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Low-Complexity Nonlinear Adaptive Filter Based
on a Pipelined Bilinear Recurrent Neural Network

Haiquan Zhao, Member, IEEE, Xiangping Zeng, and Zhengyou He, Member, IEEE

Abstract— To reduce the computational complexity of the bilin-
ear recurrent neural network (BLRNN), a novel low-complexity
nonlinear adaptive filter with a pipelined bilinear recurrent
neural network (PBLRNN) is presented in this paper. The
PBLRNN, inheriting the modular architectures of the pipelined
RNN proposed by Haykin and Li, comprises a number of BLRNN
modules that are cascaded in a chained form. Each module is
implemented by a small-scale BLRNN with internal dynamics.
Since those modules of the PBLRNN can be performed simul-
taneously in a pipelined parallelism fashion, it would result in
a significant improvement of computational efficiency. Moreover,
due to nesting module, the performance of the PBLRNN can
be further improved. To suit for the modular architectures, a
modified adaptive amplitude real-time recurrent learning algo-
rithm is derived on the gradient descent approach. Extensive
simulations are carried out to evaluate the performance of the
PBLRNN on nonlinear system identification, nonlinear channel
equalization, and chaotic time series prediction. Experimental
results show that the PBLRNN provides considerably better
performance compared to the single BLRNN and RNN models.

Index Terms— Bilinear recurrent neural network, pipelined
architecture, pipelined recurrent neural network, real-time recur-
rent learning, Volterra filter.

I. INTRODUCTION

IN NONLINEAR adaptive signal processing fields
(including nonlinear system identification, nonlinear

and nonstationary signal prediction, communication nonlinear
channel equalization, and echo and noise cancelation),
nonlinear adaptive filtering techniques have received
considerable interest in recent years [1], [2]. In order to
achieve certain predefined design goals, numerous researchers
have contributed to its developments. Various kinds of
nonlinear filter design approaches are proposed to model and
approximate nonlinear systems [1], [2]. But, up to now, it
is difficult to find a unified theory for accurately modeling
and characterizing them. Previous nonlinear approaches can
be generally classified into two categories in accordance

Manuscript received October 8, 2010; revised June 25, 2011; accepted
June 27, 2011. Date of publication July 29, 2011; date of current version
August 31, 2011. This work was supported in part by the National Science
Foundation of China under Grant 61071183, by the Fundamental Research
Funds for the Central Universities under Grant SWJTU11ZT07, and by the
Doctoral Innovation Fund of Southwest Jiaotong University.

H. Zhao (corresponding author) is with the School of Electrical Engi-
neering, Southwest Jiaotong University, Chengdu 610031, China (e-mail:
hqzhao@home.swjtu.edu.cn).

X. Zeng is with the School of Information Science & Technology, Southwest
Jiaotong University, Chengdu 610031, China.

Z. He is with the School of Electrical Engineering, Southwest Jiaotong
University, Chengdu 610031, China.

Color versions of one or more of the figures in this paper are available
online at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TNN.2011.2161330

to the employed techniques: Volterra filter [1] and neural
network (NN) [2]. Due to the powerful capability to represent
nonlinear systems, the well-known Volterra filter has become
very popular recently. However, one of major problems of
the Volterra filter is the heavy computational complexity of
its implementation. Only its low order (such as second-order,
third-order) is feasible in practical engineering [1].

In a wide range of engineering applications, due to the prime
advantages (the capability to learn based on optimization of
an appropriate error function and excellent performance for
approximation of nonlinear functions [2]), many types of NNs
[including multilayer percetron (MLP) [3], radius basis func-
tion (RBF) [4], functional linked artificial neural network [5],
wavelet neural network (WNN) [6], [7], and recurrent neural
network (RNN) [8]] have been successfully used for modeling
complex nonlinear systems. Among them, research results
show that the RNN can outperform feedforward neural net-
works (FNNs) such as MLP or RBF networks [9]. As infi-
nite impulse response (IIR) filters with feedback, RNNs can
yield smaller structures than FNNs in the same way that
IIR filters can replace longer finite impulse response filters.
Moreover, due to its feedbacks, RNN has dynamic charac-
teristics. Therefore, these can enable it to acquire accurately
nonlinear dynamic models, which are suitable for nonlinear
prediction, nonlinear channel equalization [10], and modeling
dynamical systems [9]. The most popular algorithms-based
RNNs are the backpropagation through time (BPTT) [11],
recurrent backpropagation [12], and real time recurrent learn-
ing (RTRL) [13] algorithms. The RTRL algorithm is attractive
in that it is applicable to real time systems. But, it suffers
from low convergence speed. In [14], Mak et al. reviewed
various approaches to improve the RTRL algorithm and group
them into common frameworks. Mandic et al. proposed a
normalized real time recurrent learning (NRTRL) algorithm
for RNNs [15], and this algorithm without significant demands
on additional computational complexity was shown to impose
additional stability and faster convergence to the RTRL. To
further improve RNN training speed, Song et al. proposed a
new robust adaptive gradient-descent (RAGD) algorithm of
the RNN in terms of less discrete time steps of the transit
and smaller steady-state error [16]. The weight convergence
and L2-stability of the RAGD algorithm were derived by the
conic sector theorem. Furthermore, these works were extended
to a class of multiple-input-multiple-output discrete time non-
linear systems [17]. In [18], a normalized adaptive recurrent
learning to obtain a tradeoff between convergent speed and
training error was proposed. Based on the RTRL algorithm,
Liu et al. presented a framework to substantially reduce the
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resource requirement of learning in RNNs, while retaining
high performance [19]. Recently, extended Kalman filter
(EKF) and unscented Kalman filter (UKF) algorithms for train-
ing RNNs were presented in [20] and [21]. Fast convergence
and good tracking performance are major advantages of the
EKF and UKF algorithms. To capture the dynamic response
of a system, combining the properties of attractor dynamics
of the RNN and good convergence performance of the WNN,
the recurrent wavelet neural network (RWNN) can cope with
time-varying input or output through its own natural temporal
operation due to the internal feedback neurons of a mother
wavelet layer [22]. Chi-Huang Lu presented a design approach
for stable predictive control of nonlinear discrete-time systems
via RWNNs [23]. Although various algorithms and models
based on the RNN have achieved high filter accuracy to a
certain extent, the computational loads have largely increased.

