
348 IEEE  TRANSACTIONS ON COMMUNICATIONS, VOL. COM-33, NO. 4, APRIL 1985 

Adaptive Lattice  Decision-Feedback  Equalizers-Their 
Performance and Application to Time-Variant  Multipath 

Channels 
FUYUN LING, MEMBER, IEEE, AND JOHN G. PROAUS, FELLOW, IEEE 

Abstract-This  paper presents two types of  adaptive  lattice  decision- 
feedback equalizers (DFE), the least  squares (LS) lattice  DFE and  the 
gradient  lattice DFE. Their  performance  has  been investigated on both 
time-invariant  and time-variant channels  through  computer  simulations 
and  compared  to  other  kinds  of  equalizers. An analysis of the self-noise 
and  tracking  characteristics  of the LS DFE and the DFE  employing the 
Widrow-Hoff  least mean  square  adaptive  algorithm (LMS DFE) are also 
given.  The  analysis  and  simulation results show that the LS lattice DFE 
has the faster initial convergence rate, while the gradient lattice  DFE is 
computationaily  more  efficient.  The  main  advantages  of the lattice DFEVs 
are  their numerical  stability, their computational  efficiency, the flexibility 
to  change their length,  and their excellent  capabilities  for tracking rapidly 
time-variant  channels. 

I 
I. INTRODUCTION 

N high  speed  digital  communications,  efficient  use of 
available  channel  bandwidth is often  limited  by  the  presence 

of  intersymbol  interference  caused  by  the  nonideal  channel 
characteristics.  Maximum-likelihood  sequence  estimation 
(MLSE) is the  most  effective  detection  technique  (optimum 
in  the  sense of minimizing  the  probability  of  a  sequence  error) 
for  digital  signals  corrupted  by  intersymbol  interference  and 
additive  noise [ 1 ] . Despite  its  effectiveness,  the  computational 
complexity of the MLSE  technique  limits  its  applications. 
In  practice,  linear  equalizers’  and  decision-feedback  equalizers 
(DFE)  are  more  often  used [ 21 - [4] .  

The  linear  equalizer  is  widely  used  for  equalization of tele- 
phone  channels.  Usually,  a  transversal  (tapped-delay-line) 
filter  structure  is  employed,  with  tap  weight  coefficients 
that  are  adjusted  adaptively  using  the  gradient-type LMS 
(least  mean  square)  algorithm  due  to  Widrow  and  Hoff [ 5 ] ,  
[ 6 ] .  On  channels  that  have  spectral  nulls,  the  linear  equalizer 
yields  very  poor  error  rate  performance.  Since  this  kind of 
channel  characteristic is often  encountered  on  time-variant 
channels,  the  linear  equalizer  is  inadequate  for  equalization 
of  such  channels [ 4 ] .  

The  DFE  has  a  similar  computational  complexity as the 
linear  equalizer,  but  it  has  a  better  error  rate  performance, 
especially on  channels  having  spectral  nulls.  As  a  result,  the 
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’ In general,  there  are  two  types of linear  equalizers: the  nonrecursive and 
recusive  linear  equalizer.  Since  the  nonrecursive  linear  equalizer is primarily 
used in practice,  when we mention  the  “linear  equalizer”,  in  this  paper,  we 
mean  the  nonrecursive  linear  equalizer.  The  same  holds  for  the  lattice  linear 
equalizer. 

DFE  is  appropriate  for  equalization of time-variant  multi- 
path  channels. 

The  simplest  adaptive  DFE  consists of two  transversal 
filters,  a  feedforward  filter  and  a  feedback  filter,  and  uses 
the  Widrow-Hoff LMS algorithm [ 5 ]  to adapt  its  coeffi- 
cients.  This LMS DFE is computationally  efficient  and gives 
good  performance  in  slowly  time-variant  channels;  however, 
its  slow  convergence  rate  limits  its  performance  on  rapidly 
fading  multipath  channels  such as HF,  as  shown  in  the  paper 
by Hsu ef  al .  [ 71. It  has also been  shown  in  the  same  paper 
that  a  Kalman  DFE,  which  uses  the  Kalman  algorithm  [8] 
to  adjust  its  coefficients,  can  be  used  to  track  rapidly  time- 
variant  multipath  channels. 

To reduce  the  computational  burden of the  Kalman algo- 
rithm,  which  requires  a  number  of  operations  for  each  itera- 
tion  proportional to f l ,  where N is  the  length  of  the  equalizer, 
more  efficient  algorithms,  including  the  least  squares (LS) 
and  gradient  lattice  algorithms [ 9 ] ,  [ 101  and  the  fast Kal- 
man  algorithm [ 111,  have  been  developed.  The  linear  lattice 
equalizers  described  in  [9]  and [ 101  have  many  advantages, 
including  insensitivity to  roundoff  noise  and  the  flexibility 
t o  increase  or  decrease  the  number  of  stages. 

This  paper  presents  two  types  of  adaptive  lattice  DFE 
algorithms,  the  least  squares  lattice  DFE  and  the  gradient  lat- 
tice  DFE.  The  former  has  been  derived in our  previous  work 
[ 121, [ 131,  while  the  latter is briefly  described  in [ 131. 
The  perfornlance of these  algorithms  is  investigated  on  both 
time-invariant  and  time-variant  channel  models  by  means  of 
computer  simulations.  An  analysis of the  self-noise and track- 
ing  characteristics of the  DFE  algorithms  is  also given. 

The  lattice  DFE  algorithms  differ  from  conventional 
multichannel  least  squares  lattice  algorithms [ 141,  which  are 
restricted  to  have  the  same  number of stages in each  channel, 
i.e., the  same  number of feedforward  and  feedback  stages. 
In  some  applications  the  restriction  is  highly  undesirable 
and  many  cause  numerical  instability.  The  lattice  DFE algo- 
rithms  presented  in  this  paper  allow  for  a  different  number of 
feedforward  and  feedback  stages. 

11. LATTICE DFE ALGORITHMS 
In  this  section,  we  present  the  least  squares  lattice  DFE 

and  the  gradient  lattice  DFE  algorithms.  First,  however,  we 
establish  some  notation  and  introduce  an  equivalent  discrete- 
time  channel  model. 

The  following  notation is used. A boldface  character 
represents  a  matrix or a  vector. A prime  denotes  the  trans- 
pose  of  a  matrix  or  a  vector. A star “*” denotes  the  complex 
conjugate of a  scalar  or  the  complex  conjugate  and  transpose 
of a  matrix  or  a  vector. 

