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Abstract—The severely distorting channels limit the use of
linear equalizers and the use of the nonlinear equalizers then
becomes justifiable. Neural-network-based equalizers, especially
the multilayer perceptron (MLP)-based equalizers, are com-
putationally efficient alternative to currently used nonlinear
filter realizations, e.g., the Volterra type. The drawback of the
MLP-based equalizers is, however, their slow rate of convergence,
which limit their use in practical systems. In this work, the effect
of whitening the input data in a multilayer perceptron-based
decision feedback equalizer (DFE) is evaluated. It is shown from
computer simulations that whitening the received data employing
adaptive lattice channel equalization algorithms improves the
convergence rate and bit error rate performances of multilayer
perceptron-based DFEs. The adaptive lattice algorithm is a modi-
fication to the one developed by Ling and Proakis. The consistency
in performance is observed in both time-invariant and time
varying channels. Finally, it is found in this work that, for time-in-
variant channels, the MLP DFE out performs the least mean
squares (LMS)-based DFE. However, for time-varying channels
comparable performance is obtained for the two configurations.

Index Terms—Decision feedback equalizer (DFE), lattice filters,
multilayer perceptron (MLP).

I. INTRODUCTION

A SERIOUS limitation in attempting to achieve a high trans-
mission rate through a particular band-limited channel is

the time dispersion suffered by the signal at the receiving end
of this channel [1]. In data transmission, the time dispersion im-
parted on the transmitted signal results in a time overlap be-
tween successive symbols, known as intersymbol interference
(ISI). Equalizers have been used to describe filters used to com-
pensate for such distortions in the amplitude and delay charac-
teristics of the channel.

Nonlinear equalizers [1], [2] are superior to linear ones in ap-
plications where the channel distortion is too severe for a linear
equalizer to handle. In particular, a linear equalizer does not per-
form well on channels with deep spectral nulls in their amplitude
characteristics or with nonlinear distortion.

A decision feedback equalizer (DFE) is a nonlinear equalizer
that is widely used in situations where the ISI is very large. It
has been proved theoretically and experimentally that the DFE
performs significantly better than a linear equalizer of equiva-
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lent complexity [1]. The basic idea of DFE is that if the values
of the symbols already detected are assumed to be correct, then
the ISI contributed by these symbols can be canceled exactly by
subtracting past symbol values with appropriate weighting from
the equalizer output [2].

To further enhance the performance of the DFE, the multi-
layer perceptron (MLP) has been incorporated to the DFE. It is
shown that the MLP-based DFE (MLP DFE) [3], using the back-
propagation (BP) algorithm [4], gives a significantly improved
performance over the simple DFE [2].

To extend the applicability of the MLP DFE to areas involving
fast time-varying channels, e.g., mobile communication chan-
nels, the whitening procedure is a necessary preprocessing stage
for the MLP DFE to be able to track variations in these envi-
ronments. The whitening process can be achieved using a lat-
tice filter as an input stage to the MLP DFE equalizer. In this
case, the effect of the eigenvalue spread will be reduced sub-
stantially in both time-invariant and time-varying channels. The
whitening procedure in this case can be considered as an ap-
proximation to second-order methods [5] since it is used for a
nonlinear filter, that is the MLP DFE.

In this work, the performance of the MLP DFE using a
whitening scheme in its input is evaluated, where the BP
algorithm, rather than the recursive least squares (RLS) [6],
is used here to update the MLP DFE as the former has a
lower complexity than the latter one. It is shown that a great
improvement in performance is obtained through the use of
this technique over both the simple DFE and the MLP DFE in
both time-invariant and time-varying channels. The whitening
process is carried out through a simple modification of the
adaptive lattice DFE originally proposed in [7]. Preliminary
results of this work were reported in [8]. In this work we
report on further results covering the aspect of the behavior
of the proposed technique to time-varying channels and other
parameters related to the length of the lattice DFE filter and the
size of the MLP configuration in time-invariant channels.

The rest of this paper is organized as follows. In Section II, a
brief review of artificial neural networks is given where the pro-
posed new structure of the MLP-based DFE is presented along
with the modification to the adaptive lattice DFE [7]. The com-
putational complexity of the proposed algorithm is treated in
Section III, while its performance is demonstrated by the sim-
ulation results of Section IV. Section V is concerned with the
discussion of the results and conclusions.

