
Driver Interface for Shell Eco Marathon
Vehicles

Vebjørn Røed Myklebust

Master of Science in Cybernetics and Robotics

Supervisor: Amund Skavhaug, ITK

Department of Engineering Cybernetics

Submission date: June 2015

Norwegian University of Science and Technology

i

Summary

The goal of this thesis was to create a touch-screen system for the driver in the new DNV GL Fuel

Fighter Urban Concept vehicle. The screen was to display relevant information for the driver, as

well as a video-stream from the rear of the vehicle, acting as a supplement to the traditional rear-

view mirrors. The same video stream was also to be shown online, to allow for anyone to follow

the race in real time. In addition to this, a screen was to be created for the DNV GL Fuel Fighter

Prototype vehicle, as well as systems for handling input from the driver, in both cars. The aim

was to complete all these subsystems and install them in the vehicles, making them ready to

compete in the Shell Eco Marathon competition in May, 2015. The work was performed in great

collaboration with the other members of the team, requiring input and interaction with many

other subsystems of the vehicle. It required careful planning and a methodical and scheduled

approach. Most of the work was highly practical, and countless hours were put in at the work-

shop. The systems utilized premade parts, as well as custom designed parts. Required circuit

boards were designed in Eagle, and custom programs were written in Python and C. The work

in this thesis did not build upon any related previous work, and everything was done during the

spring semester of 2015. As well as working on this thesis, the author put in time in helping the

mechanical team to complete the car on schedule. The result was highly satisfactory, and the

finished product of this thesis was embedded and used in the Fuel Fighter vehicles during com-

petition. The systems were reported as being functional and beneficial, and would definitely be

reused in the future.

ii

Sammendrag

Målet med denne avhandlingen var å skape et touch-skjerm system til sjåføren i det nye DNV

GL Fuel Fighter Urban Concept kjøretøyet. Skjermen skulle vise relevant informasjon for føre-

nen, samt vise en video-strøm fra baksiden av bilen som et supplement til de vanlige kjørespei-

lene. Den samme video-strømmen skulle gjøres tilgjengelig på internet, slik at hvem som helst

skulle kunne følge racet i sanntid. I tillegg til dette skulle det lages en skjermløsning til DNV

GL Fuel Fighter Prototype kjøretøyet, samt systemer for å behandle input fra føreren i begge bi-

lene. Målet var å ferdigstille alle de overnevnte systemene og installere de i bilene så de ble klare

til konkurransen Shell Eco Marathon i Mai, 2015. Arbeidet ble utført i sterkt samarbeid med

de andre lagmedlemmene ettersom det var mye samspill mellom de elektriske og mekaniske

systemene. Arbeidet krevde nøye planlegging og en metodisk og tidsbestemt tilnærming. Det

meste av oppgaven var praktisk arbeid, og utallige timer ble tilbrakt på verkstedet. Systemet

tok bruk av både ferdiglagde produkter og spesiallagde løsninger. Kretskort ble designet i Eagle,

og det meste av programvaren ble skrevet i Python og C. Avhandlingen bygger ikke på tidligere

arbeid, og alt ble planlagt og utført iløpet av vårsemesteret 2015. I tillegg til arbeidet på denne

oppgaven, ble det også investert mye tid i å hjelpe den mekaniske gruppen i å ferdigstille selve

bilen. Resultatet ble meget tilfredsstillende, og det ferdige produktet ble brukt i kjøretøyene un-

der konkurransen. Systemene ble evaluert til å være både funksjonelle og til stor hjelp, og vil

definitivt bli brukt igjen.

iii

Preface

This thesis was carried out during the spring semester of 2015, as part of the DNV GL Fuel Fighter

project. The project was conducted under the Department of Engineering Design and Materials,

although most of the work in this thesis was conducted under the Department of Engineering

Cybernetics, NTNU.

This thesis is intended for readers with an interest in embedded systems, or wish to learn

more about the systems embedded in the the Fuel Fighter vehicles. Given the strong connection

with the mechanical systems in the cars, this thesis would also be interesting for readers with a

background in design or mechanical engineering.

I would like to thank everyone on the Fuel Figher team for an unforgettable semester, as well

as supervisor Amund Skavhaug for his assistance and guidance with this thesis.

Trondheim, 2015-07-15

Vebjørn Røed Myklebust

Contents

Summary . i

Sammendrag . ii

Preface . iii

1 Introduction 2

1.1 Background . 3

1.1.1 The team . 4

1.1.2 The project . 5

1.1.3 Prototype Electrical system . 5

1.1.4 Urban Concept Electrical . 11

1.1.5 Tasks . 11

1.2 Previous Work . 12

1.3 Problem description . 13

1.3.1 Objectives . 13

1.4 Limitations . 14

1.5 Approach . 14

1.6 Structure of the Report . 15

2 Driver Interface - Urban Concept 16

2.1 Choosing an embedded platform . 17

2.1.1 BeagleBone Black . 17

2.1.2 Raspberry Pi 2 . 17

2.1.3 Comparison . 19

2.2 Screen . 20

iv

CONTENTS v

2.3 Camera . 20

2.4 3G Modem . 21

2.5 HAT Hardware . 23

2.5.1 Schematic . 24

2.5.2 Layout . 28

2.5.3 Production and Mounting . 28

2.5.4 Result . 29

2.5.5 Casing . 32

2.6 Hat Software . 33

2.6.1 CAN message format . 33

2.6.2 Code . 34

2.6.3 EEPROM . 35

2.7 Raspberry Pi . 36

2.7.1 Operating system . 36

2.7.2 Interface application . 39

2.7.3 Development and Test of program . 43

2.7.4 Mounting of system . 48

2.8 Fuel Cell Monitor . 48

2.8.1 Hardware . 50

2.8.2 Implementation . 51

2.9 Evaluation . 52

3 Driver Interface - Prototype 54

3.1 Design . 54

3.2 Code . 55

4 Steering-wheel 59

4.1 Requirements . 59

4.2 Hardware . 60

4.3 Assembly . 61

4.4 Brake Switch . 62

CONTENTS vi

5 Discussion 67

5.1 Evaluation and further work . 67

5.1.1 Urban Concept Screen . 67

5.1.2 Prototype Screen . 68

5.1.3 Steering wheels . 68

5.1.4 Fuel Cell Monitor . 68

6 Conclusion 69

A Acronyms 71

B Schematics, Layouts, and Code 73

B.1 Attached Files . 73

B.2 Raspberry Pi Hat . 73

Bibliography 77

List of Figures

1.1 Shell Eco Marathon group photo, Rotterdam, 2014 [15] 2

1.2 Prototype Vehicle [17] . 3

1.3 DNV GL Fuel Fighter 2015 team [16] . 4

1.4 Block diagram, Electrical System - Prototype [7] . 6

1.5 Block diagram, Universal Module . 7

1.6 Universal Module . 8

1.7 Block diagram, Electrical System - Urban Concept [7] 10

2.1 BeagleBone Black with camera cape [8] . 18

2.2 Raspberry Pi 2 [10] . 19

2.3 Display connected to Raspberry Pi [1] . 21

2.4 Fish eye camera module for Raspberry Pi [13] . 22

2.5 3G USB Modem [14] . 22

2.6 Raspberry Pi 2 with HAT [2] . 23

2.7 Raspberry Pi 2 backpowering [21] . 25

2.8 Raspberry Pi 2 GPIO header [24] . 27

2.9 Raspberry Pi HAT mechanical drawing [22] . 30

2.10 Raspberry Pi 2 with HAT attached . 31

2.11 HAT Cable Slot . 32

2.12 5V regulator schematic . 33

2.13 Raspberry Pi 2 Case, Top View . 34

2.14 Raspberry Pi 2 Case, Front View . 35

2.15 Raspbian configuration screen . 38

vii

LIST OF FIGURES viii

2.16 Excerpt from auth.log . 39

2.17 Gstreamer pipeline example [26] . 41

2.18 Development setup . 45

2.19 Screenshot of driver interface in development environment 46

2.20 Raspberry Pi mounted inside rear-compartment . 49

2.21 Raspberry Pi Camera Mount . 50

2.22 Camera seen from behind . 51

2.23 View of the driver compartment . 52

2.24 RS-232 Monitor and universal module . 53

3.1 LCD Case - Interactive 3D model . 56

3.2 Prototype Screen, Front . 57

3.3 Prototype Screen, Rear . 57

3.4 Prototype Screen Mounted in Vehicle . 58

3.5 Old Prototype screen and steering wheel . 58

4.1 Urban Concept Front Lights . 61

4.2 Steering wheel breakout board . 62

4.3 Brake pedal with brake sensor . 63

4.4 Brake sensor . 64

4.5 Brake handle in Prototype with mounted switch . 64

4.6 Rotary potentiometer being soldered . 65

4.7 Prototype steering wheel, front . 65

4.8 Prototype steering wheel, top . 66

4.9 Prototype steering wheel, bottom . 66

B.1 HAT Schematic . 75

B.2 HAT Layout . 76

List of Tables

2.1 Reflow parameters . 29

2.3 CAN message IDs . 34

2.4 CAN packet format . 36

4.1 Steering wheel requirements . 60

B.1 Bill of Materials, Raspberry Pi HAT . 74

1

Chapter 1

Introduction

Figure 1.1: Shell Eco Marathon group photo, Rotterdam, 2014 [15]

2

CHAPTER 1. INTRODUCTION 3

1.1 Background

Shell Eco Marathon is an annual competition held simultaneously in America, Europe, and Asia.

It is a competition between student teams from different universities that design, build, and

race custom built cars that aim to be as efficient as possible. The race consists of driving a

given distance (16 km) within a given time (39 minutes), with the goal to use as little energy as

possible. There are several methods of propulsion a car may use, including standard gasoline

and diesel combustion engines, battery or fuel cell powered electric motors, or alternative fuels

like ethanol. The common metric is km/kWh which is used to compare results from the different

methods and also to determine the winner. As well as different classes for propulsion, there are

two different classes for the type of cars; Urban Concept, and Prototype. The Urban Concept

class is for cars that look like traditional road cars in the sense that they have 4 wheels, front and

rear lights, indicators, windshield wipers, etc. The Prototype class, however, is less restricted

and the cars usually have 3 wheels and a more futuristic appearance.

Figure 1.2: Prototype Vehicle [17]

Each year since 2009, NTNU has participated in the competition with a team mainly con-

sisting of last year students. The car has always been in the Urban Concept class except in 2014

CHAPTER 1. INTRODUCTION 4

when the team built a new Prototype car and participated in both classes. The same prototype

car was also used in 2015, but the team decided early to build a new Urban Concept class car

for the 2015 competition. The race this year was held in Rotterdam, Netherlands. The winning

team from last year managed to drive 1091 km/kWh, while the Fuel Fighter prototype managed

612 km/kWh [28].

1.1.1 The team

The team for the 2015 competition was formed early in the autumn semester of 2014, and grad-

ually expanded throughout the semester. The project required a broad range of expertise and

consisted of 6 master thesis students, 2 bachelor students, and 19 volunteer students. The fields

of study included mechanical engineering, electrical engineering, material science, computer

science, media studies, film production, and interaction design. The team was also joined by

three students from HiST as well as two exchange students from Germany and one from France

who could unfortunately only work on the project for one semester.

Figure 1.3: DNV GL Fuel Fighter 2015 team [16]

CHAPTER 1. INTRODUCTION 5

1.1.2 The project

As decided by the current team members during the autumn semester, 2014, the team was go-

ing to create an entirely new Urban Concept car. The team would also improve the Prototype

vehicle, and both cars were going to be used in the 2015 competition. The improvements of the

prototype vehicle included mainly mechanical work to decrease the rolling friction, but also to

upgrade some of the electrical systems. The propulsion system in both cars were planned to be

identical, using batteries and the same motor-controller and motors. However, due to new Shell

Eco Marathon regulations, a team may not compete with two cars using the same propulsion

method, which was an initial setback. The team was forced to use a different system in the Ur-

ban Concept vehicle. Changing the propulsion system in the prototype would have required too

much work, and there was very limited space to work with. The compartment of the Prototype

had been designed with a small electric motor and a battery in mind, so installing a combus-

tion engine or fuel-cell stack would not have been possible. It was decided by the team that

the Urban Concept should still use an electric motor, but with a hydrogen fuel cell as an energy

source. This meant that little change was required regarding the control system, and most of the

old components could be reused.

