


Chapter 3. System Identification

3.6 Level Dynamics
The level dynamics in the riser is described simply as the difference in flows in and out of
the riser, proportional to the cross sectional area of the riser Ar

ḣr =
1

Ar
(qssp − qboost − qtf︸ ︷︷ ︸

qin

).

The inner diameter of the riser is known and constant. Hence, so is the cross sectional area.
Using the measured flow rates, the estimate of hr should equal the level calculated form
the riser pressure measurement, for normal a circulation case. That is, when the booster
pump and top-fill flows are constant, and only the return line flow varies. With the initial
conditions set to the measured level, hr(0) = hr,measured(0) the riser level was simulated
using the measured flows and compared to the measured level. The result is shown on
figure (3.11).
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Figure 3.11: Isolated level dynamics for a normal circulation case. The upper plot shows the mea-
sured and estimated riser level. The lower plot shows the input-flow and return flow used.

The level estimate diverges as there is no sort of feedback stabilizing the isolated model,
indicating that measured in-flow does not equal measured out-flow. The divergence is not
surprising, as the integration done to compute the level in the model is very sensitive to
small errors. If ḣr is not truly zero the estimate will diverge due to integration drift.
In a normal drilling situation, where cuttings and well influx are present, the in, and out
flow is typically not equal, as the fluid density will differ. However when running the mud
circulation system only there is no unknown influx, and the mud density is the same for
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3.6 Level Dynamics

the whole system. Another cause of divergence is compressibility in a pressurized system
where inlet and outlet pressures are different. As the flow is given in terms of volume flow,
the volume flow in will differ from the volume flow out in this case. However, from the
fact that the mud is water based and the annulus is open to the atmosphere, this is likely
not the cause. Therefore, it is reason to believe that the flow measurements are biased or
that there could be a leak causing a discrepancy between in and out flow measurements.

To account for the difference in flows, a correction factor θ is introduced

ḣr =
1

Ar
(θ1qssp − qin) (3.9)

The correction factor could change for different conditions, and is not necessary constant.
A recursive parameter estimator with forgetting factor was designed to identify the pa-
rameter and identify if the parameter fluctuates, and to what degree. The estimator was
designed using the predictor model with the measurements and unknown parameter vector

ŷ(t) = ϕ>(t)θ

y(t) = Arḣr + qin, ϕ(t) = qssp, θ∗ = θ∗1

and by using a simple first order filter, the model becomes

z(t) = φ>(t)θ∗, z =
y(t)

Λ(s)
, φ =

ϕ(t)

Λ(s)
, Λ(s) =

1

5s+ 1
.

The recursive estimator was implemented according to the equations in section section
(3.1.3), corresponding to normal circulation, using the following design parameters

m = 1, θ1,init = 1, P0 = 10, β = 0.1.

The results for the given section of the data is shown in figure (3.12). The parameter
estimate, shown in the bottom left plot, converges more or less to a constant value. Some
fluctuations are observed, however to only a small degree. The result is consistent when
using different data from similar normal circulation cases. The degree of fluctuation differs
somewhat, but is centered around the same value. This is a clear indication that there is a
constant bias in the flow measurements. The parameter is considered constant form here
on, and set to

θ1 = 0.951

As seen the from the upper plot in the figure, the correction factor successfully accounts
for the measurement error.
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Figure 3.12: Isolated level dynamics for a normal circulation case with identified correction factor.
The upper plot shows the measured and estimated riser level. The lower-left plot shows the estimated
correction factor over time while the lower-right plot shows the input-flow and return flow used.
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3.7 U-tubing

hb

hr

qbo

Figure 3.13: Schematic of the U-tubing effect in
the booster line. The fluid level in the booster line
drops and approaches equilibrium with the riser
height, inducing a flow into the riser.