II. A RTIFICIAL NEURAL NETWORKS

Because of the capabilities of artificial neural networks in
efficiently modeling arbitrary nonlinearities, there has been

1045–9227/01$10.00 © 2001 IEEE
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Fig. 1. (a) Block diagram of overall system lattice filter MLP DFE. (b) Single channel lattice (stage m). (c) Two channel lattice (stage m).

recent interest in employing them in adaptive equalization for
data communication channels [3], [9], [10]. In this case, the
linear adaptive filter is replaced by a neural network. Dif-
ferent artificial neural-network architectures such as multi-
layer perceptron, radial basis functions, and recurrent neural
networks have all been proposed in the literature for channel
equalization [11]. Among all these structures, the most com-
monly and widely used is the MLP structure. The popularity
of MLP-based equalizers is due in part to their computational

simplicity, finite parameterization, stability, and smaller struc-
ture size for a particular problem as compared to other struc-
tures.

A multilayer perceptron consists of several hidden layers of
neurons that are capable of performing complex, nonlinear map-
pings between the input and output layer. The hidden layers pro-
vide the capability to use the nonlinear sigmoid function (to be
defined later) to create intricately curved partitions of space with
complex nonlinear decision boundaries [12]. Furthermore, it has
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TABLE I
COMPUTATIONAL COMPLEXITY OF ADAPTIVE DFE ALGORITHMS

Fig. 2. Scattering diagrams of different types of equalizers with channelH (z) = 0:3482 + 0:8704z + 0:3482z under SNR= 10 dB: (a) Unequalized
data. (b) Equalization using the simple DFE. (c) Equalization using the MLP DFE. (d) Equalization using the lattice-based MLP DFE.

been shown that only three layers are needed by the MLP to gen-
erate these boundaries [13].

The basic element of the multilayer perceptron is the neuron.
Each neuron in the layer has primary local connections and is
characterized by a set of real weights ap-
plied to the previous layer to which it is connected and a real
threshold level . The th neuron in the th layer accepts real

inputs from the th layer and
produces an output , which is also a real scalar, expressed
in the following way:

(1)
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Fig. 3. Scattering diagrams of different types of equalizers with channelH (z) = 0:408+ 0:816z +0:408z under SNR= 10 dB: (a) Unequalized data.
(b) Equalization using the simple DFE. (c) Equalization using the MLP DFE. (d) Equalization using the lattice-based MLP DFE.

This output value serves also as input to the th layer
(next layer) to which the neuron is connected. In the above ex-
pression, represents the nonlinearity function. The most
commonly used one in the perceptron is of the sigmoid type,
defined as [13]

(2)

where is always in the range , (the set of
real numbers). The weights and thresholds levels
are updated during training [3].

The MLP did not receive much attention in applications until
the introduction of the BP algorithm [14]. The BP algorithm
was used in both linear equalizers [15] and nonlinear equal-
izers (DFE) [3], and it was found that in both cases, the neural
—network-based configuration out performed its nonneural net-
work-based counterpart. In this work, however, only the MLP
DFE [3] will be considered as it is more advantageous than its
linear counterpart.

A. The Learning Phase

In the BP algorithm, the output value is compared with the de-
sired output, resulting in an error signal. This error signal is fed
back through the network whose weights are adjusted to min-
imize this error. The increments used in updating the weights,

, and threshold levels, , of the th ( )

layer are updated, respectively, according to the following rela-
tions:

(3)

and

(4)

where
learning gain;
momentum parameter;
threshold level adaptation gain.

The error signal for layer is calculated starting from the
output layer , as

(5)

and is then recursively backpropagated to lower layers (
) according to

(6)

where is over all neurons above the neuronin the
layer and is the desired output. To allow for a rapid learning,
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Fig. 4. Learning curves of different types of equalizers with channelH (z) = 0:3482 + 0:8704z + 0:3482z under SNR= 20 dB.

a momentum term, , scaled by , is used to filter out
high-frequency variations of the weight vector. Consequently,
the convergence rate is much faster and the fast weight changes
are smoothed out.

