
Remote Operations of IRB140 with Oculus
Rift

Lars Tore Rørlien Carlsen
Philip Røst Wehinger

Master of Science in Cybernetics and Robotics

Supervisor: Tor Engebret Onshus, ITK

Department of Engineering Cybernetics

Submission date: June 2015

Norwegian University of Science and Technology

Contents

1 Acknowledgements viii

2 Summary and Conclusion 1
2.1 Summary in Norwegian . 1
2.2 Summary . 2
2.3 Conclusion . 3

3 Introduction 4
3.1 History and Motivation . 4
3.2 Introduction of Previous Work . 5

3.2.1 Overview of the Concept 5
3.2.2 Scope of Previous Work . 6
3.2.3 Choice of Equipment . 6
3.2.4 Oculus Rift . 6
3.2.5 ABB RobotStudio . 8
3.2.6 The Cameras . 9
3.2.7 C++ and the Oculus SDK 10

3.3 Introduction . 11
3.3.1 Task Description . 11
3.3.2 Concept Overview . 11
3.3.3 The FlexPendant . 12
3.3.4 The IRC5 Controller . 13
3.3.5 External Computer . 16
3.3.6 The Robot Manipulator, IRB140 16
3.3.7 C++ and Qt . 18
3.3.8 RAPID, RobotStudio . 19
3.3.9 Ovrvision . 19
3.3.10 Camera Mount . 22
3.3.11 Directional Sound . 22
3.3.12 Safety Precautions . 25

4 Theory 27
4.1 Calibration of the Robot . 27
4.2 Network . 27
4.3 Stereo sound . 28
4.4 Software Overview . 29

4.4.1 Camera Communication, Ovrvision SDK 29
4.4.2 Software Description of RAPID Server 30
4.4.3 OculusRobot, Client Side Software 31
4.4.4 Software Communication and Synchronization Description . 35

4.5 The Camera Specifications . 37
4.5.1 Image Transformation . 37
4.5.2 Minimum Focus Distance and Stereo Distance 38

4.6 Linear Interpolation . 39

i

4.7 Performance Definitions . 40
4.7.1 Area Between Curves . 41
4.7.2 Finding the Delay . 42

4.8 Coordinate Systems . 43
4.8.1 Tool Center Point . 43
4.8.2 Base Frame . 43
4.8.3 Wrist Frame . 44
4.8.4 Tool Frame . 44
4.8.5 Coordinate Transformation From Oculus Rift to Robot TCP 45

4.9 Performance Parameters . 48
4.9.1 zonedata . 48
4.9.2 Future Estimation with OVR SDK 49
4.9.3 Prefetch Time . 50
4.9.4 Path Resolution . 50
4.9.5 WaitTime . 50
4.9.6 MoveAbsJ and MoveL . 51
4.9.7 Process Update Time . 51
4.9.8 Queue Time . 51
4.9.9 Event Preset Time . 52

4.10 Multithreading . 52
4.11 The Rotation Matrix . 52
4.12 Forward Kinematics . 53
4.13 Inverse Kinematics . 55

4.13.1 Finding θ1, θ2 and θ3, Geometric Approach 55
4.13.2 Finding θ4,θ5 and θ6, Algebraic Approach 59

4.14 Singularities . 61
4.15 Sources of Delay . 63

5 Literary Search 64
5.1 Inverse Kinematics Literature . 64
5.2 Programming with Qt4 . 64
5.3 RobotStudio Manuals . 64

6 Results 66
6.1 Sources of Delay . 66
6.2 Offset Measurement . 68
6.3 Simulation vs the physical IRB140 69
6.4 tracking ability with different parameters 70

6.4.1 Future Estimation with OVR SDK 70
6.4.2 zonedata . 73
6.4.3 Prefetch Time . 80
6.4.4 Path Resolution . 82
6.4.5 Process Update Time . 85
6.4.6 Queue Time . 87
6.4.7 Move Joint Algorithm . 89

6.5 User Experience . 91

ii

6.6 Parameter Adjustment Summary 92
6.7 Sound . 93
6.8 Image Quality . 95

7 Discussion 98
7.1 Importance of Analyzing Measurements Versus How the System

Feels . 98
7.2 Fine Tuning of System Parameters 98
7.3 Total System Quality . 98
7.4 Consistency of Output Data from Standard Input in the Simulator 98
7.5 Vibrations and Subsequent Problems 99
7.6 Drawbacks of Computing the Inverse Kinematics on the Client . . 100
7.7 Possible Applications . 100

7.7.1 Remote Operations . 100
7.7.2 Demonstrational Purposes 100

7.8 Latency . 101
7.9 RobotStudio and RAPID for Real-Time Tracking 101
7.10 Choosing an Inverse Kinematics Algorithm 102

8 Further Work 103
8.1 Custom Robotic Arm . 103
8.2 Different Robot Communication Environments 103
8.3 Wireless transfer . 103
8.4 True 3D Sound . 104
8.5 Adaptive noise cancelling filter in the microphone 104
8.6 New VR Headset . 104
8.7 Singularity Avoidance . 105
8.8 Better Cameras . 105

Appendices 109

A Transformation Matrices 109

B User Manual 111
B.1 How To Calibrate the Robot . 111
B.2 Editing System Parameters In RobotStudio 115
B.3 How to Run the Application . 117

B.3.1 RAPID Server Application 117
B.3.2 C++ Client Application . 117
B.3.3 Running the system . 118

B.4 How To Navigate the CD . 120

C Code Samples 121
C.1 C++ Qt . 121

C.1.1 main . 121
C.1.2 TCP connect and run-thread 122

iii

C.1.3 Oculus RiftHandler data extract 124
C.2 Inverse Kinematics . 125
C.3 RAPID . 127

C.3.1 TCPconnection thread . 127
C.3.2 RobotMotion thread . 130

iv

List of Figures

1 System overveiw. 5
2 A more precise description showing how the setup was when using

the simulator. 6
3 A picture of the Oculus Rift with and without the case. In the

picture without the case you can see the led lamps that provides
positional tracking. The camera reads the pattern of the leds, and
based on this information it calculates the position of the headset. 7

4 The Oculus Rift only has positional tracking while the operator
remains inside the field of view of the IR-camera. 8

5 An image of the RobotStudio interface. 9
6 The adjustable mount made to hold the two Mobius ActionCams

at interpupilarry distance. 10
7 Illustration of the system setup. 12
8 The ABB FlexPendant . 13
9 The irc5 controller . 14
10 The control panel on the controller. 15
11 An image of the multipurpose robot, the IRB140. 17
12 A graphical representation of the range of the robotic arm. 18
13 The intended use of Ovrvision is to bring the real world into the

rift screen. 20
14 The camera sensor chip inside the shell of the Ovrvision. 20
15 The UI of the Ovrvision calibration tool. 21
16 Due to low compatibility between the cameras and the tool plate

on the robot it was attached with duct tape. 22
17 A minijack and USB connection is available from the bottom of

the microphone. 24
18 The backside of the microphone shows the gain and the four modes

which are available: stereo, cardioid, omnidirectional and bidirec-
tional. 24

19 The security plexiglass surrounding the robot. 25
20 The door to enter the robot area. 26
21 Diagram of Network Communication 28
22 The concept of stereo sound . 29
23 Class diagram for the robot server application. 30
24 Flow diagram of the RAPID server application. 31
25 The graphical user interface used to communicate with the robot . 32
26 The output if everything is connected correctly 33
27 Class diagram of the C++/Qt software with dependencies 34
28 Flowchart of the GUI options. 35
29 This sequence diagram shows the communication between the dif-

ferent parts during normal operation. 36
30 The asynchronous communication represented in another way, where

the red line represents a border where what lies to the left of the
line is asynchronous from whats on the right side of the line. . . . 37

v

31 Left: Barrel distortion. Right: Pincushion distortion. Both pic-
ture relative to a parallel aligned picture. 38

32 The focus distance of the Ovrvision. 39
33 The figure shows the concept of how to generate missing data

points with interpolation . 40
34 The area between the Oculus Rift plot and robot plot are marked

in yellow . 41
35 illustration of the robots coordinate frames [20]. 44
36 This figure showes how the two coordinate systems are rotated

with respect to each other . 45
37 This figure shows how the initial position of the Oculus Rift (OOx,OOy,OOz)

is defined. 46
38 This figure shows the offset the TCP has with respect to the origin

of the robot coordinate system in x-direction and z-direction. . . . 47
39 This figure shows the offset the TCP has with respect to the origin

of the robot coordinate system in y-direction. 47
40 The origin of the base frame. 48
41 This figure illustrates the principle with zonedata. 49
42 illustration of the zonedata[6] . 49
43 Image of the Production Window used for multithreading in auto-

matic mode. 52
44 Kinematic parameters of the ABB IRB 140 and frame assignment. 54
45 Kinematic decoupling displaying the elbow of the manipulator. . . 56
46 The projection of the WCP onto the x0 − y0 plane. 57
47 A projection of the plane formed by link2 and link3. 59
48 Symbolic representation of the IRB 140 60
49 Spherical wrist singularity[33]. 62
50 Illustration of the elbow singularity[33]. 62
51 Simulation of robot response to Oculus Rift with system parame-

ters set to standard. 67
52 Scatterplot of the MoveL runtime. 68
53 This figure showes the plottet robot trajectory and the simulation

trajectory with identical input . 69
54 40ms vs the directly measured data 70
55 95ms vs the directly measured data when the operator moves the

head at normal speed . 71
56 95ms vs the directly measured data when the operator moves the

head at very high speed . 72
57 Estimation for multiple different input parameters 72
58 95ms estimation vs 0ms ms estimation where the estimated data

is time shifted to make the data overlapp 73
59 the plots of all axis with zonedata = z1 and WaitT ime = 0.1 . . . 75
60 There is a significant time difference between the signals in this plots 76
61 the plots of all axis with zonedata = z10 and WaitT ime = 0.1 . . 77
62 the plots of all axis with zonedata = z20 and WaitT ime = 0.1 . . 78

vi

63 the plots of all axis with zonedata = fine and WaitT ime = 0 . . . 79
64 The Latency can be read from this plot to be about 0.3 seconds . . 80
65 It is hard to read any differences from this case to the default case

with prefetchtime = 0.1 . 81
66 It is hard to read any differences from this case to the default case

with prefetchtime = 0.1 and the prefetchtime = 2 case 82
67 . 84
68 It is hard to read any differences from this case to the default case

with prefetchtime = 0.1 and the prefetchtime = 2 case 85
69 This figure shows the plot where the processupdatetime = 1.93 . . 86
70 This figure shows the plot where the queuetime = 0.05 88
71 This figure shows the plot where the queuetime = 0.29 89
72 It can be seen that even when the MoveAbsJ algorithm is used, a

delay occurs about the same as the one when MoveL with zonedata =
zF ine is utilized. 90

73 The delay here is more significant than with MoveAbsJ, but for
zonedata = zF ine, there is no significant difference in delay be-
tween the two algorithms. 91

74 microphone setup with no vibration protection between the robot
and the microphone . 94

75 micrphone setup with a protective foam between the microphone
and the robot . 95

76 Showing the camera image in normal lighting conditions, as can
be seen the settings of the camera here is acceptable. 97

77 Showing the camera pointing towards a light source, the settings
is not optimal for this, and the light gets intense in the picture. . . 97

78 An image of the robot bolted to the floor. 99
79 Image of calibration point for the first joint. 111
80 Image of calibration point for the second joint. 112
81 Image of calibration point for the third joint. 112
82 Image of calibration point for the fourth joint. 113
83 Image of calibration point for the fifth joint. 113
84 Image of calibration point for the sixth joint. 114
85 Print screen showing the location of the Controller and RAPID tab.115
86 Print screen showing the location where to change system param-

eters. 116

vii

1 Acknowledgements

The authors would like to extend our thanks to our supervisor Tor E. Onshus for
guiding us through the work. The authors would also like to thank Knut Reklev
for his participation in getting the IRB140 up and running, and for being avail-
able. Thanks to Åsmund Røst Wien from Liverpool Institute of Performing Arts
for consulting us with sound technology. The authors will also thank the mechan-
ical workshop at the faculty for engineering cybernetics for their contribution in
the Robotic Lab.

viii

2 Summary and Conclusion

2.1 Summary in Norwegian

Denne artikkelen gir et forslag p̊a hvordan man kan lage et oppsett som gjør at
brukeren kan projeksere tilstedeværelsen til en annen lokasjon. Artikkelen legger
frem et konsept p̊a en ny m̊ate man kan utføre fjernstyrte operasjoner p̊a. Denne
metoden gjør at brukeren f̊ar en økt følelse av nærvær, og kan derfor gjøre bedre
og tryggere valg under operasjoner. Målet er å sammenkoble bevegelsen til op-
eratørens hode til en robotarm med 6 frihetsgrader. Denne strømmer deretter
video fra robotarmen tilbake til en stereoskopisk skjerm festet til operatørens
hode. Andre m̊al er å inkludere strømming av lyd, øke videokvaliteten, studere
invers kinematikk og forbedre den helhetlige ytelsen til systemet. Systemet kjører
p̊a ABB plattformen RobotStudio™.

Hardwaren som brukes for å gi operatøren video er Oculus Rift™, dette er et
headset som brukes i virtuell virkelighet segmentet. Programvare ble skrevet
for å hente data fra Oculus Rift og sende dataen videre til robotarmen. Denne
programvaren inkluderer logging av data, TCP/IP tilkobling, et enkelt bruker-
grensesnitt og inkluderingen av flere tr̊ader, dette gjelder b̊ade i programmer-
ingsspr̊aket C++ og RAPID. Åpen kildekode ble brukt for å h̊andtere kamer-
amodulen, Ovrvision™. Dette ble brukt for å f̊a sendt bildestrømmen fra roboten
til Oculus Rift sin skjerm. Strømmingen av lyd ble gjort ved å inkludere Blue
Yeti™stereo- kondensator-mikrofoner i systemet. IRB140 ble brukt som robot
arm ettersom dette var den tilgjengelige robotarmen p̊a universitetet. I tillegg til
hardware- og programvareutvikling ble alternative fremgangsm̊ater for å forbedre
systemet foresl̊att. Dette inkluderer studier av hvordan man kan gjøre invers kine-
matikk for å transformere posisjonen fra hodet til de ulike vinklene i robotarmen
sine ledd.

For å prøve og forbedre systemet, ble det gjort endringer p̊a systemets param-
etere. Resultatet ble evaluert ved b̊ade fysisk testing og ved og analysere den
loggede dataen. Noe av testingen ble gjort kun i simulator ettersom tester viste
at dette korrelerte godt med den fysiske roboten. Fremtidige estimater av hodets
posisjon ble gjort for å redusere den totale forsinkelsen. Estimater 40ms inn i
fremtiden ble gjort og dette gave et resultat som var et godt kompromiss mellom
nøyaktighet og forsinkelse. Reduseringen i forsinkelse ble ogs̊a gjort ved å endre
systemparametere og ved å bruke ulike innstillinger i bevegelsesalgoritmen. Den
totale systemforsinkelsen endte i verste fall opp p̊a omtrent 0.3 sekunder etter den
endelige iterasjonen med testing og forbedring. Gjennomsnittlig var forsinkelsen
omtrent p̊a 0.2− 0.25 sekunder, mens den i beste fall l̊a p̊a omtrent 0.1 sekund.

1

2.2 Summary

This article poses a suggestion on how to create a setup which projects the pres-
ence of the user to another location. The article gives a proof of concept of a
new way of doing remote operations, giving the operator a better feel of presence
and thus making the operator able to make safer and better decisions. The main
goal is to link the movement of the human head to the movement of a 6 degrees
of freedom robotic arm and streaming stereo video from the robotic arm back
to a stereoscopic screen mounted to the operators head. Additional objectives
is to include streaming of sound, improving the video quality, studying inverse
kinematics and to improve how well the system performs as a whole on the ABB
RobotStudio™platform.

The virtual reality hardware that was chosen was the Oculus Rift™. The software
was written to extract data from the Oculus Rift and pass it on to the robotic
arm. This software includes logging of data, TCP/IP connection, a simple GUI
and multiple threads to handle the data flow both in the programming language
C++ and RAPID. An open source software to handle a camera module, the
Ovrvision™, was studied and modified. This was to get a camera feed from the
robot to the Oculus Rift screen. The sound streaming system was included by
using the Blue Yeti™stereo condenser microphone. The IRB140 was chosen as
the robot manipulator as this was the robot arm available at the university. In
addition to the hardware and software testing and development, alternative ways
of improving the system is also suggested. This includes studies on how to do
inverse kinematics to translate the Oculus position into joint angles of the robot.

In order to try to improve the system, adjustments on system parameters was
done and the results was evaluated by both physical testing and analyzing of the
logged data. Some of the testing was done only in the simulator as tests showed
that this correlated well with the physical robot. Future estimation of the position
of the head was included in order to reduce overall latency. Predictions 40ms into
the future gave a result that compromised the need for low latency and accuracy.
Reduction of latency was also done by changing system parameters and using
other settings in the move algorithm, the total system latency was reduced to
about 0.3 seconds, this being the worst case, in the final iteration of testing and
improving. The average case was at about 0.2 − 0.25 seconds and best case of
about 0.1 seconds.

2

2.3 Conclusion

As factories, power plants and offshore operations becomes more reliant on an
autonomous workforce the need for human presence also changes. The main rea-
son for human intervention would be to perform maintenance and inspection,
however, the environments and locations might not be suitable for humans to
physically enter. Thus the need for remote robotic operations with the use of
virtual or augmented reality arises as it provides the human presence without
the need to be there in person. This serves as the foundation for the main goal
of the thesis, which is to create a complete working proof of concept operational
on a robotic manipulator.

The most important feature of an augmented reality system is low latency. If the
latency is too high the operator will not get a feeling of presence, and might expe-
rience motion sickness. Although tuning of system parameters proved beneficial
most of the reduction in latency stemmed from using the zonedata fine. Contrary
to early predictions that fluid motion was more important than rapid response,
it turned out that the user experience improves with reduced latency even at the
cost of more stuttering. In order to further reduce the latency a future estimation
algorithm proved beneficial as it could reduce the latency by 40 to 90 ms with the
only downside of insignificant accuracy loss. This gives an acceptable average case
where the delay is barely noticeable. This combined with the addition of stereo
sound makes the system give the operator an almost complete feeling of presence.

The concept has shown potential for further development, especially in the field
of optimizing the inverse kinematics solver. However, this would require access
to lower level control as the current RobotStudio algorithms are not fast enough
to gain anything from it. In the future the concept could also expand with
the addition of two extra robot manipulators to simulate hands. If this was
accomplished then it would enable complete human presence and the possibilities
for the application would only be limited by the imagination of those who applied
it.

3

3 Introduction

This paper is based on the work done in the project report written by the authors
of this thesis in the fall of 2014. The introduction will therefore first focus on the
previous work that was done during the fall, before it introduces the work that
was done with the current thesis in the spring of 2015.

3.1 History and Motivation

Virtual reality is not a new invention, and has previously had varying degrees of
success. This time, however, the technology has risen to new heights with the
innovative solutions brought on by the Oculus Rift team. Prominent technology
companies, such as Valve and Sony, are investing billions into the technology,
and all the bricks of the technology are finally there to really make it a success.
All the attention it has had in the media, and after testing the Oculus Rift, see
Section 3.2.4, made the authors curious on how to combine this technology with
robotics. This brought up the idea to use the Oculus Rift as a tool in remote
operations. Controlling a robotic arm with its sensors, and using its screen to
display whatever the robotic arm sees in full 3D. The potential for innovation in
this field motivated the authors to make a proof of concept of how such a system
could work.

In the paper ”Control of Robot Arm Through Oculus Rift”[2] which this the-
sis builds upon, research was made on what components to use. How to set up
the simulation environment with RobotStudio as well as discussing some simu-
lations results is also described. This task motivated us to proceed with the work.