In the previous section the riser level was
estimated for normal circulation, where
the booster pump flow was maintained at
a constant rate. For the case where the
booster pump ramps down, the U-tubing
effect is found to induce an additional un-
measured flow into the riser. In order
to correctly estimate the riser level for
this case the mentioned flow must be es-
timated. As the booster pump flow is not
measured using a flow meter, but rather
calculated from the pump speed, this ex-
tra flow is undetected. The flow has great
effect on the fluid level in the riser, and
the original model (3.9) is not valid with-
out augmentation. The top plot in figure
(3.14) shows the estimated and measured
riser level for a case where the booster
pump is ramped down. Recall that the
fluid level is defined downwards from the
top of the riser, and a higher level in the
plots, is equivalent to a lower fluid column
level. When the booster pump flow drops
to zero, the estimated level instantly starts
to increase, as the measured flow leaving the riser is significantly higher than the calcu-
lated flow entering. The real level on the other hand stays relatively constant, until the
subsea pump starts ramping down. It is obvious that for this to be the case there must be a
significant non-measured flow entering the riser. As for the previous section the measured
return flow and top-fill flow is used in the simulations, in order to isolate the U-tubing
effects.

The flow due to the U-tubing effect can be estimated by calculating the flow needed to
keep the measured riser level. The required flow, denoted qU , can be found by including it
in equation (3.9).

qU = θqssp − qboost − qtf −Arḣr,measured (3.10)

The estimated ”missing flow”, qU , is shown in the bottom plot in figure (3.14). From
the true flow rates in the data and the given cross-sectional area of the booster line, it is
estimated that the required flow to keep the actual riser level causes the fluid level in the
booster line drop drop roughly 160 m.
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Figure 3.14: Example of the U-tubing effect, showing the ”missing flow”. The upper plot shows the
measured and estimated riser level without accounting for the U-tubing effect. The lower plot shows
the measured flows, and the extra flow, qU , required to keep the measured riser level.

3.7.1 Booster Line Dynamics
When the booster pump is ramped down, it is assumed that the booster line is not com-
pletely sealed form the atmosphere. That is, the pressure at the top of the booster line
turns atmospheric, and the fluid level in the booster line starts to drop, inducing a flow into
the riser, as illustrated in figure (3.14). This is a simplification compared to the model in
Anfinsen (2012). The pressure dynamics in the booster line is neglected as the pressure is
assumed to instantly turn atmospheric when the booster pump is ramped down. Because
of limited system information regarding the booster pump and, with no dedicated flow or
pressure measurements, a more complicated model would be hard to validate. In order
to estimate the flow due to the U-tubing effect two new states are introduced to the level
dynamics. qbo, defined as the flow entering the riser from the booster line, and the fluid
level in the booster line, denoted hb.

The flow dynamics is modeled according to the momentum balance (2.19). From the
assumption of atmospheric pressure at the top of the booster line during U-tubing, the dy-
namics reduces to the difference in hydrostatic pressure in the booster line and riser, with
an additional friction term.

q̇bo =
1

Mb(hb)
(ρg(hr − hb)− F (qbo)) . (3.11)

As stated, this is a simplified version of the model presented in Anfinsen (2012), where it
is assumed that the pump inlet is sealed from the atmosphere when U-tubing starts. The
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3.7 U-tubing

pressure at the top of the booster line reaches vapor pressure, and mud starts to evaporate
to maintain this pressure. These effects are neglected from the atmospheric pressure as-
sumption.

The friction term F (qbo) is assumed to be linear in terms of flow rate on the form F (qbo) =
Fbqbo. Due to the lack of measurements, the parameter Fb reduces to a tuning parameter,
as there is no way to estimate the pressure drop due to friction in the booster line. For
the parameter Mb which relates to the flow dynamics, a estimate is found from the flow
dynamics derivation

Mb(hb) =

∫ lbo

hb

ρ(l)

Ab(l)
dl

where lbo is the depth of where the booster line enters the riser, which is at 340 m. Neither
the cross sectional area or density of the mud is a function of depth and is given as the
constants Ab = 0.0103 m2 and ρ = 1120 kg

m3 . A theoretical estimate of Mb is therefore
given as

Mb(hb) =
ρ

Ab
(lbo − hb).

