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Abstract--In this paper, we prove that any finite time trajectory of  a given n-dimensional dynamical system can be 
approximately realized by the internal state of  the output units of  a continuous time recurrent neural network with 
n output units, some hidden units, and an appropriate initial condition. The essential idea ofthe proof is to embed 
the n-dimensional dynamical system into a higher dimensional one which defines a recurrent neural network. As a 
corollary, we also show that any continuous curve can be approximated by the output of  a recurrent neural network. 
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1. INTRODUCTION 

There are two types of connections in neural networks. 
Neural networks with only feedforward connections are 
called feedforward networks, and neural networks with 
arbitrary connections are often called recurrent net- 
works. In the case of feedforward networks, ever since 
the back propagation learning algorithm was proposed 
by Rumelhart, Hinton, and Williams (1986), several 
applications have been made, mainly to static infor- 
mation processing, such as pattern recognition. On the 
theoretical capability of these networks, Cybenko 
(1989), Funahashi ( 1989 ), and Hornik, Stinchcombe, 
and White (1989) proved mathematically that a given 
continuous mapping on a compact set can be approx- 
imately realized by three-layer feedforward neural net- 
works with any precision. We call this "the fundamental 
approximation theorem" in the following. 

The nonlinear dynamical behavior of recurrent net- 
works is suitable for spatio-temporal information pro- 
cessing. Theoretical studies on recurrent networks have 
been mainly concerned with the stability of convergence 
of the trajectory to the equilibria (e.g., Hirsch, 1989 ). 
The Hopfield network with symmetrical weights of 
connection has been applied to the content addressable 
memory and combinatorial optimization. 

Learning algorithms which employ the steepest de- 
scent method for the modification of recurrent network 
weights have been proposed both by Williams and Zip- 
ser (1990) in the case of discrete time systems, and by 
Pearlmutter ( 1989 ), Pineda ( 1987 ), and Sato (1990), 
etc., for continuous time systems. Sato and Murakami 
( 1991 ) proposed both the modified recurrent network 
in order to approximate the dynamical system and its 
learning algorithm by the use of the fundamental ap- 
proximation theorem. Furthermore, they applied the 
algorithm to the approximation of nonlinear dynamical 
systems. Since their network is far from the ordinary 
recurrent networks, the theoretical capability of the re- 
current network has still not been clarified. Seidl and 
Lorenz ( 1991 ) proved the approximation theorem for 
the trajectory of the discrete dynamical system by the 
use of the fundamental approximation theorem. 

The main goal of this study is to elucidate the theo- 
retical capability of continuous time recurrent net- 
works. In this paper we will prove that the internal state 
of output units of the continuous time recurrent net- 
work approximates the finite time trajectory of the given 
dynamical system with any precision. The proof is given 
by the use of the fundamental approximation theorem 
and the fundamental theorems on dynamical systems. 

Acknowledgement: We would like to thank Dr. M. Sakakibara for 
critical reading of the manuscript. 
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2. CONTINUOUS TIME RECURRENT 
NEURAL NETWORKS 

There are two types of recurrent neural networks: dis- 
crete time recurrent neural networks and continuous 
time ones. In this paper, we study the latter. 
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The dynamics  o f  the continuous time recurrent 
neural network with m units, which is discussed in this 
paper, is described by the following system of  ordinary 
differential equations: 

du~( t ) 
_ ui(t___) + ~ woa(uj(t)) + li(t) 

dt ri j=~ 

(i = 1 . . . . .  m), (1) 

where u~(t) is the internal state o f  the i-th unit, r~ is 
the time constant of  the i-th unit, w o are connection 
weights, L(t)  is the input to the i-th unit, and a(u,(t))  
is the output of  the i-th unit. Here, a is called the output 
function, and Cl-sigmoid functions (nonconstant ,  
bounded, and monotone  increasing C~-functions) are 
used. As a, 

a(x) = 1/(1 + exp( -x ) )  (2) 

is usually used. 
In the following, we deal with recurrent neural net- 

works with the same time constant r (i.e., r~ = r )  and 
without input (i.e., L(t)  = 0). We set u(t)  = '(u~(t),  
. . . .  u.,(t)) and use W = (w0) as an m × m weight 
matrix. Let a :R m -*  R "  be denoted by a sigmoid map- 
ping 

a('(ul . . . . .  Urn)) = '(a(tq) . . . . .  a(U,,)); (3) 

then the vector expression of  eqn ( 1 ) is 

I 
zi(t) = - - u(t) + Wa(u(t)). (4) 

