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Using Recurrent Neural Networks for Adaptive 
Communication Channel Equalization 

G. Kechriotis, E. Zervas, and E. S. Manolakos, Member, ZEEE 

Abstract-Recently, nonlinear adaptive filters based on a vari- 
ety of neural network models have been used successfully for 
system identification and noise-cancellation in a wide class of 
applications. An important problem in data communications is 
that of channel equalization, i.e., the removal of interferences 
introduced by linear or nonlinear message corrupting mecha- 
nisms, so that the originally transmitted symbols can be recovered 
correctly at the receiver. In this paper we introduce an adaptive 
Recurrent Neural Network (RNN) based equalizer whose small 
size and high performance makes it suitable for high-speed 
channel equalization. We propose RNN based structures for 
both trained adaptation and blind equalization, and we evaluate 
their performance via extensive simulations for a variety of 
signal modulations and communication channel models. It is 
shown that the RNN equalizers have comparable performance 
with traditional linear filter based equalizers when the chan- 
nel interferences are relatively mild, and that they outperform 
them by several orders of magnitude when either the channel’s 
transfer function has spectral nulls or severe nonlinear distortion 
is present. In addition, the small-size RNN equalizers, being 
essentially generalized IIR filters, are shown to outperform multi- 
layer perceptron equalizers of larger computational complexity in 
linear and non-linear channel equalization cases. 

I. INTRODUCTION 

HE DEMAND for very high speed efficient data trans- T mission over physical communication channels has been 
substantially increased during the last decade. Communication 
channels are usually modeled as linear filters having a low- 
pass frequency response. If the amplitude and the envelope 
delay response are not constant within the bandwidth (non- 
ideal filters), the channel distorts the transmitted signal in both 
amplitude and delay, causing what is known as intersymbol 
interference (ISI). As a result of this linear distortion the 
transmitted symbols are spread and overlapped over successive 
time intervals. In addition to linear distortion the transmitted 
symbols are subject to other impairments such as thermal 
noise, impulse noise and non-linear distortion arising from 
the modulation/demodulation process, crosstalk interference, 
the use of amplifiers and converters, and the nature of the 
channel itself. All the signal processing techniques used at the 
receiver’s end to combat the introduced channel distortion and 
recover the transmitted symbols are referred to as equalization 
schemes. 

Adaptive equalization is characterized in general by the 
structure of the equalizer, the adaptation algorithm and the 
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use or not of training sequences [l] .  Linear equalization 
employs a linear filter usually with a FIR or lattice structure. 
A Recursive Least Squares (RLS) algorithm or a stochastic 
gradient algorithm, such as the Least Mean Squares (LMS), 
is used to optimize a performance index. When the channel 
has a deep spectral null in its bandwidth, linear equalization 
performs poorly since the equalizer places a high-gain at the 
frequency of the null, thus enhancing the additive noise at 
this frequency band. Decision Feedback Equalization (DFE) 
[I]  can be employed to overcome this limitation. Although 
DFE and other methods, such as the Maximum Likelihood 
(ML) sequence detection [ 2 ] ,  are nonlinear, the nonlinearity 
lies in the way the transmitted sequence is recovered at the 
receiver with the channel model being linear. If nonlinear 
channel distortion is too severe to ignore the aforementioned 
algorithms suffer from a severe performance degradation. 

Among the techniques that have been proposed to address 
the non-linear channel equalization problem are those in 131, 
[4], [ 5 ] ,  that rely on the Volterra series expansion of the 
nonlinear channel. In [ 6 ] ,  [7] the authors used a feedforward 
neural network, a highly nonlinear structure, for the equal- 
ization of linear and nonlinear channels. This neural network 
equalizer was trained to approximate the correct mapping from 
delayed channel outputs to originally transmitted symbols, and 
it was shown that significant performance improvements can 
be achieved. 

In this paper we propose the use of a Recurrent Neural 
Network (RNN) equalizer for the adaptive equalization of 
linear and nonlinear channels. RNNs have feedback, a property 
which makes them attractive for the equalization of nonlinear 
channels with deep spectral nulls. It is shown that RNNs 
of reasonable size have the ability to accurately model the 
inverse of a communication channel with a performance 
superior than that of the traditional equalization algorithms. A 
novel training approach is introduced for blind equalization of 
nonlinear channels, using only a partial set of statistics of the 
transmitted signal. Blind equalization is a particularly useful 
and difficult type of equalization when training sequences 
are undesirable or not feasible, as for example in the case 
of multipoint communication networks. In the absence of a 
training sequence, the only knowledge about the transmitted 
signal is the constellation from which the symbols are drawn. 
Blind equalization schemes such as the Sato [8], the Godard 
[9], the Tricepstrum Equalization Algorithm (TEA) [ IO] ,  the 
Maximum Likelihood joint data and chaniiel estimation 11 11. 
[ 121, algorithms that exploit the cyclostationarity property 
of the transmitted signal, have been developed for linear 
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channels. The use of these algorithms with nonlinear unknown 
channels is questionable. Recurrent Neural Networks on the 
other hand, with their ability to learn nonlinear mappings of 
arbitrary complexity, may be proved invaluable towards the so- 
lution of the challenging non-linear channel blind equalization 
problem. 

