
Alternatives to Classic Real Time
A Literature Study

Nicholas Stangeland

Master of Science in Cybernetics and Robotics

Supervisor: Sverre Hendseth, ITK

Department of Engineering Cybernetics

Submission date: June 2015

Norwegian University of Science and Technology

3

Objective

A study of alternative ways to make real-time systems.

Liu & Layland introduced what is now the classic way to create real time systems: We divide

the system into threads responsible for each time requirement, choosing a predictable

scheduler, and assuming we know the worst-case run time of each thread [1]. This enables

us to conduct a schedulability proof which argues that all deadlines will be reached.

The student is to study (all) alternative ways to create real time systems. A literature search

will be the main part of the work, but should contain more or less of collecting and

generating ideas to span the space of alternatives.

Examples of non-schedulability proof-based ways to create real-time systems may be e.g.:

- Can we detect and handle time-domain errors like all other errors in the system?

- Can we predict (eg. by online execution time analysis) deadline-misses before they

happen?

- Can we interact with applications to adjust their needs for computing power when the

system is busy?

- Can we have adaptive systems that reduce the probability of timing errors to acceptable

values?

- Can we redefine "real time" to mean something other than the traditional "hard

deadlines," while still making sense?

- Can we allow stochastic models etc. for real-time?

- ...

If relevant, one or more exciting alternatives can be investigated more thoroughly.

The thesis may conclude with an analysis of the state of the art, identification of trends,

predictions about the future etc.

4

Abstract

This paper will take a closer look at some of the research in the field of real time systems.

The classic approach to real time, the Liu and Layland method is thoroughly investigated and

compared to other approaches to real time. The main focus is the task model and variants of

the task model. Topics relevant for the task model such as scheduling, dynamic voltage

scaling, WCET and time/utility functions are discussed. Control theory and its implications in

real time are investigated as well as the science of making safety-critical systems.

5

Sammendrag

Denne oppgaven tar for seg forskning innen sanntidsprogrammering. Den klassiske

tilnærmingen til sanntid, Liu og Layland-metoden er gjennomgått og sammenlignet med

andre tilnærminger til sanntid. Hovedvekten av oppgaven baseres på ”task”-modellen og

varianter av denne. Relevante temaer innen ”task”-modellen som ”scheduling,” dynamisk

spenningsskalering, verste kjøretid (WCET) og tid/nytte-funksjoner blir gjennomgått.

Reguleringsteknikk og forholdet til sanntid blir beskrevet, i tillegg til vitenskapen bak

sikkerhetskritiske systemer.

6

Content
Objective .. 3

Abstract .. 4

Sammendrag .. 5

Introduction .. 10

The Definition of Real Time Systems .. 10

Types of Real Time Systems ... 10

Task Based approaches .. 10

Classic Real Time: Liu & Layland ... 10

Schedulability Proofs .. 11

Liu and Layland Classification of Real Time Systems ... 12

Hard .. 12

Firm ... 12

Soft ... 13

Stochastic Real Time... 13

Petri Net and FPGA ... 13

Scope of Work .. 14

Outlines to the Alternatives of Classic Real Time .. 14

Method ... 16

Preliminaries ... 18

Historical background... 18

Today .. 18

Safety-Critical Systems ... 19

Hardware and Software ... 19

Achieving Safety Criticality ... 19

The Answer is Real Time... 20

Airplanes and Other Safety-Critical Systems .. 20

Approaches to Reactive Systems ... 22

Preliminaries ... 22

Synchronous Approaches to Reactive Programming: E.G.: Lustre and Esterel 22

The Task Based Model .. 23

Communicating Sequential Processes (E.G.: Ada and Occam) .. 23

7

The Petri Net-Based Model .. 24

Scheduling .. 25

Preliminaries ... 25

Scheduling Strategies ... 25

Preemption and Overhead ... 25

“Open Loop” ... 26

Static ... 26

Dynamic .. 26

Closed Loop .. 26

Feedback Scheduling (FBS) ... 26

Summary .. 27

Dynamic Voltage Scaling (DVS) .. 28

Background ... 28

Hard Real Time ... 28

Soft and Firm Real Time ... 29

Battery Powered Systems .. 29

Overclocking ... 30

Concluding remarks on DVS ... 30

Real Time and Control Systems .. 32

Background ... 32

Timing in Control Systems .. 32

Jitter .. 32

Sampling Jitter .. 32

Sampling-Actuation Delays .. 32

Sampling Jitter and Sampling-Actuation Delays .. 33

Jitter Compensation ... 33

Model of Computation: Continuous Stream Task Model .. 34

Verification ... 34

Simplex Design ... 34

Concluding Remarks on Control Systems ... 35

Scheduler Interaction with Controller.. 35

Worst Case Execution Time (WCET) ... 36

8

Preliminaries ... 36

Average Case Execution Time (AET) ... 38

Preliminaries ... 38

Computing AET ... 38

Summary .. 39

Predictability and Determinism.. 40

Preliminaries ... 40

Statistics: The use of average to achieve predictability in uncertain environments 40

Online Estimation of Run-Time .. 41

Time/Utility Functions .. 43

Preliminaries ... 43

Use of TUFs ... 43

Suggestion: Reclassifying the Real Time Task Model ... 44

The Task Model Classification .. 44

Hard Real Time ... 44

Classic Hard Real Time.. 44

Non-Strict Hard Real Time .. 44

Firm Real Time .. 45

Soft Real Time ... 46

Scheduling Real Time Built upon the Task Model .. 48

Stochastic Real Time... 48

Preliminaries ... 48

Soft and Firm Schedulers (Stochastic) .. 49

Hard Schedulers (Stochastic and deterministic) .. 49

Non-strict .. 49

Strict (Deterministic) .. 49

Designing Real Time Systems ... 50

The Three Dimensions of a System .. 50

Criticality ... 51

Result .. 51

Time .. 51

Choosing the Right Model .. 51

9

Current Trend in Real Time Research... 53

Answering the Questions ... 55

Can we detect and handle time-domain errors like all other errors in the system? 55

Can we predict (eg. by online execution time analysis) deadline-misses before they

happen? .. 55

Can we interact with applications to adjust their needs for computing power when the

system is busy? ... 55

Can we have adaptive systems that reduce the probability of timing errors to acceptable

values? .. 55

Can we redefine "real time" to mean something other than the traditional "hard

deadlines," while still making sense? ... 56

Can we allow stochastic models etc. for real-time? .. 56

Glossary .. 57

Bibliography/References .. 58

10

Introduction

The Definition of Real Time Systems
What does it mean for a system to be real time? In computer systems it usually refers to

either a simulation with a system clock running 1:1 with the real clock or a system under real

time constraint. In this text real time refers to the latter. For a system under real time

constraints a right answer is only right if it is correct and is given at the right time, in contrast

to non-real time. But when is the right time? Clearly a system which responds too late is not

on the right time, but what if it is a little early? This will differ from system to system.

Imagine a completely electronic car: When you hit the accelerator you expect the car to

accelerate. In this case there is impossible for the system to be too early. Accelerating before

you hit the gas is simply a wrong answer. For a system that can be too early: When listening

to music the application needs to process the sound data before it can be played. During this

process data is usually not processed in the exact right order meaning the application can

have a note ready before it should be played. The problem? Playing a correct note too early

is as bad as playing a wrong note.

To avoid an early answer the system can simply hold the answer until the correct time

approaches, but this is clearly not possible with a late answer. Therefore it is easily

deductible that two solutions exist: Ensure that the answer isn’t late or fix the fault that

occurs because the system is late. However, according to Liu & Layland [1], the latter is not

possible for a hard deadline system. In this text that assumption will be challenged.

Types of Real Time Systems

Task Based approaches

In this approach every job is divided into tasks which are responsible for part of a job. For

instance is a controller a job consisting of a sampling task, a controller algorithm task and an

actuator task.

Classic Real Time: Liu & Layland

In 1973 Liu and Layland published their famous paper “Scheduling Algorithms for

Multiprogramming in a Hard-Real-Time Environment” [1] in which most of the real time

science is based upon and it has been cited several thousand times according to citeseerx

and Google Scholar, listing it with nearly 10 000 citations [9]. In their paper Liu and Layland

list the following five assumptions which are necessary for a hard real time system:

1. The requests for all tasks for which hard deadlines exist are periodic, with constant

interval between requests.

2. Deadlines consist of run-ability constraints only--i.e. each task must be completed before

the next request for it occurs.

11

3. The tasks are independent in that requests for a certain task do not depend on the

initiation or the completion of requests for other tasks.

4. Run-time for each task is constant for that task and does not vary with time. Run-time

here refers to the time which is taken by a processor to execute the task without

interruption.

5. Any nonperiodic tasks in the system are special; they are initialization or failure-recovery

routines; they displace periodic tasks while they themselves are being run, and do not

themselves have hard, critical deadlines.

In fact it is hard to defend any other assumption than assumption 2. In the conclusion of

their paper they do admit to the following: “Perhaps the most important and least

defensible of these are (A1), that all tasks have periodic requests, and (A4), that run-times

are constant.” Even so assumption 3 will usually not hold because of interdependence of the

system and assumption 5 requires any other non-periodic task to be supervised by a periodic

task [13] which is sub-optimal (polling as opposed to interrupts). It may even be impossible

to do this if the frequency of this supervisor task must be so high that some other task will

not reach its deadline.

In other words, an important part of the foundation of the hard real time science rests on

several major flaws. However, this only proves that it is impossible to make a perfect system.

What is important though is that this way of thinking hard real time cannot be the only way.

This paper will list some viable alternatives that still are safety-critical as classic hard real

time, but uses other assumptions and therefore do not have its flaws.

Worryingly enough is the fact that, according to Devillers and Goossens in their paper

entitled “Liu and Layland's schedulability test revisited” [27], some of the proofs in Liu and

Layland [1] were based on wrongful assumptions. Although the conclusion based on the

proofs were more or less correct, a wrong proof should be alarming. Taken into account the

number of years before the proof was corrected, this may be a bad sign for the classic hard

real time science. Nonetheless it is only cited 8 times according to [29]; therefore its impact

on classic real time science is negligible. However, Google Scholar lists 39 citations, but it is

still an insignificant number compared to revolutionary papers.

Schedulability Proofs

Associated with classic real time is the necessity of performing a schedulability proof of the

worst case execution time. In essence this means that for a given system one first has to split

all work into tasks and further calculate the worst case execution time for every task. This

may be difficult if even possible due to the following: Modern processors are being design to

prioritize average over worst case, according to Nilsen and Rygg in their paper from 1995

and nothing seems to have changed this trend [14]. Thus, with unpredictable

interdependence among the tasks, partly because of the processor, the WCET computation

really is a huge problem.

12

If it can be proven, apart from simplifications or other assumptions, that the tasks can all

meet their deadlines by some scheduler then the system is said to be schedulable. However,

a dynamic scheduler may fail to ensure that all tasks meet their deadlines even with a

schedulability proof. For instance the scheduler, earliest deadline first (EDF), suffers from a

phenomenon referred to as “Thrashing” [17, 18]. This is when the scheduler always selects

the task with the earliest deadline among two or more tasks when they both have similar or

nearly similar deadlines, preempting the currently running task. Due to overhead from

switching between the tasks, this causes the processor to spend more time alternating

between tasks than doing useful work. The simple solution is to not pre-empt and the harder

solution is to not make wrong assumptions about a preempting with no overhead when

switching tasks.

Liu and Layland Classification of Real Time Systems

Usually, real time is being classified into the three main branches hard, firm and soft [10].

(Sometimes with firm considered as a subclass of soft, as noted by Bøgholm in his thesis

[85]. Or a hybrid between hard and soft, as noted by Kaldewey et al., in their paper on Firm

Real-Time Processing [12].)

Hard

According to Liu and Layland a hard real time implies that a single missed deadline results in

failure of the entire system [1]. Arguably, this is rarely the case for most systems. Many tasks

can be separated into a mandatory part and an optional part in which only the mandatory

part has to be executed in order to ensure the minimum functionality of the entire system

[2, 3]. Another case where this assumption fails to hold can be seen in a simple controller

system. The controller consists of three systems: Input data (e.g. sensors), calculations (e.g.

MPC) and output data (e.g. engine). If one part is cut out of the equation the entire system

will fail, thus the systems consist only of mandatory tasks. Nonetheless, the system will still

work if one misses a single sample from the input data or previous output data is used

instead. The system may be indifferent whether this is caused by calculation in the controller

being unfinished or output data being at fault. In sum, the conclusion is that the system is

“somewhat” hard real time because a deadline miss at the wrong time causes the system to

fail, but a deadline miss will not necessarily bring down the entire system. In fact most of the

deadlines are firm, but the next deadline for each task essentially becomes “harder” for

every missed deadline.

