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We present in this paper a coherent neural network-based frame-
work for solving a variety of difficult signal processing problems.
The framework relies on the assertion that time-lagged recurrent
networks possess the necessary representational capabilities to act
as universal approximators of nonlinear dynamical systems. This
property applies to modeling problems posed as system identifica-
tion, time-series prediction, nonlinear filtering, adaptive filtering,
and temporal pattern classification. We address the development of
models of nonlinear dynamical systems, in the form of time-lagged
recurrent neural networks, which can be used without further
training (i.e., as fixed-weight networks). We employ a weight
update procedure based on the extended Kalman filter (EKF); as a
solution to the recency effect, which is the tendency for a network
to forget earlier learning as it processes new examples, we have
developed a technique called multistream training.

We demonstrate our training framework by applying it to four
problems. First, we show that a single time-lagged recurrent neural
network can be trained not only to produce excellent one-time-step
predictions for two different time series, but also to be robust to
severe errors in the provided input sequence. The second problem
involves the modeling of a complex system containing significant
process noise, which was shown in [1] to lead to unstable trained
models. We illustrate how multistream training may be used to
enhance the stability of such models.

The remaining two problems are drawn from real-world au-
tomotive applications. The first of these involves input–output
modeling of the dynamic behavior of a catalyst-sensor system
which is exposed to an operating engine’s exhaust stream. Finally
we consider real-time and continuous detection of engine misfire,
which is cast as a dynamic pattern classification problem.
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I. INTRODUCTION

We consider in this paper a practical and quite general
framework with which we have approached many different
types of problems that involve the temporal processing of
signals. Some of these problems have been cast into a more
or less standard format, i.e., a single signal sampled in time,
upon which we are expected to perform prediction, filtering,
or estimation. More commonly, however, the problems we
have encountered have had more of a mixed character. In
particular, such problems usually involve a primary signal
and one or more additional signals which, taken together,
provide context. The problem statement might then involve
prediction, estimation (particularly in the form of virtual
sensors) or classification. Furthermore, we usually find that
the systems involved cannot really be regarded as station-
ary; on the other hand, they are not subject to unlimited
variation. Perhaps the best description is a progression
among several ill-defined modes of operation. The systems
we deal with are usually driven rather than autonomous,
though we seldom have access to the underlying drivers.

Our philosophy has been to take a fairly general in-
put–output point of view, in which we assess the available
input information sequence and seek to transform it into
the required output sequence. Implicit in this view is
that we can, in fact, assemble a desired output sequence.
(This may be contrasted with problems such as certain
types of control, in which desired system outputs are not
necessarily available at every moment, and in which the
desired output of a neural controller is not provided and
must be constructed. The methods described here have been
used in such applications as well.)

Our technical approach has been to develop a methodol-
ogy for effective training of time-lagged recurrent networks,
usually in the form of recurrent multilayer perceptrons
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(RMLP). The latter are a natural synthesis of feedforward
multilayer perceptrons and single-layer fully recurrent net-
works. For an introduction to neural networks, the reader
may wish to consult a textbook such as [2] or [3].

From a structural point of view, RMLP’s are appealing
by virtue of subsuming many traditional signal process-
ing structures, including tapped delay lines, finite impulse
response (FIR) filters, infinite impulse response (IIR) fil-
ters, and gamma networks, while retaining the universal
approximation property of feedforward networks. Because
they have state variables, RMLP’s can represent dynamic
systems with strongly hidden state [4]; indeed, Lo [5]
suggests that RMLP’s are universal approximators for dy-
namic systems, just as feedforward MLP’s are universal
approximators for static mappings (see, for example, [6]).
Further, the work of Cotter and Conwell [7] suggests that
time-lagged fixed-weight recurrent networks can produce
behavior that would usually be called adaptive. In [9] and
[10] we presented an example of such behavior. Though the
referenced work was purely abstract, it was motivated by a
contemporaneous practical application involving a system
that exhibits nonstationarity over a bounded range.

Recurrent networks have often been regarded as difficult
to train. Although we contend that an effective procedure
can be carried out relatively routinely, the difficulties pre-
sented in training are not mere illusions. In addition to
compounding the usual pitfalls encountered in training feed-
forward networks, including poor local minima, recurrent
networks enhance the difficulty of training by the recency
effect. Simply stated, a tendency always exists for recent
weight updates to cause a network to forget what it has
learned in the past. Of course, this tendency exists also in
the training of feedforward networks, but in that case easy
and effective countermeasures exist, viz., scrambling the
order of presentation of input–output pairs or employing
batch learning (in which an update may be based on all
examples). Such methods are cumbersome to employ in
training recurrent networks because the temporal order of
the data sequences must be respected. Although recurrent
networks can be trained with first- or second-order batch
weight update procedures, we prefer to utilize sequential
training methods because of frequent weight updates and
the benefits of their stochastic characteristics.

In the remainder of this paper, we have organized our pre-
sentation as follows. Section II presents briefly the RMLP
architecture and notes how various signal processing struc-
tures can be formed explicitly. Section III begins a discus-
sion of the training method by describing the calculation
of derivatives (gradients). Section IV describes how these
derivatives are used in a second-order weight update pro-
cedure, based on the extended Kalman filter. Section IV
also describes our approach to mitigating the recency
effect, which we term multistream training (or simply
multistreaming). Here we also relate an enabling side
benefit of multistreaming: the ability to coerce desired
secondary network behavior at the same time the network
is being trained on its primary objective. In Section V
we discuss two synthetic examples. First, we describe a

Fig. 1. Schematic illustration of an RMLP, denoted as
1-2R-3-1R. The first hidden layer of two nodes is fully recurrent,
the second hidden layer (three nodes) is feedforward and the
output node is recurrent. The small boxes denote unit time delays.
The table contains elements of the connection and delay arrays.
Entries for indexi are absent for the bias (treated as node 0)
and the network input (node 1), since neither receives input from
any other node. Bias connections are present, as indicated in the
connection table, but they are not drawn. Note that recurrent
connections have unit delays. The elements of the input and
output arrays are:I1 = 1 andO1 = 7:

problem related to the multiple system modeling of [9]
and [10], with the added requirement of dealing with
dropouts in a faulty data sequence. Then we illustrate the
modeling of a complex system, presented in [1], together
with a practical approach to imposing stability on the neural
model. Section VI is devoted to problems taken from real-
world systems. The first of these is a modeling/estimation
problem; beyond merely complicated behavior, this ap-
plication requires that one deal with delays that vary
substantially over the operating range of the system. Then
we discuss a classification problem in which faults must
be detected on the basis of an apparently hopelessly noisy
input sequence. Finally, in Section VII we summarize and
make some concluding remarks.

