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Problem Description
Deepwater drilling is challenging business. After Macondo, the industry has been stim-
ulated to come up with new solutions improving safety. The past few years, the costs of
drilling wells have increased significantly while the oil price has dropped. To stay in busi-
ness and to be able to drill planned wells in a profitable manner, both safety and efficiency
have to be improved. Managed Pressure Drilling (MPD) for floaters is a technology, where
rig time spent on handling wellbore instabilities, such as kicks and losses, can be reduced.
Accurate control of the downhole pressures enables drilling through narrow drilling win-
dows with reduced risk of taking an influx or going on varying degrees of losses.

After gaining operational experience with dual gradient drilling (DGD), field data has
become available. This field data gives the opportunity to validate mathematical models
and estimate unknown parameters. Once a verified model has been established, it can be
used to experiment with controller design and tuning. This will ease controller tuning
offshore, which in turn saves valuable rig time.

Goal: Find a mathematical model of a DGD system and estimate its unknown parameters
from field data.

Subtasks:

• Find a suitable model for the DGD system.

• Find sensitivities of parameters and determine how to find each of the parameters.

• Estimate unknown parameters which do not rely on dynamics.

• Estimate unknown parameters for a linearized version of the model.

• Estimate unknown parameters of the non-linear model.

• Possible augmentation of the model.
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Summary

Dual gradient drilling (DGD) is a modern technology that allows for drilling wells for oil
and gas in a more precise and efficient manner. Many of the future oil and gas prospects
are highly complex and challenging with narrow geo-pressure margins and little room for
human errors. Such projects are simply only feasible if they are founded on robust and
efficient automated drilling solutions that allow for accurate pressure control. This study
focuses on investigation of a real DGD system in the Gulf of Mexico through modeling
and application of field data in order to estimate unknown parameters.

First an introduction to the basics of drilling is given, explaining the advantages of the
dual gradient drilling technology in terms of efficiency as well as safety. Then a hydraulic
model for the complete system is developed. The available field measurements delimit a
subsystem of the complete system where all parameters are identifiable. This shifts the
focus of this thesis solely to the dynamics of the mud return line (MRL), which is the most
vital section of the DGD system to know prior to control design.

Following the development of the model for the MRL dynamics, field data are applied
to estimate the unknown parameters. Obvious discrepancies between observed field data
and the outputs of the identified model expressions encourage slight modifications of the
model structures until the observed outcomes are replicated by the model expressions to a
satisfactory degree of accuracy. Finally, the dynamics of the identified system are simu-
lated. The produced outputs are compared to field data, and the consistency between the
simulation results and the field measurements works as a natural measure of the validity
of the identified model.
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Sammendrag

Dual gradient drilling (DGD) er en drillingteknologi som muliggjør drilling av brønner for
olje og gass på en mer presis og effektiv måte. Mange av fremtidens olje- og gassprospek-
ter er veldig komplekse i sin natur, med smale trykkmarginer og lite rom for menneskelige
feil. Slike prospekter er simpelthen bare drillbare dersom de baseres på robuste og ef-
fektive løsninger som muliggjør presis kontroll av nedhullstrykket. Denne oppgaven har
som fokus å undersøke et virkelig DGD-system i Mexicogulfen gjennom modellering og
anvendelse av tilgjengelig feltdata for estimering av ukjente parametre.

Innledningsvis blir hovedprinsippene bak drilling forklart, med vekt på fordelene med
DGD-teknologi hva angår effektivitet og sikkerhet. Deretter blir en hydraulisk modell for
systemet utledet. De tilgjengelige feltmålingene avgrenser et subsystem av det fullstendige
systemet hvor alle parametre er identifiserbare. Med dette skiftes fokuset i denne oppgaven
til kun å omhandle dynamikken i returlinja (MRL), som er seksjonen av et DGD-system
som det er mest vitalt at er kjent i forkant av kontrolldesign.

Etter at modellen for dynamikken i MRL er utledet kan feltdata bli anvendt til å estimere
ukjente paremetre. Åpenbare avvik mellom de observerte feltdataene og utgangene fra
de identifiserte modell-ligningene nødvendiggjør justering av modellstrukturene inntil de
observerte målingene er replisert av ligningene i modellen med en tilfredstillende grad av
nøyaktighet. Til slutt kan hele systemdynamikken simuleres, og de simulerte variablene
kan sammenlignes med måledata. Graden av samsvar mellom simuleringsresultatene og
feltmålingene fungerer som et naturlig mål på validiteten til den oppnådde systembeskriv-
elsen.
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Chapter 1
Introduction

1.1 Background and Motivation

Drilling for petroleum hydrocarbons is carried out in vastly different environments world-
wide, from the dry deserts of Saudi Arabia to the deep Gulf of Mexico. Deepwater drilling
represents a particularly challenging business, as the pressure at such depths can be ex-
traordinarily high. The fundamental nature of deepwater drilling operations - the search to
discover volatile substances under extreme pressure in a hostile environment - inevitably
implies some risk of fatal consequences, including loss of lives and massive spills to the
environment. At the Macondo blowout and explosion accident on the Deep Water Horizon
offshore drilling rig located in the Gulf of Mexico in April 2010, both of these conse-
quences were brutally demonstrated. The accident resulted in the deaths of 11 workers,
also leaving 17 seriously injured. The blowout also triggered the largest oil spill in US
history with the estimated total discharge of 210 million US gallons of oil, resulting in
severe damages to the close-by marine life.

In order to meet the continuing high demands for petroleum and energy worldwide, there
is a great need to find new reserves and to extract these. Many of the larger fields that are
accessible with conventional drilling technology have already been drilled. Consequently,
many of the remaining fields typically contain less oil and gas, and are located in less
accessible formations, making them harder to drill.

After the Macondo blowout accident, the industry has been stimulated to come up with
new solutions improving safety. Also, as a result of fields becoming less accessible, the
costs of drilling have increased significantly over the last few years. In the same time
period, the oil price has dropped drastically, raising the threshold of investing in drilling
operations. In order to enable drilling in a profitable as well as safe manner, it is therefore
absolutely crucial that new and improved drilling technologies are developed.
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Figure 1.1: Offshore drilling from a semi-submersible drilling rig. The schematic is inspired by a
similar figure from Stamnes [2011].
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1.1 Background and Motivation

1.1.1 Mud circulation in a dual gradient drilling system

The basics of drilling can best be understood by considering the drill rig setup illustrated in
Figure 1.1. The figure illustrates a semi-submersible platform performing offshore man-
aged pressure drilling (MPD), in this case more precisely the variant known as dual gra-
dient drilling (DGD). At the top of the derrick, the drill string is attached to the top drive
motor, which is further attached to a hook, enabling the drill string to move up and down.
As drilling progresses, the drill string sinks towards the drill floor, and after one length, a
new stand of drill pipe is connected to the top before drilling can resume.

During any drilling operation, rock cuttings must be transported out of the wellhole. To
serve this purpose, a circulation system based on a viscous fluid mixture called drilling
mud is used. Mud from tanks on board the rig is fed to the main rig pump, which pumps
the drilling mixture through the top drive and into the drill string. The mud continues
down the drill string and out through the drill bit, which is located at the bottomhole of
the well during regular operations. From this point, the flow of the viscous fluid collects
and carries drill cuttings along up through the annulus and into the riser. In close vicinity
to the blow out preventer (BOP), which is placed at seafloor level, an auxiliary line called
the booster line, may provide supplementary injection of mud into the riser to assist in the
circulation of drill cuttings when required. Even another mud flow, referred to as a topfill
flow, may enter directly into the top of the riser, typically at a low constant flow rate. The
purpose of the topfill is to break the surface of the mud column in the riser.

As opposed to in conventional drilling, the mud in a DGD system does not continue to
flow up the riser all the way to the rig floor, but returns through a subsea pump and up
a separate discharge line. This makes it possible to use the pump to control the level in
the riser, which in turn affects the pressure profile in the annulus. This is a significantly
faster and more convenient way to control pressure in the annulus than the tedious task
of replacing the entire mud in the cycle with one of higher density, as is typically done in
conventional drilling operations.

1.1.2 Drilling window and pressure control

The main reason for the need of pressure control is to maintain the annulus pressure profile
within its margins, i.e. within the pressure zone that is often referred to as the drilling
pressure window. The lower and the higher boundary of the window are represented by
two of the most important parameters in designing and drilling a well for oil and gas,
which are the well’s pore pressure gradient and fracture pressure gradient, respectively.

Pore pressure is the pressure exerted by fluids within the pore space of formation rock,
generated by the weight of the overburden rock and fluids above the formation. When a
zone of porous hydrocarbon-bearing rock and sediment is encountered during drilling, the
pore pressure will force oil and gas into the well unless the annulus pressure, generated
by the weight of the mud column combined with friction due to mud flow, is high enough
to counterbalance it. If the annulus pressure is below the pore pressure, then the well is
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said to be under-balanced, and sections of the well may collapse and cause an influx of
formation fluids into the wellbore from surrounding rock. Such an uncontrolled flow of
hydrocarbons into a well is known in the industry as a kick. If a kick is not detected and
controlled rapidly enough, it can cause an uncontrolled release of flammable oil and gas,
commonly known as a blowout, whose potentially devastating consequences are known
from the Macondo accident and several other similar occurrences. Even in cases where the
kick is neutralized by proper handling, the kick could lead to undesirable consequences,
e.q. a potential collapse of the well leading to a stuck drill string. In the worst case
scenario, the pipe would need to be severed and parts of the well re-drilled. Ensuring that
the pressure in the annulus is above the poor pressure is in other words absolutely essential
to ensure safe as well as economically sound drilling operations.

The higher boundary of the drilling window is represented by the fracture pressure, which
is the pressure that is required to fracture a rock formation. If the annulus pressure is above
the fracture pressure, drilling mud will flow out of the wellbore and into the formation.
This causes what is known as lost returns, lost circulation or simply a loss. A loss can
damage the permeability of the reservoir . Also, the loss of fluid in one formation may be
followed by the influx of fluid from another formation, potentially inducing a kick.

The pore and fracture pressure gradients are the measures of the respective pressure bound-
aries as a function of depth. Typically as a well is drilled deeper, the pore pressure and
fracture gradients increase, but they don’t always do so in tandem. This complicates a
drilling operation. To maintain the integrity of the well at all times, it must be ensured that
the mud column exerts pressure at the bottom of the well that is high enough to balance
the pore pressure without exceeding the rock strength anywhere along an open section of
the well. As the well is drilled deeper, the density of the mud required to balance the pore
pressure will often eventually cause the pressure higher up in the wellbore to exceed the
fracture pressure. The result is that drilling can not continue. As this happens, a casing in
the form of a steel cylinder must be set into the well, enabling the drillers to increase the
mud weight and continue operations without fracturing the shallower formations.

1.1.3 Advantages of dual gradient grilling

Deepwater drilling means higher hydrostatic pressure at the seabed, resulting in a more
compact sediment formation. As a consequence, the pressure window is reduced. Such
narrow drilling windows, also potentially caused by maturing of fields or depletion, often
makes drilling prospects impractical to reach with conventional drilling methods, due to
the lack of accurate control of the annular downhole pressure. In dual gradient drilling,
the flexibility to adjust the annular pressure accurately by changing the riser level, makes
it possible to keep the annular pressure very precise to fit tight drilling margins.

