
Enabling Research on Energy-Efficient
System Software Using the SHMAC
Infrastructure

Benjamin Bjørnseth

Master of Science in Computer Science

Supervisor: Lasse Natvig, IDI
Co-supervisor: Asbjørn Djupdal, IDI

Department of Computer and Information Science

Submission date: February 2015

Norwegian University of Science and Technology

The SHMAC prototype is an ongoing research project within the Energy-Efficient
Computing Systems (EECS) strategic research area at the Faculty of Information
Technology, Mathematics and Electrical Engineering (IME), Norwegian University of
Science and Technology (NTNU). SHMAC is planned to run in a Field-Programmable
Gate Array (FPGA) and be an evaluation platform for research on heterogeneous
multi-core systems. Due to the Dark Silicon effect, future computing systems are
expected to be power limited. The goal of the SHMAC project is to propose software
and hardware solutions for future power-limited heterogeneous system.

In order to use the SHMAC platform for researching energy-efficient software and
hardware, it is necessary to be able to evaluate the energy efficiency of a solution and
compare it with others. The ability to gather energy efficiency metrics is therefore
paramount. However, as the platform is realized on an FPGA it is not necessarily
easy or even possible to attain representative data by simply measuring the power-
and energy consumption. By representative data we mean numbers that represent
the energy efficiency that can be achieved when SHMAC is implemented in silicon as
a processor chip.

Additionally, the construction of an operating system multicore port to the SHMAC
is desirable for system software and application software research. A single-core
port of the research operating system Barrelfish exists, which may be used as a base
for implementing a multicore version. This is necessary to research software in a
heterogeneous multicore hardware context, which the SHMAC project aspires to do.

Investigate strategies for evaluating the energy efficiency of software and hardware
designs on the SHMAC prototype. Based on the investigations, develop or describe a
prototype of an energy efficiency measurement framework for SHMAC. Evaluate or
discuss its properties such as coverage, accuracy and user-friendliness. Additionally,
implement multicore support for the Barrelfish operating system. If time permits,
the framework may be used to evaluate the Barrelfish and Linux operating system
ports.

Supervisors: Lasse Natvig and Asbjørn Djupdal.

Abstract

The energy efficiency of computer systems is becoming an increasingly
important constraint in the design of microprocessors. Energy consump-
tion impacts battery life and electricity bills, while power consumption is
important when considering device thermal constraints and cooling costs.
These factors have always been important for the embedded, hand-held
device and data centre markets. Recently, the breakdown of Dennard
scaling has hampered the ability to reduce transistor dimensions while
keeping processor power density constant. As high-end processors drive
further reduction of transistor dimensions, this breakdown increases the
importance of power consumption as a constraint in their design.

Heterogeneous processor architectures have the potential of increasing the
energy efficiency of computer systems. To research the design and system
software control of such systems, the IME faculty at NTNU launched
the SHMAC research project. The project ambition is to explore the
heterogeneous multicore architecture design space through customization
of a generic architecture, which is instantiated on an FPGA to speed up
evaluation. However, the current SHMAC infrastructure lacks a method
for estimating the energy consumption of a processor chip implementation
of the design it embodies. There is also no multi-core operating system
available, which hampers research on system software energy efficiency.

This dissertation enables research on the energy efficiency of system
software using the SHMAC infrastructure by filling these two gaps. First,
we extend the existing SHMAC-port of the operating system Barrelfish to
support running on multiple cores. Second, we complement the SHMAC
infrastructure with an energy efficiency estimation framework. The
framework includes a method for creating energy consumption models for
hardware components for which only an HDL implementation is available.
The efficacy of the method is demonstrated through application on the
existing SHMAC hardware components. The average estimation error
each cycle from all models combined is 1.1 %. A hardware infrastructure
which enhances the SHMAC infrastructure to use these models and report
online energy consumption estimates is also included in the framework.
The infrastructure enables energy sampling periods of approximately 12
milliseconds, does not impact the FPGA execution speed, and has a total
FPGA resource overhead of approximately 18 % for the processor core
and 104 % for the router.

Sammendrag

Energieffektiviteten til datamaskinsystemer blir en stadig viktigere be-
skrankning under design av mikroprosessorer. Energiforbruk påvirker
tilgjengelig batteritid og strømregninger, mens effektforbruk er viktig
med hensyn på enheters varmebegrensninger og nedkjølingskostnader.
Disse faktorene har alltid vært viktige for innvevde system, håndholdte en-
heter og datasentere. I nyere tid har sammenbruddet til Dennard-skalering
hindret muligheten til å redusere transistordimensjoner mens effekttett-
heten holdes konstant. Ettersom prosessorer i ytelsestoppsjiktet presser
stadig reduksjon av transistordimensjoner, øker dette sammenbruddet
viktigheten av effektforbruk som begrensning i deres design.

Heterogene prosessorarkitekturer har potensialet til å øke energieffektivi-
teten til datamaskinsystem. For å forske på designet og systemprogram-
varekontrollen av slike system, har IME-fakultetet ved NTNU satt i gang
et forskningsprosjekt kalt SHMAC. Prosjektets hensikt er å undersøke
designrommet til heterogene flerkjernearkitekturer ved å tilpasse en gene-
risk arkitektur, som implementeres på en FPGA for å øke hastigheten på
evaluering. Imidlertid mangler den nåværende SHMAC-infrastrukturen
en metode for å estimere energyforbruket til en silikonbrikkeimplemen-
tasjon av prosessordesignet den representerer. Det finnes heller intet
flerkjernekapabelt operativsystem, hvilket hindrer forskning på energief-
fektiv systemprogramvare.

Denne avhandlingen muliggjør forskning på energieffektiv systempro-
gramvare via SHMAC-infrastrukturen ved å fylle disse to manglene. Som
steg én, utvider vi en eksiterende SHMAC-variant av operativsystemet
Barrelfish til å støtte eksekvering på flere prosessorkjerner. Som steg
to, utvider vi SHMAC-infrastrukturen med et rammeverk for estimering
av energieffektivitet. Rammeverket inkluderer en metodologi for å lage
modeller av energiforbruk for hardware-komponenter som kun eksisterer
som en HDL-implementasjon. Metodologiens vellykkethet demonstreres
ved anvendelse på eksisterende komponenter i SHMAC. Gjennomsnittet
av estimeringsfeilprosentene hver sykel fra samtlige modeller kombinert
er 1.1 %. Rammeverket inneholder også en hardware-infrastruktur som
utvider den eksisterende SHMAC-infrastrukturen til å bruke energifor-
bruksmodellene og rapportere løpende energiforbruksestimat. Infrastruk-
turen muliggjør energimåleperioder på cirka 12 millisekund, påvirker ikke
FPGA-ens eksekveringshastighet, og medfører en gjennomsnitlig økning
i FPGA-ressursbruk på cirka 18 % for prosessorkjernen og 104 % for
chipnettverksruteren.

