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Abstract

The Kalman filter provides an effective solution to the linear-Gaussimifiy problem. How-
ever, where there is nonlinearity, either in the model specification oolbservation process, other
methods are required. We consider methods known genericatigiéisle filters which include the
condensation algorithm and the Bayesian bootstrap or sampling impentesampling (SIR) filter.
These filters represent the posterior distribution of the state \agdly a system of particles which
evolves and adapts recursively as new information becomes available. Irceréatie numbers of
particles may be required to provide adequate approximations and for ceptalications, after a
sequence of updates, the particle system will often collapse to a sinigte Y/e introduce a method
of monitoring the efficiency of these filters, which provides a sintplantitative assessment of sam-
ple impoverishment and show how to construct improved particle filtdish are both structurally
efficient, in terms of preventing the collapse of the particle system amgbuatationally efficient in
their implementation. We illustrate with the classic bearings-amlgking problem.

Keywords: Kalman filter, Condensation algorithm, Bayesian bootstrap filter, Sagjppor-
tance resampling (SIR) filter, Sequential estimation, Markov Chain MGaté& (MCMC), Impor-
tance resampling.

1 Introduction

The Bayesian approach to dynamic state estimation prolileraklves the construction of the probabil-
ity density function (PDF) of the current state of an evovgystem, given the accumulated observation
history. For linear Gaussian models where the PDF can be suised by means and covariances, the
calculation is carried out in terms of the familiar updateguations of the Kalman filter. In general, for
nonlinear, non-Gaussian models, there is no simple waydoged. Two difficulties must be resolved:
how to represent a general PDF using finite computer storagénaw to perform the integrations in-
volved in updating the PDF when new data are acquired.

Several approximate methods have been proposed. Theadadritle extended Kalman filter [1, 2], the
Gaussian sum filter [3], approximating the first two mometithe PDF [4,5] and numerical integration
over a grid of points in the state space [6-10] . However, ruditleese methods can be applied automati-
cally. Typically, they have to be tuned to take account ofufezs of each specific problem. For example,
in grid-based methods the number and location of the gridtpdias to be decided upon, usually by a
process of trial and error. Furthermore, updating the ithistion of the state of the system as new data
arrive usually entails a formidable computational ovethea



There is now a substantial literature concerned with sitiariebased filters in which the required PDF is
represented by a scatter of particles which propagate ghrthe state space [9,11-19]. The propagation
and adaptation rules are chosen so that the combined wdightticles in a particular region will ap-
proximate the integral of the PDF over the region. Such filt&wve been variously described as Bayesian
bootstrap, condensation, Monte-Carlo and Metropolistiigs importance resampling filters. For the
purposes of this paper we adopt the term Monte Carlo pafiitde or particle filter for short. Gordon,
Salmond and Smith [14] demonstrate the effectiveness ahpleialgorithm for particle evolution for
various nonlinear filtering applications. Their method basome known as the Sampling Importance
Resampling (SIR) filter or, more commonly in the engineelitegature, the Bayesian bootstrap filter.

The standard SIR filter is vulnerable sample impoverishmefit7, 20-22], so that the particle distri-
bution gives a poor approximation of the required PDF. Irreme cases, after a sequence of updates
the particle system can collapse to a single point. In lege®e cases, although several particles may
survive, there is so much internal correlation that sumnsgaistics behave as if they are derived from
a substantially smaller sample. To compensate, large nisnob@articles are required in realistic prob-
lems.

In this paper we show how sample impoverishment can be dieghti We introduce modifications
which we demonstrate to have superior performance to thdiRboth in terms of combating sample
impoverishment and in computational cost.