This leads to the natural goal of this master thesis in making the system work on
the physical Robot. It was also important to test if it was able to provide good
real time tracking with the ABB ecosystem, which is generally made for pre-
planned trajectories. Another goal was to improve the software both to optimize
it, make it easier to run tests on and make more sophisticated communication. In
addition to this, the authors wanted to measure the performance of the tracking
both analyzing it and testing the user experience. To test how the user experience
changed when introducing bidirectional sound was also some of the motivation
to proceed with the project.

4

3.2 Introduction of Previous Work

This section will introduce the previous work done on this project. The previous
work will be on the CD attached to this thesis[2]. The main contribution being
the project work by the authors. Although most of the previous system was
created anew, it still remains relevant to understanding the current system. T

3.2.1 Overview of the Concept

The goal of the work that was done in the previous report was to study the
possibility of having a 6 degrees of freedom robotic arm do real-time tracking of
a system with sensors measuring 6 degrees of freedom, e.g. the Oculus Rift. The
idea is to make the robotic arm track the head of the operator while streaming
3D stereoscopic video and eventually directional sound back to the operator. See
Fig. 1 and 2 for an illustration of the concept. The positional vector from Eq. 1
is continuously sent from the headset to the robotic arm, and the camera module
sends a video feed back to the headset.

x =
[
x y z α β γ

]ᵀ
(1)

Figure 1: System overveiw.

5

Figure 2: A more precise description showing how the setup was when using the
simulator.

3.2.2 Scope of Previous Work

In the work done during the project work the robotic motion was only simulated,
and not tried on an actual robotic manipulator, however, it was designed to work
on the IRB140. Due to this the system as a whole could not be tested as the
camera module was never attached to the robotic arm.

3.2.3 Choice of Equipment

Based on the equipment available at NTNU it was natural to choose the ABB
IRB140 robotic arm and to do the simulations in the ABB provided software
environment called RobotStudio which the institute provides free licences for.

At the start of the previous project the Oculus Rift DK2 was the only suitable
option for a virtual reality headset. It has a large developer community and the
software is fairly well documented. In addition it is relatively stable even though
it is only a development kit and an early prototype of a virtual reality headset.

3.2.4 Oculus Rift

Oculus Rift is a new technology expected to have a profound impact on the future.
It is called a Virtual Reality headset, which can be referred to as an immersive
multimedia computer simulated experience. The version of the headset that was
used for the project was the second development kit (Oculus Rift, DK2). This
headset includes a full tracking system, both translation and rotation. The con-
sumer version of the headset will be released in Q1 2016.

The 6 degrees of freedom (6DOF) tracking is done with the help of a gyroscope
tracking its orientation, and a camera which tracks the position in space of the
rift, see Fig. 4 and Fig. 3 for an explanation of how the position tracking works.
The excellent tracking performance of the rift makes it a natural way to control

6

objects in a 3D environment. Conventional devices used for giving orientational
input, such as a mouse, often has the limitation of 2DOF, while traditional con-
trollers for computer games has 4DOF. To control a 6DOF robotic arm with a
conventional controller can be hard and unintuitive, but when using the Oculus
Rift to control it, the experience becomes more intuitive and requires less training
to use accurately.

Because the company behind Oculus Rift focuses on gaming in a simulated en-
vironment, they put a lot of effort into making a good first person experience
with low latency on both the tracking and the image. They have included a low
persistence display which reduces motion judder when moving. The headset also
covers 100 degrees field of view. This makes the operator feel that all he can see
when wearing the headset, is the virtual reality.

The technical specifications of the rift is a data rate of 1000Hz from the in-
ternal sensors and a 60Hz update rate for the positional tracking. The headset is
connected to the computer with a HDMI cable and two USB ports, one for the
camera and one for the sensor data and power to the headset. The screen resolu-
tion is 960x1080 per eye, this is equivalent to a full HD display split into two parts.

As previously mentioned the concept of this paper is not to display a virtual
reality in the Oculus Rift, but the reality from somewhere else. To learn more
about the Oculus Rift it is recommended to watch the introduction video pro-
vided at their website[4].

Figure 3: A picture of the Oculus Rift with and without the case. In the picture
without the case you can see the led lamps that provides positional tracking. The
camera reads the pattern of the leds, and based on this information it calculates
the position of the headset.

7

Figure 4: The Oculus Rift only has positional tracking while the operator remains
inside the field of view of the IR-camera.

3.2.5 ABB RobotStudio

This is the IDE belonging to the ABB robot programming ecosystem. This is
a virtual environment that simulates the physics of the physical robot, and is
designed for testing and debugging the software before uploading to the physical
robot. The program language used to program in RobotStudio is the RAPID
programming language. This is a high level programming language dedicated to
programming of the ABB portfolio of robotic arms. An example of the Robot-
Studio user interface can be seen in Fig. 5.

8

Figure 5: An image of the RobotStudio interface.

3.2.6 The Cameras

The cameras used in the project was of the type Mobius ActionCam, see Fig.
6 for an image of the camera module. These cameras provided a possibility to
easily adjust resolution and other parameters through software to improve the
image quality of the Oculus Rift. In order to get stereoscopic view from the
cameras, a mount with an adjustable distance between the cameras was made.
The reason why these cameras were not used in this project is due to the lack of
support for the Oculus Rift, as well as a latency in the video stream which was
larger than acceptable.

9

Figure 6: The adjustable mount made to hold the two Mobius ActionCams at
interpupilarry distance.

3.2.7 C++ and the Oculus SDK

During the initial phase of the software design the only available SDK for the
Oculus Rift was written in C++. Later on the community has made other SDK
e.g in python. There was no Linux driver for the Oculus at the time of this report,
this is something that has been made later by the developers at Oculus inc. The
Oculus software developer kit(SDK) has a manual[7] to explain the functions and
how to build a basic application.

Due to the camera setup that was used it was necessary to create a custom viewer
for the video stream. For such applications OpenCV and OpenGL provides a
framework that is well documented and user friendly in the C++ version. When
combined with the fact that C++ is suitable for real-time systems it remained a
solid choice even after SDKs for other languages were developed.

10

3.3 Introduction

3.3.1 Task Description

This thesis will build upon the project, written Fall 2014, which researched the
implementability of the concept. As this project consisted of only simulations
the main task of this thesis is to implement the system on an IRB140 as well as
reducing the overall latency of the system. The following list sums up the main
goals.

• Creating a communication network between the external computer and the
robot controller.

• Analyze the sources of the latency.

• Reduce the latency of the total system.

• Improve user experience.

• Test the effect stereo sound has on the total user experience.

3.3.2 Concept Overview

In the section explaining earlier work there is a picture showing the simulation
setup 2. This setup was extended in this thesis to include the physical robot
and the Robot controller. Fig. 7 explains this setup. The setup consists of six
main parts. The Flex pendant (1), the controller (2) the robot (3), an external
computer (4), the Ovrvision camera (5) and the Blue Yeti™microphone (6). All
these components communicates in different manners. The communication which
had to be handled directly was the communication between the robot controller
and the laptop. This will be explained more in detail in the technical part of the
paper.

11

Figure 7: Illustration of the system setup.

3.3.3 The FlexPendant

The FlexPendant is the user interface(UI) of the robot controller. The program
is uploaded directly to the robot controller from the external computer with a
Transmission Control Protocol/Internet Protocol(TCP/IP) connection or serial
connection. This can be then viewed as well as executed from the FlexPendant.
It also has a built in editor for making programs, however, it is recommended to
use this for only small programs. The FlexPendant operates with two different
UIs based on the current operational mode it is in, namely the program editor
and the production window. A convenient feature is that while running the pro-
gram it is possible to see the program flow on the FlexPendant as well as write
output for debugging purposes. The screen utilizes touch screen technology, how-
ever, it is designed to be used within industrial facilities which means it has high

12

durability with the cost of reduced responsiveness.

The robot controller is running two OS, a Unix core and a Windows core. There
is a manual[39] following the FlexPendant which could be read to get more details
about the computer inside it and how to use it.

Figure 8: The ABB FlexPendant

When the robot is set to manual mode, see Section 3.3.4, it is possible to use a
joystick to control the joints of the robot. There are multiple ways to do this,
both with controlling the individual joints, or by using linear movement. The
joystick has 3 degrees of freedom, in addition to the traditional joystick, it is
also possible to rotate the joystick to control the 3rd axis. In joint control mode,
which is the optimal way to jog all 6 axis of the robot, one can switch between
a mode where you control the first three joints, the elbow, and the outermost
remaining joints, the spherical wrist.

3.3.4 The IRC5 Controller

The FlexPendant is linked to the robot controller, see Fig. 9. It runs a OS called
RobotWare OS™which is designed by ABB. The controller is designed for indus-
trial purposes and therefore safety is a high priority of the system. This could
be a disadvantage for this project where performance, speed and response time
are the most important features, and a complex safety systems could lead to a
reduced performance. It is also mainly designed for preplanned trajectories as
this is how it is used in industrial applications. This is also a challenge, and to
find out if our project is even possible to do on this controller is one of the things

13

to be studied in this thesis.

Figure 9: The irc5 controller

The ABB robotics ecosystem is a closed system where the end user does not have
access to the lower layers of the software. The software gives the end user access
to certain control parameters, but the exact details of the control algorithms and
other functions remains hidden. There are also several features that require spe-
cific licenses. This proved to be challenging, however, the basic tools provided
enough support to create workarounds.

The IRC5 controller has three modes it runs in. In Fig. 10 the input device at

14

the bottom is the one that is used to switch between these modes. To do this, a
key is needed, this is a safety procedure as the robot can operate at considerable
velocities and can be dangerous when operating in automatic mode.

• Manual Mode:
In this mode, the speed of the robotic arm is reduced to a safe level. In
addition it will automatically stop if it impacts with some external object,
and can only move if the dead man’s switch is pressed. In manual mode
it is possible to use the joystick on the FlexPendant to move the robot to
a desired position, even though with very reduced speed. The amount you
move the joystick controls the speed of the robot.

• Manual Full speed mode:
This mode does the same as the manual mode except that the robot is
allowed to move in full speed in this mode.

• Automatic mode:
In this mode the robot is only allowed to move by running a pre-programmed
script. This mean you cannot run the robot with the joystick in this mode.
The robot should always be tested in manual mode before testing it in
Automatic mode for safety purposes.

Figure 10: The control panel on the controller.

15

The IRC5 controller includes a battery. This battery is there in order to store
the previous state of the robot when the robot is shut down or during a power
loss. This battery usually lasts two years during normal usage, but if the robot
is rarely used it will empty quicker as the battery charges when the power of the
controller is on. If the battery is empty one can leave the robot on for a day or
two to charge it.

3.3.5 External Computer

There are some requirements for the external computer when using the Oculus
Rift[9]. These are mainly aimed at using Oculus Rift for games and not for
remote operations, thus they are a bit lower int his case as it does not require
any heavy rendering. There is however a hard real-time problem regarding the
number of frames that are displayed. This is due to the fact that each frame that
is dropped will be felt on a much more intense level when compared to framedrops
on a monitor. The official requirements for running the Oculus Rift is:

• NVIDIA GTX 970 / AMD 290 equivalent or greater.

• Intel i5-4590 equivalent or greater.

• 8GB+ RAM

• Windows 7 SP1 or newer

• 2x USB 3.0 ports

• HDMI 1.3 video output supporting a 297MHz clock via a direct output
architecture

These requirements can be lowered somewhat with respect to the graphic card
and processor. Another reason for having a reasonably powerfull external com-
puter is that RobotStudio is a very demanding program which will decrease in
performance if the specifications are too low. The specifications of the external
computer used in this project is described below.

• Processor: Intel Core i5 (4th Gen) 4300U / 1.9 GHz Dual-Core

• RAM: 8 GB (2 x 4 GB) DDR3L SDRAM

• Graphics card: NVIDIA GeForce GT 720M - 2 GB GDDR5 SDRAM

• Inputs: VGA, HDMI, 2 x USB 3.0, USB 2.0, LAN

3.3.6 The Robot Manipulator, IRB140

The current system is designed to work on the ABB IRB140, however, it is a
trivial task to port it to other ABB robots. See Fig. 11 for an image of the
IRB140 robot.

16

Figure 11: An image of the multipurpose robot, the IRB140.

This is one of the smaller robots in the ABB robot portfolio. It is described as
a compact and powerful industrial robot[8]. It is a six axis multipurpose robot
that can handle payloads of up to 6kg and a total reach of 810mm. Because the
range of the operator is constrained by the view of the camera cone and the fact
that the operator would be seated when wearing the Oculus Rift, this range is
sufficient for the application. See Tab. 1 for a chart of the angular velocities and
range of the joints and Fig. 12 for an illustration of its reachable and dexterous
workspace.

Table 1: The maximum angular velocity and the range of the joints[8].

Axis 1 Axis 2 Axis 3 Axis 5 Axis 6
Range [degrees] 360 200 280 400 230 800
Maximum velocity [degrees/s] 150 160 170 320 400 460

The variation in speeds of the different joint is due to the different momentum
of each joint. Axis 1 has to carry much more weight when moving in comparison
to e.g axis 6, this makes the possible angular movement speed much higher.
Translational movement of the operators head when seated is relatively low, this
will also be possible to see in the results, and thus are the speed of the elbow joints
sufficient. The maximum rotational speed of the human head is often estimated
to be about 600 ◦/s. This speed is extreme and it is not necessary for the robot
to be able to track such fast motions as this represents extreme cases, and not

17

movement in our everyday life.

Figure 12: A graphical representation of the range of the robotic arm.

3.3.7 C++ and Qt

To communicate with the controller, C++ with Qt™was used as the development
tools. The programming was done in Visual Studio. Qt is a cross platform ap-
plication framework developed by Nokia to make applications. It works like an
upgrade to the C++ programming language with libraries including convenient
classes and functions. In addition to this Qt has fast and easy libraries to develop
graphical user interface (GUI). The ability to make a small and easy GUI was
helpful when it came to testing the application of this paper. To easily switch
input, source, output source, and enable/disable logging of data.

In the former version of the software the communication with the simulator was
done using a shared file. When migrating to communication with the physical
robot it was necessary to use a TCP/IP connection. That also introduced the
need for multithreading on both the client side on the external computer, and
on the server side on the robot controller. Qt has support for multithreading
and includes classes which makes introducing a multithreaded program flow less
complicated than with the STD libraries.

Keeping the opportunity open to include sound transfer from microphones to a
headset via the software was important in order to introduce sound to the total

18

system. In Qt there are some samples on how to take sound-input from USB
and send the stream out through the mini jack output on the computer in the
Qt multimedia library. However, a more mechanical solution was chosen instead
due to a limited amount of USB ports as well as the cost of proper microphones.

In the previous version of the software OpenCV was included in the application for
the video streaming. As a new custom camera module was bought for this project,
some open source programs followed written in C++. This software worked as
intended and only needed some tuning in order to work for our application, more
on this in Section 3.3.9. All of these advantages made C++ and Qt a natural
choice to develop with.

3.3.8 RAPID, RobotStudio

As the robotic programming platform, ABB RobotStudio and RAPID was the
simulation environment and programming language used during the entire project.
RobotStudio features an interface designed for realistic testing of the ABB robots.
Since the behaviour of the simulation was almost identical to the robotic manip-
ulator it served as a platform to benchmark the performance of the different
parameters with respect to the standard setup without having to always operate
in the laboratory. In comparison to earlier usage the new features of multithread-
ing, called tasks in RAPID, as well creating a network with TCP/IP were looked
into. It is also possible to tune some of the system parameters to tune the pefor-
mance of the robot which is a part of the studies.

Recently ABB launched a new version of RobotStudio and RobotWare which
introduces several bug fixes as well as a feature called Externally Guided Mo-
tion(EGM). Unfortunately the software the robot controller used in this project
is outdated and does not support this.

3.3.9 Ovrvision

Ovrvision[10] is a custom built camera module provided by a Japanese start-up
company that aims to bring augmented reality to the Oculus Rift screen, see Fig.
13 and 14. It is specifically designed for the Oculus Rift, and also comes with a
SDK to develop applications with the camera module.

In the previous camera setup, two Mobius ActionCams was bought to make
the viewer in the Oculus Rift. A custom viewer was made in order to render
the picture to the headset screen, however, it proved difficult to improve the
quality to acceptable levels. There is a lot of research behind making satisfactory
stereoscopic vision, and that is the why a custom hardware with open source
software was chosen.

19

Figure 13: The intended use of Ovrvision is to bring the real world into the rift
screen.

Figure 14: The camera sensor chip inside the shell of the Ovrvision.

Experimentation proved that the image resolution was not the most important
thing when considering image quality. The Mobius ActionCams were both full
HD quality. Other properties was far more important than the pixel density in
order to get a pleasant experience, some adjustments were tested with the old
setup, e.g to adjust the distance between the two frames rendered to the rift.
The quantitative analysis on these adjustments was already done by Ovrvision.

On the Ovrvision website there is a developer tab. This brings up a StartUp
Guide to start programming C++ in Visual Studio and a C++ reference[11].
This reference provides all functions needed to use the cameras and the Oculus
Rift together. When downloading the SDK[13] there was also some example pro-
grams, one of which was called Ovrvision to Rift. Some experimentation and
minor adjustments was done to the source code, but mainly this program pro-
vided what was necessary when coming to rendering a transformed image from
the Ovrvision into the Oculus Rift.

20

The barrel and pincushion distortion is something that will be written more about
in the theory section. The main point is that there has to be done an image trans-
formation on the video feed when sending it to the rift. This was not done in the
previous work which was some of the reason for the reduced quality when using
the old camera setup. The decision behind not implementing it was based on
the results that showed it introduced enough latency to warrant being left out.
The Ovrvision solves this problem by doing this transformation with lenses on
the cameras instead of software. This removes the delay of this transformation
completely. The lenses used for this on the Ovrvision is called fish eye lenses
and performs a pincushion distortion on the image that is passed through to the
sensor.

It was necessary to perform a calibration of the cameras and the firmware to make
the images overlap correctly. This was done using a calibration tool provided by
Ovrvision. The calibration tool was provided with the SDK [13] and was run
from there. The software is intuitive and there is also an instruction provided
by the developers [14]. The approach used to calibrate the camera is to take 25
pictures of a pattern from different angels on the screen that shows when running
the software, as can be seen in Fig. 15, and the cameras calibrates automatically.
It is outside the scope of this paper to explain the theory behind this calibration.
There is also an option to rotate the lenses of the Ovrvision to focus it so it
adjusts to the operators eyes.

Figure 15: The UI of the Ovrvision calibration tool.

Technical specifications:

• USB 2.0

21

• Fish-eye lenses corresponding to Oculus Rift lens

• 60fps

• Resolution 1280x480

• 50ms latency

3.3.10 Camera Mount

By default it would be hard to attach a camera setup to the robot. This is why
there is attached a metal plate at the outermost joint of the robot. This is a
multipurpose mount and has previously been used to attached a gripper to the
robotic arm. In this setup the mount was used to attach the camera system
described in the previous section. Experience when testing the system showed
that small inaccuracies in the camera placement on the robotic arm is negligible,
see Fig. 16 for how it was attached.

Figure 16: Due to low compatibility between the cameras and the tool plate on
the robot it was attached with duct tape.

3.3.11 Directional Sound

Initially there was only the input provided by the video stream given to the
operator. However, the user experience seemed incomplete and the lack of sound
proved to be a hindrance. Thus a simple solution was added to test the effects
of directional sound to the system.

22

• Two active USB microphones with Qt multimedia:
This would be the most elegant solution, however there proved to be prob-
lems with using a USB HUB and QtMultimedia. This would have been
necessary as there is not enough inputs on the computer to connect both
the Oculus and the microphones. With this setup the sound handler could
be run in a separate thread in the already existing software and stream
stereo sound out through the mini jack output on the computer.