B. Proposed Scheme

Because the BP algorithm is no more than a generalized least
mean squares (LMS) algorithm [16], it then suffers from the
same problems as the LMS algorithm, particularly the slow rate
of convergence when applied to channels with spectral nulls in
their frequency responses. These channels are known to yield
a large eigenvalue spread of the autocorrelation matrix of the
signal at their outputs. This kind of channel characteristics is
often encountered in time-variant channels. Moreover, as seen
later, the BP-based MLP DFE has an equal performance to that
of the simple DFE in time varying channels. The MLP DFE
equalizer can then hardly be justified for the equalization of such
channels. Eventually, a whitening procedure must be used to im-
prove the performance of the MLP DFE with the BP algorithm
as an updating scheme.

Since lattice equalizers are known to be insensitive to the
eigenvalue spread of the channel autocorrelation matrix [17],
[18], adaptive lattice (AL) algorithms can generate a set of
orthogonal signal components that can be used as inputs to the
equalizer lending themselves to fast convergence. Ling and
Proakis [7] derived a generalized least squares multichannel
lattice DFE (L-DFE) algorithm, implemented and investigated
it on both time-invariant and time-varying channels. The results

showed that the L-DFE has a much better performance than the
simple DFE.

If this scheme is used as a prewhitening process to the MLP
DFE, the performance of the MLP DFE in terms of convergence
rate, BER, and steady-state MSE will therefore be expected
to improve on both time-invariant and time-varying channels.
Fig. 1 gives the details of this new configuration where the
L-DFE [7] is used as a whitening scheme for the MLP DFE
[3]. The L-DFE consists of a lattice predictor part and a joint
estimator part. The predictor has scalar stages
followed by two-dimensional (2-D) stages. The L-DFE
input is the received signal , while its outputs and
delayed versions of the decision device output are used as in-
puts to the MLP DFE which has one input layer, two hidden
layers and one output layer. As shown in Fig. 1, the outputs of
the L-DFE are used as inputs to the feedforward section of the
lattice-based MLP DFE, and depending on the values ofand

, the L-DFE will then consist of either a scalar stage or a 2-D
one. However, it should be noted that the neural network carries
out solely the estimation of the signal.

The outputs that account for the modification to
L-DFE [7] are detailed as follows. During the initialization
process, it is defined as

(7)

As for the scalar stages ( ), they are given by

(8)
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Fig. 5. Learning curves of different types of equalizers with channelH (z) = 0:408 + 0:816z + 0:408z under SNR= 20 dB.

Finally, in the 2-D stages , they are
expressed as

(9)
where all the terms in the above expressions are defined in the
Appendix which gives all the details of the algorithm.

III. COMPUTATIONAL COMPLEXITY OF THE ALGORITHMS

Most common operations used in adaptive filtering algo-
rithms are additions, multiplications, and divisions. When
digitally implemented, the last two operations are known
to be more computationally costly than the first one and
are very prone to causing instability specially in fixed-point
computations. Even in systems equipped with floating-point
arithmetic, these two operations can sometime lead to overflow,
hence causing the algorithm to diverge. To avoid this problem
of overflow, floating-point arithmetic is preferred. From a
computational viewpoint and whenever possible, algorithms
involving fewer multiplications and divisions should always
sought after, especially in applications involving tracking in
fast-changing environments, e.g., wireless communication.

Table I gives the computational complexity of the three al-
gorithms used in this work, namely, the simple DFE, the MLP
DFE, and the lattice-based MLP DFE. The notations used in
Table I are defined as follows: is the number of feedfor-
ward taps, is the number of feedback taps, is
the number of inputs to the MLP, and are the numbers
of neurons in the first and second hidden layers of the MLP, re-

spectively, and finally is the number of neurons in the
output layer of the MLP.

From Table I, we see that the LMS algorithm is the simplest
of all and by using the lattice filter at the input of the MLP DFE,
a load of computations is added. Thus, a
tradeoff between performance and complexity has to be made
when implementing the equalizer.

IV. SIMULATION RESULTS

The performance of the new structure (MLP DFE with lattice
structure) is compared to that of the simple DFE and MLP DFE.
Both the simple DFE and the MLP DFE structures use four sam-
ples in the feedforward section and one sample in the feedback
section. For the latter structure, this results in five input samples
in its input layer. The number of neurons in the first and second
hidden layer, and the output layer are 9, 3, and 1, respectively,
and is denoted by the triplet (9, 3, 1) for ease of reference. Fi-
nally, the L-DFE was initially set up with and
giving rise to four outputs ( , ). These four
outputs and the delayed output from the decision device will
provide the five inputs to the MLP DFE. In this case, a (6, 3, 1)
configuration for the lattice-based MLP DFE is used such that
the two MLP configurations have similar complexity. The back
propagation algorithm is used to update the MLP DFE where
the learning gain parameter, momentum parameter, and
threshold level adaptation gain, have been chosen as in [3],
namely 0.07, 0.3, and 0.05, respectively. The weighting factor
for the lattice algorithm is 0.99 and the step size for the LMS
algorithm used in the simple DFE is 0.035. The digital message



