
Accurate Drop of a GPS Beacon Using the 
X8 Fixed-Wing UAV

Vegard Grindheim

Master of Science in Cybernetics and Robotics

Supervisor: Thor Inge Fossen, ITK

Department of Engineering Cybernetics

Submission date: June 2015

Norwegian University of Science and Technology



 



 

NTNU Faculty of Information Technology, 
Norwegian University of Mathematics and Electrical Engineering 
Science and Technology Department of Engineering Cybernetics 
  
 

  
 

 
MSC THESIS DESCRIPTION SHEET 

 
 
 

Name:    Vegard Grindheim 
Department:   Engineering Cybernetics 
Thesis title (Norwegian): Nøyaktig slip av GPS transmitter fra et X8 ubemanned fly 
Thesis title (English): Accurate Drop of a GPS Beacon Using the X8 Fixed-Wing UAV 

 
Thesis Description: The purpose of the thesis is to develop a system for high-precision deployment of 
a GPS based position transmitting beacon from a small fixed-wing UAV in an Arctic environment. The 
system will be able to hit sea ice consistently and have wind estimation and compensation to achieve 
the required accuracy. 
 
The following items should be considered: 
 

1. Implement and test a wind estimator. 
2. Given a desired target position for the beacon to land at, find all feasible aerial release points 

(FARP) and their corresponding velocities.  
3. Design a path planner based on the Adapted Dubins Path algorithm and test the system by 

performing software-in-the-loop (SIL) and field tests. 
4. Design and implement a path planner using optimization techniques to choose a computed aerial 

release point (CARP) within the FARP, and the path to get there. Verify the controller and 
optimization results with simulations and HIL testing. 

5. Implement a line-of-sight (LOS) controller that guides the UAV along a path to the chosen 
CARP. 

6. Research different combinations of path planners, guidance controllers and wind estimators to 
reach the CARP. 

7. Verify the controller, path planner and optimization results with SIL testing. 
8. Test the UAV system in the field. 
9. Compare the results of the approach methods and conclude your results. 

 
 
Start date:   2015-01-05 
Due date:   2015-06-14 
 
 
 
Thesis performed at:  Department of Engineering Cybernetics, NTNU 
Supervisor:    Professor Thor I. Fossen, Dept. of Eng. Cybernetics, NTNU  
Co-Supervisor:   Siri Mathisen, Dept. of Eng. Cybernetics, NTNU  
 



I

Preface

Researchers at the Centre for Autonomous Marine Operations and Systems (AMOS) work on

making unmanned aerial vehicles (UAVs) conduct inaccessible, dull, costly and dangerous mis-

sions. This report was written in cooperation with the UAV-lab research group at AMOS in the

final semester of my two-year master’s course in Engineering Cybernetics. The main subject of

this thesis has always been a passion of mine, ever since I was a teenager.

At the age of 14, I was finally able to acquire a real flying model aeroplane after accumulating

several years worth of savings. It was a small model of the Piper J-3 Cub. That plane took me

about half a year to build, and took up most of the table space in the TV room for the entire time.

The only downside about the plane was, according to that 14 year old version of me, that there

was no way to drop model bombs with it.

At this day and time though, I hope that my work will never be used for any sort of military

action, but that it may be used for civil applications.

That aeroplane is now far gone, crashed beyond the scope of what any amount of duct tape

might repair. If you think that it lived a long and prosperous life, you are wrong. Teenagers

being teenagers led to acrobatic flying reserved for entirely different model planes. I never once

returned home with the plane in one piece. Four pieces was far more likely.

That first experience with an aeroplane has a lot in common with this thesis. There was a lot

of work, both include flying, crashes did occur, and both were, at the time, the biggest project I

had ever partaken in. Now I only hope the knowledge of this thesis might last longer than my

aeroplane did.

This report assumes that the reader has a general background in control engineering.

Vegard Grindheim

Trondheim, June 12, 2015



II

Acknowledgments

I would like to thank my supervisors, Thor Inge Fossen and Siri Holthe Mathisen, for guidance

and support throughout my work on this thesis. It would not have been the same without them.

I would also like to thank Kristian Klausen and João Fortuna for great technical support, espe-

cially their help with programming in DUNE and getting the payload computer up and running.

Last but not least, I wish to thank Torkel Hansen and Lars Semb, who have guided me with prac-

tical aspects related to the UAV and release mechanism, and of course, piloting the aircraft.

V.G.



III

Summary

Improved possibilities for transport, as a consequence of diminishing ice mass in the Arctic,

leads to more activity in these areas. Some of the greatest dangers of heightened presence in the

Arctic is associated with sea ice.

To decrease the dangers of sea ice in Arctic areas, fixed-wing UAVs can be used to find and

tag dangerous ice with GPS based position transmitting beacons. This would allow traffic and

offshore installations to operate more safely by knowing about dangers beforehand.

This thesis will focus on the specific task of making a UAV system capable of hitting sea ice

with a GPS beacon by an unguided air drop. This task has several parts, including calculating

the aerial release point and guiding the UAV to this point with high accuracy. The combined

drop accuracy and precision required from this system is to be able to hit sea ice with a radius

of 10 meters 95% of the time. 10 m is approximately the radius of a small floe.

Several approach methods were applied with different controllers and path planners to ac-

curately guide the UAV to the aerial release point. The best combination of these used optimiza-

tion techniques combined with a line-of-sight path-following controller. This combination ac-

quired a theoretical accuracy of 1.63 m and a precision of 7.14 m from simulated results. This

was combined to give a 95% chance of hitting within 8.77 m of the sea ice centre, which is better

than the required accuracy set in this thesis.

This result was unfortunately not confirmed by flight tests, as unforeseen circumstances

prevented flight time when the system was completed. However, early flight tests validates the

correctness of the simulation results to some degree.



IV

Sammendrag

Forbedrede transportmuligheter som følge av lavere ismasse i Arktis fører til økt virksomhet i

disse områdene. Noen av de største farene ved aktivitet i Arktiske omgivelser er knyttet til sjøis.

For å minske farene ved sjøis i arktiske områder kan fastvinge-UAV-er brukes til å finne og

merke farlig sjøis med GPS-baserte posisjonstransmittere. Dette vil føre til økt sikkerhet for

trafikk og offshoreinstallasjoner ved å informere om fare før den inntreffer.

Denne masteroppgaven fokuserer på den spesifikke oppgaven å lage et UAV-system som

kan treffe sjøis med posisjonstransmitteren ved bruk av et fritt fall. Oppgaven består av flere

deler, inkludert å beregne slippunktet i luften og å guide UAV-en til dette punktet med høy

nøyaktighet. Den forventede kombinerte nøyaktigheten og presisjonen til dette systemet er å

kunne treffe sjøis med en radius på ti meter med minst 95% sjanse. Ti meter er omtrentlig ra-

diusen til et lite isflak.

Flere tilnærmingsmetoder ble brukt med forskjellige regulatorer og ruteplanleggere for å

styre UAV-en til slippunktet. Den beste kombinasjonen brukte optimaliseringsteknikker sam-

men med en siktlinje-rutefølgende regulator (line-of-sight path-following controller). Denne

kombinasjonen oppnådde en teoretisk nøyaktighet på 1.63 m og en presisjon på 7.14 m fra

simulerte resultater. Disse ble kombinert til å gi 95% sjanse for å treffe innen 8.77 m av isens

midtpunkt, hvilket er et bedre resultat enn kravspesifikasjonen.

Dette resultatet kunne dessverre ikke bekreftes gjennom testflyvninger, ettersom uforut-

sette forhold forhindret flyvninger etter at systemet var ferdigstilt. Tidlige testflyvninger valid-

erer derimot simuleringsresultatene til en viss grad.



Contents

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I

Acknowledgment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . II

Summary and Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . III

Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . IV

1 Introduction 3

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3 Literature Survey . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.1 Air-Drop Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.2 Wind Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.3.3 Ballistic Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

1.4 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.5 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.6 Contributions of This Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.7 Structure of the Report . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2 Theory 11

2.1 Aerial Release Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Drag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.2 Payload Equations of Motion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.1.3 Feasible Aerial Release Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.4 Iterative Calculation of the Aerial Release Point . . . . . . . . . . . . . . . . . 16

V



VI CONTENTS

2.2 UAV Reference Frames and Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.1 Reference frames . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.2 Coordinate transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Kinematics and Kinetics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3 Wind Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4 Flight Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.1 Guidance Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.2 Heading Controllers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Path Planners . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.5.1 Straight-Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5.2 Incremented-Straight-Line . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.3 Optimal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.5.4 Optimize-When-Success-is-Improbable . . . . . . . . . . . . . . . . . . . . . 38

2.6 CARP Detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3 Hardware Implementation 43

3.1 Hardware Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.1.1 Skywalker X8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.2 EFLA405 Servoless Payload Release . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.3 BeagleBone Black . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.1.4 Rocket M5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.5 Nanostation M . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.6 On-Board Router . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.7 Pixhawk . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.1.8 Cables and Connectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.9 Test Beacon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Placing the Payload Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 PWM Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3.1 Programming the ATtiny85 MCU . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3.2 First Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53



CONTENTS VII

3.3.3 Final Design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.3.4 Testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4 Hardware Overview and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.4.1 Connections and Communication . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.2 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4.3 Power Supply . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

4 Software Implementation 61

4.1 Software for the X8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.1 Software on the BeagleBone Black . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.1.2 GLUED . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4.1.3 DUNE: Unified Navigational Environment . . . . . . . . . . . . . . . . . . . . 63

4.1.4 MAVlink . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2 Ground Station Software . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.1 Neptus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.2 APM Autopilot Suite . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

4.2.3 Ardupilot SITL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.4 JSBsim . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.3 Programming of the PWM Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

4.4 DUNE tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.1 The Actuator-Output Dune Task . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.4.2 The Wind-Estimator Dune Task . . . . . . . . . . . . . . . . . . . . . . . . . . 68

4.4.3 The Drop-on-Target Dune Task . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

4.5 Software Installation and Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.1 Installation on the X8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.5.2 Installing Software on the Ground Station . . . . . . . . . . . . . . . . . . . . 74

5 Simulations 77

5.1 Software in the Loop Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

5.1.1 Controller Tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.1.2 Wind Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79



VIII CONTENTS

5.1.3 CARP Approach Method Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.4 SIL Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.2 Simulation of Free Falling Sphere for Varying Winds . . . . . . . . . . . . . . . . . . 99

5.2.1 Simulation Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

6 UAV and Payload Testing 103

6.1 Hardware Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1.1 BeagleBone Black Optimization-Calculation Time . . . . . . . . . . . . . . . 104

6.1.2 Release Mechanism Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

6.1.3 Sending Pixhawk Data Using IMC Over Radio Link . . . . . . . . . . . . . . . 105

6.1.4 Full Payload Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1.5 Hardware Test Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2 Flight Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.2.1 State Estimation Accuracy and Precision Test . . . . . . . . . . . . . . . . . . 108

6.2.2 Approach using Straight-Line Path and Waypoint Controller . . . . . . . . . 110

6.2.3 Approach using the Incremented-Straight-Line Path Planner and Waypoint

Controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111

6.2.4 Flight Test Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

7 Discussion 113

7.1 Discussion on Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

7.2 Discussion on Hardware Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.3 Discussion on Flight Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

7.4 Theoretical System Accuracy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4.1 Errors in Approach Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4.2 Drop Timing and CARP Calculation . . . . . . . . . . . . . . . . . . . . . . . . 119

7.4.3 Sensory Input Timing and Accuracy . . . . . . . . . . . . . . . . . . . . . . . . 120

7.4.4 Optimization Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4.5 OS Real Time Capabilities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

7.4.6 Combined Theoretical Drop Accuracy . . . . . . . . . . . . . . . . . . . . . . . 121

7.5 Design Choices and System Comparison . . . . . . . . . . . . . . . . . . . . . . . . . 125



CONTENTS IX

8 Conclusion and Further Work 129

8.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

8.2 Conclusion of Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130

8.3 Recommendations for Further Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

A Acronyms 135

B X8 Payload Checklist 139

C Flight Plans 141

C.1 Flight Plan: Following Waypoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

C.2 Flight Plan: Drop Test . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141

D Installing GLUED and Bootloader on the BeagleBone Black 143

E Cross Compiling DUNE for the BeagleBone Black 145

F A8 Description by Texas Instruments 147

G Hardware Testing Code 149

H DUNE Code 159

I MATLAB code 213

I.1 Free Fall Initiation Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

I.2 Free Fall Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

I.3 Plot RTK and Pixhawk Position Script . . . . . . . . . . . . . . . . . . . . . . . . . . . 216

I.4 Plot Wind Estimator 2 m/s Results Script . . . . . . . . . . . . . . . . . . . . . . . . . 219

I.5 Plot Wind Estimator 5 m/s Results Script . . . . . . . . . . . . . . . . . . . . . . . . . 223

I.6 Process LS Path SIL Results Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226

I.7 Process Optimal Path SIL Results Script . . . . . . . . . . . . . . . . . . . . . . . . . . 230

I.8 Process OWSI Path SIL Results Script . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

I.9 Draw Ellipse Function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

J Circuit Schematics 239



X CONTENTS

K PCB Designs 243

L Project Build/Compile/SIL Cheat Sheet (in Norwegian) 247



List of Figures

2.1 The ballistic path of the beacon, F signifies air resistance and G gravitational pull . 12

2.2 Trajectory visualising the distance travelled in x . . . . . . . . . . . . . . . . . . . . . 15

2.3 The Geodetic, ECEF, and local NED coordinate systems (Brezoescu, 2014) . . . . . 20

2.4 Definition of stability and wind axis frames. Where α= w/u is the angle of attack

and β= v/vT is the sideslip angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.5 Graphical vector relationship between aircraft motion and wind, represented in

two-dimensional (north and east) local NED frame . . . . . . . . . . . . . . . . . . . 26

2.6 Controller hierarchy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.7 L1 guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.8 LOS guidance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.9 The Straight-Line path . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.10 The Incremented-Straight-Line path . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

2.11 Example of choice of optimal CARP . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.12 Some CARP paths are not as simple to follow . . . . . . . . . . . . . . . . . . . . . . . 36

2.13 LOS path for optimal CARP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.14 Estimated positions for four flights close to target. The blue line shows at which

estimated state the CARP is considered reached . . . . . . . . . . . . . . . . . . . . . 40

2.15 Map of release positions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3.1 Hardware setup and signal flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.2 Sketch of Skywalker X8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.3 X8 catapult . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

XI



XII LIST OF FIGURES

3.4 Test beacon with the milled-out back visible . . . . . . . . . . . . . . . . . . . . . . . 51

3.5 Test beacon . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.6 Programming the ATtiny85 using the AVRATSTK500 and JTAG ICE MK. II . . . . . . 53

3.7 Final design on the left, first design on the right . . . . . . . . . . . . . . . . . . . . . 55

3.8 Payload . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

4.1 Overview of software and communication . . . . . . . . . . . . . . . . . . . . . . . . 62

4.2 IMC task interaction principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.3 The drop on target state machine . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

5.1 SIL software overview, from SITL Simulator . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2 Wind estimation in simulation with 2 m/s wind . . . . . . . . . . . . . . . . . . . . . 80

5.3 Wind estimation in simulation with 5 m/s wind . . . . . . . . . . . . . . . . . . . . . 81

5.4 Pixhawk wind estimation in simulation with 2 m/s wind . . . . . . . . . . . . . . . . 82

5.5 Pixhawk wind estimation in simulation with 5 m/s wind . . . . . . . . . . . . . . . . 83

5.6 Drop accuracy for LS with LOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

5.7 Drop accuracy for LS with LOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.8 Drop accuracy for Optimal path with LOS . . . . . . . . . . . . . . . . . . . . . . . . 94

5.9 Drop accuracy for Optimal path with LOS . . . . . . . . . . . . . . . . . . . . . . . . 95

5.10 Drop accuracy for OWSI with LOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.11 Drop accuracy for OWSI with LOS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

5.12 Multiple ballistic paths of sphere dropped from 30 meter, using wind velocity 5

m/s ±50% and wind angel 180◦±10◦ . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

5.13 Ground impact probability distortion of sphere drop from 30 meter, using wind

velocity 5 m/s ±50% and wind angel 180◦±10◦ . . . . . . . . . . . . . . . . . . . . . 100

5.14 Ground impact probability distortion of sphere drop from 50 meter, using wind

velocity 5 m/s ±50% and wind angel 180◦±10◦ . . . . . . . . . . . . . . . . . . . . . 101

6.1 BBB with cape and PWM generator on top, wired to the drop mechanism on the left105

6.2 Nanostation M connected to the internal network on the ground station . . . . . . 106

6.3 BBB and Pixhawk ready for testing with Rocket M5 . . . . . . . . . . . . . . . . . . . 106

6.4 Flight testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108



LIST OF FIGURES XIII

6.5 Plot of position in north east plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

6.6 Plot of position in north down plane . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

7.1 Error propagation in z-direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123



XIV LIST OF FIGURES



List of Tables

3.1 Hardware parts list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

5.1 SIL wind test variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.2 Errors and variance for wind estimation, 2 m/s wind . . . . . . . . . . . . . . . . . . 83

5.3 Errors and variance for wind estimation, 5 m/s wind . . . . . . . . . . . . . . . . . . 84

5.4 Errors and variance for Pixhawk wind estimation, 2 m/s wind . . . . . . . . . . . . . 84

5.5 Errors and variance for Pixhawk wind estimation, 5 m/s wind . . . . . . . . . . . . . 84

5.6 Autonomy.DropOnTarget variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.7 SIL approach method accuracy measurements for the LS path planner with LOS

and SMC controller where Ve is velocity error, µ is the mean and σ is the standard

deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.8 SIL approach method accuracy measurements for the LS path planner with way-

point controller where Ve is velocity error, µ is the mean and σ is the standard

deviation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.9 SIL accuracy for LS path planner with LOS controller . . . . . . . . . . . . . . . . . . 89

5.10 SIL accuracy for Optimal path planner with LOS controller . . . . . . . . . . . . . . 90

5.11 SIL accuracy for OWSI path planner with LOS and SMC controller . . . . . . . . . . 91

5.12 SIL precision and accuracy for approach strategies . . . . . . . . . . . . . . . . . . . 98

5.13 Physical properties of free fall simulation . . . . . . . . . . . . . . . . . . . . . . . . . 99

6.1 Errors and variance for Pixhawk state estimation . . . . . . . . . . . . . . . . . . . . 110

6.2 Total errors, DRMS and MRSE for Pixhawk state estimation . . . . . . . . . . . . . . 112

XV



LIST OF TABLES 1

7.1 Z error for ground impact point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

7.2 Accuracy for ground impact point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

7.3 Precision for ground impact point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125



2 LIST OF TABLES



Chapter 1

Introduction

The thesis is presented in this chapter, its background and motivation explained and the prob-

lem formulated and described in separate sections. Papers and books used in the literature

study is discussed. Finally, the structure of the rest of the thesis is described.

1.1 Background

The possibilities for unmanned aerial vehicles (UAVs) are endless. By using these lightweight,

low cost vehicles it is possible to both explore new fields of operation and support existing in-

dustries. The main advantage about UAVs is that they are able to perform missions and tasks

that may otherwise be dull, dangerous or expensive to conduct. As industry expands northward

and more activities takes place in the Arctic, UAVs can be used for support.

Operational support for the maritime industry, where ice properties or search and rescue

missions may be of great interest (Westall et al., 2007), is particularly viable. Other examples

are emergency preparedness and response due to oil spills (Puestow et al., 2013), volcanic ash

concentration or other industrial accidents. The petroleum industry could also have a great

benefit of using UAVs for mammal detection, sea-ice surveillance and ice-berg detection (Eik,

2010).

3



4 CHAPTER 1. INTRODUCTION

As the industry expands and more activities takes place in the Arctic, localization of drifting

glacial ice will be of great interest (Eik, 2010). There are many ways of achieving the needed

overview, but these methods are often costly or currently unavailable. One low-cost way to do

this is to drop GPS based position transmitting beacons (henceforth referred to as beacons)

onto the drifting ice in order to keep track of its location (Shestov and Marchenko, 2014). This

is possible to do by using UAVs. This strategy will minimize time and cost of deployment of the

beacons compared to other methods (McGill et al., 2011). As described in both the master theses

Mathisen (2014) and Fuglaas (2014), and in McGill et al. (2011) there are no current off-the-shelf

product for dropping payloads from UAVs. However, the need for such methods are increasing

as e.g better practise in ice advising is needed with the increasing amount of Arctic operations

(Tiffin et al., 2014).

Automating such a process is quite advanced and it consists of multiple objectives:

• Searching for glacial ice

• Take off and landing

• Dropping the beacon

Each of these objectives has their own challenges. This thesis will focus on the objective of

dropping a beacon by using a fixed-wing UAV.

In order to drop the beacon as accurately as possible, a precise knowledge of the UAV’s po-

sition, attitude and forces acting on the UAV is needed. The forces will also affect the beacon

while falling. Using an on-board UAV sensor suite and GPS technology, the environmental dis-

turbances can be estimated (Johansen et al., 2015; Langelaan et al., 2011).

1.2 Problem Formulation

The purpose of the thesis is to develop a system for high-precision deployment of a GPS based

position transmitting beacon from a small fixed-wing UAV in an Arctic environment. The system

shall be able to hit sea ice consistently and have wind estimation and compensation to achieve



1.3. LITERATURE SURVEY 5

the required accuracy.

1.3 Literature Survey

All the appropriate material that was discovered during the literature survey will be summarized

concisely in the following sections.

1.3.1 Air-Drop Systems

Air-drop systems is a widely explored subject. Its use is mainly military, where a broad variation

of air-drop methods have been considered (Goldfein, 2013, ch. IV p. 86-91). These methods vary

from personal air-drop systems to free-fall methods. In order not to supersede the boundaries

of this thesis, the focus of this report will be on the methods that are meaningful for the task at

hand.

Guided Air Drop

There are many different methods of guided air-drop delivery. The most normal techniques

consist of using various kinds of parachutes, with and without control systems, to safely deliver

equipment to the ground. Deployment by parachute is described by literature in Henry et al.

(2010) and Wuest and Benney (2005). One can also utilize cable guided system (Mathisen, 2014),

such as ground anchored cables or wired coils.

Free Fall Air Drop

This gravity-based parachute-less method uses information about initial conditions of the UAV

and beacon to find the calculated-aerial-release point (CARP) (Wuest and Benney, 2005). In

addition to the initial conditions, wind compensation is required in order to compensate for

the environmental effects. The wind compensation in Wuest and Benney (2005) assume mean



6 CHAPTER 1. INTRODUCTION

effective wind forces, which translates to inaccuracy. This was further investigated in Fuglaas

(2014). MATLAB simulations and software-in-the-loop (SIL) tests were utilized in order to pro-

duce estimates of the wind uncertainty. The conclusion of these simulations show that the

higher the release height, the larger the impact distribution. Simulations also showed that an

imperfect release configuration, leading to varying release-time, also produced an uncertainty.

The study of Fortier (2004) also concludes that dominant errors are the release configura-

tion and altitude and wind knowledge. Fortier (2004) considers wind-estimation methods and

wind characteristics, based on general wind statistics and wind forecasting statistics. The wind

forecasting statistics are retrieved from weather forecast and weather balloons equipped with

GPS. The weather balloons are released in close proximity of the target at the time of a free fall

drop. Data from the weather balloon is then used to correct the weather forecasts.

1.3.2 Wind Estimation

As described above, one of the main errors for air-drop methods is wind knowledge. A knowl-

edge of wind velocity may be valuable information in order to calculate the CARP accurately

(Fuglaas, 2014). Bencatel and Girard (2011) explains a method for estimation of the surface

shear wind using a UAV equipped with a particle filter. This particle filter produces estimations

of the wind speed and direction affecting the UAV.

Both Johansen et al. (2015), Brezoescu (2014) and Langelaan et al. (2011) explain methods

for on-line wind estimation using a small fixed-wing UAV. This is obtained from either attitude

dynamics or vehicle velocity by using on-board sensors.

1.3.3 Ballistic Paths

The ballistic path for a free-falling object can be calculated by using Newton’s second law while

taking drag force and gravity into account (Parker, 1977; Sherwood, 1967). Both Parker (1977)

and Sherwood (1967) emphasizes the role the drag force has on a moving object.



1.4. OBJECTIVES 7

1.4 Objectives

The main objectives of this thesis are:

1. Implement and test a wind estimator.

2. Given a desired target position for the beacon to land at, find all feasible aerial release

points (FARP) and their corresponding velocities.

3. Design a path planner based on the Adapted Dubins Path algorithm (Fuglaas, 2014) and

test the system by performing software-in-the-loop (SIL) and field tests.

4. Design and implement a path planner using optimization techniques to choose a com-

puted aerial release point (CARP) within the FARP, and the path to get there.

5. Implement a line-of-sight (LOS) controller that guides the UAV along a path to the chosen

CARP.

6. Research different combinations of path planners, guidance controllers and wind estima-

tors to reach the CARP.

7. Verify the controller, path planner and optimization results with SIL testing.

8. Test the UAV system in the field.

9. Compare the results of the approach methods and conclude your results.

1.5 Limitations

As the UAV is required to be able to hit sea ice consistently, the required drop accuracy and drop

precision in this thesis is therefore set to ten meters around the target position. This matches

the size of a small floe (Bushuyev, 1970).

Considerations based on the literature survey and physical limitations of the UAV led to the

conclusion that an unguided free-fall would be the air-drop method of choice. This decision was



8 CHAPTER 1. INTRODUCTION

taken as the guided fall is too complex and does not guarantee better accuracy. Also, a parachute

guided system could influence the back mounted motor propeller on the UAV.

The main bulk of the equipment that was used was chosen based on what was available at

NTNU’s UAV lab. Price was also taken into account to some extent. To simplify modifications,

such as fitting the drop mechanism, a styrofoam airplane was chosen. Based on the above cir-

cumstances, propulsion was decided to be electric and weight became a critical aspect. Compu-

tational power was also sparse to save battery, weight and funds. The project was also supposed

to use a standard UAV instrument suite.

The available fixed-wing UAV has a back mounted propeller, with which the beacon must

not interfere. It was decided that the engine must be stopped during a drop to achieve this.

1.6 Contributions of This Thesis

With regards to the problem formulation (Section 1.2), objectives (Section 1.4) and limitations

(Section 1.5) this thesis can be summarized as follows.

The focus of this thesis is to develop a means for high-precision, free-fall air-drops using

a simple electric fixed-wing UAV. It will investigate possibilities for wind estimation, and avoid

wind effects.

The specific contributions of this thesis are listed below

Approach Methods The thesis will explore several ways to approach the target using different

path planners, flight controllers and wind estimators.

