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Abstract— Recurrent neural networks have been successfully
applied to communications channel equalization because of their
capability of modelling nonlinear dynamic systems. The major
problems of gradient descent learning techniques, commonly em-
ployed to train recurrent neural networks, are slow convergence
rates and long training sequences. This paper presents a decision
feedback equalizer using a recurrent neural network trained
with the unscented Kalman filter (UKF). The main features of
the proposed recurrent neural equalizer are fast convergence
and good performance using relatively short training symbols.
Experimental results for time-varying channels are presented to
evaluate the performance of the proposed approaches over a
conventional recurrent neural equalizer.

I. INTRODUCTION

It is well known that when neural networks are incor-
porated into a decision feedback equalizer (DFE), decision-
feedback neural equalizers [1] achieve significantly improved
performance in convergence speed and mean-squared error
over conventional DFEs or neural equalizers without decision
feedback. Neural networks provide good nonlinear mapping of
the inverse model of the channel and can handle uncertainty
included in the received data. Feedforward neural networks
(FNNG), such as multilayer perceptrons or radial basis function
networks, are mainly concerned with equalizer design because
of their structural simplicity [2], [3]. However, recent research
results show that recurrent neural networks (RNNSs) [4] are su-
perior to FNNs in modeling nonlinear systems and predicting
time-series signals. The RNN has been successfully applied
to channel equalization of communication systems [5],[6].
Kechriotis et al. [5] showed that an RNN-based equalizer
(RNE) with a small number of neurons outperforms linear
transversal equalizers (LTEs) and a FNN-based equalizer for
linear and nonlinear channels. Ong et al. [6] showed the
decision-feedback RNN equalizer (DFRNE) outperforms both
the LTE and the FNN equalizer and the convergence rate of
the DFRNE is faster and more robust than that of the RNE
proposed in [5].

Gradient-based learning approaches, back-propagation al-
gorithms and real-time recurrent learning (RTRL) [7], are
commonly employed to train FNNs and RNNs. Major disad-
vantages of gradient-based methods are slow convergence rates
and the long training symbols required for satisfactory channel
equalization; another disadvantage is the vanishing gradient
problem. For rapid channel equalization, Parisi et al. [§]
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exploited the discriminative least squares learning algorithm,
minimizing a cost function that is a measure of the classi-
fication error. In [9], performance comparison among three
RNEs trained with the RTRL indicated that the performance
of these equalizers is indistinguishable and the RTRL may not
be efficient for those equalizers.

Most of equalization results published over the past few
decades have been limited to time-invariant channels. The
channels in real-life mobile communications have time-
varying characteristics due to fading. Although the classical
equalizers perform well over fixed channels, they may not be
appropriate for fast fading channels. In [10], adaptive lattice
decision-feedback equalizers have been developed for time-
varying channels. Recently, various equalizer structures for
treating time-varying channels have been reported in [2]. The
time-varying nature of fading channels can be interpreted as a
dynamic system with uncertainties in its coefficients. Although
FNNs have been applied to the equalization of time-varying
channels, it is still a static nonlinear model. Therefore, FNN
equalizers have implicit difficulty in dealing with time-varying
channels. This motivates us to use RNNs rather than static
models such as FNNs for time-varying channels.

In this paper we focus on a learning algorithm for an RNE
with suitably fast convergence and good tracking performance.
The unscented Kalman filter (UKF) is proposed as a training
algorithm for the RNE. Experimental results for time-varying
channels are used to evaluate the performances of the proposed
approach.

II. RECURRENT NEURAL EQUALIZER (RNE)

A. Decision Feedback Equalizer (DFE)

A general model of a digital communications system with a
DFE is depicted in Fig.1. A sequence, {s(k)}, extracted from
a source of information is transmitted, and the transmitted
symbols are then buried in additive white Gaussian noise
(AWGN). The channel is modelled as

r(k) = i: his(k — 1) +v(k) (1)
=0

where / is the linear, finite impulse response of the channel
with length N, s(k) is the sequence of transmitted symbols,
and v(k) is the AWGN with zero mean and variance o3.
The DFE is characterized by the three integers, m, n and d,
known as the feedforward order, feedback order, and decision
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Fig. 1. A digital communications system with decision feedback equalizer

delay, respectively. The inputs to the DFE consist of the
forward inputs r(k) = [r(k — 1),--- ,7(k —m + 1)]T and
feedback inputs u(k) = [u(k — 1),---,u(k — n)]T. The
output of the DFE is y(k) and it is passed through a decision
device to determine the estimated symbol §(k — d). It is
sufficient to use feedback order, since the transmitted symbols
contributing to decision of the equalizer at time k are given
by s(k) = [s(k),s(k —1),...,s(k —m — N + 2)]T for the
feedforward order, m =d + 1 [11].

