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Fast Adaptive Digital Equalization
by Recurrent Neural Networks

Raffaele Parisi, Elio D. Di Claudio, Gianni Orlandi, and Bhaskar D. Rao

Abstract—In recent years, neural networks (NN’s) have been n(k)
extensively applied to many signal processing problems. In par-
ticular, due to their capacity to form complex decision regions,
NN’s have been successfully used in adaptive equalization of
digital communication channels. The mean square error (MSE) (k)= channel PRGN
criterion, which is usually adopted in neural learning, is not uk) uk
directly related to the minimization of the classification error, i.e.,
bit error rate (BER), which is of interest in channel equalization.
Moreover, common gradient-based learning techniques are often

characterized by slow speed of convergence and numerical ill jn saturation, converters, .). The objective of equalization is

conditioning. In this paper, we introduce a novel approach to .
learning in recurrent neural networks (RNN's) that exploits to reconstruct the transmitted sequence and combat the effects

the principle of discriminative learning minimizing an error ~ Of ISI and noise.

functional that is a direct measure of the classification error. The equalization problem can be viewed from two different
The proposed method extends to RNN's a technique applied with viewpoints. Traditionally, equalization has been considered
success to fast learning of feedforward NN's and is based on the ¢qjiyalent to inverse filtering of the channel; this corresponds
descent of the error functional in the space of the linear combi- . . .

nations of the neurons (theneuron spacg its main features are to decpnvolvmg the received sequence in olrde.r to reconstruct
higher speed of convergence and better numerical conditioning the original message; therefore, the combination of channel

w.r.t. gradient-based approaches, whereas numerical stability is and equalizer should be as close as possible to an ideal delay
assured by the use of robust least squares solvers. Experimentsfynction [2], [24].

e e oo o hosavisess_ ferent approach considers equalizaton assifca-
of the proposed approach. tion problem [15], in which the objective is the separation
of the received symbols in the output signal space. In this
case, the full inversion of the channel is not required, and the
problem can be cast in the general framework of classification

DAPTIVE channel equalization is a major issue in digitalechniques.

