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Abstract: The problem of state estimation and system-structure detection for linear discrete-time systems 
with unknown parameters which may switch among a finite set of values is considered. The switching 
parameters are modeled by a Markov chain with known transition probabilities. Since the optimal 
solutions require exponentially growing storage and computations with time, a new method of generalized 
pseudo-Bayes algorithm (GPBA) is proposed to circumvent this problem by using a multi-stage measure- 
ment update technique. A minor modification is also presented to correct a defect of the Jaffer and Gupta 
method. Some simulation comparisons are included to illustrate the effectiveness of the proposed algor- 
ithms. It is then shown that, as compared with other GPBAs, a feature of the present GPBA is that it 
noticeably decreases the size of the required memory when the number of states in the Markov chain is 
large. The cost to be paid is a slight increase in the computing time. 
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1. Introduction 

A n  es t ima t ion  po l icy  for  the state o f  a l inear  s tochast ic  system with ab rup t ly  changing  

pa rame te r s  can be de te rmined  as the so lu t ion  o f  a K a l m a n  filtering p rob l e m only if  

the j u m p  pa rame te r s  are  observed.  The  mo t iva t i on  for  cons ider ing  system models  

with j u m p s  arises f rom the appl icab i l i ty  o f  such mode l s  to a large class o f  realist ic 

problems:  

(i) faul t  de tec t ion  for  a dynamic  system with fai lures in componen t s  or  sub- 

systems (Wil lsky,  1976; Gus t a f son  et al., 1978; Wil lsky,  1980; W a t a n a b e ,  

1989a,b), 

(ii) ta rge t  t r ack ing  for  a mov ing  vehicle with sudden maneuvers  (Ricker  and  

Wil l iams,  1978; Moose ,  et al., 1979; Chang  and  Tabaczynsk i ,  1984) and  

(iii) a p p r o x i m a t i o n  o f  a non l inea r  system by a set o f  l inear ized models  to cover  the 

entire dynamic  range  (Moose  et al., 1978). 
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However, the jump parameters are generally unknown and, therefore, we cannot 
solve the above problems by using a single Kalman filter. One approach is to use the 
multiple model adaptive filtering (MMAF) approach (Lainiotis, 1971, 1976) developed 
for systems having unknown constant parameters, setting an upper (or lower) bound 
on the a-posteriori probabilities (Gustafson et al., 1978; Willsky, 1980; Watanbe, 
1988a,b). Another approach is to extend the MMAF approach to stochastic systems 
with possibly unknown, time-varying parameters, which are modeled as a finite-state 
Markov (or semi-Markov) chain state with known transition statistics. The latter 
approach seems to be more natural than the former approach, if the transition 
probabilities are known. 

It is well known (Ackerson and Fu, 1970) that to evaluate the minimum mean- 
squared error (MMSE) estimate of the system in switching environment, the compu- 
tational and storage requirements increase exponentially with time, which renders the 
optimal solution impractical. To circumvent this problem, there are some suboptimal 
algorithms, e.g. (a) random sampling algorithm (RSA) (Akashi and Kumamoto, 
1977), (b) detection-estimation algorithm (DEA) (Tugnait and Haddad, 1979; Tugnait, 
1982a; Mathews and Tugnait, 1983), (c) generalized pseudo-Bayes algorithm (GPBA) 
(Ackerson and Fu, 1970; Jaffer and Gupta, 1971; Chang and Athans, 1978; Sugimoto 
and Ishizuka, 1983), and (d) interacting multiple model algorithm (IMMA) (Blom, 
1984, 1985; Blom and Bar-Shalom, 1988). It is worth noting here that the IMMA 
performs nearly as well as the second-order GPBA method with notably less com- 
putation (see also Chang and Bar-Shalom, 1987). 

It is interesting to note that several simulations results presented by Tugnait (1982a) 
indicates that, in general, the GPBA is to be preferred, compared with the RSA and 
DEA methods, though the performance of the various algorithms is very much 
dependent upon the system model under consideration. However, when considering 
the suboptimal estimation problem by applying the GPBA, the major two questions 
are naturally arisen: 

(A) how to cut the exponentially growing trees of Markov chain state, and 
(B) how to embed the elemental Kalman filters into the cut trees. 

