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Equalization of Nonlinear Time-Varying Channels
Using Type-2 Fuzzy Adaptive Filters

Qilian Liang and Jerry M. Mendel, Fellow, IEEE

Abstract—This paper presents a new kind of adaptive filter:
type-2 fuzzy adaptive filter (FAF); one that is realized using an
unnormalized type-2 Takagi–Sugeno–Kang (TSK) fuzzy logic
system (FLS). We apply this filter to equalization of a nonlinear
time-varying channel and demonstrate that it can implement the
Bayesian equalizer for such a channel, has a simple structure, and
provides fast inference. A clustering method is used to adaptively
design the parameters of the FAF. Two structures are used for the
equalizer: transversal equalizer (TE) and decision feedback equal-
izer (DFE). A new decision tree structure is used to implement
the decision feedback equalizer, in which each leaf of the tree is
a type-2 FAF. This DFE vastly reduces computational complexity
as compared to a TE. Simulation results show that equalizers
based on type-2 FAFs perform much better than nearest neighbor
classifiers (NNC) or equalizers based on type-1 FAFs.

Index Terms—Channel equalization, decision feedback equal-
izer, decision tree, interval type-2 TSK fuzzy logic systems, time-
varying channels, type-2 fuzzy adaptive filters.

I. INTRODUCTION

F ILTERS are information processors. A type-1 fuzzy
adaptive filter (FAF), which can process numerical data

and linguistic information in a natural form, i.e., as fuzzy
IF-THEN rules and input–output (I/O) data pairs, was proposed
and applied to nonlinear channel equalization in [33]. Wang
and Mendel demonstrated that by incorporating some linguistic
descriptors (fuzzy terms) about the channel into the FAF, its
adaptation speed could be greatly improved and its bit error
rate (BER) could be made close to the BER of the optimal
equalizer. Since then, type-1 FAFs have been extensively used
in signal processing and communications. For example, in
channel equalization, Sarwal and Srinath [25] observed that a
linear transversal filter requires a much larger training set to
achieve the same error rate as achieved by a fuzzy logic equal-
izer. Lee [16] proposed a complex FAF for QAM constellation
channel equalization, Patra and Mulgrew [23] used an FAF to
implement a Bayesian equalizer, and also used it to eliminate
cochannel interference [24].

Quite often, the information to be processed by a FAF is
uncertain due to uncertain linguistic knowledge and uncertain
numerical values. For example, in IF-THEN rules concerning
fuzzy concepts such asslowly time-varying, moderately
time-varying, or rapidly time-varying, experts may not agree on
how to represent these linguistic labels using fuzzy membership
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functions. For example, experts frequently assign different
intervals to the same label. So information coming from experts
contains linguistic uncertainty. As another example, in mobile
communications, the mappings between input and output data
pairs are uncertain due to the channel dynamics. This numerical
data uncertainty causes type-1 FAF and other nonlinear filters
to perform poorly.

Linguistic and numerical uncertainties require new filters to
handle them. In this paper, we propose a type-2 FAF to do this
in which antecedent or consequent membership functions are
type-2 fuzzy sets.

The concept of type-2 fuzzy sets was introduced by Zadeh
[34] as an extension of the concept of an ordinary fuzzy set, i.e.,
a type-1 fuzzy set. Type-2 fuzzy sets have grades of member-
ship that are themselves fuzzy [6]. A type-2 membership grade
can be any subset in —the primary membershipand cor-
responding to each primary membership, there is asecondary
membership(which can also be in ) that defines the pos-
sibilities for the primary membership. Type-2 fuzzy sets allow
us to handle linguistic uncertainties, as typified by the adage
“words can mean different things to different people [20].”

Karnik and Mendel ([10]–[14]) established a complete type-2
fuzzy logic system (FLS) theory to handle linguistic and numer-
ical uncertainties. A type-2 FLS includes fuzzifier, rule base,
fuzzy inference engine, and output processor. The output pro-
cessor includes a type-reducer and a defuzzifier; it generates a
type-1 fuzzy set output from the type reducer and a crisp number
from the defuzzifier. A type-2 FLS (just as a type-1 FLS) is char-
acterized by IF-THEN rules, but its antecedent or consequent
sets are now type-2. General type-2 FLSs are computationally
intensive because type-reduction is very intensive. Things sim-
plify a lot when secondary membership functions (MFs) are
interval sets (in this case, the secondary memberships are ei-
ther zero or one). A theory and design methodology for interval
type-2 Mamdani FLSs is given in [17] and a comparable theory
and design methodology for normalized output interval type-2
TSK FLSs is given in [18].