Firm

Although some authors, such as T. Kaldewey et al. and T. Bøgholm, list firm real time as a

subclass of soft real time it may very well be thought of as an independent class of real time

systems [12, 85]. It differs from the hard type due to the possibility of missing a deadline

without fatal consequences and it differs from the soft type because the results are always

worthless after the deadline has passed. The best known use of firm real time is in sound

systems where missing a note is, sometimes, noticeable, but is no disaster and where a note

that isn’t on time should never be played at all.

13

Another notion from firm real time is the use of (m,k)-firm deadlines, where specifying the

two constants k and m such that the quality of service (QoS) is acceptable. That is, as long as

at least m instances in any window of k consecutive tasks meet their deadlines, then the QoS

is acceptable [3, 63].

Soft

Soft real time is the class of real time that can tolerate the greatest number of deadline

misses. Although the QoS will usually diminish as more and more deadlines are missed, it is

not always the case. What is important is how they are missed. Simply put, if a video misses

every 25 frame nobody is likely to notice, but if 25 frames are missed in a row then the result

is clearly visible. In other words, deadline priorities might be adjusted dynamically to

enhance the performance of the system and this will, if executed correctly, result in a higher

QoS.

The value of a result in a soft real time may diminish with time as deadline is passed or it

may simply be useless, but this varies from system to system. One solution is to make the

system such that it has bounded lateness, as proposed by Valente and Lipari in their paper,

which makes late results nearly as valuable as if they were on time [11]. And finally, if some

deadlines cannot be within that time, only then are they useless.

Stochastic Real Time

A new “revolution” came when Jensen published his paper on time driven scheduling in

1985 [84]. By considering the value of a task’s completion this method allows one to design

systems in which priority is based on the actual value of a task. This is in contrast to the

classic approach in which the priority is more or less static determined before execution.

Further work, in particular by Jensen, introduced the Time/Utility function in which the

stochastic real time approach is based on [39].

Rather than requiring that all deadlines are met, the stochastic approach requires that at

least x % of all deadlines are met. The complication here is that it is not indifferent what

deadlines are missed. If one task misses all its deadlines, but the overall system still performs

at x % of all deadlines then, although depending on the criticality of that task, failure is the

result. This also led to more research in scheduling algorithms and one proposed solution is

to use feedback scheduling.

Petri Net and FPGA

The Petri Net method is a modeling system based on graphical/mathematical reasoning. This

is in many ways one layer above the task model as the task model can be used to implement

a Petri net, but it is rarely practical. Usually the Petri net results in FPGA based systems

which in many ways are more predictive than the classic approach of buying “off-the-shelf“

hardware and make the most of it. In theory all operations of a FPGA can be traced and

predicted thus resulting in a more predictable system than classic real time.

14

Scope of Work
The main focus of the paper will be about the task model, but will still cover other

approaches to real time. Safety-critical systems will also be covered in greater depths than

systems that can be designed as best-effort, which is not real time. This includes several of

the approaches to media-streaming in which the soft real time approach is too similar to the

best-effort approach. A typical example is streaming of television programs on tablets in

which the live coverage appearing on the tablet is behind what is happening on the

television.

Topics that will be covered in this paper include work that is relevant to nearly all

approaches to real time such as control systems, WCET, Safety-critical systems and

stochastic methods. Further topics consist of various approaches to real time and how to

achieve the wanted results. Topics such as FPGA, belonging to electronics, are not covered in

such depths as main topics of this field.

Outlines to the Alternatives of Classic Real Time

If a hard real time system fails to deliver a correct result on time it is considered to be a full

system failure which cannot be recovered, but if it delivers a wrong result on time then this

is just a fault that can be recovered with ordinary fault mechanism. There is however no

literature that supports this reasoning, both are errors that must be dealt with nonetheless.

The assumption does not hold, as can be seen in the paper by Fontanelli et al. [72] where

they refer to the work done by Kopetz et al., on the Time Triggered Model of Computation

[86] concluding that a job/task can be cancelled and if necessary use the previous value

instead.

Because there is no difference between the faults and both may lead to errors, the solution

is nevertheless to fix them. For a fault consisting of a wrong result within the deadline

standard measures are undertaken. However, if the fault is of a missed deadline there exist

two options: One is to extend the deadline temporarily [11] and let the result arrive at the

new deadline, the other option is to recover the fault as if it was a wrong answer within the

deadline. The fault recovery should adjust to ensure that the fault is recovered in the best

way. If the deadline is missed it is not always possible to just rerun the calculation and get it

done within the deadline the second time. This will be dependent on whether the load of

the system was at fault or if it was the load of this single application. Therefore it is

sometimes better to extend the deadline instead of rerunning the calculation as this is

essentially the same solution, but with a smaller run time, although it will fail if the late

calculation is wrong in addition to being late.

Prediction of running times should be possible if an application is built to support this, as

advocated1 by Haugli and Hendseth in a thesis and presentation, respectively [25, 26]. By

utilizing this possibility it is thus possible to predict whenever a deadline won’t be met. It is

1 The proposal was estimation of WCET, but the principle is the same.

15

therefore possible to recover from the fault before it actually occurs and in fact prevent it

from ever happening. A viable option could for instance be overclocking the processor or

extend the deadline if possible. Nonetheless, the important thing is the overhead of the

predictor.

16

Method

The first part of this project consisted of reading trough articles published with the keywords

“Real Time.” Further reading included symposiums and other papers that provided an

overview on the topic of real time. As there are many more articles on the classic approach

to real time than on the other fields within real time, the classic approach became the main

reading at first. Then to understand how to deviate from classic real time it was even more

important to fully understand classic real time to explain its strengths and weaknesses.

Papers describing general concepts on real time were read simply for depths on the subject

and some of the topics are omitted in this paper.

In order to ensure that all relevant data on a subject is found there are a few methods that

have proven useful. Google (Scholar) search of relevant keywords is the easiest when it

comes to mainstream or other well known articles, similar with Microsoft Academic Search.

Google Books has been used to skim through books with titles that suggest they are relevant

to the subject at hand. Publishing cites such as IEEE and dl.acm.org are thoroughly searched.

Several symposiums have been particularly useful to get an overview of certain topics, this

includes RTSS and RTAS. Further findings have come from utilizing citeseerx.com to find

which articles that has cited the paper which proved to be relevant. Finally all papers do

have their references listed which in turn may have more information about the topic and

therefore their abstracts are read through in order to find any more relevant information

and, if it is relevant, the entire paper.

Also, many articles contain a line of keywords. This in particular makes searches for similar

papers easier. Further a dictionary is used to find synonyms in case authors use different

words to mean the same thing. Which isn’t that uncommon as Oxford English differs from

American English and especially authors that do not have English as their mother tongue.

This means that a search centered on “online prediction of running time” also must be run

as “online estimation of running time,” “online estimation of execution time” and “online

prediction of execution time” just to be sure.

Whenever a claim is made as to whether something is new and/or revolutionary it can

usually be put to test by simply counting references to the article. Therefore there is no

doubt that Liu and Layland really revolutionized the field of real time when they published

their paper. [1] Articles that are several years old and barely cited usually oversell their

publication when claiming that it is great (and the world couldn’t live without it). The tricky

part is new publications, but comparing it to previous written articles found by using the

same keywords in the search usually reveals whether or not it is brand new.

To give some insight into whether a paper is “famous” or not, the citation count of every

paper, if found, is given in the bibliography. (For introductory papers this tells a lot about

whether it is well written and easy to understand or not.) Newer papers usually have fewer

17

references than old ones, meaning that old papers with only a handful citations are probably

less useful. Nonetheless, that does not necessarily mean that the idea in the paper is not

useful. Therefore papers with similar ideas or papers that refute the idea must be found and

compared as to whether the idea has any merit or not. Also, the total number of citation

may not necessarily be accurate as IEEE only lists citing by other IEEE publications whereas

Google Scholar list several more. I.E.: [39] is listed with 18 citations on IEEE, but with 81 on

Scholar. Thus, any citation listings may be somewhat inaccurate, but close enough to get a

fair picture. In fact, several of the most cited papers in the reference list have received more

than a handful new citations during the writing of this paper.

Another useful cue is the author(s) behind the article. Famous authors usually rely on their

reputation alone without overselling their ideas. However, being famous usually helps you

getting published in the first place and therefore it isn’t necessary a good paper just because

of the author. Nonetheless, they are not likely to put their reputation at stake for some

ludicrous paper, which means that its content probably has roots in the real world. Finally,

some departments do have the same author listed as the last name on virtually every paper

for funding reasons, which means that the author(s) famousness is not necessarily the best

way to measure the value of a paper.

One challenging task is to judge whether a paper present useful information for this paper or

not. Much information will only prove to be relevant after several papers have been

collected to give new insight as to what the method could imply. For instance was the paper

on simplex design [22] not that relevant until coupled with the paper on the continuous

stream task model [72]. This is the relevance paradox [74].

A part of the methodology is dividing real time into the correct classification. Is the classic

approach of hard, soft and firm sufficient or should it rather be classified differently? An

approach in which also the best-effort method is included may be more viable as many soft

real time systems don’t differ that much from best-effort.

Google Scholar also has the authors listed when you search for an article and you can

therefore look them up and see all publications listed by Google Scholar for each author.

There, every article listed is sorted by the number of citations meaning you’ll get a fair

impression of their famousness within their field.

Keywords are listed in the beginning of every chapter and are only listed for background

chapters or result chapters that are not covered in the background chapters.

18

Preliminaries

Historical background
When Liu and Layland presented their infamous paper in 1973 this represented a revolution

in the real time science [1]. Earlier, the real time systems were scheduled by cyclic

executives; created in a more or less ad hoc based manner. Thus neither schedulability nor

safety-criticality could be assured. However, the static scheduling paradigm was not without

its flaws and the assumption that all tasks are independent does not hold, same goes for the

assumption that all tasks are periodic. Still, further work introduced fixed priority scheduling

which solved the initial problem of priority inversion by defining the priority inheritance

protocol (PIP), setting a blocking task’s priority to that of the blocked task. Nonetheless, this

did not solve the deadlock problem [83].

The main problem with the Liu and Layland method is the lack of support to non-periodic

tasks. Several methods have been proposed, but they are rather ad hoc, resulting in history

repeating itself, as this was already the method of choice for real time systems pre Liu and

Layland. All methods proposed to solve this problem suffer from wrongful assumptions such

as release time can be known in advance, WCET can be known in advance etc. Thus other

approaches are necessary.

In 1985 Jensen introduced the time driven approach which culminated in Time/Utility

Function (TUF). This represents the first main deviation from Liu and Layland. The paradigm

of scheduling proofs still lives on, but as more research are put into TUFs it has been shown

that the use of stochastic real time systems provide a feasible alternative to the classic

approach.

Today
Still, most research is put into the classic Liu and Layland approach. The schedulability proofs

are being adjusted so that they take into account the overhead of the scheduler when

computing schedulability, WCET are still pursued and alternatives are not pursued in greater

depths as is evident from the lower citation count of such articles.

19

Safety-Critical Systems

Keywords: Safety, criticality, hardware, software, airplanes, nuclear plants.

Hardware and Software
Hardware-based and software-based systems have traditionally been about making the

choice of the lesser evils as Bate put it in his doctoral thesis [4]. While hardware is somewhat

safer than software, but more costly; the software-based approach is much more flexible,

but at the cost of less predictability. With classic real time and the use of schedulability

proofs this is becoming increasingly more difficult as modern processors are focused on

decreasing average execution time at the cost of predictability and time of the worst case

scenario [14]. For simple systems such as anti-lock braking system (ABS) there is four

components: Speed sensors, valves, a pump and a controller which through design is a

hardware-based system. However, with more complexity such as autopilot and other crucial

parts of an airplane, it might be necessary to use software in order to manage the system as

a whole. Nonetheless, as noted by I. J. Bate: “there are a number of problems with hardware

solution including; the cost of producing systems is high, the hardware that provides the

control is large and heavy and the hardware has a finite slew rate performance that limits

the system’s responsiveness.” [4].

Thus we turn to software for complex safety-critical systems that are likely to be upgraded

or otherwise altered during their lifetime. However, this does not solve the issue associated

with classic hard real time. The schedulability proof would still be necessary for every single

change done to the system. That is, as long as it is not performed on an isolated part.

