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Equalization of Nonlinear Time-Varying Channels
Using Type-2 Fuzzy Adaptive Filters

Qilian Liang and Jerry M. MendgFellow, IEEE

Abstract—This paper presents a new kind of adaptive filter: functions. For example, experts frequently assign different
type-2 fuzzy adaptive filter (FAF); one that is realized using an intervals to the same label. So information coming from experts
unnormalized type-2 Takagi-Sugeno-Kang (TSK) fuzzy logic 4ntains linguistic uncertainty. As another example, in mobile
system (FLS). We apply this filter to equalization of a nonlinear S . .
time-varying channel and demonstrate that it can implement the COll’nmunlcanons,. the mappings between '”pf“ and.output d_ata
Bayesian equalizer for such a channel, has a simple structure, and Pairs are uncertain due to the channel dynamics. This numerical

provides fast inference. A clustering method is used to adaptively data uncertainty causes type-1 FAF and other nonlinear filters
design the parameters of the FAF. Two structures are used for the o perform poorly.

equalizer: transversal equalizer (TE) and decision feedback equal- Linguistic and numerical uncertainties require new filters to

izer (DFE). A new decision tree structure is used to implement . .

the ofecisiZ)n feedback equalizer, in which each leaf of thpe tree is _handl_e them. In this paper, we propose a type-2_ FAF tq do this

a type-2 FAF. This DFE vastly reduces computational complexity in which antecedent or consequent membership functions are

as compared to a TE. Simulation results show that equalizers type-2 fuzzy sets.

baseq.on type-2 FAFs perform much better than nearest neighbor  The concept of type-2 fuzzy sets was introduced by Zadeh

classifiers (NNC) or equalizers based on type-1 FAFs. [34] as an extension of the concept of an ordinary fuzzy set, i.e.,

Index Terms—Channel equalization, decision feedback equal- a type-1 fuzzy set. Type-2 fuzzy sets have grades of member-
izer, decision tree, interval type-2 TSK fuzzy logic systems, time- ship that are themselves fuzzy [6]. A type-2 membership grade
varying channels, type-2 fuzzy adaptive filters. can be any subset iif, 1]—the primary membershiand cor-

responding to each primary membership, there se@ondary
|. INTRODUCTION membershigwhich can also be iif0, 1]) that defines the pos-

. . sibilities for the primary membership. Type-2 fuzzy sets allow
lLTERS are mformatloq processors. A type-_l fuzzyﬁs to handle Iinzuisticyuncertaintieg, agaypified b{/ the adage
a_dapt_lv_e f|_|ter (FA'_:)’ Wh'Ch can process n_umerlcal dat"i'lvords can mean different things to different people [20].”

and linguistic mformauon in a natural form, i.e., as fuzzy Karnik and Mendel ([10]—[14]) established a complete type-2

IF—THEN.ruIes and mput—output (110) datg pairs, was prOpOS?’ﬁjzzy logic system (FLS) theory to handle linguistic and numer-

and applied to nonlinear channel equalization in [33]. Waﬂ9a| uncertainties. A type-2 FLS includes fuzzifier, rule base,

and Mendel demonstrated that by incorporating some Iinguisﬂi:ZZy inference engine, and output processor. The output pro-

descriptors (fuzzy terms) about the channel into the FAF, Rssor includes a type-reducer and a defuzzifier; it generates a

adaptation speed could be greatly improved and its bit ert e-1fuzzy set output from the type reducer and a crisp number
rate fBER)Spouldhbe madelc[I:cEFe tﬁ thebBER of the, opl)tlm 0‘{5“ the defuzzifier. Atype-2 FLS (justas atype-1 FLS)is char-
equalizer. Since then, type- S have been extensively Ucterized by IF-THEN rules, but its antecedent or consequent

in signal processing and communications. For example,é ts are now tvpe-2. General tvpe-2 ELSs are computationall
channel equalization, Sarwal and Srinath [25] observed thalih@e type-2. yp P y

Li'ﬁ‘!érval sets (in this case, the secondary memberships are ei-

izer. Lee [16] prop_osed a complex FAF for QAM constellatlo%er zero or one). A theory and design methodology for interval
channel equalization, Patra and Mulgrew [23] used an FAF e-2 Mamdani FLSs is given in [17] and a comparable theory

implement a Bayesian equalizer, and also used it to eI|m|n% d design methodology for normalized output interval type-2
cochannel interference [24]. TSK FLSs is given in [18]

Qune_ often, the |nfornjat|_on t_o pe processed by a FAF IS Recently, it has been shown [30], [31] that normalizing the
uncertain due to uncertain linguistic knowledge and uncertaér&tput of a TSK FLS, which increases complexity, is unneces-
Pumerlcal valutes. FoLexarlan(Ia, Irt]' IF'THEN rules gon(;elrnl ry in some cases. In this paper, we therefore propose a type-2
uzzy concepts such aslowly ume-varying moderately cae \hich is an unnormalized outputinterval type-2 TSK FLS,
time-varying or rapidly time-varying experts may not agree ONand we apply this type-2 FAF to equalization of time-varying
how to represent these linguistic labels using fuzzy members'&'l?annels

Most of the work that has been done in the area of adaptive
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rapidly fading channels. Cowan and Semnani [5] approachadalyzing the interval-set nature of the resulting output. In this
this problem by increasing the number of equalizer taps aedction, we provide a review of background materials that let us
choosing the coefficients from different ranges of values aexplain how to do this.

cording to the amplitude of the distorted signals. Their method

requires choosing a large number of coefficients and switchidg Unnormalized Output Type-1 TSK FLS

threshplds. _ _ A type-1 TSK FLS, is described by fuzzy IF-THEN rules

We interpret the time-varying nature of a channel as uncgghich represent I/O relations of a system. The most widely used
tainties in its coefficients; this interpretation matches the reasghe-1 TSK FLS (the one we direct our attention at) is a first-
of existence for a type-2 FAF and motivates us to use a typygjer type-1 TSK FLS. It has a rule base\dfrules, each having