A. Discrete-Time Channel Model 
A simplified  discrete-time  equivalent  model  is  adopted  for 

digital  transmission  over  a  time-dispersive  channel.  The  trans- 
mitted  information  sequence { x ( n ) } ,  n = 0, 1, ..., t ,  ..., is 
passed  through  a  channel  which  introduces  intersymbol  inter- 
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ference  and  additive  noise.  The  model  for  the  channel  to  be 
used  in  the  investigation  has  a  tapped  delay  line  (TDL) fil- 
ter  structure  with  tap  spacing  equal  to  the  symbol  interval. 
The  transfer  function  of  the  TDL  filter  can  be  written  as 

M -  1 

U(2) = 2 a i r ’ .  
i= 0 

For modeling  a  time-invariant  channel,  the ai’s are  constant. 
For  modeling  a  time-variant  channel,  such as HF,  these  coeffi- 
cients  are  functions  of  time  and  are  written  as a i ( t ) .  We model 
the a i ( t )  as  narrow-band  Gaussian  random  processes  with 
zero  mean.  Each  sample  function of the  random  process is 
generated o n  a  digital  computer  by  passing  white  Gaussian 
noise  through  a  low-pass  filter of a specified  bandwidth. 

B. The  Least Squares (LS)  Criterion 
To  retrieve x ( t ) ,  the  decision-feedback  equalizer (DFE) 

uses  the  linear  combination  of  the  received  signal, y ( t ) ,  its 
delays, y ( t  - i), and  the  previously  detected  samples  of x([), 
denoted  as x’(t). The  estimate of x ( t ) ,  denoted  as i D ~ E ( t ) ,  
is expressed  as 

N ?  

where  the  N-dimensional  coefficient  vector  for  the  DFE  at 
time t is 

C(f> = LC1 (f). “1 (f), ‘ ’ ‘ 9  C N  I t N 2  ( t ) ]  ‘ 3  (2 .3)  

the  data  vector is 

Y D F E ( ~ )  = [ N t ) , y ( t  - 11, . - , ~ ( t  - Nl + 11, 

.‘(C - l), *.., z(t - N z ) j  ’ (2 .4)  

and N =  N ,  4- N 2 .  

time  average  error  ELS(t),  defined  as 
The  coefficient  vector C ( t )  is selected t o  minimize  the 

t t 

* I -y( tz)  - ~ I , s * ( ~ ) ~ D F E ( ~ z )  I’ (2.5) 

where w is the  exponential  weighting  factor,  which  is  less 
than  but  close  to  1.  It is easy to  show  that  CLs(t)  satisfies 
the  equation 

where 
t 

and 

(2.8) 

Equation ( 2 . 5 )  can be solved  recursively in  time.  One al- 
gorithm  that is applicable  is  the  conventional  Kalman  algo- 

rithm [8] .  Another is the  square-root  Kalman  algorithm [ 151. 
A third  is  the  computationally  efficient  fast  Kalman  algorithm 

Although  these  algorithms  have  optimal  convergence  pro- 
perties  and  good  tracking  ability,  they  have  some  drawbacks. 
The  Kalnlan  algorithm  is  computationally  complex.  It  re- 
quries  about 2.5@ + 4.5N operations  per  iteration.  It  is 
also  known  to  be  sensitive  to  roundoff  noise.  The  square- 
root  Kalman  algorithm  using  an L-D-U decomposition [ 151 
exhibits less sensitivity to  roundoff  noise,  but  its  computa- 
tional  complexity  also  increases  with p. Specifically,  it 
requires 1 S h n  i- 6.5N operations  per  iteration. 

The  fast  Kalman  algorithm is computationally  ‘very  effi- 
cient.  It  requires  about 20N operations  per  iteration.  How- 
ever,  the  main  problem  with  this  algorithm is its  sensitivity 
to  roundoff  noise.  Our  simulation  results,  as well as  those 
of  others,  show  that  after  several  thousand  iterations  the 
coefficients  determined  by  the  fast  Kalman  algorithm diverge 
from  their  optimum  values  due  to  the  buildup  of  roundoff 
noise,  even  when  floating  point  arithmetic is used  in  computer 
simulations.  Some  newly  derived  algorithms  reduce  the  com- 
putational  complexity  further [ 161, [ 171, but  the  problem 
of  the  sensitivity  to  roundoff  noise  still  exists. 

An  alternative  to  Kalman-type  algorithms is to  employ  a 
lattice  filter  structure  to solve the  least  squares  problem of 
(2 .5) .  Lattice  equalizers  are  known  to  exhibit less sensitivity 
to  roundoff  noise  and  also  have  a  computational  complexity 
proportional  to N .  Another  advantage of the  lattice  structure 
is the  orthogonality  property,  which  makes  it  possible  to 
increase or decrease  the  number of lattice  stages  without 
affecting  the  parameters  of  the  previous  stages. 

C The  Least Squares  and  Gradient Lattice DFEs 
Since  the  input signals of  a  DFE  are  from  two  scalar  sources, 

the  received  signal ~ ‘ ( t )  and  the  detected signal x’(t), the LS 
lattice  DFE  can be realized  by  using  a  two-channel  version  of 
the  lattice  algorithms.  The LS lattice  DFE  algorithm  was 
first  derived  in [ 181 by M. Shensa.  Although  his  algorithm 
is  correct if the  DFE  has  the  same  number  of  feedforward  and 
feedback  stages,  it  fails  to give the  least  squares  solution  when 
the  numbers  are  not  equal.  In  general,  however,  it  is  desirable 
t o  have  a  DFE  with  an  unequal  number of feedforward  and 
feedback stages. We have  recently  derived  generalized  LS 
and  gradient  multichannel  adaptive  lattice  algorithms [ 131 , 
[ 191,  which  have  the  property  that  the  number  of  stages  in 
each  channel  may  be  different.  Lattice  DFE’s  using a modified 
two-channel  version of these  algorithms  have  been  simulated 
and  their  performance  has  been  evaluated  for  both  time- 
invariant  and  time-variant  channels.  These  DFE’s  are  presented 
below . 

The  data  vector Y D ~ E ( t )  defined  in ( 2 . 4 )  is an ( N ,  + N 2 ) -  
dimensional  vector.  Similar  to  the  case  of  the  linear  equalizer, 
a  certain  shifting  property  exists  for  YDFE(t).  Without  loss 
of  generality  we  assume  that N ,  N,. Also,  we  define  a  set 
of  data  vectors  as  follows:  for n z  = 1, -., N , ,  we  let 

[ill. 

