
Design of a Hybrid Recommender 
System: A Study of the Cold-Start User 
Problem

Sigurd Støen Lund
Øystein Tandberg

Master of Science in Informatics

Supervisor: Helge Langseth, IDI
Co-supervisor: Professor Agnar Aamodt, IDI

Department of Computer and Information Science

Submission date: May 2015

Norwegian University of Science and Technology



 



i

Abstract

Recommender systems are used to help users discover the items they might
be interested in, especially when the number of alternatives is big. In mod-
ern streaming websites for music, movies, and TV-shows, E-commerce, social
networks, and more, recommender systems are widely used. These recom-
mender systems are often looking at the ratings on items for the current and
other users, and predicting a rating on the items the user have not seen.
Others match the content of an item itself against a user profile. A mix of
the two is often used to make the predictions more accurate, and this can also
help to the problem when a new user sign up where we have no knowledge
about him. This issue, is a well-known problem for recommender systems
often described as the cold-start problem, and much research has been done
to find the best way to overcome this.

In this thesis, we look at previous approaches to recommender systems and
the cold-start problem in particular. We have developed our application,
Eatelligent, which is recommending dinner recipes based on our study of
previous research. Eatelligent has been designed to examine how we can
approach the cold-start problem e�ciently in a real world application, and
what kind of feedback we can collect from the users.



ii



iii

Sammendrag

Anbefalingssystemer brukes til å hjelpe brukere å oppdage ting de kan være
interessert i, og spesielt n̊ar det finnes mange alternativer å velge fra. I
moderne strømningstjenester for musikk, tv-serier og film, eller nettbutikker
og sosiale medier, er anbefalingssystemer mye brukt. Disse anbefalingssys-
temene ser ofte p̊a historikk i form av vurderinger for en bruker, og predikterer
en vurdering p̊a objektene brukeren ikke har vurdert selv. Andre systemer
sammenlikner innholdet av et objekt mot brukerens profil. Ofte brukes en
kombinasjon av disse to metodene for å gjøre prediksjonene enda mer nøyak-
tige. Dette kan ogs̊a hjelpe til å løse utfordringen med nye brukere som man
ikke har noen kunnskap om. Dette problemet omtales ofte som kaldstart-
problemet, og mye arbeid er lagt ned tidligere for å overkomme dette.

I denne masteroppgaven ser vi p̊a tidligere tilnærminger for anbefalingssyste-
mer og kaldstart-problemet spesielt. Vi har laget v̊ar egen applikasjon, Eatel-
ligent, som er en middagsoppskrift-anbefaler basert p̊a v̊art studie av tidligere
arbeid. Eatelligent er designet for å utforske hvordan vi kan tilnærme oss
kaldstart-problemet e↵ektivt i en reel applikasjon, og hvilken type tilbake-
meldinger vi kan samle fra brukerne for å overkomme dette.



iv



v

Preface

This Master’s thesis is written by Sigurd Støen Lund and Øystein Tandberg
from August 2014 to June 2015 at the Norwegian University of Science and
Technology (NTNU). The thesis is the final delivery of the master program
in Informatics, with specialization in intelligent systems.

We came up with the idea for the thesis ourselves, wanting to build something
related to recommender systems in a real world application. Our supervisors
liked the idea and helped us making this into a thesis.

We would like to thank our supervisors, Helge Langseth and Agnar Aamodt,
for constructive feedback and discussions, and for always being in pleasant
mood throughout the year. We would also like to thank the fellow students
in room 363, Korp, for a good working atmosphere, along with the other
students taking lunch breaks on the second floor.

We would also like to thank Matprat AS for letting us use their recipes in
our application.

Trondheim, Friday 29th May, 2015

Sigurd Støen Lund Øystein Tandberg



vi



Contents

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Sammendrag . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

1 Introduction and Overview 3

1.1 Background and Motivation . . . . . . . . . . . . . . . . . . . 3

1.2 Goals and Research Objectives . . . . . . . . . . . . . . . . . . 4

1.3 Thesis Structure . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Project Scope . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 Background Theory and Motivation 7

2.1 Recommender Systems . . . . . . . . . . . . . . . . . . . . . . 7

2.1.1 Content-Based Filtering . . . . . . . . . . . . . . . . . 8

2.1.2 Collaborative Filtering . . . . . . . . . . . . . . . . . . 9

2.1.3 Hybrid Recommender Systems . . . . . . . . . . . . . . 11

2.1.4 Context-Aware Recommender Systems . . . . . . . . . 12

2.2 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.2.1 Explicit Feedback . . . . . . . . . . . . . . . . . . . . . 16

2.2.2 Implicit Feedback . . . . . . . . . . . . . . . . . . . . . 17

2.3 The Cold-Start Problem . . . . . . . . . . . . . . . . . . . . . 19

2.3.1 Cold-Start User Problem . . . . . . . . . . . . . . . . . 19

vii



viii CONTENTS

2.3.2 Cold-Start Item Problem . . . . . . . . . . . . . . . . . 23

2.4 Case-Based Reasoning . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 The CBR Principles . . . . . . . . . . . . . . . . . . . 24

2.4.2 CBR as a Recommender System . . . . . . . . . . . . . 26

2.5 Examples of Earlier Projects . . . . . . . . . . . . . . . . . . . 27

2.5.1 Amazon.com . . . . . . . . . . . . . . . . . . . . . . . 27

2.5.2 DieToRecs . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.5.3 CHEF . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.4 JULIA . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.5 Intelligent Food Planning: Personalized Recipe Rec-
ommendation . . . . . . . . . . . . . . . . . . . . . . . 30

2.5.6 Food Recommendation Using Ontology and Heuristics 30

2.6 Relating the Theory Towards Eatelligent . . . . . . . . . . . . 31

2.6.1 Recommender System . . . . . . . . . . . . . . . . . . 31

2.6.2 Cold-Start . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.6.3 Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6.4 Taking Advantage of the Contextual Information . . . 34

3 Architecture/Model 37

3.1 Requirements for Design . . . . . . . . . . . . . . . . . . . . . 37

3.2 System Overview . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.3.1 Client . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.3.2 Backend . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.4 Recommender System . . . . . . . . . . . . . . . . . . . . . . 51

3.4.1 Algorithms . . . . . . . . . . . . . . . . . . . . . . . . 52

3.4.2 Feedback in the Client . . . . . . . . . . . . . . . . . . 58

3.4.3 Cold-Start Item Problem . . . . . . . . . . . . . . . . . 59



CONTENTS ix

3.4.4 Composition of Recommendations . . . . . . . . . . . . 59

3.5 How it Works . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5.1 A New User Receiving a List of Recommendations . . . 60

3.6 Making Eatelligent Public . . . . . . . . . . . . . . . . . . . . 65

4 Experiments and Results 67

4.1 Experimental Plan . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2 Experimental Setup . . . . . . . . . . . . . . . . . . . . . . . . 68

4.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 69

4.3.1 Yes/No ratings . . . . . . . . . . . . . . . . . . . . . . 69

4.3.2 Star Ratings . . . . . . . . . . . . . . . . . . . . . . . . 70

4.3.3 Comparing Yes/No and Star Ratings . . . . . . . . . . 73

4.3.4 Cold-Start Questions . . . . . . . . . . . . . . . . . . . 73

5 Evaluation and Conclusion 77

5.1 Evaluation and Discussion . . . . . . . . . . . . . . . . . . . . 77

5.1.1 RO1 - Gain an understanding of what it means to rec-
ommend food recipes . . . . . . . . . . . . . . . . . . . 77

5.1.2 RO2 - Study and evaluate di↵erent strategies to rec-
ommend items for a new user using both collaborative
and content-based approaches . . . . . . . . . . . . . . 78

5.1.3 RO3 - Study existing solutions to the cold-start problem 79

5.1.4 RO4 - Study what kind of data we can collect from the
application used by a user over a period of time that
is relevant to build more knowledge about the user . . 79

5.1.5 RO5 - Study the challenges that arise when building
an application with a recommender system from scratch 80

5.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

5.3 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82



x CONTENTS

A SQL-scheme 85

B Endpoints 91

B.1 GET . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

B.2 PUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

B.3 POST . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

B.4 DELETE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

C Recipe Features 95

C.1 Ingredient Tags . . . . . . . . . . . . . . . . . . . . . . . . . . 95

C.2 Recipe Tags . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

C.3 Full Recipe Description . . . . . . . . . . . . . . . . . . . . . . 97

C.3.1 Paprika Chicken with Asparagus . . . . . . . . . . . . 97

C.3.2 Babi Asam Manis . . . . . . . . . . . . . . . . . . . . . 98

C.3.3 Asian Omelet . . . . . . . . . . . . . . . . . . . . . . . 99

Bibliography 100



List of Figures

2.1 We want to learn the function between the user and the items
he like the most . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Multidimensional model for the User ⇥ Item ⇥ Time recom-
mendation space [5] . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3 The CBR cycle . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.4 The mapping from problem to solution. The dotted arrow
shows a new case and its solution adapted from the previously
solved cases. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2 Class hierarchy for the mobile client . . . . . . . . . . . . . . . 41

3.3 Entity relation diagram . . . . . . . . . . . . . . . . . . . . . . 44

3.4 The sign up process . . . . . . . . . . . . . . . . . . . . . . . . 47

3.5 The user answer 1/5 questions . . . . . . . . . . . . . . . . . 48

3.6 The users answers “yes” or “no” to a recommendation . . . . . 49

3.7 Detailed view of the recipe . . . . . . . . . . . . . . . . . . . . 50

3.8 Rating the recipe . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.9 Illustration of the recipe tag tree . . . . . . . . . . . . . . . . 57

3.10 Illustration of the ingredient tag tree . . . . . . . . . . . . . . 57

4.1 “Yes/no” ratings per algorithm . . . . . . . . . . . . . . . . . . 69

4.2 Normalized “Yes/no” ratings per algorithm . . . . . . . . . . . 70

xi



xii LIST OF FIGURES

4.3 Star ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.4 Percentage of star ratings for each algorithm . . . . . . . . . . 72

4.5 Comparison between yes/no and star ratings. The data for
each recipe corresponds vertically between the two charts. In
the bottom chart, the impulses represent the number of rat-
ings, and the bars show the average star rating. . . . . . . . . 74



List of Tables

2.1 The goal is to predict the missing votes for the active user,
e.g., User B . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2 Common types of explicit and implicit feedback . . . . . . . . 17

2.3 Evaluation of di↵erent strategies from A. M. Rashid et al. . . 22

3.1 The di↵erent response codes used by the server . . . . . . . . 46

3.2 The weighting from the cold-start questions . . . . . . . . . . 53

3.3 The impact of star ratings . . . . . . . . . . . . . . . . . . . . 55

3.4 An example on a composed recommendation list . . . . . . . . 60

3.5 The current state of the weights after the cold-start questions. 61

3.6 The current state of the weights after the “yes/no” ratings . . 62

3.7 The updated weights after a rating of “Paprika Chicken with
asparagus” . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 The number of ratings for each algorithm . . . . . . . . . . . . 71

4.2 Answers to the cold-start questions . . . . . . . . . . . . . . . 75

4.3 Recommendations made by each algorithm based on cold-start
questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

xiii



xiv LIST OF TABLES



List of Algorithms

1 Nearest User Rated Recipes . . . . . . . . . . . . . . . . . . . . 54

2 Content-based filtering . . . . . . . . . . . . . . . . . . . . . . . 56

xv



xvi LIST OF ALGORITHMS



Listings

2.1 The KNN algorithm . . . . . . . . . . . . . . . . . . . . . . . 25
3.1 Sign up request . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.2 Sign up response . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Cold-Start Request . . . . . . . . . . . . . . . . . . . . . . . . 48
3.4 Cold-Start Response . . . . . . . . . . . . . . . . . . . . . . . 48
3.5 Recommendations . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.6 Recipe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.7 Rating request . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.8 Rating response . . . . . . . . . . . . . . . . . . . . . . . . . . 51
3.9 First list of recommendations to a user . . . . . . . . . . . . . 63
3.10 New recommendation after interactions . . . . . . . . . . . . . 64

1



2 LISTINGS



Chapter 1

Introduction and Overview

Recommender systems help people to make better decisions in a world filled
with choices. Since the recommender systems in most cases are targeted
towards individuals, it is a problem to recommend items to a new user you
barely know anything about, or a new item you do not know which type
of user will like. This is known as the cold-start problem. In this thesis,
we will study di↵erent approaches to the cold-start problem in a problem
domain where we have no knowledge about new users. We will also study
how feedback can be collected, to evaluate the recommender engine, and use
the feedback for better recommendations in the future.

By exploring this in a real world application we develop on our own, we get
the opportunity to be more flexible about how we structure our data, what
type of knowledge we try to extract from the user, and what feedback we
collect while the user uses the system. A well-suited domain for this research
is the recommendation of food recipes, which will be implemented as an
application from now called Eatelligent.

1.1 Background and Motivation

Composing recommendations of items to a user is usually done by one of two
strategies, or both of them combined. Either by looking at the content of the
items itself and matching it against a user profile, or predicting a rating based
on other users ratings on the items. Both of the strategies have challenges

3



4 CHAPTER 1. INTRODUCTION AND OVERVIEW

relating to the cold-start problem, and a combination of the two is often used
to overcome some of these. In this thesis, we want to try combinations of
di↵erent methods, and see how these perform on new users.

To build knowledge about a new user, we want to study di↵erent methods to
collect data about how the user is using the application and ask the user to
add additional information. We also want to design, structure, and describe
the data ourselves, to be able to build knowledge about the items and users
in an e�cient way. The only way we are free to do all this without any
restrictions is if we develop our own application. Many datasets exist to be
used for testing recommender systems, but those datasets contain historical
data, typical user ratings on items like books or movies. By building a real
world application, we can collect both implicit and explicit ratings, look at
the content of the items ourselves and therefore be more flexible in the design
of the recommender system.

A good test domain would be something where you start with no knowledge
about the user and have to extract some knowledge and turn it into predic-
tions. Thinking of a domain where people make choices on a regular basis
and there are a lot of options out there that takes some e↵ort for a person to
explore, we thought of what people are deciding to make for dinner. There
exist a lot of websites that contains food recipes, but they are not necessarily
helping the user to make an easy choice of what to go for without having to
browse through a lot of recipes. By implementing an application with dinner
recipes along with a recommender system, we could help people save time on
a daily basis. It is also hard to know what kind of food an unknown person
likes, so it gives us a good domain for studying the cold-start problem. In a
world where almost everybody have smartphones and more and more of the
Internet activity is happening on those devices, we decided to go for a mobile
application, to test the software as a real world application.

1.2 Goals and Research Objectives

The goal for this thesis is to study methods for a recommender system in
a real world problem situation, explore the challenges with recommending
items to new users, and implement and evaluate di↵erent strategies to solve
this problem. Di↵erent recommender strategies will be tested to see which
one is most accurate. The di↵erent methods will be assessed by star ratings



1.3. THESIS STRUCTURE 5

from the users, and also by looking at which recipes the user looks at in
detail. Some of the recommended recipes will be drawn from a uniform
random distribution to be used as a baseline to compare the other methods.

Below are the research objectives for this thesis:

• RO1 Gain an understanding of what it means to recommend food
recipes.

• RO2 Study and evaluate di↵erent strategies to recommend items for a
new user using both collaborative and content-based approaches.

• RO3 Study existing solutions to the cold-start problem.

• RO4 Study what kind of data we can collect from the application used
by a user over a period of time that is relevant to build more knowledge
about the user.

• RO5 Study the challenges that arise when building an application with
a recommender system from scratch.

1.3 Thesis Structure

Chapter 2 describes the background material to cover the most relevant the-
ory related to recommender systems and the cold-start problem, and material
that is either considered or used in our application. In Chapter 3 we describe
the design and implementation of the whole application, which is everything
from how the server and client are structured to how we approach the rec-
ommendation and cold-start problem. Chapter 4 presents the results of our
work, and in Chapter 5 we evaluate how this solution worked along with
suggestions for future work.

1.4 Project Scope

The scope for this thesis is to study the nature of the cold-start problem
within the described problem domain and investigate the results of our ap-
proach to solve this problem, by building an application for recommendation



6 CHAPTER 1. INTRODUCTION AND OVERVIEW

of dinner recipes. This also includes studying previous research, to make sure
we build this application while standing on the shoulders of the giants.

Since this application is built from scratch, evaluate the recommender sys-
tem by the data we collect throughout our test period. The application is
released on the open market so that the user can be any user with access to
a smartphone. Eatelligent is available for free in App Store for iPhone users
and Google Play for Android users.



Chapter 2

Background Theory and
Motivation

In this chapter, we will present the subjects that will form the background
for this thesis. The chapter covers research regarding recommender systems
and its features from early stages up until recent studies. We start o↵ by de-
scribing recommender systems in general, and the di↵erent approaches that
are out there. Then we write about feedback followed by the cold-start prob-
lem, which both are relevant challenges in recommender systems, and that
we will study deeper in this thesis. Case-based reasoning (CBR) is a way of
problem-solving and can also be used as a strategy in a recommender sys-
tem. Section 2.4 is therefore dedicated to this methodology. In Section 2.5
we describe some relevant projects to recommender systems and food rec-
ommendation in particular. The chapter ends with Section 2.6 relating the
theory described earlier towards Eatelligent.

2.1 Recommender Systems

Recommender systems suggest items that should interest the user. The rec-
ommendations are usually based on knowledge about the user, either it is
a user profile with preferences or history. Recommendations of items like
movies, books, and music widely use this strategy. It is usually targeted to
individuals and used when the number of alternatives is big.

7



8 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Figure 2.1: We want to learn the function between the user and the items he
like the most

In this section, we will discuss the di↵erent approaches to recommender sys-
tems that are common today.