Another disadvantage of a RNN is that it only utilizes
linear input and first-order recurrent term while it fails to
utilize the high-order terms of inputs, and nonlinear modeling
capability of RNN is limited. In order to alleviate the inherent
limitation of the RNN, the bilinear recurrent neural network
(BLRNN) was proposed to solve the time series prediction
problems by Park [24]. In fact, the BLRNN based on the
bilinear polynomial model is regarded as a special case of
the high-order neural networks (HONNs), and is capable of
approximating arbitrary dynamical systems with great par-
simony in the use of coefficient than other HONNs [25].
The BLRNN has been successfully applied in prediction of
MPEG video traffic over asynchronous transfer mode (ATM)
networks [26], short-term load forecasting [27], and nonlinear
channel equalization [28]. To obtain faster convergence in
training the BLRNN, a structure simplification was presented
whereby the multiplications for bilinear components in the
BLRNN are removed. Moreover, the computational burdens of
the BLRNN are reduced to a certain extent [29]. Recently, a
multiscale BLRNN, based on a wavelet-based NN architecture
formulated by a combination of several individual BLRNN
models, was proposed to speed up the convergence and
improve the forecasting performance [30]. Even though the
BLRNN shows promising results when applied to various
problems, it still suffers from the heavy computational loads
as the RNNs.

Consequently, we now focus on developing a computational
efficient nonlinear adaptive filter-based BLRNN in this paper.
In 1995, a computationally efficient modular nonlinear adap-
tive filter-based pipelined recurrent neural network (PRNN)
was proposed to process highly nonlinear and nonstationary
signals by Haykin and Li [31]. The design of the pipelined
architecture follows the important engineering principle of
divide and conquer and the biological principle of NN mod-
ules. Its significant merit is relatively low computational
complexity. For a given number of neurons N , a PRNN with
M modules requires O(M N4) arithmetic operations, while
an RNN with MN neurons requires O(M4 N4) operations.
Hence, various types of nonlinear filters-based PRNNs have
been successfully used for a variety of applications where
complexity and nonlinearity poses major problems, including
speech processing [32]–[35], ATM, traffic modeling [36],
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Fig. 1. BLRNN model with p input and q neurons.

nonlinear dynamic system [37], and communications [38].
Therefore, to reduce the computational complexity of the
BLRNN, combining enhanced structure of the PRNN, a novel
nonlinear adaptive filter-based pipelined bilinear recurrent
neural network (PBLRNN) is proposed in this paper. The
proposed nonlinear filter inherits the advantages of the PRNN
with low computational complexity. Moreover, it has also
some crucial properties such as decomposition of the com-
plex problem, better spatial representation of the temporal
information, and enriched dynamics, rendering them suitable
for modeling nonlinear autoregressive moving average with
exogenous inputs (NARMAX) processes.

The rest of this paper is organized as follows. Section II
introduces a brief review of the BLRNN. The structure of
the novel low complexity nonlinear adaptive filter is presented
in Section III. In Section IV, a modified adaptive amplitude
RTRL algorithm is derived by the gradient descent method.
The effectiveness of the proposed nonlinear filter is illustrated
by comparing with BLRNN and RNN filters for nonlinear
dynamic system identification, nonlinear channel equalization,
and nonlinear chaotic signals prediction in Section V. Finally,
Section VI is devoted to a brief summary and discussion.

II. BILINEAR RECURRENT NEURAL NETWORK

It is well known that the BLRNN model is designed for an
improvement of the traditional MLP and RNN models. In fact,
in contrast to the RNN, the BLRNN is an extended version of
the RNN. Without losing generality, a simple BLRNN with p
input and q hidden neurons is depicted in Fig. 1.

In the network, its output depends not only on the current
inputs, but also on recurrent signals. The extended input
[(1 + p + q + pq) × 1] vector X(n) by the bilinear polyno-
mial is defined by

X(n) =
[
1, XT

E (n), XT
E F (n), XT

F (n)
]T

(1)
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Fig. 2. PBLRNN with M modules.

where T denotes transpose of a vector or matrix, external input
signal (p × 1) vector XE (n), the recurrence signal (q × 1)
vector XF (n) and (p × q) vector XE F (n) are respectively
defined by

XE (n) = [x(n), . . . , x(n − p + 1)]T (2)

XF (n) = [y1(n − 1), . . . , yq(n − 1)]T (3)

XE F (n) = [x(n)y1(n − 1), . . . , x(n)yq(n − 1), . . . ,

x(n − p + 1)yq(n − 1)]T . (4)

Thus, the output yk(n) of the kth neuron in BLRNN model
is computed by

yk(n) = ϕ(Uk(n)) k = 1, 2, . . . , q (5)

where ϕ(•) is a nonlinear activation function, and its input
Uk(n) is given by

Uk(n) = XT (n)Hk(n)

=
[
1XE (n)T

]
H1,k(n) + XT

E F (n)H2,k(n)

+XT
F (n)H3,k(n)

= h1,k,0(n) +
p∑

i=1

h1,k,i (n)x(n − i + 1)

+
p∑

i=1

q∑
j=1

h2,k,q(i−1)+ j (n)x(n − i + 1)y j (n − 1)

+
q∑

i=1

h3,k,i (n)yi (n − 1) (6)

where the coefficient vectors Hk(n) are elements in a coeffi-
cient matrix H(n), which is defined by

H(n) =
[
HT

1 (n), . . . , HT
k (n), . . . , HT

q (n)
]

(7)

and
Hk(n) =

[
HT

1,k(n), HT
2,k(n), HT

3,k(n)
]T

(8)

where H1,k(n), H2,k(n), and H3,k(n) are coefficients of XE (n),
XE F (n), and XF (n), respectively.

Finally, the output of the BLRNN is y1(n) where k = 1.

III. LOW-COMPLEXITY PBLRNN

Inspired by the pipelined architecture of the PRNN [31], the
low-complexity PBLRNN is suggested as shown in Fig. 2,
which is a modular network that consists of M identical
BLRNN modules cascaded in a nested manner. Moreover,
the cascaded interconnection of the PBLRNN adheres to
the principle of divide-and-conquer. That is, to cope with a
complex modeling problem, it should be decomposed into
several subtasks that are easier to handle. Moreover, due to the
modules performed simultaneously in a pipelined parallelism
fashion, it leads to a significant improvement in its total
computational efficiency.

