
Real-Time Scheduler Simulator
A Software Development Project in C++

Inger Johanne Rudolfsen

Master of Science in Cybernetics and Robotics

Supervisor: Sverre Hendseth, ITK

Department of Engineering Cybernetics

Submission date: June 2015

Norwegian University of Science and Technology



 



Assignment
Development of a real-time scheduling simulator.

The student is to conduct a software development project by the rules of the
art.

The student will develop a simulator of a real-time scheduler, well suited for
testing different scheduling strategies on different task sets, generate relevant re-
ports, statistics and figures. The motivation is to support upon the research of
real-time schedulers. Thus, it is important for the simulator to be as open as possi-
ble for exploring existing and future scheduling strategies. Specifying requirements
in cooperation with a potential user is considered a part of the project.

Theoretical part:

• Examine existing related simulators.

• Research the width of existing real-time scheduling strategies to generate
requirements for the simulator.

• Research "best-practices" on relevant fields, such as software project development,
software specifications, design methodologies, design patterns and documen-
tation.

Deliverables: In addition to the project report, the software itself and related
documentation shall be delivered as basis for the evaluation of the project.
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Preface
This report presents and summarizes my MSc thesis in Enineering Cybernetics at
the Norwegian University of Science and Technology. The work on this thesis was
done during the spring of 2015.
The report is written for a person with some experience with real-time scheduling
and the C++ programming language, and little or no experience with software
developing methodology.

A sincere thanks goes to my supervisor, Sverre Hendseth, who has provided
me with academic counseling as well as motivation.

June 8, 2015
NTNU, Trondheim

Inger Johanne Rudolfsen
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Summary
In this project, a software called the Scheduler Simulator was created to simulate
task executions given a specified real-time scheduler. Existing similar simulators
were examined and evaluated, reusable functionality best fitted to be adopted
by this projects simulator software was identified. Whereas all the existing so-
lutions have strengths and weaknesses, the following properties were extracted:
limit the end-users responsibilities, create thorough documentation, use Gantt
charts with clearly marked deadline misses, and provide relevant and readable
simulation results. Best practices related to software development, such as software
development methods, documentation development and software design, have been
researched. In addition, other relevant theory related to real-time systems and
schedulers was also examined. To develop the Scheduler Simulator, the best prac-
tices were evaluated. For the Scheduler Simulator project, the development was
conducted using mainly iterative and incremental methods, influenced by sprints
from Scrum development, emphasizing the flexibility and simplicity described by
Agile development methodologies.

The Scheduler Simulator allows a user to implement new scheduling policies,
create and generate task sets and conduct simulations to generate relevant reports.
The resulting reports contain CPU idle time, the number of reached and missed
deadlines, the number of completed tasks, and a Gantt chart, visually presenting
the simulated task executions. Four schedulers were implemented in the software:
FIFO, RR, RM and EDF. A series of test runs of the Scheduler Simulator were
conducted and evaluated. The simulator behaved as expected. It was discovered
that when simulating more than 20 tasks, the Gantt chart overshot the page size of
the result report. As a reaction to this, the simulator was altered to not produce
Gantt charts for simulations where the task set exceeded 20 tasks. The documen-
tation created for the system consists of three main parts; one for requirements,
one describing the architectural design of the software, and one for the users. "The
users" here refers to both maintenance personnel and end-users.

As the project was conducted by one person, the social benefits from using
Scrum and other Agile development methodologies diminished greatly. Instead, the
development work converged towards a waterfall shaped structure, as a sequential
work model can be more appealing and natural when working alone than a parallel
and cyclic model. The iterative way of working still helped the developer to learn
from mistakes along the way and create a functional system.
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Sammendrag
I dette prosjektet ble en programvare, kalt Scheduler Simulator, utviklet for å
simulere prosesskjøringer i et system, gitt en sanntids-scheduler. Lignende eksis-
terende simulatorer ble undersøkt og evaluert for å kartlegge god funksjonalitet som
kunne brukes i den nye simulatoren. De viktigste egenskapene som ble oppdaget
ved de eksisterende løsningene var: å begrense sluttbrukernes ansvar, skape grundig
dokumentasjon, bruke Gantt-diagrammer med tydelig markerte tidsfristbrudd og
generere relevante og lesbare simuleringsresultater. Beste praksiser relatert til pro-
grammvare utvikling ble undersøkt, som programvareutviklingsmetoder, utvikling
av dokumentasjon og programvaredesign. Annen relevant teori knyttet til san-
ntidssystemer og schedulere ble også undersøkt. For å utvikle simulatoren ble de
beste praksisene innen programvareutvikling evaluert. Utviklingen ble gjennomført
ved bruk av hovedsakelig iterative og inkrementelle metoder, med vekt på fleksi-
bilitet og enkelhet som beskrevet av Agile utviklingsmetodikk.

Dokumentasjonen som ble laget for systemet består av tre hoveddeler; en for
systemkrav, en for den arkitektoniske utformingen av programvaren, og en del
for brukerne. "Brukerne" her er ment til å være både vedlikeholdspersonell og
sluttbrukere.

Scheduler Simulatoren lar brukeren få implementere nye schedulere, definere og
generere prosesssett og gjennomføre simuleringer som produserer relevante rap-
porter. De resulterende rapportene inneholder CPU inaktivitets tid, antall nådde
og brutte tidsfrister, antall fullførte prosesser, og et Gantt-diagram, som gir en
visuell presentasjon av de simulerte prosessene. Fire schedulere ble implementert i
programvaren: FIFO, RR, RM og EDF. En rekke testkjøringer av simulatoren ble
utført og evaluert basert på de genererte rapportene. Simulatoren oppførte seg som
forventet. Det ble oppdaget at da man simulerte mer enn 20 prosesser, overgikk
Gantt-diagrammet sidestørrelsen i resultatrapporten. Som en reaksjon på dette,
ble simulatoren endret til å ikke produsere Gantt-diagrammer for simuleringer der
antallet prosesser var mer enn 20.

Ettersom prosjektet ble utført av én person, ble de sosiale fordelene ved å bruke
Scrum og andre Agile metoder redusert betraktelig. Utviklingsarbeidet konvergerte
i stedet mot en fossefall formet struktur, ettersom en sekvensiell arbeidsmodell kan
falle mer naturlig når man arbeider alene enn en parallell og syklisk modell. Den
iterative måten å jobbe på hjalp likevel utvikleren til å lære av sine feil underveis i
utviklingen, og til å skape en funksjonell simulator.
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Chapter 1

Introduction

Intelligence and rational thinking are human traits adapted by technology. By
transferring the human way of rational thinking to technological algorithms, software
systems can reach decisions using computerized logic. The number of operations
computers can conduct continues to increase, leading to a continuous expansion of
the world of technology.

1.1 A Modern Glimpse of the Future:
Scheduling in Real Time Systems

Efficient computer systems develop rapidly, finding smarter and better solutions
faster every day. Optimizing the logic in computer systems grows more important as
the technological evolution demands faster and more efficient systems. A scheduler
decides when to execute which tasks. Choosing which scheduler to use for a system
can be crucial for its overall performance.
We rely on real-time systems. Everyday chores, like driving a car, using a dish-
washer, not to mention smartphones, are all real-time systems. It is important
that these systems are optimal to maintain a productive and operative society. To
achieve this, the real-time tasks must be executed in an optimal fashion, which may
require a glimpse of the future. A scheduler can provide us with this "glimpse", by
using a scheduling algorithm to control the task executions in a system. Scheduling
research continues to optimize the way real-time systems operate, and might help
to ensure faster and better technology in the future. Knowing what needs to be
done is no longer sufficient. Knowing how to choose when to do what is key.
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1.2 Exploring the Assignment
For the assignment, a simulator software is to be developed. Simulating the
behavior of real-time schedulers can help optimizing scheduling policies, and avoid
deadline misses in real-time systems. The supervisor of this project had a vision of
what properties the simulator software should possess. He thus took the role as
the "client" in the development project, while the author of this report was the
"developer".
The term "best-practices" is interpreted to be the commonly used business term for
a practice that induce superior performance of some sort compared to practices
within the same field. A practice can also fall under the term "best-practice" if it is
widely used and considered a standard procedure within several organizations.

1.3 Structure of the Report
This report is structured to promote and convey the project progression and results.
Since the use of software development methods is essential in this project, the report
presents not only the resulting software, but the transpired development progress
as well, as it displays how software development methods influenced the workflow.
Chapter four is dedicated specifically to describe the work and development process,
while chapter six contains the description and documentation of the final software
product.
The report is structured in the following way:

Chapter 1 is the introduction (which you hopefully are aware that you are
currently reading).

Chapter 2 contains background theory related to software development, doc-
umentation and software design.

Chapter 3 contains background theory related to real-time systems and scheduling,
presentations of existing scheduler simulators and descriptions of tools and software
used for the development of the new simulator software.

Chapter 4 contains an evaluation of the existing solutions and a description
of the development process, including iterative progress, design choices and test
runs of the system.

Chapter 5 displays the results from the test runs of the simulator described
in chapter 4.
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Chapter 6 contains the software documentation, divided in three main parts:
requirements, architecture and design, and user documentation.

Chapter 7 is the discussion, which addresses and evaluates key points from
this project, such as the software development methods, the final software, the
documentation, etc.

Chapter 8 is the conclusion, consisting of a summarizing conclusion of the thesis,
and a section containing recommendations for further work, describing ways to
improve the created Scheduler Simulator software.
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Chapter 2

Background Theory: Software
and Design

2.1 Software Development Methods
Developing a software program can be a time consuming business. Scheduling
and planning the work process is thus very important to reach finalization of the
product within a time frame. There exist different methods describing the work
process using guidelines and structure to improve productivity and workflow. These
methods are called Software Development Methods and can be used when developing
a software. Some of these methods are applicable to other developing projects
not involving software, and are broadly used in different fields. The methods are
often developed over many years, and have known strength and weaknesses. Even
though a method works for one project, does not necessarily make it suitable for
other projects. It is therefore common practice to "pick-and-mix" strategies and
models from the different methodologies to accommodate a specific project. "Best
practices" within software development refers to some methods and models, not
because they can be marked as being the "best", but because they are commonly
and largely used for software development, (Hasle, 2008).

2.1.1 Waterfall Model
The Waterfall Model is a strictly structured system development model, built up
by consecutive phases, describing the development process. When one phase is
completed, the next phase begins, and thus the development progress flows through
the phases, like a waterfall, see figure 2.1.The phases of the waterfall model exists
in many variations, but according to Hasle (2008), they are:

• Pre-analysis: Specifying requirements.
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• System analysis: Detailing the system requirements.

• Construction: Constructing objects, designing architecture.

• Implementation: Coding and testing the system.

• Operation: Project finishes. Ownership and responsibility is transmitted.

.
Figure 2.1: The waterfall model, based on figure 5.1 in Hasle (2008).

A phase is completed only when it is properly reviewed and verified. If a phase
cannot be completed because of major mistakes committed in previous work, some
variations of the waterfall model allows jumps back to previous phases, to attempt
to correct the earlier flaws. The firm structure of the waterfall model makes it
understandable and clean, but it also causes problems. In real life, this linear way
of progression is rarely possible.
The waterfall model can be used to avoid expensive costs. By spending time
building the system and software requirements, one may discover a flaw in the
software. It is much cheaper to correct this flaw early, than to fix a major bug later
in the coding phase.
Developing using the waterfall model doesn’t produce a working software until
the end of the development process. If working with clients, they have to specify
requirements, wait for the software and then, at the end of development, experience
the finished software for the first time. The finished software may not be exactly
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what the client had in mind, and thus the requirements have to change, and the
development has to start from the beginning, at the top of the waterfall model.
Such an occurrence can be very expensive. The model is thus more suitable for
project with fixed requirements and understandable technology, (Hasle, 2008).
The Sashimi model, presented in the book McConnel (1996), is an alteration of
the Waterfall model, with overlapping phases, emphasizing that important useful
information can be acquired in phase transitions.

V-Model

The V-model is considered to be an extension of the waterfall model, using many
of the same phases and the same flow-inspired progression. The V-model associates
each phase related to developing to a test phase, creating a V-shaped model, see
figure 2.2. In every development phase, a test is created for this particular phase.
Planning and creating these tests before coding helps to prevent flaws, and to
ensure that phase goals are met. The V-model is not very flexible, and is, like the
waterfall model, best suited for projects with fixed requirements. Also here, no
prototypes are produced, and there exists a risk that the finished product might
not meet the clients expectations (Balaji, 2012).

Figure 2.2: The V-model, (Balaji, 2012).
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2.1.2 Iterative and Incremental Development

"Practice makes perfect" is a known saying, with the underlying meaning that in
order to succeed, one must try, learn and try again. This is the essence of iterative
and incremental development. Starting with a small part of the wanted software,
requirements are gathered, an analysis is conducted, the code is implemented, tested
and evaluated. This cycle is repeated if needed, allowing the software developers
to learn from their mistakes. Piece by piece, the software is developed. The cyclic
behavior model is called an iterative design, meant to improve code quality and
design. Starting with a small part of the software and gradually expanding is
called an incremental build model. Usage of these methodologies gives flexibility in
code development, and provides parts of the software in working code at an early
stage. Iterative and incremental development methods are essential in many other
software development methods, such as Agile Software Development Methodology,
section 2.1.7.

2.1.3 Software Prototyping

A prototype is an early sample version of a product. The prototype can be
incomplete, or lack great functionality intended for the final product. Meeting a
clients expectations can be difficult, and so prototyping early drafts of the software
program, and have the client evaluate them can be helpful to create the product
the client wants. The flow of a prototyping project can be seen in figure 2.3:
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Figure 2.3: The Prototyping Flow, based on figure 7.4 in Hasle (2008).

Prototyping can reduce cost. Not meeting the clients expectations with a
finished product can be very expensive. Used wrongly, prototyping can cause costs
when, for example a developer gets too attached to a prototype’s features. A
prototype is intended to be thrown away, and spending too much time developing
one prototype can be expensive. Prototyping can be used in various degrees in any
project, but is best suitable for projects developing a system dependent on user
interactions.
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2.1.4 Rapid Application Development

As mentioned in section 2.1.1, the waterfall model rigorously maps out the require-
ments before proceeding. This is not always beneficial, and Rapid Application
Development, RAD, is an alternative to the waterfall model, emphasizing speed
and quick development processes. Flexibility and quick development is central in
RAD, and rather than spending time specifying the requirements, development is
started early.
RAD is divided in four phases (Hasle, 2008):

• Requirements planning : Planning the project and stating requirements

• Prototyping: see section 2.1.3.

• Testing: As the prototyping phase takes care of initial testing, this phase is
beta-testing in the clients environment and final acceptance testing.

• Operational phase: The product startup, commissioning.

RAD is especially effective for developing services driven by user interfaces, as
changes in requirements are allowed by the emphasized flexibility, but, as a trade-off,
an RAD process can be difficult to control.

2.1.5 Spiral Model

Th spiral model is a generated using elements from other models, like the previously
mentioned waterfall model in section 2.1.1, incremental development in section
2.1.2 and prototyping in section 2.1.3. The generation of the model is risk-driven,
thus the risk patter of a project determine how the spiral model should be used.
The combinations of many models gives the model a spiral look, shown in figure
2.4. The goal is to harvest benefits from other models, and avoid the pitfalls.
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Figure 2.4: Boehms spiral model, from figure 5.5 in(Hasle, 2008).

2.1.6 Test-Driven Development
Test-Driven Development, TDD, as explained by Grenning (2011), is an iterative
development technique, used to avoid large debugging sessions, and rather ensure
that the created code executes correctly. In TDD, before creating a new feature, a
unit test is developed. This test is made to verify that the requirements for the new
feature are met, and it should fail otherwise. When a test is developed, some code
is written to pass the test. This code is rapidly made with a single goal: to pass
the test. When this is done, the initial code is refactored and cleaned. For each
new feature, this cycle is repeated. Writing the tests before, and not after, writing
the code, helps the developer keep the requirements in mind, and avoid massive
debugging. Failing a test indicates a bug in the code, and enables the developer
to fix the bug right away, and not later when the entire code is finished and time
has passed. This also allows the developer to code, compile and re-code a small

11



part of a software in a short period of time, compared to the long time it would
take to compile, code and recompile a large software. The tests are also used to
ensure that new code doesn’t make old features fail their unit tests. TDD focuses
on functionality, and can result in clean, simple code and design. If a unit test case
is falsely letting unfit code pass, the tests may cause a false feeling of success, and
induce extra maintenance issues later the project.

2.1.7 Agile Software Development
Agile Software Development methodology is a collective term, referencing to software
development methods that emphasizes flexibility, adaptive planning, evolutionary
development, continuous improvement and early delivery. Developed from incremen-
tal method, lightweight methods arose in the 1990s as a reaction to the heavyweight
method, such as the waterfall model, section 2.1.1. The term Agile was not used
before 2001, when a group of 17 developers created the Manifesto for Agile Software
Development, (Cockburn, 2001). Even though many of the lightweight methods
predated this manifesto, they are referred to as Agile methods today, because of
their adaptive and flexible nature. For developers working together using Agile
development, teamwork and collaboration is important in throughout the project.
Implementing agile development methods require a flexibility and maneuverability,
and a large team of 40 developers make this near to impossible. Smaller teams, of
no more than eight people, are preferable, (Cockburn, 2001). Slogans like "Model
with a Purpose", "Travel Light", and "Working Software is The Primary goal" arose
from the Agile way of thinking, indicating that sufficient documentation and little
bureaucracy makes the wheels of development turn (Hasle (2008) and Shore (2007)).

"Working software over comprehensive documentation."
- Agile Manifesto (Cockburn, 2001).

2.1.8 Scrum
Opposed to a sequential, micro-managing approach to create a software, Scrum is
meant to connect a team of developers to reach a common goal, maximizing the
teams abilities to do so. The team consists of three main parts: the product owner,
the developing team and the scrum master. The product owner ensures that the
produced product is value added, and she functions as a communicative bridge
between the team, the stockholders and the costumers. The product owner may
also be part of the development team. The development team is responsible for the
actual development work, like analyzing, designing, coding and testing. The scrum
master ensures that the scrum process is being followed and used as intended.
A sprint is the unit of development in scrum. A sprint is restricted to a specific
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duration, a time box.Timeboxing is the strategy of using time, and not functionality,
to determine the length of a sprint, (Hasle, 2008). If the functionality goals are
finished prior to the timebox’s duration, additional functionality or expansions are
added to the sprint. A sprint is built up by three main parts: the sprint planning,
the daily scrum and the sprint review.
The sprint planning is at the beginning of a sprint, mapping the goals for the sprint,
setting a timebox, and prepare the sprint backlog. The backlog consists of whatever
needed to be done in order to successfully deliver a viable product. The sprint
backlog is made from unfinished or improvable work from previous backlogs. The
backlog is a kind of requirement specification, which makes up the workload for
the next sprint.
The daily scrum is a fifteen minutes long daily meeting for the scrum team, where
all the members of the team have to answer three questions:

• What did I do yesterday that helped the development team meet the sprint
goal?

• What will I do today to help the development team meet the sprint goal?

• Do I see any impediment that prevents me or the development team from
meeting the sprint goal?

