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Summary

This thesis presents the creation of a payload system for a small
unmanned aircraft, which is used for data collection and testing of
detection and tracking theory. Theory for position estimation of on-
ground or on-sea objects from a camera from height is presented,
along with methods for reducing error associated with camera lens
distortion errors, and synchronization errors between GPS/INS and
camera measurements. An overview of methods for detecting and
classifying objects is presented, along with a method for determining
a ship’s orientation in the water, allowing for direction (yaw) feedback
to a nonlinear observer. It is shown that such a measurement greatly
increases the accuracy of the observer. Theory for observing and
tracking objects with known and unknown models is presented, using
both linear and nonlinear Kalman filters. The observers and other
theory were tested in simulations, and will be tested with real-world
data after flight tests. The results are concluded in a paper submitted
to ICUAS’15 by Leira and myself.
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Sammendrag

Denne oppgaven presenterer konstruksjon av en nyttelast for et lite
ubemannet fly, som skal brukes til datainnsamling og testing av
deteksjons- og sporingsteori. Teori for estimering av posisjonen til
objekter p̊a bakken eller p̊a sjøen fra et kamera i høyde er presentert,
sammen med metoder for minimering av feil assosiert med kameralin-
seeffekter, og tidssynkroniseringsfeil mellom GPS/INS og kamera-
målinger. En oversikt over metoder for deteksjon og klassifisering
av objekter er presentert, sammen med en metode for å bestemme
et skips orientering i vannet, som gir mulighet for tilbakekobling av
skipets retning inn i en ulineær tilstandsestimator. Det er vist at
en slik måling i stor grad øker nøyaktigheten til tilstandsestimator.
Teori for tilstandsestimering og sporing av objekter med kjente og
ukjente modeller er presentert, ved bruk av b̊ade linære og ulineære
Kalmanfiltre. Observerne og annen teori ble testet i simuleringer, og
skal testes med reelle data samlet inn fra flygetester. Resultatene av
dette er konkludert i en artikkel innsendt til ICUAS’15 i samarbeid
med Leira.
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Chapter 1

Introduction

1.1 Background and motivation

The detection and tracking of objects in water, such as icebergs, has
been the focus of many studies. Tracking icebergs helps avoid colli-
sions with ships and submersible vehicles. Tracking other objects,
such as ships, small boats, people and debris has many benefits.
This is usually done with the aid of ships, larger manned aircraft,
or satellite images. Small unmanned aircraft can be better suited
for such tasks, which are easily deployable, low cost and most im-
portantly, able to fail without directly effecting loss of life, or large
scale damage to objects in its vicinity. The sea environment is ideal
for detecting objects by thermal imaging photogrammetry, as the sea
surface in many cases will have a different thermal signature than
objects floating in it. The sea environment will therefore be the en-
vironment of focus in this thesis. The main goals are to simplify the
procedures of acquiring data, and detecting and tracking objects, and
automatically dealing with issues such as synchronization errors.

1



2 CHAPTER 1. INTRODUCTION

1.2 Literature survey

The topic of tracking objects from height using a camera has been
researched before. Xiang and Tian [3] have developed a method for
automatic georeferencing of images from UAVs, where georeferencing
accuracy was tested, for the purpose of image mosaicing1. Hemerly
[15] presents a method for automatically determining lens correction
coefficients and interior camera parameters for use in automatic geo-
referencing in UAVs. The same method is implemented in OpenCV2,
which will be discussed later in Chapter 6.6. Methods for tracking
known and uknown systems using linear and nonlinear observers,
Kalman observers etc. are discussed by Fossen [1], Kang, Krener,
Xiao and Xu [18] and Leira [13]. Classification of ships and boats
has been discussed by Teutch and Krüger [19] with good results, and
a classifier written by Leira [13] gives a 93.3% accurate classification
of objects of interest at sea. Many topics have been discussed sepa-
rately, so our goal is to combine theories for detection, tracking and
classification into a single system. Little information is available on
video and GPS/INS synchronization, therefore methods will have to
be researched.

1.3 Contribution

A relatively low-cost, simple framework for thermal object detection
and tracking, built upon a low-cost airframe will be presented. The
primary goal of this thesis is to create a fully working system for
detecting and tracking objects on the sea surface, using a lightweight
UAV. The payload for the X8 discussed later in Chapter 6, has been
designed with systems and sensors necessary to verify the object de-
tection and classification algorithms written by Leira [13], and the

1Mosaicing is the process of stiching multiple overlapping snapshot images of
an image or document together into one continuous composite.

2Open Source Computer Vision Library.
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georeferencing mathematics, observer models and video synchroniza-
tion algorithm written in this thesis. Methods for compensating for
different errors in an on-ground object position estimate are pre-
sented and analyzed. Synchronization of on-board measurements is
discussed, and a method for determining synchronization errors is
developed. Object tracking using both linear and nonlinear model-
based Kalman filters is implemented and tested.

The X8, along with its payload, will be used as a testbed for
a paper which is submitted to ICUAS’15 by Leira and myself [14],
titled

• A Light Weight Camera Based Payload with Georeferencing Ca-
pabilities for Small Fixed Wing UAVs.

The paper is based largely on work done by Leira for his doctoral
thesis, including the video synchronization and observer theory de-
veloped in this thesis.3

3International Conference on Unmanned Aircraft Systems.



4 CHAPTER 1. INTRODUCTION

1.4 Organization

This thesis is organized into nine chapters, including this introductory
chapter.

• Chapter 2 - Theory of reference frames, camera theory, georef-
erencing and error sources are discussed.

• Chapter 3 - An overview of theory for detecting objects in ther-
mal images using computer vision is presented.

• Chapter 4 - Introduces ship and aircraft models used later in
simulations, along with linear and nonlinear state observers.

• Chapter 5 - The observers and camera geo-referencing are tested
in simulation.

• Chapter 6 - A test platform created for this thesis and Leira’s
doctoral thesis is presented.

• Chapter 7 - A summary of flight tests of the X8 is presented.

• Chapter 8 - Discussion.

• Chapter 9 - Conclusion and discussion of improvements which
could be done in the future.



Chapter 2

Theory

2.1 Reference frames

To be able to estimate the position of an object seen through a cam-
era, we need to clarify the use of different reference frames. The
position of an object on the Earth can be done by expressing its po-
sition in the Earth-centered Earth Fixed (ECEF) frame. The position
is given by [1, p. 19]:

peb/e =

 Xe

Ye
Ze

 (2.1)

The x-axis points to 0◦ latitude and 0◦ longitude, and deviations from
this is given by [1, p. 19]:

Θen =

[
l
µ

]
(2.2)

where l and µ are latitude and longitude. We will use the North
East Down (NED) frame to describe the positions of detected objects
on the ground. Transforming from ECEF to NED is given by the

5



6 CHAPTER 2. THEORY

rotation below, dependent on the latitude and longitude [1, p. 34]:

Rn
e (Θen) =

 − sin(µ) cos(l) − sin(l) − cos(µ) cos(l)
− sin(µ) sin(l) cos(l) − cos(µ) sin(l)

cos(µ) 0 − sin(µ)

 (2.3)

The position in NED coordinates is given by [1, p. 19]:

pnb/n =

 N
E
D

 (2.4)

The aircraft itself has a frame which is fixed to it, known as the
BODY frame. The rotation between the NED and BODY frame is
shown in Figure 2.2, and is expressed by the attitude, which is given
by [1, p. 19]:

Θnb =

 φ
θ
ψ

 (2.5)

where φ, θ and ψ are euler angles roll, pitch and yaw, respectively.
Figure 2.1 illustrates these rotations.

x

z

y ϕ
θ

ψ

Figure 2.1: Body attitude.
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The rotation between BODY and NED is given by [1, p. 22]:

Rn
b (Θnb) = Rz,ψRy,θRx,φ (2.6)

=

 cψ · cφ −sψ · cφ+ cψ · sθ · sφ sψ · sφ+ cψ · cφ · sθ
sψ · cθ cψ · cφ+ sφ · sθ · sψ −cψ · sφ+ sθ · sψ · cφ
−sθ cθ · sφ cθ · cφ


(2.7)

Since rotation matrices are orthogonal, the inverse rotation from
NED to BODY follows as the transpose of Equation (2.6):

Rb
n(Θnb) = (Rn

b )−1 = (Rn
b )> (2.8)

=

 cψ · cφ sψ · cθ −sθ
−sψ · cφ+ cψ · sθ · sφ cψ · cφ+ sφ · sθ · sψ cθ · sφ
sψ · sφ+ cψ · cφ · sθ −cψ · sφ+ sθ · sψ · cφ cθ · cφ


(2.9)

x

z

y

N

E

D

Figure 2.2: Aircraft body frame in relation to NED frame
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Simplified equations of motion for an aircraft, necessary for sim-
ulation, will be derived from the equations of motion of a ship later
in Chapter 4.1.5.