One notable issue with most approaches is that the scheduler has to check whether or not

the deadline is missed. The solution suggested by the Sloth-project, currently running in

Germany, is to use hardware interrupts only when the deadline is missed [73]. That is, for

any task that runs to its completion, the deadline interrupt is disabled.

Achieving Safety Criticality
The “simple” method is to examine every possible way the system can fail and prevent it

from happening. In practice this is rarely possible apart from really simple systems. Then

again, nothing really is foolproof2. However, this is the approach used in classic real time. By

giving a schedulability proof of the task set then it is proven that all tasks will execute at the

right time without failing a deadline. Nonetheless, this is more theoretical than practical as

uncertainty in the environments can give unexpected situations. Should for instance an

overload occur, then the EDF- and RM-scheduler will fail, resulting in total system failure.

2 ”A common mistake that people make when trying to design something completely foolproof is to
underestimate the ingenuity of complete fools." (Douglas Adams.)

20

To achieve criticality safety there are other approaches to real time apart from the Liu and

Layland task model. For instance are Lustre [15] and Esterel [16, 64] programming languages

that solves this in a different way than Ada or Real-Time Java, yet all languages could, in

theory, be used (see next section). The object is to find the right language for the right task,

but the overall goal is to find one method for all systems. Seeing as reactive systems3 are the

most efficient way to achieve critical safety, in particular when it comes to systems with

some degree of uncertainty this approach will be the main focus of this paper. Only if the

environment is entirely predictable can one design a system that is proactive rather than

reactive.

The Answer is Real Time
The overall goal is to create a system that interacts with its environment in a timely manner,

whenever the environments changes the system has to respond. This applies to everything

from an airplane to more simple systems such as a simple controller. Sometimes the

environment is nearly static and the system is not made to deal with the environments, but

only its own functionality. Examples include media players and similar simple systems. These

systems are built to deliver a QoS and do not need to be real time, but are usually designed

this way nonetheless. However, they could easily be designed as best effort. The overall goal

is to deliver frames and audio without any observable loss.

For safety-critical systems the solution of best effort is not a viable solution. “As fast as

possible” is not deterministic enough for use in practical applications when it can be

hazardous to fail. The solution is to change the constraint into “within timely manner,”

where the difference is that; as soon as possible is not optimal, whereas the timely manner

is. An example can reveal this: 2 jobs must be executed, but job 1 takes longer time if

executed first. Hence, the as soon as possible approach will execute 2 then 1, but if job 1 is

critical it must be executed first, therefore the timely manner approach is the only viable

option.

Airplanes and Other Safety-Critical Systems
Nothing serves as clearer examples than airplanes and nuclear plants when it comes to

safety-critical systems. One small fault will inevitably occur, but if that tiny fault manages to

propagate throughout the system and bring it down, the results would be disastrous. The

popular show from National Geographic “Mayday” or “Air Crash Investigations” often point

out one failure in equipment, but also point out how many other things that have failed for

the faulty equipment to bring down the plane. Of course, there are exceptions, notably the

incident where a plane was loaded with oxygen tanks that exploded mid flight and the

resulting fire brought down the plane.

3 A reactive system is a system that reacts to events, as opposed to a proactive system that reacts in advance.

21

In airplanes the system is built up by constructing several smaller modules that should be

capable of operation whether or not the other modules are functioning. However, this is not

easy to achieve in practice, as is evident from the recent order from Federal Aviation

Administration (FAA) in which the Boeing 787 computer can overflow and cut down the

entire electric system [88]. This illustrates the current problem with real time systems,

although the Liu and Layland approach is better than the previous technique (ad hoc) it is

not a viable approach for practical purposes.

Guaranteeing safety-criticality is practically impossible, but by proper design of error

handling and recovery it is possible to make a system that is very unlikely to fail. This will

also require maintenance plans as all systems are subjected to aging and the resulting wear

and tear. And as for safety-critical systems, the technique of smaller less complex modules is

currently the approach used in airplane design [89, 90].

22

Approaches to Reactive Systems

Keywords: Reactive system, synchronous system, Lustre, Esterel, Liu and Layland, the task

model, communicating sequential processes, petri-net, FPGA, Ada.

Preliminaries
A reactive system in computing science refers to a system that reacts to events, both

internal and external. However a search on Google Scholar reveals no precise definition. A

suggestion by A. Benveniste and G. Berry is that a reactive system is defined as “a system

that maintains a permanent interaction with its environment” [101]. This appears to be a

fitting definition for computer science on reactive systems.

In addition to the task based model there is also a few other approaches to reactive systems.

Many of them fall within the realm of real time. Operating systems (OS) are not real time,

and are beyond the scope of this paper.

The commonalities between these approaches are that they include concurrency, they are

submitted to strict timing requirements, they are in general deterministic, their reliability is

particularly important and they are made partly out of soft- and hardware [65].

Classic approaches include petri-net-based models, the task model and communicating

processes. The synchronous approach is to handle events with respect to order and is

designed for complete determinism [65].

Synchronous Approaches to Reactive Programming: E.G.: Lustre and

Esterel
The basic model of Esterel/Lustre and other synchronous languages is the reactive model in

which we consider systems that interact with their environment continuously4 [16, 64]. This

is based on the basic assumption of synchronous languages: The “perfect synchrony

hypothesis” which states that reactions are instantaneous so that activations and

productions of output are synchronous. This is the main idea of the synchronous approach.

However, this idealized hypothesis can be rendered more practical by assuming reactions

are atomic, thereby moving from theory into the world of practical applications. This is also a

necessary assumption for synchronous languages to have deterministic parallelism [64].

Nonetheless, the assumption that all reactions are instantaneous is just a theory. Yes, it does

seem to have the same issue as classic real time with theory vs. practice, but it is possible to

move the theory into practice by loosen the assumption of perfect synchronization a little.

4 In theory. In practice, all discrete systems are, by definition, not continuous.

23

In synchronous languages time is considered an external event, as opposed to other parallel

languages such as Ada, where time plays a specific role [65]. Nonetheless, timing

requirements are still met.

One drawback with the synchronous approach is that where asynchronous languages only

have deadlocks, the synchronous languages have causality problems too. Although most of

them are noticed by compilers they may still be an issue. Causality problems can be seen as

instantaneous deadlocks [64].

The Task Based Model
The task based model which was revolutionized by Liu and Layland in [1] is the most known

method for thinking and programming real time. The method consists of dividing job into

smaller part called tasks, giving them priority and schedule them on the processor. For

classic hard real time systems this includes a schedulability proof [1], whereas for soft and

firm real time systems this usually only requires a rough estimate. As long as it runs with a

decent QoS everybody is happy. In other words, if a soft or firm system appears flawless for

the end user, it is a good system. This is not the case for a classic hard real time system in

which the end user also will want a guarantee that it will continue to operate flawlessly for

the future. (If a TV breaks you send it back to the store, if your ABS brakes fail on your car …)

Communicating Sequential Processes (E.G.: Ada and Occam)
Another type of reactive systems is Communicating Sequential Processes (CSP). This is a type

of reactive systems that also reacts with its environment, but also interacts with itself.

Rather than a shared memory this method consists of using synchronization, such as

rendezvous, and communication5 [64]. A communicating process communicates with it

environments in some alphabet of atomic communications or events [67]. Several of them

use the task model in combination with communicating processes [68]. What separates Ada

from the classic task model is the departure from the cyclical executive model [69]. The

dynamic preemption at runtime generates non-deterministic timelines that are contrary to

the idea of fixed execution timeline. However, this non-determinism does not result in

impossibility to schedule and predict if the scheduling holds. Keeping the utility bound below

a given threshold bound will ensure that all tasks meet their deadlines [69]. The main

difference between CSP and the task based model can be illustrated as follows: In Posix you

use permanent marker on the board and hope no one erases it before everyone has seen it

and in CSP you gather everyone and tell them what you would have written on the board.

For more on CSP refer to the book by C. A. R. Hoare [70].

5 Thus it is not possible to have one variable changed between the access of the first task and the last, in
contrast to shared memory.

24

The Petri Net-Based Model
Invented by Carl Adam Petri in 1962 as a model for describing information flow, this method

has proven versatile in visualization and analyzing behavior in concurrent asynchronous

systems [94]. By describing all reactions of a system, this is a versatile and powerful model

for creating reactive systems.

This method is a mathematical and graphical modeling tool which is capable of handling

both deterministic and stochastic environments [66]. It is designed to be a tool both for

practitioners and theoreticians which will enhance the learning between them. However,

Petri nets still need a scheduler [71], which gives them much of the same problems as the

classic task model. Although, for modeling finite state machines (FSM) the Petri net-based

model has proven to be very useful [66]. The usefulness on very complex systems diminishes

as the graphical representation is hard to follow as complexity increases [66].

For implementing a Petri net the simplest way is using FPGA, especially if the

implementation should be on a small chip [76, 77]. However, the implementation is not as

straightforward as some other methods [78]. This is the main drawback with the method

and is why other methods still exist. In addition to FPGA there also exist methods for

generating C- or Java-code from Petri nets [78, 79].

Figure 1: A Petri net is modeled as a

directed bipartite graph in which

the circular nodes are states; the

squares are transitions and arrows

signals direction of flow.

For more on Petri nets refer to these papers: [66, 71, 76, 77 and 78]

25

Scheduling

Keywords: Scheduling, earliest deadline first, EDF, RM, rate monotonic, task, Liu and Layland,

preemption, processor, overhead, static scheduler, dynamic scheduler.

Preliminaries
The most common practice in real time system design is to divide jobs into smaller part

called tasks [1]. Some tasks are divided further into necessary and optional parts [2, 3]. For a

system to execute effectively a scheduler is employed to sort the execution of tasks into an

as efficient manner as possible.

Real time scheduling falls into two categories, static and dynamic. Further, the dynamic

scheduler is divided into two domains, resource sufficient and resource insufficient

environments. Schedulers such as the EDF is optimal in resource sufficient environments,

but not in resource insufficient environments [31]. Using admission control, then it is

possible to ensure sufficient resources. However, the cost is leaving tasks, not granted

admission, starving. That is, as long as there isn’t another processor where they can execute.

Scheduling Strategies
Schedulers such as rate monotonic (RM) and earliest deadline first (EDF) are “open loop”,

meaning they are not adjusted once they have been implemented. Although “open loop”

schedulers work well in predictable environments they are inferior to “closed loop”

schedulers, especially in unpredictable environments [31, 62]. Thus “closing” the loop

creates the class of adaptive schedulers which can be utilized where the “open loop”

schedulers are insufficient.

Preemption and Overhead

When a task is stopped during execution to let another task run the currently running task is

preempted. Saving information about the task in the cache or other memory banks lets the

task continue as nothing has happened when it is given runtime on the processor again.

However, time still passes and its data may have changed in the meantime. This is the main

setback of preemption. Another issue is the overhead. When interrupted, the task has to

clean up states and save its data to the memory bank. Further, it has to fetch the data from

the memory after it regains processor time. This takes time and is called overhead. Another

source of overhead in schedulers is the time the scheduler takes to compute priority of the

task. Schedulers such as Round Robin will have negligible overhead for priority computation

as it is fixed, but suffers from large overheads by preempting very often.

26

“Open Loop”

In predictable environments the “open loop” schedulers are usually more efficient as they

have a lower overhead compared to the “closed loop” [31]. However, things are far more

complicated when preemption is present [60].

Static

Static schedulers are characterized by being deterministic. All scheduling is computed offline

and then implemented on the scheduler.

The RM scheduler is optimal, meaning that if any static scheduler can schedule a given set of

task then the RM can too. Further it is predictive which may be utilized to give a

schedulability proof. This allows the RM scheduler to be used in safety-critical environments

as its deadlines can be guaranteed [1]. The drawbacks are that every task must be periodic,

known in advance and independent of all other task. Finally, its utilization is below ln 2 for

an infinite number of processors and 0.8284 for two processors, but this is only a sufficient

bound, not a necessary [1].

Dynamic

Dynamic schedulers differ from static by being able to adapt to the situation. If a task

completes faster (or slower) than expected, then the scheduler can schedule another job to

the processor where the static scheduler would just have been idle.

The most well known dynamic scheduler is EDF. It is simple and also optimal, meaning any

task set schedulable for a dynamic scheduler is also schedulable on EDF. It is however not

optimal on a multiprocessor system [61].

The overhead of dynamic schedulers may be less than static schedulers because of the

optimization, which gives less preempting, thus resulting in the EDF scheduler having a

smaller overhead than the RM scheduler [60].

