
Horizontal Collision Avoidance for
Autonomous Underwater Vehicles

Bjørn-Olav Holtung Eriksen

Master of Science in Cybernetics and Robotics

Supervisor: Kristin Ytterstad Pettersen, ITK
Co-supervisor: Martin Syre Wiig, FFI

Thomas Røbekk Krogstad, FFI

Department of Engineering Cybernetics

Submission date: June 2015

Norwegian University of Science and Technology

Problem formulation

Autonomous underwater vehicles (AUVs) can be used in operations where manned
presence is either unwanted of impossible. Examples of such operations are
oceanographic research in remote areas, mine countermeasures as part of a mil-
itary operation, or seabed surveying for the oil and gas industry. Future AUVs
will have the capability to operate for weeks or months in areas with little or no
infrastructure, unknown environment and limited if any operator communication.
In such scenarios vehicle robustness and safety are important. A key enabling
element for such operations is collision avoidance.

The HUGIN series of vehicles is equipped with a forward looking sonar (FLS)
that has 120 vertically aligned beams. The FLS is used for terrain following,
and for collision avoidance in the vertical dimension. The collision avoidance
algorithm makes the vehicle circle upwards when an obstacle is met, in order to
pass above the obstacle. This works well for missions in deep waters where there
is room to maneuver in the vertical dimension. However, in shallow waters or
when presented with tall obstacles (possibly reaching to the surface) it is more
desirable to go around the obstacle while maintaining depth or altitude. Such
horizontal collision avoidance is the subject of this MSc project.

A preliminary project has been completed, where two different strategies for
horizontal collision avoidance were investigated. One of these was the Dynamic
window algorithm. The task for this project is to further investigate the Dynamic
window algorithm. The following tasks are to be done in the thesis:

• Investigate the Dynamic window method in depth:

– Further investigate what extensions that has been made to the algo-
rithm.

– Is it possible to predict the vehicle trajectory as a more complex path
than a circular arc?

– Can the time varying acceleration limits be taken into account?
– Are there other optimization criteria or methods that provide good

results?
– Is it possible to control the obstacle clearance?
– Will the algorithm avoid collisions in local minima?

• Introduce constant irrotational ocean current in the scenario. How does
this affect the performance?

• Can the Dynamic window algorithm be modified to handle constant irro-
tational ocean current?

• Investigate if Lyapunov theory can be used to prove stability for the collision
avoidance system.

iii

Preface

Technology, in particular autonomous systems, have always intrigued me. The
idea of making a system capable of controlling itself, and enabling it to base
decisions on external variables is truly fascinating. Autonomous systems will
take more and more presence in our lives, and one can only imagine what will be
possible in the future. Collision avoidance is a necessity for enabling autonomous
navigation in unknown environments.

This master thesis is written as a compulsory part of the two-year MSc pro-
gramme in Engineering Cybernetics at NTNU. It has consumed a great deal of
time, but in return rewarded me with new knowledge, experience and (hopefully)
a MSc degree in Engineering Cybernetics.

I would like to thank my supervisors, especially Kristin Y. Pettersen at NTNU
and Martin Syre Wiig at FFI, for their help and support throughout the project.
They have steered me away from collisions; thus humans can be said to inherit
excellent collision avoidance capabilities. In addition, I would like to express my
gratitude to my fellow students for the time we spent together at NTNU, and
in particular Sveinung, Thomas and Stine from the office for all the interesting
discussions.

Bjørn-Olav Holtung Eriksen
Trondheim, June 1, 2015

v

Abstract

Vast amounts of research has been done on the subject of collision avoidance.
However, limited effort has been put into adapting collision avoidance algorithms
to vehicles with second order non-holonomic constraints, such as Autonomous
underwater vehicles (AUVs). This thesis assesses the Dynamic window algorithm
applied to a HUGIN 1000 AUV for reactive horizontal collision avoidance, with
constant irrotational ocean current. A simulator for the AUV with sonar sensors
and an integral line of sight (ILOS) guidance system has been developed, and is
used to implement and test the algorithm.

The original Dynamic window algorithm is not intended for use on vehicles with
second order non-holonomic constraints. A thorough literature study on modifi-
cations and extensions to the algorithm is presented. A number of modifications
have been made to the original algorithm to make it better suited for use with the
HUGIN 1000 AUV. In particular, a new method for predicting AUV trajectories
which accounts for second order non-holonomic constraints and ocean current
has been developed.

Using Lyapunov theory, convergence to a straight line path is proved with UGAS
and ULES stability properties under the assumption that no obstacles are present.
The proof include ocean current, and is a first step of a complete stability proof
for the collision avoidance system. Simulations support the proof. The perfor-
mance of the modified Dynamic window algorithm has been assessed through
simulations. When not faced with local minima, collisions are avoided both with
and without ocean current. The simulations infer that the algorithm also avoids
collision when faced with local minima, but due to inaccuracies in the simulation
model no definitive conclusion can be made.

The new trajectory prediction method reduces the mean square prediction error
to about one percent compared to the original method, and makes the Dynamic
window algorithm well suited for vehicles with second order non-holonomic con-
straints such as the HUGIN 1000 AUV.

vii

Sammendrag

Svært mye forskning har blitt gjort på kollisjonsunngåelse for roboter. Imidler-
tid har lite blitt gjort for å tilpasse kollisjonsunngåelsesmetoder til roboter med
andre ordens ikke-holonomiske beskrankninger, som for eksempel Autonome un-
dervannsfarkoster (AUVer). Denne masteroppgaven ser på en antikollisjonsme-
tode kalt "Dynamic window algorithm" for bruk på en HUGIN 1000 AUV til
et reaktivt antikollisjonssystem i horisontalplanet, under påvirkning av konstant
ikke-roterende havstrøm. Et simuleringssystem for AUVen sammen med sonarer
og et "Integral line of sight" (ILOS) navigasjonssystem har blitt utviklet, og er
brukt til å implementere og teste algoritmen.

Den originale Dynamic window algoritmen er ikke tiltenkt brukt på roboter med
andre ordens ikke-holoniske beskrankninger. Et omfattende litteraturstudie med
fokus på modifikasjoner tidligere gjort på algoritmen er presentert. For å gjøre
algoritmen bedre egnet for bruk på HUGIN 1000 har en del modifikasjoner blitt
gjort. Især har en ny metode for å predikere banene til AUVen, som tar hensyn
til andre ordens ikke-holonomiske beskrankninger og havstrømmer, blitt utviklet.

Ved bruk av Lyapunovteori har konvergens til en rettlinjet bane blitt bevist
med UGAS og ULES stabilitetsegenskaper. Beviset inkluderer havstrøm, og
antar at ingen hindringer er tilstede. Dette beviset er et første steg i et kom-
plett stabilitetsbevis for antikollisjonssystemet. Simuleringer understøtter be-
viset. Ytelsen til den modifiserte Dynamic window algoritmen er vurdert gjennom
en rekke simuleringer. Når AUVen ikke blir presentert med lokale minimum viser
simuleringene at kollisjoner unngås, både med og uten havstrøm. Simuleringene
antyder også at kollisjon unngås i lokale minimum, men grunnet unøyaktigheter
i simuleringsmodellen kan ingen klar konklusjon trekkes.

Den nye prediksjonsmetoden for AUVens baner reduserer den gjennomsnittlige
kvadratiske prediksjonsfeilen til omtrent en prosent sammenlignet med den orig-
inale metoden, og gjør Dynamic Window algoritmen godt egnet for bruk på
roboter med andre ordens ikke-holonomiske beskrankninger, som HUGIN 1000.

ix

Contents

List of Figures xiii

List of Tables xv

1 Introduction 1
1.1 Motivation . 1
1.2 Objective and scope . 2
1.3 Contributions . 2
1.4 Outline . 3
1.5 Notation . 3
1.6 Abbreviations . 5

2 Theoretical background 7
2.1 Mathematical modeling . 7

2.1.1 6DOF hydrodynamical model 7
2.1.2 Ocean current modeling . 10
2.1.3 Actuator model . 11

2.2 Collision avoidance theory . 12
2.3 The Dynamic window algorithm 13

2.3.1 Original method . 13
2.3.2 Proposed extensions . 17

3 Modifications to the Dynamic window algorithm 21
3.1 Control plant model . 21
3.2 Environment modeling . 24
3.3 Search space . 26
3.4 Trajectory prediction . 31
3.5 Objective function . 39
3.A Appendix: Functional expressions 41
3.B Appendix: Trajectory prediction without pivot point transformation 42

4 Simulator development 49
4.1 Simulator overview . 49
4.2 AUV model . 49

xi

CONTENTS

4.3 Sonar modeling . 51
4.3.1 Sonar configuration . 51
4.3.2 Seabed modeling . 52
4.3.3 Single beam sonars . 52
4.3.4 Horizontal forward looking sonar 56
4.3.5 Side scan sonars . 57

4.4 Horizontal guidance system . 58
4.5 Feedback controllers . 59

4.5.1 Surge speed and yaw rate controller 59
4.5.2 Yaw controller . 61
4.5.3 Depth controller . 63

4.6 Dynamic window algorithm . 63
4.6.1 Environment representation 63
4.6.2 Search space and predicted trajectories 64
4.6.3 Velocity pair selection . 68

5 Stability analysis 71
5.1 AUV model in component form . 71
5.2 Control objective . 72
5.3 Control system . 72
5.4 Stability of the closed loop system 74

5.4.1 Proof of theorem 5.1 . 74
5.A Appendix: Functional expressions 77
5.B Appendix: Proof of lemma 5.1 . 78

6 Simulation results 81
6.1 Test cases . 81
6.2 Test case 1 . 84

6.2.1 Comparison of the old and new Dynamic window imple-
mentation . 84

6.2.2 Performance with ocean current 85
6.3 Test case 2 . 88

6.3.1 Comparison of the old and new Dynamic window imple-
mentation . 91

6.3.2 Performance with ocean current 94
6.4 Test case 3 . 95
6.5 Test case 4 . 97
6.6 Simulations in randomly generated environments 98

7 Concluding remarks and suggestions for future work 101

Appendices 105

A Stability of cascaded systems 107

B Simulations in randomly generated environments 109

xii

List of Figures

2.1 The HUGIN 1000 AUV . 8

3.1 AUV heading is part of Cfree and Cobs 25
3.2 Circular approximation of the AUV footprint 25
3.3 Expanded obstacles to collapse the configuration space 26
3.4 Antitarget and avoid region . 26
3.5 Possible combinations of surge speed and yaw rate, with respect

to actuator saturation limits . 30
3.6 Function to find possible velocities 30
3.7 The dynamically feasible velocity set, together with the boundaries

of the dynamic velocity window and the possible velocity set. . . . 31
3.8 Actual and approximated AUV trajectories, given initial velocity

ν̄r(t0) = [2 0 0]T . 38

4.1 Simulator overview . 50
4.2 HUGIN 1000 sonar sensors . 53
4.3 Example DTM matrix . 53
4.4 Seabed map of Jesusbukta in the Breiangen area 54
4.5 Search lines of a single HFLS beam 56
4.6 ILOS guidance law . 59
4.7 Steady state ILOS heading . 60
4.8 Step response of closed loop surge dynamics 62
4.9 Step response of closed loop yaw rate dynamics 62
4.10 Step response of closed loop yaw dynamics 63
4.11 Step response of closed loop depth dynamics 64
4.12 Local obstacle map. The estimated obstacle boundary is marked

with a red line. 65
4.13 A discrete set of dynamically feasible velocities 66
4.14 AUV distances ρ̄i and ρi given the trajectory for velocity pair i . . 68
4.15 The Dynamic window objective function parts (a)-(c) and the com-

bined objective function (d). 69
4.16 Predicted AUV trajectories with the selected trajectory in yellow . 70

6.1 Simulation environments . 82

xiii

LIST OF FIGURES

6.2 AUV trajectories for test case 1 . 84
6.3 Desired and actual surge speed and yaw rate, case 1, new Dynamic

window implementation . 86
6.4 Desired and actual surge speed and yaw rate, case 1, old Dynamic

window implementation . 86
6.5 Actuator usage, case 1, new Dynamic window implementation . . . 87
6.6 Actuator usage, case 1, old Dynamic window implementation . . . 87
6.7 Desired and actual surge speed and yaw rate, case 1, correct cur-

rent information . 89
6.8 Desired and actual surge speed and yaw rate, case 1, incorrect

current information . 89
6.9 Actuator usage, case 1, correct current information 90
6.10 Actuator usage, case 1, incorrect current information 90
6.11 AUV trajectories for test case 2 . 91
6.12 Desired and actual surge speed and yaw rate, case 2, new Dynamic

window implementation . 92
6.13 Desired and actual surge speed and yaw rate, case 2, old Dynamic

window implementation . 93
6.14 Actuator usage, case 2, new Dynamic window implementation . . . 93
6.15 Actuator usage, case 2, old Dynamic window implementation . . . 94
6.16 Cross track error and AUV heading, case 2, with correct and wrong

current information . 95
6.17 AUV trajectories, test case 3, with and without ocean currents . . 96
6.18 AUV trajectories for test case 4 . 97
6.19 Prediction error using linear and circular trajectory prediction,

case 4 . 98
6.20 Passive response to sway and yaw dynamics 100

xiv

List of Tables

3.1 Mean square error (MSE) and Root mean square error (RMSE) of
predicted AUV trajectories . 37

4.1 Position and orientation of sonar sensors 52

6.1 Simulation parameters . 83
6.2 Trajectory data, case 1, old and new Dynamic window implemen-

tation . 85
6.3 Trajectory data, case 1, with ocean current 88
6.4 Trajectory data, case 2, old and new Dynamic window implemen-

tation . 92
6.5 Trajectory data, case 2, with ocean current 94
6.6 Trajectory data, case 3 . 96
6.7 Prediction error of the predicted AUV trajectories, case 4 98
6.8 Summary of trajectories in randomly generated environments . . . 99

B.1 Trajectory data for simulations in randomly generated environments110

xv

Chapter 1

Introduction

1.1 Motivation

Collision avoidance is a necessity for safe autonomous operation of vehicles, Au-
tonomous underwater vehicles (AUVs) included. Only a small percentage of the
oceans have been mapped to a detail applicable for planning collision free AUV
trajectories, hence a planned route may very well result in collisions if it were to
be followed without local adaption. Clearly, once a collision occurs, and assum-
ing that the AUV structure is breached, then it is inevitable that a catastrophic
failure will follow [Tan et al., 2004a].

The topic of collision avoidance for AUVs is complicated, but may be split into
two main subjects; obstacle detection which focuses on detecting obstacles usu-
ally based on sonar data, and obstacle avoidance which consists of finding a
collision-free trajectory around detected obstacles [Tan et al., 2004a]. A collision
avoidance system must contain functionality for both obstacle detection and ob-
stacle avoidance in order to avoid collisions. The main focus in this thesis will be
obstacle avoidance. For obstacle detection, it is proposed to use the sonars cur-
rently employed on the HUGIN. The HUGIN series of vehicles is equipped with
a number of sonars, including a forward looking sonar (FLS) that has 120 verti-
cally aligned beams. By rotating the existing FLS 90 degrees it can be used as a
Horizontal forward looking sonar (HFLS), and detect obstacles in the horizontal
plane.

The collision avoidance system currently employed on the HUGIN 1000 AUV
avoids obstacles by moving in the vertical dimension. At given times, for example
when presented with tall obstacles or when operating in shallow waters, it is more
desirable to avoid obstacles by moving in the horizontal dimension. The work
in this thesis is a continuation of [Eriksen, 2014], where the Edge Following
[Tan et al., 2004b] and the Dynamic window algorithm [Fox et al., 1997] were

1

CHAPTER 1. INTRODUCTION

compared for use as a horizontal obstacle avoidance algorithm. The Dynamic
window algorithm was considered superior to the Edge Following algorithm. It
has, however, some shortcomings for use on vehicles with second order non-
holonomic constraints and time varying acceleration limits, such as AUVs. The
focus of this thesis is to investigate the Dynamic window algorithm in depth, and
modify it to improve the algorithm for use with AUVs.

1.2 Objective and scope

The following subtasks are proposed:

1. Perform a literature study on extensions and modifications made to the
Dynamic window algorithm.

2. Investigate possible modifications to the Dynamic window algorithm to
make it more suited for application on an AUV:

• Improve the accuracy of the AUV trajectory prediction.

• Modify the search space to include time varying acceleration limits.

• Can the the objective function be modified to improve the algorithm?

• Modify the algorithm to achieve a desired minimum obstacle clearance.

• Can the Dynamic window algorithm be modified to account for ocean
currents?

3. Extend the MATLAB\SIMULINK simulation environment in [Eriksen, 2014]:

• Include constant irrotational ocean current.

• Modify the Dynamic window algorithm to include the possible modi-
fications.

4. Attempt to prove stability for the collision avoidance system.

5. Simulate the collision avoidance system in different scenarios to demon-
strate strengths and weaknesses.

To simplify the tasks, noiseless measurements are assumed. Furthermore, since
the focus of the thesis is horizontal collision avoidance, all obstacles are assumed
to be tall with vertical faces. Hence, horizontal collision avoidance is always
preferred. In a practical application some mechanism for choosing between a
vertical or horizontal approach must be implemented.

1.3 Contributions

The contributions of this thesis is:

2

1.4. OUTLINE

• A review of previous extensions and modifications to the Dynamic window
algorithm.

• A series of modifications to the Dynamic window algorithm:

– A new method of partially linearizing the AUV dynamics and predict-
ing the AUV trajectories using a linear approximation of the AUV
dynamics. This new method greatly improves the accuracy of the pre-
dicted AUV trajectories and takes constant irrotational ocean current
into account.

– A new search space definition accounting for the time varying acceler-
ation limits of the AUV.

– A new objective function which makes the algorithm more general.

• A Lyapunov based stability proof of the collision avoidance system in con-
junction with an ILOS guidance law, under the assumption that no obsta-
cles are present. The proof includes constant irrotational ocean current.

• Thorough testing of the algorithm through a number of simulations.

1.4 Outline

This thesis is divided into several distinctive chapters.

Chapter 2 presents mathematical background and theory for vehicle modeling and
collision avoidance, and a literature review of the Dynamic window algorithm.
Chapter 3 contains derivations of the modifications made to the Dynamic window
algorithm. The development of the simulator used to simulate the AUV, including
sonars and collision avoidance system is presented in chapter 4. A Lyapunov
based stability proof for the collision avoidance system is conjunction with a
horizontal guidance and control system is presented in chapter 5. Chapter 6
contains data and comments from the conducted simulations. Some concluding
remarks, and suggestions for future work is presented in chapter 7.

1.5 Notation

The notation list is intended as a reference for the reader. Symbols only used in
a small part of the thesis is not included in the notation list. All symbols are
explained as they are introduced throughout the thesis. Bold symbols, e.g η,
denote a vector or a matrix.

3

CHAPTER 1. INTRODUCTION

Symbol Comment
η AUV pose
ν Body velocity
νr Relative body velocity
νc Ocean current velocity in body frame
V c Ocean current in inertial frame
τ Force vector
J(η) Velocity transformation matrix
M Mass matrix
C(ν) Coriolis-centripetal matrix
D(ν) Damping matrix
g(η) Vector of restoring forces matrix
δ Rudder deflection vector
δyaw Yaw rudder deflection
δpitch Pitch rudder deflection
np Propeller speed
B Input matrix
f Force vector
H Pivot point transformation matrix
Γ1 Separation matrix
Γ2 Separation matrix
n(ν) Nonlinear forces
N Jacobian matrix
A State matrix
β Input matrix
G Bias vector
X(ur) Force coefficient in sway
Y (ur) Force coefficient in sway
∆ ILOS lookahead distance
σ ILOS integral gain constant
ku Surge controller gain
kr Yaw rate controller gain
kψ Yaw controller gain
α Dynamic window yaw rate scaling constant
β Dynamic window distance scaling constant
γ Dynamic window surge speed scaling constant
C Configuration space
W Workspace
T Antitarget region
Ω Avoid region

4

1.6. ABBREVIATIONS

To separate small variations of variables, accents are used.

Accent e.g Comment
Bar ν̄ General variable separation. When used with variables con-

cerning the AUV model, e.g η̄, ν̄,M̄ , C̄, τ̄ , it refers to the
variable being used in conjunction with the pivot point.

Tilde ν̃ Error variable.
Prime n′ General variable separation.

1.6 Abbreviations

The list of abbreviations is intended as a reference for the reader. Abbreviations
are explained as they are introduced throughout the thesis.

Abbreviation Comment
AUV Autonomous underwater vehicle
CB Center of buoyancy
CG Center of gravity
CO Center of origin
DOF Degrees of freedom
DTM Digital terrain model
DVL Doppler velocity log
DWA Dynamic window algorithm
FD* Focused D*
FTS Forward tilted sonar
FLS Forward looking sonar
GDWA Global dynamic window approach
HFLS Horizontal forward looking sonar
ILOS Integral line of sight
LFC Lyapunov function candidate
LOS Line of sight
MPC Model predictive control
MSE Mean square error
NED North east down
NF1 Neuro-Fibromatosis type-1
RMSE Root mean square error
SSS Side scan sonar
UGAS Uniform global asymptotic stability
ULES Uniform local exponential stability
VS Vertical sonar

5

Chapter 2

Theoretical background

2.1 Mathematical modeling

The North east down (NED) reference frame {n} is used for modeling the AUV
kinematics. For marine vehicles operating in a local area at low velocities, {n}
can be considered to be inertial [Fossen, 2011]. In addition, the local body {b}
frame is used for modeling the AUV dynamics. The origin of {b} is located in the
center of buoyancy (CB). The model is presented in 6 degrees of freedom (DOF).

The AUV considered in this thesis is the HUGIN 1000 AUV. The HUGIN 1000
is dedicated towards naval applications where operations close to the seabed is
important [Kongsberg Maritime, 2014]. The operation space may also include
shallow waters, possibly with the presence of surface ice. This can make the
approach of passing obstacles in the vertical plane infeasible. A picture of the
HUGIN AUV is shown in Figure 2.1.

2.1.1 6DOF hydrodynamical model

The mathematical model used in this project is developed by the HUGIN 1000
design team, using the theory in [Fossen, 2011]. It is structured in a vectorial
form, given in (2.1). The model is valid for positive surge velocities.

η̇ = J(η)ν
Mν̇ +C(ν)ν +D(νr)νr + g(η) = τ

(2.1)

Where,

7

CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.1: The HUGIN 1000 AUV

η NED pose, η =
[
pn

T

b/n ΘT
nb

]T
=
[
N E D φ θ ψ

]T .
ν Body velocity, ν =

[
vb

T

b/n ωb
T

b/n

]T
=
[
u v w p q r

]T .
νr Relative body velocity, νr = ν − νc, where νc is the ocean current

velocity in {b}.
τ Generalized forces, τ =

[
X Y Z K M N

]T .
J(η) Transformation matrix from {b} velocity to {n} velocity, given in

(2.2a).
M Mass matrix, given in (2.2b).
C(ν) Coriolis-centripetal matrix, given in (2.2c).
D(νr) Damping matrix, given in (2.2d).
g(η) Restoring forces vector, given in (2.2e).

The SNAME [SNAME, 1950] notation is used.

The transformation matrix J(η) is defined as:

J(η) =
[
Rn
b (Θnb) 03×3
03×3 TΘ(Θnb)

]
(2.2a)

Where Rn
b (Θnb) is the rotation matrix from {n} to {b} and TΘ(Θnb) is the

angular velocity transformation matrix from {b} to {n}. It is worth noting that
TΘ(Θnb) has a singularity at θ = π

2 + nπ, n ∈ Z. This is a limitation when
using Euler angles to parameterize the orientation, and can be avoided by using
Euler parameters or quaternions as alternative parameterizations [Egeland and
Gravdahl, 2003]. The AUV will, however, never operate close to the singular
points. Therefore Euler angles are considered as suited for parameterizing the

8

2.1. MATHEMATICAL MODELING

AUV orientation.

The mass matrix M is:

M = MRB +MA =
[
mI3x3 −mS(rbg)
mS(rbg) Ib

]
︸ ︷︷ ︸

MRB

+

Xu̇ Xv̇ Xẇ Xṗ Xq̇ Xṙ

Yu̇ Yv̇ Yẇ Yṗ Yq̇ Yṙ
Zu̇ Zv̇ Zẇ Zṗ Zq̇ Zṙ
Ku̇ Kv̇ Kẇ Kṗ Kq̇ Kṙ

Mu̇ Mv̇ Mẇ Mṗ Mq̇ Mṙ

Nu̇ Nv̇ Nẇ Nṗ Nq̇ Nṙ

︸ ︷︷ ︸

MA

(2.2b)

Where MRB is the rigid-body mass matrix, MA contains the added mass. m is
the AUV mass, Ib is a matrix of inertia in CB and rbg =

[
xg yg zg

]T is the
location of the center of gravity (CG) given in {b}. S(λ) is a skew-symmetric

matrix, defined as S(λ) =

 0 −λ3 λ2
λ3 0 −λ1
−λ2 λ1 0

 , λ =
[
λ1 λ2 λ3

]T . It cor-

responds to the cross-product operator λ × a = S(λ)a. The mass matrix is
symmetric and positive definite, M = MT > 0 [Fossen, 2011].

The Coriolis-centripetal matrix can be parameterized in many ways. A skew-
symmetric property, C = −CT , can be achieved by choosing [Fossen, 2011]:

C(ν) =
[

03×3 −S(M11v
b
b/n +M12ω

b
b/n)

−S(M11v
b
b/n +M12ω

b
b/n) −S(M21v

b
b/n +M22ω

b
b/n)

]
(2.2c)

Where Ma ∈ R3×3, a ∈ {11, 12, 21, 22} are defined as M =
[
M11 M12
M21 M22

]
.

The damping matrix D(νr) is:

D(νr) = −

Xu +X|u|u|ur| 0 0 0 0 0

0 Yv 0 0 0 Yr
0 0 Zw 0 Zq 0
0 0 0 Kp 0 0
0 0 Mw 0 Mq 0
0 Nv 0 0 0 Nr

|ur|
u0

(2.2d)

Where |ur|
u0

is used for speed-scaling of the damping. To keep some damping
at zero surge speed, the scaling term is approximated as |ur|

u0
≈ |u′r|

u0
, |u′r| =

max(|ur|, µ) where µ > 0 is a small constant.