2.2 Camera reference frame

In the case of the aircraft used for the test flight portion of this thesis,
the camera is mounted in the belly of the aircraft, and is oriented so
that the z-axis points down through the camera. However, it has a
fixed rotation of 90◦ degrees about the aircraft’s z-axis, in addition
to the attitude of the gimbal. This first fixed rotation will be called
the mounting offset, which is given by:

Θmount =

 φm
θm
ψm

 =

 0
0
π
2

 (2.10)

In addition, the attitude of the gimbal is given by:

Θcam =

 0
θc
ψc

 (2.11)

As we can see, the gimbal is only actuated in two degrees. Transform-
ing between BODY and CAM is then given by these two rotations:

Rc
b = Rc

m(Θcam)Rm
b (Θmount) (2.12)

= Rz,ψRy,θRz,π
2

(2.13)

=

 cos(ψc) cos(θc) − sin(ψc) cos(ψc) sin(θc)
cos(θc) sin(ψc) cos(ψc) sin(ψc) sin(θc)
− sin(θc) 0 cos(θc)

 0 −1 0
1 0 0
0 0 1


(2.14)

=

 − sin(ψc) − cos(ψc) cos(θc) cos(ψc) sin(θc)
cos(ψc) − cos(θc) sin(ψc) sin(ψc) sin(θc)

0 sin(θc) cos(θc)

 (2.15)
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The camera frame is show in Figure 2.3. We then find the rotation
from NED to CAM frame:

Rc
n = Rc

bR
b
n (2.16)

=

 −sψc −cψc · cθc cψc · sθc
cψc −cθc · sψc sψc · sθc
0 sθc cθc

 (2.17)

·

 cψ · cφ −sψ · cφ+ cψ · sθ · sφ sψ · sφ+ cψ · cφ · sθ
sψ · cθ cψ · cφ+ sφ · sθ · sψ −cψ · sφ+ sθ · sψ · cφ
−sθ cθ · sφ cθ · cφ


(2.18)

=

 r11 r12 r13

r21 r22 r23

r31 r32 r33

 (2.19)

x

z

y

x

y

z

Figure 2.3: Rotated camera frame.

This relation will be used in the next chapter on georeferencing.
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2.3 Georeferencing

We are interested in determining the position of objects seen by the
thermal imaging camera. In order to do so, we need to transform
the pixel coordinates of the objects into coordinates in the NED or
ECEF frames. Figure 2.4 shows the relation between the camera and
NED frames. We assume that the input from the object detection
algorithm will be a specific point in the image plane which represents
the image coordinates (placement of this point will be determined
by the detection algorithm, usually near the assumed center of mass
of the object). By denoting a point in the image p = [pu, pv]

>, we
can find the equivalent mapping point P = [Xm, Ym, Zm]> with the
following equation [3]:

s

[
p
1

]
= A

[
Rc
n Rc

nC
] [ P

1

]
(2.20)

where s is an arbitrary scaling factor, used to keep the resulting vector
homogeneous. Further, we have the translation C = [Cx, Cy, Cz]

>,
which corresponds to the position of the camera in the NED frame.
The 3x3 A matrix contains the camera intrinsic parameters:

A =

 fpx,u 0 u0

0 fpx,v v0

0 0 1

 (2.21)

where u0, v0 are the camera’s principal point, which is the center
point of the image projected onto the camera and fpx,u, fpx,v are the
camera pixel focal lengths. The center point does not necessarily
coincide with the center of the camera coordinate system, however,
a fair assumption is to set u0 = 0.5ku and v0 = 0.5kv.
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For the FLIR Tau2 thermal camera, we have the following basic
table of parameters:

Table 2.1: Camera parameters for the FLIR Tau2 thermal camera

Pixel size
ku 704 (upscaled)
kv 480 (upscaled)

Principal point
u0 352 (upscaled)
v0 240 (upscaled)

Focal length
f 9 [mm]

Pixel pitch 17 [µm]

The camera has an actual resolution of 336 by 256 pixels, and is
the resulting image is scaled up to 704 by 480 pixels. This means that
when calculating the focal length in pixels, we have to recalculate the
pixel pitch to match the upscaled image. First we can calculate the
sensor size:

ws = 17 · 10−6 · 336 = 5.712 [mm] (2.22)

hs = 17 · 10−6 · 256 = 4.352 [mm] (2.23)

Where ws and hs are sensor width and height, respectively. From
this we can calculate the new pixel pitch for the upscaled image:

pitchu =
ws
ku

= 8.11 · 10−3 [µm] (2.24)

pitchv =
hs
kv

= 9.07 · 10−3 [µm] (2.25)

The focal lengths are then given as:

fpx,u =
f

pitchu
≈ 1118[px] (2.26)

fpx,v =
f

pitchv
≈ 1000[px] (2.27)
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We can now calculate our intrinsic camera matrix A:

A =

 1118 0 352
0 1000 240
0 0 1

 (2.28)

We will make the assumption that all objects lie in the Z = 0 plane,
which allows us to reduce Equation (2.20) to:

s

 pu
pv
1

 = A
[
c1 c2 Rc

nC
]  Xm

Ym
1

 (2.29)

where c1 and c2 denote the first and second columns of Rc
n. The

camera exterior orientation parameters has full rank and is invertible,
and we are interested in obtaining the ground position from the image
coordinates, so we can find an expression for P by inverting the
matrix:

s

 Xm

Ym
1


︸ ︷︷ ︸

P h

=
[
c1 c2 Rc

nC
]−1

A−1

 pu
pv
1

 (2.30)

where P h =
[
P> 1

]>
is the homogeneous version of P . In addi-

tion, if we have detailed height maps of a particular area, the Z = 0
assumption can be disregarded.
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u

v
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E

Figure 2.4: Camera plane shown projected on the ground.
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2.4 Error sources and disturbances

To obtain an accurate estimate of an object’s position, knowledge
and removal of known error sources is needed. We will look into the
main error and disturbance sources here.

2.4.1 Data synchronization

Synchronizing the timestamps of the aircraft and camera position
estimation is important, as the estimated on-ground position will
move if the two sources are not synchronized. If we assume that
the aircraft is traveling with velocity v = v0, its position will be
changing by pa = vt. In this example, we assume that the position
of the camera is the same as the aircraft, pc = pa. If we assume that
the position estimate of the aircraft is received at t = 0, the delayed
image will arrive at t = ∆t. As before, ph,∆t are the homogenous
pixel coordinates, received at t = ∆t. The difference in position will
then be:

p̃c = pc,∆t − pc,0 = v∆t (2.31)

We can find an expression for the error in estimated position by
inserting into Equation (2.30):

P̃ h =P h,∆t − P h,0 (2.32)

P̃ h =
([
c1 c2 Rc

npc,∆t
]−1

A−1ph,∆t

)
−
([
c1 c2 Rc

npc,0
]−1

A−1ph,∆t

)
(2.33)

=
([
c1 c2 Rc

npc,∆t
]−1 −

[
c1 c2 Rc

npc,0
]−1
)
A−1ph,∆t

(2.34)

The elements c1, c2 and Rc
n are also dependent on the time (∆t or

0), but subscripts have been omitted to de-clutter the equations.
We can test the error for a specific scenario, in which the aircraft
is travelling due north, at 400 ft above ground level (AGL), with a
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ground speed of 20 m/s. The camera parameters are chosen so as to
fit the FLIR Tau2 camera, and the object is assumed to be seen in
the middle of the image. We can see in Table 2.2 how a time delay
affects positional accuracy.

Table 2.2: Camera image time delay positioning error.

Time delay [ms] Position error north [m]
0 0
10 -0.2
100 -2
1000 -20

In this case, since there is no rotation, Equation (2.32) reduces to
(2.31), and we get a linear relationship between the time delay of the
image, and the estimated position error. It shows that determining
the unknown delay ∆t is important for proper position estimation.
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2.4.2 Lens distortion

Lens distortion is an effect which is caused by parallel light traveling
through a curved lens, hitting a flat image sensor. Because of this, the
perceived image will have radial distortion, which must be corrected
to get the best estimate of ground position. Radial distortion is shown
in Figure 2.5. Typically, lens distortion is more prominent near the
edges of the image.
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(a) Visualisation of aircraft above a
square grid of objects on the ground.
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(b) View of grid through camera, showing
radial distortion.

Figure 2.5: Visualization of radial distortion. The distortion is exag-
gerated to clearly show its effect.

Most models try to fit a high order polynomial equation for the
radial distortion, which is given by:

rd = r + δr (2.35)

where rd is the distorted radial distance, and δr is the radial distor-
tion. Further, the polynomial used to model the distortion is on the
form:

rd = rf(r) = r(1 + k1r
2 + k2r

4 + k3r
6 + · · · ) (2.36)

where k1, k2, k3, ... are distortion coefficients, and r =
√
u2
d + v2

d. This
model is presented in [4], before presenting a method which is claimed
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to be superior. However, we will use the simplified model

uc = ud(1 + k1r
2 + k2r

4 + k5r
6)

vc = vd(1 + k1r
2 + k2r

4 + k5r
6) (2.37)

for the radial effects, reducing the number of coefficients, and allow-
ing us to directly use the OpenCV calibration algorithm. This same
method is used in [3]. Here, uc, vc are the corrected (undistorted)
normalized positions, ud, vd are the distorted, normalized positions,
k1, k2, k5 are distortion coefficients. The distorted, normalized posi-
tions can be found as [15]:

s

 ud
vd
1

 =
[
c1 c2 Rc

nC
]  Xm

Ym
1

 (2.38)

From this we can find the undistorted frame coordinates:

s

 pu
pv
1

 = A

 uc + d1

vc + d2

1

 (2.39)

Where again, s is an arbitrary scalar used to keep the vectors homo-
geneous. The tangential errors d1, d2 are the offset of the principal
point of the camera, or principal point shift. It is given by:

d1 = 2k3 · ud · vd + k4(r2 + 2u2
d)

d2 = k3(r2 + 2v2
d) + 2k4 · ud · vd (2.40)

Determining the coefficients is described in Chapter 6.6.