7" 

3. A P P R O X I M A T E  R E A L I Z A T I O N  
T H E O R E M S  OF D Y N A M I C A L  

S Y S T E M  T R A J E C T O R I E S  

Let the point of  the n-dimensional Euclidian space R ~ 
be denoted by x = '(x~ . . . . .  x , )  and the Euclidian 
norm o f x  be defined by I xJ. 

The dynamical  system on an open set o f  R" means 
a system defined by an au tonomous  ordinary differ- 
ential equation which has global solutions in the open 
set. Let the output function a of  recurrent neural net- 
works be a Ct-sigmoid function. As recurrent neural 
networks studied here have no input, some units are 
called output units and the others are called hidden 
units. 

In this paper, we prove the following theorems. 

THEOREM 1. Let D be an open subset o f R ' ,  F : D 
R" be a Ct-mapping, and I£ be a compact subset o f  D. 
Suppose that there is a subset K C I( such that any 
solution x(  t ) with initial value x( O ) in K of  an ordinary 
differential equation 

2= F(x). x ( O ) E K  (5) 

is defined on I = [0, T](0 < T <  oo)andx( t ) i s inc luded 
in I~ for any t ~ I. Then, for an arbitrary e > 0, there 
exist an integer N and a recurrent neural network with 

n output units and N hidden units such that for a solution 
x(  t ) satisfying eqn (5)  and an appropriate initial state 
o f  the network, 

maxl x(t)  - u(t)l < e (6) 
t e l  

holds, where u(t)  = ' (u l ( t )  . . . .  u , ( t ) )  is the internal 
state of  output units o f  the network. 

For dynamical  systems, the condit ion fo r /~  is sat- 
isfied a priori by definition, so we can restate Theorem 
1 as follows. 

THEOREM 2. Let D C R" and F : D ~ R" be the same 
as above, and suppose that 2 = F ( x )  defines a dynam- 
ical system on D. Let K be a compact subset o f  D and 
we consider trajectories of  the system on the interval I 
= [0, T](0 < T < oo ). Then, for an arbitrary e > O, 
there exist an integer N and a recurrent neural network 
with n output units and N hidden units such that for 
any trajectory {x(t)," 0 < t < T} of  the system with 
initial value x(  O ) E K and an appropriate initial state 
o f  the network, 

m a x l x ( t ) -  u(t)l < e 
t e l  

holds, where u(t)  = ' (u l ( t ) ,  . .  u , ( t ) )  is the internal 
state of  output units o f  the network. 

As a corollary of  Theorem 2, we obtain the following: 

COROLLARY 1. Let a be a strictly increasing CJ-sigmoid 
fimction such that a (R)  = (0, 1 ). Let D be an open 
subset of(O, 1 )' ,  F : D --~ R n be a Ct-mapping, and 
suppose that .;c = F( x )  defines a dynamical system on 
D. Let K be a compact subset o f  D and we consider 
trajectories of the system on interval I = [0, T ] (0  < T 
< oo ). Then, for an arbitrary e > O, there exist an 
integer N and a recurrent neural network with n output 
units and N hidden units such that for any trajectory 
{ x(  t ); 0 < t < T} of  the system with initial value x(  O ) 
E K and an appropriate initial state of  the network, 

maxlx(t)  - y(t)l < e (7) 
t ~ l  

holds, where y( t )  = '(y~(t) . . . . .  y . ( t ) )  is the output 
o f  the recurrent network with the sigmoid output 
fimction a. 