Each module of the PBLRNN has the same form of a
BLRNN as depicted in Fig. 3, which describes the detailed
structure of module i. At time n, the external input signal
XE,i (n) that is applied to module i(i = 1, 2, . . . , M) is a
vector comprising p past signal values, defined by

XE,i (n) = [x(n − i), x(n − (i + 1)), . . . , x(n − (i + p − 1))]T

(9)
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Fig. 3. Detailed architecture of module i of the PBLRNN.

and is delayed by Z−i I at the input of the module i , where Z−i

denotes the delay operator i time units, and I is the (p × p)-
dimensional identity matrix. Apart from the p external inputs,
each module of the PBLRNN has q − 1 feedback inputs of its
own, which are one-unit delayed of the internal signals. Thus,
these signals applied to module i constitute the vector ri (n)
which is the q-by-1 feedback vector as follows:

ri (n) = [yi+1,1(n), r̂ i (n)]T , i = 1, 2, . . . , (q − 1) (10)

where yi+1,1(n) is the first neuron output in the adjacent
module i + 1. Vector ri (n) is the one-step delayed output
feedback signal, which originates from the module i itself and
is defined by

r̂i (n) = [yi,2(n − 1), . . . , yi,q (n − 1)]T . (11)

In particular, the uppermost module of the PBLRNN, namely,
module M , operates as a standard fully connected BLRNN.
The vector rM (n) consists of the one-step delayed output
signals in module M that are fed back to itself, and is
given by

rM (n) = [
yM,1(n − 1), r̂ M (n)

]T

= [
yM,1(n − 1), yM,2(n − 1), . . . , yM,q(n − 1)

]T
. (12)

Hence, the overall input X̂ i (n) to module i is a
[(p + q + 1) × 1] vector, including the external inputs
XE,i (n), The fixed input +1 included to accommodate a bias
for each neuron and the feedback inputs ri (n) are given by

X̂ i (n) =
[

X̂i,1(n), X̂i,2(n), . . . , X̂i,p+q+1(n)
]T

=
[
XT

E,i (n), 1, rT
i (n)

]T
. (13)

Moreover, it is clearly shown in Fig. 2 that the information
flow into and out of the modules proceeds in a synchronized
fashion. Consequently, all the modules in the PBLRNN oper-
ate in a similar fashion, exhibiting exactly the same number

of external inputs and feedback signals, which are properly
timed. Then, at the nth time point, input vector X̂ i (n) is
expanded to the vector Xi (n) by the bilinear polynomial, and is
written as

Xi (n) = [
Xi,1(n)Xi,2(n) . . . , Xi,L (n)

]T

= [
1, x(n − i), x(n − i − 1), . . . , x(n − i − (p − 1)),

x(n − i)ri,1(n), . . . , x(n − i − (p − 1)ri,q (n)),

ri,1(n), ri,2(n), . . . , ri,q (n)
]T

=
[
Vi,1(n)T , Vi,2(n)T , Vi,3(n)

]T
(14)

where the length L of Xi (n) is defined by L = 1 + p
+ q + (p × q), the vectors Vi,1(n), Vi,2(n), and Vi,3(n) are
written as respectively

Vi,1(n)= [
1, x(n − i), x(n − i − 1), . . . , x(n − i − (p − 1))

]T

Vi,2(n)= [
x(n − i)ri,1(n), . . . , x(n − i − (p − 1)ri,q (n))

]T

Vi,3(n)= [
ri,1(n), ri,2(n), . . . , ri,q (n)

]T
. (15)

Without losing generality, all the modules are designed to have
exactly the same L-by-q synaptic weight matrix H(n) defined
by

H(n) = [H1(n), . . . , Hl , . . . , Hq(n)]T (16)

where Hl(n) = [Hl,1(n), Hl,2(n), Hl,3(n)], l = 1, 2, . . . , q .
And length L1 of Hl,1(n) is same to Vi,1(n) and L1 = p + 1.
Similarly, we define L2 of Hl,2(n) as follows:

L2 = p × q (17)

and L3 of Hl,3(n)is defined by L3 = q .
Thus the lth neural unit output of module i is written by

yi,l(n) = ϕ(Ui,l (n)) = ϕ(HT
l (n)Xi (n))

= ϕ(HT
l,1(n)Vi,1(n) + HT

l,2(n)Vi,2(n)

+ HT
l,3(n)Vi,3(n)) (18)

where Ui,l (n) denotes the net internal activity of neuron l in
module i at the nth time point.

Then, the output yi,1(n) of the module i can be interpreted
as the estimate of desired signal d(n − i). It is computed by
a complete dependence form shown as follows:

yi,1 (n) = ϕ (H1(n), Xi (n), ri (n))

= ϕ
[
HT

1,1(n)Vi,1(n) + HT
1,2(n)Vi,2(n) + HT

1,3(n)Vi,3(n)
]
.

(19)

Finally, at time instant n, the output signal computed by the
PBLRNN is defined by the first neuron of the first module as
shown below

y(n) = y1,1(n). (20)

A key difference between the PBLRNN of Fig. 3 and the
conventional BLRNN is that the PBLRNN is characterized by
a nested nonlinearity. Owing to module nesting, the allover
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output y1,1(n) of the PBLRNN can be expressed by

y(n) = y1,1(n)

= ϕ(X1(n), r1(n), y2,1(n))

= ϕ{X1(n), r1(n), ϕ[X2(n), r2(n), y3,1(n)]}
= · · ·
= ϕ{[X1(n), r1(n), ϕ(X2(n), r2(n), . . . ,

ϕ(XM−1(n), rM−1(n), yM,1(n)), . . .)]}. (21)

Hence, it is obviously shown that the nonlinear computer
power of the PBLRNN is enhanced by the nested nonlinear-
ity [39]. But, the nesting process introduces a deteriorating
effect in the relative amplitude of the output yi,1(n), i =
2, . . . , M of a distant module i [40]. It results in a degradation
performance of nonlinear filter.

