
Improved particle filter for nonlinear problems 

J. Carpenter 
P.Clifford 
P.Fearnhead 

Abstract: The Kalman filter provides an effective 
solution to the linear Gaussian filtering problem. 
However where there is nonlinearity, either in the 
model specification or the observation process, 
other methods are required. Methods known 
generically as 'particle filters' are considered. 
These include the condensation algorithm and the 
Bayesian bootstrap or sampling importance 
resampling (SIR) filter. These filters represent the 
posterior distribution of the state variables by a 
system of particles which evolves and adapts 
recursively as new information becomes available. 
In practice, large numbers of particles may be 
required to provide adequate approximations and 
for certain applications, after a sequence of 
updates, the particle system will often collapse to 
a single point. A method of monitoring the 
efficiency of these filters is introduced which 
provides a simple quantitative assessment of 
sample impoverishment and the authors show 
how to construct improved particle filters that are 
both structurally efficient in terms of preventing 
the collapse of the particle system and 
computationally efficient in their implementation. 
This is illustrated with the classic bearings-only 
tracking problem. 

1 Introduction 

The Bayesian approach to dynamic state estimation 
problems involves the construction of the probability 
density function (PDF) of the current state of an evolv- 
ing system, given the accumulated observation history. 
For linear Gaussian models where the PDF can be 
summarised by means and covariances, the calculation 
is carried out in terms of the familiar updating equa- 
tions of the Kalman filter. In general, for nonlinear, 
non-Gaussian models, there is no simple way to pro- 
ceed. Two difficulties must be resolved: how to repre- 
sent a general PDF using finite computer storage and 
how to perform the integrations involved in updating 
the PDF when new data are acquired. 
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Several approximate methods have been proposed. 
These include the extended Kalman filter [I ,  21, the 
Gaussian sum filter [3], approximating the first two 
moments of the PDF [4, 51 and numerical integration 
over a grid of points in the state space [6-IO]. However, 
none of these methods can be applied automatically. 
Typically they have to be tuned to take account of fea- 
tures of each specific problem. For example, in grid- 
based methods the number and location of the grid 
points has to be decided, usually by a process of trial 
and error. Furthermore, updating the distribution of 
the state of the system as new data arrive usually 
entails a formidable computational overhead. 

There is now a substantial literature concerned with 
simulation based filters in which the required PDF is 
represented by a scatter of particles which propagate 
through the state space [9, 11-19]. The propagation 
and adaptation rules are chosen so that the combined 
weight of particles in a particular region will approxi- 
mate the integral of the PDF over the region. Such 
filters have been variously described as Bayesian boot- 
strap, condensation, Monte Carlo and Metropolis- 
Hastings importance resampling filters. We adopt the 
term Monte Carlo particle filter or particle filter for 
short. Gordon, Salmond and Smith [14] demonstrate 
the effectiveness of a simple algorithm for particle evo- 
lution for various nonlinear filtering applications. Their 
method has become known as the sampling importance 
resampling (SIR) filter or, more commonly in the engi- 
neering literature, the Bayesian bootstrap filter. 

The standard SIR filter is vulnerable to sample 
impoverishment [17, 20-221, so that the particle distri- 
bution gives a poor approximation of the required 
PDF. In extreme cases, after a sequence of updates the 
particle system can collapse to a single point. In less 
extreme cases, although several particles may survive, 
there is so much internal correlation that summary sta- 
tistics behave as if they are derived from a substantially 
smaller sample. To compensate, large numbers of parti- 
cles are required in realistic problems. 

We show how sample impoverishment can be quanti- 
fied. We introduce modifications demonstrated to have 
superior performance to the SIR filter both in terms of 
combating sample impoverishment and in computa- 
tional cost. 

