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Channel Equalization Using Adaptive 
Complex Radial Basis Function Networks 

Inhyok Cha, Student Member, IEEE, and Saleem A. Kassam, Fellow, IEEE 

Abstract-It is generally recognized that digital channel equal- 
ization can be interpreted as a problem of nonlinear classification. 
Networks capable of approximating nonlinear mappings can 
be quite useful in such applications. The radial basis func- 
tion network (RBFN) is one such network. In this paper we 
consider an extension of the RBFN for complex-valued signals 
(the complex RBFN or CRBFN). We also propose a stochastic- 
gradient (SG) training algorithm that adapts all free parameters 
of the network. We then consider the problem of equalization 
of complex nonlinear channels using the CRBFN as part of an 
equalizer. Results of simulations we have carried out show that 
the CRBFN with the SG algorithm can be quite effective in 
channel equalization. 

I. INTRODUCTION 

HIS paper investigates the problem of digital channel T equalization using a complex extension of the radial basis 
function network (RBFN). Consider the standard baseband- 
equivalent model of a communication system where we as- 
sume that an i.i.d. M-ary signal sequence { s n }  is transmitted 
through the channel (which may be nonlinear and slowly time- 
varying) and corrupted by additive zero-mean i.i.d. complex 
Gaussian noise {U , , } .  The channel may be modeled as a 
complex-valued FIR filter with impulse response {ha ,  0 5 i 5 
L - 1). The channel output y, is then given by 

coefficients may be chosen so that the overall channel-plus- 
equalizer filter has an impulse response that best approximates 
a unit impulse at time n - 7. Even when noise is considered, 
the equalization problem may be treated essentially in the 
perspective of inverse filtering [ 1 1. 

However, it is also clear that digital channel equalization 
can be viewed alternatively as an optimum classification 
(decision) problem 121, [3]. Consider an A4-ary input sequence 
with alphabet A = ( ~ 1 , .  . . , a n f }  going through a noiseless 
channel of order L. Suppose an equalizer uses as its input an 
N x 1 channel observation vector'y, = [:yT, . . . yln-~v+lIT. The 
equalizer input vector y, is generated from the L + N  - 1 input 
symbols { s,. . . . , S,-L, s n - ~ - l ,  . . . , sn- L - ~ v - ~ } .  Since the 
input symbols are M-ary, the number of different equalizer 
input states is at most ML+"-l. The goal of an equalizer 
is then to partition the set of the MLf"-l equalizer input 
states of dimension N into M subsets corresponding to each 
symbol of the alphabet A. 

A similar interpretation holds for noisy channels. It is 
readily shown that the minimum probability-of-error equalizer 
estimates the input symbol .yn-T according to 

SnwT = a3 

j = argmax {Tk = ak, 1 I k: 5 M }  (3) 
L-1 

yn = CJL,sn- z  + vn. 7/n - ~ ( 0 9  n:)- (1) 

The integer L is called the order of the channel. A more 
general channel model gives 

where Ak is the a priori occurrence probability of the in- 
1=0 put symbol I& and p ( y n ( ~ n - T  = a k )  is the conditional 

probability density of the equalizer input state vector y n  = 
[&, . . . . ~ ~ - n r + l ] ~  conditioned on sn-T = (Lk. Equation 
(3) also defines the optimum decision boundaries for the 

:yr1 = .9(9n. ' ' ' , Sn+L+1; H) + 7'n (*) 
M-ary partition on the set of the equalizer inputs. It is 
known that these optimum decision boundaries are nonlinear 