II. NETWORK ARCHITECTURE AND EXECUTION

An RMLP consists of one or more layers of computing
nodes, just as in a standard feedforward network or MLP.
A simple RMLP architecture is illustrated in Fig. 1. In the
basic RMLP form we either have full recurrence within a
layer, which means that every node is connected through
unit time delays to every node in the same layer, or else
no recurrence for that layer. (A convenient feature of the
RMLP architecture is that it reduces to a simple MLP in
the absence of recurrence.) Recurrence can also be present
from network outputs to network inputs. It is also possible
to have a sparse connection pattern. Indeed, it is the use
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of sparse connections together with flexible assignment
of node activation functions that permit an RMLP to be
structured to act as traditional linear filters [e.g., FIR,
IIR], gamma networks, time-delay networks, Elman and
Jordan networks, and other useful computational forms.
This means, of course, that a basic RMLP can, in principle,
be trained to subsume any structured network which it
contains, although success in training cannot be guaranteed.

It is possible to restructure an RMLP so that it is
expressed as a pure feedforward network with external
(output–input) recurrent connections. An awkward aspect of
this transformation is that it is necessary to replicate some
of the nodes. Though convenient for some purposes, we
feel that such a restructuring contributes little if anything
to the training process.

For compactness of presentation, we shall express the
operation of an RMLP by treating it as a special case of
an ordered network [11]. The forward equations for an
ordered network with inputs and outputs may
be expressed very compactly, using a pseudocode format
similar to that in [12].

Let the network consist of nodes, including
nodes which serve as receptors for the external inputs, but
not including the bias input, which we denote formally as
node 0. The latter is set to the constant 1.0. The array
contains a list of the input nodes, e.g.,is the number of
the node that corresponds to theth input, Similarly,
a list of the nodes that correspond to network outputs
is contained in the array We allow for the possibility
of network outputs and targets to be advanced or delayed
with respect to node outputs by assigning a phaseto each
output. In most cases these phases are zero. Nodereceives
input from other nodes and has activation function

is zero if node is among the nodes listed
in the array The array specifies connections between
nodes; is the node number for theth input for node
Inputs to a given node may originate at the current or past
time steps, according to delays contained in the array
and through weights for time stepcontained in the array

Summarizing, the th input to node at time step
is the output of node at time and is connected
through weight

Prior to beginning network operation, all appropriate
memory is initialized to zero. At the beginning of each
time step, we execute the following buffer operations on
weights and node outputs (in practical implementation, a
circular buffer and pointer arithmetic may be employed).
Here is the largest value of delay represented in the
array and is the truncation depth of the backpropagation
through time gradient calculation that is described in the
following section.

(1)

(2)

Then the actual network execution is expressed as

(3)

(4)

(5)

This description of an ordered network does not explicitly
involve the concept of layers; the layered structure is
imposed implicitly by the connection pattern. Pure delays
can be described directly, so that tapped delay lines on
either external or recurrent inputs are conveniently repre-
sented.

III. GRADIENT CALCULATION

After the forward propagation at time stepwe compute
gradients in preparation for the weight update step. In
the past we have made extensive use of forward meth-
ods of derivative calculation [13], [14]. Some time ago,
however, we replaced the forward method with a form of
truncated backpropagation through time (BPTT()) [11],
[15]. With the truncation depth suitably chosen, this
method produces derivatives that closely approximate those
of the forward method with greatly reduced complexity and
computational effort.

We describe here the mechanics of the particular form
of BPTT( ) we have most commonly employed. We use
the Werbos notation in which denotes an ordered
derivative of some quantity with respect to In this form
of BPTT, denotes the ordered derivative of network
output node with respect to

To derive the backpropagation equations, the forward
propagation equations are considered in reverse order.
From each we derive one or more backpropagation ex-
pressions, according to the principle that if
then and
The C-language notation “ ” indicates that the quantity
on the right-hand side is to be added to the previously
computed value of the left-hand side. In this way, the
appropriate derivatives are distributed from a given node to
all nodes and weights that feed it in the forward direction,
with due allowance for any delays that might be present in
each connection. The simplicity of the formulation reduces
the need for visualizations such as unfolding in time or
signal-flow graphs.
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(6)

(7)

(8)

(9)

(10)

(11)

(12)

(13)

Here (6) serves to initialize the derivative array, while (7)
expresses the fact that The error

computed in (8) is used in the weight update described
in the next section, where the desired value of network
output is denoted as
The actual backpropagation occurs in expressions (12) and
(13), which derive directly from the forward propagation
expression (4). We have included a discount factorin
expression (12), though it is often set merely to its nominal
value of unity.

IV. EXTENDED KALMAN FILTER (EKF)
MULTISTREAM TRAINING

A. The Kalman Recursion

We have made extensive use of training that employs
weight updates based on the EKF method first proposed
by Singhal and Wu [16]. (For background material on the
Kalman filter, see [17] and [18].) In most of our work,
we have made use of a decoupled version of the EKF
method [14], [19] which we denote as DEKF. Decoupling
was crucial for early practical use of the method, when
speed and memory capabilities of workstations and personal
computers were severely limited. At the present time, many
problems are small enough to be handled with what we have
termed global EKF, or GEKF. In many cases, the added
coupling brings benefits in terms of quality of solution and
overall training time. However, the increased time required
for each GEKF update is a potential disadvantage in real-
time applications.

For generality, we present the decoupled Kalman recur-
sion; GEKF is recovered in the limit of a single weight
group The weights in are organized into

mutually exclusive weight groups; a convenient and
effective choice has been to group together those weights
that feed each node. Whatever the chosen grouping, the
weights of group are denoted by The corresponding
derivatives are placed in columns of

To minimize a cost function
where is a nonnegative definite weighting matrix and

is the vector of errors, at time step the recursion
equations are as follows [12]:

(14)

(15)

(16)

(17)

In these equations, the weighting matrix is dis-
tributed into both the derivative matrices and the error
vector: and
The matrices thus contain the scaled derivatives of
network outputs with respect to theth group of weights;
the concatenation of these matrices forms a global scaled
derivative matrix A common global scaling matrix

is computed with contributions from all weight
groups, through the scaled derivative matrices and
from all of the decoupled approximate error covariance
matrices A user-specified learning rate appears
in this common matrix. For each weight groupa Kalman
gain matrix is computed and is then used in updating
the values of the group’s weight vector and in updat-
ing the group’s approximate error covariance matrix
Each approximate error covariance update is augmented
with the addition of a scaled identity matrix that
represents the effects of artificial process noise.

In practice, the EKF recursion is typically initialized
by setting the approximate error covariance matrices to
scaled identity matrices, with a scaling factor of 100 for
nonlinear nodes and 1000 for linear nodes. At the beginning
of training, we generally set the learning rate low (the
actual value depends on characteristics of the problem, but

is a typical value), and start with a relatively large
amount of process noise, e.g., We have
previously demonstrated that the artificial process noise
extension accelerates training, helps to avoid poor local
minima during training, and assists the training procedure
in maintaining the necessary property of nonnegative defi-
niteness for the approximate error covariance matrices [19].
As training progresses, we generally decrease the amount
of process noise to a limiting value of approximately

and increase the learning rate to a limiting
value no greater than unity. In addition, we have also found
that occasional reinitializations of the error covariance
matrices, along with resetting of initial values for the
learning rate and process noise terms, may benefit the
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training process. Finally, one should note that initial choices
for the learning rate and error covariance matrices are
not independent: a multiplicative increase in the scaling
factor for the approximate error covariance matrices can be
cancelled by reducing the initial learning rate by the inverse
of the scaling factor (the relative scalings of the learning
rate and error covariance matrices affect the choice of the
artificial process noise term as well).

