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Abstract—In this paper, the recurrent neural networks (RNNs)
with a generalized activation function class is proposed. In this pro-
posed model, every component of the neuron’s activation function
belongs to a convex hull which is bounded by two odd symmetric
piecewise linear functions that are convex or concave over the real
space. All of the convex hulls are composed of generalized activa-
tion function classes. The novel activation function class is not only
with a more flexible and more specific description of the activation
functions than other function classes but it also generalizes some
traditional activation function classes. The absolute exponential
stability (AEST) of the RNN with a generalized activation function
class is studied through three steps. The first step is to demonstrate
the global exponential stability (GES) of the equilibrium point of
original RNN with a generalized activation function being equiv-
alent to that of RNN under all vertex functions of convex hull.
The second step transforms the RNN under every vertex activation
function into neural networks under an array of saturated linear
activation functions. Because the GES of the equilibrium point of
three systems are equivalent, the next stability analysis focuses on
the GES of the equilibrium point of RNN system under an array of
saturated linear activation functions. The last step is to study both
the existence of equilibrium point and the GES of the RNN under
saturated linear activation functions using the theory of -ma-
trix. In the end, a two-neuron RNN with a generalized activation
function is constructed to show the effectiveness of our results.

Index Terms—Absolute exponential stability (AEST), convex
hull, generalized activation function class, piecewise linear func-
tion, recurrent neural networks (RNNs).

I. INTRODUCTION

I N RECENT YEARS, absolute stability (ABST) and ab-
solute exponential stability (AEST) analysis of neural

networks have received a great deal of attention (see, for
example, [2]–[5], [10], [11], [17]–[23], [33], [36], and [37]).
A neural network is called ABST (AEST) if there is a unique
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and globally asymptotically stable (globally exponentially
stable) equilibrium point for every neuron activation function
belonging to a given activation function class and for every
constant input vector to the neural networks. The interest in
ABST and AEST analysis comes from practical problems, such
as in optimization, signal processing, pattern recognition, and
associative memories, when the activation functions belong to
some known function class but the exact shape is not known or
its model is difficult to describe mathematically. In designing
a neural network, one is concerned not only with the stability
of the system but also with the convergence rate, that is to say,
a fast response in the neural network is usually preferred. On
the other hand, in most of the applications of neural networks,
the networks’ convergence speed is expected to increase in
order to cut down on the neural computing time. Thus, it is
also important to determine the exponential stability. AEST
is an interesting and significant topic in the stability analysis
of neural networks. The AEST result extends many types of
stability such as global asymptotical stability (GAS) [1], [3],
[10], [11], [38], [43], global exponential stability (GES) [31],
[33], [44], [45], and [49], local stability [46], [50], and ABST
[2], [10]–[13], [37], etc., thus AEST is the strongest one.

A suitable and more generalized activation function can
greatly improve the neural networks’ performance. For ex-
ample, the property of the activation function is important to
the capacity of neural network. Morita et al. showed in [24] and
[32] that the absolute capacity of an associative memory model
can be remarkably improved by replacing the usual sigmoid
activation function with a nonmonotonic activation function.
Therefore, it is very significant to design a new artificial neural
network with a more generalized activation function class. In
recent years, many researchers have devoted themselves to at-
tain this goal by proposing new generalized activation function
classes. So far, there are five kinds of activation function classes
being proposed for neural networks.

1) Sigmoid function class [1], [6], [10]: a function
is said to be in class if for ,

is a function with and
is bounded for all .

2) The class of globally Lipschitz continuous (g.l.c.)
and monotone nondecreasing activation functions
[11]: for and , there exist constants

such that

3) The class of partially Lipschitz continuous (p.l.c.) and
monotone nondecreasing activation functions [19]:
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for , there exist constants
such that and

4) The class of locally Lipschitz continuous (l.l.c.) and
monotone nondecreasing activation functions [17]:
for , there exist a and a constant ,

such that
and

5) The class of g.l.c. and monotone increasing activation func-
tions whose derivative has upper and lower bounds [18]:
for and , there exist constants

such that

As Hu et al. pointed out in [17], the aforementioned activation
function classes satisfy and .

