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7.1 INTRODUCTION

In this book, the extended Kalman filter (EKF) has been used as the

standard technique for performing recursive nonlinear estimation. The

EKF algorithm, however, provides only an approximation to optimal

nonlinear estimation. In this chapter, we point out the underlying assump-

tions and flaws in the EKF, and present an alternative filter with

performance superior to that of the EKF. This algorithm, referred to as

the unscented Kalman filter (UKF), was first proposed by Julier et al.

[1–3], and further developed by Wan and van der Merwe [4–7].

The basic difference between the EKF and UKF stems from the manner

in which Gaussian random variables (GRV) are represented for propagat-

ing through system dynamics. In the EKF, the state distribution is
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approximated by a GRV, which is then propagated analytically through the

first-order linearization of the nonlinear system. This can introduce large

errors in the true posterior mean and covariance of the transformed GRV,

which may lead to suboptimal performance and sometimes divergence of

the filter. The UKF address this problem by using a deterministic sampling

approach. The state distribution is again approximated by a GRV, but is

now represented using a minimal set of carefully chosen sample points.

These sample points completely capture the true mean and covariance of

the GRV, and, when propagated through the true nonlinear system,

captures the posterior mean and covariance accurately to second order

(Taylor series expansion) for any nonlinearity. The EKF, in contrast, only

achieves first-order accuracy. No explicit Jacobian or Hessian calculations

are necessary for the UKF. Remarkably, the computational complexity of

the UKF is the same order as that of the EKF.

Julier and Uhlman demonstrated the substantial performance gains of

the UKF in the context of state estimation for nonlinear control. A number

of theoretical results were also derived. This chapter reviews this work,

and presents extensions to a broader class of nonlinear estimation

problems, including nonlinear system identification, training of neural

networks, and dual estimation problems. Additional material includes the

development of an unscented Kalman smoother (UKS), specification of

efficient recursive square-root implementations, and a novel use of the

UKF to improve particle filters [6].

In presenting the UKF, we shall cover a number of application areas of

nonlinear estimation in which the EKF has been applied. General

application areas may be divided into state estimation, parameter estima-

tion (e.g., learning the weights of a neural network), and dual estimation

(e.g., the expectation–maximization (EM) algorithm). Each of these areas

place specific requirements on the UKF or EKF, and will be developed in

turn. An overview of the framework for these areas is briefly reviewed

next.

State Estimation The basic framework for the EKF involves estima-

tion of the state of a discrete-time nonlinear dynamical system,

xkþ1 ¼ Fðxk; uk; vkÞ; ð7:1Þ

yk ¼ Hðxk; nkÞ; ð7:2Þ

where xk represents the unobserved state of the system, uk is a known

exogeneous input, and yk is the observed measurement signal. The process
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noise vk drives the dynamic system, and the observation noise is given by

nk . Note that we are not assuming additivity of the noise sources. The

system dynamical model F and H are assumed known. A simple block

diagram of this system is shown in Figure 7.1. In state estimation, the EKF

is the standard method of choice to achieve a recursive (approximate)

maximum-likelihood estimate of the state xk . For completeness, we shall

review the EKF and its underlying assumptions in Section 7.2 to help

motivate the presentation of the UKF for state estimation in Section 7.3.

Parameter Estimation Parameter estimation, sometimes referred to

as system identification or machine learning, involves determining a

nonlinear mapping

yk ¼ Gðxk;wÞ; ð7:3Þ

where xk is the input, yk is the output, and the nonlinear map Gð�Þ is

parameterized by the vector w. The nonlinear map, for example, may be a

feedforward or recurrent neural network (w are the weights), with

numerous applications in regression, classification, and dynamic model-

ing. Learning corresponds to estimating the parameters w. Typically, a

training set is provided with sample pairs consisting of known input and

desired outputs, fxk , dkg. The error of the machine is defined as ek ¼

dk � Gðxk;wÞ, and the goal of learning involves solving for the para-

meters w in order to minimize the expectation of some given function of

the error.

While a number of optimization approaches exist (e.g., gradient descent

using backpropagation), the EKF may be used to estimate the parameters

by writing a new state-space representation,

wkþ1 ¼ wk þ rk; ð7:4Þ

dk ¼ Gðxk;wkÞ þ ek; ð7:5Þ

Input

Process noise Measurement noise

Output

State

Figure 7.1 Discrete-time nonlinear dynamical system.
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where the parameters wk correspond to a stationary process with identity

state transition matrix, driven by process noise rk (the choice of variance

determines convergence and tracking performance and will be discussed

in further detail in Section 7.4). The output dk corresponds to a nonlinear

observation on wk . The EKF can then be applied directly as an efficient

‘‘second-order’’ technique for learning the parameters. The use of the EKF

for training neural networks has been developed by Singhal and Wu [8]

and Puskorious and Feldkamp [9], and is covered in Chapter 2 of this

book. The use of the UKF in this role is developed in Section 7.4.

Dual Estimation A special case of machine learning arises when the

input xk is unobserved, and requires coupling both state estimation and

parameter estimation. For these dual estimation problems, we again

consider a discrete-time nonlinear dynamical system,

xkþ1 ¼ Fðxk;uk; vk;wÞ; ð7:6Þ

yk ¼ Hðxk;nk;wÞ; ð7:7Þ

where both the system states xk and the set of model parameters w for the

dynamical system must be simultaneously estimated from only the

observed noisy signal yk . Example applications include adaptive nonlinear

control, noise reduction (e.g., speech or image enhancement), determining

the underlying price of financial time series, etc. A general theoretical and

algorithmic framework for dual Kalman-based estimation has been

presented in Chapter 5. An expectation–maximization approach has also

been covered in Chapter 6. Approaches to dual estimation utilizing the

UKF are developed in Section 7.5.

In the next section, we review optimal estimation to explain the basic

assumptions and flaws with the EKF. This will motivate the use of the

UKF as a method to amend these flaws. A detailed development of the

UKF is given in Section 7.3. The remainder of the chapter will then be

divided based on the application areas reviewed above. We conclude the

chapter in Section 7.6 with the unscented particle filter, in which the UKF

is used to improve sequential Monte-Carlo-based filtering methods.

Appendix A provides a derivation of the accuracy of the UKF. Appendix

B details an efficient square-root implementation of the UKF.

7.2 OPTIMAL RECURSIVE ESTIMATION AND THE EKF

Given observations yk , the goal is to estimate the state xk . We make no

assumptions about the nature of the system dynamics at this point. The
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optimal estimate in the minimum mean-squared error (MMSE) sense is

given by the conditional mean:

x̂xk ¼ E½xk jY
k
0�; ð7:8Þ

where Yk
0 is the sequence of observations up to time k. Evaluation of this

expectation requires knowledge of the a posteriori density pðxk jY
k
0Þ.

1

Given this density, we can determine not only the MMSE estimator, but

any ‘‘best’’ estimator under a specified performance criterion. The

problem of determining the a posteriori density is in general referred to

as the Bayesian approach, and can be evaluated recursively according to

the following relations:

pðxk jY
k
0Þ ¼

pðxk jY
k�1
0 Þpðyk jxkÞ

pðyk jY
k�1
0 Þ

; ð7:9Þ

where

pðxk jY
k�1
0 Þ ¼

ð
pðxk jxk�1Þpðxk�1jY

k�1
0 Þ dxk�1; ð7:10Þ

and the normalizing constant pðyk jY
k
0Þ is given by

pðyk jY
k�1
0 Þ ¼

ð
pðxk jY

k�1
0 Þpðyk jxkÞ dxk : ð7:11Þ

This recursion specifies the current state density as a function of the

previous density and the most recent measurement data. The state-space

model comes into play by specifying the state transition probability

pðxk jxk�1Þ and measurement probability or likelihood, pðyk jxxÞ. Specifi-

cally, pðxk jxk�1Þ is determined by the process noise density pðvkÞ with the

state-update equation

xkþ1 ¼ Fðxk; uk; vkÞ: ð7:12Þ

For example, given an additive noise model with Gaussian density,

pðvkÞ ¼ nð0;RvÞ, then pðxk jxk�1Þ ¼ nðFðxk�1, uk�1Þ, Rv). Similarly,

1Note that we do not write the implicit dependence on the observed input uk , since it is not

a random variable.
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pðyk jxxÞ is determined by the observation noise density pðnkÞ and the

measurement equation

yk ¼ Hðxk; nkÞ: ð7:13Þ

In principle, knowledge of these densities and the initial condition

pðx0jy0Þ ¼ pðy0jx0Þpðx0Þ=pðy0Þ determines pðxk jY
k
0Þ for all k. Unfortu-

nately, the multidimensional integration indicated by Eqs. (7.9)–(7.11)

makes a closed-form solution intractable for most systems. The only

general approach is to apply Monte Carlo sampling techniques that

essentially convert integrals to finite sums, which converge to the true

solution in the limit. The particle filter discussed in the last section of this

chapter is an example of such an approach.

If we make the basic assumption that all densities remain Gaussian,

then the Bayesian recursion can be greatly simplified. In this case, only the

conditional mean x̂xk ¼ E½xk jY
k
0� and covariance Pxk

need to be evaluated.

It is straightforward to show that this leads to the recursive estimation

x̂xk ¼ ðprediction of xkÞ þ Kk ½yk � ðprediction of ykÞ�; ð7:14Þ

Pxk
¼ P�

xk
�KkP~yyk

K
T
k : ð7:15Þ

While this is a linear recursion, we have not assumed linearity of the

model. The optimal terms in this recursion are given by

x̂x�k ¼ E½Fðxk�1; uk�1; vk�1Þ�; ð7:16Þ

Kk ¼ Pxk yk
P�1
~yyk ~yyk

; ð7:17Þ

ŷy�k ¼ E½Hðx�k ; nkÞ�; ð7:18Þ

where the optimal prediction (i.e., prior mean) of xk is written as x̂x�k , and

corresponds to the expectation of a nonlinear function of the random

variables xk�1 and vk�1 (with a similar interpretation for the optimal

prediction ŷy�k ). The optimal gain term Kk is expressed as a function of

posterior covariance matrices (with ~yyk ¼ yk � ŷy�k Þ. Note that evaluation of

the covariance terms also require taking expectations of a nonlinear

function of the prior state variable. P�
xk

is the prediction of the covariance

of xk , and P~yyk
is the covariance of ~yyk .

The celebrated Kalman filter [10] calculates all terms in these equations

exactly in the linear case, and can be viewed as an efficient method for
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analytically propagating a GRV through linear system dynamics. For

nonlinear models, however, the EKF approximates the optimal terms as

x̂x�k 
 Fðx̂xk�1;uk�1; �vvÞ; ð7:19Þ

Kk 
 P̂Pxk yk
P̂P�1
~yyk ~yyk

; ð7:20Þ

ŷy�k 
 Hðx̂x�k ; �nnÞ; ð7:21Þ

where predictions are approximated simply as functions of the prior

mean value (no expectation taken).2 The covariances are determined by

linearizing the dynamical equations ðxkþ1 
 Axk þ Buuk þ Bvk , yk 


Cxk þ Dnk), and then determining the posterior covariance matrices

analytically for the linear system. In other words, in the EKF, the state

distribution is approximated by a GRV, which is then propagated analy-

tically through the ‘‘first-order’’ linearization of the nonlinear system. The

explicit equations for the EKF are given in Table 7.1. As such, the EKF

2The noise means are denoted by n ¼ E½n� and v ¼ E½v�, and are usually assumed to equal

zero.

Table 7.1 Extended Kalman filter (EKF) equations

Initialize with

x̂x0 ¼ E½x0�; ð7:22Þ

Px0
¼ E½ðx0 � x̂x0Þðx0 � x̂x0Þ

T
�: ð7:23Þ

For k 2 f1; . . . ;1g, the time-update equations of the extended Kalman filter are

x̂x�k ¼ Fðx̂xk�1; uk�1; �vvÞ; ð7:24Þ

P�
xk
¼ Ak�1Pxk�1

AT
k�1 þ BkRvBT

k ; ð7:25Þ

and the measurement-update equations are

Kk ¼ P�
xk

CT
k ðCkP�

xk
CT

k þ DkRnDT
k Þ

�1; ð7:26Þ

x̂xk ¼ x̂x�k þKk ½yk � Hðx̂x�k ; �nnÞ�; ð7:27Þ

Pxk
¼ ðI �KkCkÞP

�
xk
; ð7:28Þ

where

Ak ¼
D @Fðx; uk; �vvÞ

@x

����
x̂xk

; Bk ¼
D @Fðx̂x�k ; uk ; vÞ

@v

����
�vv

;

Ck ¼
D @Hðx; �nnÞ

@x

����
x̂xk

; Dk ¼
D @Hðx̂x�k ; nÞ

@n

����
�nn

;

ð7:29Þ

and where Rv and Rn are the covariances of vk and nk, respectively.
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can be viewed as providing ‘‘first-order’’ approximations to the optimal

terms.3 These approximations, however, can introduce large errors in the

true posterior mean and covariance of the transformed (Gaussian) random

variable, which may lead to suboptimal performance and sometimes

divergence of the filter.4 It is these ‘‘flaws’’ that will be addressed in the

next section using the UKF.

7.3 THE UNSCENTED KALMAN FILTER

The UKF addresses the approximation issues of the EKF. The state

distribution is again represented by a GRV, but is now specified using a

minimal set of carefully chosen sample points. These sample points

completely capture the true mean and covariance of the GRV, and when

propagated through the true nonlinear system, capture the posterior mean

and covariance accurately to the second order (Taylor series expansion)

for any nonlinearity. To elaborate on this, we begin by explaining the

unscented transformation.