communications [2], [4], [24]. Fig. 1 depicts the typical From both points of view, the NN approach to equalization
digital baseband transmission system; the channel model takesvell justified: in the first case, NN capability as universal
into account the effects of the transmitter, the transmissifumction approximators [9] could be exploited; in the second, it
medium, and the receiver and is usually represented byisahe well-known NN ability to perform classification tasks by
finite impulse response (FIR) filter. The input to the chann@drming complex nonlinear decision boundaries. In particular,
is assumed to be a sequenggk)} of independent symbols it can be shown that feedforward NN's [25] can implement
extracted from a specified alphabet; the channel outp(it)}  the maximuma posterioriprobability (MAP) symbol decision
is corrupted by noisgn(k)} and is usually modeled as anequalizer [22]. For all these reasons, in recent years, NN's
additive Gaussian white process. The transmission channel gage been successfully applied to the equalization problem. In
be affected by both linear and nonlinear distortion; in the firﬁarticular, recurrent NN’s (RNN's) [25] are attractive for the
case, intersymbol interference (ISI) occurs as aconsequencg,@‘sence of feedback and their small size [26].
the limited bandwidth of the channel and consists of spreadingThe choice of the particular equalizer involves both the
of the received symbol energy through several time intervalgchitecture and the training algorithm. Linear equalizers have
In the second case, the chgnnel cannot be cor_l_sidered Iing@én used for long time, mainly due to their simplicity and
due to the presence of nonlinear devices (amplifiers workiRgeoretical tractability; for many typical situations, the use of
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error but rather to the quality of system identification. Ito equalize the channel, it is sufficient to ensure that the
[19], a new error functional has been proposed that takdscision on the equalizer output is correct. This means that
directly into account the classification error; the new methagualization can be viewed also asgaometricalproblem,
has been successfully applied to general classifier structucessisting of correctly establishing the boundaries of the
and, in particular, to NN’s. Authors called this approacHecision regions in the output signal space. This interpretation
discriminative learning was first pointed out in [13] and [15] and corresponds to
The determination of equalizer weights is essentially aronsidering equalization as a classification problem. The use
optimization issue. Today, high-speed data transmission ow#iNN's is justified by noting that in most cases, the boundaries
distorting channels is a commonly encountered situation; fast the optimal decision regions are highly nonlinear, thus
optimization methods for the design of the “optimal” equalizeequiring the use of nonlinear classifiers, even with linear
are thus required. In the case of a “neural equalizer,” dgbannels.
to its inherently nonlinear nature, the need of fast and stableMany possible approaches to neural equalization have been
training algorithms is particularly important. Many differenideveloped in the last few years. Kirklamd al. [20] applied
approaches to NN learning exist. The main problems afeedforward NN’'s to equalize the digital microwave radio
usually the slow rate of convergence and the occurrence abfannel in the presence of multipath fading.
local minima; both these drawbacks are essentially due to thePenget al.[21] modified the nonlinear activation function of
high degree of nonlinearity of the error surface. Moreover, the classical multilayer perceptron in order to take into account
recent analysis [23] has demonstrated that learning in NNSgjnals typically encountered, namely, PAM and QAM.
is very often an ill-conditioned problem since the Hessian Kechriotis et al. [26] applied fully recurrent NN’s trained
matrix [6] is badly ill conditioned,; this implies that a maximumwith the real-time recurrent-learning algorithm (RTRL) [25]
likelihood (ML) weight identification problem may suffer fromto the equalization of nonminimum phase, partial response,
lack of information (e.g., th&isher's information matrixnay and nonlinear channels; they compared their neural equalizer
be nearly singular [3], [17]). to linear FIR equalizers trained with the Kalman algorithm.
Most common learning techniques involve the use of thdoreover, with a proper modification of the error functional,
gradient of the specified error functional (likackpropagation they extended their analysis to the case of blind equalization
[5] in feedforward NN's). Gradient-based approaches, even[if7].
they are computationally simpler, are characterized by low Changet al. [27] introduced a neural-based decision feed-
rates of convergence and may not be suitable in applicatidfeck equalizer to perform equalization of indoor radio channel.
where fast convergence is required. In analogy with thEhe new structure advantageously compares to the classical
signal processing field, least squares (LS) methods couldcision feedback equalizer [24].
be envisaged to speed up convergence; in any event, thén [28], a wavelet NN [18] trained with the recursive least
application of LS concepts to highly nonlinear structures likequares (RLS) algorithm [17] was used to equalize a nonlinear
NN’s requires an appropriate treatment. transmission channel. Later, the same authors successfully
In the present paper, we introduce a novel LS-based leagpplied their idea to satellite channels [30].
ing method for fully recurrent networks that minimizes the Al-Mashouget al. [29] used a feedforward NN to perform
classification error through application of the discriminativBoth equalization and decoding in the presence of severe
learning criterion. The proposed approach is able to provi@l conditions; their equalizer outperforms classical structures
higher speed of convergence w.r.t. gradient-based solutiofifmed by cascading a linear equalizer and a decoder.
moreover, it overcomes the difficulties related with ill con- All these papers showed that NN’'s can be successfully
ditioning that is typical of NN learning, giving learningapplied to the problem of equalization; in particular, recur-
procedures that are numerically stable and robust. The rent NN's are characterized by feedback, which makes them
sulting discriminative least squarefDLS) learning approach attractive in the presence of channels with deep spectral nulls
can be successfully applied to the problem of digital equgbe].
ization. In the following, we review some neural approaches As a matter of fact, most training algorithms for RNN’s are
to equalization present in the literature (Section Il), and wgradient-based, and this is in contrast with the requirements
introduce the new method, which takes into account bo@i fast equalization. For an extensive review of gradient-based
the requirements of minimum classification error and highpproaches to the training of dynamic RNN’s, see [31].
speed of convergence (Section Ill). Finally, we apply it to The interpretation of channel equalization as classification in
the equalization of PAM signals in some typical transmissiogymbol space [22] also enables the use of neural architectures
channels (Section IV). that make use of explicit clustering of input patterns during
learning, such as radial basis function (RBF) and wavelet
networks [18], [25].
The signal processing field has inspired a number of neural
Traditional approaches consider equalization to be an ilearning techniques; in particular, the analogy with adaptive
verse filtering problem, and the equalizer should approximdtiers has led researchers to consider the use of LS concepts
the inverse of the distorting channel. This approach in digited speed up learning in feedforward architectures. Several
communications can be more complex than necessary; dpproaches of this kind have been presented in the literature,
to the quantized nature of the transmitted symbols, in ordend a review can be found in [33].

Il. NEURAL APPROACHES TOEQUALIZATION
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In the following, a new LS-based fast approach to the train-
ing of recurrent NN’s is introduced; the described algorithm z
extends to recurrent structures the concepnhefiron space

descent proposed in [33]. Taking into account the objective ]
of direct minimization of the classification error, the new

is i - <D
approach is interpreted as a supervised symbol clustering internal outout A
procedure, coupled with a statistically robust LS fitting [1], that " layer laygr :> s(k)
can be successfully applied to the digital equalization problem. u( ):> x(k)