In conventional drilling, the pressure gradient of the mud itself always starts from the rig
floor. This gradient often fits the drilling margins poorly, creating a need for frequent cas-
ing points and mud density changes, which result in a considerable amount of inefficient
non-productive rig time. For dual gradient drilling, the flexibility in riser level adjustment
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yields mud pressure gradients that starts at a lower depth, effectively moving the rig closer
to the seafloor. A partially filled riser allows for the use of heavier mud weight, which im-
proves cuttings transport and yields annular pressure gradients that fit the drilling window
better, thus potentially improving casing the program and cementing operations. An il-
lustrative comparison of the casing programs of dual gradient drilling versus conventional
single gradient drilling is found e.g. in Fossum [2013].

1.1.4 Modeling of downhole pressure and control design

Due to harsh HPHT conditions at the bottomhole of a drilling well, accurate real-time
measurements of the annular downhole pressure during drilling operations are most often
unavailable. Thus, to gain accurate insight into the pressure conditions at the bottom-
hole of the well, a mathematical model of the hydraulic mud circulation system must be
developed.

In order to control the pressure through feedback control algorithms, the model must also
reflect the relationship between the subsea pump speed and the downhole pressure. This
will allow the hydraulic model to output a subsea pump set-point associated with the de-
sired downhole pressure as an input to a controller. Sufficient accuracy of the model is
essential in order to ensure a safe and efficient automated dual gradient drilling operation.

After gaining operational experience with dual gradient drilling (DGD), field data has
become available. This field data gives the opportunity to validate mathematical models
and estimate unknown parameters. Once a verified model has been established, it can in
turn be used to experiment with controller design and tuning. This will ease controller
tuning offshore, which saves valuable rig time.

1.2 Previous Work

There exist a substantial amount of literature on MPD in general. A lot of effort has been
put into developing advanced high fidelity models in order to capture all aspects of the
drilling hydraulics, and multiple references to such literature are cited within Kaasa et al.
[2011].

More specifically for DGD, a few simplified models are found e.g. in Breyholtz et al.
[2009] and Breyholtz et al. [2011], where an existing model for MPD, produced in the
mentioned Kaasa et al. [2011], is modified to fit the DGD system. Another simplified
model that allows for multi-fluid dual gradient operations is found in Stamnes et al. [2012],
where the complete model is made more realistic by including a model of the centrifugal
subsea pump. Several other texts are also useful for understanding important and related
concepts. In Landet [2011], a high order model for MPD system is presented based on
discretizing the partial differential equations describing the hydraulic transmission line.
Also, the work done by Anfinsen [2012] can be mentioned, where a low-order model for
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simulation of the U-tube effect, caused by hydrostatic pressure difference between annulus
and drill string, is developed.

1.3 Scope and Emphasis

A lot of effort has from the early 1990s until now been put into developing hydraulic mod-
els for MPD systems, both advanced high fidelity models and simpler, more transparent
models. The DGD variant has been less investigated in papers due to the modern nature of
the technology. The focus of this thesis will therefore to a great extent be directed towards
modeling and system identification in connection to the dynamics of the mud return line,
which is the section of the drilling system that is unique to DGD. However, this thesis still
aims to provide a complete DGD system description.

The goal of the thesis is to identify and validate a mathematical model of the mud return
line dynamics. Once a verified model has been established, it can serve as a necessary
base to enable experimenting with controller design and tuning. Such experimenting will
ease controller tuning offshore, which saves valuable rig time.

1.4 Structure of Thesis Report

This thesis report is organized as follows. Chapter 2 presents the complete modeling of
the dual gradient drilling system. The chapter is introduced by reflection on the purpose of
modeling, and proceeds with deriving generic low-order expressions for the pressure and
flow dynamics of a flow section based on previous modeling work on MPD. Together with
an expression for frictional pressure losses and a suggested model for the performance
characteristics of the subsea pump, the generic equations for flow and pressure dynamics
constitute the complete model of a DGD system. The chapter is rounded off by utilizing
the found model to a real DGD system located in the Gulf of Mexico, whence field data are
provided by Statoil ASA. Inspection of the amount of available measurements is used to
determine what unknown parameters that can possibly be identified. In Chapter 3, appro-
priate system identification methods are utilized to estimate unknown system parameters.
Corrections to the assumed model structures are suggested in cases where the identified
models are unable to replicate the measured outcomes to a satisfactory degree. Chapter 4
completes the whole modeling and system identification process by simulation of the state
equations of the model. The resulting state outputs are compared to the observed field
data, functioning as a natural measure of the validity of the obtained system description.
Chapter 5 summarized the results obtained in the thesis and presents a brief conclusion
and final remarks.
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Chapter 2
Modeling

A dual gradient drilling system shares many of the design characteristics with the original
managed pressure drilling (MPD) system. The difference lies in the approach taken to
manage and control the annular downhole pressure. The basic principle of MPD is to seal
the top of the annulus and to control the mud flow from the well with a choke manifold
in order to apply the desired back-pressure. A setup description of an automated MPD
system is found e.g. in Riet et al. [2003]. A DGD system, on the other hand, consists of a
separate mud return line and a subsea pump module (SPM) that allows for efficient control
of the pressure profile in the annulus by regulating the mud level in the riser. Except for
the end sections of the mud circulation systems, DGD and MPD systems are very similar,
implying that much of the modeling from previous work on MPD systems can be equally
applied to DGD systems.

2.1 Fit-For-Purpose Modeling

Prior to the establishment of a model of any real, physical system, it is useful to carefully
consider ones objective of modeling, as it creates an awareness to work towards the most
appropriate system description. The main goal of this thesis is to estimate unknown param-
eters needed in the mathematical system description. Secondly, in terms of control design,
the model should reflect the relationship between the subsea pump speed and relevant
states one might wish to control. This will allow for feedback control through real-time
calculation of the subsea pump set point associated with the desired state reference.

Arguments in favor of a simpler, more transparent hydraulic model, to be used for down-
hole pressure estimation and control in MPD operations, are discussed in Kaasa et al.
[2011]. This argumentation can be similarly applied in the context of the DGD system of
this thesis, and is conveyed in the paragraphs to follow.
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Chapter 2. Modeling

A high fidelity model to be used for detailed simulation and reproduction of a wide range of
drilling-specific effects, necessarily requires a higher degree of complexity than a model to
be used for control design. A system is inherently incapable of compensating for changes
which are faster than a particular frequency range, known as the bandwidth of the closed-
loop system. The bandwidth of the DGD system is typically determined by the dynamic
response of the subsea pump, and the sampling rate of the control system. Therefore, it is
undesirable that the output of the hydraulic model contains high-frequency dynamics.

With the main task of this thesis being system identification, the model should not be
too advanced, since a complex model inevitably will make well-known parameter esti-
mation schemes inadequate. Also, in many cases, the available measurements from field
data contain insufficient information for identification of all parameters of an advanced
model. Hence, without additional distributed measurements along the well, the sophisti-
cated details of an advanced model may not contribute to improved accuracy in the system
description and the control design.

Yet another argument that supports a simpler model, is the difficulty connected to rigorous
verification of the numerical robustness of control algorithms that are based on complex
models. The conditions in a well change during any drilling operation, meaning that pa-
rameters are both uncertain and slowly changing. Friction coefficients along the well are
one example among others. To increase accuracy, the model should allow for calibration
by application of algorithms for online parameter estimation. In an advanced model, the
combination of complexity and a large number of unknown parameters, makes it hard
to develop an online estimation scheme that allows for automatic calibration in a robust
manner.

On the other hand, the model is in many cases the limiting factor for the achievable ac-
curacy of the control system, and it is therefore crucial that the model captures the most
dominant dynamics, in order for it to be an appropriate representation of the real world
system and to achieve satisfactory control. Ideally, all together, the model should there-
fore be based on a suitable trade-off between accuracy and simplicity. Such a trade-off
point can only be found through thorough analysis of the importance of the various dy-
namics in the specific system that is considered. Having this mindset within modeling is
often referred to as fit-for-purpose modeling. Ways to remove unnecessary complexity are
to neglect both very fast dynamic and very slow dynamics, and to lump together parame-
ters which are not needed separately or are not possible to distinguish from one another in
the available measurements.

Applying basic fluid dynamics to obtain a simple fit-for-purpose model will by necessity
cause some lack of accuracy in the transient response. However, by incorporating accurate
steady-state relations for the downhole pressure, the same steady-state accuracy can be
achieved as with an advanced hydraulic model.
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2.2 Assumption of a Viscous Drilling Fluid

2.2 Assumption of a Viscous Drilling Fluid

Due to the many common properties of MPD and DGD systems, the hydraulic modeling
assumptions of this section are similar to the general considerations around a simplistic
model in Section 2.1, to a large extent based on the work done in the aforementioned
MPD paper [Kaasa et al., 2011].

A main assumption that builds the foundation for the derivation of the hydraulic model
is that the drilling fluid can be treated as a viscous fluid, which means that the flow is
completely described by the following fundamental equations. The derivations are based
on [Meritt, 1967] and [White, 1994].

• Equation of state The density as a function of pressure and temperature.

• Fluid viscosity The viscosity as a function of pressure and temperature.

• Equation of continuity The mass balance, or conservation of mass.

• Equation of momentum The force balance, or Newton’s second law of motion.

• Equation of energy The energy balance, or the first law of thermodynamics.

The dynamics resulting from temperature effects reflected by the energy equation are out-
side the scope of this text and will be neglected in the modeling to follow. The effects
of fluid viscosity will be discussed in relation to frictional losses in the flow, which is of
relevance in the equation of momentum.

2.2.1 Equation of state

An equation of state provides a constitutive mathematical relationship between two or
more state functions that is specific to a material or substance. The dependency of a
matter’s density of pressure and temperature can be written generally as

ρ = ρ(p, T ) (2.1)

where ρ, p and T denotes density, pressure and temperature, respectively.

This relationship is phenomenological, which means that it is not derived from physical
fundamental principles, but found empirically through measured PVT1 data which are
interpolated. For a liquid, the changes in density are in general small, which makes it
common to use the linearized equation of state around a reference point (ρ0, p0, T0)

ρ = ρ0 +
∂ρ

∂p
(p− p0) +

∂ρ

∂T
(T − T0) (2.2)

1PVT = Pressure, Volume, Temperature.

9



Chapter 2. Modeling

By incorporating the material properties of the isothermal bulk modulus, β, and the iso-
baric cubical expansion coefficient, α, which are defined respectively as

β = ρ0

(
∂p

∂ρ

)
T

(2.3a)

α = − 1

ρ0

(
∂ρ

∂T

)
p

(2.3b)

the linearized equation of state can be rewritten as

ρ = ρ0 +
ρ0

β
(p− p0)− ρ0α(T − T0) (2.4)

or in its differential form
dρ =

ρ

β
dp− ραdT (2.5)

The accuracy of the linearization will always decrease with increasing pressure and tem-
peratures, but it has been shown to be fairly accurate for most drilling fluids in the ranges
0 − 500 bar and 0 − 200 ◦C, which can be verified by PVT data e.g. in Isambourg et al.
[1996].