Path Planners Path planners will be designed, implemented and tested in SIL.

Wind Estimator from Johansen et al. (2015) Implementation and testing of the wind estima-

tor will be performed.

FARP The feasible-air-release-points shall be defined, as well as an iterative solution to finding



1.7. STRUCTURE OF THE REPORT 9

them.

Optimization on the FARP An optimization will be designed and implemented to find the best

CARP in the FARP.

CARP Detection A crossover between standard perpendicular half-plane-crossing detection and

spherical detection will be used to decide when the CARP is reached.

New Tasks Some tasks will be designed, implemented and tested. This will include, for exam-

ple, a state machine meant to be running on the UAV during a GPS drop mission.

Testing and Concluding from the Results Accuracy and precision will be calculated through

testing of all approach methods, wind estimators, controllers, CARP detection, state es-

timates and computational lags. This will be used to calculate the real world accuracy and

precision to the system’s ability to hit the target.

1.7 Structure of the Report

The first chapter of this thesis contains an introduction to its contents and summarizes its con-

tributions. In Section 1.1, reasons for developing and using a UAV system for free fall drop was

established. The specific objectives can be found in Section 1.4.

Theory used throughout the thesis was established in Chapter 2. All specific theory for Ob-

jective 1 to 6 is described here.

The development and choice of hardware and software are described in Chapter 3 and 4,

while the final setup and installation is described in Section 3.4 and Section 4.5, respectively.

This includes the Pixhawk, Dune, drop mechanism, GPS and communication devices. The im-

plementation of the wind estimator in Objective 1 and the approach methods in Objective 6 are

described in Section 4.4.2 and Section 4.4.3, respectively.

Testing is described in Chapter 5 and 6, and is divided in simulation and flight testing. The

SIL testing in the simulation part fulfils the requirements set in Objective 1, 3 and 7, while the



10 CHAPTER 1. INTRODUCTION

flight test fulfils Objective 3, but not 8, as no flight testing of the Optimal or OWSI path planner

was performed.

The discussion is placed in Chapter 7, where the test methods and the complete system is

debated. The comparison described in Objective 9 is found in Section 7.5.



Chapter 2

Theory

This chapter gives a detailed description of the theory and background material used in the rest

of the thesis.

It is important to know when and where to release the beacon to accurately hit the target.

The calculations required to find the CARP includes drag and gravity. This will be discussed in

Section 2.1. To know how the UAV will behave, its kinematics are explained in Section 2.2. An

explanation of the different coordinate systems is also included in this part. Some sources of

error in payload drops are wind and position measurement errors. Wind estimation is therefore

discussed in Section 2.3. To reach the CARP with accuracy, several approach strategies are tested

in this thesis. An approach strategy is a specific combination of a path planner and a flight

controller. To guide the UAV, flight controllers are used. The different controllers are described

in Section 2.4. The path planner theory is found in section 2.5. As the need for accuracy is acute,

some way of detecting the CARP accurately is needed. The detection used in this thesis is found

in Section 2.6.

11



12 CHAPTER 2. THEORY

Figure 2.1: The ballistic path of the beacon, F signifies air resistance and G gravitational pull

2.1 Aerial Release Point

The CARP depends on the ballistics of the payload during the drop given wind and initial con-

ditions of the UAV and payload.

2.1.1 Drag

As the beacon is dropped from the UAV, it will follow a ballistic path caused by gravity and drag

as seen in Figure 2.1. This trajectory will be defined by the properties of the payload and its

initial conditions, drag and gravity. The drag coefficient plays a significant role in defining the

ballistics of the beacon (Sherwood, 1967). The drag force, Fd , acting on the payload is usually

expressed using the formula Lord Rayleigh first devised

Fd := 1

2
Cd Aρv̄2, v̄ > 0 (2.1)

where A is the projected area, Cd the dimensionless drag coefficient and v̄ the relative ve-

locity with regards to the fluid medium and its density, ρ.



2.1. AERIAL RELEASE POINT 13

When velocity is given as a vector in three dimensions, the drag force is then expressed as

Fd := 1

2
Cd Aρv̄‖v̄‖, ‖v̄‖ :=

√
v̄2

x + v̄2
y + v̄2

z > 0, Fd :=


Fdx

Fdy

Fdz

 , v̄ :=


v̄x

v̄y

v̄z

 (2.2)

where v̄x , v̄y and v̄z are the decomposed velocities with respect to the fluid and Fdx , Fdy and

Fdz are the decomposed drag forces in x, y and z, respectively.

The drag coefficient is a function of the Reynolds number only, Re = Dv̄/v , where D is the

object dimension and v is the kinematic viscosity of the fluid medium (Sherwood, 1967). How-

ever, since the inertial drag dominates in our case, which is signified by a large Re , we can as-

sume Cd constant. The magnitude of Cd then depends on the shape of the object. For Re ≥ 103,

which is a good assumption for the purposes of this project, Cd is normally between 0.3 and 1.5.

(Sherwood, 1967).

2.1.2 Payload Equations of Motion

Using Newton’s second law to find the decomposed equations of motion (EoM) for the beacon,

and assuming that the beacon is a point mass and that the only forces acting on the beacon is

gravity and air resistance, this becomes the following EoM for the xz-plane

mv̇z =−mg −Fdz (2.3)

mv̇x =−Fdx (2.4)

where gravity points in negative-z direction, g is the gravitation constant, vx and vz are the

decomposed velocities in x and z direction with respect to the ground, and m is the mass of the

beacon, by combining 2.2 and 2.3 and dividing by m



14 CHAPTER 2. THEORY

v̇z =−g − b

m
v̄z‖v̄‖ (2.5)

v̇x =− b

m
v̄x‖v̄‖ (2.6)

where b := 1
2CdρA. The relative velocities affecting the UAV can be found by using the UAV’s

speed and wind estimates, v and w. Substituting this into 2.5 and 2.6 will result in

v̇z =−g − b

m
(vz −wz)‖v−w‖ (2.7)

v̇x =− b

m
(vx −wx)‖v−w‖ (2.8)

where

v :=


vx

vy

vz

 , w :=


wx

wy

wz

 (2.9)

where vy is the decomposed velocity with respect to ground. Furthermore, calculating the

impact point of the drop can then be done by integration of vx and vz . Extending the EoM to y

direction as well is trivial, since the EoM in y-direction are the same as in the x-direction. The

differential equations of the system are then



v̇x

v̇y

v̇z

ẋ

ẏ

ż


=



− b
m (vx −wx)‖v−w‖

− b
m (vy −wy )‖v−w‖

−g − b
m (vz −wz)‖v−w‖

vx

vy

vz


(2.10)

These six ordinary differential equations will give the ballistic trajectory by inputting certain

initial conditions. Giving a velocity and start position [0, 0, release height] as input and looking



2.1. AERIAL RELEASE POINT 15

Figure 2.2: Trajectory visualising the distance travelled in x

at the trajectory until z = 0, the EoM will give a trajectory with a known start point and an end

point from which you can read the distance travelled in x and y as the x and y coordinate (the

difference in x and y). If the target coordinate is displaced in the xy-plane by minus the distance

travelled in x and y , and displaced in z by minus the release height, the end position is at the

target and the start position is the displaced point. The displaced point is then the CARP, as

visualized in Figure 2.1 and Figure 2.2.

2.1.3 Feasible Aerial Release Points

Let the feasible aerial release points (FARP) be the set of all possible CARPs. It is then defined

by all initial states in (2.10) such that somewhere along the trajectory, the beacon’s coordinates

coincides with the target’s coordinates.

Some simplifications are used in this thesis.



16 CHAPTER 2. THEORY

• The initial vz is zero

• The release height is the same for all CARPs

• wz is zero

• The speed upon release is the same for all CARPs (
√

v2
xi ni t i al

+ v2
yi ni t i al

=Vtot al , where Vtot al

is a constant)

Expressed more intuitively, the height and speed are assumed constant when the beacon is

released. This leads to the FARP being a line around the target where every choice of (xi ni t i al , yi ni t i al )

has a corresponding (vxi ni t i al , vyi ni t i al ). If an analytical solution was found for this line, it could

be used in a typical optimization problem. The analytical solution was not found, and so an

iterative method was used instead. The iterative method is described in Section 2.1.4 and the

results are used in Section 2.5.3.

2.1.4 Iterative Calculation of the Aerial Release Point

Euler’s method (Egeland and Gravdahl, 2003, p.521-523) was chosen to calculate the trajectory

from the initial point until ground level is reached.

Implementation

This method calculates a trajectory for equation 2.10. Many other iterative methods are avail-

able, but Euler’s method was chosen as it is simple to implement. The method works by adding

the current value and its derivative times a step length to get the next value. Used on Equation

2.10, the iteration becomes



2.1. AERIAL RELEASE POINT 17



vxn+1

vyn+1

vzn+1

xn+1

yn+1

zn+1


=



vxn − b
m (vxn −wxn )‖vn −wn‖δt

vyn − b
m (vyn −wyn )‖vn −wn‖δt

vzn − (g + b
m (vzn − vzn )‖vn −wn‖)δt

xn + vxnδt

yn + vynδt

zn + vznδt


(2.11)

Where δt is the step length and n signifies step number. For this method to work with the

objectives in this thesis, the initial conditions must be set such that the trajectory in the xy plane

becomes apparent. The release height, wind, drag coefficients (b), step size and velocity are

given as input to the iterative program. Seen in the xyz plane, the start point is in [0,0,h], where

h is release height. The iteration then starts and runs until the z value becomes less than, or

equal to, zero. The values of x and y then describes the movement in north and east for that

trajectory. It is then straight-forward to displace the target coordinates to find the CARP.

Stability Properties of the Iterative Method

Looking at the stability properties of Euler’s method for this system using example 214 page 522

in Egeland and Gravdahl (2003)

v̇x y =− b

m
(vx y −wx y )‖v−w‖ (2.12)

v̇z = g − b

m
(vz −wz)‖v−w‖ (2.13)

where vx y is velocity in x or y directions as their equations are the same. It is then approxi-

mated that ‖v−w‖ is the largest possible velocity, the terminal velocity, vt



18 CHAPTER 2. THEORY

v̇x y =− b

m
(vx y −wx y )vt (2.14)

v̇z = g − b

m
(vz −wz)vt (2.15)

d v̇z

d vz
= d v̇x y

d vx y
=− b

m
vt (2.16)

As the derivatives of v̇x y and v̇z are the same, only one equation is used for all directions. Lin-

earising gives

∆v̇x y z =− b

m
vt∆vx y z (2.17)

where the vx y z is velocity in all directions. This gives the largest step limit

h ≤ 2
b
m vt

(2.18)

where h is the step limit with the terminal-velocity approximation. The step limit goes down

with higher velocities, and as the approximation uses the highest speed possible, the step is as

small as is required by any possible speed. Calculation of vt follows by Newton’s second law and

that terminal velocity is achieved when G equals Fdr ag and acceleration is zero.

ma =ΣF (2.19)

ma =G −Fdr ag max
= 0 (2.20)

mg = Fdr ag max
(2.21)

mg = bv2
t (2.22)

vt =
√

mg

b
= 41.74[m/s] (2.23)

where Fdr ag max
is the maximum drag force, g is 9.81 m/s2 and b and m are given in 3.1.9.

Inserting b and m, from Section 3.1.9, and vt , into 2.18 finally leads to



2.2. UAV REFERENCE FRAMES AND KINEMATICS 19

h ≤ 8.51[s] (2.24)

Another condition to take into account when discussing step length is the detection of cross-

ing the plane at z = 0. With the constant terminal velocity in mind, distance travelled in one step

is

s = hvt (2.25)

where s is the distance travelled in one step. This distance is equal to the CARP calculation

accuracy in z direction. If the needed accuracy is 0.1 m, the step length becomes

h = s

vt
= 0.00240[s] (2.26)

As the time step used for this thesis’ experiments is 0.001 s, the accuracy is

s = hvt = 0.042[m] (2.27)

2.2 UAV Reference Frames and Kinematics

To be able to control the UAV, its reference frames and kinematics must be described. As this

is fairly common theory, this thesis tries to keep to industry standard. In the rest of this thesis,

several controllers and guidance systems will rely on these.

First, we need to introduce some relevant notation and definitions such as reference frames



20 CHAPTER 2. THEORY

Figure 2.3: The Geodetic, ECEF, and local NED coordinate systems (Brezoescu, 2014)

(Figure 2.3) and mathematical notation, then the kinetics are described in component form.

2.2.1 Reference frames

Geodetic coordinate system: The geodetic coordinate system is a widely used in GPS-based

navigation. This coordinate system as defined near the earth surface in terms of the longitude,

latitude and height, denoted (l ,µ,h) respectively.

ECI: Earth-centred inertial reference frame {i } = (xi , yi , zi ) is a global coordinated system

with the origin Oi in the center of the earth. This is a non-accelerating fixed reference frame

with its origin in the center of the earth.

ECEF: Earth-centred earth fixed reference frame {e} = (xe , ye , ze ) is a global coordinated sys-

tem with the origin Oe =Oi in the center of the earth. This frame is is rotating relative to the ECI,

where the origin of the ECEF is the same as for ECI. For a vehicle moving at relative low speeds,

this frame can be seen as inertial.

Local NED: Local north-east-down reference frame {n} = (xn , yn , zn) is a local reference

frame with origin On , often used to get better resolution of the area of interest. Its coordi-

nate frame is fixed to the earth’s surface, based on the World Geodetic System 84 (WGS84) el-



2.2. UAV REFERENCE FRAMES AND KINEMATICS 21

lipsoid. The z-axis points downwards perpendicular to the plane tangent to the ellipsoid, the

x-axis points towards true north and the y-axis points towards east. Guidance and navigation

are normally carried out in this frame.The location {n} relative to {e} determined by the longi-

tude and latitude. For a vehicle operating in a local area, approximately constant longitude and

latitude, can we assume {n} as inertial, so that Newton’s laws applies.

Vehicle carried NED: Vehicle carried north-east-down reference frame {nv} = (xnv , ynv , znv )

is a local reference frame with origin Onv . This reference frame is associated with the flying vehi-

cle. The axis directions of the vehicle-carried NED frame vary with respect to the flying-vehicle

movement and are thus not aligned with those of the local NED frame. However, miniature UAVs

fly only in a small region with low speed, which results in the directional difference being com-

pletely neglectable. It is thereby reasonable to assume that the directions of the vehicle-carried

NED constantly coincide with the local NED coordinate system.

Body: The body reference frame {b} = (xb , yb , zb) is a local reference frame that is fixed to

the vehicle at a predefined point on the vehicle. Where axes are usually chosen so that xb points

in the forward direction, yb points to the right side and zb points downward.

Wind (and stability): In addition to body reference frame, is it common to include the wind

{w} and stability {s} coordinate frames for aircraft. These frames has it origin in the aircraft

center of gravity Figure 2.4.

2.2.2 Coordinate transformation

Some necessary and relevant coordinate transformation need to be included (Brezoescu, 2014).

Geodetic and ECEF:. The positions given by the GPS are most often provided as ellipsoidal

coordinates (latitude, longitude and height) based on the World Geodetic System 84 (WGS84)

ellipsoid. In order to convert the GPS measurements to the local NED to we first need an inter-



22 CHAPTER 2. THEORY

Figure 2.4: Definition of stability and wind axis frames. Where α = w/u is the angle of attack
and β= v/vT is the sideslip angle

mediate step converting GPS to ECEF. This can be done in the following way

pe
b/e =


xe

ye

ze

=


(NE +h)cos(µ)cos(l )

(NE +h)cos(µ)si n(l )

[NE (1−e2)+h]si n(µ)

 (2.28)

where e is the eccentricity of the ellipsoid and NE = r 2
e /

√
r 2

e coss(µ)+ r 2
p si n2(µ) is the prime

vertical radius of the curvature, where re is the semi-major axis and rp is the semi-minor axis of

the ellipsoid.

ECEF and Local NED:. The position transformation from local NED to ECEF are defined as

follows

ve
b/e = ṗe

b/e = Re
n(Θne )ṗn

b/e (2.29)

where pn
b/e is the position of the point Ob with respect to the {e} frame represented in the {b}



2.2. UAV REFERENCE FRAMES AND KINEMATICS 23

frame, Θne = [l ,µ]T and the rotation matrix between ECEF to local NED are

Re
n(Θne ) =


−cos(l )si n(µ) −si n(µ) −cos(l )cos(µ)

−si n(l )si n(µ) −cos(µ) −si n(l )cos(µ)

cos(µ) 0 −si n(µ)

 (2.30)

and pe
b/e can be found by integrating 2.29.

Geodetic and Vehicle Carried NED: The relationship between geodetic position and vehi-

cle carried NED, where the geodetic position and the vehicle carried NED velocity are of great

interest. 
l̇

µ̇

ḣ

=


vnv

(NE+h)cos(µ)

unv
ME+h

−wnv

 (2.31)

The derivatives of the vehicle carried NED are then given as

Vnv
b/nv =


u̇nv

v̇nv

ẇnv

=


− v2

nv si n(µ)
(NE+h)cos(µ) + unv wnv

ME+h +amxnv

unv vnv si n(µ)
(NE+h)cos(µ) + unv wnv

NE+h +amynv

− v2
nv

(NE+h) −
u2

nv
ME+h + g +amznv

 (2.32)

where g is the gravitational constant and anv = [amxnv , amynv , amznv ]T is the projection of ab =
[amxb , amyb , amzb ]T (the acceleration measured on the body) onto the vehicle carried NED. The

acceleration ab can typically be measured by a three-axis accelerometer, assuming that the cen-

ter of origin (CO) of the accelerometer coincide with the center of gravity of the vehicle. This will

be assumed in this report. However, in the case where accelerometer origin does not coincide

with the CG, transformation is needed.

Vehicle Carried NED and Body: The kinematic relation between the vehicle carried NED



24 CHAPTER 2. THEORY

and body, this relationship is important in modelling and control of a vehicle.

vb
b/nv = Rb

nv (Θnvb)vnv
b/nv (2.33)

ab
b/nv = Rb

nv (Θnvb)anv
b/nv (2.34)

where vb
b/nv = [u, v, w]T , ab

b/nv = [ax , ay , az]T , Θnvb = [φ,θ,ψ]T and Rb
nv (Θnvb) is the euler angel

rotation matrix defined as

Rb
nv (Θnvb) =


cos(θ)cos(ψ) cos(θ)si n(ψ) si n(θ)

si n(φ)si n(θ)cos(ψ)− cos(φ)si n(ψ) si n(φ)si n(θ)cos(ψ)+ cos(φ)cos(ψ) si n(φ)cos(θ)

cos(φ)si n(θ)cos(ψ)+ si n(φ)si n(ψ) cos(φ)si n(θ)si n(ψ)− si n(φ)cos(ψ) cos(φ)cos(θ)


(2.35)

Local and vehicle carried NED: Assuming that the UAV only flies in a small region at low

speeds as described in 2.2.1, can we assume that there is no difference between {nv} = {n}. This

is a good assumption in our case, and will be followed throughout the report.

Wind and body: The relation between {w} and {b} frame is determined by the aerodynamic

angles, seen in Figure 2.4, β and α, which stand for sideslip and angle of attack, respectively.

vw
b/n = Rw

b (Θbw )vb
b/n (2.36)

where vb
b/n is the airmass velocity with respect to the {n} expressed in {b}, vw

b/n is the airmass

velocity with respect to the {n} expressed in {w} andΘbw = [−β,α]T . Furthermore

Rw
b (Θbw ) =


cos(α)cos(β) si n(β) si n(α)cos(β)

−si n(α)cos(β) cos(β) −si n(α)si n(β)

−si n(α) 0 cos(α)

 (2.37)



2.3. WIND ESTIMATION 25

2.2.3 Kinematics and Kinetics

Assuming that vehicle (UAV) is rigid and that the local NED frame is inertial, the kinematic equa-

tions of motion for the UAV can be described as follows (Figure 2.5) (Langelaan et al., 2011). The

vector relationship between this~vg =~va +~w. Using the vector notation from Fossen (2011) this

becomes

ṗn
g /e = vn

g /e = Rb
n(Θnb)−1vb

a/e +vn
w/e (2.38)

where vn
w/e = [wxe , wye , wze ]T is the wind speed components with respect to the {e} ex-

pressed in {n} and vn
a/e = [u, v, w]T is the relative aircraft velocity with respect to {e} expressed in

{n}. Furthermore the rigid body kinetics for the velocity can be described in component from as

follows (Langelaan et al., 2011)

u̇ = X

m
− g si n(θ)−qw + r w − ẇxe cos(θ)cos(ψ)− ẇye cos(θ)si n(ψ)+ ẇze si n(θ) (2.39)

v̇ = Y

m
+ g si n(φ)cos(θ)+pw − r u − ẇxe (si n(φ)si n(θ)cos(ψ)− cos(φ)si n(psi ))

− ẇye (si n(φ)si n(θ)si n(ψ)+ cos(φ)cos(psi ))− ẇze si n(φ)cos(θ)
(2.40)

ẇ = Z

m
+ g cos(φ)cos(θ)+qu −pv − ẇxe (cos(φ)si n(θ)cos(ψ)+ si n(φ)si n(psi ))

− ẇye (cos(φ)si n(θ)si n(ψ)− si n(φ)cos(psi ))− ẇze cos(φ)cos(θ)
(2.41)

2.3 Wind Estimation

Using GPS measured velocity, a pitot tube and IMU measurements, we can derive a method for

directly computing the wind velocity with respect to the earth (Johansen et al., 2015; Langelaan

et al., 2011). A differential GPS provides a direct measurement of the ground velocity with re-

spect to the earth ṗe
g /e = ve

g /e , this is obtained by using the rates of change of pseudoranges. The



26 CHAPTER 2. THEORY

pseudrorange is the pseudo distance between a satellite and a navigation satellite receiver (GPS)

(Enge, 1994).

Figure 2.5: Graphical vector relationship between aircraft motion and wind, represented in
two-dimensional (north and east) local NED frame

Additionally assuming that the autopilot module provides estimates of the UAV’s air speed

and attitude means that the local wind velocity components can be obtained directly from the

UAV’s attitude, ground speed and airspeed (Langelaan et al., 2011).

vn
w/e = vn

g /e −Rb
n(Θnb)−1vb

a/e

vn
w/e = vn

g /e −Rb
n(Θnb)−1Rw

b (Θbw )−1vw
a/e

= Re
n(Θne )−1ve

g /e −Rb
n(Θnb)−1Rw

b (Θbw )−1vw
a/e

(2.42)

where vw
a/n = [va ,0,0]T , va =

p
u2 + v2 +w 2 is the total airspeed, where u, v and w is the

velocity in body x, y and z direction, respectively.

The estimator proposed in Johansen et al. (2015) was implemented to find the wind velocity.

It is based on an observer using a Kalman filter.

The measured airspeed is modelled as um
r = γur and is measured by the airspeed sensor, in

this case a pitot tube. γ is a scaling factor for online calibration, hence the observer injection

term is given as



2.3. WIND ESTIMATION 27

u = d T
1 Rb

nvn
w +urγ (2.43)

where d1 = [1,0,0]T and Rb
n is the body-to-ned Euler rotation matrix. Both vw and γ are

considered slowly time varying (v̇w = γ̇= 0). This gives system matrices

A = 0 (2.44)

C =
[

d T
1 Rb

n ur

]
(2.45)

D = d1d T
1 =


1 0 0

0 0 0

0 0 0

 (2.46)

Due to the rank of D being 1, observability must be acquired through manipulation of Rb
n .

This is managed by varying the attitude through manoeuvres at all times to keep the observabil-

ity gramian positive for all time intervals. More information on this can be found in Johansen

et al. (2015).

The observer is

 ˙̂vn
w

˙̂γ

= K(û − γ̂um
r −d T

1 R̂b
n v̂n

w ) (2.47)

Which is then processed in a Kalman-Bucy filter

K = PCT R−1 (2.48)

Ṗ = Q−KRKT (2.49)

where ˙̂vn
w , ˙̂γ, û, v̂n

w , γ̂ and R̂b
n are estimated entities, R is the variance of the pitot tube mea-



28 CHAPTER 2. THEORY

surement noise, Q > 0 is the covariance of a white noise model of the wind velocity and scaling

factor change and the initial condition for P is P(0) > 0. Both P and Q are symmetric matrices.

As the PE condition is satisfied, P is bounded and the observer is globally exponentially stable.

This would give a fairly good estimate of the local wind speed. However, GPS velocity noise

effects and the accuracy of the estimates of both airspeed and Euler angles will affect the result.

Note that the wind estimates found by this method are assuming uniform wind components in

the local area.

2.4 Flight Controllers

To control the UAV, lateral controllers are needed. These controllers will help guide the UAV to

the CARP. In this thesis, two guidance controllers using two course controllers have been tested.

The course controllers are based on a bank to turn controller, as can be seen in Figure 2.6.

Figure 2.6: Controller hierarchy

2.4.1 Guidance Controllers

Two guidance controllers have been tested, the L1 controller and a line-of-sight (LOS) controller.

L1 Controller

The simplest way to control the UAV is to use the Pixhawk’s built in guidance controller. To use

it, a waypoint coordinate is sent to the Pixhawk through one of its input ports. The controller



2.4. FLIGHT CONTROLLERS 29

can be used in two ways, either as a pseudo LOS controller (then referred to as the L1 controller)

or as a waypoint controller (then referred to as the waypoint controller). They are described as

Region B and Region A in drawings from Plane: L1 Control (2013). The L1 controller was not

tested in this thesis, as its implementation with DUNE (Section 4.1.3) was not yet completed.

When used as a pseudo LOS, it is based on Park et al. (2004). The control law is then

Figure 2.7: L1 guidance

∆Ψ= as

V
∆t (2.50)

as = 2
V 2

L1
sinη (2.51)

where ∆Ψ is the desired change in heading, as is the desired centripetal acceleration, V is

the UAV ground velocity, ∆t is the controller step time, L1 is the look ahead distance for this

controller and η is the error in heading. These are visualized in Figure 2.7.



30 CHAPTER 2. THEORY

When used as a waypoint controller, the autopilot then tries to go towards the waypoint by

setting the desired course towards it in relation to the current UAV position. That is to say, the

controller compares the UAV’s position to the CARP and defines a desired course (χd ). When the

UAV reaches the final waypoint, it will start loitering around the coordinate with a given radius.

This is a good safety measure as the UAV will never stop, but reduces accuracy when getting

close to the loitering circle as the UAV will start turning into the circular pattern.

