cites the use of knowledge in how people solve problems;

humans do not develop everything from first principles over and over again. Instead,

previous knowledge influences and augments current decisions. The discussion tends

towards the use of previous solutions to enhance the next routine, but this is not

Goldberg’s use of the theory. Instead, he discusses how understanding the problem

domain can lead to tailoring the algorithm to help it solve the problem. Such tech-

niques involve the use of specific crossover operations used in solving the traveling

salesman problem that preserves legal solutions. Another powerful approach is to

use a hybrid system of a genetic algorithm along with another algorithm that does

local optimization. In this approach, the GA converges on an area where a solution

is likely to exist. Instead of spending generations to lock into the highest point in the

search area, a local optimization routine takes over to finish it up. This concept works

because local optimizers generally have well-understood, tractable performance, and
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lock on optimum points in a local search space quickly. The GA performs the global

search and the local optimizer finishes it off.

Ramsey and Grefenstette provided an initial analysis of case-based learning for

genetic algorithm population initialization [90]. Their aim was to develop a system

that would enable what they call anytime learning in changing problem spaces. This

goal is similar to the on-line learning of the cognitive engine. Recently, Newman’s

work showed how using previous solutions can improve the performance of waveform

optimization [39]. In this chapter, I add to this research through the discussion and

implementation of case-based decision theory to illustrate the use of knowledge to

solving problems with genetic algorithms. I provide an example of this technique

and discuss many advances case-based systems offer. The use of the technique in the

cognitive engine is part of the experiments of Chapter 8.

6.1 Case-Based Decision Theory

The decision making theory is largely derived from the case-based decision theory

(CBDT) work of Gilboa and Schmeidler [14]. CBDT uses past knowledge to make

decisions about future actions. Case-based decision theory is closely related to CBR

[41], and to avoid arguing semantics between the two techniques, I like to think of

this generically as case-based learning.

Formally, case-based learning defines a set of problems q ∈ P , a set of actions

a ∈ A, and a set of results r ∈ R. A case, c, is a tuple of a problem, an action, and a

result such that c ∈ C where C = P ×A×R. Furthermore, memory, M , is formally

defined as a set of cases c currently known such that M ⊆ C.

When the environment or user’s needs change as observed by a sensor, the new

information is modeled as a new problem, p. The sensors could indicate a change

in the interference environment, a new propagation channel, or a change in the ap-

plication of the radio requiring different QoS needs. The cognitive engine must then

determine the action, a, to take in response. The case-base system analyzes the new

problem against past cases in memory to determine the similarities between the new

problem and past problems as well as the utility of the past actions. Utility refers to

how successful an action was at responding the problem. The action defined by the

current cognitive engine is the waveform to use in the current situation. As the cog-

nitive engine processes and learns, it populates the knowledge base with more cases

and actions that better reflect the environment to help make better choices. This

technique is similar to an expert system that learns autonomously.
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A similarity function defines how similar two cases are and is represented by

equation 6.1. The similarity function is any function that provides some measure of

how close two problems are to each other where 0 represents no similarity while 1

represents a perfect match.

s : P × P → [0, 1] (6.1)

The utility analysis of the past cases is represented in equation 6.2, which is any

function that produces some real-valued result measuring the utility of the action.

u : R→ < (6.2)

Case analysis comes down to which case is both most similar to the new problem

as well as how successful the action was in the past. The decision maker then uses a

final decision function to decide which case to use. The simplest implementation is

a similarity-weighted decision function as shown in equation 6.3. A particular case

may be very similar but might have performed poorly in the past, so a less similar

but better performing case is selected instead.

U(a) = s(p, q)u(r) where (q, a, r) ∈M (6.3)

This equation is only one decision function used to make the decision. The chal-

lenge of this technique is to create effective similarity, utility, and decision functions

that best represent the types of information received through the sensors. I develop

this concept farther throughout this chapter.

6.2 Cognitive Engine Architecture with CBDT

The cognitive engine uses case-based decision theory to augment the optimization

process. Instead of relying on pure optimization alone, the case-base helps prime

and direct the optimization with learned experience. Likewise, instead of basing all

decisions on past actions from the case-base, the optimization process allows on-line

learning to build knowledge. The case-base and optimization routines work together

to enable learning and adaptation in the cognitive engine.

The case-base holds past cases, actions, and results of the actions. In the cognitive

radio, the case represents some model of the environment, such as a sequence of meter

readings or an interference map. The action for a given case is in the form of the
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waveform created to meet the case’s needs. The results, then, are a measurement of

how well the action performed.

To develop the performance measurements, the cognitive engine uses the results

of the optimization process and analyzes how closely those results match to the actual

performance of the radio. The optimization process develops the waveform based on

a set of mathematical models in the form of objective functions. The results of the

objective functions are calculated performance measures of the waveform. When the

waveform is then used in the environment, the resulting performance may differ from

the calculated performance. This difference relates to the utility of the waveform.

Figure 6.1 presents the block diagram of the described system. An incoming

problem is matched against the cases through a similarity function while the case

results are compared to the radio performance to develop the utility of the case. The

decision function is an equation like equation 6.3 that uses the similarity and utility to

properly select the most representative case to the new problem. The results are then

passed to the optimization process along with the new problem. Both the waveform

solution and the objective functions’ results are fed back to the case-base to be stored

along with the problem model as a new case.

observed
problem, p

similarity
function

utility
function

decision function optimization process
(genetic algorithm)

Casebase
prob. q0 action a 0 result r0

prob . q1 action a 1 result r1

.   .   .
prob . qM action a M result rM

Solution
Output

Optimization
Results

external
performance

meters

Figure 6.1: Case-based Decision Theory Implementation with Optimization Process

This figure and the discussion about the use of case-based decision theory have

not focused on any particular optimization process and should be considered a generic

method for learning and optimization. In my work, however, the particular form of

the optimization process is a genetic algorithm.
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6.2.1 Memory and Forgetfulness

The case-base holds M cases, and therefore must have a system to delete, or forget,

cases no longer used. Given a full case-base, when the cognitive engine observes a

new case, either the new case is not remembered or it must replace a current case. I

list here a few forgetfulness functions.

Temporal forgetfulness: In this method, the oldest case is forgotten. This method

is very simple to implement as a first in first out (FIFO) buffer. Each new case is

pushed onto the end of the queue and the oldest case is popped off the front.

Maximum distance forgetfulness: If the similarity function defines a distance be-

tween two cases, a linear relationship can determine which case to forget. Here, a

one-dimensional distance determines how similar cases are, and distance is measured

as d(xi, xj). Take the constructed example in Figure 6.2 where the x′s represent

known cases and the o represents the new case. First, the most similar case is found

to the new case, which is x3. Next, the two cases surrounding these two cases is

found, x2 and x4. The goal is to maximize the distance between the surrounding

cases to provide better coverage of the search space. The case that satisfies equation

6.4 provides the maximum distance between both cases x2 and x4. Edge cases are

easy as they are just a maximization of the similarity space.

min
c=[o,x3]

{abs (d (x2, c)− d (c, x4))} . (6.4)

The new case increases the distance between itself, x2 and x4 over the old case

x3, so x3 is forgotten. The theory behind this approach is to maximize the possible

problem space represented by the case-base. After replacing x3 with o, more of the

problem space is covered.

Similarity
measurement

x1 x4x3x2 x5o

Figure 6.2: Maximizing Distance Between Cases

Maximum utility forgetfulness: This technique replaces the case with the lowest

utility with the new case.

Each of these techniques make assumptions on the problem space such as tempo-

ral properties and radio behavior. If the environment changes quickly, then forgetting

the oldest case might work well as the case-base tracks the changes. If the environ-

ment does not change quickly, or if there are certain environmental models that are
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characteristic of many problems, it is useful to keep many of these models around

and not drop one simply because it is old. The ability to properly model similarities

and understand utility is also important to the case-base system; perhaps there is an

environment where no waveform will behave successfully or is difficult to build one

that does. In this case, forgetting a case based on low utility might not allow the

system enough time to learn the proper response by starting from a blank slate each

time.

It is also possible to mix these systems where information is stored in different

case-bases for different purposes. Rieser discusses this concept in his dissertation

[36]. He uses the concepts of short term memory and long term memory where

each represents a different method of remembering and forgetting information to take

advantage of the different properties each has.

6.3 Cognitive Engine Case-Base Implementation

Figure 6.1 provides the system diagram for how the case-base is used with the opti-

mization process. Looking back at Figure 2.3, the new case is received by the cognitive

controller through a sensor. The cognitive controller calls the decision making process

to find information in the knowledge, or case, base and then sends the information

to the optimization routine for processing. Each of these components can be devel-

oped and implemented independently. I will introduce here the concepts behind the

components for the cognitive radio, and the next section simply replaces the sensors

and optimization process to use the same system to solve knapsack problems.

The sensors and genetic algorithm optimization components in the cognitive en-

gine have already been discussed. Chapter 2 discussed the format of the information

from the sensors, and Chapter 3, 4, and 5 discussed how the GA optimizes waveforms.

The design of the case-base is covered here.

The case-base is implemented as a relational database in MySQL. The structured

query language (SQL) is both well-known and well-supported, and the MySQL im-

plementation has proven performance, stability, and design. Integration of a MySQL

databases is possible in almost any contemporary programming language, and it re-

duces the design time of building a new database or case-base structure. Another key

aspect of the MySQL database is that these database servers are easily accessed over

a distributed network, making it easy, almost trivial, to share knowledge between

cognitive radios. The drawback to this structure is that there is probably a perfor-

mance penalty introduced when making calls to the MySQL server over a database
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implemented as part of the cognitive engine. However, I felt the benefits from the

MySQL solution far outweighed this problem. Because of the modular approach taken

in the design of the cognitive engine, it should be easy to implement another database

solution in the future if this proves inadequate for certain needs.

The case-base is structured as a single database with multiple tables. Each sensor

is assigned a main table where each row represents a case. Each row includes a

timestamp, the problem, the solution, and the result. The problem is a reference to

another table that describes the problem. Similarly, each result is a reference to a

table to describe its properties. The final piece of the case definition is the solution,

which is a text field in the main table.

The references to the problem and result tables are done in order to maximize

the flexibility when defining the information representation. Each sensor contains

data that will require special representation in the database to maximize the ability

of the case-base to perform the similarity functions. Likewise, the results from the

optimization process may change, and again, the flexibility in the representation is

important for the system to adequately grow. Figure 6.3 shows the database structure.

sensor_<name>_table

.   .   .

ID time sensor_<name>_ref0 sensor_<name>_ result0

ID time sensor_<name>_ref1 sensor_<name>_ result1

ID time sensor_<name>_refN sensor_<name>_ resultN

sensor_<name>_ refX

ID sensor_info_0_0 sensor_info_1_0 sensor_info_1_M.   .   .
sensor_<name>_ resultX

ID result_info_0_0 result_info_1_0  result_info_1_M.   .   .

Figure 6.3: SQL Database Design for the Cognitive Engine

The structure of each of the tables is conveyed through a DTD file. As all the

information is passed via XML formatting, the DTD represents how the information is

presented and therefore stored in the problem and results tables. When the cognitive

controller associates with a sensor or the optimization routine, the component passes

a DTD representation of the data format, which is used to build the table structure.

The XML and DTD formats and uses are describe more thoroughly in Chapter 8 and

the file formats are shown in Appendix D.

In the current implementation, the cognitive engine associates with three sensors

to collect the meters, PSD, and objectives. The wireless system genetic algorithm

does the optimization. The PSD sensor provides an interference map that the GA
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uses in analyzing its objectives, and the case-base decision maker uses the meters

sensor in its utility calculation. The objectives are passed through a sensor to define

which objectives to use and their associated weights that define the problem space.

The results stored in the case-base are retrieved from the genetic algorithm optimizer

as shown in Figure 6.1. The results are the theoretical, or mathematically calculated,

values of the objectives such as bit error rate, SINR, and throughput. The meters

sensor calculates the objectives of waveform’s performance.

The utility is a representation of the different between the calculated objectives

and the actual objectives as shown in equation 6.5. I am using the CES utility

function because of the easy flexibility it offers to defining the relationships between

the quantities used in the utility calculation.

u(q) =

(
NO∑
i=1

(|fi(q)− fi(m)|)−ρ
)−1/ρ

q ∈ P (6.5)

Where there are NO defined objectives, fi(q) is the calculated value of objective i

for case q, and fi(m) is the observed value of objective i as derived from the meters.

The absolute value is used in this calculation because the waveform is penalized for

both better and worse performance than the estimated values, or over optimization

and under optimization.

The similarity function determines how similar the problem is to other cases in the

case-base. Problems are defined using the set of weights of the objective functions

that determine what level of QoS a user or applications requires. The cognitive

engine is designed to produce a waveform that improves the quality of service, so the

problem space sets the level of QoS required and the cognitive engine must develop

the waveform. Selecting the case comes down to finding a case similar to the QoS

problems posed in the past that have performed well. The similarity function is then

the sum of the differences between the objective weights of the new problem and the

weights of the objectives in each case.

s(q, p) =


0, if wi(p) = wi(q) = 0

wi(q), if wi(p) 6= 0, wi(q) = 0

1−
∑Nw

i=1
|wi(q)−wi(p)|

wi(p)
, else

, q ∈ P (6.6)

Where there are Nw weighted objectives, and each objective i in case q has a

weight wi(q), and the new problem statement p has a weight for each objective wi(p).
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To extend this concept, each sensor could be queried in this manner to find cases

from each domain that represents the problem. In the case of the energy detector

sensor, it might be useful to determine how similar this interference environment is to

past environments to help find white spaces quicker. A potential similarity function

for this sensor is a normalized cross correlation between the old interference maps

and the new map.

6.4 Simple CBDT Example

To demonstrate the use of case-based decision theory with a genetic algorithm, I

revisit the knapsack problem used as an illustration in Chapter 5. Before moving into

the use of CBDT on a knapsack problem, Figure 6.4 shows the average optimization

per generation of 100 runs of the GA on the same knapsack problem. The knapsack

problem and GA parameter settings are identical to those in the discussion in Chapter

5. I averaged the results of the best chromosome per generation over 100 runs to

provide a characteristic performance curve for the genetic algorithm.

Figure 6.4: Characteristic Performance of the Knapsack GA Averaged over 100 Runs

To apply CBDT to the knapsack problem, the system requires the similarity,

utility, and decision functions. The similarity function is defined in equation 6.7. In

this equation, the knapsack problems are modeled by a weight-adjusted profit value,

and before the calculation is performed, the vectors of weight-adjusted profits of the
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Ns items are sorted in ascending order to make a fairer comparison. In the following

equations, recall that the cases stored in the case-base are identified as case q while

the observed problem is p. Each case has a profit and weight vector where the profit

of item i is pq,i and the weight of item i is wq,i.

s(p, q) = 1−
Ns∑
i=1

∣∣∣∣ pp,iwp,i
− pq,i
wq,i

∣∣∣∣, q ∈ P (6.7)

I tested two utility functions. Utility function 1 in equation 6.8 is just the profit

of the solution, called the profit-only utility function. Utility function 2 in equation

6.9 makes the assumption that the better solutions will also be closer to filling the

knapsack completely, and so the profit is adjusted by the ratio of the weight of the

items in the knapsack to the maximum weight the knapsack can hold. This equation

is called the weight-profit utility function.

u(q) = pmq , q ∈ P (6.8)

u(q) =
wmq
Wq

pmq , q ∈ P (6.9)

In this equation, pmq is the total profit represented by a solution in the case-base,

wmq is the total weight of the solution, and Wq is the maximum weight of the knapsack

for the problem in case q.

The decision equation is the simple form from equation 6.3.

The first test is for proof-of-concept, debugging, and stability tests of the system.