For the first question, the GPBA due to Jaffer and Gupta (1971) is the most general 
solution. That is, they assume that the probability density function of the system state 
at time k conditioned on the past observations depends upon at most the last n + 1 
Markov chain states, though the true density function depends upon the all past k 
Markov chain states, where n /> 1 is a fixed preselected number. The GPBA due to 
Ackerson and Fu (1970) and Chang and Athans (1978) are the special case. The result 
of Sugimoto and Ishizuka (1983) is entirely the same as that of Jailer and Gupta 
(1971).For the second question, Jaffer and Gupta (1971) also proposed a method for 
obtaining the s "+~ conditional estimates at time k by updating the one-step past s" 
conditional estimates at time k - 1, which will be called here the 'one-step measure- 
ment update method', where s denotes the number of Markov chain states. It is 
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naturally noted that another measurement update method will exist so that the s "+1 

conditional estimates at time k can be computed by updating the n-step past s 

conditional estimates at time k - n. This means that, in the f ramework of  GPBA 

approach,  n - 1 measurement data can be further reprocessed for a case when 

n > ~ 2 .  

In this paper, we propose a new GP BA in the problem of state estimation and 
system structure detection for discrete-time stochastic systems with unknown jump 

parameters,  which may be modeled as a finite-state Markov chain with known 

transition statistics. The present method is based on using the concept of Jaffer and 
Gupta  (t971) as a solution to the first question, but using a new algorithm to the 

second question, which will be called the 'n-step measurement update method' .  This 

method is very similar to an algorithm for fixed-lag smoothing for a lag o fn  - 1 units 

of  time, but it simply consists of  reprocessing n - 1 measurement data with s parallel 

filtered estimates as starting conditions at time k - n. Some interesting features of  the 

new GPBA are (1) it requires arithmetically growing storage with s and n; (2) it can 

directly use the a-posteriori probability in the estimation problem as the a-posteriori 
probability for the unknown structure in the detection problem; and (3) it gives an 

improvement in the estimation performance at the transient stages for a certain case. 

2. Problem Statement 

Let ~(k) ~ S = {1, 2 . . . .  , s}, k ~ { 1, 2 . . . .  }, denote a finite-state, discrete, Markov  
chain with completely known time-invariant transition probabilities 

Pij & Pr{a(k) = j J e ( k -  1) = i}, i, j e S  (1) 

and initial probability distribution pi = Pr{e(0) = i}, i e S. Let rc = [P~s], an s x s 

matrix, denote the transition probabili ty matrix. Now e(k) governs the structure of  

a stochastic dynamical system under the normal or failure mode. The system state 
equation is given by 

x(k + 1) = A(~(k + 1))x(k) + B(~(k + l))w(k) (2) 

where x(k) e ~"~ is the system state, w(k) ~ NP is a zero-mean white Gaussian noise 

sequence with covariance Q. The observation equation associated with (2) is modeled 
by 

z(k) = C(a(k))x(k) + D(~(k))v(k), (3) 

where z(k) ~ ~ml is the observation vector, v(k) ~ ~'~ is a zero-mean white Gaussian 
measurement noise with covariance R such that D~RD[ > 0 (i e S) where D(a(k)) 
{D~, i = l, 2 . . . . .  s}. The initial state is assumed to be subject to the following 
Gaussian distribution 

x(0) ~ N(20, n0). (4) 

Finally, x(0), w(k), v(k) and e(k) are mutually independent. 
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The objective is to find the minimum mean-squared error (MMSE) state estimate 
2(k lk )  of x(k) given the observations Zk = {z(i), 1 <~ i <% k} and to decide on the 
value of e(k) (system fault detection), given Zk, minimizing the probability of error. 

3. Optimal Solution 

3.1. STATE ESTIMATION 

It is well-known that the MMSE filtered state estimate ~(k] k) is given by the 
conditional mean 

2t(k[k) = E[x(k) lZk]. (5) 

Define a Markov chain state sequence I(k)  as 

l (k)  ~- { ~ ( 1 ) , . . . ,  a(k)} (6) 

and let/i(k) denote a specific sequence from the space of all possible sequences I(k)  
which contains s k elements. If the state estimate conditioned on a specific sequence is 
written as 