Line-of-Sight Controller

To answer the waypoint controller’s downsides, a LOS controller can be used instead. This con-

troller uses a start point and an end point to calculate a straight line which it will try to follow.

The CARP will be reached with the correct velocity if the line is placed on top of the CARP in the

same direction as the CARP’s corresponding velocity. The accuracy of this method depends on

the tuning of the LOS controller and the underlying bank-to-turn and course controller.

Figure 2.8: LOS guidance

LOS guidance is based on the following formulae from Fossen (2011)



2.4. FLIGHT CONTROLLERS 31

χd (e) =χp +χr (e) (2.52)

χp = a (2.53)

χr (e) := at an
−e(t )

∆
(2.54)

 s(t )

e(t )

=
 cos(αk ) −si n(αk )

si n(αk ) cos(αk )

 x(t )

y(t )

−
 xst ar t

yst ar t

 (2.55)

assuming sideslip angle β = 0, where χd is desired course, χp is start point to end point course

and χr is reference course based on path following error, e(t ). s(t ) is the along path distance

travelled, x(t ) is UAV north coordinate, y(t ) is the UAV east coordinate, xst ar t is the north co-

ordinate of the path start point, yst ar t is the east coordinate of the path start point and ∆ is the

look ahead distance. Some of these variables are found in Figure 2.8.

2.4.2 Heading Controllers

As seen in Section 2.4.1, the guidance controllers use a desired course, χd , or change in heading,

∆Ψ, to follow the path. To achieve this, a heading or a course controller is implemented. The

difference between the two is the side slip affecting the UAV.

Bank Angle Translation

As the L1 controller outputs a desired ∆Ψ, this can be inserted into

ψ̇= g

Va
tanφ (2.56)

from Beard and McLain (2012), where ψ̇ is approximately ∆Ψ, Va is the air speed and φ is



32 CHAPTER 2. THEORY

the desired roll angle. The desired roll angle is then input to the Pixhawk’s roll angle controller,

which is a part of the bank-to-turn controller.

Sliding Mode Controller

A controller used to achieve χd (e) can be found in Fortuna and Fossen. It is a sliding mode

controller (SMC) with uniform semi-global exponential stability. It is a course controller as op-

posed to a heading controller, and will therefore account for side slip angle. Tuning is also taken

directly from the paper. This controller’s output is the desired roll.

φd = (−λ ˙̃χ−ρ sgn(s)−Kd s)
V 2

g Tφε
2(φ)

g (Va +Wx cos(ψ)+Wy sin(ψ))
(2.57)

where φd is the desired roll, λ, ρ and Kd are tuning parameters, ρ ≥ fmax ≥ |χ̈|i nput=0 +|χ̈d |,
s is the sliding mode surface, s = ˙̃χ+λχ̃, Tφ is the time constant for the roll angle, ε is cosφ

rewritten to avoid singularity (see Fortuna and Fossen) and Wx and Wy are wind velocities. The

roll angle is controlled by the Pixhawk’s internal bank controller.

2.5 Path Planners

To drop the beacon accurately, the chosen CARP must be reached with the correct velocity. Sev-

eral paths to reach the CARP has been developed and explored in this thesis. They are described

in the following sections. All of them use a glide state before dropping to avoid interaction be-

tween propeller and beacon.



2.5. PATH PLANNERS 33

Figure 2.9: The Straight-Line path

2.5.1 Straight-Line

The Straight-Line (SL) path is a simplified version of the Adapted Dubins Path algorithm from

Fuglaas (2014). It is based on making the UAV go to a start point and then to an end point directly

opposite the CARP. The start and end point is chosen so that the path is up against the wind, and

in the same direction as the CARP velocity. The velocity direction of the UAV in the start position

is toward the end position. If this is acheived, the UAV should in theory reach the CARP with the

appropriate velocity.

To set up the line during testing, a waypoint is chosen l meters away from the CARP and

r meters to the side (where r is the loitering radius). When the UAV is loitering and pointing

towards the CARP (within a certain accuracy), it is given the end point as the next waypoint to

go to, and it will then go towards the CARP. This is shown in Figure 2.9.



34 CHAPTER 2. THEORY

The CARP is chosen based on the wind direction. During CARP calculations, the UAV’s ve-

locity vector is set opposite to the wind current to reduce the side slip while approaching the

CARP. This also leads to a CARP between the start point and target, as close to the target as pos-

sible.

In theory, both the waypoint controller and LOS controller from Section 2.4.1 should work

with this path planner, but it is more robust while using LOS as it can compensate for distur-

bances pushing it away from the line, while the waypoint controller does not.

A disadvantage of this path planner is that it does not update the CARP if the wind has

changed.

Figure 2.10: The Incremented-Straight-Line path



2.5. PATH PLANNERS 35

2.5.2 Incremented-Straight-Line

The Incremented-Straight-Line (ISL) path planner is based on a lot of the same theory as the SL

approach, but uses several waypoints to draw up the straight line as is visualized in Figure 2.10.

In this configuration, the waypoint controller will act more as a LOS controller and make some

corrections to course as it increments the waypoints so that the path is followed more closely.

The current waypoint is incremented when the UAV is close it.

2.5.3 Optimal

Figure 2.11: Example of choice of optimal CARP

The Optimal path planner differs from the line approach methods in Section 2.5.1 and Sec-

tion 2.5.2 by not having a constant CARP. The payload computer chooses a CARP among the



36 CHAPTER 2. THEORY

Figure 2.12: Some CARP paths are not as simple to follow

FARP at every few increments of the control algorithm. How often is given during initiation of

the flight.

The FARP is the solution to the EoM for the trajectory described by Equation 2.10 given

certain initial conditions (more in Section 2.1.3). As the analytical solution for this problem was

not found, the FARP used in the optimization is a range of CARPs existing in the FARP. This range

is called the range of FARP (RoF). The RoF is found through calculation of aerial-release points

for n velocity vectors ε radians around the target based on the approach angle. ε is the angular

difference between the first and last CARP velocity vector. The RoF is then n CARP instances of

the FARP. This is visualized in Figure 2.11. Both n and ε are given on initialisation.

The optimization algorithm chooses the CARP simplest to reach by weighing each CARP in

the RoF based on two criterion: proximity and difference in desired contra current velocity. A



2.5. PATH PLANNERS 37

Figure 2.13: LOS path for optimal CARP

comparison of paths is seen in Figure 2.12. The UAV’s velocity has to be rotated about the z-axis

so that it is mirrored about the line made by the angle of approach. If it was not, the velocity

weighing part of the optimization would always favour a CARP on the opposite side of the angle

of approach, for instance point 1 in Figure 2.11, which is clearly not the simplest to reach.

Choosing new paths like this means that if the UAV is suddenly pushed off the path, it would

not be bound to the currently chosen CARP, it would just choose a new CARP simpler to reach.

When the CARP has been chosen, a path is made for the LOS controller to follow, see Figure

2.13. The path is a straight line across the CARP in the same direction as the CARP velocity.

The path contains an end point and uses the CARP as the start point, though the path extends

beyond these.

There are several advantages with the Optimal path planner:

• It does not rely on a constant wind. It uses the newest wind estimate at all times.

• The UAV does not have to go to a start point first. It travels directly to the end point (via

the CARP). It is also possible to go to a start point first, similar to the straight line path, to



38 CHAPTER 2. THEORY

be less affected by side slip.

• As the height might vary, this method takes height into account at every iteration.

There are also a few disadvantages

• The optimization might use a lot of computational resources, and might cause deadlines

to be missed.

• The almost continuous updating of the LOS’s path will in some cases make the UAV course

oscillate.

2.5.4 Optimize-When-Success-is-Improbable

The Optimize-When-Success-is-Improbable (OWSI) path planner is designed to fend off the dis-

advantages of the Optimal path planner. As the Optimal path planner is based on optimizing

very often, the OWSI will only optimize when it is improbable that the CARP will be reached or

that the wind has changed sufficiently to change the beacon trajectory considerably. This will

lead to fewer optimizations, further leading to less CPU usage and less path oscillations.

Whether to optimize or not is based on the UAV’s current state, the CARP and the wind.

• If the wind has changed a considerable amount (amount given during initialization), the

projected trajectory will be false.

• If the actual height is different to the CARP height, the target will be missed. A new CARP

must be considered in the current height of the UAV.

• If the path error is large, the UAV will probably miss the CARP, either as the position is not

reached, or as the velocity will be in the wrong direction.

• If the speed is not at its set value, the calculated trajectory is false.

The final three elements have to be considered with distance to the CARP in mind as the LOS,

speed and height controllers need time to get to their set points. The following considerations

are suggested to decide whether to perform a new optimization or not.

• If wcar p − w > cw , where wcar p is the wind used to calculate the CARP, w is the newest



2.6. CARP DETECTION 39

wind estimate, and cw is a constant.

• If ep /d > cp , where ep is LOS path error, d is distance to CARP, and cp is a constant.

• If eh/d > ch , where d is distance to CARP, eh is the height error, and ch is a constant.

• If es/d > cs , where d is distance to CARP, es is the speed error, and cs is a constant.

• If (vb
d − vb)/d > cv , where vb

d is the desired velocity, vb is actual velocity, d is distance to

CARP and cv is constant.

2.6 CARP Detection

It is important to accurately decide when the CARP has been reached in order to drop the beacon

at the correct time. This is in general done in two ways, either by detecting when a perpendic-

ular plane at the desired position has been crossed, or by making a sphere around the desired

position and deciding when it has been breached (Beard and McLain, 2012).

In this thesis, a mixed version is used. The decision is based on the distance to the CARP.

As we have a quite accurate and frequent position estimates (as evident from Section 7.4.3),the

detection may provide an accuracy of 0.85 m when the UAV’s speed is 17 m/s. This is calculated

by dividing the speed measurement by two times the update rate, V /(2rest ). This is only valid

when flying straight above the CARP as seen in flight 1 in Figure 2.14.

The logic of the decision is that the release should take place either when the measured

distance is less than a decision radius or when the UAV is further away than in the previous

distance measurement.

The decision radius should be the UAV’s speed divided by between one and two times the

state estimate rate(v/rest to v/(2rest )).

From Figure 2.14 one can see that as flight 1 and 2 are flown perfectly above the target, a drop

will occur within the expected accuracy. When flying close to the decision radius perimeter as

in flight 3 and 4, the accuracy is not so high.

Figure 2.15 maps where the CARP is considered reached when an estimated state is within



40 CHAPTER 2. THEORY

Figure 2.14: Estimated positions for four flights close to target. The blue line shows at which
estimated state the CARP is considered reached

the orange areas. The UAV has a velocity upwards in the picture but the UAV might not be po-

sitioned at the indicated start position. The red field shows how wide the decision radius may

be.



2.6. CARP DETECTION 41

Figure 2.15: Map of release positions



42 CHAPTER 2. THEORY



Chapter 3

Hardware Implementation

This chapter will present the implementation of the hardware mounted on the X8, and the X8

itself. All off-the-shelf products are described in Section 3.1. To fasten the payload in the X8,

some box or plate had to be designed. This is described in Section 3.2. Section 3.3 gives an

overview of the PWM generator. This product was tailor-made during the thesis. The last section

in this chapter, Section 3.4, gives an overview of the complete system by describing the hardware

setup in three ways: communication, power supply and modularity.

3.1 Hardware Components

The X8 specifications and attributes are described in Section 3.1.1. The chosen payload com-

puter was the BeagleBone Black. It is a well suited computer for this task, as it has enough

computing capacity and does not use too much power. It is further discussed in Section 3.1.3,

and information on its expansion board is found in Section 3.1.3. The mechanism that drops the

beacon is described in Section 3.1.2. Information on the autopilot that was used can be found

in Section 3.1.7, and the radio used in Section 3.1.4. In Table 3.1, all used hardware is listed.

43



44 CHAPTER 3. HARDWARE IMPLEMENTATION

Figure 3.1: Hardware setup and signal flow

Part/module Type/usage Description

Skywalker X8 Vehicle Fixed wing UAV platform

BeagleBone Black Avionics computer Computer as part of payload

Rocket M5 Radio Communication with ground

Nanostation M Ground station Radio Communication with UAV

Pixhawk Autopilot/Guidance Used to follow waypoints

EFLA405 Drop mechanism Used to drop beacon

On-board router Router Supporting LAN in UAV

PWM generator Signal converter Sending PWM signal to drop mechanism

Aluminium plate Mounting structure For mounting of payload

Table 3.1: Hardware parts list



3.1. HARDWARE COMPONENTS 45

3.1.1 Skywalker X8

Wingspan: 2120 mm

Weight: 880 g

Motor: 2820 KV730

Speed regulator: 60 A

Battery pack: 4S8000 mAh

Propeller: 12X6 13X8

Maximum take-off weight, according to third party: 3200 g

Maximum take-off weight, according to pilot: 4500 g

Figure 3.2: Sketch of Skywalker X8

These measures are based on a building

instruction manual made by a third party.

The X8 is a small and inexpensive aircraft,

which is one of the main reasons for choos-

ing this platform. Modification of the aircraft

was simple, as it is made from styrofoam. The

shape of its hull was also advantageous. The

glider shaped design gave flight advantages,

requiring less power and the ability of keep-

ing low speeds. The X8 also has a fairly large

payload capability, compared to its size. The

X8 is drawn in Figure 3.2. Its optimal airspeed is about 17 m/s, and uses a catapult-like launch

device to take off, pictured in Figure 3.3.

For these reasons, the Skywalker X8 was a well chosen aircraft to use in this thesis. Modifi-

cations were made to the hull, enabling the X8 to drop a beacon from underneath its wings and

its belly by attaching drop mechanisms there.



46 CHAPTER 3. HARDWARE IMPLEMENTATION

Figure 3.3: X8 catapult

3.1.2 EFLA405 Servoless Payload Release

To release the beacon, a drop mechanism was needed. It had to be light, quick, and not use

much power. The EFLA405 Servoless Payload Release (henceforth called the drop mechanism)

was chosen as it only weighs 18 grams and uses about 350 mA with 4.8-8.5 V (Servoless Payload

Release, 2014).

The release of the payload was measured to take 0.6 s.

Placement of Drop Mechanism

To decide where to place the drop mechanism, several problems needed to be taken into ac-

count. First, the X8 has no wheels or undercarriage. It lands on the belly of the plane. The wings

will also probably touch ground during landing. Second, the propeller’s integrity is important.



3.1. HARDWARE COMPONENTS 47

Failure of the propeller is a major or catastrophic failure. Third, the drop mechanism could not

interfere with the launch ramp. Fourth, the payload should not change the centre of gravity.

These considerations meant that the placement of the beacon and drop mechanism was

important. Two placements were considered, either at the wings or at the belly of the plane. As

placing the drop mechanism on the wings would interfere with the launch mechanism, the final

placement ended up being on the belly of the plane. This meant that the engine must be turned

off before releasing the beacon.

3.1.3 BeagleBone Black

The BeagleBone Black (BBB) was chosen as the payload computer. It is a small computer with

most types of I/O available. The work in this thesis required serial communication protocols

and Ethernet, which is available on the BBB.

There are many ways to power the BBB. The chosen design uses a voltage regulator on the

cape (see the below section) to supply power through the P9 expansion slot pin one and three.

Other available methods would have been to supply it through USB, Power Over Ethernet (POE)

or DC Jack (cupped 5.4 mm) (BeagleBone Black Datasheet, 2014).

Hardware

Processor: AM335x 1GHz ARM® Cortex-A8

Memory: 512MB DDR3 RAM

Storage 4GB 8-bit eMMC flash

Graphics: 3D graphics accelerator

SIMD: NEON floating-point accelerator

Microcontrollers: 2x PRU 32-bit microcontrollers



48 CHAPTER 3. HARDWARE IMPLEMENTATION

Connectivity

• USB client for power and communications

• USB host

• Ethernet

• HDMI

• 2x 46 pin headers

(BeagleBone Black Datasheet, 2014)

Cape

The cape is an expansion board for the BBB. It is shaped like the BBB, with a cut-in for the

Ethernet port so as to fit on top of the BBB. The cape uses the P8 and P9 expansion slots on the

BBB.

The cape is used as power supply and as an interface for I/O serial ports. It is powered by

a battery, with a voltage capacity between 6.5 V and 18 V. A voltage regulator, R-78B5.0-1.5L,

lowers the input voltage to 5 V (R78Bxx15L Datasheet, 2014). Three serial I/O ports are mounted

on the cape. One for the Pixhawk (marked PX), one for GPS (marked GPS) and one optional port

(marked OPT). There is also a port power supply for the Power Over Ethernet cable (see 3.1.8).

All connectors are ATX 4 pins.

The printed circuit board (PCB) for the cape was designed by Kristian Klausen at ITK, and

machined and assembled by the author in the cybernetics workshop. The PCB design and cir-

cuit diagram can be found in respectively Appendix K and Appendix J.

AM335x 1GHz ARM® Cortex-A8

The BBB’s processor. It is made by Texas Instruments, and their description of it is available in

Appendix F.



3.1. HARDWARE COMPONENTS 49

3.1.4 Rocket M5

A radio was needed to communicate with the ground station. The Rocket M5 was chosen. It

uses Wi-Fi and supports TCP/IP. This was necessary as the IMC protocol requires TCP/IP. For

more on IMC, see Section 4.1.3. The Rocket M5 has two 5 GHz radios and a throughput of 150+

Mbps (Rocket M5, 2014). As it has two radios, two appropriate antennas are needed.

3.1.5 Nanostation M

The UAV ground station needed a radio as well. It had to be compatible with the 5 GHz trans-

mission from the Rocket M5 and support TCP/IP, so model NSM5 was chosen (Nanostation M,

2014). The Nanostation M was used only as a ground station radio at the lab as a Rocket M5 rig

was set up on the airport used for testing.

3.1.6 On-Board Router

A router was placed in the UAV. Internal distribution of information via the IMC bus is then made

possible. The router was made by Torkel Hansen and Artur Piotr Zolich at ITK and is run by an

Atheros AR9331. It uses the Linux distribution called OpenWRT, which is good for networking

on embedded devices (OpenWRT linux distribution, 2014). It is connected to the Pixhawk using

a Fiber-Distributed-Data-Interface (FDDI) cabel which has a virtual-serial interface, so that all

information to and from the Pixhawk complies with the TCP/IP standard.

3.1.7 Pixhawk

Pixhawk is an advanced autopilot system designed by the PX4 open-hardware project and man-

ufactured by 3D Robotics. It features an advanced processor, a failsafe processor and sensor

technology from ST Microelectronics which is basically an IMU, and a NuttX real-time operat-

ing system, which is delivering good performance, flexibility, and reliability for controlling the



50 CHAPTER 3. HARDWARE IMPLEMENTATION

X8. It is also small and light, making it well suited for small UAVs. Pixhawk offers its own com-

plete flight control stack, however, it can be modified if needed (Pixhawk Autopilot, 2014).

It has several ways of communicating:

• 5x UARTs

• 2x CAN

• I2C

• SPI

• ADC

• Spektrum DSM / DSM2 / DSM-X

• Futaba S.BUS

• PPM sum signal

• USB

(Pixhawk Autopilot, 2014)

To control the servos, Pixhawk has 14 PWM outputs (8 with fail safe and manual override, 6

auxiliary, high-power compatible). For information on available software, see Section 4.2.2.

The Pixhawk uses a differential GPS with a 5 Hz update rate (GPS Modules, 2015). As it is

differential, it’s accuracy is 2.5 m in position (LEA-6 series u-blox, 2015).

3.1.8 Cables and Connectors

Due to different connectors on-board the UAV, cables had to be made.

The Rocket M5 requires POE, but the BBB’s Ethernet port does not supply it. The BBB is

normally not connected directly to the Rocket M5 except during early testing, so the need was

not dire. The solution was to split the Ethernet cable between signal and power, by plugging the

power part of it into the BBB’s cape and the rest into the BBB’s main Ethernet port.

A cable was made to connect the PWM generator into the BBB’s cape. It has one DF13 con-



3.1. HARDWARE COMPONENTS 51

nector in one end and a flat four pin ATX connector in the other.

3.1.9 Test Beacon

The test beacon was made so that drop accuracy flight tests could be performed. The test bea-

con had to be stable in free fall, meaning its centre of pressure must be behind its centre of

gravity. The drag coefficient, mass and area had to be know.

A cone shaped test beacon was made from plastic with a part of the back milled out. It has a

20.25 degree angle from the centre line to the side. This led to a stable shape weighing 104 g with

a drag coefficient of about 0.39 (Drag, 2015). The front facing area is 0.00636 m. These numbers

led to a b of 0.00152 using an air density of 1.225 kg /m3. Its stability was confirmed by throwing

it off the roof of a building. The test beacon is pictured in Figure 3.4 and 3.5.

Figure 3.4: Test beacon with the milled-out back visible



52 CHAPTER 3. HARDWARE IMPLEMENTATION

Figure 3.5: Test beacon

3.2 Placing the Payload Components

The hardware on the X8 had to be mounted in such a manner that it would not change the

dynamics of the X8 too much. Weight and placement of the payload had to be considered care-

fully as the X8 has maximum payload capacity of 4.5 Kg. Mounting and unmounting had to be

simple. Velcro was therefore used on all components to secure them in the payload bay. Compo-

nents that were not suited to be directly velcroed in the UAV were raised and mounted to a thin

aluminium plate, which was then velcroed to the UAV. In the final design, only the BeagleBone

Black was mounted on one such plate.

3.3 PWM Generator

A PWM input is required by the drop mechanism. This was achieved by making a small PWM

generator using a microcontroller (MCU) to supply the PWM signal. The final design can be

found in Appendix K and Appendix J.



3.3. PWM GENERATOR 53

To design the circuit, Altium Designer and Eagle was used. Programming of the PWM gen-

erator is described in Section 4.3.

The ATtiny85-10PU MCU was chosen. This is a cheap, simple, available MCU that does not

consume much power.

3.3.1 Programming the ATtiny85 MCU

The ATtiny85 was programmed in Atmel Studio 6.2 using the test board AVRATSTK500 and a

JTAG ICE MK. II until a JTAG compatible port was included in the PCB design, see Figure 3.6 and

3.7

Figure 3.6: Programming the ATtiny85 using the AVRATSTK500 and JTAG ICE MK. II

3.3.2 First Design

The size of the PCB was approximated to 40 x 40 mm, but the final measures of the first design

was 30 x 30 mm. Through-hole PCB was chosen as the existing equipment used to program

the MCU is designed for through hole components. In the final design, the JTAG port was im-



54 CHAPTER 3. HARDWARE IMPLEMENTATION

plemented directly on the PCB, and the design could then have been changed to use a surface-

mounted MCU.

The cybernetics workshop uses a a milling machine to make PCBs, and the available PCB

plates were two layered. The first design had one four-pin header for both input and output.

This was not a good design, as the cables did not match the designed template. Four holes were

drilled for screws, but this was not strictly necessary to attach the PWM generator in the payload

compartment. The lack of a port for programming meant that there would be no software up-

dates after soldering. This might be crucial, as the timing and integrity of the release mechanism

would be a source of error for the point of impact of the beacon.

3.3.3 Final Design

On the second design, the size was changed to 35x28mm. The input/output header was split

into two separate headers. The output was chosen to be a three-pin header, as it would fit the

drop mechanisms connector. A DF13 five pin connector header was used as input. This is the

same header that the Pixhawk uses. This was chosen because of its small footprint and strong

fit, although detaching the cable may rip the connector off the PCB.

Only one hole was made for attaching the board to the UAV on the second design. This led

to a smaller PCB design compared to using four holes. A port was added for the JTAG which

made it possible to update the MCU software. This also retired the AVRATSTK500 test board, as

we now could program the ATtiny85 directly on the PCB.



3.4. HARDWARE OVERVIEW AND SETUP 55

Figure 3.7: Final design on the left, first design on the right

3.3.4 Testing

The input signal was at first produced manually. The GPIO input was, via a wire, connected

to either GND or 5 V to test the PWM generator’s reaction. A test program was later made in

DUNE to see how the PWM generator and BBB cooperated. This is described in Section 6.1.2.

An oscilloscope was used to verify the PWM-signal.

3.4 Hardware Overview and Setup

This section will try to give an overview of the entire hardware setup. In Section 3.4.1, the con-

nections and communication are explained, then the modules will be described in Section 3.4.2.

The last section, Section 3.4.3, shows how all components are powered.



56 CHAPTER 3. HARDWARE IMPLEMENTATION

3.4.1 Connections and Communication

The IMC is the main communication protocol in this project. It works over the TCP/IP protocol,

and should therefore be connected in a compliant way. The BBB and the Rocket M5 has RJ45

connectors, and connects directly to the on board router. An FDDI cable was fashioned for the

Pixhawk autopilot so that it could communicate directly with the router as well, though if using

Neptus and APM Mission Planner at once, the Pixhawk should be connected to the PX port on

the BBB’s cape. It is important to note that the ground station is also communicating via the IMC

bus, and that contact between ground station and X8 is made using the radio link. This connects

all the main components to the IMC bus except the PWM generator with drop mechanism.

The PWM generator has a simpler way of communicating, and gets a high/low signal from

the general purpose I/O (GPIO) on the BBB. This signals the PWM generator to start the PWM

signal, which in turn will make the drop mechanism release the beacon.

Figure 3.1 provides an overview of the signal flow in the system, while Figure 3.8 shows the

physical system.

3.4.2 Modules

To better divide areas of responsibility among the components, several modules were made. By

building the UAV hardware in a modular way, errors will be less likely to spread, and it may be

possible to introduce new modules later or take some away. The hardware modules, and their

responsibility, as used in this project, are described below.

Payload Computer

The payload computer’s responsibility is to run the runtime environment, DUNE, and its tasks.

Tasks will vary depending on the current mission. The release mechanism is connected to the

payload computer. The main communication channel for the payload computer is the on board

LAN, connecting it for example to the autopilot and ground station via the IMC bus.



3.4. HARDWARE OVERVIEW AND SETUP 57

Figure 3.8: Payload

There will also be modularization inside the payload computer, achieved by running differ-

ent tasks in DUNE. These tasks’ responsibility will be, amongst others, to:

• Receive information from the Pixhawk

• Calculate the next waypoint

• Release the beacon

• Run flight controllers

Release Mechanism

Consisting of the PWM generator and drop mechanism, the release mechanisms responsibility

is to drop the beacon when a signal is applied. Its only interface is to the payload computer via

a high/low signal.



58 CHAPTER 3. HARDWARE IMPLEMENTATION

Autopilot

Navigation by waypoints received from the payload computer is the autopilots responsibility

when the waypoint controller is used. If other controllers are used, the autopilot controls the

roll angle or uses the bank-to-turn controller. It is also able to make wind and state estimates

and making them available for the payload computer. Communication is made via TCP/IP or

serial connection to the payload computer.