We wish to emphasize here that the decoupled EKF
recursion given by (14)–(17) only performs updates to
network weights, and not to the states of the dynamical
network model. On the other hand, Matthews [20] and
Williams [21] have described parallel EKF formulations
for recurrent networks in which both network states and
weights are updated during training. However, these parallel
formulations present certain difficulties. First, the parallel
techniques require that gradients be computed by forward
methods, and it is not obvious how computationally effi-
cient methods such as BPTT() can be used within the
parallel formalism. Similarly, we are primarily interested
in training recurrent networks to deploy as fixed-weight
systems without having to incur the computational cost of
performing the Kalman recursion for state estimation during
network use. Finally we have found, as shown below, that
properly trained fixed-weight recurrent networks appear
to be capable of performing many filtering, estimation,
and prediction tasks that are often thought to be suitable
candidates for traditional extended Kalman filtering, and
it is not obvious that additional filtering of model states
would be beneficial.

B. Multistream Training

Consider the standard recurrent network training problem
of training on a sequence of input–output pairs. If the
sequence is in some sense homogeneous, then one or more
linear passes through the data may well produce good
results. However in many training problems, especially
those in which exogenous inputs are present, the data
sequence is heterogeneous. For example, regions of rapid
variation of inputs and outputs may be followed by regions
of slow change. Or a sequence of outputs that centers about
one level may be followed by one that centers about a
different level. For any of these cases, in a straightforward
training process the tendency always exists for the network
weights to be adapted unduly in favor of the currently
presented training data. This recency effect is analogous
to the difficulty that may arise in training feedforward
networks because of the order in which the training data
are presented.

In this latter case, an effective solution is to scramble
the order of presentation; another is to use a batch update
algorithm. For recurrent networks, the direct analog of
scrambling the presentation order is to present randomly
selected subsequences, making an update only for the last
input–output pair of the subsequence (when the network
would be expected to be independent of its initialization
at the beginning of the sequence). A full batch update
involves running the network through the entire data set,

computing the required derivatives that correspond to each
input–output pair, and making an update based on the entire
set of errors.

The multistream procedure largely circumvents the re-
cency effect by combining features of both scrambling and
batch updates. Like full batch methods, multistream training
[22] is based on the principle that each weight update
should attempt to satisfy simultaneously the demands from
multiple input–output pairs. It retains, however, the useful
stochastic aspects of sequential updating and requires much
less computation time between updates. We now describe
the mechanics of multistream training.

In a typical training problem we deal with one or more
files, each of which contains a sequence of data. Breaking
the overall data set into multiple files is typical in practical
problems, where the data may be acquired in different
sessions, for distinct modes of system operation, or under
different operating conditions.

In each cycle of training, we choose a specified number
of randomly selected starting points in a chosen set

of files. Each such starting point is the beginning of a
stream. The multistream procedure consists of progressing
in sequence through each stream, carrying out weight
updates according to the set of current points. Copies of
recurrent node outputs must be maintained separately for
each stream. Derivatives are also computed separately for
each stream, generally by truncated BPTT() as discussed
above. Because we generally have no prior information
with which to initialize the recurrent network, we typically
set all state nodes to values of zero at the start of each
stream. Accordingly, the network is executed but updates
are suspended for a specified number of time steps,
called the priming length, at the beginning of each stream.
Updates are performed until a specified numberof time
steps, called the trajectory length, have been processed.
Hence updates are performed in each training
cycle.

If we take and we recover the
order-scrambling procedure described above;may be
identified with the subsequence length. On the other hand,
we recover the batch procedure if we take equal to the
number of time steps for which updates are to be performed,
assemble streams systematically to end at the chosen
steps, and again take

Generally speaking, apart from the computational over-
head involved (see below), we find that performance tends
to improve as the number of streams is increased. Various
strategies are possible for file selection. If the number of
files is small, it is convenient to choose equal to a
multiple of the number of files and to select each file the
same number of times. If the number of files is too large to
make this practical, then we tend to select files randomly.
In this case, each set of updates is based on only
a subset of the files, so it seems reasonable not to make the
trajectory length too large.

An important consideration is how to carry out the EKF
update procedure. If first-order gradient updates were being
used, we would simply average the updates that would have
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Fig. 2. Illustration of the augmentation of the derivative matrix
and error vector for the case of two outputs and three streams.

been performed had the streams been treated separately.
In the case of EKF training, however, averaging separate
updates is incorrect. Instead, we treat this problem as that
of training a single shared-weight network with
outputs. From the standpoint of the EKF method, we are
simply training a multiple output network in which the
number of original outputs is multiplied by the number
of streams. The nature of the Kalman recursion is then to
produce weight updates which are not a simple average of
the weight updates that would be computed separately for
each output, as is the case for a simple gradient descent
weight update.

In single-stream EKF training we place derivatives of
network outputs with respect to network weights in the
matrix constructed from column vectors, each
of dimension equal to the number of trainable weights,

In multistream training, the number of columns is
correspondingly increased to Similarly, the
vector of errors has elements. Apart from
these augmentations of and illustrated schematically
in Fig. 2, the form of the Kalman recursion is unchanged.

Let us consider the computational implications of the
multistream method. The sizes of the approximate error
covariance matrices and the weight vectors are
independent of the chosen number of streams. The number
of columns of the derivative matrices as well as
of the Kalman gain matrices increases from
to but the computation required to obtain

and to compute updates to is the same as for
separate updates. The major additional computational

burden is the inversion required to obtain the matrix,
whose dimension is times larger. Even this tends to
be small compared to the cost associated with propagating
the matrices, as long as is smaller than
the number of network weights (GEKF) or the maximum
number of weights in a group (DEKF).

If the number of streams chosen is so large as to make the
inversion of impractical, the inversion may be avoided
by treating the multiple network outputs with a scalar cost
function as described in [23]. The efficacy of multistream
training performed in this fashion remains to be explored
thoroughly, as the presumed advantage of pseudoinverse-
like updates, as described below, may be lost.

C. Some Insight into the Multistream Technique

A simple means of motivating how multiple training
instances can be used simultaneously for a single weight
update via the EKF procedure is to consider the training
of a single linear node. In this case, the application of
EKF training is equivalent to that of recursive least squares
(RLS). (A recent discussion of the relationship between
RLS and the KF may be found in [24].) Assume that
a training data set is represented by unique training
patterns. The th training pattern is represented by a-
dimensional input vector where we assume that all
input vectors include a constant bias component of value
equal to one and a one-dimensional output target The
simple linear model for this system is given by

(18)

where is the single node’s -dimensional weight vec-
tor. The weight vector can be found by applying
iterations of the RLS procedure as follows:

(19)

(20)

(21)

(22)

where the diagonal elements of are initialized to large
positive values, here and to a vector
of small random values. Also, after a single
presentation of all training data (i.e., after a single epoch).