Y, , ( t )  = [y( t ) ,   . . . , y (  i - m + l j ] ’ ,  (1 < nz Q N, - N 2 )  

(2.9) 

Y,(r) = [.v(t), .-, y ( t  - m + I) ,  

-F(t - l), .-, E ( t  - m + N ,  - N 2 ) ]  ’, 
(N, - N ,  < nz < N , ) .  (2.10) 

Y,(t) is the  same  as  the  data  vector  of  the  linear  equalizer 
for rn < N l  - N 2 .  For  n z  > N ,  - N 2 ,  we  can  show  that 

Y,,+I(t) = T,,+, [Y,,‘(t),y(t- m ) ,  x‘(t - rn + N ,  - N 2  + l ) ] ’  

= s,+ 1 [ Y ( t ) ,  q t  - 11, Y,n’(t - 111 ‘ (2.11) 
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where T,,, and SnZ+,  are  permutation  matrices which  have 
been  used  in [ l l ]  for deriving the  fast  Kalman  algorithm. 
Furthermore, we define  a  set  of  least  squares  estimation 
problems as  follows.  Let 

e,(t) = x ( t )  - i,(t) = ~ ( t )  - Cm'(t)Ym(t) 
(1 < m < N 1 )  (2.12) 

where Cm(t) is  the  coefficient  vector  that  minimizes  the  sum 
of  the  weighted  squared  errors e,(t) for each m. By  specializ- 
ing the generalized  form of the LS multichannel  algorithm 
given in [ 131 , [ 19 I , we  can  solve  for k, ( t )  recursively in 
order  and  in  time  for m = 1, ..., N 1 ,  For m = N ,  we  obtain 
i~](t) = GLs(t) required  by  the LS DFE  described  in  (2.5)- 
(2.8). 

The least  squares  lattice  DFE  algorithm  is given  below. 
The  assumption is made  that N ,  > N 2 .  If N2 > N,, the 
generalized LS lattice  algorithm  given  in [ 131, [ 191 can  be 
used  directly.  During  equalization, x(t) is  not  known  at  the 
receiver.  In  that  case,  the  DFE  algorithm  takes  the so-called 
a  priori error  form,  namely, c,(t - 1) is  used to  estimate 
;,(t), as proposed  in  [9] , 1131 . The  derivation of the algo- 
rithm is lengthy  and will  be omitted.  The  interested  reader 
may  refer  to [ 13 I and [ 19 ] for  the  derivation  of  the  generalized 
multichannel  lattice  algorithm. 

Initialization 

bo(t)  f o ( t )  = Y ( t ) ,  kn/l*(O) = 0 ( M  = N1 - N 2 )  (2.13) 
rof(t)  = rOb(t) = wrof(t -- 1) + Iy ( t )  12, eo(t)  = T(r), 

;o(t) = 0 (2.14) 

a,,(t) = . I ,  ~,x(o) = 0,  r , f ( ~ )  = r,b(o) = 6 

(m = 1,  ..., N, - N2 - 1) (2.15) 

k,(O) = k m X ( 0 )  = 0, k,(O) = 0, kmX(0)  = 0 (2.16) 

r m f ( 0 )  = rm *(O) = 6 1  ( m  = N ,  - N2,  -., N1 ). (2.17) 

Scalar Lattice Stages ( 0  < m < N, - N z  unless  otherwise 
specified) 

t 

kMb(t)  = Wk&p(t  - 1)  + ol,- l ( t  

f d t )  = [ f d t ) ,  e d t  - 111' (2.29) 

bM(t) = t b d t ) ,  h m l '  (2.30) 

r&rb(t) = wr&.b(t - 1 )  + oc,(t)bM(t)b,*(t). (2.32) 

- 1 ) f ~ -  *(t - l)eM- ] ( t  - 1) (2.28) 

rMf( t )  = wrMf(t - 1 )  + a ~ ( t  - l ) f ~ ( t ) f ~ * ( t )  (2.31) 

Two-Dimensional Lattice Stages (N1 - N 2  < m < N ,  
unless  otherwisc  specified) 

fm(t) = f m - l ( t )  - k,*(t - l)r,-,-b(t - 2)bm-1(t- 1) 

b , ( t ) = b m - l ( t -  l)-~,(t- l)r ,- ,-f(t- l)f ,- l( t)  

k,(t)= wk,(t- l )+a , - , ( t -  l ) b m - l ( t -  l)fm-,*(t)  

r m f ( t )  = wr,f(t - 1 )  + a,(t - l)f,(t)fln *( t )  (2.36) 

a,(t) = ~ ~ ~ - l ( ~ ) + ~ , - 1 2 ( ~ ) ~ , - l * ( ~ ) ~ , - l - b ( ~ )  

(2.33) 

(2.34) 

(2.35) 

r m b ( t )  = wr,b(t- 1)+a,(t)b,(t)b,*(t) (2.37) 

* br?, - l(t) (2.38) 
~ m ( t ) = ~ m - l ( t ) + k , X * ( t -  l ) r , - l -b( t -  ~ ) b ~ ~ - ~ ( t )  

( m  <N,) (2.39) 
e,(t) = X'(t) - ?,(t) (2.40) 

k m x ( t ) =  w k m X ( t -  l )+am--I( t )b ,_l( t )e , - l*( t )  

(m < N,). (2.41) 

In  the  above  algorithm, all the  quantities  take  complex 
values.  Hence,  this  algorithm  is  suitable  when  M-ary PSK or  
QAM signals  are  used. f m ( f ) ,  bm( t ) ,  and kx( t )  are  2 X 1 
vectors,  and r m f ( t ) ,  r m b ( t ) ,  and k,(t) are  2 X 2  matrices.  All 
other  quantities  are scalars. We also denote  the  inverses of 
r,f(t)  and ~ - , ~ * ( t )  by r , - f ( t )  and r m P b ( t ) ,  respectively. 
In  (2.15)  and  (2.17) 6 is  a  small  positive  number. 

The  structure of the LS DFE  is  depicted  in  Fig.  1.  It 
consists  of  a  multichannel  lattice  predictor  part  and  a  joint 
estimator  part.  The  multichannel  lattice  predictor  has M = 
N, - N2 single-channel  lattice  stages  followed  by N, - 1 
two-channel  lattice  stages.  The  joint  estimator  part  is  similar 
to  the  conventional  joint  process  lattice  algorithms.  The  heavy 
black  lines  indicate  that  the  quantities f,(t) and b, ( t )  are 
2 X 1  vectors.  The  lattice  DFE  has  two  inputs.  One  input 
signal  is  the  received  signal y ( t ) .  The  second  is  the  detected 
symbol z(t). During  training  periods  the  true  transmitted 
symbol x ( t )  is  used  instead  of ?(t). 