Radio

The radio keeps contact with the ground station. It has sufficient range to manage all planned

missions and is fast enough to send all necessary data. It communicates via the on-board LAN

and the radio Wi-Fi. A radio for the ground station is also required.

Ground Station

To keep ground personnel informed and able to send commands to the payload computer, a

ground station is needed. It consists of a computer running necessary software and communi-

cating via a radio. The software includes Neptus, mission planner and other software specific to

the mission.

3.4.3 Power Supply

To power all components, a power supply was designed. As it was supposed to be installed in

a UAV, it had to be based on either a battery or on a generator. There is no generator available

in the X8 as it uses an electrically powered engine, so a battery-based power supply had to be

designed.

Two different voltages was needed as the Rocket M5 uses 12 V and all other payload hard-

ware uses 5 V. 12 V was delivered from the router vis POE.



3.4. HARDWARE OVERVIEW AND SETUP 59

For the 5 V regulator to be able to accommodate most variations of batteries, a wide input

voltage was desired. The regulator chosen was R-78B5.0-1.5L from Recom, with an input voltage

of 6.5-18 V and output voltage of 5 V. The maximum possible current draw is 1.5 A (R78Bxx15L

Datasheet, 2014), which should be sufficient. This regulator works with all the batteries available

at NTNU’s UAV-lab.

The battery is wired to the BBB’s cape where the voltage regulator is installed. 5 V is then

input to the BBB using its expansion slot, P9. The power is also shared with the PWM generator

via a cable from the cape. The PWM generator will then supply the drop mechanism via its servo

cable.

The Pixhawk has its own 5 V voltage regulator, which is connected directly to the main en-

gine battery pack. This is to ensure that the UAV is able to be controlled manually by remote

control if needed.



60 CHAPTER 3. HARDWARE IMPLEMENTATION



Chapter 4

Software Implementation

The software used in this project can be divided into three groups, software on the X8, described

in Section 4.1, software on the ground station, described in Section 4.2 and software on the PWM

generator in Section 4.3. The PWM generator gets its own section because of its specific area

of use. In Section 4.4, the DUNE tasks are described. The final section contains the software

installation and setup. A system overview is provided in Figure 4.1.

4.1 Software for the X8

Software on the X8 was implemented in two hardware components, the BBB and the PWM gen-

erator. All other components were already programmed and needed only firmware updates to

work as desired. The operative system (OS) and runtime environment will be described in Sec-

tion 4.1.2 and in Section 4.1.3, respectively.

4.1.1 Software on the BeagleBone Black

The BBB is basically a fully functional computer, able to run Linux distributions (BeagleBone

Black Datasheet, 2014). More specifically, Linux can be compiled to run on the BBB’s ARM A8

61



62 CHAPTER 4. SOFTWARE IMPLEMENTATION

Figure 4.1: Overview of software and communication

CPU. BBB also comes with RAM, flash memory, BIOS and firmware to support basic functional-

ity. GLUED was chosen as OS distribution. It was created at LSTS, designed mainly to be able to

run DUNE, while still having a small footprint and low processor demands.

The BBB use DUNE as its runtime environment. DUNE uses C++ code to generate tasks and

takes an .ini file to decide which tasks to run. Several such tasks were made during the thesis,

and they are described in Section 4.4.

4.1.2 GLUED

GLUED is a Linux based OS. With its small footprint it is well suited for embedded systems. As

GLUED is based on standard Linux, it is not real time. However, it was still responsive enough

to run the DUNE tasks created during this thesis, and is designed to be close to real time. The

only element in the UAV that has to be real time is the Pixhawk, and it has its own real-time OS,

RTOS (Pixhawk Autopilot, 2014).



4.1. SOFTWARE FOR THE X8 63

GLUED is compiled using a configuration file. This file specifies which platform to run on, IP

address and other information about the computer. ARM Cortex A8 was chosen as this project’s

platform.

Installation is described in Section 4.5.1 and in Appendix D.

4.1.3 DUNE: Unified Navigational Environment

DUNE: Unified Navigational Environment is the runtime environment for vehicle on-

board software. It is used to write generic embedded software at the heart of the vehi-

cle, e.g. code or control, navigation, communication, sensor and actuator access, etc.

It provides an operating-system and architecture independent platform abstraction

layer, written in C++, enhancing portability among different CPU architectures and

operating systems.

(Dias, 2014)

DUNE runs tasks. Each task is a process that runs in the runtime environment. The tasks

have their own memory space and communicates by messages. LSTS has made their own mes-

saging protocol called the Inter Module Communication protocol (IMC) (Section 4.1.3).

DUNE is designed for embedded systems. Running on multiple variations of independent

operating systems. The footprint is also considered small, being less than 16 MB (Dias, 2014).

Among the many DUNE tasks available, some are especially noteworthy. The Ardupilot task

manages communication with the Pixhawk and translates all Pixhawk data from MAVlink to

IMC. The transports tasks manages UDP and TCP layer information, where, among other func-

tionality, you can decide which entities can send certain messages. There are also several con-

trollers available to enable and tune.

Installation and compilation is described in Section 4.5.1 Appendix E.



64 CHAPTER 4. SOFTWARE IMPLEMENTATION

Figure 4.2: IMC task interaction principle

Inter-Module Communication Protocol

The bus based IMC protocol, which itself is based on TCP/IP, handles all communication be-

tween modules. These modules can consist of tasks on the same device, or tasks on another

device entirely. This way, all modules on all vehicles, ground stations or other devices can com-

municate if they are connected to the same local area network (LAN). The IMC interaction prin-

ciple can be seen in Figure 4.2.

The IMC protocol is message based. There is a big (and growing) database over different

types of IMC messages. Each message consist of an ID and some data. Messages are also called

packets. The packets consist of header, data and footer. Each of these include fields, which

contain one variable, like a string or integer (IMC Specification, 2014).

4.1.4 MAVlink

MAVlink is the protocol used between the Pixhawk autopilot and the Ardupilot DUNE task. More

information can be found at MAVLink Micro Air (2015).



4.2. GROUND STATION SOFTWARE 65

4.2 Ground Station Software

Software used on the ground station will be discussed in this section. The main programmes

used is the APM:Planner 2.0/Mission Planner, Section 4.2.2, and Neptus, Section 4.2.1.

4.2.1 Neptus

Neptus will run on the ground station. This is a cross-platform program for unmanned opera-

tions, with a lot of different applications and functions. The most general functions of Neptus is

watching the IMC bus and sending IMC-messages (LSTS Toolchain, 2014).

Among other useful functionality is the ability to translate autopilot data sent over the IMC

bus into a simulation environment where it is possible to oversee how the communicating vehi-

cles behave, including map positioning, speed and attitude. It is very graphical as one can view

the ongoing mission on a map, including a trail behind the UAV. It is also possible to give direct

commands to any vehicle during the mission, like loiter or waypoint (LSTS Toolchain, 2014). In

specific versions of Neptus used during this thesis, commands are found for placing a target and

starting a drop mission.

4.2.2 APM Autopilot Suite

APM Autopilot suite are programs designed to be used with the Pixhawk (APM, 2014). The suite

consists of firmware and software needed for working with the Pixhawk hardware. Different

firmware versions can be chosen depending on platform. For fixed-wing UAVs, APM:Plane is

the appropriate firmware. The software, APM:Planner 2.0 or Mission Planner, makes it easy to

assign waypoints for the Pixhawk to follow. It is also possible to calibrate the autopilot and view

live data or logs via the suite (APM Planner 2.0, 2014).



66 CHAPTER 4. SOFTWARE IMPLEMENTATION

4.2.3 Ardupilot SITL

To run SIL simulations, Ardupilot SITL was used to simulate the Pixhawk autopilot. It works by

acquiring the inputs normally sent to the Pixhawk autopilot module, and responds in a similar

manner by sending the required signals to JSBsim, see Section 4.2.4. ArduPlane version 3.2.3

was used for testing in this thesis. For github directory and install instructions, see ArduPlane

Autopilot (2015).

4.2.4 JSBsim

JSBsim (Berndt and Peden, 2015) is the physics simulation program used in SIL for this thesis. It

receives autopilot inputs from Ardupilot SITL (Section 4.2.3) and returns flight data. In this way

it allows Ardupilot SITL to work normally. The current publicly available version at 4.5.2015 was

used (no version number is provided).

4.3 Programming of the PWM Generator

As the PWM generator is a simple device composed of general electrical components and an

MCU, it was programmed directly using the proprietary software made by Atmel, Atmel Stu-

dio 6.2, avoiding the use of an OS. Atmel Studio 6.2 is a programming environment based on

Microsoft Visual Studio.

The program running on the MCU is quite simple, as it consists of several busy wait cycles.

Pseudo code of the program can be found in Algorithm 1, while the full code is available in

Appendix H.

Algorithm 1 PWM generator main loop.
1: while True do . Always run
2: if high_signal_from_BBB then
3: RUN_PWM_ROUTINE() . Sends a PWM signal to the drop mechanism
4: else
5: set_PWM_high_cycle=0 . Make sure PWM signal is off



4.4. DUNE TASKS 67

It is important to note that the PWM signal is active high.

The run_PWM_routine() function sends the PWM signal. This is done by setting a period

and how much of the period should be a high signal. By incrementing the high signal size over

time, the movement of a radio controlled lever is mimicked, making it a smoother transition for

the drop mechanism.

The while{True} loop is polling for a high signal from the BBB (the test is in the next line). It

does not include a wait or sleep function, so the program has the shortest possible period. This

means that the PWM generator has the highest possible power consumption and the lowest

possible response time.

A few possible improvements exists. The set_PWM_high_cycle=0 is unnecessary as it is set to

zero in the run_PWM_routine(). Another improvement would be to use normal sleep functions

in the run_PWM_routine() instead of busy work. This would improve readability and possibly

power consumption, depending on how the normal sleep function is implemented in Atmels

libraries. A third possible improvement would be to make the while{True} periodic by sleeping

until a certain time, for instance Now()+100 ms after it has executed the while loop contents.

This would make the program more schedulable and predictable. It would also make the PWM

generator consume less power. The downside of this third improvement is higher response time.

4.4 DUNE tasks

Several DUNE tasks were needed in this thesis to produce the expected accuracy and function-

ality. They are described in this section. The .ini file mentioned in the tasks should be called

by the UAV’s system name (found while performing point two in Appendix D) to make it run on

BBB startup. In this thesis the system name was ntnu-x8-006.ini.

4.4.1 The Actuator-Output Dune Task

Also known as Actuators/LogicOutput/BBB.



68 CHAPTER 4. SOFTWARE IMPLEMENTATION

This task was created to switch an output on the BBB. Its inputs (members of the m_args

struct) are

• int pin: Select which pin to control

• int init: Initial output on pin

• int name: Name of PowerChannel

This task sets initial values and initializes the output of the specified GPIO pin in onRe-

sourceAcquisition(), which is run on resource acquisition when starting the task.

The only consume function is run when receiving a PowerChannelControl message. The

message contains the required output, and the output is promptly set. An answering Power-

ChannelState message is then sent to confirm the status of the GPIO channel.

4.4.2 The Wind-Estimator Dune Task

Also known as Navigation/WindEstimator.

The Wind Estimator task is based on the wind estimator described in Section 2.3. Its initial-

isation inputs (found in m_args) are

• int sample_window_size: Size of the sample window used to find the normalized observ-

ability gramian

• double trustedlim: The size of the observability gramian when the measurement is trusted

(ε in Johansen et al. (2015), found to be 0.001 in simulations (Section 5.1.2))

• double q_multi: a multiplier for the Q weight matrix used for adjusting the size of Q in the

Kalman filter.

To communicate with the other tasks, the wind estimator uses two IMC messages: Estimat-

edState and EstimatedStreamVelocity. The EstimatedState message contains information on the

current estimated state of the UAV and is output from the autopilot task, while the Estimat-

edStreamVelocity contains wind information. The EstimatedStreamVelocity is the wind estima-

tor’s main output, and two different entities of this message are used. m_wind_estimated and



4.4. DUNE TASKS 69

m_wind_at_the_moment. The first entity is the Kalman filtered wind estimation and the latter

is the raw wind measurement.

Upon receiving an EstimatedState message, it is saved in m_estate, and the handlIas() func-

tion is run. This function contains the main elements of the wind estimation theory in Section

2.3. It calculates the time since previous run (m_dt), updates the C matrix (m_C), updates the

Kalman filter (m_P, m_S, m_K ), calculates the estimation error (m_e), estimates the wind (m_w)

and increases the observability gramian (m_G). Finally, the task transmits the estimated and

current wind, then determines if the measurement is trusted based on the trustedLim and ob-

servability gramian.

Future functionality that this task could have would be to send out the calculated angle of

attack and side slip angle. The calculations are available, but no message is sent for the results.

4.4.3 The Drop-on-Target Dune Task

Also known as Autonomy/DropOnTarget.

The main task running on the UAV is the drop on target task. It is the implementation of the

approach methods based on theory in Section 2.3, 2.4 and 2.5. The CARP is also calculated as is

described in Section 2.1. The task’s inputs (found in m_args) are

• double accepted_distance_to_start_point: Acceptance circle around long stretch start point

• fp64_t start_point_distance_from_carp: Distance from CARP to end point

• fp64_t end_point_distance_from_carp: Distance from CARP to start point

• fp64_t radius: Radius of the loiter

• double speed: Speed set point during mission

• fp32_t max_current: Maximum motor current allowed for drop

• fp32_t glide_time: Glide time needed to stop the motor

• fp32_t drop_time: Time from drop signal send until dropped

• fp64_t drop_error: Drop within circle of this radius

• fp64_t percent_accurate: Percent accurate turning direction towards CARP



70 CHAPTER 4. SOFTWARE IMPLEMENTATION

• fp32_t release_height: Drop release height

• uint16_t altitude_accuracy: The accuracy required from the height controller

• uint16_t connection_timeout: Response time before failure of followReference

• uint16_t increments_input: Increments for incremented LS guidance

• std::string guidance_mode_input: Guidance mode for mission

• uint16_t safe_height: High enough to be safe

• bool bank: Controller mode for mission (FBW or built in waypoint)

• int counter_max: Max counter for simulation

• double dt: Step size for CARP calculation

• bool use_wind_est: True to use wind estimator, false to use autopilot wind estimator

• double opt_circle: How many radians to use during optimization

• int opt_points: How many points to check during optimization

• bool direct_to_opt: True to go directly to target

• bool optimize_once: Optimize once (true) or continuously (false)

• int opt_rate_inverse: Inverse of the optimization rate

• double w_pos: Weighing of position during optimization

• double w_vel: Weighing of velocity during optimization

The task is set up as a state machine, as can be seen in Figure 4.3. It starts in the upper left

corner, and the only interface input is either to send a target or to cancel the plan. To cancel a

plan, a stop signal must be sent from Neptus on the ground station. If a plan is cancelled, the

state machine goes back to the start state. If a new target is received during any part of a mission,

the state machine goes into the second state, Run function Consume(Target), making the UAV

in practice restart and try to hit the new target.

State 1: Waiting for Target Message

This is a passive state wherein the UAV is loitering while waiting for a Target message. If the UAV

is in Guided mode, the transmission to FBWB (fly-by-wire-b) mode might fail, so it is important

to be in Loiter mode. The message is sent from Neptus via the drop now command found when



4.4. DUNE TASKS 71

Figure 4.3: The drop on target state machine

using the drop overlay on the ntnu-fixed-wing console. That the state is passive means that

the UAV can perform whatever command it is sent, like travelling a route to search for sea ice.

Having the start state set up like this leads to good modularity.

State 2: Run Function Consume(Target)

The Consume(Target) function is used to start the state machine after waiting in State 1. The

function calculates the CARP, start point, end point and first way-point. These are all the calcu-

lations needed for a drop using the LS path planner.



72 CHAPTER 4. SOFTWARE IMPLEMENTATION

State 3: Go to Start Point

The next objective is to go to the start point. This state consist of going to a given waypoint

and loiter around it. The waypoint has been calculated in the Consume(Target) function, and

is placed start_point_distance_from_carp away from the CARP, and radius to the side, such that

the UAV will get to the start point of the long stretch with the correct velocity, see Figure 2.9.

While travelling to the waypoint, the state machine waits for four statements to be true

• The latest FollowRefState.proximity has its PROX_XY_NEAR flag set

• The latest FollowRefState.proximity has its PROX_Z_NEAR flag set

• The distance between the long stretch start point and the UAV’s estimated position is less

than accepted_distance_to_start_point

• The UAV’s estimated velocity is parallel to the wind velocity used to calculate the initial

CARP from State 2. The parallelism must be accurate to within percent_accurate percent

When these statements are true, the UAV’s position and velocity is assumed to fulfil the

requirements described in Section 2.5.1 to start approaching the target.

If direct_to_opt is set to true in the .ini file, this state is avoided, making the UAV go directly

to the end point. This only works with the path planners using optimization methods: OWSI or

the optimal path planner.

State 4: Go to End Point

This state’s purpose is to reach the CARP with the required velocity. This is achieved using dif-

ferent approach methods described in Section 2.4 to 2.5. In general, this state ends either when

the CARP or long stretch end point has been reached. In the case where the CARP has been

reached, glide_time and drop_time are taken into account by estimating where the UAV will be

in that amount of time, such that the propeller can be turned off before the drop takes place. To

see if the CARP has been reached, the method in 2.6 has been used. The next state is then State

5.



4.5. SOFTWARE INSTALLATION AND SETUP 73

In the case where the long stretch end point has been reached, the CARP is considered as

missed, and the mission is viewed as a failure. The next state is in this case State 6.

State 5: Glide and Drop Beacon

In this state, no new updates are made to the UAV’s current path. The UAV will glide until it is

as close to the CARP as possible. This means either closer than s/r , where s is speed and r is

state estimate update rate, or that the newest calculated distance to CARP is further away than

the previous calculated distance to CARP (for more, see Section 2.6). The UAV will then drop

the beacon and glide for one more period of glide_time to avoid hitting the payload with the

propeller.

State 6: Go to Safe Height and Loiter

When the final glide is finished, the UAV rises in a helix to a safe height specified as safe_height.

When FollowRefState.proximity has a high bit in PROX_Z_NEAR and PROX_XY_NEAR, the UAV

goes back into State 1.

4.5 Software Installation and Setup

Some off-the-shelf software has been described in Section 4.1 and 4.2. These programs had to

be installed and set up appropriately to work with this project’s hardware. This is presented in

the following sections.

4.5.1 Installation on the X8

All software, other than firmware, installed in the X8 was installed on the BBB and the PWM

generator. The PWM generator was simply programmed using Atmel Studio 6.2, but the BBB

was more challenging. First, the OS was installed. As mentioned in Section 4.1.2, GLUED was



74 CHAPTER 4. SOFTWARE IMPLEMENTATION

decided to be the UAV’s OS of choice. To install GLUED, the instructions made by LSTS was

followed (GLUED, 2014). Later, DUNE was acquired from git, compiled and transferred to the

BBB. The procedures are described in more detail below.

GLUED on the BeagleBone Black

When installing GLUED for the BBB, one must first build GLUED, then transfer it to a memory

device and then boot from the memory device on the embedded computer. The installation

steps are provided in Appendix D. After following the guide the BBB is booting to GLUED when

powered.

Cross Compilation of DUNE for the BeagleBone Black

Cross compilation of DUNE was the next natural step. This was achieved by using the toolchain

created when building GLUED. The procedure used for cross compilation is given in Appendix

E.

To test whether the cross compilation was successful or not, the resulting program can be

tried to run on the computer used for cross compilation after the second step described in the

appendix. It should not run. If it does, that means it is compiled for the local computer and not

for the embedded device.

This concludes the installation of DUNE on the payload computer, BBB. To run DUNE on

the BBB, a .ini file with the same name as the system file mentioned in Appendix D (ntnu_x8_006

for this project) must be available in the DUNE folder when running the command "make pack-

age". An example of the .ini file used in this thesis can be found in Appendix H.

4.5.2 Installing Software on the Ground Station

Installing the required software on the ground station was quite trivial compared to installing

the BBB’s software. Neptus is available as a package to be installed on Linux or Mac in the



4.5. SOFTWARE INSTALLATION AND SETUP 75

develop branch of https://github.com/LSTS/neptus.git. It is installed in Linux using the ./ant

command, while it is available as an executable file on Windows.

APM:Planner 2.0 and Mission Planner are also readily available for direct installation via

packages or executables at APM Planner 2.0 (2014).



76 CHAPTER 4. SOFTWARE IMPLEMENTATION



Chapter 5

Simulations

Simulation was a great tool for developing software that was needed in this thesis. It was also

useful for gathering results without flying, and therefore make relatively large amounts of data

available. To evaluate the data, accuracy and precision is used. The terms are based on the

normal distribution model, which is assumed to apply to the measurements. Accuracy is de-

fined as the mean error, while precision is depending on the standard deviation. Normally, the

terms Mean Radial Spherical Error (MRSE) and Distance Root Mean Squared (DRMS) are used

to evaluate precision in respectively three and two dimensions (GPS Position Accuracy, 2003).

Several tests are presented through this chapter.

Controller Tuning, Section 5.1.1 This section explores the stability and the tuning of the LOS

and SMC controller in a SIL environment.

Wind Estimation, Section 5.1.2 Two scenarios are simulated in SIL to test the wind estimator

accuracy and precision.

CARP Approach Method Accuracy, Section 5.1.3 As specified in Section 1.6, this thesis aims for

hitting sea ice with a 10 m radius 95% of the time. These tests are designed to see how close

to the CARP the UAV can drop in SIL.

Simulation of Free Falling Sphere for Varying Winds, Section 5.2 When the beacon is released,

77



78 CHAPTER 5. SIMULATIONS

the trajectory depends on the beacon’s initial velocity and the wind affecting it. This test

will see how much the beacon’s trajectory is changed by wind estimation errors.

5.1 Software in the Loop Simulations

To gain som knowledge of the path planners, flight controllers, release accuracy and wind esti-

mation accuracy before flight tests were performed, SIL testing was used. Simulations using SIL

was also useful for debugging while programming. JSBsim (Section 4.2.4) and Ardupilot SITL

simulator (Section 4.2.3) was used to test DUNE (Section 4.1.3 and 4.4) software in SIL. How

these programs communicate can be seen in Figure 5.1. Neptus (Section 4.2.1) was used for

overview and sending commands to DUNE.

Figure 5.1: SIL software overview, from SITL Simulator



5.1. SOFTWARE IN THE LOOP SIMULATIONS 79

5.1.1 Controller Tuning

This section describes tuning of the LOS controller from Section 2.4.

To get significant SIL approach method accuracy test results, the controllers needed to be

tuned to the specific SIL environment. The UAV in SIL has different flight characteristics from

the X8. In a way, the SIL tuning became practice for the future, as the controllers had to be re-

tuned in the field before future flight tests could be started. The tuning was performed by setting

a four point path for the UAV to follow. The autopilot’s native bank controller was already well

tuned. The only other parameter to be tuned was the look-ahead gain. Many values were tested,

and the resulting path was evaluated. The best possible look-ahead distance was found to be 50

m, the same results as in Fortuna and Fossen.

5.1.2 Wind Estimation

To tune the wind estimator described in 2.3, the wind was set to be 2 and 5 m/s northward

during two recorded simulated flights. The Q and R values were changed beforehand until the

measurement settled sufficiently fast.

Then the size of the observability gramian was investigated during the start of the flight.

When the wind estimate had settled at about the reference wind speed, the observed gramian

size (the ε in Johansen et al. (2015)) was 0.001, and the measurement was then considered as

trusted.

The wind estimator is depending on a constantly changing attitude for the system to be

observable. During simulations, it was observed that the estimator was quite accurate when the

attitude was changing, but falls when the UAV is travelling in one direction.

The accuracy is compared to that of the Pixhawks own estimator in Figure 5.2 to 5.5. Sim-

ulator settings can be found in Table 5.1, while the mean and variances of the estimations are

found in Table 5.2 and 5.3. Plots, mean values and variables are made using the MATLAB script

found in Appendix I.4 and I.5.



80 CHAPTER 5. SIMULATIONS

Type Value

Enabled Always

Entity Label Wind Estimator

Sample Window Size 1000

Q Size 700

Trusted Limit 1e-3

Table 5.1: SIL wind test variables

trustedlimtrustedlim

Figure 5.2: Wind estimation in simulation with 2 m/s wind



5.1. SOFTWARE IN THE LOOP SIMULATIONS 81

Figure 5.3: Wind estimation in simulation with 5 m/s wind



82 CHAPTER 5. SIMULATIONS

Figure 5.4: Pixhawk wind estimation in simulation with 2 m/s wind



5.1. SOFTWARE IN THE LOOP SIMULATIONS 83

Figure 5.5: Pixhawk wind estimation in simulation with 5 m/s wind

Type Direction Value

Mean error North 0.59 m/s

East -0.39 m/s

Down -0.32 m/s

Error variance North 0.11 m/s

East 0.09 m/s

Down 1.77e-4 m/s

Table 5.2: Errors and variance for wind estimation, 2 m/s wind



84 CHAPTER 5. SIMULATIONS

Type Direction Value

Mean error North 0.093 m/s

East -0.61 m/s

Down -0.37 m/s

Error variance North 0.28 m/s

East 3.11 m/s

Down 6.77e−5 m/s

Table 5.3: Errors and variance for wind estimation, 5 m/s wind

Type Direction Value

Mean error North 0.24 m/s

East 0.15 m/s

Down 0 m/s

Error variance North 0.72 m/s

East 0.54 m/s

Down 0 m/s

Table 5.4: Errors and variance for Pixhawk wind estimation, 2 m/s wind

Type Direction Value

Mean error North 1.24 m/s

East 0.65 m/s

Down -0.016 m/s

Error variance North 1.59 m/s

East 0.60 m/s

Down 0.036 m/s

Table 5.5: Errors and variance for Pixhawk wind estimation, 5 m/s wind



5.1. SOFTWARE IN THE LOOP SIMULATIONS 85

5.1.3 CARP Approach Method Accuracy

Many different approach methods were used for these SIL tests: OWSI, Optimal and LS path

planners with the waypoint and LOS with SMC controllers. The ISL path planner was not tested,

as it would in theory be the same as the LS path when using a LOS controller, and the waypoint

controller was quickly discarded. .ini variables from 4.4.3 can be found in Table 5.6. All other

.ini entries were as in Appendix H. All approach strategies were initiated by travelling up against

the wind (2 m/s northward) and the UAV speed set point was 17 m/s.