In [5], [17]–[23], [33], [36], and [37], researchers studied
the AEST of neural networks with the different kinds of acti-
vation function classes mentioned previously. Zhao et al. [33]
studied the exponential stability of delayed neural networks
by assuming the activation functions belonging to , where

. The AEST of delayed bidirectional associative memory
neural networks with the activation function belonging to
is investigated via the Lyapunov stability theory in [23]. In
[18], a necessary and sufficient condition is established for
ascertaining the AEST for a class of finite delayed neural net-
works with the activation function belonging to . In [22], the
AEST of a class of delayed neural networks with the activation
function belonging to is studied. In [17], AEST of a class
of continuous-time recurrent neural network (RNN) with the
activation function belonging to is studied.

In earlier papers (Chua et al. [7]–[9], Roska et al. [25]–[28],
Civalleri et al. [29], and Arik et al. [1], [3]), the activation func-
tion for cellular neural networks is assumed to be the following
saturation function:

(1)

It is considered a widely employed piecewise linear neural net-
work, where infinite intervals with zero slope are presented in
activations.

As stated earlier, the selection of activation functions is very
important in designing a neural network, especially for a neural
network which is absolutely exponentially stable. Recently, the
stability analysis of the systems with saturation nonlinearity was
studied in [15], [16], and [46]–[48]. In [15] and [16], a gen-
eralized sector bounded by piecewise linear functions was in-
troduced for the purpose of reducing conservatism in the abso-
lute stability analysis of systems with nonlinearity and/or uncer-
tainty. Inspired by the idea of a generalized sector condition, and
following the previously mentioned activation function classes,

Fig. 1. Linear sector.

in this paper, we propose a new generalized activation function
class for RNNs.

First, we will show the difference between our proposed gen-
eralized activation function class and the traditional activation
class. For example, if we use the activation function class ,
consider the following recurrent neural networks:

(2)

where and
. Every component of

the neuron’s activation function belongs to function
class , respectively. Assume there is an equilibrium point
for the system. By coordinate transformation, we can obtain
the following new system whose equilibrium point is at origin:

(3)

where and . For
system (3), as the th component of belongs
to , we can obtain the inequalities

as
as .

(4)

As Fig. 1 shows, the th component of be-
longs to a linear sector formed by two lines (the dot line)
and . Therefore, every component of the neuron’s activa-
tion function of the neural network (3) belongs to a linear sector,
respectively. All of these linear sectors are composed of the ac-
tivation function class . The other activation function classes
we mentioned earlier, such as , , , and , have similar
linear sector structures.

In the generalized activation function class proposed in this
paper, we assume every component of the neuron’s activation
function in the neural network belongs to the convex hull, re-
spectively. All of the convex hulls are composed of the general-
ized activation function class. In contrast to the slope of activa-
tion function bounded by two straight lines, such as , , ,
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, and , we use two odd symmetric piecewise linear func-
tions that are convex or concave over to bound an (uncertain)
activation function. The proposed generalized activation func-
tion class can describe the activation functions more flexibly and
more specifically. Moreover, our new activation function class
should include more activation functions, which the other paper
could not have considered, such as piecewise linear activation
function.

However, the flexible description of the activation function
by the new function class makes the neural network model com-
plex. This brings some difficulties in the next stability analysis.
To overcome these difficulties, we will show that the equilib-
rium point of RNN with a generalized activation function class
is GES if and only if the equilibrium point of RNN under every
vertex activation function of the convex hull is GES. As the GES
of the equilibrium point of two systems is equivalent, we will
focus on the stability analysis of the RNN system under every
vertex function of the convex hull. In what follows, the neural
network under every vertex activation function is transformed
into neural networks under an array of saturated linear activation
functions. The existence of an equilibrium point of RNN with
a saturated linear activation function is studied by Brouwer’s
fixed-point theorem. In the end, based on the -matrix theory,
the GES of the equilibrium point is studied. By the definition of
absolute exponential stability, we can conclude AEST of RNN
with the generalized activation function class.