B. Description of RNE

We consider a RNN model, the Elman network representing
a simplified RNN [4],[8], that can present the standard state-
space representation for a dynamic system as an RNE. The
discrete state-space equation of the Elman network with a
single output neuron follows the form:

P(r(k),x(k — 1), Wp) ()
y(k) = f(x(k),wo) (©)

where (k) € R™, z(k) € R? and y(k) € R represent
the external input vector, the state vector and the network
output, respectively. W;, and w, are the weight matrix and
vector connected to the hidden layer and the output layer,
respectively. The nonlinear activation function, (-), applied
to the hidden layer is the hyperbolic tangent function and f(-)
is a linear activation function. The matrix form of the RNE
with decision feedback input u(k), can be represented as:

x(k) =

x(k) = ¥ (Wil ©" (k) u'()) x"(k=1)])") @)
yk) = woll x"(k)]" 5)
sh=d) = S(yk) ©

where unity is the bias input and S(.) is the decision device.
The weights of the RNE are updated by a parameter estimation
algorithm to be described next.

Dynamic behavior of the RNE without the decision device
is described by the following nonlinear discrete-time equations
suitable for Kalman filter formulation:

wk+1) =
yalk) =

w(k) + w(k) (7)
h(w(k), r(k), u(k), x(k — 1)) + v(k) 8)

where the weights in equations (4) and (5) are reformulated
as the vector w for convenience. The first equation, known
as the process equation, specifies the state of the RNE when
characterized as a stationary process corrupted by process
noise w(k). The state of the system is given by the weight
parameters of the RNE, w(k). The second equation, the mea-
surement equation, represents the RNE’s desired output vector
va(k) as a nonlinear function of the weight vector w(k), the
input vector r(k), the feedback input vector u(k), the recurrent
node activations x(k), and a random measurement noise v (k).
The desired output vector yq(k) corresponds to s(k — d) in
training mode and to §(k — d) in decision-directed mode.

III. UNSCENTED KALMAN FILTER FOR RNE

The extended Kalman filter (EKF), widely used for parame-
ter estimation of neural networks, provides first-order approxi-
mations to optimal nonlinear estimation through the lineariza-
tion of the nonlinear system. These approximations can include
large errors in the true posterior mean and covariance of the
transformed (Gaussian) random variable, which may lead to
suboptimal performance and sometimes filter divergence [12].
The unscented Kalman filter (UKF), first proposed by Julier
and Uhlmann [13] and further extended by Wan and van der
Merwe [12],[14], is an alternative to the EKF algorithm [15].
The UKF provides third-order approximation of process and
measurement errors for Gaussian distributions and at least
second-order approximation for non-Gaussian distributions.
Consequently, The UKF may have better performance than the
EKF. In addition, the UKF does not require the computation
of Jacobians, for linearizing the process and measurement
equations. This leads to a simpler implementation devoid of
inverse matrix errors, but it requires more computational time
than the EKF.

Foundation to the UKF is the unscented transform (UT).
The UT is a method for calculating the statistics of a random
variable which undergoes a nonlinear transformation [13].
Consider an L-by-1 random variable x that is nonlinearly
transformed to yield a random variable y through a nonlinear
function, y = f(x). In order to calculate the statistics of

y, a matrix x of 2L + 1 sigma vectors ; is formed as the
followings:

Xo = X
xi = X+ (L+NPxx)i, i=1,...,L 9)
xi = %— (VI +NPxx)i—z, i=L+1,...,2L

where X and covariance Py, are the mean and covariance of
x, respectively, and A\ = o?(L+ k) — L is a scaling factor. The
constant « determines the spread of the sigma points around
X; it is set to a small positive value, typically in the range
0.001 < a < 1. The constant « is a secondary scalmg factor

that is usually set to 3 — L. The sigma points {y;}* 0 are
propagated through the nonlinear function
Vi=flxi), i=0,...,2L. (10)

This propagation produces a corresponding vector set that
can be used to estimate the mean and covariance matrix of
the nonlinear transformed vector y. We can approximate the
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mean and covariance matrix of y using a weighted sample
mean and covariance of the posterior sigma points [12],

2L
y Z WiVi
i=0

Z WiV —9)(Vi—3)"
i=0

1)

<
|

Py, = (12)

where the weighting factors are given by

m A
Woo = T
c A 2
Wy = L—|—)\+(1 o+ f) (13)
1
mo C—=___ - =12 ....2M
W’L 1 2(L+A)7 7’ b b b

In the above equations, the superscripts m and c refer to the
mean and covariance, respectively. 3 is used to take account
for prior knowledge on the distribution of x, and 3 = 2 is the
optimal choice for Gaussian distributions.