Although  this  algorithm  does  not allow one  to  change 
the  number  of  feedforward  and  feedback  stages  individually 
after it is started,  a  pair  of  stages  can  be  added  or  dropped 
during  operation,  while  keeping  the  difference  between  the 
number of feedforward  and  feedback  stages  unchanged.  To 
determine  the  optimal  length of the  DFE,  the average output 
error is monitored. If stage m has  a  sufficiently  small  average 
error, .?m(tj is  used  as  the  estimate of x ( t )  and  is  compared 
with  the  threshold  to  produce z(t). 

The  gradient  lattice  DFE  can be obtained  from  the LS 
lattice  DFE  by  performing  some  minor  modification  to 
(2.13)-(2.41). If we  set  all a,(t) equal  to  1,  the LS lattice 
DFE  will  degenerate to the  gradient  lattice  DFE.  Since am(t )  
is  always  equal to  unity,  (2.24)  and  (2.38)  can  be  omitted. 
The  remaining  equations  remain  unchanged. 
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N,-N7 Single  Channel  Lattice  Stages N7-1 Two Channel  Lattice  Stages 
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Two  Channel  Lattice 

Stage m Fig. 1 .  Structure of lattice DFE. 

TABLE I 
COMPUTATIONAL  COMPLEXITY  OF  ADAPTIVE DFE ALGORITHMS 

Total  Number Number of 
Algorithm of Operations  Divisions 

Gradient  transversal  DFE 2 N i  1 0 
Fast  Kalman DFE 20N + 5 3 

Kalman  DFE 2.5 N 2  + 4.5 N 2 
Square-root  Kalman 1.5 N 2  i 6.5 N N 
Gradient  lattice  DFE 13 N, i 33 N2 - 36 2 N 

LS lattice  DFE 18 N ,  + 39 N2 - 39 2 N ,  

D. Cornparisor1 of Computational  Complexity 
Table I compares  the  computational  burden of the LS, the 

gradient  lattice,  the  fast  Kalman,  the  square-root  Kalman, 
and  the  transversal  gradient DFE’s. In  the  table, N = N 1  -!- 
N2 is the  total  number of parameters  of a DFE, where N l  
and N z  are  the  number of feedforward  and  feedback  stages 
of a DFE, respectively. 

To  facilitate  the  comparisons,  the  number of operations  is 
plotted  in  Fig.  2 as a  function of N .  In  the  lattices we assume 
that N ,  = N z  = 0.5N. We observe  that  the  LS  lattice is more 
efficient  that  the  Kalman DFE or  the  square-root  Kalman, 
when N is greater  than  12. We also  observe  that  the  computa- 
tional  burden of the  gradient  lattice DFE is  close to  the  fast 
Kalman DFE. The  numbers of divisions  required  by  the 
lattice DFE’s and  the  square-root  Kalman DFE are  also  similar. 

Ill. AN  ANALYSIS OF SELF-NOISE AND TRACKING 
CHARACTERISTICS OF THE DFE’s USING THE 

LMS AND LS ALGORITHMS 
It is  well known  that all adaptive  filters  capable of adapting 

at  real-time  rates  experience  a loss in  performance  because 
their  adjustments  are  based  on  time  averages  taken  with  limited 
sample sizes [ 6 ] .  The  loss  in  performance is due  mainly  to  two 
sources of error.  First,  the  adaptive  algorithm  yields a mis- 
adjustment of the  estimated  coefficients  relative  to  their 
optimum  values.  This is basically  an  estimation  error  resulting 
from  the  additive  observation  noise  corrupting  the signal. 

1200 - / 
/ 

/ 
1000. / Square-root Kalman DFE 

(I.-D-U Decomposition) 

- DFE 

5 10 15  20 25 30 35 
Total Number of Taps 

Fig. 2. Computational  complexity of adaptive DFE’s. 

Second,  in  time-variant  channels  there is always a “lag” be- 
tween  the  estimated  values  and  the  optimum  values of the 
DFE’s coefficients.  Both  sources of error  add  to  the  minimum 
mean  square  error. 

The  extra  error  due  to  the  coefficient  misadjustnlent is 
also  called  self-noise.  An  adaptive  algorithm  capable  of  track- 
ing  a  rapidly  changing  environment will yield  a  smaller lag, 
i.e.,  better  tracking  performance,  but  larger  self-noise.  In 
this  section we compare  these  two  factors  for  the LMS and 
LS adaptive D F E ’ s . ~  The  effect  of  the  channel  characteristics 
on  the  tracking  performance of the DFE’s is  also  considered. 
The  results  explain  the  poor  tracking  characteristics of the 
LMS DFE on  time-variant  channels. 

* Different  LS DFE algorithms  differ  from  each  other  in  computational 
complexity and numerical  stability.  Since  their  tracking  characteristics are 
similar, we refer to all of them as LS  algorithms  in  this section. 
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A.  The  SelfNoise of the LMS and LS DFE’s 
Detailed  analysis of the LMS algorithm  has  been given in 

many  papers,  including [ 21 and [ 61.  Here  we  summarize  the 
results  for  the LMS DFE. 

For  an  adaptive  transversal  DFE  using  the LMS algorithm 
having  a  step size A,  the average self-noise,  eself,  can be 
expressed  as 

where E,,,* is  the  minimum  mean  square  error, R D F E  = 
E [  YDFEYDFE*],  where E [  ]  denotes  the  ensemble average 
operator, is the  autocorrelation  matrix of YDFE,  and 
Tr  [RDFE]  is  the  trace of R D F E .  It is easy to  show  that 

N 

Tr  [RDFE] = Xp = N (Average  of hp) (3.2) 
p = 1  

where Xp’s are  the  eigenvalues of RDFE.  

percentage of e.g., eSelf = h-eOpt ,   i t  is necessary  that 
If we want  to  maintain  the  self-noise  equal  to  a  certain 

holds. We can  make X:=l Xp = N by  controlling  the  power  of 
y ( n )  and x ( n ) .  In  such  a  case 

(3.4) 

where N = N, f N, is the  dimension  of R D ~ = .  
For  an  exponentially  weighted LS DFE,  a  even  simpler 

formula  exists  for its self-noise. For the LS DFE having a 
weighting  factor  w,  we  have 

E s e l f L S  = E o p t N ( l  - w)/(l + w).  (3.5) 

If w z 1,  we  obtain 

The  above  formula  was  first given in   [20 ] ,   fo r  LS  linear 
predictors. We have  extended  it  to  any  shape  windowed LS 
estimator  and  filter  by  using  a  new  derivation,  which  is given 
in [ 2  1  ] . The  formula is verified  by  the  simulation  results  also 
given in [ 2 1  ] . 