This paper is organized as follows. In Section II, some prelim-
inaries are given on convex combination, convex hull, convex
(concave) function, exponential stability theorem and its con-
verse, and the lemmas on Brouwer’s fixed-point theorem and
the -matrix theory. In the model description, we describe in
detail the new proposed generalized activation function class .
As every component of the generalized activation function class
belongs to the convex hull of two piecewise linear functions, we
prove that the original RNN with generalized activation function
class is equivalent in GES to RNN under every vertex acti-
vation functions of the convex hull. The neural networks under
all vertex activation functions are then transformed into neural
networks under an array of saturated linear activation functions.
In Section III, the main results of this paper are discussed. By
Brouwer’s fixed-point theorem, we first verify the existence of
an equilibrium point. Then, using the theory of -matrix, the
GES of the RNN with a saturated linear activation function is
studied. In the end, the AEST of the original RNN with the
generalized activation function is obtained. In Section IV, a
two-neuron RNN with a generalized activation function is con-
structed to show the effectiveness of our results. To demonstrate
the advantage of our results, a comparison with the previous
ones was drawn. In Section V, conclusions are drawn.

Notation: The following notation will be used throughout
this paper: denotes the set of real numbers; denotes the set
of nonnegative real numbers; and denotes the -dimensional
Euclidean space. The notation (respectively, ),
where and are symmetric matrix, means that is posi-
tive semidefinite (respectively, positive definite); denotes the
vector norm (or matrix norm) in finite-dimensional space;
and denote - and -norm in finite-dimensional Eu-
clidean space, respectively; and denotes the

Fig. 2. Concave function.

convex hull of vectors , i.e.,
. For two integers and

, , we denote .
denotes the saturation function, where

.

II. PRELIMINARIES AND MODEL DESCRIPTION

A. Preliminaries

1) Convex Combination and Convex Hull: Let be a vector
space over . Let be a set of elements of . Then, a convex
combination of elements from is a linear combination of the
form

for some , where , , , and
.

Let be the set of all convex combinations from . We
call the convex hull of .

2) Convex and Concave Functions: Suppose is a convex
set in a vector space over (or ), and suppose is a function

. Assume the following:
a) is continuous, piecewise differentiable, ,

and ;
b) is odd symmetric, i.e., .
If for any and any

we say that is a convex function. If for any and any

we say that is a concave function (see Fig. 2). If either of the
inequalities is strict, then we say that is a strictly convex func-
tion, or a strictly concave function, respectively. Fig. 2 shows
the concave function in the first quadrant.
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The concave function has the following properties.
a) A function is a concave function if and only if is a

convex function. For this reason, majority of the following
discussion only focuses on the concave function. Similar
results hold for the convex function.

b) On , a differentiable function is concave if and only if
is monotone decreasing.

3) Exponential Stability Theorem and Its Converse: Con-
sider the autonomous nonlinear system

(5)

where is continuously differentiable and the
Jacobian matrix is bounded on . Then, we have the
following theorem.

Lemma 1 (Exponential Stability Theorem and Its Con-
verse)[14], [30]: Let be an equilibrium point for system
(5) and let and be positive constants. Then, the following
two statements are equivalent.

a) The origin of system (5) is globally exponentially stable
if for any the trajectory of the system satisfies

b) There exists a function satisfying the in-
equalities

for some positive constants , , , and .
Proof: The proof can be seen in [14, pp. 163–165].

4) Brouwer Fixed-Point Theorem and -Matrix Theory:
Lemma 2 (Brouwer Fixed-Point Theorem): Suppose that the

continuous operator maps closed bounded convex set
onto itself, then the operator has at least one fixed point

in set .
Lemma 3 [34], [38]: Let matrix have nonpos-

itive off-diagonal elements. Then, is a nonsingular -matrix
if and only if one of the following conditions holds:

a) all principal minors of are positive;
b) is nonsingular and the elements of are all nonneg-

ative;
c) has all positive diagonal elements and there is a vector

(or ), whose elements are all pos-
itive, such that all the elements of (or ) are posi-
tive, namely

which can be rewritten as

Fig. 3. Convex hull of g and g .

d) the real parts of all the eigenvalues of are positive;
e) there is a diagonal matrix, ,

with , , such that is
a positive–definite matrix.

