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Characterization of 
Randomly Time-Variant Line;ar Channels 

Summary-This paper is concerned  with  various aspects of the 
characterization of randomly  time-variant linear channels. At the 
outset  it  is  demonstrated  that time-varying linear  channels (or filters) 
may  be characterized in an interesting symmetrical manner in time 
and frequency  variables  by  arranging system functions in (time- 
frequency) dual pairs. Following this a statistical characterization 
of randomly &.e-variant linear  channels  is  carried  out in terms of 
correlation  functions for  the various system functions. These  results 
are specialized by  considering three  classes of practically interesting 
channels. These  are  the wide-sense  stationary  (WSS)  channel, the 
uncorrelated  scattering (US) channel, and  the wide-sense  stationary 
uncorrelated  scattering (WSSUS)  channel. The  WSS and US 
channels  are shown to  be (time-frequency)  duals. Previous dis- 
cussions of channel correlation  functions and  their relationships 
have  dealt exclusively with the WSSUS channel. The point of 
view presented  here of dealing  with the dually related  system 
functions  and  starting with the  unrestricted  linear  channels  is 
considerably more  general  and places in proper perspective previous 
results on the  WSSUS channel.  Some attention is given to the 
problem of characterizing radio channels. A model called the 
Quasi-WSSUS channel is presented  to  model the behavior of 
such channels. 

All real-lie  channels  and signals have an essentially  finite 
number of degrees of freedom  due  to  restrictions on time  duration 
and bandwidth. This  fact  may  be  used  to derive useful canonical 
channel  models  with  the  aid of sampling theorems  and power 
series expansions. Several  new canonical channel  models  are 
derived in this paper, some of which are  dual  to  those of Kailath. 

I. INTRODUCTION 

D URING  RECENT YEARS there  has been an 
increasing amount of attention given to  the 
study of randomly  time-variant linear channels. 

This  attention  has been motivated to a large extent by 
the advent of troposcatter,  ionoscatter, chaff and moon 
communication links and  radar  astronomy systems. 
The determination of optimum  modulation and demodula- 
tion techniqu.es and  the. analytical  determination of the 
efficacy of optimum  and  suboptimum communication 
(or radar) techniques for  such channels depends heavily 
upon a satisfactory  characterization of the transmission 
channel. Thus,  the characterization of randomly  time- 
variant linear channels is of some interest. 

The chara,cterization of time-variant linear filters 
(whether random or not)  in  terms of system  functions 
received its first general analytical  treatment  by Zadeh,’ 
who introduced the Time-Variant Transfer  Function 
and  the Bi-Frequency Function  as frequency domain 
methods of characterizing  time-variant linear filters to 
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complement the time-variant impulse response which is a 
time  domain  method of characterization. Further interest- 
ing work on the characterization of time-varying linear 
filters in  terms of system  functions  has been done by 
Kailath,’ who has pointed out that a third  type of impulse 
response may be defined in addition to  the two  already, 
used for time-variant linear filters. He  has defined single 
and double Fourier transforms of these impulse responses 
in order to demonstrate that certain  variables may be 
identified with frequencies at  the filter input  and  output 
and certain  variables  may be identified with  the  rate of 
variation of the filter. However, (excepting the Time- 
Variant  Transfer ]Function) only the impulse responses and 
their double Fourier transforms were demonstrated to be 
system  functions; ie., filter input-output  relations were 
derived which used only impulse responses and  their double 
Fourier transf0rm.s. 

In  Section I1 we demonstrate that time-varying linear 
channels (or filteris) may be characterized in an interesting 
symmetrical  manner in time  and frequency variables by 
arranging  system :functions in (time-frequency) dual pairs.3 
Moe,t of these  system  functions (which include, among 
others,  those  introduced by Zadeh and  Iiailath)  are shown 
to imply circuit model interpretations or representations 
of the time-varying linear channels. The relationship be- 
tween these  system  functions is demonstrated in a simple 
way with  the aid of a graph involving duality  and  Fourier 
transformations. 

When the filter becomes randomly time-variant the 
various  system  functions become random processes. An 
exact statistical  characterization of a randomly time- 
variant linear channel in  terms of multidimensional 
probability  density  distributions for system  functions, 
while necessary for some theoretical investigations, pre- 
supposes more knowledge than is likely to be available 
in physical situations. A less ambitious but more practical 
goal. involves a statistical  characterization  in  terms of 
correlation functions for the various  system  functions, 
since  knowledge of these correlation functions allows a 
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determination of the autocorrelation  function of the 
channel output. 

In Section IV we define and  determine relationships 
between the correlation functions of the various  system 
functions  for the general randomly  time-variant linear 
channel. These results  are specialized by considering three 

,classes of practically interesting channels. These are  the 
WSS channel, the US channel, and  the WSSUS channel. 
The WSS and US channels are shown to be (time-fre- 
quency) duals. 

Previous ~ ~ s c u s s ~ ~ ~ s ~ - ~  of channel correlation functions 
and  their relationships have  dealt exclusively with 
the WSSUS channel. Our  point of view dealing with the 
dually  related  system  functions  and starting with the 
unrestricted linear channel is considerably more general 
and places in proper perspective previous results on the 
WSSUS channel. 

Virtually  all radio transmission media may be regarded 
as randomly time-variant linear channels. In the case of 
the transmission of digital signals over radio transmission 
media certain simplifications may be  effected in channel 
characterization when the channel contains very slow 
fluctuations superimposed upon more rapid fluctuations, 
the  latter of which exhibit an approximate  statistical 
stationarity. In  Section V we introduce the quasiwide- 
sense stationary uncorrelated scattering (QWSSUS) chan- 
nel as a means for characterizing such channels. 

All  real-life channels and signals have an essentially 
finite number of degrees of freedom due to restrictions on 
time  duration  and  bandwidth.  This  fact has been exploited 
by Kailath’ to derive canonical channel models for the 
cases in which the channel band-limits signals a t  its 
input or output  and in which the channel impulse response 
is time-limited. With  the aid of the dual system functions 
derived in Section 111 we derive new canonic sampling 
models in Section V,  some of which may be identified as 
dual to those of Iiailaih. As might be expected, these dual 
models are  particularly useful under the dual time- fre- 
quency constraints, namely when the  input or output 
time  functions  are time-limited or when the channel fading 
rate is band-limited. In  addition we derive two new dually 
related canonic channel models,  called f-power series and 
t-power  series  models. The f-power series model is of 
particular use in  evaluating the effect of frequency selective 
fading on a signal whose bandwidth is  less than  the cor- 
relation bandwidth of a  scatter channel. The t-power  series 
model will  be of use in the  dual  situation, Le., in evaluating 
the effect of (time-selective) fading on a pulse whose 
duration is less than  the correlation time  constant of a 
scatter channel. 
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11. COMPLEX ENVELOPES 
A process x( t )  whose spectral components cover a band 

of frequencies which is small compared to  any frequency 
in  the band  may be expressed as 

z(t) = Re { ~ ( t ) e ’ “ “ }  (1) 

where Re{ ] is the usual  real part  notation, is some 
(angular) frequency within the band  and ~ ( t )  is the com- 
plex envelope of z(t). This name for y ( t )  derives from  the 
fact that  the magnitude of y ( t )  is the conventional envelope 
of x( t )  while the angle of y ( t )  is the conventional phase of 
x( t )  measured with respect to carrier phase w,t. The non- 
narrow-band case may be handled with  the complex nota- 
tion also by the use of Hilbert However, the 
complex envelope will then no  longer have the simple 
interpretation described above. Complex envelope nota- 
tion will  be  used extensively for the remainder of this 
paper. However, it should be understood that there is 
always implied the existence of a center or reference fre- 
quency uc which via an equation such as (1) converts the 
complex time  functions under discussion into physical 
narrow-band signals. 

When dealing with problems in which there  are wide- 
band filters (time-variant included) whose inputs  and 
outputs  are narrow-band (when expressed with reference 
to  the same center  frequency), it is possible to replace 
these filters with  equivalent narrow-band filters which 
leave the  input-output relations invariant.  This  fact 
becomes obvious when it is  realized that by preceding and 
following a wide-band filter with narrow-band filters 
which have flat transfer  functions over the range of input 
and  output frequencies of interest, one produces a com- 
posite filter which  is narrow-band and of course cannot 
change the  input-output relations for the properly re- 
stricted class of input  and  output narrow-band signals. It is 
readily demonstrated that (except for an unimportant 
constant of one-half) the complex envelope of a narrow- 
band signal at  the  output of a narrow-band filter due to a 
narrow-band input  may be obtained  by passing the com- 
plex envelope of the  input  through  an  “equivalent” 
low-pass filter whose impulse response is just  equal to  the 
complex envelope of the narrow-band filter impulse 
response. 

In  defining the autocorrelation  function of the complex 
envelope of a random process a  certain difficulty appears 
that is not generally appreciated, namely, that two auto- 
correlation functions  are needed in order to uniquely 
specify the autocorrelation  function of the original real 
process. This  fact is demonstrated  by direct calculation 
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of the autocorrelation  function of z(t) ,  (l), as 

z(t)z(s) = 4 Re (y*(t)y(s) eiWc('- ')  1 

Thus  the two autocorrelation  functions 

are needed to specify the autocorrelation  function of the 
real process. Fortunately,  in most applications the narrow- 
band process ia so constituted that 

In  fact, from (2 ) ,  one may readily deduce that (4) is 
necessary if z ( t )  is to be  wide-sense stationary. 

A simple physical test of z(t)  (deterministic com- 
ponents removed) to determine  whether (4) is satisfied 
is to multiply it by itself delayed and examine the sum 
frequency component for the presence of a deterministic. 
component. According to ( 2 )  the complex amplitude of this 
component is +E7 ( t ,  s), so that  the presence of a  determin- 
istic component would mean that (4) is violated. In  the 
subsequent discussion involving complex envelopes we 
shall deal only with that form of autocorrelation  function 
which involves the conjugate  under the expectation 
sign. It should be kept  in mind, however, that  an anal- 
ogous  discussion applies for z r ( t ,  s)  in  those cases where 
it is nonzero. 

The above discussion of complex envelopes, equivalent 
noises and equivalent filters is supplied as a physical 
justification for our subsequent use of "low-pass"  complex 
time  functions, complex white noise and low-pass filters 
with complex impulse responses. 

111. SYSTEM FUNCTIONS FOR TIME-VARIANT 
LINEAR FILTERS 

A. Dual  Opemtors  and  Kernel  System  Functions 
The concept of " time-frequency" duality is discussed 

at  some length  by Bello.3 For  the purposes of this section 
it will  be  sufficient to define the concept of dual  operators. 

A device which processes communication signals may 
be thought of in mathenlatical  terms as  an operator which 
transforms  input signals into  output signals. The  inputs 
and  outputs of such a device may be described in either 
the time or frequency domain according to convenience. 
Since either  time or frequency domain descriptions may 
be used at  the input  and  output, a two-terminal device 
(a single-input single-output device) may be described 
by any. one of four  operators. If we define time  and fre- 
quency  domain descriptions of processes as dual descrip- 
tions, then these  four  operators  may be grouped into  dual 
pairs  with the aid of the following definition: 

Two operators associated with a particular  two-ter- 
minal-pair device are defined as  duals when dual 
descriptiom  are used for corresponding inputs  and 
outputs. 

If z( t ) ,  Z( f )  denote the  input time  function  and  spectrum, 
and w(t ) ,  W ( f )  den.ote the  output time  function and spec- 
trum of a device, then  the  four possible operators  are 
described by the equations 

4 0  = 0 ' M t ) l  W f )  = O,,[W)l 

w(t> = O t , [ - m l  W f )  = Off[Z( t ) l  
(5) 

where the operator  pairs 0,,, Oll and O,,, 0,, individ- 
ually consist of dual  operators. 

In  the case of 1% linear device, such as a linear time- 
variant channel, the four  equations in ( 5 )  may be formally 
expressed" as  linsar  integral  operators  with associated 
kernels; i e . ,  

w(t) = 1 x(s)K,(t, s) ds W(f) = [ Z(Z)K,(f, I )  d l  (6)  

w(t) = 1 Z ( f ) K s ( t ,  f) df W(f> = 1 4t)K4(f, 0 dt .  (7) 

These kernels are,  in effect, system  functions and we shall 
call t8hem kernel system  functions to distinguish them from 
other classes of system  functions to be described. It is 
clear that  the system  function  pairs K,, K,.and K,, K4 
may be considered as  dual system  function pairs. 

The system  functions K,(t, s) and K,(f, I) may be 
recognized as  the 'rime-Variant  Impulse Response and the 
Bi-Frequency Function respectively, used by Zadeh.' The 
system  functions 1T3(t, f )  and K4(f, t )  have  not been defined 
previously. Without difficulty it may be established that 
K,(t, s) and K,(:f, Z), besides being duals,  are double 
Fourier transform pairs, and similarly that  the dual 
pairs K3(t ,  f )  and K4(f, t )  are double Fourier transform 
pairs. Also K,(t, s) and K3(t ,  f) are single Fourier  trans- 
form  pairs  with t [considered as a  parameter, while K 2 ( f ;  1)  
and K4(f, t )  are single Fourier'  transform  pairs  with f 
considered as a parameter. It is worth  noting that K,, K ,  
and K,, K 4  are t,he only dual  pairs of system  functions 
among those to be presented which are  related  directly 
as double Fourier transform pairs. 

The kernel  system  functions  have simple physical 
interpretations in. terms of the response of the channel to 
impulses and cissoids. Thus, it is readily determined that 
if the channel is excited with a unit impulse at t = s, the 
resulting channe'l output is the time  function K,(t, s) 
with  spectrum K,,(f, s), while if the channel is excited with 
the cissoid eiar"  (Le., frequency impulse at  f = Z ) ,  the 
resulting channel output is the time  function K3(t, 1)  
with  spectrum K2(f,  I ) .  

The present discussion of kernel  system  functions  has 
been included primarily in  the interest of making our 
discussion of system  functions as complete as possible, 
and. in clarifying our  subsequent discussion of system 
functions. We shall  actually  make  little use of the kernel 
system functionls in the remainder of this paper, pri- 
marily because we are  interested  in circuit model descrip- 

sume that  the kernels may include  singularity  functions. 
l1 In order to include  linear differential operators one must as- 
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tions of the time-variant linear channel and  the kernel 
system  functions do not lend themselves readily to such 
phenomenological descriptions. 

B. Delay-Spread  and  Doppler-Spread  Functions 
From  a  strictly  mathematical  point of view the kernel 

system functions are sufficient to describe the time- 
frequency input-output relations for a  time-variant linear 
channel. From  a physical intuitive point of view they  are 
not as satisfactory, since they  do  not readily allow one to 
grasp by inspection the way in which the time-variant 
filter affects input signals to produce output signals. 
Section IIIC we  will  be  concerned with system functions 
which, via circuit model analogies, provide a somewhat 
more physical interpretation of the action of the linear 
time-variant channel. 

Consider first the following input-output relationship 
for a linear time-variant channel obtained  from the first 
equation  in (6) by the transformation s = t - E: 

d t )  = 1 4 t  - M t ,  E) dE (8) 

where. 

g(t, 0 = Kl(t ,  t - E). (9) 
Eq. (8) leads to a physical picture of the channel as  a 
continuum of nonmoving scintillating scatterers,  with 
with g(t, .$)dl‘ equal to  the (complex) modulation produced 
by  hypothetical elemental “scatterers” that provide 
delays in the range (E, + dt) .  Fig. 1 illustrates such a 
physical picture  with the aid of a densely tapped delay 
line. Note that  the input signal is first delayed and  then 
multiplied by the differential scattering gain. We shall 
call g ( t ,  E) the  Input Delay-Spread Function to distinguish 
it from  another system function called the  Output Delay- 
Spread Function, to be described below, which leads to a 
channel representation similar to g(t, E) except that  the 
delay occurs on  the  output side of the channel (and the 
multiplication on the  input). 

If we consider x ( 2 )  to be first multiplied by a differential 
gain function h(t, E)dE and the11 delayed by E with a 
continuum of values, we obtain  the  input-output 
relationship 

4 0  = / z(t  - E)Wt - E ,  E) dE (10) 

and  the circuit model representation of Fig. 2. By com- 
paring (10) with (8) and (6) we quickly find that 

4 4  t )  = k’,(t + E, 0 = g(t + E ,  E). (11) 

From the  fact that K,(t ,  s) is the channel response at  
time t due to a unit impulse input at f. = s, it is seen from 
(7) and (11) that g(t, E) may be interpreted  as the response 
at  time t to a  unit impulse input t seconds in the  past,  and 
h(t, E) may be interpreted  as the response E seconds in the 
future  to a  unit impulse input at  time t. Since a physical 
channel (without  internal sources) may  not  have an 
output before the  input  arrives, K,(t, s) must  vanish  for 

-- I l l  - - - r l l l ~  
SUMMING  BUS 

Fig. l-A differential  circuit model representation for  linear time- 
variant channels using the  Input Delay-Spread Function. 
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Fig. 2-A differential  circuit model representation for linear t,ime- 
variant channels using the  Output Delay-Spread Function. 

t < s and g(t, E), h(t, E) must  vanish for < 0. These 
physical realizability conditions may be explicitly indi- 
cated  by  appropriate limits on the integrals defining 
input-output relations. However, for simplicity of pre- 
sentation we  will assume that  the integral limits are 
(- 00, ~0 ), with the integrand being taken  as zero in the 
appropriate  intervals to assure physical realizability. 

An entirely  dual  and  just as general channel character- 
ization exists in  terms of frequency variables  by employing 
the  Input and Output Doppler-Spread Functions, the 
system  functions which are  the (time-frequency) duals 
of the  Input and  Output Delay-Spread Functions, 
respectively. Consider first the dual of the  Input Delay- 
Spread Function. Such a  system  function  must  relate the 
channel output spectrum to  the channel input  spectrum 
in a manner identical in  form to  the way g(t, E )  relates 
the  input  and  output  time functions. This  dual  character- 
ization involves a representation of the  output spectrum 
W(f) as a superposition of infinitesimal Doppler-shifted 
(the  dual of delayed) and filtered (the  dual of modulated) 
replicas of the  input  spectrum Z(f). Thus we have 

(12) 

where H ( f ,  V )  is the  Input Doppler-Spread Function. 
Eq. (12) may be interpreted physically with the aid 

of a model dual to  that in  Fig. 1. To construct such a  dual 
it is necessary to note that  the dual of a  tapped delay line 
is a  “frequency conversion chain,” i.e., a  string of fre- 
quency converters  arranged so that  the  output of one 
converter is not only the  input  to  the next converter but 
is  also the “local” frequency shifted output. Fig. 3 illus- 
trates such an interpretation of (12) using a  “dense” 
frequency conversion chain. Note that  the  quantity 
H(f ,  v)dv is to be interpreted as  the transfer  function 
associated with  hypothetical Doppler-shifting elements 
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that provide  frequency  shifts in  the range (v,  v + dv) .  
By compar.ing  (12) and the last  equation in (6) we find 

that  the  Input Doppler-Spread  Function  is  related to 
Zadeh's Bi-Frequency  Function  by 

H(f, V I  = Kdf, f - v )  (13) 

which is an equation  dual to (9). 
From (10) we deduce that  the dual of the  Output 

Delay-Spread Function  must  provide the input  spectrum- 
output spectrum  relationship 

W ( f )  = / Z(f - v ) G ( f ,  V I  dv (14) 

where G(f, v )  is defined as  the  Output Doppler-Spread 
Function.  Whereas the  Input Doppler-Spread  Function 
leads to a cascaded Doppler  shifter-filter  realization as 
indicated in Fig. 3, the  Output Doppler-Spread  Function 
leads to a cascaded filter-Doppler  shifter  realization  as 
shown in Fig;. 4. The  quantity G(f, v)dv is the  transfer 
function of a  hypothetical differential filter at  the input 
which is  associated  with  a  Doppler  shift of v cps at  the 
channel output. 