Answering these questions helps developers reflect on their work, and can shed
light on problems or issues that should be addressed.
The sprint review and sprint retrospective occur at the end of a sprint. The sprint
review is when the team review the work that has been done and present the
complete work to the stakeholders. The sprint retrospective is when the team
reflects on the passed sprint, and agrees on actions to improve as a team. (Hasle
(2008) and Cockburn (2001))

2.1.9 Extreme Programming
Extreme Programming, XP, is a socially directed development method, inspiring to
create a healthy work environment, where productivity and quality are emphasized.
Being an Agile method, XP uses frequent releases and checkpoints to meet the
customers requirements. XP is a method used to improve software quality, and is
based on five values (Beck, 2005):

• Communication : A flow of information prevents potential problems.

• Simplicity: Rather add something tomorrow than to create overly complicated
code today.
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• Feedback: Tests provide instant feedback.

• Courage: Dear to make decisions. Deal with problems when they occur, not
later.

• Respect: The foundation of XP and teamwork.

It is important that the developers embrace these values when conducting the
four basic activities in XP development: coding, testing (often using TDD, section
2.1.6), listening to the customers and designing. Developers must be open minded
to change, and can not get to attached to a product. If a customer changes their
requirements drastically, a developer must embrace the change, and not try to work
against it, holding on to old code. In XP development, it is common to use pair
programming, when two developers shares a workstation. The driver writes the
code, while the other one, the observer reviews the code as it is typed. This helps
avoiding flaws and code-errors. The driver and observer switch roles frequently.
"You aren’t gonna need it", YAGNI, is a principle for XP development, mean-
ing that you simply create code when you need the functionality, and not add
functionality for foreseen scenarios. This promotes the value of simplicity in XP.
Continuous integration is important, meaning the developer should not sit hours on
working with the same code without integrating it with the rest of the system. This
is to avoid collisions with already existing code (Beck (2005) and Hasle (2008)).

2.1.10 Other Development Strategies
There exists a vast number of different development methodologies and philosophies.
The most popular and widely known are in the above sections. Some other strategies
and principles used in software development are listed below:

• Refactoring can be used to increase the quality and internal structure of
a software program, (Booch, 2000). Enables the developer to go back and
improve the system without changing external requirements.

• Cowboy Coding: Start producing code without a design or a developing
method.

• Chaos Model: Always resolve the most important issue first.

• Worse is better: The idea that quality does not necessarily increase with
functionality. Less functionality can be a preferable option.

• KISS: Keep It Simple Stupid. Simplicity is often associated with good design.
Do not over-think when developing.
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• "There’s more than one way to do it", or TIMTOWTDI, is a strategy
from PERL programming, meaning there are more than one way of solving
a problem, providing freedom for the programmer. An extension of this
strategy emphasizes the fact that some solutions are more common simply
because they are better, resulting in the neat expression: "There’s more than
one way to do it, but sometimes consistency is not a bad thing either", or
TIMTOWTDIBSCINABTE, pronounced Tim Toady Bicarbonate.

2.2 Documentation Methods
When developing a software program, it is important to remember decisions and
choices made during the development to benefit from in later stages in the life
time of the software. According to Hasle (2008), there are two main distinctions
in documentation: System documentation and User documentation. System docu-
mentation aims to describe the software system with the intention the technical
aspects of the system is presented. The system documentation includes requirement
documentation, design, architecture and code documentation.

A developer is often creating a software for a customer. The user documenta-
tion must accommodate both end-users and maintenance personnel. It is important
that sufficient documentation exists for an end-user, with no prior knowledge to
the software, so she or he can use the software program as it was intended by the
developer. This is called the end-user documentation, and it describes the how
to use the system features. Final-documentation can be seen as a kind of user
documentation, and it is primarily meant to be used for maintenance purposes
(Hasle, 2008). The final documentation must give a correct and in-dept description
of the system, sufficient for maintenance personnel to operate and possibly expand
the software.

It is important to use a language understandable for the intended reader when
writing documentation. Complicated words and technical terms serves against their
purpose if used in a user-documentation meant to be read by a user with no prior
experience with software development. Jerry Weinberg says:

"The value of documentation is only to be realized if the documentation is well done.
If it is poorly done, it will be worse than no documentation at all."(Rüping, 2003).

This indicates that the documentation must serve it’s purpose of communicating in-
formation. In the book Cockburn (2001), the author recommends documentation to
be "light but sufficient". This corresponds to the Agile manifesto, stating "Working
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software over comprehensive documentation", see section 2.1.7. The book Rüping
(2003) lists solutions to common documentation problems, and recommends that
for each project document, one person must accept responsibility. Further, it states
that documentation must evolve as the project evolves, being "living" documents.
Writing documentation, done correctly, can make the writer reflect on what they
are writing and might help them discover alternate solutions for their projects,
improving the final results. The kind of documentation needed varies from project
to project, but a rule of thumb can be:
"The correct amount of documentation is exactly that needed for the receiver to
make her next move in the game", (Cockburn, 2001).

2.2.1 Specifications and Requirements
Requirements specifies what the software is supposed to do. They can for example
be strict constraints within the time domain, or wanted specifications for the user
interface. They describe operations the software must be able to perform. A require-
ment specification is a set of requirements to be satisfied by the software service.
The requirements works as a written agreement of the traits of the final product
between all involved parts. Thus the requirements should be understandable for
both users and developers. This causes a challenge to create a complete requirement
documentation, because it should describe the in dept software constraints and
behavior, and still be understandable for all parts involved. The requirement
documentation is therefore often created by a combination of written text and
models. The amount of requirement documentation needed depends on the nature
of the project: A project where the resulting product may impact human lives,
such as medical equipment and medical software, the requirements must be very
detailed, as opposed to a short-life software prototype, which requires a minimum
amount of requirements. There are different ways of eliciting requirements from the
clients or potential users. Observing the potential users, or interviewing the clients
are the most common ways of doing so. When interviewing, it is important to use
a natural language, ask open ended questions, and simply let the client elaborate
by asking the simple question "Why?", (Wiegers, 2003).

Written Requirement Documentation

One way to document requirements is written sentences, stating what the software
product should be able to do. Using general language, describing the agreed upon
behavior in a written document ought to be understandable for both users and
developers. Using complete sentences, starting with "The system must..." or "The
user shall.. ", completed with behavioral description, can be a good way of painting
a picture of the system. Ambiguous terms should be avoided, as they can cause
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confusion and wrong interpretations and expectations for the software. Important
parts of the system must be stated clearly. (Wiegers, 2003)

Applying Context to the Requirements using UML

Unified Modeling Language, UML, is a unified way of communicating the structure
and functionality of complex systems, (Douglass, 2004). UML consists of several
ways of representing the expected behavior of a system, based on specified require-
ments. One of this methods is called a Use-case.

"A Use-case represents a series of interactions between an outside entity and the
system, which ends providing business value." (Guiney, 2003).

The outside entity is often referred to as the actor. An actor can be a human, time
or an external system. There is no strict set of rules when creating a use case, but
there exists optional templates on what a Use Case can include. New templates
can be created and altered when needed. An example of such a template is shown
in table 2.1. A use case describes different types of scenarios an actor encounters
when interacting with the system.
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Table 2.1: A Use-Case Template with explanations, based on figure 2.13 in Guiney
(2003)

Use-Case Name: Descriptive title of the interaction presented
in this use case.

Iteration: Refers to the different steps of descriptive dept
the Use-Case go through: Facade, which is a
high-level description, filled, which is broad-
ening and deepening, and Focused: which is
the final iteration, narrowing and pruning.

Summary: Two or Three sentences describing the out-
lines of the interaction.

Basic Course of
Events:

The path of events to happen in the most
common scenario when no errors occur.

Alternative Paths: Describes alternative ways to reach the same
outcome as the basic course of events.

Exception Paths: Presents the course of events when an error
occurs.

Extension Points: References to other related Use-Cases.

Trigger The criteria for entering the Use-Case situa-
tion.

Assumptions: Dependencies that are assumed true for the
Use-Case to be carried out.

Preconditions: Conditions that must be in place prior to the
Use-Case described interaction.

Postconditions: Conditions arising in the aftermath of the
Use-Case.

Author: The Use-Case creators name.

Date: The dates corresponding to the completion
of the three development iterations of the
Use-Case.
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Figure 2.5: A Use-Case Diagram, based on figure 2.1 from Guiney (2003).

A use-case diagram is a visual representation of a relationship between an actor
and a use-case. The actor is portrayed by a stick-figure, and an arrow points from
the actor to the use-case goal. An example is shown in figure 2.5.

Other diagrams used to describe requirements are i.a. activity diagram, Sequence
Diagram, Flow charts, State machine diagram(Douglass, 2004). Diagrams and Use
Cases can be understandable for non-developers if a general language is used, but
for complex systems, this can be difficult to achieve. The requirements involving
algorithms, timing and safety-aspects are not easily portrayed this way, because
these requirements are not based on interactions.

User Stories are closely related to use-cases, but they are shorter, and angled to
show how the system can be used by different roles in a specific scenario. User
Stories can often be written by the costumer, capturing their wishes for the product
in writing. Cohn (2004) describes three aspects of user stories:

• Cards: A short written description of the story.

• Conversation: Conversations to fill out the details of the story.

• Confirmation: Using test to confirm when a story is completed.
The written User Stories are short and narrative. They can be vague, and thus not
a precise way to map requirements. User Stories are mostly used as a check-up
documentation during development to map progress, and are rarely regarded as
full-descriptions of the requirements.

2.2.2 Architecture and Design
A Software Design Document is a written description of the software product, where
the designer intends to guide developers through the architecture of the software.
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The software design must be described using natural, unambiguous language. It is
preferable to repeat some parts rather than leaving details out. "A picture is worth
a thousand words" is a known saying. Using other tools than text description can
be highly rewarding.

"Diagrams can provide exellent overviews, while an accompaning text explains
details to the extent that is necessary", (Rüping, 2003).

Different diagrams can be used to illustrate the design and architecture of complex
software systems.

A class diagram displays the relations between classes in a software program,
and is esspessialy useful when creating object-orientated software, in such languages
as C++. There exists different ways to create class diagrams. OMT (Object-
Modeling Technique) was widely used in the mid 90-s (Gamma, Helm, Johnson,
Vlissides, 1995), but in recent times, UML, see section 2.2.1, has become the most
commonly used standardization. Each class is illustrated with a rectangle with
three compartments. The name of the class is displayed in bold letters in the top
compartment. The second compartment lists the class data members, and the third
compartment lists the class functions/methods. A prefix describes the protection
level of each entry, see table 2.2.

Table 2.2: Marks indicating visibility type

+ Public
− Private
# Protected

The relationship between classes are illustrated using different types of edges.
The different edges are displayed in figure 2.6, 2.7 and 2.8 (Ambler, 2001).

Figure 2.6: One class, Person, contains an object from another class, Address, as
a data member.
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Figure 2.7: Two subclasses, Cat and Dog, inherits Animal class

Figure 2.8: A class, Building, is built from objects of another class, Room.

2.2.3 User Documentation
The user documentation can be separated in two main parts: the end-user docu-
mentation, explaining features meant for the end-user of the system, and the final
documentation, providing more advanced users and maintenance personnel an in
dept description of the software.

Final Documentation

Final documentation is a document describing a technical product that is either
under development or in use (Hasle, 2008). The goal of the documentation is for
users and service personnel to fully understand the technical aspects, architecture
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and functionality of the final product. Both requirement specifications, section
2.2.1, and design and architectural documents, section 2.2.2, can be a part of the
technical documentation. In software development, code-documentation provides
understanding of the software products features and it enables expansion and
reuse of the code in the future. There exists a vast number of tools for generating
code-documentation from within the source code (Rüping, 2003). Doxygen is a
commonly used software tool for this type of documentation generation (van Heesch,
2006). This simplifies the developers work, as both code and documentation can be
written at the same time, and it makes sure that the documentation automatically
is up to date.
Without proper final documentation, the software dies when the developing team
becomes unreachable due to time.

End-User Documentation

What is the use of developing a software program if nobody knows how to use it?
Fairly little use. End-User Documentation describes how the product is to be used.
The documentation’s goal is for a user, with no prior knowledge of the product to
be able to use the product in the intended way. This can be done in various ways,
relying on readability and good structure. According to Rüping (2003), readability
can be enhanced using a set of techniques, such as placing diagrams and tables
close to their reference in the text, emphasizing words and sentences, setting line
spacing to be 120% of the type size, and providing the reader with an brief overview
of the content in the beginning of the document, describing the purposes of the
different paragraphs. For software programs, tutorials are widely used to help
new users get started. A tutorial is a step-by-step guide often consisting of simple
introductory tasks the user has to complete. A correct constructed tutorial will
give the user the tools to understand the basics of the program, and help him or her
to apply the knowledge from the tutorial to the entire software system. A tutorial
can be interactive, where the user contributes by f.e. solving tasks, or descriptive,
showing how to use the program from the users point-of-view. The main goal of the
end-user documentation stays the same: it must be easy to read and communicate
the necessary information for proper usage of the product to the user.

2.3 Design Patterns and Principles
Software architecture describes the connections and interfaces between modules,
classes and other components in a software program. The code-design can decide
if the software is agreeable and easy to work with, or messy and difficult. The
following four signs of bad architecture and design can show if the software is
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rotting from the inside out, according to Martin (2000):

Rigidity: The software is difficult to change without causing massive domino-
effects. A change in one module will cause changes in various sub-modules, and
what was supposed to be a small fix becomes weeks of work.

Fragility: Related to rigidity. A change in one module causes multiple breakages
in various places of the code. The code can fail in places with no conceptual
relationship to the original changed module. A small change in one place can cause
an all-around code-fix.

Immobility: The inability to reuse software. Often, an engineer discovers the
need for a module similar to another engineers module, but instead of changing
the original module to be reused, she rewrites it.

Viscosity: When the design causes design-preserving solutions to be harder to
implement than other solutions, the viscosity of design is high. When engineers
choose a non-optimal solution that do not force recompilation because compilation-
time is so long, the viscosity of environment is high.
(Martin, 2000)
These four symptoms are important to avoid when creating a software. Some
problematic scenarios are more recurring than others when developing a software
design, and there exists general solutions for these scenarios called design patters.
These are reusable, well designed solutions for similar scenarios, developed through
experience. A design pattern has four essential elements (Gamma, Helm, Johnson,
Vlissides, 1995):

The pattern name, which describes the design problem and solution in one
or two words.

The applicability, in other words, when to apply this pattern.

The solution, the design that solves the problem.

The consequences, the results and trade-offs by applying this pattern.

"The gang of four" are a well known group of developers that created a book
about design patterns (Gamma, Helm, Johnson, Vlissides, 1995). In this book,
patterns can be divided in three categories: creational, structural and behavioral.
23 patterns are described in this book, which has been "... highly influential to
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the field of software engineering and is regarded as an important source for object-
oriented design theory and practice."(Design Patterns, Wikipedia, 2015). Some of
the patterns are described in the following sections.

2.3.1 Creational Patterns

Creational patterns are patterns used to abstract the process of initiating, creating,
objects.

Pattern name: Builder

Intent: "Separate the construction of a complex object from its representation so
that the same construction process can create different representations." (Gamma,
Helm, Johnson, Vlissides, 1995)
Applicability: The Builder pattern should be used when the assembling of parts
that make up an object is isolated from the algorithms that create one or more
complex, independent objects.
Solution: The structure of this pattern can be seen in figure 2.9. The client
creates a Director object along with a desired Builder object, and calls the Directors
Construct() function.

Figure 2.9: Structure of Builder pattern, (Gamma, Helm, Johnson, Vlissides,
1995)[page 98].

Consequences: see table 2.3.
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Table 2.3: Consequences of the Builder pattern

Positive consequences Negative consequences
Can vary a product’s internal rep-
resentation

May cause a large number of
classes

Isolates code for construction and
representation
Gives a fine control over the con-
struction process

2.3.2 Structural Patterns
Structural patterns describe how larger structures can be created by combining
classes and objects.

Pattern name: Facade

Intent: "Provide a unified interface to a set of interfaces in a subsystem. Facade
defines a higher-level interface that makes the subsystem easier to use." (Gamma,
Helm, Johnson, Vlissides, 1995)
Applicability: The Facade pattern can be used to create a simple interface to a
complicated subsystem for a client to use. The pattern can also be used to layer
subsystems.
Solution: The structure of this pattern can be seen in figure 2.10. Clients
communicate with the subsystem through the Facade class.

Figure 2.10: Structure of Facade pattern, (Gamma, Helm, Johnson, Vlissides,
1995)[page 187].

25



Consequences: see table 2.4.

Table 2.4: Consequences of the Facade pattern

Positive consequences Negative consequences
The Facade class hides the subsys-
tems components from the client,
reducing the number of objects
clients deal with.

The Facade provides a simple de-
fault way of using the subsystem
that may not be broad enough for
some clients.

The subsystem can be changed
without affecting the client, by al-
tering the implementation of the
facade, but not the client-facade
interface.
Clients can use the subclass di-
rectly if they need to.

2.3.3 Behavioral Patterns

Behavioral patterns are used to structure the communication between classes and
objects.

Pattern name: Chain of Responsibility

Intent: "Avoid coupling the sender of a request to its receiver by giving more than
one object a change to handle the request. Chain the receiving objects and pass
the request along the chain until an object handles it." (Gamma, Helm, Johnson,
Vlissides, 1995)
Applicability: The Chain of Resposibility pattern can be used when more than
one object may handle a request in various ways, or if the set of objects that can
handle a request should be specified dynamically.
Solution: The structure of this pattern can be seen in figure 2.11. When a client
sends a request, it is forwarded along the chain until a ConcreteHandler object
responses. If no ConcreteHandler objects can handle the request, the general
respons from the Handler class is returned.
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Figure 2.11: Structure of Chain of Responsibility pattern, (Gamma, Helm, Johnson,
Vlissides, 1995)[page 225].

Consequences: see table 2.5.

Table 2.5: Consequences of the Chain of Responsibility pattern

Positive consequences Negative consequences
Shields the client from which
object actually response to its re-
quest.

There is no guarantee the request
will be properly handled.

Responsibility can easily be added
or removed from the objects.

Pattern name: Iterator

Intent: "Provide a way to access the elements of an aggregate object sequentially
without exposing its underlying representation." (Gamma, Helm, Johnson, Vlissides,
1995)
Applicability: Use the Iterator pattern to support multiple traversals of aggregate
objects, and when aggregate objects and traversal algorithm must vary indepen-
dently.
Solution: The structure of this pattern can be seen in figure 2.12. The Con-
creteIterator keeps track of the traverse, and can be created to traverse in any way,
for example as a filter that only returns elements that meets the wanted filtering
conditions.
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Figure 2.12: Structure of Iterator pattern, (Gamma, Helm, Johnson, Vlissides,
1995)[page 258].

Consequences: see table 2.6.

Table 2.6: Consequences of the Iterator pattern

Positive consequences Negative consequences
Can have variations in the traver-
sal of the aggregate

There can be additional communi-
cation between iterator and aggre-
gate object.

The iterators simplify the Aggre-
gator interface
Multiple iterators can exist for one
Aggregator

Pattern name: Observer

Intent: "Define a one-to-many dependency between objects so that when one object
changes state, all its dependents are notified and updated automatically." (Gamma,
Helm, Johnson, Vlissides, 1995)
Applicability: Use the Observer pattern when an abstraction has two aspects,
one dependent on the other, or when an object should be able to notify other
objects without making assumptions about who these objects are.
Solution: The structure of this pattern can be seen in figure 2.13. The Concrete-
Subject object notify all its Observer objects when a state is changed for all the
objects to be updated.
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Figure 2.13: Structure of Observer pattern, (Gamma, Helm, Johnson, Vlissides,
1995)[page 245].

