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Hidden Markov Modeling of Flat Fading Channels

William Turin, Senior Member, IEEEand Robert van Nobelen

Abstract—Hidden Markov models (HMM’s) are a powerful ~ processes. The most general approach is to fit a high-order
tool for modeling stochastic random processes. They are general multidimensional probability distribution of one process to the
enough to model with high accuracy a large variety of processes other which can be accomplished by minimizing a distance

and are relatively simple allowing us to compute analytically S
many important parameters of the process which are very dif- measure between the distributions (such as mean-squared

ficult to calculate for other models (such as complex Gaussian error, Kullback—Leibler divergence [11], qr). This approach
processes). Another advantage of using HMM's is the existence can be computationally expensive [22]. Alternatively, we can
of powerful algorithms for fitting them to experimental data and  simulate one process and treat the simulation results as exper-
approximating other processes. In this paper, we demonstrate ;jantq| data for estimating parameters of the other process.
that communication channel fading can be accurately modeled Since the method of fitting multidimensional probability
by HMM’s, and we find closed-form solutions for the probability i . X -k g
distribution of fade duration and the number of level crossings. ~ distributions requires calculation of complex multidimensional
integrals, the method of moments is often used. This method
consists of calculating the probability distribution moments for
both processes (such as means, autocorrelation functions, etc.)
and finding parameters of the approximating process from the
|. INTRODUCTION corresponding system of equations. This approach is simple,
ANY papers and books are devoted to modeling fadirigjt often leads to a poor approximation.
communication channels. A common feature of the The other question that should be asked when apprOXimating
models is that they all have memory. The most widely useith HMM’s is how to choose the model structure, the tran-
model describes fading as a Gaussian process [3]. Howetion probability matrix structure, and a type of observation
this model is difficult to use in applications. For example, theobability distribution. In this paper we compare different
are no closed form expressions for characteristics associafié@dels in terms of the complexity of fitting the models to the
with the model such as the probability density function (PDH&ding process and difficulty of their use in applications.
of fade durations and the probability distribution of the number Our paper is organized as follows. In Section Il we analyze
of fades inside a fixed time interval. Several approximatioige most widely used model for the Rayleigh fading [3]. In
for these probability distributions are available in the literatur@ection il we consider various Markov models for the fading
[9], [12], [16]. envelope. Modeling with HMM's is addressed in Section IV.
Hidden Markov models (HMM's), on the other hand, allowDection V describes various algorithms for HMM parameter
us to calculate many important System parameters (Sucheégmation. In SeCtionS Vi a.nd VIl we demonstrate that there
probabi“ties of various error sequences and other performarﬂf@ closed-form solutions for the fade duration distribution and
characteristics) in closed form [27]. Also, there are many effevel crossing number distributions for the fading HMM which
cient statistical algorithms for fitting HMM'’s to experimentaf@re not available for the Gaussian model. In Section VII we
data and for approximating various stochastic processes witfoduce an HMM for modeling the combination of fading

Index Terms—Fading channels, hidden Markov models, pa-
rameter estimation.

HMM's [1], [15], [22], [27]. and additive noise.
Many papers use HMM’s to model channels with memory.
Gilbert initiated the study of the HMM for real communication Il. FADING CHANNEL MODEL

channels error statistics [8]. His model is popular because

of its simplicity. However, measurements of various channelsLet z(t) be a low-pass equivalent of the transmitted signal
plctty. ’ ith the in-phase component;(t) = Re{x(¢)} and quadra-

showed a necessity of using more complex models [7], Heﬁflre componentro(f) = Im{z(f)}. Consider a frequency-

[21]. . ; ; " . ;
. , nonselective fading channel with additive noigsét). This
Many experimental results demonstrate that HMM's ca annel can be modeled as [13, p. 716]

be used to model error sequences in digital communications
over fading channels [6], [18]-[20], [23]. Several papers are y(t) = c(t)x(t) + n(t) 1)
devoted to modeling the fading process itself with HMM's
[17], [25], [24]. The important problem arises when apwherey(t) is the received signal and fading is modeled by the
proximating one process with the other is how to select@mplex random processt). Different models are based on
measure of the approximation quality: a distance between #iferent assumptions aboutt) and n(t).