where g( . :  e) is some nonlinear function and is a channel 
parameter vector. The channels are assumed to be bounded- 
input-bounded-output (BIBO) stable. Note that in the absence 
of noise, an output y, of such a finite-memory channel can take 
on only finitely many values. A symbol-decision equalizer of 
order N reconstructs each input symbol s,, using N channel 
outputs . . . g n - ~ + l } .  Often a delay 'r is introduced in 
the equalizer so that at time n the equalizer estimates the 
input symbol snPT rather than s,. Typically, an equalizer 
consists of an FIR linear filter followed by a symbol-decision 
device. For a noiseless linear FIR channel, the equalizer filter 
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hypersurfaces in general. Interestingly, even for the classical 
models of linear FIR channels and additive white Gaussian 
noise, the optimum decision boundaries are generally nonlinear 
except in the trivial cases of memoryless channels. Traditional 
linear filter (LF) equalizers can realize only linear decision 
boundaries and are inherently suboptimal. Therefore, networks 
capable of realizing nonlinear mappings arc: receiving attention 
as alternative structures for channel equalizers. The multilayer 
feedforward sigmoidal neural network is one structure that 
has been used to implement nonlinear mappings in many 
applications including channel equalization [4]-[ 71. 

The radial basis function network (RBFN) [8]-[ 1 I ]  is a 
promising alternative to the multilayer feedforward neural net- 
work. Being a single-hidden-layer network, an RBFN imple- 

' here denotes vector transpose 

0733-8716/95$04.00 0 1995 IEEE 



CHA AND HASSAM: CHANNEL EQUALIZATION USING ADAPTIVE NETWORKS 

ments a nonlinear mapping on an input by linearly combining 
outputs of the hidden nodes, each of which is computed by 
evaluating a radially symmetric basis funcdon of the distance 
between the input and a parameter vector called the center 
associated with each hidden node. RBFN's are known to have 
several advantages over feedfonvard neural nets, including 
easy trainability and simpler structure. 

In recent investigations [3], [ 121-[ 151, RBFN's have been 
considered for use in channel equalization. Most of the existing 
work has considered real channels and signals; in 1141 complex 
RBFN equalizers for complex channels have been considered, 
and very recently they have been discussed in [15]. In this 
paper we define the extension of the RBFN for operation on 
complex signals (the complex RBFN or CRBFN). We also 
define an adaptive stochastic-gradient (SCr) learning algorithm 
for all free parameters of the RBFN. The SG algorithm 
provides an effective means to overcome poor network ini- 
tialization and resultant performance degradation, which can 
be especially problematic for networks with localized basis 
functions. We consider the application of the CRBFN in 
equalization of complex channels with QAM signals. We have 
carried out extensive simulations that confirm the usefulness of 
CRBFN's in this application. The results indicate that the SG 
training algorithm can significantly enhance the performance 
of CRBFN's. We give discussions on simulation results as well 
as some practical considerations on the use of the CRBFN in 
channel equalization. 

11. THE COMPLEX RADIAL BASIS FUNCTION NETWORK 

An RBFN with N-dimensional real vector input and a real 
output implements a mapping f :  R" + R according to 

nr 
f(x) = ~ ~ ~ A I l X  - CJII) (4) 

where x E R" is the input vector, $ ( e )  is a given basis 
function from I?+ to R. 1 ) .  / I  denotes the Lz norm, U ) ,  . 1 5 j 5 
A4 are connection weights, and c ] ,  1 5 J 5 M are known as 
centers of the RBFN. An RBFN is thus completely specified 
given the M weights and centers, and the nonlinearity 4 ( . ) .  

Two popular choices for the nonlinearity 4(.) are the thin- 
plate-spline (TPS) function [8] 

7.2 

J=l  

( 5 )  4(I'l = ;;;i 1% ( T I f l )  

and the Gaussian [6] 

4 ( r )  = exp ( - r z / 0 2 )  (6) 

where o is a real parameter that determines the spread of the 
function. We note that behavior of these two functions is quite 
different for I' -+ 00. For the function ( 5 )  d ( ~ )  -+ 00 as 
I' i cc (unbounded, nonlocalized), while for (6) 4 ( r )  + 0 as 
I' -+ M (bounded, localized). 