From  (3.5)  we  notice  that  the  level of the self-noise for  the 
LS DFE  does  not  depend  on  the  power  of  the  input signal. 
This  makes  it  easier  to  choose  w  than A. If  (3.4) is satisfied 
and  w  is  close to  unity,   for A = (1 - w) we will have  the 
same  self-noise  for  both  the LMS and LS algorithms. 

B. The Tracking  Characteristics of the  LMS and LS Algorithms 
When  a  DFE is operating  on  a  time-variant  channel,  it  is 

attempting  to  adapt  to  a  nonstationary  environment.  Since 
both  the LMS algorithm  and  the  exponentially  weighted LS 
algorithm  are  geometrically  converging  processes,  it is possible 
to  place  exponential  envelopes  on  the  adaptive  processes.  The 
time  constants  of  the  exponential  envelopes  describe  the 
tracking  characteristics of the  algorithm. 

For   the LMS algorithm, as given  by  Widrow  et ul. in [ 6 ] ,  

the  convergence  rate  or  time  constant is different  for  each 
coordinate,  sometimes  called  mode,  which  corresponds  to  a 
particular  eigenvalue of the  autocorrelation  matrix of the  in- 
put ~ e c t o r . ~   F o r  the  eigenvalue k,, the  time  constant Tp is 

T = 
P 2 P’ (3.6) 

Since  a  smaller A, corresponds  to  a  larger Tp, the  speed  at 
which  the LMS algorithm  completely  converges  from  one  state 
to  a  new  state is determined  by  the  time  constant  correspond- 
ing to   the smallest  eigenvalue. By using  (3.1)  and  (3.2)  we 
conclude  that if we  maintain €,,If = heopt, we  have 

Tp = T r  [RDFEl/(4hhp) 

= N (average  of  eigenvalues)/(4hXp).  (3.7) 

If some  eigenvalue of RDFE is much  smaller  than  the  average 
of the eigenvalues,  it  would  take  a  long  time  for  the  algorithm 
t o  converge to  its  new  optimum  state.  For  the LS algorithm, 
there  exists  a  unique  convergence  time  constant  regardless 
of the eigenvalue  distribution. We have  shown  this  property 
in [ 211 . The  time  constant of the LS algorithm  can  be  ex- 
pressed as 

T L S  = 1/[2(1 - w)].  (3.8) 

If  we  use  the  same  criterion  to  maintain  the  self-noise  level 
as  in  the LMS algorithm,  we  obtain  from  (3.8)  and  (3.5a) 

TLS  N/4h .   (3 .9)  

Comparing  (3.7)  and  (3.9),  it is easy t o  see that  max {Tp} = 
TLS if and  only if all X, are  equal.  .At  this  point  we  can  con- 
clude  that  the  tracking  ability  of  the LS DFE is always  better 
than  the LMS DFE.  The LMS DFE  may  approach  the  per- 
formance of the LS DFE  only if the  DFE’s  autocorrelation 
matrix  has  equal  eigenvalues,  and  the  power of the  input 
signal is maintained  at  a  fixed  level.  The  first  condition  is  not 
satisfied  when  intersymbol  interference  exists,  and  the  second 
condition is usually  not  satisfied  for  time-variant  channels. 
Hence,  the LS DFE  is  always  a  better  choice  for  equalization 
of such  channels. 

C. The Eigenvalue  Distribution of  the  DFES  Autocowelation 
Matrix 

The  eigenvalue  distribution of the  autocorrelation  matrix  of 
an  equalizer’s  input  data  vector,  which is termed  the  equali- 
zer’s autocorrelation  matrix  in  the  sequel,  plays  an  important 
role  in  the  tracking  ability  and  performance of the  equalizer. 
It is  well known  that  the  eigenvalues of the  linear  equalizer 
are  determined  by  the  channel  spectral  characteristics.  The 
ratio of the  maximum  to  the  minimum  eigenvalues  is  approxi- 
mately  equal  to  the  ratio of the  maximum  value  to  the  mini- 
mum  value of the  ‘spectral  density of y ( n ) .  It is also  equal t o  
the  ratio of the  maximum  to  minimum  magnitude  squared of 
the  channel  frequency  response.  Since  the  convergence  rate  of 
the LMS algorithm  mainly  depends  on  the  minimum  eigen- 
value, if the  channel  has  nulls  in  its  frequency  response,  the 
convergence  of  the LMS linear  equalizer will be  very  slow. 
Now,  we  show  that  this is also  true  for  the LMS DFE. 

The  autocorrelation  matrix of the  DFE is 

R D F E  =EIYDFE(t)YDFE*(t)l  (3.10) 

When the channel is time-variant, we assume that time  variations  are slow 
compared to the  convergence  rate of the LMS algorithm.  Thus,  even  when the 
eigenvalues change (slowly) with time, (3.6) for the time constants still 
obtains. 
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as given  in  Section 11. We partition YDFE( t )  into  two  par&, 
the  feedforward  signal  part Y l ( t )  and  the  feedback  signal 
part Y 2 ( t ) ,  i.e., 

(3 .11 )  

We can  rewrite R D F E  as 

(3.12) 

where I is the  identity  matrix. 
From  the  definition of the  vector Y l ( t )  we  can view R ,  

as  an  autocorrelation  matrix  of  some  linear  equalizer  that  has 
dimension N ,  < N .  If N ,  > 1, R ,  will have  the  property of 
the  linear  equalizer  mentioned  above. 

Assume  that A m i n ,  pmin and A,,,, pmax are  the  minimum 
eigenvalues  and  the  maximum  eigenvalues of R D F E  and R 1 ,  
respectively.  It is easy  to  show,  cf.  [22],  that A m i n  < pmin 
and A,,, 2 pmax. Hence, if the  length of the  feedforward 
part is not  too  short,  the  eigenvalues of R D F E  also  depend  on 
the  channel  frequency  response. If the  channel  has  deep  nulls 
in  its  spectrum,  the  minimum  eigenvalue will be small  com- 
pared  to  the average  of the  eigenvalues. When this  situation 
occurs,  it  takes  a  long  time  for  all  the  modes  to  converge. 
This  is  the  case  that is often  encountered  on  time-variant 
channels  and  causes  the  poor  performance  of  the LMS DFE. 