E[x(k) l lj(k), Zk], (7) 

s k 

2t(klk) = ~ dcj(klk)p(I;(k)LZk), (8) 
j=l 

where p(Ij(k) [ Zk) is the a-pasteriari probability of/y(k) given Zk, which is subject to 

f ( z ( k )  l lj(k), Zk_l)p(Ij(k) [ Zk-x) 
P(Ij(k) lZk) = ~k k-l) X'~l f ( z ( k )  I I~(k), Zk-1)p(lt(k) [ Z ' (9) 

where f (  "1" ) is the conditional probability density of the observation z(k) given the 
past observations Z,_I and the particular state mode sequence/j(k). Furthermore, it 
is found (Mathews and Tugnait, 1983) that 

p(Ij(k) lZk_l) = p(o~(k)lcffk - 1) = i)p(I,,,(k - 1)lZk_l), i t S ,  (10) 

because 

p(c~(k) llm(k - 1), Zk 1) 

= p(~(k) lI,~(k - 1)) 

= p(~z(k)[~z(k- 1) =- i), i e S ,  (11) 

where the first equality in (11) follows from conditional independence of {e(k)} and 
{z(k)}, and the second equality in (11) follows from the Markovian nature of c~(k). 
Here, I m ( k  - 1) denotes a specific sequence from the space of all possible sequences 
I ( k  - 1) as defined in (6). The associated state estimation error covariance matrix 

f ( k ]  k) = e{[x(k)  -- 4(kl  k)][x(k) - 2~(kl k)]rl Zk} (12) 

-¢~(k I k) = 

then we have 
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is given (Lainiotis, 1971) by 

s k 

P ( k l k )  -- ~ {Pj(klk) + [2 j ( k l k )  - 2 ( k l k ) ]  
j = l  

x [2 j (k[k)  - 2 ( k l k ) y } p ( I j ( k ) ] Z k )  (13) 

where 

P j ( k [ k )  = E{[x (k )  - 2 j ( k l k ) ] [x (k )  - 2 j (k]k)]  vII i (k) ,  Zk} .  (14) 

Now, provided the initial information (4) and the sequence/j(k), we can obtain 
{2j(k] k), Pj(k] k)} recursively by applying Kalman filters matched to sequences 
/j(k), j = 1 . . . . .  s k. Furthermore, the weighting probability p ( I j ( k ) ] Z k )  can also 
be computed from the information supplied by same Kalman filters, because 

f ( z ( k ) ] I j ( k ) ,  Zk_~) is Gaussian. Thus, the optimal estimator (8) which is a weighted 
sum of  s k estimates 2j(k[ k), requires an exponentially increasing memory and com- 

putational capability with time. Therefore, one has to resort to suboptimal schemes 
to circumvent this difficulty. 

3.2. STRUCTURE DETECTION 

In a structure (or fault) detection problem, we find ~(k) such that 

~(k) = arg {maxp(~z(k)lZD}. (15) 

Now we have 

sk-1 

p(7(k)  l Z , )  = ~ p(~(k) ,  I j (k  - 1)[Z,).  (16) 
j=l 

Thus, s ~-~ Kalman filters in parallel are necessary to compute (16) for given a(k) ~ S. 
The approximation used to aleviate this difficulty is the same as for the state esti- 
mation problem. 

4. Suboptimal Algorithms 

The various approximations to state estimation or structure detection available in the 
literature have been classified into some categories as indicated in the introduction. 
In this section we shall focus on the GPBA and propose a new GPBA which is 
different from the GPBA due to Jaffer and Gupta (1971) in the view point of 
computational implementation. 

4.1. GENERALIZED PSEUDO-BAYES ALGORITHM 

The essential assumption of  GPBA is that the probability density of the system state 
at time k conditioned on Zk and the Markov chain state sequence/j(k, k - n) & 

{c~(i), k - n <~ i <<. k } , j  = 1 . . . . .  s ~+1, n ~> 1 is Gaussian, whereas, in truth, it is 
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a Gaussian sum. That is, it is assumed that 

f ( x ( k )  lI;(k,  k - n), Zk )  ~ N ( 2 j ( k l k ) ,  Pj(klk)). (17) 