B. Model Description

The RNN with a generalized activation function is described
by the following differential equation:

(6)

where and
. , , and are

constant matrices. denotes the feedback
matrix. denotes the self-feed-
back matrix, which is positive–definite diagonal matrix.

denotes the external bias. For simplicity,
we denote and . In system (6),
we assume the activation function , the th component of

, belongs to the convex hull of and , where and
are the convex or concave piecewise continuous differentiable
linear functions, respectively. That is . Then,
the activation function class for is the convex hull of
decoupled functions

(7)

where or . Here, we denote this activation function
class as , which is composed of all the
convex hulls , where . Fig. 3 shows that
an activation function belongs to the convex hull
which is bounded by a pair of continuously piecewise linear
concave functions and , where . The
convex hull lies between functions and .

To sum up, we denote the following function class .
Definition 1 (Function Class ): We say that if and

only if , where
and or , and , the th component of , belongs to the
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Fig. 4. Saturation function g (x ).

convex hull of and , where and are a pair of continu-
ously piecewise differentiable convex/concave linear functions.
The convex hull is bounded by them, i.e.,

(8)

Remark 1: As discussed earlier, the activation function class
is a more flexible and more specific description of the ac-

tivation function than some function classes. As , the
activation function of neural networks (6) becomes a determin-
istic piecewise linear function. That is, or . Because
a smooth nonlinear function can be approximated with a piece-
wise linear function, we can use a piecewise linear function to

Fig. 5. Piecewise linear function g (x ).

approximate well-known activation functions such as the sig-
moidal activation function.

Figs. 4–6 show how a saturation function
is approximated by a piecewise linear func-

tion. Fig. 4 is a saturation function .
Fig. 5 is the piecewise linear function , where is
shown in (9) at the bottom of the page.

In Fig. 6, we see that the saturation function is well
approximated by the piecewise linear function .

With the definition of the function class , we can give the
definition of AEST.

if

if

if

if

if

if

if

if

if

if

if .

(9)
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Fig. 6. Approximation of saturation nonlinear function g (x ) by piecewise
linear function g (x ).

Definition 2: A neural network (6) is said to be AEST with
respect to function class if it possesses a GES equilibrium
point for every activation function and for every input
vector .

Next, we will prove an important lemma of this paper, which
establishes the equivalence of the original RNN with the gener-
alized activation function (6) and RNN under every vertex func-
tion of convex hull (10) regarding GES.

Lemma 4: Assume Lyapunov function is dif-
ferentiable and radially unbounded. Given a convex set

, the equilibrium point of the neural
network system (6) is GES if and only if the equilibrium point
of the following system is GES

(10)

for every , where
and

or , . Here, we define system
(10) as the RNN under every vertex activation function of
the convex hull.

Proof: The proof of the theorem is given in the Appendix.
As the GES of the equilibrium point of the previous two sys-

tems are equivalent by Lemma 4, in the following study, we
will focus our attention on stability analysis of every individual
system (10).

In this paper, as a class of piecewise linear functions, we de-
fine the nonlinear function ( are similar) as

if
...

if
if
if

...
if

(11)

where . By the properties of the
concave function in Section II-A2, we see that if is concave,
then and

. If is convex, then
and .

This means that

The can be determined from and by the continuity
of the function

As an example of piecewise linear function (11), Fig. 7 shows
a piecewise linear concave function with four bends and Fig. 3
shows three piecewise linear concave functions with six bends.

By some simple transformations, equations in (11) are equiv-
alent to the following equations with respect to :

(12)

In order to use a new set of vertex functions (12) to replace
the piecewise linear vertex functions (11), we cite the following
useful lemma from [16].