Preface

This report is submitted to the Norwegian University of Science and Technology in
partial fulfilment of the requirements for an MSc degree in computer science.

This work has been conducted at the Department of Computer and Information
Science, NTNU, part time throughout 2014 while simultaneously beginning on a
PhD education. I have as such been part of the CARD research group which offered
this master project. Professor Lasse Natvig has been the dissertation supervisor, and
Asbjørn Djupdal the co-supervisor.

Acknowledgements

I would like to thank my supervisors Lasse Natvig, Magnus Jahre and Asbjørn
Djupdal for their project guidance, technical assistance and dissertation proofreading
efforts.

Thanks to Snorre Aunet, Tore Barlindhaug, and Trond Ytterdal at the IET depart-
ment for their assistance regarding the use and installation of ASIC tools.

Thanks to Bjørn Christian Seime for his diligent and laborious proofreading, yielding
invaluable feedback on dissertation content, clarity and style.

Thanks to Stian Hvatum for tipping me about the existence of the program socat.

Thanks to Yaman Umuroglu for helping me appreciate the complexity of DDR power
consumption.

Thanks to Ragnar Andreassen for reading through the final text, providing important
insight into content clarity for an external professional.

Finally, I would also like to thank my wife for her patience as well as her insightful
comments on general report structure.

v

Contents

List of Figures xi

List of Tables xiii

List of Abbreviations xv

1 Introduction 1
1.1 The SHMAC Project . 1
1.2 Energy-Efficient System Software . 2
1.3 Estimating Energy Efficiency . 3
1.4 Assignment Interpretation . 4
1.5 Contributions . 6
1.6 Dissertation Organization . 6

2 Background 9
2.1 The SHMAC Infrastructure . 9
2.2 Barrelfish . 14

2.2.1 Operating System Architecture 14
2.2.2 Barrelfish Implementation Details 15
2.2.3 The Port to SHMAC . 22

2.3 Energy Efficiency Evaluation Strategies 23
2.3.1 Measurements . 23
2.3.2 Performance Counters . 23
2.3.3 Architectural Simulators . 24
2.3.4 Circuit Simulators . 25

2.4 Hardware Regression Models . 26

3 Energy Efficiency Estimation Framework Design 31
3.1 Design Goals . 31
3.2 Infrastructure Design . 33

3.2.1 Scan Chain . 34
3.2.2 Energy Report Unit . 35
3.2.3 Energy Monitors . 37

vii

3.2.4 Host Interface . 38
3.2.5 SHMAC Software Interface 38

3.3 Modelling Methods . 40
3.3.1 Regression Modelling . 40
3.3.2 Analytical Modelling . 42

4 Energy Efficiency Estimation Framework Implementation 45
4.1 Modelling Method Implementation 45

4.1.1 Synthesis . 45
4.1.2 Benchmark Selection . 49
4.1.3 Simulation . 50
4.1.4 Power Analysis . 51
4.1.5 Regression Modelling . 52
4.1.6 On-Chip and Off-Chip RAM 55

4.2 Infrastructure Implementation . 58
4.2.1 Monitor Integration . 58
4.2.2 Energy Report Unit . 60
4.2.3 SHMAC Software Interface 60
4.2.4 Scan Chain . 61
4.2.5 Host Interface . 63
4.2.6 Monitoring and Logging Tool 64

5 Barrelfish Implementation 65
5.1 Requirements Specification . 65

5.1.1 Multicore Support Requirements 65
5.1.2 SHMAC Compatibility Requirements 66
5.1.3 Console Support . 67

5.2 Implementing Multicore Support . 67
5.2.1 Booting New Cores . 68
5.2.2 Dynamic Interrupt Vector Dispatch 73
5.2.3 Bootstrapping Intercore Communication 74

5.3 Supporting Upgrades to the Instruction Set 74
5.3.1 Adding ARMv3 Support . 74
5.3.2 Upgrading to ARMv4T . 75

5.4 Shared Memory Allocation . 75
5.4.1 Shared Memory Allocator Structure 76
5.4.2 Bootstrapping Memory Allocation 79
5.4.3 Location Awareness Support 81

5.5 Implementing User-Space Console 85

6 Evaluation 89
6.1 Barrelfish . 89

6.2 Energy Efficiency Estimation Framework 90
6.2.1 Accuracy . 91
6.2.2 Coverage . 94
6.2.3 User Friendliness . 96
6.2.4 Infrastructure Correctness . 98
6.2.5 Performance . 98

7 Discussion 107
7.1 Barrelfish Suitability . 107
7.2 Impact of Planned SHMAC Modifications 108
7.3 The Importance of Trueness . 109
7.4 Addressing Limitations . 110

7.4.1 Validation Benchmarks . 110
7.4.2 Modelling . 110
7.4.3 Sample Granularity . 114
7.4.4 Implementation Overhead . 116
7.4.5 Target and Host Clock Frequency Discrepancies 117
7.4.6 User Friendliness . 118
7.4.7 Barrelfish Correctness . 120
7.4.8 Coverage Analysis . 120

7.5 Modelling Automation . 120
7.6 Power Management . 122
7.7 Project Description Fulfilment . 123

8 Conclusion and Future Work 127
8.1 Conclusion . 127
8.2 Future Work . 128

References 131

Glossary 139

Appendices

A On Accuracy, Precision and Trueness 141

B Software Infrastructure User Guides 143
B.1 ASIC Flow . 143

B.1.1 Synthesis . 143
B.1.2 Simulation . 146
B.1.3 Power Estimation . 146

B.2 Benchmark Framework . 147
B.3 Regression Modelling . 149

B.3.1 Data Scraping . 149

B.3.2 Statistical Processing . 152
B.4 Using the Energy Efficiency Estimation Framework 158