Closed Loop

Feedback Scheduling (FBS)

This class of schedulers opens a whole new range of possibilities including the use of

stochastic real time systems, which will be examined in detail in a later section. By utilizing

the possibility of using a dynamic closed loop controller it is possible for the scheduler and

the controller to interact. If a scheduler has excessive computation time available, this can

be given to the controller, giving it more computation power for the controller algorithm and

similar when the scheduler has too little time to give to the tasks. The controller adjusts its

parameters in order to compensate the lack of computation time so that it prevents system

failure. By letting the scheduler tell the application, in this case the controller, how much it

computation time it may expect, the possibilities for system adjustments becomes wider

than before.

27

FBS makes it possible to handle unpredictable workloads and environments. Further, the use

of Feedback Control Real Time Scheduling (FCS) can provide deadline miss ratio guarantees

and CPU utilization guarantees [62]. Still, with the addition of online prediction of running

times, this can be utilized for even further optimization.

“The core of any FCS algorithm is a feedback control loop that periodically monitors and

controls its controlled variables by adjusting a QoS parameter (e.g., task rate)“ [62].

Controlled variables may vary from system, but preferable candidates are deadline miss

ratio and CPU utilization [62]. This has resulted in the algorithms FC-U, FC-M and FC-UM for

the control of utilization, deadline misses and the combination of utilization and deadline

misses, respectively. In her paper, S. Lin suggested that FBS can be mixed with (m, k)-firm

systems to further optimize such a system and shows that the QoS gain is significant [63].

Summary
Static schedulers are useful for deterministic classic real time systems, but are far inferior

whenever there is a chance of randomness. Dynamic schedulers are required when the

environment is somewhat unpredictable and closed loop controllers are necessary if there

are insufficient resources.

If more information about scheduling is required, refer to this paper by Davis and Burns. [59]

28

Dynamic Voltage Scaling (DVS)

Keywords: Dynamic voltage scaling, DVS, processor, CMOS, overclocking, battery powered

systems, supply voltage.

Background
Dynamic voltage scaling has become a major research area in the last decades [5]. This is

because the processor can use, from an average of, 18-30% [6] of the power consumption

and even exceed 50% [7, 8] for CPU intensive workloads. According to H. Aydin’s paper, the

power consumption of an on-chip system is a strictly increasing convex function of the

supply voltage (Vdd) [5]. For the commonly used Complementary Metal–Oxide–

Semiconductor (CMOS) technology, energy consumption is dominated by the dynamic

power dissipation Pd, given by6:

Pd = Ceff *Vdd
2*f

The gate delay (D), which dictates the speed of the system, is inversely related to the supply

voltage (Vdd) by the following formula:

D = k*

Here, k is a constant based on the electric characteristics of the chip and Vt is the threshold

voltage [5]. From these two equations it is deducible that one can save power by reducing

the supply voltage and the clock frequency simultaneously. This is dynamic voltage scaling.

Finally it should be noted that there is a threshold as to how much one can scale the

processor down in systems with non-negligible static power. This is called the critical

frequency and occurs because the static energy consumption grows with longer execution

times when running at lower frequencies, dominating the energy consumption [34].

Hard Real Time
For all hard real time system designed in compliance with Liu and Layland [1] there is likely

to be a gap between the WCET and the actual execution time. This time can be reclaimed in

several ways, usually running best effort tasks or soft tasks [32]. Another option is to simply

adjust the processor such that it does not run unnecessarily. All the tasks’ periods are

supposedly known in advance in a hard real time system based on Liu and Layland. Thus it is

also known how much slack7 the given task has after its completion, making it far easier to

6 Ceff is the effective switched capacitance and f is the clock frequency
7 Slack time: , where s is the slack, d is the deadline and t is the actual time elapsed when the
computation is done. In other words, the time allocated to a task that is not used by the task.

29

reclaim this slack trough DVS. However, even if the hard real time system is not in

compliance with the Liu and Layland method, there is a possibility for slack in the system.

As noted by H. Tang et al., many hard real time systems are of a mixed criticality and

therefore it is particularly useful to let the soft (aperiodic) tasks use the processor only when

the hard tasks let the processor stay idle [33].

Another option is simply to shut down the processor whenever a hard task completes, or

clock it down when it is about to complete before its deadline, thus saving energy [34, 35,

36].

Soft and Firm Real Time
Anything that works on hard real time also works on firm and soft systems. Similarly,

anything that works on a firm system will work on a soft system. However, for any system

with utility larger than one, there is not possible to use only classic hard real time. Mixed

criticality is possible though, as long as the “hard” part is below the utility constraint.

For any soft or firm system with utility above one, there is not necessarily any gain in

reducing the processor clock as there always is a task ready to execute. Obviously there is a

difference here between battery powered systems and those directly connected to an

“everlasting” power source. And to further complicate things, there are even rechargeable

systems. These systems pose an interesting dilemma: Should they be power neutral and only

consume the energy whenever they accumulate it, optimize with respect to deadlines at the

risk of running out of power from time to time, or always have enough power leftover such

that any worst case scenario is covered. M. Chetto and H. Ghor introduced a scheduling

algorithm that covers partly this dilemma [37]. Finally, resolving this dilemma is not possible

without knowing anything about the application. For a stabilizing controller, the important

thing is to always run, thus preventing instability. For a defibrillator the important thing is to

provide a good jolt within the first minutes [38]. For a cell phone or tablet, the main task is

to provide good service and last as long as possible. With three different goals it is up to the

system designer to solve this problem as there is currently no framework covering all three,

somewhat contradictory, goals.

One solution for a framework is to adapt the existing time/utility functions (TUF) so that it

also includes power consumption/preservation [39].

Battery Powered Systems
Battery powered system can be separated into two groups. Those with more or less

continuous recharging (solar panels etc.) and those who can only be recharged when

connected to a power outlet (tablets etc.).

30

For devices only rechargeable by wire there is not much besides making most of the power

available at all times and thus it is essentially only an energy preservation problem.

However, for devices with more or less continuous recharging there is also the question of

predicting how much power can be gained and when. At times this is fairly easy (solar panel

gain on a roof can be roughly estimated by reading the weather forecast) and sometimes it is

significantly harder.

Overclocking
Overclocking is a procedure in which the operating frequency is increased beyond

manufacturer specified frequency limits for reliable operation, without changing the system

supply voltage [40, 41]. The main issue with overclocking is overheating and the resulting

hardware failure. A simple way to resolve this is additional cooling, but this requires more

hardware and for many embedded systems in particular, it is not a viable alternative.

Hardware manufacturers have introduced technology that allows overclocking [42], but still

it is safer and more reliable to run the clock at normal and subnormal speeds [41]. As V.

Subramanian et al. suggests in their paper, it is important to overclock the system reliably,

thereby making the average case faster [43].

A common method used in overclocking is “Timing Speculation” which is to increase

frequency (at constant voltage) and correct the resulting faults [44]. At best there are no

timing errors, but to make the system reliable there has to be fault correction to detect and

recover from timing errors [45].

The major setback with overclocking is that it is unreliable, both in the short run and the long

run. This is a solvable problem though, as it is possible to run the processor at lower or

ordinary speed to let it cool down and thus avoid the long term issues. As for the short term

issues, these can be avoided by use of the fault correction methods mentioned in [41, 43, 45

and 46]. Therefore, the use of overclocking is a viable alternative for shorter periods of time

and in particular whenever the processor is overloaded.

Concluding remarks on DVS
The dynamic voltage scaling technique is useful for all software systems. For soft and firm

real time systems the use of DVS is clearly advantageous as it can be utilized without missing

any more deadlines than without DVS. Nonetheless, it should be noted that when using a

stochastic approach where the deadlines should be met by a given percentage, then it is

possible to use DVS, thus getting closer to the bound. Consider a system with 90% successful

deadlines as a minimum requirement: It is possible to save much power if it is actually

averaging 95%.

Under hard real time system with proof of schedulability it is easy to use DVS, because the

entire system is more or less deterministic. As indicated in [5] it is possible to use DVS to

31

save energy by reducing any unused processor time whenever the task completes before its

worst case scenario.

Overclocking is also viable, but mainly for shorter periods of time. For a hard real time

system the main point is to still keep the system reliable such that no errors occur and to

counter the eventual design flaw where the processor suddenly is overloaded. In theory this

should never happen [1], but this is only true when everything is known about the system a

priori.

With soft and firm real time systems the use of overclocking poses the same problems as

with hard real time systems. However, it is possible to adapt a time utility function so that

the system only runs overclocked when it is necessary or beneficial. Nonetheless, extensive

knowledge of the risk associated with overclocking is necessary to construct this TUF with

overclocking. In sum, the objective of overclocking is to balance the trade-offs between

reliability and speed without compromising the system’s overall performance [46].

32

Real Time and Control Systems

Keywords: Control systems, real time control, jitter, timing, sampling, delay, continuous

stream task model, simplex design.

Background
Control systems are used everywhere in today’s modern world and in particular in process

plants. Designing and verifying the controller is a, usually, costly and rigorous task. Several

problems arise when the complexity of the controller exceeds a certain threshold. Time

delay is one of the biggest issues:

“It is well-known that the manifestation of time delays in a system can lead to performance

degradation and even destabilization of the system” [19]. Clearly time delays are not wanted

in control systems, but it is hard to avoid them altogether [47]. Thus several attempts to fix

or eliminate the problem have been tried out with varying success.

Another crucial point in control systems is the interaction between time and control. When

designing a control system the decisions made with respect to timing will afflict control and

vice versa. In their paper, A. Cervin et al. suggest using mathematical modeling tools, such as

jitterbug, to analyze the sensivity of jitter and other timing problems [99].

Timing in Control Systems
“In control theory, sampling and actuation are generally considered synchronous and

periodic, and a highly deterministic timing in task execution is assumed” [20]. However, this

assumption does not hold in practice [19, 20, 23].

Jitter

“Jitter is the deviation from true periodicity of a presumed periodic signal” [21]. Or in other

words; the timing error. There are only two options here: Either remove the jitter or

compensate for it. Finally, when the scheduling algorithm is fulfilling the stringent timing

constraints control theory mandates, the result is often poor schedulability. [20]

Jitter mainly arises because of the following reasons [20]:

Sampling Jitter

“Time intervals between consecutive sampling points may not be constant.”

Sampling-Actuation Delays

“Even if sampling occurs at regular intervals, there could be a delay between when a sample

arrives and when the actuation response occurs after the completion of the control

computation. This can be due to start-time delays in the control computations.”

33

Sampling Jitter and Sampling-Actuation Delays

“This is the combination of the previous two problems and is caused by varying sampling

intervals, delays in the start of control computations, non-negligible execution times, and

preemptions during the control computations, which in turn can lead to variable actuation

times.”

Jitter Compensation

Seeing as jitter is virtually impossible to eliminate [19, 20, 23] it is necessary to compensate

for it in another way. One possible option is to model the jitter as a stochastic variable.

L. Hetel et al. proposed that: ”… continuous time systems with uncertain time varying

feedback delays can be expressed as a problem of stabilizability for uncertain systems with

polytopic8 uncertainties.” [23] Thereby compensating jitter by modeling it as a stochastic

variable rather than requiring it to be known. In this case the controller can be obtained via

linear matrix inequalities. [23] If the delay is known at all instances then there exists simpler

ways to compensate for it. [24] Although the model in [23] is a switched model it can be

reduced to a LTI9 system and thus cover most control systems. The weakness of this method

is the requirement that the delay is shorter than the sampling frequency. This will require

that the worst case execution time is known.

”Time-delay robustness is often studied for situations in which the delay is uncertain but

remains constant throughout time” [19]. However, it is rarely the case that the delay, and

hence jitter, is constant. Systems with time-varying delays are also less stable to than those

with constant delays, requiring more from the controller stabilizing the former system.

Unfortunately, the delay parameter proposed in [19] is bounded, but in any real system

there is the possibility of having a long, unexpected delay. In practice this does happen from

time to time, but usually in opera house constructions10 rather than computer systems. By

using the Integral Quadratic Constraint (ICQ) or equivalently Semi-Definite Programs (SDP),

Chung-Yao Kao and Anders Rantzer proved that a stochastic modeling of the jitter is feasible

[19].