We recover a batch, LS solution to this single-node train-
ing problem via an extreme application of the multistream
concept, where we associate unique streams with each
of the training instances. In this case, we arrange the
input vectors into a matrix of size where each
column corresponds to a unique training pattern. Similarly,
we arrange the target values into a single-dimensional
vector where each element of is properly aligned with
its corresponding feature vector in As before, we select
the initial weight vector to consist of randomly chosen
values, and we select Given the choice of
initial weight vector, we can compute the network output
for each training pattern and arrange all the results using
the matrix notation

(23)

A single weight update step of the Kalman filter recur-
sion applied to this -dimensional output problem at the
beginning of training can be written as

(24)

(25)

(26)

where we have chosen not to include the error covariance
update here for reasons that will soon become obvious. At
the beginning of training, we recognize that is large,
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and we assume that the training data set is scaled so that
This allows to be approximated by

(27)

where we have taken advantage of the diagonal nature of
Given this approximation, we can write the Kalman

gain matrix as

(28)

We now substitute (23) and (28) into (26) to derive the
weight vector after one time step of this-stream Kalman
filter procedure

(29)

(30)

Applying the matrix equality yields
the pseudoinverse solution to this training problem

(31)

since
Thus one step of the multistream Kalman recursion

recovers very closely the LS solution. If is too large
to make the inversion operation practical, we could instead
divide the problem into subsets and perform the procedure
sequentially for each subset, arriving eventually at nearly
the same result (in this case, however, the covariance update
needs to be performed).

As illustrated in this one-node example, the multistream
EKF update is not an average of the individual updates,
but rather it is coordinated through the global scaling
matrix It is intuitively clear that this coordination is
most valuable when the various streams place contrasting
demands on the network.

D. Advantages and Extensions of Multistream Training

Discussions of the training of networks with external
recurrence often distinguish between series-parallel and
parallel configurations [13]. In the former, target values are
substituted for the corresponding network outputs during
the training process. This scheme, which is also known
as teacher forcing, helps the network to get “on track”
and stay there during training. Unfortunately, it may also
compromise the performance of the network when, in use,
it must depend on its own output. Hence it is not uncommon
to begin with the series-parallel configuration, then switch
to the parallel configuration as the network learns the task.
Multistream training seems to lessen the need for the series-
parallel scheme; the response of the training process to the
demands of multiple streams tends to keep the network from
getting too far off track. In this respect, multistream training
seems particularly well suited for training RMLP’s, where
the opportunity to use teacher forcing is limited, because
“correct” values for most if not all outputs of recurrent
nodes are unknown.

Though our presentation has concentrated on multi-
streaming simply as an enhanced training technique, one
can also exploit the fact that the streams used to provide
input–output data need not arise homogeneously, i.e.,
from the same training task. Indeed, it is interesting to
contemplate teaching a network to do multiple tasks. In
contrast to feedforward networks, which can only carry
out static input–output mapping, recurrent networks embed
the concept of state. Hence, it is reasonable to envision
that such a network might be trained to exhibit different
behavior according to its current region of state space. To
one extent or another, all the examples that follow make
use of this capability.

A concrete expression of this idea is the use of
multistreaming to coerce a network into desired behavior
in conjunction with its primary task. Our first such use
was explicit training of controller networks to be robust
over a range of systems to be controlled. Section V-B
uses the technique to induce stability on a model when
its primary training objective is modeling performance
when driven by a rapidly changing input. In principle,
any performance objective or set of objectives that can
be cast in a form that produces errors to place inand
derivatives that can be placed in the matrix can be
treated with the multistream method.

V. SYNTHETIC EXAMPLES

A. Multiple Series Prediction and Dropout Rejection

In [9] and [10] we demonstrated that a single fixed-weight
network could be trained to make single-step predictions for
13 different time series, including versions of the chaotic
logistic, Henon, and Ikeda maps, as well as some sinusoids.
In testing, the sequence presented as network input could
be switched at any time from one series to another. Thus,
we required the fixed-weight network to perform steps that
are often associated with explicitly adaptive systems: 1)
determine the identity of the time series or the parameters
of the generating equation from the recent time history of
the series; 2) instantiate this information into the prediction
system and begin making predictions; and 3) monitor the
success of predictions and, as necessary, reevaluate the
series identity or its parameters.

In this section, we present an extension of this idea in
which we not only consider multiple series but also allow
the input sequence to be severely disrupted in the form of
dropouts, i.e., input values of zero. We use the following
two variations of the Henon map. (Note that Variation B is
a sign-reversed version of Variation A.)

(32)

(33)

1) Training: We prepared five data sets for training, 1000
points each, for each of the two series; the sequences for
two variations were prepared with dropout probabilities 0,
0.1, 0.2, 0.3, and 0.4. No limit on the number of consecutive
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Fig. 3. A portion of a testing sequence to illustrate the performance of a network trained to handle
dropouts in the input sequence and to make one-step predictions for two variations of the Henon
map. For this sequence, the dropout probability is 0.3. The panel labeled “network input” shows the
effect of dropouts (input values of 0); in the absence of dropouts, this panel would be identical with
the panel labeled “target,” apart from a one-step offset in time. An abrupt switch from variation A to
variation B occurs at step 400. Network prediction errors are quite small except just after the switch.

dropouts was imposed. All sequences are initialized with
randomly chosen values for and transient
behavior was minimized by running the generating program
for 100 time steps before recording the input–output pairs
used for training.

We trained an RMLP with structure 1-5R-5R-1L, i.e.,
one input, two hidden layers with five fully recurrent
nodes each (bipolar sigmoid activation), and a linear output
node. We employed multisteam GEKF using ten streams,
a priming length of ten, and a trajectory length of 200. A
truncation depth for BPTT was used. The network
was trained for 550 190 updates, based on 55010 200
input–output pairs. At termination of training the RMS
error was approximately 0.07, which is about one-tenth
of the standard deviation of each series. The utility of
multistreaming is illustrated by noting that this error is
about half that obtained with simple presentation-order
scrambling, as described in Section IV-B. This was carried
out using the same procedure as above except that a single-

stream is used and the priming and trajectory lengths are
and respectively, and 1 100 000 weight

updates were performed (so that training would based on a
comparable number of instances).

Considered as a signal processing problem, the challenges
include: 1) accommodation to the current time series; 2)
recognizing the difference between corrupt and good input
values; and 3) combining input signals with information
stored as network states to form a prediction. Because of
the existence of two series, the network must pay attention
to the input sequence in order to determine which series
is active. Further, because both series are chaotic, even the
simpler problem of making predictions for a single series
without dropouts requires use of input information to keep
the prediction on track.