538 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 12, NO. 3, MAY 2001

Fig. 6. BER performance of different types of equalizers with channelH (z) = 0:3482 + 0:8704z + 0:3482z .

applied to the channel is made of uniformly distributed bipolar
random numbers (1, 1). The channel noise is taken to be an
additive white Gaussian noise.

The simulation results reported in this paper were all obtained
using MATLAB. Neither instability problem nor coefficient di-
vergence were observed in these simulations even for long runs
of 10 samples.

The system performance will be evaluated using both a time-
invariant and a time-varying channel, as discussed below.

A. System Performance in Time-Invariant Channels

Two time-invariant channel models are used in the
simulation and are described by their transfer func-
tions , and

. The eigenvalue
spreads for the first and second channel are 25 and 81, respec-
tively. Also, it should be pointed out here that the first channel
model matches the one used in [3], while the second channel
matches one of the time-invariant channel models used in [7].

During this part of the simulations, the performance measure
is obtained through the use of scatter diagrams, learning curves,
and BER curves.

Scatter diagrams are plotted in terms of the present channel-
output symbol as a function of the past channel-output symbol.
Figs. 2 and 3 show these diagrams for the three equalizers’ out-
puts after 10 000 iterations for first channel and second channel,
respectively, and with a signal to noise ratio (SNR) of 10 dB.

In both figures, part (a) shows the unequalized data, whereas
parts (b), (c), and (d) represent the effect of equalization by the
simple DFE, MLP DFE and lattice-based MLP DFE, respec-
tively. As can be observed from these diagrams, the simple DFE
tries to remove ISI from the received data, but with little success
against the contaminating noise. However, the MLP DFE not
only removes ISI, but also reduces the area of the noise cloud
by restricting the equalized symbols within a small area. Fi-
nally, when whitening the received data with the lattice filter,
the equalizer’s performance is much improved and the symbols
are seen to converge closer to their original positions. The pos-
itive effect of the lattice filter is clear.

In the case of the learning curves, these are obtained by av-
eraging 600 independent runs. Each run has a different random
sequence and random starting weights for the perceptron struc-
ture, and an SNR of 20 dB is used. Fig. 4 depicts the convergence
behavior of the three algorithms for the first channel. This figure
shows a clear improvement in both the convergence time and the
steady-state MSE when whitening the received data with the lat-
tice algorithm. This result illustrates also that even though the
MLP DFE configuration converges more slowly than that of the
simple DFE, it nevertheless results in a lower steady-state MSE
value than that of the latter. It should also be clear from this
figure that the steady-state MSE of both MLP DFE configura-
tions is below the noise level. This results from the nonlinear na-
ture of the equalizer transfer function [3]. Furthermore, the MLP
DFE equalizer is capable of generating highly nonlinear deci-
sion regions, in contrast to the LMS DFE equalizer which only
forms a hyperplane decision boundary [10]. Also, it is generally
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Fig. 7. BER performance of different types of equalizers with channelH (z) = 0:408 + 0:816z + 0:408z .

understood in linear signal processing that thenorm error cri-
terion produces a parabolic error surface with no local minima
and has a continuously differential nature. However, thenorm
error criterion for perceptrons will not generally produce a par-
abolic error surface owing to its nonlinear nature [19].

A similar improvement is also obtained for the second
channel despite its larger eigenvalue spread, as shown in Fig. 5.
The difference in convergence time between the MLP DFE and
the MLP DFE using lattice algorithm is now more pronounced.
The insensitivity of the lattice algorithm to the eigenvalue
spread is very clear.

Figs. 6 and 7 illustrate the BER curves for simple DFE,
MLP DFE, and lattice-based MLP DFE for the first and second
channel, respectively. The consistency in performance of the
proposed structure in both channels is very distinctive. An
improvement with the proposed lattice-based structure of 1–2
dB over the MLP DFE and of 2-dB over the simple DFE at a
BER of 10 has been clearly achieved for the first channel.
Again, the difference is more distinct for the case of the second
channel. This makes the use of the lattice structure more
justifiable when the ISI is large.

