
2

PARAMETER-BASED
KALMAN FILTER TRAINING:

THEORY AND
IMPLEMENTATION

Gintaras V. Puskorius and Lee A. Feldkamp
Ford Research Laboratory, Ford Motor Company, Dearborn, Michigan, U.S.A.

(gpuskori@ford.com, lfeldkam@ford.com)

2.1 INTRODUCTION

Although the rediscovery in the mid 1980s of the backpropagation

algorithm by Rumelhart, Hinton, and Williams [1] has long been

viewed as a landmark event in the history of neural network computing

and has led to a sustained resurgence of activity, the relative ineffective-

ness of this simple gradient method has motivated many researchers to

develop enhanced training procedures. In fact, the neural network litera-

ture has been inundated with papers proposing alternative training

23

Kalman Filtering and Neural Networks, Edited by Simon Haykin
ISBN 0-471-36998-5 # 2001 John Wiley & Sons, Inc.

Kalman Filtering and Neural Networks, Edited by Simon Haykin
Copyright # 2001 John Wiley & Sons, Inc.

ISBNs: 0-471-36998-5 (Hardback); 0-471-22154-6 (Electronic)



methods that are claimed to exhibit superior capabilities in terms of

training speed, mapping accuracy, generalization, and overall performance

relative to standard backpropagation and related methods.

Amongst the most promising and enduring of enhanced training

methods are those whose weight update procedures are based upon

second-order derivative information (whereas standard backpropagation

exclusively utilizes first-derivative information). A variety of second-order

methods began to be developed and appeared in the published neural

network literature shortly after the seminal article on backpropagation was

published. The vast majority of these methods can be characterized as

batch update methods, where a single weight update is based on a matrix

of second derivatives that is approximated on the basis of many training

patterns. Popular second-order methods have included weight updates

based on quasi-Newton, Levenburg–Marquardt, and conjugate gradient

techniques. Although these methods have shown promise, they are often

plagued by convergence to poor local optima, which can be partially

attributed to the lack of a stochastic component in the weight update

procedures. Note that, unlike these second-order methods, weight updates

using standard backpropagation can either be performed in batch or

instance-by-instance mode.

The extended Kalman filter (EKF) forms the basis of a second-order

neural network training method that is a practical and effective alternative

to the batch-oriented, second-order methods mentioned above. The

essence of the recursive EKF procedure is that, during training, in addition

to evolving the weights of a network architecture in a sequential (as

opposed to batch) fashion, an approximate error covariance matrix that

encodes second-order information about the training problem is also

maintained and evolved. The global EKF (GEKF) training algorithm

was introduced by Singhal and Wu [2] in the late 1980s, and has served as

the basis for the development and enhancement of a family of computa-

tionally effective neural network training methods that has enabled the

application of feedforward and recurrent neural networks to problems in

control, signal processing, and pattern recognition.

In their work, Singhal and Wu developed a second-order, sequential

training algorithm for static multilayered perceptron networks that was

shown to be substantially more effective (orders of magnitude) in terms of

number of training epochs than standard backpropagation for a series of

pattern classification problems. However, the computational complexity

of GEKF scales as the square of the number of weights, due to the

development and use of second-order information that correlates every

pair of network weights, and was thus found to be impractical for all but

24 2 PARAMETER-BASED KALMAN FILTER TRAINING



the simplest network architectures, given the state of standard computing

hardware in the early 1990s.

In response to the then-intractable computational complexity of GEKF,

we developed a family of training procedures, which we named the

decoupled EKF algorithm [3]. Whereas the GEKF procedure develops

and maintains correlations between each pair of network weights, the

DEKF family provides an approximation to GEKF by developing and

maintaining second-order information only between weights that belong to

mutually exclusive groups. We have concentrated on what appear to be

some relatively natural groupings; for example, the node-decoupled

(NDEKF) procedure models only the interactions between weights that

provide inputs to the same node. In one limit of a separate group for each

network weight, we obtain the fully decoupled EKF procedure, which

tends to be only slightly more effective than standard backpropagation. In

the other extreme of a single group for all weights, DEKF reduces exactly

to the GEKF procedure of Singhal and Wu.

In our work, we have successfully applied NDEKF to a wide range of

network architectures and classes of training problems. We have demon-

strated that NDEKF is extremely effective at training feedforward as well

as recurrent network architectures, for problems ranging from pattern

classification to the on-line training of neural network controllers for

engine idle speed control [4, 5]. We have demonstrated the effective use of

dynamic derivatives computed by both forward methods, for example

those based on real-time-recurrent learning (RTRL) [6, 7], as well as by

truncated backpropagation through time (BPTT(h)) [8] with the param-

eter-based DEKF methods, and have extended this family of methods to

optimize cost functions other than sum of squared errors [9], which we

describe below in Sections 2.7.2 and 2.7.3.

Of the various extensions and enhancements of EKF training that we

have developed, perhaps the most enabling is one that allows for EKF

procedures to perform a single update of a network’s weights on the basis

of more than a single training instance [10–12]. As mentioned above, EKF

algorithms are intrinsically sequential procedures, where, at any given

time during training, a network’s weight values are updated on the basis of

one and only one training instance. When EKF methods or any other

sequential procedures are used to train networks with distributed repre-

sentations, as in the case of multilayered perceptrons and time-lagged

recurrent neural networks, there is a tendency for the training procedure to

concentrate on the most recently observed training patterns, to the

detriment of training patterns that had been observed and processed a

long time in the past. This situation, which has been called the recency

2.1 INTRODUCTION 25



phenomenon, is particularly troublesome for training of recurrent neural

networks and=or neural network controllers, where the temporal order of

presentation of data during training must be respected. It is likely that

sequential training procedures will perform greedily for these systems, for

example by merely changing a network’s output bias during training to

accommodate a new region of operation. On the other hand, the off-line

training of static networks can circumvent difficulties associated with the

recency effect by employing a scrambling of the sequence of data

presentation during training.

The recency phenomenon can be at least partially mitigated in these

circumstances by providing a mechanism that allows for multiple training

instances, preferably from different operating regions, to be simulta-

neously considered for each weight vector update. Multistream EKF

training is an extension of EKF training methods that allows for multiple

training instances to be batched, while remaining consistent with the

Kalman methods.

We begin with a brief discussion of the types of feedforward and

recurrent network architectures that we are going to consider for training

by EKF methods. We then discuss the global EKF training method,

followed by recommendations for setting of parameters for EKF methods,

including the relationship of the choice of learning rate to the initialization

of the error covariance matrix. We then provide treatments of the

decoupled extended Kalman filter (DEKF) method as well as the multi-

stream procedure that can be applied with any level of decoupling. We

discuss at length a variety of issues related to computer implementation,

including derivative calculations, computationally efficient formulations,

methods for avoiding matrix inversions, and square-root filtering for

computational stability. This is followed by a number of special topics,

including training with constrained weights and alternative cost functions.

We then provide an overview of applications of EKF methods to a series of

problems in control, diagnosis, and modeling of automotive powertrain

systems. We conclude the chapter with a discussion of the virtues and

limitations of EKF training methods, and provide a series of guidelines for

implementation and use.

2.2 NETWORK ARCHITECTURES

We consider in this chapter two types of network architecture: the well-

known feedforward layered network and its dynamic extension, the

recurrent multilayered perceptron (RMLP). A block-diagram representa-

26 2 PARAMETER-BASED KALMAN FILTER TRAINING



tion of these types of networks is given in Figure 2.1. Figure 2.2 shows an

example network, denoted as a 3-3-3-2 network, with three inputs, two

hidden layers of three nodes each, and an output layer of two nodes.

Figure 2.3 shows a similar network, but modified to include interlayer,

time-delayed recurrent connections. We denote this as a 3-3R-3R-2R

RMLP, where the letter ‘‘R’’ denotes a recurrent layer. In this case, both

hidden layers as well as the output layer are recurrent. The essential

difference between the two types of networks is the recurrent network’s

ability to encode temporal information. Once trained, the feedforward

Figure 2.1 Block-diagram representation of two hidden layer networks. (a )
depicts a feedforward layered neural network that provides a static
mapping between the input vector uk and the output vector yk. (b) depicts
a recurrent multilayered perceptron (RMLP) with two hidden layers. In this
case, we assume that there are time-delayed recurrent connections
between the outputs and inputs of all nodes within a layer. The signals vi

k

denote the node activations for the ith layer. Both of these block repre-
sentations assume that bias connections are included in the feedforward
connections.

Figure 2.2 A schematic diagram of a 3-3-3-2 feedforward network archi-
tecture corresponding to the block diagram of Figure 2.1a.

2.2 NETWORK ARCHITECTURES 27



network merely carries out a static mapping from input signals uk to

outputs yk , such that the output is independent of the history in which

input signals are presented. On the other hand, a trained RMLP provides a

dynamic mapping, such that the output yk is not only a function of the

current input pattern uk , but also implicitly a function of the entire history

of inputs through the time-delayed recurrent node activations, given by the

vectors vi
k�1, where i indexes layer number.

2.3 THE EKF PROCEDURE

We begin with the equations that serve as the basis for the derivation of the

EKF family of neural network training algorithms. A neural network’s

behavior can be described by the following nonlinear discrete-time

system:

wkþ1 ¼ wk þvk ð2:1Þ

yk ¼ hkðwk; uk; vk�1Þ þ nk : ð2:2Þ

The first of these, known as the process equation, merely specifies that the

state of the ideal neural network is characterized as a stationary process

corrupted by process noise vk , where the state of the system is given by

the network’s weight parameter values wk . The second equation, known as

the observation or measurement equation, represents the network’s desired

Figure 2.3. A schematic diagram of a 3-3R-3R-2R recurrent network archi-
tecture corresponding to the block diagram of Figure 2.1b. Note the
presence of time delay operators and recurrent connections between
the nodes of a layer.

28 2 PARAMETER-BASED KALMAN FILTER TRAINING



response vector yk as a nonlinear function of the input vector uk, the

weight parameter vector wk, and, for recurrent networks, the recurrent

node activations vk ; this equation is augmented by random measurement

noise nk . The measurement noise nk is typically characterized as zero-

mean, white noise with covariance given by E½nkn
T
l � ¼ dk;lRk. Similarly,

the process noise vk is also characterized as zero-mean, white noise with

covariance given by E½vkv
T
l � ¼ dk;lQk.

2.3.1 Global EKF Training

The training problem using Kalman filter theory can now be described as

finding the minimum mean-squared error estimate of the state w using all

observed data so far. We assume a network architecture with M weights

and No output nodes and cost function components. The EKF solution to

the training problem is given by the following recursion (see Chapter 1):

Ak ¼ ½Rk þ HT
k PkHk �

�1; ð2:3Þ

Kk ¼ PkHkAk; ð2:4Þ

ŵwkþ1 ¼ ŵwk þ Kkjk; ð2:5Þ

Pkþ1 ¼ Pk � KkHT
k Pk þ Qk : ð2:6Þ

The vector ŵwk represents the estimate of the state (i.e., weights) of the

system at update step k. This estimate is a function of the Kalman gain

matrix Kk and the error vector jk ¼ yk � ŷyk, where yk is the target vector

and ŷyk is the network’s output vector for the kth presentation of a training

pattern. The Kalman gain matrix is a function of the approximate error

covariance matrix Pk , a matrix of derivatives of the network’s outputs with

respect to all trainable weight parameters Hk , and a global scaling matrix

Ak . The matrix Hk may be computed via static backpropagation or

backpropagation through time for feedforward and recurrent networks,

respectively (described below in Section 2.6.1). The scaling matrix Ak is a

function of the measurement noise covariance matrix Rk , as well as of the

matrices Hk and Pk . Finally, the approximate error covariance matrix Pk

evolves recursively with the weight vector estimate; this matrix encodes

second derivative information about the training problem, and is augmen-

ted by the covariance matrix of the process noise Qk . This algorithm

attempts to find weight values that minimize the sum of squared errorP
k j

T
k jk . Note that the algorithm requires that the measurement and

2.3 THE EKF PROCEDURE 29



process noise covariance matrices, Rk and Qk, be specified for all training

instances. Similarly, the approximate error covariance matrix Pk must be

initialized at the beginning of training. We consider these issues below in

Section 2.3.3.