The rest of this paper is organized as follows: In Section 
11, the problem of communication channel equalization is 
formulated. In the same section we briefly describe two 
traditional algorithms, the Recursiire Least Squares (Kalman, 
RLS) [ I ]  and the Constant Modulus Algorithm (CMA) (131, 
for trained adaptation and blind equalization respectively, 
which we will use for comparisons with the proposed equal- 
ization schemes. In Section I11 we briefly review the basic 
principles of Recurrent Neural Networks as well as the Real- 
Time Recurrent Learning (RTRL) algorithm [14j and the 
Complex Real-Time Recurrent Leaming (CRTRL) [ 151 we 
used for their training. In Section IV we describe the proposed 
trained adaptation RNN based equalizer and we evaluate its 
performance via simulations for both linear and nonlinear 
channels. Sections V and VI discuss the RNN blind equalizer 
and present simulation results for several linear and nonlinear 
channels as well. Finally, Section VI1 summarizes our findings 
and ends by pointing to further research directions. 

11. PROBLEM STATEMENT: EXISTING ALGORITHMS 

The problem of channel equalization can be formulated as 
follows: A sequence of symbols z = {x[O], :c[l], x : [ 2 ] ,  . . . }  
is transmitted through a channel h. The channel h is modeled 
either as a linear operator, in which case the output of the 
channel y is simply the convolution of the input sequence z 
with h, (y = h * z), or as a nonlinear operator, in which case 
we denote the output of the channel as y = h(z). The channel 
noise is usually modeled as additive zero mean Gaussian, 
such that the input sequence at the receiver is i j  = y + n. 
The purpose of the equalizer c is to reconstruct the originally 
transmitted sequence z, or at least a delayed and/or phase 
shifted version of it. Thus, in the absence of noise, ideal 
equalization implies that 3 = c(i j )  = SD * ( & @ E ) ,  where 0 is 
a constant phase shift, and 6,[t] = 1 for t = D and h,[t] = 0 
for t # D. 

Existing equalization techniques employ a linear filter equal- 
izer c,whose coefficients are being adjusted to match the 
channel Characteristics. Depending on whether the equalizer 
knows the originally transmitted sequence z or not, it is char- 
acterized as trained adaptation or blind equalizer respectively. 
The most widely used algorithm for linear trained adaptation 
equalizers is the Recursive Least Squares (RLS), or Kalman 
algorithm. A linear filter of sufficient length N is used at the 
output of the channel, such that the estimate of the transmitted 
symbol at time t is given by: 

A -  1 

:E:[t] = C k l j [ t  - k] = cTij&] 
k=O 

T where, c = [CO (:I . . .  C N - ~ ]  and jj,[t] = [4[t] $[t  - 
11 $[t - .N + 111'. During the adaptation period, at 
every time instance i ,  the equalizer's error e [ t ]  = :1;[[t.] - ?[t] 

. . .  

is calculated along with the Kalman gain vector k[t]  and 
the inverse of the correlation matrix P[t] ,  via the recursive 
equations: 

P[1 - l]ij',[t] 
'W + iT[t]P[t - I]ije"[t] 

k[t] = 

1 
P[t] = - [PIt - I] - k[t]yF[t]P[t - 111 

111 

where 0 < UI < 1 is the forgetting factor, "*" denotes here the 
complex conjugate and "T" denotes the transpose of a vector. 
Finally the equalizer's coefficients are updated via: 

c[t] = c[t - 11 + k[t]r:[t] (3) 

The RLS algorithm exhibits faster convergence than the Least 
Mean Squares (LMS) algorithm, at the expense of greater 
computational complexity. 

In blind equalization, the equalizer has no exact knowledge 
of the transmitted sequence. The adaptation of the equalizer 
is attempted in a way to match the statistics of the output of 
the equalizer to those of the transmitted sequence. Existing 
algorithms for blind equalization, are based on the result due 
to Benveniste et al. [ 161 stating that if the channel is linear and 
the equalizer is an infinite length FIR filter, ideal equalization 
is achieved if the distribution of the transmitted sequence z is 
identical to that of the output of the equalizer 3, provided that 
.r[t] is not Gaussian. If the input signal is white and the channel 
is linear and minimum phase, linear prediction can be used at 
the receiver to decorrelate the received data and establish the 
whiteness of the transmitted signal. However, when the linear 
channel h is non-minimum phase, linear prediction will match 
only the amplitude of the transfer function but not its phase. 
To extract the phase characteristics of the channel from the 
received data, it is necessary to use higher-order statistics of 
the received signal. 

The majority of the proposed blind equalization algorithms 
employ a nonlinear function of the output of the equalizer to 
give rise to those higher order statistics. Among them is the 
Constant Modulus Algorithm (CMA) which adjusts the linear 
equalizer taps c in order to minimize the cost function: 

The algorithm penalizes deviations of I i l p  from a con- 
stant modulus R,, that depends on the input constellation 
( X p  = -). The case of p = 2 corresponds to the 
well known Godard algorithm [9], in which the equalizer's 
coefficients are updated using a stochastic gradient approach: 

( 5 )  c[ ,  + I] = c[ t ]  - -/. ( l i [ f ] 1 2  - R2) . i [ t ]  . &[t] 

where i j ,  [t] is the received data vector, defined in the same way 
as for the RLS case, and y is a small positive constant that 
govems the rate of convergence. All the algorithms that are 
based on the minimization of one of the functions in (4), are 
guaranteed to achieve perfect equalization only if the global 
minimum of the objective function is reached and only under 
the assumption that the length of the equalizer is infinite. 
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However, all the objective functions in (4) are non-convex 
and therefore possess local minima where the algorithm might 
get trapped [ 171. Moreover, although these algorithms perform 
well for channels with relatively flat frequency response, their 
pyformance is much worse when the linear channel has zeros 
close to the unit circle (spectral nulls). 

