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ABSTRACT 

7'ke extended Kalmanfilter has been successfully applied to the 
feedforward and the recurrent neural network training. Recently 
intraiuced derivative-Jke filters (Unscented Kalman Filter and 
Divided Direerence Filter) ourper/orm the extended Kalman 
filter in nonlinear state estimation. In the parameter estimation 
of the feedforward neural nehvorks UKF and DDF are 
comparable or slightly better than EKF, with a sign@cant 
odvontage thut they do  not demand calculation of the neural 
network Jacobian. In this paper, we consider the application of 
E m ,  UKF and DDF to the recurrent neural network training. 
The claw of non-linear outoregressive recurrent neural 
networks with exogenous inputs is chosen as a bmic architecture 
due IO its powerful representational capabilities 

1. INTRODUCTION 

The Extended Kalman Filter (EKF) has been accepted as 
effective and easy to implement method for state and parameter 
estimation. It has been applied with success to the feedfoward 
neural network training [1,6] as well as to the recurrent neural 
network training[ll]. It was Shawn that statistics estimated by 
the EKF can he used to sequentially estimate the structure 
(number of hidden neurons and wnnectioos) and parameters of 
feed-forward [6] and recurrent [7] Radial Basis Fnnction (REIF) 
networks. 

Estimators like the Unscented Kalman Filter (UKF) [2,3] and 
the Divided Difference Filter (DDF) [ 5 ] ,  have been introduced 
recently as an outperforming alternative to EKF for nonlinear 
state estimation. In parameter estimation of the feedforward 
neural networks UKF and DDF are shown to be wmparable or 
slightly better than EKF [SI, with a significant advantage that 
they do not demand calculation of the neural network Jacobian. 

In this paper we shall consider the training of a Non-linear 
AutorRegressive with exogenous inputs (NARX) recurrent 
neural networks, using DDF, UKF and EKF. Tbe class of NARX 
recurrent nenral ntworks is chosen since it is shown in [41 that 
they outperform classical, fully connected, recurrent neural 
networks in tasks that involve long term dependencies for which 
the desired output depends on inputs presented at times far in the 
past. 

2. NARX RECURRENT NEURAL NETWORK 

A NARX model of a dynamic system is given by: 

sk =.f(Sk-I~-,sk-A, ?uk-I?- .uk-A.  ) (1) 

where sk Corresponds to the true (noiseless) output of the 
system, uk is the known input at time step k, A" and As are 
the input and the output order, and f (.) is a non-linear function. 
We shall consider a NARX model for which / is implemented 
either using a Multilayer Perceptron (we shall name it NARX 
Recurrent Multilayer Perceptron - NARX-MP)  or using a 
radial basis function network WARX Recurrent Radial Basis 
Function network - NARX-RRBF). For wmparison purposes, 
we shall assume that both models have two layers of nenrons 
(Figure I), with an output layer having a linear activation 
function. 

Figure 1: A NAKX recurrent nerual network 

The output of the i-th hidden nenron of a NARX-RMLP 
network is ejven by: 

where s ~ . ~  ... sk-JT denotes the vector of previous 

previous inputs ana b, =[b,ob, l...b,A,b,ll..b,..A.]T denotes 
the vector of hidden neuron weights. 

network outputs, uk., =[ti., 1'67 ... U,.,.']:,, is the vector of 
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The output of the i-th hidden neuron of a NARX-RRBF 
network is given by: 

Q\(sk_l,uk.l,b,,q ) =ex 

X k  = 

- 
sk f(sk3uk>wk) ds,k 

: 3 q x k , u k ) =  i , dk= : 
sk - l  sk-l 0 

s k - b , + l  '1-A. +I 0 

Equation (Sa) describes time evolution of the augmented 
state x, while the observation equation (5b) selects the current 
output of the network as the observation. The process noise dk 
and observation noise vk are assumed to be murually 
independent, white. and Gaussian with known covariances Qk 
and Rk respectively. 

