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Abstract

In this paper the computational complexity of the marginalized parti-

cle filter is analyzed. We introduce an equivalent flop measure to capture

floating-point operations as well as other features, which cannot be mea-

sured using flops, such as the complexity in generating random numbers

and performing the resampling. From the analysis we conclude how to par-

tition the estimation problem in an optimal way for some common target

tracking models. Some guidelines on how to increase performance based

on the analysis is also given. In an extensive Monte Carlo simulation

we study different computational aspects and compare with theoretical

results.

Keywords: Nonlinear estimation, Marginalized particle filter, Rao-

Blackwellization, Kalman filter, Complexity analysis, Equivalent Flop
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Complexity Analysis of the Marginalized
Particle Filter

Rickard Karlsson, Thomas Schön and Fredrik Gustafsson

Abstract— In this paper the computational complexity of the
marginalized particle filter is analyzed. We introduce an equiva-
lent flop measure to capture floating-point operations as well as
other features, which cannot be measured using flops, such as the
complexity in generating random numbers and performing the
resampling. From the analysis we conclude how to partition the
estimation problem in an optimal way for some common target
tracking models. Some guidelines on how to increase performance
based on the analysis is also given. In an extensive Monte Carlo
simulation we study different computational aspects and compare
with theoretical results.

I. INTRODUCTION

In any application of the particle filter to a real world problem
the computational complexity of the algorithm is a very impor-
tant aspect. In this paper the computational complexity issues
that arise in the use of the marginalized particle filter (another
common name is the Rao-Blackwellized particle filter) are
studied. The marginalized particle filter is a clever combination
of the standard particle filter by Gordon et al. (1993) and
the Kalman filter by Kalman (1960), which can be used
when there is a linear substructure, subject to Gaussian noise,
available in the model. It is a well known fact that in some
cases it is possible to obtain better estimates, i.e., estimates
with a smaller variance using the marginalized particle filter
instead of using the standard particle filter (Doucet et al.,
2001b). Intuitively this makes sense, since then we are using
the optimal estimator for the linear states. By now quite a
lot has been written about the marginalized particle filter,
see e.g., (Doucet, 1998; Doucet et al., 2001a; Chen and Liu,
2000; Andrieu and Doucet, 2002; Andrieu and Godsill, 2000;
Schön et al., 2003). However, to the best of the authors
knowledge nothing has yet been written about the complexity
issues surrounding the marginalized particle filter. In its most
general form the marginalized particle filter requires a lot
of computations, since we have one Kalman filter associated
with each particle. However, there are important special cases,
where the computational complexity is much smaller.

We will focus on some important special cases of models com-
mon in target tracking. The main objective will be to analyze
the computational complexity for different marginalizations.
We will exemplify and evaluate the complexity for a radar
tracking model, but the discussed method is general and can be
applied to a large class of models. The theoretical analysis is
compared with simulations and some guidelines on improving
the efficiency of the algorithm are given.

II. BAYESIAN ESTIMATION

Many engineering problems are by nature recursive and re-
quire on-line solutions. Common applications such as state
estimation, recursive identification and adaptive filtering often
require recursive solutions to problems having both nonlinear
and non-Gaussian characteristics. Consider the discrete state-
space model

xt+1 = f(xt, ut, wt), (1a)
yt = h(xt, et), (1b)

with state variable xt, input signal ut and measurements
Yt = {yi}

t
i=1. Furthermore, assume that the probability

density functions (pdfs) for the process noise, pw(w), and
measurement noise pe(e) are known. The nonlinear prediction
density p(xt+1|Yt) and filtering density p(xt|Yt) for the
Bayesian inference is given by (Jazwinski, 1970)

p(xt+1|Yt) =

∫

p(xt+1|xt)p(xt|Yt)dxt, (2a)

p(xt|Yt) =
p(yt|xt)p(xt|Yt−1)

p(yt|Yt−1)
. (2b)

These equations are in general not analytically tractable.
However, for the important special case of linear dynamics,
linear measurements and Gaussian noise there exist a closed-
form solution, given by the Kalman filter (Kalman, 1960). We
will write this linear, Gaussian model according to

xt+1 = Atxt + wt, (3a)
yt = Ctxt + et. (3b)

In the three subsequent sections we will briefly introduce the
Kalman filter, the particle filter and the marginalized particle
filter. We will also give references to more detailed treatments
of the various filters.

A. The Kalman Filter

The Kalman filter has been the standard estimation technique
for many years. Hence, we only briefly give the equations
below for notational purposes. For a thorough introduction to
the Kalman filter see e.g., (Kailath et al., 2000; Anderson and
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Moore, 1979; Gustafsson, 2000)
{

x̂t+1|t = Atx̂t|t,

Pt+1|t = AtPt|tA
T
t + Qt,

(4a)







x̂t|t = x̂t|t−1 + Kt(yt − Ctx̂t|t−1),

Pt|t = Pt|t−1 − KtCtPt|t−1,

Kt = Pt|t−1C
T
t (CtPt|t−1C

T
t + Rt)

−1.

(4b)

The noise covariances are given as

Qt = Cov[wt], (5a)
Rt = Cov[et]. (5b)

For a general nonlinear, non-Gaussian system we are forced to
use approximate methods, such as the extended Kalman filter.
The particle filter, which is briefly introduced in the subsequent
section, provides a method to approximate the optimal solution
given in (2).

B. The Particle Filter

We will in this section give a brief introduction to the particle
filter theory. More complete presentations are provided in for
instance (Doucet et al., 2001a; Doucet, 1998; Liu, 2001). The
particle filter provides an approximative solution to the optimal
discrete time filter given in (2) by updating an approximative
description of the posterior filtering density. The particle filter
approximates the density p(xt|Yt) by a large set of N samples
(particles), {x

(i)
t }N

i=1, where each particle has an assigned
relative weight, q

(i)
t , chosen such that all weights sum to unity.