By the use of  Theorem 1, we also obtain the follow- 
ing: 

THEOREM 3. Let f :  I = [0, T] --* R" be a continuous 
curve, where 0 < T < oo . Then, for an arbitrary e > O, 
there exist an integer N and a recurrent network with 
n output units and N hidden units such that 

max I f( t)  - u(t)l < e, (8) 
t ~ l  

where u(t)  = ' ( u l ( t )  . . . .  u . ( t ) )  is the internal state of  
output units of  the network. 



Approximation of  Dynamical Systems 803 

In the same way as Corollary 1, the following Cor- 
ollary can be obtained from Theorem 3. 

COROLLARY 2. Let ~ be a strictly increasing Ct-sigmoid 
function such that a ( R )  = (0, 1 ), and f :  I = [0, T] --~ 
(0, 1 )" be a continuous curve, where 0 < T < co. Then, 
for  an arbitrary e > O, there exist an integer N and a 
recurrent neural network with n output units and N hid- 
den units such that 

max I f ( t ) -  y(t)l < c, (9) 
t e l  

where y ( t )  = ' ( y l ( t )  . . . . .  y , ( t ) )  is the output o f  the 
recurrent network with the s igmoid output function tr. 

4. PRELIMINARY 1 

The following Theorem by Funahashi (1989)  is the 
base for the proofs o f  our  theorems in Section 3. 

THEOREM. Let ~r( x )  be a s igmoid f imction (i.e., a non- 
constant, increasing, and bounded continuous f imction 
on R). Let K be a compact subset o f  R", and f ( x ~ ,  
. . . .  xn) be a continuous f imction on K. Then, .for an 
arbitrary e > 0, there exist an integer N, real constants 
ci, Oi( i= 1 . . . . .  N)  a n d w  o ( i =  1 . . . . .  N , ' j=  1 . . . . .  
n) such that 

maAx .f(xj . . . . . .  ~,) - ci~r Z w0xj - 0, < c (10) 
i :1  \ j = l  

holds. 

This Theorem shows that three-layer feedforward 
neural networks whose output  layer has linear units 
can approximate  any cont inuous mapping f :  R" --~ 
R "  uniformly on an arbitrary compact  set. 

THEOREM ( The f imdamental  approximation theorem). 
Let  K be a compact subet o f  R", and f ." K --* R "  be a 
continuous mapping. Then, for  an arbitrary e > O, there 
exist an integer N, an m X N matr ix  A, an N × n matr ix  
B, and an N dimensional  vector 0 such that 

maxl F(x) - Aa(Bx + 0)l < e ( 11 ) 
~'EK 

holds, where a : R N ~ R N is a sigmoid mapping defined 
by 

f f ( t ( l l l  . . . . .  l lN)  ) : t( a ( l l l  ) . . . . .  i f ( l / N )  ) .  

Similar results have been obtained by Cybenko 
(1989)  and Hornik, St inchcombe,  and White (1989).  

5. PRELIMINARY 2 

In the following, we restate the basic facts o f  the theory 
o f  dynamical  systems which are used in the proofs of  
our  theorems (see, e.g., Hirsch & Smale, 1974). 

Let D be an open subset o f R ' .  A mapping F :  D --~ 
R" is said to be Lipschitz on D if there exists a constant 
L such that 

IF(x)  - F(.v) I -< LIx  - Yl (12) 

for all x ,  y E D. We call L a Lipschitz constant for F .  
We call F locally Lipschitz if each point  of  D has a 
neighborhood Do in D such that the restriction F I Do 
is Lipschitz. 

LEMMA 1. Let a mapping F : D --* R" be C t . Then F 
is locally Lipschitz. Moreover, i f  A C D is compact, then 
the restriction F I A is Lipschitz. (For proof  see Hirsch 
& Smale, 1974, chap. 8, §3. L e m m a  and§6.  L e m m a ) .  

LEMMA 2. Let F : D ---* R"  be a C~-mapping and xo 
D. Then there is some a > 0 and a unique solution x." 
( - a ,  a) --~ D o f  the differential equation 

2 = F(x)  (13) 

satis~,ing the initial condition x (  O ) = Xo. (For proof  
see Hirsch & Smale,  1974, chap. 8, §2.  Theorem ! ). 