FAF as an adaptive equalizer for time-varying channels.  , antecedents, where thith rule R is expressed as
There are, however, two types of adaptive equalization: se-
quence estimation and symbol detection [2]. Sequence estima- R: IF z; is F} andz, is F and . .. andx,, is F;
tion has very high computation complexity, because channel es- i i i i o
timation is needed. Symbol detection is essentially a classifi- THENY' = 6o+ cion + Gua -4 6ty
cation problem in which the input base-band signal is mappgflwhichi = 1,2,..., M; Cz (j = 0,1,...,p) are the con-
onto a feature space determined by the direct interpretation of@juent parameterst is the output of theth IF-THEN rule;
known training sequence, e.g., in [27], a nearest neighbor rggd 7/ (k = 1,2,...,p) are type-1 fuzzy sets. Given an input
is used to classify the distorted signal and, in [22], a systemy, s, ... z,),the final output of the unnormalized first-order
atic feature space partitioning method is proposed to divide tfige-1 TSK model is inferred as [30], [31]
entire feature space into two decision regions using a set of hy-

perplanes. In the classifier-based approach, channel estimation M i
is unnecessary, which tremendously simplifies this approach. y= Z Iy )
In this paper, we focus on the classifier approach to adaptive =1

equalization, and use an unnormalized output interval type\—,ghereff,
TSK FAF (type-2 FAF, for short) as the adaptive equalizer

In Section Il, we provide some preliminaries that are needed fi= TE g () 2)
for the rest of this paper, i.e., we review an unnormalized output *
type-1 TSK FLS and the extension principle, introduce the memtd 7 denotes &-norm.
and addition operations for interval sets and summarize the conWhen Gaussian MFs and proddatorm are used, i.e.,
cept of upper and lower membership functions (MFs) of a type-2 -
fuzzy set. Our main results for a type-2 FAF are given in Sec i (21) = exp [_1 <.’L’k ka> ] 3)

are rule firing strengths defined as

tion Ill. In Section IV, we explain how a type-2 FAF can be ap-
plied to time-varying channel equalization and how it can be
used as a transversal equalizer (TE). In Section V, we desigthan (1) can be expressed as
decision feedback equalizer (DFE) using a decision tree and a " » oy
collection of type-2 FAFs and compare its performance with a _ i 1 (@ —my,
v=>u [Tew| -5 (2575) .
=1 k 7k

Ty,

4)

nearest neighbor classifier and another DFE designed using a
decision tree and a collection of type-1 FAFs. Conclusions and
future research directions are given in Section VI. Observe that (4) is identical to the output formula for a radial
In this paper,A is a type-1 fuzzy set and the membershipasis function (RBF) network [2] when Gaussian MFs are used
grade ofr € X in A is p4(x), which is a crisp number in as the RBFs. This kind of RBF network has been applied to
[0,1]. A type-2 fuzzy set inX is A and the membership gradeBayesian equalization [2]-[4]. Later in this paper, the unnor-
ofz € XinAis w3 (%), which is a type-1 fuzzy set if§), 1]. malized output type-1 TSK FLS in (4) will be used as a type-1
The elements of the domain pf; (=) are calledprimary mem- FAF equalizer and its performance will be compared with that
bershipsof = in A and the memberships of the primary memef a type-2 FAF.
berships inu; («) are calledsecondary membershigg = in
A. The latter defines the possibilities for the primary membeB. Extension Principle
ship.;3 (), can be represented, for eacte X, asp;(z) =  The extension principle [34] allows the domain of definition
J,, fz(w)/u,u € J C [0,1]; when the secondary MFs are type-Jf a mapping or a relation to be extended from points in the
interval sets, we call the type-2 setiaterval type-2 set1de- universe of discours¥ to fuzzy subsets of/. When we need
notesmeetoperation and. denotegoin operation. Meet and to extend an operation of the forfif6; , . . . , 6,,) to an operation
join are defined and explained in great detail in [12]. f(A1,...,A,), we will not extend the individual operations,
like multiplication, addition, etc., involved iffi; rather, we will
use the following definition [12]:

=1

Il. PRELIMINARIES

The type-2 FAF developed in this paper is based on an unf(A1,. .., Ay)
normalized output interval type-1 TSK FLS and is obtained by o
applying Zadeh's [34] extension principle to the latter and by o, Jo, pa (O1) 5 poa, (0n)/ F(O1,- - 0n) (5)
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D. Upper and Lower MFs of Type-2 MFs

For convenience in defining the upper and lower MFs of a
type-2 MF, we first give the definition dbotprint of uncertainty
of a type-2 ME

Definition 1 (Footprint of Uncertainty of a Type-2
MF): Uncertainty in the primary membership grades of a
type-2 MF consists of a bounded region that we call the
footprint of uncertaintyof a type-2 MF (e.g., see Fig. 1). It is
the union of all primary membership grades.

Definition 2 (Upper and Lower MFs):An upper MF and a
lower MF are two type-1 MFs, which are bounds for the foot-
print of uncertainty of an interval type-2 MF. The upper MF is
a subset that has the maximum membership grade of the foot-
print of uncertainty and the lower MF is a subset which has the
minimum membership grade of the footprint of uncertainty.

We use an overbar (underbar) to denote the upper (lower) MF.
Fig. 1. The type-2 MF for Example 1. The thick solid lines denote uppdror example, the upper and lower MFs of the interval type-2
MFs and the thick dashed lines denote lower MFs. The shaded regions areftiigzy setyj (xy) (used in the next section) ar:@“k{ (xy) and

6 10

footprints of uncertainty for interval secondaries. The centers of Gaussian MFs k
vary from 4.5 to 5.5. HF;f» (x1) andﬂﬁi (x3) can be expressed as
_ 1
whered; € A; fori = 1,...,n, andx denotes a-norm. For K (1) = /ZE[ (o) € )} 1w, ()
example, iff (61, 62) = [6162]/[61+ 6], we write the extension B Mok
of f to type-1 sets, and A, as Example 1: Gaussian Primary MF with Uncertain

Mean: Consider the case of a Gaussian primary MF having a
fixed standard deviation!, and an uncertain mean that takes