GEKF training is carried out in a sequential fashion as shown in the

signal flow diagram of Figure 2.4. One step of training involves the

following steps:

1. An input training pattern uk is propagated through the network to

produce an output vector ŷyk. Note that the forward propagation is a

function of the recurrent node activations vk�1 from the previous time

step for RMLPs. The error vector jk is computed in this step as well.

2. The derivative matrix Hk is obtained by backpropagation. In this

case, there is a separate backpropagation for each component of the

output vector ŷyk, and the backpropagation phase will involve a time

history of recurrent node activations for RMLPs.

3. The Kalman gain matrix is computed as a function of the derivative

matrix Hk , the approximate error covariance matrix Pk , and the

measurement covariance noise matrix Rk . Note that this step

includes the computation of the global scaling matrix Ak .

4. The network weight vector is updated using the Kalman gain matrix

Kk , the error vector jk, and the current values of the weight vector ŵwk.

Figure 2.4 Signal flow diagram for EKF neural network training. The first two
steps, comprising the forward- and backpropagation operations, will
depend on whether or not the network being trained has recurrent
connections. On the other hand, the EKF calculations encoded by steps
(3)–(5) are independent of network type.

30 2 PARAMETER-BASED KALMAN FILTER TRAINING



5. The approximate error covariance matrix is updated using the

Kalman gain matrix Kk , the derivative matrix Hk , and the current

values of the approximate error covariance matrix Pk . Although not

shown, this step also includes augmentation of the error covariance

matrix by the covariance matrix of the process noise Qk .

2.3.2 Learning Rate and Scaled Cost Function

We noted above that Rk is the covariance matrix of the measurement noise

and that this matrix must be specified for each training pattern. Generally

speaking, training problems that are characterized by noisy measurement

data usually require that the elements of Rk be scaled larger than for those

problems with relatively noise-free training data. In [5, 7, 12], we interpret

this measurement error covariance matrix to represent an inverse learning

rate: Rk ¼ Z�1
k S�1

k , where the training cost function at time step k is now

given by ek ¼ 1
2
jT

k Skjk, and Sk allows the various network output

components to be scaled nonuniformly. Thus, the global scaling matrix

Ak of equation (2.3) can be written as

Ak ¼
1

Zk

S�1
k þ HT

k PkHk

� ��1

: ð2:7Þ

The use of the weighting matrix Sk in Eq. (2.7) poses numerical

difficulties when the matrix is singular.1 We reformulate the GEKF

algorithm to eliminate this difficulty by distributing the square root of

the weighting matrix into both the derivative matrices as Hk* ¼ HkS
1=2
k and

the error vector as jk* ¼ S
1=2
k jk . The matrices Hk* thus contain the scaled

derivatives of network outputs with respect to the weights of the network.

The rescaled extended Kalman recursion is then given by

Ak* ¼
1

Zk

I þ ðHk*Þ
T PkHk*

� ��1

; ð2:8Þ

Kk* ¼ PkHk*Ak*; ð2:9Þ

ŵwkþ1 ¼ ŵwk þ Kk*jk*; ð2:10Þ

Pkþ1 ¼ Pk � Kk*ðHk*Þ
T Pk þ Qk : ð2:11Þ

Note that this rescaling does not change the evolution of either the weight

vector or the approximate error covariance matrix, and eliminates the need

1This may occur when we utilize penalty functions to impose explicit constraints on

network outputs. For example, when a constraint is not violated, we set the corresponding

diagonal element of Sk to zero, thereby rendering the matrix singular.

2.3 THE EKF PROCEDURE 31



to compute the inverse of the weighting matrix Sk for each training

pattern. For the sake of clarity in the remainder of this chapter, we shall

assume a uniform scaling of output signals, Sk ¼ I, which implies

Rk ¼ Z�1
k I, and drop the asterisk notation.

2.3.3 Parameter Settings

EKF training algorithms require the setting of a number of parameters. In

practice, we have employed the following rough guidelines. First, we

typically assume that the input–output data have been scaled and trans-

formed to reasonable ranges (e.g., zero mean, unit variance for all

continuous input and output variables). We also assume that weight

values are initialized to small random values drawn from a zero-mean

uniform or normal distribution. The approximate error covariance matrix

is initialized to reflect the fact that no a priori knowledge was used to

initialize the weights; this is accomplished by setting P0 ¼ E�1I, where E is

a small number (of the order of 0.001–0.01). As noted above, we assume

uniform scaling of outputs: Sk ¼ I. Then, training data that are character-

ized by noisy measurements usually require small values for the learning

rate Zk to achieve good training performance; we typically bound the

learning rate to values between 0.001 and 1. Finally, the covariance matrix

Qk of the process noise is represented by a scaled identity matrix qkI, with

the scale factor qk ranging from as small as zero (to represent no process

noise) to values of the order of 0.1. This factor is generally annealed from

a large value to a limiting value of the order of 10�6. This annealing

process helps to accelerate convergence and, by keeping a nonzero value

for the process noise term, helps to avoid divergence of the error

covariance update in Eqs. (2.6) and (2.11).

We show here that the setting of the learning rate, the process noise

covariance matrix, and the initialization of the approximate error covar-

iance matrix are interdependent, and that an arbitrary scaling can be

applied to Rk , Pk , and Qk without altering the evolution of the weight

vector ŵw in Eqs. (2.5) and (2.10). First consider the Kalman gain of Eqs.

(2.4) and (2.9). An arbitrary positive scaling factor m can be applied to Rk

and Pk without altering the contents of Kk :

Kk ¼ PkHk ½Rk þ HT
k PkHk �

�1

¼ mPkHk ½mRk þ HT
k mPkHk �

�1

¼ P
y

kHk ½R
y

k þ HT
k P

y

kHk �
�1

¼ P
y

kHkA
y

k;

32 2 PARAMETER-BASED KALMAN FILTER TRAINING



where we have defined R
y

k ¼ mRk, P
y

k ¼ mPk , and A
y

k ¼ m�1Ak . Similarly,

the approximate error covariance update becomes

P
y

kþ1 ¼ mPkþ1

¼ mPk � KkHT
k mPk þ mQk

¼ P
y

k � KkHT
k P

y

k þ Q
y

k :

This implies that a training trial characterized by the parameter settings

Rk ¼ Z�1I, P0 ¼ E�1I, and Qk ¼ qI, would behave identically to a

training trial with scaled versions of these parameter settings: Rk ¼

mZ�1I, P0 ¼ mE�1I, and Qk ¼ mqI. Thus, for any given EKF training

problem, there is no one best set of parameter settings, but a continuum of

related settings that must take into account the properties of the training

data for good performance. This also implies that only two effective

parameters need to be set. Regardless of the training problem considered,

we have typically chosen the initial error covariance matrix to be

P0 ¼ E�1I, with E ¼ 0:01 and 0.001 for sigmoidal and linear activation

functions, respectively. This leaves us to specify values for Zk and Qk,

which are likely to be problem-dependent.

2.4 DECOUPLED EKF (DEKF)

The computational requirements of GEKF are dominated by the need to

store and update the approximate error covariance matrix Pk at each time

step. For a network architecture with No outputs and M weights, GEKF’s

computational complexity is OðNoM2Þ and its storage requirements are

OðM2Þ. The parameter-based DEKF algorithm is derived from GEKF by

assuming that the interactions between certain weight estimates can be

ignored. This simplification introduces many zeroes into the matrix Pk . If

the weights are decoupled so that the weight groups are mutually exclusive

of one another, then Pk can be arranged into block-diagonal form. Let g

refer to the number of such weight groups. Then, for group i, the vector ŵwi
k

refers to the estimated weight parameters, Hi
k is the submatrix of

derivatives of network outputs with respect to the ith group’s weights,

Pi
k is the weight group’s approximate error covariance matrix, and Ki

k is its

Kalman gain matrix. The concatenation of the vectors ŵwi
k forms the vector

ŵwk . Similarly, the global derivative matrix Hk is composed via concatena-

2.4 DECOUPLED EKF (DEKF) 33



tion of the individual submatrices Hi
k . The DEKF algorithm for the ith

weight group is given by

Ak ¼ Rk þ
Pg
j¼1

ðH
j
kÞ

T P
j
kH

j
k

" #�1

; ð2:12Þ

Ki
k ¼ Pi

kHi
kAk; ð2:13Þ

ŵwi
kþ1 ¼ ŵwi

k þ Ki
kjk; ð2:14Þ

Pi
kþ1 ¼ Pi

k � Ki
kðH

i
kÞ

T Pi
k þ Qi

k : ð2:15Þ

A single global sealing matrix Ak , computed with contributions from all of

the approximate error covariance matrices and derivative matrices, is used

to compute the Kalman gain matrices, Ki
k . These gain matrices are used to

update the error covariance matrices for all weight groups, and are

combined with the global error vector jk for updating the weight vectors.

In the limit of a single weight group (g ¼ 1), the DEKF algorithm reduces

exactly to the GEKF algorithm.

The computational complexity and storage requirements for DEKF can

be significantly less than those of GEKF. For g disjoint weight groups, the

computational complexity of DEKF becomes OðN2
o M þ No

Pg
i¼1 M2

i Þ,

where Mi is the number of weights in group i, while the storage

requirements become Oð
Pg

i¼1 M2
i Þ. Note that this complexity analysis

does not include the computational requirements for the matrix of

derivatives, which is independent of the level of decoupling. It should

be noted that in the case of training recurrent networks or networks as

feedback controllers, the computational complexity of the derivative

calculations can be significant.

We have found that decoupling of the weights of the network by node

(i.e., each weight group is composed of a single node’s weight) is rather

natural and leads to compact and efficient computer implementations.

Furthermore, this level of decoupling typically exhibits substantial compu-

tational savings relative to GEKF, often with little sacrifice in network

performance after completion of training. We refer to this level of

decoupling as node-decoupled EKF or NDEKF. Other forms of decoupl-

ing considered have been fully decoupled EKF, in which each individual

weight constitutes a unique group (thereby resulting in an error covariance

matrix that has diagonal structure), and layer-decoupled EKF, in which

weights are grouped by the layer to which they belong [13]. We show an

example of the effect of all four levels of decoupling on the structure of

34 2 PARAMETER-BASED KALMAN FILTER TRAINING



the approximate error covariance matrix in Figure 2.5. For the remainder

of this chapter, we explicitly consider only two different levels of

decoupling for EKF training: global and node-decoupled EKF.