To effectively deal with the effects, according to the
approaches in [41]–[43], we can rewrite the nonlinear acti-
vation function

ϕ(x) = λ(n)ϕ(x) = λ(n)[
1 + exp(−βx)

] (22)

where λ(n) is a variable that adjusts the amplitude of ϕ(x), a
slope β is set to 1, and ϕ(x) is the activation function with a
unit amplitude. Thus, if λ(n) = 1, then ϕ(x) = ϕ(x). Without
loss of generality, let all the neurons in the PBLRNN share
the same amplitude λ(n) [41]–[43].

IV. ADAPTIVE AMPLITUDE RTRL ALGORITHM

The RTRL algorithm, first proposed by Williams and
Zipser [13], is one of the successful learning algorithms
where the gradient of errors is propagated forward in time
rather than backward in time. Moreover, researches have
demonstrated that it is particularly suitable for online train-
ing of the PRNN [9]. However, slow convergence is one
of its major disadvantages. Hence, to speed up conver-
gence and overcome the effect of the nesting processing,
keeping the view of the pipelined architecture, the modi-
fied adaptive amplitude RTRL algorithm is derived in this
section.

In accordance with the RTRL algorithm rule [13], adjust-
ments to the synaptic weight matrix H(n) is made to minimize
the allover cost function E(n). Thus, the value of the following
E(n) of the PBLRNN is calculated by

E(n) =
M∑

i=1

εi−1e2
i (n) (23)

where ε is an exponential forgetting factor that lies in the
range of 0 < ε ≤ 1, the inverse of εi−1 is a measure of the
memory of the PBLRNN, and the error ei (n) of module i is
computed by

ei (n) = d(n − i) − yi,1(n). (24)

Taking as objective the minimization of the cost function
E(n), the parameters H(n), λ(n) of the PBLRNN are adjusted

by the stochastic gradient estimation algorithm as the follow-
ing formulas:

hl,1, j (n) = hl,1, j (n − 1) + �hl,1, j (n) + u1�hl,1, j (n − 1)

= hl,1, j (n − 1) − η1

2

∂ E(n)

∂hl,1, j (n)

+ u1
[
hl,1, j (n) − hl,1, j (n − 1)

]
(25a)

hl,2, j (n) = hl,2, j (n − 1) + �hl,2, j (n) + u2�hl,2, j (n − 1)

= hl,2, j (n − 1) − η2

2

∂ E(n)

∂hl,2, j (n)

+ u2
[
hl,2, j (n) − hl,2, j (n − 1)

]
(25b)

hl,3, j (n) = hl,3, j (n − 1) + �hl,3, j (n) + u3�hl,3, j (n − 1)

= hl,3, j (n − 1) − η3

2

∂ E(n)

∂hl,3, j

+u3
[
hl,3, j (n) − hl,3, j (n − 1)

]
(25c)

λ(n) = λ(n − 1) + �λ(n)

= λ(n − 1) − η4

2

∂ E(n)

∂λ(n)
(26)

where ηi (i = 1, 2, 3, 4) are learning rates, ui (i = 1, 2, 3)
are the momentum to speed up convergence of the adaptive
algorithm and 1 ≤ j ≤ L.

Then, the partial derivates of E(n) with respect to hl,1, j (n),
hl,2, j (n), hl,3, j (n), and λ(n) are respectively calculated by the
following formulas:

∂ E(n)

∂hl,1, j (n)
= 2

M∑
i=1

εi−1ei (n)
∂ei (n)

∂hl,1, j (n)

= −2
M∑

i=1

εi−1ei (n)
∂yi,1(n)

∂hl,1, j (n)
(27a)

∂ E(n)

∂hl,2, j (n)
= 2

M∑
i=1

εi−1ei (n)
∂ei (n)

∂hl,2, j (n)

= −2
M∑

i=1

εi−1ei (n)
∂yi,1(n)

∂hl,2, j (n)
(27b)

∂ E(n)

∂hl,3, j (n)
= 2

M∑
i=1

εi−1ei (n)
∂ei (n)

∂hl,3, j (n)

= −2
M∑

i=1

εi−1ei (n)
∂yi,1(n)

∂hl,3, j (n)
(27c)

∂ E(n)

∂λ(n)
= 2

M∑
i=1

εi−1ei (n)
∂ei (n)

∂λ(n)

= −2
M∑

i=1

εi−1ei (n)
∂yi,1(n)

∂λ(n)
. (28)

It is difficult to calculate [∂yi,1(n)]/[∂hl,1, j (n)],
[∂yi,1(n)]/[∂hl,2, j (n)], and [∂yi,1(n)]/[∂hl,3, j (n)] directly.
According to the recursive algorithm presented in [44] and
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[45], we introduce the sensitivity terms Phi,k
l,1, j (n), Phi,k

l,2, j (n),

and Phi,k
l,3, j (n) (k = 1, 2, . . . , q) respectively defined by

Phi,k
l,1, j (n) = ∂yi,k (n)

∂hl,1, j (n)
(29a)

Phi,k
l,2, j (n) = ∂yi,k (n)

∂hl,2, j (n)
(29b)

Phi,k
l,3, j (n) = ∂yi,k (n)

∂hl,3, j (n)
(29c)

where hl,1, j (n) ( j = 1, 2, . . . , L1), hl,2, j (n)( j = 1, 2, . . . ,
L2), and hl,3, j (n)( j = 1, 2, . . . , L3) are respectively elements
of Hl,1(n), Hl,2(n), and Hl,3(n). Note that Phi,1

l,1, j (n) =
∂yi,1(n)/∂hl,1, j (n), Phi,1

l,2, j (n) = ∂yi,1(n)/∂hl,2, j (n), and

Phi,1
l,3, j (n) = ∂yi,1(n)/∂hl,3, j (n).

