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Abstract 

 

Transcription factors are proteins essential for regulation and expression of genes. The region 

of DNA where transcription factors binds during transcription is known are transcription 

factor binding site. The clear understanding of transcription factors and its binding sites 

reveals different genomic secrets. The aim of this work is to classify the real and false 

transcription factor binding sites using machine learning approach. Model based prediction of 

binding site like Position Weight Matrix (PWM) has been successfully used to identify the 

transcription factor binding site, but generates a lot of false positive binding sites. For this 

reason, this project tries to classify the real and false positive binding site based on the 

genomic and physical properties. 

Firstly, this work studies the properties for classification of real and false binding sites. In a 

second stage, the true binding from ChIP-seq region was used to make positive and false 

positive binding regions. The genomic property and statistical measures of physical 

properties were computed from both regions forming positive and negative datasets. The 

statistical measure like standard deviation, mean, kurtosis and skewnees were computed. 

Finally, these properties were used to train the model and followed by testing. The result of 

classification was compared with three different machine learning algorithms like Support 

Vector Machines (SVM), Random Forest (RF) and Naïve Bayes (NB). 

The results of the experiment showed that SVM are well suited to classify the real and false 

transcription factor binding sites. However, RF predicts with better accuracy, specificity and 

sensitivity in all observed cases. It was shown that Pearson VII function-based Universal 

Kernel (PUK) in SVM predicts with better accuracy than other kernels. It was also showed 

that only few attributes were important in classification. Furthermore, presence of additional 

signals was observed around transcription factor binding sites from correlation plot. The 

result of logo plot indicated that transcription factor binding sites may form a cruciform 

structure. But an analysis performed to verify the cruciform structure did not clearly reflect 

the structure. 
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This work demonstration that combined genomic and statistical measures of structural 

properties can classify real and false transcription factor binding sites. This project can be 

further enhanced to make a general classifier tool by identifying transcription factor 

independent properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
RAFT- Real and False Transcription Factor Binding Sites 

______________________________________________________________________________ 
 

 

 

4 

Acknowledgements 

 

First and foremost, I would like to thank my department IDI for giving me an opportunity to 

work in the topic RAFT- Real and False Transcription Factor Binding Sites. I wish to express 

my sincere gratitude to Professor Finn Drabløs at department of Cancer Research and 

Molecular Medicine (IKM), Norwegian University of Science and Technology (NTNU), for 

his close guidance and readiness to help during my work. This work would not have been 

possible without his constant guidance and valuable suggestions during the project and report 

writing. His vast and never ending insight in the topic had been a great source of motivation 

and inspiration for this work. 

I would also like to thank my department Professor Pål Sætrum for his help and cooperation. 

Last but not least, I would like to thank my faculty “Faculty of Natural Sciences and 

Technology”, IDI and IKM departments for their close cooperation and coordination for 

providing me a working environment to accomplish this project. 

Sandesh Prasai 

 

 

 

 

 

 

 

  



 
RAFT- Real and False Transcription Factor Binding Sites 

______________________________________________________________________________ 
 

 

 

5 

  



 
RAFT- Real and False Transcription Factor Binding Sites 

______________________________________________________________________________ 
 

 

 

6 

Preface 

 

This text is submitted as partial fulfillment of the requirements of degree in MSc in Medical 

Technology, specialization in Bioinformatics at the Norwegian University of Science and 

Technology (NTNU). This project has been carried out at the department of Cancer Research 

and Molecular Medicine (IKM) during the period of February 2014 to July 2014 under the 

guidance and supervision of Professor Finn Drabløs and Pål Sætrum. I would like to thank 

both of them for their continuous guidance and feedback during my work. Their valuable 

comments have helped me a lot to accomplish this project with fruitful output. 

Trondheim, Norway, July 2014 

Sandesh Prasai 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
RAFT- Real and False Transcription Factor Binding Sites 

______________________________________________________________________________ 
 

 

 

7 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
RAFT- Real and False Transcription Factor Binding Sites 

______________________________________________________________________________ 
 

 

 

8 

Contents 

ABSTRACT ........................................................................................................................................................ 2 

ACKNOWLEDGEMENTS .................................................................................................................................... 4 

PREFACE .......................................................................................................................................................... 6 

CONTENTS ....................................................................................................................................................... 8 

LIST OF FIGURES ............................................................................................................................................. 12 

LIST OF TABLES .............................................................................................................................................. 14 

ABBREVIATIONS ............................................................................................................................................ 16 

CHAPTER 1 ................................................................................................................................................. 18 

1 INTRODUCTION ............................................................................................................................... 18 

1.1 PROBLEM STATEMENT .................................................................................................................................. 18 

1.2 OBJECTIVE OF PROJECT ........................................................................................................................... 19 

1.3 APPROACH .............................................................................................................................................. 20 

1.4 ORGANIZATION OF THESIS....................................................................................................................... 20 

CHAPTER 2 ................................................................................................................................................. 22 

2 BACKGROUND AND LITERATURE REVIEW ............................................................................. 22 

2.1 SIGNIFICANCE OF TFBS .......................................................................................................................... 22 

2.2 CRUCIFORM STRUCTURE OF DNA ........................................................................................................... 23 

2.3 APPROACHES FOR PREDICTION OF TFBS .......................................................................................................... 27 

2.3.1 Experimental method.................................................................................................................... 27 

2.3.2 Computational method ................................................................................................................. 28 

2.3.2.1 Construction of PWM ......................................................................................................................... 29 

2.3.2.2 Limitations of PWM ............................................................................................................................ 31 

2.3.2.3 Tradeoff between cutoff and false positive .................................................................................................. 31 

2.3.2.4 Enhance prediction accuracy with PWM ................................................................................................. 31 

2.3.3 Related work ................................................................................................................................. 32 

2.3.4 ChIP-seq as source of data ........................................................................................................... 35 

2.3.5 Physical Properties of DNA .......................................................................................................... 36 

2.3.5.1 Statistical measures .................................................................................................................................. 39 

2.3.6 Genomic Properties ...................................................................................................................... 39 

2.3.6.1 CpG distance ............................................................................................................................................ 40 

2.3.6.2 Transcription start site distance ................................................................................................................ 40 



 
RAFT- Real and False Transcription Factor Binding Sites 

______________________________________________________________________________ 
 

 

 

9 

2.3.6.3 GC content ............................................................................................................................................... 40 

2.3.6.4 GC Skew .................................................................................................................................................. 40 

2.3.7 FASTA Format .............................................................................................................................. 40 

2.3.8 WEKA-A classifier ........................................................................................................................ 41 

2.3.9 Supervise and unsupervised learning ........................................................................................... 42 

2.3.10 SVM .......................................................................................................................................... 42 

2.3.10.1 Support Vector Machines for linear discriminants .............................................................................. 43 

2.3.10.2 Linearly non-separable data ................................................................................................................ 46 

2.3.10.3 Nonlinear functions via kernels .......................................................................................................... 49 

2.3.11 Other classification approaches .............................................................................................. 50 

2.3.11.1 Random Forest .................................................................................................................................... 50 

2.3.11.2 Naïve Bayes ........................................................................................................................................ 51 

CHAPTER 3 ................................................................................................................................................. 52 

3 APPROACH AND METHODOLOGY .............................................................................................. 52 

3.1 HIGH LEVEL DESIGN ............................................................................................................................... 52 

3.2 ALGORITHMS .......................................................................................................................................... 54 

3.2.1.1 GC count .................................................................................................................................................. 54 

3.2.1.2 GC Skew .................................................................................................................................................. 54 

3.2.1.3 Statistical parameters ............................................................................................................................... 55 

3.2.1.4 Correlation calculations............................................................................................................................ 57 

3.2.1.5 Cruciform structure .................................................................................................................................. 59 

3.3 METHODOLOGY ...................................................................................................................................... 61 

3.3.1 Description of Data Sets ............................................................................................................... 61 

3.3.1.1 Data sources ............................................................................................................................................. 61 

3.3.1.2 Features selection ..................................................................................................................................... 61 

3.3.2 Positive data ................................................................................................................................. 61 

3.3.3 Negative data ................................................................................................................................ 62 

3.3.4 Imbalance problem ....................................................................................................................... 63 

3.3.5 Pre-processing .............................................................................................................................. 64 

3.3.5.1 Training set .............................................................................................................................................. 65 

3.3.5.2 Test set ..................................................................................................................................................... 65 

3.3.6 Quality assurance of dataset ......................................................................................................... 65 

3.3.7 Classifier and its performance ...................................................................................................... 66 

3.3.7.1 F1 -score: ................................................................................................................................................. 66 

3.3.7.2 Sensitivity (recall) or true positive rate .................................................................................................... 66 

3.3.7.3 Specificity –false positive rate ................................................................................................................. 66 

3.3.7.4 Accuracy: ................................................................................................................................................. 66 



 
RAFT- Real and False Transcription Factor Binding Sites 

______________________________________________________________________________ 
 

 

 

10 

3.4 RESOURCES AND TOOL USED ................................................................................................................... 66 

3.4.1 BED tools ...................................................................................................................................... 66 

3.4.1.1 IntersectBed ............................................................................................................................................. 67 

3.4.1.2 closestBed ................................................................................................................................................ 67 

3.4.1.3 subtractBed............................................................................................................................................... 68 

3.4.1.4 fastaFromBed ........................................................................................................................................... 68 

3.4.1.5 slopBed .................................................................................................................................................... 68 

3.4.2 The MEME Suite ........................................................................................................................... 69 

3.4.2.1 FIMO ....................................................................................................................................................... 70 

3.4.2.2 Other tools .......................................................................................................................................... 70 

CHAPTER 4 ................................................................................................................................................. 72 

4 OBSERVATIONS AND ANALYSIS OF OUTCOME ....................................................................... 72 

4.1 RESULTS AND DISCUSSIONS .................................................................................................................... 72 

4.1.1 Observed dataset .......................................................................................................................... 72 

4.1.2 Correlation Plot ............................................................................................................................ 73 

4.1.3 Logo Plot ...................................................................................................................................... 80 

4.1.4 FIMO output observation ............................................................................................................. 85 

4.1.5 Binding region forming cruciform structure ................................................................................. 85 

4.1.6 Classification results..................................................................................................................... 88 

4.1.7 Important features for classification ............................................................................................. 89 

CHAPTER 5 ................................................................................................................................................. 92 

5 CONCLUSIONS ................................................................................................................................. 92 

5.1 LIMITATION ............................................................................................................................................ 93 

5.2 FUTURE WORK ........................................................................................................................................ 93 

REFERENCES ............................................................................................................................................. 94 

APPENDICES ............................................................................................................................................ 102 

APPENDIX I ........................................................................................................................................................ 102 

APPENDIX II ....................................................................................................................................................... 103 

APPENDIX III ...................................................................................................................................................... 104 

APPENDIX IV ...................................................................................................................................................... 107 

APPENDIX V ....................................................................................................................................................... 108 

 

 



 
RAFT- Real and False Transcription Factor Binding Sites 

______________________________________________________________________________ 
 

 

 

11 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  



 
RAFT- Real and False Transcription Factor Binding Sites 

______________________________________________________________________________ 
 

 

 

12 

List of Figures 

 

FIGURE 2-1: EXAMPLE OF CRUCIFORM STRUCTURE ........................................................................................................... 24 

FIGURE 2-2: CONFORMATIONS OF CRUCIFORM ............................................................................................................... 24 

FIGURE 2-3: STEPS INVOLVE IN CHIP-SEQ PROCEDURE ...................................................................................................... 28 

FIGURE 2-4: ALIGNED SEQUENCES ................................................................................................................................ 29 

FIGURE 2-5: COUNT AND FREQUENCY MATRIX ................................................................................................................ 30 

FIGURE 2-6: CHIP-SEQ WORK FLOW ............................................................................................................................. 35 

FIGURE 2-7: LINEAR DISCRIMINANTS ............................................................................................................................. 43 

FIGURE 2-8: A HYPERPLANE SEPARATING TWO DIFFERENT DATASETS ................................................................................... 44 

FIGURE 2-9:  LINEARLY INSEPARABLE DATA ..................................................................................................................... 47 

FIGURE 2-10: MATHEMATICAL REPRESENTATION LINEARLY INSEPERABLE DATA ...................................................................... 47 

FIGURE 2-11: QUADRATIC DISCRIMINANT ...................................................................................................................... 49 

FIGURE 3-1:  FLOW DIAGRAM OF RAFT ......................................................................................................................... 53 

FIGURE 3-2: RELATIVE DISTRIBUTIONS OF PROPERTIES ...................................................................................................... 64 

FIGURE 3-3: MEME SUITE TOOLS ................................................................................................................................ 69 

FIGURE 4-1: CORRELATION PLOT OF MONONUCLEOTIDE FOR POSITIVE DATASET ..................................................................... 73 

FIGURE 4-2: CORRELATION PLOT OF DINUCLEOTIDE FOR POSITIVE DATASET ........................................................................... 73 

FIGURE 4-3: CORRELATION PLOT OF TRI-NUCLEOTIDE FOR POSITIVE DATASET ........................................................................ 74 

FIGURE 4-4: CORRELATION PLOT OF MONONUCLEOTIDE FOR WIDER REGION OF POSITIVE DATASET ............................................ 75 

FIGURE 4-5: CORRELATION PLOT OF DI-NUCLEOTIDE FOR WIDER REGION OF POSITIVE DATASET. ................................................ 75 

FIGURE 4-6: CORRELATION PLOT OF TRI-NUCLEOTIDE FOR WIDER REGION OF POSITIVE DATASET ............................................... 75 

FIGURE 4-7: CORRELATION PLOT OF MONONUCLEOTIDE FOR REVERSE COMPLEMENT OF POSITIVE DATASET ................................. 76 

FIGURE 4-8: CORRELATION PLOT OF DI-NUCLEOTIDE FOR REVERSE COMPLEMENT OF POSITIVE DATASET ...................................... 77 

FIGURE 4-9: CORRELATION PLOT OF TRI-NUCLEOTIDE FOR REVERSE COMPLEMENT OF POSITIVE DATASET .................................... 77 

FIGURE 4-10: CORRELATION PLOT OF MONONUCLEOTIDE CONSIDERING STRANDNESS OF REVERSE COMPLEMENT ......................... 78 

FIGURE 4-11: CORRELATION PLOT OF DI-NUCLEOTIDE CONSIDERING STRANDNESS OF REVERSE COMPLEMENT .............................. 79 

FIGURE 4-12: CORRELATION PLOT OF TRI-NUCLEOTIDE CONSIDERING STRANDNESS OF REVERSE COMPLEMENT ............................ 79 

FIGURE 4-13: LOGO OF FALSE_FALSE POSITIVE SEQUENCE ................................................................................................. 81 

