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Abstract

This thesis presents design and comparison of a vision-aided uniformly semi-globally
exponentially stable (USGES) nonlinear observer (NO) and a Multiplicative Ex-
tended Kalman Filter (MEKF) for estimation of attitude, gyro bias, position and
velocity of a fixed-wing Unmanned Aerial Vehicle (UAV). The NO uses measure-
ments from an Inertial Measurement Unit (IMU), a Global Navigation Satellite
System (GNSS) receiver, and a video camera. The MEKF and the NO are evalu-
ated with real world experimental data. Moreover two new NO representations are
proposed. The proposed NOs have a computer vision (CV) system that is based
on epipolar geometry, and hence independent of the depth in the images and the
structure of the terrain being filmed. The first proposed NO utilizes a camera
and the continuous epipolar constraint and is named Continuous Epipolar Optical
Flow Nonlinear Observer (CEOF NO). The second proposed NO uses a camera and
the epipolar constraint and is named Epipolar Optical Flow Nonlinear Observer
(EOF NO). Experimental data from a UAV test flight show that the vision-aided
NO is substantially less computational demanding than the MEKF. It is seen that
the NO has similar performance as the MEKF by means of accuracy of the esti-
mates. The NO and the MEKF estimates are compared with an Extended Kalman
Filter (EKF) implemented on the onboard autopilot of the UAV. The results il-
lustrate that the estimates of the states converge accurately to the correct values.
Moreover simulated data show that the proposed observers have more robust CV
than the previous developed vision-aided NO, yielding more accurate and robust
performance.

Keywords: Unmanned Aerial Vehicle, Optical Flow, Vision-based Navigation,
Mulitplicative Extended Kalman Filter, Nonlinear Observer, Epipolar Geometry,
Continuous Epipolar Constraint, Navigation System, Image Processing, Computer
Vision, Sensor Fusion, State Estimator
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Sammendrag

Denne avhandlingen presenterer design og sammenligning av en ulineær observer
og et multiplikativt utvidet Kalman filter for estimering av orientering, gyroskop-
bias, posisjon og hastighet av et ubemannet fly (UAV). Den ulineære observeren og
Kalman filteret benytter seg av m̊alinger fra IMU, et globalt posisjonerings system
(GPS) og maskinsyn. Kalman filteret og den ulineære observeren sammenlignes
ved bruk av ekte data, samlet i en testflyvning av en UAV. Den ulineære observeren
viser seg å ha sammenlignbar ytelse som det konvensjonelle multiplikativt utvidede
Kalman filteret. Prinsippene bak maskinsynet i den eksisterende kamera-assisterte
ulineære observeren krever at terrenget som filmes av kameraet er flatt og horison-
talt. Derfor behøves et nytt prinsipp for maskinsyn i observeren, og det foresl̊as
to nye ulineære observer-representasjoner. Disse representasjonene baserer seg p̊a
andre prinsipper for maskinsyn enn den eksisterende kamera-assisterte ulineære
observeren. De foresl̊atte endringene i observeren gjør at systemet kan benyttes
uavhengig av terrenget, og dermed kan brukes ved flyvning over terreng som ikke
er flat og horisontalt. Eksperimentelle data, fra en flyvning over et relativt flatt
omr̊ade, viser at de foresl̊atte ulineære observerne gir lik ytelse som den eksisterende
kamera-assisterte ulineære observeren. Videre simuleres en UAV flyving over ulendt
terreng. Resultatene fra simuleringen viser at den eksisterende ulineære observeren
gir feilaktige estimater av orientering og gyroskopbias ved flyvning over terreng som
ikke er horisontalt flatt. De foresl̊atte observerne gir estimater som konvergerer til
korrekte verdier uavhengig av strukturen p̊a terrenget.
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Chapter 1
Introduction

This thesis seeks to compare a vision-aided nonlinear observer (NO) with a tra-
ditional multiplicative extended Kalman filter (MEKF), both utilizing computer
vision (CV) to generate body-fixed linear velocity measurements. The thesis com-
pares the performance of the NO and the MEKF based on data from a real world
experiment. Moreover this thesis presents a new CV subsystem to the NO, yield-
ing a new observer representation relaxing some of the assumptions used in the
previous presented vision-aided NO from Fusini et al. (2014, 2015).

The main objective of this thesis is to:

� Implement and compare the performance of the vision-aided nonlinear ob-
server by Fusini et al. (2014) with a multiplicative extended Kalman filter.

� Propose a new, more robust, vision-aided nonlinear observer, with computer
vision that is independent of the structure being filmed.

This chapter provides a short introduction to the research field of vision-aided
navigation. Furthermore the contributions of this thesis are highlighted. An outline
of the thesis ends the chapter.

1.1 Historical View and Motivation

The use of Unmanned Aerial Vehicles (UAV) has in the last decade gained in-
creasingly attention, and already plays a major role in military use. The field of
applications for UAVs will grow even more in the future, and the demands for relia-
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bility are considered to be crucial. Robust navigation is one of the most important
parts when working with UAVs. A challenge in navigation systems is to maintain
accurate estimates of the states when using low-cost measurement units. The out-
put of such low-cost sensors are typically contaminated by noise and bias, hence
some filtering is necessary. As it is desirable to have low energy consumption on
UAVs, it is desired to find computational light weight navigation systems with good
performance. The Kalman filter has been the preferred filter algorithm in many
years, but in the later years nonlinear passive observers, like the nonlinear com-
plementary filter has gained increasingly interest (Mahony et al., 2008; Crassidis
et al., 2007; Hua, 2010; Grip et al., 2012a; Fusini et al., 2014, 2015).

Vision-based navigation is a globally prioritized research field. The use of cam-
eras for navigational purposes is expected to grow fast since video cameras are
lightweight, energy efficient and the prices are constantly decreasing. Cameras
with great quality can be acquired at low cost. As magnetometers are very sensi-
tive to disturbances, such as electromagnetic fields (Euston et al., 2008), cameras
might be a good alternative or complementary to the magnetometer in a navigation
system. The camera images can be used to calculate the body-fixed velocity of a
UAV, which can provide valuable information to the navigation system.

1.2 Previous Work

The problem of estimating attitude has been the focus of many researchers (Batista
et al., 2011b,a; Grip et al., 2012b; Guerrero-Castellanos et al., 2013; Hua et al.,
2014; Mahony et al., 2008, 2009, 2011; Salcudean, 1991; Thienel and Sanner, 2003).
Integration of inertial navigation systems, magnetometers and GNSS to estimate
navigation states of vehicles have been done by other researchers (Maybeck, 1979;
Phillips and Schmidt, 1996; Grewal et al., 2001; Vik and Fossen, 2001; Groves,
2013).

Nonlinear Observer

Mahony et al. (2008) and Mahony et al. (2009) proposed a vector-based NO for es-
timation of attitude based on low cost inertial measurement sensors, in particular
an accelerometer, gyroscope and magnetometer. Hua (2010) expanded this ob-
server to include GNSS velocity measurements. Batista et al. (2011b) and Batista
et al. (2011a) built globally exponentially stable (GES) attitude estimators based
on multiple time-varying reference vectors or a single persistently exiting vector.
A similar observer, including also gyro bias estimation and GNSS integration, was
developed in Grip et al. (2012a) and Grip et al. (2015). Grip et al. (2013) replaced
the rotation matrix with the unit quaternion for representing attitude, considered
Earth rotation and curvature and a non-constant gravity vector. Fusini et al. (2014)
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presented a vision-aided NO utilizing body-fixed velocity measurements from CV
instead of magnetometer measurements. Fusini et al. (2014) proved that the vision-
aided NO is Uniformly Semi-Globally Exponentially Stable (USGES), as defined
in Grotli et al. (2008), in the origin of the error dynamics. An experimental val-
idation of the vision-aided NO, showing that the system works with real world
experimental data, was presented in Fusini et al. (2015). The CV in the NO by
Fusini et al. (2014, 2015) used optical flow (OF) and assumed ground truth optical
flow (GTOF). With GTOF it is assumed known distance to all features correspond-
ing to a OF vector, making it possible to recover the ego-motion of a camera from
the relationship between theoretical OF and camera motion. Requiring known dis-
tance to any feature in the image is a fundamental restriction, imposing different
restrictive assumptions for the CV.

Computer Vision in Navigation

In this thesis CV will be used to aid inertial navigation. The camera is commonly
used in navigation. Low weight, low power consumption, and a wide range of CV
software make it a viable choice for navigation purposes. Some drawbacks are its
dependence on lighting and weather conditions, which directly affect the ability
to extract significant features from the images to be used in image processing,
and the difficulty in separating camera motion from moving objects in complex
non-stationary environments. The CV of the observers in this thesis uses OF as
a measurement. OF is how features in the image plane moves in time, caused
by relative motion between the camera and the object being depicted. Several
methods exists for determining the OF of a series of images (Lucas and Kanade,
1981; B.K.P.Horn and B.G.Schunk, 1981; Lowe, 1999; Bay, Tuytelaars and Van
Gool, 2008). Different OF algorithms are evaluated in Mammarella et al. (2012a);
Chao et al. (2014) by the means of estimating UAV velocity. CV has been used
for different applications in UAV navigation including indoor manoeuvring (Zingg
et al., 2010; Shen et al., 2011), linear and angular velocity estimation (Dusha, 2007;
Mammarella et al., 2012a; Weiss et al., 2013; Kehoe et al., 2006; Moore et al., 2012)
and obstacle avoidance (Zufferey and Floreano, 2005; Hrabar et al., 2005; Zingg
et al., 2010; Merrell et al., 2004a; Conroy et al., 2009; Ruffier and Franceschini,
2004) as well as height above the ground estimation in (Merrell et al., 2004b).
Bibuli et al. (2007); Ahrens et al. (2009) have used camera as sensor for navigating
in GPS-denied environments.

An effective principle for recovering the ego-motion of a camera is epipolar geometry
and the epipolar constraint (Hartley and Zisserman, 2003). Epipolar geometry
relates motion of a camera with the projective motion in the images, independent of
the depth in the images. The principle of epipolar geometry have been used together
with Kalman filtering in navigation (Diel et al., 2005; Weiss, 2012; Weiss et al., 2013;
Mercado et al., 2013; Bazin et al., 2010; Meingast et al., 2004; Sanfourche et al.,
2012; Davison et al., 2007; Brockers et al., 2012; Herisse et al., 2008). Ma et al.
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(2001) presented the epipolar constraint in the continuous case. Grabe, Bulthoff
and Robuffo Giordano (2012); Grabe, Bulthoff and Giordano (2012) have used the
continuous epipolar constraint together with an extended Kalman filter to recover
the velocity of a UAV.

1.3 Contributions

This thesis seeks to compare two different navigation filters: the nonlinear observer
(NO) with the Multiplicative Extended Kalman Filter (MEKF). Moreover two new
NO representations are proposed. The main contributions of this thesis are:

M-matrix expressed with attitude quaternion (Section 3.3.1) The M-matrix
from Fusini et al. (2014, 2015) describes the relationship between theoretical
OF and 6DOF motion. By expressing the M-matrix by quaternions, singu-
larity issues are avoided.

CEOF nonlinear observer (Section 5.5) A new proposed NO representation is
presented. This system enables CV based on the continuous epipolar con-
straint (Ma et al., 2001; Hartley and Zisserman, 2003) and is named Con-
tinuous Epipolar Optical Flow Nonlinear Observer (CEOF NO). The CEOF
NO has, in contradiction to the GTOF observer by Fusini et al. (2014, 2015),
CV that is independent of the structure of the terrain. The computer vision
of the CEOF NO is independent of the depth in the images, yielding more
relaxed assumptions, and in turn a more robust observer representation. The
GTOF observer by Fusini et al. (2014, 2015) has some strict requirements of
having measurements of the attitude and altitude of the UAV. In addition it
requires the terrain being filmed to be flat and horizontal. These requirements
are removed with the CEOF NO. A stability proof is presented showing that
the new proposed CEOF NO representation has the same stability proper-
ties as the GTOF observer by Fusini et al. (2014, 2015). That is a USGES
equilibrium point at the origin of the error dynamics.

EOF nonlinear observer (Section 5.6) A second proposed NO representation is
presented. This system uses CV based on the discrete epipolar constraint
(Hartley and Zisserman, 2003) and is named an Epipolar Optical Flow Non-
linear Observer (EOF NO). The motivation behind the EOF NO is that
the OF-algorithms are discrete in their nature and measure only the dis-
placement of features from image to image. That is the discrete OF. As the
discrete epipolar constraint is derived by assuming discrete OF and that com-
puter implementation implies discretization, the EOF NO is argued to have
a more appropriate CV. A stability proof is presented showing that the new
proposed EOF NO representation has, under some assumptions, the same
stability properties as the proposed CEOF NO and the GTOF observer by
Fusini et al. (2014, 2015). The EOF NO is like the CEOF NO independent
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of the structure being filmed.

UAV flight test (Chapter 6) A UAV flight test is conducted in order to collect
real sensor data that can be used to evaluate the different observers.

UAV with optical flow sensor simulator (Chapter 7) A simulator is imple-
mented. A UAV with optical flow sensor is simulated flying over an coastline
environment. The simulator produces IMU and GNSS data as well as simu-
lated OF vectors, which in turn will be used to evaluate the performance of
the different NO representations.

Experimental testing of observers (Chapter 8) Different nonlinear observers
and MEKF are implemented and tested. An experimental comparison of
performance of a MEKF, the GTOF NO proposed by Fusini et al. (2014), the
proposed CEOF observer and the proposed EOF observer, using real world
data collected from a UAV flight test, is presented. Experimental validation
of the observer proposed by Fusini et al. (2014) including feedback of attitude
estimates to CV is also presented.

Comparison of GTOF, CEOF and EOF nonlinear observers (Chapter 9)
A comparison of performance of the GTOF NO (Fusini et al., 2014, 2015),
the proposed CEOF and EOF NOs using simulated data. A UAV flight is
simulated over rugged terrain. The simulation is presented to highlight the
advantages of the proposed observers compared to the GTOF observer.

Paper submitted to AIAA SciTech 2016 (Appendix A) I have been first au-
thor of a paper presenting the proposed CEOF NO, and comparing the CEOF
observer with the GTOF observer from Fusini et al. (2014, 2015). The paper
was submitted for The AIAA Science and Technology Forum and Exposition
conference. Any decision on acceptance is not yet taken, but is expected
before 25th of August 2015.

Paper accepted to ICUAS15 (Appendix B) I have been co-author on a paper
giving an experimental validation of the GTOF nonlinear observer by Fusini
et al. (2014), which was submitted and accepted for The 2015 International
Conference on Unmanned Aircraft Systems (ICUAS’15). The paper was pre-
sented in Denver June 2015.

1.4 Outline

This thesis is organized in six parts, with twelve chapters and eight appendices:

Part I: Preliminaries

� Chapter 1: Introduction. An introduction to the research field is pre-
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sented, main contributions are listed, and an outline of the thesis is
displayed.

� Chapter 2: Nomenclature. Definitions of variables used in this thesis.

Part II: Theory

� Chapter 3: Computer Vision. Gives an introduction to CV, and how
it has been used in navigation. Description of OF and OF algorithms.
Different principles for recovering ego-motion from OF is presented.

� Chapter 4: Multiplicative Extended Kalman Filter for UAV Navigation.
An observer utilizing IMU, GNSS and CV is designed and presented.

� Chapter 5: Nonlinear Observer for UAV Navigation. A modified version
of the vision-aided NO by Fusini et al. (2014) is presented. Moreover
two new NO representations are proposed.

Part III: Method

� Chapter 6: Experiment. A UAV test flight is conducted and described
in this chapter. Case studies for evaluating the different observers with
real sensor data are presented.

� Chapter 7: Simulation. A simulator is implemented and presented.
Furthermore a case study of evaluating different observers with the sim-
ulated data is described.

Part IV: Results and Discussion

� Chapter 8: Experiment Results. The different NO representations and
MEKF are tested and evaluated with real world data from the flight.

� Chapter 9: Simulation Results. The proposed NO representations are
compared to the GTOF NO by Fusini et al. (2014) when simulating a
flight over rugged terrain.

� Chapter 10: Discussion. A discussion of the main findings in the results.

Part V: Closing Remarks

� Chapter 11: Conclusion. Presents a conclusion of the thesis and the
main findings in this thesis.

� Chapter 12: Future Work. Summarizes what should be done in future
work, and forms a description of ideas for future work and challenges
that need to be solved.

Part VI: Appendices
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� Appendix A: Submitted paper to AIAA SciTech 2016. A paper is written
based on the results and findings in this thesis.

� Appendix B: Accepted paper to the ICUAS’15. A paper on experimental
validation of the GTOF NO from Fusini et al. (2014).

� Appendix C: Derivation of the M-matrix. M is a matrix relating optical
flow to ego-motion.

� Appendix D: Software Implementation. OF algorithms, MEKF and NO
are implemented. General implementation considerations are assessed.

� Appendix E: Payload Setup. Description of the UAV payload module
used to record data.

� Appendix F: Reference Frames. Explanation of the reference frames
used in this thesis.

� Appendix G: Attitude Representations. Explanation of the attitude
representations used in this thesis.

� Appendix H: Sensor Models. Measurement equations for the sensors
used in the MEKF and NO design.
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Chapter 2
Nomenclature

This chapter lists the variables and reference frames used in this thesis.

The reference systems used in this thesis are illustrated in Figure 2.1. {b} is the
body-fixed coordinate system, {c} is the camera frame, {m} is the image plane
and {n} is the earth fixed North-East-Down reference system. {n} is assumed
inertial. A more detailed description of the reference frames is attached in Appendix
F.

Euler Angels, Direction Cosine Matrices and unit quaternions are used to repre-
sent attitude in this thesis. Explanation of different attitude representations are
described in Appendix G.

In this thesis vectors are bold. Matrices are represented by upper-case letters.
Scalars are lower-case letters. The superscript is used to denote which frame a
vector is expressed in. Some vectors have subscript showing which frames the
vectors are relative to. For rotation matrices sub- and superscripts are used to
show which frames a vector is rotated from and to, respectively. Some examples
are shown to clarify:

vnb/n = The linear velocity of {b} relative to {n} expressed in {n}
Rnb = The rotational matrix relating {b} to {n}
λ = A scalar value

Moreover the subscripts are also used to indicate what sensor a measurement come
from. Throughout this thesis it is assumed that IMU and GPS measures a state
of the UAV body {b} w.r.t {n} , meaning pnGPS indicates that it is a measurement
from the GPS of the {b} w.r.t {n} given in {n} -frame. Equivalently ωbimu is a
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Figure 2.1: Different reference frames are used in this thesis. The figure shows the
relationship between body frame {b} , Camera frame {c} , image plane {m} and NED
frame {n} . f is the focal length of the camera.

measurement from the IMU of the angular velocity of the UAV body {b} w.r.t {n}
given in {b} -frame.

General

In×n ∈ Rn×n: The n-by-n identity matrix.
0n×m ∈ Rn×m: The n-by-m zero matrix.
diag(x) ∈ Rn×n: The diagonal matrix with the elements of x on the diagonal.
x ∈ Rn.
[x]× ∈ R3×3: The skew symmetric matrix representing the crossproduct in R3.
[x]×y = x× y, if x,y ∈ R3.
A+: The pseudoinverse of a matrix A.
i = [1, 0, 0]T : Unit vector in x-direction (in R3).
j = [0, 1, 0]T : Unit vector in y-direction (in R3).
k = [0, 0, 1]T : Unit vector in z-direction (in R3).
t: Time.
∆t: Time between two consecutive images.
δt: Time between two iterations in the observer.
gn ∈ R3: Gravitational vector in {n} .
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x̂: Estimate of x.
x̃ = x− x̂: Error in estimate of x.
x = [xT , 1]T : The corresponding homogeneous coordinate of x.
fnb/n: Specific force acting on {b} w.r.t. {n} expressed in {n} .
SO(3): The special ortogonal group.

Dynamics

Rnb ∈ SO(3): Rotation matrix relating {b} and {n} .
Tnb : Homogeneous transformation matrix transforming points from {b} to {n} .
vbb/n: Linear velocity of {b} w.r.t. {n} expressed in {b} .

vnb/n: Linear velocity of {b} w.r.t. {n} expressed in {n} .

ωbb/n: Angular velocity of {b} w.r.t. {n} expressed in {b} .

Θb/n = [φ, θ, ψ]T : Euler angles expressing the orientation of {b} w.r.t {n} .

Computer Vision

f : Focal length of the camera.
K: Projection matrix transforming coordinates from camera frame, {c} , to image
coordinates {m} .
xm = [r, s]T : Image coordinate.
xm = [r, s, 1]T : Homogeneous image coordinate.
ẋm = [ṙ, ṡ]T : Continuous optical flow.
∆xm

∆t = [∆r
∆t ,

∆s
∆t ]

T : Discrete optical flow.
M : Matrix relating optical flow to ego-motion of the camera.
uc = K−1xm: Back projected point with unit z component.
cn = [cnx , c

n
y , c

n
z ]T : Camera position in {n} .

Rnc ∈ SO(3): Rotation matrix relating {c} and {n} .
tk: The time when image k is captured.
tk+1: The time when image k + 1 is captured.
{ck}: Camera frame at time tk.
{ck+1}: Camera frame at time tk+1.
δR = R

ck+1
ck ∈ SO(3): Rotation matrix relating camera pose at time tk and tk+1.

t = t
ck+1
ck = [tx, ty, tz]

T ∈ R3: Translation of the camera between time tk and tk+1.
ve ∈ R3: The scaled body-fixed linear velocity with forward unity component.
vbcv ∈ R3: Normalized body-fixed linear velocity measured by computer vision.

13



Chapter 2. Nomenclature

Sensor Measurements

ωbimu: Measured angular velocity by the gyroscope.

f bimu: Measured spesific force by the accelerometer.
bbgyro: Gyro bias.

bbacc: Accelerometer bias.
pnGPS: Measured position by GPS.
vnGPS: Measured velocity by GPS.

The Multiplicative Extended Kalman Filter

q = [η, εT ]T : Quaternion expressing the attitude of {b} w.r.t. {n} .
q̂: Estimated quaternion expressing the attitude of {b} w.r.t. {n} .
δq = q̂−1 ⊗ q: Error quaternion.
δη: The real part of the error quaternion.
δε: The imaginary part of the error quaternion.
Rnb (q) ∈ SO(3): Rotation matrix defined by the quaternion q.
P : Error covariance matrix.

The Nonlinear Observer

R̂nb ∈ SO(3): Estimated rotation matrix.

b̂
b

gyro ∈ R3: Estimated gyro bias.
fnb/n ∈ R3: Specific force acting on {b} w.r.t {n} expressed in {n} .

Ĵ ∈ R3×3: Output injection term used in the observer.
vex(x): The inverse operator of [x]× (x = vex([x]×)).

Pa(A) = 1
2 (A−AT ): The skew symmetric part of a matrix A.

Sat(A): Element wise saturation of the matrix A in the interval [−1, 1].
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Chapter 3
Computer Vision

Computer vision (CV) has gained significant attention for navigation purposes in
recent years. This is partly because of the cheap price of cameras, but also because
of the extensive information that a camera can output. The availability of UAVs
have increased, the prices for cameras are constantly decreasing and the available
computational power is becoming less restrictive. This means that vision-based
navigation systems are easier to realize now than ever.

The objective of this chapter is to describe how CV can be used to calculate the
egomotion of a camera based on optical flow(OF). In Chapter 4 and Chapter 5 nav-
igation systems are designed to take use of measurements from CV. A camera is
placed on a UAV and is used to find the body-fixed linear velocity which is used as
a measurement in the navigation system. It is common to use magnetometers when
navigating UAVs, but in this thesis the magnetometer measurements will be re-
placed by measurements from CV. Magnetometer measurements are often prone to
errors in small UAVs due to the magnetic field resulting from electronic propulsion
systems and other disturbances (Euston et al., 2008). Using CV in UAV navigation
might be a good alternative or complimentary to the magnetometer.

Three methods to determine the velocity of a camera will be described in this
chapter. The first method described in this chapter utilizes OF vectors, roll, pitch
and altitude of the camera in order to calculate linear and angular body-fixed
velocity. The method is based on ground truth optical flow (GTOF), which means
that the mathematical relationship between motion relative to a structure and
theoretical OF is used to recover the egomotion of the camera. The relationship
between OF and egomotion was described by Mammarella et al. (2012b); Fusini
et al. (2014, 2015). These researchers presented this relationship by expressing
the attitude by the Euler angles. It is convenient to express this relationship
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by Euler angles when using an inclinometer to measure the roll and pitch angle
directly. However, it is advantageous to express this relationship by a singularity-
free attitude representation. Therefore the relationship will be derived by using
the attitude quaternion. The main drawback with GTOF is that assumes known
distance to every point in the image. The distance is often recovered by assuming
flat horizontal terrain and known altitude and attitude.

The two other methods are based on epipolar geometry, OF and relative atti-
tude change between two consecutive images. The epipolar constraint is a well
known relationship between motion and image projection (Hartley and Zisserman,
2003), and is often used in navigation (Shakernia et al., 2002; Grabe, Bulthoff and
Robuffo Giordano, 2012; Grabe, Bulthoff and Giordano, 2012). By considering ho-
mogeneous transformations between images, it is possible to recover the motion of
the camera. The first epipolar method is based on the epipolar constraint (Hartley
and Zisserman, 2003), and is referred to as egomotion from epipolar optical flow
(EOF). By EOF it is possible to recover a measure of the translation up to scale of
the camera between two images. As epipolar geometry eliminates the dependence
on the depth in the images, it is not possible to recover the scale of the translation
vector. The second epipolar method is based on the continuous epipolar constraint
(Ma et al., 2001), and is addressed as egomotion from continuous epipolar optical
flow (CEOF). From the continuous epipolar constraint it is possible to recover the
body-fixed linear velocity of the camera based on OF and the angular velocity. The
epipolar methods EOF and CEOF hold some advantages over the GTOF method.
The most important advantage is that EOF and CEOF are independent of the
distance to the structure being filmed.

This chapter is divided into three main sections. The first section seeks to describe
how a camera works, and how a image features relates to real world points through
a projection called the pinhole camera model. The second part will give a definition
of OF, as well as describe different algorithms that can be used to find the OF of
a series of images. The last section describes how the GTOF, EOF and CEOF
methods are used to determine the body-fixed linear velocity of a camera.

3.1 Camera

The camera is an imaging sensor, which provides a two dimensional projection of
the world onto the image plane. The images hold enormous amounts of data, and
a challenge is to extract as much information as possible from the images.

The main part of a camera is the image chip, also called the imaging sensor.
The imaging sensor can be implemented in different ways, e.g. with semiconduc-
tor charged-coupled devices (CCD) or complementary metal-oxide-semiconductor
(CMOS), and is made up by many tiny pixels, which are sensitive to light. When
being exposed to light they gets a electronic charge, which can be read out and
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interpreted as the intensity of the light. By reading out from multiple pixels one
are able to create an image of the world seen by the camera. It is common to have
some color separation filter that separates red, green and blue light, and passes
light with different color to different pixel sensors.

In this section the basics behind camera will be highlighted and the mathematical
relationship between points in the world and points on the image plane will be
presented.

3.1.1 The Pinhole Camera Model

A camera model is a mathematical model describing the relationship between a
photographed object and the perceived image. There are several camera models,
but one of the simplest with high validity is the pinhole camera model (Hutchinson
et al., 1996). As the camera should give some information about the movement
relative to the structure being filmed, it is necessary to map a point from the
camera-fixed frame {c} to the two dimensional image plane {m} . A relationship
between pc = [xc, yc, zc] and xm = [r, s] must be presented.

Figure 3.1: The pinhole camera model maps a perceived point in the camera-fixed frame
to the image plane.

The pinhole camera model is illustrated in Figure 3.1. By geometric considerations
(similarity of form) one may see that the relationship between r and yc and the
relationship between s and xc can be written as

r

f
=
yc

zc
(3.1a)

s

f
= −x

c

zc
(3.1b)

(3.1a) and (3.1b) might then be combined and stated as
[
r
s

]
=

f

zc

[
yc

−xc
]
, zc 6= 0 (3.2)
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Moreover this can be written in matrix form as

xm =
1

zc
Kpc (3.3)

with xm = [r, s, 1]T being the homogeneous image coordinate. K is the projection
matrix, mapping points in the camera frame to the image plane, and is defined
as

K =




0 f 0
−f 0 0
0 0 1


 (3.4)

where f is the focal length of the camera.

3.1.2 Camera Calibration

The pinhole camera model is a good approximation, but it assumes that the images
are not affected by lens distortion and that the image projection is continuous. In
general all cameras are prone to lens distortion to some extent. Lens distortion
could e.g. be identified as straight lines appearing as bended lines. This is because
a lens has defects that lead to blur, color changes or geometric distortion from the
ideal ray (Sonka et al., 2014). It is possible estimate both the extrinsic (position
and pose) and intrinsic (projection matrix, K) camera parameters, as well as the
distortion coefficients by camera calibration. The distortion coefficients are used
to rectify distorted images. A distorted image coordinate [rd, sd] is related to the
corresponding undistorted coordinate [ru, su] by the following formula (Sonka et al.,
2014)

rd = ru(1 +K1ρ
2 +K2ρ

4 + . . .) + (P2(ρ2 + 2r2
u) + 2P1rusu)(1 + P3ρ

2 + P4ρ
4 . . .)

sd = su(1 +K1ρ
2 +K2ρ

4 + . . .) + (P2(ρ2 + 2s2
u) + 2P1rusu)(1 + P3ρ

2 + P4ρ
4 . . .)

ρ =
√

(ru − r0)2 + (su − s0)2 (3.5)

[r0, s0] is the principal point of the image, which is estimated by camera calibration
(for the ideal case it is located at the center of the image). Pn is the nth tangential
distortion coefficient and Kn is the nth radial distortion coefficient, all estimated
by camera calibration.

3.1.3 Field of View

The field of view (FOV) is the observable world seen by the camera at any given
moment. The FOV is determined by the imaging chip and the focal length. Given
a focal length f , and a imaging chip with dimensions h× v (horizontal and vertical
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dimension) the FOV can be calculated from the following, well known, formu-
las:

αh = 2 arctan(
h

2f
) (3.6)

αv = 2 arctan(
v

2f
) (3.7)

Definition 1. αh is the horizontal field of view.
αv is the vertical field of view.
h is the size of the imaging sensor in horizontal direction
v is the size of the imaging sensor in vertical direction

How the horizontal and vertical FOV relates to the UAV and the terrain are shown
in Figure 3.2.

Figure 3.2: Field of view depends on the focal length of the lens and the sensor size.
d is the distance to the structure being photographed. Lv and Lh is the vertical and
horizontal lengths, depending on the vertical and horizontal field of view and the distance
to the structure.

An important factor is the area on the ground the camera covers. The size of this
area depends on the distance to the object being photographed. Since the field of
view is constant, the width and length of the area covered will be proportional to
the distance. The distance is denoted d. The horizontal length Lh and the vertical
length Lv of the area displayed by the camera are:

Lh = 2d tan(
αh
2

) (3.8)

Lv = 2d tan(
αv
2

) (3.9)
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It is necessary to have some overlap in two consecutive images in order to determine
the motion of the camera. That means that the horizontal and vertical length,
together with the frame rate of the camera, will determine an upper bound for the
velocity of the camera.

3.1.4 Shutter

The shutter of a camera is the way the camera allows light to hit the imaging
sensors. In digital cameras the shutter can be implemented by transferring multiple
pixel cell charges at the same time, or one cell at the time. When the cell charges
of the entire image is transferred at the same time, it is called a global shutter. In
this thesis a camera with global shutter is used. That means that all pixels are
read out the same time, and hence exposed to light the same amount of time. This
reduces unwanted phenomenons like stretched images due to movement.

3.2 Optical Flow

OF is how features in an image plane moves between two consecutive images,
caused by relative motion between the camera and the object being photographed.
In this section OF will be explained, and some algorithms for determining OF will
be presented.

OF has been studied for nearly 50 years and belongs to the research field of com-
puter vision. Different algorithms can be ideal for different applications, depending
on demands to accuracy and computational efficiency. It is important to find the
most appropriate method for velocity calculation of a UAV. Mammarella et al.
(2012a); Chao et al. (2014); Wen et al. (2011); Zingg et al. (2010) have evaluated
different algorithms when estimating the velocity of a UAV based on images.

Some definitions are necessary:

Definition 2. Continuous optical flow, ẋm = [ṙ, ṡ]T , is the time-derivative
of the image plane position of a feature. Often referred to as optical flow.

Definition 3. Discrete optical flow, ∆x
∆t = [∆r

∆t ,
∆s
∆t ]

T is the displacement
of a feature in the image plane from time t to time t+ ∆t.

Definition 4. A feature is a point of interest in the image plane.

The difference between discrete and continuous OF is shown in Figure 3.3. In
the simplest case OF could be understood as the pixel displacement of a single
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3.2 Optical Flow

Figure 3.3: The black circle indicates a feature in the image plane. The feature is
projected onto the image plane at time t and t + ∆t. The yellow arrow indicates the
discrete optical flow, while the orange indicates the continuous optical flow.

feature between two successive images. The OF can be represented as multiple
vectors describing the change in the image plane in time. Several methods exists for
determining the OF of a series of images (Lucas and Kanade, 1981), (B.K.P.Horn
and B.G.Schunk, 1981), (Lowe, 1999), (Bay, Ess, Tuytelaars and Van Gool, 2008).
In this thesis so called template matching and feature-based OF algorithms are
implemented, and these will now be described.

3.2.1 Template Matching

Template matching (TM) (Sonka et al., 2014) calculates the OF by matching a
region of two consecutive frames. A region around a pixel of interest, called a
template, from one image is matched with a second image. The goal is to locate
the same region in the second image. The OF is then calculated as the displacement
of the template from the first to the second image. The TM technique can be based
on correlation, difference techniques or other matching techniques. An outline of
the TM OF algorithm is found in Table 3.1.

There are multiple ways to determine points of interest. One approach is to use a
feature detector to find parts of the image with high contrast. This approach would
often yield templates with high contrast, as a feature detector will detect distinct
features. This can lead to tracking of areas that are easier to recognize. However
there will always be a risk of whether the feature detector detects any features in
the image. In worst-case the detector cannot find any features, and thus not a
single OF vector is calculated. An other approach is to choose points of interest
without any consideration of high/low contrast. This can be done by dividing the
images into symmetrical regions, and choosing the points of interest as the centre
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Table 3.1: Template Matching Optical Flow Algorithm

1. Find a point of interest.
2. Create a region of optional size around the point of interest in image

one. This is the template.
3. Search for the same region in image two. This is done by matching

the template with all possible positions in image two, maximizing the
correlation of the images.

4. The matching point is the point in image two where the correlation is
greatest. The optical flow is the displacement from the point of interest
to the matching point.