B.4.1 User-space Utilities . 158
B.4.2 Monitoring and Logging Tool 158

B.5 Hardware Testbench Framework 160

C Complete Modelling Tour 163
C.1 Prerequisites . 163
C.2 Modelling Steps . 164

D Energy Models 167
D.1 Regression Models . 167

D.1.1 Model Precision Metrics . 167
D.1.2 Current Models . 168

D.2 Analytical Models . 183

List of Figures

1.1 The SHMAC Infrastructure Ambition 2

2.1 The SHMAC Infrastructure . 10
2.2 The SHMAC Test Environment . 12
2.3 SHMAC Configuration File Example . 13
2.4 The Multikernel Architecture . 15
2.5 Barrelfish Structure . 16
2.6 Barrelfish Application Representation 16
2.7 Barrelfish Capability System Example 20
2.8 Barrelfish Process Tree . 21
2.9 SHMAC Power Consumption Estimation Method 28

3.1 Energy Efficiency Estimation Infrastructure Overview 34
3.2 Energy-Per-Event Model Implementation 37

4.1 Regression Modelling Method Presentation Order 46
4.2 The Synthesis Process . 47
4.3 The Power Analysis Process . 51
4.4 Screenshot of VCD Conversion Utility 53
4.5 DDR3 SDRAM Power Consumption Estimates 57
4.6 Hamming Distance Calculation . 59
4.7 Energy Report Unit Implementation . 60
4.8 Energy Counters System Integration . 61
4.9 Energy Counters Implementation . 62
4.10 Scan Chain Control Unit Implementation 62
4.11 Energy Logging Tool Data Flow . 64

5.1 New Core Boot in Monitor . 68
5.2 Boot Core System Call . 71
5.3 Boot Parameters . 72
5.4 Shared Memory Allocator Structure . 77
5.5 App-Core Monitor Memory Allocation Setup 80

xi

5.6 App-Core General Memory Allocation Setup 81
5.7 Boot Parameters with Layout Specification 83
5.8 Lazy Selection Sort Allocation Example 84
5.9 User Space Serial Driver Operation . 87

6.1 Barrelfish Stability Test . 89
6.2 Amber Tile Model Power Predictions . 94
6.3 Amber Tile Model Power Prediction Excerpt 95
6.4 Mean Absolute Error When Varying Time Window Granularity 95
6.5 Model Coefficient Resolution Impact . 96
6.6 Sample Period Experiment Plot . 100
6.7 Sample Size Effect on Sample Period . 101
6.8 Sample Period Variability . 102
6.9 Energy Consumption Plot . 103
6.10 Power Consumption Plot . 104
6.11 Energy Monitor Resource Distribution 104
6.12 Optimized Hamming Distance Implementation 106

7.1 Negative Coefficient Multiplexer Example 112
7.2 Proposed New Host Interface . 115
7.3 Partial Sums of Energy Monitor Estimates in Module Hierarchy 119
7.4 Power Management Effect on Energy Monitor Estimates 124

A.1 Accuracy, Precision and Trueness . 141

B.1 ASIC Flow Tool Dependencies . 144
B.2 Screenshot of the ConvertVcd Utility . 150
B.3 Regression Modelling Benchmark Data Structure 153
B.4 Regression Modelling Power Model Data Structure 153
B.5 Energy Logging Tool Screenshot . 159

D.1 Amber Wrapper Model Evaluation . 169
D.2 Amber Core Model Evaluation . 171
D.3 Execute Stage Model Evaluation . 173
D.4 Timer Model Evaluation . 175
D.5 Improved Timer Model Evaluation . 177
D.6 Interrupt Controller Model Evaluation 178
D.7 Tile Register Model Evaluation . 179
D.8 Amber System Model Evaluation . 180
D.9 Router Model Evaluation . 182

List of Tables

1.1 Dissertation Contributions . 7

2.1 ARMv2a Processor Modes . 11
2.2 SHMAC Infrastructure Memory Map . 12
2.3 SHMAC Configuration File Format . 13
2.4 Barrelfish System Applications . 18
2.5 Barrelfish Interfaces . 19
2.6 Barrelfish Memory Allocation Request Strategies 22
2.7 Studies of FPGA-Accelerated Power Estimation of HDL Designs 27

3.1 SHMAC Software Energy Estimate Interface 39

4.1 On-Chip CACTI Configuration . 56
4.2 DRAM Energy Model Coefficient Calculation 57

5.1 Application Kernel Boot Parameters . 70

6.1 Infrastructure Implementation Resource Cost 105
6.2 TCP and UDP Sample Rate Differences 105

7.1 Coefficient Resolution Bit Requirements 113
7.2 Coefficient Resolution Variation . 113

B.1 Regression Modelling Evaluation Data Structure 154
B.2 Regression Modelling Utility Functions 156

xiii

List of Abbreviations

ALU Arithmetic Logic Unit.

APB Advanced Peripheral Bus.

ASIC Application-Specific Integrated Circuit.

BRAM Block Random-Access Memory (RAM).

BSP Boot-Strap Processor.

CAS Column Address Strobe.

CL Column Address Strobe (CAS) Latency.

CMP Chip Multi-Processor.

CNode Capability Node.

CPSR Current Program Status Register.

CPU Central Processing Unit.

CWL CAS Write Latency.

DDR Double Data Rate.

DRAM Dynamic RAM.

DSE Design Space Exploration.

DSP Digital Signal Processor.

DVFS Dynamic Voltage-Frequency Scaling.

ECC Error-Correcting Code.

EECS Energy-Efficient Computing Systems.

xv

FIFO First-In First-Out.

FPGA Field-Programmable Gate Array.

GPU Graphics Processing Unit.

GUI Graphical User Interface.

HDL Hardware-Description Language.

I/O Input/Output.

IME Faculty of Information Technology, Mathematics and Electrical Engineering.

IRQ Interrupt Request.

ISA Instruction Set Architecture.

LMP Local Message Passing.

LUT Look-Up Table.

NAT Network Address Translation.

NIC Network Interface Controller.

NTNU Norwegian University of Science and Technology.

NUMA Non-Uniform Memory Access (UMA).

OS Operating System.

RAM Random-Access Memory.

RT Register Transfer.

RTL Register Transfer Level.

SDRAM Synchronous Dynamic RAM (DRAM).

SPSR Saved Program Status Register.

SRAM Static RAM.

TCP Transmission Control Protocol.

UDP User Datagram Protocol.

UMA Uniform Memory Access.

UMP User-level Message Passing.

