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ABSTRACT

The extended Kalman filter has been successfully applied to the
Jeedforward and the recurrent neural network training. Recently
introduced derivative-free filters (Unscented Kalman Filter arud
Divided Difference Filter) outperform the extended Kalman
filter in nonlinear state estimation. In the parameter estimation
of the feedforward neural networks UKF and DDF are
comparable or slightly better than EKF, with a significant
advantage that they do not demand calculation of the newral
network Jacobian. In this paper, we consider the application of
EKF, UKF and DDF to the recurrent neural network training.
The class of nonlinear autoregressive recurrent neural
networks with exogenous inputs is chosen as a basic architecture
due to its powerful representational capabilities

1. INTRODUCTION

The Extended Kalman Filter (EKF) has been accepted as
effective and easy to implement method for state and parameter
gstimation. Tt has been applied with success to the feedforward
neural network training [1,6] as well as to the recurrent neural
network waining{11], It was shown that statistics estimated by
the EKF can be used to sequentially estimate the structure
(number of hidden neurons and connections) and parameters of
feed-forward [6] and recurrent [7] Radial Basis Function (RBF)
networks.

Estimators like the Unscented Kalman Filter (UKF) [2,3] and
the Divided Difference Filter (DDF) [5], have been introduced
recently as an outperforming altemative to EKF for nonlinear
state estimation. In parameter estimation of the feedforward
neural networks UKF and DDF are shown to be comparable or
slightly better than EKF [8], with a significant advantage that
they do not demand calculation of the neural network Jacobian.

In this paper we shall consider the training of a Non-linear
AutorRegressive with eXogenous inputs (NARX) recurrent
neural networks, using DDF, UKF and EKF. The class of NARX
recurrent neural ntworks is chosen since it is shown in [4] that
they outperform classical, fully connected, recurrent neural
nerworks in tasks that involve long term dependencies for which
the desired output depends on inputs presented at times far in the
past.

2. NARX RECURRENT NEURAL NETWORK

A NARX model of a dynamic system is giver by:
St = Sk 1y Sk s ¥eLMkop, ) 1

where §; corresponds to the true (noiseless) output of the
system, u, is the known input at time step &, A, and A, are
the input and the output order, and f(-) is a non-linear function.
We shall consider a NARX model for which f is implemented
either using a Multilayer Perceptron (we shall name it NARX
Recurrent Multilayer Perceptron — NARX_RMLP) or using a
radial basis function network (NARX Recurrent Radial Basis
Function network — NARX_RRBF). For comparison purposes,
we shall assume that both models have two layers of neurons
(Figure 1), with an output layer having a linear activation
function.

s(k)

Figure 1: A NARX recurrent nerual network

The output of the i-th hidden neuron of a NARX RMLP
network is given by:

4, n, 4,
#isianue,b) = tﬂ“‘{bzo +[Zb.zsk-i +2 bejruj,k—!} (2)
=1 J=ir=1L

where s, | =[s; ;5. ]| denotes the vector of previous
network outputs, w,_;, =[u,_, "'“k-A.T]‘iA is the vector of

previous inputs and b, = [bl-o.‘f?ﬂ..‘b,-A!l:',“.‘lzv,»,,Iir A, 1" denotes
the vector of hidden neuron weights.

* The work of B. Todorovié was supported by a Scholarship of the German Academic Exchange Service (DAAD) under the Stability Pact for South East

Europe.

802



The output of the i-th hidden neuron of a NARX_RRBF
network is given by:

A
Bi(s; 1.1 by, my) =exp{— E(bu (Sg — 1)

ny A, R 3)
- _z]zl(bljr(uj,k-r _mﬁr)) }
J=lr=

where m; =[mgm,...m, By, 1" denotes a vector of
hidden neuron centers.
The network output is given by:

FGp Wy =g+ é“fﬂ(sk49“k4sb.'{,ﬂ1,}) @)

where a =[a, g, . ] are the output weights, w denotes the
n, dimensional vector of unknown network weights,
w=[a'b"{mT}]"; ny is the number of hidden nevrons.

2. PARAMETER AND STATE ESTIMATION
2.1. State space model of the NARX recurrent network

Estimation of recurrent neural network parameters can be put
in the framework of nonlinear state estimation by defining the
state space model of network dynamics. The state vector x is
obtained by augmenting the base state s. which is in our case
defined as the previous A, outputs of the recurrent network,
with the vector of network parameters w.

xp = O, uy )+ di, dy ~ NG, (5a)

e =Hug 4y, v ~NOR) (5b)
[ S Sspu,w,) dey
Sk-1 Sk 0
X, = : s O, ;) = : > dy=l 1
Sk-a, +1 Sk-a, +1 0
L Wi Wi 2
o=|%0 T la Bl 0 v Oy
0 0,

Equation (5a) describes time evolution of the augmented
state x, while the observation equation (5b) selects the current
output of the network as the observation. The process noise dj
and observation noise V; are assumed to be mutually
independent, white, and Gaussian with known covariances O,
and R, respectively.

