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Bakgrunn 

In drilling operations performed in the oil and gas industry it is important to control pressure of the drilling fluid, also 

called drilling mud. Drilling mud is used primarily for removing cuttings from the well. It is injected at high pressure at 

the top of the drill string. At the end of the drill string, called the drilling bit, the drilling mud gets into the annulus and 

then rises together with cuttings up to the surface. At the surface, the cuttings are separated from the mud and the cleaned 

mud is reinjected into the drill string for further circulation. Apart from removing cuttings from the well, drilling mud is 

also needed for pressurizing the well. If the pressure in the well is too low, the pressure of the surrounding rock formation 

can make the well collapse and the drill string gets stuck. At the same time, if the pressure exceeds a certain threshold, it 

may fracture the well leading to costly consequences. For this reason, it is important to control mud pressure in the well. 

In managed pressure drilling (MPD) operations, the well is sealed at the top and the pressure is controlled by 

opening/closing the valve that releases the mud at the top of the well. This technology has proven successful when drilling 

from stationary platforms. When drilling from a floater, however, the heaving motion of the floater causes major pressure 

fluctuations in the well, which must be compensated for using automatic control. Several studies have been performed in 

the search for a remedy for the problem, all considering main pump shutdown during connections. The objective of this 

project is to investigate the effect of continuous circulation on the pressure oscillations. In order to do so, a substantial 

revision of our models is needed. The following points should be addressed by the student: 

 

Oppgave: 
 

1) Review prior work on the heave-problem, and in particular work on modelling. 

2) Mathematical model: suggest a mathematical model incorporating drill string flow, annulus flow, drill string 

elasticity and appropriate boundary conditions. Implement the model in MATLAB/SIMULINK using an 

appropriate spatial discretization scheme. 

3) Perform a simulation study that demonstrates the capabilities of the model. Explore different scenarios and study 

downhole pressure oscillations the effect of continuous circulation on pressure. 

4) If time permits, do one or more of the following: 

a. Implement an appropriate user interface for the model. 

b. Set up a case for simulating the laboratory setup at the petroleum department. 

c. Test control strategies for attenuating heave pressure oscillations (several methods are suggested in the 

literature, but you may suggest your own as well). 

5) Write a report. 
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Abstract

In the oil and gas industry a new technology known as Managed Pressure Drilling (MPD)
is emerging, allowing for faster and more accurate well pressure control. MPD differs
from conventional drilling methods by closing the well using a controlled choke, often in
combination with a backpressure pump allowing for automatic pressure control. When
the drill string is extended the pipe is typically sealed of and detached from the MPD
system. This process is time consuming and limits pressure control, because the mud
flow is stopped. The Continuous Circulation System was developed to allow for better
pressure control during connections and reducing connection time. For these technologies
to become viable for use on floating rigs advanced control algorithms are necessary. To
be able to test such system simulators are necessary. In this thesis a transmission line
containing the mud column in the pipe and the annulus coupled through an elastic pipe is
presented in the frequency domain. A set of Robin boundary conditions representing CCS
is developed and coupled with a pressure node. A Ritz approximation is developed in order
to discretize the transmission line, and the Laguerre-Gram model order reduction method
is applied to obtain rational transfer function approximation. Some likely numerical issues
are discussed with this method.
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Sammendrag

I olje og gass industrien har en ny og muliggjørende teknologi kalt Kontrollert Trykk Bor-
ing (Managed Pressure Drilling), eller MPD, begynt å få fotfeste. Ved bruk av denne
teknologien kan brønntrykket kontrolleres raskere og mer nøyaktig. Forskjellen på kon-
vensjonell boring og boring med MPD er at brønnen er forseilet og trykket justert au-
tomatisk ved bruk av pumper. Under forlenging av borestrengen blir den koblet vekk fra
brønnen og MPD-systemet, noe som tar mye tid. Under denne prosessen blir også da
flyten av borevæske stoppet, noe som vanskeligjør kontrollen av brønntrykket. Ett Kon-
tinuerlig Flytsystem (Continuous Circulation System), eller CCS, har blitt utviklet for å
redusere tilkoblingstiden og å opprettholde flyten av borevæske. For at denne teknolo-
gien skal kunne brukes kommersielt på flytende rigger må avanserte reguleringsmetoder
brukes, for dette trengs gode matematiske modeller. I denne oppgaven er en transmission-
slinje som modellerer borevæsken i drillstrengen og ringrommet, og er koblet sammen
via ett elastisk rør presentert i frekvensplanet. Ett sett med Robin grensebetingelser, som
tar hensyn til kontinuerlig flyt, blir modellert. Grensebingelsene nedhulls blir så koblet
via en trykknode, slik at trykk og flyt blir koblet. En Ritz tilnærming blir utledet for å
diskretisere transmissionslinjen, og en Laguerre-Gram modellreduksjon blir brukt for å
finne rasjonelle transferfunksjoner som tilnærmer transmisjonslinen. Noen sannsynelige
numeriske problemer blir også diskutert.
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Chapter 1
Introduction

1.1 Motivation

During drilling operations performed in the oil and gas industry it is important to control
the pressure of the drilling fluid, called drilling mud or just mud. One of the primary
tasks of the drilling mud is to remove cuttings from the well. The mud is injected at high
pressure into the pipe and flow down and through the drill bit continuing back up the
annulus carrying cuttings up to the surface. At the surface a separator is used to remove
the cuttings from the mud, and the cleaned mud is reinjected into to the system.

In addition to remove cuttings from the well, drilling mud is used to pressurize the well
in order to maintain its integrety. If the pressure in the well becomes to low, the pressure
in the surrounding rock formation may cause hydrocarbons to leak into the drilling mud,
or a well collapse. Similarly if the pressure becomes to high the well might fracture, that
can lead to loss of circulation or hydrocarbons leaking into the drilling mud. In any case
costly consequences are almost certain.

In managed pressure drilling (MPD) operations the well is sealed topside, making a
closed system, where the pressure is controlled using the annulus release valve. For more
about different techniques and tools utilized in MPD operations the reader is referred to the
master thesis by Martin (2006). By controlling the pressure dynamically, smaller pressure
windows become viable; increasing the potential yield for existing fields, and making
previously undrillable reservoirs drillable. This technology has proven successful when
drilling from stationary platforms. When drilling from floating vessels, the heave motion
cause major pressure fluctuations in the drilling well. These fluctuations are fast and must
therefore be compensated for automatically.

Several studies have previously been completed either investigating or searching for
solutions for this problem, all of which consider shutting down the main pump during
connections. By shutting down the main pump during connections, a lot of time is wasted
waiting for the pump to stop and start. As a solution to this a continous ciculation system
(CCS) has been developed (Jenner et al. (2005)), where the main pump is not shut down
during connections increasing uptime, and hence profitability. The motivation for this
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Chapter 1. Introduction

thesis is to investigate the effects of heave on the downhole pressure, in a drilling system
equipped with CCS.

1.2 Outline and Contribution
In chapter 2 the reader is introduced to terms and equippment used in drilling operations.
The CCS is also introduced and a connection with heave problem is served. Chapter 3
presents some background on modelling and a hydraulic transmission line is stated in the
frequency domain. A set of boundary conditions are stated in chapter 4 aswell as a pressure
node used to model the downhole pressure. A Ritz approximation is developed in chapter
5 in order to discretize the stated transmission line, and the Laguerre-Gram model order
reduction method is presented in order to obtain rational transfer function approximations.
A frequency analysis is performed in chapter 6, and the results are discussed in chapter 7
and concluded in chapter 8.

1.3 Task Description
• Review prior work on the heave induced pressured oscillations, with emphasis on

modeling.

• Suggest a mathematical model incorporating drill string flow, annulus flow, drill
string elasticity and appropriate boundary conditions.

• Implement the suggested model using Matlab/Simulink.

• Perform a simulation study that demonstrate the capabilities of the model. Study the
downhole pressure oscillations for different scenarios.

• Write a report.

2



Chapter 2
Background on Drilling

The purpose of this chapter is to give the reader a brief introduction to necessary terms
in drilling. An introduction to the concepts of managed pressure drilling (MPD) and the
continous circulations system (CCS) is then served. Lastly the relation between floating
rigs equipped with MPD and CCS, and the heave problem is introduced. This chapter is
mainly based on Totland (2014), Deveraux (2012), Rehm et al. (2008), Jenner et al. (2005)
and Martin (2006).

2.1 Drilling Terms and Equipment
This section provides a short description of some common terms and equipment in drilling
operations that the reader should be familiar with. For the remainder of this thesis these
terms will be used frequently.

Rig: is a complete installation of equipment needed to perform drilling operations. Ma-
rine rigs are classified as either floating or bottom supported rigs. Examples of
floating rigs are semi-submersibles and drilling ships. Examples of bottom sup-
ported rigs are jackup rigs and fixed platforms.

Drill pipe: a string of connected hollow pipe sections. Each pipe section is typically 9.5m
long. The drill pipe is where the drilling mud is pumped down.

Drill bit (or just bit): a device placed at the lower end of the drill pipe, designed to cut
rock formations. The bit is equipped with nozzels, leading the drilling fluid from
the drill pipe into the downhole part of the well.

Bottom hole assembly (BHA): a construction connecting the drill pipe and the drill bit.
This construction contain a variaty of instruments and other mechanisms to improve
drilling operations.

Drill string: is the complete structure of drill pipe, drill bit and BHA.

3



Chapter 2. Background on Drilling

Annulus: is the space between the drill string and the well wall. This is where the drilling
mud is flowing up, carrying out cuttings.

Drilling mud (or just mud): a fluid pumped down through the drill string into the bottom
hole, and back up the annulus. When the mud returns from the annulus it is lead to
separators and cleaned, recycling it back to the system. The drilling mud serves
several purposes, among others pressure control, removal of cuttings, cooling of the
drill bit and to minimize reservoir damage.

2.2 Conventional Drilling
Different technologies have been developed over many years in order to produce oil and
gas from offshore reservoirs. Conventional drilling operations consist of a rig with a com-
plete installation of drives, pumps and other equipment, controlled by field engineers and
operators.

Wells are created by rotating the drill string and lowering it to the seabed, where the
rock formations are then penetrated. During drilling, mud is pumped at high pressures
down and through the drill string and back up again through the annulus. A challenge
related to drilling is maintaining the correct well pressure. That is keeping the annulus and
downhole pressure inside what is known as a pressure window. The lower boundary of the
pressure window is given by the surrounding rock formations collapse and pore pressures,
and the upper boundary by its fracture pressure.

The collapse pressure is defined as the pressure needed to keep the rock formation
from collapsing in on itself. If this happens the drill string will often get stuck or twisted
off, and there will be a loss of circulation resulting in a significant downtime. The pore
pressure is given by the pressure of the fluid inside the pores of the rock formation. If the
well pressure decrease below the pore pressure, unwanted fluids and sediments will leak
into to the well. This may lead to a blowout, releasing oil and/or gas into the air. The result
of a blowout can be disastrous (McAndrews (2011)). Similarly if the pressure becomes
higher than the rock formations fracture pressure the well will fracture, causing drilling
mud to leak into the surrounding rock formation. If this happens the rock formation will
fracture, and as a result the drill string may be damaged or get stuck. In any case, if the
pressure window is broken costly consequences are expected.