Even though significant temperature gradients may exist in a drilling system, in particular
for HPHT wells, the thermal expansion coefficient α for liquids is usually small, which
is an argument to neglect density changes as a function of temperature changes. Also,
compared to pressure transients, which are in range of seconds and minutes, temperature
transients are in range of minutes and hours. The slow pressure effects that may be caused
by temperature changes can usually be handled more efficiently by online calibration based
on feedback in the control system, than to include these effects in the model as dynamics.
Neglecting the dependence of temperature yields the following equation of state for the
density dynamics

dρ =
ρ

β
dp (2.6)

2.2.2 Equation of continuity

The equation of continuity of mass states that the rate at which mass enters a system
volume equals the rate at which it leaves the volume + the rate at which mass accumu-
lates in the volume due to compressibility effects. In the modeling of the mud flow, is is
reasonable to assume that the flow is radially homogeneous and that it can be treated as
one-dimensional along the main flow path. For 1-D flow, the differential mass continuity
equation can be written

∂ρ

∂t
+

∂

∂x
(ρν) = 0 (2.7)

where ν is the velocity of the flow, and x is the spatial variable along the flow path. The
expression for the density time derivative as given by Eq. 2.7 can be substituted into the
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2.2 Assumption of a Viscous Drilling Fluid

expression for the pressure time derivative in Eq. 2.6 to yield an expression for the pressure
dynamics as a function of flow velocity

∂p

∂t
=
β

ρ

∂ρ

∂t
= −β

ρ

∂

∂x
(ρν) = −β

ρ

(
∂ρ

∂x
ν +

∂ν

∂x
ρ

)
(2.8)

By assuming that the flow is spatially incompressible, i.e. ∂ρ
∂x ≈ 0, and that the cross-

sectional area A(x) is close to piecewise constant, the expression in Eq. 2.8 can be sim-
plified to

∂p

∂t
= −β ∂ν

∂x
= −β

∂
(

q
A(x)

)
∂x

= − β
A

∂q

∂x
(2.9)

where q denotes the volume flow rate.

The expression for the pressure dynamics found in Eq. 2.9 is the same as that is found
from derivation of the model for a hydraulic transmission line in Egeland and Gravdahl
[2002], linearized around zero flow (q = 0) and atmospheric pressure ρ0. It is reproduced
below exactly as stated in the reference text, with explicit dependence on time and spatial
position

∂p(x, t)

∂t
= − β

A

∂q(x, t)

∂x
(2.10)

The main compressibility effects accounted for in Eq. 2.6 - 2.7 through the bulk modulus
β, characterizes the dominating dynamics of the hydraulic system, and is reflected in the
pressure along the entire flow path. The pressure dynamics at any point can therefore be
approximated quite accurately by the dynamics of the average pressure in the entire well,
offset with the hydrostatic pressure and friction drop relative to a fixed reference point.
Integration of mass flow over a control volume yields the integral form of the continuity
equation in Eq. 2.7

d

dt
(ρV ) = ρ

dV

dt
+ V

dρ

dt
= ρinqin − ρoutqout (2.11)

where V is the control volume, ρ is the average density and ρinqin and ρoutqout are the the
mass flow rates in and out of the control volume, respectively. Substituting for the density
dynamics derived in Eq. 2.6 yields the control volume pressure dynamics

V
dρ

dt
= V

ρ

β

dp

dt
= −ρdV

dt
+ ρinqin − ρoutqout (2.12)

With the assumption of spatially homogeneous density, i.e. that the density in and out of
the control volume equal the average density, ρin = ρout = ρ, the pressure dynamics
expression in Eq. 2.12 is further simplified to

V

β

dp

dt
= −V̇ + qin − qout (2.13)
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Chapter 2. Modeling

It is not hard to see that given a constant density within the control volume, the control vol-
ume approach corresponds to approximating the spatial derivative of the flow rate through
a certain flow section from the advanced model of Eq. 2.10 by

∂q

∂x
≈ qout − qin + V̇

∆x
(2.14)

as indicated by the control volume figure in Fig. 2.1. With this approximation substi-
tuted into the advanced model of Eq. 2.10, the same expression for the average pressure
dynamics as in Eq. 2.13 is obtained as expected:

ṗ = − β
V

(qout − qin + V̇ ) (2.15)

where the control volume V = A∆x has been defined.

∆x

qin qout

Figure 2.1: A control volume for the discretization of pressure dynamics in a hydraulic transmission
line.

2.2.3 Equation of momentum

A force balance based on conservation of momentum is developed in White [1994] for
one-dimensional time invariant density and viscosity. Density effects in the flow have
been shown only to become significant as the flow approaches the speed of sound. The
flow is generally termed incompressible for Mach number less than 0.3. The resulting
PDE, with flow rate q as main variable, based on the assumption of piecewise constant
cross-sectional area A(x), is written as

ρ

A

dq

dt
= −∂p

∂x
− ∂τ

∂x
+ ρg cos(θ(x)) (2.16)

where q denotes volume flow rate, ρ denotes mud density, p denotes pressure, g denotes the
gravitational constant, τ denotes viscous frictional force per spatial unit and θ(x) denotes
the slope of the flow path at location x.

The friction term τ is typically a lumped friction term depending on the velocity of the
flow, and is constituted of frictional losses due to viscous dissipation, turbulence, swirl
flow and non-ideal flow conditions (section changes, bends, etc.), often referred to as
minor losses.

Pressure transients propagate as pressure waves in the mud at the speed of sound, which
is given by the Newton-Laplace equation as the square root of the ratio between fluid

12



2.3 Frictional Pressure Losses

stiffness (bulk modulus) and fluid density:

c =

√
β

ρ
(2.17)

However, the speed of sound is typically high for a hydraulic oil, resulting in very fast
pressure propagation dynamics. These high-frequency dynamics are typically much faster
than the bandwidth of the control system, and it is therefore reasonable to neglect them.

Similar to the case for the pressure dynamics, the PDE describing the flow dynamics in Eq.
2.16 can be approximated by an ODE by applying simplifying assumptions. Assuming
that the fluid accelerates homogeneously as a stiff mass, i.e. ∂q

∂x ≈ 0, Eq. 2.16 can be
integrated along the flow path to give an equation for the average flow rate dynamics.

M(l1, l2)q̇ = p1 − p2 − F (l1, l2, q, µ) +G(l1, l2, ρ) (2.18)

where

M(l1, l2) =

∫ l2

l1

ρ(x)

A(x)
dx (2.19a)

F (l1, l2, q, µ) =

∫ l2

l1

∂τ(q/A(x), µ)

∂x
dx (2.19b)

G(l1, l2, ρ) =

∫ l2

l1

ρ(x)g cos(θ(x))dx (2.19c)

Here, q is the average flow rate between x = l1 and x = l2, p1 and p2 denote pressure
respectively at x = l1 and x = l2, M(l1, l2) is the density per cross-section integrated
over the flow path, F (l1, l2, q, µ) is the integrated frictional losses along the flow path and
G(l1, l2, ρ) is the total gravity affecting the fluid.

2.3 Frictional Pressure Losses

The friction term in Eq. 2.19b must be given particular attention, as detailed modeling
of frictional losses represents a significant challenge, even in the presence of extensive
system knowledge. In general, drilling fluids are non-Newtonian, which implies that their
viscosity depends on shear rate or shear rate history. Considering these non-Newtonian
properties of the drilling mud complicates friction calculations, and is outside the scope of
this thesis. Hence the mud will be assumed Newtonian in the following work. As stated
in Kaasa et al. [2011], the viscosity of a liquid decreases markedly with temperature, and
increases somewhat with pressure, and may in general be written as

µ = µ(p, T ) (2.20)
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Chapter 2. Modeling

Typically, the dependence on pressure is negligible. Furthermore, since temperature dy-
namics are outside the scope of this text, the viscosity will be assumed constant in the
following friction modeling.

The flow path will normally contain both laminar and turbulent flow regimes as well as
transitions between these regimes. To find an expression for the pressure losses along any
flow path, a generic method that distinguishes between laminar and turbulent flow regimes
can be used. To determine whether the flow at a given location l is laminar or turbulent,
the Reynolds number is calculated as

Re(l) =
4ρ

πd(l)µ
q (2.21)

where d(l) is the cross-sectional diameter at location l and the other variables denote mea-
sures as previously described. If the Reynolds number is below Recrit = 2300, the flow is
deemed to be laminar. Otherwise it is turbulent. To obtain the pressure loss in the interval
[l0, l1], the phenomenological Darcy-Weisbach equation is used

F (q) =

∫ l1

l0

f(l)
8ρ

π2d(l)5
q2dl (2.22)

where the friction factor is given by

f(l) =
64

Re(l)
(2.23)

for laminar flow, and

f(l) =

(
−1.8 log

[
6.9

Re(l)
+

(
ε

3.7d(l)

)1.11
])−2

(2.24)

for turbulent flow, where ε is the measure of the wall roughness, see e.g. [White, 1994].

In addition to frictional pressure losses along flow paths, considerable losses of variable
degree also exist in various equipment in a typical dual gradient drilling setup, including
topside equipment and drill bit assembly. An expression for the frictional losses over a
drill bit assembly is suggested in Stamnes et al. [2012] as

Fbit =
ρd(lbit)q

2

2C2
vTFA

2
(2.25)

where Cv denotes the discharge coefficient and TFA denotes the total fluid area in the bit
[API, 2006].

In a situation where no information exists about system parameters like the wall rough-
ness ε and/or the mud viscosity µ, the unknown parameters must be estimated before the
Darcy-Weisbach can be used to model the frictional losses along flow sections. Estimation
of these parameters is cumbersome due to the intricate nonlinear nature of the friction fac-
tor expression in Eq. 2.24. Furthermore, parameter information needed in determining the
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friction characteristics of equipment that potentially cause significant pressure losses, can
typically also be difficult to obtain, as exemplified by the unknown parameters in Eq. 2.25.
A possible approach to obtain a structurally simpler model is to approximate the original
partially unknown function for the frictional pressure losses by its Taylor series. By assum-
ing that the frictional losses can be approximated as the second order Taylor polynomial
evaluated around zero flow, also called a Maclaurin series, the expression becomes

F (q) = C · q +D · q2 (2.26)

which is linear in its unknown parameters C and D. The physical interpretation of the
polynomial coefficients are abstracted away in such a model. On the positive side, due to
its simple structure, parameter estimation becomes straightforward, granted that observed
data measurements of flow rate and pressure losses are available.

2.4 Subsea Pump Module

The centrifugal subsea pump that lifts the fluid from the riser and up to the rig is modeled
as a dynamic pump as opposed to a positive displacement pump. This implies that the
flow rate through the pump, qssp, depends not only on the pump rotation speed, ωssp, but
also on the operational point where the pressure required to move fluid through the system
equals the available pressure produced by the pump.

In the fluid mechanics literature, e.g. [Çengel and Cimbala, 2010], the measure of net
head is often used instead of pressure in the context of pump performance. The available
net head or pump head H , is defined as the change in Bernoulli head between the inlet
and outlet of the pump. Net head has the dimension of length, calculated as the equivalent
column height of fluid that would generate a given pressure. For the case of incompressible
flow through a liquid pump in which the inlet and outlet diameters are identical, and there
is no change in elevation, the expression for the available net head is given as

H =
Pout − Pin

ρg
(2.27)

For this case, the pump head is simply the pressure rise across the pump divided by grav-
itational acceleration and the density of the fluid. This fluid is often assumed to be water,
even for a pump that is not pumping water. In this thesis, however, head will be defined
as the equivalent column height of mud, corresponding to defining ρ = ρmud in Eq. 2.27.
Since the flow itself has been assumed incompressible in the previous modeling sections,
it is convenient to use this definition of pump head throughout the thesis.

The maximum flow rate through a pump occurs when the pump head is zero. This flow
rate is referred to as the pump’s free delivery, and this condition is achieved when there is
no load on the pump. At the other extreme, the shutoff head is the pump head that occurs
when the volume flow rate is zero, and is achieved when the outlet is blocked. During
regular operations, the actual flow rate will always stay between these two extremes. The

15



Chapter 2. Modeling

pump head may increase from its shutoff value somewhat as the flow rate increases, but
the head must by necessity eventually decrease to zero as the volume flow rate increases
to its free delivery. Curves of the available pump head as a function of flow rate are called
pump performance curves or characteristics curves. Since the pump head increases with
rotational speed, a specific pump curve exists for each corresponding pump speed.