We are however interested in determining the position of an object
on the ground from a distorted image. We therefore need the inverse
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operation:

s

 uc + d1

vc + d2

1

 = A−1

 pu
pv
1

 (2.41)

s

 uc
vc
1

 = A−1

 pu
pv
1

−
 d1

d2

0

 (2.42)

Finally, since we have that

ud =
uc

1 + k1r2 + k2r4 + k5r6
(2.43)

vd =
uc

1 + k1r2 + k2r4 + k5r6
(2.44)

we find the ground position:

s

 Xm

Ym
1

 =
[
c1 c2 Rc

nC
]−1

 ud
vd
1

 (2.45)
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2.5 Video/GPS synchronization using

Optical Flow

Optical flow methods have been a subject of research for a long time
[16][17]. The optical flow between two images, or two frames of a
video, describes the motion of objects (pixels) from one image to the
next, and has been used extensively for video compression, motion de-
tection schemes and object segmentation. For our purposes it is useful
to determine the synchronization error between Global Positioning
System (GPS) and Inertial Navigation Systen (INS) measurements,
and camera measurements.

2.5.1 Correlation between flow and GPS/INS
measurements

Methods, such as the Lucas Kanade (LK) method [16] can give the
linear transformation from one frame to the next, which allows us
to calculate the rotational motion of the camera. As the camera is
firmly attached to the aircraft, its rotational motion must correspond
to the rotational motion of the aircraft (unless the camera gimbal is
actuated, however such rotations are known and can be filtered out).
Processing the thermal image data takes a certain amount of time,
and this causes a delay between data from the video and the data
from the GPS/INS-measurements. This delay is denoted ∆t. As is
mention in Chapter 2.4.1, a synchronization error leads to position
estimation errors on the ground, as shown in Table 2.2. A method
for determining ∆t from INS rotation measurements compared with
Optical Flow rotation estimates is presented in the next section.

2.5.2 Estimation method

Figure 2.6 shows a generated example of similar measurements taken
from different sources, with a time delay of 20 ms introduced. Ad-
ditionally the amplitude of the measurements from the other source
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is smaller, to make the example more realistic with regards to errors
from flow rotation estimation.
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Figure 2.6: Similar data, captured by two sources at different times.

The discrete signals are defined as s1 and s2, of size (1× n). The
first step, in order to reduce the possibility of estimating ∆t wrong
due to bias errors in the signals, is to filter the signals with the one-
dimensional Prewitt (1× 3) operator, given as:

P :=
[
−1 0 1

]
(2.46)

The Prewitt allows us to find an approximation of the signals first
derivative. Filtering the signal is done by discrete convolution, which
is defined as:

(f ∗ g)(n) =
M∑

m=−M

f(n−m)g(m) (2.47)
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Substituting for our case, we get that:

ds(n) ≈
1∑

m=−1

s(n−m)P (m) (2.48)

The differentiated signals are shown in Figure 2.7.
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Figure 2.7: Signals after Prewitt differential operator.

Now we find the ∆t which gives the best match between the sig-
nals. The error q(∆t) is given as:

q(∆t) =
∑
t

[ds1(t)− ds2(t+ ∆t)]2 (2.49)

We are interested in finding the ∆t which minimizes the error func-
tion:

∆tmin = arg min
∆t

q(∆t) (2.50)
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The error is shown in Figure 2.8 for different ∆t, and clearly shows a
large dip around 20 milliseconds, which is the delay we purposefully
introduced.
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Figure 2.8: Errors for different values of ∆t.
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The synchronized signals are shown in Figure 2.9.

0 10 20 30 40 50 60 70 80
−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

Time [ms]

M
e

a
s
u

re
m

e
n
t 
(r

a
d
)

 

 

Signal 1

Signal 2, synchronized

Figure 2.9: Signals after successful synchronization.

2.6 Summary

In this chapter, reference frame theory has been presented, along
with methods for geo-referencing objects on the ground from a UAV
mounted camera. Errors sources, such as lens distortion and data
synchronization are presented, along with methods for handling these
issues. A simple method for synchronization of camera data with
GPS/INS data was presented.





Chapter 3

Detection and classification

The following chapter will give a quick overview of object detection
techniques within the field of Computer Vision (CV), which were
used by Leira [13] to detect objects floating in water, ships, people
and other. Additionally, a method for determining yaw angle of an
elongated object is presented. As it is necessary to be able to dis-
tinguish objects from one another, and from frame to frame, a quick
overview of object classification will be given. All images in this
chapter, with the exception of Figure 3.4, are courtesy of Leira.

An overview of data flow in the system detection and classification
system developed by Leira is shown in Figure 3.1. For the payload
created for the test platform discussed in Chapter 6, the Object De-
tection and Classification modules are provided by Leira, while the
Object Tracking module is provided by this thesis, based on theory
developed in Chapter 4.

25
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Figure 3.1: Data flow diagram showing detection, classification and
tracking system.

3.1 Segmentation

Image segmentation is very important when doing analysis of image
data. The main goal is to divide the image into parts which have a
strong correlation with objects presented in the image. In our case,
we are interested in detecting and tracking ships and icebergs in ocean
environments. An example picture acquired from the thermal camera
is shown in Figure 3.2. In the figure, the objects of interest are the
ship and two small objects.

Figure 3.2: Thermal image taken from UAV of a ship and other
objects.
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3.1.1 Image smoothing

Image smoothing methods are methods for suppressing image noise,
by using redundancies in the image data. [9, p. 124] The new values
are based on mixing the brightness values in a neighborhood O of the
pixel. Local image smoothing provides noise suppression, and can
also remove other degradations which could prevent a good result
after further processing. The image is smoothed by convolving the
image with a Gaussian kernel g, where g is an n × n matrix, also
known as a convolution kernel, approximating Gaussian distribution.
An example of a 3x3 Gaussian kernel is given as:

g =
1

16

 1 2 1
2 4 2
1 2 1

 (3.1)

The convolution operator for the image is defined as [13, p. 3]:

Is(x, y) = (I ∗ g)(x, y) (3.2)

=

k=0.5(n−1)∑
k=0.5(n−1)

m=0.5(n−1)∑
m=0.5(n−1)

I(x−m, y − k)g(m, k) (3.3)

Where I is a matrix containing the image which will be processed,
and Is is the smoothed image matrix. The effects of this operation
can be seen in Figure 3.3.

Figure 3.3: Figure 3.2 after smoothing.
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3.1.2 Thresholding

Different methods of thresholding exist. The simplest is gray-level
thresholding, which segments objects from the background by light
intensity. A threshold value, T , represents a light intensity, above
which the image is classified as part of the object, and below as part
of the background. The algorithm is described as [9, p. 176]:

1. Search all the pixels f(i, j) of the image f . An image element
g(i, j) of the segmented image is an object pixel if f(i, j) ≥ T ,
and is a background pixel otherwise.

The transformation is given as:

g(i, j) =

{
1, forf(i, j) ≥ T

0, forf(i, j) < T.
(3.4)

Methods of optimally determining the threshold value exist. Figure
3.4 shows thresholding with three different values for T . As we can
see, this helps separate the objects from the background, but also
shows that the system is not robust; other methods must be devel-
oped to properly separate objects from the background.

(a) Low T value. (b) Medium T value. (c) High T value.

Figure 3.4: Sample of binary thresholded images.
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3.1.3 Thresholded image after Prewitt operator

The Prewitt gradient operator determines an approximation to the
first derivative of the image. It is given as [9, p. 136]:

P x :=

 −1 0 1
−1 0 1
−1 0 1

 , P y := P>x (3.5)

The horizontal and vertical Prewitt images are given as:

IP,x = I ∗ P x (3.6)

IP,y = I ∗ P y (3.7)

To find horizontal and vertical edges, the two images IP,x and IP,y
can be combined into the Prewitt image:

Ip(x, y) =
√
IP,x(x, y)2 + IP,y(x, y)2 (3.8)

(a) Figure 3.2 after Prewitt
operator.

(b) Thresholding after Pre-
witt operator.

Figure 3.5: Image with thresholding of Prewitt image.

As we can see, the thresholding works much better after process-
ing the image with the Prewitt operator, however, there are small
disturbances in the image which may give false positives. According
to Leira [13], these can be removed by removing items of unexpect-
edly small size [13, p. 3], resulting in the image shown in Figure 3.6.
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Figure 3.6: The image is free of blobs, with only objects of interest
remaining.

3.1.4 Bounding of detected objects

It is now possible to surround detected continuously connected com-
ponents with bounding boxes. Bounding boxes wholly contained
within other boxes are disregarded [13, p. 4]. The result of this is
shown in Figure 3.7.

(a) Bounding boxes. (b) Bounding boxes with
subboxes removed.

Figure 3.7: Image with objects detected.
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3.2 Yaw estimation

In most cases, a ship or a boat is longer in the direction that they
travel, than their width. This is evident in Figure 3.2, where we can
see that the ship is either headed down to the left, or up to the right.
The angles, relative to the image frame, are shown in Figure 3.8. As
we will see in Chapter 4.4, the observability of our nonlinear observer
attains full rank when the ship’s yaw is measured directly.

Figure 3.8: The image shows the two angles α an β, which are the
two possible ship yaw estimates.

A ship object will appear as an elongated blob. The property of
elongatedness is defined as the ratio between the length and the width
of the region bounding rectangle [9, p. 355]. It can be determined
by eroding1 the object until it disappears. If the number of erosion

1Erosion is a fundamental property of morphological image processing, which,
for a binary image, removes the outer “layer” of pixels, progressively making the
object smaller.
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cycles is denoted d, the elongatedness e is given as [9]

e =
A

(2d)2
(3.9)

where A is the area of the object. When an objects elongatedness is
determined, it can be determined if the object is likely to be a ship.
In such a case, the direction (yaw) of the ship can be calculated.