9

CHAPTER 2. THEORETICAL BACKGROUND

CG and CB are vertically aligned in {b}. Furthermore, the HUGIN 1000 is
naturally buoyant. The restoring forces is given as:

g(η) =
[
0 0 0 BGzWcθsφ BGzWsθ 0

]T (2.2e)

Where BGz is the z-component of a vector connecting CB and CG in {b} and
W = mg, where g is the acceleration of gravity, is the weight of the vehicle in
air. The notation c(·) = cos(·) and s(·) = sin(·) is introduced to simplify the
notation.

Assumption 2.1. The relative velocity νr and the pose vector η is considered
to be measured accurately without noise and drift.

Remark 2.1. The relative velocity νr can for example be measured using a
Doppler Velocity Log (DVL) [Morgado et al., 2011]. The HUGIN 1000 AUV
employs a DVL and a number of other sensors for navigation purposes. There-
fore, νr can be measured using the DVL. Further, an estimate of η is generated
by a DVL aided inertial navigation system which also can interface other sen-
sors [Jalving et al., 2004].

2.1.2 Ocean current modeling

Assumption 2.2. The ocean current is assumed to be constant, irrotational,
unknown and bounded in {n}. It is also assumed to have no vertical component,
hence it is given as V c =

[
VN VE 0

]T in {n}. There exists a constant Vmax >
0 such that Vmax ≥ ‖V c‖2 =

√
V 2
N + V 2

E.

Remark 2.2. Modeling the ocean current as constant and irrotational in the
inertial frame is widely accepted to describe the effects of slowly varying distur-
bances [Caharija, 2014].

The ocean current is given in {b} as:

νc =

uc
vc
wc
0
0
0

 ,

[
νc1
03×1

]
=
[
Rn
b (Θnb)V c

03×1

]
(2.3)

To include the ocean current in the model, it is useful to model the relative
velocity of the vehicle. It is possible to show that if the current is constant and
irrotational in the inertial frame, the following identity holds [Fossen, 2011]:

Mν̇ +C(ν)ν = Mν̇r +C(νr)νr (2.4)

10

2.1. MATHEMATICAL MODELING

The vehicle equations of motion in (2.1) can then be written in terms of relative
velocity as:

η̇ = J(η)νr +
[
V c

03×1

]
Mν̇r +C(νr)νr +D(νr)νr + g(η) = τ

(2.5)

Where νr =
[
ur vr wr p q r

]T .
2.1.3 Actuator model

The HUGIN 1000 is equipped with one propeller, and four rudders. The propeller
can be controlled by specifying the propeller angular rate, while the rudders are
controlled by specifying the deflection angles. All the rudders may be controlled
separately, which makes it possible to assert roll, pitch and yaw moments. The
propeller mainly produce surge force, but also some roll moment due to propeller
drag. The resulting force can be modeled as τ = τ propeller + τ rudder.

The propeller is modeled as:

τ propeller =
[
T 0 0 Q 0 0

]T (2.6)

Where T and Q is given as:

T = Tnn|np|np + Tunurnp (2.7a)

Q = Qnn|np|np +Qunurnp (2.7b)

Where np is the propeller angular rate, given in revolutions per second.

The rudder is modeled as:

τ rudder = Brudderδu
2
r (2.8)

Where Brudder and δ is given as:

Brudder =

0 0 0 0

Yδu2 Yδu2 0 0
0 0 Zδu2 Zδu2

Yδu2 lz −Yδu2 lz −Zδu2 ly Zδu2 ly
0 0 Zδu2 lx Zδu2 lx

−Yδu2 lx −Yδu2 lx 0 0

 (2.9a)

δ =
[
δtop δbottom δport δstarboard

]T (2.9b)

Where lx, ly, lz > 0 are the distances from the center of origin (CO) to the rudders
along the x, y and z axes respectively. δa, a ∈ {top, bottom, port, starboard} is
the rudder deflection angles, given in radians. Some drag in surge will be present

11

CHAPTER 2. THEORETICAL BACKGROUND

when the rudders are used, but this is not included in the model provided by
FFI.

The actuators are limited by saturation limits. In addition, the rudder rate of
change is limited. Therefore, np and δ is required to satisfy the constraints:

np ∈ [npmin
, npmax

] (2.10a)

‖δ‖∞ ≤ δmax (2.10b)∥∥δ̇∥∥∞ ≤ δ̇max (2.10c)

Where nmin and nmax are minimum and maximum propeller speeds, δmax is
the maximum rudder deflection angle and δ̇max is the maximum rudder rate of
change.

2.2 Collision avoidance theory

Collision avoidance systems can be divided into three major categories based on
their architecture [Tan et al., 2004a]:

1. Deliberative architecture

2. Reactive architecture

3. Hybrid architecture

The deliberative architecture is also known as a sense-plan-act approach or a
global method. Global methods are often referred to as path planning or motion
planning methods [Loe, 2008]. The architecture maintains an internal repre-
sentation of the environment at all times, and stores the information gathered
by the sensors for later use. This is often done by using a priori information,
and continuously building a map of the environment based on the current sensor
measurement. By maintaining the internal environment representation, reasoned
decisions can be made based on sensor data gathered over a long period of time.
The deliberative approaches often guarantee that a path to a goal is found if
it exists. The downside is that they are computationally expensive, which can
result in unresponsive behavior when presented with unpredicted situations.

The reactive architecture is also known as a sense-act or a local method. The
sensor measurements are used directly in the control of the vehicle behavior,
without building a map of the environment. This may lead to non-optimal paths
[Borenstein and Koren, 1991], and even trap the vehicle when presented with local
minima, for example dead ends. On the other hand, the responsiveness of the
system is excellent due to the low computational cost. This makes the reactive
architecture well suited for real-time applications where fast response is required.

The hybrid architecture tries to combine the deliberative and reactive architec-
tures into a superior architecture. It applies a reactive layer responding to rapid

12

2.3. THE DYNAMIC WINDOW ALGORITHM

unforeseen changes in the environment, and a deliberative layer which simulta-
neously apply high level planning with a global path planning algorithm. The
reactive layer contains the time critical safety functions, while the deliberative
layer ensures that the vehicle is guided along a path leading to the goal.

The Dynamic window algorithm is a local method. It is therefore expected to
sometimes choose non-optimal paths, which may get the AUV stuck in local
minima. A practical implementation should be of the hybrid architecture, using
the Dynamic window algorithm as the reactive layer. However, the main objective
of this thesis is to investigate the Dynamic window algorithm in depth, thus a
reactive architecture is chosen.

Local collision avoidance methods may in general be divided into directional
and velocity space based methods. The directional methods generate a direc-
tion which the AUV is required to travel, while velocity space based approaches
searches in the velocity space of the AUV and can hence take kinematic and
dynamic constraints directly into account [Seder et al., 2005]. The Dynamic
window algorithm [Fox et al., 1997], velocity obstacle [Castro et al., 2002] and
curvature-velocity [Simmons, 1996] approaches are examples of velocity space
based methods. Examples of directional methods are the potential field [Khatib,
1985], the vector field histogram (VFH) [Borenstein and Koren, 1991] method
and the Edge following algorithm [Tan et al., 2004b].

2.3 The Dynamic window algorithm

The Dynamic window algorithm (DWA) was introduced in [Fox et al., 1997]. The
method is popular as a reactive collision avoidance algorithm, and a number of
modifications have been suggested.

2.3.1 Original method

The Dynamic window approach to collision avoidance prohibits infeasible com-
mands to the vehicle, by taking the acceleration limits into consideration. The
algorithm was first designed for a car-like mobile robot with first order non-
holonomic constraints, moving in 3DOF [Fox et al., 1997]. This application have
similarities to the horizontal AUV collision avoidance problem. The essence of
the algorithm is to neglect sway motion, and predict the robot trajectory as a
circular arc with constant surge speed and yaw rate. This results in a 2 dimen-
sional search space. The optimal trajectory (and the corresponding desired surge
speed and yaw rate) is found from this search space by maximizing an objective
function.

It should be noted that the original method does not include ocean current, hence
it is assumed that V c = 0 in this section. This results in ν = νr. Therefore, the
rest of this section uses the absolute velocity ν.

13

CHAPTER 2. THEORETICAL BACKGROUND

Kinematic representation

The method assumes that the sway speed and the pitch and roll angles are iden-
tically zero. The north and east positions can then be written as:

N(tn) = N(t0) +
∫ tn

t0

u(t) cos(ψ(t))dt

E(tn) = E(t0) +
∫ tn

t0

u(t) sin(ψ(t))dt
(2.11)

The surge speed and yaw angle can be expressed as:

u(t) = u(t0) +
∫ t

t0

u̇(t̃)dt̃

ψ(t) = ψ(t0) +
∫ t

t0

r(t̃)dt̃

= ψ(t0) +
∫ t

t0

(
r(t0) +

∫ t̃

t0

ṙ(t̂)dt̂
)

dt̃

(2.12)

The control input to the AUV will affect u̇(t) and ṙ(t). Inserting (2.12) into
(2.11), the AUV position can be expressed in terms of the initial dynamic config-
uration, and the vehicle accelerations. By neglecting the actuator dynamics, the
accelerations can be considered as directly controllable. The north position can
be expressed as:

N(tn) = N(t0) +
∫ tn

t0

(
u(t0) +

∫ t

t0

u̇(t̃)dt̃
)

cos
(
ψ(t0)

+
∫ t

t0

(
r(t0) +

∫ t̃

t0

ṙ(t̂)dt̂
)

dt̃
)

dt (2.13)

Practical control systems have a specified sample frequency, hence the propeller
speed and rudder deflection can only be changed at specific times. By assuming
that the acceleration is constant between each sample point, (2.13) is rewritten
to (2.14), in discrete time.

N(tn) = N(t0) +
n−1∑
i=0

∫ ti+1

ti

(
u(ti) + u̇i∆i(t)

)
cos
(
ψ(ti)

+ r(ti)∆i(t) + 1
2 ṙi∆

2
i (t)

)
dt (2.14)

Where ∆i(t) = t− ti is a shifted time variable, u̇i and ṙi are the constant surge
and yaw rate accelerations in the time interval t = [ti, ti+1).

If the time steps [ti, ti+1) are sufficiently small, the equation can be simplified
further by approximating the velocities by a constant value in each time step. The

14

2.3. THE DYNAMIC WINDOW ALGORITHM

term u(ti) + u̇i∆i may be approximated by a constant ui ∈ [u(ti), u(ti+1)], while
ψ(ti) + r(ti)∆i(t) + 1

2 ṙi∆
2
i (t) may be approximated by ψ(ti) + ri∆i(t), where

ri ∈ [r(ti), r(ti+1)]. This results in (2.15).

N(tn) = N(t0) +
n−1∑
i=0

∫ ti+1

ti

ui cos
(
ψ(ti) + ri(t− ti)

)
dt (2.15)

By solving the integral, one finally ends up with:

N(tn) = N(t0) +
n−1∑
i=0

F iN (ti+1)

F iN (t) =
{

ui

ri

(
sin(ψ(ti))− sin

(
ψ(ti) + ri(t− ti)

))
, ri 6= 0

ui cos(ψ(ti))t , ri = 0

(2.16)

The equation for the east position can be derived in the same fashion. The
expression for the east position is:

E(tn) = E(t0) +
n−1∑
i=0

F iE(ti+1)

F iE(t) =
{
−ui

ri

(
cos(ψ(ti))− cos

(
ψ(ti) + ri(t− ti)

))
, ri 6= 0

ui sin(ψ(ti))t , ri = 0

(2.17)

If the i-th yaw rate is zero, ri = 0, the i-th segment will be a straight line.
Otherwise, it will be a circular arc-segment with radius M i

r = ui

ri
. It is worth

noting that the acceleration will be discontinuous when ri changes.

Search space

The search space for the algorithm is defined by modeling the AUV trajectory
as circular arcs, using (2.16) and (2.17). Each trajectory is then defined by n
velocity pairs, (ui, ri). Hence, one has to specify n velocity pairs to define a
trajectory. To limit the search space, only the first velocity pair in a trajectory is
specified, while the remaining n − 1 pairs are considered constant. This defines
the AUV trajectories by a single velocity pair, creating a 2 dimensional search
space. Only positive velocities are considered.

To reduce the search space further, non-admissible velocities are removed. For a
velocity pair to be considered admissible, the AUV must be able to stop before
it reaches the closest obstacle on the corresponding trajectory. The space of
admissible velocities are defined in (2.18). The accelerations of the AUV is limited

15

CHAPTER 2. THEORETICAL BACKGROUND

to the intervals u̇ ∈ [u̇min, u̇max] and ṙ ∈ [−ṙmax, ṙmax].

Va =
{

(u, r) ∈ R× R
∣∣∣u ≤√−2 · dist(u, r) · u̇min

∧r ≤
√

2 · dist(u, r) · ṙmax
}

(2.18)

Where dist(u, r) expresses the distance to the closest obstacle on the correspond-
ing trajectory.

Further, the dynamic velocity window is introduced. This defines a set of veloc-
ities, centered around the current velocity (ua, ra), which are reachable during
the next time step. Using T as the time allowed for acceleration during the next
time step, the dynamic velocity window can be defined as:

Vd =
{

(u, r) ∈ R× R
∣∣∣u ∈ [ua + u̇minT, ua + u̇maxT]

∧ r ∈ [ra − ṙmaxT, ra + ṙmaxT]
}

(2.19)

Lastly, the set of possible velocities are defined:

Vs =
{

(u, r) ∈ R× R
∣∣∣u ∈ [0, umax] ∧ r ∈ [−rmax, rmax]

}
(2.20)

Where umax and rmax are the maximum surge speed and yaw rate of the AUV
respectively.

The resulting search space, denoted Vr, can be defined as:

Vr = Vs ∩ Va ∩ Vd (2.21)

Velocity selection

By defining an objective function, an optimal velocity pair may be defined and
selected. The objective function, given in (2.22), consists of three parts. The
optimal velocity pair is found by maximizing the function.

G(u, r) = σ (α · heading(u, r) + β · dist(u, r) + γ · velocity(u, r)) (2.22)

Where heading(u, r), dist(u, r) and velocity(u, r) are functions normalized to [0, 1].
α, β, γ > 0 are scaling factors and σ is a low pass filter, for smoothing the function.

The heading(u, r) function assigns a value to keeping the desired heading. For a
guidance scheme, the function would simply compare the alignment of the AUV
with the desired heading from the guidance system. Since the algorithm specifies
a yaw rate, the resulting heading for a velocity pair has to be computed. The
heading is estimated as the heading the AUV would have, after stopping the yaw
rotation by exerting maximum yaw deceleration after the first time step.

16

2.3. THE DYNAMIC WINDOW ALGORITHM

The dist(u, r) function assigns a value to keeping distance to obstacles. The func-
tion calculates the distance the AUV can travel along the predicted trajectories,
without colliding with an obstacle. The function is the same that is used in
(2.18), but scaled to [0, 1].

The velocity(u, r) function assigns a value to using a high velocity, and is simply a
linear function in surge speed, u. This favors progress of the AUV, and prohibits
the AUV from stopping when it is avoidable.

Selection of the optimal velocity pair can be summarized as:

max
(u,r)

G(u, r) = σ (α · heading(u, r) + β · dist(u, r) + γ · velocity(u, r))

s.t. (u, r) ∈ Vr
(2.23)

The selected velocity pair is only implemented in one time step, before the algo-
rithm is rerun. Hence, only a small part of the selected trajectory will be followed,
before a new trajectory is planned. The maximization problem is solved numer-
ically by uniformly sampling the search space Vr, and comparing the objective
function value of all the velocities in the sampled search space.

Summary of the method

The Dynamic window algorithm is a local collision avoidance method, that con-
siders the vehicle dynamics. This makes the approach more computationally
expensive than other local collision avoidance methods as the Edge following al-
gorithm [Tan et al., 2004b] and Potential field methods [Khatib, 1985,Koren and
Borenstein, 1991,Borenstein and Koren, 1991], but it may also perform better.
The results in [Eriksen, 2014] favor the Dynamic window algorithm over the other
named approached.

Assuming zero sway speed is not valid for an AUV, as it will sideslip. The
assumption may be somewhat more valid by transforming the AUV model to the
pivot point [Caharija et al., 2012, Caharija, 2014, Fossen, 2011], which removes
the rudder actuation in sway. However, the vehicle will still sideslip due to the
AUV dynamics, so this should be included in the derivation.

2.3.2 Proposed extensions

The original Dynamic window algorithm [Fox et al., 1997] for collision avoidance
has been investigated by quite some researchers. Several modifications to the
original method has been suggested.

A problem with the algorithm is the lack of global information. This makes
the robot sensitive to local minima, since it may get stuck. To resolve this is-
sue, several modifications has been done to include global information in the

17

CHAPTER 2. THEORETICAL BACKGROUND

algorithm. [Brock and Khatib, 1999] introduced the Global dynamic window ap-
proach (GDWA). It combines planning and real-time obstacle avoidance to avoid
the robot to be trapped in local minima by including a Neuro-Fibromatosis type-
1 (NF1) navigation function in the objective function. The navigation function
contains information about the free space connectivity of the environment, and
by following the gradient of the function a path to the goal is found. The NF1
function can be constructed by computing the shortest path problem on a graph
defined on a grid based map of the environment [Ögren and Leonard, 2002]. Nat-
urally, this requires global knowledge of the environment. They also extended the
method to apply to holonomic robots by using a circular search space of transla-
tional velocities. [Tusseyeva et al., 2013] applied the GDWA on an AUV, but did
not consider the second order non-holonomic constraints of the vehicle. [Seder
et al., 2005] further modified the algorithm by integrating the Dynamic window
algorithm with a focused D* (FD*) global planner.

Velocity space based approaches typically assumes that the robot travels along
circular arcs [Seder et al., 2005]. The Dynamic window algorithm was originally
designed for robots with first order non-holonomic constraints, more specifically
a car-like robot without any sideways movement. This makes it accurate to
predict the trajectories using circle segments. AUVs have second order non-
holonomic constraints, hence AUVs will be subject to sideways movement [Oriolo
and Nakamura, 1991]. This makes predicting the trajectories as circular arcs
inaccurate. [Tusseyeva et al., 2013] argues that using circles is accurate when
only allowing small vehicle accelerations. This highly depends on the dynamics
of the vehicle, as any lateral speed will affect the trajectory regardless of the ac-
celerations involved. Using clothoid curves instead of circular arcs was suggested
by [Schröter et al., 2007]. Clothoids are more suitable for modeling robot trajecto-
ries as they have a continuous curvature. This results in continuous accelerations
when traveling along the curve [Fleury et al., 1995]. [Loe, 2008] applied the Dy-
namic window algorithm to a surface vehicle. He estimated the lateral speed by
computing the steady state solution to the sway dynamics in each time step, and
then simulating a simplified set of equations of motion to predict the trajectories.
He also included time varying acceleration limits to account for the dynamics
changing as a function of the vehicle velocity. Further, [Kiss and Tevesz, 2012]
uses a linear model of the vehicle dynamics to generate the trajectories. This
produces accurate predictions, but requires a linear model of the vehicle.

Several modifications has been done to the objective function. To integrate the
DWA with a global planner, the heading term is often exchanged for a measure
of alignment, which measures the alignment between a trajectory and a desired
path [Brock and Khatib, 1999]. [Seder et al., 2005, Tusseyeva et al., 2013] con-
sidered time parameterized paths and included time in the alignment measure,
so the velocity term in the objective function could be omitted. This resulted in
an objective function with only two terms, which was easily tuned. They also
considered the time until collision instead of the distance until collision. When
considering distance until collision, a singularity occurs when the translational

18

2.3. THE DYNAMIC WINDOW ALGORITHM

velocity is zero since a pure rotation produces no robot movement in 2D. This
singularity is not present when considering time until collision, which also is more
intuitive as it normalizes for the trajectory velocity. [Berti et al., 2008] used a
Lyapunov motivated control law for the desired velocity to focus the objective
function. They were able to guarantee global asymptotic convergence to a goal
point, with the assumption that no obstacles were present. The "Shared Control
Dynamic Window Approach" was proposed by [Inñigo Blasco et al., 2014], which
is designed for semi-autonomous non-holonomic robots. It focuses the heading
and velocity terms to a user specified input, and acts like a navigation assistance
system. When the environment gets cluttered, a "dangerousness metric" makes
the algorithm take more control and ensure safe operation.

The Dynamic window algorithm have a tendency to select robot trajectories close
to the obstacle boundaries. To increase the obstacle clearance [Brock and Khatib,
1999] modified the heading term when the robot selected trajectories with too
little obstacle clearance. [Seder and Petrović, 2007] proposed using a velocity
dependent safety contour around the robot. Hence, a large translational velocity
prohibits the robot to travel close to obstacles, while a small translational velocity
allows the robot to travel closer to obstacles. [Eriksen, 2014] applied a 2D filter
to the objective function to increase the obstacle clearance. This increased the
minimum obstacle clearance, but the dynamic response of the robot was reduced.

A number of other modifications has also been proposed. [Ögren and Leonard,
2002,Kiss and Tevesz, 2012] developed an alternative formulation of the DWA
using Model predictive control (MPC), and [Ögren and Leonard, 2002] was able
to guarantee convergence to a goal using Lyapunov analysis. The "Trajectory
Particle Filter", suggested by [Schröter et al., 2007], draw analogs between the
Dynamic window algorithm and particle filters, and uses a normal distribution
to sample the search space. [Castro et al., 2002] included a velocity cone, inspired
by velocity obstacles, in the DWA to account for moving obstacles. [Seder and
Petrović, 2007] modeled moving obstacles as moving cells in a grid map. This
makes arbitrary obstacle configurations possible, and offers great flexibility. The
downside is that each cell in the grid map must be considered as a separate
object, requiring a large amount of calculations to predict the movement of each
cell instead of the movement of one obstacle.

19

Chapter 3

Modifications to the
Dynamic window algorithm

The original Dynamic window algorithm is modified in a number of ways to
improve the performance when applied to the HUGIN1000 AUV:

• Create a local obstacle grid map, to add safety sectors around the detected
obstacles and hence control the obstacle clearance.

• Include time varying acceleration limits in the search space.

• Partially linearize the AUV dynamics and predict the AUV trajectories
using a linear approximation of the dynamics instead of using circular arcs.

The modifications presented in this chapter is derived by the author, unless oth-
erwise it noted.

3.1 Control plant model

A control plant model is found by simplifying the 6DOF model in section 2.1.
With a slight abuse of notation, η, νr, R(η),M , C(νr) andD(νr) are redefined
in this chapter to model the AUV in 3DOF.

Assumption 3.1. Heave speed, and the roll and pitch angles are assumed con-
stant and equal to zero.

Remark 3.1. Assuming zero roll angle is a common assumption for slender
body vehicles such as AUVs [Fossen, 2011]. Their CG is normally located below
the CB, at the same (x,y) coordinate in {b}, which passively stabilizes the roll
motion. Further, by equally utilizing the top and bottom rudders, and the port

21

CHAPTER 3. MODIFICATIONS TO THE DYNAMIC WINDOW
ALGORITHM

and starboard rudders, no roll moment is generated by the rudders. For an AUV
equipped with a depth controller, close to zero heave speed and pitch angle is
achieved when the AUV is traveling in a horizontal plane, without vertical ocean
current (as of Assumption 2.2).

Assumption 3.2. Actuator dynamics and saturation limits are neglected.

Remark 3.2. The search space of the DWA is constructed to account for actuator
saturation, and the actuator dynamics are considered fast enough to be neglected.

Assumption 3.1 allow the control plant model to be formulated in 3 DOF (surge,
sway and yaw). The 3 DOF model is given as (see section 2.1 for details):

η̇ = R(η)νr + V c (3.1a)

Mν̇r +C(νr)νr +D(νr)νr = Bf (3.1b)

Where η =
[
N E ψ

]T , V c =
[
VN VE

]T , νr =
[
ur vr r

]T , f =
[
X N

]T
and:

R(η) =

cψ −sψ 0
sψ cψ 0
0 0 1

 (3.2a)

M =

m11 0 0
0 m22 m23
0 m23 m33

 (3.2b)

C(νr) =

 0 0 −m22vr −m23r
0 0 m11ur

m22vr +m23r −m11ur 0

 (3.2c)

D(νr) = −

Xu +Xuu|ur| 0 0
0 Yv Yr
0 Nv Nr

 |u′r|
u0

(3.2d)

B =

b11 0
0 b22
0 b32

 (3.2e)

Note that to simplify the modeling, f is selected as the control input. For positive
surge speeds, and based on assumption 3.2, it is always possible to calculate a
proper propeller speed and rudder deflection given f . The constants in the B
matrix is given as b11 = b32 = 1, while b22 captures the coupling from the yaw
torque to the sway force in the actuator model, given from Y = − 1

lx
N , b22N .

The control input f affects the sway dynamics through the coupling term b22.
This complicates the control design. To remove this coupling, the model is trans-
lated to the pivot point [Fossen, 2011,Fredriksen and Pettersen, 2006,Caharija,
2014]. The transformation is given as a coordinate transformation:

ur = ur, v̄r = vr + εr, r = r (3.3)

22

3.1. CONTROL PLANT MODEL

Where ε is given as:

ε , −m33b22 −m23b32

m22b32 −m23b22
(3.4)

ε is well defined as long as the system is controllable in yaw [Caharija, 2014],
which it naturally is since b32 = 1.

The new relative velocity vector ν̄r is given as:

ν̄r =

urv̄r
r

 ,H−1νr (3.5)

Where the transformation matrix is given as:

H ,

1 0 0
0 1 −ε
0 0 1

 (3.6)

The transformation corresponds to a physical translation of the model along
the {b} x-axis, of a distance ε [Caharija, 2014]. Without loss of generality, the
model is therefore transformed to describe the motion of a point located at pb =[
ε 0 0

]T . The point p is given in {n} as [Fredriksen and Pettersen, 2006]:

N̄ = N + ε cos(ψ), Ē = E + ε sin(ψ) (3.7)

The new position vector η̄ is given as:

η̄ =

N̄Ē
ψ

 (3.8)

Notice that no down-position is given, as the model is in 3DOF.