VCD Value Change Dump.

VHDL Very High Speed Integrated Circuit (VHSIC) Hardware-Description Lan-
guage (HDL).

VHSIC Very High Speed Integrated Circuit.

VPD VCDPlus Dumping.

ZBTRAM Zero Bus Turn-around RAM.

Chapter1Introduction

1.1 The SHMAC Project

The energy efficiency of microprocessors is important across several market segments.
For embedded systems, reduced energy consumption leads to longer battery lives.
For portable devices, reduced power consumption leads to lower heat dissipation.
For data centres, reduced energy consumption leads to reduced electricity bills and
reduced power consumption leads to reduced cooling costs. As such, energy efficiency
is often an important constraint when designing processors.

Recently, the importance of energy efficiency has increased in the design of high-
performance processors. Historically, the performance and energy efficiency of
computer systems doubled approximately every 18 months [KBSW11]. This expo-
nential growth was sustained by decreasing transistor dimensions while also reducing
the power consumption per transistor, using the method known as Dennard scaling
[DGnY+74]. This lead to faster transistors, more transistors, and constant power
density for a processor chip of a fixed area. However, the ability to scale transistors in
this fashion has recently broken down. Although it is still possible to reduce transistor
dimensions, the power consumption per transistor can not be sufficiently reduced
[DCK07]. We therefore get more transistors for a processor chip of a fixed area, but
they can not all be used simultaneously as the power density would increase beyond
the limits of cooling technology. This leads to a situation where an exponentially
increasing fraction of the transistors on a processor must be disabled, a phenomenon
which is called the Utilization Wall [VSG+10]. The large fraction of the chip which
must be turned off is referred to as Dark Silicon [EBSA+12]. Using the increased
number of transistors to improve performance therefore requires more energy-efficient
processor designs.

There are several alternative approaches to exploiting the Dark Silicon [Tay12]. One
interesting approach is building heterogeneous processors. The heterogeneity may
come from processing elements representing different power-performance trade-off

1

2 1. INTRODUCTION

points, or from specialized processing elements where generality is traded for efficiency.
Heterogeneity can improve energy efficiency within the limits of the Utilization Wall
by only enabling the most suitable processing units at any given time. However, such
a system poses significant hardware and software research challenges such as how
processor cores should be selected, what level of specialization to use, how scheduling
should be done across heterogeneous processing, and how the energy consumption of
the system is best managed [BC11].

To research energy-efficient computer systems in general, and the challenges arising
from Dark Silicon in particular, the IME faculty at NTNU has started the research
initiative EECS [EECa]. A subproject of EECS is the SHMAC project [EECb].
The project ambition is to investigate both software and hardware solutions for
heterogeneous multicore processor chips by using a generic heterogeneous multicore
infrastructure. The infrastructure fixes the interconnect, but leaves the characteristics
of each core unspecified. Different heterogeneous configurations may then be created
through variation of the core selection. This idea is illustrated in Figure 1.1. The
entire architecture is instantiated and run on an FPGA for evaluation purposes,
which may speed up the exploration of the large heterogeneous multicore design
space compared to using traditional software simulators.

Infrastructure

Big core Small core

Core with
accelerator

Core with
programmable
accelerator

+

… …

Figure 1.1: The idea behind the SHMAC infrastructure is to easily study different
heterogeneous designs by providing an infrastructure and a set of cores. Heterogeneity
is attained by including different cores in the infrastructure.

1.2 Energy-Efficient System Software

One of the goals of the SHMAC project is to research how system software may be
created to most efficiently exploit the resources available in heterogeneous architec-
tures. The SHMAC infrastructure offers a suitable platform for running experiments,

1.3. ESTIMATING ENERGY EFFICIENCY 3

but operating systems with which to experiment is missing. As such, several projects
were started with the goal of porting different operating systems to the SHMAC
infrastructure.

At the outset of this dissertation project, I had been part of a project group which
developed a single-core SHMAC-port of the research operating system Barrelfish
[BS13][BBD+09]. In addition, master dissertation projects for porting Linux [AA14]
and Free-RTOS [Wal14] to SHMAC had been initiated. Completing the Barrelfish
port by implementing multicore support was as such a natural extension of my fall
project, as it would provide the SHMAC project with an operating system alternative
with a more innovative architecture with which to experiment.

1.3 Estimating Energy Efficiency

Looking further than the software and hardware required to run experiments, research
also requires some method of obtaining the result of an experiment. In particular,
research on energy-efficient system software requires a method of evaluating the
power consumption of the system. However, at the beginning of this dissertation no
method had been devised for obtaining power consumption results.

The heterogeneous processor designs instantiated with the SHMAC infrastructure
do not exist as actual processor chips. As such, the processor power consumption
can not be measured directly. Since the processor designs are implemented on an
FPGA, one possible strategy would be to measure the FPGA power consumption
and from this somehow derive the expected Application-Specific Integrated Circuit
(ASIC) power consumption. However, this is an unattractive option for the following
reasons:

– It is not clear that FPGA power consumption correlates with that of an ASIC
implementation of the processor design. One reason to suspect otherwise is that
hardware components such as multiplexers have different power characteristics
when implemented in FPGAs than in ASICs [WBR11]. Activity in certain
components in a processor may therefore in theory lead to high FPGA power
consumption and low ASIC power consumption, or vice versa.

Another possible source of error is that power consumption differences measured
between different processor designs may be owed to one design being more
suited for FPGA implementation. Such effects may not be exploitable in an
ASIC.

A third concern is that the FPGA implementation embeds the processor design
in an FPGA-specific top-level module, whose power consumption would not be

4 1. INTRODUCTION

present in an ASIC system. The same goes for power dissipated due to activity
on FPGA chip I/O pins.

Finally, FPGAs implementations must pay certain fixed overheads such as
needing to maintain their configuration. It may be that this base power
consumption would drown the contributions from the design itself, making
power consumption differences stemming from design decisions of the researcher
indiscernible from measurement noise.

– Even if the previous point was refutable, it would be difficult to determine the
nature of the correlation. An earlier study comparing the power consumption
of ASIC and FPGA implementations demonstrated that the dynamic power
consumption ratio varied between 5.2× and 26× depending on the hardware
module and specific FPGA implementation techniques [KR06]. Thus, even
trying to calculate the ASIC power consumption by determining the ratio
between the FPGA and ASIC implementations would likely be both difficult
and inaccurate.