By  comparing (14) with (13) and (6) we find that 

G(f, V I  = Kz(f + v, f) = H(f + v7 V I ,  (15) 

which is a set of equations dual  to (11). Since K z ( f ,  1)  is 
the value of the spectral response of the channel a t  a 
frequency f due to a cissoidal excitation of frequency 1 cps, 
it is  quickly seen from (13) and (15) that H ( f ,  v )  may be 
interpreted as the spectral response of the channel at  
f cps due to a cissoidal input v cycles  below f,  and G(f,  v )  
may be interpreted  as  the spectral response of the channel 
a t  a  'frequency v cps above the cissoidal input at  the 
frequency f cps. 

INPUT Ell l - .=  - 

-- I l l  - - - w r l f I ~ T  
SUMMING BUS 

Fig. 3-A differential  circuit model representation for  linear  time- 
variant  chmnels using the  Input Doppler-Spread Function. 

1 
DENSELY TAPPED FREQUENCY 

CONVERSION CHAIN 

Fig. 4-A differential  circuit model representation for  linear  time- 
variant channels  using the  Output Doppler-Spread Function. 

C. Time-Variant  Transfer  Function  and  Frequency- 
Dependent  Modulation  Function 

The characterizations of a  time-variant  channel in 
terms of the Delay-Spread  Functions g(t, t )  and h(t ,  C;) 
and the Time-Variant  Impulse Response K,(t, s) are 
strictly  time  domain  approaches, while the characteriza- 
tions in  terms of the Doppler-Spread  Functions H(f ,  v) and 
G(f, v) and the Bi-Frequency  Function k',(f, Z) are  entirely 
frequency  domain  approaches. In  the former cases the 
output  time function  is  directly  related to  the  input  time 
function, while in. the  latter cases the  output spectrum  is 
directly  related t,o the  input spectrum. As discussed in 
SecOion I11 A and exemplified by the  dual kernel  system 
functions K,(t, f )  and K4(f, t ) ,  two  other  approaches  are 
poss,ible. These  involve an expression of the  output time 
function  directly in  terms of the input  spectrum in one 
case, and an expression of the  output spectrum  directly 
in  terms of the  input  time function  in the other. A n  
example of the former  approach was first  introduced  by 
Zadeh' with  the :aid of the Time-Variant  Transfer  Func- 
tion. 

In  this section we  will introduce  a new system  function 
called the Frequency-Dependent  Modulation  Function, 
which is the (time-frequency)  dual of the Time-Variant 
Transfer  Function.  This  system  function  relates the  out- 
put spectrum to .the input  time  function. 

Assuming  we have an  input z ( t ) ,  which may be repre- 
sented as  a sunnmation of infinitesimal cissoidal time 
functions, i.e., 

z(t)  = j' Z(f)eizr'r df . (16) 

where Z(f) is the spectrum of z ( t ) ,  one may  determine the 
channel output by  superposing the  separate responses to 
the infinitesimal cissoidal components. The response of 
the channel to  the cissoidal time  function exp [j2?rZt] (or 
spectral impulse S(f - I)) is given by [see (9)] 

/ e i z r l ( t - E )  
g(t ,  C;) dC; = eiZr"T(Z,  t) (17) 

where 

~ ( f ,  t )  = / e-iz*ftg(t, t )  dl (18) 

is the Fourier  transform of the  Input Delay-Spread 
Function  with  respect to  the delay  parameter.  By  super- 
pos:ition the network output is given by 

w(t> = j ' z( f )~( f ,  t)e'Z.fr df. (19) 

Eq. (19)  shows that even though  the channel  may be 
time-variant, one may  determine the  output  by exactly 
the same  frequemy  domain  techniques  as  for  time-variant 
(linear)  channels..  This involves, basically,  a  multiplication 
of the input  spectrum  by  a  system  function followed by an 
inverse  Fourier  transformation  with  respect to  the fre- 
quency  variable.  For  time-variant channels, however, the 
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system  function  is  a  function of the time  variable.  This 
explains use of the name  Time-Variant  Transfer  Function 
to denote T ( f ,  t). 

By  using (14) to determine the spectrum of the response 
to  the frequency impulse S(f - I), and  then inverse 
Fourier  transforming to obtain the corresponding time 
response, it may be quickly  determined that 

T u ,  t )  = 1 G(f, v)ei2*"t dv,  (20) 

i e . ,  that  the Time-Variant  Transfer  Function is the inverse 
Fourier  transform of the  Output Doppler-Spread Function 
with  respect to  the Doppler-shift  variable. 

Also, either  by  noting,  as discussed in Section I11 A, that 
K3(t ,  1) may be interpreted as  the channel response a t  
time t to  an excitation or by comparing (7) and (15), 
it is  readily seen that 

K3(t,  f) = ei2""T(f, t). (21) 

To develop the dual  system  function we assume that 
we have an input whose spectrum Z(f) may be represented 
as  a  summation of infinitesimal cissoidal frequency  func- 
tions; Le., 

Z(f) = 1 z(t)e-iz"ft dt.  (22) 

The spectrum of the response of the channel to  the cis- 
soidal frequency  function exp [-j2afs] (i.e., to  the time 
function 6(t - s) whose spectrum  is exp [-j2afs]) is 
given by [see (12)] 

s e - i a a s ( r - " )  
H ( f ,  v) dv = e-""'" M s ,  n (23) 

where 

M ( t ,  f )  = 1 eiz""HCf, v) dv (24) 

is the Fourier  transform of the  Input Doppler-Spread 
Function  with  respect to  the Doppler-shift  variable.  By 
superposition the network output spectrum  is given by 

W(f) = 1 z ( t )M(t ,  f)e-""" d t .  (25) 

Eq. (25)  shows that, even  though  the  channel  may be a 
general  time-variant  linear  filter, one may  determine the 
output spectrum  by  exactly the same  time  domain 
techniques as for  a  channel which acts  as  a pure complex 
multiplier  (or  modulator).  This involves, basically, a 
multiplication of the  input  time function  by  a complex 
time  function  characterizing the channel, followed by  a 
Fourier  transformation  with  respect to  the time  variable. 
For  general  time-variant channels, however, the complex 
multiplier  is  frequency-dependent.  This  explains  our use 
of the name  Frequency-Dependent  Modulation  Function 
to denote M(t ,  f ) .  

By using (6) to determine the time  function response to 
the  input 6(t - s) and  then  Fourier  transforming to obtain 

the spectrum of the response, it may be quickly  determined 
that 

M ( t ,  f) = 1 e-izrr%(t, f )  d f ;  (26) 

Le., that  the Frequency-Dependent  Modulation  Function 
is the Fourier  transform of the  Output Delay-Spread 
Functio-n  with  respect to  the delay  variable. 

Also, either  by  noting, as discussed in Section I11 A, 
that K4(f, s) is the spectrum of the channel response to an 
excitation 6(t - s), or by comparing (25) and (7), it is 
readily seen that 

~ ~ ( f ,  t) = e- i z" f 'M( t ,  f). (27) 

In  the case of time-invariant  linear  filters the  trans- 
mission frequency  characteristic of the filter  can be 
determined  by  direct  measurement as  the cissoidal re- 
sponse or else indirectly as  the spectrum of the impulse 
response. For  time-variant  linear  filters  these measure- 
ments  procedures yield different results, as exemplified 
by the  fact  that T( f ,  t ) ,  which corresponds to  the cissoidal 
measurement, differs from M(t ,  f )  which corresponds to 
impulse response measurement followed by  spectral 
analysis. 

Moreover, as we have shown above, only T ( f ,  t )  may 
properly be considered a  transmission  frequency  character- 
istic, the proper  interpretation of M(t ,  f )  'being that of a 
channel  "modulator." 

D.  Delay-Doppler-Spread  and  Doppler-Delay-Spread 
Functions 

In  Section I11 B it was demonstrated that  any linear 
time-varying  channel  may be interpreted  either as  a 
continuum of nonmoving scintillating  scatterers  with the 
aid of the Delay-Spread Functions, or as  a  continuum 
of hypothetical  Doppler-shifting  elements  with associated 
filters  with the aid of the Doppler-Spread  Functions. We 
demonstrate  in this section that  any linear  time-varying 
channel  may be represented as  a continuum of elements 
which simultaneously  provide both  a corresponding delay 
and  Doppler  shift. 

As in Section I11 B, we can consider system  functions 
classified according to whether the corresponding phenom- 
enological channel model has  its delay  operation or 
Doppler-shift  operation at  the channel  input or output. 
Since delay  and  Doppler shift both occur in  the model to 
be described, only  two possibilities exist, Le., input-delay 
output-Doppler-shift  and  input-Doppler-shift  output- 
delay, rather  than  the four possibilities of Section I11 B. 
To determine the system  function corresponding to  the 
input  delay output Doppler-shift  channel model, we 
express the  Input Delay-Spread  Function g( t ,  () as  the 
inverse Fourier  transform of its spectrum (where f is 
considered to be a fixed parameter), Le., 

g( t ,  f )  = 1 U ( f ,  v)eizZvt dv, (28) 
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and  then use (28) in (8) to obtain the following input- 
output relationship: 

w(t) = z(t - <)ei2*”‘U(<, V )  dv d<. (29) 

Examination of (29) shows that  the  output is repre- 
sented as a  sum of delayed and  then Doppler-shifted 
elements, the element providing delays in the interval 
(<, f + de) and Doppler shifts in  the  interval (v, v + dv)  
having a differential scattering  amplitude U(<, v)dvd& 
For  this reason we call U(<, v) the Delay-Doppler-Spread 
Function. 

In an entirely analogous way,  in order to determine 
the  dual syst5e1n function, Le., that corresponding to  the 
input Doppler-shift output-delay channel model, we 
express the  Input Doppler-Spread Function  as a  Fourier 
transform 

(30) 

and  then use (30) ‘in (12) toyflobtain the  input-output 
relationship 

W(f)j= Z(f - v)e-’2TE’V(v, <) df dv. (31) 

Examination of (31) shows that  the  output is repre- 
sented as a sum of Doppler-shifted and  then delayed 
elements, the element providing Doppler shifts in  the 
interval (v ,  v + d v )  and delays in the  interval (<, < + d<) 
having a differential scattering  amplitude V ( v ,  <)d< dv.  
For  this reason we call V ( v ,  <) the Doppler-Delay-Spread 
Function. 

If we Fourier  transform  both sides of (29) with respect 
to t and inverse Fourier transform  both sides of (31) with 
respect to  f we obtain  the equations 

~ ( f )  [I z(f - y)e-i2nt(f-u) U(E, v) dv df (32) 

and 

w(t) = [[ z(t  - E)eizr(t-t) V ( v ,  <) dt  dv. (33) 

A comparison of (31) and (32) or (29) and (33) reveals 
that U(f ,  v )  and V ( V ,  <) are simply related; i e . ,  

O(<, v )  = e - j a n v E V ( v ,  5). (34) 

If the integration  with respect to is carried out in 
(28) and  the integration  with respect to v is carried out  in 
(33), one finds that 

h(t ,  E )  = / V ( v ,  dv (35) 

and 

GO, V )  = 1 U ( f ,  u)e-iz*E’ d f .  (36) 

E. Relationship  Eetween  System  Functions 
A t  this point the reader may be somewhat bewildered 

by the  variety of system functions that have been intro- 
duced. I n  addition to  the four  kernel system functions, 
we have discussed eight other  system  functions. The 
relationships between the kernel system  functions  are 
rather clearly outiined in Section 111 A. The relationships 
between the  other eight system  functions  can be simply 
portrayed by grouping them according to duality  and 
Fourier transform relationships. This grouping is illus- 
trated in  Fig. 5, in which the dashed line labeled D signifies 
that  the system  fnnctions occupying nlirror image positions 
with respect to .the dashed line are duals, and  the line 
labeled F signifiea that  the system  functions at  the termi- 
nals of the line atre related by single Fourier transforms. 
Since the system  functions involve two variables, any two 
system  functions connected by an F must  have  a common 
variable which should be regarded as  a fixed parameter  in 
enlploying the Fourier  transfornl relationships involving 
the  other two variables. Note that one of these latter two 
varkbles is a time  variable  and the  other is a frequency 
variable. To make the F notation  unique we have em- 
ployed the convention that in  transfornling  from a time 
to a, frequency variable a negative exponential is used in 
the Fourier integral, while in transforming from a fre- 
quency to a time  variable  a positive exponential is used. 

lNPUT  DELAY 
SPREAD W N C T l C N  SPREAD  FUNCTION 

Fig. 5-Relationships between system functions  for time-variant 
linear cha,nnels. 

Ekamination of Fig: 5 reveals that  the Time-Variant 
Transfer  Function T( f ,  1)  and the Delay-Doppler-Spread 
Functions  are double Fourier  transforms; i.e., 

T( f ,  t )  = // O(<, v)e-iZTEfe’2*Yt df dv. (37) 

Also the  dual re:lationship exists. The Frequency-Depen- 
dent  Modulation  Function M ( t ,  f )  and  the Doppler- 
Delay-Spread Function  are double Fourier transforms; i.e., 

M ( t ,  f)  = J! V ( v ,  t)e-iz*E’eizn”t df dv. (38) 

Since T ( f ,  t )  and M ( t ,  f )  are double Fourier  transforms 
of system func1;ions which differ only by the simple 
exponential factor exp [ -  j2rvf1 [see (34)] it might be 
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supposed that they also are related in  a similar simple 
fashion. However, this is not  the case. The analytic 
relationship between T ( f ,  t )  and M ( t ,  f )  is quickly obtained 
from (21) and (27) with the aid of the  fact  that K3(t,  f )  
and K4(f ,  t )  are double Fourier transform  pairs.  This 
relationship is 

g*( t ,  E)g(s, 77) = R,( t , , s ;  E, 77) 
T*( f ,  W ( 4  4 = W f ,  1 ;  t ,  4 
G*(f ,   v)G(l ,  EL) = RGU, 1 ;  Y ,  EL) 

U*(E, v)U(o, EL) = R”(E, 7 ;  v, P)  

We  also note  from  Fig. 5 that  the  Input Delay-Spread 
Function g(t ,  E) and  the  Output Doppler-Spread Function 
G(f ,  Y )  are double Fourier transforms. Also, the  dual 
relationship exists; i.e., the  Output Delay-Spread Function 
h(t ,  E )  and  the  Input Doppler-Spread Function H ( f ,  Y )  are 
double Fourier transform pairs. Other  analytic relation- 
ships between system  functions  are readily obtained  by 
using (11) and (15) and  the Fourier transform relation- 
ships indicated in Fig. 5 .  

IV. CHANNEL CORRELATION FUNCTIONS 
When the channel is randomly time-variant the system 

functions discussed in Section I11 become stochastic 
processes.  An exact statistical  characterization of a 
randomly time-variant linear channel in terms of mul- 
tidimensional probability  density  distributions for system 
functions, while necessary for some theoretical investiga- 
tions, presupposes more knowledge than is likely to be 
available in physical situations.  A less ambitious but 
more practical goal involves a statistical  characterization 
in  terms of correlation functions for the various  system 
functions since (as will  be shown below) these correlation 
functions allow a determination of the autocorrelation 
function of the channel output. In this section we will be 
concerned with defining correlation function for these 
system functions  and showing their interrelationships. 
Special attention will  be given to simplifications that 
result for certain classes of channels of practical  interest. 

In  general, a randomly time-variant channel has  a 
mixed deterministic and random behavior. Thus,  for 
example, the  Input Delay-Spread Function g(t ,  E) may 
separated  into the sum of a purely random part  and a 
deterministic part [equal to  the ensemble average of g(t ,  E ) ] .  
This  separation implies a representation of the channel 
as  the parallel combination of a deterministic channel and 
a purely random channel. For simplicity of discussion, 
we shall only be concerned in  this paper  with the correla- 

tion properties associated with the purely random part of 
the channel. Thus  it should be understood in  subsequent 
discussions of correlation functions that each of the system 
functions  has  a zero ensemble average. 

A .  General  Case 
We shall confine our discussion of channel correlation 

functions to  the eight system functions shown in Fig. 5, 
since it is felt that these system functions provide a better 
picture of the operation of a time-varying linear channel 
than  the kernel system functions. 

The correlation functions for the system functions in 
Fig. 5 will  be  defined as follows: 

H*(f ,  v)H(l ,  p)  = R,(f, I ;  V )  EL) 

M*(t ,  f )M(s,  I )  = R d t ,  s ;  f ,  1) 

h*(t,  4)h(s, 77) = Rh(t, S ;  E, 77) 
V*b,  E)V(P, 77) = fir&, EL; t ,  77) (40) 

where correlation functions  for dual system  functions 
have been placed in the same row and correlation functions 
for Fourier-transform-related system  functions  have been 
placed in the same column. 