SIL Test 1: Waypoint Controller Compared to LOS and SMC Controller

The first test in this section shows the difference in accuracy and precision between the way-

point controller and the LOS with SMC controller by studying 10 samples of LS path using either

controller. The results are shown in Table 5.7 and 5.8.



86 CHAPTER 5. SIMULATIONS

Type Value

Altitude Interval 1

Connection Timeout 3

Distance To LSSP 100

Start Point Distance From CARP 200

End Point Distance From CARP 400

Percent Accurate 7

Radius 100

Release Height 50

Speed 17

Drop Error 50

Guidance Mode [DEPENDS ON TEST]

Safe Height 100

Max Drop Current 9

Glide Time 2

Drop Time 0.6

Use Bank Controller true

Use Wind Estimator true

Step Size 0.001

Optimize Points 30

Optimize Rads 2

Direct To Optimal false

Max Counter 100000

Optimize Once false

Optimation Rate Inverse 10

Position Weight 15

Velocity Weight 1

OWSI Min Distance 20

Table 5.6: Autonomy.DropOnTarget variables



5.1. SOFTWARE IN THE LOOP SIMULATIONS 87

Approach Strategy CARP Distance [m] Ve north [m/s] Ve east [m/s] Ve down [m/s]

Long Stretch 4.80 0.83 0.32 2.33

LOS + SMC 8.92 1.21 -0.65 -0.33

6.32 2.42 -1.33 1.24

0.81 2.45 -3.82 1.32

0.65 2.17 -1.64 0.62

5.52 3.75 0.49 0.39

4.38 2.43 -0.77 -0.22

8.98 -0.20 -0.22 0.22

13.92 2.16 -0.51 1.43

10.31 1.92 0.05 0.78

3.36 2.93 -0.26 1.70

Absolute error µ: 6.32, σ2: 18.13 µ: 2.16, σ2: 0.91 µ: 0.97, σ2: 1.24 µ: 0.83, σ2: 0.31

Table 5.7: SIL approach method accuracy measurements for the LS path planner with LOS and

SMC controller where Ve is velocity error, µ is the mean and σ is the standard deviation



88 CHAPTER 5. SIMULATIONS

Approach Strategy CARP Distance [m] Ve north [m/s] Ve east [m/s] Ve down [m/s]

Long Stretch 30.36 1.40 2.51 -0.03

Waypoint 13.32 1.26 0.22 -1.56

13.70 1.51 2.93 -0.45

9.00 0.57 0.85 0.42

13.39 -0.28 -1.24 0.50

41.56 1.10 1.44 -0.42

0.82 1.15 2.53 0.19

16.71 2.76 5.14 -0.93

13.84 0.53 0.36 -0.39

21.95 -0.36 -2.98 -0.38

Absolute error µ: 17.47, σ2: 130.82 µ: 1.09, σ2: 0.54 µ: 2.02, σ2: 2.25, µ: 0.51, σ2: 0.17

Table 5.8: SIL approach method accuracy measurements for the LS path planner with waypoint

controller where Ve is velocity error, µ is the mean and σ is the standard deviation

SIL Test 2: Long Stretch, Optimal and OWSI Path Planners with LOS and SMC Controller

The second test provides extensive results on how accurate the three different path planners are

while using the LOS and SMC controllers. The waypoint controller was not used as its accuracy

was much lower than the LOS in the previous test. 500 samples were taken of each approach

method with details on actual drop point compared to CARP. Resulting mean values and vari-

ances are shown in Table 5.9 to 5.11, while plots of the release points, accuracy and DRMS are

shown in Figure 5.6 to 5.10. Measurements and plots are given in body frame and DRMS is de-

fined as a circle containing 65% of release points (GPS Position Accuracy, 2003). The MATLAB

scripts used to make calculations and plots are found in Appendix I.6, I.7 and I.8.



5.1. SOFTWARE IN THE LOOP SIMULATIONS 89

Approach Strategy Measurement Direction Value

LS, LOS controller Mean position error x 0.69

y 2.16

z -1.63

Position error variance x 3.17

y 5.14

z 2.66

Mean velocity error x -0.37

y 0.64

z 0

Velocity variance x 0.68

y 0.58

z 0

Table 5.9: SIL accuracy for LS path planner with LOS controller



90 CHAPTER 5. SIMULATIONS

Approach Strategy Measurement Direction Value

Optimal, LOS controller Mean position error x -1.37

y 0.27

z -0.46

Position error variance x 3.53

y 2.86

z 2.31

Mean velocity error x -0.13

y 0.60

z 0

Velocity variance x 0.45

y 0.56

z 0

Table 5.10: SIL accuracy for Optimal path planner with LOS controller



5.1. SOFTWARE IN THE LOOP SIMULATIONS 91

Approach Strategy Measurement Direction Value

OWSI, LOS controller Mean position error x -1.76

y 0.15

z -0.49

Position error variance x 5.63

y 7.18

z 3.14

Mean velocity error x -0.16

y 0.58

z 0

Velocity variance x 0.68

y 0.64

z 0

Table 5.11: SIL accuracy for OWSI path planner with LOS and SMC controller



92 CHAPTER 5. SIMULATIONS

Figure 5.6: Drop accuracy for LS with LOS



5.1. SOFTWARE IN THE LOOP SIMULATIONS 93

Figure 5.7: Drop accuracy for LS with LOS



94 CHAPTER 5. SIMULATIONS

Figure 5.8: Drop accuracy for Optimal path with LOS



5.1. SOFTWARE IN THE LOOP SIMULATIONS 95

Figure 5.9: Drop accuracy for Optimal path with LOS



96 CHAPTER 5. SIMULATIONS

Figure 5.10: Drop accuracy for OWSI with LOS



5.1. SOFTWARE IN THE LOOP SIMULATIONS 97

Figure 5.11: Drop accuracy for OWSI with LOS

5.1.4 SIL Conclusion

SIL testing has given some important results showing that the expected wind estimate and re-

lease accuracy are quite good.

The wind estimator ended up being accurate to



98 CHAPTER 5. SIMULATIONS

5 m/s wind Accuracy Mean error
p

0.0932 +0.612 +0.372 = 0.72 m/s

Precission MRSE
p

0.28+3.11+6.77e−5 = 1.84 m/s

2 m/s wind Accuracy Mean error
p

0.592 +0.392 +0.322 = 0.78 m/s

Precission MRSE
p

0.11+0.095+1.77e−4 = 0.45 m/s

where MRSE is the sphere containing 61% of the measurements (GPS Position Accuracy,

2003).

Comparing Table 5.4 to 5.2 and Table 5.5 to 5.3 shows that the Pixhawk wind estimator is a

bit more accurate, but that the wind estimator from Johansen et al. (2015) is much more precise.

In the first approach method test, the waypoint controller was used with LS path planner,

and the results in Table 5.8 are comparable to the results from LS path planner with the LOS

controller in Table 5.7. The results show that the LOS controller gives much better accuracy with

6.310 m mean and 18.13 m variance against 17.465 m mean and 130.82 m variance.

The approach methods had an absolute position and velocity error as shown in Table 5.12

while using LOS and SMC controller. It was also observed during testing that the approach strat-

egy using the OWSI path planner oscillated less than the approach strategy using the Optimal

path planner. Another observation, this time from the measurements, is that the z velocity error

was always zero. That this is true is improbable and should be investigated in future work.

Path Type Accuracy (Mean Error) Precision (MRSE)

LS Position
p

0.692 +2.162 +1.632 = 2.79 m
p

3.17+5.14+2.66 = 3.31m

Velocity
p

0.372 +0.642 +02 = 0.74 m/s
p

0.68+0.58+0 = 1.23 m/s

Optimal Position
p

1.372 +0.272 +0.462 = 1.47 m
p

3.53+2.86+2.31 = 2.95m

Velocity
p

0.132 +0.602 +02 = 0.61 m/s
p

0.45+0.56+0 = 1.01 m/s

OWSI Position
p

1.762 +0.152 +0.492 = 1.83 m
p

5.62+7.18+3.14 = 3.99 m

Velocity
p

0.152 +0.572 +02 = 0.60 m/s
p

0.68+0.64+0 = 1.15 m/s

Table 5.12: SIL precision and accuracy for approach strategies



5.2. SIMULATION OF FREE FALLING SPHERE FOR VARYING WINDS 99

5.2 Simulation of Free Falling Sphere for Varying Winds

Calculations of the ballistic paths for a free-falling object have several uncertainties, such as

wind magnitude and direction (and wind gust). Utilizing MATLAB to perform simulations of

ballistic paths for a free-falling sphere and the state-space model in Section 2.1, the ballistic

paths and probability distribution of the impact zone can be calculated. These simulations are

based on the work done in Fuglaas (2014) and is a repetition of the experiment.

The sphere used in this simulation has a mass off 200 g and a cross-sectional area off 0.052π

m2, which should be a proper estimate of the beacon. An air density of ρ = 1.225 kg /m3 (Air

density at 15◦C (Fossen, 2011)) is used. Also, using wind velocities of 5 m/s with an uncertainty

of 50%, making the wind varying from light breeze to a moderate breeze (Fossen, 2011), and

wind direction fluctuating about 180 (±10 degrees) would produce a fairly good uncertainty

distribution in the wind estimate. Using a normal distribution for estimating the wind uncer-

tainties with mean µ=π and standard deviation ofσ= 1, the ground impact point uncertainties

were estimated. To solve, MATLAB’s ode45 solver was used with a time step of 0.01 s. Figure 5.12

show the spread of the ballistic paths for varying winds and Table 5.13 for simulation settings.

Type Value Description

A π0.052[m2] Cross-sectional area of sphere

CD 0.5 Drag constant for the sphere

m 0.200[kg ] Mass

ρ 1.225[kg /m3] Air density at 15◦C

g 9.81[m/s2] Gravity

w 5[m/s]±50% Wind speed

∠w 180◦±10◦ Wind direction angel

Table 5.13: Physical properties of free fall simulation



100 CHAPTER 5. SIMULATIONS

Figure 5.12: Multiple ballistic paths of sphere dropped from 30 meter, using wind velocity 5 m/s

±50% and wind angel 180◦±10◦

50
45

40

y - position [m]

35
3050

45

x - position [m]

40

35

0.16

0.14

0.12

0.1

0.08

0.06

0.04

0.02

0
30

P
ro

pa
bi

lit
y 

di
st

rib
ut

io
n,

 fr
ee

 fa
ll 

fr
om

 3
0 

m

0

0.05

0.1

0.15

Figure 5.13: Ground impact probability distortion of sphere drop from 30 meter, using wind

velocity 5 m/s ±50% and wind angel 180◦±10◦



5.2. SIMULATION OF FREE FALLING SPHERE FOR VARYING WINDS 101

55

50

y - position [m]

45

40

3555

50

x - position [m]

45

40

0.08

0.06

0.1

0.12

0.04

0.02

0

0.14

0.16

35

P
ro

p
a
b
ili

ty
 d

is
tu

b
u
ti
o
n
, 
fr

e
e
 f
a
ll 

fo
m

 5
0
m

0

0.05

0.1

0.15

Figure 5.14: Ground impact probability distortion of sphere drop from 50 meter, using wind

velocity 5 m/s ±50% and wind angel 180◦±10◦

5.2.1 Simulation Conclusion

As seen from the simulations in Figure 5.13 and Figure 5.14, the release height, as well as the

wind factor, is a major contributor to the distribution of the ground-impact uncertainty.



102 CHAPTER 5. SIMULATIONS



Chapter 6

UAV and Payload Testing

When the hardware was set up, tests were conducted to verify that the system was working cor-

rectly. These tests are described in Section 6.1. Flight tests were then performed and they are

described in Section 6.2. Several tests were performed in each of these sections.

BeagleBone Black Optimization Calculation Time, Section 6.1.1 Testing to see how much time

the BBB uses for the optimization performed during calculation of OWSI or Optimal path.

Release Mechanism Test, Section 6.1.2 This test was devised to make sure the release mecha-

nism was compatible with the BBB.

Sending Pixhawk Data Using IMC Over Radio Link, Section 6.1.3 Testing the radio link was im-

portant to avoid complications during flight testing.

Full Payload Test, Section 6.1.4 The final test before flight test could commence. All payload

equipment was tested at once by mimicking a flight.

State Estimation Accuracy and Precision Test, Section 6.2.1 By flying with a hexacopter carry-

ing a Pixhawk and an RTK GPS, the Pixhawk’s state estimation was tested. This had to be

quite accurate for the project to maintain the 10 m accuracy required in Section 1.6.

Approach using Straight-Line Path and Waypoint Controller, Section 6.2.2 The approach method

was tested without releasing a beacon to see how close the UAV would get to the CARP in

103



104 CHAPTER 6. UAV AND PAYLOAD TESTING

flight tests. The waypoint controller was used, and the accuracy was required to be better

than the 10 m mentioned in 1.6.

Approach using Incremented-Straight-Line Path and Waypoint Controller, Section 6.2.3 The

approach method was tested without releasing a beacon to see how close the UAV would

get to the CARP in flight tests. The waypoint controller was used, and the accuracy was

required to be better than the 10 m mentioned in 1.6.

6.1 Hardware Tests

Before flight tests could be performed, every subsystem was tested to show that they worked

sufficiently. The first tests contained in this section were designed to test different hardware

subsystems, while in the final hardware test, the complete system was tested.

6.1.1 BeagleBone Black Optimization-Calculation Time

The optimization used in the Optimal (Section 2.5.3) and OWSI (Section 2.5.4) path planners

is quite computationally demanding. To find out how much time the BBB uses to perform the

optimization, a test was conducted. The test consisted of running many optimizations on the

BBB. Optimization parameters were: a time step of 0.001 s, 50 m release height and using 30

points in the RoF. All calculations were completed in between 60 and 100 ms.

6.1.2 Release Mechanism Test

This test was designed to test DUNE’s compatibility with the BBB and the ability for DUNE to

map GPIO output on the BBB. The test would also reveal whether the PWM generator and drop

mechanism would work as intended.

A simple DUNE task was implemented which would set one GPIO pin high for two sec-

onds and then low for five seconds. The physical manifestation of this would be that the drop



6.1. HARDWARE TESTS 105

Figure 6.1: BBB with cape and PWM generator on top, wired to the drop mechanism on the left

mechanism would execute for two seconds and then wait for five seconds. See Figure 6.1 for

illustration, and Appendix G for the code used in the test.

The release mechanism reacted as predicted, opening for two seconds and pausing for five.

6.1.3 Sending Pixhawk Data Using IMC Over Radio Link

To test the serial communication between the Pixhawk and the BBB, and to test IMC communi-

cation via the Rocket M5/Nanostation M radio link, a test was performed.

The hardware was set up as a ground station communicating with a UAV payload computer

(the BBB), where the BBB used serial communication to communicate with the Pixhawk and

Ethernet to communicate with the Rocket M5 and ground station. The ground station ran Nep-

tus, while the BBB ran DUNE with two tasks. One task to communicate with the Pixhawk and

one task to send the acquired autopilot data to the IMC bus. The ground station would then

catch the autopilot data from the IMC bus and display it in Neptus. This would prove a working

connection between the ground station and the BBB, and that a functional serial communica-

tion between the BBB and the Pixhawk existed. See Appendix G for the code used in the test,

and Figure 6.2 and 6.3 for pictures.



106 CHAPTER 6. UAV AND PAYLOAD TESTING

Figure 6.2: Nanostation M connected to the internal network on the ground station

Figure 6.3: BBB and Pixhawk ready for testing with Rocket M5

The autopilot data was transferred successfully to the ground station, with so little lag that

it was to be considered "live". The data link was functioning as expected.



6.2. FLIGHT TESTS 107

6.1.4 Full Payload Test

To test the ground station and payload configuration without spending flight time, a simple test

was proposed. The payload was placed in a plastic box and walked around on an airfield to

simulate normal working conditions for the UAV and ground station.

The GPS signal was lost at times due to being held too close to a body with an arm on top.

When this was discovered, the GPS antenna was moved outside of the box and as far away from

the carrying person as possible. The signal promptly returned.

IMC messages were recorded accurately and reliably, and it was concluded that the payload

worked well.

6.1.5 Hardware Test Conclusion

After performing the tests in Section 6.1.1 to 6.1.4, all systems were shown to work reliably. This

made the research team feel secure about conducting flight tests.

6.2 Flight Tests

The results of this thesis are heavily hinged upon flight tests. Unfortunately, flight tests using the

LOS and SMC controllers were not performed, nor tests using the Optimal path planner or the

OWSI path planner. One of the flight tests is pictured in Figure 6.4.



108 CHAPTER 6. UAV AND PAYLOAD TESTING

Figure 6.4: Flight testing

The tests that were performed are described in detail in the following sections.

6.2.1 State Estimation Accuracy and Precision Test

The state estimation was tested by using a hexacopter with both Piksi (Piksi RTK-GPS, 2014), an

RTK-GPS, and Pixhawk on board. The RTK-GPS is so accurate that it is treated as the reference

in this test with a precision of 2 cm horizontally and 6 cm vertically (Piksi FAQ, 2013). 1056

measurements were taken from DUNE tasks and were processed using the MATLAB script in

Appendix I.3. Resulting plots are found in Figure 6.5 and 6.6.



6.2. FLIGHT TESTS 109

Figure 6.5: Plot of position in north east plane

Figure 6.6: Plot of position in north down plane

Using MATLAB’s mean() and var() on measurments taken at about the same time (the times-



110 CHAPTER 6. UAV AND PAYLOAD TESTING

tamps were compared), the Pixhawk’s accuracy is listed in Table 6.1.

Type Direction Value

Mean error North -0.23 m
East -0.10 m
Down -1.36 m

Error variance North 0.23 m
East 0.33 m
Down 0.40 m

Table 6.1: Errors and variance for Pixhawk state estimation

6.2.2 Approach using Straight-Line Path and Waypoint Controller

The first approach strategy that was tested was the LS path planner using the waypoint con-

troller. A description of this approach can be found in Section 2.5.1 and 2.4.1. During this test

the beacon placement was on the wings to test compatibility with the launch catapult.

Day one: The Drop-on-Target task was started while in the air at a 100 m altitude loiter. The

beacons were not attached during any of the day’s flights, as the author only wanted to

test the state machine and approach accuracy, and not the drop mechanisms.

The test was started twice during the same flight, at 15.44.28 and 15.47.05, and was sim-

ulating a drop at 15.45.32, 1.04 after start, and at 15.47.51, 0.46 after start, at measured

distances of 12.44 m and 15.17 m away from the CARP.

The wind was classified as a gentle breeze during testing and estimated to be about 3.4m/s

when dropping. The temperature varied between -5 and -10 C.

Day two: Testing with the test beacons was performed on the second day at 50 meters altitude.

The first takeoff was a failure as the added weight made the catapult to slow. The X8 took

off at 10.33.02 after mounting more rubber tubing to the catapult. Initiation of the state

machine took place at 10.39.06 after some initial flight tests by the pilot.

One of the test beacons fell off during the aforementioned flight tests for some unknown



6.2. FLIGHT TESTS 111

reason. It was later discovered that the drop mechanisms would open when DUNE was

restarted on the BBB, and this was probably the reason. The other test beacon was stuck,

and had to be pried off after landing.

The drop signal was sent at 10.39.51, 0.45 after start, at a distance of 15.94 m from the

CARP.

The wind was classified as a breeze during testing and estimated to be about 5.71 m/s

when dropping. The temperature varied between -5 and -10 C.

6.2.3 Approach using the Incremented-Straight-Line Path Planner and Way-

point Controller

The second approach method that was tested was the ILS path planner combined with the way-

point controller. This method is about the same as the LS path planner with a waypoint con-

troller, but on the long stretch, when the plane is flying against the wind, several intermediate

waypoints are chosen. This way, the approach becomes a bit more like LOS guidance. This is

described in more detail in Section 2.5.2 During this test the beacon placement was at the wings.

Day one: The first test was performed without test beacons. It was initiated at 15.52.20 and

ended at 15.54.42. It was considered a failure as it never left the first state where it tries to

get downwind of the CARP.

The erroneous code was corrected the same evening. The problem was most probably too

high speed while loitering, as the X8 never entered the correct loitering circle. Correcting

for this led to good loitering circles in following tests.

Day two: At the end of the second day, three tests were performed. These were all performed

without test beacons, as these fell off during DUNE restart. DUNE restart had to be per-

formed to let the pilot do post take off tests.

Take off was performed at 14.36.53, and was just barely successful. The X8 almost crashed

sideways, as the angle of the X8 with test beacons on the catapult was too high.



112 CHAPTER 6. UAV AND PAYLOAD TESTING

The first test started at 14.38.51, and simulated a drop at 14.39.34, 1:43 after start 6.31 m

away from the CARP.

The second test started at 14.39.49, and simulated a drop at 14.40.34, 0:45 after start 14.85

m away from the CARP.

The third test started at 14.41.10, and simulated a drop at 14.41.52, 0:42 after start 8.23 m

away from the CARP.

Wind was estimated to be 5.4 m/s.

6.2.4 Flight Test Conclusion

The Pixhawk’s state estimates were tested, and proved to be quite accurate as seen in Table 6.2.

Accuracy 3D Mean Error
p

0.232 +0.102 +1.362 = 1.39 m
Precission 3D MRSE

p
0.23+0.33+0.40 = 0.98 m

Accuracy 2D Mean Error
p

0.232 +0.102 = 0.34 m
Precission 2D DRMS

p
0.23+0.33 = 0.75 m

Table 6.2: Total errors, DRMS and MRSE for Pixhawk state estimation

All tests using the LS path planner and waypoint controller were considered successful. The

UAV was tested in quite cold weather (-10 C), and had no problems at that temperature. The

approach method’s accuracy was tested as well, resulting in drop errors of 12.44 m, 15.17 m and

15.94 m, averaging in 14.52 m.

All tests performed on the second day using the ILS path planner and waypoint controller

were also considered successful. The approach method’s accuracy was tested, resulting in drop

errors of 3.4 m, 14.85 m and 8.23 m, averaging in 8.27 m.

No velocity error was recorded during these tests, but additional knowledge gained from the

tests was that placing the beacon on the wings could lead to failed take-offs.



Chapter 7

Discussion

The main experimental results of the project’s work will be discussed here, and an investigation

of sources of error will be performed. Design choices will also be looked into when discussing

the thesis’ evolution with a focus on accuracy and precision.

Section 7.1 discusses the simulations performed in Chapter 5. Section 7.2 discusses the

testing of hardware from Section 6.1, while Section 7.3 discusses the flight tests in Section 6.2.

7.1 Discussion on Simulations

The SIL tests were a considerably important part of this thesis. Most of the development was

based on the findings in SIL. This means that the accuracy of the SIL environment compared to

real world was very important.

There are differences between real world flight and SIL tests. JSBsim (Section 4.2.4) was used

for physics simulations, which means that JSBsim’s errors compared to actual flight affect the SIL

results. The PC used for running DUNE is some magnitudes faster than the BBB, and so uses

shorter time to compute, among other calculations, the optimization. These two differences

are most prominent. The SIL results are still valuable, even though most variables, for instance

controller tuning, has to be changed in a real-life flight test based on results from other flight

113



114 CHAPTER 7. DISCUSSION

tests. Some credibility can be accounted to SIL testing, as the results for LS path planner using

the waypoint controller have similar results in SIL and in flight tests, see Section 7.3.

The largest error to the SIL tests may be the calculation of the optimization for OWSI and the

Optimal path planners. As the optimization is calculated very often in the Optimal path planner,

there is a chance that the calculation will use most of the computational power of the BBB. If

the optimization was calculated at every received estimated state (10 Hz (Pixhawk Autopilot,

2014)), and the maximum calculation time is used (100 ms, found in Section 6.1.1) this would

use all the BBB’s CPU. Therefore, simulations of the Optimal approach with optimization on

every estimated state will most likely not be accurate. As the simulations used for testing the

path planner only performed an optimization every fifth estimated state, the BBB’s CPU should

be able to replicate the computational performance in real world flight tests also.

It is very probable that the z-direction velocity error measurement gathered in the second

test of Section 5.1.3 was wrong. This value was always zero, which is not likely to be true.

The most valuable SIL results were not the achieved accuracy and precision itself, but which

approach strategies and flight controllers that worked the best, as the errors mentioned above

will probably not affect that result unless the computation time leads to missed deadlines.

To compare the waypoint controller to the LOS and SMC controller in SIL Test 1, 10 compar-

isons were run in SIL, and the LOS controller was found to be more accurate than the waypoint

controller (Table 5.7 and 5.8). Also, the LOS controller was needed for the optimization-based

approaches to work, so it had to be used anyway. The most probable reason that the LOS con-

troller performed better, is that the waypoint controller is easily blown off the path as mentioned

in Section 2.4.1.

The best approach strategy was found in SIL by comparing how close each method came

to the CARP and the required velocity. From Table 5.9 to 5.11 and the results in Table 5.12, it

is simple to see that the Optimal path planner combined with the LOS and SMC controller is

the best on all accounts except velocity accuracy. The OWSI approach is a little better on that

account with 0.5968 m/s compared to 0.6126 m/s. Flight tests should also be used to confirm

these results.



7.1. DISCUSSION ON SIMULATIONS 115

Another point in favour of the Optimal and OWSI path planners is that the accuracy of the

LS path planner in body frame y-position was much lower than for the Optimal and OWSI path

planners. Errors in this direction are most likely caused by the LOS controller’s path following

errors. These errors are in theory somewhat mitigated when continuously creating new optimal

paths like the Optimal and OWSI path planners does, as stated in Section 2.5.3.

One baffling result from the SIL tests is the terrible OWSI precision in y-direction. It ought

to be pretty close to the Optimal path planner’s precission, but it is not (7.1807 m for OWSI and

2.8600 m for Optimal). It might be the result of a bad simulation where the PC goes into a power

saving mode.

A predicted result from the CARP detection in Section 2.6 is that the mean error in x-direction

should be within the decision radius (1.7 m in simulations) when the mean error in yz-direction

is low, as it is using Optimal and OWSI. This is due to the spherical detection close to the CARP.

The CARP detection also predicts that the mean error in x-direction should be positive when

mean error in yz-direction is high, as it is for the LS path planner. A recommendation for future

simulations is to lower the decision radius.

Results from the wind estimator SIL testing are very important as it is only in a simulated

environment wind can be set and known precisely. The two conducted tests have quite different

results. This might be due to the attitude not being changed enough at the start of the 5 m/s wind

test. The results of such low attitude change can be noticed when looking at the y wind error in

Figure 5.3.