Under this assumption, the state estimate 2 ( k l  k)  and the associated state estimation 
error covariance matrix P ( k l  k )  are approximated by 

sn+l 

2 ( k l k )  = ~ 2 j ( k l k ) p ( I j ( k ,  k - n)lZk) (18) 
j=l  

and 
a,n+l 

P ( k l k )  = ~ {Pj(klk) + [ 2 j ( k l k )  - 2 ( k l k ) ]  
j=l  

× [ 2 j ( k l k )  - 2 ( k l k ) ] r } p ( I i ( k ,  k - n) lZk). (19) 

It is here significant to note that, given an observation z(k) ,  we can consider two 
approaches to updating the conditional estimates which have been obtained up to time 
k - 1. One is that the s ~+1 conditional estimates 2 j ( k l k )  can be obtained by updating 
the one-step past s n conditional estimates at time k - 1. This method is called here 
the one-step measurement update method'. Another is based on computing the s "+1 
conditional estimates by updating the n-step past s conditional estimates at time 
k - n, but with a condition that z ( k  - 1) . . . .  , z ( k  - n + 1) have already been 
stored. This method is called in this paper the 'n-step measurement update method'. 

Struc ture  detection.  The approximation used for the state estimation algorithm also 
leads to a suboptimal detection algorithm. Equation (16) is approximated by 

sn 

p(~(k)  l Z k )  = ~, p (a (k ) ,  I j (k  - 1, k - n) lZk) (20) 
j = l  

because/j(k, k - n) = { ~(k),/j(k - 1, k - n)}. 

4.2. ONE-STEP MEASUREMENT UPDATE METHOD 

Almost all approaches that have appeared in the literature are in this category. The 
fundamental form was first proposed in Ackerson and Fu (1970), in w h i c h f ( x ( k )  l Zk )  

was assumed to be Gaussian. For the detailed algorithm, see Jaffer and Gupta (1971). 
It should be noted that Chang and Athans (1978) and Tugnait (1982) use a refined 
equation to evaluate the covariance matrix P ( k l k ) ,  whereas in Ackerson and Fu 
(1970) the following approximation is used 

P ( k l k )  = ~, P,k(kl k)p(H,, k I Zk ) ,  (21) 
i=1 

where Hik denotes the following hypothesis 

Hik:a(k) = ik, i~  S, (22) 

and in the original paper of Jaffer and Gupta (1971), this covariance matrix is not 
referred to. Although Tugnait (1982a) claimed that this difference was minor and had 
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not shown any appreciable difference in computer simulations, a similar modification 

is crucial, as will be found in the later simulations, in evaluating the following equation: 

P~k-,,+, ..... i k (k ]k  ) = £ Pi*_ ...... ik ( k  l k ) p ( I - I i k _ n ,  t z~) 
i~_°=, p(H,. +, . . . . .  H,~I Zk) ' (23) 

where 

P~*_ ...... , ,(k l k) 

= P~ ....... ,k(klk) + [:~, ....... e~(klk) - ~ ...... ,~(klk)] 

x [2~, ........ , , (klk) - 2, k ....... ,,(klk)] ~. (24) 

The one-step measurement update algorithm requires the storage of s" estimates 
(hi-dimension), s" covariances ( n l ( n l  + 1)/2-dimension) and s ~ a - p o s t e r i o r i  prob- 
abilities (scalar), regardless of  the number of the storage the system runs. As n 
k - 1, of  course, the method approaches the optimal algorithm. Note here that for 

k ~< n + 1 the suboptimal method coincides with the optimal one. Figure 1 shows 
the time evolution of elemental Kalman filters for this method with s = n = 2. 
Notice that if all evolution in Figure (b) except for two evolution 2~ -+ 2ul and 
x22 -+ x222 are neglected, then we can get the algorithm of Ackerson and Fu (1970). 

S t r u c t u r e  d e t e c t i o n .  The suboptimal detection algorithm (20) can be rewritten as 

= . . .  p ( " , k  . , . . . ,  H,k_,,  H, IZ ) (25) 
i k n = l  ik_l =1 

o r  

p(/-/,.~lZk) = ~,, . . .  ~ p(H~k_,,+,,..., Hi,~_,, H#,IZk) (26) 
ik_n+ 1 =1 ik_ 1 = I  

4.3. n-STEP MEASUREMENT UPDATE METHOD 

As discussed in Section 4.1, this approach is first based on reprocessing the past 

observations z ( k  - 1 ) , . . . ,  z ( k  - n + 1) with the starting conditions at time k - n. 
After that, when provided z ( k )  we can produce s n+l conditional estimates by applying 
the most recent estimates (i.e. estimates at time k - 1), which had already been 
generated by the reprocessing. The resulting algorithm is summarized in the following. 