In section 2 we give a brief review of Bayesian filtering thedn Section 3 we reformulate the SIR filter
as an evolving random measure and show that variance reduethniques from the theory of Monte-
Carlo integration [23] can be applied. Section 4 introdubesmodified particle algorithm, and we note
that the computational complexity of each update calautatan be reduced from (N log N) to O(N)
whereN is the number of particles. Section 5 demonstrates how totiuaample impoverishment and
Section 6 contains an application of the new algorithm todlassic bearings-only tracking problem.
Finally Section 7 presents some conclusions.

2 Bayesian Filtering

Following Gordon, Salmond and Smith [14] we represent thtestector at timeé by z;, € R"*, which
satisfies

Tr1 = fr(z, w)

where f;, : R* x R™ — R"” is the system transition function ang, is a noise term whose known
distribution is independent of time. At each discrete tinenpan observationy, € RP is obtained,
related to the state vector by

Yr = hi(zg, vk)

whereh, : R x R" — RP is the measurement function angl € R" is another noise term whose
known distribution is independent of both the system noisktame. We writeDy, for (yq, ..., yx), the
available information at tim&, and assume the PDF of, the initial state of the system, is known so
thatp(z1|Dy) = p(x1). We then wish to obtain the PDFs pfx,| D) : £ > 2, which are given by the
3 equations:

p(rk|Dg1) = /P(mk|$k1)p(fﬂk1|Dk1)d-’ﬂk1 1)



and

_ p(yklzr)p(zk|Di—1)
PP = T D) @
where
Pyl Di1) = / p(yelen)p (el Do) de. 3)

The basic SIR algorithm, which provides approximate sohsito (1-3) is given by Gordon, Salmond
and Smith [14]. See also Section 3.1 below.

3 Random measures

Particle filters work by providing a Monte Carlo approxineatito the PDF which can be easily updated
to incorporate new information as it arrives. The Monte Gapproximation to a PDp(z) at time

k consists of a set of random nodes in the state sps;g;)e:1___;v, termed thesupport and a set of
associated weightén!);—;n summing to 1. The support and the weights together fomanaom
measure

The objective is to choose a measure so that

N

> gtskmi = [ glonp(on) do (4)

i=1

for typical functionsg of the state space. This is an approximation in the sens¢hthdft-hand side of
(4) converges (in probability) to the right-hand sideNas— oc [24].

A simple example of a random measure is obtained by samptihgs(st);—1 n independently from
p(zx), and attaching equal weightsi = N~';i = 1,...,N to the values. The left-hand side of (4)
is then the sample avera@fi1 g(st)/N. Importance sampling [25] generalises this by sampling
(st)i—1..n from an importance PDF (z;) and attaching importance weights, = Ap(st)/f(st),

whereA~! = S p(sh)/f(sh).

More sophisticated Monte Carlo integration technique$ §8 also available. Stratified sampling is of
particular relevance. Suppose that a PRF) is made up of contributions fronV distinct subpopula-
tions or strata, so that(x) is a mixture of the form

N
plz) = Bipi(z),
=1

where eactp;(z) is a PDF andy_" | 6; = 1. Sampling theory [26] tells us that a population quantity
[ g(z)p(x)dz can be estimated efficiently by sampling a fixed numbifrom each of the strata, with
M, +...+ My = N. The greatest efficiency is attained with the Neyman allonat/; o< 3;0;, where

o2 is the variance ofj(z) in the ith stratum. In practice, either because the variances dosoum

or because a number of different functions are to be momltaitee proportional allocatioV; ~ j;

is frequently used. Except in certain degenerate casesptbportional allocation can be shown to be
more efficient than simple random sampling frpia:) [26].



A random measurés’, m');—;. y which approximateg(z) can be converted, by resampling, into an
equally weighted measure which approximates a simple ranslimple fronp(z). Resampling con-
sists of samplings’, ... s"V) with replacement fron{s’, m’);—, ., i.e. the discrete distribution with
support pointgs’) and probabilitiegm?). This leads to a new random meas(sg N ~');_; .y where
now the weights are equal but, typically, there are feweirdispoints in the support. Resampling plays
a important role in the SIR filter but we will show that impravapproximations are obtained by using
the weighted measure before resampling rather than resagraid then using the unweighted measure.
Intuitively, this is not surprising because we would expeeset of weighted sample points to carry more
information than an equal number of unweighted points.