616 on values inmt,,mt.], i.e.,
f(AlvA2):/ / MA1(91)*MA2(92)/ 72 (6) M1 M
6, Jo,

01 + 6

2
1 /x — mb
l - Tk
wheref,; € pa, fori = 1,2. ) = eXp[ 2 < ol ) ] ’
. my, € [miy,mi,] (8)
C. Meet and Addition for Interval Sets )
_ _ _ where £ = 1,...,p;p is the number of antecedents
The membership grade of € X in a type-2 fuzzy se ; — 1 A/ and M is the number of rules. The upper
is 13 (x); itis a type-1 fuzzy set 0, 1]. In an interval type-2 Mg it (), is (see Fig. 1)
fuzzy set (see Fig. 1), (x) is a type-1 interval set. Thameet

andaddition operations, which will be needed to implement a N (mil,ﬁi;wk) . TR < iy
type-2 FAF, can be greatly simplified for interval type-1 sets, by #4(zz) = 1, miy <o <mpy  (9)
using (Fig. 1). N (m§c270£§$k) , m > mb,

Theorem 1 (Meet of Interval Sets Under Minimum or A
Product t-Norms): The meet under minimum or product Where,  for  example, N(mj,,o};x) =
t-norms of n interval type-1 setsFi,...,F,, mi_,F;, exp(=(1/2)(zr —mi;/o})*). The lower MFu (z1) is (see
having domains [l1,71],...,[ln,7], respectively, where Fig. 1)

[l;,7] € [0,1] ¢ = 1,2,...,n, is an interval set with domain . mb +m
[(ll*12*"'*ln)7(7’1*7’2*"'*7’n)]- Ni(xk): {N(mk270k7$k)7 o) < —j12 jz (10)

For the proof of this theorem see [13]. B N (mby,olsan), ap > Magmee,

Theorem 2 (Addition of Interval Type-1 Sets}iven 0
n interval type-l sets [i,....F,, with domains  \yesetheresults of this example later in Sections IV-E and V.
[l1,71], -+, [ln, ], respectively, wherell;,,»;] < [0,1]

1 = 1,2,...,n, t_heir Iinear combina!tiorE;‘:1 aze where . TYPE-2 FAE

«; (¢ =1,...,n) is a crisp constant, is also an interval type-1

setDD ol auli, > i o] Our type-2 FAF for channel equalization is obtained by gen-
The proof of Theorem 2 is given in [12]. eralizing the unnormalized output type-1 TSK FLS to a type-2

Observe from Theorems 1 and 2 that the meet and additibfK FLS. For equalization, the antecedents of the type-1 TSK
operations of interval sets are determined just by the two eRHS are generalized to type-2 fuzzy sets, whereas the conse-
points of each interval set. In a type-2 FAF, the two end poinggient is unchanged (i.e., it is a crisp number). Note that this
are associated with two type-1 MFs to which we refeupger is not the only way to generalize the Section II-A TSK FLS to
andlower MFs a type-2 TSK FLS, e.g., another generalization is from type-1
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antecedents and type-0 consequent to type-2 antecedents ar8) The defuzzified output of our type-2 FAF is

type-1 consequent. The reason we use a type-0 consequent in
our FAF for equalization is because the consequent is deter-
mined by the channel state category, which, as explained in Sec-

tion 1V-B, is a crisp value.

In a type-2 FAF with a rule base @f rules, where each rule

hasp antecedents, thgh rule R’ is denoted as

R':IF 1 is Ff andzz is Fj and ... anda, is I},
THEN ¢ = ¢} + ciay + chag +--- + c;a:p

M

y=> v'(f + )2

=1

(19)

Proof:

1) Based on (11), (13), and Theorem 1, we see Hids an
interval set. Applying Theorem 1 to (11), we obtain (14)
and (15).

2) Because™ (i = 1,2,..., M) are interval type-1 sets,

i.e.,pri(fY) = 1, (12) simplifies to

M
YFl...FM:/.../l
(F*,..., FM) . ;fy

wherei = 1,2,...,M; ¢ (j = 0,1,...,p) are the con-
sequent parameters that are crisp numbgtsis an output

from theith IF-THEN rule, which is a crisp humber and the

F,j (k = 1,2,...,p) are type-2 fuzzy sets. Given an input
x = [x1,22,...,2,)%, the firing strength of theth rule is = [y1, yr]- (20)
([10]-{12], [14]) ‘ ‘ o . ,

‘ Becausef* € F* = [f*, f*] andy® is a crisp value,

(11) applying Theorem 2 to (20), we obtain (16) and (17).

3) Becaus€& is an interval set, we defuzzify it using the
average ofy; andy,.. Hence, the defuzzified output of the
type-2 FAF isy = (y; + v../2) which is easily shown to

M be given by (19).
T, s (f) / S riy 0
=1

(12)

F* = ps (1)1 P (z2)M--- 11 P ().

The final output of the type-2 FAF is obtained by applying the
extension principléo (1), as described in Section 1I-B, i.e.,

Y(FY, ... FM) :/
1 f]\/[
IV. TRANSVERSAL EQUALIZER FOR TIME-VARYING CHANNELS

. ) . . - ING A TYPE-2 FAF
whereM is the number of rules fired;* € F*, and7 indicates UsING

the chosert-norm.Y is called arextended weighted arage  A. Introduction
it reveals the uncertainty at the output of a type-2 FLS due toChenet al.[2] used an RBF network to implement a Bayesian
antecedent uncertainties and is itself a type-1 fuzzy set. ~ equalizer for a time-invariant channel, and demonstrated that it
Here, we focus on the very practical case when interval typehds an identical structure to the optimal Bayesian symbol deci-
sets are used in the antecedents, which meansézx) (k =  sion equalizer. Although they provided a decision-directed clus-
1,...,p) is an interval set, and we denote * tering algorithm to track the changes of channel states for a time-
N varying channel, no equalizer was designed for such channels.
fiy (xx) = [ﬁpi (xk),ﬁﬁ; (xk)} = [i;, f,@} . Patra and Mulgrew [23] observed that the Bayesian decision so-
* lution can be represented using a normalized formula which has
Our type-2 FAF is then computed using results in the followingin identical structure to a type-1 fuzzy filter, and used it to again
Theorem 3: design a Bayesian equalizer for a time-invariant channel. In this
1) In an interval type-2 FAF with meet under minimum ofection, we explain why a type-2 FAF is needed for equaliza-
product¢-norm, the firing strength in (11) for rul&’ is tion of a time-varying channel, and design a transversal equal-