n - s t e p  m e a s u r e m e n t  u p d a t e  a l g o r i t h m .  At the time k - n, k > n + 1, the following 
quantities are provided 

~ , ~ _ ° ( k  - n t k - n )  ~ E [ x ( k  - n)l~_,,, zk_2, 
P i k _ . ( k  - n t k  - n )  

E { [ x ( k  - n )  - f c i ~ _ . ( k -  n [ k  - n)] 

x [ x ( k  - n )  - Ycik_.(k - -  n l k  - n ) ] r [ / /~ . ,  Zk-n} 
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stored volues required 

for K > n+l 

Xlll 
x 1 1 / ^ - ~ _  . . . .  .. 

^ ~ xl~z IZ}--- ;11 
x ~  -'-x121 "'. / 

×12 

/ - \x,, ' 
i o \ ~,~ ,'\,'~ 

\ ~ / . . . . .  ,~ 
\ ~ ; , ~- - -~  

XZ2 ~ . . . . .  ~- 

X222 

,X( 1/1 ) X(2 /2  ) X(313 ) 

t I I I 
0 1 2 3 time k 

stored values required 
for time K+I 

XI11 

. _ " x .  

[] " I ~ ~ XI2 
. . . .  ~ \/~,, / 

X 122 ~t~t I'~VI 
X211 ll~l("~\ 

~ ~_SL.. : .).C ~ x~, 

^ 

X222 

i 
~( K/K} 

K-1 k time 

Fig. 1. Time evolution of  elemental Kalman filters in one-step measurement update method; (a) for 
k ~< n + 1,(b) f o r k  > n + 1, w h e r e s  = n = 2. 
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a n d  p(I-I,k_" [Zk_. ) -  Then ,  g iven/ /~k- .+ ,  a n d  Zk_,,+l a t  t ime k - n + 1, we  c o m p u t e  

.~ ik_ , , , ik_ , ,+~(k  - -  n + l [ k  - n + 1) & E [ x ( k  - n + 1)[H~k_., H,.k_.+,, Zk_ .+ , ]  

a n d  

Pik_o,e~..+,(k - n + l l k  -- n + 1) 

~= E { [ x ( k  - n + 1) - fC¢k_.,~k_.+,(k --  n + l l k  - n + t)] 

x [x(k  - n + 1) - X~k .,ik-.+t( k --  n + l [ k  - n + 1)]rlI-Ii,_.,Hik .+~, Z k - . + l }  

b y  a p p l y i n g  the  s 2 para l le l  K a l m a n  filters. In  add i t ion ,  c o m p u t e  the  p r o b a b i l i t y  dens i ty  

func t ions  

f ( z ( k  - n + 1)] I-Iik_ . ,  H~k_.+,, Z k - n )  ~ N [ C ( ~ ( k  - n + 1) 

= i k _ n + l ) f q k _ . . i k  . + , ( k  - -  n + 1 ] k  - n), V¢k_.,i k .+~(k --  n + I l k  - n)] 

(27) 

a s  

~ ( k [ k )  = ~, f c i k ( k l k ) p ( H i k l Z k ) ,  (29) 
ik=l 

P ( k [ k )  = ~ { B k ( k l k )  + [~;k(k[k)  - Yc(klk)][Yci~(k[k) - ~ ( k l k ) ]  T} 
il,.=l 

× p(H,~ I z , )  (30) 

w h e r e  

Yc,~(klk) = E[x (k ) [H, .~ ,  Zk] ,  

P~k(k lk )  = E { [ x ( k )  - Yc ,k(k lk l][x(k)  - fC,k(klk)]r l t t~k,  Z , }  

and  p(Hik [Z~)  a re  as fol lows:  

~ ,k (k lk )  = ~ . . .  ~ :~,, ....... , k ( k [ k ) p ( I - I ~ k _ . , . . . ,  I-t,k , I H ,  k, Z k )  , (31) 
i k_n~ l  ik_ l =1 

P ,~(k lk)  = ~. " ' '  ~ {B, ....... ~ ( k l k )  + [~,, ....... , , ( k l k )  - ~ , , ( k lk ) ]  
ik_n=l ik_ 1 =1 

