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Assignment text

The Department of Engineering Cybernetics at NTNU has recently established

the Artificial Pancreas Trondheim (APT) research group in cooperation with St

Olavs Hospital and Faculty of Medicine at NTNU. In this assignment you are to

design, assess and model a glucose sensor system suitable for APT’s approach

for glucose control.

1. Give a brief presentation of the glucose and insulin dynamics in humans

with diabetes mellitus type 1 or 2, as well as in humans without dia-

betes. Describe sensor types suitable for measuring glucose concentration

in blood plasma. Give special attention to near-infrared (NIR) sensors.

2. Using available NIR sensors and optical transflectance dip probes, collect

spectral data based on peritoneal fluid of various glucose concentrations.

3. Apply multivariate calibration techniques for analysis of the spectral data

in order to:

a) Identify particular spectral regions useful in determining sample glu-

cose level.

b) Assess the dip probe’s performance in peritoneal fluid samples.

4. If time permits, compare the results from dip probe experiments with

other NIR measurement methods (e.g. Raman spectroscopy). Discuss the

results in terms of clinical relevance.
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Abstract

The aim of this study was to investigate the possibilities of using near infrared

spectroscopic measurements to detect and quantify glucose concentration in

peritoneal fluid samples. This was done with a fibre dip probe in samples ob-

tained from patients at St. Olavs Hospital. The measurements was done by

transflection in small sample volumes, hoping to shed some light the eventual

future application of this method in an implantable glucose sensor. The ac-

quired spectra were analysed with the use of the multivariate calibration tech-

niques PCA and PLSR. Particular useful wavelengths were identified by MW-

PLSR.
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1 Introduction

The ability to control blood glucose level is vital. Both hypoglycaemia and hy-

perglycaemia are conditions which untreated may lead to coma and death.

Diabetes is classified as an epidemic, and the number of diabetics grows fast

globally. The number of diabetics world wide are currently estimated to 387

million, and to reach 592 million by 2035 [1].

Today, diabetic patients rely on self monitoring of glucose levels. Often by

subcutaneous measurement of glucose concentration in the interstitial fluid.

This is a method with great uncertainty in the prediction of the actual blood

glucose (BG) concentration. These methods also rely on calibration by finger-

prick methods (2-4 times daily), which measures a small sample of blood, usu-

ally drawn from the tip of the finger. For the last decades a goal has been to

develop a noninvasive method for determination of BG. As this will ease the

life of diabetics significantly. The research has nearly exclusively focused on

NIR measurement in the subcutaneous tissue [2]. There is a race going on in

the development towards the first safe, reliable and clinically approved device

for non-invasive BG measurement.

However, these methods rely on the indirect prediction of BG through read-

ings in the interstitial fluid. The interstitial glucose levels experience a signifi-

cant delay in reflecting BG levels when compared to intravenous measurement.

The reported delay varies between 10 min to 45 min.

An artificial pancreas seeks to solve the diabetics lack of effective glucose

regulation. Thus it must utilize a reliable mode of measurement and a safe way

of administrating insulin release. This gives the rationale behind looking at the

peritoneum to meet both these requirements. The peritoneum is reported to

offer faster BG kinetics [3]. And it is a faster at taking up delivered insulin [4].

This work investigates the possibility for measuring BG in peritoneal fluid.

We apply a near infrared spectrophotometer equipped with a fibre dip probe
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to measure directly in peritoneal fluid samples. The samples are drawn from

patients at St. Olavs Hospital and analysed ex-vivo.

The development of near infrared spectroscopy are closely related to the de-

velopment of multivariate calibration techniques. And especially principal com-

ponent analysis (PCA) and partial least squares regression (PLSR), which have

been necessary to be able to arrive at our results. The general attitude is that

glucose, at physiological levels, are below the detectable range of spectroscopes

[5]. Although, an approach measuring changes in hydrogen bonds in H2O as

an indicator of glucose concentration, has given some hints that it should be

possible [5].

The main results from our findings suggest that it is possible to detect glucose

at physiological levels in a sample fluid, partly consisting of peritoneal fluid.
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2 Theory

2.1 Diabetes mellitus and blood glucose regulation

Diabetes Mellitus Diabetes Mellitus is a metabolic disease which impairs an

individuals ability to keep blood glucose (BG) levels within the normal range.

Type 1 diabetes is characterized by the inability to produce insulin, it is an au-

toimmune disease in which the immune system attacks the body’s own tissue.

In particular, the β-cells located in the Islets of Langerhans in the pancreas are

destroyed. This is where insulin is normally secreted from. It is believed that

both genetic and viral factors are involved in type 1, although it is not yet well

understood [6]. Patients with type 2 diabetes, however, either show reduced

insulin secretion, or insulin resistance, or both. It is assumed that 90% of the

cases of diabetes are of type 2 [7].

In healthy individuals normal BG levels will primarily stay in the range

of 3.5-5.6 mmol/L (63-101 mg/dl), referred to as the euglycemic or normo-

glycemic range. After a meal the BG level will rise and then usually return to

the normal range within 3 hours [4]. BG levels above and below normoglycemic

range are referred to as hyperglycemic or hypoglycemic, respectively. The BG

levels during fasting are usually examined when determining whether a patient

is diabetic or not. Alternatively, when the BG levels after a carbohydrate-rich

meal remains abnormally high, this indicates diabetes type 1 or 2. Patients with

BG during fasting which does not decrease below 6.9 mmol/L (125 mg/dl) will

be diagnosed with diabetes. Also, patients with BG levels measured to stay be-

tween 5.6 and 6.9 mmol/L (100-125 mg/dl) are referred to as having impaired

fasting glucose and may be diagnosed with pre-diabetes, considered to be in

danger of developing diabetes type 2 [8].
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Tight regulation of blood glucose is vital to maintain normal body function.

The two signalling hormones insulin and glucagon are the main part of the

glucose-regulatory system. They are both secreted by the pancreas in order to

maintain the glucose-insulin homeostasis [7]. Insulin are secreted by β-cells in

response to high BG levels. While glucagon are secreted by α-cells in response

to low BG levels.

Figure 2.1: Illustration of the reciprocal effects of insulin and glucagon release

The inability to regulate BG levels to stay in the normoglycemic range leads

to a series of long term complications, and, in critical cases, to coma and death.

Pre-diabetes carries an increased risk of cardiovascular disease, and its treat-

ment can result in delay or prevention of the onset of type 2 diabetes [8].

In 2000 [6] reported that the number of people with diabetes mellitus world

wide was 100 million. In 2014 [1] reported an estimate of 387 million people,

and that the number will increase to 592 million by 2035. Also, in every coun-
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try the number of people with diabetes type 2 is increasing [1].

Today, treatment of diabetes type 1 is done on the basis of self monitoring of

BG. This is done with finger-prick methods which are painful, inconvenient and

does not give an accurate picture of the transient behaviour of BG levels. The

development of an artificial pancreas should solve the problem of closed loop

blood glucose control to achieve normoglycemia in diabetics. It is reported that

any delay of more than 6 minutes in the measurement will prevent effective

real-time feedback control [4].

With this background, we give a description of blood glucose sensors avail-

able today.

2.2 Blood glucose sensors

Both [4] and [9] classifies blood glucose sensors according to their invasive-

ness, based on the method of measurement and the placement of the sensor.

Invasive devices either penetrates the skin or are completely implanted to gain

direct access to interstitial fluid, peritoneal fluid or blood. Hospitalized patients

are typically monitored with invasive methods, extracting blood directly from

the intravenous space, and using lab instruments based on enzymatic methods

for ex-vivo BG determination. Minimally invasive devices are placed outside

the body, applying one of several existing fluid extraction methods to the skin

to obtain small samples of blood or interstitial fluid. Noninvasive methods are

devices that does not penetrate the skin, either as transdermal sensors, or to

measure body fluids including saliva, breath and the aqueous humour of the

eye [9].

Another classification are done with respect to the technology the sensors
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are based on. The main classes are optical methods and electro-chemical meth-

ods. Here we will present the methods for glucose measurement, as covered by

[4] and [9], with special attention to NIR spectroscopy. Note that the physical

properties, which is the foundation for each method, could be measured with

similar instrumentaion. An example is absorption and scatter change which

would both be measured by a spectroscope.

2.2.1 Infrared Absorption spectroscopy

The principles of infrared absorption are described in numerous works on the

basics of absorption spectroscopy, this presentation is based on [10] and [11].

Measurement of the absorption of light are one of the most used and researched

methods for determination of BG in noninvasive applications [4]. Infrared ab-

sorption methods relies on the fact that bonds between atoms vibrate at differ-

ent frequencies in the interaction with light. This causes light to be absorbed at

specific wavelengths depending on the composition of molecules in the material

being analysed. The molecular structure defines possible motions between the

atoms, this gives rise to a set of degrees of freedom determining the molecule’s

vibrational modes. These vibrational phenomena is seen as absorption bands

along the infrared spectrum. In general, a molecule with N atoms has 3N-6

modes of vibration. The basic vibrations are illustrated in figure 2.2.

The harmonic and anharmonic oscillator models are used to describe the

vibrations from a mechanical perspective. In the harmonic case the model is

given by two masses connected by a spring where Hooke’s law gives the po-

tential energy. Quantum mechanic treatment shows that only discrete energy

levels, and only transitions between neighbouring levels are allowed. This leads

to the frequency of the fundamental vibrations. Extending the harmonic case to

include:

• Repulsive forces between atoms.
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• Dissociation of the atomic bonds when strongly extended.

Figure 2.2: Basic vibrational
modes of a molecule: a) symmet-
rical stretching; b) asymmetrical
stretching; c) bending; d) rocking;
e) wagging; f) twisting. Adapted
from [12]

We get the anharmonic model where the

energy levels are no longer equidistant as in

the harmonic case. Further, it allows transi-

tions over two or three or more energy lev-

els, which are called the first, second, and so

on, overtones. We also observe combinations

of the sum and difference between different

transitions.

The Beer-Lambert law is used to relate the

absorption of light to the composition of the

sample. The law can be expressed in terms of

transmission, T:

T =
I

I0
= e−εLc (2.1)

as it states that there is an exponential re-

lationship between the transmission and the

product of ε, the molar extinction coefficient

[(mol/l)−1cm−1], c, the molar concentration [mol/l], and L, the optical path

length [cm]. Here I0 is the intensity of the incident optical radiation, and I is

the transmitted intensity. Measurements of absorption are usually reported in

absorbance, A, defined by

A = −log( I
I0
) = εLc (2.2)

such that there is a linear relationship between the absorbance and the con-

centration of the absorbing material. Then the total absorption in the analysed

material becomes the sum of the absorbance of each species at that particular



8 2 Theory

wavelength.