Usually it is assumed that(t¢) is zero-mean complex
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PDF of a sequence, = (c¢(t1),c(t2),...,c(ts)) has the form which can be obtained from (2) by using the equation [24]
_k 27 27
fe) = @m) “IDlexp(-05Re{erDef }) (@) F (o) = (ZW)_k‘D‘QIQQ o / /
0 0

where |D| denotes the determinant d?, ¢ denotes the

27
conjugate transpose ef,, and D! is the process covariance . / exp(—O.SakGa}f) dfy dfy---dby,  (8)
matrix 0
where o; = «(t;),6; = 6(¢;),G is the matrix whosei;jth
D7t = [R(tj — t)]ex (3) elementisg;; = d;; cos(f; — 6;), whered;; is the element in
theith row andjth column of D, anday, = (o, @z, ..., o).

: : : . . If k£ =1 we have the Rayleigh PDF
R(r) is the process autocorrelation function. The noise multi- yielg

dimensional distribution has a similar form. Flan) = anp! exp(_0_5af/u)7 = R(0) = 0% (9)

This model is called a Rayleigh fading because its envelope
a(t) = |e(t)] is Rayleigh distributed If & =2, we have [9, p. 50]

Pr{a(t) < a} = 1 — exp(—0.5a/p1). _ _ af + a3
- - ( ) - f(Oél, 042) = 7/12(1 — )\2) exp 72/1(1 — )\2)

Different models of fading channels are based on different \
assumptions about the power spectral denSity) or, equiva- Iy <a1a2 2) (10)
lently, the autocorrelation functioR(r) of ¢(¢). In this study pol-A
we consider the model in which where A = R(t2 — t,)/R(0),Io() is the modified Bessel

S(f) = p/m /f,% — 2 R(r) = pdo2nfplr))  (4) function of the first kind.

Obviously, this model is difficult to use in applications in
where Jy(-) is the Bessel function of the first kind; is the which distribution of high-dimensiort is needed. In these
maximal Doppler frequency, andis the power of the fading applications, the Monte Carlo method is usually applied. It is
process:(t). We will refer to this model as Clarke’s model [3].possible, however, to approximate the model with an HMM
The other models include rational functions [12], [16], [19]which is simpler to apply.
simple irrational functions [12], [16], and Gaussian PDF’s
[16]. It is well known that stationary Gaussian stochastic IIl. M ARKOV MODELS

I filteri hi i i i . .
Zr((zge[isée]s can be modeled by filtering white Gaussian nOISEf‘\/larkov processes are popular in modeling fading because

Alternatively, it can be simulated by the following equatimjihey can model processes .W'th memory and their theory is well
[9]: developed. We consider different model structures commonly

N used in describing fading channels.

e 271
— Jlim/N+1) _enr
ot) =2 ; ¢ cos <27rf’7t o8 4N+2> A. Multiple Markov Chains
+ V2 cos 27 fpt. (5) Multiple Markov processeg{® are processe;_with finite
. . _ memory. If the process has memory, the conditional PDF
In praCtlcal systems, the transmitted Slgﬁlﬂ@) has the form of %, given all past Observationé_l7 depends On|y on the