Consequences: see table 2.7.

Table 2.7: Consequences of the Observer pattern

Positive consequences Negative consequences
Minimal coupling between Subject
and Observer

A large number of observers can
cause an overhead in information
flow. Small operations may result
in a flow of updates to observers
and their dependent objects.

Pattern name: State

Intent: "Allow an object to alter its behavior when its internal state changes. The
object will appear to change its class. " (Gamma, Helm, Johnson, Vlissides, 1995)
Applicability: The State pattern can be used if an object’s behavior depends on
its state, and it must change its behavior at run-time depending on that state.
Solution: The structure of this pattern can be seen in figure 2.14. The Context
object changes State object when its state changes.
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Figure 2.14: Structure of State pattern, (Gamma, Helm, Johnson, Vlissides,
1995)[page 245].

Consequences: see table 2.8.

Table 2.8: Consequences of the State pattern

Positive consequences Negative consequences
State-specific behavior is local-
ized.

Adding a new state requires
changes in Complex implementa-
tion, that may become compli-
cated.

State transitions becomes explicit.

Pattern name: Strategy

Intent: "Define a family of algorithms, encapsulate each one, and make them
interchangeable. Strategy lets the algorithm vary independently from clients that
use it." (Gamma, Helm, Johnson, Vlissides, 1995)
Applicability: The Strategy pattern can be used if many different classes differ
only in their behavior, or if need of different variants of an algorithm. The pattern
can also be used if an algorithm uses data that clients should know about.
Solution: The structure of this pattern can be seen in figure 2.15. The clients
chooses which ConcreteStrategy to use, but the Context class only knows that the
object is a Strategy, and thus it has the same interface with all the subclasses of
Strategy.
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Figure 2.15: Structure of Strategy pattern, (Gamma, Helm, Johnson, Vlissides,
1995)[page 316].

Consequences: see table 2.9.

Table 2.9: Consequences of the Strategy pattern

Positive consequences Negative consequences
Gathers families of related algo-
rithms

Clients must know which Strategy
they want to use to optimize the
use of the different Strategies.

The Context-Strategy interface re-
mains the same for all Strategy
subclasses.

Some ConcreteStrategy classes
may not need all the information
from the Context class forwarded
by the Strategy class, causing a
communication overhead.

Flexible and reusable code. Increases the number of objects.

Pattern name: Template Method

Intent: "Define the skeleton of an algorithm in an operation, deferring some steps
to subclasses. Template Method lets subclasses redefine certain steps of an algorithm
without changing the algorithm’s structure." (Gamma, Helm, Johnson, Vlissides,
1995)
Applicability: The Template Method pattern can be used when the format of an
operation is clear, but the aspects of the algorithm vary for each subclass.
Solution: The structure of this pattern can be seen in figure 2.16. The Abstract
class implement the TemplateMethod, using the functions implemented in the
ConcreteClass.
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Figure 2.16: Structure of Template Method pattern, (Gamma, Helm, Johnson,
Vlissides, 1995)[page 327].

Consequences: see table 2.10.

Table 2.10: Consequences of the Template Method pattern

Positive consequences Negative consequences
Promotes code reuse Can result in many sub-classes to

cover wanted behavior.
Higher probability that sub-
classes are implemented with the
correct behavior corresponding to
the Abstract class

32



Chapter 3

Background Theory: Scheduling
and Real-Time Systems

3.1 Real-Time Systems

Computing systems have developed from being used exclusively in laboratories and
research, to become a part of our everyday lives. Humans interact with computing
systems when using telecommunication, multimedia systems, cars, dishwashers
etc... These systems are real-time systems, i.e. computing systems that react and
respond to events in the surrounding environment within precise time constraints.
Many definitions exists for real-time systems. A brief but precise definition of
real-time systems is:

"Any information processing activity or system which has to respond to externally
generated input stimuli within a finite and specified period."
(Young, 1982)

This definition captures the essence of a real-time system, and emphasizes the
importance of time. Real-time systems are often classified by the importance of
meeting time constraints.
Hard real-time systems have deadlines that cannot be missed, and it is crucial that
a response happen within the time limit to avoid total system failure.
Firm real-time systems can miss deadlines occasionally. The system may decay in
performance, but will not experience a total system failure. Results processed after
deadlines can not be used in any way.
Soft real-time systems can miss deadlines occasionally, and all produced results can
be utilized. Missing deadlines causes the system to decay in performance, as the
results are less useful after a deadline miss.
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(Burns and Wellings, 2009).

The response time of a system is the time passed from an input is given until a
reaction occurs. The response time of a real-time system is crucial for efficiency,
and can create difficult design problems, as one input may induce a longer response
time than other inputs. Many real-time systems change their behavior as a response
to an occurrence, called an event, i.e. the systems are event-driven. The events can
be both synchronous and asynchronous, and they influence the resulting output
of the system. Events can be initiated by an interrupt. An interrupt can origin
from both internal and external parts of the system. A system clock can generate
interrupts at specific times, creating both cyclic and sporadic interrupts causing
synchronous and asynchronous events, (Laplante, 2004).

3.1.1 Parallelism and Processors
A computing system with one single central processing unit is called a uniprocessor
system, while a computing system with two or more processing units is called
a multiprocessor system or a multicore system. Multiprocessor systems can help
increase both efficiency and capacity, but it demands careful management to benefit
from the extra processors. It is not a straight forward task to distribute work
between processors equally. Amdahl’s law provides a measurement of how much
improvement to expect on an overall system when only one part of the system is
improved. Applied to multiprocessor systems, it can be shown that there exists
a limit of the number of processors that can be applied to a system, and still be
beneficial. At one point, increasing the number of processors can not help speed
up the software. Thus, the level of parallelism that can be achieved is determined
by the software, not the hardware, (Laplante, 2004). In some scenarios, there is
no need for more than one processor. Some processes, such as a calculation, can
not be split in two separate parts, and can therefore only run on one processor.
In a multiprocessor environment, processors might get stuck waiting for another
processor to finish its calculations before proceeding. In a scenario where several
processes are dependent on each other, a parallel running system will turn into
a serial execution, making multiple processors redundant. To measure the level
of processing, CPU utilization can be used, providing the percentage of non-idle
processing done by a processor, (Laplante, 2004).

3.1.2 Tasks and Processes
Earlier, programs were written only to execute sequentially, but in modern systems,
programs are allowed to run more than one thread of execution at a time, and
execute them concurrently, (Burns and Wellings, 2009). A task is a unit of execution,
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often used to describe a single thread process. There are variations in the way
different programming languages use tasks. The structure of a task can be static,
where the number of tasks are know pre-run-time, or dynamic, where tasks can
be created at run-time, thus the number of tasks are not know pre-run-time.
The level of parallelism describes the hierarchy of tasks in a system. The level of
parallelism allowed varies between programming languages. In nested systems
tasks can initialize other tasks within themselves, as opposed to flat systems, where
tasks exclusively can be defined in the top level of the program.
The life-time of a task can be separated in several states. A simple state diagram
for a task can be seen in figure 3.1. The termination of a task can be caused by
a variety of different events. A task may be terminated because it completes its
execution, it self-destructs, a different task aborts it, it reaches an error-condition,
or if there is no longer need for the task, (Burns and Wellings, 2009).

Figure 3.1: A simple state diagram for a task, (Burns and Wellings, 2009)[figure.4.1].

A task is periodic if it has a predefined cycle-time. Periodic tasks are time-
triggered, as opposed to event-triggered. An event-triggered task does not have a
specific cycle-time, and is called aperiodic. If there also exists a limit on how many
times a task may occur within a time-interval, the task is sporadic. A set of tasks
to be executed sequentially is called a job.
The arrival time of a task is the time the task becomes available for execution.
A deadline is a time stamp representing the time when the corresponding task
must be completed. An absolute deadline is the actual time the task has to be
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finished, while the relative deadline is the deadline time relative to the arrival time,
i.e. the relative deadline is the time from when a task arrives until it has to be
finished executing. A missed deadline can cause different consequences depending
on whether a system is hard, firm or soft(section 3.1) (Burns and Wellings, 2009).

Concurrent Execution of Tasks

Concurrent execution enables more than one task to execute at approximately
the same time on the same processor. This means that the processor can "jump"
between different task, as opposed to sequential execution, where one task has to
finish in order for another to begin. Concurrent execution can be represented in
three basic ways.

• Fork and join: The fork statement lets the forked process to execute
concurrent with the process that invoked the fork. The join operation lets
the process that invoked the fork and join wait for the procedure currently
forked to finish before continuing.

• Cobegin: Lets a set of tasks to start concurrent execution at the same time.
The end is set to be when the last task in the set finishes.

• Explicit task declaration: The task itself specifies whether it will be
executed concurrently or not.

(Burns and Wellings, 2009).

In concurrent execution, protecting shared variables is crucial for sustaining
correct behavior from the tasks. Unprotected shared variables might result in
corrupt data. If task A and task B are sharing a variable x, and task A wants to
manipulate it, task A reads the variable first. In the case of concurrent execution,
task B might interrupt task A, access x and write a new value to it, before task
A interrupts task B and overwrite x based on the old value without considering
the changes made by task B. The changes made by B is now disregarded without
task B knowing. This can cause unexpected behavior from the system. There are
techniques to avoid this from occurring. A semaphore is a non-negative integer
that can be manipulated with the functions wait(S) and signal(S). A task that
reaches the wait(S) function must wait if the value S is greater that zero. If not,
it should decrease the value S by one and proceed. When finished handling the
shared variable, it calls the signal(S) function, which increment the value of S by
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one. Another way to protect shared variables is by using a mutual exclusion mutex.
A mutex works as a lock; if locked, no other task may enter before it is unlocked.
A mutex is typically locked when accessing a certain shared element, and unlocked
when the task has finished manipulating it. If a different task wishes to access the
same element, it must simply wait by the locked mutex until it is unlocked, then
enter and lock it itself.
A task can be dependent on a different tasks behavior in order to execute. Task
dependencies describes the relationships between tasks. There are four basic types
of dependencies between a task A and a task B.

• finish-to-start: Task A must finish before task B can start.

• start-to-start: Task A must start before task B can start.

• finish-to-finish: Task A must finish before task B can finish.

• start-to-finish: Task A must start before task B can finish.

(Mall, 2007)
These dependencies do not insist on task B to start/finish the moment it can, but
at any point after task A has started/finished.
Both shared-variable protection and dependencies can induce a deadlock. A deadlock
is a situation where no tasks can execute because they are all waiting on a variable
currently locked or their dependency task to finish/start. A common deadlock
situation is when task A and task B both needs the same two variables x and
y. Task A locks variable x and task B locks variable y, and now both tasks are
waiting to lock the other variable, while continuing to keep the first variable locked.
Situations like this causes a system blockage, and must be avoided. A possible
backup solution is to make one of the tasks release their first variable, or by using
a method called atomic actions. Atomic actions allows an operation to appear
invisible to the rest of the system. Task A can use atomic actions to see if it can
lock both variables, and if it can, the action happens instantly, and if not, no action
will be taken, (Burns and Wellings, 2009).

Task Execution Time

Worst-case Execution Time, denoted WCET, is, as described in Burns and Wellings
(2009), a measure for the longest possible time it will take for a task to complete its
body of execution. An estimation of the WCET is important information, that can
help the overall productivity and efficiency of a system. There are several ways to
obtain the WCET value, mostly involving measuring and/or analysis. Measuring
it can lead to the question "was this the absolute worst-case time?". Analyzing the
WCET requires a good model of the processor, which is not always available. The
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average execution time is an estimation of the average time it would take for a task
to finish, while the burst time is the actual time it will take a task to execute.

3.1.3 Scheduling
When working with real-time constraints, distributing the available processing time
becomes an important part of creating a successful system. To share processing
time in a logical and optimal fashion, scheduling can be crucial. The scheduler
decides which task the processor should execute from a set of tasks ready to be
executed. The logic behind this decision depends on the schedulers algorithm,
often based on parameters like worst-case execution time, deadlines, periods, etc...
Some schedulers logic favors some tasks over others, risking some tasks to be left
unexecuted, i.e. some task may suffer starvation. There are many ways of classi-
fying different types of schedulers. One of them is based on the level of interruption.

A co-operative or non-preemptive scheduler is a scheduler that lets the proces-
sor finish a task before scheduling a new task to the processor.

A preemptive scheduler can interrupt the processor while it is executing a task, and
force the processor to start executing a different task instead. This switch from
one task to another is called a context switch, and it causes some overhead time loss.

Not all processors can be interrupted and can thus only use non-preemptive
schedulers. (Burns and Wellings, 2009)

Response Time Analysis

Response time is, as mentioned in section 3.1, important for a real-time system.
Thus, using the estimated computation time for each task, the response time can be
estimated, using response time analysis. If the response time estimated for a specific
task exceeds the task’s corresponding relative deadline, the task is not schedulable.
There are different ways to estimate the response-time of a task given a specific
scheduler, often involving an estimation of the execution time (WCET or average
execution time), priorities set by the scheduler, and the level of interference with
other tasks. There are some rules connected to the outcome of the response-time
analysis.

• Using average execution-time estimates and average arrival-time estimates,
all task should be schedulable.

• Using WCET and worst-case arrival times, all hard real-time tasks should be
schedulable. (See section 3.1 for definition of "hard real-time system").
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(Burns and Wellings, 2009)

Using response time analysis, a scheduler can be tested to see if a task set is
schedulable or not. Using the average execution-times, a task set may be schedu-
able but still miss deadlines during the actual execution. These situations are called
a transient overload, as it is a temporarily overload of the system. If a system is
scheduable using the WCET estimations, a transient overload should not occur.
Closely related to response time is turnaround time. This is the time from when a
task is submitted to the system until the task has completed its body of execution.
High turnaround time indicate loss of deadlines and task starvation.
(Burns and Wellings, 2009)

Online Analysis

There exist hard- and soft-real-time systems, and schedulers must accommodate the
possible different needs the different systems may have. Not all systems have the
possibility to estimate WCET and arrival-time patterns of their tasks pre-runtime,
thus online analysis is needed. An online analysis scheme limits the number of
tasks that can compete for the processor, and uses a scheduler for these tasks to
control the task execution submissions. To choose which tasks to allow competing
for the processor, a value based system is often used, assigning each task a value
based on its properties. The value-system is said to be static if the tasks value
can be calculated regardless of its release-time, dynamic if the tasks value can be
calculated only at the time of release, dynamic if the tasks value can change during
execution, (Burns and Wellings, 2009).

Priorities

A task can be given a priority by the scheduler, based on the nature of the task.
The Priority assignment can happen in different ways.

• Static: The tasks are assigned priorities pre-run time.

• Dynamic: The tasks are assigned priorities at run time.

• Adaptive: The tasks are assigned priorities which may change during run
time.

When a task is ready to execute, but is currently unable because a higher priority
task is being executed, it suffers interference. If a task that is ready to execute
continuously suffers interference, it may cause the task to starve, missing its deadline,
and never being executed. Priority inheritance is a term used to describe a solution
to a situation where a high priority task is blocked from executing because it is

39



waiting for a lower prioritized task to either finish or unlock a certain variable.
Priority inheritance lets the lower prioritized task inherit the higher priority from
the other task temporarily, until the resources necessary for the highest priority
task to continue are released. If a task is waiting to execute in favor of a lower
prioritized task due to priority inheritance, the task is said to be blocked.
(Burns and Wellings, 2009).

Existing Scheduling Disciplines

There exists a large number of scheduling disciplines. Some are more common and
known than others, such as the ones listed below.

First In, First Out
Commonly known as FIFO, or FCFS(First Come, First Served). A simple non-
preemptive scheduler, that simply lets the processor handle the task with the earliest
arrival time, i.e. the first task to arrive at the system gets handled first.(Shaw,
2001)

Round Robin
Round Robin, RR, is a scheduling policy without priorities, that assigns a fixed
time interval of execution to each task, and cycles through them. RR is preemptive,
as it may have to interrupt a running task at the end of the time interval in order
to execute the next task. (Shaw, 2001)

Rate Monotonic
Rate Monotonic, RM, is a static priority scheduler, assigning the tasks priorities
based on their cycle duration. Shorter cycle gives a higher priority. RM is
preemptive, beneficial for the highest prioritized task.(Burns and Wellings, 2009)

Earliest Deadline First
Earliest deadline first, EDF, is a dynamic scheduling algorithm, assigning tasks
priorities relative to their absolute deadline. In run-time, EDF will search the task
set for the task closest to its deadline. This task will then be executed by the
processor. (Burns and Wellings, 2009)

Shortest Job First

Shortest Job First, SJF, is a non-preemptive scheduling algorithm, that selects
the job with the shortest estimated execution time to execute first. If new jobs
with short execution times are frequently admitted to the system, other tasks with
longer execution times may suffer starvation. (Shaw, 2001).
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Gantt Chart

To illustrate the executions performed by the processor, a Gantt chart is commonly
used. A Gantt chart is a time dependent bar chart, with tasks or activities listed
along the vertical axis, and time along the horizontal axis. Normally, for real-time
scheduling, Gantt charts can illustrate the different tasks executing, waiting, locking
resources, etc. A Gantt chart gives a general idea of the resulting CPU behavior
a scheduling policy will cause. An example of a Gantt chart marking execution
of three tasks, using the Round Robin scheduling policy can be seen in figure 3.2,
(Burns and Wellings, 2009).

Figure 3.2: Gantt chart showing processor execution in grey. Three tasks using a
Round Robin scheduler.

3.2 Existing Scheduling Simulators

There exist several simulators for simulating processor behavior given a certain
scheduling policy, similar to the software to be developed in this project. Some are
text-based, and some have a Graphic User Interface (GUI).

3.2.1 Process Scheduling Simulator

The Process Scheduling Simulator, PS, is a Java-application, created to let the
user experiment with different scheduling strategies through a GUI, (Robbins,
2007). Processes to be simulated consist of four values: Arrival time, total cpu time
needed, cpu burst time distribution and I/O burst time distribution. The burst
times are described by probability distributions. After simulating the processes,
Gantt charts can be generated and examined. A screenshot of the application can
be seen in figure 3.3.
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Figure 3.3: A screenshot of the Process Scheduling Simulator application, with
resulting gantt chart.

Supported scheduling policies are listed below.
• First In, First Out

• Shortest Job First

• Round Robin
After running an experiment, a table of related statistics and calculations can be
generated for the simulated schedulers, see figure 3.4.

Figure 3.4: A screenshot of a table of resulting data after a simulation in the
Process Scheduling Simulator application

3.2.2 CPU Scheduling Simulator
CPU Scheduling Simulator, Cpuss, is a simulator written in C# 3.0, created by
Granville Barnett in 2008, (Barnett, 2008). It is meant to let the user gather metrics
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on scheduling algorithms, and create and implement new algorithms. Implementing
a new scheduling algorithm requires a implementation of the IStrategy interface,
which contains two methods:

• void Execute(Runner runner); Contains the algorithm of the scheduler.

• string ToString(); Returns a string that includes the name of the scheduler.