According to the paper by T. Phatrapornnant it is necessary to have hardware support

whenever minimal jitter is required [28]. For instance is the hardware systems in Sloth a

viable option [73]. The question is then dependent on the application at hand, whether jitter

must be controlled and compensated or minimized altogether. One example: If one uses the

successive-approximation ADC then it is not surprising to find that different input values

have different processing times. Take for instance an 8V signal into a 0-16V ADC: One step is

8 Polytopic: Of or pertaining to a polytope.
In elementary geometry, a polytope is a geometric object with flat sides, and may exist in any general number
of dimensions n as an n-dimensional polytope or n-polytope. For example a two-dimensional polygon is a 2-
polytope and a three-dimensional polyhedron is a 3-polytope. [48]
9 Linear Time Invariant
10 http://www.eoi.es/blogs/cristinagarcia-ochoa/2012/01/14/the-sidney-opera-house-construction-a-case-of-
project-management-failure/

http://www.eoi.es/blogs/cristinagarcia-ochoa/2012/01/14/the-sidney-opera-house-construction-a-case-of-project-management-failure/
http://www.eoi.es/blogs/cristinagarcia-ochoa/2012/01/14/the-sidney-opera-house-construction-a-case-of-project-management-failure/

34

required as the comparator starts at the midpoint, thereby requiring shorter time than a 10V

signal. Thus the hardware and software must be designed specifically to prevent this type of

jitter. One solution is to mark the start of the conversation and read the output after a given

time, which ensures synchronization for any given input signal. However, for many actuators

this approach may be impossible. A motor for instance, will not go from 1000 rpm to 5000

rpm as fast as from 4000 rpm to 5000 rpm. We then, again, have a case where the time

delay is not constant and may vary in a somewhat unpredictable manner.

The upper bound, Ji, on the relative jitter in the start time of two successive jobs when Ti=Di

is given as:

Resulting in an upper bound of 200% when Ci<<Ti. Therefore jitter could pose a serious issue

if the controller is not robust. Finally, the jitter will be lowest for the highest priority task

[98].

Model of Computation: Continuous Stream Task Model

One approach to real time control systems is the continuous stream task model. The key

advantage to this model is the capability of analyzing probabilistic evolution of delays. For

many tasks the input data, which is not necessarily known a priori, fluctuates a lot. The

difference between WCET and best case may be in magnitude of several seconds. In order to

maintain the periodic sampling necessary to ensure minimum operation the time-triggered

approach cannot be dropped altogether. One solution is thus to implement classic controller

design, but if the task does not meet its deadline then it is simply cancelled. Another solution

is to use the continuous stream task model: “The continuous stream model of computation

is time–triggered but in a flexible way (there is not a fixed point in time where I/O operations

have to be performed, but a discrete number of possible of points). What is more, the

activation of a job is not triggered by an absolute time, but by the completion of the

previous one. This way, the delay introduced by a job is independent by the delays

experienced in the previous ones” [72]. The overall result is that less CPU time is required to

control the system.

Verification

Simplex Design

For many complex systems it is the design and verification of the controller that is the most

challenging task. To make this job easier, a technique called Simplex Architecture is

developed to make a simple, but verified controller that takes over whenever the more

complex controller operates outside its safe range [22]. By using this method the simple

controller act as a supervisor and therefore the complex controller can optimize within its

range without taking into consideration what happens outside its range.

35

Concluding Remarks on Control Systems

Scheduler Interaction with Controller

By combining the methods of the continuous stream task model with the simplex design it

possible to design a control system such that whenever the scheduler sees that the system is

overloaded, and then the controller can be tuned down to a lower operation. This ensures

stability at a lower CPU usage, but at the cost of lower performance.

Further this method could be used at any real time system if the application can operate at a

lower speed. One typical example is streaming in which the quality of frames or the number

of frames per second could be reduced to compensate for an overloaded processor.

In their paper, J. Eker et al. uses a feedback scheduler along with a controller where the

controller feedbacks the scheduler and vice versa [97]. They show that scheduling a set of

controller loops for optimal performance will require the feedback scheduler and also that it

is possible for the scheduler to successfully interact with the controller. The scheduling

policy allows for some deadlines to be missed, but adjusts the sampling rate to ensure it will

happen less frequent every time. However, if an overload situation can be predicted in

advance, then the scheduler can adjust the sampling rate beforehand. Another solution is

admission control in which the controller cannot switch mode before given clearance from

the scheduler.

36

Worst Case Execution Time (WCET)

Keywords: Worst case execution time, WCET, predicting WCET, estimating WCET, real time

calculus, computing WCET, Liu and Layland.

Preliminaries
In classic hard real time, the main problem is calculating the WCET. Also, it is not always

possible to determine the worst case simply because it may be impossible to know all the

relevant parameters in advance. Take for instance a radar system, the number of objects

that may appear at any given time is unknown and the maximum of objects the radar can

detect depends on several factors including speed, direction and overlap of objects. Thus

one can only give a decent WCET estimate by imagining the entire area filled with the

smallest detectable objects at the worst velocity. For most radar systems this is not a good

solution as it will never operate near its worst case and the result is a way too pessimistic

WCET for practical use.

Another problem associated with WCET is blocking [49]. To determine the WCET of a task

that first needs a locked resource from another task before it can run is even harder than the

estimation of WCET for a single task. This results in a NP-hard problem and although priority

ceiling and similar techniques have been proposed, there is no simple solution, except never

to use preempting [49].

Several attempts have been made to simplify the methods of calculating WCET, including

real time calculus (RTC) and the use of harmonic periods [50, 51]. Both giving better

estimates of the WCET, but both methods are still pessimistic.

The pessimistic approach necessary to estimate the WCET is the fundamental issue. Clearly

one cannot use an optimistic approach as the consequences are dire if a mistake is made [1,

4]. In sum, the methods of estimating WCET are tedious, imperfect and do not give exact

time for several cases.

However, there are still cases when the WCET is necessary. For the cases of fail-safe and

recovery mechanisms there must necessarily be enough computing power and resources to

complete the given action. A nuclear plant must be able to shut down before it explodes and

a plane must be able to pull up before it hits the mountain. Thus, this estimate is a lower

bound for which the minimum requirements of the crucial system parts should be set. In

practice, these minimum requirements are usually satisfied by hardware design alone or

with minimum software. Cars with ABS do not have the complexity that could cause the ABS

to miss a deadline and in many cases there is also a manual override that shifts the

responsibility to the operator. So, design that makes the WCET marginally worse than the

Average execution time (AET) is preferable for safety-critical systems, particularly if it is

37

easily obtained. However, as is evident from modern processor design, the trend is to

shorten the AET at the risk of increasing the WCET [14].

In addition to the WCET, a probability for its occurrence should also be included for it to

have meaningfulness in firm and soft real time systems (SRT). Because if in a SRTS a task has

a probability of its deadline being missed once every thousand year, then one could easily

ignore its negligible effect on the system. In practice the WCET is unlikely to occur [75].

In sum, WCET is not that useful for most system and in fact, one should rather shift focus

over from WCET to AET. Thus one should reserve WCET analysis only to systems which must

comply with classic hard real time design and consider the use of stochastic methods to

allow AET to be utilized.

38

Average Case Execution Time (AET)

Keywords: Average case execution time, AET, predicting AET, computing AET, AET for real

time.

Preliminaries
Modern processors and chips are optimized towards a better AET [14]. This is something

RTSs should take advantage of instead of letting it be a hinder, as is the case with WCET

estimation. Therefore, the use of stochastic systems should be further researched.

One important thing with the AET is the question of what average. If one has a system that

runs for 3 hours with 10 tasks with AET of 1 sec and one task that has a possible WCET of 10

hours, what should the AET be? Obviously, the 10 hour task will never finish as its WCET

(and, in this case, its deadline) is longer than the operation time. Thus, one should instead

focus on the AET of task for as long as they actually run. Further, one should take into

account whether the given task has a probable chance of running till completion. If the AET

exceeds the deadline then the task probably won’t. The implications of this will be discussed

under the section on stochastic RTSs.

For a numerical example consider the following three tasks A, B and C, with AET of 2, 2 and 4

time units; WCET of 8, 3 and 4 time units and deadlines of 3, 7 and 6. Notice that task A

might run for 8 time units, but has an AET of 2, whereas task C has the same AET and WCET.

Now, as task A has a deadline of 3 time units it is likely to succeed on most occasions, it will

however fail to meet its deadline if the worst case scenario occurs. This is the case of most

SRTSs [53, 54]. However, without a confidence interval the average estimations are not

particularly useful. In the example above, task C had a 100% confidence interval as the

AET=WCET the WCET always occurs. Task A might complete in 0.1 very often, but exceed

the average too often for the system to be stable or operational. Therefore many systems

use confidence intervals especially for predictions [95].

Computing AET
As mentioned earlier, the WCET is hard to estimate. For the AET this is easier, one could

either run simulations (some authors suggest the use of a Monte Carlo Engine [57]) and

compute the average, or use techniques such as counting floating points operations to gain a

fair estimate of the average. Further one should compute the probability of completing the

task within the average and also its standard deviation, assuming that it is Gaussian. Thus

predicting whether any scheduler can schedule the tasks and the expected number of

deadline misses. If the simulations give a distribution deviating from the normal distribution

then a simple analysis will be executed to find the closest distribution model.

39

One problem associated with this method occurs when a scheduler is preemptive. Whenever

a task is preempted it can finish within its AET, but still miss its deadline. Solving this issue

requires either computation of the probability of preempting or avoiding it altogether.

Another solution is also possible, by letting only critical task preempt another task and never

let a critical task to be preempted. Then one can safely dismiss the currently running task at

the cost of one deadline miss, thereby simplifying the AET computation, counting an event

of preempting as a deadline miss.

Summary
The use of average case estimation time is an important part of stochastic real time [58].

Further, it is in general much easier to compute than WCET. By giving a probabilistic measure

of deadline misses the scheduler can be designed to meet the necessary amount of

deadlines and similarly for the hardware design.

40

Predictability and Determinism

Keywords: Determinism, predictability, statistics.

Preliminaries
Classic real time is built on the assumption that the world is deterministic as is evident from

the naïve approach: One assumes that any event can be predicted in advance and further

that every task is periodic [1]. Therefore, WCET can be predicted. According to several

theories, in particular quantum mechanics, there is evidence to support truly random

events, or further, a non-deterministic universe11. Even so, chaos theory depicts a world

that cannot be predicted whatsoever. Alas, one should look at the universe as a stochastic,

rather than a deterministic system.

As RTS are designed to operate in fairly unpredictable environments one would certainly

strive to make the system itself predictable. How else could one assure reliability? Predicting

the unpredictable is an impossible task, but one may succeed in predicting the improbable.

Therefore any system should be robust to unpredictable events as to minimize the

consequences of Murphy’s Law.

Synchronous languages like Esterel have been designed to be deterministic and in particular

when it comes to parallelism [64].

Statistics: The use of average to achieve predictability in uncertain

environments
In thermodynamics temperature is given as an average distribution of speed among

particles. Although the particles may vary at speeds ranging from 0 to c12, the average is

more meaningful than every single measurement. It is worth noting that there is an upper

and a lower limit of the speeds in this case, which may not necessarily be the case in all

systems. However, for practical purposes, and at least for RTSs, the assumption that there is

an upper limit to run time, is safe to make as no system is designed to run forever. (And also,

several scientist and religions predicts an ultimate end to the universe.) It is therefore

possible to use statistics and further assume that the AET, including its probability of

occurring, of any task can be calculated/simulated.

Should a single task run way beyond its estimated WCET then the average of the total tasks

will barely be affected. However, the predicted WCET have, in such a case, proven to be

worthless.

11 I.E. Bell’s Theorem and Heisenberg’s uncertainty principle. [55, 56]
12 Only massless particles can achieve a speed of c, so this is to be read as ”up to, not including c.” (And
certainly not as c^12)

41

Online Estimation of Run-Time

Keywords: Online estimation of run-time, prediction of run-time, run-time, online prediction

of WCET.

Effectiveness of real time systems relies mainly on the effectiveness of the scheduler.

However, the scheduler is not clairvoyant and hence the scheduler does not make optimal

decisions as to what task should be scheduled when. Only in retrospect is it possible to tell

where the mistakes were made in the scheduling. By predicting the execution time of all

tasks, then the scheduler essentially becomes clairvoyant, but this is not simple. Several

methods have been proposed, but there is currently no exact method available. This also

includes WCET predictions [25, 80].

One step along the way would be to predict WCET since it is somewhat easier13 and gives

valuable information as to whether a task may be schedulable or not. But as noted in 2014

by the revision committee of WCET Workshop in Madrid in [25] there is currently no way to

do this: “The assumption that a WCET analysis can be done online is unrealistic.” Further

searches on Google Scholar, IEEE and dl.acm reveal no articles written after 2014 in which

this has changed.