3.1 The standard SIR algorithm as a random measure

The basic SIR algorithm given by Gordon Salmond and Smithiflds follows.

Initialisation Begin by simulating a samplg?);—1..y from p(z;). In other words, start from a ran-
dom measure with equal weight on each of Meaample values.

Preliminaries (stepk) Assume that we have an equally weighted random medsjre, N 1), v,
approximatingp(zg_1|Dg—1).

Prediction Estimate the density(z;| D), up to a normalising constaif, by the mixture

N
plax|Dr) = K> plaklsi_1)p(ys|zr). (®)
=1

Take exactly one sample point from each of Mstrata, by generating support poidfs= fx_1(s% ,,wi )
from the system model, with importance weights

i Pyl 3L)
my = —x———— (6)
S p(yxl )

Update Resample from the random meas&ﬁ%,mZ)i:1___N to obtain an equally weighted random
measure(s};, N~1);—1..~. In other words, sampl&' times, independently with replacement, from the
set(3)i=1..n, with probabilities(m?),—1_n.

A rapid algorithm for the update step, is given in Subsectidn
3.2 Variance reduction at the update stage

The analysis in this section provides the motivation for ithproved filter discussed below. Suppose
that we wish to estimate

O = / p(we| Di)g (o) da,
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the mean value of some functigrof the state of the system at timke Using the resampled values from
the SIR filter, this can be estimated by

0, =N! Zq(s}c)

However, an unnecessary element of random noise is inteatlbg this approach. Suppog€,) is a
sample fromp(zx| Dy 1) then the quantity, can be estimated more precisely by

N
O = > mig(5L), 7
=1
wherem is given in (6). To see this, we note tigtcan be written as
N .
0 =N Zig(s})
i=1

where(Zy,...,Zy) is a multinomial distributed vector with probabiliti€sn} ). The quantitydy, is
therefore the expected value @)f.

Calculating variances we find that, for large,
N ~ 1
Varf, ~ Varf + N Var g(xy), (8)

where the last term is the variance thatwould have if(s}%)i:l,,.N was a simple random sample of size
N from p(z|Dy). Details of the derivation are omitted for brevity. It fols that the variance df, is
always smaller than that @,. In fact when the observatiag), is not informative, i.emi = N1 then
the variance of, is effectively double that of.

4 Efficient Particle Filters

As a refinement of the SIR filter it has been suggested [20]aharger number of values, say 10,
should be sampled from each stratum. At the resampling seagample of sizéV is then selected
from the10 x N predicted values, in order to restore the size of the sugmartoN. It has also been
suggested [22] that a simple random sample should be dranwntfre mixture distribution (5). However
sampling theory indicates that greater accuracy can bewaathiby stratified sampling.

We can writep(z|Dy) from (5) in the form

N
plax) =Y Bipilar)
=1

where '
g — [ p(zklsi_ ) p(yelzr) day,

SV [ p(aelst plyrlzr) day
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and

pilzg) = p(xlsi 1)p(yelzx)
i(TE) = - .
7 [ p(xrlsy_)p(yrlzr) doy

In this paper we will only consider stratification by the poojfional allocation. Ideally we should take
M, = Ng; butin practice these quantities are unlikely to be exaegets. We can however arrange that
M, are integer variables with small variances and the corpquéeted value. Our Algorithm 2 in Section
4.1 achieves this while ensuring that; — N ;| is always less than 1. Another simple suggestion [27]
is to take M; to be the integer part oV 3;, and then to add randomly with probability equal to the
fractional part of N 3;. A disadvantage of this method is that the population ofiglag will fluctuate in
size (although it will never die out completely).