FIGURE 4-14: LOGO OF FALSE POSITIVE SEQUENCE ........................................................................................................... 81 

FIGURE 4-15: LOGO OF POSITIVE SEQUENCE ................................................................................................................... 82 

FIGURE 4-16: LOGO OF TRUE BINDING MOTIF ................................................................................................................. 82 

FIGURE 4-17: LOGO PLOT OF REVERSE COMPLEMENT OF POSITIVE REGION ........................................................................... 83 

FIGURE 4-18: LOGO PLOT OF NEGATIVE STRAND .............................................................................................................. 84 

FIGURE 4-19: LOGO PLOT OF POSITIVE STRAND ............................................................................................................... 84 

file:///E:/Dropbox/Bio%20informatics/thesis/RAFTS%20report_Ref_Pål%20(Sandesh09's%20conflicted%20copy%202014-07-07).docx%23_Toc392867961


 
RAFT- Real and False Transcription Factor Binding Sites 

______________________________________________________________________________ 
 

 

 

13 

FIGURE 4-20: POSSIBLE CRUCIFORM STRUCTURE ............................................................................................................. 85 

FIGURE 4-21: HEAT MAP ........................................................................................................................................... 86 

FIGURE 4-22: SIMILARITY MATRIX OF MOTIF AND ITS REVERSE COMPLEMENT ....................................................................... 87 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
RAFT- Real and False Transcription Factor Binding Sites 

______________________________________________________________________________ 
 

 

 

14 

List of Tables 

TABLE 2-1: SIMILARITY MATRIX .................................................................................................................................... 26 

TABLE 2-2: DINUCLEOTIDE PROPERTY TABLE ................................................................................................................... 37 

TABLE 2-3: ABSOLUTE CORRELATION VALUE OF DINUCLEOTIDE PROPERTIES........................................................................... 38 

TABLE 2-4: KERNEL FOR CLASSIFICATION USING SVM AND ITS EQUATION ............................................................................. 50 

TABLE 4-1: OBSERVATION OF NUMBER OF POSITIVE AND NEGATIVE INSTANCES ...................................................................... 72 

TABLE 4-2: OBSERVATION OF POSITIVE CASES AND NEGATIVE CASES IN TEST AND TRAIN DATASET .............................................. 72 

TABLE 4-3: CLASSIFICATION RESULT CONSIDERING ONLY GENOMIC PROPERTIES ..................................................................... 88 

TABLE 4-4: CLASSIFICATION RESULT CONSIDERING ONLY PHYSICAL PROPERTIES ...................................................................... 88 

TABLE 4-5: CLASSIFICATION RESULTS CONSIDERING ALL PROPERTIES .................................................................................... 88 

TABLE 4-6: IMPORTANT PROPERTIES FOR CLASSIFICATION .................................................................................................. 89 

TABLE 4-7: CLASSIFICATION RESULT CONSIDERING ONLY IMPORTANT PROPERTIES .................................................................. 90 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
RAFT- Real and False Transcription Factor Binding Sites 

______________________________________________________________________________ 
 

 

 

15 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 
RAFT- Real and False Transcription Factor Binding Sites 

______________________________________________________________________________ 
 

 

 

16 

Abbreviations 

 

A Adenine 

T Thymine 

C Cytosine 

G Guanine 

RAFT Real And False Transcription Factors 

BLAST Basic Local Alignment Search Tool 

BED Browser Extensible Data 

bp Base-Pairs 

ChIP-seq Chromatin Immunoprecipitation Sequencing 

DNA Deoxyribonucleic acid 

GTF Gene Transfer Format 

MCC Matthew Correlation Coefficient 

nts Unit-Nucleotides 

PWM Position Weight Matrix 

PSSM Position Specific Scoring Matrix 

PFM Position Frequency Matrix 

RNA Ribonucleic Acid 

SELEX Systematic Evolution of Ligands by Exponential Enrichment 

SNPs Single Nucleotide Polymorphisms 

SVM Support Vector Machine 

SMOTE Synthetic Minority Oversampling Technique 

TF Transcription Factor 

TSS Transcription Start Site 

TFBS Transcription Factor Binding Site 

UCSC University of California Santa Cruz 

USF1 Upstream Stimulatory Factor 1 

PUK Pearson VII function-based Universal Kernel 

RF Random Forest 



 
RAFT- Real and False Transcription Factor Binding Sites 

______________________________________________________________________________ 
 

 

 

17 

NB Naïve Bayes 

SD Standard Deviation 

PCR Polymerase Chain Reaction  

TP True Positive 

TN True Negative 

FP False Positive 

FN False Negative 

SRY SEX-determining RegionY 

HSF Heat Shock Factor 

HIFs Hypoxia-Inducible Factors 

QP Quadratic Programming 

SMO Sequential Minimal Optimization 

GUI Graphical User Interface 

FIMO Find Individual Motif Occurrences 

SOAP Simple Object Access Protocol 

WEKA Waikato Environment for Knowledge Analysis 

NCBI 

 

National Center for Biotechnology Information 

  



 
RAFT- Real and False Transcription Factor Binding Sites 

______________________________________________________________________________ 
 

 

 

18 

Chapter 1 

1 Introduction 

Transcription is the process of synthesizing a sequence of Ribonucleic Acid (RNA) from a 

complementary template strand of Deoxyribonucleic acid (DNA). Proteins that monitor the 

turning on and off of genes in the genome are called transcription factors (TF). These proteins 

are essential for regulation and expression of genes. Understanding such complex interaction 

will reveal the fact of responding the cell to various environments. TFs are also responsible 

for the cell reaction to extracellular information. In addition, TFs are important regulatory 

parameters as they are responsible for deciding the fate of individual cells. TF may bind 

directly to promoter regions of DNA or directly to the RNA polymerase molecule. The region 

where these TFs bind is known as Transcription Factor Binding Sites (TFBSs).  

1.1 Problem statement 

The location of TFBSs is crucial in deciphering the fundamental cellular process like growth 

control, cellular hormone secretion, cell-cell communication etc.[1]  There are various in 

vitro and in vivo throughput experiments and techniques to find binding sites. DNA 

microarray based techniques like Chromatin Immunoprecipitation (ChIP-ChIP) is in-vivo 

high throughput techniques to predict TFBS. Similarly, SELEX (Systematic Evolution of 

Ligands by Exponential Enrichment) is an in-vitro high throughput technique to predict high 

affinity binding sites. SELEX involves iterative steps of processes like separating aptamers 

from non-aptamers discriminating target-bound DNA from Free DNA and amplification of 

these obtained target-bound DNA by polymerase chain reaction (PCR) [2] . These processes 

make SELEX a slow and resource demanding.  Recently, ChIP-seq has become a popular and 

powerful tool to determine TFBSs at a genome-wide scale [3] . However, the availability of 

ChIP-quality antibodies against each TF is the main limitations of this approach. The solution 

for this problem could be a computational approach for the prediction of TFBSs. There are 

various computational techniques to find the TF and TFBS.  However, computational 

methods are not free from limitations. In profile type model like position weight matrix 

(PWM), the choice of threshold is important parameter to control false positive. Lowering the 

threshold will generate lots of false positive binding sites. Alternatively, strict choice of 
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threshold may miss the actual binding sites [4] [5] . Another vital assumption made in PWM 

is position independent nucleotide, meaning that there is no correlation between the neighbor 

nucleotides [6] . 

Most prediction methods for finding potential DNA binding sites for a specific transcription 

factor (TF) use a model for the TFBS, and compare each position of the DNA sequence (e.g. 

a genome) against this model. Any position with a significant score against the model may 

then be classified as a potential binding site. Some examples of common models are e.g. 

consensus sequence, hidden Markov model and in particular PWM. A PWM is a profile-type 

model, where each column of the matrix contains a probability (log odds ratio) of finding 

each base (A, C, G, and T) at that position of the motif. The log odds are summed over the 

PWM, and sequence positions scoring better than a chosen cutoff are used as positive TFBS 

predictions. The main problem with this approach is that it generates a large number of false 

positive TFBS predictions. It has actually been estimated that in most cases the estimate will 

be completely dominated by false positives [4] . One important approach for filtering out 

false positives has been to use cell type-specific information. In particular, DNase 

hypersensitivity (HS) data and histone modification data can be used to identify active 

regulatory regions in a given cell type. However, in addition to being cell type-specific, this 

approach is also often limited by lack of suitable data. Therefore, a common point of interest 

in Bioinformatics community is deriving any better way for distinguishing between true and 

false positive binding sites. 

1.2 Objective of project 

The prediction of accurate binding site has been a common interest of all genomic research 

centers. There are enduring challenges to find the precise binding site of higher eukaryotes 

due to large genome size and presence of introns and variable lengths of TFBSs which add 

extra challenge for simple experimental and prediction methods. There are lots of ongoing 

efforts to predict binding site based on different genomic, evolutionary, chemical and physical 

properties. This project “RAFT- Real And False Transcription Factor Binding Sites” is the 

extension of spring project “Building pipeline for genomic tracks” submitted in December 

2013. RAFT tries to classify the real and false TFBSs using machine learning approach. For 

this approach, RAFT uses genomic properties and physical properties of dinucleotide as input 
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vector for classifier. To build a property based genomic track, RAFT is based on assumption 

that the TFBSs are depended on local parameters which reveal the property of TFBSs [7] [8]. 

The main objectives of the thesis are as follows: 

 Get familiarisation with format and source of track 

 Make a genomic track based on context based features 

 Develop a robust pipelines for processing and comparison of genomic tracks 

 Use machine learning approach to classify the real and false transcription 

factor   binding sites 

 Compare the result of classification with other approaches to achieve an 

optimal accuracy 

1.3 Approach 

In this project, machine learning method was implemented for the prediction of true and false 

positive transcription factor binding sites. It was focused to develop a property based robust 

genomic track for identification of real binding sites for a given TF, independent of cell type. 

The basic assumption was that real TFBSs are found in a suitable genomic context, whereas 

random binding sites will lack any common context. A suitable context is mainly associated 

with the properties of regulatory regions, as active TFBS in general will be found in such 

regions. Then, the idea was to use properties those are associated with regulatory regions to 

develop a classifier for PWM-based TFBS predictions. To handle the classification task, I 

employed support vector machines (SVMs), which are the form of supervised machine 

learning approach. The TFBS mapped computationally for a ChIP-seq data was used as 

original data for calculation of property based input vectors. I also tried to compare the result 

obtained from SVM with results obtained from other algorithms like random forest (RF) and 

Naïve Bayes (NB). 

1.4 Organization of thesis 

In this dissertation, I classified real and false TFBSs using machine-learning technique. I used 

genomic features and statistical measures of physical properties to train the classifier. In 

Chapter 1, I have introduced the problem and the objective of this work. The concise 
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approach to solve the problem stated is also shown in the same chapter. The background 

theory, related work and the choice of features are presented in Chapter 2. In this chapter, 

some prediction and classification method using SVM that are closely related to this 

dissertation are presented. In Chapter 3, the methodology to accomplish the project is 

presented. It also describes the work flow diagram of this project and the quality measure 

taken into account to assure the confidence of prediction. The result and discussion of the 

work is shown in Chapter 4. The results obtained with different kernel function on same 

dataset are presented. Finally, the conclusion of dissertation and further enhancement 

possibility are presented in Chapter 5. Last but not least, references and appendices to this 

work are also presented in the end of report. 
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Chapter 2 

2 Background and Literature Review 

Transcription factor (TF) is a protein that plays a vital role in regulating gene expression in 

living organism. This proteins bind physically to their target loci is a key step of activating or 

repressing a gene. There are approximately 1700-1900 TFs in human that binds in different 

DNA segments like promoters, enhancers, silencer, insulators and other control regions [9] 

[10] . Prediction of transcription factor binding sites (TFBSs) is vital but is extremely 

challenging problem due to the large genomic size, the short and variable length of binding 

sites. In addition, transcription factors target vary between the different types of tissues, stage 

of development and physiological conditions [3] . These dynamic regulations make more 

complication in finding the proper binding regions. Some binding sites are located close to 

Transcription Start Site (TSS) like in promoter and some are located very far like in enhancer 

for instance; 1 mega base pair far from target gene in eukaryotes [11] . However, different 

bioinformatics research institutions have shown their interests to reveal the secret behind 

TFBSs with computational as well as biological approaches. 

2.1 Significance of TFBS 

In this section some key roles of TFBSs are explained.  

Development 

Some of the TFs are involved in the development of organism. For example, TFs encoded by 

SEX-determining RegionY (SRY) protein is responsible for the initiation of male sex 

determination in human [12] .  

Response to environment 

TFs are responsible to provide adaptability to organism with the environment. For example 

TF like heat shock factor (HSF) is responsible to regulate gene necessary to adapt in higher 

temperature environment [13] . Similarly, Hypoxia-inducible factors (HIFs) helps to survive 

cell in low oxygen environments by up regulating genes [14] . 
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Cell cycle control 

Transcription factors are responsible to control cell divisions, the shape and size of cells [15] .  

For instance, C-MYc codes for the transcription factor whose mutation version is found in 

may cancers [16] . 

Pathogenesis 

To prevent from pathogens, transcription factor can alter gene expression in host cell that will 

boost the defense mechanism of the host cell.  

The interaction between three dimensional structure of DNA and TF to recognize the binding 

site is based on local geometry of base pairs [17] . There are four standard structural motifs 

that TF recognize as binding sites. These structures are helix-turn-helix (HTH), Zinc Finger 

(ZF), Basic Leucine Zipper (B-ZIP), Basic Helix-Loop-Helix (B-HLH) [18] . In some cases, 

proteins can directly recognize the special structure of DNA like cruciform and bind DNA 

hairpins [18] . 