In this experiment, I use the same knapsack model and repeatedly run the GA using

individuals initialized by the case-base where the case-base is initially empty. The

experiment runs the GA for 100 generations each time and stores the best perform-

ing individual in the case-base. The maximum number of cases retrieved from the

case-base is 10, and the case-base can hold a maximum of 100 cases when the oldest

case is dropped for the newest case. In the first run, with nothing in the case-base, no

population initialization takes place. The next run, using the same knapsack prob-

lem, looks in the case-base and selects the only model there, initializes one individual

in the population, and again, stores the best performing individual after 100 gener-

ations. Each time through, more members are retrieved from the case-base until 10

individuals are stored. At this point, the most similar and best performing member

is selected using the above equations along with its 9 closest neighbors. The system

is run 50 times to produce the same number of generations used to produce Figure
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Figure 6.5: Case-based Initialized GA Compared to the Characteristic Performance
of the Standard GA

6.4. I ran this experiment 10 times and averaged the results. Figure 6.5 compares

the performance of the CBDT-GA with the normal GA over the same number of

generations.

The idea is to make sure the system performs the analysis and population initial-

ization properly, so I am not expecting to see a performance improvement from this.

Because the experiment used the same knapsack problem each time, the similarity

calculation is always 1. Each time through the GA, the best performing solutions is

inserted into the case-base; therefore, the utility increases with every case. The case

selected from the case-base is then always the last case run along with previous 9

cases. Effectively, this experiment is the same as running one GA over 5000 genera-

tions and inserting a few random individuals every 100 generations. This is a form

of migration discussed in the GA literature. For smaller generations, the migration

of random individuals into the population affects the performance by removing other

members that had been evolving towards the global optimum. However, in later

generations, when exploitation of the parents is no longer the driving force of the

optimization, the random members help add a search capability to the population

to improve its performance. The results in Figure 6.5 confirm the theoretical perfor-
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mance by showing a slight dip in fitness between generations 500 and 2500, and a

slight improvement overall in the performance during the final generations.

The real experiments to see the performance capabilities of the knapsack GA come

from analyzing the GA against a number of random knapsack problems. CBDT offers

a number of variables to test, so I provide here an experiment to analyze a few of the

more relevant issues. I run with the two utility functions of equations 6.8 and 6.9.

Another variable is the number of individuals initialized from the database, so the

experiment here looks at the performance of initializing 0 individuals to the maximum

number of members of the population (20 in this case). The final variable under test

is the size of the case-base, where I run the experiment for a case-base of 100 cases

and 500 cases.

The experiments all used the same GA described previously, and each run consists

of 100 generations. For each change in the CBDT variables, I used the same knapsack

models. One hundred knapsack problems are first created and stored in files. The

case-based system is an implementation of the cognitive engine with a sensor attached

that can either create new knapsack problems or select a pre-defined knapsack prob-

lem. The cognitive engine is also associated with the optimization process that runs

the knapsack genetic algorithm. A simple Python program controls the sensor and

the cognitive controller while the optimization GA is run as a separate process. The

Python program initializes the knapsack sensor and cognitive controller, calls M ran-

dom knapsacks from the sensor and calls the optimization process for each knapsack

model for optimization where M is the size of the case-base. The random knapsack

results are inserted into the case-base. The randomized set is done to compare the

performance of the CBDT-GA in a random environment and not biasing the solutions

toward known models. After the case-base is randomized, performance statistics are

collected by running the simulation with the 100 pre-defined knapsack models. This

collection is done for population initialization of 0 individuals to the population size

(20).

Because each knapsack is different, it is important to compare performance be-

tween the same knapsacks. Some knapsack problems are harder than others, es-

pecially those with smaller maximum weights. The analysis is then to look at the

percent improvement over the base-case defined for when no individuals were initial-

ized. I then averaged the improvements over all 100 knapsacks to see how well the

performance was on average. The following figures show the percent improvement

and average performance of each of these experiments.

Figure 6.6 compares the average percent improvement over not using initialization
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Figure 6.6: Average Percent Difference in Performance of CBDT-GA to No Initial-
ization (error bars indicate 1 standard deviation from the sample mean)

Figure 6.7: Percent Difference in Performance of CBDT-GA with M=100 and a
Profit-only Utility Function
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Figure 6.8: Percent Difference in Performance of CBDT-GA with M=100 and a
Weight-profit Utility Function

Figure 6.9: Percent Difference in Performance of CBDT-GA with M=500 and a
Profit-only Utility Function
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Figure 6.10: Percent Difference in Performance of CBDT-GA with M=500 and a
Weight-profit Utility Function

for the four test cases. On average, when M is 100 using the profit-only utility func-

tion, the improvement is 5.50% and when using the weight-profit utility function the

improvement is 4.67%. When M is 500 using the profit-only utility function, the im-

provement is 4.34% and when using the weight-profit utility function the improvement

is 5.94%.

Figure 6.7 shows the performance while using equation 6.8 with a case-base of 100

items. Figure 6.9 shows the performance while using equation 6.8 with a case-base

of 500 items. Figure 6.8 shows the performance while using equation 6.9 with a case-

base of 100 items. Figure 6.10 shows the performance while using equation 6.9 with a

case-base of 500 items. In each of the percent improvement figures, the lighter circles

represent larger initialized populations while the black boxes represent the base case

where no individuals were initialized from the case-base.

These results show some interesting aspects about the CBDT technique. First,

the technique does not show improvement using a larger case-base when using the

profit-only utility function. When using a larger case-base, I suspected that the larger

amount of experience and knowledge represented in the case-base is more likely to

include a better representation of the new problem. This is the case when using the
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weight-profit utility function but not the utility-only function. These results suggest

the significance of using the proper utility calculation when selecting the case from

the case-base.

To explain this trend farther, I present the optimal (or near-optimal) results of

each of the knapsack models used in this analysis in Appendix E. Two significant

models stand out: model 62, which has an optimal profit of 0.086188, and model 63,

which has an optimal profit of 0.095681. These are both small profits and therefore

difficult problems to solve by finding a small subset of items to fit in the knapsack

and produce a high profit. The results of the case-based initialization show that the

average improvement for model 62 with the profit-only function with 100 cases is

0.42%, with 500 items is -22.04%, the weight-profit function with 100 cases is -2.07%

and with 500 cases is 26.82%. The same averages for model 63 are 26.49%, -0.33%,

13.67%, and -12.48%.

These numbers indicate that the selection of cases can have a significant impact

on the results. Specifically, the initialized population will direct the genetic algorithm

in a certain direction by offering good initial solutions. These solutions will dominate

the population, and their genes will dominate during selection and reproduction. If

these genes had a high utility in a previous, similar solution, they may well exist

in a local optimal point in the new problem. The selection pressure exerted on the

population drives the solutions into this local optimum point and not enough mutation

or generations occur to break out of this local optimum before the algorithm finishes.

For other problems, the initialized solutions contain genes that help move towards

a better optimum. The fact that some knapsack models performed better using

one utility function than another suggests that neither utility function is the best

representation of the knapsack utility, although the profit-weight seems to be the

better of the two.

The most significant feature of Figure 6.6 is the error bars, which represent 1 stan-

dard deviation from the mean. The standard deviation shows a significant variability

in the success of the case-base initialization. The previous discussion about models

62 and 63 show why this variation exists; many problems have various success rates

when applyting the case-base procedure. Some problems are more easily solved then

others, and the state of the case-base affects how useful the initialization is to solving

the problem. Sometimes, the case-base shows significant improvement and not other

times. Importantly, though, the average improvement is always positive.

Although not successful for all cases and problems, on average, the case-based

approach does improve the performance of the genetic algorithm. The population
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initialization sometimes lead to massive improvements in the fitness of the solution

after only a few generations. Some cases proved more difficult than others, and the

case-based approach sometimes lead to decreased fitness values. These graphs and

the trends established by them suggest some areas where the case-based system can

improve to provide better overall performance.

A number of advances to this basic system are possible. Some problems show

significant performance improvements by feeding in previous solutions while others

do not. One improvement is the use of performance trends. For this, the implemen-

tation of the case-base as a database offers many advantages. As Figure 6.3 shows,

each solution in the case-base is linked to a separate table that holds the fitness in-

formation. The case-base can then hold many fitness values for each case and track

the performance when the case is selected to initialize the optimization algorithm. If

the fitness does not improve over a few runs, the decision maker can take steps in the

future. When working with a genetic algorithm, these steps could include increasing

the population size or altering the crossover or mutation rate.

Furthermore, tracking performance could show the decision maker that perfor-

mance is not significantly improving during optimization. Given a high utility, the

decision maker can assume the solutions in the case-base are already near their opti-

mal performance. In this case, the decision maker could opt to skip the optimization

process or perform optimization for the new problem but with smaller population

sizes, optimization run times, or other aspects that reduce the computational and

time requirements of the algorithm.

Even more flexibility comes from the definition of the similarity and utility func-

tions. Developing an understanding of the problem might help the decision maker

select a different utility function when faced with a particular problem. In another

potential change, the selection criteria used when selecting multiple cases from the

case-base simply found the best case and selected those around it. A better approach

might be to find the N best cases and only use them, which will result in a set of

solutions more properly tailored to the new problem.

6.5 Conclusion

In this chapter, I introduced the concept of using feedback in the optimization process

to aid future optimizations. I used the concept of case-based decision theory as the

mechanism for producing the feedback. When one problem is optimized, the solution

is fed back into a case-base that stores the solution, results, and problem. When a

Thomas W. Rondeau 91



new problem is received, the decision maker looks for similar problems in the case-

base that exhibit a high utility. The previous solutions stored in the case-base are

then fed to the optimization process. I examined how this technique is applied to the

cognitive engine to build up knowledge and learn from experience.

To demonstrate the concept, I employed the case-base learning system to the

simple knapsack problem. The results showed an overall performance benefit from

the implementation. They also showed that there are still significant gains to be

made by farther studying this technique as well as a number of parameters that can

be adjusted. The case-base size as well as the number of cases used to seed the

optimization algorithm can be changed for different results. More importantly, the

results in this chapter showed that the definition of the utility function can have a

great impact on the performance. I will suggest that the similarity function would also

produce a large performance difference. With the knapsack problem, I only present

one similarity function that made sense for this problem, but for more complicated

problems, different similarity rankings may be possible and so must be studied.

There are also advances from this concept beyond these algorithm adjustments.

As I discuss at the end of the chapter, this method introduces other aspects of learn-

ing, such as using performance trends to build up confidence or alter behavior. This

concept offers a number of significant advantages to on-line optimization processes,

especially when strict time limits must be imposed. Because of this, case-based learn-

ing provides significant potential for use with the cognitive engine where problems

require solutions quickly as situations and environments change.

I will show the results of using case-based learning in the cognitive engine in

Chapter 8. First, however, I will discuss a bit more theory and design of the cognitive

engine. Chapter 7 covers some important topics of looking at the cognitive engine

within a network of radio nodes. The cognitive engine develops a waveform that

all nodes on the network will then need to use. The next chapter discusses poten-

tial methods for coordinating the networks and distributing the information among

the nodes. I will also provide a brief discussion of the concept of using distributed

algorithms to improve performance and decision making.
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Chapter 7

Cognitive Radio Networking and

Rendezvous

A final challenge to enable the cognitive radio system’s basic functionality is the

ability to transmit the cognitive engine’s information and solutions among the nodes

operating on the network. Previously, I have looked at the cognitive engine from

the internalized view of optimizing a waveform. The first item to address in this

context is the method by which a cognitive radio can distribute the information to

other nodes so that all radios communicating use the same waveform. This concept

is an autocratic method of cognitive radio network development; one radio develops

a waveform and pushes it out to the nodes for them to use. The biggest challenge

to enabling this mechanism is the need for established communications among all

nodes before the radio can communicate the new waveform. This chapter begins by

addresses these issues.

Developing this theme further, the autocratic method falls short of realizing the

full potential of a cognitive radio network. When one cognitive radio develops a

waveform, it has developed it to optimize its internal goals for its preceived channel

conditions, which the other radios on the network may not share, and so one radio’s

optimized waveform may not be the same as another radio’s. I briefly discuss this

with respect to the literature of game theory and cognitive networks that have been

developing this issue.

A farther enhancement to the cognitive radio design is not only to distribute the

waveform information, but also the use of the network nodes to enhance the opti-

mization process. Each cognitive radio in a network has the ability to cooperatively

optimize through the use of distributed and parallel processing. I end this chapter by

addressing some of the very basics of these techniques with respect to enhancing the
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genetic algorithm.

This chapter addresses cognitive radio networks, and each of the topics discussed

here are full research endeavors on their own. My aim in this chapter is to develop

the basic system to deliver waveforms across a network and present the research areas

involved and the advances this topic has to offer.

7.1 Waveform Distribution and Rendezvous

The simplest approach to enabling communications among cognitive radio nodes is

through a static control channel. When one radio develops a new waveform for the net-

work to use, the conditions of the channel might allow for continued communications

where the new waveform represents an enhancement to the current communications

capabilities. Under this condition, the radio can simply pass the new waveform to

the radio nodes using the current channel. This method is a form of in-band signal-

ing and can use a different logical control channel over the same physical channel to

send configuration information. This type of control information is commonly used

in home networking systems like IEEE 802.11, where connection and configuration

data use the same frequency channel but a simpler, more robust modulation scheme.

On the other hand, out-of-band signaling uses a separate physical channel to com-

municate control information, a concept commonly used in cellular communications

systems. The control channel is defined to use simple, robust waveforms on which all

nodes are capable of communicating. In the worst case, if the cognitive radio nodes

loose communications, they can revert to the control channel and wait for the new

waveform information and then reestablish communications. The use of a control

channel is also used to begin communications when a node wants to join a network

that might be using any waveform or any frequency. The control channel allows the

new node a way to communicate with the network and initialize communications.

This concept is often referred to as rendezvous: the method by which a radio hails

and enters a network.

Ideas and implementations for rendezvous are receiving a lot of attention for cog-

nitive radio network coordination and many papers of recent dynamic spectrum and

cognitive radio conferences discuss this. Both the 2005 and 2007 IEEE DySPAN

conference proceedings contain a number of such papers, for example, see [91, 92, 93].

Static control channels, while easily implemented, are problematic because they

are easily jammed and rendered useless. More innovative ideas involve dynamic con-

trol channels, which still require coordination among the nodes to determine where
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the control channel is. A few proposals have been shown recently that remove the

control channel from the rendezvous model and instead use physical layer descriptors

to identify radios and enable rendezvous. Sutton, et al. [94] shows the use of embed-

ded cyclostationary signatures in OFDM-based systems that can identify a network

and coordinate access. Because the signature is embedded in each OFDM symbol

transmitted, the system does not need to transmit particular frames or switch chan-

nels to enable the network identification and coordination. Horine [95] proposes a

technique to search for clear channels, transmit a beaconing signal, and wait for a

response while other radios scan for the particular beacon. The beacon is shaped in

frequency to identify the node or network. Unfortunately, since the detection is based

on FFT amplitude, there is no offered explanation of how the approach will work in

multipath or fading channels.

There is significant interest and work progressing in cognitive radio rendezvous.

Because of its simplicity of implementation and the currently available SDR capabil-

ities, I have implemented the static control model to enable the experiments of the

cognitive engine. The cognitive engine first tries to contact the other radio nodes

on the current channel; if they do not respond, the radio reverts to a known control

channel and waveform where the other nodes, having likewise lost their connection,

will wait. The new waveform information is then transmitted to the nodes and they

reconnect with the new settings.

7.2 Cognitive Radio Networks

The static control channel and push method used in the cognitive engine implemen-

tation are used currently for lack of a better solution. This method also ignores the

possibility that a waveform created by one radio does not work for another radio. In

a heterogeneous network, some nodes may be incapable of using the particular wave-

form. Even if all nodes are capable of using the specified waveform, other aspects of

the waveform may perform badly for certain nodes. For example, a hidden node to

the cognitive radio designing the waveform might be in close proximity to another

node on the network. The new waveform, while good for the designing node, cases

interference to the other nodes.

Research in cognitive networks, such as the work by Thomas, et al. [96, 97],

attempts to address this issue by looking at the end-to-end performance. From this

perspective, the cognitive network uses objective functions that optimize with respect

to the network performance. In [96], they use a game theory approach to optimize
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an ad hoc network with respect to power and channel control. Game theory has been

widely studied for wireless network optimization to look for optimal states for all

nodes, or a Nash equilibrium. Neel provides an extensive discussion and analysis of

game theory for cognitive radio [98].

7.3 Distributed AI

Another benefit from looking at the whole network instead of the single node adapta-

tion is to take advantage of the available processing power capabilities of each node.