LEMMA 3. Let D be an open subset o f  R"  and F : D 
--* R" be a Ct-mapping. Let x ( t )  be a solution on a 
ma~rimal open interval J = ( a, 13) C R with 13 < co. 
Then for  any given compact subset K C D, there is some 
t ~ (a, 13) with x ( t )  ~£ K. (For proof  see Hirsch & 
Smale, 1974, chap. 8, ~'5. Theorem).  

LEMMA 4. Let F :  R"  ~ R" be a bounded Ct-mapping. 
Then, the differential equation 

I 
Sc = - - x + F(x),  (14) 

T 

where r > 0 has a unique solution on [0, co ). 

Proof. From the assumption, we can take a constant 
M > 0 such that 

I f , (x)l  ~ M (Vi = I . . . . .  n) (15) 

for all x ~ R ". By compar ing  the solution x ( t )  with 
solutions of  the following equations 

1 
3;' = - - 3' + M, (16) 

7" 

I 
) ; = - - ) , - M ,  (17) 

T 

we can easily show that 

Ix~(t)l-< max{IxA0)l ,  rM} =C, .  (18) 

If  we set C = max { C~ }, then the solution x ( t )  satisfies 

Ix(t)l ~ fnnC (19) 

on the existing interval of  the solution. From L e m m a  
3 and L e m m a  2, the solution x ( t )  exists uniquely on 
the interval [0, co). Q.E.D. 

L e m m a  4 guarantees that eqn (4)  describing a re- 
current neural network has a unique solution on [0, 
co ) because the output  function cr is bounded and C ~. 

LEMMA 5. Let F, P : D --~ R" be Lipschitz continuous 
mappings and L be a Lipschitz constant ofF. Suppose 
that for  all x ~ D, 
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IF(x)  - P ( x ) l < c .  (20) 

I f x ( t ) ,  y ( t )  are  solu t ions  to 

2 = F ( x )  (21) 

= F(y), (22) 

respectively, on s o m e  in terval  J, such that  X(  to) = y (  to) ,  
then 

C 
I x ( t ) - y ( t ) l < _ - ~ ( e x p L l t - t o l  - 1) (23) 

holds, f o r  all  t ~ J. (For  p r o o f  see  Hi r sch  & Smale ,  
1974, chap. 15, §1. T h e o r e m  3). 

6 .  P R O O F  O F  T H E  T H E O R E M S  

Using the above preliminaries, we will prove the theo- 
rems stated in Section 3. 

P r o o f  o f  T h e o r e m  1. 

S tep  1. 
For given e > 0, we choose 77 so that 0 < ~ < rain { e, 

X }, where X is the distance between/£ and the boundary  
OD of  D. We set 

K ~ = { x E R ~ ; q z @ I ~ , I x - z I < ~ I } ;  (24) 

then K, is a compact  subset of  D, because/£is  compact.  
Therefore, by L e m m a  1, F is Lipschitz on K,. We also 
choose et > 0 so that 

nLr 
cl < 2 ( e x p L r T -  1) ' (25) 

where LF is a Lipschitz constant of  F I K,. 
By the fundamental  approximat ion theorem, there 

exist an integer N,  an n × N matrix A, an N × n matrix 
B and an N-dimensional vector 0 such that 

max I F(x) - A a ( B x  + 0)1 < -- .  (26) 
xEK~ 2 

We define a C l -mapp ing /~  : R ~ ~ R "  by 

P ( x )  1 = - - x + A a ( B x  + 0), (27) 
T 

where r is chosen large enough so that the following 
conditions are satisfied: 

(a) Vx E K~; < ~- 

r/Ld and < - -  
(b) < 2 ( e x p L d T -  1 ) 2 ' where 

where L¢ is a constant and L d / 2  is a Lipschitz constant 
for the mapping Wa : R ~+N --~ R ~+N, which will be 
defined later ( W  is defined by A and B).  