To analyze further the performance of the lattice-based MLP
DFE previously discussed, its performance is compared to that
of the maximum-likelihood sequence estimation (MLSE) [20]
which comprises a channel impulse response estimator and a
maximum likelihood sequence estimator. In the simulation,
no channel estimation was performed and therefore the exact
channel impulse response was used in the MLSE. The results
are reported in Figs. 6 and 7 for the first and second channel,

respectively. The effectiveness of MLSE over the lattice-based
MLP DFE is very clear from these figures; however, the
computational complexity of the MLSE technique (including
the channel estimator) severely limits its applications [7].

To further enhance the performance of the lattice-based MLP
DFE as far as the size of the lattice filter is concerned, it has
been tested when and (4, 1) against the one
with and (5, 2) for the second channel. The
(5, 2) configuration has now five inputs entering the MLP DFE
whereas the (4, 1) configuration has only four inputs. The results
are depicted in Fig. 8. The (5, 2) configuration gives a better per-
formance over the (4, 1) configuration; more than 1 dB improve-
ment at a BER of 10 is obtained. This improvement in perfor-
mance is of course reached at a slightly higher complexity, since
the (5, 2) configuration process more information and therefore
is expected to yield an enhancement in performance.

Finally, an experiment was conducted for both channels to
observe the changes in performance of the lattice-based MLP
DFE configuration by reducing its size from (9, 3, 1) to (3, 2,
1). The learning curves for the lattice-based MLP DFE config-
uration for the first and the second channel are shown in Fig. 9.
The signal to noise ratio is set to 10 dB. From this figure, it is
observed that the decrease in the network size increases the con-
vergence time of the neural equalizer but the steady-state MSE
remains unaffected. This is because it takes a longer time for the
neurons of the small-size MLP DFE to converge to the optimum
weights but once they converge, the mean-squared error is the
same as that of the comparatively large-sized network. But this
trend does not hold for any lower size of the network, i.e., re-
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Fig. 8. BER performance of lattice-based MLP DFE with channelH (z) = 0:408 + 0:816z + 0:408z comparing (4, 1) and (5, 2) configurations.

Fig. 9. Learning curves of lattice-based MLP DFE with channel 1 [H (z) = 0:3482+0:8704z +0:3482z ] and channel 2 [H (z) = 0:408+0:816z +
0:408z ] for (9, 3, 1) and (3, 2, 1) configurations under SNR= 10 dB.
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Fig. 10. Tap coefficients of time-variant channel with low-pass filter bandwidth of 0.5 Hz.

Fig. 11. BER performance of different types of equalizers for time varying channel with low-pass filter bandwidth of 0.1 Hz.
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Fig. 12. BER performance of different types of equalizers for time varying channel with lowpass filter bandwidth of 0.5 Hz.

ducing the network size further will deteriorate the behavior of
the equalizer, since the equalizer will lack the minimum nec-
essary computational power (number of neurons) to be able to
track variations in the weights caused by changes in the envi-
ronment.

B. System Performance in Time-Varying Channels

The time-variant fading channel was used to evaluate the ca-
pability of the equalizer to track the changes in a time-varying
dispersive channel. The discrete-time channel model for
time-varying fading channel is described by the following
transfer function , where

, , and are the time-varying coefficients of
the channel impulse response. These are generated by passing
white Gaussian noise through a low-pass filter of a specified
bandwidth [7]. If we assume that we have a nominal 3 kHz HF
channel, the signaling rate is 2400 symbols/s, and the low-pass
filter is a two-pole Butterworth filter, then the 3-dB bandwidth
of the low-pass filter can be used as a parameter to control the
rate of variation of the channel impulse response. The curves
representing the time variation of the coefficients are depicted
in Fig. 10 for bandwidth of 0.5 Hz.

Figs. 11 and 12 show the BER performance of the three equal-
izers for the time variations of the coefficients for bandwidths of
0.1 Hz and 0.5 Hz, respectively. The results illustrate the supe-
riority of the lattice-based MLP DFE. In both figures, the other
two equalizers’ performances are not attractive. Moreover, as
can be noticed from these figures that comparable performance

is obtained for both MLP DFE and LMS DFE configurations;
however, for the time-invariant channels, it was found that the
MLP DFE gives better performance over the LMS DFE.