Then, according to the gradient descent rule, we can obtain
the following equations (detailed derivation is provided in the
Appendix):

Phi,k
l,1, j (n) = λ(n)φ′ (Ui,k(n)

)
{

δl,kvk,1, j (n) + ∂yi+1,1(n)

∂hl,1, j (n)

p∑
m=1

hl,2,m(n)vk,1,m(n)

}
(30a)

Phi,k
l,2, j (n) = λ(n)φ′ (Ui,k (n)

)
{

δl,kvk,2, j (n) + ∂yi+1,1(n)

∂hl,2, j (n)

p∑
m=1

hl,2,m(n)vk,1,m(n)

}
(30b)

Phi,k
l,3, j (n) = λ(n)φ′ (Ui,k(n)

)
{

δl,kvk,3, j (n) + ∂yi+1,1(n)

∂hl,3, j (n)

p∑
m=1

hl,2,m(n)vk,1,m(n)

}
(30c)

and 1 ≤ i < M .
For the case when i = M

PhM,k
l,1, j (n) = λ(n)φ′ (UM,k(n)

)
δl,kvk,1, j (n) (31a)

PhM,k
l,2, j (n) = λ(n)φ′ (UM,k(n)

)
δl,kvk,2, j (n) (31b)

PhM,k
l,3, j (n) = λ(n)φ′ (UM,k(n)

)
δl,kvk,3, j (n). (31c)

As a consequence, the updated weight equations are sum-
marized as follows:

hl,1, j (n) = hl,1, j (n − 1) + η1

M∑
i=1

εi−1ei (n)Phi,1
l,1, j (n)

+ u1
(
hl,1, j (n) − hl,1, j (n − 1)

)
(32a)

hl,2, j (n) = hl,2, j (n − 1) + η2

M∑
i=1

εi−1ei (n)Phi,1
l,2, j (n)

+ u2
(
hl,2, j (n) − hl,2, j (n − 1)

)
(32b)

hl,3, j (n) = hl,3, j (n − 1) + η3

M∑
i=1

εi−1ei (n)Phi,1
l,3, j (n)

+ u3
(
hl,3, j (n) − hl,3, j (n − 1)

)
. (32c)

In addition, by the gradient algorithm rule, the amplitude
parameter λ(n) is adjusted by

λ(n) = λ(n−1)+�λ = λ(n−1)+η4

M∑
i=1

εi−1ei (n)φ
(
Ui,1(n)

)
.

(33)
Consequently, the total modified RTRL algorithm for the

proposed PBLRNN is summarized in the following.

A. Initialization of the Algorithm

1) The step sizes η1, η2, η3, and η4 are set as
0 < η1, η2, η3, η4 < 2.

2) The weight vector H(n) of the PBLRNN are all initial-
ized to small random values with H(n) < 10−3.

3) For all i , k, l, and j , recursive items in (A6) and
(A7) (see the Appendix) are initialized to zeros with
Phi,k

l,1, j (n) = Phi,k
l,2, j (n) = Phi,k

l,3, j (n) = 0.

B. Forward Phase

For i = 1:1:M .

1) Compute the expanded vector Xi (n) in (14) using
(9)–(12).
For l = 1:1:q .

a) Compute the output yi,l (n) of the lth neuron of i th
module at time n using (18).

b) Compute (30) or (31).
c) Compute the corrections �hl,1, j (n), �hl,2, j (n),

and �hl,3, j (n) using the second item of the right-
hand side in (32).

end.

2) Compute the error ei (n) of ith module at time n
using (24).
end.

C. Learning Phase

The instantaneous error E(n) is given by (23) and the objec-
tive is to change the weights in the direction that minimizes
E(n).

Then the training phase involves the following steps.

1) Update the weights hl,1, j (n), hl,2, j (n), and hl,3, j (n)
by (32).

2) Update the common amplitude λ(n) of the activation
function of every neuron by (33).

It is well known that one of the important issues in adaptive
algorithms is the convergence. The convergence of the adap-
tive amplitude RTRL algorithm-based gradient descent rule
depends on the selection of the initial values of the learning
rate parameters and the momentum term. It is difficult that
we obtain bounds on the step sizes η1, η2, η3, and η4 for
stable operation of the proposed PBLRNN filter. However,
we can argue heuristically that these values are selected in
the range 0 < η1, η2, η3, η4 < 2 [45]. During the training
process, all these parameters start with a small value. Then,
the values of the parameters are increased if the value of
change of error �E(n) = E(n) − E(n − 1) is negative, and
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−ŷ(n)

Fig. 4. Nonlinear dynamic identification scheme.

2 3 4 5 6
−15.08

−15.06

−15.04

−15.02

−15

−14.98

−14.96

−14.94

−14.92

−14.9

Number of modules

N
M

SE
 (

dB
)

Fig. 5. NMSE versus the number of modules M in the PBLRNN filter.

the learning rates are decreased if the change in the error
�E(n) = E(n)− E(n −1) is positive. Therefore, this strategy
leads to stable learning of the PBLRNN filter, guarantees the
convergence, and speeds up the learning of the PBLRNN.
Moreover, momentum terms are also employed to speed up
the convergence.

V. SIMULATION

In order to evaluate the performance of the proposed
PBLRNN filter, a number of simulation studies are carried out
for nonlinear dynamics systems identification, nonlinear chan-
nel equalization, and prediction of chaotic signals. Contrasting
with PRNN, BLRNN, and RNN, a comparative analysis of the
PBLRNN is presented in this section.

A. Identification of Nonlinear Dynamic System

The identification problem of nonlinear dynamic system is
aimed to find the nonlinear relation between the input and
the output of the nonlinear dynamic system. In Fig. 4, the
structure of the nonlinear dynamic identification system with
the nonlinear filter is described. Here, x(n) denotes the input
of the system, y(n) is plant output, and ŷ(n) is output of the
nonlinear filter.

In this experiment, the mathematical model of dynamic
plant used in [3], [5], and [7] is described by the following

2 3 4 5 6
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Fig. 6. NMSE versus the number of external inputs p.

TABLE I

PARAMETERS OF ALL THE NONLINEAR PREDICTORS

Parameters PBLRNN PRNN BLRNN RNN
Learning rate η1 = 0.2 η1 = 0.2 η1 = 0.07 η = 0.05

η2 = 0.2 η2 = 0.2 η2 = 0.07
η3 = 0.2 η3 = 0.1 η3 = 0.07
η4 = 0.1

Number of
external inputs

5 5 5 5

Number of output
layer neurons

2 2 2 2

Number of
modules

4 4 – –

TABLE II

NMSEs OF ALL THE NONLINEAR FILTERS

NN model NMSE

PBLRNN −15.9200

PRNN −12.7191

BLRNN −11.2419

RNN −9.4085

difference equation:
y(n + 1) = f (y(n), y(n − 1), y(n − 2), x(n), x(n − 1))

= y(n)y(n − 1)y(n − 2)x(n − 1) [y(n − 2) − 1] + x(n)

1 + y2(n − 1) + y2(n − 2)
.