Then, by eqns (26)  and (27) ,  

maxl F ( x )  - P(x)l < c, (28) 
x~K~ 
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holds. We set x ( t )  and Y(t) as the solutions of  the fol- 
lowing equations: 

Yc = F ( x ) ,  (29) 

= P(~),  (30) 

with initial condition x ( 0 )  = 2 ( 0 )  = Xo E K, respec- 
tively. Then, by L e m m a  5, for any t E I ,  

e__& 1) Ix(t)  - 2(t)l -< Lr  (expLrt - 

< - f f i ( e x p L r T -  1). (31) 

Therefore, by the condition of  c, 

max1 x ( t )  - £(t)l < -~ (32) 
te l  2 

holds. 

S tep  2. 
We consider the following dynamical  system defined 

by ,~ stated in Step 1. 

1 
.~ = - - 2  + Aa(B2  + 0). (33) 

T 

If  we set 9 = BY + 0, then 

f i = B . # , = - 1 . 9 + C a ( f , ) + l  o, (34) 
T T 

where C = BA and C is an N × N matrix. We set 

_z = '(21 . . . . .  2 , .  9 ,  . . . . .  .gu) ( 3 5 )  

and we define a mapping  (~ • R "+N --~ R "+N by 

G(5) = - / 5 + Wa(e) + 1 0t, (36) 
T T 

where Wis  an (n + N) × (n + N) matrix and 0t is an 
(n + N) vector defined by 

(0 ° ;)  0=(;) 
respectively. Then, by L e m m a  2, the first n components  
of  the solution of  the equation of  

i = (~(z'), ~(0) = BY:(O) + 0 (38) 

are equivalent to the solution of  the system (33) .  
Now, we define a mapping  G • R "+N --~ R "+N by the 

use of  r and W stated above, as the following: 

1 
G(z )  = - - z + Wa(z ) ,  (39) 

1" 

z = '(.ut . . . . .  u,, ht . . . . .  hu). (40) 

Then the dynamical  system defined by G. 

1 
= - - z  + Wa(z ) ,  (41) 

T 

is realized by a recurrent neural network, if we set u( t )  
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= t(u~ (t) . . . . .  u , ( t ) )  as the internal state of  n output  
units and h( t )  = t (h l ( t )  . . . . .  hN(t))  as the internal 
state o f  N hidden units. As (~ and G are C~-mappings, 
and a ' ( x )  is a bounded  function, so the mapping  :? --* 
W a ( ~ )  is Lipschitz on R "+N and we set L d / 2  as its 
Lipschitz constant.  Then, L d is a Lipschitz constant  o f  
(~ because L d / 2  is a Lipschitz constant o f  -~? / r  by the 
condition (b)  o f  r. 

Using eqn (36) ,  eqn (39)  and the condit ion (b) o f  
r, we see that for any z E R n+N, 

11Ld (42) I G ( z ) -  G(z)l = < 2 ( e x p L c T -  1) 

holds. Therefore, we set ~(t)  and z ( t )  as the solutions 
o f  the following equations, respectively: 

f£(0)  = :to E K 
= (~(~?), { (43) 

tp(0)  = Bxo + 0 

i u(O) = x o ~ K  
= G(z) ,  (44) 

th(0)  Bxo + 0. 

Then, by L e m m a  5 we obtain 

and hence 

maxl-;(t) - z(t)l ~ o (45) 
t e l  2 ~ 

maxl£(t)  - u(t)l < _n (46) 
t e l  2 

holds, where £ ( t )  is the same as £ ( t )  in eqn (32) .  

Step 3. 
Using eqn (32)  and (46)  stated above, for a given e 

> 0, we can construct  a recurrent  neural network with 
internal state z ( t )  by r and W introduced above. For 
x ( t )  satisfying eqn (5) ,  if we set the initial state of  the 
network by 

u(0) = x(0) and 

h(0) = Bx(0) + 0, (47) 

we get 

11 11 
max[x( t )  - u(t)l <-~ + ~ =11< (48) 

Q.E.D. 

REMARKS. The recurrent  network constructed in the 
above proof  has connections between hidden units as 
well as connections from hidden units to output  units, 
but  has no connect ion from output  units to hidden 
units. The estimate using L e m m a  5 is essential in the 
p roof  o f  Theorem 1. Therefore, by a similar estimate 
using L e m m a  5, it follows that we can construct  a re- 
current  network with very small connect ion weights 
from output  units to hidden units which satisfies the 
statement o f  the Theorem,  and so we omit  the details 
here. 