× [&~, ...... i , (kl  k)  - ~ , ( k l  k l]r}p(H, ,_ , , ,  . . . .  H ~ .  l I N  i,, Zk)  (32 / 

whe re  

Vi,_.,,k °+,(k - n + I l k  - n) 

= C ( ~ ( k  - n + 1) = ik_.+l)P,'k_.,ik_.+L(k --  n + l [ k  - n) 

x C T ( ~ ( k  - n + I) = ik_.+l)  + D ( a ( k  - n + 1) = ik_.+l)  

x R D T ( ~ ( k  - n + 1) = ik_.+l) .  (28) 

A p p l y i n g  the  s a m e  m a n n e r  fo r  t ime s tages  k - n + 2, . . . ,  k, we c o m p u t e  the  
para l le l  K a l m a n  filters s 3, . . . , s "+I . Then ,  E q u a t i o n s  (25) and  (26) can  be r ewr i t t en  
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P(n~k I Zk)  

s . [I-I]=oF(t, J, k, n )]p(H,k_ . lZk_ , )  Z i  k n = 1  " "  ZS ik_  I =1 n - I  • " 

• .  • Z ' ( 3 3 )  
Y ~ i k _ n ~ l  ik_l=l  ik=l[Hj=oF(t , j ,  k, n)]p(Hgk_°[ k-,) 

where 

F(i,  j ,  k, n) g f ( z ( k  - j ) ]  [lik_. , . . . .  g~_j ,  Z k _ l _ j ) p ( H i ~ _ j  [ H/k_,_j ). 

Here, the probability p(Ilik_,, . . . .  H~k_ ~ I H~,  Zk )  can be given by 

p(H,k_" , . . . .  H,k_ , [ H, k, Zk )  
n - I  . • [1-Ij= 0 F(t,  j ,  k,  n)]p(Hik_. L Zk_,,) 

Y,~ .=1 • • • z,s~_, =, [tiT---0' F ( i ,  J, k, n)lp(H~k_" I Z k - . ) "  

(34) 

Note that 2i~(kl k),  Pi~(klk)  and P(//~k I Zk) must be stored as the starting conditions 
for the k + n stage. 

Structure detection. Equation (20) can now be directly provided by (33). Therefore, we 
need no additional computations to choose the normal or fault state corresponding 
to the largest value of (20)• 

Figure 2 shows the time evolution of elemental Kalman filters for the proposed 
method with s = n = 2• Note that 2ik_~(k -- 1Rk - 1), P~_~(k - 11k - 1) and 
P(Hik I Zk_l) had already been stored as the starting conditions for the k + 1 stage. 
Thus, the present algorithm requires the storage of s x n estimates (nl-dimension), 
s x n covariances (n~(nl + 1)/2-dimension), s x n a-poster ior iprobabi l i t ies  (scalar) 
and n - 1 observations (ml-dimension). It is then interesting to note that the present 
method requires algebraically growing storage with s and n, whereas the one-step 
measurement update method described in Section 4.2 requires exponentially growing 
storage. Table I gives their storage requirements; 

r l  = s~[nl + nl(nl + 1)/2 + 1] (36) 

for the one-step measurement update method and 

Tn = sn[nl + nl(nl + 1)/2 + 1] + (n - 1)ml (37) 

for the n-step measurement update method, where nl = 10 and ml = 5. It is 
seen from Table I that for storage requirements a remarkable difference between 
the two methods appears as s and n become large. Note, however, that the com- 
putational speed of the present algorithm is slightly slower than that of the one-step 
measurement update algorithm. This is, for example, confirmed by comparing the 
numbers of elemental Kalman filters required for one-step and n-step measurement 
updates, i.e., 