Recently, it has been shown [30], [31] that normalizing the
output of a TSK FLS, which increases complexity, is unneces-
sary in some cases. In this paper, we therefore propose a type-2
FAF, which is an unnormalized output interval type-2 TSK FLS,
and we apply this type-2 FAF to equalization of time-varying
channels.

Most of the work that has been done in the area of adaptive
equalization over the past few decades has focused on time-in-
variant channels. In today’s communication environment, e.g.,
mobile communication, the channels are time-varying because
of fading. The classical equalizers do not perform well for
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rapidly fading channels. Cowan and Semnani [5] approached
this problem by increasing the number of equalizer taps and
choosing the coefficients from different ranges of values ac-
cording to the amplitude of the distorted signals. Their method
requires choosing a large number of coefficients and switching
thresholds.

We interpret the time-varying nature of a channel as uncer-
tainties in its coefficients; this interpretation matches the reason
of existence for a type-2 FAF and motivates us to use a type-2
FAF as an adaptive equalizer for time-varying channels.

There are, however, two types of adaptive equalization: se-
quence estimation and symbol detection [2]. Sequence estima-
tion has very high computation complexity, because channel es-
timation is needed. Symbol detection is essentially a classifi-
cation problem in which the input base-band signal is mapped
onto a feature space determined by the direct interpretation of a
known training sequence, e.g., in [27], a nearest neighbor rule
is used to classify the distorted signal and, in [22], a system-
atic feature space partitioning method is proposed to divide the
entire feature space into two decision regions using a set of hy-
perplanes. In the classifier-based approach, channel estimation
is unnecessary, which tremendously simplifies this approach.
In this paper, we focus on the classifier approach to adaptive
equalization, and use an unnormalized output interval type-2
TSK FAF (type-2 FAF, for short) as the adaptive equalizer.

In Section II, we provide some preliminaries that are needed
for the rest of this paper, i.e., we review an unnormalized output
type-1 TSK FLS and the extension principle, introduce the meet
and addition operations for interval sets and summarize the con-
cept of upper and lower membership functions (MFs) of a type-2
fuzzy set. Our main results for a type-2 FAF are given in Sec-
tion III. In Section IV, we explain how a type-2 FAF can be ap-
plied to time-varying channel equalization and how it can be
used as a transversal equalizer (TE). In Section V, we design a
decision feedback equalizer (DFE) using a decision tree and a
collection of type-2 FAFs and compare its performance with a
nearest neighbor classifier and another DFE designed using a
decision tree and a collection of type-1 FAFs. Conclusions and
future research directions are given in Section VI.

In this paper, is a type-1 fuzzy set and the membership
grade of in is , which is a crisp number in

. A type-2 fuzzy set in is and the membership grade
of in is , which is a type-1 fuzzy set in .
The elements of the domain of are calledprimary mem-
bershipsof in and the memberships of the primary mem-
berships in are calledsecondary membershipsof in

. The latter defines the possibilities for the primary member-
ship. , can be represented, for each , as

; when the secondary MFs are type-1
interval sets, we call the type-2 set aninterval type-2 set. de-
notesmeetoperation and denotesjoin operation. Meet and
join are defined and explained in great detail in [12].

II. PRELIMINARIES

The type-2 FAF developed in this paper is based on an un-
normalized output interval type-1 TSK FLS and is obtained by
applying Zadeh’s [34] extension principle to the latter and by

analyzing the interval-set nature of the resulting output. In this
section, we provide a review of background materials that let us
explain how to do this.

A. Unnormalized Output Type-1 TSK FLS

A type-1 TSK FLS, is described by fuzzy IF-THEN rules
which represent I/O relations of a system. The most widely used
type-1 TSK FLS (the one we direct our attention at) is a first-
order type-1 TSK FLS. It has a rule base ofrules, each having

antecedents, where theth rule is expressed as

IF is and is and and is

THEN

in which are the con-
sequent parameters; is the output of theth IF-THEN rule;
and, are type-1 fuzzy sets. Given an input

, the final output of the unnormalized first-order
type-1 TSK model is inferred as [30], [31]

(1)

where are rule firing strengths defined as

(2)

and denotes a-norm.
When Gaussian MFs and product-norm are used, i.e.,

(3)

then (1) can be expressed as

(4)

Observe that (4) is identical to the output formula for a radial
basis function (RBF) network [2] when Gaussian MFs are used
as the RBFs. This kind of RBF network has been applied to
Bayesian equalization [2]–[4]. Later in this paper, the unnor-
malized output type-1 TSK FLS in (4) will be used as a type-1
FAF equalizer and its performance will be compared with that
of a type-2 FAF.