If the nonlinearities in the channel are too severe to ignore, 
the above mentioned algorithms fail to sufficiently equalize 
the channel since the equalizer is modeled as a linear filter. 
In such cases a nonlinear equalizer is preferable over a linear 
one. However, if a nonlinear equalizer is used, minimizing one 
of the family of objective functions (4), might not guarantee 
perfect equalization. It can be shown [I81 that under certain 
conditions, if the combined channel-equalizer system admits 
a Volterra series representation and the transmitted symbols 
are binary, the minimization of a modified objective func- 
tion guarantees the perfect reconstruction of the transmitted 
sequence. 

111. RECURRENT NEURAL NETWORKS 

Recurrent Neural Networks (RNNs), in which every unit 
is connected to every other unit, are the most general case 
of neural networks. RNNs are highly nonlinear dynamical 
systems that exhibit a rich and complex dynamical behavior. 
They have been proven better than traditional signal processing 
methods in modeling and predicting nonlinear and chaotic 
time series [I91 and in a wide variety of applications ranging 
from speech processing and adaptive channel equalization 
[20], [21], to modeling finite state automata and learning 
simple grammar rules [22]. In [ 2 3 ]  i t  has been shown that 
there is a direct correspondence between the Volterra series 
representation of a nonlinear dynamical system and a RNN, 
and it has been proven that given any dynamical system there 
exist a finite size RNN whose first and second order Volterra 
kernels are equal to those of the original system. 

A RNN has in general r n  extemal inputs and 71, fully 
interconnected units. A RNN with rri = 1 and 71 = 3 is shown 
in Fig. 1. The activation of any (or all) of the units in the 
network can be considered as the output of the network and 
all the units can be trained to produce desired outputs. 

A RNN is a dynamical system. The output of a unit at time 
t + 1 depends not only on the extemal inputs to the network 
2;7“[[t]% 1 = 1, .. . r n  at the previous time instant, but also 
on the previous outputs of the units gl [t], I = 1, . . . ,TIL The 
dynamics of the RNN are described by the following set of 
equations: 

I 1  r r i  

s k [ t  + 11 = Cr~k.[l]:(~i[I] + 7111,.1+7L[t]:6/2Ct[t] ( 6 )  
1=1 1=1 

! / k i f  + 11 = f ( % [ f  + 11) (7) 

where wv[t] is the the weight of the connection from the j t t L  

to the it“ unit at time t ,  and the activation function f ( . )  can be 
any real function differentiable with respect to its argument. 
(Usually f( .)  is taken to be the hyperbolic tangent function 
tanh(.) ). 
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Fig. I .  A Recurrent Neural Network (RNN) with 12 = 3 units (oval nodes), 
and 1 ) )  = 1 input nodes (square nodes). The .r is the external input of the 
RNN and y:i the output. 

From the equations describing the dynamics, we see that a 
RNN models a nonlinear IIR filter, since every output depends 
on all the previous outputs of the network. In contrast, a 
feedforward neural network whose inputs come from taped 
delay lines, can only model a nonlinear FIR filter with memory 
at most equal to the number of the delayed neural network 
inputs. 

Several algorithms have been proposed for the training of 
the RNNs. The most widely known algorithm is the Real-Time 
Recurrent Learning (RTRL) algorithm, proposed by Williams 
and Zipser [14], that can be used to update the weights of the 
RNN in real time. The RTRL algorithm is summarized bellow: 

1 )  Forward Phase: For k = 1. . . n  
Compute the output of the k th  neuronat time f + 1 using 

(6) and (7). 
2 )  Learning Phase: If &[t + I], k = 1. . . . U ,  is the desired 

output of the kth unit at time f + 1, the error at the k‘“ unit 
is given by: 

e k [ t  + 11 = d k [ t  + 11 - r / k [ t  + 11 
It has been assumed without loss of generality that there exist 
desired values for all units in the RNN. The instaiztanenzrs 
total error at time t + 1 is given by: 

1 

2 . I [ f  + 11 = ; .2[t + I] 
k = l  

and the objective is to change the weights in the direction that 
minimizes J [ t ,  + 11. If we define, as in [ 141, the “sensitivity:” 

then the training phase involves the following steps: 

k = 1..  . , n  recursively using: 
1 )  Evaluatepf?,[ t+l] .  i =  l . . . . , n  ,I = 1 : . . , 1 , + 7 n ,  
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Fig. 2. The block diagram of the communication system with RNN equalizer. 
If the RNN is used as a trained adaptation equalizer, the dashed line is active. 
If the RNN is used as a blind equalizer, the dashed line is removed. 

where 6,k is the Kronecker delta and f ’ ( . )  denotes the 
derivative of f ( .). 

2) Update the weights in the direction of the steepest 
descent: 

n 

wzJ [t + 11 = w , ~  [t] + a e k  [t + I]& [t + I] (10) 

where a > 0 is the learning rate (i.e., the step of the gradient 
descent algorithm). 

