
A Plugin for Visualizing and Refactoring
Structurally Complex Software
Architecture

Christian Thurmann-
Nielsen

Master of Science in Informatics

Supervisor: Reidar Conradi, IDI
Co-supervisor: Tosin Daniel Oyetoyan, IDI

Department of Computer and Information Science

Submission date: June 2014

Norwegian University of Science and Technology

Abstract

Background: Modifiability and Maintainability are important software qualities for
existing software systems. However, structural complexities such as dependency cycles,
are known to inhibit these software qualities. These architectural hotspots are common
in many software systems, and the larger they get, the higher the chance that such flaws
exists. Several studies have also shown that these structural complexities are difficult to
refactor and can be difficult to detect without using code analysis tools.

Research Goals: If we could improve the overall architecture by refactoring a select
few components, this could translate into a better, more maintainable software system.
The main goal of this research is therefore to create a plugin that could help developers
to reduce these structural complexitites and finding suitable candidates to refactor. The
plugin will be a simulation tool which can simulate refactoring and visualize dependencies
between components in a graph that can be manipulated.

Approach: My main researh methods will be Desgin Science and I will use several
software engineering frameworks to create the architecture of the plugin. I will perform
tests to verify that the plugin meets the requirements that I have set, and I will use case
studies to verify how useful the plugin is and how it can help developers to refactor source
code.

Expected Results: A plugin for Visual Studio, for analysing C# source code. The
plugin should be able to simulate refactorings based on the analysis of the source code. The
user should be able to simulate breaking cycles, moving edges and adding intermediate
nodes. This tool should help developers to restructure and decouple the architecture at the
class granularity level in order to make the system more maintainable.

i

ii

Preface

This Master thesis is the result of the course IT3901 - Informatics Postgraduate Thesis:
Software at the Department of Computer and Information Science under the Faculty of
Information Technology, Mathematics and Electrical Engineering(IME) at the Norwegian
University of Science and Technology (NTNU) in Trondheim, Norway.

I would like to thank Reidar Conradi and Tosin Daniel Oyetoyan for giving me valuable
feedback and for their continued support and guidance throughout my work with this the-
sis.

I would also like to thank Powel for letting me test my plugin on some of their software
and for their cooperation.

Trondheim, June 23rd, 2014

Christian Thurmann-Nielsen

iii

iv

Table of Contents

Abstract i

Preface iii

Table of Contents viii

List of Tables ix

List of Figures xii

I Introduction 1

1 Introduction 3
1.1 Motivation . 3
1.2 Context . 4
1.3 Contribution . 4
1.4 Architecture . 4
1.5 Result . 4
1.6 Structure . 5

II Research Design 7

2 Research 9
2.1 Research Questions . 9
2.2 Research Method . 10

2.2.1 Design Science . 10

v

III Prestudy 13

3 State of the Art 15
3.1 Code Smell . 15

3.1.1 Duplicated Code . 16
3.1.2 Feature Envy . 17
3.1.3 God Class . 18
3.1.4 Lazy Class . 18
3.1.5 Long Method . 19
3.1.6 Contrived Complexity . 19
3.1.7 Refused Bequest . 20

3.2 Dependency Cycles . 20
3.2.1 Detecting Dependency Cycles 21
3.2.2 Breaking Dependency Cycles 21

3.3 Refactoring . 22
3.3.1 Naming Conventions . 22
3.3.2 Extract Method . 22
3.3.3 Move Method . 23
3.3.4 Generalize Type . 23
3.3.5 Benefits and Challenges Regarding Refactoring 23

3.4 Existing Tools . 24
3.4.1 JooJ . 24
3.4.2 STAN . 24
3.4.3 JDepend . 24
3.4.4 NDepend . 25
3.4.5 JDeodorant . 25
3.4.6 Classycle . 25
3.4.7 Nitriq . 25
3.4.8 Structure101 . 25
3.4.9 CodePro AnalytiX . 26
3.4.10 Summary . 26

3.5 Lexing, Parsing and Compilers . 26
3.5.1 Programming Languages . 26
3.5.2 Compilers . 28
3.5.3 Lexing . 28
3.5.4 Parsing . 29

IV Own Contribution 31

4 Dependency Simulation Plugin 33
4.1 User Interfaces . 33
4.2 The Parser . 36
4.3 The Visual Studio Plugin . 38
4.4 Analysis tool . 38

4.4.1 Data Structures . 39

vi

4.4.2 Refactoring Strategies . 40
4.5 Features of the plugin . 44

4.5.1 Visualizing a C# solution . 44
4.5.2 Miscallenous features . 44
4.5.3 Metrics . 45
4.5.4 Graph manipulation . 46
4.5.5 Simulating Refactorings . 47

4.6 Algorithms and data structures . 47
4.6.1 Data structures . 47
4.6.2 Algorithms . 49

4.7 Limitations . 49

5 Requirements 51
5.1 Functional Requirements . 51
5.2 Quality Requirements . 52

5.2.1 Correctness . 52
5.2.2 Usability . 54
5.2.3 Performance . 55

6 Software Architecture 57
6.1 Architectural Drivers . 57

6.1.1 Inexperience with .NET . 57
6.1.2 Integrating Third Party Libraries 57
6.1.3 Consistent Feedback . 58

6.2 Data-View consistency . 58
6.3 Model View Controller . 58
6.4 View Model . 58

6.4.1 Development View . 59
6.4.2 Logical View . 60
6.4.3 Process View . 69
6.4.4 Scenarios . 69

V Evaluation 73

7 Results 75
7.1 Case study #1: VidCoder . 75
7.2 Case Study #2: Powel . 77

8 Project Evaluation 79
8.1 Research Method . 79
8.2 Functional Requirements . 79

8.2.1 The Plugin . 80
8.2.2 User Interaction . 80

8.3 Quality Requirements . 81
8.3.1 Correctness . 82

vii

8.3.2 Usability . 82
8.3.3 Performance . 83

9 Testing and Validation 85
9.1 Accuracy Test . 85
9.2 Integration Test . 85

10 Discussion 89
10.1 Research Questions . 90

11 Conclusion 91

Bibliography 93

VI Appendices 97

A Installation Guide 99
A.1 Requirements . 99
A.2 Installation . 99

B User Guide 101
B.1 Loading a solution . 101
B.2 Graph Manipulation . 101
B.3 Simulate Refactoring . 102
B.4 Simulation Results . 102
B.5 Report and Instructions . 103

C Algorithms 105
C.1 Variable Identifiers . 105
C.2 Dependency Calculation . 106

viii

List of Tables

3.1 Dependency Cycle Tools . 27
3.2 Code Smell Tools . 27
3.3 Overview of Tools . 28

5.1 Functional requirements for the plugin 51
5.2 Functional requirements for the view . 52
5.3 C1: Parsing a solution . 53
5.4 C1: Graph Manipulation . 53
5.5 C2: Recalculating after Simulating Refactoring 53
5.6 U1: Learning To Use the Plugin . 54
5.7 P1: Loading a solution . 55

7.1 Fitness values from VidCoder before manual refactoring. 76
7.2 Fitness values from VidCoder after manual refactoring 76

9.1 Accuracy of Parser on Test Project . 86
9.2 Accuracy of Parser on Test Project . 86
9.3 Integration Test on NRefactory . 87

ix

x

List of Figures

2.1 An activity framework for design science research. Venable, (2006b)[31] 10

3.1 Example of duplicated code . 16
3.2 Example of feature envy . 18
3.3 Example of refused bequest . 20

4.1 The main screen of the plugin . 34
4.2 Two of the simulation views . 34
4.3 The candidate view for a system refactoring 35
4.4 The simulation result view . 35
4.5 The list view containing all the classes 36
4.6 The interface of class A . 40
4.7 Class A . 41
4.8 Static Method Inlining . 41
4.9 Static Readonly Field Inlining . 41
4.10 Singleton Registry, Oyetoyan et al. (2014)[26] 42
4.11 Usage of a singleton registry (continuation of the code found in figures 4.6

and 4.7). 42
4.12 Prototype Registry, Oyetoyan et al. (2014)[26] 43
4.13 Usage of a prototype registry. 43
4.14 Example of an overriden identifier . 48
4.15 An example of an implicitly typed variable. 50

6.1 Overview of the Architecture . 60
6.2 Central GraphModel classes . 61
6.3 Central classes in the model . 62
6.4 Central GUI classes . 63
6.5 Parser classes . 65
6.6 Controller classes . 66
6.7 Sequence diagram of loading a solution 67
6.8 Sequence diagram of simulating a system refactoring 68

xi

6.9 Activity diagram of simulating a refactoring 69
6.10 UC1: Loading a Solution . 70
6.11 UC2: Graph Manipulation . 71
6.12 UC3: Simulate Refactoring . 72

7.1 Two different ways of declaring a method inside an abstract class 76

C.1 The method that adds an identifier to the dictionary of identifiers 105
C.2 The method that calculates the dependencies 106
C.3 The method that finds the full class name for a referenced class inside

another class, and adds it to the list of dependencies. 107
C.4 Continuation of figure C.3 . 108
C.5 Continuation of figure C.4 . 109
C.6 A method that defines some reusable code. Is used within the method

FindDependency() . 110
C.7 A method that defines some reusable code which is used within the method

FindDependency() . 110

xii

Part I

Introduction

1

Chapter 1
Introduction

Refactoring is an important part of any software system. To ensure that the source code
meets certain quality requirements, refactoring is almost always necessary. The problem is
how to know In this section I will give a short introduction of my thesis. The study focuses
on detecting structural complexities in software programs, and the main contribution is a
plugin that can detect and perform refactoring simulations. In this thesis I will present
some of the theory behind the refactoring strategies that the plugin uses, and present my
results on some case studies where I have used this plugin. In the following subsections I
will give a short introduction of the motivation, the context and the structure of my thesis.

1.1 Motivation
When designing and implementing new software, developers should identify overall soft-
ware qualities that the architecture should be based on. These software qualities describe
general terms that every architecture should strive for, such as usability, modifiability and
maintainability. However, structural complexities work against these software qualities
and complicates the inclusion of such wanted behaviour. These flaws occur in almost ev-
ery software architecture, and they are not easily discernible. In light of these findings, a
tool that could discover and solve these unwanted architectural defects, should be useful
in ensuring the greatest possible software quality. Other less complex code smells like god
class, feature envy etc. already have quite a large pool of tools that can refactor and solve
these problems. However, the software community seems to lack tools that can help to
refactor architectural flaws, as I will discuss more detailed in section 3.4. I believe that
developers generally has a skeptical view on automated refactoring tools. Tools that auto-
matically refactor source code, could potentially make several changes in the source code.
There may be a good reason behind these refactoring decisions, but how can the developer
be certain that the changes are correct. Most developers are also developing in an already
established environment, making the potential influence of these changes enormous. They
have to trust that the changes made are completely sound, and most developers are not

3

ready to hand such responsibility to an automated tool.

1.2 Context
This thesis is a part of the Smart Grid Research initiative by IME, NTNU. The main goal
is defined as: Improved Management of Software Evolution for Smart Grid Applica-
tions. More specifically, I am collaborating closely with Tosin Daniel Oyetoyan, a PhD
student at IME, NTNU. He is looking into: Software Design Complexities and Impact
on the Reliability of Large Systems. I will mostly be concentrating on developing a
plugin that will discover these structural complexities inside a Visual Studio environment

The entire study has been conducted in collaboration with Powel AS. Powel AS is a
major software company for Smart Grid solutions in Norway and have their main office in
Trondheim. They have kindly let us perform simulations on one of their software systems,
and the results of the consequent refactorings, using this plugin, is included in this study.

1.3 Contribution
Our main contribution will be a plugin for C# to analyze dependency cycles and simulate
them in a graph. A developer should, with our tool, be able to analyze source code for
dependency cycles. After the tool have analyzed the source code the developer should
be presented with a visual representation of the structure, as a graph. After receiving
the optimal graph, the developer should be able to move edges, rename nodes etc. and
getting feedback regarding which classes are still in a dependency cycle. This tool should
serve, not as an automated tool for refactoring dependency cycles, but rather as a tool to
propose different refactoring suggestions which the developer freely can choose whether
to implement or not.

1.4 Architecture
Seeing that The main contribution of my master thesis is a plugin for Visual Studio, there-
fore, in Chapter 4, ”Architecture”, I provide an explanation about how the plugin works,
and what the architecture looks like. Here I include several different diagrams, to describe
the architecture and to explain how the plugin interacts with third party libraries.

1.5 Result
We have performed several simulations on both open source projects and software at
Powel. I have recorded fitness values for the projects before and after refactoring, to
compare the results. These results will be discussed in chapter 7

4

1.6 Structure
This thesis is divided into pour parts; Introduction, prestudy, contribution and evaluation.
The introduction is a short part with only one chapter dedicated to give a brief introduction
to the goal of this thesis and what it should contain. The prestudy contains my findings
on similar refactoring tools and some theory regarding refactoring. In the contribution I
will present the plugin, it’s software architecture and the results I have gotten from using
the plugin. Finally, in the evaluation, I will evaluate the architecture of the software and
discuss the results.

5

6

Part II

Research Design

7

Chapter 2
Research

2.1 Research Questions
The research questions should provide a general overview of what we want to find out and
what can be concluded about the research that have been conducted.

RQ1: Can we help developers in making architectural changes at the class
granularity level, by using this plugin?

The first thing that I want to achieve with this thesis is to make a tool that can help develop-
ers in making refactoring choices to improve the overall architecture of software. The tool
should hopefully be easy to use, as the requirements in Chapter 5 reflects, and it should
propose reasonable candidates to refactor.

RQ2: How much improvement can the proposed refactorings provide?

Another important question that I will research in my thesis, revolves around the quali-
tative improvement of software when using this tool. To what extent can a refactoring,
that is proposed by this tool, affect the overall structure of software? And how much ef-
fort is needed to perform these refactorings? These are some of the aspects that I will
investigate when analyzing the results from the plugin.

9

2.2 Research Method
In this chapter I will present the research method that I have used while working on my
thesis.

2.2.1 Design Science
While working with my thesis I have used Design science as my research methodology.
Design science is mostly used in information technology, and it specifies guidlines for eval-
uation and iteration for research projects. Design science focuses on an artifact throughout
the development, that the research should revolve around. This artifact could be an al-
gorithm, a solution to a specific problem or, as in this case, a tool. There exists several
different frameworks for design science, but the overall structure is mostly the same. In
my thesis I have used the framework designed by John Venable[31].

Figure 2.1: An activity framework for design science research. Venable, (2006b)[31]

In figure 2.1 you can see a diagram that shows the iterative process of design science.
There are four different parts of this process, which I will describe according to the con-
text of my thesis.

Problem Diagnosis: The context of this tool is the refactoring of structural complexi-
ties in software. In this regard, it is important to analyze why this is important and why it
happens. This is covered in some extent, in state of the art, in chapter 3, where I present
the problem and give some motivation as to why we should perform these types of refac-

10

torings. Furthermore, the problems are also mentioned in the discussion part of my thesis,
in chapter 10.

Theory Building: This part of the process is where the problem that should be solved
are thoroughly examined, and discussed. The theory of this thesis have been presented in
the state of the art, and the solution to these problems are presented in chapter 4. Generally
speaking, the main challenges in my thesis is parsing a solution and the underlying mod-
els for simulation. This, however, is only briefly discussed as it’s not directly part of my
thesis, but rather a part of the analysis tool developed by Tosin Daniel Oyetoyan, which is
described in his paper[26].

Technology Invention: In this context the invention artifact is the plugin in itself. I have
created a new tool for visualizing class specific dependencies and simulating refactoring
on an architectural scale. The technological invention should be described and compared
to existing tools. In state of the art I present some existing tools and compare them to the
plugin I am developing.

Technology Evaluation: To verify the validity of the technological invention, it’s im-
portant to evaluate it. When working with my thesis I have tested the tool in an industrial
setting, at Powel and with an open source application. I have also presented the plugin and
the results that I have gotten, at Powel. An interview with the developer that we worked
closely with at Powel, has also been conducted.

11

12

Part III

Prestudy

13

Chapter 3
State of the Art

There exists many software tools today that strive for better refactoring methods and al-
gorithms. In this section I write about some of the tools that I have found that has similar
goals or include similar features that this plugin also will include. This is important for
ascertaining whether or not this plugin is something that could contribute to the field of
software refactoring or if it’s redundant. First, I will shortly introduce some of the more
common code smells, what they are, how they affect the software and how we can refactor
them. Then I will go into more detail on the activity of refactoring, what methods that are
most common and they affect the structure of the software. Then I will summarize my
findings on some refactoring tools, what features they include and how they compare to
the plugin that I am creating.

3.1 Code Smell
This work concerns restructuring of software program dependencies at the class level.
It thus complements other studies and tools for removing code smells in software pro-
grams. However, its focus is refactoring architectural anti-pattern such as dependency
cycles among software classes. Since this tool is only simulates the refactoring of com-
ponents in a solution, the refactoring must be manually performed by developers. This
plugin will also only report refactoring strategies that concerns the overall structure of the
source code. That does not mean however, that these structural complexities, which this
plugin tries to solve, are the only code flaws that has any impact on the software quality.
Developers should also take a note when they encounter code smells.