1. NOVEL APPROACH DISCRIMINATIVE Fig. 2. Scheme of the RNN used as equalizer.

LEAST SQUARES (DLS) LEARNING

As already pointed out, two main issues are considerifnerel; is a differentiable zero-one function, like a sigmoid
in this paper: the choice of a proper error functional, whicA” an exponential. The objective of leaming is thus the
takes directly into account the objective of minimum errofinimization of the error functlo_nali w.r.t. the weights, _
classification, and the need of fast convergence procedureséfch can be performed by applying well-known methods in

high-rate digital equalization. Let us consider these aspe@{imization theory. o .
separately. This formulation allows us to express the minimum classi-

fication error (orBayes minimum rigkdirectly in terms of the
functionals!; when the discriminant functiong;(z, w) give
exactly thea posterioriprobability of theith class giverx; this
In this section, we briefly recall the fundamental conceptgeans that the minimum classification probability objective is
of discriminative learning introduced in [19] and which willconditioned on the choice of the correct discriminant functions.
be used in the following; interested readers can refer to [18]ie to their function approximation capabilities, NN's with
for more details. the proper number of units are potentially able to converge to
Learning in NN's consists of the minimization of a specifieéhe true minimum Bayes risk [19]. The application of this new
error functional, whose choice depends on the particular taghproach to multilayer perceptrons has led to positive results in
under consideration; the most common choice is the MSgassification and speech recognition experiments, solving the
which offers desirable properties of smoothness and mathematonsistency between an MSE-based learning and the desired
ical tractability. For classification purposes, the minimizatiominimization of the misclassification probability [19].
of the MSE can be inconsistent with the objective of minimum
error probability [19]. The need for a smooth and differentiablg, | east Squares Learning Algorithm
error functional, depending on the probability of misclassifi- L . . o
S : e P Learning in NN’s is a nonlinear optimization problem. The
cation involved in the decision process, can be satisfied in tggtermination of the oot X :
. ptimal weights for the task of interest
following way. is, performed by a proper algorithm of descent on the surface
Suppose that the aim of training is to associate an inpélt

patternz to one of A possible classes. As a first stefd gfmed by the specified error fungtlonEt in this work, we
o . . will adopt for £ the expression given by (2). The learning
discriminant functiongy;(z, w), depending on the parameters . . -
. ) ethod proposed in this paper is based on the separability of
w, are introduced; they can be, for example, the outputs of a : . : . )
. the neuron model in a linear and a nonlinear part. This partic-
NN, whereasw can be the network weight vector.

The second step is the choice of an appropriate miscléjslar feature allows to apply linear LS techniques with a proper

sification measure, which is continuous with respect to ﬂgéeIIrrc?;r(]:zré;::r?;nznégctr?iiSr?rc]nl;rltﬁ?srmZz;:t;?ﬂgphgg?ﬁihe
weightsw; a possible definition is pp P 9

case of feedforward NN’s has been given in [33]; in particular,
it has been demonstrated that the neuron space approach is

A. Discriminative Learning

1/ i " . i
1 p g equivalent to anodified Newton’s methd@] in weight space,
di(z) = —gi(2, W)+ 4 77— > di(zw) (1) where a proper well-conditioned approximation of the Hessian
Js g7 is used. In this section, we show how this approach can be

extended to RNN’s, giving the high convergence rates needed
where . is a positive number. Equation (1) gives a measuig fast equalization. A preliminary description of the algorithm
of the classification error when the input belongs to thgan be found in [32].
ith class; in the simple case of two classes, it reduces to1) The Network Model:The structure being considered is
the difference between the outputs; therefodg(z) > 0 depicted in Fig. 2 and consists of a fully connected RNN
means misclassification, wheredgz) < 0 implies a correct in cascade to a feedforward network. In the following, we

decision.. _ . . _ will refer to the case in which both the recurrent and the
As a third step, the following error functional is defined afeedforward parts consist of a single layer of memoryless
a function of the misclassification measure. nonlinearities. This structure is similar to the Elman net [12],

with the addition of the feedforward part having the role of
li(z,w) =;[di(z)] (2) decisor.
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The network implements the following nonlinear discrete3-matrix Y containing the linear outputs of the generic layer
time dynamical system.

y* (k)
{ 2((/];)) - Z) [[:((/]z)]_ P (3) Y(k:k+h—1)= YT(F_ * 1) @®)
vy (k+h-1)

