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ABSTRACT- Adaptive nonlinear Volterra equalizers are 
developed for compensation of nonlinear signal distortion in a 
satellite communications channel. The equalizers do not require 
a Volterra characterization of the channel and adaption of the 
weights is accomplished with the least-mean square (LMS) 
algorithm. Convergence of the equalizers are discussed as well 
as a multiple-step LMS adaption method which improves the 
convergence characteristics. We compare the performance and 
complexity of these equalizers to that of a linear equalizer for 
QPSK, 8-PSK and 16-QAM. 

I. Introduction 

Satellite communication channels must employ a high power 
amplifier (HPA) in order to provide sufficient link margin. The 
increasing demand for bandwidth and the desire to minimize 
satellite power consumption often means the HPA is driven at 
or near saturation. The end result is the introduction of 
nonlinear bandlimited signal distortion yielding nonlinear 
intersymbol interference (ISI). For such systems, it may be 
useful to compensate for this nonlinear ISI. 

One possibility for nonlinear signal compensation is in the 
form of an adaptive nonlinear Volterra equalizer. The use of 
nonlinear equalization is not new. Nonlinear equalization of 
voice channels was studied in [ l ] .  Nonlinear equalization of 
digital satellite channels using Volterra kernels was studied for 
satellite communication systems by Benedetto and Biglieri [2], 
However, [2] limits its analysis to signal distortion caused by 
the nonlinear bandlimited system, it does not take into account 
noise, and it is not adaptive. An extensive analysis of a satellite 
communication system using Volterra Series is presented in [3] 
including noise but not including equalization. Volterra 
equalization was also analyzed and compared to other signal 
compensation approaches such as predistortion, and IS1 
cancellation in [4] for microwave radio channels employing M- 
QAM modulation. 

The systems studied in [4] were for QAM with modulation 
levels of 64, 128, and 256. Since these systems have a 
constellation with signal points which are not on a constant 
modulus, they are highly sensitive to the AMIAM and AMRM 
distortion caused by the HPA. Also, the modulation orders 
studied required a high signal to noise ratio for reasonable error 
rates. In this work we consider M-PSK systems which employ a 
constellation with signal points on a constant modulus and 
operate at lower signal to noise ratios. We also consider 16- 
QAM whose signal points are not on a constant modulus, 
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but operates at lower signal to noise ratios than the systems in 
[4]. The present work adds adaption to the Volterra equalizer 
and presents several examples of digital satellite communication 
channel performance utilizing adaptive Volterra equalizers. We 
use as our performance criteria both mean-square error (MSE) 
and bit error probability (PJ. 

The following section introduces the channel model and 
description of the Volterra equalizer. Section I11 describes the 
adaption algorithm, convergence issues, and suggests a 
multiple-step adaption algorithm for increasing the rate of 
convergence while maintaining stability. Section IV presents 
several results obtained from computer simulations followed by 
the conclusions in Section V. 

11. Channel and Equalizer Models 

The block diagram of a satellite communications channel 
with downlink noise is shown in Fig. 1. The modulated input to 
the satellite, x(t), is filtered by the channel pre-filter then 
amplified by an HPA, a traveling wave tube (TWT). The output 
of the TWT is filtered by the channel post filter and summed 
with additive white Gaussian yielding r(t). The signal r(t) is then 
filtered by the receive filter to yield the output of the system, 
Y(t>. 

w(9 
Figure 1. Satellite Communication Channel 

The TWT is modeled, following Saleh [5], as a frequency- 
independent memoryless bandpass nonlinearity. It is completely 
characterized by its AWAM and AMIPM conversions, 
respectively, given by 

A(r) = a,  /(l+p,rZ), (AMIAM) (1) 
and,  

D(r) = agr2 / (I + pgr2), (AMPM) (2) 

where r is the amplitude of the input waveform, aq = 1.9638, 

Pa = 0.9945, a,+ = 2.5293, and p4 = 2.8168. If r(t) and O(t) are 
the instantaneous input modulus and phase, respectively, of the 
TWT then A(r(t)) and @(r(t))+0 (t) represent the instantaneous 
amplitude and phase, respectively, of the TWT output. Because 
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the TWT is between two linear filters the overall channel is a 
nonlinear system with memory. The effects of the nonlinear 
bandlimited channel on the signaling waveform include a 
distortion of the HPA output spectrum and nonlinear IS1 [6]. 