It is readily appreciated that  the relationships between 
correlation functions in any column are double and 
quadruple Fourier transform relationships since the 
corresponding system  functions  are related by single and 
double Fourier  transforms, respectively. As an illustration, 
consider the derivation of the relationship between 
R,(t, s ;  4, 77) and R,(f, I ;  t ,  s). The Fourier transform 
relationship between g(t ,  () and T(f ,  t )  is shown explicitly 
in (18). Using this equation we find that 

~ * ( f ,  ~ ) T ( z ,  s) = 11 g * ( t ,  $)g(s, v)ei2*(Cf+) dt dv.  (41) 

Then,  taking  the ensemble average of both sides of 
(41) (and assuming the validity of interchanging the 
order of integration  and ensemble averging), we find that 

~ , ( f ,  I ;  t ,  s> = 11 ~ , ( t ,  s ;  4 ,  q)eiz*(E’-nl) dE drl (42) 

and by  inverting the Fourier transform relationship 

~ , ( t ,  s ;  E, 7) = R,(I[, I ;  t ,  s ) e - i z + ( ~ ’ - ~ ~ )  d f d l .  (43) 

If an identical procedure is  followed to determine the 
other  Fourier  transform relationships between channel 
correlation functions, one finds that these relationships 
may be portrayed  as shown in Fig. 6, wherein a double 
line labeled F indicates a double Fourier transform rela- 
tionship between the connected correlation functions. 
The meaning of the dashed line labeled D is similar to  the 
corresponding dashed line in  Fig. 5, namely, the correla- 
tion  functions which occupy mirror image positions with 
respect to  the dashed line are correlation functions 
of dual system functions. Since the channel correla- 
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tion  functions involve four  variables, any two correla- 
tion functions connected by  an F must  have two com- 
mon  variables [such as t, s in (42) and  (43)] which should 
be  regarded as fixed parameters  in employing the double 
Fourier  transform  relationship involving the remaining 
variables.  Note that  the four  variables of a correla- 
tion  function are divided into two  pairs  separated  by 
a semicolon.  One of these  pairs  is involved directly  in 
the Fourier  transform  relationship while the  other pair 
is  fixed. Note also that  the double Fourier  transform  rela- 
tionship a1wa:ys connects  a  pair of time  (or  delay)  vari- 
ables  and a pair of frequency (or Doppler-shift)  variables 
e.g., pairs 5,  7 and f, I in (42) and  (43)]. In  order to make 
the Fourier  t,ransform symbolism in  Fig.  6  unique we 
have employed the convention that  in Fourier  transform- 
ing from  a  pair of time  variables to a  pair of frequency 
variables  a  positive  exponential  is to be used to connect 
the first  variables in each  pair  and  a  negative  exponential 
to .connect the second variables [e.g., exp [j27rtf] and 
exp [ - j 2 ~ 7 I ] ,  respectively, in (42)], while in transforming 
from a pair of frequency  variables to a  pair of time  vari- 
ables the opposite signing procedure is to be  used [e.g., 
exp [- j27rEfl and exp [j27rqZ] in (43)]. 

Examination of Fig.  6  reveals that  the pairs of channel 
correlation  functions (Rg,  RG), (Rv, RT) and  their  duals 
(Rh, RE), (Ev, RAr) are quadruple  Fourier  transform  pairs. 
The  actual fourfold integral  relating any of these  pairs 
is readily  obtained  by performing two successive double 
Fourier  transforms as indicated in Fig. 6. 

From (30) it’ is quickly  determined that 

W E ,  17; v, PI = e R&, P ;  E ,  17) (44) i z r ( P E - w )  

is the relationship  between the correlation  functions of the 
Delay-Doppler-Spread and Doppler-Delay-Spread system 
functions. 

Eq. (39) may be used to determine that  the relation- 
ship between the correlation  functions of the Time-Variant 
Transfer  Function and  the Frequency-Dependent  Modu- 
lation  Function  is  as shown below, 

~ , ( t ,  s ;  f ,  Z )  = j//j ~ ~ ( f ’ ,  z’; t ’ , s’) exp [ P ~ ( I  - 1’1 

*(s - s’) - j 2 ~ ( f  - f’)(t - t’)] df’ dl’  dt’ ds’ (45) 

RT(f, I ;  t ,  s) = Jjj/ Rdt’ ,  s ’ ;  f’, I’) exp [j2,(f - f’) 

.(t - t’) -- j2a(l - l ’ ) ( ~  - s’)] dj’  dl’  dt’ ds’. 

From (11) and (15) we find the following relationships 
between the Delay-Spread  and  Doppler-Spread  Functions: 

R h ( 4  s ;  E ,  17) = RAt + E ,  s + 17; E ,  17) (46) 
RG(f, I ;  v )  = RH(f f v, $. p ;  v~ 

Other  analytic  relationships between channel correla- 
tion functions  on  either side of the dashed line in Fig. 6 
are quickly  obtained by using (40), (41) and (42) in 

Fig. 6-Relationships between  channel  correlation  functions. 

conjunction  with the Fourier  transform  relationships 
indicated in Fig. 6 .  

With  the aid of the  input-output  relationship  and the 
correlation  function  associated  with  each  system  function 
one may  readily  determine  a corresponding double  integral 
relating the autocorrelation  function of the  output to  the 
autocorrelation  function of the system  function. Thus 
consider the system  function g(t ,  l ) .  Using (8) to form the 
product w*(t )   w(s )  as follows: 

W*(OW(4 = /j z*(t - E14s - 7)9*(t, 5 M 5 ,  7) d5 d7,  (47) 

and  then averaging, one finds that 

C P  

where we have defined 

R,(t, s) = w*(t)w(s) (49) 

as  the autocorre1al;ion function of the  output  time function. 
When the  input is  random rather  than deterministic, 

as in  (48), the  output autocorrelation  function becomes 

R,(t, 8) = I/ RJt - E ,  s - o)R,(t, s ;  E ,  17) dE dv  (50) 

where we have defined 

R,(t, s) = z*(t)z(s). 

The  dual  system  function H(f, Y) leads to the following 
expression for the autocorrelation  function of the  output 
spectrum 

when the  input is  deterministic and 

R,(f, I )  = // Rz( f  - v, I - p ) R H ( f ,  1;  v, p) dv d p  (53) 

when the  input is random, where we have defined 

Rz(f, 0 = Z*(f)Z(O (54) 
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as  the autocorrelation  function of the input  spectrum.12 
The reader  may  readily  form the input-output  correlation 
function  relationships corresponding to  the remaining 
system  functions. 

B. The Wide-Sense Stationary  Channel 
In  many  physical  channels the fading  statistics  may 

be assumed approximately  stationary  for  time  intervals 
sufficiently long to make it meaningful to define a  subclass 
of channels, called  Wide-Sense Stationary (WSS) Chan- 
nels. A WSS channel  has the property that  the channel 
correlation  functions R,(t, s; t ,  q), Rh(t, S; E, q), R T ( f ,  I; t ,  S) 
and R,(t, s; f,  I )  are  invariant  under  a  translation  in  time; 
i.e., these  correlation  functions  depend  on the variables 
t, s only through the difference T = s - t. Thus for the 
WSS channel 

E&, t + 7 ;  E ,  ?1) = Ru(7; <, 17) 
Rh(t, t + 7 ;  E ,  17) = R*(T; t ,  7) 
RT(f, 2 ;  t ,  t + 7)  = R T ( ~ ,  1 ;  7) 

(55) 

R d t ,  t + 7 ;  f ,  1) = R ~ T ;  f ,  0. 
The restricted nature of the four  channel  correlation 

functions in (55) constrains the remaining  four  channel 
correlation  functions in Fig.  6 to have  a  singular  behavior 
in the Doppler-shift  variables. As an example consider 
the double  Fourier  transform  relationship between 

s; E ,  7) and RU(4, 9, v, p ) :  

R&, 7;  v, p) = ![ R,(t, s; 4, q)eizr(”t-ps)  dt ds. (56) 

Upon making the change in variable r = s - t in (56) 
and using the first  equation  in (55), one finds that 

Ru(t, V ;  v, P )  = s e i z u r ( v - p )  d t  / R,(T; t ,  q)e-izr7 d r .  (57) 

The first  integral in (57) is recognized as  a  unit impulse 
a t  v = p, i.e., S(v - p).  It follows that R&, q;  v, p)  may 
be expressed in  the form 

Ru(E, V ,  Y )  P )  = Pu(5, 7; v>6(v - (58) 
where P,(& q; u )  is the Fourier  transform of R,(r; E ,  7) 
with  respect to  the vaTiable T ;  i.e., 

P&, 7; v) = 1 & ( T ;  4 ,  q )e - jZ f fvr  dT.  (59) 

In  an analogous fashion it is  readily  determined that 

Ro(f ,  I ;  v, PI = Pa(f,  I ;  v>S(u - PI 
R v b ,  p ;  t ,  11) = P v b ;  t ,  ? 1 ) G  - P> (60) 

R H ( f r  I ;  v ,  = P H ( f ,  1 ;  u)S(v - r*> 
where PG(f ,  I; v), Pv(v; E ,  q ) ,  and PH(f ,  1; v) are  Fourier 
transforms of R T ( f ,  I ;  T ) ,  Rh(r; 4, q), and RM(7; f ,  I), respec- 
tively,  with  respect to the delay  variable 7. 

la See Bello, op. cit.3, for a discussion of the  spectrum of a random 
process. 

The singular  behavior of the channel  correlation  func- 
tions  in (58) and (60) has  interesting  implications  with 
regard to  the behavior of the associated circuit models. 
Thus  the forms of RH and RG as shown in (GO) imply that 
in Figs. 3 and 4 the  transfer functions of the random 
filters  associated  with different Doppler  shifts  are uncor- 
related.  Similarly the forms of Rv and Ru in (60) and (58) 
imply that  in  the associated channel models consisting 
of a  number of differential “scatterers”  producing  delay 
and  Doppler  shifts, the complex scattering  amplitudes 
of two different elements  are  uncorrelated if these elements 
cause different Doppler  shifts. 

When the system  functions  are normally distributed 
stochastic processes, complete lack of correlation between 
two processes implies statistical independence. Then 
wide-sense stationarity implies strict-sense  stationarity, 
and  in the circuit models of Figs.  3  and 4 the  transfer func- 
tions of random  filters associated with different Doppler 
shifts  are  statistically  independent. Similarly in  the models 
consisting of a  number of differential  “scatterers” pro- 
ducing  delay  and  Doppler  shifts, the complex scattering 
amplitudes of two different elements  are  statistically 
independent if these  elements cause different Doppler 
shifts. 

The singular  behavior of the correlation  functions 
RH,  RG, Rv and Ru might  have been expected a priori 
from the observation that  the corresponding system 
functions  are  interpretable as (complex) amplitude  spectra 
of random processes and  from the  fact  that  the cross- 
correlation  function between the amplitude  spectra of 
two wide-sense stationary noises is an impulse located a t  
zero frequency shift with  a complex area  equal to  the 
cross-power spectral  density between the original pro- 
ce~ses .~ Thus, when considered as  a function of the 
Doppler-shift  variable v, the functions P&, 11; v), P,(t, I; v) 
P&; E ,  q) and P H ( f ,  I; v) may be interpreted  as cross- 
power spectral  densities between the pairs of time func- 
tions [ d t ,  t ) ,  d t ,  d l ,  [ W ,  0, T(k 0 1 ,  [ W ,  8 ,  h(t, d l  and 
[M(t ,  f), M(t ,  I)], respectively. In  the particular case that 
5 = q, P&; 5, 5 )  and P&, 5;  u )  may be interpreted  as 
power spectral  densities of the functions g(t ,  t )  and h(t, t), 
respectively; while for f = I ,  Pc( f ,  f; v) and PH(f,  f; v) 
may be interpreted as power spectral  densities of the 
functions T u ,  t )  and M ( t ,  f) ,  respectively. In  view of the 
above it is clear that  the system  functions U(f ,  v), G(f, u), 
V ( v ,  t )  and H ( f ,  v) will behave like nonstationary  white 
noises in  the Doppler-shift  variable when the channel  is 
wss. 

In Fig. 7 we have summarized the relationships be- 
tween the channel  correlation  functions, using only the 
corresponding density  function when the correlation  func- 
tion  has an impulsive behavior.  Note that  the Fourier 
transform  notations of Figs. 5 and 6 have been used. 

Let  us now consider some analytical  relationships be- 
tween  functions on the opposite side of the dashed  line 
in Fig. 7 .  From (44) and (60) we find that 
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Fig. 7-Relationships between  channel  correlation  functions for 
WSS channel. 

while from (46), (55), (58) and (60) we  find that 

%ir; 4 ,  11) = RAT + 9 - t ;  t ,  7) (62) 
l ' G ( f ~  1; v) = PH(f + v, + v ;  v). 

The relationship between the correlation functions of 
the Time-Variant System  Function  and the Frequency- 
Dependent  Modulation  Function is readily determined 
from (45)  and. (55) to be 

R d r ;  f ,  0 = // f '  + 1 - f ;  4 
e i 2 r ( f - f ' )  ( r - r ' )  df' dr' 

(63) 

R d f ,  I ;  r) = // R d r ' ;  f', f' + 1 - f) 
e-iZ~(f-f')(r-~') df' dr'. 

Other  analytic relationships between the channel cor- 
relation  functions on either side of the dashed line in 
Fig. 7 are quickly obtained  by using (6l), (62) and (63) in 
conjunction  with the Fourier transform relationships 
indicated in Fig. 7. 

C. The  Uncorrelated Scattering  Channel 
For several physical channels (e.g., troposcatter, chaff, 

moon reflection) the channel may be  modeled approxi- 
mately as a continuum of uncorrelated  scatterers. The 
mathematical  counterpart of this  statement is embodied 
in the following forms for the autocorrelation  function of 
the  Input and. Output Delay-Spread Functions: 

R,(t, s; 4 ,  d = s; 4>S( l l  - t )  
Rdt, s; E ,  d = P h ( 4  s; OS(s - 4) .  

(64) 

Because of the  intimate relationship between the  Input 
and  Output Delay-Spread Functions, one of the equations 
in (64) implies the other. Moreover, these  equations 
imply that  the autocorrelation  functions of the Doppler- 
Delay-Spread and Delay-Doppler-Spread Functions  must 
have the form 

R,(f, s; v, P )  = P"(4, v, P)S(l l  - 4)  

W v ,  P ;  t ,  0)  = P&, P ;  4 ) S h  - t). 
(65) 

The singular bmehavior  of the channel correlation func- 
tions  in (64) and (65) has implications with regard to  the 
behavior of the associated circuit models. Thus  the forms 
of R, and Rh as shown in (64) imply that in Figs. 1 and  2 
the complex gain functions associated with different path 
delays are uncorrelated. Similarly the forms of R ,  and R ,  
in (65) imply that in the associated channel models 
consisting of a number of differential "scatterers" produc- 
ing delay and Doppler shifts,  the complex scattering 
amplitudes of two different scatterers  are uncorrelated if 
these elements cause different delays. A channel whose 
system  functions  have correlation functions of the form 
shown in (64) and (65)  will  be  called an Uncorrelated 
Scattering (US) channel. 

When the system functions  are normally distributed 
stochastic processes, the uncorrelatedness properties 
mentioned above for complex gain functions  and  scattering 
amplitudes become independence properties. 

The forms of the correlation functions  for the remaining 
four  system funct,ions which are readily determined from 
the Fourier tranr;form relationships indicated in Fig. 6 
are given by 

Rt(f!  f + Q; t ,  8) = R 4 Q ;  t ,  S) 

s; f ,  f + Q) = R d t ,  s; 0) 

M f ,  f + Q; v, /4 = R d O ;  v9 P)  
(66) 

R H ( f 9  f + Q; v, = R H ( Q ;  v ,  p) .  

A comparison of the channel correlation functions  for 
the WSS and US channels reveals an interesting  fact: the 
correlation function of a  particular  system  function of 
the WSS channel and  the correlation function of the  dual 
system function of the US channel have  identical  analytical 
forms as a function of dual variables. For this reason one 
may consider the class of WSS channels to be the  dual of 
class of US ~hanne1s.l~ 

As a consequence of this  duality we note that  the US 
channel may be regarded as a WSS channel in  the fre- 
quency variable since, from (66), the channel correlation 
functions depend upon the frequency variables f,  1 only 
through the difTersence frequency Q = 1 - f. Similarly the 
WSS channel may be regarded as a form of US channel in 
the :Doppler-shift variable. 

While the  Input  and  Output Doppler-Spread Function 
have the charact,er of nonstationary  white noise as a 
function of the Doppler-shift variable in  the case of the 
WSS channel, tht: dual  system  functions, Le., the  Input 
and  Output Delay-Spread Functions, the Delay-Doppler- 
Spread and Doppler-Delay-Spread Functions, respec- 
tively,  have the character of nonstationarv  white noise 
as a function of the  dual variable, i.e., the delay variable, 
in  the case of the US channel. 

By analogy with the  dual functions in  the WSS channel, 
the functions P,I:~, s; E), Ph(t, s; .$), PU(4;), v, p )  and 

13 Using the definitions developed in Bello, op.  n't. 3, one may 
state  that  the wide-llense dual of a WSS channel is a US channel 
and vice versa. 
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P,(v, p;  t) ,  when  considered as a function of 5 ,  may be 
regarded as cross-power spectral densities while Pg( l ,  t ;  t ) ,  
P,(t, t ;  t), P,({; v, v), Pv(v,  v ;  5 )  may be regarded as power 
spectral densities as a function of the delay variable. In  
Fig. 8 we have summarized the relationships between the 
channel correlation functions for the US channel using 
only the corresponding  cross-power density  function when 
the correlation function  has an impulsive behavior. 

We will  now obtain some analytical relationships be- 
tween  functions  on the opposite side of the dashed line in 
Fig. 8. First we have the relationship dual  to (61) which 
may be obtained by using (65) in (44), 

P u b ,  P ;  0 = PAS; v ,  co. (67) e i 2 r v ( s - E )  

Then, using (64) and the  last two equations of (66) in 
(46) we obtain the  dual to (62) as 

Rc(Q;  P )  = RH(Q + P - v ;  v ,  P )  

P h ( 4  s; E> = Po(t + F ,  s + 5 ;  0 .  

(68) 

The relationships between the Time-Variant Transfer 
Function  and  the  Frequency-Dependent  Modulation 
Function  dual to (63) are  obtained  by using the first two 
equations in (66) in (45) and carrying out two  integra- 
tions of the appropriate  quadruple integrals in (45), 

RT(Q; t ,  s) = j-1 R M ( t ’ ,  t’ + s - t ;  Q) 

e i Z r ( t - t ’ ) (  fl-fl‘) dt‘ dQ’. 

As we have mentioned in a similar vein for the  other 
classes of channels, further analytical relationships may 
be obtained between system  functions  on the opposite 
side of the  dotted line in Fig. 8 by using  (67), (68) and (69) 
and  the Fourier transform relationships indicated in Fig. 8. 

D. The Wide-Sense  Stationary Uncorrelated Scattering 
Channel 

The simplest type of randomly  time-variant linear 
channel to describe in  terms of channel correlation func- 
tions,  and  one which, fortunately, is of practical  interest 
is the WSSUS channel. As might  be suspected from its 
name, the WSSUS channel is both a WSS and a US chan- 
nel. Thus,  the channel correlation functions of the WSSUS 
channel must  have  forms  characteristic of both  the WSS 
channel [ (55 ) ,  (58) and (60)] and  the US channel [(64), 
(65) and (66)l. 