The term depending on hb is small compared to the constant term. Additionally, the dy-
namics are assumed to be very fast. Hence, Mb(hb) is considered constant in the model
Mb(hb) = Mb. The resulting height dynamics in the booster line and riser is given as

ḣr =
1

Ar
(θ1qssp − qtf − qbo)

ḣb =
1

Ab
(qbo − qboost).

The model was implemented both as a hybrid system, where the augmented level dynamics
was used only when the booster pump flow was zero or the booster line was not completely
filled. That is, when qboost = 0 or hb > 0. And also with the augmented level dynamics
as a part of the original system without any switching. Both strategies yielded more or less
the same results, and the model without switching was used further in this section.

Figure (3.15) shows the results using the augmented model for estimating the flow due to
the U-tubing effect. The flow dynamic parameter Mb was set to Mb = ρ

Ab
= 4× 107.The

friction parameter Fbo was set by trial and error to be Fbo = 6×107. As seen from the top
plot in figure (3.15) the level estimate deviates from the measured value. When the booster
pump ramps down, which is the same case as shown in figure (3.14), the estimate is not far
off. In other words, the estimated U-tubing flow is not far off. However, when the pump
ramps back up the estimated fluid level deviates greatly. This is a result of a low booster
flow estimate. The fluid level in the booster line, shown in the bottom plot, shows that the
level drop is significant, and that is approaches equilibrium with the riser level (levels on
the plots use the same scale). It can also be observed that the booster line is filled very
slowly when the booster pump is turned on, because of the underestimated booster flow.
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Figure 3.15: Simulation of the augmented riser level model. The upper plot shows the measured
and estimated riser level. The middle plot shows the ”measured” and estimated booster flow. The
lower plot shows the estimated fluid level in the booster line.

Based on the previous model a new version is proposed. The main flaw with the orig-
inal model was the low booster flow when the booster pump ramps up. This is solved by
introducing a weighting parameter θb. Additionally, a weighting parameter is introduced
to reduce the the booster line flow rate when the booster pump ramps down. The new
model with the additional parameters is given as

q̇bo =
1

Mb
(ρg(hr − θhb

hb)− Fb(qbo)) (3.12)

ḣr =
1

Ar
(θ1qssp − qtf − qbo)

ḣb =
1

Ab
(qbo − θbqboost)

The same case as above is used in the simulations. The results using the re-tuned model
is shown on figure (3.16). Suitable values for the weighting parameters were found to be
θhb

= 1.5 and θb = 3.6. As seen form the top plot, the riser height estimate is much
improved both when ramping down and back up. An important observation is the fact that
the estimated flow rate from the booster line is higher than the calculated booster pump
flow value when the pump ramps up. This indicates that there are effects related to the
booster-pump that is not accounted for in the model or that the booster pump flow values
are not reliable when the pump ramps up. Looking at the un-tuned model simulations in
figure (3.15) for comparison, the booster line flow is estimated significantly lower than the
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Figure 3.16: Simulation of the tuned augmented riser level model. The upper plot shows the mea-
sured and estimated riser level. The middle plot shows the ”measured” and estimated booster flow.
The lower plot shows the estimated fluid level in the booster line.

calculated flow for the ramp-up part. Intuitively, this makes sense as there is a ”void” in
the booster-line that must be filled up after U-tubing, before the the flow from the pump
actually enters the riser and affects the level. However, as seen, a significantly larger flow
is required. In other words, considerable uncertainty is related to U-tubing and the booster
pump during ramp-up.

Another interesting point is that the estimated booster line level hb is considerably lower
compared to the un-tuned model. Thus, judging from the model, the riser and booster
line level does not approach equilibrium. This could be an indication that the assumption
of atmospheric pressure in the booster line is faulty, and that a more sophisticated model
such as the one Anfinsen (2012) proposes possibly could capture more of unknown ef-
fects. However, with the lack of, and possibly faulty measurements related to the booster
pump, the mentioned model is deemed too complicated. Instead and a simpler approach is
pursued.