The Volterra series characterization of a nonlinear 
communication channel provides a relationship between the 
discrete-time input symbols, X,, and the discrete-time channel 
output symbols, Y,=y(nT,) where T, is 1/R, (R, = symbol rate), 
and is given [2,3] by 

This equation represents a low-pass equivalent discrete-time 
channel model. As indicated in (3), Y, consists of linear and 
nonlinear IS1 (intersymbol interference) terms. The Cnl , 
CnlCn2Cn3, ... are constant coefficients determined from the 

Volterra characterization of the channel [2,3]. The 
(i=1,2, ... ) are the channel inputs for time n-n,, and * denotes 
complex conjugation. Notice that the nonlinear terms cons#ist of 
odd degree multiples of the discrete-time channel inputs. This is 
because nonlinear combinations of even degree are assumed to 
be out of the band of interest. 

Equation (3) suggests the form of the nonlinear Volterra 
equalizer with inputs Yn . The output of the equalizer, Zn , 
consists of a linear combination of all linear terms arid all 
possible combinations of nonlinear terms of Y,, of odd degree, 
and is given by 

In practice, any channel has a finite memory and nonlinearity of 
finite degree, so that the summations in (3) and (4) are finite. 

Fig. 2 illustrates a block diagram of a 3-tap 3rd-order 
Volterra equalizer, where Yo in the figure corresponds to the 
Yn in (4). The samples from a tapped delay line are the inputs 
to a nonlinear combiner. The nonlinear combiner then outputs 
all single taps and all combinations of three taps. Each clutput 
from the noniinear combiner is then scaled by a weight to form 
an input to the summing device. In general there are 

(order+l)/2 N2i-1 
L =  c (:5) 

i=l 

terms out of the nonlinear combiner, where N is the number of 
taps in the tapped delay line, "order" is highest degree term at 
the nonlinear combiner output, and is restricted to odd numbers. 
Thus, from ( 5 ) ,  the equalizer in Fig. 2 contains 30 outputs from 

*? Nonlinear Combiner 

WO 

Figure 2. 3-tap 3rd-order Volterra equalizer 

the nonlinear combiner, 3 linear and 27 of degree 3. It is also 
possible to have a nonlinear equalizer with N-tap linear 
compensation, but with a subset of the taps forming nonlinear 
combinations. Performance of equalizers of this form are 
presented in the simulation results section. 

In [2], a significant reduction in complexity is made, for M- 
PSK systems, by eliminating terms from the nonlinear combiner 

of the formYiY,Yi = Y, for i or j = k, assuming Yn is of 
modulus one. Because Yn contains a noise term, this reduced 
complexity equalizer suffers a performance degradation as is 
demonstrated in the simulation results section. 

111. Volterra Equalizer Adaption and Convergence 

Since the nonlinear combining occurs before the tap weights 
of the equalizer, the outputs of the nonlinear combiner may be 
considered inputs to a linear adaptive filter. Thus, the LMS 
algorithm, [7] may be employed for adaption and the results of 
linear filtering apply. However, obtaining a correlation matrix 
for the outputs of the nonlinear combiner may be difficult. 

Denote the output of the nonlinear combiner by the complex 
T vector U = [UO u1 ... UL-I] where T denotes transpose, the 

number of elements, L, in the vector is given by (5 ) ,  and each ui 
(i=O,l, ..., L-1) is an output of the nonlinear combiner. Denote 

the complex weight vector by W = [WO WI ... W L - I ] ~ ,  where 
wi, is the weight multiplying ui. Then, the output of the Volterra 
equalizer is given by 

z= WTU (6) 

and the weight update equation is given by 

W ( k + l )  = W(k) + pe(k)U* (7) 

where, k is the k-th update time, e(k) is the error at the output of 
the equalizer at time k, and p is the step size. 

Recall that for a linear adaptive filter (LMS algorithm) 
convergence is guaranteed only if the step size, p , is less than 
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2/h,,, [7,8], whereh,,, is the largest eigenvalue of the 
correlation matrix of the tapped delay line inputs. In addition, 
when the eigenvalues are widely spread (ratio of Amax I Amin is 
large) the rate of convergence is limited by the smallest 
eigenvalues. Similar conditions hold for the nonlinear equalizer. 
The following discussion is intended to show that the 
eigenvalue spread for the nonlinear equalizer is potentially 
greater than that of the corresponding linear equalizer with N 
taps. 

Consider the correlation matrix of the inputs to the N-tap 
delay line, for example the correlation matrix of the elements Y, 
in figure 2, and denote this matrix as R and its eigenvalues as 
hi. Defme the correlation matrix of the nonlinear combiner 

outputs, U, as R and its eigenvalues as a,  . It is clear that 

has dimensions much larger than R and that the elements of R 

- 

are all contained in R . From [8] we have the following two 

expressions for the maximum and minimum eigenvalues of R 
- 

, X € C L , X ; t 0  
Pi& 

amax = max- H x x  
and,  

amin = min- XECL,XfO H '  x x  
(9) 

where L is given by (5) and CL is complex vector space. 
Equation (8) states that the largest eigenvalue of R is obtained 
by the largest amount by which any vector is amplified by 

vector multiplication. But since R c R and CN c CL, then 
amax 2 h,,, . Similarly, amin 5 Ami,, so that the 
eigenvalue spread for the nonlinear equalizer is likely to be 
greater than for the corresponding linear equalizer. Also this 
implies that the maximum step size is likely to be less for the 
nonlinear equalizer. 