A Runner is a type that takes two arguments: a processLoad, which is a set of
processes, and a scheduler algorithm. The Runner is then used to invoke the
simulation by calling the method: Runner::Run(). The simulation offers four
events,: ProcessStarted, ProcessPreempted, ProcessResumed and ProcessCompleted.
They can be used to print out events to follow the progress in the simulation.
Cpuss has a report generator, which allows a user to perform a test scenario
using a specified scheduling strategy. Test processes are autogenerated in three
different sizes: small, medium and large. The report consists of graphs and
matrices on relevant information, like response-time. The Execute method in the
scheduling strategy is supposed to take a runner type object, put the processes
in the correct order, and tell the CPU to execute them by using the runner
function: UtilizeCpu(process). This means that the scheduler only has to run
its Execution algorithm one time the a runner object. The user thus needs to be
familiar with the runner type to successfully implement a new scheduling algorithm.
Pre-implemented schedulers are listed below.

• First In, First Out

• Shortest Job First

• Round Robin

• Priority First

3.2.3 SCHEDuler SIMULAtor
SchedSimula is an event driven C++ simulator for a set of pre-implemented
scheduling policies (University of Padova, 2012). Each scheduling policy implements
the functions void insert(Task p), which are methods for gives the scheduler
a ready task, and Task extract(), which returns a ready task to execute. The
result from the simulation is only readable through KIWI Format Viewer. The
simulator can simulate periodic task sets, and five scheduling policies, which are
listed below.

• First In, First Out
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• Last In, First Out

• Earliest Deadline First

• Rate Monotonic

• Deadline Monotonic

3.2.4 CPU Scheduler Application
The CPU Scheduler Application is a Simulator written in Java2 SDK, (Weller,
2006). It is an application with a Graphical User Interface,GUI, created to simulate
a randomly generated set of 50 processes with different schedulers. The application
simulates the progress of the processes, and lets the user change the scheduling
algorithm during the simulation, see figure 3.5.

Figure 3.5: CPU Scheduler Application. Current algorithm being used: FIFO.
Ready processes are marked in blue. Process currently executing is marked in red.

Information about response- and turnaround time is being updated in real-time,
and the progression of the simulation can be paused and unpaused. The auto-
generated process-set can be saved and reloaded to compare scheduling algorithms.
The processes have three parameters: initial burst time(execution time), de-
lay(arrival time), and a priority from 0 to 9. There are four supported scheduling
algorithms in this application.

• First In, First Out
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• Shortest Job First

• Round Robin

• Priority Weighted (using randomly set priorities)

3.2.5 SimSo
SimSo is s scheduling simulator based on the python written discrete-event simulator
SimPy 2.3.1, (Chéramy, 2014). This simulator centers around multiprocessor archi-
tectures, with the ultimate goal to simulate modern schedulers in a multiprocessors-
system with all overheads included. The current SimSo simulator can simulate the
loss due to context switching and scheduling decisions as overheads. Through a
GUI interface, the user can generate task sets, choose scheduling algorithms, set
up processors, and run the simulation, see figure 3.6.

Figure 3.6: Screenshot of the SimSo GUI, image from (Chéramy, 2014).
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Simso can also be used as a library, using the scrips and source code instead of
the GUI. The source code consists of four main modules.

• simso.core: consists of classes needed for simulating.

– Scheduler

– Task

– Job

– Model

– Processor

– Timer

– Logger

• simso.configuration contains a simulator configuration.

– Configuration

• simso.generator Generates tasks.

• simso.utils Used for multiprocessor simulations.

– PartitionedScheduler

SimSo currently supports 25 schedulers, the majority customized for multipro-
cessor systems. The uniprocessor schedulers are listed below.

• Earliest Deadline First

• Rate Monotonic

• Fixed Priority

• Static-EDF

• CC-EDF (Real-time dynamic voltage scaling)

The multiprocessor schedulers implemented in SimSo can be classified within the
following categories:

• Uniprocessor schedulers adapted to multiprocessor

• Partitionned

• PFari
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• DPFair

• Semi-Partitionned
New scheduling policies may be added to SimSo. By creating a new class that inher-
its from the Simso.core.Scheduler class, a set of methods must be implemented.
The methods are listed below.

• def init (self): Called when the simulation is ready to start. Initializing
structures used by the scheduler must happen here, and not in the constructor.

• def on_ activate(self, job): Called when jobs are activated.

• def on_ terminate(self, job): Called when a job finishes its execution.

• def schedule(self, cpu): The function called by the processor when the
scheduler needs to run.

When all these methods are implemented in a new class, the name of the class
must be the same as the filename. The new scheduling policy is implemented.
To run a simulation, a configuration must be created. The configuration is a
composition of tasks, duration, processors and a scheduler. The configuration is
then added to a model. The simulation is started using the method "simso.run_
model()".
Task sets to be simulated can be autogenerated. Currently, both periodic and
sporadic tasks are supported, but to create sporadic tasks, activation dates must
be manually specified.
The simulation results provides an overview of the overhead and system loads that
were induced by the simulation, a log, stating when tasks started and ended. A
Gantt chart can be generated after the simulation, showing how the CPU/CPUs
executed the different tasks in the task set.

3.3 Software and Tools
To conduct the software development project for this thesis, a set of existing open
source tools were used.

3.3.1 yEd Graph Editor
yEd is a graph editor, used to create, arrange, import and export diagrams and
graphs. This editor was used to create class diagrams, use-cases, flow charts, state
machine charts, and in general diagrams to illustrate system behavior and structure.
yEd has an intuitive user interface, based mainly on a drag-and-drop technique.
(yWorks, 2015)
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3.3.2 Microsoft Visual Studio
Microsoft Visual Studio is a development environment for Windows, with included
compilers for i.a. C/C++. To sustain cross-platform properties for the software,
no specific Microsoft libraries were used during the development. (Microsoft, 2015)

3.3.3 rtsched Latex Style
rtsched is a LATEXstyle created by Giuseppe Lipari to generate Gantt charts.
Through a set of commands, a diagram is created, and tasks can be graphically
presented as arrived, executed and interrupted.
(Lipari, 2005).
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Chapter 4

Work and Development

4.1 Evaluating Existing Solutions

When creating a new software, evaluating already existing solutions can be helpful
to map useful features. Based on the solutions described in section 3.2, an evaluation
was conducted, first based on each solution, and finally by reviewing the features
demonstrated by these solutions.

4.1.1 Process Scheduling Simulator

The Process Scheduling Simulator has a GUI to execute simulations, which gives
the user a visual input when setting up the simulation. The GUI in this case
is very complicated with a large amount of buttons. This may not simplify the
simulation set-up, but work against its purpose and confuse and discourage the
user. A Gantt chart can be generated after running the simulation, giving a visual
representation of the process-execution time line. The Gantt chart from the PS,
shown in figure 3.3 has an untraditional Gantt chart layout, but it is still serving
the purpose of a visual presentation of the processors work. The processes used in
the simulation does not have a deadline variable, and thus, deadline-misses can not
be recorded. This simulator can be a suitable tool to get a visualization of how
the FIFO scheduler behaves compared to the SJF scheduler, as it also provides
a statistic table of the two schedulers performances, shown in figure 3.4. The
simulator falls short of actually comparing the two algorithms through measuring
missed deadlines, which is an important factor for a real-time system. There is
no option to add new schedulers to the system, and it is not tailored to manually
specify new task sets.
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4.1.2 CPU Scheduling Simulator

The CPU Scheduling Simulator is a text-based simulator, offering the user the
possibility to add new scheduling policies. The new scheduling policies has to
implement two methods, with the void execute(Runner runner) being the more
significant of the two. This method has to call on the CPU-simulator, using
the runner object, to execute processes. This demands that the user has great
knowledge of the Runner-type and the overall flow of the simulation. Thus the
execute algorithm can be demanding to create, and puts a lot of responsibility
on the user. Processes can be auto-generated in three sizes: small, medium and
large, which simplifies the process-initialization. The processes have no deadline,
and thus deadline-misses can not be logged.

4.1.3 SCHEDuling SIMULAtor

This text-based simulator written in C++ is obviously in the beginning of development,
judging by the little available documentation and the limited user-friendliness.
Even though no user tutorial or description exists, it could be possible to add
new scheduling algorithms, following the pattern of the other already implemented
scheduling policies. This means that the user has to implement a comparing class
to sort out the highest prioritized processes, and understand the correct behavior
of the simulated processor. This can be challenging. The resulting output from
the simulation can only be read through a software called KIWI. The simulator
only supports periodic tasks, and they do not have deadline variables, and thus,
deadline-misses can not be logged. All in all, this is a simulator with limited
flexibility, which requires a user who understands the bits and pieces of the entire
software to utilize it properly.

4.1.4 CPU Scheduling Application

The GUI for this scheduler is visual and intuitive to understand and use. The
play/pause function lets the user easily manipulate the time and examine specific
areas. The real-time response from the system, showing process execution progress,
provides a simplistic way to understand how the pre-implemented schedulers work.
The processes are auto-generated and can be saved if the user wishes to reuse the
same set of processes in a different simulation, but the processes themselves can
not be specified through the GUI, nor do they have deadline-variables. The user
is not meant to be able to add new scheduling policies for this simulator, and so,
only the pre-implemented scheduling policies can be used in simulations.
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4.1.5 SimSo
The python based SimSo provides the user with freedom to add scheduling policies,
generate and customize task sets and processors through the GUI. The simulation
results provides Gantt charts and logs of tasks start time, abort-time and completion-
time. The deadline misses are poorly marked in the Gantt charts, and are only
shown in the tasks-logs if the specific task is marked for: "abort in case of deadline
miss" pre-simulation. Even then, spotting the aborted task in the log can be
difficult. Many of the features in SimSo are created to fit multiprocessor systems,
and they become redundant for uniprocessor systems. The possibility to create
new scheduling policies demand the user to implement four algorithms within
strict constraints for the simulation to work. The scheduler also has to create and
administer its own task-container. Knowledge of python is acquired.

4.1.6 Evaluation of Features
Based on the evaluation of existing scheduling simulators, a list of features to avoid
and to preserve in the new software emerged.

GUI can be useful to create a platform for the user to create simulations,
but if overly complicated the user may find it confusing. If the user has the
possibility to create new scheduling policies, they may have to use an editor
and familiarize him or her self to the corresponding programming language
and system architecture any way, and a GUI can be redundant.

Creating new scheduling policies is a great way for the user to utilize
the simulator in a customized way, but the implementation should not require
too complicated behavior from the scheduler, nor force the user to get overly
familiarized with the rest of the system.

Creating tasks to simulate is easy when they are auto-generated, and the
possibility to save a task-set to rerun it with a different scheduler facilitates
comparing two or more scheduling policies. A task should have a correspond-
ing deadline to be used to log any deadline misses. Specifying variables for
the task, like size, deadline, etc can be useful when using schedulers that
favors some task properties over others.

Results and logs are useful to record the behavior of the simulated scheduler.
Gantt charts provide a visual presentation of the processors behavior, and
deadline misses should be clearly marked. Deadline misses affect the quality
of a real-time system, specially hard real-time systems, see section 3.1. Other
useful statistics should be included. The report containing the results and
logs should have a common, easy-to-use format.
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4.2 Software Development Project: Scheduling
Simulator

For the software development project for this assignment, the supervisor of the
thesis operated as the client, while the author operated as the developer. The
software was created using a mix of strategies from various software development
methods. The simulator was created and tested through incremental iterations.
The documentation for this software can be found in chapter 6. The software
was created in C++ programming language. This language is commonly used for
real-time systems, and since this software is meant to facilitate choices regarding
scheduling for developers of real-time systems, using a language a potential user is
familiar with is nothing but logical. C++ also provides the possibility to easily use
design patterns, described in section 2.3, as it is object oriented.

4.2.1 Choosing Software Development Method
The new scheduling simulator software, created by the author, was developed
based on the best practices within software development described in section 2.1.
As mentioned, a common practice is to "pick and mix" strategies from different
methods to fit the nature of the relevant project. The final "picked-and-mixed" list
of strategies and methods are listed in table 4.1.
In this project, as the developer is learning theory and developing at the same
time, a strict step-by-step model, with little flexibility, like the Waterfall model
described in section 2.1.1, seemed like a non-suitable software development method
for this case. Incremental and iterative methods, described in section 2.1.2, on
the other hand, are more flexible, allowing the developer to design, create and learn
from the process and try again. Agile development methodologies, described
in section 2.1.7, utilizes iterative and incremental strategies, and are often used
in today’s developing projects, as the Agile methods are light, open-minded and
emphasize a social work space. The project in hand was to be developed by one
person, and so the factor of sociability, such as "pair-programming" in extreme
programming, section 2.1.9, has no significance for the developer and her work.
The Scrum development method is primarily created for a team of people, see
section 2.1.8. The social aspects are also here essential and mostly irrelevant for
this project, but the daily scrum could still be useful, as it promotes self-reflection
and encourages all progression to be in a goal-orientated direction. The sprints
are also applicable to this project, as they help dividing a large goal into smaller,
more achievable goals. Frequent contact with the costumer is mentioned to be
essential throughout all the light-weight methods, be it though prototyping, early
releases or just through meetings and written reports. The contact is there to keep
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the developer from creating a product that does not meet the expectations of the
costumer and to keep the developers focus on the requirements. Another way to
preserve requirements is simplicity, supported by the software philosophy to Keep
It Simple, Stupid.

Table 4.1: "Picked-and-mixed" Software Development Methods

Method Which qualities and why

Scrum The daily scrum, and sprints

Iterative and
Incremental
Development

Related to sprints. Increasingly larger soft-
ware through cycles of development.

Agile Development Light and flexible development. Emphasizing
working code.

KISS Simple behavior to explain may perhaps lead
to good code.

4.2.2 Specifying Requirements
The supervisor of this project had a vision of what properties the software should
have. The supervisor thus took the part of a "client", while the student working
on this project was the "developer". To understand the functionality the client
wanted from the software, a client-developer meeting was held. In section 2.2.1 it is
described that when communicating with a client, and when creating a specification,
general language is must be used. A set of questions were created, using common
words rather than technical terms. By asking open ended question, the developer
invoked the client to fill in with thoughts and wishes, facilitating the uncovering
of what the client really wanted, rather than filling in technicalities based on the
developers preset understanding of what the final product should be. The pre-made
questions for the meeting were:

• What kind of software tool is this going to be?

• What is the wanted result?

• What is the input and output of this software?

• Who is the user of this software tool?

• How is the software tool to be used?
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• What separates this simulation tool from other existing tools?

• What functionality should the software tool have?

The actual client-developer meeting had a dynamic dialog, and so the questions
were altered to fit the conversation and to benefit from the topics discussed. A
report from the meeting can be seen in A.1. The software requirements were
specified using the information from this meeting, the assignment text for the
project, and the evaluations of other existing solutions in section 4.1. Based on
the requirements for the new software, the key features from the evaluation of the
existing solutions were reviewed again, as shown below.

GUI is not necessary. A text based user interface is sufficient, as the user of
the software is intended to be a person with knowledge in C++

Creating new scheduling policies shall be possible in the new software,
and the simulator shall be as open as possible for new scheduling policies to
be added and simulated.

Creating tasks to simulate shall be possible in the new software, both by
creating them manually and by generating a task set. Task shall contain
enough information to record potential deadline misses.

Results and logs shall provide any useful statistics and information, both
graphical and numerical. Gantt charts are preferably a part of the output.

Representing the requirements in different formats is a way to preserve the
wanted functionality later in the design process. Use-cases were used to separate
and identify the different levels of interaction between the user and the simulator,
and the interaction between the processor simulator and the scheduler. Since
the developer used mainly an iterative Agile software development method, the
requirements were not fixed at the beginning of development, but they evolved
through conversations with the client. The Requirement Documentation can be
seen in section 6.1.

The unit of time used in the simulator software is irrelevant, as long as all time
elements are set proportional to each other. For the sake of clarity, the time unit
ms will be used though the development and software description, but the mention
of a time unit will have no impact on the resulting output from the simulator.
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4.2.3 Iterative and Incremental System Development Pro-
cess

The Agile development methodologies suggests that incremental and iterative
improvements are desirable when developing a program. Sprints, described in
section 2.1.8, are a form of iteration cycles used in Scrum. Goals are set, and are
attempted to be completed by the end of the sprints duration. This software was
developed using incremental sprint-like iterations, where the iterations are restricted
by requirement goals, and not by duration. A basic simulator was developed first,
and gradually improved and expanded to fit the mapped requirements. The
following sections describes the iterative evolution of the software and design
choices. Further class-descriptions and class-design choices are described in section
4.2.4. Four iterations were completed to reach a level where the software adequately
satisfied the requirements.

First Iteration: Core Functionality

In the first iteration of development, the basis of the wanted software behavior
was created. The core functionality of the software is specified in the following
requirement.

Requirements:

• The software simulates a scheduler and a task set.

In order to simulate a scheduler and a task set, two objects are required in addition
to a platform where the simulation can take place. The scheduler needs to be
able to schedule a task on demand, and a task should have some properties the
scheduler can base its choice on. A task set demands some sort of a container for
task objects. Based on this, a simple class diagram was created, shown in figure
4.1.
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Figure 4.1: Basic system class diagram, first iteration

.
The Scheduler class is a class representing a scheduling policy. The function
"Task schedule(TaskSet)" gives the scheduler a taskset, lets the scheduler access
all the tasks, and returns the task best suited for execution, according to the
scheduling logic.

The Task class is a class representing a task, 3.1.2.

The TaskSet class is a container for Task objects.

The Simuator class is a class where the scheduler and the task set is combined
and the simulation is conducted.

What was learned from this iteration: The simulator must contain a scheduler
a task set.

Second Iteration: Simulating a RM Scheduler on a Specified Task Set

Incremental developing expands the software portion of interest for each iteration.
The second iteration included a new requirement of interest.

Requirements:

• The software simulates a scheduler and a task set.

• The output of the system consists of relevant plots and graphic representations
of the results.

The goal for this iteration was to simulate a Rate Monotonic Scheduler for a
specific task set, gather relevant information, and generate an output consisting of
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plots and graphic representations of the results. A simplified class diagram for this
system can be seen in figure 4.2. The output produced by this early implementation
was a simple Gantt chart, see section 3.1.3, created with ASCII characters in a
.txt document. Being able to access all tasks enabled the RM scheduler to assign
priorities to the tasks based on their period before the simulation. The Model
class created the output file with a Gantt chart based directly on the preset task
priorities.

Figure 4.2: Simplified system class diagram, second iteration

.
The RM class is a class representing the Rate Monotonic scheduling policy. It
assigns priorities to all the tasks in the task set, based on their period-time.

The Task class is a class representing a task.

The TaskSet class is a container for Task objects.

The Model class is a class where it calls upon the RM scheduler to set the
tasks priorities, and then uses the task priorities to create a ASCII-based Gantt
chart.

The complete class diagram can be seen in A.2.1. A resulting output from this
system can be seen in A.2.2.
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What was learned from this iteration: The software developed in this
iteration could only simulate periodic tasks using an RM scheduler. The final
product must be able to simulate several schedulers, thus the connection between
the model class and the schedulers class must be less dependent on the schedulers
type. Also, the simulators behavior should not depend on task priorities, as it does
in this system.

Third Iteration: Simulator for all Schedulers with Specified Task Sets

Requirements:

• The software simulates a scheduler and a task set.

• The output of the system consists of relevant plots and graphic representations
of the results.

• The simulator is openly created to simulate new scheduling types.