Code smells is an indication of deeper problems in the software. Most code smells
have certain characteristics, which why some call them anti-patterns. These include prob-
lems like God class, Feature envy, Long method etc. Most software systems, especially
systems that are large and/or have many contributors, usually consists of many different
code smells. These code smells can of course range from being insignificant, like bad
comments, or could be very significant, like feature envy. Most of these smells are trivial

15

to refactor, like naming conventions, and tools for refactoring these exist in most IDEs.
Other non-trivial code smells are more tedious to refactor, like duplicated code. However,
there already exists several tools for refactoring all these code smells, and compared to the
structural complexities that this plugin tries to solve, these code smells are relatively easy
to refactor. In the several subsections following, I will describe some of the most well
known code smells, why we should avoid them and how we can get rid of them. When
describing how to refactor these code smells I will mention certain refactoring techniques,
which will be described in section 3.3, Refactoring.

3.1.1 Duplicated Code
If there are a large portions of code which are very similar, we have duplicated code. This
is a very common code smell and especially prevalent for inexperienced developers who
are not that concerned with the design. There are several apparent flaws with this. First
of all, reusability is something every developer should strive after. So the fact that sim-
ilar code exists several places in the code clearly works against the notion of reusability.
Performance is another quality attribute that suffers from duplicated code. Imagine having
some subclasses of a parser class. These parser subclasses all contains their own parse
method. The ImageParser class parses an image, the PersonParser parses an object of type
Person etc. Now, when using these methods, every method must be put into the memory.
Even though these different parse methods will clearly contain similar code, the compiler
won’t understand this, and the memory will contain duplicate code. If these methods are
accessed at certain times we could also get a scenario where one method is removed from
memory to make space for the other, which clearly should be avoided. As this affects both
memory usage and processing speed it’s easy to justify getting rid of duplicate code.

public void SomeMethod(ArrayList l1, ArrayList l2)
{

l1.Sort();
foreach (object o in l1) { PerformActionOnObject(o); }
l2.Sort;
foreach (object o in l2) { PerformActionOnObject(o); }

}
public void RefactoredMethod(params ArrayList[] lists)
{

foreach (ArrayList l in lists) { PerformActionOnList(l); }
}
public void PerformActionOnList(ArrayList l)
{

l.Sort();
foreach (object o in l) { PerformActionOnObject(o); }

}

Figure 3.1: Example of duplicated code

16

There are several ways to get rid of duplicated code, and it depends on where the du-
plicated code is placed relative to each other. In figure 3.1, you can see perhaps the easiest
example, where the duplicated code is in the same method. The method has been refac-
tored into two methods. In the first we loop through the lists and in the other we loop
the objects in a list. Notice also that this method has been further generalized by the use
of the params keyword, which now enables this method to take an arbitrary amount of
ArrayLists as parameters when calling the method. Another example of duplicated code
could be when the duplicated code is placed in two different methods within the same
class we could simply extract the two methods into three methods; one which includes
all the similarities and one for each of the original two methods which would contain the
differences for each of them. Hopefully the method which contains the similarities will
be bigger than the other two methods. The observant reader will note that this actually
introduces one extra method; where we originally had two, we now have three. However,
the overall number of code lines should be decreased(it definitely is if you disregard the
method definition of the newly introduced method). The next scenario is when the dupli-
cated code is in two different sibling classes. In the superclass of these sibling classes you
can extract the similarities from the two methods and create a new method. If it’s necessary
you could also pull some of the fields from these subclasses up to the superclass.

3.1.2 Feature Envy
One example of code smell is Feature envy. Feature envy is when a component uses
methods or functions from many other components. Which is why we call it Feature
”envy”, it’s envious of the other components because they have functionality that it need.
This problem is naturally more prevalent with inexperienced programmers and is a very
common error when designing GUI components, which uses many different components
and calls many different methods on these components. A solution to this problem can be
to move the method, since it clearly doesn’t want to be where it currently is.

The refactoring method that we call ”Move Method” is applicable here. What it does
is simply that; it moves the method from one place to another. As you can see in figure
3.2, the class GUIClass is ”envious” of the class GUIObject because it calls three different
methods on an object of this type. The solution here is to take all the methods that is
called in GUIClass on GUIObject and move them to the GUIObject class. But what if the
method contains only a small part that is envious of other components? Should we still
move the whole method? The answer could be that we should just move a subsection of
the method to another, more suitable, place. This refactoring procedure is called ”Extract
Method”, and extracts a certain part of the method and moves it elsewhere. A problem
that is prevalent in this circumstances is where we should move the whole, or part of the
method. In most cases, these components uses methods from several other components.
So, which component should be the new home of this method? A solution to this would
simply be to examine all the components, and move the method to the component that
is called upon most times in the method. Another solution could be to perform ”Extract
Method” several times until all sections of the method has been moved to the software
component responsible for the methods that is called from the method.

17

class GUIClass{
private GUIObject guiObject;
private void InitializeComponent(){

guiObject.Enabled = true;
guiObject.SetTitle("Title");
guiObject.Parent = this;

}
private void RefactoredInitializeComponent(){

guiObject.InitializeComponent(this, "Title");
}

}
class GUIObject{

public void InitializeComponent(GUIClass parent, string title){
this.Enabled = true;
this.Title = title;
this.Parent = parent;

}
}

Figure 3.2: Example of feature envy

3.1.3 God Class
A God Class, or Large Class which it’s also called, describes a class, or software com-
ponent that has too much responsibility. These classes often include a host of member
fields from other classes. All these member fields are often uncritically placed in one
class, where it perhaps it not used as much as to justify it being placed there. A solution
to this problem would be to delegate different member fields to several sub classes of the
original god class. These sub classes should include the member fields of the god class
that have something in common to increase the cohesion of these sub classes. If necessary,
the original god class, now stripped of all it’s functionality, could act as a controller or
delegator class which could include a member field of all the sub classes. Other classes
will then only need one reference to the delegator class instead of several references to
the sub classes. According to a study by Olbrich et. al.(2010)[24] the God Class is ac-
tually not especially harmful as long as the size is not of extreme proportions. As other
code smells, one would expect a god class to include more defects and a higher change
frequency. However, the paper concludes that, as long as it’s within a reasonable size for
a god class, the results are the exact opposite.

3.1.4 Lazy Class
Contrary to the previously discussed God Class, a Lazy Class is a class that does almost
nothing. To define how much responsibility or code a class should include to not be la-
beled a lazy class is not straightforward. There are several different definitions and some

18

developers doesn’t regard a lazy class as a code smell. A Data Class for instance, which
is a class that only includes member fields and getters and setters for these fields, could
easily be described as a lazy class in certain scenarios. However, these type of classes can
also be just as viable as any other type of class in another scenario. Even though there
exists several different definitions of a lazy class, we could still be able to identify certain
qualities, or rather lack of qualities, that could describe a lazy class. For example if a class
only contains a single member field and a getter and setter method, we could ask ourselves:
Do we really need a class to contain a single field? The answer, in most cases, should be
no.

3.1.5 Long Method
The next code smell represent a method that consists of too much functionality, and is
simply too long. A long method is characterized that it contains functionality that should
be divided into many smaller methods. Negative impacts of a Long Method could be per-
formance. If a developer wants to use just one out of the many features that the method
offers, time is spent on performing unwanted operations. Another concern is reuseabilty.
The long method may contain functionality that we want to use elsewhere. This can of
course be done, but we have to import the component first into the other components who
wants to use the method. However, the long method contains other unwanted functionality,
which perhaps shouldn’t even be in the given software component. So, every other compo-
nent that wants to use the long method may have to import unwanted functionality which
could be avoided. The question is then; when does a method become too long? This is
not easily discernible, but according to Fowler et. al.(1999)[10]; ”The key is the semantic
distance between the method name and the method body”. If the method name says that a
method is a simple get or set method, then that method should not contain several lines of
code calculating something else just because that functionality is also needed. This should
also be a reminder to software developers out there that naming a method properly is just
as important as the functionality that the method contains.

3.1.6 Contrived Complexity
Sometimes, people choose overly complicated solutions for a specific problem. This is
also true for software developers. By designing a too complicated architecture, there could
easily be more drawbacks than advantages. Some developers, for instance, tend to em-
phasize too much on aesthetically pleasing design that could compromise performance,
usability or other attributes. Designing the architecture overly complicated, could also
have other negative impacts. The reuseablility could be worsened, as only the designer
would know how to properly reuse the code. To rely on a few experts, in deciphering the
code, is not a good idea. People are, as any other resource in a business environment,
limited. People change jobs, get ill, retires or dies. Imagine a software developer, that
has designed an overly complex architecture for a part of a program that he is responsible
of. If another developer had to get to know this architecture it would require several days.
Then, the developer responsible for the architecture suddenly dies. Apart from the appar-
ent psychological trauma that the staff of the company will endure, the company will also

19

be confronted with unnecessary work costs. By having ignored this threat of contrived
complexity, the company finds themselves in a lose-lose situation.

3.1.7 Refused Bequest

Refused Bequest is when a class inherits from another class even though it doesn’t need
most of the methods that it inherits. This is typically a sign of bad design as a developer,
instead, the developer should probably introduce a sibling class which it can delegate some
of the methods from the superclass to. By doing this, the methods from the superclass is
extracted and the subclass gets rid of this unwanted functionality.

class ChildClass : SomeInterface{
public void MethodA(){ }
public void MethodB(){ }
public void MethodC(){

Console.Write("This method is implemented");
}
public void MethodD(){ }

Figure 3.3: Example of refused bequest

In figure 3.3 the class ChildClass implements the interface SomeInterface which con-
tains the definition of four different methods. However, the only method that actually is
implemented inside ChildClass is MethodC(). The three other methods are not imple-
mented. In this example the ChildClass should probably not implement SomeInterface,
but another interface that defines only the single method that it actually needs.

3.2 Dependency Cycles

Dependency cycles occur when you have several different classes that depends on each
other in a circular manner. This problem, unlike most code smells, are not easily solved.
In some cases all that is needed is to introduce an abstraction or a generalized class (inter-
face/abstract class or super class) between the two components involved in the cycle, other
times you may have to rearrange the entire architecture.

Dependency cycles between classes or packages can be a sign of bad design decisions,
and should be analyzed. In order to properly identify where our main contribution to the
study of refactoring code smells will be, we will have to look at previous literature. I have
looked into several existing tools that detects dependency cycles. As of yet, I have not
been able to find a tool that also can automatically refactor these cycles.

20

3.2.1 Detecting Dependency Cycles
In order to detect dependency cycles we must analyze the software components. Obvious
dependencies like hierarchical dependencies, inheritance and implementations are easy to
analyze. By using reflection we can analyze assemblies and gather metadata about the
binaries. Looking at the metadata that says anything about their base class and interface
types will reveal what they hierarchically depend on. If there are several layers of inheri-
tance we just run a simple recursive method. Most software components also doesn’t have
many layers, which makes the complexity of the recursive method manageable. However,
Classes can depend on each other in many other ways as well. A class will also depend on
all the different member variable types that it contains. This is also information which is
easily acquired through reflection. A third possible way that a class can depend on others
is through methods. Local variables in methods and functions. If the references are all
stated in the method head, either as one of the parameter types or the return type, we can
identify them via reflection. However if there exists references to other types within the
method body, that are only used locally in this method, then we would not be able to iden-
tify them by reflection. Reflection can not reveal the contents of a method, just the method
head. Because of this, I am using a parser to parse the source code, which is explained in
section 3.5.

3.2.2 Breaking Dependency Cycles
Breaking dependency cycles can often be tricky. To break a dependency between two
components you have to remove the corresponding fields from one of the components.
These fields can either be member fields, method parameters or the interface the compo-
nent implements. The tricky part is then how to remove these fields or parameters while
still preserving the behaviour of the component. One solution would be to introduce an
intermediate component, that can serve as a controller class. Another solution, and a ques-
tion that developers should ask themselves often, is whether fields and methods are placed
in the correct component. A member field, and its corresponding usage in a component,
could be moved to another component and the dependency cycles could be broken this
way. It is a win-win situation, the method and fields are placed in a more suited com-
ponent and the dependency cycle is broken. However, more often than not, this is not
the case. In order to fully break a cycle several fields and methods would be required to
move, and some components may have to be deleted altogether. When i researched other
existing tools regarding dependency cycles, I found none that could automatically refactor
these cycles. This is not a coincidence. Not only is it difficult to come up with an algorithm
that can break a cycle, it is also very likely that it will lead to errors or unwanted changes
in the architecture.

Lets look at an example of a dependency cycle. Say we have four classes, A, B, C and
D. B extends A so it depends on A. C has a private variable a, of type A, so C also depends
on A. D on the other hand extends C, and thereby depends on C. If we now say that class
A has a variable of type D, then A depends on D. Now, since D depends on C, which in
turn depends on A, which again has a dependency to D, then we have a cycle. A → D →
C → A. There is of course many ways to break this small cycle. We could introduce an

21

intermediate class between A and D which both depends on, which does not depend on
neither A or D.

3.3 Refactoring
As discussed in earlier sections, refactoring is an essential tool in software programming.
Basically, refactoring is the process of changing the structure of software without chang-
ing the functionality. Incentives for refactoring can be anything from reusability to perfor-
mance, it depends on the structure that should be refactored.

How then, can we solve these code smells? By refactoring of course! There have
been a lot of research into refactoring and several books have been written about refactor-
ing. A popular book which I also have consulted when writing this paper is Refactoring:
Improving the Design of Existing Code, by Fowler et. al.[10]. Thanks to similar books
and research, we now have a handful of refactoring tools that can help us in solving these
software problems. In the next subsections I will be discussing the most common refac-
toring methods and how we can apply them. The last section will consist of benefits and
challenges when refactoring.

3.3.1 Naming Conventions
The most basic and one of most important refactoring techniques is simply the matter of
giving methods, variables etc. a correct name. Easily forgotten and neglected by soft-
ware developers everywhere, this is extremely important when writing software in large
software systems. A good practice is to read through each method when it’s finished and
verify that it actually does what it’s method name implies. Additionally, developers should
remember that a method name should describe what the method does, not how it does it.
With a very describing name for a method you could also eliminate the need to comment
the method. However, if the method name doesn’t follow these rules it should be renamed.
If there already exists a method with a very similar name, then you most likely have a case
of duplicated code, which I have explained in a previous section. On the other hand, if the
method can’t be given a sufficiently describing name, then it probably is too long.

3.3.2 Extract Method
A very common refactoring technique is to extract a method. As stated in the previous
sections where I described several code smells, this technique could be used for many
different things. Most obvious is the case of a long method. A long method, most likely,
has functionality that can, and should be, divided into smaller methods. Why should we do
this? First of all, a long method could be very difficult to understand for other developers.
Two important terms in software architecture is coupling and cohesion. Every software
developer should know the sentence: ”Reduce coupling, increase cohesion” by heart.

22

3.3.3 Move Method
Unlike extract method, move method, as the name implies, moves the method in its en-
tirety, rather than extracting parts of it. This would be needed when a method is clearly
placed in the wrong class, when classes are highly coupled or when confronted with a god
class. A more interesting perspective is when to move a method rather than extracting it
and vice versa. The simple answer is to look at the methods references. If the method
only uses one external reference, then it would presumably be better to just move it to the
referenced class. On the other hand, if the method references several other methods, you
could choose to preserve the main functionality in a central place, like a controller class,
and extract the referenced parts to their respective classes.

3.3.4 Generalize Type
The idea behind generalizing types, is to draw on the benefits of object oriented code.
When creating a new reference or adding a class to the list of parameters for a method, you
should consider generalizing the type. BY generalizing we can ensure better reusability
and most probably you will have to write less code by doing so.

3.3.5 Benefits and Challenges Regarding Refactoring
Refactoring, as previously stated, is defined as changing the structure while preserving the
semantics of a given software system. Several studies have also shown that refactoring de-
creases the total number of defects. However, according to Zimmermann et. al.(2012)[17]
this is not necessarily a view shared by everyone. In one survey they found that: ”partic-
ipants perceived that refactoring involves substantial cost and risks...”. Obviously, there
are also challenges when refactoring. A study by Bavota et al.(2012)[3] shows that while
refactorings in general are unlikely to cause bugs(15%), certain refactoring techniques are
very likely to induce bugs. Specifically, the Pull up Method and Extract Subclass refactor-
ing techniques had a likelihood of around 40% of inducing bugs in the source code.

Another study, by Emerson et. al.(2008)[22], discovered that nearly all their test sub-
jects experienced errors when given the task of extracting certain methods in a select few
open source projects. This clearly indicates, as their study also showed, that using refac-
toring tools is not a trivial task. They found that 9 out of 11 test subjects, experienced
at least one error while extracting code from selected open source projects. The most
prevalent error messages the developers ran into was regarding syntactical selection. They
then developed three different tools to help developers with refactoring decisions. One of
the tools, which is called Refactoring Annotations, visualizes extract method operations,
by assigning each variable a color and highlighting occurrences. This tool improved the
diagnosis of precondition violations with about 85 percent. Box view and Selection As-
sist, which are the two other tools, reduced code selection errors with 95 and 84 percent
respectively. This study shows that with a few simple improvements to refactoring tech-
niques, errors are much less likely to occur, which would increase productivity and user
satisfaction.