From the state-space model of the RNE given in (8), the cost

function to be minimized in the mean-squared error (MSE)
sense is:

J(w) = [y(k) = h(z(k)]" R (k)[y (k) — h(z(k))].

If the measurement-noise covariance R(k) is a constant
diagonal matrix, it cancels out in the algorithm, and therefore
can be set arbitrarily. The process-noise covariance Q(k) =
Elw(k)w(k)T] affects the covariance rate and the tracking
performance. We define R(k) and Q(k) as

(14)

R(k) = n'I
Qk) = (!

s)
— )P(k) (16)
where A € (0, 1] is often referred to as the forgetting factor,
in recursive least-squares (RLS) algorithms [15].

The UKF effectively evaluates the Jacobian through its
sigma-point propagation, without the need to perform any
analytical differentiation. Specific equations for the RNE using
the UKF (RNE-UKF) algorithm are summarized below. The
weight vector of the RNE-UKF and the covariance matrix are
initialized with

w(0) =
PO) =

E [w]
E[(w —Ww(0))(w —W(0)"].

a7
(18)

The sigma-point calculation is given by

T(k) = (L+ NPk +Qk) a9
W(k) = [w(k), w(k) + VT(k), (k) = VT(k)] (20)
D(k) = hW(k), r(k), u(k), x(k - 1)) 21
y(k) = h(w(k), r(k), u(k), x(k — 1)) 22)
The measurement-update equations are

Pyy(k) = Z W{(Di(k) — 3(k))(Di(k) — 3 (k)"
CLR(E) 23)
Puy(k) = Z WEWi(k) = W(k)(Wi(k) — W(k)" (24)

Y(k) = Puwy(k)Pyy(k) (25)
wk+1) = w(k)+Y(kek) (26)
P(k+1) P(k) — Y(k)Pyy (k)X T (k) 27

The weight vector of the RNE-UKEF is updated on-line with
the above equations.

IV. PERFORMANCE EVALUATION
A. Time-Varying Channel Models

For equalization simulations, we consider two types of time-
varying channel models: a nonlinear time-varying channel and

a fading channel.
Channel Model I: The nonlinear time-invariant channel
model considered has the following transfer function,

H(z) = (ho+ao(k)) + (h1+a1 (k)2 + (ha +az(k))z~>. (28)

In above equation the fixed channel impulse response is
h = [0.3482,0.8704, 0.3482}T, which is a nonminimum-phase
channel [5],[8]. The channel coefficients added, a;(k)(i =
0,1,2), are varying with time k. A nonlinearity applied to
the output of a linear filter is

r(k) = (k) + 0.2(7(k))% + v(k).

The time-varying coefficients are generated by the appli-
cation of a second-order Markov model in which a white
Gaussian noise source drives a second-order Butterworth low-
pass filter, as found in [2],[10]. In our simulations, a second-
order Butterworth filter with cutoff frequency 0.1 is used. The
colored Gaussian sequences used as time-varying coefficients
a; are independently generated with various standard devia-
tions .

Channel Model 2: The transfer function describing a fading
channel is

(29)

H(z) = ao(k) + ar(k)z™" + az(k)z > (30)

where channel coefficients a;(k)(i = 0,1, 3) vary with time .
These time-varying coefficients are generated by convolving
white Gaussian noise and a Butterworth filter; the same as
Channel Model 1. The bandwidth of the Butterworth filter
determines the relative bandwidth (fading rate) of the channel.
In this simulation, we assume that the channel parameters have
a nominal 2 kHz channel, 2400 symbols/s sampling rate, and
a second-order Butterworth filter having a 3 dB bandwidth
of 1 Hz. This time-varying scenario for fading channels was
utilized in [2] and [10].