1.1.3 Prototype Electrical system

The existing electrical system of the prototype is outlined in figure 1.4. A similar system of the

Urban Concept can be seen in figure 1.7.

Since the prototype vehicle was functioning well with its current system, most of the focus

was shifted towards implementing a system in the new Urban Concept vehicle. Both systems

were based on the same backbone as nearly all previous cars. This backbone is a modularized

CAN-based system with no central brain in the car, but rather a set of equal nodes. Each node

performs a simple function, based on input from another node. All nodes share a common

data bus, to which nodes can easily be connected or disconnected. Most nodes use a universal

module as an interface to the CAN-bus, and then build their functionality on top of this.

CHAPTER 1. INTRODUCTION 6

Figure 1.4: Block diagram, Electrical System - Prototype [7]

Universal Module

The Universal module is a small PCB designed by Anders Guldahl in 2009 for use in the Shell

Eco Marathon vehicle at the time. It contains an at90can128 microcontroller from Atmel as

its processing unit, a 5V buck converter that can take a large range of input voltages, a CAN-

transceiver to connect to the CAN-bus, and a variety of pins connected to a GPIO header to

which other modules can attach. The physical layer of the CAN-bus consists of standard RJ11

plugs and cables, also called telephone-cables. The plugs are 6P6C although only 4-wire cables

are used. Using a 4P4C plug would not have been possible, because two of the necessary signals

are wired to pin 1 and pin 6 respectively. The universal module was designed so that two addi-

tional signals could be added in the future, but this has not been necessary yet. The 4 signals

CHAPTER 1. INTRODUCTION 7

consist of the standard differential CAN-bus lines CANH and CANL, as well as GND and 24V. The

24V signal is used to power the nodes connected to the CAN-bus. There are two RJ11 ports on

each module so that the bus can be terminated in that node, or passed on to another node. The

GPIO header contains 20 pins - two ground pins, one 5V pin, one 3.3V pin, and 16 GPIO pins

from the at90can128 microcontroller. Among these 16 pins are UART-pins, SPI-pins, and four

ADC pins.

Figure 1.5: Block diagram, Universal Module

Power Supply

For the Prototype vehicle, all the energy in the car came from one battery. This was a change

from last year, when one battery was for propulsion, and another battery was allowed to power

CHAPTER 1. INTRODUCTION 8

Figure 1.6: Universal Module

all the control-units. The main battery had a nominal voltage of 46.2V, and the solar panels were

set to give an output voltage of 50.5V. This was because 50.5V was the preferred voltage to charge

the batteries with. In order to supply the system in the car with 24V, a step down converter was

used to transform the battery voltage to 24V. This was then passed through a fuse-board and

made available on the CAN-bus and to the other modules that needed 24V. The front-module

for example had its own 24V line instead of relying just on the CAN-bus for power. This was

because the front-module controlled the horn and the fans which required too much power to

safely transmit through the thin RJ11 cables. Additionally, if the horn or fans were to somehow

blow the fuse in the fuse-board, it would only cause the front-module to stop working, and not

the entire system of the car since that would be on a different fuse.

Emergency Circuit

As well as fuses on the accessory power circuit, there were also safety features implemented in

the main power lines to the motor. Firstly, the battery itself had a built-in battery management

system (BMS) which monitored each cell in the battery both during charging and usage. The

BMS would isolate the battery if an unsafe condition occurred within a single cell, for example

too high or low voltage, or too much current being drawn. The battery could also be isolated

CHAPTER 1. INTRODUCTION 9

with two different emergency stop buttons, and a thermal fuse if the temperature in the motor-

room were to pass 77°C. One stop button was located inside the car available to the driver, and

one button on the outside so that anyone could easily turn off the entire system if something

were to go wrong.

3G Module

The 3G module was able to transmit information from the vehicle using a mobile network. It

required a SIM-card with available data-traffic, and could be used to transmit telemetry data

such as speed, location, power usage, etc. Although the hardware had been completed for last

years competition, there was no time to implement a working solution, so it was not used during

the race.

GPS, IMU, SD-module

This module contained a GPS receiver, a 9-DOF IMU, and an SD-card slot which could be used

for logging data. The module used the GPS receiver and transmitted the cars location on the

CAN-bus so that any other node could use this information. The IMU was planned to measure

the cars acceleration, and could also have been used to implement some INS system, but was

unfortunately not used. The SD-slot was also not used, as there was not enough time to perform

extensive testing which required logging of large amounts of data.

Display Module

The display module read relevant information from the CAN-bus, such as speed and torque

reference for the motor. The information was displayed on a small LCD screen for the driver.

Steering-wheel module

This module read input from the driver, through a set of buttons located on the steering-wheel.

A joystick controlled the desired torque, one button controlled the horn, and one button con-

trolled the fans. A few extra buttons were placed also on the steering-wheel, so that extra func-

tionality could easily be added.

CHAPTER 1. INTRODUCTION 10

Front Module

As previously mentioned, the front module controlled the horn and the fans. A special node was

required to perform these tasks, as the fans and the horn required a relatively large amount of

power. The board consisted mainly of two relays to turn the horn and fans on and off.

Speed sensor module

This module accurately read the angular speed of the rear-wheel of the car and periodically sent

this information on the CAN-bus. This was done by placing 4 strong magnets equally spaced

around the wheel and measuring their passing with a hall effect sensor.

Figure 1.7: Block diagram, Electrical System - Urban Concept [7]

CHAPTER 1. INTRODUCTION 11

1.1.4 Urban Concept Electrical

A similar block diagram was created for the planned system of the Urban Concept vehicle. The

main difference was the main power supply, which in this case was a hydrogen fuel cell. As

opposed to the Prototype vehicle, the control system in the Urban Concept car could be powered

by an accessory battery. This was in fact required, since the hydrogen sensor connected to the

emergency stop system in the car required external power. It would be unwise to have this

powered by the fuel-cell, in case it stopped working and leaking hydrogen at the same time.

Safety was of course a very important factor in this competition, and since hydrogen is highly

explosive, safety features were a high priority.

1.1.5 Tasks

As the author of this paper was part of the 2014 team, there was already considerable knowledge

about the system and the required work. Ole Bauck and myself were put in charge of develop-

ing the complete electrical system of both vehicles. A list was created to highlight the desired

changes in the Prototype, and what had to be created for the Urban Concept vehicle. Based on

the previous years experiences, it was decided to create a new motor controller since the old one

used too much power. The competition is after all in efficiency, and we felt that increasing the

efficiency of the motor and motor controller would play a deciding role. In standby mode, the

old motor controller used approximately 10 W, which we felt we could improve. Additionally,

the steering wheel, the display module, and the front module could all be improved. We quickly

realized that to perform all the changes we wished, we would need additional help. More team

members were recruited, and set to perform specific tasks. The motor and fuel cell were also

set to be handled by dedicated team members since these tasks would require a lot of atten-

tion. Exchange student Marius Hofman was in charge of the fuel cell, while exchange student

Simon Fuchs was in charge of the motor and motor controller. Two additional members were

added to the electrical team to help with improving the old system in the Prototype as well as

developing new solutions for the Urban Concept - Simen Hexeberg, and Bjarne Kvæstad. Three

main problems were identified with the old Urban Concept system. Primarily, there was no

built in communication between the car and the crew. This made it difficult during the race

CHAPTER 1. INTRODUCTION 12

when something unexpected happened to the vehicle. Ideally there should have been a sys-

tem through which the driver and the crew could talk with each other, as well as the crew to

be able to monitor the cars condition and performance. Another problem was that the driver

didn’t have information about the car readily available while driving. A small LCD-screen with

a resolution of 4 x 20 characters was used in both vehicles, on which it was difficult to present

all the required information to the driver. A third problem was that the mirrors for the driver

were small and mounted on the inside of the vehicle to reduce air-resistance. This made it dif-

ficult for the driver to see behind the vehicle. During a race with numerous takeovers by other

cars, this could potentially be hazardous. The first problem was handled by Ole Bauck, while the

two latter problems were handled by myself. Unfortunately, the mirrors could not be replaced,

but it was desired to supplement the mirrors with a large screen for the driver connected to a

rear-view camera. The same screen could also be used to display relevant information for the

driver. Additionally, it was thought of as a nice feature to be able to stream the video online so

that anyone could follow the race in real time. I was also put in charge of upgrading the steering

wheel module in both cars, as this was considered a part of the driver interface. The remaining

issues of upgrading the front module was handled by Simen Hexeberg, and the speed module

and lighting module for the Urban Concept vehicle was handled by Bjarne Kvæstad.

1.2 Previous Work

It was investigated to see whether a high resolution screen and a rear view camera had been used

before in the Eco Marathon competition, or if other applicable solutions existed. All previous

reports related to the Fuel Fighter project had been compiled throughout the years and was

available at the Fuel Fighter office, as well as in an electronic database. It appeared that most

previous vehicles had used small low-resolution LCD or OLED displays. In 2009, an LCD screen

with 2 lines of 16 characters was used [6], while in 2010 a slightly larger screen with 4 lines of 20

characters was used [20]. This screen was also reused in 2011. In 2012, a hand-held Garmin GPS

was embedded in the steering-wheel and used for giving the driver feedback regarding time and

speed [3]. In 2013, a more advanced user interface was developed using a small touch-screen

connected to a Raspberry Pi - a small single-board computer. This solution provided the driver

CHAPTER 1. INTRODUCTION 13

with all the information he needed and appeared to be a good solution [4].

Regarding the rear-view camera, this had not previously been done by the DNV GL Fuel

Fighter team. However, it was observed during the competition in 2014 that one team had de-

veloped an app for an android device connected to a camera so the driver could see behind

the vehicle. In fact, using a smart device could potentially solve all the previously mentioned

problems, as it can be used for communication, GPS measurements, and as a user interface for

the driver. However, since most of these modules were already created, like the communica-

tion and GPS device, it would have been a waste to disregard a full semesters work and spend

a lot of time to incorporate all of these solutions into one device. Since one of the main objec-

tives with the Eco Marathon Competition is to drive innovation, it was felt creating the systems

from scratch was more rewarding and instructive. Several consumer electronics products also

existed that could be used a rear-view camera. There were several solutions that connected

a camera to a screen both wirelessly and wired. However, these solutions are mostly closed-

source, which meant it would be difficult to show anything else on the same screen without

reverse-engineering the device.

1.3 Problem description

In light of the previous findings, it was decided by the author that a small touch screen with

a user interface was to be developed. This screen would provide the driver with useful infor-

mation, as well as take commands and perform various tasks. The screen would also show live

video from a rear-view camera, giving the driver a clear view of cars passing from behind. The

video feed from the camera was also to be streamed to a remote server, allowing anyone to see

the race live. In addition to the touch screen in the Urban Concept, the screen system in the

Prototype should be upgraded. Additionally, a system for handling driver input on the steering

wheel in both cars were to be developed.

1.3.1 Objectives

The main objectives of this master thesis are

1. Develop hardware and software to create user-interface for driver

CHAPTER 1. INTRODUCTION 14

2. Enable the driver to see behind the vehicle with rear-view camera

3. Stream video from car to remote server

4. Upgrade screen and steering wheel in Prototype vehicle

5. Create steering wheel system in Urban Concept vehicle

1.4 Limitations

The aim in this thesis is not to create revolutionary new technologies to achieve its objectives,

but rather try to utilize existing solutions. Various elements needed to complete the system - for

example a high-resolution screen, camera, and telecommunication device to stream the video

- will be bought to fit the needs. However, the process will strive to keep the system as tailored

and customized as possible to truly fit the description of an embedded system.

1.5 Approach

The work in this project thesis will be mostly practical and little theoretical. The goal is to pro-

duce a working system that will be embedded in the DNV GL Fuel Fighter vehicles and used

in the Eco Marathon competition in May 2015. The system will be tightly integrated with the

rest of the vehicles functions, with many other components depending on its correct operation.

There will therefore be strong collaboration with the mechanical team and the other members

of the electrical team. It was established among the team that there would be weekly meetings

between the members where relevant questions and information could be shared. In addition,

all proposed systems, subsystems, and their components were reported to the teams systems

engineer who ensured that everything went as planned. The systems engineer also performed a

risk analysis on all components.

CHAPTER 1. INTRODUCTION 15

1.6 Structure of the Report

This report is structured into six chapters, where the last two are discussion and conclusion.