The second iteration system included only one type of scheduler to simulate. In
this iteration, a system allowing new schedulers to be implemented and simulated
was created. The design pattern Strategy, from section 2.3, is applicable. The
schedulers can be seen as a "family of algorithms", and the Strategy pattern lets
the scheduling "algorithm vary independently". Combining this with the Template
Method pattern, where "the skeleton of an algorithm" is defined, the "the subclasses
redefine certain steps if the algorithm ...". Based on figure 2.15 and figure 2.16, the
structure for schedulers in figure 4.3 was created. This design allows new scheduling
policies to inherit the scheduler class, and define their own logic in the scheduling
algorithm. The external system can only see a Scheduler class, and can utilize the
same interface regardless of which Scheduling sub-class the system is interacting
with.
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Figure 4.3: Structure of the abstract Scheduler class with sub-classes

Based on the system created in the second iteration shown in figure 4.2, changes
were made to accommodate the new Scheduler class. A Simulator class was added
to contain the behavior of the simulated CPU. The resulting system is shown in
figure 4.4
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Figure 4.4: A simplified Class Diagram of the Scheduler Simulator after the third
iteration

The Model class contains a Scheduler, a Set of Tasks and all additional infor-
mation needed to create a simulation, such as specified simulation run time and
clock interval time.

The Simulator class executes the simulation of a Model object. The simulation
is event-based, i.e. the current event decides the action taken by the simulator.

Events are created and stored in a Queue by the Simulator.

The Monitor class is responsible for logging the behavior of the simulator and
generating relevant reports.

LogEvents are stored in a Queue by the Monitor.

Task sets, Event queues and LogEvent queues are all object containers. Instead
of creating three designated classes to accommodate their almost equivalent needs, a
design pattern was used. The Iterator pattern, see section 2.3, gives the opportunity
of creating reusable containers with corresponding iterators, providing a protective
layer for the content of the containers. Inspired by the Iterator pattern with
structure shown in figure 2.12, the container-iterator system shown in figure 4.5,
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was created.

Figure 4.5: Simplified class diagram of the container and iterator system, based on
the "Iterator design pattern"

The AbstractContainer class is an abstract class, providing the main inter-
face for interaction with the sub-container classes.
The Set class is a container for storing objects when the order is insignificant.
The Queue class is a container for storing objects. The Queue can be sorted.

The AbstractIterator class is an abstract class, providing the interface for
interaction with the sub-iterator classes.
The GeneralIterator class represents an iterator that can traverse both a Set-
object and a Queue- object.
The AvailableTaskIterator class represents an iterator traversing a Set- object
storing Task pointers. The AvailableTaskIterator returns only available tasks,
i.e. Task-objects ready for execution.

What was learned from this iteration: The design patterns provide
reusable and low maintainable code. Separating responsibility between designated
classes ensures and helps achieving correct behavior.
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Fourth Iteration: Simulator for all Schedulers with Generated Task Sets

The fourth iteration incremented the amount of requirements to be met, thus
including all main requirements relevant for architectural aspects.

Requirements:

• The software simulates a scheduler and a task set.

• The output of the system consists of relevant plots and graphic representations
of the results.

• The simulator is openly created to simulate new scheduling types.

• The simulator is able to generate task sets.

• The user is able to chose the distribution of the generated task sets.

To be able to generate task sets, a TaskHandler class was added. The
TaskHandler contains task-relevant functionality needed by the Model and Simulator
classes. The TaskHandler is used to generate task sets inside a Model object. This
relationship is illustrated in figure 4.6.

Figure 4.6: Simplified Class Diagram. The TaskHandler class is an object within
the Model class

The final class diagram for the Scheduling Simulator is shown in figure 6.4.

4.2.4 Class Descriptions and Design Choices
The classes and their functionality were created and evolved during the iterations
described in section 4.2.3. This section describes and explains the class design
choices made by the developer. The final design and architectural documentation
can be found in section 6.2.
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The Task Class

A Task object represents a processes or an executable thread. Based on the simpli-
fied task life span state diagram in figure 3.1 and section 3.1.2, a set of states were
specified for the task class, listed in table 6.2.
The Task data members were created based on their relevance for simulating a
scheduler. The existing scheduling policies listed in section 3.1.3, uses arrival
time(FIFO), deadline(EDF), period(RM) and estimated execution time(SJF) to
make their decisions. Additional Task information may be relevant for other
schedulers, such as the Tasks overall progression of the execution. Based on these
factors, the Task data members listed in table 6.3 were created.
To protect some of these variables from modification by other classes, all data mem-
bers, except for priority, were set as private members. Simple get- functions
were implemented for these data members, giving others, such as the Scheduler
class, a read-only access. The priority member is created for the sake of the
Scheduler, and is thus both read- and writable for the Scheduler.
Periodic Task objects contain a non-zero period value, giving the Tasks a cyclic
execution behavior, whereas aperiodic Task objects’ periods are equal to zero, and
they are only executed one time. The complete Task class can be seen in figure 6.5.

The Model Class

The Model class was created to contain all the parameters needed to conduct
a simulation. This way, several Model objects can be simulated by the same
Simulator object. The main data members of the Model are a pointer to a task
set to be executed, and a pointer to a Scheduler object. Other parameters address
the simulation run time, which is default set to 150 ms, and the clock cycle, which
is default set to be 1 ms. The Model data members are listed in table 6.4.
The Model is implemented with multiple constructors, giving the user several
possibilities to create a Model object and set its variables. The multiple constructors
make the user choose to either create a task set manually and give it to the Model,
or have the Model generate a task set itself. The different Model-constructors are
listed in table 6.5. The complete Model class can be seen in figure 6.6. A string
with a model name must be given to the Model object, to later be used as a name
for the resulting simulation report generated by the Monitor object.

The TaskHandler Class

The TaskHandler class is used by the Model class. The TaskHandler class is,
among other things, responsible for generating Task objects. The generation of
Task objects are based on a normal distribution. The TaskHandler can generate
both periodic an aperiodic Task objects, and distributes them accordingly.

63



The TaskHandler handles the Model object’s Task set, and executes Task-related
functions during simulation, such as updating Task states corresponding to the
simulation progress and discovering missed deadlines. The complete TaskHandler
class can be seen in figure 6.7.

The Event Class

The Event class is utilized by the Simulator class. Event-objects consists of an
EventTime and an EventType. The EventType represents events happening during
the simulation, and the EventTime is the time of the event. The different types
of events are based on whenever a scheduler might have to make a decision. The
EventTypes are listed in table 6.6. The complete Event class can be seen in 6.9.

The Simulator Class

The Simulator class represents a simulated processor, executing Task objects
based on a scheduling decision. The Simulator class simulates Model objects, thus
one Simulator object can run simulations of several Model objects.

Simulation Behavior:
The simulation is event-driven. Events are queued, and the event closest in time
is read from the queue. The Simulator responds to the current event with a
corresponding action. Events are created and added to the queue at different
occasions:

• At time zero: A SimulationFinished event is created.

• At TimeInterrupt: A new TimeInterrupt event is created for preemptive
Scheduler- objects.

• When no Task is available: a TaskReady event is created for the future
when a task becomes available for execution.

• When a Task is being executed: a TaskFinished event is created for the
future, for when the task ideally finishes its execution.

If a Task currently being executed is interrupted, its corresponding TaskFinished
event will be deleted from the Event queue. When a SimulationFinished event is
reached, relevant reports are generated, and the Simulator object is free to simulate
other Model-objects. This form of event-driven behavior allows the Simulator to
only react and respond when needed. The complete Simulation class can be seen
in 6.8. A flow-chart of the Simulators behavior is shown i figure 6.16.
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The Monitor Class

The Monitor class logs relevant events and generates a report at the end of
each simulation. During a simulation, a Monitor- objects keeps track of a queue
of LogEvent-objects, adding LogEvents when needed. When the simulation is
finished, the queue is traversed and a report is generated based on the chain of
events. The report is created using LATEXand the rtsched LATEXstyle to generate a
pdf format file, 3.3.3. To mark deadlines specifically, a new function was added
to the rtsched LATEXstyle, called DeadlineMissed. The name of the resulting
pdf file is set to be the string name of the corresponding simulated Model-object.
Relevant output information from the simulation were considered to be: information
about the simulated task set, resulting CPU behavior and deadline misses. Visual
presentation of the Task executions is provided using Gantt charts, as they are
easy to understand and they include a time domain representation. The average
turnaround time (see section 3.1.3) is included in the resulting reports to measure
the efficiency of the simulated scheduler. Information to directly compare the
performance of schedulers is useful, such as the CPU utilization, see section 3.1.1.
The complete list of elements presented in the output report can be seen in table
6.1.
The complete Monitor class is shown in figure 6.10.

The LogEvent Class

The LogEvent class is used by the Monitor class to store relevant events during
the simulation. The LogEvent class has three attributes, which are the time of
the event, the EventType and the event related Task. The different EventTypes,
listed in table 6.7 were created to cover all the information needed to generate the
wanted report content post-simulation. The complete LogEvent class can be seen
in figure 6.11.

The Scheduler Class

The Scheduler class is a base class for scheduling policies. New scheduling classes
can inherit this base class to implement their scheduling behavior. The Scheduler
base class shall provide an open environment to permit implementation of existing
as well as future scheduling policies. Considering the existing scheduling policies,
the matter of preemption is essential, see section 3.1.3. Letting the scheduler itself
state whether or not it has preemptive behavior enables the Simulator class to only
ask for scheduling decisions correspondingly. This can simplify the implementation
process for a new scheduler, as the scheduler logic does not need to consider the
circumstances at the time it is asked to make a decision. A preemptive scheduler
is called upon periodically, regardless of a task is currently being executed or

65



not, while a non-preemptive scheduler is only called upon when no task is being
executed. Future schedulers may not have this strict distinction, but using the
preemptive version enables great freedom for the new scheduler to implement its
own logic by filtering out unwanted scheduling calls.

The scheduler logic is decided by the implementation of the virtual function
"Task* schedule(double time)". This function must be implemented in the
new scheduling sub-classes. This function takes the simulation progression time
as an argument, and returns a pointer to the optimal Task object to execute,
according to the scheduler policy. A vast variations of schedulers can implement
this function to contain their own logic. Additional internal functions and variables
can be implemented in the new scheduling sub-class to assist the logic in their
scheduling function.

The Scheduler object should be able to access relevant Task data members,
but should not be able to change them, with one exception; the Task’s priority.
This problem is solved in the implementation of the Task class, using get-functions,
see section 6.2.2.
The Scheduler is not allowed to add new Task objects to the system. Using
iterators to traverse the task set provides a protective layer, giving the Scheduler
class a "read-only" access to the task set. As opposed to a queue of Task objects
in the state READY, an iterator is provided to only return available Task and filter
out Task objects in states indicating that they are not ready for execution. Future
scheduling strategies may need to consider all Task objects in the system, and for
this purpose another iterator is added, traversing the entire task set, regardless of
the Task objects state. So, The Scheduler class can see all tasks in the system, but
can only let the "Task* schedule(double time)" return a task from the filtered
iterator. The complete Scheduler class can be seen in figure 6.12. Currently, four
sub-classes of the Scheduler class are implemented:

• FIFO

• RR

• RM

• EDF

The Container and Iterator Classes

Based on the Iterator design pattern, 2.3, a reusable system of containers and
iterators were created. An iterator provides a protective layer between the
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user and the contained objects. The two base classes AbstractContainer and
AbstractIterator provide the interface for interactions with the containers and the
iterators. Subclasses of the AbstractContainer class can add additional functionality
to meet specific needs. Two different containers were created:

The Set class is primarily created for sets of unordered objecs, where accessing
an object at a specific index is important. The Set class uses a std::vector to
store objects. Task objects are stored in a Set container, creating a task set.

The Queue class is created to accommodate sorted queues of objects, only needing
the first, and optimal, element in the queue. Event objects and LogEvents are
stored in Queue objects.

A general iterator class, called GeneralIterator, was created to traverse the
objects stored in both Set objects and Queue objects.
A filtered iterator class, called AvailableTaskIterator, was created specific for
Set objects containing Task objects. The AvailableTaskIterator points only to
Task objects available for execution, i.e. tasks in the states READY, RUNNING
or WAITING.

The complete system of containers and iterators can be seen in section 6.2.10.

4.2.5 Creating Documentation

The documentation was created during the development of the software, and
was updated when changes were made. In section 2.2, key aspects involving
documentation are pointed out. Emphasizing Agile development methodologies,
slim, sufficient and readable documentation was desirable to produce for this
software project.

Requirement Documentation

Requirement documentation was created using the theory described in section
2.2.1. Written, precise requirements were created, describing the main goals of
the software. To supplement, User Stories were created based on the written
requirements. Use Cases were created to portrait the interactive behavior of the
software. Two Use Cases were created to illustrate the user-software interaction,
and one Use Case was created to illustrate the internal behavior of the software.
The requirement documentation can be seen in section 6.1.
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Architecture and design

The architecture and design of the software was documented, and continuously
updated during the development, evolving into an up-to-date description of the
structure and relations of the classes in the Scheduler Simulator. Using written
words, tables and diagrams, the architecture was documented to enable another
person to read and understand the bits and pieces of the created software without
too much unnecessary descriptions. The goal of this documentation was to present
the software design without too much explanations of why these design choices were
made. As stated in section 2.2.2, using diagrams may provide a good overview and
help conveying the information. Based on this information, class diagrams were
used to illustrate the different classes and the design of the software. A simplified
class diagram presenting the entire system was deliberately placed in the beginning
of the documentation to provide the reader with an overview before proceeding to
read detailed descriptions of each class. The architectural documentation can be
seen in section 6.2

User Documentation

The user documentation consists of two main parts: the final-documentation and
the end-user documentation (section 2.2.3).

The final-documentation is meant to provide enough information for a main-
tenance personnel to operate the system when launched. Providing explanatory
comments, referencing to the architectural documentation, referencing to code
documentation, explaining shortcomings and external dependencies seems to fulfill
this demand. Good structure and readability were emphasized when creating
the final-documentation, using a natural and unambiguous language. The final-
documentation can be seen in section 6.3.

The end-user documentation must provide enough information for a user
to utilize the software as intended by the developing team. Too much information
may confuse and unnecessarily force the user to learn about functionality he or
she indirectly interact with. For this software, the user needs to be able to do two
operations:

• Run a simulation.

• Add a scheduling policy.

An appealing way to do this is descriptive tutorials, walking the user step by
step through the needed actions to make these two exact things happen. The
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tutorials will enable the user to expand and utilize the software. Using tutorials,
only the necessary amount of information is shown to the end-user. The end-user
documentation, containing tutorials for using the Scheduler Simulator, can be
found in section 6.4.

4.3 Test Runs of the Scheduling Simulator
To test the limits and the functionality of the finished developed Scheduler Simulator
software, a series of tests were conducted. All the tests were executed by a single
run of the Scheduler Simulator program, using one Simulator object to simulate
six Model objects.

4.3.1 Simulate Specified Task Set
Using a specified Task set, created manually, all the four implemented scheduling
policies were simulated. The simulation run time was 200(ms), clock cycle and
context switch penalty were default set to 1 ms and 0 ms, respectively. The
simulated Task set can be seen in table 4.2.

Table 4.2: Manually created Task Set

Task number Arrival Time Execution Time Deadline Period
1 0 24 100 100
2 0 20 80 80
3 0 20 60 60

The simulated schedulers were:

• RM scheduler.

• FIFO scheduler.

• RR scheduler.

• EDF scheduler.

The results can be seen in section 5.1.

4.3.2 Simulate Generated Task Set
Using the EDF scheduler, two test runs were conducted with generated task sets.
The simulation test runs are presented in table 4.3. The amount of tasks was varied
to discover limitations in the capacity of the simulator.
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Table 4.3: Simulation runs with Generated Task Sets

Simulation number # Periodic Tasks # Aperiodic Tasks Run-Time
1 5 5 100
2 10 10 100

The results from these test can be seen in section 5.2.
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Chapter 5

Simulation Test Results

5.1 Results from Test Runs with Specified Task
Set

The test runs described in section 4.3.1 generated the following reports.
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Simulation of Scheduling in Real-Time Systems Model:
RMManuallyTaskSet

Table 1: Tasks
Task number Arrival Time Execution Time Deadline Period

1 0 24 100 100
2 0 20 80 80
3 0 20 60 60

Table 2: Average Turnaround Times
Task Average Turnaround Time

1 74
2 26.6667
3 20

Total Average Turnaround Time 40.2222

Table 3: Simulation Results in Numbers
CPU Idle Time 12

Number of Deadlines reached 8
Number of Deadlines missed 1
Number of Completed tasks 3

Number of Tasks 3

Table 4: Simulation Results in Percentage
CPU Idle Time 6%

Deadlines missed 11.1111%
Completed tasks 100%
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5.1.1 RM Simulation Report
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Simulation of Scheduling in Real-Time Systems Model:
FIFOManuallyTaskSet

Table 1: Tasks
Task number Arrival Time Execution Time Deadline Period

1 0 24 100 100
2 0 20 80 80
3 0 20 60 60

Table 2: Average Turnaround Times
Task Average Turnaround Time

1 26
2 29.3333
3 33

Total Average Turnaround Time 29.4444

Table 3: Simulation Results in Numbers
CPU Idle Time 12

Number of Deadlines reached 8
Number of Deadlines missed 1
Number of Completed tasks 3

Number of Tasks 3

Table 4: Simulation Results in Percentage
CPU Idle Time 6%

Deadlines missed 11.1111%
Completed tasks 100%
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5.1.2 FIFO Simulation Report
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Simulation of Scheduling in Real-Time Systems Model:
RRManuallyTaskSet

Table 1: Tasks
Task number Arrival Time Execution Time Deadline Period

1 0 24 100 100
2 0 20 80 80
3 0 20 60 60

Table 2: Average Turnaround Times
Task Average Turnaround Time

1 51.5
2 36.6667
3 34.25

Total Average Turnaround Time 40.8056

Table 3: Simulation Results in Numbers
CPU Idle Time 12

Number of Deadlines reached 8
Number of Deadlines missed 1
Number of Completed tasks 3

Number of Tasks 3

Table 4: Simulation Results in Percentage
CPU Idle Time 6%

Deadlines missed 11.1111%
Completed tasks 100%
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5.1.3 RR Simulation Report
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Simulation of Scheduling in Real-Time Systems Model:
EDFManuallyTaskSet

Table 1: Tasks
Task number Arrival Time Execution Time Deadline Period

1 0 24 100 100
2 0 20 80 80
3 0 20 60 60

Table 2: Average Turnaround Times
Task Average Turnaround Time

1 56
2 28
3 21

Total Average Turnaround Time 35

Table 3: Simulation Results in Numbers
CPU Idle Time 12

Number of Deadlines reached 9
Number of Deadlines missed 0
Number of Completed tasks 3

Number of Tasks 3

Table 4: Simulation Results in Percentage
CPU Idle Time 6%

Deadlines missed 0 %
Completed tasks 100%
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5.1.4 EDF Simulation Report
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5.2 Results from Test Run with Generated Task
Set

The test runs described in section 4.3.2 generated the following reports.

