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Aeronautical Channel  Characterization 
PHILLIP A. BELLO 

Abslruct-This paper  is concerned with characterizing the link be- 
tween an airplane  and a  satellite.  Attention is focused on the effect of 
indirect paths scattered from the surface of the earth. Applicable 
propagation-theoretic and system  function-theoretic work is reviewed 
and integrated. Some new and some  known expressions for channel 
correlation functions are presented for the “steepest  descent” channel 
model. 

I. INTRODUCTION 

T HE aeronautical  communication channel appears in a 
multiplicity of command and control and communication 

systems;  military,  nonmilitary,  and civilian. We shall not get 
involved in a discussion of these various systems which,  more- 
over, have been  fairly well covered elsewhere in this  issue. 
Rather we shall focus  on  the  kinds of communication links in- 
volved and single out  for discussion one particular type of 
link that is of major importance in advanced aeronautical 
communications. 

One  may  categorize the links involved in  aeronautical com- 
munications  on  the basis of terminal  locations as: 1) air-air; 
2) air-ground; 3) air-space; and 4) ground-space  links. In 
studying  the modeling of these links  it becomes  evident that 
they are conveniently (although  approximately) decomposable 
into  combinations of propagation channels that  exhibit  certain 
characteristic propagation  effects  to  the exclusion of  others. 
For the purposes of the present discussion we identify five 
propagation channels, namely the 1) surface scatter; 2) iono- 
spheric scintillation; 3) tropospheric  refraction; 4) line-of-sight 
tropospheric  scatter; and 5) ionospheric refraction  (HF). Other 
propagation  channels  may  be  defined but these five appear 
adequate to characterize aeronautical  communication channels. 

The  channel of major importance in  satellite-based air traffic 
control systems is the surface scatter  channel. Due to space 
limitations  it was decided to  concentrate  on  this channel  alone 
for  this  paper. Also, consideration will be given only  to  the 
fading dispersive characteristics of this  channel. Section I1 re- 
views briefly the  mathematical  tools  that have become useful 
in  modeling the  input-output behavior of time-variant  linear 
channels, including  system functions, channel correlation  func- 
tions, and  statistics.  Following this,  Section 111 discusses the 
characteristics of the  surface scatter  channel.  The material is 
divided into  two  parts,  one dealing with  propagation physics 
results (e.g., scattering cross sections)  and the  other dealing 
with system function characteristics (e.g., Doppler power spec- 
trum, delay  power spectrum). 

11. SYSTEM FUNCTION CHARACTERIZATION OF RANDOM 
TIME-VARIANT CHANNELS 

The propagation channels of  interest here are linear and their 
behavior may be described on an “instantaneous”  input- 
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output basis with  the aid of system functions as discussed in 
Section 11-A. Section 11-B introduces channel correlation 
functions  to provide the simplest second-order  statistical  de- 
scription of these  channels on  a quasi-stationary basis. To  ob- 
tain estimates of error rates in data transmission  some  assump- 
tion must  be made  about  probability  distributions of channel 
fluctuations. Section 11-C summarizes the various statistical 
channel  models that have been useful in this  regard. 

A .  System Functions 
There  exists a variety of system functions  for characterizing 

the  input-output behavior of linear  time-varying systems.  The 
most general discussion of these system functions and their re- 
lationships has been  presented in [ I ]  . For  the purposes of the 
present brief discussion it is sufficient to confine  attention  to 
the time-variant  transfer function T ( f ,  t )  and the time-variant 
impulse response g ( t ,  [ ) .I  For simplicity of presentation we 
shall use complex envelope representation  throughout.  Thus 
the  input signal would be represented by  the  complex signal 
z ( t ) .  The real signal would  be a narrow-band  process with  en- 
velope I z ( t )  I and with phase 4 z ( t )  measured with respect to 
carrier phase 2rf0t, where fo is the carrier frequency. 

In complex  notation  the  input-output relationships cor- 
responding to  the use of T ( f ,  t ) , g ( t ,  E )  are 

w(t )  = [ z ( f ) T ( f ,  t )  exp (j27rft) df (1) 

w(t )  =Jz(t - t ) g ( t ,  g) dg, (2) 

where w ( t )  is the  output signal (complex) and Z ( f )  the spec- 
trum  of z ( t ) .  

The transfer function T ( f ,  t )  and  impulse  response g(t,  $) are 
Fourier  transform pairs, 

T(f> t )  8 exp ( - i 2 7 m  d t  (3 1 

g o ,  0 =I Tu-, t )  exp (i 27-f) 4 -  (4) 

It is readily seen that  the time-variant  transfer function  at 
the  frequency f (actually f hertz away from carrier frequency 
fo) is just  equal  to  the  complex  modulation observed on  a re- 

spread function U ( t ,  v) [ 1 ] ,  which provides the input-output relation- 
‘A third system function that the author has found useful is the delay 

ship 

This system function represents the time-variant channel as a  con- 
tinuum of delay and Doppler shifts with  complex gain U ( < ,  u )  d t  du for 

g(t ,  t )  over the t variable. It is also the double Fourier  transform of 
the delay r; and Doppler shift v .  U ( t ,  v )  is the Fourier  transform of 

the time-variant transfer function T ( f ,  t ) .  
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ceived R F  carrier transmitted at fo +f hertz.  Thus  the  time- 
varying envelope of  this received carrier is I T ( f ,  t )  I and  the 
time-varying phase of this received carrier  measured with re- 
spect to  the  input carrier  phase is &T(f,  f ) .  

While g(t,  E )  may be described formally as the response at 
time t to an impulse input  at t - E ,  the  author  has  found  it 
much more useful in  modeling  radio  channels to regard g(t,  E )  
as the  differential  complex time-varying gain associated with 
path delays  in the delay  interval ( E ,  E + d t )  in  a differential 
tapped delay line interpretation  of (2). 

With the use of delta  functions  the previous  integral formu- 
lations  include as a special case the idealized  radio  channel 
consisting of a  finite number K of discrete paths, i.e.. 

g(t,  E )  = Gk(t)6 (5 - Ek) (5) 
k=  1 

for  which (2) and (3) become 

K 
w( t )  = Gk(t)Z(t - Ek) ( 6 )  

k=  1 

Because of the  Fourier  transform  relationship  between 
T ( f ,  t )  and g ( t ,  E )  one may show  that (9) implies 

g*(t ,  E M t  + 7 , ~ )  = Q(7, -96  (V - E )  (10) 

where 6 (-) is the  unit impulse function and Q(7, E )  is the 
Fourier transform of R(i2, 7 )  on  the i2 variable. Q(7, E) has 
been called the  “tap gain correlation  function” because it is 
proportional  to  the  autocorrelation  function  of  the  fluctua- 
tions in the  complex  tap gain at delay in the  differential 
tapped delay line model  interpretation  of (2) .  Equation  (10) 
implies that  the  fluctuations of the  complex gains at different 
positions on the delay line are uncorrelated, whch is the rea- 
son for  the “US” in WSSUS. 

The power spectrum of the  complex gain fluctuations  at a 
given tap delay ,$ is proportional to  the Fourier transform of 
Q(7, E )  with respect to 7.  This  power spectrum S(E, v) has 
been called the “scattering function.”  It is  given by 

E )  exp  (-j2n7) d7. (1 1) 

K W<n = Gk(t) exp (- j  2nflk). (7) The scattering function  exhibits directly the delay  and Dop- 
k = l  pler spreading  characteristics of the channel.’ 

The tapped delay line interpretation  of g(t, E )  is particularly 
evident  in (5)-(7). 

The discrete model is particularly  useful  in  modeling the 
ionospheric and tropospheric refraction  channels. The integral 
formulation is appropriate  for  scatter channels, such as the 
scatter  portions of the line-of-sight tropospheric  scatter and 
surface scatter channels. 

Because of its  frequent occurrence  in  radio  channel  modeling 
we mention here the special mixed case of a single path  com- 
bined with a continuum  of  paths, i.e., 

g ( t ,  E )  = G ( t N  ( E  - Eo) +to, E ) .  (8) 

The ionospheric scintillation, line-of-sight tropospheric  scatter, 
and  surface scatter channels  require such a mixed description. 

B. Correlation Functions 
While the  fluctuations in  radio  channels  are due  to  nonsta- 

tionary statistical phenomena,  on a short enough time scale 
and for small enough  bandwidths  the  fluctuations in time  and 
frequency can be  approximately characterized as statistically 
stationary.  For  want  of a better  word  this  approximate  sta- 
tionarity is called quasi-stationarity. A mathematical basis for 
defining quasi-stationary radio  channels is presented  in [ 11 . 

When the  time variant  transfer function is idealized to have 
stationary  fluctuations in time  and  frequency  the  channel is 
said to be [ 11 wide-sense-stationary uncorrelated scattering 
(WSSUS). For  the WSSUS channel 

To make  practical use of the WSSUS model,  the  functions 
R(i2, T ) ,  Q(7,  E ) ,  and S((,  v) must  be regarded as mildly de- 
pendent  on  both  time origin and carrier frequency as discussed 
in [ l ] .  

A cruder  but  frequently  adequate description of  the average 
fading dispersive properties  of  the WSSUS channel  are pro- 
vided by  the delay  and  Doppler power spectra Q([ ) ,P (v )  and 
their  transforms,  the  frequency and time  autocorrelation  func- 
tions q ( i 2 ) , p ( ~ ) ,  respectively.  The latter are  defined as 

4 ( W  = R W ,  0) (12) 

P (7) = R (0,~).  (13) 

q(i2) is the  complex cross-correlation  coefficient between  two 
received carriers as a function of their  frequency  separation. 