Many execution models are based on off-line methods which consists of code analysis,

analytic benchmarking/code profiling and statistical prediction. [81] They are however not as

precise as the online methods can be, unless the implementation is straightforward on

predictable hardware, which is practically never the case.

There exist methods to give fair online predictions of execution time though. Online

methods include simulation data, in which the scheduler can compare the actual results and

use curve fitting or similar approaches; extrapolation; statistical methods and input data

[81]. Input data can, for instance, be frames of a video in which the number of pixels that

differ from the last frame is given as part of the frame information. Hence the run-time can

be predicted by using the time it takes to change one pixel and multiply it by the total

number of pixels.

A method for estimating the rendering of 3D objects is proposed in [82]. Although the focus

of that paper is the GPU, the method could still be used by any scheduler responsible for a

3D rendering application. Nonetheless, the method is not exact.

Combining methods from offline and online into statistical methods will give fair estimates,

but, depending on the application, may not be accurate enough. In one of his papers, Peter

A. Dinda presents a system that, if the resource requirements are known, will give the

13 Exact prediction requires lower and upper bound whereas WCET only requires an upper bound.

42

application an estimate of the running time within a confidence interval [95]. As he notes in

his paper, there is surprisingly little work and the subject has a short history.

In sum there is no exact method available for determining the running time of a task which

does not involve a lot of work. This can be seen by the fact that WCET science is still in

business. The methods improve, but they have not completed their task.

43

Time/Utility Functions

Keywords: Time utility function, TUF, time value, task value.

Preliminaries
Rather than just setting a task’s priority based on its periodicity it has been proposed by

Ravindran et al., L. D. Brinceño et al. and Jensen et al., to take into account the actual value

of a task’s completion [39, 84, 87]. Take for instance a controller, it will usually work just fine

if one sample is missed, but applying the output signal too late will be of more severe

consequence. Thus the periodicity may not be an optimal way of designing priority. In their

survey Ravindran et al. argue that TUFs are superior to the classic approach of setting

priority based on deadlines alone [39]. Clearly, a job consisting of several tasks in which all

must be complete for the job to have any utility is worthless once it is clear that one of the

tasks will fail. Therefore a TUF will be superior as it can dismiss the job entirely, giving room

for more valuable tasks.

With the assumptions of classic hard real time a TUF is generally useless as all tasks must

meet their deadline, but, as advocated earlier, the assumptions are flawed as some tasks can

miss their deadlines [72]. Therefore it is possible to use TUFs for all classes of real time

systems, ranging from hard to soft.

The notion of a task’s value as a function of time was proposed by Jensen et al., as a

generalization of deadlines [84]. It was proposed in 1985 as a method for letting the OS be

both more predictable during transient overloads and maximize the collective value of the

tasks. By focusing on dynamic scheduling compared to offline-scheduling they realized that

although the scheduling problem is NP-complete, much data is only available after the

system is in operation and therefore the scheduling must be dynamic.

Use of TUFs
By implementing TUFs in the scheduler while using a feedback scheduler it is possible to

make better use of stochastic systems as any off-line scheduling will be inefficient. Due to

possible overload conditions it is also difficult to use EDF or variants of EDF. Even for classic

hard real time systems there might be situations where two or more tasks may have

insufficient time to complete their deadlines and the scheduler cannot decide which one of

them is more important. Using TUFs the solution might even be that none of the tasks

should run, but an error handling task should run instead.

44

Suggestion: Reclassifying the Real Time
Task Model

The definitions listed in the introduction, hard, firm, soft, are severely limited and the

definition of hard real time in particular. As has been pointed out it is necessary to redefine

hard real time in a way that makes it useful in practice and not just a theoretical concept.

The line between soft and firm is also vague or even dubious. For is a multimedia system

firm or soft, or is this simply a designer issue? The same question can be asked again and

again for several real time systems and this suggests a redefinition.

The Task Model Classification

Hard Real Time

Hard real time should be divided into two subcategories: The classic hard real time and the

non-strict hard real time.

Classic Hard Real Time

Classic hard real time, Liu and Layland or, henceforth, strictly hard real time is the

designation given to real time systems where no single deadline can be missed. This is more

of a theoretical concept than a practical application. For mixed criticality systems the

definition is useful, particularly for the fail-safe or shutdown of a process. Thus, for this

reason, the definition of a strict real time is a system of tasks where all deadlines must be

met in order to ensure the full operation of a system without failing. And, a wrong operation

at the correct time is just as bad as a deadline miss. This is to complement the definition and

it explains why it impossible to recover from deadline misses. If it was not the case, then all

system could recover from a deadline miss the same way they recover from a calculation

fault, simply by redoing the operation. Therefore the assumption is that there is no time for

(any) recovery, because if it was, then the deadline would not be strictly hard.

The typical strictly hard real time system is implemented as hardware rather than software,

underlining that this is more useful in theory than in actual applications. Although there have

been systems that supposedly are truly hard in the strict sense: “Early video game systems

such as the Atari 2600 and Cinematronics vector graphics had hard real-time requirements

because of the nature of the graphics and timing hardware” [96]14.

Non-Strict Hard Real Time

For this new definition of hard real time it is important to build it on assumptions that will

hold in general, contrary to the assumptions of classic real time. Assumption 1 is that the

system will fail only when a crucial deadline is missed. Assumption 2 is that it is possible to

14 There is no valid citation for this claim apart from the Wikipedia article.

45

identify a crucial deadline in advance, but not necessarily exactly. Assumption 3 is that the

system can only guarantee its performance when all non-redundant, vital hardware is

functional.

Assumption 1 dictates that not every deadline is crucial. For instance a ship navigation

system will have a crucial deadline for braking only when the ship is sufficiently close to land

and at sufficient speed. In other words, if the ship has to brake when changing course and

there are no obstacles in the way, the effect will only be a slight deviation from course which

is only a deviation from its full QoS. However, if it is on collision course with land, then it has

to brake or steer away before it is too late. Therefore the crucial deadline is the latest point

in time where the ship can avoid crashing. Identifying the crucial deadline is not necessarily

trivial and will probably be the hardest design problem with this system.

Assumption 2 is a little looser and needs only to hold in a general sense. It can, for the

example above, be defined as the safety point where the ship has to brake under given

conditions, but if the ship has a lower speed then the safety point is a not the crucial point.

Therefore the definition of the crucial point is left to the designer and it should be defined as

the safety point.

Assumption 3 is self-explanatory. If the ship in the example above lacks braking then the

software is of limited or no use.

This definition of hard real time is not new as similar relaxing condition has been proposed

earlier [52], although this definition is much more relaxed in comparison.

Firm Real Time

Although firm real time is quite similar to hard real time, there is a crucial difference when a

deadline is missed. Whenever a deadline is missed, the quality of the system will degrade,

observable or not, but the system will still be operational. Any result delivered after a

deadline is useless and therefore should the scheduler terminate the task and reschedule

any remaining tasks. In other words; when a deadline is passed without the task running to

completion the TUF is 0.

For most firm systems there exists no reason to run recovery procedures when a deadline is

missed. However, the system should take any necessary precautions to prevent them from

happening in the first place. That is, unless the system is stochastic and it has been designed

to meet less than 100% of all deadlines.

If a system is designed in compliance with bounded lateness then it is a borderline between

soft and firm, but its deadlines are nonetheless firm with respect to the bound, and thus it is

classified as firm [11].

46

In conclusion the definition of firm real time is fine as it already was. No changes are

necessary, but, depending on the application at hand, it may be useful to optimize the

scheduler to a firm type as opposed to a hard type.

Soft Real Time

The main difference between a firm and a soft system is the usefulness of a result after the

deadline has passed. For the soft system the result is still useful, but its usefulness degrades

with time. Though not necessarily linearly. (If it does not degrade at all as time passes then

the system is not real time.) The end result for missing deadlines is reduced QoS, but at a

lower rate than firm systems. When a deadline is missed the TUF is not 0 as for firm systems,

but it will gradually decrease to 0.

Soft systems are in particular useful, along with firm systems, for stochastic real time.

Because the predictability and the lack of determinism it is possible to design the system

with a given quality of service. However, it is not necessary, nor possible, to perform any

scheduling proof.

The scheduler algorithm should be adapted for a soft system in order to be of any use. As

mentioned previously, the EDF scheduler performs poorly when a system is operating with a

load exceeding 100%. In conclusion, a scheduler for a soft system should be dynamic in

order to rectify any case of deadline misses whenever a following deadline miss will further

reduce the quality of service. Consider a part of a radar image: If it fails to render once it is

probably not noticeable, but every succeeding deadline miss will reduce the quality of the

radar service. Thus, the task that is missed should be assigned a higher priority for every miss

to prevent this from happening.

Ultimately the question is whether or not there is such a thing as a soft real time system. If

the deadline is important then the system is firm, but if not, then it could just as well be best

effort? The distinction is probably best justified with an example: After you have just had

lunch you would think the waiter is a bit off if he brings you dinner. This is an example of

best effort; it brings you things as soon as possible. The soft system delivers you dinner,

possibly a bit late, but not too early. Soft real time implies a deadline and usually the

implication is that the system cannot be too early, rather than; do not be late. Another

example should clarify some more: A Pizza delivery says the pizza comes within 15 minutes

or it is free. One might argue that this is a firm system, but the TUF is not 0! The customer

will be happy to receive free pizza and is likely to order more on a later occasion. The TUF

does not drop to 0 before the pizza is cold; when the customer does not want it anymore.

And finally, a best effort doesn’t fully describe the system. Time is a factor, even though the

pizza should be delivered as fast as possible if not the customer indeed ordered his pizza to

be delivered at a specific time.

In sum, the soft real time definition differs from firm systems by being able to repair some of

the damage resulting from a missed deadline. It differs from the best effort by making time

47

an important factor. So if the goal could be achieved by using best effort, but fails to

describe the system in full, one should classify the system as soft real time.

48

Scheduling Real Time Built upon the
Task Model

The RM scheduler is static and therefore is not usable in systems with some unpredictability.

The EDF is more dynamic, but is still too static when dealing with overloads and is in general

incapable of adapting. The solution is feedback schedulers and using estimates of run-time

of tasks, preferably off-line estimates, but if they are too inaccurate it may be better to use

some processing time to get better estimates. Stochastic schedulers can utilize TUFs to

further improve QoS.

Stochastic Real Time
Keywords: Stochastic real time, random systems in real time.

Preliminaries

A stochastic real time system is both non-deterministic and predictable. This implies that any

decision by the system cannot be predicted in advance, but the final outcome can be, to

some extent. The system must meet a certain amount of its deadlines, usually achieved by

FCS. The only variable that has to be stochastic is the deadline (met/not met), but several

more variables can be stochastic based on the implementation.

Many applications of stochastic real time are just variations over Liu and Layland where the

unknown execution times are modeled as stochastic variables [91]. The weaknesses of the

classic approach are thus not eliminated.

Instead of analyzing every task’s execution time, a probabilistic approach can be used. As is

evident from years of research it is not possible to design a flawless system and many

approaches are built upon making any failures extremely unlikely. This design is found for

instance in airplanes, in which any fault is unlikely, the propagation of the fault is unlikely

and the consequence of the fault to be of severe consequences is extremely unlikely. Only if

“everything” goes wrong at once the plane will crash, or the operator (read: pilot) chooses

to crash the plane.

By using FCS it is possible to design a system such that a specific number of deadlines can be

guaranteed to be met and further balance which ones. That is, ensuring that any worst case

scenario, i.e. starvation etc. does not occur. Most of the research in this field is conducted by

C. Lu et al. [31, 62]. Further research will probably utilize this method and make way for real

time systems that are even more stochastic; meaning that once the specifications for the

system have been given, the system is predictable, but non-deterministic.

A paper written in 1993 suggested using Artificial intelligence (AI) as a way to optimize FBS

to give even better results than just a standard FBS [100]. However, the idea seems

49

abandoned as no progress is made and AI is barely, if ever, mentioned in scheduling papers.

A search for papers, with the keywords “AI scheduling real time” or “CIRCA: The Cooperative

Intelligent Real-Time Control Architecture” written after 2011, returned no relevant results.

Soft and Firm Schedulers (Stochastic)
Using feedback schedulers it is possible to design systems such that a specific number of

deadlines must be met and from there it is possible to, for instance, create schedulers for

multimedia applications. It is trivial to increase the frame data to include the number of

pixels that must be altered from the previous frame and thus the system has a very good

estimate of the running time of that task. If there are too many pixels that cannot be

rendered in time it is simple to just skip the frame and run the next one while also sending

feedback to the scheduler that this next frame is more important to maintain decent QoS.