The location and weight of each particle reflect the value of the
density in that particular region of the state-space, The particle
filter updates the particle location and the corresponding
weights recursively with each new observed measurement. For
the common special case of additive measurement noise, i.e.,

yt = h(xt) + et, (6)

the unnormalized weights are given by

q
(i)
t = pe(yt − h(x

(i)
t )), i = 1, . . . , N. (7)

The main idea to solve the Bayesian estimation problem is to
approximate p(xt|Yt−1) with

p(xt|Yt−1) ≈
N∑

i=1

q
(i)
t δ(xt − x

(i)
t ). (8)

Inserting this into (2b) yields a density to sample from. This
was the original idea, which was known to diverge, since
almost all weights was zero after some iterations. However,
the crucial resampling step introduced in (Smith and Gelfand,
1992; Gordon et al., 1993) solved the divergence problems
and together with the increased computational power the
algorithm has been used in many real-time, on-line estimation
applications. The particle filter according to this technique
is referred to as the Sampling Importance Resampling (SIR),
(Gordon et al., 1993), and given in Algorithm 2.1.

Algorithm 2.1 (The Particle Filter):
1) Initialization: For i = 1, . . . , N , initialize the particles,

x
(i)

0|−1 ∼ px0(x0). Set t = 0.
2) For i = 1, . . . , N , evaluate the importance weights q

(i)
t =

p(yt|x
(i)
t ) according to the likelihood

p(yt|xt) = pe(yt − h(x
(i)
t )) (9)

and normalize q̃
(i)
t =

q
(i)
t

P

N
j=1 q

(j)
t

.

3) Measurement update: Resample N particles with replace-
ment according to,

Pr(x(i)

t|t = x
(j)

t|t−1) = q̃
(j)
t .

4) Time update: For i = 1, . . . , N , predict new particles
according to

x
(i)

t+1|t ∼ p(xt+1|t|x
(i)
t ).

5) Set t := t + 1 and iterate from step 2.

Sometimes the resampling step is omitted and just imposed
when needed to avoid divergence in the filter as in the
sequential importance sampling (SIS) where the weights are
updated recursively as (Doucet et al., 2000)

q
(i)
t = q

(i)
t−1 · pe(yt − h(x

(i)
t )), i = 1, . . . , N. (10)

As the estimate of the state we chose the minimum mean
square estimate, i.e.,

x̂t = E[xt|Yt] =

∫

xtp(xt|Yt)dxt ≈
N∑

i=1

q
(i)
t x

(i)
t . (11)

C. The Marginalized Particle Filter

In Section II-B the pdf p(xt|Yt) was approximated recursively
using the particle filter for the whole state vector xt. However,
if the system has a linear, Gaussian sub-structure, we can
exploit this to obtain a more efficient estimator. In practice
this is done by marginalizing out the linear variables from
p(xt|Yt). Denote the linear states with xl

t and the nonlinear
states xn

t , with Xn
t = {xn

i }
t
i=0. Using Bayes’ theorem we

obtain

p(Xn
t , xl

t|Yt) = p(xl
t|X

n
t , Yt)p(Xn

t |Yt), (12)

where p(xl
t|X

n
t , Yt) is given by the Kalman filter and where

p(Xn
t |Yt) is given by a particle filter. This marginalization

idea is certainly not new. It is sometimes referred to as Rao-
Blackwellization (Doucet, 1998; Casella and Robert, 1996;
Doucet et al., 2001b; Chen and Liu, 2000; Andrieu and
Doucet, 2002; Doucet et al., 2001b; Schön, 2003; Nordlund,
2002). We will in this paper focus on the algorithmic com-
plexity and try to analyze the performance gain.

To illustrate the complexity issues in marginalization we have
chosen to study a special case where no nonlinearities enter
the state-space update equation. This is a rather common case
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for many target tracking applications, where the dynamical
model is linear and the nonlinearities enter the measurement
equation. For system like that it is also common to assume
Gaussian process noise. Hence, it is straightforward to use the
marginalization ideas. We will use the following model for our
complexity analysis of the marginalization idea

xt+1 = Atxt + wt, (13a)
yt = h(xt) + et. (13b)

Hence, the nonlinearities enter the state-space model via
the measurement equation. In order to be able to use the
marginalized particle filter we have to marginalize out the
linear states. If we partition the state vector in its nonlinear
states, xn

t , and its linear states, xl
t, according to

xt =

[
xn

t

xl
t

]

, (14)

we can write (13) as

xn
t+1 = An

t xn
t + Al

tx
l
t + wn

t , (15a)

xl
t+1 = Fn

t xn
t + F l

t x
l
t + wl

t, (15b)
yt = ht(x

n
t ) + et, (15c)

where

wn
t ∈ N (0, Qn

t ), (15d)

wl
t ∈ N (0, Ql

t), (15e)
et ∈ N (0, Rt). (15f)

Here we have not considered any input signal, which should
be straightforward to add. In the formulas above we assume
the dimension of the linear and the nonlinear part to be
xl

t ∈ R
l and xn

t ∈ R
n, respectively. The process noise pdf

is denoted pw and the measurement noise pdf is denoted
pe. These are know, at least up to a normalization constant.
Furthermore we will assume that wn

t and wl
t are independent

and Gaussian. However, the independence assumption can
easily be relaxed by rewriting the state-space model using
Gram-Schmidt orthogonalization, see Kailath et al. (2000) for
details. The measurement noise may have any pdf known up
to a normalization constant, but in this study it is assumed
Gaussian for simplicity.