Conventionally the bottom hole pressure is controlled by adjusting the density of the
drilling mud, using chemicals and weighting materials. This is obviously a time con-
suming process as the drilling mud has to be exchanged in the entire well, increasing the
nonproductive time of the rig. Another technique in use is to adjust the frictional pressure
in the well by changing the circulation rate of the mud. One disadvantage of this method
is zero control of pressure when subject to zero flow.

2.3 Managed Pressure Drilling
Normally drilling operations are very costly, and naturally the petroleum industry is al-
ways searching for solutions that will minimize economical cost and maximize drilling
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2.4 Continous Circulation System

efficiency. Using conventional drilling methods costly delays often arise, such as differen-
tially stuck pipe, circulation loss and narrow pressure margins. Subsequently these delays
lead to large economical costs.

In the master thesis by Martin (2006) some statistical data are presented for the time
period 1993−2002. Showing that more than 20% of operational days were nonproductive,
and approximatly 40% of the nonproductive time was related to drilling operations. This
data in supported by Rehm et al. (2008) and Godhavn (2010). The MPD discipline have
arised due to the high costs of nonproductive time, contributing to reduce problems related
to drilling operations.

MPD operations work by automatic pressure control techniques during drilling. In
general this is done by sealing of the top of the well, and controlling the pressure by
opening/closing teh valve releasing the mud. This allows for a faster and and more accurate
control of the well pressure, compared to conventional drilling methods. This in turn will
increase production rate by decreasing nonproductive time, aswell as allowing for drilling
in more narrow pressure windows.

2.4 Continous Circulation System
The continous circulation system (CCS) (Jenner et al. (2005)) is a technology that enables
the driller to add connections to the drill string without stopping fluid circulation. Al-
lowing for maintaing a constant bottom hole pressure during drill string extensions. In
conventional drilling operations the mud circulation is stopped before a pipe segment is
added, allowing for numerous problems due to pressure surges and zero flow.

Some considerable advantages of CCS is reduced total connection time and a reduction
in nonproductive time related to connection problems. Another advantage is by eliminat-
ing the pressure surges experienced during connections smaller pressure windows become
feasable; allowing for a better production yield from many already drilled wells, aswell as
making previously infeasable fields feasable.

2.5 Heave Motion
MPD operations with and withtout CCS have been shown successfull for fixed rigs. For
floating rigs heave motion is known to cause significant pressure fluctuations. During
drilling heave compensation techniques are often used, decoupling the drill string from
the ocean wave disturbance. However during pipe extensions, the drill string is normally
detached from the heave compensation system and fixed with the rig motion; in turn lead-
ing to pressure fluctuations in the drilling mud, aswell as stretching and contracting the
pipe itself. In some cases these pressure fluctuations break the pressure window, leading
to costly consequences. Because of these ocean wave induced pressure fluctuations and its
problems MPD operations are usually only done in good weather conditions.
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Chapter 3
Hydraulic Transmission Line

3.1 Introduction
In this chapter a distributed parameter hyperbolic model for heave-induced pressure fluc-
tuations is presented for a floating rig outfitted for MPD operations with a CCS.

Many different models have previously been presented modeling the dynamics of a
floating rig equipped with a MPD system, most of which only consider the annulus flow.
In its simplest form the flow and pressure dynamics in the annulus can be modeled using
a one dimensional wave equation; which is a distributed parameter hyperbolic system. To
simulate such a model in the time domain, a spatial discretization is typically applied.

In Kaasa and Stamnes (2011) an ordinary differential equation with three dynamic
states was developed. Because of the models low order it fails to capture the distributed
nature of the system, in turn limiting it’s validity to very small frequencies, as shown in
Pavlov et al. (2010). To address this problem Landet et al. (2012) used a higher order
discretization, based on the control volume method. Using this higher order model, the
distributed nature of the system dynamics was much better captured. In Aarsnes et al.
(2012) the control volume method was further investigated, who also noted the possible
occurence of reconance.

In the mentioned litterature only the annulus dynamics were considered. In papers
such as Chung and Whitney (1981), Niedzwecki and Thampi (1988) and Tikhonov and
Safronov (2002) the significance of the pipe elasticity were investigated, which was found
to be important to capture the entire relevant frequency range. In Miller and Young (1985)
the significance of the pressure dynamics of the mud column were investigated, and estab-
lished by the experiments of Namba et al. (2010).

Extending the results of Burkhardt (1961) a time-domain model predicting the surge/swab
pressure in pipe-tripping operations is given in Mitchell (1988) and Mitchell (2004). This
model includes the elasticity of the pipe, and the dynamics of the mud column in both the
pipe and the annulus. In his model the annulus and pipe flow were also coupled through
a dynamic downhole model. However the model was designed for pipe-running and pipe-
tripping operations, and does not include periodic pipe movement.
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Chapter 3. Hydraulic Transmission Line

A fully coupled dynamic model of the annulus and pipe flow connected through an
elastic pipe was presented in Aarsnes et al. (2013), including an exact solution in the
frequency domain. In Stecki and Davis (1986a) and Stecki and Davis (1986b) it was
shown both theoretically and experimantally that the effect of a radially distributed velocity
profile is necessary to capture fast transients, such as pressure fluctations caused by piston
like systems. To better capture these effects the model presented in Aarsnes et al. (2013)
was extended using this radially ditributed velocity profile in Aarsnes et al. (2014), and a
similar exact solution in the frequency domain was presented.

In the next section the model from Aarsnes et al. (2014) is presented, and put on a
form suitable for the Ritz approximation developed in chapter 5. The analytical frequency
domain from Aarsnes et al. (2013) and Aarsnes et al. (2014) solution is then stated in the
last section.

3.2 Hydraulic Transmission Line
In this section the dynamic model in Aarsnes et al. (2014) is presented. First a general
expression for the equation of continuity and state of a fluid in an elastic conduit is pre-
sented in the frequency domain. Then momentum balance for a fluid in an elastic conduit
is presented, inlcuding its solution in the frequency domain.

Equation of continuity and state of mud in an elastic conduit Using the first-
principle relation of the one dimensional continuity equation combined with the equation
of state, relating pressure p to density ρ, equation (3.1) is obtained. Where β is the bulk-
modulus of the drilling mud.

∂p(x, t)

∂t
+ β

∂v̄

∂x
= 0 (3.1)

Because the fluid in the annulus and the pipe is flowing in an elastic conduit, pressure
fluctuations will cause the conduit to expand and contract. To account for this the bulk-
modulus in (3.1) is exchanged by an effective bulk-modulus.

First let B := {a, i}, where a and i are indices representing the annulus and pipe
conduits respectively. Now let (n,m) ∈ B be two constant such that n 6= m. The effective
bulk-modulus (Mitchell (1988)) for conduit n can now be stated according to equation
(3.2). Where Ān is the nominal cross sectional area of the n’th conduit and An is assumed
to be a linear function in pressure, making β̄n constant.

1

β̄n
:=

1

Ān

∂An
∂pn

+
1

β
(3.2)

Including the effect of pressure changes in conduit m equation (3.1) can be rewritten
according to equation (3.3).

1

β̄n

∂pn
∂t

+

(
1

Ān

∂An
∂pm

)
∂pm
∂t

+
∂v̄n
∂x

= 0 (3.3)

In equation (3.3) x is the axial position and t is time. Taking the Laplace transform of
equation (3.3) and rearranging, equation (3.4) is obtained, with paramters given by defi-
nition (3.5). Where the Laplace transformed variables of pressure and velocity is denoted

8



3.2 Hydraulic Transmission Line

by its capital letters.
∂V̄n
∂x

= −YnPn − Yn,xPm (3.4)

Yn = s
1

β̄n
, Yn,x = s

1

Ān

∂An
∂pm

(3.5)

Momentum balance of mud in an elastic conduit. The momentum balance is given
by the Navier-Stokes equation (Cengel and Cimbala (2010)). Assuming axis-symmetric
flow with a negligible radial component the momentum balance is, after linearization,
given by equation (3.6). Where r is radial position, v is mud velocity and p denote the
pressure. The parameters ν and ρ0 are kinematic viscosity and mud density respectivly.

ρ0
∂v

∂t
= −∂p

∂x
+ νρ0

(
∂2v

∂r2
+

1

r

∂v

∂r

)
(3.6)

Laplace transforming equation (3.6), and letting Vn(x, r, s) be the Laplace transformed
axial velocity component, yields equation (3.7). Which can be recognized as a Bessel
function with an inhomogeneity due to the pressure gradient. Assuming that this gradient
is independent of the radial component r, the genereal solution of equation (3.7) is given
by equation (3.8), with ξ defined in equation (3.9).

sV (x, r, s) = − 1

ρ0

∂P (x, s)

∂x
+ ν

(
∂2V (x, r, s)

∂r2
+

1

r

∂V (x, r, s)

∂r

)
(3.7)

V (x, r, s) = h(1)(x, s)H
(1)
0 (ξr) + h(2)(x, s)H

(2)
0 (ξr)− 1

ρ0s

∂P (x, s)

∂x
(3.8)

ξ = i

√
s

ν
(3.9)

The components H(1)
0 and H(2)

0 of equation (3.8) are the zeroth order Hankel func-
tions1 of the first and second kind respectively, and h(1) and h(2) are their respective con-
stants of integration.

To eliminate radial dependency, the velocity is averaged over the cross-sectional area
A of its conduit, resulting in equation (3.11).

V̄ =
2π

A

[
h(1)

∫ r1

r0

H
(1)
0 (ξr)rdr + h(2)

∫ r1

r0

H
(2)
0 (ξr)rdr

]
− 1

ρ0s

∂P

∂x
(3.10)

=
2π

A

[
h(1)I(1) + h(2)I(2)

]
− 1

ρ0s

∂P

∂x
(3.11)

I(1) :=
1

ξ

[
H

(1)
1 (ξr1)r1 −H(1)

1 (ξr0)r0

]
(3.12)

I(2) :=
1

ξ

[
H

(2)
1 (ξr1)r1 −H(2)

1 (ξr0)r0

]
(3.13)

1As noted in Aarsnes et al. (2014), the basis of the solution of (3.7) in the context of hydraulic transmission
lines are usually expressed as Bessel functions. However for annular flow Bessel functions yields a numerically
ill-posed problem, and therefore Hankel functions are used instead.
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Chapter 3. Hydraulic Transmission Line

3.2.1 Pipe Flow Subsystem
The equation of continuity and state for the mud in pipe subsystem is obtained by using
equation (3.4) with n = i and m = a, resulting in equation (3.14). Where the admittance
terms Yi and Yi,x are stated in equation (3.15).