Unscented Transformation The unscented transformation (UT) is a

method for calculating the statistics of a random variable which undergoes

a nonlinear transformation [3]. Consider propagating a random variable x

(dimension L) through a nonlinear function, y ¼ f ðxÞ. Assume x has mean

�xx and covariance Px. To calculate the statistics of y, we form a matrix XX of

2L þ 1 sigma vectors X i according to the following:

X0 ¼ �xx;

X i ¼ �xx þ ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL þ lÞPx

p
Þi; i ¼ 1; . . . ; L;

X i ¼ �xx � ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL þ lÞPx

p
Þi�L; i ¼ L þ 1; . . . ; 2L;

ð7:30Þ

3While ‘‘second-order’’ versions of the EKF exist, their increased implementation and

computational complexity tend to prohibit their use.
4A popular technique to improve the ‘‘first-order’’ approach is the iterated EKF, which

effectively iterates the EKF equations at the current time step by redefining the nominal

state estimate and re-linearizing the measurement equations. It is capable of providing

better performance than the basic EKF, especially in the case of significant nonlinearity in

the measurement function [11]. We have not performed a comparison to the UKF at this

time, though a similar procedure may also be adapted to iterate the UKF.
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where l ¼ a2ðL þ kÞ � L is a scaling parameter. The constant a deter-

mines the spread of the sigma points around �xx, and is usually set to a small

positive value (e.g., 1 � a � 10�4Þ. The constant k is a secondary scaling

parameter, which is usually set to 3 � L (see [1] for details), and b is used

to incorporate prior knowledge of the distribution of x (for Gaussian

distributions, b ¼ 2 is optimal). ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðL þ lÞPxÞ

p
i

is the ith column of the

matrix square root (e.g., lower-triangular Cholesky factorization). These

sigma vectors are propagated through the nonlinear function

Yi ¼ f ðX iÞ; i ¼ 0; . . . ; 2L; ð7:31Þ

and the mean and covariance for y are approximated using a weighted

sample mean and covariance of the posterior sigma points,

�yy 

P2L

i¼0

W
ðmÞ
i Yi; ð7:32Þ

Py 

P2L

i¼0

W
ðcÞ
i ðYi � �yyÞðYi � �yyÞT ; ð7:33Þ

with weights Wi given by

W
ðmÞ
0 ¼

l
L þ l

;

W
ðcÞ
0 ¼

l
L þ l

þ 1 � a2 þ b

W
ðmÞ
i ¼ W

ðcÞ
i ¼

1

2ðL þ lÞ
; i ¼ 1; . . . ; 2L:

ð7:34Þ

A block diagram illustrating the steps in performing the UT is shown in

Figure 7.2. Note that this method differs substantially from general Monte

Carlo sampling methods, which require orders of magnitude more sample

points in an attempt to propagate an accurate (possibly non-Gaussian)

distribution of the state. The deceptively simple approach taken with the

UT results in approximations that are accurate to the third order for

Gaussian inputs for all nonlinearities. For non-Gaussian inputs, approx-

imations are accurate to at least the second order, with the accuracy of

third- and higher-order moments being determined by the choice of a and

b. The proof of this is provided in Appendix A. Valuable insight into the

UT can also be gained by relating it to a numerical technique called
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Gaussian quadrature numerical evaluation of integrals. Ito and Xiong [12]

recently showed the relation between the UT and the Gauss–Hermite

quadrature rule5 in the context of state estimation. A close similarity also

exists between the UT and the central difference interpolation filtering

(CDF) techniques developed separately by Ito and Xiong [12] and

Nørgaard, Poulsen, and Ravn [13]. In [7] van der Merwe and Wan show

how the UKF and CDF can be unified in a general family of derivative-

free Kalman filters for nonlinear estimation.

A simple example is shown in Figure 7.3 for a two-dimensional system:

Figure 7.3a shows the true mean and covariance propagation using Monte

Carlo sampling; Figure 7.3b shows the results using a linearization

approach as would be done in the EKF; Figure 7.3c shows the perfor-

mance of the UT (note that only five sigma points are required). The

superior performance of the UT is clear.

Unscented Kalman Filter The unscented Kalman filter (UKF) is a

straightforward extension of the UT to the recursive estimation in Eq.

(7.14), where the state RV is redefined as the concatenation of the original

state and noise variables: xa
k ¼ ½xT

k vT
k nT

k �
T . The UT sigma point

selection scheme, Eq. (7.30), is applied to this new augmented state RV

to calculate the corresponding sigma matrix, XXa
k . The UKF equations are

Figure 7.2 Block diagram of the UT.

5In the scalar case, the Gauss–Hermite rule is given by
Ð1
�1

f ðxÞð2pÞ�1=2
e�x2

dx ¼Pm
i¼1 wi f ðxiÞ, where the equality holds for all polynomials, f ð�Þ, of degree up to 2m � 1

and the quadrature points xi and weights wi are determined according to the rule type (see

[12] for details). For higher dimensions, the Gauss–Hermite rule requires on the order of

m L functional evaluations, where L is the dimension of the state. For the scalar case, the

UTwith a ¼ 1, b ¼ 0, and k ¼ 2 coincides with the three-point Gauss–Hermite quadrature

rule.
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given in Table 7.2. Note that no explicit calculations of Jacobians or

Hessians are necessary to implement this algorithm. Furthermore, the

overall number of computations is of the same order as the EKF.

Implementation Variations For the special (but often encountered)

case where the process and measurement noise are purely additive, the

computational complexity of the UKF can be reduced. In such a case, the

system state need not be augmented with the noise RVs. This reduces the

dimension of the sigma points as well as the total number of sigma points

used. The covariances of the noise source are then incorporated into the

state covariance using a simple additive procedure. This implementation is

given in Table 7.3. The complexity of the algorithm is of order L3, where L

is the dimension of the state. This is the same complexity as the EKF. The

most costly operation is in forming the sample prior covariance matrix P�
k .

Depending on the form of F, this may be simplified; for example, for

univariate time series or with parameter estimation (see Section 7.4), the

complexity reduces to order L2.

Figure 7.3 Example of the UT for mean and covariance propagation:
(a) actual; (b) first-order linearization (EFK); (c) UT.
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Table 7.2 Unscented Kalman filter (UKF) equations

Initialize with

x̂x0 ¼ E½x0�; ð7:35Þ

P0 ¼ E½ðx0 � x̂x0Þðx0 � x̂x0Þ
T
�; ð7:36Þ

x̂xa
0 ¼ E½xa� ¼ ½x̂xT

0 0 0�T ; ð7:37Þ

Pa
0 ¼ E½ðxa

0 � x̂xa
0Þðx

a
0 � x̂xa

0Þ
T
� ¼

P0 0 0

0 Rv 0

0 0 Rn

2
4

3
5: ð7:38Þ

For k 2 f1; . . . ;1g,

calculate the sigma points:

XX a
k�1 ¼ ½x̂xa

k�1 x̂xa
k�1 þ g

ffiffiffiffiffiffiffiffiffiffi
Pa

k�1

p
x̂xa

k�1 � g
ffiffiffiffiffiffiffiffiffiffi
Pa

k�1

p
�: ð7:39Þ

The time-update equations are

XX x
kjk�1 ¼ FðXX x

k�1; uk�1; ðX
v
k�1Þ; ð7:40Þ

x̂x�k ¼
P2L

i¼0

W
ðmÞ
i X x

i;kjk�1; ð7:41Þ

P�
k ¼

P2L

i¼0

W
ðcÞ
i ðX x

i;kjk�1 � x̂x�k ÞðX
x
i;kjk�1 � x̂x�k Þ

T ; ð7:42Þ

YY kjk�1 ¼ HðXX x
kjk�1;XX

n
k�1Þ; ð7:43Þ

ŷy�k ¼
P2L

i¼0

W
ðmÞ
i Yi;kjk�1; ð7:44Þ

and the measurement-update equations are

P~yyk ~yyk
¼
P2L

i¼0

W
ðcÞ
i ðYi;kjk�1 � ŷy�k ÞðYi;kjk�1 � ŷy�k Þ

T ; ð7:45Þ

Pxk yk
¼
P2L

i¼0

W
ðcÞ
i ðX i;kjk�1 � x̂x�k ÞðYi;kjk�1 � ŷy�k Þ

T ; ð7:46Þ

Kk ¼ Pxk yk
P�1
~yyk ~yyk

; ð7:47Þ

x̂xk ¼ x̂x�k þKkðyk � ŷy�k Þ; ð7:48Þ

Pk ¼ P�
k �KkP~yyk ~yyk

Kk
T ; ð7:49Þ

where

xa ¼ ½xT vT nT �
T ; XX a ¼ ½ðXX xÞ

T
ðXX vÞ

T
ðXX nÞ

T
�
T ; g ¼

ffiffiffiffiffiffiffiffiffiffiffi
L þ l

p
;

l is the composite scaling parameter, L is the dimension of the augmented state,

Rv is the process-noise covariance, Rn is the measurement-noise covariance, and

Wi are the weights as calculated in Eq. (7.34).
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Table 7.3 UKF – additive (zero mean) noise case

Initialize with

x̂x0 ¼ E½x0�; ð7:50Þ

P0 ¼ E½ðx0 � x̂x0Þðx0 � x̂x0Þ
T
�: ð7:51Þ

For k 2 f1; . . . ;1g,

calculate the sigma points:

XX k�1 ¼ ½x̂xk�1 x̂xk�1 þ g
ffiffiffiffiffiffiffiffiffiffi
Pk�1

p
x̂xk�1 � g

ffiffiffiffiffiffiffiffiffiffi
Pk�1

p
�: ð7:52Þ

The time-update equations are

XX *kjk�1 ¼ FðXX k�1; uk�1Þ; ð7:53Þ

x̂x�k ¼
P2L

i¼0

W
ðmÞ
i X*i;kjk�1 ð7:54Þ

P�
k ¼

P2L

i¼0

W
ðcÞ
i ðX*i;kjk�1 � x̂x�k ÞðX*i;kjk�1 � x̂x�k Þ

T
þ Rv; ð7:55Þ

ðaugment sigma pointsÞ6

XX kjk�1 ¼ ½XX *kjk�1 XX *0;kjk�1 þ g
ffiffiffiffiffiffi
Rv

p
X*0;kjk�1 � g

ffiffiffiffiffiffi
Rv

p
� ð7:56Þ

YY kjk�1 ¼ HðXX kjk�1Þ; ð7:57Þ

ŷy�k ¼
P2L

i¼0

W
ðmÞ
i Yi;kjk�1; ð7:58Þ

and the measurement-update equations are

P~yyk ~yyk
¼
P2L

i¼0

W
ðcÞ
i ðYi;kjk�1 � ŷy�k ÞðYi;kjk�1 � ŷy�k Þ

T
þ Rn; ð7:59Þ

Pxk yk
¼
P2L

i¼0

W
ðcÞ
i ðX i;kjk�1 � x̂x�k ÞðYi;kjk�1 � ŷy�k Þ

T
ð7:60Þ

Kk ¼ Pxk yk
P�1
~yyk ~yyk

ð7:61Þ

x̂xk ¼ x̂x�k þKkðyk � ŷy�k Þ ð7:62Þ

Pk ¼ P�
k �KkP~yyk ~yyk

Kk
T ; ð7:63Þ

where g ¼
ffiffiffiffiffiffiffiffiffiffiffi
L þ l

p
; l is the composite scaling parameter, L is the dimension of

the state, Rv is the process-noise covariance, Rn is the measurement-noise

covariance and Wi are the weights as calculated in Eq. (7.34).

6Here we augment the sigma points with additional points derived from the matrix square

root of the process noise covariance. This requires setting L ! 2L and recalculating the

various weights Wi accordingly. Alternatively, we may redraw a complete new set of sigma

points, i.e., XX kjk�1 ¼ ½x̂x�k x̂x�k þ g
ffiffiffiffiffiffi
P�

k

p
x̂x�k � g

ffiffiffiffiffiffi
P�

k

p
�. This alternative approach results

in fewer sigma points being used, but also discards any odd-moments information captured

by the original propagated sigma points.
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A number of variations for numerical purposes are also possible. For

example, the matrix square root, which can be implemented directly using

a Cholesky factorization, is in general of order 1
6

L3. However, the

covariance matrices are expressed recursively, and thus the square root

can be computed in only order M � L2 (where M is the dimension of the

output yk) by performing a recursive update to the Cholesky factorization.

Details of an efficient recursive square-root UKF implementation are

given in Appendix B.

7.3.1 State-Estimation Examples

The UKF was originally designed for state estimation applied to nonlinear

control applications requiring full-state feedback [1–3]. We provide an

example for a double inverted pendulum control system. In addition, we

provide a new application example corresponding to noisy time-series

estimation with neural networks.

Double Inverted Pendulum A double inverted pendulum (see Fig.