2.5 MULTISTREAM TRAINING

Up to this point, we have considered forms of EKF training in which a

single weight-vector update is performed on the basis of the presentation

of a single input–output training pattern. However, there may be situations

for which a coordinated weight update, on the basis of multiple training

Figure 2.5 Block-diagonal representation of the approximate error covar-
iance matrix Pk for the RMLP network shown in Figure 2.3 for four different
levels of decoupling. This network has two recurrent layers with three nodes
each and each node with seven incoming connections. The output layer is
also recurrent, but its two nodes only have six connections each. Only the
shaded portions of these matrices are updated and maintained for the
various forms of decoupling shown. Note that we achieve a reduction by
nearly a factor of 8 in computational complexity for the case of node
decoupling relative to GEKF in this example.

2.5 MULTISTREAM TRAINING 35



patterns, would be advantageous. We consider in this section an abstract

example of such a situation, and describe the means by which the EKF

method can be naturally extended to simultaneously handle multiple

training instances for a single weight update.2

Consider the standard recurrent network training problem: training on a

sequence of input–output pairs. If the sequence is in some sense homo-

geneous, then one or more linear passes through the data may well

produce good results. However, in many training problems, especially

those in which external inputs are present, the data sequence is hetero-

geneous. For example, regions of rapid variation of inputs and outputs

may be followed by regions of slow change. Alternatively, a sequence of

outputs that centers about one level may be followed by one that centers

about a different level. In any case, the tendency always exists in a

straightforward training process for the network weights to be adapted

unduly in favor of the currently presented training data. This recency effect

is analogous to the difficulty that may arise in training feedforward

networks if the data are repeatedly presented in the same order.

In this latter case, an effective solution is to scramble the order of

presentation; another is to use a batch update algorithm. For recurrent

networks, the direct analog of scrambling the presentation order is to

present randomly selected subsequences, making an update only for the

last input–output pair of the subsequence (when the network would be

expected to be independent of its initialization at the beginning of the

sequence). A full batch update would involve running the network through

the entire data set, computing the required derivatives that correspond to

each input–output pair, and making an update based on the entire set of

errors.

The multistream procedure largely circumvents the recency effect by

combining features of both scrambling and batch updates. Like full batch

methods, multistream training [10–12] is based on the principle that each

weight update should attempt to satisfy simultaneously the demands from

multiple input–output pairs. However, it retains the useful stochastic

aspects of sequential updating, and requires much less computation time

between updates. We now describe the mechanics of multistream training.

2In the case of purely linear systems, there is no advantage in batching up a collection of

training instances for a single weight update via Kalman filter methods, since all weight

updates are completely consistent with previously observed data. On the other hand,

derivative calculations and the extended Kalman recursion for nonlinear networks utilize

first-order approximations, so that weight updates are no longer guaranteed to be consistent

with all previously processed data.

36 2 PARAMETER-BASED KALMAN FILTER TRAINING



In a typical training problem, we deal with one or more files, each of

which contains a sequence of data. Breaking the overall data into multiple

files is typical in practical problems, where the data may be acquired in

different sessions, for distinct modes of system operation, or under

different operating conditions.

In each cycle of training, we choose a specified number Ns of randomly

selected starting points in a chosen set of files. Each such starting point is

the beginning of a stream. In the multistream procedure we progress

sequentially through each stream, carrying out weight updates according

to the set of current points. Copies of recurrent node outputs must be

maintained separately for each stream. Derivatives are also computed

separately for each stream, generally by truncated backpropagation

through time (BPTT(h)) as discussed in Section 2.6.1 below. Because

we generally have no prior information with which to initialize the

recurrent network, we typically set all state nodes to values of zero at

the start of each stream. Accordingly, the network is executed but updates

are suspended for a specified number Np of time steps, called the priming

length, at the beginning of each stream. Updates are performed until a

specified number Nt of time steps, called the trajectory length, have been

processed. Hence, Nt � Np updates are performed in each training cycle.

If we take Ns ¼ 1 and Nt � Np ¼ 1, we recover the order-scrambling

procedure described above; Nt may be identified with the subsequence

length. On the other hand, we recover the batch procedure if we take Ns

equal to the number of time steps for which updates are to be performed,

assemble streams systematically to end at the chosen Ns steps, and again

take Nt � Np ¼ 1.

Generally speaking, apart from the computational overhead involved,

we find that performance tends to improve as the number of streams is

increased. Various strategies are possible for file selection. If the number

of files is small, it is convenient to choose Ns equal to a multiple of the

number of files and to select each file the same number of times. If the

number of files is too large to make this practical, then we tend to select

files randomly. In this case, each set of Nt � Np updates is based on only a

subset of the files, so it seems reasonable not to make the trajectory length

Nt too large.

An important consideration is how to carry out the EKF update

procedure. If gradient updates were being used, we would simply average

the updates that would have been performed had the streams been treated

separately. In the case of EKF training, however, averaging separate

updates is incorrect. Instead, we treat this problem as that of training a

single, shared-weight network with NoNs outputs. From the standpoint of

2.5 MULTISTREAM TRAINING 37



the EKF method, we are simply training a multiple-output network in

which the number of original outputs is multiplied by the number of

streams. The nature of the Kalman recursion, because of the global scaling

matrix Ak , is then to produce weight updates that are not a simple average

of the weight updates that would be computed separately for each output,

as is the case for a simple gradient descent weight update. Note that we are

still minimizing the same sum of squared error cost function.

In single-stream EKF training, we place derivatives of network outputs

with respect to network weights in the matrix Hk constructed from No

column vectors, each of dimension equal to the number of trainable

weights, Nw. In multistream training, the number of columns is corre-

spondingly increased to NoNs. Similarly, the vector of errors jk has NoNs

elements. Apart from these augmentations of Hk and jk, the form of the

Kalman recursion is unchanged.

Given these considerations, we define the decoupled multistream EKF

recursion as follows. We shall alter the temporal indexing by specifying a

range of training patterns that indicate how the multi-stream recursion

should be interpreted. We define l ¼ k þ Ns � 1 and allow the range k : l

to specify the batch of training patterns for which a single weight vector

update will be performed. Then, the matrix Hi
k: l is the concatenation of

the derivative matrices for the ith group of weights and for training

patterns that have been assigned to the range k : l. Similarly, the augmen-

ted error vector is denoted by j k: l . We construct the derivative matrices

and error vector, respectively, by

H k: l ¼ ðHkHkþ1Hkþ2 
 
 
Hl�1HlÞ;

j k: l ¼ ðjT
k j

T
kþ1j

T
kþ2 
 
 
 j

T
l�1j

T
l Þ

T :

We use a similar notation for the measurement error covariance matrix

R k: l and the global scaling matrix A k: l, both square matrices of dimension

NoNs, and for the Kalman gain matrices Ki
k: l, with size Mi � NoNs. The

multistream DEKF recursion is then given by

A k: l ¼ R k: l þ
Pg
j¼1

ðH
j
k: lÞ

T P
j
kH

j
k: l

" #�1

; ð2:16Þ

Ki
k: l ¼ Pi

kHi
k: lA k: l; ð2:17Þ

ŵwi
kþNs

¼ ŵwi
k þ Ki

k: lj k: l; ð2:18Þ

Pi
kþNs

¼ Pi
k � Ki

k: lðH
i
k: lÞ

T Pi
k þ Qi

k : ð2:19Þ

38 2 PARAMETER-BASED KALMAN FILTER TRAINING



Note that this formulation reduces correctly to the original DEKF

recursion in the limit of a single stream, and that multistream GEKF is

given in the case of a single weight group. We provide a block diagram

representation of the multistream GEKF procedure in Figure 2.6. Note that

the steps of training are very similar to the single-stream case, with the

exception of multiple forward-propagation and backpropagation steps, and

the concatenation operations for the derivative matrices and error vectors.

Let us consider the computational implications of the multistream

method. The sizes of the approximate error covariance matrices Pi
k and

the weight vectors wi
k are independent of the chosen number of streams.

On the other hand, we noted above the increase in size for the derivative

matrices Hi
k: l, as well as of the Kalman gain matrices Ki

k: l. However, the

computation required to obtain Hi
k: l and to compute updates to Pi

k is the

same as for Ns separate updates. The major additional computational

burden is the inversion required to obtain the matrix A k: l whose dimen-

sion is Ns times larger than in the single-stream case. Even this cost tends

to be small compared with that associated with the Pi
k matrices, as long as

Figure 2.6 Signal flow diagram for multistream EKF neural network training.
The first two steps are comprised of multiple forward- and backpropagation
operations, determined by the number of streams Ns selected; these steps
also depend on whether or not the network being trained has recurrent
connections. On the other hand, once the derivative matrix H k : l and error
vector j k : l are formed, the EKF steps encoded by steps (3)–(5) are inde-
pendent of number of streams and network type.

2.5 MULTISTREAM TRAINING 39



NoNs is smaller than the number of network weights (GEKF) or the

maximum number of weights in a group (DEKF).

If the number of streams chosen is so large as to make the inversion of

A k: l impractical, the inversion may be avoided by using one of the

alternative EKF formulations described below in Section 2.6.3.

2.5.1 Some Insight into the Multistream Technique

A simple means of motivating how multiple training instances can be used

simultaneously for a single weight update via the EKF procedure is to

consider the training of a single linear node. In this case, the application of

EKF training is equivalent to that of the recursive least-squares (RLS)

algorithm. Assume that a training data set is represented by m unique

training patterns. The kth training pattern is represented by a d-dimen-

sional input vector uk, where we assume that all input vectors include a

constant bias component of value equal to 1, and a 1-dimensional output

target yk . The simple linear model for this system is given by

ŷyk ¼ uT
k wf ; ð2:20Þ

where wf is the single node’s d-dimensional weight vector. The weight

vector wf can be found by applying m iterations of the RLS procedure as

follows:

ak ¼ ½1 þ uT
k Pkuk �

�1; ð2:21Þ

kk ¼ Pkukak; ð2:22Þ

wkþ1 ¼ wk þ kkðyk � ŷykÞ; ð2:23Þ

Pkþ1 ¼ Pk � kkuT
k Pk; ð2:24Þ

where the diagonal elements of P0 are initialized to large positive values,

and w0 to a vector of small random values. Also, wf ¼ wm after a single

presentation of all training data (i.e., after a single epoch).