2.2 Cruciform structure of DNA 

Cruciform structures also known as hairpin are important regulators of biological 

processes [19] [20] . The structures of cruciform comprises of a steam, a branch point and a 

loop as shown in Figure 2-1. The size of the loop in cruciform depends on the length of the 

gap between inverted repeats. Generally, AT-rich gap sequences increase the probability of 

cruciform formation in DNA. The study has identified two classes of cruciform structure [21] 

. The first class is unfolded, and has square planer structure. It is characterized by 4-fold 

symmetry in which adjacent arms are almost perpendicular to one another. Another class of 

cruciform has folded conformation. In this class, adjacent arms form an acute angle with the 

DNA strands as shown in Figure 2-2. The detection of cruciform conformation was first 

described in circular plasmid DNA. The structure was stabilized by negative superhelix 

density [22] . This type of structure is vital since the distortion on this type of structure results 

in the failure or reduction in replication [23] . 
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Figure 2-1: Example of cruciform structure  

Figure shows a cruciform structure as linear DNA (A) and as an inverted repeat (B), taken from [24]  

 

 

Figure 2-2: Conformations of cruciform 

Figure shows a three different conformations of cruciform structure; (A) unfolded with 4 fold 

symmetry, (B) bent and (C) stacked with 4 chains of DNA in close vicinity, taken from [24]  

To predict the cruciform structure computationally for a sequence, a reverse complement of 

that sequence is computed. The basic idea is to calculate the similarity between sequence and 

reverse compliment of it. Similarity matrix can be viewed as dot matrix plot where the value 
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in the matrix increases by 1 if the similarity is found between position i and j. A high score 

value across the diagonal is expected for cruciform structure. It can be explained in following 

steps; 

 For a given sequence find the reverse complement of that sequence 

 Make a matrix M of size NxN with sequence in row and its reverse complement in 

column 

 Position M( i, j) of this matrix corresponds to a possible interaction between position i 

and position j of a sequences 

 If the residues at i and j matches, then add 1 to that position in the matrix 

 Do this over all pairs of positions in the sequence 

 Loop for overall sequences 

 If there is a tendency for cruciforms, then this matrix should  show an increased score 

along a diagonal 

These steps can be explained with following small example. Let us consider a small given 

sequence ATGACTTGATTCAAGTCAT to test the cruciform structure. Then, the reverse 

complement of given sequence will be ATGACTTGAATCAAGTCAT. The similarity 

computation between these two sequences is shown in Table 2-1 shows a similarity matrix 

computation for one single sequence and its reverse complement to verify the cruciform 

structure. The first base in row and column is A therefore, the value of cell is 1. In similar 

way, the score is computed for all the bases and this is repeated until all the sequences are 

finished. The final score of matrix will be used to predict the cruciform nature of DNA. 

This matrix can be characterized with a pattern of high scores along its diagonal.  

Table 2-1 shows a similarity matrix computation for one single sequence and its reverse 

complement to verify the cruciform structure. The first base in row and column is A 

therefore, the value of cell is 1. In similar way, the score is computed for all the bases and this 

is repeated until all the sequences are finished. The final score of matrix will be used to 

predict the cruciform nature of DNA. 
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Table 2-1: Similarity matrix 

 

In study carried out by Brázda et al. in [24] , proteins that identify cruciform and interact with 

it are classified into 4 different families. 

Junction resolving enzymes  

These proteins are found in several organisms like bacteria, yeast, archaea and mammals. It 

will bind to junctions of any sequence. Examples of these proteins are RuvC, Cce1, Ydc2, 

Integrases, RusA etc.  

 Proteins involved in transcription and DNA repair 

This family of proteins is involved in mechanism like DNA repair which is key mechanism 

for genomic stability. The DNA binding proteins like BARCA1, polymerase 1, Rad54, Hop1, 

P53 binds to cruciform structure. Interestingly, some proteins can also stimulate the 

formation of cruciform after binding with DNA [25] . 

Chromatin-associated proteins 

This family of protein are found in the cell nucleus and involves in different mechanisms like 

modulating chromatin structure, remodeling of DNA topology etc. some proteins like DEK 

and BARCA1 are involved in DNA replication and repair. They play an important role in 

maintaining genomic stability as they are able to diffuse the stress generated during 

transcription and replication. 
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Proteins involved in replication 

Cruciform structure indicates as recognition signal near eukaryotic origins of DNA 

replication. There are many proteins that bind to cruciform structure during replication. S16, 

AF10 are DNA binding proteins that structure-specific.  

From all above discussions, it is known that for genomic stability, holiday junction and long 

cruciform structure is necessary. Deregulation of these proteins may lead to deletions, 

carcinogenesis, DNA translocation and loss of genomic stability that may be lethal. 

Therefore, mutation, epigenetic modification, single nucleotide polymorphisms and insertion 

in cruciform structure can destroy the cellular process.  

2.3 Approaches for prediction of TFBS 

The prediction of TFBS in eukaryotes is extremely difficult. However, there are many 

approaches used to predict the binding site. Some of the approaches are based on genomic 

features, physical properties, evolutionary conservation and binding motif distribution. The 

main approaches for prediction of binding sites can be classified into two methods like 

experimental and computational method.  Some of these sections had been discussed in report 

of spring project. 

2.3.1 Experimental method 

There are some high throughput in vitro and in vivo methods that experimentally verify 

TFBS. SELEX an in vitro method for finding target ligands was developed 20 years ago. 

SELEX identify a small numbers of aptamer from original library that binds with high 

affinity to a protein of interest [26] . These aptamers are oligonucleotide ligand with length of 

15-60 bases [28] . The steps involved in SELEX are as follows: First of all the target 

molecule is defined. Then a library of oligonucleotide is created which is very large in 

numbers (10
15

) [29] .  The oligonucleotide binding the target molecule is amplified by PCR. 

Then, the few oligonucleotides will bind to target which are called aptamers. The 

oligonucleotides that are not binding are separated from those forming aptamers. This will 

decrease the number of high affinity binding molecules from large number to few set. These 

aptamers are then amplified with PCR. Finally, each aptamers are isolated, sequenced and 

refined. 
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Similarly, another method used Chip coupled with DNA microarray to predict the binding 

site for given protein. This method is called ChIP on ChIP, which allows predicting the entire 

spectrum of in vitro DNA-binding sites of that protein [30] . Most recently, “ChIP-seq” a 

microarray based in-vivo technology is commonly used to determine binding sites. The ChIP-

seq work flow is shown in Figure 2-3. 

 

Figure 2-3: Steps involve in ChIP-seq procedure 

Figure shows from ChIP procedure to sequencing procedure, finally showing the binding region under 

the peak, taken from [31]  

The first step in ChIP-seq is to crosslink DNA with DNA-binding proteins. The chromatin is 

fragmented into pieces of 150 to 500 bp using sonication. After the fragmentation is done, the 

immunoprecipitation is done using the specific antibody against the protein of interest. The 

quality of antibody has great impact in the result. It will produce a millions of short fragments 

directional DNA tags. The lengths of these tags are 35-50 bp. This is ready for sequencing, 

where these small fragments of variable lengths tags are aligned to a reference genome of the 

sample organism. This step is known as peak calling [27] . 

2.3.2 Computational method 

Computational prediction of TF binding sites (TFBSs) is based on position weight matrix 

(PWM) also called position-specific scoring matrix (PSSM). PWM scores binding motifs 

based on the observed nucleotide patterns in a set of TFBSs for the representing TF. It is 

produced on the basis of gapless local multiple alignment of sequences. PSSM scores 

correspond to the conservation of residue at that position. The motif is scanned in all 
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sequences in different file format like FASTA.  A sliding window method is used to search 

the motif and score is computed from the segment of equal length as that of motif. If the 

score is found higher than the threshold then the motif is the binding site. If not, it will 

continue checking till the end of the sequence. 

2.3.2.1 Construction of PWM  

During a search, initial similarity search of a query against the sequence in database is done. 

The hits are used to make a multiple alignment and build a frequency matrix by counting the 

occurrence of each nucleotide at each position of alignment. This matrix has four rows (A, G, 

C and T) but the columns are equal to the length of motif is called Position Frequency Matrix 

(PFM). PWM is now calculated from PFM. This is demonstrated as an example below. Let us 

consider four sequences of length 7. Then the sequences are aligned first in first step. The 

second step is followed by counting the number of bases to construct PFM. 

 

 

Figure 2-4: Aligned sequences 
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Figure 2-5: Count and frequency matrix 

Let us suppose, we have a multiple alignment of N sequences. Let, nu,b is the number 

of residue of type b present at column u. then, fraction of residue of type b at position 

u is given by     , 

     
    

 
………… (1) 

Let      be the score of residue “a” at  position “u”, then 

     ∑         ………. (2), where      is score matrix element 

In logarithmic form 

     ∑
       ̅   

           ⁄
    …… (3), where   ̅   

    

   
 , giving extra weight to 

conserved position 

Then,         
    

  
 ……. (4) is the log odd ratio that gives the probability  of a 

occurring at u and the probability of a occurring by random chance. A small value 
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called pseudo count is usually added to prevent the case of log (0) and to prevent the 

loss of small score. 

This resulting scoring matrix can be used to search the entire input DNA sequences in order 

to find regions similar to the original set of known regions. A cutoff or threshold value is 

used to ensure the match between input sequence and motif. PWMs have been used for the 

prediction of the binding affinity for numerous bacterial and eukaryotic TFs. It used in 

database like TRANSFAC and JASPAR for this searching purpose [32] . 

2.3.2.2 Limitations of PWM 

Though PWM is very useful in locating TFBS, it has potential drawbacks. PWM do not 

account for flexible length motifs. Secondly, PWM assumes each nucleotide participates 

independently in the corresponding DNA-protein interaction, meaning that there is no 

presence any correlation among the nucleotides in different alignment column [33] . This 

assumption is the main reason to generate large false positive predictions. 

2.3.2.3 Tradeoff between cutoff and false positive 

The false positive prediction can be controlled by selection of cutoff or threshold. However, it 

again has a drawback. The requirement of rigorous match (higher cutoff) will increase the 

sensitivity and is likely to result in fewer false positive predictions but can potentially result 

in more sites being missed (false negative) [4] [50] . Adversely, lowering the PWM score 

threshold will increase the number of false-positive hits.  

2.3.2.4 Enhance prediction accuracy with PWM 

There are many approaches that have been used to improve the performance of PWM. 

Dinucleotide PWM is a simple extension of PWM that outperform classical PWM. In [33] , 

Kulakovskiy et al. developed a tool called DIChipMunk. In this tool, they account the effect 

(correlation) of neighboring nucleotide in input sequences converting mononucleotide to 

dinucleotide. This method is handy than PWM for very large training set of sequences. In 

addition, this method also outperforms chipMunk that perform better than PWM. However, 

the computation slower than PWM since dinucleotide has more parameters to compute.   

Some methods use additional information like co-localization and conservation of TFBSs to 

improve the prediction accuracy. There are some methods that use motif documented in 

http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpubmed%2F23427986&sa=D&sntz=1&usg=AFQjCNG8o3InHjMstpd6EHFXpc0-EfaKoA
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC395725%2F&sa=D&sntz=1&usg=AFQjCNF3N548EWStOXIaHFoR-d1xmCvVvw
http://www.google.com/url?q=http%3A%2F%2Fwww.ncbi.nlm.nih.gov%2Fpmc%2Farticles%2FPMC395725%2F&sa=D&sntz=1&usg=AFQjCNF3N548EWStOXIaHFoR-d1xmCvVvw
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database like JASPER and TRANSFAC. Comet [34] , Cluster-Buster [35] and ModuleMiner 

[36]  are examples of such methods. Other methods use clustering information in addition to 

motif conservation to increase prediction accuracy. Examples of such types of method are 

Stubb and ELL [37] . Another approach to increase the prediction is by reducing the false 

positive count, which can be done by filtering the false positive values, classifying the false 

positive from true positive value. There are several approaches that used machine-learning 

technique to increase the prediction. 

In RAFT, statistical measures of physical properties of DNA and genomic features are 

combined as input vector to classifier. It is entirely a novel concept than that has been 

attempted by other researchers. Most of the researches have been carried out with the 

properties like evolutionary distance, sequence profile, k-mers, charge, hydrogen bonding, 

hydrophobicity etc. However, the attempt to classification with genomic distance like GC 

skew, distance from TSS to binding region, distance from CpG to binding region has not 

been attempted. In the same way, physical properties and physiochemical properties has been 

used in other methods. However, statistical measures like mean, standard deviation, skewness 

and kurtosis of physical properties have been used in this project that is a unique approach. 

Some of the closely related researches using machine-learning approach are discussed in next 

section. 

2.3.3 Related work  

SVM has been used widely in computation biology from long time for task like prediction of 

disease risk [38] classification of genomic and proteomic data [39] , cancer classification [40] 

microarray data classification [41] etc.  There are many algorithms based on different 

approaches for prediction and classification of TFBS. Most of them used genomic, 

physiochemical and evolutionary properties for prediction and classification purpose, some of 

them are discussed in this section. 

In [42] , Nassif et al. attempted to predict the protein-glucose binding site using SVM. They 

used Random Forest method to find the key features and then used as the descriptor for 

classifier. The features included in this method were physio-chemical properties like charge, 

hydrogen bonding and hydrophobicity. They used 29 protein-glucose binding sites for 

training purpose and 14 for testing. Negative dataset with three groups of sites was taken that 
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does not bind glucose. Non-sugar binding, sugar binding and non-binding were label used for 

three groups of sites. Leave one out cross validation method was used to cross check the 

output of classifier along with holdout independent testing set. The train-to-test ratio of 2:1 

was used. The specificity and sensitivity rate of combined features were found as 93.33% and 

89.66% respectively. 

The prediction of RNA binding sites in a protein using SVM and PSSM profile was carried in 

[43] by Kumar et al. For this purpose they train two models using amino acid sequence and 

evolutionary information. They used 86 RNA binding protein chains and evaluated using 5 

fold cross validation technique. For the first model, fixed pattern was generated from RNA 

interacting chains, if the central residue was found to be interacting residue then the pattern 

was assigned as positive else the pattern was assigned as negative. Each amino acid was 

represented by vector of 21 including one dummy amino acid. The accuracy of 76.05% and 

Mathew’s Correlation Coefficient (MCC) of 0.31 was achieved. In second model, 

evolutionary information was obtained from PSSM generated during PSI-BLAST search. The 

accuracy of 81.16% and the MCC of 0.45 were obtained by PSSM approach, which was 

significantly higher than that of using evolutionary information using single sequence. The 

webserver ‘Pprint’ using this algorithm to predict RNA binding residue can be found in 

http://www.imtech.res.in/raghava/pprint/. Their SVM model based upon amino acid 

sequences preforms slightly better than existing technologies but model based on 

evolutionary information developed from PSSM outperforms all existing and even ANN 

model developed by Jeong and Miyano in 20006 [43]. 

In [44] , Holloway et al. attempt to integrate eight different types of features to predict TFBS 

in Saccharomyces Cerevisiae genome. Binding site degeneracy, conservation measures, 

clusters, TF target correlation, target-target correlation, GO annotation, phylogenetic profiles, 

k-mer distribution were the eight genomic data used as property for classification purpose. 

The positive examples were taken from ChIP-ChIP and other experiments and negative data 

were randomly chosen from the output of MotifScanner that does not show motif for 

particular TF. This model achieved good sensitivity and specificity and thus able to detect 

false positive binding sites. 

http://www.imtech.res.in/raghava/pprint/
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In [45] , an attempt to predict binding site in the mouse genome using support vector 

machines was done by Sun et al. The data consist of merger of promoters for mouse 

annotated with TFBS from databases like ABS and ORegAnno. The problem with the 

imbalance of dataset was handled using Synthetic Minority Oversampling Technique 

(SMTOF) that will increase the number of minority class elements. The data includes 250 

upstream, non-coding sequence and background data. Background dataset are negative 

dataset that were drawn 5000-4500 base pair away from any gene.  They used 47 annotated 

promoter sequences in total. Sequences extracted from ABS database were 500 bp in length 

and those extracted from PRegAnn were 2000 bp long. The model was trained with SVM and 

the result of prediction and performance of classifier was found better than other prediction 

algorithms like MotifLocator and EvoSelex. 