An examination of the correlation functions of the WSS 
and US channels reveals that for the WSSUS channel, 
the correlation functions of the Delay-Spread Functions 
must  have the  form 

%(t, t + 7 ;  E ,  11) = P P ( 7 ,  E)S(11 - 0 (70) 

R h ( t ,  t + 7 ;  E ,  11) = Ph(7, t)S(11 - E )  

0 

I 
I 

Fig. &-Relationships between channel  correlation  functions for 
US channel. 

while the correlation functions of the Doppler-Spread 
Functions  must  have the form 

M f ,  f + Q ;  vt P I  = PdQ, v > G J  - (Y1) 

R H ( f ,  f + Q ;  v ,  P )  = PAQ, .)S(P - v). 

The equations in (70)  show that for the WSSUS chan- 
nel, the system functions g(t ,  5 )  and h(t ,  t )  have the 
character of nonstationary white noise in  the delay varia- 
ble and wide-sense stationary noise in  the  time variable. 
In  terms of the channel models of Figs. 1 and 2,  the 
WSSUS channel has a representation as a continuum of 
uncorrelated randonlly scintillating scatterers  with wide- 
sense stationary  statistics. 

The equations in (71) show that for the WSSUS channel 
the system functions G(f, v) and H ( f ,  v) have the character 
of nonstationary  white noise in  the Doppler-shift variable 
and wide-sense stationary noise in  the frequency variable. 
In terms of the channel models of Figs. 3 and 4;the  WSSUS 
channel has a representation as a continuum of uncor- 
related Doppler-shifting filtering (or filtering-Doppler 
shifting) elements with each filter having a transfer 
function  with wide-sense stationary  statistics  in  the 
frequency variable. 

For  the WSSUS channel the correlation functions of 
the Delay-Doppler-Spread and Doppler-Delay-Spread 
Functions simplify to 

R d t ,  17; v, P I  = P d t ,  v)S(P - v> S(17 - t )  (72) 

R v b ,  P ;  t ,  d = P v b ,  t>S(P - .>S(17 - E ) .  
Eq. (72) shows that for the WSSUS channel the system 

functions U(5, v) and V ( Y ,  E )  have  the character of non- 
stationary white noise in  both  the delay and Doppler-shift 
variables, Le. ,  a form of two-dimensional nonstationary 
white noise. It follows that  in terms of the corresponding 
channel models, the WSSUS channel may be represented 
as a collection of nonscintillating uncorrelated scatterers 
which  cause both delays and Doppler shifts. 

Finally, in  the case  of the WSSUS channel, the correla- 
tion functions for the Time-Variant Transfer  Function 
and  the Frequency-Dependent  Modulation  Function take 
the simple forms 

R d t ,  t + 7 ;  f ,  f + Q) = R d 7 ,  Q2j (73) 
R T ( ~ ,  f + 9; t ,  t + 7 )  = RT(Q, 7); 
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ie., the system. functions T( f ,  t )  and M(t ,  f )  are wide-sense 
stationary processes in  both  the time  and frequency 
variables. 

From previous discussions in Sections IV B and  IV C, 
we know that when considered as a function of the Dop- 
pler-shift variable v the functions Po(Q,  v) and PH(Q, v) 
may be interpreted as  the cross-power spectral densities 
of the pairs of time  functions T(f, t ) ,  T(f + 3, t )  and 
M(t ,  f ) ,  M ( t ,  f + a), respectively. 

Similarly, when considered as a  function of the delay 
variable 4, the functions P,(T, E )  and Ph(r, {) may be 
interpreted as cross-power spectral densities of the  fre- 
quency functions T ( f ,  t ) ,  T( f ,  t + T )  and M ( t ,  f), 
M(t + T ,  f ) ,  respectively. 

The functions PU(& v) and PV(v, E )  may be interpreted 
as a sort of two-dimensional power density  spectrum as a 
function of delay and Doppler shift corresponding to  the 
combined time  and frequency functions T( f ,  t )  and M(t ,  f) ,  
respectively. 

In  the case of the WSSUS channel the relationships 
between correlation functions  on opposite sides of the 
dashed line in Fig. 6 become trivial.  Thus, use of (73) in 
(44) shows that 

.P&, v) = Pdv, E )  = 86, .>; (74) 

Le., that  the two-dimensional power spectra1 densities in 
delay and Doppler shift associated with the Doppler- 
Delay-Spread and Delay-Doppler-Spread functions  are 
identical. We have used the function S(f,  v) to denote 
this common :function which is identical to  the Target 
Scattering  Function u ( E ,  v) defined by  Price  and Green5 in 
their work on  radar astronomy. We shall call S ( &  v) the 
Scattering  Function since it has more general applications 
than  to radar problems. 

If (72) is used in the last equation of (46) one finds 
immediately that 

P Q ( Q ,  v) = P H ( Q ,  v) E P(Q,  v). (75) 

Thus  the Doppler cross-power spectral densities associated 
with the channel models of Figs. 3 and 4 become equal  in 
the case of the WSSUS channel. We shall call this common 
function  the Doppler Cross-Power Spectral  Density  and 
denote it by the function P(Q, v). In the particular case 
that! 's2 = 0, the cross-power spectral densities become 
simply power spectral densities. Thus we define 

P(0, v) = P(v) (76) 

where P(v) is called the Doppler Power Density  Spectrum. 
(This function is  called the Echo Power Spectrum  by 
Green.6) 

If (59) is used in the first equation of (42)  one finds that 

.Pp(7, t )  = P ~ T ,  8 E Q(T1 t ) -  (77) 

Thus  the dela,y  cross-power spectral densities associated 
with the channel models of Figs. 1 and  2 become equal  in 
the case of the WSSUS channel. We shall call this common 
function the Delay Cross-Power Spectral  Density  and 

denote it by the function Q ( T ,  E ) .  In  the particular case 
that T = 0, the cross-power spectral densities become 
simple power spectral densities. Thus we define 

Q(0, 8 = Q O  (78) 
where Q ( { )  is  called the Delay Power Density  Spectrum. 
(This function  has been called the Power Impulse  Re- 
sponse by Green' and the Delay  Spectrum by hag for^.^) 

Finally, if (73) is used in (45) one finds that  the quad- 
ruple  integrals in (45) vanish leaving the interesting  result 

R d I ( 7 ,  3) = R,(Q, T )  2 R(Q, T). (79) 

Thus in the case of the WSSUS channel, the correlation 
funct.ions of the Time-Variant  System  Function and  the 
Frequency-Dependent Modulation  Function become iden- 
tical, ie., 

T*(f, t)T(f + Q, t +.> 
= M*(t ,  f )M(t  + T ,  f + (2) = R(Q, T ) .  (80) 

We shall call this common function the Time-Frequency 
Correlation Funct#ion and denote it by R(Q, T ) .  (This 
function  has been called the Spaced-Time Spaced-Fre- 
quency Correlation Function by Green.') 

Two correlation functions of practical  interest deriva- 
ble from R(Q, T )  are  the Frequency Correlation  Function 
q(Q)  (called the Spaced-Frequency Correlation  Function 
by Green')  giveil by 

T*(t, f)T(t, t + Q) 
= M*(t, f).M(t, f + Q) = R(Q,  0) = q(Q) (81) 

and the Time Cor:relation Function p ( ~ )  (called the Echo 
Correlation Function  by Green') given by 

T*G, 75% + 77 f) 
= M*(t ,  f )M(t  + T ,  f) = R(0, T )  5 p ( ~ ) .  (82) 

The relationships between channel correlation functions 
are shown in Fig. 9. Note that Q(T, E )  and P(Q, v) are 
double Fourier transform  pairs as  are S(E, v) and R(Q, T ) .  

The double Fourier transform  relationship between the 
Scattering  Function and  the Time-Frequency Correlation 
Function appears to have been first pointed out  by 
HagEor~.~ It is readily determined from the Fourier  trans- 
form relationships in Fig. 9 that q(Q) ,  &({) and p ( ~ ) ,  P ( v )  
are single Fourier transform pairs. 

0 
I 
I 

Fig. 9-Relationships between  channel  correlation functions for 
WSSUS channel. 
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V. RADIO  CHANNEL  CHARACTERIZATION 
Virtually  all radio transmission media may be character- 

ized as linear in regard to their influence upon communi- 
cation signals. Thus,  from a phenomenological point of 
view, radio channels may be regarded as special cases  of 
random  time-variant linear filters. In  the case of the 
transmission of digital signals over radio channels it 
appears that certain simplifications may be  effected in  the 
general characterization of randomly time-variant chan- 
nels developed in the previous sections of this  report. These 
simplifications arise when the  time  and frequency selec- 
tive behavior of the channel may be regarded as wide- 
sense stationary  for  time  and  frequency  intervals  much 
greater than  the durations and bandwidths, respectively, 
of the signaling waveforms of interest. Such a situation 
arises in practice when the channel contains very slow 
fluctuations superimposed upon more rapid fluctuations, 
the  latter of which exhibit the desired statistical  station- 
arity properties. Most radio channels do,  in  fact,  appear 
to exhibit such ‘(quasi-stationary” behavior. Moreover, 
the more rapid  fluctuations often  appear  to be character- 
izable in  terms of appropriately defined Gaussian statistics. 
Since a Gaussian process can be completely described 
statistically if its correlation function is known, it follows 
that a fairly complete statistical description of many 
quasi-stationary radio channels should be achievable by 
measuring the channel correlation functions  for  time and 
frequency intervals small compared to  the fluctuation 
intervals of the slow channel variations,  and then measur- 
ing the  statistical behavior of these  quasi-stationary chan- 
nel correlation functions as caused by the slow channel 
variations. In this way one may  compute  quasi-stationary 
error probabilities for digital transmission which would 
accurately reflect the short-time  error rate behavior of the 
~ h a n n e I . ~ * - ~ ~  The long-time error rate behavior of the 
channel could then be predicted by averaging the short- 
time  error rate behavior over the long-time fading  sta- 
tistics of the channel. 

To sum up,  our  thesis is that a useful way to perform 
measurements on radio channels is to determine the long- 
time  statistics of short-time channel correlation functions. 
The resulting data should be sufficient to provide a 
fairly complete statistical description of some radio 
channels. To make  these ideas more precise we shall now 
present a mathematical exposition of the above ideas. 

The time and frequency selective behavior of a  random 
time-variant linear channel may be described with the 
aid of several of the system functions described in Section 

on the  binary  error probabilities of incoherent and differentially- 
l4 P. A. Bello and B. D. Nelin, “The influence of fading  spectrum 

coherent matched filter receivers, “IRE  TRANS. ON COMMUNICA- 
TIONS SYSTEMS, vol. CS-10, pp: 160-168; June, 1962. 

fading  on the  binary  error probabilities of incoherent and differ- 
l 6  P. A. Bello and B. D. Nehn, “The effect of frequency selective 

entially coherent mat,ched filter receivers,” IEEE  TRANS. ON COM- 
MUNICATION SYSTEMS, vol. CS-11, pp. 170-186; June, 1963. 

and  Frequency Selective Fading on the  Binary Error Probabilities 
l6 P. A. Bello and  B.  D. Nelin, “The Effect of Combined Time 

of Incoherent  Matched  Filter Receivers,” ADCOM, Inc., Cam- 
bridge, Mass., Res. Rept. No. 7, March, 1963. 

111. For purposes of discussion it is  sufficient to start, with 
an examination of T ( f ,  t ) ,  the Time-Variant Transfer 
Function of the channel. It will  be recalled that T(f ,  t )  is 
the complex envelope of the response of the channel to  an 
excitation cos 2n(f, + f)t, where f c  is the  “center” or 
“carrier” frequency at  which the channel is being excited. 
Thus,  the  magnitude of T ( f ,  t )  is the envelope of the chan- 
nel response and  the angle of T( f ,  t )  is the phase of the 
channel response measured with respect to  the phase 

For  a general input signal with complex envelope z( t ) ,  
the channel output complex envelope w(t )  is given by (19). 
Although the  input time  function z ( t )  may be determin- 
istic (nonrandom), the  output time  function w(t )  will  be 
a  random process since T ( f ,  t )  is a  random process. It is 
possible that for some radio channels T( f ,  t )  will contain a 
deterministic component so that w(t )  will also contain a 
deterministic component. However, for the purpose of the 
present discussion it is  sufficient to confine our attention 
to  the purely random part of T ( f ,  t )  and w(t ) .  Thus, to 
avoid introducing unnecessary notation we shall assume 
in this section that w(t )  and T( f ,  t )  are purely random. 

The  time  and frequency selective behavior of the channel 
is evidenced by the way T ( f ,  t )  changes with changes in f 
and t. As far  as conventional usage is concerned the con- 
cept of “fading” is associated only with the fact that 
T(f ,  t )  varies  with the  time variable t. However, it appears 
desirable to extend this definition to  include variation of 
T( f ,  t )  with f,  and  thus  talk of “frequency  fading,” the  dual 
of conventional ‘(time fading.” 

From  a  statistical point of view the simplest way to 
describe the sensitivity of T(f ,  t )  to changes in f and t is 
to form the correlation function 

W f c  + f ) t .  

In  terms of the  notation  in Section IV, 

When f and t are fixed, say at f = f’, t = t’, R f r  , t ‘  (T ,  0)  
describes the way in which the Time-Variant Transfer 
Function becomes decorrelated for  a frequency interval 
and a time  interval T centered on  the “local1’ time- 
frequency coordinates f’, t’. In  the case of the WSSUS 
channel R , t  (7, a) becomes independent of f,  t; ie., 

R f , t ( T ,  a) = R(T, 0). (85) 

From an analytical point of view the WSSUS channel is 
the simplest nondegenerate channel that exhibits both 
time  and  frequency selective behavior. As discussed in 
Section IV, such a channel may be  modeled as a continuum 
of uncorrelated scatterers such that each infinitesimal 
scatterer providing Doppler shifts  in the range Y, v + dv 
and  delays in  the range E ,  4 + dC; has a scattering cross 
section of S([,  v)dC;, dv, where 
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,y(i, = J/ eiz*(t*-vT) R(T,  Q) dr dQ (86) 

is the Fourier .transform of R ( T , ~  a). 
We  will  now demonstrate that  the simplicity of the 

WSSUS  chan:nel can be transferred to a practically 
interesting class of channels which we shall call Quasi- 
WSSUS (or QWSSUS). This class contains two subclasses 
which are (time-frequency) duals.  For the purposes of the 
present discuesion we need only introduce that subclass 
which is based upon the properties of R,, (7, Q). The  dual 
subclass is based upon the Frequency Dependent Modula- 
tion  Function  and  may be readily constructed  by the 
reader. 

To define the QWSSUS channel of interest here one 
must assume that  the typical  input signaling waveform 
has a constraint on bandwidth  and that  the resulting 
output waveform has  a  constraint  on  time  duration.  This 
bandwidth  and  time  constraint  can be centered anywhere, 
but for simplicity of discussion (and  with no loss in 
generality) it is convenient to assume that  the input 
bandwidth  constraint is centered a t  f = 0 ( i e . ,  at  the 
carrier frequency) and  the  output time  constraint is 
centered at  t =: 0. Any other centering can be handled by  a 
redefinition of carrier frequency and  time origin. 

The QWSSUS channel is defined as that subclass for 
which certain gross channel parameters  have specified 
inequality  relations  with respect to  the input-bandwidth 
and output-tcme constraints defined above. The gross 
channel parameters of concern here are measures of the 
maximum rate at  which R I ,  (7, Q) varies  in the f and t 
directions. Let. the maximum rate of fluctuation R f  , (T, Q) 
in the f and t directions be denoted by yms, sec and emax cps, 
respectively. Let W ,  T denote the bandwidth,  and  time 
duration of the  input signal. Let A denote the multipath 
spread of the channel. Then  the QWSSUS channel.under 
discussion is a channel for which the following inequalities 
hold: 

w << - 1 
Ymax 

1 
e,,, 

(87) 

T + A < < - - - ,  (88) 

or, in  other words, one for which R,, (8, r )  changes 
negligibly over "f" intervals  equal to  the input signal 
bandwidth (W)  and over " t" intervals  equal to  the  output 
signal time  duration (T + A) .  

It will  now  be demonstrated that if inequalities (87) and 
and (88) are satisfied, the actual channel may be replaced 
by a  hypothetical WSSUS channel at least as  far  as  the 
determination of the correlation function of the channel 
output is concerned. However, when the channel has 
Gaussian statistics,  the  actual channel may be replaced by 
a hypotheticad WSSUS channel as far as  the determina- 
tion of any  output  statistics  are concerned, since then  the 
output will  be a Gaussian process and  thus completely 
determined  stmatistically  from knowledge of its correlation 
function. 

From (19)  we determine 'that  the  output correlation 
function is given by 

w*(t)7u(s) 
-- 

= I/ z*(~)z:(z)R.(~, Z ;  t ,  s)e-i2"(JC-'a) df d l .  (89) 

Upon. making the transformations 

f - . f  - - I;2 l + f + -  
2 '  2 

in (8!3) one finds that 

w*(t  - ;)w(  t + ) = // Z*(f - %)Z(f + 5) Q 

* R l , t ( ~ ,  Q)e - i2rJe i2Tnt  df dQ. (90) 

If we consider the integration  with respect to f first in 
(90)  we note that t'he  integrand is nonzero over an interval 
of f values of matximum width W centered on f = 0, 
because by hypothesis Z(f) is zero for values f outside this 
interval  and thus Z*(f - 0/2)Z(f + Q/2)  must also  be 
zero outside this interval. According to inequality (87), 
however, R J , ,  (T, !2) will vary negligibly for values of f 
in this  interval  and  thus  for  values of f for which the 
integrand  in (90) is nonzero. It follows that insignificant 
error will result  in (90) if we use Ro,t  (T, fi) in place of 

Furthermore WE: note that, since w ( t )  is constrained by 
hypothesis to be  n.onzero only over an interval of t values 
of width T + A centered on t = 0, then  the left-hand side 
of (90) must perforce exhibit the same property as a 
function of t. Since the double integral  in (90) must  vanish 
for values of t outs;ide an integral of width T + A centered 
on t = 0, and since by  inequality (88), R J ,  (7, Q) in the 
integrand  can vary negligibly in this  interval,  it follows 
that little  error  can result by replacing R J ,  (7, 0) by 
RJ,0(7, 3) in the integrand. 