Parallel processing has often been used advantageously in computer science, and with

the move towards multicore processors, it is likely a subject that will continue to re-

ceive attention. Some algorithms have shown themselves to be easily separable for

processing portions on different processors, and genetic algorithms are among these.

Goldberg cites many methods that take advantage of the populations of a GA in a

distributed sense [34].

A particularly popular technique is to split the population among different pro-

cessing elements to create “islands” of populations. Each population is independently

optimized, then the populations of optimized chromosomes are combined, compared,

and a winner is selected. Populations can also migrate between islands to share genes.

Alba provides a background on parallel genetic algorithms by applying them to find

appropriate error correcting codes and antenna placement in a radio network [99];

applications which I thought were particularly interesting in light of my work. Other

literature on this topic looks more closely at the mechanisms at work in the migration

and populations [100] as well as other types of parallelization of GA’s [101, 102].

When applying a parallel genetic algorithm to an on-line learning system such

as a cognitive radio, however, there are many questions that need to be addressed.

The parallel GA’s have some form of migration, or sharing, of population members

to perform the global analysis of the results to find a solution. The implementation

of the migration should be designed to consider network overhead required. Another

issue is that cognitive radio networks these are dynamic where nodes can come and go

at random. Most parallel GA’s are studied under the assumption that the network

of processing elements was established for this task. Instead, a parallel GA in a

cognitive radio network performs the parallelization as a secondary process of the

communications network. The algorithm must be implemented with respect to the

dynamics of the networks and robust against the loss of processing nodes. Distributed

AI offers significant potential to improve the global solutions and reduce the time and
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power required by any individual node, but these are some of the issues around which

such a distributed system must be implemented.

7.4 Conclusions

While short on answers, I have discussed some important considerations in the future

development and deployment of cognitive radios in this chapter. A network of cogni-

tive radios must include methods by which to transfer waveforms among all nodes as

well as take into consideration needs of other nodes when designing new waveforms.

The networking aspect itself opens up potential to use distributed and parallel pro-

cessing to enhance cognition in the network. In any case, consideration must be given

to the overhead required on the network to transfer the information related to the

cognitive radio performance and network maintenance.

For the practical purposes of the experiments in the next chapter, the method

used for node control is a simple push method from one node to the others when

it develops a new waveform. Furthermore, a default waveform provides a fall-back

channel and modulation for the nodes to use if communications is lost.
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Chapter 8

Example Cognitive Engine

This chapter presents examples of the cognitive engine. I develop the experiments in

four parts: a simple use of the genetic algorithm to design waveforms in the simulation

environment; addition of the interferers to the example; the use of the case-base

decision theory feedback mechanism; and finally, the application of the cognitive

engine over the air.

One of the major problems to address when presenting the results is the lack of

a definitive mechanism to compare results. Unlike the knapsack problems presented

previously where only one metric represents how successful the optimization was, the

results here are multidimensional. Furthermore, for the complex environments, many

potential solutions exist to produce desired behavior, and the random, non-tractable

behavior of the genetic algorithm may yield different waveforms with the same results.

To work through this, then, I will build up the simulation analysis slowly, introducing

new objectives each time for specific purposes and show the behavior of the genetic

algorithm by plotting the performance of each objective over the generations. The

trends exhibited in these graphs will indicate the response of the optimization across

the different objectives. As the number of objectives increases, the distribution of the

solutions along the Pareto front becomes more difficult to see; therefore, the early

trend graphs are designed to show the success in the optimization method while later

results will be measure more empirically. Finally, all graphs of the same objective

functions are plotted using the same range so each can be compared to the others.

8.1 Functional System Design

While in the previous chapters, I have discussed the theory behind the system design

and explained how the different systems work together, in this section, I want to
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review the full design of the cognitive engine platform. Figure 2.3 showed the generic

cognitive engine system with the major components shown. Figure 8.1 shows the

specific implementation of the cognitive engine for the simulations. Note that the

verification system has been removed from these simple experiments.

Decision
Maker

Knowledge
Base

Meters

Objectives

Energy Detector
(PSD)

Cognitive Controller

SQL
database

Python Control System
(via telnet)

WSGA

GNU Radio Simulation

Figure 8.1: CWT’s Cognitive Engine Simulation Implementation

First, each of the sensor components is instantiated; these include the meters, the

objectives, and the PSD sensors. The meters sensor provides information about the

performance of the radio by “reading the meters.” The objectives sensor represents

information gathered about the QoS requirements of the user and the application

and indicates the objectives to use in the analysis. The PSD sensor provides infor-

mation about the external interference environment, or power spectral density of the

spectrum. The XML representation of the information from all of these meters is

provided in Appendix D.

Second, the optimization component needs to be instantiated. Like the sensors,

this is a state machine process that listens for a connection and request to process

data from the cognitive controller. When this happens, the cognitive controller passes

a number of items to the optimization process which is either required for processing
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or adds information to help in the optimization. In this case, the optimization routine

is the WSGA, which requires the set of algorithm parameters, the problem definition,

and the chromosome definition. The parameters are the operating parameters such as

the population size, the crossover and mutation rate, and the termination conditions

such as the maximum number of generations. The problem definition describes the

optimization evaluation. For the WSGA, the problem statement is the set of objective

functions to use such as BER or throughput (see Chapter 4), and the weight of each

objective. Finally, the chromosome definition describes the radio hardware. The

chromosome is a binary vector that represents the search space; in the WSGA, the

search space is the set of radio knobs. The DTD and XML description of the waveform

(see Appendix D) provide the mechanism to map between the chromosome and the

radio knobs. This is discussed more in Chapter 5.

Three extra pieces of information can also be sent to the optimization process. The

first are previous solutions used to seed the population from the case-based decision

maker. Also, the radio environment map can be sent to the optimizer to help it

understand the interference environment to help with the waveform design like the

center frequency and bandwidth of the signal. The cognitive controller can also send

the results of the meters sensor, which describes the measured noise power and path

loss, which are useful in determining the required transmit power or modulation

type for the current conditions. The optimization process can run without any of

these three pieces of information, but each are meant to help inform and guide the

optimization process for better performance.

The radio framework then needs to be instantiated. The framework, as described

in Chapter 2, provides the translation between the cognitive engine’s representation

of the waveform and the radio platform. In this case, it parses the XML waveform

representation and creates a GNU Radio flow graph.

Finally, the cognitive controller is instantiated. It is important that this comes last

and that all other components are properly running. When instantiated, it associates

itself with the sensors, optimization process, and radio framework that it knows are

running. A simple XML file tells the cognitive controller what systems are present

and how to contact them. Each sensor is first contacted and stored as a component

associated by a specific name for the sensor, so there can be any number of sensors

attached at any given time. Only one optimization and radio framework are currently

supported. The configuration can also describe the policy engine interface, if one ex-

ists, and it configures the user interface. Currently, the decision maker and case-base

systems are integrated with the cognitive controller, but these should be separated
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to allow different implementations. When this happens, the decision maker, too, will

associate with the cognitive controller in this standard way.

When a component is associated, the cognitive controller requests the XML and

DTD file used by the component to describe its information. These files are used

to build the representation in the case-base and store the results of each component,

like the optimization results or the sensor data. It is exchange of information that

necessitates the instantiation of the components before the controller.

I wrote a simple Python script that acts through the user interface to control the

cognitive engine. The command structure is simple:

<component>:[name]:<command> [extra parameters]

The component is one of the major components, such as “sensor” or “optimizer.”

The name is only required for the sensors to describe which sensor the command is

to be passed to, such as “meters” or “objectives.” The command describes action

requested from the component, such as “collect” to request data from sensor, or

“optimize” to tell the optimization process to run. The final optional extra parameters

can be addition information to a component for its processing, such as a frequency

range for the PSD sensor to scan.

The control script performs the actions listed here:

1. Run the radio system

2. Collect the meters and PSD

3. Collect the objectives

4. Search for previous solutions in the case-base

5. Run the optimization process given the problem definition, the chromosome

definition, the GA parameters, the radio environment map and meters, and the

previous solutions

6. Receive the optimized waveform and simulated results and store these in the

case-base

7. Run the new waveform on the radio in the environment

8. Collect the new meters and compare the performance
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Table 8.1: Objectives: BER-only test
BER SINR Throughput BW Spec. Eff. Interference Power Computation
1.00 N/A N/A N/A N/A N/A 0.00 N/A

8.2 Simple Simulations

The simple simulation environment uses an AWGN channel with a free-space path

loss shown in equation 8.1 where n = 2, GT = GR = 0, c is the speed of light

in meters per second, d is the distance between transmitter and receiver in meters,

PT is the transmitted power in dBm, and PR is the received signal power in dBm.

I implemented the path loss using a frequency of 780 MHz, mostly in response to

the upcoming FCC 700 MHz spectrum auction to take place in early 2008. The

distance was set for this frequency to provide a path loss of about -22 dB, or about

1 wavelength.

PR = PT +GT +GR − n10log10

(
4πdf

c

)
(8.1)

The simulation ran 100 kB, of 8 × 105 bits through the transmit-receive chain,

which will provide adequate representation of the BER where 1× 10−6 is considered

the lowest threshold and most of the simulations were designed for higher BER than

this. The objective function calculation was the simple lin-log of equation 5.2.

8.2.1 BER-only

To obtain a good understanding of the algorithm performance, these first tests show

optimizing over a few simple objectives. To begin with, I ran the system with only

BER as an objective. The results show the cognitive engine successfully finding a

solution that minimizes the BER by using the most robust modulation available to

noise as well as setting the power to near maximum. It would, of course, be possible

to use QPSK for the same BER result, but the cognitive engine was reacting to the

objectives presented to it. Without an objective, like throughput, to pressure the

solution to use a higher-order modulation, the fitness of a solution is agnostic to the

setting. This holds true for the other knobs as well. The symbol rate, pulse shape

filter, frequency, and packet size are not taken into consideration when evaluating the

performance of a waveform.

Figure 8.2 shows the performance of the BER and power objectives over the gen-

erations of the genetic algorithm. These plots show the expected behavior of the

Thomas W. Rondeau 102



Table 8.2: Waveform Settings and Results: BER-only Test
Knob Settings Meters Sim. Result
Modulation BPSK BER 1.18×10−7

Transmit Power (dBm) 19.08 SINR (dB) N/A
Symbol Rate (sps) 0.250 Spec. Eff. (bps/Hz) N/A
Pulse shaping RRC, 0.86 BW (Hz) N/A
Normalized frequency -0.620 Throughput (bps) N/A
Packet Size 171 Interference (dBm) N/A

Power (dBm) 19.08
Computation (ticks) N/A

Obs. BER 0

(a) BER (b) Power

Figure 8.2: Performance Curves for BER-only Test

objectives as the BER objective is optimized. The power objective, while calculated,

had a weight of 0, so it did not factor into the preference of the algorithm. I use

the calculation here to show how the two objectives are traded off under the perfor-

mance criteria. The BER curve has a steady negative slope for the best performing

individuals while the power increases.

8.2.2 BER and Power (1)

For a more interesting example than the results just presented, in this simulation, I

have added the power minimization objective to the algorithm and lowered the BER

objective weight. The algorithm should now produce a waveform that produces a

low BER while not driving the power to the max, and indeed, Table 8.4 shows this

exact trend. The BER is higher than in the previous example and the power has been

dropped.

Table 8.3: Objectives: BER and Power Test (1)
BER SINR Throughput BW Spec. Eff. Interference Power Computation
0.75 N/A N/A N/A N/A N/A 0.50 N/A
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Table 8.4: Waveform Settings and Results: BER and Power Test (1)
Knob Settings Meters Sim. Result
Modulation BPSK BER 3.28×10−2

Transmit Power (dBm) 12.88 SINR (dB) N/A
Symbol Rate (sps) 0.250 Spec. Eff. (bps/Hz) N/A
Pulse shaping RRC, 0.22 BW (Hz) N/A
Normalized frequency -0.807 Throughput (bps) N/A
Packet Size 101 Interference (dBm) N/A

Power (dBm) 12.88
Computation (ticks) N/A

Obs. BER 0

One of the more telling aspects of this result is the value of the BER result of the

cognitive engine versus the observed result of using the waveform on the radio. The

simulated BER looks a bit large and suggests that the algorithm did not perform

as well as expected; from the objective function settings, the waveform should more

heavily weight minimizing the BER to minimizing the power. However, Figure 8.3

shows why this happened. The BER plots never managed to produce a BER value

lower than about 1.0×10−2, even when the power approached the maximum of 20 dB.

This is a result often observed when running the algorithm due to the uncertainty of

the meters sensor. The objective for setting the BER, as discussed in Chapter 4, relies

on the approximation of the noise floor and the path loss. As the results of Appendix

A show, the estimation of the SNR can be off by a few dB, plus or minus. At the

power levels the algorithm is dealing with, a few dB can greatly affect the simulated

performance, and so a bad estimate can produce results such as these. However,

the actual observed result of using the waveform showed a much better BER than

the simulated performance, indicating that this was actually a good waveform choice

that produced the proper balance of power to BER. Furthermore, this indicates a

robustness to uncertainty in the system performance. It did not entirely matter that

the information received from the sensor was incorrect; the algorithm still found the

proper balance.

8.2.3 BER and Power (2)

To study the behavior a bit farther, an interesting question to address is the effect

changes in the weights have on the performance of the cognitive engine. Here, I

dropped the BER weight to 0.5 so that the optimization process has no preference.

Of course, only the relative value of the weights matter, so this test would work equally

well by setting both weights to 1.0. The results in Table 8.6 show one extreme of
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(a) BER (b) Power

Figure 8.3: Performance Curves for BER and Power Test (1)

Table 8.5: Objectives: BER and Power Test (2)
BER SINR Throughput BW Spec. Eff. Interference Power Computation
0.50 N/A N/A N/A N/A N/A 0.50 N/A

what can happen in this situation. The power is 0.28 dBm, almost the minimum

power available on the system, but the BER value is terribly large. This results

from the lack of preference and improper shaping of the objective space. Without a

real preference relationship established, one extreme or another is likely to take over.

Other runs under these conditions showed very small BER and large power values.

However, I use this example to illustrate the performance of the GA in Figure 8.4,

which shows interesting performance trends.

Figure 8.4 shows what happens when two objectives are equally traded off. The

curve in the middle generations shows that during the first hundred generations the

algorithm is looking for a small BER and large power value, but then more highly

fit individuals take over the population and push it in the other direction. Again,

because there is no selection pressure influencing the population away from either

extreme, both may be equally fit. I addressed this concern briefly in Chapter 4 in

Table 8.6: Waveform Settings and Results: BER and Power Test (2)
Knob Settings Meters Sim. Result
Modulation BPSK BER 3.41×10−1

Transmit Power (dBm) 0.28 SINR (dB) N/A
Symbol Rate (sps) 0.750 Spec. Eff. (bps/Hz) N/A
Pulse shaping RRC, 0.22 BW (Hz) N/A
Normalized frequency -0.647 Throughput (bps) N/A
Packet Size 164 Interference (dBm) N/A

Power (dBm) 0.28
Computation (ticks) N/A

Obs. BER 3.995× 10−1
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(a) BER (b) Power

Figure 8.4: Performance Curves for BER and Power Test (2)

Table 8.7: Objectives: Throughput
BER SINR Throughput BW Spec. Eff. Interference Power Computation
0.75 N/A 0.50 N/A N/A N/A 0.50 N/A

discussing different utility functions. Replacing the linear summation of weights used

in these tests might show improvement under these conditions.

8.2.4 Throughput

This test analyzes the cognitive engine for optimizing throughput. The results are

straight-forward, illustrating the performance of the algorithm to produce a wave-

form with high data rates and moderately low bit error rate. The balance is achieved

through the trade-off provided by using the BER and throughput objectives. I dis-

cussed this when defining the throughput objective in Chapter 4.