The key task for every di↵erent recommender system can vary. One can be
to sort a list of items in a personalized fashion. Another can be to pick a
personalized top 10 list from a large item set. Recommender systems also
help users widen their horizon by recommending new items, based on similar
users or similar items the user liked before. Figure 2.1 illustrates the function
between the user and items that a recommender engine want to learn. For a
naive recommender system, it is an easy task to recommend the most popular
items to all users. In this naive approach, the result is not personalized.

2.1.1 Content-Based Filtering

Content-based filtering methods analyzes the items itself and match them
against a user profile [39]. The representation of an item is important in
content-based recommender systems since the recommendation technique
might be based on the representation. In a structured way, attributes like
tags or categories can easily be stored, so it is easy to compute from them.
Unrestricted text is more complicated, and by counting words and represent
their importance, an unrestricted text can be transformed into structured
data. This process is often done by representing a weight for each term TF-
IDF (term frequency times inverse document frequency). Before this is done
it is common to use techniques like stemming, which means to represent dif-
ferent versions of a word as one term. For instance, “comput” can represent
the terms “computation” and “computers”.

Since the items are going to be matched to a user, the recommender system
needs to have a way of computing a score for a user on the items. Pazzani
et al. [39] describe two types of user profiles: (1) The user’s preferences are
stored, e.g. in a food recommender a user might have “vegan” attached to his
profile, to describe that he wants vegan dishes. Preferences like this could



2.1. RECOMMENDER SYSTEMS 9

be collected by having the user fill out a profile with checkboxes. (2) The
history of the user interacting with the system. This information might be
history like which items he has looked at before, ratings, or queries. This
feedback can either be collected implicitly or explicitly.

Many classification learning algorithms can be used to learn the function
that computes an estimate of the probability that a user likes an item, like
Naive Bayes along with many others. We will not go into detail with these
algorithms here.

2.1.2 Collaborative Filtering

Collaborative filtering is a recommender approach based on a collection of the
user’s data like ratings, behaviors, and preferences, as well as analyzing these
data and recommend items to a similar user. The task can be described as
“To predict the utility of items to a particular user (the active user) based on
a database of user votes from a sample or population of other users (the user
database)” [11]. Collaborative filtering can be in di↵erent forms; memory-
based or model-based methods.

Inmemory-based algorithms, we predict the votes of the active user based
on some partial information regarding the active user and a set of weights
calculated from the user database. The user database contains a set of votes
vu,i, meaning the vote for user u on item i. If Iu is the set of items on which
user u has voted, then the mean vote for user u is as follows:

vu =
1

|Iu|
X

i2Iu

vu,i (2.1)

In memory-based algorithms, we predict the votes of the active user based
on partial information regarding the active user and a set of weights from
the user database. The assumed predicted vote for the active user u for item
i, pu,i, is a weighted sum of the votes of the users:

Pu,i = vu + k
X

u02U

w(u, u0)(vu,u0 � vu0) (2.2)

Where u is the current user, U is the set of users in the database with nonzero
weights. The weights, w(u, u0), can describe the correlation or similarity



10 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Item A Item B Item C Item D

User A 1 5

User B 1 ? 3 ?

User C 2 4 5

Table 2.1: The goal is to predict the missing votes for the active user, e.g.,
User B

between each user in the database and the active user. k is for normalization.
In this thesis, we will cover the correlation weighting model. The correlation
between two users u and u0 is defined as follows [43]:

w(u, u0) =

P
i(vu,i � vu)(vu0,i � vu0)pP

i(vu,i � vu)2
P

i(vu0,i � vu0)2
(2.3)

Where i is each item for which both user u and u0 have recorded votes.

Model-based algorithms is using a probabilistic approach where the col-
laborative filtering task can be viewed as calculating the expected value of
a vote, given what we know about the user. For the active user, we want
to predict the votes for unobserved items. The probability expression for an
item i and user u with the rated items for user u is Iu is as follows (This
assumes that the votes are integers in range from 0 to m):

pu,i = E(vu,i) =
mX

j=0

Pr(vu,i = j|vuk, k 2 Iu)i (2.4)

The probability, Pr, in Equation 2.4 is the probability that the given user
will rate a value of the input item, given the previously rated items. Bayesian
networks or clustering models is two of the probabilistic models that can be
used for model-based collaborative filtering.

Collaborative filtering helps with predicting ratings for an active user based
on previous votes in a database of votes. The input data is very often a
sparse matrix of votes for di↵erent items. The example in Table 2.1 is a
small example showing ratings for some users, and where the data is sparse.



2.1. RECOMMENDER SYSTEMS 11

2.1.3 Hybrid Recommender Systems

A hybrid recommender system is used to help avoid certain limitations of
content-based- or collaborative filtering methods. Collaborative methods
have a relatively big weakness around the cold-start problem since the user
needs to have rated some items to receive recommendations. A real-life prob-
lem domain is much more complicated than a straight movie recommender
system [4]. A real business case will have significant amounts of parame-
ters, where a hybrid will help learning a more complex model of the user,
hence giving more accurate recommendations. Hybrid solutions are a mix
of the methods described earlier. Since di↵erent methods can be combined,
multiple hybrid solutions can be created. Burke [13] covers seven di↵erent
approaches to combining recommenders/components:

Weighted hybrid recommender systems go through a training phase where
the weights in the recommender system are learned from a training set during
a training period. The output of this training phase is the weights of each
component. The candidates from each component are weighted in respect
of these numeric values each time a recommendation is done. The result is
then either a union or intersection of these lists. This approach does not
di↵erentiate between users; there is an assumption that each component will
have a consistent performance for all users.

Mixed hybrid recommenders present a composed list of items side-by-side
from each of the components. There is no actual combining of the di↵erent
recommender algorithms. The challenge in mixed hybrid is the ordering and
confidence in each of the components composed together. A technique often
includes merging the lists on a normalization the predicted rating.

A switching hybrid recommender have a confidence in each component and
selects the recommendation that gives the best results at the given time. This
method, similar to the mixed approach, does not combine the algorithms into
a new one. A substantial part of a switching hybrid is the selection criteria.
Both statistical confidence and external criteria can be used to select which
recommender to select in each user case.

Cascading hybrids tries to create a strict hierarchy of recommender com-
ponents. The di↵erent components are ranked, and the secondary ones fill in
for the primary recommender when there is a broken tie.

Meta-level hybrid recommender systems are first going through a training



12 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

phase. This training phase is to train one recommender to have a concept of
a learned model. The actual recommender then uses this model to produce
recommendations for the end user. Not all pairs of di↵erent recommendation
components are suitable for this hybrid.

Feature combination is a hybrid where one of the components uses its
output as input to the actual recommender. For instance, the output from
a collaborative filtering algorithm can be used as input to a content-based
algorithm. This method achieves that the first component is a contributor
giving a bias to the algorithm giving recommended list, every time.

Feature augmentation is a strategy where one component is used to pro-
duce a new augmented feature set to the next component. This approach
also needs a training phase that learns the augmented profile. Feature aug-
mentation can derive new content features at this stage that can be valuable
when generating candidate items.

2.1.4 Context-Aware Recommender Systems

Most of the recommender systems do not consider the context of the user
when finding the items to recommend [5]. However, it can often be useful to
consider the context that the user is in when giving recommendations. For
some domains, various information like the day of a week and where the user
is can have a significant impact on what the user would want.

What is a Context?

Before explaining context-aware recommending systems (CARS) any further,
it is important to define what a context is. As G. Adomavicius and A.
Tuzhilin [5] write, the term context is used in so many di↵erent disciplines,
and the definition often vary across the di↵erent ones (computer science,
linguistics, philosophy, psychology, and organizational sciences). They focus
on the definitions in the fields that are most relevant to recommender systems,
and we will just summarize them up here.

• In data mining, the context is sometimes defined as those events that
characterize the life stages of a customer and can determine a change in
his preferences, status, and value for a company [8]. This information



2.1. RECOMMENDER SYSTEMS 13

can be events like a new job, the birth of a child, marriage, divorce, or
retirement.

• E-commerce Personalization systems sometimes look at the intent of
a purchase made by a customer as contextual information [36]. For
example if someone buy something as a gift, he does not necessary want
recommendations based on that when he visit again buying something
for himself.

• In ubiquitous and mobile context-aware systems, the context was ini-
tially defined as the location of the user, the identity of people near the
user, the objects around, and the changes in these elements [48]. Date,
season, temperature, physical and conceptual statuses of interest for a
user, emotional statuses have been added later [12, 46, 19].

• In marketing and management research they have studied the di↵erent
behavior and decision making a customer can adopt and prefer di↵er-
ent products based on the context [9, 33]. C. K. Prahalad [41] defines
context as “the precise physical location of a customer at any given
time, the exact minute he needs the service, and the kind of techno-
logical mobile device over which that experience will be received”. He
distinguishes among three dimensions: temporal (when to deliver cus-
tomer experiences), spatial (where to deliver), and technological (how
to deliver).

Modeling

A typical recommender system consists of users and items and is trying to
learn a function to estimate the rating for a user on a given item.

Rating = User⇥ Item (2.5)

When we want to take the context of the user into consideration as well, we
end up with the following function instead:

Rating = User⇥ Item⇥ Context (2.6)



14 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Figure 2.2: Multidimensional model for the User ⇥ Item ⇥ Time recommen-
dation space [5]

If we use the example by G. Adomavicius and A. Tuzhilin [5] where they
consider time as a context, we can model it in three dimensions as shown in
Figure 2.2.

G. Adomavicius and A. Tuzhilin [5] describes two di↵erent approaches to
use contextual information in a recommendation process; (1) recommenda-
tion via context-driven querying and search, and (2) recommendation via
contextual preference elicitation and estimation. Mobile and tourist systems
[2, 15, 49] use the first approach, by using the contextual information when
querying for some information, like querying for restaurants in the restau-
rants that are nearby.

The latter approach, recommendation via contextual preference elicitation
and estimation, represents a more recent trend for context-aware recom-
mender systems [3, 35, 37, 51]. This approach tries to model and learn
the user’s preferences by obtaining information while the user is using the
application, and by watching how he interact with previously given recom-
mendations. G. Adomavicius and A. Tuzhilin [5] describes three ways that



2.1. RECOMMENDER SYSTEMS 15

this recommendation process can be implemented:

• Contextual pre-filtering are done by selecting data filtered on the con-
text, and then it can do a traditional 2D recommendation process on
the retrieved dataset.

• Contextual post-filtering is the opposite where the recommendations
are first predicted without considering the context, and filter on the
context afterward.

• Contextual modeling is a technique where the contextual information
is used directly within the recommendation function. Instead of using
a traditional 2D approach either before or after as the first two ap-
proaches, this will use a multidimensional model. Di↵erent algorithms
have been developed, but we will not go into further detail about that
here.

As we have talked about in previous sections, combining di↵erent recommen-
dation techniques, it is possible to do the same within CARS, by combining
multiple of the strategies described above.

Obtaining the Context

G. Adomavicius and A. Tuzhilin [5] describes three ways to obtain contextual
information:

• By explicitly asking the user questions that help to define his current
context.

• Implicitly gather it from the data or environment, e.g. using the GPS
on a mobile phone to determine the location of the user.

• Inferring the context using statistical or data mining methods. For
example, we might be able to determine who is watching the TV in a
family of dad, mother, and son, based on what is being watched right
now.



16 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Other than knowing how to gather the information, we also need to decide
which information to collect. G. Adomavicius et al. [3] propose that a wide
range of attributes can be used, which are selected by domain experts that
they believe can be useful information. After the data is collected, various
statistical tests can find the most important attributes.

Issues

G. Adomavicius and A. Tuzhilin [5] also describes some issues with the cur-
rent state of the research in context-aware recommender systems. More re-
search need to be done on how to combine the di↵erent approaches and the
trade-o↵s for each of them. Adding the context to recommender systems also
increases the complexity, and so far most of the work has been conceptual.
To be able to use this in real world applications with tons of data, more
research about problems like e�cient data structures and storage methods
need to be done.

It is also a problem in the cases where the context is obtained by asking
the user. These questions will require more e↵ort from the user as well, and
most recommender systems want to retrieve as much relevant information as
possible without putting more stress on the user [14].

2.2 Feedback

Recommender systems are depending on feedback from the users, to build up
knowledge and be able to have more accurate recommendations in the future.
Feedback can be given in two forms, explicit and implicit feedback. In this
section, we will cover the di↵erences between those methods of gathering
feedback from the users.

2.2.1 Explicit Feedback

Explicit feedback is an active action by the user on the system. This kind
of feedback heavily depends on the willingness of the user to give feedback.
Explicit ratings are often preferred over implicit feedback, because of the
accuracy this provides. D. Cosley et al. [16] found that explicit ratings can



2.2. FEEDBACK 17

Explicit feedback Implicit feedback

Rating (E.g. stars) Time tracking

Reviews GPS positions when a choice is made

Like or dislike buttons Keyboard/mouse inputs

Surveys Clicks

Eye tracking (lab)

Microphone input (lab)

Facial expression (lab)

Table 2.2: Common types of explicit and implicit feedback

be of di↵erent qualities. Users may rate movies less carefully than they rate
bigger choices, e.g. a review after a holiday trip.

In a study by X. Amatriain et al. [7], they found that extreme explicit
ratings often are more consistent than mild opinions. The consequence is
that we cannot get a better resolution of the user preference model just by
increasing the number of stars it is possible to rate. The vast majority are
using the extreme values. Another finding in their research was that similar
items grouped together gave more consistent ratings and that fast ratings do
not yield more inconsistencies. This strategy opens up for gathering a good
amount of data about the user in a short period to acquire a basic knowledge
quickly.

Explicit ratings required an action from the user. This interruption of the
user flow can be critical in a negative fashion for the user to come back on
a later occasion. It is hard to ensure that users leave their explicit feedback
[40]. The laziness of the average user results in a relatively low ratio of ratings
per user.

2.2.2 Implicit Feedback

Implicit feedback takes advantage of the users usage pattern. This technique
is in many ways the opposite of explicit feedback where the user does not
take an explicit action to give the system more information about themselves.
Implicit feedback has the benefit of that it is easier to collect than explicit
feedback because of the user willingness. In Table 2.2, examples of di↵erent
implicit feedback methods are listed.



18 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Y. Hu et al. [26] found that implicit feedback have four prime characteristics.
The first one is that implicit feedback gives no negative feedback. It is hard
to say something about items the user does not have seen. The user may not
know about the item or dislike it, and it reveals a fundamental asymmetry
between explicit and implicit feedback.

The second characteristic is that it contains a vast sum of noise. Why is
the user browsing right now and why is he browsing the item at all can only
be guessed with this type of feedback. For example viewing a shirt in a
store does not explain that the user likes this particular shirt. However, if he
continues to look at it multiple times, it is very likely that we can assume an
interest in the product.

The third discusses the di↵erence between numerical values of explicit and
implicit feedback. Numerical values of implicit feedback can, for example,
describe how often a customer watches a TV series. An explicit feedback
tells more about how well the user relates to the item, e.g. like or dislike
buttons.

The last characteristic is the evaluation of implicit feedback. The challenges
come with how to evaluate items purchased, viewed or rated more than once.
Y. Hu et al. [26] comes with an example where it can be hard to compare
two TV shows broadcasted at the same time, where the user cannot watch
both shows.

Some implicit measures do not bring any knowledge about the user at all,
and some are only useful in combination with others [27]. Implicit feedback
can as mentioned above be noisy, but with enough feedback, an appropriate
model can be made to help the other parts of di↵erent systems be better.
The more data about the user, the better, because the user patterns often
reveal something (either in one or the other direction) about the end user.
Implicit feedback can also be used to construct an explicit type of feedback.
For example, if one user is only browsing novels in a book selling service,
then after enough data, the system can assume the user does not have any
other preferences at all. This action is the same as picking a default search
category (explicit feedback).



2.3. THE COLD-START PROBLEM 19

2.3 The Cold-Start Problem

Well known for all types of recommender systems, is the cold-start problem.
Some authors define the problem as when a new item is added to the dataset,
and it is no ratings on that item. Another problem when a new user signs up
that the system do not have any knowledge about is often called either cold-
start user problem or new-user problem. In this thesis we will describe these
issues as cold-start item problem and cold-start user problem [47]. When both
of these problems occur at the same time, e.g. a totally fresh system, S. Park
et al. [38] defines it as the cold-start system problem. In this section, we
describe how previous research have approached these problems.

2.3.1 Cold-Start User Problem

Since the recommendations are supposed to be targeted for individuals, it is
impossible to know how to compose good recommendations for a new user the
system know nothing about. By giving bad recommendations to begin with,
the user might be scared away. He could get disappointed by the mistakes
of the recommender system, so he will quit using the software before enough
knowledge about the user is built up. A crucial feature of most recommender
systems is therefore to extract enough knowledge about the new user to be
accurate enough. Many di↵erent strategies to solve this problem has been
tried out, and we will describe some of the most common ways to do this.

Demographics

The user can either enter some information about the user, or retrieve it
from social medias, which can help grouping the user into similar groups.
Depending on what kind of system, some groups of people might share the
same interests, so grouping people by attributes like age, sex, occupation,
nationality, city, education, income, marital status, might help. Asking the
user to enter all this information is however a little time consuming for the
user, and might scare him away. By looking at the domain of the recom-
mender system you want only to collect the data that will be most valuable
to give recommendations. More and more applications also allow people to
sign up using their social network profile, and this could help retrieving this
data without having the user entering it manually.