Hard Schedulers (Stochastic and deterministic)

Non-strict

Typically, control system can tolerate some missed deadlines without system failure [30, 72],

and therefore belong in the non-strict classification. The design of non-strict systems should

focus on utilizing TUFs to be able to determine what deadlines could be missed when

necessary and thus perform at its best. As it is possible to have constraints such as 99% of all

deadlines must be met by the tasks, a feedback scheduler can be used to ensure that the

“correct” 1% is missed. The issue here is that it is not indifferent as to what deadlines are

missed and the statement: 99% of all tasks must meet their deadline is not equivalent with

99% of all deadlines must be met.

Strict (Deterministic)

For systems were all deadlines must be met the Liu and Layland approach is quite possible

the best. However, this put many limits on the system and therefore the complexity of the

system cannot go above a given threshold. Further, small, non-complex systems are

sometimes implemented as just hardware. The advantage of this approach lies in the

schedulability proof; that you can ensure with certainty that all deadlines will be met.

50

Designing Real Time Systems

The first question one should ask when designing a system is what purpose it will serve. Next

question is whether or not it is safety-critical. In fact it is useful to consider a three

dimensional model for designing systems based on what purpose it should serve.

Figure 2: Simple

model for system

design, where

the factors are

time, criticality

and result.

From this model (Figure 2) it can be argued that although best effort is not real time, time

may still be an important factor. Therefore, when designing a system one should not limit

oneself to only real time. ABS-brakes are one example of a best effort system that could also

be a real time system. The specification says that once the brake blocks the wheel it should

release. Thus, from the specification it does not constitute a real time system as the as soon

as possible/immediately is not a real time specification. However, this can be changed by

saying that the brake should release within x milliseconds. Nonetheless, this is an example of

where a best effort system will fulfill the functionality that can also be modeled as real time.

Now, imagine a controller that should control an oscillating process. Here, the

measurements must be conducted on time and periodically, to ensure correct control of the

system. If a best effort system were used, then the measurements would not be conducted

properly as the timing requirement is vastly different from as soon as possible. In fact, too

tight regulation of a system might result in instability or breakdown of a system, as Maxwell

discovered back in 1867 [93]. Therefore it is not always feasible to use best effort and thus

real time is necessary, not because of the specification, but because of the system itself.

The Three Dimensions of a System
Both real time and best effort can be placed all over this three dimensional model, therefore

it is necessary to explain what the dimensions actually mean.

51

Criticality

Is there a risk to lives or environment? This question is the key here. For a nuclear plant the

criticality is high and for a simple calculator the criticality is low.

Result

The importance of a correct result, but also the complexity of the result is given by this

dimension. CERN for instance will, in most cases, rather spend one year of computation to

have an exact result, than five minutes to have a rough estimate, because exact results are

necessary in particle physics.

In some systems the complexity is so low that time is the only factor. Take for instance a saw

with skin detection. A current is altered when a conductive material such as skin is present

and the system shuts down. This would be a system with high criticality and low result also

resulting in a high time factor.

Time

Time, in this case, actually has two distinct meanings. One is the timing between two actions

and one is the speed of which things happens. The distinction is obvious when looking at a

controller. Here, the timing means that it should sample regularly and have a constant time

between each sample. The speed means that its actuators should be as fast as possible. It is

when timing is an issue that real time must be used; otherwise a best effort could perform

just as well. Therefore, the time dimension in this model refers to timing.

Choosing the Right Model
When the specifications for the system have been determined and assuming it falls within

the realm of real time, the next step is determining which approach to use. If the system is

simple then a classic approach can be used as the WCET estimation and scheduling proofs

are simple. However, this is rarely the case and this calls for more sophisticated methods.

Unfortunately, there are not many approaches better than ad hoc. Design methods should

focus on module based approaches as it is then possible to construct simpler systems before

combining them into a more complex system. This also requires sufficient fault detection to

ensure that faults do not propagate through the system. Designing simple modules with the

factors; criticality, time and result will result in a robust system when the modules are

combined. It may be a challenging task to determine how much processing power the entire

system needs, but it is easier to determine sufficient processing power for a small module.

This is the case for all hardware and which is why a module based approach is, in most cases,

superior to other approaches. Unfortunately, it is not necessarily easy to determine when

the module based approach may be inferior. The interdependence of software and

hardware makes the design process challenging if there is no similar system developed

before that can function as a template.

52

In sum, the real time science requires more research as the classic approach is just

theoretical and there is no unified theory about how to design a real time system. There are

suggestions and rules of thumb, but no foolproof way to ensure that the design process is

correct. Modeling languages works for simple systems, but when the complexity increases,

especially in non-linear systems, the models may be too inaccurate to be of any use. Finally,

any search for keywords associated with design(ing) real time systems reveals that there are

a lot of suggestions, but no blueprint.

53

Current Trend in Real Time Research

Liu and Layland’s method of using scheduling proofs is still the dominant field within real

time. Because the theory is solid, people will not willingly abandon it even though the

practical implementations are hard to base on the theory. Research in psychology conducted

by A. Tversky and D. Kahneman suggests that people prefer a wrong map over no map at

all.15 Therefore, the trend of fitting the terrain to the map, as opposed to the reverse, will

continue.

Classic real time will undoubtedly be the focus of many papers still. The theory is sound and

if it could be used in practice the gains would be significant. This will require that the

hardware is adapted to suit the classic approach to real time instead of focusing on a better

average case.

WCET are probably the most studied subject within the field of real time returning 12 000

results on Google Scholar. (Search: “WCET real time”) However, all methods of WCET

estimation are necessarily pessimistic to ensure that all hard deadlines are met. Therefore,

the methods of WCET estimation are flawed until a perfect method can be found. Based on

several years of research and the increased complexity of processors, interdependence and

similar issues, it is not apparent that this problem will ever be resolved.

In control theory, the ongoing research of reducing jitter will undoubtedly continue.

Designing robust control system is not an easy task, but real time is one way of designing

such systems. Thus, real time approaches to control theory will probably continue to be a

main focus of real time research. The RTSS symposium of 2014 illustrates this by having

several papers dedicated to the subject.

Scheduling theory will continue to develop. As several of the scheduling problems are NP-

hard the research in the subject will never be complete. Heuristics will be further developed

to allow for better scheduling strategies and hopefully TUFs will be implemented more often

to ensure better scheduling. Feedback scheduling shows promising result along with TUF and

more papers should pursue this idea further.

Research in dynamic voltage scaling will undoubtedly continue. Saving power and thus

providing more efficient systems are particularly important in battery powered systems, but

by also reducing heat developed in a system, it has its use in most systems.

In addition to offline WCET estimation, there should be more focus in the online prediction.

Not only WCET, but the expected run time. Predicting the run time will allow for better

15DLD09 conference: https://www.youtube.com/watch?v=LjGl6bZF6zs#t=3386 (55:48) (Although he was
pointing his finger to econometrics, the point still applies elsewhere.)

https://www.youtube.com/watch?v=LjGl6bZF6zs#t=3386

54

scheduling which in turn will allow for less power use. By using confidence intervals and

TUFs there is a potential for a gain in both power use and QoS.

55

Answering the Questions

This section serves as a quick reference to all the questions asked in the “Objective” section.

These are the conclusions made after writing this paper.

Can we detect and handle time-domain errors like all other errors in

the system?
Yes, in fact the Sloth research project does make the hardware responsible for checking for

deadline misses [73]. By letting the hardware interrupt tell the processor whenever a

deadline is missed, it is possible to handle and recover this error just like any other error.

There are however some exceptions, in particular jitter and other faults occurring due to

errors in timing rather than deadline misses. These faults must be corrected in other ways

and jitter must be reduced by adapting hardware or other techniques listed in the section

under “Real Time and Control Systems.” Finally, these problems are also present in classic

approaches to real time.

Can we predict (eg. by online execution time analysis) deadline-misses

before they happen?
Deadline misses can be predicted, but current methods for predictions perform poorly. (See

section titled “Online Estimation of Run-Time.”)

Can we interact with applications to adjust their needs for computing

power when the system is busy?
This is done for several control systems [97]. It has proven to be an efficient method for

control systems without requiring a scheduling proof. (See section “Timing in Control

Systems,” subsection “Concluding Remarks”.)

Can we have adaptive systems that reduce the probability of timing

errors to acceptable values?
This is one of the main purposes of feedback schedulers. However, the research done on this

subject is very small. See these papers [31, 62] or read the section titled “Scheduling Real

Time Built upon the Task Model.”

56

Can we redefine "real time" to mean something other than the

traditional "hard deadlines," while still making sense?
Apart from the obvious soft and firm real time, there is also the use of other reactive

systems listed under “Approaches to Reactive Systems.” Notably, most of this is out of scope

for this paper and therefore just briefly mentioned.

Can we allow stochastic models etc. for real-time?
Yes, this is essentially the same as the question about reducing the probability of timing

errors. See the section “Scheduling Real Time Built upon the Task Model.”

57

Glossary

A(C)ET: Average (Case) Execution Time

ADC: Analog Digital Converter

CMOS: Complementary Metal–Oxide–Semiconductor

CPU: Central Processing Unit

CSP: Communicating Sequential Processes

DV(F)S: Dynamic Voltage (and Frequency) Scaling

EDF: Earliest Deadline First

FBS: FeedBack Scheduler

FCS: Feedback Control Real Time Scheduling

FPGA: Field Programmable Gate Array

FSM: Finite State Machine

GPU: Graphics Processing Unit

MPC: Model Predictive Control

OS: Operating System

QoS: Quality of Service

RM: Rate Monotonic

RT: Real Time

RTC: Real Time Calculus

RTS(s): Real Time System(s)

SRTS(s): Soft Real Time System(s)

TUF: Time/Utility Function

WCET: Worst Case Execution Time

58

Bibliography/References

1. C.L. Liu, James Layland, “Scheduling Algorithms for Multiprogramming in a Hard-Real-

Time Environment.” 1973. (Cited By.: 9000+)

2. linwei Niu, “Leakage-Aware Scheduling for Real-Time Embedded Systems with QoS

Guarantee.” 2009. (cb.: 1)

3. P. Ramanathan, “Overload Management in Real-Time Control Applications Using

(m,k)-Firm Guarantee.” 2000. (cb.: 209)

4. Iain John Bate, “Scheduling and Timing Analysis for Safety Critical Real-Time
Systems.” 1998. (cb.: 65)

5. Hakan Aydin, et al., ”Power-Aware Scheduling for Periodic Real-Time Tasks.” 2004.
(cb.: 413)

6. J. R. Lorch, A complete picture of the energy consumption of a portable computer.”
1995. (cb.: 63)

7. J. Pouwelse, et al., ”Dynamic Voltage Scaling on a Low-Power Microprocessor.” 2001.
(cb.: 401)

8. H. Zeng et al., ”ECOSystem: Managing Energy as a First Class Operating System
Resource.” 2002. (cb.: 411)

9. http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.8216&rank=1

10. Phillip A. Laplante, ”Real-Time Systems Design and Analysis.” 2004. (cb.: 593)
11. Paolo Valente and Giuseppe Lipari, “An Upper Bound to the Lateness of Soft Real-

time Tasks Scheduled by EDF on Multiprocessors.” 2005. (cb.: 28)
12. Tim Kaldewey et al., ”Firm Real-Time Processing in an Integrated Real-Time System.”