We have generalized the RBFN to operate on complex- 
valued signals using an extension of the real RBFN (Kassam 
and Cha 1141). Fig. 1 depicts such a network, which we call 
a complex RBFN or CRBFN. In a CRBFN, both the input 
and the centers are complex-valued. The Lz norm of the 

z =  

123 

I cl 

Fig. 1. Schematic of the complex radial basis function network (CRBFN). 

difference between the input and each center is now defined 
in the usual way for complex-valued vectors, and the basis 
functions remain real-valued. In order to implement complex- 
valued outputs, we assign two different sets of weights, one 
for the real part of the network output and the other for the 
imaginary part. Therefore, our CRBFN operates on a complex- 
valued input vector z E C" to produce a complex output 
according to 

AI 

S(Z) = Ck&, + jw,)d(llz - CJll) (7) 
J=l 

where 
2 A  llz - C j l l  = (z - C j ) H ( Z  - C j ) .  

Here the superscript N denotes complex conjugate transpose, 
(i(.): R+ + R is a real-valued radial basis function, u ~ j  = 
2 1 1 ~ ~  + iw~,, and c,; E C": 1 5 j 5 M denote the M 
complex connection weights and N-dimensional complex- 
valued centers, respectively. An examination of (7) and (8) 
reveals that the CRBFN treats the real and imaginary parts of 
an input as if they were two separate real inputs. Therefore, 
a CRBFN with N complex inputs and a complex output 
can be viewed alternatively as a real RBFN with 2N real 
inputs and two real outputs. In this regard, the CRBFN is a 
straightforward extension of the real RBF:N.2 

Generalization of real-valued structures for operation on 
complex signals has received much attention in the field of 
neural networks 141-[7]. The current trend in this area is to 
develop new definitions for complex-valued pseudosigmoidal 
neuron activation functions and backpropagation-type learn- 
ing algorithms based on the defined activation functions. A 
problem with such an approach is that it is difficult to find 
natural complex-valued extension of a real sigmoid. Simple 
analytic extension, for example, results in unbounded activa- 
tion functions. Modification to bounded activation functions 
often results in unnatural extensions of real sigmoids. 

The CRBFN model, since it preserves the radial symmetry 
of its real counterpart, is a natural extension of the RBFN. 
Since the operation of the CRBFN is based on superposition 
of real-valued basis functions (which are nonanalytic), the 

has been independently proposed in [ 1 I I .  
2Very recently, an essentially identical complex RBFN extension structure 
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functions a CRBFN implements are generally nonanalytic. 
However, the CRBFN can approximate any analytic function 
arbitrarily well in a compact domain. In fact, it is a universal 
approximator of any continuous mapping in a compact domain. 

We now indicate why for any continuous mapping 
g(z): U c C" + C where U is compact, there exists a 
CRBFN that can approximate g(z) arbitrarily well. For any 
such U we can construct an equivalent compact domain 
V c R21V such that V = {vjv = [q, v2,. f .  , ' u 2 ~ - 1 ,  i ~ 2 ~ $ 7 ] ~  

with t121.-1 = .?:k, ' v 2 k  = YJk and xk + i i / k  E Cr}. We note 
that U and V are one-to-one. Let gl<(v]'  and gI (v )  denote, 
respectively, the real and imaginary parts of y(z)  expressed 
as functions of v .  Then, it is obvious that both g R  and 
are continuous on V c E'", for y(z) is continuous on U. 
Now, it has been shown that for any continuous function 
h :  R2" -+ R, there exists an RBFN that approximates it 
arbitrarily closely in a compact domain.3 

Therefore, there exist two 2N-dimensional RBFN's, one 
approximating gn(v )  and the other y ~ ( v )  on the compact set 
V. 

A CRBFN that approximates g(z) can then be constructed in 
the following way. First, let the CRBFN centers be specified 
by converting all the 2N-dimensional center vectors of the 
two real RBFN's into a set of N-dimensional complex-valued 
vectors with the rj parameters associated with each of the 
centers retained for the CRBFN. The CRBFN needs two sets 
of weights, one for the real part of the network output and 
the other for the imaginary part. For the real weights of the 
CRBFN, the weights of the real RBFN that approximates 
g ~ ( v )  are assigned to the corresponding nodes that came from 
this real RBFN. For those nodes that came from the other real 
RBFN approximating gr(v) .  we simply set their real weights 
to zero. Likewise, the imaginary weights of the CRBFN are 
specified by retaining those weights that correspond to the real 
RBFN approximating yr(v) and setting the remaining weights 
to zero. It is readily seen that the CRBFN so constructed 
approximates g(z) in the compact domain U. 