2.1. Minimusn Mean Squared Error estimation

A Minimum Mean Squared Error (MMSE) estimate of the
state x; of a nonlinear discrete time system (3) is such that the
estimation error X, = x; —X; is unbiased ( E[X,]=0) and
orthogonal to the observation y, (E[¥, y;. 1=0). Filters
considered in this paper (EKF, DDF and UKF) provide a MMSE
estimate of augmented state x; using “predictor-corrector”
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scheme.

Given the estimate of the state x, ; and its covariance
P, 1. obtained for the set of observations up to the time step
k=1: yypq ={¥;, i =1,...,k -1}, the filter predicts the future
state using the process model and the knowledge about the
process noise distribution. Predicted mean and covariance are
ideally:

X = Elx [yigal (62)
Py = ElG = 50 50T mun] 60)
The estimate ¥, and its covariance P, , are obtained by

updating (correcting) the state prediction (¥ , P ;) with the
current observation y, :

B =30+ K =~ %) (7a)
Ki =P Pk (Tb)

- —1 T
Px,k = Px,k - Kka,kKk (7c}

e = EDifnaaly Py = ELO% =500k =50V (1]
are observation predicion and its  covariance, and
Po = H —5 )0 ~5e) [visa] s the cross-correlation.
These equations depend on predicted values of the first two
moments of x; and y;, given set of observations y,.,_;.Due
to the linearity of the observation equation (5b) we have:

B = Hy%y (8a)
Por= HkPxkaJ;r + R (8b)
Py =P HY (8¢)

and the problem is reduced to the propagation of a state x,_;
through the nontinear dynamic equation (5a) in order to obtain
prediction ( X , P ).

3. DERIVATIVE.FREE NONLINEAR FILTERS

In this section, we shall consider three different approaches
to nonlinear state estimation and apply them to the estimation of
the NARX recurrent neural networks. As we saw in the previous
section, the problem that remains to be solved is the estimation
of a statics of a random variable propagated trough the nonlinear
transformation. Let us define the problem in a general form.
Suppose that x is a ‘random variable with mean % and
covariance P, . A random variable ¥ is related to x through the
nonlinear function y =:f(x). We wish to calculate the mean
and covariance P, of y. (Note that the derived solutions could
be easily be applied 1o state prediction (6) by introducing
substitutions x — xp_; and y — x; .)

Extended Kalman filter is based on multidimensional Taylor
series expansion of f(x). We shai}l consider only the first order
EKF, obtained by excluding nonlinear terms of Taylor series
expansion;

F()=fGE+An) = f(0) + f7(D)Ax @



where f;($)=8f/ox| , and Ax is

variable with covariance P, . In that case we have:
A
y=ELf(x)]= f(x)
A
P, = El(f(x)- NS - )T 1= FLURDPF )T

zero mean radnom

(10a)
(10b)

3.1 Divided difference filter

In [5] Norgaard et al. proposed a new set of estimators based
on polynomial approximation of nonlinear transformations using
multidimensional extension of Stirling’s interpolation formula.
Stirling interpolation formula is particnlarly simple if only first
and second order polynomial approximation are considered:

Fxy= f(#)+ Dy f+ Do f (1)
Divided difference operators are defined by:
~ 1] & - (12a)
Byf= ;[ 28,440 ]f(x)
— ] n non (12b)
DLf =—| Taxdp+ 3 2 An an (4,6, X8, L/ (%)
h p=1 P=lg=1,
9=p
where ), is a “partial” difference operator:
5pf(£')=f(i-i—().S-h-ep)—f(f~0.5~h-ep) 13)
and ¢, isan average operator:
;zpf(i) = 0.5-(f(i’+0.5-h-ep)+f(i—0.5-h-ep)). (14)

and e, is the pth unit vector.