Figure 2.3: The electromagnetic spectrum and its subregions, adapted from [13]

Figure2.3 shows the electromagnetic spectrum with the classes of electro-

magnetic radiation. The infrared region are further divided into the near in-

frared (NIR), mid infrared (MIR) and the far infrared (FIR) region. Measure-

ments of the infrared absorption spectrum is traditionally separated into the

study of the NIR range and the MIR range. This is due to the vibrational phe-

nomena observed in these ranges, and the practical technological solutions.

Generally, a spectroscope consists of a light source and a detector. The light

source is used to send light at the sample, which then may interact in several

ways. Some light are reflected, some are transmitted and some are scattered. A

detector is set up to collect the light, often selectively for either the reflected, the

transmitted or the scattered part. The combination of light source and detector

technology dictates which spectral ranges can be measured.

Mid IR sensors The fundamental vibrations of molecules are found in the

MIR range. This is primarily what makes the MIR region attractive for absorp-

tion spectroscopy. The range of (500 − 2000 cm−1) is often referred to as the

fingerprint region of organic molecules. As this region is used for identification

of chemicals.

MIR sensors have been studied for the use in quantitative glucose analysis.

Measurements of aqueous glucose solutions and subcutaneous measurements

have been performed [14; 4].
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Near IR sensors In the NIR range we find overtones of the fundamental vi-

brations and bands caused by the combination of different vibrational modes.

The specificity of NIR spectroscopy are strongly decreased in comparison with

the MIR methods. This is mainly due to the overlap of these bands [10]. The

observed absorption bands can also be 100 to 1000 times weaker than the fun-

damental bands [11].

[15] gives a list of the distinguishing characteristics of commercially avail-

able NIR instruments. These are:

Optical configuration
Scan rates
Source type
Detector type
Sample averaging technique
Dustproofing
Waterproofing
Vibration-tolerant
Optimized for transmittance/reflectance

Table 2.1: Distinguishing characteristics of NIR instrumentation

Of these characteristics, the most descriptive of the technology used in a cer-

tain instrument are source type, detector type and optical configuration. The

most frequently used detectors are based on silicon, PbS and InGaAs photo-

conductive materials, while the most frequently used light source is a halogen-

tungsten lamp [11]. The optical configuration of an instrument can be classified

by whether it is based on filter (interference or Acousto-optical), LED, disper-

sive optics or Fourier-transform.

• Interference filters were used in the first commercially available NIR in-

struments [15]. Fabri-Perrot filters were used as wavelength selectors for

the reflected/transmitted light. More recently acousto-optical tunable fil-

ters are used to make instruments without movable parts. They work by
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letting a radio frequency signal excite a piezoelectric material which is at-

tached to a birefringent crystal. This induces acoustic waves in the crystal

which causes refraction of the light in a narrow wavelength band. The

light passes through the crystal and produces two monochromatic beams.

The radio frequency controls the wavelength of the output beams.

• LED based instruments uses LED as the light source. They can either pro-

duce broad, polychromatic light, or use a set of LEDs to produce narrow

bands (around 30 nm bandwidth) at selected wavelengths. This is utilized

as a method to make cheap and portable NIR sensors. LEDs in the range

of 700-1100 nm are available at low cost, while LEDs operating at higher

wavelengths are more expensive. Use of particular wavelengths instead

of a broad spectra is contributing to specialize the instruments for qual-

itative and quantitative analyses of particular materials. Studies directed

towards implantable, LED based BG sensors has been conducted [2].

• Dispersive optics can be configured as predispersive or postdispersive, de-

pending the placement of the diffraction grating. The diffraction grating’s

role is to disperse the polychromatic light, break it into its constituent

parts, where the spectral resolution will be determined by the size of the

grating. A moving diffraction grating will either send monochromatic light

through the sample (predeispersively) to the detector, or disperse the light

after having passed through the sample (postdispersive). A nonmoving

grating, however, is the modern alternative, it works postdispersively by

sending the light onto an array of PbS and InGaAs detectors.

• Fourier-transform spectrophotometers use Michelson-interferometers. They

work by letting the light from the source hit a mirror which splits it into

two beams. One beam reflects off a fixed mirror while the other is re-

flected off a movable mirror, before they are joined and sent into the
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detector. This gives an interferogram of intensities as a function of the dif-

ference in path length between the two beams. Fourier transform is then

used to recover the intensities of the transmitted or reflected light as a

function of wavelength.

Figure 2.4: Spectra of aqueous glucose with water spectra subtracted. Figure from [6]

The two wavelength regions in the NIR band that are most commonly used

in glucose measurements are the first overtone band at 1560− 1850nm, and the

combination band at 2080− 2325nm [16].

Previous NIR studies There are done numerous studies with NIR sensors in

whole blood, blood plasma and artificial physiological solutions. However, at

present there has not been reported any results from measurement in peritoneal

fluid. A study established that glucose can be measured in blood in vitro to ±

0.83 mmol/l (15 mg/dl) using NIR sensors and mulitple wavelengths. It is not

clear which wavelengths are being used in particular, but they state that they

use multiple linear regression and PLS to make predictions of glucose value,

pathlengths over 1 mm yielded less successful results due to poor signal to

noise ratio [17]. In a subsequent study they applied an array of six diodes for
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glucose determination in bovine blood samples, and got similar results [2].

2.2.2 Scatter change

Light scattering is a result of the light dispersing when interacting with scat-

tering particles in the medium and differences in the refractive index of the

substances in the medium. Increase in glucose concentration leads to grater re-

fractive index of blood plasma and interstitial fluid. The scattering coefficient is

a factor that expresses the attenuation caused by scattering:

µs = f(ρ, a, g,
ncell

cmedium

) (2.3)

where ρ is the number of density of scattering cells in the observation volume, a

is the diameter of the cells, g is the anisotropy factor (the average cosine of the

angle at which a photon is scattered), ncell is the refractive index of the cells,

and nmedium is the refractive index of interstitial fluid. The scattering effect is

calculated from measurements of diffuse reflectance, and can be achieved by a

set-up similar to that of absorbance measurements.

2.2.3 Raman spectrometry

Raman scattering is one of two types of photon scattering which may occur

when photons interact with molecules.

• Elastic scattering, or Rayleigh scattering, is the case when the incident

photon collides with the molecule with no exchange of energy. The photon

preserves its energy and frequency.

• Inelastic scattering, or Raman scattering, causes the incident photon to

exchange energy with the molecule in an inelastic collision. This results

in a scattered photon with a shifted frequency.
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The energy difference caused by the inelastic collision is called the Raman

shift:

Ev = Ei − Es (2.4)

where Ei is the energy of the incident photon, Es is the energy of the scattered

photon, and Ev is the vibrational energy of the molecule. The energy of the

resulting scattered photon could be higher (called anti-Stokes shift) or lower

(called Stokes shift) than that of the incident photon. The amount of photons

of each energy level are counted and produces a vibrational spectra. Most pho-

ton collisions are elastic, however, and only 0.001% of the incident light are

given off as Raman scattering. The resulting spectra will be independent of the

excitation frequency used. One advantage of the Raman scattering method is

that it is insensitive to water absorption, however, the same insensitivity applies

to all measured substances due to the weak Raman signal.

2.2.4 Polarimetry

Polarimetry is based on measuring the change in polarisation observed in light

passing through a solution containing an optical active material. Glucose is

an optically active molecule and the amount of rotation is linearly dependent

on the concentration of glucose in a solution [4]. As with absorption sensors,

several factors influence the specificity of the polarimetric measurements. How-

ever, the technological solution for polarimetric sensors, make them great can-

didates for miniaturization [6].

2.2.5 Electrochemical

Electrochemical based methods can be categorized as enzymatic and non-enzymatic.

They use an electrode with a polarizing voltage applied, and measures the cur-

rent resulting from an electrochemical reaction with glucose.
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Enzymatic In enzymatic approaches, a glucose specific enzyme, typically glu-

cose oxidase (GOX), catalyzes the oxidation of glucose to gluconolactone. In

this process, the enzyme is converted to its reduced form. The redox cofactor of

the enzyme is covalently bonded to the working electrode, thus facilitating the

reoxidation of enzymes by direct electron transfer from the working electrode.

The process is given by the following reactions:

Glucose + GOX(FAD)→ Gluconolactone + GOX(FADH2) (2.5)

GOX(FADH2)
AG/AG+

−−−−−→
V

GOX + 2H+ + 2e− (2.6)

This results in a current which can be correlated to the glucose concentra-

tion.

The ABL 725 Radiometer (which we have used for reference measurements

of glucose concentration) applies a similar approach. An electrode with a multi-

layer membrane is used. A silver cathode, platinum anode pair is used to mea-

sure the current due to oxidation of H2O2. The outer membrane layer is per-

meable to glucose. The glucose is transported from the sample across the mem-

brane and into an enzyme layer where it is converted to gluconic acid by:

Glucose + O2 → Gluconicacid + H2O2 (2.7)

the H2O2 is transported across the inner membrane to the anode where it is

oxidized:

H2O2 → 2H+ +O2 + 2e− (2.8)

With an applied voltage, a current is produced which is proportional to the

amount of H2O2, which again is proportional to the amount of glucose.

Other variations of enzymatic methods exists, and are described in [9].
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Non-enzymatic Non-enzymatic glucose detection is based on direct electro-

oxidation of glucose to gluconic acid at electrodes nanostructured to get the

properties of high surface area and electrocatalytic activity. This process is de-

scribed by the following reaction:

Glucose
Ag/Ag+−−−−→

V
Gluconolactone + 2H− + 2e− (2.9)

The resulting current is correlated with glucose concentration.

2.2.6 Fluorescent Techniques

There are two categories of fluorescence based techniques: glucose-oxidase

based and affinity binding sensors.

Sensors in the first category use the electroenzymatic oxidation of glucose

by glucose-oxidase GOX! in order to generate an optically detectable glucose-

dependent signal.

Fluorescent affinity-binding sensors utilize competitive binding between glu-

cose and a suitably labeled fluorescent compound to a common receptor site.