The transformed system is given as:

˙̄η = R(η̄)ν̄r +
[
V c

0

]
(3.9a)

M̄ ˙̄νr + C̄(ν̄r)ν̄r + D̄(ν̄r)ν̄r = B̄f (3.9b)

Where M̄ = HTMH, D̄(ν̄r) = HTD(ν̄r)H and B̄ = HTB. The Coriolis-
centripetal matrix is not transformed, but rather parameterized using M̄ . The
matrices are given such that the following property holds [Caharija et al., 2012]:

M̄
−1
B̄f =

b11
m11

X

0
m22b32−m23b22
m22m33−m2

23
N

 (3.10)

23

CHAPTER 3. MODIFICATIONS TO THE DYNAMIC WINDOW
ALGORITHM

Finally, it is often useful to write the AUV accelerations in (3.9b) in component
form. To simplify the notation, a transformation is defined:[

τu
τr

]
,

[
b11
m11

0
0 m22b32−m23b22

m22m33−m2
23

] [
X
N

]
(3.11)

This transformation is well-defined. By applying (3.11), the AUV dynamics
(3.9b) can be written as:

˙̄νr = M̄
−1
B̄f − M̄−1 (

C̄(ν̄r)ν̄r + D̄(ν̄r)ν̄r
)

=

τu0
τr

− M̄−1 (
C̄(ν̄r)ν̄r + D̄(ν̄r)ν̄r

) (3.12)

3.2 Environment modeling

[Eriksen, 2014] applied a 2D FIR filter to the objective function in order to
make the DWA select trajectories with an applicable side clearance to obstacles.
This made the AUV circumnavigate obstacles with some side clearance, but the
dynamic response suffered from the filtering. The magnitude of the side clearance
was also difficult to control. Inspired by [Rodriguez-Seda et al., 2014], a different
approach to achieve side clearance is suggested. By preprocessing the sonar
measurements, and creating a local map of the environment, safety regions can
be added to the obstacles. This is a more analytical way of achieving a desired
side clearance.

In order to model the environment, the configuration space C must be defined.
The configuration space is a complete specification of the AUVs location and
orientation. For an AUV traveling in the horizontal plane, as described by (3.9a)
and (3.9b), the configuration space consists of the AUV position and orientation
in the horizontal plane. It can be expressed as C = R2×SO(2) [Spong et al., 2006],
where R2 specifies the position of the AUV and SO(2) specifies the orientation
of the AUV using a rotation matrix in the special orthogonal group of order
2 [Fossen, 2011]. This results in a configuration space of three dimensions, which
relate to the 3DOF model of the AUV.

Further, the workspace W specify the total area swept out by the AUV through
all the possible AUV configurations. Since no constraints is put on the movement
of the AUV, the workspace is given as W = R2. Let the set of obstacles in W be
denoted as O, and the subset ofW occupied by the AUV given the configuration
η as A(η). The set of configurations which result in a collision is given as:

Cobs = {η ∈ C|A(η) ∩ O 6= ∅} (3.13)

The set of collision-free configurations is then:

Cfree = C \ Cobs (3.14)

24

3.2. ENVIRONMENT MODELING

(a) No collision (b) Collision

Figure 3.1: AUV heading is part of Cfree and Cobs

Figure 3.2: Circular approximation of the AUV footprint

Notice that Cfree and Cobs is given in the space R2 × SO(2). This is illustrated
in figure 3.1, where the heading in figure 3.1a does not cause a collision while the
one in figure 3.1b causes one. To simplify the representation of Cfree and Cobs,
the configuration space is collapsed by removing the AUV heading. This is done
by approximating the AUV footprint as a circle, shown in figure 3.2, which makes
the heading irrelevant for computing Cfree and Cobs and hence makes it possible
to collapse Cfree and Cobs into R2.

In practice, this is done by expanding the obstacles with the maximum radius
of the AUV and representing the AUV as a point p =

[
N̄ Ē

]T in a reduced
configuration space C̄ = R2. Let the set of expanded obstacles in W be given as
Ō (shown in figure 3.3), and Ā(p) represent a point in W occupied by the AUV.
The reduced set of configurations which result in collision is then:

C̄obs = {p ∈ C̄|Ā(p) ∩ Ō 6= ∅} (3.15)

Further, the set of collision-free configurations is then given as:

C̄free = C̄ \ ¯Cobs (3.16)

C̄obs and C̄free are now part of R2, which makes it sufficient to use the AUV
position to check for a collision.

Two sets which enclose the obstacles are defined; the antitarget region, T (which
corresponds to Ō), and the avoid region, Ω. The sets are defined as:

T =
{
p ∈ C̄

∣∣∣ ‖p− pobs‖2 ≤ r∗}
Ω =

{
p ∈ C̄

∣∣∣ ‖p− pobs‖2 ≤ r̄} (3.17)

Where pobs ∈ R2 is the position of obstacles and r̄ > r∗ > 0 are scalars defining
the size of the regions. In particular, r∗ is the largest radius of the AUV corre-

25

CHAPTER 3. MODIFICATIONS TO THE DYNAMIC WINDOW
ALGORITHM

Figure 3.3: Expanded obstacles to collapse the configuration space

Figure 3.4: Antitarget and avoid region

sponding to approximating the AUV footprint as a circle. The antitarget region
is interpreted as the region where a collision will occur, while the avoidance region
is interpreted as a safety region that is not desirable to enter. The regions are
illustrated in figure 3.4. From the definition of the sets, it is clear that T ⊂ Ω.

The regions can be implemented using a local 2D occupancy grid map [Elfes,
1987,Borenstein and Koren, 1991], where each cell in the map is given values in
the domain {0, 1, 2}. The cell values are interpreted as:

ci,j =

0 : pi,j /∈ Ω Cell is free to visit
1 : pi,j ∈ Ω ∩ \T Cell is undesirable to visit
2 : pi,j ∈ T Cell is not visitable

(3.18)

3.3 Search space

The search space is intended to take the dynamic constraints of the vehicle into
account, by only containing feasible velocity commands. Most implementations
consider the acceleration limits to be constant, and independent from the vehicle
velocity. Hence, it is usually assumed that the robots ability to accelerate and
decelerate in surge and yaw is independent of the surge speed and yaw rate. This

26

3.3. SEARCH SPACE

is not the case for AUVs, as they utilize rudders for controlling yaw. As seen in
section 2.1.3, the yaw torque is quadratic in the surge speed. To fulfill assumption
3.2 the search space is required to only contain feasible velocities, which does not
saturate the actuators. Hence, the possible accelerations must be dependent on
the current velocity.

Little effort has been done to address this problem. [Loe, 2008] modeled the
vehicle acceleration limits as u̇max = u̇max(u), u̇min = u̇min(u) and ṙmin =
ṙmax = ṙmax(r). This is an improvement to considering the acceleration limits
as constants, but does not consider the coupling from surge speed to yaw torque.
To address this, a new approach is proposed.

As in the original method, the search space consists of three parts, namely the
Dynamic velocity window Vd, the Possible velocities Vs and the Admissible ve-
locities Va. Each of them are described below.

Dynamic velocity window

By including the actuator dynamics into the dynamics (3.9b), the actuator con-
straints can be included in the search space derivation. The actuator model can
be included in (3.9b) by expanding the control input as:

B̄f = HT τ (νr, δ, np) (3.19)

Where τ (νr, δ, np) is a vector of generalized forces applied to the CO in 3DOF,
given the AUV velocity, rudder deflections and propeller speed. Note that it
is transformed to the pivot point using the transformation matrix H, given in
(3.6). As seen in section 2.1.3, only the top and bottom rudders affect the 3DOF
dynamics. Further, remark 3.1 suggests that the top and bottom rudders should
be equally utilized. Therefore, a new rudder command signal is defined as δyaw =
δtop + δbottom, where δtop = δbottom is required. (3.19) can then be written as:

B̄f = HT (τ propeller(ν̄r, np) + τ rudder(ν̄r, δyaw))
, τ̄ (ν̄r, δyaw, np)

(3.20)

Where τ propeller(ν̄r, np) and τ rudder(ν̄r, δyaw) are vectors containing forces in
3DOF generated by the propeller and rudders respectively, at the CO. They can
be expressed as (see section 2.1.3):

τ propeller(ν̄r, np) =

Tnn|np|np + Tunurnp
0
0

 (3.21a)

τ rudder(ν̄r, δyaw) =

 0
Yδu2

−Yδu2 lx

 δyawu2
r (3.21b)

27

CHAPTER 3. MODIFICATIONS TO THE DYNAMIC WINDOW
ALGORITHM

Note that νr in (3.19) is replaced with ν̄r. Since only the relative surge speed ur
is used in the expressions, νr and ν̄r is equal as arguments to τ , τ propeller and
τ rudder.

By inserting (3.20) into (3.9b), the AUV dynamics can be expressed as:

M̄ ˙̄νr + C̄(ν̄r)ν̄r + D̄(ν̄r)ν̄r = τ̄ (ν̄r, δyaw, n) (3.22)

Solving (3.22) for ˙̄νr:

˙̄νr = M̄
−1 (

τ̄ (ν̄r, δyaw, n)− C̄(ν̄r)ν̄r − D̄(ν̄r)ν̄r
)

(3.23)

The acceleration limits can be computed through evaluating the dynamic equa-
tions of the system. From (2.10c), the rudder deflection rate of change is limited
by |δ̇top|, |δ̇bottom| ≤ δ̇max. By defining a time allowed for changing the rudder
deflection angle, Trudd, limits on the rudder position can be found. The propeller
speed rate of change is not limited, but this may also be included. Including the
propeller speed and rudder deflection angle limits from (2.10a) and (2.10b), the
rudder deflection angle and propeller speed must be in the following sets:

δyaw ∈ sat
([
δ∗yaw + Trudd2δ̇max, δ∗yaw + Trudd2δ̇max

]
, 2δmax

)
np ∈ [npmin , npmax]

(3.24)

Where δ∗yaw = δyaw(t0). Again, note that δyaw = δtop + δbottom, so that the
constraints |δ̇top|, |δ̇bottom| ≤ δ̇max and |δtop|, |δbottom| ≤ δmax implies |δ̇yaw| ≤
2δ̇max and |δyaw| ≤ 2δmax.

The possible AUV accelerations can be found by evaluating (3.23) for the current
velocity ν̄∗r = ν̄(t0) and rudder deflections and propeller speed as defined in
(3.24). Since the propeller only creates surge force, and the rudders yaw torque,
the acceleration limits at the current time step can be computed as:

˙̄νrmin = M̄
−1 (

τ̄ (ν̄∗r ,max(δyaw),min(np))− C̄(ν̄∗r)ν̄∗r − D̄(ν̄∗r)ν̄∗r
)

˙̄νrmax
= M̄

−1 (
τ̄ (ν̄∗r ,min(δyaw),max(np))− C̄(ν̄∗r)ν̄∗r − D̄(ν̄∗r)ν̄∗r

) (3.25)

Where ˙̄νrmin
=
[
u̇rmin

˙̄vrmin
ṙmin

]T and ˙̄νrmax
=
[
u̇rmax

˙̄vrmax
ṙmax

]T . It
is worth noticing that a positive rudder deflection results in negative yaw moment.

From (3.25), the minimum and maximum surge and yaw accelerations can be
extracted. The dynamic velocity window is then defined using these acceleration
limits:

Vd =
{

(ur, r) ∈ R× R
∣∣∣ur ∈ [u∗r + u̇rminT, u

∗ + u̇rmaxT]

∧r ∈ [r∗ + ṙminT, r
∗ + ṙmaxT]} (3.26)

28

3.3. SEARCH SPACE

Possible velocities

Further, a set of possible velocities is found. The set contains all velocities the
AUV can achieve, with respect to the actuator saturation limits. The possi-
ble velocities can be found through computing the steady state solution of the
dynamics, for different rudder positions and propeller speed:

M̄ ˙̄νr = τ̄ (ν̄r, δyaw, np)− C̄(ν̄r)ν̄r − D̄(ν̄r)ν̄r = 0
for np ∈ [0, npmax

]
and δyaw ∈ [−2δmax, 2δmax]

(3.27)

The AUV model is only valid for positive surge velocities, therefore only positive
propeller speeds are considered. The set of possible velocities is defined as:

Vs =
{

(ur, r) ∈ R× R
∣∣g(ur, r) ≥ 0

}
(3.28)

Where g(ur, r) is greater or equal to zero for valid solutions to (3.27), and nega-
tive otherwise. The function g(ur, r) is found through numerically computing the
boundaries of the solutions to (3.27). Given m boundaries, defined by the func-
tions ha(ur, r) = 0, a ∈ {1, 2, . . . ,m} where ∇ha(ur, r) is required to be pointing
inwards to the valid solutions, g(ur, r) is defined as:

g(ur, r) = min (h1(ur, r), h2(ur, r), . . . , hm(ur, r)) (3.29)

Figure 3.5 show a plot of discrete solutions of (3.27), and the computed boundary
lines. A 3D plot of the function g(ur, r) is shown in figure 3.6.

The set of dynamically feasible velocities is then:

Vf = Vs ∩ Vd (3.30)

An illustration of Vs, Vd and Vf , given an initial velocity, is shown in figure 3.7.

Admissible velocities

Further, non-admissible velocities are removed [Eriksen, 2014]. For a velocity pair
to be considered admissible, the AUV must be able to stop before it reaches the
closest obstacle on the corresponding trajectory. The set of admissible velocities
is given as:

Va =
{

(ur, r) ∈ R× R
∣∣ur ≤√2ρ′(ur, r)|u̇min|

∧|r| ≤
{ √

2ρ′(ur, r)|ṙmax| : r < 0√
2ρ′(ur, r)|ṙmin| : r ≥ 0

}
(3.31)

29

CHAPTER 3. MODIFICATIONS TO THE DYNAMIC WINDOW
ALGORITHM

Figure 3.5: Possible combinations of surge speed and yaw rate, with respect to actuator
saturation limits

Figure 3.6: Function to find possible velocities

30

3.4. TRAJECTORY PREDICTION

Figure 3.7: The dynamically feasible velocity set, together with the boundaries of the
dynamic velocity window and the possible velocity set.

ρ′(ur, r) expresses the remaining distance the AUV can travel along the resulting
trajectory at the next iteration without entering the antitarget region T . It can
be computed as:

ρ′(ur, r) = max(ρ(ur, r)−∆s, 0) (3.32)

Where ρ(ur, r) expresses the distance the AUV can travel along the resulting
trajectory before it enters T and ∆s expresses the distance the AUV travels until
the next iteration.

Finally, the search space is defined as:

Vr = Vf ∩ Va = Vs ∩ Vd ∩ Va (3.33)

3.4 Trajectory prediction

Most of the literature on obstacle avoidance using the Dynamic window algorithm
is applied to robots with first order non-holonomic constraints. This makes it
fairly accurate to model the robot trajectories as circular arcs. AUVs have second
order non-holonomic constraints, which results in lateral velocities and makes the
circular approximations inaccurate. Some alternatives to this already exists:

• [Schröter et al., 2007] used clothoid curves to model the trajectories. This
is superior to using circular arcs, but is still an approximation.

31

CHAPTER 3. MODIFICATIONS TO THE DYNAMIC WINDOW
ALGORITHM

• [Loe, 2008] approximated the sway speed using the steady state solution
given the current surge speed and yaw rate, and simulated a simplified set
of equations of motion to predict the trajectories.

• [Kiss and Tevesz, 2012] used a linear model of the vehicle dynamics to
predict the trajectories.

To improve the predictions, it is proposed to use feedback linearization to lin-
earize the surge and yaw dynamics, while leaving the sway motion uncontrolled.
The closed loop dynamics is then derived and used for predicting the AUV trajec-
tories. This will include the sway and controller dynamics in the AUV trajectory
prediction. The approach is similar as the one presented in [Kiss and Tevesz,
2012], but does not require a linear model and is hence much more flexible. In
contrast to the approach suggested by [Loe, 2008], the actual equations of motion
is used, and a part of the system is solved analytically. This makes the prediction
less computationally expensive.

Since the system is non-holonomic, it is not possible to fully linearize the system
by feedback. Instead, the surge and yaw dynamics is linearized by partial feedback
linearization. (3.9b) can be rewritten as:

M̄ ˙̄νr + n̄(ν̄r) = B̄f (3.34)

Where n̄(ν̄r) = C̄(ν̄r)ν̄r+D̄(ν̄r)ν̄r contains the nonlinear parts of the equation.
Since the mass matrix always is positive definite [Fossen, 2011] and hence of full
rank, (3.34) can be rewritten as:

˙̄νr = M̄
−1
B̄f − M̄−1

n̄(ν̄r)

= M̄
−1
B̄f − n̄′(ν̄r)

(3.35)

Where n̄′(ν̄r) = M̄
−1
n̄(ν̄r).

To formulate the control law, the system is divided into two parts. This is done
by using the matrices Γ1 and Γ2, which is defined as follows:

Γ1 ,

[
1 0 0
0 0 1

]
Γ2 ,

[
0 1 0

] (3.36)

The matrices satisfies ΓT1 Γ1 + ΓT2 Γ2 = I. Hence, the system equation (3.35) can
be written as:

˙̄νr =
(
ΓT1 Γ1 + ΓT2 Γ2

)(
M̄
−1
B̄f − n̄′(ν̄r)

)
= ΓT1

(
Γ1M̄

−1
B̄f − Γ1n̄

′(ν̄r)
)

+ ΓT2 Γ2

(
M̄
−1
B̄f − n̄′(ν̄r)

)
= ΓT1

(
Γ1M̄

−1
B̄f − Γ1n̄

′(ν̄r)
)
− ΓT2 Γ2n̄

′(ν̄r)

(3.37)

32

3.4. TRAJECTORY PREDICTION

The last equality is due to the property Γ2M̄
−1
B̄ = 01×2. The system is now

divided into two parts. ΓT1 Γ1 map dynamics to surge and yaw, while ΓT2 Γ2 map
dynamics to sway. To linearize the surge and yaw dynamics, the control law can
be selected as:

f =
(
Γ1M̄

−1
B̄
)−1 (

Γ1n̄
′(ν̄r) + ab1

)
(3.38)

Where ab1 =
[
u̇rd ṙd

]T is the desired surge and yaw accelerations.

Remark 3.3. The matrix
(
Γ1M̄

−1
B̄
)−1

always exists. By inserting the ex-
pression M̄ = HTMH, and using (3.10) and (3.6), it is easy to show that:

Γ1M̄
−1
B̄ = Γ1

(
HTMH

)−1
HTB

= Γ1H
−1M−1B

=
[
b11
m11

0
0 m22b32−m23b22

m22m33−m2
23

] (3.39)

If ε in (3.4) is well defined then m22b32 −m23b22 6= 0. In addition, m22m33 −
m2

23 > 0 since M is positive definite. Hence, since the system can be shown to be
controllable in both surge and yaw, the matrix Γ1M̄

−1
B̄ is of full rank and thus

invertible.

Inserting (3.38) into (3.37) gives:

˙̄νr = ΓT1
(

Γ1M̄
−1
B̄
(
Γ1M̄

−1
B̄
)−1 (

Γ1n̄
′(ν̄r) + ab1

)
− Γ1n̄

′(ν̄r)
)

− ΓT2 Γ2n̄
′(ν̄r)

= ΓT1 ab1 − ΓT2 Γ2n̄
′(ν̄r)

(3.40)

The desired acceleration is selected as:
ab1 = ˙̄ν1rd

−Kp (ν̄1r − ν̄1rd
)

= ˙̄ν1rd
−Kp (Γ1ν̄r − ν̄1rd

)
(3.41)

Where Kp =
[
ku 0
0 kr

]
> 0 is a gain matrix, ν̄1r =

[
ur r

]T and ν̄1rd
=[

urd rd
]T .

Inserting the desired acceleration into the dynamics, and defining ν̃r = ν̄r −
ΓT1 ν̄1rd

=
[
ũr v̄r r̃

]T :
˙̄νr = ΓT1

(˙̄ν1rd
−Kp (Γ1ν̄r − ν̄1rd

)
)
− ΓT2 Γ2n̄

′(ν̄r)
˙̄νr − ΓT1 ˙̄ν1rd

= ΓT1
(
−Kp

(
Γ1ν̄r − Γ1ΓT1 ν̄1rd

))
− ΓT2 Γ2n̄

′(ν̄r)

˙̄νr − ΓT1 ˙̄ν1rd
= −ΓT1KpΓ1

(
ν̄r − ΓT1 ν̄1rd

)
− ΓT2 Γ2n̄

′(ν̄r)

˙̃νr = −ΓT1KpΓ1ν̃r − ΓT2 Γ2n̄
′(ν̄r)

(3.42)

33

CHAPTER 3. MODIFICATIONS TO THE DYNAMIC WINDOW
ALGORITHM

Note that the term n̄′(ν̄r) takes ν̄r = ν̃r + ΓT1 ν̄1rd
as its argument.

(3.42) is linear in all terms, except the last. It is important to notice that the last
term only influences the sway motion, as it is mapped through ΓT2 Γ2. Hence, the
equation is linear in both surge and yaw rate. In component form (3.42) reads:

˙̃ur = −k11ũr
˙̄vr = −n̄′2(ν̄r)
˙̃r = −k22r̃

(3.43)

Where n̄′2(ν̄r) is the contribution from the Coriolis-centripetal and damping ma-
trices in sway, n̄′(ν̄r) =

[
n̄′1(ν̄r) n̄′2(ν̄r) n̄′3(ν̄r)

]T . It is given as:

n̄′2(ν̄r) = 1
m̄22m̄33 − m̄2

23

((
m̄33d̄22 − m̄23d̄32

)
v̄r

− m̄23 (m̄22 − m̄11)urv̄r +
(
m̄33m̄11 − m̄2

23
)
urr

+
(
m̄33d̄23 − m̄23d̄33

)
r
)

(3.44)

Where m̄a, a ∈ {11, 22, 23, 33} and d̄a, a ∈ {11, 22, 23, 32, 33} are coefficients of
the matrices in (3.9b):

M̄ =

m̄11 0 0
0 m̄22 m̄23
0 m̄23 m̄33

D̄(ν̄r) =

d̄11(ur) 0 0
0 d̄22 d̄23
0 d̄32 d̄33

 (3.45)

A derivation of (3.44) is shown in appendix 3.A.

By approximating the last term of (3.42) using a first order Taylor series, the
dynamics of the AUV is linear in all terms:

n̄′(ν̄r) ≈ n̄′(ν̄∗r) + dn̄′(ν̄r)
dν̄r

∣∣∣∣∣
ν̄r=ν̄∗r︸ ︷︷ ︸

N

(ν̄r − ν̄∗r)

= n̄′(ν̄∗r) +Nν̄r −Nν̄∗r
= Nν̄r + b(ν̄∗r)

(3.46)

34

3.4. TRAJECTORY PREDICTION

Where ν̄∗r = ν̄r(t0) is a linearization point and b(ν̄∗r) = n̄′(ν̄∗r) − Nν̄∗r is a
constant term. The matrix N is given as:

N = dn̄′(ν̄r)
dν̄r

∣∣∣∣∣
ν̄r=ν̄∗r

=

d̄11(u∗r)+ dd̄11(ur)

dur

∣∣∣
ν̄r=ν̄∗r

u∗r

m̄11
− m̄22r

∗

m̄11

−m̄23(m̄22−m̄11)v̄∗r +(m̄33m̄11−m̄2
23)r∗

m̄22m̄33−m̄2
23

m̄33d̄22−m̄23d̄32−m̄23(m̄22−m̄11)u∗r
m̄22m̄33−m̄2

23

−m̄22(m̄11−m̄22)v̄∗r +m̄23(m̄22−m̄11)r∗
m̄22m̄33−m̄2

23

m̄22d̄32−m̄23d̄22−m̄22(m̄11−m̄22)u∗r
m̄22m̄33−m̄2

23

−m̄22v̄
∗
r−2m̄23r

∗

m̄11

(m̄33m̄11−m̄2
23)u∗r+m̄33d̄23−m̄23d̄33

m̄22m̄33−m̄2
23

m̄22d̄33−m̄23d̄23+m̄23(m̄22−m̄11)u∗r
m̄22m̄33−m̄2

23

(3.47)

A derivation of (3.47) is shown in appendix 3.A.

Inserting (3.46) into (3.42) results in:
˙̃νr = −ΓT1KpΓ1ν̃r − ΓT2 Γ2 (Nν̄r + b(ν̄∗r))

= −ΓT1KpΓ1ν̃r − ΓT2 Γ2N
(
ν̃r + ΓT1 ν̄1rd

)
− ΓT2 Γ2b(ν̄∗r)

= −
(
ΓT1KpΓ1 + ΓT2 Γ2N

)
ν̃r − ΓT2 Γ2NΓT1 ν̄1rd

− ΓT2 Γ2b(ν̄∗r)

(3.48)

(3.48) can be written as:
˙̃νr = Aν̃r + βν̄1rd

+G (3.49)

Where:
A = −

(
ΓT1KpΓ1 + ΓT2 Γ2N

)
β = −ΓT2 Γ2NΓT1
G = −ΓT2 Γ2b(ν̄∗r)

(3.50)

This is not a true linear system, due to the constant G. Hence ν̃r = 0 and
ν̄1rd

≡ 0 does not imply ˙̃νr = 0. However, by considering G as an input to the
system, (3.49) can be solved as:

ν̃r(t) = eA(t−t0)ν̃r(t0) +
∫ t

t0

eA(t−σ)βν̄1rd
(σ)dσ +

∫ t

t0

eA(t−σ)Gdσ

= eA(t−t0)ν̃r(t0) +
∫ t

t0

eA(t−σ) (βν̄1rd
(σ) +G) dσ

(3.51)

35

CHAPTER 3. MODIFICATIONS TO THE DYNAMIC WINDOW
ALGORITHM

Since the desired surge speed and yaw rate is constant for each trajectory, ν̄1rd

is constant for each trajectory. Also by letting t0 = 0 s, (3.51) can be solved
as: [Hespanha, 2009]

ν̃r(t) = eAtν̃r(0)−A−1 (I − eAt
)

(βν̄1rd
+G) (3.52)

The solution to the dynamics can then be used to compute the AUV position
for a selected velocity pair. The system is simulated in discrete time using a
standard simulation algorithm.

Assumption 3.3. The ocean current, V c, is assumed to be known to the Dy-
namic Window algorithm.

Remark 3.4. The ocean current can be estimated in different ways, for example
by using the steady state solution of the ILOS guidance law [Caharija, 2014].

From (3.9a), the kinematics are modeled as:

˙̄η = R(η̄)ν̄r +
[
V c

0

]
(3.53)

ν̄r can be computed from (3.52), while assumption 3.3 guarantees knowledge of
V c. Hence, ˙̄η can be computed, and the system can be simulated. The modified
Euler method is used for simulating the kinematics. For a system ẏ = f(y, t),
the method is given as: [Egeland and Gravdahl, 2003]

k1 = f (y(tn), tn)

k2 = f

(
y(tn) + h

2k1, tn + h

2

)
y(tn+1) = y(tn) + hk2

(3.54)

Where h is the discretization time step.