2.1. Minimum Mean Squared Er ro r  estimation 

A Minimum Mean Squared Error (MMSE) estimate of the 
state xp of a nonlinear discrete time system ( 5 )  is such that the 
estimation error Yk = x k  - ik is unbiased ( E[Yk] = 0) and 
orthogonal to the observation y, ( E[zky:'] = 0). Filters 
considered in this paper (EKF, DDF and UKF) provide a MMSE 
estimate of augmented state x k  using 'predictor-corrector" 

scheme. 
Given the estimate of the state ik-] and its covsiance 

Px,k-, , obtained for the set of observations up to the time step 
k - 1 :  y1:,., = ( y i . i = l  ,__., k-l},thefilterpredictsthefuNre 
state using the process model and the knowledge about the 
process noise distribution. Predicted mean and covariance are 
ideally: 

i b  = E[xk/YLk-l] (6a) 

pik = 4 ( x k  - i ; ) ( x k  -~;)T/Ylk-ll (6b) 
The estimate ik and its covariance P,.k are obtained by 

updating (correcting) the state prediction (i; , Px;k ) with the 
current observation y, : 

(74  

px,k = pxyk - (7c) 

2 -2 -  
k - k + K k ( Y k  - j L )  

K k , = p q , k p i :  (7b) 

j; = E[yk/ylk-ll 9 q , . k  = E[(Yk - j ; ) @ k  -jL)r/Ylk-ll 
are observation prediction and its covariance, and 
P?,~ = e(xk -i;)bk rj;)T/ykk-,] is the cross-correlation. 
These equations depend on predicted values of the first two 
moments of xk and yk , given set of observations yLk-l. Due 
to the linearity of the observation equation (5b) we have: 

?,,.A = HkPikH: + Rk 

9; = H k i ;  (sa) 

(8b) 

' q , k  =';kHz (8c) 

and the problem is reduced to the propagation of a state xk- ,  
through the nonlinear dynamic equation (sa) in order to obtain 
prediction ( <;, P; ). 

3. DERIVATIVE~FREE NONLINEAR FILTERS 

In this section, we shall consider three different approaches 
to nonlinear state estimation and apply them to the estimation of 
the NARX recurrent neural networks. As we saw in the previous 
section, the problem that remains to be solved is the estimation 
of a statics of a random'variable propagated trough the nonlinear 
transformation. Let us defme the problem in a general form. 
Suppose that x is a'random variable with mean and 
covariance P, . A random variable y is related to x through the 
nonlinear function y = f (x) . We wish to calculate the mean 3 
and covariance Py of y. (Note that the derived solutions could 
be easily be applied to state prediction (6) by introducing 
substitutions x --f xk-l and y -$ x k  .) 

Extended Kalman filter is based on multidimensional Taylor 
series expansion of f ( x )  . We shall consider only tbe fust order 
EKF, obtained by excluding nonlinear terms of Taylor series 
expansion: 

f ( x )  = f ( i +  Ax) = f ( i )  + f;(i)Ax (9) 
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where f i ( ; )=8f/8xlx;=+ and Ax is 

variable with covariance P, . In that case we have: 

zem mean radnom 

3.1 Divided difference filter 

In 151 Nmgaard et al. proposed a new set of estimators based 
on polynomial approximation of nonlinear transformations using 
multidimensional extension of Stirling's interpolation formula. 
Stirling interpolation formula is particularly simple if only first 
and second order polynomial approximation are considered 

Divided difference operators are defined by: 
f ( x )  = f ( i )  + E&/ + ELf (11) 

where Sp is a 'partial" difference operator: 

S , f ( i )  = f( i + 0.5. h .  ep ) - f(? - 0.5. h . ep ) ( 13) 
and p, is an average operator: 

p,f(i) = 0.5 .cf(X+0.5. h .  e,) + f ( i -  0.5. h.  e , ) ) .  (14)  

and e ,  is thepth unit vector. 

Applying a stochastic &coupling of the variables in x by the 
following transformation z = S;lx , ( S, is the Cholesky factor 
of the covariance mahix P, = S,S, ), Nmgaard et al. derived 
approximation ofmean and covariance of y = f ( x )  [ 5 ] :  

T 

h2 - n  1 "  

. ( f ( x  + hs , , )  + f(i - k,,) - Z f ( 3 I T  
Interval length h is set equal to the kurtosis of the prior mndom 

variable x. For Gausians, h2 = 3 . 

3.1 Unscented Kalman filter 

Julier and uhlman proposed the Unscented Transformation 
(UT) [2,3] in order to calculate the statistics of a k d o m  
variable x propagated through nonlinear function y = f (x) . 