20 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Y. Wang et al. [50] implemented a demographic recommender system on
tourist attractions on TripAdvisor. Using a crawler to collect ratings and
demographic data from TripAdvisor, they had information including “Age”,
“Gender”, “Travel style”, “Travel for”, “Great vacation” and “Travel with”.
To classify the ratings, they used traditional machine learning approaches,
Naive Bayes, Support Vector Machine (SVM) and Bayesian Network. SVM
performed slightly better than Naive Bays, and both outperformed Bayesian
Network. All three methods performed better than the baseline, and can
be useful for recommendations. However, they were inaccurate on the rat-
ing values 1-4, and only accurate in identifying the users that have given
5 (attractions were rated 1 - 5). This outcome was probably because the
dataset was very unbalanced, where most people only rated 4 or 5. The au-
thors suggest for future work to implement a hybrid recommender that can
incorporate more information about the attractions and reviews.

While demographic data can help a lot in some recommender systems, it is
also less general than other techniques since it depends on domain knowledge
and only apply to certain domains as A. M. Rashid et al. [42] mentions in
their paper using another approach to the cold-start problem.

Asking the Users to Rate

As A. M. Rashid et al. [42] says, the most direct way of acquiring information
about new users, is to ask them explicitly to rate items. However, since it
is bad to put more stress on the user, it is important to not ask the new
users more questions than necessary. Therefore, it becomes very crucial that
these questions will distinguish the users, and give as much information as
possible. As mentioned in their paper, it does not help to ask questions which
all users agree on, e.g. a food recommender should not ask their users “Do
you like vanilla ice cream?”, since most people will say yes to this question.
It is also important to ask questions that the user is likely to have an opinion
about. The goal must be to extract general knowledge, and too specific
questions will only make it hard for some users to know what they should
answer, and it gives little knowledge in return. A. M. Rashid et al. explore
approaches for finding the best items to present to new users for rating by
using the MovieLens movie recommender. They identify four dimensions
that a system can be judged on; (1) User e↵ort: How hard was it to sign up?
(2) User Satisfaction: how well did the user like the sign up process? (3)



2.3. THE COLD-START PROBLEM 21

Recommendation accuracy: how well can the system make recommendations
to the user? (4) System utility: how well will the system be able to serve
all users, given what it learns from this one? A. M. Rashid et al. choose to
focus on e↵ort and accuracy, since those two are easy to measure.

They are discussing and testing five di↵erent strategies for presenting items
to rate to the user, and we will summarize them up here.

• Random strategies select random items to present to a user. Another
approach is to select one random item from a popular list, and the rest
at random of all items. The advantage is that all the items can collect
information, but it is also likely that the user will not have an opinion
on that item.

• Popularity is a strategy where the items are ranked in popularity, and
they are presented to the user in descending order. This makes sure
that the user is likely to have an opinion about it, but it is also a big
risk of presenting items that almost all users like, and hence will not
be able to learn anything useful.

• Pure entropy presents the items that the users usually either dislike
or like very much. An item with most ratings being either 1 or 5 will
have high entropy. This method can also su↵er from the problem that
the user might not have an opinion about the items.

• A balanced strategy combine the popularity and entropy methods.
This helps on the problems with using one of the methods, since the
user is more likely to have an opinion about the item, and the items
will also be the ones that you can learn something about the user from.

• An item-item personalized approach are at first presenting the items
using one of the above methods. Other items from the users that have
previously rated an item that the user rates, are retrieved, and pre-
sented to the user.

In Table 2.3 is the results from their experiment with the di↵erent strategies.
They did both an o✏ine experiment with the dataset from MovieLens1, and
an online experiment with new users. Item-item su↵ers from that the items

1MovieLens dataset: http://grouplens.org/datasets/movielens/



22 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Strategy User E↵ort Accuracy

Random ? ??

Popularity ? ? ? ? ? ? ? ??

(log) Pop*Ent ? ? ? ? ? ? ? ?

Item-Item ? ? ? ? ? ??

Table 2.3: Evaluation of di↵erent strategies from A. M. Rashid et al.

presented to rate for the users will often be clustered together, and it does
not gain knowledge about all the items. The user e↵ort is evaluated by how
many users dropped out during sign up, and accuracy is the mean absolute
error (MAE). MAE is here the sum of the absolute di↵erences between each
prediction and corresponding rating divided by the number of ratings.

Which strategy to use in a recommender system depends a lot on the domain.
A system that works within e-commerce, should probably suggest the most
popular items to begin with when there is no data about the user, and then
it could move on to use the item-item strategy. In other systems, it might
work better to build up better knowledge about the user using the balanced
strategy.

Tags

Collaborative filtering typically uses a matrix User⇥ Item, which will be hard
to fill out for a new user. If the items are grouped into tags, a matrix User
⇥ Tag, will be denser, since for every tag you know the users opinion about,
you will be able to translate that information towards multiple items. This
approach was developed by H. Kim et al. [28], and they tested it on a dataset
of bookmarks collected from del.icio.us, a site containing bookmarks tagged
by the users. They and achieved better results than regular collaborative
filtering on the items when measured with recall.

Their approach to the problem was first to build a model of the candidate
tags for a user, using collaborative filtering. Using that model of the tags,
they generate the top-N recommendations using Naive Bayes.

H. Kim et al. [28] mention an issue with their method that is noisy tags
makes the performance worse. This issue could be a problem for some real



2.4. CASE-BASED REASONING 23

world applications where the users create the tags.

User Select Some Users He Trusts

Another approach that has been used is making the user select one or mul-
tiple users that he trusts, and then give recommendations based on what
these users like [34]. This technique gives the recommender engine an initial
input about the new user that can be valuable in recommending items in the
beginning.

2.3.2 Cold-Start Item Problem

When no ratings exist on an item, it is not possible to get a predicted rating
from a traditional collaborative filtering approach [47]. A. I. Schein et al.
[47] presents a solution to this problem by using a probabilistic approach
that combines content and collaborative information by using expectation
maximization (EM) [18] learning to fit the model to the data. They test
their approach on a movie dataset, and they look at the cast of actors in a
movie, and how similar it is to what the user have rated before.

In a content-based filtering system, the cold-start item problem can be eas-
ier to work around compared to the collaborative filtering approach. With
content-based filtering, the content of the items can be matched against a
user profile, even if the item have not been seen by any other user before.

The ask to rate strategy described earlier can also help the user discover new
items if the items are selected randomly from all the items.

2.4 Case-Based Reasoning

CBR is a way to solve new problems based on previously known solutions to
similar problems. It can be done by adapting old solutions to new problems,
and be used for problems like explaining new situations, and avoid mistakes
that have been done before [45]. It has a lot in common with the way humans
solve problems already and is therefore also connected to cognitive science.
In this section, we first describe the CBR approach in general, and then show
how it has been used in a recommender system.



24 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

R
E

T
A

IN
 

Problem 

General  

Knowledge 

Past  

Cases 

Suggested  

Solution 

REVISE 

Tested/  
Repaired  
Case 

Confirmed  

Solution 

Solved  
Case 

New  
Case 

New  
Case 

Retrieved  
Case 

Learned 
Case 

A
a
m

o
d

t&
P

la
z
a
 1

9
9

4
 

Figure 2.3: The CBR cycle

2.4.1 The CBR Principles

For understanding CBR, it is essential to know what a case is. A case repre-
sents specific knowledge. J. Kolodner [29] defines it as: “A case is a contex-
tualized piece of knowledge representing an experience that teaches a lesson
fundamental to achieving the goals of the reasoner.”

The process in a CBR application can be described as 4 steps [1, 31] as
shown in Figure 2.3 The retrieve step is looking up similar cases in the case
database. Then one or multiple old cases are reused to make a solution to the
new target. Revise will test the solution and change it if necessary. When
the new solution is successful, it will be retained in the case database.

d(p, q) = d(q, p) =

vuut
nX

i=1

(qi � pi)2 (2.7)

Case-based reasoning uses a similarity measure to retrieve similar cases. Fig-
ure 2.4 shows a new case and its mapping to the previously learned cases.



2.4. CASE-BASED REASONING 25

A computed mathematical distance measure the distance between two cases.
The di↵erent parameters of each case are normalized/converted to a nu-
meric value, then used in this similarity measure. Di↵erent similarity mea-
sures are used, but the Euclidean Distance, shown in Equation 2.7, has been
very popular and given good results [6]. The distances between cases in the
knowledge-base is by itself not very useful, but can be used to retrieve the
nearest neighbors. The K-nearest neighbors (KNN) [17], is an algorithm that
takes the k as a parameter saying how many neighbor nodes to return. KNN
can use this similarity measures to compare the node we now are comparing
to all the others. It is shown that nearest neighbor algorithms can struggle
with high dimensions where the query case is not part of a cluster [10]. The
KNN is a lazy learning algorithm.

Listing 2.1: The KNN algorithm

For each training example <x,f(x)>:
Add the example to the list of training_examples.

Given a query instance x to be classified,
Let x1,x2...xk denote the k instances from training_examples
that are nearest to x.
Return the class that represents the maximum of the k instances.

In a standard KNN, the nodes takes the class of the neighbors (depending
on what class there is most of). In a case-based approach, the KNN is
used, as mentioned above, to retrieve cases similar to itself. This retrieval
is done because of the next step, reuse, where solutions from previous cases
are mapped to the current case. Often this is not a one-to-one match, so
modifications to previous solutions may be necessary. For example, one can
use di↵erent parts of each neighbor to come up with a new tailored solution.
A suggested solution for the new case we are currently working on is the
output of the reuse step.

After a solution proposed from the previous step, based on old cases and
tailored to the target case, a testing/simulation of the new solution takes
place. Testing is an essential step in knowing the impact on the knowledge-
base. Simulation of how well the solution performs in the environment reveals
weaknesses in the solution for this particular case, and can be repaired in
this step. The goal of this step is to come up with a repaired and confirmed
solution what performs well.



26 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

Figure 2.4: The mapping from problem to solution. The dotted arrow shows
a new case and its solution adapted from the previously solved cases.

The last step of the CBR-cycle is the retain step. This final step is to preserve
old successful cases with good solutions. This knowledge goes back to the
knowledge-base and will be one of the cases considered when a new case is
assessed with the KNN algorithm.

2.4.2 CBR as a Recommender System

A generic CBR system can be seen as very similar to a recommendation
process, hence also used as a recommender system. F. Lorenzi and F. Ricci
[32] covers four recommender systems taking advantage of CBR principles
and six recommendation techniques (covered below):

• Interest Confidence Value: The assumption of this technique is that
the user’s interest in new items is similar to the user’s interest in past
items.

• Single Item Recommendation: Simply a recommendation of one single
item.



2.5. EXAMPLES OF EARLIER PROJECTS 27

• Seeking for Inspiration: Prompts the user with explicit feedback to
update the recommendations, hence the inspiration for the system.

• Travel completion: This technique o↵ers items that “completes” the
current selected/purchased items, e.g. accessories.

• Order-based retrieval: Like in the name, this technique emphasizes the
ordering of the items retrieved from the case base.

• Comparison-based Retrieval: Users preferences into query parameters
to receive recommended items, e.g. cold-start preferences.

2.5 Examples of Earlier Projects

In this section, we will cover some examples of projects both in research and
the industry, which we consider to be relevant for our recommender system
that will operate in the food recipe domain. These examples shows the
diversity of recommendation methods operating in di↵erent domains, and
some projects related to food. We picked these examples since they have
inspired us in the design and development of Eatelligent.

2.5.1 Amazon.com

One of the lead industry companies in recommender systems is Amazon.com.
Amazon.com is one of the largest online retailer in the world 2, started out
selling books. Amazon o↵ers recommendations to their users to help them
select their purchases based on many of the techniques mentioned above. In
a real-world problem domain, we often enter a new issues not emphasized in
research with fictive users and user responses, with respect to the original
problem domain. Amazon is mainly using collaborative filtering and cluster
models [30]. In Amazons algorithm recommending new items it is important
to find items that are similar to the items that are already purchased by the
user, hence item-to-item collaborative filtering and clustering items in cate-
gorizing clusters. Real-time recommendations with collaborative filtering is a

2The 5 Largest Online Retailers in the World:
http://www.insidermonkey.com/blog/the-5-largest-online-retailers-in-the-world-331292/



28 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

challenge due to its complexity and the vast amount of items and users. One
of the solutions to this problem has been for Amazon to introduce cluster
models. Cluster models are in many ways a similar way to tag items in the
same category to have some knowledge about the relation between items. A
major upside of this approach due to the expectations of the user to have the
result within half a second is that it can be run o✏ine in advance. Rather
than combining each of the users to other similar users, an item-to-item col-
laborative filtering matches the users previous scored items to similar items,
then merges those related items into a recommendation list. The intriguing
aspect of this system is the retrieval of similar items (based on the tags for
each item), in respect of previous choices made by the user. This method
scopes down the search space both for items and users, and is very interesting
due to scalability and real-time recommendations.

2.5.2 DieToRecs

DieToRecs is a case-based travel planning recommender system [44]. This
system is used to make a travel plan for holiday trips to a selected destina-
tion. That includes problems like which hotels to stay at and which beaches
to visit. DieToRecs implemented three di↵erent recommendation techniques:
Single item recommendation, travel completion and seeking for inspiration.
The first door the user may use is the single item recommendation. It first
asks the user for a wide set of general questions and gradually tightens the
scope until a single recommendation remains or else a tightening function is
used. This technique is typically used to make the major choices for a trip (at
least for a machine that can prune possibilities), say finding a destination.
The second technique is travel completion, where the system o↵ers items
or services that complete the trip. The system retrieves similar cases (travel
plans previously built by other travelers). Collaborative features for each case
is used to generate logical constraints to the travel completion step. Seeking
for inspiration is the third step in DieToRecs. This step involves prompting
the user with complete recommendations, hence giving inspiration to the sys-
tem. Each iteration in a loop the user are given six choices of complete travel
recommendations. These six cases is retrieved from a randomly selected case
and retrieved by using the K-nearest neighbors to the initial case. The user
selects one of the six to move gradually towards the travel recommendation
the user wants.



2.5. EXAMPLES OF EARLIER PROJECTS 29

This type of recommender systems could be used to solve problems like plan-
ning of a weeks menu of dinner recipes. DieToRecs prompts the user for
feedback during the recommendation process, and this can be utilized in the
food recommendation domain to enhance recommendations by do some last
minute changes to the final recommendations.

2.5.3 CHEF

CHEF [23] is a case-based planner, which domain is recipe creation. It takes
in an input consisting of goals that recipes can achieve and outputs a recipe
that can reach those goals. Recipe creation is outside the scope of this thesis,
but it is interesting to see the knowledge CHEF have about the role of the
ingredients. It knows that chicken is meat, and if some goals match an old
recipe in everything except it is chicken instead of beef in the new goal, CHEF
can understand that chicken can replace the beef.

When CHEF is finished with making a new plan, it will use feedback to know
if it worked out or not. If not, it will try to learn from the situation, and
make an explanation of why, which will be indexed in the general knowledge,
and then can use for repairing the faulty plan.

While CHEF uses the knowledge to make recipes that satisfy the goals and
to modify recipes, we will not necessarily need to modify the recipes to make
a good recommendations. With enough recipes in the database, it should
be possible to find good enough matches, but it can be done to learn more
about the ingredients for individual users. If a user does not like salmon, the
system should be able to learn that it is salmon the user do not like, and not
just the recipes he has tried with salmon in it.

2.5.4 JULIA

JULIA [24] is a case-based designer that works with meal planning. The
problems are described in terms of constraints that needs to be achieved,
and the solution describe a model that fills as many constraints as possible.

As JULIA is a designer, it is more suitable for complex situations where a
recipe needs to be reconstructed to fit constraints. JULIA also has much



30 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

knowledge about the ingredients, and it tries to not repeat the main ingredi-
ents when creating a plan of several dishes. JULIA’s focus is here on creating
a starter, main dish, and dessert, but we are focusing on recommending a
main dish. However, the same approach as JULIA can be used to avoid rec-
ommending multiple recipes with the same main ingredient in a row. Many
people will prefer to have some variety in their diet, e.g. not eat salmon every
day.

2.5.5 Intelligent Food Planning: Personalized Recipe
Recommendation

Personalized Recipe Recommendation [21] is a recipe recommender system
where the recipe is split up into its ingredients and the actual recipe. The
weighting for the recommendation is based upon not just the recipe, but also
the ingredients used to make the dish.

This system is using collaborative filtering to make the calculations for each
user and discusses issues around the cold-start problem that collaborative
filtering su↵ers from. The system shows some statistics of results from the
project with 183 users and 136 recipes, and 337 classified food items (ingre-
dients).

This system is connected to this thesis in the way it defines the items (recipes
and ingredients), where it sees the recipe as a set of ingredients. Across the
related recipes, these ingredients are recycled. On a normalized level where
the ingredients are comparable across recipes, the learning can then be done.
Section 3.4 describes how this idea is implemented in this project along with
the tag abstraction.

2.5.6 Food Recommendation Using Ontology and Heuris-
tics

This paper describes a system using term frequency–inverse document fre-
quency (TF-IDF) to do the food recommendation for users. Collaborative
filtering is as mentioned in [21] su↵ering from the cold-start problem, and
that is solved by looking on previous meals by each user.



2.6. RELATING THE THEORY TOWARDS EATELLIGENT 31

Nutrition is an important factor in this system, where the system gather all
nutrition information for each ingredient from United States Department of
Agriculture (USDA). Nutrition is used to make a more healthy recommen-
dation.

This system uses a query language to do the requests (the further plan is to
define the grammar to standardize the query language.) This language is a
content- and semantics-based approach where the attributes like ingredients
and description has a significant role. The results presented in the paper
describes a rather good accuracy for TF-IDF.

2.6 Relating the Theory Towards Eatelligent

In this section, we will discuss the theory and background described earlier,
and look into what will be implemented in our recommender system. Some
of the strategies are general and can be used in any recommender system,
and some are more specified to the domain of recommending food recipes.