In many cases in communication systems, the inputs and 
outputs of a channel are best described as complex valued 
signals and the channel is modeled as a linear or nonlinear 
complex operator. In [15], the RTRL algorithm has been 
extended for the case of a RNN whose inputs, outputs, weights 
and activation functions are complex. The complex RTRL 
algorithm (CRTRL) is summarized in the Appendix. 

k = l  

IV. THE RNN TRAINED ADAPTATION EQUALIZER 

The block diagram of a communication system that employs 
a RNN trained adaptation equalizer is shown in Fig. 2. The 
transmitter sends a known training sequence to the receiver, 
and the receiver adjust itself so that it reproduces the correct 
transmitted symbols. Then, the adaptation stops and the trans- 
mitter sends the data. During the training or adaptation period, 
at every time instant t ,  the error between the output of the RNN 
equalizer ?[t] and the originally transmitted symbol ~ [ t ]  is 
formed, and the weights of the RNN are adjusted via the RTRL 
algorithm. In the case of PAM signals [ 11 and communication 
channels with real coefficients, the RTRL algorithm is used 
to compute the gradient of the squared error with respect to 
the weights of the equalizer, and in the case of either QAM 
signals [I]  or channels with complex coefficients the CRTRL 
algorithm is used. As shown in Fig. 2, the input to the RNN 
equalizer at time t ,  5[t] ,  is equal to the channel output y [ t ]  plus 
Gaussian noise n[t]. Note here that an RNN with more than 
one input can also be used, to model more complex channels. 

The weights and activations of the RNNs we used as trained 
adaptation channel equalizers, were initialized to small random 
values. In all cases, the RNN equalizers had a small number of 
units (usually two or three). This is in contrast with the much 
larger number of units of the feedforward neural network based 
channel equalizers that have been proposed before ( In [6] the 
authors used a 3-layer perceptron with structure [ 2  9 3 11 to 
equalize linear and nonlinear communication channels). 

A .  Linear Channels 

We first tested the performance of the proposed RNN-based 
trained adaptation equalizer for a simple linear minimum phase 
channel with a relatively flat frequency response (no zeros 
near the unit circle). For such channels, linear equalizers 
whose coefficients are being adapted via the RLS algorithm 
are known to perform very well. The transfer function of the 
channel was: H l ( z )  = 1 + 0.72-1 and a one-input, two units, 
one-output RNN was compared against a linear equalizer of 
length 20. 

The Bit-Error-Rate (BER),defined as the ratio of misclas- 
sified to correct symbols at the output of the equalizer, was 
evaluated for 2-PAM, 4-PAM, 8-PSK and 16-PSK signals. The 
RTRL algorithm was used to train the RNN equalizer for the 
2-PAM and 4-PAM case, whereas for the PSK signals we 
used complex RNNs trained via the CRTRL. We simulated 
100 different realizations for each value of the SNR. For each 
realization, the weights of the RNN equalizer were initialized 
to small random values satisfying Iwij( < lop3 and so where 
the initial activations of the units. The value of the leaming 
rate was kept constant at a = 0.5 and the pseudo-random 
input and noise sequences were generated with different seeds 
for the random number generators. The RNN and RLS based 
equalizers were first trained with 2000 symbols from the output 
of the channel and then we evaluated the BER based on lo4 
more received symbols, for each realization. 

In Fig. 3 we plot the decimal logarithm of the BER achieved 
by the linear and the nonlinear equalizers. As we can see, 
even for that simple linear channel, for which the linear 
equalizers exhibit a very good performance, the nonlinear 
RNN equalizers achieve comparable or even smaller BER. 
The largest performance improvement is achieved for the case 
of 2-PAM binary signals but even for higher constellations 
the RNN equalizer achieves lower bit error rates than the 
linear equalizer. This is not only due to the fact that the 
RNN equalizer, essentially being an IIR type of filter, can 
approximate the inverse of the FIR channel more accurately 
than the truncated FIR filter, but also due to the ability of the 
RNN equalizer to form nonlinear decision regions. In noisy 
environments the optimal decision regions are described by 
nonlinear functions [6],  and thus the better performance of the 
RNN can be explained. 

The convergence speed of the RNN equalizer depends on 
both the channel characteristics and the value of the leaming 
rate a(adaptation step). In Fig. 4 we show the normalized MSE 
at the output of the RNN and RLS equalizers averaged over 
100 realizations for the case of a 2-PAM signal with SNR 
equal to 15 dB. The MSE curves of the RNN equalizer are 
plotted for several values of the learning rate. As we can see 
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Fig. 3. Linear channel H l ( z )  = 1 + O.'iz- ' .  Plot of the decimal logarithm 
of the BER achieved by a linear filter equalizer and an RNN-based equalizer 
versus the value of the SNR. 100 realizations per SNR value were used. 

from Fig. 4, the RTRL exhibits the same very fast convergence 
as the RLS algorithm, provided that the learning rate is chosen 
appropriately. Small values of the leaming rate result in slower 
convergence, whereas large values might cause instability (see 
case with Q = 8). 

In Fig. 5 we show the bit-error-rates achieved by the linear 
and RNN based equalizers for a non-minimum phase channel 
whose transfer function is given by: H ~ ( z )  = 0.3482 + 
0.87042-1 + 0.3482z-'. Such channels are more likely to 
be encountered in a practical communication system [6], [71. 
The RNN and linear equalizers have the same structure as 
for the previous example and the transmitted signal was a 
2-PAM sequence. As we can see from Fig. 5, the two-unit 
RNN equalizer achieves bit-error-rates as much as three-orders 
of magnitude smaller than the ones that the linear equalizer 

N RTRL I 
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- 1  

27 1 

0 1W 200 300 4w 500 Nx) 7W 800 900 laK) 

i t d o n s  , 

Fig. 4. Linear channel H I  (2) = 1 + 0.7z- ' .  Plot of the normalized MSE 
at the output of the linear and RNN-based equalizers (for different a )  vs. the 
number of iterations. 
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Fig. 5. Linear channel H z ( 3 )  = 0.3482 + 0 . 8 7 0 4 ~ - '  + 0 . 3 4 8 2 ~ - ~ .  
2-PAM. BER comparison of linear, feedforward neural network and RNN 
equalizers. 100 realizations per SNR value were used. 