(a) (b) (c)

Figure 3.4: The template matching algorithm illustrated. (a) The first image is divided
into a number of equally spaced regions, and a template is extracted from the centre of
these regions. (b) The template matching searches for the template in the second image.
The algorithm calculates the correlation with the template at all positions in the second
image. (c) The match is found as where the correlation has its maximum value. The
discrete optical flow is calculated as the displacement of the template from the first to the
second image, and is illustrated by the orange arrow.

point of each of these regions. This is illustrated in Figure 3.4

Template matching is illustrated in Figure 3.5 by a successful match. It is seen
that the camera has moved relative to the ground in the time between the two
images were taken. An example of an OF field created with template matching, is
displayed in Figure 3.6.

Advantages and disadvantages

An advantage with the TM method is that it performes well with the presence of
fast motion. A disadvantage is that the matching techniques are computationally
heavy. Another problem is that matching techniques based on template matching
require the template to look equal in both images. Therefore the objects in the
region of interest should have the same angle with respect to the camera, and
the same number of pixels covering the region, as well as equal light conditions.
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(a) (b) (c)

Figure 3.5: (a) Template is extracted from the marked region (blue rectangle) in the
first image. (b) The template by itself. (c) The template is matched at the marked region
(blue rectangle) in the second image.

Figure 3.6: Optical flow calculated with template matching (a region-based method)

However the problem is reduced by making sure that the frequency between two
images is sufficiently high.

Mismatching can happen when several areas are equal, and can be a problem for
snowy or marine environments where the terrain looks very much alike. Mismatch-
ing is when a algorithm matches a template with the wrong region in the second
image. If the video is recorded with a small frame rate, the projected terrain can
change dramatically between two consecutive images which could lead to a mis-
match due to big changes in the template area. Thus a large frame rate is an
advantage for these methods.
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Table 3.2: Feature-Matching Based Optical Flow Algorithm

1. Detect interest points, so called features, at several distinctive locations
with a feature detector.

2. Give all features an unique descriptor that describes the neighbourhood
of the feature.

3. Match descriptors for consecutive images to find common points in the
images.

4. Calculate OF as the displacement of each feature.

3.2.2 Feature-Matching-Based Methods

Feature-Matching-Based optical flow algorithms calculates optical flow of points in
the image, rather than regions in an image. Examples of feature-matching based
methods are SIFT (Lowe, 1999) and SURF (Bay, Ess, Tuytelaars and Van Gool,
2008). A feature based method is summarized in Table 3.2.

The feature-matching based methods looks for distinct features in images, and
assign these features a unique descriptor. A definition of descriptor follows:

Definition 5. A descriptor is a vector describing a feature and its neigh-
bourhood.

Typical features extracted from the feature-detector are edges, lines and corners.
The descriptors most important property are to uniquely describe each feature. The
matching technique is in most cases based on least squares or a similar error mini-
mization method. In this thesis the SIFT algorithm is implemented. Lets first con-
sider the advantages and disadvantages with the feature based algorithms.

Advantages and disadvantages

The main advantage is that the features are handled independently, hence the
relative position between the features in the image does not affect the matching.
Some methods also allows the feature to change size and rotation with respect
to the camera. These methods are called scale and rotation invariant. These
methods have the advantage, as the region-based methods, to handle fast motion
well. A disadvantage these methods is that the performance depends heavily on
the matching technique chosen.
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3.3 Egomotion from Optical Flow

(a) (b) (c)

Figure 3.7: The SIFT optical flow algorithm illustrated. (a) The SIFT algorithm
searches for features in the first image. The black circle indicates that a feature is found.
The feature is given its own descriptor as indicated by the vector of numbers. (b) The
SIFT algorithm then does the same for the second image. (c) The Flann based matcher is
used to match the descriptors. The discrete optical flow is the displacement of a feature
from the first to the second image, and is illustrated by the orange arrow.

Scale Invariant Feature Transform (SIFT)

The SIFT algorithm (Lowe, 1999) allows features to change in rotation and size
between consecutive images. It is invariant to translation and partially invariant to
brightness changes. The SIFT algorithm searches for distinct feature, and give all
of these features their unique descriptor. This is done for two consecutive images.
The descriptors could then ne matched to find corresponding features in the images
by e.g a Fast Approximate Nearest Neighbor Search Library (Flann) based matcher
(Muja and Lowe, 2009). As the SIFT algorithm is a feature based method, there is
no lower bound on the number of OF vectors found. Moreover there is no guarantee
that the OF vectors will be distributed around in the whole image. The SIFT OF
algorithm is illustrated in Figure 3.7. An example of OF vectors from SIFT is seen
in Figure 3.8.

3.3 Egomotion from Optical Flow

In this section different methods for estimating egomotion from OF will be de-
scribed. Egomotion is defined by Definition 6. The main objective of this thesis is
to use CV to estimate the navigation states (attitude, position, velocity and gyro
bias) of a UAV. As normalized body-fixed linear velocity is needed to estimate these
states, one is only interested in recovering the unit vector giving the direction of
the body-fixed linear velocity.

Definition 6. Egomotion is defined as the motion of a camera within an
environment.
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Figure 3.8: Example of optical flow vectors calculated with the SIFT algorithm.

The first method for recovering egomotion is based on ground truth optical flow
(GTOF). The GTOF method uses the distance to every feature to recover the six
degrees of freedom (6DOF) velocity of the camera with the scale preserved. The
GTOF method recovers the distance to every feature by assuming that the attitude
and altitude of the camera are known, and that the terrain being filmed is flat. In
this thesis the GTOF relationship is derived using the attitude quaternion to avoid
singularity issues. The author is not familiar with anyone else having expressed
GTOF with the attitude quaternion.

The second method utilizes the well known epipolar constraint (Hartley and Zisser-
man, 2003) and incremental angles from a gyroscope. By employing the epipolar
constraint one are able to generate the linear translation of the camera up to scale,
namely a vector of unit length giving the direction of translation. This method is
named an Epipolar Optical Flow (EOF) method.

At last a third method based on the continuous epipolar constraint (Ma et al.,
2001) and angular velocity from gyroscope is presented. This method is referred
to as an continuous epipolar optical flow (CEOF) method.

These three methods will now be described and justified.
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3.3 Egomotion from Optical Flow

Figure 3.9: The ground truth optical flow (GTOF) method for determining egomotion
needs to know the distance to any point in the image. When filming a flat terrain, the
distance to a point can be recovered from the relative orientation w.r.t. the terrain, Rnb ,
and the height above ground, cnz . Here the terrain and {n} is assumed to coincide.

3.3.1 Egomotion from Ground Truth Optical Flow

The problem of recovering egomotion from OF has been studied by Mammarella
et al. (2012b), Wen et al. (2011) and Fusini et al. (2014) among others. In differ-
ence from that literature, this thesis seeks to derive the ground truth optical flow
(GTOF) relationship in a singularity-free representation. When dealing with Euler
angles, the formulas from the aforementioned researchers would yield a singular-
ity when pointing the camera downwards (pitch at 90 degrees). In order to solve
the singularity problem, the GTOF relationship is derived with assuming that the
camera z-axis is aligned with body z-axis. Then a camera pointing down would
have zero pitch and no singularity would occur. Moreover the attitude used in this
derivation is represented by the quaternion. This is particularly interesting when
using estimated attitude quaternion as input to the GTOF method, rather than
Euler angles measured by an inclinometer.

The egomotion of a camera can be determined given OF vectors and the depth in
the image, or equivalently the distance to the world points being captured. In this
section the GTOF method for determining the egomotion of a moving camera will
be derived. The GTOF-method is a method that is able to output 6DOF motion
of a camera given the OF vectors between consecutive images and the depth in
the images. When the camera is placed on a UAV, this can give a measure of
the body-fixed velocity of the UAV. In the following section the camera motion is
assumed to be the same as the UAV motion, meaning {c} and {b} is fixed to each
other and aligned. The GTOF-method is derived with motivation in ground truth
optical flow, which is assuming known distance to all points being considered w.r.t.
the camera. This can be imposed by requiring that the terrain being filmed is flat,
and that the attitude and altitude is known. This is illustrated in Figure 3.9. The
assumptions and motivation for the GTOF-method will first be presented, before
the mathematical relationship is presented.
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Assumptions:

The following assumption must be made in order to calculate 6DOF velocity from
GTOF:

Assumption 3.1. The distances from the camera to all features in the
image are known.

The distance in Assumption 3.1 can be recovered if the following three points are
all satisfied:

� The attitude of the camera relative to the terrain is known.

� The altitude of the camera above ground is known.

� The terrain being filmed is flat.

Motivation

The motivation behind the GTOF method is that one are able to recover 6DOF
velocity of the camera, with the scale of the velocity preserved. As the scale is pre-
served the measurement from the CV could for instance be used in dead reckoning.
The angular velocity is also recovered, and can be used in navigation. However the
measure of angular velocity is in general less accurate than the gyroscopic measure-
ment, and should therefore not be used as a substitute for the gyroscope.

The M-matrix

As a relationship between points in the 2D image plane and the 3D camera-fixed
frame is established by the pinhole camera model, one can differentiate (3.2) with
respect to time in order to derive the motion relationship. A similar relationship
was used in Mammarella et al. (2012b); Fusini et al. (2014) with camera pitched
45◦ down from the nose of the UAV. In this thesis the camera is pointing straight
down, and this would yield a singularity in the relationship from Mammarella et al.
(2012b); Fusini et al. (2014). The derivation of the new matrix expressing this
relationship matrix is summarized in Appendix C. The result is presented:
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Transformation from image plane to terrain coordinates

As can be seen in equation (3.11), the matrix M depends on pc. pc is a position
given in the camera-fixed frame. However it is convenient to express M as a func-
tion of the pose and height of the camera. In Fusini et al. (2014) this relationship
was found as a function of Euler angles and height. In the following a relationship
between pc and [r, s], depending on camera attitude quaternion q and height, will
be derived.

The matrix Rn
c (q) and vector cn represent a rotation and a translation between

NED and the camera-fixed frame. They can be merged to form a 4× 4-transform
T nc

T nc =

[
Rn
c (q) cn

01×3 1

]

Now let tn = [xn, yn, zn, 1]T be a point expressed in NED and tc = [xc, yc, zc, 1]
the same point expressed in the camera-fixed frame. The relationship between the
vectors is given as

tc = (T nc )−1tn

Recall the pinhole model defined in (3.2). Now tc = [xc, yc, zc, 1]T is a function
of xn, yn, zn, cn and q. By inserting tc into (3.2) one can solve the equation with
respect to xn and yn. The solution is defined as xnT , y

n
T . The equation can be

solved in Matlab using the symbolic toolbox. By constructing a new vector with
the solution tnT = [xnT , y

n
T , z

n, 1]T , one can calculate the corresponding solution in
the camera-fixed frame. tcT can be calculated by employing the 4×4-transformation
again.

tcT = (T nc )−1tnT

Now by defining pc as the three first rows of tcT one ends up with
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pc =



xc

yc

zc


 =

cnz − zn
f − 2ε21f − 2ε22f + 2ε2ε3r + 2ε1ηr − 2ε1ε3s+ 2ε2ηs



s
−r
−f


 (3.12)

As the camera frame coincides with the body frame, q used in the derivation above
represents the UAV attitude. From the same argument cnz is −h, with h being the
altitude of the UAV.

Alternatively equation (3.12) can be expressed by Euler angles. This might be
desirable when using inclinometers to measure the attitude of {c} and {b} w.r.t
{n} (Fusini et al., 2015)

pc =



xc

yc

zc


 =

cnz − zn
s sin(θ) + cos(θ)(f cos(φ) + r sin(φ))



s
−r
−f


 (3.13)

Assuming that the terrain is flat would imply zn in equation (3.12) and equa-
tion (3.13) to be zero.

Drawbacks of the ground truth optical flow

First, it should be said that the CV does not actually calculate the OF, but rather
the discrete OF. This means that the frame rate of the camera must be sufficiently
high in order for the relationship to be valid. Note that CV measures ∆r and ∆s,
and the following relationship holds

ṙ = lim
∆t→0

∆r

∆t

ṡ = lim
∆t→0

∆s

∆t

with ∆t being the time between two consecutive images are taken. Moreover vi-
olating the assumption of flat terrain will cause the GTOF to produce erroneous
measurements of the velocity. It is a huge drawback of the GTOF method that one
has to assume or know something about the structure being filmed. The GTOF is
said to be structure dependent, and will not work properly when flying over terrain
with big variations in elevation.

Using normalized body-fixed linear velocity

Later in this thesis the measurements from CV will be normalized before they are
used in the observers. As the measurements are normalized, one does not actually
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need to preserve the scale of the linear velocity. From equation (3.12)-(3.13) it is
seen that xc,yc and zc are all proportional to the height of the camera cnz . The
relationship between the scale of the linear velocity and the depth in the images
(distance to the ground) is seen from the three first columns of the matrix M in
equation (3.11). It can be seen that if inserting for pc = [xc, yc, zc]T the linear
velocity is proportional to the height of the camera, cnz . This implies that one does
not actually have to have a measure of the distance to the ground as long as all
features lie on the same elevation (they all lie in a horizontal-plane). Recall that a
requirement is that the distance to any feature corresponding to an OF vector needs
to be known. When using normalized body-velocity, this requirement however
reduces to knowing a scaled distance to all features, with a common arbitrary
scale factor for all features. This means that one does not actually need a sensor
measuring the distance to the ground when using only normalized body-fixed linear
velocity.

3.3.2 Egomotion from the Epipolar Constraint

This section presents a way to calculate the egomotion of a camera based on epipo-
lar geometry (Hartley and Zisserman, 2003), utilizing OF, independent of infor-
mation about distance, the shape and orientation of the structure being pictured.
Epipolar geometry is a well known research field, which relates the motion of the
camera frame with the motion in the image plane independent of the structure
being filmed. The main problem epipolar geometry concern, is to find t and δR as
shown in Figure 3.10. This will now be illustrated.

Denote the camera frame at time tk {ck+1}, and at time tk+1 by {ck+1}. t is the
translation between the camera frame from {ck} to {ck+1}, while δR is the rotation
matrix relating the attitude of camera from {ck} to {ck+1}:

t ≡ tck+1
ck

= [tx, ty, tz]
T ∈ R3 (3.14)

δR ≡ Rck+1
ck
∈ SO(3) (3.15)

With epipolar geometry the reconstruction of motion and structure is possible at
best up to scale, meaning that one can only determine a dimensionless measure
of translation as well as the rotation matrix δR. The epipolar constraint will be
derived in equation (3.16)-(3.21). This have been done by multiple researchers, but
is included here as reference to the reader.
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Figure 3.10: With epipolar geometry it is possible to find a dimensionless translation t
and the relative rotation, δR, from time tk to tk+1 without any prior information about
the structure.

The epipolar constraint

Consider Figure 3.11. The figure explains the different reference frames used in
this section. A point yc is a world point expressed in camera frame coordinates,
xm is the corresponding projected point in the image plane. uc is the back-
projected point lying on the projection ray between {c} origin and yc with unity
z-component.

With Figure 3.11 and the pinhole camera model from equation (3.3) in mind, the
following relationship holds:

λxm = Kyc (3.16)

uc = K−1xm (3.17)

K being the projection matrix as defined in equation (3.4) and λ being the distance
to the ground.

For a point in the camera frame with a time varying position yc(t), the following
relationship holds

λ(tk)xm(tk) = Kyc(tk)

λ(tk+1)xm(tk+1) = Kyc(tk+1) (3.18)

It is assumed that the point yc is fixed to a rigid body with rotation δR w.r.t. the
camera frame, and that the point is subject to a translation t = [tx, ty, tz]. Then
yc(tk) is related to yc(tk+1) by the following:

yc(tk+1) = δRyc(tk) + t (3.19)
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Figure 3.11: The relationship between Camera frame {c} , image plane {m} illustrated
in blue, a back projected plane as illustrated in gray, and the North-East-Down frame
{n} in green. The back projected plane is an imaginable plane with unity distance from
the camera frame {c} . Image points can be back projected from {m} to this plane by the
projection matrix, K as defined in equation (3.4) and the homogeneous image coordinate
xm. λ is the distance from {c} to {n} and can be seen as the depth in the image. f is
the focal length, and the distance between {c} and {m} .

Using the relationship from equation (3.18) it is possible to express equation (3.19)
in image plane coordinates

λ(tk+1)K−1xm(tk+1)︸ ︷︷ ︸
uc(tk+1)

= δR(λ(tk)K−1xm(tk)︸ ︷︷ ︸
uc(tk)

) + t

λ(tk+1)uc(tk+1) = λ(tk)δRuc(tk) + t (3.20)

This can be simplified by multiplying both sides by [t]×, and then multiplying with

uc(tk+1)
T

:

λ(tk+1)[t]×u
c(tk+1) = λ(tk)[t]×δRu

c(tk) + [t]×t︸︷︷︸
0

λ(tk+1)[t]×u
c(tk+1) = λ(tk)[t]×δRu

c(tk)

λ(tk+1)uc(tk+1)
T

[t]×u
c(tk+1)

︸ ︷︷ ︸
0

= λ(tk)uc(tk+1)
T

[t]×δRu
c(tk)

λ(tk)uc(tk+1)
T

[t]×δRu
c(tk) = 0

uc(tk+1)
T

[t]×δR︸ ︷︷ ︸
E

uc(tk) = 0

uc(tk+1)
T
Euc(tk) = 0 (3.21)
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Equation (3.21) is the well-known epipolar constraint (Hartley and Zisserman,
2003), with E being the essential matrix. Several methods, such as the eight point
algorithm (Maybank and Faugeras, 1992), exist for estimating E, and in turn re-
covering t and δR (Huang and Netravali, 1994; Zhuang et al., 1986; Hartley, 1997).
These methods will not be explained in detail, but they all rely on using multiple
discrete OF vectors to estimate E.

Unique solution of the epipolar constraint

The eight point methods (Hartley, 1997; Longuet-Higgins, 1981, 1984) methods
fail to produce unique estimates of E in the presence of planar surfaces. Longuet-
Higgins (1981, 1984); Maybank and Faugeras (1992); Zhang (1998) have studied
whether it is possible to determine an unique solution of the essential matrix E.
Their results show that even when a large number of OF vectors, there may exist
several solutions for the essential matrix. This means that there are several matrices
that explains the data equally well. Such cases are called degenerate cases.

Planar surfaces impose degenerate cases, and even though the earth is not a planar
surface the terrain appears planar from large altitudes. The five point methods
(Nister, 2003) handles the problem with planar surfaces, but does not provide an
unique estimate of t and δR. A specialized version of the eight-point algorithm
could be used to estimate E in the presence of planar surfaces (Shakernia et al.,
2002). This algorithm is based on a constraint that all points are coplanar, meaning
they all lie on a planar surface. This makes it possible to estimate the essential
matrix E even though the terrain appear planar from large altitudes, but this
implies that it is impossible to determine the motion in presence of non-planar
surfaces. Hence the specialized version of the eight-point algorithm is useless for a
general case.

Although t and δR can be found from the essential matrix E without any additional
information other than the OF, this is not a good way to find the motion of a UAV.
As the non-planar terrain may appear planar from large altitudes, any algorithm
for estimating E will at some point fail in estimating a unique solution, and this
method is hence unsuitable in vision-aided UAV navigation. This motivates to use
the gyroscope to estimate the relative rotation matrix δR.

Egomotion from Gyro-Aided Epipolar Geometry

In order to avoid the problem with degenerate configurations, due to the flat ter-
rain, gyroscopic measurements can be used to determine δR. Okatani and Deguchi
(2002); Labrie and Hebert (2007) did this by integrating angular velocity measure-
ment from the gyroscope. A IMU can be configured to output incremental angles
that can be used to determine δR. When δR is a known quantity, then the problem
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Figure 3.12: Gyro aided epipolar geometry. The problem reduces to finding t as δR can
be calculated from incremental angles, δΘb

b/n, from an IMU.

of the epipolar constraint reduces to finding only the translation, as illustrated in
Figure 3.12. The following will derive a method for recovering t given OF and
incremental angles from the IMU. This method is referred to as a epipolar optical
flow (EOF) method.

δR can be found by configuring the IMU to output incremental angles, or by
integrating locally biased compensated gyro measurements. If incremental angles
are known, then this relates to δR by the following:

Rnck+1
= RnckR

ck
ck+1

= Rnck exp
[
δΘb

b/n

]
×

(3.22)

exp
[
δΘb

b/n

]
×

= Rckck+1
= δRT ≈ I3×3 +

[
δΘb

b/n

]
×

(3.23)

δR = exp
[
δΘb

b/n

]
×

T

≈ I3×3 −
[
δΘb

b/n

]
×

(3.24)

δΘb
b/n being the incremental angle from time tk to tk+1, defined by the integral of

the angular velocity from time tk to tk+1, that is δΘb
b/n =

∫ tk+1

tk
ωbb/ndt ≈ ∆tωbb/n,

with ∆t = tk+1 − tk.

The epipolar constraint from equation (3.21) can be expressed as the triple prod-
uct:

uc(tk+1)
T

[t]×δRu
c(tk)

= uc(tk+1)
T

(t× (δRuc(tk))) = 0 (3.25)

tT ((δRuc(tk))× uc(tk+1)) = 0 (3.26)
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Defining now the crossproduct term as d:

d = (δRuc(tk)× uc(tk+1)) = [dx, dy, dz]
T (3.27)

Then equation (3.25) can be written as an equation linear in t

tTd = 0 (3.28)

It desirable to solve equation (3.28) w.r.t t, as t is the direction of translation.
Recall that the motion of the camera is desired. The camera is fixed to a fixed-
wing UAV, with {c} aligned with {b} . Then, a viable assumption is that the
camera has some movement in the xc direction, as a fixed-wing UAV must have
some forward velocity to remain airborne. Given that the frame rate of the camera
is sufficiently large, such that the UAV will have some movement in xb-direction in
the time between two images, the following is ensured:

tx 6= 0

Since tx 6= 0, it is possible to divide equation (3.28) by tx, yielding a non-homogeneous
linear equation. A non-homogeneous linear system Ax = b, A ∈ Rn×n has, if A is
invertible, exactly one solution. This is advantageous as it would yield an unique
solution of x. Dividing equation (3.28) by tx yields

ty
tx
dy +

tz
tx
dz = −dx (3.29)

If now extending this to concern any feature j (yielding a corresponding dj), this
equation might be expressed as

1

tx

[
dy,j dz,j

]
︸ ︷︷ ︸

Ad,j

[
ty
tz

]
= −dx,j︸ ︷︷ ︸

bd,j

, tx 6= 0 (3.30)

Given N image features, yielding N Ad,j ’s and bd,j ’s, Ad and bd are defined as

Ad =



dy,1 dz,1

...
dy,N dz,N


 , bd = −



dx,1

...
dx,N


 (3.31)

Assume now that Ad has full rank, such that A+
d exists, and tx 6= 0. The as-

sumption of Ad having full rank is complied if the OF vectors satisfy Definition 7.
Sufficient and necessary conditions for Definition 7 is discussed later in this section.
Using multiple image features, solving equation (3.30) can be done with respect to
[ty, tz]

T .
[
ty
tz

]
= txA

+
d bd (3.32)
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3.3 Egomotion from Optical Flow

Note that there is a sign ambiguity, as both the vector pointing in the direction
of translation and the vector pointing in the opposite direction will fulfil equa-
tion (3.32). If the sign of the x-component of t, tx, is known, then te can be
used to find the direction of translation of the camera. Now defining te as a di-
mensionless measure of the direction of translation with first component of unity
length.

te =
t

tx
=

[
1,
ty
tx
,
tz
tx

]T
=
[
1, (A+

d bd)
T
]T
, tx 6= 0 (3.33)

If the sign of tx is known, then the direction of translation is found as

t

‖t‖ =
te
‖te‖

(3.34)

Definition 7. Linearly Independent Image Features

A pair of image features at time tk and tk+1,xm1 (tk), xm1 (tk+1) and xm2 (tk),
xm2 (tk+1) , are said to be linearly independent if and only if the rank of
A in equation (3.31) is full, yielding [ty, tz]

T = txA
+
d b to be uniquely de-

fined. The rank of Ad is full if and only if a 2×2 submatrix of Ad, Ad,2×2

has determinant not equal to zero. That is det(Ad,2×2) 6= 0.

Approximating body-fixed velocity from the direction of translation

As the time between two images ∆t→ 0, te can be used to find the instantaneous
normalized camera velocity:

vcc/n

‖vcc/n‖
= lim

∆t→0
sign(tx)

te/∆t

‖te/∆t‖
= lim

∆t→0
sign(tx)

te
‖te‖

(3.35)

Moreover as {c} coincides with {b} , vcc/n = vbb/n. As can be seen from equa-

tion (3.35) te can be used as a measure of the normalized body velocity when the
time between two consecutive images ∆t→ 0.

Equation (3.32) is only solvable if there are some linearly independent image fea-
tures at time tk and tk+1, as defined in Definition 7.

Discussion: Sufficient and necessary conditions for linearly independent
image features

As Definition 7 might be hard to relate to the OF vectors some sufficient and neces-
sary conditions are discussed. Given two discrete OF vectors [dr1, ds1]T , [dr2, ds2]T
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Chapter 3. Computer Vision

corresponding to the time from tk to tk+1, yielding two corresponding back-projected
point pairs uc1(tk),uc1(tk+1) and uc2(tk),uc2(tk+1).

uc1(tk) = K−1[r1, s1, 1]T uc1(tk+1) = K−1[r1 + dr1, s1 + ds1, 1]T (3.36)

uc2(tk) = K−1[r2, s2, 1]T uc2(tk+1) = K−1[r2 + dr2, s2 + ds2, 1]T (3.37)

K being the projective mapping as defined in equation (3.4). Moreover assume that
δR is known. The corresponding crossproduct terms are then d1 = δRuc1(tk) ×
uc1(tk+1) and d2 = δRuc2(tk)× uc2(tk+1). Letting the unit vectors in xc, yc and zc

direction be denoted i, j and k respectively. Then det(Ad,2×2) can be expressed
as:

det(Ad,2×2) = det

([
dT1 j dT1 k

dT2 j dT2 k

])
(3.38)

= dT1 jd
T
2 k − dT1 kdT2 j (3.39)

= d2,zd1,y − d1,zd2,y (3.40)

= (d1 × d2)T i (3.41)

The sufficient and necessary condition for a pair of image features to be linearly
independent is therefore (d1 × d2)T i 6= 0. A pair of image features that are not
linearly independent are said to be linearly dependent.

Degeneracy will happen if all vectors ucj(tk) and ucj(tk+1) are linearly dependent,

yielding or (d1×d2) = 0, or if there is no flow in xc direction, causing (d1×d2)T i =
0. Notice that the fact that no flow in xc direction will cause a degeneracy, implies
that the camera must have some movement. Figure 3.13 illustrates some linearly
independent and dependent configurations of pair of image features.

Advantages and disadvantages with the EOF method

A drawback of the EOF method is the fact that it measures the direction of trans-
lation, and not direction of body-fixed velocity. As the frame rate gets sufficiently
high, the time between two consecutive images ∆t decreases, and a reasonable
approximation is that the direction of translation is the same as the direction of
the body-fixed velocity. Another drawback is the fact that the EOF method does
not preserve the scale of the velocity. The main advantage is that it is structure
independent, meaning there is no difference in flying over flat or hilly terrain. The
velocity direction estimate is not affected by the structure of the terrain, mean-
ing one does not have to have some previous information about the terrain being
filmed. Moreover the EOF does not depend on the height above ground, nor the
orientation relative to the terrain being filmed. The only necessary information is
the OF and the incremental angles or angular velocity from a gyroscope.
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3.3 Egomotion from Optical Flow

Figure 3.13: (a) Linearly dependent: d1 × d2 does not exist. (b) Linearly dependent:
d1 × d2 exists, but is orthogonal to camera x-axis, xc. (c) Linearly independent: d1 × d2

exists and has a component in camera x-axis, xc. (d) Linearly independent: d1×d2 does
not exist. d1 × d3 = d2 × d3 exists and have a component in camera x-axis, xc.

3.3.3 Egomotion from the Continuous Epipolar Constraint

Another variant of the epipolar constraint was presented by Ma et al. (2001). Ma
et al. (2001) presented the epipolar constraint in the continuous case. The contin-
uous epipolar constraint can be used to calculate the body-fixed linear velocity of
the camera fixed to the UAV (Grabe, Bulthoff and Robuffo Giordano, 2012; Grabe,
Bulthoff and Giordano, 2012). For a reference to the reader, the derivation of the
continuous epipolar constraint is included in equation (3.42)-(3.49).

Given a feature j with position y(t). The point may be expressed in {c} as yc(t).
The motion of this feature relative to the camera can be stated as

ẏc(t) =
[
ωcj/c(t)

]
×
yc(t) + vcj/c(t) (3.42)

with ωcj/c and vcj/c being the angular and linear velocity of the feature relative
to the camera respectively. From now omitting the time t in the parentheses,
noting that the vectors are time variant. From equation (3.3) it is known that
yc = zcK−1xm ≡ zcuc, with xm = [r, s, 1]T , uc as defined in equation (3.17).
Consider now the following triple product:

ẏcT
(
vcj/c × uc

)
= (
[
ωcj/c

]
×
yc + vcj/c)

T

(vcj/c × uc) = ycT
[
ωcj/c

]
×

T

(vcj/c × uc)
(3.43)

This implies

ẏcT
(
vcj/c × uc

)
− ycT

[
ωcj/c

]
×

T

(vcj/c × uc) = 0 (3.44)
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Furthermore notice that

ẏc = żcuc + zcu̇c (3.45)

With u̇c = K−1ẋm = K−1[ṙ, ṡ, 0]T being the back projected OF. Then the follow-
ing holds:

(żcuc + zcu̇c)
T

(vcj/c × uc)− zcucT
[
ωcj/c

]
×

T

(vcj/c × uc) = 0 (3.46)

Using now that uT (vcj/c × u) = 0, the following is obtained

zcu̇cT (vcj/c × uc)− zcucT
[
ωcj/c

]
×

T

(vcj/c × uc) = 0 (3.47)

When the depth in the image zc 6= 0, one can divide equation (3.47) by zc. Then
the scale of the motion parameter vcj/c are lost. As it is only desirable to use the
normalized body-fixed linear velocity, this introduces no problems. When dividing
equation (3.47) by zc one ends up at

u̇cT (vcj/c × uc)− ucT
[
ωcj/c

]
×

T

(vcj/c × uc) = 0 (3.48)

The objective is to recover the body-fixed velocity of the camera, that is vcc/n.

Assuming now that every feature is fixed to {n} , the following holds:

vcc/n = −vcj/c = [vx, vy, vz]
T

ωcc/n = −ωcj/c

Then equation (3.48) might be rewritten as

u̇cT (−vcc/n × uc)− ucT
[
−ωcc/n

]
×

T

(−vcc/n × uc) = 0

−u̇cT (vcc/n × uc)− ucT
[
ωcc/n

]
×

T

(vcc/n × uc) = 0

−
(
u̇cT + ucT

[
ωcc/n

]
×

T
)

(vcc/n × uc) = 0 (3.49)

This is the continuous epipolar constraint (Ma et al., 2001). Using now the prop-
erties of a triple product (Kreyszig, 2006), and ignoring the minus sign, equa-
tion (3.49) can be rewritten as:

vcc/n
T

(
uc ×

(
u̇cT + ucT

[
ωcc/n

]
×

T
)T)

= vcc/n
T

(
uc ×

(
u̇cT +

[
ωcc/n

]
×
uc
))

= 0 (3.50)
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3.3 Egomotion from Optical Flow

Following now the same procedure as in Section 3.3.2, equation (3.50) might
be rewritten as linear equation in vcc/n. Defining the crossproduct term as fol-
lows:

c = uc ×
(
u̇cT +

[
ωcc/n

]
×
uc
)

= [cx, cy, cz]
T

Using this equation (3.50) is rewritten as

vcc/n
T c = cTvcc/n = 0 (3.51)

Assuming that a fixed-wing UAV will never have zero forward velocity and that
{c} and {b} are aligned, one can divide equation (3.51) by the forward velocity
component vx in order to obtain a non-homogeneous linear equation:

1

vx
cT



vx
vy
vz


 = cT




1
vy
vx
vz
vx


 = 0 (3.52)

cx + [cy, cz]

[ vy
vx
vz
vx

]
= 0 (3.53)

[cy, cz]

[ vy
vx
vz
vx

]
= −cx (3.54)

As can be seen from equation (3.54), one ends up with a similar equation of what
was obtained for the translational direction in equation (3.30). Assuming N fea-
tures with corresponding OF vectors, whereas some of the OF vectors are linearly
independent as defined in Definition 8. The body-fixed velocity with can be found
as:

vcc/n = vxA
+
c bc vx 6= 0

Ac =



cy,1 cz,1

...
cy,N cz,N




bc = −



cx,1

...
cx,N




cj = ucj ×
(
u̇cj

T +
[
ωcc/n

]
×
ucj

)
= [cx,j , cy,j , cz,j ]

T (3.55)

ucj = K−1xmj and u̇cj = K−1[ṙj , ṡj , 0]T being the back projected coordinate and
OF of feature j respectively.

Definition 8. Linearly Independent Optical Flow Vectors

A pair of image features and their corresponding OF vectors xm1 , ẋm1
and xm2 , ẋm2 , are said to be linearly independent if and only if the rank
of Ac in equation (3.55) is full, yielding [vy, vz]

T = vxA
+
c bc to be uniquely
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defined. The rank of Ac is full if and only if a 2 × 2 submatrix of Ac,
Ac,2×2 has determinant not equal to zero. That is det(Ac,2×2) 6= 0.

An expression for the body-fixed linear velocity is obtained in equation (3.55). This
relation can be used to extract information from a camera that can be used in a
navigation system.
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Chapter 4
Multiplicative Extended Kalman
Filter for UAV Navigation

In this chapter a Multiplicative Extended Kalman Filter (MEKF) (Lefferts et al.,
1982; Markley, 2004) for navigation of a UAV is designed. The objective of the
MEKF is to estimate the navigation states (attitude, position, velocity, gyro- and
accelerometer bias) of a fixed-wing UAV. The MEKF is an extension of the fa-
mous Extended Kalman Filter (EKF) (Schmidt, 1981; Crassidis et al., 2007). The
MEKF in this chapter is designed to make use of measurements of angular velocity
and specific force from a gyroscope and an accelerometer respectively, body-fixed
linear velocity from a computer vision (CV) system, and velocity and position mea-
surements from a Global Navigation Satellite System (GNSS). Further information
about the sensors, and their measurement equations are given in Appendix H. Some
brief introduction to the MEKF will be given before the design of the MEKF is
presented. In this thesis {n} is assumed inertial, as motivated Appendix F.

The motivation behind the MEKF is to bypass the problem of quaternions intro-
ducing a singularity in the covariance matrix, P , due to the unity constraint of the
unit quaternion (Lefferts et al., 1982). This singularity appears due to the lack of
independence between the four elements of a unit quaternion. By estimating only
the imaginary part of the error quaternion one are able to avoid the aforementioned
singularity.