23

3.4 Existing Tools
In the following subsections I will present my findings on existing tools, especially regard-
ing structural complexities, like dependency cycles. I have read through the documentation
of every tool and compiled a list of features for every tool. At the end of this section, I will
present a table summarizing their functionalities, supported programming language etc.
This section will serve as a justification for creating a tool instead of using a preexisting
tool. What we are looking for in these tools are in general terms: A visual representation
of dependencies. The tool should show dependencies on both file- and class-level. The
tool should be able to simulate the refactoring of structural complexities. This prestudy
was performed between august 2013 and November 2013, so the tools could have been
updated in the mean time, which of course means that the results in this section could be
outdated.

3.4.1 JooJ
A plugin for eclipse that gives real-time feedback concerning design choices[20]. The
feedbacks are calculated by examining dependencies between packages. JooJ offers Real-
time analyzing of source code and gives you immediate feedback if something is amiss.
JooJ also supports visual representation by dependency graphs. This enables JooJ to dis-
cover cyclic dependencies and report this to the user. However, JooJ does not support
any additional refactoring choices and does not concern itself with other strategies such as
static field inlining or singleton registers.

3.4.2 STAN
STAN is a program for Java developers to analyze the structure of their source code[13].
STAN can discover several code smells, dependency cycles in particular. After STAN
has analyzed the source code, it can perform queries on one of the many metrics that it
calculates. Metrics like simple counting of classes, lines, etc. to more advanced metrics
like average component dependency and cyclomatic complexity. STAN can also generate
a report based on its findings. STAN, however, does not provide refactoring simulations
based on the structure analysis.

3.4.3 JDepend
JDepend traverses java class files and directories to find dependencies[7]. JDepend is free
to use but analyzes source code in batch-style, which is time consuming and inconvenient.
There also does not exist a plugin or add-on to any IDE which would have been use-
ful(Jdepend4Eclipse exists, but is not developed by the same people). JDepend does not
feature any graphical representation of its findings, like dependency graphs or matrices.
When analyzing, JDepend stops once any cycle is found, so several other cycles could be
present, but JDepend doesn’t report them before you have fixed the first one and run the

24

tool one more time. Additionally, JDepend does not feature any kind of refactoring or
refactoring simulations based on the source code.

3.4.4 NDepend
NDepend is a dependency tool for developers using .NET[29]. Similar software for java
and C++ exists; javadepend and cppdepend respectively. NDepend features code-query
which gives the user a more powerful and customized tool. NDepend also supports several
different ways to graphically represent the code architecture.There is also no specialized
tool to detect dependency cycles, you will have to do this via code query. Code query
however, will demand greater knowledge from the user (commands, syntax), and NDepend
costs 400 USD for one license.

3.4.5 JDeodorant
JDeodorant is a plugin for Eclipse[30]. It analyzes Java source code to find many differ-
ent types of code smells. JDeodorant does not specialize in finding dependency cycles.
JDeodorant can discover and resolve the following code smells: Feature envy, type check-
ing, long methods and god class. JDeodorant offers IDE implementation, with tooltips and
a user-friendly interface. JDeodorant also supports refactoring of similar code(clones). On
the other hand, JDeodorant can’t discover dependency cycles, so it is only a tool that can
fix common code smells.

3.4.6 Classycle
Classycle is a tool that analyses java .class files to find dependency cycles[8]. Based
on it’s findings, it will generate a report with a list of the dependencies and metrics in
XML format. However, Classycle does not support any kind of graphical representation
of cycles.

3.4.7 Nitriq
Nitriq is a code review tool for .NET that analyzes assembly code[14]. Through cus-
tomized code query almost any sort of code smell can be detected. As with, NDepend,
code query gives the user a more powerful and customized tool. However, it also demands
greater knowledge from the user in terms of commands and syntax. As opposed to NDe-
pend though, Nitriq is free to use. Nitriq does not support any automatic refactorisation
of code smell, it just reports them. There is also no specialized tool to detect dependency
cycles, you will have to do this via code query.

3.4.8 Structure101
Structure101 is a powerful tool to visualize and resolve problems regarding the architec-
ture of software[4]. A software architect can design the software with the Architecture

25

Development Environment(ADE). The developers can then view the architecture and ac-
tion lists from the ADE via a plugin to their IDE. Structure101 supports several different
programming languages, like Java, .NET, and C#. It also supports IDE implementation
with many of the most popular IDEs for the supported languages. Structure101 can only
resolve certain code smells and is not free to use.

3.4.9 CodePro AnalytiX
A tool developed by Google for Java developers compatible with Eclipse[15]. It is sepa-
rated into several different tools, so it includes many features, such as dependency analysis.
CodePro Analytix can discover and refactor several code smells, and bad code convention
like naming, empty catch clause. It supports visual representation by dependency graphs.
IDE-implementation with Eclipse makes it easy to use. Generates customized reports,
with a host of different metrics to analyze your code. CodePro Analytix also includes
a tool that can automatically create JUnit test cases. As of now, CodePro Analytix only
works together with Eclipse. It does not support visual representation by dependency ma-
trices, only graphs. It contains no Real-Time analyzing, and you have to manually select
the packages you want to analyze.

3.4.10 Summary
Amongst all the tools that I have studied many can detect structural complexities like
dependence cycles. However, none of these tools, as you can see in table 3.3, can refactor
structural defects. Most of these tools only contains simple refactoring possibilities like
move method or extract interface, and none of them can simulate refactorings based on the
architecture of the software that it analyses. As of now, there does not seem to exists any
tool that can offer the same refactoring functionality as the plugin which I have developed.

3.5 Lexing, Parsing and Compilers
This tool analyses a solution written in C# and generates a dependency graph from all the
different classes in the solution. But how should we analyze the solution? Trying to create
a new approach to such a well known, and described problem is redundant, especially
considering all third party libraries that exists which are easily implemented. These well
known tools are all based on the same principle; compiling. Now, there are certain phases
of the compiler that are unnecessary for this tool, and hence are outside the scope of this
thesis. However, there are two important phases of the compiler that I will describe; lexing
and parsing. In this section I have consulted the ”dragon book” by Aho et al.(2007)[1] for
the theory which I describe.

3.5.1 Programming Languages
In order to understand the process of how a computer compiles a program, we should
have some understanding of what a programming language is and how it is defined. A

26

Table 3.1: Dependency Cycle Tools

No. Tool Goal Functionalities Granularity Implementation Language
Method Class Package

1 JooJ Prevent cycle,
Break cycle

Detects Depen-
dency cycle

x x Plugin and Stan-
dalone

Java

2 JDepend Find de-
pendency
cycles

1.Find depen-
dency cycles

x Plugin only Java

3 NDepend Find depen-
dency cycles
and offer
refactoring
opportunities
to resolve
them.

1.Find depen-
dency cycles
2.Code query
finds the most
suited code to
refactor

x x Plugin only .NET

4 Classycle Find de-
pendency
cycles.

1.Find depen-
dency cycles
2.Generate
report

x x Plugin and Stan-
dalone

Java

5 Nitriq Code review,
refactoring
method name,
attributes, etc.

1.Code query
2.Visualization
by treemaps.
3.Code statistics

x x x Standalone only .NET

Table 3.2: Code Smell Tools

No. Tool Goal Functionalities Granularity Implementation Language
Method Class Package

1 STAN Structure
analysis and
refactoring of
several code
smells.

1.Structure
analysis to
discover de-
sign flaws
2.Generate
metrics to rate
the problems.
3.Generate
report

x x x Plugin and Stan-
dalone

Java

2 Structure
101

Improve soft-
ware architec-
ture.

1.Build archi-
tecture 2.Inform
of existing or
potential flaws
3.Generate
action lists

x x x Plugin and Stan-
dalone

Several

3 CodePro
AnalytiX

Improve soft-
ware quality
in general.

1.Code analysis
2.List

x x Plugin only Java

programming language is a formal language. Similarly to a natural language, which you
are reading right now, a formal language consists of tokens and grammars which defines
the structure or the syntax of the language. These tokens can be anything that is defined by
the grammar, a number, a class, an operator, etc. The grammar then consists of rules that
defines all the different sequences the tokens can appear in, to represent a syntactically
correct sentence in the language. Despite these similarities there are striking differences
between a natural language and a formal language. A natural language is defined as a
language that is not created for a particular purpose, as opposed to a formal language,

27

Table 3.3: Overview of Tools

Functionalities Tool
Jooj JDeodorant STAN JDepend NDepend Classycle Nitriq Structure

101
CodePro
Analytix

Visualization x x x x x x
Reporting x x x
Metrics x x x x x x
Detect Depen-
dency cycle

x x x x x x x

Refactor cycle
Detect other
smells

x x x x x x

Refactor smells x x x x
Code query x x
IDE implemen-
tation

x x x x x

Real-time ana-
lyzing of code

x x x x

which is a constructed language. Because of this ad hoc behaviour of a natural language,
certain unwanted properties could appear. For instance, in English, and almost every other
natural language, we have ambiguity. When two completely similar words, or sentences,
can mean something different. The meaning of the word or sentence is then derived from
the context, the semantic, and not the syntax. In a formal language, a sentence, or a
word(token), must have only one possible meaning. When dealing with a programming
language, it is easy to see why this is an important feature. If every word or sentence
could have several different meanings, then the process of compiling a program would
become much more difficult and would require a lot more processing resources. A formal
language, on the other hand is easy to analyze because it lacks ambiguity. According
to Noah Chomsky’s hierarchy of grammars, a programming language can be placed into
Type 2 languages or context-free languages, as described by Jiang et al.(2010)[16]. A
context-free language is defined as when one sentence, can only have one meaning.

3.5.2 Compilers
When analysing source code we need some way to identify the code and turn it into mean-
ingful data that the computer can understand and manipulate. In order to do this, each
programming lanugage needs a compiler. A compiler will convert the code written by
developers into zeroz and ones that will represent the program. A compiler consists of
several different phases. Among those are lexing and parsing.

3.5.3 Lexing
The first step in the compiling process is lexing. Basically what a lexer does is analyse all
the characters written in a source file, and turn them into tokens. Hence why lexers also
are called tokenizers. However, a lexer should have some additional features as well which
I will discuss later in this section. A tokenizer takes a stream, for instance a text file, and
converts it into tokens. The tokenizer does this by following a set of rules for breaking

28

up tokens. A normal rule would be to break when encountering a space, tab or new line.
Given this example:

int number = 9989;

This example would be broken up into four different tokens: 'string', 's', '=' and '9989;'
After the tokenizer has split the stream up into many different tokens, the lexer analyses
them and creates lexemes. A lexem is an identification of the type of the token that we
found and it’s value. So the lexer can take the token '9989;' and identify it as two different
lexemes; a number with value of 9989 and an operator identified as a semicolon.

3.5.4 Parsing
Where the lexer can identify different tokens and their values, the parser takes it one step
further and analyses the syntactical meaning of these tokens. The syntax of a sentence is
defined by the structure of the grammar. If a set of tokens that are parsed does not comply
with any of the rules in the grammar, then the sentence is syntactically incorrect. The
parser takes the lexemes from the lexer as input and creates an abstract syntax tree. Based
on a grammar, the parser looks at all the different lexemes, and more importantly, in which
order they come in, to construct the abstract syntax tree.

29

30

Part IV

Own Contribution

31

Chapter 4
Dependency Simulation Plugin

This plugin can be divided into four parts; The plugin itself, the parser, the controller
and the model. The first part is the Visual Studio plugin. This part is responsible for
implementing the tool into the visual studio environment.

The parser, which takes all the source files in the solution that it is analyzing and
parses this into an abstract syntax tree. The tool then recursively finds the nodes of interest
concerning dependencies and builds up a graph from this data.

The controller takes care of everything that has to do with data storage, common data
structures used within the program and logic concerning different functionality. The model
holds all the important data which will be used when visualizing the graph and simulating
the dependency refactoring.

4.1 User Interfaces
In this section I will present some of the graphical user interface that is presented to the
user, and explain the general view of the plugin.

The main screen of the plugin can be seen in figure 4.1. As you can see, there are
several menu items on the top of the tool window, which holds the plugin. The ”Click Ac-
tion” drop down menu is used when manipulating the graph, and will be further discussed
in section 4.5.4. The next item, ”Load Solution” starts the process of parsing through the
solution, calculating the dependencies and generating the graph. The first thing that will be
shown is loading bar that shows the progress of the plugin. When the loading bar reaches
it end, the nodes in the graph will be shown, and the graph will be relayout. The layout of
the graph is set according to a predefined algorithm which places the nodes according to
which components they are connected to. The two next items ”Undo” and ”Redo” are also
connected to graph manipulation, basically they undo and redo a manipulation that has
been performed on the graph. ”Generate Mapfiles” generates thirteen different text files
in the solution folder under a subfolder called ”SimulationData”. These text files contains

33

the different maps that this plugin uses in order to simulate a refactoring. These maps are
further discussed in section 4.4.1.

Figure 4.1: The main screen of the plugin

The two figures in figure 4.2b shows two different parts of the simulation process.
Figure 4.2a shows the window that will be presented to the user right after clicking on
”Simulate Refactoring”. This view contains several parameters that must be set, for the
simulation to work. The simulation are explained more thoroughly in section 4.5.5. After
inputing all the needed the parameters a new window will appear. This window is shown
in figure 4.2b. This view basically lets the user choose what type of simulation that should
be performed.

(a) The parameter input view (b) The simulation selection view

Figure 4.2: Two of the simulation views

After selecting a simulation the user will be presented with a list of candidates to
choose from. In figure 4.3, you can see the candidates of a system refactoring. This
view presents the user a list of classes that should be refactored. In this case, with a
system refactoring, the user only needs to choose the number of refactorings that should
be performed. With the two other types of refactoring the user must choose which classes
to refactor.

When a simulation has been performed the window shown in figure 4.4 will appear.

34

Figure 4.3: The candidate view for a system refactoring

This view includes several metrics that say something about the general quality of the
solution being refactored, before and after the simulation. These metrics are explained in
section 4.5.5.

Figure 4.4: The simulation result view

Another important part of the plugin is the list view shown on the right side of the main
screen. This list contains every class in the solution and several metrics are displayed for
each of them. The metrics are explained in section 4.5.3. A view of the list is shown in
figure 4.5.

35

Figure 4.5: The list view containing all the classes

4.2 The Parser
This tool uses a parser in order to find the actual dependencies within a C# solution. More
specifically, this tool uses a third party library called NRefactory to parse the source files.
NRefactory can parse C# solutions, and generates an abstract syntax tree with pattern
matching support.

A parser has, of course, some limitations. A parser will not necessarily correctly iden-
tify class names, namespaces, return types etc. inside a class. A compiler on the other hand
would know this, as the compiler must build the program and load symbols and classes
where it is needed. A compiler does indeed include a Parser among other components.
Where the compiler contains a lexer, a parser, semantic analysis, an optimizer and a code
generator, the parser only contains the lexer in addition to the parser itself.

36

using System.Collections.Generic;

public class Namespace
{

private List<Class> _classes;
}

Given the scenario above, where does the List<T> class comes from? We know that it
comes from the namespace System.Collections.Generic as stated in the using statements.
A compiler would also gather as much. But a parser would have no idea where this symbol
comes from. It would simply state that it found a variable declaration statement where the
identifier is ”List” with some type arguments. So in order to fully identify all symbols
when using a parser, we must identify what scope we are in. A .cs file may have hundreds
of using statements, which in turn can include hundreds of symbols. A compiler resolves
this by using a symbol table[Reference]. A symbol table contains a record for each iden-
tifier what type it is and other attribute fields. In my tool I have solved this by creating
my own symbol table. When I find a new class I store it’s full name, the namespace and
the source file it was found in. Then when I find a reference to this class I first simply try
to find it based on the identifier given by the parser. In most cases, however, this is not
sufficient. Consider the Following scenario with two different source files:

common.cs:

namespace Common.Data
{

public class Class
{
}

}

namespace.cs:

using System.Collections.Generic;
using Common.Data;

public class Namespace
{

private List<Class> _classes;
}

When parsing namespace.cs we find the symbol ”Class”. The compiler knows that
this symbol is loaded from the namespace Common.Data, but the Parser can’t know this.
Therefore we have to manually find it ourselves. Because this tool parses C# we are faced
with an additional challenge in the form of the logical structuring that is used in C#. In C#
namespaces are used in a logical way as opposed to Java and it’s physical structuring based
on packages. A namespace in C# can exist in several class files regardless of it’s location.
My solution to this problem is to create data structures to hold information about each
class file, it’s using statements, the namespaces and the classes declared in the class file.

37

We need this information because there are several ways that a symbol could be loaded. It
could be located in the same namespace in the same class file, which is the most straight
forward example. Another more complex example could be to reference a symbol inside
a different source file via a using statement.