2) Testing: To test the performance of the trained net-
work we generated new data sequences in which we switch
between series. We generated sequences with dropout prob-
abilities 0.3 and 0.5. In Fig. 3, we show a portion of this
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Fig. 4. Same as Fig. 3, except that the dropout probability has been increased to 0.5. Initialization
of the underlying series was identical to that in Fig. 3. Again, network prediction errors increase just
after the switch from one series variation to the other. In addition, the chance occurrence of a large
number of dropouts following step 475 causes a momentary loss in the network’s prediction ability.

sequence with dropout probability 0.3. In spite of corrupt
input data, the network output is very close to the desired
outputs for both series. At step 400, the desired output is
calculated from (33) for series B, using the two previous
outputs of series A; having thus been initialized from a
state which is not on its attractor, the chaotic time series
requires a number of steps to “stabilize.” The network
suffers a momentary loss of prediction accuracy as it
accommodates the new series, but by step 409 it is again
making good predictions, even in the face of continuing
random dropouts. As we demonstrated in [9], multistream
training allows one to sacrifice overall accuracy in favor of
rapid accommodation by reducing the priming length.

When the dropout probability is set to 0.5, as in Fig. 4,
the input sequence is substantially more corrupt. (Note
the difference between the lower two panels.) The switch
between series is handled fairly gracefully, but the chance
occurrence of many dropouts between steps 470 and 500
gives rise to substantial prediction errors, which subside as

the frequency of dropouts decreases. These prediction errors
should not be surprising since this testing sequence includes
dropouts that are likely to occur more frequently than
experienced during training. Of course, for long enough
dropout sequences the prediction problem becomes essen-
tially impossible.

3) Discussion: It is interesting to contemplate how one
might write a computer program to solve this problem,
given complete information. In general terms, we might
proceed as follows: 1) program each of the generating
series so as to compute the next sequence value from the
proceeding two values; 2) compare the actual observed
value with the two generated values to determine which
series is active; 3) issue a prediction for the next value
based on the determined series.

One might also attempt to make predictions using a
feedforward network with inputs based on the present input
and a number of previous input values. This approach is
based on the assertion that a sufficient number of input

FELDKAMP AND PUSKORIUS: SIGNAL PROCESSING FRAMEWORK BASED ON DYNAMIC NEURAL NETWORKS 2267



values defines a lag space, a point of which can be mapped
uniquely to the desired output value. The existence of
dropouts complicates matters, since missing values require
that a prediction be based on a subspace of the full lag
space. Further, the required subspace depends on the posi-
tions in which missing values occur in the input sequence.

In order to test whether this problem is easily solved
using a modest number of lagged inputs, we carried out
training using a feedforward network whose inputs came
from a tapped delay line of eight elements (the current
input and seven previous values). The network structure
was 8-10-10-1L. The same procedure as used to train the
recurrent network was employed. Training for an equiva-
lent number of updates produced an RMS error of 0.34,
which is substantially inferior to the value of 0.07 reported
above. Though this experiment certainly does not prove
that mapping from a lag space cannot handle this problem,
it confirms our suspicion that even if such a mapping exists,
it might be very difficult to learn.

B. Modeling with Stability Enforcement

In [1], Suykenset al. consider the problem of training a
time-lagged recurrent neural network to identify the model
parameters of an internally stable system that is corrupted
by process noise. In that work, they demonstrated that train-
ing of a neural network model for the considered system
via application of dynamic backpropagation can result in a
model that exhibits undesirable limit cycle behavior when
operated autonomously. Then they established that a neural
network model can be trained such that global asymptotic
stability is enforced by modifying dynamic backpropagation
as in [13] to include stability constraints. Here, we show that
the multistream training procedure provides an alternative
mechanism that allows a neural network model to be
developed which satisfies the modeling requirements of
the forced system while simultaneously coercing stable
autonomous behavior via the use of an auxiliary training
data stream.

The single-input/single-output system proposed in [1] is
given by

(34)

(35)

In these equations, refers to zero-mean, normally dis-
tributed process noise, is a 4-component vector that
encodes the state of the system,is the observable system
output, is the system input, and
and encode the model parameters, given by

Note that this system can be expressed as a time-lagged
recurrent neural network with an ordered network rep-
resentation, as shown in Table 1. This system can also
be expressed as an RMLP, but this representation would
require additional nontrainable nodes and weights that
encode time-delay connections, as well as connections that
pass the control input between layers without modification.

1) Training Without Constraints:We followed closely
the problem statement as described in [1]. A training data
set is derived by choosing control signals at each time
step from a zero-mean, normal distribution with a standard
deviation of five. Similarly, the standard deviation of the
process noise is set to 0.1. A set of 1000 data points
was generated in this fashion, with the first 500 used for
training and the last 500 for independent testing. Values of
the initial state variables of the system were set to zero.

We carried out training experiments with two different
network architectures. In the first case, we used a net-
work representation of (34)–(35); this network contains 13
trainable nodes (of which four are effectively state nodes)
with associated trainable weights. The second network
considered is a completely trainable RMLP with structure
denoted by 1-8R-7R-1L; in this case, we do not assume
exact knowledge of the underlying model structure. This
network has a substantially greater number of degrees of
freedom and states than does the system being modeled.

We first conducted training trials for the two networks
using only training data from the forced system with no
constraints to enforce stability. In each case, we employed
multistream global EKF training with three streams, a
priming length of five steps, a trajectory length of 100
steps, and a backpropagation truncation depth of
Excellent results were observed for the testing portion of
the generated data under conditions of rapidly changing
input signal. In [1], the autonomous behavior of the neural
model was compared to that of the system, but without
the process noise that was present while input–output
data were accumulated for network training. (In a real
application, it probably would not be possible to examine
the actual system behavior in the absence of process noise.
For the present system model, the process noise specified
is sufficient to drive the unforced system to
substantial output values, over unity in magnitude, making
it difficult to observe whether the model exhibits stable
behavior.) When the state nodes of the trained network
models were initialized to random values in the range
[ 1, 1] and then executed autonomously (i.e., with zero
input), limit-cycle output behavior was observed for both
networks for many different state initializations. Typical
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Table 1 Ordered Network Representation of
System Equations (34) and (35)1

limit-cycle behavior of the trained network with structure
identical to that of the system model is shown in Fig. 5
for three different state initializations. It is noteworthy that
limit cycles of different peak-to-peak magnitudes as well as
of different periods are observed as the result of different
training trials (e.g., different initial conditions and orders
of presentation of training data).

2) Training with Constraints:In order to enforce stability
of the autonomous system by training we must be able to

1The elements of the input and output arrays areI1 = 1 andO1 = 14:

Nodes 2–5 and 10–13 have nonlinear activation functions (tanh(�)), while
nodes 6–9 and 14 are linear. It should be noted that this representation
is not unique; alternative equivalent ordered network representations are
possible.

Fig. 5. Autonomous behavior of time-lagged network with struc-
ture identical to that of the system model trained without stability
enforcing constraints. Random state initializations occur at time
steps 0, 100 and 200. The unforced network model exhibits limit
cycle behavior.

provide the training process with network inputs and target
outputs. The most obvious procedure would be to use the
observed autonomous behavior of the stable system we are
modeling. In the present case, however, we cannot rely on
the system itself to provide a reasonable training set because
we cannot use the behavior of the system in the absence of
process noise without violating the premise of the problem.
Thus we took a different approach in which we synthesized
a secondary training set of 500 points, where each training
pattern consists of zero input and zero output. This reflects
the goal that the network model should exhibit asymptotic
stability. Then we employed multistream training to model
both the forced system, using the data discussed earlier, and
the desired stable behavior of the unforced system, as seen
through the synthesized data sequence. We employed six
training streams altogether, evenly divided between forced
and autonomous behaviors. Trajectory lengths of 100 were
used, with priming lengths of five time steps. Derivatives
were computed by BPTT(19) and global multistream EKF
weight updates were applied. This example is unique among
those considered in this paper in that, during training,
we instantiate the network with specific values of the
state variables, chosen randomly, at the beginning of each
training trajectory for both forms of data. A total of 120 000
instances were processed during training of each network.