111. THE STOCHASTIC-GRADIENT (SG) TRAINING ALGORITHM 

Training or learning of an RBFN of a given size M and a 
basis function $(.) is equivalent to finding a set of network 
parameters including the M weights { w , } .  centers { c? } '  
and the spread parameters (0,) for individual basis function 
nodes, such that the resulting network closely approximates the 
underlying mapping from the input to the output in the training 
set. In this section we will consider a stochastic-gradient-based 
algorithm for RBFN training. 

Since the CRBFN is a natural extension of the real RBFN, 
training algorithms that work for real RBFN's should also 
work for CRBFN's. Some algorithms use unsupervised clus- 
tering techniques to choose the centers and then obtain the 
linear least-squares (LS) weights once the centers are fixed. 
The Moody-Darken algorithm [17] is one such method that 
uses the K-means clustering algorithm. A hybrid algorithm 
[IS]  combins both unsupervised and supervised training by 
clustering the centers (via K-means) and simultaneously ad- 

'Thc prool can be found in [ 161 

justing the weights (via RLS or LMS). Proper choice of the 
centers is often critical for good performance. The orthogonal- 
least-squares (OLS) method [ 121 chooses the centers one by 
one from training input samples so that addition of each new 
center may maximize the incremental gain in the total squared 
error of approximation. 

Stochastic-Gradient (SG) Algorithm 

In an earlier paper [19], we have proposed a simple 
stochastic-gradient (SG) training algorithm for real RBFN's. 
The method adapts all the free parameters of the network 
simultaneously by using stochastic gradient descent for the 
error ~ r i t e r ion .~  Simulation results suggest that the algorithm 
is very useful, with performance achieved often being superior 
to that of some existing algorithms. We now present the SG 
algorithm for complex RBFN's. 

Let f (z , )  denote the CRBFN output corresponding to input 
z, at time I I  as given by 

il 1 

(9) 
,/ =I  

Here the subscript 71 denotes the time index, i i i j , ,  is the j th  
complex-valued CRBFN weight at time ~ t , !  $(.; 0) is the basis 
function parametrized by 0 as in (5) and (6), and the rest of 
the notation follows (7). Also, let d, and er& = f(zn) - d, 
denote the complex-valued desired response and error at time 
n, respectively. The training set consists of a number of pairs 
of input and desired response (z,, &). The SG algorithm 
takes the instantaneous gradient of the squared error lle7Ll\2 
and moves the network parameters in  the opposite direction 
of their respective gradients. Thus, a network parameter p of 
the network (which can be a weight, a center, or a spread 
parameter) is adapted at time 71. according to 

where pp controls the speed of adaptation. Momentum ver- 
sions of the SG algorithm can be readily defined to utilize 
some degree of memory in adaptation. 

The SG algorithm does not guarantee convergence to glob- 
ally optimum network parameters. However, it does appear to 
converge to reasonable solutions in practice. The method can 
be used as a single-stage learning algorithm if training data 
are only sequentially available or as the second-stage method 
of a two-stage algorithm where centers and spread parameters 
are predetermined by a method such as the OLS or a clus- 
tering technique. Often, pretraining on the centers improves 
approximation performance. For the single-pass case, centers 
can be initialized by, for example, forming them with the first 
few training samples. 

The SG algorithm has certain advantages over existing 
methods. First, all free network parameters are adapted simul- 
taneously, usually yielding improved overall solutions. The 
method can also provide greater robustness to poor initial 
choices of parameters, especially the centers. Second, the 

'A  similar algorithm that uses gradients of total, rather than instantaneous, 
squared error has been reported in 1201. 
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Fig. 2. Schematic of a CRBFN equalizer. 
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algorithm is well-suited for on-line adaptive signal processing 
unlike block-processing algorithms such as the Moody-Darken - 
or the OLS algorithms. It is also computationally quite feasi- (1 ) 

10 
ble. 