B. Extension Principle

The extension principle [34] allows the domain of definition
of a mapping or a relation to be extended from points in the
universe of discourse to fuzzy subsets of . When we need
to extend an operation of the form to an operation

, we will not extend the individual operations,
like multiplication, addition, etc., involved in; rather, we will
use the following definition [12]:

(5)
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Fig. 1. The type-2 MF for Example 1. The thick solid lines denote upper
MFs and the thick dashed lines denote lower MFs. The shaded regions are the
footprints of uncertainty for interval secondaries. The centers of Gaussian MFs
vary from 4.5 to 5.5.

where for , and denotes a-norm. For
example, if , we write the extension
of to type-1 sets and as

(6)

where for .

C. Meet and Addition for Interval Sets

The membership grade of in a type-2 fuzzy set
is ; it is a type-1 fuzzy set in . In an interval type-2
fuzzy set (see Fig. 1), is a type-1 interval set. Themeet
andadditionoperations, which will be needed to implement a
type-2 FAF, can be greatly simplified for interval type-1 sets, by
using (Fig. 1).

Theorem 1 (Meet of Interval Sets Under Minimum or
Product -Norms): The meet under minimum or product
-norms of interval type-1 sets ,

having domains , respectively, where
, is an interval set with domain

.
For the proof of this theorem see [13].
Theorem 2 (Addition of Interval Type-1 Sets):Given

interval type-1 sets , with domains
, respectively, where

, their linear combination , where
is a crisp constant, is also an interval type-1

set .
The proof of Theorem 2 is given in [12].
Observe from Theorems 1 and 2 that the meet and addition

operations of interval sets are determined just by the two end
points of each interval set. In a type-2 FAF, the two end points
are associated with two type-1 MFs to which we refer asupper
and lower MFs.

D. Upper and Lower MFs of Type-2 MFs

For convenience in defining the upper and lower MFs of a
type-2 MF, we first give the definition offootprint of uncertainty
of a type-2 MF.

Definition 1 (Footprint of Uncertainty of a Type-2
MF): Uncertainty in the primary membership grades of a
type-2 MF consists of a bounded region that we call the
footprint of uncertaintyof a type-2 MF (e.g., see Fig. 1). It is
the union of all primary membership grades.

Definition 2 (Upper and Lower MFs):An upper MF and a
lower MF are two type-1 MFs, which are bounds for the foot-
print of uncertainty of an interval type-2 MF. The upper MF is
a subset that has the maximum membership grade of the foot-
print of uncertainty and the lower MF is a subset which has the
minimum membership grade of the footprint of uncertainty.

We use an overbar (underbar) to denote the upper (lower) MF.
For example, the upper and lower MFs of the interval type-2
fuzzy set (used in the next section) are and

and can be expressed as

(7)

Example 1: Gaussian Primary MF with Uncertain
Mean: Consider the case of a Gaussian primary MF having a
fixed standard deviation and an uncertain mean that takes
on values in , i.e.,

(8)

where is the number of antecedents
and is the number of rules. The upper

MF, , is (see Fig. 1)

(9)

where, for example,
. The lower MF is (see

Fig. 1)

(10)

We use the results of this example later in Sections IV-E and V.

III. T YPE-2 FAF

Our type-2 FAF for channel equalization is obtained by gen-
eralizing the unnormalized output type-1 TSK FLS to a type-2
TSK FLS. For equalization, the antecedents of the type-1 TSK
FLS are generalized to type-2 fuzzy sets, whereas the conse-
quent is unchanged (i.e., it is a crisp number). Note that this
is not the only way to generalize the Section II-A TSK FLS to
a type-2 TSK FLS, e.g., another generalization is from type-1
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antecedents and type-0 consequent to type-2 antecedents and
type-1 consequent. The reason we use a type-0 consequent in
our FAF for equalization is because the consequent is deter-
mined by the channel state category, which, as explained in Sec-
tion IV-B, is a crisp value.

