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ABSTRACT 

This paper focuses on online non-linear system 
identification via state-space neural networks. The training 
algorithm is based on a generalisation of the Kalman filter 
to non-linear systems by means of the unscented 
transformation. Experimental results from a laboratory 
heating system confirm the feasibility and effectiveness of 
the proposed methodology. 
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1. Introduction  

The problem of finding a suitable model structure and a 
particular parameterisation in order to describe the input-
output behaviour of a given unknown system is the realm 
of system identification. 

System’s modelling and identification dates back to Karl 
F. Gauss (1777-1855), who first formulated the principle 
of least squares and applied it to determine the orbits of 
planets. Nevertheless, it was only around 1960 with the 
advent of modern control theory and the need for 
parametric models that extensive research in the field 
began [1]. In the last decades, prompted by the fact that 

most dynamical systems can be better characterised by 
non-linear models, which are theoretically able to describe 
the system’s behaviour over the whole operating range, 
non-linear black-box modelling has attracted a great deal 
of interest, particularly among the control community. 
One class of these models that has been the subject of 
extensive research activity is that of neural networks [2], 
[3], [4], [5]. 

Despite purely feedforward neural networks under the 
form of tapped-delay-line representations have long been 
used to process temporal information, it is recognized that 
dynamic neural structures containing a state feedback may 
provide computational advantages: the corresponding non-
linear state-space models are likely to possess a smaller 
number of parameters and, in addition, they make possible 
to describe a larger class of dynamic systems than tap-
delay-line temporal representations [6]. Other factors, 
such as the quality of the training data set and the training 
methodology itself, are equally relevant to the 
performance of the neural predictor. 

In the neural networks for system identification context, 
there has been a considerable interest in on-line training 
algorithms so as to cope with unmodelled dynamics and 
variant systems. In this perspective, several gradient-
descent based algorithms have been proposed such as the 
basic Real-Time Recurrent Learning (RTRL) algorithm 
[8], further improved with respect to the learning speed 



 

and convergence [9] and the Backpropagation Through 
Time (BPTT) [10] with a history cut-off a finite number 
of time-steps: the truncated BPTT [11]. Because these 
methods are based on a gradient search direction, they are 
very often slow in reaching a satisfactory solution and 
additionally the training performance is quite sensitive to 
the learning rate choice. 

In real-time learning, these issues have been to some 
extent addressed by regarding the recurrent neural 
networks training as a non-linear parameter estimation, 
being the extended Kalman filter (EKF) [12], [13],[14], in 
its many forms, one of the most widely used methods. 
Nevertheless, it is well known that as a result of a first-
order non-linear system’s approximation large errors in 
the true posterior mean and covariance of the transformed 
Gaussian variable can be introduced, which may lead to 
the EKF instability. This is especially evident when the 
model is highly non-linear and therefore the effects of 
higher order terms of the Taylor series expansion cannot 
be neglected.  

Recently, a new generalization of the Kalman filter to non-
linear systems on the basis of the unscented transformation 
(UT) has been proposed (UKF) [15], for which is claimed 
to be accurate to the third-order for Gaussian distributions 
and any kind of non-linearities [16]. Unlike the EKF, 
which makes use of non-linear system first-order 
approximations, the UKF approximates the random 
variable distribution by generating a discrete distribution 
comprising the minimum number of points that preserves 
the same first and second order moments. 

Motivated by the identification problem of non-linear time 
variant systems, this paper explores the application of the 
UKF to the on-line non-linear state-space neural network 
parameters estimation. In section 2 it is presented the class 
of recurrent neural networks considered for modelling 
purpose. Section 3 describes the unscented transformation 
and the new filter algorithm. The fourth section is devoted 
to the application of the proposed on-line identification 
methodology to a laboratory heating system and 
experimental results presented and discussed. Finally, 
section 5 provides some concluding remarks.  