Hence, the system ˙̄η = f(η̄, t) = R(η̄)ν̄r(t) +
[
V c 0

]T can be simulated as:

k1 = R(η̄(tn))ν̄r(tn)

k2 = R(η̄(tn) + h

2k1)ν̄r(tn + h

2)

η̄(tn+1) = η̄(tn) + h

(
k2 +

[
V c

0

]) (3.55)

To illustrate the improvement of predicting the AUV trajectories using a linear
approximation, a set of AUV trajectories is computed for a search space consisting
of three desired surge velocities and three desired yaw rates. This results in
nine velocity pairs. The initial velocity is chosen as ν̄r(0) =

[
2 0 0

]T , and
the trajectories are predicted for 30 s without ocean current. Figure 3.8 show

36

3.4. TRAJECTORY PREDICTION

the actual AUV trajectories together with predicted trajectories using both the
circular approximation and the linear approximation. Table 3.1 show the average
mean square error and root mean square error of the predicted AUV trajectories
using the circular and linear approximations. From table 3.1 and figure 3.8 it is
clear that the linear approximation is much more accurate, especially for the first
part of trajectory.

Table 3.1 Mean square error (MSE) and Root mean square error (RMSE) of predicted
AUV trajectories

Time span Circular approximation Linear approximation
t = [0, 30] s t = [0, 5] s t = [0, 30] s t = [0, 5] s

MSE 4.67 m2 0.100 m2 0.045 m2 0.000576 m2

RMSE 2.16 m 0.316 m 0.213 m 0.0240 m

If it is not desirable to have the AUV model defined in the pivot point, the
linear trajectory prediction can done with the model defined in the CO of {b} by
changing the control law (3.38) to:

f = Υ
(
Γ1n

′(νr) + ab1
)

(3.56)

Where Υ =
(
Γ1M

−1B
)−1 and n′(νr) = M−1 (C(νr)νr +D(νr)νr). Further,

(3.49) must be changed to:

A = −
(
ΓT1KpΓ1 + ΓT2 Γ2

(
Υ′ (KpΓ1 − Γ1N) +N

))
β = ΓT2 Γ2

(
Υ′Γ1 − I

)
NΓT1

G = ΓT2 Γ2
(
Υ′Γ1 − I

)
b(ν∗r)

(3.57)

Where Υ′ = M−1BΥ. Since the trajectory prediction is done in the CO of {b}
(3.52) and (3.55) are changed to:

ν̃r(t) = eAtν̃r(0)−A−1 (I − eAt
)

(βν̄1rd
+G) (3.58)

and
k1 = R(η(tn))νr(tn)

k2 = R(η(tn) + h

2k1)νr(tn + h

2)

η(tn+1) = η(tn) + h

(
k2 +

[
V c

0

]) (3.59)

Where ν̃r now is defined as ν̃r = νr−ΓT1 ν1rd
. The details are shown in appendix

3.B.

37

CHAPTER 3. MODIFICATIONS TO THE DYNAMIC WINDOW
ALGORITHM

0

10

20

30

40

50

60

70

−30 −20 −10 0 10 20 30

u
rd

 = 1.73

r
d
 = −0.04

x
 d

is
ta

n
c
e

 [
m

]

y distance [m]

u
rd

 = 1.73

r
d
 = 0.00

u
rd

 = 1.73

r
d
 = 0.04

Actual trajectory

Linear approximation

Cirular approximation

(a) AUV trajectories, for ud =
1.73 m/s

0

10

20

30

40

50

60

70

−30 −20 −10 0 10 20 30

u
rd

 = 2.00

r
d
 = −0.04

x
 d

is
ta

n
c
e

 [
m

]

y distance [m]

u
rd

 = 2.00

r
d
 = 0.00

u
rd

 = 2.00

r
d
 = 0.04

Actual trajectory

Linear approximation

Cirular approximation

(b) AUV trajectories, for ud = 2 m/s

0

10

20

30

40

50

60

70

−30 −20 −10 0 10 20 30

u
rd

 = 2.19

r
d
 = −0.04

x
 d

is
ta

n
c
e

 [
m

]

y distance [m]

u
rd

 = 2.19

r
d
 = 0.00

u
rd

 = 2.19

r
d
 = 0.04

Actual trajectory

Linear approximation

Cirular approximation

(c) AUV trajectories, for ud =
2.19 m/s

Figure 3.8: Actual and approximated AUV trajectories, given initial velocity
ν̄r(t0) = [2 0 0]T

38

3.5. OBJECTIVE FUNCTION

3.5 Objective function

To make the algorithm as general as possible, and to support a layered imple-
mentation, the objective function is modified to take a desired surge speed and
yaw rate as inputs. This is inspired by [Berti et al., 2008] and [Inñigo Blasco
et al., 2014]. Hence, the algorithm works entirely in the velocity space by taking
speed and rate as both inputs and outputs.

In [Eriksen, 2014] the velocity term favored high linear velocities, using a linear
function in surge speed. The term is modified to be focused around a desired
surge speed Urd taken as input to the algorithm:

velocity(ur, r, Urd) = 1− |Urd − u|
max
u∈Vr

(|Urd − u|)
(3.60)

The original DWA, and the implementation in [Eriksen, 2014] used a heading
term which took a desired heading as an input. The term predicted the resulting
heading of a velocity pair, and compared the predicted and desired heading. To
improve the generality and flexibility, this term is replaced with a yawrate term
which is focused around a desired yaw rate r′d taken as input to the algorithm:

yawrate(ur, r, r′d) = 1− |r′d − r|
max
r∈Vr

(|r′d − r|)
(3.61)

Further, the dist term is scaled by the trajectory velocity. This results in a term
which approximates the time until collision, which is a more intuitive measure
than the distance until collision. This approach is inspired by [Seder et al., 2005]:

dist(ur, r) = ρ̄(ur, r)
1
T

∫ T
0 ‖χ(ur, r, t)‖2 dt

(3.62)

Where ρ̄(ur, r) is the distance the AUV can travel along the trajectory specified
by the velocity pair (ur, r) until it enters Ω. χ(ur, r, t) is the AUV velocity,
including the ocean current, along the trajectory specified by the velocity pair
(ur, r). This can be computed using the prediction in (3.52) and (3.55):

χ(ud, rd, t) =
[
u(t)
v̄(t)

]
=
[
1 0 0
0 1 0

]
ν̄(t|urd, rd)

=
[
1 0 0
0 1 0

](
ν̄r(t|urd, rd)

+R(η̄(t|urd, rd))T
[
V c

0

]) (3.63)

Where the notation ν̄r(t|urd, rd) and η̄(t|urd, rd) denotes the solutions to (3.52)
and (3.55) given ν̄1rd

=
[
urd rd

]
. It is worth noting that the ocean current is

39

CHAPTER 3. MODIFICATIONS TO THE DYNAMIC WINDOW
ALGORITHM

included in (3.63). This is necessary since ρ̄(u, r) is computed as the absolute
distance the AUV travels, from the predicted trajectories in (3.55). Also note
that if no obstacles are present, all the trajectories will have an equal distance
measure. The low pass filter σ in the original objective function (2.22) is omitted,
since no measurement noise is included. The objective function is then given as:

G(ur, r) = α·yawrate(ur, r, r′d) + β ·dist(ur, r) + γ ·velocity(ur, r, Urd) (3.64)

It is worth noting that the yawrate(ur, r, r′d) and velocity(ur, r, Urd) terms are
dimensionless, and that dist(ur, r) is given in seconds. The scaling constants α
and γ are therefore dimensionless, while β is specified in s−1. This results in a
dimensionless objective function.

40

3.A. APPENDIX: FUNCTIONAL EXPRESSIONS

3.A Appendix: Functional expressions

The nonlinear dynamics n̄′(ν̄r) is given as:

n̄′(ν̄r) = M̄
−1 (

C̄(ν̄r) + D̄(ν̄r)
)
ν̄r

=

m̄11 0 0
0 m̄22 m̄23
0 m̄23 m̄33

−1

 0 0 −m̄22v̄r − m̄23r
0 0 m̄11ur

m̄22v̄r + m̄23r −m̄11ur 0

+

d̄11(ur) 0 0
0 d̄22 d̄23

0 d̄32 d̄33

urv̄r
r

=

1
m̄11

0 0
0 m̄33

m̄22m̄33−m̄2
23

−m̄23
m̄22m̄33−m̄2

23

0 −m̄23
m̄22m̄33−m̄2

23

m̄22
m̄22m̄33−m̄2

23

 d̄11(ur)ur − m̄22v̄rr − m̄23r

2

d̄22v̄r + d̄23r + m̄11urr

(m̄22 − m̄11)ūrvr + m̄23rur + d̄32v̄r + d̄33r

=

d̄11(ur)ur−m̄22v̄rr−m̄23r
2

m̄11

1
m̄22m̄33 − m̄2

23

((
m̄33d̄22 − m̄23d̄32

)
v̄r

− m̄23 (m̄22 − m̄11)urv̄r +
(
m̄33m̄11 − m̄2

23
)
urr

+
(
m̄33d̄23 − m̄23d̄33

)
r
)

1
m̄22m̄33 − m̄2

23

((
m̄22d̄33 − m̄23d̄23

)
r

− m̄22 (m̄11 − m̄22)urv̄r + m̄23 (m̄22 − m̄11)urr

+
(
m̄22d̄32 − m̄23d̄22

)
v̄r

)

(3.65)

41

CHAPTER 3. MODIFICATIONS TO THE DYNAMIC WINDOW
ALGORITHM

The Jacobian matrix N is given as:

N = dn̄′(ν̄r)
dν̄r

∣∣∣∣∣
ν̄r=ν̄∗r

=

∂n̄′1(ν̄r)
∂ur

∂n̄′1(ν̄r)
∂v̄r

∂n̄′1(ν̄r)
∂r

∂n̄′2(ν̄r)
∂ur

∂n̄′2(ν̄r)
∂v̄r

∂n̄′2(ν̄r)
∂r

∂n̄′3(ν̄r)
∂ur

∂n̄′3(ν̄r)
∂v̄r

∂n̄′3(ν̄r)
∂r

∣∣∣∣∣∣∣
ν̄r=ν̄∗r

=

d̄11(u∗r)+ dd̄11(ur)

dur

∣∣∣
ν̄r=ν̄∗r

u∗r

m̄11

−m̄23(m̄22−m̄11)v̄∗r +(m̄33m̄11−m̄2
23)r∗

m̄22m̄33−m̄2
23

−m̄22(m̄11−m̄22)v̄∗r +m̄23(m̄22−m̄11)r∗

m̄22m̄33−m̄2
23

− m̄22r∗

m̄11

−m̄22v̄∗r −2m̄23r∗

m̄11

m̄33d̄22−m̄23d̄32−m̄23(m̄22−m̄11)u∗r
m̄22m̄33−m̄2

23

(m̄33m̄11−m̄2
23)u∗r+m̄33d̄23−m̄23d̄33

m̄22m̄33−m̄2
23

m̄22d̄32−m̄23d̄22−m̄22(m̄11−m̄22)u∗r
m̄22m̄33−m̄2

23

m̄22d̄33−m̄23d̄23+m̄23(m̄22−m̄11)u∗r
m̄22m̄33−m̄2

23

(3.66)

3.B Appendix: Trajectory prediction without pivot
point transformation

Given a model in 3 DOF, as (3.1a) and (3.1b):

η̇ = R(η)νr +
[
V c

0

]
(3.67a)

Mν̇r +C(νr)νr +D(νr)νr = Bf (3.67b)

Since the system is non-holonomic, it is not possible to fully linearize the system
by feedback. Instead, the surge and yaw dynamics is linearized by partial feedback
linearization. (3.67b) can be rewritten as:

ν̇r = M−1Bf − n′(νr) (3.68)

Where n′(νr) = M−1 (C(νr)νr +D(νr)νr).

Since the control input only contains two independent controls, only two DOF’s
can be controlled. Surge and yaw is selected to be controlled, and sway is left
uncontrolled. The controller is selected to remove the non-linearities in surge
and yaw by the use of feedback linearization. To formulate the control law, the
system is divided into two parts. This is done by using the matrices Γ1 and Γ2,
which is defined as follows:

Γ1 ,

[
1 0 0
0 0 1

]
Γ2 ,

[
0 1 0

] (3.69)

42

3.B. APPENDIX: TRAJECTORY PREDICTION WITHOUT PIVOT POINT
TRANSFORMATION

The matrices satisfies ΓT1 Γ1 + ΓT2 Γ2 = I. Hence, the system equation (3.68) can
be written as:

ν̇r =
(
ΓT1 Γ1 + ΓT2 Γ2

) (
M−1Bf − n′(νr)

)
= ΓT1

(
Γ1M

−1Bf − Γ1n
′(νr)

)
+ ΓT2 Γ2

(
M−1Bf − n′(νr)

) (3.70)

The system is now divided into two parts. ΓT1 Γ1 map dynamics to surge and yaw,
while ΓT2 Γ2 map dynamics to sway. To linearize the surge and yaw dynamics,
the control law can be selected as:

f =
(
Γ1M

−1B
)−1 (Γ1n

′(νr) + ab1
)

= Υ
(
Γ1n

′(νr) + ab1
) (3.71)

Where ab1 =
[
u̇d ṙd

]T is the desired surge and yaw rate accelerations, and
Υ =

(
Γ1M

−1B
)−1. The matrix Γ1M

−1B is:

Γ1M
−1B =

[
b11
m11

0
0 m22b32−m23b22

m22m33−m2
23

]
(3.72)

Γ1M
−1B is of full rank if the system is controllable in both surge and yaw

[Caharija, 2014]. This is trivially satisfied and therefore Υ always exists.

Inserting (3.71) into (3.70) gives:

ν̇r = ΓT1
(
Γ1n

′(νr) + ab1 − Γ1n
′(νr)

)
+ ΓT2 Γ2

(
M−1βΥ

(
Γ1n

′(νr) + ab1
)
− n′(νr)

)
= ΓT1 ab1 + ΓT2 Γ2

(
Υ′
(
Γ1n

′(νr) + ab1
)
− n′(νr)

)
= ΓT1 ab1 + ΓT2 Γ2

(
Υ′ab1 +

(
Υ′Γ1 − I

)
n′(νr)

) (3.73)

Where Υ′ = M−1BΥ.

The dynamics can furthermore be sorted in terms which affects the dynamics
from the acceleration input, ab1, and those who affects the dynamics internally:

ν̇r =
(
ΓT1 + ΓT2 Γ2Υ′

)
ab1 + ΓT2 Γ2

(
Υ′Γ1 − I

)
n′(νr) (3.74)

The desired acceleration is selected as:

ab1 = ν̇1rd
−Kp (ν1r − ν1rd

)
= ν̇1rd

−Kp (Γ1νr − ν1rd
)

(3.75)

Where Kp =
[
ku 0
0 kr

]
is a gain matrix, ν1r =

[
ur r

]T and ν1rd
=
[
urd rd

]T .
43

CHAPTER 3. MODIFICATIONS TO THE DYNAMIC WINDOW
ALGORITHM

Inserting the desired acceleration into the dynamics, and defining ν̃r = νr −
ΓT1 ν1rd

:

ν̇r =
(
ΓT1 + ΓT2 Γ2Υ′

)(
ν̇1rd

−Kp

(
ΓT1 νr − ν1rd

))
+ ΓT2 Γ2

(
Υ′Γ1 − I

)
n′(νr)

νr − ΓT1 ν1rd
= −

(
ΓT1KpΓ1 + ΓT2 Γ2Υ′KpΓ1

)
νr

+
(
ΓT1Kp + ΓT2 Γ2Υ′Kp

)
Γ1ΓT1 ν1rd

+ ΓT2 Γ2
((

Υ′Γ1 − I
)
n′(νr) + Υ′ν̇1rd

)
ν̃r = −

(
ΓT1KpΓ1 + ΓT2 Γ2Υ′KpΓ1

)
ν̃r

+ ΓT2 Γ2
((

Υ′Γ1 − I
)
n′(νr) + Υ′ν̇1rd

)

(3.76)

(3.76) is linear in all terms, except the last. It is important to notice that the last
term only influences the sway motion, as it is mapped through ΓT2 Γ2. Hence, the
equation is linear in both surge and yaw rate. In component form (3.76) reads:

˙̃ur = −k11ũr

v̇r = m33 +m23lx
m23 +m22lx

(k22r − k22rd − ṙd − n′3(νr))− n′2(νr)

˙̃r = −k22r̃r

(3.77)

Where n′2 and n′3 is the contribution from the Coriolis-centripetal and damping
matrices, in sway and yaw respectively. They are given as:

n′2(νr) = 1
m22m33 −m2

23

(
(m23Nv −m33Yv) vr −m23 (Xu̇ − Yv̇)urvr

+ (m33 (m−Xu̇) +m23Yṙ)urr − (m33Yr −m23Nr) r
)

n′3(νr) = 1
m22m33 −m2

23

(
(m23Yr −m22Nr) r

− (m23 (m−Xu̇) +m22Yṙ)urr +m22 (Xu̇ − Yv̇)urvr

+ (m23Yv −m22Nv) vr
)

(3.78)

(3.77) is found by evaluating (3.76) with the matrices in (3.2). Specifically b11 =
b32 = 1 and b22 = − 1

lx
where lx is the distance from the CO to the rudders along

the x-axis. (3.78) is found by evaluating (3.65) with the matrices in (3.2).

By approximating the last term of (3.76) using a first order Taylor series, the

44

3.B. APPENDIX: TRAJECTORY PREDICTION WITHOUT PIVOT POINT
TRANSFORMATION

dynamics of the AUV is linear in all terms:

n′(νr) ≈ n′(ν∗r) + ∂n′(νr)
∂νr

∣∣∣∣∣
νr=ν∗r︸ ︷︷ ︸

N ′

(νr − ν∗r)

= n′(ν∗r) +N ′νr −N ′ν∗r
= N ′νr + b′(ν∗r)
= N ′(ν̃r + ΓT1 ν1rd

) + b′(ν∗r)

(3.79)

Where ν∗r is a linearization point and b′(ν∗r) = n′(ν∗r)−N ′ν∗r is a constant term.
The linearization points is selected as the current AUV velocity, ν∗r = νr(t0).

Inserting (3.79) into (3.76) results in:

˙̃νr = −
(
ΓT1KpΓ1 + ΓT2 Γ2Υ′KpΓ1

)
ν̃r

+ ΓT2 Γ2

((
Υ′Γ1 − I

) (
N(ν̃r + ΓT1 ν1rd

) + b(ν∗r)
)

+ Υ′ν̇1rd

)
= −

(
ΓT1KpΓ1 + ΓT2 Γ2

(
Υ′ (KpΓ1 − Γ1N) +N

))
ν̃r

+ ΓT2 Γ2
(
Υ′Γ1 − I

)
NΓT1 ν1rd

+ ΓT2 Γ2
(
Υ′Γ1 − I

)
b(ν∗r) + ΓT2 Γ2Υ′ν̇1rd

(3.80)

(3.80) can be written as:

˙̃νr = Aν̃r + βν1rd
+G+ ΓT2 Γ2Υ′ν̇1rd

(3.81)

Where:
A = −

(
ΓT1KpΓ1 + ΓT2 Γ2

(
Υ′ (KpΓ1 − Γ1N) +N

))
β = ΓT2 Γ2

(
Υ′Γ1 − I

)
NΓT1

G = ΓT2 Γ2
(
Υ′Γ1 − I

)
b(ν∗r)

(3.82)

This is not a true linear system, due to the constantG and the term ΓT2 Γ2Υ′ν̇1rd
.

Hence ν̃r = 0 and ν1rd
≡ 0 does not imply ˙̃νr = 0. However, by considering G

and ΓT2 Γ2Υ′ν̇1rd
as inputs to the system, (3.81) can be solved as:

ν̃r(t) = eA(t−t0)ν̃r(t0) +
∫ t

t0

eA(t−σ)βν1rd
(σ)dσ

+
∫ t

t0

eA(t−σ)
(
G+ ΓT2 Γ2Υ′ν̇1rd

(σ)
)

dσ

= eA(t−t0)ν̃r(t0) +
∫ t

t0

eA(t−σ) (βν1rd
(σ) +G) dσ

+
∫ t

t0

eA(t−σ)ΓT2 Γ2Υ′ν̇1rd
(σ)dσ

(3.83)

45

CHAPTER 3. MODIFICATIONS TO THE DYNAMIC WINDOW
ALGORITHM

It is assumed that the initial reference change take place instantly. This is
expressed by modeling ν1rd

(t) using a left continuous Heaviside step function
[Wikipedia, 2015]:

H(t) =
{

0 t ≤ 0
1 t > 0 (3.84)

Denoting the previous reference as ν−1rd
and the change in reference as ∆ν1rd

,
the reference signal can be written as:

ν1rd
(t) = ν−1rd

+H(t− t0)∆ν1rd
(3.85)

Note that ν1rd
(t) is constant for t > t0, and that the derivative is:

ν̇1rd
(t) = δ(t− t0)∆ν1rd

(3.86)

Where δ(x) is the impulse function.

By using (3.86), the last term in (3.83) can be written as:∫ t

t0

eA(t−σ)ΓT2 Γ2Υ′ν̇1rd
(σ) =

∫ t

t0

eA(t−σ)ΓT2 Γ2Υ′δ(σ − t0)∆ν1rd
dσ

=
∫ t

t0

eA(t−σ)δ(σ − t0)dσΓT2 Γ2Υ′∆ν1rd

= eA(t−t0)ΓT2 Γ2Υ′∆ν1rd

(3.87)

Remark 3.5. (3.87) models an impulse to the system, which is intuitive. When
the reference changes as a a step, the controllers will excite the actuators infinitely
due to the feed forward of the desired acceleration (which is infinite for a step in
the reference). For a practical system, this impulse would be dampened by the
natural low pass filtering of the actuators, and the accuracy of the predictions
would most likely be more correct by neglecting the term (3.87).

Further denoting and inserting ν1rd
(σ) = ν1rd

, σ > t0 and (3.87) into (3.83):

ν̃r(t) = eA(t−t0)ν̃r(t0) +
∫ t

t0

eA(t−σ) (βν1rd
+G) dσ

+ eA(t−t0)ΓT2 Γ2Υ′∆ν1rd

= eA(t−t0)
(
ν̃r(t0) + ΓT2 Γ2Υ′∆ν1rd

)
+
∫ t

t0

eA(t−σ) (βν1rd
+G) dσ

(3.88)

For simplicity t0 is selected as t0 = 0 s. (3.88) can be solved as [Hespanha, 2009]:

ν̃r(t) = eAt
(
ν̃r(0) + ΓT2 Γ2Υ′∆ν1rd

)
−A−1 (I − eAt

)
(βν1rd

+G) (3.89)

46

3.B. APPENDIX: TRAJECTORY PREDICTION WITHOUT PIVOT POINT
TRANSFORMATION

As remark 3.5 suggests, the impulse generated by the initial reference change
should be neglected due to the low pass nature of the actuators. (3.89) is then
reduced to:

ν̃r(t) = eAtν̃r(0)−A−1 (I − eAt
)

(βν1rd
+G) (3.90)

The solution to the dynamics can then be used to compute the AUV position
for a selected velocity pair. The system is simulated in discrete time using a
standard simulation algorithm. From (3.67), the kinematics are modeled as:

η̇ = R(η)νr +
[
V c

0

]
(3.91)

The rotation matrix R(η) is given as:

R(η) =

cψ −sψ 0
sψ cψ 0
0 0 1

 (3.92)

The modified Euler method is used for simulating the position. For a system
ẏ = f(y, t), the method is given as: [Egeland and Gravdahl, 2003]

k1 = f (yn, tn)

k2 = f

(
yn + h

2k1, tn + h

2

)
yn+1 = yn + hk2

(3.93)

Where h is the discretization time step.

Hence, the system η̇ = f(η, t) = R(η)νr(t) +
[
V c 0

]T can be simulated as:

k1 = R(η(tn))νr(tn)

k2 = R(η(tn) + h

2k1)νr(tn + h

2)

η(tn+1) = η(tn) + h

(
k2 +

[
V c

0

]) (3.94)

47

Chapter 4

Simulator development

4.1 Simulator overview

The simulator is implemented in SIMULINK [Mathworks, 2014b] using MATLAB
[Mathworks, 2014a] function blocks. This makes the simulator structure easy to
understand, due to the block-based SIMULINK language, while still employing
all the functionality and flexibility of the MATLAB language. The simulator
is based on two different HUGIN simulators, one provided by FFI and one by
[Engelhardtsen, 2007].

An overview of the simulator is shown in figure 4.1. The different parts of the
simulator implementation is described in the following sections. In particular, the
sonar model is covered in section 4.3 and the horizontal subsystem in sections
4.4, 4.5 and 4.6.

The simulator code is not included in the thesis due to confidentiality issues.

4.2 AUV model

The simulator is based on the 6DOF mathematical model of the HUGIN 1000
AUV given in section 2.1. The model is, however, transformed to the pivot point
to simplify the interaction with the Dynamic window algorithm. The transfor-
mation is similar to the one defined in section 3.1, but needs to be defined in
6DOF instead of 3DOF. For a model in 6DOF, the transformation is defined
as [Caharija, 2014,Børhaug et al., 2007]:

ur = ur, v̄r = vr + ε1r, w̄r = wr + ε2q, p = p, q = q, r = r (4.1)

49

CHAPTER 4. SIMULATOR DEVELOPMENT

Figure 4.1: Simulator overview

Where ε1 and ε2 is given as:

ε1 ,
m66Yδu2 +m26Yδu2 lx
m22Yδu2 lx +m26Yδu2

, ε2 , −m55Zδu2 −m35Zδu2 lx
m33Zδu2 lx −m35Zδu2

(4.2)

It is easy to show that for a slender body AUV with equal pitch and yaw rudders,
such as the HUGIN 1000 AUV, ε1 = −ε2 = ε [Caharija et al., 2012]. Hence, the
new relative velocity vector ν̄r can be written as:

ν̄r =

ur
v̄r
w̄r
p
q
r

 ,H−1νr (4.3)

Where the transformation matrix is given as:

H ,

1 0 0 0 0 0
0 1 0 0 0 −ε
0 0 1 ε 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

 (4.4)

The transformation corresponds to a translation of the CO along the {b} x-
axis, of a distance ε. As in section 3.1, without loss of generality, the model is
transformed to describe the motion of a point located at pb =

[
ε 0 0

]T . The

50

4.3. SONAR MODELING

point p is given in {n} as:

N̄ = N + ε cos(ψ) cos(θ), Ē = E + ε sin(ψ) cos(θ), D̄ = D − ε sin(θ) (4.5)

The new position vector η̄ is given as:

η̄ =

N̄
Ē
D̄
φ
θ
ψ

 (4.6)

The transformed system in 6DOF is given as:

˙̄η = J(η̄)ν̄r +
[
V c

03×1

]
(4.7a)

M̄ ˙̄νr + C̄(ν̄r)ν̄r + D̄(ν̄r)ν̄r + ḡ(η̄) = HT (τ propeller + τ rudder) (4.7b)

Where M̄ = HTMH, D̄(ν̄r) = HTD(ν̄r)H and ḡ(η̄) = HTg(η̄). The
Coriolis-centripetal matrix is not transformed, but rather parameterized using
M̄ .