(1) :Z exp(t — kA) 6) ™ previous observationg!~% (where symbolz! denotes
& 27‘,,27‘,4_1,...,2]'), ie.,
where1/A is the symbol rategy, is the transmitted symbol f(zt zfi—l) _ f(zt Z::in)-

value (a complex number corresponding to a point of the signal
constellation), andy(t) represents the shaping pulse. If we Since the correlation functioR(r) tends to zero andj is
assume thad':(t) is slowly varying so that it is nearly constantGaussian it can be approximated with a Markov process if
over a symbol duration\, the sampled output of the coherents |arge enough so tha®(mA) ~ 0 (becauser; and ¢y,
demodulator followed by the receiver matched filter can ligecome uncorrelated and hence independent). The envelope

approximated by transitional PDF has the form

Uk = crk ™ AT € VA (e B CEY
where n;, is the sample of the filtered Gaussian noise and 1 _
cr. = c(kA) is a sample of the fading process. wherea;,, = (@—m; @h—m+1,---,0x—1). The sizem of

the process memory can be determined using an approximation
accuracy measure (an example of such a measure is given in
Section V-B). For the simple Markov process: = 1) the

For slow fading, the communication system performandeansition PDF is the Rician PDF.
depends mainly on the value of the envelapg) = |c(t)|. If we perform the envelope quantization in® levels, the
The envelope can be described by its multidimensional P@fantized proces$p;.} can be approximated by the Markov

A. Fading Envelope Model
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chain with V states. In particular, for the simple Markov chairC. Birth-and-Death Processes

(m = 1) we have the transition probabilities Birth-and-death processes are a special case of a Markov

ami pamy . model [4], [17], [25]. These models assume that the quantized
aij = / / flag, az) dag doQ// f(a) do  fading amplitude from the currerith level can jump only to
av:  Jav,; . the adjacent levels,; = 0 if |j — ¢| > 1. If a;; is large, this
L L (12)  structure allows us to model slowly varying processes.
where f(a1, az) is given by (10). If the quantization !ntervals It is possible to improve this model by splitting each state
are small, we can write;; = alpjlpi)an.;—ar.j).for 5 <N i intg two 4, andi., depending on the transition slope [17].

anda;y =1— X a;. i i, corresponds to the start of fading below the leyxeandi.
Reference [24] suggested that the first-order model athrresponds to its end.

proximation is satisfactory for Rayleigh fading whose power 1,4 accuracy of this model depends on the selection of

spectral density is given by (4). This approximation, hNOWeveg, . ntization levels. The quantization levels must satisfy two
is sat|sfactor_y for relatively short m_terval; _only. conditions: a;; given by (12) should be close to zero for
To approximate the Bessel function arising in (4) we need ;1 anq the original model state duration distributions

Markov chains with larger memory (we address the questidfy, 4 pe close to exponential distributions (since the state
of fl_ttlng the autocorrelation function in Section I.V-A). . durations of a Markov chain have exponential probability
Since the number of states grows exponentially with thggyinytions). These two conditions are difficult to satisfy.
process memory, this approach is not practical. In order to fit the exponential state duration distribution the
number of quantization levels must be large, but in this case
B. Quantized Autoregressive and Moving Average (ARMA) the probabilitiesa;; of transitions to the nonadjacent levels

Using standard methods of the infinite impulse responéé—¢| > 1) are not negligibly small. The model approximation
(IIR) filter design [14] we can approximate the fading powe#@n be improved by allowing nonadjacent level jumps.

spectral density with a rational function of the form
D. Monte Carlo Method

|§q: d;2)? Since it is difficult to evaluate the integrals which are needed
— " for the Markov process approximation, the model parameters
S(f)=——, do # 0 (13) can be estimated using the results of computer simulation.
11+ Z hizi|? After sampling and quantizing the envelopé&) = |¢(t)| we
F— obtain a sequencg?. Now we can apply the well-known

methods of fitting Markov chains to experimental data [2].
where » = ¢72™/_ In this casec(t) can be modeled by the The state transition probabilities are estimated by
complex ARMA process

n
. . Gij = mnij/ng, n = 221 Nij (15)
J:
o = Z hicp—i + v, v = Z ding_; (14) . -
im1 i=0 wheren,; is the number of transitions from stai¢o state;.
wheren, are i.i.d. Gaussian variables.df= 0 we have an AR IV. M ODELING FADING WITH HMM