This chapter is organized in four sections. Section 4.1 give some basic introduction
to the objective of the MEKF. A MEKF for estimating gyro bias and attitude of a
UAV, utilizing GNSS, IMU and CV measurements, is designed in Section 4.2. The
MEKF is expanded in Section 4.3 to include translational motion such as position,
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velocity and accelerometer bias. The chapter ends with an outline of the MEKF
algorithm in Section 4.4

4.1 Objective of the MEKF

In the MEKF the following relationship is used

q = q̂ ⊗ δq(δε) (4.1)

δq(δε) =

[
δη
δε

]
=

[√
1− δεT δε
δε

]
(4.2)

with q̂ being a nonsingular estimated unit quaternion, q being the real quaternion
and δq(δε) being the error in our estimate. ⊗ is denoting the quaternion product
as described in Appendix G. As seen the estimation of δε can be done without
taking the unit constraint of the quaternion into consideration, because the unity
constraint is enforced when creating δq from δε.

In the MEKF the objective is to estimate δε, the imaginary part of the error quater-
nion, which can be used to generate the error quaternion. The error quaternion
tells us how far from the real value the estimated quaternion q̂ is. When knowing
what the error is, one can update the estimate q̂ by the following formula:

q̂k−1 ⊗ δq(δε̂k) = q̂k ⊗ δq(03×1) = q̂k (4.3)

After updating q̂, δε is reset to zero.

4.2 Attitude estimation

Lets in the following assume constant velocity, v̇nb/n = 0. By assuming constant

velocity, the accelerometer measures the gravity vector in body coordinates, gb.
The CV outputs a measure of the body-fixed linear velocity. Neglecting the ac-
celerometer bias, the following measurement equations can be used to determine
the attitude of the vehicle.

f bimu = −gb +wacc (4.4)

vbcv = vbb/n +wcv (4.5)

In contradiction to when dealing with magnetometer measurements, the CV sys-
tem does not measure an inertial reference vector. A typical MEKF enables mea-
surements of the magnetic field and gravity, which are indeed inertial and known
vectors. Lets however by now assume that the body velocity in {n} is known. The
attitude observer is seen in Figure 4.1.
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4.2 Attitude estimation

Figure 4.1: Block diagram of the attitude MEKF. Att represents the attitude observer,
and TMO translational motion observer.

Moreover it of interest to know the dynamics of δq, as it is desirable to esti-
mate this vector. The time derivative of δq can be found by differentiating equa-
tion (4.1).

δq =

[
δη
δε

]
= q̂−1 ⊗ q (4.6)

δ̇q = ˙̂q−1 ⊗ q + q̂−1 ⊗ q̇ (4.7)

As the estimated attitude q̂ does not change between updates, it can been used
that ˙̂q = 0:

δ̇q = q̂−1 ⊗ q̇ (4.8)

=
1

2
q̂−1 ⊗ q ⊗ ωbb/n (4.9)

=
1

2
δq ⊗ ωbb/n (4.10)

where it have been used that q̇ = 1
2q ⊗ ωbb/n. Using the quaternion rules from

Appendix G, this quaternion product might be expressed as a matrix multiplica-
tion:

δ̇q =
1

2

[
δη −δεT
δε δηI3×3 + [δε]×

] [
0

ωbb/n

]
(4.11)

=
1

2

[
−δεTωbb/n

δηI3×3ω
b
b/n + [δε]× ω

b
b/n

]
(4.12)

However it is desirable to model the behaviour of δε, as this is the quantity we want
to estimate. Using Equation (4.2) together with Equation (4.12) the dynamics of
δε is obtained

δ̇ε =
1

2

(√
1− δεT δεI3×3ω

b
b/n + [δε]× ω

b
b/n

)
(4.13)
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The accelerometer and gyroscope have biases which are modelled as Wiener pro-
cesses. The gyroscope measurement equation can be written as ωbimu = ωbb/n +

bbgyro +wb
gyro, and in turn rewritten as ωbb/n = ωbimu−bbgyro +wb

gyro. Using this and

the gyroscopic bias model (Wiener process) one can write the attitude and bias
dynamics on vector form:

[
δε̇

ḃ
b

gyro

]

︸ ︷︷ ︸
ẋ

=

[
1
2

(√
1− δεT δεI3×3 + [δε]×

)(
ωbimu − bbgyro

)

03×1

]

︸ ︷︷ ︸
f(x,u)

+ I6×6w︸ ︷︷ ︸
Γw

(4.14)

x =

[
δε

bbgyro

]
(4.15)

u =
[
ωbimu

]
(4.16)

w =

[
wb

gyro

wb
bgyro

]
(4.17)

The process noisew is assumed white with zero mean and variance Σw ∈ R6×6

w ∼ N (06×1,Σw)

The measurements used in the attitude filter are the measured body acceleration,
which is a measure of the gravity vector, given a constant velocity, and the body-
fixed velocity from CV.

y =

[
f bimu

vbcv

]
=

[
−Rb̂b(δq)TRnb̂ (q̂)Tgn

Rb̂b(δq)
TRn

b̂
(q̂)Tvnb/n

]

︸ ︷︷ ︸
h(x)

+

[
wacc

wcv

]

︸ ︷︷ ︸
v

(4.18)

The measurement noise is assumed white with variance Σv ∈ R6×6

v ∼ N (06×1,Σv)

The measured quantity from CV can take on two forms. One form which preserves
the scale of the body-fixed linear velocity, and one form that does not preserve the
scale of the velocity. When ignoring the scale of the measurement, one are still able
to measure the direction of travel, namely normalized body-fixed linear velocity.
Then the measurement equation takes on the form as shown below:

y =

[
f bimu

vbcv

]
=


 −R

b̂
b(δq)

TRn
b̂
(q̂)Tgn

Rb̂b(δq)
TRn

b̂
(q̂)T

vn
b/n

‖vn
b/n
‖




︸ ︷︷ ︸
h(x)

+

[
wacc

wcv

]

︸ ︷︷ ︸
v

(4.19)
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4.3 Position, Velocity and Attitude Estimation

4.2.1 Discrete time equations

As the MEKF is supposed to run on a computer, equation (4.14)-(4.19) must be
discretized. This can be done in multiple ways (Egeland and Gravdahl, 2002), but
the easiest method might be Euler discretizing:

xk+1 = xk + hf(xk,uk)︸ ︷︷ ︸
fk

+ hΓ︸︷︷︸
Γk

wk (4.20)

yk = h(xk)︸ ︷︷ ︸
hk

+vk (4.21)

Equation (4.20)-(4.21) is then linearized, yielding discrete time matrices that can
be applied to the MEKF algorithm in Section 4.4.

Qk = Σwk (4.22)

Rk = Σvk (4.23)

fk(x̂k,uk) = x̂k + h

[
1
2

[
ωbimu − b̂

b

gyro

]

03×1

]
(4.24)

Φk =
δfk
δxk

∣∣∣∣
xk=x̂k

= I6×6 + h

[
− 1

2

[
ωbimu − b̂

b

gyro

]
×
− 1

2I3×3

03×3 03×3

]
(4.25)

Γk = hI6×6 (4.26)

Hk =
δhk
δxk

∣∣∣∣
xk=x̄k

=

[−W (δε̄k, R
n
b̂
(q̂)Tgn) 03×3

W (δε̄k, R
n
b̂
(q̂)Tvnb/n) 03×3

]
(4.27)

W (ε,v) = 2
√

1− εT ε[v]× −
2√

1− εT ε
[v]×εε

T + 2vT εI3×3 + 2εvT − 4vεT

(4.28)

When using normalized body velocities equation (4.27) is replaced by equation (4.29):

Hk =
δhk
δxk

∣∣∣∣
xk=x̄k

=

[ −W (δε̄k, R
n
b̂
(q̂)Tgn) 03×3

W (δε̄k, R
n
b̂
(q̂)T

vn
b/n

‖vn
b/n
‖ ) 03×3

]
(4.29)

4.3 Position, Velocity and Attitude Estimation

A filter for determining position, velocity and attitude will now be presented. When
doing this, the assumption of constant speed introduced in the attitude filter may
be relaxed. The state variables are chosen to be x = [δε, bbgyro,p

n
b/n,v

n
b/n, b

b
acc] and
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Figure 4.2: Block diagram of the position, velocity and attitude MEKF. Att represents
the attitude observer, and TMO translational motion observer.

the input is u = [ωbimu,f
b
imu], yielding the following state-space system:




δε̇

ḃ
b

gyro

ṗnb/n
v̇nb/n

ḃ
b

acc




︸ ︷︷ ︸
ẋ

=




1
2

(√
1− δεT δεI3×3 + [δε]×

)(
ωbimu − bbgyro

)

03×1

vnb/n

Rn
b̂
(q̂)Rb̂b(δq)

[
f bimu − bbacc

]
+ gn

03×1




︸ ︷︷ ︸
f(x,u)

+I15×15




wgyro

wbgyro

03×1

wacc

wbacc




︸ ︷︷ ︸
w

(4.30)

The measurements used in the position, velocity and attitude filter are the mea-
sured specific force acting on the body, the body-fixed linear velocity from the CV,
position from GPS, and velocity from GPS. As the lever arm of the GPS antenna
is very small, the lever arm compensation is neglected, and it is assumed that
vnGPS = vnb/n +wvel:

y =




f bimu

vbcv

pnGPS

vnGPS


 =




Rb̂b(δq)
TRn

b̂
(q̂)T

[
v̇nb/n − gn

]
+ bbacc

Rb̂b(δq)
TRn

b̂
(q̂)Tvnb/n

pnb/n
vnb/n




︸ ︷︷ ︸
h(x)

+




wacc

wcv

wpos

wvel




︸ ︷︷ ︸
v

(4.31)

The measurement noise is assumed white with variance Σv ∈ R12×12

v ∼ N (012×1,Σv)

Alternatively, when dealing with normalized velocity from CV, the measurement
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equation takes on the form:

y =




f bimu

vbcv

pnGPS

vnGPS


 =




Rb̂b(δq)
TRn

b̂
(q̂)T

[
v̇nb/n − gn

]
+ bbacc

Rb̂b(δq)
TRn

b̂
(q̂)T

vn
b/n

‖vn
b/n
‖

pnb/n
vnb/n




︸ ︷︷ ︸
h(x)

+




wacc

wcv

wpos

wvel




︸ ︷︷ ︸
v

(4.32)

4.3.1 Discrete time equations

Discretizing equation (4.30) -(4.32) with the Euler method yields:

xk+1 = xk + hf(xk,uk)︸ ︷︷ ︸
fk(xk,uk)

+ hΓ︸︷︷︸
Γk

wk (4.33)

yk = h(xk)︸ ︷︷ ︸
hk

+vk (4.34)

Now that a discrete model is present, it is desirable to linearize this model, so that
it will fit in the MEKF algorithm in Section 4.4.
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Qk = Σwk (4.35)

Rk = Σvk (4.36)

fk(x̂k,uk) = x̂k + h




1
2

[
ωbimu − b̂

b

gyro

]

03×1

v̂nb/n

Rnb (q̂)
[
f bimu − b̂

b

acc

]
+ gn

03×1




(4.37)

Φk =
δfk
δxk

∣∣∣∣
xk=x̂k

= (4.38)

I15×15 + h




− 1
2

[
ωbimu − b̂

b

gyro

]
×

− 1
2I3×3 03×3 03×3 03×3

03×3 03×3 03×3 03×3 03×3

03×3 03×3 03×3 I3×3 03×3

−2Rnb (q̂)
[
f bimu − b̂

b

acc

]
×

03×3 03×3 03×3 −Rn
b̂
(q̂)

03×3 03×3 03×3 03×3 03×3




(4.39)

Γk = hI15×15 (4.40)

Hk =
δhk
δxk

∣∣∣∣
xk=x̄k

=




−W (δε̄k, R
n
b̂
(q̂)Tgn) 03×3 03×3 03×3 I3×3

W (δε̄k, R
n
b̂
(q̂)Tvnb/n) 03×3 03×3 Rb̂b(δq̄)

TRn
b̂
(q̂)T 03×3

03×3 03×3 I3×3 03×3 03×3

03×3 03×3 03×3 I3×3 03×3




(4.41)

With W (ε,v) defined as in equation (4.28)

Alternatively when dealing with normalized body-fixed velocities from CV, equa-
tion (4.32) applies for the measurement. Then equation (4.41) is replaced by equa-
tion (4.42):

Hk =
δhk
δxk

∣∣∣∣
xk=x̄k

=




−W
(
δε̄k, R

n
b̂
(q̂)Tgn

)
03×3 03×3 03×3 I3×3

W
(
δε̄k, R

n
b̂
(q̂)T

vn
b/n

‖vn
b/n
‖

)
03×3 03×3 Rb̂b(δq̄)

TRn
b̂
(q̂)TZ(vnb/n) 03×3

03×3 03×3 I3×3 03×3 03×3

03×3 03×3 03×3 I3×3 03×3




(4.42)

Z(v) =
1

‖v‖3



v2

2 + v2
3 −v1v2 −v1v3

−v1v2 v2
1 + v2

3 −v2v3

−v1v3 −v2v3 v2
1 + v2

2


 =

1

‖v‖3
(
diag(v)2 − vvT

)
(4.43)

As seen from equation (4.43), Z(vnb/n) will be very small due to the scaling by
1

‖vn
b/n
‖3 , hence it can be argued that CV does not affect the velocity estimate when
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measuring the normalized body-fixed velocity, and the termRb̂b(δq̄)
TRn

b̂
(q̂)TZ(vnb/n)

in equation (4.42) might be set to zero.

4.4 The MEKF Algorithm

Now that discrete time equations are present, the iteration loop of the MEKF
algorithm is stated. The MEKF is initialized with an initial prior estimate x̄0.
The initial error covariance matrix, P̄0 = E((x(0) − x̄0)(x(0) − x̄0)T ), is given
values based on the uncertainty in the initial estimates.

(1.)Kk = P̄kH
T
k (HkP̄kH

T
k +Rk)−1

(2.)x̂k = x̄k +Kk(yk − h(x̄k))

(3.)q̂k =

[√
1− δε̂kT δε̂k

δε̂k

]

(4.)δε̂k+1 = 03×1

(5.)P̂k = (I −KkHk)P̄k(I −KkHk)T +KkRkK
T
k

(6.)P̂k =
1

2
(P̂k + P̂Tk )

(7.)x̄k+1 = fk(x̂k,uk)

(8.)P̄k+1 = ΦkP̂kΦTk + ΓkQkΓTk

With Qk, Rk,fk,Φk,Γk being evaluated at every step k of the MEKF, and defined
as in equation (4.35)-(4.40). Hk being defined in equation (4.42). In this thesis
we always normalize the velocity from CV, before using it in the MEKF. As seen
from equation (4.43), Z(vnb/n) will tend to zero when the CV measurement is nor-

malized, and is therefore set to zero. h(x) is defined in equation (4.32). v̇nb/n in
equation (4.32) is obtained from the continuous expression of the derivative of the

velocity from equation (4.30) and found by v̇nb/n = Rnb (q̂k)(f bimu,k − b̂
b

acc,k) + gn.

P̄k and P̂k being the prior and estimated error covariance matrix.
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Chapter 5
Nonlinear Observer for UAV
Navigation

This chapter presents different vision-aided nonlinear observers (NO) (Mahony
et al., 2008; Hua, 2010; Grip et al., 2012a; Fusini et al., 2014, 2015) for estimating
the attitude, position, velocity and gyroscopic bias of a fixed-wing UAV.

The observer from Fusini et al. (2014), utilizing ground truth optical flow (GTOF
from Section 3.3.1), is referred to as Ground Truth Optical Flow Nonlinear Ob-
server (GTOF NO) throughout this thesis. A requirement of the GTOF NO is that
the terrain being filmed must be flat horizontal. This is a fundamental restriction,
delimiting the various environments where the observer is applicable. When flying
at high altitudes the assumption of flat terrain might be viable, but when flying
at lower altitudes, the presence of rugged terrain will cause the GTOF NO repre-
sentation to be highly inaccurate, as CV fails to output correct measurements. As
a consequence of this, a new CV subsystem is needed. Two new observer repre-
sentations are therefore proposed. The first representation enables the continuous
epipolar constraint as described in Section 3.3.3, and is named Continuous Epipolar
Optical Flow Nonlinear Observer (CEOF NO). The second uses the epipolar con-
straint from Section 3.3.2, and is named Epipolar Optical Flow Nonlinear Observer
(EOF NO). With epipolar geometry it is possible to calculate a scaled measure of
the body-fixed linear velocity without any prior information about the structure
being filmed (e.g. terrain is a planar surface, known attitude of UAV relative to
the terrain plane). The CEOF and EOF NO representations are one step further
to a more general and practical observer representation. The CEOF and EOF NO
representations will be presented together with assumptions and motivation. More-
over theorems and proofs show that the proposed observers have the same stability

55



Chapter 5. Nonlinear Observer for UAV Navigation

properties as the GTOF NO, namely a Uniformly Semi-Globally Exponentially
Stable (USGES) origin of the error dynamics.

In this chapter the GTOF NO from Fusini et al. (2014) will be stated, together with
the assumptions behind. Furthermore the proposed CEOF and EOF NO will be
presented. The motivation, assumptions, advantages and drawbacks with the EOF
and CEOF nonlinear observers will be listed, together with the equations describing
the observer and its stability properties. The chapter ends with a comparison
between the GTOF, EOF and the CEOF observers, listing pros and cons with the
different representations. The following observer representations are designed and
presented

� Previous work 1 (Section 5.4): Ground truth optical flow nonlinear observer
with inclinometer and altimeter measurements (Fusini et al., 2014, 2015), ab-
breviation GTOF NO. Computer vision uses the ground truth optical flow
(GTOF) relationship from Section 3.3.1 to calculate body-fixed linear veloc-
ity.

� Previous work 2 (Section 5.4): Ground truth optical flow nonlinear observer
with attitude and altitude feedback (Fusini et al., 2014, 2015), abbreviation
GTOF(f) NO, where ”(f)” indicates that computer vision relies on feedback
of the estimated attitude. No stability analysis exists for this observer, but
an experimental validation follows in Chapter 8.

� Proposed system 1 (Section 5.5): Continuous epipolar optical flow nonlin-
ear observer, abbreviation CEOF NO. Computer vision uses the gyro-aided
continuous epipolar constraint from Section 3.3.3 to calculate the normalized
body-fixed linear velocity.

� Proposed system 2 (Section 5.6): Epipolar optical flow nonlinear observer,
abbreviation EOF NO. Computer vision uses the gyro-aided epipolar con-
straint from Section 3.3.2 to calculate an approximation of the normalized
body-fixed linear velocity.

This chapter starts with presenting the kinematics of the estimated states in Sec-
tion 5.1. The different observer representations differ in the CV subsystem, there-
fore the overall observer assumptions and equations are stated in Section 5.2 and
Section 5.3 respectively. Then, in Section 5.4-5.6, the different observer represen-
tations are presented with their specific CV subsystem. The observers are stated
together with the necessary assumptions and stability properties. The chapter ends
with a comparison of the different observer representations in Section 5.7.
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5.1 Kinematics

5.1 Kinematics

The nonlinear observer expresses attitude in means by a rotation matrix. The
differential equation describing the dynamics of attitude, position, and velocity is

Ṙnb = Rnb

[
ωbb/n

]
×

(5.1a)

ṗnb/n = vnb/n (5.1b)

v̇nb/n = fnb/n + gn (5.1c)

With the observer one are able to estimate the attitude Rnb , the position pnb/n,

and the velocity vnb/n with exponential convergence rate (Fusini et al., 2014). An

estimator for the gyro bias bbgyro is also provided.

5.2 Assumptions

The observer design by Fusini et al. (2014) is based on the following assump-
tions:

Assumption 5.1. The gyro bias bbgyro is constant, and there exists a

known constant Lb > 0 such that ‖bbgyro‖ ≤ Lb.

Assumption 5.2. There exists a constant cobs > 0 such that, ∀t ≥
0, ‖vbcv × f bimu‖ ≥ cobs.

Assumption 5.2 states that the UAV cannot have a specific force in the same
direction as the velocity of the UAV. This implies that the UAV cannot fly straight
up, nor straight down, as this would align the velocity vector with the gravity
vector. This means that the nonlinear observer should not be used in a helicopter-
like vehicle, as this would cause a problem in hover or when purely gaining altitude.
This is however not a problem for fixed wing UAVs as they will always have some
forward speed to remain in the air.

5.3 Observer Equations

The full observer was introduced in Fusini et al. (2014), and all estimated states are
expressed w.r.t. {n} . The observer uses measurements of the linear velocity and
the specific force as body-fixed reference vectors. The body-fixed linear velocity is
measured by some CV subsystem, while the body-fixed specific force is measured by
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an accelerometer. The estimated linear velocity in {n} and the estimated specific
force in {n} are used as {n} reference vectors. The equations of the observer are
stated as

Σ1

{
˙̂
Rnb = R̂nb S(ωbimu − b̂

b

gyro) + σKP Ĵ
˙̂
bbgyro = Proj(b̂

b

gyro,−kIvex(Pa(R̂Ts KP Ĵ)))
(5.2)

Σ2





˙̂pnb/n = v̂nb/n +Kpp(p
n
GPS−p̂nb/n) +Kpv(v

n
GPS−v̂nb/n)

˙̂vnb/n = f̂
n

b/n + gn+Kvp(p
n
GPS−p̂nb/n) +Kvv(v

n
GPS−v̂nb/n)

ξ̇ = −σKP Ĵf
b
imu +Kξp(p

n
GPS−p̂nb/n) +Kξv(v

n
GPS−v̂nb/n)

f̂
n

b/n = R̂nb f
b
imu + ξ

(5.3)

CV

{
Computer vision measures vbcv and will be described

in Section 5.4, Section 5.5 and Section 5.6

The CV subsystem will be defined in Section 5.4, Section 5.5 and Section 5.6 for
the GTOF, CEOF and EOF observer representations respectively.

Ĵ = ÂnA
T
b − R̂AbATb is the output injection term. Ab and Ân are matrices made

up from combinations of reference vectors. A reference vector is a vector that is
known (inertial, measured or estimated) in different frames. The reference vectors
used in this thesis are linear velocity vτb/n and specific force fτb/n, τ = {n, b}. In

this thesis normalized reference vectors are used when constructing Ab and Ân.
Then Ân and Ab are orthogonal matrices, and must be constructed to satisfy
ÂnAb = Rnb (Grip et al., 2015). These matrices can be constructed in several
ways as long as they are continuous in time and uniformly bounded by some upper
bound ‖Ab‖ = ‖Ân‖ ≤ ‖MA‖. In this thesis Ĵ is defined as

Ĵ(vbcv, v̂
n
b/n,f

b
imu, f̂

n

b/n, R̂) := ÂnA
T
b − R̂AbATb

Ab :=

[
f bimu

‖f bimu‖
,
f bimu

‖f bimu‖
× vbcv

‖vbcv‖
,
f bimu

‖f bimu‖
×
(
f bimu

‖f bimu‖
× vbcv

‖vbcv‖

)]

Ân :=

[
f̂
n

b/n

‖f̂nb/n‖
,
f̂
n

b/n

‖f̂nb/n‖
×

v̂nb/n

‖v̂nb/n‖
,
f̂
n

b/n

‖f̂nb/n‖
×
(
f̂
n

b/n

‖f̂nb/n‖
×

v̂nb/n

‖v̂nb/n‖

)]
(5.4)

Note that the injection term Ĵ is slightly different from what was used in Fusini
et al. (2014, 2015). The measurement of the specific force f bimu from the accelerom-
eter is assumed more accurate than the body-fixed velocity measurement from CV,
and is therefore placed alone in the first column of Ab and Ân, compared to Fusini
et al. (2014, 2015) where vbcv was placed in the first column. The specific force
reference vector is then weighted the most in the injection term.
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The parameter projection Proj(·, ·) is defined as:

Proj(b̂b, τ)=

{(
I− c(b̂b)

‖b̂b‖2 b̂
bb̂bT

)
τ, ‖b̂b‖≥Lb, b̂bT τ>0

τ, otherwise

where c(b̂b) = min{1, (‖b̂b‖2 − L2
b)/(L

2
b̂
− L2

b)}. Proj(·, ·) represents a parameter

projection Krstic et al. (1995) that ensures that ‖b̂bgyro‖ does not exceed a design
constant Lb̂ > Lb. This operator is a special case of that from Appendix E of Krstic
et al. (1995).

The subsystem Σ1 represents the attitude observer, whereas Σ2 represents the
translational motion observer. σ ≥ 1 is a scaling factor tuned to achieve stability
(Fusini et al., 2014), kI is a positive scalar gain, KP is a symmetric positive definite
gain matrix, and R̂s = sat(R̂nb ), ensuring that all elements of Rs are between −1
and 1. Kpp,Kpv,Kvp,Kvv,Kξp, and Kξv are observers gains with bounds given by
Lyapunov stability (Fusini et al., 2014).

5.4 Ground Truth Optical Flow Observer Repre-
sentation

In this section the observer from Fusini et al. (2014) will be presented together with
its CV subsystem. It was shown by Fusini et al. (2014) that the observer is USGES
in the origin of the error dynamics, given that the CV outputs correct measurements
of the body-fixed linear velocity. In this thesis this observer is addressed as a
Ground Truth Optical Flow (GTOF) observer representation.

There are two versions of the GTOF observer. The first version, which is shown
in Figure 5.1, assumes that the roll and pitch angles of the UAV can be measured
by an inclinometer, and that the height above the terrain can be extracted from
the GNSS or from an altimeter. By assuming this, the CV subsystem does only
rely on known quantities and the body-fixed velocity can be calculated from the
OF. For this version the system has USGES stability of the origin of the error
dynamics (Fusini et al., 2014), and the performance of the observer was presented
as an experimental validation in the ICUAS’15 article Fusini et al. (2015).

The second version, shown in Figure 5.2, uses feedback of the attitude and height
from the observer, hence introducing another feedback loop in the observer struc-
ture. However, using the estimated position as a measure of the height requires the
terrain to have constant or known elevation. The stability of the observer when
introducing this feedback has not yet been assessed, but an experimental validation
of this structure follows in Chapter 8. In this section the observer structure from
Figure 5.1, with measured attitude and height, will be emphasized.
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Figure 5.1: Ground truth optical flow representation of the observer with attitude
measurements. OF represents the algorithm that calculates optical flow from the camera
images. Σ1 represents the attitude observer, and Σ2 the translational motion observer.
The feedback indicated in green has been proved to have USGES stability properties,
assuming measured Euler angles and measured altitude.

Figure 5.2: Ground truth optical flow representation of the observer with attitude and
altitude feedback. OF represents the algorithm that calculates optical flow from the
camera images. Σ1 represents the attitude observer, and Σ2 the translational motion
observer. The feedback indicated in green has been proved to have USGES stability
properties, assuming measured Euler angles and measured altitude. For the blue feedback
an experimental validation will follow in Chapter 8.
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5.4.1 Motivation and Advantages

The advantages with using the GTOF CV subsystem in the observer is

� The scale of the body-fixed linear velocity is preserved

� Both linear and angular velocity are measured

The main advantage with the GTOF observer is that it measures the body-fixed
linear velocity with preservation of the scale. The GTOF CV subsystem can there-
fore give some information about the velocity that in theory can be used in the
translational motion observer Σ2. The velocity from the GTOF CV subsystem
could for instance be used in dead reckoning. In the attitude observer, Σ1, one are
only interested in using the normalized reference vector in order to avoid scaling
issues. Moreover the GTOF actually measures 6DOF velocities, meaning it also
measures the angular rates of the UAV. This could in theory be used in addition
to the gyroscope, but the quality of the angular velocity measurement is in general
poor compared to the gyroscopic measurements.

5.4.2 Disadvantages

A big disadvantage with the GTOF observer comes from the requirement that the
distance to all points in the image needs to be known. If the distance to a point is
not known, then it is impossible to say something about the theoretical flow, hence
it is impossible to recover the motion of the UAV.

The fact that the GTOF observer needs to know the distance to all points in the
image causes problems. In Fusini et al. (2014, 2015) the distance to every point
in the image was approximated by assuming that the terrain is a horizontal flat
plane. By knowing the altitude of the UAV above ground, and the attitude, it is
possible to recover the distance to every point of the horizontal terrain plane. If,
however, the terrain is not horizontal, then the assumed distance will be incorrect.
This leads to false information being fed into the CV subsystem. This will cause
CV to output erroneous measurements, as the relationship between ground truth
optical flow and motion is no longer valid.

The GTOF CV subsystem assumes that the OF algorithms measures continuous
OF. As the OF algorithms are discrete, they only measure the discrete OF. This
implies that the continuous OF, ẋm must be approximated by the discrete OF,
ẋm ≈ ∆xm

∆t . This will cause no problems if the frame rate of the camera is suffi-

ciently high as ẋm = lim∆t→0
∆xm

∆t
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5.4.3 Assumptions

The observer design by Fusini et al. (2014) is based on the assumptions 5.1-5.2. In
adition to these assumptions, three more assumptions must be added when using
the GTOF CV subsystem.

Assumption 5.3. The OF algorithm provides a sufficient number of
image features, such that M has full rank and equation (3.10) can be used
to find vbcv = vbb/n.

Assumption 5.4. Euler angles are considered measured by inclinometer
and not extracted from the estimated R̂nb (i.e. R̂nb is not fed back to M)
as well as the altitude cnz , so that matrix M and subsequently vbcv depend
only on known values.

Assumption 5.5. The UAV flies over flat horizontal terrain.

5.4.4 Observer Representation

Given the aforementioned assumptions, the full observer is stated as equation (5.2)-
(5.3) with the following computer vision subsystem:

CV

{[
vbcv

ωbcv

]
= −M+

[
ṙ

ṡ

]
(5.5)

With M being the matrix defined in equation (3.11) in Section 3.3.1.

5.4.5 Stability Proof

The error dynamics of the nonlinear observer can be written in a compact form as

Σ1





˙̃Rnb = Rnb

[
ωbb/n

]
×
− R̂nb

[
ωbimu − b̂bgyro

]
×
− σKP Ĵ

˙̃
bbgyro = −Proj(b̂bgyro,−kIvex(Pa(R̂Ts KP Ĵ)))

(5.6a)

Σ2

{
˙̃w = (Aw −KwCw)w̃ +Bwd̃ (5.6b)

where w̃ = [(p̃nb/n)T , (ṽnb/n)T , (f̃nb/n)T ]T collects the estimated position, velocity and

acceleration vectors, d̃ =

(
Rnb

[
ωbb/n

]
×
− R̂nb

[
ωbimu − b̂bgyro

]
×

)
f bb/n+

(
Rnb − R̂nb

)
ḟ bb/n,
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and the four matrices in (5.6b) are defined as

Aw =

[
06×3 I6
03×3 03×6

]
, Bw =

[
06×3

I3

]
,

Cw =
[
I6 06×3

]
, Kw =



Kpp Kpv

Kvp Kvv

Kξp Kξv


 .

Theorem 1 is adapted from Fusini et al. (2014) and describes the stability properties
of the observer.

Theorem 1. (Stability of the GTOF observer) Let σ be chosen to
ensure stability according to Lemma 1 in Grip et al. (2012a) and define
HK(s) = (Is−Aw +KwCw)−1Bw. Provided Assumptions 5.1-5.5, there
exists a set (0,c) such that, if Kw is chosen such that Aw − KwCw is
Hurwitz, and ‖HK(s)‖∞ < γ, for γ ∈ (0, c), then the origin of the error
dynamics equation (5.2)-(5.3) and equation (5.5) is USGES when the

initial conditions satisfy ‖b̂bgyro(0)‖ ≤ Lb̂.

Proof. See Fusini et al. (2014).

5.5 Continuous Epipolar Optical Flow Observer
Representation

In this section a new observer representation, named Continuous Epipolar Optical
Flow (CEOF) Observer Representation, is presented. The observer has a robust CV
subsystem that enables gyro-aided epipolar geometry as described in Section 3.3.3.
The CV subsystem does not need any prior information about the structure being
filmed (e.g. flat terrain, known roll, pitch and height between UAV and terrain),
as it is not affected by the distance and shape of the terrain being filmed. The
observer structure is shown in Figure 5.3. The CEOF NO requires angular velocity
as input to the CV subsystem. Bias compensated angular velocity measurements
are acquired from the gyroscope. Before describing the CEOF NO representation,
some motivation, disadvantages and assumptions are stated.

5.5.1 Motivation and Advantages

The motivation and advantages for using the CEOF Observer Representation will
now be listed.
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Figure 5.3: Block diagram of the Continuous Epipolar Optical Flow Observer Repre-
sentation. Σ1 represents the attitude observer, and Σ2 the translational motion observer.
For the feedback indicated with green, USGES stability has been proved. The stability
of the bias feedback in blue has not yet been assessed.

� The CEOF Observer Representation does not assume flat terrain (unlike the
GTOF Observer Representation), and can therefore be used at lower altitudes
and in more hilly environments. This makes this observer representation
applicable for more real world situations than the Ground Truth Optical
Flow Observer Representation.

� No information about the distance down to the terrain is required.

� No external sensor measuring the attitude or altitude relative to the ground
is required.

5.5.2 Disadvantages

Some disadvantages are also present with the CEOF observer.

� The CV subsystem of the CEOF Observer Representation outputs a dimen-
sionless measure of the velocity, and does not provide any information about
the scale of the velocity.

� The CEOF Observer Representation requires that the UAV has some forward
velocity, but this is reasonable as a fixed wing UAV always will have some
forward velocity when in flight.

� The CV subsystem assumes continuous OF, although the OF algorithm ap-
proximates this by the discrete OF.

� A feedback is introduced by the bias correction.
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5.5 Continuous Epipolar Optical Flow Observer Representation

5.5.3 Assumptions

Some assumptions need to be stated for the CEOF nonlinear observer.

Assumption 5.6. Angular rates are measured by the IMU meaning that
vbcv is depending only on known values.

Assumption 5.7. The UAV has forward body-fixed velocity, vx > 0.

Assumption 5.8. The OF algorithm provides linearly independent op-
tical flow vectors, as defined in Definition 8.

5.5.4 Observer Representation

Given N OF vectors, and provided Assumptions 5.1-5.2 and 5.6-5.8, the equations
of the CEOF NO are stated as equation (5.2)-(5.3) together with the following CV
subsystem.

CV





vbcv = ve

‖ve‖

ve =
vb
b/n

vx
= [1, (A+

c bc)
T ]T

ucj ×
(

(u̇cj)
T +

[
ωbimu − b̂

b

gyro

]
×
ucj

)
= [cx,j , cy,j , cy,j ]

T , j = 1...N

(5.7)

With Ac and bc as defined in equation (3.55).

Where uc = K−1xm is the back projected image coordinate, and u̇c = K−1ẋm is
the back projected OF.K is the projection matrix as defined in equation (3.4).