∂V̄i
∂x

= −YiPi − Yi,xPa (3.14)

Yi = s
1

β̄i
, Yi,x = s

1

Āi

∂Ai
∂pa

,
1

β̄i
=

1

Āi

∂Ai
∂pi

+
1

β
(3.15)

The momentum balance is found by using equation (3.11) with appropriate radial
boundary conditions. The flow considered is in a pipe of radius r0, where the pipe walls
are moving with velocity Vp(x, s). Assuming that the noslip condition (Cengel and Cim-
bala (2010)) holds at the pipe wall, the boundary condition Vi(x, r, s) = Vp(x, s) can be
imposed. The other boundary condition can be defined by assuming finite velocity at the
center of the pipe, resulting in h(1) = h(2) = hi. Solving equation (3.8) for hi gives the
relation (3.16), with the frequency dependant parameter C defined according to (3.17).

hi = C
1

ρ0s

∂P

∂x
+ CVp (3.16)

C : =
(
H

(1)
0 (ξr0) +H

(2)
0 (ξr0)

)−1

(3.17)

Now the momentum equation (3.11) can be stated for the mud in pipe subsystem ac-
cording to equation (3.18), with impdances given by equation (3.19).

∂Pi
∂x

= −V̄iZi + ZiXiVp (3.18)

Zi = ρ0s

(
1− C

[
I

(1)
i + I

(2)
i

] 2π

Āi

)−1

, Xi =
2π

Āi
C
[
I

(1)
i + I

(2)
i

]
(3.19)

I
(1)
i =

1

ξ
H

(1)
1 (ξr0)r0, I

(2)
i =

1

ξ
H

(2)
1 (ξr0)r0 (3.20)

3.2.2 Annulus Flow Subsystem
Similarly to the previous section the equation of continuity for the mud in annulus subsys-
tem can be stated using equation (3.4) with n = a and m = i resulting in equation (3.21),
with admittance terms given by equation (3.22).

∂V̄a
∂x

= −YaPa − Ya,xPi (3.21)

Ya = s
1

β̄a
, Ya,x = s

1

Āa

∂Aa
∂pi

,
1

β̄a
=

1

Āa

∂Aa
∂pi

+
1

β
(3.22)
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3.2 Hydraulic Transmission Line

To find the momentum balance for the annulus flow, equation (3.11) is again used,
however with different boundary conditions. Consider an annulus with an inner radius
r1 and an outer radius r2, where the inner pipe is moving with velocity Vp(x, s) and the
outer wall is standing still. I.e. Va(x, r1, s) = Vp(x, s) and Va(x, r2, s) = 0. Using these
boundary conditions together with equation (3.8) gives the relations (3.23).[

H
(1)
0 (ξr2) H

(2)
0 (ξr2)

H
(1)
0 (ξr1) H

(2)
0 (ξr1)

][
h

(1)
a

h
(2)
a

]
=

[
1
ρ0s

∂Pa(x,s)
∂x

1
ρ0s

∂Pa(x,s)
∂x + Vp(x, s)

]
(3.23)

Solving equation (3.23) for h(1)
a and h(1)

a gives the constants of integration stated in
equation (3.24). With parameters given by equation (3.25).

h(1)
a = D(1) ∂Pa(x, s)

∂x
+ E(1)Vp (3.24a)

h(2)
a = D(2) ∂Pa(x, s)

∂x
+ E(2)Vp (3.24b)

D(1) = −H
(2)
0 (ξr2)−H(2)

0 (ξr1)

W
E(1) = −H

(2)
0 (ξr2)

W

D(2) =
H

(1)
0 (ξr2)−H(1)

0 (ξr1)

W
E(2) =

H
(1)
0 (ξr2)

W

W = H
(1)
0 (ξr2)H

(2)
0 (ξr1)−H(1)

0 (ξr1)H
(2)
0 (ξr2)

(3.25)

The momentum balance for the annulus flow subsystem can now be stated according
to equation (3.26). With impedances given by equations (3.27) and (3.28).

∂Pa
∂x

= −V̄aZa + ZaXaVp (3.26)

Za = ρ0s

(
1− 2π

Āa

[
D(1)I(1) +D(2)I(2)

])−1

(3.27)

Xa =
2π

Āa

[
E(1)I(1) + E(2)I(2)

]
(3.28)

I(1)
a =

H
(1)
1 (ξr2)r2 −H(1)

1 (ξr1)r1

ξ
(3.29)

I(2)
a =

H
(2)
1 (ξr2)r2 −H(2)

1 (ξr1)r1

ξ
(3.30)

3.2.3 Elastic Pipe
In Aarsnes et al. (2014) the derivation from Greenfield and Lubinski (1967) is used to
model the pipe as a one dimensional elastic rod. For small deformations the relationship
between stress pp and strain ε is given by pp = Eε, where E is the Young’s modulus.
Combining this with the relation of continuity gives equation (3.31).

1

E

∂pp(x, t)

∂t
+
∂vp(x, t)

∂x
= fi

∂pi(x, t)

∂t
− fa

∂pa(x, t)

∂t
(3.31)

11



Chapter 3. Hydraulic Transmission Line

The terms on the right side of equation (3.31) arrise from the hoops-strain effect, in-
duced by the varying pressure on the inside and outside of the pipe. These pressure vari-
ations leads to and axial compression/extension dynamical behaviour in the pipe. The
parameters fi and fa are the hoop-strain coefficients. Taking the Laplace transform of
(3.31) results in equation (3.32). Where the shunt admittance is given by equation (3.33).

∂Vp
∂x

= fisPi − fasPa − YpPp (3.32)

Yp =
s

E
(3.33)

The momentum balance for the pipe is given by equation (3.34), where the term kpvp
accounts for the force per unit length exerted on the pipe as it drags along the walls of the
well and the viscous drag.

ρp
∂vp
∂t

= −∂pp
∂x
− kpvp (3.34)

Laplace transforming equation (3.34) gives the transfer function (3.35), with impedance
given by equation (3.36).

∂Pp
∂x

= −ZpVp (3.35)

Zp = ρps+ kp (3.36)

3.2.4 Summary

Using equations (3.14), (3.21) and (3.32) the pipe and flow velocities can be rewritten
as a ordinary differential matrix equation, with respect to the axial length x, resulting in
equation (3.37). Similarly using equations (3.18), (3.26) and (3.35) for pressure gives
equation (3.38). With pressure P = [Pi, Pa, Pp]

> and flow velocity V =
[
V̄i, V̄a, Vp

]>
,

and the admittance matrix Y and impedance matrix Z is defined in equations (3.41). All
parameters are conveniently summarized in table A.1 and A.2

∂V

∂x
= Y P (3.37)

∂P

∂x
= ZV (3.38)

Y :=

 −Yi −Yi,x 0
−Ya,x −Ya 0
fis −fas −Yp

 (3.39a)

Z :=

−Zi 0 ZiXi

0 −Za ZaXa

0 0 −Zp

 (3.39b)
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3.3 Analytical Solution in the Frequency Domain

3.3 Analytical Solution in the Frequency Domain
To be able to compare the later defined Ritz-approximation with the analytical frequency
solution of the system of equation given by equations (3.37) and (3.38), it’s analytical
frequency domain solution is here presented.

Let y = [V̄i, Pi, V̄a, Pa, Vp, Pp], then equations (3.37) and (3.38) can be rewritten
according to equation (3.40) where the matrix A is defined according to equation (3.41).
The frequency dependent parameters defining the matrix A can be found in table A.1 and
A.2.

∂y

∂x
= Ay (3.40)

A =


0 −Yi 0 −Yi,x 0 0
−Zi 0 0 0 ZiXi 0

0 −Ya,x 0 −Ya 0 0
0 0 −Za 0 ZaXa 0
0 fis 0 −fas 0 −Yp
0 0 0 0 −Zp 0

 (3.41)

As equation (3.40) is a linear ordinary differential matrix equation, it’s general solution
is given by equation (3.42), where B is the constant of integration.

y(x) = eAxB (3.42)

The six constant of integration B1, B2, ..., B6 constituting the matrix B can be found
by specifying six linearly independent boundary conditions in the frequency domain. These
boundary conditions can then be stated in the basis given by equation (3.43).

ȳ(x) = eAx (3.43)

Then the constant of integration B can be found by solving the algebraic of equation
(3.44). Where D is a matrix containing output relations expressed in the basis (3.43), and
b contains the exogeneous inputs to the system.

DB = b (3.44)
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Chapter 4
Downhole Model and Boundary
Conditions

4.1 Introduction
This chapter suggest a set of boundary conditions for the hydraulic transmission line given
by equations (3.37) and (3.38). A pressure node is developedusing the the definition of
bulk-modulus. The downhole boundary conditions for the transmission line are then de-
fined using this pressure node as an interconnecting model.

To develope the pressure node and define the needed boundary conditions the well has
to be divided into three control volumes. This is done in the next section.

4.2 Control Volumes
The well can conveniently be divided into three control volumes, one for the hydraulic
transmission line, one for the downhole pressure node, and the last one is used to define
the boundaries inbetween. In figure 4.1 the different control volumes can be seen, where
the dashed lines are the borders of the control volumes. The heigth from 0 to L represents
the control volume for the hydraulic transmission line, whereL is the approximate nominal
length of the drill pipe. The heigth from d to hbit defines the downhole control volume,
where d is distance from 0 to the bottom of the well and hbit is the height of the drill
bit above d. Lastly the heigth from hbit to 0 gives the control volume for the boundary
conditions.

During connections the drill string will be subject to a heave disturbance topside, re-
sulting in a piston like effect downhole. Because of this piston like effect the heigth hbit
will not be constant, giving a dynamic downhole control volume.

The length of the drill bit and BHA is short compared to the drill pipe, and therefore it is
reasonable to assume that the drill bit velocity will be approximatly equal to the downhole
velocity of the pipe. The approximation of hbit is stated in equation (4.1), where h0

bit is
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Chapter 4. Downhole Model and Boundary Conditions

the initial height of the drill bit above the well floor.

∂hbit
∂t
≈ vp(0, t), hbit(0) = h0

bit (4.1)

The downhole control volume Vd is given by equation (4.2), where Ad is the approx-
imate cross sectional area of the well floor. Differentiating Vd with respect to time gives
the differential equation (4.3) for the downhole control volume.

Vd(t) = Adhbit(t) (4.2)

∂Vd
∂t

= Advp(0, t), Vd(0) = Adh
0
bit (4.3)

For simplicity the boundary control volume between the transmission line and the
downhole control volume, will be assumed constant. This simplification is reasonable
because the heigth oscillations will be small compared to length of the BHA.

4.3 Downhole Pressure Node
The dynamics of the downhole pressure can be developed using the definition of the bulk-
modulus with respect to volume, given by equation (4.4). Where βd is bulk-modulus, pd is
pressure and Vd is the volume. This definition can be found in many text books considering
fluid mechanics, e.g. Cengel and Cimbala (2010).

βd = −Vd(t)
∂pd(t)

∂Vd(t)
(4.4)

Assuming conservation of mass, and incompressibility in the downhole and boundary
control volumes, the volumetric flow into the downhole control volume is Āiv̄i(0, t), and
similarly the volumetric flow out of the control volume is Āav̄a(0, t). Where v̄i(0, t)
and v̄a(0, t) are the flow velocities from the pipe and the annulus respectivly. In reality
the drilling mud will be compressible in these areas, however the flow difference due to
compressibilty will be small, and the assumption is reasonable. Using this the substantial
derivative ∂V in equation (4.4) can be stated according to equation (4.5).