3.2.1 Image region moments

Image moments are a useful way to describe objects after segmenta-
tion, and in our case, helps us determine a ship’s yaw direction.

For a scalar image I(x, y), we have that the moment of dimension
(p× q) is given as [9, p. 357]:

mpq =
∞∑

x=−∞

∞∑
y=−∞

xpyqI(x, y) (3.10)

where x and y are the pixel coordinates of the image. The central
moments of the region are defined as:

µpq =
∞∑

x=−∞

∞∑
y=−∞

(x− xc)p(y − yc)qI(x, y) (3.11)

where xc = m10

m00
and yc = m01

m00
are the centroid components. The

central moments are useful for calculating the direction of a region,
which is shown in the next section.

3.2.2 Direction of the ship

Direction is defined as the direction of the longer side of an elongated
regions minimum bounding rectangle. When the shape moments are
known, the direction θ can be calculated as:

θ =
1

2
arctan

2µ11

µ20 − µ02

(3.12)
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This direction corresponds to the angles α or β shown in Figure 3.8.
Which direction is correct can later be determined from the ship’s
estimated motion.

3.3 Object classification

Classification of objects detected in the thermal image stream is im-
portant, as it is necessary to distinguish objects from one another in
order to be able to track each one individually. Leira [13] presents a
method for classifying objects using moments and central moments.
The classifier is trained using images containing known objects, which
later allows it to classify new unknown objects, and distinguish them
from one another. The classifier created by Leira, which will be used
in test flights of our combined system, shows that it classifies 93.3%
of detected objects of interest correctly.

3.4 Summary

In this chapter, an overview of theory used for detecting and classi-
fying objects on the ocean surface has been presented, along with a
method for determining the ship’s yaw angle from image moments.





Chapter 4

Observers

Determining the current track, velocity and position for unidentified
objects in the water depends very much on what kind of object is
being tracked. A small boat will be a lot more maneuverable than a
large ship, and an observer which does not take into account these
differences will not work well in either case. Determining the model
best suited for each case is a challenge which will not be the focus of
this thesis, as its workload warrants a thesis of its own. However, two
basic models will be looked into, a simple positional model tracking
icebergs and other floating objects, and another for ship tracking.
These models will be used as a foundation for a Kalman filter.

4.1 Ship model

4.1.1 Translational dynamics

An object floating on the surface of water can be modelled by a simple
translational motion model, based upon the Newton-Euler equations
of motion [1, p. 48]

m[ν̇bb/n + S(ωbb/n)νbb/n] = f bb (4.1)

35
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where

νbb/n =
[
u v w

]>
(4.2)

is linear velocity of origin relative {n}, expressed in {b},

ωbb/n =
[
p q r

]>
(4.3)

is angular velocity of {b} relative to {n}, expressed in {b}. Finally,
the forces acting on the system are given by

f bb =
[
X Y Z

]>
(4.4)

acting on the origin expressed in {b}, m is the mass of the object,
and S is the cross product operator, defined as [1, p. 20]:

S(ωbb/n) =

 0 −r q
r 0 −p
−q p 0

 , S = −S> (4.5)

4.1.2 Rotational dynamics

The rotational dynamics are given as [1, p. 48]:

Igω̇
b
b/n − S(Igω

b
b/n)ωbb/n = mg (4.6)

where Ig is the inertia matrix about the center of gravity, defined as

Ig =

 Ix −Ixy −Ixz
−Iyx Iy −Iyz
−Izx −Izy Iz

 , Ig = Ig
> > 0 (4.7)

and mg is a vector of moments. A fair assumption for the inertia
matrix is that is has homogenous weight distribution, and xz-plane
symmetry [1, p. 134], which gives

Ixy = Ixz = 0 (4.8)
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4.1.3 Newton-Euler equations of motion about
CG

The total equations of motion in matrix form is given as [1, p. 49]:[
mI3x3 03x3

03x3 Ig

] [
ν̇bg/n
ω̇bb/n

]
+

[
mS(ωbb/n) 03x3

03x3 −S(Igω
b
b/n)

] [
νbg/n
ωbb/n

]
=

[
f bg
mb

g

]
(4.9)

The position of the object in NED coordinates is given as

ṗnb/n = Rn
b (Θnb)ν

n
b/n (4.10)

where Θnb =
[
φ θ ψ

]>
are the objects generalized angles, related

with the angular velocities below:

Θ̇nb = TΘ(Θnb)ω
b
b/n (4.11)

where the transformation TΘ is as shown below [1, p. 25]:

TΘ(Θnb) =

 1 sinφ tan θ cosφ tan θ
0 cosφ − sinφ
0 sinφ/ cos θ cosφ/ cos θ

 (4.12)
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4.1.4 3-DOF maneuvering model

A ship can be fairly accurately modeled in the horizontal plane using
6 variables. Surge, sway, yaw, and their respective rates are sufficient
to accurately model a ship’s motion from positional measurements.
In Figure 4.1 we can see the ship motion in 3 degrees of fredom.

Surge

Sway
Yaw

Figure 4.1: Ship 3-DOF motion.

In this case, the pitch θ and roll φ are often close to zero (unless
the wave disturbance is very prominent), and can be assumed in our
case to be zero. The heaving motion can also be disregarded. This
then gives our three degrees of freedom (3-DOF) state vectors:

ν =

 u
v
r

, η =

 N
E
ψ

 (4.13)

When we assume that φ = θ = 0, we see that TΘ(Θnb) = I, simpli-
fying the relation between the angular velocity r and the yaw rate ψ,
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to simply:

ψ̇ = r (4.14)

The relation between η and ν thus becomes rather simple:

η̇ = R(ψ)ν (4.15)

Surge dynamics - Damping

The surge dynamics of a ship are rather complex [1, p. 122-128],
and for our purposes unnecessary to model exactly, as the observers
do not have direct knowledge of the ship’s dynamics anyway. The
motion of the ship will not be drastically different, and is still suited
for the purposes of testing the observers. Therefore, we will model it
as a simple linear damping model, given as

τDu = − 1

m
Duu (4.16)

τDv = − 1

m
Dvv (4.17)

where D is a constant, and m is the mass of the ship. This is a
rather unrealistic model, but it gives us a simple representation of a
ship’s dynamics, allowing us to create paths which can be tracked by
the observers developed in the following sections. The ship’s forward
motion is controlled by the thrust input u1.

Rudder dynamics

Simplified rudder dynamics can be given as

ṙ = u sinu2 − Cr (4.18)

where u is the ship’s forward speed, u2 is the rudder angle input, r
is the yaw rate and C is a rudder restoring force constant.



40 CHAPTER 4. OBSERVERS

Full model in state form

We can now rewrite our ship dynamics model on the form ẋ =
f(x,u), with x = [η,ν]>:

ẋ =


x4 cosx3 − x5 sinx3

x4 sinx3 + x5 cosx3

x6

m−1u1 −m−1Dx4

−m−1Dx5

x4 sinu2 − Cx6

 (4.19)

The ship’s rudder and thrust are controlled by a simple PID con-
troller.
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4.1.5 Simplified model for Aircraft

To be able to simulate camera motion, a simplified model of Aircraft
motion is needed. Aircraft motion is rather similar to ship motion,
with important distinctions. The heaving motion of a ship along the
z-axis denotes the altitude of the aircraft. In addition, unlike ship’s,
aircraft turn by initiating a roll.

A very simplified model for an Aircraft in the NED coordinate
system is given by [2]:

ν =

[
νnb/n
ωnb/n

]
=


U
V
W
P
Q
R

 , η =

[
pnb/n
Θnb

]
=


N
E
D
Φ
Θ
Ψ

 (4.20)

As we can see, the variables are capitalized, simply to differentiate
them from ship variables.

Coordinate systems

For aircraft it is common to define three different body-fixed coordi-
nate systems,

• Body axes,

• Stability axes,

• Wind axes.

The systems are shown in Figure 4.2. The angle of attack α, and
sideslip angle β, are defined as:

tanα =
W

U
(4.21)

sin β =
V

VT
(4.22)
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where

VT =
√
U2 + V 2 +W 2 (4.23)

is the total speed of the aircraft.

Figure 4.2: Definition of stability and wind axes for an aircraft [10].
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Equations of motion

We are only interested in the motion of the camera, and not the
particulars of the motion of the aircraft. To test our georeferencing
and object tracking, we are only interested in allowing the aircraft to
travel at a certain altitude, with no pitching or side-slip. The pitch-
ing motion is analogous to the rolling motion where the camera is
concerned, and will not add any new information about the robust-
ness of our system. We can therefore simplify further, by assuming
that α = β = 0, and in turn VT = U .
The kinematic equations for translation are given just as for ship
motion:

ṗnb/n = Rn
b (Θnb)ν

n
b/n (4.24)

In addition, the kinematic equations for attitude are given below,
just as for ships:

Θ̇nb = TΘ(Θnb)ω
b
b/n (4.25)

Where TΘ(Θnb) is defined just as in Equation (4.12), with [Φ,Θ,Ψ]>

replacing [φ, θ, ψ]>.
The total equations of motion in matrix form is given as for the

ship before:[
mI3x3 03x3

03x3 Ig

] [
ν̇bg/n
ω̇bb/n

]
+

[
mS(ωbb/n) 03x3

03x3 −S(Igω
b
b/n)

] [
νbg/n
ωbb/n

]
=

[
f bg
mb

g

]
(4.26)

where m is the mass of the aircraft, Ig is the inertia tensor as defined
in Equation (4.7). As we are interested in only a very specific subset
of behavior from our model, we can disregard both gravity and air
resistance. This may sound odd, but the motion of a fully modeled
aircraft and our model will be rather similar, and more than sufficient
for our purposes as simply a “camera carrier”.
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Bank-to-turn dynamics