El = s ~+l and En = ~ s i+1 (38) 
i=1 
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Fig. 2. Time evolution of  elemental Ka lman  filters in n-step measurement  update method;  (a) for k ~< 
n + 1 , (b)  f o r k  > n + 1, w h e r e s  = n = 2. 
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Table I. Storage requirements for GPBAs, where the upper and lower denote the one- and n-step 
measurement update methods, respeetively 

s = 2  s = 3  s = 4  s = 5  

132 198 264 330 
n = l  

132 198 264 330 
264 594 1056 1650 

n = 2  
269 401 533 665 
528 1782 4224 8250 

n = 3  
406 604 802 1000 

1056 5346 16896 41250 
n = 4  

543 807 1071 1335 
2112 16038 67584 206250 

n = 5  
680 1010 1340 1670 

Table II. Numbers of elemental Kalman filters for GPBAs, where the upper and lower denote the 
one- and n-step measurement update methods, respectively 

s = 2  s = 3  s = 4  s = 5  

4 9 16 25 
n =  1 

4 9 16 25 
8 27 64 125 

n = 2  
12 36 80 150 
16 81 256 625 

n = 3  
28 117 336 775 
32 243 1024 3125 

n = 4  
60 360 1360 3900 
64 729 4096 15625 

n = 5  
124 1089 5456 19525 

It can be seen from Table II that a difference between two methods disappears as 
s becomes large for any n. From these facts, the proposed n-step measurement update 
method is effective for reducing the storage requirements of systems with a relatively 
large number of Markov chain states. 

Note that for n = 1 both methods are completely identical in the implementation 
form; that is, in fact, the algorithm of Chang and Athans (1978). 

5. Simulation Examples 

In this section, two simulation examples are presented to compare the estimation and 
detection performances of four suboptimal algorithms: 

(a) Ackerson and Fu (A-F) method (Ackerson and Fu (1970)), 
(b) Jaffer and Gupta (J-G) method (Jaffer and Gupta (1971)), 
(c) modified J-G method using (23), (24), 
(d) n-step measurement update method given by (27)-(35). 

EXAMPLE 1. Consider a scalar dynamical system described by the following equations: 

x(k + 1) = 1.04x(k) + w(k), 
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Fig. 3. Compar ison of  rms errors in state estimation due to suboptimal algorithms: (a) J-G and n-step 
measurement  update methods; (b) A-F, J-G and modified J-G methods,  for Example 1. 
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z(k)  = x (k )  + D(ct(k))v(k) ,  k = 1, 2 . . . . .  

s = 2, i.e. a(k) ~ {1, 2}. 

The init ial  condi t ions  are as follows: x(0) ~ N(30,400). The  sequences {w(k)} and  

{v(k)} are  mutua l ly  independen t  ze ro -mean  white Gauss i an  noises with covar iances  

Q = 0.1 and  R = 1.0, respectively.  The process  ct(k) is mode led  by a M a r k o v  chain 

with t rans i t ion  p robab i l i t y  matr ix :  

: 

0.5 0.5 

W e  take  Pl = P 2  - =  0.5. Final ly ,  we have D(1) = 10, D(2) = 1. 

A s imilar  example  has  been cons idered  in Akash i  and  K u m a m o t o  (1977), Tugna i t  

and  H a d d a d  (1979), Tugna i t  (1982) and Ma thews  and  Tugna i t  (1983). The system 

models  a failure m o d e  due to the a b r u p t  change  o f  measuremen t  noise. 

The four  subop t ima l  a lgor i thms  were s imula ted  and  their  s tate es t imat ion  per form-  

ances are  c o m p a r e d  in F igure  3, rms errors  in state es t imat ion  are c o m p a r e d  for  

var ious  n. The  per formances  were eva lua ted  by  averaging over  50 M o n t e  Car lo  runs. 

A lower b o u n d  is ob ta ined  by  a K a l m a n  filter which knows the true values of  the 

switching parameters .  N o t e  also tha t  the modif ied  J - G  me thod  with n -- 1 and  the 

n-step measu remen t  upda te  m e t h o d  with  n = 1 are the same as the a lgor i thm of  

Chang and Athans  (1978). The informat ion  in Figure  3 is also summarized  in Table I I I  

af ter  averaging over  30 t ime stages, together  with the average p robab i l i t y  o f  e r ror  in 

s t ructure  detect ion.  