In [46] , Mukherjee et al. aims to predict binding site on helix turn helix type of transcription 

factors in eukaryotes. For this purpose, they used 90 sequences of transcription factor with 

helix turn helix retrieved from NCBI for training set. Four properties used to classify these 

transcription factors were evolutionary sequence conservation, positively charged residues, 

hydrogen bond donor-acceptor and hydrophobic residues. Evolutionary conservation of 

residue was obtained from multiple sequence analysis. Positively charges residues are found 

to be more affinity with negatively charged residues of DNA strand. SVM with RBF kernel 

was used to train and classify the model. Using k-fold cross resampling technique for cross 

validation, the output of classifier was very impressive giving the accuracy of 94.19%, 

sensitivity of 96.7% and specificity of 89.16%. 

In another approach [47] , Maienschein-Cline et al. uses physiochemical features of DNA to 

predict TFBS. These features were derived from Gibbs energy of amino acid interactions and 

DNA structure. Since, there exist a structural correlation between the free and bound TFBSs; 

this property was used for training support vectors. In addition to the geometry structure, the 

structural profile based on hydroxyl radial cleavage of DNA was also used. In addition, a 

chemical feature like electrostatic profile around DNA was used. The positive training set 

includes TFBS sequences form RegulonDB and flanking nucleotides. Randomly selected 

non-coding sequences of E.Coli genome was used as negative training set. The equal length 

distributions of positive and negative dataset were taken so that feature dimension would be 
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equal for both datasets.  SVM with non-linear kernel was used to train and test the model. 

The accuracy of each variant method was accessed by cross validation method. 

2.3.4 ChIP-seq as source of data 

ChIP-seq data is the important source of TFBSs. This method follows two steps ChIP and 

sequencing. ChIP-seq is a high throughput technique used to determine in vivo binding 

affinities of transcription factors to DNA [48] .The peak-finder algorithm is used to process 

the data obtained from ChIP-seq experiment. This peak finder will locate the DNA segments 

containing binding signal. Figure 2-6 shows an overview of ChIP workflow, the detail steps 

were explained in previous section. The DNA segments thus obtained are of variable length 

and therefore need to process further to find the actual binding site. De novo motif discovery 

tool is used to predict fixed length actual binding motif. Motif is the common pattern shown 

by the binding sites of transcription factor.  

 

Figure 2-6: ChIP-seq work flow 

Figure focus in the preparation of ChIP, the output of ChIP is DNA fragment with variable lengths, 

taken from supplementary material of [49] . 
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2.3.5 Physical Properties of DNA 

Statistical measures like Skewness, standard deviation, kurtosis and mean for the physical 

properties like stacking energy, propeller twist, protein induced deformability, duplex disrupt 

energy, duplex free energy, DNA denaturation, BDNA twist, protein DNA twist, stabilizing 

energy of ZDNA were used [5] [51] . 

Stacking energy 

Overall structure of double helix depends upon the sequence of base. It is calculated from 

quantum mechanics by applying energy required to de-stack the DNA helix. It is expressed in 

kilocalories per mol. High peaks in base stacking reflect regions of the helix that de-stack or 

melt more easily; conversely a minimal peak would represent more stable regions [52] . 

Propeller twist 

The dinucleotide propeller twist angle scale can be measured by X-ray crystallography of 

DNA oligomers. A region with high propeller twist would mean that the helix is quite rigid in 

this area. Correspondingly, regions that are quite flexible would have low propeller twist 

values. It was found that AT base pairs have higher levels of Propeller twist than that of GC 

base pair [53] . 

Protein induced deformability 

The deformability of DNA plays important role its packaging in the cell and recognition by 

other molecules in cellular process. This can be acquired from empirical energy function 

examining crystal structures of DNA–protein complexes. The larger value in the scale shows 

more deformable sequence and smaller value reflects less deformability of DNA helix [54] . 

Duplex disrupt energy 

The DNA disrupt energy was calculated using calorimetric calculation on 19 DNA oligomers 

and 9 DNA polymers using nearest neighbor approach. Thermodynamic data was used to 

calculate the stability of DNA duplex structure and found that stability was depended on base 

sequence but not the base composition [55] . 
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Duplex free energy 

To calculate the Duplex free energy, positional-dependent nearest-neighbor (PDNN) model 

was used. This method was initially used for describing RNA/DNA duplex formation. It was 

shown that region with low free energy content was more stable than region with high energy 

content. 

DNA denaturation 

It is calculated by UV electronic spectroscopy under very high resolution. It was shown that 

DNA with low peak is more easily denaturated than region with high peak value [51] . 

B-DNA twist and Protein–DNA twist 

B-DNA twist is the mean twist value of angles in B-DNA. It was calculated on 38 B-DNA 

crystal [51].Protein –DNA twist was calculated by average distributions of the 

conformational parameters that can describe the DNA variability from protein-DNA 

complexes. 

Stabilizing energy of Z-DNA 

It represents the free energy value for transition from B to ZDNA for dinucleotide. DNA 

stretches with low energy minima form Z-DNA than high energy region. 

Before using these parameters in this project, the correlation of their values was performed 

for each dinucleotide. The absolute sum from the correlation matrix was calculated. The top 

four parameters with least correlation were taken for further analysis in this project. The 

value of these parameters and the absolute correlation values are presented in Table 2-2: 

Dinucleotide property table. 

Table 2-2: Dinucleotide property table 

These values of dinucleotide were used by [56] , originally used by Liao [57] , most of the values are 

found in dinucleotide database. 

Dinuc 

base  

Stacking 

energy 

Prop 

twist 

Protein 

deform 

Duplex 

free eng 

Duplex 

disrupt 

eng 

DNA 

denat 

BDNA 

twist 

ProtDNA 

twist 

Stab 

eng 

ZDNA 

AA -5,37 -18,66 2,9 -1,2 1,9 66,51 35,5 35,1 3,9 
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Table 2-3: Absolute correlation value of dinucleotide properties 

Table shows the absolute correlation value of dinucleotide properties. The complete correlation matrix 

is presented in Appendix I 

Here the top four properties and value with lest absolute correlation is mark in red. These values were 

used as attribute during classification of binding sites. 

Properties Absolute correlation value 

Stacking energy 0,440 

Propeller twist 0,528 

Protein induced deformation 0,524 

Duplex free energy 0,629 

Duplex disrupt energy 0,572 

DNA denaturation 0,469 

BDNA twist 0,202 

Protein DNA twist 0,343 

Stab energy for ZDNA 0,542 

 

AC -10,51 -13,1 2,3 -1,5 1,3 108,8 33,1 31,5 4,6 

AG -6,78 -14 2,1 -1,5 1,6 85,12 30,6 31,9 3,4 

AT -6,57 -15,01 1,6 -0,9 0,9 72,29 43,2 29,3 5,9 

CA -6,57 -9,45 9,8 -1,7 1,9 64,92 37,7 37,3 1,3 

CC -8,26 -8,11 6,1 -2,3 3,1 99,31 35,3 32,9 2,4 

CG -9,69 -10,03 12,1 -2,8 3,6 88,84 31,3 36,1 0,7 

CT -6,78 -14 2,1 -1,5 1,6 85,12 30,6 31,9 3,4 

GA -9,81 -13,48 4,5 -1,5 1,6 80,03 39,6 36,3 3,4 

GC -14,59 -11,08 4 -2,3 3,1 135,83 38,4 33,6 4 

GG -8,26 -8,11 6,1 -2,3 3,1 99,31 35,3 32,9 2,4 

GT -10,51 -13,1 2,3 -1,5 1,3 108,8 33,1 31,5 4,6 

TA -3,82 -11,85 6,3 -0,9 1,5 50,11 31,6 37,8 2,5 

TC -9,81 -13,8 4,5 -1,5 1,6 80,03 39,6 36,3 3,4 

TG -6,57 -9,45 9,8 -1,7 1,9 64,92 37,7 37,3 1,3 

TT -5,37 -18,66 2,9 -1,2 1,9 66,51 35,5 35,1 3,9 
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2.3.5.1 Statistical measures 

2.3.5.1.1 Kurtosis 

Kurtosis is defined as the measure of peakedness of distribution of real value random variable 

also known as fourth momentum of a distribution [58] . Kurtosis describes the shape of 

probability distribution and used to compare the shape of particular distribution with normal 

distribution. The higher kurtosis will have distinct peak near the mean and have heavy tails. 

Conversely, lower kurtosis has a flat top near mean. Kurtosis has been useful parameter to 

analyze property. In [59] , kurtosis was used to fine molecular classifiers in cancer. 

Depending upon the sign of kurtosis method was implemented to find the gene that describes 

the outlier property. 

Kurtosis is given by [47], K=∑      ̅           
    

Where,  ̅ is mean  

 s is the standard deviation and N is the number of data points 

2.3.5.1.2 Skewness 

Skewness gives the measure of symmetry or a lack of symmetry of the distribution of real 

value random variable about its mean [60]  [61]. Skewness value can be negative or positive. 

If the value is negative then the tail of left side of probability density function (PDF) is longer 

or flatter than the right side. Conversely, if the skewness value is positive then the tail on the 

right side is longer or flatter than left side. 

Skewness is given by [47], Sk=∑      ̅           
    

Where,  ̅ is mean  

 “s” is the standard deviation and N is the number of data points 

2.3.6 Genomic Properties 

This section contains the description of different genomic properties used in this project for 

classification purpose. 
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2.3.6.1 CpG distance 

 CpG islands (or CG islands) are regions characterized with occurrence of high frequency of 

CG. Almost all CpG Island are sites for transcription initiation [62] . CpG distance is the 

length between CpG Island and binding site motif region. This data can be downloaded from 

UCSC table browser in bed file format. CpG distances for positive and negative set were 

obtained using the bed tool. This distance was one of the properties for classification. 

2.3.6.2 Transcription start site distance 

TSS is a location in the DNA sequence where RNA polymerase binds and start to make RNA 

from DNA. TSS for USF1 can be downloaded from the UCSC table browser. The nearest 

distance between TSS and binding motif region was obtained using bed command. This was 

another property used for classification. 

2.3.6.3 GC content 

GC content is the percentage of G-C expressed in percentage. The GC region is found higher 

near the transcription binding region [63] . In this project, the fasta regions of positive and 

negative datasets were used to calculate the GC content.  

𝐺𝐶 𝑐 𝑢𝑛𝑡  
𝑐 𝑢𝑛𝑡    𝐶 + 𝑐 𝑢𝑛𝑡    𝐺

𝑡 𝑡𝑎  𝑐 𝑢𝑛𝑡    𝑛𝑢𝑐 𝑒 𝑡𝑖𝑑𝑒 
 

2.3.6.4 GC Skew 

GC skew gives the genomic strand asymmetry. The number of Guanine is higher in leading 

strand and the number of Cytosine is higher in lagging strand [64] . On other hand, the value 

of GC skew is positive then it corresponds to leading strand. Similarly, if the value of GC 

skew is negative then it corresponds to lagging strand.  

𝐺𝐶   𝑒  
𝐺  𝐶

𝐺 + 𝐶
 

2.3.7 FASTA Format 

Fasta format is a text based format which uses single letter code for the representation of 

nucleotides sequences or amino acid sequences [65] . This format is accepted as query 

sequence for tool like BLAST (Basic Local Alignment Search Tool) search purpose. Fasta 

format begins with a single line description, followed by lines of sequence data [65] . The 
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word following the ">" symbol is the identifier of the sequence, and it is optional. The greater 

than sign (>) distinguishes from description line to sequence line. FASTA format does not 

allow gaps present within the representation of sequences and is recommended to use 80 

characters per line. Fasta format accepts both upper case and lower case. In addition, FASTA 

file can also be represented without the fasta definition, which is only the bare sequence. 

Sample of fasta format is shown below. 

>crab_anapl ALPHA CRYSTALLIN B CHAIN (ALPHA(B)-CRYSTALLIN).              

MDITIHNPLIRRPLFSWLAPSRIFDQIFGEHLQESELLPASPSLSPFLMR 

SPIFRMPSWLETGLSEMRLEKDKFSVNLDVKHFSPEELKVKVLGDMVEIH 

GKHEERQDEHGFIAREFNRKYRIPADVDPLTITSSLSLDGVLTVSAPRKQ 

SDVPERSIPITREEKPAIAGAQRK 

 

In this project, FASTA format is used to query the binding site for potential TFBS region 

through FIMO.  

2.3.8 WEKA-A classifier 

 Waikato Environment for Knowledge Analysis (WEKA) was developed by machine 

learning group in University of Waikato, New Zealand. It has been popular in data mining 

task due to portability and ease of use. It is freely downloadable and can work with large set 

of data. Weka is a collection of algorithms and data visualization tool. Different algorithms 

for classification which is categorized as bayes, function, lazy, rules trees etc. Libsvm and 

Sequential Minimal Optimization (SMO) are categorized under function based classifier. 

Similarly, algorithms like J48, random forest etc. are classified as tree based classifier. 

WEKA tool implements SVM and provides the easy GUI to select the kernels and its 

coefficients. It implements libsvm and new algorithm called Sequential Minimal 

Optimization (SMO) for training support vectors [66] .  In this project, SMO is used for 

classification purpose. SMO can work with very large quadratic programming (QP) case as it 

breaks down the large QP problem into series of smallest possible QP problems. Finally, 

these small QP problems are solved analytically. The memory required in SMO is linear with 

the training data. Weka accepts arff file format directly. However, a converter is also 

available to convert from csv to arff file format.  



 
RAFT- Real and False Transcription Factor Binding Sites 

______________________________________________________________________________ 
 

 

 

42 

Weka can be accessed via both graphical user interface and command line [67] . In this 

project, graphical user interface (GUI) was used as interface. Explorer is the main interface 

for Weka. It contains six panels like pre-processing, classify, cluster, associate, select 

attributes and visualize. Data can be loaded from the preprocessing panel. Filter option is 

available to pre-process data. One can delete, randomize data using filter tool. There is also 

undo option that will revert the previous action in weka. Classify panel contains the option 

for the classification and regression. Several algorithms are available for this purpose and 

also provides cross validation to evaluate these algorithms. Cluster panel gives the clustering 

algorithms that include k-means, normal distributions with diagonal covariance matrices. 