We show representative autonomous behavior for multi-
ple random state initializations for the two different network
architectures in Figs. 6 and 7. Note that the outputs of both
network models appear to approach zero asymptotically.
This behavior is expected for the case of the network model
that is structured identically to the original system, since
this model has no bias connections. On the other hand,
the 1-8R-7R-1L network has a bias connection for each
trainable node; it was somewhat surprising to observe stable
fixed points of magnitude less than 10for this network,
given that the bias connections must be trained so that they

FELDKAMP AND PUSKORIUS: SIGNAL PROCESSING FRAMEWORK BASED ON DYNAMIC NEURAL NETWORKS 2269



Fig. 6. Autonomous behavior of time-lagged network with struc-
ture identical to that of the system model trained with multistream
stability enforcing constraints. Random state initializations occur
at time steps 0, 100, and 200. Note that the model quickly
reaches stable behavior, unlike the network trained without stability
enforcing constraints, as shown in Fig. 5.

Fig. 7. Autonomous behavior of 1-8R-7R-1L RMLP trained with
multistream stability enforcing constraints. Random state initial-
izations occur at time steps 0, 100, and 200. Even though this
network model is of greater complexity than the system model,
stable behavior is still easily achieved.

effectively cancel one another under autonomous operation.
Finally, Fig. 8 demonstrates that the forced behavior of
the 1-8R-7R-1L network that is trained for stable behavior
is not significantly compromised relative to the forced
behavior of the network that was not trained to be stable;
qualitatively similar and comparably accurate behavior is
observed for the network that has structure identical to that
of the system.

3) Discussion: It is important to note that use of the
multistream method to enforce stability affords us some
flexibility in tailoring the behavior of the autonomous
network as it converges toward an output value of zero.
By setting the priming length we effectively specify
a number of steps from the beginning of each training
trajectory during which we do not demand a particular

Fig. 8. Driven response of the 1-8R-7R-1L RMLP trained with
multistream stability enforcing constraints compared to that of
the same network trained without regard to stability. A sequence
of 100 time steps from the noise-corrupted testing set is used.
[A] shows the input signal, while [B] shows the noise-corrupted
system output. Network responses to the input pattern are shown
in [C] (stability enforced) and [E] (stability ignored), respectively.
Network errors for these two cases are shown in [D] and [F],
respectively. Note that the networks perform comparably.

network output. In the case of stability enforcement, a larger
value of the priming length is expected to lead to less
rapid convergence to zero, since the cost function penalizes
nonzero output of the autonomous network only for time
steps beyond the priming length. In the present case, the
convergence of the autonomous model is less rapid than that
of networks trained with suggesting that a network
model should be trained with a larger priming length. We
found that taking and retraining led to autonomous
behavior that was closer to that of the actual system. In
practice, of course, one would probably not be able to
turn off the process noise so as to obtain a convergence
standard. Thus it may be possible only to specify a desired
convergence characteristic for the network model and select
the priming length accordingly.

VI. A UTOMOTIVE EXAMPLES

The general area of automotive powertrain control and
diagnosis offers substantial opportunity for application of
intelligent signal processing methodologies. These opportu-
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Fig. 9. A block diagram of components of a typical catalyst monitoring scheme in the presence
of a feedback A/F control system.

nities are driven by the steadily increasing demands that are
placed on the performance of vehicle control and diagnostic
systems as a consequence of global competition and gov-
ernment mandates. Modern automotive powertrain control
systems involve several interacting subsystems, any one
of which can involve significant engineering challenges.
Further, increasingly stringent emissions regulations require
that any malfunctioning component or system with the
potential to undermine the emissions control system be de-
tected and identified. In this section, we consider two signal
processing problems related to automotive diagnostics that
are particularly amenable to treatment with recurrent neural
networks trained by the multistream EKF formalism.

A. Sensor-Catalyst Modeling

A particularly critical component of a vehicle’s emis-
sions control system is the catalytic converter. The role
of the catalyst is to chemically transform noxious and
environmentally damaging engine-out emissions, which are
the by-product of the engine’s combustion process, to
environmentally benign chemical compounds. In particular,
an ideal three-way automotive catalytic converter should
completely perform the following three tasks during con-
tinuous vehicle operation: 1) oxidation of hydrocarbon (HC)
exhaust gases to carbon dioxide (CO) and water (HO);
2) oxidation of carbon monoxide (CO) to carbon dioxide;
and 3) reduction of nitrous oxides (NO) to nitrogen (N)
and oxygen (O In practice, it is possible to achieve
high catalytic conversion efficiencies simultaneously for all
three types of engine-out exhaust gases only for a very
narrow window of operation of air/fuel ratio (A/F); when
this occurs, the engine is operating near stoichiometry.

A major role of the engine control system is to regulate
A/F about stoichiometry. This is accomplished with an
electronic feedback control system that utilizes a heated
exhaust gas oxygen (HEGO) sensor whose role is to indi-
cate whether the engine-out exhaust is rich (i.e., too much
fuel) or lean (too much air). Depending on the measured

state of the exhaust gases, the A/F control is changed so as
to drive the system toward stoichiometry. Since the HEGO
sensor is largely considered to be a binary sensor (i.e., it
produces high/low voltage levels for lean/rich operations,
respectively), and since there are time-varying transport
delays, the closed-loop A/F control strategy often takes the
form of a jump/ramp strategy, which effectively causes the
HEGO output to oscillate between the two voltage levels.

Even in the presence of an effective closed-loop A/F
control strategy, vehicle-out (i.e., tailpipe) emissions may
be unreasonably high if the catalytic converter has been
damaged. For example, the catalytic converter may degrade
due to exposure to excessively hot temperatures (as may be
the case due to frequent misfires, as we describe below).
We would also expect the performance of the catalytic
converter to degrade with continued use. Current govern-
ment regulations require that the performance of a vehicle’s
catalytic converter be continuously monitored to detect
when conversion efficiencies have dropped below some
threshold. Unfortunately, it is currently infeasible to equip
vehicles with sensors that can measure the various exhaust
gas species directly. Instead, current catalytic converter
monitors are based on comparing the output of a HEGO
sensor that is exposed to engine-out emissions to the output
of a second sensor that is mounted downstream of the
catalytic converter and is exposed to the tailpipe emissions,
as illustrated schematically in Fig. 9. This approach is
based on the observation that the postcatalyst HEGO sensor
switches infrequently, relative to the precatalyst HEGO sen-
sor, in the presence of a highly efficient catalyst. Similarly,
the average rate of switching of the postcatalyst sensor
increases as catalyst efficiency decreases (due to decreasing
oxygen storage capability).