The pump head expression for a particular pump is typically found through experimental
testing. In Stamnes et al. [2012], it is argued that it is not hard to approximate the pump
head model using the so called affinity laws, described e.g. in White [1994]. The suggested
model used is

∆HSPM (ωssp, qssp) = c0ω
2
ssp − c1ωsspqssp − c2q2

ssp (2.28)

where c0, c1 and c2 are fitting constants for each individual pump. With all coefficients
positive, the pump curve becomes strictly decreasing with increased flow.

2.5 Simplified Hydraulic Model of Complete Dual Gradi-
ent System

To summarize, the following relevant models have been derived:

• Section 2.2: Pressure and flow rate dynamics of mud based on the viscous fluid
assumption.

• Section 2.3: Frictional pressure losses as function of flow rate

• Section 2.4: Characterization of the subsea pump head as a function of rotational
speed and flow rate.

Incorporation of the found models with the mud circulation structure of a DGD system
described in Subsection 1.1.1 form the foundation for a complete hydraulic model descrip-
tion. The model can be roughly divided into pressure dynamics and flow rate dynamics for
each of the various drill system sections: drill string, booster line, annulus and mud return
line.

2.5.1 Pressure dynamics

The drill string and the booster line are pressurized and closed from the atmosphere, which
makes it reasonable to take compressibility into account for these sections. The annulus
and the return line, on the other hand, are open to atmosphere, which justifies neglecting
the compressibility effects caused by pressure variations for these sections.
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2.5 Simplified Hydraulic Model of Complete Dual Gradient System

Drill string

The drill string can be modeled as a hydraulic system with a single fluid. Since the drill
string volume is constant during drilling, total volume changes can be neglected, yielding
V̇d = 0. Based on the discretized hydraulic model in Eq. 2.15, using the whole drill string
as a single control volume, the pressure dynamics can be written as

Vd
βd
ṗp = qp − qbit (2.29)

where pp denotes mud pump pressure, qp denotes volume flow rate through the rig pump,
qbit denotes volume flow rate through the drill bit, Vd denotes drill string inner volume and
βd denotes the isothermal bulk modulus of the mud.

Booster line

The booster line pressure dynamics can be modeled similarly to the drill string pressure
dynamics, giving

Vb
βb
ṗb = qbp − qboostIn (2.30)

where pb denotes booster pump pressure, qbp denotes volume flow rate through the booster
pump, qboostIn denotes volume flow rate into the annulus , Vb denotes booster line inner
volume and βb denotes the isothermal bulk modulus of the mud.

Annulus

The riser is open to atmospheric pressure, which justifies neglecting the compressibility
of the mud in this section. The assumption thus reduces the mass balance into a volume
balance for the total volume of fluid in the annulus, giving

V̇a = qbit + qboostIn + qtf − qssp (2.31)

where qbit is the flow entering the annulus through the drill bit, qboostIn is the inflow from
the booster line, qtf is the top fill rate and qssp is the outflow through the subsea pump.

The riser level, hr, indicating how much of the annulus that is not filled with mud, defined
with positive sign in the downwards direction, changes in the opposite direction of the
annulus mud volume and satisfies

ḣr =
qssp − (qbit + qboostIn + qtf )

Aa(hr)
(2.32)

where Aa(hr) is the cross-sectional area of the annulus at location hr.

Mud return line

The mud return line is open to atmospheric pressure as the annulus, justifying negligence
of the compressibility effects. Furthermore, the MRL is assumed to be constantly filled
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with mud, meaning that the level does not change. This assumption further implies that
the flow into the MRL through the subsea pump, qssp, equals the flow out of the return
line at the rig, qMRL, which can be described with the trivial equation

V̇MRL = qssp − qMRL = 0 (2.33)

2.5.2 Flow rate dynamics

Drill string

The dynamics of the flow through the drill bit can be assumed approximately equal to the
dynamics of the average flow that originates from the mud pump and ends up at the inlet
of the MRL. Applying the model for the average flow dynamics found in Eq. 2.18 - 2.19
gives the expression for the drill bit flow dynamics

Md(hr)q̇bit = pp − p0 − [Fd(qbit) + Fa(hr, qbit + qboostIn)] + ∆Gd(hr) (2.34)

where

Md(hr) =

∫ lbit

0

ρ(x)

Ad(x)
dx+

∫ lbit

hr

ρ(x)

Aa(x)
dx (2.35)

Here, pp is the mud pump pressure, p0 is the atmospheric pressure (at the riser level hr),
lbit is the length of the drill string and in this case the same as the true vertical depth
of the drill bit, Fd + Fa are the total steady-state frictional pressure losses in the drill
string and the annulus combined, calculated as described in Section 2.3, and ∆Gd is the
hydrostatic steady-state pressure difference between the drill string and the annulus. Both
the drill string and the annulus are assumed to be straightly vertical, which yields the
straightforward expression

∆Gd(hr) = ρglbit − ρg(lbit − hr) = ρghr (2.36)

With the assumption of constant drill string and annulus cross-sectional areas, the expres-
sion for the integrated density per cross-section in Eq. 2.35 can be written directly as

Md(hr) =
ρ · lbit
Ad

+
ρ · (lbit − hr)

Aa
(2.37)

Booster line

An almost identical expression for the flow in from the booster line can be stated as for the
drill string

Mb(hr)q̇boostIn = pb− p0− [Fb(qboostIn) +Fa(hr, qbit + qboostIn)] + ∆Gb(hr) (2.38)

where

Mb(hr) =

∫ lboost

0

ρ(x)

Ab(x)
dx+

∫ lboost

hr

ρ(x)

Aa(x)
dx (2.39)
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Here, pb is the booster pump pressure, p0 is the atmospheric pressure (at the riser level hr),
lboost is the length of the booster line and the same as the true vertical depth of the booster
inlet, Fb + Fa are the total steady-state frictional pressure losses in the booster line and
the annulus combined, calculated as described in Section 2.3, and ∆Gb is the hydrostatic
steady-state pressure difference between the booster line inlet and the annulus

∆Gb(hr) = ρglboost − ρg(lboost − hr) = ρghr (2.40)

The expression in Eq. 2.39 is similar to Eq. 2.35 simplified to yield a straightforward
expression

Mb(hr) =
ρ · lboost
Ab

+
ρ · (lboost − hr)

Aa
(2.41)

Mud return line

The flow rate through the subsea pump was assumed equal to the flow out from the MRL
as given by Eq. 2.33, and its dynamics can also be described by the model for average
flow dynamics in the MRL as described by Eq. 2.18 - 2.19, giving

MMRL(hr)q̇ssp = PSPMIN
(hr) + ∆PSPM (ωssp, qssp)− p0 − FMRL(qssp)−GMRL

(2.42)
where

MMRL(hr) =

∫ hSPMIN

hr

ρ(x)

Aa(x)
dx+

∫ hSPMOUT

0

ρ(x)

AMRL(x)
dx (2.43)

Here, PSPMIN
(hr) is the pressure at the SPM inlet. The frictional losses from the riser

level to the SPM inlet are neglected due to the unclear flow conditions of this section,
giving the SPM inlet pressure purely as a function of riser level,

PSPMIN
(hr) = p0 + ρg(hSPMIN

− hr) (2.44)

∆PSPM is the pressure rise produced by the subsea pump, calculated from the pump
head expression in Eq. 2.28, hSPMIN

and hSPMOUT
are the depth elevation respectively

of the subsea pump inlet and outlet, p0 is the atmospheric pressure (at the MRL outlet),
FMRL is the total steady-state frictional pressure losses in the mud return line, calculated
as described in Section 2.3, and GMRL is the constant hydrostatic steady-state pressure
generated by the volume of fluid in the assumed to be constant filled mud return line

GMRL = ρghSPMOUT
(2.45)

With the assumption of constant annulus and return line cross-sectional areas, the expres-
sion for the integrated density per cross-section in Eq. 2.43 can be written directly as

MMRL =
ρ · (hSPMIN

− hr)
Aa

+
ρ · hSPMOUT

AMRL
(2.46)
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2.5.3 State-space representation

The dynamical model for the complete system can be written as a state-space representa-
tion by collecting the expressions for the pressure and flow dynamics in all sections of the
DGD system. The dependence on variables of various expressions are written out here for
clarity, giving:

ṗp =
βd
Vd

(qp − qbit) (2.47a)

ṗb =
βb
Vb

(qbp − qboostIn) (2.47b)

ḣr =
qssp − (qbit + qboostIn + qtf )

Aa(hr)
(2.47c)

q̇bit =
1

Md(hr)
(pp − p0 − [Fd(qbit) + Fa(hr, qbit + qboostIn)] + ∆Gd(hr))

(2.47d)

q̇boostIn =
1

Mb(hr)
(pb − p0 − [Fb(qboostIn) + Fa(hr, qbit + qboostIn)] + ∆Gb(hr))

(2.47e)

q̇ssp =
1

MMRL(hr)
(PSPMIN

(hr) + ∆PSPM (ωssp, qssp)− p0 − FMRL(qssp)−GMRL)

(2.47f)

The system in Eq. 2.47 is nonlinear with p = 4 typical input variables to the system
(qp, qbp, qtf , ωssp) and n = 6 state variables, and is solvable for given initial conditions
provided that all unknown parameters are estimated.

2.6 Drilling Setup and Statoil Field Data

The purpose of the model in Eq. 2.47 is to function as a representation of the dominating
dynamics of a real DGD system. After gaining operational experience with dual gradient
drilling, field data from such drilling facilities have become available. The data of this
thesis are provided by Statoil ASA, recorded in the time interval 7th - 10th of October
2014 from drilling operations at an unspecified drilling rig in the Gulf of Mexico.

The raw field data were handed over in the MAT-file format for easy loading into the
workspace of MATLAB, and include flow and pressure measurements at various sections
of the drilling system, in addition to subsea pump speed set-points. The dynamic response
of the pump is claimed to be very quick. The engine is large, and the frequency con-
verter is assumed to ensure that the pump speed converges to its reference in a negligible
short transient period. Therefore, the set-point of the pump is applied as a pump speed
measurement for the rest of this thesis.
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Most data were recorded at a sampling frequency of 1 Hz. Pressure measurements at the
inlet and the outlet of the SPM are found through averaging two redundant measurements
to reduce potential measurement and calibration errors. A schematic of the Gulf of Mexico
DGD system with the measurement transmitters at their respective locations is shown in
Fig. 2.2. The locations of the state variables of Eq. 2.47a - 2.47f are indicated as black
circle marks together with the associated equation letter, and the corresponding state names
are listed in the text box. The available transmitters and the names and units of their
associated measurements are listed in Table 2.1. A list of priorly known system parameters
are given in Table 2.2.
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Figure 2.2: Schematic of the GoM Dual Gradient Drilling system.
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Table 2.1: DGD measurements from GoM provided by Statoil.

Transmitter Variable name Unit Description
FT 1 qp gpm Mud pump flow
FT 2 qbp gpm Booster pump flow
FT 3 qtf gpm Top fill flow
FT 4 qMRL gpm Return flow
PT 1 PSPMIN,1

psi SPM Inlet pressure 1
PT 2 PSPMIN,2

psi SPM Inlet pressure 2
PT 3 PSPMOUT,1

psi SPM Outlet pressure 1
PT 4 PSPMOUT,2

psi SPM Outlet pressure 2
PT 5 pr psi Riser pressure
SPM ωssp %(0− 100) Subsea pump speed (reference)

Table 2.2: List of known parameters of GoM DGD well.