Proof  o f  Theorem 2. Because the flow 4~t(x) of  the dy- 
namical  system is a cont inuous mapping R × D --~ D 
(( t ,  x )  --~ 4~t(x)), (see Hirsch & Smale, 1974), the set 
k o f  trajectories on time interval I whose initial points 
are in the compact  set K: 

/~ = { x ( t )  E R"; x ( 0 )  E K. 0 ~ t ~ T} ( 4 9 )  

is a compact  subset of  D. By establishing correspon- 
dence of  K a n d / f r o  K a n d / f i n  Theorem 1, respectively, 
our  Theorem is proved. Q.E.D. 

Proof  o f  Corollary 1. By continuity of  a -I • (0, 1 ) --~ 
R ,  Dt  = a - t ( D )  is an open subset of  R", and Kl = 
a - I ( K )  is a compact  subset o f  D -1. F o r x E  (0, 1 ) ' ,  let 
tt ~ R" be denoted by 

'(u~ . . . . .  u . )  = ~ - ' ( ' ( x ,  . . . . .  x . ) ) .  ( 5 0 )  

Then, by the sigmoid mapping a, the given dynamical  
system .~ = F ( x )  on D is t ransformed to a dynamical  
system defined by 

dui I 
- -  = - -  Fi(a(ul) . . . . .  a(u,,)) (i = 1 . . . . .  n) (51) 
dt ~'( u3 

on D~ C R". From this fact, our Corollary can be easily proved 
by the use of Theorem 2. Q.E.D. 

Proof of  Theorem 3. Using a mollifier, we can take a C =- 
curvef  : ( -6 ,  T + 6) --* R" for some 6 > 0 such that 

,C 

max I f ( t ) - f ( t ) l  < - .  (52) 
t ~ l  2 

If  we set g( t )  = ( f ( t ) .  t) E R" × R = R "+~ for t E [0, 
T], then g is an injective mapping and so there exists 
a one-dimensional compact  C~-submani fo ld  M of  
R n+t such that g ( [0 ,  T])  C M.  

Taking a tubular neighborhood V of  M in R" + 1 ( see 
Hirsch, 1976, Theorem 5.1 ), we can easily construct  
a system of  ordinary differential equations ~? = F ( x )  
defined on Vsuch that F E  C ~° on Vand  g( [0 ,  T])  is 
a part of  a trajectory of  the system with x ( 0 )  = g (0 ) .  
Using Theorem 1, there exists a recurrent network with 
n + 1 output  units such that 

maxl g(t) - ti(t)l < (53) 
t e l  2 ' 

where t/(t) = '( ttl (t)  . . . . .  u, + l ( t ) )  is the internal state 
o f  output  units. Considering the projection f ( t )  o f g ( t )  
to R" by r : R T M  ~ R ' ( t ( x ,  . . . . .  x ,+ l )  ~ t(x, . . . . .  
x , ) ) ,  we obtain a recurrent network with n output  units 
whose internal state u( t ) = '( ul ( t ) . . . .  un( t ) ) satisfies 

maxlf( t)  - u(t)l < - .  (54) 
t e l  2 

Therefore, from eqns (52) and (54)  we obtain 

max If(t)  - u(t)l < c. (55) 
t e l  

Q.E.D. 
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7. CONCLUSIONS 

We proved that the finite time trajectories of a given 
n-dimensional dynamical system are approximated by 
the internal states of output units of a recurrent neural 
network with n output units, N hidden units and ap- 
propriate initial states. The important point of the proof 
is the use of the fundamental approximation theorem 
to embed the given dynamical system into a higher 
dimensional dynamical system which defines a recur- 
rent neural network. We consider one of the capability 
problems of continuous time recurrent neural networks 
to be solved in the form of an existence theorem of 
networks which approximate trajectories of a given dy- 
namical system. As a corollary of our theorem, we also 
proved that any continuous curve can be approximated 
by the output of a recurrent neural network. 

We consider that our theorems are the first step to 
study the capability problems of continuous time re- 
current neural networks. 
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