• Two XLR microphones and a mixer:
In this setup two Shure pg58™vocal microphones and a xenyx 1002 mixer™with
two XLR inputs was tested. The two microphones was plugged into the
mixer and a Twin RCA Phono to 3.5mm Mini Jack Stereo female was used
to send the two sound signals to each ear in a headset. If the two micro-
phones then is set to point in two separate directions this could give some
of the wanted effect. However vocal microphones is not very good for this
purpose. They mainly catches sound in a cardioid right in front of them and
has very little range of sound capturing. This means that they only picked
up sound that is very close to the microphones. The way to go would be to
use condenser microphones used to record symphonic orchestras and choirs,
these microphones are capable of recording sounds from a great range.

• Blue Yeti:
The final solution was using the Blue Yeti microphone[15]. This is a high
quality USB microphone which poses good sound quality and multiple
modes. It is a array of condenser microphones arranged in a pattern and
has a built in amplifier.

In Fig. 17 one can see the bottom side of the microphone with its connections. It
has a USB connection to connect the microphone to the computer and power the
active components. In addition it has a mini jack output to connect a headset
directly to the microphone. The yeti poses built in filters to give a decent sound
output in this port. Another possible solution using this microphone would be
to to send the sound to the computer with the USB port and then use the mini
jack output on the computer to transfer the sound. This would however require
a dedicated sound driver to avoid delay as e.g ASIO4ALL™[17], and even with
this dedicated driver it poses higher delay then with the direct output on the
microphone. This solution was also unrealistic because of the problems with
using a USB hub.

23

Figure 17: A minijack and USB connection is available from the bottom of the
microphone.

In Fig. 18 one can see the back side of the Blue Yeti microphone. Here there
are two buttons, one controlling the gain of the microphone and the other one
controlling the different modes to set the microphone in. The available modes
are stereo, cardioid, omnidirectional and bidirectional. There are two of these
modes that where relevant to us in order to have the possibility to detect where
the sound is coming from. That is bidirectional and stereo mode. Unfortunately
the bidirectional mode does not output a distinguished signal for left and right.
The stereo mode does this and makes it possible to notice where the sound is
coming from. The results of this will be discussed in the results section.

The best result for a sound system would probably be to have true 3D sound,
like the 3DMicPro from Mitra [29].

Figure 18: The backside of the microphone shows the gain and the four modes
which are available: stereo, cardioid, omnidirectional and bidirectional.

24

3.3.12 Safety Precautions

Due to the force that the robot can exert there needs to be some safety precau-
tions. This is due to the fact that when running at maximum velocity it can
cause injuries.

After the robot had been rigorously tested in the low speed manual mode it was
switched to automatic mode, however, in order for the operations to be consid-
ered safe, additional security had to be added. The reason extra security had to
be added was to avoid people from entering the workspace of the robot during op-
erations. The first of these precautions were the added screen around the robot,
see Fig. 19. Thus the only way to interact with the robot was to go through a
door on the side, see Fig. 20. The entirety of the wall was placed on a distance
greater than the reachable workspace of the robot making it impossible for the
robot to break it.

Figure 19: The security plexiglass surrounding the robot.

Another thing that was important in order to avoid dangerous situations, and
reduce the risk of damage to the robot, was to test changes in the software in
manual mode first. If there appeared to be an unexpected bug in the software the
robot would move at reduced speed and not do any damage. Even small changes
in the software can cause the robot to behave unexpectedly. This is why this
should be done consequently each time before the program is run in automatic
mode.

25

A precaution that should have been taken, but was unfortunately not imple-
mented was to connected the door to the emergency stop switch. This would
make it so that if the door was opened the robot actuators would turn off and
thereby avoiding any accidents.

Figure 20: The door to enter the robot area.

26

4 Theory

4.1 Calibration of the Robot

The manipulator requires two forms of calibration. The first is due to the fact
that the Serial Measurement Board(SMB) battery unit no longer is capable of
recharging. This causes it to lose the information held by the revolution counters.
This causes the manipulator to lose track of its current position with respect to
the origin. The reason for this is that the cabinet for the robot controller goes
without electricity for long periods of time, which puts a large load on the inter-
nal battery. On how to calibrate the robot, see Appendix B.1.

The robot also requires a manual calibration, or reset, after each program exe-
cution. This is due to how RAPID stores the variables as they are not deleted
after a program is done executing. This concerns variables for global use and
not variables defined in functions. This causes problems when the robot is trying
to move due to variables being stored as they were at the end of the last exe-
cution. Initially it was thought that a simple setup function would solve this,
but it turned out it was insufficient to the task as the origin of the Tool Center
Point(TCP) was based on the start position of the robot, and not the zero values
of the individual joints. Thus a stand alone dedicated reset program had to be
run after each execution to ensure nominal behaviour.

4.2 Network

The network for the system is set up as a TCP/IP network with the robot con-
troller serving as a server, while the C++ application is acting as a client. See
Fig. 21 for a simplified model of the network. TCP/IP protocol was chosen in
order to keep the integrity of the messages. The reason that the integrity of the
messages are of the utmost importance is that a single missing character from
the string can cause the server to crash. This is mainly due to the algorithm that
checks if the new coordinates that are being processed are within the reachable
workspace of the manipulator. If the coordinates are off then this algorithm will
fail to execute, due to the sum of the quaternions no longer being 1, and termi-
nate the program.

Another reason for choosing TCP/IP over UDP is that the RAPID programming
language has better support for socket messaging than it has for connectionless
transmission. This is amplified by the fact that the robot controller only has the
LAN connection option.

27

Figure 21: Diagram of Network Communication

A limiting factor in the design of the communication protocol is that the max-
imum string length in RobotStudio is 80 characters. Normally this might not
be a problem, but RAPID reads all data from the buffer and puts it in a string.
This limits the amount of data that is possible to send with each package by
a significant amount since the position and orientation data can use almost the
whole length. This has the unfortunate effect of preventing the implementation
of buffer characters or start characters to ensure package integrity. Even though
the string might not always be full, the remaining characters are used as a safety
margin to make sure there is no overflow.

A way to implement the safety system to make sure that the messages does not
overflow would be to send several small packages instead of one large, however,
this has the disadvantage of being much slower as it introduces extra latency and
was thus deemed to be an inferior solution.

4.3 Stereo sound

This report will not go in depth of this topic, but as the effect of sound turned
out to have a positive impact on the total experience, the concept of stereo sound
will be mentioned. In the microphone head of the Blue Yeti microphone there
are multiple condenser microphones. Two of them are used to create the stereo
effect by recording different areas. This is illustrated in Fig. 22. By streaming
sound from the red and the black area to the corresponding ear of the operator,
the operator will be able to determine the source of the sound.

28

Figure 22: The concept of stereo sound

4.4 Software Overview

In the following sections firstly the different software components will be pre-
sented, in the last section, the communications between the components will be
explained.

4.4.1 Camera Communication, Ovrvision SDK

The Ovrvision has a well established developer reference guide[21] and a SDK [22]
with working examples. The example in the SDK called examplevs2010orlater
was the one that was used. The functions used to tune the camera values was
the following: The first try was to set the OvPSQuality in order to see if this
affected the quality of the camera output:

void GetCamImage(unsigned char* pImageBuf, OVR::Cameye eye,

OvPSQuality processing)

Because the camera showed tendencies to be a little to bright, the following
parameters where also tested. All controlling the brightness of the image:

void SetExposure(int value)

void SetBrightness(int value)

void SetGamma(int value)

The camera module sends data via an USB cable to the application which runs
on the computer.

29

4.4.2 Software Description of RAPID Server

The direct communication with the robot is done through a single command,
MoveL, which solves the inverse kinematic problem and insures a linear path.
However, in order to optimize the performance the application runs a series of
tests each time to see if a move is necessary or legal. The program flow is de-
scribed in Fig. 24. The main components of the tests consists of LookForChange
and isReachable. If the change is too small the reduction of precision will make it
so that the algorithm will perceive it to not have changed, and thus a move action
will not be needed. The second algorithm guarantees that all move actions will
remain within the reachable workspace of the robot. If the the command makes
the robot go outside the reachable workspace, the robot will stop and start again
as soon as a legal command occurs. If this function is not included the program
will terminate if such a command is sent to the robot.

The RAPID server application is divided into two threads and their modules
can be viewed in Fig. 23. In RobotStudio all variables are limited to the scope
defined by the modules, which means the only way to share information between
the threads is to use the RAPID version of global variables, PERS.

Figure 23: Class diagram for the robot server application.

30

Figure 24: Flow diagram of the RAPID server application.

4.4.3 OculusRobot, Client Side Software

To explain the C++ client application it is natural to start with getting an
overview of the system by studying the UI. It is a simple UI made to simplify
the process of continuously switching between the robot and simulation, different
input sources and to enable/disable logging.

As can be seen in Fig. 25 the user interface consists of two parts. One of the
parts enables switching between the output. This enables the user to set the
output to the robot, to the simulation on the computer you are currently on or
send the data to a machine with some other IP than the two default values, e.g
another controller or another computer.

The second part of the GUI makes the user able to choose input source. If the

31

Input From File is enabled, the input to the output source will be logged data in
a file in the program folder called Oculus RiftValues. If the Input From Oculus
is chosen, the input will be from the Oculus Rift, an error message will occur if
the computer cannot find the Oculus, i.e it has not been connected correctly.

The check box simply enables logging of the output data to a file the user can
give a custom name. The file will be saved in the program folder. This is the
logged data from the Oculus Rift, the log from the robot will be saved in the
HOME: folder of RobotStudio. The logging procedure runs in a separate thread
in order to log all the data points from the Oculus Rift.

Figure 25: The graphical user interface used to communicate with the robot

The command window, see Fig. 26, shows how the output screen looks like if the
programs are started correctly and simulation is set as output and Oculus is set
as input. If the input is from a log file, the Oculus does not have to be connected
for the program to function properly.

32

Figure 26: The output if everything is connected correctly

The OculusRobot program runs two main threads. One thread for logging data,
and the other for transmitting packages with TCP/IP to the output source. Both
these threads calls the function

trackstate = ovrHmd_GetTrackingState(HMD,ovr_GetTimeInSeconds()+predicitonTime);

in order to get the last state from the Oculus. This function is documented as a
thread safe function in the OculusSDK reference[24].

To go a little more in depth of the functioning of the software, a class diagram
with dependencies is presented in Fig. 27.

33

Figure 27: Class diagram of the C++/Qt software with dependencies

The flowchart diagram, see Fig. 28, shows the UI and what happens when the
different options is enabled/disabled in the user interface. It gives an illustration
of how the client software works and what software modules and threads that are
enabled when different inputs in the GUI are given.

34

Figure 28: Flowchart of the GUI options.

When input source from file is enabled in the GUI, the system gets data from a
logging file which have logged data from the Oculus Rift with an update rate of
30Hz. However, this is not synchronous with the TCP data transfer thread, which
update rate could vary and is inconsistent. This is solved in the following manner:
All the data from the input file is saved into a QMap data structure which contains
a key which is the time the data was logged, and an item which contains the a
position structure, thePose. When the application starts transmitting data to
RobotStudio, a clock is started simultaneously in RobotStudio and the C++
program. This time is then used as a key each time data is passed from the
QMap to RobotStudio, if the time key does not match any values in the map,
the closest time key in the map will be chosen.

4.4.4 Software Communication and Synchronization Description

The following sequence diagram, see Fig. 29 and 30, gives an explanation of how
the system communicates. It is split into three parts: C++ computer, Robot

35

Controller and Robot Motions. This is because the program flow in RAPID is
such that the program pointer in the robot controller and the robot not necessarily
operates in the same place. The code runs on and the robot does so also. Some
of the reason for this is because one cannot foresee how long it takes for the robot
to finish a move command. If new move commands appear before the robot is
finished with its last one, the move command is put into a first in first out(FIFO)
queue, and the robot can get the last move value out of this queue when its done
with its motion. This FIFO list is continuously being updated with values from
the client.

Figure 29: This sequence diagram shows the communication between the different
parts during normal operation.

36

Figure 30: The asynchronous communication represented in another way, where
the red line represents a border where what lies to the left of the line is asyn-
chronous from whats on the right side of the line.

4.5 The Camera Specifications

4.5.1 Image Transformation

The Lenses of the Oculus Rift performs something called a Pincushion distortion
on the picture before it reaches the eye of the operator. This is the inverse process
of a barrel distortion, see Fig. 31. The transformation is done with the following
formula, rd gives the distance of each pixel from the center of distortion in the
distorted image, and ru the distance in the undistorted image. k is a distortion
parameter given by the physics of the lens.

rd = ru(1 + kr2d) (2)

The equation shows that the magnification decreases with the distance from the
center. This causes each image point to move radially towards the center of the
image, and thus cause the barrel distortion. The pincushion distortion is simply
the inverse process of the barrel distortion[31].

37

Figure 31: Left: Barrel distortion. Right: Pincushion distortion. Both picture
relative to a parallel aligned picture.

4.5.2 Minimum Focus Distance and Stereo Distance

An important constant of the cameras is the shortest distance it is able to focus
at. The Ovrvision has a focus distance of 8cm while the human eye has 1.7cm
[23]. A related concept which is integral is the stereo distance, that is the distance
the cameras overlap and are able to capture the scene from two different angles
to create stereo vision and 3D. The Ovrvision has a stereo distance of 30cm.

38

Figure 32: The focus distance of the Ovrvision.

4.6 Linear Interpolation

Because the RobotStudio software and the Oculus Software runs on two asyn-
chronous machines, the samples from the two does not fall on the same moments
in time. In order to compare the signals, linear interpolation was used to generate
the missing data points in the plots from the robot, see Fig. 33 for a graphical
explanation. To perform the linear interpolation excel was used. If (x1, y1) and
(x2, y2) are two known values, then the value y for some point x can be found
with the following formula[12]:

y = y1 + (x− x1)
y2 − y1
x2 − x1

(3)

39

Figure 33: The figure shows the concept of how to generate missing data points
with interpolation

In this case there are data set from the log file, defined as L[ts] where ts is all
the sampling values of the log file {ts1, ts2.....tsp}. There are also a data set
from the robot, defined as R[tr] where tr is all the sampling values from the
robot {tr1, tr2.....trq}. In order to analyze the behaviour of the graphs, linear
interpolation was used to extend R[tr] to include all the time instances of ts in
R to make a new dataset R ∗ [ts]. The pseudo code for the algorithm to generate
the new dataset R ∗ [ts] from R[tr] and ts looks as follows:

FOR i=1 TO p

deltaX = NearestLargert_r(t_s[i]) - NearestSmallert_s(t_s[i]);

deltaY = NearestLargerR(t_s[i]) - NearestSmallerR(t_s[i]);

Slope = deltaY/deltaX;

R*[t_si] = NearestSmallerR(t_s[i]) +

(t_s[i]-NearestLargert_r(t_s[i]))*Slope;

ENDFOR

4.7 Performance Definitions

There are mainly two ways to be compare and evaluate the performance of the
system. The first is the physical test with testing the complete system and
get feedback from the operator on how the system feels, and the second is the
quantitative analysis approach studying the output data sets. In order to able
to compare the the results in an analytical way it is necessary for the robot and
simulation to be able to take input from a data set. This is in order to get
a repetitive experiment where the results are comparable. There are different
ways of comparing the results, one is to study the graphs visually in order to

40

conclude performance, the other is to define different parameters which could say
something about tracking ability and the average time delay. The visual approach
can sometimes be better in the evaluation, as it is hard to define parameters that
says something about the trade-offs between accuracy and latency, which is a
recurring dilemma. Section 4.7.1 and 4.7.2 will define the performance parameters
that are utilized.

4.7.1 Area Between Curves

This is one of the methods used to have a measurement of the tracking perfor-
mance. The idea is that the area between the plot from the Oculus and the plot
from the robot gives an indication of how well it tracks. Both accuracy and delay
will be indicated by this parameter.

Figure 34: The area between the Oculus Rift plot and robot plot are marked in
yellow

This parameter is defined as following: Vo[t] is a 6x1 vector function containing
the orientation and position of the Oculus at all time instances. Vr[t] is a 6x1
vector function containing the orientation of the transformed TCP coordinate
system of the robotic arm, interpolated to match the time scale of Vo[t], see
Section 4.8.5. α = roll, φ = pitch, ϕ = yaw

Vo[ti] = [xo[ti], yo[ti], zo[ti], αo[ti], φo[ti], ϕo[ti]] (4)

Vr[ti] = [xr[ti], yr[ti], zr[ti], αr[ti], φr[ti], ϕr[ti]] (5)

Using the Trapezoidal rule [32] the difference vector δ = [δ1, δ2, δ3, δ4, δ5, δ6] is
defined. This vector contains the area between the curves of the vector functions.
The numerical integral is trivial to do because the linear interpolation has been
done to Vr[t].The step size of Vo[t] and Vr[t] is defined as h = tn+1 − tn.

δ =

∫ t

0

|Vo(t)− Vr(t)dt| ≈
h

2

N∑
i=1

|Vo[ti+1]− Vr[ti+1]|+ |Vo[ti]− Vr[ti]| (6)

41

Finally the performance parameter Ψ is defined as the sum of the components of
δ:

Ψ =

6∑
i=1

δi (7)

If there is perfect tracking Ψ will become zero. If there is a big time delay,
inaccuracy in the tracking or both, this integral will have a value grater than
zero and give us a relative indicator of the performance of the tracking.

4.7.2 Finding the Delay

There is also an advantage to have a value for the time delay between the two
signals. In order to measure this, the Matlab function finddelay [16] is used. This
function can be found in the Signal Processing Toolbox of Matlab. This function
uses the xcorr function to find the cross-correlation between each pair of signals
at all possible lags. The signals do not need to be exact copies of each other,
but need sufficiently correlation between them in order to get a meaningful value.
The value returned gives an indication of the delay between the two correlated
signals. This coefficient is defined by summing up the delay coefficient of each
vector component in the orientation. This value is given the symbol τ .

Vo[ti] = [xo[ti], yo[ti], zo[ti], αo[ti], φo[ti], ϕo[ti]] (8)

Vr[ti] = [xr[ti], yr[ti], zr[ti], αr[ti], φr[ti], ϕr[ti]] (9)

τ = τx + τy + τz + τα + τφ + τϕ (10)

Where

τx = finddelay(xo, xr)

τy = finddelay(yo, yr)

τz = finddelay(yo, yr)

τα = finddelay(αo, αr)

τφ = finddelay(φo, φr)

τϕ = finddelay(ϕo, ϕr)

When using D = finddelay(X,Y), where X and Y are vectors containing the
two data sets, and X serves as the reference vector. If Y is delayed with respect
to X, D is positive.

42

4.8 Coordinate Systems

4.8.1 Tool Center Point

The tool center point (TCP) defines the center of a given tool. All movement
that the robot will do will be relative to the TCP, which means that it is that
point that will enter through the different point targets for the robot movement.
In most application the TCP will be defined on the active tool, e.g. the center
of a gripper or on the end of a pointer. However, it is also possible to have a
stationary TCP which means that all movement will be relative to that point in
space, e.g. a stationary tool.

4.8.2 Base Frame

The base frame defines the coordinate system which has its origin at the inter-
section between the first axis and the robots mounting surface. It is defined so
that the z-axis will be perpendicular to the surface, the x-axis straight forward
and the y-axis points to the left, see Fig. 35.

43

Figure 35: illustration of the robots coordinate frames [20].

4.8.3 Wrist Frame

The wrist frame is defined to be fixed at the center of the mounting flange. The
z-axis of this frame coincides with the sixth axis of the manipulator. This frame
is also the same as tool0 in the program, which is the default tool frame, see Fig.
35 and J6.