2.6.1 Recommender System

The implemented recommender system in this thesis is a hybrid recommender
where some of the topics covered in this chapter are used. The mixed ap-
proach to the hybrid recommender is used, because it is easy to compare the
di↵erent methods. The implementation is focused on the study of the cold-
start problem in connection with a real-world example. The system starts
out with zero users and zero ratings. Each of the items is never seen by any
user (cold-start system). This matter excludes the model-based collabora-
tive filtering method because it is nothing to build a learning model from. A
memory-based approach is chosen because of the online learning part that is
developed during the user data gathering.

For the CBR part of this hybrid recommender it mainly looks at the nearest
neighbors in connection to tags for both items and users, covered in Sec-
tion 3.4.1.



32 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

2.6.2 Cold-Start

The cold-start problem can be helped in many di↵erent ways, and have fo-
cused on trying out a few strategies that we believe can assist in recommend-
ing food recipes to a new user.

Demographics

Some demographic facts about the user can be relevant for grouping people
together that might have a similar taste. Attributes like age, location, sex,
income and occupation could all be helpful information to know what type
of food the user likes. However, we also have to take into consideration what
kind of information the user will be willing to enter into a mobile application.
First of all everything the user has to enter at sign up will add more stress and
make it more likely that the user will quit using the application even before
he has signed up successfully. Secondly some information might sound too
sensitive to most users, e.g. people will most likely not want to enter their
income in an application for recipes.

Location, or at least city or nationality, can be valuable information for
a global application since people around the world can have di↵erent food
traditions, and di↵erent groceries available. We will let the user enter the city
on their profile, but since this application will be implemented for Norwegian
users to begin with, we will not use this information for now. Age can also be
entered into their profile, but this is also something that we do not think is the
most e�cient way to recommend recipes to a new user. Our implementation
focuses therefore on other methods.

Ask to Rate and Tagging of Items

To extract some knowledge explicitly from the user in a few questions, we
have designed a strategy with the knowledge that it is food recipes that we
are going to recommend. Instead of just asking the user to rate recipes, we
ask the user some yes/no questions that we extract into knowledge about
both recipes and ingredient. This knowledge is extracted by grouping the
ingredients and recipes into tags, and each answer will make a score for the
user on a tag. This strategy will be described more in detail in Chapter 3.



2.6. RELATING THE THEORY TOWARDS EATELLIGENT 33

The user answers to these questions can help in two ways: (1) Knowing a
score for the user on di↵erent tags, makes it possible to aggregate a score on
the recipes, and the best score are the recipe that fits the user’s model the
best. (2) The answers can also be used for finding a similar user, by looking
at the distance between two answers, and finding the recipes that the most
similar user likes the most.

The tagging model also work after the initial questions have been answered.
Every time a recommendation is given to a user, he can select yes or no, and
the score on the tags will be updated. A user provides therefore information
to the system by just viewing di↵erent recipes.

The tags also help the system to know more about the ingredients. Like
CHEF, it knows that chicken is meat or that pepper is a spice. This knowl-
edge can help identifying which tags are more important in a dish. It is likely
that a user who dislikes some of the greens in a dish are willing just to skip
or replace them and still make the dish. However, a user who does not like
salmon will probably not want a recipe containing that.

Since the tags are supposed to be entered in the recipes themselves, and
the ingredients are also tagged, this approach helps on the cold-start system
problem. This tagging help since it will be able to score each recipe in the
system regardless of if ratings from other users exist.

Trusted Users

Asking the user to select one or multiple users he trusts is something that
could be helpful, since a user often know some people that have the similar
food taste like him. This feature could also be implemented by using a social
media so that the user can easily select friends from a list. Some might be
following somebody that blogs about food, and also know that they trust
their taste. However this feature needs many users to work, and since our
system will su↵er from having very few users to begin with, we will not focus
on implementing this strategy.

2.6.3 Feedback

The implementation in this thesis covers a mobile application. As mentioned
in Section 2.2, the gathering of explicit ratings from a user can be challenging,



34 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION

so we used the benefits of smartphones to report implicit ratings to the server.
The final mobile application uses tracking on every screen and how long the
user is on the page. This is implicit time tracking which can be used to say
whether or not the user has made the recipe at a later point in time. Each
time the user asks for a recommendation, it is logged to the server. This
information is then used to evaluate the recommendations for this particular
user.

As mentioned in Table 2.2, some of the implicit feedback methods is not
suitable for a real-world problem domain, because of privacy. Eye tracking,
microphone input, and facial expression are therefore excluded from this
experiment. For a pure recommender system, it is also limited how much
this type of feedback will bring to the table. Locations for a user, when a
recommendation is made, is related to context, and in some conditions group
recommendations. GPS positions are chosen to not be implemented because
this is falling outside of the research questions.

Primary explicit feedback methods for the implemented system is as follows:
Star ratings for the explicit ratings of the di↵erent items. Like and dislike
points for the cold-start methodology, e.g. yes or no to chicken. For the
implicit feedback, we choose to emphasize time tracking and clicks to learn
more about the usage pattern for each user.

2.6.4 Taking Advantage of the Contextual Information

We have considered some contextual information that could have an impact
on what the user would want to make for dinner.

• How much time the user has available is can be very relevant. It is
not preferable to recommend a recipe that takes one hour to make if
the user has a busy day and only 20 minutes available. However, it
can put too much stress on the user if we ask him explicitly every
time he makes a request for new recommendations about how much
time he has available. Therefore, we have concluded that this will be a
bad approach. A better strategy would be to extract this information
implicitly, e.g. by learning the days the user want something fast, and
when he wants something fancier.



2.6. RELATING THE THEORY TOWARDS EATELLIGENT 35

• What groceries the user already has available at home, can also be
considered as contextual information. Some days the user would not
want to have get new groceries, and by giving the application some
items, a recipe containing those would be a good recommendation.
This problem will, however, be more similar to a recipe composition
problem, than a recommendation problem, and will not be the focus of
this thesis.

• The fact if the user is going to make food for only himself or others,
could also a↵ect what he wants to make. If all the people that were
going to be served, also had this application and a user profile, the
system could turn this into a group recommendation if the user selected
all the people that he would serve. Again this makes the problem more
complicated and also require many users to get it to work in the real
world, so this will not be the focus here.

• Season, Holidays, weekends, could also be interesting to consider in the
composition of recommendations. The season of the year could have an
impact of which groceries are available, and people might have di↵erent
traditions depending on warm and cold weather. On the weekends,
people often have more time and put more e↵ort into making good
food. Some holidays include food traditions, and you might want the
recommendations to represent this, and at the same time, we do not
want to recommend Christmas food outside Christmas.

Using contextual information in a recommender system for recommending
food items at restaurants is shown to improve the accuracy compared to a
traditional collaborative filtering approach [25]. We have reason to believe
that this could also improve the recommendation of food recipes. However
it also makes the problem a lot more complicated, and in this thesis we will
only discuss it for future work in Section 5.3. We also believe that it is more
likely that the users who signs up with our application will be mainly ask for
recommendations during the weekdays, since most people tend to have their
own traditions for holidays and weekends, so the dataset will consist mostly
of recipes that can be made on a regular day.



36 CHAPTER 2. BACKGROUND THEORY AND MOTIVATION



Chapter 3

Architecture/Model

This chapter will cover the design and implementation of Eatelligent, the
dinner recipe recommender. As mentioned earlier, we found it necessary to
develop our application to promote flexibility to what data we can use for
the recommendations. This chapter, therefore, describes the full application
in detail, and not only the recommender system, since both of them play a
significant part in this thesis.

Eatelligent is released on the open market as a mobile phone application. The
system consists of two main components. A client, the mobile application,
and the server, which serves the client with data and stores user information,
recipes, and feedback. The recommender engine is implemented on the server.

We will start by describing the functionality of the application, implementa-
tion details, and in the end of the chapter the details about the recommender
engine.

3.1 Requirements for Design

This section lists the requirements for the system as user stories to give an
overview of what the system should fulfill, and why we need each requirement.

• As a user, I can sign up and login so that the information about me
can be used next time I use the application to give more accurate
recommendations in the future.

37



38 CHAPTER 3. ARCHITECTURE/MODEL

• As a new user, I will be prompted with some “yes/no” questions to
extract some basic knowledge about my food preferences so the system
will have some knowledge before recommending recipes.

• As a user, I retrieve recommended recipes so I can easily explore new
recipes and find out what to eat for dinner.

• As a user, I can indicate if I want a recipe by answering “yes” or “no”.
If “yes”, have a detailed look at the recipe, if “no”, view the next rec-
ommendation.

• As a user, I can rate the recipes 1 to 5 stars, to give an indication of
how much I liked a recipe, to build up the knowledge of which recipes
I like.

• As a user, I can add recipes to favorites so that I can easily retrieve the
best recipes.

• As a user, I can add a recipe to a shopping cart so that the ingredients
for the recipe I choose to make, will be easy to go and get at the grocery
store.

• As a user, I can search for and retrieve recipes knowing part of the title.

• As a user, I can look at the last viewed recipes, to easy look at the
recipes I just made if I want to give them rating or make them again.

• As a user, I can reset my knowledge base, in case I wish to start over and
answer the cold-start questions again, and reset the model the system
have developed on me.

• The application stores all the recommendations given to a user, so that
the user will not get the same recommendations in a time interval, and
then the system will also know where the user got the recipe from if he
rates the recipe.

• The application stores how long a user looks at a recipe, to give an
indication if the user did make this recipe or not, and the longer you
look at a recipe, the more interested you might be.

• The application gives out some recommended recipes as random recipes,
to compare the rest of the recommendations with a baseline.



3.2. SYSTEM OVERVIEW 39

• As an administrator, I can group ingredients and recipes into tags so
that it can make a relation of what kind of tags the user likes or dislike.

• As an administrator, I want to add, modify, delete and publish new
recipes into the application.

3.2 System Overview

Before we go into detail about the di↵erent parts of the system, we want to
give an overview of the whole user process. We describe the process from a
user sign up with the mobile application, and how the client interacts with
the server and recommender system.

We store the information on the server when the user signs up, so that all
the knowledge to the user can be used every time the user logs in. Since
no knowledge about the user is available at this point, the user is supposed
to answer some “yes/no” questions. These responses are stored to give an
initial value of the preferences for the user. When a user receives recom-
mendations, the server stores all of them with a field source which describes
which algorithm promoted the recipe. This information makes it possible to
always know where the user discovered the recipe when he or she rates it.
Stored along with the information is the new rating, and for recommenda-
tions containing a predicted rating, we can evaluate the di↵erence between
the predicted and the actual rating. Figure 3.1 shows the flow between the
clients through the backend to retrieve recommendations.

3.3 Implementation

In the following section, we describe the di↵erent parts of the system, discuss
the various choices that we have done, and describing the implementation
that we ended up using in the final product. The three main parts is the
client, backend (server), and the recommender system.



40 CHAPTER 3. ARCHITECTURE/MODEL

Figure 3.1: System overview

3.3.1 Client

Since more and more of the web activity happens through smartphones, we
decided to address the end user with a smartphone application. The client for
this project is an HTML51 application embedded in a web view and packed
into an application running on all devices, available in the respective appli-
cation stores for Android and iPhone. With limited resources and time to
develop a client for both Android and iPhone, we decided to develop one code
base that was able to deploy the application on the di↵erent mobile phones.
This approach is possible by using HTML5 with the Cordova project2, and
it also makes it very easy to communicate with the servers Application Pro-
gramming Interface (API).

The client is fully backed from the API (Section 3.3.2), with Hypertext Trans-
fer Protocol3 (HTTP) requests to acquire all the content visible for the end
user.

As described in the Figure 3.2, the classes are strictly distinguished between

1HTML5: http://www.w3.org/TR/html5/
2Cordova: https://cordova.apache.org/
3HTTP: https://tools.ietf.org/html/rfc2616



3.3. IMPLEMENTATION 41

Figure 3.2: Class hierarchy for the mobile client



42 CHAPTER 3. ARCHITECTURE/MODEL

authorized and not authorized classes with abstract parent classes. Di↵erent
functionalities are split up into modules. For example, Favorites and Settings
are both standalone modules. This object-oriented approach was helping to
keep track of more complex tasks.

We put some e↵ort into user experience because the average smartphone
user is used to use great application of di↵erent sorts. This client follows
conventions for the modern smartphone application, to make the user feel
like it is a good experience to use the application.

Recommendation Cycle

When the end user asks for recommendations, the server gives a list of recipes
presented to the client. This list is ordered based on the recommendation
for the requesting user. Starting from the top of the list, the user have to
answer either “No thanks” or “Yes please”. If he selects “No thanks”, it is
recorded to the API and taken into consideration for later recommendations.
The next recipe in the list will be presented until the user pick one recipe
(answers “’Yes please”). When he select “yes”, it is also synchronized with
the server and taken into consideration for later recommendations. Then we
present a detailed view of the selected recipe for the user, so he gets all the
information needed to make the dish.

After the user has come up with his opinion on the recipe, the user will
hopefully rate the recipe from 1 to 5 stars. All this represents the cycle of
how the user interacts with the recommender system.

Search

To open up the entry to view the other recipes, the client also provides a
search for other recipes. When the user finds something and clicks it, it will
be collected as a view of the recipe.

Favorites

The users of the client have the possibility to add recipes to a list of favorites.
The favorites module is located in the sidebar along with the other parts of
the application.



3.3. IMPLEMENTATION 43

Shopping Cart

The shopping cart is an add-on feature just to make it easy for the user to
buy the ingredients for one or multiple recipes.

Last Viewed Recipes

To view the history of recipes for one user, the client contains this module.
This history can be useful for several reasons, for instance, some users may
say “Yes please” to a recipe from the recommender, and afterward figure out
that it was not a good time for this recipe after all (for several reasons). The
user will not have to remember the name of the recipes because they are
listed here.

Data Collection

To be able to study the results of this project, we had to collect every action
done on the client. To collect these data, we used Google Analytics to track
every user’s user pattern. There are many di↵erent tracking services that can
provide this type of tracking, but since this is an HTML5 application, Google
Analytics is a relatively easy integration to use instead of custom tailoring
for each platform. Google Analytics is free and helped us collect our results
presented in Chapter 4.

3.3.2 Backend

The backend (or server) of this system is where all the clients get their recipes,
recommendations and post their feedback. In other words, this is where
the clients get the content they display for the user, and the place they
save their information. The server is implemented using the modern web
architecture style Representational State Transfer (REST) [20]. It is done
with the programming language Scala4 with Play Framework5, which gave
us a modern language and framework, and at the same time it was possible
to use any Java library if necessary. We hosted the server on the Heroku

4The Scala Programming Language: http://www.scala-lang.org/
5Play Framework: https://www.playframework.com/



44 CHAPTER 3. ARCHITECTURE/MODEL

cloud service6, which enabled easy deployment without too much configuring
on our own.

The server stores all the data, and the recommendation engine is also imple-
mented there, which is essential since we need the data for all the users to be
able to make recommendations for one user. All the di↵erent models and the
structure of the data we store in the database have been designed for being
able to recommend recipes, and evaluate the system in the best way.

Figure 3.3: Entity relation diagram

Model

Here is some information about every di↵erent object, which helps to under-
stand the rest of this chapter. The relations between the entities are shown
in Figure 3.3, and Appendix A shows the database scheme in detail.

6https://www.heroku.com/



3.3. IMPLEMENTATION 45

• Recipe: Containing all the information needed to show a recipe to the
user.

• Ingredient: The recipes have links to the ingredient so that two recipes
with “tomatoes” in it will link to the same ingredient. This is essential
to be able to learn which ingredients an user likes or do not like.

• Recipe Tag: Tags on recipes to group them with similar recipes. One
recipe can have many tags. The tags are made to group similar recipes
together and help to know what categories a user typically likes the
best. It is not shown to the user, and are only here to give information
to the recommender system about the recipe.

• Ingredient Tag: Same as Recipe Tag, but just for ingredients. These
are not supposed to be shown to the user either, and are only here
to make knowledge about ingredients. These tags are manually set by
ourselves, and makes it easy to know if an ingredient is from an animal.
It also makes it possible to know if the ingredient is a main ingredient
or something not that important in a dish.

• Unit: The units that are used to describe the amount of an ingredient
in a recipe.

• Star Rating: A user’s rating of a recipe. The rating is an integer
between 1 and 5. Along with the rating the time stamp when it is rated
and the source (where the recipe was discovered, e.g. collaborative
filtering, search, etc.) with additional data are stored for evaluation.

• “Yes/No” Rating: When a user gets recommendations, he can either
say “yes” and look up the recipe or “no” to get the next. We store this
information, in order to not show a recipe that the user already have
said no to multiple times. This information can be aggregated, e.g. we
know if an user have said no 3 times.

• User Viewed Recipe: To have an indication if the user made the recipe
or not, other than the rating, we store how long time the user looked
at a recipe.

• Cold-start Questions: These are “yes/no” questions that the user can
answer to give us more knowledge. The answer and the time are stored.



46 CHAPTER 3. ARCHITECTURE/MODEL

• Given Recommendation: All the recommended recipes given to a user
are stored to be used for evaluation.

Status Code Description
OK 200 Everything went OK
Bad request 400 The request was not under-

stood by the server
Unauthorized 401 The user requesting is not au-

thenticated
Forbidden 403 The user is not allowed to re-

trieve the resource requested
Not found 404 The server could not find the

resource that was requested
Conflict 409 Used for duplicates that are

not allowed
Internal server error 500 Unexpected server error

Table 3.1: The di↵erent response codes used by the server

Requests

The client uses the server by making requests on di↵erent URLs which is
called endpoints. Appendix B lists the documentation for each endpoint.
Di↵erent HTTP methods7 are used for di↵erent types of requests. GET
requests are used when the client only asks for data, and nothing will be
changed on the server. Requests for storing data, e.g. a rating on a recipe,
will be done using POST requests. If something is supposed to be updated it
is done using PUT. The response from the server contains a response code8

that tells the client if the request succeeded, or if something went wrong.
In Table 3.1 the di↵erent codes used by our server are listed and explained
briefly.