(34)

The identification model of the plant is depicted by

ŷ(n+1) = N N[y(n), y(n−1), y(n−2), u(n), u(n−1)] (35)

where NN(.) denotes the neural networks used to identify the
function f .

For the identification of the plant, an excitation sinusoidal
signal is applied to the plant and the NN model, and is
expressed by

x(n) =
{

sin
( 2πn

250

)
for 0 < n ≤ 250

0.8 sin
( 2πn

250

) + 0.2 sin
( 2πn

25

)
for n > 250.

(36)
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Fig. 7. Identification of the nonlinear dynamic plant with the test sinusoidal signal. (a) PBLRNN. (b) BLRNN. (c) PRNN. (d) RNN.

And the normalized mean square error (NMSE), a standard
quantitative measure for performance evaluation, is defined as

NMSE(dB) = 10 × log 10

[
1

σ 2TD

TD∑
n=1

[
y(n) − ŷ(n)

]2

]
(37)

where σ 2 denotes variance of the plant output sequence over
the training duration TD = 600.

1) Effect of the Number of Modules: Fig. 5 describes the
influence of the number of modules in the PBLRNN filter
on the NMSE performance, where NMSE is expressed versus
M , for the PBLRNN models with external input p = 5. In all
cases, the NMSE of the PBLRNN filter decreases gradually
for moderate values of M when M ≥ 4. Moreover, the
curve changes of NMSE shows that introducing additional
modules in the PBLRNN does not markedly improve the
performance further when is greater than M = 4. Therefore, in
the simulation results that are presented in the sequel, optimal
value M of the number of modules for the PBLRNN is set to 4.

2) Effect of the Number of External Inputs: The NMSE with
respect to the number of external inputs in the PBLRNN with
M = 4 is shown in Fig. 6. For a particular level of p, Fig. 6

shows that the NMSE is slightly improved when p > 5. On
the other hand, a large of number of external inputs increases
the computational burdens of the PBLRNN filter. Therefore,
in the following, the values p are obtained by p = 5 for the
PBLRNN filter.

According to the aforementioned discussion, the learning
parameters of three NNs are chosen for several trials to obtain
best results. All the parameters of the NNs are summarized in
Table I, where the standard RTRL algorithms are employed
for RNN, BLRNN, and PRNN, while the adjusted amplitude
RTRL algorithm for the PBLRNN filter.

Fig. 7 depicts the results of the identification with the
sinusoidal signal (36). We can observe that the identification
of the plant is satisfactory for three networks, and also find
that the estimation error of the PBLRNN filter is less than
that of the BLRNN and RNN filters. To further depict the
behavior of the adaptive amplitude of the activation function
of the PBLRNN filter, a time variation of the adaptive ampli-
tude is plotted in Fig. 8. It is clearly shown that adaptive
amplitude RTRL algorithm is able to adapt the amplitude of
the nonlinearity according to the changes in the dynamics of
the input.
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Fig. 8. Adaptive amplitudes for the PBLRNN filter.
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Fig. 9. Digital transmission system with the PBLRNN equalizer

TABLE III

PARAMETERS OF ALL THE NONLINEAR EQUALIZERS

Parameters PBLRNN BLRNN RNN

Learning rate η1 = 0.1 η1 = 0.04 η = 0.02

η2 = 0.08 η2 = 0.03

η3 = 0.08 η3 = 0.03

η4 = 0.1

Number of external inputs 5 5 5

Number of output layer neurons 2 2 2

Number of modules 4 – –

To further evaluate the performance of the proposed filter,
the corresponding NMSE values of all the examples are
summarized in Table II. It is shown that the NMSE of the
PBLRNN is lower than that of the PRNN, while PRNN over
BLRNN and RNN.

B. Nonlinear Channel Equalization

The performance of the PBLRNN as an equalizer is eval-
uated for nonlinear channel in wireless communication sys-
tems. The block diagram with the PBLRNN equalizer in a
communication system is depicted in Fig. 9. The combined
effect of the transmitter filter, the transmission medium, and
other components are included in the “Channel,” which can

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−35

−30

−25

−20

−15

−10

−5

0

5

Iterations

M
SE

(d
B

)

PBLRNN
BLRNN
RNN

Fig. 10. Convergence properties of the equalizers under SNR = 16 dB for
the nonlinear channel model.

TABLE IV

PARAMETERS OF ALL THE NONLINEAR PREDICTORS

Parameters PBLRNN BLRNN RNN

Learning rate η1 = 0.8 η1 = 0.5 η = 0.2

η2 = 0.2 η2 = 0.1

η3 = 0.1 η3 = 0.1

η4 = 0.1

Number of external inputs 5 5 5

Number of output layer neurons 2 2 2

Number of modules 4 – –

TABLE V

COMPARISON OF THE RMSE FOR THREE NONLINEAR FILTERS

Prediction model RMSE

PBLRNN 0.0357

BLRNN 0.0557

RNN 0.0752

be modeled as follows [10], [20], [21]:
s1(n) = 0.3482x(n)+0.8704x(n −1)+0.3482x(n −2) (38)

where the transmitted sequence x(n) is with a 2-pulse ampli-
tude modulation signal and in the form of {+1, −1} in which
each symbol is obtained from a uniform distribution. The “NL”
block represents the nonlinear distortions of the symbols in the
channel, its output may be expressed as

s2(n) = s1(n) + 0.2s2
1 (n) + 0.5s3

1 (n). (39)

But, the output of the channel s2(n) is corrupted by noise
u(n), which is usually modeled as an additive white Gaussian
noise process with a zero mean and variance σ 2. Then this
corrupted signal is received at the receiver end and is given
by r(n) = s2(n) + u(n). And where “D” is the transmission
delay associated with the physical channel. d(n) denotes the
desired signal and is defined by d(n) = x(n − D).

Convergence performance including the convergence speed
and the steady-state error of the three equalizers averaged
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Fig. 12. Nonlinear predicting system with a PBLRNN filter.

over 100 independent experiments for the nonlinear channel
is shown in Fig. 10. Each run has a different BPSK random
sequence and random initialized coefficients of the equalizers,
SNR of 16 dB is applied, and the learning rate parameters
are set in Table III. We can clearly observe that the PBLRNN
equalizer converges faster than BLRNN and RNN equalizers.
Moreover, the MSE performance of the PBLRNN equalizer
outperforms BLRNN and RNN equalizers. For instance, in
Fig. 10, MSE value of the PBLRNN reaches −28.5 dB after
3000 training symbols, while MSE values of the BLRNN and
RNN reach −24 and −20 dB, respectively.