∂Vd(t) = Ādvp(0, t)∂t+ Āiv̄i(0, t)∂t+ Āav̄a(0, t)∂t (4.5)

As argued in Mitchell (1988) the well walls have elastic properties, because the sur-
rounding rock formation will deform with pressure changes. Assuming, as for the hy-
draulic transmission line, that the cross sectional well area Ad has a linear relation to
the downhole pressure pd, the effective bulk-modulus β̄d given by equation (4.6) will be
constant.

1

β̄d
=

1

Ād

∂Ad
∂pd

+
1

β
(4.6)

Exchanging the bulk-modulus βd in eqauation (4.4) with the effective bulk-modulus
β̄d, and inserting equation (4.5) into equation (4.4) results in the pressure node (4.7). A
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Zi,c

qc

Ad

d

0

L

hbit

xh

Ai Aa

Abit

Vd, pd

qout

qbit

vi, pi va, pa

x

Figure 4.1: Schematic of drilling well.
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reasonable estimate of the inital downhole pressure is p0
d ≈ mg/Ad, where g is the gravi-

tational constant and m is the approximate weigth of the entire drillstring.

∂pd
∂t

= − β̄d
Vd(t)

(
Ādvp(0, t) + Āiv̄i(0, t) + Āav̄a(0, t)

)
, pd(0) = p0

d (4.7)

4.4 Boundary Conditions
A set of boundary conditions is defined in this section, completing the hydraulic trans-
mission line given by equations (3.37) and (3.38). These boundary conditions also serve
as a connection between the the downhole pressure node given by equation (4.7) and the
transmission line.

Because the downhole model is derived using bulk modulus, its inputs are given as
flow. It is therefore natural to use flow as outputs and pressure as inputs at the lower end
of the transmission line. Topside controlled chokes manages the inlfux of mass to the pipe
and outflux from the annulus, and therefore these boundaries can easily be defined with
respect to either pressure or flow. During connections the drillstring will be fixed with the
rig, and the pipe will move with the same velocity as the rig, and hence velocity is the
natural choice for the topside elastic pipe input. This makes for a set of Robin (or mixed)
boundary conditions (Reddy (1986)).

In the next chapter a rational approximation of the transmission line from the previous
chapter is developed, allowing for a multiple input, multiple output realization in the time
domain. Therefore the following boundary conditions will be expressed in the time domain
and not in the frequency domain. This allows for defining nonlinear boundary conditions,
without using complicated nonlinear Laplace transforms.

4.4.1 Topside Boundary Conditions
Let vci and vca be the controlled flow velocity into the pipe and out of the annulus respec-
tivly. Furthermore let xh be the heave displacement of the rig, and vh the corresponding
heave velocity velocity. The topside boundaries can now be defined accoring to equations
(4.8).

v̄i(L, t) = vci (t) (4.8a)
v̄a(L, t) = vca(t) (4.8b)
vp(L, t) = vh(t) (4.8c)

The heave velocity vh can be veiwed as an external disturbance, and can be modeled using
a variety of sea wave spectrum models, see e.g. chapter 8 in Fossen (2011).

4.4.2 Downhole Pipe Flow Boundary Condition
During drilling operations the drilling mud flows from the pipe through nozzles in the
drill bit and then into the well. According to Warren (1989) the pressure loss ∆pbit(t) =
pi(0, t) − pd(t) over the drill bit is usually calculated using equation (4.9). Where Cd
is the nozzles discharge coefficient, dn is the nozzle diameter and ρ is the density of the

18
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drilling mud. In Warren (1989) it is argued that Cd ≈ 1.03 is a reasonable estimate for the
discharge coefficent for many drill bits.

pi(0, t) =
ρv̄i(0, t)

2

12, 031(dnCd)2
+ pd(t) (4.9)

4.4.3 Downhole Elastic Pipe Boundary Condition

Due to topside heave the drill bit will experience height oscillations. Assuming that the
downhole control volume is small, the dampning caused by the drill bit and BHA motion
squeezing the surrounding fluid (as in Aarsnes et al. (2013) and Aarsnes et al. (2014)) can
be modeled as a piston/cylinder type dashpot. The resulting momentum balance is given
by equation (4.10), where mBHA is the combined mass of the drill bit and BHA, γ is the
dampning constant, and Āi, Abit and Ap are the cross sectional pipe hole area, the cross
sectional drill bit area and the cross sectional area of the pipe respectively. Details on how
to derive γ can be found in Rao and Yap (1995).

Appp(0, t) + Āipi(0, t) = Abitpd(t)−mBHAsvp(0, t)− γvp(0, t) (4.10)

4.4.4 Downhole Annulus Flow Boundary Condition

The area between the downhole control volume and the transmission line control volume
in the annulus, can be modeled using theory for internal flow (Cengel and Cimbala (2010)).
The pressure drop from the downhole pressure pd(t) to the bottom side annulus pressure
pa(0, t) can be modeled as a headloss Hl through an annular pipe section, according to
equation (4.11). Where ρ is the density of the drilling mud and g is the gravitational
constant.

Pa(0, t) = Pd(t)− ρgHl(V̄a(0, t)) (4.11)

The headloss is modeled by equation (4.12) as a sum of minor and major losses. Where
Kl is a loss/resitance coefficient representing the total irreversable loss over the control
volume. These losses arrise from the irregular shape of the BHA and the well wall. The
parameters Lbit and Dbit are the approximate lenght and hydraulic diameter of the section
respectively.

Hl =
Kl

2g

(
V̄a(0, t)

)2
+

Lbit
2gDbit

(
V̄a(0, t)

)2
fbit (Re) (4.12)

It is known that the the flow through the drill bit is turbulent, however less is know
about the flow downhole and around the BHA with respect to laminarity and turbulece.
For this reason the friction factor fbit is modeled as a blending between a laminar and a
tubrulent model, given by equation (4.13). The blending function κ, defined in equation
(4.16), is assumed to be linear with respect to the Reynolds number Re in the transitional
region; Ret and Rel are the Reynolds number thresholds for turbulent and laminar flow
respectively. Figure 4.2 shows how the blending function κ transitions for arbitrary tresh-
olds.

fbit (Re) = κ (Re) f lbit (Re) + [1− κ (Re)] (Re) f tbit (Re) (4.13)
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The laminar and turbulent friction functions f lbit and f tbit are given by equation (4.14)
and (4.15) respectively, where the turbulent friction is modeled using the Colebrook equa-
tion. The Reynolds number is a function of flow velocity and is given by equation (4.17).
The paramters ε and ν are the surface roughness and kinematic viscosity respectivly.

f lbit (Re) =
64

Re
(4.14)

f tbit
(
V 0
a

)
=

(
−1.8 log

[
6.9

Re
+

(
ε

3.7Dbit

)1.11
])−2

(4.15)

κ (Re) =


1 , Re ≤ Rel
− Ret
Rel−Ret + 1

Rel−RetRe ,Re ∈ 〈Rel, Ret〉
0 , Re ≥ Ret

(4.16)

Re =
Dbit

ν
V̄ 0
a (4.17)

β

Re

1

RetRel

Figure 4.2: Blending function κ plotted with respect to the Reynolds number Re for arbitrary
threshold values Rel and Ret.

In total seven parameters will have to be determined to apply the above model. For
normal pipe systems, these parameters can often be accuratly meassured. However this is
not the case at the bottom of a drilling well, as the surrounding rock formation will have
both a varying structure and different surface properties, making ε,Kl, Dbit, Rel and Ret
difficult to determine. In reality the fluid in the annulus will also be multiphase, containing
both solids, liquids and sometimes gas, making the model less accurate, and tuning of the
relevant parameter estimates necassary.

Because of the arduous task in finding and tuning these seven parameters, two simpler
alternative models for this boundary condition are presented. Assuming that the boundary
volume is small compared to the total drilling well, the pressure drop over drill bit and
BHA can be modeled using a standard valve equation. For turbulent flow equation (4.18a)
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4.4 Boundary Conditions

should be used, where Ct is the discharge coefficient. For laminar flow equation (4.18b)
should be used, where Cl is the discharge coefficient.

pa(0, t) = ρCtva(0, t)2 − pd(t) (4.18a)
pa(0, t) = ρClva(0, t)− pd(t) (4.18b)

The simplicity of these two models is appealing compared to the internal flow model,
as it contains only one parameter with a linear relation to the states. Although these pa-
rameters does not have any direct physical relations, the estimation problem is for obvious
reasons much simpler.
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Chapter 5
Ritz Approximation and
Polynomial Approximation

5.1 Introduction
The transmission line given by equations (3.37) and (3.38) cannot readily be simulated in
the time domain. The modal method presented in Hsue and Hullender (1983) and Hul-
lender et al. (1988) approximates the fluid dynamics given by partial differetial equations
(PDE) as a system of linear ordinary differential equations (ODE), so that they can be
solved using conventional numerical methods. A comparison study on numerical solu-
tion methods of transmission lines done by Watton and Tadmori (1988) concluded that
the modal method was the most accurate, user friendly and numerically stable methods
available at that time. Some improvements was later introduced to the modal method in
the work by Piché and Ellman (1995).

In Mäkinen et al. (2000) a variational formulation of the modal method was devel-
oped and three different transient compressible laminar pipe flow models (inviscous, one
dimensional viscous, and two dimensional dissipative viscous flow) were considered. A
rational approximation in the frequency domain was also presented of the two dimensional
dissipative viscous flow model.

In this chapter the Ritz approximation developed in Mäkinen et al. (2000) is extended
to coupled transmission lines of the form given by equation (3.37) and equation (3.38).
Then the Lagurre-Gram reduced order method presented in Amghayrir et al. (2005) with
the extension in Anfinsen (2013) is applied to the Ritz approximation in order to get a
rational approximation.

Before formulating the weak problem needed for the Ritz approximation, pressure is
eliminated by differentiating equation (3.37) with respect to x, and then inserting it into
equation (3.38) giving the wave equation equation (5.1). Where the matrix Γ(s) is defined
in definition (5.2).

∂2V (x, s)

∂2x
− Γ(s)V (x, s) = 0 (5.1)
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Γ(s) := Y (s)Z(s) (5.2)

Let γkj(s) ∀k ∈ S , ∀j ∈ S be the elements of Γ(s), where the set S := {i, a, p} contains
the incices representing each subsystem in the hydraulic transmission line stated in chapter
3. Equation (5.1) can now be rewritten as three coupled equations (5.3) with respect to the
elements of Γ(s).

∂2V̄i(x, s)

∂x2
−
∑
j∈S

γij(s)Vj(x, s) = 0 (5.3a)

∂2V̄a(x, s)

∂x2
−
∑
j∈S

γaj(s)Vj(x, s) = 0 (5.3b)

∂2Vp(x, s)

∂x2
−
∑
j∈S

γpj(s)Vj(x, s) = 0 (5.3c)

5.2 Weak Formulation
The weak formulation (5.4) (Reddy (1986)) of the coupled equations (5.3) with Robin
boundary conditions is obtained by multiplying each equation by a variational parameter
φmk

∈ H1
? (0, L), ∀k ∈ S, and integrating over the domain of x ∈ [0, L]. The setH1

? (0, L)
is defined in equation (5.5), where H1(0, L) is a Sobolov space (Reddy (1986)).