When an aircraft banks, or rolls along its x-axis, it generates a mo-
ment about its yaw axis, or the z-axis. For a coordinated turn, where
β̇ = 0, β = 0, Θ = 0, VT = U0 = constant, we have that the yaw
moment is given by [2, p. 24]:

R =
W0

U0

P +
g

U0

sin Φ (4.27)

Where g is the gravity constant. We assumed at the start that α = 0,
then W0 = 0, therefore the moment reduces to:

R =
g

U0

sin Φ (4.28)

We can now rewrite our aircraft dynamics model on the form ẋ =
f(x,u), with x = [N,E,D,Ψ,Φ, U ]>:

ẋ =


x6 cosx4

x6 sinx4

0
x−1

6 g sinx5

0
0

 (4.29)
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4.2 Simple linear tracking with a discrete

Kalman filter

The Kalman filter (KF) is a recursive filter, which can estimate the
states of both linear and non-linear systems, regardless of noisy mea-
surements. It was first published by Rudolf E. Kalman in 1960 [5].
When the process and measurement noise is white and Gaussian, for
an observable linear system, the Kalman filter will provide an unbi-
ased and minimum variance estimate, along with being the optimal
state estimator for the system. Without any knowledge of the un-
derlying model, we can use a simple discrete linear position tracking
model, which tracks the N and E positions, and velocities.

4.2.1 Overview of Kalman filter variables

For a linear system with n states and m measurements, the various
Kalman variables are given as:

• Q - (n x n) covariance matrix for process noise wk.

• R - (m x m) covariance matrix for measurement noise vk.

• P̄ 0 - (n x n) initial error covariance matrix.

• x̄0 - (n x 1) initial prior state conditions.

• wk - (n x 1) process noise vector.

• vk - (m x 1) measurement noise vector.

• yk - (m x 1) measurement vector.

• H - (m x n) matrix connecting measurements to states.

• Kk - (n x m) Kalman gain matrix.

• P̂ - (n x n) estimated error covariance.

• x̂k - (n x 1) state estimate.
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4.2.2 Kalman state model

A model for the position N can be given as:

N =

∫
vN dt+N0 (4.30)

where vN denotes the speed along the N axis, and N0 is the initial
position. The same model is used for E:

E =

∫
vE dt+ E0 (4.31)

This gives us the time derivative:

Ṅ = vN (4.32)

Ė = vE (4.33)

A linear state space model is given by the equation:

ẋ = Ax+Bu+Ew (4.34)

y = Hx+ v (4.35)

Choosing the state space vector as x = [N,E, vN , vE]>, we get the
transition matrix A and the input vector B:

A =


0 0 1 0
0 0 0 1
0 0 0 0
0 0 0 0

 , B =


0
0
0
0

 (4.36)

The E matrix is chosen as E = I.
Now we can use this model with a discrete-time Kalman filter. The
filter is given by:

x(k + 1) = Φx(k) + ∆u(k) + Γwk (4.37)

y(k) = H(k) + v(k) (4.38)
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The transition matrix is given by [7]:

Φ(t) = eAt = I +At+
1

2!
A2t2 + · · ·+ 1

i!
Aiti + · · · (4.39)

In our case, A2 = 04x4, so our model will be exact. Choosing a step
size h, we can discretize our model using Euler integration:

Φ(h) = I +Ah (4.40)

=


1 0 h 0
0 1 0 h
0 0 1 0
0 0 0 1

 (4.41)

There are no inputs as B = 0, so we have that ∆ = 0. Further, we
have that [1, p. 296]:

Γ =

(∫ h

τ=0

Φ(τ) dτ

)
E (4.42)

= A−1(Φ− I)E (4.43)

However, in our case, A is a singular matrix, so A−1 is undefined.
We can calculate Γ by integrating the i = 1 Euler integrated approx-
imation of Φ:

Γ =

(∫ h

τ=0

(I +Aτ) dτ

)
E (4.44)

=

(
Ih+

1

2
Ah2

)
E (4.45)

=


h 0 h2

2
0

0 h 0 h2

2

0 0 h 0
0 0 0 h

 (4.46)

We have measurements of the first two states of the system, so the
output matrix H is given as:

H =

[
1 0 0 0
0 1 0 0

]
(4.47)
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4.2.3 Kalman filter operation

The filter process

The Kalman filter uses initial prior estimates of the system state x̄0,
as well as the initial error covariance to calculate the Kalman gain
P̄ 0 [6, p. 219]:

K(k) = P̄ (k)H>(k)
[
H(k)P̄ (k)H>(k) +R(k)

]−1
(4.48)

where R(k) is the covariance matrix for the measurement noise v.
The internal estimate x̂(k) can now be updated with the measure-
ment y(k):

x̂(k) = x̄(k) +K(k) [y(k)−H(k)x̄(k)] (4.49)

The updated error covariance matrix can now be calculated:

P̂ (k) = [I −K(k)H(k)] P̄ (k) [I −K(k)H(k)]> +K(k)R(k)K>(k)
(4.50)

The state estimate can now finally be propagated, using the new
estimates:

x̄(k + 1) = Φ(k)x̂(k) + ∆(k)u(k) (4.51)

And the error covariance matrix:

P̄ (k + 1) = Φ(k)P̂ (k)Φ>(k) + Γ(k)Q(k)Γ>(k) (4.52)

where Q(k) is the covariance matrix for the process noise. The two
matrices Q and R are the covariance matrices for the noise. When
the exact properties of the noise are not known, the filter can be
tuned by changing their values. Testing of the filter is done in the
simulation chapter.
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4.3 Nonlinear model with Extended

Kalman Filter

For non-linear systems, the Extended Kalman filter (EKF) can be
used. In an EKF, the system equations are linearized about the cur-
rent best estimate, and has proven itself as a good estimator in real-
world applications. The EKF, however, is not necessarily optimal,
and may diverge in certain situations where the linearized estimate
is too far from the true state. The EKF can be applied to nonlinear
systems on the form:

ẋ = f(x) +Bu+Ew (4.53)

y = Hx+ v (4.54)

We choose the Kalman state vector to estimate both η and ν:

x =


x1

x2

x3

x4

x5

x6

 =


N
E
ψ
u
v
r

 (4.55)

The Kalman model is given as:

f(x) =


x4 cosx3 − x5 sinx3

x4 sinx3 + x5 cosx3

x6

0
0
0

 (4.56)
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The system Jacobian matrix which is determined as:

δf

δx
=


0 0 −x4 sinx3 + x5 cosx3 cosx3 − sinx3 0
0 0 x4 cosx3 − x5 sinx3 sinx3 cosx3 0
0 0 0 0 0 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

 (4.57)

We do not have knowledge of the inputs to the system so B = 0, and
we have to rely on measurements to estimate the states. E is chosen
as E = I. We have access to the N and E measurements from the
geo-referencing system, so our 2x6 observation matrix H will be:

H =

[
1 0 0 0 0 0
0 1 0 0 0 0

]
(4.58)

The Kalman system matrix is determined by:

Φ(k) ≈ I + h
δf

δx
(k) (4.59)

Finally, Γ(k) is determined by:

Γ(k) = hE (4.60)

4.3.1 Extended Kalman filter operation

The EKF works rather similarly to the linear Kalman filter. Ini-
tial prior estimate of system state x̄0 and initial error covariance P̄
are used to calculate the Kalman gain, as done in (4.48). The state
estimate is updated in the same manner as in (4.49). The error co-
variance update is done as in (4.50). The state estimate propagation
is however different. The state estimate is propagated along the lin-
earized version of the nonlinear system:

x̄(k + 1) = x̂(k) + h [f(x̂(k)) +Bu(k)] (4.61)

The error covariance is propagated in the same manner as in 4.52,
however with a different method of calculating Φ(k).
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4.4 Observability

In both the linear and nonlinear case, the system states need to be
observable in order for the Kalman filter to be able to estimate them.
For the linear case, the observability can be determined by calculating
the observability matrix O. For a linear, time-invariant system with
n states,

ẋ = Ax+Bu (4.62)

y = Hx (4.63)

O =
[
H> A>H> · · · (A>)n−1H>

]
(4.64)

must be of full column rank, such that at least a left inverse exists
[1, p. 292].

4.4.1 Linear filter observability

We can verify this for the linear filter,

O =
[
I4x4 04x4

]
(4.65)

which has full column rank(O) = 4.