Although a compiler would solve all the issues concerned with just using a parser,
there are benefits of using a parser. Given the requirements and purpose of this tool we
can make some simplifications concerning code analysis. First off, this tool should only
analyze the components within a single solution file. If it finds symbols that does not exist
in this scope, it should disregard these symbols. The only thing that is interesting to look
at is the internal structure of the current solution being analyzed. Components that do not
have any impact on the structure of the solution being analyzed, should be analyzed sepa-
rately. So, to use a compiler in this tool would actually be a little overkill. This tool does
not analyze third party libraries or other external symbols. A compiler would try to load
all external symbols in order to generate a complete symbol table, a parser would not try to
load any external libraries. A parser is context free, and does not know where the symbols
that it parses comes from, it can only identify they are symbols, operators, numbers etc.

4.3 The Visual Studio Plugin

This program is a plugin for Visual Studio or more specifically, a VSPackage. VS Packages
was introduced with Visual Studio 2010 and is slightly different than the old implemen-
tation of a plugin, a Visual Studio Add-In. In general, a VS Package was built to further
integrate software within the Visual Studio environment. VS Packages are called ”first
class citizens” in the Visual Studio environment, and a lot of functionality is added into
Visual Studio by these packages. Add-Ins are more limited in their functionality, and are
restricted to certain object models. A more detailed explanation between a VSPackage and
an Add-In can be found on [21]. This particular plugin is integrated into the Visual Studio
environment as a tool window. This means that the plugin is contained inside the same
type of window that will contain source code when writing code in Visual Studio. This
enables the user to drag and drop the window, wherever the user wants it to be, within the
Visual Studio environment.

4.4 Analysis tool

One of the most important parts of this plugin is of course the ability to generate suitable
candidates and simulate a refactoring on these candidates. This is where the analysis
tool comes in. This analysis tool is written in Java and is developed by Tosin Daniel
Oyetoyan[[26]]. The tool consists of several different refactoring strategies that can be
simulated based on the dependencies found in the source code that is analyzed.

38

4.4.1 Data Structures
In order to simulate refactorings, the program needs several maps that is needed for gath-
ering information about dependencies between the components. These maps are sent to
the analysis tool as parameters when the program needs to generate candidates for the
simulation, and when a simulation should be performed. These maps are also displayed
in the class diagram in figure 6.3. Most of these maps are a mapping from string to a Set
of string (Map<string, Set<string>>). Where the string is the textual representation of
a given class and the Set contains all the classes, within the same solution, that occurs
as the type of dependency that the map represents. the data structures that is used are
Map and Set from the java.utility package. These classes are, of course, not accessible
from a default C# project. You will need a reference to the IKVM.OpenJDK.Core and
IKVM.OpenJDK.Util libraries. The IKVM library are discussed in section 4.4.2.

Maps
The following maps are generated by the plugin and then used by the analysis tool to sim-
ulate refactorings. All these maps represent different types of dependencies that can occur
between two classes in the same solution.

All Types: Simply a map that includes all the classes that a given class depends on.
Field Usage: This map contains a few different things. Naturally every variable decla-
ration will be present, as well as variable initializers of a given class. Additionally, if a
member inside a referenced class is being used, the class containing the member must be
included in this map, as seen in the code example below. In the example, ClassB is not de-
clared as a variable, nor initialized, but is defined as a method parameter. However, it will
still be referenced in the Field Usage Map because a member inside ClassB is referenced
inside ClassA.

public void MethodInsideClassA(ClassB b)
{

b._member;
}

Static Field Usage: This map includes every class that has a static member which is ac-
cessed inside the given class
Method Usage: Every member inside a class which has a method called from its object
instance, is added to this map. Also every method parameter and method return type is
added.
Static Method Invocation: For all methods that are called statically, the class containing
the method is added to the map.
Constructor Invocation: Straight forward, every Class that is initialized by a constructor
invocation is added to this map.
Published Types: If a method return type or parameter is found in a public method, it is
added to this map. This is needed for interface extraction.
Class Types: This map include, for every class in the solution, what type the class is.
Either ”I” for interface, ”A” for abstract or ”C” for a regular class.

39

Method Types: Every method inside a class is either static or nonstatic. This map states
whether the class includes only static, only nonstatic or both static and nonstatic methods.
Method Size: A simple count of how many methods that exists within a class.
Base Types: Every class that a given class inherits from, that is not an interface, is de-
clared in this map.
Interface Types: Every interface that the class implements are listed in this map.
Super Types: Combines the base and interface maps.

4.4.2 Refactoring Strategies
The refactoring strategies used by the the tool can all be used in the three different types
of refactoring simulations that can be performed. The strategies range from simple move-
ment of fields from one class to another, to more advanced registries with entries for object
instances that should be accessed.

Extract Interface: The first refactoring strategy that is used is extract interface. When
refactoring a class using this strategy you extract all the public methods and properties
into a new interface. After extracting these methods, you first need to implement the
interface in the original class. If the original class implemented another interface, the new
interface must inherit from this interface. However, in some cases the class that should
be refactored inherits from another class. If we have that scenario, we must introduce an
abstract class instead of an interface. An example of this is explained in section 7.1. In
figure 4.6 you can see an example of an interface extraction performed on the class shown
in figure 4.7

public interface IA
{

public static readonly string ID = "Namespace.A";
public abstract void MA1(C c);
public abstract List<D> MA2();
public abstract int MA3();

}

Figure 4.6: The interface of class A

Static Method Inlining: When a class depends on another class via a static method in-
vocation, we can use this refactoring strategy to remove the dependency. This strategy
basically moves the static method from the target class to the source class. Then reverses
the dependency from the source to the target. This is visualized in figure 4.8. However,
this strategy does not work under certain circumstances because it doesn’t remove the de-
pendency between the two components, but reverts it. Additionally, the decision to move
a static method should not be made easily, and it should always be the developers that
makes the final decision, independent of the simulation. For example, it would be a bad

40

public class A : IA
{

public static int _number;
public override void MA1(C c){ }
public override List<D> MA2(){ return new List<D>(); }
public override int MA3(){ return _number; }

}

Figure 4.7: Class A

idea to move a static method inside a utility class, to a class that depends on it. In such a
scenario, you would also have to move all the other dependencies, that exists through this
static method invocation, in other classes. Because of this, the most appropriate scenarios
to perform this refactoring strategy on, would be where just a single, or a select few classes
uses the static method that should be moved.

(a) Before performing a static method inlining (b) After performing a static method inlining

Figure 4.8: Static Method Inlining

Static Readonly Field Inlining: As with static method inlining, this refactoring strategy
revolves around moving the object of dependency. In this case though, the object that
should be moved is a static readonly field. Because of this, we can simply copy the field
because it cannot be changed. In figure 4.9 there is an example of this strategy. Observe
that the dependency between the two classes has been broken, contrary to the case as in
static method inlining, where the dependency is reversed.

(a) Before performing a static field inlining (b) After performing a static field inlining

Figure 4.9: Static Readonly Field Inlining

Singleton Registry: This refactoring strategy should be used when a dependency to a sin-
gleton class should be removed. This strategy combines the creation of a registry class
with the extract interface strategy already discussed. First, you should create a new class
to hold the singleton instances of all the singleton classes. This class in itself will be a
singleton, and will contain a registry, for instance a Dictionary<string, object>. However,
when interacting and getting instances from this singleton registry, we use the interface

41

of the singleton class. By doing this we move the dependency towards the singleton class
from the classes that use it, to the interface of the class. Note that the interface should
contain a static readonly string that should be unique that is used to fetch the class instance
of the implementation of that interface. There should be only one class that implements
this newly created interface, as you can only store one class instance for each interface that
is registered. In figure 4.10 a visual explanation of this strategy can be seen, and in figure
4.11 an example of this strategy is presented. In the diagram in figure 4.10 the observant
reader will note that a Main component is present. This represents the entry point of the
solution that should be analyzed. This is a limitation with the tool and will be further dis-
cussed in section 4.7.

Figure 4.10: Singleton Registry, Oyetoyan et al. (2014)[26]

public class ADepend
{

private SingletonRegistry _registry;
public int M(){

registry = SingletonRegistry.GetInstance();
IA a = registry.GetClassInstance(IA.ID);
return a.MA3();

}
}

Figure 4.11: Usage of a singleton registry (continuation of the code found in figures 4.6 and 4.7).

Prototype Registry: Similarly to the singleton registry, this is strategy consists of creat-
ing a new class to hold class instances, and interface extraction of the class that should be
refactored. As with the singleton registry this prototype registry class will only contain a
single instance of each class, and the registry itself will be a singleton class. The catch

42

however, is that the interfaces of the different classes that should be contained in the reg-
istry, must define a cloning method. This method should basically return a new instance if
the same class that implements the interface. This is easily achieved in C# by implement-
ing the ICloneable interface. In figure 4.12 a diagram of the prototype registry is shown,
and in figure 4.13 there is an example that shows how to use this strategy.

Figure 4.12: Prototype Registry, Oyetoyan et al. (2014)[26]

public class ADepend
{

public void M2(){
IA a = registry.GetClassInstance(IA.ID);
//instead of using -> A newA = new A(); we use:
IA newA = a.Clone();

}
}

Figure 4.13: Usage of a prototype registry.

Integration with .NET

The analysis tool, is as mentioned earlier, developed in Java, which introduces some diffi-
culties considering that this plugin is written in C# with Microsoft Visual Studio integra-
tion. In order to integrate a Java library in .NET environment the assemblies needs to be
converted into a dynamic link library or an executable. There are a few libraries that offers
this feature of converting .jar files into .dll. For this tool I have chosen the IKVM.NET
library. IKVM.NET is an implementation of Java for Mono and the Microsoft .NET frame-
work. In order to run compiled Java code on Microsoft .NET there are certain components

43

that needs to be in place. IKVM.NET includes four different components. A virtual ma-
chine for Java implemented in .NET, a .NET implementation of the class libraries that Java
contains, a tool to translate bytecode in order to convert .dll’s to .jar’s and vice versa, and
finally a tool that can support interoperability between Java and .NET. In IKVM.NET the
Java bytecode is translated to Common Intermediate Language. A more detailed look at
IKVM.NET is available at their website[11].

4.5 Features of the plugin
The plugin has several features concerning source code analysis. From visualizing the
dependencies in a graph and manipulating these nodes, to simulating refactorings, the
most important features will be discussed in the following sections.

4.5.1 Visualizing a C# solution
One of the primary and most important features of this tool is of course the ability to
visualize the source code of a C# solution in a graph. The visualizing of a dependency
graph is made possible through a third party library called GraphSharp. This is an open
source project, licensed under the Apache v.2 license. The source code and binaries are
available at [5]. The nodes in the graph each represents a single class from the solution.
A special case to note here is a partial class which can be declared several places, with
different dependencies. All the different declarations and dependencies of a partial class
has been combined into one node. For every dependency that is found inside a class an
edge will be drawn between the corresponding nodes of the given class and the class it
depends on. All these edges can contain several different dependencies. These different
dependencies are defined by an enum(see figure 6.3). The plugin also features a method to
determine whether nodes are in a cycle. The nodes that are inside a cycle will be colored
orange in the graph, to differentiate between these nodes and the nodes that are not in a
cycle. Edges can also be cyclic. If two classes both depends on one another, the edge
between them is cyclic. This will be shown in the graph as edges that are colored red.

4.5.2 Miscallenous features
There are some additional features in the tool that I also would like to present. First, there
is a possibility of right clicking on a node, or an item in the list view in the plugin and
choose ”View Code”. This feature is basically the same as choosing ”go to definition”
inside the Visual Studio environment. Since the nodes in the graph and the items in the list
view all represents classes, this feature will open up a window in Visual Studio with the
source file that contains the definition of the class that the user chose.

There are also some features linked to the list view that contains all the classes. This
list view and the metrics that it contains are described next, in section 4.5.3. This list view
contains 21 different metrics. To show all of them could be overwhelming and confusing,
so I have introduced a feature to show and hide these metrics. This can be done by right

44

clicking on one of the headers in the list view, displaying one of the metrics. When right
clicking here, a context menu will appear with all the different metrics listed in the menu.
Besides each metric in the menu there is a check box that shows whether this metric is
shown or hidden in the list view. By clicking on one of the metrics in this menu, the user
reverts it’s status. If it was hidden, it will now be shown, and vice versa. Another feature is
the ability to sort by these different metrics. By simply double clicking on one the metrics
the user will sort the list by either ascending or descending order. This is an easy way to
identify which classes has the highest reachability, number of methods etc.

4.5.3 Metrics
When analyzing a C# solution the tool gather and stores several class specific metrics from
the source code. These metrics are useful to quickly identify certain characteristics of a
class. For instance, if a class has only static methods, the class is most likely a utility class
and will most likely depend on none or few other classes, but many classes will depend on
it. This and many other useful metrics are datamined from the source code and is presented
in the list view shown in figure 4.5. Following is a list of all the metrics for each class.

Name: A self explanatory metric that describes the name of the Class. The name is only
the identifier declared in the class declaration.
Namespace: Every class in C# should have a namespace which should describe the log-
ical structuring of the code. The namespace and the name of each class is combined into
the unique name identifier of a class.
Project: Every class must also exist inside a project. There can be several projects in a C#
solution, and knowing which project each class belong to can make it easier for developers
to move them depending on which classes they depend on.
Fan in: A metric that reflects how many other classes that depends on this particular class.
Fan out: As opposed to Fan in, this metric reflects how many other classes the given class
depends on.
Reachability(CRSS): Reachability or Component Reachability Set Size, represents the
transitive relationship between classes and the classes that it depends on. If a class directly
can reach one other class it could still have a reachability of hundred other classes, de-
pending on the single class that it directly depens on.
SCC count: Strongly Connected Components are classes that depends on each other in a
circular manner. This metric shows how big this cycle is. Please note that this size will of
course be the same for all components in the same cycle.
Method count: A straight forward metric describing how many methods that is contained
in a class.
Static method count: This shows the number of static methods that’s inside the class.
Will always be a subset of the number of total methods.
Constructors: The number of different constructors found in a class.
Fields: Describing the amount of globally declared fields inside a class. Different from
member properties.
Static fields: The amount of static fields in a class.
Private fields: The number of private fields found in a class.

45

Public static fields: All the fields inside a class that are both public and static will be
represented by this metric.
Properties: In C# there is a particular way of encapsulating private fields inside a class;
member properties. At first glance these encapsulation methods looks like normal methods
with defined access modifiers and return type. However, inside you can only place a get or
set bracket followed by some logic. Additionally, you can not define parameters, as there
can only be one(for the set method), of the same type as the return type. These properties
should not be regarded as normal fields as they usually expose one of these fields, and
should therefore be represented in another different metric.
IsInterface: There are several boolean metrics calculated by this tool, IsInterface is one
of them. Returns either true or false, on whether the component is an interface or not.
IsEnum: Shows wether or not a component is an enum.
AreAllMethodsStatic: True if all methods inside a class are static.
AreAllFieldsStatic: True only if all member fields located inside a class are static. Useful
in locating so called utility classes that only hold static fields that can be accessed from
anywhere in the project.
ProjectReferences: A boolean value displaying wether or not the component either de-
pends on or is depended upon by other components in the same project. If this value is
false, then the developers should consider moving this particular component to another
project.
Depends on SCC: Given a specific component, this metric shows how many of its con-
nected components that are inside a cycle.

4.5.4 Graph manipulation

This plugin has several ways of manipulating the graph. In a large solution, the graph will
be huge, minimizing the potential usefulness of this feature, as it’s difficult to discern from
all the different components and the edges that is connected to it. However, on smaller
projects this could be quite a helpful tool to quickly add a node, add some edges and see
if the results of the simulation will be any different.

The first feature I would like to discuss is the ability to add a node. This will also
introduce a new class in the underlying data structure of the plugin, so the simulation
would be updated according to the nodes and edges that are added to GUI. You can remove
a node by right clicking on the node and choosing ”Remove Node” in the context menu
that appears. Another feature is the possibility of adding new edges. To do this the user
would have to select ”Add Edge” in the drop down list called ”Click Action” in the menu.
After choosing this action, a user can proceed to click on a node, which will mark this node
as the currently selected node, and then click on a second node. This should draw a new
edge between the two node. To remove an edge, simply right click and choose ”Remove
Edge”. The model will of course also be updated according to all these different changes
in the graph.

46

4.5.5 Simulating Refactorings
This plugin consists of three different types of refactorings, each modeled after specific
problems. These types of refactorings are all performed in the analysis tool presented in
section 4.4, and can use all the different refactoring strategies described in that section.