In general, fluorescence sensors offer the advantage that can be made highly

specific to glucose and eliminate many of the potential interferences common

with other techniques. However, they suffer the serious drawback that in all

cases exogenous chemistry is required which must be introduced to the body

or sample. Additionally, the chemistry may be susceptible to degradation over

time.

Other methods, including light diffraction and dielectric spectroscopy, exist

and are described in [4; 9; 6].

2.2.7 Intraperitoneal glucose sensing

There are some issues that has to be explored in the development of IP glucose

sensing. One is the dynamics of the IP fluid, it is not completely known how BG
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levels is reflected in th IP fluid, although studies has shown strong correlation,

and short time delay between BG and intraperitoneal glucose levels [3]. This is

very promising for realising an artificial pancreas, based on intraperitoneal glu-

cose sensing and insulin delivery. A system may also eventually supply glucagon

to better avoid hypoglycemia.

Almost all research are investigating measurements of blood glucose either

done in blood samples, both in-vivo and ex-vivo, or in interstitial fluid (ISF),

both subcutaneously and transcutaneously. Therefore, these methods should

be applicable to peritoneal fluid as well. This assumption is based on the fact

that the composition of peritoneal fluid is similar to that of blood plasma, and

contains approximately 90% water [18]. Still, the presence of confounding ma-

terial as metabolites and proteins makes specific glucose sensing difficult .

One challenge with sensors placed in blood and interstitial fluid is biofoul-

ing, seen as a biofilm layer covering the implanted sensor. However, the situ-

ation may be better in the peritoneum as it is considered less immunoreactive

[7]

Another advantage of peritoneal measurement given by [3], is that it is ex-

pected to be robust toward physiological fluctuations, which are a major prob-

lem with subcutaneous measurements.

It appears to be great potential in developing a glucose sensor specialised for

the peritoneal cavity.

2.3 Multivariate calibration

The problem of predicting blood glucose concentration from sensor readings is

called the calibration problem and is best dealt with by means of multivariate

calibration techniques. Partial least squares regression (PLSR) has been widely

employed in the treatment of data from NIR measurements [19]. Both principal

component analysis (PCA) and partial least squares regression (PLSR) are bilin-
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ear modeling methods which seeks to reduce datasets to a lesser dimensional

space.

Principal component analysis is a singular value decomposition of the X co-

variance matrix. X in our case is the acquired spectral data, consisting of xk

samples times n measurement variables. Each principal component is found as

the largest eigenvector of the covariance matrix in an iterative process. The

extracted component is then subtracted from the data, and the process is re-

peated. Each consecutive component explains less of the observed variance in

the data.

Partial least squares regression is regression based on partial least-square

models. Components, the latent variables of the X data matrix, are extracted as

in PCA, however, now from the explained X/Y covariance. Where Y in our case

is glucose concentration. Each consecutive PC may be estimated by extracting

the largest eigenvector of the remaining residual X/Y covariance matrix [20].

The relationships in the data can be found by projecting the X and Y space on

low dimensional hyperplanes. The model finds the multidimensional direction

in the X space that explains the maximum multidimensional variance in the Y

space.

These methods are used extensively in 5. For details about multivariate anal-

ysis and in particular the PCA and PLSR methods, see [20].
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3 Aim of the study

The aim of this study was to investigate the possibilities of using near infrared

spectroscopic measurements to detect and quantify glucose concentration in

peritoneal fluid samples. This was done with a fibre dip probe in samples ob-

tained from patients at St. Olavs Hospital. The measurements was done by

transflection in small sample volumes, hoping to shed some light the eventual

future application of this method in an implantable glucose sensor. The ac-

quired spectra were analysed with the use of the multivariate calibration tech-

niques PCA and PLSR. Particular useful wavelengths were identified by MW-

PLSR.
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4 Acquisition of Spectral Data

A general procedure for data acquisition and analysis is given in [21]. The sec-

tion: how to develop and interpret a PLSR model outlines 6 steps for a general

methodology, where Step 2 is Get good data. Here, the design of the experimen-

tal setup will be described. This was an iterative process where the resulting

measurements from one experiment were used to improve the protocol for the

next experiment. The procedures are described accompanied with some com-

ments on intermediate results. The goal was to make the measurements repeat-

able and accurate, by minimising the effect of confounding variables described

in chapter 2.

4.1 FOSS NIRSystems 6500

Light
source

Si, PbS
Detector

Diffraction
grating

Figure 4.1: Foss 6500 with fibre optic dip probe

The spectrophotometer available for experimentation was the FOSS NIRSys-

tems 6500 found in Bjørn Kåre Alsberg’s hyperspectral imaging laboratory at

the department of chemistry. The FOSS instrument uses a halogen-tungsten

lamp to produce broadband light directed at the sample. The reflected light is

sent through a movable diffraction grating, such that the detector scans across
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the range 400 to 2500 nm. For the range 400-1100 nm, it uses a silicon detector,

and in the range 1100-2500 a lead-sulfide detector.

It is equipped with a SmartProbe Analyzer, a multi-fibre interactance immer-

sion dip probe which can be used for transflectance and reflectance measure-

ments in solids, powders and liquids. We were interested in it’s capability of

transflectance measurement in liquids. The optical fibre is 1.5 m long and the

dip probe. The output light is sent through a bundle of fibres surrounding the

fibres used to collect the reflected/transflected light.

Figure 4.2: The fibre dip probe immersed in Ringer’s solution in a 100 ml Griffin beaker

A mirror to reflect and focus the light is attached to the end of the probe.

The optical pathlength is the length of the path that the light travels along

when it goes out of the fibre, interacts with the sample and back into the fibre.

In order to adjust the pathlength, spacer rings of varying thickness are placed

on the probe, such that the mirror housing are shifted up or down relative

to the tip of the fibre probe. The mirror is held in place by four screws. The
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Figure 4.3: The end of the fibre dip probe. The output light is directed through the
outer fibres and collected in the inner fibre bundle, separated by a metal casing.

Vision software provided by FOSS is used as interface with the spectroscope.

A data collection method has to be defined, setting the instrument parameters

for the data acquisition of the current operational mode. For all measurements

conducted here, we have used the same data collection method, defined as "dip

probe ip" shown in figure4.4

Before operation can ensue the lamp needs to warm up, and the internal

temperature stabilize. This takes approximately 30 minutes. Before the instru-

ment is stable, there are far to much noise for any data collection to be rea-

sonable. An instrument performance test can be run to monitor the state of the

instrument, and should be performed routinely. The results from this indicates

the operational qualification of the instrument. In particular, it includes a test

of the amount of noise over the whole spectral region. The test is "passed" if the

noise are below certain user defined limits. We have used the default settings
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Figure 4.4: The Data Collection Method setting the parameters for data acquisition
with Vision

for these limits when conducting the performance test.

4.2 Ringer’s Solution and Glucose

Ringer’s solution Ringer’s solution is a isotonic solution with electrolyte con-

tents similar to the interstitial fluid of the body. It is normally used in connection

with intravenous therapy. The type we have used is Ringer Acetate produced by

Fresenius Kabi, it was obtained from St. Olavs Hospital.



4 Acquisition of Spectral Data 23

Contents per 1000 ml
Natrium chlorid 5.9 g
Natrium acetate 4.1 g
Kalium chlorid 300 mg
Calcium chlorid 295 mg
Magnesium chlorid 200 mg
Elektrolytter [mmol/l]
Na+ 131
K+ 4
Ca2+ 2
Mg2+ 1
Cl− 112
acetate 30

Table 4.1: Contents of Ringer Acetate

Glucose The glucose used is dextrose, produced by CreArome (Sweden), it

contains 91% carbohydrate of which 99.5% are glucose. The remaining con-

tents is not declared on the package and are unknown.

For the preparation of the desired sample glucose concentration, the same

procedure where followed for all experiments. A lab weighing scale with pre-

cision of 0.01 g was used. A 10 ml volumetric flask was placed on the scale,

and the scale reset. Glucose was carefully added until the desired weight was

reached. Then water, Ringer’s solution or peritoneal fluid was added up to the

10 ml mark.

4.3 Initial Experiments With FOSS 6500

The first experiments were performed as a test run of the equipment, and to

gain insight of the disturbances that influenced the obtained spectral data. The

very first test run were performed with water prepared with 3 different glu-

cose concentrations and measured at different optical pathlengths. This data

contained noise and disturbances which made it hard to compare the acquired

spectra to each other.
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The next experiment were more carefully planned and were performed with

glucose in Ringer Acetate.

Sample preparation A sample of Ringer acetate with glucose concentration

of 10mmol/l were prepared, sample G5. We obtained a series of 4 other sam-

ples at the desired glucose concentration by diluting the G5 sample with an

appropriate amount of Ringer without added glucose.

Sample Ringer G5 [mmol/l]
G1 2/3 0 3.33
G2 1/2 1/2 5
G3 1/3 2/3 6.67
G4 1/6 5/6 8.33
G5 0 1 10

Table 4.2: Parts of Ringer and G5 in each sample in the first Ringer-glucose series

The initial experiments did not give any convincing results for determining

glucose concentration. Even though PLSR yielded excellent predictive capabil-

ity. The main problem was that the measurements were not taken in random

order, bur rather in order of increasing glucose concentration. This made it dif-

ficult to identify any useful information in the analysis due to the dominant

effect of instrumental drift. Ending up with good prediction results based on

the wrong phenomena is a possible pitfall when using PLSR. Great care should

be taken when interpreting the given results.

4.4 Development of Experiment Protocol

An iterative process of trial and failure best describes the development of the

resulting experiment protocol for the acquisition of spectral data. The goal of

such a protocol is to describe and explain the performed experiment in such de-

tail that the results can be reproduced correctly. Noise and sources of random

variation in the experimental parameters had to be removed. The parameters
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related to the experimental setup, not given by the contents of the sample fluid,

are sought to be held constant. Some of these parameters are given by: Path-

length variation, bubbles, temperature, noise and disturbances from radiating

sources in the lab, variations in humidity, the position of the fibre and drift in

the instrument. We tried to deal with the ones with greatest influence on the

experimental setup.

4.4.1 Sample volume

FIBER

DIP PROBE SPACER

12.5

11

19

19

12.5
13

1

Figure 4.5: Sketch of the cell needed to perform measurements in small sample vol-
umes. Dip probe measurements in mm.

One of the specifications in the development of an implantable sensor is

the volume of the sample used for measurement. This will be given by the

design of the sensor, however, in our case there was also a practical restriction

by the amount of available peritoneal fluid. This lead to the need for a small

as possible sample volume. Then we could also produce multiple replicates of

the samples when there are enough fluid available from one patient. It was

important that it would be transparent enough to allow visual inspection of

the sample between the fibre tip and the mirror. The measurements needed to

make a sample volume of 2 ml were calculated. The sketch are seen in figure
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4.5.

