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1 Introduction

The Unscented Kalman Filter belongs to a bigger class of filters called Sigma-Point Kalman Filters

or Linear Regression Kalman Filters, which are using the statistical linearization technique
[1, 5]. This technique is used to linearize a nonlinear function of a random variable through a linear
regression between n points drawn from the prior distribution of the random variable. Since we are
considering the spread of the random variable the technique tends to be more accurate than Taylor
series linearization [7].

In the same family of filters we have The Central Difference Kalman Filter, The Divided Differ-
ence Filter, and also the Square-Root alternatives for UKF and CDKF [7].

In EKF the state distribution is propagated analytically through the first-order linearization of the
nonlinear system due to which, the posterior mean and covariance could be corrupted. The UKF,
which is a derivative-free alternative to EKF, overcomes this problem by using a deterministic sam-
pling approach [9]. The state distribution is represented using a minimal set of carefully chosen sample
points, called sigma points. Like EKF, UKF consists of the same two steps: model forecast and
data assimilation, except they are preceded now by another step for the selection of sigma points.

2 UKF Algorithm

The UKF is founded on the intuition that it is easier to approximate a probability distribution that it

is to approximate an arbitrary nonlinear function or transformation [4]. The sigma points are chosen
so that their mean and covariance to be exactly xa

k−1
and Pk−1. Each sigma point is then propagated

through the nonlinearity yielding in the end a cloud of transformed points. The new estimated mean
and covariance are then computed based on their statistics. This process is called unscented transfor-
mation. The unscented transformation is a method for calculating the statistics of a random variable

which undergoes a nonlinear transformation [9].

Consider the following nonlinear system, described by the difference equation and the observation
model with additive noise:

xk = f(xk−1) + wk−1 (1)

zk = h(xk) + vk (2)



The initial state x0 is a random vector with known mean µ0 = E[x0] and covariance P0 =
E[(x0 − µ0)(x0 − µ0)

T ]. In the case of non-additive process and measurement noise, the unscented
transformation scheme is applied to the augmented state [9]:

x
aug
k = [xT

k wT
k−1

vT
k ]T (3)

Set Selection of Sigma Points

Let Xk−1 be a set of 2n + 1 sigma points (where n is the dimension of the state space) and their
associated weights:

Xk−1 =
{(

x
j
k−1

,W j
)
|j = 0 . . . 2n

}
(4)

Consider the following selection of sigma points, selection that incorporates higher order information
in the selected points [4]:

x0
k−1 = xa

k−1 (5)

−1 < W 0 < 1 (6)

xi
k−1 = xa

k−1 +

(√
n

1 − W 0
Pk−1

)

i

for all i = 1 . . . n (7)

xi+n
k−1

= xa
k−1 −

(√
n

1 − W 0
Pk−1

)

i

for all i = 1 . . . n (8)

W j =
1 − W 0

2n
for all j = 1 . . . 2n (9)

where the weights must obey the condition:

2n∑

j=0

W j = 1 (10)

and
(√

n
1−W 0Pk−1

)

i
is the row or column of the matrix square root of n

1−W 0Pk−1. W 0 controls the

position of sigma points: W 0 ≥ 0 points tend to move further from the origin, W 0 ≤ 0 points tend
to be closer to the origin. A more general selection scheme for sigma points, called scaled unscented

transformation, is given in [9, 2].