To further investigate the consistency in performance of the
lattice-based MLP DFE, the rate of variation of the channel im-
pulse response is increased. This is done by increasing the band-
width of the low-pass filter, e.g., bandwidth of 1.0 Hz. There is
a deterioration in the performance of both the LMS DFE and the
MLP DFE and the difference between them and the lattice-based
MLP DFE will increase as clearly shown in Fig. 13. The lat-
tice-based MLP DFE attains lower error floor than both of the
LMS DFE and the MLP DFE. The LMS DFE and the MLP DFE
saturate after the SNR of 13 dB to approximately to same BER.
Again in this case the MLP DFE and the LMS DFE have com-
parable performance.

For comparison purposes, the theoretically optimum DFE
[7] was simulated. This is a transversal DFE with coefficients
selected according to the exact characteristics of the channel
at each time instant, to yield minimum MSE. The comparison
between the lattice-based MLP DFE and the theoretically op-
timum DFE for channel variations characterized by bandwidths
0.1 Hz, 0.5 Hz and 1.0 Hz were used in simulation yielding
results shown in Figs. 11–13, respectively. Comparable per-
formances were obtained in Figs. 11 and 12. However, when
the variation of the channel impulse response is increased, the
performance of the lattice-based MLP DFE degrades a little bit.

The saturation effect (error-floor) for both LMS DFE and
MLP DFE in Fig. 11 is due mainly to when is larger
than 10 dB, noise has little influence on the BER, because at
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Fig. 13. BER performance of different types of equalizers for time varying channel with lowpass filter bandwidth of 1.0 Hz.

that time, errors are mainly caused by tap-gain lag due to the
variation of channels. As the channel variation increases, the
saturation effect gets worse, this is depicted in Figs. 12 and 13.

Finally, as explained earlier, it was made sure that the two
MLP configurations have similar complexity.

V. CONCLUSION

The results of our study can be summarized briefly as follows:

1) The use of the lattice filter as a whitening scheme for the
MLP DFE equalizer’s input data results in substantial
improvements in terms of convergence rate, steady-state
MSE, and BER.

2) The convergence rate of the lattice-based MLP DFE is
insensitive of the eigenvalue spread of the channel cor-
relation matrix for time-invariant channels.

3) The whitening scheme makes the lattice-based MLP
DFE less sensitive to the size of the MLP down to a
tolerable size.

4) Increasing the size of the lattice DFE enhances further
the performance of the lattice-based MLP DFE.

5) The proposed lattice-based MLP DFE has better
tracking capabilities than both the LMS DFE and MLP
DFE in time-varying channels.

6) It is found that, for time-invariant channels, the MLP
DFE out performs the LMS DFE. However, for time-

varying channels comparable performance is obtained
for the two configurations. The LMS and the BP algo-
rithms have comparable tracking capabilities in time-
varying channels.

7) In time-varying channels, on which the results of
Figs. 11 and 12 are based, the performance of the lat-
tice-based MLP DFE is close to that of the theoretically
optimum DFE.

8) The simulation results indicated that the lattice-based
MLP DFE is stable and no sign of instability was shown
for both time-invariant and time-varying channels.

9) A separate study to be reported later shows the robust-
ness of the proposed scheme with respect to nonlineari-
ties.

10) Further work aimed at comparisons with LS DFE in
both time-invariant and time-varying channels is cur-
rently being pursued.

Finally, this work has presented the improvements brought
about by whitening the received data samples before they are
applied to the MLP DFE. The lattice-based MLP DFE out per-
formed both the LMS DFE and MLP DFE in both time-invariant
and time-varying channels.

APPENDIX

THE LEAST SQUARESLATTICE DFE ALGORITHM

The algorithm stated below is adapted from [7], and is sum-
marized for convenience. Note that bold faced characters repre-
sent matrices or vectors. Specifically, , and
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are 2 1 vectors, while , and are 2 2 ma-
trices. We also denote the inverse of and by
and , respectively. All other quantities are scalars. Finally,

is the detected sample. In this algorithmis chosen to be
a very small positive number, while is a positive number close
to one (typically 0.95–1.0).

A. Initialization

B. Scalar Stages: ( ) Unless Otherwise
Specified

C. Transitional Stage: ( )

D. Two-Dimensional Stages: ( ) Unless
Otherwise Specified
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