Figure 4.6: The fibre dip probe immersed in Ringer’s solution in the new sample cell.

A sample cell to meet these requirements was produced in the workshop at

the department of engineering cybernetics. The cell is pictured in figure4.6.

4.4.2 Temperature

To minimize the effect of temperature change on the spectra, the sample tem-

perature needed to be controlled. We solved this in a simple way by storing

the samples in a water bath with manually controlled temperature. The tem-

perature was measured using a digital thermocouple thermometer. Both the

temperature of the water in the bath and the samples were measured and mon-

itored during the experiments. The temperature in the water bath proved to be

more stable than the variations experienced when keeping the samples at room

temperature in between measurements.
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Figure 4.7: Peritoneal fluid samples kept in water during experiments. Waterbath gave
stable sample temperature.

4.4.3 Bubbles

When immersing the dip probe in the sample liquid, air tended to form bubbles

that would gather between the mirror and the tip of the fibre. Bubbles under a

certain diameter would not cause any interference with the measurement. How-

ever, with larger bubbles of air present, the data was rendered useless, since,

in reality, only the absorbance of air had been measured. When present they

were easily detected by inspection of the measured spectra. In peritoneal fluid,

which seemed to possess higher viscosity than water and Ringer’s solution, bub-

bles would more easily form when the fibre probe was inserted into the sample

cell. To avoid bubbles from forming, the probe had to be inserted carefully into

the sample cell at an angle such that the air did not get trapped between the

mirror and fibre tip. With this precaution, the problem was almost eliminated.

If the effect of bubbles was detected during subsequent experiments, the probe

was removed and inserted again for a new measurement.
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4.4.4 Optical path length

When measuring solutions which mainly contains water, the distance should be

as small as possible, to avoid saturation in the water absorption peaks. This is to

maintain as much of the spectral information as possible. The pathlength were

adjusted with a set of spacer rings. The thinnest of the original spacer rings

from FOSS was 3.8 mm. The 3.8 mm ring gave a gap between the mirror and

fibre of 2 mm, and thus an optical pathlength of 4 mm. Two other rings found

in the lab were used to obtain optical pathlengths of 2 mm and 1.4 mm. A new

ring was produced in the workshop at department of engineering cybernetics

in order to achieve a pathlength of 0.4 mm.

Small changes in pathlength leads to disturbances in the acquired spectra.

It is not hard to see the significant difference between the three spectra from

peritoneal fluid samples in figure4.8, although they are all measured at a path-

length of 0.4mm. This difference would be expected as the result from a change

in pathlength, according to Beer-Lambert’s law (equation 2.2). The observation

that the difference seems consistent along the whole spectrum tells us that it is

not a phenomenon related to specific wavelengths.

4.4.5 Disturbances in path length

The effect of variation in pathlength on the acquired spectra during repeated

measurements is not too hard to identify, and should in theory neither be hard

to correct for. However, it represents another unknown parameter in the cal-

ibration, and if it is possible to avoid this variation, we would prefer to keep

it out of the equation. It can also be difficult to distinguish variation on path-

length from bias caused by instrumental drift. After the initial experiments it

became obvious that it was difficult to keep the pathlength constant. Taking

reference measurements, wiping the mirror, tightening the screws and relocat-

ing the fibre were all operations which seemed to introduce slight changes in
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Figure 4.8: Absorbance spectra collected using different sized spacer rings giving dif-
ferent optical pathlength. Although the same spacer ring is used for acquisition of the
PF (peritoneal fluid) spectra, shifts in the spectra are clearly visible.

the optical pathlength. Seemingly, the spectra randomly jumped up and down

between measurements.

Great improvement were seen when we fastened the dip probe with a clamp

to a supporting stand. Then we could hold the dip probe in the same position,

also minimizing movement of the fibre. We also cleaned the mirror between

measurements, without removing the mirror from the fibre. This meant not

having to tighten and loose the screws. An operation which could change the

position of the mirror.

The final experimental protocol was used for subequent measuremnts.
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4.5 Experiment Protocol: Glucose in peritoneal fluid

Objective: Obtain spectral data of peritoneal fluid with varying glucose con-

centration in the physiological range. The data should be suitable for detection

and quantification of glucose.

Method: A series of different glucose concentrations are mixed from peri-

toneal fluid samples obtained from St. Olavs Hospital. Glucose is added to one

half of the sample volume to a concentration of 10 mmol/l, this is sample G5.

The volume of each sample in the series should be minimum 2 ml.

Concentration of mixed series

Sample Peritoneal

Fluid

G4 [mmol/l]

G1 1 0 0

G2 0.75 0.25 2.5

G3 0.50 0.50 5

G4 0.25 0.75 7.5

G5 0 1 10

• One series is made from each patient. Depending on the amount of peri-

toneal fluid, a number of replicates are made. The concentration levels are

adjusted to the original glucose concentration and the amount of fluid.

• Vision is used to run "Instrument Performance Test" before the experiment

can start.

• "Wavelength Linearization" is performed each day the experiment is run-

ning.
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• Reference is set in the instrument in an empty sample cell before each

series of measurement. Spectrum of distilled water is also acquired.

Measurements

• Measurement is done with interactance immersion dip probe attached to

FOSS NIRSystems 6500.

• The sample is placed in a custom 2 ml sample cell.

• Sample temperature is controlled with a waterbath.

• Optical pathlength is set with a 2mm spacer ring, leaving the gap between

mirror and fibre at 0.2 mm, and the pathlength at 0.4 mm.

• The dip probe are held by a clamp in a support stand to avoid unnecessary

movement and disturbance in the fibre-mirror assembly.

• The samples are measured in random order, generated by the python

function shuffle.

Data The Acquired spectral data are exported from Vision to Excel.

Glucose time Replicate # ... Spectral data ...
Measured sample 1
Measured sample 2

Table 4.3: Data exported from Vision software

Material: Peritoneal fluid samples, Ringer Acetate, FOSS NIRSystems 6500

photospectrometer equipped with interactance immersion dip probe, Vision

software, weighing scale (precision 0.01g), thermocouple thermometer, glucose

powder.
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4.6 Temperature Effect

Temperature has a large and evident effect on the water spectra. This is well

known, and correction for this effect is needed in order to observe the effect

of varying glucose. One experiment were conducted were we had cooled the

samples prior to measurement and then let the samples heat back to room tem-

perature. We recorded temperatures from 10 to 25 C . In another experiment we

had heated the samples and then let them cool in room temperature. Recorded

temperature range of 38 to 23 C. We used the thermocouple for measuring the

temperature and kept the samples in water bath for more stable temperature

change.

4.7 High Glucose Concentration

Using the protocol we conducted experiments on Ringer’s solution with high

glucose concentration. A sample of Ringer Acetate were prepared having a glu-

cose concentration of 278 mmol/L (5000 mg/dl). Four samples of lower con-

centration were made by adding Ringer until desired glucose concentration

were reached. Thus we got a series of samples at 6 concentrations: The mea-

Sample G0 G1 G2 G3 G4 G5
Concentration
[mmol/L]

0 56 111 167 222 278

Table 4.4: Samples with high glucose concentration

surements were taken before the spacer ring for 0.4mm optical pathlength was

available, and were performed at an otpical pathlength of 2 mm.

4.8 Blood Gas Analyzer

Radiometer ABL 725 is the blood gas analyzer used at the animal laboratory at

St Olav’s Hospital. The method for glucose concentration determination is de-
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scribed in chapter 2 under electrochemical methods. The precision of the ABL

725 analyzer has been determined through performance testing as described

in [22]. Where it is reported that the measured value of a sample will deviate

from the true value by a maximum of±2SX . WhereSX is the standard deviation

given when considering uncertainty of bias on a random instrument for a single

measurement. While S0 is the standard deviation given for repeated measure-

ments within a short interval of time. We used a heparinized syringe to draw

fluid from the samples, which then where placed in the analyzer for extraction.

195µl of sample was drawn from the syringe. The reported standard deviations

for this mode of measuring are given in table 4.5.

Glucose level S0 SX

2 0.10 0.18
5 0.10 0.24
15 0.40 0.65

Table 4.5: Standard deviations for measurements on ABL725

The peritoneal fluid samples we measured had glucose levels in the upper

end of the measuring range and beyond. Also, the lowest measured values were

still in the upper physiological range. The measuring ranges of glucose and

lactate in the ABL 725 are given in table 4.6.

Unit Measuring range Reference range
Glucose mmol/l 0.0 - 24.9 3.9 - 5.8 in arterial blood

25 - 60
Lactate mmol/l 0.10 0.5 - 2.2 in venous blood

Table 4.6: Measuring ranges for glucose and lactate on the ABL 725, from [22]

4.9 Peritoneal Fluid Samples 1

The first peritoneal fluid samples acquired where mixed into a series. But later

dismissed due to the fact that they had fermented. This was seen from mea-
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surements at ABL 725, were the glucose concentration were low and the lactate

values high. A sure sign of fermentation. No further analysis were taken

4.10 Peritoneal Fluid Samples 2

ABL The blood gas measurements gave important findings: The lactate con-

centration in the samples from patient 4 were out of the physiological reference

range. They were measured to between 15 and 16 mmol/l. While the reference

range is 0.5-2.2 mmol/l. Also the glucose concentrations were measured to be-

tween 46 to 54 mmol/l. Therefore the samples from patient 4 were excluded

from future analysis.

Preparation 2 The samples where extracted from four patients at St. Olavs

Hospital. The samples were mixed into a series of increasing glucose concentra-

tion. We knew, from the previous samples, that the glucose concentration could

be higher than normal values or even outside the range we were interested in.

We added glucose to one half of the fluid from each patient and mixed them to

the desired glucose concentration. The plan for mixing the sample series was

based on the available volume of peritoneal fluid and the amount needed to be

measured three times on Foss 6500, Raman, FTIR, XDS and ABL725. Minimum

2ml for Foss 6500 (with some small consumption for each measurement, 0.3

ml for FTIR, 0.7 for Raman, 1 ml for XDS and 0.02 ml for ABL).