– Finally, there are drawbacks to measuring FPGA power even if it provided a
meaningful indicator of ASIC power. Being dependent on FPGA measurements
would limit the power-saving architectural features which may be investigated
to the subset supported by the FPGA. Specifically, techniques such as power-
and clock gating might not be available in the form or extent desired by the
computer architecture researcher. It may also be cumbersome to perform the
measurements, as physical intervention in the FPGA system is required.

The lack of a clear answer to how energy efficiency may be evaluated motivates
a study which investigates the available energy efficiency evaluation alternatives.
Developing an energy efficiency estimation framework which enables obtaining power
consumption results from experiments would take the SHMAC project ambition a
long way from idea to reality.

1.4 Assignment Interpretation

The goal of the assignment is enabling research on energy-efficient system software.
To meet this end, the assignment text describes two project goals: extending the
existing Barrelfish port with support for running on multiple cores, and investigating
energy efficiency estimation for the SHMAC infrastructure. Both goals contribute
towards the ultimate goal of research on energy-efficient system software, but the
completion of one goal is independent of the completion of the other. Therefore, the
goals will be solved independently.

1.4. ASSIGNMENT INTERPRETATION 5

Subtasks related to the completion of each goal are enumerated in the following lists.
A label beginning with B indicates a task associated with the completion of the
Barrelfish port, and a label beginning with E a task associated with energy efficiency
estimation support.

Mandatory Tasks

B1 Extend the existing Barrelfish implementation to provide support for multiple
cores.

E1 Investigate how energy efficiency estimation using the SHMAC infrastructure
may be supported.

E2 Describe a prototype of a framework which implements the strategy identified in
task E1.

E3 Evaluate the prototype framework described in E2 based on the following three
metrics:

Coverage How many factors affecting the system power consumption are
included? Have any notable hardware components been excluded?

Accuracy How precise are the power consumption estimates? How truthfully
do they represent a real implementation of the design under study?

User-friendliness How easy is it to use the prototype to run experiments
and gather the energy data?

Optional Tasks

B2 Add support in Barrelfish for new features of the SHMAC platform introduced
during the course of this project.

B3 Add support for the Barrelfish console application.

E4 Implement the framework described in E2.

E5 Use the framework to evaluate the energy efficiency of the Barrelfish and Linux
ports.

Task E1 is assumed to not entail detailed qualitative analysis based on experiments,
as this would require implementing several different alternatives whereas the prob-
lem description only optionally requires the implementation of the most promising
alternative.

6 1. INTRODUCTION

Task E3 involves the evaluation of the accuracy of the framework prototype. Accuracy
is here interpreted to mean a combination of trueness and precision, corresponding
to the definition in ISO 5725-1. Trueness is a measure of how truthfully an estimator
will represent the true values, and precision indicates the estimate variability. These
terms are also known in statistics as validity and reliability, respectively. A more
elaborate explanation of trueness and precision is given in Appendix A.

The SHMAC infrastructure is expected to be enhanced with binary-incompatible
hardware upgrades. Although not strictly mandated by the problem description,
task B2 will allow the resulting operating system to be of use on the most recent
platform present at the end of the project. Of the optional tasks, this is assigned the
highest priority owing both to its importance and its perceived ease.

Task E4 is an important contribution to render the work in E2 and E1 useful. It
will also facilitate quantitative evaluation in task E3. Consequently, this task is also
assigned high priority. It is, however, not clear how large the workload in E4 will be,
nor how successfully it may be executed. It is therefore given a lower priority than
task B2, as this task is more likely to yield profitable results.

Task B3 is an extension of the project description. Although the assignment text only
mandates the implementation of multicore support for Barrelfish, the intent is to make
the operating system complete for research purposes. A working console application
allows researchers to start different benchmarks or vary benchmark input without
having to recompile and restart Barrelfish. As the task is not of direct relevance of
the project description text, and as it only makes Barrelfish more convenient to use,
it is given a lower priority than tasks B2 and E4.

Finally, task E5 is perceived as an arbitrary example application of the developed
estimation framework. Being dependent on the completion of all the other tasks,
possibly with the exception of B2 and B3, and not resulting in any product directly
useful for the SHMAC project, this task is assigned the lowest priority of all identified
tasks.

1.5 Contributions

The contributions made in this dissertation are listed in Table 1.1. The table also
lists which subtasks the contribution at least partially solves, as well as what section
in the dissertation the contribution is described.

1.6 Dissertation Organization

The remainder of the dissertation is organized as follows.

1.6. DISSERTATION ORGANIZATION 7

Table 1.1: The contributions made in this dissertation.
Contribution Subtask Section

1. Multicore support in the SHMAC-port of
Barrelfish

B1 Section 5.2

2. Support for ISA upgrades and working data
caches in the SHMAC infrastructure

B2 Sections 5.3 and 5.4

3. Console support in Barrelfish B3 Section 5.5
4. A description of modelling methods suitable

for different parts of the SHMAC infrastruc-
ture, both current and future.

E1 and E2 Sections 2.4 and 3.3

5. The development of a complete hardware
infrastructure, which enhances the SHMAC
infrastructure with live energy consumption
estimation capabilities.

E2 and E4 Sections 3.2 and 4.2

6. A quantification of the potential modelling
method efficacy through its application to
the current SHMAC infrastructure compo-
nents.

E3 and E4 Sections 4.1 and 6.2

7. The software and tool infrastructure nec-
essary for the execution of the proposed
modelling methods.

E4 Appendix B

Chapter 2: Background presents background information on the SHMAC infras-
tructure, the Barrelfish operating system, and a survey on energy efficiency
estimation methods used in research. The chapter ends with a presentation of
an energy efficiency modelling strategy suitable for the SHMAC project.

Chapter 3: Energy Efficiency Estimation Framework Design presents the de-
sign of an energy efficiency estimation framework, encompassing both modelling
methods based on the presentation in Chapter 2 and enhancements to the
SHMAC infrastructure enabling online energy consumption estimates.

Chapter 4: Energy Efficiency Estimation Framework Implementation pre-
sents the implementation of the design presented in Chapter 3.

Chapter 5: Barrelfish Implementation discusses the modifications and enhance-
ments which were implemented to complete the port of Barrelfish to the SHMAC
infrastructure.

Chapter 6: Evaluation presents tests of correctness of the Barrelfish port and
the energy efficiency estimation framework, and analyses of the framework
accuracy, user-friendliness, coverage and performance.