Chapter one contained an introduction, giving the reader sufficient background information on

the project that this thesis is a part of. The introduction also explained the existing systems, and

the reason for choosing the task handled in this thesis. The universal module was thoroughly

accounted for, as this is a vital building block of the components created in this thesis. Chapter

two and three will discuss the screen solutions for the Urban Concept and Prototype vehicles,

respectively. The largest focus in this thesis will be on the screen solution for the Urban Concept,

as this was the primary goal of the thesis, and it also required the most work. Chapter four will

discuss the steering-wheel systems for both cars. Each chapter will contain its own discussion,

and all choices and results will be explained throughout the report for a better readability and

understanding for the reader. Chapter five will contain a summarized discussion for all chapters,

while the last chapter will be an overall conclusion for the report.

Chapter 2

Driver Interface - Urban Concept

In order to create a screen interface for the driver, with capabilities to display a video stream,

there were many things to consider. Some of the important design parameters that had to be

established are listed below.

Interface parameters

1. How large the screen should be

2. What should drive the screen/create content

3. How to connect the system to the CAN-bus

4. If it should be used as an accessory to or replacement of buttons on the steering-wheel

5. What type of camera to use, and how to display video on the screen

6. How to stream the video to a remote server

Inspired by some of the previously mentioned solutions, it was considered to embed the

screen in the steering-wheel. However, this required some modification of the already existing

steering-wheel, and it was also decided that having a screen that rotated with the steering wheel

could be confusing and impractical. The screen would therefore be placed on the dashboard

which allowed for quite a large screen. With this in mind, the focus was shifted towards finding

a suited platform to process the required information and to create the content for the screen.

16

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 17

Initially it was desired to create a standalone low-level platform that could drive the screen, pro-

cess input from a camera, and communicate with the CAN-network in the vehicle. However, the

required hardware to process input from a camera as well as driving an LCD screen is complex

and beyond the scope of this thesis. Creating such a system from scratch would have been un-

necessary and other solutions were investigated instead. A few choices were looked into at first,

and two solutions were considered.

2.1 Choosing an embedded platform

2.1.1 BeagleBone Black

A popular single-board computer for hobbyists is the BeagleBone Black. It is 86.4mm x 53.3mm

and weighs 40 grams. It has a 1 GHz CPU, 512MB RAM, a micro-HDMI port, camera port, two

CAN-bus ports, and one LCD-port. The BeagleBone seemed very attractive at first, as it had

all the interfaces required, and it also supported numerous operating systems, like Android,

Ubuntu, Debian, and Windows CE to mention a few. However, the CAN-port was only a con-

troller which meant a CAN-transceiver was also needed to convert the signal from a single-

ended one to the differential signal otherwise used in the vehicle. In addition, the existing CAN-

bus in the vehicle used RJ11 connectors between nodes, meaning that special cables would have

had to be made, and the BeagleBone could not have been placed arbitrarily on the CAN-bus. In

other words, some additional hardware would have been required for the BeagleBone to work.

The camera-port also turned out to be less useful than it initially seemed as there exist very few

compatible cameras, which all require a cape, which is a PCB mounted on top of the BeagleBone.

2.1.2 Raspberry Pi 2

Another even more popular single-board computer is the Raspberry Pi - referred to as simply the

Pi. The new edition, Raspberry Pi generation 2, was released February 2 2015, just in time for

this thesis. The specifications on the new Pi were severely increased from the previous version,

with for example the CPU being upgraded from a 700 MHz single core processor, to a 900 MHz

quad-core processor. RAM was doubled to 1GB, it now had 4 USB ports instead of 2, and the

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 18

Figure 2.1: BeagleBone Black with camera cape [8]

number of available GPIO pins increased from 8 to 17. The physical size was 86.6 mm x 56.5

mm, the same as its predecessor, and roughly the same size as the BeagleBone. It came with

serial display and camera interfaces, although the display interface couldn’t be used at the time,

since Broadcom who makes the processor had not made the specifications available. It was

supposed to follow the MIPI standard, which has tried to make a standard interface between

cameras, displays, and processors mainly in cellular phones. To this date, there was no official

driver supplied by the Raspberry Pi foundation, and to make a generic LCD screen work with the

Pi would have been a time consuming task. However, the Pi did have an impressively powerful

integrated GPU able to decode 1080p video streams. It was also able to decode input from the

camera connector and pass it on, bypassing the CPU altogether. The BeagleBone also has this

capability, but its GPU was not nearly as powerful, and not able to handle 1080p.

Another positive thing about the Pi was that it seemed to have a large user community. The

Pi had sold over 2 million units in late 2013, whereas the BeagleBone had barely passed 100,000

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 19

Figure 2.2: Raspberry Pi 2 [10]

units (author?) [9]. With a larger user base, there were much more resources and documenta-

tion available, in form of guides and tutorials on nearly every feature of the Raspberry Pi. The

Pi also had its own tailored operating system - Raspbian - which was based heavily on Debian.

Most packages and programs that worked with Debian therefore also worked with Raspbian. All

references in this thesis to either the Pi or Raspberry Pi are in actuality references to the Rasp-

berry Pi generation 2.

2.1.3 Comparison

The BeagleBone and Raspberry Pi 2 were quite similar in size and capabilities, and the choice

was difficult. Although the BeagleBone had a few more features, like built-in CAN-controller

and LCD-driver, these features didn’t matter as much in this case. Additional hardware would

have been required no matter what, and the choice therefore fell on the Pi, which seemed better

suited to handle video processing, as well as having a more powerful central processor. Another

important factor was the community around the two devices, with the Pi having more users.

This had led to more examples and more peripheral devices being ported and made compatible

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 20

with the Raspberry Pi.

2.2 Screen

Since the Raspberry Pi 2 was chosen as the platform, it somewhat limited the possible screens

to be connected. Although it had a DSI connector for raw LCD displays, there were not yet any

drivers available to drive an LCD screen. It had been reported that the Raspberry Pi founda-

tion was working on a firmware upgrade that would enable LCD touch-screens, but at the time

of writing this, this upgrade was not available. Apart from the DSI connector, the Pi had an

HDMI port, and an analog port for composite video. A third possible interface was SPI, as there

were several low-resolution LCD displays with this interface. However, these displays were not

suited for video-rendering as their frame refresh rates were quite low. After searching for suit-

able screens online, the most prevalent interface seemed to be HDMI as opposed to compos-

ite. Most screens also seemed to come with large controller boards to support multiple inputs.

These boards that usually supported VGA, HDMI/DVI and composite/component inputs were

unnecessarily large and chunky, since only one input was sufficient. After some more search-

ing, an ideal display was found on adafruit.com [1]. It was a 5-inch display with a resolution of

800x480, custom-made by Adafruit to be used with the Raspberry Pi in embedded projects. It

had an HDMI port, a built in touch-controller with a USB connector. The HDMI-decoder was

not able to scale the input, but this was no issue as the exact output resolution on the raspberry

pi could be set. The display also had four mounting holes in each corner which made it easy to

attach to the dashboard of the vehicle.

2.3 Camera

Since the Raspberry pi had a CSI port, the first choice for a camera was one that could be at-

tached to this port. There were several different camera modules that could be used. Since the

camera was to be used to provide the driver with a view of the rear of the car to reduce blind

spots and get a better view, a wide field of vision as possible was desired. The standard camera

module designed by the Raspberry foundation has a field of vision of about 56 degrees. Instead,

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 21

Figure 2.3: Display connected to Raspberry Pi [1]

an alternative module was purchased from Amazon, with a wide angle fish-eye lens. The field

of vision on this module was not supplied, but it was assumed to be better than the standard

module. The camera had 5 megapixels and the ability to record video at 1080p at 30 fps. [23]

2.4 3G Modem

In order to stream live video during the race a reliable high-speed connection had to be made

between the Raspberry Pi in the car, and to the internet. This could be achieved with either a

wifi connection or using a cellular modem connected to the Pi. From experience from last year,

it was known that an open wireless network covered most of the paddocks where the crew would

be working, as well as some of the race-track. However, the coverage was unlikely to extend to

the entire track, and the internet connection was also terribly slow due to an extremely large

amount of users. The wifi around the track was therefore not an option, and setting up our own

network to cover the entire area seemed difficult. Instead a 3G USB modem was purchased for

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 22

Figure 2.4: Fish eye camera module for Raspberry Pi [13]

the purpose of connecting the Pi to the internet. All it required was a SIM-card with a subscrip-

tion for sufficient data traffic. It was also considered that the same 3G modem could be used

for Ole Baucks telemetry unit, but it was decided that keeping those two systems separate was

a better idea. The 3G network uses time division multiple access schemes, so the two cellular

systems would in any case not interfere with each other A SIM-card adapter was also purchased

to allow for micro-sim to be used in the modem.

Figure 2.5: 3G USB Modem [14]

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 23

2.5 HAT Hardware

With most of the hardware in place, an interface between the Raspberry Pi and the CAN-bus in

the vehicle had to be created. The solution mentioned in chapter 1.2 had also created an in-

terface between the Pi and the can-bus, but the solution was not a good one, so a new robust

system was required. The Pi was luckily designed with the ability to attach shields in mind. The

Pi foundation had even created a specification for a standard shield, also called a HAT (Hard-

ware Attached on Top). This specification served two main purposes. Mainly, it was a mechan-

ical spec, which outlined where holes for the DSI and CSI ports were, which would otherwise

be blocked by the HAT. However, it also stated that to conform to the standard, the HAT must

contain EEPROM with stored information about the HAT. This information was read by the Pi

during boot, and since it was able to identify the hardware on top, it could also load the appro-

priate drivers and set the GPIO pins accordingly. However, since the HAT in this project was

most likely not to be used commercially, and only on a single Raspberry Pi in the DNV GL Fu-

elFighter Urban Concept vehicle, this identification scheme was strictly not necessary. It was

still decided to conform to the standard when developing the HAT as far as possible.

Figure 2.6: Raspberry Pi 2 with HAT [2]

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 24

2.5.1 Schematic

The purpose of the HAT was to connect the Raspberry Pi with the CAN-bus in the vehicle. By

designing the HAT similar to the universal module, with two RJ11-ports, it would mean that the

device could be placed anywhere on the bus and the system would remain flexible. It would ap-

pear as if just another universal module was connected. Most of the schematic for the universal

module was therefore used as inspiration for the HAT.

CAN Controller

Since the HAT’s primary function was to act as a gateway between the Raspberry Pi and the CAN

bus, it needed a CAN-transceiver and CAN-controller. An apparent choice for the transceiver

was the popular MCP2551, the same one used in the universal modules that the HAT would be

communicating with. It implemented the ISO 11898 standard, which defines the physical layer

and the link layer of CAN for use in real-time applications in road vehicles. As for the CAN-

controller, any standalone controller could be used with for example an SPI interface that the

Raspberry could control. However, it would be a good idea to use a controller with more com-

putational power that could take some load off the Raspberry, as well as perform its own tasks.

Additionally, considering the amount of different CAN-messages being transmitted, at high fre-

quencies, it would be wise to use a controller that could handle all the different messages. The

MCP2515 CAN controller for example only has two receive buffers, and only 3 different filters

can be applied to each buffer. An interrupt would be generated upon reception of a CAN mes-

sage, but to evaluate the contents would require an SPI transfer by the Pi. The at90can128 as

was used on the universal modules seemed like a better solution, as a more flexible message

management could be set up. The at90can128 had 15 receive and transmit buffers that each

had their own mask and filter on incoming data. The mcu could then evaluate the data and

determine if it was necessary to pass it on to the Pi. For example, the speed-sensor in the vehi-

cle transmitted the current speed of the vehicle on the CAN-bus at a rate of 20 Hz, which was

required for the motor-controller to work best as possible. However, the driver did not need to

be updated 20 times per second about how fast he or she was driving. The MCU could instead

filter out most of the speed messages, and then once a second transmit an average or the latest

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 25

received speed-measurement to the Pi. As well as acting as a pure CAN-controller, the HAT itself

could also be programmed to set LEDs to indicate its current status.

Powering

Considering that the universal module could be powered through the CAN-bus, it was investi-

gated whether this could also power the Pi. Normally, the Pi is powered through its USB con-

nector, but the GPIO header suggested that it could also be powered through the +5v pins. Un-

fortunately, despite the Raspberry Pi foundation being a charity organization aimed to promote

computer science, they had not published the full schematics of the Raspberry Pi. However, the

HAT specification made it clear that the Pi could indeed be powered through the +5V pin on the

GPIO header. A crude backpowering scheme was published in the specifications, as shown in

figure 2.7.