Trajectory simulations in MATLAB were made on the premiss that the wind was restricted

to fluctuations about 180±10 degrees, the absolute wind speed varying about 5 m/s ±50%. This

creates a few uncertainties to the simulated wind forces. The initial speed and position are not

known precisely in real world application, but are assumed to be so in these simulations. Also

due to wind gusts and a non-uniform wind spectra in a real world application, the uncertainties

of the impact point would probably increase. Another factor regarding winds, is that stronger

winds and/or a downwards/upwards wind-speed components could occur in the harsh Arctic

environment. However, the simulations give a good overview for how wind might affect the



116 CHAPTER 7. DISCUSSION

beacon during a free fall.

Release altitude was also a main contribution to the impact point uncertainty, as the uncer-

tainty increases with the release altitude, see Figure 5.2.

Finally, the simulations are viewed as good pointers of wind and release altitude as a sources

of uncertainty. This is the same conclusion as in Fuglaas (2014).

7.2 Discussion on Hardware Tests

Testing optimization on the BBB was performed to see how quickly it could do the calculation.

The measurements were not recorded, but all were within the span indicated in the test sec-

tion, Section 6.1.1. A computer running an OS always has sources of error as it is has parallel

processes, some with higher priority than the optimization. Effects of variations in temperature

and voltage are among many of the physical error sources applying to this test. As a high num-

ber of calculations were completed and timed in this test, and its goal was to find the worst case

scenario, its results are assumed to be correct.

A test was performed to see whether the release mechanism worked or not. During the test,

described in Section 6.1.2, there were several possible results. As the PWM generator had in part

been tested before in Section 3.3.4, it was known that it could indeed produce a PWM signal.

The possible outcomes for the test would then be either:

• No effect on drop mechanism, which could mean an error anywhere in the system

• Drop mechanism working continuously, would most probably mean that a low signal was

sent from the BBB at all times

• Drop mechanism opening and not closing, which would most probably mean a failure in

the PWM generator, where it would send a PWM signal at all times

• Drop mechanism working for five seconds and stopping for two seconds, which would

most probably mean an inversion in the signal from the BBB

• Drop mechanism working for two seconds and stopping for five seconds, the only correct



7.3. DISCUSSION ON FLIGHT TESTS 117

result

As the test was executed many times in a row, a random event would most likely not be the

reason for the reaction. The test continuously produced the last outcome. The voltage on the

signal from the BBB to the PWM generator was also measured during testing for verification of

an alternating high/low signal.

The second hardware test was performed to confirm that the BBB could communicate with

the Pixhawk, and simultaneously check that the IMC bus was working across the radio link. The

test would also show whether the ground station software was working as intended.

This test could experience a lot of different failures. Examples are

• Loss of radio link

• IMC messages not sendt or received

• Failure of communication between the BBB and the Pixhawk

• Internal errors in any component

The possible outcomes could be split into either Neptus not receiving autopilot data, which

would mean a failure, or Neptus receiving sensible autopilot data, which would mean success.

Neptus received data and the test proved a success. Again, the test was executed continu-

ously so it is not probable that it happened at random. The Pixhawk was also moved around to

confirm that the data received on Neptus was sensible.

In this parts’ final test, the full UAV system was tested. As it transmitted the correct data to

the ground station, it was concluded that the system worked well.

7.3 Discussion on Flight Tests

As all the tests led to a measurement during a drop or a signal to drop, they were successful,

with the exception of the test where the UAV would not start traversing the long stretch due to

too high speeds. There was no need to actually drop the test beacons, as the target position



118 CHAPTER 7. DISCUSSION

was chosen using a map of Eggemoen in Neptus. This meant that we only knew with very low

accuracy where we were aiming. There was also no way to record or measure where the test

beacons landed other than watching the drop or trying to find scratches in the ice, which are

quite inaccurate methods.

What was actually used to measure drop error, was the estimated position and its proximity

to the CARP during the signalling of a drop. The estimated position is considered accurate to

1.3869 m and precise to and MRSE of 0.98.

The results achieved showed a difference in the accuracy of the approach strategies. Dur-

ing actual testing in gentle breeze and breeze, the ILS approach was more accurate than the LS

approach. If the ILS approach is viewed as an approximation to the LS approach using a LOS

controller, one could conclude that a LOS controller is more accurate than the waypoint con-

troller as found in simulations.

The average accuracy of the LS path planner using the waypoint controller in flight tests is

actually quite close to the same approach method in simulations, 17.47 m average in SIL com-

pared to 14.52 m in flight tests, giving some credibility to all performed SIL tests.

As only three samples of each approach were collected, the amount of data makes the results

inconclusive. It is also important to note that as this experiment was carried out early on in the

project, the drop velocity error was not recorded, even though it is a large source of error.

Some other improvements and possibilities for improvements were found during the flight

test. The X8 catapult was not as compatible with the drop mechanism position as first thought:

the test beacons were placed at the point of the wings where the catapult was connected with

the X8. This led to take-off being harder to achieve successfully. Another improvement was to

use more rubber bands so that the catapult would be powerful enough when the X8 held a test

beacon.

Other problems were that the drop mechanisms were activated when restarting DUNE and

that the test beacons got stuck to the X8. Both were fixed by changing the drop mechanism

placement and shape. DUNE restarting was fixed after the test was performed.



7.4. THEORETICAL SYSTEM ACCURACY 119

7.4 Theoretical System Accuracy

In this section, the system’s theoretical accuracy will be discussed with a primary focus on the

different sources of error.

7.4.1 Errors in Approach Methods

While flying, the UAV uses the controllers described in Section 2.4 and the path planners de-

scribed in Section 2.5. These will always have some error due to disturbances. Tuning might

make the errors smaller, but disturbances will always occur. Slow disturbances, such as wind,

will disappear due to the sliding mode controller’s course control. Quicker sporadic distur-

bances, like wind gusts, will still have some effect (Fortuna and Fossen).

In SIL simulation (Section 5.1.3, Table 5.12), the mean errors and MRSE was as low as 1.47 m

and 2.95 m in position and 0.61 m/s and 1.00 m/s in velocity. These results are for the Optimal

path planner using LOS and SMC controller, and their errors depend on tuning.

As the fall is about 3 seconds long depending on release height, the velocity estimation drop

accuracy and precision becomes 0.61 m/s * 3 s = 1.83 m and 1.00 m/s * 3 s = 3 m when mapped

onto the ground.

7.4.2 Drop Timing and CARP Calculation

When the CARP is calculated, it uses a step length for the iterator and a given air resistance

constants (Section 4.4.3 and Section 3.1.9). Unless the step length is sufficiently small and the

constants are given accurately, there will be errors in the trajectory calculations. But, as shown

in Section 2.11, the step length used in SIL and on the BBB (0.001 s) should be very stable and

be able to depict the trajectory realistically. Also, it has a zero detection accuracy of 0.042 m.

Deciding whether to drop the beacon or not is based on the CARP detection logic from Sec-

tion 2.6. This has an additional error of 0.85 to 1.70 m depending on the decision radius. The



120 CHAPTER 7. DISCUSSION

error was about 1.7 m in SIL as predicted, and so if a shorter decision radius is used, the CARP

detection accuracy should become better.

7.4.3 Sensory Input Timing and Accuracy

As the accuracy and timing of the drop depends on the sensor suite, the relevant data and con-

clusions will be stated in the below subsections.

GPS and IMU

The Pixhawk uses a differential GPS with a 5 hz update rate and 2.5 m accuracy in position

(Section 3.1.7). Due to interaction with the IMU, much more accurate data is supplied from the

state estimation (Section 7.4.3). The IMU consists of several sensors. Their names, types and

accuracies are found at the Pixhawk web site: Pixhawk sensors.

State Estimation

The state estimation is based on the IMU and GPS data, where the IMU uses the GPS as a refer-

ence input to its Kalman filter to get as accurate estimates as possible. By doing this, measure-

ment noise and bias are minimized, while update rate goes up. For the current Pixhawk settings,

the update rate was 10 Hz (Section 3.1.7).

From the plots and measurements in Section 6.2.1, the estimation accuracy and precision

is found to be 1.39 m and 0.98 m. The error in down direction is quite large, and is affecting the

final measurement results a lot.

Wind Estimation

The inaccuracy of the wind estimate in Section 5.1.2 has more impact on the free fall trajectory

than on the position error of the UAV. As the estimation accuracy is 0.78 m/s and has a precision

https://pixhawk.ethz.ch/electronics/imu#sensors


7.4. THEORETICAL SYSTEM ACCURACY 121

of 0.45 m/s, the wind estimation drop accuracy and precision becomes 0.78 m/s * 3 s = 2.34 m

and 0.45 m/s * 3 s = 1.35 m if the attitude change is large enough for the system to be sufficiently

observable.

7.4.4 Optimization Time

The most demanding computational task that the payload computer performs is to calculate

the FARP and choose the CARP. This was timed on the payload computer, and it used between

60 and 100 ms (Section 6.1.1). Linear computational time is assumed for all variables, O(n + h +

t) using the same time step. Assuming worst case scenario, 100 ms delay at 17 m/s speed leads

to 1.7 m error in x-direction. If it is also assumed that the optimization takes place for every fifth

received estimated state at ten hertz, as in SIL Test 2, the mean delay error becomes 0.34 m, with

a variance of 0.58 m.

7.4.5 OS Real Time Capabilities

GLUED is based on Linux, and so is not real time. However, GLUED running DUNE on the BBB

seems to be very responsive and has very little lag before performing the release. Due to inherent

lag in the MAVlink to IMC translation, the UAV lab normally works with a 20 ms response time.

This adds up to 0.34 m error in x-direction.

7.4.6 Combined Theoretical Drop Accuracy

All the delays and errors from 7.4 are combined to make a realistic drop scenario. The errors

listed below are based on the Optimal path planner with LOS and SMC controller, and a release

height of 30 m in SIL. SIL measurements show that the fall time is about three seconds. Using

this in the error calculation means that all velocity errors are multiplied by the fall time to deduce

the ground impact point error, which is the same as error on hitting the target. All timed errors

are multiplied by the UAV speed set point, 17 m/s, to deduce the ground impact point error. The



122 CHAPTER 7. DISCUSSION

axes are assumed uncorrelated and are added using the sum in quadrature, while calculating the

precision using MRSE or DRMS. The zero detection error is a maximum error and so measured

only in accuracy. CARP detection error is already included in the approach method error.

Some errors are assumed to only affect one direction: zero detection affects the z-accuracy,

and the lags affect x-accuracy. Errors in z-direction are assumed to have the effect drawn in

Figure 7.1, which according to Newton’s second law with constant acceleration from gravity (g )

and no air drag gives

s = v t + at 2

2
(7.1)

where s is distance, v is start speed, a is acceleration and t is time. Inserting with errors and

finding the differences in x to the trajectory gives

γ= vx(t − t f ) (7.2)

t =
−vz ±

√
v2

z +2g sr

g
(7.3)

t f =
−(vz + ver r )±√

(vz + ver r )2 +2g (sr − zer r )

g
(7.4)

where γ is the z-error to x-direction from Figure 7.1, t and t f are the positive solutions to

the fall time with and without errors, vx and vz is the speed in x and z-direction, sr is the release

height, ver r is the z-velocity error and zer r is the z-position error.



7.4. THEORETICAL SYSTEM ACCURACY 123

Figure 7.1: Error propagation in z-direction

Gathering the z errors gives us

Error Source Z-variance Z-mean

Approach method position 2.31 m -0.46 m
Approach method velocity 0 m/s -0.0 m/s
State estimate position 0.40 m -1.36 m
Wind estimate 0 m/s -0.32 m/s
Zero detection - -0.042 m

Table 7.1: Z error for ground impact point



124 CHAPTER 7. DISCUSSION

Adding them and putting them in 7.1 to 7.4 gives the mapped x-error.

t = −0±
p

02 +2∗9.81∗30

9.81
= 2.47[s] (7.5)

t f =
−(0+0.32)±

√
(0+0.32)2 +2∗9.81∗ (30−0.042−1.36−0.46)

9.81
= 2.36[s] (7.6)

γ= 17(2.36−2.47) =−1.88[m] (7.7)

(7.8)

where the sign of the wind estimate is switched as the UAV experiences the opposite of the

wind flow. Mapping the standard deviation (square root of variance) as well gives

t = −0±
p

02 +2∗9.81∗30

9.81
= 2.4731[s] (7.9)

t f =
−(0)±

√
(0)2 +2∗9.81∗ (30+p

2.31+0.40)

9.81
= 2.54[s] (7.10)

γ= 17(2.54−2.47) = 1.14[m] (7.11)

(7.12)

Giving the variance 1.30 m.

Error Source X-mean Y-mean

Approach method position -1.37 m 0.27 m
Approach method velocity -0.13 m/s * 3 s = -0.39 m 0.60 m/s * 3 s = 1.8 m
State estimate position -0.23 m -0.10 m
Wind estimate 0.59 m/s * 3 s = 1.77 m -0.39 m/s * 3 s = -1.17 m
Response time, BBB 0.34 m -
Optimization lag 0.34 m -
Z-error mapped -1.88 m -

Sum -1.42 m 0.80 m

Table 7.2: Accuracy for ground impact point

Table 7.2 and 7.3 lead to the final drop accuracy and precision:



7.5. DESIGN CHOICES AND SYSTEM COMPARISON 125

Error Source X-variance Y-variance

Approach method position 3.53 m 2.86 m
Approach method velocity 0.45 m/s * 3 s = 1.35 m 0.56 m/s * 3 s = 1.68 m
State estimate position 0.23 m 0.33 m
Wind estimate 0.11 m/s * 3 s = 0.33 m 0.09 m/s * 3 s = 0.27 m
Optimization lag 0.58 m -
Z-error mapped 1.30 m -

Sum 7.59 m 5.14 m

Table 7.3: Precision for ground impact point

Accuracy, 2. norm
p

1.422 +0.802 = 1.63 m

Precision, DRMS
p

7.59+5.14 = 3.57 m

Precision, 2DRMS 2
p

7.59+5.14 = 7.14 m

where 2DRMS is the circle with a 95% chance to hit within (GPS Position Accuracy, 2003).

In addition to these sources of error, the actuator release time compensation might be off,

the trajectory calculation using Euler’s method has errors (estimating Cd , and step length, the

beacon might bob or spin), and the state estimate velocity estimate error is unknown. The drop

mechanism actuator release time is probably measured correctly down to ±0.1 s (* 17 m/s = ±1.7

m) (Section 3.1.2), while the trajectory errors are hard to determine without a large amount of

tests. The velocity estimate error is also hard to determine, as no reference velocity is available,

but it is probably in the same order as the position estimate.

7.5 Design Choices and System Comparison

As the thesis progressed, more and more advanced methods were used. The benchmark used

in the start of the thesis was the Adapted Dubins Path from Fuglaas (2014). Using a variation

of this, the LS path planner (Section 2.5.1), combined with the Pixhawk’s waypoint controller

(Section 2.4.2) led to varying results (Table 5.8). The results depended on how well the UAV en-

tered the LS path and the disturbances affecting it along the path, such as wind gusts. Using the



126 CHAPTER 7. DISCUSSION

ISL path planner (Section 2.5.2) compensated somewhat for the disturbances and gave better

results (Section 6.2.3). As this was still unsatisfactory, a LOS controller (Section 2.4.1) was im-

plemented and used on the LS approach, and the path following accuracy improved drastically

(Table 5.7). This system worked very well, but could become inaccurate when the UAV wavered

from the LS path. These incidents inspired the Optimal approach (Section 2.5.3). The results

became even better (Table 5.9), but some downsides were found: the approach method could

make the UAV start oscillating when the path changed too often, and the optimization calcula-

tions might take too long. To diminish these downsides, the OWSI approach (Section 2.5.4) was

created. This approach optimized more seldom and removed the oscillations, but lost some

accuracy.

To find the best approach method, all parts of the method must be considered. The different

parts are the wind estimator, the path planner and the flight controllers.

From the controller test provided in Section 5.1.3, it is simple to see that the LOS with SMC

gives better performance on path following than the unpredictable waypoint controller.

The wind estimators tested was the Pixhawk’s built in open source wind estimator and the

wind estimator from Johansen et al. (2015). Both worked quite well, but Pixhawk’s wind estima-

tor was more accurate, while Johansen’s was more precise. Both have their merits, but Johansen’s

wind estimator was used for the most part during testing.

The path planners have all got their advantages as seen in Section 5.1. The LS path planner

creates a simple path that is easy to follow, but has the lowest accuracy and precision. The ILS

path planner is a better version of the LS path if the waypoint controller is used. Both of these

assume that the wind remains the same throughout the drop procedure. The Optimal path

planner makes more difficult paths that might cause the UAV to oscillate, but if the controllers

are tuned correctly, the oscillations will be small or non-existent. The Optimal path always uses

the newest wind estimate, and may provide better paths when the UAV is off course. The OWSI

path planner is likely to lessen the amount of oscillations, but updates the optimal path more

seldom. It also has lower precision than the Optimal and the LS path. When all of this is taken

into account, the Optimal path is normally the best to use.



7.5. DESIGN CHOICES AND SYSTEM COMPARISON 127

Another advantage of the Optimal and OWSI paths becomes apparent if the sea ice is mov-

ing along a path. The UAV may then follow that path while compensating for side wind and

updating the target at every optimization. The LS path is based on going up against the wind,

and so would not necessarily follow the ice path. This combined with the LS path’s constant

CARP means that the target will be the estimated sea ice centre at the time of the beacon re-

lease. This will lead to large errors if the release time is not estimated correctly or if the sea ice

path changes.



128 CHAPTER 7. DISCUSSION



Chapter 8

Conclusion and Further Work

This chapter will discuss the objectives of this thesis and sum up its results. It will also provide a

summary of the work that has been done and inevitably, work that still remains.

8.1 Conclusion

The complete system was tested throughout the thesis using both simulated and flight tests,

so that the best approach methods were found. It was quickly realized that the LOS and SMC

controller provided better and more robust results than the waypoint controller, and through

evolution of the approach methods, the OWSI path planner was created, even though the Op-

timal path gave better simulated results. Johansen’s wind estimator proved to be more precise

than the Pixhawk’s wind estimator, and is therefore considered as the better choice.

The FARP was defined and used in the optimizations on which the Optimal and OWSI path

planners are based. An analytical definition was not found for the FARP, and so a discrete opti-

mization technique was used on a range of the FARP. The range was found by using an iterative

solver.

The final result of a drop mission is whether or not the beacon will land and stay on the

specified sea ice. The work in this thesis is based on being able to hit sea ice with a radius as

129



130 CHAPTER 8. CONCLUSION AND FURTHER WORK

small as 10 m. Whether or not this is possible is judged by the drop accuracy and drop precision.

The approach method using the Optimal path and LOS controller resulted in a theoretical

drop accuracy of 1.63 m and a drop precision of 7.14 m measured in 2DRMS. Using the fact that

2DRMS gives the 95% hit chance radius, and assuming the accuracy to be in a circle around

the target, this combines to a 95% chance of hitting within 7.14+ 1.63 = 8.77 m of the target

coordinate which is smaller than the target sea ice size set in this thesis.

This result was unfortunately not confirmed by flight tests, as unforeseen circumstances

prevented flight time when the system was completed. However, the performed flight tests val-

idates the correctness of the SIL environment to some degree.

8.2 Conclusion of Objectives

All objectives, except Objective 8, were completed, and the resulting system has been presented

in this thesis.

Objective 1 was to implement and test a wind estimator. The implementation is given in Ap-

pendix H, the theory in Section 2.3 and testing in Section 5.1.2. The resulting accuracy was

0.78 m/s with an MRSE of 0.45 m/s.

Objective 2 was to calculate the FARP. The calculation is found in Section 2.1 and its implemen-

tation in Appendix H in the Beacon class code. An analytic solution was not found, but an

iterative method was used instead.

Objective 3 was to design and test the LS path planner with SIL and flight tests. The design is

given in Section 2.5.1, while testing is described in Section 5.1.3 and 6.2.2. Accuracy in SIL

was 2.79 m in position and 0.74 m/s in velocity, while precision was 3.31 m in position and

1.23 m/s in velocity using the LOS controller.

Objective 4 was to optimize on the FARP and choose a CARP. This optimization is described in

Section 2.5.3. Testing using this optimization in the Optimal and OWSI path planner are



8.3. RECOMMENDATIONS FOR FURTHER WORK 131

found in Section 5.1.3.

Objective 5 was to implement a LOS controller. Its implementation is found in Appendix H.

The LOS controller was found to be superior to the waypoint controller in SIL Test 1 in

Section 5.1.3.

Objective 6 was to research different approach methods to reach the CARP. They are described

in Section 2.5 and tested in Chapter 5 and 6. The best accuracy achieved at reaching the

CARP was 1.47 m in position and 0.61 m/s in velocity, while having a precision of 2.95 m

in position and 1.01 m/s in velocity using the Optimal path planner with LOS and SMC

controller.

Objective 7 was to SIL test the approach methods. This is found in Section 5.1.3. All results with

accuracy and precision are found there.

Objective 8 was to field test the approach methods. This is described in Section 6.2. All results

are found there. Unfortunately not all approach methods were tested in flight tests. The

Optimal and OWSI path planners still has to be tested, as well as the LOS and SMC con-

trollers and the wind estimator from Johansen et al. (2015). These flight tests were not

performed due to several reasons stated in 8.3.

Objective 9 was to compare the LS path planner with waypoint controller to the best approach

method found in the two objectives above. This is discussed in Section 7.5, where it was

found that the Optimal path planner with LOS and SMC controller was the best as long as

the controllers are well tuned.

8.3 Recommendations for Further Work

As in most projects, there is room for improvement. Several topics for further work were con-

sidered, both in short- and long term aspects.

Flight testing of the LOS with SMC controller, and OWSI and the Optimal path planner still



132 CHAPTER 8. CONCLUSION AND FURTHER WORK

remains. These tests were vital for the project results, but could not be performed in time due to

several reasons. Change of staff delayed all flight tests in April. Bad weather prevented testing

most of May, and in June hardware-in-the-loop (HIL) tests were required before autopilot flights

could be flown, even though the HIL testing environment was not yet ready. So even though

three months were set aside to be used for flight tests, most tests were not performed.

Remaining and recommended work is listed below.

Flight Tests Flight test for the Optimal and OWSI path planners, and for LOS with SMC con-

troller must be performed to validate SIL results.

Investigating Z Velocity The SIL results show that velocity in z direction had no error. This is

unlikely a true result, and the reason for this measurement should be investigated.

Statistically Viable Amount of Testing To make sure that the UAV’s drop accuracy and preci-

sion were calculated and measured correctly, a large amount of drop tests is needed.

Error Mitigation Errors in accuracy and precision should always be minimized. Some of them

might be mitigated, for example by using improvements like

• Magnetic release mechanism to remove drop time

• Avoid gliding state by moving the drop mechanism

• RTK-GPS would probably better the state estimate accuracy

• Lower computing time and lag by increasing computing power

• Using better controllers, faster actuators and/or using more acrobatic aircraft

• Higher frequency state estimation

Beacon Ground Impact Error Analysis and Mitigation As the beacon hits the ground, it will

probably start rolling, skidding or jumping, further increasing error in beacon placement.

This could be taken into account when calculating the CARP, or the beacon could be mod-

ified with spikes (or other measure) to stop it on impact.

Colder-Weather Testing As the UAV is supposed to work in Arctic conditions, it should be flown

in such conditions. In this thesis, the coldest test was about -5 to -10 C.



8.3. RECOMMENDATIONS FOR FURTHER WORK 133

Testing of Other LOS controllers Many other LOS controllers are available for fixed-wing UAVs.

These may provide better accuracy on reaching the CARP, and therefore make a more ac-

curate system. The Pixhawk’s built in L1 controller seems to be well suited.

Combine With Other Modules This thesis describes one of the modules mentioned in Section

1.1. Putting it together with the other modules would complete the final system.

Moving Ice Prediction As the ice would move after its position has been estimated, it would be

useful to know its path. Optimizing the UAV LOS path for the ice path would provide a

better chance of the beacon landing on the ice.

Beyond Line-of-Sight Testing To complete a drop mission on ice as described in Section 1.1,

the system must be able to fly beyond line of sight.



134 CHAPTER 8. CONCLUSION AND FURTHER WORK



Appendix A

Acronyms

NTNU Norges Teknisk Naturvitenskapelige Universitet - Norwegian University of Science and

Technology

LSTS Laboratório de Sistemas e Technologias Subaquáticas - Underwater Systems and Tech-

nology Laboratory

ITK Institutt for Teknisk Kybernetikk - Department of Engineering Cybernetics

DRMS Distance Root Mean Squared

MRSE Mean Radial Spherical Error

GPS Global Positioning System

RTK-GPS Real-time kinematic GPS

UAV Unmanned Aerial Vehicle

ISL Incremented-Straight-Line

SL Straight-Line

SMC Sliding Mode Controller

135



136 APPENDIX A. ACRONYMS

AUV Autonomous Underwater Vehicle

BBB BeagleBone Black

POE Power Over Ethernet

FDDI Fiber-Distrubuted-Data-Interface

PCB Printed Circuit Board

DUNE Unified Navigation Environment

FDDI Fiber Distributed Data Interface

RTTI Run-Time Type Information

IMC Inter-Module Communications

PWM Pulse Width Modulated

IDE Integrated Development Environment

LAN Local Area Network

LOS Line-of-Sight

DHCP Dynamic Host Configuration Protocol

IP Internet Protocol

SSID Service Set Identifier

SIMD Single Instructions, Multiple Data

HIL Hardware In the Loop

SIL/SITL Software In The Loop

IAS Indicated Air Speed

SD Secure Digital



137

BIOS Basic Input-Output System

GPIO General Purpose Input and Output

CAN Controller Area Network

TCP Transmission Control Protocol

UDP User Datagram Protocol

OWSI Optimize When Success is Improbable



138 APPENDIX A. ACRONYMS



Appendix B

X8 Payload Checklist

The payload checklist shall be completed before every flight. The following tests shall be per-

formed:

1. See to that all wires are connected correctly, except the batteries

2. Connect flight battery to the Pixhawk

3. Check the Pixhawks power light and look for error codes

4. Be sure that the Pixhawks speaker start up signal sounded (if speaker is in use)

5. Check the Rocket M5 power light

6. Check the router power supply

7. Connect the payload battery to the cape

8. Check the BeagleBone Blacks power light

9. Be sure that the ground station is running all programs

10. Send release test from ground station to X8 and check that release is executed

11. Get position from X8 sent to ground station

139



140 APPENDIX B. X8 PAYLOAD CHECKLIST



Appendix C

Flight Plans

Two flight plans were made in preparation to flight tests in the spring 2015. The tests shall be

conducted on Agdenes Airfield. The flight plans are listed here.