procesg v, = doni). The ARMA approximation of the fading HMM | babilistic functi f a Mark hai
is a special case of the Markov process whose state is defig%@‘n Is @ probabilistic function of a Markov chain

k—1 k—1 can be defined a$sS, X,n,A B(x)} where S =
by the vectorse,”,, = (Crk—ps Choptis-- s Chm1),Ry_y = i th f t the M E()} hain stateX
(Mk—q»Mh—ga1s---»Nk—_1). TO Obtain a Markov chain with {51,52,...,5n) iS the set of the Markov chain state

8 notes the HMM output (observation) set,is a vector

the finite number of states, we need to quantize these v L . .
state initial probabilites,A = [a;j]n, IS @ matrix

tors. This approach is more directly related to approximatir® . o
PP Y PP state transition probabilitea;; = Pr{s,|s;}), and

the autocorrelation function than the one considered in t . ) .
(ix) = diag{b,(x)} is a diagonal matrix of the outpute X

previous section. Moreover, it allows us to use the stand ditional bability densities in st X s di ;
methods of filter design for building the model. In the case of pnditional probability densities in statg. IS ciscrete,
(«) is a matrix of probabilitieh;(x) = Pr{xz|s;}). Without

o}

Butterworth filter [16], [19] we have a simple Markov process. : o .

The fading envelopev;, = |cx| is a function of the Markov ss of geperahty, we denote states by their indejgs= 7).

chain and, therefore, is a special case of an HMM. The ARMA Alternatively, HMM can be represented by the so-called

model complexity grows linearly with process memory. Thigtate—space equations

model, however, is difficult to use for calculating model w1 = Glug, &) (16)

statistics. For exe_lmple, there is no_closgd-form expression wr = H (ug, %) (17)

for the fade duration and level crossing distributions for the

ARMA model. where &, and»;, are i.i.d. variables. Indeed, it follows from
As in the case of the multiple Markov chains, the size dfL6) that{«,} is a Markov process, generally with an infinite

this model transition probability matrix grows exponentiallnumber of states. i(u, v) has a finite discrete range (number

with the process memory. The matrix is large, but sparse. of possible values which it can take), however, then we have
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a Markov chain with the finite number of states and state- It follows from these equations that an HMM power spectral

transition probabilities density is a rational function of = ¢=27/f
a;; = Pri{ug+1 = jlu = ¢} = Pr{G(,&) = j}.  (18) S(f) =wE(z*) — [#E(x)1)? + wE(z)[(I — Qz)™*
According to (17), observations; are conditionally in- + (- Q)T E(2)1
dependent variables, given the state sequence, and havev\mgre
following PDF:

E(x) = PI‘(.’L’k < .’L’|U,k = '[,) = Pr{H('L,T]) < .’L'} (19) Q‘F—l — A—;-_l 1

Conversely, for any HMM we can finG(i, ¢) and H (4, 1) According to (23), the autocorrelation function must have the
by inverting (18) and (19), respectively. form

In order to understand the limitations of the HMM approx- r .
imation, let us study the class of autocorrelation functions ofR(T) = > [Pj(r) cos vy + Q;(7)sinwyrlgf, 7> 0
HMM's. i=1
) _ where P;(r) and Q;(r) are polynomialsg; = |A;| and
A. HMM Autocorrelation Function v; = arg();). If all eigenvalues are differenk(r) takes the
To calculate the autocorrelation function form

R =F c L k47 " T
(T) ($k$k+ ) R(T) _ Z ijL |COS ViT.
we evaluate the probability densitipgey) of an HMM output j=1
sequences’ = (z1,72,..., 7). These probability densities

have the form [21] Obviously this class of functions is rich enough to approximate

any autocorrelation function. Let us consider now different
k methods of approximating the fading process with HMM’s.
p(xt) = wP(x1)P(xs) - Plor)l == H P(z)1  (20)
= V. HMM PARAMETER ESTIMATION
where P(z) = AB(z) is the matrix PDF ofz and1 is the
column matrix of ones.
Using these equations, we can write