achieves. For the same linear channel we also investigated the 
performance of a 5-9-3-1 feedforward neural network (FNN) 
[7] trained to learn the mapping from delayed outputs of the 
channel to the correct transmitted symbol. The performance 
of the F", whose weights have been adapted via the back 
propagation (BP) algorithm with learning rate equal to a = 1 
and momentum term = 0.7, has been found to be similar to 
that of the performance of the linear equalizer for the range of 
SNRs shown. All three equalizers were trained to follow the 
transmitted sequence delayed by one sample. 
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ibn6oas 

(b) 

Fig. 6. Partial response linear channel H3 ( 2 )  = 1 - 22-1 + z-' ,  2-PAM. 
(a) BER comparison of the linear and RNN based equalizers, 100 realizations 
per SNR value were used. (b) The normalized MSE at the output of the linear 
and RNNequalizer (for a = 0.1 and a = 0.5).  

B.  Partial Response Channels 

The transfer function of partial response channels has zeros 
on the unit circle. Such channel are frequently encountered in 
magnetic recording [24] and since the inverse of the channel is 
not defined, there exists no linear filter that would sufficiently 
equalize them. Therefore nonlinear methods have to be used 
to reconstruct the originally transmitted signal. 

The performance of the proposed RNN based equalizer 
was investigated for the case of a 2-PAM signaling scheme, 
for a partial response channel whose transfer function was: 
H3(z)  = 1 - 22-1 + z - ~ .  This channel has a double zero on 
the unit circle and therefore, as expected, the linear (20-taps) 
transversal filter equalizer exhibits very poor performance. As 
shown in Fig. 6, where we plot the BER achieved by the linear 

I 

I 
I I 

I LimalanEl 

I 

Fig. 7. The model of the nonlinear communication channel used. 

equalizer and by a two-unit RNN whose initial settings were 
the same as for the previous cases, the nonlinear equalizer 
outperforms the linear one by as much as three orders of 
magnitude for the range of SNR shown. In the same figure, we 
also show the MSE achieved by each of the equalizers versus 
the number of the iterations for a value of the SNR fixed at 
22.5 dB. Again, it is evident that the convergence speed of 
the RNN equalizer is comparable to that of the RLS algorithm 
if the value of the learning rate is chosen appropriately. The 
inability to determine a priori the optimal leaming rate is a 
significant problem, not only for the RNN case but for the 
linear equalizers as well (LMS algorithm [ 11). 

Simulations with larger RNNs show a performance compa- 
rable to that ofthe two-unit RNN. It might be conjectured that 
since a two-unit, one input, one output RNN is essentially a 
six degree of freedom (n2 + m weights) nonlinear IIR model 
it is sufficient to model any FIR channel with six or less 
coefficients. In most practical situations it may be assumed 
that the intersymbol interference spans predominantly at most 
in the order of six symbols so that the two-unit RNN is 
sufficient to model many communication channels encountered 
in practice. 

C. Nonlinear Channels 

The nonlinear channel used in our simulations, has the 
structure of the model shown in Fig. 7: The transmitted 
sequence is passed through a linear channel whose transfer 
function is G(z ) ,  and the output of that channel is added to 
nonlinear harmonics. The value of the gain coefficients Dz, 
D3, and 0 4  determine how severe the nonlinear distortion 
will be. We first simulated a channel whose linear sub-channel 
component has the transfer function: G( 2) = 1 + 0.72-l. Such 
nonlinear channel models are frequently encountered in data 
transmission over digital satellite links, especially when the 
signal amplifiers operate in their high-gain limits. 

The performance of the RNN-based equalizer was compared 
to the performance of a linear 20-taps transversal equalizer 
trained with the RLS algorithm. Again, a two-unit RNN was 
used as the trained adaptation equalizer and the initial settings 
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Fig. 8. Nonlinear Channel Equalization, trained adaptation. BER comparison 
of the linear and the RNN equalizer when G ( z )  = 1 + O.7zp1, and the 
additive nonlinearity gains are: For 2-PAM. Dz = 1. D3 = 0.7.  Dq = 0.5 
and for 4-QAM, D2 = 0.6,D3 = 0.5 ,  Dq = 0.4. 

were the same as before. We evaluated the achievable BER by 
both equalizers for the 4-PAM and the 4-QAM case. For the 
4-PAM case the additive nonlinearity gains were: 0 2  = 1.0, 
0 3  = 0.7, 0 4  = 0.5 and both the inputs to the network and 
the training symbols have been scaled such that their range 
is in the interval [-1,+1]. In the 4-QAM case the coefficients 
have been set to: D2 = 0.6, 0 3  = 0.5, 0 4  = 0.4. As we can 
see from Fig. 8, in which we plot the BER versus the value 
of the SNR, the RNN equalizer clearly outperforms the linear 
equalizer by as much as two orders of magnitude. This was 
expected since the linear equalizer can compensate only for 
the linear channel distortion. 

In another example, the linear subchannel has the transfer 
function G ( z )  = 0.3482 + 0.8704z-’ + 0.3482z-’, the input 
was 2-PAM and Dz = 0.2, 0 3  = D4 = 0. We compared the 
performance of a linear equalizer of length 20, a feedforward 
neural network of structure 5-9-3-1 and a two-unit RNN 
equalizer. From Fig. 9, where we plot the BER versus the 
value of the SNR, we see that both the R” and the FNN 
equalizers outperform the linear equalizer but the BER drops 
faster with increasing SNRs for the case of the R N N .  