4.4.2 Nonlinear filter observability

For the nonlinear observer, the case is more complex. Observability
of certain states may depend on whether other states are stationary,
such as is the case for our ship model. An estimate of the ship yaw
angle ψ cannot be determined when only measuring position, if the
ship is not moving. Theory for observability and weak observability of
nonlinear systems has been developed by Hermann and Krener [11],
while an overview is given by [12]. We can test for local observability
for a system on the form

ẋ = f(x,u)

z = h(x) (4.66)



52 CHAPTER 4. OBSERVERS

where z is a (m x 1) vector, and x is the (n x 1) state vector. The
G(x,u?) matrix, which is the set of all finite linear combinations of
the Lie derivatives of h(x) is given by:

G(x,u?) =



L0
fh1(x)

...
L0
fhm(x)

...
Ln−1
f h1(x)

...
Ln−1
f hm(x)


(4.67)

Where L is the Lie derivate operator, defined as

Lfh(x) =
δh

δx
f(x)

L2
fh(x) =

δ(Lfh)

δx
f(x)

Lkfh(x) =
δ(Lk−1

f h)

δx
f(x) (4.68)

The observability matrix O(x,u?) is then given as:

O(x,u?) =
δG
δx

(4.69)

The observability matrix must have rank(O) = n for the system to
be observable, as for the linear system.
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Observability using two inputs with nonlinear observer

In the case of two measurements (N and E), the measurement vector
is

h(x) =

[
x1

x2

]
(4.70)

The Lie derivative matrix then becomes

G(x,u?) =



x1

x2

x4 cosx3 − x5 sinx3

x5 cosx3 + x4 sinx3

−x6(x5 cosx3 + x4 sinx3)
x6(x4 cosx3 − x5 sinx3)
−x2

6(x4 cosx3 + x5 sinx3)
−x2

6(x5 cosx3 − x4 sinx3)
x3

6(x5 cosx3 + x4 sinx3)
−x3

6(x4 cosx3 − x5 sinx3)
x4

6(x4 cosx3 + x5 sinx3)
x4

6(x5 cosx3 − x4 sinx3)



(4.71)

Further, we see that the observability matrix is

O(x,u?) =
δG
δx

=

 r11 · · · r16
...

. . .
...

r61 · · · r66

 (4.72)

which has rank(O) = 5 6= n. All system states are therefore not
observable by the two-input observer. This will be evident in simu-
lations done in Chapter 5.
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Observability using three inputs with nonlinear observer

Adding yaw-feedback to the observer allows the observer to estimate
both yaw and yaw rate, gives us

h(x) =

 x1

x2

x3

 (4.73)

Carrying out the same calculations as before, we can see that the new
18x6 observability matrix has rank(O) = 6 = n, making the system
fully observable.

4.5 Summary

In this chapter, theory of ship motion and simplified aircraft mo-
tion has been developed. Linear and non-linear observers, based on
Kalman filters, have been developed for ships and icebergs, and full
rank observability has been shown for the linear observer and the
three-input nonlinear observer.



Chapter 5

Simulation

In the previous chapters, theory for ship and object tracking, along
with geo-referencing using a camera have been derived. Before the
tracking system was tested on real flight data, simulated flights over
simulated ships have been done, using the models described in the
previous chapters. All code used to generate the plots contained in
this chapter can be obtained by request, or through DAIM.

5.1 Overview

Several scenarios will be simulated. The observers will be tested on a
ship model with and without noise, and the observer will be tested in
a simulated aircraft with camera attached. The following scenarios
are considered:

• A ship, following a preset pattern, is tracked with the observers
at differing sampling rates, without noise.

• The nonlinear observer is tested with yaw estimate feedback.

• The previous scenarios are tested with measurement noise.

• Effects of tuning will later be discussed for the nonlinear yaw-
feedback observer.

55
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The scenarios are chosen to verify the performance of the observers,
along with establishing whether there is a need for more complex
observers, or more input measurements. In the following sections, we
have defined the total speed of the craft as:

vtot =
√
u2 + v2 (5.1)

This is necessary in the linear observer model, as the speed of the
object is not tracked directly by the model, only the decomposed
speeds x3 = Ṅ and x4 = Ė. For the linear observer, the total speed
is therefore given as:

vtot =
√
x2

3 + x2
4 (5.2)

5.1.1 Simulated ship path

Our ship model will follow a simple path, defined by the following
inputs:

1. At time t = 0s, accelerate to 4 m/s.

2. At time t = 10s, turn right to 90◦ degree heading.

3. At time t = 25s, turn left to 270◦ degree heading, and increase
forward speed to 5 m/s.

4. The simulation continues until t = 60s.

The path taken by the simulated ship is shown in Figure 5.1.
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Figure 5.1: Predefined path of simulated ship model.

5.1.2 Sampling rate

The system is simulated with a step size of h = 0.01 seconds. The
measurements however are based on the frame-rate of the thermal
imaging camera, which is 8 fps. This means that it can supply a
frame every t = 1

8
s. We assume that our object detection algorithms

will be able to run quickly enough to process these frames and sup-
ply measurements every t = 0.125s. Lower sampling rates will be
considered later.

5.2 Linear observer

In the following section, the linear observer described in Chapter 4.2
is tested on the model following the path previously mentioned.
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5.2.1 Simulation without noise

In this case, the covariance matrices Q and R were chosen by trial
and error. The measurement covariance matrix R was chosen to
reflect the knowledge of the noise on the measurement:

R =

[
0.1 0
0 0.1

]
(5.3)

The variance of the measurement with no noise is 0, however setting
the R matrix as R = 0 introduces high frequency oscillations into
the estimates. This is most likely due to numerical approximation
problems, and will be discussed later in the discussion chapter.

Q =


0.5 0 0 0
0 0.5 0 0
0 0 0.5 0
0 0 0 0.5

 (5.4)

The Q matrix was chosen to yield the best results, by trial and error.
The prior error covariance matrix was chosen as

P̄ = 0 (5.5)

As we can see from Figures 5.2 and 5.3, the position errors are rather
small, on the order of a few meters. However, every time the ship
turns, the filter tends to overshoot, and compensate later. Addition-
ally, near the end of the simulation, we can see that the error in E
position does not converge to zero, giving a constant deviation of
around 0.3 meters.

As we can see from Figure 5.4, the error in forward speed is sub-
stantial at first, but the filter tends to converge to the correct speed
value, with some small estimation errors where the ship turns.
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Figure 5.2: Error in N position for linear observer without noise.
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Figure 5.3: Error in E position for linear observer without noise.



60 CHAPTER 5. SIMULATION

0 1000 2000 3000 4000 5000 6000
0

0.5

1

1.5

Time [ms]

S
p
e

e
d

 [
m

/s
]

 

 

Speed error (Total speed)

Figure 5.4: Error in total speed for linear observer without noise.

5.2.2 Simulation with noise

Simulating the system without noise is rather optimistic, we must as-
sume that the measurement will be noisy. A zero-mean white noise v
with Var(v) ≈ 2 was introduced to the measurement. The covariance
matrices were chosen as:

R =

[
Var(v) 0

0 Var(v)

]
≈
[

2 0
0 2

]
(5.6)

The Q matrix was chosen by trial and error as:

Q = 0.1I6x6 (5.7)

The prior error covariance estimate was chosen as:

P̄ = I6x6 (5.8)

As we can see from Figure 5.5, the filter estimate (red line) does
an adequate job of following the position of the ship, however the
overshooting persists. The error magnitude has also become much
greater than without noise. This is especially evident in Figure 5.7,
which shows a large deviation in the E position of up to 6 meters.
The north position however stays below 2.5 meters of error, as seen
in Figure 5.6.
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The total speed error, as shown in Figure 5.8, is unfortunately
rather large throughout, being at certain points over half the size of
the actual speed, showing the limitations of this type of linear ob-
server for a rather complex ship system. This model however would
be better suited for the slow and non-directional motion of an ice-
berg, which does not have any input forces directing its motion, other
than wave and wind disturbances, which can be modeled as noise.
However, we can see that with process noise, the estimate seems to
converge to the correct position once the ship follows a straight path.
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Figure 5.5: Linear observer tracking with measurement noise.
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Figure 5.6: Error in N position for linear observer with noise.
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Figure 5.7: Error in E position for linear observer with noise.
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Figure 5.8: Error in total speed for linear observer with noise.
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5.3 Nonlinear observer

The nonlinear Kalman observer described in Chapter 4.3 is tested on
the same predefined pattern as the linear observer.

5.3.1 Simulation without noise

In the first simulation, we only have feedback on the N and E posi-
tions of the ship being tracked. All other states are determined from
the model. The covariance matrices Q and R are chosen to reflect
the knowledge of noise in the measurement:

R =

[
0.1 0
0 0.1

]
(5.9)

Due to the same issue encountered with simulating the linear ob-
server, the covariance matrix R can not be set as R = 0 due to the
high frequency oscillations which would arise. This will be discussed
later. The Q matrix is chosen by trial and error to be a diagonal
matrix with identical terms:

Q = 0.1I6x6 (5.10)

As before, prior error estimate is P̄ = 06x6. As we can see, the
system tracks the position rather well, within about a meter, with
the exception that the East position shown in Figure 5.10 shows a
constant deviation. The North position however is tracked rather
well, see Figure 5.9. In addition, as we can see in Figure 5.13, the
lateral speed error shows a constant deviation, where in reality the
lateral speed is v = 0. The filter fails to determine this due to
the fact that it does not have any yaw feedback, and as mention in
Chapter 4.4, the system is not fully observable, thus estimating the
ship to be moving with a slight yaw angle offset, as is evidenced by
Figure 5.11, causing the filter to estimate a side-slipping motion. The
forward speed is estimated rather well, as can be seen from Figure
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5.12, however the lateral speed v shows a constant deviation, Figure
5.13.
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Figure 5.9: N error for nonlinear observer without noise.
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Figure 5.10: E error for nonlinear observer without noise.
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Figure 5.11: Yaw error for nonlinear observer without noise.
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Figure 5.12: u error for nonlinear observer without noise.
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Figure 5.13: v error for nonlinear observer without noise.
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5.3.2 Simulation without noise, with yaw feed-
back

The nonlinear model tested in the previous section seems to perform
quite well, but does tend to have some inaccuracies due to the lim-
ited state measurement. Introducing measurement of yaw, using the
method which was discussed in Chapter 3.2, will allow the filter to
more easily estimate yaw, and remove constant errors from the speed
estimates. The covariance matrices were chosen as

R =

 0.1 0 0
0 0.1 0
0 0 0.1

 (5.11)

where R 6= 0 due to the high frequency issues mention earlier, and
the Q matrix was chosen by trial and error as:

Q = 0.1I6x6 (5.12)

As we can see from comparing the yaw estimates without feedback in
Figure 5.11 and with feedback in 5.18, we see that the yaw estimate
is somewhat better than without feedback. The reason for the high
discrepancies is most likely due to the sampling rate and values chosen
for the Q matrix. However, we can now see that the constant v
deviation is no longer present, see Figure 5.17. The observer performs
rather well, the N position is tracked rather well with some small
discrepancies shown in Figure 5.14, however the constant E deviation
still persists.
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Figure 5.14: N position error for nonlinear observer without noise
with yaw feedback.
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Figure 5.15: E position error for nonlinear observer without noise
with yaw feedback.
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Figure 5.16: u speed error for nonlinear observer without noise with
yaw feedback.
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Figure 5.17: v speed error for nonlinear observer without noise with
yaw feedback.