System Refactoring: The overall goal of this type of refactoring is to decouple the whole
system. This refactoring needs the user to input the number of refactorings that should be
performed. This is because this refactoring is based on iterations, where for each iteration,
a new class is selected based on the parameters and the sorting priority that is given, and
the previous refactoring that was simulated in the model.
Cycle Refactoring: The whole idea of this refactoring revolves around breaking specific
cycles. Cycles, or strongly connected components, are visualized in the graph as orange
nodes. These can be refactored by selecting a set of edges between these components and
removing them. The algorithm in the analysis tool computes the minimum set of edges
that is needed to break the cycle, and report these edges back. In most cases you would
also have to introduce some new edges, because of transitive dependencies between the
components.
Single Component Refactoring: Given a class with a very high reachability compared to
the other classes in the solution, a developer might want to refactor only one class. This is
supported in the plugin. The procedure is the same; input some parameters and the plugin
will present a list of candidates. In the list, the user must choose which classes that should
be refactored.

4.6 Algorithms and data structures
As described in section 4.2, there are several drawbacks when using a parser compared
to a compiler, most importantly, that you are not able to identify every symbol that is
referenced in the source code. In order to simulate the same behaviour as in a compiler I
had to introduce several data structures and algorithms to properly identify every symbol
inside a class. In this chapter I will describe and explain the most important data structures
and algorithms that I had to introduce in order to overcome these challenges. The first
section will introduce the data structures in detail before I explain how these data structures
are manipulated and utilized in the algorithms in the following section.

4.6.1 Data structures
In figure 6.3 you can view the structure of the classes that I am going to describe. Each
class that is parsed from the source code is represented as either a Class or a PartialClass,
both inherits from BaseClass. It’s important to note the difference between these two;
a partial class can de divided into several different type declarations, in several different
source files. So while one declaration of a partial class may be included in a source file
which consists of several hundred using statements, another declaration can perhaps have

47

private string value;

public void ParseString(string data,string type){
switch(type){

case "double":{
double value = double.Parse(data);
break;

}
case "char":{

char value = char.Parse(data);
break;

}
}

}

Figure 4.14: Example of an overriden identifier

zero using statements in it’s corresponding source file. Therefore, we need to keep track
of every dependency, and the source file that it occurred in. For a normal class this is not
necessary as it can only have one source file. When encountering upon a using statement,
the string representation of the namespace is added to a list inside the current SourceFile
object. Then inside the DependencyCalculator class there is a dictionary of Namespaces
which are mapped to the string representation of each namespace.

Another challenge comes in the form of identifiers and their scope. In the example in
figure C.1 the identifier ”value” is declared three different places, with different scopes,
which is allowed in C#. First, it is declared as a global identifier of type string. Then,
inside the method ParseString, it is first defined as a double in the first case, then as a
char in the next case. From this example it is easy to see that we need to keep track of
these identifiers and what it’s currently declared as. If, for instance the parser finds a
method invocation on the identifier ”value”, we must know which type that is currently
assigned to the identifier and add this type to the references in the class that is currently
being parsed. Therefore, in the parser class, DependencyFinder, there are three different
dictionaries, which maps an identifier to the type it is associated with. One for the current
identifiers, one for the identifiers found in the current method and the last dictionary holds
the identifiers that has been overridden. For each new variable declaration that is found,
it is added to the current identifiers, and to the method identifiers if it was found inside
a method. Then, when a new method declaration will be parsed, each identifier from the
method identifiers are removed from the current identifiers and replaced if the overridden
identifiers contains a value which is mapped to the same key.

48

4.6.2 Algorithms
Now that we have the data structures that is necessary we can manipulate the data and
figure out the dependencies between the components. First I will describe the algorithm
for preserving the correct identifiers and then I will present the algorithm that calculates
the dependencies between the components.

Variable identifiers
When encountering a new variable of a certain type, I need to store this identifier to know if
a method invocation, variable reference etc. has occurred on this identifier. This algorithm
adds the identifier to a Dictionary where the name of the identifier is the key, while the
name of the variable type is the value. First, I simply check if the map already contains
a definition for the identifier name. If not, then I add the identifier to the dictionary. If
I find a new variable inside a method, that overrides one of the global identifiers, I have
to save the previous value of that identifier, so that I can retrieve and set the identifier
to its old value when I have parsed through the method. When I have parsed through a
method, I remove all the key pairs that exists in the method identifiers and remove them
from the current identifiers. This is to ensure that a global variable will be added correctly
if it’s defined after a method has declared a variable with the same identifier name. The
algorithm is presented in figure C.1 in Appendix C.

Calculation of dependencies
The entire algorithm is presented in Appendix C. The algorithm is divided into four meth-
ods. The first Method, CalculateDependencies(), loops through every dependency in a
class and calls the method FindDependency() for all the dependencies that was found by
the parser. This FindDependency() method then performs a number of checks to find the
full class name. First, we check whether the class is in the same namespace as the class
that were analyzing. If not we check if the class is contained in one of the namespaces de-
fined by the using statements in the sourcefile. If the class is a partial class, then we must
choose the source file that this dependency was found in. If we still can’t find the class,
we check if the class is found in the global namespace. If none of these checks are true,
then the class does not exist in the solution that we’re parsing, and we can discard it. The
two last methods are simply helper methods that are reused inside the FindDependency()
method. These are only defined because of reusability.

4.7 Limitations
This tool is by no means perfect, and this section will explain and acknowledge the known
limitations to the plugin.

As mentioned in section 4.4.2 this plugin needs and entry point to be able to correctly
refactor some of the dependencies in a solution. Because of this, the plugin will not be able
to correctly generate refactorings that can be used in a .dll or a class library for instance.

49

The reason for this is because the instances of the classes that should be refactored using
either the singleton registry or prototype registry strategy, must be added when the appli-
cation starts. This is to make sure that these instances actually exists when we need them
from the registry. Obviously, a class library is completely independent of the other code
in the library and can’t be executed, so these solution projects can not be refactored this
way. However, Microsoft has a similar registry called Unity, already implemented in its
libraries. Unity include features to resolve instances that are stored in the registry, which
may solve this issue. However, I have not been able to thoroughly experiment with Unity,
so I can’t say for certain that it will solve this problem.

Another limitation to this plugin is that it can’t analyze dependencies through an im-
plicitly typed variable. An implicitly typed variable is a relatively new feature in C# as
it was introduced in C# 3.0. These variables are only defined as var and will be typed
depending on what the right hand side of the expression that initializes the variable. The
right hand side can of course be anything that could be defined as a type, whether that be
a simple number, or the return type of a method inside another class. In figure 4.15 there
is an example of an implicitly typed variable. In this example, SomeClass should contain,
given the maps described in section 4.4.1, a field usage and a method invocation refer-
ence to ClassA after analyzing the source code. However, given that I have not introduced
sufficient data structures and algorithms in the plugin, this is not recognized as of now.

public class SomeClass
{

public void Method()
{

var implicitVariable = new ClassA();
implicitVariable.SomeMethodInsideClassA();

}
}

Figure 4.15: An example of an implicitly typed variable.

50

Chapter 5
Requirements

In this chapter I will present the different requirements and scenarios that I have identified
for the plugin. These will act as guidelines when developing the plugin and should also
reflect the most important features that should be present in the plugin. I have divided
the functional requirements into two different parts. The first will present the functional
requirements of the plugin, while the other contains the functional requirements for the
user interaction.

5.1 Functional Requirements
The functional requirements in a software system should describe the functionality of the
software system. The functional requirements are presented in table 5.1 and 5.2

Table 5.1: Functional requirements for the plugin

The Plugin
ID Description Priority

FR1 The parser should be able to analyze C# solutions High
FR2 The plugin should give the user feedback on the loading process Medium
FR3 The plugin should be able to visualize a solution. High
FR4 The plugin should be able to detect and visualize dependency cycles High
FR5 The plugin should be able to show all the classes in a solution, Medium

in a list view that contains important metrics for a class
FR6 The plugin should be able to simulate refactorings High
FR7 The plugin should show the result of a refactoring simulation High
FR8 The plugin should be able to generate a report based on the simulation High
FR9 The plugin should be able to show a class-view and a file-view Medium

51

Table 5.2: Functional requirements for the view

User Interaction
ID Description Priority

FR10 The user should be able to add a new class to the graph Medium
FR11 The user should be able to add an edge between two nodes in the graph Medium
FR12 The user should be able to remove a node from the graph Medium
FR13 The user should be able to remove an edge from the graph Medium
FR14 The user should be able to sort the classes in the list view, Medium

based on each metric
FR15 The user should be able to show and hide different metrics Medium

in the list view
FR16 The user should be able to set a class as the main class in the graph High
FR17 The user should be able to input parameters for a refactoring simulation High
FR18 The user should be able to choose between three diferent types of simulations: High

System refactoring, cycle refactoring and single component refactoring.

5.2 Quality Requirements
Quality requirements are non-functional requirements in a software system, and can be
described by quality attribute scenarios. There are several quality attributes that has been
identified as important for software quality. These can range from how well the software
performs, to how well the source code can be maintained. I will also describe certain sce-
narios that will explain how to test and verify the quality of the attributes I have selected.
The quality attribute scenarios are divided into six different portions that all describes a
certain aspects of the scenario. Source of stimulus, stimulus, artifact, environment, re-
sponse and response measure. Quality attributes scenarios are further explained by Len
Bass et al[2]. In the following sections I will present the quality attributes I have identified
as the most important for this plugin, and give some scenarios that should describe how to
verify the quality of these attributes.

5.2.1 Correctness
It is of the utmost importance that the simulations are correct depending on the solution
that is analyzed. Even if one dependency is missing or wrong, the whole integrity of the
simulation may be affected. Because of this concern, the primary quality attribute for this
tool is correctness. The software quality attribute correctness basically concerns itself with
how correct the program behaves, which is important when dealing with simulations. For
this, I have created some scenarios that should help in understanding how the correctness
should be and might be affected when using this tool.

52

C1: Parsing a Solution

The parsing process must find all the dependencies in a class towards other classes in the
same solution.

Table 5.3: C1: Parsing a solution

Portion of Scenario Value
Source of Stimulus User
Stimulus Loading a Solution
Artifact The map model
Environment At runtime after a solution has been opened in Visual Studio
Response The map model should contain every dependency that exists in the source code
Response Measure Manually check the source code and verify in the map model

C2: Graph Manipulation

When a user performs a graph manipulation, the plugin must ensure that the model is
updated according to the changes done in the view.

Table 5.4: C1: Graph Manipulation

Portion of Scenario Value
Source of Stimulus User
Stimulus Add/Remove Edge/Node
Artifact The map model
Environment When the solution has been loaded and the graph has been drawn
Response The map model should be updated and the view should be updated
Response Measure Generate mapfiles and manually check the changes

C3: Recalculating after Simulating Refactoring

This plugin uses a third party tool to simulate refactorings. When this is done, the model
is changed. Therefore, after a simulation, the view needs to be recalculated based on the
changes performed on the model.

Table 5.5: C2: Recalculating after Simulating Refactoring

Portion of Scenario Value
Source of Stimulus User
Stimulus Recalculate
Artifact The map model and the generated report
Environment When the user have performed a simulation and then recalculates
Response The view should be updated, according to the simulation
Response Measure Manually check the changes in the report

53

5.2.2 Usability
For every software that is based upon user interaction, usability is important. There are
certain refactoring principles in this plugin that can be difficult to fully understand, and it’s
therefore important that the users learn how to use the plugin appropriately.

U1: Learning To Use the Simulation Tool

The process of learning to use the plugin should be painless. This can be verified by the
following scenario.

Table 5.6: U1: Learning To Use the Plugin

Portion of Scenario Value
Source of Stimulus User
Stimulus Using the tool
Artifact The plugin and the help view
Environment At run-time
Response User learning the tool
Response Measure How easily the user can learn how to use the plugin.

This can be checked through an interview

54

5.2.3 Performance
This plugin will analyze a solution by parsing all the class files inside. If the solution con-
tains thousand, or more classes, this process can take a long time. Performance is therefore
an important concern for this plugin.

P1: Loading a solution

The process of loading a solution will of course be completely related to the size of the so-
lution. However, this process should not take longer than a minute for a solution consisting
of approximately thousand classes.

Table 5.7: P1: Loading a solution

Source of Stimulus User
Stimulus Loading a Solution
Artifact The plugin
Environment The plugin at run-time
Response The load bar
Response Measure The load bar should represent how far in the loading process

the plugin is currently at. This should take no longer than a minute

55

56

Chapter 6
Software Architecture

In this section I will present the architecture of the plugin that I have developed in Visual
Studio. First I will present my reasons for choosing the architecture that I did, and why I
chose this specific architecture. After that I will present the architecture. In addition to a
textual explanation, I will present several different views that gives a visual representation
of the architecture.

6.1 Architectural Drivers
When designing software architecture, a developer are always limited or forced to take
some actions depending on the situation of development. All these aspects that can affect
the architecture, positively or negatively, are called architectural drivers. In this section I
will briefly describe the arechitectural drivers that has affected the process of developing
this plugin.

6.1.1 Inexperience with .NET
Before I started to work on my master thesis, I had no prior experience with coding in
C#, and only a limited experience with coding in C++. This meant that I had to invest
some time to learn the syntax and the features of the C# library and the .NET platform.
Thankfully, as an object oriented programming language, C# is very similar to Java, which
I have most of my coding experience from. This made it easier for me to understand C#.
The .NET platform is also very well documented, and the Microsoft Developer Network
contains forums where people can post all sorts of questions regarding the .NET platform.

6.1.2 Integrating Third Party Libraries
This plugin relies on several different third party libraries. All these libraries should be
implemented in a simple way and should interact well with each other. When implement-

57

ing these libraries I needed to learn the most important features of the library in order to
fully utilize its features. The licenses of all the libraries must also comply with each other.
This forced me to choose open source libraries to ensure that the licenses complied.

6.1.3 Consistent Feedback
I have cooperated closely with another developer at Powel while developing this plugin.
During this time I have received a large amount of feedback regarding features and usabil-
ity of the plugin. This has provided an easy way of getting external review on the plugin,
which has proven invaluable as I have discovered certain bugs and faulty features which
could have compromised the plugin. This also made me commit changes that I most likely
wouldn’t have made, and I had to make some adjustments to my original architecture.

6.2 Data-View consistency
Data manipulation is an important part of this tool, so when a change is done from the
view we must ensure that the changes that are displayed is consistent with the underlying
data structure. For this reason an important architectural driver for this project is Data-
view consistency. If the data and the view is not consistent then the behaviour of the
program and also the correctness of the simulation, as discussed in section 5.2, will be
compromised.

6.3 Model View Controller
As discussed previously, this tool must have consistency between what the user sees, the
view, and the underlying data structure, the model. For this particular scenario, the model-
view-controller pattern fits perfectly. The MVC pattern breaks the architecture into three
parts; the model, the controller and the view. The main idea behind the MVC pattern is to
offer a consistency between what is shown in the view, and what the data actually contains.
The view should never be updated based on what is updated in the view, but rather what
is updated in the model. When a change is made from the view, which contains the user
interaction, the model should be updated. After the model is updated, it should report back
to the controller that a change has happened. The view should not contain any logic, so
the controller has the responsibility of manipulating the model and updating the view. The
MVC pattern is described by Schmidt, Douglas C. et al[27]

6.4 View Model
I have used the ”4+1” view model designed by Philippe Kruchten[18] to present the ar-
chitecture of the software. This model is based on several different views, that should all
describe the software architecture through various diagrams. The incentive behind the use
of these different views is that the different stakeholders in a software project should all

58

have their concerns described. Stakeholders can be developers, end-users, project man-
agers etc. The four main views are the physical view, development view, logic view and
process view.
I have used UML to describe my architecture. UML is a general purpose modeling lan-
guage for software engineering[19], which is used to visualize the design of a software
system. UML contains several graphic notation techniques to describe visual models of
object-oriented software systems. In the view model of the software architecture I have
decided to not include the physical view. The physical view shows the communication
between different parts of the program and comes to it’s right when it describes communi-
cation between different physical parts, like server and client communication. As the only
communication I do between the different components in the software is through method
calls, I think this view is redundant as I describe the inter-relational communication in
other views.

6.4.1 Development View
The development view should present an overview of the developmental structure and
should also show how the different parts is connected to each other. This view is designed
for developers.

In figure 6.1, you can see the overall structure of the architecture. The architecture is
divided into four main parts; the controller, the model, the view and the parser. The view
is directly connected to the controller, which in turn is connected to the model. The parser
parses the solution and reports back to the controller which in turn adds data to the model.
When a change in the model occurs, the controller handles the event and updates the view
accordingly.

59

Figure 6.1: Overview of the Architecture

6.4.2 Logical View
The logical view is mainly used by the developers to give a more detailed description of
all the classes in the different parts of the software.

Class Diagrams
I have created class diagrams for the most important classes in my project. These class
diagrams does not define every field or method contained in each class, but rather the
methods or fields that I feel is the most important in order to understand how they function.

60

Model

Figure 6.2: Central GraphModel classes

The class diagram presented in figure 6.2 shows the architecture of the most impor-
tant classes of the graph model. This part of the program is derived from the open source
project GraphSharp, found on [5]. The class DependencyGraph is the custom graph class
that is shown in the tool window. This graph class consists of vertices and edges. The ver-
tices are represented by the class ClassVertex, and the edges by the class DependencyEdge.
The ClassVertex consists of a list of references for each vertex, a ReferenceObject, which
can be seen in figure 6.3, and a VertexState. The VertexState implies whether the vertex
is in a cycle or not. Each DependencyEdge consist of a source and a target, both of type
ClassVertex. Furthermore, each edge also has a GraphReference which defines what kinds
of dependencies that exists between the two vertices. The different kinds of dependencies
is represented by the enum ReferenceType.