∫ L

0

∂2Vk(x, s)

∂x2
φmk

(x)−

∑
j∈S

γkj(s)Vj(x, s)

φmk
(x)

 dx = 0

∀k ∈ S, ∀φmk
∈ H1

? (0, L)

(5.4)

H1
? (0, L) = {φ = φ(x) : φ ∈ H1(0, L), φ(L) = 0} (5.5)

Using integration by parts the weak form (5.4) can be rewritten according to equation
(5.6), where it is used that φmk

(L) = 0.

∫ L

0

∂Vk(x, s)

∂x

∂φmk
(x)

∂x
+

∑
j∈S

γkj(s)Vj(x, s)

φmk
(x)

 dx
= −

∑
j∈S

ykj(s)Pj(0)φmk
(0)

∀k ∈ S, ∀φmk
∈ H1

0 (0, L)

(5.6)

5.3 Ritz Approximation
The Ritz method is a way to find an approximate solution for a given problem in terms of
adjustable paramters. These parameters are are found by either minimizing a functional or
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solving the weak form of the given problem, e.g. equation (5.6). Here only the solution of
the weak formulation of a problem is considered.

For the variational formulation (5.6), the approximate solution Ṽ (x) is given by equa-
tion (5.7a) in terms of adjustable paramters rk,n. Where ykj are the elements of the matrix
Y from equation (3.37). The shape functions φn were picked from the complete and lin-
early independent set of trigonometric functions, similarly to what was done in Mäkinen
et al. (2000). To satisfy the mixed boundary conditions stated in the previous chapter the
shape functions were more specifically picked as in equation (5.7b). The parameter N is
the number of modes in the Ritz approximation, and as N → ∞ then Ṽk(x) will con-
verge to Vk(x). For the interested reader convergence and stability properties for the Ritz
approximation is proven in Reddy (1986).

Ṽk(x) = Vk(L) + (x− L)
∑
j∈S

ykj(s)Pj(0) +

N∑
n=1

rk,nφn(x), ∀k ∈ S (5.7a)

φn(x) = cos

(
(2n− 1)π

2L
x

)
(5.7b)

Inserting the approximation (5.7a) into the weak problem (5.6) gives for each k ∈ S
equation (5.8). Where it is used that φmk

(0) = cos(0) = 1.

∫ L

0

[ N∑
n=1

(2n− 1)π

2L
sin

(
(2n− 1)π

2L
x

)
rk,n −

∑
j∈S

ykj(s)Pj(0)


· (2mk − 1)π

2L
sin

(
(2mk − 1)π

2L
x

)

+
∑
j∈S

γkj(s)

Vj(L) + (x− L)
∑
η∈S

yjη(s)Pη(0)

 cos

(
(2mk − 1)π

2L
x

)

+
∑
j∈S

γkj(s)

N∑
n=1

rj,n cos

(
(2n− 1)π

2L
x

)
cos

(
(2mk − 1)π

2L
x

)]
dx

= −
∑
j∈S

ykj(s)Pj(0), ∀mk ∈ {1, ..., N}

(5.8)

Because of the periodicity of the trigonometric shape functions, there will be two solutions
of the definite integral in equation (5.8). These two solutions are when n = mk and
n 6= mk.

For n 6= mk the solution of the definite integral in equation (5.8) is given by equation
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(5.9) for each n ∈ {1, .., N}.

∫ L

0

[(
cos

(
(n−mk)π

L
x

)
− cos

(
(n+mk − 1)π

L
x

))
· (2n− 1)(2mk − 1)π2

8L2
rk,n

− (2mk − 1)π

2L

∑
j∈S

ykj(s)Pj(0) sin

(
(2mk − 1)π

2L
x

)

+
∑
j∈S

γkj(s)

(
cos

(
(n−mk)π

L
x

)
+ cos

(
(n+mk − 1)π

L
x

))
rj,n

+
∑
j∈S

γkj(s)

Vj(L) + (x− L)
∑
η∈S

yjη(s)Pη(0)

 cos

(
(2mk − 1)π

2L
x

)]
dx

=
∑
j∈S

2Lγkj(s)

(2mk − 1)π

Vj(L)(−1)mk+1 − 2L

(2mk − 1)π

∑
η∈S

yjη(s)Pη(0)


−
∑
j∈S

ykj(s)Pj(0), ∀n ∈ {1, ..., N}, ∀mk 6= n ∈ {1, ..., N}

(5.9)

For n = mk the solution of the definite integral in equation (5.8) is given by equation
(5.10) for each n ∈ {1, .., N}

∫ L

0

[(
(2n− 1)π

2L

)2

sin2

(
(2n− 1)π

2L

)
rk,n

+
∑
j∈S

γkj(s) cos2

(
(2n− 1)π

2L

)
rj,n

− (2n− 1)π

2L

∑
j∈S

ykj(s)Pj(0) sin

(
(2n− 1)π

2L
x

)

+
∑
j∈S

γkj(s)

Vj(L) + (x− L)
∑
η∈S

yjη(s)Pη(0)

 cos

(
(2n− 1)π

2L
x

)]
dx

=
L

2

(
(2n− 1)π

2L

)2

rk,n +
L

2

∑
j∈S

γkj(s)rj,n −
∑
j∈S

ykj(s)Pj(0)

+
∑
j∈S

2Lγkj(s)

(2n− 1)π

Vj(L)(−1)n+1 − 2L

(2n− 1)π

∑
η∈S

yjη(s)Pη(0)

 ,

∀n ∈ {1, .., N}, ∀n = mk

(5.10)

The solution of the Ritz coefficients for subsystem k can now be stated as a bilinear
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5.4 Polynomial Approximation

function according to equation (5.11) , with Bk(·, ·), Ckj(·, ·) and lkj(·) given by (5.12).

N∑
n=1

[Bk(φn, φmk
)rk,n +

∑
j∈S

Ckj(φn, φmk
)rj,n] =

∑
j∈S

lkj(φmk
),

∀mk ∈ {1, ..., N}, ∀k ∈ S

(5.11)

Bk(φn, φmk
) :=

0, if n 6= mk(
(2n−1)π

2L

)2

, if n = mk

(5.12a)

Ckj(φn, φmk
) :=

{
0, if n 6= mk

γkj(s), if n = mk

(5.12b)

lkj(φmk
) :=

4γkj(s)

(2mk − 1)π

Vj(L)(−1)mk +
2L

(2mk − 1)π

∑
η∈S

yjη(s)Pη(0)

 (5.12c)

The system of equations (5.11) is linear in the adjustable parameters rk,n and rj,n;
therefore the n’th Ritz coefficients can be found by solving a linear matrix equation for
all k ∈ S simultaneously. Define rn := [ri,n, ra,n, rp,n]

>, then the system of equations
(5.11) can be rewritten as a matrix equation for n = mk given by (5.13), where Θ(s) is
defined in equation (5.14).((

(2n− 1)π

2L

)2

I + Γ(s)

)
rn = Θ(s) (5.13)

Θ(s) :=
4

(2n− 1)π
Γ(s)V (L)(−1)n +

8L

(2n− 1)2π2
Γ(s)Y (s)P (0) (5.14)

The system of equations (5.7a) can now be written on vector form. Let Ṽ := [Ṽi, Ṽa, Ṽp]
>,

then the system (5.7a) on matrix form is given by equation (5.15). To obtain a function for
the approximate pressure P̃ := [P̃i, P̃a, P̃p]

> equation (5.15) is differentiated with respect
to x and inserted into equation (3.37) giving equation (5.16).

Ṽ (x) = V (L) + (x− L)Y (s)P (0) +

N∑
n=1

rn cos

(
(2n− 1)π

2L
x

)
(5.15)

P̃ (x) = P (0) + Y (s)−1
N∑
n=1

(
(2n− 1)π

2L
x

)
rn sin

(
(2n− 1)π

2L
x

)
(5.16)

5.4 Polynomial Approximation
In order to simulate the transfer functions given by the Ritz approximations (5.15) and
(5.16) in the time domain, their inverse Laplace transforms has to be obtained. In this
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Chapter 5. Ritz Approximation and Polynomial Approximation

section a model reduction scheme based on a series expansion using Laguerre functions is
presented.

In the article Amghayrir et al. (2005) the Laguerre series representation was used to
derive a model reduction technique using a transfer function formalism. The method al-
lowed for reducing irrational transfer functions to rational approximations, minimizing
the error in the least square sense. By obtaining rational transfer functions, the system can
be implemented using standard state space realizations. The method in Amghayrir et al.
(2005) was applied to an irrational transfer funciton in Mahdianfar et al. (2012), providing
excellent results. The method was also used with some success in Anfinsen (2013).

An issue not addressed by the method in Amghayrir et al. (2005) is finding the La-
guerre spectrum of the function to be approximated. In the master thesis Anfinsen (2013)
a method for approximating this spectrum using the knowledge of the functions Laplace
transform was developed. The algorithm developed in Amghayrir et al. (2005), with addi-
tions from Anfinsen (2013) is stated in the next subsection.

It should be noted that a multiple input, multiple output extension of the algorithm
presentet below is presented in Amghayrir et al. (2005). This extension was tested and did
not provide any good results, and will therefore not be considered in this report.

5.4.1 Laguerre-Gram Based Model Order Reduction
The algorithm takes the following inputs:

1. A desired order r for the rational approximation.

2. A number of sample pointsN for determination of the truncated Laguerre spectrum.

3. A weight parameter σ ∈ [0,∞].

4. The transfer function to be approximated F .

The rational approxmation F̂ of F is obtained by the following steps:

1. Find the parameters, α and γ. The minimizer of the error function (5.17) gives α,
where q̂n is the truncated Laguerre spectrum given by equation (5.25).

Gε(α) =

∑N
n=0 nq̂

2
n(α)∑N

n=0 q̂
2
n(α)

(5.17)

γ is found by solving equation (5.18).

γ = σ + 2α (5.18)

2. Calculate the Laguerre spectrum q̂n using equation (5.25) with α and γ.

3. Form the Gram matrix defined in equation (5.19), and the vector (5.20).

Ψ :=


ψ0,0 ψ0,1 . . . ψ0,r−1

ψ1,0 ψ1,1 . . . ψ1,r−1

...
...

. . .
...

ψr−1,0 ψr−1,1 . . . ψr−1,r−1

 (5.19)

28



5.4 Polynomial Approximation

b :=
[
ψ0,r ψ1,r . . . ψr−1,r

]>
(5.20)

The coefficient ψi,j are computed according to equation (5.21), using the Laguerre
spectrum.

ψi,j =

N∑
n=0

q̂n+iq̂n+j (5.21)

4. Solve the system of equations (5.22) for the vector of coefficients (5.23).

Ψa = −b (5.22)

a :=
[
a0 a1 . . . ar−1

]>
(5.23)

5. Form the reduced order model (5.24), where ar := 1.

f̂(s) =

√
γ
∑r
i=1 ai

∑i−1
j=0 q̂j(s+ α)i−j−1(s− γ + α)r−i+j∑r

i=0 ai(s+ α)i(s− γ + α)r−i
(5.24)

For derivations and proofs the reader is referred to Amghayrir et al. (2005) and Anfinsen
(2013).