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4

5

6

7

8

9

10

Time [ms]

D
e
g

re
e

s

 

 

Yaw error

Figure 5.18: Yaw error for nonlinear observer without noise and with
yaw feedback.
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5.3.3 Simulation with noise, with no yaw feed-
back

Introducing measurement noise better shows the difference in per-
formance between the linear and nonlinear observers. The observer
does a much better job at tracking the actual position of the ship
than the linear observer with noise, as can be seen when comparing
Figure 5.19 and the linear observer Figure 5.5.

In this case, the measurement was added zero-mean white noise
v with variance Var(v) ≈ 2. The R matrix was chosen to reflect the
variance of the noise:

R =

[
2 0
0 2

]
(5.13)

The Q matrix was chosen by trial-and-error as

Q = 0.01I6x6, (5.14)

and the prior error covariance estimate was chosen as P̄ 0 = 06x6. As
we can see from Figure 5.20, the N estimate seems to converge to
zero. The large discrepancy in the beginning is due to filter tuning,
as we can see from Figure 5.23, the forward speed takes some time
to converge, which in turn affects the N position. The v speed is
shown in Figure 5.24, and it is still visible that determining the speed
properly is difficult without yaw feedback. The total speed, shown
in Figure 5.25 shows the discrepancies better. If the u and v speeds
were tuned more responsively, the speed would converge more quickly,
however the estimate would be noisier, which in turn would give a
noisier position estimate. Proper tuning of filters will be discussed
later in the discussion chapter. In general, we can see that the filter
does alright for the positional estimates, and the speed errors are
acceptable. The yaw estimate however, shows large discrepancies, as
shown in Figure 5.22. This is consistent with the results of Chapter
4.4, which shows that this observer does not have full rank, and
therefore cannot correctly estimate the yaw angle.
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Figure 5.19: Nonlinear observer tracking with measurement noise.
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Figure 5.20: Error in N position of nonlinear observer with noise.
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Figure 5.21: Error in E position of nonlinear observer with noise.
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Figure 5.22: Yaw error for nonlinear observer with noise.
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Figure 5.23: u error for nonlinear observer with noise.
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Figure 5.24: v error for nonlinear observer with noise.
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Figure 5.25: Error in total speed for nonlinear observer with noise.
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5.3.4 Simulation with noise, with yaw feedback

As we can see from the previous simulation, the observer estimates
yaw rather poorly. Including a measurement of the yaw, as explained
in Chapter 3.2, allows the filter to more properly estimate both yaw,
position and speeds. The position measurement has a noise variance
Var(vp) ≈ 2, and the yaw measurement has a variance Var(vy) ≈
8 ·10−4. The measurement covariance matrix R was chosen to reflect
the noise:

R =

 2 0 0
0 2 0
0 0 8 · 10−4

 (5.15)

The Q matrix is chosen as

Q = 0.1I6x6, (5.16)

while the initial prior error covariance estimate is chosen as P 0 = 0.
As we can see, the yaw error is now substantially smaller when

we compare Figure 5.31 with 5.22. After the initial discrepancy, the
N position estimate performs better than without yaw feedback, as
seen by comparing Figures 5.20 and 5.27. The effects of yaw feedback
on the speed estimate is visible in the total speed estimation shown
in Figure 5.32. The v speed now doesn’t show large discrepancies or
constant biases, as seen in Figure 5.17. As we can see, with minimal
tweaking, the filter performs rather well at tracking the ship and
estimating its states. Tuning the filter for better performance will be
discussed later.
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Figure 5.26: Nonlinear observer tracking with measurement noise,
with yaw feedback.
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Figure 5.27: N position error for nonlinear observer with noise, with
yaw feedback.
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Figure 5.28: E position error for nonlinear observer with noise, with
yaw feedback.
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Figure 5.29: u speed error for nonlinear observer with noise, with
yaw feedback.
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Figure 5.30: v speed error for nonlinear observer with noise, with
yaw feedback.



76 CHAPTER 5. SIMULATION

0 1000 2000 3000 4000 5000 6000
0

1

2

3

4

5

6

7

Time [ms]

D
e

g
re

e
s

 

 

Yaw error

Figure 5.31: Yaw error for nonlinear observer with noise, with yaw
feedback.
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Figure 5.32: Error in total speed for nonlinear observer with yaw
feedback.

5.4 Summary

In this chapter, the linear and nonlinear observers were tested on
different scenarios, with and without noise. It shows that the linear
observer works rather well, but is surpassed by the nonlinear observer,
which more properly estimates both the speeds and position of the
ship, along with estimating the ship’s yaw.



Chapter 6

Test Platform

6.1 Skywalker X8 flying wing

The Skywalker X8 flying wing1 is a simple, lightweight UAS/UAV
airframe, which will be used for preliminary testing, and data acqui-
sition. The airframe itself is 2120 mm wide, with a MTOW of 3.5 kg.
It is shown in Figure 6.1. A shot of the internals is shown in Figure
6.2. The airframe will, in addition to necessary avionics and propul-
sion systems, carry a payload consisting of a gimballed FLIR thermal
imaging camera. The main mission is to use the platform to log data
for further analysis, so that a system for real time object detection
and processing may be developed for the UAV Factory Penguin B2.

1http://www.hobbyking.com/HOBBYKING/store
/ 27132 Skywalker X 8 FPV UAV Flying Wing 2120mm.html

2http://www.uavfactory.com/product/46
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Figure 6.1: X8 frame, with wings mounted.

Figure 6.2: X8 frame with payload and gimbal mounted.
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6.2 X8 Payload

The X8 payload consists of the following equipment:

• Beaglebone Black3

• AXIS M7001 A/D video converter4

• FLIR Tau 2 Uncooled LWIR camera5

• Retractable gimbal mount for FLIR camera BTC-886

• Ubiquity Rocket M5 (5 GHz)7

• 3-port in-house made switch (with serial to ethernet-interface)

• 48V step-up converter

• 5V step-down converter

The avionics are supplied by the ArduPilot, which will be connected
to the in-house switch with a USB-interface, which allows the soft-
ware running on the BeagleBone access to aircraft attitude and po-
sitional information.

3http://beagleboard.org/BLACK
4http://www.axis.com/en/products/cam m7001/index.htm
5http://www.flir.com/cvs/cores/view/?id=54717
6http://www.microuav.com/btc88
7http://dl.ubnt.com/rocketM5 DS.pdf
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6.3 Payload communications

Beaglebone Black

Ethernet Switch

ArduPilot (APM)

FLIR Tau 2 LWIR CameraUbiquity Rocket M5 AXIS A/D video converter

Gimbal

(+ Gimbal Controller)(On-board Computer)

(Communications Radio)

(With USB Serial to Ethernet Adapter)

Figure 6.3: The payload communications diagram

6.4 Construction

The X8 payload went through an iterative design, where design ele-
ments were changed during production due to limitations in weight,
and changing the switch type from off the shelf to in-house made.
The original design contained a 5-port Ethernet switch, which was
changed for a 3-port switch capable of communicating with the ArduPi-
lot directly. This allows us to read ArduPilot data through a Serial-
to-Ethernet interface.
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A 2-mm aluminium plate was cut to fit in the front compart-
ment of the X8 airframe, measuring 15x20cm. The floor of the front
compartment is covered in velcro, so a soft velcro locking frame was
created and fitted to the plate, see Figure 6.4. The components were
fitted to the board. Initially the cables were chosen as available, but
due to weight constraints, bespoke, proper length cables and POE
injectors were created, decluttering the payload. The top of the pay-
load is shown in Figure 6.5.

(a) Velcro lined, raised bottom of payload as-
sembly.

(b) Payload mounted in nose of aircraft.

Figure 6.4: Payload mounting.
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Figure 6.5: Top view of payload assembly, showing 48V step-up,
BeagleBone and Ubiquity radio.
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6.5 Gimbal mount

The FLIR thermal camera will be mounted in a BTC-88 gimbal
mounted on a retractor mechanism. The retractor mechanism al-
lows the gimbal to deploy underneath and retract into the airframe.
A hole was drilled in the foam body of the X8 to allow the gimbal
and retractor to fit, as seen in Figure 6.6.

Figure 6.6: Hole and pivot rod holes bored into the X8 frame.

The entire retractor mechanism with the gimbal attached was
mounted on a 1mm aluminium plate, which was cut and bent into
position to fit in the X8’s center bay, and to reinforced the structure
due to the parts of the airframe which were cut away. The completed
mounted system is show in Figure 6.7.



84 CHAPTER 6. TEST PLATFORM

(a) Mounting of gimbal and retractor.

(b) Wider shot of payload bay.

Figure 6.7: Gimbal and retractor mounted into X8 frame.