In a type-2 FAF with a rule base of rules, where each rule
has antecedents, theth rule is denoted as

IF is and is and and is

THEN

where are the con-
sequent parameters that are crisp numbers;is an output
from the th IF-THEN rule, which is a crisp number and the

are type-2 fuzzy sets. Given an input
, the firing strength of theth rule is

([10]–[12], [14])

(11)

The final output of the type-2 FAF is obtained by applying the
extension principleto (1), as described in Section II-B, i.e.,

(12)

where is the number of rules fired, , and indicates
the chosen-norm. is called anextended weighted average;
it reveals the uncertainty at the output of a type-2 FLS due to
antecedent uncertainties and is itself a type-1 fuzzy set.

Here, we focus on the very practical case when interval type-2
sets are used in the antecedents, which means

is an interval set, and we denote

(13)

Our type-2 FAF is then computed using results in the following.
Theorem 3:

1) In an interval type-2 FAF with meet under minimum or
product -norm, the firing strength in (11) for rule is
an interval set , where

(14)

and

(15)

2) The extended weighted average is also
an interval set where

(16)

(17)

and

(18)

3) The defuzzified output of our type-2 FAF is

(19)

Proof:

1) Based on (11), (13), and Theorem 1, we see thatis an
interval set. Applying Theorem 1 to (11), we obtain (14)
and (15).

2) Because are interval type-1 sets,
i.e., , (12) simplifies to

(20)

Because and is a crisp value,
applying Theorem 2 to (20), we obtain (16) and (17).

3) Because is an interval set, we defuzzify it using the
average of and . Hence, the defuzzified output of the
type-2 FAF is which is easily shown to
be given by (19).

IV. TRANSVERSALEQUALIZER FORTIME-VARYING CHANNELS

USING A TYPE-2 FAF

A. Introduction

Chenet al.[2] used an RBF network to implement a Bayesian
equalizer for a time-invariant channel, and demonstrated that it
has an identical structure to the optimal Bayesian symbol deci-
sion equalizer. Although they provided a decision-directed clus-
tering algorithm to track the changes of channel states for a time-
varying channel, no equalizer was designed for such channels.
Patra and Mulgrew [23] observed that the Bayesian decision so-
lution can be represented using a normalized formula which has
an identical structure to a type-1 fuzzy filter, and used it to again
design a Bayesian equalizer for a time-invariant channel. In this
section, we explain why a type-2 FAF is needed for equaliza-
tion of a time-varying channel, and design a transversal equal-
izer using a type-2 FAF.

B. Preliminaries for Channel Equalization

The block diagram of a baseband communication system
that is subject to intersymbol interference (ISI) and additive
Gaussian noise (AGN) is shown in Fig. 2, where is
the symbol to be transmitted, is the noise, the channel
order is ( taps), and time-varying tap coefficients are

. Hence, can be represented [8] as

(21)

Here we assume that is binary, i.e., it is either 1 or 1
with equal probability.

If a fuzzy filter (such as in [33]) is used as a TE, as shown in
Fig. 3, its antecedents are , where
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Fig. 2. Block diagram of a base-band communication system subject to ISI and AGN.

Fig. 3. The structure of a TE withp taps. In this paper, the parameters of the
TE are determined by clustering the training sequence.

is the equalizer order (i.e., number of taps in the equalizer). We
denote

(22)

Observe from (21), that depends on the channel input se-
quence (an vector), where

(23)

Because can be 1 or 1, there are combi-
nations of the channel input sequence. In Fig. 2, the noise-free
signal is , where

(24)

We let

(25)

where is calledchannel state[2]. Observe from (24) and
(25) that each of the combinations of the channel
input sequence generates one , which we denote as

, where . Hence, each
channel state has a probability of occurence equal to.

A correct decision by the equalizer occurs if

(26)

where is the decision output of the equalizer andis
a decision delay. Based on the category of (i.e., ),
the channel states, , can be partitioned into two classes [2]

(27)

(28)

The number of elements in and are denoted and ,
respectively. Because has equal probability to be1
or 1 so . The channel states
in and are denoted and

, respectively.
Chen et al. [2] have shown that the decision output of a

Bayesian equalizer can be expressed as

(29)

where is given by [3]

(30)

in which denotes the standard deviation (std) of the Gaussian
additive noise . Because only the sign of is used to
make the decision in (29), the scaling term in (30)
can be ignored [23].