We recover a batch, least-squares solution to this single-node training

problem via an extreme application of the multistream concept, where we

associate m unique streams with each of the m training instances. In this

case, we arrange the input vectors into a matrix U of size d � m, where

each column corresponds to a unique training pattern. Similarly, we

arrange the target values into a single m-dimensional column vector y,

40 2 PARAMETER-BASED KALMAN FILTER TRAINING



where elements of y are ordered identically with the matrix U. As before,

we select the initial weight vector w0 to consist of randomly chosen

values, and we select P0 ¼ E�1I, with E small. Given the choice of initial

weight vector, we can compute the network output for each training

pattern, and arrange all the results using the matrix notation

ŷy0 ¼ UT w0: ð2:25Þ

A single weight update step of the Kalman filter recursion applied to this

m-dimensional output problem at the beginning of training can be written

as

A0 ¼ ½I þ UT P0U�
�1; ð2:26Þ

K0 ¼ P0UA0; ð2:27Þ

w1 ¼ w0 þ K0ðy � ŷy0Þ; ð2:28Þ

where we have chosen not to include the error covariance update here for

reasons that will soon become clear. At the beginning of training, we

recognize that P0 is large, and we assume that the training data set is

scaled so that UT P0U � I. This allows A0 to be approximated by

A0 
 E½EI þ UT U�
�1; ð2:29Þ

since P0 is diagonal. Given this approximation, we can write the Kalman

gain matrix as

K0 ¼ U½EI þ UT U�
�1: ð2:30Þ

We now substitute Eqs. (2.25) and (2.30) into Eq. (2.28) to derive the

weight vector after one time step of this m-stream Kalman filter procedure:

w1 ¼ w0 þ U½EI þ UT U�
�1
½y � UT w0�

¼ w0 � U½EI þ UT U�
�1UT w0 þ U½EI þ UT U�

�1y: ð2:31Þ

If we apply the matrix equality limE!0 U½EI þ UT U�
�1UT ¼ I , we obtain

the pseudoinverse solution:

wf ¼ w1 ¼ ½UUT �
�1Uy; ð2:32Þ

2.5 MULTISTREAM TRAINING 41



where we have made use of

lim
E!0

U½EI þ UT U�
�1UT ¼ I; ð2:33Þ

lim
E!0

U½EI þ UT U�
�1UT ¼ ½UUT �

�1UUT ; ð2:34Þ

lim
E!0

U½EI þ UT U�
�1

¼ ½UUT �
�1U: ð2:35Þ

Thus, one step of the multistream Kalman recursion recovers very

closely the least-squares solution. If m is too large to make the inversion

operation practical, we could instead divide the problem into subsets and

perform the procedure sequentially for each subset, arriving eventually at

nearly the same result (in this case, however, the covariance update needs

to be performed).

As illustrated in this one-node example, the multistream EKF update is

not an average of the individual updates, but rather is coordinated through

the global scaling matrix A. It is intuitively clear that this coordination is

most valuable when the various streams place contrasting demands on the

network.

2.5.2 Advantages and Extensions of Multistream Training

Discussions of the training of networks with external recurrence often

distinguish between series–parallel and parallel configurations. In the

former, target values are substituted for the corresponding network outputs

during the training process. This scheme, which is also known as teacher

forcing, helps the network to get ‘‘on track’’ and stay there during training.

Unfortunately, it may also compromise the performance of the network

when, in use, it must depend on its own output. Hence, it is not uncommon

to begin with the series–parallel configuration, then switch to the parallel

configuration as the network learns the task. Multistream training seems to

lessen the need for the series–parallel scheme; the response of the training

process to the demands of multiple streams tends to keep the network from

getting too far off-track. In this respect, multistream training seems

particularly well suited for training networks with internal recurrence

(e.g., recurrent multilayered perceptrons), where the opportunity to use

teacher forcing is limited, because correct values for most if not all outputs

of recurrent nodes are unknown.

Though our presentation has concentrated on multistreaming simply as

an enhanced training technique, one can also exploit the fact that the

42 2 PARAMETER-BASED KALMAN FILTER TRAINING



streams used to provide input–output data need not arise homogeneously,

that is, from the same training task. Indeed, we have demonstrated that a

single fixed-weight, recurrent neural network, trained by multistream EKF,

can carry out multiple tasks in a control context, namely, to act as a

stabilizing controller for multiple distinct and unrelated systems, without

explicit knowledge of system identity [14]. This work demonstrated that

the trained network was capable of exhibiting what could be considered to

be adaptive behavior: the network, acting as a controller, observed the

behavior of the system (through the system’s output), implicitly identified

which system the network was being subjected to, and then took actions to

stabilize the system. We view this somewhat unexpected behavior as being

the direct result of combining an effective training procedure with

enabling representational capabilities that recurrent networks provide.

2.6 COMPUTATIONAL CONSIDERATIONS

We discuss here a number of topics related to implementation of the

various EKF training procedures from a computational perspective. In

particular, we consider issues related to computation of derivatives that are

critical to the EKF methods, followed by discussions of computationally

efficient formulations, methods for avoiding matrix inversions, and the

use of square-root filtering as an alternative means of insuring stable

performance.

2.6.1 Derivative Calculations

We discussed above both the global and decoupled versions of the EKF

algorithm, where we consider the global EKF to be a limiting form of

decoupled EKF (i.e., DEKF with a single weight group). In addition, we

have described the multistream EKF procedure as a means of batching

training instances, and have noted that multistreaming can be used with

any form of decoupled EKF training, for both feedforward and recurrent

networks. The various EKF procedures can all be compactly described by

the DEKF recursion of Eqs. (2.12)–(2.15), where we have assumed that

the derivative matrices Hi
k are given. However, the implications for

computationally efficient and clear implementations of the various forms

of EKF training depend upon the derivative calculations, which are

dictated by whether a network architecture is static or dynamic (i.e.,

feedforward or recurrent), and whether or not multistreaming is used. Here

2.6 COMPUTATIONAL CONSIDERATIONS 43



we provide insight into the nature of derivative calculations for training of

both static and dynamic networks with EKF methods (see [12] for

implementation details).

We assume the convention that a network’s weights are organized by

node, regardless of the degree of decoupling, which allows us to naturally

partition the matrix of derivatives of network outputs with respect to

weight parameters, Hk , into a set of G submatrices Hi
k , where G is the

number of nodes of the network. Then, each matrix Hi
k denotes the matrix

of derivatives of network outputs with respect to the weights associated

with the ith node of the network. For feedforward networks, these

submatrices can be written as the outer product of two vectors [3],

Hi
k ¼ ui

kðc
i
kÞ

T ;

where ui
k is the ith node’s input vector and ci

k is a vector of partial

derivatives of the network’s outputs with respect to the ith node’s net input,

defined as the dot product of the weight vector wi
k with the corresponding

input vector ui
k. Note that the vectors ci

k are computed via the back-

propagation process, where the dimension of each of these vectors is

determined by the number of network outputs. In contrast to the standard

backpropagation algorithm, which begins the derivative calculation

process (i.e., backpropagation) with error signals for each of the network’s

outputs, and effectively combines these error signals (for multiple-output

problems) during the backpropagation process, the EKF methods begin

the process with signals of unity for each network output and back-

propagate a separate signal for each unique network output.

In the case of recurrent networks, we assume the use of truncated

backpropagation through time for calculation of derivatives, with a

truncation depth of h steps; this process is denoted by BPTT(h). Now,

each submatrix Hi
k can no longer be expressed as a simple outer product

of two vectors; rather, each of these submatrices is expressed as the sum of

a series of outer products:

Hi
k ¼

Ph
j¼1

H
i;j
k ¼

Ph
j¼1

u
i;j
k ðc

i;j
k Þ

T ;

where the matrix H
i;j
k is the contribution from the jth step of back-

propagation to the computation of the total derivative matrix for the ith

node; the vector u
i;j
k is the vector of inputs to the ith node at the jth step of

backpropagation; and ci;j
k is the vector of backpropagated derivatives of

44 2 PARAMETER-BASED KALMAN FILTER TRAINING



network outputs with respect to the ith node’s net input at the jth step of

backpropagation. Here, we have chosen arbitrarily to have j increase as we

step back in time.

Finally, consider multi-stream training, where we assume that the

training problem involves a recurrent network architecture, with deriva-

tives computed by BPTT(h) (feedforward networks are subsumed by the

case of h ¼ 1). We again assume an No-component cost function with Ns

streams, and define l ¼ k þ Ns � 1. Then, each submatrix Hi
k: l becomes a

concatenation of a series of submatrices, each of which is expressed as the

sum of a series of outer products:

Hi
k: l ¼

Ph
j¼1

H
i;j;1
k

Ph
j¼1

H
i;j;2
k 
 
 


Ph
j¼1

H
i;j;Ns

k

" #
ð2:36Þ

¼
Ph
j¼1

u
i;j;1
k ðci;j;1

k Þ
T Ph

j¼1

u
i;j;2
k ðci;j;2

k Þ
T

 
 

Ph
j¼1

u
i;j;Ns

k ðc
i;j;Ns

k Þ
T

" #
: ð2:37Þ

Here we have expressed each submatrix Hi
k: l as an Mi � ðNoNsÞ matrix,

where Mi is the number of weights corresponding to the networks ith

node. The submatrices H
i;j;m
k are of size Mi � No, corresponding to a

single training stream. For purposes of a compact representation, we

express each matrix Hi
k: l as a sum of matrices (as opposed to a

concatenation) by forming vectors Ci;j;m
k from the vectors ci;j;m

k in the

following fashion. The vector Ci;j;m
k is of length NoNs with components

set to zero everywhere except for in the mth (out of Ns) block of length No,

where this subvector is set equal to the vector ci;j;m
k . Then,

Hi
k: l ¼

Ph
j¼1

PNs

m¼1

u
i;j;m
k ðCi;j;m

k Þ
T :

Note that the matrix is expressed in this fashion for notational convenience

and consistency, and that we would make use of the sparse nature of the

vector Ci;j;m
k in implementation.

2.6.2 Computationally Efficient Formulations for
Multiple-Output Problems

We now consider implications for the computational complexity of EKF

training due to expressing the derivative calculations as a series of vector

2.6 COMPUTATIONAL CONSIDERATIONS 45



outer products as shown above. We consider the simple case of feed-

forward networks trained by node-decoupled EKF (NDEKF) in which

each node’s weights comprise a unique group for purposes of the error

covariance update. The NDEKF recursion can then be written as

Ak ¼ Rk þ
PG
j¼1

a j
kc

j
kðc

j
kÞ

T

" #�1

; ð2:38Þ

Ki
k ¼ vi

kðg
i
kÞ

T ; ð2:39Þ

ŵwi
kþ1 ¼ ŵwi

k þ ½ðci
kÞ

T
ðAkjkÞ�v

i
k; ð2:40Þ

Pi
kþ1 ¼ Pi

k � bi
kvi

kðv
i
kÞ

T
þ Qi

k; ð2:41Þ

where we have used the following equations in intermediate steps:

vi
k ¼ Pi

kui
k; ð2:42Þ

gi
k ¼ Akc

i
k; ð2:43Þ

ai
k ¼ ðui

kÞ
T vi

k; ð2:44Þ

bi
k ¼ ðgi

kÞ
Tci

k : ð2:45Þ

Based upon this partitioning of the derivative matrix Hk , we find that the

computational complexity of NDEKF is reduced from OðN2
o Mþ

No

PG
i¼1 M2

i Þ to OðN2
o G þ

PG
i¼1 M2

i Þ, indicating a distinct advantage for

feedforward networks with multiple output nodes. On the other hand, the

partitioning of the derivative matrix does not provide any computational

advantage for GEKF training of feedforward networks.

2.6.3 Avoiding Matrix Inversions

A complicating factor for effective implementation of EKF training

schemes is the need to perform matrix inversions for those problems

with multiple cost function components. We typically perform these types

of calculations with matrix inversion routines based on singular-value

decomposition [15]. Although these techniques have served us well over

the years, we recognize that this often discourages ‘‘quick-and-dirty’’

implementations and may pose a large obstacle to hardware implementa-

tion.

Two classes of methods have been developed that allow EKF training to

be performed for multiple-output problems without explicitly resorting to

matrix inversion routines. The first class [16] depends on the partitioning

46 2 PARAMETER-BASED KALMAN FILTER TRAINING



of the derivative matrices described above. This method computes the

global scaling matrix Ak by recursively applying the matrix inversion

lemma. This procedure provides results that are mathematically identical

to conventional matrix inversion procedures, regardless of the degree of

decoupling employed. In addition, it can be employed for training of any

form of network, static or dynamic, as well as for the multistream

procedure. On the other hand, we have found that this method often

requires the use of double-precision arithmetic to produce results that are

statistically identical to EKF implementations based on explicit matrix

inversion methods.