2 Bayesian filtering 

Following Gordon, Salmond and Smith [14] we repre- 
sent the state vector at time k by xk E R", which satis- 
fies 

2 k + 1  = f & k ,  W k )  

where f k  : R" x R" + R" is the system transition func- 
tion and wk is a noise term whose known distribution is 
independent of time. At each discrete time point an 
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observation yk E R p  is obtained, related to the state 
vector by 

where hk : p9" x IW' 4 R p  is the measurement function 
and vk E Rr is another noise term whose known distri- 
bution is independent of both the system noise and 
time. We write Dk for oil, ..., yk), the available infor- 
mation at time k,  and assume the PDF of xl, the initial 
state of the system, is known so that p(xllDo) = p(x,) .  
We then wish to obtain the PDFs of p(xk(Dk) : k 2 I ,  
which are given by the three equations 

! / k  h k ( Z k , u k )  

and 

where 

The basic SIR algoril hm, which provides approximate 
solutions to eqns. 1-3 is given by Gordon, Salmond 
and Smith [14]; see also Section 3.1. 

3 Random measures 

Particle filters work by providing a Monte Carlo 
approximation to the PDF which can be easily updated 
to incorporate new information as it arrives. The 
Monte Carlo approximation to a PDF p(xk) at time k 
consists of a set of random nodes in the state space 

", termed the 'support', and a set of associated 
weights (rnkqL=l summing to 1. The support and the 
weights together form a random measure. 

The objective is to choose a measure so that 
N 

i=l J 

for typical functions g of the state space. This is an 
approximation in the sense that the left-hand side con- 
verges (in probability) to the right-hand side as N -+ 00 

A simple example of a random measure is obtained 
by sampling values ( , ~ k ' ) ~ = ~ , . . ~  independently from p(xk), 
and attaching equal weights mk = N-l; i = 1 , ..., N to 
the values. The left-hand side of eqn. 4 is then the sam- 
ple average Zg1 g(xki)/N. Importance sampling [25] 
generalises this by sampling (s~~)~..,,,,~ from an impor- 
tance PDF Axk) and attaching importance weights mki 
= Ap(ski)/f(ski), where A-' = X i c l  p(sL)/f(ski). 

More sophisticated Monte Carlo integration tech- 
niques [23] are also ;available. Stratified sampling is of 
particular relevance. Suppose that a PDF p(x) is made 
up of contributions from N distinct subpopulations or 
strata, so that p(x) is a mixture of the form 

1241. 

N 

P ( . C )  = P i P i ( X )  
i=l 

where each pi(x) is ;I PDF and XiEl pi = 1. Sampling 
theory [26] tells 11s that a population quantity 
jg(x)p(x)dx can be estimated efficiently by sampling a 
fixed number M j  from each of the strata, with M I  + ... 
+ M N  = N. The gre;ztest efficiency is attained with the 
Neyman allocation iMi  0~ ppi, where OF is the variance 
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of g(x) in the ith stratum. In practice either because the 
variances are unknown or because a number of differ- 
ent functions are to be monitored, the proportional 
allocation N ,  0~ pi is frequently used. Except in certain 
degenerate cases the proportional allocation can be 
shown to be more efficient than simple random sam- 
pling from p ( x )  [26]. 

A random measure ( S i ,  mi)j=l,, ,N which approximates 
p(x) can be converted by resampling into an equally 
weighted measure which approximates a simple ran- 
dom sample from p(x) .  Resampling consists of sam- 
pling (s', ..., s") with replacement from (?, mi)i=l,,,N, i.e. 
the discrete distribution with support points S i  and 
probabilities mi. This leads to a new random measure 
(si, N-l)i=l...N where now the weights are equal, but typ- 
ically there are fewer distinct points in the support. 
Resampling plays a important role in the SIR filter but 
we show that improved approximations are obtained 
by using the weighted measure before resampling 
rather than resampling and then using the unweighted 
measure. Intuitively, this is not surprising because one 
would expect a set of weighted sample points to carry 
more information than an equal number of unweighted 
points. 