Table 8.8: Waveform Settings and Results: Throughput
Knob Settings Meters Sim. Result
Modulation 8PSK BER 2.78×10−2

Transmit Power (dBm) 15.37 SINR (dB) N/A
Symbol Rate (sps) 1.0 Spec. Eff. (bps/Hz) N/A
Pulse shaping RRC, 0.56 BW (Hz) N/A
Normalized frequency 0.229 Throughput (bps) 3.0
Packet Size 1026 Interference (dBm) N/A

Power (dBm) 15.37
Computation (ticks) 0

Obs. BER 3.965× 10−3
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(a) BER (b) Power

(c) Throughput

Figure 8.5: Performance Curves for Throughput

Table 8.9: Objectives: Waveform Efficiency
BER SINR Throughput BW Spec. Eff. Interference Power Computation
0.90 N/A 0.60 0.50 0.30 N/A 0.40 0.90

8.2.5 Waveform Efficiency

In the next test, I show the performance of the algorithm when asked to produce an

efficient waveform, which means a waveform with a low power, computational, and

spectral footprint. At the same time, the algorithm is also asked to produce low BER

and high throughput.

The combination of these objectives leads to a waveform that provides the required

balance, perhaps with a BER that is slightly larger than it should be. The cognitive

engine produced a spectrally small waveform, but did not go to an 8PSK modulation

to meet the throughput objective as this would have negatively affected the BER and

computational performance. However, the throughput plot from Figure 8.6 shows

higher throughput and symbol rates were tried and rejected in the end while the

spectral efficiency continuously improved. The power and BER curves show the same

trend as in the above example where the middle generations show trends towards lower

BER and higher power. The reoccurrence of this property indicates a performance

trend in the algorithm. I previously mentioned concepts of population niching, a
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Table 8.10: Waveform Settings and Results: Waveform Efficiency
Knob Settings Meters Sim. Result
Modulation QPSK BER 2.01×10−2

Transmit Power (dBm) 5.32 SINR (dB) N/A
Symbol Rate (sps) 0.125 Spec. Eff. (bps/Hz) 3.64
Pulse shaping RRC, 0.10 BW (Hz) 0.069
Normalized frequency -0.674 Throughput (bps) 0.25
Packet Size 1405 Interference (dBm) N/A

Power (dBm) 5.32
Computation (ticks) 5367.67

Obs. BER 2.68× 10−3

concept used to maintain an even distribution of individuals along the Pareto front.

The decline of diversity in later generations suggests the need for niching to provide

the population diversity that will allow a more complete search and a better set of

individuals on the Pareto front from which to select a solution.

In none of these problems did the cognitive engine find a waveform that uses differ-

ential modulation. This is actually good, because under no circumstances in the sys-

tem provided does a differential modulation make more sense then a non-differential

modulation. The differential modulations have about a 2 dB loss in the BER perfor-

mance, and they do not offer any benefit in throughput or bandwidth. Their use in

real communication systems is derived from the simpler design requirements of the

receiver. However, in the GNU Radio situation, as discussed in Appendix C, the dif-

ferential modulators only add blocks to the flow graph and so increase the complexity

of the system. Therefore, given the current radio platform, there are no situations

that will allow a differential modulation an advantage over a non-differential form,

but it is important to point out that this only holds true for the radio platform used.

Another platform that implements a simpler differential receiver might show some

benefits under certain conditions of low battery life.

8.3 Interference Environment

In the next few experiments, I use the full simulation design of Figure 3.4 by in-

troducing the interferers. The radio simulation takes a number to seed the random

number generator, thus allowing me to rerun the simulations with the different wave-

forms. Each simulation uses a random number of interferers from 10 to 15, and the

amplitude, frequency, and bandwidth of each interferer is selected at random. These

experiments show the ability of the cognitive engine to model waveforms that both
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(a) BER (b) Power

(c) Bandwidth (d) Spectral Efficiency

(e) Throughput (f) Computational Complexity

Figure 8.6: (a) BER and (b) Power Performance for Waveform Efficiency
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Table 8.11: Objectives: Interference Test (1)
BER SINR Throughput BW Spec. Eff. Interference Power Computation
1.00 0.00 0.00 0.00 0.00 1.00 0.00 0.00

Table 8.12: Waveform Settings and Results: Interference Test (1)
Knob Settings Meters Sim. Result
Modulation BPSK BER 1.21×10−6

Transmit Power (dBm) 20.00 SINR (ratio) 7.12
Symbol Rate (sps) 0.750 Spec. Eff. (bps/Hz) 1.71
Pulse shaping RRC, 0.17 BW (Hz) 0.439
Normalized frequency -0.90 Throughput (bps) 0.75
Packet Size 580 Interference (mW) 8.63×10−5

Power (dBm) 20.00
Computation (ticks) 31094.10

Obs. BER 4.5× 10−6

meet QoS requirements as well as avoid interferers. I have added a couple of situa-

tions that I found illustrated interesting problems in the cognitive engine because of

incorrect information received from the sensors.

The experiments are performed by first running the radio simulation with a ran-

dom seed, collecting the PSD and meters sensor data, reading in the optimization ob-

jectives, building a waveform, then rerunning the simulation using the same random

seed to test the performance of the waveform under the same simulation conditions.

8.3.1 Interference (1): Simple BER Tests

The first, simplest test is to ask the cognitive engine to build a waveform that avoids

the interferers and minimizes the BER. Table 8.12 show that the BER objective was

met and Figure 8.7 show the frequency domain of the simulation to show that the

interferers were avoided properly. In the frequency plots, I show the signal seen by the

receiver in blue as the combination of the transmitter and interferers, the transmitted

signal is shown in red that has been adjusted for path loss, and the interferers are

shown in purple. Figure 8.8 shows that the objectives in this case were easily met. The

SINR increased to its maximum quickly and the interference power was always very

low. This figure indicates that very good solutions were found early and dominated

the population. The figure shows two plots of the interference objective. The plot

in Figure 8.8(c) shows the interference using the same axis as all other interference

plots while the plot in Figure 8.8(d) shows the same plot zoomed in to better show

the objectives performance.
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Figure 8.7: Frequency Domain of Interference Test (1)

(a) BER (b) SINR

(c) Interference Power (d) Interference Power (zoomed-in)

Figure 8.8: Performance Curves for Interference Test (1)
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Table 8.13: Objectives: Interference Test (2)
BER SINR Throughput BW Spec. Eff. Interference Power Computation
1.00 0.75 0.60 0.20 0.00 1.00 0.25 0.00

Table 8.14: Waveform Settings and Results: Interference Test (2)
Knob Settings Meters Sim. Result
Modulation 8PSK BER 0
Transmit Power (dBm) 10.02 SINR (ratio) 47109.2
Symbol Rate (sps) 0.750 Spec. Eff. (bps/Hz) 5.45
Pulse shaping RRC, 0.10 BW (Hz) 0.4125
Normalized frequency 0.777 Throughput (bps) 2.25
Packet Size 383 Interference (mW) 1× 10−12

Power (dBm) 10.02
Computation (ticks) 33430.09

Obs. BER 4.5× 10−6

8.3.2 Interference (2): Sensor Problems

In the next set of experiments, I am using a more interesting set of objectives to

balance the waveform properties and create waveforms that are bandwidth efficient

but have high throughput, low BER, and avoid the interferers. In this first test,

the cognitive engine used the information retrieved from the PSD sensor to know

where to avoid the interference. As Table 8.14 show, the waveform designed by the

cognitive engine had 0 BER and the minimum interference power possible, where

1 × 10−12 is used as the minimum possible value to avoid errors when converting to

dBm. However, the observed BER was much higher, and Figure 8.9 shows that the

waveform was placed directly on top of one of the interfering signals.

A look at the results returned by the PSD sensor shows why the cognitive engine

selected the improper frequency. According to the PSD sensor as seen in Table 8.15,

there are only four bands to avoid. The last signal is shown to both start and end

where the previous signal ended. In this representation, the interference signal from

about 0.55 to 1.0 Hz does not exist. The cognitive engine, working with this data,

did not understand the presence of the signal and therefore could not avoid it. It

turns out that the PSD sensor had a small logic error that caused this representation

problem, and it was easily corrected. I show this because I wanted to illustrate

this problem to indicate the impact of incorrect information on the cognitive engine

because otherwise, under the conditions presented, the waveform optimization looked

correct.
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Figure 8.9: Frequency Domain of Interference Test (2)

Table 8.15: PSD Sensor Results in Interference Test (2)
Signal Amplitude (dBm) fmin (Hz) fmax (Hz)
1 -12.12 -1 -0.975
2 -11.45 -0.909 -0.705
3 1.28 -0.332001 0.493
4 -23.02 0.493 0.493

(a) BER (b) SINR

(c) Interference Power

Figure 8.10: Performance Curves for Interference Tests (2)
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Table 8.16: Objectives: Interference Test (3)
BER SINR Throughput BW Spec. Eff. Interference Power Computation
1.00 0.75 0.00 0.20 0.00 1.00 0.25 0.00

8.3.3 Interference (3): Correcting for Sensors

While the mistake shown in the last example related to a logic error in the sensors,

other measurements and uncertainties can also have an effect on the cognitive engine’s

performance. The meters designed for use with the GNU Radio simulation measure

the received power and noise power, and, as Appendix A shows, the measurements

are fairly accurate, increasing in uncertainty as the SNR decreases. These tests were

conducted outside of the presence of interference sources, which significantly skew

the results. The received signal strength of the meters sensor calculates the average

magnitude squared of the received signal through the receiver’s channel filter. When

interference is present, the interference signal is added to the received signal. Because

the SNR meter calculation was not designed properly to measure the SINR, the

resulting information is significantly skewed when interference is received through the

channel filter, specifically by raising the measured signal power and disproportionately

affecting the measurements of the path loss and SNR. This information propagates

through to the cognitive engine and optimization process. When designing waveforms,

the cognitive engine’s estimation of the path loss affects the BER measurement, which

will then affect what power levels provide acceptable BER values. In this case, because

the path loss estimation is significantly decreased due to the increased measurement of

the received power, the BER calculation assumes that lower transmit power provides

lower BER than it should.

Table 8.17 shows what happens under these conditions. The cognitive engine

found that a BPSK signal with a 10.72 dBm transmit power will produce a 0 BER

(in other words, too small to be represented), which indicates a very large SNR (see

Figure A.1 to confirm this). However, with the use of the multi-objective search space,

different objectives can pressure the solution into an more acceptable solution. In this

case, I used the SINR objective as the pressuring agent in the optimization. When

the SINR objective was not used, the power was minimized to 0.1 mW. The results

here show that using the SINR objective balances the incorrect information that leads

to the poor decision based only on the BER. The resulting waveform achieved the

desired performance of interference avoidance (see Figure 8.11), low BER, and mid

ranged bandwidth and power.

Upon discussion with my committee, it was determined that this measurement
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Table 8.17: Waveform Settings and Results: Interference Test (3)
Knob Settings Meters Sim. Result
Modulation BPSK BER 0
Transmit Power (dBm) 10.72 SINR (ratio) 22.49
Symbol Rate (sps) 1.000 Spec. Eff. (bps/Hz) 1.82
Pulse shaping RRC, 0.10 BW (Hz) 0.4125
Normalized frequency -0.90 Throughput (bps) 0.75
Packet Size 855 Interference (mW) 1.16×10−2

Power (dBm) 10.72
Computation (ticks) 31094.10

Obs. BER 4.61× 10−6

Figure 8.11: Frequency Domain of Interference Test (3)
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(a) BER (b) SINR

(c) Interference Power

Figure 8.12: Performance Curves for Interference Tests (3)

issue needed reconciliation. As explained, the problem that the cognitive engine faces

is misinformation from the sensor that measures the received signal strength and noise

power. The underlying calculations were set up to accurately measures these values

without the presence of an interferer, but when an interferer is present in the received

channel, the signal power calculation incorrectly calculates the received signal power

as much higher than it really is. While I find the behavior and capabilities of the

cognitive engine interesting and a valuable experience to enhance the overall under-

standing of the radio, my committee felt that it is important to provide a discussion of

how this error can be corrected. The other examples and results in this chapter show

that, given proper information about signal and noise power, the cognitive engine

properly optimizes and finds waveforms that fit the objectives. Therefore, the cog-

nitive engine needs a sensor capable of properly measuring the signal to interference

ratio (SIR) or signal to interference plus noise ratio (SINR).

One method of calculating the SINR is through the use of known symbols such as a

sequence of training symbols or a known preamble. The GNU Radio implementation

uses a known access code that the nodes correlate against to know the start of a packet.

This known access code can also provide the required information to calculate SINR.

The SINR meter probe is given the modulated access code and correlates against the

received time domain signal from the channel filter. The output of the correlation
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Table 8.18: Objectives: Interference Test (4)
BER SINR Throughput BW Spec. Eff. Interference Power Computation
1.00 0.75 0.40 0.20 0.00 1.00 0.25 0.00

spikes when the transmitted access code is received. The known access code sequence

can then be subtracted from the received signal to leave any interference signals

and the AWGN noise. Before subtracting the known access code, an autocorrelation

is performed on it to determine its maximum correlation value. The ratio of the

autocorrelation value to the peak of the cross-correlation gives the pathloss assuming

the pathloss is constant during the transmission of the access code. This ratio is used

to adjust the amplitude of the known sequence to properly remove it from the received

signal. Taking the average magnitude squared of this signal is the interference pulse

noise power. The remaining signal after subtraction can then be subtracted from the

original received signal to leave only the transmitted signal. The average magnitude

squared of this signal is the received signal strength. These ratio of these two power

values is the SINR. Appendix F provides a more detailed mathematical explanation of

this meter probe as well as simulated results that show the proper behavior required

of this sensor. This sensor can then be used as a means of calculating the received

signal power, the interference plus noise power (or just noise power if no interference

is present), and the pathloss, thereby replacing the signal power and noise power

probes used previously in this work.

8.3.4 Interference (4): Throughput with Low Spectral Foot-

print

I am revisiting the second interference experiment that had the goal of providing a

high throughput, low BER, and low spectral footprint while avoiding the interference

but had trouble because of the bad sensor. This experiment uses the information

provided by the problems of the last two tests to see how well cognitive engine really

performs for this task. The resulting waveform attained all of the desired performance,

as shown in Table 8.19 and Figure 8.13, with a moderate throughput and small

bandwidth by using a high-order modulation (8PSK) with a small bandwidth while

avoiding the interferers.
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Table 8.19: Waveform Settings and Results: Interference Test (4)
Knob Settings Meters Sim. Result Obs. Result
Modulation 8PSK BER 0
Transmit Power (dBm) 16.73 SINR (ratio) 289153
Symbol Rate (sps) 0.125 Spec. Eff. (bps/Hz) 5.45
Pulse shaping RRC, 0.10 BW (Hz) 0.0688
Normalized frequency 0.275 Throughput (bps) 0.375
Packet Size 1472 Interference (mW) 1.0× 10−12

Power (dBm) 16.73
Computation (ticks) 5571.81

Obs. BER 0

Figure 8.13: Frequency Domain of Interference Test (4)
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(a) BER (b) SINR

(c) Interference Power

Figure 8.14: Performance Curves for Interference Tests (4)

8.4 Case-based Decision Theory Example

The case-based system has large potential for learning and improving the performance

of the cognitive engine. The case-base system can feed not only previous solutions,

but also adjustments to the optimization parameters like the GA population size

and terminating conditions. My goal here is to provide the system for this kind of

research to continue. To just get a feel for how the case-base learning system can

be applied, however, I ran a simple test. This test takes the problem of the second

BER and power optimization. I used a weight of 0.60 for the BER objective this

time to offset the balance to create a better solution. The results are shown in Figure

8.15 and Table 8.20. The results show that the waveform is well-representative of

the problem specifications. The BER is low (and 0 in the simulation) and the power

was higher, but not at its maximum. Figure 8.15 provides a better clue into the

performance of the case-base system. Unlike the performance plots of Figure 8.4, the

initial population shows better distribution in the search space with initial members

closer to the final results. This population could have easily been terminated much

earlier and achieved a good solution.