2006. (citations not found)
13. Tein-Hsiang Lin and Wernhuar Tarng, “Scheduling periodic and aperiodic tasks in hard

real-time computing systems.” 1991. (cb.: 49)
14. Kelvin D. Nilsen and Bernt Rygg, ”Worst-Case Execution Time Analysis on Modern

Processors.” 1995. (cb.: 68)
15. P. Caspi et al., ”LUSTRE: A declarative language for programming synchronous

systems.” 1987. (cb.: 656)
16. Gerard Berry and Georges Gonthier, ”The Esterel Synchronous Programming

Language: Design, Semantics, Implementation.” 1992. (cb.: 2036)
17. Hermann Kopetz, “Real-Time Systems: Design Principles for Distributed Embedded

Applications.” 2011. (cb.: 2203)
18. Jens Hildebrandt et al. “Scheduling Coprocessor for Enhanced Least-Laxity-First

Scheduling in Hard Real-Time Systems.” 1999. (cb.: 51)
19. Chung-Yao Kao and Anders Rantzer, “Stability Analysis of Systems with Uncertain

Time-Varying Delays.” 2006. (cb.: 144)
20. P. Marti et al., “Jitter Compensation for Real-Time Control Systems.” 2001. (cb.: 169)
21. http://en.wikipedia.org/wiki/Jitter
22. S. Bak et al., “Real-Time Reachability for Verified Simplex Design.” 2014. (citations not

found)
23. L. Hetel et al.,, “Stabilization of Arbitrary Switched Linear Systems with Unknown

Time Varying Delays.” 2006. (cb.: 235)
24. W.Zhang et al., ”Stability of networked control systems.” 2001. (cb.: 3433)

http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.36.8216&rank=1
http://en.wikipedia.org/wiki/Jitter

59

25. Fredrik Bakkevig Haugli, ”Using online worst-case execution time analysis and
alternative tasks in real time systems.” 2014. (Citations not found)

26. S. Hendseth, ”Exploiting online WCET estimates.” 2012. (Presentation. cb.: 1)
27. R. Devillers and J. Goossens, “Liu and Laylands schedulability test revisited.” 1999.

(cb.: 39)
28. Teera Phatrapornnant, “Reducing jitter in embedded systems employing a time-

triggered software architecture and dynamic voltage scaling.” 2007. (cb.: 45)
29. http://citeseerx.ist.psu.edu/showciting?doi=10.1.1.28.7640
30. Z.Sahraoui et al., “Antinomy between schedulability and quality of control using a

feedback scheduler.” 2014. (cb.: 0)
31. C. Lu et al., “Feedback Control Real-Time Scheduling: Framework, Modeling, and

Algorithms.” 2002. (cb.: 623)
32. Scott A. Brandt et al., “Dynamic Integrated Scheduling of Hard Real-Time, Soft Real-

Time and Non-Real-Time Processes.” 2003. (cb.: 192)
33. H. Tang et al., “Combining Hard Periodic and Soft Aperiodic Real-Time Task

Scheduling on Heterogeneous Compute Resources.” 2011. (cb.: 18)
34. Santiago Pagani and Jian-Jia Chen, “Energy Efficient Task Partitioning based on the

Single Frequency Approximation Scheme.” 2013. (cb.: 5)
35. S. Albers and A. Antoniadis, “Race to idle: new algorithms for speed scaling with a

sleepstate.” 2012. (cb.: 42)
36. S. Irani et al., “Algorithms for power savings.” 2003. (cb.: 285)
37. M. Chetto and H. Ghor, “Real-time Scheduling of periodic tasks in a monoprocessor

system with rechargeable energy storage.” 2009. (cb.: 7)
38. http://www.heart.org/HEARTORG/Conditions/More/CardiacArrest/About-Cardiac-

Arrest_UCM_307905_Article.jsp
39. B. Ravindran et al., ”On Recent Advances in Time/Utility Function Real-Time

Scheduling and Resource Management.” 2005. (cb.: 81)
40. B. Colwell, ”The Zen of overclocking.” 2004. (cb.: 24)
41. V. Subramanian, “Timing speculation and adaptive reliable overclocking techniques

for aggressive computer systems.” 2009. (citations not found)
42. AMD, “AMD “Dragon” Platform Technology Performance Tuning Guide.” 2009. (User

manual)
43. V. Subramanian et al., “Superscalar processor performance enhancement through

reliable dynamic clock frequency tuning.” 2007. (cb.: 20)
44. J. Torrellas and B. Greskamp, ”Timing Speculation: Designing Multi-Cores for Single-

Thread Performance.” 2008. (Presentation. Citations not found)
45. M. Bezdek. ”Utilizing timing error detection and recovery to dynamically improve

superscalar processor performance.” 2006. (Citations not found.)
46. G. Memik et al., “Engineering Over-Clocking: Reliability-Performance Trade-Offs for

High-Performance Register Files.” 2005. (cb.: 29)
47. Y. He et al., “Parameter-Dependent Lyapunov Functional for Stability of Time-Delay

Systems with Polytopic-Type Uncertainties.” 2002. (cb.: 696)
48. http://en.wikipedia.org/wiki/Polytope
49. A. Wieder and B. Brandenburg, “On the Complexity of Worst-Case Blocking Analysis

of Nested Critical Sections.” 2014. (cb.: 1)
50. V. Bonifaci et al., “Polynomial-Time Exact Schedulability Tests for Harmonic Real-

Time Tasks.” 2013. (cb.: 4)

http://citeseerx.ist.psu.edu/showciting?doi=10.1.1.28.7640
http://www.heart.org/HEARTORG/Conditions/More/CardiacArrest/About-Cardiac-Arrest_UCM_307905_Article.jsp
http://www.heart.org/HEARTORG/Conditions/More/CardiacArrest/About-Cardiac-Arrest_UCM_307905_Article.jsp
http://en.wikipedia.org/wiki/Polytope

60

51. N. Guan and W. Yi, “Finitary Real-Time Calculus: Efficient Performance Analysis of
Distributed Embedded Systems.” 2013. (cb.: 1)

52. P. Kumas and L. Thiele, ”Quantifying the Effect of Rare Timing Events with Settling-
Time and Overshoot.” 2012. (cb.: 4)

53. H.Alhussian et al., ”A Semi Greedy Soft Real-Time Multiprocessor Scheduling
Algorithm.” 2014. (Citations not found.)

54. L. Burdalo et al., ”Analyzing the Effect of Gain Time on Soft-Task Scheduling Policies
in Real-Time Systems.” 2012. (Citations not found.)

55. P. Busch et al., ”Heisenberg's Uncertainty Principle.” 2007. (cb.: 157)
56. J. F. Clauser and A. Shimony, ”Bell's theorem. Experimental tests and implications.”

1978. (cb.: 1501)
57. N. Satish et al., ”Scheduling Task Dependence Graphs with Variable Task Execution

Times onto Heterogeneous Multiprocessors.” 2008. (cb.: 22)
58. A. F. Mills and J. H. Anderson, ”A Stochastic Framework for Multiprocessor Soft Real-

Time Scheduling.” 2010. (cb.: 28)
59. R. I. Davis and A. Burns, ”A survey of hard real-time scheduling for multiprocessor

systems.” 2011. (cb.: 394)
60. G. C. Buttazzo, ”Rate Monotonic vs. EDF: Judgment Day.” 2005. (cb.: 330)
61. M. Bertogna and S. Baruah, ” Tests for global EDF schedulability analysis.” 2010. (cb.:

44)
62. C. Lu et al., ” Feedback Control Real-Time Scheduling in ORB Middleware.” 2008. (cb.:

63)
63. S. Lin, ” Feedback-based task scheduling in real-time systems.” 2005. (citations not

found.)
64. F. Boussinot and R. D. Simone, ”The Esterel Language.” 1991. (cb.: 578)
65. N. Halbwachs, ” Synchronous Programming of Reactive Systems.” 1993. (cb.: 1093)
66. T. Murata, ” Petri Nets: Properties, Analysis and Applications.” 1988. (cb.: 9799)
67. G. M. Reed and A. W. Roscoe, ”A Timed Model for Communicating Sequential

Processes.” 1988. (cb.: 367)
68. http://www.ada-auth.org/standards/ada12.html
69. L. Sha and J.B Goodenough, ”Real Time Scheduling Theory and Ada.” 1989. (cb.: 411)
70. C. A. R. Hoare, Communicating Sequential Processes.” 2004. (cb.: 11816)
71. M. V. Iordache and P. J. Antsaklis, ” Petri Nets and Programming: A Survey.” 2009.

(cb.: 25)
72. D. Fontanelli et al., ”The Continuous Stream Model of Computation for Real–Time

Control.” 2013. (citations not found.)
73. W. Hofer et al., ”SLOTH ON TIME: Efficient Hardware-Based Scheduling for Time-

Triggered RTOS.” 2012. (cb.: 5) (Part of research project:
https://www4.cs.fau.de/Research/Sloth/)

74. http://www.claverton-energy.com/energy-experts-online/relevance-paradox
75. N. C. Cox et al., ” A Refined Approach for Stochastic Timing Analysis.” 2014. (citations

not found.)
76. G. A. Bundell, ” An FPGA Implementation of the Petri net Firing Algorithm.” 1997.

(cb.: 13)
77. E. Soto and M. Pereira, ” Implementing a Petri Net Specification in a Fpga Using

Vhdl.” 2001. (cb.: 19)

http://www.ada-auth.org/standards/ada12.html
https://www4.cs.fau.de/Research/Sloth/
http://www.claverton-energy.com/energy-experts-online/relevance-paradox

61

78. P. Jakubco and S. Simonak, ”Petri Net Approach for Algorithms Design and
Implementation.” 2011. (cb.: 1)

79. C. Conway et al., ”Pencil: A Petri Net Speci_cation Language for Java.” 2002. (“This
was a one-term project in a graduate compilers class and as such exists somewhere
in the zone between "good enough to get an A" and "good enough to actually use."”
https://www.cs.nyu.edu/~cconway/pencil/)

80. M. Chtepen et al., ” Online execution time prediction for computationally intensive
applications with periodic progress updates.” 2012. (cb.: 2)

81. M. A. Iverson et al., ” Statistical Prediction of Task Execution Times Through Analytic
Benchmarking for Scheduling in a Heterogeneous Environment.” 1999. (cb.: 179)

82. S. Schnitzer et al., ” Concepts for execution time prediction of 3D GPU rendering.”
2014. (cb.: 1)

83. L. Sha et al., “Real Time Scheduling Theory: A Historical Perspective.” 2004. (cb.: 474)
84. E.D. Jensen et al., ”A Time-Driven Scheduling Model for Real-Time Operating

Systems.” 1985. (cb.: 639)
85. T. Bøgholm, “Hard Real-Time Java.” 2012. (citations not found, download statistics

can be found here: http://vbn.aau.dk/en/publications/hard-realtime-java(3f0f4a22-
4f04-4f0f-b3d8-309ecdd738ad).html)

86. H. Kopetz et al., “The Time Triggered Model of Computation.” 2003. (cb.: 136)
87. L. D. Brinceño et al., “Time Utility Functions for Modeling and Evaluating Resource

Allocations in a Heterogeneous Computing System.” 2011. (cb.: 13)
88. http://www.nytimes.com/2015/05/01/business/faa-orders-fix-for-possible-power-

loss-in-boeing-787.html
89. R. L. C Eveleens, ”Integrated Modular Avionics Development Guidance and

Certification Considerations.” 2006 (c.b.: 9)
90. http://en.wikipedia.org/wiki/Integrated_modular_avionics
91. J. Nilsson et al., “Stochastic analysis and control of real-time systems with random

time delays.” 1998. (cb.: 971)
92. J. L. Diaz et al., “Stochastic analysis of periodic real-time systems.” 2002. (cb.: 148)
93. J.C. Maxwell, “On Governors.” 1876. (cb.: 416)
94. M. Zhu and R. R. Brooks, “Comparison of Petri Net and Finite State Machine Discrete

Event Control of Distributed Surveillance Networks.” 2009 (cb.: 1)
95. P. A. Dinda, “Online Prediction of the Running Time of Tasks.” 2001. (cb.: 110)
96. http://en.wikipedia.org/wiki/Real-time_computing
97. J. Eker et al., ”A Feedback Scheduler for Realtime Controller Tasks.” 2000 (cb.: 141)
98. KE. Årzén et al., ”Integrated Control and Scheduling.” 1999. (cb.: 57)
99. A. Cervin et al., ”How Does Control Timing Affect Performance?” 2003 (cb.: 436)
100. D. J. Musliner, ”Circa: The Cooperative Intelligent Real-Time Control

Architecture.” 1993 (cb.: 6)
101. A. Benveniste and G. Berry, ”The Synchronous approach to reactive and real-

time systems.” 1991 (cb.: 897)

https://www.cs.nyu.edu/~cconway/pencil/
http://vbn.aau.dk/en/publications/hard-realtime-java(3f0f4a22-4f04-4f0f-b3d8-309ecdd738ad).html
http://vbn.aau.dk/en/publications/hard-realtime-java(3f0f4a22-4f04-4f0f-b3d8-309ecdd738ad).html
http://www.nytimes.com/2015/05/01/business/faa-orders-fix-for-possible-power-loss-in-boeing-787.html
http://www.nytimes.com/2015/05/01/business/faa-orders-fix-for-possible-power-loss-in-boeing-787.html
http://en.wikipedia.org/wiki/Integrated_modular_avionics
http://en.wikipedia.org/wiki/Real-time_computing