Since  the LS algorithm  converges  with  the  same  time  con- 
stant  for  the  whole  system  regardless  of  the  eigenvalue  spread, 
the LS DFE  is  adequate  for  equalization of time-variant 
channels.  With  regard  to  the  gradient  lattice  DFE, if the 
channel  changes  relatively  slowly,  the backward prediction 
errors  at  the  different  stages  are  uncorrelated.  Each  lattice 
stage  converges  independently  with  the  same  time  constant. 
Hence,  the  eigenvalue  spread will not  affect  the  convergence 
rate of the  gradient  lattice  DFE.  Its  convergence  is  close  to 
the  convergence of the LS DFE. 

IV. SIMULATION RESULTS 
The  two  adaptive  lattice  DFE’s  were  simulated  on  a  digital 

computer.  Single  precision  floating  point  arithmetic  is  used 
unless  otherwise  specified.  The  mantissa  is  represented by 22 
bits,  Simulation  results  of  the LMS DFE  and  the  lattice  linear 
equalizer  are  also given for  the  purpose  of  comparison.  All  the 
DFE’s used have  nine  feedforward  stages  and  two  feedback 
stages . 

A .  The Sirnuluted  Discrete-Time  Channel Model 
Three  discrete-time  channel  models  were  used  in  the  simula- 

tion.  Each  channel  consists of three  taps.  The  discrete-time 
channel  models  are  described  by  the  following  transfer  func- 
tions: 

HI ( 2 )  = 0.3 i- 0.9z- l  ‘t- O . ~ Z - ’  

H z ( ~ ) = 0 . 4 0 8  i- 0.8162-’ + 0 . 4 0 8 ~ ~ ~  

H 3 ( Z )  = a o ( t )  + a ,  (t)z- + a2(t)z-2 

The  first  two  channels  are  time-invariant,  and  the  third  channel 
model  represents  a  fading  channel  with { a i ( r ) }  varying  with 
time.  The  time-variant  coefficients { u i ( t ) }  are  generated  on 
a  digital  computer  by passing white  Gaussian  noise  through  a 
low-pass  filter of a  specified  bandwidth. If we  assume  that we 
have  a  nominal 3 kHz HF  channel,  the signaling rate  is 2400 
symbols/s,  and  the  low-pass  filter is a  two-pole  Butterworth 

Tap 1 Tap 2 Tap 3 
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Fig. 3 .  Tap  values of the  time-variant  channel 3 .  
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Fig. 4. Convergence  rate of equalizers  (channel I). 

filter  having  a 3 dB  bandwidth of 0.5 Hz.  The  curves of the 
tap  values  changing  with  time  are  depicted  in  Fig. 3 .  The first 
100 samples  were used  as a  training  sequence  for  the  lattice 
DFE’s  (for  the LMS DFE  the  first 1000 samples  were  used 
as  a  training  sequence). 

B. Initial  Convergence 
The  time-invariant  channels 1 and  2  were  used  to  evaluate 

the  initial  convergence  rate of the  DFE’s.  The  ratio of the 
maximum  to  minimum  squared  values of the  channel  fre- 
quency  response is equal  to  25  for  channel  1.  Since  channel 
2  has  nulls  on  its  spectrum,  this  ratio  may  be  considered  to 
be  infinite. 

Figs. 4 and 5 show the  simulation  results  for  channels  1  and 
2 ,  respectively.  The  weighting  factor w for  both  lattice algo- 
rithms  is 0.99. The  step size A for  the  gradient  transversal 
equalizer is 0.02.  From  the  plots  we  observe  that  the LMS 
DFE  converges  slowly  on  these  channels. As expected,  the 
LS lattice  DFE  has  the  most  rapid  convergence  rate.  It  con- 
verges in  about 30-50 iterations.  It  is  more  than  ten  times 
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Fig. 5 .  Convergence  rate  of  equalizers  (channel 2). 
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faster  than  the  gradient  transversal  DFE.  The  gradient  lattice 
DFE  converges in about  one-half  the  rate of the  LS  DFE, 
but  it is still  far  superior  to  the LMS DFE.  It is quite  interest- 
ing  to  note  that  these  two  lattice  DFE’s  yield  almost  identi- 
cal  output  noise  after  they  converge.  Since A > (1  - w), the  
self-noise  produced  by  the LMS DFE  is  greater  than  the self- 
noise  of  the  lattice  DFE’s.  This  verifies  the  analytical  results 
given by  (3.4),  (3.5),  and  (3.5a). 

Another  point  that  we  wish  to  make is that  the  initial 
convergence  rate of the  LS  lattice  DFE  is  almost  the  same as 
the  Kalman  DFE.  The  simulation  results  on  the  convergence 
of  these  two  DFE’s  have  been given in  another  paper [ 121. 

C. Error Probability in a Time-Invariant Channel 
Fig. 6 shows  the  error  probability  versus  SNR  for  channel 

2 .  For  comparison  we  also give the  simulation  results  for  the 
LS linear  equalizer,  It is apparent  from  these  curves  that  the 
DFE gives much  better  performance  than  a  linear  equalizer. 
The  two  lattice  DFE’s  have  almost  identical  performance, so 
we  only  use  one  curve  to  represent  both  the LS and  gradient 
lattice  DFE’s.  In  the  same  plot  we  also give the  simulation 
results  for  the  optimum  DFE,  whose  coefficients  are  set  to 
yield  minimum  mean  square  output  error,  and  the LMS 
DFE.  The  difference  between  the  lattice  and  the  optimum 
DFE is less  than 0.5 dB. We also  observe  that  the  lattice  DFE 
always  performs  better  than  the LMS DFE,  especially  in  the 
high  SNR  region. 