2. State Space Neural Networks 

In this work the black-box model is derived by means of a 
hybrid recurrent neural network comprising 3 layers, as 
depicted in Fig. 1. The input and output layers incorporate 
as much neurons as the number of inputs and outputs of 
the system to be modelled, whereas the number of neurons 
in the hidden layer should be the most appropriate to 
achieve a good approximation. In view of selecting the 
optimal number of hidden neurons, one should mention, 
without going into details, that there is always an 
inevitable trade-off between generalization performance 
and training error. In fact, a neural network larger than 
might be expected can result in a considerable 
specialisation (overfitting), which leads to poor 
generalization capabilities. On the other hand, if the 
number of neurons in the hidden layer is too small it may 
not be feasible to train appropriately the neural network to 
represent satisfactory a given data set.  
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Fig. 1. State-space neural network block diagram. 

In this neural network topology Nnℜ∈ξ  denotes the 

neural state-space vector, Noy ℜ∈ˆ  is the neural output, 
Niu ℜ∈ is the neural external input; Nn , No  and Ni  are, 

respectively, the number of neurons in the hidden layer, 
output layer and input layer; ϕ  is a non-linear activation 

function; 1−q  denotes the backward shift operator. 
Additionally, the synaptic weights between neurons: BW , 

CW , DW  and EW  are real-valued matrices having 

appropriate dimensions. 

The state-space model resulting from the dynamic neural 
network architecture may be described by the following 
non-linear difference equations: 
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assuming a hyperbolic tangent as the activation function.  

3. The Uncertainty Transformation 
and The Unscented Kalman Filter 

The unscented transformation enables the computation of 
the statistics of a random variable propagated through a 
non-linear mapping. 

Consider then a Nw -dimensional real-valued random 
variable w  with mean w  and covariance matrix wwP  and 

suppose that it is required to predict the mean and 
covariance of qy ℜ∈  given as: 

( )wy h=  (2) 

with qNw ℜ→ℜ:h . 

Firstly, a set of 12 +Nw  pairs of weights and translated 
sigma points ( )ii ω,Γ  is formed according to (3), in such a 
way that the mean and the covariance of w  are preserved.  
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with ( )iwwP  the ith column or row of covariance matrix 

wwP  and κ  a scaling parameter. These sigma points are 

then subsequently propagated through the non-linear 
mapping, 

( )ii ωh=Y  (4) 

and the corresponding mean and covariance computed as 
follows: 
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The unscented Kalman filter consists in the application of 
UT to the recursive estimation of non-linear discrete-time 
dynamic system parameters. In the present work, the non-
linear system is assumed to be described as: 
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where pz ℜ∈  denotes the observation vector; nℜ∈υ  is 
the process noise with positive semi-definite covariance 
matrix nnQ ×ℜ∈  and pℜ∈η  the measurement noise with 

positive semi-definite covariance matrix nnR ×ℜ∈ . 

Like all Kalman filter based algorithms, in the UKF 
approach the estimates are computed in two stages. 
Regarding the neural network weight estimation, in the 
time update stage one step-ahead prediction of the model 
parameters and the covariance of the weight-estimate error 

wwP  are evaluated, whereas in the measurement update 

these estimates are subsequently refined on the basis of the 
most recent observations. The overall filter equations are 
given by: 

Time update stage: 

( ) ( )

( ) ( )

( ) ( ) ( )( )

( ) ( )∑
=

−

−Γ=−

−Ω−−=−

−−=−

−−Ω=−Ω

Nw

i

w
i

w
iw

w

wwww

kkkkz

kkkkkxhkk

kkkk

kkkk

2

0

1

1|1|ˆ

,1|,1|1ˆ1|

1|1P1|P

1|11|

Z

Z

µ

 (7) 

where Ω  denotes the sigma point matrix and Γ  the 
associated weight vector. 

Measurement update stage: 
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with K the Kalman gain. 

4. Application 

4.1. The Experimental Set-up  

The process used for assessing the proposed on-line 
identification scheme is the laboratory heating system 
illustrated in Error! Reference source not found..a and 
2.b. 