The tuned model (3.12) manages to estimate the flow from the U-tubing effect in addi-
tion to correct for uncertainty related to pump ramp-up. The drawback is the fact that it
relies heavily on tuning of multiple parameters. Even though the weighting parameters
were found to be consistent for all the cases of U-tubing found in the data, the model is
overly complex. Also, by adding the tuning parameters the affiliation to the physical re-
lations it was derived form fades. Because of this a more simpler approach was pursued
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based on observations in the previous part. All U-tubing effect are lumped into simpler
booster pump dynamics based on the the measured booster flow. The dynamics are divided
into ramp-down and ramp-up cases.

3.7.2 Simplified Dynamics

Based on the simulations done with the above models a few observations are made, summed
up in the following points:

1. When the booster pump ramps down the fluid level in the booster line drops and
induces a flow from the booster line not present in the booster flow data. The simu-
lations done with the above model shows that a significant flow is required in order
to keep the riser level at the measured level.

2. When the pump ramps up, the booster line is filled. However, the booster flow
needed to maintain the correct riser level exceeds the calculated booster pump flow.
Consequently, it is assumed that the calculated flow leaving the booster pump is
inaccurate in the transition until the flow reaches the pump flow set point, either
because of calculation error, or unknown effects.

Ramping Down

Looking at figure (3.16), the estimated booster flow, qbo, when the booster pump ramps
down, resembles a first-order dynamic. The proposed model is on the form

τbq̇bo = −qbo + qboost

qbo(s) =
1

τbs+ 1
qboost(s).

where the time constant τb represents the time it takes for the booster line level, and booster
flow to stabilize. The model was tested using a time constant of 40 seconds, an estimated
value based on previous simulation i.e. as seen in figure (3.16). The result is shown in the
upper left plot in figure (3.17). Not surprisingly, the estimated riser height resembles the
ramp- down part from figure (3.17), and the estimate is considered decent. However, the
estimated riser level still increases prior to the measured level. To correct this a time delay
was added to the dynamics

qbo(s) =
e−τds

τbs+ 1
qboost(s). (3.13)

The 40 seconds time constant was split into the time delay τd = 30 s and time constant
τb = 10 s. As seen in the upper right plot in figure (3.17), the added time delay improves
the estimated level, removing the lag between the estimate and measured riser level. The
values used for τd and τb is found to be consistent for all cases of U-tubing in the data.
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Figure 3.17: Simulation of the simplified booster pump dynamics. The upper and lower left plot
shows the estimated riser level and booster flow using the first order model. The upper and lower
right plot shows the estimated riser level and booster flow using the first order plus time delay model.

Ramping Up

By adding the first order plus time delay dynamics to the booster pump flow, the flow
induced by the U-tubing effect for the case where the booster pump ramps down was cor-
rectly estimated. From the example calculations prior, and simulations using the tuned
original model, it was estimated that the fluid level drops approximately 160 m. Refill-
ing the booster line with a typical pump rate will take roughly 45 seconds. From this
information alone, a fist order plus time delay model should fit the the ramp-up case as
well. However, as mentioned there are additional uncertainty related to the booster pump
flow during ramp-up. The required booster flow exceeds the calculated pump flow. To
account for possible error and other effects that could cause this, a simple integrator model
is suggested

qbo(s) = θi
1

s
qboost(s), qbo < qspboost (3.14)

with a tuning parameter, θi, controlling the rate of integration. The integration should stop
when the estimated booster outlet flow reaches the pump set-point, denoted qspboost. Figure
(3.18) shows the results and the effect of θi. The top plot shows the estimated riser level
for the different θi values. The bottom plot shows the corresponding estimated booster
outlet flow. As seen the value for θi = 0.05 yields the most accurate estimate. This value
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was found to differ somewhat for different ramp-up cases, however to such small degree
that it is considered constant.
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Figure 3.18: Simulation of the simplified booster pump dynamics for ramp-up using different values
for the tuning parameter θi. The upper plot shows the estimated riser level, while the lower shows
the estimated booster line flow.