R(0) =wE(z)1, R(7r) =#nE(x)A" 'E(x)1,
R(—7) =R(7), forr >0 A. Method of Moments

The method of moments consists of finding the model’'s
parameters by equating moments of two models and solving

E(z) = /Oo aP(z) dz, E(z?)= /Oo 2’ P(z) dx the corresponding equations. Usually one of the models is

Once we selected a class of models, we need to fit a model
from this class to the fading process. There are several methods
for fitting the model.

where

—o0 —o0 represented by its experimental data. Examples of such an
are the matrix expectations afandz?, respectively. ﬁ]p?f;)]('mat'on of the Rayleigh fading by an HMM are given

It follows from these equations that thetransform ofR(r)

for > 0 is a rational function There are several problems with the method of moments.

One of the problems is that the system of equations for
—r - the moments is often ill posed. The moments are the same
R(z) = R(r)2 " =7E(x) Iz — A7 'E(x)1. (21
(z) Z (r)z wE(e)(Iz ) (=) (21) for quite different models. The model structure is usually

) T_l ) ) ) selected using our intuition and the model accuracy must be
Expanding it into partial fractions we obtain evaluated separately. The other problem is that the moment
roomy ‘ selection is quite arbitrary. For example, we can find an
R(z) :Z Z Dij(z— M)~ (22) HMM whose autocorrelation function is close to that of
j=1 i=1 the fading process. However, this does not mean that the
where \; are the matrixA eigenvalues. Thus multidimensional probabilities associated with these processes
are close.
LT -1 » Therefore, the method of moments could be used for se-
R(r) = Z Z D <L —1 ) A >0 (23) lecting initial values of the model parameters which are then
g=1 =1 improved by more sophisticated statistical algorithms.
In particular, if all the eigenvalues are differed®(r) is a
mixture of exponential functions B. Approximating Multidimensional Probability Densities

r . One of the most powerful methods of approximating a
R(r)=)Y_DyA] ', >0 (24) stochastic process with an HMM consists of fitting multidi-
j=1 mensional probability distributions of an HMM to that of the
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original process. The HMM parameters can be obtained aobability of observing the level in those states is equal to
those which minimize the Kullback—Leibler divergence one).
] The matrix-geometric distribution parameters can be esti-
0 = arg min K(f||pe) (25)  mated using the Baum-Welch algorithm if we notice that the
state holding process is a binary HMM whose state transition
. probability matrix isE;.
: f&1) & To illustrate this method, we performed simulation usin
K = *)log d 26 » We p g
(Fllpe) /X'k f(z1)log po(at) 1 (26) Clarke’s model of the Rayleigh fading channel with the
. ) arametersfp = 100 Hz, the normalized fade ratép,7 =
f(,') e;]nd po(-) are given by (8) ang (20_),.respe.ct|vely ant 1. We simulated 1 million steps of the fading amplitude
f) IS lt) e H'Z”VI pararTeLer \r/]ector. The minimum in (25) can, otimate the state transition probability magixwhere the
€o _talne |t§r§1t|ve y by the ex_p(_ectatlon-njax_m|zat|on (ENQtates are represented by the quantization intervals (0, 0.0149),
algorithm [27]: its version for fitting HMM'’s is called the (0.0149, 0.0329), (0.0329, 0.0725), (0.0725, 0.1601), (0.1601,
Ba“m‘wel'g?.ka'go“thm [4]. _— ol efficioncd-3535), (03535, 0.7805), (0.7805, 1.7234), (17284,
We would like to point out that the computational efficiency o giate quration distributions are typically not exponential