The nonlinear state variables will be handled by the particle
filter and the linear state variables by the Kalman filter using
the marginalized particle filter. The partition (14) can be done
in many different ways, therefore we introduce the notation xp

t

and xk
t to denote the part of the state vector which is estimated

by the particle filter and the Kalman filter respectively. Also
note that xp

t ∈ R
p and xk

t ∈ R
k, where the values are given

p ∈ [n, n + l], (16a)
k ∈ [0, l]. (16b)

For the general partitioning case we have to select p−n states
from l possibilities. In other words the number of combinations
are given by

(
p − n

l

)

. (17)

Note that we have several possible permutations here. How-
ever, not all are relevant for a practical system. For a tracking
system in Cartesian coordinates a natural partitioning is to
consider position, velocity and acceleration states (and so
on). Hence, the possible number of partitions are reduced
drastically. Our main interest is now to consider which of the
states to put in the nonlinear and linear partition respectively.
Two relevant aspects with respect to this partitioning are
how it will affect the computational load and the estimation
performance.

Using the notation xp
t for the states that are estimated using

the particle filer and xk
t for the states that are estimated using

the Kalman filter, the model will thus be

xp
t+1 = Ap

t x
p
t + Ak

t xk
t + wp

t , (18a)

xk
t+1 = F p

t xp
t + F k

t xk
t + wk

t , (18b)
yt = ht(x

n
t ) + et, (18c)

where

wp
t ∈ N (0, Qp

t ), (18d)

wk
t ∈ N (0, Qk

t ), (18e)
et ∈ N (0, Rt). (18f)

As before all noise signals are considered independent. In
Algorithm 2.2 the marginalized particle filter is summarized
for the model given in (18). For a detailed derivation of this
algorithm the reader is referred to (Schön et al., 2003). In the
complexity analysis the way in which the particle filter and
the Kalman filter are implemented is of course crucial.

Algorithm 2.2 (Marginalized Particle Filter):
1) Initialization: For i = 1, . . . , N , initialize the particles,

x
p,(i)
0|−1 ∼ pxp

0
(xp

0) and set {x
k,(i)
0|−1, P

(i)
0|−1} = {x̄k

0 , P̄0}.
Set t = 0.

2) For i = 1, . . . , N , evaluate the importance weights
q
(i)
t = p(yt|X

p,(i)
t , Yt−1) according to the likelihood

p(yt|X
p
t , Yt−1) = N (ht(x

p
t ), Rt) (19)

and normalize q̃
(i)
t =

q
(i)
t

P

N
j=1 q

(j)
t

.

3) Particle filter measurement update: Resample with re-
placement N particles according to,

Pr(xp,(i)
t|t = x

p,(j)
t|t−1) = q̃

(j)
t .

4) Particle filter time update and Kalman filter update
a) Kalman filter measurement update, using

x̂
k,(i)
t|t = x̂

k,(i)
t|t−1, (20a)

Pt|t = Pt|t−1. (20b)

b) Particle filter time update: For i = 1, . . . , N ,
predict new particles according to

x
p,(i)
t+1|t ∼ p(xp

t+1|t|X
p,(i)
t , Yt), (21)
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where

p(x
p,(i)
t+1 |X

p,(i)
t , Yt) = N (Atx

p,(i)
t +

Ak
t x̂

k,(i)
t|t , Ak

t Pt|t(A
k
t )T + Qp

t ). (22)

c) Kalman filter time update, using

x̂
k,(i)
t+1|t = F k

t x̂
k,(i)
t|t + F p

t x
p,(i)
t +

Lt(x
p,(i)
t+1|t − Ap

t x
p,(i)
t − Ak

t x̂
k,(i)
t|t ),

Pt+1|t = F k
t Pt|t(F

k
t )T + Qk

t − LtMtL
T
t ,

Mt = Ak
t Pt|t(A

k
t )T + Qp

t ,

Lt = F k
t Pt|t(A

k
t )T M−1

t ,

5) Set t := t + 1 and iterate from step 2.

Remark 1: In order to determine the computational complex-
ity of the process noise, we must describe the implementation.
We use a Cholesky factorization in order to generate random
numbers with covariance M given the process w ∈ N (0, I)
,i.e.,

M = V T V

Cov[V T w] = E[(V T w)(V T w)T ]

= V T
E[wwT ]V = V T V.

Remark 2: The reason that the measurement update (20) in
the Kalman filter is so simple in Algorithm 2.2 is that the linear
state variables are not present in the measurement equation.
However, let us now consider what happens if we measure
some combination of nonlinear and linear state variables, i.e.,
we have a measurement equation according to

yt = ht(x
n
t ) + Ctx

k
t + et, (24)

instead of (18c). The difference is obviously that by allowing
Ct 6= 0 we measure linear states as well. The implication
in Algorithm 2.2 is that we have to evaluate one Ricatti
recursion for each particle. The Kalman filter measurement
update in (20) is now given by

x̂
k,(i)
t|t = x̂

k,(i)
t|t−1 + K

(i)
t (yt − h(x

p,(i)
t ) − Ctx

k,(i)
t ), (25a)

P
(i)
t|t = P

(i)
t|t−1 − K

(i)
t CtP

(i)
t|t−1, (25b)

S
(i)
t = CtP

(i)
t|t−1C

T
t + Rt, (25c)

K
(i)
t = P

(i)
t|t−1C

T
t (S

(i)
t )−1. (25d)

Remark 3: The resampling step uses the O(N) algorithm
from Ripley (1987). In (Bergman, 1999) an explicit MAT-
LAB-code is given. Using other resampling schemes may be
preferable both to reduce the computational cost and accuracy
in the resampling. The chosen method is probably not the
best available for very large N . Other more asymptotically
expensive resampling schemes may be preferable when the
number of particles is small.

III. COMPLEXITY ANALYSIS

In this section the computational complexity in the marginal-
ized particle filter is discussed from a theoretic point of view,
by giving the number of floating-point operations (flops) em-
ployed by the algorithm. A flop is here defined as one addition,
subtraction, multiplication, or division of two floating-point
numbers. When it comes to comparing the flop count with the
actual computation time we will however run into problems.
This is due to the fact that issues such as cache boundaries and
locality of reference will significantly influence the computa-
tion time (Boyd and Vandenberghe, 2001). Moreover, there
are certain steps in the algorithm that cannot be measured
using flops, for instance the cost of generating a random
number and the cost of evaluating a certain nonlinear function.
Despite these drawbacks it is still possible to analyze the
complexity be using the computer to measure the absolute time
the different steps require. These times can then be compared
to the theoretical result obtained from counting flops.