B. Experimental Results

The performance of the RNE-UKF is compared to those
of both the decision feedback recurrent neural equalizer
(DFRNE) [6] and the RNE trained with the EKF (RNE-EKF).
In our simulations all the equalizers have three forward inputs
(m = 3), and two decision feedback inputs (n = 2) for the
RNE-EKF and the RNE-UKF. For comparison, the network
structure is set to 4 neurons (32 weights) for the DFRNE, and
3 hidden neurons and 1 output neuron (31 weights) for both the
RNE-EKF and the RNE-UKF. Information symbols are from
uniformly distributed binary phase shift keying (BPSK) signals
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in presence of ISI and AWGN is used in the simulations. In
the DFRNE, the learning rate is 0.1 and this value ensures a
stable convergence. The parameters are chosen as n = 0.1,
e = 0.01, and ¢ = 0.01 for the RNE-EKF, and n = 2 and
A = 0.999 for the RNE-UKF. All the parameters herein are
chosen sub-optimally through trial-and-error.

Convergence behaviors of the three neural equalizers aver-
aged over 200 independent trials for Channel Model 1, with
v = 0.1, are depicted in Fig. 2. Each run has a different
BPSK random sequence and random starting weights for all
the neural equalizers. An SNR of 16 dB is applied. We observe
that the MSE curves of the RNE-EKF and the RNE-UKEF are
not distinguishable and the RNE-EKF and the RNE-UKF both
outperform the DFRNE. This shows that Kalman filter-trained
recurrent neural equalizers have an improvement in terms of
both the convergence speed and the steady-state MSE. From
these, the MSE values of both the RNE-EKF and the RNE-
UKF are below the noise level after less than 100 training
symbols for Channel Model 1. The MSE value of the DFRNE
reaches around —26 dB after more than 3000 training symbols.
On the other hand, the MSE values of the RNE-EKF and
the RNE-UKF fall below —26 dB after approximately 700
training symbols. Fast convergence rates of the equalizers
come from the superiority of Kalman filter algorithms for
parameter estimation over gradient-based algorithms like the
RTRL.

For bit error rate (BER) performance of Channel Model 1,
we set v = 0.1 and SNR = 6 dB to 16 dB at 2 dB intervals.
Fig. 3 shows the BER performance for the three equalizers
for Channel Model 1, averaged over 20 independent trials.
In each trial, the first 100 symbols are used for training and
the next 10° symbols are used for testing. The weight vectors
of the equalizers are frozen after the training stage, and then
the test is continued. It is clear that both the RNE-EKF and
the RNE-UKF show better performance than the DFRNE. The
RNE-UKF is better than the RNE-EKF for the nonlinear time-
varying channel. This is remarkable performance, because
many reported results on conventional equalizers require long
training symbols (more than a few thousand) to achieve a
satisfactory BER.

We next set SNR at 16 dB and perform simulations for
various 7 ranging from 0.1 to 0.3 in order to show BER
performance of Channel Model 1 for different values of
v. For each v value, 200 independent runs employing 200
training symbols and 103 test symbols are performed. Average
BER and standard deviation of BER with respect to different
standard deviations of v are displayed in Fig. 4. From the
average and standard deviation values of BER, we observe
the following: 1) In terms of average BER, the RNE-UKEF is
superior to the DFRNE, and the RNE-UKF performs better
than the RNE-EKEF, 2) In terms of standard deviation of BER,
Kalman filter-based RNEs are more robust than the DFRNE,
and performance of the RNE-UKEF is better than that of the
RNE-EKF.

For Channel Model 2, BER performance with fading rate
1 Hz, is illustrated in Fig. 5. BER performances are averaged
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Fig. 3. BER performance of the equalizers with Channel Model 1.

over 100 independent trials where 100 training symbols and
103 test symbols are employed. Unlike simulations for Chan-
nel Model 1, all the equalizers still update their weight vectors
to track fading characteristic of the channel. BER performance
reveals that the DFRNE is not appropriate for fast fading
channel equalization since it failed to equalize this channel. On
the other hand, the RNE-UKF shows good channel tracking
performance. Like previous results for Channel Model 1, the
results depict the superiority of the RNE-UKF compared to
the RNE-EKF with respect to fast fading.

C. Comparison of Computational Complexity

We represent the computational complexity in terms of the
number of states (S) and weights (L). The computational
time of the RTRL increases on the order O(L + S), and
that of the EKF and the UKF increases on the order O(L?)
and O(L?), respectively [4], [12]. Although the EKF and the
UKF are more expensive than the RTRL in computational
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complexity, they lead to faster convergence rate, lower MSE
level, and smaller BER, compared to the RTRL. There is
an implementation versus complexity trade-off in using the
EKF and the UKF algorithms. As the network size grows, the
computational expense required to train transmitted symbols
also increases. Fortunately, the RNEs employing the EKF
and the UKF use only a small number of neurons, and also
need relatively short training symbols. One notes that the
computational complexity of the UKF can be reduced by using
the square-root version of the UKF [12]. Its computational
complexity can be reduced to O(L?), i.e., the same level as
the EKF algorithm.