C.1 Flight Plan: Following Waypoints

One test will be to follow waypoints to tune the controllers.

1. Take off using launch mechanism

2. Pilot flies to appropriate height

3. Autopilot is turned on and follows prepared waypoints

4. When finished, loiter at end point

5. Pilot takes control over UAV

6. Manually land on airstrip

C.2 Flight Plan: Drop Test

Another test will be to see if the beacon drop works, and if so, check how accurate it is.

141



142 APPENDIX C. FLIGHT PLANS

1. Take off using launch mechanism

2. Pilot flies to appropriate height and turns on loiter mode

3. Target is sent to UAV and test starts

4. When finished, loiter at end point

5. Pilot takes control over UAV

6. Manually land on airstrip



Appendix D

Installing GLUED and Bootloader on the

BeagleBone Black

This list describes the procedure for installing GLUED and bootloader on the BBB:

• Download GLUED from GLUED (2014)

• Run command "./mkconfig.bash list" to see available system files

• Make configuration file by running "./mkconfig.bash <system_file>"

• Build GLUED by running "./mksystem.bash <configuration_file>"

• Prepare GLUED to be transferred to memory device with "./pkrootfs.bash <configura-

tion_file>".

• Transfer prepared files to memory device using "./mkdisk.bash <configuration_file> <mem-

ory_device>"

• Plug memory device into embedded device

• Boot embedded system from memory device

The system file used in bulletpoint three was ntnu_x8_006.

The last bulletpoint on this list is different on most embedded devices. The BBB needed to

have its bootloader changed to be able to boot from the memory device used in this project. The

memory device used was a microSD card. To change the bootloader, the following procedure

143



144 APPENDIX D. INSTALLING GLUED AND BOOTLOADER ON THE BEAGLEBONE BLACK

was followed:

• Insert microSD into the BBB microSD card slot

• With charger unplugged, connect the BBB to the PC using a USB-TTL cable

• Establish connection with 115200, 8N1

• Press switch S2 (near USB connector) and hold while plugging 5V charger

• By now you should be able to access GLUED rootfs on your computer

• Run command: "mount /dev/mmcblk1p1 /mnt"

• Run command: "rm -rf /mnt/*"

• Run command: "cp /boot/MLO /boot/u-boot.img /mnt"

• Run command: "umount /mnt"

• Run command: "sync (more than one time might be required)"

• Run command: "halt"

• Unplug charger



Appendix E

Cross Compiling DUNE for the BeagleBone

Black

The version of DUNE used in this project can be found by cloning git@uavlab.itk.ntnu.no:uavlab/dune.git,

and then cloning git@uavlab.itk.ntnu.no:uavlab/dune-ntnu.git to the dune/user folder. The

dune folder should use the temp/drop-test-may branch, while the dune/user folder should be

in the feature/precisionAirDrop branch.

This list describes the procedure for cross compiling DUNE for the BBB:

• Toolchain was made by running "./pktoolchain.bash <configuration_file>" in the direc-

tory where GLUED was downloaded

• Running "cmake -DCROSS=/home/PATH_TO_GLUED/lctr-??xx/toolchain/bin/ARCH [PATH_TO_DUNE]"

to cross compile DUNE. It should be run in a folder where the build files are supposed to

be, for instance an empty folder called "build". The path described after "-DCROSS="

should point to the compiler made in the GLUED toolchain

• Then a package must be made from the compiled DUNE files by running "make; make

package;"

• Then the package must be transferred to the embedded device by using rsync: "rsync -avz

dune-*-*tar.bz root@SYSTEM_IP:/opt/lsts/dune/"

145



146 APPENDIX E. CROSS COMPILING DUNE FOR THE BEAGLEBONE BLACK

• To log onto the embedded device, SSH can be used: "ssh root@SYSTEM_IP". Default pass-

word is "root"

• When using SSH, run: "services dune restart"

• To run DUNE, choose an .ini file and run: ./dune -c [PATH_TO_.INI_FILE]



Appendix F

A8 Description by Texas Instruments

The AM335x microprocessors, based on the ARM Cortex-A8 processor, are enhanced with im-

age, graphics processing, peripherals and industrial interface options such as EtherCAT and

PROFIBUS. The devices support high-level operating systems (HLOS). Linux® and Android™

are available free of charge from TI.

The AM335x microprocessor contain the subsystems shown in and a brief description of

each follows:

The microprocessor unit (MPU) subsystem is based on the ARM Cortex-A8 processor and

the PowerVR SGX Graphics Accelerator subsystem provides 3D graphics acceleration to support

display and gaming effects.

The Programmable Real-Time Unit Subsystem and Industrial Communication Subsystem

(PRU-ICSS) is separate from the ARM core, allowing independent operation and clocking for

greater efficiency and flexibility. The PRU-ICSS enables additional peripheral interfaces and

real-time protocols such as EtherCAT, PROFINET, EtherNet/IP, PROFIBUS, Ethernet Powerlink,

Sercos, and others. Additionally, the programmable nature of the PRU-ICSS, along with its ac-

cess to pins, events and all system-on-chip (SoC) resources, provides flexibility in implementing

fast, real-time responses, specialized data handling operations, custom peripheral interfaces,

and in offloading tasks from the other processor cores of SoC (AM3358, 2014).

147



148 APPENDIX F. A8 DESCRIPTION BY TEXAS INSTRUMENTS



Appendix G

Hardware Testing Code

The code used for testing is found in this appendix.

G.1 .ini file to start release mechanism test

G.2 Code to run release mechanism test

G.3 .ini file to run radio test

G.4 Code to run radio test

149



















158 APPENDIX G. HARDWARE TESTING CODE



Appendix H

DUNE Code

The final code that was written for the UAV system is found in this appendix. The .ini file is just

an example, and should be changed to contain the suitable variables and values for the specific

drop mission.

H.1 .ini file

H.2 Code for the Drop-on-Target task

H.3 Code for the Actuator-Output task

H.4 Code for the Wind-Estimator task

H.5 Code for the SMC task

H.6 Code for the Beacon class header

H.7 Code for the Enum header

H.8 Code for the PWM generator

159











































































































212 APPENDIX H. DUNE CODE



Appendix I

MATLAB code

I.1 Free Fall Initiation Script

1 clear all;

2 close all;

3 clc;

4 %%

5 % Define constants

6 iter = 10;

7 % Physical properties of object

8 A = pi*0.05^2; % Cross−sectional area of a sphere

9 C_D = 0.47; % Drag constant for a sphere

10 m = 0.2; % Mass of the object

11 rho = 1.225; % Air density at +15 degrees Celsius

12 b = 0.5*A*C_D*rho;

13 g = 9.81;

14 % Wind velocity

15 w = 5;

16 w_angle = 180;

17 v_w = [w*cos(w_angle);w*sin(w_angle);0];

18 w_uncertainty = 0.5;

213



214 APPENDIX I. MATLAB CODE

19 w_angle_uncert = 10;

20 w_magn_range = ...

(w*(1−w_uncertainty)):w*w_uncertainty/iter:(w*(1+w_uncertainty));
21 w_angle_range = ...

(w_angle−w_angle_uncert):(w_angle_uncert/iter):(w_angle+w_angle_uncert);
22 % Initial velocity

23 v_init = 28;

24 % Initial position

25 x_0_bx = 0;

26 x_0_by = 0;

27 x_0_alt = 50;

28 mu_pos = [pi x_0_by];

29 bx_uncert = 5;

30 by_uncert = 5;

31 bx_range = 0:bx_uncert/iter/2:bx_uncert;

32 by_range = −by_uncert:by_uncert/iter:by_uncert;
33 [bX1,bX2] = meshgrid(bx_range, by_range);

34 sigma_pos = [1 0; 0 1];

35 norm_pos = mvnpdf([bX1(:) bX2(:)], mu_pos, sigma_pos);

36 norm_pos = reshape(norm_pos,length(bx_range), length(by_range));

37 figure

38 surf(bx_range, by_range, norm_pos);

39 % Simulation time

40 dt = 0.01;

41 tspan = 0:dt:6;

42 % Initialize ground level matrix 1000x1000 m

43 Impact = zeros(1000,1000);

44 % Iterations

45 tot_iter = length(w_magn_range)*length(w_angle_range);

46 i_ = 1;

47 % Create waitbar to show progress

48 h = waitbar(0,'wait...');

49 % Simulate position given varying wind

50 for i=1:(length(w_magn_range))

51 for j=1:(length(w_angle_range))

52



I.2. FREE FALL FUNCTION 215

53 w = w_magn_range(i);

54 w_angle = w_angle_range(j);

55 w_angle = w_angle/180*pi;

56 v_w = [w*cos(w_angle);w*sin(w_angle);0];

57

58 v_0 = [v_init+w*cos(w_angle);v_init+w*sin(w_angle);0];

59 x_0 = [v_0;x_0_bx;x_0_by;x_0_alt];

60

61 % Solve differential system

62 [t,v] = ode45(@(t,v) freeFallFunc2(t,v,v_w,b,m,g), tspan, x_0);

63 figure(98)

64 plot3(v(:,4), v(:,5),v(:,6))

65 hold on;grid on;xlabel('x');ylabel('y');zlabel('z');

66 % Position

67 x_incr_reso = v(end,4:6)*1;

68 x_rounded = round(x_incr_reso(:));

69 Impact(x_rounded(1),x_rounded(2)) =+ norm_pos(i,j);

70 % Update waitbar

71 i_ = i_+1;

72 waitbar(i_/tot_iter,h);

73 end

74 end

75 close(h);

76 x_start = 35;

77 y_start = x_start;

78 x_end = 55;

79 y_end = x_end;

80 points = 20;

81 figure

82 surf(linspace(x_start,x_end,points),linspace(y_start,...

83 y_end,points),Impact(x_start:x_end−1,y_start:y_end−1))

I.2 Free Fall Function



216 APPENDIX I. MATLAB CODE

1 function dv = freeFallFunc2(t,v,v_w,b,m,g)

2 % Define the function used to model the free fall of the object

3 if v(6) ≤ 0

4 dv = [−(b/m)*(v(1)−v_w(1))*norm(v(1:3)−v_w);
5 −(b/m)*(v(2)−v_w(2))*norm(v(1:3)−v_w);
6 −(b/m)*(v(3)−v_w(3))*norm(v(1:3)−v_w)−g;
7 0;

8 0;

9 0];

10 else

11 dv = [−(b/m)*(v(1)−v_w(1))*norm(v(1:3)−v_w);
12 −(b/m)*(v(2)−v_w(2))*norm(v(1:3)−v_w);
13 −(b/m)*(v(3)−v_w(3))*norm(v(1:3)−v_w)−g;
14 v(1);

15 v(2);

16 v(3)];

17 end

18 end

I.3 Plot RTK and Pixhawk Position Script

1 %%INIT

2 clear;

3 load('Data rtk piksi');

4 %%START

5 figure(1);

6 clf;

7 hold on;

8 title('3D Position for RTK and Pixhawk');

9 itend = [length(EstimatedState.x),length(RtkFix.n)];

10 diff = [EstimatedState.x(itend(1))−RtkFix.n(itend(2)), ...

EstimatedState.y(itend(1))−RtkFix.e(itend(2)), ...



I.3. PLOT RTK AND PIXHAWK POSITION SCRIPT 217

EstimatedState.z(itend(1))−RtkFix.d(itend(2))];
11 plot3(EstimatedState.x − diff(1), EstimatedState.y − diff(2), ...

EstimatedState.z − diff(3));

12 plot3(RtkFix.n, RtkFix.e, RtkFix.d);

13 xlabel('N');

14 ylabel('E');

15 zlabel('D');

16

17

18 %%START

19 figure(2);

20 clf;

21 hold on;

22 title('NE Position for RTK and Pixhawk');

23 plot(EstimatedState.x − diff(1), EstimatedState.y − diff(2));

24 plot(RtkFix.n, RtkFix.e);

25 xlabel('N');

26 ylabel('E');

27

28 %%START

29 figure(3);

30 clf;

31 hold on;

32 title('ND Position for RTK and Pixhawk');

33 plot(EstimatedState.x − diff(1), EstimatedState.z − diff(3));

34 plot(RtkFix.n, RtkFix.d);

35 xlabel('N');

36 ylabel('D');

37

38 measurediff=zeros(3,length(RtkFix.n));

39 measureerr=zeros(3,length(RtkFix.n));

40

41 for i = 1:length(RtkFix.n)

42 prevtdiff=10000;

43 leastdiff=10000;

44 for j = 1:length(EstimatedState.x)



218 APPENDIX I. MATLAB CODE

45 tdiff = abs(RtkFix.timestamp(i)−EstimatedState.timestamp(j));
46 if tdiff<leastdiff

47 leastdiff=tdiff;

48 elseif tdiff > prevtdiff

49 measurediff(1,i) = EstimatedState.x(j) − diff(1)−RtkFix.n(i);
50 measureerr(1,i) = abs(EstimatedState.x(j) − ...

diff(1)−RtkFix.n(i));
51 measurediff(2,i) = EstimatedState.y(j) − diff(2)−RtkFix.e(i);
52 measureerr(2,i) = abs(EstimatedState.y(j) − ...

diff(2)−RtkFix.e(i));
53 measurediff(3,i) = EstimatedState.z(j) − diff(3)−RtkFix.d(i);
54 measureerr(3,i) = abs(EstimatedState.z(j) − ...

diff(3)−RtkFix.d(i));
55 break;

56 end

57 prevtdiff = tdiff;

58 end

59 end

60

61 Mn= mean(measurediff(1,:));

62 Me= mean(measurediff(2,:));

63 Md= mean(measurediff(3,:));

64 Vn= var(measurediff(1,:));

65 Ve= var(measurediff(2,:));

66 Vd= var(measurediff(3,:));

67

68 Man= mean(measureerr(1,:));

69 Mae= mean(measureerr(2,:));

70 Mad= mean(measureerr(3,:));

71 Van= var(measureerr(1,:));

72 Vae= var(measureerr(2,:));

73 Vad= var(measureerr(3,:));

74

75 %%SAVE

76 %saveas(figure(2), 'My Master/Report − Master/figures/rtkpixpos_ne', ...

'png');



I.4. PLOT WIND ESTIMATOR 2 M/S RESULTS SCRIPT 219

77 %saveas(figure(3), 'My Master/Report − Master/figures/rtkpixpos_nd', ...

'png');

78

79 %%

I.4 Plot Wind Estimator 2 m/s Results Script

1 clear;

2 load('Data 2.mat');

3 ent = zeros(1,25);

4 entcount = 1;

5

6 for i = 1:length(EstimatedStreamVelocity.x)

7 newent = true;

8 for j = 1:length(ent)

9 if(EstimatedStreamVelocity.src_ent(i) == ent(j))

10 newent = false;

11 end

12 end

13 if(newent)

14 ent(entcount) = EstimatedStreamVelocity.src_ent(i);

15 entcount = entcount +1;

16 end

17 end

18

19 x = zeros(entcount,length(EstimatedStreamVelocity.x));

20 y = x;

21 z = x;

22 count = ones(1,entcount);

23 for i = 1:length(EstimatedStreamVelocity.x)

24 for j = 1:entcount

25 if EstimatedStreamVelocity.src_ent(i) == ent(j)

26 x(j,count(j)) = EstimatedStreamVelocity.x(i);



220 APPENDIX I. MATLAB CODE

27 y(j,count(j))= EstimatedStreamVelocity.y(i);

28 z(j,count(j))= EstimatedStreamVelocity.z(i);

29 count(j) = count(j) +1;

30 continue;

31 end

32 end

33 end

34

35 hold on;

36 %%

37 num = 0;

38 for j = length(EstimatedStreamVelocity.x):−1:1
39 if x(1,j) 6= 0

40 num = j;

41 break;

42 end

43 end

44 figure(1);

45 clf;

46 hold on;

47 title('Pixhawk Wind Estimation, 2 m/s Simulated')

48 xlabel('Timestamp');

49 ylabel('m/s');

50 plot(EstimatedStreamVelocity.timestamp(1:num), x(1,1:num), '−−');
51 plot(EstimatedStreamVelocity.timestamp(1:num), y(1,1:num),':');

52 plot(EstimatedStreamVelocity.timestamp(1:num), z(1,1:num));

53 legend('n','e','d')

54 num = 0;

55

56

57 for j = length(EstimatedStreamVelocity.x):−1:1
58 if x(2,j) 6= 0

59 num = j;

60 break;

61 end

62 end



I.4. PLOT WIND ESTIMATOR 2 M/S RESULTS SCRIPT 221

63 figure(2);

64 clf;

65 hold on;

66 title('Wind Measurment, 2 m/s Simulated')

67 xlabel('Timestamp');

68 ylabel('m/s');

69 plot(EstimatedStreamVelocity.timestamp(1:num), x(2,1:num), '−−');
70 plot(EstimatedStreamVelocity.timestamp(1:num), y(2,1:num),':');

71 plot(EstimatedStreamVelocity.timestamp(1:num), z(2,1:num));

72 legend('n','e','d')

73 num = 0;

74

75

76 for j = length(EstimatedStreamVelocity.x):−1:1
77 if x(3,j) 6= 0

78 num = j;

79 break;

80 end

81 end

82 figure(3);

83 clf;

84 hold on;

85 title('Wind Estimate, 2 m/s Simulated')

86 xlabel('Timestamp');

87 ylabel('m/s');

88 plot(EstimatedStreamVelocity.timestamp(1:num), x(3,1:num), '−−');
89 plot(EstimatedStreamVelocity.timestamp(1:num), y(3,1:num),':');

90 plot(EstimatedStreamVelocity.timestamp(1:num), z(3,1:num));

91 legend('n','e','d')

92 saveas(figure(3), 'My Master/Report − Master/figures/2ms_est','png')

93 saveas(figure(1), 'My Master/Report − Master/figures/2ms_pix','png')

94 saveas(figure(2), 'My Master/Report − Master/figures/2ms_measure','png')

95

96 num=120;%rest is zero

97 actual_wind(1:num) = 2;

98 pmn=mean(actual_wind−x(1,1:num));



222 APPENDIX I. MATLAB CODE

99 pvn=var(actual_wind−x(1,1:num));
100 actual_wind(1:num) = 0;

101 pme=mean(actual_wind−y(1,1:num));
102 pve=var(actual_wind−y(1,1:num));
103 pmd=mean(actual_wind−z(1,1:num));
104 pvd=var(actual_wind−z(1,1:num));
105

106 actual_wind(1:num) = 2;

107 pman= mean(abs(actual_wind−x(1,1:num)));
108 pvan= var(abs(actual_wind−x(1,1:num)));
109 actual_wind(1:num) = 0;

110 pmae=mean(abs(actual_wind−y(1,1:num)));
111 pvae=var(abs(actual_wind−y(1,1:num)));
112 pmad=mean(abs(actual_wind−z(1,1:num)));
113 pvad=var(abs(actual_wind−z(1,1:num)));
114

115 num=990;%rest is zero

116 actual_wind(1:num) = 2;

117 mn=mean(actual_wind−x(3,1:num));
118 vn=var(actual_wind−x(3,1:num));
119 actual_wind(1:num) = 0;

120 me=mean(actual_wind−y(3,1:num));
121 ve=var(actual_wind−y(3,1:num));
122 md=mean(actual_wind−z(3,1:num));
123 vd=var(actual_wind−z(3,1:num));
124

125 actual_wind(1:num) = 2;

126 man= mean(abs(actual_wind−x(3,1:num)));
127 van= var(abs(actual_wind−x(3,1:num)));
128 actual_wind(1:num) = 0;

129 mae=mean(abs(actual_wind−y(3,1:num)));
130 vae=var(abs(actual_wind−y(3,1:num)));
131 mad=mean(abs(actual_wind−z(3,1:num)));
132 vad=var(abs(actual_wind−z(3,1:num)));



I.5. PLOT WIND ESTIMATOR 5 M/S RESULTS SCRIPT 223

I.5 Plot Wind Estimator 5 m/s Results Script

1 clear;

2 load('Data 5.mat');

3 ent = zeros(1,25);

4 entcount = 1;

5

6 for i = 1:length(EstimatedStreamVelocity.x)

7 newent = true;

8 for j = 1:length(ent)

9 if(EstimatedStreamVelocity.src_ent(i) == ent(j))

10 newent = false;

11 end

12 end

13 if(newent)

14 ent(entcount) = EstimatedStreamVelocity.src_ent(i);

15 entcount = entcount +1;

16 end

17 end

18

19 x = zeros(entcount,length(EstimatedStreamVelocity.x));

20 y = x;

21 z = x;

22 count = ones(1,entcount);

23 for i = 1:length(EstimatedStreamVelocity.x)

24 for j = 1:entcount

25 if EstimatedStreamVelocity.src_ent(i) == ent(j)

26 x(j,count(j)) = EstimatedStreamVelocity.x(i);

27 y(j,count(j))= EstimatedStreamVelocity.y(i);

28 z(j,count(j))= EstimatedStreamVelocity.z(i);

29 count(j) = count(j) +1;

30 continue;

31 end

32 end

33 end



224 APPENDIX I. MATLAB CODE

34

35 hold on;

36 %%

37 num = 0;

38 for j = length(EstimatedStreamVelocity.x):−1:1
39 if x(1,j) 6= 0

40 num = j;

41 break;

42 end

43 end

44 figure(1);

45 clf;

46 hold on;

47 title('Wind Measurment, 5 m/s Simulated')

48 xlabel('Timestamp');

49 ylabel('m/s');

50 plot(EstimatedStreamVelocity.timestamp(1:num), x(1,1:num), '−−');
51 plot(EstimatedStreamVelocity.timestamp(1:num), y(1,1:num),':');

52 plot(EstimatedStreamVelocity.timestamp(1:num), z(1,1:num));

53 legend('n','e','d')

54 num = 0;

55

56

57 for j = length(EstimatedStreamVelocity.x):−1:1
58 if x(2,j) 6= 0

59 num = j;

60 break;

61 end

62 end

63 figure(2);

64 clf;

65 hold on;

66 title('Wind Estimate, 5 m/s Simulated')

67 xlabel('Timestamp');

68 ylabel('m/s');

69 plot(EstimatedStreamVelocity.timestamp(1:num), x(2,1:num), '−−');



I.5. PLOT WIND ESTIMATOR 5 M/S RESULTS SCRIPT 225

70 plot(EstimatedStreamVelocity.timestamp(1:num), y(2,1:num),':');

71 plot(EstimatedStreamVelocity.timestamp(1:num), z(2,1:num));

72 legend('n','e','d')

73 num = 0;

74

75

76

77

78 for j = length(EstimatedStreamVelocity.x):−1:1
79 if x(3,j) 6= 0

80 num = j;

81 break;

82 end

83 end

84 figure(3);

85 clf;

86 hold on;

87 title('Pixhawk Wind Estimation, 5 m/s Simulated')

88 xlabel('Timestamp');

89 ylabel('m/s');

90 plot(EstimatedStreamVelocity.timestamp(1:num), x(3,1:num), '−−');
91 plot(EstimatedStreamVelocity.timestamp(1:num), y(3,1:num),':');

92 plot(EstimatedStreamVelocity.timestamp(1:num), z(3,1:num));

93 legend('n','e','d')

94 saveas(figure(1), 'My Master/Report − Master/figures/5ms_measure','png')

95 saveas(figure(2), 'My Master/Report − Master/figures/5ms_est','png')

96 saveas(figure(3), 'My Master/Report − Master/figures/5ms_pix','png')

97

98 num=140;%rest is zero

99 actual_wind(1:num) = 5;

100 pmn=mean(actual_wind−x(3,1:num));
101 pvn=var(actual_wind−x(3,1:num));
102 actual_wind(1:num) = 0;

103 pme=mean(actual_wind−y(3,1:num));
104 pve=var(actual_wind−y(3,1:num));
105 pmd=mean(actual_wind−z(3,1:num));



226 APPENDIX I. MATLAB CODE

106 pvd=var(actual_wind−z(3,1:num));
107

108 actual_wind(1:num) = 5;

109 pman= mean(abs(actual_wind−x(3,1:num)));
110 pvan= var(abs(actual_wind−x(3,1:num)));
111 actual_wind(1:num) = 0;

112 pmae=mean(abs(actual_wind−y(3,1:num)));
113 pvae=var(abs(actual_wind−y(3,1:num)));
114 pmad=mean(abs(actual_wind−z(3,1:num)));
115 pvad=var(abs(actual_wind−z(3,1:num)));
116

117

118 num=1180;%rest is zero

119 actual_wind(1:num) = 5;

120 mn=mean(actual_wind−x(2,1:num));
121 vn=var(actual_wind−x(2,1:num));
122 actual_wind(1:num) = 0;

123 me=mean(actual_wind−y(2,1:num));
124 ve=var(actual_wind−y(2,1:num));
125 md=mean(actual_wind−z(2,1:num));
126 vd=var(actual_wind−z(2,1:num));
127

128 actual_wind(1:num) = 5;

129 man= mean(abs(actual_wind−x(2,1:num)));
130 van= var(abs(actual_wind−x(2,1:num)));
131 actual_wind(1:num) = 0;

132 mae=mean(abs(actual_wind−y(2,1:num)));
133 vae=var(abs(actual_wind−y(2,1:num)));
134 mad=mean(abs(actual_wind−z(2,1:num)));
135 vad=var(abs(actual_wind−z(2,1:num)));

I.6 Process LS Path SIL Results Script



I.6. PROCESS LS PATH SIL RESULTS SCRIPT 227

1 clear;

2 load('Data lots of ls.mat');

3 ent = zeros(1,25);

4 entcount = 1;

5

6 for i = 1:length(Distance.value)

7 newent = true;

8 for j = 1:length(ent)

9 if(Distance.src_ent(i) == ent(j))

10 newent = false;

11 end

12 end

13 if(newent)

14 ent(entcount) = Distance.src_ent(i);

15 entcount = entcount +1;

16 end

17 if i==500

18 break;

19 end

20 end

21 if i==500

22 x = zeros(entcount,500);

23 else

24 x = zeros(entcount,round(length(Distance.value)/entcount));

25 end

26

27 count = ones(1,entcount);

28 for i = 1:(entcount*length(x(1,:)))

29 for j = 1:entcount

30 if Distance.src_ent(i) == ent(j)

31 x(j,count(j)) = Distance.value(i);

32 count(j) = count(j) +1;

33 continue;

34 end

35 end



228 APPENDIX I. MATLAB CODE

36 end

37

38 average=[mean(x(1,:)),mean(x(2,:)),mean(x(3,:))];