3.1 Standard SIR algorithm as random 
measure 
The basic SIR algorithm given by Gordon Salmond 
and Smith [14] is as follows: 
Initialisation: Begin by simulating a sample (S1i)i=l,,,N 
from p(x l ) .  In other words, start from a random meas- 
ure with equal weight on each of the N sample values. 
Preliminaries (step k )  : Assume an equally weighted 
random measure (sk-', W1), approximating p(xk-l(Dk-I). 
Prediction: Estimate the density p(xklDk), up to a nor- 
malising constant K, by the mixture 

N 

i= 1 

Take exactly one sample point from each of the N 
strata by generating support points Ski = h-l(sL-l, wk-1) 
from the system model with importance weights 

Update: Resample from the random measure (Sk ,  
mk)l=l to obtain an equally weighted random meas- 
ure (sk, N-I). In other words, sample N times, inde- 
pendently with replacement, from the set ( N ,  
with probabilities (mkz)i=l N ,  to obtain the random 
measure (ski, N-l),=l ,.+ 

A rapid algorithm for the update step is given in Sec- 
tion 4.1. 

3.2 Variance reduction at update stage 
This analysis provides the motivation for the improved 
filter discussed. Suppose that we wish to estimate 

the mean value of some function g of the state of the 
system at time k .  Using the resampled values from the 
SIR filter, this can be estimated by 

N 

i= 1 
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However, an unnecessary element of random noise is 
introduced by this approach. Suppose (s”ki) is a sample 
from p(xkjDk-1) then the quantity 8, can be estimated 
more precisely by 

N 

(7 )  
i=l 

yhere mki is given in eqn. 6. To see this, we note that 
8k can be written as 

N 

i=l 

where (.Zl,, ... ,, ZN) is a multinomial disiributed vector 
with probabilities (mki). The quantity ek is therefore 
the expected value of 8,. Calculating variances we find 
that, for N large, 

- 1  
N 

var0k N var0k + -varg(zk) 

where the last term is the variance that si, would have 
if (sk*)i=l was a simple random sample of size N from 
p(x,lDk). Details of the derivation ar_e omitted for brev- 
ity. It followsA that the variance of 8, is always smaller 
than that of 8,. In fact when the observatiop yk is not 
informative, i.e. mkl E N-’ the variance of 8, is effec- 
tively double that of 8k. 

4 Efficient particle filters 

As a refinement of the SIR filter it has been suggested 
[20] that a larger number of values, say 10, should be 
sampled from each stratum. At the resampling stage, a 
sample of size N is then selected from the 10 x N pre- 
dicted values to restore the size of the support set to N .  
It has also been suggested [22] that a simple random 
sample should be drawn from the mixture distribution 
(eqn. 5) .  However, sampling theory indicates that 
greater accuracy can be achieved by stratified sampling. 
We write p(x,lDk) from eqn. 5 in the form 

N 

t=l 

where 

and 

We only consider stratification by the proportional 
allocation. Ideally we should take M, = Np, but in 
practice these quantities are unlikely to be exact inte- 
gers. We can, however, arrange that M ,  are integer var- 
iables with small variances and the correct expected 
value Our algorithm 2 in Section 4.1 achieves this 
while ensuring that IM, - NP,i is always less than 1. 
Another simple suggestion [27] is to take M ,  to be the 
integer part of NP,, and then to add 1 randomly with 
probability equal to the fractional part of NP,. A disad- 
vantage of this method is that the population of parti- 
cles will fluctuate in size (although it will never die out 
completely). In practice, the quantities p, and P l ( X k )  
may be difficult to deal with and importance sampling 
is necessary. Combining the preceding steps the pro- 
posed particle filter is as follows: 

4 

Initialisation: Start from a random measure with N 
support points, possibly obtained by stratified sam- 
pling, which approximates the PDF p(xl) .  
Preliminaries (step k): Assume a random measure (sk-1, 
mk-l), approximating p(xk-l lDlc-l). 
Prediction: Estimate the density p(xklDk), up to a nor- 
malising constant K, by 

N 

P(ZrcIDk) = ~ ~ C m ; - , p ( z k / S ; e l ) P ( ! / k l ~ k )  (9) 
a= 1 

Construct an importance PDF 
N 

a ( 4  = a$&) 
a=1 

Take a stratified sample from this density using algo- 
rithm 2, with M ,  sample poinfs in the ith category, 
where M, has expected value Np,.  
Update: For each i, sample M ,  support points (s,& from 

p, (Xk) ,  with importance weights given by 

2- 1 i 

for < j I EM, 
The updated random measure is then given by (sk’, 
mkJ)j,l...N, where the weights are scaled to sum to 1. 