ofbthe allgc;rithrln d(fapg:-.nds on the nature ,Of §tatis';i]call ddt?i%'s also shown in [17]). As an example, the state duration dis-
Obviously, for slow fading, an HMM approximation shou ,?ribution of the sixth quantization interval is shown in Fig. 1,

close to the blrth—a_nd—_death Process. Since the_ model matri dgether with the matrix-geometric distribution approximation
sparse, direct application of the previous equations for the skal ing a five-state model. The matri is

fading data is very inefficient. We can improve the algorithm

where

efficiency by using matrix fast exponentiation [27]. Another 0.9414 - 0.0249 0.0165 0.0173 0.0000
improvement can be achieved by taking advantage of the 0.0070 0.6763 0.0015 0.3152  0.0000
following property of the Baum—\Welch algorithm:df; , = 0 Ee¢ = 10.0062 02393 0.7532 0.0013  0.0000
at some iteration step, thena;; ,41 = 0. Therefore, at each 0.0390 0.0026 0.0071 0.7487 0.2026
iteration we can replace small elements with zeroes and apply 0.0829 0.0000 0.9171 0.0000 0.0000
the sparse matrix multiplication algorithms. The quality of the fit is illustrated in Fig. 1. The quantized

Alternatively, we can start with the birth-and-death procesading level process is described by the HMM whose transition
approximation. If the state transitions satisfy the Markoviaprobability matrix is given by (29).
property, but the state duration distributions are not exponen-

tial, we have a semi-Markov process approximation which can VI. FADE DURATION DISTRIBUTION
beLté?nsformed into an HMM as follows [21, p. 48] As we pointed out before, it is possible to find a closed-form
solution for the fading-duration distribution of an HMM fading
0 @12 - W model. To calculate fade-duration probability distribution we
y 5?1 0 62.,,,, (27) can use the method of matrix probabilities [21]. Let
1 Gmz - 0 P, = / P(z) dx = Adiag {/ bj(x) dx } (30)
R R

the matrix probability of the fading to be above the level

pose that we were able to approximate the state durati nd

be the transition process transition probability matrix. Su;%?I
distributions with the phase-type matrix-geometric distribution a

R—0
pix) = m A7 by (28) Py = / P(z) dz (31)
where A4; is a square matrixg, is a row vector, and; is a be the matrix probability of the fading to be below lev@l
column vector such that Then the probability that the fade duration is equal-tcan
be written as
E - [AIL bi:|
om0 pr(7) =P, P P,1/xP,1. (32)

is a stochastic matrix (that is all its elements are nonnegatiVhe probability distribution of intervals between consecutive
and each row sums to orfg;1 = 1). Then the semi-Markov fades can be found similarly

process is equivalent to an HMM whose state transition _ "

probability matrix is given by qr(v) = nP P Py1/mP;1.
As we see, these probability distributions are matrix geometric.

A a10b e Wb ! - - -
Aol bl a12A 112 glmblll'm (29) The comparison between the cumulative matrix-geometric
Tty T, am 2 distribution of fade durations
Gm1bmpy  Gmobmps - - A,,

. . . . <t)=aP,(I—-P)1/xP,1
In this presentation, the diagonal matricds represent the PR(1 <) =mPu b1/

transitions between states of the HMM that correspond #&md simulated by both Clarke’s model and HMM is presented
the ith quantization level of the fading process (that is tha Fig. 2.
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@
o)
T

e
Y
T

o
)
T

@
IS
T

..... - G——©- - simulation-results -+~ R Do -

Cumulative Distribution
o
w
T

XX HMM analytical computation

o
w

o] 1 ! 1 1
0 50 100 150 200 250
Fade duration

Fig. 2. Fade-duration distribution.