It has been observed [9], [lo] that RBFN’s with certain 
nonlocalized basis functions such as the thin-plate-spline (5) 

to networks with localized functions. However, nonlocalized 
basis functions are not well-suited for training by the SG 

to centers and cr’s can be nonlocalized themselves or may 
even become unbounded. Unbounded gradients may cause 
numerical instability in the SG method, for example, when 
the RBFN input is a noisy outlier located quite far from all 

sometimes give better approximation performance compared 

algorithm, since gradients of these basis functions with respect 

5 10 

10 

10 

the centers. We believe that the SG algorithm is more suited 
for RBFN’s with localized basis functions. 

Among localized functions, the Gaussian is the most popular 
choice. We therefore present specifically the SG algorithm for 
the Gaussian CRBFN. Such a network with M basis functions 
gives the output j ( z n )  at time 71, as 

A With &3(z,) = exp(-llzn - ~ ~ , ~ 1 1 ~ / ( ~ ; , ~ ) ,  the SG algorithm 
(without momentum) adapts the network parameters according 
to (12)-(14), at the bottom of this page. 

Since Gaussians are fast-decaying functions, it can be as- 
sumed that not all the basis function units contribute signif- 
icantly to the network output. Hence, instead of training all 
the hidden nodes, one could train only a selected number of 
basis function nodes with the largest output values. When the 
input dimension is high, it is the adaptation of the centers that 
requires the most computation. Computation can be signifi- 
cantly reduced if, for example, at each training iteration only 

lo00 2wa 3000 4000 Sa00 8oM) MOO 8000 9OM 
lraining 

Ih\ 

~ 
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Fig. 3. Example I :  Performance of equalizers for an order-2 channel with 
nonlinearity, 4-QAM. (a) NMSE values in dB. (b) SER values-(I) linear 
FIR(20), ( 2 )  Gaussiadhybrid with 30 centers, (3) TPSMLD with 30 centers, 
and (4) Guassian/SG with 20 centers. 

one center is adaptively moved while the weights and the cr 
parameters are adapted for all nodes. 

IV. CRBFN EQUALIZER SIMULATION RESULTS 
In this section we present and discuss simulation results for 

complex channel equalization using CRBFN’s. The CRBFN 
equalizer we considered is depicted in Fig. 2. Here y,, denotes 
the complex-valued output of a complex channel at time n. 
For an equalizer of order N, the equalizer input vector at 
time n is given by the N-dimensional complex-valued channel 
observation vector yn = [ynyn-l . . .  yn-ly+l]r. The CRBFN 
output f(yn) is fed into a nearest-neighbor decision device 
to give an estimate b,,-, of the transmitted symbol srZ- , .  
where T is the equalizer decision delay. A specific number of 
input-response pairs {(yk. ~ k - ~ ) }  forms the training set. 
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Fig. 4. 
equalizer output. (c) TPS/MD equalizer output. (d) Gaussianhybrid equalizer output. (e) GaussiadSG equalizer output sets. 

Example 1: 4-QAM signals, order-2 channel with nonlinearity (all after 5000 iterations). (a) Test set channel output distribution. (b) FIR linear 

We tested CRBFN's with both localized (Gaussian) and 
nonlocalized (TPS) basis functions. For the CRBFN's, the 
training methods compared were the SG algorithm, Moody- 
Darken (MD) algorithm [17], and the hybrid LMS algorithm 
[18]. FIR transversal LF equalizers with LMS training were 
also tested for comparison. Also, a complex multilayer percep- 
tron (MLP) as defined in [7] with complex backpropagation 

(BP) training was tested. In the simulations, performance 
was measured by the symbol-error-rate (SER) as well as the 
normalized mean-squared-error (NMSE) between the equalizer 
output and the correct symbols. Samples of the training set 
and the test set were generated independently from each 
other according to the specific channel and input signaling 
scheme of each example. All test sets had 100000 samples 
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that were used for the performance evaluation of the trained 
equalizers. 

We tested the following equalizedtraining-algorithm com- 
binations. 