In Fig. 10, we plot the “eye pattems” (output values) of both 
the linear and RNN equalizer applied to the same channel, for 
SNR=30dB and 4-QAM signaling. Both equalizers have been 
trained first using 1000 symbols. Then 2000 more symbols 
were transmitted and the receiver’s output was plotted. As 
we can see from Fig. 10, the linear equalizer completely 
fails to open the eye-pattem, whereas the symbols are clearly 
distinguishable at the output of the RNN equalizer. 

V. THE RECURRENT NEURAL NETWORK BLIND EQUALIZER 
A RNN, being essentially an IIR nonlinear filter, can be 

trained to have desired dynamical behavior, using a stochastic 

SNR (dB) 

Fig. 9. Nonlinear Channel Equalization, trained adaptation. 
BER comparison of the linear, F“, and RNN equalizers when 
G(t)  = 0.3482 + 0.8704z-’ + O.3482zp2, 2-PAM signaling and 
Dz = 0.2,  D3 = 0 4  = 0.  

gradient approach, via the RTRL algorithm. If the output of 
the equalizer (RNN in our case) is exactly the same as the 
transmitted signal (with a possible time delay, and/or phase 
shift) then it should have the same moments as the transmitted 
signal. 

Both in the linear and in the nonlinear channel case, the 
combination of the channel and the RNN equalizer results in 
a nonlinear system whose inputs are the transmitted symbols 
z[t] and its outputs are the estimates 2[ t ] .  As it has been shown 
in [23] such a nonlinear system admits a triangular kernel 
Volterra series expansion form: 

z[t - k l ] Z [ t  - k2] . . . z[t - kl] 

If the transmitted symbols are binary assuming the values 
{-1, 1) and are drawn from an i.i.d zero mean distribution, 
then it can be shown [18] that the Volterra series expansion 
form ( 1 1 )  may be simplified to: 

kit] = e:, CC...C;4<kl<k2< . . . < k l h l ( ~ l l ~ 2 , . . . l ~ 1 ) .  

.z[t - k 4 z [ t  - kz]  . . ‘ z[t  - kl] 

i.e.,. for every term hl(k1, k21 . . . , k l ) ,  no two indices among 
k 1 , k ~ ~ . . . ~ k l  are the same. Furthermore if E{?[k]}  = 0, 
E { P 2 [ k ] }  = 1, E { f 4 [ k ] }  = 1, then all but one of the 
coefficients hl (k l ,  I C z 1 .  . . k k )  in (12) have to be equal to 
zero [18]. If, as usually the case for real-life communication 
channels, the magnitude of the coefficients of orders two and 
higher is smaller than that of the first order coefficients, then 
the estimated sequence of symbols ?[k]  is just a delayed 
(and possibly rotated by a phase 8 )  version of the originally 
transmitted sequence z [ k ] .  
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CRTRL (2 units). 4QAM Each of the four mean values in (13) can be computed imap(X) 
recursively using averaging as: 

1 
t + l  

Et+i{5;."} 1 - ( t & { i k }  + P k [ t  + 11) (14) 
0.6 

i m a p ( X )  RLS (20 taps). 4-QAM 

I -0.5 0 05 I 
real(x) 

(b) 

Fig. 10. Eye-pattems of the linear and RNN equalizers, 2000 iterations after 
the end of training. The same non-linear channel of the previous figure was 
used. 

We would like to minimize, at time t + 1, the objective 
function: 

4 4 

E [ t +  11 = C f f k e k [ t +  11 = ~ U k ( E t + l { 5 k } - E { - C k } ) 2  

k=l k=l 
(13) 

where, Et+l denotes the estimated mean value using the t + 1 
first outputs of the RNN, and f f k  are positive constants that 
define the weight of the corresponding term e k  in the objective 
function (13). We would like to derive a way to update the 
weights of the RNN, depending on the output at time t + 1, 
namely ?[t + 11, so that the objective function (13) gets 
minimized. 

Differentiating E [ t  + 11 with respect to the current weights wij  
we obtain: 

\ I  

Now = &[t + 11 can be computed recursively using 
(9). Therefore, the algorithm for the minimization of the 
objective function (13) with a Recurrent Neural Network via 
the RTRL becomes: 

1) Initialize the estimates for EO{?'} to zero for IC = 
1,2,3,4.  

2 )  Present a new sample of the channel output to the RNN 
input. Compute the RNN i [ t  + I]  using (6) and (7). 

3 )  Update the moment estimates Et+l{i?}, IC = 
1,  2, 3, 4, using (14). 

4) Compute the gradient with respect to the weights of the 
previous time step, using (9) and (15). 

5 )  Update the weights in the direction of the steepest 
descent with leaming rate a. 

6) Go to Step 2, unless the objective function has been 
sufficiently minimized. 