D. Performance  on a Fading  Channel 
The  simulated  fading  channel 3 was  used t o  evaluate  the 

capability of the  lattice  DFE’s  to  track  time-variant  disper- 
sive channels. Fig, 7  shows  the  performance of the DFE’s 
in  terms of error  probability  versus  SNR.  In  the  simulation, 
all the  symbols  fed  back  are  correct,  i.e.,  we  assume  that all 
the  symbols  are  known.  As  a  comparison,  the  theoretically 
optimum  DFE  was  also  simulated,  This is a  transversal  DFE 
with  coefficients  selected  according  to  the  exact  characteris- 
tic of the  channel  at  each  time  instant,  to  yield  minimum 
mean  squared  error.  From  the  simulation  we  found  that  a 
smaller  weighting  factor w in  the,  lattice  DFE’s  or  a  larger 
step  size A in the LMS DFE  yields  lower  error  rates  in  the 
high  SNR  region,  but  higher  error  rates  in  the  low SNR region. 
This  means  that  the  tracking  ability  is  better  but  the  self-noise 
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Fig. 6 .  Error rate  performance of equalizers  for  time-invariant  channel 2. 
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Fig.’ 7. Error  rate  performance of DFE’s on time-variant  channel 3 (correct 
symbols fed back). 

is  higher  for  smaller w. However,  when w is less  than  0.95 
or A is  greater  than 0.05, the  performance  gets  worse  for  any 
SNR.  The  best  result is obtained  around w = 0.97  and A = 
0.03,  for our simulated  fading  channel. 

It is interesting  to  note  that  the  error  rate  performances of 
the LS and  the  gradient  lattice  DFE’s  are  almost  the  same  (the 
difference  is  within 1 percent).  Again  we  use  one  curve  to 
represent  the  performance of both  lattice DFE’s. We also 
note  that  the  performance  of  the  lattice DFE’s  is  quite  close 
to  the  theoretical  optimum.  In  the  low  SNR  region  the  per- 
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Fig. 8. Error  rate  performance  of lattice DFE’s on time-variant  channel 3 
(detected  symbols  fed  back with training  symbols  inserted). 

formance  difference  is  no  more  than 1 dB, and  about  1.5  dB 
for  SNR’s  greater  than  10  dB.  It  is  observed  from  the  same 
figure  that  the LMS DFE gives very  poor  performance  in  a 
fading  channel.  It  saturates  at P, = 0.01 when  the  SNR > 
15 dB. 

Fig. 8 shows  the  simulation  results of the  lattice  DFE’s 
using  the  detected  symbols  in  the  feedback  section.  Because 
the  channel is time-variant,  during  some  time  periods  the 
instantaneous  SNR  may  become  very  small,  although  the 
average  SNR is still  quite  high, e.g., when  the  average  SNR 
is  15  dB,  the  instantaneous  SNR  is less than  3  dB  at  around 
5000  and again at  about 23 000 samples.  In  this  low  SNR 
region  the  coefficients of the  DFE  may  diverge  from  the 
optimum  value.  This  behavior  is  caused  by  the  high  error 
rate of the  symbols  fed  back, We used  the  following  method 
to  keep  the  DFE  tracking  the  channel  characteristic  in  this 
region.  The  exponentially  weighted  output  error is monitored 
throughout  the  whole  equalization  process.  Once  this  SNR 
is  below 3 dB,  a  training  sequence  is  inserted,  until  the  output 
SNR  becomes  greater  than  3.5  dB.  In  Fig. 8 we give the  error 
rate  versus  SNR  and  the  percentage of training  time  used  in 
the  simulation as  well. For  an  input  SNR  equal  to  14 dB, a 
3.0  percent  training  time  was  needed  and  the  error  rate is 
0.004. For an  SNR  greater  than  17 dB, n o  training  was  re- 
quired  over  the  time  period  of  the  simulation.  The  above 
method  was  proposed  originally  in  [71.  In  a  real  communica- 
tion  system,  a  feedback  link is required to  inform  the  trans- 
mitter  when  to  start  and  to  stop  inserting  the  retraining se- 
quence.  lf  it is impossible t o  have  such  a  feedback  link,  the 
lattice  DFE’s will work  by  using  a  periodic  training  sequence. 
From  simulation we observe  that,  even  after  the  coefficients 
of  the  lattice  DFE’s  have  departed  from  their  optimum  values 
due  to  the  high  feedback  error  rate,  inserting  a  training se- 
quence  can  bring  them  back  to  the  normal  condition  again. 

E. Sensitivity to Roundoff Noise 
From  our  simulation,  the  lattice  DFE’s  did  not  suffer  from 

instability,  even  when  fixed  point  arithmetic  with  a  word 
length as short as 8 bits was used. When the  word  length 

is longer  than 12 bits,  very  little  degradation  in  performance 
is observed,  compared  with  floating  point  arithmetic, When 
the  word  length  is  reduced  to  fewer  than  10  bits,  the  probabil- 
ity of error  increases,  due  to  the  effect of roundoff  noise. 
However,  the  lattice  DFE’s  are  still  stable,  and  no  coefficient 
divergence  was  observed  even  in  a  long  run  of IO6 samples. 
The  exponential  weighting  factor  used  in  the  simulations  was 
chosen in-ithe range  from 0.9 to  0.975.  This  behavior  is  better 
than  the  square-root  Kalman  DFE,  which  requires  reinitializa- 
tion  to  ensure  stable  operation  when  a  short  word  length  is 
used [ 151. 

When  a  fixed-point  implementation is used,  the  scale  factor 
is also easier to  choose  for  the  lattice  DFE  than  for  the  square- 
root  Kalman  DFE.  This  is  due  to  the  fact  that  the  optimum 
scaling for  lattice  algorithms  does  not  depend  on  the  signal 
characteristics,  which  may  change  during  equalization,  but 
for  the  square-root  Kalman  algorithm,  it  does. 

V. CONCLUSIONS 
This  paper  has  focused  on  efficient  stable  lattice  algorithms 

for  decision-feedback  equalization. We have  investigated 
quantitatively  the  self-noise  behavior  and  the  tracking  ability 
of  the  DFE’s  using  the LMS and LS adaptive  algorithms.  Simu- 
lation  results  have  been given to  show  the  advantages  of  the 
lattice  DFE’s  and  to  reinforce  the  analytical  results. 

We have  shown  that  the  DFE  employing  the LMS algorithm 
cannot  track  rapidly  time-variant  channels well, because  its 
tracking  ability  is  affected by the  large  eigenvalue  spread 
of  its  autocorrelation  matrix  due  to  the  nulls  in  the  channel 
frequency  response.  The  tracking  capability  of  the LS algo- 
rithms  and  the  gradient  lattice  algorithm is not  affected  by 
the  channel  characteristics.  Consequently,  the LS DFE’s 
and  the  gradient  lattice  DFE,  in  general,  have  a  much  better 
error  rate  performance  than  the LMS DFE  in  time-variant 
channels.  This  has  been  demonstrated  by  simulation  results. 