(13)

an interval sef™ = [f’, f’], where(i = 1,..., M) izer using a type-2 FAF.
= P (1) % ox pz (@) = Tlg’:lﬁ (14) B. Preliminaries for Channel Equalization
and ' ’ The block diagram of a baseband communication system
Fi_ - o v F that is subject to intersymbol interference (ISI) and additive
Fr= e = oeex gy (2p) = Tz i (19 Gaussian noise (AGN) is shown in Fig. 2, whesgk) is

the symbol to be transmitted(k) is the noise, the channel

2) The extended weighted averagé¢r™, ..., FM) is also : _ . i
) 9 e, ) order isn (n + 1 taps), and time-varying tap coefficients are

an interval sefy;, y..] where

a;(k) (i =0,1,...,n). Hencey (k) can be represented [8] as

M

= ; Iy (16) (k) = ai(k)s(k — 1) + e(k). (21)
Mo =0

w=> fv (17)  Here we assume thatk) is binary, i.e., it is either-1 or —1
i=1 with equal probability.

and - ‘ ‘ If a fuzzy filter (such as in [33]) is used as a TE, as shown in
Y =cyteir + T+ o+ T (18) Fig. 3, its antecedents arét), »(k—1),...,r(k—p+1), where
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l e(k) P

—— .| Com. Channel _.@_. Equalizer —
s(k) k) 1(k) s(k-d)

Fig. 2. Block diagram of a base-band communication system subject to ISI and AGN.

D --—-— D |- A correct decision by the equalizer occurs if
$(k—d)=s(k-d) (26)
k)| rk-1) r(k-p+1) where3(k — d) is the decision output of the equalizer ahb

a decision delay. Based on the category@f — d) (i.e., £1),
the channel stateg(k), can be partitioned into two classes [2]

Transversal Equalizer

R = {#(k)| s(k — d) =1} @7)
fl R™ = {#(k)|s(k —d) = —1}. (28)
sgn(f) The number of elements ™ andR~ are denotead} andn_,
g respectively. Becaus€ .k — d) has equal probability to be 1
or —1sont = n; = n,/2 = 2*tP~L The channel states
@(k-d) in R and R~ are denoted} (i = 1,...,n}) and?; (i =
1,...,n3), respectively.

Chenet al. [2] have shown that the decision output of a

Fig. 3. The structure of a TE with taps. In this paper, the parameters of theBayesian equalizer can be expressed as

TE are determined by clustering the training sequence.

§@-d%z%dﬂd@”2{il ﬁ%@iiﬁ (29)

pisthe equalizer order (i.e., number of taps in the equalizer). We

denote where f(r(k)) is given by [3]

r(k) £ k), r(k—1),....r(k—p+ 1" (22) ny R S
Observe from (21), that(k) depends on the channel input se- fa(k)) = ; (2?) eXp{T}
quences(k) (an(n + p) x 1 vector), where -

s(k) = [s(k),s(k— 1) stk —n—p+ Y. (23) - 2; (270?) " exp [W} (30)

Becauses(k) can be+1 or —1, there aren, = 2"*? combi- in whicho, denotes the standard deviation (std) of the Gaussian
nations of the channel input sequence. In Fig. 2, the noise-frggditive noise:(k). Because only the sign ¢fir(k)) is used to

signal is7(k), where make the decision in (29), the scaling tef@ro2) /2 in (30)
" can be ignored [23].
(k) =" ai(k)s(k — ). (24)  Let
i=0 a1  t(k)eRT
P = N _ 31
We let { ~1 fk)eR (31)
#(E) Iy k). (k= p+ D[F 25) then (30) can be expressed again as
SR ) = S ey | IEE) = 412 22
where#(k) is calledchannel statd2]. Observe from (24) and F(e(k)) = w;exp 502 : (32)
(25) that each of the, = 2"*7 combinations of the channel =1 ¢

input sequence(k) generates oné(k), which we denote as Based on properties of the squared norm and the exponential

t;(k), wheret; (k) = [#;(k),...,7:(k—p+1)]*. Hence, each function, (32) can be rewritten as (33), shown at the bottom of
channel state has a probability of occurence equafiq. the page, where * denotes a conjugate. For the binary (2-PAM)
ns, p—1 N N
r(k =0 —7(k=0D*r(k=10 —7,(k -1
o) =3 [Lwsesp - D= REZ LD =R E 20l (39

i=1 =0
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Fig. 4. For the channel in (35) (a) time-invariant channel with= 1 anda. = 0.5. (b) Channel states (noise free) of time invariant channel, wheenotes
the categonyi(k) is +1 and+1 denotes the categoiy(k) is —1. (c) Example of a time-varying channel with= 0.1. (d) Channel states (noise free) of the
time-varying channel in (c).

input sequence;(k — 1) and#;(k — ) are real so the conjugateC. Why a Type-2 FAF Is Needed for Time-Varying Channel
operation can be ignored, i.e., Equalization

. p1 A ) Equation (34) has been derived for time-invariant channels.
Fe() =3 [ wiexv l_} <7’(/%‘ =) =7k - l)) _ For atime-varying channel, the channel’s coefficients(i =
2 O 0,1,...,n), are uncertain. In [33], for example, the following
(34) nonlinear time-invariant channel model was used:

Observe that (34) is identical to (4). H jzeg ()T aslh) Faas(k = L)

serve thal is identical to (4). Hence, an unnormalize 3

output type-1 TSK FLS can be used to implement a Bayesian — 09[ars(k) + azs(h — 1" + e(k) (35)

equalizer for a time-invariant channel. wherea; = 1anday; = 0.5, as shown in Fig. 4(a). The channel
Why not just implement (34) directly without connecting itstates are plotted in Fig. 4(b) from which we observe that they

to fuzzy logic? Equation (34) is based on a probability modedre eight individual points.