VI. RNN BLIND EQUALIZATION SIMULATIONS 

In our computer simulations we evaluated the performance 
of the proposed RNN blind equalizer for several linear and 
nonlinear communication channels and the results were com- 
pared to those obtained with a linear CMA equalizer based 
on the Godard criterion (equation (4), for p = 2) .  As in the 
case of trained adaptation equalization, the RNNs we used 
were fully interconnected with a small number of units (two 
or three), one input and one output. In all simulations the 
weights and activations of the RNN were initialized to small 
random values. The RTRL algorithm was employed to train 
the weights of the RNN. The performance measures used 
for the comparison of the linear transversal equalizer and 
and the proposed nonlinear RNN-based equalizer were the 
eye-patterns and the normalized MSE at the output of the 
equalizers, as well as the BER for a range of SNRs. The 
MSE and the BER have been averaged over 100 independent 
realizations for each case. For each realization, the weights and 
the activations of the RNN have been initialized randomly and 
different pseudo-random input and noise sequences have been 
employed. 

The value of the adaptation step (leaming rate) for the RTRL 
algorithm was kept fixed to (2 = 2.5 for all realizations, 
whereas the parameter y in the adaptation equation ( 5 )  for 
the linear equalizer was set to y = 0.01. The length of the 
linear equalizer was 3 1. In all simulations the input sequence 
z[k] is a 2-PAM signal. To calculate the BER, the RNN was 
first trained with an 1000 symbols long sequence. Then the 
adaptation of the weights was stopped and an 10 000 long 
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Fig. 11. BER vs. SNR for the RNN and CMA blind equalizers. Linear 
mixed-phase channel H3 ( z ) = ( 1 - 2 .O;-' ) ( 1 - 0 .Gz- ' ) ,  2-PAM signaling. 

sequence of received symbols was fed into the RNN to test 
its performance. For the linear equalizer case, the training was 
done with 10 000 symbols and then the BER calculation was 
based on 10 000 more received symbols. 

A .  Mixed-Phase Channels 
The linear mixed phase channel with transfer function 

H~(z) = (1 - 2.02-l)(1 - 0.6,-') was used first to evaluate 
the performance of the proposed RNN blind equalizer. The 
RNN equalizer has two units, one input and one output. 
The weights of the RNN were initialized to random values 
satisfying Iwij( < 0.01, and the leaming rate was a = 2.5. 
The values of the coefficients ak in the objective function (13) 
were: a1 = 2, a2 = 10 a3 = 0, and a4 = 10. 

In Fig. 11 we compare the performance of the RNN equal- 
izer and the linear one by plotting the BER versus the 
value of the SNR. As we can see, even for this linear 
channel model, the nonlinear equalizer performs better than 
the linear one, especially at low SNR's due to its ability to 
form decision regions closer to the optimal than its linear 
counterpart. For higher values of the SNR the difference in the 
relative performance of the two equalizers becomes smaller, 
and eventually a linear equalizer might be preferable because 
of its reduced complexity. In the high noise region, both 
equalizers are more likely to be trapped in a local minimum. In 
our experiments we observed surprisingly that the frequency 
of encountering a local minimum was higher for the CMA 
equalizer than for the RNN. Intuitively, this might be due to 
the small size of the RNN that was used (for the one input, two- 
unit RNN objective function, the minimization has to carried 
out with respect to only six parameters, versus 31 parameters 
for the linear equalizer). 

In Fig. 12 we plot the eye-pattem at the output of both the 
linear and the nonlinear equalizer and the averaged, over 100 

equusl i  output RNN 

-1 + + +  t + 1, +++++ .L*+ + + t *+* + +ti+++++ + t t t  

10 20 30 40 50 60 70 80 90 100 
itenticma 

equalizer output CMA 

I . . a a . . . . . I  
2o loo 200 300 400 5w 6w 700 800 900 

iterations 

(a) 

3 

1wO 

0 

Fig. 12. (a) The output of the RNN and CMA blind equalizers for the linear 
mixed-phase channel H~(z) = (1 - 2 . 0 ~ - ' ) ( 1  - O.6zp1), SNR = 20 dB, 
vs. the number of iterations. (b) MSE (in dB) averaged over 100 realizations, 
vs. the number of iterations. 

realizations, normalized MSE curves for SNR = 20 dB. After 
about only 20 iterations, the RNN nonlinear equalizer opens 
the eye-pattem completely, whereas the CMA equalizer needs 
to be trained with at least 200 symbols to open the eye-pattem. 
The fast convergence of the RNN blind equalizer makes it 
suitable for use in environments where small initial adaptation 
delays are desired (such as mobile communications, cellular 
telephony). 

The normalized MSE curves are plotted in Fig. 12(a). As we 
can see the MSE of the RNN equalizer is almost three orders 
of magnitude smaller than that of the CMA equalizer. This is 
because, in the 2-PAM case, the RNN equalizer models not 
only the inverse of the linear channel but also the thresholding 
device at the output. 
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Fig. 13. BER comparison of the RNN and the CMA blind equalizers for 
nonlinear channel. The linear subcomponent is G( z )  = 1 + O . i . s - ' ,  and the 
additive nonlinearity gains 0 2  = 0.15. D:I = 0.10. D1 = 0.05. SNR = 
3 0  dB. 

B. Nonlinear Channels 

The model of the nonlinear channel used for the simulations, 
is the same as for the trained adaptation case. The linear 
component of the channel has transfer function G ( z )  = 1 + 
0.72-l, and the values of the coefficients Dk are: 0 2  = 0.15, 
0 3  = 0.10, L14 = 0.05. A one input, one output, two units 
RNN was trained to minimize objective function (13), with 
(11 = 2, (22 = 4, (13 = 4, and o4 = 4. The learning rate for 
the weights adaptation was (Y = 2.5. 