Figure 2.7: Raspberry Pi 2 backpowering [21]

The +5V pin connected straight to the 5V rail on the Pi, bypassing the onboard fuse. It was

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 26

suggested to place a protection diode on the HAT so no current could flow from the Pi and back

to the Hat if the Pi was being powered by USB at the same time. Since the universal module was

designed to provide a 5V signal, this could be applied to power the Raspberry Pi. One question

that remained was whether the entire module could be powered through the CAN-bus. The

RJ11 wires weren’t designed to carry large currents, so having a separate power supply for the Pi

module was desired. Additionally, since the Pi took quite a long time to boot, having it powered

by the CAN-bus was undesirable because when other modules were removed from the bus, the

power-line was also raptured, causing it to shut down. Having the Pi on a separate line also

meant that it would have its own fuse on the fuse board, so if some of the other modules would

short circuit or draw too much power, the Pi would still be running. The Pi also has a 3v3 output

pin on the GPIO header, and it was investigated whether this could power the microcontroller

on the HAT, but Pi specifications said that max 50mA should be drawn from this pin. This was

deemed insufficient to drive the microcontroller, the can-transceiver, and the two LEDs on the

HAT. The can-transceiver alone had a peak current consumption of 75 mA during transmission

[25]. This only strengthened the idea of using the powering circuit of the universal module on

the HAT, which could deliver 200mA at 3.3V.

ID EEPROM

As stated in the HAT specification, the HAT had to contain EEPROM, connected to two dedicated

I2C pins on the Raspberry Pi. The type of EEPROM was strictly specified, and there was also a

recommended circuit diagram to follow. The requirements are reproduced below [27].

1. 24Cxx type 3.3V I2C EEPROM must be used

2. The EEPROM must be of the 16-bit addressable type

3. Do not use ’paged’ type EEPROMs where the I2C lower address bit(s) select the EEPROM

page.

4. Only required to support 100kHz I2C mode.

5. Devices that perform I2C clock stretching are not supported.

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 27

6. Write protect pin must be supported and protect the entire device memory.

The EEPROM was supposed to hold information about the manufacturer of the HAT, GPIO

setup, and a device tree. The device tree is detailed description of the HAT hardware so that the

Pi can set itself up correctly during boot by loading necessary drivers and setting pins, etc.

GPIO

The commonly used GPIO library for the Raspberry Pi used specific pins for specific protocols.

UART, SPI, and I2C was available on the GPIO header, but it was decided that it was sufficient

to route only UART and SPI to the microcontroller on the HAT. Additionally, two of the pins had

to be connected to the EEPROM in order to follow the HAT specification. An RG-LED was also

connected to two of the Raspberry Pi pins so it could directly control these to indicate status.

Figure 2.8: Raspberry Pi 2 GPIO header [24]

Complete Schematic

The finished schematic can be seen in the Appendix, figure B.1. The EAGLE-project for the HAT

is appended in the attached zip-file. The CAM-job for creating the gerber files is also included

in the attachment.

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 28

2.5.2 Layout

To comply with the HAT specification, the mechanical drawing released by the Pi foundation

was used to create the layout of the HAT. The drawing can be seen in figure 2.9. The minimum

requirements to comply to the standard are listed in table 2.5.2.

1. Board must be 65x56.5mm

2. Board must have 3mm radius corners

3. Board must have 4 mounting holes as per mechanical drawing

4. Board mounting holes must follow mounting hole specification

5. Board must have full 40-pin GPIO connector

Further recommendations were to add slots for the camera and display cables as per the

drawing, but this was not required to comply to the standard. Since the board was a fixed size,

with relatively few components, there was no point in going to great lengths to optimize the

layout. Additionally, the distance between the Pi and the HAT when mounted was only 11mm

so all components were kept on the top layer to avoid components crashing with the Pi. This

also made the process of soldering the board less complex as all components could be placed

on the same side and placed in a reflow oven. The finished layout can be seen in the Appendix,

figure B.2.

2.5.3 Production and Mounting

The boards were ordered online from a PCB manufacturer in China. The production specifi-

cations of the manufacturer were considered when making the layout, such as minimum track

width and hole diameter. The quality of the finished boards was excellent. The components

were mounted using a reflow oven for all surface mount components, and all through-hole com-

ponents were hand soldered. The author had never used a reflow oven before, but by following

a tutorial for the LPKF ProtoFlow found in the D-block basement on campus it turned out to be

quite easy. A standard reflow profile was followed, except the reflow time was extended. The

reflow oven had a function to extend the time of the current phase, and it could be seen during

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 29

Table 2.1: Reflow parameters

Phase Temperature (°C) Time (seconds)
Pre-heat 150 150

Soak 150 90
Reflow 260 80

Cool-down - 120

the last phase that not all the pads had properly reflowed. The final parameters that were used

can be seen in table 2.1.

2.5.4 Result

The finished board was mounted on the Raspberry Pi by simply connecting the two pin-headers.

To make the system even more rigid, the HAT was attached to the Pi using the four mounting

holes on both PCBs. The mounting holes on the Pi were an untraditional size - 2.5mm - so

special bolts, spacers, and nuts had to be purchased. The distance between the two boards was

11mm, and the only spacers available were 2.5x10m and 2.5x12mm. A set of 12mm spacers were

bought, and then filed down to be 11mm. Both the spacers and nuts were nylon, but 2.5mm

bolts in nylon was not found, so normal steel-bolts were used. Because steel is conductive, it

was double checked that the bolts didn’t short circuit anything they weren’t supposed to. The

result can be seen in figure 2.10. Although it looked very good, there were a few issues that had

to be looked into, as explained below.

Camera Cable Slot

Firstly, the camera-cable slot seemed to be off by about 1mm, causing the cable to get stuck in

the slot, damaging it slightly. This was fixed by filing off the edge of the slot with a small rounded

needle file. The cause of this error could not be determined. The PCB was measured and found

to match the mechanical specifications exactly. The Pi foundation was contacted to see if the

specification was wrong, but they insisted it was correct. No more effort was put into this matter,

as it was simple to correct.

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 30

Figure 2.9: Raspberry Pi HAT mechanical drawing [22]

5V Regulator

A more important issue was with the 5V regulator. The schematic for the regulator can be seen

in 2.12. The voltage regulator will regulate the OUT-pin so that a 1.23V potential is maintained

at FB. Using Ohm’s law it is easy to calculate the expected output voltage given the values of the

two resistors R1 and R2.

VOU T = (R1 +R2)∗ VF B

R2
(2.1)

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 31

Figure 2.10: Raspberry Pi 2 with HAT attached

With R1 = 6800Ω, R2 = 2200Ω, and VF B = 1.23V , we get VOU T ≈ 5.03V . This was good, except

the diode, D5, had a voltage drop of about 0.35V with the Raspberry Pi connected. This meant

that the supply voltage for the Pi was about 4.68V which was outside its recommended operating

voltage of 4.85 - 5.25V. This could also be noted by observing the flickering power-LED on the

Pi, which indicates whether the Pi has sufficient power or not. In fact, this voltage drop was

an issue with all the universal modules as well, but had never caused a problem before. One

solution would have been to remove the diode, and make sure never to power the Pi with a USB

cable and through the HAT at the same time. This didn’t seem like a good solution however,

as removing safety features could quickly lead to problems. Instead, the voltage divider was

modified so VOU T was set slightly higher than 5V. Setting R1 = 10kΩ, R2 = 3kΩ, VOU T was now

instead 5.33V. Due to the voltage drop over the diode, the supply-voltage for the Pi was now 5.02V

instead of 4.68. This still wasn’t an ideal solution since the voltage heavily relied on the current

drawn through the diode, but the Pi typically consumed about 700 mA [18], so the solution was

deemed sufficient.

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 32

Figure 2.11: HAT Cable Slot

Reset button

It is often convenient to be able to reset microcontrollers, an issue that had been overlooked

when designing the HAT. During testing it was quickly discovered that the need for a reset button

was present. Performing a hard reset by cutting off the power was not a good solution, since this

would cut power to the raspberry pi as well. Luckily, performing a soft reset wasn’t too difficult,

as the reset signal was found on the JTAG-header. Connecting a button between the reset-pin

and ground became a quick and easy solution to the problem. During testing, the board could

also be reset through Atmel Studio, while the HAT was connected to the JTAG.

2.5.5 Casing

Since the inside of the vehicle where the Pi was to be mounted was made of carbon fiber, it was

a good idea to electrically shield the system. The bottom-side of the Raspberry Pi had a lot of

exposed pads, and short circuiting all these would be a bad idea. A standard transparent case

was purchased online, but it didn’t quite fit the Pi with the custom HAT. Some of the components

were sticking outside the case, such as the RJ11-ports, a capacitor, the CAN termination header,

and the JTAG header. The case was simply cut out so the HAT fit, as can be seen in figure 2.13.

The white arrows indicate the components that had to be be mode room for. Figure 2.14 offers

another view of the finished case.

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 33

Figure 2.12: 5V regulator schematic

2.6 Hat Software

2.6.1 CAN message format

With the HAT functioning, it was time to start writing code for both the Raspberry and the HAT.

Before this could happen, it was necessary to establish among the electrical team which IDs

were going to be used for what messages in the CAN network. The ID in a CAN packet is used

for multiple access purposes, since all the nodes share a common data bus. It is important that

no nodes send packets with the same ID, and the packet with the lowest ID has a higher priority.

After a quick discussion the IDs were assigned as shown in table 2.3. Since the input from the

driver was deemed the most important information on the CAN bus, this was given a priority

of 1. This was the highest possible priority meaning it would always be able to transmit. Other

important messages included the brake sensor, and the speed sensor. IDs were assigned with

ample space between them, in case other modules were to be added with a priority between two

existing modules.

Since the data field of a CAN message was only 8 bytes, it was up to each member of the

electrical team how the format of the messages they sent would be designed. The brake signal

was only a single byte, with the LSB either 0 or 1. The speed however, was sent as cm
s represented

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 34

Figure 2.13: Raspberry Pi 2 Case, Top View

Message ID
Steering-wheel data 0x01
Brake-signal 0x05
Speed 0x0A
GPS-data 0x14
Power-measurments 0x15

Table 2.3: CAN message IDs

by an unsigned 16-bit integer, with the most significant byte sent first.

2.6.2 Code

It was initially planned to communicate between the Pi and the at90can128 using SPI, but SPI

uses a master-slave architecture. Among the Pi and the HAT there was no clear master role. If

the Pi wanted to transmit a message on CAN it should tell the HAT to immediately do so, but if

the HAT received a CAN message it should immediately forward it to the Pi without waiting for

the Pi telling it to do so. It was instead decided to simply use the UART-protocol between the two

devices. This meant that each device could send asynchronously to the other, at full duplex [5].

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 35

Figure 2.14: Raspberry Pi 2 Case, Front View

A certain protocol had to be devised on top of UART in order to transfer CAN packets between

the MCU and the Pi. When the MCU received a CAN-packet it was set to transfer the packet to

the Pi in the format seen in table 2.4. First, a character indicating start of message, 0xFE, was

sent, then the ID as one byte, then another 0xFE character followed by the contents of the CAN-

message. Lastly, the character 0xFF as well as a newline-character was sent to indicate end of

transmission. The same protocol worked the other way, by the Pi sending a UART message to

the HAT, and it would send the message on CAN. The Atmel Studio project for the Raspberry Pi

HAT is included in the attached zip-file.

2.6.3 EEPROM

When booting the Pi with the HAT attached it became clear that some of the GPIO pins were

floating, since the two LEDs connected to the Pi were illuminated, often at different and varying

intensity. One of the purposes with the EEPROM was to avoid exactly this. However, due to lack

of time, the setup of the EEPROM was not prioritized, and in the end it was unfortunately never

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 36

done. Instead, a simple script was written on the Raspberry Pi that set all pins to low after the Pi

had booted. How this was done is explained in section 2.7.2.

0xFE ID 0xFE DATA[0..7] 0xFF

Table 2.4: CAN packet format

2.7 Raspberry Pi

The Raspberry Pi was the central unit of the system and the majority of the time was spent on

developing software for the Pi. The Pi was supposed to generate the content displayed on the

screen for the driver, such as the video stream from the rear view camera and display diagnos-

tics about the car. This meant developing a simple GUI, and unfortunately the author had no

experience in doing this.

2.7.1 Operating system

As previously mentioned, the Raspberry Pi didn’t come with an operating system, nor did the

Pi foundation make one. However, there were several independent volunteer groups that were

developing tailored operating systems for the Pi. Among these was Raspbian the most popular.