Note that the computational speed needed for calculating ψi,j can be drastically re-
duced using its recursion and symmetry properties. Namely that ψi,j = ψi−1,j−1 −
q̂i−1q̂j−1 for i = 1, 2, . . . , r − 1 and j = i, i+ 1, . . . , r, and that ψi,j = ψj,i.

The truncated Laguerre spectrum developed in Anfinsen (2013) is stated in equation
(5.25), where the function G(θ) is given by equation (5.26). Note that {q̂n(α, γ)}0≤n≤N
can be recognized as a shifted and scaled version of the discrete Fourier transform og
G(θ), and the fast Fourier transform can be applied (Kreyszig (2005)).

q̂n(α, γ) =
e−jπ

n
2N

2N

N−1∑
k=−n

G

(
π

2
(k +

1

2
)

)
e−jπ

nk
N (5.25)

G(θ) :=

√
γ

1− ejθ
F

(
γ

1− ejθ
− α

)
(5.26)
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Chapter 6
Frequency Analysis

6.1 Introduction
In this chapter the Ritz approximations (5.15) and (5.16), and the rational approximations
found using the previously stated Laguerre Gram model order reduction algorithm, will be
compared to the analytical frequency domain solution (3.42).

There are six inputs and six outputs to the transmission line stated in chapter 3, result-
ing in 36 unique transfer functions. To obtain the analytical transfer functions that cor-
respond to the approximated ones, six constants of integration B1, B2,...B6 are needed.
These are found by solving equation (3.44), where the matrix D is given by equation (6.1)
and the vectors b1, b2...b6 are given by equation (6.2).

D =


ȳ1(L, s)
ȳ2(0, s)
ȳ3(L, s)
ȳ4(0, s)
ȳ5(L, s)
ȳ6(0, s)

 (6.1)

b1 =


1
0
0
0
0
0

 b2 =


0
1
0
0
0
0

 b3 =


0
0
1
0
0
0

 b4 =


0
0
0
1
0
0

 b5 =


0
0
0
0
1
0

 b6 =


0
0
0
0
0
1

 (6.2)

Looking at figure 6.1 narrow periodically dampned resonance peaks can be observed
for the transfer function Vp(0)/Vp(L) and Vi(0)/Vi(L), around ω = 1.5, 4.5, 7.5, . . . rad/s.
For the transfer function Vp(0)/Vp(L) these peaks are due to the elastic dynamics of the
pipe, it is however not necessarily expected to see similar resonances for the transfer func-
tion Vi(0)/Vi(L). The same type of narrow resonance peaks can be observed with the
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Chapter 6. Frequency Analysis

Figure 6.1: Amplitude for the analytical transfer functions Vp(0)/Vp(L) and Vi(0)/Vi(L).
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6.1 Introduction

Figure 6.2: Phase for the analytical transfer functions Vp(0)/Vp(L) and Vi(0)/Vi(L).

same periodicity for all 36 transfer functions in appendix B. For the transfer functions
from or to the pipe, these resonances are occuring due the pipe dynamics. However for the
transfer functions between the mud flows, these spikes are somewhat unexpected. Zoom-
ing in on the spike around ω = 1.5rad/s, shown in figure 6.3, it can be seen that the peak
is smooth, suggesting that they do not occur due to numerical issues.

A closer look at the transfer functions between the mud flows reveals that the resonance
spikes occur because of an indirect coupling with the pipe dynamics. When the flow
velocity is averaged, reducing the model from a two dimensional model (3.8) (radial and
axial) to a one dimensional model (3.11) (axial), radial boundary conditions are inserted
based on the noslip condition. This radial dependency is what couples the pipe resonances
into the fluid flow.

Physically these resonances are expected from the no slip condition. As the boundary
layer of the fluid in contact with the pipe wall have the same velocity as the pipe wall,
inducing the resonant behaviour of the pipe into the fluid. Resulting in an indirect coupling
of the pipe with the mud in annulus and pipe subsystems. The mud in the annulus and the
pipe are flowing in opposite directions of one another; the pipe flow downwards and the
annulus flow upwards. This together with the viscous properties of the drilling mud is
expected to distort and dampen these induced resonances. This can be seen by comparing
the frequency response for the transfer functions Vp(0)/Vp(L) and Vi(0)/Vi(L) in figure
6.3.

Figure 6.2 shows the phase plots of the transfer functions Vp(0)/Vp(L) and Vi(0)/Vi(L).
One can for the transfer function Vp(0)/Vp(L) observe an oscillating phase with the
same periodicity as the resonances, which is as expected. The same can be observed for
Vi(0)/Vi(L), however with a distortion at the same frequencies as resonance is observed
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Figure 6.3: Frequency response of Vp(0)/Vp(L) and Vi(0)/Vi(L), at resonance around ω =
1.506rad/s.

for Vp(0)/Vp(L). The explanation for these distortions are of course the same as with the
amplitude.

The well properties and physical parameters used to simulate all transfer functions in
this chapter and appendix B, C and D are stated in table 6.1.

6.2 Ritz Approximation

In this section the frequency domain solution of the Ritz approximations (5.15) and (5.16)
are compared with the analytical solution (3.42).

In figures 6.4, 6.5 and 6.6 a comparison of the analytical and the Ritz approximated
transfer function Vi(0)/Vi(L) can be seen, using 2, 4 and 16 modes respectively. Using
2 modes the approximation is good for frequencies below 1.2rad/s. Using 4 modes the
approximation fits well up to a frequency of 2.6rad/s. Increasing the number of modes to
16 gives a very accurate fit for higher frequencies for the transfer function Vi(0)/Vi(L).
Looking at figure 6.3 it can be seen that the Ritz approximation also manages to catch the
narrow resonant peaks around ω = 1.5rad/s.

All 36 transfer functions are compared, using 16 modes, in appendix B. It can there
be seen that a very accurate fit is obtained for frequencies below 1.5rad/s. Increasing the
number of modes will increase accuracy of the Ritz approximation in all cases.
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6.2 Ritz Approximation

Table 6.1: Value of well properties and physical parameters

Constant Value Unit Description
Āa 0.0274 m2 Nominal annulus flow area
Āi 0.0118 m2 Nominal pipe flow area
Ap 0.0030 m2 Pipe cross-sectional area
L 5000 m Length of drill string
β 2.2× 109 Pa Drilling mud bulk modulus
β̄i 1.84× 109 Pa Pipe effective bulk modulus
β̄a 1.60× 109 Pa Annulus effective bulk modulus

1
Āi

∂Ai

∂pa
−9.67× 10−11 1/Pa Pipe area change coefficient

1
Āa

∂Aa

∂pi
−4.18× 10−11 1/Pa Pipe area change coefficient

ρ 1420 kg/m3 Drilling mud density
ρp 9000 kg/m3 Pipe density
E 2.068× 1011 Pa Pipe Young’s modulus
ν 3.00× 10−5 m2/s Kinematic viscosity
kp 0.0950 1/s Pipe damping coefficient
fa 1.45× 10−12 1/Pa Annulus flow hoop-strain coefficient
fi 1.45× 10−12 1/Pa Pipe flow hoop-strain coefficient

Figure 6.4: Analytical and Ritz approximation frequency response for V̄i(0)/V̄i(L), using 2 modes
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Figure 6.5: Analytical and Ritz approximation frequency response for V̄i(0)/V̄i(L), using 4 modes

Figure 6.6: Analytical and Ritz approximation frequency response for V̄i(0)/V̄i(L), using 16 modes
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6.3 Rational Approximation

6.3 Rational Approximation
In this section rational approximations of the transmission line stated in chapter 3, ob-
tained using the Laguerre-Gram method, is compared with the analytical frequency solu-
tion (3.42). Some cases are considered in detail here, while all 36 frequency responses are
plotted in appendix C using N = 1500, σ = 0 and r = 64 as inputs to the Laguerre-Gram
method, and appendix D using N = 1500, σ = 0.01 and r = 64.

Note that all rational approximations are found by sampling the Ritz approximation,
using 32 modes. Furthermore, all transfer functions are approximated individually, which
will lead nonminimal state space realizations.

6.3.1 Case 1: Order of Rational Approximation
Figures 6.7, 6.8 and 6.9 show the frequency response of the transfer function Vi(0)/Vi(L)
found using order r = 32, r = 96 and r = 128 for the rational approximation respectively.
N = 1500 sampling points where used and σ = 0 as weighting parameter.

Figure 6.7 shows that the Laguerre-Gram gives a good approximation in both ampli-
tude and phase for frequencies below ω = 3rad/s. However it fails to capture the spike
around ω = 1.5rad/s. The method is however not expected to capture these spikes without
using either a very high polynomial order.

Comparing the frequency reponse in figure 6.7 and 6.8 it can be seen that by increasing
the order of the rational approximation from r = 32 to r = 96 its accuracy is raised. How-
ever it still fails to capture the resonance spikes, although it is better captured compared to
the lower order.

Figure 6.9 shows the frequency response of the transfer function Vi(0)/Vi(L) using a
rational approximation of order r = 128, which fails horribly for frequencies from about
ω = 0.4rad/s to ω = 2.2rad/s. However a good fit is obtained for frequencies from
ω = 2.2rad/s up to ω = 6rad/s. One would expect that a higher degree for the rational
approximation would give a better approximation in the entire frequency domain. One
possible reason for the failure of the method when the order of the approximation is set to
high, might be that the number of sample points N is to low. However this is difficult to
test, because when N is increased beyond a certian point (around N = 4400) the problem
becomes numerically singular.

Looking at the poles and zeros for the different approximations, shown in figure 6.10,
one can see that one of the poles is placed further and further into the left half plane when
increasing the order. It is a well know problem that sparsly spread poles may lead to nu-
merical issues, and making the state-space realization numerically stiff (e.g. Egeland and
Gravdahl (2002)). This is however probably not the source of the failure of the Laguerre-
Gram method for high order approximation. A closer look at the poles of the rational
approximation of order r = 128 reveal that some of the poles have a positive real part,
making the approximated subsystem unstable. This is probably neither the source of the
failure of the Laguerre-Gram method, as other approximated subsystems have unstable
poles without a similar deficiency in the frequency response.

A closer look at the poles and zeros of the different order rational approximations re-
veal that many poles lie close to zeros. This might be a reason for the failure of the highest
order approximations, as these poles and zeros would analytically cancel each other out
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Figure 6.7: Frequency response PDE vs. rational approximation, Vi(0)/Vi(L), r = 32, σ = 0.

Figure 6.8: Frequency response PDE vs. rational approximation, Vi(0)/Vi(L), r = 96, σ = 0.
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Figure 6.9: Frequency response PDE vs. rational approximation, Vi(0)/Vi(L), r = 128, σ = 0.

but numerical issues place them appart. However all of the rational approximations contain
poles and zeros placed closely, so this seems unlikely.