Description Variable name Size Unit
Mud weight ρ 1.08 sg2

Riser ID riserID 19.5 inch

Drillpipe OD drillpipeOD 6.625 inch

Casing OD casingOD 13 5
8 inch

Mud return line ID mrlID 6 inch

Booster line ID boosterID 4 inch

Inlet to SPM hSPMin 350.30 mRKB3

Outlet of SPM hSPMout 350.30 mRKB

Riser pressure sensor hPRiser 352.10 mRKB

Booster line inlet boosterInlet 1494 mRKB

Wellhead Datum wellheadDatum 1510 mRKB

The flow rate and pressure variables of Table 2.1 are originally given in typical U.S. units,
namely gpm (US gallon per minute) and psi(a) (Pounds per square inch absolute). Also,
the diameters of Table 2.2 are given in the US length unit inch. For simplicity, all mea-
surements and parameters are converted into their SI unit counterparts, namely m3/s for
flow rate, Pa for pressure and m for diameters, before they are used in calculations. The
conversion factors from US units to their respective SI units are given in Table 2.3.

2Specific gravity (ratio of density of mud to density of water).
3Depth in meters relative to kelly bushing.
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Table 2.3: Conversion factors from US to SI units.

US unit SI unit Conversion factor
gpm m3/s 6.3090 · 10−5

psi Pa 6894.75729

inch m 0.0254

2.7 System Identification Feasibility

The state-space model for the complete GoM dual gradient drilling system in Eq. 2.47 can
earliest be used in simulation of the dynamics when all unknown parameters are identified.
However, in order to apply estimation methods to a given equation containing unknown
parameters, all variables included must be available as recorded field measurements, or at
least as good approximations. The subset of the states of the system in Eq. 2.47 that can be
simulated, therefore depends on what parameters that can be estimated from the available
field data from the GoM well.

The field data provide little information about the pressure conditions in vicinity of the
mud pump and the booster pump. Due to the fact that no knowledge is possessed of the
actual pressure measurements from periods when field data were collected, the isother-
mal bulk modulus of the mud cannot be estimated from measurements in any direct way.
Hence, simulation of the pressure dynamics in the drill string and the booster line described
by Eq. 2.47a - 2.47b will be difficult. This further has consequences for the possibilities
to simulate the flow dynamics out from the drill bit and at the booster inlet, since, without
pump pressure and booster pump pressure as available states or input variables, Eq. 2.47d
- 2.47e are also incomplete.

The terms of frictional pressure losses in the latter two equations are also highly uncertain.
Parameters like the mud viscosity and wall roughness needed to calculate frictional losses
from the Darcy-Weisbach equation in Eq. 2.22 for a given flow rate, are not listed in
Table 2.2. A prerequisite of applying the model is therefore that its unknown parameters
are identifiable. However, there are neither nearby pressure measurements nor flow rate
measurements to base estimates on. A model of the frictional losses will therefore be hard
to obtain both in the drill string, booster line and the annulus.

The riser level derivative hr in Eq. 2.47c is a function of the unavailable flow rate states,
qbit and qboostIn. However, assuming that the fluid accelerates close to homogeneously
as a stiff mass in the drill string and the booster line, the unavailable flow rates can be
approximated by their available input counterparts, qp and qbp, respectively. Adjustments
in the form of time delay terms to correct for unmodeled dynamics may later be proven
necessary to obtain sufficient accuracy. The topfill rate qtf is known from measurements,
and the cross-sectional area of the annulus is known from the diameter given in Table 2.2,
which is constant at all depths. Therefore, all information needed to simulate the riser level
dynamics is available.
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The variables of the equation for the flow rate dynamics through the subsea pump in Eq.
2.47f are either seemingly available states (hr, qssp) or the available input ωssp. All un-
known parameters are included in expressions that convey some relationship between the
MRL flow rate, subsea pump speed and some pressure measurement within the MRL. As
seen from the system setup schematic in Figure 2.2, both pressure, flow rate and pump
speed measurements are available in the MRL, making system identification of unknown
parameters likely feasible. With estimated unknowns available, it is possible to calculate
the subsea flow rate derivative, so that the system in Eq. 2.47f can be simulated.

2.8 Hydraulic Model of Mud Return Line for System Iden-
tification

The reasoning in Section 2.7 makes it clear that the remaining candidates of state equa-
tions feasible for parameter identification and simulation are those affiliated with the MRL
section, namely the riser level dynamics of hr, given by Eq. 2.47c and the SPM flow
dynamics of qssp as given in Eq. 2.47f. The subset of states are reproduced below for
convenience.

ḣr =
qssp − (qbit + qboostIn + qtf )

Aa(hr)
(2.48a)

q̇ssp =
1

MMRL(hr)
(PSPMIN

(hr) + ∆PSPM (ωssp, qssp)− p0 − FMRL(qMRL)−GMRL)

(2.48b)

The various expressions included in the MRL flow rate dynamics are for convenience
summarized below, gathered from the derivations in previous sections.

The pressure at the MRL inlet, PSPMIN
(hr) can be calculated directly from the riser level

as stated in Eq. 2.44

PSPMIN
(hr) = p0 + ρg · (hSPMIN

− hr) (2.49)

and the generated pump pressure is straightforwardly available from the pump head model
in Eq. 2.28

∆PSPM (ωssp, qssp) = ρg∆HSPM = ρg · (c0ω2
ssp − c1ωsspqssp − c2q2

ssp) (2.50)

The frictional pressure losses in the MRL are assumed to be the form of the second order
Taylor series polynomial as given by Eq. 2.26

FMRL = C · qssp +D · q2
ssp (2.51)

and the hydrostatic pressure contribution generated by the column of mud in the MRL was
given in Eq. 2.45

GMRL = ρghSPMOUT
(2.52)
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Furthermore, the integrated density per cross-section MMRL(hr) can be calculated as
given by Eq. 2.46

MMRL(hr) =
ρ · (hSPMIN

− hr)
Aa

+
ρ · hSPMOUT

AMRL
(2.53)

where all parameters are known from Table 2.2.

Because of no difference in elevation between the subsea pump inlet and outlet, (hSPMIN
=

hSPMOUT
), the constant hydrostatic term ρg·hSPMIN

from Eq. 2.49 cancels outGMRL in
Eq. 2.48b. Two terms of the atmospheric pressure at each side of the SPM also cancel out.
Also, applying the input flow variables qp and qbp as approximations for the unavailable
flow rate states qbit and qboostIn in the drill string and the booster line, the final expression
for the state-space system to be used as basis for system identification in Chapter 3 can be
stated as

ḣr =
qssp − (qp + qbp + qtf )

Aa
(2.54a)

q̇ssp =
1

MMRL(hr)

[
ρg · (c0ω2

ssp − c1ωsspqssp − c2q2
ssp)− (C · qssp +D · q2

ssp)− ρghr
]

(2.54b)

25



Chapter 2. Modeling

26



Chapter 3
System Identification of Parameters
not Relying on Dynamics

Now that a hydraulic model of the MRL dynamics in a dual gradient drilling system has
been derived, recorded field data can be applied to estimate the unknown parameters asso-
ciated with the models for the subsea pump performance and for the return line frictional
losses. The subsea pump module, on one hand, and the MRL flow section, on the other,
can be treated as two isolated subsystems with independent characteristics. Parameter es-
timation can therefore be performed in a separated fashion, consistent with the Divide &
Conquer principle.

The generated pump pressure as well as the frictional pressure losses were in the modeling
of Chapter 2 both assumed to be quantities that do not rely on dynamics. Also, since
the measurements are available as priorly sampled observations, the estimation problems
have a discrete-time nature. Therefore the identification will not require a continuous-time,
online estimation routine, but can be based on offline (non-recursive) steady-state analysis.

This chapter aims to identify all unknown parameters of the model in Eq. 2.54 that applies
to the DGD facilities in the Gulf of Mexico whence field data are provided by Statoil.
Along with the parameter estimation process, the chapter also addresses validation and
falsification of the assumed model structures, and proper modifications are suggested in
the case of unsatisfactory initial identification results.

3.1 Offline Least Squares Method

This section aims to give a brief introduction to one of the most basic yet widely used re-
sults in parameter estimation, namely the nonrecursive least squares method. The method
is described in a large amount of literature sources, e.g. Ioannou and Sun [2012], where
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the link to the continuous-time recursive least squares algorithm also is thoroughly dis-
cussed. The basic idea behind the method is fitting a mathematical model to a sequence of
observed data by minimizing the sum of squares of the difference between the observed
and computed data. The derivation of the method is summarized below.

Suppose a certain model structure M is parametrized using the parameter vector θ ∈
DM ⊂ Rd, yielding the set of candidate models

M∗ = {M(θ) |θ ∈ DM} (3.1)

The search for the best model then becomes a problem of estimating θ. An approach
to estimate parameters based on minimization of prediction-error is presented in Ljung
[1999], and results in a scheme to find the least-squares estimate (LSE) of the unknown
parameter vector. The reasoning behind the method is summarized below.

The prediction error given by a certain modelM(θ∗) is given by

ε(t, θ∗) = y(t)− ŷ(t|θ∗) (3.2)

When the data set ZN is known, these errors can be computed for t = 1, 2, ..., N . A good
model is one that is good at predicting, i.e. one that produces small prediction errors when
applied to the observed data. The prediction-error sequence can be viewed as a vector in
RN , whose size can be measured using any norm in RN . This can be formulated as

VN (θ,ZN ) =
1

N

N∑
t=1

l(ε(t, θ)) (3.3)

where l(·) is a scalar-valued positive function. The function VN (θ,ZN ) is now a function
of θ ∈ DM ⊂ Rd, and a natural measure of the validity of the model. The estimate θ̂N is
defined by the minimization of (3.3):

θ̂N = arg min
θ∈DM

VN (θ,ZN ) (3.4)

For a system with a linear regression model structure, the predictor can be written as

ŷ(t) = ϕ>(t)θ̂N (3.5)

which results in the model predictor error

ε(t, θ) = y(t)− ŷ(t) = y(t)− ϕ>(t)θ̂N (3.6)

Here, ϕ(t) is the vector of known signals, known as the regression vector. In this situation,
when the underlying model structure is linear in θ, a particularly simple case arises. Mea-
suring the size of the prediction-sequence error using the quadratic norm, l(ε) = ε2/2,
yields

VN (θ,ZN ) =
1

2N

N∑
t=1

(
y(t)− ϕT (t)θ̂N

)2

(3.7)
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This is the least-squares criterion for the linear regression in Eq. 3.5. It is quadratic
in θ, allowing the optimization problem to be solved analytically in closed form. The
estimate is re-denoted as θ̂LSN to emphasize the least-squares approach, and is found by
straightforward differentiation as

θLSN (ZN ) = arg min
θ∈DM

VN (θ,ZN ) =

[
1

N

N∑
t=1

ϕ(t)ϕ>(t)

]−1

1

N

N∑
t=1

ϕ(t)y(t) (3.8)

The solution only exists provided the inverse exist. This normally requires the input to
be persistently exciting (PE), meaning that a sufficient degree of variation in the observed
regression vector is needed. A comprehensive discussion of the concept is given in Ljung
[1999].