The mean duration of fades can be easily found using (3Ihere is a closed-form solution for the mean duration of fades

o0 [12, p. 189]
THMM = Z TpR(T) = WPan(I — Pb)ill/ﬂpal
=1
2
and the mean duration between the fades is equal to Ty = % |:exp <%> — 1}
g

VHMM = WPbPa(I - Pa)fl]_/wa]__

If 7 is a stationary probability vector, these equations can

L %eren = 0,072 and o, is the standard deviation of the
simplified

process first derivative. Fig. 3 comparégyn with 75 for
THMM = 7I'Pb1/7l'P,,,1, VMM = 7I'P,,,1/7I'Pb1. different levelsR.
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Fig. 3. Mean duration of fades.

VII. LEVEL CROSSING NUMBER DISTRIBUTION [21, p. 76]
The other important parameter which characterizes the P, (0) =7, P(0), p, (1) ==, P(1)
fading process is the number of fades below a certain level p,(m)=0, form<0 orm>n
during a fixed time interval. This parameter is closely related "( Y =p. (m)P(0)+p, ,(m—1)P(1) (34)
n n—1 n—1 - .

to the number of the level crossings by the fading process " _ _ e

(if we neglect the interval boundary condition the number df is not difficult to verify that the stationary distribution of

fades is one half of the number of crossings). It is not difficuthe transition HMM is

to derive this distribution for the HMM. wy, = (ﬂpg,wpapb,ﬂpbpmﬂpf), (35))
Indeed, leté, be a characteristic function of the fadin

amplitude below a leveRk gThese equations can be simplified since matrif¥8) and

P(1) contain many zeroes

g={b Mol R a0 =aP;, (0 =nP},
—1, otherwise. 1 ()
g’ (1) —7erPa, ¢ (1) =aP. P,
The number of the level crossings is equal to the number of qgll)(m) [qn L(m) + qul(m - )P,
transitions—1 — 1 and1 — —1 in the binary HMM¢,; which 2) 1) )
is described by the matrix probabilitig3, and P;. . (m) =[g,—1(m = 1) + g, (m)] Py (36)
To derive the number of level crossing probability distribuand
tion it is convenient to consider the level transition process ) )
ne = &-_1&. This process is also an HMM with the matrix pn(m) = ¢ (m)1 4¢P (m)1. (37)
probabilities
The corresponding cumulative probability distribution is
Pe 0 0 07 compared with the results of computer simulation in Fig. 4.
P(0) = 0 0 0 P It is not difficult to show that the mean number of level
P, 00 0} crossings equals to [21, p. 70]
:00 PO 00 P " mp = Ta(PyPy + PoPy)1 = 2TnP,Py1.
’ Thus, the level crossing rate is
=2 0 P O (33)
0 Pb 0 0]’ ZHMM = 27rPan1 (38)
L0 0 P, 0d while for the Clarke’s model it is [12, p. 182]
Since n, is an HMM the number of crossings probability JO <_i?>
27 =1 Rexp| —-—
distribution is a matrix binomial distributiop,, (m) = p,,(m)1 20

which can be evaluated by the following forward algorithmve comparezgny and z in Fig. 5.
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Fig. 5. Level crossing rates.
VIIl. CHANNELS WITH FADING AND AWGN The output conditional probability is given by
Let us consider now modeling the slow-fading channel bi(ux) = pleren + nils), G= (s, %)

output according to (7). If we assume that the source sequence

{x)} is generated by an HMM, then the channel outpyt} Where s;; and s;, are the states of the source and fading,
is an HMM whose state space is the Cartesian product fespectively. This PDF has the form

the states of the source and fading HMM'’s and its transition o0 poo

probability matrix is a Kronecker product of the source and bj(ue) = /Oo /Oo bsz (u) bsz (v) fr(up — wv) du dv

fading transition probability matrices
where b (-) and b, () are source and fading conditional