5.5.5 Stability Proof

Provided Assumptions 5.1-5.2 and 5.6-5.8, the following theorem can be stated to
describe the stability of the CEOF observer, if assuming that b̂bgyro is kept constant
in equation (5.7)

Theorem 2. (Stability of the CEOF observer) Let σ be chosen to
ensure stability according to Lemma 1 in Grip et al. (2012a) and define
HK(s) = (Is − Aw + KwCw)−1Bw. There exists a set (0,c) such that,
if Kw is chosen such that Aw −KwCw is Hurwitz, and ‖HK(s)‖∞ < γ,
for γ ∈ (0, c), then the origin of the error dynamics equation (5.2)-(5.3)
and equation (5.7), provided Assumptions 5.1-5.2 and 5.6-5.8, is USGES
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when the initial conditions satisfy ‖b̂bgyro(0)‖ ≤ Lb̂.

Proof. The proof is based on Fusini et al. (2014), where we have replaced
M with the new CV subsystem from equation (5.7). We must show that
vbcv is uniquely defined. Then it follows from Theorem 1 that the origin
of the error dynamics equation (5.2)-(5.3) together with equation (5.7) is
USGES.

vbcv has a one to one mapping to the scaled body-fixed velocity with unit
forward component ve. Hence the uniqueness of vbcv can be shown by
the uniqueness of ve. Moreover if the sign of vx is known, then vbcv =
normalize(vbb/n). From Assumption 5.7 vx > 0, hence the uniqueness

of vbcv can be shown by the uniqueness of ve. ve = [1, (A+
c bc)

T ]T has
a unique solution if and only if the rank of Ac is full (Kreyszig, 2006).
Given that the OF algorithm extracts features such that Assumption 5.8
is not violated, then Ac has full rank, and ve is uniquely determined.
Hence vbcv is uniquely determined, and it follows from Theorem 1 that
the system is USGES.

5.6 Epipolar Optical Flow Observer Representa-
tion

In this section the Epipolar Optical Flow (EOF) Observer Representation, will be
presented. This observer representation is very similar to the CEOF observer from
Section 5.5, but uses the discrete epipolar constraint from Section 3.3.2 to calculate
the normalized body-fixed linear velocity.

The observer structure is shown in Figure 5.4. An IMU can be configured to
output incremental angles (δΘ̇b/n) as seen in Figure 5.4. The motivation behind
the EOF observer is however that its CV subsystem is discrete in its nature, as
it is derived assuming discrete OF. Recall that the OF algorithms measures the
discrete OF. Before describing the EOF Observer Representation, some motivation,
disadvantages and assumptions are stated.

5.6.1 Motivation and Advantages

The motivation and advantages for using the EOF Observer Representation can
be summarized with the following list:
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5.6 Epipolar Optical Flow Observer Representation

Figure 5.4: Block diagram of the Epipolar Optical Flow Observer Representation. Σ1

represents the attitude observer, and Σ2 the translational motion observer. For the feed-
back indicated with green, USGES stability has been proved.

� The EOF Representation does not assume flat terrain (unlike the GTOF
Observer Representation), and can therefore be used at lower altitudes and
in rugged environments. This makes this observer representation applicable
for more real world situations than the GTOF Observer Representation.

� The EOF observer assumes discrete OF in the CV subsystem. The OF algo-
rithms produces indeed measures of the discrete OF, and not the OF, meaning
one should get an accurate measurement of the direction of translation of the
UAV.

� No information about the distance down to the terrain is required.

5.6.2 Disadvantages

There are also some disadvantages the EOF observer, and these are now empha-
sized:

� The CV subsystem of the EOF Observer Representation outputs a dimen-
sionless measure of the translation, and does not provide any information
about the scale of the translation.

� The normalized body-fixed linear velocity is approximated by the normalized
direction of translation. This is a good approximation if the time between
two images are short, but when this time increases then the approximation
might be rather poor.

� The CV subsystem of the EOF Observer Representation requires that the
UAV has some forward translation between images are taken, but this is
reasonable as a fixed wing UAV always will have some forward velocity when
in flight.
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5.6.3 Assumptions

Together with Assumptions 5.1-5.2, the following assumptions are stated for the
EOF nonlinear observer:

Assumption 5.9. The OF algorithm provides linearly independent pairs
of image features, as defined in Definition 7.

Assumption 5.10. Incremental angles are measured by an IMU such
that δR as defined in equation (3.24) is known, and consequently vbcv

depend only on known values.

Assumption 5.11. The UAV has forward body-fixed velocity, vx > 0,
and the time between two consecutive images is sufficiently low, such that
the body-fixed position-change will be positive in x-direction between two
consecutive images, that is tx > 0.

Assumption 5.11 restrict the types of maneuvers that can be allowed. The UAV
cannot rotate and translate such that the position of the UAV at time t−∆t (when
the last image was taken) appear behind the UAV at time t, as this would violate
tx > 0.

5.6.4 Observer Representation

Given Assumptions 5.1-5.2 together with Assumptions 5.9-5.11, the equations of
the EOF NO representation are stated as equation (5.2)-(5.3) together with the
following CV subsystem. Please notice that Σ1 and Σ2 remains unchanged from the
GTOF and CEOF NO, as the CV subsystem is the only part that is changed.

CV





vbcv = sign(tx) te
‖te‖

te = t
tx

= [1, (A+
d bd)

T ]T , tx 6= 0(
δRucj(tk)

)
× ucj(tk+1) = [dx,j , dy,j , dy,j ]

T , j = 1...N

(5.8)

with Ad and bd as defined in equation (3.31). ucj(tk) = K−1xmj (tk), K being the

projection matrix from equation (3.4), xmj (tk) = [rj(tk), sj(tk), 1]T being the posi-

tion of feature j at time tk in homogeneous coordinates, ucj(tk+1) = K−1xmj (tk+1),

xmj (tk+1) = [rj + drj , sj + dsj , 1]T being the position of feature j at time tk+1, δR
being the rotation matrix describing the rotation of the camera from time tk to
time tk+1, as described in 3.3.2.
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5.6 Epipolar Optical Flow Observer Representation

5.6.5 Stability Proof

Provided Assumptions 5.1-5.2 and Assumptions 5.9-5.11, the following theorem can
be stated to describe the stability of the proposed observer

Theorem 3. (Stability of the EOF observer) Let σ be chosen to
ensure stability according to Lemma 1 in Grip et al. (2012a) and define
HK(s) = (Is− Aw +KwCw)−1Bw. There exists a set (0,c) such that, if
Kw is chosen such that Aw −KwCw is Hurwitz, and ‖HK(s)‖∞ < γ, for
γ ∈ (0, c), then the origin of the error dynamics equation (5.2)-(5.3) with
computer vision subsystem as defined in equation (5.8), provided Assump-

tions 5.1-5.2 and 5.9-5.11 and that lim∆t→0
pb
b/n(tk+∆t)−pb

b/n(tk)

∆t = vbb/n
with tk being the time when image k is captured and ∆t being the time
between two consecutive images, is USGES when the initial conditions
satisfy ‖b̂bgyro(0)‖ ≤ Lb̂.

Proof. The proof is based on Fusini et al. (2014), where we have replaced
M with the new computer vision subsystem. We must show that vbcv is
uniquely defined. Then it follows from Theorem 1 that the origin of the
error dynamics equation (5.2)-(5.3) with the CV subsystem as defined in
equation (5.8) is USGES.

Provided lim∆t→0
pb
b/n(tk+∆t)−pb

b/n(tk)

∆t = vbb/n, then vbcv = vbb/n, vbcv has a
one to one mapping to te if the sign of tx is known. From Assumption 5.10
tx > 0, hence the uniqueness of vbcv can be shown by the uniqueness of te.
te = [1, (A+

d bd)
T ]T has a unique solution if and only if the rank of Ad is

full (Kreyszig, 2006). Given that the computer vision algorithm extracts
features such that Assumption 5.11 is not violated, then Ad has full rank,
and te is uniquely determined. Hence vbcv is uniquely determined, and it
follows from Theorem 1 that the system is USGES.

5.6.6 Discrete Representation

The CV of the EOF NO approximates the normalized body-fixed linear velocity
by the direction of translation (the change in position). For numerical and im-
plementational reasons it might be smarter to use change in estimated position,
p̂nb/n(t)− p̂nb/n(t−∆t), as reference vector in the EOF NO. EOF(∆p) NO denotes
the NO with EOF CV, and change in position, p̂nb/n(t), as reference vector. No sta-
bility analysis is performed for the EOF(∆p) NO, but an experimental validation
is given in Section 8.3. The output injection term Ĵ for the EOF(∆p) NO then
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takes the form:

Ĵ(vbcv, ∆p̂nb/n,f
b
imu, f̂

n

b/n, R̂) := ÂnA
T
b − R̂AbATb (5.9a)

Ab :=

[
f bimu

‖f bimu‖
,
f bimu

‖f bimu‖
× vbcv

‖vbcv‖
,
f bimu

‖f bimu‖
×
(
f bimu

‖f bimu‖
× vbcv

‖vbcv‖

)]
(5.9b)

Ân :=

[
f̂
n

b/n

‖f̂nb/n‖
,
f̂
n

b/n

‖f̂nb/n‖
×

∆p̂nb/n

‖∆p̂nb/n‖
,
f̂
n

b/n

‖f̂nb/n‖
×
(
f̂
n

b/n

‖f̂nb/n‖
×

∆p̂nb/n

‖∆p̂nb/n‖

)]
(5.9c)

∆p̂nb/n = p̂nb/n(t)− p̂nb/n(t−∆t) (5.9d)

5.7 Comparison of the Different Observer Repre-
sentations

The different NOs differ only in the CV subsystem, hence a comparison can be
done only with respect to the CV subsystem.

The GTOF observer relies on the OF algorithm to provide a sufficient number of
OF vectors, such that M has full rank and equation (3.10) can be used to find
vbcv = vbb/n. The EOF and CEOF have similar requirements. The EOF observer
relies on that the OF algorithm provides at least two linearly independent pairs of
image features, as defined in Definition 7, while CEOF needs at least two linearly
independent OF vectors as defined in Definition 8. In general all NO representations
needs to have some distribution of the image features, such that the pseudo-inverse
of M from equation (5.5), Ad from equation (5.8) and Ac from equation (5.7)
exists.

The GTOF observer depends on knowing the roll, pitch and altitude of the UAV
relative to the ground to calculate the body-fixed linear velocity. This could be
measured by an inclinometer and an altimeter. The EOF does only depend on the
relative rotation in the time between two consecutive images are taken. This can
be recovered from the gyroscope by configuring it to output incremental angles,
or by integrating the angular velocity in the time between two images are taken.
As the time between two consecutive images are relatively low and the bias of the
measurements are small the relative orientation will not drift away. The CEOF
observer relies only on the angular velocity, which can be extracted from a gyro-
scope. The gyroscope is a standard sensor in low cost IMUs, while inclinometer
and altimeter often must be added as separate sensors.

The GTOF observer does require the terrain being filmed to be flat. This require-
ment is not present in the CEOF and EOF observers, and might be the biggest
advantage with these.

The GTOF and CEOF observers are derived assuming continuous OF, that is ṙ
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5.7 Comparison of the Different Observer Representations

Figure 5.5: The GTOF and the CEOF nonlinear observers approximate the optical flow
by the discrete optical flow vectors. As can be seen, big rotations will cause the discrete
optical flow to differ much from the optical flow. This is handled by using sufficiently
high frame rate for the camera.

and ṡ, and yields body-fixed linear velocity. However the OF algorithm measures
the discrete OF ∆r

∆t and ∆s
∆t . For the GTOF and the CEOF the OF is approximated

by the discrete OF, meaning that the discretization is done with the OF vectors.
The EOF observer is derived assuming discrete OF, and makes use of ∆r and ∆s
directly. The EOF uses these discrete OF vectors to calculate a normalized vector
of the direction of translation. The direction of translation is used to approximate
the direction of the body-fixed velocity, meaning the discretization is done with
the velocity vector itself. Hence both the GTOF, CEOF and the EOF observers
does some discretization to get measures of the body-fixed velocity. The GTOF
and CEOF discretization is illustrated in Figure 5.5, while the EOF discretization
is illustrated in Figure 5.6.
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Chapter 5. Nonlinear Observer for UAV Navigation

Figure 5.6: The EOF nonlinear observer does a discretization step on the velocity vector
from the computer vision subsystem. The orange arrow illustrates the body-fixed velocity,
while the blue indicates the direction of translation. As can be seen, the error between
these two vectors will increase when flying steep turns, or when having a big time interval
between images are captured. This is handled by a sufficiently large frame rate for the
camera.
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Chapter 6
Experiment

The objective of the experiment is to compare the performance of the nonlinear
observers (NO) from Chapter 5 with the multiplicative extended Kalman filter
(MEKF) from Chapter 4. A UAV flight test is conducted to collect real measure-
ment data. The performance of the different NOs and MEKFs are compared to
a reference. The reference is an extended Kalman filter (EKF) implemented on
the onboard UAV autopilot. The experimental results are organized in three cases,
which will be explained more closely in Section 6.4.1-6.4.3. The cases are:

Case 1: Ground Truth Optical Flow observers Two NOs and one MEKF,
all with with GTOF CV, are compared to each other and a reference.

Case 2: Continuous Epipolar Optical Flow observers A NO and a MEKF
utilizing the CEOF CV are tested with real world data. They are compared
to each other and to a reference.

Case 3: Epipolar Optical Flow observers Three navigation systems are tested.
The EOF NO, a variant of the EOF NO and a MEKF are compared to each
other and a reference.

The chapter is organized as follows. First a description of a UAV flight experiment
is presented in Section 6.1. Then computer vision and observer tuning parameters
are highlighted in Section 6.2. In Section 6.3 different evaluation criteria are de-
fined. Then three different cases are motivated and described in Section 6.4.
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Chapter 6. Experiment

Figure 6.1: The team after the flight test at Eggemoen

6.1 UAV Flight Test

In order to collect data for testing, a flight experiment have been conducted. The
experiment was performed the 6th of February 2015 at Eggemoen, Norway - a sunny
white winter day. A Penguin B UAV, produced by UAV Factory, was equipped
with a custom payload module in order to record the desired data, namely camera
images and sensor data from IMU and GPS. The UAV and the team performing
the flight test are shown in Figure 6.1. The camera was set to capture images at a
rate of ten frames per second(FPS), and the images were captured at a resolution
of 1600 × 1200 pixels. The payload module was placed so that the camera was
pointing straight down (towards the ground) when the UAV has zero roll and pitch.
OF algorithms are deployed on the images from the flight in order to generate OF
vectors that can be used by the observers. The IMU, a STIM300, was set to log data
on 300Hz. The IMU was configured to output angular rates during the flight test.
The GPS logged measurements at 5Hz. Table 6.1 summarizes the measurement
rates of the payload sensors. Velocity measurements are obtained from the GPS by
differentiation of position measurements. For more information about the payload
setup see Appendix E. The results presented in this section has a time axis from
1050 seconds to 1300 seconds. This is the time since the data logging began. Only
the significant part involving the flight is presented.

The cruise altitude of the UAV was approximately 150 meters above ground level,
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Table 6.1: Measurement rates of the sensors in the payload

Sensor Rate
IMU 300Hz
CV 10Hz
GPS 5Hz

and the flight lasted for approximately four minutes. Earth-Centered Earth-Fixed
(ECEF) position measurements from GPS, accelerometer-, gyroscope- and inclinometer-
measurements from an IMU, as well as camera images were logged with a time
stamp and stored on-board the UAV. GPS measurements were converted to North-
East-Down coordinates after the flight before they were used in the experimental
testing. The flight test was conducted over a relatively flat area, but the area
around the airfield at Eggemoen has a lot of trees, meaning the actual terrain
altitude will vary a bit.

6.2 Implementation for Off-line Testing

This section presents some important parameters for the computer vision subsystem
as well as the NO and the MEKF.

6.2.1 Computer Vision

The camera projection matrix was verified with the Matlab computer vision toolbox.
The camera and lens ware tested to be very accurate, with negligible distortion.
Therefore no distortion correction was done with the images. The images from the
camera on the UAV were processed at their original resolution of 1600×1200 pixels.
The Template Matching and SIFT OF algorithms, as described in Section 3.2.1 and
Section 3.2.2 respectively, are implemented in C++ with the open source library
OpenCV (Bradski, 2000). The OF vectors from these two algorithms are used as
input to the CV system of the different observers. By using two OF algorithms, the
chance of having at least two or three OF vectors increases (recall from Chapter 3
that the GTOF method needs at least three OF vectors, while the EOF and CEOF
method needs at least two). For the Template Matching algorithm, there are some
important parameters to consider listed in Table 6.2. For implementation details
and tuning values for the SIFT algorithm it is referred to Appendix D.1.
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Table 6.2: Various parameters for the Template Matching algorithm

Description Value

Image height 1200 pixels.
Image width 1600 pixels.
Template height 90 pixels.
Template width 120 pixels.
Matching method normalized cross correlation.
Points of interest The centre of 12 equally spaced regions in the image.

6.2.2 Multiplicative Extended Kalman Filter

The covariance parameters of the MEKF used in the experimental testing are listed
in Table 6.3. The initial error covariance matrix P̄0 = E[(v(0)−v̂(0))(v(0)−v̂(0))T ]
with v = [δεT , (bbgyro)T , (pnb/n)T , (vnb/n)T , (bbacc)T ], with values from the table. Pro-

cess noise covariance matrix is R = diag
[
σ2
δε, σ

2
bbgyro

, σ2
pn
b/n
, σ2
vn
b/n
, σ2
bbacc

]
and the

measurement noise covariance matrix is Q = diag
[
σ2
vb
cv
, σ2
fb

imu
, σ2
pn
GPS

, σ2
vn
GPS

]
with

values defined in Table 6.3. Some comments on the covariance parameters are
appropriate. The covariance of 10−3 on GPS position measurement may sound ex-
treme low, but have been found to work well in the MEKF with the dataset from
the experiment. Since the velocity measurement is obtained by differentiation of
the GPS measurement, it should in general not be very accurate. However a noise
covariance of 10−2 for the GPS velocity measurements is found to yield satisfactory
results. Further implementation details about the MEKF are found in Appendix
D.2.

6.2.3 Nonlinear Observer

The observer gains are chosen in compliance with the Lyapunov stability from
Theorem 1 on page 63, and are listed in Table 6.4. Further implementation details
about the NO are found in Appendix D.3.

6.3 Evaluation Criteria

CV measurements are normalized before use. When a three dimensional vector is
normalized, the resulting vector only has two degrees of freedom. This is because
any vector with unit length can be constructed from two of its elements. As the
measurement provide information in two degrees of freedom, it is interesting to
express the CV measurement by the crab and flight path angles. The measured

78



6.3 Evaluation Criteria

Table 6.3: MEKF covariance parameters in experimental testing

Error covariance

Variable v Value E[(v(0)− v̂(0))(v(0)− v̂(0))T ] Variance in

δε
[
10−7, 10−7, 10−7

]T
Attitude

bbgyro
[
10−12, 10−12, 10−12

]T
Gyro bias

pnb/n
[
10−4, 10−4, 10−4

]T
NED position

vnb/n
[
10−7, 10−7, 10−7

]T
NED velocity

bbacc
[
10−11, 10−11, 10−11

]T
Accelerometer bias

Process noise

Variable v Value σ2
v Variance in

δε
[
5 · 10−7, 5 · 10−7, 5 · 10−6

]T
δε

bbgyro
[
5 · 10−13, 5 · 10−13, 1 · 10−12

]T
Gyro bias

pnb/n
[
10−4, 10−4, 10−4

]T
NED position

vnb/n
[
10−4, 10−4, 10−4

]T
NED velocity

bbacc
[
10−12, 10−12, 10−12

]T
Accelerometer bias

Measurement noise

Variable v Value σ2
v Variance in

vbcv
[
2 · 10−3, 2 · 10−3, 2 · 10−3

]T
Computer vision

f bimu

[
2 · 10−3, 2 · 10−3, 2 · 10−3

]T
Accelerometer

pnGPS

[
10−3, 10−3, 10−3

]T
GPS position

vnGPS

[
10−2, 10−2, 10−2

]T
GPS velocity

crab and flight path angles are compared to the estimated crab and flight path angle
from the Piccolo autopilot EKF (the EKF does not really estimate these angles,
but the attitude and velocity estimates can be used to find the angles). Although
there is no guarantee of the accuracy of the estimates from the Piccolo autopilot, it
is reason to think that it provides estimates not far from the true value. The UAV
was during parts of the flight controlled by the Piccolo autopilot with success, and
this implies that the EKF estimated correct navigation states. Two quantities are
therefore defined. χ̃ is a measure of the crab angle error of the measurement from
the CV, while γ̃ is a measure of the flight path angle error. Figure 6.2 illustrates γ̃
and χ̃.

χ̃ = arcsin (vcv − vref) (6.1)

γ̃ = arcsin (wcv − wref) (6.2)

In order to evaluate the performance of the different NOs and MEKFs, the root
mean squared (RMS) error in the estimated states will be assessed. The Piccolo
autopilot EKF is used as a reference. The log from the Piccolo is only at 1 Hz.
The Piccolo data is resampled to 300 Hz with linear interpolation before it is used
as a reference. Although the accuracy of the Piccolo autopilot EKF is unknown, it
is assumed to produce estimates that are not far from the correct values. As the
validity of the Piccolo autopilot EKF is unknown, the RMS values cannot be used
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Table 6.4: Nonlinear observer gains for experimental testing

Variable Value Description

Common Nonlinear Observer Parameter Values
Lb 2◦ = 2/180 · πrad Upper bound on norm of gyro bias
Lb̂ 2.1◦ = 2.1/180 · πrad Upper bound on norm of estimated gyro bias
KP diag[0.08, 0.04, 0.06] Symmetric positive definite gain matrix for attitude
kI 0.0001 Positive scalar gain for gyro bias estimate
σ 1 Scaling factor tuned to achieve stability
Kpp 30I3×3 Translational gains
Kpv 2I3×3 -
Kvp 0.01I3×3 -
Kvv 20I3×3 -
Kξp I3×3 -
Kξv 50I3×3 -

Figure 6.2: Crab angle error and flight path angle error are measures of the accuracy of
the computer vision velocity measurement.

to state whether one observer is better than the other. The RMS is however used
to give some indication of the validity of the estimates. As the observers needs
some time to converge, the RMS is measured from after time 1150 seconds (100
seconds after the flight begins). The RMS error is defined as:

RMS =

√√√√ 1

N

N∑

i=1

(x̂(i)− xref(i))2 (6.3)

The observers will also be compared with respect to their computationally effi-
ciency, by the execution time. The execution time is the average time of one
iteration of the respective observer. The execution time is found by the tic and
toc functions in Matlab. The observers are all tested on a desktop computer with
specifications given in Table 6.5.

6.4 Description of Cases

All cases are evaluated with sensor measurements from the UAV flight. A descrip-
tion of each case and motivation will be presented in the forthcoming.
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Table 6.5: Specification of computer used to test the various observers

Manufacturer Dell
OS Windows 7 Enterprise
RAM 16 GB
Processor Intel(R) Core i7 - 3.40GHz
System Type 64-bit

6.4.1 Case 1: Ground Truth Optical Flow Observers

This case aims at validating the theory in practice, by looking at the performance
of the GTOF NO (described in Section 5.4) and a MEKF with real experimental
data. It is interesting to compare the performance of the GTOF NO from Fusini
et al. (2014) with a traditional MEKF. Moreover it is interesting to see whether
introducing a feedback to the CV in the GTOF NO will improve the performance
of the observer. In this case the following three observers are implemented, and
tested on real sensor data from a UAV flight:

� The GTOF NO from Section 5.4. CV uses inclinometer measurements of
the attitude.

� The GTOF(f) NO is similar to the GTOF NO, but uses feedback of the
estimated attitude in the CV subsystem.

� The MEKF from Chapter 4 with the same CV as the GTOF NO with
inclinometer measurements.

The MEKF uses the GTOF CV as described in Section 3.3.1. Recall that GTOF
CV needs to know the attitude of the UAV relative to the ground. The CV in the
MEKF uses an inclinometer to obtain the attitude. The NO is, as described above,
implemented with two different variants of the GTOF CV. The first variant uses
inclinometer measurements as input to CV, and is addressed as GTOF NO. The
second variant uses attitude feedback from the observer to CV, and is addressed
as GTOF(f) NO. Recall that a stability proof and experimental validation have
been presented only for the first variant, using inclinometer measurements (Fusini
et al., 2014, 2015). In this case an experimental validation of the GTOF(f) NO
with attitude feedback to CV will be presented. As no altimeter was available from
the conducted flight experiment, the UAVs height relative to the taxiing area on
the airfield is used to approximate the height relative to the ground. The height of
the UAV is recovered by: cnz = [0, 0, 1]pnGPS and cnz = [0, 0, 1]p̂nb/n for GTOF and
GTOF(f) respectively. The results from this case is presented in Section 8.1.
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Chapter 6. Experiment

6.4.2 Case 2: Continuous Epipolar Optical Flow Observers

This case aims to test the performance of the proposed CEOF NO (Section 5.5)
with the experimental data from the UAV flight. The CEOF NO is compared
to a CEOF MEKF (The CEOF MEKF uses the same CV as the CEOF NO).
The motivation behind choosing this case is to validate the proposed CEOF NO
experimentally. Furthermore it is interesting to see its performance compared to a
MEKF. The following two observers are tested and evaluated:

� The CEOF NO from Section 5.5.

� The MEKF from Chapter 4 with the same CV as the CEOF NO.

The results from this case is presented in Section 8.2.

6.4.3 Case 3: Epipolar Optical Flow Observers

The purpose of this case is to validate the proposed EOF NO from Section 5.6
in practice. Moreover it is also the purpose to compare the EOF NO with the
proposed discrete NO from Section 5.6.6, namely the EOF(∆p) NO. These two
observers are further compared to a MEKF utilizing the EOF CV as described in
Section 3.3.2. The following three observers are compared with sensor data from
the UAV test flight:

� The EOF NO from Section 5.6.

� The EOF(∆p) NO from Section 5.6.6.

� The MEKF from Chapter 4 with the same CV as the EOF NO.

As the IMU was configured to output angular rates, the rotation matrix δR, relating
the UAV orientation between two consecutive images, is found by integrating the
bias corrected (using estimated bias) angular velocity measurements. The results
from this case is presented in Section 8.3.
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Chapter 7
Simulation

This chapter presents simulations of a UAV flying over a terrain mimicking a Nor-
wegian coastline environment. The objective of is to compare the performance of
the GTOF NO and CEOF NO when flying over rugged and elevated terrain. The
UAV flight test described in Chapter 6 is conducted over a relatively flat area. In
order to evaluate the different observers with more rugged terrain, a simulator is
implemented. Moreover, these two observers are compared to a nonlinear observer
without computer vision. The observer without CV is addressed as NoCV, as it
has no CV. The NoCV observer is implemented in order to evaluate whether intro-
ducing CV in the observer will improve the performance of the observer. NoCV is
realized by removing the CV subsystem, and using a pseudo measurement of body-
fixed velocity directed straight forward (setting vbcv = [1, 0, 0]T ). This means that
the NoCV observer uses only IMU and GNSS measurements. The observers will
be compared to a known reference. The different NOs considered in the simulation
are:

� The GTOF NO described in Section 5.4.

� The CEOF NO described in Section 5.5.

� The NoCV NO (a NO without CV).

The chapter is divided in three main parts. First a description of the implemented
simulator is presented, then the observer implementation is highlighted. The chap-
ter ends with description of a case study.
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Figure 7.1: Waypoints are made to generate a path that the UAV follows. By adding
wind of 5m/s directed north to the simulation, the UAV experiences some crab angle
when not flying straight north or south.

7.1 Simulator

A simulator is implemented in Matlab to test the different NOs when flying over
realistic rugged terrain.

7.1.1 Simulating a UAV Flight

Multiple waypoints for the UAV are defined and is the basis for the generation of
a path for the UAV to follow. The waypoints contains 3D position, pitch angle
of UAV and time of arrival. A linear interpolation is done between these points
in order to obtain a path in time. A fourth order lowpass filtering is done on
the path of 3D points and pitch to get a smooth path that the UAV can follow.
NED velocity of the UAV is found by differentiating the position coordinates of
the smooth path. Some wind is added to simulation (in the simulation presented
here wind of 5m/s directed straight north is implemented). Yaw is generated from
the NED velocity of the UAV and the wind. Figure 7.1 displays the waypoints,
simulated path, wind and the direction of the UAV when flying along the path.
Roll is generated as a function of the yaw rate. Linear and angular velocity is
then generated by differentiation. Linear acceleration is found by differentiating
the expression for linear velocity.
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7.1 Simulator

Table 7.1: Measurement rates of the sensors in the simulation

Sensor Rate
IMU 100Hz
Inclinometer 100Hz
CV 25Hz
GNSS 5Hz

7.1.2 Sensor Data

Sensor data must be generated before running the observer. A gyroscope, ac-
celerometer, inclinometer, GNSS and CV is simulated. The GNSS is simulated to
measure {n} position and velocity and CV is simulated to measure the OF. The
gyroscope, accelerometer and inclinometer are configured to output measurements
with a rate of 100 Hz. The camera is simulated to take 25 frames per second. The
camera simulator is described in detail in Appendix D.4. The GNSS is configured to
output measurements at 5Hz. The measurement rates are listed in Table 7.1.

Noise is added to the position measurement from GNSS. The GNSS noise is mod-
elled as a Gauss-Markov process by ν(k+ 1) = e−KGNSS∆T ν(k) +ηGNSS, with noise
parameters given in Table 7.2.

Table 7.2: Gauss-Markov error model parameters for GNSS position measurements.

Direction Std. dev. ηGNSS[m] 1/KGNSS[s] ∆TGNSS[s]
North 0.21 360 0.2
East 0.21 360 0.2
Down 0.4 360 0.2

White noise is added to the IMU, inclinometer, camera and velocity from GNSS
sensor data by the multivariate normal random noise-function, mvnrnd, in Matlab.
Inclinometer measurements are denoted Θb

incl = [φ, θ]T . The measurement from
CV is normalized before it is used in the NO, meaning that the measurement from
the altimeter provide some scale information about the body-fixed velocity that
will not be used, hence no noise is added to the altimeter. The following mean and
covariance are used:

wωb
imu
∼ N (03×1,Σωb

imu
), Σωb

imu
= (0.135◦/s)2I3×3

wfb
imu
∼ N (03×1,Σfb

imu
), Σfb

imu
= (1.29 · 10−3g)2I3×3

wΘb
incl
∼ N (02×1,ΣΘb

incl
), ΣΘb

incl
= (0.18◦)2I2×2

wvn
GNSS

∼ N (03×1,Σvn
GNSS

), Σvn
GNSS

= (0.21m/s)2I3×3

No bias on the accelerometer is assumed, and a constant bias is assumed on the
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gyroscope. The gyroscope bias is given the following value

bbgyro =




0.1◦/s
−0.3◦/s
−0.35◦/s




White noise is also added to the OF data from the simulated camera. Every
extracted feature is given some white noise with variance, σ2

∆r = σ2
∆s = σ2

∆ =
(4.5 · 10−5mm)2. As two corresponding features is needed to get an OF vector, the
resulting noise of the OF vector has variance σOF = σ2

∆I2×2. On a camera chip
with 1600× 1200 pixels and dimension 7.2× 5.4 mm, this would yield noise with a
small variance of σ2

OF = 2 · (0.01× pixels)2.

7.1.3 Terrain Simulation

In order to evaluate the performance of the different observer representations with
realistic environments, a terrain model is generated. The terrain model is a matrix,
Z, with values corresponding to the elevation profile of the terrain. The terrain
model is also called the elevation profile of the terrain, as it describes the elevation
of the terrain. At position x, y of the matrix the elevation h of the terrain at x
meters north and y meters east is found. A point on the surface of the terrain
will have NED coordinate x, y,−h. The terrain model has a resolution of 1m× 1m
meter. The terrain model is covering 1km× 1km. When the UAV flies out of this
range, the elevation of the terrain is considered to be zero. The terrain model is
implemented to imitate a Norwegian coastline as illustrated in Figure 7.2.

7.2 Observer Implementation

Three observers are implemented: the GTOF NO from Fusini et al. (2014) (de-
scribed in Section 5.4), the proposed CEOF NO described in Section 5.5 and a NO
without CV, named NoCV NO. The NoCV NO is similar to the CEOF and GTOF
NO, but using a pseudomeasurement of the body-fixed linear velocity rather than
having a CV system to measure the velocity. The NoCV NO assumes no crab and
flight path angle by imposing vbcv = [1, 0, 0]T . Further observer implementation
details are found in Appendix D. The parameters and gains for the observers are

listed in Table 7.3. All observers are initialized with b̂
b

gyro = 03×1 and R̂bn = I3×3.
The velocity and position estimates are initialized by the first GNSS velocity and
position measurements.
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7.2 Observer Implementation

Figure 7.2: The terrain model implemented in the simulator is a coastline.

Table 7.3: Nonlinear observer gains for testing on simulated data.

Variable Value Description

Common Parameter Values
Lb 2◦ = 2/180 · πrad Upper bound on norm of gyro bias
Lb̂ 2.1◦ = 2.1/180 · πrad Upper bound on norm of estimated gyro bias
σ 1 Scaling factor tuned to achieve stability
Kpp diag[5, 5, 0.7] Translational gains
Kpv 50I3×3

Kvp diag[0.1, 0.1, 0.01]
Kvv 10I3×3

Kξp 0.1I3×3

Kξv 5I3×3

GTOF and CEOF Parameter Values
KP I3×3 Symmetric positive definite gain matrix for attitude
kI 0.03 Positive scalar gain for gyro bias estimate

NoCV Parameter Values
KP diag[1, 0.2, 0.1] Symmetric positive definite gain matrix for attitude
kI 0.01 Positive scalar gain for gyro bias estimate
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7.3 Description of Case 4: Navigating in the Coast-
line

An elevation profile of the coastline in Norway, covering 1× 1km, is acquired. The
elevation model has a resolution of one times one meter. The elevation model
is shown together with the UAV flight path in Figure 7.3. This elevation model
mimics very well a real environment which can be found when navigating in the
Norwegian coastline. The motivation behind choosing this terrain is to see how the
different observer representations perform when flying over a terrain with both flat
and rugged areas.

Figure 7.3: UAV flight path over the coastline.

In the Norwegian coastline it is always windy. Therefore wind with direction
straight north with a magnitude of 5m/s is simulated. This wind causes the UAV
to have a crab angle when not flying straight north or south. As the CV measures
motion relative to the ground, and not the airspeed, one does not have to consider
sideslip angles.

The UAV path can be divided into the following segments:

1. Start (20-40 seconds): The UAV flies along the skerries towards the ocean in
north.

2. Ocean (40-110 seconds): The UAV flies above the sea, navigating on straight
lines and taking three right turns.

3. Non-planar (110-180 seconds): The UAV flies in over the skerries back to the
starting point.

4. End (180-200 seconds): The UAV takes a steep turn left, before it flies to-
wards south along the skerries. At the same time the UAV is losing altitude.
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7.3 Description of Case 4: Navigating in the Coastline

This case seeks to evaluate how the GTOF, CEOF and NoCV NO performs when
flying over non-horizontal planar terrain. Moreover the objective is to see whether
introducing CV improves the accuracy of the observer. The observers are compared
to a known reference.
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Chapter 8
Experiment Results

This chapter presents the results from the experiment described in Chapter 6.