Although not a rigorous test of the case-base system, the initial system works and

shows promise for performing learning and future potential. The implementation in
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Table 8.20: Waveform Settings and Results: CBDT-GA
Knob Settings Meters Sim. Result
Modulation BPSK BER 1.51×10−4

Transmit Power (dBm) 15.93 SINR (ratio) N/A
Symbol Rate (sps) 0.250 Spec. Eff. (bps/Hz) N/A
Pulse shaping RRC, 0.69 BW (Hz) N/A
Normalized frequency -0.017 Throughput (bps) N/A
Packet Size 275 Interference (mW) N/A

Power (dBm) 15.93
Computation (ticks) N/A

Obs. BER 0

(a) BER (b) Power

Figure 8.15: Performance Curves for the Case-based application to the BER and
Power Test (2)
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the cognitive engine will allow for more advanced concepts and implementations as

the research develops.

8.5 Over-the-Air Results

The first over-the-air tests were performed during the IEEE Conference on Dynamic

Spectrum Access Networks (DySPAN) in April of 2007 in Dublin, Ireland [103]. At

the conference, a number of participating companies and research labs set up and

ran their cognitive radio and dynamic spectrum access equipment using spectrum

specifically licensed by Ireland’s Communications Regulators (COMREG). I set up

two of the cognitive radio nodes I have described here at the conference using the

GNU Radio SDR platform with USRP RF front-ends, a PSD sensor, and the WSGA

optimizer. The implementation of this cognitive engine is shown in Figure 8.16, which

uses a sensor to pull in the PSD information, the WSGA, and the verification system

to ensure regulatory compliance of the waveforms.

Decision
Maker

Knowledge
Base

Objectives

Energy Detector
(PSD)

Cognitive Controller

SQL
database

Python Control System
(via telnet)

WSGA

GNU Radio

WSGA
Verification

Figure 8.16: CWT’s Cognitive Engine On-line Implementation

The spectrum regulations are shown in Table 8.21, although I limited the cognitive
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Table 8.21: Frequency Allocations at IEEE DySPAN, 2007
Channel Centre Freq. (MHz) Max ERP BW (MHz)
1 231.2250 1 W (0dBW) 1.75
2 233.0250 1 W (0dBW) 1.75
3 234.8250 1 W (0dBW) 1.75
4 236.6250 1 W (0dBW) 1.75
5 238.4250 1 W (0dBW) 1.75
6 386.8750 1 W (0dBW) 1.75
7 396.8750 10 W (10dBW) 1.75
8 406.9750 1 W (0dBW) 1.75
9 408.7750 10 W (10dBW) 1.75
10 436.8750 1 W (0dBW) 1.75
11 2056.000 1 W (0dBW) 50.0
12 2231.000 1 W (0dBW) 50.0

Table 8.22: Knobs Available to the GNU Radio: Over-the-Air

Experiments (1)
Knob Name Knob Settings
Modulation DBPSK, DQPSK, GMSK
Transmit Power 0 - 20 (dBm)
Symbol Rate 125 - 500, steps of 25 (kbps)
Pulse shaping 0.1 - 1.0, steps of 0.01
Center frequency 406.1× 106 - 409.65× 106, steps of 1 (kHz)
Frame Size 100 - 1500, steps of 1

radio to use the 406.9750 and 408.7750 MHz bands for convenience.

Table 8.22 shows the knobs available for the over-the-air experiments.

During the demonstration, of the two cognitive radios, one was the master that

would design a waveform and push it to the other. The master radio would first sweep

the spectrum, determine if any other radios were present, and then design a waveform

to fit the channel. I was attempting to perform a streaming audio service across the

two nodes that would provide a high throughput, low error connection amidst the

other radios operating in the same frequency. Figure 8.17 shows the results of one of

the sensing and optimization processes that occurred during the conference.

In this figure, the spectrum regulations are shown as the blue masks that surround

the available spectrum in frequency and power. The figure shows that during one of

the spectrum sweeps an interfering node was present in the middle of the allocated

spectrum. The resulting waveform found a position in the spectrum that was legal

in both frequency and power and did not overlap the interfering signal. Furthermore,

this signal was a 250 kbps QPSK waveform that provided adequate quality of service

for the audio application.

To test the latest version of the cognitive engine, I used operating frequencies
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Figure 8.17: DySPAN Spectrum Results

Table 8.23: Knobs Available to the GNU Radio: Over-the-Air

Experiment (2)
Knob Name Knob Settings
Modulation DBPSK, DQPSK, GMSK
Transmit Power 0 - 20 (dBm)
Symbol Rate 15 - 500, steps of 10 (kbps)
Pulse shaping 0.1 - 1.0, steps of 0.01
Center frequency 2405× 106 - 2415× 106, steps of 1 (kHz)
Frame Size 100 - 1500, steps of 1

between 2.405 to 2.415 GHz with three interfering radios. Two of the interference

nodes are 1 MHz wide QPSK signals generated from the CTVR IRIS software radio

and a third is a 1 MHz wide OFDM signal generated using the Anritsu MG3700A

signal generator. The signals were positioned at 2.4075 GHz (IRIS QPSK 1), 2.410

GHz (IRIS QPSK 2), and 2.4125 GHz (signal generator OFDM). The cognitive radio

node has the waveform capabilities described in Table 8.23.

When asked to design a waveform using the same objectives as Table 8.18, the

cognitive engine produced a 200 kbps QPSK signal with a 12 dBm transmit power.

At this point, the performance of the cognitive engine is well understood in building

signals that can produce high data rates with low BER. The most interesting perfor-

mance property of this particular example is that the PSD sensor accurately modeled
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Figure 8.18: Frequency Domain of Over-the-Air Test (2)

Figure 8.19: Interference Performance Curves for the Over-the-Air Experiment (2)

the interference environment, and the cognitive radio optimized around these inter-

ferers. Figure 8.18 shows the spectrum as captured by an Anritsu Signature signal

analyzer. The three interfering signals are seen at 2.4075, 2.410, and 2.4125 GHz

and the cognitive engine’s waveform is located to the left of all three interferers at

2.4057GHz. The signal on the right edge of the plot around 2414 MHz was not part

of the experiment but a random signal picked up in the unlicensed frequency while

collecting the data. Figure 8.19 shows the optimization curve for the interference

objective. In the early generations, the interference power for many of the solutions

is very large, but the heavy selection pressure to minimize the interference allows the

cognitive engine to quickly find spectrum free of interference. Because there was a

large amount of open space in the 10 MHz of spectrum used in this example, it was

fairly easy for the GA to converge on a good solution within about 50 generations.

It is unfortunately difficult to capture the real performance of the system on-line
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except for providing example cases. The important lesson of this experience is the

ability of the cognitive engine to move from the simulation environment that can be

used to more adequately understand the behavior and operation of the engine to the

on-line system using real radio hardware. The flexible and extensible cognitive engine

has been shown through these experiments.

8.6 Conclusions

In this chapter, I demonstrated the use of the cognitive engine operating in both a

simulation and a real-world demonstration. The modular component structure of the

cognitive engine enables designers to build new components for different purposes.

In the simulation environment, a simple component allows the interface between the

cognitive engine and the radio simulation platform as well as the PSD and meters

sensors that communicate with the simulation to collect the data and pass it to

the cognitive engine. In the on-line version, the components were replaced with

others that enable communications with real radio systems. As I discussed in this

chapter, incorrect information can have a significant effect on the cognitive engine’s

performance, such as the logic error in the PSD sensor or the miscalculation of the

SNR in the presence of interferers with the meters sensor. The component structure

makes unit testing of each of these pieces simple in order to work out bugs, and

components are easily replaced when better versions are made available.

Although it is difficult to show the performance of the cognitive engine, I worked

through some simple examples to understand the general trends of the optimization

process. Early simulations showed how the cognitive engine optimizes for such objec-

tives as BER and power performance. Later examples that use many more objectives

make the analysis much more difficult in determining the performance by looking

at each individual objective. In these cases, the multi-objective Pareto front surface

is the important measure, but difficult to illustrate. Instead, I showed some perfor-

mance results and waveforms produced under certain objectives. The results first

showed that the cognitive engine can successfully optimize waveforms given perfor-

mance requirements. Also, many lessons can be learned from these results and the

performance plots. I discussed some of the issues regarding poor information received

from the sensors as well as pointed out where some advanced topics in the genetic

algorithm design and optimization would be useful.

The system demonstrated in this chapter is the culmination of the theory and

discussions of the preceding chapters. While much of the theory comes from many
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different disciplines and applications, the intent of this dissertation was to discuss

the application of these concepts to wireless communications systems. This chapter

provides that necessary bridge to the real implementation as well as demonstrations

of it working. The next chapter wraps up and looks at how this work can be extended

in the future.
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Chapter 9

Conclusions

This dissertation presented an analysis and implementation of a cognitive engine, the

enabling technology of cognitive radio. Throughout, I explained what cognitive radio

and a cognitive engine are as well as the software radio platform used to realize the

actions of the cognitive engine. The most significant developments are the discussion

and theoretical analysis in Chapter 4 of using multi-objective optimization to perform

the cognitive actions. Chapter 5 showed an algorithm suited to perform the multi-

objective analysis and optimization, followed up by an improved learning system

using case-based decision theory in Chapter 6. I presented a brief but important

treatment of using the cognitive engine as part of a network of cognitive radios and

some considerations for what information can be distributed to all nodes on a network.

I then showed the implementation of the cognitive engine to adapt the GNU Radio

system under certain system conditions.

The intent of this document was to bring together the theory of the cognitive

engine with a working model suitable for on-line operation. The development of the

multi-objective optimization was necessarily limited to the SDR platform available,

but through this, I have laid down the fundamentals of developing and analyzing

a cognitive engine. Through the development of the distributed cognitive engine,

I provide a system that can be extended, enhanced, and made useable for future

applications and radio systems. One of the most significant challenges of my work

here was to build a system that both shows the operation of the theory but is also

usable and reusable in further developments by using generic, documented interfaces

and simple script languages to enable ease of use.

Because the intentions of my work were to provide a usable system on the SDR

technology I had available, there are many advances not considered in the development

and analysis. There are a few significant areas that I left out of the analysis that I
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wish to address briefly as part of future research. First, I will discuss the application

of the cognitive engine to optimize multi-carrier systems. Second, the significant work

done in adaptive systems has thus far been ignored, but I will discuss how this work

can be used with and by a cognitive radio system. Finally, I address some of the AI

and learning issues that have been brought up throughout this document that can

enhance the future capabilities of the cognitive engine.

9.1 Application to Multi-carrier Waveforms

One of the more popular subjects in communications, for physical, MAC, and net-

work layer researchers, is multi-carrier systems. In particular, orthogonal frequency

division multiplexing (OFDM) dominates this discussion, and I will use it here as

an example, although much of this discussion should be easily extensible to other

multi-carrier techniques. In OFDM, each symbol is carried over a number of orthog-

onal subcarriers. Subcarriers can be used in different ways. Some subcarriers can

be used for pilot tones to help with equalization at the receiver, while for other sub-

carriers can each transmit using a different modulation. Subcarriers can be used or

unused to help shape the spectrum, and each subcarrier’s bandwidth can be altered

to provide different spectral properties and communications capabilities. As an ex-

ample, the IEEE 802.16 standard uses OFDM and provides a wide range of adaptable

parameters [104].

OFDM modulation has great potential for cognitive radio systems through all of

the adaptable parameters that the radio can use to change the behavior and per-

formance. The length of the cyclic prefix balances the spectral efficiency with the

multi-path resistance of the signal, and the bandwidth of each subcarrier changes the

data rate while altering the protection against frequency-selective fading. Equation

9.1 shows how parameters can be adjusted to affect the data rate of an OFDM wave-

form where B is the symbol bandwidth, L is the number of subcarriers, Ld is the

number of data subcarriers, M is the modulation order, and G is the guard fraction

(ratio of the cyclic prefix length to the total symbol length) [104]. Different modula-

tions can be used per subcarrier to balance the properties of the modulation against

the bit error rate. Channel coding, too, provides a way of balancing error correcting

capabilities with data rate. The setting of each of these parameters depends on the

channel conditions in the same was as in the narrowband signal analysis I provided

earlier. The analysis and implementation of the cognitive engine, however, is easily

enhanced to use multi-carrier techniques by adding the sensors required to under-
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stand the channel conditions (e.g., multipath and fading) and the objective functions

to properly model the effects of the parameters.

R =
B

L

Ld log2(M)

1 +G
bps (9.1)

9.2 Strategies, Not Waveforms

The optimization process described in this document focused on finding values for the

knobs in order to satisfy certain quality of service objectives. However, the cognitive

engine reacts to changes in the environment and user needs, so the adaptation is

situational and does not act on a packet-by-packet time scale. On the other hand, re-

searchers in communications have developed sophisticated and powerful techniques for

locally-adaptive schemes; that is, methods that focus on adaptation of certain prop-

erties to enhance communications. Such techniques include adaptive power control,

such as in traditional cellular telephony, or adaptive modulation as seen in many stan-

dards such as Universal Mobile Telecommunications System (UMTS), IEEE 802.11,

and IEEE 802.16. The 802.16, or WiMAX, standard has many interesting possibilities

in this area because of the significant number of adaptive parameters available.

The future cognitive radio should take advantage of all of these techniques to

build the communications system. Instead of trying to find the best power to the

tenth of a dB, the cognitive engine could instead chose an adaptive power strategy

that makes sense for the current conditions; likewise for modulation or channel code

adaptations or dynamic spectrum access technologies. I like to think of the cognitive

radio as developing a strategy to work within an environment and for a particular

service. Instead of designing a waveform, the cognitive engine builds a strategy.

The objective functions I presented in Chapter 4 were built around the concept

of waveform adaptation, and I showed how each interacts with the entire system.

Building a cognitive engine to work with adaptive strategies is even more complicated

since each adaptive technique would interact with the overall quality of service of the

system. I argue that the premise of the cognitive engine stays the same as I developed

it here. Instead of genes representing particular parts of a waveform and objective

functions analyzing each waveform, the genes represent adaptive strategies, and so

the objective functions would need to be developed to properly analyze and model the

behavior of the strategy properly. Furthermore, this type of adaptation places more

responsibilities on the radio platform to support many of these possible techniques.
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9.3 Enhanced Learning Systems

When discussing the individual topics throughout this document, I have tried to

point out advances to the theory that others have investigated, such as advanced

techniques for genetic algorithms. I would like to address a few of these here, now

that I have described the entire system. The areas of particular interest are potential

enhancements to the multi-objective optimization, the genetic algorithm, and the

case-based learning system.

The multi-objective optimization work has provided an analysis of the individual

objectives used as well as different methods of aggregating the objectives to allow

comparisons. In this discussion, I briefly pointed to the lessons learned from the work

of economists in modeling and analyzing utility and production functions. While

there are many different methods of comparing solutions, I only really investigated a

couple of them. There is still a significant amount to be learned from the economics

literature, and much analysis left to understand how to best apply these concepts to

the cognitive engine.

I have tried to avoid including too much domain knowledge when developing and

analyzing the performance; instead, I have preferred to make direct comparisons of

performance in each objective. While my attempts have been for the purpose of

increasing generality of the system’s operation, specific analysis and domain knowl-

edge could enhance solutions. I pointed to some work done on fuzzy logic cognitive

radios [33] as this might be a technique to allow a trade-off between generality and

domain-specific solutions. The fuzzy system can be programmed to include basic

communication system rules to guide the development of solutions and offer bounds

and aggregation techniques to the objective analysis. Fuzzy rule sets could establish

basic performance metrics, such as maximum BER values acceptable for certain op-

timization goals. Using fuzzy logic could enable an aggregation function to combine

objectives into a single metric for performance comparison.

The genetic algorithm literature analyzes many advanced topics [34, 102, 105,

106]. In particular, I pointed out the concept of parallel genetic algorithm analysis

in Chapter 7, but any conference proceedings, book, or journal on genetic algorithms

lists many other advanced techniques. Adaptive parameters are a popular method

of improving performance by changing the crossover or mutation rates depending on

the trends of the algorithm performance. I have presented one method of seeding

the population using a case-base of past solutions. In this discussion of Chapter

6, I also alluded to many other advances the case-base feedback mechanism could
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offer, including such parameter adjustments like population size, mutation rates, and

termination conditions. There are many gains available in the optimization process,

and the techniques mentioned here are just some of the low-hanging fruit available.