Let

(31)

then (30) can be expressed again as

(32)

Based on properties of the squared norm and the exponential
function, (32) can be rewritten as (33), shown at the bottom of
the page, where * denotes a conjugate. For the binary (2-PAM)

(33)
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(a) (b)

(c) (d)

Fig. 4. For the channel in (35) (a) time-invariant channel witha = 1 anda = 0:5. (b) Channel states (noise free) of time invariant channel, where� denotes
the categorŷr(k) is +1 and+1 denotes the categorŷr(k) is �1. (c) Example of a time-varying channel with� = 0:1. (d) Channel states (noise free) of the
time-varying channel in (c).

input sequence, and are real so the conjugate
operation can be ignored, i.e.,

(34)

Observe that (34) is identical to (4). Hence, an unnormalized
output type-1 TSK FLS can be used to implement a Bayesian
equalizer for a time-invariant channel.

Why not just implement (34) directly without connecting it
to fuzzy logic? Equation (34) is based on a probability model,
Gaussian distribution, whereas (4) is model free. As noted in
[21], a shortcoming to model-based statistical signal processing
is “ the assumed probability model for which model-based
statistical signal processing results will be good if the data
agrees with the model, but may not be so good if the data does
not.”

C. Why a Type-2 FAF Is Needed for Time-Varying Channel
Equalization

Equation (34) has been derived for time-invariant channels.
For a time-varying channel, the channel’s coefficients,

, are uncertain. In [33], for example, the following
nonlinear time-invariant channel model was used:

(35)

where and , as shown in Fig. 4(a). The channel
states are plotted in Fig. 4(b) from which we observe that they
are eight individual points.

In the rest of this section, we illustrate the design of a type-2
FAF for this channel, but we focus on the case when the channel
is time-varying, i.e., when and in (35) are time-varying
coefficients, each simulated, as in [5], by using a second-order
Markov model in which a white Gaussian noise source drives
a second-order Butterworth low-pass filter (LPF). In our
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TABLE I
CHANNEL STATES FORTIME-VARYING CHANNEL MODEL (35) WITH BINARY SYMBOLS: d = 0 AND p = 2

simulations below, we used the functionbutter, provided by the
Matlab Signal Processing Toolbox, to generate a second-order
lowpass digital Butterworth filter with cutoff frequency 0.1;
then the functionfilter was used to generate a colored Gaussian
sequence, which was then used as a time-varying channel
coefficient. Note that we centered about 1 and
about 0.5. The input to the Butterworth filter was a white
Gaussian sequence with standard deviation (std).

So that readers may replicate our simulations, we provide the
source code for the time-varying coefficients with length 1000

Realizations of the time-varying coefficients and channel
states are plotted in Figs. 4(c) and (d), respectively, for .
Observe, that the channel states are now eight clusters instead
of eight individual points. These clusters illustrate thatis
uncertain for all . From Table I, we see there are
eight channel states and that determines which cluster

belongs to. Note that clusters in the
first four rows in Table I have category 1 [determined by

based on (27) and (28)] and clusters in the
last four rows have category1. This [see (27), (28), and (31)]
establishes the value of in (34) as 1 or 1.

D. Designing the Type-2 FAF

In our type-2 FAF design, there are eight rules (each rule cor-
responds to one channel state), where theth rule is expressed
as

IF is and is THEN

where and are type-2 Gaussian MFs with uncertain means
(as in Example 1), and is a crisp value of 1 or 1 as deter-
mined by (31). For rule, the range of the mean of antecedent

corresponds to the horizontal (vertical) projection of theth
cluster in Fig. 4(d). Observe from this rule that the consequent is
a constant (i.e., it does not depend on and ). Hence,
the consequent is a special case of the consequent in Section III.

We used (19) to compute the output of the type-2 FAF, where
equals 1 or 1, is obtained from (14),

and is obtained from (15). As in (8), we chose

(36)

(see Fig. 1) and . In order to specify the MFs and ,
we need to specify their parameters, namely, and .
Below, we let and .

We used a clustering approach to estimate and , be-
cause it is computationally simple [2]. Here we briefly summa-
rize this approach. Suppose the number of training prototypes,

, is . As we illustrated in Table I, determines
which cluster belongs to; so the are classified into

clusters, where, in our example, .
Suppose training prototypes belong to theth cluster

and the mean and std of these are
denoted ( vector) and ( vector), respectively.
We let

(37)

(38)

where . Doing this assumes that each cluster is
centered at . Consequently, is the range of the
mean of the type-2 antecedent Gaussian MFand
is the range of the mean of . For our type-1 FAF design, we
used (i.e., ) as the centers of its type-1 Gaussian
antecedent MFs.