Properties of the updated state distribution can be 
estimated using the random measure as in eqn. 7. If an 
approximate sample from the state distribution is 
required it can be obtained by simple random sampling 
from the random measure as described in Section 3. 
Note that once the stratification numbers have been 
calculated, there is only one sampling operation at each 
update. Carrying forward the weights (mk-1) at the 
update step, eliminates the resampling phase of the 
standard SIR filter. Construction of the importance 
PDF is necessarily problem specific. We work through 
an example in Section 6. 

4. I Reducing computational complexity of 
particle filters 
Sampling of N values from a discrete distribution (si, 
mi)i=l.,.N, can be carried out by simulating standard uni- 
form variables ( U J ~ = ~ , , , ~  and then using binary search to 
find the value j ,  and hence xj, corresponding to 

where Qj = C& me and Qo = 0. 
The binary search method is commonly used to 

implement the updating stage of the SIR algorithm. 
However, it is not efficient. To obtain a sample of size 
N by this means takes U(N log N> calculations; the log 
N term arises from the binary search. A more efficient 
method is to simulate N + 1 mpoiientially distributed 
variables to, ..., tN, ,using ti = -log(ui), calculate the run- 
ning totals ? = Z& t( ,  and then merge ? and Qj. The 
algorithm is based on the well-known method of simu- 
lating order statistics [28]. 
Algorithm 1: O(N)  algorithm for the SIRfilter 

do while j 5 N 

E=1 .t=1 

Qj-1 < ui I Q j  

i = 0; j = 0 

if QjTN > Ti then 
i = i + 1; output sj 

IEE Proc.-Radar, Sonar Navig., Vol. 144, No. 1, February 1999 



else 
j = j +  1 

end if 
end do 
For precise proportiorial stratification, the objective is 
to ensure that the number of points in the ith category 
is as close as possible to Np,. Label the categories si = i. 
The output will consiljt of N category labels with the 
property that the expected number of labels of category 
i will be equal to Np2 iind the actual number will differ 
from the expected nuniber by no more than 1. 
Algorithm 2: O ( N )  algorithm for stratification 
T = unif(0, l)/M, j = 1; Q = 0; i = 0 
do while T < 1 

if Q > T then 

else 
T = T + l/N; output s, 

pick k in G, ..., N }  
i = sk 

Q = Q + P l  
switch ( S k ,  &) with (SJ, PI) 
j = j +  1 

end if 
end do 

5 Diagnostic for sample impoverishment 

All the particle filters we compare in Section 6 are 
capable of approximating the posterior distributions of 
the state variables in a statistical sense. They differ in 
terms of the accuracy with which properties of the state 
distribution can be &mated. For comparison, the 
effective sample size is an obvious quantity to compute. 
This is the sample size that would be required for a 
simple random sample from the target PDF to achieve 
the same estimating precision as the particle filter. 
Since some properties of the state distribution may be 
estimated well, and some poorly, the effective sample 
size will depend on what is being estimated. 

Suppose that the property to be estimated is 

To see this, equate two estimates of the variance of zk: 
one based on the variance between replicates and the 
other based on the notional variance that an estimate 
would have if it was a sample average of a simple ran- 
dom sample of size fl, i.e. 

The effective sample size is then obtained by solving 
for N*. 