All the data passed to or from the server is in a format called JSON9. In

7HTTP Method Definitions: http://www.w3.org/Protocols/rfc2616/rfc2616-sec9.html
8HTTP Status Code Definitions: http://www.w3.org/Protocols/rfc2616/rfc2616-

sec10.html
9The JavaScript Object Notation standard: http://www.json.org/



3.3. IMPLEMENTATION 47

Figure 3.4 - 3.8, we show the screenshots of the app, requests from client,
and response from the server.

Listing 3.1: Sign up request
{
"firstName": "Ola",
"lastName": "Nordmann",
"email": "nordmann@eatelligent.no",
"password": "ola"

}

Listing 3.2: Sign up response
{
"ok": true,
"message": {
"id": 14,
"loginInfo": {
"providerID": "credentials",
"providerKey": "nordmann@eatelligent.no"

},
"firstName": "Ola",
"lastName": "Nordmann",
"email": "nordmann@eatelligent.no",
"image": null,
"role": "user",
"created": "2015�04�13T16:47:04.402",
"recipeLanguage": null,
"appLanguage": null,
"city": null,
"country": null,
"sex": null,
"yearBorn": null,
"enrolled": false,
"metricSystem": true

}
}

Figure 3.4: The sign up process



48 CHAPTER 3. ARCHITECTURE/MODEL

Listing 3.3: Cold-Start Request
{

"coldStartId":3,
"answer": true

}

Listing 3.4: Cold-Start Response
{

"ok": true,
"answer": {

"userId": 14,
"coldStartId": 3,
"answer": true,
"answerTime": "2015�04�15T12:12:36.591"

}
}

Figure 3.5: The user answer 1/5 questions



3.3. IMPLEMENTATION 49

Listing 3.5: Recommendations
{
ok: true,
recommendations: [
{
__meta__: {
userId: 1,
recipeId: 14,
source: "CF",
predictedRating: "4.5779"

},
recipe: {
id: 14,
name: "Burger med asiatisk smak",
image: "http://res.cloudinary.com/

hnjelkrui/image/upload/v1423563013
/jmdigci5h3k7si69e7wz.jpg",

description: "...",
spicy: 2,
time: 30,
difficulty: "Enkel"

}
},
...

]
}

Figure 3.6: The users answers “yes” or “no” to a recommendation



50 CHAPTER 3. ARCHITECTURE/MODEL

Listing 3.6: Recipe
{
ok: true,
recipe: {
id: 14,
name: "Burger med asiatisk smak",
image: "http://res.cloudinary.com/hnjelkrui

/image/upload/v1423563013/jmdigci5h3k7
si69e7wz.jpg",

description: "...",
language: 1,
calories: "0",
procedure: "...",
spicy: 2,
time: 30,
difficulty: "Enkel",
source: "http://www.matprat.no/oppskrifter/

familien/burger�med�asiatisk�smak/",
created: "2015�02�10T10:09:51.636",
modified: "2015�03�12T14:31:51.965",
published: "2015�03�11T14:11:55.016",
ingredients: [
{
id: 70,
name: "Kjøttdeig",
unit: "gram",
amount: "125"

},
...

],
tags: [
"Familien",
"Asiatisk"

],
currentUserRating: null,
averageRating: "4"

}
}

Figure 3.7: Detailed view of the recipe



3.4. RECOMMENDER SYSTEM 51

Listing 3.7: Rating request
{

"recipeId": 14,
"rating": 4.0

}

Listing 3.8: Rating response
{
"ok": true,
"rating": {
"userId": 14,
"recipeId": 14,
"rating": "4",
"created": "2015�04�15T14:46:54.497"

}
}

Figure 3.8: Rating the recipe

3.4 Recommender System

The client reaches the recommender system through one of the API end-
points, and the recommender engine is a part of the server. This was done to



52 CHAPTER 3. ARCHITECTURE/MODEL

have easy access to the database. This section describes the implementation
details of the recommender systems.

3.4.1 Algorithms

We have implemented three di↵erent algorithms that work separately to rec-
ommend recipes for a user. Here we will describe each of them in detail.

Nearest User Rated Recipe (NURR)

The first thing the user does in the application is to answer a few questions
regarding taste and expertise on the kitchen. The five questions asked is the
following:

• Do you like meat?

• Do you like spicy food?

• Do you view yourself as a good chef?

• Do you like fish?

• Do you like chicken?

Each of the cold-start questions a↵ects the weights for the current user. These
numbers correspond to how much each ingredient tag is weighted by the
Euclidean distance for the KNN algorithm (see Section 2.4.1). Table 3.2
displays the matrix of weights for each question. This information will help
the KNN calculate distances between users the first few times before it has
enough ratings from explicit star ratings. A negative answer to one of the
questions will result in updating the corresponding ingredient tags with a
negative sign. The weights have a maximum cap at 5 and minimum of -5.
This maximum cap is to avoid that weights do not sum up to infinite values
and to make it possible to change the taste.

All these questions will have a boolean answer (“yes” or “no”) which we are
using for similarity measure between two users. We define ~ua as the vector
of the responses for user a. Equation 3.1 defines the similarity measure used



3.4. RECOMMENDER SYSTEM 53

Meat Spicy Skills Fish Chicken
Spice – 0.5 – – –
Spicy – 1.0 – – –
Salty – 0.2 – – –
Composed – – -1.0 – –
Fish – – – 1.0 –
Seafood – – – 0.8 –
Animal product 0.3 – – 0.1 0.2
Chicken – – – – 1.0
Meat 1.0 – – – –
Pork 0.8 – – – –
Beef 0.8 – – – –

Table 3.2: The weighting from the cold-start questions

to compare two users cold-start answers. The di↵erence between two vectors
is defined in Equation 3.2 where ua,i is the ith answer from user a and n is
the number of questions, in this case, 5.

sim( ~ua, ~ub) =
1p

di↵( ~ua, ~ub) + 1
(3.1)

di↵( ~ua, ~ub) =
nX

i=1

|ua,i � ub,i| (3.2)

For example, if user A and user B have the following responses:

User A responses: yes, yes, no, no, yes
User B responses: yes, no, yes, no, yes

The similarity between these users is calculated in Equation 3.3.

sim(A,B) =
1p

di↵(A,B) + 1

sim(A,B) =
1p

|1� 1|+ |1� 0|+ |0� 1|+ |0� 0|+ |1� 1|+ 1

sim(A,B) =
1p
3

(3.3)



54 CHAPTER 3. ARCHITECTURE/MODEL

Algorithm 1: Nearest User Rated Recipes

Data:
currentUser - current user,
users - all other users,
n - number of recipes to return,
foreach user in users do

user.similarity  sim(currentUser, user)
end
users  users filtered on user.similarity > minThreshold
recipes  empty collection
foreach user in users do

r  retrieveTopRatingsForUser(user, maxRecipesFromOneUser)
foreach ratedRecipe in r do

ratedRecipe.score  user.similarity ⇥ ratedRecipe.rating
recipes  recipes + ratedRecipe

end
end
return recipes.sortBy(recipe.score)[0 : n]

Based on this similarity measure, we can find the most similar users. These
users ratings will be measured with the same similarity, and be the product
of their actual rating and the similarity to that similar user. For example,
say the similarity is 0.8, and the other user have rated a recipe 4 stars, then
the score for this recipe will be 0.8 ⇤ 4 = 3.2. Note that this score is not a
rating, but a scoring used to rank the di↵erent recipes to return the top n
recipes. Algorithm 1 describes this procedure in pseudocode. This algorithm
is designed by ourselves and is inspired by the first two steps from CBR (see
Section 2.4).

Content-Based Filtering (CBF)

One or multiple recipe tags marks every recipe, to group the recipes. These
tags are set by ourselves. We do the same thing with the ingredients, with
another set of tags that we call ingredient tags. The system is developed with
a relation between user and both the recipe and ingredient tags so that a score
for the user is stored for the tags. This forms a user profile as mentioned in
Section 2.1.1, and Figure 3.9 and 3.10 illustrates this relation. The scores on



3.4. RECOMMENDER SYSTEM 55

the tags are made up from three di↵erent sources:

• Cold-start questions: Some of the questions maps to some ingredient
tags. For example, if a user says that he does not like fish, the system
will store a negative score for the tags seafood and fish. A value between
-1 and 1 updates the score, and are set by ourselves with the best guess
that we can do between the relations.

• “Yes” or “no” to a recipe: When the user answers “yes” or “no” to a rec-
ommended recipe in the application, we take that as a weak indication
that the user likes or dislikes the recipe. A value of -0.3 or 0.3 updates
the corresponding recipe tags and the tags for the ingredients in the
recipe.

• Rating: A rating on a recipe is considered to be a stronger indication
if the user likes or dislikes it. The di↵erent possible values decide how
much the score should be updated. These impacts is listed in Table 3.3.

? ?? ? ? ? ? ? ?? ? ? ? ? ?
-1 -0.5 0 0.5 1

Table 3.3: The impact of star ratings

The score each user has for the ingredient and recipe tags, makes it possible
to compute a score for each recipe for a user, by aggregating the tag scores of
the tags in a recipe. Algorithm 2 shows how this is calculated. The recipes
are first filtered on some preferences for the user, based on two questions he
answered when he started using the app. If he answered no to “Do you like
spicy food”, we filter out the recipes that are spicy. The recipes belong to
one out of three levels of spiciness, and the people who do not like spicy food,
will only get the lowest category. If the user likes spicy food, we do not filter
anything because we believe that people who like spicy food not necessarily
only want the spicy recipes. The same strategy are done with how long time
it takes to make the food, and how hard the recipe is to make. If the user
answered no to “Do you view yourself as a good chef?”, we filter out the
recipes that are not in the easy category (out of easy, medium, and hard),
and the ones that take more than 45 minutes to make. After this filtering is
done, a score is calculated for each recipe based on the scores the user have



56 CHAPTER 3. ARCHITECTURE/MODEL

on the recipe and ingredient tags in the recipe, and the top n recipes are
returned. We designed this algorithm ourself, but inspiration is taken from
earlier projects. E.g., when CHEF (see Section 2.5.3) knows about the link
between chicken and meat.

Algorithm 2: Content-based filtering

Data:
recipes - all recipes,
user - user preferences
urt - user score on all recipe tags
uit - user score on all ingredient tags
n - number of recipes to return,
Result: Top n recipes
if not user.likeSpicyFood then

recipes  recipes filtered on not spicy
end
if not user.isAGoodChef then

recipes  recipes filtered on time < 45 min. and easy di�culty
end
foreach r in recipes do

score  0
foreach recipeTag in r.recipeTags do

score  score+ urt[recipeTag]
end
foreach ingredient in r.ingredients do

foreach ingredientTag in ingredient.ingredientTags do
score  score+ uit[ingredientTag]

end
end
r.score  score

|recipeTags|+|ingredientTags|
end
recipes  recipes filtered on score > 0
return recipes.sortBy(r.score)[0 : n]



3.4. RECOMMENDER SYSTEM 57

Figure 3.9: Illustration of the recipe tag tree

Figure 3.10: Illustration of the ingredient tag tree



58 CHAPTER 3. ARCHITECTURE/MODEL

Collaborative Approach

As a helper for the collaborative filtering mechanism we used the open source
project from GroupLens called LensKit10. LensKit is an implementation of
collaborative filtering algorithms along with a set of tools support of such
systems. LensKit is split up in di↵erent modules to help developers only to
use the parts needed for the particular implementation. This projects uses
two of this modules, lenskit-core and lenskit-data-structures.

When building a recommender with LensKit, the core module is required and
is a dependency for the other modules. For this implementation, the core is
used to initialize the building of the collaborative filtering recommendation.
An item recommender is built from an access object to the database where it
will gain access to the other users, ratings and items (recipes). This method
uses KNN to retrieve similar items where the similarity is calculated by a
cosine vector similarity. This approach is a memory-based method where all
the calculations are done when the user asks for a list of recommendations.

Some problem specific configuration is needed, to help LensKit compute the
recommendations. The lenskit-data-structures module provides data struc-
tures to help with this configuration

3.4.2 Feedback in the Client

As described in Section 2.2, feedback is necessary to understand what pref-
erences each of the users have. In the client, we gather both explicit and
implicit feedback. Two di↵erent explicit feedback mechanisms are used: (1)
After a recommendation list is presented, the user answers either“Yes please”
or “No thanks”. (2) When a user views a recipe, he can report a star rating
from 1 to 5 stars.

We gather the implicit feedback in two ways: (1) When a user looks at a
recipe, a timer is started. This timing gives us an indication whether or not
the user made the dish. (2) For every request, timestamps are logged. These
timestamps helps us to not recommend the same recipes within the same
period for a user.

10The LensKit project: http://lenskit.org/



3.4. RECOMMENDER SYSTEM 59

3.4.3 Cold-Start Item Problem

Pushing items that do not have ratings would help to promote new items,
and let the users discover the whole set of recipes. By randomly picking
some recipes, both new and recipes with no rating all have a small chance
of being promoted. This strategy makes the evaluation of the system easier
since the baseline are the random recipes, and the cold-start item problem is
not the primary focus of Eatelligent at this moment. Therefore, no special
promotion strategy is implemented for new items.

3.4.4 Composition of Recommendations

The composition of the recommendation list of any size is based mainly on
the collaborative filtering engine and the CBF algorithm. These two algo-
rithms compose 80% of the list (40% from each). When there is not enough
knowledge for the collaborative filtering or CBF algorithms to find enough
recipes, the NURR algorithm fills in the rest. For CBF, this happens because
of the threshold that is defined. With a lower score than this threshold, the
recipes are excluded. For CF, this can be when the user have not rated any
recipes and the engine has nothing to compare against. The last 20% of the
list is a set of random recipes. This strategy is done to be able to compare
the other algorithms to random in the evaluation, and to help integrating
new recipes without ratings. To give all methods a fair chance we randomize
which of the algorithms to get the top of the list. Therefore, the recommen-
dation list is not deterministic. The random contribution helps the unrated
recipes to gather some ratings as well.

All the di↵erent set of recipes from the recommendation methods except the
ones we choose at random are filtered on additional attributes. The recipes
that are not rated the last 14 days, not been seen in total the last seven
days, nor been said no to in the last three days, are returned. This filtering
is done to make sure the user do not get the same recipes recommended every
time. Table 3.4 shows an example of a list of recommendations where the
collaborative filtering results on top. The next 5 to 7 items is from the CBF
algorithm. Since CBF only filled three out of four possible slots, the NURR
algorithm had to fill in one recipe for this example.



60 CHAPTER 3. ARCHITECTURE/MODEL

# From
Predicted
Rating

Similarity
to User

Score RecipeId

1 CF 4.4 – – 5
2 CF 4.1 – – 6
3 CF 3.7 – – 4
4 CF 3.7 – – 7
5 CBF – – 3.88 42
6 CBF – – 2.75 2
7 CBF – – 1.27 9
8 NURR – 0.7 – 1
9 Random – – – 10
10 Random – – – 23

Table 3.4: An example on a composed recommendation list

3.5 How it Works

To describe the functionality with the weights and new recommendations
system in the system, we will show an example of a user going through the
following steps: A recommendation, answering “yes” or “no” on a few recipes,
picking a recipe and rating the recipe and receiving new recommendations in
the end.

3.5.1 A New User Receiving a List of Recommenda-
tions

After the user have signed up, they will be prompted with five questions as
mentioned earlier. The ingredient tag weights will be updated from 0 to a
more personalized weighting in respect to the cold-start questions answered.
For this example, say the user have answered the following:

Meat: Yes, Spicy: No, Skills No, Fish: Yes, Chicken: Yes

After processing these questions, the user will have the following weights
stored in the user ingredient tag and user recipe tag relations shown in Ta-
ble 3.5. Note that composed, spicy, spice, and salty got the negative value
due to the negative answer on the previous questions. An explanation of
each ingredient tag and recipe tags is listed in Appendix C. Answering this



3.5. HOW IT WORKS 61

Ingredient Tag Value
Meat 1.0
Animal product 0.3 + 0.2 + 0.1 = 0.6
Pork 0.8
Beef 0.8
Chicken 1.0
Seafood 0.8
Fish 1.0
Composed 1.0
Spicy -1.0
Spice -0.5
Salty -0.2

Recipe tag Value
Healthy 0
Asian 0
Quick 0

Table 3.5: The current state of the weights after the cold-start questions.

questions does not a↵ect the recipe tags. These tags are updated after rat-
ings of the recipes (described in Section 3.4.1), not by answering cold-start
questions.

The user is presented a list of recommendations from di↵erent recommenda-
tion engines, and then the list is logged in the database to gather results.
For our example, the output from the recommendation endpoint is shown in
Listing 3.9. Note that the CF algorithm returns no items before the user per-
forms a star rating on a recipe. This is because the CF algorithm exclusively
does calculations based on this type of rating, and cannot do a comparison
with an empty user-rating vector.