In the next section, the sensitivity to the step size is 
illustrated with an example. However, before considering such 
an example, it is useful to investigate a method for improving 
the convergence characteristics of the nonlinear equalizer. This 
can be done with the multiple step LMS algorithm [9-121. With 
this algorithm each weight may be updated with a unique step 
size. This leads to the update equation 

- 

W(k + 1) = W(k) + MDe(k)U* (10) 

where M, is a diagonal matrix with the step sizes p i  
(corresponding to weight wi ) along the main diagonal and zeros 
elsewhere. With the nonlinear equalizer it has been found useful 
to choose a larger step size for linear terms and smaller step 
sizes for the nonlinear terms. 

If the correlation matrix for the nonlinear combiner output is 
known then the following illustrates the conditions that must be 
met to maintain stability. Following a similar approach to [8], it 

can be shown that the nonlinear equalizer is convergent in the 
mean (the expectation of the tap weight vector approaches the 
optimum Wiener solution) and in the mean square, if the largest 

eigenvalue of the matrix R, =MDR is less than 2. Notice that 
if all the diagonal elements of R, are equal then this reduces to 
the familiar 2/ctmax constraint. As in the linear filtering case, 
Mueller [12], the update constant may be replaced with 

p K-'so that all the eigenvalues become unity and all modes 
decay at the same rate. 

% 

IV. Simulation Results 

The following results were obtained from Monte-Carlo 
simulations using a low pass equivalent channel model [3,13]. 
For the following systems, the M-PSK systems have a square 
pulse shape at the transmitter and the 16-QAM system has a 
square root raised cosine with roll-off of one. For all systems 
the receive filter is matched to the transmit pulse shape. The 
HPA backoff is defined as the difference, in dB, between the 
HPA's output saturation power and the average power into the 
HPA. For the TWT parameters used in this work, the T W r  
output is saturated with an input power of unity. The M-PSK 
systems are operated at 0-dB backoff while the 16-QAM 
systems are operated at various backoffs, as will be indicated for 
each system. For all the systems considered, the channel pre- 
and post-filters are 6th-order low-pass butterworth with 3-dB 
bandwidth of 0.75 R,. 

-1n I . -  

-12 

2 4 6 8 
Symbols 

Figure 3. MSE for 3-tap reduced and non-reduced Volterra 
equalizers at Eb/N, = 10 dB, and 100 dB 

Equalizers. 
Fig. 3 plots the mean-square error (MSE) vs. adaption t h e  

~~ 

in symbols for various 3-tap equalizers for a QPSK system. Th'e 
equalizers are a 3-tap linear equalizer, 3-tap 3rd-order equalizer, 
and a 3-tap 3rd-order reduced complexity equalizer. Th'e 
reduced complexity equalizer has the tap weights of the terms 
Y,YjY, set to zero for i or j = k, as discussed previously. In all 
cases p The MSE estimate is obtained by appropriately 
scaling a 512 symbol running sum of the squared error at th'e 
output of the equalizer. This method gives a quick but biased 

490 



estimate of the MSE especially before the equalizer has 
converged. After the equalizer has converged, the method gives 
a good estimate of the MSE. Although ensemble averaging of 
learning curves is the proper method for estimating MSE, the 
computer time necessary for such an approach was prohibitive. 
The figure illustrates that for low values of Eb/NO, the reduced 
equalizer has performance (in MSE) comparable to that of the 
linear equalizer. As the Eb/No increases the reduced equalizer 
performance approaches that of the non-reduced equalizer, but 
still has a performance loss even at very high Eb/No. The figure 
also illustrates that the convergence time for the 3rd-order 
equalizer is on the order of 100,000 symbols. 

Fig. 4 illustrates the advantage of multiple-step size adaption 
for a QPSK system with an Eb/No of 9 dB. The curve illustrating 
large jumps and higher overall mean-square error is for a 3-tap 
5th-order equalizer with a single step size of The lower 
curve is for a 3-tap 5th-order equalizer with multiple-step 
adaption and step sizes of IO", and for the linear, 3rd- 
order, and 5th-order terms, respectively. The single step size 
equalizer is evidently unstable at this adaption rate. In order to 
stabilize the single step size equalizer, the step size may be 
reduced but at the expense of a much slower convergence time. 
The figure illustrates that the multiple step algorithm lessens the 
penalty of a slower convergence rate while improving 
performance in MSE. 