7.4) has states corresponding to cart position and velocity, and top and

bottom pendulum angle and angular velocity, x ¼ ½x; _xx; y1;
_yy1; y2;

_yy2�. The

system parameters correspond to the length and mass of each pendulum,

and the cart mass, w ¼ ½l1; l2;m1;m2;M �. The dynamical equations are

ðM þ m1 þ m2Þ€xx � ðm1 þ 2m2Þl1
€yy1 cos y1 � m2l2

€yy2 cos y2

¼ u þ ðm1 þ 2m2Þl1ð
_yy1Þ

2 sin y1 þ m2l2ð
_yy2Þ

2 sin y2; ð7:64Þ

� ðm1 þ 2m2Þl1 €xx cos y1 þ 4ð1
3

m1 þ m2Þðl1Þ
2 €yy1 þ 2m2l1l2

€yy2 cosðy2 � y1Þ

¼ ðm1 þ 2m2Þgl1 sin y1 þ 2m2l1l2ð
_yy2Þ

2 sinðy2 � y1Þ; ð7:65Þ

� m2 €xxl2 cos y2 þ 2m2l1l2
€yy1 cosðy2 � y1Þ þ

4
3

m2ðl2Þ
2 €yy2

¼ m2gl2 sin y2 � 2m2l1l2ð
_yy1Þ

2 sinðy2 � y1Þ: ð7:66Þ

Figure 7.4 Double inverted pendulum.
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These continuous-time dynamics are discretized with a sampling period

of 0.02 seconds. The pendulum is stabilized by applying a control force u

to the cart. In this case, we use a state-dependent Ricatti equation (SDRE)

controller to stabilize the system.7 A state estimator is run outside the

control loop in order to compare the EKF with the UKF (i.e., the estimated

states are not used in the feedback control for evaluation purposes). The

observation corresponds to noisy measurements of the cart position, cart

velocity, and angle of the top pendulum. This is a challenging problem,

since no measurements are made for the bottom pendulum, nor for the

angular velocity of the top pendulum. For this experiment, the pendulum

is initialized in a jack-knife position (þ25�=�25�), with a cart offset of

0.5 meters. The resulting state estimates are shown in Figure 7.5. Clearly,

the UKF is better able to track the unobserved states.8 If the estimated

states are used for feedback in the control loop, the UKF system is still

able to stabilize the pendulum, while the EKF system crashes. We shall

return to the double inverted pendulum problem later in this chapter for

both model estimation and dual estimation.

Noisy Time-Series Estimation In this example, the UKF is used to

estimate an underlying clean time series corrupted by additive Gaussian

white noise. The time-series used is the Mackey–Glass-30 chaotic series

[15, 16]. The clean time-series is first modeled as a nonlinear autoregres-

sion

xk ¼ f ðxk�1; . . . xk�M ;wÞ þ vk; ð7:67Þ

where the model f (parameterised by w) was approximated by training a

feedforward neural network on the clean sequence. The residual error after

convergence was taken to be the process-noise variance.

Next, white Gaussian noise was added to the clean Mackey–Glass

series to generate a noisy time series yk ¼ xk þ nk . The corresponding

7An SDRE controller [11] is designed by formulating the dynamical equations as

xkþ1 ¼ AðxkÞxk þ BðxkÞuk : Note, this representation is not a linearization, but rather a

reformulation of the nonlinear dynamics into a pseudo-linear form. Based on this

state-space representation, we design an optimal LQR controller, uk ¼

�R�1BT ðxkÞPðxkÞxk � KðxkÞxk , where PðxkÞ is a solution of the standard Ricatti

equations using state-dependent matrices AðxkÞ and BðxkÞ. The procedure is repeated at

every time step at the current state xk , and provides local asymptotic stability of the plant

[14]. The approach has been found to be far more robust than LQR controllers based on

standard linearization techniques.
8Note that if all six states are observed with noise, then the performances of the EKF and

UKF are comparable.
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state-space representation is given by

xkþ1 ¼ Fðxk;wÞ þ Bvk;

xkþ1

xk

..

.

xk�M

2
66664

3
77775 ¼

f ðxk; . . . ; xk�Mþ1;wÞ

1 0 0 0

0 . .
.

0 ..
.

0 0 1 0

2
64

3
75

xk

..

.

xk�Mþ1

2
664

3
775

2
66664

3
77775þ

1

0

..

.

0

2
66664

3
77775vk;

yk ¼ ½1 0 . . . 0�xk þ nk : ð7:68Þ

In the estimation problem, the noisy time-series yk is the only observed

input to either the EKF or UKF algorithms (both utilize the known neural

network model). Figure 7.6 shows a subsegment of the estimates gener-

ated by both the EKF and the UKF (the original noisy time series has a

3 dB SNR). The superior performance of the UKF is clearly visible.

Figure 7.5 State estimation for the double inverted pendulum problem.
Only three noisy states are observed: cart position, cart velocity, and the
angle of the top pendulum. (10 dB SNR; a ¼ 1, b ¼ 0, k ¼ 0.)
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7.3.2 The Unscented Kalman Smoother

As has been discussed, the Kalman filter is a recursive algorithm providing

the conditional expectation of the state xk given all observations Yk
0 up to

the current time k. In contrast, the Kalman smoother estimates the state

given all observations past and future, YN
0 , where N is the final time.

Kalman smoothers are commonly used for applications such as trajectory

planning, noncausal noise reduction, and the E-step in the EM algorithm
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Figure 7.6 Estimation of Mackey–Glass time series using a known model: (a)
with the EKF; (b) with the UKF. (c) shows a comparison of estimation errors for
the complete sequence.
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[17, 18]. A thorough treatment of the Kalman smoother in the linear case

is given in [19]. The basic idea is to run a Kalman filter forward in time to

estimate the mean and covariance ðx̂x
f
k , P

f
k Þ of the state, given past data. A

second Kalman filter is then run backward in time to produce a backward-

time predicted mean and covariance ðx̂x�b
k , P�b

k ), given the future data.

These two estimates are then combined, producing the following

smoothed statistics, given all the data:

ðPs
kÞ
�1

¼ ðP
f
k Þ
�1
þ ðP�b

k Þ
�1; ð7:69Þ

x̂xs
k ¼ Ps

k ½ðP
�b
k Þ

�1x̂x�b
k þ ðP

f
k Þ

�1x̂x
f
k �: ð7:70Þ

For the nonlinear case, the EKF replaces the Kalman filter. The use of

the EKF for the forward filter is straightforward. However, implementation

of the backward filter is achieved by using the following linearized

backward-time system:

xk�1 ¼ A�1xk þ A�1Bvk ð7:71Þ

that is, the forward nonlinear dynamics are linearized, and then inverted

for the backward model. A linear Kalman filter is then applied.

Our proposed unscented Kalman smoother (UKS) replaces the EKF

with the UKF. In addition, we consider using a nonlinear backward model

as well, either derived from first principles or by training a backward

predictor using a neural network model, as illustrated for the time-series

case in Figure 7.7. The nonlinear backward model allows us to take full

advantage of the UKF, which requires no linearization step.

To illustrate performance, we reconsider the noisy Mackey–Glass time-

series problem of the previous section, as well as a second time series

generated using a chaotic autoregressive neural network. Table 7.4

compares smoother performance. In this case, the network models are

trained on the clean time series, and then tested on the noisy data using the

standard extended Kalman smoother with linearized backward model

x̂

Time series

Figure 7.7 Forward=backward neural network prediction training.
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(EKS1), an extended Kalman smoother with a second nonlinear backward

model (EKS2), and the unscented Kalman smoother (UKS). The forward

(F), backward (B), and smoothed (S) estimation errors are reported.

Again, the performance benefits of the unscented approach are clear.

7.4 UKF PARAMETER ESTIMATION

Recall that parameter estimation involves learning a nonlinear mapping

yk ¼ Gðxk;wÞ, where w corresponds to the set of unknown parameters.

Gð�Þ may be a neural network or another parameterized function. The EKF

may be used to estimate the parameters by writing a new state-space

representation

wkþ1 ¼ wk þ rk; ð7:73Þ

dk ¼ Gðxk;wkÞ þ ek; ð7:74Þ

where wk corresponds to a stationary process with identity state transition

matrix, driven by process noise rk . The desired output dk corresponds to a

nonlinear observation on wk . In the linear case, the relationship between

the Kalman Filter (KF) and the popular recursive least-squares (RLS) is

given in [20] and [25]. In the nonlinear case, the EKF training corresponds

to a modified-Newton method [22] (see also Chapter 2).

Table 7.4 Comparison of smoother performance

Mackey–Glass

Normalized MSE

Algorithm F B S

EKS1 0.20 0.70 0.27

EKS2 0.20 0.31 0.19

UKS 0.10 0.24 0.08

Chaotic AR–NN

Normalized MSE

Algorithm F B S

EKS1 0.35 0.32 0.28

EKS2 0.35 0.22 0.23

UKS 0.23 0.21 0.16
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From an optimization perspective, the following prediction error cost is

minimized:

J ðwÞ ¼
Pk
t¼1

½dt � Gðxt;wÞ�TðReÞ
�1
½dt � Gðxt;wÞ�: ð7:75Þ

Thus, if the ‘‘noise’’ covariance Re is a constant diagonal matrix, then, in

fact, it cancels out of the algorithm (this can be shown explicitly), and

hence can be set arbitrarily (e.g., Re ¼ 0:5I). Alternatively, Re can be set

to specify a weighted MSE cost. The innovations covariance

E½rkrT
k � ¼ Rr

k , on the other hand, affects the convergence rate and tracking

performance. Roughly speaking, the larger the covariance, the more

quickly older data is discarded. There are several options on how to

choose Rr
k .

� Set Rr
k to an arbitrary ‘‘fixed’’ diagonal value, which may then be

‘‘annealed’’ towards zero as training continues.

� Set Rr
k ¼ ðl�1

RLS � 1ÞPwk
, where lRLS 2 ð0; 1� is often referred to as

the ‘‘forgetting factor,’’ as defined in the recursive least-squares

(RLS) algorithm [21]. This provides for an approximate exponen-

tially decaying weighting on past data, and is described more fully in

[22]. Note that lRLS should not be confused with l used for sigma-

point calculation.

� Set

Rr
k ¼ ð1 � aRMÞR

r
k�1 þ aRMKw

k ½dk � Gðxk; ŵwÞ�

� ½dk � Gðxk; ŵwÞ�T ðKw
k Þ

T ;

which is a Robbins–Monro stochastic approximation scheme for

estimating the innovations [23]. The method assumes that the

covariance of the Kalman update model is consistent with the

actual update model. Typically, Rr
k is also constrained to be a

diagonal matrix, which implies an independence assumption on

the parameters. Note that a similar update may also be used for Re
k.

Our experience indicates that the ‘‘Robbins–Monro’’ method provides the

fastest rate of absolute convergence and lowest final MMSE values (see

the experiments in the next section). The ‘‘fixed’’ Rr
k in combination with

annealing can also achieve good final MMSE performance, but requires

more monitoring and a greater prior knowledge of the noise levels. For

problems where the MMSE is zero, the covariance should be lower-

bounded to prevent the algorithm from stalling and potential numerical
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problems. The ‘‘forgetting-factor’’ and ‘‘fixed’’ Rr
k methods are most

appropriate for on-line learning problems in which tracking of time-

varying parameters is necessary. In this case, the parameter covariance

stays lower-bounded, allowing the most recent data to be emphasized. This

leads to some misadjustment, but also keeps the Kalman gain sufficiently

large to maintain good tracking. In general, study of the various trade-offs

between these different approaches is still an area of open research.

The UKF represents an alternative to the EKF for parameter estimation.

However, as the state transition function is linear, the advantage of the

UKF may not be as obvious. Note that the observation function is still

nonlinear. Furthermore, the EKF essentially builds up an approximation to

the expected Hessian by taking outer products of the gradient. The UKF,

however, may provide a more accurate estimate through direct approx-

imation of the expectation of the Hessian. While both the EKF and UKF

can be expected to achieve similar final MMSE performance, their

covergence properties may differ. In addition, a distinct advantage of the

UKF occurs when either the architecture or error metric is such that

differentiation with respect to the parameters is not easily derived, as is

necessary in the EKF. The UKF effectively evaluates both the Jacobian

and Hessian precisely through its sigma-point propagation, without the

need to perform any analytical differentiation.

Specific equations for UKF parameter estimation are given in Table 7.5.

Simplifications have been made relative to the state UKF, accounting for

the specific form of the state transition function. In Table 7.5, we have

provided two options on how the function output d̂dk is achieved. In the

first option, the output is given as

d̂dk ¼
P2L

i¼0

W
ðmÞ
i Di;kjk�1 
 E½Gðxk;wkÞ�; ð7:89Þ

corresponding to the direct interpretation of the UKF equations. The

output is the expected value (mean) of a function of the random variable

wk . In the second option, we have

d̂dk ¼ Gðxk; ŵw�
k Þ; ð7:90Þ

corresponding to the typical interpretation, in which the output is the

function with the current ‘‘best’’ set of parameters. This option yields

convergence performance that is indistinguishable from the EKF. The first

option, however, has different convergence characteristics, and requires
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further explanation. In the state-space approach to parameter estimation,

absolute convergence is achieved when the parameter covariance Pwk
goes

to zero (this also forces the Kalman gain to zero). At this point, the output

for either option is identical. However, prior to this, the finite covariance

provides a form of averaging on the output of the function, which in turn

prevents the parameters from going to the minimum of the error surface.