3.2 Masking of Confidential Measurements

The provided field data series from Statoil ASA represent sensitive information. For this
reason, identified models for the frictional losses in MRL or the subsea pump head cannot
be revealed in their original form. A convention is defined in order to transform variables
from their original units into percentage of some unknown value corresponding to 100 %,
where the unknown value definitions for the various variables are hidden for the reader.

The frictional losses, originally measured in Pa, are transformed into frictional losses
measured in percentage of some unknown value corresponding to 100 %. This conversion
can be written mathematically as

F [%] =
F [Pa]

F100%[Pa]
· 100 (3.9)

Similarly, all flow rates, originally measured in m3

s , are transformed into percentage of
some unknown value corresponding to 100 % according to

q[%] =
q[m3

s ]

q100%[m3

s ]
· 100 (3.10)

For pump head, the conversion is written out as

∆HSPM [%] =
∆HSPM [m]

H100%[m]
· 100 (3.11)

and for the riser level, the conversion is written

hr[%] =
hr[m]

hr100% [m]
· 100 (3.12)
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3.3 Frictional Pressure Losses in Mud Return Line

As described in Section 2.3, the frictional losses along any flow section can be described as
a function of the flow rate. The complete mud return line can be divided into three sections
where frictional losses could occur to a varying degree; the suction line, which is the inlet
to the SPM from the riser, the discharge line, which extends from the SPM outlet and up to
the rig floor, and lastly, the subsea pump module itself. The suction line is assumed to be
very short, which justifies neglecting frictional losses in this section. The frictional losses
in the pump are integrated in the model of the pump performance function as described in
Section 2.4, and will not be considered here. This section will therefore deal solely with
the frictional pressure losses at the outlet side of the SPM.

The available field data provide insight into flow and pressure conditions of the mud return
line, and a schematic of the relevant transmitters is shown in Figure 3.1. Two redundant
pressure transmitters are averaged to give a measure of the pressure at the outlet of the
SPM. The transmitter for the flow is placed at the flow line at rig level. The volume flow
rate through the MRL is assumed not to vary spatially within the MRL, meaning that
the flow rate at all locations is believed to match the measured volume flow at the rig
floor, qMRL, at any given time. Therefore the flow rate that will be used in the parameter
estimation is the actual measurement qMRL, but the friction model is still written as a
function of the flow rate through the subsea pump, which is state variable qssp.

The observed frictional pressure losses of the MRL can be calculated from the field data
in a straightforward manner. The pressure difference between the SPM outlet and the
MRL outlet must exclusively be a combination of hydrostatic difference and the frictional
losses. To calculate the size of the frictional losses from the field data at any given time,
the hydrostatic contribution from the discharge line, which is assumed to be constantly
filled with mud, must therefore be subtracted from the pressure difference, yielding

FMRL = PSPMOUT
− ρghSPMOUT

− p0 (3.13)

3.3.1 Least squares estimate of friction model coefficients

The second order polynomial model for the MRL frictional losses as a function of flow
rate was suggested in Eq 2.51. Substituting the flow state variable qssp with the flow
measurement qMRL in purpose of parameter estimation yields the model

FMRL = C · qMRL +D · q2
MRL (3.14)

The friction model in Eq. 3.14 is linear in its unknown coefficients, and can be restated
using a linear regression structure as described in Section 3.1. This yields

y(t) = ϕT (t)θ∗ (3.15)

where
ϕ(t) = [qMRL(t), q2

MRL(t)]> (3.16)
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Figure 3.1: Schematic of mud return line transmitters and associated measurements.

is the regression vector of known signals at time t,

θ∗ = [C∗, D∗]> (3.17)

is the unknown parameter vector and

y(t) = FMRL(t) (3.18)

is the measurement variable at time t. The linear regression employs the predictor

ŷ(t) = ϕ>(t)θ̂ (3.19)

that is linear in θ, enabling the use of the least squares method that is summarized by the
expression in Eq 3.8 in Section 3.1 in order to identify θLSN .

Prior to finding the LSE of the coefficients, all data in four consecutive field data series
{gom1, gom2, gom3, gom4} can be plotted to give an unpolished overall picture of the
relationship between the observed MRL flow rate and the observed frictional losses as
calculated from Eq. 3.13. The data span a time interval of almost 85 hours, sampled at a
frequency of 1 Hz, yielding the total number of 305820 data points. A few outliers outside
the frame are not shown in order to achieve appropriate zoom and increased readability.
The data points are plotted below in Fig. 3.2.
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Figure 3.2: Observed MRL flow rate plotted against the frictional pressure losses in the MRL (all
data).

Several observations can be made from this plot of raw data. A considerable amount of
sample points for a wide range of flow rates indicate that the total frictional losses are
negative, which of course is physically impossible. These data points originate from the
fact that the pressure at the SPM outlet is measured to be less than the pressure the full
hydrostatic column of mud would exert, which clearly means that the assumption of a
filled return line in the calculation of the frictional pressure losses does not hold. A likely
explanation for these erroneous friction observations is that the top of the discharge line
is somewhat emptied of mud due to the occurring difference in flow rate in and flow rate
out of the discharge line just as the pump shuts off, making the calculation of friction from
Eq. 3.13 invalid for some time instants. By disregarding these data points in the figure,
a quadratic relationship between flow rate and frictional losses is however indicated by
the rest of the data. These observations suggest that rejecting potentially erroneous or
inapplicable data is essential in order to obtain a data set that will yield a realistic model of
the frictional losses from least squares fitting. The applied data should be gathered from
time intervals during regular operations in the mud return line, requiring that:

• The pump is on (ωssp > 0).

• The pump generates a positive pressure increase (∆PSPM > 0).

• The pump flow is positive (qMRL > 0).

Data that don’t meet these requirements are ignored in the calculations of the frictional
model to follow. In addition, it is observed by manual inspection that several intervals
containing consecutive perfectly equal flow rate measurements or pump speed measure-
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ments exist, as if the measurements were stuck or have failed to update. Data that still
don’t belong to the collection of points that constitute the quadratic-like curve, tend to
belong to these sets of measurement, so these measurements are removed as well. The
remaining 52579 data points are plotted in blue together with the underlying plot of the
full data series marked by red in Fig. 3.3 below.

Figure 3.3: Observed MRL flow rate plotted against the frictional pressure losses in the MRL.

It is evident from quick visual inspection that this screening of inapplicable data yields a
seemingly quadratic relationship between the flow rate and the frictional pressure losses
in the MRL. Also, a huge majority of the sample points indicating negative friction have
been discarded. There are still remaining blue sample points that indicate negative fric-
tional losses, especially for low flow rates. Possible explanations are calibration errors
of the pressure transmitters and unmodeled high-frequency fluctuations in pressure due to
turbulence connected to pump shut-off and shut-on.

MATLAB provides the built-in least-squares solver lscov, which finds the least-squares
solution x to the linear system of equations Ax = b. For this problem of estimating the
frictional coefficients, A will be a matrix of dimension (n × d), where n is the length of
the series of applied measurements and each row i is the regression row vector ϕ(i) of
size d = 2, as given by Eq. 3.16. Each index i in the vector b is y(i), as given by Eq.
3.18. The unknown coefficients are returned in the vector x = θLSN . The function also
returns the estimated standard errors of x, and the mean squared error. Complementary
documentation of the lscov function is readily available in MathWorks [2015c].

A MATLAB function was written to select the applicable field data from time intervals of
regular operations and calculate the least squares estimates of the friction model coeffi-
cients. The plot of the data points applied in the least squares estimation along with the

33



Chapter 3. System Identification of Parameters not Relying on Dynamics

resulting friction model curve is shown below in Figure 3.4.

Figure 3.4: Frictional pressure losses in the MRL as a function of flow rate, given by the model in
Eq. 3.14.

The mean squared error for the model is found to be

MSE = 21.89 (3.20)

3.3.2 Least squares estimate of friction model coefficients assuming
time delay in flow rate measurement

In the introduction of Section 3.3, the assumption of flow rate that does not vary spatially
within the MRL, was restated. The applied argument up until now has been that density
effects in flow are likely only to have minor effects for relatively low fluid velocities,
making the fluid accelerate homogeneously as a stiff mass. However, the distance between
the transmitter and a random reference point along the return line could in principle give
rise to some time delay in the measurement of the flow rate of that point due to pressure
transients that propagate as pressure waves in the fluid along its path. Also, unmodeled
dynamics are connected the Non-Newtonian properties of the oil-based mud, which cause
some uncertainty in the behavior of the flow through the MRL. Due to the spread in the
friction measurements for each flow rate, these assumptions should be set to the test.

A new hypothesis is the following: The frictional losses should not be fitted to the return
flow measurement qMRL of the same time instant, but to some unmeasured flow rate
q̂MRL at an unknown point in the middle of the MRL that can be approximated as the
measurement qMRL at an later time instant (t+ θfric), yielding

qMRL(t) = q̂MRL(t− θfric), θfric > 0 (3.21)
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or equivalently
q̂MRL(t) = qMRL(t+ θfric), θfric > 0 (3.22)

The following modification to the model in Eq. 3.14 is therefore suggested

FMRL(t) = C · qMRL(t+ θfric) +D · q2
MRL(t+ θfric) (3.23)

The validity of the model in Eq. 3.23 can be tested by calculation of the MSE value of the
least squares estimation for various values of the time delay θ. For time delay values in the
set {θfric ∈ Z : θfric ∈ [0, 30]}, the flow rate measurement vector is shifted forward with
θfric seconds in the calculation of FMRL, and an individual least squares fit is performed
for each value of θfric. The MSE values for the given range are plotted below in Figure
3.5.

Figure 3.5: Mean squares error from the LSE fit of the model in Eq. 3.23 for various values of the
time delay θfric.

The lowest MSE values is obtained for θfric = 13 s and is returned as

MSE = 14.79 (3.24)

The unmeasured flow rate q̂MRL is therefore redefined more specifically as

q̂MRL(t) = qMRL(t+ 13) (3.25)

The plot of time shifted flow rate data q̂MRL against the calculated frictional losses applied
in the least squares estimation is shown below in Fig 3.6 along with the resulting friction
model curve.
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Figure 3.6: LSE fit of the model in Eq. 3.23 for time delay θfric = 13 s.

The LSE of the coefficients of the model in Eq. 3.23 are close to identical to those obtained
in for the model in Eq. 3.14. However, by visual inspection it is obvious that this modified
model seems to represent an appreciable and reasonable improvement, as the sample points
are much tighter fitted around the found model curve, giving rise to a lower MSE value.

Still, due to the linear coefficient C being negative-valued, the fitted model yields negative
frictional losses for a certain interval of low flow rate values. The set of data points in
Figure 3.6 suggests however by visual inspection that the frictional pressure losses should
be a function strictly increasing with flow. The negative value of the linear coefficient
seems to result from the restrictions in curvature of a second order polynomial. The time
delay modification is kept in the model, but additional flexibility is achieved by replacing
the linear term with a constant term to open for offset in the model due to calibration errors
in the pressure measurements. In addition, a third order term is introduced for increased
curvature flexibility. This yields the modified model

FMRL = B +D · q̂2
MRL + E · q̂3

MRL (3.26)

Using a linear regression structure, this yields the new regression vector at time t

ϕ(t) = [1, q̂2
MRL(t), q̂3

MRL(t)]> (3.27)

and the unknown parameter vector

θ∗ = [B∗, C∗, D∗]> (3.28)
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Calculation of the least squares estimate of the coefficients yield the MSE value of

MSE = 14.61 (3.29)

which is a slight improvement compared to the value from the quadratic model found in
Eq. 3.24.