When the  frequency  separation is such that  the cross- 
correlation  function q(S2) is very near the maximum value 
q(0) for all I I < Wcoh it is clear that all transmitted fre- 
quency  components within  a band of frequencies of width less 
than Wcoh will be received fluctuating  in a highly correlated 
fashion. For this reason Wcoh is called the  coherence 
bandwidth. 

The  time  correlation  function p ( 7 )  is the  autocorrelation 
function of the  complex envelope of a received carrier. 
Clearly one  may define  a coherence  duration  parameter 
Tcoh in terms  of p ( 7 )  in the same way as Wcoh is defined  in 
terms of q(i2). 

The gross channel  parameters Wcoh and T,.oh are  particularly 

T*( f ,  t ) T ( f +  a, t + 7 )  = R W ,  T ) ,  (9) 
‘S(5 ,  u )  is also the two-dimensional power spectral density of the 

i.e., the cross-correlation function  between  the  complex  en- time variant  transfer function, i s . ,  the double Fourier transform of 
velopes of received carriers transmitted 52 hertz apart is depen- 7). SE, u )  describes the intensity of scattering at a delay 5 and 

dent  only on the  frequency  separation i2 and  time lag 7 .  The 
function R(a, 7 )  is called the  “time-frequency  correlation U*(5, u)U(q ,  P )  = tY(t, v ) 6  (11 - 0 6  ( P  - 
function.” valid for the WSSUS channel. 

Doppler shift u because of the correlation function relationship 
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useful in predicting the  onset  of  frequency and time-selective not be  simultaneously active. Then P(v) and e([) [or equiv- 
distortion  when  the WSSUS channel contains  no discrete  alently p ( ~ ) ,  q(!2)] are  sufficient to describe the average mul- 
paths.  Then  both q(S2) and p ( 7 )  drop  to zero as S2, T-+ M, tipath and  Doppler  spreading  characteristics of  the  channel. 
and pulses with  bandwidths greater than Wcoh or time dura-  In  effect,  for  the class of waveforms considered,  one may  re- 
tions greater than Tcoh will suffer ever increasing amounts of place the actual  scattering function s([,  v) by  the simpler 
distortion.  Contrast this situation  with  the mixed (specular-  scattering function 
scatter) case (8); where q(S2) and p ( 7 )  approach  nonzero 
constants as S2, T + -. If the specular path is sufficiently so([, =P(v )Q( t )  (16) 
strong, increasing the pulsewidth beyond Tcoh or the  band- 
width  beyond Wcoh may produce  only  a small amount of addi- 
tional distortion. Of  course if the specular component is very 
strong Wcoh, Tcoh may  equal 00 if they are defined as values of 
S2 and T for which q(A-2) and p ( 7 )  drop  to  a specific fraction  of 
q(0) and p(O), respectively. 

The Fourier  transform of the  frequency  correlation  function 
q(S2) is the delay  power spectrum e((), which  can  be ex- 
pressed in the following forms, 

This function is proportional  to  the  intensity  of  the  complex 
tap gain at  delay [ in a  differential  tapped delay line  model of 
the  channel. One  may define  a  multipath  or delay  spread 
parameter as the  “width” of e([) where width is defined in 
some  convenient fashion. 

Two measures of width  that  occur  frequently in  applications 
are !‘total” and “rms.” The  total delay  spread Ltot is meant  to 
define  the  extent  of e(() for values of ( where Q(g) is  sig- 
nificantly different  from zero [e.g., 40 dB  down  from  the 
maximum value of e([)]. The  utility of Ltot is that  it  de- 
fines the  width of g(t ,  [) versus [. Then,  by Nyquist’s sam- 
pling theorem,  the  transfer  function T ( f ,   t )  versus f must be 
sampled at least at  a sampling “rate”  of l/Ltot samples/Hz to 
allow reconstruction of T ( f ,  t ) .  

The rms delay  spread L,,, is defined as twice the  standard 
deviation of e([) when  it  has been  normalized to  unit area 
and regarded as a  probability  distribution. This parameter 
may  be shown to  control  the degree of frequency selectivity  in 
a  bandwidth  that is of the  order of the  coherence  bandwidth [ 1 1 .  

The  Fourier  transform  of  the  time  correlation  function p ( 7 )  
is the Doppler  power spectrum P(v) ,  which is the  power spec- 
trum  of  a received carrier.  This spectrum  may be  expressed as 
an  integration over S([, v): 

The  “total” Doppler  spread Btot and  rms  Doppler  spread 
B,, parameters are defined  analogous to Ltot and L,,,, re- 
spectively,  and have analogous  utilities. 

When the  product of the  coherence  bandwidth  and  time 
duration Wcoh,  Tcoh of a channel  exceeds the  time-bandwidth 
product3  of  the signaling elements used in communicating over 
that  channel,  both time and frequency selective distortion will 

techniques may open large time and frequency intervals. 
3Actually,  one must use time-bandwidth “constraint” because coding 

without altering the observed average time  and  frequency se- 
lective distortion  on  the received signals. 

The reader  should be reminded that  to be  practically mean- 
ingful, the  functions s([, v), P(v) ,  e([) must be regarded as 
slowly varying with time  and  generally dependent  on carrier 
frequency, in addition  to being dependent  upon  the physical 
location  and  motion  of  the terminals of the  link. 

C. Statistics 
In  order  to be able to evaluate  analytically the  performance 

of various modulation  techniques over a channel it is necessary 
to have more statistical information  than  the  channel correla- 
tion  functions  defined in Section 11-B. Strictly speaking, for 
an exact statistical characterization  one needs multidimen- 
sional probability  distributions  of  the system functions. Un- 
fortunately, these have not been  measured  and if they  were, 
they would be prohibitively complex to use. Fortunately, 
however, there are useful  statistical  models that may be used 
in characterizing  radio  links. All these models use Gaussian 
processes to model  channel  fluctuations  either  directly or indi- 
rectly.  The  utility of Gaussian characterization,  either  direct 
or  indirect, is that  the  statistics can be  completely specified 
from  the  correlation  functions  of  the Gaussian processes. 

Three very useful  models that  keep recurring are 1) the 
Gaussian WSSUS channel; 2 )  the Gaussian discrete WSSUS 
channel; and 3) the Gaussian phase-modulation  discrete sta- 
tionary  channel. 

The Gaussian WSSUS channel is a WSSUS channel  in  which 
the transmission of a carrier  results in  the  reception  of  a nar- 
row-band  process  whose  in-phase and  quadrature  components 
are stationary Gaussian processes. A special case of this chan- 
nel, which is the  one  most  often used, is the  complex Gaussian 
[2], [3] stationary  scatter channel  in which  the in-phase  and 
quadrature  components  of  a received carrier are of  equal 
strength  and satisfy certain  symmetry  conditions  that  force 
the average 

T ( f ,   t ) T ( f  + a,  t + 7) = 0.  

Note  that  the  left side of (17) is not  the time-frequency 
correlation  function because the conjugate sign  is missing 
[c.f. (9)]. 

For  the  continuous  portion  of  the line-of-sight (LOS) channel 
an examination [4] of  the  conditions leading to ( 1  7) reveals that 
whenever frequency selectivity is of significance for transmis- 
sion bandwidths  that are small compared to  the carrier fre- 
quency  (the usual situation)  the  correlation  function in (17) 
is negligible compared  to  the time-frequency correlation  func- 
tion.  The surface scatter  channel generally contains  both  a 
diffuse  channel component describable by  a  continuous g(t ,  $) 
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and a discrete component (corresponding to reflection from 
the surface). It appears from  the  work of DeRosa [5]  that 
the  correlation  function in (17) will also be negligible under 
the same conditions described for  the LOS scatter  channel. 
It  may also be argued that  under  many  conditions of interest 
the ionospheric  scintillation and  tropospheric refraction chan- 
nels will satisfy (1 7). 

One of the characteristics of the  complex Gaussian channel is 
that a received carrier has an envelope that has the Rayleigh 
probability density function. Measurements of the  distribu- 
tion of received carrier envelopes for ionospheric  reflection 
channels (HF channels) frequently  exhibits  the Rayleigh char- 
acter  and in modeling HF channels it has become  customary 
to use the  complex Gaussian model. 

The  utility of the  complex Gaussian model is that  the  time- 
frequency  correlation  function R(n, T), or equivalently, 
Q(T,  [) or S ( [ ,  v) completely specifies the  statistics of the 
channel  and frequently makes possible the  analytic  computa- 
tion of error  rates.  In  any case the Gaussian assumption allows 
the  determination of system performance  by  hardware  or  soft- 
ware simulation techniques. 

The Gaussian discrete WSSUS channel has the  property  that 
the  fluctuations ck(t) in (6) have Gaussian (possibly nonzero 
mean) statistics. The  complex Gaussian discrete WSSUS chan- 
nel is of interest also, for which the  moment  property 

(Gk - c)(cj  - q) = 0 (18) 

applies. 

is a  stationary discrete  channel in which Gk(t)  takes the  form 
The Gaussian phase-modulation  discrete stationary channel 

Gk(t> = A k  exp  [j@k(t)l (1 9) 

where  Ak is constant and @k(t) is a Gaussian process. Note 
that in general Gk(t) has a  nonzero  mean, i.e., 

where UG is the rms value of the phase fluctuation. 
. In some applications u$ is so large compared  to  2n  that @ is 

regarded as uniformly  distributed  modulo 2n and Gk = 0. 
The  stationary statistical  models described above are con- 

venient idealizations. However, the actual  radio  channel char- 
acteristics  are nonstationary. Thus in the practical use of 
these models a quasi-stationary approach must be used with 
the channel correlation  functions and others defining the 
statistics of the Gaussian processes, allowed to vary slowly 
with  time, carrier frequency, and  system geometry. 