V. CONCLUSIONS

We have presented a recurrent neural equalizer with decision
feedback trained with the UKF for channel equalization over

BPSK signals. Simulation results show that the RNE-UKF
performed better than the DFRNE in terms of convergence
rate, BER performance, and tracking capability. The RNE-
UKF showed robust and marginally better performance than
the RNE-EKF even though the computational cost of the
former was greater. Moreover, the proposed equalizer required
short training sets to attain good performance because of
the UKF virtue of fast convergence. This fast convergence
rate may be suitable for high-rate channel equalization. If
techniques such as whitening the received data are applied
to recurrent neural equalizers, better performance is expected.
In short, we conclude that the RNE-UKF is more suitable for
time-varying communication environments.

ACKNOWLEDGMENTS

Antonio C. de C. Lima would like to acknowledge the
Brazilian Research Council (CNPq) for financial support.

REFERENCES

[1] S. Siu, G. J. Gibson, and C. F. N. Cowan, “Decision feedback equalisation
using neural network structures and performance comparision with stan-
dard architecture,” IEE Proceedings: Part I, vol. 137, no. 4, pp. 221-225,
1990.

[2] A. Zerguine, A. Shafi, and M. Bettayeb, “Multilayer perceptron-based
DFE with lattice structure,” IEEE Transactions on Neural Networks,
vol. 12, pp. 532-545, May 2001.

[3] B. Mulgrew, “Applying radial basis function networks,” IEEE Signal
Processing Magazine, pp. 50-65, March 1996.

[4] S. Haykin, Neural Networks: a Comprehensive Foundation, 2nd Ed.
Upper Saddle River, NJ: Prentice Hall, 1999.

[5S] G. Kechriotis, E. Zervas, and E. S. Manolakos, “Using recurrent neu-
ral networks for adaptive communication channel equalizations,” IEEE
Transactions on Neural Networks, vol. 5, pp. 267-278, March 1994.

[6] S. Ong, C. You, S. Choi, and D. Hong, “A decision feedback recurrent
neural equalizer as an infinite impulse response filter,” IEEE Transactions
on Signal Processing, vol. 45, pp. 2851-2858, November 1997.

[7]1 R. J. Williams and D. Zipser, “A learning algorithm for continually
running fully recurrent neural networks,” Neural Computation, vol. 1,
pp. 270-280, 1989.

[8] R. Parisi, E. D. D. Claudio, G. Orlandi, and B. D. Rao, “Fast adaptive
digital equalization by recurrent neural networks,” IEEE Transactions on
Signal Processing, vol. 45, pp. 2731-2739, November 1997.

[9] J. D. Ortiz-Fuentes and M. L. Forcada, “A comparison between recurrent
neural network architectures for digital equalization,” in Proceedings
of IEEE International Conference on Acoustics, Speech, and Signal
Processing, pp. 3281-3284, 1997.

[10] F. Ling and J. G. Proakis, “Adaptive lattice decision-feedback
equalizers—Their performance and application to time-variant multipath
channels,” IEEE Transactions on Communications, vol. 33, pp. 348-356,
April 1985.

[11] S. Chen, B. Mulgrew, and S. McLaughlin, “Adaptive Bayesian equalizer
with decision feedback,” IEEE Transactions on Signal Processing, vol. 41,
pp. 2918-2927, September 1993.

[12] E. A. Wan and R. van der Merwe, “The unscented Kalman filter,” in
Kalman Filtering and Neural Networks, Edited by S. Haykin. John Wiley
and Sons, Inc., 2001.

[13] S. J. Julier and J. K. Uhlmann, “A new extension of the Kalman filter to
nonlinear systems,” in Proceedings of AeroSence: The 11th International
Symposium on Aerospace/Defence Sensing, Simulation and Controls,
1997.

[14] E. A. Wan and R. van der Merwe, “The unscented Kalman filter for
nonlinear estimation,” in Proceedings of the IEEE 2000 Adaptive Systems
for Signal Processing, Communications and Control Symposium (AS-
SPCC), pp. 153-158, 2000.

[15] S. Haykin, Adaptive Filter Theory, 4th Ed. Upper Saddle River, NI:
Prentice Hall, 2002.

3245



	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