Applying a stochastic decoupling of the variables in x by the
following transformationz = S ¥, (S, is the Cholesky factor
of the covariance matrix P, = §,87 ), Norgaard et al. derived
approximation of mean and covariance of y = f(x) [5):

oL f(x)+222(f(X+hSU)+f(x B,y (153)

= EZ—EIU(E+ sy )= f(x = hsy p))

fE+hs, p) = (5 - hs, ) (15b)
h2
T

Z(f(x +hs, )+ (3 =05, ,) ~21(X))
p=1
) (f(f+ hsx,p) + f(i - hsx,p) - zf(i))-r
Interval length 7 is set equal to the kurtosis of the prior random
=3.

variable x. For Gausians, I’

3.1 Unscented Kalman filter

Julier and Uhiman proposed the Unscented Transformation
(UT) [2,3] in order to calculate the statistics of a random
variable x propagated through nonlinear function y = f(x).
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'I:he n, dimensional continuous random variable x with mean
x and covariance P, is approximated by 2m, +1 sigma points
X, with corresponding weights @, , p=_01,...,.2n,

Xo=% w@y=Aif(n+d), A=a’(n,+x)-nf

or p=12...n

Xp=f+n+id s, p =05/(n+ )
X pon, =3r—\/n+x~s”, @p.n =0.5/(n+ 1)

where « determines the spread of the sigma points around x
(usually l.e—4<a<1)and x € Ris the scaling parameter,
usually set to 0 or 3—n_[3]. 84 p is the pth row or column of
the matrix square root of P,

Each sigma peint is instantiated through the function f{-) to
yield the set of transformed sigma points Y; = £(X;), and the
mean ) of a transformed distribution is estimated by:

(16)

2% ;L);(f(x+4n+l 5y5)

+ fE—yn+A-
The covariance estimate obtained by unscented transform is:
2, R N A A as e
= prm =Y - I =—— @ - D - P
n+i
8
UG+ A5, )= PG+t A, )T 9
2(n+’?-)p=l
Z(f F—vn+ds

2{""';0 p=i

Estimation of states and parameters of NARX recurrent
networks (state space model given by (5)) using unscented
Kalman filter, consists in applying unscented transformation to a
dynamic equation (5a) in order to obtain prediction ( X , P, ).
Predicted statistics are updated with the current observation y;
applying equations (7).

- Ao,
y=P§pr\£=mf(x)+ an

sx,i ))

A5, ) =P E—Vn+As, )~ s

4. EXPERIMENTS

In this section, we shall give the results of time series
prediction using NARX recurrent neural networks trained using
EKF, DDF and UKF. The time series is obtained from the well-
known Mackey-Glass equation:

3(1) = —bx(r) + —=¢ =)

1- x(t - A)"°
with parameters a =0.2, &=0.1, A =30, initial conditions
x(£) =0.9 , and sampling rate 7 =6..

After sequential adaptation on 2000 consecutive samples
(presented only once), networks were iterated for next A=100
samples.Table 1, compares the means and variances of NRMSE
of iterated prediction obtained for NARX_RMLP (6 recurrent
inputs, 10 hidden and one output unit), trained using DDF, UKF
and EKF for 30 independent runs (different inital values of the
network parameters).

(19)



Table 1. Normalized mean squared test error of NARX_RMLP

DDF UKF EKF
01238 | 0.2602 | 0.3209
4.1e-3 5.58¢-2 | 9.91e-2

mean(NRMSE)
var(NRMSE}
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a) Prediction error during sequential training
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b) Comparison of iterated prediction and test sequence
Fig. 2. NARX_RMLP training using DDF (NRMSE=5 98¢-2}
The NRMSE means and variances of iterated prediction obtained
for NARX_RRBF with § hidden units, are given in Table 2.
Table 2. Normalized mean squared test error of NARX_RRBF

DDF UKF EKF
0.1587 0.209 0.206
3.83e-4 | 6.05e-3 | 7.49¢-3

mean{NRMSE)
var(NRMSE)

Pradiclion astas

200 400 600 400 1000 1200 1400 16090 1800 2000
Time steps:

a) Prediction error during sequential training

NARX RRHF test

e Time series
151 “ww- llaraled pregichan
=== Testerror
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Time staps: k

. b) Comparison of iterated prediction and test sequence

Fig. 3. NARX_RRBF training using DDF (NRMSE=1.482¢-1)
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From Tables 1 and 2, we can see that DDF and UKF
produced networks with better peneralization capabilities then
networks trained by EKF. Lower variances of NRMSE show
that DDF and UKF weére also less sensitive to initial values of
parameters. Since EKF is based on lnear approximation of
dynamic equation (5a), and DDF uses nonlinear (second order)
approximation of {5a) these resuits were expected.

5. CONCLUSIONS

In this paper we have discussed the application of tree filters:
EKF, UKF and DDF to nonlinear parameter and state estimation
of a NARX recwrrent neural networks. DDF and UKF produced
networks with lower generalization error, and are less sensitive
to initial parameter values than EKF. Another significant
advantage of these filters over EKF is that they do not demand
the calculatien of the neural network Jacobian, therefore they
could be applied in training networks with non-differentiable
neuron activation functions.
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