8.1 Case 1: Ground Truth Optical Flow Observers

This section presents the results from the case described in Section 6.4.1. The case
is organized in four parts: CV measurements, Attitude Estimates, Velocity and
Position Estimates and Bias Estimates.

8.1.1 Computer Vision Measurements

The measured crab and flight path angle, compared with the reference EKF, are
presented in Figure 8.1. The mean and RMS of χ̃ and γ̃ for the GTOF and GTOF(f)
NO are shown in Table 8.1 and Table 8.2 respectively. Only GTOF and GTOF(f)
NO are presented in the figure. This is because GTOF NO and GTOF MEKF
uses the identical CV (depends on the same OF vectors, and the same inclinometer
measurements), which leads to χ and γ of GTOF NO and MEKF coinciding. From
the figure it is seen that GTOF(f) NO has more noise than GTOF NO in the
beginning. The CV of GTOF(f) NO depends on the estimated attitude. The noise
in χ and γ is therefore not a surprise, as the observer need some time to converge
to the correct attitude (an incorrect attitude estimate yield incorrect feedback,
which in turn yields erroneous CV measurements). However after approximately
1100 seconds, the GTOF(f) NO seem to have somewhat less noise than GTOF NO.
Both the crab and flight path angle error are reduced when using attitude feedback
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Table 8.1: Mean and RMS in χ̃ and γ̃, given in degrees, from GTOF CV

CV Mean Error RMS
χ̃ -1.9452 10.0278
γ̃ -1.1624 3.1848

Table 8.2: Mean and RMS in χ̃ and γ̃, given in degrees, from GTOF(f) CV

CV Mean Error RMS
χ̃ -2.5509 6.248
γ̃ -1.1024 2.7006

instead of measured attitude. This implies that using feedback of the attitude is a
viable option to using inclinometer measurements.

Figure 8.1: Crab and flight path angle from computer vision using ground truth optical
flow computer vision. GTOF NO is the ground truth optical flow nonlinear observer,
while GTOF(f) NO is the ground truth optical flow nonlinear observer with attitude
feedback to computer vision subsystem.

8.1.2 Attitude Estimates

Figure 8.2 displays the estimated attitude by the GTOF NO, GTOF(f) NO and
GTOF MEKF. Table 8.3, Table 8.4 and Table 8.5 presents the mean and RMS
error of the attitude estimates. It is no major difference between the GTOF(f)
NO, GTOF NO and the GTOF MEKF. It can be argued that the NOs have
comparable results to the MEKF in estimating attitude. All observers are initiated
with R̂nb = I3×3, or equivalently roll, pitch and yaw equal to zero. It is seen that
the attitude estimates from the GTOF and GTOF(f) NO converge faster than
the GTOF MEKF. The GTOF and GTOF(f) NO use approximately 50 seconds
to converge, while the GTOF MEKF uses around 70 seconds. However, after
converging, the observers seem to produce very similar estimates.
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8.1 Case 1: Ground Truth Optical Flow Observers

Table 8.3: Mean error and RMS error in attitude, given in degrees, for GTOF NO

Attitude Mean Error RMS
Roll 1.5038 2.0074
Pitch 1.2737 1.5605
Yaw -1.1617 2.1727

Table 8.4: Mean error and RMS error in attitude, given in degrees, for GTOF(f) NO

Attitude Mean Error RMS
Roll 1.2734 1.8144
Pitch 1.1233 1.4318
Yaw -0.54055 1.6781

Figure 8.2: Estimated attitude by the GTOF observers.

8.1.3 Velocity and Position Estimates

Estimated velocity and position are displayed in Figure 8.3. The velocity and
position of the observers are initialized with the first measurements from the GPS.
The GTOF and GTOF(f) NO manage to maintain a very accurate estimate of
the velocity throughout the entire flight, while the GTOF MEKF need some time
to initialize. Moreover it is seen that the GTOF and GTOF(f) NO present some
small spikes in the velocity estimates in the time between 1130-1150 seconds. This
is due to inaccurate measurements of the velocity from the GPS. From the figure

Table 8.5: Mean error and RMS error in attitude, given in degrees, for GTOF MEKF

Attitude Mean Error RMS
Roll 0.68945 1.4093
Pitch 1.5012 1.7397
Yaw 0.24208 1.8321
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the GTOF and GTOF(f) NO position estimate coincide. The GTOF and GTOF(f)
NO appear more accurate than the GTOF MEKF in the first part of the flight.
This is seen from both the North-East and the height-plot. From the height-plot
it is seen that the GTOF MEKF and GTOF NO provide similar estimates from
1100 seconds to the end.

Figure 8.3: Estimated velocity and position by the GTOF observers.

8.1.4 Bias Estimates

The gyro bias estimate is shown in Figure 8.4. The bias is initialized by averaging
the gyroscope before take-off. No reference of the gyro bias is available, hence
it is not possible to say something about the correctness of the estimates. It
is assumed that the bias is constant or slow varying, which is reflected in the
estimates. The GTOF NO, GTOF(f) NO and GTOF MEKF do provide estimates
with little dynamics. The estimates from GTOF MEKF, GTOF and GTOF(f)
NO are very close to each other, implying that they all provide estimates that are
within the correct range. Estimated accelerometer bias from the GTOF MEKF is
seen in Figure 8.4. The estimated accelerometer bias converges to some constant
value. No reference of the correct accelerometer bias is present, hence nothing can
be said about the correctness of the estimate, although the stationary values look
reasonable. The magnitude of the estimates of gyro and accelerometer bias appears
to be reasonable.

8.2 Case 2: Continuous Epipolar Optical Flow
Observers

This section presents the results from the case described in Section 6.4.2.

96



8.2 Case 2: Continuous Epipolar Optical Flow Observers

Figure 8.4: Estimated gyro bias and accelerometer bias estimated from MEKF.

Table 8.6: Mean and RMS in χ̃ and γ̃, given in degrees, for CEOF NO

CV Mean Error RMS
χ̃ -2.4691 3.7791
γ̃ -0.36728 2.6349

8.2.1 Computer Vision Measurements

The measurements from CV are shown in Figure 8.5. Moreover the RMS and mean
error are presented in Table 8.6 and Table 8.7 for the CEOF NO and CEOF MEKF
respectively. The CV in CEOF NO and CEOF MEKF differ in the estimated gyro
bias that is used in the feedback to CV. It is seen that the CV measurements from
CEOF NO and CEOF MEKF coincide, indicating that the CEOF NO and CEOF
MEKF have equal estimates of the gyro bias. The crab angle error is varying
around zero with values around ±15◦ while the flight path angle error has values
between ±10◦.

8.2.2 Attitude Estimate

From Figure 8.6 it is seen that the attitude estimated by CEOF NO converges to
the reference attitude after approximately 50 seconds. The CEOF NO and the
MEKF produce estimates very similar to the reference attitude from the Piccolo

Table 8.7: Mean and RMS in χ̃ and γ̃, given in degrees, for CEOF MEKF

CV Mean Error RMS
χ̃ -2.4722 3.7799
γ̃ -0.3656 2.6333
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Figure 8.5: Crab and flight path angle from computer vision using continuous epipo-
lar optical flow computer vision. The CEOF observers (NO and MEKF) use the same
computer vision, causing the crab and flight path angles to coincide.

Table 8.8: Mean error and RMS error in attitude, given in degrees, for CEOF NO

Attitude Mean Error RMS
Roll 1.367 1.9218
Pitch 0.98635 1.3539
Yaw -0.68797 1.7861

autopilot EKF. RMS and mean error values are seen in Table 8.8 and Table 8.9.
No the RMS values of major differences are seen between the MEKF and NO. The
mean errors in attitude from MEKF and NO are all below 1.5◦.

8.2.3 Velocity and Position Estimates

Figure 8.7 displays the estimated velocity and position. It is seen that the CEOF
NO and MEKF both produce reasonable estimates of the velocity. As for the
GTOF NO, the CEOF NO has some spikes in the velocity estimates at the time
between 1130-1150 seconds. This is due to spikes in the GPS velocity measure-
ments. Moreover it is seen that the CEOF NO and MEKF have similar results in
the position estimates.

Table 8.9: Mean error and RMS error in attitude, given in degrees, for CEOF MEKF

Attitude Mean Error RMS
Roll 0.68079 1.4078
Pitch 1.4955 1.7382
Yaw 0.33517 1.8633
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Figure 8.6: Estimated attitude from the CEOF observers

Figure 8.7: Estimated velocity and position by the CEOF observers.

8.2.4 Bias Estimates

The gyro bias is presented in Figure 8.8. The CEOF NO and MEKF estimates
gyro bias that is very similar. It is difficult to say something about the validity of
the bias estimate as no reference of the bias is present. The gyro bias is initialized
by averaging the gyroscope before flight. It is seen that the estimated bias does not
deviate much from the initial values which are assumed to be close to the correct
bias. Estimated accelerometer bias from the CEOF MEKF is seen in Figure 8.8.
The estimated bias converges to a constant value.

8.3 Case 3: Epipolar Optical Flow Observers

This section presents the results from the case described in Section 6.4.3.
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Figure 8.8: Estimated gyro and accelerometer bias by the CEOF observers.

Table 8.10: Mean and RMS in χ̃ and γ̃, given in degrees, for EOF NO

CV Mean Error RMS
χ̃ -2.5473 3.8952
γ̃ -0.55941 2.613

8.3.1 Computer Vision Measurements

The crab and flight path angle error are displayed in Figure 8.9. The crab and
flight path angle error values of EOF(∆p) NO are the UAV direction of transla-
tion compared to the reference direction of translation. The reference direction of
translation is found by ∆pbb/n = Rbn(pnb/n(tk + ∆t) − pnb/n(tk)) from the reference
EKF. The RMS and mean error values of χ and γ is seen in Table 8.11,Table 8.12
and Table 8.10 for the EOF NO, EOF(∆p) NO and EOF MEKF respectively. It
is seen that there is no improvement in crab and flight path angle error when us-
ing the direction of translation as reference vector, compared to the EOF NO and
MEKF.

8.3.2 Attitude Estimate

From Figure 8.10 it is seen that the EOF NO, EOF(∆p) NO and the EOF MEKF
produces reasonable estimates of the attitude, close to the reference attitude from

Table 8.11: Mean and RMS in χ̃ and γ̃, given in degrees, for EOF(∆p) NO

CV Mean Error RMS
χ̃ -5.5176 5.4402
γ̃ -2.1223 3.7364
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Table 8.12: Mean and RMS in χ̃ and γ̃, given in degrees, for EOF MEKF

CV Mean Error RMS
χ̃ -2.5505 3.896
γ̃ -0.55781 2.6114

Figure 8.9: Crab and flight path angle from computer vision using epipolar optical flow
computer vision. The EOF NO, EOF(∆p) NO and EOF MEKF use the same computer
vision (except the estimated bias feedback from the observers to the computer vision),
causing the crab and flight path angles to coincide in the plot to the left. The EOF(∆p)
measurement is however compared to the change in position of the UAV, yielding an other
crab and flight path error angle.

the Piccolo autopilot EKF. The RMS and mean error values are presented in Ta-
ble 8.14,Table 8.15 and Table 8.13 for the EOF NO, EOF(∆p) NO and EOF MEKF
respectively.

8.3.3 Velocity and Position Estimates

It is seen, from Figure 8.11, that the EOF NO, EOF(∆p) NO and EOF MEKF
produce accurate estimates of the velocity. It is seen that the MEKF uses more time
than EOF NO and EOF(∆p) NO to make the position estimate converge. After
time 1100 seconds, both the NO and MEKF estimate the position accurately.

Table 8.13: Mean error and RMS error in attitude, given in degrees, for EOF NO

Attitude Mean Error RMS
Roll 1.3571 1.9207
Pitch 0.97988 1.3608
Yaw -0.61974 1.731
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Table 8.14: Mean error and RMS error in attitude, given in degrees, for EOF(∆p) NO

Attitude Mean Error RMS
Roll 1.349 1.915
Pitch 0.97634 1.3621
Yaw -0.61352 1.7167

Table 8.15: Mean error and RMS error in attitude, given in degrees, for EOF MEKF

Attitude Mean Error RMS
Roll 0.68035 1.4076
Pitch 1.4953 1.7381
Yaw 0.33608 1.8618

Figure 8.10: Estimated attitude and error in attitude estimate. It is seen that the
estimated attitude from EOF NO and EOF(∆p) NO coincide.

Figure 8.11: Estimated velocity. Estimated position.
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8.4 Comparing Case 1, 2 and 3

8.3.4 Bias Estimates

The gyro bias estimate is displayed in Figure 8.12. Nothing can be said about the
validity of the gyro bias estimates, as no reference is available. The estimates are
very similar for the EOF NO, EOF(∆p) NO and MEKF. The MEKF estimates
accelerometer bias. As can be seen from Figure 8.12, the estimated accelerometer
bias converges to some constant value.

Figure 8.12: Estimated gyro and accelerometer bias. It is seen that the estimated gyro
bias from EOF NO and EOF(∆p) NO coincide.

8.4 Comparing Case 1, 2 and 3

RMS errors of the attitude, position and velocity estimate, calculated from the
reference EKF, from all cases are presented together in Table 8.16. The table lists
the RMS values of every observer tested in the experimental results. The table is
organized in two main categories, the NOs and the MEKFs. Table 8.16 also presents
execution time of the observers. RMS values for the gyro- and accelerometer bias
are not listed in Table 8.16 as no reference of these quantities are available.

From the attitude RMS it is noticed that the MEKF in general has lower RMS
values than the NO in roll and yaw, while the NO has lower RMS in pitch. The
results indicates that the NO has similar performance as the MEKF.

It is interesting to see that the proposed CV systems, CEOF and EOF, increase the
overall accuracy of the observers. This is seen first and foremost from the values
of the error angles χ̃ and γ̃, but also in the attitude estimates. Furthermore it is
seen that using attitude feedback with the GTOF CV increases the accuracy of
the CV, compared to using inclinometers. Using ∆p as reference vector does not
improve the accuracy of the EOF observer significantly, although there is some
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8.4 Comparing Case 1, 2 and 3

minor changes in the attitude RMS values.

From the execution time field it is seen that the NO is more computationally
effective than the MEKF. The MEKF has an average execution time about 0.8-0.9
milliseconds pr. iteration, while the NO executes in about 0.2 milliseconds. The
results show that the NO is four times faster than the MEKF.

105



Chapter 8. Experiment Results

106



Chapter 9
Simulation Results

This chapter presents the results from the simulation described in Chapter 7.

9.1 Case 4: Navigating in the Coastline

This section presents the results from the case described in Section 7.3.

9.1.1 Computer Vision Measurements

The GTOF and CEOF NOs use the normalized body-fixed linear velocity mea-
surements from CV. This gives valuable information about how the UAV moves
relative to itself. OF is used to generate these measurements. The GTOF and
CEFO NOs use the same GNSS and IMU measurements. Furthermore they cal-
culate OF vectors in the same way. They are however different in the way they
utilizes these OF vectors to calculate the body-fixed linear velocity as described in
Section 5.4 and Section 5.5. Figure 9.1 shows the measured normalized body-fixed
linear velocities from GTOF and CEOF. The NoCV does not actually measure
the velocity, but produces a pseudomeasurement implying that the UAV has only
straight forward motion. This is seen from Figure 9.1, where NoCV outputs con-
stantly vbcv = [1, 0, 0]T . The CEOF calculates a normalized velocity that is almost
identical to the true value. This means that the CEOF succeeds in producing very
accurate measurements.

As one normalizes the measurement, no information about the scale of the velocity

107



Chapter 9. Simulation Results

is acquired from CV. Moreover, the normalization makes the vector measurements
from CV to only have two degrees of freedom (this is due to the fact that any unit
vector can be constructed from any two numbers with total norm less than or equal
to one). As the CV measurements only provides information about the direction
of travel, it is reasonable to compare the direction of the body-fixed velocity of
the UAV. This direction is given by the crab and flight path angle. The error in
measured crab and flight path angles are seen in Figure 9.1.

The crab and flight path angle errors in the measured body-fixed velocities are seen
in Figure 9.1. These error angles come from erroneous measurements of the body-
fixed velocity. The NoCV does not have any CV, and does therefore not measure
any body-fixed velocity, but rather uses a pseudomeasurement vbcv = [1, 0, 0]T . The
NoCV assumes that the UAV has only forward motion, and this in turn causes the
crab and flight path error angles to increase when having some sideways or up/down
motion. When the UAV flies over ocean (which is planar horizontal), the GTOF
nonlinear observer has very small, or no, error angles. but when flying over the
rugged non-planar terrain it produces erroneous measurement of the body-fixed
velocity. The CEOF observer is unaffected by the structure of the terrain, but
some increased noise is seen when the UAV is taking steep turns. This is especially
seen at time 180 seconds.

9.1.2 Attitude Estimates

The attitude estimates and errors are seen in Figure 9.2. The observers are ini-
tialized with R̂nb = 0. The UAV is simulated to have initially zero roll and yaw
and approximately seven degrees pitch. This means that the roll and yaw angles
are already assigned the correct value before the other estimates have converged.
The pitch estimate of the GTOF and CEOF observer converges after approxi-
mately 10 seconds, while NoCV uses around 40 seconds to converge to the correct
value.

The CEOF observer produces correct estimates throughout the entire flight, and
no reduced performance is seen when flying over the rugged non-planar terrain.
The CEOF observer has however a slightly more distinct deviation from the real
attitude when the UAV takes a steep turn, at 180 seconds. This is seen from the
attitude error in roll and pitch, and is also the case for the GTOF observer. The
GTOF observer fails to produce correct estimates in yaw in the start-segment.
When flying over the ocean the GTOF observer produces very accurate estimates,
which is as accurate as the CEOF observer. When flying over the non-planar rugged
terrain, the GTOF observer produces erroneous estimates of both roll, pitch and
yaw. This implies that the GTOF observer is sensitive to bad measurements from
CV. It is visible that the GTOF observer fails to produce correct attitude estimates
when flying over non horizontal planar terrain. NoCV produces incorrect estimates
when the UAV has crab and flight path angles, that is sideways or up/down-ways
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9.1 Case 4: Navigating in the Coastline

Figure 9.1: The CEOF produces very accurate measurements of the normalized linear
velocity, and is identical to the true value throughout the entire flight. This is seen as
the red line (CEOF) lies behind the green line (true value) the entire time. The error in
measured crab and flight path angle show that the CEOF has a low noise level, the GTOF
fails in the time between 110 to 220 seconds, while NoCV fails every time the UAV has
som crab/flight path angle.
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Chapter 9. Simulation Results

motion. This is a result of a pseudomeasurement deviating much from the real
value. The effect is seen mostly in the Yaw, where the error is at most more than
50◦. This is a result of the UAV having a significant crab angle. Also the pitch
and roll are estimated incorrectly due to the lack of CV measuring the direction of
the UAV.

9.1.3 Position and Velocity Estimates

The position and velocity estimates are shown in Figure 9.3. From the figure
it is seen that the NoCV, GTOF and the CEOF observer produce very similar
translational estimates. The estimates are all close to the real values. It is hard
to say whether one observer is better than another. This is however expected, as
the GNSS measurements are the most significant factor affecting the position and
velocity estimates. No difference is seen in the observers when flying over the ocean
or the non-planar terrain.

9.1.4 Gyro Bias Estimates

The estimated gyro bias is displayed in Figure 9.4. It is seen that the CEOF
observer produces the most accurate estimates of the bias, and that convergence
is reached approximately at time 100 seconds. The GTOF estimates correct bias
when flying over the ocean, but when flying over non-planar terrain the GTOF
observer fails in estimating correct bias. The GTOF CV measures incorrect crab
and flight path angle of the UAV, and the nonlinear observer thinks that this is a
correct measurement picking up some motion of the UAV. As the gyroscope does
not provide measurements describing the same motion, the observer thinks that the
gyro bias is the reason that the gyroscope does not measure this motion. This in
turn causes the nonlinear observer to estimate not just incorrect attitude, but also
incorrect gyro bias. As for the attitude, it is seen that the NoCV nonlinear observer
fails to estimate the correct gyro bias. This is because the pseudomeasurement of
the body-fixed linear velocity sometimes deviates much from the real value.

9.1.5 Overall Performance

Table 9.1 lists the performance of the NoCV, GTOF and CEOF nonlinear observers
in means of the Root Mean Squared (RMS) error between estimates and true values.
The RMS-measure is defined in equation (6.3). It is be seen that CV improves the
RMS in the crab angle and flight path angle errors, χ̃ and γ̃. This is as expected
since the NoCV observer assumes that the UAV has only forward motion.

The GTOF and CEOF nonlinear observer utilize measurements from IMU, GNSS
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9.1 Case 4: Navigating in the Coastline

Figure 9.2: Estimated attitude. The CEOF observer estimates the attitude accurately
throughout the flight. The GTOF observer produces estimates that are very accurate
sometimes, while incorrect when flying over the non-planar areas. The NoCV observer
fails to estimate correct attitude when the UAV have some motion that is not straight
forward.

and CV. As the same IMU and GNSS measurements are used in the NoCV, GTOF
and CEOF observer, it is expected that the CV errors will reflect the error in the
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Chapter 9. Simulation Results

Figure 9.3: Position and velocity estimates. NoCV, GTOF and CEOF all produce
translational estimates very similar to the reference.

other estimates. From the table it is seen that by introducing CV the RMS in the
yaw estimate reduces from around 17◦ to approximately 5◦ with GTOF and under
1◦ with CEOF. Introducing CV yields a significant improvement. Moreover the
RMS of the estimate of the gyro bias is reduced when introducing CV. This is seen
especially in yaw-direction, where the RMS is reduced from 0.1◦/ sec for NoCV
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9.1 Case 4: Navigating in the Coastline

Figure 9.4: Estimated bias and error in estimate.

to approximately 0.01◦/ sec for CEOF (recall that the gyro bias is in magnitude
0.1-0.3◦/ sec). The position and velocity RMS are quite similar for all observers,
as expected.
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Chapter 9. Simulation Results

Table 9.1: Root Mean Squared (RMS) errors in the estimate of the states, when nav-
igating over different terrain. NoCV denotes a non-linear observer without computer
vision. GTOF denotes the ground truth optical flow observer, while CEOF denotes the
continuous epipolar optical flow observer representation. The gyro bias converges after
approximately 100 second, hence the RMS values of the attitude and bias is considered
from 100 seconds after start. Mean is the average RMS of the attitude, position and
velocity and gyro bias. χ̃ and γ̃ are the crab and flight path angle error as defined in
equation (6.1) and equation (6.2).

Nonlinear Observer NoCV GTOF CEOF
Roll 1.5567 0.34947 0.22886
Pitch 1.5253 0.44828 0.19555R̂nb (◦ RMS)
Yaw 16.9411 4.9635 0.48152
North 6.9063 5.6735 5.6326
East 5.1357 4.8273 4.811pn

b/n
(m RMS)

Down 1.5013 2.1648 2.1641
North 0.66703 0.17651 0.17562
East 0.32544 0.082529 0.076372vn

b/n
(m/s RMS)

Down 0.23738 0.21957 0.21979
Roll 0.033247 0.017695 0.003933
Pitch 0.081939 0.032418 0.010337

bbgyro (◦/s RMS) Yaw 0.10986 0.10292 0.010542

χ̃ 12.1701 4.7665 0.4782
CV (◦ RMS)

γ̃ 6.8836 2.2023 0.1772
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Chapter 10
Discussion

This chapter seeks to discuss some of the findings from the experiment and the
simulation. The chapter is divided in to two sections, one for the experimental
part and one for the simulation.

10.1 Experiment

From the experimental results in Chapter 8 it is difficult to say something about
the accuracy of the different observers. Furthermore it is difficult to state whether
the MEKF or NO performs better. This is due to the fact that the accuracy
of the reference is somewhat unknown. However some considerations should be
highlighted.

From the results it is seen that, independently of the computer vision (CV) being
used, the MEKF needs more time to converge than the NO. This might imply that
the NO has better convergence properties than the MEKF, but the tuning of the
observers have to be highlighted. The convergence rate of the observer is tuning
dependent. The MEKF estimates could converge faster to the correct values if the
initial error covariance matrix was tuned differently. As the convergence rate is
tuning dependent, it is not possible to state that one of the observers have better
convergence properties than the other.

Moreover there is not much difference in the different observers evaluated. Recall
from the theory that the GTOF NO will fail in the presence of non-horizontal-
planar terrain. The experiment is performed at an area where the terrain is very
flat, and the main disadvantage with GTOF does not appear. Moreover the UAV
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flight path is not very acrobatic, meaning there is no significant differences between
the direction of translation, and the direction of the body-fixed velocity. Therefore
no significant difference between CEOF, EOF and EOF(∆p) are seen. From the χ̃
and γ̃ values of EOF(∆p) NO and EOF NO it is no reason to state that using the
change in position as reference vector increases the accuracy, compared to using
the velocity. It is however believed that one would see some improvement with
EOF(∆p) over EOF if the UAV was doing steeper turns.

Some small spikes appear in the velocity estimates of all NOs at time between 1130-
1150 seconds. This is due to spikes in the velocity measurements from the GPS.
That indicates that the tuning of the NO might trust the velocity measurement to
much.

10.2 Simulation

From the Figures 9.1-9.4 and the numerical results from Table 9.1 in Chapter 9,
it can be seen that CV improves the performance of the nonlinear observer. It is
seen that CV improves the RMS in the crab angle and flight path angle errors, χ̃
and γ̃. This is expected since the NoCV observer assumes that the UAV has only
forward motion. The GTOF and CEOF nonlinear observer utilizes measurements
from IMU, GNSS and CV. As the same IMU and GNSS measurements are used
in the NoCV, GTOF and CEOF observer, it is expected that the CV errors will
reflect the error in the other estimates. The most significant differences is seen in
the attitude and gyro bias estimates.

It is seen that the NoCV fails to produce correct pitch, yaw and gyro bias esti-
mates. The reason why the pitch estimate is erroneous is because the NO uses
both accelerometer-measurements and the measurement of body-fixed velocity to
determine the pitch. Recall that the NoCV NO does not actually measure the
body-fixed velocity, but rather approximating it by assuming that the UAV has
only forward motion and using the pseudomeasurement vbcv = [1, 0, 0]T . This is a
good approximation when the UAV has small or no crab/flight path angles, but is
rather poor when the UAV have maneouvers that violate this. The accelerometer
measurements are accurate, but from the flight path angle errors it is seen that the
body-fixed velocity pseudomeasurement claims that the UAV has no downwards
velocity. The fact is that the UAV has a positive pitch, but the body-fixed velocity
pseudomeasurement implies that the pitch of the UAV is zero. This means that
the CV inputs incorrect information to the observer, which causes the observer to
produce wrong estimates.

An interesting phenomenon occurs when the UAV is taking steep turns, and is
especially seen when the UAV is taking the steep turn at 180 seconds. During
turns, the measured body-fixed velocity from both GTOF and CEOF appear more
noisy. This affects the CEOF NO the most, but the same phenomenon is present for
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10.2 Simulation

the GTOF. The reason for this will now be explained and justified. The GTOF CV
is aided by an inclinometer, while the CEOF observer is aided by a gyroscope. As
these sensors are independent of each other (although they both measures angular
quantities) it is not reasonable to think that the problem is caused by noise on
these sensors. The same OF vectors, on the other hand, are used by both GTOF
and CEOF CV, and is the only common input to the CEOF and GTOF observer.
Recall, from Section 3.2, that the continuous OF, ẋm, is approximated by the
discrete OF dxm

dt . This is because any OF algorithm computes the discrete OF
and not the continuous OF. Discrete optical flow is a good approximation when
the motion of a feature in the image plane is small, but when the motion is large
the quality of this approximation reduces. The problem seems therefore to be in
the restriction of the camera and the OF algorithms. The fact that the camera is
a discrete sensor (it does not take images with infinite frame rate) is causing the
body-fixed velocity measurements to be noisy.

From the results, it is clear that the GTOF nonlinear observer has problems when
flying over non-planar terrain. This is due to the assumption of all points lying
in a horizontal-plane. From simulation results, not presented in this thesis, it is
seen that GTOF works with horizontal-planar terrain independent of the measured
distance to the ground. When using CV for attitude estimation, only the normal-
ized body-fixed velocity is used in the nonlinear observer. The distance to the
ground plane does not affect the normalized velocity measurements from GTOF.
The scaled distance to any feature is recovered from the attitude and altitude of
the UAV, which implies two things: 1) If the terrain is not planar it is impossible
to say something about the distance to all features, and 2) If the plane is not hor-
izontal then the inclinometer does not actually measure the attitude of the UAV
relative to the terrain being filmed by the camera. This means that 1) non-planar
terrain will cause trouble, and 2) even planar terrain, which is not aligned with the
horizon, will cause GTOF to fail. The GTOF will however work with terrain that
is horizontal-planar independent of distance to the ground.

Some considerations about the simulation should be mentioned. No real physics
are taken into account when simulating the UAV path, e.g. lift is not dependent of
airspeed in the simulator. This means that the path might be unrealistic. However,
as far as the author can conclude this will not affect the validity of the evaluation
of the NO performance. The conducted simulation is done with very little noise
on the OF vectors. It would have been interesting to see the effect on the GTOF
and CEOF NO when increasing the noise level on the OF vectors. Moreover a
statistical analysis should be done to see the effect of how noise in OF vectors,
gyroscope and inclinometer affects the body-fixed velocity measurements from CV.
This is however considered outside the scope of this thesis.
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Chapter 11
Conclusion

In this thesis different variants of a nonlinear observer (NO) and the multiplica-
tive extended Kalman filter (MEKF) have been implemented and tested on both
simulated and real world data. Furthermore two new nonlinear observer represen-
tations have been proposed, namely the continuous epipolar optical flow (CEOF)
NO, and the epipolar optical flow (EOF) NO. This chapter will conclude the work
and summarize the most important findings.

11.1 Overview

Experimental data have been collected in a UAV test flight. The images from
the flight test have been processed with optical flow (OF) algorithms to generate
information that can be used by computer vision (CV). The sensor data have been
used to test and compare different observers, namely different variants of the NO
and different variants of the MEKF. The experimental data have been used to
compare the performance of the NO with the MEKF.

Simulated data was used to show how the different CV subsystem affects the per-
formance of the observers, in the presence of more rugged and elevated terrain. The
CEOF and GTOF NO were compared to a NO without CV assuming no crab and
flight path angle. It was seen that utilizing CV in the NO improves the accuracy
of the observer.

The Continuous Epipolar Optical Flow Nonlinear Observer (CEOF NO) and Epipo-
lar Optical Flow Nonlinear Observer (EOF NO) have been proposed. These NOs
have proven to be a robust option to the Ground Truth Optical Flow (GTOF) NO
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presented in Fusini et al. (2014). It have been proved that the proposed NOs have
the same stability properties as the GTOF NO, namely USGES in the origin of the
error dynamics.

11.2 Findings

The experimental results showed that the NO has comparable results to the MEKF
when estimating the attitude, position and velocity of a fixed-wing UAV. It is
however hard to say something about the accuracy of the observers as the accuracy
of the reference is unknown. However as the reference is calculated by an extended
Kalman filter, it is reason to believe that the reference is more or less correct. It
has been seen that the NO is in general four times less computationally demanding
than the MEKF. Furthermore negligible differences are seen in the computation
time of the GTOF NO and the proposed CEOF NO and EOF NO.

From the simulation results it was shown that the CEOF NO yield more accurate
estimates of attitude and gyro bias than the GTOF NO and a NO without CV.
The CEOF NO demonstrated to be independent of the terrain. The GTOF NO
showed comparable performance to the CEOF NO when flying over planar hor-
izontal terrain, but flying over rugged terrain caused the GTOF NO to produce
incorrect estimates. It is seen that the GTOF NO does not perform well when
flying over terrain that is not horizontal planar. The GTOF NO assumes that the
terrain being filmed is flat and horizontal. This assumption limits the validity of
the GTOF NO. Although ocean and some agricultural fields are completely flat,
the assumption of flat horizontal terrain is a fundamental limitation of the GTOF
NO. The main advantage of the GTOF NO versus the CEOF NO is that the GTOF
NO preserves the scale of the body-fixed velocity measurement, which in turn can
be used in e.g dead reckoning. Moreover it has been argued for not needing to have
an altimeter to measure the distance to the ground if only using the normalized
body-fixed velocity.

It has been demonstrated that the CEOF NO is robust and independent of the
structure being filmed, yielding accurate estimates of the states. An article on
experimental validation of the GTOF observer has been written and accepted to
the ICUAS’15 conference. A second paper presenting and comparing the proposed
CEOF NO with the GTOF NO and a NO without CV has been written and
submitted to AIAA SciTech 2016.
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Future Work

This chapter is going to discuss the most important factors for future work with
respect to the findings in this report.

A stability proof of the CEOF NO with constant gyro bias in feedback to CV is
presented in this thesis, but the stability properties of the CEOF NO is not anal-
ysed when having a varying gyro bias in the feedback. A stability proof including
varying gyro bias in feedback should be the next step in the analysis of the CEOF
NO.

A new UAV experiment should be performed at lower altitude or at a location
with more rugged terrain. This would give experimental data that can be used to
validate the simulated results from this thesis. Experimental data can be used to
show whether the CEOF NO performs better than the GTOF NO with real world
data.

A discrete Lyapunov analysis should be done for the observer. The camera is a
discrete sensor (it measures the discrete optical flow) and any computer implemen-
tation is discrete, arguing for a discrete representation of the nonlinear observer.
It should be investigated how increasing the frame rate of the camera affects the
performance of the observers. A discrete observer representation argues for the dis-
crete Epipolar Optical Flow Nonlinear Observer as described in Section 5.6.

More sensors could be added to the nonlinear observer. The payload module al-
ready contains an altimeter and an inclinometer. The altimeter could be used to
aid the down position estimate of the observer, while the inclinometer can be used
to aid the attitude estimate.

The simulator implemented in this thesis should be expanded and generalized.
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The simulator is a powerful tool for vision-based navigation, making it possible
to simulate a UAV with camera flying over any terrain. The simulator makes it
possible to get realistic IMU, GNSS and optical flow measurements without having
to perform a real UAV test flight. The camera simulator provides realistic measures
of optical flow. The UAV flight path and kinematics path of the simulator should
be improved by adding a more realistic model of the UAV.