Air drawn from the local atmosphere is forced to circulate 
by means of a centrifugal fan through a finite length of 
duct and driven to the local atmosphere again. The air flux 
is heated in a heater grid located just after the fan outlet 
and its temperature measured at one of the three points 
available along the tube. 
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b) Schematics. 

Fig. 2. The heating system. 

This is a non-linear process with a pure time delay that 
depends on the position of the temperature sensor and the 
air flow rate, which is a function of the damper position 
φ . The input to the system is a voltage on the heating 

device consisting of a mesh of resistor wires and the 
system’s output is the outlet air flow temperature. 

4.2. Experiments and Results 

Several experiments were designed and conducted on the 
laboratory heating system in order to assess the feasibility, 
in practice, of neural networks on-line identification by 
means of an UKF and to emphasize how crucial the real-
time parameters updating is in time variant system 
identification. 

The neural network used for on-line identification purpose 
has the form of that depicted in Fig. 1. The input and 
output layers comprise a single neuron while in the hidden 
layer 3 neurons were considered. 

In the first experiment, the neural network weights were 
randomly initialised, which reflects no previous 
knowledge about the system’s dynamics, and the training 
carried out in a recursive fashion by assuming a sampling 
time of 0.15 second. Regarding the laboratory heating 
system configuration, the air damper position was set as 
30° and the temperature sensor located at position III (279 
mm). As can be inferred from the results plotted in Fig. 3, 
the system’s dynamics were fairly well captured, despite a 
slight slower transient response of the model output. 
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Fig. 3. Online identification: random initialisation. 



 

Next, to assess the merits of UKF online parameters 
adaptation in a post-training framework, the neural 
network was first trained offline by considering a set of 
training data, previously collected from the heating 
system, and using the Levenberg-Marquardt algorithm to 
the minimisation of the prediction error. The model 
parameters were then subsequently used for further 
adaptation within the UKF online training. 

As can be shown from Fig. 4, though the neural predictor 
time response based on batch training is somehow 
acceptable for lower operating points, it is quite clear that 
by adjusting in real-time the neural network weights a 
better description of the system’s dynamics can be 
achieved regardless the operating range. This feature is 
particularly important when it is required the neural 
predictor to reflect changes in the system’s dynamics due 
either to a structural modification or as a result of time-
variant parameters of the plant. 
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Fig. 4. Batch training plus real time weights adaptation. 

To illustrate the importance of real-time training when the 
system is subject to a structural variation, an experiment 
was carried out on the laboratory process where the 
damper position initially located at 30° was manually 
changed to 40° at around the 68th sample. As a result, the 
air flux is increased, which leads to a decreasing in the 
system time delay and reducing the outlet temperature. 

From the results shown in Fig. 5 it is clear that the offline 
model was unable to reflect the structural modification 
imposed on the plant, as would be expected since the 
neural network was trained to replicate another mapping. 
Thus, in this case, the neural network provides an 

unacceptable prediction of the heating system time 
response. On the contrary, by an on-line identification 
approach the new system’s dynamics is adequately 
retrieved. 

Sample

Te
m

pe
ra

tu
re

 [°
C

]

In
pu

t [
V

]

Offline model

Online model

Measured output

Input

0,0

10,0

20,0

30,0

40,0

50,0

60,0

0 50 100 150 200 250 300
0,0

2,0

4,0

6,0

8,0

10,0

φ=30° φ=40°

 
Fig. 5. Variant system: offline versus online weights 
adjusting. 

5. Conclusions 

In this paper the application of a state-space neural 
network as a means for modelling dynamic systems 
together with an unscented Kalman filter to adjust online 
the network’s weights has been presented. Given the 
simplicity of this network topology along with the fast 
training and reliability provided by the online learning 
algorithm it is a viable and encouraging alternative for 
real-time system identification, as proved by the set of 
experiments conducted on the laboratory plant. In this 
context, given the adaptive features revealed by the state-
space neural network, as well as their ability for modelling 
non-linear time-variant plants, the presented methodology 
provides a surplus value to the control field and 
particularly to those strategies using an explicit model of 
the plant to be controlled such as the model-based 
predictive control or the output regulation theory. 
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