Combined Model

The results using model (3.13) for ramp-down and model (3.14), with θi = 0.05, for ramp-
up is shown in figure (3.19). It is clear from inspection that the simplified booster pump
dynamics manages to estimate the flow caused by U-tubing, and correct for uncertainty
when ramping up. Consequently, the riser level is correctly estimated. The estimate is ac-
tually better when compared to the simulations results using the more complicated, tuned
model (3.12). For the case used in this section, the estimates are very accurate. However,
the model is as mentioned sensitive to tuning, and the parameter θi was found to vary
somewhat. However, the value used above, θi = 0.05, was found to fit most cases found
in the data. The time delay and time constant,τd and τb, was found to be consistent for all
U-tubing cases.

The simplified booster pump dynamics and augmented riser level dynamics are given as
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Figure 3.19: Simulation of the simplified booster pump dynamics for ramp-down and ramp-up. The
upper plot shows the measured and estimated riser level. The middle plot shows the calculated pump
flow and estimated booster outlet flow.

the following model

ḣr =
1

Ar
(θ1qssp − qtf − qbo)

q̇bo =


1
τb

(qbo − qboost(t− τd)), for ramp− down

θiqboost(t), for ramp− up
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3.8 Flow Dynamics
The dynamics for flow through the return line was derived in chapter 2 as

Mssp(hr)q̇ssp = pr(hr) + ∆P (ωssp, qssp)− Fr(qssp)− ρghssp,out.

Components related to friction, subsea pump, hydrostatic pressure and riser pressure are
identified previously in the chapter. However, the parameter Mssp(hr), which related to
the transient response of the flow dynamics is yet to be identified. The theoretical value is
found to be the integral of the density over the cross-sectional area of the flow section and
is given as

Mssp(hr) =

∫ lssp

hr

ρr(l)

Ar(l)
dl +

∫ lssp

0

ρrl(l)

Arl(l)
dl

which reduces to

Mssp(hr) =
ρ

Ar
(lssp − hr) +

ρ

Arl
lssp

=
(Ar +Arl)

ArArl
ρlssp −

ρ

Ar
hr

from the fact that both the density and the cross-sectional area in the riser are constant,
and not a function of depth. Inserting the true parameter values, the theoretical value for
Mssp(hr) is calculated as

Mssp(hr) = 2× 107 − 5.6× 103hr. (3.15)

The riser level can not drop below the subsea pump, and thus ranges between 0 and
hssp,in = 307 m. Consequently, the term proportional to the riser level is small com-
pared to the constant term. It is therefore reason to assume that Mssp(hr) is a constant
parameter, independent of hr. A theoretical estimate is taken as

Mssp = 2× 107.

In order to further investigate Mssp, and to obtain an estimate based on the available data,
a recursive estimator, was designed. The estimator model is on the form

ŷ(t) = ϕ>(t)θ

with the measurements and unknown parameter

y(t) = q̇ssp

θ∗ =
1

Mssp

ϕ(t) = pr(hr) + ∆P (ωssp, qssp)− Fr(qssp)− ρghssp,out.

By filtering with the simple first order filter the model becomes

z(t) = φ>(t)θ∗, z =
y(t)

Λ(s)
, φ =

ϕ(t)

Λ(s)
, Λ(s) =

1

5s+ 1
.
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The recursive estimator was implemented according to the equations in section (3.1.3),
using the following design parameters

m = 1, θinit =
1

2× 107
, P0 = 0.01, β = 0 and 0.1

In order to estimate Mssp, transients in flow are required as the parameter has no effect
on the system for steady state conditions. An ad-hoc approach was done by extracting
transients from the return line flow data and using them as input to the estimator. That is,
data for qssp, and corresponding data for pr(hr) and ωssp. The transient data is shown in
figure (3.20). As seen in the second plot the variation in riser level is relatively small for

0 1000 2000 3000 4000 5000 6000 7000
0

10

20

30

40

50

60

70

80

flo
w

 r
at

e 
[%

]

 

 q
ssp

q
ssp, transient

0 1000 2000 3000 4000 5000 6000 7000
20

22

24

time [s]

he
ig

ht
 [%

]

 