It then follows that if both inequalities (87) and (88) 
are  valid, we have the close approximation 

RJ, t (T, O)* 

w*(t)w(s) =-,/ x(Q, 7)RO0(7, h)e"" " dQ 

where 

is the ambiguity function of the  transmitted signal. The 
expression (91) fa'r the  output signal correlation function 
is identical in  form to  that for a WSSUS channel in which 

R(7,  Q) = ROO(7, 9). (93) 

It will be recalled that initially we had assumed the 
spectrum of the i:nput and the  output time  function were 
centered at f = 0 and t = 0 respectively. If we had assumed 
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instead that  they were centered at  f = f‘ and t = t‘, 
the satisfaction of the inequalities (87) and (88)  would 
still  have lead us  to conclude that  the  output correlation 
function  can be determined  by replacing the  actual channel 
by a hypothetical WSSUS channel. However, instead of 
(93) we must use 

R(T,  0) = R,*,,*(T, Q). (94) 

We are now in a position to consider the application of 
the preceding analytical  results  to  the  characterization 
of radio channels. As discussed at  the beginning of this 
section, many radio channels  seem to exhibit a combina- 
tion of fast  fading of a nearly  Gaussian nature,’ and  very 
slow fading of a generally non-Gaussian nature. We shall 
assume this  to be the case for radio channels using the 
extended  concept of fading described previously. Thus 
we assume that T ( f ,  t )  “fades” along the frequency axis 
with  a  (‘fast” frequency fading superimposed upon a 
“slow”  frequency fading. 

Let  us  momentarily consider that  the very slow varia- 
tions are deterministic  by selecting a  particular member 
function of the stochastic process defining the slow fading, 
and  let  us assume that  the  fast fading is Gaussian. Then 
all  statistical  information concerning the  output of the 
channel  may be obtained once the correlation  function 
R,, ( T ,  Q )  is known, since then (90) may be  used to deter- 
mine the correlation  function of the  output Gaussian 
process w(t ) .  

We may ascribe the  variations of R f , t  (7, 0) with f ,  t 
as  due  to  the (temporarily  deterministic) slow (time and 
frequency)  fading of the channel. In  practical channels it 
appears sufficient to consider 

R r * t ( O ,  0) = IT(f, 0 l 2  (95) 

in  order to  obtain a feeling as  to  the degree to which 
R,, ( T ,  0) varies  with f and t. From  the definition of T(f ,  t )  
we  see that R,,, (0, 0) is  equal to twice the average power 
received from a unit amplitude sine wave at  time t and of 
frequency f cps away from carrier  frequency, as measured 
by averaging along an ensemble of channels all with the 
same  deterministic slow variations. In  practice we do  not 
have available an ensemble of channels. However, we may 
obtain an approximate  measurement of (95) with  the 
determination of the  time average; 

J I W ,  t1)I2 dtl = ( I W ,  t)I2>TX 
t + T e / 2  

(96) T I  t - ~ , / z  

where the averaging T ,  is (hopefully) long enough to 
produce  negligible measurement  fluctuations  due to  the 
fast  fading but  yet  short enough to reflect the long term 
fading behavior of the channel. 

what is meant  by Gaussian  fading, since fading is usually stated  to 
17 Some confusion may exist in  the reader’s  mind as to precisely 

be Rayleigh distributed.  By Gaussian  fading i t  is meant  that  the 
transmission of a sinusoid results  in the reception of a narrow-band 
Gaussian process with a possible nonfading  specular  component 
present. It is the envelope which will  be Rayleigh or Rice distributed 
depending  upon the nonexistence or existence of the specular com- 
ponent. 

Measurements  such as (96) seem to indicate that  the 
inequalities (87) and (88)  will be satisfied for a large 
percentage of radio channels for  operating frequencies 
and signaling element bandwidths  and  time  durations 
of practical  interest. Thus it appears that a useful model 
for several radio channels is the QWSSUS channel with 
Gaussian statistics.  Measurement of the correlation 
function R,, ( T ,  0) on  a  short-time basis mill then provide 
the necessary statistical  information to evaluate  the 
short-time performance of a digital  system, assuming the 
statistics of any  additive interferences are known. This 
short-time performance  will  be a functional of R,,,(T, 0). 
Since R,,t (7, 0) is in effect a  random process due to  the 
slow  channel fluctuations (we have removed the determin- 
istic assumption), the performance  index (say error 
probability)  computed on a  short  time basis assuming 
a Gaussian  QWSSUS  channel must be  averaged  over 
the long term  statistics of R,, ( T ,  Q) to determine  a long- 
time basis performance index. 

VI. CANONICAL  CHANNEL MODELS 
All practical channels and signals have an essentially 

finite number of degrees of freedom due to restrictions  on 
time  duration,  fading  rate,  bandwidth,  etc.  These re- 
strictions allow a simplified representation of linear  time- 
varying channels in  terms of canonical elements or building 
blocks. Such  channel  representations, called canonical 
channel models, can simplify the analysis of the perfor- 
mance of communication systems which  employ time- 
variant linear channels. 

Two general classes of channel models, called Sampling 
Models and Power Series Models,  will be considered in 
this paper. The Sampling  Models apply when a system 
function vanishes for values of an independent  variable 
(time t ,  frequency f, delay .$, or Doppler shift v) outside 
some interval or when the  input or output  time function 
is time-limited or band-limited. The conditions for the 
applicability of the Power Series Models are  not so simply 
stated.  Stated briefly it requires the existence of a power 
series expansion of a system  function in  an independent 
variable  and, depending upon  the channel model, the 
existence of derivatives of the  input function or spectrum. 

A. Sampling  Models 
In  this section we  will  develop the various sampling 

canonical channel models referred to above. The models 
developed  by Kailath’ will also be included not only for 
completeness but because the significance of some of the 
new  sampling  models is enhanced since they  are  dual  to 
those of Iiailath. 

It will  be  convenient to divide our discussion into  two 
parts, one involving time  and frequency constraints and 
the  other involving delay  and Doppler-shift constraints. 

1) Time  and Frequency  Constraints: A quick under- 
standing of the time  and frequency limitations that are 
relevant  in the case of the sampling channel models may 
be arrived at by examining the  input-output  relationships 
corresponding to  the Time-Variant  Transfer  Function 
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T (f, t )  and  the Frequency-Dependent  Modulation.  Func- 
tion M(t ,  f). These  relationships are repeated below for 
convenience: 

w(t) = / z ( f ) ~ ( f ,  t)e””” df 

~ ( f )  = 1 z ( t ) ~ ( t ,  f)e-iz“’t  dt.  (97) 

If a time-variant  linear  filter  is preceded by  a  time- 
invariant 1inea.r filter  with  transfer  function Ti(f) and  is 
followed with a multiplication  by a time  function Mo(t) ,  
a combination. time-variant  linear  filter which includes 
the  input filter  and output multiplier  has  a  Time-Variant 
Transfer  Function T’(f, t )  given by 

T’(f, 0 = Ti(f)T(f, OMO(0. (98) 
Eq. (98) is  quickly deduced from the first  equation  in (97) 
by  noting that preceding the original  filter  by  a time-in- 
variant linear  filter  with  transfer  function Ti(f) is  equiva- 
lent to changing the  input spectrum  from Z(f) to Z(f) T ,  (f), 
while  following the original  filter  by  a  multiplication  with 
Mo(t )  is  equivalent to multiplying both sides of the first 
equation  in (97) by M ,  ( t )  . 

Since a  constraint on the bandwidth of the  input signal 
to a frequency region of width  Wi  centered  on fi, i e . ,  
to f i  - W,/2 e: f < f i  + Wi/2 cps may be represented  by 
means of a  band-limiting  filter a t  the  channel  input, it is 
clear from (98) that such  a  constraint  can be handled 
conveniently  by defining a  hypothetical  channel whose 
Time-Variant  Transfer  Function  T’(f, t )  is given by 

T’(f, t )  = Rect ( r ) T ( f ,  f - f i  t )  (99) 

where T( f ,  t )  is the  actual system  function  and 

Rect (x) = { 1 1x1 < *. 
0 1x1 2 3 

(100) 

Since the  Input Delay-Spread  Function g( t ,  5 )  is  the 
inverse  Fourier  transform of the Time-Variant  Transfer 
Function TU, t )  with  respect to  the frequency  variable, 
it follows that corresponding to  the  hypothetical system 
function  T’(f, t )  in (99) there  is  a  hypothetical Input 
Delay-Spread  Function g’(t, 5 )  given by 

g r ( t ,  5 )  = 1 e i z a f i ( E - o )  Wi 

.sine [Wdt - dIg(t ,  a) dll (101) 
where 

sinc y = -* 
sin “y 
“Y (102) 

Eq. (101) is  obtained  from (99) by  noting that multi- 
plication  corresponds to convolution in  the transform 
domain  and that  the inverse  transform of Rect ([f - fill Wi) 

Thus  the case wherein the channel  responds (ie., has 
a nonzero output) only to input frequencies in a given 

is e i 2 r f i ?  Wi sinc [Wit]. 

range,  say f i  - TVi/2 < f < f i  + Wi/2,  and the case 
wherein the channel  responds to other frequencies but 
has an  input signal limited to frequencies in  the range 
f i  - Wi/2 < f <: fiWi/2 may be handled  by the same 
analytical  approach. In  deriving the sampling model 
relevant to  an  input signal bandwidth  limitation or an 
input  frequency response limitation it will be convenient 
to assume that  T(j, t )  is nonzero only for  values of f within 
the relevant  frequency  interval. It should be kept  in 
mind, however, that when the  input signal rather  than 
the h p u t  frequency response of the channel is band- 
limited, one must  eventually use an  equation  such  as (99) 
or (101) in  order to express the  parameters of the canonical 
channel model in  terms of the  true channel  system 
function. 

If it is desired t80 observe the channel output for some 
finite  time  interval,  say to - T0/2 < t < to + T0/2 or if, 
due t o  some gating  operation in  the receiver, only  a  finite 
time segment of  thse received waveform in the same  interval 
is available, one has  a  constraint on the time  duration of 
the channel output. It is clear from (98) that such  a con- 
straint may be handled  analytically  by defining a hypo- 
thetical channel whose Time-Variant  Transfer  Function 
T’(f, t )  is  given  by 

T’(f, 2) = TU, t )  Rect - . (“ iot0.) (103) 

Since the  Output Doppler-Spread Function G(f, v) is 
the Fourier  transform of the Time-Variant  Transfer 
Function  with  respect to  the time  variable, it follows that 
corresponding to  the hypothetical  system  function T’(f, t )  
in (103) there  is ; a  hypothetical Output Doppler-Spread 
Function G’(f, v) given by 

TO G/(f, = 1 e - i z s f ! o ( v - r )  

* S ~ C  [T~(v - p)]G(f, p) dp.  (104) 

Eq. (104) follows from (103) for  the same  reasons that . 

(101)  followed fro:m (99). 
Thus  the case wherein the channel output vanishes 

outside some time  interval,  say to  - T0/2 < t < to + T0/2, 
and .the case where the channel  has outputs outside this 
range but  the receiver observes the received waveform 
only in  this  range  may be handled  by the same  analytical 
approach. In  deriving the sampling model relevant to a 
limitation in  a re’ceiver observation  time it will be con- 
venient to assume that  T(f, t )  is nonzero only for  values 
of t within the relevant  time  interval.  However, it should 
be kept  in  mind that when the  output observation  time  is 
limited rather  than  the  output  time response of the chan- 
nel, one must  eventually use an equation  such  as (103) 
or (104) in  order to express the parameters of the canonical 
channel model in  terms of the  true channel  system 
function. 

A discussion entirely  dual to  the one  above concerning 
input frequency  and output  time  constraints and dealing 
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with T ( f ,   t )  may be carried through  for an input  time  and 
output frequency constraint  by dealing with M ( t ,  f )  the 
Frequency-Dependent Modulation  Function.  Thus, if a 
time-variant filter is preceded by a multiplier which 
multiplies the  input by M i ( t )  and is  followed with a 
time-invariant  linear filter of transfer  function To(! ) ,  a 
combination time-variant linear filter which includes the 
input multiplier and  output filter has a Frequency-Depen- 
dent  Modulation  Function given by 

" ( 4  f) = Mi( t )M( t ,  f)To(f). (105) 

Eq. (105) is quickly deduced from the second equation in 
(97) by noting that preceding the original filter with a 
multiplication by Mi( t )  is equivalent to changing the 
input  time  function  from z ( t )  to z ( t )Mi( t ) ,  while  following 
the original filter by  a filter with  transfer  function T o ( / )  
is equivalent to multiplying  both sides of the second 
equation in (97) by T,(f) .  

A  constraint on the  duration of the  input waveform to, 
say, ti - Ti/2 < t < ti  + T i / 2  can be handled analyt- 
ically by using a  hypothetical Frequency-Dependent 
Modulation  Function M'(t ,  f )  given by 

" ( 4  f) = Rect (+)M(t, f) ,  t - t .  
(106) 

or equivalently  by using a hypothetical Input Doppler- 
Spread Function H'(f ,  v) given by 

H t ( f ,  = j' e - i 2 1 t i ( v - r )  Ti sine [Ti(v - p ) ] H ( f ,  p) dp (107) 

in place of the  actual system  function  and  then assuming 
an internal  input  time  constraint. 

A constraint  on the frequency interval over which the 
channel output is observed, say  to f o  - W 0 / 2  < f < f o  + 
W 0 / 2  cps, may be handled analytically  by using 

M'(t ,  f) = M ( t ,  f) Rect (-) f - f o  (108) 

in place of the  actual Frequency-Dependent Modulation 
Function M(t ,  f ) ,  or equivalently  by using 

h'(t ,  [) = j' ei2s'o(E-n)Wo sinc Wo([ - T)h(t, 17) dr, (109) 

in place of the  actual  Output Delay-Spread Function 
h(t ,  () and  then assuming an internal output bandwidth 
constraint. 

Having completed our preliminary discussion of time 
and frequency constraints we may now  proceed to  the 
determination of the corresponding sampling canonical 
channel models. 

All the sampling models are derived by application of 
the Sampling Theorem,18 which states  that if a function 
h(x) is zero for values of x outside an interval  -X/2 < 
x < X / 2 ,  then its Fourier transform H(y)  may be  ex- 

WO 

18 P. M. Woodward, op .  cit.,' pp. 33-34. 

pressed as the following  series 

H(y) = H ( k )  sinc [x(y - $)I (110) 

where 

sinc y = - sin 7ry 
TY 

and 

H(y) = [ h(x)e--jPTzY  dx or [ h(xjei2"" dx. (112) 

When h(x )  vanishes outside an interval which is centered 
on xl, i e . ,  when h ( x )  vanishes outside the  interval x1 - 
X / 2  < x < x1 + X/2,  the Sampling Theorem becomes 

where the sign of the exponential used in (113) agrees 
with the sign of the exponential used in the Fourier trans- 
form definition of H(y). 

a) Sampling  Models for Input  Time and  Frequency 
Constraints: In  this subsection we  will derive sampling 
models appropriate  for  input  time  and frequency con- 
straints. Consider first the case of an input  time  constraint. 
As discussed above, such a case may be described by 
stating that M ( t ,  f )  vanishes for values of t outside some 
interval,  say, ti - Ti/2 < t < ti + T i / 2 .  Since the  Input 
Doppler-Spread Function H(f ,  v )  is the Fourier transform 
of M(t ,  f )  with respect to t (see Fig. 5 ) ,  it follows from (113) 
that 

If the summation in (114)  is  used in place of H ( f ,  v) in 
the  input-output relationship [ (12)] 

W(f> = 1 Z(f - v )H( f ,  v) dv,  

one finds that in the case of an input  time  constraint  the 
output spectrum is given by 

where 

Note that  the integral in (115) is just  the convolution of 
the  input spectrum Z(f) with e - i z u t i ( f - n / T i )  Ti  sinc 
[Ti(f - n / T , ) ] .  Since convolution becomes multiplication 
in the  transform domain, and since the time  function 

Ti  sinc [ T i ( f  - n/T i ) ]  is corresponding to e - i z * t i ( f - n / T i )  
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exp [j2rn(t/Ti)]  Rect ( [ t  - ti]/Ti),  the time  function 
corresponding: to  the convolution integral in (116)  is 
just  the product x ( t )  exp [ j 2 m t / T i ]  Rect ( [ t  - t j ] / T i ) .  
Thus, (115) states  that  the channel output  may be 
obtained by gating the  input  with  the  time function 
Rect ( [ t  - t i ] / T i ) ,  frequency shifting the gated input  by 
harmonics of l /T i  cps, filtering each of these  gated fre- 
quency-shifted waveforms with an appropriate filter H,(f)  
for  each  harmonic and  then summing the result. This 
series of operations immediately suggests the channel 
model  shown in Fig. 10. Although, in  theory,  an infinite 
number of frequency converter-filtering elements would 
be required,  in  practice a finite number will  suffice  since 
for a physical channel the range of Doppler  shifts is finite 
and  thus H ( f ,  v )  must effectively vanish  for v outside some 
interval. 

When the channel  is  randomly  time-variant the filters 
H,(f) become random filters. The correlation  properties 
of these filters are defined by  the average 

For  the case of the US channel (90)  simplifies to [see (66)] 

It is not difficult to see that a channel may  not  have  an 
internal input, (or output)  time  constraint  and be a WSS 
(or  WSSUS) channel since the existence of a time con- 
straint is incompatible  with the existence of stationarity. 
However, an external input (or output)  time  constraint 
may  be associated with  any  type of channel. 

The correlation  properties of the random filters as ex- 
pressed in (1 3.7) and (118) are  pertinent tp the case of an 
internal  input  time  constraint. In  order to obtain  from 
(85) the corresponding cross-correlation function between 
the  random filters for the case of an external input  time 
constraint, i.e., the case of a time-limited input waveform 
(e.g., a pulse input), we replace the  actual  Input Doppler- 
Spread  Function  by a hypothetical one as indicated  in 
(107). It is quickly seen that instead of (116)  we have 

H n ( f )  = 1 e - i z r t i ( v - n / T i )  sinc [ T , ( v  - & ) ] H ( f ,  v )  dv (119) 

as the expression for the  transfer  function of the  random 
filter in  the canonic channel model of Fig. 10 when the 
input  time  constraint is  external to  the channel  proper. 
Also, instead of (117)  we have 

H*,(f)Hrn(l) 

as  the cross-correlation function between the  random 
filters for the general channel. By using the  appropriate 
form  for the c,orrelation functions, (120) may be specialized 

Fig. LO-Canonical channel model for input  time  constraint, output 
filter version. 

for the US, WSS, and WSSUS channels. We mention 
only the simplified form it takes  in  the case of the WSSUS 
channel, 

sinc [T i ( .  - E ) ]  

It will be recalled that PH(D, v) is equal to  the cross-power 
spectral  density between the processes M ( f ,  t )  and 
M(f + D, t ) .  From (121) it is readily seen that if PH(D, v )  
changes very  little  for changes in v of the order of the 
reciprocal of the  duration of the  input waveform, l / T i ,  
we have  the approximation 

1 ; m # n  
H*,(f)H,(f + D> :y . (122) 

+(a, E) ; m = n 

Thus,  in  the case of the WSSUS channel, when PH(fl, v )  
varies  little  for changes in v of the order of the reciprocal 
of the  duration T i  of the  input  time  constraint,  the various 
random filters become uncorrelated and  the frequency 
correlation functilon of an individual filter transfer  function 
H,,(f) becomes p:roportional to  the value of the  density 
function PH(D, v )  a t  v = n/Ti.  