where¢ andz are the functionals modeled by the internal and

the output sections, respectively, angk), u(k), ands(k) are  y can refer either to the internal or to the output layer.
column vectprs representing, respectwe_ly,sktﬂeof the net, At the beginning of each epoch, it is supposed that weight
the external input (e.g., channel outgunoise), and the output matricesw; and W, were either set by a previous iteration of
(e.g., estimated symbol) at time(k = 1,2,--). the algorithm or properly initialized from scratch. The initial
U_slng a matrix formulation, forward propagation throughtate x(k — 1) and the input matrix for the present epoch
the internal and the output blocks can be represented by U(k : k+h— 1) are also assumed known. Forward equations
T T _.T (4) and (5) are then used to compute matrik&s : k+h—1
{ X' (k—=1) 1 u'(k)]W;=y; (k) (4) andY(k : k + h — 1), thus establishing eilxi:{onsistent sgt of
x(k) = flyi(k)] input-state and state-output relationships.
3) The Neuron Space Approacfthe neuron space ap-
proach consists of two steps. The first step estimates the
xT(k) 1]W, =yl (k) 5) “optimal” Y for each layer by performing a descent of the
§(k) = flyo(k)] error surface in the space of tlyés (the neuron space This
can be accomplished by introducing a progdaection matrix
respectively. In the preceding formuld®/; and W, are the D, as described by
weight matrices of the internal and the output sectighsand
y, are the outputs of the linear combinations (e.g., the input¥ (k: k+h—1) =Y (k: k+h—-1)+nD(k: k+h—1) (9)
of the nonlinearities), 1 is the bias input, afigs a place holder
for the selected neuron activation sigmoidal-type function. wherer is the step-sizg6], which is also called théearning
Learning in recurrent networks can be performed followate in the neural field. Different choices @ are possible, as
ing several possible approaches. Among them the Real-Tifg&nown from optimization theory [6]. The simplest choice is
Recurrent-Learning (RTRL) is probably the most popular [8}he opposite of thgradient matrix VyE; in this case, we get
it consists in the minimization of the error functional based on .
an instantaneous estimate of the gradient, and gives a structure Y(k:k+h—-1)=Y(k:k+h—1) - n\E.  (10)
operating in real time. . ) ) )
The approach herein described gets inspiration frontithe At each |te_ra}t|on, the grladlenAt of the.error is subtracted to the
unfoldingtechnique [25], which expands the network througRctu@lY, giving the estimateY” (gradient descenin neuron
a number of subsequent time steps. Learning on the unfolRR{Ce). The expressions for the partial derivativef afn be
network could be performed by tHeackpropagation through obta_med by applying the chain rule of derivatives [5], [25].
time (BPTT) approach [11], which is an extension of the Wlth_respect to feedforward NN’s _[33]_, a proper treatment
classical backpropagation algorithm to recurrent architecturdsrequired by the state variables, which in the next step are
this method is in contrast with the on-line requirements of tHgd Pack to the input. Namely, we compute a set of perturbed

training process. We propose a different solution that, althoug$ from
it is on-line, has been demonstrated to provide higher rate of
convergence and better numerical properties w.r.t. gradient-

based solutions [33]. The second step is the computation of the new weights; after an
2) Definitions: We first describe the epochwise form of the € seconc step Is the computation ot the new Weights, after a
ntire epoch, the following systems are solved in the LS sense

algorithm; later, we will show how the update of the weight r the weight matrices of the internal and output sections
can be made in real time. Referring to a single epoch of Iengfﬁ 9 P '

and

X(k:k+h—=1)=f[Y(k:k+h—-1)] (11)

h, we introduce the following matrices: & new
! . - . X(k—1: -2) 1 : -1 .
1-matrix U, containing the external inputs [X(k . kt+h-2) Uk kbt h = 1) W
. =Y, (k:k+h-1) (12)
o W ) X(k:k+h—1) 1]Wie
Uk:k+h-1)= ; (6) =Y, (k:k+h-1). (13)
ul(k+h-1) ) . .
. o . After weights have been computed, a new input is presented,
2-matrix X containing the internal states and the algorithm proceeds. At the beginning, both the weights
T(1. _ and the state are initialized to small random values; this has
xt(k-1)
xT (k) been proven effective during simulations.
X(k—=1:k4+h-2)= ; @)

T '” 1The gradient matrixVvyE is defined by{VvyE}:; = 0E/dy;;, where
x' (k+h—2) y;; are the elements of the matri.
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4) Remarks: The perturbation of the state expressed by (10. Neural Classification as Multiple Robust
is consistent with the approach followed for the summatidreast Squares Fitting

variablesy’s. It can be viewed as an example @fordinate In this section, we will briefly show how the proposed

descentmethod [6], which sequentially minimizes the errope,ra| approach to digital equalization can be embodied in
with respect to different subsets of unknowns; in this sens@e framework ofrobust LS fitting[1].

the learning process is a sequence of steps in yvhich weightShe neuron space approach fits in a LS manner the back-
and state variables are alternately corrected until convergeneEnagated residuals over the forward propagated inputs at

is reached. , each layer in order to update the weights [5], [33].
The neuron space method is based on the proper perturbaygever, the classification problem also has a striking

tion of an epochof consistent system equations [see (10)}asemplance also with the robust LS fitting problem. In robust
followed by a LS fitting procedure [(12) and (13)], which g = «target signals” belong to a mixture of two different
aims to restore consistency after the perturbation by changig@iiputions, only one of which is of interest for modeling,

neuron weights. Systems (12) and (13) can be solved by 3f)ereas the other is eontaminating unknown distribution
LS algorithm, like the QR or the singular value decompositiongiihin a gross-error assumption [1].