Associate panel can be used to generate rules that define the relationship between groups of 

attributes in the dataset. The fifth panel is select attributes that is used to identify the best 

attributes for classification. It gives the subset of features that are highly correlated with the 

class. It utilizes different methods like best-first search, exhaustive search, genetic search, 

greedy stepwise etc. This panel has been used in this project to predict the important 

attributes for classification. The last panel of is visualization, that construct the plot scatter 

plots for all attributes pair in dataset. Individual plot can be selected and enlarged. 

2.3.9 Supervise and unsupervised learning 

Machine learning problem are classified into two main categories called supervise and 

unsupervised learning. In unsupervised learning the cases are not labeled. In this type 

algorithm it cannot invent what the case is, but it could be able to cluster the data into 

different class based upon similarity [68] . On other hand, cases are labeled in supervise 

learning. There is another intermediate learning type called semi-supervise learning that 

learns from both labelled and unlabeled cases.  

2.3.10 SVM 

SVM are supervised learning models in machine learning that is mostly used in classification 

of data, regression, and pattern reorganization. SVM approximates really well for linear and 

nonlinear datasets. Different kernels are used to achieve the optimum performance of 

classifier which is presented in result section. The algorithm for SVM is based on statistical 

learning theory and the Vapnik-Chervonenkis (VC) dimension which were introduced 

by Vladimir Vapnik and Alexey Chervonenkis [69] . Statistical learning theory is the 
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framework in machine learning that deals with making predictions, making decisions or 

constructing models from a set of data [70] . 

SVM are called supervised large margin classifier and the data points touching the lines are 

called support vectors. From [70] , the errors bounded are associated with the margin 

separated by the hyperplanes. Therefore, SMV tries to find the best hyperplane by 

maximizing the boundary of hyperplane separating the training data. SVM is widely and 

successfully used in various applications like pattern recognition, face detection, data 

classification and text classification. SVM is widely used in data mining due to kernel trick or 

kernel substitution.  SVM approximate well enough for linearly and non-linearly separable 

cases. 

2.3.10.1 Support Vector Machines for linear discriminants 

If we consider a linearly separable data then there might exist a plane that perfectly classifies 

the data into two sets. There might be lot of planes that perfectly classifies the data. A case is 

shown in Figure 2-7: Linear discriminants. However, SVM will try to approximate the best 

plane to classify the data selecting the furthest plane from both the data (in this case bold blue 

line) since small perturbations will not cause misclassification. 

 

 

Figure 2-7: Linear discriminants 

Figure shows two different datasets that can be separated by more than one linear discriminants. In 

this scenario a line that divides with maximam margin is used, taken from[71] . 
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Mathematically, 

Let us consider a linearly separable data that can be classified with one or more hyperplanes 

shown in Figure 2-8. Suppose we have a training data D, a set of n points of the form [72] 

[73] , 

D={(     )           {    }}            

  

Where,     is either 1 or −1, indicating the binary class to which the point    belongs. 

Each    is a p-dimensional real vector. We would like to find the maximum-margin 

hyperplane that divides the points having         from those having         .  

 

Figure 2-8: A hyperplane separating two different datasets 

Figure shows the mathematical representation of linear discriminants, taken from [73] . 

Maximum-margin hyperplane and margins for an SVM trained with samples from two 

classes. Samples on the margin are called the support vectors 

The data points x that falls on the hyperplanes satisfy the following equation 

       …………………… eqn (1) 
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Where “.” denotes the dot product and W is normal to the hyperplane. The parameter   
 

   
  

determines the offset of the hyperplane from the origin along the normal vector W. For 

linearly separating data, we can select two hyperplanes perfectly classifying the data, and 

then try to maximize their distance. The region bounded by them is called “margin”. These 

hyperplanes can be described by the equations shown below 

       ……H1…….. eqn (2) 

and 

        ……H2……… eqn (3) 

By using geometry, the distance between these two representing hyperplanes is 
 

   
 , the 

margin of      is minimized to ensure the falling of data point into the margin.  

                                       ………. eqn (4) 

or 

                                     ……… eqn (5) 

This can be represented in the single form of inequalities: 

                          …………….. eqn (6) 

To optimize this equation we need to find the min |W| subjected to  

                                 ……….. eqn (7) 

The optimization problem presented here depends on ||W||, and is difficult to solve. It is 

possible to alter the equation by substituting |W| with 
    

  
    without changing the solution, 

which brings the problem into quadratic programming optimization. 

So, to find min
    

  
, 

Subjected to   

                                …….. eqn (8) 



 
RAFT- Real and False Transcription Factor Binding Sites 

______________________________________________________________________________ 
 

 

 

46 

By introducing Lagrange multipliers  , the previous constrained problem from eqn (8) 

can be expressed as 

L=
    

  
 ∑        

 
     +  ∑   

 
     ……………... eqn (9) 

 

We need to minimize eqn (9) with respect to W, b and maximize with respect to   , 

for all constraints     . It is done by taking first derivative of L with respect to W 

and b and setting derivative to zero. 

  

  
     ∑       

 
     ..………………… eqn (10) 

  

  
   ∑     

 
     ..……………………….. eqn (11) 

Substituting eqn (10) and eqn (11) into eqn (9) gives the solution of dual quadratic 

problem, 

L=∑   
 
       ∑ ∑   

 
             

 
     ………… eqn (12) 

Subjected to  

∑    

 

   

                         

 

The goal is to maximize L. each    with   >=0 indicates the corresponding    is a 

support vector. Then the decision function can be expressed as: 

     ∑        
 
   +    ……………………….. eqn (13) 

 

2.3.10.2 Linearly non-separable data 

In case of linearly inseparable data, the strategy of constructing the optimal plane that bisects 

the dataset is not applicable. An example of this type is shown in Figure 2-9. However, if this 

data producing error is removed then the same strategy will work as before which is called as 

soft margin method. Soft margin relaxes the margin constraints by pushing some data points 

into another side of hyperplane that splits the data points as cleanly as possible. To measure 

the degree of misclassification of data   , it presents non-negative slack variables    as shown 

in Figure 2-10. 
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Figure 2-9:  Linearly inseparable data 

Figure shows a case with linearly inseparable data. Modification in the linear discriminant algorithm 

is needed to solve this type of case, taken from [71]  

 

Figure 2-10: Mathematical representation linearly inseperable data 

Figure shows the modification done to fit linearly inseparable data using the same algorithm as linear 

discriminants (soft margin method), taken from [73]  

This is given by: 

    +   +             +  ………… eqn (14) 

     +     +              ……. ……eqn (15) 

                       ……………………. eqn (16) 
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It can be written as 

                                 ….. eqn (17)  

There exist a tradeoff between the large margin and error penalty. For the linear error 

penalty function the problem becomes 

          
       

  
+  ∑   

 
   ………… eqn (18) 

Subjected to                   

                              

This constraint in (2) along with the objective of minimizing ||W|| can be solved 

using Lagrange multipliers as done above. One has then to solve the following problem: 

              {
       

  
+  ∑   

 
    ∑    

 
   [            +   ]  

∑     
 
   }….eqn(19)  

            

Where “C” is the regularization parameter and responsible for tradeoff between training error 

and complexity term. For the linearly separable case this optimization problem can be 

converted into dual problem as done above. 

Maximize (in   ) 

 ̃   ∑    
 
       ∑ ∑   

 
      

 
               …………… eqn (20) 

Subjected to                    

      

And 

∑      

 

   

 

The constant C is only the difference in this equation than compared to previous equation that 

adds additional constraint on the Lagrange multipliers.  
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2.3.10.3 Nonlinear functions via kernels 

 

 

Figure 2-11: Quadratic discriminant 

Figure shows a case of quadratic discriminant that cannot be classified by linear classification 

algorithm, taken from [71]  

In case of quadratic discriminant, the decision function is not the linear function of data and 

thus above mentioned strategy will not fit. Therefore, conversion from linear classification 

algorithm to nonlinear classification algorithm done by adding additional attributes to an 

original data. For this purpose Boser et al., in [74] , used kernel substitution also known as 

kernel trick. No change in algorithm has to be made by changing kernels which will turn into 

general nonlinear algorithm. This nonlinear classifier can be used to train nonlinear functions 

like polynomial, sigmoidal neural network etc. 

By mapping each data points from eqn 20 into high dimension space through transformation 

ø such that  

      , then the dot product becomes 

                   …………………………. eqn (21) 

Here, the function       is called kernel function. 

Then,  

  ∑    
 
       ∑ ∑   

 
     

 
           (     ) ……….. eqn (22) 
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Subjected to  

∑      

 

   

 

      

Then, the decision function is given by      ∑       
 
         +  ….eqn (23) 

The performance of SVM is dependent to the selection of suitable kernel function. Some of 

the kernel functions that are available in Weka are listed in the Table 2-4. 

Table 2-4: Kernel for classification using SVM and its equation 

There kernels were used to in this project to classify the real and false binding sites using SVM. 

S.n. Kernel type Relation 

1 polynomial kernel K(x, y) = <x, y>^p or K(x, y) = (<x, y>+1)^p 

2 Radial basis function (RBF) K(x, y) = e^-(gamma * <x-y, x-y>^2) 

3 PUK kernel The Pearson VII function-based universal kernel 

 

2.3.11 Other classification approaches 

2.3.11.1 Random Forest 

Random forest is an ensemble of decision tree developed by Leo Breiman [75] . This 

algorithm for classification uses bootstrapping for building a tree and grows an unpruned tree. 

In other standard tree bases classification approaches, node is split based on the best split 

among all variables. However, to split each node in random forest, randomly chosen best 

predictor at that node is considered [76] . RF uses ensemble and bootstrapping technique to 

prevent over fitting. 

Features of random forest: 

 Feasible to use even though the number of variable is larger than number of 

observations 

 It can be used to classify both two class or multi-class problems 
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 It so not suffer from over fitting 

 It has best accuracy among current algorithms 

 Can be used in large dataset 

Random forest has been used in many classification purposes in genome study. In [77] , RF 

was used for classification of microarray data. They have shown that RF has good 

performance and accuracy as other machine learning methods like KNN and SVM. The 

extension of RF has also been used in microarray data classification [78] [79] . 

2.3.11.2 Naïve Bayes 

Naïve Bayes classifier is based on Bayes’ theorem with Naïve independence assumptions 

between the features. Naïve Bayes classifier is based on a statistical as well as supervised 

learning. It has been used in classification of text, spam etc.  [80] .  Naïve Byes classifier can 

be used with small amount of training data. It has been used in bioinformatics in different 

classification task. In [81] , Gail et al. implements Naïve Bayes classifier (NBC) to classify 

taxonomic match of metagenomic reads. Similarly, in [82], extension of Naïve has been used 

for the selection and classification of SNP data. 

 

 

 

 

 

 

 

 

 

 



 
RAFT- Real and False Transcription Factor Binding Sites 

______________________________________________________________________________ 
 

 

 

52 

Chapter 3 

3 Approach and Methodology 

3.1 High Level Design 

Figure 3-1 shows a work flow diagram for this project. A ChIP-seq region of true binding site 

for USF1 was provided in bed file format in together with the motif describing those binding 

sites. This file was used to make positive and negative dataset, which was finally used to 

make a test and training set. To make positive dataset, the bed region described by true motif 

was expanded on both sides. A fasta format was extracted for the expanded region. This 

obtained fasta file was used to calculate the various physical properties like stacking energy, 

DNA denaturation, BDNA twist and protein DNA twist . The statistical measures like mean, 

standard deviation, kurtosis and skewness were calculated from each physical property. In 

addition, genomic features like GC count, GC skew, distance from TSS to binding region and 

distance from CpG Island to binding region were computed.  

Similarly, to make negative dataset, a region 500 base pair far from the true binding site was 

selected. This region was used as input to FIMO together with motif describing the binding 

region. The output of FIMO returns the regions that are potential binding site but are actually 

false positive value. These coordinates of false positive motif were then trimmed and aligned. 

Then finally the region was extended on both sides making the distribution same as that of 

positive dataset. Fasta for these regions were calculated in the similar way as before. Then, 

this fasta file was used to calculate the physical properties. Finally, the statistical measure of 

these properties was calculated. Last but not the least, the genomic features like TSS distance, 

CpG island , GC skew and GC count were also calculated, which complete the negative 

dataset. After solving the imbalance problem of positive and negative dataset, a single file 

was made mixing positive and negative dataset. From the file, 90% of instances were used as 

training set and remaining 10 % as testing set. The entire flow diagram is shown in figure 3-

1.  Note: The duplication of data between test and training set was strictly avoided. 
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Figure 3-1:  Flow diagram of RAFT 
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3.2 Algorithms 

This section contains the algorithms and pseudo-code that were developed to compute 

various properties using Java program.  

3.2.1.1 GC count  

This is the algorithm written in Java to count the GC content in DNA sequence. The output of 

this program will give the percentage of GC. It will input the single file in fasta format, 

compute GC content line by line from file and then generates the output. 

Step 1: Start 

Step 2: Get input (x) from file in fasta format one line at a time 

Step 3: Declare variables x, y, j, count, result; 

Step 4: Initialize variables count←0, j←0 

Step 5: Calculate count of G and C 

y←x.toUpperCase(); 

Repeats the step until j=x.length() 

   If y.charAt(j)='C'| y.charAt(j)='G' 

     count ←count+1; 

Step 6: Limit the decimal up to 2 digits 

  result← (count*100)/x.length(); 

         result←Math.round(result*100.0)/100.0; 

Step 7: Print result 

Step 8: Go to step 2, until line in the file ends 

Step 9: Stop 

3.2.1.2 GC Skew 

This algorithm was developed to compute the GC skew in DNA sequence. The output of this 

program will gives the GC skew. It will input the single file in fasta format, compute GC 

skew line by line from file and then generates the output. 
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Step 1: Start 

Step 2: Get input (x) from file in fasta format one line at a time 

Step 3: Declare variables x, y, j, countG, countC, result; 

Step 4: Initialize variables countG←0, countC←0, j←0 

Step 5: Compute count of G and C 

y←x.toUpperCase(); 

Repeats the step until j=x.length() 

   If y.charAt(j)='G' 

      countG ←countG+1 

 

   Else If y.charAt(j)='C' 

     countC←countC+1 

Step 6: Compute GC Skew 

     

   result← (countG-countC)/(countC+countG)) 

    

Step 7: Limit the decimal up to 2 digits 

  result ← (count*100)/x.length(); 

         result ←Math.round(result*100.0)/100.0; 

Step 8: Print result 

Step 9: Go to step 2, until line in the file ends 

Step 10: Stop 

     

3.2.1.3 Statistical parameters 

This algorithm was developed to calculate the property BDNA Twist. Similarly, values of 

other properties like stacking energy, protein DNA twist, and protein induced deformation 

were also computed by just changing the value of dinucleotide shown in Table 2-2 for 

respective properties. I have used a library developed by Tim O’Brien available in [83] , to 

compute the statistical measures like Mean, Skewness, Standard deviation and Kurtosis. 