After the ordered list of 10 items is displayed, the user will say yes or no
to the recipes recommended. For our example, say the user says no to the
first two recipes and wants to check out the third one. This feedback is then
used to update the users weights. The update depends on the recipe and
what ingredients that the recipe contains because of the ingredient tags that
is updated. Of course, this is a rather “harmless” choice, unlike a star rating.
The results of this examples behavior is listed in Table 3.6



62 CHAPTER 3. ARCHITECTURE/MODEL

Ingredient Tag Di↵erence New value
Meat 1 negative = �0.3 0.9
Animal product 1 negative, 1 positive = 0 0.6
Pork 1 negative = �0.3 0.5
Beef 1 negative = �0.3 0.5
Chicken 1 positive = 0.3 1.3
Seafood – 0.8
Fish – 1.0
Composed 1 negative, 1 positive = 0 1.0
Spicy 1 negative, 1 positive = 0 -1.0
Spice 1 negative, 1 positive = 0 -0.5
Salty 1 positive = 0.3 0.1
Extras 1 negative, 1 positive = 0 0.0
Green 2 negative, 1 positive = �0.3 -0.3
Fruit 1 negative = �0.3 -0.3
Milk product 1 positive = 0.3 0.3

Recipe tag Di↵erence New value
Healthy 1 positive = 0.3 0.3
Asian 2 negative = �0.6 -0.6
Quick 1 negative, 1 positive = 0 0

Table 3.6: The current state of the weights after the “yes/no” ratings



3.5. HOW IT WORKS 63

Listing 3.9: First list of recommendations to a user
{

ok: true ,

recommendations: [

{

recipe: { name: "Babi Asam Manis" }

},

{

recipe: { name: "Asian omelet" }

},

{

recipe: { name: "Paprika Chicken with asparagus" }

},

...

]

}

The selected recipe, “Paprika Chicken with asparagus” is chosen by the user
as todays dinner (for a full description of the recipe, see Section C.3.1). A
timer is present and reported back to Eatelligents backend while the recipe
is viewed by the user. The user then rates the recipe, say 4 star rating. In
Table 3.3, a 4 star rating corresponds to a weight of 0.5 times every ingredient
tag. Table 3.7 shows the updated weights after the feedback is given.

Now, when the user have given both implicit and explicit feedback to the
recommendation engine, we have some more content to base the next recom-
mendations on. This information helps the other users (collaborative part),
and the user itself the next time some user asks for a recipe list recommenda-
tion. In the last part of the example, the next recommendation list is aimed
more at the users preferences. Table 3.7 shows that the tags chicken, animal
product and composed ingredients is something this user likes.

Listing 3.10 shows the next recommendation after the actions described above
is carried out. The CF recommender proposes a chicken-based recipe, due to
similar users and their rating history. From the NURR method, a fish dish
is suggested. The most similar users ratings explain this suggestion. The
CBF algorithm presents another chicken dish due to the positive weight to
the chicken and animal product tags. The items ranking in the list are ran-
domized, where di↵erent parts of the list are the top. This randomization is
because we want to expose recommendations from all recommender methods



64 CHAPTER 3. ARCHITECTURE/MODEL

Ingredient tag New value
Spicy �1.0 + 0.5 = �0.5
Salty 0.1 + 0.5 = 0.6
Spice �0.5 + 0.5 = 0
Green �0.3 + 0.5 = 0.2
Extras 0 + 0.5 = 0.5
Milk product 0.3 + 0.5 = 0.8
Chicken 1.3 + 0.5 = 1.8
Animal product 0.6 + 0.5 = 1.1
Composed 1.0 + 0.5 = 1.5

Recipe tag New value
Healthy 0.3 + 0.5 = 0.8
Asian -0.6
Quick 0

Table 3.7: The updated weights after a rating of “Paprika Chicken with
asparagus”

Listing 3.10: New recommendation after interactions
{

ok: true ,

recommendations: [

{

__meta__: { source: "CF", predictedRating: 4.45 },

recipe: { name: "Curry chicken with banana and fennel" }

},

{

__meta__: { source: "NURR", similarityToUser: 1.0 },

recipe: { name: "Fishburger" }

},

{

__meta__: { source: "CBF", score: 4.1 },

recipe: { name: "Chickenwok with sweet and sour" }

},

...

]

}



3.6. MAKING EATELLIGENT PUBLIC 65

as the first recipe. Furthermore, this ensures that the user is unbiased as to
which recommender is employed in retrieving the various recipes.

3.6 Making Eatelligent Public

As described in Section 3.3.1, architectural choices is made to make the publi-
cation to most users a relatively simple process. The 25th of March 2015, the
mobile client was published in Google Play and Apple App Store. To have
both Android and iPhone users, help gather diversity in the user mass to re-
veal possibly di↵erences [22]. The project’s homepage at http://eatelligent.no
promoted the application along with social media and the word of mouth.
Chapter 4 describes the results of the gathered data.

http://eatelligent.no


66 CHAPTER 3. ARCHITECTURE/MODEL



Chapter 4

Experiments and Results

In this chapter, we describe our experiments along with the corresponding re-
sults. We start by listing the experimental plan, followed by the experimental
setup, and in the end we show the results.

4.1 Experimental Plan

Multiple ways exist to evaluate the recommender system. The most general
one is to look up the di↵erence between the user ratings on recipes picked
by a random generator, and compare it with the ratings on recipes given by
a recommender algorithm. With enough data, this approach makes it easy
to say if the algorithms are intelligent at all, and it is easy to compare the
di↵erent recommendation approaches. Since the logs of the recommended
recipes always contain the name of the algorithm promoting it, this can be
aggregated easily. For both the star ratings and the “yes/no” ratings, this
strategy will be done. The stars contain the strongest indication of whether
the user liked the recipe or not, and the “yes/no” ratings tell us if the user
found that recipe interesting.

For the collaborative filtering algorithm, the recommended recipes contain
a predicted rating, which also enables us to evaluate the di↵erence between
the predicted and the actual user rating, once a user rates a recipe. This
evaluation is measured by the mean absolute error (MAE). This error is
defined as the absolute value of predicted rating, p, subtracted by the actual

67



68 CHAPTER 4. EXPERIMENTS AND RESULTS

user rating, a. The mean of these errors is the MAE and explains how far
the algorithm is from the optimal predictions.

MAE =
1

n

X
|p� a| (4.1)

For all the di↵erent recommender algorithms, it is interesting to plot the
performance over time since the accuracy should increase. Both the timeline
for a new user until he has several ratings, but also how an algorithm performs
with few vs. many users in the system. It could also be interesting to evaluate
the cold-start item problem after a while, by releasing some new ones, and
see if they are picked up by the recomender system or not. However during
our test period, we do not have enough data to answer all these questions,
and a deeper evaluation must wait until later work.

Since a recommender system needs much data to get better, the application is
released on the open market in both App Store and Google Play. Therefore,
we did not know beforehand how many users we were going to include in our
tests, but we report the numbers in the experimental setup.

When the user gets a recommendation, the server gives ten for each request,
but the user only sees one. He can swipe “yes” or “no”, and if “no”, he gets
the next one. This approach enables us to evaluate how many recipes the
user on average looks at before he chooses a recipe. A lower number would
be better.

4.2 Experimental Setup

The data for this chapter describes the application after ten weeks on the
open market, available for anyone to test. Explicit feedback from the users,
either by rating a recipe 1-5 or by answering “yes” or “no”, forms the basis of
our results.

The number of items (recipes) the recommender can choose from is 100. The
number of users is 109. These users have together used the application for
1126 minutes, giving each user 10.5 minutes in average. The users have given
5071“yes/no” ratings and 87 star ratings. All users have answered the 5 cold-
start questions described in Section 3.4.1. They have together viewed 413
recipes and a list of ten recommended recipes is generated 924 times.



4.3. EXPERIMENTAL RESULTS 69

4.3 Experimental Results

This section will present the results collected during our test period.

4.3.1 Yes/No ratings

When presenting the recommendations, the users answer either “yes” or “no”
to the recipe. Figure 4.1 shows the distributions of answers between the algo-
rithms. The di↵erent algorithms do not have an equal number of responses.
Out of the ten recommendations given each time, some of the algorithms
will not always output recipes, and on average collaborative filtering outputs
more. This outcome happens because both CBF and NURR requires the
recommendations to above a certain threshold so that the algorithms rather
outputs nothing than bad recommendations.

200

400

600

800

1000

1200

1400

CF NURR CBF Random

Positive
Negative

Figure 4.1: “Yes/no” ratings per algorithm

To compare the di↵erent algorithms on a normalized level, Figure 4.2 shows
the same data as a stacked histogram.



70 CHAPTER 4. EXPERIMENTS AND RESULTS

0

20

40

60

80

100

CF NURR CBF Random

%
of

to
ta
l

Positive
Negative

Figure 4.2: Normalized “Yes/no” ratings per algorithm

We can see that CF and CBF do a relatively good job in recommending
recipes that the user wants to check out further. Compared to the random
items given, all three procedures performs better (ratio between positive and
negative answers).

4.3.2 Star Ratings

Figure 4.3 shows the distribution in rating of stars and this reveals the data
basis of star ratings. As we can see, it is a lot more of 4 and 5 ratings
compared to the others. We assume this is because people are more likely to
make the recipes they think they will like, and, therefore, most people will
filter out the recipes before they consider rating them.

Figure 4.4 shows the normalized distribution of stars ratings per algorithm.
We can see that random have a relatively large amount of low ratings com-
pared to the other algorithms. It is also small di↵erences between the di↵erent
algorithms, but we should be careful about analyzing it too much since the



4.3. EXPERIMENTAL RESULTS 71

0

5

10

15

20

25

30

35

40

1 star 2 stars 3 stars 4 stars 5 stars

Figure 4.3: Star ratings

Algorithm No. ratings

NURR 8

CF 38

CBF 27

Random 12

Table 4.1: The number of ratings for each algorithm

number of ratings is low as shown in Table 4.1.

2.38 is the average number of recommended recipes the user checks out
before he select one. This average number reflects that the users both want
to explore the recommendations deeply, but at the same time receives recipes
that are interesting in a reasonable time. A number that is high (closer to 10,
because of the limitation of recommendations in one request), would a↵ect
the users judgment of the recommendations. A small number would describe
a user mass with a sense of “yes to everything” attitude.

The recommended recipes from CF that ended up with a rating had an MAE
of 0.71. This number is only possible to calculate for this algorithm because
the other algorithms does not predict a rating, but calculates a score or a
similarity. This number does not have a rock solid ground due to the user
mass, but it describes a good prediction at least in an early stage of the



72 CHAPTER 4. EXPERIMENTS AND RESULTS

0

20

40

60

80

100

CF NURR CBF Random

%
of

to
ta
l

1 star
2 stars
3 stars
4 stars
5 stars

Figure 4.4: Percentage of star ratings for each algorithm



4.3. EXPERIMENTAL RESULTS 73

system.

The results presented is from a tiny data set and, therefore, these results do
not necessarily describe the correct nature of the algorithms. Still Figure 4.3
and 4.4 shows a di↵erence between the intelligent methods vs. randomly
given recipes.

4.3.3 Comparing Yes/No and Star Ratings

The recommendations are based upon three types of user feedback; answer
to cold-start questions, “yes/no” ratings, and star ratings on the recipes.
However, the di↵erent algorithms do not consider all the types of feedback
themselves. NURR and CF both focus on finding similar users and their
highly-rated recipes, but they lack learning by the “yes/no” feedback. The
“yes/no” ratings can be aggregated for each recipe, and if we consider “yes”
as 1 and “no” as -1, we can calculate a sum for each recipe. Based on results
from Figure 4.1, we see there is an overweight of “no” ratings. Therefore,
a negative sum is common. However, as shown in the results in the upper
chart in Figure 4.5 (which illustrates this aggregation), some of the recipes
are doing significant worse than the average. These recipes all have relatively
good average rating (bottom chart). We have reason to believe that this is
caused by people not giving star ratings on the recipes they are not interested
in. Therefore, the number of stars will remain high while people say “no
thanks” to the recipe. Since both NURR and CF do not learn from the
“yes/no” feedback, they continue to promote the recipes with good rating,
and this explains why a “bad” recipe is recommended many times.

4.3.4 Cold-Start Questions

The GINI index can be used to say something about the cold-start questions
ability to split the user mass into di↵erent buckets. This technique calculates
a number between 0 and 0.5 where 0.5 is a perfect split on a boolean question.
Equation 4.2 shows how to calculate the GINI index for each question.

GINI = 1�
⇣ No. yes

No. users

⌘2

�
⇣ No. no

No. users

⌘2

(4.2)

Table 4.2 lists the number of positive and negative responses to the cold-start
questions. The three of the questions with GINI score below 0.25 is relatively



74 CHAPTER 4. EXPERIMENTS AND RESULTS

�50
�40
�30
�20
�10

0

10

20

30

0
1
2
3
4
5

0

5

10

15

A
gg
re
ga
te
d
ye
s/
n
o
ra
ti
n
gs

A
vg

.
st
ar
s

N
o.

ra
ti
n
gs

Figure 4.5: Comparison between yes/no and star ratings. The data for each
recipe corresponds vertically between the two charts. In the bottom chart,
the impulses represent the number of ratings, and the bars show the average
star rating.



4.3. EXPERIMENTAL RESULTS 75

bad questions compared to the others. Still, these questions help the few of
the users to get in the right direction according to the weights. The question
regarding spicy and skills in the kitchen does, on the other hand, separate
the user mass to a greater extent. However, this numbers does reflect the
impact of each question to the final recommendations.

Question Yes No GINI

Do you like meat? 96 13 0.21

Do you like spicy food? 82 27 0.37

Do you view yourself as a good chef? 75 34 0.43

Do you like fish? 94 15 0.24

Do you like chicken? 94 15 0.24

Table 4.2: Answers to the cold-start questions

Table 4.3 lists the number of recommendations made based on the answers
from the cold-start questions. Positives are recommendations given that sup-
ports the response from the cold-start questions. Negatives are recommen-
dations where the user have said no to a category in the cold-start questions,
but the recommenders have disregarded this input. Note that the number of
recommendations that is associated with spicy is relatively high. We have
reason to believe that this is because some recipes got a good rating at an
early point in time, and, therefore, got snapped up by the collaborative al-
gorithms.

The numbers in Table 4.3 are not surprising due to the implementation of the
algorithms but are relevant to demonstrate how they behave regarding the
cold-start questions. CF is only considering star ratings and does not take
the cold-start questions into consideration at all. Therefore, this algorithm
recommends more recipes disregarding the answers. NURR is similar to
CF since it looks at the ratings, but it looks at the cold-start questions for
finding the similar users. However some users might have given a high score
to recipes even if they do not correspond to their answers for the questions,
and this might make the data noisy. CBF is not surprisingly doing best (less
negative recommendations) here since that approach looks at the content,
and the weights are initially set by the cold-start questions.

It would also be interesting to evaluate the ratings the users give the recipes



76 CHAPTER 4. EXPERIMENTS AND RESULTS

CF NURR CBF

Pos. Neg. Pos. Neg. Pos. Neg.

Meat 575 171 429 163 882 131

Spicy 4537 1867 1809 897 2623 0

Skills 262 108 50 22 70 0

Fish 23 13 0 0 71 9

Chicken 535 83 47 18 496 21

Table 4.3: Recommendations made by each algorithm based on cold-start
questions

that are recommended negative vs. positive regarding the answers to the
initial questions. However, we were not able to do this due to a tiny dataset.



Chapter 5

Evaluation and Conclusion

This chapter will evaluate the work covered in this thesis. First we present
a discussion regarding the link to the research objectives presented in the
introduction, followed by summarizing our contributions. In the end, we
present some thoughts about what future work can do both with this project
and recommendations of food recipes.

5.1 Evaluation and Discussion

Chapter 2 covers previous research regarding recommender systems, along
with techniques for gathering feedback and methods to approach the cold-
start problem. Previous ideas have inspired us in the making of the algo-
rithms used in Eatelligent. We covered more theory and approaches to rec-
ommender systems than we had the time and data to test in our application,
so in Section 5.3 we discuss some of the ideas for future research.

5.1.1 RO1 - Gain an understanding of what it means
to recommend food recipes

We have done a deep dive into what features that are truly important in
the food domain, with respect to recommendations. Our studies have un-
veiled that the basic primitives (ingredients) can be generalized into higher
abstractions to gain more knowledge about the true model. This thesis does

77



78 CHAPTER 5. EVALUATION AND CONCLUSION

not cover the nutrition element that is clearly a dimension of relevance for
some groups of users, which can discover new interesting abstractions. We
would also like to mention context as a factor in understanding what it means
to recommend food recipes. The lack of understanding the context of a user
is a weakness because we believe context is a significant factor of what a user
choose to make for dinner.

5.1.2 RO2 - Study and evaluate di↵erent strategies to
recommend items for a new user using both col-
laborative and content-based approaches

Since we wanted to evaluate di↵erent recommendation strategies we chose
to implement this as a hybrid recommender system, by using the hybrid
mixed approach which uses di↵erent algorithms separately. This approach
enables us to compare the di↵erent algorithms easily with each other. Since
collaborative filtering is the most common machine learning algorithm in the
recommender systems today, we found it obvious to include this technique
in our system. We also wanted to have one content-based approach, and this
was achieved by grouping ingredient and recipes in di↵erent tags, and update
a user profile continuously for these tags. These two approaches turned out
to have very similar results for various reasons. Both CF and CBF have
di↵erent shortcomings and strengths. CF recommends popular recipes and
is doing worse on exploring the whole dataset. CBF gives recommendations
based on learned personalized weights and pays attention to the cold-start
questions and“yes/no” ratings, but it does not care about the star rating and
hence can recommend less popular recipes.

The last approach, NURR, was created to have a technique that looks only
at the answers to the five cold-start questions presented to a new user. This
method performs worse than the other two but still better than random. The
biggest problem with this approach is that NURR sometimes find one user
that matches on the cold-start questions but if his best recipes are considered
by most people to be bad, the algorithm does not consider any new feedback.
As shown i Section 4.3.4, many people gives the same responses to the cold-
start questions, and if one user with a popular response vector and good
rating on a “bad” recipe, NURR will recommend this recipe to many people.
To improve NURR, the algorithm needs to take advantage of“yes/no”ratings.