As an alternative, a model-based catalyst monitor can
be envisioned where the actual output of the postcatalyst
HEGO sensor is compared to that of a model of the post-
catalyst sensor that assumes a catalytic converter with some
nominal converter efficiency. Then, based upon differences
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Fig. 10. A 150 s segment of training data for the catalyst-sensor model. All variables are shown
in scaled units.

between the actual sensor and model outputs, a procedure
can be developed to estimate catalytic converter efficiency.
However, this modeling is by no means a trivial task. First,
the dynamical behavior of catalytic converters, as well as
that of HEGO sensors, is not completely understood from a
physical and chemical perspective. Second, conditions that
affect catalyst and sensor performance are often not ob-
served. Third, the model output must incorporate condition-
dependent time delays, e.g., the transport delay associated
with the physical placement of the sensors as well as cata-
lyst activity is seen to be a function of engine speed. Here
we describe how a time-lagged recurrent neural network can
be trained with multistream training methods to represent
such a system, using only information that could be made
available to the vehicle’s powertrain control module.

1) Experimental Data:Data were acquired from a single
vehicle equipped with a thermally degraded catalyst. A
standard driving cycle was employed to obtain training
and testing data of the operating vehicle on a chassis
rolls dynamometer facility. Relevant engine variables were
sampled at 20 ms intervals. Amongst the variables sam-
pled were vehicle speed, engine speed, air mass, manifold
vacuum, precatalyst HEGO sensor output, and postcatalyst
sensor output. Two data acquisition runs were performed,
on different days. Each run had 78 000 data points and
required a time of 26 min. A representative sample of
data is shown in Fig. 10. Here we see that there is very

slow variation of the air mass, manifold vacuum, engine
speed and vehicle speed signals, whereas the precatalyst
sensor exhibits rapid switching behavior that is somewhat
more frequent than that of the postcatalyst sensor. It is
noteworthy that although the HEGO sensor output is often
considered to be binary in nature, in fact it has an analog
nature in which switches do not appear to occur instanta-
neously and in which the voltage levels reached are not
distinctly binary in nature. Analysis of the data discloses
that the time delay between the precatalyst and postcatalyst
sensor outputs varies from less than 0.1 s at high engine
speed/air mass combinations to more than 1 s at low engine
speed/air mass combinations. Finally, depending on vehicle
operating conditions, the postcatalyst HEGO sensor output
sometimes closely mirrors the switching characteristics of
the precatalyst sensor, while at other times it appears to be
largely independent of the precatalyst sensor output.

2) Training and Testing:A time-lagged recurrent neural
network was trained on one of the data sets for which
the average HC conversion efficiency was measured to be
nearly 80.0%. Only 63 000 of the 78 000 data points gath-
ered were actually used for training; the beginning section
corresponding to cold start (5000 points) was ignored, as
were data acquired after the engine was turned off. The
network inputs at any time step are given by the current air
mass, manifold vacuum, engine speed, and vehicle speed.
In addition, a sparse tapped delay line representation of the
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Fig. 11. A 40 s segment of testing data for catalyst-sensor model. The top panel shows the actual
postcatalyst HEGO sensor output in a solid pattern and the predicted HEGO sensor output in a
dashed pattern.

precatalyst HEGO sensor output was formed as input to the
network, consisting of the current measurement along with
ten additional measurements of the sensor output spaced
five time steps (0.1 s) apart, spanning a total time of 1 s.
The resulting input vector at any time step is comprised
of 15 signals plus a bias. The network architecture chosen
was an RMLP with structure given by 15-20R-15R-10R-1;
the resulting network consisted of 1531 weights. Simpler
architectures were found not to be as effective. (We have
found the combination of sparse tapped delay line input
representations with internal network recurrence to be a
particularly effective mechanism for treating the problem,
highlighted in [25], of learning long-term dependencies and
condition dependent time delays.) Multistream training was
performed utilizing ten data streams, with trajectory lengths
of 1000 instances and priming lengths of 50 time steps.
Derivatives were computed by backpropagation through
time with a truncation depth of 74 time steps. Due to
the complexity and size of the network architecture, node-
decoupled multistream weight updates were performed.
This procedure resulted in the processing of 2.2 million
instances during training, with each instance processed an
average of 35 times.

We performed testing of the trained network with the sec-
ond data set obtained from the same vehicle/catalyst combi-
nation. Interestingly, the average HC conversion efficiency
for this data set was measured to be 75%, a 5% difference

from the training set (it is possible that most of the dif-
ference could be attributed to the cold-start portion, which
we have ignored for the present purposes). Fig. 11 shows a
representative sequence of engine operating conditions and
network behavior over 40 s; this sequence includes both
low- and high-speed operations, as well as some transients
due to vehicle accelerations and decelerations. It is evident
that the trained network has captured the qualitative behav-
ior of the postcatalyst HEGO sensor output. In Figs. 12–14,
we show 5 s portions of the network performance for dif-
ferent operating conditions. Fig. 12 demonstrates network
performance for the vehicle operating largely at idle, where
the time delay between precatalyst and postcatalyst sensor
outputs is expected to be a maximum. Alternatively, Fig. 13
shows results for vehicle acceleration and high engine speed
operation, where we expect to see a minimal time delay.
Finally, Fig. 14 demonstrates 5 s of network performance
under conditions of medium speed cruise. With the excep-
tion of some small phase shifts and amplitude deviations,
the network output appears to closely follow that of the
actual postcatalyst HEGO sensor.

B. Engine Misfire Detection

Engine misfire is broadly defined as the condition in
which a substantial fraction of a cylinder’s air-fuel mixture
fails to ignite. Frequent misfires will lead to a deterio-
ration of the catalytic converter, ultimately resulting in
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Fig. 12. A 5 s segment of network performance for the vehi-
cle operating at idle. For compactness, we have eliminated the
manifold vacuum and vehicle speed traces (see Fig. 11) for the
corresponding segments. In the second panel from the top, the
precatalyst and postcatalyst HEGO sensor outputs are plotted
together to provide a visual sense of the context dependent time
delay. In the uppermost panel, the postcatalyst HEGO sensor output
is repeated as a dashed pattern, and the network output is shown
as a solid line. Note that the network output is able to closely
capture the dynamic relationship associated with the long time
delays between the pre and postcatalyst sensor outputs.

Fig. 13. A 5 s segment of network performance for the vehicle
accelerating to a high speed, followed by a deceleration. The
panels are arranged identically to Fig. 12. Note that the network
gracefully handles the context transients, and that the short time
delays between the two sensors are properly modeled.

unacceptable levels of emitted pollutants and a costly
replacement. Consequently, government mandates require
that automotive manufacturers provide on-board misfire
detection capability under nearly all engine operating con-
ditions for vehicles sold in the United States after 1998.

Fig. 14. A 5 s segment of network performance for the vehicle
operating at a relatively constant speed. The panels are arranged
identically to Fig. 12. Note that the time delays in this case are of
moderate length.