We advocate the use of this diagnostic generally, in 
assessing the performance of Monte Carlo filters. The 
smaller the effective sample size is, the less reliable the 
filter is. In principle, a Bayesian filter should be 
assessed by looking at its performance averaged over 
the population of trajectories generated by the system 
model. However, for nonlinear problems it may happen 
that most of the trajectories are simple to filter and 
only a few are ‘difficult cases’. It is therefore helpful to 
see how the filter performs for typical examples of 
these difficult cases. An example of such a problem is 
given in Section 6. 

The integrated correlation time in Markov chain 
Monte Carlo (MCMC) calculations in nondynamic 
problems [29] and the effective sample size play similar 
roles. Neither of these diagnostics checks to see 
whether there is convergence to the right distribution. 
A noisy biased filter may have a large effective sample 
size but the sample will not have come from the correct 
distribution. To check for bias, the proposed particle 
filter needs to be compared with filters which are 
known to perform correctly. 

6 Bearings-only tracking 

In this example an object moves in the (v, q) plane 
according to a second-order model 

where xk = (v, v, q, i7)kT, wk = (w,, ws)kT 
xk @xk-l + r W k  (10) 

/I 1 0 o \  /1 0 \  

r 

and let 
N N 

be the filter estimates of 8 and d, the variance of g(xk) 
given & as in eqn. 8. If 8 is estimated by using the 
average value of g ( x F )  in a simple random sample of 
size fl from p(x,(Dk). the estimate will have a variance 
of d I i f .  To evaluate the effective sample size we use a 
technique borrowed from classical ‘analysis of variance’ 
in statistics. 
(i) Run the filter indt:pendently A4 times, obtaining M 
independent replicate:;, each based on N particles. 
(ii) For each replicate., at step k,  calculate z& and v&, j 
- 1, ..., M. 
(iii) Calculate z k  and v k ,  the average values over the M 
replicates. 
(iv) The effective sarnple size is then MVk/XJ;,=lM(zkJ - 

- 

2k)2. 
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The system fluctuations wk = (wv, wJkT are independ- 
ent zero-mean Gaussian white noise. The model essen- 
tially assumes that the velocity evolves like Brownian 
motion. The ‘leap-frog’ discretisation is slightly non- 
standard. The state variables v, and 7 j k  are the veloci- 
ties at time k - 1/2. Positions are updated by using a 
midpoint approximation to the integrated velocities. 
Velocities at step k would be approximated by ( v k  + 
V,+,)/2 and (* j l k  + ~ j ~ + ~ ) / 2 .  There is an equivalent for- 
mulation of the leap-frog algorithm in which ( V k ,  f i k )  
are the velocities at time k + 112 [22, 301. The matrix F 
is then modified in the obvious way. We use parame- 
ters that are compatible with an example considered by 
Gordon, Salmond and Smith [14] who use a different 
integration scheme. 

The observations are a sequence of bearings 

Y k  = tan-l(Vk /uk) + uk 

The initial state of the object is hr, = (-0.05, 0.001, 0.7, 
-0.055)T. The system noise variables w,, wv have vari- 
ance T~ = O.0Ol2 and the observation error vk has vari- 
ance 0s = 0.0052. We consider an observed trajectory 
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which passes close by the observer who is fixed at the 
origin, Fig. 1. We adopt the same prior distribution of 
the starting configuration as Gordon, Salmond and 
Smith [14]. 

L s 
2 
8 0.6- 

E 0.4- 
c 
al 
C 2 0.2- ._ 
U .  

0.8 1 

i 

0’ 
2 3 4 5 

angle, rad 
Fig. 1 Trajectory used to compare particle filters in Section 6 
Object passes from left to right in 24 time steps. Close to origin (step 10) prob- 
lem is most nonlinear and particle filters start to degenerate. 