The case-base system offers other performance improvements beyond its control

of the genetic algorithm. I presented many of these in Chapter 6, but I wish to

reintroduce a few here. The case-base decision theory mechanism depends greatly on

the similarity, utility, and decision making functions, as I showed during the results

of the knapsack problem. This warrants further study into these for application to

the cognitive engine. There are also many tunable parameters to study in the case-

base design, including the size of the case-base, the number of solutions to pull from

the case-base, and from where to find these solutions. Another aspect that I have

discussed is the method of remembering and forgetting solutions in the case-base, as

well as potentially using multiple types of case-bases to realize concepts like short-

term and long-term memory. There is still a lot to be learned and research in these

applications.

9.4 Final Thoughts

In “Computing Machinery and Intelligence,” Alan Turing built the foundations of

artificial intelligence [107]. In it, he concludes, “we can only see a short distance

ahead, but we can see plenty there that needs to be done,” a true statement, and

one that I think any good research can conclude with. While there may be little

ground left to be covered in individual physical layer concepts such as modulation

and coding, we have not yet fully tapped the potential of the communications system

as a whole. The interactions among all aspects of a waveform and communications

system, as well as the behavior of networks are rich fields of research that we are

only now developing. My goal here was to present the methods by which a radio can

intelligently analyze and build systems for its own purpose. As I have pointed out in

this chapter, there remains much to be done to enhance our current communications

platforms to provide easy, ubiquitous communications and access to information.
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Appendix A

Analysis of GNU Radio Simulation

Chapter 3 introduced the GNU Radio, the structure, and modulation schemes avail-

able. The chapter also presented the simulation environment and the method used

to collect the performance meters, which are required by the cognitive engine. This

appendix provides a performance analysis of the current simulation environment by

plotting the BER vs. EbN0 curves for the supported modulations of GMSK, BPSK,

QPSK, 8PSK, DBPSK, DQPSK, and D8PSK. The plots come from using the same

simulation platform used by the cognitive engine as well as the methods used to set

the signal power, propagation and channel conditions (noise power and path loss),

and signal, noise, and BER estimations at the receiver.

A.1 Bit Error Rate Plots

The first order of analysis is to see how well the modulators and demodulators work

under known conditions; in particular, I am looking at how closely these components

match the the theoretical performance in AWGN channels. Equations 4.8 through

4.12 provide the theoretical BER equations. Figures A.1 through A.7 show the simu-

lated BER compared to the theoretical curves. These figures also provide an analysis

of how well the EbN0 calculations perform by plotting the known EbN0 (by setting

the noise floor level and path loss) to the estimated EbN0. The error bars in these

figures represent one standard deviation from the estimated mean over 20 trials.

Unfortunately, there is no available theoretical equation of D8PSK, so as a crude

approximated lower bound, I have used the theoretical curve for 8PSK and assume

that the D8PSK curve would have approximately a 2 dB worse performance like other

differentially-coded modulations.

The BER simulations for BPSK, QPSK, DBPSK, and DQPSK all matched very
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Figure A.1: BER Curves and EbN0 Plots for BPSK
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Figure A.2: BER Curves and EbN0 Plots for QPSK

Thomas W. Rondeau 133



0 1 2 3 4 5 6 7 8 9 10 11 12
b 0 )Bd(NEdetamitsE

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

R
E

B

Theoretical
Simulation

0 1 2 3 4 5 6 7 8 9 10
b 0 )Bd(NEnwonK

-2

0

2

4

6

8

10

12

b
0

)
B

d(
N

E
det

a
mits

E

Estimated Mean
Std. Dev.

Figure A.3: BER Curves and EbN0 Plots for 8PSK
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Figure A.4: BER Curves and EbN0 Plots for DBPSK
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Figure A.5: BER Curves and EbN0 Plots for DQPSK
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Figure A.6: BER Curves and EbN0 Plots for D8PSK
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Figure A.7: BER Curves and EbN0 Plots for GMSK

well to the theoretical curves. The 8PSK curve matches well for EbN0 above 2 dB.

For low EbN0 values, it is possible that the synchronization loops or some other part

of the receiver chain failed. The D8PSK curve looks consistent over the plotted EbN0,

but without a reference curve, it is difficult to say how well it is performing against

theory. The plotted curve in Figure A.6 shows the D8PSK simulated curve is about

2 to 3 dB worse in performance than the theoretical 8PSK curve, which is about the

correct loss between differential and non-differential modulations. The GMSK curve

has performance behavior like the 8PSK curve where the system has poor performance

under low EbN0 conditions, although this behavior lasts up to about 7.5 dB. After

that, the simulated curve is about 1 dB worse than the theoretical curve.

Although I wrote all but the GMSK blocks in the GNU Radio package, it is

not the purpose of this analysis to provide the best performance for each of these

modulation schemes. In this case, I am simply interested in the known baseline

performance for the system under test. The performance provides an interesting

problem for the combined optimization and learning system. The optimization routine

assumes the theoretical performance of the given waveforms, so the learning system

has to understand the difference between the estimated performance and the actual
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performance to help the optimizer to make better, more educated choices.

The figures here also show that the signal strength, noise power, and therefore

EbN0 estimations behave very well, especially at EbN0 values over 4 dB. Looking at

the BER curves for, say, DBPSK, the estimation at EbN0 of 1 to 2 dB are off where the

estimated average for the known 1.5 dB SNR is lower than the estimated average for

the 1 dB EbN0 case. Looking at the standard deviations, at low EbN0, the estimated

EbN0 can be off by about 1 dB. Estimations of EbN0 and other performance metrics

at low EbN0 is going to have uncertainty, and ambiguity and uncertainty of data is a

problem which a cognitive radio must tolerate.
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Appendix B

Additional BER Formulas

Section 4.2.1 provided the basic BER formulas for the modulation types used in the

simulations and experiments in AWGN channels. Here, I present a few more BER

formulas, including M -QAM in AWGN and other modulations in fading channels.

M -QAM in AWGN:

In this equation, γb represents the energy per bit.

Pe =

(
2

log2 (M)

)(√
M − 1√
M

)
erfc

(√
3 log2M

2 (M − 1)
γb

)
(B.1)

In fading channels, [108] provides the closed form solutions for different modula-

tions. Each formula comes from the basic equation for the probability of a symbol

error in equation B.2.

Pe =

∫ ∞
0

PAWGN(x)p(x)dx (B.2)

Where p(x) is the probability density function (PDF) of the channel.

The closed form solutions to M -PSK and M -QAM modulations are defined in the

following equations where I(γ̄, g, θ) is specific to the channel; γ̄ is the average signal

to noise ratio, g is a modulation coefficient, and θ is the variable of integration. These

formula are modified from [108] to a single channel receiver instead of the L-finger

maximal ratio combining (MRC) receiver.

BPSK:

Pe =
1

π

∫ π
2

0

I(γ̄, g, θ)dθ

g = 1

(B.3)
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M -PSK:

Pe =
1

π

∫ (M−1)π
M

0

I(γ̄, g, θ)dθ

g = sin2
( π
M

) (B.4)

M -QAM:

Pe =
4

π

(
1− 1√

M

)∫ π
2

0

I(γ̄, g, θ)dθ − 4

π

(
1− 1√

M

)2 ∫ π
4

0

I(γ̄, g, θ)dθ

g =
3

2(M − 1)

(B.5)

Rayleigh channels:

p(γ; γ̄) =
1

γ̄
exp

(
−γ
γ̄

)
(B.6)

I(γ̄, g, θ) =
(

1 +
gγ̄

sin2 θ

)−1

(B.7)

Ricean channels:

p(γ; γ̄, n) =
(1 + n2) e−n

2

γ̄
exp

(
−(1 + n2) γ

γ̄

)
I0

(
2n

√
(1 + n2) γ

γ̄

)
where n2 = Ricean factor

(B.8)

I(γ̄, g, θ) =

(
(1 + n2) sin2 θ

(1 + n2) sin2 θ + gγ̄

)
exp

(
n2gγ̄

(1 + n2) sin2 θ + gγ̄

)
(B.9)

Nakagami-m channels:

p(γ; γ̄,m) =
mmγm−1

γ−mΓ(m)
exp

(
−mγ

γ̄

)
where m = 1/2 for one-sided Gaussian

where m = 1 for Rayleigh channel

where m = ∞ for no fading

Γ(m) is the gamma function

(B.10)

I(γ̄, g, θ) =

(
(1 + n2) sin2 θ

(1 + n2) sin2 θ + gγ̄

)
exp

(
n2gγ̄

(1 + n2) sin2 θ + gγ̄

)
(B.11)
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Appendix C

OProfile and Results of Profiling

GNU Radio

C.1 Introduction to OProfile

OProfile is an open source, general public license (GPL) tool for measuring software

performance [109]. Built specifically for Linux, OProfile uses the Linux kernel to read

the processor’s hardware counters as a measure of software complexity. It has low

overhead on the system and resides as a separate process to monitor the performance

of the entire system, which means a developer does not have to add specific hooks to

enable profiling. As the website points out, the profiler monitors all system activity

including “hardware and software interrupt handlers, kernel modules, the kernel,

shared libraries, and applications.” More importantly to application and library

developers, the profiler keeps track of performance per symbol of each process, which

means a developer can analyze the performance of individual functions and routines

within the code. I use this last feature to understand the complexity of each of the

modulators used in the GNU Radio.

C.2 OProfile Results of GNU Radio Modulators

Each block in a GNU Radio flow graph is a class in the GNU Radio library. Each

class has a few callable functions, most important of which is the work function that

performs the core of the signal processing. The interest in the profiling is discussed

in Chapter 4.2.7 where the optimization process uses the computational complexity.

In the analysis, the only blocks that changes in the GNU Radio flow graph with the
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waveforms are the blocks the make up the modulators and demodulators. The rest

of the blocks remain the same with different parameters; however, the computational

performance remains the same when changing the transmitter power or carrier fre-

quency. The only other performance difference results in changes in the symbol rate,

which has an overall affect on each block as the sampling rate changes. Therefore,

the performance profiling only looks at the blocks that make up the modulators and

demodulators.

The performance analysis consists of running a GNU Radio simulation with just

the modulator or demodulator and the required sinks and sources to pass a set num-

ber of symbols at the same symbol rate through the flowgraph while running OProfile.

Figure C.1(a) shows the GNU Radio flow graph of the modulator simulation and Fig-

ure C.1(b) shows the same for the demodulators. The profiler collects the number of

ticks of the processor hardware counter during the set number of symbols to measure

how much time each modulator and demodulator uses. Table C.1 shows an example

output of the profiler.

modulator    null_sink
     (gr.sizeof_gr_complex)

   gr_vector_source_b
(data, False)

 data =
    random(0/1)

(a) Modulators Take in Bits and Produce Complex Symbols

demodulator    null_sink
     (gr.sizeof_char)

   gr_vector_source_c
(data, False)

 data =
    random(gr_complex)

(b) Demodulators Take in Complex Symbols and Produce Bits

Figure C.1: Flow Graphs for Profiling GNU Radio Modulators and Demodulators

Table C.1: OProfile Results of DBPSK Modulator

samples % symbol name

13815 28.5841 .loop1

9895 20.4734 gr fir ccf simd::filter(complex<float> const*)

7818 16.1760 .loop2

4139 8.5639 gr interp fir filter ccf::work(int, vector<void const*,

allocator<void const*>>&, vector<void*>&)

3950 8.1728 gr chunks to symbols bc::work(int, vector<void const*,

allocator<void const*>>&, vector<void*>&)

3265 6.7555 .cleanup

Thomas W. Rondeau 141



samples % symbol name

2009 4.1568 gr diff encoder bb::work(int, vector<void const*,

allocator<void const*>>&, vector<void*>&)

1151 2.3815 fcomplex dotprod sse

604 1.2497 gr packed to unpacked bb::general work(int, vector<int>&,

vector<void const*, allocator<void const*>>&,

vector<void*>&)

435 0.9000 .plt

380 0.7862 get bit be(unsigned char const*, unsigned int)

293 0.6062 gr single threaded scheduler::main loop()

189 0.3911 gr map bb::work(int, vector<void const*, allocator<void

const*>>&, vector<void*>&)

98 0.2028 gr block detail::input(unsigned int)

58 0.1200 min available space(gr block detail*, int)

40 0.0828 gr vector source b::work(int, vector<void const*,

allocator<void const*>>&, vector<void*>&)

29 0.0600 gr buffer reader::items available() const

21 0.0435 gr packed to unpacked bb::forecast(int, vector<int>&)

18 0.0372 gr buffer::space available() const

17 0.0352 gr sync interpolator::general work(int, vector<int>&,

vector<void const*, allocator<void const*>>&,

vector<void*>&)

12 0.0248 vector<int>:: M fill insert(vector<int>::iterator,

unsigned long, int const&)

11 0.0228 gr buffer::write pointer()

11 0.0228 gr sync block::fixed rate ninput to noutput(int)

8 0.0166 gr block detail::produce each(int)

8 0.0166 gr sync block::forecast(int, vector<int>&)

8 0.0166 vector<void*>:: M fill insert(vector<void*>::iterator,

unsigned long, void* const&)

7 0.0145 gr buffer reader::read pointer()

7 0.0145 gr sync interpolator::fixed rate noutput to ninput(int)

5 0.0103 gr block detail::consume each(int)

5 0.0103 gr buffer::update write pointer(int)

5 0.0103 gr sync block::general work(int, vector<int>&,

vector<void const*, allocator<void const*>>&,

vector<void*>&)

5 0.0103 gr sync interpolator::forecast(int, vector<int>&)

3 0.0062 gr sync block::fixed rate noutput to ninput(int)

3 0.0062 vector<void const*, allocator<void const*>>::

M fill insert( gnu cxx:: normal iterator<void const**,

vector<void const*, allocator<void const*>>, unsigned

long, void const* const&)
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samples % symbol name

3 0.0062 vector<void*>::erase(vector<void*>::iterator,

vector<void*>::iterator)

1 0.0021 global constructors keyed to ZN8gr prefs9singletonEv

1 0.0021 gr block:: gr block()

1 0.0021 gr buffer add reader(boost::shared ptr<gr buffer>, int)

1 0.0021 gr buffer reader::update read pointer(int)

1 0.0021 gr prefix()

1 0.0021 void fill<vector<void*>::iterator, void*>

(vector<void*>::iterator, vector<void*>::iterator, void*

const&)

I noticed that each time I ran a simulation, the performance counters had slight

variations despite running with the same code, same number of symbols, and on the

same platform. The system I am running on also runs other programs along with the

profiler and GNU Radio. Furthermore, there are loops and branches in the software

that depend on the value of the data, which is influenced by the random noise of the

channel and will affect the performance. These issues together with other operating

system factors are the probable causes of any variations among profiling runs. These

should be statistically insignificant, and so I ran each simulation 10 times and averaged

the results. Figure C.2 shows the resulting complexity of the modulators and Figure

C.3 shows the complexity of the demodulators.

To begin with, these complexity graphs are plotted with the 1 standard deviation

error bars, which show that the random performance counter values are indeed in-

significant. For the modulators, GMSK shows the smallest computational footprint

in both modulator and demodulator, and the other modulators and demodulators

shows definite trends related to their implementation. GMSK is implemented very

simply, and the demodulator does not use an AGC loop. The M -PSK modulations

all show increasing complexity with M , with a slight dip in the complexity of the

DQPSK over DBPSK. In the implementation, the only difference between the differ-

ential modulators and the non-differential modulators is a single block that performs

the differential mapping, so the differential modulators should be more complex. Be-

tween the different modulators, the only change when increasing M is the block that

maps the log2(M) bits to complex symbols via a look-up table. Apparently, the look-

up table is slightly more efficient, though hardly significantly, in the DQPSK case

than DBPSK.

The demodulators show more interesting behavior. The demapping is done by

brute-force matching the incoming complex signal to the nearest point by calculating
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Figure C.2: Performance Comparison of the Available GNU Radio Modulators with
OProfile
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Figure C.3: Performance Comparison of the Available GNU Radio Demodulators
with OProfile
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the minimum Euclidian distance. As M increases, the performance also increases as

the loop has more points to test. Like the modulator, the only difference between

the differential and non-differential cases is the use of a differential phasor block to

decode the symbols. Although there are more efficient receivers that do not rely

on the same complex synchronization loops for differential modulations, the receiver

implementation in GNU Radio does not currently take advantage of them.