A. Theoretical Analysis

In the particle filter the resampling step is proportional to the
number of particles and the amount of time for generating
random numbers is proportional to the number of random
numbers required. We will relate the proportionality coeffi-
cients so that they reflect the flop complexity instead of the
time complexity for ease of comparison with parts that only
depend on matrix and vector operations. This will be referred
to as the equivalent flop (EF) complexity. Furthermore, it
will allow us to understand how the computational time will
increase with the problem size.

Definition 3.1: The equivalent flop (EF) complexity for an
operation is defined as the number of flops that results in the
same computational time as the operation.

The dimensions of some of the entities involved in the
marginalized particle filter are given in Table I and the
computational complexity for some common matrix operations
are summarized in Table II. We are now ready to assess the
complexity issues for the marginalized particle filter for the
model given by (15). We reformulate the algorithm and give
the equivalent flop complexity for each relevant code line.

Here we consider a standard implementation of the particle
filter according to Gordon et al. (1993) and a straightforward
implementation of the Kalman filter (Kailath et al., 2000).
Different implementations, such as the MKCS and various
array algorithms could also be used, (Kailath et al., 2000),
but are not considered here. In the particle filter we also
impose a constant number of particles, N , for all time steps.
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Object Dimension
xp

t R
p

xk
t R

k

Ap
t R

p×p

Ak
t R

p×k

F p
t R

k×p

F k
t R

k×k

Qp
t R

p×p

Qk
t R

k×k

TABLE I
DIMENSIONS OF THE ENTITIES INVOLVED IN THE MARGINALIZED

PARTICLE FILTER.

1) Initialization. These computations can be neglected,
since this step is done only once.

2) Update the importance weights. We have to calculate
e−1/2εT R−1ε N times. The equivalent flop complexity
is denoted Nc1.

3) Resampling according to Ripley (1987), yields an equiv-
alent flop complexity of Nc2.

4) Particle filter time update and the Kalman filter updates:
a) Kalman filter measurement update. No instruc-

tions, since Ct = 0.
b) Particle filter time update. See Table III for the EF

complexity.
c) Kalman filter time update. See Table IV for the EF

complexity.
5) Set t := t + 1 and iterate from step 2.

Above we have used the coefficients, c1 for the calculation of
the Gaussian likelihood, c2 for the resampling and c3 for the
random number complexity.

Putting it all together, the total equivalent flop complexity for
one iteration of the marginalized particle filter as discussed
above will thus be

C(p,k,N) = (6kp + 4p2 + 2k2 + p − k + pc3 + c1 + c2)N+

4pk2 + 8kp2 +
4

3
p3 + 5k3 − 5kp + 2p2. (26)

In the case studied above we use the same covariance matrix
for all Kalman filters. However, in the general case we will be
forced to use different covariance matrices for each Kalman
filter. This gives rise to a significant increase in the computa-

Oper. Size Mult. Add.
A + A A ∈ R

n×m nm
A · B A ∈ R

n×m, B ∈ R
m×l lmn (m − 1)ln

B · C B ∈ R
m×n, C ∈ R

n×1 nm (n − 1)m
D−1 D ∈ R

n×n n3

TABLE II
COMPUTATIONAL COMPLEXITY OF SOME COMMON MATRIX OPERATIONS.

tional complexity of the algorithm. We will now briefly discuss
the total complexity for this more general case.

To simplify, consider the case when the measurement dimen-
sion is much smaller than the state dimension. We study
only the part dependent on the number of particles. Since
we already have the measurement residuals we can neglect
the complexity in (25a). Also St and Kt in (25c)-(25d) are
neglected since they are small. The complexity in (25b) is
approximately k3, if the measurement dimension is neglected.
Hence, the only difference to the previous case is that all
matrices are computed for each particle and an extra k3 is
added. To summarize, the total complexity for the case when
Ct 6= 0 is approximately given by

C(p,k,N) = (6kp + 4p2 + 2k2 + p − k + pc3 + c1 + c2+

4pk2 + 8kp2 +
4

3
p3 + 5k3 − 5kp + 2p2 + k3)N. (27)

The analysis provided in this section is general and the main
steps, which will be discussed in more detail in the subsequent
section are

1) Estimate the time for one flop using linear regression.
2) Estimate the time for likelihood calculation, resam-

pling and random number generation.
3) Relate all times using the EF measure.
4) Calculate the overall complexity C(p, k,N)

(given by (26) in our case).

By requiring

C(p + k, 0, N0) = C(p, k,N(k)), (28)

where N0 corresponds to the number of particles used in the
standard PF we can solve for N(k). This gives us the number
of particles, N(k), that can be used in the MPF in order to
obtain the same computational complexity as if the standard
particle filter had been used for all states. In Fig. 1 the ratio
N(k)/N0 is plotted for systems with m = 3, . . . , 9 states.
Hence, using Fig 1 it is possible to directly find out how
much we can gain in using the MPF from a computational
complexity point of view when marginalization is increased.
We already know that the quality will improve or remain the
same when the MPF is used Doucet et al. (2001b).