To construct the importance PDF consider the ith 
component of eqn. 9 

where we have replaced by s, Y k  by y and xk by x 
for notational convenience. Conditional on s the den- 
sity of x depends only on (v, 77). Converting (v, 77) and 
(E(vls), E(q/sj) to polar coordinates as ( r ,  8) and (p, aj, 
respectively, it follows that eqn. 12 is proportional to 

= r n ; - l T  x 
e- (T-p  cos (e -a ) )2 / (272 ) -p2  sin2(O-ol)/(272) - ( y - 0 ) ~ / ( 2 2 )  

Our importance PDF is obtained by replacing sin(8 - 
a) by 8 - a, giving the PDF 

Bzf ( 0 ) f  ( 4 0 )  

f (+ )  o( , , - ( . -pCos(B-~))Z l (2T2)  

where 

andf(8) is the Gaussian PDF with mean ($ap2 + y$)l 
(p202 + 3) and variance c9$/(p2c9 -I- 22) and the nor- 
malising constants have been absorbed into pi with 

p, = 1. Both f(8) and f(rl8) can be sampled 
directly using standard methods. 

All the filters were initialised by taking samples of 
size N = 5000 from p(x21D2), obtained using the 
Metropolis-Hastings algorithm as described in [30]. 
The distribution of these samples was checked against a 
numerical evaluation of p(x21D2) and found to agree 
closely. The samples were also checked for independ- 
ence by computing auto-correlations during the 
Metropolis-Hastings simulations. The effective sample 
sizes were calculated using A4 = 1000 replicates. Each 
of the different filtering methods were successively ini- 
tialised from each of the M starting configurations. 

The results for various methods are presented in 
Table 1. We calculate effective sample sizes for the fil- 
ter estimates of the mean range and the mean bearing 
at each step. In all cases there is greater sample impov- 
erishment for the range calculations than for the 
bearings. The ‘improved reweighted’ filter is an imple- 
mentation of the particle filter described in the paper, 
with precisely stratified sampling as in algorithm 2. The 
‘multinomial reweighted’ filter carries weights forward 
as in the improved filter, but samples the strata multi- 
nomially using algorithm 1 (with mi = pi). The ‘two- 
stage’ algorithm [22] samples strata multinomially, but 
resamples after each step, to obtain equally weighted 
particles. The ‘standard SIR’ [14] is included for com- 
parison. Our implementation of the basic SIR algo- 
rithm (Section 3.1) does not incorporate the ad hoc 
modifications of added jitter and prior editing sug- 
gested by Gordon, Salmond and Smith [14]. 

7 Conclusions 

We have shown how to reduce the computational cost 
of implementing particle filters. We have proposed an 
improved particle filter and demonstrated its superior 
performance. While the filter is more complicated to 
implement and, unlike the standard SIR filter, needs to 
be tailored to the problem in hand, the computational 
gains are substantial. Further, we have introduced a 
diagnostic for sampling inefficiency which allows com- 
parison of the performance of various Monte Carlo 

Table 1: Effective sample sizes to nearest integer obtained 
using various particle filters (see text) 

Standard SIR 
Mult inomial Two-stage 

Step Improved reweighted reweighted sampling 

Radius Angle Radius Angle Radius Angle Radius Angle 

2 4545 4869 4545 4869 4545 4869 4545 4869  

4 1190 2614 794 1648 588 1317 714 1192 

6 236 866 147 602 90 348 132 355 

8 106 815 85 563 48 339 47 263 
10 81 521 62 399 31 212 31 179 

12 25 684 20 538 11 249 9 162 

14 14 2757 11 2387 6 1540 5 479 

16 18 1377 14 1051 7 668 5 267 

18 17 4538 14 3701 7 2871 5 1803 

20 17 775 14 640 7 350 5 243 

22 19 436 15 360 7 204 4 109 

24 19 2394 15 1560 7 967 5 621 
Mean angle or bearing is well estimated but in all cases there is severe loss of 
information about the range from step 10 onwards. 
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filters. We advocate the use of this diagnostic tool in 
the analysis of sequential Monte Carlo algorithms. 

All the filters we have discussed suffer from substan- 
tial sample impoverishment. In principle this could be 
monitored using our diagnostic and compensated for 
dynamically by adjusting the number of particles at 
critical stages. We believe that there is scope for even 
greater variance reduaion by the use of more efficient 
Monte Carlo integration techniques. 
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