5.1. EVALUATION AND DISCUSSION 79

All three algorithms perform better than just giving out random recipes,
so the results are promising, and all the approaches show to be useful in
recommending recipes. However, all of them are still recommending more
recipes which the user is not interested in compared to the recipes the user
look at closer. One explanation is that people seems to have a browsing
habit when looking at food recipes, and they want to look at multiple recipes
before they decide to take one.

5.1.3 RO3 - Study existing solutions to the cold-start
problem

In Chapter 2 we presented existing solutions to the cold-start problem. On
this subject, much research is done, and we picked out the most common
strategies and the ones that we believed could be useful in Eatelligent.

Recommender systems are continuously evolving to be more accurate and
are widely used and researched by the industry. In the search for literature,
it is always possible that we have been biased and that some methods are
not discovered. However, we think we have discovered the most common and
essential approaches forming a good foundation for this thesis.

5.1.4 RO4 - Study what kind of data we can collect
from the application used by a user over a period
of time that is relevant to build more knowledge
about the user

We found that the collection of data from a user in the application context
was a fairly easy task within limitations. To acquire more knowledge about
why a user answers“yes”or“no”to a dish, a better model of the context needs
to be understood. The context is not only important for a domain where food
recipes are in focus, but also in other domains of recommendation.

Upon three types of user feedback, the recommendations are based; the an-
swers to cold-start questions,“yes/no”ratings, and star ratings on the recipes.
Our results show that all the types are relevant to learn from, but the dif-
ferent algorithms lack by not taking advantage of all of them. Improvements
can be done by combining the “yes/no” and star ratings. Implicit ratings



80 CHAPTER 5. EVALUATION AND CONCLUSION

often have roots in the usage patterns of the user mass, and due to the small
amount of usage data, these type of recommendation enhancements was not
implemented.

We have gained a deep knowledge of what types of feedback that are impor-
tant, and how this feedback can be used to build up knowledge about the
user.

5.1.5 RO5 - Study the challenges that arise when build-
ing an application with a recommender system
from scratch

The thesis have faced challenges regarding the development of a full featured
application with a mobile application and a server with a recommender sys-
tem as a main focus. Evaluation of the system has been a challenge due to
the number of users and usage within our time limits.

Not being able to evaluate the accuracy of the recommender systems during
the development process made it hard to adjust parameters and the design
of the recommender algorithms throughout the process. In the design of rec-
ommender systems with a dataset, it is easy to evaluate every step by testing
the accuracy on the test set, but we had to wait until we had released the
application. By releasing the application earlier we could have collected more
feedback, and then improvements could be done to improve the recommen-
dations. Within our time limits, this was not possible, and in future work
the algorithms need to be tuned when more evaluation is done.

Since we developed this system as a new application and collected all the data
in a short period with new users, the results are very sparse. The experiments
should continue for a longer period, to derive more definitive conclusions.

5.2 Contributions

This section summarizes our contributions from this thesis.

Chapter 2 provides an overview of theory and previous research related to
recommender systems, including problems like the cold-start problem and



5.2. CONTRIBUTIONS 81

user feedback. CBR is also described there as a problem-solving strategy to
make recommender systems.

Eatelligent is available for any user (only recipes in Norwegian so far) in App
Store and Google Play and is free to download. Improvements can be done to
make the application more user-friendly, but we are happy to see that people
already can have use of our product.

While star ratings or other similar ratings on items are the typical feedback
of many recommender systems, we provide two types of explicit feedback;
stars and a binary “yes/no”’ rating. The latter is less explicit and extracts
knowledge about more items, not only the ones that the user likes. Our
algorithms do not take enough advantage of the combination of these two
types of ratings, but we provide the results and analysis that will help future
implementations to do so.

It is not revolutionary to use tags to structure the data and use this informa-
tion for recommendations, and we found this to be an e�cient data structure
for machine readable recipes. The tagging on ingredients is especially good
since the number of ingredients does not increase significantly after adding
enough recipes, and the tags can be entered manually without too much
work. If we were to let users add recipes in the future, they would not need
to add tags to the ingredients since those already exist.

With more user data, better evaluation can be done, but we provide an
initial evaluation of the results in this thesis. We are careful to make too
strong conclusions, but the results are already helping us to see what kind of
improvements that need to be done.

All code written for Eatelligent is open source1 and released under the MIT
license. Hopefully, some people can take advantage of this in future research,
and the di↵erent parts of the system can easily be modified to solve other
types of problems than the recommendation of food recipes. The mobile ap-
plication is self-contained, and can easily be modified to retrieve other types
of data. Greater changes need to be done for the server and recommendation
code to recommend in other domains, but for food recommendation it is a
good framework to start with.

1Source code: https://github.com/eatelligent

https://github.com/eatelligent


82 CHAPTER 5. EVALUATION AND CONCLUSION

5.3 Future Work

While developing this recommender system, and also when studying the pre-
vious research, we discovered many ideas and useful features. It is not pos-
sible to make everything at once, and we had to prioritize what is the key
functionality to answer the research objectives. In this section, we present the
ideas that we think should be tried out in future research and new versions
of Eatelligent.

A similar evaluation of the system needs to be done after collecting more
data. A new evaluation will help to draw stronger conclusions and to tune
the algorithms more precisely.

As we mentioned in Section 2.6.4, contextual information can be very in-
teresting to consider in the composition of recommendations in Eatelligent.
This approach was not implemented and tested, and should be tried out in
future work. Some demographic info could be extracted by letting the user
sign up with a social network profile. Geographic location can be used to
track where the user is, and see if it can learn any patterns. If the user is on
the way to the grocery store, he might care less about going for a recipe with
many ingredients that he needs to buy. However, if he is home and want to
make something with the ingredients he already has, the system should be
able to take advantage of this. Either by taking some ingredients as input and
output a recipe consisting of those or it could also assume some ingredients
that he is likely to have.

This system focuses on the recommendation to one user. However, people
are often making dinner for a party, and extracting this contextual informa-
tion, and implement group recommendations, is an interesting problem. This
feature is also likely to be something that many people would find useful in
a food recommender system.

More work is needed with respect to which parameters are important in a
food recipe. For example, in this thesis, nutrition is not emphasized and could
help boost the personalization both for one user and group recommendations.
This improvement could make it possible to use the number of calories as a
feature, and also be able to recommend recipes that fit in a user’s diet. For
example, a user on a low-carbohydrate diet does not want recommendations
containing many carbohydrates.

In this study, only the mixed hybrid method is used, and other approaches



5.3. FUTURE WORK 83

should also be tried out. We think it is best to start to test the algorithms
separately like we did, to evaluate them. Once we discover useful algorithms,
combinations of these should be tried out and might result in better accuracy.

Mixtures of other hybrid approaches along with other algorithms such as
model-based collaborative filtering could be an interesting comparison to the
results covered in this thesis.

The cold-start weights listed in Table 3.2 is taken by our best guess based on
our knowledge about food. From a data set to optimize the score for each
user on the recipe and ingredient tags, these weights could be learned.

As mentioned in Section 3.4.3, methods for promoting new items and items
without ratings are not implemented. This aspect of recommender systems is
important for real world problems when new items are added frequently, and
to find good strategies towards this issue more research needs to be done.



84 CHAPTER 5. EVALUATION AND CONCLUSION



Appendix A

SQL-scheme

This appendix lists the PostgreSQL scheme used in this project.

CREATE TABLE language (
id s e r i a l 8 PRIMARY KEY,
l o c a l e t ex t NOT NULL UNIQUE,
name text NOT NULL UNIQUE

) ;

CREATE TABLE r e c i p e t a g (
id s e r i a l 8 PRIMARY KEY,
name text NOT NULL UNIQUE

) ;

CREATE TABLE un i t (
id s e r i a l 8 PRIMARY KEY,
name text NOT NULL UNIQUE

) ;

CREATE TABLE i n g r ed i e n t (
id s e r i a l 8 PRIMARY KEY,
name text NOT NULL UNIQUE,

) ;

CREATE TABLE use r s (
id s e r i a l 8 PRIMARY KEY,
f i r s t name text ,

85



86 APPENDIX A. SQL-SCHEME

last name text ,
emai l t ex t NOT NULL UNIQUE,
image text ,
role text ,
c r ea t ed timestamp ,
r e c i p e l anguage in t8 REFERENCES language ( id ) ,
app language in t8 REFERENCES language ( id ) ,
c i t y text ,
country text ,
sex text ,
year born int

CONSTRAINT age check
CHECK ( year born > 1900 AND year born < 2016) ,

e n r o l l e d boolean ,
metr ic system boolean

) ;

CREATE TABLE r e c i p e (
id s e r i a l 8 PRIMARY KEY,
name text NOT NULL,
image text ,
d e s c r i p t i o n text ,
language in t8 NOT NULL REFERENCES language ( id )

ON DELETE CASCADE,
procedure text ,
sp i cy int

CONSTRAINT sp i cy check
CHECK ( sp i cy > 0 AND sp i cy < 4) ,

time int
CONSTRAINT t ime check
CHECK ( time > 0) ,

d i f f i c u l t y text ,
source text ,
c r ea t ed timestamp NOT NULL,
modi f i ed timestamp NOT NULL,
pub l i shed timestamp ,
d e l e t ed timestamp ,
c reated by in t8 NOT NULL REFERENCES use r s ( id )

ON DELETE CASCADE
) ;



87

CREATE TABLE f a v o r i t e s (
u s e r i d in t8 REFERENCES use r s ( id )

ON DELETE CASCADE,
r e c i p e i d in t8 REFERENCES r e c i p e ( id )

ON DELETE CASCADE
) ;

CREATE UNIQUE INDEX f a v o r i t e s i d x
ON f a v o r i t e s ( u se r id , r e c i p e i d ) ;

CREATE TABLE r e c i p e i n t a g (
r e c i p e i d in t8 REFERENCES r e c i p e ( id )

ON DELETE CASCADE,
t a g i d in t8 REFERENCES r e c i p e t a g ( id )

ON DELETE CASCADE
) ;

CREATE UNIQUE INDEX r e c i p e i n t a g i d x
ON r e c i p e i n t a g ( r e c i p e i d , t ag i d ) ;

CREATE TABLE i n g r e d i e n t t a g (
id s e r i a l 8 PRIMARY KEY,
name text NOT NULL UNIQUE

) ;

CREATE TABLE i n g r e d i e n t i n t a g (
i n g r e d i e n t i d in t8 REFERENCES ing r ed i e n t ( id )

ON DELETE CASCADE,
t a g i d in t8 REFERENCES ing r ed i e n t t a g ( id )

ON DELETE CASCADE
) ;

CREATE UNIQUE INDEX i n g r e d i e n t i n t a g i d x
ON i n g r e d i e n t i n t a g ( i n g r ed i en t i d , t ag i d ) ;

CREATE TABLE i n g r e d i e n t i n r e c i p e (
r e c i p e i d in t8 REFERENCES r e c i p e ( id )

ON DELETE CASCADE,
i n g r e d i e n t i d in t8 REFERENCES ing r ed i e n t ( id )



88 APPENDIX A. SQL-SCHEME

ON DELETE CASCADE,
u n i t i d in t8 REFERENCES uni t ( id )

ON DELETE CASCADE,
amount r e a l

) ;

CREATE TABLE u s e r s t a r r a t e r e c i p e (
u s e r i d in t8 REFERENCES use r s ( id )

ON DELETE CASCADE,
r e c i p e i d in t8 REFERENCES r e c i p e ( id )

ON DELETE CASCADE,
r a t i ng r e a l

CONSTRAINT r a t i ng check
CHECK ( r a t i ng >= 0.0 AND r a t i ng <= 5 . 0 ) ,

c r ea t ed timestamp ,
c r e a t ed l ong int8 ,
source text ,
data j son

) ;

CREATE UNIQUE INDEX u s e r s t a r r a t e r e c i p e i d x
ON u s e r s t a r r a t e r e c i p e ( use r id , r e c i p e i d ) ;

CREATE TABLE u s e r y e s n o r a t e r e c i p e (
u s e r i d in t8 REFERENCES use r s ( id )

ON DELETE CASCADE,
r e c i p e i d in t8 REFERENCES r e c i p e ( id )

ON DELETE CASCADE,
r a t i ng int ,
l a s t s e e n timestamp

) ;

CREATE UNIQUE INDEX u s e r y e s n o r a t e r e c i p e i d x
ON u s e r y e s n o r a t e r e c i p e ( use r id , r e c i p e i d ) ;

CREATE TABLE us e r v i ewed r e c i p e (
u s e r i d in t8 NOT NULL REFERENCES use r s ( id )

ON DELETE CASCADE,
r e c i p e i d in t8 NOT NULL REFERENCES r e c i p e ( id )

ON DELETE CASCADE,



89

durat ion in t8 NOT NULL,
l a s t s e e n timestamp NOT NULL

) ;

CREATE UNIQUE INDEX u s e r v i ewed r e c i p e i dx
ON us e r v i ewed r e c i p e ( use r id , r e c i p e i d ) ;

CREATE TABLE l o g i n i n f o (
id s e r i a l 8 PRIMARY KEY,
p r ov i d e r i d text ,
p rov ide r key text

) ;

CREATE TABLE u s e r l o g i n i n f o (
u s e r i d in t8 NOT NULL,
l o g i n i n f o i d in t8 NOT NULL

) ;

CREATE TABLE password in fo (
hasher text ,
password text ,
s a l t text ,
l o g i n i n f o i d in t8

) ;

CREATE TABLE c o l d s t a r t (
id s e r i a l 8 PRIMARY KEY,
image text NOT NULL,
i d e n t i f i e r t ex t UNIQUENOT NULL,
d e s c r i p t i o n text NOT NULL,
i n g r e d i e n t t a g s hstore ,
r e c i p e t a g s hs to r e

) ;

CREATE TABLE u s e r c o l d s t a r t (
u s e r i d in t8 NOT NULL REFERENCES use r s ( id )

ON DELETE CASCADE,
c o l d s t a r t i d in t8 NOT NULL REFERENCES c o l d s t a r t ( id )

ON DELETE CASCADE,
answer boolean ,



90 APPENDIX A. SQL-SCHEME

answer time timestamp ,
) ;

CREATE TABLE u s e r i n g r e d i e n t t a g (
u s e r i d in t8 REFERENCES use r s ( id )

ON DELETE CASCADE,
i n g r e d i e n t t a g i d in t8 REFERENCES ing r ed i e n t t a g ( id )

ON DELETE CASCADE,
value r e a l

CONSTRAINT va lue check
CHECK (value >= �5.0 AND value <= 5 . 0 )

) ;

CREATE UNIQUE INDEX u s e r i n g r e d i e n t t a g i d x
ON u s e r i n g r e d i e n t t a g ( use r id , i n g r e d i e n t t a g i d ) ;

CREATE TABLE u s e r r e c i p e t a g (
u s e r i d in t8 REFERENCES use r s ( id )

ON DELETE CASCADE,
r e c i p e t a g i d in t8 REFERENCES r e c i p e t a g ( id )

ON DELETE CASCADE,
value r e a l

CONSTRAINT va lue check
CHECK (value >= �5.0 AND value <= 5 . 0 )

) ;

CREATE UNIQUE INDEX u s e r r e c i p e t a g i d x
ON u s e r r e c i p e t a g ( use r id , r e c i p e t a g i d ) ;

CREATE TABLE given recommendation (
id s e r i a l 8 PRIMARY KEY,
u s e r i d in t8 REFERENCES use r s ( id )

ON DELETE CASCADE,
r e c i p e i d in t8 REFERENCES r e c i p e ( id )

ON DELETE CASCADE,
type text ,
ranking int ,
c r ea t ed timestamp ,
data j son

) ;



Appendix B

Endpoints

The backend described in Section 3.3.2 consists of endpoints. These end-
points are used by the client to interact with the backend through HTTP.
Every endpoint is prefixed with the server host.

B.1 GET

Endpoints that is reached with the GET method uses the auth token (current
user) and returns either one entity or a list of entities. Below is a list of this
projects endpoints that goes under the GET method.

• /api/users - Returns a list of all the users

• /api/recommendation/recipes - Returns a personalized a list with
recipes

• /api/users/:user id - Takes a user_id as a URL parameter and re-
turns the user with its fields

• /api/user - Returns the current user entity

• /api/ingredients - Returns a list of all ingredients

• /api/ingredients/:ingredient id - Takes a ingredient_id and returns
a verbose version of the ingredient entity

91



92 APPENDIX B. ENDPOINTS

• /api/ingredients/tags - Returns a list of the ingredient tags

• /api/recipes - Returns a list of all recipes

• /api/recipes/:recipe id - Takes a recipe_id as a URL parameter and
returns a verbose version of the recipe entity

• /api/recipes/tags - Returns a list of the recipe tags

• /api/favorites/recipes - Returns a list of the favorite recipes for the
current user

• /api/recipes/viewed - Returns a list of the ten last viewed recipes
for the current user

• /api/coldstart - Returns the cold-start questions

B.2 PUT

PUT endpoints are used to update an entity. These endpoints input a payload
of what to update on the entity.

• /api/user - Inputs new user fields and returns the current users up-
dated entity.

• /api/recipes/:recipe id - Takes a recipe_id in the URL and new
recipe fields and returns the updated recipe entity.

B.3 POST

Endpoints that use the POST method sends a payload to the server. This
payload often used to create a new entity.