Thus, the method may help avoid falling into a local minimum. Further-

more, it provides a form of built-in regularization for short or noisy data

Table 7.5 UKF parameter estimation

Initialize with

ŵw0 ¼ E½w�; ð7:76Þ

Pw0
¼ E½ðw � ŵw0Þðw � ŵw0Þ

T
�: ð7:77Þ

For k 2 f1; . . . ;1g,

The time update and sigma-point calculation are given by

ŵw�
k ¼ ŵwk�1; ð7:78Þ

P�
wk
¼ Pwk�1

þ Rr
k�1; ð7:79Þ

WWkjk�1 ¼ ½ŵw�
k ŵw�

k þ g
ffiffiffiffiffiffiffi
P�

wk

q
ŵw�

k � g
ffiffiffiffiffiffiffi
P�

wk

q
�; ð7:80Þ

DDkjk�1 ¼ Gðxk ;WWkjk�1Þ; ð7:81Þ

option 1: d̂dk ¼
P2L

i¼0

W
ðmÞ
i Di;kjk�1; ð7:82Þ

option 2: d̂dk ¼ Gðxk ; ŵw�
k Þ: ð7:83Þ

and the measurement-update equations are

P ~ddk
~ddk
¼
P2L

i¼0

W
ðcÞ
i ðDi;kjk�1 � d̂dkÞðDi;kjk�1 � d̂dkÞ

T
þ Re

k; ð7:84Þ

Pwk dk
¼
P2L

i¼0

W
ðcÞ
i ðW i;kjk�1 � ŵw�

k ÞðDi;kjk�1 � d̂dkÞ
T ; ð7:85Þ

Kk ¼ Pwk dk
P�1
~ddk
~ddk
; ð7:86Þ

ŵwk ¼ ŵw�
k þKkðdk � d̂dkÞ; ð7:87Þ

Pwk
¼ P�

wk
�KkP ~ddk

~ddk
K

T
k ; ð7:88Þ

where g ¼
ffiffiffiffiffiffiffiffiffiffiffi
L þ l

p
; l is the composite scaling parameter, L is the dimension of

the state, Rr is the process-noise covariance, Re is the measurement-noise

covariance, and Wi are the weights as calculated in Eq. (7.34).
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sets that are prone to overfitting (exact specification of the level of

regularization requires further study).

Note that the complexity of the UKF algorithm is still of order L3 (L is

the number of parameters), owing to the need to compute a matrix square

root at each time step. An order L2 complexity (same as the EKF) can be

achieved by using a recursive square-root formulation as given in

Appendix B.

7.4.1 Parameter Estimation Examples

We have performed a number of experiments to illustrate the performance

of the UKF parameter-estimation approach. The first set of experiments

corresponds to benchmark problems for neural network training, and serve

to illustrate some of the differences between the EKF and UKF, as well as

the different options discussed above. Two parametric optimization

problems are also included, corresponding to model estimation of the

double pendulum, and the benchmark ‘‘Rosenbrock’s Banana’’ optimiza-

tion problem.

Benchmark NN Regression and Time-Series Problems The

Mackay robot-arm dataset [24, 25] and the Ikeda chaotic time series

[26] are used as benchmark problems to compare neural network training.

Figure 7.8 illustrates the differences in learning curves for the EKF versus

UKF (option 1). Note the slightly lower final MSE performance of the

UKF weight training. If option 2 for the UKF output is used (see Eq.

(7.82), then the learning curves for the EKF and UKF are indistinguish-

able; this has been found to be consistent with all experiments; therefore,

we shall not show explicit learning curves for the UKF with option 2.

Figure 7.9 illustrates performance differences based on the choice of

processing noise covariance Rr
k . The Mackey–Glass and Ikeda time series

are used. The plots show only comparisons for the UKF (differences are

similar for the EKF). In general, the Robbins–Monro method is the most

robust approach, with the fastest rate of convergence. In some examples,

we have seen faster convergence with the ‘‘annealed’’ approach; however,

this also requires additional insight and heuristic methods to monitor the

learning. We should reiterate that the ‘‘fixed’’ and ‘‘lambda’’ approaches

are more appropriate for on-line tracking problems.

Four-Regions Classification In the next example, we consider a

benchmark pattern classification problem having four interlocking regions
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[8]. A three-layer feedforward network (MLP) with 2-10-10-4 nodes is

trained using inputs randomly drawn within the pattern space, S ¼

½�1;�1� � ½1; 1�, with the desired output value of þ0:8 if the pattern

fell within the assigned region and �0:8 otherwise. Figure 7.10 illustrates

the classification task, learning curves for the UKF and EKF, and the final

classification regions. For the learning curve, each epoch represents 100

randomly drawn input samples. The test set evaluated on each epoch

corresponds to a uniform grid of 10,000 points. Again, we see the superior

performance of the UKF.

Double Inverted Pendulum Returning to the double inverted pen-

dulum (Section 7.3.1), we consider learning the system parameters,

w ¼ ½l1; l2;m1;m2;M �. These parameter values are treated as unknown

(all initialized to 1.0). The full state, x ¼ ½x; _xx; y1;
_yy1; y2;

_yy2�, is observed.

Figure 7.8 (a) MacKay robot-arm problem: comparison of learning curves
for the EKF and UKF training, 2-12-2 MLP, annealing noise estimation. (b)
Ikeda chaotic time series: comparison of learning curves for the EKF and UKF
training, 10-7-1 MLP, Robbins–Monro noise estimation.
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Figure 7.11 shows the total model MSE versus iteration comparing EKF

with UKF. Each iteration represents a pendulum crash with different initial

conditions for the state (no control is applied). The final converged

parameter estimates are as follows:

l1 l2 m1 m2 M

True model 0.50 0.75 0.75 0.50 1.50

UKF estimate 0.50 0.75 0.75 0.50 1.49

EKF estimate 0.50 0.75 0.68 0.45 1.35

In this case, the EKF has converged to a biased solution, possibly

corresponding to a local minimum in the error surface.
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Figure 7.9 Neural network parameter estimation using different methods
for noise estimation. (a) Ikeda chaotic time series. (b) Mackey–Glass chao-
tic time series. (UKF settings: a ¼ 10�4, b ¼ 2, k ¼ 3 � L, where L is the state
dimension.)
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Figure 7.10 Singhal and Wu’s four-region classification problem. (a) True
mapping. (b) Learning curves on the test set. (c) NN classification: EKF-
trained. (d ) NN classification: UKF-trained. (UKF settings: a ¼ 10�4, b ¼ 2,
k ¼ 3 � L, where L is the state dimension; 2-10-10-4 MLP; Robbins–Monro;
1 epoch ¼ 100 random examples.)
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Figure 7.11 Inverted double pendulum parameter estimation. (UKF
settings: a ¼ 10�4, b ¼ 2, k ¼ 3 � L, where L is the state dimension; Robbins–
Monro.)

246 7 THE UNSCENTED KALMAN FILTER



Rosenbrock’s Banana Function For the last parameter estimation

example, we turn to a pure optimization problem. The Banana function

[27] can be thought of as a two-dimensional surface with a saddle-like

curvature that bends around the origin. Specifically, we wish to find the

values of x1 and x2 that minimize the function

f ðx1; x2Þ ¼ 100ðx2 � x2
1Þ

2
þ ð1 � x1Þ

2: ð7:91Þ

The true minimum is at x1 ¼ 1 and x2 ¼ 1. The Banana function is a well-

known test problem used to compare the convergence rates of competing

minimization techniques.

In order to use the UKF or EKF, the basic parameter estimation

equations need to be reformulated to minimize a non-MSE cost function.

To do this we write the state-space equations in observed error form [28]:

wk ¼ wk�1 þ rk; ð7:92Þ

0 ¼ � k þ ek; ð7:93Þ

where the target ‘‘observation’’ is fixed at zero, and k is an error term

resulting in the optimization of the sum of instantaneous costs Jk ¼
T
k k .

The MSE cost is optimized by setting k ¼ dk � Gðxk;wkÞ. However,

arbitrary costs (e.g., cross-entropy) can also be minimized simply by

specifying k appropriately. Further discussion of this approach has been

given in Chapter 5. Reformulation of the UKF equations requires chan-

ging only the effective output to k , and setting the desired response to

zero.

For the example at hand, we set k ¼ ½10ðx2 � x1Þ 1 � x1�
T . Further-

more, since this optimization problem is a special case of ‘‘noiseless’’

parameter estimation where the actual error can be minimized to zero, we

make use of Eq. (7.89) (option 2) to calculate the output of the UKF

algorithm. This will allow the UKF to reach the true minimum of the error

surface more rapidly.9 We also set the scaling parameter a to a small value,

which we have found to be appropriate again for zero MSE problems.

Under these circumstances, the performances of the UKF and EKF are

indistinguishable, as illustrated in Figure 7.12. Overall, the performances

9Note that the use of option 1, where the expected value of the function is used as the

output, essentially involves averaging of the output based on the current parameter

covariance. This shows convergence in the case where zero MSE is possible, since

convergence of the state covariance to zero would also be necessary through proper

annealing of the state noise innovations Rr.
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of the two filters are comparable or superior to those of a number of

alternative optimization approaches (e.g., Davidson–Fletcher–Powell,

Levenburg–Marquardt, etc. See ‘‘optdemo’’ in Matlab). The main purpose

of this example was to illustrate the versatility of the UKF to general

optimization problems.

7.5 UKF DUAL ESTIMATION

Recall that the dual estimation problem consists of simultaneously

estimating the clean state xk and the model parameters w from the

noisy data yk (see Eq. (7.7)). A number of algorithmic approaches exist

for this problem, including joint and dual EKF methods (recursive

prediction error and maximum-likelihood versions), and expectation–

maximization (EM) approaches. A thorough coverage of these algorithms
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Figure 7.12 Rosenbrock’s ‘‘Banana’’ optimization problem. (a) Function
value. (b) Model error. (UKF settings: a ¼ 10�4, b ¼ 2, k ¼ 3 � L, where L is
the state dimension; Fixed.)
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is given in Chapters 5 and 6. In this section, we present results for the dual

UKF (prediction error) and joint UKF methods.

In the dual extended Kalman filter [29], a separate state-space repre-

sentation is used for the signal and the weights. Two EKFs are run

simultaneously for signal and weight estimation. At every time step, the

current estimate of the weights is used in the signal filter, and the current

estimate of the signal state is used in the weight filter. In the dual UKF

algorithm, both state and weight estimation are done with the UKF.

In the joint extended Kalman filter [30], the signal-state and weight

vectors are concatenated into a single, joint state vector: ½xT
k wT

k �
T .

Estimation is done recursively by writing the state-space equations for

the joint state as

xkþ1

wkþ1

� �
¼

Fðxk;uk;wkÞ

Iwk

� �
þ

Bvk

rk

� �
: ð7:94Þ

yk ¼ ½1 0 . . . 0�
xk

wk

� �
þ nk; ð7:95Þ

and running an EKF on the joint state space to produce simultaneous

estimates of the states xk and w. Again, our approach is to use the UKF

instead of the EKF.

7.5.1 Dual Estimation Experiments

Noisy Time-Series We present results on two time-series to provide a

clear illustration of the use of the UKF over the EKF. The first series is

again the Mackey–Glass-30 chaotic series with additive noise

(SNR 
 3 dB). The second time series (also chaotic) comes from an

autoregressive neural network with random weights driven by Gaussian

process noise and also corrupted by additive white Gaussian noise

(SNR 
 3 dB). A standard 6-10-1 MLP with tanh hidden activation

functions and a linear output layer was used for all the filters in the

Mackey–Glass problem. A 5-3-1 MLP was used for the second problem.

The process- and measurement-noise variances associated with the state

were assumed to be known. Note that, in contrast to the state estimation

example in the previous section, only the noisy time series is observed. A

clean reference is never provided for training.

Example training curves for the different dual and joint Kalman-based

estimation methods are shown in Figure 7.13. A final estimate for the

Mackey–Glass series is also shown for the dual UKF. The superior

performance of the UKF-based algorithms is clear.
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Figure 7.13 Comparative learning curves and results for the dual estima-
tion experiments. Curves are averaged over 10 and 3 runs, respectively,
using different initial weights. ‘‘Fixed’’ innovation covariances are used in
the joint algorithms. ‘‘Annealed’’ covariances are used for the weight filter
in the dual algorithms. (a) Chaotic AR neural network. (b) Mackey–Glass
chaotic time series. (c) Estimation of Mackey–Glass time series: dual UKF.
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Mode Estimation This example illustrates the use of the joint UKF for

estimating the modes of a mass-and-spring system (see Fig. 7.14). This

work was performed at the University of Washington by Mark Campbell

and Shelby Brunke. While the system is linear, direct estimation of the

natural frequencies o1 and o2 jointly with the states is a nonlinear

estimation problem. Figure 7.15 compares the performance of the EKF

and UKF. Note that the EKF does not converge to the true value for o2.

For this experiment, the input process noise SNR is approximately 100 dB,

and the measured positions y1 and y2 have additive noise at a 60 dB SNR

(these settings effectively turn the task into a pure parameter-estimation

Figure 7.14 Mass-and-spring system.

Figure 7.15 Linear mode prediction.
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problem). A fixed innovations Rr was used for the parameter estimation in

the joint algorithms. Sampling was done at the Nyquist rate (based on o2),

which emphasizes the effect of linearization in the EKF. For faster

sampling rates, the performance of the EKF and UKF become more

similar.

F15 Flight Simulation In this example (also performed at the Univer-

sity of Washington), joint estimation is done on an F15 aircraft model

[31]. The simulation includes vehicle nonlinear dynamics, and engine and

sensor noise modeling, as well as atmospheric modeling (densities,

pressure, etc.) based on look-up tables. Also incorporated are aerodynamic

forces based on data from Wright Patterson AFB. A closed-loop system

using a gain-scheduled TECS controller is used to control the model [32].