4.3 Sonar modeling

A sonar (Sound Navigation and Ranging) is a device which, by the use of sound
waves, measure range to objects in water [National Ocean Service, 2014]. The
sonar modeling is based on the work of [Engelhardtsen, 2007].

4.3.1 Sonar configuration

The HUGIN 1000 sonar sensor suite includes the following sonars [Eriksen, 2014,
Engelhardtsen, 2007]:

• Vertical sonar (VS). Single sonar beam directed straight down from the
AUV.

• Forward tilted sonar (FTS). Single sonar beam tilted forward.

• Side scan sonar (SSS). Sonar pointing to the side of the AUV, one on
the starboard side and one on the port side. This sonar has a wide sector,
covering 70◦ in the vertical plane, and 0.5◦ in the horizontal plane.

• Horizontal forward looking sonar (HFLS). An array consisting of 120
sonar beams, pointed straight forward. Each beam covers a sector of 20◦ in
the vertical plane, and 1◦ in the horizontal plane. The entire array covers
a section of 120◦ in the horizontal plane.

51

CHAPTER 4. SIMULATOR DEVELOPMENT

Table 4.1 Position and orientation of sonar sensors

Sonar Position in {b} Orientation in {b}

VS
[
−0.500 −0.080 0.215

] [
0 −90◦ 0

]
FTS

[
−0.492 0.080 0.218

] [
0 −45◦ 0

]
Starboard SSS

[
−2.212 0.282 0.232

] [
0 (−80◦ → −10◦) 90◦

]
Port SSS

[
−2.212 −0.282 0.232

] [
0 (−80◦ → −10◦) −90◦

]
HFLS

[
−0.085 0.000 0.050

] [
0 (−10◦ → 10◦) −60◦ : 1◦ : 60◦

]

Only the HFLS sonar is used in the simulator, but the other sonars are also
included in the simulator. For completeness, the entire sonar model is covered in
this section.

The maximum detection range of the sonars is defined as 50 m. The orientation
and position of the sonars are listed in Table 4.1. Figure 4.2 show an illustration
of the sonar sensors.

4.3.2 Seabed modeling

The environment of the AUV is modeled using a Digital terrain model (DTM).
A DTM contain height data of a terrain, which creates a 3-dimensional model of
the environment [Statens Kartverk, 2014]. It is usual to use matrices for storing
the DTM. This is done by discretizing the base plane as rows and columns, and
storing the height in the correct matrix entry. For the {n} frame, the North-axis
is used to identify the row number, while the East-axis is used to identify the
column number. The Down-axis is stored in the corresponding matrix element.
If surface ice is to be included, a separate DTM matrix can be used for modeling
the ice depths. However, since all obstacles are assumed to be tall with vertical
faces, surface ice is not included in the simulator.

Figure 4.3 show an example DTM matrix, for the {n} frame. A visualization of
a DTM matrix of the seabed in Jesusbukta in the Breiangen area is shown in
Figure 4.4.

4.3.3 Single beam sonars

The VS and FTS are single beam sonar sensors. A sonar measurement is found
by searching for an intersection between the sonar beam and an obstacle, up to
the maximum sonar range. The search is done by discretizing the sonar beam
with a desired resolution, and comparing the height of each point with the DTM
matrix for the seabed profile.

52

4.3. SONAR MODELING

Figure 4.2: HUGIN 1000 sonar sensors

Figure 4.3: Example DTM matrix

53

CHAPTER 4. SIMULATOR DEVELOPMENT

Figure 4.4: Seabed map of Jesusbukta in the Breiangen area

54

4.3. SONAR MODELING

To describe the search, the SONAR frame, {s}, is introduced. This frame has its
origin in the sonar position, and is rotated with respect to {b} such that the x-
axis is pointing normal to the sonar plane. To fully define the frame, the rotation
about the x-axis is zero. For the SSS and HFLS, the orientation of {s} is defined
such that the x-axis points in the center of the sonar sector.

The search is done by iterating along the sonar beam. In {s}, each iteration point
is given as psi/s =

[
mj 0 0

]
, wheremj is the iteration variable. mj is initialized

as 0, and incremented with the desired resolution, δm, until an intersection with
an obstacle is found, or the maximum sonar range is reached. In order to check
for an intersection, the iteration point must be transformed to {n}. The iteration
point height is then compared with the height of the sea terrain. If the iteration
point is below the sea terrain, an intersection is found.

The transformation from {s} to {n} is done by first transforming from {s} to
{b}, and then from {b} to {n}. The transformations includes both rotation and
translation. The transformation from {s} to {b} is shown in (4.8), where pbs/b is
the position of the sonar and Rb

s is the rotation matrix from {b} to {s}.

pbi/b = Rb
sp
s
i/s + pbs/b (4.8)

The transformation can be written in matrix form as:[
pbi/b

1

]
=
[
Rb
s pbs/b

0 1

] [
psi/s

1

]
(4.9)

This is a homogeneous transformation, which combines rotation and transforma-
tion in one operation. It can be written as in equation (4.10), where Ab

s is the
homogeneous transformation matrix from {s} to {b}.

P b
i = Ab

sP
s
i

P b
i =

[
pbi/b

1

]
, P s

i =
[
P s
i

1

]
, Ab

s =
[
Rb
s pbs/b

0 1

] (4.10)

Furthermore, the transformation to {n} can simply be done by using the homo-
geneous transformation again:

P n
i = An

bP
b
i = An

bA
b
sP

s
i = An

sP
s
i

P n
i =

[
pni/n

1

]
, An

s = An
bA

b
s, An

b =
[
Rn
b pnb/n

0 1

] (4.11)

Where Rn
b is the rotation matrix from {n} to {b} and pnb/n is the position of the

AUV, given in {n}.

Algorithm 1 show a pseudo code for simulating a single beam sonar.

55

CHAPTER 4. SIMULATOR DEVELOPMENT

Algorithm 1 Single beam sonar simulator pseudo code
1: m← 0
2: while r ≤ max sonar range do
3: P s

i =
[
m 0 0 1

]T
4: P n

i = An
sP

s
i

5: Find correct section in the DTM matrices using x and y coordinates of
P n
i

6: if z coordinate of P n
i below sea terrain then

7: break
8: else
9: m = m+ δm

10: end if
11: end while
12: if m > max range then
13: return sonar out of range
14: else
15: return m
16: end if

Figure 4.5: Search lines of a single HFLS beam

4.3.4 Horizontal forward looking sonar

The HFLS is an array of 120 beams, each covering a sector of 20◦ in the vertical
plane, and 1◦ in the horizontal plane. To model the sonar, each beam is treated
as a separate sonar. In order to model a beam, the SONAR BEAM, {sb} frame is
introduced. The origin of the frame is the same as {s}, and is rotated such that
the x-axis points toward the center of the beam sector. Again, the rotation about
the x-axis is zero to fully define the frame. Furthermore, each of the 120 sonar
beams covers a sector of 20◦ of the vertical plane. To include this in the sonar
model, each beam is modeled by three lines inside the beam sector. The shortest
range is then used as the measurement. Figure 4.5 show a single HFLS beam,
and the three search lines. To describe the search, the SONAR LINE frame, {sl}
is used. The origin of this frame is {sb}, and it is rotated with respect to {sb}
such that the x-axis aligns with the search line. The rotation about the x-axis is
zero.

56

4.3. SONAR MODELING

To find the iteration point in {n} coordinates, two additional transformations
must be applied. The iteration point, psli/sl, is now given in {sl}. This is trans-
formed to {n} coordinates using the same method, but with a different homoge-
neous transformation matrix. The transformation is given as:

P n
i = An

slP
sl
i

P n
i =

[
pni/n

1

]
, P sl

i =
[
psli/sl

1

]
, An

sl = An
bA

b
sA

s
sbA

sb
sl

(4.12)

The same approach as for the single beam sonars, as described in section 4.3.3,
can then be applied for each of the search lines.

Algorithm 2 show a pseudo code for simulating the HFLS.

Algorithm 2 HFLS simulator pseudo code
1: for j = each of the 120 HFLS beams do
2: for k = each of the three search lines do
3: mk ← 0
4: while mk ≤ max sonar range do
5: P sl

i =
[
mk 0 0 1

]T
6: P n

i = An
slP

sl
i

7: Find correct section in the DTMmatrices using x and y coordinates
of P n

i

8: if z coordinate of P n
i below sea terrain then

9: break
10: else
11: mk = mk + δm
12: end if
13: end while
14: end for
15: lj = min

k
m

16: if lj > max range then
17: lj = out of range
18: end if
19: end for
20: return HFLS measurement l

4.3.5 Side scan sonars

The Port and Starboard SSS are identical, so they are modeled in the same way.
The SSS covers a sector of 0.5◦ in the horizontal plane, and 70◦ in the vertical
plane. The same approach, with splitting the sector into multiple single lines, as
for the HFLS is used. 10 lines are used to cover the sector. The transformation in

57

CHAPTER 4. SIMULATOR DEVELOPMENT

(4.12) is also used for the SSS. It is worth noticing that the {s} and {sb} frames
are identical for the SSS, hence Assb = I.

Algorithm 3 show a pseudo code for simulating a SSS.

Algorithm 3 SSS simulator pseudo code
for j = each of the ten search lines do

mj ← 0
while mj ≤ max sonar range do
P sl
i =

[
mj 0 0 1

]T
P n
i = An

slP
sl
i

Find correct section in the DTM matrices using x and y coordinates of
P n
i

if z coordinate of P n
i below sea terrain then

break
else

mj = mj + δm
end if

end while
end for
l = min

j
m

if l > max range then
return SSS out of range

else
return SSS measurement l

end if

4.4 Horizontal guidance system

The horizontal guidance system should make the AUV converge to a Line of
sight (LOS) vector. To cope with the constant irrotational ocean current, an
integral line-of-sight (ILOS) guidance law is used. The ILOS heading is defined
as [Børhaug et al., 2008,Caharija, 2014,Fossen, 2011]:

ψILOS = α− arctan
(
e+ σeint

∆

)
ėint = ∆e

(e+ σeint)2 + ∆2

(4.13)

Where α is the path heading, e is the cross track error and eint is an integral
state. The tuning constants ∆ and σ is the look-ahead-distance and an integral
gain respectively. ∆ and σ are both given in meters. The variables are illustrated
in figure 4.6.

58

4.5. FEEDBACK CONTROLLERS

Figure 4.6: ILOS guidance law

The integral state eint allow the heading to be different from the path heading
α when the cross track error e is zero. Hence, the AUV can compensate for the
ocean current by holding an off-path heading. This is illustrated in figure 4.7.
ėint is forced to zero when the collision avoidance system is active to prevent
integrator wind-up.

4.5 Feedback controllers

The simulator contains several controllers:

• Feedback linearizing controller for surge speed and yaw rate

• Yaw controller

• Depth controller

4.5.1 Surge speed and yaw rate controller

Due to the nonholonomic nature of the AUV, only a part of the system can be
controlled. Hence, a partial feedback linearizing controller is used for controlling
the surge speed and the yaw rate. The controller is derived in section 3.4. From

59

CHAPTER 4. SIMULATOR DEVELOPMENT

Figure 4.7: Steady state ILOS heading

(3.38) and (3.41) the feedback linearizing controller is formulated as:

f =
(
Γ1M̄

−1
B̄
)−1 (

Γ1n̄(ν̄r) + ab
)

=
(
Γ1M̄

−1
B̄
)−1 (

Γ1n̄(ν̄r) + ˙̄ν1rd
−Kp (Γ1ν̄r − ν̄1rd

)
) (4.14)

The required propeller speed and rudder deflection angle are computed from
f =

[
X N

]T in (4.14). From section 2.1.3 the surge thrust and yaw torque are
given as:

X = Tnn|np|np + Tunurnp (4.15a)
N = −Yδu2u2

rlxδyaw (4.15b)

Solving (4.15a) for the propeller speed np gives:

np =

−Tunur+

√
(Tunur)2+4TnnX

2Tnn
: X ≥ 0

−−Tunur+
√

(Tunur)2−4TnnX

2Tnn
: X < 0

(4.16)

Solving (4.15b) for δyaw gives:

δyaw = − N

Yδu2u2
rlx

(4.17)

To avoid division by zero, (4.17) is slightly modified:

δyaw = − N

Yδu2(u′r)2lx
, u′r = max (ur, µ) (4.18)

60

4.5. FEEDBACK CONTROLLERS

Where µ > 0 is an arbitrary constant, avoiding division by zero.

It is often useful to analyze the system equations in component form, as in (3.12).
To do this, (4.14) can be written as:

Γ1M̄
−1
B̄f = Γ1n̄(ν̄r) + ˙̄ν1rd

−Kp (Γ1ν̄r − ν̄1rd
) (4.19)

By using the transformation (3.11), this can be written as:

Γ1

τu0
τr

 = Γ1n̄(ν̄r) + ˙̄ν1rd
−Kp (Γ1ν̄r − ν̄1rd

) (4.20)

Inserting the expressions for Γ1, n̄(ν̄r), Kp, ν̄r and ν̄1rd
into (4.20), τu and τr

can be written as:
τu = n̄1(ν̄r)− ku(ur − urd) + u̇rd

τr = n̄3(ν̄r)− kr(r − rd) + ṙd
(4.21)

Where ku, kr > 0 since Kp > 0. By inserting (4.21) into (3.12), the error
dynamics can be written as:

˙̃ur = −kuũr
˙̃r = −kr r̃

(4.22)

From (4.22), it is clear that the response should be linear with time constants of
1
ku

and 1
kr
. However, the actuator dynamics are not included in the controller, and

introduces a nonlinearity to the closed loop system. This is verified from the step
responses in figure 4.8 and 4.9, where the gains are selected as ku = kr = 1 s−1.
The peak in the desired propeller speed is due to the term u̇rd in (4.21).

4.5.2 Yaw controller

The yaw controller is selected as a simple proportional controller with a derivative
feed forward:

r′d = −kψ (ψ − ψd) + ψ̇d (4.23)

Where kψ > 0 is a gain constant and ψd , ψILOS . By neglecting the Dynamic
window algorithm and selecting rd = r′d, the closed loop yaw dynamics can be
written:

˙̃ψ = ψ̇ − ψ̇d
= r − r′d − kψ(ψ − ψd)
= r̃ − kψψ̃

(4.24)

A step response of the closed loop yaw dynamics is shown in figure 4.10. kψ
was selected as kψ = 0.5 s−1. It is worth noting that the rudder saturation and
rate limitation affects the response. The actuator dynamics are accounted for
by limiting the available steering commands through the DWA search space, as
described in section 3.3.

61

CHAPTER 4. SIMULATOR DEVELOPMENT

0 5 10 15 20 25 30 35 40 45 50

0

1

2

3

Time [s]

S
u
rg

e
 s

p
e
e
d
 [
m

/s
]

Surge speed u
r

Desired surge speed u
rd

0 5 10 15 20 25 30 35 40 45 50

−5

0

5

10

15

Time [s]

P
ro

p
e
lle

r
s
p
e
e
d
 [
ra

d
/s

]

Desired propeller speed

Saturated propeller speed

Figure 4.8: Step response of closed loop surge dynamics

0 5 10 15 20 25 30 35 40 45 50
−0.05

0

0.05

0.1

0.15

0.2

0.25

Time [s]

Y
a
w

 r
a
te

 [
ra

d
/s

]

Yaw rate r

Desired yaw rate r
d

Figure 4.9: Step response of closed loop yaw rate dynamics

62

4.6. DYNAMIC WINDOW ALGORITHM

0 5 10 15 20 25 30 35 40 45 50

0

0.5

1

Time [s]

Y
a

w
 h

e
a

d
in

g
 [

ra
d

]

Yaw heading ψ

Desired yaw heading ψ
d

0 5 10 15 20 25 30 35 40 45 50
−1

−0.5

0

0.5

1

Time [s]

R
u

d
d

e
r

d
e

fl
e

c
ti
o

n
 a

n
g

le
 [

ra
d

]

Desired yaw rudder angle

Saturated yaw rudder angle

Figure 4.10: Step response of closed loop yaw dynamics

4.5.3 Depth controller

The depth controller is reused from the simulator provided by FFI. It consists of
a proportional controller for the depth in cascade with a proportional-derivative
controller for the pitch angle. The controller is not considered important for the
scope of the thesis, and is hence not described in further detail. The functionality
of the controller is verified through a step response, shown in figure 4.11. The
surge speed was kept constant at ur = 2 ms−1. The performance is considered
satisfactory, as the controller succeeds in stabilizing the depth of the AUV. The
rudder control signal δpitch seen in figure 4.1 is defined as δpitch = δport+δstarboard,
where δport = δstarboard is required.

4.6 Dynamic window algorithm

The Dynamic window algorithm is implemented based on the theory in section
2.3.1 and the modifications in chapter 3. The different parts of the algorithm is
described in the following sections.

4.6.1 Environment representation

As described in section 3.2 a map of the local environment is created to make the
AUV circumnavigate obstacles with a desired minimum clearance.

63

CHAPTER 4. SIMULATOR DEVELOPMENT

0 10 20 30 40 50 60 70 80 90
55

60

65

70

75

Time [s]

D
e
p
th

 [
m

]

Depth D

Desired depth D
d

Figure 4.11: Step response of closed loop depth dynamics

The antitarget region, T , is found by generating a boundary by interpolating
between all the HFLS sonar beams. The boundary is then padded with circles of
radius r∗. By interpolating between all sonar points, regardless whether the sonar
beam returns a measurement or reaches the maximum range, possible obstacles
just outside of the sonar range is taken into account. The interpolated boundary
and the corresponding part of T is illustrated in red in figure 4.12. In addition
to this area, the area outside of the sonar coverage is included in T since no
information about this area is available.

The avoid region, Ω, is found by estimating the obstacle boundary by interpo-
lating between the sonar beams which return a measurement. The estimated
obstacle boundary is then padded with circles of radius r̄. Ω is illustrated in
figure 4.12 as the blue area.

4.6.2 Search space and predicted trajectories

The search space is found in four steps:

1. Compute the set of Dynamically feasible velocities, Vf , and discretize the
set into a list of velocity pairs U .

2. Predict the trajectories for the velocity pairs in U .

3. Compute ρ(ur, r) for the velocity pairs (ur, r) ∈ U .

64

4.6. DYNAMIC WINDOW ALGORITHM

Figure 4.12: Local obstacle map. The estimated obstacle boundary is marked with a
red line.

4. Compute the set of Admissible velocities, Va, and compute the final search
space as Vr = Vf ∩ Va.

Vf is found by employing (3.26) and (3.28). The set is discretized uniformly
into the list U , by specifying a number of surge velocities and yaw rates. If the
desired surge speed and yaw rate (Urd, r′d) is in Vf , then the velocity pair (Urd, r′d)
is included in U . The same is done for the velocity pair (0, 0). Figure 4.13 show
an example of the dynamically feasible velocity set, together with the desired
velocity (Urd, r′d) and the discrete set of velocity pairs.

Trajectories for the velocity pairs in U are predicted using the theory in section
3.4. Through solving (3.52), ν̃r(t) is obtained while ν̄r(t) is required to simulate
the AUV trajectories. Therefore, the relation ν̃r = ν̄r − ΓT1 ν̄1rd

is inserted into
(3.52):

ν̄r(t) = eAt
(
ν̄r(t0)− ΓT1 ν̄rd1

)
−A−1 (I − eAt

)
(Bν̄1rd

+G) + ΓT1 ν̄1rd
(4.25)

The trajectories are predicted 20 second forward, with a discrete sample time
of 1 second. Hence, (4.25) has to be solved 20 times for each velocity pair.
It is however possible to use vectorization [Mathworks, 2015] to compute the
solutions more efficiently, as MATLAB is optimized for use with matrices and
vectors. Given the list of n velocity pairs U as a matrix:

U =
[
ν̄1rd1

ν̄1rd2
. . . ν̄1rdn

]
, U ∈ R2×n (4.26)

65

CHAPTER 4. SIMULATOR DEVELOPMENT

Figure 4.13: A discrete set of dynamically feasible velocities

The trajectories for the n velocity pairs can be solved simultaneously by defining
the equation:

Y (t) = eAtY 0 −A−1 (I − eAt
)

(BU + F) + ΓT1U (4.27)

Where:

Y (t) ,
[
ν̄r1(t) ν̄r2(t) . . . ν̄rn

(t)
]

, Y (t) ∈ R3×n (4.28a)
Y 0 ,

[
ν̃r(t0) ν̃r(t0) . . . ν̃r(t0)

]
− ΓT1U , Y 0 ∈ R3×n (4.28b)

F ,
[
G G . . . G

]
, F ∈ R3×n (4.28c)

Since the matrices A and eAt is independent of the velocity pair matrix U , (4.27)
only has to be solved once per time step for obtaining the solution to the AUV
dynamics given the n velocity pairs. The AUV trajectories are further obtained
by simulating (3.55). Algorithm 4 show the pseudo code for generating AUV
trajectories for n velocity pairs.

The distances ρ and ρ̄ are found by iterating along the predicted trajectories,
and checking if the AUV enters Ω and T . Algorithm 5 show the pseudo code for
computing ρ and ρ̄. The distances for a trajectory is illustrated in figure 4.14.

Instead of computing the set of admissible velocities Va, the condition for a
velocity pair to be part of Va, (3.31), is evaluated for all the velocity pairs (ur, r) ∈
U . The admissible velocity pairs are then put in the discrete list Ua. Finally,
the resulting discrete search space is found as U r = U ∩Ua.

66

4.6. DYNAMIC WINDOW ALGORITHM

Algorithm 4 AUV trajectory prediction
1: U ←

[
ν̄1rd1

ν̄1rd2
. . . ν̄1rdn

]
2: F ← 11×n ⊗G
3: Y 0 ← 11×n ⊗ ν̃r(t0)− ΓT1U
4: for t = 1 : 20 do
5: φ← eAt
6: Y (t)← φY 0 −A−1 (I − φ) (BU + F) + ΓT1U
7: end for
8: for all velocity pairs i in U do
9: ν̄1rd

= ν̄1rdi
. Pick out the dynamics solution for velocity pair i

10: η̄i(t)← ModifiedEuler(ν̄1rd
) . Simulate (3.55) with the modified Euler

method
11: end for
12: P ←

[
η̄i(t) η̄2(t) . . . η̄n(t)

]
13: return P ,Y . Return the velocity and position prediction for all the

velocity pairs

Algorithm 5 AUV distance calculation
1: for all velocity pairs i in U do
2: ρ̄i ← 0
3: ρi ← 0
4: for t = 1 : 20 do
5: ∆s ←

∥∥∥∥[N̄(t)− N̄(t− 1)
Ē(t)− Ē(t− 1)

]∥∥∥∥
2

. Compute the distance the AUV

travels in this iteration. N̄(t) and Ē(t) is the predicted AUV positions given
as η̄i(t) =

[
N̄(t) Ē(t) ψ(t)

]T
6: if η̄i(t) /∈ Ω then
7: ρ̄i ← ρ̄i + ∆s

8: end if
9: if η̄i(t) /∈ T then

10: ρi ← ρi + ∆s

11: else
12: break
13: end if
14: end for
15: end for
16: return ρ̄, ρ

67

CHAPTER 4. SIMULATOR DEVELOPMENT

(a) Distance until the AUV enters Ω (b) Distance until the AUV enters T

Figure 4.14: AUV distances ρ̄i and ρi given the trajectory for velocity pair i

4.6.3 Velocity pair selection

The optimal velocity pair is selected through maximizing the objective function
given in (3.64) for the discrete velocities in Ur:

(urd, rd) = argmax
(ur,r)∈Ur

G(ur, r) (4.29)

Notice that the maximizing problem (4.29) is solved numerically by computing
G(ur, r) for all the velocity pairs (ur, r) ∈ U r. This is an approximation to
solving it in the continuous search space Vr. The objective function is computed
as described in section 3.5. An example of the objective function parts and the
combined objective function is shown in figure 4.15. The scaling parameters are
selected as α = 1, β = 6 s−1 and γ = 3. Figure 4.16 show the predicted AUV
trajectories corresponding to the objective function in figure 4.15. The trajectory
corresponding to the selected velocity pair is shown in yellow. Notice the side-slip
of the AUV, which compensates for the ocean current.

The Dynamic window algorithm is summarized in algorithm 6. The most time-
consuming part of the algorithm is to predict the AUV trajectories, which takes
about 285 ms for a search space consisting of 451 velocity pairs. About 265 ms
of this is used for simulating the kinematics, which is not vectorized. Most likely,
the computational time can be reduced a great deal by vectorizing this part of
algorithm (see line 8 to 11 of algorithm 4).

68

4.6. DYNAMIC WINDOW ALGORITHM

(a) Yawrate function (b) Distance function

(c) Velocity function (d) Combined objective function, with the
selected velocity pair marked with a blue
asterisk

Figure 4.15: The Dynamic window objective function parts (a)-(c) and the combined
objective function (d).

69

CHAPTER 4. SIMULATOR DEVELOPMENT

Figure 4.16: Predicted AUV trajectories with the selected trajectory in yellow

Algorithm 6 Dynamic window algorithm
1: Compute the set of dynamically feasible velocity pairs Vf
2: Discretize Vf into n velocity pairs in U
3: Predict the AUV trajectories for the velocity pairs in U using algorithm 4
4: Compute ρ̄ and ρ using algorithm 5
5: Compute a discrete set of admissible velocities Ua by evaluating (3.31) for

the velocity pairs in U
6: Find the intersection U r = U ∩Ua

7: Evaluate the objective function (3.64) for the velocity pairs in U r

8: Numerically search for the maximum value of the objective function, and
apply the corresponding velocity pair in U r as the algorithm output (urd, rd)

70

Chapter 5

Stability analysis

The stability analysis follows along the lines of [Caharija, 2014, Theorem 6.1],
and is done in 3DOFs under assumption 3.1. It is worth noting that [Caharija,
2014, Theorem 6.1] establishes stability properties for an underactuated surface
vessel, not an AUV. However, the model in (3.9a) and (3.9b) complies with the
model used in the theorem, hence it is applicable.

Assumption 5.1. It is assumed that the AUV is operating in an obstacle-free
environment.