To complete the specification of the MFs in (36), we also
need to estimate the std of the noise. In [4], it is shown that
equalizer performance is not very sensitive to the value of.
In our simulations, we assumed that the value ofis known
exactly. In all the simulations that follow, we fixed SNR and
computed the std of in the combined training and testing
sequence. Then, based on the fact that

SNR (39)

we computed as

SNR (40)
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E. Simulations

We compared our type-2 FAF with an unnormalized type-1
FAF (the latter is identical to an RBF network [2] in its
output formula) and a nearest neighbor classifier (NNC)
[27] for equalization of the time-varying channel in (35).
The nearest-neighbor (NN) rule and its extension the-NN
algorithm [7] (if the number of training prototypes is, then

is the optimal choice for ) are nonparameteric
classification algorithms, that have been extensively applied
to many pattern recognition problems. Recently, Savazziet
al. [27] applied a NNC, which used the -NN algorithm to
channel equalization for mobile radio communications and
achieved good performance. NNC also belongs to sequence
detection approach so we compare our type-2 FAF to NNC in
channel equalization.

In our simulations, we chose the number of taps of the equal-
izer equal to the number of taps of the channel, , i.e.,

. The number of rules equals the number of clusters,
i.e., . The coefficients in (35) were chosen as described in
Section IV-C.

To have be an odd integer (as required by a NNC), we
chose the number of training prototypes , which means

. We used a sequence of length 1000 for our ex-
periments. The first 121 symbols were used for training, and the
remaining 879 were used for testing. The training sequence es-
tablished the parameters of the antecedent MFs, as described in
Section IV-D. After training, the parameters of the type-1 and
type-2 FAFs were fixed and then testing was performed.

In our first experiment, we fixed SNR at 20 dB and ran simu-
lations for eight different ranging from to ,
with step size 0.04 (0.04:0.04:0.32) and we set . We per-
formed 100 Monte Carlo (MC) simulations for eachvalue,
where in each realization the channel coefficients and additive
noise were uncertain. In Figs. 5(a) and (b), we plot the mean
values and std of BER for the 100 MC realizations.

In a second experiment, we fixed and ran simula-
tions for five different SNR values ranging from SNR dB
to SNR dB (15:2.5:25). We again performed 100 MC sim-
ulations for each SNR value. In Figs. 6(a) and (b), we plot the
mean values and std of BER for the 100 MC realizations, re-
spectively.

Observe the following from these figures.

1) In terms of the mean values of BER, the type-2 fuzzy filter
performs much better than both the NNC and type-1 FAF
(Figs. 5(a) and 6(a)).

2) When SNR dB, the NNC performs better than the
type-1 FAF when and the type-1 FAF peforms
better than NNC when , but the the type-2 FAF
always performs better than the NNC [Fig. 5(a)].

3) In terms of the std of BER, the type-2 FAF is more robust
to the additive Gaussian noise than the other two equal-
izers and the type-1 FAF is more robust than the NNC
[Figs. 5(b) and 6(b)].

These observations suggest that a type-2 FAF (as designed
above) holds promise as a very good TE for time-varying chan-
nels. Unfortunately, though, the number of rules for such an

(a)

(b)

Fig. 5. Performance of type-1 FAF, nearest neighbor classifier (NNC), and
type-2 FAF versus� when SNR= 20 dB and the number of training prototypes
is 121. (a) Average BER. (b) STD of BER for 100 Monte Carlo realizations.

equalizer is (recall that is the number of
channel taps and is the number of antecedents), e.g., for

, we need 512 rules. This causes huge computational
complexity when the channel order is high. Next, we use a DFE
to tremendously reduce the number of rules in a FAF.

V. DFE FOR TIME-VARYING CHANNELS USING A DECISION

TREE AND TYPE-2 FAFS

It is well known that a DFE can reduce computational com-
plexity and improve equalization performance [3] as compared
to a TE. In addition, a DFE can be used to increase the channel
bit-rate capacity of next-generation wireless mobile communi-
cation systems [1]. Fig. 7 shows the structure of a DFE having

feedforward taps andfeedback taps. In this section, we pro-
pose a new architecture to implement a FAF-based DFE, one
that avoids the rule explosion generated with a TE.
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(a)

(b)

Fig. 6. Performance of type-1 FAF, nearest neighbor classifier (NNC), and
type-2 FAF versus SNR when� = 0:1 and the number of training prototypes
is 121. (a) Average BER. (b) STD of BER for 100 Monte Carlo realizations.