The GTOF NO has a big advantage of actually preserving the scale of the velocity
measurements. It should be investigated whether it is possible to modify CEOF NO
to enable the altimeter to measure velocity with the scale preserved. Moreover the
GTOF NO can be expanded to combine GTOF with simultaneous localization and
mapping (SLAM) in order to recover the depth in the images. Then the assumption
of flat horizontal terrain can be omitted.
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Appendix A
Submitted Paper to AIAA SciTech
2016

The following paper was submitted for The 2016 American Institute of Aeronautics
and Astronautics Science and Technology Forum and Exposition (AIAA SciTech)
in San Diego, California, US. Any decision on acceptance/rejection is not yet taken,
but is expected before 25th of August 2015.
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Abstract—This paper presents a vision-aided uniformly
semi-globally exponentially stable (USGES) nonlinear ob-
server for estimation of attitude, gyro bias, position,
velocity and specific force of a fixed-wing Unmanned
Aerial Vehicle (UAV). The nonlinear observer uses mea-
surements from an Inertial Measurement Unit (IMU), a
Global Navigation Satellite System (GNSS) receiver, and
a video camera. This paper present a nonlinear observer
representation with a computer vision (CV) system without
any assumptions related to the depth in the images and the
structure of the terrain being recorded. The CV utilizes a
monocular camera and the continuous epipolar constraint
to calculate body-fixed linear velocity. The observer is
named a Continuous Epipolar Optical Flow (CEOF) non-
linear observer. Experimental data from a UAV test flight
and simulated data are presented showing that the CEOF
nonlinear observer has robust performance. Experimental
results are compared with an Extended Kalman Filter
(EKF) and illustrate that the estimates of the states
converges accurately to the correct values. Results show
that using the proposed CV in addition to IMU and GNSS
improves the accuracy of the estimates. The CV provides
accurate information about the direction of travel of the
UAV, which improves the attitude and gyro bias estimate.

I. INTRODUCTION

The use of Unmanned Aerial Vehicles (UAV) has
in the last decade gained an increasingly interest,
and already plays a major role in military use. The
field of applications for UAVs will grow even more
in the future, and the demands for robustness, safety
and reliability are considered to be crucial. Robust

navigation is one of the most important parts when
working with UAVs. A challenge in navigation sys-
tems is to maintain accurate estimates of the states
with low-cost measurement units. The output of
such low-cost sensors are typically contaminated by
noise and bias. As it is desirable to have low energy
consumption on UAVs, it is necessary to find light
weight navigation systems with good performance.
The Kalman filter has been the preferred filter
algorithm, but in recent years nonlinear observers,
like the nonlinear complementary filter, have gained
increased attention [1]–[6].

The use of cameras for navigational purposes is
expected to grow quickly since video cameras are
lightweight, energy efficient and the prices are con-
stantly decreasing. As magnetometers are sensitive
to disturbances, such as electromagnetic fields [7],
cameras might be a good alternative or complemen-
tary to the magnetometer. The camera images can be
used to output the body-fixed velocity of a UAV [8],
but depend on favourable atmospheric conditions,
light and detection of visual stationary features.

Computer Vision and Optical flow (OF) have
been used for different applications in UAV naviga-
tion including indoor maneuvering [9], [10], linear
and angular velocity estimation [8], [11], [12] and
obstacle avoidance [9], [13]–[17], as well as height
above the ground estimation in [18]. [19], [20] uses
OF in landing assistance for UAVs without external



sensor inputs. OF from a single camera is used in
[21], [22] to estimate body axes angular rates of
an aircraft as well as wind-axes angles. [12], [23],
[24] have used OF as input in Kalman filter-based
navigation systems, fusing OF measurements with
acceleration and angular velocity measurements.
[25], [26] have used camera as sensor for navigating
in GPS-denied environments.

Attitude estimation has received significant at-
tention as a stand-alone problem [1], [27]–[35]. In
addition, other researchers have integrated Inertial
Navigation System (INS), magnetometer/compass
and GNSS to estimate the navigation states of
a vehicle. [4] expanded the vector-based observer
proposed by [1] and [32] to include GNSS velocity
measurements. [27] and [28] built globally expo-
nentially stable (GES) attitude estimators based on
multiple time-varying reference vectors or a single
persistently exiting vector. A similar observer was
developed in [5], [36] to include also gyro bias and
GNSS integration. [3] extended [36] to use linear
velocity and specific force as reference vectors. [3]
proved that feedback of estimated NED velocity and
specific force in NED from the translational motion
observer to the attitude observer, yield USGES in
the origin of the error dynamics.

In this paper the observer presented in [3] is
denoted as Ground Truth Optical Flow (GTOF)
nonlinear observer. By assuming known distance
to every feature in the camera image, the body-
fixed velocity was recovered from the relationship
between ego-motion and theoretical optical flow.
This relationship is called the GTOF relationship
between velocity and OF. The distance to every
point was recovered by assuming flat horizontal
terrain coinciding with NED, measured distance to
the terrain by a laser altimeter and measured attitude
of the UAV relative to NED by an inclinometer.
The assumption of flat and horizontal terrain will
cause the CV in the GTOF nonlinear observer to
produce erroneous velocity measurements in the
case of flying over rugged terrain. Therefore it is
desirable to exchange the CV of the GTOF nonlinear
observer with a CV system with no requirement of
flat horizontal terrain.

Optical flow (OF) describes how objects in an

image plane moves between two consecutive im-
ages. The motion in the image plane is caused by
relative motion between the camera and the visual
features being detected. In the simplest case it could
be understood as the pixel displacement of a single
feature between two successive images. The OF can
be represented as multiple vectors describing the
change in the image plane in time. Several methods
exists for determining the OF of a series of images
[37]–[40].

A camera fixed to a UAV can be used to recover
the motion of the vehicle relative to the scene. An
effective principle for recovering ego-motion of a
camera is epipolar geometry. Epipolar geometry has
been applied in e.g. navigation, landing and collision
avoidance [12], [23], [41]–[45]. [46] presented the
epipolar constraint in the continuous case. [47] and
[48] have used the continuous epipolar constraint to
recover the velocity of a UAV.

In this paper OF vectors together with the con-
tinuous epipolar constraint [46] are used to calculate
the normalized body-fixed velocity of the UAV,
and fed into the nonlinear observer as a reference
vector. The use of the continuous epipolar constraint
eliminates the dependency on the depth in the image.
In practice this means that prior information about
the distance and structure of the terrain are not
required any more. Thus the observer is applicable
when flying over any terrain.

A. Contribution of this Paper

This paper presents a more robust CV subsystem
for the nonlinear observer from [3]. In [3] the ground
truth optical flow (GTOF) relationship between mo-
tion and OF were used to recover the ego-motion
of the UAV. A fundamental restriction from [3] was
that the distance to every feature corresponding to
an OF vector must be known in order to calculate
the body-fixed linear velocity. The CV in this paper
utilizes epipolar geometry [49] and only depends
on the angular velocity of the UAV. Furthermore it
works without knowing the distance to the features
in the image. To the authors knowledge, this is the
first time the continuous epipolar constraint has been
employed in a USGES nonlinear observer.

Experimental and simulated results show that the



proposed CEOF observer has comparable perfor-
mance with the GTOF observer from [3] when flying
over flat horizontal terrain. Simulations show that
the proposed CEOF observer is structure indepen-
dent, and that it outperforms the GTOF observer
when flying above rugged and elevated terrain.
Moreover, results show that using CV increases the
accuracy of the estimates, compared to using only
IMU and GNSS measurements. This is particularly
clear in the attitude, as CV provides information
about the direction of the body-fixed velocity. A
pure IMU and GNSS approach assumes zero crab
and flight path angle, and thus looses important
information about the attitude. The experimental
results are compared to an EKF, while the simulated
results are compared to the known reference. The
results imply that the CEOF observer is a robust
option to the GTOF nonlinear observer.

The last contribution is a stability proof show-
ing that the CEOF observer has the same stability
properties as the GTOF observer, namely a USGES
equilibrium point at the origin of the error dynamics.

II. NOTATION AND PRELIMINARIES

Matrices and vectors are represented by upper-
case and lowercase letters respectively. X−1 and X+

denote the inverse and the pseudoinverse of a matrix
respectively, XT the transpose of a matrix or vector,
X̂ the estimated value of X , and X̃ = X − X̂ the
estimation error. ‖ · ‖ denotes the Euclidean norm,
In×n the identity matrix of order n, and 0m×n the
m×n matrix of zeros. A vector x = [x1, x2, x3]T ∈
R3 is represented in homogeneous coordinates as
x = [x1, x2, x3, 1]T . The function sat(·) performs a
component-wise saturation of its vector or matrix
argument to the interval [−1, 1]. The operator [x]×
transforms the vector x into the skew-symmetric
matrix

[x]× =




0 −x3 x2

x3 0 −x1

−x2 x1 0




The inverse operation is denoted as vex(·), such
that vex([x]×) = x. The determinant of a matrix
A is denoted det(A). The skew symmetric part
of a square matrix A is obtained by the operator
Pa(A) = 1

2
(A− AT ).

The North-East-Down, camera- and the body-
fixed reference frames are used in this paper as
shown in Fig. 1: the body-fixed frame are denoted
{B} and the North-East-Down (NED) frame denoted
{N} (Earth-fixed, considered inertial), while the
camera frame is denoted {C}. The rotation from {B}
to {N} is represented by the matrix Rn

b ∈ SO(3),
with SO(3) representing the Special Orthogonal
group. The image plane is denoted {M}. {B} and
{C} are assumed to be aligned, ie. the camera is
strapped to the body.

A vector decomposed in {B} and {N} has super-
script b and n respectively. The subscript of a vector
indicates which frame is measured relative to what.
For instance pnb/n is the position of {B} relative
to {N} expressed in {N}. The camera location
w.r.t. {N} is described by cn = [cnx, c

n
y , c

n
z ]T . A

point in the environment expressed w.r.t. {N} is
pn = [xn, yn, zn]T . The same point expressed in
{C} is pc = [xc, yc, zc]T . It will also be assumed
that every point is fixed w.r.t. {N}. The Greek
letters φ, θ, and ψ represent the roll, pitch, and
yaw angles respectively, defined according to the
zyx convention for principal rotations [6], and they
are collected in the vector Θb/n = [φ, θ, ψ]T . A 2-D
camera image has coordinates xm = [r, s]T , aligned
with the yb- and xb-axis respectively (see Fig. 3).
The corresponding homogeneous image coordinate
is denoted xm = [r, s, 1]T . The derivative [ṙ, ṡ]T

of the image coordinates is the OF. The subscript
cv indicates a quantity evaluated by means of the
computer vision, imu indicates a quantity measured
by the IMU, while GPS indicates that the quantity is
measured by the GNSS.

A. Measurements and Sensors

The observer is designed to take use of a IMU,
a GPS receiver and a video camera, providing the
following measurements:

• GPS: NED position pn and NED velocity vn.

• IMU: biased angular velocity ωbimu = ωbb/n +

bbgyro, where bbgyro represents the gyro bias,
and specific force f bimu = f bb/n.

• Camera: 2-D projections xm = [r, s]T onto
the image plane {M} of points [xn, yn, zn]T

in {N}.



Fig. 1. Body frame is denoted {B}, camera frame is denoted {C},
and NED frame is denote {N}. Points in the terrain are projected by
the pinhole camera model onto the image plane {M}, as illustrated
by the blue plane.

Detailed information on the actual sensors employed
in the experiment is presented in Section V.

III. COMPUTER VISION

The observer presented in Section IV depends
on body-fixed velocity measurements from the on-
board camera. These measurements are generated
through OF, therefore it is necessary to compute the
OF vectors for consecutive images before these vec-
tors are transformed to velocity measurements. The
OF calculation and the transformation are presented
in the forthcoming section.

A. Optical flow computation

There exist several methods for computing OF.
For the experiment presented in Section V two
specific methods are chosen. The first one is SIFT
[39] which provided the overall best performance
in [8]. The second method is a region matching-
based method [8], namely template matching util-
ising cross-correlation [50]. SIFT uses a feature-
based approach to compute OF. A set of features
are extracted from two consecutive images with
a feature detector. The detected features are then
matched together to find common features in suc-
cessive images. An OF vector is created from the
displacement of each feature. The total number of
such vectors in each image depends on the number
of features detected and successfully matched.

It is desired to make sure that the OF algorithm
produces at least two OF vectors to calculate the

body-fixed velocity. It is not possible to guarantee
a given number of vectors with SIFT since ho-
mogeneous environments, like snow or the ocean,
increase the difficulty of finding distinct features.
Therefore the OF vectors created by SIFT are
combined with OF vectors from template matching
[51]. The displacement of twelve templates, created
symmetrically across the images, are used to find
twelve OF vectors. Template matches below a given
threshold are discarded and the corresponding OF
vectors removed. Unreliable matches can occur in
case of homogeneous terrain, changes in brightness
or simply when the area covered by the template has
disappeared from the image in the time between the
capture of images.

The combination of two individual OF methods
increases the probability of having OF vectors dis-
tributed across the whole image, as well as main-
taining a high number of OF vectors. An example
of OF vectors computed with SIFT and template
matching from UAV test flights is displayed in Fig.
2.

In case of mismatches, both methods create erro-
neous OF vectors. It is desired to locate and remove
these vectors. Therefore a simple outlier detector is
implemented before the vectors are used to calculate
body-fixed velocities. The outlier detector utilizes a
histogram to find the vectors that deviates from the
mean with respect to direction and magnitude.

B. Transformation from optical flow to velocity

For the OF computations to be useful in the
observer a transformation to body-fixed velocity
is necessary. The transformation is motivated by
the continuous epipolar constraint and the pinhole
camera model [52]. The camera-fixed coordinate
system, {C}, is related to {N} as illustrated in Fig.
3. The focal point of the camera is for simplicity
assumed to coincide with the origin of {B}. A point
p in the terrain is projected from {C} to {M} by the
pinhole camera model by

xm =
1

zc
Kpc (1)

where xm is the homogeneous image coordinate
and K is a projection matrix mapping points in the



(a) (b)

(c)

Fig. 2. a) Image captured at time t0. b) Image captured at time
t0 + ∆t. c) Optical flow vectors between image a) and b), generated
by SIFT (red) and Template Matching (green).

camera frame to the image plane. It is defined as

K =




0 f 0

−f 0 0

0 0 1


 (2)

where f is the focal length of the camera. The focal
length of a camera can be verified by the com-
puter vision toolbox in Matlab. The same toolbox
can be used to estimate coefficients describing the
distortion of the camera. These coefficients can be
used to generate undistorted images. For the rest
of this paper, it is assumed that the distortion is
insignificant.

uc is defined as the back-projected point lying on
the projection ray between the origin of {C} and pc

with unity z-component

uc = K−1xm (3)

Epipolar geometry [49] relates the motion of
the camera frame with the motion in the image
plane independent of the distance to the scene and
the structure being recorded. By assuming that all

Fig. 3. Pinhole camera model. The camera frame is denoted {C},
image plane is illustrated in blue and denoted {M} and NED frame
is illustrated in green and denoted {N}. The gray plane is called
the back projected plane. The back projected plane is located at unit
length away from the camera frame in camera z-direction.

matched features are at rest w.r.t {N}, the continuous
epipolar constraint [46] can be expressed as

(
u̇cT + ucT

[
ωcc/n

]
×
T
)

(vcc/n × uc) = 0 (4)

where ωcc/n and vcc/n = [vx, vy, vz]
T are the angular

and linear velocity of the camera relative to {N}
expressed in {C}, respectively. Note that the epipo-
lar geometry has an inherited sign ambiguity due to
the fact that the scale is not preserved. This means
that it is only possible to determine the body-fixed
velocity up to scale.

Using now the properties of a triple product [53],
(4) can be rewritten as

vcc/n
T

(
uc ×

(
u̇cT + ucT

[
ωcc/n

]
×
T
)T)

= vcc/n
T
(
uc ×

(
u̇cT +

[
ωcc/n

]
×u

c
))

= 0 (5)

(5) might be rewritten as a linear equation in vcc/n.
The crossproduct term is defined as:

c := uc ×
(
u̇cT +

[
ωcc/n

]
×u

c
)

= [cx, cy, cz]
T

If the angular velocity is measured, then all quan-
tities in the crossproduct term c are known. Using
the definition of c, (5) is rewritten as

vcc/n
T c = cTvcc/n = 0 (6)

Assuming that a fixed-wing UAV will never have
zero forward velocity, then since {C} and {B} are



aligned, one can divide (6) by the forward velocity
component vx 6= 0

1

vx
cT



vx

vy

vz


 = cT




1
vy
vx
vz
vx


 = cx + [cy, cz]

[
vy
vx
vz
vx

]
= 0

[cy, cz]

[
vy
vx
vz
vx

]
= −cx (7)

As can be seen from (7), one ends up with a linear
equation. Assuming N features, the scaled body-
fixed velocity with unity forward component can be
found as:

vcc/n = vxA
+b, vx 6= 0

A =



cy,1 cz,1

...
cy,N cz,N




b = −



cx,1

...
cx,N




ucj ×
(
u̇cj
T +

[
ωcc/n

]
×u

c
j

)
= [cx,j, cy,j, cz,j]

T (8)

This gives a correct solution only if A has full
rank. This can only happen if the OF algorithm
chooses linearly independent feature points and OF
vectors as defined in Def. 1. Linearly independent
OF vectors are in general obtained by not choosing
all features from the same line in the image plane.
ucj = K−1xmj and u̇cj = K−1[ṙj, ṡj, 0]T are the back
projected coordinate and OF of feature j respec-
tively. Recall the sign ambiguity of the epipolar
geometry, meaning that one must know the sign of
vx to recover the normalized linear velocity. For a
fixed-wing UAV the forward velocity will always be
greater than zero, vx > 0.

Definition 1. Linearly Independent Optical Flow
Vectors
A pair of image features and their corresponding
optical flow vectors xm1 , ẋm1 and xm2 , ẋm2 , are said
to be linearly independent if and only if the rank
of A in (8) is full, yielding [vy, vz]

T = vxA
+b to

be uniquely defined. The rank is full if and only if

some 2× 2 sub-matrix of A, A2×2, has det(A2×2)
6= 0.

IV. OBSERVER DESIGN

A. Kinematics

The kinematics of attitude, position, and velocity
are described by

Ṙn
b = Rn

b

[
ωbb/n

]
× (9a)

ṗnb/n = vnb/n (9b)

v̇nb/n = fnb/n + gn (9c)

The objective is to estimate the attitude Rn
b , the

position pnb/n, and the velocity vnb/n with exponential
convergence rate. In addition to this, an estimator
for the gyro bias bbgyro is also provided.

B. Assumptions

The observer design by [3] is based on the
following assumptions:

Assumption 1. The gyro bias bbgyro is constant,
and there exists a known constant Lb > 0 such
that ‖bbgyro‖ ≤ Lb.

Assumption 2. There exists a constant cobs > 0
such that, ∀t ≥ 0, ‖vbcv × f bimu‖ ≥ cobs.

Assumption 2 states that the UAV cannot have
a specific force parallel to the velocity of the UAV.
Furthermore neither the specific force nor the ve-
locity can be identically equal to zero. In practice
this condition restricts the types of maneuvers that
ensure guaranteed performance of the proposed ob-
server. This is however not a problem for fixed-wing
UAVs as they always have forward speed to remain
airborne. Moreover the observer does not converge
while the vehicle is at rest without aiding from e.g.
a magnetometer, but presents no issues during flight.

For the CEOF observer, two assumptions are
introduced to ensure that CV can recover the body-
fixed velocity.

Assumption 3. The UAV has forward body-fixed
velocity, vx > 0.



Assumption 4. The OF algorithm provides at
least two linearly independent OF vectors, as
defined in Def.1.

C. Observer Equations

Provided Assumptions 1-4 hold, the CEOF ob-
server representation is stated as

Σ1





˙̂
Rn
b = R̂n

bS(ωbimu − b̂bgyro) + σKP Ĵ

˙̂
bbgyro = Proj(b̂bgyro,−kIvex(Pa(R̂T

sKP Ĵ)))

(10)

Σ2





˙̂pnb/n = v̂nb/n +Kpp(p
n
GPS−p̂nb/n)

+Kpv(v
n
GPS−v̂nb/n)

˙̂vnb/n = f̂nb/n + gn+Kvp(p
n
GPS−p̂nb/n)

+Kvv(v
n
GPS−v̂nb/n)

ξ̇ = −σKP Ĵf
b
imu +Kξp(p

n
GPS−p̂nb/n)

+Kξv(v
n
GPS−v̂nb/n)

f̂nb/n = R̂n
b f

b
imu + ξ

(11)

CV





vbcv = sign(vx)
ve
‖ve‖

ve =
vb
b/n

vx
= [1, (A+b)T ]T , vx 6= 0

ucj ×
(
u̇cj
T +

[
ωbimu − b̂bgyro

]
×
ucj

)

= [cx,j, cy,j, cy,j]
T

(12)

The subsystem Σ1 represents the attitude ob-
server, whereas Σ2 represents the translational mo-
tion observer. The CV gives (12), together with (8).
σ ≥ 1 is a scaling factor tuned to achieve stability, kI
is a positive scalar gain and KP is a symmetric pos-
itive definite gain matrix. Proj(·, ·) represents a pa-
rameter projection [54] that ensures that ‖b̂bgyro‖ does
not exceed a design constant Lb̂ > Lb (see Appendix
A), and R̂s = sat(R̂n

b ). Kpp, Kpv, Kvp, Kvv, Kξp, and
Kξv are observers gains, and gn is the gravity vector
in {N}. The matrix Ĵ is the output injection term,
whose design is inspired by the TRIAD algorithm
[55] and defined as

Fig. 4. Block diagram of the observer. Σ1 represents the attitude
observer, and Σ2 the translational motion observer. The feedback
illustrated in green have been proved to yield USGES stability of the
nonlinear observer. The stability of the gyrob bias feedback illustrated
in blue has not been analysed.

Ĵ(vbcv, v̂
n
b/n, f

b
imu, f̂

n
b/n, R̂

n
b ) := ÂnA

T
b − R̂n

bAbA
T
b

(13a)

Ab := [f bimu, f
b
imu × vbcv, f bimu × (f bimu × vbcv)]

(13b)

Ân := [f̂nb/n, f̂
n
b/n × v̂nb/n, f̂nb/n × (f̂nb/n × v̂nb/n)]

(13c)

The system Σ1–Σ2 is a feedback interconnection,
as illustrated by Fig. 4.

D. Stability Proof

The error dynamics of the nonlinear observer can
be written in a compact form as

Σ1





˙̃Rn
b = Rn

b

[
ωbb/n

]
×
− R̂n

b

[
ωbimu − b̂bgyro

]
×
− σKP Ĵ

˙̃bbgyro = −Proj(b̂bgyro,−kIvex(Pa(R̂T
sKP Ĵ)))

(14a)

Σ2

{
˙̃w = (Aw −KwCw)w̃ +Bwd̃

(14b)

where w̃ = [(p̃nb/n)T , (ṽnb/n)T , (f̃nb/n)T ]T collects the
estimated position, velocity and acceleration vectors,

d̃ =

(
Rn
b

[
ωbb/n

]
×
− R̂n

b

[
ωbimu − b̂bgyro

]
×

)
f bb/n +

(
Rn
b − R̂n

b

)
ḟ bb/n, and the four matrices in (14b) are

defined as

Aw =

[
06×3 I6

03×3 03×6

]
, Bw =

[
06×3

I3

]
,

Cw =
[
I6 06×3

]
, Kw =



Kpp Kpv

Kvp Kvv

Kξp Kξv


 .



The following theorem can be stated about the
stability of the nonlinear observer (10)-(12), if as-
suming that b̂bgyro is kept constant in (12).

Theorem 1. (Stability of the CEOF observer) Let σ
be chosen to ensure stability according to Lemma 1
in [5] and define HK(s) = (Is−Aw+KwCw)−1Bw.
There exists a set (0,c) such that, if Kw is chosen
such that Aw−KwCw is Hurwitz, and ‖HK(s)‖∞ <
γ, for γ ∈ (0, c), then the origin of the error dynam-
ics (10)-(12), provided Assumptions 1-4, is USGES
when the initial conditions satisfy ‖b̂bgyro(0)‖ ≤ Lb̂.

Proof: Proof is based on Theorem 1 in
[3], where we have replaced M with the new
computer vision subsystem from (12). We must
show that vbcv is uniquely defined. Then it follows
from Theorem 1 in [3] that the origin of the error
dynamics (10)-(12) is USGES.

vbcv has a one to one mapping to the scaled
body-fixed velocity with unit forward component
ve. Moreover if the sign of vx is known, then
vbcv =

vb
b/n

‖vb
b/n
‖ . From Assumption 3 vx > 0,

hence the uniqueness of vbcv can be shown by
the uniqueness of ve. ve = [1, (A+b)T ]T has a
unique solution if and only if the rank of A is full
[53]. Given that the computer vision algorithm
extracts features such that Assumption 4 is not
violated, then A has full rank, and ve is uniquely
determined. Hence vbcv is uniquely determined,
and it follows from Theorem 1 in [3] that the
system is USGES.

V. EXPERIMENTAL RESULTS

An experiment is carried out to validate the
theory in practice. The UAV employed is a UAV
Factory Penguin-B, equipped with a custom-made
payload that includes all the necessary sensors.
The IMU is a Sensonor STIM300, a low-weight,
tactical grade, high-performance sensor that includes
gyroscopes, accelerometers, and inclinometers, all
recorded at a frequency of 300 Hz. The chosen
GPS receiver is a uBlox LEA-6T, which gives
measurements at 5 Hz. The video camera is an
IDS GigE uEye 5250CP provided with a 8mm lens.
The camera is configured for a hardware-triggered

capture at 10 Hz. The experiment has been carried
out on 6 February 2015 at the Eggemoen Aviation
and Technology Park, Norway, in a sunny day with
good visibility, very little wind, an air temperature of
about -8◦C. The terrain is relatively flat and covered
with snow.

The observer is evaluated offline with the flight
data gathered at the experiment. It is implemented
using first order forward Euler discretisation with a
time-varying step depending on the interval of the
data acquisition of the fastest sensor, namely the
STIM300, and it is typically around 0.003 seconds.
The gyro bias is initialized by averaging the gyro-
scope measurement at stand still before take-off. The
position estimate is initialized by using the first GPS
measurement, while the NED velocity is initialized
by the difference between the two first consecutive
GPS measurements. The various parameters and
gains are chosen as Lb = 2◦/s, Lb̂ = 2.1◦/s,
σ = 1, KP = diag[0.08, 0.04, 0.06], kI = 0.0001,
Kpp = 30I3×3, Kpv = 2I3×3, Kvp = 0.01I3×3,
Kvv = 20I3×3, Kξp = I3×3, and Kξv = 50I3×3.

The reference provided for the attitude, position,
and velocity is the output of the EKF of the autopilot
mounted on the Penguin-B. A reference for the gyro
bias is not available.

All the images are processed with a resolution of
1600×1200 (width×height) pixels and in their orig-
inal state, without any filtering. The lens distortion
of the camera is not accounted for, and no correction
is applied to the images. SIFT is implemented with
the open source computer vision library (OpenCV)
[56] with default settings. Each match is tagged with
a value indicating the accuracy of the match, and the
smallest of these values is considered to be the best
match. To increase the reliability of the OF vectors,
each match is compared to the best one. Every match
with an uncertainty more than double the uncertainty
of the best match is removed. Also the template
matching algorithm is implemented with OpenCV.
The size of the templates is chosen to be 120×90
pixels and a correlation of 99% is required in order
for a template match to be considered reliable and
not removed.

In addition to the CEOF and GTOF observer,
a nonlinear observer without CV is implemented.



This is done by removing the CV subsystem in
(12) from the nonlinear observer, and approximat-
ing the body-fixed linear velocity measurement by
vb = [1, 0, 0]T . The nonlinear observer without
CV is denoted NoCV. Although Theorem 1 does
not cover feedback of the gyro bias estimate to
CV in the CEOF nonlinear observer, this feedback
is implemented. This is assumed to increase the
accuracy without being destabilizing, as the bias
estimator is tuned to have slow dynamics.

A. Results

The results presented here refer to a complete
flight of the Penguin-B, from take-off to landing.
The time on the x-axis is the elapsed time since
the data logging began, and only the significant part
involving the flight is presented. The maneuvers
performed include flights on a straight line and
turns with a large and small radius of curvature,
approximately 200 m and 100 m.

Fig. 5 shows the measured body-fixed velocity
from the GTOF CV. The measurements are contam-
inated by noise. The mean values are close to the
reference, although the mean forward velocity (u)
is slightly greater than the reference. The measured
crab and flight path angle of the UAV are shown
in Fig. 6. It is seen that both the GTOF and CEOF
CV succeeds in measuring the correct direction, but
GTOF has a larger noise level than CEOF.

Fig. 7 illustrates the estimated attitude. It can
be seen that all observers need approximately 60
seconds to converge. The estimates of the roll angle
are fairly similar for NoCV, GTOF and CEOF. The
estimated pitch angle has a small offset for all
nonlinear observers throughout the entire flight. The
yaw angle estimate is almost identical for the NoCV,
GTOF and CEOF. Fig. 8 and Fig. 9 illustrates the
estimated velocity and position in {N}, and shows
small differences for NoCV, GTOF and CEOF. The
estimated gyro bias is seen in Fig. 10. No bias
reference is available, but the estimated bias is close
to equal for NoCV, GTOF and CEOF. The flight
terrain is relatively flat and the UAV has small crab
and flight path angle during the flight. Therefore
the weaknesses of the GTOF and NoCV observer
are not significant in the results. However the ex-
perimental results show that the nonlinear observers

Fig. 5. Measured and estimated body-fixed velocity by GTOF and
autopilot EKF respectively.

Fig. 6. Measured and estimated crab and flight path angle.

yield small deviations from the reference EKF, and
that the CV give reasonable estimates of normalized
body-fixed velocity.

VI. SIMULATION RESULTS

In order to evaluate the NoCV, GTOF and CEOF
observer representations in the presence of more
rugged terrain and to compare with an exactly
known reference, a simulator is implemented in
Matlab. An elevation profile of a coastline is gener-
ated, and a UAV flight is simulated.

The following parameters and gains are cho-
sen identical for the NoCV, GTOF and CEOF
observer: Lb = 2◦/s, Lb̂ = 2.1◦/s, σ = 1,
Kpp = diag[5, 5, 0.7], Kpv = diag[50, 50, 50], Kvp =



Fig. 7. Estimated attitude by the observers.

Fig. 8. Estimated velocity by the observers.

Fig. 9. Estimated position by the observers.

Fig. 10. Estimated gyro bias by the observers.

diag[0.1, 0.1, 0.01], Kvv = 10I3×3, Kξp = 0.1I3×3,
and Kξv = 5I3×3. For the GTOF and CEOF observer
KP = I3×3 and kI = 0.03 are chosen. The NoCV
is tuned with KP = diag[1, 0.2, 0.1] and kI = 0.01.

All observers are initialised with R̂n
b = I3×3,

b̂bgyro = 03×1. p̂nb/n and v̂nb/n are initialised as the
first GNSS position and velocity measurement re-
spectively.

A. UAV Path

Linear and angular velocity, vbb/n and ωbb/n, are
generated over a time interval of 200 sec. Wind
directed straight north with magnitude 5m/s is sim-
ulated causing the UAV to have a crab angle. As the
camera measures the velocity relative to the ground,
one does not have to consider the sideslip angle.
Kinematic equations are used to generate positions
and attitude of the UAV.

vnb/n = Rn
b (Θb/n)vbb/n (15)

fnb/n = Rn
b (Θb/n)(v̇bb/n + ωbb/n × vbb/n)− gn (16)

f bb/n = (Rn
b )T (Θb/n)fnb/n (17)

Θ̇b/n = TΘ(Θb/n)ωbb/n (18)

Rn
b (Θb/n) and TΘ(Θb/n) being the rotation matrix

between {B} and {N} and the angular transforma-
tion matrix respectively. The variables are integrated
numerically with first order Euler integration

Θb/n(k + 1) = Θb/n(k) + δtΘ̇b/n (19)
pnb/n(k + 1) = pnb/n(k) + δtvnb/n (20)



B. Sensor Data

Sensor data are generated before running the
observer. A gyroscope, accelerometer, inclinometer,
GNSS and CV are simulated. The GNSS is
simulated to measure {N} position and velocity, and
CV is simulated to measure the OF. The gyroscope,
accelerometer, inclinometer are configured to
output measurements with a rate of 100 Hz. The
GNSS is configured to output measurements at
5Hz. The noise on the position measurement from
GNSS is modelled as a Gauss-Markov process by
ν(k + 1) = e−KGNSS∆Tν(k) + ηGNSS, with noise
parameters given in Table I.

TABLE I. GAUSS-MARKOV ERROR MODEL PARAMETERS FOR
GNSS POSITION MEASUREMENTS.

Direction Std. dev. ηGNSS[m] 1/KGNSS[s] ∆TGNSS[s]
North 0.21 360 0.2
East 0.21 360 0.2
Down 0.4 360 0.2

The camera is simulated to capture 25 frames per
second. The camera extracts features and calculates
OF as described in Appendix B. White noise is
added to the IMU, inclinometer, camera and velocity
from GNSS sensor data by the multivariate normal
random noise-function, mvnrnd, in Matlab. Incli-
nometer measurements are denoted Θb

incl = [φ, θ]T .
The following mean and covariance are used:

wωb
imu
∼ N (03×1,Σωb

imu
),Σωb

imu
= (0.135 deg)2I3×3

wfbimu
∼ N (03×1,Σfbimu

),Σfbimu
= (1.29 · 10−3g)2I3×3

wΘb
incl
∼ N (02×1,ΣΘb

incl
),ΣΘb

incl
= (0.18 deg)2I2×2

wvnGNSS
∼ N (03×1,ΣvnGNSS

),ΣvnGNSS
= (0.21m/s)2I3×3

No bias on the accelerometer is assumed, and
a constant bias is assumed on the gyroscope. The
gyroscope is simulated with the following bias

bbgyro =




0.1deg/s

−0.3deg/s

−0.35deg/s




White noise is also added to the OF data from the
simulated camera. Every extracted feature is given
white noise with variance, σ2

dr = σ2
ds = σ2

d =
(4.5 · 10−5mm)2. As two corresponding features are
needed to get an OF vector, the resulting noise of
the OF vector has variance σOF = σ2

dI2×2. On a

Fig. 11. The simulated UAV path and the elevation profile of the
terrain model.

camera chip with 1600×1200 pixels and dimension
7.2× 5.4 mm, this would yield a small variance of
(
√

2 · 0.01px)2 for the OF vector noise.

C. Terrain Simulation

In order to evaluate the performance of the GTOF
and CEOF observer representations with a realistic
environment, a terrain model is generated. The ter-
rain model is a matrix, Z, with values corresponding
to the elevation profile of the terrain. It is also called
the elevation profile of the terrain, as it describes the
elevation of the terrain. The terrain model is made to
mimic a coastline, and has a resolution of 1m× 1m
meter. The covered area is 1km× 1km. At position
x, y of the matrix the elevation h of the terrain at x
meters North and y meters East is found. A point on
the surface of the terrain will have NED coordinate
x, y,−h. Fig. 11 displays the simulated UAV path
and the terrain model.

D. Results

Fig. 12 shows the crab angle error and the flight
path angle error in the measured normalized body-
fixed velocity from CV. It can be seen that the GTOF
fails to produce correct measurement of the body-
fixed velocity when the terrain is non-planar (at time
110-220 seconds). Any crab and flight path angle
of the UAV causes NoCV to fail as it assumes pure
forward motion.