4.10.1 Measurements conducted at NOFIMA

We got the opportunity to measure the samples at NOFIMA, and their facilities

located at Ås. The goal was to see if other methods could give complemen-

tary spectral information. Especially, FTIR and Raman measurements should

ne insensitive to the high absorption of water. Also using the next generation

NIR spectrometer to investigate what spectral information is "missed" with a
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transflectance fibre dip probe setup when compared to regular transmission

measurement.

4.10.2 Metrohm XDS

Metrohm XDS analyzer is the next generation of the FOSS 6500 spectropho-

tometer. We used a rapid liquid module. The samples was put in quartz cu-

vettes with 1 mm path length placed in the automatic sample handler. Each

sample was measured three times in different cuvettes. 32 consecutive scans

was taken, and averaged to minimize noise, over the full range of the instru-

ment of 400-2500 nm. The spectral data are recorded with a resolution of 0.5

nm. The optical bandwidth of the instrument is 8.75 nm.

4.10.3 Raman Spectrometer

For the Raman measurements a LabRam HR 800 Raman microscope from Horiba

Scientific (France) was used. The HR 800 is an integrated Raman system com-

prising a microscope coupled confocally to an 800 nm focal length spectrograph

equipped with four switchable gratings. The microscope is an open BX41 confo-

cal microscope equipped with standard objectives (10x, 50x, and 100x, a long

distance 50 x objective and a macro 40 mm objective). The instrument only

provides punctual analysis, and no line scanning or duo-scan imaging is possi-

ble. The instrument is equipped with an air cooled Deep Depleted CCD detector

(1024 x 256 pixels), and two lasers (one internal HeNe laser and one external

785 nm diode laser). We used the HeNe laser at 632.8 nm. The peritoneal sam-

ples were pipetted into quartz cuvettes. Placed in the laser beam optics.

4.10.4 FTIR

The samples were transferred directly, in triplicate, to well plates (384 wells

) in 10µL droplets, and dried in a vacuum desiccator with silica gel at room
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temperature for 24 hours. FT-IR measurements were performed using a high-

throughput instrument (eXTension, HTS-XT with Tensor 27 Spectrophotometer,

Bruker Optik GmbH, Germany). The instrument was equipped with a deuter-

ated L-alanine doped tri-glycine sulfate (DLaTGS) detector. Spectra were recorded

in transmission mode in the spectral region from 4000 to 400 cm-1 with a res-

olution of 4 cm-1 Background spectra of an empty sample well were collected

before each measurement of the samples to account for variation in water vapor

and carbon dioxide.
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5 Analysis of Spectral Data

We have used The Unscrambler X software from CAMO, to perform most of

the PLSR, EMSC and outlier detection on the data sets. We have made some

plots and scripts in MATLAB R2014b. The MWPLSR procedure is implemented

in MWPLSR.mat and the EGA plots are generated by parkes.m

The general methodology and procedure for analysis of spectral data are

described in [21; 20], special attention are also given to NIR spectral data in

[20].

5.1 Preprocessing of Raw Data

In the multivariate calibration terminology, preprocessing refers to the process-

ing of the raw data before regression and prediction is done. The goal of prepro-

cessing is to remove noise from the data. This can be achieved by filtering high

frequency noise and using EMSC which is a method for removing the effect of

light scattering and other disturbances. Another approach is to take advantage

of a priori knowledge about disturbances and interferences and incorporate

them in the modelling process, one way to do this is described in [23].

5.1.1 Extended Multiplicative Scatter Correction

Multiplicative scatter correction (MSC) and extended MSC (EMSC), are used

to remove noise due to light scattering effects. The presentation of the EMSC

method given here is taken from [24]. EMSC aims to separate absorption from

additive, multiplicative, and wavelength dependent effects of uncontrolled light

scattering variations. Theoretically, for a solution of J absorbing constituents,

Beer-Lambert’s law gives the absorbance spectrum, for sample i as a linear

combination of the contributions from each of the absorbing constituents:



38 5 Analysis of Spectral Data

zi,chem = ci,1k
′
1 + ...+ ci,jk

′
j + ...+ ci,Jk

′
J (5.1)

where ci,j is the concentration, and kj is the absorptivity spectrum of the jth

constituent. For ideal conditions, with fixed optical pathlength, the measured

spectrum for sample i, is zi ≈ zi,chem. To approximate the physical effects related

to light scattering, the measured spectra is modelled as a scaled version of the

ideal spectra. The EMSC model is given as:

zi ≈ ai + bizi,chem + diλ+ eiλ
2 (5.2)

where the coefficients a and b represents the baseline offset and the path length,

respectively, relative to a reference spectrum. Coefficients d and e represents un-

known, smoothly wavelength dependent spectral variations between samples.

The EMSC method in Unscrambler calculates estimates of these coefficients and

apply the EMSC correction to remove the baseline and pathlength variations

and the wavelength dependent effects. The corrected spectra are given as:

zi,corrected = (zi − ai − diλ− eiλ2)/bi (5.3)

This corrected spectra represents the chemical absorbance information found

from the measured spectra: zi,corrected ≈ zi,chem

5.1.2 Derivative analysis

Derivatives are usually investigated in the search of structural information re-

garding the material under investigation. Also taking the second derivative will

remove baseline shifts and trends from spectra. Similar to the noise removal of

EMSC. The resulting spectra, however, does not at all look similar. A problem

with derivatives is that it introduces additional noise to the spectra. By taking

the derivative of a noisy signal you get more noise. With our measurements, we
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already are at the limit of acceptable SNR for glucose detection, so this should

not yield to much information. This is what we see from attempts at doing

PLSR at the derivative of the spectra. The only useful results of PLS regression

on derivative spectra come from the measurements of the samples with high

glucose concentration.

5.2 Wavelength Selection

Theoretically and under ideal conditions, adding spectral channels will always

improve the calibration models. However, these ideal conditions and assump-

tions are shown to be hard to achieve in real experiments, and therefore, re-

moving wavelengths that introduce noise to the calibration models will im-

prove the prediction performance [25; 26]. Generally the focus should be on

the wavelength regions between the water peaks. Where glucose has relatively

high absorption [2; 5].

5.2.1 Moving Window Partial Least-Squares

The method of moving window partial least-squares is described in [25]. It is

the procedure of applying PLSR to a window of the spectra of a certain size. By

moving the window along the spectrum and computing the corresponding sum

of squares of the residuals (SSR), we can get a picture of which wavelengths

that holds the most information. With this information we can also avoid the

parts of the spectra that contributes to uncertainty in the predictions. Thus, it

is an algorithm for selecting the spectral channels with least uncertainty. The

SSR are calculated at each point for prediction using 1 to A factors. This gives

us SSR as function of wavelength for A calibration models.
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5.3 Validation

Cross validation We have used cross-validation to asses the models predictive

ability on new data, and to find the optimal number of components used in

the model. When the amount of available data is limited, the cross-validation

approach has been shown to give better results than dividing the data into

calibration and test sets [27]. We can also see to what degree the model is

under-fitted or over-fitted when comparing the mean square error of prediction

(MSEP) with the cross-validated mean square error (MSECV). And choose the

optimal number of components as the number which yields the lowest cross-

validated prediction error.

Calibration and Test Set We have used measurements from 2 of the patients

as a training set for the calibration model. The measurements from the last

patient is used as new unknown input data for the calibration model to perform

regression on. Results from both methods of validation are presented

5.4 EGA

Error grid analysis is used to examine the accuracy of the results in a clinical

setting. In an error grid, the blood glucose values predicted from the measure-

ments from the method under investigation are plotted against the reference

values, acquired from measurements on an instrument assumed to hold higher

accuracy and used as a "gold standard". The plot is divided into zones which

classifies how wrong the estimated values are. Then, perfectly predicted val-

ues will lie along the diagonal, and the size of the prediction error determines

which zone the plotted value falls into. These zones vary with the glucose level,

because an erroneous estimate and the corresponding clinical action will have

different consequences depending on the real blood glucose value. As an exam-

ple, doing nothing in an hypoglycemic event is worse than if the blood glucose
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is slightly elevated, in the case where the measured value shows normoglycemic

conditions.

Figure 5.1: Comparison of the Parkes and Clarke error grid, adapted from [9]

Zone Associated risk
A Clinically accurate measurements, no effect on clinical action
B Altered clinical action, little or no effect on clinical outcome
C Altered clinical action, likely to affect clinical outcome
D Altered clinical action, could have significant clinical risk
E Altered clinical action, could have dangerous consequences

Table 5.1: Risk categories in Parkes error grid

The Clarke error grid has been widely used to assess the risk and accuracy of

new measurement devices. However, a major disadvantage with Clarke’s error

grid is that the zone boundaries are not connected sequentially, which means

that a small change in the measured glucose value may move the value from

zone A (correct measurement) to zone D (potentially dangerous, failure to de-

tect hypo or hyperglycemia), or vice versa [9]. Parkes’ grid [28] consists of

sequential boundaries, where an increase in the error will have to pass through

the zones, indicating the increased risk in using the measured value. Both

Clarke’s and Parkes’ grids are originally developed for evaluation of self moni-

toring blood glucose devices. Currently there are no consensus on the criteria to
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be used for evaluation of continuous glucose monitoring devices [9]. Here we

use Parkes’ grid as an indication of the performance of the predicted blood glu-

cose levels. The plots are created with parkes.m (a modified version of clarke.m,

from ), the risk zones and their limits were found in [29]. The risk categories

are defined in table 5.1. A histogram of the distribution of the data points with

respect to the zones are often given together with the plot, as a measure of the

accuracy of the investigated method.

5.5 Procedure for Analysis of Measurements

The steps in the analysis are similar for all data across experiments and mea-

suring methods.

1. Remove bad data

Generally, the first step is to remove obvious faulty measurements from

the spectral data. This could be due to bubbles or other foreign elements

which has disturbed the measurement process. This can be seen as an

empty spectra (recorded absorbance near zero for the whole spectrum),

or spectra which deviates significantly in shape from what is expected.

2. Noise and Smoothing

Next the data is smoothed, we have mainly used a moving average filter.

This can be justified by the fact that the spectral resolution generally is

higher than the bandwidth of the instrument. Also, vibrational phenom-

ena, particularly in the NIR region, has broad absorbance peaks. Smooth-

ing the data should then remove some of the high frequency noise without

removing important spectral information. EMSC is also part of removing

noise, in the form of scattering (and similar) effects.

3. PCA

PCA can yield information about the data, X, and design variables, Y, that
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impacts the data set in unwanted or unexpected ways. We can often gain

insight to how known disturbances as scattering or temperature influ-

ences the data.