F r o m  F igure  3 and  Table  III ,  it  is observed  tha t  the pe r fo rmances  o f  the modif ied  

J - G  and  the n-step measu remen t  upda te  me thods  are bet ter  t han  those  of  o ther  

Table III. RMS state estimation error and probability of error in structure detection for Example 1 

Average probability 
Average RMS error of error in 

Algorithm in state estimation structure detection 

A-F method 2.629 0.3133 
J-G method with 

n = 1 2.548 0.2133 
n = 2 1.926 0.1973 
n = 3 1.715 0.1900 

Modified J-G method with 
n = 1 1.803 0.1887 
n = 2 1.736 0.1867 
n = 3 1.712 0.1893 

n-step measurement 
update method with 

n = 1 1.803 0.1887 
n = 2 1.694 0.1793 
n = 3 1.672 0.1820 

Lower bound 1.102 * 
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Fig. 4. Comparison of rms errors in state estimation due to suboptimal algorithms: (a) J-O and n-step 
measurement update methods; (b) A-F, J-G amd modified J-G methods, for Example 2. 
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methods in both  estimation and detection problems; in particular the n-step measure- 

ment  update  method has the best estimation and detection performances.  Note  also 

that  an increasing in n leads to improvement  in estimation performance,  but  does not  

necessary lead to improvement  in detection performance.  

E X A M P L E  2. Consider a relatively high-dimensional  M a r k o v  chain, i.e. the system 

of  Example 1 except that  p~ = 0.25 for i = 1, . . . ,  4, 

D(1) = 10, D(2) = 7, D(3) = 4, D(4) = 1 

and 

0.15 0.15 0.2 0 . 5 ]  

= / 0 . 2  0.2 0.3 0.3 

0.3 0.2 0.1 0.4 " 

0.5 0.15 0.2 0.15 

The results o f  averaging over 50 Monte  Carlo runs are shown in Figure 4 and 

Table IV. Observe that, for this case, the proposed  method  is comparable  in the 

performances o f  estimation and detection to the modified J -G method.  However,  it 

is significant to note, f rom calculating (36) and (37) with n~ = m~ = 1 and s = 4, that  

the present method  requires about  50% less storage requirement than the existing 

G P B A  methods  for the case o f  n = 2. Also, it is found f rom Table IV that  the actual 

ratio o f  computa t ional  speed between the J -G or  modified J -G method  and the n-step 

measurement  update  for the case o f  n = 2 is nearly close to an ideal ratio (i.e. 1.25) 

presented in Table II,  as would be expected. 

Table IV. RMS state estimation error and probability of error in structure detection for Example 2 

Average probability Average 
Average RMS error of error in computation 

Algorithm in state estimation structure detection time (sec) 

A-F method 2.379 0.5733 1.664 
J-G method with 

n = 1 2.258 0.5147 3.322 
n = 2 1.739 0.4973 10.442 
n = 3 1.727 0.4867 39.480 

Modified J-G method with 
n = 1 1.704 0.4860 3.650 
n = 2 1.633 0.4840 11.722 
n = 3 1.676 0.4827 44.422 

n-step measurement 
update method with 

n = 1 1.704 0.4860 3.770 
n = 2 1.693 0.4853 12.886 
n = 3 1.688 0.4853 49.100 

Lower bound 1.127 * 0.646 
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6. Conclusions 

The problem of state estimation and system structure detection has been considered 
for linear discrete-time systems with abruptly changing parameters. The changes were 
modeled by a Markov chain with known transition statistics. Since the optimal 
solution was impractical, a suboptimal approach based on the 'n-step measurement 
update method' and a modified J-G approach were proposed and their efficiencies 
were demonstrated through several simulation studies. It has been shown that a new 
GPBA requires arithmetically growing storage with s and n, whereas the modified or 
original J-G algorithm based on the 'one-step measurement update method' requires 
exponentially growing storage. Furthermore, the simulation results indicate that, in 
general the present GPBA performs better than the J-G algorithm. Note, however, 
that since the n-step measurement update method is essentially a type of reproeessing 
the observations data, the proposed algorithm necessitates a slightly extra time of 
computation than the J-G algorithm. 

No discussion was provided in this paper, nor was any referenced, to establish: (i) 
the feasibility of knowing the transition probabilities for practical problems, (ii) the 
robustness of the Markov approach to errors in the transition probability assign- 
ments, and (iii) the feasibility of estimating the transition probabilities. We may be 
very interested in enlightenment concerning these issues. For a reference of (iii), see, 
for example, Tugnait (1982b). In addition, for some references to control related work 
on the same class of models, for example, see Blair and Sworder (1975), Griffiths and 
Loparo (1985), Chizeck et  al. (1986) and Birdwell et  al. (1986). 
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