6.3.2 Case 2: Different Weights

In appendix C it can be seen that using σ = 0 as the weight parameter, does not result in a
good rational approximation in all cases. Figure 6.11 shows the percentile error between
the rational approximation obtained using the Laguerre-Gram method and the analytical
solution of the transfer function Pp(L)/Vi(L) for σ = 0, 0.007, 0.01, 0.2. Figures 6.12 and
6.13 shows the corresponding phase plots, and poles and zeros. These plots show that the
accuracy of the rational approximation can be drastically increased by picking the correct
σ, and that some of the relevant transfer functions are very sensitive to this parameter. In
the case presented here σ = 0.01 gives the best approximation, with an accurate frequency
domain from ω = 0.4rad/s to ω = 1.6rad/s. As ω → 0 the amplitude |Pp(L)/Vi(L)| → 0
for the analytical transfer function, which is not the case for the rational approximation.
This will lead to a steady state error.

Looking at the poles of this rational approximation, reveals that some of the poles are
unstable; making the approximation unstable. This instability is contradicting the stable
nature of the physical system, making the validity of the approximation dubious. It should
also be noted that the approximation of this subsytem will be stiff, as the poles are widely
spread.

The results presented in this subsection are also valid for the other subsytems of the
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Figure 6.10: Poles and zeros for the rational approximations of Vi(0)/Vi(L).
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transmission line. Appendix D shows the frequency response for every subsystem, using
N = 1500, r = 64 and σ = 0.01.

6.3.3 Case 3: Number of Sampling Points
To test the sensitivity of the Laguerre-Gram method with respect to the number of sampling
points, the transfer function Pp(L)/Vi(L) is considered. The reason for using this transfer
function is that it was tested to be one of the more sensitive transfer functions with respect
to the number of sampling points.

Figure 6.14 show the percentile error of between the analytical amplitude and its ra-
tional approximation for the transfer function Pp(L)/Vi(L), using N = 200, 1500, 4000
sampling points and order r = 64 and weight σ = 0.01; figure 6.15 shows the correspond-
ing phase. It can be seen that if the number of sampling points is to low, the approximation
fails to capture any of the systems dynamics. Increasing the number of sampling points
from N = 200 to N = 1500 reduce the error drastically, giving a valid frequency range
from ω = 0.4rad/s to ω = 1.6rad/s. However it can also be seen that increasing the
number of sampling points more, decrease the accuracy of the approximation for lower
frequencies, and increase the accuracy in the range ω = 3.2rad/s to ω = 4rad/s. Further
adding sampling points above around N = 4400 result in a numerical instability, and the
Laguerre-Gram method fails.

6.4 Numerical Issues
From the cases presented in the previous section it can be seen that the Laguerre-Gram
method can give good approximations for frequencies from around ω = 0.4rad/s to ω =
1.6rad/s, if correct order r, number of sampling points N and weight σ is picked. It can
also be seen that by picking any of these values either to low or to high results in failure. It
is expected that when using either to few sampling points or a low order the method would
fail. This is however not expected when they are picked to big. One likely reason for
this failure is that the Hankel functions of the second kind diverge, e.g. H(2)

1 → ∞ when
s → ∞. Which for high order approximations or a large number of sampling points may
lead to numerical instabilities when using conventional tools. This problem was clearly
observed when picking N to big, as the numerical problem became singular, while it can
from the plots be clearly seen that none of analytical transfer functions diverge.
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Figure 6.11: Percentile error in amplitude between rational approximation and analytical solution
of Pp(L)/Vi(L), for different σ, N = 1500, r = 64.
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Figure 6.12: Phase of Pp(L)/Vi(L), for different σ, N = 1500, r = 64.
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Figure 6.13: Poles and zeros of Pp(L)/Vi(L), for different σ, N = 1500, r = 64.
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Figure 6.14: Percentile error in amplitude between rational approximation and analytical solution
of Pp(L)/Vi(L), for different N , σ = 0.01, r = 64.
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Figure 6.15: Phase of Pp(L)/Vi(L), for different N , σ = 0.01, r = 64.
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Chapter 7
Discussion

The main objective of this thesis was to construct a time domain simulator for the coupled
hydraulic transmission line presented in chapter 3, with an added model for downhole
pressure and boundary conditions representing a continuous circulation system. This goal
was not achieved. The reason for this is that there are still some numerical issues to be
solved regarding the rational approximation of the irrational transfer functions giving the
hydraulic transmission line.

A Ritz approximation was applied with great success to the coupled hydraulic trans-
mission line. The irrational transfer functions obtained using this method were then ap-
proximated as rational transfer function using the Laguerre-Gram model order reduction
method present Amghayrir et al. (2005) with the extensions given by Anfinsen (2013).
Using this method some issues were encountered. As mentioned in chapter 6 some nu-
merical issues arise when many sampling points are used, because the Hankel functions of
the second kind diverge when the Laplace operator s→∞. Leading to a mix of very big
and very small numbers, which is a well known numerical problem. This might very well
be what cause failure when a high rational order is used for the approximation.

Another issue with the approximations obtained with the Laguerre-Gram method is
that in many cases poles where placed in the right half plane, making it unstable. This in-
stability is contradicting the original system, which is stable. Therefore the Laguerre-Gram
method as presented is not in general a good way to approximate this system. However the
unstable poles were not observed before the order of the approximation or the number of
sampling points were increased beyond a certain point. Suggesting that they might arrise
due to the same numerical issues discussed above.

A floating rig will in general be subject to heave motion induced by oceanic waves,
and MPD operations are usually only done in relatively calm sea states. Furthermore
because of the massive size of drilling rigs waves must contain a certain amount of energy
before they actually will induce any relevant heave motion. Meaning that the rational
approximations only need to be accurate for a relatively small frequency range. Because
of the nature of oceanic waves this frequency range will vary with geography, but will in
general be at the lower end of the scale. Therefore the method presented in this thesis
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Chapter 7. Discussion

can for some practical cases provide a rational approximation of the irrational hydraulic
transmission line that is fit for purpose.

A set of boundary conditions and a downhole pressure node has also been presented,
however because the time domain simulator were not finished validation/disqualification
of these could not be done. The topside boundaries are all easily definable model inputs
with natural physical interpretations, and should therefore not constitute any problems.
The pressure drop over the drill bit nozzel should be relatively accurate as it is well es-
tablished in the litterature. The momentum balance should also hold, assuming all major
moments affecting the bit have been thought of. What is more uncertain is the validity of
the downhole pressure node and the annulus flow boundary condition. The internal flow
model presented for the annulus boundary is probably not very useful in practice, as good
numerical values will be difficult to obtain.
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Chapter 8
Conclusion and Further Work

8.1 Conclusion

In this master thesis a Ritz approximation was developed to disecretize a piston like hy-
draulic transmission line, using Robin boundary conditions. The pipe and annulus flow
was modeled using a two-dimensional viscous compressible model, and coupled through
the moving pipe modeled as an elastic rod. Laplace transforming this transmission line al-
lowed for averaging away the radial dynamics. The Laguerre-Gram model order reduction
method was applied to the Ritz approximation in order to obtain rational transfer functions.

Frequency analysis indicated that the Ritz approximation provide an excellent dis-
cretization scheme for this particular problem. Similar analysis suggested that the Laguerre-
Gram method is, for the considered problem, very sensitive to its input parameters, and
are subject to numerical issues. The placement of the poles of the rational approximation
were also in some cases shown to be unstable, in conradiction with the original system. It
was also argued that for some cases the method would most likely be able to provide a fit
for purpose model, in spite of the mentioned issues.

A set of Robin boundary conditions were stated, aswell as a downhole pressure node
developed using the definition of bulk-modulus. This pressure node was added to serve
as and interconnection between the downhole transmission line inputs and outputs, and to
test if such a model will improve the accuracy compared to the physical system. Three
different annulus flow boundaries were suggested, of which the first is the linear and the
second the quadratic valve equation, and the last one was based on internal flow. Due to
the complexity of the internal flow model, the other two models will most likely provide
better results without investing a lot of time into tuning.

8.2 Further Work

The most obvious remaining work is to tune the inputs to the Laguerre-Gram method and
obtain a set of rational transfer functions, in order to perform simulations in the time do-
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main. Doing this will allow for testing the validity of the proposed boundary conditions
and downhole pressure node. It would be interesting to compare the then obtained model
with actual data. The effect of using the different proposed annulus flow boundary condi-
tions should also tested, aswell as their parameter sensitivity.

The multiple input, multiple output extension for the Laguerre-Gram model order re-
duction method should be investigated, in order to obtain minimal state space realizations.
The numerical robustness of this method should also be persued. This includes, but is not
limited to:

• Stating the transmission line using Bessel functions as a basis, instead of Hankel
functions, to see if this improves numerical stability.

• Testing different forms of the weight parameter σ for the Laguerre-Gram method.

• Forcing unstable poles to become stable. An idea here is to investigate the possibility
of forcing passivity.

Other methods to obtain rational approximations than the Laguerre-Gram model order
reduction scheme should also be investigated.

50



Bibliography

Aarsnes, U. J. F., Aamo, O. M., Hauge, E., Pavlov, A., 2013. Limits of controller per-
formance in the heave disturbance attenuation problem. In: Proc. European Control
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Appendix A
Convenience Variables

Table A.1: Convenience variables 1

Subsystem Series Impedance

Fluid in pipe Zi = ρ0s
(
1− C

[
I

(1)
i + I

(2)
i

]
2π
Āi

)−1

Fluid in annulus Za = ρ0s
(
1− 2π

Āa

[
D(1)I

(1)
a +D(2)I

(2)
a

])−1

Pipe Zp = ρps+ kp

Shunt Admitance

Fluid in pipe Yi = s 1
β̄i

Fluid in annulus Ya = s 1
β̄a

Pipe Yp =
s
E

Impedance Cross Terms

Fluid in pipe Xi =
2π
Āi
C
[
I

(1)
i + I

(2)
i

]
Fluid in annulus Xa =

2π
Āa

[
E(1)I

(1)
a + E(2)I

(2)
a

]
Admittance Cross Terms

Fluid in pipe Yi,x = s 1
Āi

∂Ai

∂pa

Fluid in annulus Ya,x = s 1
Āa

∂Aa

∂pi
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Table A.2: Convenience variables 2

Other Convenience Variables

I
(1)
i = H

(1)
1 (ξr0)r0/ξ I

(2)
i = H

(2)
1 (ξr0)r0/ξ

I
(1)
a =

(
H

(1)
1 (ξr2)r2 −H(1)

1 (ξr1)r1

)
/ξ I

(2)
a =

(
H

(2)
1 (ξr2)r2 −H(2)

1 (ξr1)r1

)
/ξ

D(1) = −
(
H

(2)
0 (ξr2)−H(2)

0 (ξr1)
)
/W D(2) =

(
H

(1)
0 (ξr2)−H(1)

0 (ξr1)
)
/W

E(1) = −H(2)
0 (ξr2)/W E(2) = H

(1)
0 (ξr2)/W

C =
(
H

(1)
0 (ξr0) +H

(2)
0 (ξr0)

)−1

W = H
(1)
0 (ξr2)H

(2)
0 (ξr1)−H(1)