Furthermore, we can run simulations for different SNR
ranging from SNR = 4 dB to SNR = 20 dB at 2 dB
intervals (4:2:20). BER performance comparisons are pre-
sented in Fig. 11. In each trial, the 5000 BPSK signals
are used for training and next 10 000 signals are used for
testing. The coefficient vectors of the equalizers are frozen
after the training stage, and then the test is continued. It is
seen that the PBLRNN equalizer shows better performance
than the others for nonlinear channel model in wireless
communication systems. In that respect, the pipelined archi-
tecture affords an efficient framework for improving further
the nonlinear processing capabilities of the single BLRNN
models.

C. Prediction of Chaotic Time Series

To illustrate the effectiveness of the proposed filter for mak-
ing nonlinear signal predictions, a nonlinear signal predicting
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Fig. 13. Comparison of predicted values. (a) PBLRNN. (b) BLRNN.
(c) RNN.

system with a PBLRNN filter is implemented in Fig. 12.
And the Mackey-Glass chaotic time series often used as a
benchmark for nonlinear predictors are chosen as input signals
x(n) of systems, which are generated by a delay differential
equation [8], [22], [24], [25], and [46]

dy(t)

dt
= αy(t − τ )

1 + y(t − τ )10 − by(t) (40)

with values α = 0.2, b = 0.1, and τ = 17. The squared
root of the mean square error (RMSE) is used to evaluate the
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prediction accuracy, and is defined by

RMSE =
√√√√1

n

n∑
t=1

(
y(t) − ŷ(t)

)2 (41)

where ŷ(t) is the estimated value of y(t) at time t .
In this experiment, the parameters of the PBLRNN,

BLRNN, and RNN filters are set as shown in Table IV. During
the training, the networks were tested on 400 samples of
chaotic time series.

Table V depicts the comparative results of RMSE for the
PBLRNN, BLRNN, and RNN filters. The RMSEs presented in
Table V illustrate that the prediction accuracy of the PBLRNN
is obviously superior over those of the BLRNN and RNN.

Figs. 13 and 14 show the predicted values and predicted
errors, respectively, of the PBLRNN, BLRNN, and RNN
filters. From these figures, it can be observed clearly that
the predicted values of the PBLRNN agree better with the
target value than those of the BLRNN and RNN filters, the
predicted errors are found to be lower than those of BLRNN
and RNN filters. Moreover, throughout the experiments, the
results clearly reveal that the PBLRNN filter is capable of
capturing the underlying dynamics from chaotic time series
more efficiently than the BLRNN and RNN filters for this
case.

As a consequence, the performance of the PBLRNN is
significantly superior to that of the BLRNN and RNN filters in
all cases. The improved performance of the proposed nonlinear
filter is attributed to the following reasons: 1) each module
of the PBLRNN filter utilizes the high-order terms of inputs;
2) the enhanced nesting module architecture; 3) the modified
adaptive amplitude RTRL algorithm circumvents the nesting
effect along the modules; and 4) the momentums speed up the
convergence of the algorithm.

VI. CONCLUSION

In this paper, we have proposed a nonlinear adaptive filter
with a PBLRNN to reduce the computational burden of the
BLRNN. The novel nonlinear filter consists of a number of

modules-based BLRNNs that are interconnected in a chained
form, and inherits the major characteristics (low computational
complexity) of the pipelined architecture. The parameters that
update the rules of the nonlinear adaptive filter are derived
according to the adaptive amplitude RTRL algorithm. The
performance of the filter presented in this paper has been
assessed for nonlinear system identification, nonlinear chan-
nel equalization, nonlinear and nonstationary chaotic signal
prediction, and compared with that of the BLRNN and RNN
filters. Simulation results show that the proposed filter with
lower computational complexity can converge faster, and out-
perform the single BLRNN model. It is also demonstrated that
the PBLRNN filter is superior to the BLRNN- and RNN-based
approaches. As suggested by the anonymous reviewers, further
investigation on how to improve the convergence speed of the
PBLRNN filter using the RTRL algorithm might be needed in
the future work, while retaining high performance and low
computational complexity in accordance with the methods
in [17]–[19]. In addition, an alternative algorithm for RNNs
in real-time implementation is a truncated BPTT(h) in case
of online update [47]. Researches show that the BPTT(h) or
any modified BPTT(h) algorithms are much better than the
RTRL algorithm in terms of convergence speed and com-
putational complexity [11], [47]–[49]. Therefore, to further
reduce computational burden and to improve the convergence
performance of the PBLRNN, some novel adaptive algorithms-
based BPTT(h) rule of the proposed PBLRNN will be also
discussed in the future work.

APPENDIX

Substituting (15) and (18) into (29a–c), we have

Phi,k
l,1, j (n) = λ(n)φ′(Ui,k (n))

{
δl,kvk,1, j (n)

+∂yi+1,1(n)

∂hl,1, j (n)

p∑
m=1

hl,2,m(n)vk,1,m(n)

+
p∑

K=1

q∑
m=2

hl,2,K p+m(n)vk,1,K (n)
∂yi,m (n − 1)

∂hl,1, j (n)

+
L3∑

m=2

hl,3,m(n)
∂yi,m (n − 1)

∂hl,1, j (n)

}
(A1a)

Phi,k
l,2, j (n) = λ(n)φ′(Ui,k(n))

{
δl,kvk,2, j (n)

+∂yi+1,1(n)

∂hl,2, j (n)

p∑
m=1

hl,2,m(n)vk,1,m(n)

+
p∑

K=1

q∑
m=2

hl,2,K p+m(n)vk,1,K (n)
∂yi,m (n − 1)

∂hl,2, j (n)

+
L3∑

m=2

hl,3,m(n)
∂yi,m (n − 1)

∂hl,2, j (n)

}
(A1b)



ZHAO et al.: LOW-COMPLEXITY NONLINEAR ADAPTIVE FILTER BASED ON A PIPELINED BILINEAR RECURRENT NEURAL NETWORK 1505

Phi,k
l,3, j (n) = λ(n)φ′(Ui,k(n))