I h e  nr dimensional continuous random variable x with mean 
i and covariance P, is approximated by 2n, + 1 sigma points 
X 
x,,=i, oo = a / ( n + a ) ,  / 1 = a 2 ( n , + K ) - n , f  
or p = 1,Z ..., n 

x, = i + J n + l . s , , ,  cop = 0 . 5 / ( n + / 2 )  (16) 

with corresponding weights op , p = 0,1, ..., 2n, : 

where a determines the spread of the sigma points around i 
(usually 1.e - 4 S a S 1 ) and K E 'J1 is the scaling parameter, 
usually set to 0 or 3 - n ,  131. sX,, is thepth row or column of 
the matrix square root of P, 

Each sigma point is instantiated through the function f ( . )  to 
yield the set of transformed sigma points Vi =/(Xi), and the 
mean of a transformed distribution is estimated by: 

The covariance estimate obtained by unscented transform is: 

Estimation of states and parameters of NARX recurrent 
networks (state space model given by ( 5 ) )  using unscented 
Kalman fdter, consists in applying unscented transformation to a 
dynamic equation (Sa) in order to obtain prediction ( c, P; ). 
Predicted statistics are updated with the current observation y k  

applying equations (7). 

4. EXPERIMENTS 

In this section, we shall give the results of time series 
prediction using NARX recurrent neural networks trained using 
EKF, DDF and UKF. The time series is obtained from the well- 
known Mackey-Glass equation: 

m(t - A) 

1 - x(t - A)" 
X(t) = -bx(t) t 

with parmeters a = 0.2 , b = 0.1, A = 30, initial conditions 
x ( t )  = 0.9, and sampling rate r = 6 .  

M e r  sequential adaptation on 2000 consecutive samples 
(presented only once), networks were iterated for next N=IOO 
samples.Table 1, compares the means and variances of NRMSE 
of iterated prediction obtained for NARX_RMLP (6 recurrent 
inputs, IO hidden and one output unit), trained using DDF, UKF 
and EKF for 30 independent runs (different inital values of the 
network parameters). 
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Table 1. Normalized mean squared test error of NARX-RMLP 

mean(NRMSE) 
var(NRMSE) 

-4 
”. 

DDF UKF I EKF 
0.1587 0.209 I 0.206 

3.83e-4 6.05e-3 I 7.49e-3 

I /  , 
a d  Pi0 4 0 0  .do e i o  l o b o  1 2 b o  , b o  > s b o  , s b o  ,Io 

TI.. .I.nI k 

a) Prediction m o r  during sequential training 
N A / ( X E M L P I D I l  

s o l o  2020 2010 2010 1010 2010  2 0 1 0  2080 2090 2100 
k 

b) Comparison of iterated prediction and test sequence 

Fig. 2 .  NARX-RMl.P training using DDF (NRMSE=5 9%-2) 

The NRMSE means and variances of iterated Prediction obtained 
for NATC-RRTJF with 8 hidden units, are given in Table 2. 

Table 2. Normalized mean squared test error of NARX-RRBF 

l jRI  

a) Prediction error during sequential training 

n ---.--..r--,,-,,-..---\ 
P0,O 20PO 7010  2 0 4 0  2 0 5 0  2060  , 0 1 0  2080 2 0 0 0  1 1 0 0  

,,“!*z,mps k 

. b) Comparison of iterated prediction and test sequence 

Fig. 3. NARX-RRBF training using DDF (NRMSE=I 482e-I) 

From Tables 1 and 2, we can see that DDF and LKF 
produced networks with better generalization capab 
networks trained by EKF. Lower variances of NRMSE show 
that DDF and UKF were also less sensitive to initial values of 
parameters. Since EKF is based on linear approximation of 
dynamic equation (Sa), and DDF uses nonlinear (second order) 
approximation of (Sa) these results were expected. 

5. CONCLUSIONS 

In this paper we have discussed the application of tree filters: 
EKF, LKF and DDF to nonlinear parameter and state estimation 
of a NARX recurrent neural networks. DDF and UKF produced 
networks with lower generalization error. and are less sensitive 
to initial parameter values than EKF. Another significant 
advantage of these filters over EKF is that they do not demand 
the calculation of the neural network Jacobian, therefore they 
could be applied in training networks with non-differentiable 
neuron activation functions. 
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