1) FIR linear equalizerLMS algorithm, 
2 )  TPS CRBFNMoody-Darken (MD) algorithm, 
3) Gaussian CRBFN/hybrid algorithm, 
4) Gaussian CRBFN/SG algorithm, and 
5) Complex MI,P/BP algorithm. 
The sizes of the CRBFN's in the simulations reflect those 

for which the resulting networks gave reasonably good per- 
formance. The initial centers were formed from the first few 
successive channel output samples of the training set. For the 
networks trained with Moody's algorithm, K-means clustering 
was done on the entire training set. The CRBFN weights were 
initialized to small random values. The spread parameters 
'TJ were initially set to one common value for all the basis 
function units of the CRBFN's. We have found that the per- 
formance is rather robust to variation over a significant range 
of values for the initial spread parameter. In the examples, we 
set this initial value based on a consideration of the average 
or the minimum distance between signal constellation  value^.^ 
The values of adaptation coefficients for training algorithms 
cited in the examples were chosen to result in good balance 
of convergence speed and final equalization performance. 

Exumple I :  In this example, we considered the perfor- 
mance of CRBFN equalizers for 4-QAM signals in the pres- 
ence of an instantaneous channel nonlinearity and noise. The 
overall channel output was given by 

The equalizer input dimension was set to N = 2 and the 
initial common value of the spread parameter was set to 
(T = a. Also, the equalizer decision delay was T = 0 .  The 
GaussiadSG equalizer had 20 hidden units. Both the TPSND 
equalizer and the Gaussianhybrid equalizer had 30 hidden 
units. The adaptation coefficients for the SG algorithm were 
puJ = 0 . 0 5 . i ~ ~  = 0.03, and kc = 0.05 with no momentum. 
The linear filter equalizer had 20 taps. The LMS adaptation 
coefficient pql; = 0.03 for the linear equalizer. 

Fig. 3(a) and (b) show the NMSE and SER convergence of 
the various equalizers. We can see that the FIR linear equalizer 
performed very poorly due to the nonlinearity. All the CRBFN 
equalizers gave better performance than the linear equalizer. 
Note the superiority of the GaussiadSG equalizer to the other 
equalizers based on the CRBFN. The major performance 
improvement of the Gaussian/SG equalizer over the Gauss- 
ian/hybrid equalizer is particularly noteworthy. The T P S N D  
network with 30 hidden units gave better performance than 
the Gaussianhybrid network with 30 hidden units. However, 
the Gaussian/SG equalizer significantly outperformed the thin- 
plate-spline function network. Fig. 4(a) shows the 4-QAM test 
set channel output distribution. Fig. 4(b)-(e) show the test set 

'This initial value can also be set to be the average pairwise distance 
between the initial centers. 

O' 
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Fig. 5. Example 2: Performance of equalizers for an order-3 non-minimum- 
phase channel with nonlinearity, 4-QAM. (a) NMSE values in dB. (b) SER 
values-(1) linear FTR(30). (2) complex MLP(3.20. IO), (3) Gaussianhybrid 
with 30 centers, (4) TPS/MD with 30 centers, and ( 5 )  GaussiadSG with 20 
centers. 

equalizer output sets for the various equalizers after training 
on 5000 samples. 

Example 2: This example shows equalization of a 
nonminimum-phase channel of order 3 with nonlinear 
distortion for 4-QAM signaling. The channel output was 
given by 

1~~ = O, + 0.10; + 0.050; + U,, 

O, = (0.34 - 2 0 . 2 7 ) ~ ~  + (0.87 + iO.23)sn-- 1 

8, - N(0,  0.01) (17) 

+ (0.34 - i0.21)sn-2. (18) 

Here, the equalizer input dimension was chosen to be N = 3 ,  
and the initial common value of the spread parameter was 
(T = m. Also, the equalizer decision delay was 7 = 0. The 
Gaussian/% equalizer had 30 hidden units. Both the TPSMD 
equalizer and the Gaussianhybrid equalizer had 60 hidden 
units. In this example, we also tested a complex MLP with 
two hidden layers, one with 20 hidden nodes and the other 
with 10 nodes (we call this structure MLP(3,20, 10)). Weight 
adaptation coefficient for the MLP backpropagation was 0.05, 
The parameter adaptation coefficients for the CRBFN equaliz- 
ers were the same as in Example 1 .  The linear filter equalizer 
had 30 taps with LMS adaptation coefficient 0.03. 
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Fig. 6. Example 2: 4-QAM signals, order-3 nonminimum-phase channel with nonlinearity (all after 20000 iterations). (a) Test set channel output 
distribution. (b) FIR(30) LF equalizer output. (c )  complex MLP(3,20,10) equalizer output. (d) TF'SMD (60 centers) equalker output. (e )  GaussiadSG 
(30 center&) equalizer output. 