Gaussian distribution, whereas (4) is model free. As noted inIn the rest of this section, we illustrate the design of a type-2

[21], a shortcoming to model-based statistical signal processiRgF for this channel, but we focus on the case when the channel

is “... the assumed probability model for which model-based time-varying, i.e., whem; anda- in (35) are time-varying

statistical signal processing results will be good if the datefficients, each simulated, as in [5], by using a second-order

agrees with the model, but may not be so good if the data dddarkov model in which a white Gaussian noise source drives

not.” a second-order Butterworth low-pass filter (LPF). In our

=1 {=0
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TABLE |
CHANNEL STATES FORTIME-VARYING CHANNEL MODEL (35) WITH BINARY SYMBOLS: d = 0 AND p = 2

s(k) | stk—1) | sk —2) | #(k) k- 1)

1 1 i ar(k) + az(k) — 0.9[a; (k) + a2 (k)] a1 (k) + az (k) — 0.9[ay (k) + az(k)]

1 1 -1 a1(k) + az(k) — 0.9a1 (k) + a2 (k) ar (k) — ay (k) — 0.9[ar (k) — az(k)]?

1 -1 1 a1 (k) — az (k) — 0.9[ay (k) — a2 (B)® | —a1(k) + ag(k) — 0.9[—ay (k) + a2(k)]?

1 -1 -1 ay (k) — az(k) — 0.9[ay (k) — ax(B)]F | —ar(k) — az(k) ~ 0.9[—ay (k) — a2 (k)]
-1 1 1 —a; (k) + as(k) — 0.9[—ay (k) + a2 (k)P | a1(k) + az(k) — 0.9[a1 (k) + as(k)]?

-1 1 -1 —ay (k) + ap(k) — 0.9[—ay (k) + az (k)] | a1(k) — az(k) = 0.9[ar (k) — ax(K)]®
-1 -1 1 | —a1(k) = ag(k) = 0.9[=a1(k) = az(K)]* | —a1(k) + az(k) = 0.9[-ai (k) + as (k)P
-1 -1 -1 —ai(k) —az(k) - 0.9[-a (k) - azy (k)P | —a1 (k) — az(k) — 0.9[~ai(k) — a2(k)P®

simulations below, we used the functibatter, provided by the ~ We used (19) to compute the output of the type-2 FAF, where
Matlab Signal Processing Toolbox, to generate a second-orgée= w; (I = 1,...,8) equals 1 or-1, f'is obtained from (14),
lowpass digital Butterworth filter with cutoff frequency 0.1;and ! is obtained from (15). As in (8), we chose
then the functiofilter was used to generate a colored Gaussian 2
sequence, which was then used as a time-varying channel jupi (z1) = exp [_1 <w> ]
coefficient. Note that we centered (k) about 1 andas(k) k Te
about 0.5. The input to the Butterworth filter was a white
Gaussian sequence with standard deviation ($td)
So that readers may replicate our simulations, we provide tf&€€ Fig. 1) ané = 1,2. In order to specify the MFA} and %,
source code for the time-varying coefficients with length 100@ve need to speC|fythe|r parameters, nan{e%l, mj,] ando.
Below, we letm! = [m!,,m},]¥ andm), = [ml,, mb,]*.
[B,A] = butter(2,0.1); % B (numerator) and We used a clustering approach to estimatg andmb, be-
A (denominator) of LPF c_ause.it is computationally simple [2]. Here we_b_riefly summa-
rize this approach. Suppose the number of training prototypes,
al=1 + filter(B,A,beta*randn(1,1000)) (s(k),r(k)),is N. As we illustrated in Table k(k) determines
a2 =0.5 + filter(B,A,beta*randn(1,1000)). which clusterr(k) belongs to; so théV r(k) are classified into
n, = 2"t clusters, where, in our exampl?t" = 22+1 = 8,
Realizations of the time-varying coefficients and channgupposeV, training prototypes belong to thigh cluster! =
states are plotted in Figs. 4(c) and (d), respectivelyjfer 0.1.  1,... 8 and the mean and std of thesé), k =1,..., N; are
Observe, that the channel states are now eight clusters instédadotedm’. (2 x 1 vector) ands, (2 x 1 vector), respectively.
of eight individual points. These clusters illustrate tlatis We let

mj, € [myg,mip]  (36)

uncertain for alk = 1,...,8. From Table I, we see there are LA .
eight channel states and ths(t) determines which cluster my =1, = Oy 37)
t(k) belongs to. Note that clustefg(k),#(k — 1)] in the mb 2 m' + ol (38)

first four rows in Table | have categoryl [determined by . , ,
s(k — d) = s(k) based on (27) and (28)] and clusters in thwherel = 1,2,...,8. Doing this assumes that each cluster is
last four rows have categoryl. This [see (27), (28), and (31)] centered atn Consequently[mll,mm] is the range of the

establishes the value af; in (34) as 1 or—1. mean ofthetype -2 antecedent Gau55|amMFand[m21, mbs]
is the range of the mean Qsz For our type- 1 FAF design, we
D. Designing the Type-2 FAF usedm’, (i.e.,[ml;, m!,]T) as the centers of its type-1 Gaussian

In our type-2 FAF design, th ht rul hrul antecedent MFs.
nour type- esign, there are eight rules (each rule cor- To complete the specification of the MFs in (36), we also

I
responds to one channel state), wherédtiheule R is expressed need to estimate the std of the noise In [4], it is shown that

as equalizer performance is not very sensitive to the value.of
In our simulations, we assumed that the valuerois known
exactly. In all the simulations that follow, we fixed SNR and
computed the std; of #(k) in the combined training and testing
rEsequence Then, based on the fact that

RU:F #(k) is FY andr(k — 1) is L THEN ' = wy

whereF! and I are type-2 Gaussian MFs with uncertain mea
(asin Example 1), andy is a crisp value of-1 or —1 as deter-
mined by (31). For rulé the range of the mean of anteced&ft
(F}) corresponds to the horizontal (vertical) projection ofithe
cluster in Fig. 4(d). Observe from this rule that the consequentjs, computeds, as

a constant (i.e., it does not dependgh) andr(k —1)). Hence,

the consequent is a special case of the consequent in Section Ill. e = a;/lOSNFV?O. (40)

o2
SNR= 10log;q -
Oe

(39)
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E. Simulations 10

We compared our type-2 FAF with an unnormalized type-
FAF (the latter is identical to an RBF network [2] in its 1|
output formula) and a nearest neighbor classifier (NNC
[27] for equalization of the time-varying channel in (35).
The nearest-neighbor (NN) rule and its extension AéNN x
algorithm [7] (if the number of training prototypes ¢, then =
K = /N is the optimal choice fo) are nonparameteric 8
classification algorithms, that have been extensively applie:%m‘e
to many pattern recognition problems. Recently, Sava&tzi
al. [27] applied a NNC, which used th&-NN algorithm to
channel equalization for mobile radio communications an 107
achieved good performance. NNC also belongs to sequer
detection approach so we compare our type-2 FAF to NNC