Lemma 5 [16]: Consider the piecewise linear con-
cave/convex function

if
...

if
if
if

...
if

(13)

and

if

...
if

if

if

...
if

(14)

For , , and , define

(15)

and

(16)
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Fig. 7. Piecewise linear concave function with four bends.

Then

Proof: The proof can refer to [16]. Thus, it is omitted here.
By Definition 1 and Lemma 5, we have

Thus, it is easier to see that

Remark 2: In [12], Forti uses piecewise linear functions with
two bends, which is the special case of (13) or (14), to approx-
imate Sigmoidal function . As we discussed in Remark 1, by
choosing , the activation function class includes the
activation function class used in [12] as a special case.

Remark 3: In [1], [3], [7]–[9], and [25]–[29], the activation
function for cellular neural networks is assumed to be saturation
function (1), which is a piecewise linear concave function with
two bends. It is obvious that function (1) is the special case of
(13) or (14). Again, by denoting in Definition 1, the
activation function class includes the function (1) as a special
case.

Again, similar to Lemma 4, we first assume that the GES of
the equilibrium point of every system (10) is equivalent to that
of the neural networks under every vertex activations or ,

, , (this assumption will
be proven later in Lemma 6). Therefore, in the following study,
we focus our stability analysis on system (6) under piecewise
activation functions or . For simplicity, we denote

or .

As

(17)

then

has vertices. If we assign a
number to each vertex function corresponding to

, then each of the vertices has the form

(18)

where and

Noting that

thus

where or .
Then, like Lemma 4, we can prove the following Lemma.
Lemma 6: Let and or

. For convex sets
, assign a number to each vertex func-

tion corresponding to , then the equilibrium
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point of every neural network system (6) is GES if and only if
each of the equilibrium points of the following systems is GES:

(19)

where

Proof: With (18), we have

We can then prove this lemma similarly to the proof of Lemma
4.

From Lemma 6, we can see the equivalence of system (6)
and the neural networks under all vertex activation functions
[system (19)] regarding GES. In the following, we will focus our
attention on the GES of the equilibrium point of every system
(19).

III. MAIN RESULTS

A. Existence of Equilibrium Point

Theorem 1: For every , every system (19) has an
equilibrium point if the matrix is invertible,
respectively.

Proof: This theorem can be proven by the well-known
Brouwer’s fixed-point theorem (Lemma 2). A vector

is an equilibrium point of system
(19) if

(20)
For any , as is invertible, then

exists. In view of (20), we denote a mapping
( ) for ,
where
with

Then, there exists a constant matrix such that

We define a sphere

One can see that

From the continuity of the nonlinear activation functions ,
it follows that the mapping is continuous. By
Lemma 2, there exists a fixed point of the mapping.
Therefore, for every , the fixed point is the equi-
librium point of every system (19), respectively. The proof is
completed.

Remark 4: As Definition 1 (function class ) shows, the ac-
tivation function in this paper is allowed to take an arbitrarily
large positive value and is also allowed to have infinite intervals
with zero slops. The existence of an equilibrium point is guar-
anteed if the conditions of Theorem 1 hold.

By Theorem 1, we assume that, for any
, each system (19) has an equilibrium point

. In order to simplify our proofs,
we will shift the equilibrium point to the origin using the
transformation . Then, every system (19)
can be transformed into the form

(21)

where

and

(22)

By (22), we have

(23)

Equations in (21) are equivalent to the following equations:

(24)
where , ,

.
The stability behavior of the trivial solution of each

system (19) is equivalent to that of the origin of the systems
(21), respectively. Thus, in the following study, we only focus
attention on the stability behavior of the origin of every system
(21).

B. Absolute Stability of Equilibrium Point

Theorem 2: For each system (21), if the matrix
is invertible and the matrix

is -matrix, then the origin of each system (21) is GES.