We will now exemplify the expression for the over-all com-
plexity of the algorithm, given by (26). For this discussion
we will use the model from the simulations in Section IV.
This model has 2 nonlinear state variables and 4 linear state
variables, giving us the following intervals for the number of
states estimated by the Kalman filter, k, and the number of
states estimated by the particle filter, p, respectively,

k ∈
[
0, 4

]
, (29a)

p ∈
[
2, 6

]
. (29b)

In Table V the equivalent flop complexity for the different
possible partitions is given. We will now focus on the two
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Instruction Mult. Add. Other
PA := Pt|t(A

k
t )T pk2 (k − 1)kp

M := Ak
t PA + Qp

t kp2 (k − 1)p2 + p2 (k > 0)
T1 := chol(M) (1/3)p3 + 2p2

T2 := randn(p,N) pNc3

w := T1 ∗ T2 p2N (p − 1)pN
T3 := Apxp p2N (p − 1)pN
T4 := Akxk pkN (k − 1)pN (k > 0)
x̂p

t+1|t := T3 + T4 + w 2pN

Total p(k2 + kp+ p((k − 1)(k + p + N)+ 1/3p3 + 2p2+
2pN + kN) p + 2(p − 1)N + 2N) pNc3

TABLE III
THE EQUIVALENT FLOP COMPLEXITY FOR THE PARTICLE FILTER TIME UPDATE IN THE MARGINALIZED PARTICLE FILTER. THE DIMENSION OF THE STATE

VARIABLES THAT ARE ESTIMATED USING THE PARTICLE FILTER IS p, AND THE DIMENSION OF THE STATES ESTIMATED BY THE KALMAN FILTER IS k.
FURTHERMORE, WE USE N PARTICLES.

Instruction Mult. Add. Other
invM := M−1 p3

L := F k
t PAinvM k2p + kp2 (k − 1)kp + (p − 1)kp

T5 := F k
t Pt|t(F

k
t )T 2k3 2(k − 1)k2

T6 := LtMtL
T
t 2kp2 2(p − 1)pk

P := T5 + Qk
t − T6 2k2

T7 := F kxk k2N (k − 1)kN
T8 := F pxp kpN (p − 1)kN
T9 := x̂p

t+1|t − T3 − T4 2pN

x̂k
t+1|t := T7 + T8 + LT9 kpN (p + 1)kN

Total k(kp + 3p2+ (k − 1)k(p + 2k + N) + (p + 1)kN+ p3

2k2 + kN + 2pN) (p − 1)k(3p + N) + 2k2 + 2pN

TABLE IV
THE EQUIVALENT FLOP COMPLEXITY FOR THE KALMAN FILTER TIME UPDATE IN THE MARGINALIZED PARTICLE FILTER. THE DIMENSION OF THE STATE

VARIABLES THAT ARE ESTIMATED USING THE PARTICLE FILTER IS p, AND THE DIMENSION OF THE STATES ESTIMATED BY THE KALMAN FILTER IS k.
FURTHERMORE, WE USE N PARTICLES.
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m=3 

PSfrag replacements

N
(k

)/
N

0

Number of states estimated by the Kalman filter (k)

Fig. 1. This figure shows the ratio N(k)/N0 for systems with m = 3, . . . , 9
states. It it is apparent the MPF reduces the computational complexity, when
compared to the standard PF. The case studied in this figure is Ct = 0.

k p Complexity
0 6 (c1 + c2 + 6c3 + 150)N + 360
1 5 (c1 + c2 + 5c3 + 136)N + 417
2 4 (c1 + c2 + 4c3 + 122)N + 437
3 3 (c1 + c2 + 3c3 + 108)N + 468
4 2 (c1 + c2 + 2c3 + 94)N + 555

TABLE V
COMPUTATIONAL COMPLEXITY FOR DIFFERENT k AND p.

extreme cases, i.e., the full particle filter, where all states are
estimated using the particle filter and the completely marginal-
ized particle filter, where all linear states are marginalized out
and estimated using the Kalman filter. If we require them to
have the same computational complexity (γ) we can solve for
the number of particles. The result is,

NPF =
γ

c1 + c2 + 6c3 + 150
, (30a)

NMPF =
γ

c1 + c2 + 2c3 + 94
, (30b)
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which implies

NPF = (1 −
4c3 + 56

c1 + c2 + 6c3 + 150
)

︸ ︷︷ ︸

<1

NMPF (31)

From (31) it is clear that for a given computational complexity
we can use more particles in the marginalized particle filter
than in the standard particle filter. In order to quantify this
statement we need numerical values for the three constants
c1, c2 and c3. This will be given in the subsequent section.

B. Numerical Analysis

In Section III it was claimed that the equivalent flop com-
plexity was proportional to the number of samples involved
in random number generation and resampling. Below we
investigate this claim numerically by simulations. The result is
given in Fig. 2 and Fig. 3 for the random number generation
and the resampling, respectively. Hence, after establishing

0 2 4 6 8 10
x 104

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Number

Ti
m

e

Fig. 2. The time required to generate Gaussian random number for simulated
(crosses) and estimated values (solid line).

the proportionality, we must estimate the coefficients and
relate them to EF complexity. The coefficients, c1, c2, and c3

in (26) are estimated by analyzing the actual computational
time consumed by various parts of the marginalized particle
filter algorithm. It was fairly easy to measure the time used
for likelihood calculation, resampling and random number
generation as a function of the number of particles. Hence,
it should be possible to translate them into EF complexity.
For hardware implementations, for instance very large scale
integration (VLSI) or in dedicated real-time hardware systems
this should be easy, since one flop would have a constant
execution time. In this paper we would also want to do this
on a normal desktop computer running MATLAB. Hence, we
must give the EF estimation some consideration. The reason
is that on a normal computer, flop count does not entirely
reflect the computational time. This is due to memory caching,

0 0.5 1 1.5 2 2.5 3
x 104

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Number of particles (N)

Ti
m

e

Fig. 3. The time required for the resampling step for simulated (crosses)
and estimated values (solid line).

pipelining, efficient computational routines which are problem
size dependent and memory swapping, just to mention a few
things in a complex computer environment. To be able to
compare the algorithmic complexity in MATLAB on a normal
computer, we must deal with all these issues. The idea is to
keep this part simple and fairly general, since one of our main
objectives is to consider dedicated hardware implementations
or a possibility to compare different computer solutions on a
higher level. By repeated simulations we noticed that the flop
coefficient is a function mainly of the various filter dimensions,
k and p. Note also that each instruction in Table VII-VIII
corresponding to the flop part is not completely negligible
in time for small systems. Hence, we do an estimate of the
coefficient by linear regression assuming a slope and an offset.
Data from the regression is given from several simulations
for each k and p, by taking the minimum value, to minimize
computer system intervention. The slope EF coefficient and
the offset were estimated, with values resulting in the time
complexity

1.076 · 10−8N + 9.114 · 10−4 (32)

Using these and the measured time complexity for the different
algorithmic operations the values for the EF coefficients are
given in Table VI. These values were estimated on a Sun Blade

Weight Resampling Random
c1 c2 c3
445 487 125

TABLE VI
COEFFICIENTS USED IN THE EQUIVALENT FLOP COUNT.