Unfortunately, the retractor mechanism suffered from wobble due
to excessive play in the retractor arm. However, since the aluminium
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plate was already glued to the airframe, the offending arm could not
be replaced, so an adaptor was created in Solidworks8. The part
was 3d-printed, which was deemed sufficiently strong to hold it in
place, which replaced an aluminium part milled by Furseth. The
part drawings can be obtained by request. The 3d printed fix is
shown in Figure 6.8.

(a) The offending retractor arm. (b) The 3d-printed part.

(c) The part is mounted.

Figure 6.8: With the part mounted, gimbal wobble is greatly reduced.

8CAD modeling software.
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6.6 Camera calibration

When calibrating a regular daylight camera, most algorithms require
the use of either a chessboard pattern or a square circles grid-pattern
printed on a sheet of paper, with known spacing. The algorithm can
then detect the corners of the chessboard or the circles, and use the
information to estimate the radial distortion parameters mentioned
in Chapter 2.4.2. This is however difficult with a thermal camera,
as any patterns printed on paper will not be visible in the thermal
spectrum. Therefore, a plate was cut out of 5 millimetre thick MDF9

plate, into which a pattern was drilled, consisting of a 12-by-12 grid
of circles. This plate is shown in Figure 6.9. The circles were spaced
20 millimetres apart. This plate in turn was placed in front of a
heat source, creating a grid pattern visible in the thermal spectrum.
After setting the camera output to use a black-hot colour palette, the
OpenCV camera calibration algorithm was able to detect the grid
pattern and estimate radial distortion coefficients. The estimated
coefficients, along with the camera matrix from Equation (2.28), are
shown in Table 6.1, and Equation (6.1) respectively.

Figure 6.9: Calibration plate used for calibrating a thermal lens.

9Medium Density Fibreboard.
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Table 6.1: Coefficients calculated by OpenCV camera calibration al-
gorithm

Coefficients Value

k1 −8.25

k2 −5.16 · 102

k3 −1.27 · 10−2

k4 −5.50 · 10−2

k5 −8.72

A =

 4734 0 369
0 4734 261
0 0 1

 (6.1)

As we can see, the estimates for the camera intrinsic parameters
differs from the pre-calculated matrix in Equation (2.28) by a rather
large factor. This discrepancy will be discussed in the discussion
chapter.

6.7 Summary

In this chapter, the construction of the payload created for future
flight tests is documented, along with a method for calibrating camera
matrix parameters for our thermal camera.





Chapter 7

Flight tests

A flight test of the Skywalker X8, along with the payload made in
collaboration with Leira, was originally scheduled for mid-to-late Jan-
uary, well within the time scope of this thesis. Due to circumstances
beyond our control, the flight tests have been rescheduled past the
due date of this thesis, therefore the results of the flight, as well as
performance of the real system can not be summarized here. The
results of flight testing will be summarized later in the ICUAS’15
paper.
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Discussion

8.1 Simulation results

8.1.1 Performance of observers

As we can see from the simulations, all three observers (linear, non-
linear, nonlinear with yaw feedback) manage to track the movement
of the ship. It is however visible, especially in the noiseless cases,
that the state estimator lags the actual states with some degree. It is
especially evident in the initial speed estimates, where a large error
spike is seen. This is due to slow convergence of the error covariance
estimate, which in turn is due to poor tuning of the filter. This will
be discussed in the next section.

8.1.2 Tuning the Kalman filter for better
performance

The Kalman filter design matrices Q and R allow the filter to be
tuned for better performance. If the diagonal values for R are set
high, the filter interprets this as the measurements being unreliable,
and will therefore give less weight to these measurements. If they are
set to be low, the filter will give more weight to the measurements.
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The Q matrix on the other hand, can be thought of as assigning
more or less “merit” to the internally estimated states of the system.
It is obvious here that in most cases, direct knowledge of the type
and variance of noise encountered will not be known, and some form
of tuning of these matrices will be necessary. Different methods of
tuning the filter have been proposed throughout the years [20][21],
and using some of these methods would most likely yield much better
results that choosing values for Q and R by trial-and-error.

8.2 Performance of observer with mea-

surement data loss

The nonlinear observer with yaw feedback does a rather good job of
tracking the ship motion, however, it is interesting to see how the
observer behaves when the measurements are lost for certain times,
such as is the case when the aircraft loses the object from sight, or fails
to classify it. A simple simulation was done where the measurements
disappear for certain times:

• From t = 10s to t = 12s.

• From t = 18s to t = 25s.

• From t = 38s to t = 41s.

This scenario is only tested for the observer which performed best,
which was the nonlinear observer with yaw feedback. The result is
shown in Figure 8.1. As we can see, the observer performs rather
well despite large gaps in the measurement data. In the first gap, we
can see that the system has yet to observe any change in yaw rate,
and therefore when measurements disappear, the tracking continues
on the wrong course. However, during the second dropout, we can
see that the filter overestimates the yaw change, since it does not
receive input that the ship has stopped changing path. In the last
dropout, we can see that the filter does a rather good job of tracking
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the curvature of the path, and little correction is needed when the
measurements restart. It is obvious that given a long enough outage,
the filters estimate of the ship’s position will become worse. If for
instance the measurements did not reappear at time t = 41s, the
filter would estimate that the ship is spinning in circles. This can be
countered by adding a restoring force on the estimated yaw rate r,

ṙ = −cr (8.1)

where c is a constant which can be tuned. The estimated position
would then assume that if the measurement is lost, the ship is more
likely to have stopped turning in the time where the measurement
was unavailable. However, both assumptions are equally valid, the
ship could both have stopped turning and continued in circles, there-
fore such a modification should only be done when more information
about the system model being tracked is known.
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Figure 8.1: Simulation of nonlinear observer with yaw feedback, ex-
periencing measurement outages.
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8.2.1 High frequency noise in Kalman filter
estimate

While simulating the observers without noise, it was noted in Chapter
5.2.1 that a high-frequency oscillation occurred in the Kalman filter
estimates. This issue likely stems from the numerical nature of the
filter implementation, introducing roundoff errors [6, p. 260], such
as lack of symmetrization of the error covariance matrix P . Several
different ways of solving the issue have been discussed, however, in
our case an interesting point is made about U-D factorization [6,
p. 368]. U-D factorization starts with factorizing the P matrix into
an upper triangular and diagonal part:

P = UDU> (8.2)

The U and D matrices are then propagated by themselves, and later
recombined into the P matrix. This helps reduce many of the issues
encountered with numerical roundoff [6, p. 370], and would likely
solve the issue which was encountered.

8.2.2 Linear observer performance and usage

The performance of the simple linear observer was surprisingly ac-
curate in estimating the position of the ship, but did however have
trouble estimating the correct speed. Such a linear observer is better
suited for tracking icebergs, where a linear motion model makes more
sense, as the iceberg can not have any self-induced motion, and its
direction of travel is not dependent on its yaw orientation, which is
mostly governed by difficult to model water and wind-forces. The lin-
ear model also makes sense if there is no knowledge of the underlying
system generating the motion.
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8.3 Classification

One of the main contributions of the classification system is the abil-
ity to recognize an object after it has left the camera’s field of view. If
there are many different objects, and each object has an observer es-
timating its position, it is important that the next time the object in
question returns into view, its measurements are input to the correct
observer. Otherwise, the observer will start using the new measure-
ments as belonging to the wrong object. Methods for increasing the
correct classification percentage is discussed as an item under future
work.





Chapter 9

Conclusion and future work

As we can see, the simulations show that the observer theory devel-
oped seems to work well for tracking ships and other objects. Un-
fortunately, it is hard to draw a solid conclusion at the current time.
However, the rescheduled flight tests will be summarized in the paper
submitted to ICUAS’15 [14], and allow us to better test the perfor-
mance of the observers, synchronization method, object detection
and classification on real-life data.

9.1 Future work

The system presented in this thesis consists of several different com-
ponents which need to function together in order to provide accu-
rate tracking of objects of interest. The detection and classification
subsystems by Leira [13] provide necessary data for the observers
and synchronized georeferencing system developed in this thesis to
properly estimate position of on-ground objects. The largest chal-
lenge ahead lies in making sure all modules are synchronized in order
for the system to work properly, and the on-board computer needs
have enough processing power to be able to run all the different al-
gorithms. Hardware-in-Loop (HIL) testing of the system is crucial
before flight tests are performed. It should also be tested whether the
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synchronization procedure developed in Chapter 2.5.1 could work in
real-time. Additionally, creating a simple human-in-the-loop system
for administration of detection object should be looked into.

9.1.1 Observer robustness

Implementation of the U-D factorization technique mentioned in Chap-
ter 8.2.1 should be done for future work, to make the nonlinear ob-
server more robust against divergence and oscillations.

9.1.2 Daylight camera

An interesting addition to the classification system would be data
received from a daylight (visible light) camera. Many detectable fea-
tures are lost when viewing an object in the thermal range, which
could be useful for cases where the classifier has difficulty determin-
ing the type, and the object instance.

9.1.3 FLIR Camera interface

The FLIR Tau 2 camera has several different modes of operation, and
these settings may be set by communicating with the camera over an
RS232 serial connection. This would allow us to change the different
parameters of the camera, which could aid the object detection and
classification process. An important future development would be
to directly communicate with the camera, allowing for much more
control of the detection process.

9.1.4 Camera calibration

In Chapter 6.6, it was noted that the estimated camera interior pa-
rameter matrix was far off from the pre-calculated matrix. This in-
dicates that there were either issues with the calibration procedure
itself, or the calibration tool was improperly initialized. This is looked
into in the ICUAS’15 paper [14].
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