Model Forecast Step

Each sigma point is propagated through the nonlinear process model:

x
f,j
k = f(xj

k−1
) (11)

The transformed points are used to compute the mean and covariance of the forecast value of xk:

x
f
k =

2n∑

j=0

W jx
f,j
k (12)

P
f
k =

2n∑

j=0

W j
(
x

f,j
k − x

f
k

) (
x

f,j
k − x

f
k

)T

+ Qk−1 (13)
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We propagate then the sigma points through the nonlinear observation model:

z
f,j
k−1

= h(xj
k−1

) (14)

With the resulted transformed observations, their mean and covariance (innovation covariance) is
computed:

z
f
k−1

=

2n∑

j=0

W jz
f,j
k−1

(15)

Cov(z̃f
k−1

) =

2n∑

j=0

W j
(
z

f,j
k−1

− z
f
k−1

) (
z

f,j
k−1

− z
f
k−1

)T

+ Rk (16)

The cross covariance between x̃
f
k and z̃

f
k−1

is:

Cov(x̃f
k , z̃f

k−1
) =

2n∑

j=0

W j
(
x

f,j
k − x

f
k

) (
z

f,j
k−1

− z
f
k−1

)T

(17)

Data Assimilation Step

We like to combine the information obtained in the forecast step with the new observation measured
zk. Like in KF assume that the estimate has the following form:

xa
k = x

f
k + Kk(zk − z

f
k−1

) (18)

The gain Kk is given by:

Kk = Cov(x̃f
k , z̃f

k−1
)Cov−1(z̃f

k−1
) (19)

The posterior covariance is updated after the following formula:

Pk = P
f
k − KkCov(z̃f

k−1
)KT

k (20)

3 Square-Root UKF

Note that in order to compute the new set of sigma points we need the square root matrix of the pos-
terior covariance each time (Pk = SkS

T
k ). Since the update is applied to the full posterior covariance

we can change the algorithm to propagate directly the square root matrix, Sk.

The selection scheme of sigma points becomes:

x0
k−1 = xa

k−1 (21)

−1 < W 0 < 1 (22)

xi
k−1 = xa

k−1 +

(√
n

1 − W 0
Sk−1

)

i

for all i = 1 . . . n (23)

xi+n
k−1

= xa
k−1 −

(√
n

1 − W 0
Sk−1

)

i

for all i = 1 . . . n (24)

W j =
1 − W 0

2n
for all j = 1 . . . 2n (25)
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The filter is initialized by computing the initial square root matrix via a Cholesky factorization of the
full error covariance matrix.

S0 = chol
(
E[(x0 − µ0)(x0 − µ0)

T ]
)

(26)

Since W j > 0 for all i ≥ 1, in the time update step the forecast covariance matrix can be written as:

P
f
k =

2n∑

j=0

W j
(
x

f,j
k − x

f
k

) (
x

f,j
k − x

f
k

)T

+ Qk−1

=
2n∑

j=1

√
W j

(
x

f,j
k − x

f
k

)√
W j

(
x

f,j
k − x

f
k

)T

+
√

Qk−1

√
Qk−1

T

+W 0

(
x

f,0
k − x

f
k

) (
x

f,0
k − x

f
k

)T

=
[√

W j
(
x

f,j
k − x

f
k

) √
Qk−1

]



√
W j

(
x

f,j
k − x

f
k

)T

√
Qk−1

T




+W 0
(
x

f,0
k − x

f
k

) (
x

f,0
k − x

f
k

)T

for j = 1 . . . 2n (27)

where
√

Qk−1 is the square-root matrix of the process noise covariance matrix. This form is compu-
tationally undesirable since we have tripled the number of columns.

[√
W j

(
x

f,j
k − x

f
k

) √
Qk−1

]
∈ Rn×3n for j = 1 . . . 2n

We can use the QR-decomposition to express the transpose of the above matrix in terms of an orthog-
onal matrix Ok ∈ R3n×n and an upper triangular matrix (Sf

k)T ∈ Rn×n.

[√
W j

(
x

f,j
k − x

f
k

) √
Qk−1

]T

= Ok(S
f
k)T for j = 1 . . . 2n

Hence the error covariance matrix:

P
f
k = S

f
kO

T
k Ok(S

f
k)T + W 0

(
x

f,0
k − x

f
k

) (
x

f,0
k − x

f
k

)T

= S
f
k(Sf

k)T + W 0
(
x

f,0
k − x

f
k

)(
x

f,0
k − x

f
k

)T

(28)

In order to include the effect of the last term in the square-root matrix, we have to perform a rank 1
update to Cholesky factorization.