With  regard to  the  two  kinds  of  lattice  DFE’s,  the LS lattice 
DFE  has  a  faster  initial  convergence  rate as expected,  but  re- 
quires  a  little  more  computation  (about  4:3  for  LSversusgradi- 
ent).  Both  lattice  DFE’s  are  computationally  more  efficient  than 
the  Kalman  and  square-root  Kalman  algorithms.  In  particular, 
the  gradient  lattice  DFE  requires  only  a  little  more  com- 
putation  than  the  fast  Kalman  DFE.  The  error  rates of the LS 
and  the  gradient  lattice  DFE’s  are  almost  identical  for  both 
time-invariant  and  time-variant  (fading)  channels.  They  are 
similar  in  performance  to  the  results  obtained  from  a  simula- 
tion of the  Kalman  DFE,  and  are  close  to  the  theoretical 
optimum.  Since  the  performance  of  both  DFE’s is so similar 
and  the  computational  complexities  are  also  close,  the  choice 
of  an  algorithm  depends  on  the  requirements of the  applica- 
tion. When the  computational  burden is critical,  the  gradient 
lattice  is  appropriate.  If  fast  initial  convergence  rate  is  highly 
desirable,  the LS lattice  would  be  preferable. 

Simulation  results  also  indicate  that  the  lattice  DFE’s  are 
relatively  insensitive to  roundoff  noise.  No  reinitialization 
was  required  in  simulation  for  both  lattice  DFE’s,  even  when 
a  very  short  computer  word  length  was  used.  This  is  a  better 
result  than  the  stable  square-root  Kalman  algorithm.  These 
facts suggest that  the  lattice  DFE’s  are  an  attractive  choice 
for  the  equalization of rapidly  time-variant  multipath  channels. 

REFERENCES 

[I] G .  D. Forney, Jr., “Maximum-likelihood  sequence  estimation of 
digital  signaling in the presence of intersymbol interference,” IEEE 
Trans. Inform. Theory, vol. IT-18, pp. 363-378, May 1972. 

[2] J. G .  Proakis  and J. H. Miller, “Adaptive receiver  for  digital  signaling 
through  channels with intersymbol interference,” IEEE Trans. In- 
form. Theory, vol. IT-15, pp. 487-497, July 1979. 

[3] M. E. Austin, “Decision feedback equalization for digital  communica- 
tion over  dispersive  channels,”  M.I.T.  Lincoln Lab., Lexington, MA, 
Tech.  Rep. 437, Aug. 1967. 



356 IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. COM-33, NO. 4,  APRIL 1985 

J .  G. Proakis, Digital Communications. New York: McGraw-Hill, 
1983. 
B.  Widrow  and M. E. Hoff, Jr. ,  “Adaptive switching circuits,” in 
IRE Wescon Conv. Rec., 1960,  part 4, pp. 96-104. 
B. Widrow et al., “Stationary and  nonstationary  learning characteris- 
tics  of  the  LMS adaptive  filter,” Proc. IEEE, vol.  64,  pp. 1156-1  162, 
Aug.  1976. 
F. M. Hsu et al., “High speed  modem  techniques for fading 
dispersive  channels,”  presented at  NUSC Workshop Commun. in 
Fading Dispersive  Medium, New London,  CT, June 5-6, 1979. 
D.  Godard,  “Channel  equalization using a Kalman filter for fast  data 
transmission,” IBM J. Res.  Develop., pp. 267-273, May 1974. 
E. H.  Satorius and J. D. Pack, ‘‘Application of least squares  lattice 
algorithms  to  adaptive  equalization,” IEEE Trans. Commun., vol. 
COM-29,  pp.  136-142,  Feb.  1981. 
E. H. Satorius and S. T. Alexander,  “Channel equalization  using 
adaptive  lattice  algorithms,” IEEE Trans. Commun., vol. COM-27, 
pp. 899-905, June  1979. 
D. D. Falconer and L.  Ljung,  “Application of fast  Kalman  estimation 
to  adaptive  equalization,” IEEE Trans. Commun., vol.  COM-26,  pp. 

F. Ling and J. G. Proakis, “A generalized  least  square  lattice  algorithm 
and its application  to  decision-feedback  equalization,” in Proc. 
ICASSP, Paris,  France, May 1982,  pp.  1439-1446. 
-, “Lattice  decision-feedback  equalizers and their  application  to 
fading  dispersive  channels,” in Proc. Int. Conf. Commun., Boston, 
MA,  June  1983,  pp.  C8.2.1LC8.2.5. 
D. T. L.  Lee et al., “Recursive  least  squares  ladder estimation 
algorithms,” IEEE Trans. Acoust., Speech, Signal Processing, vol. 
ASSP-29,  pp. 627-641,  June  1981. 
F. M. Hsu,  “Square-root Kalman filtering  for high-speed data received 
over  fading  dispersive HF channels,” IEEE Trans. Inform. Theory, 
vol. IT-28, pp. 753-763,  Sept.  1982. 
G. Carayannis,  D.  Manolakis, and N.  Kalouptsidis,  “Fast Kalman  type 
algorithms  for  sequential  signal  processing,” in Proc. IEEE ICASSP, 
Boston, MA,  Apr.  1983, pp.  186-189. 
J. M.  Cioffi and T. Kailath,  “Fast,  fixed-order,  least-squares al- 
gorithms  for  adaptive  filtering,” in Proc. IEEE ICASSP, Boston, 
MA,  Apr.  1983,  pp.  679-682. 
M. J. Shensa,  “A  least  squares  lattice decision-feedback equalizer,” in 
Proc. IEEE Int. Conf. Commun., Seattle,  WA,  June  1980. 
F. Ling  and J .  G. Proakis,  “A  generalized multichannel least  squares 
lattice  algorithm with sequential  processing  stages,” IEEE Trans. 
Acoust., Speech,  Signal Processing, vol. ASSP-32, pp. 381-389, 
Apr.  1984. 
R. S. Medaugh,  “A  comparison of two  fast  linear  predictors,”  Ph.D. 
dissertation,  Univ.  Colorado,  Boulder,  1981. 
F.  Ling and J .  G. Proakis,  “Nonlinear  learning  characteristic of least 
squares  adaptive  algorithms,” in Proc. IEEE ICASSP, San Diego, 
CA, Mar.  1984,  pp.  7.3.1-7.3.4. 
A. S. Householder, The Theory of Matrices in Numerical Analy- 
sis. New York: Blaisdell,  1964.  ch. 3. 

1439-1446, Oct.  1978. 