A simulated mission was used to test the UKF estimator, and involved a

quick descent, short tactical run, 180� turn, and ascent, with a possible

failure in the stabilitator (horizontal control surface on the tail of the

aircraft). Measurements consisted of the states with additive noise (20 dB

SNR). Turbulence was approximately 1 m=s RMS. During the mission, the

joint UKF estimated the 12 states (positions, orientations, and their

derivatives) as well as parameters corresponding to aerodynamic forces

and moments. This was done ‘‘off-line’’; that is, the estimated states were

not used within the control loop. Illustrative results are shown in Figure

7.16 for estimation of the altitude, velocity, and lift parameter (overall lift

force on the aircraft). The left column shows the mission without a failure.

The right column includes a 50% stabilitator failure at 65 seconds. Note

that even with this failure, the UKF is still capable of tracking the state and

parameters. It should be pointed out that the ‘‘black-box’’ nature of the

simulator was not conducive to taking Jacobians necessary for running the

EKF. Hence, implementation of the EKF for comparison was not

performed.

Double Inverted Pendulum For the final dual estimation example,

we again consider the double inverted pendulum, but this time we estimate

both the states and system parameters using the joint UKF. Observations

correspond to noisy measurements of the six states. Estimated states are

then fed back for closed-loop control. In addition, parameter estimates are

used at every time step to design the controller using the SDRE approach.

Figure 7.17 illustrates performance of this adaptive control system by

showing the evolution of the estimated and actual states. At the start of the

simulation, both the states and parameters are unknown (the control

system is unstable at this point). However, within one trial, the UKF
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enables convergence and stabilization of the pendulum without a single

crash.

7.6 THE UNSCENTED PARTICLE FILTER

The particle filter is a sequential Monte Carlo method that allows for a

complete representation of the state distribution using sequential impor-

tance sampling and resampling [33–35]. Whereas the standard EKF and

UKF make a Gaussian assumption to simplify the optimal recursive

Bayesian estimation (see Section 7.2), particle filters make no assumptions

on the form of the probability densities in question; that is, they employ

full nonlinear, non-Gaussian estimation. In this section, we present a

method that utilizes the UKF to augment and improve the standard particle

filter, specifically through generation of the importance proposal distribu-

tion. This chapter will review the background fundamentals necessary to

introduce particle filtering, and the extension based on the UKF. The

Figure 7.16 F15 model joint estimation (note that the estimated and true
values of the state are indistinguishable at this resolution).

7.6 THE UNSCENTED PARTICLE FILTER 253



material is based on work done by van der Merwe, de Freitas, Doucet, and

Wan in [6], which also provides a more thorough review and treatment of

particle filters in general.

Monte Carlo Simulation and Sequential Importance Sampling
Particle filtering is based on Monte Carlo simulation with sequential

importance sampling (SIS). The overall goal is to directly implement

optimal Bayesian estimation (see Eqs. (7.9)–(7.11)) by recursively approx-

imating the complete posterior state density. In Monte Carlo simulation, a

set of weighted particles (samples), drawn from the posterior distribution,

is used to map integrals to discrete sums. More precisely, the posterior

filtering density can be approximated by the following empirical estimate:

p̂pðxk jY
k
0Þ ¼

1

N

PN
i¼1

dðxk � XX
ðiÞ
k Þ;

Figure 7.17 Double Inverted Pendulum joint estimation. Estimated states
(a) and parameters (b). Only y1 and y2 are plotted (in radians).
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where the random samples fXX
ðiÞ
k ; i ¼ 1; . . . ;Ng, are drawn from pðxk jY

k
0Þ

and dð�Þ denotes the Dirac delta function. The posterior filtering density

pðxk jY
k
0Þ is a marginal of the full posterior density given by pðXk

0jY
k
0Þ.

Consequently, any expectations of the form

EðgðxkÞÞ ¼

ð
gðxkÞpðxk jY

k
0Þ dxk ð7:96Þ

may be approximated by the following estimate:

EðgðxkÞÞ 

1

N

PN
i¼1

gðXX
ðiÞ
k Þ: ð7:97Þ

For example, letting gðxÞ ¼ x yields the optimal MMSE estimate

x̂xk ¼ E½xk jY
k
0�. The particles XX

ðiÞ
k are assumed to be independent and

identically distributed (i.i.d) for the approximation to hold. As N goes

to infinity, the estimate converges to the true expectation almost surely.

Sampling from the filtering posterior is only a special case of Monte Carlo

simulation, which in general deals with the complete posterior density

pðXk
0jY

k
0Þ. We shall use this more general form to derive the particle filter

algorithm.

It is often impossible to sample directly from the posterior density

function. However, we can circumvent this difficulty by making use of

importance sampling and alternatively sampling from a known proposal

distribution qðXk
0jY

k
0Þ. The exact form of this distribution is a critical

design issue, and is usually chosen in order to facilitate easy sampling.

The details of this are discussed later. Given this proposal distribution, we

can make use of the following substitution:

EðgkðX
k
0ÞÞ ¼

ð
gkðX

k
0Þ

pðXk
0jY

k
0Þ

qðXk
0jY

k
0Þ

qðXk
0jY

k
0Þ dXk

0

¼

ð
gkðX

k
0Þ

pðYk
0jX

k
0ÞpðX

k
0Þ

pðYk
0ÞqðX

k
0jY

k
0Þ

qðXk
0jY

k
0Þ dXk

0

¼

ð
gkðX

k
0Þ

wkðX
k
0Þ

pðYk
0Þ

qðXk
0jY

k
0Þ dXk

0;

where the variables wkðX
k
0Þ are known as the unnormalized importance

weights,

wk ¼
pðYk

0jX
k
0ÞpðX

k
0Þ

qðXk
0jY

k
0Þ

: ð7:98Þ
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We can get rid of the unknown normalizing density pðYk
0Þ as follows:

EðgkðX
k
0ÞÞ ¼

1

pðYk
0Þ

ð
gkðX

k
0ÞwkðX

k
0ÞqðX

k
0jY

k
0Þ dXk

0

¼

Ð
gkðX

k
0ÞwkðX

k
0ÞqðX

k
0jY

k
0Þ dXk

0Ð
pðYk

0jX
k
0ÞpðX

k
0Þ

qðXk
0jY

k
0Þ

qðXk
0jY

k
0Þ

dXk
0

¼

Ð
gkðX

k
0ÞwkðX

k
0ÞqðX

k
0jY

k
0Þ dXk

0Ð
wkðX

k
0ÞqðX

k
0jY

k
0Þ dXk

0

¼
Eqð�jYk

0Þ
ðwkðX

k
0ÞgkðX

k
0ÞÞ

Eqð�jYk
0Þ
ðwkðX

k
0ÞÞ

;

where the notation Eqð�jYk
0Þ

has been used to emphasize that the expecta-

tions are taken over the proposal distribution qð�jYk
0Þ.

A sequential update to the importance weights is achieved by expand-

ing the proposal distribution as qðXk
0jY

k
0Þ ¼ qðXk�1

0 jYk�1
0 Þqðxk jX

k�1
0 , Yk

0Þ,

where we are making the assumption that the current state is not

dependent on future observations. Furthermore, under the assumption

that the states correspond to a Markov process and that the observations

are conditionally independent given the states, we can arrive at the

recursive update:

wk ¼ wk�1

pðyk jxkÞpðxk jxk�1Þ

qðxk jX
k�1
0 ;Yk

0Þ
: ð7:99Þ

Equation (7.99) provides a mechanism to sequentially update the impor-

tance weights given an appropriate choice of proposal distribution,

qðxk jX
k�1
0 , Yk

0Þ. Since we can sample from the proposal distribution and

evalute the likelihood pðyk jxkÞ and transition probabilities pðxk jxk�1Þ; all

we need to do is generate a prior set of samples and iteratively compute

the importance weights. This procedure then allows us to evaluate the

expectations of interest by the following estimate:

EðgðXk
0ÞÞ 


N�1
PN
i¼1

gðXX
ðiÞ
0:kÞwkðXX

ðiÞ
0:kÞ

N�1
PN
i¼1

wkðXX
ðiÞ
0:kÞ

¼
PN
i¼1

gðXX
ðiÞ
0:kÞ ~wwkðXX

ðiÞ
0:kÞ; ð7:100Þ
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where the normalized importance weights ~ww
ðiÞ
k ¼ w

ðiÞ
k =
PN

j¼1 w
ðjÞ
k and XX

ðiÞ
0:k

denotes the ith sample trajectory drawn from the proposal distribution

qðxk jX
k�1
0 , Yk

0Þ. This estimate asymptotically converges if the expectation

and variance of gðXk
0Þ and wk exist and are bounded, and if the support of

the proposal distribution includes the support of the posterior distribution.

Thus, as N tends to infinity, the posterior density function can be

approximated arbitrarily well by the point-mass estimate

p̂pðXk
0jY

k
0Þ ¼

PN
i¼1

~ww
ðiÞ
k dðXk

0 � XX
ðiÞ
0:kÞ ð7:101Þ

and the posterior filtering density by

p̂pðxk jY
k
0Þ ¼

PN
i¼1

~ww
ðiÞ
k dðxk � XX

ðiÞ
k Þ: ð7:102Þ

In the case of filtering, we do not need to keep the whole history of the

sample trajectories, in that only the current set of samples at time k is

needed to calculate expectations of the form given in Eq. (7.96) and

(7.97). To do this, we simply set, gðXk
0Þ ¼ gðxkÞ. These point-mass

estimates can approximate any general distribution arbitrarily well, limited

only by the number of particles used and how well the above-mentioned

importance sampling conditions are met. In contrast, the posterior distri-

bution calculated by the EKF is a minimum-variance Gaussian approx-

imation to the true distribution, which inherently cannot capture complex

structure such as multimodalities, skewness, or other higher-order

moments.

Resampling and MCMC Step The sequential importance sampling

(SIS) algorithm discussed so far has a serious limitation: the variance of

the importance weights increases stochastically over time. Typically, after

a few iterations, one of the normalized importance weights tends to unity,

while the remaining weights tend to zero. A large number of samples are

thus effectively removed from the sample set because their importance

weights become numerically insignificant. To avoid this degeneracy, a

resampling or selection stage may be used to eliminate samples with low

importance weights and multiply samples with high importance weights.

This is often followed by a Markov-chain Monte Carlo (MCMC) move

step, which introduces sample variety without affecting the posterior

distribution they represent.
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A selection scheme associates to each particle XX
ðiÞ
k a number of

‘‘children,’’ Ni, such that
PN

i¼1 Ni ¼ N . Several selection schemes have

been proposed in the literature, including sampling-importance resam-

pling ðSIRÞ [36–38], residual resampling [25, 39], and minimum-variance

sampling [34].

Sampling-importance resampling (SIR) involves mapping the Dirac

random measure fXX
ðiÞ
k , ~ww

ðiÞ
k g into an equally weighted random measure

fXX
ðjÞ
k , N�1g. In other words, we produce N new samples all with weighting

1=N . This can be accomplished by sampling uniformly from the discrete

set fXX
ðiÞ
k ; i ¼ 1; . . . ;Ng with probabilities f ~ww

ðiÞ
k ; i ¼ 1; . . . ;Ng. Figure 7.18

gives a graphical representation of this process. This procedure effectively

replicates the original XX
ðiÞ
k particle Ni times ðNi may be zero).

In residual resampling [25, 39] a two-step process is used, which makes

use of SIR. In the first step, the number of children are deterministicly set

using the floor function, NA
i ¼ bN ~ww

ðiÞ
t c. Each XX

ðiÞ
k particle is replicated NA

i

times. In the second step, SIR is used to select the remaining
�NNt ¼ N �

PN
i¼1 NA

i samples, with new weights w
0ðiÞ
t ¼ �NN�1

t ð ~ww
ðiÞ
t N � NA

i Þ.

These samples form a second set NB
i , such that �NNt ¼

PN
i¼1 NB

i , and are

drawn as described previously. The total number of children of each

particle is then set to Ni ¼ NA
i þ NB

i . This procedure is computationally

cheaper than pure SIR, and also has lower sample variance. Thus, residual

resampling is used for all experiments in Section 7.6.2 (in general, we

have found that the specific choice of resampling scheme does not

significantly affect the performance of the particle filter).

After the selection=resampling step at time k, we obtain N particles

distributed approximately according to the posterior distribution. Since the

selection step favors the creation of multiple copies of the ‘‘fittest’’

Figure 7.18 Resampling process, whereby a random measure fxðiÞk , ~wwðiÞ
k g is

mapped into an equally weighted random measure fxðjÞk , N�1g. The index i is
drawn from a uniform distribution.
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particle, many particles may end up having no children ðNi ¼ 0Þ, whereas

others might end up having a large number of children, the extreme case

being Ni ¼ N for a particular value i. In this case, there is a severe

depletion of samples. Therefore, an additional procedure is often required

to introduce sample variety after the selection step without affecting the

validity of the approximation inferred. This is achieved by performing a

single MCMC step on each particle. The basic idea is that if the particles

are already distributed according to the posterior pðxk jY
k
0Þ (which is the

case), then applying a Markov-chain transition kernel with the same

invariant distribution to each particle results in a set of new particles

distributed according to the posterior of interest. However, the new

particles may move to more interesting areas of the state space. Details

of the MCMC step are given in [6]. For our experiments in Section 7.6.2,

we found an MCMC step to be unnecessary. However, this cannot be

assumed in general.