A=A, QA. probability densities and,,(-) is the noise PDF.
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If the fading is Markovian, the output conditional PDF i910] L. N. Kanal and A. R. K. Sastry, “Models for channels with memory

just a convolution and their applications to error controPProc. IEEE vol. 66, no. 7, pp.
724-744, July 1978.
oo [11] S. Kullback, Information Theory and Statistics New York: Wiley,
. — - o . 1959.
j(yr) /_Oo sy (w) fn(yse — ucy,) du. [12] W. C. Y. Lee, Mobile Communications EngineeringNew York:
McGraw-Hill, 1982.
If the source is discrete [13] J. G. Proakis,Digital Communications New York: McGraw-Hill,

1989.
[14] L. Rabiner and B. GoldTheory and Applications of Digital Signal
m Processing Englewood Cliffs, NJ: Prentice-Hall, 1975.
[15] L. Rabiner and B.-H. Juangrundamentals of Speech Recognition
boy (u) =Y bid(u— X;) Englewood Cliffs, NJ: Prentice Hall, 1993.
=1 [16] S. O. Rice, “Distribution of the duration of fades in radio transmission:
Gaussian noise modelBell Syst. Tech Jvol. 37, pp. 581-635, May
then 1958,
[17] M. Sajadieh, F. R. Kschischang, and A. Leon-Garcia, “A block memory
model for correlated Rayleigh fading channels,Proc. IEEE Int. Conf.
bi(yr) = Z bi frulyr — Xicr)- Commun, Dallas, TX, June 1996, pp. 282-286.
o1 [18] S. Sivaprakasam and K. S. Shanmugan, “An equivalent Markov model
for burst errors in digital channelslEEE Trans. Communvol. 43, pp.
1347-1355, Apr. 1995.
IX. CONCLUSION [19] F. Swarts and H. C. Ferreira, “Markov characterization of channels with
. . . soft decision outputs,IEEE Trans. Commun.yol. 41, pp. 678-682,
There are many reasons for modeling fading with HMM's.  may 1993.

It is convenient to have a common model for different types &0] S. Tsai, “Markov characterization of the HF channdEEE Trans.
yp Commun. Technglvol. COM-17, pp. 24-32, Feb. 1969.

fading. The class of HMM's is broad enough to approximat@i] w. Turin, Performance Analysis of Digital Transmission Systegrsl
accurately various types of fading. We have demonstrated that ed. New York: Computer Science, 1998.

. . . . , “Fitting probabilistic automata via the EM algorithnCommun.
different approaches to mOdelmg Raylelgh fadmg repres Statist.-Stochastic Modelsol. 12, no. 3, pp. 405-424, 1996.

special cases of an HMM. [23] W. Turin, and M. M. Sondhi, “Modeling error sources in digital

If fading is modeled by an HMM, then bit errors and block channels,”IEEE J. Select. Areas Communol. 11, pp. 340-347, Mar.
. 2 . 1993.
errors in data communications over fading channels can p@ H.'s. wang and P.-C. Chang, “On verifying the first-order Markovian

modeled by an HMM. assumption for a Rayleigh fading channel modéEEE Trans. \Veh.

) : ; _ Technol, vol. 45, pp. 353-357, May 1996.
On the other hand, HMM's are comparatlvely S|mple a|[25 H. S. Wang and N. Moayeri, “Finite-state Markov channel—A useful

lowing us to find closed-form expressions for various fading ~ model for radio communication channel$REE Trans. Veh. Technol.
characteristics which are not available in the closed form Vol 44, pp. 163-171, Feb. 1995. _
for other models. We illustrate this by considerin robabiL ] M. Zorzi and R. R. Rao, “On the statistics of block errors in bursty
_O A : - y gp channels,"l[EEE Trans. Communvol. 45, pp. 660-667, June 1997.
ity distributions of fade durations and the number of levdk7] W. Turin, Digital Transmission Systems: Performance Analysis and
crossings. Modeling New York: McGraw-Hill, 1998

We have also considered relationships between various
models and HMM'’s and shown how to approximate thes~

models with HMM's.
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