80



Simulation of Scheduling in Real-Time Systems Model:
EDF10GeneratedTasks100

Table 1: Tasks
Task number Arrival Time Execution Time Deadline Period

1 2 69 207 207
2 3 137 411 411
3 0 82 246 246
4 0 18 54 54
5 6 2 6 6
6 0 69 207 Aperiodic
7 0 137 411 Aperiodic
8 0 82 246 Aperiodic
9 0 18 54 Aperiodic

10 0 2 6 Aperiodic

Table 2: Average Turnaround Times
Task Average Turnaround Time

1 No Value
2 No Value
3 No Value
4 28
5 2
6 No Value
7 No Value
8 No Value
9 54

10 2
Total Average Turnaround Time 21.5

Table 3: Simulation Results in Numbers
CPU Idle Time 0

Number of Deadlines reached 20
Number of Deadlines missed 0
Number of Completed tasks 4

Number of Tasks 10

Table 4: Simulation Results in Percentage
CPU Idle Time 0%

Deadlines missed 0 %
Completed tasks 40%

1

5.2.1 EDF Simulation Report with Ten Generated Tasks
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Simulation of Scheduling in Real-Time Systems Model:
EDF20GeneratedTasks100

Table 1: Tasks
Task number Arrival Time Execution Time Deadline Period

1 2 9 27 27
2 0 37 111 111
3 0 90 270 270
4 5 153 459 459
5 0 192 576 576
6 0 180 540 540
7 8 129 387 387
8 0 71 213 213
9 0 30 90 90

10 11 10 30 30
11 12 9 27 Aperiodic
12 0 37 111 Aperiodic
13 14 90 270 Aperiodic
14 0 153 459 Aperiodic
15 16 192 576 Aperiodic
16 0 180 540 Aperiodic
17 18 129 387 Aperiodic
18 19 71 213 Aperiodic
19 20 30 90 Aperiodic
20 0 10 30 Aperiodic

1

5.2.2 EDF Simulation Report with Twenty Generated Tasks

83



Table 2: Average Turnaround Times
Task Average Turnaround Time

1 12.3333
2 No Value
3 No Value
4 No Value
5 No Value
6 No Value
7 No Value
8 No Value
9 96

10 21.5
11 16
12 No Value
13 No Value
14 No Value
15 No Value
16 No Value
17 No Value
18 No Value
19 No Value
20 19

Total Average Turnaround Time 32.9667

Table 3: Simulation Results in Numbers
CPU Idle Time 0

Number of Deadlines reached 7
Number of Deadlines missed 1
Number of Completed tasks 5

Number of Tasks 20

Table 4: Simulation Results in Percentage
CPU Idle Time 0%

Deadlines missed 12.5%
Completed tasks 25%
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Chapter 6

Documentation

This documentation is created to accompany the Scheduling Simulator software
in C++. The documentation consists of the following parts:

• 6.1 Requirement Documentation: Describes the specifications of the
system, using text combined with Use Cases.

• 6.2 Architecture and Design Documentation: Describes the design of
the Scheduling Simulator using text and Class Diagrams.

• User Documentation: Consists of two main parts:

– 6.3 Final Documentation: Contains sufficient information and expla-
nation enabling future maintenance personnel to operate the software.

– 6.4 End-User Documentation: Contains tutorials on how to use the
different features of the Scheduling Simulator software.

6.1 Requirement Documentation

This section contains descriptions and illustrations of the requirements for a software
to simulate the behavior of a processor given a scheduling policy.

Written Requirement Documentation for Scheduler Simulator

• The software can simulate different scheduling policies on different task sets.
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• The user is a person, typically a student, familiar with the C++ language.

• The simulator is openly created to simulate new scheduling policies.

• New scheduling policies are easily added by the user.

• The input for the simulator consist of schedulers and task sets.

• The simulator shall generate distributed task sets.

• The output of the system shall consist of relevant plots and graphic representations
of the results.

• A deadline miss must be clearly marked in the outputs.

• Statistical information to compare schedulers behavior shall be provided in
the results.

6.1.1 User Stories

The following user stories describe specific scenarios that shall be possible to occur
using the final product.

"The user shall simulate a FIFO scheduling policy and three tasks using the
simulator."

"The Simulator provides a readable report after a simulation."

"The user implements a Round Robin scheduling algorithm and simulates it using
the simulator."

6.1.2 Use Cases

Two use-cases were created to illustrate the users options to use the scheduling
simulator: "the user simulating a scheduler" and "the user creating a new scheduler".
One use-case was created to illustrate the behavior of the simulator when running
a simulation: "The simulator simulating a scheduler".
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User Simulating a Scheduler

A Use Case diagram for this use case can be seen in figure 6.1.

Figure 6.1: Use Case diagram for "user simulating a scheduler".

• Use Case Name: User simulates a scheduler using the simulator.

• Iteration: Focused.

• Summary: The user simulates a schedulers behavior to create relevant
reports.

• Basic Course of Events:

– 1. The user creates a model, consisting of a scheduler and a task set.

– 2. The user simulates the model using the Simulator.

– 3. Result report is accessible.

• Alternative Paths:

– 1.a The user creates a task set.

– 1.b The user generates a task set.

• Exception Paths: -

• Extension Points: State Machine "Simulator simulates schedulers behavior.",
figure

• Trigger: A user wishes to view relevant reports of the behavior of a scheduler.

• Assumptions: The user knows how to create a model to simulate.
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• Preconditions: The scheduler the user wishes to simulate must exist.

• Postconditions: The user must open the resulting simulation report.

• Author: Inger Johanne Rudolfsen

• Date:

– Facade: 28. February 2015

– Filled : 10.March 2015

– Facade : 10.March 2015

User Implements Scheduling Policy

A Use Case diagram for this use case can be seen in figure 6.2.

Figure 6.2: Use Case diagram for "user implementing a scheduling policy".

• Use Case Name: User Implements Scheduling Policy.

• Iteration: Focused.

• Summary: The user implements a new scheduler to be simulated by the
scheduling simulator.

• Basic Course of Events:

– 1. The user creates a scheduler.

– 2. The user implements the scheduling policy.

– 3. The user connects this scheduler to the rest of the software.

• Alternative Paths: -
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• Exception Paths: -

• Extension Points: The use case: "User simulates a scheduler using the
simulator"

• Trigger: A user wishes to simulate the behavior of a scheduler that is not
yet implemented.

• Assumptions: The user knows how to implement a new scheduler.

• Preconditions: The user must know the logic behavior of the new scheduling
policy.

• Postconditions: The new scheduler can be simulated.

• Author: Inger Johanne Rudolfsen

• Date:

– Facade: 28. February 2015

– Filled : 10.March 2015

– Facade : 10.March 2015

Simulator running a simulation

A Use Case diagram for this use case can be seen in figure 6.3.

Figure 6.3: Use Case diagram for "Simulator simulates a Schedulers Behavior".

• Use Case Name: Simulator simulates a schedulers behavior.

• Iteration: Focused.
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• Summary: Simulator simulates the behavior of a processors execution of a
task set, using a specified scheduling policy.

• Basic Course of Events:

– 1. Initialize.

– 2. Create a Time Interrupt event.

– 3. Get Event.

– 4. Event is "Time Interrupt".

– 5. create next "Time Interrupt" event.

– 6. Ask Scheduler to Schedule.

– 7. Scheduler returns a task.

– 8. Task is set to RUNNING, and sets up a "Task Finished" event in the
future.

– 9. Return to 2.

• Alternative Paths: If event is not "Time Interrupt":

– 4 b) If Event is "Task Finished"

– 4 b) Set Task to "FINISHED".

– 4 b) If Task is periodic, update Arrival Time.

– 4 b) Go to point 6.

– 4 c) If Event is "Simulation Finished"

– 4 c) Generate Reports and Statistics.

– 4 c) Finished

• Exception Paths: If the scheduler returns a task while a different task is
being executed:

– 7.b) Scheduler returns a task, while a different task is RUNNING.

– 7.b) The RUNNING task must delete its "Task Finished" event.
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– 7.b) Go to point 8.

• Extension Points: The use case: "User simulates a scheduler using the
simulator"

• Trigger: A simulator is asked by a user to simulate a model, consisting of a
scheduler and a task set.

• Assumptions: The simulator receives a model, containing an existing
scheduling policy.

• Preconditions: -

• Postconditions: Relevant reports are generated based on the event log.

• Author: Inger Johanne Rudolfsen

• Date:

– Facade: 28. February 2015

– Filled : 21.March 2015

– Facade : 21.March

6.2 Architecture and Design Documentation

This section describes the classes in the Scheduling Simulator software, and their
relationships, using various tables and class diagrams.

6.2.1 Scheduler Simulator System

The Scheduler Simulator software uses implemented scheduling policies to simulate
task executions. A class diagram shown in figure 6.4 displays the entire system,
class members excluded. More detailed descriptions of the classes exists in the next
sections of this documentation.
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Figure 6.4: The Scheduler Simulator system simplified class diagram
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Generated Results Report

After a simulation, a report is generated, containing relevant information about the
simulation and the behavior of the simulated scheduler. The information included
in this report is listed in table 6.1.

Table 6.1: Simulation Output Report

What is included? Why is it included?

Task set and the tasks data members To record the simulated task set.

Average Turnaround Time To measure the efficiency of the
simulated scheduler.

CPU Idle Time To measure how well the scheduler
exploit the available processing time.

Number of deadlines reached The number of deadlines reached
within the simulation time.

Number of deadlines missed The number of deadlines missed
within the simulation time.

The number of Completed tasks The number of tasks completed at
least one time within the simulation
time.

Results in Percentages Idle CPU time

Deadlines missed

Completed Tasks

6.2.2 Task Class

Friend classes: TaskHandler, Simulator.

The Task class represents operations or threads to be executed by the simulator.
A Task object can have different states throughout the simulation. The states are
listed in table 6.2.
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Table 6.2: Task class States

State When is a Task in this state?

IDLE When a task is waiting for its Arrival
Time, or a new cycle to begin (if task
is periodic).

READY When a task is ready to be executed.

RUNNING When a task is being executed.

WAITING When a task is interrupted by a
higher prioritized task.

BLOCKED When a task is blocked from execut-
ing because its waiting for a lower
prioritized task to finish or unlock a
certain variable.

FINISHED When a task is finished executing.

Table 6.3: Task class data members

Data Member Explanation.

ExecutionTime The tasks Execution Time.

Progression The execution progression of the
task.

Tarrival Arrival Time for the task.

Deadline The relative deadline.

Priority The priority set by the scheduler.

Period The period of the task if periodic,
otherwise zero.

State The tasks current state.

ID The task identifier.

The Task class contains data members which can be used to schedule and
simulate an execution of the Task object. The Task data members can be seen in
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table 6.3. The complete Task class can be seen in figure 6.5.

Figure 6.5: The Task class

6.2.3 Model Class

The Model class serves as a container for the parameters needed to conduct a
simulation. The Model class data members can be seen in table 6.4.
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Table 6.4: Model class data members

Data Member Explanation

ModelName A name for the model, used to name
resulting reports.

TaskSet A set of task pointers.

Scheduler A Scheduler object containing the
logic for a scheduling policy.

RunTime The length of the simulation, default
set to 150 milliseconds.

ContextSwitch The context switch value, defaule set
to 0 milliseconds.

TimeInterval The clock cycle, default set to 1 mil-
liseconds.

TaskHandler A handler to generate and update
task, check for deadline misses, and
related functions.

The Model class has multiple constructors, giving the user alternatives on how
to create a Model object and specify its values. The different Model-constructors
are listed in table 6.5.

Table 6.5: Model class constructors

Model() A default constructor.
Default values.

Model(modelName, modelTaskSet,
modelScheduler, modelRunTime)

Presets some data mem-
bers using the arguments
in the constructor.

Model(modelName, numberOfPeriodicTasks,
numberOfAperiodicTask, modelScheduler)

Generates a number of pe-
riodic and aperiodic tasks
based on the arguments
in the constructor.

The Model class can be seen in figure 6.6.
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Figure 6.6: The Model class

6.2.4 TaskHandler Class

The TaskHandler is a class used by the Model class to handle the task set. The
TaskHandler class is a friend class of the Task class, thus it can change and access
Task class data members. The main functionality of the TaskHandler is to generate
task sets, update task states and check for deadline breaches. The TaskHandler
class can be seen in figure 6.7.

Figure 6.7: The TaskHandler class
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6.2.5 Simulator Class

The Simulator conducts simulated executions of tasks. The task execution order
is decided by the scheduling policy. The Simulator can be used to run simulations
of Model objects. The Simulator contains an queue of Event pointers, and reacts
to the Event closest in time. The Simulator class can be seen in figure 6.8.

Figure 6.8: The Simulator class

6.2.6 Event Class

The Event class represents the possible events that can occur during a simulation.
It contains a time stamp and an EventType. The different EventTypes are listed
in table 6.6.
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Table 6.6: EventTypes

EventType Explanation

TimeInterrupt Represents the clock-cycle. Pre-
emptive schedulers can interact on
TimeInterrupts.

TaskFinished An Event indicating that the current
task being executed is finished.

TaskReady Indication that at least one Task
object is ready for execution at this
time.

SimulationFinished Simulation run time is finished.

The Event class is shown in figure 6.9.

Figure 6.9: The Event class

6.2.7 Monitor Class

The Monitor class observes the simulation, and keep track of a queue of LogEvents.
The Monitor generates relevant reports after a simulation has completed. The "log"-
functions from the Monitor class is called upon by other classes to log incidents.
The Monitor class can be seen in figure 6.10.
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Figure 6.10: The Monitor class
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6.2.8 LogEvent Class

The LogEvent class represents the different types of events that can occur during
simulation that should be logged in order to generate relevant reports and statistics.
The different types of LogEvents are listed in table 6.7.

Table 6.7: LogEvent types

LogEventType When is the LogEvent created?

logARRIVED When a task has reached its arrival
time.

logSTARTED When a task has started executing.

logBLOCKED When a task is blocked from execut-
ing due to another task.

logFINISHED When a task finishes executing.

logDEADLINE The deadline time for a task.

logDEADLINEMISSED When a task misses its deadline.

The LogEvent class is shown in figure 6.11.

Figure 6.11: The LogEvent class

6.2.9 Scheduler Class

The Scheduler class represents the simulated scheduler. A Scheduler-pointer
is used by the Model class, connecting the Scheduler class to a task set. The
Scheduler contains a pure virtual function, so in order to conduct a simulation, a
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sub-class of the Scheduler class must implement this function. The Schedulers
data members are listed in table 6.8.

Table 6.8: Scheduler Data Members

Scheduler Data Members Explanation

availableTaskIterator Iterator that only points to Task
objects ready to be executed.

TaskIterator Iterator that traverse the entire task
set.

preemptive Indication if the scheduler is preemp-
tive or not in behavior.

The Scheduler class can be seen in figure 6.12.

Figure 6.12: The Scheduler class

6.2.10 Containers and Iterators

To create sets and queues of objects, containers with customized iterators are used.
A simplified class diagram for this system is shown in figure 6.13.
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Figure 6.13: The simplified Container and Iterator system class diagram

Container classes

The AbstractContainer is an abstract class, defining the interface for interaction
with the containers. Two sub-classes exists:

• The Set class stores its objects in an std::vector<Item>. This class is intended
for storing Task objects.

• The Queue class stores objects in a std::list<Item>. This class is intended
for storing Event objects and LogEvent objects.

The Container class diagram is shown in figure 6.14.
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Figure 6.14: The Containers class diagram

Iterator classes

The AbstractIterator is an abstract class, defining the interface for traversing
an AbstractContainer. Two sub-classes exists:

• The GeneralIterator can be used to traverse the entire content of both the
Set container and the Queue container.

• The AbailableTaskIterator is intended for traversing a Set container with
Task- objects, iterating only through Tasks that can be executed.

The Iterator class diagram is shown in figure 6.15.
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Figure 6.15: The Iterator class diagram

6.3 User Documentation: Final Documentation
To utilize, maintain and improve the Scheduler Simulator, the user must understand
the behavior as well as the implementation of the software.

6.3.1 Navigating the Scheduler Simulator Directory

The SchedulerSimulator/ directory consists of several folders:

The top level contains:

– the Scheduler class.

– the SchedulerSimulator source file.

The SimulatorCore folder contains:
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– The Task class.

– The Simulator class.

– The Event class.

– The Model class.

– The TaskHandler class.

The Monitor folder contains:

– The Monitor class.

– The LogEvent class.

The Schedulers class contains the implemented scheduling policies.

The Container folder contains the container classes.

The Iterator folder contains the iterator classes.

The Results folder will contain generated result reports.

6.3.2 System Behavior

The purpose of the system is described in the requirement documentation in
section 6.1.
The main behavior of the system is located in the Simulator class. The event-driven
behavior is illustrated by a flow chart in figure 6.16.
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Figure 6.16: A flow chart illustrating the behavior of the simulator.
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6.3.3 System Implementation

The system is implemented in C++, using non-restricted libraries to maintain the
cross-platform functionality. Some of the functions used in the software requires a
C++11 compiler. The Scheduler Simulator comes with both a Makefile for Unix
platforms, and a Microsoft Visual Studio Solution for Windows platforms.

Descriptions of classes and class diagrams can be found in the design documentation,
while actual header files displays the actual implemented versions.

System design and architecture documentation can be found in section
6.2.
Code documentation: see header files in appendix B.

6.3.4 System Limitations

There are some limitations currently associated with the Scheduler Simulator.

Task-objects contained in the same Set must have unique ID values. Generated
task sets will automatically have unique identifications, but there is no safety-guard
currently implemented that ensures that the Task-objects in manually implemented
task sets have unique ID values.

If Model objects contain the same model name, and are run sequentially, the
resulting reports will be overwritten. Unique Model names should be provided to
avoid loss of results.

6.4 User Documentation: End-User Documenta-
tion

This documentation will enable the reader to use the features of the Scheduler
Simulator.
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The Scheduler Simulator is a scheduling policy simulator written in C++.
The simulator can create task sets and simulate them with various scheduling
policies. It is also possible to create and add new scheduling policies.

6.4.1 Get Started

To generate reports, a proper installation of LATEXis needed. The Scheduling
Simulator can be used on both Windows and Unix platforms.
On Windows: Open the provided Microsoft Visual Studio Solution and run the
project. Other compilers can be also used, using the source files for the Scheduler
Simulator.
On Unix: Enter the "SchedulerSimulator/" directory and run a make command
in the terminal, followed by a "./Simulator" command to run the simulation.

The user must have some experience in C++ programming language. The user
also needs to familiarize him/her self with a small part of the program in order to
use the software correctly.

The following two tutorials enables the user to utilize the Scheduler Simulator.
The tutorials describe the procedures to simulate a scheduler, section 6.4.2, and
to implement a new scheduling policy in section 6.4.3.

6.4.2 How to Simulate a Schedulers Behavior

To simulate a schedulers behavior, the user must

• Declare which scheduler to simulate

• Generate or declare a task set

• Create a model containing the scheduler and the task set

• Simulate the model.

A set-up for doing this is provided in the source file SchedulerSimulator.cpp, as
shown below. For more details, read the following sections.

111



int main()

{

//Declare the schedulers

FIFO myScheduler;

//For Manually creating tasks:

//Create a Task Set:

Task a(1, 0, 100, 24, 100);

Task b(2, 0, 80, 20, 80);

Task c(3, 0, 60, 20, 60);

Set<Task*> myTasks;

myTasks.addItem(&a);

myTasks.addItem(&b);

myTasks.addItem(&c);

//Create a model

Model myModel("MyModel", &myTasks, &myScheduler, 150);

//For generating tasks within the model:

//Create a model with 3 periodic and 4 aperiodic tasks

Model generatedTasksModel("generatedTasks", 3, 4, &myScheduler);

//Set runtime

generatedTasksModel.setRunTime(200);

//Create a simulator

Simulator mySimulator;

//Run simulations

mySimulator.runSimulation(&myModel);

mySimulator.runSimulation(&generatedTasksModel);

}

Declare a Scheduler to Simulate

Declaring a scheduling policy is done by creating the corresponding scheduling
object.

schedulingObject myScheduler
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If wanting to simulate the FIFO scheduling policy, the scheduler is declared as
below:

FIFO myScheduler;

Four scheduling policies are implemented, available for simulation:

• RR

• RM

• EDF

• FIFO

Creating a Task set

A simulation needs a task set to schedule. Creating a task set can happen in two
ways: manual declaration, or generated by the Model.