The dependency graph consists of classes and their dependencies. For this we need a
model to represent these data structures. These components are shown in figure 6.3. The

61

Figure 6.3: Central classes in the model

MapModel class consists if all the maps that are needed to perform simulations on the so-
lution. There are several different maps, all described more detailed in section 4.4.1. The
ReferenceObject is the underlying object that holds all the data that are relevant for source
code analysis. Metrics like reachability, fan-in, fan-out, number of methods etc. are all
stored in this class. Note that this class is abstract since it should not be initialized itself
but only acts as a parent to other classes. There are two classes that inherits from Refer-
enceObject; BaseClass and SourceFile. In order to show a physical view of the solution
we need a class to represent each source file.

Each SourceFile consists of a list of using statements, which simply includes the string
representation of all the namespaces that are defined in the SourceFile. This is also nec-
essary to correctly identify all the symbols that is used in each class, which I describe in
more detail in section 4.6. The Namespace class includes the list of classes that exists
inside the namespace and the name of the namespace. A class can only exist in one single
namespace, so BaseClass has a reference to its namespace via this class. Additionally,
the class BaseClass contains a list of member fields and properties, which is needed when
calculating member references from another class. There are two classes that inherits from
BaseClass; Class and PartialClass. The only difference between these two cases is that a
partial class can be found inside several different source files, and thereby needs a list of
source files, while a class simply needs a single instance of a source file.

62

View

Figure 6.4: Central GUI classes

The classes shown in figure 6.4 presents the most important GUI classes. All these
classes either directly or indirectly inherits from the Form class in Visual Studio. Apart
from the tool window which contains the graph and list of components, these are the only
other GUI classes in the project. All these classes are also related to when the user wants to
simulate a refactoring by clicking on ”Simulate Refactoring” in the menu. The first view
that wil e presented after clicking on ”Simulate Refactoring” is the ParameterInputView.
This view contains textboxes for inputing parameters needed for the simulation, namely
TopKFanin, TopKSCC and TopKCRSS. Additionally, the user have to input a main class
for the simulation. This can also be set by right clicking on a vertex in the graph and
selecting ”Set as main class”. The last parameter that needs to be set in this view is the
sorting parameter for the candidates that will be returned to the user.

After setting all the parameters the next view is the RefactoringSelection. This class
includes three different radio buttons, one each for System, Cycle and Single Component
refactoring respectively. Only one can be selected, and based on the radio button selected,
the user will be presented with one of three different views. The first possible is the Sin-
gleComponentRefactoringView, which contains a datagrid for viewing candidates. This
candidate view is generated based on a list of SingleComponentRefactoringData, from
the LogicController. In the datagridview, the user can check a checkbox to select which
components should be refactored from the list of candidates. The second view is the
CycleRefactoringView, which also contains datagridview to present the candidates and a
checkbox for selecting components. The only real difference is that the datagridview is

63

populated based on a list of CycleRefactoringData. The last view is the SystemRefactor-
ingView. Like all the other refactoring views, this also contains a datagridview for the
candidates of type SystemRefactorngData. However, in this view there is no possibility of
selecting components. Instead there is a textbox where the user should input the number
of refactorings that should be performed on the system.

All these refactoring views inherits from the class RefactoringView. This view contains
a pointer to the LogicController that generates the candidates and simulates the refactor-
ing. Also, when a refactoring is done in one of the child views, the method ShowSimu-
lationResult is called. This method generates a SimulationResult based on the simulation
performed in the LogicController, and then initializes a SimulationResultViewer with this
SimulationResult. The SimulationResultViewer displays the situation before and after the
refactoring simulation. It does this by showing several different metrics. A histogram
shows how many components that has a reachability within a specific range, where the
ranges are 1-50, 51-100, 101-150 etc. The number of components and edges, the standard
deviation and mean reachability before and after is also shown. Additionally, if system
refactoring is chosen the standard deviation and mean reachability after every refactoring
can be shown from a drop down list.

Parser

The classes in the Parser can be seen in figure 6.5. First, the ClassFileFinder is the class
that, obviously, locates all the class files in the solution that should be parsed. Therefore,
this class needs a list of projects. This list is provided by the GraphController in the con-
structor of ClassFileFinder. In order to properly locate all the class files inside a solution
we need the three private methods stated in the class diagram. There can for instance exist
solution folders inside a project, inside a solution. Then we need to loop through all the
environments in these folder, and this must be done for all projects of course. Additionally,
a project item in C# which is what defines a class file, can also contain several class files.
For instance, a form class in C# usually consists of two class files, in its project item. So
we need to loop through the children of each project item as well.

After we have found all the class files in a solution, we can send these class files
to the parser. The parser is defined as the class DependencyFinder. It contains a refer-
ence to both the GraphController, which it reports back to, and the DependencyCalculator
when it’s done parsing. The parsing process is started by the GraphController by calling
ParseClassFiles(List<ClassFile>) in this class. For each class file in the solution, the De-
pendencyFinder class loops through the abstract syntax tree provided by the NRefactory
library. All nodes in the abstract syntax tree, that are of interest, are analyzed and all de-
pendencies that are found are reported back to the GraphController.

The DependencyCalculator class then takes all the dependencies and the classes that
the DependencyFinder found and calculates the correct nodes to place the dependency
between. As I discuss in section 4.2, there are certain limitations to a parser, and this is
solved in this class. Several data structures with information like using statements, names-

64

paces, classes are manipulated in this class in order to identify all the dependencies in each
class. When a new dependency is found, this class also reports back to the GraphController
which updates the model. The dependencies between source files are also calculated. Af-
ter all the dependencies have been calculated, the GraphController is notified, and updates
the view.

Figure 6.5: Parser classes

65

Controller

The controller classes in the plugin are responsible for making changes in the model,
and then updates the view based on these changes. In figure 6.6 the controller classes are
presented. The MainController serves as a singleton class that contains all the global in-
stances of each of the other controller classes. When another component in the solution
needs to access one of the controller classes, they call this class first.

The GraphController contains the GraphModel which represents the graph with all
the nodes and edges. When a class is found in a solution this class adds a new node to
the MapModel. The MapModel then contains an EventHandler which reports back to the
GraphController with the information that it needs in order to update the GraphModel.

The ActionController is used whenever a graph manipulation occurs. When, for in-
stance, a new node is added to the graph via the graphical user interface, a new GraphAc-
tion is added. This action is then added to a list in the ActionModel of currently active
actions. If the user reverts the action by choosing ”Undo” in the menu, the previously
added GraphAction is added to another list of currently removed actions simultaneously
as it’s removed from the list of currently active actions in the ActionModel. Vice versa
will happen if the user should redo the action later.

Figure 6.6: Controller classes

66

Sequence Diagrams

Loading a Solution

In figure 6.7 you can see a sequence diagram of how the program loads a solution. The
entry class is the DependencySimulatorWindow, which inherits from the Visual Studio
environment class ToolWindowPane, which defines a window pane in Visual Studio with
plugin capabilities. This tool window The DependencySimulatorControl is the class that
is directly connected to the components in the Tool Window. Because of this, this class
needs to have access to the GraphModel, via the GraphController. Regarding the MVC
pattern, it’s important to note that the GraphController listens to the MapModel and adds
an Edge in the GraphModel according to the event which is handled from the MapModel.
After the graph is loaded, the DependencySimulatorWindow, which holds all the bindings
directly connected to the Visual Studio environment, updates it view based on the newly
generated graph in the GraphModel.

Figure 6.7: Sequence diagram of loading a solution

67

Simulating a System Refactoring

One of the three types of refactoring, as described in section 4.5.5, is system refactor-
ing. The sequence diagram in figure 6.8 presents this process. The DependencySimula-
torWindow is the class that contains the button ”Simulate Refactoring” shown in figure
4.1. This button starts the whole process of simulating a refactoring. When the button
is pressed the DependencyController class is called, which calls all the other GUI classes
and holds the data bindings to the graph and the list view in the main screen. First, the
ParameterInputView view is called so the user can input the parameters that are needed
for the simulation. Then the RefactoringSelection class is called to let the user choose
between the three different types of refactoring. In this scenario, the system refactoring is
chosen so the next class that is called is SelectSystemRefactoringView. In this view the
user must select a reduction rate in order to choose candidates. This class will then call
the LogicController to get the list of candidates, which it will use to initialize the next
class, the SystemRefactoringView. The SystemRefactoringView will also call on the Log-
icController in order to simulate a system refactoring, which again calls the GraphLogic to
calculate the simulation. Lastly the SimulationResultViewer is called to present the result
of the simulation.

Figure 6.8: Sequence diagram of simulating a system refactoring

68

6.4.3 Process View
The process view focuses on the runtime environment and explains the system processes
and captures the concurrency and synchronization aspects of the design. The process view
should be used by developers and integrators.

Simulating Refactoring
The activity diagram in figure 6.9 shows the process of simulating a refactoring. The pro-
cess is started when the user choose to simulate a refactoring. After inputing the parame-
ters that is needed, the user must select what type of refactoring that should be simulated.
After a refactoring, the result is shown and the process is finished.

Figure 6.9: Activity diagram of simulating a refactoring

6.4.4 Scenarios
The scenarios, or the use-case view as it’s also called, are used to illustrate interactions
between actors systems through several different use cases. The use-cases in this section
presents some of the most important features of the plugin, both as use-case diagrams and
descriptions of the scenarios. The scenarios are useful for end-users in visualizing possible
features of the tool

69

Use case 1: Loading a Solution

Identifier: UC 1
Description: Loading a solution from the Dependency Simulation Window

Preconditions: The user has loaded the solution into Visual Studio

Postconditions: The solution will be visualized in the Dependency Simulator Window,
based on the source code.

Basic Course of Action:
1. The user clicks the ”Load Solution” button on the menu line in the Dependency Simu-
lation Window
2. The program analyzes the source code for components, this can take several minutes,
based on the size of the solution
3. The program generates a dependency graph

Figure 6.10: UC1: Loading a Solution

70

Use case 2: Graph Manipulation

Identifier: UC 2
Description: Manipulate the graph

Preconditions: The user has loaded the solution and the graph has been generated.

Postconditions: The graph will be updated based on the manipulation.

Basic Course of Action:
1. The user manipulates the graph, by either adding, removing or editing edges and nodes
2. The manipulation updates the model, which in turn updates the view via the GraphCon-
troller

Figure 6.11: UC2: Graph Manipulation

71

Use case 3: Simulate Refactoring

Identifier: UC 3
Description: Simulate Refactoring

Preconditions: The user has loaded the solution and the graph has been generated.

Postconditions: The plugin will simulate a refactoring and generate a result, with pre and
post values of important metrics

Basic Course of Action:
1. The user chooses ”Simulate Refactoring” from the menu.
2. The user inputs parameters for the simulation and chooses what kind of simulation that
should be performed.
3. After choosing simulation type, the user will be presented with a set of candidates he
can choose from.
4. The plugin will simulate a refactoring based on the candidates.
5. After simulating, the plugin will generate a result, which can be accepted or not.

Figure 6.12: UC3: Simulate Refactoring

72

Part V

Evaluation

73

Chapter 7
Results

To analyze the tool I have performed simulations on two different kinds of projects, before
manually committing the changes reported by the simulation and comparing the results.
We want to test the plugin in both an industrial setting and in an open source environment.
We wanted to do this to see if there is any significant changes from these two different
scenarios. Open Source projects can have several hundreds different contributors and can
become hard to maintain because no one has a complete comprehension of the whole
structure. Projects from an industrial setting can also have many contributors, but other
aspects, such as time to delivery can also affect the overall quality of the software.

7.1 Case study #1: VidCoder
The first project that I have analyzed is an Open Source project called VidCoder. VidCoder
is a software for ripping and encoding video files in a Windows environment. Obviously,
it’s written in C#. The project can be found at CodePlex[6]. I have simulated a System
Refactoring and recorded the fitness values before and after the manual refactoring and
compared them to the fitness values that the simulation showed.

The simulation suggested to extract the interface of six different classes in the solu-
tion. All those classes, however, inherited, either directly or indirectly, from an external
public abstract class, ViewModelBase, in a third party library. So there was no possibility
of refactoring away this dependency. The solution to this was to introduce an intermediary
class between ViewModelBase and the six classes that inherited from this class. There are
some concerns with this approach, compared to simply extracting an interface. As with
interface extraction we start by extracting all the public methods. C# also has member
properties, which works just like getter and setter methods in Java, and can contain any
implementation. As they behave just like how a method does, these member properties
must also be extracted. Now, since all the extracted elements from the class is inserted
into an abstract class rather than an interface we must make some adjustments. Where an

75

interface can simply declare a method by its name, return type and parameter, a method in
an abstract class must declare an access modifier and some sort of implementation. Ob-
viously, a virtual or abstract method cannot be declared as private, but apart from that the
access modifier can be set to anything, as long as its set. It can contain a concrete imple-
mentation, or empty implementation, and be marked as virtual if the inheriting classes can
give its own implementation. Or it can be marked as abstract and not contain an imple-
mentation, then the inheriting class must have its own implementation. Summarizing; a
virtual method must declare a body, while an abstract method cannot declare a body. See
figure 7.1 for example methods.

public virtual void VirtualMethod() { }

public abstract void AbstractMethod();

Figure 7.1: Two different ways of declaring a method inside an abstract class

In VidCoder, I obviously didn’t want to risk changing any implementation, so I chose
to set every method and member property as abstract in the abstract class that I introduced
for each of the six classes that I refactored. By setting it as abstract I ensure that the class
that will inherit from it must implement all methods or properties inside the abstract class.

Original Fitness Values
Number of Components 245

Number of Edges 482
Mean Reachability 17.224

Standard Deviation for Reachability 37.631
Highest Cycle Set Size 14

Reachability Data
1-50 213

51-100 0
101-150 32

Fitness Values from Simulation
Number of Components 252

Number of Edges 538
Mean Reachability 10.785

Standard Deviation for Reachability 21.064
Highest Cycle Set Size 8

Reachability Data
1-50 234

51-100 17
101-150 1

Table 7.1: Fitness values from VidCoder before manual refactoring.

Number of Components 252
Number of Edges 521

Mean Reachability 10 .674
Standard Deviation for Reachability 24.262

Highest Cycle Set Size 8
Reachability Data

1-50 237
51-100 6

101-150 9

Table 7.2: Fitness values from VidCoder after manual refactoring

76

As you can see by the fitness values in table 7.1 and 7.2, the number of components
and edges have increased after the refactoring. This is of course as expected, as I have
introduced seven new classes that each contains several edges to other components. What
is much more interesting however, is the results from the reachability data. The mean
reachability has decreased quite significantly, its almost halved, and the standard deviation
is also much lower after the manual refactoring was performed. Another important metric,
the highest cycle set size, also decreased from 14 to 8. Even though the results are very
good, they are not as good as the values from the simulation results. There could be several
reasons why this is. In the simulation, the tool suggested to create a singleton registry and
register instances of all the six classes that was to be refactored in the solution. However,
VidCoder already used some sort of registry in Unity. Unity is a registry for objects and
types created by Microsoft and already contains several features that would be hard and
would also require a lot of time to replicate. When I refactored these edges I therefore
chose to keep the usage of Unity and didn’t introduce a custom registry. This have certainly
affected the results, but it would be difficult to get any precise data on how they were
affected.

7.2 Case Study #2: Powel
I have had a close relationship with Powel during my thesis. Together with Tosin and a
developer at Powel I have analyzed one project at Powel and have gotten some encouraging
results from the simulation. However, due to work load and the severity of the refactoring
reported in the simulation this developer at Powel hasn’t been able to fully refactor the
source code according to the simulation results. What we have gotten though, is some
valuable feedback regarding the potential and the usability of the tool according to a third
person developer. In an interview conducted by me and Tosin with the developer, he had
some valuable insight on what he thought was good about the tool, and what he thought
could be improved. This feedback has also helped me in identifying further features that
could be implemented in the plugin and future work. A wanted feature was for instance the
ability to view where in the source code a dependency on a class existed in a given class.
For example, lets say that class A depends on class B through a method invocation inside
MethodA() in class A. Then the developer wanted the ability to go to the exact line in the
source code that contained this method invocation. At Powel I also had two presentations
for some of the other developers and managers there. The most valuable feedback we got
from these presentations was that none of the developers that were present said they would
trust an automated refactoring tool of this scale. It would be too dangerous to blindly trust
an automated refactoring tool that changes dependencies and the architectural structure of
a software system.

77

78

Chapter 8
Project Evaluation

In this chapter I will evaluate the software compared to the research method described in
section II. I will reflect on whether the plugin meets the functional requirements and how
the quality requirements are implemented in the software system.