4.8.4 Tool Frame

To define a new TCP a tool frame is required. The tool frame is the coordinate
system for the tool and is defined to have its origin at the TCP. It is possible to
obtain information about the direction of the manipulators movement from the
tool frame. The tool frame is defined by tool0 in this application, which means

44

the tool frame is located at the tool flange.

4.8.5 Coordinate Transformation From Oculus Rift to Robot TCP

The Oculus Rift frame and the robot frame are both rotated with respect to each
other, in order to visualize this rotation one can study Fig. 36. In addition to
this rotation between the coordinate frames there is also an offset bound to the
two coordinate frames.

Figure 36: This figure showes how the two coordinate systems are rotated with
respect to each other

In order to define the offset one needs to consider when adding the offset when
plotting, some parameters are defined:

The values used are the measured values from the data set used when plotting
the results. The symbols defining the offset of the Oculus Rift are as follows in
x, y and z-direction.

OOx (11)

OOy (12)

OOz (13)

This offset is the Oculus initial position with respect to the origin. The reason
why no offset is needed for angles is because there is a one to one relation between
the angle in the Oculus framework and the robot. But that is not the case for
translatory movements. The initial position of the Oculus Rift changes for each

45

time it is used due to the fact that the operator is positioned slightly different
from one time to the next. This is why the change in position but the absolute
angle is sent. Fig. 37 shows the initial position of the Oculus with respect to the
origin.

Figure 37: This figure shows how the initial position of the Oculus Rift
(OOx,OOy,OOz) is defined.

The same offset occurs on the robot side. The robots position is defined as the
distance from the base frame. Fig. 38 and 39 shows this offset. The symbols
used when defining this offset are the following:

ROx (14)

ROy (15)

ROz (16)

46

Figure 38: This figure shows the offset the TCP has with respect to the origin of
the robot coordinate system in x-direction and z-direction.

Figure 39: This figure shows the offset the TCP has with respect to the origin of
the robot coordinate system in y-direction.

These values measures the distance from origin of the base frame which can be
seen in Fig. 40.

47

Figure 40: The origin of the base frame.

The final transformation that one needs to perform on the robot coordinate
system in order to align the plots can be calculated by studying Fig. 36 Rx∗
refers to the transformed value of the robot coordinate system while Rx is the
old value.

Rx∗ = −Rx+ROy +OOx (17)

Ry∗ = Ry +OOy −ROz (18)

Rz∗ = −Rz +OOz +ROx (19)

4.9 Performance Parameters

4.9.1 zonedata

There are two ways that a point can be terminated, that is in either a stop point,
or a fly-by point, see Fig. 42 for a graphical explanation of the fly-by points. The
stop point means that the TCP must stop at the assigned target, it is possible
to make custom stoppointdata to address what accuracy it must have.

Fly-by points on the other hand is defined by zonedata, which defines how close
to the pre-programmed point the tool must be before it can start to change its
path to the next point. This has the added bonus of never stopping the motion
as it is constantly changing its path on the fly. As can be seen in Fig. 41 the
points p40 and p30 are fly-by point where the tool does not need to hit the exact
point, but it can have a smoother transition towards the next point compared to
the fine points p10 and p30.

48

Figure 41: This figure illustrates the principle with zonedata.

A fly-by point has two different zones for each target. These are divided into
the zone for the TCP path and the extended zone. The TCP path describes the
zone for which the tool can start to reoriented. The tool will be oriented in such
a fashion that when it leaves this zone it will be oriented in the same way as if
the point was defined by a stop point and not a fly-by point. The extended zone
defines the outer shell of the zonedata which defines the zone where a corner path
will be generated when breached.

Figure 42: illustration of the zonedata[6]

4.9.2 Future Estimation with OVR SDK

The OVR SDK poses a function to estimate future head poses using the built in
function:

trackstate = ovrHmd_GetTrackingState(HMD,0.0);

49

This functions takes two input arguments. The first, HMD, which is the head
mount display object one needs to initialize to access the Oculus data. The sec-
ond input argument gives the time horizon for the estimation. A input of current
time or earlier(e.g 0.0) returns the current state of the HMD (the current position
of the Oculus Rift) and a input of currenttime+0.03 will return a estimate of the
state of the HMD 0.03 seconds into the future.

This blogpost from one of the Oculus cooperators [19] suggests that it is pos-
sible to predict head tracking for 20ms-40ms for a human head. This number
could possibly go slightly higher for a operator moving in a slow and steady
movement.

4.9.3 Prefetch Time

Prefetch time is a parameter that is possible to adjust as a RobotStudio system
parameter. It affects the point in time at which the controller starts to plan a
motion that goes through a corner zone. If this time is to short, the corner zone
becomes a fine point and the error ”corner path failure is generated”. This is a
recurring problem when using a zonedata that is different from fine. Increasing
the prefetch time will result in a higher CPU load. It will also result in less corner
path failures, and it might be more optimal for the arm to have a continuous
movement through corner zones rather than stopping at each point. However,
it can be problematic for the CPU load if the corner zones are placed to close
together, and therefor create higher latency. The prefetch time value can be set
somewhere between 0 and 10 seconds.

4.9.4 Path Resolution

This parameter corresponds to the distance between the sampling points. In our
application there is a low distance which means that this parameter probably
also should be set low. A high path resolution will lead to a decreased resolution
because it corresponds to increasing the distance between points. Decreasing
this parameter will also lead to a higher CPU load. According to the manual[18]
tuning this parameter might increase the performance if the program has multi-
threading with computationally high demands, a high number of simultaneously
controlled axes or if the distance between closely programmed points is decreased.
As the program has all of these suggestions it is worthwhile to try to optimize
this parameter.

4.9.5 WaitTime

The while-loop located in the Main procedure of the move thread needs a wait
timer between each move instruction if zonedata 6= fine is used. This wait
time can be adjusted to increase the number of commands sent to the controller,
however, if the WaitTime parameter is set too low when fly-by points are used,
an error message called ”Correct regain impossible” occurs. This error message

50

occurs due to too many close points with corner zones. It has been experimentally
proven that to ensure that this is avoided a minimum WaitTime of 0.1 seconds
must be in place when using fly-by points. If the zonedata is set to fine thent his
added latency can be avoided.
A simplified look at the main loop and the WaitTime command looks as follows:

WHILE TRUE DO

UpdateDestination;

LookForChange;

IF dataChanged AND isReachable(point, tool0, wobj0) THEN

MoveRobot;

WriteToFile;

ENDIF

WaitTime 0.1;

ENDWHILE

4.9.6 MoveAbsJ and MoveL

The RobotStudio algorithm used for movement is the MoveL algorithm (Move
Linear). This algorithm solves the inverse kinematic problem and gives com-
mands to each joint based on the input position and orientation of the TCP.
The possibility of doing the inverse kinematics on the client and only send joint
movement was discussed. By using MoveAbsJ (Move Joint) which is just a simple
servo command to each joint one could find out if this method had potential to
run any faster. If there is to be any value of using an inverse kinematics solver
on the client side then the latencies must satisfy Eq. 20.

τMoveAbsJ + τInverseKinematics + τcommunication < τMoveL (20)

4.9.7 Process Update Time

This variable gives an indication of how often the process calculates the path
information. This information is used for path following. Decreasing the process
update time increases the CPU load but would also improve the accuracy. When
the robot is moving slowly it is not crucial to adjust this parameter as the con-
troller has time to calculate during motion. In our application where the points
are closely together and often exposed to rapid movements this parameter would
be crucial to adjust.

4.9.8 Queue Time

This is a parameter that makes the system more tolerant to uneven loads on the
CPU and indicates how long instructions should stay in the queue. The queue
time will be set to the closet even multiple of the dynamic resolution which is a
system parameter that should not be changed which is set to 1 by default. When
increasing the queue time the robot reacts more slowly which could potentially
have a large impact on the system performance[41].

51

4.9.9 Event Preset Time

Event Preset Time is a parameter that delays the robot by a set amount of time.
This should therefore be set to zero in any case for our application.

4.10 Multithreading

Multithreading allows an application to execute several operations at the same
time. The main reason that multithreading is used in this application is that it
increases responsiveness when the program needs to wait for input. For a single
thread program the program flow will stop while it waits for the input, while on a
multithreading system only a single thread has to wait for the input as the other
threads continue their execution. This makes it ideal to use when having to work
with networks as it can have a thread dedicated to this. The first drawback of
multithreading is that a single thread can cause the whole program to crash if
it encounters an error. The second drawback is the need for synchronization to
maintain an intuitive program flow as well as avoiding race conditions. Fig. 43
shows an example of how the FlexPendant GUI operates with several tasks.

Figure 43: Image of the Production Window used for multithreading in automatic
mode.

4.11 The Rotation Matrix

To perform rotations on points in Euclidean space a rotation matrix is utilized.
What the rotation matrix accomplishes is that it specifies the orientation of one
frame with respect to another. In order to to get the coordinate vectors of the
first frame with respect to frame 0 in the three dimensional space a 3x3 rotation

52

matrix is required.
0
1R =

[
0
1x

0
1y

0
1z
]

(21)

The relation between several frames is given by Eq. 22

0
iR = (01R) · ... · (i−1

i R) (22)

To perform a rotation about of the axes of a coordinate system an elemental
rotation will be used. This gives three different basic rotations which will rotate
a vector by theta around either x,y or z, see Eq. 23 - 25.

Rx(θ) =

1 0 0
0 cos(θ) −sin(θ)
0 sin(θ) cos(θ)

 (23)

Ry(θ) =

 cos(θ) 0 sin(θ)
0 1 0

−sin(θ) 0 cos(θ)

 (24)

Rz(θ) =

cos(θ) −sin(θ) 0
sin(θ) cos(θ) 0

0 0 1

 (25)

4.12 Forward Kinematics

In robotics, forward kinematics refers to the process that computes the posi-
tion and orientation by using kinematic equations and given values for the joint
angles of the manipulator. In order to get the end-effector vector a transfor-
mation matrix is applied. The transformation matrix is defined by the joint
and link matrices. One way to find the transformation matrix is to apply the
Denavit-Hartenberg convention, or in this case, the improved Denavit-Hartenberg
convention which is defined by Eq. 28.

ci = cos(θi) (26)

si = sin(θi) (27)

i−1
i T =


ci −si 0 ai−1

sicαi−1 cicαi−1 −sαi−a −sαi−adi
sisαi−1 cisαi−1 cαi−1 cαi−1di

0 0 0 1

 (28)

From Fig. 44 we can derive the improved Denavit-Hartenberg paramters, used
by Craig[3], see Tab. 2.

53

Table 2: Improved Denavit-Hartenberg parameters.

i αi−1 ai−1 di θi
1 0 0 d1 θ1
2 90 a1 0 θ2
3 0 a2 0 θ3
4 90 0 d4 θ4
5 -90 0 0 θ5
6 90 0 0 θ6

Figure 44: Kinematic parameters of the ABB IRB 140 and frame assignment.

Using Eq. 28 we can derive the six transformation matrices needed to locate the

54

end link.

0
1T =


c1 −s1 0 0
s1 c1 0 0
0 0 1 0
0 0 0 1

 , 1
2T =


c2 −s2 0 a1
0 0 −1 0
s2 c2 0 1
0 0 0 1

 (29)

2
3T =


c3 −s3 0 a2
s3 c3 0 0
0 0 1 0
0 0 0 1

 , 3
4T =


c4 −s4 0 0
0 0 −1 −d4
s4 c4 0 0
0 0 0 1

 (30)

4
5T =


c5 −s5 0 0
0 0 −1 −d4
s4 c4 0 0
0 0 0 1

 , 5
6T =


c6 −s6 0 0
0 0 −1 0
s6 c6 0 0
0 0 0 1

 (31)

Using Eq. 29-31 we can find that the transformation matrix (Eq. 33) that locates
the end effector with respect to the base frame. The intermediate calculations
can be seen in Appendix A.

0
6T =1

0 T ·21 T ·32 T ·43 T ·54 T ·65 T (32)

0
6T =


r11 r12 r13 Pxw
r21 r22 r23 Pyw
r31 r32 r33 Pzw
0 0 0 1

 (33)

4.13 Inverse Kinematics

Inverse kinematics describes solutions on how to find joint angles corresponding
to the desired orientation and position of the end-effector. There are several dif-
ferent approaches to solve the inverse kinematics problem, this paper chooses to
experiment with the partial geometric and algebraic method. This method is re-
stricted by the fact that it solves for a maximum of 6 DOF (degrees of freedom).
The ABB IRB 140 has only six joints, meaning it is within the constraints of the
algorithm.

4.13.1 Finding θ1, θ2 and θ3, Geometric Approach

Pieper’s condition[1] is the sufficient condition for solving a six-axis problem. The
kinematic manipulator must have three consecutive revolute axes that intersect
at a common point. To solve the inverse kinematic problem it is normal to use
kinematic decoupling to split up the problem into two smaller sub-problems (See
Spong[33]). You can then solve for the position and orientation separately. Since
position is only defined by the first three joint angles it is possible to find them

55

through a geometric approach. In order to make it simpler the robot can med
modelled as an elbow manipulator for the time being, see Fig. 45.

q3

q2
q1

z2

x2

z1

x0

y0

z0

x1

y1

y2

Pxw

Pyw

r

Sz

Base frame

WCP

Figure 45: Kinematic decoupling displaying the elbow of the manipulator.

The wrist center point (WCP) is defined by Pw which consists of Pxw,Pyw and
Pzw. In order to find θ1 the projection of the wrist center onto the x0-y0 plane
is used to find it through geometry.

56

θ1

x0

y0

r

Pxw

Pyw

Figure 46: The projection of the WCP onto the x0 − y0 plane.

Using Fig. 46 we can see the trigonometric relation for θ1.

tan(θ1) =
Pyw
Pxw

(34)

θ1 = tan−1

(
Pyw
Pxw

)
= atan2(Pyw, Pxw) (35)

Or
θ1 = π + atan2(Pyw, Pxw) = atan2(−Pyw,−Pxw) (36)

Note that atan2 describes a function to solve arc tangent with two arguments.

In order to find θ2 and θ3 a projection of the plane formed by the second and the
third link is utilized, see Fig. 47. To be able to find θ3 it is needed to use the
law of cosines, and the shoulder offset defined by the D-H parameters, a1 and d1
are introduced.

cos(θ3) =
r2 + s2 − a22 − d24

2a2d4

cos(θ3) =
(Pxw + a1cos(θ1))2 + (Pyw + a1sin(θ1))2 + (Pzw − d1)2 − a22 − d24

2a2d4
cos(θ3) = D

The simplest way to get θ3 would be to take the arccosine of D, however, this
solution does not take into account the ”elbow up” and and ”elbow down” sce-
narios. In order to recover both of these solutions it is better if it is transformed
to another trigonometric function.

57

sin2(θ3) + cos2(θ3) = 1 (37)

sin2(θ3) +D2 = 1 (38)

sin(θ3) = ±
√

1−D2 (39)

Thus by using this relation it is possible to get a better solution for θ3.

tan(θ3) =
sin(θ3)

cos(θ3)
=
±
√

1−D2

D
(40)

θ3 = tan−1

(
±
√

1−D2

D

)
(41)

θ3 = atan2(±
√

1−D2, D) (42)

The ”elbow-up” and ”elbow-down” scenarios are recovered by choosing the pos-
itive or negative sign respectively.

By continuing to follow the approach set out by Spong[33] we can find θ2 in a
similar fashion.

θ2 = atan2(s, r)− atan(d4sin(θ3), a2 + d4cos(θ3)) (43)

θ2 = atan2

(
Pzw − d1,

√
(Pxw + a1cos(θ1))2 + (Pyw + a1sin(θ1))2

)
−

atan2

(
d4sin(θ3), a2 + d4cos(θ3)

)
(44)

58

d1 z

x

y

a1

z

x

a2

d4

s

r

θ3

θ2

Figure 47: A projection of the plane formed by link2 and link3.

4.13.2 Finding θ4,θ5 and θ6, Algebraic Approach

The second sub-problem of finding the inverse kinematics is getting the remaining
three joint angles corresponding to the orientation of the TCP. Due to the last
three joint angles representing a spherical wrist it is possible to look at this as
finding a set of Euler angles corresponding to a given rotation matrix, R. Looking
at Fig. 48 it can be seen that all changes in orientation can be represented as a
combination of elemental rotations given by Rz(α)Rx(β)Rz(γ).

59

x6

y6

z6

q6
q4

q5

q3

q2

q1

x5

x4

z4,y5

y4,z5

z2

x2,x3

y2,z3

y3 z1

x1

y1

x0

y0

z0

Base frame

Figure 48: Symbolic representation of the IRB 140

The equation needed to compute the last remaining joint angles is straightforward
from the definition of the rotation matrices.

R = (30R)63R (45)
6
3R = (30R)−1R (46)

R is known as the rotation matrix of the TCP, while 3
0R can be found as θ1, θ2

and θ3 has been found. 6
3R on the other hand is a matrix which is a function of

θ4, θ5 and θ6. Since both 3
0R and R is known then it can be expressed as in Eq.

47.

(30R)−1R =

b11 b12 b13
b21 b22 b23
b31 b32 b33

 = B (47)

In order to find 6
3R Eq. 22 is used.

6
3R = (43R) · (54R) · (65R) =

c4c5c6 − s4s6 −c4c5s6 − s4c6 c4s6
s4c5c6 + c4s6 −s4c5s6 + c4c6 s4s5

s5c6 s5s6 c5

 (48)

b11 b12 b13
b21 b22 b23
b31 b32 b33

 =

c4c5c6 − s4s6 −c4c5s6 − s4c6 c4s6
s4c5c6 + c4s6 −s4c5s6 + c4c6 s4s5

s5c6 s5s6 c5

 (49)

Thus there are 9 equations with 9 unknown values containing the three unknown

60

joint angles.

b11 = c4c5c6 − s4s6 (50)

b12 = −c4c5s6 − s4c6 (51)

b13 = c4s5 (52)

b21 = s4c5c6 + c4s6 (53)

b22 = −s4c5s6 + c4c6 (54)

b23 = s4s5 (55)

b31 = −s5c6 (56)

b32 = s5s6 (57)

b33 = c5 (58)

Now using these equations the solution for θ4, θ5 and θ6 can be found.

tan(θ4) =
b23
b13
→ θ4 = atan2(b23, b13) (59)

tan(θ6) = −b32
b31
→ θ6 = atan2(b32,−b31) (60)

tan(θ5) =
b13
b33c4

→ θ5 = atan2(b13, b33c4) (61)

4.14 Singularities

A singularity represents loss of rank in the system Jacobian which is defined by
Eq. 62 and can be derived from the forward kinematics. There are several reasons
for why singular configurations are unwanted. As explained by Spong[33], the
most noteworthy is that it can cause unbounded velocities or make it so that the
inverse kinematics problem has an infinite amount of solutions or none. This can
cause problems for this application as it is hard to calculate further trajectories
to escape the proximity to a singularity.

Ẋ = J(q)q̇ (62)

For a manipulator with a spherical wrist there are mainly two types of singular-
ities, namely wrist and arm singularities. These singularities corresponds to the
motion of either the wrist or the arm. The most common singularities are those
where two axes are collinear. These also include the singularities at the boundary
of the reachable workspace. This explains why the robot does not start with all
the joint axes at zero degrees, see Fig. 49 for an illustration of the spherical wrist
singularity. The arm singularity is defined by the TCP crossing axis 1, see Fig.
50 for a graphical explanation. This singularity does not occur often due to the
position it would require the operator to be in.

61

Figure 49: Spherical wrist singularity[33].

Figure 50: Illustration of the elbow singularity[33].

62

4.15 Sources of Delay

The most important part of the user experience is the delay between the head
movement and the visual feedback. This will be defined as total system latency
(TSL), see Eq. 63, and gives an indication towards how good the system is oper-
ating. It is generally accepted by the international community that a latency of
60 ms[19] is the maximum threshold for an optimal experience in virtual reality,
however, it has been mostly applied towards pure software application and not
physical systems. This makes the constraint not very realistic in the case of real
time control of robots with the current system.