Manual declaration:

1. Create tasks using the constructor: Task(int id, double tarrival, double
deadline, double executiontime, double period);

2. Create a Set with task pointers: Set<Task*> myTasks;.

3. Add the Tasks to the Task set: myTasks.addItem(& myTask);

Remember: provide tasks individual IDs. Example code in C++ can be seen
below.

//1. Create tasks

Task a(1, 0, 100, 24, 100);

Task b(2,0, 80,20,80);

Task c(3, 0, 60, 20, 60);

//2.Create a Set with task pointers
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Set<Task*> myTasks;

//3.Add the Tasks to the Task set

myTasks.addItem(&a);

myTasks.addItem(&b);

myTasks.addItem(&c);

Generate Task Set:

1. When creating a model, use the constructor to provide how many periodic
and aperiodic tasks to simulate.

The generated task set will be created using normal distribution. Example code in
C++ can be seen in the section below on how to create a model.

Create a Model

A model combines a scheduler with a task set, and provides the needed parameters
and information for the simulator. There are several options on how to create a
model. The modelName will be used as a file name for the resulting documentation
of the simulation.

1. Create the model using one of three constructors:

(a) Model():
sets default values to the parameters. Task Set must be added later.

(b) Model(std::string modelName, Set<Task*>* modelTaskSet, Scheduler*
modelScheduler, double modelRunTime):
Creates a model with the specified arguments.

(c) Model(std::string modelName, int numberOfPeriodicTasks, int
numberOfAperiodicTask, Scheduler* modelScheduler):
Creates a model with a generated task set.

2. Specify parameters if needed.

Example code showing the different ways of creating a model is shown below:
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// Creating a model using the default constructor:

Model myModel;

myModel.setModelName("TestName");

myModel.setScheduler(&myScheduler);

myModel.setTaskSet(myTasks);

myModel.setRunTime(200);

// Creating a model using the specified constructor:

Model myModel("TestName", myTasks, &myScheduler, 200);

// Creating a model to generate a task set with

// 3 periodic tasks and 4 aperiodic tasks:

Model myModel("TEST", 3, 4, &myScheduler);

Simulate a Model

To simulate the model, a Simulator object is needed. A Simulator can simulate
multiple models.

1. Create a Simulator object.

2. Run simulation of the model.

Example code is provided below:

// 1. Create a Simulator object:

Simulator mySimulator;

// 2. Run simulation of the model:

mySimulator.runSimulation(&myModel);

Results

The resulting documentation from the simulation can be found in the
.../SchedulerSimulator/Results/ folder if not opened automatically. The file
name is the modelName from the simulated model. The documentation provides
relevant information about the simulation, resulting statistics and charts.
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6.4.3 Implement a Scheduler

To add a new scheduling policy for simulation, the following procedure must be
executed:

• Create a class inheriting the Scheduler class.

• State in the constructor if the scheduling policy is preemptive or not, using
the preemptive boolean inherited from the base class.

• Implement the scheduling logic in the virtual inherited function Task*
Schedule(double time).

• Include the class header in SchedulerSimulator.cpp.

For more details, please read the following sections.

Create a New Scheduler Class

The new scheduler class must inherit the base Scheduler class. It must be stated in
the new scheduling class’ constructor whether the scheduling policy is preemptive
or not. If preemptive, the scheduler is allowed to interrupt tasks currently being
executed in order to execute a different task. If not preemptive, a task must finish
executing before another task can start executing. An example on how to create a
new scheduler can be seen below:

#pragma once

#include "../Scheduler.h"

class EDF :

public Scheduler

{

public:

EDF();

~EDF();
Task* Schedule(double time);

};

//constructor:
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EDF::EDF()

{

preemptive =true;

}

Implementing the Scheduling Logic

The new scheduler has to implement the virtual function Task* Schedule(double
time), where the time corresponds to the progress of the simulation, and the
Task* is a pointer to the task the scheduler wants to admit to the simulator for
execution. There are two ways to traverse the task set: the TaskIterator and the
availableTaskIterator.
The TaskIterator iterates through the entire task set. The availableTaskIterator
iterates through the tasks that are ready to execute, including the task currently
being executed by the simulator. The scheduler can only return a task pointed to
by the availableTaskIterator, but the TaskIterator enables the scheduler to
access all tasks in the task set. The Iterators are both subclasses of the base class
AbstractIterator, thus both can be interacted with using the interface shown in
figure 6.17.

Figure 6.17: The AbstractIterator interface.

To reach a scheduling decision, information about the tasks must be gathered
and compared. This is done by using the task interface, shown in figure 6.18. The
only writable parameter is priority, because this is only relevant for the scheduler.
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Figure 6.18: The task interface relevant for the scheduler.

Using these interfaces, the logic is implemented in Task* Schedule(double
time). An example of how it can be done for the Earliest Deadline First is shown
below:

Task* EDF::Schedule(double time)

{

double tempAbsDeadline = 0.0;

double tempTarrival = 0.0;

double tempRelativeDeadline = 0.0;

availableTaskIterator->First();

Task* bestTask = availableTaskIterator->CurrentItem();

double closestDeadline = bestTask->getDeadline();

for (availableTaskIterator->First(); !availableTaskIterator->IsDone();

availableTaskIterator->Next())

{

tempTarrival = availableTaskIterator->CurrentItem()->getTarrival();

tempRelativeDeadline = availableTaskIterator->CurrentItem()->getDeadline();

tempAbsDeadline = (tempTarrival+ tempRelativeDeadline);

if (tempAbsDeadline < closestDeadline)
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{

closestDeadline = tempAbsDeadline;

bestTask = availableTaskIterator->CurrentItem();

}

}

return bestTask;

}

Place the header and source file in the /SchedulerSimulator/Schedulers/
folder preferably, and include the corresponding header file in SchedulerSimulator.cpp.
Continuing the EDF example, this is done using: #include"/schedulers/EDF.h".
The scheduler is now ready to be simulated.
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Chapter 7

Discussion

For this project, the created Simulator Scheduler software, the produced doc-
umentation and the development process itself are all considered to be project
results.

7.1 Scheduler Simulator Test Evaluation
The test run results are displayed in chapter 5.

7.1.1 Test with Manually Created Task Set
The manually created task set was simulated with all four pre-implemented
scheduling policies. The results can be seen in section 5.1. Based on the descriptions
of the scheduling policies in section 3.1.3, the resulting Gantt charts correspond
with the expected scheduling behavior for all four simulated schedulers. All the
simulations resulted in 6% CPU idle time, but only the EDF scheduler reached all
the deadlines. In the Gantt chart for the FIFO simulation, section 5.1.2, a deadline
is missed at time 60. The read arrow seems to be partially hidden behind the tab
marking the tasks execution. This is assumed to be caused by of the order of when
the different elements were generated in the chart. The deadline miss is visible,
but not as clearly marked as it was intended to be.

7.1.2 Test with Generated Task Set
Two generated task sets were simulated using the EDF scheduling policy. The
resulting reports from the simulations can be seen in section 5.2. All the tasks in
the two task sets have generated reasonable values, and are executed based on these
values. In the simulation of the task set containing 20 tasks, the Gantt chart almost
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overshoots the page of the generated pdf file, see section 5.2.2. Simulating more
than 20 tasks will thus make the Gantt chart so large that some tasks might end
up outside of the page, leading to an incomplete chart. Nevertheless, the resulting
statistics and information for simulations of large task sets can still be produced
and displayed in the report. Also here, in the Gantt diagram for the simulation of
twenty tasks, seen in section 5.2.2, a deadline is poorly marked at time 90 as it
was for the FIFO-simulation, see section 7.1.1.

7.2 User Interface Evaluation
The main features offered to the user by the created software are:

• Running a simulation of a real-time scheduler

• Implementing a new real-time scheduler

Following the user tutorials provided in section 6.4, the user should be able to
conduct these actions without much trouble. To run a simulation, the user has
to make changes in the main function of the software. A user can in theory
write anything in the main function. If the user does not understand the provided
documentation, no strict rules constraint the user to follow the developers intentions.
A GUI can possibly provide the user with a more strict and limited interface,
inducing a safer work environment to work in. The "Facade" pattern, section
2.3.2, implemented correctly, could have provided the user with a simple way to
find relevant functions and conduct a simulation in main, without the use of a
GUI. Both these solutions would have shrunk the freedom of the user, inducing
both positive and negative side effects. The negative being limited expansion and
exploration possibilities for the user. A software can survive and evolve in the
hands of curious users. The current text-based solution, though unrestricted, might
be the best way to create a platform for future expansion of the software.

7.3 Simulating Future Schedulers
The Scheduler Simulator enables the user to add schedulers by implementing a
new class. Done correctly, the user will be enabled to run simulations using the
newly implemented scheduler. To ensure that the scheduler behaves in the intended
manner, the user has to examine the resulting simulation report.
The Scheduler Simulator is meant to accommodate all schedulers, existing and
future types. As there is no way to know how the schedulers in the future might be-
have, the implementation of the schedulers are created based on the one common fact
for all schedulers: the have to be able to schedule. The Scheduler base class is only
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expecting its sub-classes to implement one function, the "Task* schedule(double
time)" function. Any algorithm for a current or future scheduler can be imple-
mented here. Possible restrictions limiting the implementation freedom might be
the can be lack of depth and expansions in other parts of the software. For example,
the data members of the Task class may not contain all the information a future
scheduling policy might need. In such cases, the software must be expanded to
accommodate unforeseen new scheduling policies. This way, the software becomes
more and more adapted to simulate future schedulers.

A different solution could be to let the Scheduler base class contain more than
one virtual functions, splitting the scheduling procedure in mandatory steps. This
might create a safer and easier implementation procedure for existing schedulers,
but it would create constraints on the schedulers behavior, possibly limiting the
ability to implement future scheduling policies.

7.4 Documentation Evaluation
Creating light, yet sufficient documentation can be a challenging task. The com-
plexity of the software must be communicated to the reader without making the
explanations overly complicated. The documentation for the Scheduler Simulator,
created in this project, can be seen in chapter 6.

The requirement documentation, seen in section 6.1, used written text descriptions,
user stories and three use-cases to present the requirements for the software. All
these methods are list-based, and no narrative explanations were provided. This
provides an ordered and straightforward presentation of the requirements, but a
narrative text could have helped some readers to grasp the concept of the software
feature, though for others it would be redundant. One of the use-cases represents
the simulator as the actor, and the scheduler as the system. This is not the
"classical" way of creating use-cases, as the simulator is not an external system
actor, but actually part of the system itself. Even so, this use-case was created and
kept because it serves the purpose of presenting the wanted simulator behavior in
an ordered, readable manner.

The architectural documentation in section 6.2 presented the classes and their
interfaces in a strict and efficient way using diagrams. The short explanations may
be at the expense of descriptive and pedagogical text that would have made it
easier for some readers to understand the architectural design of the software. Long
and narrative explanations may cause other readers to skip paragraphs, because
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they just need key points, and are not interested in reading a wall of text to extract
the information they really want. The final architectural documentation can be
used as a quick class reference manual by users or maintenance personnel.

The user documentation consists of two parts:

The final documentation is a short to-the-point guide for users seeking an in
dept explanation of the Scheduler Simulator. The readers for this section
are presumed to be familiar with C++ language, and so the purpose of
this documentation was to provide the user with the necessary tools to gain
understanding of the systems structure and behavior. A clear point list of
features, a class reference manual, a flow chart of the simulators behavior,
and a commented source code might be more beneficial for an experienced
user than a long and narrative explanation.

The end-user documentation contains two tutorials on how to run a simulation
and how to implement a scheduler. The tutorials are text-based, combining
explanatory text, code examples and class diagrams to show the user step
by step how to use the features of the Scheduler Simulator. The tutorials
provide the needed information for a basic end-user, no more or less. Hopefully,
a user may use these tutorials as a check list when conducting new simulations
or when implementing new scheduling policies.

Light and sufficient documentation is the goal many developers are aiming for,
but in many cases the choice seems to become "light or sufficient documentation".
In this project, long and complicated texts were actively avoided, but the finished
documentation is still over 25 pages. The length is necessary to accommodate the
different needs of the variety of users. A normal user would not have to read more
than the end-user documentation, and utilize the rest of the documentation as a
reference manual.

7.5 Evaluation of Best Practices
The development of the Scheduler Simulator was conducted using a set of ele-
ments from relevant best practices. Table 4.1 provides an overview of the utilized
best practices within software development methods.

Agile development, being a collective methodology for light weight methods,
emphasizes project flexibility to meet the client’s requirements. Arranging frequent
meetings with the client, presenting prototypes and making sure the requirements
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and progress corresponds to the clients wishes helps to achieve this. In this project,
the authors supervisor was the client. The author had frequent meetings with the
supervisor for counseling, but only one strictly client- developer meeting was held
to discuss the specification for the software early in the process, see report in A.1.
This vague separation between the supervisors roles of being both a counselor and
a client, led to few strict client-developer meetings. Event so, the developer still
had frequent contact with the client indirectly through the counseling meetings,
presenting iterative results and receiving positive feedback. In Agile Methodology,
the point of the frequent contact with the client, is ensure the client and the
developer that they are on the same page, keeping the developer from heading
down the wrong path when developing. Even though few strict client-developer
meetings were held, the counseling meetings provided much of the same acknowl-
edgement and feedback as potential direct client meetings would have provided.
The council meetings let the developer know that the ongoing development and
results corresponded with the supervisors wishes.

Nevertheless, in a different situation, a client would most likely have less ex-
perience with software development than the authors supervisor, making direct
client-developer meetings with presentations of prototypes and progress during the
development important and more challenging. In this case, a larger use of use-cases
and user stories might have been helpful to make sure that the developer understood
the clients wishes correctly. The supervisors understanding of software systems and
knowledge of technical terminology made the client- developer conversations flow
easily, requirements were discussed as equals, and misunderstandings were more
easily avoided.

The daily Scrum was intended to be used for this development project, but it
was not documented, nor was it completed every day. Being only one person, the
daily Scrum meetings became more of a frequent thought process, a reminder of
what remained to be done on the project. If a stricter routine had been set, more
reflection and possibly productivity could have spawned from the daily Scrum. The
author could have, for example, created a log, demanding her self to make daily
entries answering the daily scrum questions.

Iterative and incremental development was utilized during the development
project. It helped to create the finished product by gradually expanding the speci-
fication for the software through iterative cycles. Some iterations and features were
developed and improved during a long period of time, and because the duration of
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the iterations were set using requirements goals, this was allowed to happen. In
retrospect, spending too much time on one feature prevented the overall progress
of the software. Using time-boxed sprints instead of requirement goals to define
the length of an iteration could have averted such situations.

Keeping it simple when creating a software is a challenge. A simple idea for
a software design can easily escalate to something much more complicated, as
demonstrated in section 4.2.3. Simplicity is still something worth striving for, as
it promotes good design and understandable code. It is not always achieved, but
it helps the developer to at least start with a clean and simple structure, which
prevents the software from rotting from the inside out.

The overall development progress had a tendency to converge towards a sequen-
tial waterfall structure. This can be caused by the fact that only one person was
working on the software project, and a sequential line of working comes natural.
In a larger group, parallel working increases productivity and progression, and
enables independence and developing freedom between groups. As a single person,
independence and freedom are already present, and parallel working can’t invoke an
increase in productivity, as one person only can type and work at one thing at a time.

Some of the design patterns described in section 2.3 were used in the system
helped create maintainable code and robust software. New schedulers can be added
to the system without altering any of the other classes thanks to the "Stratedy"
pattern, and containers and iterators have general common interfaces because of the
"Iterator" pattern. A greater use of patterns might have provided even cleaner and
more reusable code, but the considering the current size of the software program,
applying a pattern to cover a single occurrence of a class might serve against
its purpose, by complicating and not facilitating the structure of the software.
Design patterns could have been used to implement the event-based behavior in
the simulator. The observer pattern would have created a one-to-many relationship
where the simulator could have changed its state as a reaction to an event, and
notified all dependent classes. The state pattern could have been used, creating
one class per state to handle the current event. Both of these patterns would have
created an increase of sub-classes in the system. As mentioned in section 7.2, the
"Facade" pattern could have been used to create a clean and collected text-based
user interface. Using known design patterns in a software enables others to quickly
understand the implemented code if they already are familiar with the particular
pattern.
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7.6 Improvements and Shortcomings
The finished Scheduler Simulator is a working software, but shortcomings and
room for improvement and expansions do exist.

The generated Gantt chart overshot the page size of the report when simulat-
ing task sets exceeding 20 tasks, see section 7.1.2. To accommodate larger task
sets, Gantt diagrams for task sets exceeding 20 tasks are left ungenerated, as the
resulting Gantt charts would be incompletely displayed. All the other simulation
statistics and results will still be fully displayed.

As discovered in the test-runs, the deadline misses are not always clearly marked.
The Gantt chart generation in the rtsched LATEXstyle should be altered to include
a bigger notification sign upon a deadline breach.

Each Task object in a task set must have a unique identification number. The
current version of the simulator does not ensure this. A future version should
include a safe guard for this problem. A possible solution is to let the Set-object
containing the Task objects distribute unique ID values.

The resulting report can be expanded to include more statistics, such as task
response time.

The implementation of the Scheduler Simulator is functional and sufficient for
the current expected behavior. The implementation can still be improved to be
more efficient, by improving the class structures and by optimizing algorithms
with shorter estimated run-times. A software can almost always be optimized and
improved, but working code must not be underestimated.

The goal of a simulator is to simulate a real life situation by emulating the
actual circumstances. Adding features to the Scheduler Simulator can help the
simulation to become more realistic. Such features are listed below.

• Sporadic tasks should be added to help accommodate all possible task types.

• When generating a task set, the user should be able to choose the distribution
of the tasks. The current generator can only use normal distribution. This
will expand the variations in task sets possible to generate.

• Task dependencies and shared variables should be implemented. This can
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possibly be done by adding some sort of "used-variable array" to each Task
object.

• Jobs are a set of tasks to be executed sequentially, see section 3.1.2. Jobs
should be added to the software, and the simulator would execute a set of
jobs instead of tasks. The main difference would be that only the one tasks
in each job would be available for execution at a time.

• Estimation of execution time should be a feature done automatically for every
task based on its properties.

• A feature to automatically compare two or more schedulers after a simulation
should be included in a future version of the Scheduler Simulator.

128



Chapter 8

Conclusion

In this project, a software to simulate real-time schedulers was created, called the
Scheduler Simulator. The simulator can successfully conduct simulations for
the implemented schedulers: FIFO, EDF, RR and RM. Other schedulers can be
implemented and added to the system. Because of the size, Gantt charts are not
generated for simulations of task sets with more than 20 tasks. A GUI was evaluated
to possibly be redundant, as the user must write source code when implementing
new schedulers anyway. To enable simulations of future scheduling policies, the
interface to implement new schedulers was created to be as unlimited as possible,
containing only one mandatory function to implement. Possible limitations for
implementing future schedulers can be caused by a lack of data parameters in
the system, needed by the future scheduler’s logic. The documentation for the
Scheduler Simulator aims to present the relevant data in a structured way, using
mainly tables, lists and diagrams, as opposed to long and narrative explanations.
The documentation would rather highlight key points than to hide them in a
explanatory text. This enables the user to utilize the documentation as a reference
manual.