S
f
k = cholupdate

(
S

f
k , (xf,0

k − x
f
k), sgn{W 0}

√
W 0

)
(29)

where sgn is the sign function and cholupdate returns the Cholesky factor of

S
f
k(Sf

k)T + W 0
(
x

f,0
k − x

f
k

)(
x

f,0
k − x

f
k

)T

Therefore the forecast covariance matrix can be written P
f
k = S

f
k(Sf

k)T . The same way the posterior co-

variance can be expressed as Pk = Sk(Sk)
T and the innovation covariance as Cov(z̃f

k−1
) = S

z̃
f
k−1

ST

z̃
f
k−1

.
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Time-update summary

x
f,j
k = f(xj

k−1
) (30)

x
f
k =

2n∑

j=0

W jx
f,j
k (31)

S
f
k = qr

([√
W j

(
x

f,j
k − x

f
k

) √
Qk−1

])
for j = 1 . . . 2n (32)

S
f
k = cholupdate

(
S

f
k , (xf,0

k − x
f
k), sgn{W 0}

√
W 0

)
(33)

Redraw sigma points to incorporate effect of process noise:

x
f,0
k = x

f
k (34)

x
f,i
k = x

f
k +

(√
n

1 − W 0
S

f
k

)

i

for all i = 1 . . . n (35)

x
f,i+n
k = x

f
k −

(√
n

1 − W 0
S

f
k

)

i

for all i = 1 . . . n (36)

Propagate the new sigma points through measurement model:

z
f,j
k−1

= h(xf,j
k−1

) (37)

z
f
k−1

=
2n∑

j=0

W jz
f,j
k−1

(38)

S
z̃

f

k−1

= qr
([√

W j
(
z

f,j
k−1

− z
f
k−1

) √
Rk

])
for j = 1 . . . 2n (39)

S
z̃

f

k−1

= cholupdate
(
S

z̃
f

k−1

, (zf,0
k−1

− z
f
k−1

), sgn{W 0}
√

W 0

)
(40)

Cov(x̃f
k , z̃f

k−1
) =

2n∑

j=0

W j
(
x

f,j
k − x

f
k

)(
z

f,j
k−1

− z
f
k−1

)T

(41)

The qr function returns only the lower triangular matrix.

Measurement-update summary

xa
k = x

f
k + Kk(zk − z

f
k−1

) (42)

Kk =

(
Cov(x̃f

k , z̃f
k−1

)/ST

z̃
f
k−1

)
/S

z̃
f

k−1

(43)

Sk = cholupdate
(
S

f
k , KkCov(x̃f

k , z̃f
k−1

), −1
)

(44)

where / denotes a back-substitution operation. This is a better alternative to the matrix inversion.
Since the Cholesky factor is a lower triangular matrix, we can find Kk using two back-substitution
operations in the equation:

Kk(S
z̃

f

k−1

ST

z̃
f
k−1

) = Cov(x̃f
k , z̃f

k−1
) (45)
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In eqn. (44) since the middle argument of the cholupdate function is a matrix ∈ Rn×n, the result is
n consecutive updates of the Cholesky factor using the n columns of the matrix.

Since QR-decomposition and Cholesky factorization tend to control better the round off errors and
there are no matrix inversions, the SR-UKF has better numerical properties and it also guarantees
positive semi-definiteness of the underlying state covariance [8].

4 Conclusion

The UKF represents the extra uncertainty on a linearized function due to linearization errors by the co-

variance of the deviations between the nonlinear and the linearized function in the regression points [6].

The approximations obtained with at least 2n + 1 sampling points are accurate to the 3rd order
of Gaussian inputs for all nonlinearities and at least to the 2nd for non-Gaussian inputs. The Reduced
Sigman Point Filters [3] uses only n + 1 sampling points but this time it does not take into account
the linearization errors.
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