Step 1: Start 
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Step 2: Get input (x) from file in fasta format one line at a time 

Step 3: Declare variables  j, valMean, valSD, valSkew, valKurt, value, result, str, values[] 

Step 4: Initialize variables str←null, valMean←0, valSD←0, valSkew←0, valKurt←0, value←0, 

 double[]←  new double[x.length()-1] 

Step 5: Compute the value of dinucleotide properties 

Step 5.1: Parse the DNA sequence into dinucleotide with sliding window approach 

Repeats the step until j=x.length() 

str←x.substring(j,j+2); 

    str←str.toUpperCase(); 

   Step 5.2: Assign the value of dinucleotide segment 

    If str.equals("AA") 

     value←35.5 

Else If str.equals("AC") 

     value←33.1; 

     . 

     . Calculate for all dinucleotide combination 

     . 

Else If str.equals("TT") 

     value←35.5; 

   Step 5.3: Hold the value in array 

    If value≠0 

     values[j] ←value 

Step 6: Compute Statistical measures from the dinucleotide values in array 

     

   Mean mean=new Mean() 

   valMean← mean.evaluate(values) 

 

StandardDeviation stdDev = new StandardDeviation() 

        valSD← stdDev.evaluate(values) 

       

   Skewness skewness = new Skewness() 

   valSkew← skewness.evaluate(values) 

       

   Kurtosis kurtosis = new Kurtosis() 

 

      valKurt← kurtosis.evaluate(values) 

 

Step 7: Limit the decimal up to 3 digits for each returned value 
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         resultMean ←Math.round(valMean*1000.0)/1000.0 

resultSD  ←Math.round(valSD*1000.0)/1000.0 

resultSkew ←Math.round(valSkew*1000.0)/1000.0 

resultKurt ←Math.round(valKurt*1000.0)/1000.0 

Step 8: Print result 

Step 9: Go to step 2, until line in the file ends 

Step 10: Stop 

 

3.2.1.4 Correlation calculations 

This algorithm was developed to count the nucleotides at specific position and total 

background distribution of mono nucleotides. These obtained values were used to calculate 

Pearson correlation.  

 

Step 1: Start 

Step 2: Input file line by line and store in array “aContentArr” 

Step 3: Declare arrayList mononuc, prevVal 

Step 4: Initialize variables prevVal←0 

Step 5: Add mononucleotides as an element to arrayList 

 mononuc.addAll(Arrays.asList(“A”,”T”,”G”,”C”)) 

Step 6: Declare hashmap and initialize to zero 

HashMap<String, Integer> hm = new HashMap<String, Integer>(); 

  hm.clear() 

Step 7: Count the number of mononucleotides present in each column 

 Repeats the step until i equals to length of sequence in array 

   Repeats the step until depth equals to depth of array 

   Step 7.1: Get single nucleotide and convert to uppercase 
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    s←aContentArr.get(depth).substring(i, i+1); 

    s←s.toUpperCase(); 

   Step 7.2: Check if substring present in array and update count 

   If mononuc.contains(s) 

    If hm.containsKey(s) 

prevVal←hm.get(s).intValue() 

hm.remove(s) 

hm.put(s,prevVal+1) 

   end depth loop 

   Step 7.3: Print key and value from hashMap 

   Step 7.4: clear hashMap 

  End i loop 

Step 8: Stop 

 

In this algorithm, it is important to note that hashmap value is initialized to 0. This will force 

the program to start the count from zero for each sequence in an array. 

In similar way, background distribution of mono nucleotide can be computed. However, the 

difference in algorithm is that the hashmap value is not cleared (reset) in background 

distribution calculation. This will update the count with previous count and yields the total 

distribution of mononucleotides present in entire sequences. These values of 

mononucleotides at specific position and background distribution were exported to excel and 

the correlation was calculated. Based upon the correlation the plots were made that are shown 

in next chapter. 

In addition, di-nucleotides and tri-nucleotides were also computed with simple modification 

in above algorithm. The elements in array for di-nucleotides and tri-nucleotides were used in 

place of mono nucleotides. The possible di-nucleotides and tri-nucleotides combinations are 

shown in Appendix . The values obtained were again exported to excel to calculate the 
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correlation and finally the plot was made for di-nucleotides and tri-nucleotides are shown in 

next chapter. 

3.2.1.5 Cruciform structure 

This algorithm was developed to check the transcription factor forming the cruciform 

structure. In this algorithm, the complement of sequence is computed from the sequence. 

Sequence and its reverse complement is assigning in row and column of the matrix. Similar 

with the dot matrix approach, value 1 is added to the value of cell if the base pair in i and j 

are same. This is loop over all sequences present in file. 

 

Step 1: Start 

Step 2: Input file (x) a line at a time 

Step 3: Declare x, arrayList, an, cn, tn, gn, complement, comp, revComp, i, j 

Step 4: Initialize variables s←null, comp←null, revComp←null, i←0, j←0 

Step 5: Add elements to array 

 an.add("A") 

 cn.add("C") 

 tn.add("T") 

 gn.add("G") 

Step 6:  Find the reverse complement of sequence 

 Step 6.1: change sequence to uppercase 

  x←x.toUpperCase() 

 Step 6.2: Find the complement of sequence 

  Repeat i until length of sequence 

  s←x.substring(i, i+1) 

   If  an.contains(s) 

   comp←replace A with T 
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   Else If tn.contains(s) 

   comp←replace T with A 

Else If cn.contains(s) 

   comp←replace C with G 

Else If gn.contains(s) 

   comp←replace G with C 

  complement.add(comp) 

  end loop 

 Step 6.3: Convert array to string  

comp←complement.toString 

Step 6.4: Reverse the string 

revComp←reverse(comp) 

Step 7: Use the original sequence in row and its reverse complement in column and fill the cell of table, add 1 in 

cell if the nucleotides in i and j are same, else add 0. 

 Step 7.1: Assign row with original sequence and column with its reverse complement 

Step 7.2: For each i and j position in the cell, where i is the length of original sequence and j is the 

length of reverse complement sequence 

   If nucleotide at i equals nucleotide at j 

table[i][j] = 1+table[i][j]; 

  Else       

table[i][j] = 0+table[i][j]; 

Step 8: Go to 2 until the end of line in file 

Step 9: Print the table 

Step 10: Stop 
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3.3 Methodology 

3.3.1 Description of Data Sets 

3.3.1.1 Data sources 

A file “K562USF1wgEncodeAwgTfbsHaibK562Usf1V0416101UniPk.bed” containing 

binding regions for the transcription factor USF1 determined using ChIP-seq was provided. 

This file was originally downloaded from UCSC table browser (http://genome.ucsc.edu). 

Another file, K562USF1wgEncodeAwgTfbsHaibK562Usf1V0416101UniPk.mat was a 

PWM in MEME format describing USF1 binding sites. It was determined using tool MEME 

from the ChIP-seq regions indicated by the binding regions for the transcription factor USF1. 

Finally, K562USF1wgEncodeAwgTfbsHaibK562Usf1V0416101UniPk_tfbs.bed was a list of 

likely TF binding sites in the binding regions. It was determined by using FIMO (Find 

Individual Motif Occurrences) to scan the ChIP-seq regions with the matrix, and keeping the 

most significant hits. Not all regions will have TF binding sites in this list. The files were for 

the cell type K562. The tracks were made from version hg19 of the genome. 

 The rest of information like CpG Island and TSS distance were downloaded from UCSC 

table browser in bed file format.  

3.3.1.2 Features selection 

For the property-based classification, different genomic and physical properties were used. 

The statistical measure for physical properties was calculated. These properties were used to 

label the positive and negative cases finally forming test and training set. Genomic and 

structural properties were already described in Chapter 2.  

3.3.2 Positive data  

ChIP-seq region for the true positive region was provided in bed file format along with the 

PWM description of motif. These sites defined by bed file fall in the ChIP-sec region and 

believed to be a true positive binding site. This bed file contains the coordinate of true 

binding site defined by motif and the length was exactly equal to the length described by 

motif that was 11 nucleotides. These bed regions were then extended to on both sides by 30 

nucleotides using bed command, thus, giving constant 71 residues for each sequences (30 nts 

left +11 nts binding site + 30 nts right). Finally, fasta was extracted from the extended bed 
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file. With this approach the binding site are perfectly aligned starting from 31th positions to 

41th position (11nts long) of each fasta line. The properties obtained from this data were used 

as main source for the positive dataset. With the similar steps another positive dataset with 

sequence length of 161 nts was extracted. It was made by extending the true binding site by 

75 nts both sides (75+11+75). This region was used to predict the appropriate window size. 

3.3.3 Negative data  

Again, true positive dataset was then used to generate a new negative dataset. It was not an 

easy task to generate a good negative data set that shouldn’t be including positive binding 

regions. To make negative data set, a sub region of 300 nts that was 500nts far away (right 

side) from the coordinates defined by positive motif was chosen. There were two reasons for 

choosing sub-region of 300 nts in this project. With small region it was difficult to get enough 

false positive sequences defined by motif in this sub-region. If the larger sub-region was 

taken then there was possibility of getting large number of false positive sequences, however, 

there is limitation of  maximum 1 million sequence characters as input. The sub-region used 

in this project was acceptable with FIMO’s limitation of maximum number of characters as 

input and was able to predict enough number of motifs around false positive region. The fasta 

format was extracted using the bed command for this new region. Then, the fasta region was 

used as input for the FIMO along with the description of motif. Finally, FIMO returns the 

information with list of coordinates and the binding motif. It is important to note that, FIMO 

use default threshold of e
-4

 therefore, the number of output may not me equal to number of 

input coordinates.
 
The hits returned by FIMO are generally less in false positive region than 

number of positive motifs. 

The output was FIMO was then trimmed to obtain only 11nts false positive binding region. 

This false positive binding region was then extended by 30 nts both the direction making total 

of 71nts long sequence. The fasta for this region was obtained using the bedtool. This fasta 

region was 71 nts long in which false positive binding region starts from 31th position to 41th 

position and of course, same length as positive binding site. These false positive regions did 

not contain the region described by ChIP-seq. This was confirmed by scanning the motif 

using FIMO which returned the list of region that did not fall in ChIP-seq region. Finally, the 

properties of these regions were used to train the model as negative training set. 
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I also tried to make another false region with respect to false positive region in order to check 

the variation in between these two regions. This new false positive region generated from 

false positive is termed as false_false positive in this report. With similar approach this 

false_false positive region was made.  A sub-region of 400 nts was selected 200 nts away 

(right side) from the motif found in false positive region. Fasta from this sub region was used 

as input to FIMO with the motif defining binding site. The FIMO returns 82 hits that were 7.2 

% of false positive set. This region was extracted aligned and extended on both sides by 30 

nts forming false_false positive region. This false_false positive region has not been used in 

classification purpose but it has been used to compare with false positive dataset using 

sequence logo. 

3.3.4 Imbalance problem 

The large variation in the number of positive and negative cases gives the bias prediction. 

These will give over fitting problem and mislead the prediction. To avoid this problem a 

mechanism to balance the dataset was done. Two approaches were suitable to balance the 

dataset. 

 First, SMOTE function of WEKA is inbuilt function in weka that provides the option to 

automatically balance the minor member present in training set using supervise learning. 

Second approach is to randomly sample the large data set (positive dataset in this case) and 

using the subset of balance dataset. In this thesis, later approach was used.  Positive case was 

large in number than negative case. Therefore, random sampling of positive cases was done 

to make a subset of positive cases. This newly formed dataset was balance set that was used 

to make test and training set.  

The redundancy and inconstancy was not observed in positive data set. However, few 

redundancy and inconstancy was observed in negative dataset. Some of the sequences in the 

file were less than 71nts long was observed. This was due to the fact that when selecting the 

region 500 nts away from the true binding site, some of the regions came close to the end of 

DNA sequence for that particular strand. There were 38 such inconsistent sequences that 

constitute 3.5% of total negative set. These redundancy and inconstant region were discarded 

from the negative dataset for further analysis. 
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3.3.5 Pre-processing 

The genomic and structural features of both positive and negative dataset were computed. 

These computed attributes of positive and negative data were then merged into a single file. 

The row was randomized to shuffle the positive and negative cases. The file was then used to 

make a test and training dataset. To make a test dataset 10% of total cases were used. The 

remaining 90% of cases were used as training set. Finally, the file was converted in to ARFF 

file format by a converter to feed into classifier. The distribution of properties of total cases 

i.e. before separating test and training set are shown in Figure 3-2. The positive instances are 

shown in red and negative instances are shown in blue. Figure shows the aggregation of 

positive and negative cases around the mean value forming a peak. 

 

Figure 3-2: Relative distributions of properties 

Figure shows a relative distribution between positive and negative instances (red positive instances 

and blue negative instances). It demonstrates that both instances forming peak around the mean value. 
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3.3.5.1 Training set 

It was assumed that 90% of total data was sufficient to use as training set. Therefore, 1932 

instances were used as training set which was exactly 90% of total file (2147 instances). 

These, contains 962 positive instances and 970 negative instances. 

3.3.5.2 Test set 

To make test set I used 10% of dataset that were 215 instances. These instances comprised of 

118 positive and 97negative instances.  These training and test set were then ready to feed the 

classifier. 

3.3.6 Quality assurance of dataset 

To ensure the quality of data correlation tests was done. Firstly, I computed the correlation 

between background distribution and actual distribution at that point. It was done to test 

whether the region around the TFBS was reasonable or not. Since, if the window is too small 

then it is possible to loose important information. In similar way, if the window size is too 

large then any real signal may be lost in additional noise. Following steps were followed to 

compute this correlation assuming mononucleotides. This was done in full positive dataset 

before making the subset. 

 Loop over full positive dataset and count the number of A, C, T and G at each 

position of the region. 

 Loop again and count the number of bases independent of position that gives the 

background distribution. 

 Now for each position of the profile, estimate the correlation between the background 

distribution and actual distribution at that position. 

 Make a correlation plot which indicates the different parts of these regions deviates 

from random background distribution. This plot gives idea about the signals present 

around the TFBS. During this computation the region including motif gives biased 

composition. 

The correlation was also computed for dinucleotide and tri-nucleotides since they have more 

data points for correlation than in mononucleotides.  
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3.3.7 Classifier and its performance 

The support vector machine (SVM) was trained using SMO on the training data. Different 

kernels were used to find the optimum accuracy of classifier. Simply taking an account of 

accuracy for the performance of classifier is not sufficient thus other parameters like 

sensitivity, specificity, F1-score and accuracy were also calculate for better measure of 

classification performance. 

3.3.7.1 F1 -score: 

 It is the harmonic mean of precision and sensitivity. 