Fig. 5(a) and (b) show, respectively, the NMSE and the 
SER convergence of the various equalizers. Fig. 6(a) shows 
the channel output distribution and Fig. 6(b)-(e) show the 
equalizer output sets of various equalizers after training on 
20000 training samples. We can see that with no decision 
delay the FIR linear filter equalizer totally failed to equalize the 

nonminimum-phase channel. CRBFN equalizers again gave 
much better performance than the linear equalizer. However, 
due to the increased input dimension, the required number of 
hidden nodes for the CRBFN equalizers were higher than in 
Example 1. We note the clear superiority of the GaussiadSG 
equalizer over the other CRBFN equalizers. The complex MLP 
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Fig. 7. Example 3: Performance of equalizers for an infinite-memory channel 
with nonlinearity, 16-QAM. (a) NMSE values in dB. (b) SER v a l u e e ( 1 )  
linear FIR(30), (2) T P S N D  with 60 centers, ( 3 )  Gauussimhybrid with 60 
centers, (4) complex MLP(2,20, lo), and (5) Gauss idSG with 30 centers. 

equalizer and the CRBFN equalizers without SG training had 
roughly equal performance. However, the number of adapted 
parameters for the MLP was much higher than for the CRBFN 
equalizers. 

Example 3: In this example we considered a 16-QAM 
signal and a nonlinear channel with infinite memory. The 
channel output y, was given by 

lJn = -o.3yn-1 + 0, + 0.020: + 0.010: + II,, 
U ,  - N ( 0 ,  0.01) (19) 

0, = (1 - i 0 . 3 4 3 4 ) ~ ~  + (0.5 + 10.2912)sn_l. (20) 

The channel had infinite memory due to the feedback in (19). 
For the CRBFN-based equalizers, the input dimension was 
chosen to be N = 2 and the initial spread parameter was 
TT = &. The Gaussian/SG equalizer had 30 hidden units. The 
Gaussianhybrid equalizer and the TPSMD equalizer both had 
60 hidden units. The linear FIR equalizer had 30 taps. We also 
tested a complex MLP(2,20, 10) equalizer. 

The NMSE and the SER convergence of the various equal- 
izers are shown in Fig. 7(a) and (b), respectively. Fig. 8(a) 
depicts the channel output distribution. Fig. X(b)-(e) depict 
the equalizer output distributions for the various equalizers 
when training was done once on the 20 000-sample train- 
ing set. The Gaussian/SG equalizer with 30 units performed 

markedly better than all the other equalizers. The complex 
MLP equalizer's performance was slightly better than that of 
the TPS/MD equalizer and the Gaussiadhybrid equalizer, both 
with 60 hidden units. The linear FIR equalizer performed very 
poorly. This example again shows the advantage of the SG 
algorithm. 

V. DISCUSSIONS 
From the above and other simulation results, we conclude 

that the proposed CRBFN can be quite useful in digital 
channel equalization, especially for low-order channels with 
nonlinear distortion. Also, the proposed stochastic-gradient 
(SG) algorithm was shown to be very effective and superior to 
several existing training algorithms. However, we have found 
that for increasing channel order, both the input dimension N 
and the number of hidden nodes M have to increase quite 
fast to maintain good performance. So far, CRBFN equalizers 
with few tens of hidden units have been effective mainly on 
relatively low-order channels ( L  5 4). This suggests the need 
to investigate more efficient structures. 