100 with 640 MB memory, and are processor and memory
dependent. However, the technique described above can be
applied on any system.

With the estimated EF coefficients we can now compute
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the complexity for the various algorithmic parts. The total
computational complexity for the entire marginalized particle
filter given in Algorithm 2.2 is of fundamental interest. We
will only study the dominating part of (26), i.e., the part
depending on the number of particles N . The remaining terms
can safely be neglected due to the fact that N � 1. In
Table VII the equivalent flop complexity for the various parts
of the marginalized particle filter are shown in percentage
of the complexity for the entire filter, for the case where
p = 6, Ct = 0. In Table VIII we give the same data for the

k Weight Resampling Random Other
c1 [%] c2 [%] pc3 [%] [%]

0 24 27 41 8
1 26 29 37 8
2 29 31 32 8
3 31 34 27 8
4 35 38 20 7

TABLE VII
COMPLEXITY FOR THE VARIOUS PARTS OF THE MARGINALIZED PARTICLE

FILTER IN PERCENTAGE OF THE COMPLEXITY FOR THE ENTIRE FILTER.
THE CASE STUDIED HERE IS n = 6 (p = n − k), Ct = 0.

case n = 6, Ct 6= 0.

k Weight Resampling Random Other
c1 [%] c2 [%] pc3 [%] [%]

0 20 22 34 23
1 21 23 30 26
2 22 24 25 28
3 23 25 20 32
4 23 26 13 38

TABLE VIII
COMPLEXITY FOR THE VARIOUS PARTS OF THE MARGINALIZED PARTICLE

FILTER IN PERCENTAGE OF THE COMPLEXITY FOR THE ENTIRE FILTER.
THE CASE STUDIED HERE IS n = 6 (p = n − k), Ct 6= 0.

In Fig. 4 the full particle filter is compared to the completely
marginalized particle filter for different dimensions of the state
space, n, when we have two nonlinear states. The complexity
in the plot is normalized against the completely marginalized
particle filter for n = 2. The comparison is made for the
two different cases Ct = 0 and Ct 6= 0. As mentioned
above, the difference between these two cases is that in the
first case we only have to use one Ricatti recursion for all
particles, whereas in the second case we need one Ricatti
recursion for each particle. Here we neglect the offset term
in the EF computation, since this analysis is most relevant for
hardware implementation, and that we want the theoretical
predicted time for a general system. From Fig. 4 it is clear
that with Ct = 0, the marginalized particle filter outperforms
the standard particle filter. However, when Ct 6= 0 and the
covariance has to be calculated for each particle this is no
longer true if the state dimension increases. From Fig. 4 it can
be seen that for n > 7 the standard particle filter is cheaper
than the marginalized.

1 2 3 4 5 6 7

1

1.2

1.4

1.6

1.8
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2.2
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2.6

Total state dimension m

R
el

at
iv

e 
co

m
pl

ex
ity

Fig. 4. Different complexities for the full particle filter and completely
marginalized particle filter as a function of the state dimension when Ct = 0
(solid) and Ct 6= 0 (dashed). The marginalized particle filter is denoted by
circles.

IV. SIMULATION

The marginalized particle filter will now be analyzed in an
extensive Monte Carlo simulation. The main purpose of this
simulation is to illustrate the implications of the results derived
in this paper in practice. More specifically we are studying
the problem of estimating the position of an aircraft using the
following model of the aircraft,

xt+1 =











1 0 T 0 0 0
0 1 0 T 0 0
0 0 1 0 T 0
0 0 0 1 0 T
0 0 0 0 1 0
0 0 0 0 0 1











xt +

[
wn

t

wl
t

]

(33a)

yt =

[ √

p2
x + p2

y

arctan (py/px)

]

+ et (33b)

where the state vector is xt =
[
px py vx vy ax ay

]T
,

i.e., position, velocity and acceleration. The measurement
equation gives the range and azimuth from the tracking radar
system. We have discarded the height component, since a level
flight is considered. The sample time is constant and denoted
by T . From the model it is clear that there are two states that
appear in a nonlinear fashion, the two position states [px, py].
Hence,

xn
t =

[
px

py

]

, xl
t =







vx

vy

ax

ay







. (34)

The aircraft model (33) is contained in the model class
described by (15). Here we also see that we may optionally
move some of the linear state variables to the nonlinear part
of the partition. The idea is now to analyze the performance
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Parameter Value Description
T 1 Sampling time
MC 100 Number of Monte Carlo simulations
tfinal 50 Length of the simulation
x0 [2000, 2000, 20, 20, 0, 0]T Initial state
P0 diag([4, 4, 16, 16, 0.04, 0.04]) Initial state covariance
R diag([100, 10−6]) Measurement noise covariance
Qn diag([4, 4]) Process noise covariance
Ql diag([4, 4, 0.01, 0.01]) Process noise covariance
RMSEstart 30 Start time for the RMSE calc.