1073

—— Type-1 FAF
—— NNC
—o— Type-2 FAF

channel equalization. 19005 01 0.1 02 025 03
In our simulations, we chose the number of taps of the equc.. B
izer p equal to the number of taps of the channek- 1, i.e., (@

p = n+ 1. The number of rules equals the number of cluster: 44
i.e.,2rt . The coefficients in (35) were chosen as described i
Section IV-C.
To havey/N be an odd integer (as required by a NNC), we
chose the number of training prototyp®¥s— 121, which means
K = 11. We used a sequeneék) of length 1000 for our ex- 107
periments. The first 121 symbols were used for training, and tly
remaining 879 were used for testing. The training sequence e-”f
tablished the parameters of the antecedent MFs, as describeg
Section IV-D. After training, the parameters of the type-1 an’
type-2 FAFs were fixed and then testing was performed. 10
In our first experiment, we fixed SNR at 20 dB and ran simu
lations for eight differeng ranging from3 = 0.04 to 5 = 0.32,
with step size 0.04 (0.04:0.04:0.32) and wedet 0. We per-

—— Type-1 FAF
—— NNC J
—o— Type-2 FAF

formed 100 Monte Carlo (MC) simulations for eaghvalue, o ‘ ‘ ‘ ‘ ‘
where in each realization the channel coefficients and additi 0.05 0.1 0.15 0.2 0.25 0.3
noise were uncertain. In Figs. 5(a) and (b), we plot the mean g

values and std of BER for the 100 MC realizations. ®)

In a second experiment, we fixgsl = 0.1 and ran simula- Fig. 5. Performance of type-1 FAF, nearest neighbor classifier (NNC), and
. : . . type-2 FAF versug when SNR= 20 dB and the number of training prototypes
tions for five different SNR values ra_nglng from SNR15 dB_ is 121. (a) Average BER. (b) STD of BER for 100 Monte Carlo realizations.
to SNR= 25dB (15:2.5:25). We again performed 100 MC sim-
ulations for each SNR value. In Figs. 6(a) and (b), we plot the

mean values and std of BER for the 100 MC realizations, raualizer isn, = 2"*7 (recall thatn + 1 is the number of
spectively. channel taps ang is the number of antecedents), e.g.,fice

Observe the following from these figures. 4,p = 5, we need 512 rules. This causes huge computational

... complexity when the channel order is high. Next, we use a DFE
1) Interms of the mean values of BER, the type-2 fuzzy filter tremendously reduce the number of rules in a FAF.

performs much better than both the NNC and type-1 FA
(Figs. 5(a) and 6(a)).

2) When SNR= 20 dB, the NNC performs better than the
type-1 FAF when3 > 0.12 and the type-1 FAF peforms
better than NNC whe@ < 0.12, but the the type-2 FAF

always performs better than the NNC [Fig. 5(a)]. It is well known that a DFE can reduce computational com-

V. DFE FORTIME-VARYING CHANNELS USING A DECISION
TREE AND TYPE-2 FAFs

3) Interms of the std of BER, the type-2 FAF is more robugfiexity and improve equalization performance [3] as compared
to the additive Gaussian noise than the other two equgd-3 TE. In addition, a DFE can be used to increase the channel
izers and the type-1 FAF is more robust than the NNit_rate capacity of next-generation wireless mobile communi-
[Figs. 5(b) and 6(b)]. cation systems [1]. Fig. 7 shows the structure of a DFE having

These observations suggest that a type-2 FAF (as desigpddedforward taps angfeedback taps. In this section, we pro-

above) holds promise as a very good TE for time-varying chapese a new architecture to implement a FAF-based DFE, one

nels. Unfortunately, though, the number of rules for such dhat avoids the rule explosion generated with a TE.
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value of$(k — 1), which means 16 rules have been reduced to

—— Type-1 FAF ) . .
— Npré9 four. This motivates us to use a decision tree and four four-rule
—o— Type-2 FAF FAFs to implement a DFE for this channel (see Fig. 8).

The structure of a general DFE is specified by the decision
delayd and number of channel taps+ 1. d is chosen by the
designer and increasing improves performance, but it is re-
quired thatd < n [3]. It has been shown [3] that choosing the
number of feedforward taps as= d + 1 (reducingd reduces
. the number of antecedents) and the number of feedback taps as
q = n is sufficient for a DFE to achieve all the performance po-
tential (i.e., a DFE witlp = d + 1 has the same performance
as DFEs withp > d + 1 taps) for a giverd andn. In Fig. 9,
we depict a general structure for a DFE; it consists of a decision
tree and2? FAFs, where each FAF has ory rules. Observe
B . that only one FAF is activated at a time to obtain the value of
15 20 25  §(k — d). This structure reduces the number of FAF rules a lot,

SNR in dB and makes it easy to design each of the FAFs, e.g., if a channel

@) has five tapgn = 4), delayd = 4, and we choosg = d+1 =5
10 andg = n = 4, thenwe only need to desig@f = 16 FAFs, each
having2? = 32 rules (although there are 16 FAFs, only one is
activated at any time). In contrast, as noted at the end of Sec-
tion IV, if we use a TE withp = 5, we need2”*? = 512 rules.
The rule reduction ratio ig"+7=7 : 1 =27 : 1,i.e., 16:1. Al-
though the number of rules in one FAF has been tremendously
reduced, the total number of rules in all FAFs in a DFE is still
the same as that of a TE, but it is much more difficult to compute
one 512-rule FAF than to compute one 32-rule FAF.

—— Type-1 FAF Observe that the architecture of Fig. 9 is also applicable for
—+— NNC | ) ; .
o Type-2 FAF other linear/nonlinear filter-based DFEs, e.g., a neural network
(NN)-based DFE, where “FAF" can be substituted by “NN.”