111. THE  SURFACE  SCATTER  CHANNEL 
By the surface scatter channel we mean the collection of 

radio paths  between  a  transmitter  and receiver,  which  exist 
solely due  to  the  intervention of the  earth's  surface, plus a dis- 
tortion-free "direct path" between  transmitter and receiver. 
The  propagation  effects  on  the  direct  path are not discussed 
in this paper. With regard to  the present  discussion, it is 
convenient to use the idealized direct path as a  delay,  Doppler, 
and  amplitude reference for  the  indirect  paths of the surface 
scatter  channel. 

A .  Propagation Modeling 

The basic areas of physics involved in  modeling the propaga- 
tion mechanisms of  the surface scatter channel  are the  theo- 
ries of scattering and reflection of radio waves from  random 
surfaces separating  media having different  constitutive param- 
eters.  For aeronautical  surface scatter channels the  two media 
of interest are the air and the surface of the  earth.  Numerous 
papers have treated  the  problem of scattering from irregular 
surfaces.  Beckmann  and  Spizzichino [6] summarize much  of 
the  work  up to  1960. 

When the surface is sufficiently smooth  and  flat  it may  be re- 
garded as a plane  interface between  two media. The problem 
of determining  the reflection from a plane lossy dielectric, 
while conceptually simple is quite involved because of the  po- 
larization  and  reflecting  plane orientation angle dependencies. 
In  the  words of Stratton  [14,  p.  5071, ". . . the  complexity of 
what  appeared to  be  the simplest of problems-the  reflection 
of a plane wave from  a plane  absorbing surface-is truly amaz- 
ing." The reader is referred to  [14,  sect. 9.41, [6 ,  ch.  113, or 
[16,  ch. 51 for  a detailed discussion of this  reflection problem. 
However it is appropriate  to present  here  (Fig.  1)  plots of  the 
reflection  coefficient  magnitude  and phase for  the sea as a 
function of grazing angle y (complement  of angle between 
direction of propagation  and  normal to surface) for  horizontal 
and vertical polarization at  VHF (X = 230  cm, f o  = 130 MHz) 
and L band (X = 18.7  cm,fo = 1.6 GHz)! 

Note that  horizontally polarized waves (no vertical compo- 
nent) .are almost  completely  reflected, whereas vertically po- 
larized waves (no component perpendicular to plane  defined 
by  direction of propagation and normal  to surface)  show a 
pronounced  dip in reflection  coefficient at low grazing angles. 
Also the phase of the  reflection coefficient for  horizontally 
polarized waves is essentially  180" while the phase for ver- 
tically polarized waves changes from 0" at large y to 180" at 
low y, reaching 90"  at  the grazing angle (called the Brewster 
angle) for which the magnitude of the  reflection  coefficient 
has  a  dip. 

The plane sea reflection  coefficients can be used for reflec- 
tions  off  the sea except  for small values of y where the curva- 
ture of the  earth  must be taken  into  account. This is done  by 
multiplying the reflection  coefficient by  a  factor called the 
divergence coefficient (see [6, ch. 113 or  [16,  sect.  5.21).  For 
reflection off  the  earth  between  a  synchronous satellite  and an 
airplane at  10 and 20  km  the divergence coefficient  has 
dropped to only 0.95 and 0.90, respectively, at y = 10". 

Scattering  and  reflection from land does not  exhibit  the 
statistical  regularity as scattering and reflection from  the sea. 
The reflection  coefficients can have wide  variations depending 
upon  the electrical  properties of the ground  in the vicinity of 
the first few Fresnel  zones.  According to Spizzichino 
[6,  p. 2191 numerous investigators ([29] and others) have 
measured the reflection  coefficients of different  types of plane 
ground  for various grazing angles. Plots of the  magnitude  and 
phase of the vertical and  horizontal reflection coefficients  for 
a surface with average conductivity and  dielectric constant are 

4From [ 15, p. 119, fig. 4.51 
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Fig. 1 .  Magnitude  and angle of reflection  coefficient ro of the  smooth 
plane  sea as a  function  of  the grazing angle. 

given in [6 ,  figs. 11.1 and 11.31. [30] presents  graphs of re- 
flection  coefficients  as a function of the conductivity  and  di- 
electric constant  of  the  earth. 

We turn  now  to a  qualitative discussion of the  return  from 
the  earth  when  the surface may  not  be considered smooth  and 
flat.  The analyses available generally assume a  plane wave inci- 
dent  on  the surface and characterize the signal scattered  by 
the surface into  different  directions as measured very far from 
the surface.  A  reference direction  that  is singled out is the 
“specular” direction, defined as the  direction  that a  reflected 
plane wave would take if the  incident plane wave were  re- 
flected  from a  mirror located  at  the  mean surface height. 

To describe the  character of the  scattered signal it is neces- 
sary to define  at least two statistical  parameters of the surface: 
u, the rms  height fluctuation relative to  the mean surface;  and 
a, the rms value of  the surface slope (spatial  derivative of  sur- 
face heights). It is assumed that  the surface  height fluctua- 
tions are member  functions of a  wide-sense-stationary two- 
dimensional random process. We consider the  two limiting 
behaviors corresponding  to u + 0 and a + 0. 

When the surface  height fluctuations are very small com- 
pared to a  “surface” wavelength h/sin y, where h is the wave- 
length and y the grazing angle, the surface behaves electrically 
like  a smooth  surface.  In  particular, all the energy is reflected 
in the specular direction q d  the received signal does  not  fluc- 

tuate if the surface is moved h~r izonta l ly .~  As u increases, 
scattered signals appear in  nonspecular directions. Moreover, 
as the surface is moved,  the signals in the specular and non- 
specular directions will fluctuate.  It will be convenient to re- 
gard the  scattered field as composed of two fields, one  due  to 
the average component and the  other  due  to  the  fluctuating 
components. Assuming the scattering  surface is very large in 
lateral extent,  the average of the  scattered signals are concen- 
trated  entirely in the specular direction. We call this field 
component  the “discrete  specular” component.  The  fluctuat- 
ing, or as they are sometimes called, diffuse  components  may 
or  may  not be concentrated in the specular direction  depend- 
ing upon  the value of  the rms  surface  slope a. For very small 
values of a the diffuse scatter  components will be concen- 
trated  in a narrow  cone  in  the vicinity of  the specular  direc- 
tion.  Then it would  be proper to  lump  the diffuse scatter 
components  together and call them  the “diffuse  specular 
component .” 

The statistical character of the signal fluctuations observed 
in the specular direction can have several forms. If the  spatial 
correlation  length of surface  height fluctuations L (of the 
order  of o/a) is much larger than  the dimensions of  the  first 
Fresnel zone: a  carrier received in the specular direction will 
be phase modulated  (by a horizontally moving surface) with a 
phase 417h/h sin y, where h is the surface  height at  the first 
Fresnel zone relative to mean  surface (u2 = I h 1’). Thus  the 
statistics  of  the phase modulation will be  the same as those  of 
the surface  height fluctuation.  For a  mean squared  modula- 
tion  index (4n)’(a/h)’ sin’y >> 1 there will be no  steady 
carrier component  in  the received carrier.  If the  spatial  corre- 
lation  length L is much smaller than  the dimensions of the first 
Fresnel zone,  the signal received in the specular direction will 
be the sum of many  independent  f luctuating  components.  
From  the  central limit theorem  one argues that  the in-phase 
and  quadrature  components of the received carrier will be nor- 
mally distributed. For (47r)’(u/h)’ sin’ y >> 1,  the  steady  car- 
rier component vanishes and the  complex envelope of the fluc- 
tuating carrier  may be characterized as a complex Gaussian 
process. In  the nonspecular directions  the  situation is simpler. 
No steady  components  exist,  and, assuming the  dimensions  of 
the reflecting su.rface to be very large compared  with  the  cor- 
relation length L ,  the received fluctuating carrier  can  be char- 
acterized approximately as a complex Gaussian process. 

We consider  now  some formulas  that have been derived for 
specular and diffuse  scattering for a  surface with Gaussian 

- 

’Instead of considering  the  effect of moving  the surface one may 
observe the  effect of representing the surface by  different member 
functions  of  the  ensemble  defining  the surface height  statistics. 

6The  nth Fresnel zone is a  region on the surface for  which  the  path 
delay  between transmitter  and  receiver differs  from  that of the specular 
path delay  by an amount  between n ( T / 2 )  and  (n - 1)(T/2) where T is 
the  duration of an RF cycle. The quoted  conditions leading to phase 
modulation’can  only  be readily  proved when ‘y = 90” where the Fresnel 
zones  become  the  region  between  concentric  circles,  because  only in 
this  case has it been proved that  most of the  energy  reflected  from  a 
flat  surface  comes  from  the  first few Fresnel  zones. However one  may 
reason heuristically  that  the same result  will  apply  if y does  not  become 
too small. 
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height  statistics. In the case of  a sea surface,at  least,Cox  and 
Munk [7] have found  the Gaussian approximation to be 
quite good. 