A. An Architecture to Eliminate Rule Explosion in a FAF

We follow the channel state analysis used in [3] and, for il-
lustrative purposes, use the following channel model to explain
how a DFE can eliminate rule explosion:

(41)

Assume a decision delay of unity and two equalizer
feedforward taps ; then, there are
channel states, which are enumerated in Table II in which the
channel states have category 1 or 1 [deter-
mined by according to (27) and (28)]. If there are two
feedback taps , then and are fed back
to decide (see Fig. 7).

Observe, for example, in the first four rows of Table II, when
and (shown using boldfaced numbers)

we only need to use four channel states (four rules) to decide the

value of , which means 16 rules have been reduced to
four. This motivates us to use a decision tree and four four-rule
FAFs to implement a DFE for this channel (see Fig. 8).

The structure of a general DFE is specified by the decision
delay and number of channel taps . is chosen by the
designer and increasing improves performance, but it is re-
quired that [3]. It has been shown [3] that choosing the
number of feedforward taps as (reducing reduces
the number of antecedents) and the number of feedback taps as

is sufficient for a DFE to achieve all the performance po-
tential (i.e., a DFE with has the same performance
as DFEs with taps) for a given and . In Fig. 9,
we depict a general structure for a DFE; it consists of a decision
tree and FAFs, where each FAF has only rules. Observe
that only one FAF is activated at a time to obtain the value of

. This structure reduces the number of FAF rules a lot,
and makes it easy to design each of the FAFs, e.g., if a channel
has five taps , delay , and we choose
and , then we only need to design FAFs, each
having rules (although there are 16 FAFs, only one is
activated at any time). In contrast, as noted at the end of Sec-
tion IV, if we use a TE with , we need rules.
The rule reduction ratio is , i.e., 16 : 1. Al-
though the number of rules in one FAF has been tremendously
reduced, the total number of rules in all FAFs in a DFE is still
the same as that of a TE, but it is much more difficult to compute
one 512-rule FAF than to compute one 32-rule FAF.

Observe that the architecture of Fig. 9 is also applicable for
other linear/nonlinear filter-based DFEs, e.g., a neural network
(NN)-based DFE, where “FAF” can be substituted by “NN.”

B. Designing a DFE Based on Type-2 FAFs

We used the following nonlinear time-varying channel in our
simulations of a DFE:

(42)

where nominal values for the channel coefficients are
and . This channel’s linear

part
has been studied in [3], [15], and [23]. A nonlinear channel

model like (42) is frequently encountered in data transmission
over digital satellite links, especially when the signal ampli-
fiers operate in their high-gain limits [15]. We used the method
given in Section IV-C to simulate the time-varying natures of

and .
We assumed a decision delayof one. Since channel order

(we assumed that is known), then it is sufficient to
design a DFE with and , which means the decision
tree has leaves (FAFs), and each leaf (FAF) has
rules. Since , the channel state analysis of (42) is very
similar to that of (41) (Table II). To conserve space, we refer to
Table II in analyzing the channel states of (42).

Designing the rules in each of the four FAFs is the same as
that of designing a transversal fuzzy equalizer. As shown in
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Fig. 7. The structure of a DFE withp feedforward taps andq feedback taps. In this paper, the parameters of the DFE are determined by clustering the training
sequence.

TABLE II
CHANNEL STATES FORTIME-VARYING CHANNEL MODEL (41) WITH BINARY SYMBOLS: d = 1; p = 2

Fig. 8. The architecture of a DFE for channel (41), where decision delayd =

1, and DFE parametersp = 2 andq = 2. This DFE consists of a decision tree
and four FAFs, and each FAF has four rules.

Table II and Fig. 8, in our type-2 FAF DFE design, there are
a total of 16 rules and theth rule, is expressed as

IF is and is THEN

where we assume that and are type-2 Gaussian MFs with
uncertain means (as in Example 1), andis a crisp value of

1 or 1 as determined by (31).

In the training period, and determine four
rules belonging to one of the four FAFs (see Fig. 8 and Table II
divided by horizontal double lines); so 16 rules have been di-
vided into four groups, and and determine one
channel state in each FAF (see Table II). We use (37) and (38)
to set the antecedent MF parameters, and the consequent param-
eter .

Generally speaking, in the training period, suppose the
number of training prototypes, is , where
and are defined by (23) and (22). Since and

, (23) can be rewritten as

(43)

A general description for designing a FAF DFE based on
training prototypes for a channel with taps and a decision
delay (which determine and ) is as follows.