TSL = latencyrapid + latencyc++ + latencyrobot + latencyvideo (63)

Beneath the TSL there is also latency for the substructures which are the robot,
the RAPID server, the C++ client and the video handler. During the project
much of the TSL resided with the camera setup. This was due to firmware not
being optimized for FPV usage, and could add as much as 200 ms to the TSL. By
researching into more suitable camera modules the current setup has a worst case
latency at 40 ms. Without this improvement reaching the goal of a reasonable
latency would get almost impossible. The other lesser substructure is the commu-
nication between the client and the server. As long as the structural integrity of
the packages that are sent and the synchronization within the programs perform
as intended the only latency in the networking should be the latency induced by
distance.

In the RAPID server application the latency should be confined to the movement
algorithm, the synchronization between the tasks and perhaps the log file writer.
There are some other functionality, but their complexity is low and should not
require much of the CPU.

The robot itself contributes to the TSL due to transmission delay and slow re-
sponse of some joints. Simple testing with manually controlling the robot through
the FlexPendant joystick proves that the transmission delay between the con-
troller and the robot is not negligible. The specifics of this delay is not known to
the public, but it is possible to spot with quantitative analysis. As can be seen
in section 3.3.6 that the speed of the first three joints are much lower than that
of the wrist joints.

The client application does not run any computationally complex algorithms
and can therefore be excluded as a big source of latency. The Oculus sensors
with update rate of 60Hz for the position tracking and 1000Hz for orientation
tracking does not pose significant delay.

63

5 Literary Search

Due to the fact that this application was only recently made possible due to the
advances of Oculus Rift DK2 there is a very limited amount of similar projects
that has been published. Thus only partial problems could be solved by searching
for relevant litterature, while the developer forums of ABB and Oculus Rift were
helpfull in the other cases.

5.1 Inverse Kinematics Literature

A topic that was researched in this thesis was the inverse kinematics problem.
In order to choose an appropriate solver and understand it some research into
the field was required. One of the reasons this topic was approached was due
to the mediocre runtime of the RAPID solver. This made it so that the criteria
was real-time inverse kinematics, this is mostly been studied in order to get
better computer animation. Several papers describe various algorithms which
can solve the problem numerically[36] [34]. The reason for this is that the most
effective way to solve the inverse kinematics problem for a 6 DOF manipulator is
analytical rather than numerical, and is therefore somewhat more trivial. Several
books cover this area, but Spong[33] and Craig[3] were found to most usefull.

5.2 Programming with Qt4

Qt4 was used in making the GUI and multithreading in the software. To read
up on Qt programming with C++ the following book was used [37]. The book
provided good examples on how to use the Qt framework, how to set up multiple
threads and how to create the graphical user interface.

5.3 RobotStudio Manuals

The RobotStudio manuals were essential when using the ABB robot program-
ming ecosystem. In addition to the forum, these documents was the only source
to learn about the ecosystem. The forum could sometimes provide answers to
some questions, but the documents provided from ABB was without doubt the
most important source to knowledge about the system.

The RAPID instruction manual [40] was the reference manual used the most
when coding in rapid and setting up the connection with an external computer
to the robot.

When the IRC5 controller with the FlexPendant was used, the IRC5 Manual
[39] was an important source to knowledge about how these pieces of hardware
functioned and how to use the system. The manual also explains what input you
can give the system through pushbuttons and dataports, and how the system
would respond to those inputs.

64

When finding different system parameters and reading on how they could af-
fect the system the manual [41] was the one used.

In the debugging process many poorly explained error messages was given by
the system. Often one could find more detalis about the system parameters in
the manual about troubleshooting [38].

65

6 Results

6.1 Sources of Delay

Optimizing the performance of the system requires knowledge about the loca-
tions of the latency. Looking at Fig. 51 it can be observed that when the robot
successfully tracks the movements of the Oculus Rift it has a maximum delay of
500ms when operating with system parameters set to standard and zonedata fine.

A key note before presenting the results is that some of the delay is caused by
operations outside of the optimal workspace for the robot and can be considered
worst case. Out of the approximately 500ms latency from the Oculus to the robot
at the worst case scenario, about 420ms has been identified. Most functions of
the applications can be considered zero contributors to the TSL (Total System
Latency) due to low complexity and load. The RAPID command for moving the
robot, MoveL proved to be the part contributing the most to delay as it could
run as slow as 209ms as seen in Tab. 3.

Table 3: Tests were done with 10 000 samples.

Latency / Source MoveRobot Communication Syncrhonization wait time
Average [ms] 123 0.85 76
Min [ms] 61 01 0
Max [ms] 209 5 206

By looking at the scatterplot of the MoveL runtime the worst runtimes correlates
well to the fast movements shown in Fig. 51. Another result to notice is that the
synchronization WaitTime, which is defined by the time that the TCPconnection
thread must wait for synchronization, also has a direct correlation to the MoveL
runtime. This causes an additional source of latency as it increases the time
it takes to accept the next package by that amount. Thus when receiving and
acknowledging the motion will already be behind that amount.

1Lack of resolution causing minimum to be zero.

66

Figure 51: Simulation of robot response to Oculus Rift with system parameters
set to standard.

67

Figure 52: Scatterplot of the MoveL runtime.

After summarizing the sources of latency there is still approximately 80 ms that
is unaccounted for in the worst case scenario which probably comes from slow
respons time of the robot.

6.2 Offset Measurement

The total offset between the robot coordinate system and the Oculus Rift in
x, y, z direction is defined as follows:

Rx∗ = −Rx+ROy +OOx (64)

Ry∗ = Ry +OOy −ROz (65)

Rz∗ = −Rz +OOz +ROx (66)

The value for ROx, ROy and ROz (the Oculus Rift offset in x, y, z direction)
will vary from time to time when you use the Oculus Rift as input, because the
Oculus Rift will be placed at slightly different initial positions each time the user
puts it on. However, with the dataset as input, the Oculus Rift starting point
is the same each time. In addition the robot always has the same initial point
as long as it is reset between each time the program starts. This makes us able
to calculate the total offset for the standard input dataset with the formula pre-
sented in the theory section.

68

The offset values for the Oculus Rift can be read from the input dataset [30]:

OOx = −30, 004 (67)

OOy = −13, 2617 (68)

OOz = −472, 657 (69)

The offset values of the robot can be read in the simulation in RobotStudio after
the robot is initialized, see Fig. 38 and 39:

ROx = 460.27 (70)

ROy = 0 (71)

ROz = 768.52 (72)

This results in the following offsets:

Rx∗ = −Rx+ 0 +−30, 004 = −Rx− 30, 004 (73)

Ry∗ = Ry +−13, 2617− 768.52 = −781.78 (74)

Rz∗ = −Rz − 472, 657 + 460.27 = −12.4 (75)

When plotting the raw data from the Oculus and from the Robot, these are the
exact transformation that needs to be done to the data from the robot to make
it fit the data from the Oculus Rift.

6.3 Simulation vs the physical IRB140

When testing the different performance parameters it is convenient to be able to
do this in the simulator. It is important that the simulation environment fits well
with the physical environment. That is why Fig. 53 shows the response of the
robot and the response of the simulator in y-direction with the same input. We
can see that there is a good overlap between these, indicating that the simulation
is a good enough representation for our testing. It is also interesting to note that
the latency is the same for the robot and for the simulation.

Figure 53: This figure showes the plottet robot trajectory and the simulation
trajectory with identical input

69

6.4 tracking ability with different parameters

6.4.1 Future Estimation with OVR SDK

In this section the results of the future state estimator that is implementet in the
OVR SDK will be presented.

ovrTrackingState predictedState = ovrHmd_GetTrackingState(hmd,

ovr_GetTimeInSeconds() + predictionValue);

The ovrTrackingState struct is a data structure storing all the information about
the current state of the Oculus Rift. The predicitonValue can be set in the range
[0.0, 0.095] which is the time in seconds it is estimated into the future. This can
be used to reduce the latency of the final application.

The same input dataset was used in all the plots in this section. Only the x-
motion (from side to side) is used in the plots for the sake of simplicity, but plots
from the other axis showed the same basic behavior. The first plot shows the
measured data at the current time and an estimate 40ms into the future. In the
interval [0, 7] seconds, the test person moves the head in normal natural motions
as a human normally moves the head. from [7, 10] seconds the test person moves
the head as fast as possible back and forth.

Fig. 54 shows a measurement of an estimation 40ms into the future. As we can
see from the graphs it tracks well from [0, 7] seconds and also does a good job in
the interval [7, 10].

Figure 54: 40ms vs the directly measured data

70

In Fig. 55 the estimation for the maximum case is studied. That is the estimation
parameter set to 95ms. In the first plot the first part of the graph [0, 7] is studied.
In this part the operator moves at normal speed. As we can see from the plots,
the estimator works well and is able to make a good estimation 95ms into the
future.

Figure 55: 95ms vs the directly measured data when the operator moves the
head at normal speed

In Fig. 56 the estimation for the maximum case in the part where the operator
moves ”unnaturally” fast is studied. That is the in the [7, 10]s part of the graph.
As we can from the plot see the estimator performs poorly and misses with nearly
10cm at the worst case. In addition it has some unwanted oscillations at about
8.2 seconds.

71

Figure 56: 95ms vs the directly measured data when the operator moves the head
at very high speed

In Fig. 57 we study the estimation in the [7, 10] case for different input pa-
rameters. We can see that the 20ms estimation manages to make an accurate
estimation even in this extreme case, and can see how the estimation performs
worse and worse the longer into the future it tries to estimate.

Figure 57: Estimation for multiple different input parameters

72

It is hard to conclude anything from this data without trying the application to
see if the tradeoff between accuracy and delay time gives the operator a better
experience. When concluding from these datasets it is reasonable to exclude the
case where the operator moved the head at high speed. The Oculus Rift is made
for computer games, and in some games it can be crucial to throw the head from
one side to the other. For our application however, these extreme movements
are not considered crucial at this point in order to prove the concept. When
studying the case with 95ms estimation for normal motions we can see that the
estimation tracks really well. There are maximum a few cm difference at the
extreme points from the actual movements. This is perhaps easier to see in the
following plot (Fig. 58) where the estimation has been shifted 95ms in order to
make the graphs overlap each other

Figure 58: 95ms estimation vs 0ms ms estimation where the estimated data is
time shifted to make the data overlapp

The tracking seems acceptable with the maximum future estimation parameter
of 95ms at normal head motions. A guess can be made that this is something
that will improve the experience for the operator as it will reduce the latency felt
by the operator by 95ms. This must however be tested with the complete system
in order to make a conclusion as it may make the experience to inaccurate.

6.4.2 zonedata

The system was tested with different zonedata. The system performance param-
eter Ψ (See Eq. 7) will be given in the time interval [0, 20] seconds for all the
measurement. In the default case, the following values are set for the different

73

parameters:

• zonedata: z1

• prediciton interval: 0.0

• prefetch time: 0.1

• path resolution: 1

• WaitTime in moverobot thread: 0.1

• process update time: 0.048384

• queue time: 0.193536

74

Zonedata: z1

Figure 59: the plots of all axis with zonedata = z1 and WaitT ime = 0.1

Zonedata = z1 gives the following performance parameters:

Ψ = 1137

τ = 113

As can be see from the plots in Fig. 59 there is quite a bit of delay. In addition
to this there is also some quite clear inaccuracies. We can see that in the rapid
x-motions in the beginning, the robot is in opposite phase of the Oculus Rift,
which causes the operator to become confused and dizzy. The relatively big Ψ
and τ , compared to some of the other plots later on, indicates this inaccurate
behaviour with the high latency. A sample of the latency can be read from Fig.
60.

75

Figure 60: There is a significant time difference between the signals in this plots

76

Zonedata: z10

Figure 61: the plots of all axis with zonedata = z10 and WaitT ime = 0.1

Zonedata = z10 gives the following performance parameters:

Ψ = 1029

τ = 104

When zonedata = z10 is used, a tracking that is a little better than with
zonedata = z1 is achieved. The plots are presented in Fig. 61 This could be
because of more fluent motions where the robotic arm takes more shortcuts be-
tween the points, possibly leading to more inaccurate motion, but less time delay.
This compromise leads to a smaller Ψ. The variations is however small, and it is
not possible to draw safe conclusions based on this result.

77

Zonedata: z20

Figure 62: the plots of all axis with zonedata = z20 and WaitT ime = 0.1

Zonedata = z20 gives the following performance parameters:

Ψ = 1071

τ = 114

When the zonedata is adjusted to high, like in Fig. 62 with zonedata = z20, the
performance decreases slightly, however, the difference read from the performance
parameters are very small. The planning of the trajectories takes time and the
calculations makes the time delay high as well as the inaccuracy is high.

78

Zonedata: fine

Figure 63: the plots of all axis with zonedata = fine and WaitT ime = 0

Zonedata = fine gives the following performance parameters:

Ψ = 605

τ = 29

In Fig. 63 zonedata is set to fine. This means that the robot passed through
each point, not makeing shortcuts with zones. This requires less calculations
and removes the need of a WaitTime in the MoveRobot thread. This reduces
latency but can lead to a more choppy movement (more on this in Sec. 6.5).
The increased performance with this setting can be seen from the graphs and
the performance parameters. However, this setting still has some pretty serious
inaccuracies in some of the complex motions patterns (e.g [8, 11] seconds).

79

Figure 64: The Latency can be read from this plot to be about 0.3 seconds

When setting the zonedata to fine, the system is allowed to do a more rapid
update of the robot position, which makes the system more responsive to changes.
This can be seen from the latency sample in Fig. 64. In order to use fly-by
points, WaitT ime = 0.1 second must be set in the T ROB1 thread. If not
RobotStudio gives the error message: ”Correct regain impossible”. This is due
to too many subsequent close points requiring corner paths making it impossible
to use zonedata 6= fine. We can see from the performance parameters, and from
the plots that the system performs better when zonedata = fine. In the coming
sections, zonedata = fine will be tested as the default case, however, with some
exceptions.

6.4.3 Prefetch Time

The system is then tested with different prefetch times for zonedata = z10 be-
cause this zonedata performed best in the previous test. Testing for prefetchtime =
0 is equivalent of testing the system with zonedata = fine and will not be tested.
Prefetch time defines the resources put into calculating the zonedata trajectories,
if this would lead to an increase in performance due to more accurate and rapid
computations is not known. The reason this parameter is tested is to see if the
system can perform better even though zonedata is sued. The prefetch time can
be set between [0, 10]:

• zonedata: z10

• prediciton interval: 0.0

• prefetch time: varying

• path resolution: 1

• WaitTime in moverobot thread: 1

• process update time: 0.048384

80

• queue time: 0.193536

Prefetch Time: 2

Figure 65: It is hard to read any differences from this case to the default case
with prefetchtime = 0.1

prefetchtime = 2 gives the following performance parameters:

Ψ = 1106

τ = 119

We can see from the performance parameters and from Fig. 65 that the increase
in prefetch time does not give an improvement in the accuracy or time delay
of the system. The variations from the standard case with prefetchtime = 0.1
is so small that it hard to say something accurate about the influence of this
parameter.

81

Prefetch Time: 10

Figure 66: It is hard to read any differences from this case to the default case
with prefetchtime = 0.1 and the prefetchtime = 2 case

prefetchtime = 10 gives the following performance parameters:

Ψ = 1064

τ = 107

The same can be seen from these. The performance parameters and Fig. 66
shows that the influence of the prefetch time parameter is negligible on the system
performance.

6.4.4 Path Resolution

The system is now tested with different parameters for path resolution. The path
resolution for the default case where set to 1, so the system will now be tested with
the minimum value 0.1667 to compare against the case where pathresolution = 1
and the max case where pathresolution = 6 in order to see if there will be any

82

difference in performance. To lower the path resolution could lead to a more
accurate path, but lead to more computations and therefor increased latency.

• zonedata: fine

• prediciton interval: 0.0

• prefetch time: 0.1

• path resolution: varying

• WaitTime in moverobot thread: 0

• process update time: 0.048384

• queue time: 0.193536

path resolution: 0.1667 This gives the following error in RobotStudio: ”50226:
Motor reference error - Reduce load on main computer” which indicates that this
low value gives to high CPU load.

path resolution: 0.4 Both pathresolution = 0.2 and pathresolution = 0.3
gave the same error message, pathresolution = 0.4 was the lowest value not
giving the 50225 error message and was therefor tested.

83

Figure 67

pathresolution = 0.4 gives the following performance parameters:

Ψ = 639

τ = 30

As seen from the performance parameters and Fig. 67, setting the path resolution
lower does not seem to affect the performance of the system to much.

84

path resolution: 6

Figure 68: It is hard to read any differences from this case to the default case
with prefetchtime = 0.1 and the prefetchtime = 2 case

pathresolution = 6 gives the following performance parameters:

Ψ = 600

τ = 34

As seen from these performance parameters and Fig. 68Using the highest ex-
tremal value of path resolution does not affect the system to a significant degree
either.

6.4.5 Process Update Time

Process update time determines how often the process path information is cal-
culated. Decreasing it increases accuracy and increases CPU load, increasing it
decreases accuracy and decreases CPU load. This is why adjusting this parame-
ter can go both ways. Decreasing it could make the system accurate, but slower

85

while increasing it could make the system more inaccurate, but faster. The value
can be set between 0.012 and 1.93. Due to the low default value of 0.0483 only
the upper extremal value of 1.93 will be tested in addition to the default value
to see if this affects the performance.

• zonedata: fine

• prediciton interval: 0.0

• prefetch time: 0.1

• path resolution: 1

• WaitTime in moverobot thread: 0

• process update time: varying

• queue time: 0.193536

process update time: 1.93

Figure 69: This figure shows the plot where the processupdatetime = 1.93

86

processupdatetime = 6 gives the following performance parameters:

Ψ = 449.18

τ = 20

Based on the performance parameters and Fig. 69 at this setting, it could seem
like a high process update time have a positive effect on the performance of the
system. This could be because of a lower CPU load and therefor faster compu-
tations.

6.4.6 Queue Time

Queue time is a parameter that could make the system more responsive. The
queue time can be set in the interval [0.004032, 0.290304]. A higher queue time
will make the system more unresponsive but more tolerant to uneven CPU loads,
a low queue time would make the system more responsive but less tolerant to
uneven CPU loads. If this will have a noticeable affect on this system is now
tested by testing the two extremal values of queue time, 0.004032 and 0.29:

• zonedata: fine

• prediciton interval: 0.0

• prefetch time: 0.0

• path resolution: 1

• WaitTime in moverobot thread: 0

• process update time: 0.048384

• queue time: varying

queue time: 0.004032 This gives the error message ”10014: System failure
state”

87

queue time: 0.05 This was the lowest value not giving the 10014 error message.

Figure 70: This figure shows the plot where the queuetime = 0.05

Ψ = 576

τ = 40

88

queue time: 0.29

Figure 71: This figure shows the plot where the queuetime = 0.29

Ψ = 572

τ = 29

It is not possible to make any conclusions based on these small variations in
performance parameters. As can be seen, the change of queue time changes the
result slightly, but does not have any significant effect on any of the performance
parameters and it is not possible to spot any changes in Fig. 70 and 71.

6.4.7 Move Joint Algorithm

In order to see if the latency of the system lay in the use of the calculations done
in the MoveL algorithm, the simpler MoveAbsJ was tested. For this setup the

89

time delay was found to be ≈ 0.43 seconds by studying the Fig. 72. The test
environment was the following:

• zonedata: z1

• prediciton interval: 0.0

• prefetch time: 0.0

• path resolution: 1

• WaitTime in moverobot thread: 0.1

• process update time: 0.048384

• queue time: 0.193536

Figure 72: It can be seen that even when the MoveAbsJ algorithm is used, a
delay occurs about the same as the one when MoveL with zonedata = zF ine is
utilized.