In some existing work 131, [12], 1151, use of Gaussian 
basis functions have been advocated on the grounds that, in 
the presence of Gaussian noise, Gaussian basis functions are 
naturally fitting to realize the conditional probability densities 
p ( y , l ~ , - ~  = Q), 1 5 k 5 M .  since these densities turn out 
to be superpositions of Gaussians. The purpose of using the 
Gaussian RBFN in this perspective is to match the conditional 
densities centered on the noise-free equalizer input states with 
the RBFN. 

We believe, however. that the advantage of Gaussian basis 
functions has another explanation. First, we note that the 
optimum decision regions in (3) are realized not by super- 
posing Gaussian densities, but by comparing dil'ferent pairs of 
superposed-Gaussian conditional densities. A Gaussian RBFN 
with one output and a thresholding decision device cannot 
realize the multiple optimum boundaries required of an M -  
ary signaling case just because its basis functions are centered 
exactly on the noise-free equalizer input states and the TT value 
is matched to the channel noise variance. In other words, 
such an approach does not result in the realization of the 
optimum classifiers, except in binary signaling cases where the 
comparison is only between two conditional densities. Second, 
there are practical hurdles in the method of density matching 
by Gaussian RBFN's. The exact number and locations of 
the noise-free equalizer input states (which should match 
the RBFN centers) are not known, since the channel is 
unknown. Also, the variance of the Gaussian noise can at 
best be estimated. In addition, even if this information can be 
provided, it often requires impractically many hidden nodes 
to match the number of the noise-free equalizer input states. 
The total number of noise-free equalizer input states (thus 
the number of hidden units) in this approach is LI&~+*'-~,  
where M is the signal alphabet size and L and N are the 
orders of the channel and the equalizer, respectively. Consider 
16-QAM signals. Even for a channel of order L = 2 and 
equalizer order N = 2, the total number of the noise-free 
equalizer input states is ~@+'-l = 4096! In our simulations, 
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Fig. 8. 
linear equalizer output. (c) TPS/MD equalizer (60 centers). (d) complex MLP(2,20,10) equalizer. (e) GaussiadSG equalizer (30 centers) output set. 

Example 3: 16-QAM signals, infinite-memory channel with nonlinearity (all after 20000 iterations). (a) Test set channel output distribution. (b) FIR 

the TPSMD CRBFN equalizers performed as well as or even 
better than the Gaussianhybrid equalizers of comparable size, 
although the TPSMD equalizers did not reach the performance 
of the GaussiadSG equalizers. We believe, therefore, that any 
advantage that Gaussians have over other choices of basis 
functions may be more related to the availability of effective 
gradient-based training algorithms such as the SG algonthm. 

A way of achieving better performance with a network 
with modest size is to use decision-feedback (DFl3) equalizers 
[ 151. If prior symbols are estimated correctly, DFB equalizers 
can achieve faster convergence and better performance. It is 
shown in [I51 that the decision boundaries of the Bayes DFB 
equalizers are also determined by comparing superpositions of 
Gaussian conditional densities, only in this ca5e the number 
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of equalizer input states required to implement the optimum 
boundaries is significantly reduced from the case of transversal 
equalizers. Application of the SG algorithm in DFB equalizers 
would be a worthwhile investigation. 

Obviously, RBFN’s are not the only structure for imple- 
menting nonlinew mappings. In our simulations, the complex 
MLP equalizer with its structure and training algorithm as 
defined in [7] did not perform as well as the GaussianISG 
CRBFN equalizers. However, this does not mean that neural 
network structures (or their complex extensions) are generally 
inferior to the CRBFN equalizers. More rigorous analysis is 
required for any meaningful comparison between these two 
types of nonlinear structures. Also, further investigation on 
RBFN’s with different basis functions might be needed. The 
elliptic basis function [lo] and the normalized basis function 
[21] are just two of the interesting alternatives. 

An interesting application of RBFN’s is in blind equaliza- 
tion. In earlier work [ 131, we have reported an RBFN blind 
equalizer scheme for real signals, in which a linear blind 
equalizer and an RBFN work in parallel so that the RBFN 
can be trained using the output of the linear equalizer. We 
are currently exploring feasibility of such schemes applied to 
CRBFN blind equalizers. 
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