TABLE IX
PARAMETER VALUES USED IN THE SIMULATIONS.

and the computational complexity of several different parti-
tions. We restrict the study to entities of common variables,
such as position, velocity and acceleration. In Table IX the
parameter values relevant for the simulation are listed. In the
simulations we have used one state trajectory for all Monte
Carlo simulations, but different noise realizations. We have
chosen to implement four different partitions. First we use a
particle filter for the entire state vector, then we marginalize
out the velocity states, and then the acceleration states. Finally,
we arrive in the fully marginalized case, where we use the
particle filter for the two nonlinear state variables only, and
the Kalman filter for all four linear state variables (velocity
and acceleration).

Before we describe the different simulations in detail we
will give some general comments about the simulations. The
time is defined as the time elapsed during a simulation in
MATLAB. Hence, the time estimates must be used with
caution, since the operating system and memory management
may affect these values. To reduce these unwanted effects
we perform several Monte Carlo simulations with the same
setup and chose the minimum time value as the estimate for
the computational time, i.e., the one with minimal system
intervention. When the number of particles, N , or the RMSE
are the variable to optimize against we perform several Monte
Carlo simulations in the search algorithm as well, to produce
a reliable value. In the different cases the marginalization is
indicated as follows. If a certain state variable is estimated
using the particle filter this is indicated with a P , and if the
Kalman filter is used this is indicated using a K. See the
example below.

Ex: PPPP (all states are estimated using the particle filter)
and KKPP (the velocity state variables are estimated using the
Kalman filter and the acceleration state variables are estimated
using the particle filter).

A. Investigating the Computational Complexity

The purpose of the two simulations presented in this section
is to show that not only do we obtain better quality of the
estimates using marginalization, we also save time, due to
the reduced computational complexity. The connections to the

theoretical results given in Section III are also elaborated upon.

Using a constant time we want to find the number of particles
that is needed to achieve this. The study is performed by first
running the full particle filter and measure the time consumed
by the algorithm. A Monte Carlo simulation, using 2000
particles, is performed in order to obtain a stable estimate of
the time consumed by the algorithm. To avoid intervention
from the operating system the minimum value is chosen.
The time is then used as the target function for the different
partitions in the marginalized particle filter. To find the number
of particles needed a search method is implemented and Monte
Carlo simulations are used to get a stable estimate. In Table X
the number of particles (N ), RMSE and simulation times are
shown for the different marginalization cases. The RMSE is
calculated by ignoring a possible initial transient. Hence, the
first RMSEstart values according to Table IX are discarded.
The total simulation length is tfinal samples (Table IX). As
seen in Table X the target function, i.e., time, varies slightly.
From Table X it is clear that the different marginalized particle

PPPP KKPP PPKK KKKK
N 2000 2152 2157 2781
RMSE pos 7.82 6.53 6.72 6.40
RMSE vel 5.69 5.64 5.64 5.54
RMSE acc 0.63 0.62 0.51 0.51
Time 0.64 0.60 0.63 0.62

TABLE X
RESULTS FROM THE CONSTANT TIME SIMULATION USING

MARGINALIZATION. THE MORE LINEAR VARIABLES WE MARGINALIZE

OUT AND ESTIMATE USING THE OPTIMAL KALMAN FILTER THE MORE

PARTICLES WE CAN USE FOR THE NONLINEAR STATES.

filters can use more particles for a given time, which is
in perfect correspondence with the theoretical result given
in (31). This might come as a somewhat surprising result, since
the computational load has increased by running one Kalman
filter for each particle. On the other hand the Kalman filter
will reduce the dimension of the space in which the process
noise lives. Hence, fewer random numbers are drawn, which
seems to be more demanding then the calculations introduced
by the Kalman filter.

From the study we also conclude that the RMSE is decreasing
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when marginalization is used. This is also in accordance
with theory, which states that the variance should decrease
when we marginalize (Doucet et al., 2001b). Hence, using
the marginalized particle filter we obtain better estimates
at a lower computational complexity. Using the complete
marginalization we have that m = 6, k = 4 which according
to Fig. 1 gives N(k)/N0 = 1.44. Hence, the theoretically
predicted number of particles is 2000 × 1.44 = 2880. This is
in good agreement with the result reported in Table X, 2781.

In the simulation just explained we used a constant time. We
will now study what happens if a constant velocity RMSE
is used instead. First the velocity RMSE for the full particle
filter is found by a Monte Carlo simulation. This value is
then used as a target function in the search for the number of
particles needed by the different marginalized particle filters
to achieve this value. As seen in Table XI it was hard to

PPPP KKPP PPKK KKKK
N 1865 603 915 506
RMSE pos 7.87 7.82 7.95 7.82
RMSE vel 5.75 5.68 5.70 5.57
RMSE acc 0.62 0.68 0.54 0.53
Time 0.58 0.21 0.29 0.16

TABLE XI
RESULTS USING A CONSTANT VELOCITY RMSE FOR DIFFERENT

PARTITIONS OF THE LINEAR VARIABLES. THIS TABLE CLEARLY

INDICATES THAT THE MARGINALIZED PARTICLE FILTER PROVIDES GOOD

ESTIMATES AT A MUCH LOWER COST THAN THE STANDARD PARTICLE

FILTER. SEE FIG. 5 FOR AN ALTERNATIVE ILLUSTRATION OF THIS FACT.

achieve a constant velocity RMSE in the search. However,
Table XI clearly indicates that the marginalized particle filter
can obtain the same RMSE using fewer particles. Since fewer
particles were used in the marginalized versions of the filter
the time spent for the estimation can be reduced drastically.
This is further illustrated in Fig. 5 where we have plotted the
computational times for the different marginalizations relative
to the computational time used by the standard particle filter.
The result is that using full marginalization only requires 30%
of the computational resources as compared to the standard
particle filter for the example studied here.