In comparison the MoveL algorithm gives the graph shown in Fig. 73, with the
same test environment as the move joint algorithm. Because of the nature of
MoveAbsJ and MoveL the same input list could not be used in the two plots,
this is why the input is directly from the Oculus and therefore looks different.
Both of the graphs shows roll motion. Here the time delay was found to be ≈ 0.63
seconds by studying the graphs, however, this will vary with the complexity of
the input.

90

Figure 73: The delay here is more significant than with MoveAbsJ, but for
zonedata = zF ine, there is no significant difference in delay between the two
algorithms.

.

6.5 User Experience

The testing of how the system was now important to determine what settings
was the best to use. As the experience is dependent on many different variables
(accuracy, stuttering, delay, video quality) one cannot conclude anything by just
studying the system plots, the system also has to be tested.

First of all the system was tested with different zonedata.

• zonedata = z10 gave a relatively smooth motion, but the delay was signif-
icant.

• zonedata = z1 gave a more choppy experience than z10, but still with a
significant delay

• zonedata = zF ine gave a relatively choppy motion (about the level of z1)
but a significantly more responsive feel with less delay.

In the continuation of the testing, the system was tested with zFine, as this gave
the best result both by testing the system and by studying the performance pa-
rameters.

The next parameter that was tested was different prediction intervals.

• predicitoninterval = 0.095: from studying the graphs in the testing of
different prediction intervals, it was assumed that 0.095 would give a decent

91

estimate and reduce the latency so much that the tradeoff would be good.
However, after testing the system, both the testers was clear that this
high prediction interval made the system uncomortable to use because the
system was drifting to much.

• predicitoninterval = 0.040: from studying the graphs it is hard so notice
any inaccuracies with this prediction. This also correlated well with how
the system felt with this setting. It was impossible to notice any difference
in accuracy from the 0 seconds prediciton, so the tradeoff in reduced latency
is well worth it with this setting.

The system was then tested with the maximum process update time to see if this
gave a better experience. The reason for this test was based in the performance
parameters. The operator was however not able to sense any difference in per-
formance from this adjustment.

In the documentation of queue time, there is a good indication that this paramtere
could have some impact on latency. This parameter will therefor be tested with
the system even though there was no significant indication of influence from the
plots. The two extremal values of the parameter will be tested in order to see if
the operator can feel any difference

• queue time = 0.05

• queue time = 0.3

The operators testing the system could not sense any difference between these
two settings.

6.6 Parameter Adjustment Summary

The most significant changes from the parameter adjustments came from chang-
ing the zonedata to zonedata = fine. In some of the parameters that was
believed to have an impact (like queue time) no significant impact was found.
The prediction interval clearly had some impact on the final solution. Because
many of the parameter adjustments brings a tradeoff between accuracy and delay,
the use of the performance parameters and studying of the graphs are limited,
the best they can to is to give an indication of what setting is the best for the
performance of the system. As there was some inconsistency in the measurement
of the performance, conclusions cannot be based on small variations.

The indication from the performance parameters was a good indication for us to
have with us when the test was done on a physical robot. To change the system
parameters and restart the robot controller on the physical robot for each param-
eter change is a time consuming process, and to have good indications from the
simulation helped us to make better decisions when testing on the physical robot.

92

The settings that proved to be closest to optimal after both testing the system
and studying the performance parameters was the following:

• zonedata: zFine

• prediciton interval: 0.040

• prefetch time: 0.0

• path resolution: 1

• WaitTime in moverobot thread: 0

• process update time: 0.048384

• queue time: 0.1

6.7 Sound

During the early testing there was no sound stream from the robot to the opera-
tor. However, it was later added a stereo microphone on the top of the cameras
in order to be able to stream stereo sound to the operator. The result of getting
both the vision input and sound input from the robot made a huge difference
in the immersive experience. The whole experience became more realistic. It
was very interesting how both the testers felt a lot more dizzy and ”weird” after
testing the system with sound and vision, compared to testing it only with vision.

Initially the yeti microphone was duck taped directly on the top of the camera.
However, this made the sound from the vibrations from the robot to significant
and reduced the quality of the experience. You can see the setup in Fig. 74.

93

Figure 74: microphone setup with no vibration protection between the robot and
the microphone

Because of the significant sound from the vibration of the robot, it was decided to
add a protective foam between the robot and the microphone. This made most
of the vibrational sound disappear and increased the quality drastically. There is
still some vibrational sounds, but they are deeper and less less significant. Fig.
75 shows the setup with the protective foam.

94

Figure 75: micrphone setup with a protective foam between the microphone and
the robot

To use a condenser microphone was a solid choice, as it is able to pick up sound
from a long distance. This made it possible to stand far away from the robot and
talk to the operator, giving a very realistic feeling for the operator. The stereo
recording ability of the microphone also gave an important aspect in the feeling
of realism, as the operator, as expected, was able to point out the direction to
the sound source.

6.8 Image Quality

The image quality was greatly increased from the previous setup with the Mo-
bius ActionCams to this setup with the Ovrvision. The added barrel distortion
to the image rendered to the Oculus Rift resulted in a picture that was lined up
correctly, and not distorted. The increased framerate made the picture appear
more smoothly and not so choppy as it did with the Mobius ActionCams. In
addition to this, the alignment of the pictures was much better in this setup than
what it was with the Mobius ActionCams. Even with the adjustment opportu-

95

nities in the custom viewer made for the Mobius ActionCams, the picture from
the Ovrvision had a much better overlap and gave the 3D view increased quality.
The only disadvantage with the Ovrvision compared to the Mobius ActionCam
setup was the reduced pixel density. This disadvantage was hard to notice as the
changes of the other parameters improved total experience.

The brightness of the camera was also considered, and some different parameters
where tested. The environment around the robot in the lab is difficult, with
bright lights in the roof and dark sections around the robot. This forced us to do
a compromise, and the best options turned out to be a relatively high brightness
where the lamps in the roof occured to bright, but the rest of the environment
turned out in good, natural light. With a more advanced camera setup it would
perhaps be possible to do real-time image handling, taking care of the variable
light conditions.

Even though the camera quality was greatly improved with the Ovrvision, the
most important aspect with the new camera rig was definitely the reduced la-
tency, as the latency of the Mobius ActionCam is estimated to be 100− 200ms,
the Ovrvision has a latency of about 50ms.

Fig. 76 and 77 illustrates the difference between normal lighting and a bright
light source respectively. Due to the software connecting the OVRvision to the
Oculus Rift it was not possible to take a print screen, and therefore the image
was taken through the lenses causing a reduction of quality.

96

Figure 76: Showing the camera image in normal lighting conditions, as can be
seen the settings of the camera here is acceptable.

Figure 77: Showing the camera pointing towards a light source, the settings is
not optimal for this, and the light gets intense in the picture.

97

7 Discussion

7.1 Importance of Analyzing Measurements Versus How
the System Feels

In the work of analyzing how well the system performed some work was put into
defining parameters that was possible to compare in order to find out under what
circumstances the system performed best. The importance of these parameters
turned out not to be as significant as first though. The most significant changes in
performance was so clear that it could be felt when testing the system as well as
from the performance parameters (e.g when setting zonedata = fine). However,
neither the performance parameters or the operator testing the system was able
to pick up the small impacts changing some of the system parameters may have
caused. This is both due to small inaccuracies in the system parameters, see Sec.
7.2, and due to limited capability of human sensing. It could be that there exist
some better ways to determine tracking performance in an analytical way that
should be investigated if further developing the system.

7.2 Fine Tuning of System Parameters

The fine tuning of the system parameters was not as successfully as hoped for.
The idea was that the tuning of these parameters would improve the system, and
as the results shows, some of them did. However, the performance parameters
were unable to pick up the small changes in the system, caused by fine tuning
parameters, due to inconsistency in input to output, see Sec. 7.4. This is not
necessarily important, as the tuning of the system parameters is clearly not where
the main source of delay lies. However, if the system are to be improved in the
future, the presented edition of RobotStudio is probably not a good choice as a
developer platform. In that case, other approaches would be made to improve
the system.

7.3 Total System Quality

The total experience of the system was above the expectations of the authors.
Even though the system had some delay, this was hard to notice when actually
testing the system. The camera quality is also of such a quality that the operator
gets a clear overview of the surroundings. When using the whole system the
operator indeed gets an ”out-of-the-body” experience which could be a useful
feature in remote operations in terms of getting a good overview and have a
feeling of presence. In total, the system has turned out to be a promising concept.

7.4 Consistency of Output Data from Standard Input in
the Simulator

Even though sending through the same input with the same settings in Robot-
Studio, some inconsistency in the performance parameters where noticed. This is

98

why it was hard to make conclusions based on the performance parameters when
there were only small changes, even though they might had a small effect on
the final result. This inconsistency can have multiple reasons, which are hard to
evaluate without a deep understanding of how RobotStudio works (which is not
accessible due to ABB copy rights). One of the reasons could however be inconsis-
tency in the data transfer with TCP protocol. The data update rate is variable
because the run time in the MoveRobot algorithm varies for different motion
complexity. Small changes here could lead to different values being passed from
the QMap containing the position values, which could lead to a slightly different
result and slightly different performance parameters. In addition, background
processes can steal resources and change the calculation time of the algorithms
in RobotStudio. It is also speculated of the possibility that noise is added to the
simulation in order to create a more realistic simulation environment and that
this also leads to some inconsistency. There is no information about how the
Robot Models are defined in the documentation from ABB.

7.5 Vibrations and Subsequent Problems

The IRB140 is a big and heavy robot. When the robot is tracking the Oculus
Rift it does this by going through each point, and sometimes stopping at these
points, this causes choppy motions which are not ideal. If the robot is to be
placed on a mobile platform, which indeed would be necessary for some of the
applications in remote operations, the robot will cause vibrations in whatever
vehicle it is placed on. This could cause problems in navigation and stability of
the vehicle it is placed upon. This problem must be solved by either having a big
and stable vehicle where the vibrations are not relevant, having a smaller robotic
arm and/or having higher update rate with smoother motions and fly-by-points.
The vibration problem can bee seen directly (see the video[42]) from when the
robot was placed on a metal board which was not attached to the floor, heavy
vibrations occurred in the structure due to momentum from the robot on the
metal board. In order to stabilize the robot it was bolted to the floor, see Fig.
78.

Figure 78: An image of the robot bolted to the floor.

99

7.6 Drawbacks of Computing the Inverse Kinematics on
the Client

Due to RAPID being a high-level programming language and the fact that it is
not made to operate in a real-time environment it seems like it might be prefer-
able to solve the inverse kinematics problem on the C++ client instead of on
the RAPID server. The advantages would be that the algorithm would likely be
faster as well as it would be possible to tune and optimize it whereas this is not
possible to do in RAPID due to the algorithms being proprietary.

The drawback is the amount of communication that it would require as well as
the low reduction of runtime that MoveAbsJ offers. Due to the Oculus Rift and
the manipulator being in two separate coordinate systems and the only infor-
mation available is the change in position, or the position of the Oculus Rift.
This would require a constant stream of information from the server which would
cause a latency which would be higher than the gain in run-time. It would also
require another thread on the server side to track the movements of the robot and
calculate the location of the new position. Although the strain on the controller
would be lessened as it would not need to calculate the path itself it would not
be beneficial from a performance perspective as the responsiveness of the system
is drastically decreased by the amount synchronization required.

After considering the drawbacks and advantages of using a custom solver for the
inverse kinematics it was deemed unnecessary. Another reason is the possibility
of using fly-by points in RAPID as well as that the movements are ensured to be
linear at the TCP.

7.7 Possible Applications

7.7.1 Remote Operations

This is probably the most relevant application for the system. Remote operations
defines the range of operations where human presence is dangerous or impossible.
With this system, the operator of a remotely operated system would get an
overview that is impossible with the current systems available. The possibility of
observing objects from multiple angles with full depth vision could prove useful
in e.g sub sea remote operations. Other operations could be after accidents in
nuclear power stations. If some hardware upgrades are made, the system at its
current state already has the quality to use in such applications. The inclusion of
sound localisation also gives the operator a better overview of the surroundings
because more of the operators senses are stimulated. This could provide useful
and make the operator make safer decisions.

7.7.2 Demonstrational Purposes

The system could be used for demonstrating robotic arms and their performance.
It could be used by robotic companies at fairs to demonstrate their robots in an

100

hands-on and intuitive way for the crowd. The system is intuitive to use for
people with little knowledge about robotics because all the input the operator
gives the system is through natural motions. The system could therefore be a
portal for the general populace to learn more about robotics and its applications.
It could be a motivator for young engineering students to test the system to see
what is possible to do with their education.

7.8 Latency

As could be seen in Sec. 6.1 the worst case scenario will create a high amount of
TSL. However, it is important to note that the movement that was represented
was too fast, and as shown in Fig. 52 faster movement correlates to more latency.
On the other hand the best case scenario and the runtimes around average are
within the target area presented earlier. This was also done with standard set-
tings, while as shown in the Results section the worst case delay could be reduced
down to 300ms. While this is still a major delay, it feels acceptable when using
the application.

As mentioned earlier there was some latency for which the source could not be
identified, however, it is speculated that this is due to the transmission delay
between the robot controller and the robot as well as the time it takes for the
robot to react. This can be seen when trying to jog the robot with the joystick
on the FlexPendant. Another fact that is interesting is the robots ability to track
when there are fast movements in more than one orientation. As can be seen
in the Result section it loses the ability to track properly when there is a rapid
change in both yaw and roll. By looking at the plots it can also be found that
there is generally less latency when tracking the orientation in comparison to the
position. This is due to the responsiveness of the respected joint as the elbow
joints are slower than the wrist joints.

One of the most important new features is the addition of the future estimation
from the Oculus Rift. This can reliably predict up to 95ms into the future with
decent accuracy, and up to 40ms with good accuracy. As the accuracy is not
that important it is a straight up reduction of latency leaving the average case of
the latency well within the target area.

7.9 RobotStudio and RAPID for Real-Time Tracking

The most important facets of real-time tracking is latency and precision. In the
RobotStudio algorithms the precision of the movement is accurate when using
the zonedata fine. This could even be reduced to perhaps z5 and still be precise
enough if not for the delay it would bring.

The problem with the current iteration is that it does not allow any optimization
of the movement algorithms related to the inverse kinematics. This would not be
an issue if the joint move algorithm was faster, but until this is rectified there is

101

a low degree of potential improvement while using RobotStudio.

There is also the lack of length on the strings, which proved to be constricting
when establishing robust communication. While this has less with precision and
latency it still can have an impact as a more secure communication system would
increase the integrity of the packages. All of the issues could be rectified in later
versions of RAPID.

7.10 Choosing an Inverse Kinematics Algorithm

The inverse kinematics problem is usually solved by numerical methods such
as the Jacobian transpose, the Jacobian pseudo inverse or the Newton-Raphson
method due to their scalability[34]. On the other side numerical methods suffers
from mediocre or bad run-times, as seen in Tolani et al. and Meredith[35], in
comparison to the analytical algebraic methods. Most of the methods also suffer
from numerical instability and have problems around the singularities.

The reason that analytical approaches are not often used is due to the fact that
they don’t scale beyond 6 DOF. If however, the system is a 3 DOF or 6 DOF
system it is a more intuitive approach as well as it has faster run-time. The
analytical approach is often divided into an algebraic and/or geometric method.
The geometric method for finding the first three joint angles is practical to use
since it is intuitive in the case of the D-H parameter αi is either 0 or ±90◦. An-
other upside with the analytical method is that it does not suffer from numerical
instability.

Due to the main drawback of the analytical method is the lack of scalability it
was deemed to be the most appropriate method for solving the inverse kinematics
problem.

102

8 Further Work

8.1 Custom Robotic Arm

It is hard to imagine the current setup being useful in any pratical cases when us-
ing the IRB140. It is a big and heavy robot with the ability to lift heavy loads up
to 6kg. It could also pose serious injury to humans nearby which leads to neces-
sary safety procedures for any practical application. A small and lightweight, but
still fast and accurate robotic arm would be ideal for the application this paper
poses. Perhaps is the technology not there yet, but there are some better options
on the marked. The Japanese company Denso [25] makes smaller robotic arms
with a portfolio of robots which focuses more on speed and accuracy rather than
powerful engines to lift heavy payloads. To take one example from their port-
folio the Denso VP-6242G is a robotic arm weighing 15kg capable of very rapid
movements [26]. This robotic arm gets close to the lightweight and portability
needed in order to place it on ROVs for remote operations.

8.2 Different Robot Communication Environments

In addition to a better robotic arm in general, to test different softwares for robot
programming is essential. As concluded, the ABB ecosystem was not open enough
to provide us with the customisation needed to perfect our application. There
are options to try out, one of them to make a custom software and implement all
the inverse kinematics and control on a computer and communicate directly with
the robot. It seems like Denso also has software more suitable for this purpose
with the b-Cap binary controller access protocoll [27]. This software is more open
and could provide the insight needed in order to answer some of the unanswered
questions of this report, like the source of the inconsistency in the simulation
when same input was used.

8.3 Wireless transfer

To make the whole system wireless is a natural next step in order to imporve the
setup. This could be done in multiple ways. The robot controller in it self can
not be connected to the Internet, so an external computer must be connected
to the controller to send commands to it. One way to do this would be to have
a e.g a laptop connected to the robot controller, running all the software. This
includes receiving position data from the Oculus with TCP connection from an-
other computer, send the position data to the controller, receiving the video feed
and sound stream from the robot and stream it to the the computer connected
to the Oculus. An even more elegant solution would perhaps be to connect the
cameras and the microphone on the robot to a small computer attached to the
robot, like a raspberry pie. The raspberry pie could use the built in gstreamer
function to stream the video directly to the computer running the Oculus. This
would make it possible to run the system without any cables attached to the
setup on the robot. An energy source must in that case also be included on

103

the setup on the robot. Because it is necessary to hard wire a computer to the
controller to communicate with it, another computer should be connected to the
robot controller to transmit the Oculus values to the controller. This solution
would make it possible to be in a other place and operate the system. This setup
could however include more sources of latency which is crucial for the system.

8.4 True 3D Sound

The stereo microphone that was used to capture sound does not give a full 3D
sound replica (binaural recording [28]). A newly released product called ”Mi-
tra 3D Mic Pro”[29] makes a good binaural sound replica with its relatively
lightweight microphone with the help of software and signal processing. This
makes the system able to replicate binaural sound without having a whole hu-
man torso to replicate the resonance from the body. This microphone creates a
sound picture to make the experience of our concept better.

8.5 Adaptive noise cancelling filter in the microphone

When operating the robot it is in the current environment inevitably that noise
occurs. It is noise from the controller and from the engines, in addition it is noise
from the vibrations of the robot. In order to achive better sound quality (which
indeed turned out to be an important feature of the total system), some kind of
noise cancelling could be done on the sound in the microphone in order to get
better sound quality with lower noise.

8.6 New VR Headset

The development of new technology in the Virtual Reality market is tremendous.
All the big technology companies out there are realizing that this will grow to be
a billion dollar marked in the next few years, and everyone wants a piece of it.
To hold track of all the new technologies appearing every week is a challenge in
it self. But a couple of techs are separating from the masses. Of course one of
them is Oculus Rift, and in the beginning of may, they finally announced (after
three years of developer kits) that they would release the consumer version of
the Oculus Rift Q1 2016. At the moment this report was written, the technical
specifications of this headset was not yet set, but it is likely to be an improvement
of the current Oculus Rift DK2. To use this headset to create a more immerse
experience for the application would be a natural next step for this project. In
addition to the Oculus Rift, the companies HTC and Valve have a cooperation
project in creating a VR-headset which will hit the shelves in the end of 2015.
The technology is much the same, even though the SDK of this headset would
be different than that of the Oculus Rift.