The second class, developed by Plumer [17], treats each output

component individually in an iterative procedure. This sequential update

procedure accumulates the weight vector update as each output compo-

nent is processed, and only applies the weight vector update after all

output signals have been processed. The error covariance matrix is

updated in a sequential fashion. Plumer’s sequential-update form of

EKF turns out to be exactly equivalent to the batch form of GFKF

given above in which all output signals are processed simultaneously.

However, for decoupled EKF training, it turns out that sequential updates

only approximate the updates obtained via the simultaneous DEKF

recursion of Eqs. (2.12)–(2.15), though this has been reported to not

pose any problems during training.

The sequential DEKF method is compactly given by a set of equations

that are similar to the simultaneous DEKF equations. We again assume a

decoupling with g mutually exclusive groups of weights, with a limit of

g ¼ 1 reducing to the global version, and use the superscript i to refer to

the individual weight groups. We handle the multistream case by labeling

each cost function component from l ¼ 1 to NoNs, where No and Ns refer

to the number of network outputs and number of processing streams,

respectively. A single weight vector update with the sequential multi-

stream DEKF procedure requires an initialization step of Dŵwi
k;0 ¼ 0 and

Pi
k;0 ¼ Pi

k , where Dŵwi
k;l is used to accumulate the update to the weight

vector. Then, the sequential multistream DEKF procedure is compactly

represented by the following equations:

ak;l ¼ rk;l þ
Pg
j¼1

ðhi
k;lÞ

T Pi
k;l�1hi

k;l

" #�1

; ð2:46Þ

ki
k;l ¼ Pi

k;l�1hi
k;lak;l; ð2:47Þ

Dŵwi
k;l ¼ Dŵwi

k;l�1 þ ki
k;lxk;l � ki

k;l½ðh
i
k;lÞ

TDŵwi
k;l�1�; ð2:48Þ

Pi
k;l ¼ Pi

k;l�1 � ki
k;lðh

i
k;lÞ

T Pi
k;l�1: ð2:49Þ

2.6 COMPUTATIONAL CONSIDERATIONS 47



Note that the scalar rk;l is the lth diagonal element of the measurement

covariance matrix Rk in the simultaneous form of DEKF, that the scalar

xk;l is the lth error signal, and that the vector hi
k;l is the lth column of the

augmented derivative matrix Hi
k . After all output signals of all training

streams have been processed, the weight vectors and error covariance

matrices for all weight groups are updated by

ŵwi
kþ1 ¼ ŵwi

k þ Dŵwi
k;NoNs

; ð2:50Þ

Pi
kþ1 ¼ Pi

k;NoNs
þ Qi

k : ð2:51Þ

Structurally, these equations for sequential updates are nearly identical to

those of the simultaneous update, with the exception of an additional

correction term in the delta-weight update equation; this term is necessary

to account for the fact that the weight estimate changes at each step of this

sequential multiple-output recursion.

2.6.4 Square-Root Filtering

2.6.4.1 Without Artificial Process Noise Sun and Marko [18] have

described the use of square-root filtering as a numerically stable, alternative

method to performing the approximate error covariance matrix update

given by the Riccati equation (2.6). The square-root filter methods are well

known in the signal processing community [19], and were developed so as

to guarantee that the positive-definiteness of the matrix is maintained

throughout training. However, this insurance is accompanied by increased

computational complexity. Below, we summarize the square-root formula-

tion for the case of no artificial process noise, with proper treatment of the

EKF learning rate as given in Eq. (2.7) (we again assume Sk ¼ IÞ.

The square-root covariance filter update is based on the matrix

factorization lemma, which states that for any pair of J � K matrices

B1 and B2, with J � K, the relation B1B1
T ¼ B2B2

T holds if and only if

there exists a unitary matrix Y such that B2 ¼ B1Y. With this in mind, the

covariance update equations (2.3) and (2.6) can be written in matrix

form as

R
1=2
k HT

k P
1=2
k

0 P
1=2
k

" #
R

1=2
k 0

P
1=2
k Hk P

1=2
k

" #

¼
A

�1=2
k 0

PkHkA
1=2
k P

1=2
kþ1

" #
A

�1=2
k A

1=2
k HT

k Pk

0 P
1=2
kþ1

" #
: ð2:52Þ

48 2 PARAMETER-BASED KALMAN FILTER TRAINING



Now, the idea is to find a unitary transformation Y such that

A
�1=2
k 0

PkHkA
1=2
k P

1=2
kþ1

" #
¼

R
1=2
k HT

k P
1=2
k

0 P
1=2
k

" #
Y: ð2:53Þ

This is easily accomplished by applying a series of 2 � 2 Givens rota-

tions to annihilate the elements of the submatrix HT
k P

1=2
k , thereby yielding

the left-hand-side matrix. Given this result of the square-root filtering

procedure, we can perform the network weight update via the following

additional steps: (1) compute A
1=2
k by inverting A

�1=2
k ; (2) compute the

Kalman gain matrix by Kk ¼ ðPkHkA
1=2
k ÞA

1=2
k ; (3) perform the weight

update via Eq. (2.5).

2.6.4.2 With Artificial Noise In our original work [3] on EKF-based

training, we introduced the use of artificial process noise as a simple and

easily controlled mechanism to help assure that the approximate error

covariance matrix Pk would retain the necessary property of nonnegative-

definiteness, thereby allowing us to avoid the more computationally

complicated square-root formulations. In addition to controlling the

proper evolution of Pk , we have also found that artificial process noise,

when carefully applied, helps to accelerate the training process and, more

importantly, leads to solutions superior to those found without artificial

process noise. We emphasize that the use of artificial process noise is not

ad hoc, but appears due to the process noise term in Eq. (2.1) (i.e., the

covariance matrix Qk in Eq. (2.6) disappears only when vk ¼ 0 for all k).

We have continued to use this feature in our implementations as an

effective means for escaping poor local minima, and have not experienced

problems with divergence. Other researchers with independent implemen-

tations of various forms of EKF [13, 17, 20] for neural network training

have also found the use of artificial process noise to be beneficial.

Furthermore, other gradient-based training algorithms have effectively

exploited weight noise (e.g., see [21]).

We now demonstrate that the square-root filtering formulation of Eq.

(2.53) is easily extended to include artificial process noise, and that the use

of artificial process noise and square-root filtering are not mutually

exclusive. Again, we wish to express the error covariance update in a

2.6 COMPUTATIONAL CONSIDERATIONS 49



factorized form, but we now augment the left-hand-side of Eq. (2.52) to

include the square root of the process-noise covariance matrix:

Rk þ HT
k PkHk HT

k Pk

PkHk Pk þ Qk

" #

¼
R

1=2
k HT

k P
1=2
k 0

0 P
1=2
k Q

1=2
k

" # R
1=2
k 0

P
1=2
k Hk P

1=2
k

0 Q
1=2
k

2
664

3
775:

ð2:54Þ

Similarly, the right-hand side of Eq. (2.52) is augmented by blocks of

zeroes, so that the matrices are of the same size as those of the right-hand

side of Eq. (2.54):

A�1
k HT

k Pk

PkHk Pkþ1 þ PkHkAkHT
k Pk

" #

¼
A

�1=2
k 0 0

PkHkA
1=2
k P

1=2
kþ1 0

" # A
1=2
k A

1=2
k HT

k Pk

0 P
1=2
kþ1

0 0

2
64

3
75: ð2:55Þ

Here, Eqs. (2.54) and (2.55) are equivalent to one another, and Eq. (2.53)

is appropriately modified to

A
1=2
k 0 0

PkHkA
1=2
k P

1=2
kþ1 0

" #
¼

R
1=2
k HT

k P
1=2
k 0

0 P
1=2
k Q

1=2
k

" #
Y: ð2:56Þ

Thus, square-root filtering can easily accommodate the artificial process-

noise extension, where the matrices HT
k P

1=2
k and Q

1=2
k are both annihilated

via a sequence of Givens rotations. Note that this extension involves

substantial additional computational costs beyond those incurred when

Qk ¼ 0. For a network with M weights and No outputs, the use of artificial

process noise introduces OðM3Þ additional computations for the annihila-

tion of Q
1=2
k , whereas the annihilation of the matrix HT

k P
1=2
k only involves

OðM2NoÞ computations (here we assume M �MoÞ.

50 2 PARAMETER-BASED KALMAN FILTER TRAINING



2.7 OTHER EXTENSIONS AND ENHANCEMENTS

2.7.1 EKF Training with Constrained Weights

Due to the second-order properties of the EKF training procedure, we

have observed that, for certain problems, networks trained by EKF tend to

develop large weight values (e.g., between 10 and 100 in magnitude). We

view this capability as a double-edged sword: on the one hand, some

problems may require that large weight values be developed, and the EKF

procedures are effective at finding solutions for these problems. On the

other hand, trained networks may need to be deployed with execution

performed in fixed-point arithmetic, which requires that limits be imposed

on the range of values of network inputs, outputs and weights. For

nonlinear sigmoidal nodes, the node outputs are usually limited to

values between �1 and þ1, and input signals can usually be linearly

transformed so that they fall within this range. On the other hand, the EKF

procedures as described above place no limit on the weight values. We

describe here a natural mechanism, imposed during training, that limits the

range of weight values. In addition to allowing for fixed-point deployment

of trained networks, this weight-limiting mechanism may also promote

better network generalization.

We wish to set constraints on weight values during the training process

while maintaining rigorous consistency with the EKF recursion. We can

accomplish this by converting the unconstrained nonlinear optimization

problem into one of optimization with constraints. The general idea is to

treat each of the network’s weight values as the output of a monotonically

increasing function fð
Þ with saturating limits at the function’s extremes

(e.g., a sigmoid function). Thus, the EKF recursion is performed in an

unconstrained space, while the network’s weight values are nonlinear

transformations of the corresponding unconstrained values that evolve

during the training process. This transformation requires that the

EKF recursion be modified to take into account the function fð
Þ as

applied to the parameters (i.e., unconstrained weight values) that evolve

during training.

Assume that the vector of network’s weights wk is constrained to take

on values in the range �a to þa and that each component w
i;j
k (the jth

weight of the ith node) of the constrained weight vector is related to an

unconstrained value ~ww
i;j
k via a function w

i;j
k ¼ fð ~wwi;j

k ; aÞ. We formulate the

EKF recursion so that weight updates are performed in the unconstrained

weight space, while the steps of forward propagation and backpropagation

of derivatives are performed in the constrained weight space.