XU et al.: ABSOLUTE EXPONENTIAL STABILITY OF RNNS WITH GENERALIZED ACTIVATION FUNCTION 9

Proof: As are -matrix, by
using c) in Lemma 3, there exist constant numbers

such that the following inequalities hold:

Moreover, it is easy to prove that there exist constants such
that the previous inequality still holds, namely

(25)

For each , construct the radially unbounded Lya-
punov function

(26)

In view of inequality (23), the derivative of along the
trajectories of the system (24) is given by

Hence, with inequality (25), we have

By integrating the previous inequality from to , we have

or

where , . By a) in Lemma 1, the
origin of every system (21) is GES. The proof is completed.

Theorem 3: If the conditions in Theorem 2 hold, then the
trivial solution of system (6) is AEST.

Proof: If the origin of every system (21) is GES, then the
trivial solution of every system (19) is GES. Thus, the
trivial solution of system (6) is GES with Lemma 6. By
Definition 2, we can conclude that the trivial solution of
system (6) is AEST. The proof is completed.

IV. COMPARISON AND EXAMPLE

In this section, we will construct an example to show the ef-
fectiveness of our results. Then, we will compare our results
with the previous ones.

A. Example and Simulation

Example: Consider a neural network with two neurons,
where every component of the activation functions belong to
the convex hull of a pair of piecewise continuous linear func-
tions, which is described by the following differential equation:

(27)

where

Every component of belongs to a convex hull which
is bounded by a pair of piecewise linear functions, namely,

and (see
Figs. 8 and 9). The functions and are defined by

if
if
if
if
if

(28)

if
if
if
if
if

(29)

The piecewise linear function (28) has three bounds with
and

(30)

(31)

(32)

(33)
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Fig. 8. The g belongs to the convex hull of g and g .

Fig. 9. The g belongs to the convex hull of g and g .

The piecewise function (29) also has three bounds with
and

(34)

(35)

(36)

(37)

Functions and have one bound.
We have the following four RNNs under the vertex activation

functions:

(38)

(39)

(40)

(41)

where , , , and .
Next, using Theorem 2, we study the GES of the previously

mentioned four RNNs with the vertex activation functions.
1) We have rewritten the neural network system (38) in form

of (19). As and ,
; so . Hence

Thus, we can calculate

It is easy to see that are invertible. From Lemma 3,
we know that are -matrices. Hence, by Theorem
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Fig. 10. The g (x ).

2, the trivial solution of neural networks system
(38) is GES.

2) For neural networks system (39), and ,
; so . Hence

Using Theorem 2, we can calculate

It is easy to see that is invertible. From Lemma 3,
we know that is -matrix. Hence, by Theorem 2, the
trivial solution of neural networks system (39) is
GES.

3) For neural networks system (40), and ,
; so . Hence

Using Theorem 2, we can calculate

Fig. 11. The g (x ).

It is easy to see that and are invertible. From Lemma
3, we know that and are -matrices. Hence, by
Theorem 2, the trivial solution of neural networks
system (40) is GES.

4) For neural networks system (41), and ,
; so . Hence

Using Theorem 2, we can calculate

It is easy to see that and are invertible. From Lemma
3, we know that are -matrices. Hence, by The-
orem 2, the trivial solution of neural networks
system (40) is GES.

According to 1)–4), by Theorem 3, we can conclude that the
trivial solution of the neural networks (27) is AEST.

For numerical simulation, we arbitrarily select one of the
activation functions in and , re-
spectively. For example, let and

in system (27). The selected acti-
vation functions are shown as and in Fig. 10 and Fig. 11,
respectively. The following three different initial conditions are
given:
Case 1) initial state ;
Case 2) initial state ;
Case 3) initial state .
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Fig. 12. Transient response of the state variables.

Fig. 12 shows the time responses of the states and
with the three initial conditions. We see that all the states are
convergent to the unique and GES equilibrium point of the
system. The equilibrium point is at the origin.