[7]. Readers interested in local convergence issues may refey, equalization problems, we are dealing instead with a

to [33]. Here, we make several remarks. mixture ofseveraldistributions, each generated by one symbol

1) Any local minimum of the chosen error functional W.r.tsequence projected onto the output Signa| space. On|y one
weights is also atable pointfor the descent equationsdistribution at a time is present at the equalizer output and is
in the neuron space since the sequence of instantaneggiterest for the definition of the optimal decision boundaries
gradient estimates in the neuron space becomes stati®), [22]. At the beginning of learning, the neuron weights
tically orthogonal to the columns of system matrices igre far from optimal values, and large errors are present
LS equation sets [1], [17]. at the network outputs, which can fool or slow down the

2) The descent in the neuron space is mathematicalgscent when using a Newton-type algorithm [6], [33]. Explicit
equivalent to anodified Newton’s methadith a block-  clustering of the input space (like in classical RBF network
shaped positive semidefinite (and almost always positi#@ining [25]) may help to attain convergence, but it can be
definite) matrix playing the role of the Hessian [33]. s|ow.

3) The mathematical properties of this matrix near a local A well-known alternative approach for qu|Ck|y fitting (|n
minimum are directly determined by treensitivityof the LS sense) data drawn from a mixture is to recognize
the error functional w.r.t. weights, as expected asympyell-behaved equations having relatively small fitting er-
toptically in a well-posed ML identification problemrors and use them only for optimization; the others are
[3]. discarded by means of adaptivaderweightingf error resid-

5) Block Recursive Least Squares (BRLS) Solutibmthis uals (iteratively reweighted LS, IRLS) [1], [10], [14]. Neuron
section, we show how by use of a QR-based RLS solutioonlinearities and the backpropagation formula [5], in fact,
[17], the algorithm can be rendered on-line (e/g= 1 can play together the role of thénfluence functionsused in
be chosen). Suppose that at the genékie 1)th step, the QR robust LS fitting. The derivative of a sigmoidal-type activation
decomposition [7] of the solving system has been computddnction is bell-shaped around the bias term and underweights
then, the new input at timk can be appended to the triangulaany backpropagated error that exceeds the range of the nonlin-
factor R, and the following system formed for the generi@arity. Outputs belonging to different but statistically separable
layer. distributions produce significant backpropagated errors (and

weight changes) only in those neurons that are involved in the

determination of the decision boundaries.
{ A2R(E = 1) AY/2C(k)

(1= N2 (k) } W= {(1 - A)l/QyT(k)} - (14

IV. EXPERIMENTAL RESULTS
In preceding formula, vectow(k) is defined asz(k) =

[%T(k—1) 1 uZ(k)]" forthe internal layer and ag k) =
[xT(k) 1]* for the output layer;\ is a properforgetting
factor. Initially, R(0) = diag{¢}, wheree is a small number,
and C(1) = 0.

During learning, matrixC(k) is computed by multiplication

In this section, we describe the results obtained by ap-
plying the proposed approach to the equalization of typical
linear and nonlinear channels. In particular, we considered
some test channels described in [26], where a gradient-based
approach—real time recurrent learning (RTRL)—was used.
Simulations have been set up so that results can be compared
directly with those reported in [26]. We will consider for
C(k) . AY2C(k - 1) simplicity the case of 2-PAM signals where symbols are

[ } =Q (k-1)- {(1 ZOY2T (= 1) (15) randomly extracted from the alphabgt1,1}; extension to
higher signal constellations is possible by using the complex
model for the neuron [16]. In all the experiments, a network

where matrixQ(k — 1) comes from the QR decomposition ofwith three recurrent units and two outputs and the values
the coefficient matrix at the preceding step. 7n = 20 and A = 0.999 of the learning parameters were used.
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Fig. 3. ChannelH;(z) = 1+ 0.7z—!. Plot of the decimal logarithm of the BER versus the SNR. o: after 20 samples in the learning phase. x:
after 50 samplesx: after 100 samples.
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Fig. 4. ChannelH,(z) = 0.3482 + 0.8704z~! + 0.3482272. Plot of the decimal logarithm of the BER versus the SNR. o: after 100 samples in the
learning phase. x: after 200 samples. after 300 samples+: after 500 samples.