The  most widely used method  for analyzing the  electro- 
magnetic signals scattered  from  a lossy dielectric, such as the 
earth and sea, is based upon  an  approximation  that is some- 
times called the “Kirchhoff approximation” [6].  This ap- 
proximation involves the assumption that  the fields  existing at 
a  point  on  the surface are identical to those that would exist 
on  a plane tangent  to  the surface at  that  point. According to 
Brekhovskikh [8] this  approximation is  valid  if the wave- 
length of the radiation divided by 4n sin y is much smaller 
than  the local radius of curvature of the surface. 

Another  method  that has  been used more recently and  that 
we shall discuss briefly is called the  “method  of small perturba- 

, tion.” This method applies to the case of irregularities that 
I are small compared  to  a wavelength. In  either case diffuse 

scattering is handled from  an engineering point of  view by cal- 
culating  equivalent  radar  cross  sections  per unit area of sur- 
face. The received diffuse signal is determined by  summing 
the  returns  from elemental areas with each  area  defined  by a 
suitable  scattering cross section. 

The  discrete specular component is characterized by  a re- 
flection coefficient that differs from  that of a  smooth surface 
by a  factor  that  accounts  for  the roughness of the surface. In 
[6] it is shown that  for Gaussian height  statistics the reflection 
coefficient is  given by 

l‘ = r 0 D  exp (-3 [4n(o/h) sin y] ’) (21) 

where y is the grazing angle for specular reflection, ro the re- 
flection  coefficient for  a plane  surface of the same material, 
and D the divergence coefficient. [6 ,  ch. 141 discusses mea- 
surements that have been  made of l‘ for  different surfaces and 
compares  these  results with (21), (see [6, p. 318, fig. 14.11). 
According to the  author, general agreement with (21) may  be 
seen in the  experimental results. 

Using the Kirchhoff approximation, plus additional simplify- 
ing assumptions, several authors [9] -[ 131 and [ 161 have 
computed scattering cross section per unit  area.  A  number of 
different  scattering cross sections  may  be defined. Thus one 
may  define four scattering cross sections UHH, UHV,  UVH, and 
uvV according to  whether  horizontal  or vertical polarization is 
transmitted and whether  the receiving antenna is polarized 
horizontally  or vertically. Or one  may define  scattering cross 
sections that include the  total power scattered  into  both  po- 
larizations for  a  transmitted signal with  horizontal  or vertical 
polarization. 

Stogryn [lo] has calculated UHH, UHV,  UVH, and uvv for  a 
rough lossy dielectric Gaussian distributed surface assuming in 
addition to the Kirchhoff approximation  that  the electrical 
roughness parameter 

g = (27ra/X) (sin y + sin 0)  (22) 

is much greater than  unity. As shown  in Fig. 2, 0 is an angle 
analogous to  the grazing angle y for  a  scattered wave. Virtu- 

X Y  plane tongent 
to  mean surface at 
scattering point 

0 Origin 

Fig. 2. Definition of angles in scattering. 

ally all results of any  simplicity  by the various authors assume 
g>> 1 .  

The simplest  result available on scattering cross section using 
the Kirchhoff approximation is presented in Beckmann  and 
Spizzichino (see [6, p. 89, eq. (63) and p. 25 1, eq. (7)] ).’ We 
present  this result in a more general form regarding depen- 
dence on  the spatial correlation  function of wave heights. To 
wit,  the scattering cross section/unit area at  the  point  on  the 
surface having the radius  vector coordinate r from some or- 
igin’ is  given by 

where (3 is a complicated function of y, 0 ,  and 4 (see Fig. 2) 
that has the simple physical interpretation of being the tilt 
angle of a plane at r relative to a tangent  plane to  the mean 
surface at r required for mirror  reflection from  transmitter  to 
receiver. The parameter cr is the rms value of the spatial de- 
rivative of surface  heights. In [6] a spatial correlation  func- 
tion of the  form 

C(I )  = exp ( - 1 ’ 1 ~ ~ )  (24) 

was used in deriving (23), where L may be viewed as a spatial 
correlation distance of height fluctuation. When the spatial 
correlation  function assumes the particular form (24) one may 
readily show that 

a = J z o / L .  (25) 

However, (23) shows that  for g2 >> 1 ,  the scattering cross 
section does  not  depend  upon  the shape of  the spatial  correla- 
tion  function  but  only  on  a single parameter a ,  the rms value 
of surface  height derivatives. The most  extensive experimental 
investigation of sea surface  slopes may be found in the  work 
by Cox  and Munk [7] .  From their  results  one  may estimate 

as$efined in this paper. 
‘We have normalized to present the radar cross section per unit area 

sults for scattering cross section should be independent of the shape of 
Although the derivation in [6]  assumes a flat mean surface the re- 

the mean surface provided that the curvature of the mean surface is 
very  small  over a region whose dimensions are of the order of the spa- 
tial correlation of wave-height fluctuations  about  the mean surface. 
This does appear to  be the usual case, so we shall quote results for scat- 
tering cross section in this more general form. 
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values for  the  parameter a. Thus at  a wind speed of 20  knots 
one  may  estimate a = 0.12 and for a wind speed of  10  knots 
a = 0.10. 

The scattering  cross  section  (23) was calculated under  the 
assumption  of a perfectly  conducting surface and included the 
combined  power  in the  horizontal and vertical polarizations, 
assuming either  horizontal  or vertical polarization was trans- 
mitted.  It  does  not include certain  effects  that  take place at 
small grazing angles, such as wave shadowing effects  and 
multiple  scattering. Beckmann [6,  p.  981 suggests that u(r) 
can be corrected  for a lossy dielectric  surface through  multi- 
plication by  an averaged squared  Fresnel  reflection coefficient. 
However Stogryn [ lo ,  eqs. (61a) and (61b)l  has  made  the 
more  exact  calculations (again for g >> 1)  and  they  do  not 
agree with Beckmann’s suggestion because of  the  existence of 
cross-polarized terms.  For small cross-polarized power  (which 
appears to be valid for  the sea scatter), Beckmann’s suggestion 
is reasonable. 

Following this suggestion, one would use uf(r),  instead of 
(r) 3 

of(r) = I ro I ~ o ( ~ ) ,  (26) 

where r0 is the Fresnel  reflection coefficient  corresponding  to 
reflection from a  plane lossy dielectric  surface oriented  for 
mirror reflection from  transmitter  to receiver at  the surface 
location r.  [6,  ch.  15 ] discusses the results of  experimental  in- 
vestigations of diffuse scattering  from  the earth’s  surface. The 
work  of Bullington [3 1 1,  Beard e l  al. [32] , and MacGavin and 
Maloney [33] is discussed in detail.  The measured u(r) are al- 
ways  widely scattered  “about a  mean value which varies be- 
tween 0.30 and 0.35. The  majority of the values are  included 
between  0.2  and 0.4.” It was also found  that  the results  were 
approximately  independent of grazing angle and wavelength as 
is predicted  for (23). 

Returning  now to (23) we note  that a(r) decreases  rapidly 
for r locations requiring tan 0 to be any significant amount 
bigger than a. (At tan 0 = 2a, u(r) has  decreased to   13 percent 
of  the value at 0 = 0.) The region of  the surface for  which a(r) 
is of significant value relative to its value at 0 = 0 has been 
called the “glistening” region because it defines the surface ele- 
ment  locations actively participating in the diffuse  scattering 
process. 

To explain the possible restrictive nature of g’ >> 1, we 
have used Kerr’s table [ 16,  p. 4891 for,  the first  3 columns of 
Table I, which show  the relationship between  the seaman’s 
“sea state”  and  approximate ranges of crest  to  trough wave 
heights Ah. The  fourth  and  fifth  columns present 47ro/X for 
150 MHz and 1.5  GHz, where we have assumed that  the  peak- 
to-peak  fluctuations of the sea (taken as A h )  are equal  to 4 
times the  standard deviation u (with this assumption  the  prob- 
ability  of  the sea-surface  height Gaussian process  exceeding 
Ah is approximately 4 percent). 

The roughness parameter g may be expressed  in the  form 

g = (4nu/h) sin 7 (27) 

where the angle 7 is defined  implicitly  by 

. sin 7 = 3 (sin y + sin e). (28) 

The values of y, 8 of  interest are  associated with  those  points 
on  the surface within  the glistening region. The  point of mir- 
ror  reflection between  transmitter  and receiver for  the mean 
surface, called the specular point,  corresponds  to 0 = 0 and 
y = 8 = 7 = ysp. As the scattering point  departs  from  the spec- 
ular location y and 8 will generally differ. We have defined 7 
as a  convenient single-angle approximation to the average value 
of y, 8, which is exact  for small y, 8. Columns 6 and 7  in 
Table I present the values of 7 required to  make  the roughness 
parameter g = 1 for  the various sea states.  For g to  any  extent 
greater than  unity, say 3 or  greater,  one  may assume the  con- 
dition g’ >> 1 satisfied. Also, if 7 does  not differ too  much 
from ysp, we see that g’ >> 1 implies negligible discrete specu- 
lar component  and g = 1 implies that  the  discrete specular 
component has  decreased to e-’ of  its value for a  calm sea. We 
note  from Table I that  except  for very small grazing angles, , 
gz >> 1 is a  reasonable assumption  for 1.5 GHz. However, for 
150 MHz this assumption will be  violated for  many grazing 
angles of interest.  Thus care must  be  taken in applying  (23)  at 
VHF frequencies. 