 

h
r,measured

Figure 3.20: Extracted flow transients. The upper plot shows the set of measured flow rates, and the
extracted transients used for the estimation. The lower plot shows the corresponding riser level.

the extracted data. This is the case for all of the available data. Consequently, a possible
dependence on riser level is not expected to be possible to observe. Figure (3.21) shows the
result of the estimation. The top plot shows the estimated value using pure Least- squares,
that is without forgetting factor. As stated in section (3.1.3) this algorithm is guaranteed to
converge as the amount of data grows. Hence, the last estimate can be interpreted as an av-
erage estimate. The second plot shows the estimated value when using a forgetting factor.
In this case older data is disregarded, giving an indication of the degree of fluctuation. As
seen, the estimate fluctuates, indicating that the parameter will in fact vary depending on
operating conditions to some degree. This is however expected. The model itself does not
capture all the aspects of the flow, only the dominating effects. Also, in addition to model
error, there is uncertainty related to the previously estimated parameters. All this uncer-
tainty will propagate to the estimate of Mssp, and parameter convergence with forgetting
factor is not to be expected.
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Figure 3.21: Estimated value for Mssp using pure LS and LS with forgetting factor. The two upper
plot show the estimated value without and with forgetting factor respectively. The two lower plots
show the filtered and un-filtered measurement and regressor respectively.

Based on the estimate obtained using the pure LS algorithm, Mssp is set to

Mssp =
1

0.9× 10−8
= 1.1× 108.

Using this value as a starting point the flow was simulated for different values of Mssp,
with the pump speed as input, and with the measured inlet pressure. The fourth order
friction model and the pump model based on all data was used. Looking at the results in
figure (3.22), it is clear that Mssp is analogous to a time constant for the flow. The value
estimated for Mssp above results in a accurate estimate. Slight improvements is observed
for a value of Mssp = 0.5× 108, corresponding to even faster flow dynamics. During the
simulations it was observed that multiple values below 1 × 108 gave a satisfactory result.
This shows the fact that the dynamics are incredibly fast, possibly negligible, and as long
as Mssp is chosen in the correct range, the flow estimate will vary to only a small degree.
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Figure 3.22: Comparison of different values for Mssp.

3.8.1 Neglecting Flow Dynamics
Because of the fast flow dynamics, a possibility is to neglect the dynamics entirely, and not
consider the return line flow as a state. For a given pump speed, the corresponding flow is
given as a static relationship. The system then reduces to a differential algebraic equation
(DAE) where the return line flow is given as the solution to the implicit equation

hpump(ωssp, q
∗
ssp) = hsys(q

∗
ssp). (3.16)

corresponding to the intersection between the system and pump curve as described in
section (2.4). Inserting for the system and pump head the DAE system becomes

ḣr =
1

Ar
(qssp − qbo − qtf ) (3.17)

c0ω
k
ssp − c2q2

ssp =
1

ρg
(Goutlet −Ginlet(hr) + F (qssp)) (3.18)

It can be discussed whether this system has any advantages compared to the original flow
equation with fast dynamics. With a high order friction model, the computation of the
solution to (3.16), is not necessarily straight forward. The DEA system was implemented
for comparison, and the result is shown in figure (3.23). As expected, the results with and
without dynamics are almost identical. For some reason the estimate without dynamics
drops somewhat low at lower flow rates. However, this is a steady state problem and not
related to the dynamics. In other words, the model (3.17) is a valid option.
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Figure 3.23: Comparison of the original flow dynamics and the static flow model.