Experiment 1:In the first test, we considered a channelarying the length of the training phase. These curves can be
with transfer functionH;(z) = 1 + 0.7271; this is a simple directly compared with those presented in [26], where 2000
minimum-phase channel that can be used as a preliminagmbols were used for learning; it can be seen that the new
test. The networks were trained with sequences of 20, 50 amgproach is able to provide the same performance with only
100 symbols at different noise levels; the BER for each valu®0 samples. No cases of ill-convergence were observed.
of signal-to-noise ratio (SNR) was evaluated dd® more Experiment 2: The second example is a linear
received symbols and averaged over 20 realizations. Fign8hminimum-phase channel with  transfer  function
shows the curves of the average BER versus the SNR while(z) = 0.3482 + 0.87042~! + 0.3482272%; as pointed
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Fig. 5. ChannelHs(z) = 1 — 2z~! + 272, Plot of the decimal logarithm of the BER versus the SNR. o: after 50 samples in the learning phase.
x: after 100 samples.

log10(BER)

5 10 15 20
SNR (dB)

Fig. 6. Nonlinear channel. Plot of the decimal logarithm of the BER versus the SNR. o: after 500 samples in the learning phase. x: after 1000 samples.

out in [26], this type of channel is closer to those encounterdthis channel has a double zero on the unit circle; the problem
in real communication systems. Learning was performed @ badly ill conditioned due to the minimax property of the
sequences of 100, 200, 300, and 500 samples. Fig. 4 depétenvalues of the correlation matrix of received signals and
the curves of the mean BER versus the SNR. With respecttlee small energy available at frequencies near the nulls of the
the gradient approach of [26], the proposed method is ablettansfer function [17]. It is well known that gradient-based
substantially reduce the number of training samples requiregtthods have in this case serious problems of convergence
to get the same BER. In addition, in this case, convergen@3]. The robustness of the proposed approach in this situation
was reached in all trials, demonstrating the robustness isfinstead confirmed by Fig. 5, showing the average BER
the proposed method. curves obtained after 50 and 100 samples in the training phase.
Experiment 3: As a third test, we considered the partiaWith respect to the curves depicted in [26], the new method is
response channel described Bs(») = 1 — 227! + 272,  able to get superior performance in terms of both the number
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of samples necessary and the minimum SNR to get a prefix@gscent procedure. The MSE is not necessarily related with the
BER (12.5 dB against 20 dB to obtain BER 10~3). The classification error—bit error rate (BER)—that is considered
performance improvement may be explained by the highier equalization problems; moreover, the use of gradient-
speed of convergence of second-order methods and the gbaded learning techniques is often hampered by slow speed
numerical conditioning of the proposed approach [6] [33]. of convergence and numerical ill conditioning. Overcoming

Experiment 4: The last experiment deals with a typicathese difficulties, the proposed method minimizes an error
nonlinear channel (see [26]), The network inputk) is functional that is a direct measure of the BER. Moreover,
described by:(k) = @(k)+0.24%(k)+n(k), wherei(k) isthe the determination of the optimal weights is performed by a
output of the linear channdll>(z) = 0.3482 + 0.87042—* + procedure gradient descent in neuron spadaat is faster and
0.3482272. In addition, in this case, the BRLS algorithmnumerically more stable and robust with respect to traditional
requires a lower number of iterations (500 versus 2000) ¢wadient-based schemes. Experimental tests conducted on
get about the same performance of RTRL in terms of BERPAM signals for different channels have confirmed the better
(Fig. 6). performance of the novel algorithm.

Some performance issues should be addressed in detail,

namely, the practical requirements for fast learning, the com-
putational cost per training and the regularity of the algorithm

dependence graph. Most equalizers work in real time in thg,
presence of nonstationary channels (mobile radio, cellulde]

telephone,...). Efficiency in data transmission also requires 3]

REFERENCES

P. J. HuberRobust Statistics. New York: Wiley, 1981.

J. G. Proakis,Digital Communications. New York: McGraw-Hill,
1983.

A. Papoulis,Probability, Random Variables, and Stochastic Processes,

that a small percentage of symbols is used as a preamble for 2nd ed. New York: McGraw-Hill, 1984.

training; therefore, high rate of convergence is a prerequisité!

for the functionality of the equalizer. The proposed architecturg, é??;'Rumelhart G. E. Hinton. and R. G. Williams