We will  now determine the channel model appropriate 
to  the case of ran input  bandwidth restriction." This 
restriction is dua.1 to  that of an input  time limitation and, 
as will be seen, leads to a dual channel model. 

Let  us assume that  the channel responds only to fre- 
quencies within  the  interval f i  - W i / 2  < f < f i  + Wi/2. 
From  the discussion in Subsection VIA.l), we  see that  this 
is equivalent to  titating that T ( f ,  t )  is zero for  values of f 
outside this interval. Since g(t ,  E )  is the inverse Fourier 
transform of T ( f ,  t ) ,  an application of the Sampling 
Theorem shows that g(t ,  .$) may be represented by  the 
series 

op. C i t . 2  
Io This channel model has previously been derived by  Kailath, 
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If the sunlmation in (123)  is  used in place  of g( t ,  f )  in 
the  input-output relationship 

w(t> = 1 d t  - E)g(t ,  f )  4 1  

one finds that  in  the case of an  input frequency constraint 
the  output time  function  may be represented in  the form 

where 

Note that  the integral in (124) is just  the convolution 
of the  input with a time  function Wi exp [j27rfi (t - n/Wi)] 
sinc [Wi(t - n/Wi)].  Since the spectrum corresponding 
to  this  latter  time function is  exp [-j2m(f/Wi)] rect 
([f - fi]/Wi),  it follows that  the spectrum corresponding 
to  the convolution in (124) is just  the product Z(f) Rect 
([f - fi]/Wi) exp [-j2m(f/Wi)].  Thus (124) states  that 
the channel output  may be obtained  by passing the  input 
through a band-limiting filter with  transfer  function 
Rect ([f - f,]/W,), delaying the resultant  by multiples 
of a basic delay l/Wi, multiplying each of these delayed 
functions  by a multiplier gn(t) appropriate to  the delay 
n/Wi, and  then summing the  result.  This series of opera- 
tions immediately suggests the channel model shown in 
Fig. 11. 

Although, in theory, an infinite number of taps would 
be required, in practice a finite number will  suffice,  since 
for a physical channel the spread of path delays is finite 
and  thus g(t ,  f )  must effectively vanish for E outside some 
interval. 

When the channel is randomly time  variant  the multi- 
pliers g,,(t) become random processes. The correlation 
properties of these multipliers are defined by the average 

For the case of the WSS channel, 

It is not difficult to see that a channel may  not have an 
internal input (or output) bandwidth  constraint  and be a 
US (or WSSUS) channel. To understand  this  fact recall 
[see  discussion  following  (66)] that  the US channel has a 
wide  sense stationarity property in  the frequency variable. 
'Such a property is clearly incompatible with an  internal 
input (or output) frequency constraint. However, an 
.external frequency constraint  may, of course, be associated 
with  any  type of channel. 

The correlation properties of the random multipliers 
.as expressed in (126) and (127) are pertinent to  the case 

Fig. 11-Canonical channel model for input frequency  constraint, 
output multiplier version. 

of an  internal  input bandwidth  constraint. In order to 
obtain  the corresponding  cross-correlation function for 
the case of an external input bandwidth  constraint, ie., 
a band-limited input signal, we replace the  actual  Input 
Delay-Spread Function by a hypothetical one as indicated 
in (99). It is readily seen that instead of (125), we have 

gn(t) = j' e-izrf i( t-n/wi) 

as  the expression  for the multiplier associated with a 
delay of n/Wi sec in  the canonic  model of Fig. 11 when 
the  input frequency constraint is external to  the channel 
proper. Instead of (127), we have 

g*n(t)gm(s) = 1- ei2"f"E-9-"/"+"/~V" sinc [wi(f - 2-1 

By using the appropriate form for the correlation functions 
(129) may be  specialized for the US,  WSS, and WSSUS 
channels. We mention only the simplified form it takes  in 
the case of the WSSUS channel, 

Examination of (130)  shows that if P,(T, f )  changes 
little for changes in f of the order of 1/W, we have the 
approximation 

There exist alternate channel models  closely related 
to those of Figs.  10 and 11. Consider  first the case of an 
input  time constraint  and the channel model of Fig. 10. 
If we define Z'(f) as  the spectrum of the time  function, 
z ( t )  Rect ([t  - t i ] / T ) ,  which  is the  input  to  the frequency 
conversion chain, it is readily seen that  the spectrum of 
the channel output W(f) may be  expressed as 
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If we define the filter 

then  the  output spectrum  may be  expressed as 

which states  that  the  output may be obtained  by  gating, 
filtering, and  frequency  shifting as indicated in Fig. 12. 
With  the aid of (133) and (116) and (119)  one may  deter- 
mine expressions for Gn(f) in  terms of the system  functions 
for the cases of internal  and  external  time  constraints. 
Also the correlation  properties of G,,(f) are readily  deter- 
mined from  those of Hn(f) with  the aid of (133). 

Similarly, if we define z"(t)  as  the  time function  result- 
ing  from  band-limiting the  input  as shown in  Fig. 11, it 
is seen that  the channel output w ( t )  may be expressed as 

If we define the  time function 

then  the  output  time function  may be  expressed as 

w(t) = n h.(t - $-)z"( t - $) (137) 

which states  that  the  output may be obtained  by  band- 
limiting,  multiplying,  and  delaying as indicated in Fig. 13. 
With  the aid of (136) and (125) and (128)  one may  deter- 
mine expressions for h,(t) in  terms of the system  functions 
for the cases of internal  and  external  bandwidth con- 
straints. Also the correlation  properties of h,(t) are  readily 
determined  from  those of g,,(t) with  the aid of (136). 

b) Sampling Models for Output Time and  Frequency 
Constraints: The development of channel models for 
output  time  and frequency  constraints  parallels  the 
previous  development of channel models for input time 
and  frequency  constraints.  When considering an  output 
time  constraint one specifies that T(f ,  t )  vanishes  for t 
outside some interval,  say, to - T0/2 < t < to + T0/2 
while for an  output frequency  constraint one specifies 
that M ( t ,  f )  vanishes for f outside an interval f o  - W0/2 < 
f < f o  + W0/2. Then,  for  an  output  time  constraint, one 
makes  a  sampling expansion of G(f ,  v )  [the  Fourier  trans- 
form of T( f ,  t )  with respect to  t] in the v variable while for 
an  output frequency  constraint one makes  a  sampling 
expansion of A(t, () [the  inverse  Fourier  transform of 
M(t ,  f )  with  respect to f ]  in  the ( variable.  By using these 
expansions in  the  appropriate  input-output relations  and 
examining the resulting series expressions for the  output 
(as was done for the .case of input time  and  frequency 
constraints) one may  obtain  the  appropriate canonical 
channel models for the case of output time  and  frequency 
constraints. 

Fig. 12-Canonical channel  model for input  time  constraint,  input 
Filter version. 

Fig. 13-Canonical channel  model for input  frequency  constraint, 
.input  multiplier  version. 

We shall  not give the details of the derivations because 
of their  similarity to  the derivations in  the previous sec- 
tion.  The  resulting  canonical models are shown in Figs. 
14 to 17." Note  t:hat the  output  time constraint models 
differ in  form from the  input  time constraint models only 
in having an  output  time  gate instead of an input  time 
gate.  Similarly, th.e output frequency  constraint models 
differ from the  input frequency  constraint models only in 
having an output,  rather than input  band-pass  filter. 

The filter  transfer  functions in Figs. 14 and  15  are 
given by 

an(fi = E H ( f ,  E) 1 

(138) 

in the case of internal  output  time  constraints.  When  the 
output  time constraint is external, however, one must use 

J % ( f )  = Gn(f - z) 
The  gain functiosns in Figs. 16 and  17  are 

(1401 
1 

. ,  
= w, 9( t ,  +) = h(t - 2) 

in the case of internal  output  bandwidth  constraints. 

op.  cit. e 
20The  model.in  Fig. 16 has  been  previously  derived by  Kailath, 
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I 

Fig. 14-Canonical channel model for  output  time  constraint, 
output filter version. 

Fig. 15-Canonical model for output  time  constraint,  input filter 
verslon. 

c) Xampling Models for  Combined Time and  Frequency 
Constraints: In Subsections VA. 1) a)  and  b), we have 
developed canonic channel models for the case of a single 
constraint on time or frequency at the  input or output 
of the channel. However, it is possible for certain combina- 
tions of these  constraints to exist for the same channel. 
Two interesting combinations, which are  dually  related, 
are the cases of a combined input  time  constraint  and 
output frequency constraint and a combined input fre- 
quency constraint  and output time  constraint.  Other 
combinations are  either impossible or do not lead to new 
models. The impossible combinations are combined 
internal  time  and frequency constraints on the same end 
of the channel, since (as a study of the meaning of an 
internal  constraint readily reveals) such combined con- 
straints imply the existence of functions which are  both 
time- and band-limited. 

Consider now the case of an internal  input  time and 
output frequency constraint.  Mathematically we can 
represent such a combined constraint  by  stating that  the 
Frequency-Dependent Modulation  Function M ( t ,  f )  
vanishes for values of t and f outside the rectangle ti  - 

Thus, M ( t ,  f )  satisfies the equation 
T i / 2  < t < ti + Ti/2, f o  - Wo/2  < f < f o  + W0/2. 

M ( t ,  f )  = Rect (+)M(t, f) Rect (7). (142) 
t - t .  f - Jo 

But  it is readily seen that we can also write 
Fig. 10-Canonical channel model for output  frequency constraint, 

output multiplier version. 
M ( t ,  f )  = Rect (*)a(t, f )  Rect (9) (143) 

t - t .  

1111- - - 4;E-k where 
m 

h " l t l  h".,ltl B ( t ,  f )  M ( t  - mTi, f - m W J  (144) 
m.n--m 

_ _  orLw.u-l.rc 0 E L A " L e C  - - + q 4 , !  since only the m = 0, n = 0 term  in  the sum (144) defining 
i@(t,  f )  contributes nonzero values to  the left side of (143). 

Fig. 17-Canonical channel model for  output frequency constraint, Eq. (143) states  that  the channel under discussion 
may be represented as  the cascade of three operations. 
The first is an input  gating  operation  with the function 

input multiplier version. 

For external output bandwidth  constraints the gain 
functions become 

For randomly time-varying channels the correlation 
properties of the filter transfer  functions  in Figs. 14 and 15 
and  the gain functions in Figs. 16 and 17 are quickly 
determined  in  terms of the appropriate channel correla- 
tion  functions, as was done for the case of input  time and 
frequency constraints. 

Rect ( [ t  - & ] / T i ) ,  the second  is a filtering operation  by 
means of a time  variant filter with Frequency-Dependent 
Modulation  Function a(t, f )  and  the  last is a band-pass 
filtering operation  with  transfer  function  Rect ( [ f  - f o ] /  
W,). We  will  now develop a canonical channel model for 
the second operation  and then  obtain  our desired canonic 
channel model for the combined input  time  and  output 
frequency constraint  by preceding the canonic channel 
model of the second operation  by the time  gate  Rect 
(It - t i ] / T i )  and following it  by  the band-pass filter 

It will  be  recalled  (see Fig. 5 for example) that  the 
Doppler-Delay-Spread Function V(Y ,  E )  is the double 
Fourier transform of M(t ,  f ) ,  

Rect ([f - fol/Wo). 
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Thus  the Doppler-Delay-Spread Function corresponding 
to a ( t ,  f )  is given by 

V ( v ,  E )  = M ( t  - mTi, f - nWo) 
m ,tii 

where the second equation follows from the first by making 
the changes of variable t - mTi + t ,  f - nWo -+ f in 
the double integral in  the first equation. 

The sums in  the second equation in (145) may be 
recognized as Fourier series expansions of periodic im- 
pulse trains, ie., 

so that 

If we let z’(%) and w’(1) respectively denote the  input 
and  output of the channel with Doppler-Delay-Spread 
Function P ( v ,  E ) ,  we can express the channel output  as 

where the complex amplitude 

Thus,  apart from the input  gate  and  the  output band- 
limiting filter, the channel representation corresponding 
to  an input-time output frequency  limitation is a discrete 
number of point  “scatterers”  each providing first a fixed 
Doppler shift which is some multiple of the reciprocal 
input  time  duration constraint and  then a fixed delay 
which is some multiple of the reciprocal output bandwidth 
constraint. The complex amplitude of the reflection from 
the point  scatterer is just l /T iWo times the Doppler- 
Delay-Spread Function sampled at  the same value of 
delay and Doppler shift provided by the scatterer.  Fig. 18 
demonstrates t’he realization of such a channel by  tapped 
delay lines and frequency conversion chains. 

The canonic model of Fig. 18 can be derived in  a some- 
what different manner than described above by  making 
use of canonic channel models previously derived for 
single constraints on input time  and output frequency. 
Thus, consider the canonic channel model for the case of 
an input  time  constraint,  Fig. 10, and  note that when an 
output frequen.cy constraint exists the filters Hn(f )  must 

- 

Fig. 18-Canonical channel model for input  time-output frequency 
constraint. 

have this same constraint, i e . ,  Hn(f) must  vanish  for 
values of J outside the interval f o  - W0/2 < f < f o  + 
W0/2. This latter  fact becomes quite clear by  examination 
of Fig. 10, since these filters are  the only elements in the 
model which provide frequency selectivity. An ana- 
lytical proof is readily obtained  by  noting that H,(f) = 
(l/Ti)H(f, n / T i )  and  that  the f variable in H ( f ,  v) and 
M ( t ,  f )  are  the same variables since H ( f ,  v) and M ( t ,  f )  
are  Fourier  transform  pairs  in the t ,  v variables. 

Since the filter H n ( f )  has an  output frequency constraint 
(and also an input frequency constraint since it is time- 
invari.ant), one may represent this filter by means of a 
canonic channel model consisting of a tapped  delay line as 
shown in Fig. 11, but with  time-invariant gains. When this 
representation of h!,(f) is made one arrives at the canonic 
channel model shown in Fig. 18. 

When the channel is randomly varying the coefficients 
V,, become random variables. The correlation between 
these  random gains is given by 

.~ 1 m r  n VX,V,, = -- (TiWo)” ‘‘(E ’ ; E ’ $) * (150) 

The expressions for the gain (149) and  its correlation 
properties (150) are applicable for the case of internal 
constraints on the  input  time  and  output frequency. For 
the case of external  constraints the same canonical channel 
model applies, but in  determining V,, the  actual Fre- 
quemy-Dependent  Modulation  Function M ( t ,  f )  should 
be replaced by a hypothetical one given by 

M’(t, f) = Rect ( y ) M ( t ,  f) Rect (F) f - f o  (151) 

or, equivalently, the  actual Doppler-Delay-Spread Func- 
tion V ( v ,  ,$) should be replaced by  a  hypothetical one 
V’(v ,  E )  given by 

V’(v,  E )  = / Rect 

a /  Rect ( ~ ) e ” ” M ( l ,  f) dt df. (152) 
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With  the aid of (108) and (109) the integral  with re- Thus for the WSSUS channel and a sufficiently smooth 
spect to f can be  expressed as Scattering  Function, the gains of the point  “scatterers” 

in  the canonical channel model  become uncorrelated and 1 Kect ( u ) e ’ 2 r ” M ( t ,  df the  strength of the reflection from a particular scatterer wo becomes proportional to  the amplitude of the Scattering 
Function at  the same value of delay and Doppler shift 

A somewhat different  canonical channel model may be 
Similarly the integration  with respect to t may be derived for the case of an input-time output-frequency 

= J e i 2 r f o ( t - a )  Sine [wo(< - d l h ( t ,  11) dr]. (153) provided by  the  scatterer. 

expressed as constraint  by using the relationship [see (34)] 

= J e - i 2 r t i ( v - p )  7 1 sinc [Ti(. - p ) ] V ( p ,  7) dp (154) in (121) to show that 

1 
which results in  the following  expression for V’(V, f ) :  w‘(t) = __ 

‘sine [T;(v - ~ 1 1  sine [Wo(f - 7)l  EL, 7) dp d ~ .  (155) 

The gain V,, in  the case of an external input time- 
output frequency  constraint is given by 

The correlation V&,Vrs is readily determined as a four- 
fold integral involving R , ( v ,  p;  E ,  r]) by using the integral 
representation, (156), for V,, and V,, and  then averaging 
under the integral sign. It does not appear desirable to 
take  the space to present this fourfold integral. In  the 
case of the WSSUS channel, for which  [(72) and (74)] 

Examination of (160)  shows that w’(t) is obtained by 
first delaying d ( t )  by multiplies of l/Wo and  then Dop- 
pler-shifting by multiples of l /Ti .  Thus,  this model 
will  differ from the one shown in Fig. 18 only in  that 
the order of delay and Doppler shift is  reversed and 
the complex amplitude of the reflection from the point 
scatterer is equal to l /T iWo  U ( n / W , ,  m / T i )  rather  than 

To derive the canonical channel model for the case of 
an input-frequency output-time  constraint we may pro- 
ceed in a manner entirely analogous to  that  in  the case 
of the  dual constraint, i.e., the  input time-output fre- 
quency constraint. We have  omitted this derivation 
because  of its similarity to  that for the  dual case. The 
resulting channel model  is  shown in Fig. 19, in which 

l/TiWo V(?n/Ti,  n/W,). 

M v ,  P; E, 17) = m ,  v)a(P - V > S ( r ]  - E), in  the case of internal  constraints  and 

the fourfold  integral becomes the double integral u,, = 1‘1 e - i 2 r ~ i ( t - m / ~ i )  i 2 r t o ( t - - n / T o )  e 

sinc [Ti(, - E)] sinc [Ti(, - &)] 
J J  

*shC [ Wi(( - $!-)I sine [ To(v - E)] U(( ,  v) dv d( (162) 

in  the case of external constraints. 
X(E, dv The correlation between the gains is  given by 

ut,u,, = ___ (157) -- 1 na r n 
(TOWi)’ .ll.(M,, ’ w, ’ E ’ ) (163) 

When the. Scattering  Function X((, v) varies  very little 
for changes in of the order of 1jW0  and changes in v of for the case of internal  time  and frequency constraints. 
the order of l /Ti,  (157)  simplifies to As in the  dual situation, the correlation between the 

gains in  the case of external  constraint  may be  expressed 

v;,v,. = in  terms of a fourfold integral involving the Delay- 
(158) Doppler-Spread Function. We present only the expres- 

sion for the case of WSSUS channel, 

; m # n ,  r # s .  