Remark 5.1. Assuming an obstacle-free environment is of course a major as-
sumption, and may seem somewhat inapplicable for proving stability of a system
containing a collision avoidance system. It is, however, necessary to prove sta-
bility both with and without obstacles. Hence, this is a first step of a complete
stability proof.

5.1 AUV model in component form

From (3.9a) and (3.12), the AUV model is written as:

˙̄η = R(η̄)ν̄r +
[
V c

0

]
(5.1a)

˙̄νr =

τu0
τr

− M̄−1 (
C̄(ν̄r)ν̄r − D̄(ν̄r)ν̄r

)
(5.1b)

Where τu and τr is given from the transformation (3.11).

71

CHAPTER 5. STABILITY ANALYSIS

Writing (5.1a) and (5.1b) in component form:
˙̄N = ur cosψ − v̄r sinψ + VN̄
˙̄E = ur sinψ + v̄r cosψ + VĒ

ψ̇ = r

u̇r = Fur(ur, v̄, r) + τu
˙̄vr = X(ur)r + Y (ur)v̄r
ṙ = Fr(ur, v̄, r) + τr

(5.2)

Where Fur(ur, v̄r, r), Fr(ur, v̄r, r), X(ur) and Y (ur) are given in appendix 5.A.

Assumption 5.2. Y (ur) is assumed to satisfy Y (ur) ≤ −Y min < 0, ∀ur ∈
[−Vmax, Urd], where Y min is a positive constant. In addition, |Y (ur)| is assumed
to be strictly increasing for ur > 0.

Remark 5.2. Assumption 5.2 is justified by contradiction: Y (ur) ≥ 0 would
imply an undamped or unstable vehicle in sway, which is not the case in practice
[Børhaug et al., 2007,Caharija, 2014].

5.2 Control objective

To simplify the proof without any loss of generality, the desired path P is as-
sumed to be aligned with the north-axis of the inertial reference frame. Hence,
P ,

{
(N̄ , Ē) ∈ R× R

∣∣ Ē = 0
}
. Hence, the cross track error is equal to the east

position, e(t) = Ē(t). The control goal is:
lim
t→∞

Ē(t) = 0 (5.3a)

lim
t→∞

ψ(t) = ψss (5.3b)

lim
t→∞

ur(t) = Urd (5.3c)

Assumption 5.3. The surge thrust capacity of the AUV is assumed to be suf-
ficient such that Urd satisfies Urd > Vmax, where Vmax is defined in assumption
2.2.

5.3 Control system

Only the horizontal subsystem of the control system shown in figure 4.1 is needed
when the AUV is modeled in 3DOF.

From (4.21), the feedback linearizing controllers are given as:
τu = n̄1(ν̄r)− ku(ur − urd) + u̇rd

τr = n̄3(ν̄r)− kr(r − rd) + ṙd
(5.4)

72

5.3. CONTROL SYSTEM

Noting that n̄1(ν̄r) = −Fu(u, v̄, r) and n̄3(ν̄r) = −Fr(u, v̄, r), the controllers can
be written as:

τu = −Fu(u, v̄, r)− ku (u− ud) + u̇d

τr = −Fr(u, v̄, r)− kr (r − rd) + ṙd
(5.5)

From (4.23), the desired yaw rate is selected using a proportional controller, with
a derivative feed forward:

r′d = −kψ (ψ − ψd) + ψ̇d (5.6)

Where the desired heading is chosen as ψd , ψILOS . For the desired path P, the
ILOS control law (4.13) simplifies to:

ψILOS = − arctan
(
Ē + σĒint

∆

)
˙̄Eint = ∆Ē(

Ē + σĒint
)2 + ∆2

(5.7)

Assumption 5.4. The sample time of the Dynamic window algorithm is assumed
to be sufficiently fast such that the time delay it represents does not significantly
affect the closed loop dynamics.

Assumption 5.5. The search space, Vr, of the Dynamic window algorithm is
assumed to contain the velocity pair (Ud, r′d).

Remark 5.3. The search space of the Dynamic window algorithm is defined as
Vr = Vf∩Va, where Vf are the set of dynamically feasible velocities and Va are the
set of admissible velocities. In an obstacle-free environment, as Assumption 5.1
guarantees, Va will not impose any limitation to the search space. Hence, Vr = Vf ,
and Assumption 5.5 should therefore not impose any practical limitation.

From (3.64), the objective function of the Dynamic window algorithm is:

G(ur, r) = α · yawrate(ur, r, r′d) + β · dist(ur, r) + γ · velocity(ur, r, Urd) (5.8)

The functions yawrate(ur, r, r′d) and velocity(ur, r, Urd) have global maximums
at the points r = r′d and ur = Urd respectively. In an obstacle-free environment,
the dist(ur, r) term is equal for all velocities in Vr. Hence, when Assumption 5.1
is satisfied and since α, β > 0, the function G(ur, r) have a global maximum at
(ur, r) = (Urd, r′d).

Applying assumptions 5.1, 5.4 and 5.5 it follows that:

(urd, rd) = argmax
(ur,r)

G(ur, r) = (Urd, r′d) (5.9)

73

CHAPTER 5. STABILITY ANALYSIS

5.4 Stability of the closed loop system

Theorem 5.1. Given an AUV described by the dynamical system (5.2). If as-
sumptions 2.2, 5.1, 5.2, 5.3, 5.4 and 5.5 hold and, if the look-ahead distance ∆
and the integral gain constant σ satisfy:

∆ >
|X(Urd)|
|Y (Urd|

(
5
4
Urd + Vmax + σ

Urd − Vmax − σ
+ 1
)

(5.10)

0 < σ < Urd − Vmax (5.11)

then the control system in section 5.3 guarantee achievement of the control ob-
jectives in (5.3) with:

ψss = − arctan

 VĒ√
U2
rd − V 2

Ē

 (5.12)

5.4.1 Proof of theorem 5.1

First, the controller dynamics are derived. Assumptions 5.1, 5.4 and 5.5 allows
urd = Urd and rd = r′d, as in (5.9). Given the tracking errors:

ũr = ur − urd
= ur − Urd

r̃ = r − rd
ψ̃ = ψ − ψd

(5.13)

and the controllers in (5.5) and (5.6), the surge and yaw error dynamics can be
described as:

˙̃ur = −kuũr (5.14a)
˙̃r = −kr r̃ (5.14b)
˙̃ψ = ψ̇ − ψ̇d

= r − r′d − kψ(ψ − ψd) (5.14c)
= r̃ − kψψ̃

The last equality is found by substituting r′d = rd into (5.14c). The resulting
system of (5.14a), (5.14b) and (5.14c) can be written as a linear state space
system, with a state vector ξ =

[
ũr ψ̃ r̃

]T :
ξ̇ =

−ku 0 0
0 −kψ 1
0 0 −kr

ũrψ̃
r̃

 , Λξ (5.15)

74

5.4. STABILITY OF THE CLOSED LOOP SYSTEM

(5.15) is a LTI system and all the controller gains are strictly positive, ku, kr, kψ >
0. Hence, the matrix Λ is Hurwitz, and the origin ξ = 0 is UGES. It is worth
noting that Λ have a different structure than the one of [Caharija, 2014], due
to the difference in the control structure. However, the system holds the same
stability properties. It follows that the control objective (5.3c) is achieved with
exponential convergence properties.

The dynamics of the cross track error, Ē, and the relative sway speed, v̄r, are
given in (5.2). Inserting ur = ũ+ Urd and ψ = ψ̃ + ψd, the system is given as:

˙̄Eint = ∆Ē(
Ē + σĒint

)2 + ∆2

˙̄E = (ũr + Urd) sin
(
ψd + ψ̃

)
+ v̄ cos

(
ψd + ψ̃

)
˙̄vr = X(ũr + Urd)(r̃ + rd) + Y (ũ+ Urd)v̄r

(5.16)

The equilibrium of the system (5.16) is given as:

Ēeqint = ∆
σ

VĒ√
U2
rd − V 2

Ē

, Ēeq = 0, v̄eqr = 0 (5.17)

The equilibrium is moved to the origin by defining the new variables e1 , Ēint−
Ēeqint and e2 = Ē + σe1. By computing the dynamics of the transformed system,
substituting ψd , ψILOS , where ψILOS is given in (5.7), and factoring for the
signals in ξ the closed loop dynamics can be written as:ė1

ė2
˙̄vr

 = A(e2)

e1
e2
v̄r

+B(e2) +H(Ē, Ēint, ψd, v̄r, ξ)ξ (5.18a)

ξ̇ = Λξ (5.18b)

Note that (5.18) is a cascaded system, where the linear UGES system (5.18b)
perturbs the nonlinear dynamics (5.18a) through an interconnection term. The
interconnection termH(Ē, Ēint, ψd, v̄r, ξ) contains all the terms which disappear
when ξ = 0. A(e2), B(e2) and H(Ē, Ēint, ψd, v̄r, ξ) are given as:

A(e2) =

− σ∆

(e2+σĒeq
int)2+∆2

∆
(e2+σĒeq

int)2+∆2

− σ2∆
(e2+σĒeq

int)2+∆2
− Urd√

(e2+σĒeq
int)2+∆2

+ σ∆
(e2+σĒeq

int)2+∆2

σ2∆2X(Urd)(
(e2+σĒeq

int)2+∆2
)2

Urd∆X(Urd)(
(e2+σĒeq

int)2+∆2
) 3

2
− σ∆2X(Urd)(

(e2+σĒeq
int)2+∆2

)2

0
∆√

(e2+σĒeq
int)2+∆2

Y (Urd)− ∆2X(Urd)(
(e2+σĒeq

int)2+∆2
) 3

2

 (5.19)

75

CHAPTER 5. STABILITY ANALYSIS

B(e2) =

 0
VĒf(e2)

− ∆X(Urd)
(e2+σĒeq

int)2+∆2
VĒf(e2)

 (5.20)

H(Ē, Ēint, ψd, v̄r, ξ) =

 0 0
1 0

− ∆X(ũr+Urd)
(e2+σĒeq

int)2+∆2
1

[hTĒ(ψd, v̄r, ξ)
hTv̄r

(Ē, Ēint, v̄r, ξ)

]
(5.21)

The function f(e2) and the vectors hĒ and hv̄r
are given as:

f(e2) = 1−

√(
σĒeqint

)2 + ∆2√(
e2 + σĒeqint

)2 + ∆2
(5.22)

hĒ(ψd, v̄r, ξ) =

sin(ψ̃ + ψd)

Urd

(
sin ψ̃
ψ̃

cosψd + cos ψ̃ − 1
ψ̃

sinψd
)

+ v̄r

(
cos ψ̃ − 1

ψ̃
cosψd −

sin ψ̃
ψ̃

sinψd
)

0

(5.23)

hv̄r
(Ē, Ēint, v̄r, ξ) =

X(ũr+Urd)−X(Urd)
ũr

γ(Ē, Ēint, v̄r)
−kψX(ũr + Urd)
X(ũr + Urd)

 (5.24)

Where the function γ(Ē, Ēint, v̄r) is given as:

γ(Ē, Ēint, v̄r) =
Urd∆

(
Ē + σĒint

)((
Ē + σĒint

)2 + ∆2
)3/2 −

∆2((
Ē + σĒint

)2 + ∆2
)3/2 v̄r

− σ∆2((
Ē + σĒint

)2 + ∆2
)2 Ē −

∆VĒ(
Ē + σĒint

)2 + ∆2
(5.25)

It is worth noting that the expression for hv̄r (Ē, Ēint, v̄r, ξ) differs from the one
of [Caharija, 2014], due to the difference in the control structure. This does,
however, not change the required properties of H(Ē, Ēint, ψd, v̄r, ξ). Also note
that the following bound holds for f(e2):

|f(e2)| ≤ |e2|√(
e2 + σĒeqint

)2 + ∆2
(5.26)

76

5.A. APPENDIX: FUNCTIONAL EXPRESSIONS

To establish the stability properties of the cascaded system (5.18), the nominal
system defined on the manifold ξ = 0 is first analyzed:ė1

ė2
˙̄vr

 = A(e2)

e1
e2
v̄r

+B(e2) (5.27)

Lemma 5.1 states the stability properties of the nominal system (5.27)
Lemma 5.1. Under the conditions of Theorem 5.1, the origin

[
e1 e2 v̄r

]
=[

0 0 0
]
of the system (5.27) is UGAS and ULES.

Proof. Lemma 5.1 is proven through Lyapunov analysis using the Lyapunov func-
tion candidate (LFC):

V ,
1
2σ

2e2
1 + 1

2e
2
2 + 1

2µv̄
2
r , µ > 0 (5.28)

Under the conditions of Theorem 5.1, and the inequality (5.26), negative defini-
tiveness of V̇ is shown. Further, positive definitiveness of V is guaranteed. And
since V is radially unbounded, (5.27) is UGAS. Moreover, in a neighborhood of
the origin, V̇ can be upper bounded by a negative quadratic function in e1, e2
and v̄r. This, together with the fact that V is quadratic in e1, e2 and v̄r states
that (5.27) also is ULES.

The details of the proof is shown in Appendix 5.B.

Further, the stability of the cascaded system (5.18) is analyzed. The perturbing
system, ξ, is UGES, and the interconnection term H(Ē, Ēint, ψd, v̄r, ξ) can be
shown to satisfy:∥∥H(Ē, Ēint, ψd, v̄r, ξ)

∥∥ ≤ θ1(‖ξ‖)(|Ē|+ |Ēint|+ |v̄r|) + θ2(‖ξ‖) (5.29)

where θ1(·) and θ2(·) are some continuous non-negative functions.

Applying Theorem A.1, we can conclude that the cascaded system (5.18) is
UGAS. Further, applying Lemma A.1, we can conclude that the cascaded sys-
tem (5.18) also is ULES. Hence, under the conditions of Theorem 5.1, the origin[
e1 e2 v̄r ξ

]
=
[
0 0 0 0

]
of the system (5.18) is UGAS and ULES. The

control objectives (5.3a) and (5.3b) are achieved with exponential convergence
properties, with ψss given in (5.12).

5.A Appendix: Functional expressions

Fur(ur, v̄r, r) , −
d̄11(ur)ur − m̄22v̄rr − m̄23r

2

m̄11
(5.30)

77

CHAPTER 5. STABILITY ANALYSIS

Fr(ur, v̄r, r) , −
1

m̄22m̄33 − m̄2
23

(
(m̄22d̄33 − m̄23d̄23)r − m̄22(m̄11 − m̄22)urv̄r

+m̄23(m̄22 − m̄11)urr + (m̄22d̄32 − m̄23d̄22)v̄r
)

(5.31)

X(ur) , −
(
m̄33m̄11 − m̄2

23
)
ur + m̄33d̄23 − m̄23d̄33

m̄22m̄33 − m̄2
23

(5.32)

Y (ur) , −
m̄33d̄22 − m̄23d̄32 − m̄23 (m̄22 − m̄11)ur

m̄22m̄33 − m̄2
23

(5.33)

5.B Appendix: Proof of lemma 5.1

The system (5.27) is given again:ė1
ė2
˙̄vr

 = A(e2)

e1
e2
v̄r

+B(e2) (5.34)

Where A(e2) and B(e2) are given in (5.19) and (5.20), respectively. The system
(5.34) have an equilibrium point at the origin,

[
eeq1 eeq2 v̄eqr

]T =
[
0 0 0

]T .
Consider the quadratic LFC:

V ,
1
2σ

2e2
1 + 1

2e
2
2 + 1

2µv̄
2
r , µ > 0 (5.35)

The time derivative of V is:

V̇ = − σ3∆(
e2 + σĒeqint

)2 + ∆2
e2

1 +
σ∆− Urd

√(
e2 + σĒeqint

)2 + ∆2(
e2 + σĒeqint

)2 + ∆2
e2

2

+ ∆√(
e2 + σĒeqint

)2 + ∆2
e2v̄r + VĒf(e2)− µ ∆X(Urd)(

e2 + σĒeqint
)2 + ∆2

VĒf(e2)v̄r

− µ

−Y (Urd) + ∆2X(Urd)((
e2 + σĒeqint

)2 + ∆2
) 3

2

 v̄2
r + µσ2∆2X(Urd)((

e2 + σĒeqint
)2 + ∆2

)2 e1v̄r

+ µ

 Urd∆X(Urd)(
e2 + σĒeqint

)2 + ∆2
− σ∆2X(Urd)((

e2 + σĒeqint
)2 + ∆2

) 3
2

 e2e3√(
e2 + σĒeqint

)2 + ∆2

(5.36)

Assumptions 2.2, 5.2 and 5.3, inequality (5.26) together with the following prop-
erties:

max
{

∆(
e2 + σĒeqint

)2 + ∆2

}
= 1

∆ (5.37)

78

5.B. APPENDIX: PROOF OF LEMMA 5.1

max

 ∆2((
e2 + σĒeqint

)2 + ∆2
) 3

2

 = 1
∆ (5.38)

min
{√(

e2 + σĒeqint
)2 + ∆2

}
= ∆ (5.39)

yield the following bound on V̇ :

V̇ ≤ − σ3∆(
e2 + σĒeqint

)2 + ∆2
e2

1 −∆ Urd − σ − Vmax(
e2 + σĒeqint

)2 + ∆2
e2

2

+ ∆√(
e2 + σĒeqint

)2 + ∆2
|e2||v̄r|+

µσ2|X(Urd)|

∆
√(

e2 + σĒeqint
)2 + ∆2

|e1||v̄r|

+ µ|X(Urd)|

∆
√(

e2 + σĒeqint
)2 + ∆2

(Urd + σ + Vmax) |e2||v̄r|

− µ
(
|Y (Urd)| −

|X(Urd)|
∆

)
v̄2
r (5.40)

The variables ē1 = e1√
(e2+σĒeq

int)2+∆2
and ē2 = e2√

(e2+σĒeq
int)2+∆2

are introduced

to simplify the expression (5.40). The expression becomes:

V̇ ≤ −σ3∆ē2
1−∆ (Urd − σ − Vmax) ē2

2−µ
(
|Y (Urd)| −

|X(Urd)|
∆

)
v̄2
r+∆|ē2||v̄r|

+ µσ2|X(Urd)|
∆ |ē1||v̄r|+

µ|X(Urd)|
∆ (Urd + σ + Vmax) |ē2||v̄r| (5.41)

This can further be rearranged as:

V̇ ≤ −W1 (|ē1|, |v̄r|)−W2 (|ē2|, |v̄r|) (5.42)

W1 , σ3∆|ē1|2 −
µσ2|X(Urd)|

∆ |ē1||v̄r|

+ µη

(
|Y (Urd)| −

|X(Urd)|
∆

)
|v̄r|2

(5.43a)

W2 , ∆
[
|ē2| |v̄r|

] [β −α
−α α(2α−1)

β

] [
|ē2|
|v̄r|

]
(5.43b)

where 0 < η < 1, β , Urd − σ − Vmax and α is given as:

α , (1− η) (Urd − σ − Vmax) (∆|Y (Urd)| − |X(Urd)|)
|X(Urd)| (Urd + σ + Vmax) (5.44)

79

CHAPTER 5. STABILITY ANALYSIS

The parameter µ is chosen as:

µ ,
∆2 (2α− 1)

|X(Urd)| (Urd + σ + Vmax) (5.45)

Notice that, in (5.42), the term µ
(
|Y (Urd)| − |X(Urd)|

∆

)
|v̄r|2 from (5.41) has been

split into ηµ
(
|Y (Urd)| − |X(Urd)|

∆

)
|v̄r|2 and (1− η)µ

(
|Y (Urd)| − |X(Urd)|

∆

)
|v̄r|2.

This makes it possible to shift the analysis of V̇ to W1 and W2, as positive
definitiveness ofW1 andW2 ensures a negative definite V̇ . Positive definitiveness
of W1 is ensured if:

∆ >
|X(Urd)|
|Y (Urd)|

(5.46a)

µ <
4η∆2 (∆|Y (Urd)| − |X(Urd)|)

σ|X(Urd)|2
(5.46b)

(5.46a) is satisfied as long as constraint (5.10) holds. Combining (5.46b) and
(5.44), with µ defined in (5.45) yields the inequality:

(1− η) (Urd − σ − Vmax)
(Urd + σ + Vmax)2 <

2η
σ

(5.47)

It is possible to show that η ≥ 1
5 is a sufficient condition so that (5.47) hold.

Therefore, if η ≥ 1
5 , then µ, defined in (5.45), satisfies (5.46b). Therefore, without

loss of generality, η is set as η = 1
5 . Hence, W1 is positive definite.

To guarantee positive definitiveness of W2, β and α must fulfill β > 0 and α > 1.
Assumption 5.3 and (5.11) guarantees that β fulfills β > 0. It is straightforward
to show that (5.10) and (5.11) guarantees α > 1. Hence, W2 is positive definite.
Further, α > 1 guarantees µ > 0, which ensures positive definitiveness of V .

Since V is positive, time-invariant and radially unbounded, and since V̇ is nega-
tive definite the origin of the system (5.34) is UGAS.

The inequalityW ,W1+W1 ≥ λ̄1ē
2
1+λ̄2ē

2
2+λ3v̄

2
r , for some constants λ̄1, λ̄2, λ3 >

0, holds in a neighborhood of the origin. Thus, in any ball Br , {|e2| ≤ r} , r > 0
the function W can be bounded as W ≥ λ1e

2
1 + λ2e

2
2 + λ3v̄

2
r , where the constant

λ1 and λ2 are given as λi = λ̄i

(r+σĒeq
int)2+∆2

, i ∈ {1, 2}. Hence, in any ball Br, V̇
fulfills:

V̇ (x) ≤ −k3 ‖x‖2 (5.48)

for k3 = min {λ1, λ2, λ3} and x =
[
e1 e2 v̄r

]T . Since V is a quadratic function
of e1, e2 and v̄r, it fulfills:

k1 ‖x‖2 ≤ V (x) ≤ k2 ‖x‖2 (5.49)

for k1 = min
{ 1

2σ
2, 1

2 ,
1
2µ
}
and k2 = max

{ 1
2σ

2, 1
2 ,

1
2µ
}
. Hence, by [Khalil, 2002,

Theorem 4.10], the origin of the system (5.34) is ULES.

80

Chapter 6

Simulation results

6.1 Test cases

In order to evaluate the collision avoidance system performance, a number of
evaluation points are defined:

• Response to ocean currents

• Convergence to the LOS vector

• Behavior when faced with local minima

• Minimum obstacle clearance

• Response in cluttered and complicated environments

To cover the points, four test cases are defined. To evaluate the modifications
made to the algorithm, some simulations are compared with the ones in [Erik-
sen, 2014]. As described in section 2.3.2, the Dynamic window implementation
in [Eriksen, 2014] filtered the objective function using a 2D FIR filter to im-
prove the obstacle clearance. No other modifications were done to the algorithm,
so the results from [Eriksen, 2014] are suited as a reference for evaluating the
performance of the modifications done in this thesis.

Test case 1 and 2 uses maps equal to those used in [Eriksen, 2014]. Test case
1 contains two obstacles, which are detected fairly late by the AUV. This puts
the responsiveness of the algorithm to the test. Test case 2 contains one obstacle
which is detected right after a turn. The AUV travels freely for a long while,
which makes it possible to evaluate the convergence to the LOS vector. Maps of
the environments for the two cases are shown in figure 6.1a and 6.1b.

To compare the performance of the system with the results in [Eriksen, 2014],
these maps are simulated both with and without ocean current. In addition,

81

CHAPTER 6. SIMULATION RESULTS

(a) Map for test case 1 and 4 (b) Map for test case 2

(c) Map for test case 3

Figure 6.1: Simulation environments

82

6.1. TEST CASES

simulations are also done with current while the Dynamic window algorithm
assumes that no current is present. This tests the robustness of the algorithm
with respect to knowledge of the ocean current.

Test case 3 exposes the AUV to tight corridors and a local minimum on the path.
The system response is evaluated both with and without ocean current. A map
of the environment is shown in figure 6.1c.

Test case 4 tests the exactness of the trajectory prediction in the Dynamic window
algorithm. The sample time of the Dynamic window algorithm is increased to 5
seconds. To avoid oscillatory behavior, ocean current and the ILOS integrator
are switched off. The same map as in test case 1 is used, again shown in figure
6.1a.

To test the robustness of the algorithm, 150 simulations in randomly generated
environments are also conducted.

For test case 1, 2 and 3, video illustrations have been made. The videos are
attached to the report .zip file, and are also available at https://goo.gl/O8ZiEM.

Unless otherwise is noted in the specific test cases, the simulation parameters are
chosen as in table 6.1. Note especially the size of the avoidance and antitarget
regions, set as 6 m and 3.5 m respectively. When the AUV model is defined in
the pivot point the maximum radius of the AUV is about 3 m, which leaves a
safety margin of 0.5 m.

Table 6.1 Simulation parameters

Parameter Value Comment

ku 1 s−1 Surge controller gain
kr 1 s−1 Yaw rate controller gain
kψ 0.2 s−1 Yaw controller gain
∆ 8 m ILOS lookahead distance
σ 0.4 m ILOS integral gain
α 1 Dynamic window yaw rate scaling

constant
β 9 s−1 Dynamic window distance scaling

constant
γ 3 Dynamic window surge speed scaling

constant
Ud 2 ms−1 Desired surge speed
∆TDWA 1 s Dynamic window algorithm sample time
V c

[
0.4 −0.2

]T ms−1 Ocean current, where applicable
r̄ 6 m Size of the avoidance region Ω
r∗ 3.5 m Size of the antitarget region T

83

https://goo.gl/O8ZiEM

CHAPTER 6. SIMULATION RESULTS

(a) Old and new AUV trajectories (b) AUV trajectories with correct and
incorrect current information given to
the Dynamic window algorithm

Figure 6.2: AUV trajectories for test case 1

6.2 Test case 1

The trajectories for test case 1 are shown in figure 6.2. Figure 6.2a contains
the trajectories of the new and old Dynamic window implementations, and is
commented further in section 6.2.1. The simulation videos Case1_New.mp4 and
Case1_Old.mp4 illustrate the trajectories. Figure 6.2b show trajectories when
the AUV is exposed to ocean currents. The Dynamic window algorithm is both
given correct and wrong ocean current information. These trajectories are further
commented in section 6.2.2. The simulation videos Case1_CorrectCurrent.mp4
and Case1_IncorrectCurrent.mp4 illustrate the trajectories.

6.2.1 Comparison of the old and new Dynamic window im-
plementation

Figure 6.2a show the AUV trajectory using the new Dynamic window implemen-
tation, and the old one from [Eriksen, 2014]. Both the implementations choose
roughly the same path through the environment, but the new implementation
achieves a larger obstacle clearance.