The software was developed using a set of best practices,. For the development,
the author’s supervisor portrayed the client. This lead to a vague distinction
between counseling and development meetings, as the author did not need the
clients approval of a prototype if the supervisor already had given positive feedback
during a counseling meeting.
Agile development methodology emphasizes frequent contact with the client and
project flexibility. Iterative and incremental development can increase flexibility in
a development project, regardless of how many or few people that are working on
it. In this project, iterative and incremental cycles bound by requirement goals
were used to create the software. Some iterations were longer that others, due
to the difference in time required to develop the different features. Time-boxed
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Scrum sprints would have prevented this uneven development progression. Agile
development methods promotes team work and uses social interaction to increase
the flexibility in projects. When working alone, the social aspect ceases to exist,
leading to a loss of the benefits that can be harvested by working in teams, such
as pair-programming and social discussions to develop design, interfaces, imple-
mentation etc. When working on a project, work tendencies from the waterfall
model may appear, as a natural sequential flow of work may seem logical and more
appealing than iterative cycles. This is understandable, but should be avoided.

Creating a new software can include stepping in to unknown territory to discover
new solutions. This may create a "the chicken or the egg" scenario, where knowledge
is needed to advance to the next step, but this knowledge is also gained by finding
the solution to advance to the next step. One might also find that by gaining
knowledge, a new and better solution for an already solved problem might present
itself. In inflexible development projects, these new and better solutions have
little or no opportunity to be implemented in the software. Agile development
methodology addresses and inspires developers to find these exact solutions and
utilize them. New ideas can be found through development. Preserving and using
these ideas is key for technological advancement.

8.1 Recommendations for Further Work
The Scheduler Simulator created in this project can be expanded in several ways to
improve the authenticity of simulation. The Task class can be expanded to include
sporadic behavior, dependencies and actual estimations of execution time. Jobs can
be added, making the simulator simulate a set of jobs instead of individual tasks.
The current software produces relevant reports per executed simulation and leaves
it to the user to examine these reports in order to compare scheduler performances.
A tool that compares scheduler performances and presents the results for the user
can be useful, and should be implemented in the future.

Expansions to accommodate implementations of future schedulers when needed
will help the Scheduler Simulator to grow and adapt to simulate all real-time
schedulers in a realistic environment, changing the question in research on scheduling
in real-time systems from "How efficient can we be" to "How efficient do we want
to be".
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Appendix A

Appendix

A.1 Minutes of Meeting - client-developer
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Meeting Minutes Report:
Requirement Specifications

Date and Time Wednesday 04 February 2015 at 13:00

Venue Room D-231 NTNU
Participants Sverre Hendseth and Inger Johanne Rudolfsen
Secretary Inger Johanne Rudolfsen

In this meeting, the student and software developer Inger Johanne Rudolfsen asked the supervisor and client Sverre
Hendseth questions to specify the requirements of a scheduler simulation tool. The questions and the answers below
represent a summary of what was being said during the meeting.

Questions Answers and Notes

Who is the user? Typically, a student with sufficient knowledge in C++.

What are the inputs for the sim-
ulator?

Schedulers and task-sets. Several types of schedulers can be specified to be com-
pared in performance on the same task-sets. The simulation-tool should be able
to generate tasks and task-sets for this purpose. When generating, the user should
be able to chose the distribution of the task-sets.

What are the outputs from the
simulation?

Relevant plots and graphic representations of the results should be provided. If a
deadline is missed, this should be very clearly shown in the outputs. Statistical
information about the completion of the task-sets within the respective deadlines
ought to be calculated, and should be used to compare different scheduler types.

What separates this simulation
tool from other existing tools?

This simulation tool must be able to support existing as well as future scheduler
standards. An example of a future scheduling standard is Online Execution Time
Analysis (OETA). Existing scheduler simulators can be examined in design and
implementation, and be used to improve and help design choices made for our
simulation tool.

SimSo is an existing scheduler
simulator, that seems to work
well. How does this affect the
work on the new simulation tool?

SimSo should be examined to discover missing features and shortcomings. These
faults must then be improved and put in the new simulation tool.

Is GUI a necessity for this simu-
lator?

GUI is not necessary, but if a GUI would serve a purpose, and there is time, it can
be added.

Other remarks

Maybe the tool should support multi-core as well as simple-core.
A meeting with Nicholas(other student Sverre Hendseth supervises) should be ar-
ranged. Nicholas is currently researching new possible scheduling strategies, like
OETA.

Next Guidance Meeting: Monday 09 February 2015 at 14:00.
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A.2 Second Development Iteration

A.2.1 System Class Diagram after Second Development It-
eration

Figure A.1: Complete Class Diagram of System after second Iteration
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Appendix B

Scheduler Simulator Header Files

B.1 Task.h

#pragma once

/******************************************************************
The Task represents a process or thread that is to be executed.

ExecutionTime represents the estimated execution time of the task.

Progression is the time the task has executed since Tstarted.

Tarrival is the time the task is submitted to the system.

FirstTarrival is the original value of Tarrival, created to reset
the task later, as Tarrival is changed and updated for periodic
tasks.

Tstarted is the time the execution of a task is started.

Deadline is the relative deadline of the task.

Period is the period of a periodic task. If the task is non-periodic,
the period is zero.

State is the task state in its life cycle, which can be:
IDLE, READY, RUNNING, WAITING, BLOCKED or FINISHED

ID is the task identification, or task number. This must be a unique
number, not shared with other tasks in the same task set.

*********************************************************************/
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class TaskHandler;
class Simulator;
enum taskState{ IDLE, READY, RUNNING, WAITING, BLOCKED, FINISHED };

class Task
{

friend class TaskHandler;
friend class Simulator;

private:
double ExecutionTime;
double Progression;
double Tarrival;
double FirstTarrival;
double Tstarted;
double Deadline;
double Period;

int State;
int ID;

bool DeadlineMissed;

void updateProgressionTime(double time);

public:
Task();
Task(int id, double tarrival, double deadline,

double executiontime, double period);
Task(int id);
~Task();

int Priority;

int getID();
int getState();
double getPeriod();
double getDeadline();
double getTarrival();
double getExecutionTime();
double getRemainingExecutionTime();

};

B.2 Scheduler.h

#pragma once
#include"SimulatorCore/Task.h"
#include"Containers/Set.h"
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/***********************************************************
Scheduler is the class defining the interface that connects
the implementation of scheduling logic with the simulator.

availableTaskIterator: Iterator that traverses the tasks
available for execution. Corresponding to a "ready queue."

TaskIterator: iterates through all the tasks, ready or not.

isPreemptive(): Returnes the Preemptive variable value.

setTasks(Set<Task*>* tasks) initialize the iterators.

Schedule(time): A virtual function that must be implemented
by sub-classes, aka. new scheduling policies, containing
the scheduling logic.

************************************************************/

class Scheduler
{
protected:

AbstractIterator<Task*>* availableTaskIterator;
AbstractIterator<Task*>* TaskIterator;
bool preemptive;

public:
Scheduler();
~Scheduler();
bool isPreemptive();
void setTasks(Set<Task*>* tasks);

virtual Task* Schedule(double time) = 0;
};

B.3 Model.h

#pragma once
#include"Task.h"
#include"../Containers/Set.h"
#include"../Scheduler.h"
#include"TaskHandler.h"

/***********************************************************************
The Model contains all the information needed to conduct a simulation.
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TaskSet: A set of tasks to be executed.

Scheduler: A policy to schedule tasks for excecution.

RunTime: The simulation run time.

ContextSwitch: The time-loss due to interrupting a current task being
executed and replacing it with another.

ModelName: The name of the model, naming the result report.

modelTaskHandler: A handler for the task set, updating tasks, etc.

*************************************************************************/

class Model
{

friend class Simulator;
private:

Set<Task*>* TaskSet;
Scheduler* scheduler;

double RunTime;
double TimeInterval;
double ContextSwitch;
std::string ModelName;
TaskHandler modelTaskHandler;

public:
Model();
Model(std::string modelName, Set<Task*>* modelTaskSet,

Scheduler* modelScheduler, double modelRunTime);
Model(std::string modelName, int numberOfPeriodicTasks,

int numberOfAperiodicTask, Scheduler* modelScheduler);
~Model();

void setModelName(std::string modelName);
void setScheduler(Scheduler* myScheduler);
void setTaskSet(Set<Task*>* myTasks);
void setContextSwitch(double msTime);
void setTimeInterval(double time);
void setRunTime(double time);

};

B.4 Simulator.h

#pragma once
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#include"../Monitor/Monitor.h"
#include"Event.h"
#include"Model.h"
#include"../Containers/Queue.h"

/*************************************************************
The Simulator conducts the simulation of the behavior of a
processor executing a task set using a scheduler policy.

The Simulator runs a simulation using a model, containing all
the parameters needed to condutct the simulation.

The simulation is event based, where different events evoces
calls on different functions to handle the event.

**************************************************************/

class Simulator
{
private:

Model* simModel;
Monitor logMonitor;

Task* currentTask;
Event* currentTaskFinishedEvent;
int currentEvent;

Queue<Event*> eventQueue;

//Simulation parameters
bool preemptive;
double timeInterrupt;
double runTime;
double contextSwitch;

//Event-handeling functions:
void onTimeInterrupt(double time);
void onTaskReady(double time);
void onTaskFinished(double time);
void onSimulationFinished(double time);

void runScheduler(double time);
void setUpTaskForExecution(double time);

//After a simulation, the simulator must reset
void resetSimulator();

public:
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Simulator();
~Simulator();
int runSimulation(Model* myModel);

};

B.5 TaskHandler.h

#pragma once
#include"Task.h"
#include"../Containers/Set.h"
#include"../Monitor/Monitor.h"

/*************************************************************************
TaskHandler manages the task set for the Model, and generates
task pointer sets for the Model if needed.

availableTaskIterator: Iterator that traverses the tasks
available for execution.

TaskIterator: iterates through all the tasks, ready or not.

generateTask(int N, bool PeriodicTasks) generates a task set of
N tasks based on normal distribution. PeriodicTasks indicates
if the tasks shall be periodic or not.

resetTasks() resets the tasks in the task set after a simulation.

numberOfTasks() return the number of tasks in the task set.

taskAvailable() returns true if there currently exsists a task
ready for execution.

getTaskClosestInTime(double time) returns the task with tarrival
closest in time.

updateTaskStates(Monitor* myMonitor, double time) updates the task states
corresponding to the current simulation time.

checkForDeadlineBreaches(Monitor* myMonitor, double time) checks if any of
the tasks have missed their deadlines.

***************************************************************************/

class TaskHandler
{
private:

142



AbstractIterator<Task*>* availableTasksIterator;
AbstractIterator<Task*>* taskIterator;
int idCounter;

public:
TaskHandler();
~TaskHandler();

Set<Task*> generateTasks(int N, bool PeriodicTasks);

//initializes the iterators.
void initialize(AbstractIterator<Task*>* taskIt,

AbstractIterator<Task*>* availableTaskIt);

void resetTasks();
int numberOfTasks();
bool taskAvailable();
Task* getTaskClosestInTime(double time);
void updateTaskStates(Monitor* myMonitor, double time);
void checkForDeadlineBreaches(Monitor* myMonitor, double time);

};

B.6 Event.h

#pragma once

/************************************************************
The Event describes the different events that can occur
during a simulation, and at what time they are set to
happen.

************************************************************/

enum eventType{ TimeInterrupt, TaskReady, TaskFinished, SimulationFinished };

class Event
{
private:

int EventType;
double EventTime;

public:
Event(int tempEvent, double tempTime);
Event();
~Event();

int getEventType();
double getEventTime() const;
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void setEventTime(double tempTime);
bool operator<(const Event& first)
{

return (EventTime < first.getEventTime());
}

};

B.7 Monitor.h

#pragma once
#include <fstream>
#include<string>

#include"../SimulatorCore/Task.h"
#include"LogEvent.h"
#include"../Containers/Set.h"
#include"../Containers/Queue.h"

/*************************************************************************
The Monitor keeps track of the events that occur during a simulation.
A report can be generated after the simulation has completed.

"taskIDs" contains all the IDs for the tasks currently being
simulated by the simulator.

"LogEventQueue" contains the logged events(LogEvent objects) from
the simulation.

"myfile" is the outstream to the tex file that is going to be used
to generate a pdf-file to present resulting relevant information
from the simulation.

"name" is the name of the Model currently being simulated, being
used as a name for the resulting report pdf file.

Functions starting with "log" are used by the simulator to log events.

"generateReport()" generates a report containing relevant information
about the simulation. The function loops through the LogEventQueue,
and handles the LogEvents with appropriate functions.

The resulting report contains:
- The Model Name
- A list of tasks and their parameters
- Average TurnAround Time
- CPU idle time
- Number of Deadlines missed and reached
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- Number of tasks executed at least one time.
- Gantt chart.

****************************************************************************/

class Monitor
{
private:

std::vector<int> taskIDs;
Queue<LogEvent> LogEventQueue;
std::ofstream myfile;
std::string name;

//The RT box is used to create Gantt charts
void createRTBox(int numberOfTasks, double time, int iteration);
void endRTBox();

//functions to handle logEvents when generating report:
void onArrived(LogEvent log);
void onStarted(LogEvent log);
void onBlocked(LogEvent log, double time);
void onFinished(LogEvent log, double time);
void onDeadline(LogEvent log);
void onDeadlineMissed(LogEvent log);

//Calculate TurnAroundTime, CPU IDLE time, DeadlineMisses...
void calculateSimulatorStatistics(double time);
//... using these functions:
double CPUidleTime();
double numberOfDeadlinesReached();
double numberOfDeadlinesMissed();
double AverageTurnAroundTime(int taskid);
double numberOfTasksCompleted();

void runLatex();

public:
Monitor(){};
void Initialize(std::string resultsname);
~Monitor();

//Functions to log events and information
bool logTasks(Set<Task*> tasks);
bool logArrivalTime(Task arrTask, double arrTime);
bool logStart(Task startTaskId, double time);
bool logPause(Task pauseTaskId, double time);
bool logEnd(Task endTaskId, double time);
bool logDeadline(Task deadlineTask, double time);
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bool logDeadlineBreach(Task deadId, double time);
bool logSimEnd(double time);

void generateReport();

};

B.8 LogEvent.h

#pragma once
#include"../SimulatorCore/Task.h"

/******************************************************************************
The LogEvent represents an event that has been logged by the
Monitor.

logTask represents the task the logEvent concerns.

logTime is the time of the logEvent.

logEventType is the type of event. The different LogEventTypes are:
logARRIVED, logSTARTED, logBLOCKED, logFINISHED,
logDEADLINE, logDEADLINEMISSED and logSIMEND

********************************************************************************/

enum logEvent{logARRIVED, logSTARTED, logBLOCKED, logFINISHED,
logDEADLINE, logDEADLINEMISSED, logSIMEND};

class LogEvent
{
public:

Task logTask;
double logTime;
int logEventType;

LogEvent();
LogEvent(Task myTask, double mytime, int type);
LogEvent(double mytime, int type);
~LogEvent();

bool operator==(const LogEvent& b);
bool operator<(const LogEvent& first)
{

return (logTime < first.logTime);
}
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};

B.9 AbstractContainer.h

#pragma once
#include"../Iterators/AbstractIterator.h"

/********************************************************
This is an abstract class specifying the main interface
for interaction with the containers, aka its sub-classes.

**********************************************************/

template<class Item>
class AbstractContainer
{
public:

virtual AbstractIterator<Item>* createIterator() = 0;
virtual void addItem(Item a) = 0;
virtual void remove(Item a) = 0;
virtual long numberOfItems() = 0;
virtual Item getItem(long index) = 0;

};

B.10 Queue.h

#pragma once
#include<list>
#include"AbstractContainer.h"
#include"../Iterators/GeneralIterator.h"
#include"../Iterators/SortedQueueIterator.h"

/*****************************************************************
This is a container, a sub-set of "AbstractContainer" class.

This Queue Container can be sorted, if the template Item
can be compared as in the funtion "compareItems".

The function "emptyQueue()" clears the content of the container.

******************************************************************/

template<class Item>
class AbstractIterator;
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template<class Item>
class SortedQueueIterator;

template<class Item>
class GeneralIterator;

template<class Item>
bool compareItems(const Item& lhs, const Item& rhs)
{

return (*lhs<*rhs);
}

template<class Item>
class Queue :

public AbstractContainer<Item>
{
private:

std::list<Item> myItems;
public:

AbstractIterator<Item>* createIterator();
void addItem(Item a);
long numberOfItems();
void remove(Item a);
Item getItem(long index);
void sortQueue();
void emptyQueue();

};

B.11 Set.h

#pragma once
#include<vector>
#include"AbstractContainer.h"
#include"../Iterators/GeneralIterator.h"
#include"../Iterators/AvailableTasksIterator.h"

/************************************************************
This is a container, a sub-set of "AbstractContainer" class.

Using a vector as base container, elements are easily accessed.

The iterator AvailableTaskIterator can be created if Task
objects are being stored.

************************************************************/
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template<class Item>
class AvailableTasksIterator;

template<class Item>
class GeneralIterator;

template<class Item>
class AbstractIterator;

template<class Item>
class Set :public AbstractContainer < Item >
{
private:

std::vector<Item> myItems;
public:

void addItem(Item a);
long numberOfItems();
void remove(Item a);
Item getItem(long index);
AbstractIterator<Item>* createIterator();
AbstractIterator<Item>* createAvailableTasksIterator();
void addItems(Set<Item> items);

};

B.12 AbstractIterator.h

#pragma once

/********************************************************
This is an abstract class specifying the main interface
for interaction with the iterators, aka its sub-classes.

**********************************************************/

template<class Item>
class AbstractIterator
{
public:

virtual void First() = 0;
virtual void Next() = 0;
virtual bool IsDone() = 0;
virtual Item CurrentItem() = 0;
virtual double NumberOfItems() = 0;

protected:
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AbstractIterator(){};
~AbstractIterator(){};

};

B.13 GeneralIterator.h

#pragma once
#include"AbstractIterator.h"
#include"../Containers/AbstractContainer.h"

/*************************************************************
The GeneralIterator can traverse a container inheriting the
AbstractContainer class. Can be used to traverse all elements
in the container.

*************************************************************/

template<class Item>
class AbstractContainer;

template<class Item>
class GeneralIterator :

public AbstractIterator<Item>
{
public:

GeneralIterator(AbstractContainer<Item>* items);
void First();
void Next();
bool IsDone();
Item CurrentItem();
double NumberOfItems();

private:
AbstractContainer<Item>* myItems;
long current;

};

B.14 AvailableTaskIterator.h

#pragma once
#include "AbstractIterator.h"
#include"../Containers/AbstractContainer.h"

/****************************************************
The AvailableTaskIterator is an iterator for a Set
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containing Task object pointers.

This iterator will only point to tasks available for
execution, that is: tasks with the states:
READY, RUNNING or WAITING.

*****************************************************/

template<class Item>
class AbstractContainer;

template<class Item>
class AvailableTasksIterator :

public AbstractIterator < Item >
{
public:

AvailableTasksIterator(AbstractContainer<Item> *items);
AvailableTasksIterator(){};

void First();
void Next();
bool IsDone();
Item CurrentItem();
double NumberOfItems();

private:
AbstractContainer<Item>* myItems;
long current;

};
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