𝐹   ∗ 𝑃𝑟𝑒𝑐𝑖 𝑖 𝑛 ∗  𝑒𝑛 𝑖𝑡𝑖𝑣𝑖𝑡𝑦  𝑃𝑟𝑒𝑐𝑖 𝑖 𝑛 +  𝑒𝑛 𝑖𝑡𝑖𝑣𝑖𝑡𝑦  

3.3.7.2 Sensitivity (recall) or true positive rate 

Sensitivity is defined as fraction of correctly predicted case. 

 𝑛  𝑇𝑃  𝑇𝑃 + 𝐹   

3.3.7.3 Specificity –false positive rate 

 𝑝  𝑇   𝑇 + 𝐹𝑃  

3.3.7.4 Accuracy: 

   𝑇𝑃 + 𝑇    𝑇𝑃 + 𝑇 + 𝐹𝑃 + 𝐹   

Where naming are: TP- true positive, TN- true negative, FP – false positive and FN- false 

negative. 

3.4 Resources and tool used 

3.4.1 BED tools 

The BED tools are fast and flexible tools for testing for manipulation and analysis between 

different large set of genomic features [84] . This tool was also described in spring project 

report. The most of the description is redundant since the tool and command is very useful in 

accomplishing this project. It is implemented in C++ and freely available online (website of 

bed). In RAFT, bedtool version 2.19.1 was used. The BED tools are used to perform different 

operations like intersects, count, merge, expand window, subtract on different file formats 

like BD, BAM, VCF and GF /GTF. BED format has three mandatory fields and nine 

additional optional fields. The first there mandatory fields are: 
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chrom: this is the mandatory field that is used to name chromosome. Any string can be used 

to name the chromosome. 

chromStart: the zero bases starting position of the features in the chromosome. The first base 

of chrosome is number 0. The natural numbers are used to indicate the chromStart. 

chromEnd:  this is another mandatory field which specifies the one based ending position of 

the feature in the chromosome. Similar to the chromStart, numbers are used to indicate the 

end position of chromosome.  

There are other nine additional BED files like name, score, strand, thickStart, thickEnd, 

itemRbg, blockCount,blockSize and  blockStarts. The descriptions for these fields are found 

in BED tool manual. 

Some useful bed commands that are used in this project are explained in brief. 

3.4.1.1 IntersectBed 

This tool will report the intersection or overlapping features between two files A and B. 

Usage: $ intersectBed [OPTIONS] -a A.bed  -b B.bed 

Option Description 

-a BED file A 

-b BED file B 

-wb Write the original entry in A for each overlap. 

-wa Write the original entry in B for each overlap. Useful for knowing what A overlaps. 

Restricted by -f. 

-s Enforce to overlap the feature for same strand if present 

 

This command will report the overlapping features in standard output. To extract the output 

in named file “C” we may add “>C.bed” at the end of that command. The detailed   options 

can be found in user manual of bedtools. 

3.4.1.2 closestBed 

It will also searches for the overlapping features between A and B, if not found closestBed 

will report the closest (that is, least genomic distance) between A and feature in B. 
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Usage: $ closestBed [OPTIONS] -a A.bed -b B.bed 

 

Option Description 

-s Force strandedness. That is, find the closest feature in B overlaps A on the same strand. 

By default, this is disabled. 

-t How ties for closest feature should be handled. This occurs when two features in B have exactly 

the same overlap with a feature in A. By default, all such features in B are reported. 

Here are the other choices controlling how ties are handled: 

all Report all ties (default). 

first Report the first tie that occurred in the B file. 

last Report the last tie that occurred in the B file. 

3.4.1.3 subtractBed 

It searches for the features in B that overlap with the features in A and if found subtractBed 

will remove the overlapping portion from A and the remaining features are reported. 

Usage: $ subtractBed [OPTIONS] -a A.bed –b B.bed 

Option Description 

-f Minimum overlap required as a fraction of A. Default is 1E-9 (i.e. 1bp). 

-s Force strandedness. That is, find the closest feature in B overlaps A on the same strand. 

By default, this is disabled. 

 

3.4.1.4 fastaFromBed 

This tool extracts sequences from a FASTA from input fasta file source for the intervals 

defined in a input BED file.  

Usage: $fastaFromBed [OPTIONS] -fi hg19.fa -bed A.bed -fo <output.fa> 

Option Description 

-names Use the “name” column in the BED file for the FASTA headers in the output FASTA file. 

-tab Report extract sequences in a tab-delimited format instead of in FASTA format. 

 

3.4.1.5 slopBed 

slopBed will increase the window size of each feature in a BED file as defined by user. The 

defined number must be an integer value.  
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Usage: $ slopBed [OPTIONS] -i <BED> -g <GENOME> [-b or (-l and -r)] 

Option Description 

-b Increase the BED entry by the same number base pairs in both directions 

-l The number of base pairs to subtract from the start coordinate 

-r The number of base pairs to add to the end coordinate 

-s Define -l and -r based on strand. For example- if used, -l 500 for a negative-stranded feature, it will 

add 500 bp to the end coordinate. 

 

 

3.4.2 The MEME Suite 

The MEME Suite is a tool for discovery and analysis of DNA binding sites and protein 

interaction domains within the given sequence motifs. The MEME motif discovery uses 

GLAM2 algorithm that allows discovery of motifs containing gaps [85] . This unified web 

server interface provides four different types of services for motif analysis like; motif 

discovery, motif -motif database searching, motif-sequence database searching and 

assignment of function. MEME is implemented in ANSI C and published as Simple Object 

Access Protocol (SOAP- it is a specification for exchanging structured information in web 

service). 

 

Figure 3-3: MEME suite tools 

Figure 3-3 shows the function unit of MEME suite tool found in [86] . TOMTOM is a tool 

that is used to compare the DNA motif to a known motif in database. Its output is the score 

value of similarity and statistical significance of score. GOMO is used to analysis DNA 

motif. It searches species-specific GO annotation database. FIMO (Find Individual Motif 
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Occurrence) and MAST (Motif Alignment and Search Tool) are tools within MEME that are 

used to search sequence database.  MAST is sequence oriented, is suitable to analyze fix 

length proteins whereas FIMO can be used to scan entire genomic database. In this project, I 

have work with FIMO to scan the input motif for predicting TFBSs. Therefore, I have 

presented FIMO in brief. 

3.4.2.1 FIMO  

FIMO takes as input fixed-length motifs, represented as position-specific frequency matrices 

[87] . The input sequence is accepted in fasta format from the interface as well. A valid Email 

address and support database are another required field in FIMO. The output of FIMO is a 

ranked list of motif occurrences with p value, q-value, start and end position of potential 

binding site and name of sequence. This output is represented in different ways like html, 

xml, CISML, GFF and plain text. 

3.4.2.2 Other tools 

There were other tools used to accomplish this work. Eclipse Juno Service Release 1 was 

used as editor for Java program. Similarly, notepad++ v5.9.6.2, Microsoft word and excel 

2011 were used. In addition, web tool like Sequence2Logo was used to make a logo plot.  
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Chapter 4 

4 Observations and analysis of outcome 

4.1 Results and Discussions 

This section covers the observations and outcome of the entire work. All observed results are 

analyzed and explained. 

4.1.1 Observed dataset 

First of all, there were 12334 positive sequences and based upon these sequences, 1085 

(8.7%) false positive hits were obtained from FIMO in false a positive region, which was 

used to make negative dataset. The output of FIMO gives 38 inconsistent hits (3.5%) in 

negative set and those were discarded. Thus, only 1047 hits were used as negative dataset. To 

balance dataset between positive and negative sets, 1100 instances of positive were used, 

forming 2147 number of instances in full dataset. From this full dataset, 10% of instances 

(i.e. 215 instances) were used in test set and 90 % of instances were used in training set. 

These observations are summarized in Table 4-1and Table 4-2. 

Table 4-1: Observation of number of positive and negative instances 

 Total number of instances Inconsistency Used instances Discarded 

Positive set 12334 No 1100 11234 

Negative set 1085 Yes 1047 38 

 

Table 4-2: Observation of positive cases and negative cases in test and train dataset 

Full dataset Test set Training set 

2147 215 1932 

 Positive cases Negative cases Positive cases Negative cases 

 118 97 962 970 
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4.1.2 Correlation Plot 

Correlation of nucleotides at specific position with background was computed and plot was 

made. This plot shows the nature of distribution of nucleotides. All the plots are shown in 

following figures. 

 

 

Figure 4-1: Correlation plot of mononucleotide for positive dataset 

 

Figure 4-2: Correlation plot of dinucleotide for positive dataset 
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Figure 4-3: Correlation plot of tri-nucleotide for positive dataset 

 

Figure 4-1, Figure 4-2 andFigure 4-3 show more clear signals around region 31 to 41 nts, 

which is the binding region. These signals are expected to exist because they form a biased 

composition. Interestingly, another clear signal was observed around 18 nts and 54 nts that 

can be seen in all three plots. This gives the idea that there might me another regulatory 

region regulating the binding process. The basic idea was to select the region that holds all 

signals around TFBS. To make sure, the region with larger extended region i.e. 100 nts both 

sides thus giving 211 nts long sequence were generated. The correlation was computed and 

the plot was made which is shown in Figure 4-4Figure 4-5Figure 4-6. 
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Figure 4-4: Correlation plot of mononucleotide for wider region of positive dataset 

 

Figure 4-5: Correlation plot of di-nucleotide for wider region of positive dataset. 

 

Figure 4-6: Correlation plot of tri-nucleotide for wider region of positive dataset 
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Comparing the plots made with wider region with 211 nts and narrow region with 71 nts. It 

was seen that larger region has similar correlation as narrow region with additional flat 

correlation in wider extended region. All the necessary signals were also conserved in narrow 

region towards the center of plot. Therefore, the region of 71 nts was used in this project for 

preparation of data and classification. 

Similarly, the distribution of signals in reverse complement of sequence was also computed. 

The sequence was first reversed and then its complement was computed using java program. 

The correlation was calculated in similar fashion as mentioned earlier. The plot was made for 

mononucleotides, di-nucleotides and tri-nucleotides. These plots are shown in Figure 

4-7Figure 4-8 Figure 4-9 

 

Figure 4-7: Correlation plot of mononucleotide for reverse complement of positive dataset 
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Figure 4-8: Correlation plot of di-nucleotide for reverse complement of positive dataset 

 

 

Figure 4-9: Correlation plot of tri-nucleotide for reverse complement of positive dataset 

The plots of reverse complement showed the similarity with original sequence. The sharp 

change in correlation value can be observed in the middle of plot. This middle region is the 

binding site of sequence. Besides, these regions distinct occurrence of signals in both the 

sides of binding sites was observed. These signals were also present in narrow and wide 

version of plots. 

-0.5

0

0.5

1

1.5

C
o

l1

C
o

l8

C
o

l1
5

C
o

l2
2

C
o

l2
9

C
o

l3
6

C
o

l4
3

C
o

l5
0

C
o

l5
7

C
o

l6
4

C
o

l7
1

C
o

l7
8

C
o

l8
5

C
o

l9
2

C
o

l9
9

C
o

l1
0

6

C
o

l1
1

3

C
o

l1
2

0

C
o

l1
2

7

C
o

l1
3

4

C
o

l1
4

1

C
o

l1
4

8

C
o

l1
5

5

correlation plot of di-nucleotide at specific position with 
background distribution 

 

CorrCoeff_revCompliment

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

C
o

l1

C
o

l9

C
o

l1
7

C
o

l2
5

C
o

l3
3

C
o

l4
1

C
o

l4
9

C
o

l5
7

C
o

l6
5

C
o

l7
3

C
o

l8
1

C
o

l8
9

C
o

l9
7

C
o

l1
0

5

C
o

l1
1

3

C
o

l1
2

1

C
o

l1
2

9

C
o

l1
3

7

C
o

l1
4

5

C
o

l1
5

3

correlation plot of tri-nucleotide at specific position 
with background distribution 

 

corrCoeff_revCompliment



 
RAFT- Real and False Transcription Factor Binding Sites 

______________________________________________________________________________ 
 

 

 

78 

Furthermore, the plot was made for reverse complement of positive strand and reverse 

complement of negative strand. The sequences from positive regions were first discriminated 

into different sets of negative and positive strand. Then, each individual set was used to make 

the reverse complement. The plots are presented in Figure 4-10, Figure 4-11Figure 4-12. 

 

 

 

Figure 4-10: Correlation plot of mononucleotide considering strandness of reverse complement 

Figure shows a correlation plot of mononucleotide at specific position with background distribution. 

(a) Reverse complement of negative strand (b) reverse complement of positive strand 
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Figure 4-11: Correlation plot of di-nucleotide considering strandness of reverse complement 

Figure shows a correlation plot of di-nucleotide at specific position with background distribution. (a) 

Reverse complement of negative strand (b) reverse complement of positive strand 

 

Figure 4-12: Correlation plot of tri-nucleotide considering strandness of reverse complement 

Figure shows a correlation plot of tri-nucleotide at specific position with background distribution. (a) 

Reverse complement of negative strand (b) reverse complement of positive strand 
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The plot for reverse complement of positive strand demonstrates the mirror image of negative 

strand or vice versa. All the signals that were present in positive strand were also present in 

negative strand. However, these plots exhibited little variation than the original sequence and 

reverse complement sequence presented earlier. The reason is due to the discrimination in 

strand. The idea to make plots for strand specific was to check the dominance of signal in 

individual strand. 

It was seen from the correlation plot of mononucleotide, di-nucleotide and tri-nucleotide that 

there is existence of one clear signal at 18 and 54 position plots. This was described by abrupt 

change in correlation value in the plot. From the sequence logo, there does not have existence 

of any significant conserved residue. However, a pattern of only Cs and only Gs were 

discontinued by base A forming a pair with T was clearly observed from logo in Figure 4-15. 

This region may play a vital role in transcription factor binding during transcription. From the 

logo of positive plot in Figure 4-15, it can be seen that motif lies from position 31 to 41(41 

inclusive). Interestingly, it looks like the formation of hairpin (cruciform structure). Figure 

4-16 gives the plot of true motif, Figure 4-13 and Figure 4-14  displays the logo for 

false_false positive and false positive respectively. The logo of positive set was quite 

different than that of false positive set and far more different than false_false positive set. 

4.1.3 Logo Plot 

The fasta format for positive and false positive region was used to make a logo. The logo for 

false_false positive sequence was also made. The generation of false_false positive region 

has been explained in earlier chapter. The plots were also made for the reverse complement 

of positive sequences, positive sequence and the true positive binding motifs. These entire 

logo plots were made using tool Seq2Logo [68]. Furthermore, logo plot for extended regions 

are presented in Appendix IV. 
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Figure 4-13: Logo of false_false positive sequence 

 

 

Figure 4-14: Logo of false positive sequence 
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Figure 4-15: Logo of positive sequence 

 

 

Figure 4-16: Logo of true binding motif 

From the figure, it can be seen that the region for false_false positive was completely 

different from that of false positive and positive region. It can be seen that the positive 

regions has more conserved residues around binding site than that of false positive region. 