84

6.2. TEST CASE 1

From table 6.2 it is clear that the new implementation uses slightly more time to
reach the last waypoint, but the average surge speed is higher. This points in the
direction that the larger obstacle clearance demands a slightly longer path, which
takes more time to complete. Obstacle clearance is however more important than
a short path, therefore the new implementation is favored.

Table 6.2 Trajectory data, case 1, old and new Dynamic window implementation

Parameter Old
implementation

New
implementation

Trajectory length to end WP 533 m 539 m
Trajectory time to end WP 269 s 273 s
Average surge speed 1.94 ms−1 1.95 ms−1

Minimum obstacle clearance 1.5 m 5.9 m

From figure 6.3 it is clear that both the surge and yaw rate controllers in the
new implementation track their desired values well. The desired yaw rate in the
new implementation is much smoother than the old one (see figure 6.4). This
is probably caused by the focusing of the new objective function, which passes
the reference from the yaw controller straight through the algorithm when no
obstacles are present. It is also worth noting that old implementation have a
large error in the yaw rate at the start. This is caused by the AUVs limited
ability to actuate yaw at low surge velocities, which was not taken into account
in [Eriksen, 2014]. The new search space includes time varying acceleration limits
and hence accounts for this, as one can see in figure 6.3.

From figure 6.5 it is clear that the new implementation seldom saturates the
actuators, except for the propeller at the start of the trajectory. This is in contrast
to the old implementation, which also saturates the rudder at the start of the
trajectory (see figure 6.6). This is again a result of the lack of modeling of the
AUVs limited actuation in yaw at low surge velocities in the old implementation.
Further, the rudder usage is more noisy in the new implementation. This is due
to the feed forward of the desired yaw rate acceleration in the new yaw rate
controller. In a practical implementation, some sort of filtering would be applied
to the yaw control loop to reduce the noise in the rudder command signal.

6.2.2 Performance with ocean current

The first trajectory in figure 6.2b is generated by providing the Dynamic window
algorithm with the correct ocean current, V c =

[
0.4 −0.2

]T ms−1. The second
trajectory is generated by giving the Dynamic window algorithm no information
about the ocean current, hence it assumes that the ocean current is zero. The

85

CHAPTER 6. SIMULATION RESULTS

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

Time [s]

S
p

e
e

d
 [

m
/s

]

Desired surge speed

Actual surge speed

0 50 100 150 200 250 300
−0.2

−0.1

0

0.1

0.2

Time [s]

R
a

te
 [

ra
d

/s
]

Desired yaw rate

Actual yaw rate

Figure 6.3: Desired and actual surge speed and yaw rate, case 1, new Dynamic window
implementation

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

Time [s]

S
p
e
e
d
 [
m

/s
]

Desired surge speed

Actual surge speed

0 50 100 150 200 250 300
−0.1

−0.05

0

0.05

0.1

Time [s]

R
a
te

 [
ra

d
/s

]

Desired yaw rate

Actual yaw rate

Figure 6.4: Desired and actual surge speed and yaw rate, case 1, old Dynamic window
implementation

86

6.2. TEST CASE 1

0 50 100 150 200 250 300
−400

−200

0

200

400

Time [s]

S
p
e
e
d
 [
rp

m
]

Propeller speed

Saturation limits

0 50 100 150 200 250 300
−0.2

−0.1

0

0.1

0.2

Time [s]

A
n
g
le

 [
ra

d
]

Top rudder angle

Bottom rudder angle

Saturation limits

Figure 6.5: Actuator usage, case 1, new Dynamic window implementation

0 50 100 150 200 250 300
−400

−200

0

200

400

Time [s]

S
p
e
e
d
 [
rp

m
]

Propeller speed

Saturation limits

0 50 100 150 200 250 300
−0.2

−0.1

0

0.1

0.2

Time [s]

A
n
g
le

 [
ra

d
]

Top rudder angle

Bottom rudder angle

Saturation limits

Figure 6.6: Actuator usage, case 1, old Dynamic window implementation

87

CHAPTER 6. SIMULATION RESULTS

algorithm succeeds in avoiding collision in both cases, although the AUV trav-
els closer to the obstacle boundary when it is provided with incorrect current
information. Interestingly, the AUV reaches the end waypoint when it is given
the incorrect current information, but not when it is given the correct current
information. This is due to the short distance after the last obstacle to the end
waypoint. The ocean current causes the ILOS guidance system to overshoot, and
pass the waypoint before it reaches the circle of acceptance. By coincidence, the
algorithm chooses a different route when given the incorrect current information,
which makes it converge to the LOS vector faster and therefore reach the end
waypoint.

The trajectories are summarized in table 6.3. Since the AUV does not reach the
end waypoint when given the correct current information, the trajectory length
and time is not computed for this. The obstacle clearance is satisfactory for both
trajectories, 5.9 m and 3.3 m.

The controller responses and the actuator usage is presented in figures 6.7, 6.8,
6.9 and 6.10. It is worth noting that the initial surge speed is chosen lower when
providing the Dynamic window algorithm with correct current information, since
the predicted trajectories will be closer to the obstacle. This results in a noisy
propeller speed. For a practical implementation, some sort of filtering would be
introduced to the surge speed control loop to reduce this. It is also worth noting
the rapidly changed propeller speed just past t = 250 s in figure 6.9. This is
caused by the Dynamic window algorithm selecting a lower desired surge speed
(see figure 6.7).

Table 6.3 Trajectory data, case 1, with ocean current

Parameter Correct current
information

Incorrect current
information

Trajectory length to end WP NA 542 m
Trajectory time to end WP NA 256 s
Average surge speed 1.91 ms−1 1.95 ms−1

Minimum obstacle clearance 5.9 m 3.3 m

6.3 Test case 2

The trajectories for test case 2 are shown in figure 6.11. Figure 6.11a contains
the trajectories of the new and old Dynamic window implementations, and is
commented further in section 6.3.1. The simulation videos Case2_New.mp4
and Case2_Old.mp4 illustrate the trajectories. Figure 6.11b show trajectories
when the AUV is exposed to ocean currents. As in test case 1, the Dynamic

88

6.3. TEST CASE 2

0 50 100 150 200 250 300 350
0

0.5

1

1.5

2

2.5

Time [s]

S
p

e
e

d
 [

m
/s

]

Desired surge speed

Actual surge speed

0 50 100 150 200 250 300 350
−0.2

−0.1

0

0.1

0.2

Time [s]

R
a

te
 [

ra
d

/s
]

Desired yaw rate

Actual yaw rate

Figure 6.7: Desired and actual surge speed and yaw rate, case 1, correct current
information

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

Time [s]

S
p

e
e

d
 [

m
/s

]

Desired surge speed

Actual surge speed

0 50 100 150 200 250 300
−0.2

−0.1

0

0.1

0.2

Time [s]

R
a

te
 [

ra
d

/s
]

Desired yaw rate

Actual yaw rate

Figure 6.8: Desired and actual surge speed and yaw rate, case 1, incorrect current
information

89

CHAPTER 6. SIMULATION RESULTS

0 50 100 150 200 250 300 350
−400

−200

0

200

400

Time [s]

S
p
e
e
d
 [
rp

m
]

Propeller speed

Saturation limits

0 50 100 150 200 250 300 350
−0.2

−0.1

0

0.1

0.2

Time [s]

A
n
g
le

 [
ra

d
]

Top rudder angle

Bottom rudder angle

Saturation limits

Figure 6.9: Actuator usage, case 1, correct current information

0 50 100 150 200 250 300
−400

−200

0

200

400

Time [s]

S
p
e
e
d
 [
rp

m
]

Propeller speed

Saturation limits

0 50 100 150 200 250 300
−0.2

−0.1

0

0.1

0.2

Time [s]

A
n
g
le

 [
ra

d
]

Top rudder angle

Bottom rudder angle

Saturation limits

Figure 6.10: Actuator usage, case 1, incorrect current information

90

6.3. TEST CASE 2

(a) Old and new AUV trajectories (b) AUV trajectories with correct and
incorrect current information given to
the Dynamic window algorithm

Figure 6.11: AUV trajectories for test case 2

window algorithm is both given correct and wrong ocean current information.
These trajectories are further commented in section 6.3.2. The simulation videos
Case2_CorrectCurrent.mp4 and Case2_IncorrectCurrent.mp4 illustrate the tra-
jectories.

6.3.1 Comparison of the old and new Dynamic window im-
plementation

Figure 6.11a show the AUV trajectory using the new Dynamic window implemen-
tation, and the one in [Eriksen, 2014]. Both the implementations choose roughly
the same path through the environment, but the new implementation achieves a
more consistent obstacle clearance.

From table 6.4 it is difficult to distinct the trajectories. The only clear distinction
is the difference in obstacle clearance. The new implementation steers clear of
the antitarget region, and only slightly enters the avoidance region.

From figure 6.12 it is again clear that both the surge and yaw rate controllers in
the new implementation tracks the desired values well and is smoother than the
old one (see figure 6.13). Again, the large error in the yaw rate at the start with

91

CHAPTER 6. SIMULATION RESULTS

Table 6.4 Trajectory data, case 2, old and new Dynamic window implementation

Parameter Old
implementation

New
implementation

Trajectory length to end WP 500 m 502 m
Trajectory time to end WP 253 s 255 s
Average surge speed 1.94 ms−1 1.95 ms−1

Minimum obstacle clearance 6.9 m 5.8 m

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

Time [s]

S
p

e
e

d
 [

m
/s

]

Desired surge speed

Actual surge speed

0 50 100 150 200 250 300
−0.2

−0.1

0

0.1

0.2

Time [s]

R
a

te
 [

ra
d

/s
]

Desired yaw rate

Actual yaw rate

Figure 6.12: Desired and actual surge speed and yaw rate, case 2, new Dynamic
window implementation

the old implementation is is caused by the AUVs limited ability to actuate yaw
at low surge velocities, which was not taken into account in [Eriksen, 2014].

The actuator usage in figure 6.14 and 6.15 show the same results as in section
6.2.1. The new implementation saturates the actuators less than the old imple-
mentation, caused by the improved search space in the new implementation. On
the other hand, the rudder usage is more noisy in the new implementation. This
is again due to the feed forward of the desired yaw rate acceleration in the new
yaw rate controller.

92

6.3. TEST CASE 2

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

Time [s]

S
p
e
e
d
 [
m

/s
]

Desired surge speed

Actual surge speed

0 50 100 150 200 250 300
−0.1

−0.05

0

0.05

0.1

Time [s]

R
a
te

 [
ra

d
/s

]

Desired yaw rate

Actual yaw rate

Figure 6.13: Desired and actual surge speed and yaw rate, case 2, old Dynamic window
implementation

0 50 100 150 200 250 300
−400

−200

0

200

400

Time [s]

S
p
e
e
d
 [
rp

m
]

Propeller speed

Saturation limits

0 50 100 150 200 250 300
−0.2

−0.1

0

0.1

0.2

Time [s]

A
n
g
le

 [
ra

d
]

Top rudder angle

Bottom rudder angle

Saturation limits

Figure 6.14: Actuator usage, case 2, new Dynamic window implementation

93

CHAPTER 6. SIMULATION RESULTS

0 50 100 150 200 250 300
−400

−200

0

200

400

Time [s]

S
p
e
e
d
 [
rp

m
]

Propeller speed

Saturation limits

0 50 100 150 200 250 300
−0.2

−0.1

0

0.1

0.2

Time [s]

A
n
g
le

 [
ra

d
]

Top rudder angle

Bottom rudder angle

Saturation limits

Figure 6.15: Actuator usage, case 2, old Dynamic window implementation

6.3.2 Performance with ocean current

As in test case 1, the first trajectory in figure 6.11b is generated by providing the
Dynamic window algorithm with the correct ocean current information, V c =[
0.4 −0.2

]T ms−1. The second trajectory is generated by giving the Dynamic
window algorithm no information about the ocean current, hence it assumes that
the ocean current is zero. Both the trajectories reach the end waypoint, and
avoid collision. The trajectories are very similar, but the AUV is driven a bit
farther away from the LOS vector than necessary when the Dynamic window
algorithm is unaware of the ocean current. This is verified by the trajectory data
in table 6.5, where the minimum obstacle clearance is 9.3 m when the Dynamic
window algorithm is unaware of the current and 5.8 m when it is provided with
the correct ocean current.

Table 6.5 Trajectory data, case 2, with ocean current

Parameter Correct current
information

Incorrect current
information

Trajectory length to end WP 500 m 507 m
Trajectory time to end WP 234 s 237 s
Average surge speed 1.95 ms−1 1.95 ms−1

Minimum obstacle clearance 5.8 m 9.3 m

94

6.4. TEST CASE 3

0 20 40 60 80 100 120
−8

−6

−4

−2

0

2

Time [s]

C
ro

s
s
 t

ra
c
k
 e

rr
o

r
[m

]

AUV trajectory with correct current

AUV trajectory with incorrect current

0 20 40 60 80 100 120
−0.2

0

0.2

0.4

0.6

0.8

1

Time [s]

A
n

g
le

 [
ra

d
]

AUV heading with correct current

AUV heading with incorrect current

LOS line angle

Figure 6.16: Cross track error and AUV heading, case 2, with correct and wrong
current information

Figure 6.16 show the cross track error and the AUV heading angle, for both
trajectories. Notice that the cross track error converges slightly faster to zero
when correct current information is passed to the Dynamic window algorithm.
The AUV heading converges to a value unequal to the path angle, which means
the AUV side-slips to achieve zero cross track error. This coincides with the ILOS
theory, and the stability proof in chapter 5.

6.4 Test case 3

The trajectories for test case 3 is shown in figure 6.17, and illustrated in the
simulation videos Case3_Current.mp4 and Case1_NoCurrent.mp4. When no
ocean current is applied, the Dynamic window algorithm ensures a clearance of
3.2 m from the obstacles. The AUV is however trapped in a local minimum.
This is expected, since no global information is given to the Dynamic window
algorithm. To escape from the local minimum, a new route must be planned
which avoids the local minimum the AUV is trapped in. For instance, a global
planning algorithm could calculate new waypoints and feed them to the ILOS
guidance system.

When ocean current is introduced the AUV collides with the last obstacle. The
collision occurs since the AUV enters a local minimum and stops. The ocean cur-
rent then drives the AUV into the obstacle. No collision detection is implemented

95

CHAPTER 6. SIMULATION RESULTS

Figure 6.17: AUV trajectories, test case 3, with and without ocean currents

in the simulator, therefore it appears as if the AUV travels through the obstacle.
It might be possible to avoid collision by allowing the relative surge speed to be
negative, and hence back up against the current. This would require a model of
the AUV when it is backing, and some sensing of the environment behind the
AUV. Again, a new route would have to be calculated in order to escape from
the local minimum.

The trajectories are summarized in table 6.6.

Table 6.6 Trajectory data, case 3

Parameter With ocean
current

Without ocean
current

Trajectory length to end WP NA NA

Trajectory time to end WP NA NA

Average surge speed 1.51 ms−1 1.56 ms−1

Minimum obstacle clearance 0 m 3.2 m

96

6.5. TEST CASE 4

(a) AUV trajectory, with the predicted
trajectories using linear trajectory pre-
diction in varying colors

(b) AUV trajectory, with the pre-
dicted trajectories using circular trajec-
tory prediction in varying colors

Figure 6.18: AUV trajectories for test case 4

6.5 Test case 4

Test case 4 evaluates the exactness of the predicted AUV trajectories using the
new linear trajectory prediction, and compares it to using circular trajectory
prediction. For this test case, the Dynamic window algorithm sample time is
increased to ∆TDWA = 5 s, so that the AUV travels a while before generating
new trajectories (at 2 ms−1 this corresponds to 10 m). Figure 6.18 show the
AUV trajectory together with the predicted AUV trajectories in each time step.
The AUV trajectories are predicted for 20 s, and plotted in a varying colormap
with warm colors at the start of the trajectory and cold colors at the end of the
trajectory. It should be noted that only the first 5 s of the predicted trajecto-
ries should be compared to the actual AUV trajectory. Figure 6.18a show the
AUV trajectory, together with the predicted AUV trajectories using the linear
prediction. Figure 6.18b show the same AUV trajectory, together with circular
predictions of the AUV trajectories.

From the trajectories in figure 6.18 and the prediction error (see figure 6.19), it is
clear that the predicted trajectories using the linear approximation is much more
accurate than when using the circular prediction, especially when doing a fast
maneuver (such as a sharp turn). Note that the prediction error is reset to zero

97

CHAPTER 6. SIMULATION RESULTS

0 50 100 150 200 250 300
0

0.5

1

1.5

2

2.5

3

3.5

Time [s]

P
re

d
ic

ti
o

n
 e

rr
o

r
[m

]

Prediction error using linear trajectory prediction

Prediction error using circular trajectory prediction

Figure 6.19: Prediction error using linear and circular trajectory prediction, case 4

every 5 s since the Dynamic window algorithm is run every 5 s. The mean square
error, and root mean square error of the predicted AUV trajectories is shown in
table 6.7. Table 6.7 gives a more correct view of the prediction error than the
t = [0, 5] s elements in table 3.1, since it is averaged over a simulation. Notice
that the mean square error is reduced with a factor greater than 100 when using
linear trajectory prediction instead of circular trajectory prediction.

Table 6.7 Prediction error of the predicted AUV trajectories, case 4

Parameter Linear
approximation

Circular
approximation

Mean square error 0.00228 m2 0.271 m2

Root mean square error 0.0478 m 0.521 m

6.6 Simulations in randomly generated environ-
ments

To thoroughly test the robustness of the collision avoidance system, the AUV is
simulated in 150 randomly generated environments. The simulations was done
without ocean current and with the ILOS integrator switched off. As shown in
table 6.8, 18 of the 150 simulations came closer than 3 m to an obstacle, and
hence caused a collision. One trajectory even resulted in a minimum distance of
0.1 m. All the 150 simulations are presented in appendix B.

A closer inspection of the trajectories where collisions occur reveals that it takes
a long time from the Dynamic window algorithm commands the AUV to stop

98

6.6. SIMULATIONS IN RANDOMLY GENERATED ENVIRONMENTS

Table 6.8 Summary of trajectories in randomly generated environments

Minimum obstacle
clearance

Number of
simulations

Of which reached
the end waypoint

[0, 1] m 4 0
(1, 2] m 4 0
(2, 3] m 10 0
(3, 4] m 55 1
(4, 5] m 9 1
(5, 6] m 64 36
(6,∞) m 4 2

(by specifying urd = rd = 0), until the sway speed goes to zero. Therefore, the
AUV moves sideways for a long time after it is commanded to stop. For one of
the trajectories where a collision occurs, it takes about 50 s for the sway speed
and yaw rate to passively converge to zero (see figure 6.20). During this time, the
AUV moved 4.03 m sideways. This can also be seen by viewing the end of the
video illustration of test case 3 without ocean current (Case3_NoCurrent.mp4),
where the AUV gets trapped in a local minimum. At zero surge speed, both
the sway and yaw dynamics are uncontrollable and is hence only affected by
the vehicle dynamics. It seems unlikely that the AUV uses such long time to
passively reach zero sway speed. Therefore it is concluded that the simulation
model is inaccurate at low surge velocities, which is natural since the damping of
the system is scaled with the surge speed (see the AUV model in section 2.1).

Due to the inaccuracy at low surge velocities, the simulations where the AUV
stops in a local minma should not be trusted unconditionally. 132 of the 150
simulations achieve a minimum distance to obstacles of more than 3 m, and 40 of
the simulations reach the end waypoint. Seen in light of the model inaccuracy, this
is considered as a good result. It should be noted that the minimum clearance for
the trajectories where the AUV reached the end waypoint is 3.6 m. This indicates
that the algorithm works well, and avoids entering the antitarget region, when
not presented with any local minima (see appendix B).

99

CHAPTER 6. SIMULATION RESULTS

0 50 100 150 200 250 300 350
−1

0

1

2

3

Time [s]

S
p

e
e

d
 [

m
/s

]

Desired surge speed

Actual surge speed

Actual sway speed

0 50 100 150 200 250 300 350
−0.2

−0.1

0

0.1

0.2

Time [s]

R
a

te
 [

ra
d

/s
]

Desired yaw rate

Actual yaw rate

Figure 6.20: Passive response to sway and yaw dynamics

100

Chapter 7

Concluding remarks and
suggestions for future work

A great deal of effort has been put into improving the Dynamic window algo-
rithm, both in this thesis and by researchers before me. Despite this, to the
authors knowledge, no modifications has previously been made to consider vehi-
cles with second order non-holonomic constraints and time varying acceleration
limits. This thesis presents a number of modifications to adapt the algorithm for
use with such vehicles. In addition, the algorithm has been extended to account
for ocean current.

A new method for predicting the AUV trajectory which takes account of second
order non-holonomic constraints and ocean current has been developed, and the
search space has been modified to account for the time varying acceleration limits
of AUVs equipped with rudders for yaw actuation. The architecture has been
changed to facilitate a more layered implementation where the Dynamic window
algorithm takes a desired surge speed and yaw rate as input, and produces refer-
ences for surge speed and yaw rate controllers. In order to control the obstacle
clearance when circumnavigating obstacles, a local map based on sonar measure-
ments is created and modified such that the AUV achieves a minimum desired
obstacle clearance.

A simulator containing a 6DOF model of the HUGIN 1000 AUV, sonar sensors,
controllers, a horizontal ILOS guidance system and the collision avoidance system
has been developed. The simulator include functionality for simulating constant
irrotational ocean current in the horizontal plane. The modified Dynamic win-
dow algorithm is compared to the implementation in [Eriksen, 2014], which is
quite close to the original Dynamic window algorithm. Based on the simulations
done it is clear that the modified Dynamic window algorithm is superior to the
old implementation. In the simulated environments, the two implementations
choose roughly the same paths, and both avoid collision. However, the new im-

101

CHAPTER 7. CONCLUDING REMARKS AND SUGGESTIONS FOR
FUTURE WORK

plementation achieves a more consistent and controllable obstacle clearance and
produces references with a higher degree of feasibility. The new algorithm can
also compensate for constant irrotational ocean current. The new method for
predicting the AUV trajectory reduces the MSE of the predictions to about one
percent of the original method, and makes the algorithm well suited for vehicles
with second order non-holonomic constraints.

The simulations show that the modified Dynamic window algorithm succeeds in
avoiding collision when it is not trapped in a local minimum, both when under
influence of ocean currents and when not. The simulation model is inaccurate at
low surge velocities, therefore it is difficult to assess the performance when the
AUV is caused to stop due to local minima. However, closer inspections of the
simulations suggest that the algorithm is able to avoid collisions in local minima
when no ocean current is present. This should however be investigated further.
If faced with ocean current and the AUV is forced to stop in a local minimum,
the ocean current may drive the AUV into obstacles and hence cause a collision.
It may be possible to extend the algorithm to counteract this.

To test the robustness of the system, 150 simulations were carried out in randomly
generated environments. 132 of these simulations achieved a minimum clearance
to obstacles greater than 3 m. Due to the modeling inaccuracies at low surge
velocities the AUV slides sideways a long time after the surge speed reaches
zero. As a result, the AUV sometimes slide sideways into obstacles when trapped
in local minima. Therefore, the simulations where the AUV gets trapped in a
local minimum should not be trusted unconditionally. The simulations infer that
the Dynamic window algorithm is well suited for horizontal collision avoidance
for AUVs, but the simulation model must be improved in order to verify the
performance and robustness of the algorithm.

Convergence to the LOS vector, when the AUV is under influence of ocean cur-
rent, is guaranteed through a Lyapunov based proof, given that no obstacles are
present. The simulations support the stability analysis.

As expected, the AUV is prone to getting trapped in local minima. The Dynamic
window algorithm is a reactive collision avoidance algorithm, which does not
assume knowledge of any global information. Hence, global convergence can not
be guaranteed. By carefully tuning the objective function, local minima may
often be avoided. However, this can never guarantee global convergence to a
goal and limited effort has therefore been put into tuning the objective function.
Any practical implementation would need to implement some sort of global path
planning running in parallel with the Dynamic window algorithm, to make the
AUV avoid local minima in the environment.

Undoubtedly, there are still issues to be solved before the Dynamic window al-
gorithm can be considered as a robust and suitable collision avoidance algorithm
for practical implementation on the HUGIN 1000 AUV. The following topics are
therefore suggested to continue the work of this thesis:

102

• Improve the simulation model to correctly model the AUV behavior at low
surge velocities.

• Investigate the robustness of the algorithm with respect to model uncer-
tainties.

• Investigate possible modifications to avoid drifting into obstacles when
trapped in local minima and influenced by ocean currents.

• Implement some sort of global path planning to avoid and, if trapped,
escape from local minima.

• Investigate if adding a cost to the velocity pairs based on how much of the
predicted trajectory resides inside the avoid and antitarget regions, as an
alternative to the distance term, improves the performance.

• Experiment with a more predictive approach, for example by using an MPC
inspired approach as in [Ögren and Leonard, 2002].

103

Appendices

105

Appendix A

Stability of cascaded
systems

Given a time-varying nonlinear cascaded system:

ẋ = f1(t,x) + g(t,x,y) (A.1a)
ẏ = f2(t,y) (A.1b)

where x ∈ Rn, y ∈ Rm. The functions f1(·, ·) and f2(·, ·) are continuously
differentiable in their arguments. The stability properties of the origin (x,y) =
(0,0) of the cascaded system (A.1) is given by
Theorem A.1. [Panteley and Loria, 1998][Theorem 2]. Given the cascaded
system (A.1). Assume that the nominal system of (A.1a), given as ẋ = f1(t,x),
is UGAS with a Lyapunov function V (x, t) satisfying:∥∥∥∥∂V∂x

∥∥∥∥ ‖x‖ ≤ c1V (x, t), ∀ ‖x‖ ≥ η (A.2)

where c1, η > 0. If, in addition, the function g(t,x,y) satisfies:

‖g(t,x,y)‖ ≤ θ1 (‖y‖) + θ2 (‖y‖) ‖x‖ , θ1, θ2 : R+ → R+ C0 (A.3)

and, the system (A.1b), given as ẏ = f2(t,y), is UGAS and, ∀t0 ≥ 0:∫ t

t0

‖y(s, t0,y(t0))‖ds ≤ φ (‖y(t0)‖) (A.4)

where φ(·) is a class K function, then, the cascaded system (A.1) is UGAS.
Definition A.1. [Khalil, 2002][Definition 4.2]. A continuous function α :
[0, a)→ [0,∞) is said to belong to class K if it is strictly increasing and α(0) = 0.