3.8.2 Subsea pump model
From the sensitivity analysis it was found that the quality of the pump model parameters
was the most crucial. From identification of the subsea pump model in section (3.5), two
slightly different models were found. One based on all available data, and one based on
filtered data. In order to find which of these that are most accurate in practice, simulations
were done using both models. The pump speed was used as input as well as the measured
inlet pressure. The result is shown in figure (3.24). ∆P1 denotes the model based on all
data, and is the model used for the flow simulations done above, and ∆P2 denotes the
one based on filtered data. ∆P1 is clearly the superior model on a general basis. ∆P2

is not sufficiently accurate for lower flow rates. At higher flow rates it produces slightly
better estimates, however it is barely visible in the figure. The difference in accuracy
for high and low flow rates are visible in the performance curves found in section (3.5),
when comparing to the plotted data. But the slight gain in accuracy at high rates, obtained
when using filtered data, is clearly not justified when the loss in accuracy at low rates is
significant. Consequently, ∆P1 is deemed the most accurate model.
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Figure 3.24: Comparison of the two identified pump models. The upper plot shows the resulted
flow for the different models compared to the measured flow. The bottom plot shows the pump
speed input.
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Chapter 4
Model Verification

In the previous chapter the all unknown parameters have been estimated. Also, the model
was revised to include the U-tubing effect. During the system identification, measurements
were used as input to the different part of the system to isolate and verify the different part
of the system. The ultimate goal is to be able to reproduce the measurements of the two
states, using the identified model with only the pump speed, and in-flows as input. Two
test cases are used to verify the model. One during normal operation conditions, where the
in-flows stays at a constant rate so that no U-tubing effects are present. The other case is
more comprehensive, and the comparison is done to a part of the data where the booster
pump is ramped up and down multiple times. The original flow dynamics equation and
the simplified U-tubing model is used.

Ultimately, the model verification should be done on completely independent data, not
used previously for identification purposes. Unfortunately, this is not entirely the case. All
available data was used for e.g. the friction and pump model estimation. However, this
part of the data was not used for the identification for the parts related to dynamics. Hence,
the verification test should give a good indication of how accurate the model is in general.

The result of the two cases is shown in figure (4.1) and (4.2) respectively. For case 1,
the estimate is more or less spot on, with only a slight deviation in the riser level. This
result is not surprising as both the friction and pump model has proved to be accurate.
For case 2, the deviation is more evident, and clearly correlated with the occurrence of
U-tubing. However, the error is not significant. The deviation in fluid level corresponds to
less than 0.5 bar in riser pressure. This is e.g. in the same range as the errors found related
to measurement offsets. The model manages to capture the main dynamics of the system,
and with more system information and measurements related to the booster pump, an im-
proved model for U-tubing could be obtained, which possibly could increase the accuracy.
For reference, a simulation of case 2 was done without accounting for U-tubing and can
be found in appendix (B) in figure (B.1).
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4.1 Case 1
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Figure 4.1: Simulation of the full system for a normal circulation case. The upper plot shows the
comparison of the measured riser level and the estimated, with the error in the plot below. The third
plot shows the comparison of the measured and estimated flow rate, followed by the error in the last
plot.

64



4.2 Case 2

4.2 Case 2
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Figure 4.2: Simulation of the full system for a a comprehensive circulation case. The upper plot
shows the comparison of the measured and estimated riser level, with the error in the plot below.
The third plot shows the comparison of the measured and estimated flow rate, followed by the error
in the blot below plot. The last plot shows the estimated booster outlet flow and calculated booster
pump flow.
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Chapter 5
Conclusion

A dynamic fit-for-purpose model for a dual gradient drilling system has been derived. The
model was reduced to describe the mud circulation part of the system, which was the focus
for the system identification part. Using field data, the unknown parameters in the model
was estimated. A steady-state friction model was found sufficient to describe the frictional
losses in the return line. The originally suggested model for the subsea pump was deemed
inaccurate, and an improved model was obtained by optimization. A correction factor
was introduced to the riser level dynamics, to correct for offset in the measurements. The
presence of U-tubing was observed when ramping down the booster pump. Consequently,
the level dynamics in the riser was augmented to account for the effect. However, due to
the lack of measurements and in-depth system knowledge the original model was hard to
validate, and relied on tuning. Hence, it was found to be inadequate. Instead, simplified
dynamics was added to the booster pump, which successfully estimated the effect of U-
tubing. The flow dynamics was found to be very fast. A possible model where the flow
dynamics are neglected, and the return-line flow is given as a static relationship between
the system and pump head, is suggested as an alternative. Lastly, the system was simulated
and compared to measurements. The results showed that the derived model with the esti-
mated parameters, and augmentations, was able to reproduce the field data in a satisfactory
manner. For normal circulation, the estimate is very accurate. For a more comprehensive
test case, with multiple occurrences of U-tubing the deviation from measurements is more
evident and clearly correlated with U-tubing. The model does however account for the
effect in a satisfactory manner.