From results given in [6 ,  p.  79,  eq.  (31)J  one  may  show  that 
the scattering  cross section given by  the following  integral does 
not require g’ >> 1 

- exp [-g’] dl (29) 

where J o ( . )  is the Bessel function  of  zeroth  order  and C ( - )  
the assumed isotropic spatial correlation  function  of wave 
heights [e.g., see (24)]. Equation (29) is based upon  the 
Kirchhoff approximation (surface  radius of  curvature large 
compared to h/47r sin y), perfectly  conducting  surface,  and  no 
shadowing or  multiple  scattering. Since the Kirchhoff ap- 
proximation itself must break down  at low grazing angles and 
shadowing is neglected, (29)  must  become invalid at suffi- 
ciently  low grazing angles. 

The  other  technique  of surface scatter modeling, frequently 
called the “small perturbation  method,”  accounts  for  scatter- 
ing from irregularities small compared to a  wavelength.  This 
method  has been found particularly  effective in explaining the 
results of radar backscatter measurement at  low grazing angles 
[17] , where the  scatter cross section  predicted  by  the Kirch- 
hoff  method  drops  to zero very rapidly. The earliest work  on 
the small perturbation  method was carried out  by Rice [18]. 
Some years  later  two schools of investigation developed,  one 
in the U.S. (e.g., [19], [20]) based upon  the  work of Rice, 
and one in the Soviet  Union (e.g., [21],  [22]). Presently  a 
“two-scale” or  “composite” model is used to characterize 
radar  backscatter,  combining the results of  the Kirchhoff and 
small perturbation  methods. A  detailed chronology  of  the  de- 
velopment of  the large-scale Kirchhoff  and  composite  models 
and a  detailed mathematical  development of the  latter  model 
is  given by DeRosa [23]. 

Surface scatter channel  modeling for  the  aeronautical  chan- 
nel involves a forward  scatter mechanism. For  this case,  in 

1 
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TABLE I 
RELATIONS  BETWEEN  ELECTRICAL  ROUGHNESS A N D  SEA ROUGHNESS 

[ 
7 

r 
4nu 
A 

SeaState 150  MHz Wave  Height A h  

Calm . 0 0 

Smooth 0 - l f t  

2.35 - 3.77 5 ft - 8 ft Rough 

1 . 4 1  - 2.35 3 ft - 5 ft Moderate 

.47 - 1 . 4 1  1 ft - 3 ft Slight 

0 - .47 

Very Rough 8 ft - 1 2  f t 3.77 - 5 .64  

High 1 2  ft - 20 ft 5 .64  - 9.40 

Very  High > 20 ft > 9 . 4 0  

- i  = -  

i 

contrast to backscatter,  the power does  not  drop  off rapidly 
at low grazing angles and, moreover,  a strong specular compo- 
nent may appear. A quantitative  comparison  of  scatter cross 
sections/unit area may be made  for  the Kirchhoff and small 
perturbation  methods  in forward scatter,  but  the  author is not 
aware of such  a comparison. We present such a comparison  for 
one case, horizontal polarization and a  perfectly conducting 
surface. 

The small-scale surface  height fluctuations will be modeled 
as Gaussian with (isotropic)  spatial correlation  function 

C(Z) = u: exp [ - (12 / L : ) ]  (30) 

where u1 is the rms value of  the surface  height fluctuation and 
L ,  the  correlation distance. In  order for the small perturba- 
tion  method to be applied,  certain inequalities must  be valid 
[22, pt. 11, p. 5611. 

where [ is the surface  height  deviation from  the mean  surface 
and d[ /ds  is the height  spatial  derivative.  If we replace I [ I and 
Id[/ds 1’ in (31) by  their averages, these inequalities become 

u 1 2 G / x  << 1 2(0l/L1)* << 1. (32) 

Using the surface  model  defined  above, the small perturba- 
tion  method (SPM) shows that  the  scattering cross section per 
unit area for  horizontal polarization and a  perfectly conduct- 
ing surface (see Swift [23, eq. (14)] with plus sign corrected 
to minus sign or DeRosa [5, p.  1 13, eq. (43) ]  can  be placed in 
the  form 

A study  of (33) with careful attention  to  the inequalities 
(32)  does  not  indicate a  well-defined  localized glistening region 
for small values of 0 as for  the  Kirchhoff model’s scattering 
cross section (24).  Taking the  ratio  of  the  two scattering  cross 

1 . 5  GHz 1 5 0  MHz 

0 

0 - 4 . 7  - 
4.7 - 14.1 > 45  

1 4 . 1  - 23.5  45 - 25 

23.5 - 37.7  25 - 15 .4  

37.7 - 5 6 . 4   1 5 . 4  - 1 0 . 2  

5 6 . 4  - 94   10 .2  - 6 . 1  

z 94  e 6.1’ 

: = 1  

1 . 5  GHz 

> 1 2 . 3  

1 2 . 3  - 4 . 1  

4 . 1  - 2.4 

2.4 - 1.5 

1 . 5  - 1.0 
1 . 0  - .6 

-= . 6  

sections at  the specular point (p = 0, y = e , $  = 0”) yields 

I point 

(34)  

If one  may assume the slopes of the small scale ripples mod- 
eled by SPM are comparable to  those  of  the large scale 
‘‘swells” modeled  by  the Kirchhoff method (KM) it becomes 
evident that  in  the glistening region of the large-scale swells, at 
least the  scattered power of  the small-scale ripples is likely to 
be small compared  to  that  due  to  the large-scale swells. This 
indicates  that  the small-scale scatter may not be important  for 
forward scatter  channels over the ocean. 

B. System Function Modeling 
The previous  section  has  summarized  some important radio 

propagation  aspects of surface scatter channel  modeling. Here 
we wish to relate  these propagation considerations to  the 
“blackbox”  or system function modeling of the surface scatter 
channel, which is of direct  importance in modem design. 

For  the purposes of such  modeling, the surface scatter  chan- 
nel may  be  thought of as the parallel combination  of  three 
subchannels,  a direct  path  channel, a  discrete specular reflec- 
tion  channel,  and a  diffuse scatter  channel.  Thus  the  complex 
envelope of the received signal may be expressed as the sum 

w ( t )  = Wdir(t) Wsp(t) W d i f ( t )  ’ q(t>, (35) 

where q(t) is an additive noise term  and  the  subscripts  identify 
the  other  terms as contributions  from  the  three subchannels 
in Fig. 3 .  

I )  Direct Path Channel: As discussed previously,  in the case 
of the surface scatter channel as defined  in  this paper, we do 
not include tropospheric and  ionospheric  channel effects. 
Thus  propagation  through  the  atmosphere  between  two  points 
is characterized for  the surface scatter channel  simply by 
means of a (time varying) delay,  complex gains associated with 
antenna  patterns,  and free-space losses. In particular the re- 
ceived signal from  the  direct  path  channel is given by 
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Fig. 3. Representation of surface scatter channel. 

where G d i  is a slowly varying complex gain due  to  transmitter 
and receiver antenna  patterns and  free-space losses,fo  the  car- 
rier frequency,  and T d i ( t )  the line-of-sight path  delay. As far 
as the  modulation z ( t  - Tdk) is concerned, T d i ( t )  is a slowly 
varying delay that  must be adequately  tracked  for  synchroni- 
zation  in  data  reception or measured  in the case of ranging 
systems. As far as the  exponential  term in (36) (due to the 
delayed  carrier) is concerned,  however, T d i ( t )  produces  a  rap- 
idly  time variant phase shift 2?rfoTdi(t) and a slowly varying 
Doppler  shift v d k ,  

(37) 

where c is the velocity of light and V d i  the rate of change of 
the  path  length  from  transmitter  to receiver. Expressions for 
G d i  and Tdj, are  readily obtained  from  the  geometry, velocity 
vectors,  and antenna characteristics of the  transmitter and re- 
ceiver and will not  be presented here. 

2) Specular Reflection Channel: The specular reflection 
channel is used to characterize wSp(t) the received signal due 
to  the average (over the surface  heights) field discussed in 
Section 111-A. Assuming a very large scattering  surface,  this 
field is focused  entirely in the specular direction  and behaves, 
apart  from a complex gain, similar to a mirror reflection from 
the  surface.  Thus 

w,p(t) = r Gsp z ( t  - Tsp) exp [ - i 2 ~ f o T s p ( t ) l  (38) 

where I' is a complex gain (given by (21) by  Kirchhoff model 
surface) that  accounts  for  the electrical and roughness proper- 
ties of  the  surface, G,, a slowly varying complex gain due  to 
complex  antenna gains of  the  transmitter and receiver in the 
specular direction  and free-space path losses, and ~,,(t) the 
total  path delay from  transmitter  to specular  reflection point 
to receiver. From a mathematical  point of view Wsp(t) has the 
same structure as Wd&(t), (36).  The difference lies in the rela- 
tive complex gains, delays, and  Doppler shifts. A  detailed  set 
of delays and Doppler shifts for the  direct  path and  specular 
channels is given in [15] for an airplane to synchronous satel- 
lite  link. 

A  useful approximate expression for  the  timedelay  differ- 

ence between  the specular  reflection  and direct  path  channels 
for  the case of an airplane to synchronous satellite  link  (ac- 
curate  down to y = 15" according to [ 151 ) is given by 

T , ~  - T d i  = (2H/c)  sin y (39) 

where H is the height of  the  aircraft. For an aircraft at 20 km 
and 20" grazing angle this  time-delay  difference is 45 ps. 