Raspbian was essentially Debian customized for the Pi. The latest version at the time was down-

loaded and loaded onto the Pi. Using a Windows-machine, the steps to do so are summarized

below.

1. Download latest release from https://www.raspberrypi.org/downloads/

2. Download and install Win32 Disk Imager, or similar software

3. Format SD-card to FAT32

4. Flash Raspbian image file onto SD-card, using Win32 Disk Imager

5. Insert SD-card in Pi and boot

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 37

A 16GB SD-card was used, to allow for extra storage to record video or log data for example.

Having a 16GB partition meant that a backup of the entire system could easily be done. In case

of a corruption of the SD-card or something going wrong with the data, the SD-card could sim-

ply be swapped with a copy, and the system could be up and running within seconds. During

development, a copy of the SD-card was made approximately every two weeks to have a recent

fallback if something were to go wrong. Because a lot of different software had to be installed

before the program could function, it was easier to simply load a pre-made image file than in-

stalling a fresh copy of Raspbian and then all the required packages. During the competition, a

second SD card was kept handy with a duplicate of the current system, which could be swapped

in an instant if something were to happen to SD-card in the Pi. Sadly, the image file was too large

to append to the attached zip file, but it can be found on the Fuel Fighter network area - \\webe-

dit.ntnu.no\groups\ecomarathon2015\03 - Systems\Cybernetics\RaspberryPi. To gain access to

this area, contact vebjornr@stud.ntnu.no, or indeed anyone else on the Fuel Fighter 2015 team.

OS setup

Considering that the system would be running in an embedded environment, certain settings

had be configured to ensure proper operation. First of all the output resolution had to be fixed

so that it fit the screen. This was done by adding the following lines to the file /boot/config.txt.

hdmi_group=2

hdmi_mode=1

hdmi_mode=87

hdmi_cvt 800 480 30 6 0 0 0

This set the output resolution to 800x480 pixels, with a refresh rate of 30 Hz. Secondly, when

the vehicle itself was powered, it was desired that the interface would start automatically. The

Raspberry Pi would boot on power, so an on-button or something similar was not necessary.

How the application was set to run will be explained in section 2.7.3. In Raspbian there was a

configuration tool where most important settings could be changed. This tool can be seen in

figure 2.15. Here, the filesystem was expanded to include the entire SD-card for extra storage

space. Additionally, the Pi was set to boot into a desktop environment, and the camera-port was

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 38

enabled. Additionally, since the pi would be handling video, the memory split of the RAM was

changed in favour of the GPU. The GPU and CPU shared the 1GB of RAM, and with the camera

enabled, the GPU got 128 MB by default. This was instead increased to 512. The Pi was also

configured to never disable the screen output or go into sleep-mode. Lastly, the SSH server on

the pi was enabled so that remote connections were possible to allow for development.

Figure 2.15: Raspbian configuration screen

Security

During development, the Raspberry Pi was connected to the NTNU network through the eth-

ernet port. This was done in order to transfer files to the filesystem, since all development was

done on a desktop and then transferred by SFTP. SSH connections were also established to exe-

cute programs on the Pi. The problem with this setup was quickly discovered by the author, as

there were suddenly an abundance of files in the Raspberry Pi filesystem that had not been put

there by me. The author had naively assumed that the NTNU network was behind a firewall,

and that none of my fellow students would be attempting to hack or perform malicious tasks

on the Raspberry Pi. For this reason, the default password had not been changed. However, the

Pi was open to the world wide web, with the default password "raspberry" for the default user

"pi". The root password had also been set to something easy to remember, and not very difficult

to crack. The result can be seen in figure 2.16. Raspbian kept a log of all system activity, and

also remote login activity, found in log.auth in /var/logs/. This file was inspected, and it turned

out that nearly every second a remote client tried to login to either the root user or the pi user.

Occasionally, they succeeded in the brute-force attack, which is highlighted in figure 2.16.

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 39

Figure 2.16: Excerpt from auth.log

A vast number of different IP-addresses had been systematically trying to login to the Pi for

several weeks, and many had succeeded. All the IP-addresses originated for either China or

Hong-Kong. After these findings, the SD-card was formatted and everything was reinstalled.

Before connecting the Pi to the internet again, the user passwords were changed to something

drastically harder to crack, and the default ports for SSH and SFTP were changed. Addition-

ally, a software named fail2ban was installed, which monitored the log-files and banned all IP-

addresses that showed malicious behaviour. After these steps, the system was safe, and no other

breaches occurred

2.7.2 Interface application

As to the program that would run on the Pi, it had to be established how it was going to be made.

A few options were investigated, and it appeared GTK+ and QT were among the most popular

frameworks for creating GUI applications. Both were cross-platform compatible which meant

that development and compilation could be done on a more powerful computer than the Pi

itself. However, some features of the program such as the camera-interface would be specific

only to the Pi, which meant setting up binaries for cross compilation would be difficult. An

attempt was made to set up a cross compilation environment, but it quickly became apparent

that it would be more work setting it up than it would be worth. After some research, it seemed

that GTK+ was a light and well suited framework to achieve the desired functionality. GTK+

was available in both Python and C++ libraries. A lot of research also went into finding suited

packages to achieve streaming of the video camera both to the screen and to a remote server.

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 40

Gstreamer had both of these functionalities, and was also available both for Python and C++.

A few tutorials were found for Python, both for streaming and for making simple GUIs, which

were of great help. The major elements of the application will be discussed and explained below.

GTK+

GTK+, short for GIMP Toolkit+, is a multi-platform toolkit used to create anything from simple

GUIs to complete desktop environments and applications. It is free to use, and is subject to the

GNU Lesser General Public License, which means anyone may incorporate the API into their

own proprietary software for distribution.

Gstreamer

Gstreamer is an extensive multimedia framework written in C, but has APIs available for most

programming languages and platforms. Gstreamer uses so called pipelines, where media is

transported from a source to a sink. A pipeline is constructed by elements with input and output

pads, and the connection between these pads create the pipeline. A source can be a file on disk,

a tcp-connection, or a usb-camera. A typical sink can also be a file, another tcp-connection,

or a monitor. An example is given in figure 2.17, where we see a source-file is sent to a demux

element which splits the file into two parallell pipelines. One pipe is passed through an au-

dio decoder and then to an audio-sink, and the other pipe goes through a video decoder and

finally to a video sink. Elements can have different capabilities, or settings, which affect the out-

come of the pipeline. Gstreamer uses the same GNU license as GTK+, and was encouraged to

be used together with GTK+ applications, by the GNOME project. The latest binaries available

in the Raspbian repository was gstreamer version 1.2, which was installed. After it was installed,

the correct paths to the binaries had to be set by configuring three environment variables in

Raspbian. This had to be done on each system boot, so the following three lines were added to

~/.profile for the pi user.

export GST_PLUGIN_PATH=/usr/local/lib/gstreamer-1.0/

export GST_OMX_CONFIG_DIR=/usr/local/etc/xdg/

export LD_LIBRARY_PATH=/usr/local/lib/

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 41

This is a file that is executed on each boot. Although the script was executed on boot, the

variables were not present in the desktop environment after boot, so an additional fix had to be

applied. The file /.xsession was modified to look like the following lines.

[-r /etc/profile] && source /etc/profile

[-r ~/.profile] && source ~/.profile

exec startlxde

When the xserver was started, this script would be loaded, which in turn loaded the required

environment variables and finally started the desktop environment. The second line made sure

the contents of ~/.profile was executed in the current shell, causing the variables to remain

there.

Figure 2.17: Gstreamer pipeline example [26]

RPIcamsrc

In order to use the camera connected to the CSI port on the Raspberry pi as a source for gstreamer,

a plugin for this had to be installed. Luckily, someone had actually created this plugin - called

rpicamsrc - and made it available on github [30]. The installation instructions in the readme

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 42

were followed, and gstreamer could now use the raspberry pi camera as a source. The plugin

had capabilities to flip the video horizontally and vertically, as well as adding effects and much

more.

3G modem

In order to use the 3G modem, some additional software had to be installed on the Raspberry

Pi. A guide was found online that explained the required steps [31]. First of all, the USB modem

established a serial connection between the modem and the Raspberry Pi, over which the In-

ternet Protocol would run. To accomplish this it was necessary to install a program called ppp

(Point to Point Protocol). A program called Sakis3G was then installed. This program simplified

the process of recognizing and configuring the SIM card in the USB modem, and then finally

establishing an internet connection. All that was required was to confirm the Network Provider

that the program guessed, enter the pin-number of the SIM card, and Sakis3G handled the rest.

Sakis3G had to be run as root, otherwise there were some complications, but the program man-

aged to set up a connection using my own SIM-card from Netcom. The connection was tested,

and worked well. The following command was executed on the Raspberry Pi to connect to the

internet.

sudo ./sakis3g connect

Serial Port

In order to use the serial port on the Raspberry Pi, there was a trick to perform in order to gain

complete control over the port. The Raspbian Kernel uses the serial port by default during boot

to output information, and it also allows a user to log in using the serial port. Additionally, the

kernel uses the port to output debug messages. To disable this, the boot configurations had to

be changed by altering the file /boot/cmdline.txt. The serial port was found on /dev/ttyAMA0,

and removing all references to ttyAMA0 in this file released the control of the port from the ker-

nel. The Raspberry Pi could now freely communicate with the at90can128 microcontroller over

UART, without being interrupted by the kernel.

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 43

Enabling GPIO

In order to easily control the GPIO pins on the Broadcom CPU, some additional software was

installed. A popular library for gaining control over the GPIO pins was the wiringpi library [12].

It is written in C++, but a wrapper for python and python3 was created by the online commu-

nity Gadgetoid. The installation instructions were followed on their github site [19]. Using this

library, it was now possible to turn on and off the LEDs on the HAT that were connected to the

Raspberry Pi header. As previously explained, the EEPROM was unfortunately not set up to

configure the GPIO, but the wiringpi library was used instead. The file ~/.profile was edited to

contain the following lines:

gpio mode 8 out

gpio mode 9 out

gpio write 8 0

gpio write 9 0

These lines used the command line utility gpio that was installed with the wiringpi library.

The parameters mode 8 out set the mode of pin 8 to be an output pin, while the parameters write

8 0 wrote a logical 0 to pin 8. In other words, the LEDs connected to pin 8 and 9 were turned off.

2.7.3 Development and Test of program

It was decided to use Python to develop the application, because there were many user-friendly

tutorials on each of the major libraries used in the program. Raspbian also came with python3

as well as some of the libraries required for GTK+.

After some testing it became apparent that there were issues with displaying the video from

the camera on screen using GTK+. Ximagesink and xvideosink - two popular sinks for displaying

video on screen using the linux X windows system - had known issues with gstreamer version

1.2. It was found that version 1.4 was indeed available, but would have to compiled from source.

A script was found online where someone had installed gstreamer 1.2 from source on the rasp-

berry pi [11]. The script was outdated, but by changing the urls to the newest source files it

worked without too much hassle. It took approximately 5 hours to compile and install the latest

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 44

version on the Raspberry. With the latest version installed everything worked as expected. The

modified script has been included as an attachment.

The program was developed on a Windows desktop computer and the code was uploaded

to the pi using an SFTP client. The program was launched by starting the process in an SSH

session. In order to do this, the environment variable DISPLAY had to set in the SSH session so

that the python script would direct its output to the correct display. This was simply done with

the following command

export DISPLAY=:0

In order to automatically launch the application on boot, the following line was added to

/etc/xdg/lxsession/LXDE/autostart:

@/usr/bin/python3 /home/pi/car.py

The code was stored in a Dropbox-folder which automatically kept the code backed up and

also served as version control. An adjustable power supply was used to power the Raspberry

Pi, as to simulate the power supply in the car. The voltage was set to 24V. An anti-static mat

was used in the workplace to make sure no components were damaged due to static electricity.

The Mat was grounded to the main sockets, and a wristband connected to the mat was worn

whenever possible.

CAN communication

One problem with using the serial port for communicating between the Pi and the hat was that

only one application could open the port at a time. For this simple application it wouldn’t be a

problem, but it can be imagined that in the future there will be multiple applications running on

the Pi that wish to communicate with the CAN-bus. To overcome this, a server was created that

gained control over the serial port and that any other application could connect to. The server

was set up to use Unix Domain Sockets, a type of socket meant for inter-process communica-

tion. They behave just as TCP or UDP sockets, except they use the name-space of the filesystem

to address eachother instead of IP-addresses. All communication essentially goes through a file

on the file-system. Another advantage with this approach was that together with the 3G modem,

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 45

Figure 2.18: Development setup

the CAN-bus could easily be forwarded to the world wide web, essentially allowing for a remote

wireless CAN-node. This program can be found in the attached zip file, as car_server.py.