; m = n ,  r = s  
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RECTI';) 

Fig. 19-Canonicd model for input  frequency-output  time  constraint. 

When the Scattering  Function  varies  very  little for 
changes in [ of the order of l /Wi and changes in v of the 
order of l/To, (164)  simplifies to 

yielding a collection of uncorrelated  scatterers  for the 
canonic channel model. 

As in  the  dual case, a  canonical  channel model may 
be found  for the case of an input-frequency  output-time 
constraint which differs ' from that shown in Fig. 19 
only in  a reversal of the order of delay  and  Doppler 
shift. I n  this m.odel the gain of a  scatterer  is  set  equal to 

(l/ToWi)V(n/To, m/Wi)  

rather  than  (l/ToWi) U(m/W,, n/To). 
2) Delay- and Doppler-Shift Constraints: For physical 

channels the spread of path delays and  the spread of 
Doppler  shifts m e  effectively limited to finite  values. 
According to our definition of system  functions,  a  limita- 
tion in the spread of path delays  means that all system 
functions  containing the delay  variable  vanish  for 
values of 4 out,side some  specified interval.  Similarly,  a 
limitation  in the spread of Doppler  shifts  means that all 
system  functions  containing the Doppler-shift  variable v 
vanish  for  values of v outside some  specified interval.  This 
situation is somewhat different from the cases of time  and 
frequency  constraints discussed above where different 
physical  interpretations  (input  as opposed to  output 
constraints)  might be associated  with  a specification that 
system  functions  vanish  for  values of the variables t or f 
outside specified ranges. The difference in  behavior  may 
be traced to  the  fact  that  the  dual system  functions U ( [ ,  v )  

and 'V(v, [) are so simply related  both  must  vanish over 
the same intervals of .$ and v, while the  dual system  func- 
tions M(t ,  f )  and T( f ,  t), with  their more complicated 
relatj.onship, (39), need not  vanish over the same intervals 
of f and t. 

In  the following subsections we shall develop canonical 
models for channe1.s which are  limited in either path delay 
sprea.d or Dopplelr spread or both  Doppler-  and  delay- 
spread. 

a) Sampling  Models for Delay-Spread  Constraint? If we 
assume that a  channel  provides path delays  only in  an 
interval A sec0nd.s wide.  centered a t  to seconds, then 
g(t ,  [:I, U ( t ,  v ) ,  h(t, t ) ,  and V(v, [) must  vanish  for  values 
of outside  this hterval. It follows that  the Sampling 
Theo.rem, (86), ma,y  be applied to  the Fourier  transforms 
of these  system  functions  with  respect to  the delay 
varia.ble, Le., to 1;he system  functions T(f ,  t ) ,  G(f, v), 
M(t ,  f ) ,  and H ( f ,  v ) ,  respectively. To derive the canonical 
channel models appropriate to a  delay-spread  limitation 
it is sufficient to deal  with T( f ,  t )  and M ( f ,  t) .  Thus, 
according to (113), we find that T ( f ,  t )  and I V r ( f ,  t )  have 
the following expansions 

.she [ A(f - z)] (166) 

and 

Upon using the (expansion (166) to represent T(f ,  1) in 
the  input-output  relationship (19), we find the series 
representation  for the channel output  to be 

esinc [ A(f - z)]  d f .  (168) 

Exa,mination of (168)  shows that  the channel output is 
represented as  the sum of the  outputs of a  number of 
elementary paral1e:l channels, each of which filters the 
input  with  a transf12r function of the form 

exp [ -j2rto(f - z)] sinc A(f - z) 
for some value of m and then multiplies the resultant  by  a 
gain function T(m/A, t). The impulse response of the 
filter, i e . ,  the inverse  Fourier  transform of 

exp [ - j2rt0(f - :)] sinc A ( f  - T) 
21 This case has been treated previously by  Kailath, op. ciL2 
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is readily  found to be 

exp [ j2, t ]  Rect (9) , 

which is the complex envelope of a  rectangular RF pulse 
of frequency f c  + m / A  (where f c  is the carrier  frequency) 
and of width A seconds centered  on t = Eo. Such  a  filter  has 
frequently been called a  band-pass  integrator. If we let 

then we can  represent the canonical  channel model 
corresponding to (168) as shown in Fig. 20. 

An alternate  channel  representation which involves 
multipliers  on the  input side rather  than  the  output side 
may be derived by using the series (140) to represent 
M(t ,  f )  in  the  input-output  relationship (21). The re- 
sulting series expression for the  output spectrum is given 
by 

Examination of (170)  shows that  the mth term  in  the 
sum involves a  multiplication of the  input  by  a (complex) 
gain  function M(t ,  m / A )  followed by  a filtering operation 
with  a  filter  having  transfer  function I,(f). Such  a  repre- 
sentation  is shown in Fig. 21. 

As with  the previous  channel models, although an 
infinite number of elements  is  involved,  only  a  finite 
number is needed in practice.  Thus, in Fig. 20, since the 
approximate  bandwidth of each  band-pass  integrator  is 
l / A  cps, and since adjacent  integrators  are  separated  by 
l / A  cps, an input signal of bandwidth W would require 
somewhat more than W A ,  perhaps lOWA, judiciously 
selected adjacent  multiplier-filter  channels to produce a 
very close approximation to  the channel output. More 
elementary  channels  may be needed in the model in 
Fig. 21 where the multipliers precede the filters, because 
the  time  varying gains M ( t ,  m/A); m = 0, f l ,  f2 ,  etc. 
spread the spectra of the  inputs to  the corresponding 
filters. 

When the channel  is  randomly  time-variant the gain 
functions T ( m / A ,  t )  and M(t ,  m/A)  become random pro- 
cesses. It is clear that  the correlation  properties of these 
gain  functions  are completely determined  from the correla- 
tion  functions of the Time-Variant  Transfer  Function  and 
Frequency-Dependent  Modulation  Function. Since these 
correlation  functions  have been discussed in  detail  in 
Section 111, there is  no need for further discussion here. 
However, it is  interesting to note that only  for the WSSUS 
channel  do the correlation  properties of the gain  functions 
in Figs. 20 and 21 become identical, Le., for the WSSUS 
channel 

M*(t,  m / A ) M ( t  + T, n/A)  

Fig. 20-Canonical channel model for delay-spread limited channel, 
output multiplier version. 

Fig. 21-Canonical channel model for delay-spread limited  channel, 
input multiplier version. 

where R (Q,  7 )  is the Time-Frequency  Correlation  Function 
defined in Section  IV-D. 

b) Sampling  Models for Doppler-Spread  Constraint: The 
Doppler-spread  constraint  is  dual to  the delay-spread 
constraint  and the derivations  and  resulting canonic 
models follow a  dual  pattern.  Thus, if we assume that a 
channel  provides  Doppler  shifts only in  an  interval I' cps 
wide centered on vo cps, then H ( f ,  v), V ( v ,  E), G(f, v), and 
U ( t ,  v) must  vanish for values of v outside this interval. 
Application of the sampling theorem then produces the 
expansions 

T(f ,  t )  = T(f ,  n/r)e'2"'o't-"/r) sine [r(t - n/r)] (172) 

and 

~ ( t ,  f) = M(n/r, f)ei2rvo(t-n/r) 

n 

n 

.sine [r(t - n/r)].  (173) 

Upon using (172) in (15) and (173) in (21), we obtain 
the following expansions for the channel output: 
w(t) = e i z r v o ( t - n / r )  sine [r(t - n/r)] 

n 

./ Z(f)T(f, n/I')eizrf'  dt (174) 

and 

.sine [r(t - n / r ) ] e i Z f f f t  dt.  (175) 

The  nth  term of the series (174) may be interpreted as 
the result of a filtering operation  with  filter  transfer 
function T(f ,  n/r ) ,  followed by a multiplication  with  a 
gain function exp [j27rvo(t - n/r)]  sine (t - n/ r). If 
we let 

pn(t) = exp [j2rvo(t - n/r)] sine [r(t - n/r )] ,  (176) 
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then  the canonical channel model  which  follows from the 
above interpretation of (174) is as shown in Fig. 22. In  
an entirely analogous fashion (175) leads to  the model 
shown in Fig. 23. 

Whereas in  the  dual cases  described in  the previous 
section a finite number of multiplier-filter combinations 
is satisfactory for representing the channel for a band- 
limited input, in the present cases a finite number of 
multiplier-filter combinations may be  used when the 
input is time-limited. This  fact  may be appreciated  by 
noting that  the gain function pn(t)  acts  as a "gate" of 
duration l/r and that  the "gates" of adjacent elementary 
channels are  separated  by l /r  seconds. Thus,  an  input 
signal of duration T will require anywhere from, say 
Tr to  lOTr judiciously  selected adjacent elementary 
channels to characterize the channel. 

When the channel is randomly time-variant the filters 
T( f ,  n / r )  and M ( n / r ,  f )  become random processes in  the 
frequency variable. The correlation properties of these 
filters may be determined from the results of Section IV, 
which deals with the correlation functions of the various 
system functions. It is interesting to note, as in  the  dual 
case, that only for the WSSUS channel do the correlation 
properties of the random filters in Figs. 22 and 23  become 
identical. 

c) Sampling il/loclels for  Combined  Delay-Spread a,nd 
Doppler-Spread  Constraints: When both a Delay-Spread 
and Doppler-Spread constraint exist, the sampling theorem 
may be applied twice to  the system  functions T ( f ,  t )  and 
M ( t ,  f ) ,  i.e., once when they are considered as  time func- 
tions  with the frequency variables fixed and once  when 
they are considered as frequency functions  with the  time 
variables fixed. In this manner one may form sampling 
expansions and  determine corresponding canonical chan- 
nel models. However, this procedure is unnecessary since 
the desired  models may be obtained  by inspection of 
Figs. 20-23 by combining models appropriate  to delay- 
spread and Doppler-spread constraints. To demonstrate 
this  latter approach, examine the model of Fig. 20,  which 
is appropriate to a delay-spread constraint. If we require 
that a Doppler-spread constraint also exist, the multiplica- 
tion operation in each parallel channel is in effect a sub- 
channel with :% Doppler-spread constraint  and  may be 
represented by the canonical model of Fig. 22 or 23  where 
the f variable is set  equal to m / A  for the nath branch in 
Fig.  20. If this procedure is  followed  using the model of 
Fig. 22 in Fig. 20, the model of Fig. 24 appears. In   an 
entirely analogous fashion one may generate three addi- 
tional models, one by using the model of Fig. 23 in Fig. 20 
and two more by using the models of Figs. 22 and 23 in 
Fig. 21. 

It is readily demonstrated that for waveforms  which 
are effectively limited in  time  and frequency duration, i.e., 
waveforms which have most of their energy located in a 
finite time-frequency interval, only a finite number of 
filters and multipliers may be  used in the models of Figs. 
24 and 25 to provide a close approximation to  the  actual 
channel output. 

The complex gain constants T ( m / A ,  n /r) ,  M ( n / r ,   n z / A )  
become random variables when the channel is randomly 
time-variant. Their correlation properties are  just sampled 
values of the corrselation functions of T(f ,  t )  and M ( t ,  f )  
respectively. 

3) Combined Time  and  Delay-Spread or Frequency 
and .Doppler-Spretxd Constraints: In  Section VIA. 1) we 
have developed canonical channel models for time  and fre- 
quency constraints, i.e., for situations in which system 
funct,ions vanish  for values of t and/or f outside specified 
intervals. In  Section VIA. 2) we have developed canonical 

Fig 22-Canonical channel model for Doppler-spread Iirnit.ed chm- 
nel, output multiplier  version. 

Fig. 23-Canonical channel model for Doppler-spread limited chm- 
nel, input multiplier version. 

I 

1 

Fig. 24-A canonical  channel model for combined delay-spread and 
Doppler-spread  limited  channel. 
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channel models for delay-spread and Doppler-spread 
constraints, i e . ,  for situations in which system functions 
vanish for values of I: and/or v outside specified intervals. 
Here we consider certain combinations of the constraints 
in Sections VIA. 1) and 2), namely, combined time  and 
delay-spread constraints and combined frequency and 
Doppler-spread constraints.  Other combinations are 
not possible  since they  are equivalent to requiring that a 
function be limited in  both time  and frequency. 

The combined constraint models may be derived by 
combining the models appropriate to  the individual 
constraints, as was done in Section VIA. 2) c). One may 
combine a delay-spread constraint  with  either an  input 
or output frequency constraint. We shall present here only 
one model  for a combined Doppler-spread and frequency 
constraint  and one model for a combined delay-spread 
and  time constraint. The remaining possible  models may 
be quickly constructed by  the reader. 

To construct a model appropriate  to  an  input  time 
constraint  and a delay-spread constraint we may' make 
use of the models of Figs. 10 and 21. We note first that if 
the channel is delay-spread limited then  the filters H,(f) 
in Fig. 10 are also delay-spread limited. Thus, each of 
these filters may be represented by  means of a canonical 
model of the form of Fig. 21. Note, however, that since 
these filters are  time-invariant, the gain functions in Fig. 21 
are also time-invariant. To determine the value of the 
(time-invariant) gains it should  be noted that a time- 
invariant filter with  transfer  function H ( f )  has 

W t ,  f )  = H(f). (177) 

Then, using the model  of Fig. 21 to represent each filter 
in Fig. 10, we arrive at  the model  shown in Fig. 25. 

To construct a model appropriate to  an  input frequency 
constraint  and a Doppler-spread constraint we may use 
the Doppler-spread constraint model of Fig. 22 and input 
frequency constraint model of Fig. 11. In  this connection 
one  should note that a multiplier g( t )  is a degenerate 
time-variant linear filter with 

T(f, t> = d t ) .  (178) 

It is readily determined that  the model of Fig. 26 results 
when the model of Fig. 22 is  used to represent each multi- 
plier g n ( t )  in Fig. 11. 

where 

B. Power  Series Models 
In  this section we  will derive certain canonical channel 

models  which arise from power  series  expansions of T( f ,  t )  
and M(t ,  f )  in either the  time or frequency variables. The 
two models arising from expansions in  the f variable will 
be  called  f-power  series  models,  while those arising from 
expansions in  the t variable will  be  called  t-power  series 
models. As might be expected, the f-power series  models 
are dual to  the t-power  series  models and are useful in 
dual situations. 

1) f-Power Series Models: The  starting point for our 
discussion is the  input-output relationship corresponding 
to  the Time-Variant Transfer  Function T ( f ,  t )  (19), which 
is repeated below: 

If the  input spectrum Z(f) is  confined primarily to a 
specified frequency interval over  which T( f ,  t )  varies 
little  in f ,  with a minimum fluctuation period much 
greater than  the bandwidth of Z(f), then a Taylor series 
representation of T ( f ,  t )  in f will  provide a rapidly con- 
vergent expansion of Z( f )T ( f ,  t )  and w(t ) .  

Since the existence of a mean path delay E , ,  i.e., a 
value of .$ about which g( t ,  .$) may be  considered centered, 
produces a factor exp [ -j27rf.$,] in T( f ,  t )  which can 
fluctuate  with f quite rapidly, it is  desirable to expand 
only that portion of T( f ,  t )  which  does not include this 
factor.  To  this end we may define a shifted Input Delay- 
Spread Function gO(t ,  E )  in which the mean path delay 
4,  has been  removed, i.e., 

where to is a mean  nlultipath delay defined  according to  
some convenient criterion. Then 

where TO(f,  t )  is the Time-Variant Transfer  Function of 
the medium after  the mean path delay has been  removed, 
'z.e., 

(181) 

In  the most general situation the  input spectrum Z(f) 
may not be centered a t  f = 0. Thus, assuming that Z(f) 
is centered a t  f = f i ,  the most rapid convergence of 
Z(f)T,(f,  t )  will  be obtained by expanding T O ( f ,  t )  about 
f = f i ,  i . e . ,  

-_ 

Fig. 26-A canonical channel model for combined input-frequency 
and Doppler-spread  constraints. ,". I 
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A filter with  transfer  function (27rj)"f" is an  nth order 
differentiator. We shall define a filter with  transfer func- 
tion (27rj)"(f - fi)" as  an offset differentiator with an 
offset of f i  cps. If we let Dl; be an operator denoting such 
an offset differentiation, it is quickly demonstrated that 

Then use of (182) and. (184) in (19) yields the following 
series representation of the channel output: 

Examination of the  last equation  in (185) indicates that 
the channel output  may be represented as  the parallel 
combination of the  outputs of an infinite number of 
elementary channels each consisting of a differentiation 
of some order followed by a time variant gain with  all 
channels preceded by a delay E a  and  then a frequency 
translation of -fi  cps and all channels followed by a 
frequency translation of +fi cps. Study of the first equa- 
tion  in (185)  shows that  the channel output  may also be 
represented a s  the parallel combination of elementary 
channels where now the typical channel consists of an 
offset differentiation of some order followed by the same 
time-variant gain, with  all channels preceded by a delay 5,. 

This  latter channel representation is shown in Fig. 27, 
where the offset differentiators of different subchannels 
have been combined into a chain of offset differentiators. 

For simplicity, in the following discussion of power 
series models, we shall present the particular forms that 
are simplest to diagram. It should be realized, however, 
that equations such as (185) may have a variety of 

An understsanding of the conditions leading to rapid 
convergence of the series (185) may be obtained  by first 
defining a normalized shifted Input Delay Spread Func- 
tion To(t ,  E) whose "width" in  the .$ direction is unity  and a. 
shifted normalized input  time  function x",(t) which is 
located at f = 0 and  has  unit  bandwidth (using any 
convenient bandwidth  criterion). These normalized func- 
tions  are defined implicitly by the relations 

._ interpretations  in  terms of channel models. 

~ ( t )  = Fo(Git)ei2Hfi' 

where Aa is a measure of multipath spread given by  the 
"width" of go(t, E )  in the l direction and Bi is the band- 
width of the  input. 

With  the aid of the normalized functions one readily 
finds that  the series (185) may be expressed in the form 

Fig. 27-f-power series channel model, output multiplier version. 

where 

in which Eo(f) is the spectrum of Fo( t ) .  
Examination of (188) reveals that T,(t) and [l/(j27r)"] 
ZO(") (Bit - BE,:) are  both  moments of functions  having 

unit "duration." If, indeed, we assume zo( t ,  E )  (as a 
function of E )  and Eo(f) are zero outside the  unit  interval 
(centered at  = 0, and f = 0 respectively), then it is 
readily demonstrated that these  moments  may  not increase 
and  in practice will most likely decrease with increasing n. 
Examination of  (1187) then indicates that if 

27rBiAu << 1 (189) 

the series will  be :rapidly convergent. 
In  the general case To(t ,  5 )  and zo(f) will have "tails" 

extending outside the  unit interval. For (189) still to 
represent a useful. convergence criterion, these  tails  must 
drop to zero sufficiently rapidly so that  the moments  do 
not increase too  rapidly  with increasing n." 