The  Doppler shift difference 

d 
vsp - v d i  = f0 (7sp - Tdir) 

f a  
= - (Vsp - Vdu) ,  (40) 

C 

where Vsp is the  rate of change of the  transmitter-specular 
point-receiver path  distance, and vsp the Doppler  shift on  the 
specular reflection channel.  The  Doppler  shift  difference is 
usually quite small. We quote some  results from [15] for the 
airplane-satellite channel. For horizontal flight in  the great 
circle plane containing specular point,  airplane,  and  satellite, 
the  maximum Doppler  shift  has  a broad  maximum  between 
10" and 30" for airplane  heights of 10-20 km and  airplane 
velocities of 600-1600  knots. For 1600 knots and 20 km  the 
Doppler  shift  difference is 5 Hz. Motion at right angles to  the 
great circle plane produces  no Doppler shift. Vertical motion 
of  the  aircraft will produce a  Doppler shift  difference. At 
L band (1.6 GHz) and 20-degree grazing angle this Doppler 
difference is around 3.5 V Hz where V is the vertical  velocity 
in meters/second. 

The  importance  of  the specular component  depends  on  the 
size of  the reflection  coefficient r and antenna  discrimination 
against energy from  the specular direction. Over the  North 
Atlantic  it  appears  that  at L band  the surface is rough enough 
to  make  the specular  reflection channel negligible most of  the 
time. However, at  VHF  the specular  reflection channel can 
produce a  significant output relative to  the  direct  path. As 
discussed in Section 111-A, the simple surface scattering  model 
provided by  the Kirchhoff approximation will be valid much 
less in-land than over the sea. At any rate, as the terrain 
changes in  the vicinity of the Fresnel zone,  one  may  expect 
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that I r 1 will  vary from negligible values to values close to 
unity (over a lake  perhaps). 

3)  Diffitse Scatter Channel: The diffuse scatter  channel  ac- 
counts  for all received signals other  than  those  due  to  the  di- 
rect path and the discrete  specular path. Over the ocean the 
diffuse scatter  paths  produce  a  continuum of infinitesimal 
contributions  to  the received signal, and the diffuse  channel is 
generally representable as a  random time-varying dispersive 
filter with  a  time variant impulse response containing  no dis- 
crete  components. (The  only exception is in the limiting case 
of very small rms slope a, when  the diffuse paths  concentrate 
so closely in the specular direction  that  the  entire diffuse scat- 
ter channel may be approximated  by  a single fluctuating dis- 
crete  path having the same path delay as the discrete  specular 
component.)’ In  addition, en’ough statistical  regularity  exists 
in the surface fluctuations so that  quasi-stationary WSSUS 
models with associated channel correlation  functions (e.g., fre- 
quency  correlation  function, Doppler power spectra,  delay- 
Doppler scatter  functions) represent useful means of  character- 
ization. Moreover, with  the aid of  the Kirchhoff  and small 
perturbation  methods,  one may obtain meaningful  estimates 
of channel correlation  functions  for some cases of interest. 

Over land,  the  characterization  problem is considerably  more 
difficult.  The scattering  surface exhibits far  greater  statistical 
irregularity (desert, foliage, mountains, cities, etc.) and the 
Kirchhoff  and small perturbation  methods will only  be useful 
for  a  fraction of the scattering  surfaces. While’a continuum  of 
return  paths is likely, there will be situations  where  strong  lo- 
calized reflections  may occur,  such as reflections from  man- 
made  metallic structures (e.g., buildings) and  natural  objects 
(e.g., mountains). When such localized reflections occur,  one 
must  add  discrete multipath  components  to  the  diffuse channel 
as defined here.  It is still likely that  a quasi-stationary WSSUS 
channel is useful.  However, much  more rapid changes in the 
channel correlation  functions are to be expected. In any case 
the received signal due  to  the diffuse scatter channel  can be 
represented by 

Wdif(t) = [ z ( r  - {)g(t,  t )d{ t  (41) 

where g(t,  {) is the impulse response of  the diffuse scatter 
channel. 

In this  subsection we discuss the evaluation of channel cor- 
relation functions  for  the diffuse scatter channel  assuming the 
Kirchhoff model and  present  some theoretical results for  an 
airplane-synchronous  satellite channel. 

Two general approaches have been used to determine system 
function characteristics for  the surface scatter  link.  One  ap- 
proach  makes use of normalized  scattering  cross sections,  such 
as those discussed in Section 111-A, to  directly  formulate  inte- 
gral expressions for  channel  correlation  functions (e.g., fre- 
quency  correlation  function q(CI), Doppler  power spectrum 

by Mallinckrodt [24],  [28], Staras [25], Durrani and Staras 
[26], and  DeRosa [27]. It is implicit  in  such  calculations that 
the  channel may be characterized as a WSSUS channel.  The 
other  approach is more basic, starting  with  the  formulation of 
expressions  (usually  integrals) for system functions (e.g., time- 
variant transfer functions) and then proceeding to  the averag- 
ing required to determine channel correlation  functions.  The 
latter  approach provides the means for answering basic ques- 
tions  not  obtainable by the scattering  cross-section formula- 
tion, such as the degree of statistical dependence  between sig- 
nals received on  different polarizations  and the validity of the 
quasi-WSSUS channel model. The  more basic formulation has 
been  carried out by  DeRosa [ S I  for a  composite surface con- 
sisting of the  combination of large-scale fluctuations (satisfy- 
ing the  requirements  of  the Kirchhoff method) and small-scale 
fluctuations (satisfying the  requirements  of  the small perturba- 
tion  method). 

We first  present the simplest nontrivial results derived from 
the use of scattering cross sections. These involve the  compu- 
tation  of  the  frequency  correlation  function q(Q), delay 
power  spectra e({), Doppler  power spectrum P(u) ,  time  cor- 
relation function p ( ~ ) ,  time-frequency correlation  function 
R(Q, T ) ,  scatter  function S ( { ,  u),  and cross-power  spectral den- 
sity functionP(L-2, u) .  Approximate expressions for these func- 
tions will be derived for  the channel between an aircraft  and a 
synchronous satellite. The results  presented here are derived 
under  the same conditions and with  the same “steepest de- 
scent”  approximations as those of Mallinckrodt [24],  [28] 
who derives expressions for Q ( t ) , P ( u ) , S ( { ,  v) and  Staras [25] 
who derives expressions for q(Q) and ~(7). The results of these 
authors are compared and generalized to include an arbitrary 
direction of the airplane  velocity  vector  and analytic  expres- 
sions for R(L-~,T) and P(Q, v). 

The  earth is assumed to have a flat mean surface with 
Gaussian-distributed  surface  heights relative to  the mean and 
sufficiently smooth  fluctuations  to satisfy the  requirements  of 
the Kirchhoff method.  In  addition  the roughness criterion 

gz = [(~Tu/x) (sin y + sin e)’l >> 1 (42) 

is assumed to  apply over the glistening region so that  the 
simple expression (23) for  normalized  scattering cross section 
may  be  used.  Finally it is also assumed that  the rms surface 
slope (Y << 1 and  the deviation angle 0 >>a. Even with all 
these assumptions,  it appears that these  results  should  provide 
useful  channel information for  some L-band oceanic  airplane- 
to-satellite  channel over the  North  Atlantic. It  should  be 
realized,  however, that the case 0 >> a will be violated under 
some conditions of interest in aeronautical communications 
(in particular, sufficiently  low  elevation angles or rough 
surfaces). 

For easy reference we repeat the expression (23) for the 
scattering cross section per unit area (including the  approxima- 
tion (26) for a nonperfect  conducting surface), 

P(v), scattering  function S ( [ ,  Y)). This approach has been  used 1 
u(r) = I ro 12 2a2 c0s4 exp (- T), g z  >> 1, 

tan’ 0 

’This diffuse  contribution previously  was called a “diffuse specular 
component.” (43 1 
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Fig. 4. Geometrical  relationships  for  scattering in airplane-synchronous  satellite  channel assuming flat mean earth surface. 

where ro is the  appropriate Fresnel  reflection coefficient 
(horizontal  or vertical) for a  flat ocean, a the rms sea slope, 
and 0 the  tilt angle of a  plane at r relative to a tangent plane 
to  the mean  surface at r required for  mirror reflection from 
transmitter to receiver. 

For a flat mean  surface  and  a  satellite very far from  the air- 
plane, Fig. 4 depicts geometrical  relationships for  the  scatter- 
ing process. As the origin of  the  coordinate system we have 
chosen  the  point  on  the mean  surface directly below the air- 
craft, so that  the airplane coordinates are (0, 0 ,H)  where H i s  
the height of the  aircraft.  The satellite is assumed to be  in the 
X2 plane, so far from  the airplane and  scattering surface that 
rays leaving the airplane  and any  scattering  points  on  the 
glistening zone and  terminat ing on the satellite have essen- 
tially the same elevation angle 8, as shown in Fig. 4 .  At 
the specular point,  located  on  the X axis, the grazing angle 

Due to  our assumed coordinate  system we may express 
u(r) as a function of the rectangular  surface coordinates X ,  Y ,  
i.e., a(r) = u(X,  Y ) .  The  incremental power transferred  from 
transmitter to receiver normalized to  the power received on 
the direct path  for a small area AxAy is given by 

0 

y = y s p = 8 .  

normalized scattered power is then 

where 

W ( X ,  Y )  = 
dX, Y )  

4n(X2 + Y z  + H z ) ‘  

For small a, u(X,  Y )  and W(X,  Y )  will be concentrated in 
the vicinity of the specular point  (Hltan 0 ,  0,O) and will de- 
crease to negligible values rapidly outside  the glistening zone. 
The steepest descent  approximations  used in Mallinckrodt 
[24] , [28]  and  Staras 12.51 ’and also in the simple  derivations 
to be given here, represent the  argument of the  exponent in 
W ( X ,  Y )  by  the leading  nonvanishing terms in a Taylor series 
expansion of the surface coordinates  about  the specular point 
(Mallinckrodt used rectangular coordinates  and Staras used 
polar  coordinates).  Any  expressions multiplying  the  exponen- 
tial terms are  represented by  their value at  the specular point. 
This approximation should  be  useful when 8 >> a.l0 With 
this  approximation 