Table C.2 shows the same information in table format similar to the database

used in the cognitive engine’s optimization calculation. In this table, the modulators

and demodulators are mixed together to form the overall complexity of selecting a

modulation scheme for a transceiver.

Table C.2: Computational Database for Modulations
ID Modulation Hardware Counter
1 BPSK 29142.8
2 QPSK 46615.0
3 8PSK 69998.0
4 DBPSK 34889.3
5 DQPSK 52996.5
6 D8PSK 76539.3
7 GMSK 12352.8
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Appendix D

XML and DTD Representation of

the Cognitive Components

This appendix provides template DTD and XML files used to pass information be-

tween the cognitive components. The DTD files are used by the cognitive engine

to teach the cognitive controller the format the data it receives will look like and

therefore how to process and store the data. The DTD files are transferred from the

components to the cognitive controller during the initialization stage. The waveform

file representation is used in the genetic algorithm to understand how to build the

chromosome to properly represent the system.

D.1 Waveform Representation

gnuradio lb.dtd

<!ELEMENT waveform (Tx,Rx)>

<!ATTLIST waveform type #CDATA ‘‘analog/digital’’>

<!ELEMENT Tx (PHY,LINK)>

<!ELEMENT PHY (rf,mod)>

<!ELEMENT rf (tx freq+,tx power+)>

<!ELEMENT tx freq (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT step (#PCDATA)>

<!ELEMENT tx power (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT step (#PCDATA)>

<!ELEMENT mod (tx mod+,tx rolloff?,tx bt?,
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tx gray code?,tx symbol rate)>

<!ELEMENT tx mod (tx mod bits,tx mod differential)>

<!ATTLIST tx mod type (psk,msk,qam) ‘‘psk’’>

<!ELEMENT tx mod bits (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT step (#PCDATA)>

<!ELEMENT tx mod differential (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT step (#PCDATA)>

<!ELEMENT tx rolloff (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT step (#PCDATA)>

<!ELEMENT tx bt (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT step (#PCDATA)>

<!ELEMENT tx gray code (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT step (#PCDATA)>

<!ELEMENT tx symbol rate (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT step (#PCDATA)>

<!ELEMENT LINK (frame)>

<!ELEMENT frame (tx pkt size,tx access code?)>

<!ELEMENT tx pkt size (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT step (#PCDATA)>

<!ELEMENT tx access code (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT step (#PCDATA)>

<!ELEMENT Rx (PHY,LINK)>

<!ELEMENT PHY (rf+,mod,frame correlator)>

<!ELEMENT rf (rx freq+,rx gain+)>

<!ELEMENT rx freq (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>
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<!ELEMENT step (#PCDATA)>

<!ELEMENT rx gain (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT step (#PCDATA)>

<!ELEMENT mod (rx mod+,rx rolloff?,rx bt?,

rx gray code?,rx symbol rate)>

<!ELEMENT rx mod (rx mod bits,rx mod differential)>

<!ATTLIST rx mod type (psk,msk,qam) ‘‘psk’’>

<!ELEMENT rx mod bits (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT step (#PCDATA)>

<!ELEMENT rx mod differential (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT step (#PCDATA)>

<!ELEMENT rx rolloff (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT step (#PCDATA)>

<!ELEMENT rx bt (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT step (#PCDATA)>

<!ELEMENT rx gray code (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT step (#PCDATA)>

<!ELEMENT rx symbol rate (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT step (#PCDATA)>

<!ELEMENT frame correlator (ACthreshold)>

<!ELEMENT ACthreshold (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT step (#PCDATA)>

<!ELEMENT LINK (frame)>

<!ELEMENT frame (rx pkt size,rx access code?)>

<!ELEMENT rx pkt size (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>
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<!ELEMENT step (#PCDATA)>

<!ELEMENT rx access code (min,max,step)>

<!ELEMENT min (#PCDATA)>

<!ELEMENT max (#PCDATA)>

<!ELEMENT step (#PCDATA)>

gnuradio lb.xml

<?xml version=‘‘1.0’’?>

<!DOCTYPE WAVEFORM SYSTEM ‘‘gnuradio lb.dtd’’>

<waveform type=‘‘digital‘‘>

<Tx>

<PHY>

<rf>

<tx freq>

<min unit=‘‘kHz’’>400000< \min>
<max unit=‘‘kHz’’>500000< \max>
<step unit=‘‘kHz’’>1< \step>

< \tx freq>

<tx power>

<min unit=‘‘dBm’’>0< \min>
<max unit=‘‘dBm’’>100< \max>
<step unit=‘‘dBm’’>0.1< \step>

< \tx power>

< \rf>
<rf>

<tx freq>

<min unit=‘‘kHz’’>2300000< \min>
<max unit=‘‘kHz’’>2500000< \max>
<step unit=‘‘kHz’’>100< \step>

< \tx freq>

<tx power>

<min unit=‘‘dBm’’>0< \min>
<max unit=‘‘dBm’’>20< \max>
<step unit=‘‘dBm’’>0.1< \step>

< \tx power>

< \rf>
<mod>

<tx mod type=‘‘PSK’’>

<tx mod bits>

<min>1< \min>
<max>3< \max>
<step>1< \step>

< \tx mod bits>
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<tx mod differential>

<min>0< \min>
<max>1< \max>
<step>1< \step>

< \tx mod differential>

< \tx mod>

<tx mod type=‘‘GMSK’’>

<tx mod bits>

<min>1< \min>
<max>1< \max>
<step>1< \step>

< \tx mod bits>

<tx mod differential>

<min>0< \min>
<max>0< \max>
<step>0< \step>

< \tx mod differential>

< \tx mod>

<tx rolloff units=‘‘na’’>

<min>0< \min>
<max>1< \max>
<step>0.01< \step>

< \tx rolloff>

<tx bt units=‘‘na’’>

<min>0< \min>
<max>1< \max>
<step>0.01< \step>

< \tx bt>

<tx gray code>

<min>0< \min>
<max>1< \max>
<step>1< \step>

< \tx gray code>

<tx symbol rate units=‘‘Hz’’ mult=‘‘1’’>

<min>0.1< \min>
<max>1.0< \max>
<step>0.125< \step>

< \tx symbol rate>

< \mod>
< \PHY>
<LINK>

<frame>

<tx pkt size units=‘‘bytes’’>
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<min>1< \min>
<max>1500< \max>
<step>1< \step>

< \tx pkt size>

<tx access code>None< \tx access code>

< \frame>
< \LINK>

< \Tx>
< \waveform>

D.2 Objectives Sensor

sensor objectives.dtd

<!ELEMENT sensor (awgn,fer,powerconsumption,sinr,throughput,

spectralefficiency,bandwidth,interference,

computationalcomplexity)>

<!ATTLIST sensor name #CDATA #REQUIRED>

<!ELEMENT awgn (#PCDATA)>

<!ATTLIST awgn type (float) ‘‘float’’>

<!ATTLIST awgn typeref (phy,mac,sys) ‘‘phy’’>

<!ELEMENT fer (#PCDATA)>

<!ATTLIST fer type (float) ‘‘float’’>

<!ATTLIST fer typeref (phy,mac,sys) ‘‘mac’’>

<!ELEMENT sinr (#PCDATA)>

<!ATTLIST sinr type (float) ‘‘float’’>

<!ATTLIST sinr typeref (phy,mac,sys) ‘‘phy’’>

<!ELEMENT throughput (#PCDATA)>

<!ATTLIST throughput type (float) ‘‘float’’>

<!ATTLIST throughput typeref (phy,mac,sys) ‘‘phy’’>

<!ELEMENT bandwidth (#PCDATA)>

<!ATTLIST bandwidth type (float) ‘‘float’’>

<!ATTLIST bandwidth typeref (phy,mac,sys) ‘‘phy’’>

<!ELEMENT spectralefficiency (#PCDATA)>

<!ATTLIST spectralefficiency type (float) ‘‘float’’>

<!ATTLIST spectralefficiency typeref (phy,mac,sys) ‘‘phy’’>

<!ELEMENT interference (#PCDATA)>

<!ATTLIST interference type (float) ‘‘float’’>

<!ATTLIST interference typeref (phy,mac,sys) ‘‘phy’’>

<!ELEMENT powerconsumption (#PCDATA)>

<!ATTLIST powerconsumption type (float) ‘‘float’’>

<!ATTLIST powerconsumption typeref (phy,mac,sys) ‘‘sys’’>
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<!ELEMENT computationalcomplexity (#PCDATA)>

<!ATTLIST computationalcomplexity type (float) ‘‘float’’>

<!ATTLIST computationalcomplexity typeref (phy,mac,sys) ‘‘sys’’>

sensor objectives.xml

<?xml version=‘‘1.0’’?>

<!DOCTYPE sensor SYSTEM ‘‘sensor objectives.dtd’’>

<sensor name=‘‘objectives’’>

<awgn type=‘‘float’’ typeref=‘‘phy’’>0.0< \awgn>
<fer type=‘‘float’’ typeref=‘‘phy’’>0.0< \fer>
<sinr type=‘‘float’’ typeref=‘‘phy’’>0.0< \sinr>
<throughput type=‘‘float’’ typeref=‘‘phy’’>0.0< \throughput>
<bandwidth type=‘‘float’’ typeref=‘‘phy’’>0.0< \bandwidth>
<spectralefficiencytype=‘‘float’’ typeref=‘‘phy’’>0.0

< \spectralefficiency>
<interference type=‘‘float’’ typeref=‘‘phy’’>0.0< \interference>
<powerconsumption type=‘‘float’’ typeref=‘‘phy’’>0.0< \powerconsumption>
<computationalcomplexity type=‘‘float’’ typeref=‘‘phy’’>0.0

< \computationalcomplexity>
< \sensor>

D.3 Meters Sensor

sensor meters.dtd

<!ELEMENT sensor (ber,per,ebno,tx signal power,

rx signal power,noise power)>

<!ATTLIST sensor name #CDATA #REQUIRED>

<!ELEMENT ber (#PCDATA)>

<!ATTLIST ber type (float) ‘‘float’’>

<!ATTLIST ber size #CDATA ‘‘1’’>

<!ELEMENT per (#PCDATA)>

<!ATTLIST per type (float) ‘‘float’’>

<!ATTLIST per size #CDATA ‘‘1’’>

<!ELEMENT ebno (#PCDATA)>

<!ATTLIST ebno type (float) ‘‘float’’>

<!ATTLIST ebno size #CDATA ‘‘1’’>

<!ELEMENT tx signal power (#PCDATA)>

<!ATTLIST tx signal power type (float) ‘‘float’’>

<!ATTLIST tx signal power size #CDATA ‘‘1’’>

<!ELEMENT rx signal power (#PCDATA)>
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<!ATTLIST rx signal power type (float) ‘‘float’’>

<!ATTLIST rx signal power size #CDATA ‘‘1’’>

<!ELEMENT noise power (#PCDATA)>

<!ATTLIST noise power type (float) ‘‘float’’>

<!ATTLIST noise power size #CDATA ‘‘1’’>

sensor meters.xml

<?xml version=‘‘1.0’’?>

<!DOCTYPE sensor SYSTEM ‘‘sensor meters.dtd’’>

<sensor name=‘‘meters’’>

<ber type=‘‘float’’ size=‘‘1’’>0< \ber>
<per type=‘‘float’’ size=‘‘1’’>0< \per>
<ebno type=‘‘float’’ size=‘‘1’’ units=‘‘dB’’>0< \ebno>
<tx signal powertype=‘‘float’’ size=‘‘1’’ units=‘‘dBm’’>0

< \tx signal power>

<rx signal power type=‘‘float’’ size=‘‘1’’ units=‘‘dBm’’>0

< \rx signal power>

<noise power type=‘‘float’’ size=‘‘1’’ units=‘‘dBm’’>0< \noise power>

< \sensor>

D.4 PSD Sensor

sensor psd.dtd

<!ELEMENT sensor (noise floor,signal*)>

<!ATTLIST sensor name #CDATA #REQUIRED>

<!ELEMENT noise floor (#PCDATA)>

<!ATTLIST noise floor type (float) ‘‘float’’>

<!ATTLIST noise floor size #CDATA ‘‘1’’>

<!ELEMENT signal (amplitude, fmin, fmax)>

<!ELEMENT amplitude (#PCDATA)>

<!ATTLIST amplitude type (float) ‘‘float’’>

<!ATTLIST amplitude size #CDATA ‘‘1’’>

<!ELEMENT fmin (#PCDATA)>

<!ATTLIST fmin type (float) ‘‘float’’>

<!ATTLIST fmin size #CDATA ‘‘1’’>

<!ELEMENT fmax (#PCDATA)>

<!ATTLIST fmax type (float) ‘‘float’’>

<!ATTLIST fmax size #CDATA ‘‘1’’>

sensor psd.xml
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<?xml version=‘‘1.0’’?>

<sensor name=‘‘psd’’>

<noise-floor type=‘‘float’’ size=‘‘1’’ unit=‘‘dBm’’>-85< \noise-floor>
<signal>

<amplitude type=‘‘float’’ size=‘‘1’’ unit=‘‘dBm’’>-50< \amplitude>
<fmin type=‘‘float’’ size=‘‘1’’ unit=‘‘Hz’’>449e6< \fmin>
<fmax type=‘‘float’’ size=‘‘1’’ unit=‘‘Hz’’>451e6< \fmax>

< \signal>
< \sensor>

D.5 Cognitive Controller Configuration

The cognitive controller configuration script lists the components attached to the

controller as well as certain pieces of information used to interact with the component.

Most of the components are distributed processes that the controller communicates

with over a TCP socket. For each of these, the source and destination address (either

an IP address or the domain name of the node) are listed along with the source and

destination ports. The source port is generally left as 0 so the socket system can

select a free port. The destination port must match the port number the component

is listening to and is arbitrary. Here, the 1024 range is used only as an illustrative

example; port numbers 0 through 1023 are assigned for global use by certain protocols.

The radio node sections are used to describe attached radios that the cognitive

radio communicates with on the network to transmit waveform information. The

configuration can list any number of these here with their address and port infor-

mation. The knowledge base node is currently directly associated with the cognitive

controller, but as a MySQL database, the access is performed over a TCP socket, too,

where the hostname tells the controller on which host the database is served along

with the username and password credentials to access the database. This is a work in

progress as the authentication information should be more obscured, such as through

a hashing of the password initially.
cognitive controller.xml

<?xml version=‘‘1.0"?>

<cognitive-controller>

<defaults>

<xmlscripts>../xmlscripts/< \xmlscripts>
<waveform>default sim waveform.xml< \waveform>

< \defaults>
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<knowledge-base>

<name>casebase< \name>
<hostname>localhost< \hostname>
<dbsize>10< \dbsize>
<nsolutions>1< \nsolutions>

< \knowledge-base>
<sensor>

<name>psd< \name>
<src hostname>localhost< \src hostname>

<dst hostname>localhost< \dst hostname>

<src port>0< \src port>

<dst port>1024< \dst port>

< \sensor>
<sensor>

<name>meters< \name>
<src hostname>localhost< \src hostname>

<dst hostname>localhost< \dst hostname>

<src port>0< \src port>

<dst port>1025< \dst port>

< \sensor>
<sensor>

<name>objectives< \name>
<src hostname>localhost< \src hostname>

<dst hostname>localhost< \dst hostname>

<src port>0< \src port>

<dst port>1026< \dst port>

< \sensor>
<optimizer>

<src hostname>localhost< \src hostname>

<dst hostname>localhost< \dst hostname>

<src port>0< \src port>

<dst port>1027< \dst port>

<parameters>parameters wsga.xml< \parameters>
<sdr definition>gnuradio.xml< \sdr definition>

< \optimizer>
<radio>

<src hostname>localhost< \src hostname>

<dst hostname>localhost< \dst hostname>

<src port>0< \src port>

<dst port>1028< \dst port>

<radio node>

<src hostname>localhost< \src hostname>

<dst hostname>localhost< \dst hostname>
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<control port>1100< \control port>

< \radio node>

< \radio>
<user-interface>

<src hostname>localhost< \src hostname>

<dst hostname>localhost< \dst hostname>

<src port>1029< \src port>

<dst port>0< \dst port>

< \user-interface>
<policy engine>

<src hostname>localhost< \src hostname>

<dst hostname>localhost< \dst hostname>

<src port>0< \src port>

<dst port>1030< \dst port>

<db name>spectrum mask< \db name>

<table name>dyspan2007< \table name>

<username>*****< \username>
<password>*****< \password>

< \policy engine>

< \cognitive-controller>
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Appendix E

Optimal Solutions of Knapsack

Problems

For the tests of the knapsack problems used with case-based decision theory work

of Chapter 6, I randomly created a set of knapsack problems and stored these for

repeated and comparable use. The results presented in Chapter 6 showed that many

of the problems demonstrated significant improvement using CBDT while others did

not perform as well. To further analyze this, I ran the simple knapsack GA for 50,000

generations to produce the optimal value (or at least very close to it). In Chapter 5,

the knapsack GA showed asymptotic and therefore convergence behavior after 5,000

generations. I ran for an extra 10 times that many generations to improve this further.