GUI

The GUI was planned to allow the driver to select between a few simple dialog-windows, as well

as perform simple functions with the car such as controlling the lights, fans, and handsfree sys-

tem. A plan was also to create a map of the race-track on screen where the driver could see his

location on the map in realtime, with the help of GPS data. A window with system diagnostics

was also planned to show all available data of the car, such as fan, wiper, and light-status, as

well as detailed information about the fuel cell stack. However, as time didn’t permit the devel-

opment of all these features, the screen was programmed to show the rear-view camera, as well

as speed, torque reference, and time remaining of the race. The buttons were made as large as

practically possible so it would be easy for the driver to press them, although in the final product

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 46

they sadly had no function.

Figure 2.19: Screenshot of driver interface in development environment

Creating the user interface turned out to be a little more difficult than anticipated. Although

there were a few examples on creating simple programs with GTK+ in python, the actual doc-

umentation was lacking. To create elements that were not in the examples, the C++ documen-

tation had to be consulted and educated guesses had to be made in order to find the python

equivalent. A challenge with the GUI application in GTK+ was that everything was event-driven

through interactions with the screen elements, such as buttons, etc. The main control flow was

Initialize -> Start GTK+ main function -> wait for interrupts. The initialization phase consisted

of creating the window and all the widgets in it, as well as linking callback functions to events on

each widget. When the main function Gtk.main() started, the program was running and the call-

backs were active. The main function never returned, and the program could only be stopped

by calling Gtk.main_quit(). The program also behaved like a client and connected to the serial

port server to establish communication with the CAN-bus. However, in order to keep the client

active in the background as well keeping the GUI alive, a second thread had to be spawned for

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 47

the client process. This process then received information such as speed and torque reference

from the driver, and updated this information on screen. However, it was quickly discovered

that multithreading with GTK+ was very unstable. After some digging in the C++ documenta-

tion it was found that only the thread that Gtk.main() was running in could safely modify GUI

elements. Any other thread would have to call a special GUI function - GLib.idle_add(function)

- to queue other functions that could modify GUI elements. The desired function would then

be safely interleaved with the main function in the main thread. During testing, the connection

between the server and client suddenly started dropping, and the cause could not be found for

this. To be safe, the main application was set up to open the serial port instead of relying on the

server. The main file is found in the attachment as car.py.

Video Streaming

A few different solutions were looked into regarding streaming video from the Raspberry Pi. The

first idea was using a udpsink in gstreamer - an element that allows streaming to a UDP socket -

and simply stream the video to a remote server also running gstreamer. One large drawback with

this method was that the receiving end had to also run gstreamer. Additionally, enabling any-

one to see the stream would be difficult as there was no easy way to display the received stream.

Instead, existing streaming websites like youtube.com and twitch.tv were considered. Youtube

had a feature called Youtube Live, where live events could be shown in your personal channel.

However, streaming video to Youtube Live using gstreamer proved quite difficult. Instead, the

immensely popular streaming site twitch.tv was used. Twitch was primarily used to stream live

gameplay of videogames, but they had for this reason made it very easy for anyone to display

their personal video streams. Twitch was set up to accept incoming RTMP data, and gstreamer

luckily had an rtmpsink element for video. All that was required was to direct the video pipeline

into the rtmpsink, and configure it to point to the twitch.tv url, containing a user-unique iden-

tifier so that video would be displayed in the correct personal channel. A downside of using

Twitch was that they had a built-in delay of about 20 seconds on all their streams. This wasn’t

a big problem though, as it wouldnt matter to users around the world watching the car going

around the track if it was lagging by 20 seconds. Another problem with the video streaming was

to construct the pipeline itself. Gstreamer was not a straight-forward tool to use, and especially

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 48

not since it was poorly documented for python. The video stream had to be split in two paral-

lell branches, where one was displayed on screen for the driver, and the other was piped into

the rtmpsink. It also turned out that some of the pipeline elements had dynamic output pads,

or in other words the output pad was only created when it had valid input. Linking the com-

plete pipeline therefore had to be done during runtime and not during initialization because

the stream had to be started before the pipeline could be linked. The application showing the

stream on both the display for the driver, and on twitch.tv can be seen in figure 2.18. The video

was sent in h264 format, with a resolution of 640x480, and a bitrate of 1Mbit/s.

2.7.4 Mounting of system

The Pi was mounted in the rear-compartment of the car in order to keep the camera cable as

short as possible. The case was attached to the wall of the compartment with velcro so it could

easily be taken in and out. The camera was screwed to a small board of carbonfiber which was

taped onto the wall so that the camera lens fit exactly into the camera hole in the rear of the

vehicle. The diameter of the hole was drilled so that the camera itself could be wedged stuck

inside the hole. A 5 meter long HDMI cable and a micro-usb cable were connected between

the pi and the screen in the front of the car. Special 90-degree angled cables were purchased

so they would fit inside the 3D-printed casing for the screen. The screen case was designed

and made by mechanical team member Terje Mork. The camera can be seen in the rear of the

car, as indicated by the arror in figure 2.22. Figure 2.20 shows the Raspberry Pi inside the rear

compartment and can be seen in lower right corner. The Camera is seen in top middle of the

picture. Figure 2.21 shows the camera mount in greater detail. The display itself can be seen in

figure 2.23 which shows the inside of the drivers compartment.

2.8 Fuel Cell Monitor

The fuel cell to be used in the Urban Concept was purchased by Horizon, and it turned out

to contain a lot of accessory functions. Firstly, the fuel cell controller board contained a small

LCD screen where real time data from the fuel cell could be monitored. This included voltage,

current, internal and external temperature, etc. Instead of simply putting the extra LCD screen

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 49

Figure 2.20: Raspberry Pi mounted inside rear-compartment

inside the drivers compartment, it was desired to make the data available on the CAN-bus and

incorporate it into the existing screen, as well sending it through the telemetry system Ole Bauck

had created. As well as the LCD screen connector on the fuel cell controller there was also an

RS232 port that output the same real time data. According to the documentation of the fuel

cell, the rs232 cable could be connected to a computer, and software from Horizon could be

used to monitor the operation of the fuel cell. However, the software was expensive, without

documentation, and only for for the Windows platform. In any case, having a computer running

Windows inside the vehicle for the purpose of monitoring the fuel cell was out of the question.

Instead, a small system to read the data from the serial port and make the information available

on the CAN bus was developed.

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 50

Figure 2.21: Raspberry Pi Camera Mount

2.8.1 Hardware

As always, the universal module was used as a basis for the small project. The universal module

had UART available on the GPIO header, so reading data from an RS232 port was easy. The two

protocols were identical in the way they transmit data, the only difference was in the voltage

levels. A converter board between the two signal lines had to be made. A popular IC for doing

exactly this was the MAX3232, which converted between RS232 and 3V TTL. This chip was es-

sentially all that was required, but a few RG-LEDs were also added to the board to indicate the

status of the important variables in the system. Although the LCD screen could supply the same

information, a board that simply flashed red or green would have been easier to pay attention

to, instead of monitoring four different numbers and figuring out if they were above or below the

desired threshold. The small board was designed, ordered, and mounted in the same manner

as previously explained. The board was tested by connecting it to the a computer with an RS232

cable, and passing information between the computer and the universal module. Everything

worked as expected. The finished board, connected to a universal module can be seen in figure

2.24.

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 51

Figure 2.22: Camera seen from behind

2.8.2 Implementation

Unfortunately, since the protocol between the fuel cell controller and the software by Horizon

was not given, it was not certain that it would be possible to extract data with the newly created

board. The only information given was that the controller communicated on a baudrate of 9600

bps, with 1 stop bit and no parity checks. However, the information itself could be encrypted or

difficult to interpret. It would in any case have to be reverse engineered before a useful program

could be made to relay the information onto the CAN bus. Unfortunately, to be able to reverse

engineer the data stream, the fuel cell had to be running, and the fuel cell itself was not mounted

until very late in the semester. Additionally, the team had difficulties in acquiring Hydrogen to

feed the fuel cell. Because of all these factors, there was unfortunately no time to try to inter-

pret the data coming from the RS232 port, and the whole project was abandoned in favour of

more important tasks. However, during the race the fuel cell started acting strange, and it would

occasionally shut down without anyone knowing why, and gathering information from the fuel

cell became a priority. The LCD screen connected to the fuel cell controller was attached in the

motor compartment and could only be seen during testing while the car stood still and was at

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 52

Figure 2.23: View of the driver compartment

first useless. To fix this, the cable between the LCD screen and the controller was extended, and

the screen was put inside the drivers compartment so the driver could catch any error messages

that appeared, if something went wrong with the fuel cell.

2.9 Evaluation

The finished result was satisfactory with respect to the goals initially set out, although with a

some minor shortcomings. As stated, there was extra functionality that had been planned for

the interface but time had not permitted the implementation of all the desired features. Ad-

ditionally, there were a lot of accidents with other more vital components of the system that

required attention during the race, so the live-streaming was unfortunately abandoned. The

driver could still see the videostream on screen, which ironically nearly caused an accident in

the first trial round. Something that neither the designer nor the driver had considered was that

the video he saw on screen was mirrored horizontally. During a trial run around the track the

driver saw a car approaching on the right side of the screen, and naturally turned left to give way.

CHAPTER 2. DRIVER INTERFACE - URBAN CONCEPT 53

Figure 2.24: RS-232 Monitor and universal module

However, the car was actually approaching on the left side, and they nearly crashed had not the

driver also seen the car in the mirrors before it was too late. This was probably one of the rea-

sons for why cameras were not allowed as a complete substitute for mirrors, but could be used

as a complement. The error was easily fixed by flipping the video horizontally in the rpicamscr

element in gstreamer. Apart from this the video was smooth and without any delay whatsoever.

The driver reported it as being of excellent help. Another problem was that the voltage regulator

on the HAT got very hot during operation. Since the regulator supplied both the Raspberry Pi

and the screen, it probably got very close to its limit of 2.5A. However, the module was measured

to only use about 6 W, and it functioned without problems for the duration of the event.

Chapter 3

Driver Interface - Prototype

The screen for the driver in the Prototype also had to be created, but it was not meant to be

as complex as the screen in the Urban. It would of course be an advantage for the driver to

be able to see clearly what was happening behind the car, but there simply was not enough

space for a large screen in the Prototype. Additionally, the Prototype vehicle was considered the

more competitive of the two cars regarding efficiency, while the Urban Concept was designed

mostly for appearances. For this reason, we didn’t allow any components in the Prototype that

unnecessarily added weight to the vehicle. The screen would therefore be as simplistic and

minimalistic as possible.

3.1 Design

The existing screen in the vehicle was functioning well, but from a designers perspective it

looked quite bad. It was something that had been hurriedly put together last year, and it was

holding back our chances of winning the design award with the Prototype vehicle. Since the

mechanical team who usually create physical parts were quite busy with more important tasks,

the author of this paper took it upon himself to create the entire screen system. The actual LCD-

display from the year before was sufficient and could be re-used, but it had to be integrated

into the vehicle in a better fashion. The task therefore came down to creating a casing that was

both functional and looked decent. Given the small size of the required case it was decided that

it could be 3D printed. The author had little experience in 3D printing, but was advised that

54

CHAPTER 3. DRIVER INTERFACE - PROTOTYPE 55

learning the required tools was relatively easy. Autodesk Inventor was chosen as a CAD-tool

because the professional version of this software was free to use for students. A day was spent

following the in-program tutorials and the part was created in a matter of hours using only the

extrude and hole tool. The part was designed so that the LCD-screen would fit exactly inside,

as well as a universal module. The part was exported to STL-format and printed on a uPrint

SE Plus printer, located at Gløshaugen NTNU. The printing quality of the printer was excellent,

and the result was very satisfactory. The first print didn’t fit because of a slight misunderstanding

of measurement constraints in Autodesk, but the second attempt was perfect. The screen was

mounted to the case with four 3mm bolts and nuts. The universal module was fixed with only

two bolts because the module only had two mounting holes. If the reader is seeing this pdf in

a relatively new version of Adobe Acrobat Reader, an interactive 3D model of the LCD case can

be seen and played with in figure 3.1. The finished result can be seen figure 3.2 and 3.3, while

the previous system can be seen in figure 3.5. The model can be found in the attached zip-file.