104

8.7 Singularity Avoidance

When the robot hits a singularity, or its close proximity, performance becomes
significantly reduced or at worst it will stop the application from performing new
move commands. The two types of singularities, arm and wrist singularities,
each has a different way of avoidance. Wrist singularities occur if axis 5 and
axis 6 are collinear. Thus avoiding the motions that would put axis 5 at the
zero angle would solve this. This would also avoid the singularities which lie at
the boundary of the reachable workspace as it would introduce a wrist singularity.

Avoiding the arm singularity can be done by using the RobotStudio algorithm
SingArea \Wrist which makes it possible to move through singularities at reduced
speed. A better alternative would be to check if a movement would make the sys-
tem Jacobian lose rank. This would be a computationally demanding algorithm,
and would best be used in an external application.

8.8 Better Cameras

The last obvious improvement would be on the camera system. This is what
brings the world to the headset screen and is one of the most important tech-
nologies in order to improve the user experience of the system. The company
behind Ovrvision are providing a new Ovrvision pro with better specifications
than the current version which would be a suitable upgrade for the system.

105

References

[1] Pieper, D.L., ”The Kinematics of Manipulators Under Computer Control”,
memo. AIM72, Stanford Artificial Intelligence Laboratory, 1968.

[2] Wehinger, P.R. and Carlsen, L.T., ”Control of Robot Arm Through Oculus
Rift” 2014, NTNU, page 80-90, 101-127.

[3] Craig, J.J.,”Introduction to Robotics, Mechanics and Control”, 2nd Edition,
Addision-Wesley, 1989.

[4] https://www.OculusRift.com/dk2/ 22.03.2015

[5] https://forums.RobotStudio.com/ 22.03.2015

[6] CD:/RAPIDusermanual

[7] https://developer.OculusRift.com/documentation/ 22.03.2015

[8] IRB 140 Industrial Robot Manual, ABB 16.04.2015

[9] https://www.OculusRift.com/blog/powering-the-rift/ 16.04.2015

[10] http://ovrvision.com/ 17.04.2015

[11] http://dev.ovrvision.com/doc_en/index.php?reference17.04.2015

[12] http://en.wikipedia.org/wiki/Linear_interpolation 18.04.2015

[13] http://dev.ovrvision.com/doc_en/index.php?downloads 21.04.2015

[14] http://dev.ovrvision.com/doc_en/index.php?startup_manual

21.04.2015

[15] http://www.bluemic.com/yeti/ 23.04.2015

[16] http://se.mathworks.com/help/comm/ref/finddelay.html 23.04.2015

[17] http://www.asio4all.com/ 24.04.2015

[18] http://developercenter.RobotStudio.com/BlobProxy/manuals/

SysParametersTechRefManual/doc455.html 30.04.2015

[19] https://www.oculus.com/blog/the-latent-power-of-prediction/

03.05.2015

[20] http://www.aass.oru.se/Research/Learning/drdv_dir/abb_irb_140.

html 10.05.2015

[21] http://dev.ovrvision.com/doc_en/index.php?reference#x5892156

10.05.2015

[22] http://dev.ovrvision.com/doc_en/index.php?downloads#sdk

10.05.2015

106

[23] http://hypertextbook.com/facts/2002/JuliaKhutoretskaya.shtml

12.05.2015

[24] https://developer.OculusRift.com/reference/libovr/ 13.05.2015

[25] http://densorobotics.com/world/ 13.05.2015

[26] https://www.densorobotics-europe.com/en/product/vp-6242g

13.05.2015

[27] https://www.densorobotics-europe.com/en/product/

b-cap-113.05.2015

[28] http://en.wikipedia.org/wiki/Binaural_recording 16.05.2015

[29] http://www.3dmicpro.com/ 16.05.2015

[30] refers to the Oculus Rift dataset on the CD 17.05.2015

[31] http://www.mathworks.com/matlabcentral/fileexchange/

37980-barrel-and-pincushion-lens-distortion-correction 17.05.2015

[32] http://en.wikipedia.org/wiki/Trapezoidal_rule 23.05.2015

[33] M.W. Spong, Hutchinson and Vidyasagar, ”Robots Dymaics And Control”,
2nd Edition, 2004, page 83-97, 117-123.

[34] D. Tolani, Goswami and Badler, ”Real-Time Inverse Kinematics Techniques
for Anthropomorphic Limbs”, Academic Press, 2000.

[35] S. R. Buss, ”Introduction to Inverse Kinematics with Jacobian Transpose,
Pseudoinverse and Damped Least Squares methods”, University of California
San Diego, 2009.

[36] M. Meredith and Maddock, ”Real-Time Inverse Kinematics: The Return of
the Jacobian”, University of Sheffield.

[37] Jasmin Blanchette and Mark Summerfield, ”C++ GUI Programming with
Qt4”, Second Edition, 2013, page 45-121, 339-356.

[38] CD:\documents\troubleshootingIRC5.pdf

[39] CD:\documents\IRC5andFlexPendant.pdf

[40] CD:\documents\RobotStudioIntro.pdf

[41] CD:\document\RAPIDdatatypes.pdf

[42] CD:\videoes\vibrations.mp4

[43] CD:\software\RobotStudio,RAPID\TCProbot_2.tsstn

[44] CD:\software\objviewer\Ovrvision_to_rift.exe

107

[45] CD:\software

[46] CD:\software\OculusRiftRobot3.0\Win32\Debug

[47] CD:\videos\system_rear.mp4

108

Appendices

A Transformation Matrices

There will be some short hand notation used which is defined in Eq. 76 - 79, and
takes advantage of some trigonometric identities.

si = sin(θi) (76)

ci = cos(θi) (77)

s23 = sin(θ2 + θ3) = s2c3 + c2s3 (78)

c23 = cos(θ2 + θ3) = c2c3 − s2s3 (79)

The intermediate calculations as well as the parameters of 6
0T are computed

below.

2
0T =1

0 T ·21 T =


c1c2 −c1s2 s1 c1a1
s1c2 −s1s2 −c1 s1a1
s2 c2 0 d1
0 0 0 1


3
0T =2

0 T ·32 T =


c1c23 −c1s23 s1 c1(c2a2 + a1)
s1c23 −s1s23 −c1 s1(c2a2 + a1)
s23 c23 0 s2a2 + d1
0 0 0 1


4
0T =3

0 T ·43 T =


c1c23c4 + s1s4 −c1c23s4 + s1c4 c1s23 c1(s23d4 + c2a2 + a1)

s1c23 −s1c23s4 − c1c4 s1s23 s1(s23d4 + c2a2 + a1)
s23c4 −s23s4 −c23 −c23d4 + s2a2 + d1

0 0 0 1



5
0T =4

0 T ·54 T =

[
5
0R

5
0d

0 1

]
5
0R =

c5(c1c23c4 + s1s4)− s5c1s23 −s5(c1c23c4 + s1s4)− c1s23 −c1c23s4 + s1c4
c5(s1c23c4 − c1s4)− s5s1s23 −s5(s1c23c4 − c1s4)− s1c23c5 −s1c23s4 − c1c4

c5(s23c4) + c23c5 −s23c4s5 + c23c5 −s23s4


d =

c1(s23d4 + c2a2 + a1)
s1(s23d4 + c2a2 + a1)
−c23d4 + s2a2 + d1


6
0T =5

0 T ·65 T =


r11 r12 r13 Pxw
r21 r22 r23 Pyw
r31 r32 r33 Pzw
0 0 0 1



109

Where the indices are:

r11 = c1c23(c4c5c6 − s4s6)− c1s23s5c6 + s1(s4c5c6 + c4s6)

r12 = −c1c23c4c5c6 + c1s23s5s6 − s1s4c5c6
r13 = c1c23c4c5 + c1s23c5 + s1s4s5

r21 = s1c23(c4c5c6 − s4s6)− s1s23s5c6 − c1(c4c5c6 + c5s6)

r22 = −s1c23c4c5c6 + s1s23s5s6 + c1s4c5s6

r23 = s1c23c4c5 + s1s23c5 − c1s4cs5
r31 = s23(c4c5c6 − s4s6) + c23s5c6

r32 = −c6s23c4c5 − c23s5s6
r33 = s23c4c5 − c23c5
Pxw = c1s23d4 + c1c2a2 + c1a1

Pyw = s1s23d4 + s1c2a2 + s1a1

Pzw = −c23d4 + s2a2 + d1

110

B User Manual

B.1 How To Calibrate the Robot

As previously mentioned it might be necessary to manually recalibrate the robot
after it has been turned off. This is done by manually jogging the different rev-
olution joints into a position where a calibration mark on the link matches the
calibration mark on the joint. This can be seen in FIG. 79 - 84.

After this is completed the FlexPendant must be utilized to update the revolution
counters. To do this, first start at the start up page for the FlexPendant and
push the ABB logo in the top left corner. This will open up a control panel tab
where the option Calibration can be found. Now a list of the mechanical units
attached to the robot controller will appear, and it will also say whether they
are calibrated or not. If it is not calibrated push that status to enter the man-
ual calibration screen. This should give you an option to update the Revolution
Counters.

After the robot is done calibrating it is necessary to check if the calibration was
a success. This is done by writing a simple program that jogs all joints to the
origin. Once the program is done executing it is possible to check the current
value of the angles by pressing the ABB logo in the top left corner. In the option
menu screen select Jogging. In this tab you can see the current angles of the
robot, if they are all at zero degrees then the calibration was successful.

Figure 79: Image of calibration point for the first joint.

111

Figure 80: Image of calibration point for the second joint.

Figure 81: Image of calibration point for the third joint.

112

Figure 82: Image of calibration point for the fourth joint.

Figure 83: Image of calibration point for the fifth joint.

113

Figure 84: Image of calibration point for the sixth joint.

114

B.2 Editing System Parameters In RobotStudio

In order to tune the performance of the robot it is necessary to change some sys-
tem parameters. There are a large amount of parameters which can be changed,
however, it is important to note that some parameters can only be change if the
robot controller has the correct options installed.

In order to change a parameter, first open up a station in RobotStudio which you
would like to edit. Then enter either the Controller or RAPID tab, see Fig. 85.
Afterwards there will be a menu on the left side where Configuration will appear
beneath the name of the station. Most of the Parameters that needs to be tuned
will be found under the topic Motion, see Fig. 86. In order for the changes to
take affect a warm start the robot controller is necessary. Any information on
the system parameters can be found in the help section: File → Help → System
Parameters.

Figure 85: Print screen showing the location of the Controller and RAPID tab.

115

Figure 86: Print screen showing the location where to change system parameters.

116

B.3 How to Run the Application

To run the application there are some prerequisites which have to be fulfilled.

• Computer with at least 3 USB ports, and a HDMI port.

• Oculus Rift DK2.

• Ovrvision stereo camera.

• Bidirectional capacitor microphone (optional).

• 2 USB cable extensions.

• An ethernet cable.

B.3.1 RAPID Server Application

When this is achieved one must connect the robot controller to the computer with
the Ethernet cable. The port is located underneath the USB port. Once they
are connected it is possible to upload the RAPID server application from Robot-
Studio to the robot controller. This is done by first establishing a connection
through RobotStudio by opening the Controller tab and clicking Add Controller
followed by One Click Connect.

Since the application requires two tasks (threads) it is necessary to check if the
robot controller has two tasks already or if it needs to be created. In the case
that the second task is missing it can be created by opening either the Controller
or the RAPID tab and open the Configuration folder. The file that is going to
be edited is the Controller configuration file. Once this is opened, there is a Task
subsection which gives the option to create a new task when right clicked. In
the pop-up window that ensues there are three instances that needs to be edited.
The first is the task in foreground, this must be set to the main task which is most
often called T ROB1. The second is that the Type must be set to NORMAL or
else the task cannot be edited. The last is that MotionTask must be set to NO.
This is because there can only be one motion task per robot.

Once it has two tasks the programs can be uploaded to the controller by right-
clicking the tasks. Before turning on the application on the FlexPendant make
sure that that the controller is set to Auto for best performance. By pressing the
PP TO MAIN option on the FlexPendant and then the play button the applica-
tion should be running.

B.3.2 C++ Client Application

If the C++ client application has to be built before usage and in order to do so
there are some libraries that are required.

117

• libOVR 0.4.2

• QT:

– Core

– GUI

– Test

– Widgets

– Threads

In addition the Oculus Configuration Utility version 1.4 is needed to communicate
with the Oculus Rift. This needs to run as an background process in order to get
data from the Oculus Rift.

B.3.3 Running the system

1. With the Robot:
Connect the Oculus Rift, the cameras and the microphone to the computer.
Then, use an ethernet cable to connect the computer to the IRC5 controller.
Start the robot and make sure it is set in ”manual mode”.

When running the software first start the TCProbot 2 script [43] in RobotStudio.
Then go to the controller option in RobotStudio and press add controller with
”one click connect”. The IRC5 controller should now pop up in the window to
the left. Upload the program to the controller and start the programs from the
FlexPendant. After this application has been started one can either build and
run the C++ application in a software IDE or run the executable that can be
found on the CD[46].

Once the C++ application has started, it will open up a window. To start the
system with the robot select Robot IP and Input From Oculus and press Ok to
start the software. To exit the program terminate the program running on the
flexpendant and the C++ application.

To activate the cameras, start the program Ovrvision to rift [44]

After the program has been tested and verified in ”manual mode”, switch to
”automatic mode” and repeat the procedure.

2. In the simulation
Connect the Oculus Rift to the computer. Open the TCProbot 2 and press play
in the simulation tab in RobotStudio. After this application has been started
one can either build and run the C++ application in a software IDE or run the
executable that can be found on the CD [46].

118

Once the C++ application has started, it will open up a window. To start the
system in the simulation select Simulation IP and Input From Oculus and press
Ok to start the software. To exit the program press stop in the simulation tab in
RobotStudio and press cancel in the C++ application.

119

B.4 How To Navigate the CD

This report comes with a CD which contains some files. The CD is devided into
6 folders. Some of these folders are refered to in the text, the path on the CD is
in those cases given in the bibliography.

The software folder contains the software used to run the application. In ad-
dition it conatins some of the software used when analyzing the data.

The documents folder contains documents that is imporant in order to under-
stand RobotStudio. Some of these documents can also be found online.

The logFiles folder contains the logFiles from the different tests. In order to not
have a total mess in this folder, only the most relevant logfiles have been included.

The pictures folder shows some of the pictures from the report, many of the-
ses pictures can also be found in this paper.

The texFiles folder contains the latex script generating this pdf

The Videos folder contains videos showing how the system works.

120

C Code Samples

In this section some samples from the code which was found most relevant will
be posted. The rest of the code can be found on the CD [45].

C.1 C++ Qt

C.1.1 main

#pragma once
#include <QtWidgets/QApplication>
#include <QtCore/QCoreApplication>
#include <QtCore>
#include ”Gui . h”
#include ” oculusHandler . h”
#include ” logWriter . h”
#include ”TCPconnection . h”
#include ” f i l e I npu tHand l e r . h”

int main (int argc , char ∗argv [])
{

QApplication app (argc , argv) ;

oculusHandler ∗ ocu lusHandler r = new oculusHandler ;
Gui ∗OculusRobotGui = new Gui ;
TCPconnection ∗TCPconn = new TCPconnection ;
logWriter ∗ l og = new l ogWriter ;
f i l e I npu tHand l e r ∗ f i l eHand l e r = new f i l e I npu tHand l e r ;

log−>s e tF i l e InputHand l e r (f i l eHand l e r) ;
log−>setOculusHandler (ocu lusHandler r) ;
TCPconn−>setOculusHandler (ocu lusHandler r) ;
TCPconn−>s e tF i l e InputHand l e r (f i l eHand l e r) ;
OculusRobotGui−>setLogWriter (l og) ;
OculusRobotGui−>setTCPconnection (TCPconn) ;
OculusRobotGui−>show () ;

return app . exec () ;
}

121

C.1.2 TCP connect and run-thread

void TCPconnection : : c reateConnect ion () {
std : : s t r i n g IP = IpAdr . toStdSt r ing () ;
s td : : vector<char> writableChar (IP . begin () , IP . end ()) ;
wr i tableChar . push back (’ \0 ’) ;

qDebug () <<”IP i s s e t to ” << QString : : f romStdStr ing (IP) ;
i f (ConnectToHost (1025 , &writableChar [0])) {

qDebug ()<<”TCP Connection Success ! ”<<endl ;
} else {

qDebug ()<<”TCP Connection Fa i l u r e ! ”<<endl ;
}

}

bool TCPconnection : : ConnectToHost (int PortNo , char∗ IPAddress)
{

// S ta r t up Winsock
WSADATA wsadata ;

int e r r o r = WSAStartup(0 x0202 , &wsadata) ;

//Error occured?
i f (e r r o r)

return fa l se ;

//Did we ge t the r i g h t Winsock ver s ion ?
i f (wsadata . wVersion != 0x0202)
{

WSACleanup () ; //Clean up Winsock
return fa l se ;

}

SOCKADDR IN ta rg e t ; // Socket address informat ion

t a r g e t . s i n f am i l y = AF INET ; // address fami ly In t e rne t
t a r g e t . s i n p o r t = htons (PortNo) ; //Port to connect on
t a r g e t . s i n addr . s addr = ine t addr (IPAddress) ; //Target IP

s = socket (AF INET , SOCK STREAM, IPPROTO TCP) ; //Create socke t

i f (s == INVALID SOCKET)
{

return fa l se ; //Couldn ’ t c rea t e the socke t
}

//Try connect ing . . .

i f (: : connect (s , (SOCKADDR ∗)&target , s izeof (t a r g e t)) ==
SOCKETERROR)

{
return fa l se ; //Couldn ’ t connect

}
else

122

return true ; // Success
}

void TCPconnection : : run () {
qDebug () << ” in TCP send thread ” ;

while (1) {
i f (inputSource == ” f i l e ”) {

qDebug () << f i l e InputHand l e r−>
getClosestMapValue (getCurrentTime ()) ;

sendMessage (f i l e InputHand l e r−>
getClosestMapValue (getCurrentTime ())) ;

l i s t enForAck () ;

}

i f (inputSource == ” ocu lus ”) {
qDebug () << oculusHandlerr−>

getOculusDataQString () ;
sendMessage (oculusHandlerr−>

getOculusDataQString () . toStdSt r ing () .
c s t r ()) ;

l i s t enForAck () ;
}

}
}

void TCPconnection : : sendMessage (const char∗ content) {
szpText = content ;
szpText l ength = s t r l e n (szpText) ;

send (s , szpText , szpText length , 0) ;
}

123

C.1.3 Oculus RiftHandler data extract

oculusHandler : : oculusHandler () {
o v r I n i t i a l i z e () ;
HMD = ovrHmd Create (0) ;
i f (!HMD) {
qDebug ()<<”Oculus not detec ted ”<<endl ;

} else {
qDebug ()<<”Oculus Detected ”<<endl ;

}
}

void oculusHandler : : updateOculusData () {
t r a c k s t a t e = ovrHmd GetTrackingState (HMD,

ovr GetTimeInSeconds ()+0) ;

// s e t t i n g the data in thePose s t r u c t
headOrientat ion = t r a ck s t a t e . HeadPose . ThePose . Or i enta t i on ;
headOrientat ion . GetEulerAngles <OVR: : Axis X , OVR: : Axis Y ,

OVR: : Axis Z> (&thePose . e u l e r . x , &thePose . e u l e r . y , &
thePose . e u l e r . z) ;

thePose . quat . x = t r a c k s t a t e . HeadPose . ThePose . Or i enta t i on . x ;
thePose . quat . y = t r a c k s t a t e . HeadPose . ThePose . Or i enta t i on . y ;
thePose . quat . z = t r a c k s t a t e . HeadPose . ThePose . Or i entat i on . z ;
thePose . quat .w = t r a ck s t a t e . HeadPose . ThePose . Or i enta t i on .w;
thePose . pos . x = 1000∗ t r a c k s t a t e . HeadPose . ThePose . Po s i t i on . x ;
thePose . pos . y = 1000∗ t r a c k s t a t e . HeadPose . ThePose . Po s i t i on . y ;
thePose . pos . z = 1000∗ t r a c k s t a t e . HeadPose . ThePose . Po s i t i on . z ;