Fig. 13 and Fig. 14 show the attitude estimates
and the error in the estimates. The NoCV observer



fails to produce accurate estimates of the attitude.
It is seen that the accuracy of the GTOF observer
is heavily reduced when flying over the non-planar
area. The CEOF observer on the other hand is not
limited by the rugged terrain, and provides accurate
estimates during the entire flight. The estimated and
real gyro bias is displayed in Fig. 15. It is seen
that the bias values from NoCV does not converge
to the correct value. The shortcomings of the GTOF
observer is again illustrated when the UAV flies over
the non-planar area.

Fig. 16 and 17 show the real and estimated
velocity and position. The estimates are close to the
reference and quite similar for GTOF and CEOF.
This is expected as the velocity and position mea-
surements from GNSS have the largest influence on
these estimates.

Table II provides numerical evaluation of the
observers in means by the Root Mean Squared
(RMS) error. The CEOF observer has lower RMS
in the estimates of the attitude than the GTOF
observer. NoCV has the least accurate estimates in
attitude, and is outclassed by CEOF. There are no
major differences in estimated position and velocity.
However CV seem to slightly increase the accuracy
in estimated position. The estimated gyro bias is
most accurate with the CEOF and least accurate with
NoCV. The crab angle and flight path angle error
are reduced significantly with CV. This is because
NoCV assumes zero crab and flight path angle,
which is not the case.

Overall the CEOF observer proves to be much
more reliable than GTOF and NoCV, with a robust
and accurate performance. The GTOF performs bet-
ter than NoCV, which supports the use of CV in
the observer. However the validity of the GTOF
observer is restricted to horizontal planar terrain,
which limits the range of use in practice. CEOF is
not restricted by the same limitations and thus more
applicable in practice.

VII. CONCLUSIONS

In this paper two different vision-aided nonlinear
observers, and one nonlinear observer without CV,
for estimation of position, velocity and attitude have
been evaluated on real experimental data obtained

Fig. 12. Error in crab (χ̃) and flight path angle (γ̃) for the measured
normalized body-fixed velocity.

Fig. 13. Estimated attitude. When the UAV flies over the rugged
terrain, the GTOF observer fails to produce correct estimates of the
attitude.

by flying a fixed-wing UAV with a custom-made
payload of sensors. The nonlinear observers have
also been tested on simulated data to compare the
performance of the observers with the presence of
non-planar terrain and with an exact known refer-
ence for comparison. The results show that using
CV increases the accuracy of the nonlinear observer,
especially in estimated attitude. This is because
CV provides useful information about the direction
of the body-fixed velocity. Furthermore the CEOF
nonlinear observer has shown to be a more robust
option than the GTOF nonlinear observer, as it is
terrain independent.



Fig. 14. Error in estimated attitude. When the UAV flies over the
rugged terrain, the GTOF observer fails to produce correct estimates
of the attitude. The NoCV observer fails to estimate correct pitch
angle.

Fig. 15. Estimated gyro bias together with the real gyro bias. After
100 sec the gyro bias has converged. When flying over the rugged
terrain the GTOF observer produces erroneous gyro bias estimates,
while the CEOF observer is unaffected.
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APPENDIX A
PARAMETER PROJECTION

The parameter projection Proj(·, ·) is defined as:

Proj(b̂b, τ)=

{(
I− c(b̂b)

‖b̂b‖2
b̂bb̂bT

)
τ, ‖b̂b‖≥Lb, b̂bT τ>0

τ, otherwise

where c(b̂b) = min{1, (‖b̂b‖2 − L2
b)/(L

2
b̂b
− L2

bb
)}.

This operator is a special case of that from Appendix
E of [54].



APPENDIX B
CAMERA SIMULATOR

A camera is simulated in order to get measure-
ments of the OF. Here it is our objective to describe
how a camera and OF algorithm can be simulated
without having access to real images. The objective
is to find the displacement of a projected point in
the image plane between time tk−1 to tk, that is
dr = r(tk)− r(tk−1) and ds = s(tk)− s(tk−1). Lets
first consider how one can choose features to project
given the UAVs attitude, position and a elevation
profile of the terrain. These features are the one that
we wish to find the OF of.

At a time tk a ray is drawn in the camera z-
axis as shown in Figure 18. The ray intersects the
ground plane at a point tncentre = [xncentre, y

n
centre, 0]T

or expressed in {C} tccentre = (T nc )−1tncentre, T
n
c be-

ing the homogeneous transformation matrix relating
{C} and {N}. The point tccentre is named the ”centre
ground point”.

Points are chosen deterministically around the
centre ground point, tccentre, distributed on a plane
perpendicular to the ray from {C} to the centre
ground point. This plane is named the field of view
(FOV) plane. The points are distributed on the FOV
plane, ranging from the centre ground point −30 to
30 meters in camera x-direction −40 to 40 meters
in camera y-direction, separated with 10 meters in
both dimensions. Lets call these points ”FOV fea-
tures” and denote them by pcFOV. The FOV features
in camera coordinates is then defined as pcFOV ∈
tccentre + [x, y, 0]T , x ∈ [−30,−20, . . . , 20, 30], y ∈
[−40,−30, . . . , 30, 40]. Lets now consider only one
of the FOV features, and denote this FOV feature
pcFOV.

The FOV feature pcFOV is transformed to {N} by
pn

FOV
= T nc p

c
FOV

. Let the FOV feature be defined as
pnFOV = [xnFOV, y

n
FOV, z

n
FOV]. The FOV feature is then

projected onto the terrain by using xnFOV, y
n
FOV and

the elevation h at the xnFOV, y
n
FOV coordinate of the

elevation profile. The projected point is then pn =
[xnFOV, y

n
FOV, h]T , which is called a ”feature”.

Now that the feature location in {N} is found,
it is in our interest to find the projection of this
feature at time tk and tk−1. The camera moves
between tk−1 and tk, meaning the homogeneous

Fig. 18. Features on the surface of the terrain are chosen based
on the attitude and position of the UAV. A ray along the camera z-
axis intersects the ground plane at tcentre. A plane denoted field of
view (FOV) is constructed perpendicular to the ray. FOV features are
distributed along the FOV plane. Features are constructed with zn-
component from the elevation profile and xn, yn coordinate from the
corresponding FOV feature. Features p are projected onto the image
plane by the pinhole camera model to find the image plane coordinate
xm = [r, s]T . This is done at time tk and tk+1 with the same features,
p, to get the discrete OF dr and ds.

transformation matrix T nc is time variant. The fea-
ture can then be transformed to {C} by pc(tk) =
(T nc )−1(tk)p

n and pc(tk−1) = (T nc )−1(tk−1)pn. The
points pc(tk), pc(tk−1) represents the feature on the
surface of the terrain given in camera coordinates at
time tk and tk−1 respectively.

The feature at time tk−1 and tk can then be pro-
jected onto the image plane by the pinhole camera
model from (1), yielding xm(tk) = [r(tk), s(tk)]

T

and xm(tk−1) = [r(tk−1), s(tk−1)]T . The discrete OF
can then be found as dr = r(tk) − r(tk−1) and
ds = s(tk)− s(tk−1).

Fig. 18 illustrates the relationship between the
”centre ground point” tcentre, ”FOV features” pFOV,
and ”features” p.
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Abstract—This paper provides experimental valida-
tion of a uniformly semi-globally exponentially stable
(USGES) non-linear observer for estimation of attitude,
gyro bias, position, velocity and acceleration of a fixed-
wing Unmanned Aerial Vehicle (UAV). The available
sensors are an Inertial Measurement Unit (IMU), a
Global Positioning System (GPS) receiver, a video cam-
era, and an inclinometer. The UAV is flown with the
sensor payload and all data is stored locally on a hard
drive, which is recovered at the end of the flight. The non-
linear observer is then tested offline with the recorded
sensor data. An optical flow algorithm is used to calculate
the UAV velocity based on the camera images, which is
used as a reference vector of the body-fixed velocity in
the attitude observer. The results are compared with an
Extended Kalman Filter (EKF) and illustrate that the
estimates of the unmeasured states converge accurately to
the correct values, and that the estimates of the measured
states have less noise than the measurements.

I. INTRODUCTION

The estimation of position, velocity, and at-
titude of a vehicle at any time is commonly
referred to as ”navigation”. The most used tool
for this purpose has been the EKF, but in the
last decades researchers have started to investigate
new solutions, alternative to the Kalman filter,
to the navigation problem, namely by developing
non-linear observers with complete stability proofs
and experimental validation. Non-linear observers

have the advantage, over the EKF, of featuring a
smaller computational footprint and often being
globally exponentially stable (GES), a result that
renders the observers robust to disturbances and
initialization uncertainties. The problem of atti-
tude estimation has received significant attention
as a stand-alone problem [1]–[11]. In addition
to this, other researchers have integrated Inertial
Navigation System (INS), magnetometer/compass
and GNSS to estimate the navigation states of a
vehicle.

In [12] the authors expanded the vector-based
observer proposed by [6] and [7] to include GNSS
velocity measurements. [1] and [2] built glob-
ally exponentially stable (GES) attitude estimators
based on multiple time-varying reference vectors
or a single persistently exiting vector. A similar
observer was developed in [13] and [14] to include
also gyro bias and GNSS integration. An extension
of this [15] replaced the rotation matrix with the
unit quaternion for representing attitude, consid-
ered Earth rotation and curvature, a non-constant
gravity vector, and included accelerometer bias
estimation.

Another sensor commonly used in navigation is
the camera. Low weight, low power consumption,
and a wide range of machine vision software



make it a viable choice for navigation purposes.
Some drawbacks are its dependence on lighting
and weather conditions, which directly affect the
availability of features in the scene, and the dif-
ficulty in separating camera motion from moving
objects in complex non-stationary environments.

Optical flow (OF) is how features in an im-
age plane move between two consecutive images,
caused by relative motion between the camera and
the object being depicted. In the simplest case it
could be understood as the pixel displacement of
a single feature between two successive images.
The OF can be represented as multiple vectors
describing the change in the image plane in time.
Several methods exists for determining the OF of
a series of images, e.g. [16]–[19].

Machine vision and OF have been used for
different applications in UAV navigation includ-
ing indoor manoeuvring [20], [21], linear and
angular velocity estimation [22]–[24], and obstacle
avoidance [20], [25]–[29] as well as height above
the ground estimation in [30]. [31], [32] use OF
in assisting a landing of a UAV independent of
external sensor inputs. OF from a single camera
is used in [33], [34] to estimate body axes angular
rates of an aircraft as well as wind-axes angles.
[24], [35], [36] have used OF as input in Kalman
filter-based navigation systems, fusing OF mea-
surements with acceleration and angular velocity
measurements. [37], [38] have used camera as
sensor for navigating in GPS-denied environments.

A comparison of the performance of different
methods of estimating the attitude of UAV based
on machine vision is presented in [39], and differ-
ent OF algorithms are evaluated in [23], [40] by
estimating UAV velocity.

In [41] OF vectors are used to calculate the
normalized body-fixed velocity of the UAV, and
fed into the non-linear observer as a reference
vector.

A. Contribution of this Paper

This paper provides experimental tests of a
USGES non-linear observer for estimation of atti-
tude, gyro bias, position, velocity, and acceleration

of a fixed-wing UAV [41]. Exponential stabil-
ity guarantees strong convergence and robustness
properties, hence it is an important property to
have in systems that are exposed to disturbances
and uncertain initialization. The camera can some-
times replace the magnetometers: in small UAVs
the magnetometers are heavily affected by distur-
bances and noise generated by the engine, while
the camera is not conditioned by this.

The sensor data are logged during the UAV
flight and used offline on a PC to test the ob-
server. An OF algorithm is used to calculate the
body-fixed velocity of the UAV based on the
camera images, altitude and inclinometer data. To
demonstrate their validity, the estimated states are
compared with those evaluated via the EKF.

II. NOTATION AND PRELIMINARIES

Vectors and matrices are represented by lower-
case and uppercase letters respectively. X−1, X+,
and tr(X) denote the inverse, pseudoinverse, and
trace of a matrix respectively, XT the transpose of
a matrix or vector, X̂ the estimated value of X ,
and X̃ = X− X̂ the estimation error. ‖ ·‖ denotes
the Euclidean norm, In the identity matrix of order
n, and 0m×n the m× n matrix of zeros. A vector
x = [x1, x2, x3]

T is represented in homogeneous
coordinates as x = [x1, x2, x3, 1]T . The function
sat(·) performs a component-wise saturation of its
vector or matrix argument to the interval [−1, 1].
The operator S(x) transforms the vector x into the
skew-symmetric matrix

S(x) =

 0 −x3 x2

x3 0 −x1
−x2 x1 0


The inverse operation is denoted as vex(·), such
that vex(S(x)) = x. For a square matrix A, its
skew-symmetric part is represented by Pa(A) =
1
2
(A− AT ).

Two reference frames are considered in the pa-
per: the body-fixed frame {B} and the North-East-
Down (NED) frame {N} (Earth-fixed, considered
inertial). The rotation from frame {B} to {N} is
represented by the matrix Rn

b ≡ R ∈ SO(3), with
SO(3) representing the Special Orthogonal group.



A vector decomposed in {B} and {N} has
superscript b and n respectively. The camera loca-
tion w.r.t. {N} is described by cn = [cnx, c

n
y , c

n
z ]T .

A point in the environment expressed w.r.t. {N}
is tn = [xn, yn, zn]T : note that a point located
on the ground corresponds to zn = 0 and such
it will be throughout the paper. The same point
expressed w.r.t. {B} is tb = [xb, yb, zb]T . It will
also be assumed that every point is fixed w.r.t.
{N}. The greek letters φ, θ, and ψ represent the
roll, pitch, and yaw angles respectively, defined
according to the zyx convention for principal
rotations [42], and they are collected in the vector
Θ = [φ, θ, ψ]T . A 2-D camera image has coor-
dinates [r, s]T , aligned with the yb- and xb-axis
respectively (see Fig. 2). The derivative [ṙ, ṡ]T of
the image coordinates is the OF. The subscript F

indicates a quantity evaluated by means of the OF.

A. Measurements and Sensors

The sensor payload consists of an IMU, a GPS
receiver, a video camera, and an inclinometer,
providing the following information:

• GPS: NED position pn and, by differentia-
tion, NED velocity vn;

• IMU: biased angular velocity ωbm = ωb +
bb, where bb represent the gyro bias, and
acceleration ab;

• camera: 2-D projections [r, s]T onto the
image plane of points [xn, yn, zn]T from the
3-D world;

• inclinometer: roll φ and pitch θ angles.

Further information on the actual sensors em-
ployed in the experiment is presented in Section
V.

III. OPTICAL FLOW

The observer presented in Section IV depends
on velocity measurements from the on-board cam-
era decomposed in the body-fixed frame. These
measurements are generated from OF, therefore
it is necessary to compute the OF vectors from
consecutive images before these vectors are trans-
formed to velocity measurements. The OF calcu-

lation and the transformation is presented in the
forthcoming section.

A. Optical flow computation

There exist several methods for computing OF.
For the experiment presented in Section V two
specific methods are combined. The first one
is SIFT [18] which provided the overall best
performance in [23]. SIFT uses a feature-based
approach to compute OF. The total number of OF
vectors in each image depends on the number of
features detected and matched together. Since the
transformation in Section III-B requires at least
three OF vectors [41], it is necessary to make sure
that this is handled. It is not possible to guarantee
three OF vectors with SIFT since homogeneous
environments, like snow or the ocean, increase the
difficulty of finding distinct features. Therefore the
OF vectors created by SIFT are combined with a
second method, which is based on region matching
[43].

The region matching method used here is a
template matching approach based on normal-
ized cross-correlation [44]. The displacements of
twelve templates, created symmetrically across
the images, are used to find twelve OF vectors.
Template matches below a given threshold are dis-
carded and the corresponding OF vector removed.
Unreliable matches can occur in case of uniform
terrain, changes in brightness or simply when the
area covered by the template has disappeared from
the image in the time between the capture of
images. An example of OF vectors computed with
SIFT and template matching is displayed in Fig.
4.

In case of mismatches, both methods will create
erroneous OF vectors. It is desired to locate and
remove these vectors. Therefore an outlier detector
is implemented before the vectors are used to
calculate body-fixed velocities. The outlier detec-
tor utilizes a histogram to find the vectors that
deviate from the mean with respect to direction
and magnitude.

B. Transformation from optical flow to velocity

For the OF computations to be useful in the ob-
server, a transformation to body-referenced veloc-



(a) (b)

(c)

Fig. 1. a) Image captured at time t0. b) Image captured at time
t0+∆t. c) Optical flow vectors between image a) and b), generated
by SIFT (red) and Template Matching (green).

ity is necessary. The transformation is motivated
by [41] and the pinhole camera model is used [45].
The camera-fixed coordinate system is related to
the body-fixed coordinate system through Fig. 2,
where the downward-looking camera is aligned
with the body z-axis. The focal point of the camera
is for simplicity assumed to coincide with the
origin of {B}.

xb

yb zb

Ob

image plane

Ors

r

s

Fig. 2. Pinhole camera model. The camera is oriented downwards,
while xb is the direction of flight.

It is necessary to relate a point in the terrain
expressed in {N} tn to {B}, since points in the

terrain are used to compute the body-referenced
velocity. The matrix Rn

b and vector cn represent a
rotation and a translation between {N} and {B}.
They can be merged to form a homogeneous 4×4-
transformation T nb

T nb (Θ) =

[
Rn
b (Θ) cn

01×3 1

]
such that tn = T nb (Θ)tb where tn and tb is the same
homogeneous point represented in {N} and {B}
respectively. The transformation can be inverted to
find tb from tn

tb = T nb (Θ)−1tn =

[
Rn
b (Θ)T −Rn

b (Θ)T cn

01×3 1

]
tn

(1)
and tb is now a function of xn, yn, zn, cnx, cny , cnz ,
φ, θ, ψ.

The relationship between tb and its projection
onto the image plane is expressed by the well-
known pinhole camera model [45] [46].[

r

s

]
=
f

zb

[
yb

−xb

]
, zb 6= 0 (2)

where f is the focal length of the camera. As tb

in itself is not available, the relationship in (1) is
used to express tb in (2) asx

b

yb

zb

 =


scnz

s sin(θ)+cos(θ)(f cos(φ)+r sin(φ))

− rcnz
s sin(θ)+cos(θ)(f cos(φ)+r sin(φ))

− fcnz
s sin(θ)+cos(θ)(f cos(φ)+r sin(φ))

 (3)

All features tracked by the camera are assumed
to be stationary with respect to {N}. Hence the
UAV linear and angular velocity relative to a fea-
ture tracked by the OF algorithm, vbF and ωbF , will
be equal for every tracked feature. Furthermore it
is assumed that the terrain is flat, such that every
feature is located at the same altitude. For every
feature j, the relationship between OF and body-
fixed linear/angular velocity is given as

[
ṙj

ṡj

]
= −Mj(f, rj , sj , φ, θ, c

n
z )

[
vbF

ωbF

]

Mj =
f

zbj

 0 1 −y
b
j

zbj
−y

b
j
2

zbj
− zbj

ybjx
b
j

zbj
xbj

−1 0
xb
j

zbj

xb
jy

b
j

zbj
−x

b
j
2

zbj
− zbj ybj


(4)



where Mj ∈ R2×6 in (4) is motivated by [41]. If
the number of features being tracked is k, then the
OF vector has dimension 2k. A matrix M ∈ R2k×6

might be created by concatenating the matrices
Mj, j = 1 . . . k, and the following relationship is
obtained



ṙ1

ṡ1
...
ṙk

ṡk

 = −M
[
vbF
ωbF

]
,M =

M1

...
Mk

 (5)

By calculating the pseudoinverse of M in (5)
the angular and linear velocity can be computed
as

[
vbF
ωbF

]
= −M+



ṙ1

ṡ1
...
ṙk

ṡk

 (6)

M+ exists only if MTM has full rank. This can
only happen if the number of flow vectors are
greater or equal to three. This is always the case
in the experiment.

IV. OBSERVER DESIGN

A. Dynamic System

The dynamics of attitude, position, and velocity
is described by

Ṙ = RS(ωb) (7a)
ṗn = vn (7b)
v̇n = an + gn (7c)

The objective is to estimate the attitude R, the
position pn, and the velocity vn with exponential
convergence rate. In addition to this, an estimator
for the gyro bias bb is also provided.

B. Assumptions

The observer design is based on the following
assumptions:

Assumption 1: the OF algorithm uses a suffi-
cient number of image features, such that M has
full rank and Eq. (6) can be used.

Assumption 2: the gyro bias bb is constant.

Assumption 3: there exists a constant cobs > 0
such that, ∀t ≥ 0, ‖vbF × ab‖ ≥ cobs.

Assumption 3 is a condition of non-collinearity
for the vectors vbF and ab, i.e. the angle between
them is non-zero and none of them can be iden-
tically zero (see, e.g., [12], [6]). For a fixed-wing
UAV this means that the observer cannot work
while the vehicle stands still on the ground, but
presents no issues during flight.

C. Observer Equations

The full observer was introduced in [41] as

Σ1


˙̂
R = R̂S(ωbm − b̂b) + σKP Ĵ

˙̂
bb = Proj(b̂b,−kIvex(Pa(R̂Ts KP Ĵ)))

(8)

Σ2



˙̂pn = v̂n +Kpp(p
n−p̂n) +Kpv(v

n−v̂n)

˙̂vn = ân + gn+Kvp(p
n−p̂n) +Kvv(v

n−v̂n)

ξ̇ = −σKP Ĵa
b +Kξp(p

n−p̂n) +Kξv(v
n−v̂n)

ân = R̂ab + ξ

(9)

OF

{[
v̂bF

ω̂bF

]
= −M̂+

[
ṙ

ṡ

]
(10)

The subsystem Σ1 represents the attitude observer,
whereas Σ2 represents the translational motion
observer. In addition, (10) is given by machine
vision. σ ≥ 1 is a scaling factor tuned to achieve
stability, kI is a positive scalar gain, Proj(·, ·)
represents a parameter projection [47] that ensures
that ‖b̂b‖ does not exceed a design constant Lb̂b >
Lbb (see Appendix), and R̂s = sat(R̂). The matrix
Ĵ is the output injection term, whose design is
inspired by the TRIAD algorithm [48] and defined
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v̂n
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ṙ, ṡ
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Fig. 3. Block diagram of the observer. Σ1 represents the attitude
observer, and Σ2 the translational motion observer.

as

Ĵ(vbF , v̂
n, ab, ân, R̂) := ÂnA

T
b − R̂AbATb (11a)

Ab := [vbF , v
b
F × ab, vbF × (vbF × ab)] (11b)

Ân := [v̂n, v̂n × ân, v̂n × (v̂n × ân)] (11c)

The subsystem Σ2 represents the translational
motion observer, where Kpp, Kpv, Kvp, Kvv, Kξp,
and Kξv are observers gains yet to be defined, and
gn = [0, 0, 9.81]T is the gravity vector in NED.

The system Σ1–Σ2 is a feedback interconnec-
tion, as illustrated by Fig. 3.

D. Stability Proof

The error dynamics of the non-linear observer
can be written in a compact form as

Σ1


˙̃R = RS(ωb)−R̂S(ωbm−b̂b)−σKP Ĵ

˙̃bb = −Proj(b̂b, τ(Ĵ))

(12a)

Σ2

{
˙̃w = (A−KC)w̃ +Bd̃

(12b)

where w̃ = [(p̃n)T , (ṽn)T , (ãn)T ]T collects the es-
timated position, velocity and acceleration vectors,
d̃ = (RS(ωb)− R̂S(ωbm− b̂b))ab + (R− R̂)ȧb, and
the four matrices in (12b) are defined as

A =

[
06×3 I6

03×3 03×6

]
, B =

[
06×3

I3

]
,

C =
[
I6 06×3

]
, K =

 Kpp Kpv

Kvp Kvv

Kξp Kξv

 .

Theorem 1 provides conditions that ensure
USGES of the origin of the error dynamics (12).

Theorem 1: Let σ be chosen to ensure stability
according to Lemma 1 in [13] and define HK(s) =
(Is−A+KC)−1B. There exists a set (0, c) such
that, if K is chosen such that A−KC is Hurwitz
and ‖HK(s)‖∞ < γ, for γ ∈ (0, c), then the origin
of the error dynamics (12) is USGES as defined by
[49] when the initial conditions satisfy ‖b̂b(0)‖ ≤
Lb̂b .

Proof: For the proof, see [41].

V. EXPERIMENTAL RESULTS

This section describes the experiment carried
out to gather the necessary data and the results
obtained with the non-linear observer and OF.

A. Setup

The UAV employed is a UAV Factory Penguin-
B, equipped with a custom-made payload that
includes all the necessary sensors. The IMU is a
Sensonor STIM300, a low-weight, tactical grade,
high-performance sensor that includes gyroscopes,
accelerometers, and inclinometers, all recorded at
a frequency of 300 Hz. The chosen GPS receiver
is a uBlox LEA-6T, which gives measurements at
5 Hz. The video camera is an IDS GigE uEye
5250CP provided with an 8mm lens. The camera
is configured for a hardware-triggered capture at
10 Hz: the uBlox sends a digital pulse-per-second
signal whose rising edge is accurately synchro-
nized with the time of validity of the recorded GPS
position, which guarantees that the image capture
is synchronized with the position measurements.
The experiment has been carried out on 6 February
2015 at the Eggemoen Aviation and Technology
Park, Norway, in a sunny day with good visibility,
very little wind, an air temperature of about -8◦C.
The terrain is covered with snow and flat enough
to let all features be considered as lying at zero
altitude.

The observer is implemented using forward
Euler discretization with a time-varying step de-
pending on the interval of data acquisition of
the fastest sensor, namely the STIM300, and it
is typically around 0.003 seconds. The various



parameters and gains are chosen as Lbb = 2◦/s,
Lb̂b = 2.1◦/s, σ = 1, KP = diag[0.1, 0.1, 0.5],
kI = 0.006, Kpp = 30I3, Kpv = 2I3, Kvp = I3,
Kvv = 100I3, Kξp = I3, and Kξv = 50I3. All the
gains are obtained by running the observer several
times and correcting the gains until a satisfactory
performance was achieved. Concerning the gains
of the translational motion observer, it is also pos-
sible to tune them with the help of a linear matrix
inequality formulation that allows ‖HK(s)‖∞ to
satisfy the conditions of Theorem 1 (see [13], [50]
for details).

The reference provided for the attitude, posi-
tion, and velocity is the output of the EKF of
the autopilot mounted on the Penguin-B. An exact
reference for the gyro bias is not available, but
an approximation of the real value is calculated
by averaging the gyro measurements at standstill
before and after the flight. The accelerometer bias
is not estimated, but it is computed the same
way as the gyro bias and subtracted from the
accelerometers measurements before being used in
the observer.

All the images are processed with a resolu-
tion of 1600×1200 (width×height) pixels and in
their original state, without any filtering. The lens
distortion of the camera is not accounted for,
and no correction is applied to the images. SIFT
is implemented with the open source computer
vision library (OpenCV) [51] with default settings.
Each match is tagged with a value indicating the
accuracy of the match, and the smallest of these
values is considered to be the best match. To in-
crease the reliability of the OF vectors, each match
is compared to the best one. Every match with
an uncertainty more than double the uncertainty
of the best match is removed. Also the template
matching algorithm is implemented with OpenCV.
The size of the templates is chosen to be 120×90
pixels and a correlation of 99% is required in order
for a template match to be considered reliable and
not removed.

B. Results

The results here presented refer to a complete
flight of the Penguin-B, from take-off to landing,
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Fig. 4. Body-fixed velocity in the x, y, and z axis (blue, red, and
green, respectively) calculated via machine vision.

which correspond to a travelled distance of ap-
proximately 9 km in around 5 min. The time on the
x-axes is the elapsed time since the data logging
begins, and only the significant part involving the
flight is represented. The manoeuvres performed
include flights on a straight line and turns with
a large and small radius of curvature, namely ap-
proximately 200 m and 100 m, as it can be noticed
from Fig. 6. The body velocity calculated via the
OF is represented in Fig. 4 and is the result of
(6). The estimated attitude, position, and velocity
are illustrated in Fig. (5)–(7): it is clear that the
observer (blue, solid line) performs well when
compared to the EKF (red, dashed line). The pitch
estimate presents some deviation, probably due to
a misalignment of the sensor on the payload. The
estimated North and East velocities show some
small peaks at around 1130–1150 s and 1240 s,
which are due to the presence of outliers in the
GPS data. The estimated gyro bias is presented in
Fig. 8: the estimates do not converge as well as the
other states, but they remain within 0.2◦ of their
initial estimate.

VI. CONCLUSIONS

In this paper a USGES non-linear observer
has been tested on experimental data obtained
by flying a fixed-wing UAV with a custom-made
payload of sensors. An OF algorithm has been
employed to calculate the body-referenced ve-
locity of the vehicle by means of IMU, camera



Time (s)
1050 1100 1150 1200 1250 1300

R
ol

l (
°)

-100

-50

0

50

Time (s)
1050 1100 1150 1200 1250 1300

P
itc

h 
(°

)

-20

0

20

Time (s)
1050 1100 1150 1200 1250 1300

Y
aw

 (
°)

0

200

400
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images and GPS measurements. Such velocity,
accelerometers measurements, estimated NED ve-
locity, and estimated NED acceleration have been
used as reference vectors in the injection term
of the observer in order to provide the desired
estimates. The results presented for different types
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of manoeuvres confirm the validity of the analysis
and design.
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APPENDIX

The parameter projection Proj(·, ·) is defined as:

Proj(b̂b, τ)=

{(
I− c(b̂b)

‖b̂b‖2
b̂bb̂bT

)
τ, ‖b̂b‖≥Lb, b̂bT τ>0

τ, otherwise

where c(b̂b) = min{1, (‖b̂b‖2 − L2
b)/(L

2
b̂b
− L2

bb
)}.

This operator is a special case of that from Ap-
pendix E of [47].
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Appendix C
Derivation of the M-matrix

This appendix derives the M-matrix from Section 3.3.1, assuming that measure-
ments of optical flow (OF), altitude and attitude are available. Assuming that
any feature in the image, corresponding to an OF vector, are stationary w.r.t the
terrain, the pinhole camera model from equation (3.2) can be differentiated with re-
spect to time to get a relationship between OF and egomotion of the camera.

[
ṙ
ṡ

]
=

f

zc

[
0 1 −yczc
−1 0 xc

zc

]

ẋc

ẏc

żc


 (C.1)

The vector [ṙ, ṡ]T is the OF, and is a measure of how a feature in the image plane
moves in horizontal (r) and vertical (s) direction in time. The vector [ẋc, ẏc, żc]T

of the right hand side can be recognized as

ṗc =



ẋc

ẏc

żc




= vcT/c +
[
ωcT/c

]
×

(pc − ocT )

(C.2)

where the following definitions are necessary:

Definition 9. vcT/c is the linear velocity of the terrain with respect to the
camera represented in the camera-fixed coordinate system.
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Definition 10. ωcT/c is the angular velocity of the terrain with respect to
the camera represented in the camera-fixed coordinate system.

Definition 11. ocT is the terrain origin/point of rotation in camera co-
ordinates. All rotations of the terrain seen in the image will be rotations
about the camera, hence the rotation point ocT coincides with the origin of
the camera frame.

(C.1) might be rewritten as

[
ṙ
ṡ

]
=

f

zc

[
0 1 −yczc
−1 0 xc

zc

]
(vcT/c +

[
ωcT/c

]
×

(pc − ocT )) (C.3)

=
f

zc

[
0 1 −yczc 0 1 −yczc
−1 0 xc

zc −1 0 xc

zc

] [ vcT/c[
ωcT/c

]
×

(pc − ocT )

]
(C.4)

=
f

zc
[
A A

]
[

vcT/c[
ωcT/c

]
×

(pc − ocT )

]
(C.5)

A =

[
0 1 −yczc
−1 0 xc

zc

]

Using the properties of the crossproduct

[
ωcT/c

]
×

(pc − ocT ) = − [(pc − ocT )]× ω
c
T/c (C.6)

With [v]× being the skew-symmetric matrix

[v]× =




0 −v3 v2

v3 0 −v1

−v2 v1 0


 (C.7)

one may rewrite (C.5) as

[
ṙ
ṡ

]
=

f

zc
[
A A

]
[

vcT/c
− [(pc − ocT )]× ω

c
T/c

]

=
f

zc
[
A −A · [(pc − ocT )]×

]
[
vcT/c
ωcT/c

]

= M ′(f, pc, ocT )

[
vcT/c
ωcT/c

]
(C.8)
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M ′(f, pc, ocT ) =
f

zc

[
0 1 −yczc −y

c(yc−yc0)
zc − (zc − zc0)

yc(xc−xc
0)

zc xc − xc0
−1 0 xc

zc
xc(yc−yc0)

zc −x
c(xc−xc

0)
zc − (zc − zc0) yc − yc0

]

(C.9)

Now that a relationship between linear and angular velocity and OF is established,
it is time to argue for the centre of rotation ocT . All rotations of objects seen in
the image will be rotations about the UAV, hence the rotation point ocT coincides
with the origin of the body frame. As the camera is placed close to the centre of
Gravity of the UAV, the following assumption is a good approximation

ocT = [0, 0, 0]T (C.10)

Inserting (C.10) into (C.8) one finally arrive at an expression for the linear and
angular velocity of the terrain with respect to the camera in the camera-fixed
frame

[
ṙ
ṡ

]
=

f

zc

[
0 1 −yczc −y

c(yc)
zc − zc ycxc

zc xc

−1 0 xc

zc
xcyc

zc −x
c(xc)
zc − zc yc

][
vcT/c
ωcT/c

]

= M(f, pc)

[
vcT/c
ωcT/c

] (C.11)

This in turn might then be extended to concern N points (r1, s1) . . . (rN , sN )




ṙ1

ṡ1

...
˙rN
˙sN




=



M(f, pC1 )

...
M(f, pCN )



[
vcT/c
ωcT/c

]
(C.12)

By calculating the pseudoinverse of M in (C.12) the angular and linear velocity
can be computed as

[
vcT/c
ωcT/c

]
=



M(f, pc1)

...
M(f, pcN )




+




ṙ1

ṡ1

...
˙rN
˙sN




(C.13)

M+ being the pseudoinverse of M . The pseudoinverse can be calculated as
(MTM)−1MT if MTM has full rank for all states. This can only happen if the
number of flow vectors are greater or equal to three. In addition the three vectors
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cannot be located on the same line. This is because the system of equations will
be linearly dependent in this case and the system undetermined. A minimum de-
mand is therefore that at least three OF vectors must be present when calculating
velocities, and the vectors cannot be located on the same line.

Velocity in body coordinates

Now an expression for the linear and angular velocity of the terrain with respect to
the camera given in the camera-fixed coordinate frame is present(vcT/c and ωcT/c).
However the interesting velocity is the linear and angular velocity of the camera
with respect to the terrain given in the camera-fixed coordinate frame, namely vcc/T
and ωcc/T .