1) Based on the values of ,
a branch and its corresponding leaf (FAF) in the decision
tree (see Fig. 9) is chosen.
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Fig. 9. For a channel withn+ 1 taps and a decision delay ofd, the general architecture of a DFE withp (p = d+1) feedforward taps andq (q = n) feedback
taps. The DFE consists of a decision tree and2 FAFs, where each FAF has2 rules.

2) In the chosen FAF, design rules, which means clus-
ters are needed. Based on , we know
which cluster belongs to (see Table II) and
determines the cluster category1 or 1.

3) Repeat steps 1) and 2) until alltraining prototypes have
been clustered.

4) Suppose in theth FAF, , there are
training prototypes belonging to theth cluster,

and the mean and std of these [
vector, see (22)] , are denoted (
vector) and ( vector), respectively. Then we
can use (37) and (38) to obtain the parametersand

, where and
; so

is the range of the type-2 antecedent Gaussian MF,,
in the th FAF.

5) After the training period, the parameters of every FAF are
fixed. In the testing period, for every , use Theorem
3 to compute the defuzzified output of the activated FAF

and then use (29) to obtain the output of the DFE
.

C. Simulations

Simulations were performed for channel (42) in which we
used a 1000 symbol sequence . The first 289 symbols were
for training and the remaining 711 symbols were for testing.
After training, the parameters in all four fuzzy filters were fixed
and then testing was performed.

In our first experiment, we fixed SNR at 20 dB and ran sim-
ulations for five different ranging from to
(0.04:0.04:0.20). We performed 100 MC simulations for each

value. In Fig. 10(a) and (b), we plot the mean values and std
of BER for the 100 MC realizations. In a second experiment,
we fixed and ran simulations for seven different SNRs
ranging from SNR dB to SNR dB (15:2.5:30). We
again performed 100 MC simulations for each SNR value. In
Fig. 11(a) and (b), we plot the mean values and std of BER for
these 100 MC realizations.

(a)

(b)

Fig. 10. Performance of type-1 FAF-based DFE, nearest neighbor classifier
(NNC), and type-2 FAF-based DFE versus� when SNR= 20 dB and the
number of training prototypes is 289. (a) Average BER. (b) STD of BER in 100
Monte Carlo realizations.
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(a)

(b)

Fig. 11. Performance of type-1 FAF-based DFE, nearest neighbor classifier
(NNC), and type-2 FAF-based DFE versus SNR when� = 0:1 and the number
of training prototypes is 289. (a) Average BER. (b) STD of BER in 100 Monte
Carlo realizations.

From the mean and std values of BER, we see that the DFE
based on four type-2 FAFs performs much better than the NNC
and the DFE based on four type-1 FAFs (each is an unnormalized
type-1 TSK FLS). The NNC cannot work well in such a compli-
cated channel because there are 16 channel states and a NNC typ-
ically needs more training prototypes than we have used.

VI. CONCLUSIONS ANDFUTURE WORKS

We have proposed a new unnormalized output type-2 TSK
FAF, one that handles numerical and linguistic uncertainties.
We applied this type-2 FAF to equalization where the channel
is nonlinear and time-varying. Theoretical analysis shows that
this type-2 FAF can exactly implement a Bayesian equalizer for
time-varying channels. Its structure is simple, its inference is
fast, and it is model free.

We used our type-2 FAF to implement a TE and also used
a decision tree and more than one type-2 FAF to implement a

DFE. The number of rules in each FAF of the DFE is tremen-
dously reduced. In fact, for a channel with taps, the rule
reduction ratio is . This architecture is also applicable for
other linear/nonlinear filter-based DFEs.

Simulation results showed that both the type-2 FAF TE and
DFE performed better than either a type-1 FAF or a nearest
neighbor classifier. Since no tuning procedure was used in the
design of either type-2 FAF-based equalizer, real-time informa-
tion processing is guaranteed.

Although a FAF has been extensively used for channel equal-
ization, a training sequence is needed for all approaches, in-
cluding the ones described in this paper. A challenge is to de-
velop a type-2 FAF for adaptive equalization which does not
need any training sequence, i.e., for blind equalization, first pro-
posed by Sato [26]. The constant modulus algorithm (CMA)
proposed by Godard [9] is emerging as the recognized stan-
dard blind equlization algorithm and is already appearing in real
systems [32]. We are exploring the design of FAF-based blind
equalizers for both time-invariant and time-varying channels.
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