}

124

C.2 Inverse Kinematics

Eigen : : VectorXd ca l cu l a t eAng l e s 1 t o3 (Eigen : : VectorXd ee , Eigen : :
VectorXd angles , forwardKinematics robot) {

double Pwx = ee (0) ;
double Pwy = ee (1) ;
double Pwz = ee (2) ;

// Ca l cu l a t ing t h e t a 1

ang l e s (0) = atan2 (Pwy,Pwx) ;

cout << ”Theta 1 : ” << endl ;
cout << ang l e s (0) << endl ;

// Ca l cu l a t ing t h e t a 3
double a1 = robot . geta1 () ;
double a2 = robot . geta2 () ;

double d1 = robot . getd1 () ;
double d4 = robot . getd4 () ;

double the ta 1 = ang l e s (0) ;

double D = (pow((Pwx+a1∗ cos (the ta 1)) , 2) + pow((Pwy+a1∗ s i n (
the ta 1)) ,2) + pow((Pwz−d1) ,2) − pow(a2 , 2) − pow(d4 , 2))
/(2∗ a2∗d4) ;

cout << ”D: ” << endl ;
cout << D << endl ;

// There are two ve r s i ons o f t h e t a 3 due to elbow down and
elbow up case

cout << ”Debug in fo rmat ion part 1 : ” << endl ;
cout << Pwx+a1∗ cos (the ta 1) << endl ;

cout << ”Debug in fo rmat ion part 2 : ” << endl ;
cout << Pwy+a1∗ s i n (the ta 1) << endl ;

cout << ”Debug in fo rmat ion part 3 : ” << endl ;
cout << Pwz−d1 << endl ;

double the ta 3 = atan2 (sq r t (1−pow(D, 2)) ,D) ;

cout << ” the ta 3 : ” << endl ;
cout << the ta 3 << endl ;
cout << s q r t (1−pow(D, 2)) << endl ;
cout << s q r t (1−pow(D, 2)) /D << endl ;
// doub le t h e t a 3 = atan2(− s q r t (1−pow(D,2)) ,pow(D,2)) ;
// c a l c u l a t e t h e t a 3

ang l e s (2) = the ta 3 ;

125

// c a l c u l a t e t h e t a 2

double the ta 2 = atan2 (Pwz−d1 , s q r t (pow(Pwx+a1∗ cos (the ta 1)
,2) + pow(Pwy+a1∗ s i n (the ta 1) ,2))) − atan2 (d4∗ s i n (
the ta 3) , a2+d4∗ cos (the ta 3)) ;

ang l e s (1) = the ta 2 ;

cout <<”Angles 1 to 3 : ” << endl ;
cout << ang l e s << endl ;

return ang l e s ;
}

Eigen : : VectorXd ca l cu l a t eAng l e s 4 t o6 (Eigen : : VectorXd ee , Eigen : :
VectorXd angles , forwardKinematics robot) {

Eigen : : Matrix3d R = ca l cu la t eRotat i onMatr ix (ee) ;

Eigen : : Matrix3d R 0 3 ;

double the ta 1 = ang l e s (0) ;
double the ta 2 = ang l e s (1) ;
double the ta 3 = ang l e s (2) ;

R 0 3 << cos (the ta 1) ∗ cos (the ta 2+the ta 3) , −cos (the ta 1) ∗
s i n (the ta 2 ∗ the ta 3) , s i n (the ta 1) ,

s i n (the ta 1) ∗ cos (the ta 2 ∗ the ta 3) , −s i n (
the ta 1) ∗ s i n (the ta 2 ∗ the ta 3) , −cos (
the ta 1) ,

s i n (the ta 2 ∗ the ta 3) , cos (the ta 2 ∗ the ta 3)
, 0 ;

Eigen : : Matrix3d B = R 0 3 . i nv e r s e () ∗R;

cout << ”Rotation matrix R 3 6 : ” << endl ;
cout << B << endl ;
double the ta 4 ;
double the ta 5 ;
double the ta 6 ;

the ta 4 = atan2 (B(1 , 2) ,B(0 , 2)) ;
the ta 6 = atan2 (B(2 , 1) ,−B(2 ,0)) ;
the ta 5 = atan2 (B(0 , 2) ,B(2 , 2) ∗ cos (the ta 4)) ;

ang l e s (3) = the ta 4 ;
ang l e s (4) = the ta 5 ;
ang l e s (5) = the ta 6 ;

return ang l e s ;
}

126

C.3 RAPID

C.3.1 TCPconnection thread

MODULE TCPconnection
! ! ! CONSTANTS ! ! !
CONST num da ta s i z e := 7 ;

! ! ! PERSISTANTS ! ! !
PERS num pos i t ionData { da ta s i z e } ;
PERS tasks t a s k l i s t {2} := [[”T ROB1”] , [”TCPconnection”]] ;

! ! ! VARIABLES ! ! !
VAR socketdev s e r v e r s o c k e t ;
VAR socketdev c l i e n t s o c k e t ;
VAR s t r i n g r e c e i v e s t r i n g ;
VAR s t r i n g c l i e n t i p ;
VAR num tempPositionData{ da ta s i z e } ;
VAR sync ident sync ;

! ! ! DEBUG VARIABLES ! ! !
VAR num testingNumber := 0 ;
VAR s t r i n g subStr ing ;
VAR num pos num ;
VAR bool pos boo l ;
VAR bool va l id Input ;

VAR num timerOne ;
VAR num timerTwo ;
VAR iodev w r i t eF i l e ;
VAR c lock myclock ;

PROC Main ()
! Used in debugging
! Open ”HOME: ”\ F i l e :=” synchdelay . txt ” , w r i t eF i l e \Write ;
! ClkStart myclock ;

SocketCreate s e r v e r s o c k e t ; ! Creat ing a s e r v e r socket
SocketBind s e r v e r s o ck e t , ” 1 2 7 . 0 . 0 . 1 ” , 1025 ; ! Bind s e r v e r

socke t to this port and ip 192 . 168 . 125 . 1 1 2 7 . 0 . 0 . 1
SocketL i s t en s e r v e r s o c k e t ; ! L i s t en to incomming connect i ons

! Accecpts incomming conncet ionc and s t o r e s the ip address in
c l i e n t i p

SocketAccept s e r v e r s o ck e t , c l i e n t s o c k e t \Cl ientAddress :=
c l i e n t i p ;

FOR i FROM 1 TO data s i z e STEP 1 DO
IF i=5 THEN

pos i t ionData { i } := 1 ;
ELSE

pos i t ionData { i } := 0 ;
ENDIF

ENDFOR

127

WHILE TRUE DO

! Rece ives a s t r i n g message from the c l i e n t and s t o r e s i t
in r e c e i v e s t r i n g

SocketRece ive c l i e n t s o c k e t \Str := r e c e i v e s t r i n g ;

IF StrLen (r e c e i v e s t r i n g)=0 THEN
!Do Nothing
ELSE

pos boo l := ConvertStringToNums (r e c e i v e s t r i n g) ;
va l id Input := CheckForValidValues () ;
IF va l id Input = TRUE THEN

FOR i FROM 1 TO data s i z e STEP 1 DO
pos i t ionData { i } := tempPositionData{ i } ;

ENDFOR
SocketSend c l i e n t s o c k e t \Str :=”Ack” ;

ELSE
!Do not update p o s i t i o n data due to i n v a l i d

input
ENDIF

! timerOne := ClkRead (myclock \HighRes) ;

WaitSyncTask sync , t a s k l i s t ;

! timerTwo := ClkRead (myclock \HighRes)−timerOne ;
! Write wr i t eF i l e , ””\Num:=timerTwo ;

ENDIF

ENDWHILE
ERROR

RETRY;
UNDO
SocketClose s e r v e r s o c k e t ;
SocketClose c l i e n t s o c k e t ;

ENDPROC

! ! Converts wanted segments o f the s t r i n g in to nums ! !
FUNC bool ConvertStringToNums (s t r i n g r e c e i v e d s t r i n g)

VAR num st ep s := da ta s i z e ;
VAR num pos num := 0 ;
VAR bool pos boo l := FALSE;
VAR s t r i n g sub s t r i ng ;
VAR s t r i n g TEMP;
VAR num strPos ;
VAR num s t r i n g l e n g t h ;

s t r i n g l e n g t h := StrLen (r e c e i v e d s t r i n g) ;
r e c e i v e d s t r i n g := StrPart (r e c e i v e d s t r i n g , 2 , s t r i n g l e n g th

−1) ;

FOR i FROM 1 TO step s DO

128

s t r i n g l e n g t h := StrLen (r e c e i v e d s t r i n g) ;
s t rPos := StrFind (r e c e i v e d s t r i n g , 1 , ” ”) ;
IF st rPos < s t r i n g l e n g t h THEN

subStr ing := Strpar t (r e c e i v e d s t r i n g , 1 , s t rPos) ;
TEMP := Strpar t (r e c e i v e d s t r i n g , s t rPos+1,

s t r i n g l e n g th−s t rPos) ;
r e c e i v e d s t r i n g := TEMP;

ELSE
subStr ing := r e c e i v e d s t r i n g ;

ENDIF
pos boo l := StrToVal (subStr ing , pos num) ;
tempPositionData{ i } := pos num ;

ENDFOR

RETURN TRUE;
ENDFUNC

! ! Makes c e r t a i n that the input va lue s are l e g i t ima t e and not
garbage va lue s ! !

FUNC bool CheckForValidValues ()
FOR i FROM 1 TO data s i z e DO

IF tempPositionData{ i } > 200000 OR tempPositionData{ i } <
−200000 THEN

RETURN FALSE;
ELSE

RETURN TRUE;
ENDIF

ENDFOR
ENDFUNC

ENDMODULE

129

C.3.2 RobotMotion thread

MODULE RobotMotion

! ! ! CONSTANTS ! ! !
CONST num da ta s i z e := 7 ;

! ! ! PERSISTANTS ! ! !
PERS num pos i t ionData { da ta s i z e } := [0 , 0 , 0 , 0 , 0 , 0 , 1] ;
PERS tasks t a s k l i s t {2} := [[”T ROB1”] , [”TCPconnection”]] ;

! ! ! VARIABLES ! ! !
VAR num prevPos i t ionData { da ta s i z e } ;
VAR num deltaPos { da ta s i z e } ;
VAR num tempPositionData{ da ta s i z e } ;
VAR bool dataChanged := FALSE;
VAR robta rge t po int ;
VAR j o i n t t a r g e t s ta r tup ;
VAR c lock myclock ;
VAR bool s t a r t t ime r ;
VAR sync ident sync ;

! ! ! DEBUG ! ! !
VAR iodev wr i t eLogF i l e ;
VAR iodev w r i t eF i l e ;
VAR num timerOne ;
VAR num timerTwo ;

! ! ! MAIN PROCEDURE ! ! !

PROC Main ()
Setup ;
! Open ”HOME: ”\ F i l e :=” robotData . csv ” , wr i t eLogF i l e \Write ;
! Open ”HOME: ”\ F i l e :=”moveAlgDelay . txt ” , w r i t eF i l e \Write ;
s t a r t t ime r := TRUE;

WHILE TRUE DO

UpdateDest inat ion ;
WaitSyncTask sync , t a s k l i s t ;
IF s t a r t t ime r THEN

ClkStart myclock ;
s t a r t t ime r := FALSE;

ENDIF
LookForChange ;
IF dataChanged AND isReachab le (point , too l0 , wobj0) THEN

! timerOne := ClkRead (myclock \HighRes) ;
MoveRobot ;
! timerTwo := ClkRead (myclock \HighRes)−timerOne ;
! Write wr i t eF i l e , ””\Num:=timerTwo ;
! WriteToFile ;
! WriteToFileCsv ;

ENDIF
notFirstMovement := TRUE;

130

! WaitTime i s used when u t i l i z i n g f l y−by po in t s
!WaitTime 0 . 1 ;

ENDWHILE
ENDPROC

! ! ! MOVEMENT ALGORITHM ! ! !

PROC MoveRobot ()
ConfJ \Off ;
ConfL \Off ;

MoveL point ,vmax , f i n e , t oo l 0 \WObj:=wobj0 ;
ENDPROC

! ! ! UPDATES THE ROBTARGET POINT ! ! !

PROC UpdateDest inat ion ()
VAR bool dataI sZero := TRUE;

FOR i FROM 1 TO data s i z e STEP 1 DO
IF prevPos i t ionData { i } = 0 THEN
ELSE

dataI sZero := FALSE;
ENDIF

ENDFOR

IF dataI sZero THEN
ELSE

FOR i FROM 1 TO data s i z e STEP 1 DO
deltaPos { i } := pos i t ionData { i } − prevPos i t ionData { i

} ;
ENDFOR
point := Of f s (point , −de l taPos {3} , −de l taPos {1} ,

de l taPos {2}) ;
po int . r o t . q1 := −pos i t ionData {5} ; ! 5
po int . r o t . q2 := −pos i t ionData {4} ; ! 4
po int . r o t . q3 := pos i t ionData {6} ; ! 6
po int . r o t . q4 := pos i t ionData {7} ; ! 7

ENDIF
ENDPROC

! ! ! LOOKS FOR CHANGE IN THE POSITION DATA ! ! !

PROC LookForChange ()
IF pos i t ionData = prevPos i t ionData THEN

dataChanged := FALSE;
ELSE

dataChanged := TRUE;
prevPos i t ionData := pos i t ionData ;

ENDIF
ENDPROC

! ! ! SETUP PROCEDURE FOR INITIAL SETTINGS ! ! !

PROC Setup ()

131

point := CRobT(\Tool := too l 0 \WObj:=wobj0) ;

FOR i FROM 1 TO data s i z e STEP 1 DO
pos i t ionData { i } := 0 ;
prevPos i t ionData { i } := 0 ;

ENDFOR
prevPos i t ionData := [0 , 0 , 0 , 0 , 0 , 0 , 0] ;
pos i t ionData := [0 , 0 , 0 , 0 , 0 , 1 , 0] ;
s ta r tup := [[0 ,0 ,0 ,0 , −80 , −180] , [9E9 , 9E9 , 9E9 , 9E9 , 9E9 , 9E9]] ;
MoveAbsJ startup , v400 , z1 , t oo l 0 ;
ENDPROC

! ! ! READ FROM FILE , IS USED IN FTP COMMUNICATION ! ! !

PROC ReadFromFile ()
VAR bool dataOK :=TRUE;
VAR iodev r eadF i l e ;
Open ”HOME: ”\ F i l e :=” outputF i l e . txt ” , r e adF i l e \Read ;
Rewind r eadF i l e ;

FOR i FROM 1 TO data s i z e STEP 1 DO
tempPositionData{ i } := ReadNum(r eadF i l e) ;

ENDFOR

Close r eadF i l e ;

FOR i FROM 1 TO data s i z e STEP 1 DO
IF tempPositionData{ i } > 200000 OR tempPositionData{ i } <

−200000 THEN
dataOK := FALSE;

ENDIF
ENDFOR

IF dataOK THEN
FOR i FROM 1 TO data s i z e STEP 1 DO

pos i t ionData { i } := tempPositionData{ i } ;
ENDFOR

ENDIF
ENDPROC

! ! ! WRITES TO FILE ! ! !

PROC WriteToFile ()
VAR num timer ;
VAR robta rge t curPos ;

curPos := CRobT(\Tool := too l 0 \WObj:=wobj0) ;
t imer := ClkRead (myclock) ;

Write wr i teLogFi l e , ””\Num:=timer , \NoNewLine ;
Write wr i teLogFi l e , ” ” ,\NoNewLine ;

Write wr i teLogFi l e , ””\Num:=curPos . t rans . y−30 ,\NoNewLine ;
Write wr i teLogFi l e , ” ” ,\NoNewLine ;

132

Write wr i teLogFi l e , ””\Num:=curPos . t rans . z−781.78 ,\NoNewLine ;
Write wr i teLogFi l e , ” ” ,\NoNewLine ;

Write wr i teLogFi l e , ””\Num:=−curPos . t rans . x−12.4 ,\NoNewLine ;
Write wr i teLogFi l e , ” ” ,\NoNewLine ;

Write wr i teLogFi l e , ””\Num:=(PI∗EulerZYX(\Y, curPos . ro t))
/180 ,\NoNewLine ;

Write wr i teLogFi l e , ” ” ,\NoNewLine ;

Write wr i teLogFi l e , ””\Num:=−PI+(PI∗EulerZYX(\Z , curPos . ro t))
/180 ,\NoNewLine ; ! (PI∗EulerZYX(\Y, curPos . ro t)) /180 ,\
NoNewLine ;

Write wr i teLogFi l e , ” ” ,\NoNewLine ;

Write wr i teLogFi l e , ””\Num:=(PI∗EulerZYX(\X, curPos . ro t)) /180 ;
ENDPROC

! ! ! WRITES TCP COORDINATES TO FILE WITH CSV FORMAT ! ! !

PROC WriteToFileCsv ()
VAR num timer ;
VAR robta rge t curPos ;

curPos := CRobT(\Tool := too l 0 \WObj:=wobj0) ;
t imer := ClkRead (myclock) ;

Write wr i teLogFi l e , ””\Num:=timer , \NoNewLine ;
Write wr i teLogFi l e , ” ; ” ,\NoNewLine ;

Write wr i teLogFi l e , ””\Num:=curPos . t rans . y−30 ,\NoNewLine ;
Write wr i teLogFi l e , ” ; ” ,\NoNewLine ;

Write wr i teLogFi l e , ””\Num:=curPos . t rans . z−781.78 ,\NoNewLine ;
Write wr i teLogFi l e , ” ; ” ,\NoNewLine ;

Write wr i teLogFi l e , ””\Num:=−curPos . t rans . x−12.4 ,\NoNewLine ;
Write wr i teLogFi l e , ” ; ” ,\NoNewLine ;

Write wr i teLogFi l e , ””\Num:=(PI∗EulerZYX(\Y, curPos . ro t))
/180 ,\NoNewLine ;

Write wr i teLogFi l e , ” ; ” ,\NoNewLine ;

Write wr i teLogFi l e , ””\Num:=−PI+(PI∗EulerZYX(\Z , curPos . ro t))
/180 ,\NoNewLine ; ! (PI∗EulerZYX(\Y, curPos . ro t)) /180 ,\
NoNewLine ;

Write wr i teLogFi l e , ” ; ” ,\NoNewLine ;

Write wr i teLogFi l e , ””\Num:=(PI∗EulerZYX(\X, curPos . ro t)) /180 ;
ENDPROC

FUNC bool I sReachable (rob ta rge t pReach , PERS too lda ta ToolReach
, PERS wobjdata WobjReach)

133

! Check i f s p e c i f i e d robta rge t can be reach with g iven t o o l and
wobj .

!
! Output :
! Return TRUE i f given robta rge t i s r eachab l e with g iven t oo l and

wobj
! o the rw i s e return FALSE
!
! Parameters :
! pReach − r ob ta rge t to be checked , i f robot can reach this

r ob ta rge t
! ToolReach − too lda ta to be used for po s s i b l e movement
! WobjReach − wobjdata to be used for po s s i b l e movement

VAR bool bReachable ;
VAR j o i n t t a r g e t jntReach ;

bReachable := TRUE;

jntReach := CalcJointT (pReach , ToolReach\Wobj:=WobjReach) ;

RETURN bReachable ;

ERROR
IF ERRNO = ERR ROBLIMIT THEN
bReachable := FALSE;
TRYNEXT;

ENDIF
ENDFUNC

ENDMODULE

134