When the channel is randomly  time-variant, the multi- 
plier functions become random processes with correlation 
properties defined by 

(- l),+, 
TXOTm(s) = n ! ~  

.I/ t m v n ~ , ( t ,  s ;  f + E,, 11 + t u ) e ~ 2 ~ f ; ( ~ - ~ )  4 dv (190) 

for the general channel. For the WSSUS channel, the 
cross-correlation function (190)  specializes to (see Fig. 9) 

T*,(t)T,(t + T) = ___ n! m! 

In. the case of the WSSUS channel, a desirable choice 
for 4,  is given by 

22 The series will diverge if these  tails fa! too slowly. If the 
product of the  two msDments increases exponentlally with n as a n ,  one 
may modify (189) into 2 m B i A ,  << 1 to  obtain a suitable convergence 
criterion. 
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where Q(t)  is the Delay Power Density - Spectrum, since __ 
such a choice not only minimizes lTllz relative to (To(' 
but also leads to T,(t) and To(t)  being uncorrelated. The 
ratio of the strength of T ,  relative to T o  then  takes  the 
simple form 

where A may be  called the rms  width of & ( E ) .  
When the frequency selective fading in  the channel is 

sufficiently slow, only the first term  in  the series (185)  will 
be  sufficient to characterize the channel output, i e . ,  

w(t> = To(t)z(t - E , )  (194) 

which may be  recognized as a "flat-fading" or non- 
frequency-selective channel model. If the first two  terms 
are used, 

which may be  called a "linearly frequency-selective 
fading" channel since it corresponds to approximating 
To(f, t )  by a linear term  in  the frequency variable. One 
may continue and define a  ('quadratically frequency- 
selective fading" channel, etc., depending upon the degree 
of approximation required. 

We shall now investigate the error incurred in using a 
finite number of terms  in  the expansion (185) for the case 
of a WSSUS channel. If we a.ssunle the existence of deriva- 
tives of To(f,  t )  with respect to f as high as Nth order, then 
we may expand To(f, t )  in a finite Taylor series expansion 

where f' lies between f i  and f. Then using (196) in (15) and 
making use of (183), one obtains the following series 
expression for the channel output: 

N -  1 

w(t) = I'n(t)D;i[Z(t - E0)l + RN(t) 
9l-0 

where RN(t) is a remainder term given by 

It follows that 

I R N ( 0  l 2  

ei2s(f'E-l''v) dV e - i 2 r ( f - Z ) ( t - t e )  df d l  (199) 

where f" lies between f i  and 1. 
For the WSSUS channel 

g%(t ,  E)go( t ,  d = &6 + 4,>S(a - 0 ,  (200) 

and for a wide-sense stationary z(t)12 

Z*(f>Z(Z) = P*(f>W - f) (201) 

where P,(f) is the power spectrum of z( t ) .  
Using  (200) and (201) in (199)  we readily find that 

where ps (f) is the power spectrum of the normalized input 
signal x" ( t )  (unit  bandwidth  and centered a t  zero frequency) 
and ; ( E )  is the Delay Power Density  Spectrum associated 
with the normalized Delay-Spread Function To(t ,  4). 

One may show that  the right-hand side of (202) is also 
just  equal to  the average magnitude  squared of the 
N + l t h  term in the series (185) for the case of a WSSUS 
channel. Thus, we have the simple error criterion that  the 
average  magnitude squared of the error incurred by using 
only a finite number of terms  in (185) is just equal to  the 
average magnitude  squared of the first omitted when the 
channel is WSSUS and  the  input is wide-sense stationary. 

We shall now derive a channel model which  differs 
from Fig. 27 principally in a reversal of the order of the 
operations of differentiation and multiplication. This 
channel model is derived by  making use of a Taylor series 
expansion of M(t ,  f )  in the frequency variable. The  input- 
output relationship corresponding to M ( t ,  f )  is given by 
(25), which is repeated below: 

W(f)  = J z( t )M(t ,  f ) e - i 2 r f r  dt .  

If the  output spectrum W ( f )  is confined primarily to a 
specified frequency interval over which M ( t ,  f )  varies 
little  in f,  with  a minimum fluctuation period much greater 
than  the bandwidth of W(f) ,  then a Taylor series repre- 
sentation of M(t, f )  in f can be  used in (25) to obtain a 
rapidly convergent expansion of W(f) .  

Since M(t, f )  is the Fourier transform of h(t, E ) ,  the 
Input Delay-Spread Function, the presence of a nonzero 
value of 4, say E^,  about which h(t, E )  is "centered" will 
result in a factor exp [ - - jZ~f (~ ]  in M ( t ,  f )  which can 
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fluctuate  with f quite rapidly. Thus,  it is desirable to 
expand only that portion of M (t,  f )  which  does not include 
this  factor. If this portion of M ( t ,  f )  is denoted by Mo(t, f ) ,  
we have 

(203) 

where 

hn(t, E )  = h(t, E + id (204) 

is a shifted Output Delay-Spread Function centered on 
E = 0. Using  (204) and (203) we note  that 

M ( t ,  f) = M,(t, f)e-i2T”h. (205) 

The most rapidly convergent expansion of W(f )  will 
be  obtained  by expanding M,(t, f )  about  the  “center” 
frequency of W(f) ,  say, f = fo, as follows: 

m 

& [ o ( t ,  f) = c Jf,(W$Yf - fo)“ (206) 
n = n  

where 

= - [ (-t)”h,,(t, E)e-i2T’o‘ d l .  (207) 1 
n! 

Upon using (205) and (206) in (25) we find that 

W(f) = 2 (2~j)(f - fn)“e-’2a’‘h [ z(t)M,(t)e-i2Tf’  dt. (208) 

By Fourier  transforming (208) we obtain  the following 

n=n  

series  expression  for w( t  + E,,) : 
m 

w(t  + [ h )  = D 3 0 [ z ( t ) M m ( t ) 1 -  (209) 
n=n 

Examination of (209) indicates that  the channel output 
may  be represented as  the parallel combination of the 
outputs of an infinite number of elementary channels each 
consisting of a time-varying (complex) gain followed by an 
offset differentiation of some order with all channels fol- 
lowed by a delay of &, seconds. Such a model  is  shown in 
Fig. 28,  where the differentiators of different subchannels 
have been combined into a chain of differentiators. 

In order to obtain a representation of (209) in  terms of 
normalized functions analogous to (187) it is necessary to 
assume that  the bandwidth of z(t)M,(t) does not exceed 
the bandwidth of w(t ) .  Then it may be shown that when 
w(t )  is band-limited to Bo cps and h(t, E )  is zero outside a E 
interval of du.ration A,,, the condition for rapid convergence 
of (209) is given by 

2 ~ B o A h  << 1. (210) 

Even when w(t )  is not band-limited and h(t, E )  is not 
&limited, (210) will still  be a useful  convergence criterion 
so long as  the “tails”.of W(f )  and h(t, E )  (as a function of E )  
drop to zero rapidly enough. 

*(?I-- - Tr-7 

Fig. 28-f-power series channel model, input multiplier version. 

It may also  be  shown in  the same manner as was  shown 
for the series  (185) that  the average  magnitude  squared 
error incurred by using a finite number of terms  in  the 
series  (209) is just equal to  the average  magnitude  squared 
of the first term  omitted when the  input is wide-sense 
stationary  and  the channel is  WSSUS. As a final point we 
note that relationships analogous to (190) to (196) are 
readily constructed for the channel model of Fig. 28. 
Thus, it is readily shown that for the WSSUS channel 
the correlation plroperties of the multipliers in Fig. 28 are 
identical to those in Fig. 27 so that a choice of E,, = E ,  of 
(192)  causes M [ , ( t )  and M l ( t )  to be uncorrelated and 
I M I I z  to  be  minimized relative to lJln12. 

2 )  t-Power  Series  Models: The t-Power  Series Models 
are dual to  the f-Power Series Models described in  the 
previous section and  thus involve power  series expansions 
of T(f ,  t )  and M ( t ,  f )  in  the t variable. Whereas the f- 
Power series  models are particularly useful when the 
frequency spread. of the  input (or output) spectrum and 
the delay spread of the channel are  fairly  sharply de- 
limited and  their product is much less than  unity,  the 
t-Power  series  models are particularly useful in  the  dual 
situation, i.e., w:hen the width of the  input (or output) 
time  function anld the Doppler spread of the channel are 
fairly sharply delimited and  their  product is much less 
than unity. 

Since the models presented in  this section are  dual to 
those in  the previous section, the analytical part of their 
derj.vation  is essentially identical to  that  in  the previous 
sect,ion and thulj it will  be unnecessary to present as 
detailed derivations. 

We will start our discussion by presenting the following 
expansion of M ( 1 ,  f )  : 

-_ ___ 

m 

~ ( t ,  f) == eizrVgt  @,,(f)(a,j>.(t - ti>” (211) 
n=0 

where ti is a time  instant  about which the  input  may be 
assumed “center’ed” and vH is a value of v about which 
H ( f ,  V )  may be assumed (‘centered.” The frequency 
function &!,(f) is given by 
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_ _  
i 1 I The  ratio of the  strength of al(f) relative to i@,(f) then 
1 1 takes  the simple form 

where here p is the rms  width of P(v) .  
When the fading is  sufficiently  slow only the first term 

in (213)  will  be  sufficient to characterize the channel 
output, i e . ,  one may use 

Fig. 29-t-power series model, output filter version. 

Use of (211) in (25) leads to  the following expansion 
for the  output spectrum: w(f) = aO(flz(f - v H )  (220) 

m 

- i Z r f i l  - (Z(f - v , r ) e i z * f i ’ ) .  (213) 
d” 

= e  
7%-0 df” 

Examination of the channel model in Fig. 29 readily 
reveals that  the summed outputs of its elementary chan- 
nels  is identical to  the series  (186). 

When the  input  time function is limited to a finite 
time interval T i  seconds and H ( f ,  v )  is  zero for values of v 
outside an interval of duration p H  cps,  one may show that 
the series  (186)  will  be rapidly convergent if 

2rT,@H << 1 (2.14) 

[c.f. (lS9)l.  Even if z( t )  is not time-limited and H(f ,  V )  is 
not v-limited,  (214)  will still be satisfactory convergence 
criterion if the  “tails” of x ( t )  and H ( f ,  v )  (as a function of V )  

drop to zero  sufficiently rapidly. 
When the channel is randomly time-variant the filter 

transfer functions an(f) become random processes in  the 
frequency variable  with correlation properties defined by 

&?(f)i@m(l) [[ ns R I I ( f ,  l ;  + v H ~  p + pH) 

. e - j Z r f i ( v - ~ )  dv dp (215) 

for the general channel. In  the case of the WSSUS channel, 
(215)  simplifies to 

a:(f)i@& + 9) = 1 vm+np(Q, V I  dv (216) 
1 

(see Fig. 9). 

A desirable choice for vH in the case of the WSSUS  chan- 
nel is given by 

which, apart from the frequency shift of vH cps, represents 
the channel as a time-invariant linear filter with  transfer 
function 4TO (f). 

If the first two terms  are used, 

which may be  called a “linearly time-selective fad- 
ing” channel since it corresponds to approximating 
M(t ,  f ) e - i 2 r u H t  by a linear term  in  the  time variable. One 
may continue and define a “quadratically time-selective 
fading channel,” etc., depending upon the degree of 
approximation required. 

An exact expression dual  to (203)  is  readily formulated 
for the average magnitude squared error incurred by using 
only N - 1 terms  in (213).  However, this expression 
would  be applicable in  the  dual situation, namely, when 
the  input spectrum  (rather than time function) is a wide- 
sense stationary process and  the channel is WSSUS.  Since 
such an input is not very common, the corresponding 
error expression may  not be as useful as  in  the  dual case. 
Thus, we present a different derivation which  yields an 
upper bound on  the average magnitude squared error for 
the case of arbitrarily specified z ( t )  and a WSSUS  channel. 

We  first  express M ( f ,  t ) e - i z*”H‘  in a finite Taylor series, 

where t’ lies  between ti and t. Then using (212) and (222) 
in (213)  we obtain  the finite  series representation of the 
output spectrum 

J vP(v) dv where the remainder term E N ( f )  is  given by 

~ ~ ( f )  = (2.rrj)~ 1 ( t  - ti)Nz(t)eizr”Hf 
vH = J P(v) dv (217) 

where P ( v )  is the Doppler Power Density  Spectrum 
[see  (76)],  since in  this case p&(f)lz is  minimized relative 
to @fm and 

.L / V N H ( f ,  v + y r f ) e i Z r v t ‘  dv 
N !  dt.  (224) 
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. j  v z ~ p ( v  + v H ) e - i z r v ( t ' - t ' ' )  j z r f ( t - a )  dv e d t  ds. (227) 

Noting that  the magnitude of an integral  is less than  the 
integral of the magnitude, 

where p ( v )  is the Doppler Power Density  Spectrum cor- 
responding to  a normalized Doppler-Spread  Function 
E(f, v) which differs from H ( f ,  v) in being translated  and 
scaled along the v axis so that it has p H  = 1 and vH = 0. 
Similarly, 2(t . )  is  a  shifted scaled version of the  input which 
has unit  duration  and is located at  t = 0. 

The channel model dual to  that in  Fig. 28 may be 
arrived a t  with the aid of the following expansion: 

m 

T(f ,  t )  = e i z r v G t  pn(f)(2.1rj)(t - to)" (229) 

where to is a  time instant  about which the  output may be 
assumed ('centered"  and vQ is the value of v about which 
G(f, v) may be assumed "centered." The frequency 
function Tn(f) is given by 

n=O 

-_ -- _I. / v"G(f, v + vG)eiZnu1'  dv. 
n! (230) 

Use of (229) in (19) leads to  the following expansion for 
the  output t,ime function: 

w(t) = e i 2 r v G e  2 (2~j)"(t - to)" 1 5!n(f)Z(f)e'2r'* d f  (231) 
n-0 

from which we readily infer the channel model shown in 
Fig. 30. 

. , , I - - - - -  ' 

Fig. 30-t-power series model, input filter version. 

When the  output time  function  is  limited to a  finite 
interval of duration To sec and G(f, v) is zero for  values of v 
outside an interval of duration PC cps, one may show that 
the series (231) will  be rapidly  convergent if 

2?rToB~ << 1. (232) 

Even if w(t)  is  not  tinmlimited  and G(f, v) is  not v-limited, 
(232) will still be a satisfactory convergence criterion if 
the  ('tails" of w( t )  and G(f, v) (as  a  function of v) drop to 
zero sufficiently 1:apidly. 

When the channel  is  randomly  time-variant the filter 
transfer  functions in Fig. 30, like those  in Fig. 29, become 
random processes in  the frequency  variable.  Relationships 
anadogous to those in (215) to (228) are  readily  constructed 
for the model in Fig. 30. In  particular,  for  the WSSUS 
cha,nnel the correlation  properties of the random  filters 
in Fig. 30 become identical to those of the random  filters 
in Fig. 29. 

3) ft- and  tf-Power  Series  Models: In  this section we 
present  two  channel models,  one arising  from an expansion 
of T( f ,  t )  and  the  other from an expansion of M(t ,  f )  in 
the t and f variables. As in  the previous power series 
models, it is  desirable to remove mean path delays  and 
Doppler  shifts before expanding  these  functions.  Thus, 
we define 

~ , , ( f ,  t) = T U ,  t ) e ' 2 f f ' ~ E o - ~ v o ~  (233) 

where Eo, vo are  a  mean  delay  and  Doppler  shift defined 
as  the value of 4 and v, about which the Delay-Doppler- 
Spread  Function. U(E, v) may be assumed "centered", i.e., 
U ( &  + Eo, v + v,,) is  "centered" at  4 = v = 0. 

Since in T(f ,  2)  the variable f is associated directly  with 
the spectrum of the  input signal  and the variable t is 
associated with the  output time  function, we expand 
To,,(f ,  t )  in the following double power series: 

m m  

~ , , , ( f ,  t )  = Tmn(2Tj)m+n(f - fi)"(t - (234) 
0 0  

where 

1 - 1 0  
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Using (234) in (19), we find that  the  output time func- 
tion is represented by  the series 

( ~ m  
w ( t )  = e i a = p o (  Tmn@~j)n(t - &>"G [z(t - &Jl. (236) 

m-0 n-0 

It is readily seen by examination of (236) that  an appro- 
priate channel model whose output is given by (236) may 
be obtained  by using the f-Power Series Model of Fig. 27 
with each gain function represented by  the &Power Series 
Model of Fig. 30. We leave it  to  the reader to sketch this 
channel model,  which we shall call the ft-Power Series 
Channel Model. 

We may  make  statements concerning the convergence 
properties which are similar to those  pertinent to  the 
output series expansions of the t- and f-Power Series 
Models. However, since the tf-Power Series Model is, 
in essence, both a t- and an f-Power Series Model, the 
convergence requirements of both models  need to be 
imposed. Thus,  it is readily shown that when U ( &  v) is 
zero outside a rectangle whose sides are Po cps long in 
the v direction and A. sec long in  the 4 direction and when 
x ( t )  is band-limited to a bandwidth Bi  cps, a sufficient 
condition for convergence of (236) is the satisfaction of 
the inequalities 

27T I t  - to1 P o  << 1 (237) 

27rBiAo << 1. (238) 

It is clear from (237) that  the series (237) may  not 
converge for all values of t. However, if the significant 
values of the  output  are confined to  an  interval of duration 
To one may change (237) to  the inequality 

27rToPo << 1. (239) 

If the finite Taylor series 

is  used in (19), one readily finds that for the WSSUS 
channel the average magnitude squared error incurred by 
using terms up  to m = M - 1 and n = N - 1 is bounded 
by 

fZMvzN&,  Y) d t  dv (241) 

where z(f) is a shifted scaled version of the  input  spectrum 
with unit bandwidth and located at  zero frequency, and 
;((, v) is the Scattering  Function [see (74)] associated 
with a shifted scaled version of U(4, v) which is zero out- 
side a unit  square centered at  4 = v = 0. It is assumed 
in (241) that only those values of t are of interest  for 
which It - t0l I To. 

A discussion entirely  dual to  the one above may be 
formulated  by expanding M(t ,  f )  rather  than T(f ,  t )  in a 
Taylor series and using the  resultant series to derive a 
series expansion for the  output spectrum. Because the 
analytical procedure is identical to  that above, except for 
a replacement of functions  and variables by  their duals, 
we shall not present these derivations. We note, however, 
that  the resulting channel model, which we call the tf- 
Power Series Model may be obtained by using the t-Power 
Series Model of Fig. 29, with each filter represented by the 
f-Power Series Model of Fig. 28. 