While there are many ways of detecting engine misfire,
all currently practical methods rely on observing engine
crankshaft rotational dynamics with a position sensor lo-
cated at one end of the shaft. Briefly stated, one looks
for a crankshaft acceleration deficit following a cylinder
firing and attempts to determine whether such a deficit is
attributable to a lack of power provided on the most recent
firing stroke. (In effect, the momentary unopposed load on
the engine causes it to slow down briefly.)

Since every engine firing must be evaluated, the natural
“clock” for misfire detection is based on crankshaft rotation,
rather than on time. For an-cylinder engine, there are
engine firings, or events, per engine cycle, which requires
two engine revolutions. The actual time interval between
events varies considerably; for an eight-cylinder engine,
for example, the time interval varies from 20 ms at 750
revolutions per minute (RPM) to 2.5 ms at 6000 RPM.
Engine speed, as required for control, is typically derived
from measured intervals between marks on a timing wheel.
As used in misfire detection, an acceleration value is cal-
culated from the difference between successive intervals. If
the timing marks are favorably placed, each such computed
acceleration depends sensitively on the firing of just one
cylinder.

Fig. 15 shows a sequence of acceleration values, taken
when the engine is at low speed and lightly loaded. Misfires
have been artificially induced (by interrupting the spark),
and acceleration values that correspond to misfires have
been labeled in the plot. Under these conditions, misfires
are easily detected by simple thresholding.

This scheme is complicated by several factors. One of
these is that the angular intervals between timing marks
may not be precisely equal and may differ from vehicle to
vehicle. This is typically handled by an adaptive correction
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Fig. 15. A temporal sequence of acceleration values (scaled
units) for low-speed engine operation. Artificially induced misfires
are denoted by “�” symbols.

Fig. 16. A temporal sequence of acceleration values, illustrating
the effects of crankshaft dynamics. In the upper panel misfires are
denoted by “�” symbols.

that is carried out on board each vehicle; such a correction
has been applied to all data shown here. A more serious
problem is that the crankshaft is not infinitely stiff. This
causes it to exhibit complex torsional dynamics, even in the
absence of misfire. The magnitude of acceleration induced
by such torsional vibrations may be large enough to dwarf
acceleration deficits from misfire. Further, the torsional
vibrations are themselves altered by misfire, so that normal
engine firings following a misfire may be misinterpreted.

In the lower panel of Fig. 16 we have again plotted
an acceleration sequence, but under the more challenging
conditions of high speed and moderately high load. It is
essentially impossible to pick out misfires visually. In the
upper panel we have labeled the misfires; note how they
are mixed with normal values.

Although the effect of torsional oscillation is to add
what may appear to be random noise to the sequence of
acceleration values, we knew from prior work of colleagues
that the pattern, in the absence of misfire, was fairly
reproducible at a given operating condition, although it
varied as the operating condition changed. Hence, we
speculated that the problem might yield to a suitable
unraveling of the acceleration signal. In effect, our approach
is to use a training process to form a context-dependent
nonlinear filter.

1) Applying Recurrent Networks:We have approached
the misfire detection problem with recurrent networks in
two related ways. In the first of these, we attempt to
convert the observed acceleration sequence into a good
approximation of an idealized sensor; here the latter
amounts to laboratory quality time measurement on a
timing wheel which is placed in a crankshaft location
less subject to torsional vibration. Details of the first use
of this method are presented in [26]. Performing misfire

classification with this approach requires the same final
steps employed in current production misfire detection.
Typically, one forms the difference between each sensor
value and a central measure of its temporal neighbors and
normalizes the result according to the acceleration deficit
expected for that engine state. The resulting value is then
compared to a chosen threshold to effect the classification.

In the second approach [27] the final steps may be
bypassed by training a network to perform the classification
directly. Here we choose the network architecture to be
4-15R-7R-1. The inputs are engine speed, engine load
(a derived quantity that is based primarily on air mass),
acceleration (as described above), and a binary flag to
identify the beginning of the cylinder firing sequence. The
target is either 1 or 1, according to whether a misfire
had been artificially induced for the current cylinder during
the previous engine cycle. This phasing, in the
notation of Section II, enables the network to make use
of information contained in measured accelerations that
follow the engine event being classified. The consequently
noncausal nature of the nonlinear filter presents no practical
problem, since the classifications are used statistically rather
than for immediate action.

An important practical aspect is that, unlike the method
which depends on targets based on an idealized sensor,
the acquisition of data for training does not require special
equipment beyond that used to extract information from
the engine computer.

In the example shown here, the training database was
acquired on a production vehicle with an eight-cylinder
engine over a wide range of operation, including engine
speed and load combinations beyond those encountered in
normal driving. Misfires were deliberately induced at vari-
ous intervals. Although the database consists of more than
600 000 examples (one per cylinder event), it only approxi-
mates full coverage of the space of operating conditions and
possible misfire patterns. It is therefore important to test the
network’s generalization by applying it to independent data.

In Fig. 17 we display the same segment of data as in
Fig. 16, but here we have also plotted network inputs
corresponding to engine speed and load and have shown
the output of the trained recurrent network. Both the
acceleration values and the network output values have been
labeled according to whether misfire had been induced. It
should be noted that this segment is not part of the training
set, but rather is part of a test set acquired after the network
had been trained. The network is making remarkably few
classification errors. Most network errors occur during
moments of rapid positive or negative acceleration, not
shown here. (Actually, misfire detection is not required
during conditions of negative engine torque, such as during
deceleration, when the engine is not producing power.)

VII. SUMMARY AND CONCLUSIONS

In this paper we have presented a set of techniques
that, used together, have allowed us to address a range
of interesting and potentially useful training problems. We
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Fig. 17. The segment of acceleration values of Fig. 16 is plotted,
together with inputs to a recurrent classification network and the
output of the trained network. An additional network input assumes
a value of one every eight steps and is zero otherwise. Misfires are
again denoted by “�” symbols.

have used substantially the same procedure for each of the
examples presented as well as for many others. The RMLP
has served us very well, with architectural details chosen
largely according to how hard a given problem is thought
to be, with due regard for the amount of available data. (We
have no solution to the occasionally encountered problem
of a difficult mapping supported by little data.) For most
problems, the networks we train are probably of a higher
order than would minimally be required. More study is
required to determine under what conditions this may be
problematic. In any case, if the minimal architecture for
a given problem is known, then our framework may be
applied to it.

Though we have concentrated on off-line applications, it
is entirely possible to employ EKF updates in real time,
as we demonstrated for controller training in [12]. With
sufficient computational power, multistream methods can
also be incorporated into real-time applications. A quite
promising scenario is that of combining a primary data
stream based on real-time data with one or more secondary
streams synthesized, as in Section V-B, to encourage de-
sired secondary behavior such as stability or steady-state
accuracy.

Some of the networks we have discussed here require
significant computation merely to execute. As this could
be a stumbling block to production applications, a collab-
oration was initiated between Ford Research and the Jet
Propulsion Laboratory resulting in an elegant and inexpen-
sive hardware implementation [28] that allows fast recurrent
network execution.
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