8 1. INTRODUCTION

Chapter 7: Discussion highlights important attributes or limitations in the cur-
rent implementations, and discusses the degree of completion of the tasks in
Section 1.4.

Chapter 8: Conclusion and Future Work summarizes the contributions made
in this dissertation, and concludes on the value of the contributions to the
SHMAC project. Finally, it presents possible future extensions and improve-
ments.

Chapter2Background

This chapter will present the foundation on which this dissertation is built.

We will first discuss technical details of the SHMAC project relevant for this disser-
tation. Section 2.1 will describe the SHMAC infrastructure and test environment.
Section 2.2 will then present the Barrelfish operating system, as well as the state of
the port to the SHMAC platform.

Finally, we will list related work on energy efficiency estimation methods. Section 2.3
contains an overview of state-of-the-art techniques for conducting research on energy
efficiency in a variety of situations. These techniques were known to our research
group prior to the master dissertation. Section 2.4 will then present a method
tailored for estimating the energy consumption of the SHMAC, and studies which
demonstrate the successful use of such a method. The design of this method and
the survey of similar work were conducted as part of this dissertation to answer the
investigation mandated by task E1 in Section 1.4.

2.1 The SHMAC Infrastructure

The SHMAC infrastructure is a generic, single-Instruction Set Architecture (ISA),
tile-based [BEA+08] processor architecture designed to accommodate numerous
different heterogeneous multicore designs. The architecture is depicted in Figure 2.1.
The tiles are connected in a mesh topology, with the same kind of router included on
each tile providing a common routing interface. Heterogeneity may be introduced
into the system by varying the kind of tiles included. Some tiles may contain simple,
in-order processor cores; others may contain complex, out-of-order cores. Hardware
accelerators may also be included in the system, either connected to a processor
on a single tile or in tiles of their own. Not all tiles are used for computation:
tiles may also provide services such as off-chip or on-chip memory access and host
communication. To maintain hardware configuration independence for the software,
all general-purpose computation tiles are required to support the same instruction

9

10 2. BACKGROUND

set. In this aspect, ISA heterogeneity is discarded as a design space dimension in
order to maintain the ambition of simple exploration of the remaining dimensions.

Figure 2.1: The SHMAC processor infrastructure. Source: [EECb].

At the beginning of this dissertation project, there were four kinds of tiles available.
The first tile kind communicates with the host system through an Advanced Peripheral
Bus (APB), an ARM bus standard used for low-complexity, low-bandwidth interfaces
to peripherals [APB]. The second tile kind contains a memory controller, providing
access to off-chip memory. The APB tile and the main memory tile must always be
included in a SHMAC configuration. The third kind of tile, called the scratchpad
tile, implements on-chip memory access by creating a memory array using the Block
RAM (BRAM) resources on the FPGA. The BRAM resources on the FPGA are
also used for other purposes in the SHMAC, such as caches, but in this dissertation
BRAM will refer to memory available through scratchpad tiles unless explicitly stated.
The fourth tile kind contains the Amber [Ope13] ARMv2a processor. The core is
a 5-stage in-order core with one level of data and instruction write-through cache.
Caching may be selectively enabled for different regions of the address space, with a
128 MB granularity. Each processor tile contains this core, coupled with local timer
and interrupt controller peripherals.

In ARMv2a, there are four processor modes. The modes are listed in Table 2.1.
The IRQ and Fast IRQ modes are entered when the system receives interrupts
of either type. In SHMAC, no fast interrupts are used, so the Fast-IRQ mode is
unused. Interrupts on the IRQ line can come from either a timer module or serial
input from the host. Since all modes use their own, private stack pointer register,

2.1. THE SHMAC INFRASTRUCTURE 11

each stack pointer must be initialized to a separate stack when booting the system.
The supervisor mode is entered on any other exception, including reset; undefined
instruction; prefetch abort; data abort; and address exception. User mode is only
entered by manually changing the mode in any of the other modes.

Table 2.1: Processor modes in the ARMv2a ISA. Banked registers refer to which
registers have mode-specific versions.

Name Banked Registers
Supervisor Stack pointer (r13), link register (r14)
IRQ r13, r14
Fast IRQ r8-r15
User None

One peculiarity with the ARMv2a ISA, is the semantics of register r15. The role of
the register is two-fold: bits 25-2 contain the program counter, whereas bits 31-26
and 1-0 contain control- and status information. Bits 1-0 contain the processor mode;
bits 27-26 contain IRQ and FIRQ mask flags, and bits 31-28 contain ALU status
flags (overflow, carry, zero and negative-bits).

The memory map of the SHMAC infrastructure is listed in Table 2.2. Most of
the 32-bit address space is used for off-chip RAM. The last 128 MB of the address
space is used for scratchpad memory, tile registers and system registers. The tile
registers contains access to per-tile information, such as the coordinates of the tile,
and peripherals, such as the interrupt controller. The system registers give access
to global state, which is input and output from the host; a system tick counter; the
total number of tiles; and a register called SYS_READY. This register is used to control
multicore boots. When the system is started, only the first CPU tile will begin
running to allow initialization of shared data structures and mutexes guarding them.
The first core may start all the other cores by writing 1 to the SYS_READY register.

The router uses a parallel implementation with 196-bit wide links. The interconnect
has no direct support for either cache coherency or message passing. This means that
communication between processor tiles must use uncached memory, or flush the cache
before every read to a channel. The scratchpad tiles are designed to accommodate
this: mapped to the upper 128 MB of the address space, this part of the memory
can be left uncached independently of main memory to support shared, coherent
memory with potentially efficient access depending on the distance to the tile. It
should, however, be mentioned that at the outset of the project, a bug in the SHMAC
implementation prevented data caches from working. As such, no programs were run
with cache enabled, and communication between cores was handled simply through
uncached access to any memory location.

12 2. BACKGROUND

Table 2.2: The memory map of the SHMAC infrastructure.