S. U. H. Qureshi, “Adaptive equalizationProc. IEEE vol. 73, Sept.

“Learning internal

exhibits a convergence speed of the same order as traditional representations by error propagation,”Rarallel Distributed Process-
linear equalizers so that message structure and communication ing: Exploration in the Microstructure of Cognitiol. E. Rumelhart and

efficiency can be both preserved even in demanding packet and

mobile radio applications. The computational cost per iteratiois]
of a Newton-type algorithm is higher than that of gradient-
based approaches. Nevertheless, as shown in [33], since
total number of iterations necessary for the convergence I8l
much lower, the overall cost for the training is reduced.
In addition, the RTRL algorithm is known to be relatively [9]
expensive [31]; in fact, given a fully connected neuron layer
having N inputs andM outputs, at each time step, the forwar(ﬁlo]
propagation, the gradient computation, the weight update,
and each relaxation stepequire allO(M N) operations. The [11]
discriminative LS algorithm computes instead the new weights
by QR updating and back substitution, each haviig/ N?)  [12]
complexity [7]. We remark that RTRL requir€(N') average [13]
iterations for each weight computation; therefore, its order of
complexity reaches just that of the LS approach, without giving
the benefits of super linear convergence rate [33]! 14l
A disadvantage of Newton-type algorithms is the peak
computing power required to the processor during learning.
However, the dependence graph of the proposed algorithim,
which is based on QR decomposition and back substitution, is
amenable to regular implementation on parallel array procd&¢!
sors [17]. In addition, the demodulation task after learning g7
simply the forward propagation pass through the network and

does not require dedicated hardware. It can be also noted &

all experimental tests were performed with a fixed learningoj

rate, thus enabling an effective parallel processing. 20]

V. CONCLUSION [21]

This paper has introduced a new approach to adaptive digital
channel equalization that makes use of recurrent neural net-
X inimizatiad

works. Previous approaches were based on the m|n|m|zat{o
of the mean square error (MSE) performed by a gradient

J. L. McLelland, Eds.
vol. 1.

D. G. Luenbergerlinear and Nonlinear Programmin@nd ed. Read-
ing, MA: Addison-Wesley, 1989.

Cambridge, MA: MIT Press/Bradford, 1986,

ter]e G. H. Golub and C. F. Van Loaratrix Computations. Baltimore,
M

D: Johns Hopkins Univ. Press, 1989.
R. J. Wiliams and D. Zipser, “A learning algorithm for continually
running fully recurrent neural networksNeural Comput.vol. 1, pp.
270-280, 1989.
G. Cybenko, “Approximations by superpositions of a sigmoidal func-
tion,” Math. Contr. Signals Systvol. 2, no. 4, 1989.
L. P. Ammann, “Statistically robust signal subspace identification,” in
Proc. Int. Conf. Acoust., Speech, Signal Process., ICAS9P1, pp.
2711-2714.
R. J. Williams and J. Peng, “An efficient gradient-based algorithm for
on-line training of recurrent network trajectorie®Néural Comput.vol.
1, pp. 270-280.
J. L. Elman, “Finding structure in time,Cognitive Sci. vol. 14, pp.
179-211, 1990.
S. Chen, G. J. Gibson, C. F. N. Cowan, and P. M. Grant, “Adaptive
equalization of finite nonlinear channels using multilayer perceptrons,”
Signal Process.vol. 20, pp. 107-119, 1990.
E. D. Di Claudio, G. Orlandi, F. Piazza, and A. Uncini, “Optimal
weighted LS AR estimation in presence of impulsive noise,Pioc.
Int. Conf. Acoust., Speech, Signal Process., ICAS8&y 1991, pp.
3149-3152.
G. J. Gibson, S. Siu, and C. F. N. Cowan, “The application of nonlinear
structures to the reconstruction of binary signal§EE Trans. Signal
Processing vol. 39, Aug. 1991.
H. Leung and S. Haykin, “The complex backpropagation algorithm,”
IEEE Trans. Signal Processingpl. 39, no. 9, Sept. 1991.
S. Haykin, Adaptive Filter Theory,2nd ed. Englewood Cliffs, NJ:
Prentice-Hall, 1991.
Q. Zhang and A. Benveniste, “Wavelet networkdlEE Trans. Neural
Networks vol. 3, Nov. 1992.
B. H. Juang and S. Katagiri, “Discriminative learning for minimum error
classification,”IEEE Trans. Signal Processingol. 40, Dec. 1992.
W. R. Kirkland and D. P. Taylor, “On the application of feedforward
neural networks to channel equalization,’Hroc. IJCNN Int. Joint Conf.
Neural Networks New York, 1992.
M. Peng, C. L. Nikias, and J. G. Proakis, “Adaptive equalization
with neural networks: New multilayer perceptron structures and their
evaluation,” inProc. ICASSP’92 IEEE Int. Conf. Acoust., Speech Signal
Processing New York, 1992.
S. Chen, B. Mulgrew, and S. McLaughlin, “Adaptive bayesian equalizer
with decision feedback,JEEE Trans. Signal Processingol. 41, Sept.
1993.