[
vcc/T
ωcc/T

]
= −

[
vcT/c
ωcT/c

]
(C.14)

As the camera is placed very near the center of gravity of the UAV, it is assumed
that the camera frame and the body frame coincides. Hence {c} = {b}. Further-
more assume that the terrain being filmed coincides with NED (terrain not moving)
{T} = {n}. This results in the following formula for body-fixed velocity in 6 DOF
based on OF:

[
vbb/n
ωbb/n

]
=

[
vcc/T
ωcc/T

]
= −



M(f, pc1)

...
M(f, pcN )




+




ṙ1

ṡ1

...
˙rN
˙sN




(C.15)

For clarity the M -matrix is now defined:

Definition 12. The matrix M(f, pc) relates optical flow to angular and
linear velocity

M(f, pc) =
f

zc

[
0 1 −yczc −y

c(yc)
zc − zc ycxc

zc xc

−1 0 xc

zc
xcyc

zc −x
c(xc)
zc − zc yc

]

(C.16)
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Appendix D
Software Implementation

As great focus in this thesis has been to provide real world experimental results,
a lot of implementation have been conducted. This appendix seeks address some
important implementation considerations.

The OF algorithms used in thesis has been implemented in C++ with the open
source computer vision framework, openCV (Bradski, 2000). The Multiplicative
Extended Kalman Filter and the Nonlinear Observers are implemented in Matlab.
A simulator is implemented in Matlab. The simulator provide realistic IMU sensor
data, GNSS and OF vectors from a simulated flight. Implemented software is
illustrated in Figure D.1.

This appendix is organized as follows.

Optical flow algorithms in Appendix D.1. Implementation specifics of the OF
algorithms used in this thesis are presented.

MEKF in Appendix D.2. General implementation considerations for the MEKF
is highlighted.

NO in Appendix D.3. General implementation considerations for the NO is pre-
sented.

Camera simulator in Appendix D.4. Explanation of how a simulated OF sensor
is implemented.

161



Chapter D. Software Implementation

Figure D.1: Implemented software is indicated in the red and blue boxes.

D.1 Optical Flow

Images from a UAV test flight is stored on an onboard payload module, and must
be post-processed to get measurement of the optical flow (OF). Different OF al-
gorithms are implemented in C++. The openCV library (Bradski, 2000) has been
used as framework. The algorithms SIFT (Lowe, 1999), SURF (Bay, Tuytelaars and
Van Gool, 2008), Lucas-Kanade (Lucas and Kanade, 1981) , Farneback (Farnebäck,
2003) and Template Matching (Sonka et al., 2014) are all implemented and em-
ployed on images from the UAV flight described in Section 6.1. SIFT and SURF
are both feature-based algorithms. The SIFT algorithm is found to perform better
than SURF in the application of finding OF vectors from a UAV flying over snowy
environments. Lucas-Kanade showed to be very inaccurate in the presence of large
displacements in the image (due to the large velocity of the UAV), and was there-
fore not appropriate for this application. The Farneback algorithm produced a
dense vector field, resulting in unwieldy amount of data. The SIFT and Template-
Matching algorithms were found to be a good combination for generating reliable
OF vectors that could be used by the observers. These algorithms will therefore
be described more in detail.

This section will give an explanation about the implementation, and some tuning
specifics done to achieve good OF results. Sometimes even worlds best tuned
OF algorithm may output erroneous OF vector, hence a simple outlier detector is
implemented and presented in this section.
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SIFT

The SIFT algorithm (Lowe, 1999) is implemented with OpenCV (Bradski, 2000),
where it exist a class for the SIFT algorithm. A pseudo code of the implementation
is seen in listing D.1. This SIFT class is used to find features and calculate the
descriptors. Then a Flann (Fast Approximate Nearest Neighbour Search Library)
based feature matcher (Muja and Lowe, 2009) is used to find common features in
consecutive images. Each match from the Flann based matcher provides a value
that expresses the least squares distance between the descriptors. The smaller this
distance is, the better the match is. After doing the matching process, each match
is assessed at the end with the best match in mind. This is done in order to ensure
that every match is good. A match that has a distance that is greater than the
double of the best match, is said to be a bad match. If however, the best match has
distance less than 0.01, then all matches are compared to a threshold of 0.02. This
makes sure that only the features corresponding to the best matches are used to
calculate the discrete OF. The discrete OF is then calculated as the displacement
of the features corresponding to the best matches.

Listing D.1: Implementation of the SIFT OF algorithm.

1 %\caption{Implementation of the SIFT OF algorithm.}
2 %\label{listing:siftimpl}
3 // Locates features in the image and assigns descriptors
4 sift(image[k], keypoints[k], descriptors[k]);
5

6 // Match descriptors with Flann Matcher and store results in matches
7 cv::FlannBasedMatcher matcher;
8 std::vector<cv::DMatch> matches;
9 if(descriptors[k].rows != 0 && descriptors[k-1].rows != 0){

10 // Match descriptors from the new image and the previous image
11 matcher.match((cv::Mat)descriptors[k], ...

(cv::Mat)descriptors[k-1], matches);
12

13 // Quick calculation of max and min distances between keypoints
14 double max dist = 0;
15 double min dist = 100;
16 for( int i = 0; i < matches.size(); i++ ){
17 double dist = matches[i].distance;
18 if( dist < min dist )
19 min dist = dist;
20 if( dist > max dist )
21 max dist = dist;
22 }
23

24 // Collect only "good matches"
25 std::vector<cv::DMatch> good matches;
26 for( int i = 0; i < matches.size(); i++ ){
27 if( matches[i].distance ≤ std::max(2*min dist, 0.02) ) {
28 good matches.push back( matches[i]);
29 }
30 }
31
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32 // Calculate optical flow
33 for (int i = 0; i<good matches.size(); i ++){
34 cv::DMatch match = good matches[i];
35 // Create OF-vector from corresponding keypoints.
36 OF of vector[i] = (keypoints[k][match.queryIdx].pt - ...

keypoints[k-1][match.trainIdx].pt);
37 }
38 }

Template Matching

Fixed point template matching is implemented with functions from OpenCV. Two
consecutive images from the camera on the UAV are used to calculate the discrete
OF. In this thesis the images are divided in twelve regions of equal size placed
symmetrical around in the whole image. A template is extracted from the centre
of each region, implying that the template should be smaller than the size of the
regions. The templates are then matched with the next image to find the displace-
ment. The flow is only calculated if the match for each template is better than
99%. This value might seem high, but there is still a chance for mismatches, even
with this value.

Feature-based Template Matching

A feature-based template matching algorithm is implemented. A maximum of 40
features are extracted from the image using the openCV-function goodFeaturesToTrack

(Shi and Tomasi, 1994). A template is then extracted with dimensions 120 × 90
pixels. The templates are matched with the second image in order to get measure-
ments of the OF. The chance of getting regions with much contrast, and hence being
easy to match, increases when creating using features as interest points. However
there is no lower bound for the number of OF vectors extracted by the algorithm,
and this method is not used in the experimental results.

Outlier Detector

A simple outlier detector is implemented in Matlab. An incorrect optical flow
vector may arise if the match of one feature from one image to the next fails. This
could be that the optical flow algorithm outputs a erroneous vector by a mistake,
which may happen if it is hard to distinguish between different features in the
image. If flying over uniform terrain like sand, forest and ocean, it might be hard
to get correct matches between features from consecutive images, hence hard to
calculate correct optical flow vectors. In order to suppress the errors that may
arise from wrong optical flow vectors, a two-dimensional vector outlier detector
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Table D.1: Outlier Detection Algorithm

# Description
1. Generate a two-dimensional histogram of a set of vectors V = {vi}, i ∈

{1, ..., N}, vi = [x, y]T . The vectors are sorted on their x- and y-value in
the histogram. The height of a bin in the histogram corresponds to the
number of vectors mapped inside the bin. When dealing with optical flow
vectors the x-value is corresponding to ṙ, while y is corresponding to ṡ.
The histogram is divided in 10× 10 equally spaced bins, with a minimum
bin width and height of 20 pixels in x and y direction, meaning that there
is a room of at least 20 pixels margin in each direction (recall that if rolling,
pitching or yawing there will be differences in the vectors across the image).

2. Find the bin with the largest number of vectors.
2.1 If one bin is larger than all others, set the acceptance region to this bin

plus half the width of the bin in both directions. Thus the vectors closest
to the best bin might be accepted. The algorithm is finished.

2.2 If there are multiple bins with the largest number of vectors inside, check
if all of them are neighbours. These bins are called the maxima. If they
are neighbours the algorithm accepts all bins. If not, jump to 3).

3. Check the neighbours of the maxima. Does one of the maxima has a more
populated neighbourhood than the other ones? If yes, this particular bin
plus half of the bin width in both directions is the acceptance region. If not,
let the bins with the most populated neighbourhoods be in the maxima.
Now jump to 4)

4. Check whether the remaining bins in the maxima are neighbours. If they
are, this is the acceptance region. If there are multiple neighbourhoods
with the same population, one are unable to determine which vectors are
outliers, and which are correct. The region of acceptance is set as empty,
meaning there are no inliers.

is designed. The outlier detector is based on a two-dimensional histogram. By
placing the optical flow vectors in a two-dimensional histogram based on their
ṙ- and ṡ-value it is possible to determine the areas with the highest density of
vectors, namely a neighbourhood of the most common vectors. It is assumed that
the neighbourhood with the most vectors are the inliers, while the vectors outside
of this neighbourhood are indeed outliers. The algorithm is described in detail in
Table D.1.

D.2 Multiplicative Extended Kalman Filter

The multiplicative extended Kalman filter (MEKF) is implemented in Matlab. The
MEKF is implemented to run off-line with real world sensor data collected from a
UAV experiment. This section contains implementation details about the MEKF.
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Figure D.2: The MEKF is triggered by the IMU and hence run on the same frequency
as the IMU, that is 300 Hz.

How different measurement rates are handled and the quaternion ambiguity are
addressed. The MEKF algorithm is presented in Chapter 4.

Handle Different Measurement Rates

One of the main challenges is how to handle that different sensor data arrive with
different frequency. In this thesis this is handled in a simple manner. The MEKF
is configured to run on same the frequency as the highest measurement rate. The
sensor with the highest measurement rate is the IMU. The IMU outputs data
with a frequency of 300Hz. From the IMU we get acceleration, angular velocity
and inclinometer measurements. One iteration of the MEKF is triggered by the
presence of a new IMU measurement as shown in Figure D.2.

The different measurement rates are handled in the following way: First calulate
the Kalman gain matrix K, assuming that all measurements are available. If one
of the sensors have not provided a new measurement set the column corresponding
to this sensor to zero. Note that this is essentially the same as saying that the
covariance of an absent measurements is infinity (Gelb et al., 1974). Setting the
covariance to infinity would lead to numerical issues, hence K is set to zero in this
thesis.

In practice this is handled by the code snippet in listing D.2. Note that the three
first elements in K , corresponding to the IMU, are always present. ’valid cv’ indi-
cates whether the measurement from computer vision is new. ’valid gps’ indicates
the validity of the GPS position and velocity measurements. A mask matrix is
constructed based on the validity of the sensor data, and a masked Kalman gain
matrix is obtained by matrix multiplication.
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D.3 Nonlinear Observer

Listing D.2: Measurements arriving at different rates are handled by masking the
Kalman gain matrix K

1 K = P bar*H'/(H*P bar*H'+R);
2 mask = blkdiag(eye(3), valid cv*eye(3), valid gps*eye(6));
3 K = K *mask;

Quaternion Ambiguity

As the attitude is represented by the unit quaternion in the MEKF, the quaternion
ambiguity must be considered. The quaternion ambiguity is that a quaternion q
represents the same rotation as −q. In order to handle this ambiguity, a check is
done after constructing the unit quaternion from δε̂ as shown in listing D.3.

Listing D.3: Handling the quaternion ambiguity

1 dq bar = qbuild(deps hat); % construct quaternion from vector
2 q hat new = qmult(q hat prev, dq bar); % Update quaternion estimate
3 q hat new = q hat new/norm(q hat new);
4 if(norm(q hat new+q hat prev)<norm(q hat new-q hat prev))
5 q hat = -q hat new;
6 else
7 q hat = q hat new;
8 end
9 return q hat

By the code snippet above it is ensured that the new estimated quaternion is the
quaternion closest to the previous estimate.

D.3 Nonlinear Observer

The nonlinear observer is implemented in Matlab. This section highlights how
different measurement rates are handled as well as some general implementation
considerations.

First we show how the estimated states are updated in the nonlinear observer. This

167



Chapter D. Software Implementation

is done by first order Euler integration, and takes on the following form:

R̂(k + 1) = R̂(k) + δt
˙̂
R (D.1)

b̂
b

gyro(k + 1) = b̂
b

gyro(k) + δt
˙̂
bbgyro (D.2)

p̂nb/n(k + 1) = p̂nb/n(k) + δt ˙̂pnb/n (D.3)

v̂nb/n(k + 1) = v̂nb/n(k) + δt ˙̂vnb/n (D.4)

ξ(k + 1) = ξ(k) + δtξ̇ (D.5)

δt being the time between two iterations of the observer. The observer is run on
300Hz, meaning that δt = (1/300)sec.

Handle Different Measurement Rates

As the injection term of the NO, Ĵ from equation (5.4) depends on the body-fixed
velocity and acceleration measurements as reference vectors, the filter is required
to have body-fixed measurements at every iteration. As it is desirable to take
advantage of all available information, the observer is implemented to run on the
same rate as the most frequent sensor. The IMU outputs data with 300Hz, the
computer vision 10Hz, and the GPS 5Hz. The observer is implemented to run with
300 iterations every second. Two look up tables are generated to keep track of
when a measurement is available before the observer is run. One for the GPS and
one for the OF measurements. The objective of the look up table is to notify the
observer when a new measurement is available.

As the CV only supplies ten new measurements of body-fixed velocity every second,
this means that reference vectors must be generated when not having new data.
This could be done in multiple ways, and the most obvious would be: 1) Linear
extrapolation as illustrated in Figure D.3 (a). Linear extrapolation can be achieved
by comparing previous and current measurement, create a slope, and extrapolate
until a new measurement arrives.

1 dt = (time - time of previous);
2 slope = (vel b - vel b previous) / dt;
3 if( not new measurement)
4 vel b = vel b + slope*dt;
5 else
6 vel b = new measurement;
7 end

or 2) zero-order hold which is illustrated in Figure D.3 (b). That is to keep the
reference vector the same as the last measurement until a new measurement ar-
rives.
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(a) (b)

Figure D.3: (a) Linear extrapolation (b) Zero-order-hold

In this thesis this upsampling is done by zero-order hold. That is to keep the
reference vector the same as the last measurement until a new measurement arrives.
This is illustrated in Figure D.4.

The GPS measurements arrives at 5Hz. When new GPS measurements are avail-
able and the complete translational observer is run. When no GPS measurement is
available, then the observer corrector terms Kpp(p

n
GPS − p̂nb/n), Kpv(v

n
GPS − v̂nb/n),

Kvp(p
n
GPS − p̂nb/n), Kvv(v

n
GPS − v̂nb/n), Kξp(p

n
GPS − p̂nb/n) and Kξv(v

n
GPS − v̂nb/n)

are omitted in the state update. The GPS look up table is illustrated in Fig-
ure D.5.

D.4 Camera Simulator

A camera/OF sensor is simulated in order to get measurements of the OF. The
camera simulator is a part of the simulator presented in Chapter 9. Here the
objective is to describe how a camera and OF algorithm can be simulated without
having access to real images. The objective is to find the displacement of a projected
point in the image plane between time tk−1 to tk, that is ∆r = r(tk)− r(tk−1) and
∆s = s(tk) − s(tk−1). Lets first consider how one can choose features to project
given the UAVs attitude, position and a elevation profile of the terrain. These
features are the one that we wish to find the OF of.

At a time tk a ray is drawn in the camera z-axis as shown in Figure D.6. The
ray intersects the ground plane at a point tncentre = [xncentre, y

n
centre, 0]T or expressed

in {c} tccentre = (Tnc )−1tncentre, Tnc being the homogeneous transformation matrix
relating {c} and {n} . The point tccentre is named the ”centre ground point”.

Points are chosen deterministically around the centre ground point, tccentre, dis-
tributed on a plane perpendicular to the ray from {c} to the centre ground point.
This plane is named the field of view (FOV) plane. The points are distributed
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Figure D.4: The observer ask the look up table, fix index of, whether a new OF mea-
surement is available. If a new measurement is available then a new vbcv is calculated
based on the new OF vectors. If not, then zero order hold is used on vbcv.

Figure D.5: The observer ask the look up table, fix index gps, whether a new GPS
measurement is available. If a new measurement is available then pnGPS and vbGPS is
output. If not, then the observer corrector terms are omitted in the state update.
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D.4 Camera Simulator

on the FOV plane, ranging from the centre ground point −30 to 30 meters in
camera x-direction −40 to 40 meters in camera y-direction, separated with 10 me-
ters in both dimensions. Lets call these points ”FOV features” and denote them
by pcFOV. The FOV features in camera coordinates is then defined as pcFOV ∈
tccentre + [x, y, 0]T , x ∈ [−30,−20, . . . , 20, 30], y ∈ [−40,−30, . . . , 30, 40]. Lets now
consider only one of the FOV features, and denote this FOV feature pcFOV.

The FOV feature pcFOV is transformed to {n} by pn
FOV

= Tnc p
c
FOV

. Let the FOV fea-
ture be defined as pnFOV = [xnFOV, y

n
FOV, z

n
FOV]. The FOV feature is then projected

onto the terrain by using xnFOV, y
n
FOV and the elevation h at the xnFOV, y

n
FOV coor-

dinate of the elevation profile. The projected point is then pn = [xnFOV, y
n
FOV, h]T ,

which is called a ”feature”.

Now that the feature location in {n} is found, it is in our interest to find the
projection of this feature at time tk and tk−1. The camera moves between tk−1

and tk, meaning the homogeneous transformation matrix Tnc is time variant. The
feature can then be transformed to {c} by pc(tk) = (Tnc )−1(tk)pn and pc(tk−1) =

(Tnc )−1(tk−1)pn. The points pc(tk), pc(tk−1) represents the feature on the surface
of the terrain given in camera coordinates at time tk and tk−1 respectively.

The feature at time tk−1 and tk can then be projected onto the image plane by the
pinhole camera model from (3.3), yielding xm(tk) = [r(tk), s(tk)]T and xm(tk−1) =
[r(tk−1), s(tk−1)]T . The discrete OF can then be found as ∆r = r(tk) − r(tk−1)
and ∆s = s(tk)− s(tk−1).

Fig. D.6 illustrates the relationship between the centre ground point tcentre, FOV
features pFOV, and features p.
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Figure D.6: Features on the surface of the terrain are chosen based on the attitude and
position of the UAV. A ray along the camera z-axis intersects the ground plane at tcentre.
A plane denoted field of view (FOV) is constructed perpendicular to the ray. FOV features
are distributed along the FOV plane. Features are constructed with zn-component from
the elevation profile and xn, yn coordinate from the corresponding FOV feature. Features
p are projected onto the image plane by the pinhole camera model to find the image plane
coordinate xm = [r, s]T . This is done at time tk and tk+1 with the same features, p, to
get the discrete OF dr and ds.
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Appendix E
Payload Setup

A Penguin B UAV produced by the UAV factory is equipped with a custom payload
made by the navigation team at NTNU, in particular Sigurd M. Albrektsen, Jakob
M. Hansen, Kasper T. Borup and Lorenzo Fusini.

The UAV payload has different sensors. Accelerometers, gyroscopes, inclinometer,
GPS, altimeter and a video camera are present in the payload. The payload is
shown in Figure E.1. A complete list of the sensors used in this thesis is given
in Table E.1. In addition to these components a second IMU, an ADIS 16488,
produced by Analog Devices is mounted in the payload. The data from the ADIS
is not used in this thesis. A laser altimeter is mounted in the payload, but the
measurements from the altimeter was not extracted. A custom synchronization
board is designed. The synchronization board timestamps all measurements, such
that all measurements are aligned on the same time axis. The camera is attached to
the payload, and the lens is directed straight down in the body frame as displayed
in Figure Figure E.2.

Table E.1: Components used in the flight experiment

Component Manufacturer Device name Output Rate

UAV UAV Factory Penguin B

Camera IDS UI-5250CP-C-HQ Images 10 fps

GPS uBlox LEA-6T Position 5 Hz

IMU Sensonor AS STIM300 Acc., gyro., inclinometer 300 Hz
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Chapter E. Payload Setup

Figure E.1: Payload setup

Figure E.2: Payload module is placed such that camera is pointing downwards

In order to calculate OF, the choice of camera and lens can affect the performance
of the algorithms significantly. In the payload a commercial camera manufactured
by IDS is used. The lens is produced by Tamron. The camera and lens specification
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are given in Table E.2. Some basic features of the camera like field of view varies
with the focal length of the lens. In this experiment a lens with constant focal length
(no optical zoom) is preferred. Thus the field of view in both horizontal and vertical
direction is constant. The camera is configured to have global shutter.

Table E.2: Camera and lens specification

Camera UI-5250CP-C-HQ
Sensor technology CMOS Color
Resolution(h × v) 1600× 1200
Sensor Size(h × v) 7.2mm× 5.4mm
Pixel size 4.5µm
Maximal FPS 35.6
Shutter Rolling shutter/Global shutter/Global start shutter
Color depth 12 bit
Data transmission Gigabit ethernet
Input Voltage 12-24 VDC

Lens Tamron
Focal length 8mm
Horizontal field of view αh 48.46◦

Vertical field of view αv 37.3◦
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Appendix F
Reference frames

Some common reference frames will now be described.

F.1 ECI

The Earth Centered Inertial frame has its origin in the center of the earth, with Z-
axis oriented along the rotational axis of the earth. The X-axis is pointing towards
the vernal equinox. The Y-axis completes the right hand system. This frame can
be assumed inertial for terrestrial navigation and hence be denoted by {i} .

F.2 ECEF

The Earth-Centered Earth-Fixed coordinate system is the cartesian coordinate
system rotating with the earth, and is denoted by {e} . The Z-axis is pointing
along the earth rotation axis. The X-axis is pointing towards the intersection of 0◦

longitude (Greenwich meridian) and 0◦ latitude (Equator). The Y-axis is oriented
to complete the right hand system. ECEF rotates relative to ECI with the earth
rotation rate ωe, and is not an inertial frame. The ECEF coordinate system can be
represented by cartesian coordinates as well as ellipsoidal coordinates. The GPS
satellite positions are given in cartesian coordinates, while the output to the user is
normally given in ellipsoidal coordinates, i.e. latitude, longitude and height. The
GPS is currently using the WGS84-reference ellipsoid, and the latitude, longitude
and height are given in means of this reference ellipsoid.
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F.3 NED

The North East Down frame is defined relative to the Earths reference ellipsoid, and
is denoted {n} . The Z-axis is pointing downwards, perpendicular to the tangent
plane of the ellipsoid. The X-axis is pointing towards the true north, while the
Y-axis is directed East. The NED frame, {n} , is not inertial, but when dealing
with local navigation one can assume it is inertial. In this thesis {n} is assumed
inertial.

F.4 Body Frame

The Body frame is a coordinate frame fixed to the body, and is denoted {b} .
X-axis is pointing forwards of the body, Z-axis is pointing downwards, while Y-axis
is pointing to the right in order to fulfill the right hand system. The body frame
{b} is related to the NED frame {n} by the Euler angles roll, pitch and yaw, or by
the attitude quaternion q, or by the direction cosine matrix (DCM) Rnb .

F.5 Image plane

The image plane is a the plane located on the imaging chip of a camera. A point
in the image plane has coordinates [r, s] where the origin is in the center of the
image, with r-axis oriented towards the right, and s-axis is oriented downwards.
The image plane is denoted by {m} .

F.6 Camera Frame

The camera frame is fixed to the camera and is denoted by {c} . The Z-axis
is oriented along the focal line, hence out of the image plane, X-axis is oriented
upwards in the image plane (oposite direction of s-axis), while the Y-axis is oriented
to the right of the image plane (same direction as r-axis).
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Appendix G
Attitude representation

In this section different attitude representations are listed. In specific the different
attitude representations presented here is used to describe the orientation of {b}
relative to {n} . In this thesis you will find that the quaternion, the direction
cosine matrix (DCM) matrix and the Euler angles are used. Different attitude
representations have different advantages and drawbacks.

G.1 Euler angles

Euler angles are perhaps the simplest and most intuitive representation of the
attitude. From three angles, Θb/n = [φ, θ, ψ]

T
(roll, pitch and yaw), it is possible

to determine the orientation of {b} relative to {n} . The main advantages of this
representation are that it has a minimum number of parameters to describe the
orientation (only three parameters), and it is intuitive. The main drawback is the
singularity arising at θ = 90◦, often referred to as a gimbal lock.
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The Euler angles are related to the rotation matrix by the following

Rnb = Rz,ψRy,θRx,φ (G.1)

Rx,φ =




1 0 0
0 cφ −sφ
0 sφ cφ


 (G.2)

Ry,θ =



cθ 0 sθ
0 1 0
−sθ 0 cθ


 (G.3)

Rz,ψ =



cψ −sψ 0
sψ cψ 0
0 0 1


 (G.4)

The relation between derivative of the Euler angles and the angular velocity are
defined by

Θ̇b/n = TΘ(Θb/n)ωbb/n (G.5)

T−1
Θ (Θb/n) =




1 0 −sθ
0 cφ cθsφ
0 −sφ cθcφ


⇒ TΘ(Θb/n) =




1 sφtθ cφtθ
0 cφ −sφ
0 sφ/cθ cφ/cθ


 (G.6)

G.2 Direction Cosine Matrix

The Direction Cosine Matrix (DCM) is a singularity free representation of the
attitude. An example of a DCM is Rnb which transforms vectors from {b} to {n} .
A DCM is a orthogonal 3× 3 matrix in SO(3). The DCM has nine parameters to
define a orientation, and is the DCM relating {b} to {n} is defined as

Rnb =



r11 r12 r13

r21 r22 r23

r31 r32 r33


 (G.7)

As R ∈ SO(3) it satisfies

RRT = RTR = I3×3, det(R) = 1 (G.8)

The dynamics of the DCM is given by

Ṙnb = Rnb

[
ωbb/n

]
×

(G.9)

G.3 Unit Quaternions

The unit quaternion is a four parameter representation of the attitude, and is a
singularity free alternative to the Euler angles and the DCM (Egeland and Grav-
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dahl, 2002; Fossen, 2011). A quaternion is defined as a complex number with a
real part η and with a vector of three imaginary components ε = [ε1, ε2, ε3]T . The
quaternion is defined as

q =




η
ε1
ε2
ε3


 =

[
η
ε

]
(G.10)

If a rotation is defined by a angle β and an unit vector k (angle-axis-representation),
then the corresponding quaternion is defined as (Chou, 1992)

η = cos

(
β

2

)
(G.11)

ε = ksin

(
β

2

)
(G.12)

Moreover a unit quaternion satisfies

qT q = 1 (G.13)

The inverse of a unit quaternion is

q−1 =

[
η
−ε

]
(G.14)

The time derivative of an inverse quaternion:

q̇−1 = −q−1q̇q−1 (G.15)

The quaternion product denoted ⊗ is defined as

q1 ⊗ q2 =

[
η1η2 − εT1 ε2

η1ε2 + η2ε1 + [ε1]× ε2

]
(G.16)

Quaternion product can also be applied as a matrix multiplication

q1 ⊗ q2 = F (q1)q2 = E(q2)q1 (G.17)

F (q) =

[
η −εT
ε ηI3×3 + [ε]×

]
(G.18)

E(q) =

[
η −εT
ε ηI3×3 − [ε]×

]
(G.19)

(G.20)

The inverse of a quaternion product is defined as

(q1 ⊗ q2)−1 = q−1
2 ⊗ q−1

1 (G.21)
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The quaternion product is applicable for vectors in R3 by treating the vectors as
quaternions with first element, η, equal to zero. The corresponding quaternion, p,
to a vector p ∈ R3 is

p =

[
0
p

]
∈ R4 (G.22)

The quaternion product ⊗ of a vector and a quaternion is hence

p⊗ q =

[
−pT ε

ηp+ [p]× ε

]
(G.23)

The identity quaternion qidis defined as

qid = q−1 ⊗ q =
[
1 0 0 0

]T
(G.24)

and holds the property
qid ⊗ p = p⊗ qid = p (G.25)

The relationship between a quaternion and a rotation matrix is defined as be-
low

Rnb (q) = I3×3 + 2η[ε]× + 2[ε]
2
× (G.26)

q ⊗ p⊗ q−1 = Rnb (q)p, p =
[
0 pT

]T
, p ∈ R3 (G.27)

The dynamics of a quaternion is related to the angular velocity by the following
relationship:

q̇ =
1

2
q ⊗ ωbb/n =

1

2
T (q)ωbb/n (G.28)

T (q) =




−ε1 −ε2 −ε3
η −ε3 ε2
ε3 η −ε1
−ε2 ε1 η


 =

[
−εT

ηI3×3 + [ε]×

]
(G.29)
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Sensor Models

This section presents the sensors and the measurement equations used in the design
of the observers. In the following {n} is assumed to be inertial.

H.1 Accelerometer

The accelerometer is a sensor that senses the acceleration of the rigid body of
which the accelerometer is attached to. The accelerometer measures the specific
force f bimu. Assuming small misalignment and scaling error, hence neglecting them,
the accelerometer measurement might be modelled as (Fossen, 2011):

f bimu = abb/n −Rbngn + bbacc +wacc (H.1)

= Rbn

(
v̇nb/n − gn

)
+ bbacc +wacc (H.2)

(H.3)

Different accelerometer error models have been proposed by Vik (2014); Fossen
(2011). In this thesis the accelerometer error is decomposed into a bias and a
white noise component. A simple bias model is used, modelling the bias as a
slowly varying process, namely the Wiener Process:

ḃ
b

acc = wbacc (H.4)

wbacc ∈ R3 being Gaussian white noise.
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H.2 Gyroscope

The gyroscope measures the angular velocity of {b} relative to the inertial frame.

ωbimu = ωbb/n + ωbn/i + bbgyro +wgyro (H.5)

By assuming that {n} is inertial, it is possible to neglect the earth rotation, hence
the measurement model might be rewritten as:

ωbimu = ωbb/n + bbgyro +wgyro (H.6)

As for the accelerometer, the gyroscope measurement is assumed to be contamined
by white noise and a bias component. The gyroscopic bias is modelled as a Wiener
process:

ḃ
b

gyro = wb
bgyro (H.7)

H.3 Computer Vision

The theory behind using a camera as a sensor is covered in Chapter 3. The output
from the computer vision subsystem can be stated as:

vbcv = vbb/n +wcv = Rbnv
n
b/n +wcv (H.8)

Or when dealing with normalized measurements

vbcv =
vbb/n

‖vbb/n‖
+wcv = Rbn

vnb/n

‖vnb/n‖
+wcv (H.9)

H.4 Global Positioning System (GPS)

The GPS measures the position and the velocity of {b} given in {e} coordinates.
When modelling the GPS measurements in the Kalman filter, the measurement
are assumed to be contaminated by white noise. By assuming local navigation
the GPS measurement can be transformed to {n} . The following measurement
equations can be stated:

pnGPS = pnb/n +wpos (H.10)

vnGPS = vnb/n +wvel (H.11)

Note that a more realistic noise model for the GPS is the Gauss-Markov noise
model. In the simulator in Section 7.1 a Gauss-Markov noise model is implemented
to generate GPS measurement noise.
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Hernández, G. (2013), ‘A Robust Nonlinear Observer for Real-Time Attitude
Estimation Using Low-Cost {MEMS} Inertial Sensors’, Sensors 13(11), 15138–
15158.

Hartley, R. (1997), ‘In defense of the eight-point algorithm’, IEEE Transactions on
Pattern Analysis and Machine Intelligence 19(6), 580–593.

Hartley, R. and Zisserman, A. (2003), Multiple View Geometry in Computer Vision,
The Press Syndicate of the University of Cambridge.

187



Herisse, B., Russotto, F.-X., Hamel, T. and Mahony, R. (2008), ‘Hovering flight
and vertical landing control of a VTOL Unmanned Aerial Vehicle using optical
flow’, IEEE/RSJ International Conference on Intelligent Robots and Systems,
IROS pp. 801–806.

Hrabar, S., Sukhatme, G. S., Corke, P., Usher, K. and Roberts, J. (2005), ‘Com-
bined optic-flow and stereo-based navigation of urban canyons for a UAV’,
IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS
pp. 302–309.

Hua, M. D. (2010), ‘Attitude estimation for accelerated vehicles using {GPS/INS}
measurements’, Control Engineering Practice 18(7), 723–732.

Hua, M. D., Ducard, G., Hamel, T., Mahony, R. and Rudin, K. (2014), ‘Imple-
mentation of a Nonlinear Attitude Estimator for Aerial Robotic Vehicles’, IEEE
Transactions on Control System Technology 22(1), 201–213.

Huang, T. S. and Netravali, A. N. (1994), ‘Motion and structure from feature
correspondences: a review’, Proceedings of the IEEE 82(2), 252–268.

Hutchinson, S., Hager, G. D. and Corke, P. I. (1996), ‘A tutorial on visual servo
control’, IEEE Transactions on Robotics and Automation 12(5), 651–670.

Kehoe, J. J., Watkins, A. S., Causey, R. S. and Lind, R. (2006), ‘State estimation
using optical flow from parallax-weighted feature tracking’, Collection of Techni-
cal Papers - AIAA Guidance, Navigation, and Control Conference 8, 5030–5045.

Kreyszig, E. (2006), Advanced Engineering Mathematics, Vol. 53.

Krstic, M., Kanellakopoulos, I. and Kokotovic, P. V. (1995), Nonlinear and Adap-
tive Control Design, Wiley, New York.

Labrie, M. and Hebert, P. (2007), ‘Efficient camera motion and 3D recovery using
an inertial sensor’, Fourth Canadian Conference on Computer and Robot Vision
(CRV ’07) .

Lefferts, E., Markley, F. and Shuster, M. (1982), ‘Kalman filtering for spacecraft
attitude estimation’, Journal of Guidance, Control, and . . . 5, 417–429.

Longuet-Higgins, H. C. (1981), ‘A computer algorithm for reconstructing a scene
from two projections’.

Longuet-Higgins, H. C. (1984), ‘The reconstruction of a scene from two projections
- configurations that defeat the 8-point algorithm’.

Lowe, D. (1999), ‘Object recognition from local scale-invariant features’, Proceed-
ings of the Seventh IEEE International Conference on Computer Vision 2.

Lucas, B. D. and Kanade, T. (1981), An Iterative Image Registration Technique
with an Application to Stereo Vision, in ‘Proceedings of the 7th International
Joint Conference on Artificial Intelligence (IJCAI 81)’, pp. 674–679.

188
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