• /api/users - Creates a new user entity

• /api/recipes - Creates a new recipe along with new ingredients if they
are not already stored in the database



B.4. DELETE 93

• /api/authenticate - Inputs the user credentials and authenticates the
user. This sets the current user for this session with a cookie

• /api/ratings/recipes - Inputs the recipe_id and a star_rating to give
a star rating on a recipe from the current user

• /api/favorites/recipes - Inputs the recipe_id to save the recipe to
the favorites list for the current user

• /api/ratings/recipes/binary - Inputs recipe_id and a boolean to
give a “yes/no rating” to a recipe

• /api/recipes/viewed - Inputs the duration of how long a recipe was
viewed for the current user

• /api/coldstart - Inputs the cold_start_question_id and a boolean to
give feedback to the cold start questions

• /api/knowledge/ reset - Resets the weights for the current user

B.4 DELETE

DELETE endpoints delete an entity. The deletion does not permanently
delete the entity but sets a flag in the database, marked is as deleted.

• /api/recipes/:recipe id - Takes a recipe_id in the URL and deletes
the recipe with this id

• /api/favorites/recipes/:recipe id - Takes a recipe_id in the URL
and removes the recipe from the favorites list for the current user.



94 APPENDIX B. ENDPOINTS



Appendix C

Recipe Features

This appendix lists important features regarding recipes and how a they are
structured.

C.1 Ingredient Tags

All the ingredients are mapped to either zero or some of the listed tags:

• Animal product

• Beef

• Berries

• Cheese

• Chicken

• Composed

• Extras

• Fish

• Flour

95



96 APPENDIX C. RECIPE FEATURES

• Fruit

• Green

• Meat

• Milk product

• Pasta

• Pork

• Potatoes

• Salty

• Seafood

• Spice

• Spicy

Most of the ingredient tags is self-explanatory, and what ingredients goes
under this category.Composed and extras can be more di�cult to understand
and is described below:

The composed tag is ingredients that are made up from di↵erent other
ingredients. Pizza sauce is typically a composed ingredient due to the com-
position crushed tomatoes and di↵erent types of spices. Skillful chefs may
use few of these ingredients.

Extras can be referred to as ingredients that are used as side dishes. Pasta
and corncob are associated with this ingredient tag.

C.2 Recipe Tags

All recipes are associated with at least one recipe tags. Below is the list of
all recipe tags used in the set of recipes:

• Family



C.3. FULL RECIPE DESCRIPTION 97

• Fast

• Healthy

• Comfort food

• Guests

• Asian food

• Italian food

• Mexican food

• Indian food

• Norwegian food

C.3 Full Recipe Description

Listed below is three recipes used in the example in Section 3.5.

C.3.1 Paprika Chicken with Asparagus

This recipe contains the following ingredients for one portion:

• Salt (0.5 tablespoons)

• Pepper (0.5 tablespoons)

• Green fresh asparagus (4 pieces)

• Sour cream (1 tablespoon)

• Chicken filet (1 pieces)

• Corn flakes (2 tablespoons)

• Paprika powder (1 tablespoon)



98 APPENDIX C. RECIPE FEATURES

These ingredients resolves to the following ingredient tags:

• Salt ! Spicy, Salty, Spice

• Pepper ! Spice

• Green fresh asparagus ! Green, Extras

• Sour cream ! Milk product

• Chicken filet ! Chicken, Animal product

• Corn flakes ! Composed

• Paprika powder ! Spice

C.3.2 Babi Asam Manis

This recipe contains the following ingredients for one portion:

• Onion (0.25 pieces)

• Garlic (0.75 cloves)

• Pork into strips (150 grams)

• Chili powder (0.25 teaspoon)

• Canned pineapple chunks (0.25 can)

• Paprika (0.5 pieces)

• Ready to cook wok sauce (0.25 bag)

• Pineapple juice (0.5 deciliter)

These ingredients resolves to the following ingredient tags:

• Onion ! Green

• Garlic ! Green, Spice



C.3. FULL RECIPE DESCRIPTION 99

• Pork into strips ! Pork, Meat

• Chili powder ! Spice, Spicy

• Canned pineapple chunks ! Composed, green

• Paprika ! Green

• Ready to cook wok sauce ! Composed

• Pineapple juice ! Fruit

C.3.3 Asian Omelet

This recipe contains the following ingredients for one portion:

• Egg (1.5 pieces)

• Oyster sauce (0.5 tablespoons)

• Beef meat in strips (100 grams)

• Bean sprouts (0.25 can)

• Oyster mushrooms (50 grams)

These ingredients resolves to the following ingredient tags:

• Egg ! Animal product

• Oyster sauce ! –

• Beef meat in strips ! Beef

• Bean sprouts ! Extras

• Oyster mushrooms ! Green



100 APPENDIX C. RECIPE FEATURES



Bibliography

[1] A. Aamodt and E. Plaza. Case-based reasoning: Foundational issues,
methodological variations, and system approaches. AI communications,
7(1):39–59, 1994.

[2] G. D. Abowd, C. G. Atkeson, J. Hong, S. Long, R. Kooper, and
M. Pinkerton. Cyberguide: A mobile context-aware tour guide. Wireless
networks, 3(5):421–433, 1997.

[3] G. Adomavicius, R. Sankaranarayanan, S. Sen, and A. Tuzhilin. Incor-
porating contextual information in recommender systems using a mul-
tidimensional approach. ACM Transactions on Information Systems
(TOIS), 23(1):103–145, 2005.

[4] G. Adomavicius and A. Tuzhilin. Toward the next generation of rec-
ommender systems: A survey of the state-of-the-art and possible ex-
tensions. Knowledge and Data Engineering, IEEE Transactions on,
17(6):734–749, 2005.

[5] G. Adomavicius and A. Tuzhilin. Context-aware recommender systems.
In Recommender systems handbook, pages 217–253. Springer, 2011.

[6] D. W. Aha. Case-based learning algorithms. In Proceedings of the 1991
DARPA Case-Based Reasoning Workshop, volume 1, pages 147–158,
1991.

[7] X. Amatriain, J. M. Pujol, and N. Oliver. I like it... i like it not: Eval-
uating user ratings noise in recommender systems. In User modeling,
adaptation, and personalization, pages 247–258. Springer, 2009.

[8] M. J. Berry and G. Lino↵. Data mining techniques: for marketing, sales,
and customer support. John Wiley & Sons, Inc., 1997.

101



102 BIBLIOGRAPHY

[9] J. Bettman, M. Luce, and J. Payne. Consumer decision making: A con-
structive perspective. Consumer Behavior and Decision Making, pages
1–42, 1991.

[10] K. Beyer, J. Goldstein, R. Ramakrishnan, and U. Shaft. When is “near-
est neighbor” meaningful? In Database Theory—ICDT’99, pages 217–
235. Springer, 1999.

[11] J. S. Breese, D. Heckerman, and C. Kadie. Empirical analysis of pre-
dictive algorithms for collaborative filtering. In Proceedings of the Four-
teenth conference on Uncertainty in artificial intelligence, pages 43–52.
Morgan Kaufmann Publishers Inc., 1998.

[12] P. J. Brown, J. D. Bovey, and X. Chen. Context-aware applications:
from the laboratory to the marketplace. Personal Communications,
IEEE, 4(5):58–64, 1997.

[13] R. Burke. Hybrid web recommender systems. In The adaptive web,
pages 377–408. Springer, 2007.

[14] P. G. Campos, I. Fernández-Tob́ıas, I. Cantador, and F. Dı́ez. Context-
aware movie recommendations: An empirical comparison of pre-filtering,
post-filtering and contextual modeling approaches. In E-Commerce and
Web Technologies, pages 137–149. Springer, 2013.

[15] F. Cena, L. Console, C. Gena, A. Goy, G. Levi, S. Modeo, and I. Torre.
Integrating heterogeneous adaptation techniques to build a flexible and
usable mobile tourist guide. AI Communications, 19(4):369–384, 2006.

[16] D. Cosley, S. K. Lam, I. Albert, J. A. Konstan, and J. Riedl. Is seeing
believing?: how recommender system interfaces a↵ect users’ opinions. In
Proceedings of the SIGCHI conference on Human factors in computing
systems, pages 585–592. ACM, 2003.

[17] T. Cover and P. Hart. Nearest neighbor pattern classification. Informa-
tion Theory, IEEE Transactions on, 13(1):21–27, 1967.

[18] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood
from incomplete data via the em algorithm. Journal of the royal statis-
tical society. Series B (methodological), pages 1–38, 1977.



BIBLIOGRAPHY 103

[19] A. K. Dey, G. D. Abowd, and D. Salber. A conceptual framework and
a toolkit for supporting the rapid prototyping of context-aware applica-
tions. Human-computer interaction, 16(2):97–166, 2001.

[20] R. T. Fielding and R. N. Taylor. Principled design of the modern
web architecture. ACM Transactions on Internet Technology (TOIT),
2(2):115–150, 2002.

[21] J. Freyne and S. Berkovsky. Intelligent food planning: personalized
recipe recommendation. In Proceedings of the 15th international confer-
ence on Intelligent user interfaces, pages 321–324. ACM, 2010.

[22] T. J. Gerpott, S. Thomas, and M. Weichert. Characteristics and mo-
bile internet use intensity of consumers with di↵erent types of ad-
vanced handsets: An exploratory empirical study of iphone, android
and other web-enabled mobile users in germany. Telecommunications
Policy, 37(4):357–371, 2013.

[23] K. J. Hammond. Chef: A model of case-based planning. In AAAI, pages
267–271, 1986.

[24] T. R. Hinrichs and J. L. Kolodner. The roles of adaptation in case-based
design. In AAAI, volume 91, pages 28–33, 1991.

[25] M. Hosseini-Pozveh, M. Nematbakhsh, and N. Movahhedinia. A multi-
dimensional approach for context-aware recommendation in mobile com-
merce. arXiv preprint arXiv:0908.0982, 2009.

[26] Y. Hu, Y. Koren, and C. Volinsky. Collaborative filtering for implicit
feedback datasets. In Data Mining, 2008. ICDM’08. Eighth IEEE In-
ternational Conference on, pages 263–272. IEEE, 2008.

[27] D. Kelly and J. Teevan. Implicit feedback for inferring user preference:
a bibliography. In ACM SIGIR Forum, volume 37, pages 18–28. ACM,
2003.

[28] H.-N. Kim, A.-T. Ji, I. Ha, and G.-S. Jo. Collaborative filtering based
on collaborative tagging for enhancing the quality of recommendation.
Electronic Commerce Research and Applications, 9(1):73–83, 2010.

[29] J. Kolodner. Case-based reasoning. Morgan Kaufmann, 1988.



104 BIBLIOGRAPHY

[30] G. Linden, B. Smith, and J. York. Amazon. com recommendations:
Item-to-item collaborative filtering. Internet Computing, IEEE, 7(1):76–
80, 2003.

[31] R. Lopez De Mantaras, D. McSherry, D. Bridge, D. Leake, B. Smyth,
S. Craw, B. Faltings, M. L. Maher, M. T. Cox, K. Forbus, et al. Retrieval,
reuse, revision and retention in case-based reasoning. The Knowledge
Engineering Review, 20(03):215–240, 2005.

[32] F. Lorenzi and F. Ricci. Case-based recommender systems: a unifying
view. In Intelligent Techniques for Web Personalization, pages 89–113.
Springer, 2005.

[33] D. A. Lussier and R. W. Olshavsky. Task complexity and contingent
processing in brand choice. Journal of Consumer Research, pages 154–
165, 1979.

[34] P. Massa and B. Bhattacharjee. Using trust in recommender systems: an
experimental analysis. In Trust Management, pages 221–235. Springer,
2004.

[35] K. Oku, S. Nakajima, J. Miyazaki, and S. Uemura. Context-aware svm
for context-dependent information recommendation. In Mobile Data
Management, 2006. MDM 2006. 7th International Conference on, pages
109–109. IEEE, 2006.

[36] C. Palmisano, A. Tuzhilin, and M. Gorgoglione. Using context to im-
prove predictive modeling of customers in personalization applications.
Knowledge and Data Engineering, IEEE Transactions on, 20(11):1535–
1549, 2008.

[37] U. Panniello, A. Tuzhilin, M. Gorgoglione, C. Palmisano, and A. Pedone.
Experimental comparison of pre-vs. post-filtering approaches in context-
aware recommender systems. In Proceedings of the third ACM conference
on Recommender systems, pages 265–268. ACM, 2009.

[38] S.-T. Park, D. Pennock, O. Madani, N. Good, and D. DeCoste. Näıve
filterbots for robust cold-start recommendations. In Proceedings of the
12th ACM SIGKDD international conference on Knowledge discovery
and data mining, pages 699–705. ACM, 2006.



BIBLIOGRAPHY 105

[39] M. J. Pazzani and D. Billsus. Content-based recommendation systems.
In The adaptive web, pages 325–341. Springer, 2007.

[40] D. Poo, B. Chng, and J.-M. Goh. A hybrid approach for user profil-
ing. In System Sciences, 2003. Proceedings of the 36th Annual Hawaii
International Conference on, pages 9–pp. IEEE, 2003.

[41] C. Prahalad. Beyond crm: Ck prahalad predicts customer context is the
next big thing. American Management Association MwWorld, 2004.

[42] A. M. Rashid, I. Albert, D. Cosley, S. K. Lam, S. M. McNee, J. A.
Konstan, and J. Riedl. Getting to know you: learning new user prefer-
ences in recommender systems. In Proceedings of the 7th international
conference on Intelligent user interfaces, pages 127–134. ACM, 2002.

[43] P. Resnick, N. Iacovou, M. Suchak, P. Bergstrom, and J. Riedl. Grou-
plens: an open architecture for collaborative filtering of netnews. In
Proceedings of the 1994 ACM conference on Computer supported coop-
erative work, pages 175–186. ACM, 1994.

[44] F. Ricci, D. R. Fesenmaier, N. Mirzadeh, H. Rumetshofer, E. Schaum-
lechner, A. Venturini, K. W. Wöber, and A. H. Zins. Dietorecs: a
case-based travel advisory system. Destination recommendation sys-
tems: behavioural foundations and applications, pages 227–239, 2006.

[45] C. K. Riesbeck and R. C. Schank. Inside case-based reasoning. Psychol-
ogy Press, 2013.

[46] N. S. Ryan, J. Pascoe, and D. R. Morse. Enhanced reality fieldwork:
the context-aware archaeological assistant. In Computer applications in
archaeology. Tempus Reparatum, 1998.

[47] A. I. Schein, A. Popescul, L. H. Ungar, and D. M. Pennock. Methods
and metrics for cold-start recommendations. In Proceedings of the 25th
annual international ACM SIGIR conference on Research and develop-
ment in information retrieval, pages 253–260. ACM, 2002.

[48] B. N. Schilit and M. M. Theimer. Disseminating active map information
to mobile hosts. Network, IEEE, 8(5):22–32, 1994.



106 BIBLIOGRAPHY

[49] M. Van Setten, S. Pokraev, and J. Koolwaaij. Context-aware recommen-
dations in the mobile tourist application compass. In Adaptive hyper-
media and adaptive web-based systems, pages 235–244. Springer, 2004.

[50] Y. Wang, S. C.-f. Chan, and G. Ngai. Applicability of demographic rec-
ommender system to tourist attractions: A case study on trip advisor. In
Proceedings of the The 2012 IEEE/WIC/ACM International Joint Con-
ferences on Web Intelligence and Intelligent Agent Technology-Volume
03, pages 97–101. IEEE Computer Society, 2012.

[51] Z. Yu, X. Zhou, D. Zhang, C.-Y. Chin, X. Wang, et al. Support-
ing context-aware media recommendations for smart phones. Pervasive
Computing, IEEE, 5(3):68–75, 2006.


	Abstract
	Sammendrag
	Preface
	Introduction and Overview
	Background and Motivation
	Goals and Research Objectives
	Thesis Structure
	Project Scope

	Background Theory and Motivation
	Recommender Systems
	Content-Based Filtering
	Collaborative Filtering
	Hybrid Recommender Systems
	Context-Aware Recommender Systems

	Feedback
	Explicit Feedback
	Implicit Feedback

	The Cold-Start Problem
	Cold-Start User Problem
	Cold-Start Item Problem

	Case-Based Reasoning
	The CBR Principles
	CBR as a Recommender System

	Examples of Earlier Projects
	Amazon.com
	DieToRecs
	CHEF
	JULIA
	Intelligent Food Planning: Personalized Recipe Recommendation
	Food Recommendation Using Ontology and Heuristics

	Relating the Theory Towards Eatelligent
	Recommender System
	Cold-Start
	Feedback
	Taking Advantage of the Contextual Information


	Architecture/Model
	Requirements for Design
	System Overview
	Implementation
	Client
	Backend

	Recommender System
	Algorithms
	Feedback in the Client
	Cold-Start Item Problem
	Composition of Recommendations

	How it Works
	A New User Receiving a List of Recommendations

	Making Eatelligent Public

	Experiments and Results
	Experimental Plan
	Experimental Setup
	Experimental Results
	Yes/No ratings
	Star Ratings
	Comparing Yes/No and Star Ratings
	Cold-Start Questions


	Evaluation and Conclusion
	Evaluation and Discussion
	RO1 - Gain an understanding of what it means to recommend food recipes
	RO2 - Study and evaluate different strategies to recommend items for a new user using both collaborative and content-based approaches
	RO3 - Study existing solutions to the cold-start problem
	RO4 - Study what kind of data we can collect from the application used by a user over a period of time that is relevant to build more knowledge about the user
	RO5 - Study the challenges that arise when building an application with a recommender system from scratch

	Contributions
	Future Work

	SQL-scheme
	Endpoints
	GET
	PUT
	POST
	DELETE

	Recipe Features
	Ingredient Tags
	Recipe Tags
	Full Recipe Description
	Paprika Chicken with Asparagus
	Babi Asam Manis
	Asian Omelet


	Bibliography