2.7 OTHER EXTENSIONS AND ENHANCEMENTS 51



The training steps are carried out as follows. At time step k, an input

vector is propagated through the network, and the network outputs are

computed and stored in the vector ŷyk. The error vector jk is also formed as

defined above. Subsequently, the derivatives of each component of ŷyk with

respect to each node’s weight vector wi
k are computed and stored into the

matrices Hi
k , where the component H

i;j;l
k contains the derivative of the lth

component of ŷyk with respect to the jth weight of the ith node. In order to

perform the EKF recursion in the unconstrained space, we must perform

three steps in addition to those that are normally carried out. First, we

transform weight values from the constrained space via ~ww
i;j
k ¼ f�1

ðw
i;j
k ; aÞ

for all trainable weights of all nodes of the network, which yields the

vectors ~wwi
k . Second, the derivatives that have been previously computed

with respect to weights in the constrained space must be transformed to

derivatives with respect to weights in the unconstrained space. This is

easily performed by the following transformation for each derivative

component:

~HH
i;j;l
k ¼ H

i;j;l
k

@oi;j
k

@ ~wwi;j
k

¼ H
i;j;l
k

@fð ~wwi;j
k ; aÞ

@ ~wwi;j
k

: ð2:57Þ

The EKF weight update procedure of Eqs. (2.8)–(2.11) is then applied

using the unconstrained weights and derivatives with respect to uncon-

strained weights. Note that no transformation is applied to either the

scaling matrix Sk or the error vector jk before they are used in the update.

Finally, after the weight updates are performed, the unconstrained weights

are transformed back to the constrained space by w
i;j
k ¼ fð ~wwi;j

k ; aÞ for all

weights of all nodes in the network.

We now consider specific forms for the function fð ~wwi;j
k ; aÞ that trans-

forms weight values from an unconstrained space to a constrained space.

We require that the function obey the following properties:

1. fð ~wwi;j
k ; aÞ is monotonically increasing.

2. fð0; aÞ ¼ 0.

3. fð�1; aÞ ¼ �a.

4. fðþ1; aÞ ¼ þa.

5.
@w

i;j
k

@ ~wwi;j
k

j ~wwi;j
k
¼0 ¼ 1:

6. lima!1 fð ~wwi;j
k ; aÞ ¼ ~ww

i;j
k ¼ w

i;j
k .

52 2 PARAMETER-BASED KALMAN FILTER TRAINING



Property 5 imposes a constraint on the gain of the transformation, while

property 6 imposes the constraint that in the limit of large a, the

constrained optimization problem operates identically to the unconstrained

problem. This last constraint also implies that lima!1ð@w
i;j
k =@ ~ww

i;j
k Þ ¼ 1.

One candidate function is a symmetric saturating linear transformation

where w
i;j
k ¼ ~ww

i;j
k when �a � ~ww

i;j
k � a, and is otherwise equal to either

saturating value. The major disadvantage with this constraint function is

that its inverse is multivalued outside the linear range. Thus, once the

training process pushes the constrained weight value into the saturated

region, the derivative of constrained weight with respect to unconstrained

weight becomes zero, and no further training of that particular weight

value will occur due to the zero-valued derivative.

Alternatively, we may consider various forms of symmetric sigmoid

functions that are everywhere differentiable and have well-defined

inverses. The Elliott sigmoid [22] conveniently does not involve trans-

cendental functions. We choose to consider a generalization of this

monotonic and symmetric saturating function given by

w
i;j
k ¼ fð ~wwi;j

k ; aÞ ¼
a ~wwi;j

k

bþ j ~ww
i;j
k j

¼
~ww

i;j
k

b=aþ j ~ww
i;j
k j=a

; ð2:58Þ

where b is a positive quantity that determines the function’s gain. We must

choose the value of b so that the derivative of fð ~wwi;j
k ; aÞ with respect to

~ww
i;j
k , evaluated at ~ww

i;j
k ¼ 0, is equal to 1. This condition can be shown to be

satisfied by the choice b ¼ a. Thus, the constraint function we choose is

given by

w
i;j
k ¼ fð ~wwi;j

k ; aÞ ¼
a ~wwi;j

k

aþ j ~ww
i;j
k j

¼
~ww

i;j
k

1 þ j ~ww
i;j
k j=a

: ð2:59Þ

By inspection, we see that this function satisfies the various requirements.

For example, for large a (i.e., as a ! 1Þ, w
i;j
k ! ~ww

i;j
k ; for smaller values

of a, when j ~ww
i;j
k j � a;w

i;j
k ! a sgnð ~ww

i;j
k Þ. The inverse of this function is

easily found to be given by

~ww
i;j
k ¼ f�1

ðw
i;j
k ; aÞ ¼

aw
i;j
k

a� jw
i;j
k j

¼
w

i;j
k

1 � jw
i;j
k j=a

: ð2:60Þ

In this case, for a � w
i;j
k , ~ww

i;j
k ! w

i;j
k ; similarly, as w

i;j
k ! a; ~wwi;j

k ! 1. As

a final note, the derivative of constrained weight with respect to uncon-

2.7 OTHER EXTENSIONS AND ENHANCEMENTS 53



strained weight, which is needed for computing the proper derivatives in

the EKF recursion, can be expressed in many different ways, some of

which are given by

@w
i;j
k

@ ~wwi;j
k

¼
a

aþ j ~ww
i;j
k j

 !2

¼
a� jw

i;j
k j

a

 !2

¼ 1 �
jw

i;j
k j

a

 !2

¼
w

i;j
k

~ww
i;j
k

 !2

: ð2:61Þ

2.7.2 EKF Training with an Entropic Cost Function

As defined above, the EKF training algorithm assumes that a quadratic

function of some error signal is being minimized over all network outputs

and all training patterns. However, other cost functions are often useful or

necessary. One such function that has been found to be particularly

appropriate for pattern classification problems, and for which a sound

statistical basis exists, is a cost function based on minimizing cross-

entropy [23]. We consider a prototypical problem in which a network is

trained to act as a pattern classifier; here network outputs encode binary

pattern classifications. We assume that target values of �1 are provided for

each training pattern. Then the contribution to the total entropic cost

function at time step n is given by

ek ¼
PNo

l¼1

e
l
k ¼

PNo

l¼1

ð1 þ yl
kÞ log

1 þ yl
k

1 þ ŷyl
k

þ ð1 � yl
kÞ log

1 � yl
k

1 � ŷyl
k

� �
: ð2:62Þ

Since the components of the vector yk are constrained to be either þ1 or

�1, we note that only one of the two components for each output l will be

nonzero. This allows the cost function to be expressed as

ek jyl
k
¼�1 ¼

PNo

l¼1

e
l
k ¼

PNo

l¼1

2 log
2

1 þ yl
k ŷyl

k

: ð2:63Þ

The EKF training procedure assumes that at each time step k a

quadratic cost function is being minimized, which we write as

Ck ¼
PNo

l¼1ðz
l
k � ẑzl

kÞ
2
¼
PNo

l¼1ðx
l
kÞ

2, where zl
k and ẑzl

k are target and

output values, respectively. (We assume here the case of Sk ¼ I; this

procedure is easily extended to nonuniform weighting matrices.) At this

point, we would like to find appropriate transformations between the

fzl
k; ẑzl

kg and fyl
k; ŷyl

kg so that Ck and ek are equivalent, thereby allowing us

54 2 PARAMETER-BASED KALMAN FILTER TRAINING



to use the EKF procedure to minimize the entropic cost function. We first

note that both the quadratic and entropic cost functions are calculated by

summing individual cost function components from all targets and output

nodes. We immediately see that this leads to the equality ðxl
kÞ

2
¼ el

k for all

No outputs, which implies zl
k � ẑzl

k ¼ ðel
kÞ

1=2. At this point, we assume that

we can assign all target values zl
k ¼ 0;3 so that xl

k ¼ �ẑzl
k ¼ ðel

kÞ
1=2. Now

the EKF recursion can be applied to minimize the entropic cost function,

since Ck ¼ SNo

l¼1ðx
l
kÞ

2
¼ SNo

l¼1½ðe
l
kÞ

1=2
�
2
¼ SNo

l¼1e
l
k ¼ ek .

The remainder of the derivation is straightforward. The EKF recursion

in the case of the entropic cost function requires that derivatives of

ẑzl
k ¼ ð�el

kÞ
1=2 be computed for all No outputs and all weight parameters,

which are subsequently stored in the matrices Hi
k . Applying the chain rule,

these derivatives are expressed as a function of the derivatives of network

outputs with respect to weight parameters:

H
i;j;l
k ¼

@ẑzl
k

@w
i;j
k

�����
yl

k
¼�1

¼ �
@ðel

kÞ
1=2

@w
i;j
k

¼
1

ðel
kÞ

1=2
ðyl

k þ ŷyl
kÞ

@ŷyl
k

@w
i;j
k

: ð2:64Þ

Note that the effect of the relative entropy cost function on the calculation

of derivatives is handled entirely in the initialization of the backpropaga-

tion process, where the term 1=½ðel
kÞ

1=2
ðyl

k þ ŷyl
kÞ� is used for each of the No

output nodes to start the backpropagation process, rather than starting with

a value of unity for each output node as in the nominal formulation.

In general, the EKF procedure can be modified in the manner just

described for a wide range of cost functions, provided that they meet at

least three simple requirements. First, the cost function must be a

differentiable function of network outputs. Second, the cost function

should be expressed as a sum of contributions, where there is a separate

target value for each individual component. Third, each component of the

cost function must be non-negative.

2.7.3 EKF Training with Scalar Errors

When applied to a multiple-output training problem, the EKF formulation

in Eqs. (2.3)–(2.6) requires a separate backpropagation for each output

and a matrix inversion. In this section, we describe an approximation to

3The idea of using a modified target value of zero with the actual targets appearing in

expressions for system outputs can be applied to the EKF formulation of Eqs. (2.3)–(2.6)

without any change in its underlying behavior.

2.7 OTHER EXTENSIONS AND ENHANCEMENTS 55



the EKF neural network training procedure that allows us to treat such

problems with single-output training complexity. In this approximation,

we require only the computation of derivatives of a scalar quantity with

respect to trainable weights, thereby reducing the backpropagation compu-

tation and eliminating the need for a matrix inversion in the multiple-

output EKF recursion.

For the sake of simplicity, we consider here the prototypical network

training problem for which network outputs directly encode signals for

which targets are defined. The square root of the contribution to the total

cost function at time step k is given by

~yyk ¼ C
1=2
k ¼

PNo

l¼1

jyl
k � ŷyl

k j
2

� �1=2

; ð2:65Þ

where we are again treating the simple case of uniform scaling of network

errors (i.e., Sk ¼ I). The goal here is to train a network so that the sum of

squares of this scalar error measure is minimized over time. As in the case

of the entropic cost function, we consider the target for training to be zero

for all training instances, and the scalar error signal used in the Kalman

recursion to be given by xk ¼ 0 � ~yyk. The EKF recursion requires that the

derivatives of the scalar observation ~yyk be computed with respect to all

weight parameters. The derivative of the scalar error with respect to the jth

weight of the ith node is given by

H
i;j;1
k ¼

@~yyk

@w
i;j
k

¼
PNo

l¼1

@~yyk

@ŷyl
k

@ŷyl
k

@w
i;j
k

¼
PNo

l¼1

yl
k � ŷyl

k

xk

@ŷyl
k

@w
i;j
k

: ð2:66Þ

In this scalar formulation, the derivative calculations via backpropagation

are initialized with the terms ðyl
k � ŷyl

kÞ=xk for all No network output nodes

(as opposed to initializing the backpropagation calculations with values of

unity for the nominal EKF recursion of Eqs. (2.3)–(2.6)). Furthermore,

only one quantity is backpropagated, rather than No quantities for the

nominal formulation. Note that this scalar approximation reduces exactly

to the nominal EKF algorithm in the limit of a single-output problem:

~yyk ¼ ðjy1
k � ŷy1

k j
2Þ

1=2
¼ jy1

k � ŷy1
k j; ð2:67Þ

xk ¼ 0 � jy1
k � ŷy1

k j; ð2:68Þ

H
i;j;1
k ¼

@~yyk

@w
i;j
k

¼ �sgnðy1
k � ŷy1

kÞ
@ŷy1

k

@w
i;j
k

: ð2:69Þ

56 2 PARAMETER-BASED KALMAN FILTER TRAINING



Consider the case y1
k � ŷy1

k . Then, the error signal is given by xk ¼ y1
k � ŷy1

k.