Description Address Range Size
Off-chip RAM 0x00000000 - 0xf7ffffff 3968 MB
Scratchpad tile 0 0xf8000000 - 0xf8ffffff 16 MB
Scratchpad tile 1 0xf9000000 - 0xf9ffffff 16 MB
Scratchpad tile 2 0xfa000000 - 0xfaffffff 16 MB
Scratchpad tile 3 0xfb000000 - 0xfbffffff 16 MB
Scratchpad tile 4 0xfc000000 - 0xfcffffff 16 MB
Scratchpad tile 5 0xfd000000 - 0xfdffffff 16 MB
Scratchpad tile 6 0xfe000000 - 0xfeffffff 16 MB
Scratchpad tile 7 0xff000000 - 0xfffdffff 15.875 MB
Tile registers 0xfffe0000 - 0xfffeffff 64 KB
System register 0xffff0000 - 0xffffffff 64 KB

The SHMAC infrastructure is instantiated and run on ARM Versatile platforms [Ver],
configured to combine a host controller board and an FPGA board. This SHMAC
platform is illustrated in Figure 2.2. The host controller communicates with the
SHMAC infrastructure by accessing memory-mapped registers on the APB tile. The
registers are used to reset the SHMAC, read and write memory, and implement serial
I/O. There are two different Versatile platforms in use, one new Versatile Express
platform with a Virtex 7 FPGA and one older RealView platform with a Virtex 5
FPGA. From the point of view of software running on the SHMAC, the two platforms
differ primarily in the memory available to the FPGA: the Versatile Express provides
4 GB of DDR3 RAM, while the RealView is limited to 32 MB of ZBTRAM [ZBT14].

Figure 2.2: The platform with which the SHMAC infrastructure is tested. Source:
[BS13].

.

2.1. THE SHMAC INFRASTRUCTURE 13

The SHMAC configuration to build is controlled through a text configuration file.
The file contains one letter per tile to include, written on multiple lines to reflect
the desired layout into rows and columns. Each letter denotes a specific tile. The
available letters and their mapping to tiles are listed in Table 2.3.

Letter Tile
V APB tile
Z ZBTRAM main memory tile (only used on RealView platforms)
D DDR main memory tile (only used on Versatile Express platforms)
A Amber tile
R Scratchpad tile

Table 2.3: Letter-to-tile mapping in SHMAC configuration file

An example configuration file and the corresponding SHMAC instantiation is illus-
trated in Figure 2.3. As per Table 2.3, the configuration file denotes a 2× 4 SHMAC
configuration with an APB tile, a DDR main memory tile, three Amber tiles and
three scratchpad tiles.

VDAR
ARAR

shmac.txt

APB DDR Amber BRAM

BRAM Amber BRAMAmber

Configuration file Corresponding SHMAC instantiation

Figure 2.3: An example configuration file and the corresponding SHMAC instance.

Concurrently with this project, several other enhancements to the SHMAC imple-
mentation were planned. One relevant potential contribution was extending the
Amber core to support the ARMv3 instruction set, and subsequently the ARMv4T
instruction set [AA14]. The ARMv3 upgrade changes the ISA in binary-incompatible
ways. The reason is that the semantics of the pc register is altered, such that it uses
all 32 bits for the program counter value. A new register called Current Program
Status Register (CPSR) is included to keep the status information. Each mode gets
its own CPSR. Another register called Saved Program Status Register (SPSR) is
used to back up the value of CPSR when entering a different mode. New instructions

14 2. BACKGROUND

were also included to manage these registers: the msr instruction moves a value from
a regular register to a status register, and the mrs instruction moves values in the
opposite direction. In addition to the new status registers, two new CPU modes were
included. The first is abort mode, entered instead of supervisor mode on prefetch
abort and data abort exceptions. The second is undefined mode, entered instead of
supervisor mode when taking an undefined instruction exception. Each mode has
their own versions of CPSR, r13 and r14.

The ARMv4T upgrade is binary compatible with ARMv3, as it only extends the
capabilities of the ISA without modifying what was there previously. The main
addition from the point-of-view of system software is a new mode called system mode.
This mode has no banked registers, using the user mode r13 and r14, and like user
mode it must be explicitly entered from another privileged mode. Unlike user mode,
it has the same privilege level as supervisor mode. The mode is intended to support
nested handling of interrupts: if interrupts are handled in a mode which may also
be entered through the exception vector, then the link register could be trashed if
an interrupt arrives while the interrupt handler is executing a function which has
not (yet) backed up the link register [Sys]. ARMv4T also includes new instructions,
relevant for compilers and possibly assembly language routines.

In addition to the ISA upgrade plans, there were plans to fix the bug preventing the
use of data caches. This would be relevant for the Barrelfish port, as enabling data
caches for main memory would require inter-core communication to be conducted
through scratchpad memory.

2.2 Barrelfish

2.2.1 Operating System Architecture

Barrelfish is an experimental Operating System (OS) developed by ETH Zürich in
collaboration with Microsoft, with the first public release in 2009 [BBD+09]. The
idea behind the system is to investigate an operating system architecture which
better fits future computer systems, which are characterised by having increasingly
diverse system properties such as interconnects and cache structures, an increasing
number of increasingly diverse processor core types, and where there may possibly
be no shared memory available between processing elements. The architecture of
the operating system is called the multikernel, in which the system is viewed as a
collection of independent, networked, communicating computing devices1. The OS
architecture is depicted in Figure 2.4. As illustrated, one OS node runs on each core,
and contains its own replica of the shared OS state. Communication and coordination
amongst the different OS nodes is performed using message passing.

1E.g. CPUs, Network Interface Controllers (NICs), and Graphics Processing Units (GPUs)

2.2. BARRELFISH 15

Figure 2.4: The multikernel operating system architecture. Source: [BBD+09]

2.2.2 Barrelfish Implementation Details

System Structure Barrelfish is an implementation of the multikernel architecture.
Its structure is depicted in Figure 2.52. Comparing with the general multikernel
architecture in Figure 2.4, the main difference is that the OS node of the multikernel
is split into a CPU-driver and a monitor. The CPU-driver manages core-local
resources, most notably the CPU time but also core-local peripherals such as timers
and interrupt controllers. It is not preemptible, leading to single-threaded kernel code.
The CPU driver is the only part of Barrelfish which executes in privileged mode.
CPU drivers will typically not communicate directly with each other: this is instead
handled by the monitor. The monitor program coordinates the OS-nodes running
on different cores, using message passing. For instance, page unmapping operations
are implemented using a one-phase commit protocol to ensure no stale data are
present in any TLB before the page is reclaimed. The monitor also provides an
access point for applications to the OS-node: some operations use the monitor, while
some use the CPU driver directly. The default inter-core communication method
is User-level Message Passing (UMP), in which a message-passing channel between
monitors is allocated from a shared memory resource. Messages are then sent by
writing cache-line-sized blocks to this channel, and read by polling the channel for
updates.