Symbols 

Figure 4. Multiple step size adaption. 

The probability of bit error performance for QPSK and 8- 
PSK systems is shown in Fig. 5. For the QPSK systlem the 
equalizers are a 5-tap linear and 5-tap 3rd order. For the 8-PSK 
system the equalizers are a 7-tap linear, 7-tap 3rd-order, and 7- 
tap linear with 3-tap 3rd-order. The latter equalizer utilizes only 
the 3 center taps for nonlinear equalization. Although, according 
to Fig. 3, the MSE performance for a 3rd-order equalizer is 
approximate!y 2 dB better than for a linear device, there is no 
improvement in Pb for QPSK. 

Some insight may be obtained by looking at a scatter plot of 
the equalizer output, Fig. 6. For this case it has been determined 
that the signal to distortion ratio is approximately 15 dB 
whereas the symbol energy to noise spectral density ratio is 13 
dB (i.e. Eb/No = 10 dB). With the distortion below or at a 
comparable level to the noise, the equalizer can significantly 
reduce the mean-square error by reducing the componenl. of the 
noise in the radial direction, however, this noise reduction 

6 8 10 12 14 16 
Eb& (dB) 

4 

Figure 5. QPSK and 8-PSK Pb error nonlinear 
equalizer performance. 

is orthogonal to the direction which leads to a decision error. 
Thus, although the mean-square error is significantly reduced, 
the probability of error is not improved. This result is unique to 
M-PSK when the distortion is below the noise level. In the 8- 
PSK case, the noise level is below the distortion at Pb =10 -5 and 
the 3rd-order nonlinear equalizers give a 0.5 dB improvement in 
pb. 

-1  -0.5 0 0 5 1 

Figure 6 .  Scatter plot: 5-tap 3rd-order equalizer output. 

The 7-tap 3rd-order equalizer (343 3rd-order terms) shows a 
slightly degraded performance compared to the linear equalizer 
at low Eb/No due to noise enhancement. The 7-tap linear 3-tap 
3rd-order equalizer (7 linear terms, 27 3rd-order terms) gives 
the same performance improvement at high Eb/No at a much 
lower complexity compared to the former. 

Thus far only constant modulus systems have been 
considered. Figure 7 illustrates the performance in Pb for a 16- 
QAM system. Several equalizer configurations are considered: 
9-tap linear, 9-tap 3rd-order, and 9-tap linear with 3-tap 3rd- 
order. For the linear equalizer, the 16-QAM system must be 
operated a large backoff for low Pb. However the 3rd-order 
nonlinear equalizers can operate at 6-dB backoff and still 
maintain a low Pb. The 9-tap 3rd-order (9 linear and 729 3rd- 
order terms) has approximately 0.5 dB better performance than 
the 9-tap linear 3-tap 3rd-order equalizer (9 linear, and 27 3rd- 
order terms) however the former is an impractical device. The 
significant improvement for the nonlinear equalizers is in link 
margin. The 9-tap linear 3-tap 3rd-order equalizer at 6 dB 
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backoff gives approximately a 4 dB improvement in link margin 
compared to the 9-tap linear device at 10 dB backoff. 

The nonhear  equalizer improvement in Pb for 16-QAM 
versus PSK systems is attributed to two dominate factors: 16- 
QAM operates at a higher Eb/N, than the PSK systems and 
QAM is subject to constellation warping [6] so that the effects 
of the HPA are more significant. In contrast to constellation 
warping, PSK suffers a constellation rotation which is reversed 
by the phase synchronizer. Note also that the link penalty for the 
PSK systems considered is not nearly as severe compared to the 
QAM system. 

V. Conclusions 

The Volterra equalizer was extended to an adaptive 
equalizer utilizing the LMS and multiple step LMS algorithms. 
Although the nonlinear equalizers gave significant improvement 
in MSE, no improvement in Pb was found for a QPSK system 
where the noise level was greater than signal distortion. A 
modest improvement in probability of error for an 8-PSK 
system was demonstrated and it is expected that a greater 
improvement exists for 16-PSK where the distortion level is 
greater than the noise level. For 16-QAM modulation the 
nonlinear equalizers gave a significant improvement in link 
margin. The complexity of the equalizers was discussed and it 
was that shown that simplified nonlinear devices (i.e. N-tap 
linear with 3-tap 3rd-order) give performance improvement 
comparable to extremely complex (i.e. N-tap linear, N-tap 3rd- 
order) non-simplified devices. 
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