Interestingly, it can be seen that nucleotides around the region of binding sites were 

complement to each other. This gives the idea of formation of hairpin more precisely a 

cruciform structure. This structure formation is not present in false positive region which also 

provide a strong ground that the false region used in this work is good enough. Figure 4-16 
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shows a distribution of nucleotides in true binding motif. This logo was made by extracting 

the fasta region from the provided data of true positive binding sites. 

The logo of reverse complement of positive sequences was made using Sequence2Logo. 

Figure 4-17 shows the plot for region 160 nts. The binding motif lies from76 th position to 

86th position. This figure shows the similarity with logo plot of positive regions. 

 

Figure 4-17: Logo plot of reverse complement of positive region 

 

The logo plot for positive strand and negative strand were also made. These plots are shown 

in Figure 4-18 and Figure 4-19. Form the both figures it can be seen that the nucleotides are 

highly conserved in binding sites which is expected. The weight of nucleotides in conserved 

position was decreased when the plot is made without considering the polarity of strands.  



 
RAFT- Real and False Transcription Factor Binding Sites 

______________________________________________________________________________ 
 

 

 

84 

 

Figure 4-18: Logo plot of negative strand 

 

Figure 4-19: Logo plot of positive strand 
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4.1.4 FIMO output observation 

The output of FIMO for false_false positive region contained the hits with higher p-vale than 

hits obtained for false positive region. Figure for these hits are presented in Appendix  Since, 

hits were very few in numbers, these false_false positive set was not used in classification. 

However, it was used to compare the nature of composition of dataset against false positive 

dataset.  

4.1.5 Binding region forming cruciform structure   

The output of sequence logo from positive fasta region gives the possibility of cruciform 

structure around TFBS region. The structure can be drawn from the logo is shown in Figure 

4-20. 

 

 

Figure 4-20: Possible cruciform structure 

Figure shows a possible cruciform structure observed from the sequence logo of positive sequence, ref 

from Figure 4-15. 

An attempt was made to test the TFBS forming the cruciform structure. The idea to identify 

cruciform structure computationally is described in background section and the algorithm 
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developed to test the structure was presented in methodology. The high score was expected 

along the diagonal of the output matrix to confirm cruciform structure. However, the score 

obtained did not show any significant high score patterns along diagonal except in region 

around binding sites. This is shown in Figure 4-21. 

 

 

Figure 4-21: Heat Map 

Figure 4-21 shows the heat map plot from the score obtained from the computation. The color 

shows the distribution of scores. Scores are represented by color coding as red color reflects 

the value with high score and the low score are shown in green. From the heat map, it can be 

observed that high scores are found around center of diagonal. This high score region is the 
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binding region, which is shown by red and black spots. There is also presence of high score at 

offset plus one and minus one along the central diagonal. From the logo of true positive and 

appendix V, the motif can be estimated as GTCACGTGGCC. The reverse complement of 

this sequence will be GGCCACGTGAC. Suppose, similarity matrix is computed between 

this motif and reverse complement of it and is shown in figure 4-22. 

 

 G T C A C G T G G C C 

G 1     1  1 1   

G 1     1  1 1   

C   1  1      1 

C   1  1      1 

A    1        

C   1  1      1 

G 1     1  1 1   

T  1     1     

G 1     1  1 1   

A    1        

C   1  1     1 1 

Figure 4-22: Similarity Matrix of Motif and its reverse complement 

From the matrix, M(3,6) and M(6,9) are high due to similarity with reverse complement. This 

scenario is reflected in figure 4-21 that is offset plus one and minus one along the central 

diagonal. Higher value along central diagonal signifies that there are lots of sequences where 

A-T pairs and G-C pairs are formed. These are also shown in logo plot of positive sequences 

in Figure 4-15 where base at position 33 and 34 is highly conserved as complementary pairs 

at positions 38 and 39 respectively.  
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4.1.6 Classification results 

The classification output of Weka is shown in table. Here, I used SVM with three different 

kernels to classify. I also used Naïve Bayes and random forest method to compare the 

classification strategy and to estimate the optimum possible classification accuracy.  I also 

tried to classify the vectors based upon standalone features like classification only with 

genomic features, only with physical properties and combining genomic and physical 

properties.  It was done only to compare the effect of different included features. All the 

values are presented in three different tables. 

Table 4-3: Classification result considering only genomic properties 

Method TP TN FP FN Sp Sn F-score Accuracy (%) 

SVM -poly Kernel 54 68 29 64 0.701 0.457 0.537 56.74 

RBF 2 97 0 116 1 01 0. 03 46.04 

PUK 94 55 42 24 0. 56 0. 79 0. 74 69.30 

NB 32 86 11 86 0. 88 0. 27 0.394 54.88 

RF 98 92 5 20 0. 948 0. 83 0. 88 88.37 

 

Table 4-4: Classification result considering only physical properties 

Method TP TN FP FN Sp Sn F-score Accuracy (%) 

SVM -poly Kernel 43 70 27 75 0.721 0.364 0.457 52.55 

RBF 58 64 33 60 0. 659 0. 491 0. 555 56.74 

PUK 92 72 25 26 0. 742 0. 779 0. 782 76.27 

NB 75 55 42 43 0. 567 0. 635 0. 638 60.46 

RF 94 91 6 24 0.938 0. 796 0. 862 86.04 

 

Table 4-5: Classification results considering all properties  

This includes both genomic and physical properties, the optimum predictions are shown in bold text. 

Method TP TN FP FN Sp Sn F-score Accuracy (%) 

SVM-poly Kernel 46 72 25 72 0.742 0.389 0.551 54.87 
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RBF 56 68 29 62 0.701 0.474 0.573 57.67 

PUK 91 76 21 27 0.783 0.771 0.791 77.67 

NB 68 59 38 50 0.608 0.576 0.607 59.06 

RF 101 92 5 17 0.948 0.855 0.901 89.76 

 

From the result of classification, it can be seen that SVM with PUK kernel approximates best 

among all three SVM kernels with highest accuracy, sensitivity and specificity. Accordingly, 

random forest (RF) approximates exceptionally well among all different classification 

algorithms with highest accuracy, F1-value, sensitivity and specificity. 

Comparing the result from table, it can be observed that classification with single feature 

either genomic or physical yields mix fair predictions. However, mixing this all features gives 

very good prediction. Another important conclusion that can be observed is the choice of 

classification strategy. In case of RAFT, PUK kernel gives the best optimal classification 

while using SVM. However, random forest strategy outperforms all other algorithms that 

were tested in all cases giving the highest accuracy of prediction. 

 

4.1.7 Important features for classification 

I tried to find the feature that has high influence during classification. It can be done by 

attribute select panel available in explorer interface of Weka. I used classifier subset evaluator 

as attribute evaluator. Then, best first method to classify for Random forest and Naïve Bayes 

was selected. This evaluator gives 5 and 4 important attributes for Naïve and RF approach 

respectively. The attribute evaluator used in previous case does not work for SVM; therefore, 

I selected SVM attribute evaluator with ranker method. This ranks all the features used in 

classification. The results observed are shown in  

Table 4-6. 

Table 4-6: Important properties for classification 

These properties were observed from attribute select panel of weka explorer. The features are 

presented according to the order of importance. The common features are highlighted with bold and 

italic formats. 
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Naïve Bayes (best first) Random Forest (best first) SVM (based on rank) 

                     skew_DNADenat 

 

                     GCskew TSSdistance 

   

                     mean_DNADenat 

 

                     sd_BDNAtwist 

 

mean_ProtDNAtwist 

 

                     skew_StackEng 

 

         kurt_BDNAtwist 

 

kurt_StackEng  

                     sd_StackEng 

 

                     mean_DNADenat 

 

GCskew  

                     kurt_StackEng 

 

  sd_DNADenat 

   

 

   sd_StackEng  

 sd_BDNAtwist 

kurt_DNADenat 

mean_BDNAtwist 

 

 

From the  

Table 4-6, it was observed that some of the properties were commonly predicted as important 

properties by all three classification techniques. It can be seen that Naïve approach gives 

more importance to statistical features. However, RF and SVM shows genomic feature as the 

best feature. I tried to predict the accuracy with considering only these respective features 

shown by attribute select. The output for new dataset based on these important features is 

shown in Table 4-7. 

Table 4-7: Classification result considering only important properties  

Method TP TN FP FN Sp Sn F-score Accuracy (%) 

NB 79 60 37 39 0. 618 0. 669 0. 675 64.65 

PUK 87 72 25 31 0.742 0.737 0.756 73.95 

RF 99 83 14 19 0. 855 0. 83 0.857 84.65 
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The accuracy using RF and PUK using only important features is lightly lowered than the 

maximum accuracy obtained using all attributes. However, classification accuracy of Naïve 

Bayes increased with considering only important features. 
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Chapter 5 

5 Conclusions 

RAFT attempted to classify real and false transcription factor binding sites based upon the 

genomic and structural properties of DNA strand. TF-specific ChIP-seq data was used to 

compute genomic and structural features. These features were used as attributes for property 

based classification of real and false transcription factor binding sites. Machine learning 

algorithms like Naïve Bayes, Random Forest and Support Vector Machines were used to 

classify different instances as negative and positive cases. Three different types of kernels 

were used for classification using SVM. 

The result of classification showed that the RF outperforms all other tested algorithms in 

terms of accuracy, specificity and sensitivity. RF was able to classify with highest specificity 

and sensitivity of 0.948 and 0.855 respectively. The classification result of SVM was highly 

depended on the choice of kernel. SVM produces optimum accuracy of 77.67% with the use 

of PUK kernel. This figure of accuracy was far greater than the accuracy obtained by Naïve 

Bayes. SVM being useful and highly used in bioinformatics generates more misclassification 

than RF. Naïve Bayes algorithm does not fit in this type of classification since it has lowest 

specificity, sensitivity and accuracy in each tested case.  

Importantly, the additional signals around transcription factor binding site were observed in 

correlation plot. The presence of these signals was also supported by the logo plot. The logo 

plot indicated the conserved region and the distribution of nucleotides. The correlation plot 

for dataset with different extended region gave the knowledge to use the proper region of 

sequences to compute the properties for classification.  The correlation plot displayed almost 

flat plot except region around binding site.  

Interestingly, a cruciform like structure was observed from the logo plot of positive region. 

The test was done to verify cruciform structure. But the result of the test did not verify the 

cruciform structure formation around the binding site as expected. 

Finally, choice of features has a significant impact in the classification performance. For 

instance, RF showed only 4 important features that were significant for classification. In 
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addition, Naïve approach showed increase performance by using only important properties 

for classification. 

5.1 Limitation 

This project is limited to the source of data that is obtained from TF-specific ChIP-seq data 

and the PWM motif for USF1. This project only focuses in the certain physical and genomic 

properties. 

5.2 Future Work 

This project can be further enhanced with addition of more genomic properties like k-mers 

and AT Skew. Addition of these features may increase the classification accuracy. The 

presence of additional signal that might play vital role in transcription can be studied. These 

signals may reveal more hidden secrets in transcription factor binding and transcription 

process. It may also be possible to extend this to cases where we do not have TF-specific 

ChIP-seq data, by identifying TF-independent properties from the first analysis, and use this 

for a more general classifier. 
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Appendices 

Appendix I 

Correlation matrix for different dinucleotide properties, red color represents the property with 

least absolute correlation; green represents the highest absolute correlation. In this analysis 

the score with only 3 digits after decimal was considered. Naming is used in short form of 

structural properties discussed in background section. 
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Appendix II 

Possible di-nucleotides and tri-nucleotides combination 

Table II-A: di-nucleotides 

SN Di-nucleotides SN Di-nucleotides 

1 AA 9 CT 

2 CC 10 CG 

3 TT 11 TA 

4 GG 12 TC 

5 AC 13 TG 

6 AT 14 GA 

7 AG 15 GC 

8 CA 16 GT 

Table II-B: Tri-nucleotides 

SN Tri-nucl SN Tri-nucl SN Tri-nucl SN Tri-nucl 

1 AAA 17 CAA 33 GAA 49 TAA 

2 AAC 18 CAC 34 GAC 50 TAC 

3 AAG 19 CAG 35 GAG 51 TAG 

4 AAT 20 CAT 36 GAT 52 TAT 

5 ACA 21 CCA 37 GCA 53 TCA 

6 ACC 22 CCC 38 GCC 54 TCC 

7 ACG 23 CCG 39 GCG 55 TCG 

8 ACT 24 CCT 40 GCT 56 TCT 

9 AGA 25 CGA 41 GGA 57 TGA 

10 AGC 26 CGC 42 GGC 58 TGC 

11 AGG 27 CGG 43 GGG 59 TGG 

12 AGT 28 CGT 44 GGT 60 TGT 

13 ATA 29 CTA 45 GTA 61 TTA 

14 ATC 30 CTC 46 GTC 62 TTC 

15 ATG 31 CTG 47 GTG 63 TTG 

16 ATT 32 CTT 48 GTT 64 TTT 
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Appendix III 

Sample of FIMO output of positive, false positive and false_false positive set 

 

Fig III-A: FIMO output for false_false positive region after aligning binding site and extending to 30 nts both 

sides. Here only few hits are shown.  
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Fig III-B: FIMO output for false positive region after aligning binding site and extending to 30 nts both sides. 

Here only few hits are shown. The top four motif are very low p-value and very similar to the positive motif.  
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Fig III-C: FIMO output for positive region after aligning binding site and extending to 30 nts both sides. Here 

only few hits are shown.  
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Appendix IV 

Logo plot of extended wider region 161 nts (71+11+75) 

 

Figure IV-A: Logo plot for extended region of 161 nts 
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Appendix V 

Description of provided motif 

MEME version 4.4 

ALPHABET= ACGT 

strands: + - 

Background letter frequencies (from uniform background): 

A 0.25000 C 0.25000 G 0.25000 T 0.25000  

MOTIF Unknown Unknown 

letter-probability matrix: alength= 4 w= 11 nsites= 598 E= 7.7e-1029 

0.143813  0.016722  0.839465  0.000000  

0.008361  0.051839  0.038462  0.901338  

0.000000  0.998328  0.001672  0.000000  

1.000000  0.000000  0.000000  0.000000  

0.000000  0.951505  0.015050  0.033445  

0.239130  0.030100  0.730769  0.000000  

0.010033  0.008361  0.011706  0.969900  

0.000000  0.000000  0.996656  0.003344  

0.341137  0.173913  0.406355  0.078595  

0.080268  0.464883  0.254181  0.200669  

0.060201  0.600334  0.225753  0.113712 
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