Although the car didn’t win, it came as third runner-up for the Vehicle Design Award [29].

3.2 Code

The LCD screen module from Sparkfun had an onboard driver and the only input was UART RX.

The received serial data was immediately displayed on the screen. However, there were also a

set of control codes that could be sent to the screen to change certain settings, or set where the

text was to appear etc. There was also a splash-screen that appeared for two seconds when the

module was powered. This text was set to display DNV GL Fuel Fighter Prototype. Occasionally,

the screen would randomly receive control-codes that somehow changed the backlight-settings

and other configurations. This was fixed by sending a reset code to the screen on powerup. This

made sure the screen was always set correctly after a reboot. The cause of these occasional errors

was never determined, but it was probably due to noise on the UART line being interpreted as

control characters. In order to easily display information on the screen, a simple library was

made in C for displaying the desired values for speed, torque, fan-intensity, motor-status, and

time remaining. The Atmel Studio project for the screen can be found in the attached zip-file.

CHAPTER 3. DRIVER INTERFACE - PROTOTYPE 56

(lcdcase.u3d)

Figure 3.1: LCD Case - Interactive 3D model

CHAPTER 3. DRIVER INTERFACE - PROTOTYPE 57

Figure 3.2: Prototype Screen, Front

Figure 3.3: Prototype Screen, Rear

CHAPTER 3. DRIVER INTERFACE - PROTOTYPE 58

Figure 3.4: Prototype Screen Mounted in Vehicle

Figure 3.5: Old Prototype screen and steering wheel

Chapter 4

Steering-wheel

The last task to do was to create an interface on the steering wheels so the driver could control

all the vital mechanisms of the vehicles. The steering wheels in both cars were nearly identical

so the task was made easy by creating one set and simply duplicating it. The only difference

was that the Prototype required fewer functions, as it had less components to control such as

lighting and window-wipers.

4.1 Requirements

In order to create a system to control the vehicle, it had to be established exactly what elements

there were, and how they were going to be controlled. The system was first designed for the

Urban Concept, and then later checked to see if the same system could be applied to the Proto-

type, only with reduced functionality. The other members of the electrical team were consulted,

and an initial list was compiled, as shown in table 4.1.

The angel eyes are the circles of light on the outside of the main head lights, as indicated

by the green arrow in figure 4.1. The Eyebrows are indicated by the blue arrow. The eyebrows

also serve as the indicators by toggling the color between orange and white. The rear lights were

programmed to simply follow the head lights.

It was determined that the number of buttons initially required was slightly too large to fit

on the small steering wheel. Instead, the functionality of controlling the angel eyes and the

eyebrows were transferred to the Joystick. The joystick had two axis and only one was used to

59

CHAPTER 4. STEERING-WHEEL 60

Table 4.1: Steering wheel requirements

Function States Input type
Horn 2 - On/Off Momentary push button

Window Wiper 2 - On/Off SPDT Toggle Switch
Throttle Continuous Potentiometer - Joystick

Front lights 3 - Off/Dimmed/Bright SP3T toggle switch
Angel Eyes 2 - On/Off SPDT Toggle Switch
Eyebrows 2 - On/Off SPDT Toggle Switch
Indicators 3 - Off/Right/Left SP3T Toggle Switch

Fans Continuous Rotary potentiometer
Handsfree Volume Continuous Rotary Potentiometer

Handsfree Call/Hang up 2 - On/Off Momentary push button

control the throttle. By moving the joystick horizontally it could toggle the eyebrows by moving

right, and toggling the angel eyes by moving left. The rules also stated that the vehicle must

either be equipped with a dead-mans switch or a spring-loaded accelerator. Since the throttle

was controlled by the joystick, which sprung back to neutral position when let go, a dead-mans

switch was not required. Another thing that was required by the rules was that the rear brake

lights had to be activated when the brake pedal was pushed. This will be further explained in

section 4.4.

4.2 Hardware

In order to read the input from the steering-wheel and convey this information on the CAN-

bus it was decided to embed a universal module into the steering-wheel. Luckily there were

enough GPIO pins on the universal module to attach all the buttons to it without using a GPIO

expander. However, since each button also required a ground signal, the buttons couldn’t simply

be connected to the module because there weren’t enough ground pins available. To overcome

this, a simple breakout board was designed to allow all the buttons to easily be attached. The

board contained nothing but headers, and looked like in figure 4.2. The names of the buttons

were added to the silkscreen to make it easy to disassemble and reassemble the whole board.

The buttons were chosen to be as small as possible as to not take too much space on the

steering wheel. The physical dimensions were passed along to Sigbjørn Kjensmo who was in

CHAPTER 4. STEERING-WHEEL 61

Figure 4.1: Urban Concept Front Lights

charge of constructing the actual steering wheel, partly in carbon fiber, partly 3D-printed. The

wheel was then designed to exactly fit all the buttons. The wires between the buttons and the

board were cut to exact length and soldered on. Shrinking tubes were added to all terminals to

avoid short-circuits. Normal 2.54mm dupont connectors were used to connect the wires to the

board.

4.3 Assembly

The breakout was attached to a universal module and put inside the steering-wheel. Two holes

were drilled in the front plate of the wheel so that the universal module could be fastened with

screws. A JTAG cable was attached to the universal module and kept inside the steering wheel

so that the module could be reprogrammed without removing the entire board. Removing the

board was a bit troublesome because the two screws were difficult to remove, and all the buttons

had to be unplugged before the board could be completely removed. All the buttons were panel

CHAPTER 4. STEERING-WHEEL 62

Figure 4.2: Steering wheel breakout board

mounted, meaning they were inserted through a hole on the steering wheel from behind, and

screwed tight with a nut on the front of the wheel.

4.4 Brake Switch

Urban Concept

A brake sensor had to be fitted in the Urban Concept, and luckily the one from the previous

Urban Concept car could be reused because the very same brake pedal was also reused. New

cables were soldered to the sensor because the old ones had to be cut off. The sensor consisted

of a normally open lever switch mounted on the base of the brake-pedal. When the brake was

not pushed, the pedal itself was holding in the button on the switch, thereby closing the circuit

and indicating that the brake was not pushed. By pushing the pedal forwards, the button was

released, and the circuit was opened. This automatically turned on the brake-lights, and also

sent a message to the motor controller, telling it to stop the motor.

Prototype

According to the rules, a brake sensor was required in the Urban Concept, but not in the pro-

totype. However, it was decided to still implement one. In the prototype, the only function of

the brake sensor would be to disengage the motor. This would make sure that driver wouldn’t

be able to accelerate and brake at the same time. Instead of a brake pedal, the prototype used

normal bicycle brake levers mounted on the steering-wheel. Small switches were glued inside

CHAPTER 4. STEERING-WHEEL 63

Figure 4.3: Brake pedal with brake sensor

the handles and connected to the steering-wheel module. When the levers were squeezed, the

system would simply set the torque reference to 0, overriding whatever value was read from the

joystick.

Figure 4.7 shows the Prototype steering wheel from the front. A different view is presented

in figure 4.8 where the USB and RJ11 ports are visible, and the lose grey JTAG cable for easy

reprogramming is also visible. One problem with the steering wheel was that the central part in

which the circuit board resided was made of carbon fiber. Since carbon fiber is conductive, the

circuit board had to be isolated. This was fixed by applying non-conductive tape on the inside

of the steering wheel, as seen in figure 4.9.

CHAPTER 4. STEERING-WHEEL 64

Figure 4.4: Brake sensor

Figure 4.5: Brake handle in Prototype with mounted switch

CHAPTER 4. STEERING-WHEEL 65

Figure 4.6: Rotary potentiometer being soldered

Figure 4.7: Prototype steering wheel, front

CHAPTER 4. STEERING-WHEEL 66

Figure 4.8: Prototype steering wheel, top

Figure 4.9: Prototype steering wheel, bottom

Chapter 5

Discussion

5.1 Evaluation and further work

5.1.1 Urban Concept Screen

The goal in this thesis was primarily to create a screen for the driver in the new DNV GL Fuel

Fighter Urban Concept vehicle. The contents on the screen would include relevant information

while driving, such as speed, time, and a video stream from behind the vehicle. In the authors

eyes, this goal was met. However, a lot of additional features had been planned that unfortu-

nately were not implemented due to lack of time. One of the primary goals, namely the online

video streaming, was sadly not performed during racing. However, with some preparation, it

should be perfectly simple to manage to stream the video online for next years team. Some

of the work in this thesis has been a dependency in a larger system, and the system had to be

functional by a given date, May 15th. Because of this, the most vital components were always

prioritized, and any extra features were always postponed. However, a good foundation has

been created for further development of the touch-screen system. In hindsight, a better sched-

ule should have been created, and a more realistic workload should have been planned. The

project of creating the fuel cell monitor was not planned from the beginning, and should never

have been started. It would have been an excellent feature to have, but ended up taking time

away from the actual planned work, and wasn’t even made to function.

67

CHAPTER 5. DISCUSSION 68

5.1.2 Prototype Screen

A secondary goal was to create a new screen-system in the Prototype vehicle. This was also

accomplished. The screen module itself appeared to have a few hiccups, though. Occasionally,

but very rarely it would change the backlight setting so that the text would be barely visible. It

would also very rarely change the position of where the text would appear. The cause of these

problems could never be found, but it was theorized that it was due to noise on the uart line

which was interpreted by the module as control codes which affected the settings. Fixing these

problems could be done by simply rebooting the screen system. As a cybernetics engineer it was

also fun to design a physical component for a change, as opposed to making circuit boards and

code. The result also helped improve the looks of the vehicle, and along with the improvements

by the mechanical team it resulted in a third place for the Design Award.

5.1.3 Steering wheels

The steering wheel modules were also a success, an no problems occurred during testing or

racing. However, assembling the wheel was a bit difficult, and if something had gone wrong

it would have taken some time to be able to fix it. Utilizing the small space was difficult, and

a better system can probably be made so that removing the circuit board is less troublesome.

Additionally, having an open circuit board surrounded by carbon fiber was also a bad idea. The

circuit board should probably be better isolated in the future, since a short circuit in this system

could potentially render the driver unable to control the vehicle.

5.1.4 Fuel Cell Monitor

The fuel cell monitor is unknown if would work as the communication between the fuel cell and

the program will have to reverse engineered. If the next years team have enough time, I suggest

making an effort in trying to see if it’s possible. To be able to monitor and log all data from the

fuel cell during testing and driving could be extremely useful. It could be used to help optimizing

the driving strategy, as well as catching error messages if something were to go wrong.

Chapter 6

Conclusion

In this report, my work on the Fuel fighter project has been documented and evaluated. The

goal was to create a touch-screen system for the Urban Concept vehicle, competing in Shell

Eco Marathon in May, 2015. The screen was to display relevant information for the driver, as

well as show a rear-view video stream for the driver. The same video stream was also to be

streamed online. Additionally, a screen solution for the Prototype vehicle, as well as systems

to take input from the driver were to be created. All the goals were met, although some with

reduced functionality.

By utilizing existing solutions as well as creating new hardware and software, a touch screen

interface was created for the Urban Concept vehicle. The screen was connected to the periph-

eral systems of the car, and was able to display relevant information for the driver, as well as a

video stream from a rear view camera. The video stream was sadly not streamed online during

the race, but the foundation to do so was created. Online streaming was performed successfully

in a testbench environment.

The existing screen in the Prototype vehicle was upgraded to a more visually appealing and

functional solution. Although some minor bugs were present in the screen it worked well and

without problems during the race.

The systems for handling input from the driver in both vehicles were created and worked

very well. The same solution was implemented in both vehicles, with minor differences in input

capabilities. Some improvements can be made with respect to mounting and instalment of the

circuit board in the steering wheel.

69

CHAPTER 6. CONCLUSION 70

Based on the results from this work, it is recommended to reuse the systems in the next years

competition. The camera solution in the Urban Concept gave the driver a heightened sense of

awareness of his surroundings while driving, and was greatly appreciated. The screen in the

Prototype also worked well, and the driver found it helpful. The steering wheel modules were

strictly necessary to pilot the vehicles, and based on their performance and robustness they are

highly suggested to be reused.