8.1 Research Method

I have chosen to use design science as my research method. As described in chapter 2.2,
design science consists of four different parts. When I started writing my thesis I started
with examining existing tools for refactoring, and read different articles that described
refactoring from several different points of view. This was the theory building process of
my thesis. After that, I identified what my thesis should contain and what the contribution
should be, as part of the problem diagnosis. The technology invention was the plugin that
I developed. Finally the technology evaluation consisted of performing simulations and
manually refactor the source code based on the simulations, in both an industrial setting at
Powel and with an open source project. While working with my thesis, I have continually
improved each of these parts iteratively. Design science is an iterative

8.2 Functional Requirements

This section will evaluate all the functional requirements presented in section 5.1, and ver-
ify if these requirements are met. Many of these functionalities has already been described
more thoroughly in the Contribution part, so this will just serve as a quick summary of
whether the functionalities are supported.

79

8.2.1 The Plugin
Following is a list of all the functional requirements concerning the plugin, and a quick
description whether the requirement is met.

FR1: The parser should be able to analyze C# solutions.
The parser uses the NRefactory library and can successfully load a C# solution.

FR2: The plugin should give the user feedback on the loading process.
By using a loading bar, the plugin gives the user feedback about how far the loading
process has proceeded.

FR3: The plugin should be able to visualize a solution.
The GraphSharp library enables the plugin to visualize a solution in a graph, where
each node represents a class and each edge represents a dependency between two
classes.

FR4: The plugin should be able to detect and visualize dependency cycles.
The analysis tool implemented in the plugin detects dependency cycles and the plugin
colors the nodes in a cycle orange.

FR5: The plugin should be able to show all the classes in a list view that contains
important metrics for each class.

The plugin contains a list view, as shown in figure 4.1, which contains several
metrics for all the classes.

FR6: The plugin should be able to simulate refactorings.
By using the analysis tool, the plugin can simulate refactorings.

FR7: The plugin should show the result of a refactoring simulation.
After a simulation is done, the result is shown in the SimulationResultViewer.

FR8: The plugin should be able to generate a report based on the simulation.
If a simulation result is added to the report in the SimulationResultViewer, then the
plugin will generate a report which the user can access.

FR9: The plugin should be able to show a class-view and a file-view.
The plugin generates both a graph based on all the classes, and a graph based on
all the source files. This different graphs are available by changing views.

8.2.2 User Interaction
The functional requirements of the user interaction are described in this section.

FR10: The user should be able to add a new class to the graph.
The context menu of the graph view contains a menu item that allows a user to add

80

nodes to the graph.

FR11: The user should be able to add an edge between two nodes in the graph.
In the drop down list under the ”Click Action” menu item, the user can choose
”Add Edge” and click on two nodes to add an edge between them.

FR12: The user should be able to remove a node from the graph.
When right clicking on a node, the user can choose ”Remove Edge” to remove it.

FR13: The user should be able to remove an edge from the graph.
By right clicking on a node and choosing ”Remove Edge” in the context menu, the
user can remove the edge.

FR14: The user should be able to sort the classes in the list view, based on
each metric.

The plugin uses a DataGridView to contain the classes in a class view, which supports
sorting by all columns.

FR15: The user should be able to show and hide different metrics in the list view.
The user can right click on any of the column headers in the list view to display a
context menu that contains all the supported metrics and an option to show or hide the
metric.

FR16: The user should be able to set a class as the main class in the graph.
The context menu that is displayed when right clicking on a node contains an option
to set the corresponding class as the main class.

FR17: The user should be able to input parameters for a refactoring simulation.
When the user starts to simulate a refactoring the ParameterInputView is shown which
contains several parameters that the user can change.

FR18: The user should be able to choose between three different types of
simulations: System refactoring, cycle refactoring and
single component refactoring.

After inputing parameters, the user can choose one of these refactorings in the
RefactoringSelection.

8.3 Quality Requirements

The quality requirements that I defined in section 5.2 are the nonfunctional requirements
of the plugin. These requirements should also be evaluated in order to verify that these
requirements are met

81

8.3.1 Correctness
C1: Parsing a Solution
When the plugin parses a solution, we must ensure that every dependency is found.I have
tested this by performing an accuracy test of the parser, which is explained in section 9.1.
In this section I present the accuracy test that I performed on the NRefactory project. The
accuracy test concludes that the plugin found all the dependencies that existed in the seven
classes that I manually reviewed. Based on my tests I can therefore claim that the plugin
meets quality requirement C1.

C2: Graph Manipulation
I have performed several test of the graph manipulation feature in the plugin. I have per-
formed these tests by loading the VidCoder solution, generating the map files associated
with this solution and manually noted the dependencies between ”VidCoder.Services.Processes”
and ”VidCoder.Services.IProcesses”. The only dependency between these two classes
were through an interface dependency from ”Processes” to ”IProcesses”, so the depen-
dency between these two classes existed only in the interface map and the all types map.
These map files are the ones that are described in section 4.4.1. Then I performed several
graph manipulations. First I tried to remove the edge between those two classes. After the
view was updated I generated the map files again and checked the dependencies between
these two classes. I then confirmed that the dependency in the interface map, the all types
map was removed.

The second test I performed was to remove the class ”VidCoder.Services.IProcesses”.
This class is used by three other classes; ”VidCoder.Services.Processes”,
”VidCoder.Services.ProcessAutoPause” and
”VidCoder.Services.AddAutoPauseProcessDialogViewModel”. After removing the class
from the view I confirmed that the class was not present in any of the maps, and that none
of the three classes had any dependency towards it anymore. The plugin meets the require-
ment of C2.

C3: Recalculating after Simulating Refactoring
This quality requirement is concerned with the changes in the model when a simulation
is performed. When performing one of the integration tests, Test 3, which is described in
section 9.2, I generated the report and saved it. Then I recalculated the graph and generated
the map files again. Then I verified that all the changes that were reported had been done
in the map files. All the changes that were reported had been changed in the maps as well,
so the plugin meets quality requirement C3.

8.3.2 Usability
U1: Learning to use the Plugin
The only other developer that has used the plugin other than myself is Tosin Daniel
Oyetoyan and the developer who helped us to test the plugin at Powel. However, since
Tosin already knew all the refactoring strategies used by the plugin, he had no problem in

82

learning how to use it. When the developer at Powel was trying the tool, the help view
was not implemented, so Tosin and I had to explain him the basics of the plugin ourselves.
Therefore it’s hard to verify this quality requirement. In the interview that Tosin and I had
with him, he said that the plugin could be difficult to learn but also stated that the imple-
mentation of a help view should improve how fast a developer could learn how to use the
plugin.

8.3.3 Performance
P1: Loading a Solution
This quality requirement should reflect how long it takes to load a solution. Loading a
solution consisting of approximately thousand classes should take no longer than a minute.
When loading VidCoder, which consists of 245 different classes, I timed the time it took
to load the solution ten different times. The average loading time based on this test was 4.8
seconds. A quick calculation shows that a similar project consisting of thousand classes,
should finish loading in ca. 20 seconds. Which is well within the limit of a minute.
However, the results that I got from loading the VidCoder solution is not definite proof
that the quality requirement is met, but most probably. There are of course several factors
when loading a solution, and most importantly processing power. If this plugin is used on
an older computer the results would most likely be much worse.

83

84

Chapter 9
Testing and Validation

To ensure that the plugin is generating the most accurate results regarding the simula-
tion, we must ensure that the tool is correctly calculating all the dependencies between
the different components. In this section I will first test whether the plugin finds all the
dependencies that exists within a class file. Then I will test the integration with the java
tool which this plugin uses, to ensure that they report the same results.

9.1 Accuracy Test
In order to test the accuracy of the parser and dependency finder, I have manually reviewed
seven different classes in the NRefactory solution[12]. In these classes I have logged all
dependencies to other components in the same solution. The classes I have manually re-
viewed have been selected based on the differences between them, so that these classes
will represent a stratified sample. Some have almost no outgoing dependencies and others
have several. Some have only static methods while others have zero.

The following diagram shows the different kinds of dependencies found in each class
based on the maps that this tool needs for analysing the solution. These maps are described
in section 4.4.

9.2 Integration Test
In this section I will present my findings on some test that I have performed in the plugin
compared with the Java tool developed by Tosin, which is used to simulate refactorings. It

1NS = Nonstatic, S = Static

85

Table 9.1: Accuracy of Parser on Test Project

Class Field usage Static field usage Method Inv. Static Method Inv.
Tool Actual Tool Actual Tool Actual Tool Actual

JsonTextWriter 1 1 6 6 2 2 5 5
JValue 2 2 1 1 4 4 4 4

BsonBinaryWriter 6 6 1 1 1 1 2 2
DateTimeUtils 1 1 4 4 4 4 1 1

DataSetConverter 2 2 1 1 5 5 0 0
Product 0 0 0 0 0 0 0 0

DynamicWrapper 3 3 0 0 2 2 0 0

Table 9.2: Accuracy of Parser on Test Project

Class Constructor Inv. Published Types Method Types 1 All Dependencies
Tool Actual Tool Actual Tool Actual Tool Actual

JsonTextWriter 1 1 1 1 NS NS 11 11
JValue 2 2 1 1 NS & S NS & S 10 10

BsonBinaryWriter 0 0 1 1 NS NS 10 10
DateTimeUtils 1 1 0 0 S S 6 6

DataSetConverter 1 1 3 3 NS NS 7 7
Product 0 0 0 0 NS NS 0 0

DynamicWrapper 2 2 0 0 S S 3 3

is essential that the results from this tool is exactly the same as the results from Tosin’s Java
tool. If not, the whole integrity of this tool will be under scrutiny. These simulations are
only used for testing the integrity of the tool and will not be discussed as part of the results
of this tool. The simulations have been performed on the open source project VidCoder.
For all the simulation tests that has been performed, the following parameters have been
used:

TopK - Fanin: 20
TopK - SCC: 10
TopK - CRSS: 20
Sorting priority: SCC

For all the different tests that will be performed, we note the most important values,
like mean reachability, highest cycle set size and reachability data. The following tests
have been performed:

Test 1: System Refactoring
First we will select ”VidCoder.App” as the main class. Then we will select ”Simulate
Refactoring” from the tools menu. We then choose ”System Refactoring” from the refac-
toring selection view. In the view that shows all the candidates in a list, we input ”4” as
the number of refactorings.

86

Test 2: Cycle Refactoring
The second test will be to test the integrity of the cycle simulation features of the tool. First
we select ”Simulate Refactoring” and then ”Cycle Refactoring” to start the test. In the cy-
cle selection view we choose the cycle with the highest cycle set size. In this example, that
would be the cycle that contains the class ”VidCoder.ViewModel.Components.PresetsViewModel”
and the cycle set size is 14. When presented with the candidates we choose every candi-
date by double clicking on the ”Select” column in the list view.

Test 3: Single Component Refactoring
As with all the other simulations, we must first choose ”Simulate Refactoring”. Then we
select ”Single Component Refactoring”. When confronted with the candidates from the
tool we select the top 10 components based on the sorting priority.

In table 9.3, the columns named C# will present the numbers found by the plugin,
while the Java column shows the numbers found by the Java tool which is implemented in
the plugin. The results should of course be exactly the same.

Table 9.3: Integration Test on NRefactory

Test Post Mean Post Std. Dev.2 Post Nr. of Comp. Post Nr. of Edges Post SCC3

C# Java C# Java C# Java C# Java C# Java
Test 1 10.30 10.30 20.13 20.13 250 250 538 538 8 8
Test 2 18.49 18.49 38.55 38.55 253 253 522 522 14 14
Test 3 19.80 19.80 41.58 41.58 256 256 519 519 15 15

2Post Standard Deviation of class Reachability
3Highest Cycle Set Size

87

88

Chapter 10
Discussion

The challenges to refactor existing software systems is not trivial, especially at the class
granularity level. This work is an additional and significant contribution to existing work
in resolving structural complexities of software systems.

Furthemore the developed tool is based on a sound software engineering theory and
practice. Also, I have performed extensive review of existing tools and to the best of my
knowledge, this is plugin offers new functionality from what existing tools are providing.

I have used the Visual Studio SDK and several other third party libraries in the plugin.
Based on the feedback from the developer at Powel, the plugin is quite easy to use and
is implemented into the Visual Studio environment, giving it several useful features. The
developer at Powel stated in an interview: ”...with a proper help file, It shouldn’t take long
time to learn to use the tool by yourself...” and agreed that the plugin was easy to learn
quickly.

The results I have gotten from Powel and the open source project VidCoder, are en-
couraging. I manually refactored VidCoder and managed to reduce the complexity by
quite a large margin, especially considering that I only refactored six classes. The mean
reachability was reduced by almost 40 % and the standard deviation by approximately 35
%. The biggest cycle that contained 14 elements was broken and the highest reachability
range, from 101 to 150 classes, contained only 9 classes compared to 32 classes before the
refactoring.

The industrial validation of the tool that we did at Powel gave me several useful in-
sights. First, It is very positive that the developer we interacted with accepted many propo-
sitions for refactoring from the tool. In addition, there are some inappropriate and surpris-
ing coupling decisions that the analysis tool revealed. His feedback of the tool in the
interview that we had with him was also positive.

89

10.1 Research Questions
In section 2.1 I defined some research questions for my thesis. In this section I will answer
the questions and discuss how it has been incorporated into my thesis.

RQ1: Can we help developers in making architectural changes at the class
granularity level, by using this plugin?

In chapter 7, I presented my results from both the VidCoder project and from Powel.
These results was quite conclusive in verifying that this plugin clearly can help developers
in performing refactorings at the class level. The visualization of the source code gives
developers means to visualize the inter-relational dependencies between the classes in a
solution, which can help in identifying potential refactorings. Additionally, the list view
contains several metrics that also can help developers in discovering classes that could be
refactored. Lastly, and most importantly, the plugin has the ability to analyze the source
code based on the reachability, fan-in and number of strongly connected components to
calculate the best candidate classes to refactor.

RQ2: How much improvement can the proposed refactorings provide?

The results that I got from the VidCoder project clearly showed that the refactorings, which
the simulation suggested, improved the overall structure of the architecture. The results
from VidCoder indicated an improvement of approximately 40% in the mean reachabil-
ity, which is a big improvement This manual refactoring took approximately two hours of
actual coding, which indicates that even with a small amount of effort, big improvements
can be made, using this plugin.

90

Chapter 11
Conclusion

In my master thesis I have developed a plugin for Visual Studio that can visualize the
source code in a C# solution and then simulate refactorings, based on the structural com-
plexities in the architecture. I have presented my findings on existing tools, and concluded
that this plugin can help developers in refactoring several structural complexities that most
other tools cannot do. The results from the plugin regarding the improvement of software
structure are also encouraging, as I discussed in Chapter 10.

For future work, I have identified some improvements that can be made in the plu-
gin. When the plugin presents all the different dependencies between two classes there is
no way to automatically go to the source code where this dependency is defined. This is
something that would be very useful when refactoring, as the developer could alter these
dependencies more quickly. Another possibility would be to implement support for im-
plicitly typed variables. As of now, these variables are not supported by the plugin. This
feature is a relatively new feature in C#, and is not used as much as explicitly typed vari-
ables. However, this is still something that would affect the architecture of the software,
and should therefore also be reflected in the analysis that the plugin performs on source
code. In the future there would also be a possibility of adding functionality to perform
automatic refactoring based on the simulations that the plugin proposes. As of now, it
does not seem as though most developers would trust such a feature, but after performing
several manual refactorings they might change their attitude.

91

92

Bibliography

[1] Alfred V. Aho, Monica S. Lam, Ravi Sethi, and Jeffrey D. Ullman. Compiler Prin-
ciples, Techniques and Tools. Pearson Education, 2007.

[2] Len Bass, Paul Clements, and Rick Kazman. Software Architecture in Practice(2nd
Edition). Addison Wesley, 2003.

[3] G. Bavota, B. De Carluccio, A. De Lucia, M. Di Penta, R. Oliveto, and O. Strollo.
When does a refactoring induce bugs? an empirical study. In IEEE 12th International
Working Conference on Source Code Analysis and Manipulation, pages 104–113.
IEEE, 2012.

[4] Chris Chedgey, Paul Hickey, Paul O’Reilly, and Ross McNamara. Structure101,
2013. URL: http://structure101.com.

[5] CodePlex. Graphsharp, 2009. URL: http://graphsharp.codeplex.com.

[6] CodePlex. Vidcoder, 2013. URL: http://vidcoder.codeplex.com.

[7] Clarkware Consulting. Jdepend, 2009. URL: http://clarkware.com/
software/JDepend.html.

[8] Franz-Josef Elmer. Classycle, 2012. URL: http://classycle.
sourceforge.net.

[9] Donald Firesmith. Quality requirements checklist. 2005.

[10] Martin Fowler, Kent beck, John Brant, William Opdyke, and Don Roberts. Refactor-
ing: Improving the desing of existing code. 1999.

[11] Jeroen Frijters. Ikvm.net, 2013. URL: http://www.ikvm.net.

[12] GitHub. Nrefactory, 2009. URL: https://github.com/icsharpcode/
NRefactory.

[13] Odysseus Software GmbH. Stan, 2013. URL: http://stan4j.com/
introduction/introduction.html.