4. PLSR

Finally we assess the ability to predict glucose levels in the data set by

PLSR. This is done in several rounds, to remove outliers which has not

been evident earlier, to compare spectral regions, and to validate.

With this as a general guide, the analysis of the experimental data was per-

formed as described in the next sections.

5.6 NIRS 6500

The results of the initial, temperature and high glucose concentration experi-

ments are presented here, as they contribute to the analysis of the peritoneal

fluid experiments. The results of the peritoneal fluid experiments are given in

chapter 6

5.6.1 Noise

As we can see from figure 5.2, there are significantly more noise in the upper

and lower end of the spectrum than in the middle part. Therefore it will be ad-

vantageous to omit these wavelengths in the following analysis and calibration.

The noise is caused by the scattering in the fibre, and in the optical configu-

ration generally, as well as white noise along the whole spectrum. We know

that Prediktor’s GlukoPred employs a detector with range 900-2000, so we will

focus our analyses on this range. This range would also be a good choice if

only taking the noise characteristic into consideration. We can see fluctuations

up to around 850 − 900 nm, and an gradual increase in intensity from around

1900 nm.
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Figure 5.2: Spectrum of the noise given by Instrument Performance Test

5.6.2 Initial Glucose Experiment

Although the experiment were conducted before the protocol was finished, we

ended up with a set of good data. This data will serve as an example analysis

while exposing a potential pitfall regarding interpretation of PLSR models.

5.6.3 Temperature Effect

From the loadings and scores of PLSR performed on the temperature data we

will try to identify the parts of the spectrum which are most sensitive to temper-

ature change. When we later find glucose specific wavelengths we can compare

them to the findings of this experiment. If the glucose wavelengths correspond

poorly to temperature effect, the predictions will be more robust to temperature

change.

We perform PLSR on the spectral data from the heating experiment.
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Figure 5.3: a) Scores against samples of increasing temperature. b) Factor 1 in the
range 900-2498 nm.

For the cooling experiment we got the following scores and factor 1:

Figure 5.4: a) Scores plotted against samples of decreasing temperature. b) Factor 1
in the range 900-2498 nm.

The first factor gives an explained Y-variance of 99%. The cross-validated

prediction values give:

Heating: Cooling:
R2 0.99 0.99
RMSE 0.35 0.42
Explained
Variance

99% 99%

Table 5.2: Statistics for prediction of temperature.
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The wavelengths most sensitive for temperature variations are the ones just

below and over the water peaks. At the water peak itself, there are a stationary

(in the sense that it’s absorbance does not change with temperature) point. The

overtones at 950 and 1150 are also seen in the plot of factor 1.

There sensitivity seems to be somewhat lower in the range between the wa-

terpeaks at 1450 and 1900. Which also seems to be the case between 950 and

1150. The temperature experiment, has a weakness in that the decrease and

increase in temperature are correlated with eventual instrumental drift.

5.6.4 High glucose concentration

The high glucose concentration experiment has samples with glucose in the

range 0− 278 mmol/l (0− 5000 mg/dl).

Sample: 0 1 2 3 4 5
Glucose [mmol/l] 0 56 111 167 222 278

Table 5.3: Glucose concentrations in the samples of the high concentration experiment.

All data seemed good from visual inspection of the spectra. We used moving

average smoothing, gap: 5. And subtracted the mean spectrum from all spectra.

This is shown in figure 5.5, and it is easy to distinguish the samples from each

other. The differences seen in the spectra are the ranges where variation in

glucose affects the spectra.

When the differences are so easily seen, prediction can be done without the

use of PLSR. However, the results are interesting for future reference. We can

see that the peaks at 1402 and 1870 correspond with the peaks in the temper-

ature loadings. This is problematic. In the region from 1400 and up, we see

a great correspondence between glucose concentration and the measured ab-

sorbance, except from the range neighbouring 1480. In these experiments the

temperature variation is 0.6◦C. It seems that this variation is not great enough

to cause considerable problems, at these glucose levels at least.
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Figure 5.5: Mean centered spectra of samples 0 to 5. The differences between high
and low concentration are clearly visible.

The range between 1480 and 1870 are also of great interest, in these wave-

lengths water absorption is at a relative minimum, while glucose absorption

has a broad peak. Although influenced by noise the peak at 2140 indicates a

good region to distinguish glucose levels. Since these measurements are taken

at 2

From figure 5.6a, we can see that scores of factor 1 alone can distinguish

the glucose levels in the respective samples. In figure 5.6b, we have the corre-

lation loadings for factor 1 and 2. This tells us to which degree each variable

contributes to the loading. The variables placed between the inner and outer

ellipses are the ones which contribute to a significant extent. Blue dots are X-

variables and red dots are Y-variables. The Y variable order, represents the order

the samples where measured in.

We clearly see that it does not contribute to factor 1, while temperature might

contribute in a minor way. We have also seen that the temperature sensitive
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Figure 5.6: Results from PLSR on high concentration data, a) Score of factor 1 and
2. b) Correlation loadings of factor 1 and 2. Variables in the outer ellipse contribute
significantly to the corresponding loading.

variables overlap with the variables responsible for the observed glucose varia-

tion. We believe this overlap also is the reason for the small correlation between

factor 1 and the temperature.

The excellent prediction of high glucose concentrations can be seen from

the PLSR model based on the smoothed, mean-centered data also pretreated

with EMSC in the range 900− 2000, shown in figure 5.7. Figure 5.7a shows the

predicted glucose values using only factor 1 with RMSE of 237 mg/dl or 4.7%.

Neither temperature (figure 5.7b) or measurement order (figure 5.7c) can be

predicted, even when using 3 factors. We can also see from figure 5.8, that

factor 1 clearly represents the difference in glucose concentration, as observed

in figure 5.5.

5.6.5 Peritoneal fluid samples

The measurements of the first three samples in the experiment, sample 1, 27

and 18 was removed from the dataset due to high sample temperature mea-

sured by the thermocouple. With the samples removed the variation in sample

temperature during the experiment was 0.6◦C.
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Figure 5.7: a) predicted glucose concentrations using factor 1, units in mg/dl. b) pre-
diction of temperature using factors 1 - 3, c) prediction of order of measurement using
factors 1-3.

Preprocessing 1 We first pretreated the measurements by applying moving

average smoothing with segment size 9 on all spectra. Then we applied EMSC
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Figure 5.8: Factor 1 obtained of PLSR model of high glucose concentration.

on the measurements of patients 1 - 3 in the range 900-2100 nm.

We performed the MWPLSR procedure on the pretreated and the raw data,

for measurements from patients 1 - 3. The result are seen in figure 5.10. The

raw and the smoothed data appear to give similar results. There are two promi-

nent "dips" in the residual value. These are found to be at 1350− 1460 nm and

1490 − 1620 nm. There are also two small features at 1730 nm and 1850 nm.

We note that the SSR values in the 1600 − 2100 nm range does not reflect

the observed importance of this range in the high concentration experiment.

Therefore, we will include the wavelengths around the two small features as

well, to see if they can contribute to the prediction. There are also consistently

lower SSR in all cases at 2042 nm. This may be related to the effect observed at

2140 nm in the high concentration experiment. However, the comparison may

not hold due to the amount of noise at these wavelengths in the former ex-
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Figure 5.9: Three spectra acquired from patient 1,2 and 3, respectively, plotted to-
gether. They are almost indistinguishable by visual inspection.

periment. It still represent an interesting region. The window size used for the

MWPLSR is 30 channels, or 60 nm. We choose the following set of wavelengths,

MW1: 1350− 1460, 1490− 1650, 1720− 1860 and 2010− 2070 nm.

The residual lines of the data after EMSC, exhibits other characteristics.

There are multiple narrow bands that are candidates for inclusion in a new set

of wavelengths. Now we select single wavelengths rather than bands. We have

chosen the wavelengths, P1: 978, 1162, 1378, 1428, 1512, 1558, 1620, 1672, 1744

and 1840 nm.

Preprocessing 2 Another way to preprocess the spectra are by performing

EMSC in the region 900-2100 nm, but now for the measurements of one pa-

tient at a time. This could be helpful in removing intereference specific to that

patient.

Since the measurements were taken in two repeated series. We could also

leave one series out to minimize the effect of instrument drift and bias. This
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Figure 5.10: Mowing Window Partial Least Squares Regression procedure, wavelength
in nm along the ordinate and logarithm of the sum of square of residuals (SSR) on the
abscissa. MWPLSR applied to: a) raw data; b) after moving average; c) after moving
average and EMSC on the range 900 - 2000 nm. Each line represents a number of
factors used in the model calibration.
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leaves a lot of possible combinations for the interpretation of the models. We

summarise these calibration models by looking at the cross-validated explained

Y-variance. This can be seen in figure 5.11.

Ideally, we would like to see a few factors explain close to 100% of the vari-

ance. From these plots we can see which factors contributes the most to explain

the original data. If many factors contribute by a small amount each, they are

most likely to represent random noise picked up in the PLSR correlation analy-

sis, and we end up with an overfitted system. Figure 5.11,i) and l) looks most

promising. These represent EMSC performed at each patient, using the P1 set of

wavelengths and using both measurement series and only series 2, respectively.

It is interesting that we seemingly get the best Y-variance explanation by P1.

Figure 5.11: The explained Y-variance for each generated model is plotted against the
number of factors used. These models are generated by using preprocessing 1 or 2
(EMSC on all measurements or separately on patients). Using the range 900-2100 nm,
MW1 or P1. And by either using measurements from both series or only series 2.
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mmol/l

Figure 5.12: Factor 2,3 and 4, the arrow indicates the direction of increasing glucose
in the factor space.

Figure 5.13: Factor 2,3 and 4, the arrow indicates direction of increasing glucose in
the factor space. While the ellipse marks the measured samples from patient 2.

From inspection of factors 2,3 and 4 in a 3D scatter plot, it seems the 3

factors can be sufficient to explain the Y-variance. Also, in the case of the model
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in figure 5.11,l) (factors in figure 5.13) the EMSC of each patient has helped in

making the model able to separate the measurements of patient 1 from those

of patient 2 and 3. The predicted glucose values are given in section 6.

Training and Test

We can use two patients as a training set while using the last as a test for

calibration. This can be done in 3 ways.

Training set Test set
T1 2,3 1
T2 1,3 2
T3 1,2 3

Table 5.4: Patients used for test set and training set.