Even for this relatively simple communication channel, the 
CMA based equalizer, being designed to compensate only for 
linear channel distortion exhibits a very poor performance. As 
we can see from Fig. 13 in which we plot the BER curves 
for both equalizers, the CMA equalizer exhibits an almost 
constant high error rate for the range of SNR shown. The two- 
unit RNN equalizer, as for the linear channel case, succeeds to 
open the eye-pattern in less than 15 iterations as shown in Fig. 
14(b) where we plot the output values versus the number of 
iterations for 30 dB SNR. In Fig. 14(b) the averaged MSE of 
both equalizers is plotted versus the number of iterations. The 
RNN blind equalizer, outperforms the linear CMA equalizer 
by almost five orders of magnitude. 

VII. CONCLUSIONS-FUTURE RESEARCH DIRECTIONS 

We have shown that nonlinear adaptive filters based on 
RecurrentNeural Networks can be used for both trained adap- 
tation and blind equalization of linear and nonlinear commu- 
nication channels. Since RNNs essentially model nonlinear 
infinite memory filters, they can accurately realize, with a 
relatively small number of parameters, the inverse of finite 
memory systems, and thus compensate effectively for the 
channel introduced interferences. Extensive simulation results 

-1 + .- + * t r * . . u y w +  * * +  I+ + +  I * *  
10 20 30 40 50 60 70 80 90 100 

iterations 
equdimmtput CMA 

-0 500 1000 1500 2000 
iterations 

(a) 

2sw 

0 50 1W 150 200 150 3W 
w 

Itmllcncns 

(b) 

Fig. 14. (a) Output of the RNN and CMA blind equalizers. The channel 
was nonlinear with linear subcomponent G(.:) = 1 + 0.7:-', and additive 
nonlinearity gains 0 2  = 0.15, Dn = 0.10. D.1 = O . O j ,  SNR = 30 dB. (b) 
The MSE (in dB) averaged over 100 realizations for each equalizer. 

show that small size RNNs outperform the linear transversal 
filter equalizers in several cases. 

Although the computational complexity of the algorithms 
used to adjust the weights of RNNs is large (in the order of 
o(n4) for the RTRL algorithm, where 71 is the number of 
units), their small size makes them attractive for high-speed 
channel equalization in contrast to other proposed nonlinear 
equalizers including the feed-forward neural networks that 
need a much larger number of units to model the inverse of 
the channel. As an example, a digital implementation of the 
feedforward neural network equalizer of structure 5-9-3- 1 that 
was proposed in [7] would have a computational complex- 
ity of 922 floating point operations (FLOPS) per incoming 
symbol during the training phase, whereas the complexity 
of a one-input, two-unit RNN equalizer is only 144 FLOPS 
per symbol (It has been assumed that the evaluation of the 
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sigmoid function requires the equivalent of 10 floating point 
multiplications or additions time). It is interesting to note 
that the computational complexity of such small RNNs is 
even comparable to the fastest variants of the RLS algorithm 
(205 FLOPS per symbol are required for a linear equalizer of 
length 10 trained with the Fast RLS algorithm [ 11) Moreover, 
trainable RNNs can be implemented in digital VLSI hardware 
in a highly parallelized fashion (see for example [25]), and 
even faster analog implementations are envisioned such that 
the supported data rates can be further increased. 

RNNs can be used as blind equalizers when their objective 
function is suitably modified to penalize deviations of the 
statistics of their output from the statistics of the originally 
transmitted sequence. Although their performance seems to 
be much better than conventional blind equalization tech- 
niques for many different classes of channels, it is widely 
known that the training of RNNs is a nonlinear nonconvex 
optimization problem and there is always a chance that the 
training stochastic gradient descent algorithms can get trapped 
into local minima. Suitable initialization and search techniques 
can be possibly employed to assist convergence to the global 
minimum. 

In a practical situation, it is possible to use the proposed 
nonlinear RNN-based equalizer in conjunction with a conven- 
tional linear equalizer. When the channel has a relatively flat 
spectrum and its linear nature dominates, the linear equalizer is 
slower than the RNN equalizer but less likely to be trapped in 
a local minimum. However, when the nonlinear distortion of 
the channel is too severe to ignore, or the channel has spectral 
nulls then the linear equalizer fails and the RNN equalizer 
performs remarkably better. 

Recently, new methods for blind equalization of linear chan- 
nels based on higher-order spectra have been developed [lo], 
but although their objective function is convex they fail when 
the channels are predominantly nonlinear. The incorporation of 
higher order output statistics or cross moments in the objective 
function of the proposed RNN blind equalizers is currently 
under investigation. Another point that might further improve 
the convergence properties and facilitate the escape from local 
minima is to allow the coefficients in the objective function 
(1 3) to be adjusted dynamically, and investigate systematic 
ways for their adaptation. 

VIII. APPENDIX A 

The Complex Real-Time Recurrent Leaming Algorithm 

1)  Forward Phase: For k = 1 . . . n 
(CRTRL) is summarized below: 

n n+m 

Sk[ t  f 11 = W k l x [ t ]  f Wklxl[t] (16) 
1=1 l=n+l 

Y k [ t +  11 = F(Sk [ t+l])  = f(sRk [ t + 1 ] ) + j f ( s I k [ t +  11) (17) 

where now all inputs, outputs, and weights are complex 
numbers and f ( . )  is again the tanh(- )  function as for the 
real case. In (17), the subscripts R and I denote the real and 
imaginary parts of a complex number correspondingly and 
j g a .  

2 )  Retrieving Phase: Defining the sensitivitiespRR, PR/, 
PIR. PII as: 

the recursive equations for the computation of the sensitivity 
terms become: 

Finally, the weight update equation becomes: 
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