B. Comparison

From neural network (27), we can compare our -matrix cri-
teria with some stability criteria. In [2],[10],[11],[17],[19], [20],
[39], and [41], the absolute stability or absolute exponential sta-
bility were also studied. However, the stability criteria in these
papers only gave some conditions on the interconnection weight
matrix, such as , , and , where
and are denoted in [38] and [40]. As Cao et al. pointed out in
[38], may not belong to , nor it may belong to .
Therefore, our results are less conservative than the references
mentioned. In (27), we can see that matrix does not belong
to , , or ; so, the stability of the equilibrium point of
system (27) could not be shown by the stability criteria in the
references mentioned.

V. CONCLUSION

In this paper, both the existence of an equilibrium point and
the AEST of RNN with a generalized activation functions are
addressed. Every component of the activation function of neural
networks belongs to the convex hull of two piecewise linear
functions. This generalized activation function allows a more
flexible or more specific description for the activation functions.
We demonstrate that GES of the equilibrium point of original
RNN with a generalized activation function is equivalent to that
of RNN under all vertex functions of convex hull. Then, the
neural network under all the vertex activation functions is trans-
formed into neural network under an array of saturated linear ac-
tivation functions. Again, we demonstrate that GES of the equi-
librium point of RNN system under all vertex functions of the
convex hull is equivalent to that of neural network under an array
of saturated linear activation functions. Because of the equiva-
lence of three systems, the stability analysis is focused on the
RNN system under an array of saturated linear activation func-
tion. In the end, a two-neuron RNN with a generalized activation

function is constructed to show the effectiveness of our results.
To demonstrate the advantage of our results, a comparison with
the previous ones was drawn.

APPENDIX

PROOF OF LEMMA 4

Proof: “Only if:” Assume (6) is GES. As
, by set in (6), we have

which implies every system (10) is GES.
“If:” Now, we assume that every individual system (10) is

GES. We need to show that system (6) is also GES.
Because every system (10) is GES, with b) in Lemma 1, there

exists a function that satisfies the following in-
equalities:

(42)

(43)

(44)

for some positive constants , , , and , where
.

To show that system (6) is also GES, we need to prove that
for , the following two inequalities hold with b) in
Lemma 1:

(45)

(46)

for positive constants and , where

(47)

Then, we can use a) and b) in Lemma 1 to prove that system (6)
is also GES.

Proof of Inequality (45): As assumed previously, , the
th component of , belongs to the convex hull of and ,

and and are continuously piecewise differentiable on .
According to the definition of the convex hull in Section II-A1,
it is not difficult to prove that is also continuously piecewise
differentiable on . In view of (47), is continuously piece-
wise differentiable on . Thus, the Jacobian matrix
is bounded on .

In view of (43), there exists a constant such that

(48)

Therefore, the inequality (45) holds.
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Proof of Inequality (46): To prove the inequality (46), the
following two inequalities have to be proven.

For system (5), the following two inequalities hold:

(49)

(50)

As inequality (50) can be easily obtained by (49), we mainly
prove (49). Because the Jacobian matrix is bounded
on , there is a constant positive number such that

(51)

For system (6), we assume that there is an equilibrium point
at the origin. Then, it is easy to know that . As is
differentiable on , by mean-value theorem, there is ,
where , such that

In view of inequality (51), we have

(52)
With system (5), we have

(53)

By Hölder inequality

(54)

Thus, by (52)–(54), it follows that

(55)

The last assertion (50) can be easily proven by integrating
both sides of inequality (49) from to . With simple calcula-
tion, we can obtain inequality (50).

Let , which begins with , denote the solution of the
system (5) at time . Then

Taking partial derivatives with respect to yields

(56)
Differentiating with respect to , it can be observed that sat-
isfies the sensitivity equation

where and , where
is a constant matrix. Since

(57)

on , with the inequalities (49) and (50), satisfies the bound

(58)

Let

where . Therefore, with a) in Lemma 1 and inequality (58),
we have

Thus, by choosing , the inequality (46) is satisfied with

Using (42), (45), and (46), b) in Lemma 1 is satisfied. Thus,
from Lemma 1, we can conclude that system (6) is GES. The
proof is completed.
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