For this we will use measurements from both series, preprocessing 2, and

the P1 wavelengths as this gave best results in the previous cross-validated

models. When comparing the performance of model i and l. We may look at

model RMSECV R2

i 0.96 0.85
l 0.89 0.87

Table 5.5: The cross validated root mean square error, and R2 coefficient are used for
comparison of model i) and l).

the values given in table 5.5. From this we may conclude that l is best based on

the lower RMSE. However when comparing the explained Y-variance curves in

figure 5.11, we can see that there is only one factor not contributing in the start.

Whereas model l has two factors not contributing, but with higher explained X-

variance. Also the optimal number of factors, represented by the maximum of

the Y-variance curve, are lower, which indicates that we have found more useful

factors. The predicted values from the training and test sets are given in section

6. We can see from figure 5.14, that there are problems in the validated test

sets.
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Figure 5.14: Plot of explained variance in test and training sets

5.7 Metrohm XDS

Remove spectra of samples 25-1, 26-2 and all replicates of 30 from analysis.

25-1 was due to a bubble in the sample during measurement. 26-2 and 30 was

other obvious anomalies, and was removed.

We start by conducting an MWPLSR on preporcessed data. As with the FOSS

measurements we use moving average smoothing here with gap 5, followed by

EMSC on the whole spectrum. Then we try to identify useful wavelengths from

the residual lines from the MWPLSR script.

We can see from figure 5.15 that we get another picture from the XDS in-

strument than the FOSS instrument. There are more information found in the

upper part of the spectrum. In particular at 2112 nm and at 2275 nm, these two

wavelengths promise to yield the most information, according to the MWPLSR.

Moving downwards we find the water peak at 1950 nm as the noisiest part

of the spectrum. As with the FOSS analysis, we try to choose the set of wave-

lengths which contributes most to the prediction. We choose the set of ranges

as: 930− 970, 1255− 1300, 1380− 1425, 1555− 1600, 1660− 1750, 1790− 1820,

2080 − 2120, and 2255 − 2295 nm. For a set of specific wavelengths, we choose

the nine that are marked in the figure, and in addition 1505 nm. We investi-

gate the predictive ability of these sets of wavelengths, together with the range
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Figure 5.15: MWPLSR applied to XDS data.

900− 2000 nm.

Adjusting for Cuvette The absorption added to the measurement due to the

quartz glass cuvettes was found to interfere with the analysis of the data. There

were three different cuvettes with three distinct cuvette spectra. We assume

that the spectra of the sample fluid measured in cuvette 2 and 3 are the same as

that measured in cuvette 1. That is, the difference between the spectra obtained

from each sample in the three cuvettes, are due to the differnce in the quartz

cuvettes, instrument drift and random noise. We then get the measurements in

cuvette 1 as:

S1 = R1 + 1 · kT
1 + v (5.4)
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The absorption spectra of the empty cuvette nr. 1 was measured and then sub-

tracted from all measurements taken in that cuvette.

R1 = S1 − 1 · kT
1 (5.5)

Where R1 represents the spectra of the sample fluid alone, S1 are the measured

spectra, and k1 is the mean of two measurments of the empty quartz cuvette.

In order to estimate the cuvette part of the spectra, we subtract R1 from S2 and

S3 to get the estimates of k2 and k3, respectively. The estimates of k2 and k3

are smoothed and subtracted from S2 and S3, such that the remaining R2 and

R3 is an estimate of the measurements with some noise. We note that this does

not yield the true results, but are done anyway to see what improvements can

be achieved by removing known interferences from the spectra.

Preprocessing We have used moving average smoothing with gap size 9 and

applied EMSC correction on the whole range.

Model Explained
Y-variance
% var

RMSE R2

PREP 900-2000 -64 2,4 0.01
PREP MW 83 0.97 0.83
PREP P 70 1,3 0.7
CR 900-2000 -30 2,45 NA
CR MW 83,4 0.98 0.83
CR P 76.9 1,18 0.77

Table 5.6: Stats for XDS test, PREP is preprocessin by moving average smoothing and
EMSC correction on all spectra. CR has in addition the cuvette spectra subtracted. MW
and P is the wavelengths found from MWPLSR

The predicted values are given in section 6. We found that the best results

are achieved when we are restricting the calibration to within measurements

from one patient. It is seen to have a great impact on the prediction results,

when we examine the spectra from patient 3 in figure 5.16.
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Figure 5.16: Improving the predictive ability by removing noise and outliers
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5.8 Raman

We have used the same procedure for preprocessing the data as with the NIR re-

sults. First we remove the spectra acquired from sample 20−3. Then we perfrom

smoothing by moving average, gap size 11, and performed EMSC correction on

the whole spectrum.

Overview of the results are given in 5.17

Figure 5.17: PLSR on Raman data did not yield good prediction
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5.9 FTIR

Water is removed from the spectra in the sample preparation, however different

sample thickness will lead to baseline variations according to Beer-Lamberts

law.

Again we use the same general procedure for preprocessing. We perform

smoothing by moving average, gap size 11, and perform EMSC correction on

the whole spectrum. We performed PLSR on the whole spectrum on patients

1,2 and 3, the PLSR results are seen in figure 5.18.

The first factor is seen to explain 85% of the Y-variance. The predicted values

are plotted in section 6. We have also included the predicted values from PLSR,

with only difference that it was performed on patients 1,2,3 and 4.
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Figure 5.18: a) scores from PLSR, the. b)
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6 Results

6.1 Foss 6500

6.1.1 Prediction Using Range From MWPLSR

Figure 6.1: Error grid analysis plot of model h and model k

Model h predicted using MW1, both measurement series and preprocessing 2.

Model k predicted using MW1, measurement series 2 and preprocessing 2.
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6.1.2 Prediction Using Particular Wavelengths

Figure 6.2: Error grid analysis plot of model i and model l

Model i predicted using P1, both measurement series and preprocessing 2.

Model l predicted using P1, measurement series 2 and preprocessing 2.
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6.1.3 Training and Test Set

Figure 6.3: Error grid analysis plot of predicted values using patient 2 and 3 as training
data, and patient 1 as test data

Figure 6.4: Error grid analysis plot of predicted values using patient 1 and 3 as training
data, and patient 2 as test data
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Figure 6.5: Error grid analysis plot of predicted values using patient 1 and 2 as training
data, and patient 3 as test data

6.2 XDS

6.2.1 Prediction Using Range From MWPLSR

Figure 6.6: Error grid analysis plot of predicted values from model generated from
a) preprocessed data b) preprocessed and cuvette adjusted by using MWPLSR wave-
lengths
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6.2.2 Prediction Using Particular Wavelengths

Figure 6.7: Error grid analysis plot of predicted values from model generated from
a) preprocessed data b) preprocessed and cuvette adjusted by using MWPLSR wave-
lengths
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6.2.3 Prediction by calibration on single patient

Figure 6.8: Error grid analysis plot of predicted values from model generated from
unpreprocessed data using MWPLSR wavelengths.

Figure 6.9: Error grid analysis plot of predicted values from model generated from
preprcessed and cuvette adjusted data using MWPLSR wavelengths. Bad data removed
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Figure 6.10: Error grid analysis plot of predicted values from model generated from
preprcessed and cuvette adjusted data using MWPLSR wavelengths. More bad data
removed

6.3 Raman

Figure 6.11: Not convincing prediction from Raman data.
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6.4 FTIR

6.4.1 Prediction with all patients

Figure 6.12: The predicted values from PLSR on patient 1,2,3,4

6.4.2 Prediction without patient 4

Figure 6.13: The predicted values from PLSR on patients 1,2,3
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7 Discussion

The XDS is a newer instrument than FOSS. Apart from that, different measure-

ment setup is used with the two instruments. We used a regular transmission

set up at 1 mm pathlength with the XDS, while a dip probe for transflectance

measurements at 0.4 mm pathlength was used with the FOSS. The older FOSS

showed greater noise characteristic than the XDS, part of this is introduced by

the fibre optics, while part of this is due to degradation of instrument parts as

it has been in operation since 1994, at least. The better signal-noise ratio in the

XDS can to a large degree explain the better results from the PLS regression.

The weak signal from glucose absorption is utterly dependent on an excellent

signal to noise ratio to obtain any degree of precision at the physiological con-

centrations.

7.1 IR information

The FTIR and Raman spectras give complementary information. Because the

vibrational phenomena that are Raman active are not observed by the FTIR

measurments and vice versa. Not studied what informatin is available in the

IR region to the same extent as in the NIR region. However, the analysis and

results come from the same general procedure that we have applied to the NIR

data.

7.2 One or all patients?

The regression models built from the data of one patient give better results

than the model generated from all patients. The reason for this could be the

variation in the peritoneal composition from patient to patient. This variation

may not be adequately compensated for in the generated regression model.

More information and data from peritoneal fluid and the variation between
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patients are needed to improve the prediction performance. Calibration of the

sensor for individual patients should be included in a prediction procedure.

A point in doing EMSC on measurements from single patients. Patient info is

considered known and EMSC could represent eventual efforts at incorporating

known interferences in the modeling.

The suggested explanation for this is that the observed differences from pa-

tient to patient would be in the amount of proteins, and other confounding ma-

terial, that is analytes which have a spectral signature similar to glucose. Thus

PLSR models which are calibrated for this changes should give better overall

results.

This would be outside the scope of this thesis, as we have focused on find-

ing specific glucose information. The experiments done here are inadequate

as a basis to comment on the presence of these other biological interferents.

New experiments are needed to give information on how these interfere with

the glucose calibration. This could be done by varying glucose and the other

relevant analytes in a factorial design.

7.3 EGA and clinical relevance

The clinical relevance is tested with the EGA plots. Even though the score well

in the plots, often the R2 is not that good. And the RMSECV could be high

but still get the results in A and B. The range measured in this study is also

to short to get the whole picture of performance in a clinical setting, so future

experiments should include a grater range of glucose levels to determine. About

3-20 mmol/l at least.
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8 Conclusion

In this study we have investigated the possibility of detecting and quantifying

glucose concentration, in the physiological range, in peritoneal fluid samples.

We have developed a protocol to use the FOSS 6500 spectrophotometer for

experiments on glucose concentration on peritoneal fluid.

By applying multivariate calibration techniques, we have analysed the ac-

quired data.

From experiments on high glucose concentration and temperature effect, we

have found the same interesting spectral regions as suggested in the literature.

Using the MWPLSR procedure we have successfully improved prediction

when using the given wavelengths. This results contributes to future research

on developing a NIR sensor using specific wavelengths.