Average BER
al
N

std of BER

B. Designing a DFE Based on Type-2 FAFs

] ‘ ] ‘ We used the following nonlinear time-varying channel in our
0.05 0.1 0.15 0.2 0.25 0.3 . . .
B simulations of a DFE:

(b)

Fig. 6. Performance of type-1 FAF, nearest neighbor classifier (NNC), and ! (k) B al(k)s(k) - a2(k)3(k 1) - ag(k)s(k 2)
type-2 FAF versus SNR wheh = 0.1 and the number of training prototypes — 0.7[a1(k)s(k) + az(k)s(k — 1)
is 121. (a) Average BER. (b) STD of BER for 100 Monte Carlo realizations. 3

+ az(k)s(k — 2)]° + e(k) (42)

We follow the channel state analysis used in [3] and, for iB.3482, a; = 0.8704, andaz = 0.3482. This channel’s linear
lustrative purposes, use the following channel model to explaartr (k) = 0.3482s(k) 4 0.8704s(k — 1) +0.3482s(k — 2) +

how a DFE can eliminate rule explosion: e(k) has been studied in [3], [15], and [23]. A nonlinear channel
model like (42) is frequently encountered in data transmission

r(k) = a1(k)s(k) + az(k)s(k — 1) over digital satellite links, especially when the signal ampli-

+ az(k)s(k — 2) + e(k). (41) fiers operate in their high-gain limits [15]. We used the method

given in Section IV-C to simulate the time-varying natures of
Assume a decision delay of unity = 1) and two equalizer a;(k), a2(k) andas(k).
feedforward tapgp = 2); then, there are,, = 22t2 = 16 We assumed a decision deldyf one. Since channel order
channel states, which are enumerated in Table Il in which the= 2 (we assumed that is known), then it is sufficient to
channel stateg(k), #(k — 1)] have category-1 or —1 [deter- design a DFE witlp = 2 andg = 2, which means the decision
mined bys(k — 1) according to (27) and (28)]. If there are twotree ha? = 4 leaves (FAFs), and each leaf (FAF) l2fs= 4
feedback tapsg = 2), thens(k — 2) andé(k — 3) are fed back rules. Sincep = 2, the channel state analysis of (42) is very
to decides(k — 1) (see Fig. 7). similar to that of (41) (Table II). To conserve space, we refer to

Observe, for example, in the first four rows of Table I, wheable Il in analyzing the channel states of (42).

3(k—2) = lands(k—3) = 1 (shown using boldfaced numbers) Designing the rules in each of the four FAFs is the same as
we only need to use four channel states (four rules) to decide that of designing a transversal fuzzy equalizer. As shown in
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- _El_

0| rk-1) r(k-p+1)
Y Ak-d)
DFE (p,q) > sgn(t) >
A
E(k—d—q) Té\(k~d-2) S(k-d-1)
D]
(oo (7]

Fig. 7. The structure of a DFE with feedforward taps ang feedback taps. In this paper, the parameters of the DFE are determined by clustering the training
sequence.

TABLE I
CHANNEL STATES FORTIME-VARYING CHANNEL MODEL (41) WITH BINARY SymBOLS: d = 1, p = 2

s(k) [ s(k—1) [ stk =2) [ s(k=3) ] #(k) [ Ak — 1)
1 1 1 1 a; (k) + az (k) + as (k) ay (k) + az(k) + as(k)
-1 1 1 1 —a;(k) +az(k) +as(k) | ai(k)+az(k)+as(k)
1 -1 1 1 a; (k) — az(k) +as(k) | —ay (k) + az(k) + as(k)
-1 -1 1 1 —ay (k) — az(k) + asz(k) | —a1 (k) + az(k) + ag(k)
1 1 1 -1 a1 (k) + az (k) + as(k) ay (k) + az(k) — az(k)
-1 1 1 -1 —ay(k) + az(k) + as(k) | ay(k) + az(k) — as(k)
1 -1 1 -1 ar(k) — az(k) + as(k) | —a1(k) + az(k) — as(k)
-1 -1 1 -1 —a1(k) — az(k) + as(k) | —ar1(k)+ az(k) — as(k)
1 1 -1 1 ay(k) + az(k) —as(k) | ay(k) — ag(k) + aa(k)
-1 1 -1 1 —ay (k) + az(k) — as(k) a1 (k) — az(k) + as(k)
1 -1 -1 1 ay (k) — az(k) — as(k) —ay (k) — az(k) + az(k)
-1 -1 -1 1 —ay (k) — az(k) — as(k) | —a1(k) — az(k) + as(k)
1 1 -1 -1 ar(k) + az(k) — az(k) ay (k) — az(k) — az(k)
-1 1 -1 -1 —a1(k) +aa(k) - aa(k) | ai(k) = as(k) — as(k)
1 -1 -1 -1 a1(k) — az(k) — as(k) —ay (k) — az(k) — aa(k)
-1 -1 -1 -1 —ai(k) — aqa(k) — as(k) | —a1(k) — ax(k) — asz(k)
1 /s\(k-3) In the training periods(k — 3) ands(k — 2) determine four
______________________ 1 rules belonging to one of the four FAFs (see Fig. 8 and Table Il
divided by horizontal double lines); so 16 rules have been di-
S(k-2) vided into four groups, and(k) ands(k — 1) determine one
1 -1 1/ 1 channel state in each FAF (see Table Il). We use (37) and (38)
""""""""""""""""""""" to set the antecedent MF parameters, and the consequent param-

eterw; = s(k —1).

Generally speaking, in the training period, suppose the
number of training prototypess(k),r(k)) is N, wheres(k)
andr(k) are defined by (23) and (22). Singe= d + 1 and
q = n, (23) can be rewritten as

s(k) = [s(k),

A general description for designing a FAF DFE based\on
training prototypes for a channel with+ 1 taps and a decision
delayd (which determine» = d + 1 andg = n) is as follows.

1) Based on the values pf(k —d — q),...,s(k —d —1)],

a branch and its corresponding leaf (FAF) in the decision
tree (see Fig. 9) is chosen.