{
δl,kvk,3, j (n)

+∂yi+1,1(n)

∂hl,3, j (n)

p∑
m=1

hl,2,m(n)vk,1,m(n)

+
p∑

K=1

q∑
m=2

hl,2,K p+m(n)vk,1,K (n)
∂yi,m (n − 1)

∂hl,3, j (n)

+
L3∑

m=2

hl,3,m(n)
∂yi,m (n − 1)

∂hl,3, j (n)

}
(A1c)

and 1 ≤ i < M , where the notation δl,k denotes the Kronecker
delta

δl,k =
{

1 l = k

0 l �= k
(A2)

and

φ′(Ui,k(n)) =
φ(Ui,k (n))[1 − φ(Ui,k (n))], (1 ≤ i ≤ M, 1 ≤ k ≤ q) (A3)

when i = M , we get

PhM,k
l,1, j (n) = λ(n)φ′(UM,k(n))

{
δl,kvk,1, j (n)

+
p∑

K=1

q∑
m=2

hl,2,K p+m(n)vk,1,K (n)
∂yM,m(n − 1)

∂hl,1, j (n)

+
L3∑

m=2

hl,3,m(n)
∂yM,m(n − 1)

∂hl,1, j (n)

}
(A4a)

PhM,k
l,2, j (n) = λ(n)φ′(UM,k(n))

{
δl,kvk,2, j (n)

+
p∑

K=1

q∑
m=1

hl,2,K p+m(n)vk,1,K (n)
∂yM,m(n − 1)

∂hl,2, j (n)

+
L3∑

m=1

hl,3,m(n)
∂yM,m(n − 1)

∂hl,2, j (n)

}
(A4b)

PhM,k
l,3, j (n) = λ(n)φ′(UM,k(n))

{
δl,kvk,3, j (n)

+
p∑

K=1

q∑
m=1

hl,2,K p+m(n)vk,1,K (n)
∂yM,m(n − 1)

∂hl,3, j (n)

+
L3∑

m=1

hl,3,m(n)
∂yM,m(n − 1)

∂hl,3, j (n)

}
. (A4c)

Under the approximations that the learning rates
η1, η2, and η3 for the PBLRNN are chosen sufficiently
small so that the weights are adapted slowly, then, the

following approximations are computed by:

∂yi,m (n − 1)

∂hl,1, j (n)
≈ ∂yi,m (n − 1)

∂hl,1, j (n − 1)
= Phi,m

l,1, j (n − 1) (A5a)

∂yi,m (n − 1)

∂hl,2, j (n)
≈ ∂yi,m(n − 1)

∂hl,2, j (n − 1)
= Phi,m

l,2, j (n − 1) (A5b)

∂yi,m (n − 1)

∂hl,3, j (n)
≈ ∂yi,m (n − 1)

∂hl,3, j (n − 1)
= Phi,m

l,3, j (n − 1). (A5c)

Then (A4a), (A4b), and (A4c) can be respectively approxi-
mated by

Phi,k
l,1, j (n) ≈ λ(n)φ′(Ui,k (n))

{
δl,kvk,1, j (n)

+Phi+1,1
l,1, j (n)

p∑
m=1

hl,2,m (n)vk,1,m(n)

+
p∑

K=1

q∑
m=2

hl,2,K p+m(n)vk,1,K (n)Phi,m
l,1, j (n − 1)

+
L3∑

m=2

hl,3,m(n)Phi,m
l,1, j (n − 1)

}
(A6a)

Phi,k
l,2, j (n) ≈ λ(n)φ′(Ui,k (n))

{
δl,kvk,2, j (n)

+Phi+1,1
l,2, j (n)

p∑
m=1

hl,2,m (n)vk,1,m(n)

+
p∑

K=1

q∑
m=2

hl,2,K p+m(n)vk,1,K (n)Phi,m
l,2, j (n − 1)

+
L3∑

m=1

hl,3,m(n)Phi,m
l,2, j (n − 1)

}
(A6b)

Phi,k
l,3, j (n) ≈ λ(n)φ′(Ui,k (n))

{
δl,kvk,3, j (n)

+Phi+1,1
l,3, j (n)

p∑
m=1

hl,2,m (n)vk,1,m(n)

+
p∑

K=1

q∑
m=2

hl,2,K p+m(n)vk,1,K (n)Phi,m
l,3, j (n − 1)

+
L3∑

m=1

hl,3,m(n)Phi,m
l,3, j (n − 1)

}
. (A6c)

In a similar way, for the case when i = M , we have

PhM,k
l,1, j (n) ≈ λ(n)φ′(UM,k(n))

{
δl,kvk,1, j (n)

+
p∑

K=1

q∑
m=2

hl,2,K p+m(n)vK ,1,k(n)PhM,m
l,1, j (n − 1)

+
L3∑

m=2

hl,3,m(n)PhM,m
l,1, j (n − 1)

}
(A7a)
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PhM,k
l,2, j (n) ≈ λ(n)φ′(UM,k(n))

{
δl,kvk,2, j (n)

+
p∑

K=1

q∑
m=1

hl,2,K p+m(n)vK ,1,k(n)PhM,m
l,2, j (n − 1)

+
L3∑

m=1

hl,3,m(n)PhM,m
l,2, j (n − 1)

}
(A7b)

PhM,k
l,3, j (n) ≈ λ(n)φ′(UM,k(n))

{
δl,kvk,3, j (n)

+
p∑

K=1

q∑
m=1

hl,2,kp+m (n)vk,1,K (n)PhM,m
l,3, j (n − 1)

+
L3∑

m=1

hl,3,m(n)PhM,m
l,3, j (n − 1)

}
(A7c)

with initial conditions Phi,k
l,1, j (n) = Phi,k

l,2, j (n) =
Phi,k

l,3, j (n) = 0.
But, the above-mentioned recursive equations are too com-

plicated to implement. According to the method in [41], let us
assume that the recursion is negligible

Phi,k
l,1, j (n − 1) = Phi,k

l,2, j (n − 1) = Phi,k
l,3, j (n − 1) = 0

(A8)

for all i , k, l, and j . Under this assumption, the coefficient
update equations can be simplified to (30) and (31).
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