0 (ξr1)H
(2)
0 (ξr2)

ξ = i
√
s/ν

H
(1)
n , H

(2)
n are the n’th order Hankel function of teh first and second kind respectively.
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Appendix B
Frequency Responses: Analytical
Versus Irrational Ritz
Approximations

Figure B.1: Frequency diagram: V̄i(0)/V̄i(L), 16 modes
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Figure B.2: Frequency diagram: V̄i(0)/V̄a(L), 16 modes

Figure B.3: Frequency diagram: V̄i(0)/V̄p(L), 16 modes

Figure B.4: Frequency diagram: V̄i(0)/Pi(0), 16 modes
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Figure B.5: Frequency diagram: V̄i(0)/Pa(0), 16 modes

Figure B.6: Frequency diagram: V̄i(0)/Pp(0), 16 modes
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Figure B.7: Frequency diagram: V̄a(0)/V̄i(L), 16 modes

Figure B.8: Frequency diagram: V̄a(0)/V̄a(L), 16 modes

Figure B.9: Frequency diagram: V̄a(0)/V̄p(L), 16 modes
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Figure B.10: Frequency diagram: V̄a(0)/Pi(0), 16 modes

Figure B.11: Frequency diagram: V̄a(0)/Pa(0), 16 modes

Figure B.12: Frequency diagram: V̄a(0)/Pp(0), 16 modes
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Figure B.13: Frequency diagram: V̄p(0)/V̄i(L), 16 modes

Figure B.14: Frequency diagram: V̄p(0)/V̄a(L), 16 modes

Figure B.15: Frequency diagram: V̄p(0)/V̄p(L), 16 modes
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Figure B.16: Frequency diagram: V̄p(0)/Pi(0), 16 modes

Figure B.17: Frequency diagram: V̄p(0)/Pa(0), 16 modes

Figure B.18: Frequency diagram: V̄p(0)/Pp(0), 16 modes
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Figure B.19: Frequency diagram: Pi(L)/V̄i(L), 16 modes

Figure B.20: Frequency diagram: Pi(L)/V̄a(L), 16 modes

Figure B.21: Frequency diagram: Pi(L)/V̄p(L), 16 modes
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Figure B.22: Frequency diagram: Pi(L)/Pi(0), 16 modes

Figure B.23: Frequency diagram: Pi(L)/Pa(0), 16 modes

Figure B.24: Frequency diagram: Pi(L)/Pp(0), 16 modes
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Figure B.25: Frequency diagram: Pa(L)/V̄i(L), 16 modes

Figure B.26: Frequency diagram: Pa(L)/V̄a(L), 16 modes

Figure B.27: Frequency diagram: Pa(L)/V̄p(L), 16 modes
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Figure B.28: Frequency diagram: Pa(L)/Pi(0), 16 modes

Figure B.29: Frequency diagram: Pa(L)/Pa(0), 16 modes

Figure B.30: Frequency diagram: Pa(L)/Pp(0), 16 modes
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Figure B.31: Frequency diagram: Pp(L)/V̄i(L), 16 modes

Figure B.32: Frequency diagram: Pp(L)/V̄a(L), 16 modes

Figure B.33: Frequency diagram: Pp(L)/V̄p(L), 16 modes
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Figure B.34: Frequency diagram: Pp(L)/Pi(0), 16 modes

Figure B.35: Frequency diagram: Pp(L)/Pa(0), 16 modes

Figure B.36: Frequency diagram: Pp(L)/Pp(0), 16 modes
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Appendix C
Frequency Responses: Analytical
Versus Rational Approximations 1

Figure C.1: Frequency diagram: V̄i(0)/V̄i(L), r = 64, σ = 0.
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Figure C.2: Frequency diagram: V̄i(0)/V̄a(L), r = 64, σ = 0.

Figure C.3: Frequency diagram: V̄i(0)/V̄p(L), r = 64, σ = 0.

Figure C.4: Frequency diagram: V̄i(0)/Pi(0), r = 64, σ = 0.
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Figure C.5: Frequency diagram: V̄i(0)/Pa(0), r = 64, σ = 0.

Figure C.6: Frequency diagram: V̄i(0)/Pp(0), r = 64, σ = 0.
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Figure C.7: Frequency diagram: V̄a(0)/V̄i(L), r = 64, σ = 0.

Figure C.8: Frequency diagram: V̄a(0)/V̄a(L), r = 64, σ = 0.

Figure C.9: Frequency diagram: V̄a(0)/V̄p(L), r = 64, σ = 0.
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Figure C.10: Frequency diagram: V̄a(0)/Pi(0), r = 64, σ = 0.

Figure C.11: Frequency diagram: V̄a(0)/Pa(0), r = 64, σ = 0.

Figure C.12: Frequency diagram: V̄a(0)/Pp(0), r = 64, σ = 0.
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Figure C.13: Frequency diagram: V̄p(0)/V̄i(L), r = 64, σ = 0.

Figure C.14: Frequency diagram: V̄p(0)/V̄a(L), r = 64, σ = 0.

Figure C.15: Frequency diagram: V̄p(0)/V̄p(L), r = 64, σ = 0.
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Figure C.16: Frequency diagram: V̄p(0)/Pi(0), r = 64, σ = 0.

Figure C.17: Frequency diagram: V̄p(0)/Pa(0), r = 64, σ = 0.

Figure C.18: Frequency diagram: V̄p(0)/Pp(0), r = 64, σ = 0.
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Figure C.19: Frequency diagram: Pi(L)/V̄i(L), r = 64, σ = 0.

Figure C.20: Frequency diagram: Pi(L)/V̄a(L), r = 64, σ = 0.

Figure C.21: Frequency diagram: Pi(L)/V̄p(L), r = 64, σ = 0.
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Figure C.22: Frequency diagram: Pi(L)/Pi(0), r = 64, σ = 0.

Figure C.23: Frequency diagram: Pi(L)/Pa(0), r = 64, σ = 0.

Figure C.24: Frequency diagram: Pi(L)/Pp(0), r = 64, σ = 0.
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Figure C.25: Frequency diagram: Pa(L)/V̄i(L), r = 64, σ = 0.

Figure C.26: Frequency diagram: Pa(L)/V̄a(L), r = 64, σ = 0.

Figure C.27: Frequency diagram: Pa(L)/V̄p(L), r = 64, σ = 0.
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Figure C.28: Frequency diagram: Pa(L)/Pi(0), r = 64, σ = 0.

Figure C.29: Frequency diagram: Pa(L)/Pa(0), r = 64, σ = 0.

Figure C.30: Frequency diagram: Pa(L)/Pp(0), r = 64, σ = 0.
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Figure C.31: Frequency diagram: Pp(L)/V̄i(L), r = 64, σ = 0.

Figure C.32: Frequency diagram: Pp(L)/V̄a(L), r = 64, σ = 0.

Figure C.33: Frequency diagram: Pp(L)/V̄p(L), r = 64, σ = 0.
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Figure C.34: Frequency diagram: Pp(L)/Pi(0), r = 64, σ = 0.

Figure C.35: Frequency diagram: Pp(L)/Pa(0), r = 64, σ = 0.

Figure C.36: Frequency diagram: Pp(L)/Pp(0), r = 64, σ = 0.
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Appendix D
Frequency Responses: Analytical
Versus Rational Approximations 2

Figure D.1: Frequency diagram: V̄i(0)/V̄i(L), r = 64, σ = 0.01.
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Figure D.2: Frequency diagram: V̄i(0)/V̄a(L), r = 64, σ = 0.01.

Figure D.3: Frequency diagram: V̄i(0)/V̄p(L), r = 64, σ = 0.01.

Figure D.4: Frequency diagram: V̄i(0)/Pi(0), r = 64, σ = 0.01.
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Figure D.5: Frequency diagram: V̄i(0)/Pa(0), r = 64, σ = 0.01.

Figure D.6: Frequency diagram: V̄i(0)/Pp(0), r = 64, σ = 0.01.
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Figure D.7: Frequency diagram: V̄a(0)/V̄i(L), r = 64, σ = 0.01.

Figure D.8: Frequency diagram: V̄a(0)/V̄a(L), r = 64, σ = 0.01.

Figure D.9: Frequency diagram: V̄a(0)/V̄p(L), r = 64, σ = 0.01.
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Figure D.10: Frequency diagram: V̄a(0)/Pi(0), r = 64, σ = 0.01.

Figure D.11: Frequency diagram: V̄a(0)/Pa(0), r = 64, σ = 0.01.

Figure D.12: Frequency diagram: V̄a(0)/Pp(0), r = 64, σ = 0.01.
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Figure D.13: Frequency diagram: V̄p(0)/V̄i(L), r = 64, σ = 0.01.

Figure D.14: Frequency diagram: V̄p(0)/V̄a(L), r = 64, σ = 0.01.

Figure D.15: Frequency diagram: V̄p(0)/V̄p(L), r = 64, σ = 0.01.
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Figure D.16: Frequency diagram: V̄p(0)/Pi(0), r = 64, σ = 0.01.

Figure D.17: Frequency diagram: V̄p(0)/Pa(0), r = 64, σ = 0.01.

Figure D.18: Frequency diagram: V̄p(0)/Pp(0), r = 64, σ = 0.01.
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Figure D.19: Frequency diagram: Pi(L)/V̄i(L), r = 64, σ = 0.01.

Figure D.20: Frequency diagram: Pi(L)/V̄a(L), r = 64, σ = 0.01.

Figure D.21: Frequency diagram: Pi(L)/V̄p(L), r = 64, σ = 0.01.
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Figure D.22: Frequency diagram: Pi(L)/Pi(0), r = 64, σ = 0.01.

Figure D.23: Frequency diagram: Pi(L)/Pa(0), r = 64, σ = 0.01.

Figure D.24: Frequency diagram: Pi(L)/Pp(0), r = 64, σ = 0.01.
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Figure D.25: Frequency diagram: Pa(L)/V̄i(L), r = 64, σ = 0.01.

Figure D.26: Frequency diagram: Pa(L)/V̄a(L), r = 64, σ = 0.01.

Figure D.27: Frequency diagram: Pa(L)/V̄p(L), r = 64, σ = 0.01.
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Figure D.28: Frequency diagram: Pa(L)/Pi(0), r = 64, σ = 0.01.

Figure D.29: Frequency diagram: Pa(L)/Pa(0), r = 64, σ = 0.01.

Figure D.30: Frequency diagram: Pa(L)/Pp(0), r = 64, σ = 0.01.
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Figure D.31: Frequency diagram: Pp(L)/V̄i(L), r = 64, σ = 0.01.

Figure D.32: Frequency diagram: Pp(L)/V̄a(L), r = 64, σ = 0.01.

Figure D.33: Frequency diagram: Pp(L)/V̄p(L), r = 64, σ = 0.01.
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Figure D.34: Frequency diagram: Pp(L)/Pi(0), r = 64, σ = 0.01.

Figure D.35: Frequency diagram: Pp(L)/Pa(0), r = 64, σ = 0.01.

Figure D.36: Frequency diagram: Pp(L)/Pp(0), r = 64, σ = 0.01.
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