The results of this process are presented in Table E.1 for each of the 100 models used.

Knowing this bound is useful because it helps understand how difficult the knapsack

problem is to solve. Smaller overall profit values are much more difficult to solve than

larger values. Two interesting models are 62 and 63, both with small overall profit

values. The results of the CBDT are discussed in Chapter 6 where different methods

provided different results; some produced significant improvement for model 62 but

not for 63 while other methods produced significant improvement for model 63 and

not 62. The results in this table show that these two problems are difficult to solve.

When applying case-base feedback, the initial solutions can either help find better

solutions faster, or the initial solutions might bias the population to a local optimum

and hurt the search for the global optimum. See Chapter 6 for more analysis of what

these results mean.
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Table E.1: Near-optimal Values of Knapsack Models

Model Near-Optimal Profit

model0 0.482983

model1 0.484326

model2 0.350086

model3 0.264022

model4 0.464853

model5 0.297343

model6 0.268765

model7 0.473757

model8 0.390390

model9 0.369584

model10 0.362265

model11 0.137403

model12 0.569386

model13 0.467299

model14 0.307893

model15 0.481234

model16 0.475427

model17 0.438981

model18 0.510267

model19 0.342045

model20 0.492449

model21 0.324600

model22 0.308674

model23 0.079252

model24 0.442939

model25 0.408664

model26 0.443296

model27 0.313626

model28 0.374601

model29 0.425843

model30 0.415269

model31 0.343033

model32 0.393600

model33 0.513806
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Model Near-Optimal Profit

model34 0.250659

model35 0.463317

model36 0.472347

model37 0.470804

model38 0.470514

model39 0.213563

model40 0.339058

model41 0.227216

model42 0.465122

model43 0.235960

model44 0.393179

model45 0.411411

model46 0.472914

model47 0.205941

model48 0.372415

model49 0.321990

model50 0.222235

model51 0.289213

model52 0.483975

model53 0.473257

model54 0.432361

model55 0.405035

model56 0.479364

model57 0.134768

model58 0.361675

model59 0.143135

model60 0.461016

model61 0.460595

model62 0.086188

model63 0.095681

model64 0.173661

model65 0.505214

model66 0.335363

model67 0.455881

model68 0.509552

model69 0.456414

model70 0.266002
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Model Near-Optimal Profit

model71 0.444824

model72 0.363761

model73 0.235444

model74 0.426592

model75 0.166180

model76 0.445178

model77 0.116757

model78 0.294269

model79 0.335633

model80 0.123189

model81 0.493576

model82 0.459684

model83 0.163396

model84 0.295574

model85 0.165456

model86 0.236255

model87 0.363123

model88 0.495544

model89 0.408303

model90 0.445354

model91 0.365454

model92 0.416054

model93 0.130179

model94 0.441690

model95 0.359674

model96 0.176658

model97 0.267482

model98 0.443524

model99 0.483214
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Appendix F

Simulation of an SINR Sensor

F.1 Sensor Design

A transmitted signal, s[k], contains a sequence of known data symbols, sk[k] such as

a training sequence, preamble, or access code. The received signal, r[k], is shown in

equation F.1 and includes the transmitted signal, interference signals in the channel

bandwidth, and AWGN noise. Not represented in this equation is that the transmitted

signals (including the interferers’) amplitude is adjusted by some pathloss of the

propagation channel.

r(t) = s[k] +
∑

(i[k]) + n[k] (F.1)

Correlating the received signal with the known data symbols will peak when the

received signal is the known data sequence. The correlation can be implemented as

an FIR filter the length of the known sequence and where the taps are the values

of the known sequence. A similar autocorrelation is done using the known sequence

to get the peak value for use in determining the pathloss. Equation F.2 gives the

peak value the cross-correlation where K is the length of the known sequence, and

equation F.3 gives the peak of the autocorrelation process.

mx =
K−1∑
k=0

r[k]sk[k] (F.2)

ma =
K−1∑
k=0

sk[k]sk[k] (F.3)

The known sequence is then adjusted in amplitude for pathloss by the ratio
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mx/ma. The adjustment is based on the assumption that the pathloss does not

significantly change over the duration of the known sequence, which is usually a few

dozen bits long. The GNU Radio access code is 64 bits long. Subtracting the adjusted

known sequence from the received signal leaves the interference plus noise (equation

F.4). Subtracting the results of equation F.4 from the received signal leaves just the

transmitted signal (equation F.5). These equations are valid for k over the length of

the known sequence, K, once the cross-correlation detects a received known sequence.

rn+i[k] = r[k]− mx

ma

sk[k] =
∑

(i[k]) + n[k] (F.4)

rs[k] = r[k]− rn+i[k] (F.5)

The signal power is then the average magnitude squared of rs (equation F.6), and

the interference plus noise power is the average magnitude squared of rn+i (equation

F.7).

s =
1

K

K−1∑
k=0

|rs[k]|2 (F.6)

i+ n =
1

K

K−1∑
k=0

|ri+n[k]|2 (F.7)

Equation F.8 is the estimated SINR.

SINR = 10 log10

(
s

i+ n

)
(F.8)

F.2 Simulation

The simulations were done using the Matlab script provided below. The script re-

quires the communications toolbox.

The first simulation looks at the SINR estimator without any interference, which

should simply calculate the SNR. Figure F.1 plots the estimated results versus the

known SNR. Each point is the average of 100 simulations using a 64-bit random

known sequence. The figure shows a high precision in calculating the SNR. There is

a constant offset of about 0.35 dB due to the use of root-raised cosine pulse shape

filtering on previous symbols that is not subtracted out of the signal and thus adds a

bit of extra energy to the calculation.
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Figure F.1: Estimated SINR with No Interference Power

The purpose of this sensor is to calculate properly the signal power and the signal

to interference plus noise power in the presence of interference. In the next simulation,

both the signal and noise power are kept the same while the interference amplitude

is adjusted from 0 to 1 V peak-to-peak. The SNR of the AWGN channel was set

to 20 dB and the simulations are averaged 100 times for each interference amplitude

setting. Figure F.2 shows the estimates of the SINR, which starts at 20 dB when the

interference is not present and slopes downward to about 0 dB when the signal power

of the interference is the same as the signal power of the transmitter. Furthermore,

Figure F.3 shows the estimation of the signal power, which remains relatively constant

for any power of interference. The standard deviation shows the estimates are within

about 1 dB from the actual value when the interference power is at its highest. These

simulation results show that this type of sensor will properly provide the cognitive

engine with the required estimates of the signal, interference, and noise powers.
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Figure F.2: Estimated SINR for Varying Amounts of Interference

Figure F.3: Estimated Received Signal Power for Varying Amounts of Interference
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F.3 Matlab Code

F.3.1 SINR Calculation Function

function [S,I,l] = corr sir(SNR, iamp)

% Return the signal power (S) and interference plus noise power (I)

% and estimated pathloss (l) given a specified SNR (in dB) and amplitude

% of an interference signal

Ns = 1000; % size of data

K = 64; % size of known sequence (in bits)

sps = 8; % number of samples per symbol

fd = 1; % symbol rate

fs = sps*fd; % sample rate

rc alpha = 0.35; % raised cosine filter rolloff factor

% Create training sequece

train = randint(1,K);

train mod = pskmod(train, 2);

t = rcosflt(train mod, fd, fs, ‘fir/sqrt’, rc alpha);

% Create source signal including the trainin sequence

xs = [randint(1, Ns), train, randint(1, Ns)];

xs mod = pskmod(xs, 2);

s = rcosflt(xs mod, fd, fs, ‘fir/sqrt’, rc alpha);

% Create interference signal

xi = randint(length(xs), 1);

xi mod = pskmod(xi, 4);

i = iamp*rcosflt(xi mod, fd, fs, ‘fir/sqrt’, 0.25);

% Received signal is sum of source, interference, and noise

r = awgn(s + i, SNR, ‘measured’);

r = 0.1*r; % crude pathloss

% Autocorrelate training sequence to get max correlation value

autocor = xcorr(t,t);

Thomas W. Rondeau 166



autocor = autocor(ceil(length(autocor)/2) : length(autocor));

[mauto, indauto] = max(autocor);

% Correlate against known training sequence and find peak

sigcor = xcorr(r, t);

sigcor = sigcor(ceil(length(sigcor)/2) : length(sigcor));

sigcor = abs(sigcor);

[m,ind] = max(sigcor);

% use crosscorrelation and autocorrelation of training sequence

% to adjust the signal for differences in amplitude.

% In this simulation, this should be equal to the pathloss value

ratio = m / mauto;

% Remove training sequence to seperate into (i+n) and (s)

a = 4.0; % remove outside edges to compensate for RRC

tadj = ratio * t(a*sps : length(t)-a*sps);

r t = r(ind + a*sps - 1 : ind + a*sps + length(tadj) - 2);

r i = r t - tadj;

r s = r t - r i;

% Calculate average magnitude squared to get signal and I+N power

S = 20*log10(mean(abs(r s)));

I = 20*log10(mean(abs(r i)));

l = ratio;

F.3.2 Plotting SINR with No Interference Power

clear

clc

n = 1;

sig = 0;

int = 0;

sinr = 0;
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std sig = 0;

std int = 0;

std sinr = 0;

for SNR = 0:1:20

temp sig = 0;

temp int = 0;

for i = 1:100

[S, I, l] = corr sir(SNR, 0);

temp sig(i) = S;

temp int(i) = I;

end

sig(n) = mean(temp sig);

int(n) = mean(temp int);

sinr(n) = sig(n) - int(n);

std sig(n) = std(temp sig);

std int(n) = std(temp int);

std sinr(n) = std sig(n) - std int(n);

n = n+1;

end

SNR = 0:1:20;

fig = figure(1);

plot(SNR, sinr, ‘o-b’, ‘LineWidth’, 2.0, ‘MarkerFace’, ‘b’, ‘MarkerSize’, 10)

hold on

plot(SNR, SNR, ‘-k’, ’LineWidth’, 2.0)

plot(SNR, sinr + std sinr, ‘ˆk’, ‘MarkerFace’, ‘k’)

plot(SNR, sinr - std sinr, ‘ˆk’, ‘MarkerFace’, ‘k’)

xlabel(‘Known SINR (dB)’, ‘FontSize’, 20, ‘FontWeight’, ‘bold’);

ylabel(‘Estimated SINR (dB)’, ‘FontSize’, 20, ‘FontWeight’, ‘bold’);

set(fig, ‘Position’, [100 100 1000 640])

set(gca, ‘FontSize’, 18);

set(gca, ‘Position’, [0.075 0.1 0.875 0.875])

leg = legend(‘Estimated SINR’, ‘Known SINR’, ‘Standard Deviation of Estimate’);
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F.3.3 Plotting SINR with Varying Interference Power

clear

clc

n = 1;

sig = 0;

int = 0;

sinr = 0;

std sig = 0;

std int = 0;

std sinr = 0;

SNR = 20;

for intpwr = 0:0.1:1

temp sig = 0;

temp int = 0;

for i = 1:100

[S, I, l] = corr sir(SNR, intpwr);

temp sig(i) = S;

temp int(i) = I;

end

sig(n) = mean(temp sig);

int(n) = mean(temp int);

sinr(n) = sig(n) - int(n);

std sig(n) = std(temp sig);

std int(n) = std(temp int);

std sinr(n) = std sig(n) - std int(n);

n = n+1;

end

intpwr = 0.0:0.1:1.0;

fig = figure(1);

plot(intpwr, sinr, ‘o-b’, ‘LineWidth’, 2.0, ‘MarkerFace’, ‘b’, ‘MarkerSize’, 10)
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hold on

plot(intpwr, sinr + std sinr, ‘ˆk’, ‘MarkerFace’, ‘k’)

plot(intpwr, sinr - std sinr, ‘ˆk’, ‘MarkerFace’, ‘k’)

xlabel(‘Interference Power (W)’, ‘FontSize’, 20, ‘FontWeight’, ‘bold’);

ylabel(‘Estimated SINR (dB)’, ‘FontSize’, 20, ‘FontWeight’, ‘bold’);

set(fig, ‘Position’, [100 100 1000 640])

set(gca, ‘FontSize’, 18);

set(gca, ‘Position’, [0.075 0.1 0.875 0.875])

leg = legend(’Estimated SINR’, ‘Standard Deviation of Estimate’);

fig = figure(2);

plot(intpwr, sig, ‘o-b’, ‘LineWidth’, 2.0, ‘MarkerFace’, ‘b’, ‘MarkerSize’, 10)

hold on

plot(intpwr, sig + std sig, ‘ˆk’, ‘MarkerFace’, ‘k’)

plot(intpwr, sig - std sig, ‘ˆk’, ‘MarkerFace’, ‘k’)

xlabel(‘Interference Power (W)’, ‘FontSize’, 20, ‘FontWeight’, ‘bold’);

ylabel(‘Estimated Signal Power (dBW)’, ‘FontSize’, 20, ‘FontWeight’, ‘bold’);

set(fig, ‘Position’, [100 100 1000 640])

set(gca, ‘FontSize’, 18);

set(gca, ‘Position’, [0.085 0.1 0.875 0.875])

leg = legend(‘Estimated Signal Power’, ‘Standard Deviation of Estimate’);
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Acronyms

AI artificial intelligence

API application programmable interface

ADC analog to digital converter

ASIC application-specific integrated circuit

AWGN additive white Gaussian Noise

BER bit error rate

DBPSK differential binary phase shift keying

CBDT case-based decision theory

CBR case-based reasoning

CDMA code division multiple access

CE cognitive engine

CES constant-elasticity-of-substitution

CR cognitive radio

CRC cyclic redundancy check

DAC digital to analog converter

DSA dynamic spectrum access

DSP digital signal processors

DTD document type definition

EIRP effective isotropic radiated power

FER frame error rate

FFT fast Fourier transform

FIFO first in first out

FIR finite impulse response
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FM frequency modulation

FPGA field programmable gate arrays

FSF Free Software Foundation

GA genetic algorithm

GECCO Genetic and Evolutionary Computation Conference

GPL general public license

GPP general purpose processors

GPU graphics processing unit

GNU GNU is not Unix

GSM global system for mobile communications

HMM Hidden Markov Models

IF intermediate frequency

IIR infinite impulse response

IRIS Implementing Radio in Software

ISI intersymbol interference

MAC Medium Access Control

MODM multi-objective decision making

MOGA multi-objective genetic algorithm

MRC maximal ratio combining

MSOPS multiple single objective Pareto sampling

NCO numerically controlled oscillator

OFDM orthogonal frequency division multiplexing

PDF probability density function

PHY physical
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QA quality assurance

QoS quality of service

RF radio frequency

RRC root raised cosine

RSO repeated single objective

SCC Standards Coordinating Committee

SDR software defined radio

SIMD single instruction multiple data

SINR signal to interference plus noise ratio

SIR signal to interference ratio

SNR signal to noise ratio

SQL structured query language

SSP subset-sum problem

UMTS Universal Mobile Telecommunications System

USRP Universal Software Radio Peripheral

VHDL very high-speed integrated circuit hardware description language

WRAN wireless regional area networks

WSGA wireless system genetic algorithm

XML eXtensible Markup Language
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