5.1 Future Work
Because of the uncertainties related to U-tubing when the booster pump ramps down, fur-
ther investigations could be done on the area. This includes obtaining in-depth information
about the system the field data originates form. The uncertainties regarding pump ramp-up
should be resolved in order to make the appropriate assumptions related to modeling the
effect. Also, to validate a potential U-tubing model, pressure data from the pump outlet in
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the booster line should be available.

An natural follow-up after the work done in this thesis is to use the presented model for
control design. Various control designs i.e. model or gain-scheduling based controllers
can be tested on the model. Additionally, the friction and subsea pump models estimated
in this work will naturally change over time. On-line estimation schemes to contentiously
update the unknown model parameters is another natural extension to be looked into.
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Appendix A
System Parameters

Table A.1: System parameters and equipment locations.

Specifications
Mud weight 1.12 sg
Riser inner diameter 19.75 inch
Drillpipe outer diameter 5 inch
Casing outer diameter 10.75 inch
Mud return line inner diameter 6.05 inch
Booster line inner diameter 6.05 inch

Pressure sensor locations
Inlet to SPM 307 mRKB
Outlet to SPM 302 mRKB
Riser 305 mRKB

Key heights
Booster line inlet 340 mRKB
Wellhead Datum 352 mRKB
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Appendix B
Additional Plots
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Figure B.1: Simulation of the full system for a comprehensive circulation case without accounting
for U-tubing. The upper plot shows the comparison of the measured and estimated riser level, with
the error in the plot below. The third plot shows the comparison of the measured and estimated flow
rate, followed by the error in the blot below plot. The last plot shows the calculated booster pump
flow.
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Appendix C
Pump Head Derivation

Following is a short derivation of the theoretical head with reference to figure (C.1),
based on White (2011), where a more detailed version is found. The assumption of one-
dimensional flow (A1) is made and a idealized pump impeller is considered. The fluid is

V2

Vt 2

w2

Vn 2

Impeller

w1 V1

Vt 1

Vn1

r1

r2

Blade

ω

2β

2α 

u 1 =         r1ω     

1β
1α

u 2 =         r2ω     

Figure C.1: Inlet and exit velocity diagrams for an idealized pump impeller. Figure from White
(2011).

assumed to enter the impeller at r = r1, rotating with velocity component w1 which is
tangent to the impeller blade angle β1 plus the circumferential speed u1. The absolute en-
trance velocity, V1, is then the vector sum of w1 and u1. Similar, the fluid exits at r = r1,
with absolute velocity, V2. The Euler equations relates ideal head and power to the pump
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geometry and rotor velocities, and are given as

Pw = ωT = ρq(u2Vt2 − u1Vt1) (C.1)

hpump =
Pw
ρgq

(C.2)

where Pw denotes the power delivered to the fluid, and hpump is the net pump head defined
as

hpump =
∆P

ρg

For the case of centrifugal pumps, the power can be related to the radial velocity Vn =
Vt tan(α), and equation (C.1) can be rewritten as

Pw = ρq(u2Vn2 cot(α2)− u1Vn1 cot(α1))

The inlet angular momentum can be neglected, as it is small compared to the outlet, and
equation C.1 reduces to

Pw = ωT = ρqu2Vn2

with

Vr2 = u2 − Vn2 cot(β2), Vn2 =
q

2πr2b2

where b2 is the blade width at the exit. Consequently, he theoretical head becomes

hpump =
1

g
u2

2 −
cot(β2)

2πr2b2g
u2q

Substituting u2 with the rotational velocity, ω, the theoretical head in terms of flow rate
and pump speed is given as

hpump =
r2
2

g
ω2 − cot(β2)

2πb2g
ωq. (C.3)
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