107

APPENDIX A. STABILITY OF CASCADED SYSTEMS

Remark A.1. If the nominal system of (A.1a), given as ẋ = f1(t,x) is UGAS
with a quadratic Lyapunov function, then the condition (A.2) is satisfied trivially
[Caharija, 2014].
Remark A.2. If the perturbing system (A.1b), given as ẏ = f2(t,y) is UGAS
and ULES (or equivalently exponentially stable in any ball of initial conditions),
then the condition (A.4) is satisfied trivially [Caharija, 2014].
Lemma A.1. [Panteley et al., 1998][Lemma 8], [Caharija, 2014][Lemma A.2].
Assume that, in addition to the requirements made in Theorem A.1, both the
nominal system of (A.1a), and (A.1b), given as ẋ = f1(t,x) and ẏ = f2(t,y)
respectively, are globally κ-exponentially stable (exponentially stable in any ball of
initial conditions). Then. the cascaded system (A.1) is globally κ-exponentially
stable.

108

Appendix B

Simulations in randomly
generated environments

This appendix presents 150 simulations in randomly generated environments.
The trajectories are sorted by the minimum obstacle clearance and if it reached
the end waypoint. Key information about the trajectories are presented in table
B.1, while the trajectories and the environments are shown in figure B.1 to B.150.

109

APPENDIX B. SIMULATIONS IN RANDOMLY GENERATED
ENVIRONMENTS

Table B.1: Trajectory data for simula-
tions in randomly generated environments

Figure
nr

Min
clearance

End WP
reached

B.1 11.3 m Yes
B.2 10.0 m Yes
B.3 6.1 m No
B.4 6.1 m No
B.5 6.0 m Yes
B.6 6.0 m Yes
B.7 6.0 m Yes
B.8 6.0 m Yes
B.9 6.0 m Yes
B.10 6.0 m Yes
B.11 6.0 m Yes
B.12 6.0 m Yes
B.13 6.0 m Yes
B.14 6.0 m Yes
B.15 6.0 m Yes
B.16 6.0 m No
B.17 6.0 m No
B.18 6.0 m No
B.19 5.9 m Yes
B.20 5.9 m Yes
B.21 5.9 m Yes
B.22 5.9 m Yes
B.23 5.9 m Yes
B.24 5.9 m Yes
B.25 5.9 m Yes
B.26 5.9 m Yes
B.27 5.9 m Yes
B.28 5.9 m Yes
B.29 5.9 m No
B.30 5.9 m No
B.31 5.9 m No
B.32 5.9 m No
B.33 5.9 m No
B.34 5.8 m Yes
B.35 5.8 m Yes
B.36 5.8 m Yes

continued on next page

continued from previous page

Figure
nr

Min
clearance

End WP
reached

B.37 5.8 m Yes
B.38 5.8 m Yes
B.39 5.8 m No
B.40 5.8 m No
B.41 5.8 m No
B.42 5.8 m No
B.43 5.8 m No
B.44 5.8 m No
B.45 5.8 m No
B.46 5.7 m Yes
B.47 5.7 m Yes
B.48 5.7 m Yes
B.49 5.7 m Yes
B.50 5.7 m Yes
B.51 5.7 m No
B.52 5.7 m No
B.53 5.7 m No
B.54 5.7 m No
B.55 5.7 m No
B.56 5.7 m No
B.57 5.7 m No
B.58 5.6 m Yes
B.59 5.6 m Yes
B.60 5.6 m Yes
B.61 5.6 m No
B.62 5.6 m No
B.63 5.6 m No
B.64 5.6 m No
B.65 5.5 m No
B.66 5.3 m Yes
B.67 5.2 m Yes
B.68 5.2 m No
B.69 5.0 m Yes
B.70 4.9 m No
B.71 4.9 m No
B.72 4.8 m No
B.73 4.7 m No
B.74 4.7 m No
B.75 4.5 m No
B.76 4.2 m No

continued on next page

110

continued from previous page

Figure
nr

Min
clearance

End WP
reached

B.77 4.1 m No
B.78 4.0 m No
B.79 4.0 m No
B.80 3.9 m No
B.81 3.7 m No
B.82 3.6 m Yes
B.83 3.6 m No
B.84 3.6 m No
B.85 3.5 m No
B.86 3.5 m No
B.87 3.5 m No
B.88 3.5 m No
B.89 3.5 m No
B.90 3.5 m No
B.91 3.5 m No
B.92 3.5 m No
B.93 3.5 m No
B.94 3.5 m No
B.95 3.5 m No
B.96 3.4 m No
B.97 3.4 m No
B.98 3.4 m No
B.99 3.4 m No
B.100 3.4 m No
B.101 3.4 m No
B.102 3.4 m No
B.103 3.4 m No
B.104 3.4 m No
B.105 3.4 m No
B.106 3.4 m No
B.107 3.3 m No
B.108 3.3 m No
B.109 3.3 m No
B.110 3.3 m No
B.111 3.2 m No
B.112 3.2 m No
B.113 3.2 m No
B.114 3.2 m No
B.115 3.2 m No
B.116 3.2 m No

continued on next page

continued from previous page

Figure
nr

Min
clearance

End WP
reached

B.117 3.2 m No
B.118 3.2 m No
B.119 3.2 m No
B.120 3.2 m No
B.121 3.2 m No
B.122 3.1 m No
B.123 3.1 m No
B.124 3.1 m No
B.125 3.1 m No
B.126 3.1 m No
B.127 3.1 m No
B.128 3.1 m No
B.129 3.1 m No
B.130 3.1 m No
B.131 3.0 m No
B.132 3.0 m No
B.133 2.9 m No
B.134 2.8 m No
B.135 2.8 m No
B.136 2.7 m No
B.137 2.6 m No
B.138 2.5 m No
B.139 2.4 m No
B.140 2.4 m No
B.141 2.4 m No
B.142 2.2 m No
B.143 1.9 m No
B.144 1.2 m No
B.145 1.1 m No
B.146 1.1 m No
B.147 1.0 m No
B.148 0.6 m No
B.149 0.2 m No
B.150 0.1 m No

111

APPENDIX B. SIMULATIONS IN RANDOMLY GENERATED
ENVIRONMENTS

Figure B.1: Simulation
nr. 1

Figure B.2: Simulation
nr. 2

Figure B.3: Simulation
nr. 3

Figure B.4: Simulation
nr. 4

Figure B.5: Simulation
nr. 5

Figure B.6: Simulation
nr. 6

Figure B.7: Simulation
nr. 7

Figure B.8: Simulation
nr. 8

Figure B.9: Simulation
nr. 9

112

Figure B.10:
Simulation nr. 10

Figure B.11:
Simulation nr. 11

Figure B.12:
Simulation nr. 12

Figure B.13:
Simulation nr. 13

Figure B.14:
Simulation nr. 14

Figure B.15:
Simulation nr. 15

Figure B.16:
Simulation nr. 16

Figure B.17:
Simulation nr. 17

Figure B.18:
Simulation nr. 18

113

APPENDIX B. SIMULATIONS IN RANDOMLY GENERATED
ENVIRONMENTS

Figure B.19:
Simulation nr. 19

Figure B.20:
Simulation nr. 20

Figure B.21:
Simulation nr. 21

Figure B.22:
Simulation nr. 22

Figure B.23:
Simulation nr. 23

Figure B.24:
Simulation nr. 24

Figure B.25:
Simulation nr. 25

Figure B.26:
Simulation nr. 26

Figure B.27:
Simulation nr. 27

114

Figure B.28:
Simulation nr. 28

Figure B.29:
Simulation nr. 29

Figure B.30:
Simulation nr. 30

Figure B.31:
Simulation nr. 31

Figure B.32:
Simulation nr. 32

Figure B.33:
Simulation nr. 33

Figure B.34:
Simulation nr. 34

Figure B.35:
Simulation nr. 35

Figure B.36:
Simulation nr. 36

115

APPENDIX B. SIMULATIONS IN RANDOMLY GENERATED
ENVIRONMENTS

Figure B.37:
Simulation nr. 37

Figure B.38:
Simulation nr. 38

Figure B.39:
Simulation nr. 39

Figure B.40:
Simulation nr. 40

Figure B.41:
Simulation nr. 41

Figure B.42:
Simulation nr. 42

Figure B.43:
Simulation nr. 43

Figure B.44:
Simulation nr. 44

Figure B.45:
Simulation nr. 45

116

Figure B.46:
Simulation nr. 46

Figure B.47:
Simulation nr. 47

Figure B.48:
Simulation nr. 48

Figure B.49:
Simulation nr. 49

Figure B.50:
Simulation nr. 50

Figure B.51:
Simulation nr. 51

Figure B.52:
Simulation nr. 52

Figure B.53:
Simulation nr. 53

Figure B.54:
Simulation nr. 54

117

APPENDIX B. SIMULATIONS IN RANDOMLY GENERATED
ENVIRONMENTS

Figure B.55:
Simulation nr. 55

Figure B.56:
Simulation nr. 56

Figure B.57:
Simulation nr. 57

Figure B.58:
Simulation nr. 58

Figure B.59:
Simulation nr. 59

Figure B.60:
Simulation nr. 60

Figure B.61:
Simulation nr. 61

Figure B.62:
Simulation nr. 62

Figure B.63:
Simulation nr. 63

118

Figure B.64:
Simulation nr. 64

Figure B.65:
Simulation nr. 65

Figure B.66:
Simulation nr. 66

Figure B.67:
Simulation nr. 67

Figure B.68:
Simulation nr. 68

Figure B.69:
Simulation nr. 69

Figure B.70:
Simulation nr. 70

Figure B.71:
Simulation nr. 71

Figure B.72:
Simulation nr. 72

119

APPENDIX B. SIMULATIONS IN RANDOMLY GENERATED
ENVIRONMENTS

Figure B.73:
Simulation nr. 73

Figure B.74:
Simulation nr. 74

Figure B.75:
Simulation nr. 75

Figure B.76:
Simulation nr. 76

Figure B.77:
Simulation nr. 77

Figure B.78:
Simulation nr. 78

Figure B.79:
Simulation nr. 79

Figure B.80:
Simulation nr. 80

Figure B.81:
Simulation nr. 81

120

Figure B.82:
Simulation nr. 82

Figure B.83:
Simulation nr. 83

Figure B.84:
Simulation nr. 84

Figure B.85:
Simulation nr. 85

Figure B.86:
Simulation nr. 86

Figure B.87:
Simulation nr. 87

Figure B.88:
Simulation nr. 88

Figure B.89:
Simulation nr. 89

Figure B.90:
Simulation nr. 90

121

APPENDIX B. SIMULATIONS IN RANDOMLY GENERATED
ENVIRONMENTS

Figure B.91:
Simulation nr. 91

Figure B.92:
Simulation nr. 92

Figure B.93:
Simulation nr. 93

Figure B.94:
Simulation nr. 94

Figure B.95:
Simulation nr. 95

Figure B.96:
Simulation nr. 96

Figure B.97:
Simulation nr. 97

Figure B.98:
Simulation nr. 98

Figure B.99:
Simulation nr. 99

122

Figure B.100:
Simulation nr. 100

Figure B.101:
Simulation nr. 101

Figure B.102:
Simulation nr. 102

Figure B.103:
Simulation nr. 103

Figure B.104:
Simulation nr. 104

Figure B.105:
Simulation nr. 105

Figure B.106:
Simulation nr. 106

Figure B.107:
Simulation nr. 107

Figure B.108:
Simulation nr. 108

123

APPENDIX B. SIMULATIONS IN RANDOMLY GENERATED
ENVIRONMENTS

Figure B.109:
Simulation nr. 109

Figure B.110:
Simulation nr. 110

Figure B.111:
Simulation nr. 111

Figure B.112:
Simulation nr. 112

Figure B.113:
Simulation nr. 113

Figure B.114:
Simulation nr. 114

Figure B.115:
Simulation nr. 115

Figure B.116:
Simulation nr. 116

Figure B.117:
Simulation nr. 117

124

Figure B.118:
Simulation nr. 118

Figure B.119:
Simulation nr. 119

Figure B.120:
Simulation nr. 120

Figure B.121:
Simulation nr. 121

Figure B.122:
Simulation nr. 122

Figure B.123:
Simulation nr. 123

Figure B.124:
Simulation nr. 124

Figure B.125:
Simulation nr. 125

Figure B.126:
Simulation nr. 126

125

APPENDIX B. SIMULATIONS IN RANDOMLY GENERATED
ENVIRONMENTS

Figure B.127:
Simulation nr. 127

Figure B.128:
Simulation nr. 128

Figure B.129:
Simulation nr. 129

Figure B.130:
Simulation nr. 130

Figure B.131:
Simulation nr. 131

Figure B.132:
Simulation nr. 132

Figure B.133:
Simulation nr. 133

Figure B.134:
Simulation nr. 134

Figure B.135:
Simulation nr. 135

126

Figure B.136:
Simulation nr. 136

Figure B.137:
Simulation nr. 137

Figure B.138:
Simulation nr. 138

Figure B.139:
Simulation nr. 139

Figure B.140:
Simulation nr. 140

Figure B.141:
Simulation nr. 141

Figure B.142:
Simulation nr. 142

Figure B.143:
Simulation nr. 143

Figure B.144:
Simulation nr. 144

127

APPENDIX B. SIMULATIONS IN RANDOMLY GENERATED
ENVIRONMENTS

Figure B.145:
Simulation nr. 145

Figure B.146:
Simulation nr. 146

Figure B.147:
Simulation nr. 147

Figure B.148:
Simulation nr. 148

Figure B.149:
Simulation nr. 149

Figure B.150:
Simulation nr. 150

128

Bibliography

[Berti et al., 2008] Berti, H., Sappa, A., and Agamennoni, O. (2008). Improved
dynamic window approach by using Lyapunov stability criteria. Latin Ameri-
can Applied Research, 38(4):289–298.

[Borenstein and Koren, 1991] Borenstein, J. and Koren, Y. (1991). The Vector
Field Histogram - Fast Obstacle Avoidance for Mobile Robots. IEEE Trans-
actions on Robotics and Automation, 7(3):278–288.

[Børhaug et al., 2007] Børhaug, E., Pavlov, A., and Pettersen, K. Y. (2007).
Straight Line Path Following for Formations of Underactuated Underwater
Vehicles. In Proceedings of the 46th IEEE Conference on Decision and Con-
trol, pages 2905–2912, New Orleans, LA, USA.

[Børhaug et al., 2008] Børhaug, E., Pavlov, A., and Pettersen, K. Y. (2008). Inte-
gral LOS Control for Path Following of Underactuated Marine Surface Vessels
in the Presence of Constant Ocean Currents. In Proceedings of the 47th IEEE
Conference on Decision and Control, pages 4984–4991.

[Brock and Khatib, 1999] Brock, O. and Khatib, O. (1999). High-speed naviga-
tion using the global dynamic window approach. Proceedings of the 1999 IEEE
International Conference on Robotics and Automation, 1(May).

[Caharija, 2014] Caharija, W. (2014). Integral Line-of-Sight Guidance and Con-
trol of Underactuated Marine Vehicles. PhD thesis, NTNU.

[Caharija et al., 2012] Caharija, W., Pettersen, K. Y., Gravdahl, J. T., and
Bø rhaug, E. (2012). Integral LOS Guidance for Horizontal Path Following
of Underactuated Autonomous Underwater Vehicles in the Presence of Verti-
cal Ocean Currents. In 2012 American Control Conference, pages 5427–5434.

[Castro et al., 2002] Castro, D., Nunes, U., and Ruano, A. (2002). Reactive
local navigation. In IECON Proceedings (Industrial Electronics Conference),
volume 3, pages 2427–2432.

[Egeland and Gravdahl, 2003] Egeland, O. and Gravdahl, J. T. (2003). Model-
ing and Simulation for Automatic Control. Marine Cybernetics, Trondheim,
Norway.

129

BIBLIOGRAPHY

[Elfes, 1987] Elfes, A. (1987). Sonar-based real-world mapping and navigation.
IEEE Journal on Robotics and Automation, 3(3).

[Engelhardtsen, 2007] Engelhardtsen, Ø. (2007). 3D AUV Collision Avoidance.

[Eriksen, 2014] Eriksen, B.-O. H. (2014). Horizontal Collision Avoidance for Au-
tonomous Underwater Vehicles.

[Fleury et al., 1995] Fleury, S., Soueres, P., Laumond, J.-P., and Chatila, R.
(1995). Primitives for smoothing mobile robot trajectories. IEEE Transac-
tions on Robotics and Automation, 11:441–448.

[Fossen, 2011] Fossen, T. (2011). Handbook of Marine Craft Hydrodynamics and
Motion Control. John Wiley & Sons, Ltd, Trondheim, Norway.

[Fox et al., 1997] Fox, D., Thrun, S., and Burgard, W. (1997). The Dynamic
Window Approach to Collision Avoidance. IEEE Robotics and Automation
Magazine, 4(1):23–33.

[Fredriksen and Pettersen, 2006] Fredriksen, E. and Pettersen, K. (2006). Global
k-exponential way-point maneuvering of ships: Theory and experiments. Au-
tomatica, 42(4):677–687.

[Hespanha, 2009] Hespanha, J. P. (2009). Linear systems theory. Princeton Uni-
versity Press, New Jersey.

[Inñigo Blasco et al., 2014] Inñigo Blasco, P., Díaz-del Río, F., Vicente Díaz, S.,
and Cagigas Muñiz, D. (2014). The Shared Control Dynamic Windows Ap-
proach for Non-Holonomic Semi-Autonomous Robots. In Isr Robotik, pages
355–360.

[Jalving et al., 2004] Jalving, B., Gade, K., Hagen, O. K., and Vestgård, K.
(2004). A toolbox of aiding techniques for the HUGIN AUV integrated inertial
navigation system. Modeling, Identification and Control, 25(September):173–
190.

[Khalil, 2002] Khalil, H. K. (2002). Nonlinear Systems. Prentice Hall, Upper
Saddle River, New Jersey 07458, third edition.

[Khatib, 1985] Khatib, O. (1985). Real-Time Obstacle Avoidance for Manipu-
lators and Mobile Robots. The International Journal of Robotics Research,
5(1):500–505.

[Kiss and Tevesz, 2012] Kiss, D. and Tevesz, G. (2012). Advanced dynamic win-
dow based navigation approach using model predictive control. 2012 17th
International Conference on Methods & Models in Automation & Robotics
(MMAR), pages 148–153.

[Kongsberg Maritime, 2014] Kongsberg Maritime (2014). Autonomous underwa-
ter vehicle - HUGIN. http://www.km.kongsberg.com/ks/web/nokbg0240.
nsf/AllWeb/B3F87A63D8E419E5C1256A68004E946C?OpenDocument. Ac-
cessed: 2014-10-06.

130

http://www.km.kongsberg.com/ks/web/nokbg0240.nsf/AllWeb/B3F87A63D8E419E5C1256A68004E946C?OpenDocument
http://www.km.kongsberg.com/ks/web/nokbg0240.nsf/AllWeb/B3F87A63D8E419E5C1256A68004E946C?OpenDocument

BIBLIOGRAPHY

[Koren and Borenstein, 1991] Koren, Y. and Borenstein, J. (1991). Potential
Field Methods and Their Inherent Limitations for Mobile Robot Navigation.
In Proceedings of the 1991 IEEE International Conference on Robotics and
Automation, pages 1398–1404, Sacramento, California.

[Loe, 2008] Loe, Ø. A. G. (2008). Collision Avoidance for Unmanned Surface
Vehicles.

[Mathworks, 2014a] Mathworks (2014a). MATLAB - The Language of Technical
Computing. http://se.mathworks.com/products/matlab/. Accessed: 2014-
12-18.

[Mathworks, 2014b] Mathworks (2014b). SIMULINK - Simulation and Model-
Based Design. http://se.mathworks.com/products/simulink/. Accessed:
2014-12-18.

[Mathworks, 2015] Mathworks (2015). Vectorization - MATLAB & Simulink -
MathWorks Nordic. http://se.mathworks.com/help/matlab/matlab_prog/
vectorization.html?refresh=true. Accessed: 2015-05-05.

[Morgado et al., 2011] Morgado, M., Batista, P., Oliveira, P., and Silvestre, C.
(2011). Position USBL/DVL sensor-based navigation filter in the presence of
unknown ocean currents. Automatica, 47(12):2604–2614.

[National Ocean Service, 2014] National Ocean Service (2014). What is sonar?
http://oceanservice.noaa.gov/facts/sonar.html. Accessed: 2014-12-17.

[Ögren and Leonard, 2002] Ögren, P. and Leonard, N. E. (2002). A Tractable
Convergent Dynamic Window Approach to Obstacle Avoidance. In Proceedings
of the 2992 IEEE/RSJ Intl. Conference on Intelligent Robots and Systems
EPFL, pages 595–600.

[Oriolo and Nakamura, 1991] Oriolo, G. and Nakamura, Y. (1991). Control of
mechanical systems with second-order nonholonomic constraints: underactu-
ated manipulators. In 30th IEEE Conference on Decision and Control.

[Panteley et al., 1998] Panteley, E., Lefeber, E., Loria, A., and Nijmeijer, H.
(1998). Exponential Tracking Control of a Mobile Car Using a Cascaded Ap-
proach. In IFAC Workshop on Motion Control, pages 221–226.

[Panteley and Loria, 1998] Panteley, E. and Loria, A. (1998). On Global Uniform
Asymptotic Stability of Nonlinear Time-varying Systems in Cascade. Systems
and Control Letters, 33(2):131–138.

[Rodriguez-Seda et al., 2014] Rodriguez-Seda, E. J., Tang, C., Spong, M. W.,
and Stipanovi, D. M. (2014). Trajectory tracking with collision avoidance for
nonholonomic vehicles with acceleration constraints and limited sensing. The
International Journal of Robotics Research, 33(12):1569–1592.

131

http://se.mathworks.com/products/matlab/
http://se.mathworks.com/products/simulink/
http://se.mathworks.com/help/matlab/matlab_prog/vectorization.html?refresh=true
http://se.mathworks.com/help/matlab/matlab_prog/vectorization.html?refresh=true
http://oceanservice.noaa.gov/facts/sonar.html

BIBLIOGRAPHY

[Schröter et al., 2007] Schröter, C., Höchemer, M., and Gross, H.-M. (2007). A
Particle Filter for the Dynamic Window Approach to Mobile Robot Control.
In Proc. 52nd Int. Scientific Colloquium (IWK), volume I, pages 425–430.

[Seder et al., 2005] Seder, M., Macek, K., and Petrovic, I. (2005). An integrated
approach to real-time mobile robot control in partially known indoor environ-
ments. 31st Annual Conference of IEEE Industrial Electronics Society, 2005.
IECON 2005., pages 1785–1790.

[Seder and Petrović, 2007] Seder, M. and Petrović, I. (2007). Dynamic window
based approach to mobile robot motion control in the presence of moving
obstacles. In Robotics and Automation, 2007 IEEE International Conference
on, pages 1986–1991.

[Simmons, 1996] Simmons, R. (1996). The curvature-velocity method for local
obstacle avoidance. In Robotics and Automation, 1996. Proceedings., 1996
IEEE International Conference on, volume 4, pages 3375 –3382 vol.4.

[SNAME, 1950] SNAME (1950). Nomenclature for Treating the Motion of a
Submerged Body Through a Fluid. Technical report, The Society of Naval
Architects and Marine Engineers, New York, USA.

[Spong et al., 2006] Spong, M. W., Hutchinson, S., and Vidyasagar, M. (2006).
Robot Modeling and Control. John Wiley & Sons, Ltd.

[Statens Kartverk, 2014] Statens Kartverk (2014). Terrengmodeller. http:
//www.statkart.no/Kart/Kartdata/Terrengmodeller/. Accessed: 2014-10-
07.

[Tan et al., 2004a] Tan, C. S., Sutton, R., and Chudley, J. (2004a). Collision
Avoidance Systems for Autonomous Underwater Vehicles Part A: A Review of
Obstacle Detection. Journal of Marine Science and Environment, Part C(No
C2):39–50.

[Tan et al., 2004b] Tan, C. S., Sutton, R., and Chudley, J. (2004b). Collision
Avoidance Systems for Autonomous Underwater Vehicles Part B: A Review of
Obstacle Avoidance. Journal of Marine Science and Environment, Part C(No
C2):51–62.

[Tusseyeva et al., 2013] Tusseyeva, I., Kim, S.-g., and Kim, Y.-g. (2013). 3D
Global Dynamic Window Approach for Navigation of Autonomous Underwa-
ter Vehicles. International Journal of Fuzzy Logic and Intelligent Systems,
13(2):91–99.

[Wikipedia, 2015] Wikipedia (2015). Heaviside step function. http://en.
wikipedia.org/wiki/Heaviside_step_function. Accessed: 2015-05-13.

132

http://www.statkart.no/Kart/Kartdata/Terrengmodeller/
http://www.statkart.no/Kart/Kartdata/Terrengmodeller/
http://en.wikipedia.org/wiki/Heaviside_step_function
http://en.wikipedia.org/wiki/Heaviside_step_function

	List of Figures
	List of Tables
	Introduction
	Motivation
	Objective and scope
	Contributions
	Outline
	Notation
	Abbreviations

	Theoretical background
	Mathematical modeling
	6DOF hydrodynamical model
	Ocean current modeling
	Actuator model

	Collision avoidance theory
	The Dynamic window algorithm
	Original method
	Proposed extensions

	Modifications to the Dynamic window algorithm
	Control plant model
	Environment modeling
	Search space
	Trajectory prediction
	Objective function
	Appendix: Functional expressions
	Appendix: Trajectory prediction without pivot point transformation

	Simulator development
	Simulator overview
	AUV model
	Sonar modeling
	Sonar configuration
	Seabed modeling
	Single beam sonars
	Horizontal forward looking sonar
	Side scan sonars

	Horizontal guidance system
	Feedback controllers
	Surge speed and yaw rate controller
	Yaw controller
	Depth controller

	Dynamic window algorithm
	Environment representation
	Search space and predicted trajectories
	Velocity pair selection

	Stability analysis
	AUV model in component form
	Control objective
	Control system
	Stability of the closed loop system
	Proof of theorem 5.1

	Appendix: Functional expressions
	Appendix: Proof of lemma 5.1

	Simulation results
	Test cases
	Test case 1
	Comparison of the old and new Dynamic window implementation
	Performance with ocean current

	Test case 2
	Comparison of the old and new Dynamic window implementation
	Performance with ocean current

	Test case 3
	Test case 4
	Simulations in randomly generated environments

	Concluding remarks and suggestions for future work
	Appendices
	Stability of cascaded systems
	Simulations in randomly generated environments