39 [xe, ye, ze] = ellipsoid(average(1),average(2),average(3), ...

sqrt(var(x(1,:))+ var(x(2,:))+ var(x(3,:))),sqrt(var(x(1,:))+ ...

var(x(2,:))+ var(x(3,:))),sqrt(var(x(1,:))+ var(x(2,:))+ ...

var(x(3,:))),30);

40 [xr, yr, zr] = ellipsoid(0,0,0, .85*2, .85*2, .85*2 ,30);

41

42 figure(1);

43 clf;

44 hold on;

45 title('LS release accuracy plot in body frame')

46 xlabel('x');

47 ylabel('y');

48 zlabel('z');

49 scatter3(x(1,:),x(2,:),x(3,:), 'Fill');

50 scatter3(average(1),average(2),average(3), 'Fill')

51 scatter3(0,0,0, 'Fill')

52 surf(xe,ye,ze, 'FaceAlpha', 0.2)

53 surf(xr,yr,zr, 'FaceAlpha', 0.2)

54 legend('Release point','Average','CARP', 'MRSE')

55

56 figure(2);

57 clf;

58 hold on;

59 title('LS path release accuracy XY−plot in body frame')

60 xlabel('x');

61 ylabel('y');

62 scatter(x(1,:),x(2,:), 20, 'Fill');

63 scatter(average(1),average(2), 'Fill')

64 scatter(0,0, 'Fill')

65 [X,Y]=ell(average(1),average(2),sqrt(var(x(1,:))+ var(x(2,:))), ...

sqrt(var(x(1,:))+ var(x(2,:))),0,100);

66 plot(X,Y);

67 alpha(0)



I.6. PROCESS LS PATH SIL RESULTS SCRIPT 229

68 legend('Release point','Average','CARP', 'DRMS')

69

70 figure(3);

71 clf;

72 hold on;

73 title('LS path release accuracy XZ−plot in body frame')

74 xlabel('x');

75 ylabel('z');

76 scatter(x(1,:),x(3,:), 20,'Fill');

77 scatter(average(1),average(3), 'Fill')

78 scatter(0,0, 'Fill')

79 [X,Y]=ell(average(1),average(3),sqrt(var(x(1,:))+ ...

var(x(3,:))),sqrt(var(x(1,:))+ var(x(3,:))),0,100);

80 plot(X,Y);

81 alpha(0)

82 legend('Release point','Average','CARP', 'DRMS')

83

84

85 mx= average(1);

86 my= average(2);

87 mz= average(3);

88 vx= var(x(1,:));

89 vy=var(x(2,:));

90 vz=var(x(3,:));

91

92 max= mean(abs(x(1,:)));

93 may= mean(abs(x(2,:)));

94 maz= mean(abs(x(3,:)));

95 vax= var(abs(x(1,:)));

96 vay=var(abs(x(2,:)));

97 vaz=var(abs(x(3,:)));

98

99 mvx= mean(x(4,:));

100 mvy= mean(x(5,:));

101 mvz= mean(x(6,:));

102 vvx= var(x(4,:));



230 APPENDIX I. MATLAB CODE

103 vvy=var(x(5,:));

104 vvz=var(x(6,:));

105

106 mavx= mean(abs(x(4,:)));

107 mavy= mean(abs(x(5,:)));

108 mavz= mean(abs(x(6,:)));

109 vavx= var(abs(x(4,:)));

110 vavy=var(abs(x(5,:)));

111 vavz=var(abs(x(6,:)));

112

113 saveas(figure(2), 'Report − Master/figures/ls_xy','png')

114 saveas(figure(3), 'Report − Master/figures/ls_xz','png')

I.7 Process Optimal Path SIL Results Script

1 clear;

2 load('Data lots of optimal.mat');

3 ent = zeros(1,25);

4 entcount = 1;

5

6 for i = 1:length(Distance.value)

7 newent = true;

8 for j = 1:length(ent)

9 if(Distance.src_ent(i) == ent(j))

10 newent = false;

11 end

12 end

13 if(newent)

14 ent(entcount) = Distance.src_ent(i);

15 entcount = entcount +1;

16 end

17 end

18



I.7. PROCESS OPTIMAL PATH SIL RESULTS SCRIPT 231

19 if i==500

20 x = zeros(entcount,500);

21 else

22 x = zeros(entcount,round(length(Distance.value)/entcount));

23 end

24

25 count = ones(1,entcount);

26 for i = 1:(entcount*length(x(1,:)))

27 for j = 1:entcount

28 if Distance.src_ent(i) == ent(j)

29 x(j,count(j)) = Distance.value(i);

30 count(j) = count(j) +1;

31 continue;

32 end

33 end

34 end

35

36 average=[mean(x(1,:)),mean(x(2,:)),mean(x(3,:))];

37 [xe, ye, ze] = ellipsoid(average(1),average(2),average(3), ...

sqrt(var(x(1,:))+ var(x(2,:))+ var(x(3,:))),sqrt(var(x(1,:))+ ...

var(x(2,:))+ var(x(3,:))),sqrt(var(x(1,:))+ var(x(2,:))+ ...

var(x(3,:))),30);

38 [xr, yr, zr] = ellipsoid(0,0,0, .85*2, .85*2, .85*2 ,30);

39

40 figure(1);

41 clf;

42 hold on;

43 title('Optimal path release accuracy plot in body frame')

44 xlabel('x');

45 ylabel('y');

46 zlabel('z');

47 scatter3(x(1,:),x(2,:),x(3,:), 'Fill');

48 scatter3(average(1),average(2),average(3), 'Fill')

49 scatter3(0,0,0, 'Fill')

50 surf(xe,ye,ze, 'FaceAlpha', 0.2)

51 surf(xr,yr,zr, 'FaceAlpha', 0.2)



232 APPENDIX I. MATLAB CODE

52 legend('Release point','Average','CARP', 'MRSE', 'CARP release distance')

53

54 figure(2);

55 clf;

56 hold on;

57 title('Optimal path release accuracy XY−plot in body frame')

58 xlabel('x');

59 ylabel('y');

60 scatter(x(1,:),x(2,:), 20, 'Fill');

61 scatter(average(1),average(2), 'Fill')

62 scatter(0,0, 'Fill')

63 [X,Y]=ell(average(1),average(2),sqrt(var(x(1,:))+ var(x(2,:))), ...

sqrt(var(x(1,:))+ var(x(2,:))),0,100);

64 plot(X,Y);

65 alpha(0)

66 legend('Release point','Average','CARP', 'DRMS')

67

68 figure(3);

69 clf;

70 hold on;

71 title('Optimal path release accuracy XZ−plot in body frame')

72 xlabel('x');

73 ylabel('z');

74 scatter(x(1,:),x(3,:),20, 'Fill');

75 scatter(average(1),average(3), 'Fill')

76 scatter(0,0, 'Fill')

77 [X,Y]=ell(average(1),average(3),sqrt(var(x(1,:))+ ...

var(x(3,:))),sqrt(var(x(1,:))+ var(x(3,:))),0,100);

78 plot(X,Y);

79 alpha(0)

80 legend('Release point','Average','CARP', 'DRMS')

81

82

83 mx= average(1);

84 my= average(2);

85 mz= average(3);



I.8. PROCESS OWSI PATH SIL RESULTS SCRIPT 233

86 vx= var(x(1,:));

87 vy=var(x(2,:));

88 vz=var(x(3,:));

89

90 max= mean(abs(x(1,:)));

91 may= mean(abs(x(2,:)));

92 maz= mean(abs(x(3,:)));

93 vax= var(abs(x(1,:)));

94 vay=var(abs(x(2,:)));

95 vaz=var(abs(x(3,:)));

96

97 mvx= mean(x(4,:));

98 mvy= mean(x(5,:));

99 mvz= mean(x(6,:));

100 vvx= var(x(4,:));

101 vvy=var(x(5,:));

102 vvz=var(x(6,:));

103

104 mavx= mean(abs(x(4,:)));

105 mavy= mean(abs(x(5,:)));

106 mavz= mean(abs(x(6,:)));

107 vavx= var(abs(x(4,:)));

108 vavy=var(abs(x(5,:)));

109 vavz=var(abs(x(6,:)));

110

111 saveas(figure(2), 'Report − Master/figures/optimal_xy','png')

112 saveas(figure(3), 'Report − Master/figures/optimal_xz','png')

I.8 Process OWSI Path SIL Results Script

1 clear;

2 load('Data 500 owsi.mat');

3 ent = zeros(1,25);



234 APPENDIX I. MATLAB CODE

4 entcount = 1;

5

6 for i = 1:length(Distance.value)

7 newent = true;

8 for j = 1:length(ent)

9 if(Distance.src_ent(i) == ent(j))

10 newent = false;

11 end

12 end

13 if(newent)

14 ent(entcount) = Distance.src_ent(i);

15 entcount = entcount +1;

16 end

17 end

18

19 x = zeros(entcount,round(length(Distance.value)/entcount));

20

21 count = ones(1,entcount);

22 for i = 1:length(Distance.value)

23 for j = 1:entcount

24 if Distance.src_ent(i) == ent(j)

25 x(j,count(j)) = Distance.value(i);

26 count(j) = count(j) +1;

27 continue;

28 end

29 end

30 end

31

32 average=[mean(x(1,:)),mean(x(2,:)),mean(x(3,:))];

33 [xe, ye, ze] = ellipsoid(average(1),average(2),average(3), ...

sqrt(var(x(1,:))+ var(x(2,:))+ var(x(3,:))),sqrt(var(x(1,:))+ ...

var(x(2,:))+ var(x(3,:))),sqrt(var(x(1,:))+ var(x(2,:))+ ...

var(x(3,:))),30);

34 [xr, yr, zr] = ellipsoid(0,0,0, .85*2, .85*2, .85*2 ,30);

35

36 figure(1);



I.8. PROCESS OWSI PATH SIL RESULTS SCRIPT 235

37 clf;

38 hold on;

39 title('OWSI release accuracy plot in body frame')

40 xlabel('x');

41 ylabel('y');

42 zlabel('z');

43 scatter3(x(1,:),x(2,:),x(3,:), 'Fill');

44 scatter3(average(1),average(2),average(3), 'Fill')

45 scatter3(0,0,0, 'Fill')

46 surf(xe,ye,ze, 'FaceAlpha', 0.2)

47 surf(xr,yr,zr, 'FaceAlpha', 0.2)

48 legend('Release point','Average','CARP', 'MRSE')

49

50 figure(2);

51 clf;

52 hold on;

53 title('OWSI path release accuracy XY−plot in body frame')

54 xlabel('x');

55 ylabel('y');

56 scatter(x(1,:),x(2,:),20, 'Fill');

57 scatter(average(1),average(2), 'Fill')

58 scatter(0,0, 'Fill')

59 [X,Y]=ell(average(1),average(2),sqrt(var(x(1,:))+ var(x(2,:))), ...

sqrt(var(x(1,:))+ var(x(2,:))),0,100);

60 plot(X,Y);

61 alpha(0)

62 legend('Release point','Average','CARP', 'DRMS')

63

64 figure(3);

65 clf;

66 hold on;

67 title('OWSI path release accuracy XZ−plot in body frame')

68 xlabel('x');

69 ylabel('z');

70 scatter(x(1,:),x(3,:),20, 'Fill');

71 scatter(average(1),average(3), 'Fill')



236 APPENDIX I. MATLAB CODE

72 scatter(0,0, 'Fill')

73 [X,Y]=ell(average(1),average(3),sqrt(var(x(1,:))+ ...

var(x(3,:))),sqrt(var(x(1,:))+ var(x(3,:))),0,100);

74 plot(X,Y);

75 alpha(0)

76 legend('Release point','Average','CARP', 'DRMS')

77

78

79 mx= average(1);

80 my= average(2);

81 mz= average(3);

82 vx= var(x(1,:));

83 vy=var(x(2,:));

84 vz=var(x(3,:));

85

86 max= mean(abs(x(1,:)));

87 may= mean(abs(x(2,:)));

88 maz= mean(abs(x(3,:)));

89 vax= var(abs(x(1,:)));

90 vay=var(abs(x(2,:)));

91 vaz=var(abs(x(3,:)));

92

93 mvx= mean(x(4,:));

94 mvy= mean(x(5,:));

95 mvz= mean(x(6,:));

96 vvx= var(x(4,:));

97 vvy=var(x(5,:));

98 vvz=var(x(6,:));

99

100 mavx= mean(abs(x(4,:)));

101 mavy= mean(abs(x(5,:)));

102 mavz= mean(abs(x(6,:)));

103 vavx= var(abs(x(4,:)));

104 vavy=var(abs(x(5,:)));

105 vavz=var(abs(x(6,:)));

106



I.9. DRAW ELLIPSE FUNCTION 237

107 saveas(figure(2), 'Report − Master/figures/owsi_xy','png')

108 saveas(figure(3), 'Report − Master/figures/owsi_xz','png')

I.9 Draw Ellipse Function

1 function [X,Y] = ell(x, y, a, b, angle, s)

2 %# This functions returns points to draw an ellipse

3 %#

4 %# @param x X coordinate

5 %# @param y Y coordinate

6 %# @param a Semimajor axis

7 %# @param b Semiminor axis

8 %# @param angle Angle of the ellipse (in degrees)

9 %#

10

11 narginchk(5, 6);

12 if nargin<6, s = 36; end

13

14 beta = −angle * (pi / 180);

15 sinbeta = sin(beta);

16 cosbeta = cos(beta);

17

18 alpha = linspace(0, 360, s)' .* (pi / 180);

19 sa = sin(alpha);

20 ca = cos(alpha);

21

22 X = x + (a * ca * cosbeta − b * sa * sinbeta);

23 Y = y + (a * ca * sinbeta + b * sa * cosbeta);

24

25 if nargout==1, X = [X Y]; end

26 end



238 APPENDIX I. MATLAB CODE



Appendix J

Circuit Schematics

239







242 APPENDIX J. CIRCUIT SCHEMATICS



Appendix K

PCB Designs

243







246 APPENDIX K. PCB DESIGNS



Appendix L

Project Build/Compile/SIL Cheat Sheet (in

Norwegian)

247







250 APPENDIX L. PROJECT BUILD/COMPILE/SIL CHEAT SHEET (IN NORWEGIAN)



Bibliography

AM3358 (2014). AM3358 | AM335x Processors | ARM Cortex-A8 Core | Description & parametrics.

Available from:<http://www.ti.com/product/am3358>. [12.12.2014].

APM (2014). APM | Open source autopilot. Available from:

<http://ardupilot.com/>.[12.12.2014].

APM Planner 2.0 (2014). APM Planner 2.0. Available from:

<http://planner2.ardupilot.com/>.[12.12.2014].

ArduPlane Autopilot (2015). Arduplane autopilot simulator. Available from:

<https://github.com/diydrones/ardupilot/tree/master/ArduPlane>.[15.05.15].

BeagleBone Black Datasheet (2014). BeagleBone Black Datasheet. Available from:

<http://www.adafruit.com/datasheets/BBB_SRM.pdf>.[18.12.2014].

Beard, R. W. and McLain, T. (2012). Small Unmanned Aircraft. Princeton University Press.

Bencatel, R. and Girard, A. (2011). Shear Wind Estimation. (August):1–8.

Berndt, j. and Peden, T. (2015). Jsbsim. Available from:

<https://github.com/tridge/jsbsim>.[15.05.15].

Brezoescu, C.-a. (2014). Small lightweight aircraft navigation in the presence of wind.

Bushuyev, A. (1970). Sea ice nomenclature. WMO. Available from:

<http://www.aari.nw.ru/gdsidb/docs/wmo/nomenclature/WMO_Nomenclature_draft_version1-

0.pdf>.[15.05.15].

251



252 BIBLIOGRAPHY

Dias, H. (2014). LSTS » DUNE, DUNE: Unified Navigation Environment. Available from:

<http://lsts.fe.up.pt/software/dune>.[12.12.2014].

Drag (2015). Drag of cylinders & cones. Available at

<http://www.aerospaceweb.org/question/aerodynamics/q0231.shtml> [03.06.15].

Egeland, O. and Gravdahl, T. (June, 2003). Modeling and Simulation for Automatic Control. Ma-

rine Cybernetics.

Eik, K. (2010). Ice management in Arctic offshore operations and field developments.

Enge, P. K. (1994). The Global Positioning System: Signals, measurements, and performance.

International Journal of Wireless Information Networks, 1(2):83–105.

Fortier, L. (2004). An application of a proposed airdrop planning system.

Fortuna, J. and Fossen, T. I. (Submitted). Cascaded line-of-sight path-following and sliding

mode controllers for fixed-wing uavs. 2015 IEEE Multi-Conference on Systems and Control.

Fossen, T. I. (2011). Handbook of Marine Craft Hydrodynamics and Motion Control. John Wiley

& Sons, Ltd, Chichester, UK.

Fuglaas, S. (2014). Precision Airdrop from a Fixed-Wing Unmanned Aerial Vehicle. Department

of Engineering Cybernetics, (June).

GLUED (2014). LSTS/glued. Available from: <https://github.com/LSTS/glued>.[12.12.2014].

Goldfein, D. L. (2013). Joint Publication 3-17 Air Mobility Operations. (September).

GPS Modules (2015). Gps modules. Available from: <https://pixhawk.org/peripherals/sensors/gps>.[15.05.15].

GPS Position Accuracy (2003). Available at <www.novatel.com/assets/Documents/Bulletins/apn029.pdf>

[05.06.15].

Henry, M., Lafond, K., Noetscher, G., Patel, S., and Pinnell, G. (2010). Development of a 2,000-

10,000-lb improved container delivery system. (April):0–10.

IMC Specification (2014). IMC v5.4.3-550440c - IMC v5.4.3 Specification. Available from:



BIBLIOGRAPHY 253

<https://www.lsts.pt/imc/doc/master/>.[12.12.2014].

Johansen, T. A., Cristofaro, A., Soerensen, K., Hansen, J. M., and Fossen, T. I. (2015). On estima-

tion of wind velocity, angle-of-attack and sideslip angle of small uavs using standard sensors.

Proc. of the 2015 International Conference on Unmanned Aircraft Systems (ICUAS’15).

Langelaan, J., Alley, N., and Neidhoefer, J. (2011). Wind field estimation for small unmanned

aerial vehicles. Journal of Guidance, Control, . . . .

LEA-6 series u-blox (2015). LEA-6 series u-blox 6 GPS, QZSS, GLONASS and Galileo mod-

ules. Available from: <http://www.u-blox.com/images/downloads/Product_Docs/LEA-

6_ProductSummary_%28GPS.G6-HW-09002%29.pdf>.[18.12.2014].

LSTS Toolchain (2014). Lsts toolchain for autonomous vehicles. Available from:

<http://lsts.pt/neptus/info.html>.[12.12.2014].

Mathisen, S. (2014). High Precision Deployment of Wireless Sensors from Unmanned Aerial

Vehicles. (May).

MAVLink Micro Air (2015). Mavlink micro air vehicle communication protocol. Available at

<http://qgroundcontrol.org/mavlink/start> [03.06.15].

McGill, P., Reisenbichler, K., Etchemendy, S., Dawe, T., and Hobson, B. (2011). Aerial surveys and

tagging of free-drifting icebergs using an unmanned aerial vehicle (UAV). Deep Sea Research

Part II: Topical Studies in Oceanography, 58(11-12):1318–1326.

Nanostation M (2014). Nanostation M Wi-Fi Radio. Available from:

<http://dl.ubnt.com/datasheets/nanostationm/nsm_ds_web.pdf>.[18.12.2014].

OpenWRT linux distribution (2014). OpenWRT linux distribution. Available from:

<https://openwrt.org/>.[12.12.2014].

Park, S., Deyst, J., and How, J. P. (2004). A new nonlinear guidance logic for trajectory tracking.

Proceedings of the AIAA Guidance, Navigation and Control Conference, (AIAA-2004-4900).

Parker, G. (1977). Projectile motion with air resistance quadratic in the speed. Am. J. Phys.



254 BIBLIOGRAPHY

Piksi FAQ (2013). Frequently asked questions, what is the horizon-

tal and vertical accuracy of piksi. Available at <http://docs.swift-

nav.com/wiki/Frequently_Asked_Questions#What_is_the_horizontal.2Fvertical_accuracy_of_Piksi.3F>

[05.06.15].

Piksi RTK-GPS (2014). Piksi RTK-GPS. Available from:

<http://docs.swiftnav.com/pdfs/piksi_datasheet_v2.3.1.pdf>.[17.12.2014].

Pixhawk Autopilot (2014). Pixhawk Autopilot - PX4 Autopilot Platform. Available from:

<https://pixhawk.org/modules/pixhawk>.[12.12.2014].

Plane: L1 Control (2013). Plane: L1 control for straight and curved path following. Available at

<https://github.com/diydrones/ardupilot/pull/101> [03.06.15].

Puestow, T., Parsons, L., Zakharov, I., Cater, N., Bobby, P., Fuglem, M., Parr, G., Jayasiri, A., War-

ren, S., and Warbanski, G. (2013). OIL SPILL DETECTION AND MAPPING IN LOW VISIBILITY

AND ICE: SURFACE REMOTE SENSING. (October).

R78Bxx15L Datasheet (2014). R78Bxx15L_eng_datasheet. Available from:

<https://www1.elfa.se/data1/wwwroot/assets/datasheets/R78Bxx15L_eng_datasheet.pdf>.[18.12.2014].

Rocket M5 (2014). Rocket M5 Wi-Fi Radio. Available from:

<http://dl.ubnt.com/rocketM5_DS.pdf>.[18.12.2014].

Servoless Payload Release (2014). Servoless Payload Release (EFLA405):

E-flite - Advancing Electric Flight. Available from: <http://www.e-

fliterc.com/Products/Default.aspx?ProdID=EFLA405>.[12.12.2014].

Sherwood, A. E. (1967). Effect of air drag on particles ejected during explosive cratering. Journal

of Geophysical Research, 72(6):1783–1791.

Shestov, A. and Marchenko, A. (2014). 22 nd IAHR International Symposium on Ice. pages 660–

673.

SITL Simulator (2015). Sitl simulator (software in the loop). Available at



BIBLIOGRAPHY 255

<http://dev.ardupilot.com/wiki/simulation-2/sitl-simulator-software-in-the-loop/>

[04.06.15].

Tiffin, S., Pilkington, R., and Hill, C. (2014). A Decision-Support System for Ice/Iceberg Surveil-

lance Advisory and Management Activities in Offshore Petroleum Operations. OTC Arctic

Technology . . . .

Westall, P., Carnie, R., O’Shea, P., Hrabar, S., and Walker, R. (2007). Vision-based UAV maritime

search and rescue using point target detection. 2007.

Wuest, M. and Benney, R. (2005). Precision Airdrop (Largage de precision). 323(December).


	Preface
	Acknowledgment
	Summary and Conclusions
	Sammendrag
	Introduction
	Background
	Problem Formulation
	Literature Survey
	Air-Drop Systems
	Wind Estimation
	Ballistic Paths

	Objectives
	Limitations
	Contributions of This Thesis
	Structure of the Report

	Theory
	Aerial Release Point
	Drag
	Payload Equations of Motion
	Feasible Aerial Release Points
	Iterative Calculation of the Aerial Release Point

	UAV Reference Frames and Kinematics
	Reference frames
	Coordinate transformation
	Kinematics and Kinetics

	Wind Estimation
	Flight Controllers
	Guidance Controllers
	Heading Controllers

	Path Planners
	Straight-Line
	Incremented-Straight-Line
	Optimal
	Optimize-When-Success-is-Improbable

	CARP Detection

	Hardware Implementation
	Hardware Components
	Skywalker X8
	EFLA405 Servoless Payload Release
	BeagleBone Black
	Rocket M5
	Nanostation M
	On-Board Router
	Pixhawk
	Cables and Connectors
	Test Beacon

	Placing the Payload Components
	PWM Generator
	Programming the ATtiny85 MCU
	First Design
	Final Design
	Testing

	Hardware Overview and Setup
	Connections and Communication
	Modules
	Power Supply


	Software Implementation
	Software for the X8
	Software on the BeagleBone Black
	GLUED
	DUNE: Unified Navigational Environment
	MAVlink

	Ground Station Software
	Neptus
	APM Autopilot Suite
	Ardupilot SITL
	JSBsim

	Programming of the PWM Generator
	DUNE tasks
	The Actuator-Output Dune Task
	The Wind-Estimator Dune Task
	The Drop-on-Target Dune Task

	Software Installation and Setup
	Installation on the X8
	Installing Software on the Ground Station


	Simulations
	Software in the Loop Simulations
	Controller Tuning
	Wind Estimation
	CARP Approach Method Accuracy
	SIL Conclusion

	Simulation of Free Falling Sphere for Varying Winds
	Simulation Conclusion


	UAV and Payload Testing
	Hardware Tests
	BeagleBone Black Optimization-Calculation Time
	Release Mechanism Test
	Sending Pixhawk Data Using IMC Over Radio Link
	Full Payload Test
	Hardware Test Conclusion

	Flight Tests
	State Estimation Accuracy and Precision Test
	Approach using Straight-Line Path and Waypoint Controller
	Approach using the Incremented-Straight-Line Path Planner and Waypoint Controller
	Flight Test Conclusion


	Discussion
	Discussion on Simulations
	Discussion on Hardware Tests
	Discussion on Flight Tests
	Theoretical System Accuracy
	Errors in Approach Methods
	Drop Timing and CARP Calculation
	Sensory Input Timing and Accuracy
	Optimization Time
	OS Real Time Capabilities
	Combined Theoretical Drop Accuracy

	Design Choices and System Comparison

	Conclusion and Further Work
	Conclusion
	Conclusion of Objectives
	Recommendations for Further Work

	Acronyms
	X8 Payload Checklist
	Flight Plans
	Flight Plan: Following Waypoints
	Flight Plan: Drop Test

	Installing GLUED and Bootloader on the BeagleBone Black
	Cross Compiling DUNE for the BeagleBone Black
	A8 Description by Texas Instruments
	Hardware Testing Code
	DUNE Code
	MATLAB code
	Free Fall Initiation Script
	Free Fall Function
	Plot RTK and Pixhawk Position Script
	Plot Wind Estimator 2 m/s Results Script
	Plot Wind Estimator 5 m/s Results Script
	Process LS Path SIL Results Script
	Process Optimal Path SIL Results Script
	Process OWSI Path SIL Results Script
	Draw Ellipse Function

	Circuit Schematics
	PCB Designs
	Project Build/Compile/SIL Cheat Sheet (in Norwegian)