7.6.1 The Particle Filter Algorithm

The pseudo-code of a generic particle filter is presented in Table 7.6. In

implementing this algorithm, the choice of the proposal distribution

qðxk jX
k�1
0 , Yk

0Þ is the most critical design issue. The optimal proposal

distribution (which minimizes the variance on the importance weights) is

given by [40–43]

qðxk jX
k�1
0 ;Yk

0Þ ¼ pðxk jX
k�1
0 ;Yk

0Þ; ð7:103Þ

that is, the true conditional state density given the previous state history

and all observations. Sampling from this is, of course, impractical for

arbitrary densities (recall the motivation for using importance sampling in

the first place). Consequently, the transition prior is the most popular

choice of proposal distribution [35, 44–47]:10

qðxk jX
k�1
0 ;Yk

0Þ¼
�

pðxk jxk�1Þ: ð7:104Þ

For example, if an additive Gaussian process noise model is used, the

transition prior is simply

pðxk jxk�1Þ ¼ nðFð�xxk�1; 0Þ;Rv
k�1Þ: ð7:105Þ

10The notation ¼
�

denotes ‘‘chosen as,’’ to indicate a subtle difference versus ‘‘approxima-

tion’’.
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The effectiveness of this approximation depends on how close the

proposal distribution is to the true posterior distribution. If there is not

sufficient overlap, only a few particles will have significant importance

weights when their likelihood are evaluated.

The EKF and UKF Particle Filter An improvement in the choice of

proposal distribution over the simple transition prior, which also address

the problem of sample depletion, can be accomplished by moving the

Table 7.6 Algorithm for the generic particle filter

1. Initialization: k ¼ 0

� For i ¼ 1; . . . ;N, draw the states XX
ðiÞ
0 from the prior pðx0Þ.

2. For k ¼ 1; 2; . . .
(a) Importance sampling step

� For i ¼ 1; . . . ;N, sample XX
ðiÞ
k � qðxk jx

ðiÞ
0:k�1, Yk

0).

� For i ¼ 1; . . . ;N, evaluate the importance weights up to a

normalizing constant:

w
ðiÞ
k ¼ w

ðiÞ
k�1

pðyk jXX
ðiÞ
k ÞpðXX

ðiÞ
k jXX

ðiÞ
k�1Þ

qðXX
ðiÞ
k jXX

ðiÞ
0:k�1;Yk

0Þ
: ð7:106Þ

� For i ¼ 1; . . . ;N, normalize the importance weights:

~ww
ðiÞ
k ¼ w

ðiÞ
k

PN
j¼1

w
ðjÞ
k

 !�1

:

(b) Selection step ðresamplingÞ

� Multiply=suppress samples XX
ðiÞ
k with high=low importance weights

~ww
ðiÞ
k , respectively, to obtain N random samples XX

ðiÞ
k approximately

distributed according to pðx
ðiÞ
k jY

k
0Þ.

� For i ¼ 1; . . . ;N, set w
ðiÞ
k ¼ ~ww

ðiÞ
k ¼ N�1.

(c) MCMC move step ðoptionalÞ

(d) Output: The output of the algorithm is a set of samples that can be used to

approximate the posterior distribution as follows:

p̂pðxk jY
k
0Þ ¼

1

N

PN
i¼1

dðxk � XX
ðiÞ
k Þ:

The optimal MMSE estimator is given as

x̂xk ¼ Eðxk jY
k
0Þ 


1

N

PN
i¼1

XX
ðiÞ
k :

Similar expectations of the function gðxkÞ can also be calculated as a

sample average.
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particles towards the regions of high likelihood, based on the most recent

observations yk (see Fig. 7.19). An effective approach to accomplish this,

is to use an EKF generated Gaussian approximation to the optimal

proposal, that is,

qðxk jX
k�1
0 ;Yk

0Þ¼
�

qnðxk jY
k
0Þ; ð7:107Þ

which is accomplished by using a separate EKF to generate and propagate

a Gaussian proposal distribution for each particle,

qnðx
ðiÞ
k jY

k
0Þ ¼ nð�xx

ðiÞ
k ;P

ðiÞ
k Þ; i ¼ 1; . . . ;N : ð7:108Þ

That is, at time k one uses the EKF equations, with the new data, to

compute the mean and covariance of the importance distribution for each

particle from the previous time step k � 1. Next, we redraw the ith particle

(at time k) from this new updated distribution. While still making a

Gaussian assumption, the approach provides a better approximation to the

optimal conditional proposal distribution and has been shown to improve

performance on a number of applications [33, 48].

By replacing the EKF with the UKF, we can more accurately propagate

the mean and covariance of the Gaussian approximation to the state

distribution. Distributions generated by the UKF will have a greater

support overlap with the true posterior distribution than the overlap

achieved by the EKF estimates. In addition, scaling parameters used for

sigma-point selection can be optimised to capture certain characteristic of

the prior distribution if known; e.g. the algorithm can be modified to work

with distributions that have heavier tails than Gaussian distributions such

as Cauchy or Student-t distributions. The new filter that results from using

a UKF for proposal distribution generation within a particle filter frame-

work is called the unscented particle filter (UPF). Referring to the

Figure 7.19 Including the most current observation into the proposal
distribution, allows us to move the samples in the prior to regions of high
likelihood. This is of paramount importance if the likelihood happens to lie in
one of the tails of the prior distribution, or if it is too narrow (low measure-
ment error).
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algorithm in Table 7.6 for the generic particle filter, the first item in the

importance sampling step,

� For i ¼ 1; . . . ;N, sample XX
ðiÞ
k � qðxk jx

ðiÞ
0:k�1, Yk

0),

is replaced with the following UKF update:

� For i ¼ 1; . . . ;N :

– Update the prior ðk � 1Þ distribution for each particle with the

UKF:

� Calculate sigma points:

XX
ðiÞa
k�1 ¼ ½ �XXX

ðiÞa
k�1

�XXX
ðiÞa
k�1 þ g

ffiffiffiffiffiffiffiffiffiffi
P
ðiÞa
k�1

q
�XXX
ðiÞa
k�1 � g

ffiffiffiffiffiffiffiffiffiffi
P
ðiÞa
k�1

q
�: ð7:109Þ

� Propagate particle into future (time update):

XX
ðiÞx
kjk�1 ¼ FðXX

ðiÞx
k�1; uk;XX

ðiÞv
k�1Þ; �XXX

ðiÞ
kjk�1 ¼

P2L

j¼0

W
ðmÞ
j X

ðiÞx
j;kjk�1;

ð7:110Þ

P
ðiÞ
kjk�1 ¼

P2L

j¼0

W
ðcÞ
j ðX

ðiÞx
j;kjk�1 � �XXX

ðiÞ
kjk�1ÞðX

ðiÞx
j;kjk�1 � �XXX

ðiÞ
kjk�1Þ

T

ð7:111Þ

YY
ðiÞ
kjk�1 ¼ HðXX

ðiÞx
kjk�1;XX

ðiÞn
k�1Þ;

�yy
ðiÞ
kjk�1 ¼

P2L

j¼0

W
ðmÞ
j Y

ðiÞ
j;kjk�1: ð7:112Þ

� Incorporate new observation (measurement update):

P~yyk ~yyk
¼
P2L

j¼0

W
ðcÞ
j ðY

ðiÞ
j;kjk�1 � �yy

ðiÞ
kjk�1ÞðY

ðiÞ
j;kjk�1 � �yy

ðiÞ
kjk�1Þ

T ;

ð7:113Þ

Pxk yk
¼
P2L

J¼0

W
ðcÞ
j ðX

ðiÞ
j;kjk�1 � �XXX

ðiÞ
kjk�1ÞðY

ðiÞ
j;kjk�1 � �yy

ðiÞ
kjk�1Þ

T ;

ð7:114Þ

Kk ¼ Pxk yk
P�1
~yyk ~yyk

;

�XXX
ðiÞ
k ¼ �XXX

ðiÞ
kjk�1 þ Kkðyk � �yy

ðiÞ
kjk�1Þ; ð7:115Þ

P
ðiÞ
k ¼ P

ðiÞ
kjk�1 � KkP~yyk ~yyk

KT
k : ð7:116Þ

– Sample XX
ðiÞ
k � qðx

ðiÞ
k jx

ðiÞ
0:k�1, Yk

0Þ 
 nð �XXX
ðiÞ
k , P

ðiÞ
k Þ.

All other steps in the particle filter formulation remain unchanged.
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7.6.2 UPF Experiments

The performance of the UPF is evaluated on two estimation problems. The

first problem is a synthetic scalar estimation problem and the second is a

real-world problem concerning the pricing of financial instruments.

Synthetic Experiment For this experiment, a time series was gener-

ated by the following process model:

xkþ1 ¼ 1 þ sinðoptÞ þ f1xk þ vk; ð7:117Þ

where vk is a Gamma Gað3; 2Þ random variable modeling the process

noise, and o ¼ 0:04 and f1 ¼ 0:5 are scalar parameters. A nonstationary

observation model,

yk ¼
f2x2

k þ nk; t � 30;

f3xk � 2 þ nk t > 30;

�
ð7:118Þ

is used, with f2 ¼ 0:2 and f3 ¼ 0:5. The observation noise, nk , is drawn

from a Gaussian distribution nð0; 0:00001Þ. Given only the noisy

observations yk , the different filters were used to estimate the underlying

clean state sequence xk for k ¼ 1 . . . 60. The experiment was repeated 100

times with random re-initialization for each run. All of the particle filters

used 200 particles and residual resampling. The UKF parameters were set

to a ¼ 1, b ¼ 0 and k ¼ 2. These parameters are optimal for the scalar

case. Table 7.7 summarizes the performance of the different filters. The

table shows the means and variances of the mean-square error (MSE) of

the state estimates. Figure 7.20 compares the estimates generated from a

Table 7.7 State-estimation experiment results: the mean and variance of
the MSE were calculated over 100 independent runs

MSE

Algorithm Mean Variance

Extended Kalman filter (EKF) 0.374 0.015

Unscented Kalman filter (UKF) 0.280 0.012

Particle filter: generic 0.424 0.053

Particle filter: MCMC move step 0.417 0.055

Particle filter: EKF proposal 0.310 0.016

Particle filter: EKF proposal and MCMC move step 0.307 0.015

Particle filter: UKF proposal (‘‘unscented particle filter’’) 0.070 0.006

Particle filter: UKF proposal and MCMC move step 0.074 0.008
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single run of the different particle filters. The superior performance of the

unscented particle filter (UPF) is clear.

Pricing Financial Options Derivatives are financial instruments

whose value depends on some basic underlying cash product, such as

interest rates, equity indices, commodities, foreign exchange, or bonds

[49]. A call option allows the holder to buy a cash product, at a specified

date in the future, for a price determined in advance. The price at which

the option is exercised is known as the strike price, while the date in which

the option lapses is often referred to as the maturity time. Put options, on

the other hand, allow the holder to sell the underlying cash product. In

their seminal work [50], Black and Scholes derived the following industry

standard equations for pricing European call and put options:

C ¼ Sncðd1Þ � Xe�rtmncðd2Þ; ð7:119Þ

P ¼ �Sncð�d1Þ þ Xe�rtmncð�d2Þ; ð7:120Þ
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Figure 7.20 Plot of estimates generated by the different filters on the
synthetic state-estimation experiment.
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where C denotes the price of a call option, P the price of a put option, S

the current value of the underlying cash product, X the desired strike

price, tm the time to maturity, and ncð:Þ the cumulative normal distribu-

tion, and d1 and d2 are given by

d1 ¼
lnðS=X Þ þ ðr þ s2=2Þtm

s
ffiffiffiffi
tm

p ;

d2 ¼ d1 � s
ffiffiffiffi
tm

p
;

where s is the (unknown) volatility of the cash product and r is the risk-

free interest rate.

The volatility, s; is usually estimated from a small moving window of

data over the most recent 50–180 days [49]. The risk-free interest rate r is

often estimated by monitoring interest rates in the bond markets. Our

approach is to treat r and s as the hidden states, and C and P as the output

t

Figure 7.21 Probability smile for options on the FTSE-100 index (1994).
Although the volatility smile indicates that the option with strike price
equal to 3225 is underpriced, the shape of the probability gives us a
warning against the hypothesis that the option is under-priced. Posterior
mean estimates were obtained with the Black–Scholes model and particle
filter (�), a fourth-order polynomial fit (�), and hypothesized volatility (�).
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observations. S and tm are treated as known control signals (input

observations). This represents a parameter estimation problem, with the

nonlinear observation given by Eqs. (7.119) or (7.120). This allows us to

compute daily complete probability distributions for r and s and to decide

whether the current value of an option in the market is being either over-

priced or under-priced. See [51] and [52] for details.

As an example, Figure 7.21 shows the implied probability density

function of each volatility against several strike prices using five pairs of

call and put option contracts on the British FTSE-100 index (from

February 1994 to December 1994). Figure 7.22 shows the estimated

volatility and interest rate for a contract with a strike price of 3225. In

Table 7.8, we compare the one-step-ahead normalized square errors on a

pair of options with strike price 2925. The square errors were only

measured over the last 100 days of trading, so as to allow the algorithms

to converge. The experiment was repeated 100 times with 100 particles in

each particle filter (the mean value is reported; all variance were essen-

tially zero). In this example, both the EKF and UKF approaches to

improving the proposal distribution lead to a significant improvement

over the standard particle filters. The main advantage of the UKF over the

Figure 7.22 Estimated interest rate and volatility.
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EKF is the ease of implementation, which avoids the need to analytically

differentiate the Black–Scholes equations.