W ( X ,  Y )  = W ( X )  W ( Y )  = 
1 

2 a H  csc2 8 6 

(44) 
10 It is readily shown that in the plane Y = 0, p = (e - $/2. Thus when 

where R ~ ,  R ,  R~ are the  lengths of the  direct  path,  the  path p = e/2, there can be energy scattered to the receiver by areas at in- 

from airplane to  scattering area element,  and  the  path  from responds to the  points  at which planes  through the airplane  are tangent 
finity on a  plane  surface. Of course on a spherical earth y = 0 cor- 

scatterer to satellite,  respectively; A (X, Y )  is the surface il- to  the  earth.  In  the former case the glistening zone  extends  to  infinity 
and in the  latter case it is still so large as to violate the  conditions re- 

lumination  pattern of the  combined  transmitter  and receiver quired for  the use of (44). If 01 << e-one may argue that  the power  re- 
antenna gains normalized to the  direct  path gains;  and ps, turned  at values of p that violate (44) will be negligible. However 

PD are the  total  scattered  and  direct  path powers. The  total criteria for use of (44). 
the  author is not aware of any critical  analysis to determine simple 
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which may be  recognized as the  product  of  the  probability or l / R ,  
density function of two normally distributed  random variables, 

2 a H  csc' 0 and  the Y variable having zero mean  and standard 
deviation 2aH. Use of (47) in (45) shows that  when  the  sur- x c  S ' Y  
face illumination pattern varies little over the glistening region 

the X variable having mean H ctn 8 and standard deviation R = dH2 t X 2  + Y 2  = 
S 

. (H S r  ' z(rj)' ". '3 ('l) 

We consider  now the case wherein (48) applies  and deter- 
mine  expressions for  channel  correlation  functions. To de- 
termine  the Doppler  power spectrum P(v), delay  power spectra 
e@), or delay-Doppler scatter  function S(t;, v), one may asso- 
ciate  a single delay and Doppler  shift  and  a  particular  power 
density with each  differential areaof  the surface." By express- 
ing the Doppler  shift v as a function of X and Y ,  and regard- 
ing X ,  Y as random variables, the  probability  density  function 
of v will be  identical to  the desired Doppler  power  spec- 
trum, normalized to unit  area.  The factor I ro I2 A (H/tan 0 , O )  
may then be  applied to  correct  the height of P(v). An exactly 
analogous  procedure will be used to derive Q(t;) and S(t;, v) as 
probability density functions of the  random variable t; and  the 
joint variable (t;, v). The  Fourier  transforms  of P(v),  Q(U, 
S( { ,  v), p ( ~ ) ,  4(S2), and R(S2, T), respectively, may be regarded 
as characteristic functions of the variables v, t;, (v, t;). 

If V is the velocity  vector of the airplane, it is seen that  the 
Doppler  shift  associated with  the received signal from a scat- 
tering element is  given by 

x c  
R H  H S  

where we have used the  notation * 

Use of ( 5 1 )  in (50) then shows that 

f o  v=- [Vx . ;S3 tVzCS~]  t - V S -  (G z )  H 
Y 

C 

t . . . (higher order terms). ( 5 5 )  

To be consistent  with  the  approximations  to R involved in 
the steepest descent  approximations used to derive (47) we 
neglect the higher order  terms in (55). Then v regarded as a 
random variable is represented as the linear combination of 
two  independent zero  mean Gaussian random variables. It fol- 
lows from  elementary statistics that v will also be  a  zero mean 
Gaussian random variable with variance equal to  the sum of 
the variances of  the individual  random variables. Thus the 
Doppler  power spectrum is 

where R is a  vector extending  from  the airplane to  the  scatter- P(v) = fi exp [- $1, 
ing element.  The Doppler  shift relative to  that produced by  an Bms 
element at  the specular point is 

Brms 6 (56) 

where we have defined the rms Doppler spread as twice the 
standard  deviation, 

fo (," ) fo y fo ( .  ;) v = - V x  - -cos  t - V y - + - V z  sin-- . 
C c R c  a.\/<vX sin e t V, cos e)"t V; sin' e .  

(50) (57) 

Following the  procedure described above, v is to be regarded 
as a random variable related to  the  random variables X and Y 
by (50). The probability  density  function of v is the  normal- 
ized Doppler power spectrum. Before determining  the  density 
function of v we approximate v by leading terms in a Taylor 
series expansion of the right-hand  side of (50). The  approxi- 
mations used are  identical with  those used in deriving the 
Gaussian approximation  to W ( X ,  Y ) ,  (47). There is no  point 
in seeking any moIe  accuracy in representing v.  All the  ex- 
pansions that are used depend  upon  the  expansion of either R 

be included among all the others). However one may show that little 
I '  Since the sea surface is moving this is clearly an approximation (to 

error  can be introduced in the estimate of P ( u ) ,  Q(t ) ,  and S([, u )  by 
this approximation in airplane communication channels. 

The  time  correlation  function p ( ~ )  is the Fourier transform 
of (561, 

~ ( 7 )  = ~ X P  [- 3 (TTBrrns)' I * (58) 

Mallinckrodt computed P(v) for airplane motion in the X di- 
rection (i.e., V =  ( V x ,  0, 0) and in  the Y direction ( V =  
(0,  V y ,  0)). For these special cases P(v) in (56)  agrees with 
Mallinckrodt's results (note  that his s = a/L = a f i  and  fix 
typos which left  out fi on  [28,  p. 271). Staras [25]  com- 
puted p ( 7 )  for  the cases of motion in the  direction of each  co- 
ordinate axis, i.e., (V,, 0 ,  o), (0,  Vy, o), (0,  0, V,).  Our result 
(58) when specialized to these cases agrees with his calcula- 
tions  for  the  two cases V =  ( V x ,  0,O) and V =  (O,O, V,).  For 
airplane motion in the Y direction, however,  his  results differ 
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from  ours. The reason for  the difference may be shown  to 
be  equivalent to  the inclusion of  the  second-order  term 
(-Y(X- (C /S )H) )  in the Taylor expansion of Y/R in (50) 
about  the specular point Y = 0 ,  X = (C/S)H. If the  steepest 
descent argument is valid, the inclusion of this  second-order 
term will yield different  but  not necessarily better  approxima- 
tions  to  the  exact ~(7). 

We consider  now the  computation of the delay  power  spec- 
trum.  From  the  geometry in Fig. 4 one  may  determine  that 
the delay of a  scattered signal from  an area element  at X ,  Y 
relative to the delay of scattered signals from  the specular di- 
rection is  given by 

r; = ( I / c )  ( 4 H 2  t X 2  t Y 2  - X COS 8 - H sin e) .  (59) 

H  =AIRCRAFT  HEIGHT 
c  =VELOCITY  OF  LIGHT 

ci = RMS  SEA  SLOPE 

e =ELEVATION ANGLE 

Using (51) it is found  that 

r ; = - - ( s m 2 ~ ( X - c t n ~ ) 2 t $ )  H c 2  sin 0 . 0.3 - 

0.4 - 

+ .  . . higher order  terms. (60)  

Neglecting the higher order  terms we see that  the  path delay 
E ,  regarded as a  random variable,  may  be  expressed as the sum 
of squares of  two  independent zero-mean Gaussian random 0.1 

variables. The  density  function and characteristic  function of 
- 

The results  are 
such a  random variable are  readily computed in closed form. 

0.2 - 

8'30" 

0.0 2.0 4.0 6.0 8.0 10.0 12.0 
NORMALIZED  DELAY+ 8 50 

Fig. 5.  Delay power spectrum for diffuse scatter. 

9(a) = exp (-i2nQg) 

which provide the normalized  delay  power spectrum and fre- 

- V 
2a 

x = sin' e (E- X ctn e) 

1 Y  
Y = %'E. 

quency  correlation  function  of  the diffuse channel (referenced 
to the specular path  delay). Aside from  a factor of lln in The variables x, y are  zero-mean Gaussian with  unit variances. 

linckrodt [28, eq. (26)]  is the same as (61). Also Staras 
[25] has  obtained  the result (62),  (complete  the  integration in 
his eq. (23a)). Plots  of Q ( t )  and 9(a) as a  function of the 
normalized variable l / 4a2  (H/c)  and Q4a2  (H/c) are  presented w =  vextV,s inOy 
in Figs. 5 and 6 for several elevation angles. 

just  the  joint  characteristic  function  of  the  random variables, 
E, v. Thus vp = (fo/c) vp (70) 

R(C2, T )  = exp (-i27~nE) exp (i27r~v),   (63) is the Doppler  shift as measured along an axis in the  direc- 

where E ,  v are given in terms of the X ,  Y variables. It is con-  Consistent  with  the  normalizations (64) ,   (65)  we used the 

front and a scale factor  on E, the Q ( E )  computed  by Mal- In  terms  of normalized variables (55) and (60)  show that 

6 = sin -(L 0 ty.) 
2 sin2 e (68)  

(69) 

The time-frequency correlation  function of the  channel is where 

tion (Vg  is the  direct  path Doppler shift v, sin 6 t v, cos e). 
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F=(FREOUENCY  DIFFERENCE) X (H/c)(Za)' 
H = AIRCRAFT  HEIGHT 
c = VELOCITY OF LIGHT 