In practice, the quantities; andp;(x) may be difficult to deal with and importance sampling is neces
sary. Combining the preceding steps the proposed partitdeif as follows:

Initialisation Start from a random measure wifii support points, possibly obtained by stratified
sampling, which approximates the PPE:1).

Preliminaries (step k) Assume that we have a random meas(l.st‘,;e,pm};,])i:]...zv, approximating
P(xgp—1|Dg—1).

Prediction Estimate the density(x|Dy), up to a normalising constaif, by

N
p(wk|Dy) = K mij_p(zklsi_1)p(yk|os). )

=1

Construct an importance PDF
N
Plae) = Biilwr)
i=1

Take a stratified sample from this density using Algorithmv2h M; sample points in théh category,
where M; has expected valut' j3;.

Update For eachi, sampleM; support points{s-,i) from p;(xzy), with importance weights given by

. mip(splsh )p(yklst) — :
mJ oc — T — for ZM£<'7§ZMZ‘
k Bipi(s])
iPi{S}, =1 =1

The updated random measure is then giveridlym?);—;. v, where the weights are scaled to sum to
1.

Properties of the updated state distribution can be estuinasing the random measure as in (7). If
an approximate sample from the state distribution is regluit can be obtained by simple random
sampling from the random measure as described in Sectiowt& tRat once the stratification numbers



have been calculated, there is only one sampling operatieach update. Carrying forward the weights
(my_1) at the update step, eliminates the resampling phase ofahdatd SIR filter. Construction of
the importance PDF is necessarily problem specific. We wanduigh an example in Section 6.

4.1 Reducing the computational complexity of particle filters

Sampling of N values from a discrete distributiofs;, m;);—1..n, can be carried out by simulating
standard uniform variable§:;);—;.. y and then using binary search to find the vajuend hence:;,
corresponding to

Qj—1 <u; <Qy,
whereQ; = 37_, m, andQq = 0.

Binary search is commonly used to implement the updatirgesththe SIR algorithm. However it is not
efficient. To obtain a sample of siZé, by this means, take3 (/N log N) calculations; théog(N) term
arises from the binary search. A more efficient method isrwuate N + 1 exponentially distributed
variablesty, ... ,ty, usingt; = — log(u;), calculate the running totals; = Z?:U t¢, and then merge
(T;) and(Q;). The algorithm is based on the well known method of simugptirder statistics [28].

Algorithm 1 O(N) algorithm for the SIR filter

i=07=1
do whilei < NV
if Q;Tn > T; then
i =1+ 1; outputs;
else
j=7+1
end if
end do

For precise proportional stratification, the objective dsensure that the number of points in tih
category is as close as possibleNg;. Label the categories; = i. The output will consist ofV
category labels, with the property that the expected nurablabels of category will be equal toN 5;
and the actual number will differ from the expected numbenbynore than 1.

Algorithm 2 O(N) algorithm for stratification

T = unif(0,1)/N;5 =1;Q =0;i =0
dowhileT < 1
if @ > T then
T =T + 1/N; outputs;
else
pickkin{j,...,N}
1= Sk
Q=0Q+06
SWitCh(Sk,,@k) with (8'7',,6_7')
j=7+1



end if
end do

5 A diagnostic for sample impoverishment

All the particle filters we compare in Section 6 are capablapgroximating the posterior distributions
of the state variables in a statistical sense. They difféeims of the accuracy with which properties of
the state distribution can be estimated. For the purposesroparison, the effective sample size is an
obvious quantity to compute. This is the sample size thaiadvoe required for a simple random sample
from the target PDF to achieve the same estimating precaésdhe particle filter. Since some properties
of the state distribution may be estimated well, and somelpdbe effective sample size will depend
on what is being estimated.