7.7 CONCLUSIONS

The EKF has been widely accepted as a standard tool in the control and

machine-learning communities. In this chapter, we have presented an

alternative to the EKF using the unscented Kalman filter. The UKF

addresses many of the approximation issues of the EKF, and consistently

achieves an equal or better level of performance at a comparable level of

complexity. The performance benefits of the UKF-based algorithms have

been demonstrated in a number of application domains, including state

estimation, dual estimation, and parameter estimation.

There are a number of clear advantages to the UKF. First, the mean and

covariance of the state estimate is calculated to second order or better, as

opposed to first order in the EKF. This provides for a more accurate

implementation of the optimal recursive estimation equations, which is the

basis for both the EKF and UKF. While equations specifying the UKF

may appear more complicated than the EKF, the actual computational

complexity is equivalent. For state estimation, both algorithms are in

Table 7.8 One-step-ahead normalized square errors over
100 runs. The trivial prediction is obtained by assuming that
the price on the following day corresponds to the current
price

Option type Algorithm Mean NSE

Call Trivial 0.078

Extended Kalman filter (EKF) 0.037

Unscented Kalman filter (UKF) 0.037

Particle filter: generic 0.037

Particle filter: EKF proposal 0.009

Unscented particle filter 0.009

Put Trivial 0.035

Extended Kalman filter (EKF) 0.023

Unscented Kalman filter (UKF) 0.023

Particle filter: generic 0.023

Particle filter: EKF proposal 0.007

Unscented particle filter 0.008
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general of order L3 (where L is the dimension of the state). For parameter

estimation, both algorithms are of order L2 (where L is the number of

parameters). An efficient recursive square-root implementation (see

Appendix B) was necessary to achieve the level of complexity in the

parameter-estimation case. Furthermore, a distinct advantage of the UKF

is its ease of implementation. In contrast to the EKF, no analytical

derivatives (Jacobians or Hessians) need to be calculated. The utility of

this is especially valuable in situations where the system is a ‘‘black box’’

model in which the internal dynamic equations are unavailable. In order to

apply an EKF to such systems, derivatives must be found either from a

principled analytical re-derivation of the system, or through costly and

often inaccurate numerical methods (e.g., by perturbation). In contrast, the

UKF relies on only functional evaluations (inputs and outputs) through the

use of deterministically drawn samples from the prior distribution of the

state random variable. From a coding perspective, this also allows for a

much more general and modular implementation.

Even though the UKF has clear advantages over the EKF, there are still

a number of limitations. As in the EKF, it makes a Gaussian assumption

on the probability density of the state random variable. Often this

assumption is valid, and numerous real-world applications have been

successfully implemented based on this assumption. However, for certain

problems (e.g., multimodal object tracking), a Gaussian assumption will

not suffice, and the UKF (or EKF) cannot be applied with confidence. In

such examples, one has to resort to more powerful, but also more

computationally expensive, filtering paradigms such as particle filters

(see Section 7.6). Finally, another implementation limitation leading to

some uncertainty, is the necessity to choose the three unscented transfor-

mation parameters (i.e., a; b, and k). While we have attempted to provide

some guidelines on how to choose these parameters, the optimal selection

clearly depends on the specifics of the problem at hand, and is not fully

understood. In general, the choice of settings does not appear critical for

state estimation, but has a greater affect on performance and convergence

properties for parameter estimation. Our current work focuses on addres-

sing this issue through developing a unified and adaptive way of

calculating the optimal value of these parameters. Other areas of open

research include utilizing the UKF for estimation of noise covariances,

extension of the UKF to recurrent architectures that may require dynamic

derivatives (see Chapter 2 and 5), and the use of the UKF and smoother in

the expectation–maximization algorithm (see Chapter 6). Clearly, we have

only begun to scratch the surface of the numerous applications that can

benefit with use of the UKF.

268 7 THE UNSCENTED KALMAN FILTER



APPENDIX A: ACCURACY OF THE UNSCENTED
TRANSFORMATION

In this appendix, we show how the unscented transformation achieves

second-order accuracy in the prediction of the posterior mean and

covariance of a random variable that undergoes a nonlinear transforma-

tion. For the purpose of this analysis, we assume that all nonlinear

transformations are analytic across the domain of all possible values of

x. This condition implies that the nonlinear function can be expressed as a

multidimensional Taylor series consisting of an arbitrary number of terms.

As the number of terms in the sum tend to infinity, the residual of the

series tends to zero. This implies that the series always converges to the

true value of the function.

If we consider the prior variable x as being perturbed about a mean �xx by

a zero-mean disturbance dx with covariance Px, then the Taylor series

expansion of the nonlinear transformation f ðxÞ about �xx is

f ðxÞ ¼ f ð�xx þ dxÞ ¼
P1
n¼0

ðdx � HxÞ
n
f ðxÞ

n!

� �
x¼�xx

: ð7:121Þ

If we define the operator Dn
dx f as

Dn
dx f ¼

D
½ðdx � HxÞ

n
f ðxÞ�x¼�xx; ð7:122Þ

then the Taylor series expansion of the nonlinear transformation y ¼ f ðxÞ

can be written as

y ¼ f ðxÞ ¼ f ð�xxÞ þ Ddx f þ
1

2
D2

dx f þ
1

3!
D3

dx f þ
1

4!
D4

dx f þ � � � : ð7:123Þ

Accuracy of the Mean

The true mean of y is given by

�yy ¼ E½y� ¼ E½ f ðxÞ� ð7:124Þ

¼ E f ð�xxÞ þ Ddx f þ
1

2
D2

dx f þ
1

3!
D3

dx f þ
1

4!
D3

dx f þ � � �

� �
: ð7:125Þ
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If we assume that x is a symmetrically distributed11 random variable, then

all odd moments will be zero. Also note that E½dx dxT � ¼ Px. Given this,

the mean can be reduced further to

�yy ¼ f ð�xxÞ þ
1

2
½ðHT PxHÞf ðxÞ�x¼�xx þ E

1

4!
D4

dx f þ
1

6!
D6

dx f þ � � �

� �
: ð7:126Þ

The UT calculates the posterior mean from the propagated sigma points

using Eq. (7.32). The sigma points are given by

X i ¼ �xx ! ð
ffiffiffiffiffiffiffiffiffiffiffi
L þ l

p
Þsi;

¼ �xx ! ~ssi

where si denotes the ith column12 of the matrix square root of Px. This

implies that
PL

i¼1ðsis
T
i Þ ¼ Px. Given this formulation of the sigma points,

we can again write the propagation of each point through the nonlinear

function as a Taylor series expansion about �xx:

Yi ¼ f ðX iÞ ¼ f ð�xxÞ þ D ~ssi
f þ

1

2
D2

~ssi
f þ

1

3!
D3

~ssi
f þ

1

4!
D4

~ssi
f þ � � � :

Using Eq. (7.32), the UT predicted mean is

�yyUT ¼
l

L þ l
f ð�xxÞ þ

1

2ðL þ lÞ
P2L

i¼1

� f ð�xxÞ þ D ~ssi
f þ

1

2
D2

~ssi
f þ

1

3!
D3

~ssi
f þ

1

4!
D4

~ssi
f þ � � �

� �

¼ f ð�xxÞ þ
1

2ðL þ lÞ
P2L

i¼1

D ~ssi
f þ

1

2
D2

~ssi
f þ

1

3!
D3

~ssi
f þ

1

4!
D4

~ssi
f þ � � �

� �
:

Since the sigma points are symmetrically distributed around �xx, all the odd

moments are zero. This results in the simplification

�yyUT ¼ f ð�xxÞ þ
1

2ðL þ lÞ
P2L

i¼1

1

2
D2

~ssi
f þ

1

4!
D4

~ssi
f þ

1

6!
D6

~ssi
f þ � � �

� �
;

11This includes probability distributions such as Gaussian, Student-t, etc.
12See Section 7.3 for details of exactly how the sigma points are calculated.
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and since

1

2ðL þ lÞ
P2L

i¼1

1

2
D2

~ssi
f ¼

1

2ðL þ lÞ
ðHf Þ

T P2L

i¼1

ð
ffiffiffiffiffiffiffiffiffiffiffi
L þ l

p
sis

T
i

ffiffiffiffiffiffiffiffiffiffiffi
L þ l

p
Þ

� �
ðHf Þ

¼
L þ l

2ðL þ lÞ
ðHf Þ

T 1

2

P2L

i¼1

sis
T
i

� �
ðHf Þ

¼
1

2
½ðHT PxHÞ f ðxÞ�x¼�xx;

the UT predicted mean can be further simplified to

�yyUT ¼ f ð�xxÞ þ
1

2
½ðHT PxHÞ f ðxÞ�x¼�xx

þ
1

2ðL þ lÞ
P2L

i¼1

1

4!
D4

~ssi
f þ

1

6!
D6

~ssi
f þ � � �

� �
: ð7:127Þ

When we compare Eqs. (7.127) and (7.126), we can clearly see that the

true posterior mean and the mean calculated by the UT agrees exactly to

the third order and that errors are only introduced in the first and higher-

order terms. The magnitudes of these errors depends on the choice of the

composite scaling parameter l as well as the higher-order derivatives of f .

In contrast, a linearization approach calculates the posterior mean as

�yyLIN ¼ f ð�xxÞ; ð7:128Þ

which only agrees with the true posterior mean up to the first order. Julier

and Uhlman [2] show that, on a term-by-term basis, the errors in the

higher-order terms of the UT are consistently smaller than those for

linearization.

Accuracy of the Covariance

The true posterior covariance is given by

Py ¼ E½ðy � �yyT Þðy � �yyT Þ
T
� ¼ E½yyT � � �yy�yyT ð7:129Þ
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where the expectation is taken over the distribution of y. Substituting Eqs.

(7.123) and (7.125) into (7.129), and recalling that all odd moments of dx

are zero owing to symmetry, we can write the true posterior covariance as

Py ¼ AxPxA
T
x ¼

1

4
f½ðHT PxHÞf ðxÞ�½ðH

T PxHÞfðxÞ�
T
gx¼x

þ E
P1
i¼1

P1
j¼1

1

i!j!
Di

dx f ðD
j

dx f Þ
T

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ij>1

�

�P1
i¼1

P1
j¼1

1

ð2iÞ!ð2jÞ!
E½D2i

x f �E½D2j
sx f �T �|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ij>1

;

�
ð7:130Þ

where Ax is the Jacobian matrix of f ðxÞ evaluated at �xx. It can be shown

(using a similar approach as for the posterior mean) that the posterior

covariance calculated by the UT is given by

ðPyÞUT ¼ AxPxA
T
x �

1

4
½ðHT PxHÞ f ðxÞ�½ðHT PxHÞ f ðxÞ�T
� �

x¼�xx

þ
1

2ðL þ lÞ
P2L

k¼1

P1
i¼1

P1
j¼1

1

i!j!
Di

~ssk
f ðD

j
~ssk

f Þ
T

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ij>1

�
P1
i¼1

P1
j¼1

1

ð2iÞ!ð2jÞ!4ðL þ lÞ2
P2L

k¼1

P2L

m¼1

D2i
~ssk

f ðD
2j

~ssm
f Þ

T

" #
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

ij>1

: ð7:131Þ

Comparing Eqs. (7.130) and (7.131), it is clear that the UT again

calculates the posterior covariance accurately to the first two terms, with

errors only introduced in the fourth- and higher-order moments. Julier and

Uhlmann [2] show how the absolute term-by-term errors of these higher-

order moments are again consistently smaller for the UT than for the

linearized case that truncates the Taylor series after the first term, that is,

ðPyÞLIN ¼ AxPxA
T
x : ð7:132Þ

For this derivation, we have assumed the value of the b parameter in the

UT to be zero. If prior knowledge about the shape of the prior distribution

of x is known, b can be set to a non-zero value that minimizes the error in
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some of the higher ð# 4Þ order moments. Julier [53] shows how the error

in the kurtosis of the posterior distribution is minimized for a Gaussian x

when b ¼ 2.

APPENDIX B: EFFICIENT SQUARE-ROOT UKF IMPLEMENTATIONS

In the standard Kalman implementation, the state (or parameter) covar-

iance Pk is recursively calculated. The UKF requires taking the matrix

square-root SkST
k ¼ Pk , at each time step, which is Oð1

6
L3Þ using a

Cholesky factorization. In the square-root UKF (SR-UKF), Sk will be

propagated directly, avoiding the need to refactorize at each time step. The

algorithm will in general still be OðL3Þ for state estimation, but with

improved numerical properties (e.g., guaranteed positive-semidefiniteness

of the state covariances), similar to those of standard square-root Kalman

filters [20]. However, for the special state-space formulation of parameter

estimation, an OðL2Þ implementation becomes possible (equivalent

complexity to EKF parameter estimation).

The square-root form of the UKF makes use of three powerful linear-

algebra techniques,13 QR decomposition, Cholesky factor updating, and

efficient least squares, which we briefly review below:

� QR decomposition The QR decomposition or factorization of a

matrix A 2 RL�N is given by, AT ¼ QR, where Q 2 RN�N is

orthogonal, R 2 RN�L is upper-triangular, and N # L. The upper-

triangular part of R, ~RR, is the transpose of the Cholesky factor of

P ¼ AAT , that is, ~RR ¼ ST , such that ~RRT ~RR ¼ AAT . We use the

shorthand notation qrf�g to donate a QR decomposition of a matrix

where only ~RR is returned. The computational complexity of a QR

decomposition is oðNL2Þ. Note that performing a Cholesky factor-

ization directly on P ¼ AAT is Oð1
6

L3Þ plus OðNL2Þ to form AAT .