While the results from FOSS 6500 are promising, there are certain issues in

the predictive ability of the NIR measurements, which we have discussed. We

observe similarities when analysing measurements taken with the XDS Metrohm

spectrometer.

While the FTIR measurements give good predictions the Raman measure-

ments does not yield any good results.
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9 Suggestions for future work

In this work we have hopefully taken a small step towards the goal of a working

implantable glucose sensor for the peritoneal cavity, and shed some light on

natural next steps towards APT’s goal of an artificial pancreas. Some ideas and

issues to consider are given here.

Peritoneal fluid samples A priority for future study should be to acquire sam-

ples of peritoneal fluid from healthy individuals as well as individuals with

diabetes type 1 or type 2. This is necessary in order to confirm or discard

the results from the presented experiments. It is not known to what extent

the fluid samples used here are representative to peritoneal fluid extracted

healthy patients. New experiments should include variations in other in-

terferences as well, e.g. proteins, hemoglobin, fat. A broader range of

glucose concentrations, as well as additional values should be considered

for future experiments.

Another issue is the storage of the samples from time of extraction until

they are measured. Ideally measurements should be done immediately

after extraction because biological material will degrade over time. Both

measurements by spectroscope and reference method (ABL 725 or other)

should be conducted as soon as possible following extraction. A possibility

is to freeze the samples to stop the biological processes, however, it is

possible that this will have an effect on the glucose measurements.

Peritoneal fluid composition Investigation into what components in peritoneal

fluid one could expect to see interferences from in the NIR region. Make

an overwiev over what absorption bands glucose share with the other

components in peritoneal fluid, and combine this with experimental re-

sults from wavelength selection analysis.

Compare measurements in whole blood, blood plasma and peritoneal



76 9 Suggestions for future work

fluid to demonstrate the benefits of peritoneum as a measuring site. Ide-

ally in an in-vivo experiment with simultaneous measurments at different

locations by NIR sensor, combined with reference measurements with glu-

coset and blood gas analyser.

Measuring specific wavelengths The measurements taken on Foss 6500 and

the XDS instruments, were performed using the instruments auto-gain

functionality. This adjusts the gain to match the absorbance of the mea-

sured spectra in order to obtain the most spectral information. The water

absorption dominates the spectra, and the gain are adjusted accordingly.

The pathlength was attempted to be held at a minimum for the trans-

flectance probe, so as to avoid saturation in the spectra. A possibility is

to only measure the spectra between the water peaks in the NIR region.

Then one could measure at a longer pathlength, thus acquiring more of

the weaker absorbance phenomena. This strategy is shown to yield more

information for measurements of chloroform, CHCl3, [11]. This could be

done with filters or LED sensors.

Miniaturization Miniaturization of a NIR system able to operate inside the

peritoneal cavity. Such a system may measure at the suggested wave-

length regions, or it may use the discrete wavelengths suggested in a LED

array with suitable detectors. LEDs are available in th

Sensor fusion Investigating the possibilities of making a sensor system utiliz-

ing multiple sensor technologies. A combination of Raman and NIR and

polarimetric sensors should be considered as they are promising candi-

dates for miniaturized systems. Other possibilities for measurements in

peritoneal fluid should also be investigated. The benefits from multiple

sensor inputs, based on different measuring principles could be exploited

in Kalman filtering. Complimentary data from optical methods may con-
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tribute to reduce the effect of the nonspecificity of the absorbance meth-

ods.

Preprocessing There are a number of different preprocessing techniques that

should be investigated for further analysis of the measurements. GLS pre-

processing can be used to remove and down-weigh disturbances that are

known, prior to measurment, to interfere with the analyte signal. We dis-

cussed here the PLSR’s ability to model the temperature effect. Tempera-

ture will probably not be a great disturbance in the peritoneum. However,

other effects may be removed with the benefit of greater prediction accu-

racy.

Models describing the physiological environment of the sensors should

be combined with the application of data driven multivariate calibration

models as described in this thesis. This should improve the prediction ca-

pabilities of a future implantable sensor.

Knowledge from physical chemistry on the overtone and combination ab-

sorbance bands of glucose and confounders should be incorporated into

the selsction of optimal wavelengths. This could, in theory, better the

specificity of the regression models. And to some extent validate the speci-

ficity of the wavelength selection.
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Appendix A Matlab files

Appendix A.1 MWPLSR.m

1 function SSR=MWPLSR(D, P)
2 % input : D: data matr ix of measured samples
3 % P : p lo t f l a g
4 % out : SSR : matr ix of the sum of square of r e s i d u a l s

from the PLSR model
5 % c a l c u l a t e d at each
6 % wavelength at the given window s i z e fo r 1 to 7 f a c t o r s .
7 %
8 i f nargin < 2
9 P=0;

10 end
11

12 %indexes of p a t i e n t samples in data matr ix
13 %XDS
14 p1 = 4:1 :33 ;
15 p2 = [51:55 ,59:61 ,65:67 ,74:76 ,92:94 ,113:114];
16 p3 = [37 ,38 ,39 ,43 ,44 ,45 ,46 ,47 ,62 ,63 ,64 ,68 ,69 , . . .
17 70 ,71 ,72 ,73 ,77 ,78 ,79 ,80 ,81 ,82 ,83 ,84 ,85 ,95 , . . .
18 97 ,99 ,100 ,104 ,105 ,106 ,110 ,111 ,112];
19

20 %FOSS
21 Fp1 = [1:2 ,13 :16 ,19 :20 ,27 :28 ,31 :32 ,43 :48 , . . .
22 51:52 ,90:91 ,100:101 ,104:107 ,122:123 , . . .
23 144:145 ,148:149 ,152:157];
24 Fp2 = [5:6 ,17 :18 ,23 :26 ,37 :38 ,41 :42 ,67 :68 , . . .
25 92:97 ,120:121 ,134:135 ,140:141 ,146:147];
26 Fp3 = [3:4 ,9 :12 ,21 :22 ,29 :30 ,39 :40 ,49 :50 , . . .
27 53:54 ,59:62 ,65:66 ,69:74 ,84:89 ,102:103 , . . .
28 110:115 ,118:119 ,124:133 ,138:139 ,150:151];
29

30 s t a r t _ i n d =7;
31 glucose_ ind =5;
32 S2 = 1020;
33 nm = 430:2:2468;
34 Y=D( : , g lucose_ ind ) ;
35 SSR = zeros (S2 ,7 ) ;
36

37 %MWPLSR loop
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38 h=waitbar (0) ;
39 for j = 1:S2
40

41 a = s t a r t _ i n d+(j −1) ;
42 b = a + 30;
43

44 X=D( : , a : b) ;
45

46 for i = 1:7
47 [~,~,~,~,~,~,MSE, s t a t s ] = p l s r e g r e s s (X , Y , i ) ;
48 SSR( j , i )=log (sum( s t a t s . Y r e s i d u a l s .^2)) ;
49 end
50 waitbar ( j /S2)
51 end
52 close (h)
53

54 i f P
55 f igure
56 plot (nm, SSR , ’ LineWidth ’ ,1) ;
57 ylabel ( ’ log SSR ’ , ’ FontSize ’ ,14 , ’ FontWeight ’ , ’ bold ’ ) ;
58 xlabel ( ’ Wavelength ’ , ’ FontSize ’ ,14 , ’ FontWeight ’ , ’ bold ’

) ;
59 end
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Appendix A.2 parkes.m

1 function parkes (y , yp )
2

3

4 % c a l c u l a t e mg/ dl
5 y=y .∗18 ;
6 yp=yp .∗18 ;
7

8

9 % −−−−−−−−−−−−−−−−−−−−−−−−− P lo t Er ror Grid
−−−−−−−−−−−−−−−−−−−−−−−−−−−

10 h = f igure ;
11 plot (y , yp , ’ bo ’ , ’ MarkerSize ’ ,4 , ’ MarkerFaceColor ’ , ’ b ’ , ’

MarkerEdgeColor ’ , ’ b ’ ) ;
12 hold on
13

14

15 xlabel ( ’ Reference Concentrat ion [mg/ dl ] ’ ) ;
16 ylabel ( ’ P red i c ted Concentrat ion [mg/ dl ] ’ ) ;
17 t i t l e ( ’ Parkes Error Grid ’ ) ;
18 set (gca , ’ XLim ’ ,[0 550]) ;
19 set (gca , ’ YLim ’ ,[0 550]) ;
20 axis square
21

22 %plo t zone l i m i t s from : " Technica l Aspects of the Parkes
Error Grid " , P fu tzner e t a l . 2013.

23 % diagonal
24 plot ([0 550] ,[0 550] , ’ k : ’ )
25 % B lower
26 plot ([50 50 170 385 550] ,[0 30 145 300 450] , ’ k− ’ )
27 % B upper
28 plot ([0 30 140 280 430] ,[50 50 170 380 550] , ’ k− ’ )
29 % C lower
30 plot ([120 120 260 550] ,[0 30 130 250] , ’ k− ’ )
31 % C upper
32 plot ([0 30 50 70 260] ,[60 60 80 110 550] , ’ k− ’ )
33 % D lower
34 plot ([250 250 550] ,[0 40 150] , ’ k− ’ )
35 % D upper
36 plot ([0 25 50 80 125] ,[100 100 125 215 550] , ’ k− ’ )
37 % E upper
38 plot ([0 35 50] ,[150 155 550] , ’ k− ’ )
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39

40 text (10 ,270 , ’ E ’ , ’ FontSize ’ ,12) ;
41 text (60 ,270 , ’D ’ , ’ FontSize ’ ,12) ;
42 text (110 ,265 , ’C ’ , ’ FontSize ’ ,12) ;
43 text (150 ,250 , ’B ’ , ’ FontSize ’ ,12) ;
44 text (200 ,225 , ’A ’ , ’ FontSize ’ ,12) ;
45 text (225 ,200 , ’A ’ , ’ FontSize ’ ,12) ;
46 text (250 ,170 , ’B ’ , ’ FontSize ’ ,12) ;
47 text (270 ,90 , ’C ’ , ’ FontSize ’ ,12) ;
48 text (280 ,35 , ’D ’ , ’ FontSize ’ ,12) ;
49

50

51 set (h , ’ co lo r ’ , ’ white ’ ) ;
52 % s e t s the co lo r to white
53

54 set (gca , ’ XLim ’ ,[0 300]) ;
55 set (gca , ’ YLim ’ ,[0 300]) ;
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