Suppose that the property to be estimated is

0= [ g(on)pll Dz,

and let
N N
o= Do mhg(ah), ve= Y mig6) o
i=1 i=1

be the filter estimates @f ando?, the variance ofj(z;) given Dy, as in Equation (8). Note that, ffis
estimated by using the average valugy0f;) in a simple random sample of siZ2é* from p(xx|Dy),
the estimate will have a variance @t /N*.

To evaluate the effective sample size, we use a techniquevibed from classical ‘analysis of variance’
in statistics.

1. Run the filter independently/ times, obtainingM independent replicates, each basedNon
particles.

2. For each replicate, at stépcalculatez] andv?,j = 1,...,M.
3. Calculatez;, andwy, the average values over thé replicates.
4. Theeffective sample side thenMay/ 320 (2] — 2.

To see this, we equate two estimates of the varianeg:afne based on the variance between replicates
and the other based on the notional variance that an estimoatiel have if it was a sample average of a
simple random sample of sizé*, i.e.

Mo o2 v
M! 7 72)? = =~ k .
.Z(Z’“ %)= 3 N
J=1
The effective sample size is then obtained by solvingNér

We advocate the use of this diagnostic generally, in aggp$ise performance of Monte Carlo filters.
The smaller the effective sample size is, the less reliatdefitter is. In principle, a Bayesian filter
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should be assessed by looking at its performance averagedh@vpopulation of trajectories generated
by the system model. However, for non-linear problems it imagpen that most of the trajectories are
simple to filter and only a few are ‘difficult cases’. It is teéore helpful to see how the filter performs
for typical examples of these difficult cases. An exampleughsa problem is given in Section 6.

The integrated correlation time in Markov chain Monte CNCMC) calculations in non-dynamic
problems [29] and the effective sample size play similaesoNeither of these diagnostics checks to see
whether there is convergence to the right distribution. Asydiased filter may have a large effective
sample size but the sample will not have come from the codisttibution. To check for bias, the
proposed patrticle filter will need to be compared with filtetsich are known to perform correctly.

6 Bearings-only tracking

In this example an object moves in the n) plane according to a second order model
z = Pxp 1 + Twy, (10)

wherezy, = (v,0,n,10) L, wp = (wy, wy)L,

and T = (12)

coor
coRrER
or OO
PR OO
cCOoOr Pk
PR OO

The system fluctuationsy, = (w,,w,)? are independent zero-mean Gaussian white noise. The model
essentially assumes that the velocity evolves like Browmetion. The ‘leap-frog’ discretisation is
slightly non-standard. The state variablgsandy), are the velocities at timé — 1/2. Positions are
updated by using a midpoint approximation to the integratdcities. Velocities at step would be
approximated byzy + 741)/2 and (i, + 7x1)/2. There is an equivalent formulation of the leap-frog
algorithm in which(z, ;) are the velocities at time + 1/2 [22,30]. The matriX" is then modified in

the obvious way. We will use parameters which are compatifitie an example considered by Gordon,
Salmond and Smith [14] who use a different integration saem

The observations are a sequence of bearings:

Y = tan~ (ny/vi) + vy

The initial state of the object is; = (—0.05,0.001,0.7, —0.055)”". The system noise variables,, w,,
have variance-? = 0.0012 and the observation erray. has variancer? = 0.005%2. We consider an
observed trajectory which passes close by the observer svfigeid at the origin. See Figure 1. We
adopt the same prior distribution of the starting configoraas Gordon, Salmond and Smith [14].

To construct the importance PDF we consider:thecomponent of (9)
Kmj_yp(|s)p(y|z) (12)

where we have replaced, , by s, yx by y andz;, by z for notational convenience. Conditional en
the density ofz depends only offv, ). Converting(v, n) and(E(v|s), E(n|s)) to polar coordinates as



(r,0) and(p, ), respectively, it follows that (12) is proportional to
m;iHTef(r2+p272rpms(ﬂfa))/(%z)*(yf(?)z/(w)
m;’gf]Tef(rfpcos('9foz)>2/(272)fp2 sin®(0—a)/(27%)~(y-0)*/(20°)

Our importance PDF is obtained by replackig(f — «) by 8 — «, giving the PDF

Bif(0)f (r]6)

where 0 s
F(r|6) re—(T—pcos(6—a))?/(277)

andf () is the Gaussian PDF with meém’ap? + y72)/(p?0? + 72) and variancer?72/ (p?o? + 72)
and the normalising constants have been absorbedjjmith ZiN:1 B; = 1. Both f(0) and f(r|6) can
be sampled directly using standard methods.