Appendix A

Acronyms

DOF Degrees Of Freedom

CAN Controller Area Network

GPIO General Purpose Input Output

BMS Battery Management System

BOM Bill of Materials

SIM Subscriber Identity Module

SD Secure Digital

IMU Inertial Measurement Unit

GPS Global Positioning System

HAT Hardware Attached on Top

USB Universal Serial Bus

FPS Frames Per Second

RAM Random Access Memory

CSI Camera Serial Interface

71

APPENDIX A. ACRONYMS 72

DSI Display Serial Interface

MIPI Mobile Industry Processor Interface

EEPROM Electrically Erasable Programmable Read-Only Memory

MCU Microcontroller

I2C Inter-Integrated Circuit

SPI Serial Peripheral Interface

TTL Transistor-Transistor Logic

IC Integrated Circuit

RG-LED Red-Green Light Emitting Diode

PCB Printed Circuit Board

CAM Computer-Aided Manufacturing

UART Universal Asynchronous Receiver/Transmitter

SPDT Single Pole Double Throw

SP3T Single Pole Triple Throw

6P6C 6 Positions 6 Contacts

6P4C 6 Positions 4 Contacts

RTMP Real Time Messaging Protocol

UDS Unix Domain Socket

UDP User Datagram Protocol

TCP Transmission Control Protocol

IP Internet Protocol

RJ11 Registered Jack 11

Appendix B

Schematics, Layouts, and Code

B.1 Attached Files

Various files can be found in the attached file, attachments.zip. All PCB schematics, layouts,

BOMs, and productions files can be found under the folder PCB. The project files are for EA-

GLE version 7.2. The Raspberry Pi HAT schematic, layout, and BOM has been reproduced be-

low. The code for the at90can128 microcontroller on the HAT can be found under the folder

AVR/rpi2_hat. The code for the steering wheels can be found under AVR/steering_wheel_module.

The code for the Prototype and Urban Concept screen interfaces can be found under AVR/ dis-

play_module_Prototype and Python/, respectively. All projects except for the Urban Concept

screen interface were made in Atmel Studio 6.2, and compiled with avr-gcc 3.4. The Urban

screen program was run with python 3.4.3. A script that automates the process of installing

gstreamer version 1.4 has also been included in the attached files. It is found under gstreamer/

and is executed on the target machine as root.

B.2 Raspberry Pi Hat

73

APPENDIX B. SCHEMATICS, LAYOUTS, AND CODE 74

Table B.1: Bill of Materials, Raspberry Pi HAT

Name Value Size
C1 470 uF SANYO_SMD
C2 1 uF C1206
C3 22 nF C1206
C4 220 pF C1206
C5 10 uF C1206
C6 22pf C0805
C7 22pf C0805
C8 100nf C0805
C9 100nf C0805

C10 100nf C0805
C11 1 uF C1206
C12 1 uF C1206
C18 1 uF C1206

CAN-JP 1X02
CAN-TRANSCEIVER MCP2551 SOIC127P600X175-8N

D1 SMB
D2 SMB
D5 SMB

HAT-LED RG_LED PLCC4
ID-EEPROM SOCKET-08

J1 RJ11 RJ11-6
J2 RJ11 RJ11-6

JP2 2X20
JTAG AVR_ICSP

L1 15 uH CDRH125
L5973D L5973D HSOP8

LDO LDO_3V3 LDO_3V3_SOT23
PI-LED RG_LED PLCC4

PTC PTC R1210
R1 10k R1206
R2 3k R1206
R3 4k7 R1206
R5 22k R0805
R6 120R R0805
R7 150R R0805
R8 150R R0805
R9 150R R0805

R10 150R R0805
R11 3.9k R0805
R12 3.9k R0805
R13 1k R0805
Y1 8MHz HC49US

APPENDIX B. SCHEMATICS, LAYOUTS, AND CODE 75

Figure B.1: HAT Schematic

APPENDIX B. SCHEMATICS, LAYOUTS, AND CODE 76

Figure B.2: HAT Layout

Bibliography

[1] Adafruit. http://www.adafruit.com/product/2260, 2015.

[2] James Adams. https://www.raspberrypi.org/introducing-raspberry-pi-hats/,

2014.

[3] et al Aksel Qviller. Eco marathon project report. Master’s thesis, NTNU, 2012.

[4] et al Astrid Rasten. Dnv fuel fighter interior design. Master’s thesis, NTNU, 2013.

[5] Atmel. http://www.atmel.com/images/doc7679.pdf, 2008.

[6] Jon Martin Harstad Bakken. Styresystem for fremdrift av shell-eco- marathon-kjøretøy.

Master’s thesis, NTNU, 2009.

[7] Ole Bauck. Hardware and software design for the dnv gl fuel fighter vehicles. Master’s

thesis, NTNU, 2015.

[8] Eric Brown. http://linuxgizmos.com/beaglebone-black-gains-720p-camera-cape/,

2013.

[9] Eric Brown. http://linuxgizmos.com/beaglebone-black-sbc-surpasses-100000-units/,

2013.

[10] Brad Chacos. http://www.pcworld.com/article/2886260/

raspberry-pi-2-review-the-revolutionary-35-micro-pc-supercharged.html,

2015.

[11] Cliff. http://www.onepitwopi.com/raspberry-pi/gstreamer-1-2-on-the-raspberry-pi/,

2014.

77

http://www.adafruit.com/product/2260
https://www.raspberrypi.org/introducing-raspberry-pi-hats/
http://www.atmel.com/images/doc7679.pdf
http://linuxgizmos.com/beaglebone-black-gains-720p-camera-cape/
http://linuxgizmos.com/beaglebone-black-sbc-surpasses-100000-units/
http://www.pcworld.com/article/2886260/raspberry-pi-2-review-the-revolutionary-35-micro-pc-supercharged.html
http://www.pcworld.com/article/2886260/raspberry-pi-2-review-the-revolutionary-35-micro-pc-supercharged.html
http://www.onepitwopi.com/raspberry-pi/gstreamer-1-2-on-the-raspberry-pi/

BIBLIOGRAPHY 78

[12] Drogon. http://wiringpi.com/, 2015.

[13] eBay. http://www.ebay.com/itm/New-Camera-Module-Board-5MP-Fish-Eye-Lenses-Wide-Angle-For-Raspberry-Pi-/

151438284400, 2015.

[14] eBay. http://www.ebay.com/itm/Unlocked-HUAWEI-E220-HSDPA-UTMS-3G-USB-MODEM-Dongle-NEW-/

250818953808, 2015.

[15] enise shellproject.com. http://enise-shellproject.com/shell-eco-marathon/

historique/, 2015.

[16] DNV GL Fuel Fighter. http://www.fuel-fighter.com/, 2015.

[17] Patrick Post/AP Images for Shell. https://www.flickr.com/photos/shell_

eco-marathon/14196367312, 2014.

[18] Raspberry Pi foundation. https://www.raspberrypi.org/help/faqs/, 2015.

[19] Gadgetoid. https://github.com/Gadgetoid/WiringPi2-Python, 2015.

[20] Anders Lier Guldahl. Styre- og overvåkningssystem for shell eco-marathon kjøretøy. Mas-

ter’s thesis, NTNU, 2010.

[21] jimbojr. https://github.com/raspberrypi/hats/blob/master/

backpowering-diagram.png, 2014.

[22] jimbojr. https://github.com/raspberrypi/hats/blob/master/

hat-board-mechanical.pdf, 2014.

[23] Richard J Kinch. http://www.truetex.com/raspberrypi, 2015.

[24] Matt. http://www.raspberrypi-spy.co.uk/2012/06/simple-guide-to-the-rpi-gpio-header-and-pins/,

2012.

[25] MicroChip. http://users.ece.utexas.edu/~valvano/Datasheets/MCP2551.pdf,

2003.

http://wiringpi.com/
http://www.ebay.com/itm/New-Camera-Module-Board-5MP-Fish-Eye-Lenses-Wide-Angle-For-Raspberry-Pi-/151438284400
http://www.ebay.com/itm/New-Camera-Module-Board-5MP-Fish-Eye-Lenses-Wide-Angle-For-Raspberry-Pi-/151438284400
http://www.ebay.com/itm/Unlocked-HUAWEI-E220-HSDPA-UTMS-3G-USB-MODEM-Dongle-NEW-/250818953808
http://www.ebay.com/itm/Unlocked-HUAWEI-E220-HSDPA-UTMS-3G-USB-MODEM-Dongle-NEW-/250818953808
http://enise-shellproject.com/shell-eco-marathon/historique/
http://enise-shellproject.com/shell-eco-marathon/historique/
http://www.fuel-fighter.com/
https://www.flickr.com/photos/shell_eco-marathon/14196367312
https://www.flickr.com/photos/shell_eco-marathon/14196367312
https://www.raspberrypi.org/help/faqs/
https://github.com/Gadgetoid/WiringPi2-Python
https://github.com/raspberrypi/hats/blob/master/backpowering-diagram.png
https://github.com/raspberrypi/hats/blob/master/backpowering-diagram.png
https://github.com/raspberrypi/hats/blob/master/hat-board-mechanical.pdf
https://github.com/raspberrypi/hats/blob/master/hat-board-mechanical.pdf
http://www.truetex.com/raspberrypi
http://www.raspberrypi-spy.co.uk/2012/06/simple-guide-to-the-rpi-gpio-header-and-pins/
http://users.ece.utexas.edu/~valvano/Datasheets/MCP2551.pdf

BIBLIOGRAPHY 79

[26] NicolasFerre. http://www.at91.com/linux4sam/bin/view/Linux4SAM/

SAM9M10Gstreamer, 2010.

[27] pelwell. https://github.com/raspberrypi/hats/blob/master/designguide.md,

2015.

[28] Shell. http://s00.static-shell.com/content/dam/shell-new/

local/corporate/ecomarathon/downloads/pdf/europe/2014-results/

sem-europe-2014-results-prototype-battery-electric-220514.pdf, 2014.

[29] Shell. http://www.shell.com/global/environment-society/ecomarathon/events/

europe/2015-highlights/off-track-award-winners.html, 2015.

[30] thaytan. https://github.com/thaytan/gst-rpicamsrc, 2015.

[31] Jacek Tokar. http://raspberry-at-home.com/installing-3g-modem/, 2013.

http://www.at91.com/linux4sam/bin/view/Linux4SAM/SAM9M10Gstreamer
http://www.at91.com/linux4sam/bin/view/Linux4SAM/SAM9M10Gstreamer
https://github.com/raspberrypi/hats/blob/master/designguide.md
http://s00.static-shell.com/content/dam/shell-new/local/corporate/ecomarathon/downloads/pdf/europe/2014-results/sem-europe-2014-results-prototype-battery-electric-220514.pdf
http://s00.static-shell.com/content/dam/shell-new/local/corporate/ecomarathon/downloads/pdf/europe/2014-results/sem-europe-2014-results-prototype-battery-electric-220514.pdf
http://s00.static-shell.com/content/dam/shell-new/local/corporate/ecomarathon/downloads/pdf/europe/2014-results/sem-europe-2014-results-prototype-battery-electric-220514.pdf
http://www.shell.com/global/environment-society/ecomarathon/events/europe/2015-highlights/off-track-award-winners.html
http://www.shell.com/global/environment-society/ecomarathon/events/europe/2015-highlights/off-track-award-winners.html
https://github.com/thaytan/gst-rpicamsrc
http://raspberry-at-home.com/installing-3g-modem/

	Summary
	Sammendrag
	Preface
	Introduction
	Background
	The team
	The project
	Prototype Electrical system
	Urban Concept Electrical
	Tasks

	Previous Work
	Problem description
	Objectives

	Limitations
	Approach
	Structure of the Report

	Driver Interface - Urban Concept
	Choosing an embedded platform
	BeagleBone Black
	Raspberry Pi 2
	Comparison

	Screen
	Camera
	3G Modem
	HAT Hardware
	Schematic
	Layout
	Production and Mounting
	Result
	Casing

	Hat Software
	CAN message format
	Code
	EEPROM

	Raspberry Pi
	Operating system
	Interface application
	Development and Test of program
	Mounting of system

	Fuel Cell Monitor
	Hardware
	Implementation

	Evaluation

	Driver Interface - Prototype
	Design
	Code

	Steering-wheel
	Requirements
	Hardware
	Assembly
	Brake Switch

	Discussion
	Evaluation and further work
	Urban Concept Screen
	Prototype Screen
	Steering wheels
	Fuel Cell Monitor

	Conclusion
	Acronyms
	Schematics, Layouts, and Code
	Attached Files
	Raspberry Pi Hat

	Bibliography