� Cholesky factor updating If S is the original lower-triangular

Cholesky factor of P ¼ AAT , then the Cholesky factor of the rank-

1 update (or downdate) P !
ffiffiffi
n

p
uuT is denoted by S ¼

cholupdatefS; u;!ng. If u is a matrix and not a vector, then the

result is M consecutive updates of the Cholesky factor using the M

columns of u. This algorithm (available in Matlab as cholupdate)

is only OðL2Þ per update.

13See [54] for theoretical and implementation details.
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� Efficient least squares The solution to the equation ðAAT Þx ¼ AT b

also corresponds to the solution of the overdetermined least-squares

problem Ax ¼ b. This can be solved efficiently using a QR decom-

position with pivoting (implemented in Matlab’s ‘‘=’’ operator).

The complete specifications for the new square-root filters are given in

Table 7.9 for state estimation and Table 7.10 for parameter estimation.

Below we describe the key parts of the square-root algorithms, and how

they contrast with the standard implementations. Experimental results and

further discussion are presented in [7] and [55].

Square-Root State Estimation

As in the original UKF, the filter is initialized by calculating the matrix

square root of the state covariance once via a Cholesky factorization, Eq.

(7.133). However, the propagated and updated Cholesky factor is then

used in subsequent iterations to directly form the sigma points. In Eq.

(7.138) the time update of the Cholesky factor, S�, is calculated using a

QR decomposition of the compound matrix containing the weighted

propagated sigma points and the matrix square root of the additive process

noise covariance. The subsequent Cholesky update (or downdate) in Eq.

(7.137) is necessary since the zeroth weight, W
ðcÞ
0 , may be negative. These

two steps replace the time-update of P� in Eq. (7.55), and is also OðL3Þ.

The same two-step approach is applied to the calculation of the

Cholesky factor, S�yy, of the observation error covariance in Eqs. (7.142)

and (7.143). This step is OðLM2Þ, where M is the observation dimension.

In contrast to the way that Kalman gain is calculated in the standard UKF

(see Eq. (7.61)), we now use two nested inverse (or least-squares)

solutions to the following expansion of Eq. (7.60): KkðS~yyk
ST
~yyk
Þ ¼ Pxk yk

.

Since S�yy is square and triangular, efficient ‘‘back-substitutions’’

can be used to solve for Kk directly without the need for a matrix

inversion.

Finally, the posterior measurement update of the Cholesky factor of the

state covariance is calculated in Eq. (7.147) by applying M sequential

Cholesky downdates to S�k . The downdate vectors are the columns of

U ¼ KkS�yyk
. This replaces the posterior update of Pk in Eq. (7.63), and is

also OðLM 2Þ.

Square-Root Parameter Estimation

The parameter-estimation algorithm follows a similar framework to that of

the state-estimation square-root UKF. However, an OðML2Þ algorithm, as
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opposed to OðL3Þ, is possible by taking advantage of the linear state

transition function. Specifically, the time update of the state covariance is

given simply by P�
wk
¼ Pwk�1

þ Rr
k�1 (see Section 7.4 for a discussion on

selecting Rr
k�1). In the square-root filters Swk

may thus be updated directly

in Eq. (7.150) using one of two options: (1) S�wk
¼ l�1=2

RLS Swk�1
, correspond-

Table 7.9 Square-Root UKF for state estimation

Initialize with

x̂x0 ¼ E½x0�; S0 ¼ chol E½ðx0 � x̂x0Þðx0 � x̂x0Þ
T
�

� �
: ð7:133Þ

For k 2 f1; . . . ;1g,

The sigma-point calculation and time update are given by

XX k�1 ¼ ½x̂xk�1 x̂xk�1 þ gSk x̂xk�1 � gSk �; ð7:134Þ

XX*kjk�1 ¼ FðXX k�1; uk�1Þ; ð7:135Þ

x̂x�k ¼
P2L

i¼0

W
ðmÞ
i X*i;kjk�1; ð7:136Þ

S�k ¼ qr

ffiffiffiffiffiffiffiffiffi
W

ðcÞ
1

q
ðXX*1:2L;kjk�1 � x̂x�k Þ

ffiffiffiffiffiffi
Rv

p
� �� �

ð7:137Þ

S�k ¼ cholupdatefS�k ;X*0;k � x̂x�k ;W
ðcÞ
0 g; ð7:138Þ

ðaugment sigma pointsÞ14

XX kjk�1 ¼ ½XX*kjk�1 X*0;kjk�1 þ g
ffiffiffiffiffiffi
Rv

p
XX*0;kjk�1 � g

ffiffiffiffiffiffi
Rv

p
� ð7:139Þ

YYkjk�1 ¼ HðXX kjk�1Þ ð7:140Þ

ŷy�k ¼
P2L

i¼0

W
ðmÞ
i Y i;kjk�1; ð7:141Þ

and the measurement update equations are

S~yyk
¼ qr

ffiffiffiffiffiffiffiffiffi
W

ðcÞ
1

q
ðYY1:2L;k � ŷykÞ

ffiffiffiffiffiffi
Rn

k

p� �� �
; ð7:142Þ

S~yyk
¼ cholupdatefS~yyk

;Y0;k � ŷyk ;W
ðcÞ
0 g ð7:143Þ

Pxk yk
¼
P2L

i¼0

W
ðcÞ
i ðX i;kjk�1 � x̂x�k ÞðYi;kjk�1 � ŷy�k Þ

T ; ð7:144Þ

Kk ¼ ðPxk yk
=ST

~yyk
Þ=S~yyk

; ð7:145Þ

x̂xk ¼ x̂x�k þKkðyk � ŷy�k Þ;

U ¼ KkS~yyk
; ð7:146Þ

Sk ¼ cholupdatefS�k ;U;�1g; ð7:147Þ

14Alternatively, redraw a new set of sigma points that incorporate the additive process

noise, i.e., XX kjk�1 ¼ ½x̂x�k x̂x�k þ gS�k x̂x�k � gS�k �.

APPENDIX B 275



ing to an exponential weighting on past data; (2) S�wk
¼ Swk�1

þ Drk�1
,

where the diagonal matrix Drk�1
; is chosen to approximate the effects of

annealing a diagonal process noise covariance Rr
k .15 Both options avoid

the costly OðL3Þ QR and Cholesky-based updates necessary in the state-

estimation filter.

Table 7.10 Square-root UKF for parameter estimation

Initialize with

ŵw0 ¼ E½w�; Sw0
¼ cholfE½ðw � ŵw0Þðw � ŵw0Þ

T
�g: ð7:148Þ

For k 2 f1; . . . ;1g,

The time update and sigma point calculation are given by

ŵw�
k ¼ ŵwk�1; ð7:149Þ

S�wk
¼ l�1=2

RLS Swk�1
or S�wk

¼ Swk�1
þ Drk�1

; ð7:150Þ

WWkjk�1 ¼ ½ŵw�
k ŵw�

k þ gS�wk
ŵw�

k � gS�wk
�; ð7:151Þ

DDkjk�1 ¼ Gðxk;WWkjk�1Þ; ð7:152Þ

d̂dk ¼
P2L

i¼0

W
ðmÞ
i Di;kjk�1; ð7:153Þ

and the measurement-update equations are

Sdk
¼ qr

ffiffiffiffiffiffiffiffiffi
W

ðcÞ
1

q
ðDD1:2L;k � d̂dkÞ

ffiffiffiffiffiffi
Re

p
� �� �

; ð7:154Þ

Sdk
¼ cholupdatefSdk

;D0;k � d̂dk ;W
ðcÞ
0 g; ð7:155Þ

Pwk dk
¼
P2L

i¼0

W
ðcÞ
i ðW i;kjk�1 � ŵw�

k ÞðDi;kjk�1 � d̂dkÞ
T ; ð7:156Þ

Kk ¼ ðPwk dk
=ST

dk
Þ=Sdk

; ð7:157Þ

ŵwk ¼ ŵw�
k þKkðdk � d̂dkÞ; ð7:156Þ

U ¼ KkSdk
; ð7:158Þ

Swk
¼ cholupdatefS�wk

;U;�1g; ð7:159Þ

where

Drk�1
¼ �DiagfSwk�1

g þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
DiagfSwk�1

g2 þ DiagfRr
k�1g:

q

15This update ensures that the main diagonal of P�
wk

is exact. However, additional off-

diagonal cross-terms Swk�1
DT

rk�1
þ Drk�1

ST
wk�1

are also introduced (though the effect appears

negligible).

276 7 THE UNSCENTED KALMAN FILTER



REFERENCES

[1] S.J. Julier, J.K. Uhlmann, and H. Durrant-Whyte, ‘‘A new approach for

filtering nonlinear systems,’’ in Proceedings of the American Control

Conference, 1995, pp. 1628–1632.

[2] S.J. Julier and J.K. Uhlmann, ‘‘A general method for approximating

nonlinear transformations of probability distributions,’’ Technical Report,

RRG, Department of Engineering Science, University of Oxford, November

1996. http:==www.robots.ox.ac.uk=siju=work=publications=letter_size=
Unscented.zip.

[3] S.J. Julier and J.K. Uhlmann, ‘‘A new extension of the Kalman filter to

nonlinear systems,’’ in Proceedings of AeroSense: The 11th International

Symposium on Aerospace=Defence Sensing, Simulation and Controls, 1997.

[4] E.A. Wan, R. van der Merwe, and A.T. Nelson, ‘‘Dual estimation and the

unscented transformation,’’ in S.A. Solla, T.K. Leen, and K.-R. Müller, Eds.

Advances in Neural Information Processing Systems 12, Cambridge, MA:

MIT Press, 2000, pp. 666–672.

[5] E.A. Wan and R. van der Merwe, ‘‘The unscented Kalman filter for nonlinear

estimation, in Proceedings of Symposium 2000 on Adaptive Systems for

Signal Processing, Communication and Control (AS-SPCC), IEEE, Lake

Louise, Alberta, Canada, October 2000.

[6] R. van der Merwe, J.F.G. de Freitas, D. Doucet, and E.A. Wan, ‘‘The

unscented particle filter,’’ Technical Report CUED=F-INFENG=TR 380,

Cambridge University Engineering Department, August 2000.

[7] R. van der Merwe and E.A. Wan, ‘‘Efficient derivative-free Kalman filters for

online learning,’’ in Proceedings of European Symposium on Artificial

Neural Networks (ESANN), Bruges, Belgium, April 2001.

[8] S. Singhal and L. Wu, ‘‘Training multilayer perceptrons with the extended

Kalman filter,’’ in Advances in Neural Information Processing Systems 1.

San Mateo, CA: Morgan Kauffman, 1989, pp. 133–140.

[9] G.V. Puskorius and L.A. Feldkamp, ‘‘Decoupled extended Kalman filter

training of feedforward layered networks,’’ in Proceedings of IJCNN, Vol. 1,

International Joint Conference on Neural Networks, 1991, pp. 771–777.

[10] R.E. Kalman, ‘‘A new approach to linear filtering and prediction problems,’’

Transactions of the ASME, Ser. D, Journal of Basic Engineering, 82, 35–45

(1960).

[11] A. Jazwinsky, Stochastic Processes and Filtering Theory. New York:

Academic Press, 1970.

[12] K. Ito and K. Xiong, ‘‘Gaussian filters for nonlinear filtering problems,’’

IEEE Transactions on Automatic Control, 45, 910–927 (2000).

[13] M. Nørgaard, N.K. Poulsen, and O. Ravn, ‘‘Advances in derivative-free state

estimation for nonlinear systems,’’ Technical Report IMM-REP-1998-15,

REFERENCES 277



Department of Mathematical Modelling=Department of Automation, Tech-

nical University of Denmark, Lyngby, April 2000.

[14] J.R. Cloutier, C.N. D’Souza, and C.P. Mracek, ‘‘Nonlinear regulation and

nonlinear H-infinity controls via the state-dependent Riccati equation

technique: Part 1, Theory,’’ in Proceedings of the International Conference

on Nonlinear Problems in Aviation and Aerospace, Daytona Beach, FL, May

1996.

[15] M. Mackey and L. Glass, ‘‘Oscillation and chaos in a physiological control

system,’’ Science, 197, 287–289 1977.

[16] A. Lapedes and R. Farber, ‘‘Nonlinear signal processing using neural

networks: Prediction and system modelling,’’ Technical Report LAUR

872662, Los Alamos National Laboratory, 1987.

[17] R.H. Shumway and D.S. Stoffer, ‘‘An approach to time series smoothing and

forecasting using the EM algorithm,’’ Time Series Analysis, 3, 253–264

(1982).

[18] Z. Ghahramani and S.T. Roweis, ‘‘Learning nonlinear dynamical systems

using an EM algorithm,’’ in M.J. Kearns, S.A. Solla, and D.A. Cohn, Eds.,

Advances in Neural Information Processing Systems 11: Proceedings of the

1998 Conference. Cambridge, MA: MIT Press, 1999.

[19] F.L. Lewis, Optimal Estimation. New York: Wiley, 1986.

[20] A.H. Sayed and T. Kailath, ‘‘A state-space approach to adaptive RLS

filtering,’’ IEEE Signal Processing Magazine, pp. 18–60 (July 1994).

[21] S. Haykin. Adaptive Filter Theory, 3rd ed. Upper Saddle River, NJ: Prentice-

Hall, 1996.

[22] A.T. Nelson, ‘‘Nonlinear estimation and modeling of noisy time-series by

dual Kalman filtering methods,’’ PhD Thesis, Oregon Graduate Institute,

2000.
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