All the filters were initialised by taking samples of si2eé = 5000 from p(z2|D), obtained using the
Metropolis Hastings Algorithm as described in [30]. Thetilwition of these samples was checked
against a numerical evaluation ofzs| D) and found to agree closely. The samples were also checked
for independence by computing auto-correlations durirgNtetropolis Hastings simulations. The ef-
fective sample sizes were calculated usiig= 1000 replicates. Each of the different filtering methods
were successively initialised from each of thestarting configurations

The results, for various methods, are presented in Tabled caéulate effective sample sizes for the
filter estimates of the mean range and the mean bearing asegzhin all cases, there is greater sample
impoverishment for the range calculations than for theibgar The ‘Improved Reweighted’ filter is
an implementation of the particle filter described in thegyawith precisely stratified sampling as in
Algorithm 2. The ‘Multinomial Reweighted’ filter carries wghts forward as in the improved filter, but
samples the strata multinomially using Algorithm 1 (with = ;). The ‘Two Stage’ algorithm [22]
samples strata multinomially, but resamples after eaqgh steobtain equally weighted particles. The
‘Standard SIR’ [14] is included for comparison.

Note that our implementation of the basic SIR algorithm &dtion 3.1 ) does not incorporate the
hocmodifications of added jitter and prior editing suggestedmydon, Salmond and Smith [14].

7 Conclusions

We have shown how to reduce the computational cost of imptiéingeparticle filters. We have proposed
an improved particle filter and demonstrated its superiofopmance. While the filter is more compli-
cated to implement and, unlike the standard SIR filter, néed® tailored to the problem in hand, the
computational gains are substantial. Further, we havedated a diagnostic for sampling inefficiency
which allows us to compare the performance of various Moraddilters. We advocate the use of this
diagnostic as a general tool in the analysis of sequentiait&Garlo algorithms.

All of the filters we have discussed suffer from substant@hple impoverishment. In principle this
could be monitored using our diagnostic and compensatedyfmmically, by adjusting the number of
particles at critical stages. We believe that there is séopeven greater variance reduction by the use
of more efficient Monte Carlo integration techniques.
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FIGURE 1

Caption for Figure 1:

Trajectory used to compare patrticle filters in the Sectioilée object passes from left to right. There
are 24 time steps. It is when it passes close to the origingptl®, that the problem is most non-linear
and the particle filters start to degenerate.
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Step | Improved Reweighted Multinomial Reweighted Two-stage sampling Standard SIR
Radius Angle| Radius Angle| Radius Angle| Radius Angle

2 4545 4869| 4545 4869| 4545 4869| 4545 4869
4 1190 2614 794 1648 588 1317 714 1192
6 236 866 147 602 90 348 132 355
8 106 815 85 563 48 339 47 263
10 81 521 62 399 31 212 31 179
12 25 684 20 538 11 249 9 162
14 14 2757 11 2387 6 1540 5 479
16 18 1377 14 1051 7 668 5 267
18 17 4538 14 3701 7 2871 5 1803
20 17 775 14 640 7 350 5 243
22 19 436 15 360 7 204 4 109
24 19 2394 15 1560 7 967 5 621

TABLE 1

Caption for Table 1

Effective sample sizes (rounded to the nearest integegiredd using various particle filters (see text).
The mean angle or bearing is well estimated but in all casre ik severe loss of information about the

range from step 10 onwards.
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