B. Predicting the Computational Complexity

In this simulation we will us a constant number of particles,
N , and measure the computational time required to obtain the
estimates for the different partitions. This time is compared
to the time we predict using the theoretical results from
Section III. More specifically we compare the equivalent flop
count given by (26) to the actual computational time measured
in MATLAB. The result is given in Fig. 6, where it is clear
that the predictions of the computational complexity based on
theoretical considerations are quite good. However, there is a
small error, especially in the two marginalized cases (the two

PPPP KKPP PPKK KKKK
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Fig. 5. The simulation times for the different partitions given in relative
measures with respect to the full particle filter. From this figure it is obvious
that besides providing us with better estimates the marginalized particle filter
only requires 30% of the computational recourses as compared to the standard
particle filter for the example studied here.
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Fig. 6. Using a constant number of particles the time predicted from the
theoretical results are shown by the bashed line. The solid line corresponds
to the actual time measured using MATLAB. Furthermore, the top plot
corresponds to the full particle filter, in the middle two linear states are
marginalized and in the bottom plot all linear states are marginalized. The
result is that the theoretical time corresponds very well to the measured time.

lower plots in Fig. 6). This error is mainly due to the fact that
it is quite hard to predict the time used for matrix operations.
This has previously been discussed in detail in Section III-
B. Since we do not utilize the linear sub-structure in the full
particle filter there are no Kalman filters in this case, and hence
the number of matrix operations is much smaller as opposed to
the marginalized particle filter, which relies on Kalman filters
for estimation the linear state variables.

C. Simulation Results

From the simulations performed, we conclude that the
marginalized particle filter for the model given will outperform
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the standard particle filter in both required computation time
and performance. It is worth noting that even with a constant
number of particles or even increased number of particles, the
marginalized particle filter will have a lower time complexity
then the full particle filter. This somewhat surprising result
is due to the reduced dimension in the process noise, even
if the Kalman filter will introduce extra computational load.
We have also shown that the theoretical results derived for the
computational complexity are in accordance with the actual
time used in the simulations.

V. ALGORITHM MODIFICATIONS

In the previous sections we have discussed the performance
and complexity issues for the particle filter and the marginal-
ized particle filter. In this section we will briefly discuss some
methods to reduced computations given any of these methods.
We focus on the algorithmic parts described in the analysis and
simulations. i.e., likelihood evaluation, resampling and random
number generation.

a) Likelihood: A lot of time is spent evaluating the likelihood
weights, i.e., w

(i)
t = pe(yt − h(x

(i)
t )). For a Gaussian pdf we

could in principle save some computations by approximating
the density with a similar one, that requires fewer computa-
tions.

b) Resampling: The resampling in the SIR particle filter can
be postponed until needed to avoid divergence. This is the
SIS method, Doucet et al. (2000). For many systems the
particle filter algorithm compete with other resources during
the recursive update. Hence, postponing some calculations
may give the processor a chance to do some other crucial
computations. However, for a dedicated hardware or for some
application with just the particle filter algorithm implemented
there is no benefit using this method since the system must
be dimensioned for the loop with full resampling. Here we
propose a method to spread the resampling burden over several
sample periods. The idea is that we reduce the number of
participation particles in the resampling procedure and hence
the computational time. We use different particles in the
consecutive resampling steps to ensure that every particle is re-
sampled over some time horizon. The easiest way is probably
to do this by selecting a portion of the particles by a uniform
sampling, but since this involve an enhanced computation we
propose a deterministic approach, where the indices are chosen
in such a way that every particle will interact after a fixed time
horizon. In Hol (2004) four different resampling schemes are
compared with respect to their computational complexity and
performance.

c) Random number generation: Since a lot of time is spent
producing random numbers, one way to reduce this compu-
tation is to have a look-up table with pre-processed random
numbers. If the storage of these numbers is not a problem a lot
of computations can be saved. However, for most problems the

table is not big enough so sooner or later values must be re-
used introducing a risk for dependence in the random numbers.
If this is handled properly many systems may work. However,
for Monte Carlo evaluation this introduces a problem.

d) Number of particles: Since the computational burden is
highly dependent on the number of particles, N , one method
is to introduce a varying number of particles, i.e., Nt. Using
some criteria we may increase or decrease the number of
particles. This method assumes that we are in a system so
that other resources may benefit from the reduction. Otherwise
we must adjust the sample time in order to keep a fixed
computational power during a sample period.

e) System design: For many systems there is a choice if a
signal should be interpreted as a measurement or as a input
signal. The only difference is if we should incorporate the
noise in the measurement- or process noise term. One could
evaluate the computations required and chose the one with
lowest computational burden for the selected filter type.

VI. CONCLUSIONS

The contribution in this paper is a way to analyze and partition
the marginalized particle filter from a complexity point of
view. It also gives insight in the marginalized particle filter
algorithm. The method is general and can be applied to
a large class of problems. In particular a common target
tracking problem is analyzed in detail and for this exaple it
is shown that the marginalized particle filter only need 30%
of the computational resources as compare to the standard
particle filter to obtain the same estimation performance. The
complexity analysis is done theoretically, counting the number
of floating-point operations, estimating the impact on complex
algorithmic parts such as random number generation and
resampling, introducing the equivalent flop measure. In an
extensive Monte Carlo simulation different aspects, such as
minmum computational time and estimation performance are
compared for different partitions. Based on the results we gave
some guidelines on how to improve performance and how to
reduce the computational time.

REFERENCES

Anderson, B. and Moore, J. (1979). Optimal Filtering. Information
and system science series. Prentice Hall, Englewood Cliffs, New
Jersey.

Andrieu, C. and Doucet, A. (2002). Particle filtering for partially
observed Gaussian state space models. Journal of the Royal
Statistical Society, 64(4):827–836.

Andrieu, C. and Godsill, S. (2000). A particle filter for model based
audio source separation. In International Workshop on Independent
Component Analysis and Blind Signal Separation (ICA 2000),
Helsinki, Finland.

Bergman, N. (1999). Recursive Bayesian Estimation: Navigation
and Tracking Applications. PhD thesis, Linköping University.
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