FAF

Fig. 8. The architecture of a DFE for channel (41), where decision detay
1, and DFE parametegs= 2 andg = 2. This DFE consists of a decision tree
and four FAFs, and each FAF has four rules.

(43)

s(k—1),...,s(k —d—q)]*.

Table Il and Fig. 8, in our type-2 FAF DFE design, there are
a total of 16 rules and thih rule, B! is expressed as
RU:AF r(k)is FL andr(k — 1) is It THEN 3! = w;

where we assume that and L are type-2 Gaussian MFs with
uncertain means (as in Example 1), andis a crisp value of
+1 or —1 as determined by (31).
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Fig. 9. For a channel with 4 1 taps and a decision delay &fthe general architecture of a DFE wjti{p = d + 1) feedforward taps ang (¢ = n) feedback
taps. The DFE consists of a decision tree andFAFs, where each FAF hag rules.

2) Inthe chosen FAF, desig® rules, which meang? clus- 107 - - * - ,
ters are needed. Based @k — d), . .., s(k)], we know
which clusterr(k) belongs to (see Table Il) andk — d)
determines the cluster categepl or —1. 2

3) Repeat steps 1) and 2) until Alltraining prototypes have
been clustered.

4) Suppose in theth FAF, (i = 1,...,27), there are
N; training prototypes belonging to th&h cluster,
(I=1,...,27)and the mean and std of thasé) [p x 1

Average BER
>

vector, see (22)]k = 1,...,N;), are denotean’. (p x 1 —— Type-1FAF
vector) andol (p x 1 vector), respectively. Then we o b Q'prié .
can use (37) and (38) to obtain the parametatsand
mj, wherem! = [mi;,mb,,...,.mL|" andm} =
[m1127 m1227 LR ] m;ﬁ]T; SO [mé'lv mi?] (J = 17 27 te 7p)
is the range of the type-2 antecedent Gaussian/MF, 107 ‘ s : : ‘ : :
. . 3 004 006 008 01 012 014 016 018 02
in thesth FAF. B
5) After the training period, the parameters of every FAF are @)

fixed. In the testing period, for ever(%), use Theorem .
3 to compute the defuzzified output of the activated FAI
f(x) and then use (29) to obtain the output of the DFI

sk — d).

v///\_v,\v//v/‘(
C. Simulations 102k

Simulations were performed for channel (42) in which Wi
used a 1000 symbol sequengé). The first 289 symbols were ©
for training and the remaining 711 symbols were for testiné
After training, the parameters in all four fuzzy filters were fixec
and then testing was performed.

In our first experiment, we fixed SNR at 20 dB and ran sim
ulations for five different3 ranging froms = 0.04to 3 = 0.2
(0.04:0.04:0.20). We performed 100 MC simulations for eac
# value. In Fig. 10(a) and (b), we plot the mean values and ¢ o ‘ , , 1 ‘ ‘ ,
of BER for the 100 MC realizations. In a second experimen 004 006 008 01 012 014 016 018 02
we fixed 3 = 0.1 and ran simulations for seven different SNRs P
ranging from SNR= 15 dB to SNR= 30 dB (15:2.5:30). We ®)
again performed 100 MC simulations for each SNR value. fig. 10. Performance of type-1 FAF-based DFE, nearest neighbor classifier
Fig. 11(a) and (b), we plot the mean values and std of BER f NNC), and type-2 FAF-based DFE versdswhen SNR= 20 dB and the

. mber of training prototypes is 289. (a) Average BER. (b) STD of BER in 100
these 100 MC realizations. Monte Carlo realizations.

—— Type-1 FAF
- NNC
—— Type-2 FAF

107
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—— Type-1FAF
—— NNC
—o— Type-2 FAF

Average BER
al
N
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DFE. The number of rules in each FAF of the DFE is tremen-
dously reduced. In fact, for a channel with+ 1 taps, the rule
reduction ratio i2™ : 1. This architecture is also applicable for
other linear/nonlinear filter-based DFEs.

Simulation results showed that both the type-2 FAF TE and
DFE performed better than either a type-1 FAF or a nearest
neighbor classifier. Since no tuning procedure was used in the
design of either type-2 FAF-based equalizer, real-time informa-
tion processing is guaranteed.

Although a FAF has been extensively used for channel equal-
ization, a training sequence is needed for all approaches, in-
cluding the ones described in this paper. A challenge is to de-
velop a type-2 FAF for adaptive equalization which does not
need any training sequence, i.e., for blind equalization, first pro-
posed by Sato [26]. The constant modulus algorithm (CMA)
proposed by Godard [9] is emerging as the recognized stan-
dard blind equlization algorithm and is already appearing in real
systems [32]. We are exploring the design of FAF-based blind

15 20 25 30
SNR in dB
@
107 :
—— Type-1FAF
—— NNC
—o— Type-2 FAF
(1]
o 2
@
5107 T
3 [3]
w
[4]
(5]
(6]
-3
10 ’ .
15 20 25 30 [7
SNR in dB
(b) (8]
Fig. 11. Performance of type-1 FAF-based DFE, nearest neighbor classifier

(NNC), and type-2 FAF-based DFE versus SNR whes 0.1 and the number [9]
of training prototypes is 289. (a) Average BER. (b) STD of BER in 100 Monte
Carlo realizations.

(10]

From the mean and std values of BER, we see that the DFf1j
based on four type-2 FAFs performs much better than the NNC
and the DFE based on four type-1 FAFs (eachis an unnormalizét’!
type-1 TSK FLS). The NNC cannot work well in such a compli- [13]
cated channel because there are 16 channel states and a NNC typ-
ically needs more training prototypes than we have used. 4

(18]
VI. CONCLUSIONS AND FUTURE WORKS

We have proposed a new unnormalized output type-2 TSKL6]
FAF, one that handles numerical and linguistic uncertaintiesy 7,
We applied this type-2 FAF to equalization where the channel
is nonlinear and time-varying. Theoretical analysis shows thaf8l
this type-2 FAF can exactly implement a Bayesian equalizer forlg]
time-varying channels. Its structure is simple, its inference is
fast, and it is model free. [20]

We used our type-2 FAF to implement a TE and also used
a decision tree and more than one type-2 FAF to implement a

equalizers for both time-invariant and time-varying channels.
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