93

http://structure101.com
http://graphsharp.codeplex.com
http://vidcoder.codeplex.com
http://clarkware.com/software/JDepend.html
http://clarkware.com/software/JDepend.html
http://classycle.sourceforge.net
http://classycle.sourceforge.net
http://www.ikvm.net
https://github.com/icsharpcode/NRefactory
https://github.com/icsharpcode/NRefactory
http://stan4j.com/introduction/introduction.html
http://stan4j.com/introduction/introduction.html

[14] Goldfinch. Nitriq, 2013. URL: http://www.nitriq.com/features.

[15] Google. Codepro analytix, 2012. URL: https://developers.google.com/
java-dev-tools/codepro/doc/features/features.

[16] Tao Jiang, Ming Li, Bala Ravikumar, and Kenneth W. Regan. Formal grammars and
languages. pages 20–20. Chapman & Hall, 2010.

[17] Miryung Kim, Thomas Zimmermann, and Nachiappan Nagappan. A field study of
refactoring challenges and benefits. 2012.

[18] Philippe Kruchten. Architectural blueprints - the ”4+1” view model of software
architecture. 1995.

[19] Craig Larman. Applying UML and Patterns: An Introduction to Object Oriented
Analysis and Design and Iterative Development (3rd Edition). Prentice Hall, 2004.

[20] Hayden Melton and Ewan Tempero. Formal grammars and languages. pages 87–95.
Australian Computer Society Inc., 2007.

[21] MSDNA Microsof Developer Network. Tutorial 1: Getting started with visual
studio extensibility, 2014. URL: http://msdn.microsoft.com/en-us/
library/bb330853.aspx.

[22] Emerson Murphy-Hill and Andrew P Black. Breaking the barriers to succesful
refactoring: Observations and tools for extract method. In ACM/IEEE 30th Inter-
national Conference on Software Engineering, pages 421–430, Leipzig, Germany,
2008. IEEE.

[23] Steffen M. Olbrich, Daniela S. Cruzes, Victor Basili, and Nico Zazworka. The evo-
lution and impact of code smells: A case study of two open source systems. pages
390–400, 2010.

[24] Steffen M. Olbrich, Daniela S. Cruzes, and Dag I.K. Sjberg. Are all code smells
harmful? a study of god classes and brain classes in the evolution of three open
source systems. In 2010 IEEE International Conference on Software Maintenance,
pages 1–10. IEEE, 2010.

[25] Tosin Daniel Oyetoyan, Daniela S. Cruzas, and Reidar Conradi. A study of cyclic
dependencies on defect profile of software components. 2013.

[26] Tosin Daniel Oyetoyan, Daniela S. Cruzas, and Reidar Conradi. Decision support
approaches for refactoring components in dependency cycles. 2014.

[27] Douglas C. Schmidt, Michael Stal, Hans Rohnert, and Frank Buschmann. Pattern-
Oriented Software Architecture, Patterns for Concurrent and Networked Objects. Vol.
2. John Wiley & Sons, 2013.

[28] S.M.A. Shah, J. Dietrich, and C. McCartin. Making smart moves to untangle
programs. In Software Maintenance and Reengineering (CSMR), pages 359–364,
Szeged, Hungary, 2012. IEEE.

94

http://www.nitriq.com/features
https://developers.google.com/java-dev-tools/codepro/doc/features/features
https://developers.google.com/java-dev-tools/codepro/doc/features/features
http://msdn.microsoft.com/en-us/library/bb330853.aspx
http://msdn.microsoft.com/en-us/library/bb330853.aspx

[29] Patrick Smacchia. Ndepend, product features, 2013. URL: http://www.
ndepend.com/Features.aspx.

[30] Nikolaos Tsantalis, Alexander Chatzigeorgiou, Theodoros Chaikalis, and Marios
Fokaefs. Jdeodorant, 2013. URL: http://www.jdeodorant.com.

[31] John Venable. A framework for design science research activities. In Information
Resources Management Association International Conference, pages 184–187. Idea
Group Inc., 2006.

[32] Thomas Zimmermann and Nachiappan Nagappan. Predicting defects with program
dependencies. 2009.

95

http://www.ndepend.com/Features.aspx
http://www.ndepend.com/Features.aspx
http://www.jdeodorant.com

96

Part VI

Appendices

97

Appendix A
Installation Guide

A.1 Requirements
This program is a plugin for Microsft Visual Studio, so a valid license is needed. This
plugin requires Visual Studio 2013 to work. In addition to several different C# libraries,
this plugin also uses a java tool for analysis and simulation. Because of this, the plugin
needs the IKVM library to run the java tool. When installing this tool you must therefore
also have a copy of the dynamic link libraries of IKVM that are needed. These dynamic
link libraries are: IKVM.OpenJDK.Core.dll and IKVM.OpenJDK.Runtime.dll. These dll’s
are found on sourceforge at http://sourceforge.net/projects/ikvm/files/.

A.2 Installation
The binaries for this plugin should include all the necessary files except for the IKVM
files arleady discussed. In addition to the libraries, there is also a .vsix file located inside
the source folder. This is the installer for the plugin, or the VSIX Package, as they are
called. Simly douck click on this file and a dialog will apear. This dialog will contain
all the installations of Visual Studio that support the installation of the plugin. Choose
the preferable installation and click ”Apply”. This prcess can take a few seconds to fin-
ish. After the installation is done you need to locate the installation folder. This folder
will be located in the %AppData path in your environment. The %AppData folder is usu-
ally located inside C:/Users/*YourUser*/AppData, note that this folder usually is hidden.
Inside the AppData folder you must locate the folder %AppData/Local/Microsoft/Visual-
Studio/*VersionofVisualStudio*/Extensions. This folder will include a randomly gener-
ated folder which contains the binaries of the installation. You must manually check every
folder and find the one that includes all the binary files from the installation folder. Once
you have located the folder, place the two aforementioned dll’s into this folder. You should
now be set to go.

99

100

Appendix B
User Guide

B.1 Loading a solution
Start the version of Visual Studio in which you installed the plugin. Load a solution
into Visual Studio. Locate the Dependency Simulator at View → Other Windows →
Dependency Editor. A new window will appear with several options. First, you should
click Load Solution. Be sure that there is an active solution loaded into the environment.
This will draw a graph of all the classes in the solution and the dependencies between
them.

B.2 Graph Manipulation
You can now manipulate this graph to some degree: You can add or remove nodes(Nodes
doesn’t always spawn where you want them to be, usually in the upper leftmost corner).
You can add or remove edges between nodes. Add edges by choosing ”Add Edge” in the
”Click Action”. Remove edges by right clicking on them and then click ”Remove Edge”.
If the edge that you are removing is cyclic, a new window will appear, asking which edge
should be removed. Read carefully about which nodes are source and target so that the
correct edge is removed. You can undo and redo these aforementioned actions. Note that
the current actions will be reset when you add a simulation to the report because this can
potentially change the whole structure of the graph. You can edit references for any given
edge. An edge can consist of many references: Method return type, mehod invocation,
member field etc. This is reflected in the underlying mapstructure which this tool uses
to simulate refactorings. If the edge your editing is cyclic, a new window will appear,
asking which edge that you want to edit. Be sure to pick the right one. You can view
info about each edge which basically will tell you what sort of referencetypes this edge
consists of and if it’s cyclic or not. You can also list all the incoming and outgoing edges
by clicking ”List Edges”. By choosing ”Change View” the underlying fileview will be

101

presented. Click again to change back.

B.3 Simulate Refactoring
To simulate a refactoring you must first choose ”Simulate Refactoring” in the top menu.
Now you will see a new window called ”ParameterInputView”. As the title suggests, here
you should input some parameters that the tool will need to generate suitable candidates
to be refactored. The TopK parameters should represent the top most percentile of classes
for each parameter. For instance, if the TopKCRSS is set to 20, then the tool will generate
candidates that is among the top 20 percentile concerning CRSS(reachability). The main
class should be the entry point class in the application. The easiest way to set the main class
is right clicking on a node(class) and select ”Set as Main Class”. The sorting priority tells
the tool what priority it should select candidates after. Next you will have three options.
System Refactoring, which tries to refactor the system as a whole. When choosing system
refactoring you will have to input the number of refactorings. Cycle Refactoring, refactor
specific cycles that are present in the code structure. By choosing cycle refactoring you
will need to choose which cycle to refactor. After choosing which cycle, you must choose
which edges in the cycle that should be refactored(double click on the select column to
choose all edges). Usually , selecting all these edges will give the best result. Single
Component Refactoring, is used to refactor one component. Single component refactoring
will present you with a list of potential candidates, and you must choose which you want
to refactor(by double clicking on the select column you will choose all components).

B.4 Simulation Results
After the tool has simulated a refactoring, a simulation result view will appear. This view
will present several metrics concerning the overall software quality of the solution. The
mean reachability and standard deviation for the reachability of all components, before
and after refactoring, are shown. The number of edges and the number of components,
before and after, are also presented. On the left there will be a histogram with reachability
data from the simulation. Under each column there will be a range. This range represents
the reachability of the components. Then the actual value of the column will represent
how many components whose reachability is within that range. If the result is satisfactory,
then you can click ”Add to Report”, which will update the model and add the result to
the report, which I will explain later. If the result is not satisfactory then choose ”Dispose
Result” or simply exit the view.

102

B.5 Report and Instructions
When a result has been added, first you should update the view. This is done by clicking
”Recalculate” in the menu. In order to view the steps required in the code to get the
situation that is now represented in the graphical view, you must access the report by
clicking ”Show Report”. This will open up a new window. This window includes four
different columns: A source component, which is the node that will be manipulated. An
action that should be applied to the source. An optional target will represent the node that
the action can be performed upon. And lastly the strategy represents the strategy that was
applied to the source.

103

104

Appendix C
Algorithms

C.1 Variable Identifiers

private void AddIdentifier(string name, string value,bool isMethod){
if (!_currentIdentifiers.ContainsKey(name)) {

_currentIdentifiers.Add(name, value);
if (isMethod) {

if (_methodIdentifiers.ContainsKey(name))
_methodIdentifiers.Remove(name);

_methodIdentifiers.Add(name, value);
}

}
else if(isMethod) {

string oldValue = _currentIdentifiers[name];
if(!_overridenIdentifiers.ContainsKey(name))

_overridenIdentifiers.Add(name, oldValue);

_currentIdentifiers.Remove(name);
_currentIdentifiers.Add(name, c);
if (_methodIdentifiers.ContainsKey(name))

_methodIdentifiers.Remove(name);

_methodIdentifiers.Add(name, c);
}

}

Figure C.1: The method that adds an identifier to the dictionary of identifiers

105

C.2 Dependency Calculation

/// <summary>
/// This algorithm loops through every CodeReference found in a class
/// and finds its corresponding Class in a Dictionary of classes.
/// Every CodeReference includes a Class where only the name is
/// is set. This name is gathered from the parser and is set to the
/// identifier name of a Node in the abstract syntax tree.
/// The full name of the class is then calculated based on the
/// using statements and the current namespace the identifier node
/// is found in.
/// </summary>
public void CalculateDependencies()
{

_classList = _model.ClassList;
if (_classList.Count <= 0)

return;

foreach (BaseClass c in _classList.Values)
{

List<CodeReference> newReferences = new List<CodeReference>();
foreach (CodeReference r in c.References)
{

FindDependency(c,newReferences,r);
}
c.References = newReferences;
_model.FinaliseClass(c);

}
}

Figure C.2: The method that calculates the dependencies

106

private void FindDependency(BaseClass c,
List<CodeReference> newReferences,
CodeReference r)

{
Class c2 = (Class)r.Target;

if (c2.Namespace == null)
{

string namesp = "";
string name = "";
string[] arr = SplitNamespace(c2.Name);
string[] namespaces = null;

if (arr == null) //c2.Name only contains the Class name,
//so the name is either from using statements or within
//the namespace of c, or in the global namespace
{

name = c2.Name;
if (c.Namespace.IsClassInNamespace(name))
{

string fullName = c.Namespace.Name
+ "." + c2.Name;

if (c.FullName == fullName)
return;

newReferences.Add(AddEdge(c, fullName, r));
return;

}
else if (_namespaceList[GLOBAL].IsClassInNamespace(name))
{

string fullName = _namespaceList[GLOBAL].Name
+ "." + c2.Name;

if (c.FullName == fullName)
return;

newReferences.Add(AddEdge(c, fullName, r));
return;

}
else
{

namespaces = c.FullName.Split('.');

Figure C.3: The method that finds the full class name for a referenced class inside another class,
and adds it to the list of dependencies.

107

if (namespaces != null)
{

string acc = "";
foreach (string s in namespaces)
{

if (acc == "")
acc = s;

else
acc += '.' + s;

CodeReference temp;
if ((temp= CheckNamespace(acc, c, c2.Name, r))

!= null)
{

newReferences.Add(temp);
return;

}
}

}
if (c.GetType() == typeof(PartialClass))
{

CheckNamespaces(c, c2.Name, r, newReferences,
r.SourceFile.UsingNamespaces);

}
else
{

Class cl = (Class)c;
CheckNamespaces(c, c2.Name, r, newReferences,

cl.SourceFile.UsingNamespaces);
}

}
}

Figure C.4: Continuation of figure C.3

108

else
{

name = arr[1];
namesp = arr[0];

namespaces = namesp.Split('.');
string temp = c.Namespace.Name + "." + namesp;

CodeReference cr;
if ((cr = CheckNamespace(temp, c, name, r)) != null)
{

newReferences.Add(cr);
return;

}
else if (namespaces != null)
{

string acc = "";
foreach (string s in namespaces)
{

if (acc == "")
acc = s;

else
acc += "." + s;

CodeReference cr2;
if((cr2=CheckNamespace(acc,c,name,r)) != null)
{

newReferences.Add(cr2);
return;

}
}

}
}

}
}

Figure C.5: Continuation of figure C.4

109

private void CheckNamespaces(BaseClass c,string refClassName,
CodeReference r,List<CodeReference> l,

List<string> namespaces)
{

foreach (string ns in namespaces)
{

CodeReference temp;
if ((temp = CheckNamespace(ns, c, refClassName, r)) != null)

l.Add(temp);
}

}

Figure C.6: A method that defines some reusable code. Is used within the method FindDepen-
dency()

private CodeReference CheckNamespace(string ns,BaseClass c,
string refClassName,CodeReference r)

{
if (_namespaceList.ContainsKey(ns) &&

_namespaceList[ns].IsClassInNamespace(refClassName))
{

string fullName = _namespaceList[ns].Name + "." +refClassName;
if (c.FullName == fullName)

return null;
return AddEdge(c, fullName, r);

}
return null;

}

Figure C.7: A method that defines some reusable code which is used within the method FindDe-
pendency()

110

	Abstract
	Preface
	Table of Contents
	List of Tables
	List of Figures
	I Introduction
	Introduction
	Motivation
	Context
	Contribution
	Architecture
	Result
	Structure

	II Research Design
	Research
	Research Questions
	Research Method
	Design Science

	III Prestudy
	State of the Art
	Code Smell
	Duplicated Code
	Feature Envy
	God Class
	Lazy Class
	Long Method
	Contrived Complexity
	Refused Bequest

	Dependency Cycles
	Detecting Dependency Cycles
	Breaking Dependency Cycles

	Refactoring
	Naming Conventions
	Extract Method
	Move Method
	Generalize Type
	Benefits and Challenges Regarding Refactoring

	Existing Tools
	JooJ
	STAN
	JDepend
	NDepend
	JDeodorant
	Classycle
	Nitriq
	Structure101
	CodePro AnalytiX
	Summary

	Lexing, Parsing and Compilers
	Programming Languages
	Compilers
	Lexing
	Parsing

	IV Own Contribution
	Dependency Simulation Plugin
	User Interfaces
	The Parser
	The Visual Studio Plugin
	Analysis tool
	Data Structures
	Refactoring Strategies

	Features of the plugin
	Visualizing a C# solution
	Miscallenous features
	Metrics
	Graph manipulation
	Simulating Refactorings

	Algorithms and data structures
	Data structures
	Algorithms

	Limitations

	Requirements
	Functional Requirements
	Quality Requirements
	Correctness
	Usability
	Performance

	Software Architecture
	Architectural Drivers
	Inexperience with .NET
	Integrating Third Party Libraries
	Consistent Feedback

	Data-View consistency
	Model View Controller
	View Model
	Development View
	Logical View
	Process View
	Scenarios

	V Evaluation
	Results
	Case study #1: VidCoder
	Case Study #2: Powel

	Project Evaluation
	Research Method
	Functional Requirements
	The Plugin
	User Interaction

	Quality Requirements
	Correctness
	Usability
	Performance

	Testing and Validation
	Accuracy Test
	Integration Test

	Discussion
	Research Questions

	Conclusion

	Bibliography
	VI Appendices
	Installation Guide
	Requirements
	Installation

	User Guide
	Loading a solution
	Graph Manipulation
	Simulate Refactoring
	Simulation Results
	Report and Instructions

	Algorithms
	Variable Identifiers
	Dependency Calculation