The friction model curve is shown below in Figure 3.7 together with the applied data
points of the least squares estimation. The function is strictly increasing due to the positive
coefficients of the quadratic and cubic terms, and will serve as the final outcome of this
identification process of the frictional losses model in the MRL.

Figure 3.7: LSE fit of the frictional losses model in Eq. 3.26.

3.4 Subsea Pump Performance Characteristics

As described in Section 2.4, the subsea pump can be characterized by its pump perfor-
mance curve, which is the mathematical model of the generated pump head as a function
of the pump rotation speed and mud flow rate through the pump.

The available field data provide detailed insight into the conditions in the mud return line.
A schematic of the transmitters along the MRL section, relevant to the subsea pump per-
formance, is shown in Figure 3.8. Measurements from redundant pressure transmitters are
averaged to give an accurate measure of the pressure both at the inlet (PSPMIN

) and the
outlet (PSPMOUT

) of the SPM. Since the inlet and outlet are placed at the same elevation
depth, the generated pump pressure ∆PSPM is easily calculated as the pressure increase
from the inlet side to the outlet side.
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Figure 3.8: Schematic of Mud Return Line transmitters and associated measurements.

As demonstrated in Section 3.3, it eventually seemed beneficial to model the frictional
pressure losses in the MRL as a function not of the flow measurement qMRL, but of some
unmeasured flow rate q̂MRL at some unspecified point in the MRL that could be approx-
imated as the measured qMRL at a later time instant (t + θfric). This modification was
based on rejection of the initial assumption that the flow rate does not vary spatially within
the MRL. It is reasonable to assume that a similar modification applies to the modeling
of the pump performance characteristics. The initial assumption in connection to subsea
pump performance is that the flow rate through the subsea pump, qssp can be estimated as
the unmeasured flow rate q̂MRL, mathematically stated as:

qssp(t) = q̂MRL(t) = qMRL(t+ 13) (3.30)

Together with logged measurements of the subsea pump speed, ωssp, the pressure and flow
measurements provide all the components of information needed to find a characterization
of the subsea pump curve. The assumed function for the pump head was given in Eq. 2.28
in Chapter 2 and is reproduced below for convenience.

∆HSPM (ωssp, qssp) = c0ω
2
ssp − c1ωsspqssp − c2q2

ssp (3.31)

The model in Eq. 3.31 takes a form that allows for restating using a linear regression model
structure, where the unknown parameters and the known measurements are collected in
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respective vectors. This yields
y(t) = ϕT (t)θ∗ (3.32)

where
ϕ(t) = [ω2

ssp(t),−ωssp(t)qssp(t),−q2
ssp(t)]

> (3.33)

is the regression vector of known signals at time t,

θ∗ = [c∗0, c
∗
1, c
∗
2]> (3.34)

is the unknown parameter vector and

y(t) = ∆HSPM (t) (3.35)

is the measurement variable at time t. The linear regression employs the predictor

ŷ(t) = ϕ>(t)θ̂ (3.36)

that is linear in θ, enabling the use of the least squares method that was described in Section
3.1 in order to find the vector of the unknown parameters.

3.4.1 Least squares estimate of pump characteristics coefficients

Before GoM field data is applied to solve for the least-squares estimates of the pump curve
coefficients, the same rejection of inapplicable data is performed as in connection to the
estimation of the friction model.

Similar to the friction model estimation, the build-in least-squares solver lscov in MAT-
LAB is used to find the least-squares solution x to the linear system of equations Ax = b.
For this problem of estimating the pump model coefficients, A will be a matrix of dimen-
sion (n × d) where n is the length of the series of applied measurements and each row i
is the regression row vector ϕ(i) of size d = 3, as given by Eq. 3.33. Each index i in the
vector b is y(i), as given by Eq. 3.35. The unknown coefficients are returned in the vector
x = θLSN .

A MATLAB function was written to select the applicable field data and calculate the least
squares estimates of the pump characteristics coefficients. The mean squared error for the
model is found to be

MSE = 1.3907 (3.37)

Figure 3.9 shows the pump curves for an evenly spaced set of values for the pump rotation
speed ωssp in the interval 30%− 70% of full rotation speed, where the most field data are
found. The original field data points in vicinity of each speed value (ωssp(i)± 0.1)% are
plotted with matching color.

Immediately a visual inspection of Fig. 3.9 reveals that this least-squares fit does not seem
to yield an appropriate pump head model, as the deviation between the pump curves and
the corresponding field data points are quite large for many rotation speeds. This can be
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Figure 3.9: Pump performance curves obtained by LSE fitting of the model in Eq. 3.31.

explained by the coefficient c2 being negative, which gives rise to pump curves that are
convex, due to the positive sign of the double derivative of the head function w.r.t. flow
rate:

∂2∆HSPM

∂q2
ssp

= −2c2 > 0 (3.38)

This essentially means that the pump head will eventually start to increase with higher flow
rates. This is neither physically realistic nor consistent with the theory from Section 2.4,
which states that there is a maximum flow rate corresponding to each given pump speed,
at a point where the head is zero, referred to as the pump’s free delivery. Hence, a correct
pump curve cannot be convex. All together, this argues in favor of rejection of this model
and the found pump curves in Figure 3.9.

Important for the accuracy and reliability of any least squares fit is the richness of the
measurement data, as discussed in Section 3.1. For a given pump speed, there should
ideally exist flow rate data to span the whole interval between very low flow rate up until
significant flow. For the data used in this least-squares fitting, it is obvious that most points
for each given pump speed is gathered within a small flow interval. This creates a high
level of uncertainty in the form of the curve. A modified attempt to obtain a better fit of the
model is to base the least squares estimate solely on data of pump speeds which includes
corresponding flow rate measurements that span a larger interval. From Fig. 3.9 it can be
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3.4 Subsea Pump Performance Characteristics

noticed that this seem to yield for the low rotational speeds. By further inspection, a figure
of ωssp plotted against qssp shows that richer flow data exist for ωssp ∈ [20, 40]. However,
only using these data in the fit does not contribute to a more valid result, as the resulting
pump curves are still convex. This attempt will not be discussed in further detail.

To obtain a least-squares fit that yields a more realistic model for the pump curves, ad-
justment to the model structure in Eq. 3.31 should be considered. The distance between
adjacent pump curves in Fig. 3.9 from the least squares fit seems larger than the field data
suggest, an observation which motivates us to try to reduce the order of the terms in the
model. By introduction of new degrees of freedom in the values of the exponents, it should
be possible to find least-squares fitted pump curves that are concave and decreasing until
the flow rate at the pump’s free delivery point. An approach to find a modified polynomial
model is outlined in the subsection to follow.

3.4.2 Search for modified pump characteristics model

The pump curve model is modified to

∆HSPM (ωssp, qssp) = c0ω
n0
ssp − c1ωsspqssp − c2qn2

ssp (3.39)

which gives two new DOFs in the unknown exponents, n0 and n2.

For a given set of exponent values (n0, n2), the LSE coefficients can be found easily by
performing a least squares fitting the same way as in Subsection 3.4.1. In order to find the
exponent values of the most appropriate model in a reasonable amount of time, a search
should be structured mathematically. One way of doing this is to employ a numerical
optimization algorithm to perform a search in direction of the set of exponent values that
yield a least squares fitted model which at best replicates the observed data. This can be
obtained by defining the mean squared error as the objective criterion in the optimization
routine to be minimized. Since no expression for the derivative of the the MSE is obvious,
a derivative-free method is appropriate. The MATLAB function fminsearch applies the
Nelder-Mead method to find a local minimum of a given objective function.

The Nelder-Mead method is described in detail in Nocedal and Wright [2006], and is
roughly summarized here for convenience. The method is popular due to its intuitive
nature, and works by keeping track of n + 1 points of interest in RN , whose convex hull
forms a simplex. In each iteration, the algorithm seeks to remove the vertex with the worst
objective value and replace it with another point with a better value. The new point is
obtained by reflection, expansion or contraction of the simplex. Documentation of the
fminsearch function is readily available in MathWorks [2015a].

Nelder-Mead is an unconstrained optimization routine, which in principle will perform the
search for (n0, n2) in the full R2. However, the main reason for considering the change
in the pump model of Eq. 3.31 in the first place, was to obtain a pump characteristics
expression which ensured that the head was decreasing in flow rate and concave in shape.
Thus some measures must be taken to constrain the optimization routine from choosing
exponents that yield unrealistic pump characteristics.
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The properties of a monotonically decreasing and concave shape can be translated into
constraints on the unknown parameters in the expression in Eq. 3.39. First, the negative
derivative requirement yields that

∂∆HSPM (ωssp, qssp)

∂qssp
=
∂
(
c0ω

n0
ssp − c1ωsspqssp − c2qn2

ssp

)
∂qssp

(3.40)

= −c1ωssp − n2c2q
n2−1
ssp < 0 (3.41)

The expression must hold in the limit as qssp → 0, yielding that c1 > 0. In the limit that
ωssp → 0, the expression must also hold, meaning that n2c2 > 0.

Secondly, the concave property is ensured if the second derivative is less than zero, which
requires that

∂2∆HSPM (ωssp, qssp)

∂q2
ssp

=
∂
(
−c1ωssp − n2c2q

n2−1
ssp

)
∂qssp

(3.42)

= −(n2 − 1)n2c2q
n2−2
ssp < 0 (3.43)

Assuming that the requirement n2c2 > 0 has already been met means that n2 > 1 is also
required for the pump curve to be concave. Since n2 > 1 > 0, this also means that c2 > 0
to satisfy the inequality n2c2 > 0. To summarize, this reasoning yields the following
constraints

c1, c2 > 0, n2 > 1 (3.44)

The search for an optimized model structure can be summarized as the following proce-
dure:

Algorithm to search for optimal exponents of the pump curve model in Eq. 3.39
1. Start search with a guess of (n0, n2).

2. Find least squares estimates of pump head model coefficients with current exponent
values and calculate MSE. Set objective function value to MSE.

3. Ensure that pump curve shape criteria in Eq. 3.44 are complied. Change objective
function value to infinity if the criteria are not held.

4. Let optimization routine choose (n0, n2) of next iteration based on the information
of the new objective value.

5. Repeat points 2-4 until optimization converges to a point (n∗0, n
∗
2).

For a proper initial guess of exponent values, the resulting search path of the algorithm is
shown in Fig. 3.10.

With the optimized exponents, the LSE fitting yields the MSE = 0.071. The resulting
pump performance curves are shown below in Figure 3.11.
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Figure 3.11: Pump performance curves for the LSE fitted model in Eq. 3.31 with optimized expo-
nents.

By comparison of Fig. 3.11 and Fig. 3.9, the improvement of the modified model is
conspicuous. The mean squared error is significantly lower, yielding a seemingly very
accurate model of the pump performance. This model will serve as the final outcome of
this identification process of the pump performance characteristics.
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3.5 Total System Description of Mud Return Line Dy-
namics

The various findings from the system identification process of this chapter have altered
the structure of the dynamical models that was used as a basis for the system description
somewhat. The original state-space system from Eq. 2.54 that rounded off the previous
chapter can now be written in the modified form that will be used in the simulations of the
system dynamics in Chapter 4. The system can be written as

ḣr =
qssp −

qIn︷ ︸︸ ︷
(qp + qbp + qtf )

Aa
(3.45)

q̇ssp =
1

MMRL(hr)

[
ρg · (c0ωn0

ssp − c1ωsspqssp − c2qn2
ssp)− (B +D · q2

ssp + E · q3
ssp)− ρghr

]
(3.46)
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Chapter 4
Simulation of Dynamics in Mud
Return Line
Chapter 3 dealt with identification of the subsea pump performance characteristics and the
model for the MRL frictional pressure losses. As noted, the prior assumption of flow rate
not varying spatially within the return line was repudiated, resulting in a modeled time
delay between the flow rate measurement, qMRL and the flow through the subsea pump,
qssp. Also, both the assumed model structures were somewhat altered, as they initially
lead to identified models that replicated the measured outcomes poorly and gave rise to
other unphysical system properties.