Similarly, @~yyk=@w ¼ @ŷy1
k=@w, since @~yyk=@y1

k ¼ 1. Otherwise, when y1
k > ŷy1

k ,

the error signal is given by xk ¼ �ðy1
k � ŷy1

kÞ, and @~yyk=@w ¼ �@ŷy1
k=@w,

since @~yyk=@ŷy1
k ¼ �1. Since both the error and the derivatives are the

negatives of what the nominal EKF recursion provides, the effects of

negation cancel one another. Thus, in either case, the scalar formulation

for a single-output problem is exactly equivalent to that of the EKF

procedure of Eqs. (2.3)–(2.6).

Because the procedure described here is an approximation to the base

procedure, we suspect that classes of problems exist for which it is not as

effective; further work will be required to clarify this question. In this

regard, we note that once criteria are available to guide the decision of

whether to scalarize or not, one may also consider a hybrid approach to

problems with many outputs. In this approach, selected outputs would be

combined as described above to produce scalar error variables; the latter

would then be treated with the original procedure.

2.8 AUTOMOTIVE APPLICATIONS OF EKF TRAINING

The general area of automotive powertrain control, diagnosis, and model-

ing has offered substantial opportunity for the application of neural

network methods. These opportunities are driven by the steadily increas-

ing demands that are placed on the performance of vehicle control and

diagnostic systems as a consequence of global competition and govern-

ment mandates. Modern automotive powertrain control systems involve

several interacting subsystems, any one of which can involve significant

engineering challenges. We summarize the application of EKF training to

three signal processing problems related to automotive diagnostics and

emissions modeling, as well as its application to two automotive control

problems. In all five cases, we have found EKF training of recurrent neural

networks to be an enabler for developing effective solutions to these

problems.

Figure 2.7 provides a diagrammatic representation of these five neural

network applications and how they potentially interact with one another.

We observe that the neural network controllers for engine idle speed and

air=fuel (A=F) ratio control produce signals that affect the operation of the

engine, while the remaining neural network models are used to describe

various aspects of engine operation as a function of measurable engine

outputs.

2.8 AUTOMOTIVE APPLICATIONS OF EKF TRAINING 57



2.8.1 Air=Fuel Ratio Control

At a very basic level, the role of the A=F controller is to supply fuel to the

engine such that it matches the amount of air pumped into the engine via

the throttle and idle speed bypass valve. This is accomplished with an

electronic feedback control system that utilizes a heated exhaust gas

oxygen (HEGO) sensor whose role is to indicate whether the engine-out

exhaust is rich (i.e., too much fuel) or lean (too much air). Depending on

the measured state of the exhaust gases, as well as engine operating

conditions such as engine speed and load, the A=F control is changed so

as to drive the system toward stoichiometry. Since the HEGO sensor is

largely considered to be a binary sensor (i.e., it produces high=low voltage

Figure 2.7 Block-diagram representation of neural network applications for
automotive engine control and diagnosis. Solid boxes represent physical
components of the engine system, double-lined solid boxes represent
neural network models or diagnostic processes, and double-lined dashed
boxes represent neural network controllers. For the sake of simplicity, we
have not shown all relevant sensors and their corresponding signals (e.g.,
engine coolant temperature).

58 2 PARAMETER-BASED KALMAN FILTER TRAINING



levels for rich=lean operations, respectively), and since there are time-

varying transport delays, the closed-loop A=F control strategy often takes

the form of a jump=ramp strategy, which effectively causes the HEGO

output to oscillate between the two voltage levels. We have demonstrated

that an open-loop recurrent neural network controller can be trained to

provide a correction signal to the closed-loop A=F control in the face of

transient conditions (i.e., dynamic changes in engine speed and load),

thereby eliminating large deviations from stoichiometry. This is accom-

plished by using an auxiliary universal EGO (UEGO) sensor, which

provides a continuous measure of A=F ratio (as opposed to the rich= lean

indication provided by the HEGO), during the in-vehicle training process.

Deviations of measured A=F ratio from stoichiometric A=F ratio provide

the error signal for the EKF training process; however, the measured A=F

ratio is not used as an input, and since the A=F control does not have a

major effect on engine operating conditions when operated near stoichio-

metry, then this can be viewed as a problem of training an open-loop

controller. Nevertheless, we use recurrent network controllers to provide

the capability of representing the condition-dependent dynamics asso-

ciated with the operation of the engine system under A=F control, and

must take care to properly compute derivatives with BPTT(h).

2.8.2 Idle Speed Control

A second engine control task is that of maintaining smooth engine

operation at idle conditions. In this case, no air is provided to the intake

manifold of the engine via the throttle; in order to keep the engine

running, a bypass air valve is used to regulate the flow of air into the

engine. The role of the idle speed control system is to maintain a relatively

low (for purposes of fuel economy) and constant engine speed, in the face

of disturbances that place and remove additional loads on the engine (e.g.,

shifting from neutral to drive, activating the air conditioning system, and

locking up the power steering); feedforward signals encoding these events

are provided as input to the idle speed controller. The control range of the

bypass air signal is large (more than 1000 rpm under idle conditions), but

its effect is delayed by a time inversely proportional to engine speed. The

spark advance command, which regulates the timing of ignition, has an

immediate effect on engine speed, but over a small range (on order of

100 rpm). Thus, an effective engine idle speed controller coordinates the

two controls to maintain a constant engine speed. The error signals for the

EKF training process are a weighted sum of squared deviations of engine

2.8 AUTOMOTIVE APPLICATIONS OF EKF TRAINING 59



speed from a desired speed, combined with constraints on the controls

expressed as squared error signals. We have used recurrent neural

networks, trained by on-line EKF methods, to develop effective idle

speed control strategies, and have documented this work in [5]. Note

that unlike the case of the A=F controller, this is an example of a closed-

loop controller, since the bypass air and spark advance controls affect

engine speed, which is used as a controller input.

2.8.3 Sensor-Catalyst Modeling

A particularly critical component of a vehicle’s emissions control system is

the catalytic converter. The role of the catalytic converter is to chemically

transform noxious and environmentally damaging engine-out emissions,

which are the byproduct of the engine’s combustion process, to environ-

mentally benign chemical compounds. An ideal three-way catalytic

converter should completely perform the following three tasks during

continuous vehicle operation: (1) oxidation of hydrocarbon (HC) exhaust

gases to carbon dioxide (CO2) and water (H2O); (2) oxidation of carbon

monoxide (CO) to CO2; and (3) reduction of nitrogen oxides (NOx) to

nitrogen (N2) and oxygen (O2). In practice, it is possible to achieve high

conversion efficiencies for all three types of exhaust gases only when the

engine is operating near stoichiometry. An effective A=F control strategy

enables such conversion.

However, even in the presence of effective A=F control, vehicle-out

(i.e., tailpipe) emissions may be unreasonably high if the catalytic

converter has been damaged. Government regulations require that the

performance of a vehicle’s catalytic converter be continuously monitored

to detect when conversion efficiencies have dropped below some thresh-

old. Unfortunately, it is currently infeasible to equip vehicles with sensors

that can measure the various exhaust gas species directly. Instead, catalytic

converter monitors are based on comparing the output of a HEGO sensor

that is exposed to engine-out emissions with the output of a second sensor

that is mounted downstream of the catalytic converter and is exposed to

the tailpipe emissions. This approach is based on the observation that the

postcatalyst HEGO sensor switches infrequently, relative to the precatalyst

HEGO sensor, when the catalyst is operating efficiently. Similarly, the

average rate of switching of the postcatalyst sensor increases as catalyst

efficiency decreases (due to decreasing oxygen storage capability).

A catalyst monitor can be developed based on a neural network model

of the dynamic operation of the postcatalyst HEGO sensor as a function of

60 2 PARAMETER-BASED KALMAN FILTER TRAINING



the precatalyst HEGO sensor and engine operating conditions [12] for a

catalyst of nominal conversion efficiency. This is a difficult task, espe-

cially given the nonlinear responses of the various components and the

condition-dependent time delays, which can range from less than 0.1 s at

high engine speeds to more than 1 s at low speeds. We employed a RMLP

network with structure 15-20R-15R-10R-1 and a sparse tapped delay line

representation to directly capture the long-term temporal characteristics of

the precatalyst HEGO sensor. Because of the size of the network (over

1,500 weights) and the number of training samples (63,000), we chose to

employ decoupled EKF training. The trained network effectively repre-

sented the condition-dependent time delays and nonlinearities of the

system, as shown in [12].

2.8.4 Engine Misfire Detection

Engine misfire is broadly defined as the condition in which a substantial

fraction of a cylinder’s air–fuel mixture fails to ignite. Frequent misfire

will lead to a deterioration of the catalytic converter, ultimately resulting in

unacceptable levels of emitted pollutants. Consequently, government

mandates require that onboard misfire detection capability be provided

for nearly all engine operating conditions.

While there are many ways of detecting engine misfire, all currently

practical methods rely on observing engine crankshaft dynamics with a

position sensor located at one end of the shaft. Briefly stated, one looks for

a crankshaft acceleration deficit following a cylinder firing and attempts to

determine whether such a deficit is attributable to a lack of power provided

on the most recent firing stroke.

Since every engine firing must be evaluated, the natural ‘‘clock’’ for

misfire detection is based on crankshaft rotation, rather than on time. For

an n-cylinder engine, there are n engine firings, or events, per engine

cycle, which requires two engine revolutions. The actual time interval

between events varies considerably, from 20 ms at 750 rpm to 2.5 ms at

6000 rpm for an eight-cylinder engine. Engine speed, as required for

control, is typically derived from measured intervals between marks on a

timing wheel. As used in misfire detection, an acceleration value is

calculated from the difference between successive intervals.

A serious problem associated with measuring crankshaft acceleration is

the presence of complex torsional dynamics of the crankshaft, even in the

absence of misfire. This is due to the finite stiffness of the crankshaft. The

magnitude of acceleration induced by such torsional vibrations may be

2.8 AUTOMOTIVE APPLICATIONS OF EKF TRAINING 61



large enough to dwarf acceleration deficits from misfire. Further, the

torsional vibrations are themselves altered by misfire, so that normal

engine firings followed by misfire may be misinterpreted.

We have approached the misfire detection problem with recurrent

neural networks trained by GEKF [12] to act as dynamic pattern

classifiers. We use as inputs engine speed, engine load, crankshaft

acceleration, and a binary flag to identify the beginning of the cylinder

firing sequence. The training target is a binary signal, according to

whether a misfire had been artificially induced for the current cylinder

during the previous engine cycle. This phasing enables the network to

make use of information contained in measured accelerations that follow

the engine event being classified. We find that trained networks make

remarkably few classification errors, most of which occur during moments

of rapid acceleration or deceleration.