= RMS SEA SLOPE 
0 = ELEVATION  ANGLE 

I- 

F=(FREOUENCY  DIFFERENCE) X (H/c)(Za)' 
H = AIRCRAFT  HEIGHT 
c = VELOCITY OF LIGHT 

= RMS SEA SLOPE 
0 = ELEVATION  ANGLE 

- 

0.5 1.0 
Norrnolized Frequency F + 
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Normalized Frequency F - r  

F=(FREPUENCY  DIFFERENCE) x(H/c)(2af 
H = AIRCRAFT  HEIGHT 
c = VELOCITY  OF  LIGHT 
a = RMS SEA SLOPE 
0 = ELEVATION  ANGLE 36 

The  Fourier  transform of R (a, r )  along the r axis P(R, v) is 
the cross  power  spectral density  between  two received carriers 
separated by  hertz in frequency. This function is of direct 
interest in the evaluation of  tone ranging systems  where range 
estimates depend  upon  the phase difference  between filtered 
sidebands  spaced  in frequency.  The  Fourier  transform is 
readily  carried out  to yield (in normalized variables) 

. exp [ -202  ( [ I  + i2nF/sin e] [ I  + i2nF sin e ]  
vi + v; sin' 0 + i 2nF  sin 8 (vi + v;) 

To  obtain  the scattering function  one  may  Fourier  transform 
Po(F, o) along the F axis or, more simply, regard 6 ,  w as new 
random variables related to  the variables x ,  y ,  by (68) and 
(69). Note  that  for each pair 6 ,  w there can be as many as two 
pairs ofx,yvalues(x1(6,w),y1(6,w)),(x2(6,o),y2(6,w)), 
which satisfy  these equations. Since the  Jacobian of this trans- 
formation is given by 

(77) 

the  density  function So(&,  w )  is  given in terms  of W O ( X ,  y), 
the density function  of x , y ,  by 

(b) We present the general expression for S o @ ,  w )  in the Ap- 
Fig. 6 .  (a) Magnitude of  frequency  correlation  function  for  diffuse pendix.  For  the velocity vector  in the Xz plane (vg # 0 ,  

scatter. (b) Angle of  frequency  correlation  function  for  diffuse vy = 0 )  one readily finds  that 
scatter. 

normalized  shift variable 

F = R4a2 Hlc 

T = r2a. 

Then (63) becomes 

Ro(F, T )  = exp  (-i2nF6)  exp  (i2nTw). (73) 

If (68) is used in  (73) it is trivial to show that 

Ro(F, T )  =qo(F)  exp 

where 

qo(F) = 1/d(1 + i2nF/sin e) (1 + i 2nF  sin e) (75) 

is the  frequency  correlation'  function  for  the normalized 
variable. 

For the velocity  vector along the y axis So(&,  w )  has the same 
form as (79)  with Vg replaced by v,,. For the general velocity 
vector it is rather more involved, as shown in the  Appendix. 
Note  that S o @ ,  w) in (79) vanishes for w' > 2 6 4  sin 8 and 
becomes infinite  at 0' = 2 6 4  sin 8 .  More generally, the  Ap-- 
pendix shows that S o @ ,  w) vanishes for w2 > 26(vf + v;) 
sin 0 and  becomes infinite  for w' = 26(vf + v;) sin 8 .  Expres- 
sions  differing from (70) only  by multiplicative constants  and 
scale factors have been derived by Mallinckrodt [24],  [28]  for 
the velocity vector  in the X or Y direction. 

Channel correlation  functions are particularly  useful when 
they lead to a more  complete statistical description of the 
channel as the case of the  complex Gaussian WSSUS channel. 
To explain  simply the  conditions leading to Gaussian statistics 
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(the discussion may  be  made rigorous) we note heuristically 
that a transmitted signal of bandwidth W cannot resolve path 
delays less than l/W apart.  The  locus of surface scatterers 
causing channel path delays  lying between E and E + l/W is an 
elliptical ring. If the surface  area of the ring extends over a 
large enough surface  area to encompass  many  correlation 
lengths of the surface fluctuations,  then, via central-limit- 
theorem-type  arguments (and representation of the  channel as 
a tapped  delay line for a bandlimited signal [ l ]  , [34]), one 
may argue that  the  channel will act  upon  the  input signal as if 
it were  a Gaussian WSSUS channel. Moreover,  as  DeRosa has 
shown [5] the roughness conditiong' >> 1 leads to the satis- 
faction of the  symmetry  conditions required for  the  complex 
Gaussian property.  The  bandwidth  at  which  the Gaussian 
WSSUS property  breaks  down appears to be  much larger than 
needed  in aeronautical  communications,  at least when  the 
roughness condition is valid. 

There exist only a few measurements  for airplane-satellite 
channels, and essentially only  at UHF-VHF [35]  -[41] . Gen- 
erally  speaking the  measurements are not sufficiently  detailed 
to provide the basis for checking the  multipath  and Doppler 
spread theories described  above.  Moreover, very little sea state 
measurements were taken in conjunction  with  the  tests. How- 

control systems. Thus  the need for  channel  characterization 
experiments is clearly indicated in order  to  gather necessary 
data  for  system design. 
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APPENDIX 
SCATTERING FUNCTION FOR GENERAL VELOCITY VECTOR 

The  scattering  function  for a  general  velocity  vector is most 
easily derived by defining new variables 

r = - - s i n @ + + c o s @ ,  X 

S (A.2) 

where S = sin 6 and 

vy/ve  = tan @. (A.3) 
ever the  measurements seem to check the  theory  in a gross 
way with regard to strength of the  ground  return  and Doppler Doppler shift variables are 
spread.  Recent  measurements  at L band  are  reported  in  this 
issue [42],  [43]. 6 = ( s / 2 ) [ t 2  + r2 1 (A .4) 

In terms of these new variables the normalized  delay and 

0 = s d - t .  (A.5) 
IV. CONCLUSION 

conditions: 
1 1 

1) one  terminal so far  from  the  earth  that rays to  the  other wl(t ,  r, = 2 7 1 0 , 0 , 4 ~ -  2(1- p 2 )  

2) elevation angle to far-terminal B >> rms  surface  slope a;  t2 r2 2pr t  

3) roughness criterion (4710 sin >> 1 ; 4 or 0 r 0 t  
4) small surface curvature  for validity of Kirchhoff method  where 

terminal  and glistening zone appear  parallel; 
. (- + 7 - -)} (A.6) 

4nr, sin e/h << 1 ,  where r, is radius of curvature  of 
surface; " f / P  + u; 

u 2 / s 2  + uf 

0: = (A.7) 
5) no wave shadowing or multiple scattering effects. v; + u; 

Restrictions 1)-3) can be  eliminated by using more general 
scattering cross-section formulas  with  more general geometry. 
But due  to  the  complexity involved a computer is needed to -COS' e VyVe 

obtain channel correlation  functions.  The simplest  general P =  
results  may  be obtained  for  the  scattering  function because it 
involves only  the  computation  of  the  Jacobian  of  the  trans-  The  Jacobian of the  transformation  between 6 ,  w and t ,  r is 
formation  from surface coordinates to delay-Doppler coordi- quickly found  to  be 
nates.  Such general results have been programmed by DeRosa  1 
[5] for a composite surface  model for general terminal posi- J ( 6 ,  w )  = . (A.lO) 
tions  and a  spherical earth. s4- j y -  w2 

0," = y.; + u f  64.8) 

-. (A.9) d(Uf + s' v;)(u; + s' uf 

Restrictions 4) and 5) cannot  be readily  relaxed by existing 

vation angles 4) and 5) will become violated. Unfortunately 
low grazing angles are of considerable interest because of the 
reduced multipath  discrimination provided by  the nominally t =  r = r t  d y .  ( A . l l )  
hemispherical coverage antennas proposed for use on air-traffic S"- s 2 @ ;  + u;)  

s'(u; + v : )  

approaches. at low enough grazing and Note that for  each a, 6 there  are  two pairs of values t, r: 

w 
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It follows that the scattering  function gation,”  presented at  the  Symp. Application of Atmospheric 
Studies  to Satellite Transmissions. Boston, Mass., Sept. 1969. 

[25] H. Staras,  “Rough  surface  scattering on a commun’cation  link,” 
w Rad.  Sei., vol. 3 (new series), pp. 623-631, June 1968. 

RCA  Rev., pp. 77-105, Mar. 1968. 
tion  between low-altitude  spacecraft and  stationary satellites,” 

[27] J. K. DeRosa, “On the  determination of the delay-Doppler scat- 

)}, (A.12) 

tering function  for a  ground-to-aircraft link,” presented at  the 
1970 Can. Symp.  Communications, Nov. 12-13,  1970. 

[28] A. J. Mallinckrodt,  “Propagation errors,’’ Notes  for UCLA Short 
Course, Satellite Based Navigation Traffic  Control and Commu- 

where J ( 6 ,  w )  is given by (A.lO) and W l ( t ,   r )  is given by ( A . 6 )  nications to Mobile  Terminals, Sept. 14-25,  1970. 
[29] L.  H. Ford  and R. Oliver, “An experimental investigation of the 

reflection and absorDtion of 9 cm wavelength.”Proc. Phvs. Soc.. 

So@, w )  = J @ ,  w )  [26] S .  H. Durrani and H. Staras,  “Multipath  problems in communica- 

w a’ 

the parameters (A.7) - (A.9) .  
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