The dynamics of the system in Eq. 3.45 - 3.46 can now be simulated with input vari-
ables available from the recorded field data to produce times series of the state in the
model. The consistency between the simulated state variables and their measured counter-
parts will function as a natural measure of the validity of the identified model. Potential
discrepancies between simulation results and field data measurements could encourage
modification or expansion of the model until the dominating dynamics seen from the field
data are captured in the model to an appropriate degree of accuracy.

Before the complete dynamics are simulated as a whole, the riser level dynamics and the
subsea pump flow dynamics will be simulated separately in order to better inspect the
validity of each of the obtained model equations.

4.1 Riser Level Dynamics Simulation

The dynamics of the MRL in Eq. 3.45 - 3.46 are stated in a state space representation
which is convenient in order to utilize the numerical solvers included in MATLAB, where
the most widely used in the default solver ode45(). Its inner workings are outside the
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Chapter 4. Simulation of Dynamics in Mud Return Line

scope of this thesis, but the documentation is readily available in MathWorks [2015d].

In order to simulate the riser level separately, the flow rate qssp must be provided as an
input from the measured field data. The flow rates entering the riser are combined into
the input variable qIn = qp + qbp + qtf . The continuous riser levels dynamics of Eq.
3.45 are implemented as the MATLAB function hr_dynamics(t,tObs,uData). The
function is reproduced below and should be self-explanatory to most readers.

1 function Dhr = hr_dynamics(t, tgomData, uData)
2

3 global riserID drillpipeOD
4

5 % Input variables found from interpolation of data measurements at query point t
6 qssp = interp1(tgomData,uData(:,1),t,'linear');
7 qIn = interp1(tgomData,uData(:,2),t,'linear');
8

9 % Annulus cross-sectional area
10 Aa = pi*((riserID/2)ˆ2 - (drillpipeOD/2)ˆ2); % [mˆ2]
11

12 % hr derivative
13 Dhr = 1/Aa*(qssp-qIn);
14

15 end

The following code excerpt shows an implementation for numerical simulation of the given
hr_dynamics.m

1 [t,hrSim] = ode45(@(t,hrSim) hr_dynamics(t,tObs,uData), tspan, hrSim0);

The code instructs MATLAB to simulate hr_dynamics over the time horizon tspan
with the initial condition hrSim. The output of the function is time vector t and the state
vector hrSim. The numerical simulation is performed within the written MATLAB func-
tion sim_riser_level.m for tspan = [14000 20000], with initial condition
being the measurement of the riser level at time t = 14000s, easily approximated from
SPM inlet pressure, PSPMIN

, as given below

hr = hSPMIN
− PSPMIN

− p0

ρg
(4.1)

The simulated riser level and observed measurement are plotted in Figure 4.1 together
with input flow rate variables. It can easily be observed that the simulated riser level is
not consistent with the measured, but the same trends can be seen. This indicates that the
structure of the differential equation for the riser level is correct, but there might be some
calibration offset in the flow rate measurements.

To obtain a very consistent result in simulation of the riser level alone, should also not be
expected. As the derivative is not a function of hr itself, there is no natural feedback to
restrain the state from drifting apart from the measurement in the case of inputs from badly
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Figure 4.1: Simulation of the riser level.

calibrated flow rate measurements. It must therefore be expected that without corrective
feedback from an observer, open loop simulations of the obtained model will yield state
time series that are somewhat inconsistent with recorded measurements. Corrective actions
will not be taken before the complete MRL dynamics are simulated.

4.2 Subsea Pump Flow Dynamics Simulation

Simulation of the SPM flow rate, qssp is performed in a very similar way the simula-
tion of the riser level. The riser level hr, is now provided from the measurement data,
calculated as given by Eq. 4.1, along with the subsea pump speed ωssp as inputs to the
system. The continuous dynamics of Eq. 3.46 are implemented in the MATLAB function
qssp_dynamics.m. The function is reproduced below:

1 function Dqssp = qssp_dynamics(t, qssp, tgomData, uData, cCoeffs, cExps, pFric)
2

3 global g rho riserID drillpipeOD mrlID hSPMin hSPMout q100 H100 F100
4

5 % Mask parameters in [%]
6 qssp = qssp/q100*100;
7

8 % Input variables found from interpolation of data measurements at query point t
9 hr = interp1(tgomData,uData(:,1),t,'linear');

10 wssp = interp1(tgomData,uData(:,2),t,'linear');
11

12 % Pump pressure produced
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13 c0 = cCoeffs(1);
14 c1 = cCoeffs(2);
15 c2 = cCoeffs(3);
16 n0 = cExps(1);
17 n2 = cExps(2);
18 DeltaPspm = rho*g*(H100/100)*(c0*wsspˆn0 - c1*wssp*qssp - c2*qsspˆn2);
19

20 % Required system head
21 B = pFric(1);
22 D = pFric(2);
23 E = pFric(3);
24 Fmrl = (F100/100)*(B + D*qsspˆ2 + E*qsspˆ3);
25 Gtot = rho*g*hr;
26

27 % Integrated density per area
28 Aa = pi*((riserID/2)ˆ2 - (drillpipeOD/2)ˆ2); % [mˆ2]
29 Amrl = pi*(mrlID/2)ˆ2; % [mˆ2]
30 Mmrl = rho/Aa*(hSPMin - hr) + rho/Amrl*hSPMout; % [kg/mˆ4]
31

32 % qssp derivative
33 Dqssp = 1/Mmrl*(DeltaPspm - Fmrl - Gtot);
34

35 end

The following code excerpt shows an implementation for numerical simulation of the given
qssp_dynamics:

1 [t,qsspSim] = ode45(@(t,qsspSim) qssp_dynamics(t,qsspSim,tObs,uData, ...
2 cCoeffs,cExps,pFric), tspan, qsspSim0);

The code instructs MATLAB to simulate qssp_dynamics in a similar fashion as with the
riser level in Section 4.1. Additional input variables are the identified coefficients of the
friction model, pFric, along with the coefficients, xCoeffs, and the exponents, xExps,
of the pump model. The numerical simulation is performed within the the written MATLAB
function sim_flow_MRL_dynamic_eq.m for tspan = [14000 20000]with ini-
tial condition being the measurement of the flow rate at time t = 14000 s.

The simulated and observed subsea pump flow rate are plotted in Figure 4.2. To a much
larger degree than in the case for the riser level, the simulated flow rate correspond to the
observed measurement. In contrast to the riser level dynamics, there exist natural feedback
in the calculation of the flow rate derivative. The high level of correspondence is a good
indication that the inner structure of the differential equation for the subsea pump flow rate
yields a very representative description of the real flow dynamics in the GoM dual gradient
drilling system.

In Kaasa et al. [2011], it is argued that the accuracy of the integrated density over area
parameter M is not crucial, since it is related to the fast dynamics of the flow rate, which
in most cases can be neglected. The parameter MMRL was found to be in magnitude
107, which should correspond to very quick dynamics. To check this, the system can be
simulated for steady state conditions by assuming q̇ssp = 0, which converts the dynamic
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Figure 4.2: Simulation of the flow rate through the subsea pump qssp

equation in Eq. 3.46 into an implicit relationship for qssp:

ρg · (c0ωn0
ssp − c1ωssp · qssp − c2qn2

ssp)︸ ︷︷ ︸
∆PSPM

= (B +D · q2
ssp + E · q3

ssp)︸ ︷︷ ︸
FMRL

+ ρghr︸︷︷︸
Gtot

(4.2)

This implicit equation can be easily solved in MATLAB, where the solution is found by ap-
plying the build-in implicit solver fzero.m. The function applies the bisection method
to find a root of any nonlinear expression based on an initial guess for the solution. A com-
prehensive description of this method is outside the scope of this thesis, but documentation
of the function is readily available in MathWorks [2015b].

A MATLAB function was written to solve for the time series of qssp based on the implicit
equation in Eq. 4.2. The implementation for numerical solving of the equation is omitted
in the text due to its structure very similar as the implementation of the dynamic simulation.

The steady-state system is simulated for the same time horizon and for the same input
variable from measurements as in the dynamic simulation. Figure 4.3 shows the simulated
state variable qssp from the steady-state simulation along with the dynamical simulated
output.
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Figure 4.3: Simulation of the flow rate through the subsea pump qssp with the dynamic equation of
Eq. 3.46 (above) and the static equation of Eq. 4.2 (below).

As seen from the plot, the simulated time series are in principle inseparable from one
another, confirming that the dynamics in the SPM flow rate are negligible.

4.3 Simulations of Complete MRL Dynamics

Now that the dynamics of the riser level and the MRL flow rate have been simulated
separately, the state equations should be simulated simultaneously to test the validity of
the complete identified MRL dynamics. Similarly as for previous sections, the continuous
dynamics are implemented as a MATLAB function to be solved with the ode45() solver.
Due to the similarity with the separate dynamics implementations, MRL_dynamics are
omitted in the text.

A MATLAB function was written to simulate the complete dynamics of Eq. 3.45 - 3.46.
A figure of the observed and simulated states is shown below in Figure 4.4. Comparing
with the simulations of the separate riser dynamics in Figure 4.1 and the separate flow
rate dynamics in Figure 4.2, the simulation of the complete dynamics yields much more
consistency between observed and simulated riser level state, but some less consistency
between observed and simulated flow rate state. Due to the interconnection of the two
states in one simulation, the previously large deviation from observations in the riser level
state is handled by the closed-loop structure of the flow rate dynamics. The compromise
is some increased inaccuracy of the simulation of the flow rate.
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Figure 4.4: Simulation of the complete dynamics of Eq. 3.45 - 3.46.
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Chapter 5
Conclusion
The aim of this thesis was to investigate a real dual gradient drilling system in the Gulf
of Mexico through modeling and application of field data in order to estimate unknown
parameters. Initially, a model for the complete system was derived to a large extent based
on general and well-known modeling assumptions known from prior work on managed
pressure drilling as well as dual gradient drilling.

In the following, system identification tools were applied to estimate the unknown param-
eters in the expressions for the frictional pressure losses in the mud return line and for
the head of the subsea pump. Initially, both the identified models failed to replicate the
observed measurements in a satisfactory manner. Also, the obtained models gave rise to
several unphysical characteristics, like negative frictional losses and increasing pump head
for increasing flow, which argue in favor of rejection of the models. Slight modifications
to the model structures were suggested. This lead to a much improved statistical properties
of the models and reasonable results.

Simulation of the system dynamics yielded state outputs that replicated the observed mea-
surement to a satisfactory degree. It should be expected, that due to the many simplifying
assumptions made in the modeling section, the identified model will not be able to repro-
duce a wide range of dynamic effects. Therefore, although all transient effects are not
expressed by the identified system, the model can be taken as sufficiently accurate for
control design and considered validated.

The main contribution of this thesis is to derive a DGD model and to validate it using
system identification tools. An identified system model serves as a necessary prerequisite
for experimenting with controller design and tuning. The obtained model could therefore
be an important and valuable contribution to ease controller tuning offshore, which saves
valuable rig time.
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