2.8.5 Vehicle Emissions Estimation

Increasing levels of pollutants in the atmosphere – observed despite the

imposition of stricter emission standards and technological improvements

in emissions control systems – have led to models being developed to

predict emissions inventories. These are typically based on the emissions

levels that are mandated by the government for a particular driving

schedule and a given model year. It has been found that the emissions

inventories based on these mandated levels do not accurately reflect those

that are actually found to exist. That is, actual emission rates depend

heavily upon driving patterns, and real-world driving patterns are not

comprehensively represented by the mandated driving schedules. To better

assess the emissions that occur in practice and to predict emissions

inventories, experiments have been conducted using instrumented vehicles

that are driven in actual traffic. Unfortunately, such vehicles are costly and

are difficult to operate and maintain.

We have found that recurrent neural networks can be trained to estimate

instantaneous engine-out emissions from a small number of easily

measured engine variables. Under the assumption of a properly operating

fuel control system and catalytic converter, this leads to estimates of

tailpipe emissions as well. This capability then allows one to estimate the

sensitivity of emissions to driving style (e.g., aggressive versus conserva-

tive). Once trained, the network requires only information already avail-

able to the powertrain processor. Because of engine dynamics, we have

found the use of recurrent networks trained by EKF methods to enable

62 2 PARAMETER-BASED KALMAN FILTER TRAINING



accurate estimation of instantaneous emissions levels. We provide a

detailed description of this application in [24].

2.9 DISCUSSION

We have presented in this chapter an overview of neural network training

methods based on the principles of extended Kalman filtering. We

summarize our findings by considering the virtues and limitations of

these methods, and provide guidelines for implementation.

2.9.1 Virtues of EKF Training

The EKF family of training algorithms develops and employs second-

order information during the training process using only first-order

approximations. The use of second-order information, as embedded in

the approximate error covariance matrix, which co-evolves with the weight

vector during training, provides enhanced capabilities relative to first-order

methods, both in terms of training speed and quality of solution. The

amount of second-order information utilized is controlled by the level of

decoupling, which is chosen on the basis of computational considerations.

Thus, the computational complexity of the EKF methods can be scaled to

meet the needs of specific applications.

We have found that EKF methods have enabled the training of recurrent

neural networks, for both modeling and control of nonlinear dynamical

systems. The sequential nature of the EKF provides advantages relative to

batch second-order methods, since weight updates can be performed on an

instance-by-instance basis with EKF training. On the other hand, the

ability to batch multiple training instances with multistream EKF training

provides a level of scalability in addition to that provided by decoupling.

The sequential nature of the EKF, in both single- and multistream

operation, provides a stochastic component that allows for more effective

search of the weight space, especially when used in combination with

artificial process noise.

The EKF methods are easily implemented in software, and there is

substantial promise for hardware implementation as well. Methods for

avoiding matrix inversions in the EKF have been developed, thereby

enabling easy implementations. Finally, we believe that the greatest virtue

of EKF training of neural networks is its established and proven applic-

ability to a wide range of difficult modeling and control problems.

2.9 DISCUSSION 63



2.9.2 Limitations of EKF Training

Perhaps the most significant limitation of EKF training is its limited

applicability to cost functions other then minimizing sum of squared error.

Although we have shown that other cost functions can be used (e.g.

entropic measures), we are nevertheless restricted to those optimization

problems that can be converted to minimizing a sum of squared error

criterion. On the other hand, many problems, particularly in control,

require other optimization criteria. For example, in a portfolio optimiza-

tion problem, we should like to maximize the total return over time.

Converting such an optimization criterion to a sum of squared errors

criterion is usually not straightforward. However, we do not view the sum

of squared-error optimization criterion as a limitation for most problems

that can be viewed as belonging to the class of traditional supervised

training problems.

The EKF procedures described in this chapter are derived on the basis

of a first-order linearization of the nonlinear system; this may provide a

limitation in the form of large errors in the weight estimates and

covariance matrix, since the second-order information is effectively

developed by taking outer products of the gradients. Chapter 7 introduces

the unscented Kalman filter (UKF) as an alternative to the EKF. The UKF

is expected to provide a more accurate means of developing the required

second-order information than the EKF, without increasing the computa-

tional complexity.

2.9.3 Guidelines for Implementation and Use

1. Decoupling should be used when computation is a concern (e.g., for

on-line applications). Node and layer decoupling are the two most

appropriate choices. Otherwise, we recommend the use of global

EKF, regardless of network architecture, as it should be expected to

find better solutions than any of the decoupled versions because of

the use of full second-order information.

2. Effectively, two parameter values need to be chosen for training of

networks with EKF methods. We assume that the approximate error

covariance matrices are always initialized with diagonal value of 100

and 1,000 for weights corresponding to nonlinear and linear nodes,

respectively. Then, the user of these methods must set values for the

learning rate and process-noise term according to characteristics of

the training problem.

64 2 PARAMETER-BASED KALMAN FILTER TRAINING



3. Training of recurrent networks, either as supervised training tasks or

for controller training, can often be improved by multistreaming.

The choice of the number of streams is dictated by problem

characteristics.

4. Matrix inversions can be avoided by use of sequential EKF update

procedures. In the case of decoupling, the order in which outputs are

processed can affect training performance in detail. We recommend

that outputs be processed in random order when these methods are

used.

5. Square-root filtering can be employed to insure computational

stability for the error covariance update equation. However, the

use of square-root filtering with artificial process noise for covar-

iance updates results in a substantial increase in computational

complexity. We have noted that nonzero artificial process noise

benefits training, by providing a mechanism to escape poor local

minima and a mechanism that maintains stable covariance updates

when using the Riccati update equation. We recommend that square-

root filtering only be employed when no artificial process noise is

used (and only for GEKF).

6. The EKF procedures can be modified to allow for alternative cost

functions (e.g., entropic cost functions) and for weight constraints to

be imposed during training, which thereby allow networks to be

deployed in fixed-point arithmetic.

REFERENCES

[1] D.E. Rumelhart, G.E. Hinton, and R.J. Williams, ‘‘Learning representations

of back-propagation errors,’’ Nature 323, 533–536 (1986).

[2] S. Singhal and L. Wu, ‘‘Training multilayer perceptrons with the extended

Kalman algorithm,’’ in D.S. Touretzky, Eds., Advances in Neural Information

Processing Systems 1, San Mateo, CA: Morgan Kaufmann, 1989, pp. 133–

140.

[3] G.V. Puskorius and L. A. Feldkamp, ‘‘Decoupled extended Kalman filter

training of feedforward layered networks,’’ in Proceedings of International

Joint Conference of Neural Networks, Seattle, WA, 1991, Vol. 1, pp. 771–

777.

[4] G.V. Puskorius and L.A. Feldkamp, ‘‘Automotive engine idle speed control

with recurrent neural networks,’’ in Proceedings of the 1993 American

Control Conference, San Francisco, CA, pp. 311–316.

REFERENCES 65



[5] G.V. Puskorius, L.A. Feldkamp, and L.I. Davis, Jr., ‘‘Dynamic neural

network methods applied to on-vehicle idle speed control,’’ Proceedings of

the IEEE, 84, 1407–1420 (1996).

[6] R.J. Williams and D. Zipser, ‘‘A learning algorithm for continually running

fully recurrent neural networks,’’ Neural Computation, 1, 270–280 (1989).

[7] G.V. Puskorius and L.A. Feldkamp, ‘‘Neurocontrol of nonlinear dynamical

systems with Kalman filter-trained recurrent networks,’’ IEEE Transactions

on Neural Networks, 5, 279–297 (1994).

[8] P.J. Werbos, ‘‘Backpropagation through time: What it does and how to do it,’’

Proceedings of the IEEE, 78, 1550–1560 (1990).

[9] G.V. Puskorius and L.A. Feldkamp, ‘‘Extensions and enhancements of

decoupled extended Kalman filter training,’’ in Proceedings of the 1997

International Conference on Neural Networks, Houston, TX, Vol. 3, pp.

1879–1883.

[10] L.A. Feldkamp and G.V. Puskorius, ‘‘Training controllers for robustness:

multi-stream DEKF,’’ in Proceedings of the IEEE International Conference

on Neural Networks, Orlando, FL, 1994, Vol. IV, pp. 2377–2382.

[11] L.A. Feldkamp and G.V. Puskorius, ‘‘Training of robust neurocontrollers,’’ in

Proceedings of the 33rd IEEE InternationaI Conference on Decision and

Control, Orlando, FL, 1994, Vol. III, pp. 2754–2760.

[12] L.A. Feldkamp and G.V. Puskorius, ‘‘A signal processing framework based

on dynamic neural networks with application to problems in adaptation,

filtering and classification,’’ Proceedings of the IEEE, 86, 2259–2277 (1998).

[13] F. Heimes, ‘‘Extended Kalman filter neural network training: experimental

results and algorithm improvements,’’ in Proceedings of the 1998 IEEE

Conference on Systems, Man and Cybernetics, Orlando, FL., pp. 1639–1644.

[14] L.A. Feldkamp and G.V. Puskorius, ‘‘Fixed weight controller for multiple

systems,’’ in Proceedings of the 1997 IEEE International Conference on

Neural Networks, Houston, TX, Vol. 2, pp 773–778.

[15] G.H. Golub and C.F. Van Loan, Matrix Computations, 2nd ed. Baltimore,

MD: The John Hopkins University Press, 1989.

[16] G.V. Puskorius and L.A. Feldkamp, ‘‘Avoiding matrix inversions for the

decoupled extended Kalman filter training algorithm,’’ in Proceedings of the

World Congress on Neutral Networks, Washington, DC, 1995, pp. I-704–I-

709.

[17] E.S. Plumer, ‘‘Training neural networks using sequential extended Kalman

filtering,’’ in Proceedings of the World Congress on Neural Networks,

Washington DC, 1995 pp. I-764–I-769.

[18] P. Sun and K. Marko, ‘‘The square root Kalman filter training of recurrent

neural networks,’’ in Proceedings of the 1998 IEEE Conference on Systems,

Man and Cybernetics, Orlando, FL, pp. 1645–1651.

66 2 PARAMETER-BASED KALMAN FILTER TRAINING



[19] S. Haykin, Adaptive Filter Theory, 3rd ed. Englewood Cliffs, NJ: Prentice-

Hall.

[20] E.W. Saad, D.V. Prokhorov, and D.C. Wunsch III, ‘‘Comparative study of

stock trend prediction using time delay, recurrent and probabilistic neural

networks,’’ IEEE Transactions on Neural Networks, 9, 1456–1470 (1998).

[21] K.-C. Jim, C.L. Giles, and B.G. Horne, ‘‘An analysis of noise in recurrent

neural networks: convergence and generalization,’’ IEEE Transactions on

Neural Networks, 7, 1424–1438 (1996).

[22] D.L. Elliot, ‘‘A better activation function for artificial neural networks,’’

Institute for Systems Research, University of Maryland, Technical Report

TR93-8, 1993.

[23] J. Hertz, A. Krogh, and R.G. Palmer, Introduction to the Theory of Neural

Computation, Redwood City, CA: Addison-Wesley, 1991.

[24] G. Jesion, C.A. Gierczak, G.V. Puskorius, L.A. Feldkamp, and J.W. Butler,

‘‘The application of dynamic neural networks to the estimation of feedgas

vehicle emissions,’’ in Proceedings of the 1998 International Joint Confer-

ence on Neural Networks, Anchorage, AK, pp. 69–73.

REFERENCES 67