PARISI et al: FAST ADAPTIVE DIGITAL EQUALIZATION BY RECURRENT NEURAL NETWORKS

(23]

[24]
[25]

[26]

[27]

(28]

[29]

(30]

(31]

(32]

(33]

Trans. Neural Networksyol. 7, Nov. 1996.

S. Saarinen, R. Bramley, and G. Cybenko, “lll-conditioning in neure'
network training problems,SIAM J. Sci. Computyol. 14, no. 3, pp.
693-714, May 1993.

E. A. Lee and D. G. Messerschmifdigital Communication. Boston,
MA: Kluwer, 1994.

S. Haykin, Neural Networks—A Comprehensive Foundatiohlew
York: IEEE, 1994.

G. Kechriotis, E. Zervas, and E. S. Manolakos, “Using recurrer
neural networks for adaptive communication channel equalizatior
IEEE Trans. Neural Networks/ol. 5, Mar. 1994.

P. R. Chang, B. F. Yeh, and C. C. Chang, “Adaptive packet equalizati
for indoor radio channel using multilayer neural networkEEE Trans.
Veh. Techno].vol. 43, Aug. 1994.

P. R. Chang and B. F. Yeh, “Nonlinear communication channel equal-
ization using wavelet neural networksProc. IEEE Int. Conf. Neural
Networks New York, 1994.

K. A. Al-Mashouqg and I. S. Reed, “The use of neural nets to com-
bine equalization with decoding for severe intersymbol interferenc~
channels,”IEEE Trans. Neural Networksjol. 5, Nov. 1994.

P. R. Chang and B. C. Wang, “Adaptive decision feedback equalizati
for digital satellite channels using multilayer neural networkEEE J.
Select. Areas Communvol. 13, Feb. 1995.

B. A. Pearimutter, “Gradient calculations for dynamic recurrent neur:
networks: a survey,JEEE Trans. Neural Networksol. 6, Sept. 1994.
R. Parisi, E. D. Di Claudio, A. Rapagnetta, and G. Orlandi, “Recursiv
least squares approach to learning in recurrent neural network3dm
Int. Conf. Neural Networks ICNNWashington, D.C., June 3-6, 1996.
R. Parisi, E. D. Di Claudio, G. Orlandi, and B. D. Rao, “A generalize
learning paradigm exploiting the structure of neural networkSEE  communication, University of Rome “La Sapienza.” His research interests are
in the areas of circuit theory, spectral estimation, array processing, parallel

~

%

2739

Elio D. Di Claudio received the degree with honors
in electrical engineering from the University of
Ancona, ltaly, in 1986.

He is currently a researcher at the INFOCOM
Department, University of Rome, “La Sapienza,”
Rome, Italy. From 1986 to 1990, he was with Telet-
tra S.p.A. Company, Chieti, Italy, where he worked
on spread-spectrum telecommunication equipment
and digital signal processing algorithms. From 1990
to 1991, he was with Elasis S.c.p.A. Company.
His current interests are in the fields of parallel

algorithms for signal processing, parallel architectures for VLSI, spectral
estimation, neural networks, and array processing.

Gianni Orlandi received the degree in electri-
cal engineering from the University of Rome “La
Sapienza,” Rome, Italy, in 1972.

Since 1978, he has been with the University of
Rome “La Sapienza,” first as an Assistant Profes-
sor and, from 1983, as an Associate Professor of
Electrical Engineering. From 1986 to 1989, he was
Full Professor with the Department of Electronics
and Automation, University of Ancona, Italy, and
since 1989, he has been Full Professor of Electrical
Engineering with the Department of Information and

algorithms, VLSI parallel architectures and neural networks.

Raffaele Parisireceived the “Laurea” in electrical
engineering with honors in 1991 and the Ph.D
degree in 1995, from the University of Rome “La
Sapienza,” Rome, ltaly.

In 1994, he was a visiting student in the De-
partment of Electrical and Computer Engineering
University of California, San Diego. He is currently
with the University of Rome “La Sapienza,” where
he is a Researcher in the Department of Informatio
and Communication. His research interests are in t

L2l

Prof. Orlandi is President of the Italian Neural Networks Society (SIREN).

Bhaskar D. Rao received the B. Tech. degree
in electronics and electrical communication engi-
neering from the Indian Institute of Technology,
Kharagpur, in 1979 and the M.S. and Ph.D. degrees
from the University of Southern California, Los
Angeles, in 1981 and 1983, respectively.

Since 1983, he has been with the University
of California, San Diego, where he is currently
a Professor in the Department of Electrical and
Computer Engineering. His interests are in the ar-
eas of digital signal processing, estimation theory,

fields of neural networks, optimization theory, andand optimization theory, with applications to communications, biomedical

array processing.

imaging, and speech.