Above the OS node, applications are run. In Barrelfish, a running application is

2Barrelfish ports may also use inter-processor interrupts for low-latency communication directly
between CPU drivers, and cache coherency for communication directly in the hardware. However,
the user/kernel split and general structure is the same.

16 2. BACKGROUND

monitor

CPU
driver

monitor

CPU
driver

monitor

CPU
driver

User
space

Kernel
space

ARM ARM ARMHardware

App App AppApp

UMP

Figure 2.5: The structure of the Barrelfish operating system on ARM. Adapted
from [BBD+09].

represented as a set of dispatcher objects. There is one core-local dispatcher for each
core the process is running on. The dispatcher is the unit of scheduling in the CPU
driver. Each dispatcher then manages its own threads, using a Barrelfish-specific
thread library. In theory, threads could be migrated across dispatchers, but this is not
currently supported in Barrelfish. The relationship between applications, dispatchers
and threads in Barrelfish is illustrated in Figure 2.6.

Core 0 Core 1 Core 2

Application

Dispatcher Dispatcher Dispatcher

Thread 1

Thread 2
Thread 3

Thread 4

Thread 5

Thread 6

Core 3

Figure 2.6: The representation of running applications in Barrelfish.

In the x86 and ARM ports, when Barrelfish is booted only a single core should

2.2. BARRELFISH 17

be running initially. This core is called the Boot-Strap Processor (BSP). When
subsequent cores are started these are called application (app)-cores. Similarly, the
CPU driver running on the BSP is called a BSP kernel, and a CPU driver running
on an app-core is called an app kernel.

Much of the traditional OS functionality, such as memory management, device drivers
and file system access, is implemented by applications. In this dissertation, we will
refer to applications implementing traditional OS functionality or which are specially
treated by Barrelfish as system applications. Applications may offer their services
to other applications by exporting a set of remote procedures. Such a collection
of remotely available procedures is called an interface. Note that one application
may implement multiple interfaces, each containing one specific set of procedures.
Throughout the text, application names will be printed in italics and interface names
will be printed in fixed-face. An interface exported by a running executable will
also be referred to as a service. Communication between applications is performed
by one application creating a binding to a service, and calling the procedures in
its interface. Table 2.4 lists important system applications in Barrelfish; Table 2.5
lists important interfaces, as well as which application exports them. More detailed
documentation may be found on the Barrelfish homepage [Bar].

The Capability System As a protection mechanism, Barrelfish uses capabilities
similar to what is found in the formally verified microkernel seL4 [KEH+09] and
the Capsicum application compartmentalization system in FreeBSD [WALK10].
A capability is a reference to a resource, and a set of operations which may be
performed on it. In capability systems, the resources an application is allowed to
access is restricted through what capabilities are handed to it. It is important
that the capabilities are unforgeable and tamper proof to maintain security [SSF99].
Barrelfish implements the capability system by storing the capabilities available to
each dispatcher in a separate capability tree in kernel space. Each node of this tree is
called a Capability Node (CNode). The capabilities available to a dispatcher is called
the capability space of the dispatcher. In user space, the dispatcher only contains
references to capabilities in the kernel-space tree. The structure of the capability
tree is statically specified, so the capability references are statically created.

As an example, with a capability to a region of RAM and a capability to a page
table, an executable could ask the operating system to map the RAM capability into
its virtual memory space. The process is illustrated in Figure 2.7. The dispatcher
contains a reference to a level two page table, which is an entry in the level one page
table, named pte_capref. Additionally, the dispatcher has a reference to a frame,
i.e. a page-sized region of free physical RAM, named frame_capref. When the map
is requested, the kernel will verify that the capability references are valid. It does
this by using bits of the capability reference as an index into the current capability

18 2. BACKGROUND

Table 2.4: System applications in Barrelfish.

System application Description
init The first application started by the BSP kernel. Re-

sponsible for setting up mem_serv and monitor.
mem_serv Manages memory allocation, exported through the

mem interface.
ramfsd Creates a RAM file system containing the applications

uploaded by the bootloader. Exported through the
trivfs interface.

skb The system knowledge base, used for querying archi-
tecture information. Also contains a name service,
mapping interfaces to applications.

spawnd Can start programs on its own core by exporting the
spawn interface. It is also responsible for starting
app-cores by sending core boot requests to its local
monitor.

startd Starts a specified set of user programs by invoking
procedures in spawn.

serial A serial driver, which manages access to serial inter-
faces by user applications.

angler Manages user sessions. Amongst its uses is allocating
a serial device to a user session.

fish The shell used in Barrelfish.

node, starting with the root capability node of the dispatcher. In the figure, the
colouring scheme indicates which bits are used as an index in the different capability
nodes. For instance, the red-coloured root capability node has eight entries, so the
red-coloured first three bits of the capability reference is used to index this capability
node. This may also be seen from the colours: the frame root CNode is coloured red,
and so are the first three bits of both the pte_capref and the frame_capref. If the
lookups succeed, the kernel has found two valid objects with which to perform the
operation, and will therefore complete the mapping request.

There are some limitations with the capability system implementation in Barrelfish.
First, capabilities may only refer to regions of RAM with a power-of-two size. Second,
although capabilities to memory may be split into smaller capabilities, capabilities
to smaller, adjacent memory regions may not be merged into larger capabilities.

Boot Sequence When the BSP kernel is started, it initializes local peripherals
and a set of capabilities to peripherals and memory regions. The capabilities are
entered into the capability space of init, which is subsequently started. Init is also

2.2. BARRELFISH 19

Table 2.5: Some important interfaces in Barrelfish.

Interface name Description Exporting
executable

mem Memory allocation interface normally
used by applications

mem_serv

monitor Asynchronous interface between appli-
cations and monitor

monitor

monitor_blocking Synchronous interface between applica-
tions and monitor

monitor

intermon Procedures used to coordinate different
monitors.

monitor

monitor_mem Interface exported by the monitor on
the BSP-core, used by monitors on app-
cores to request memory allocation.

monitor

trivfs A simple file system interface, with sup-
port for opening, reading, and writing
files

ramfsd

octopus A record service, used among others to
implement a name service

skb

spawn An interface to spawn, kill, wait for, and
monitor applications.

spawnd

passed a bootinfo structure as a program argument. This structure contains an
array of memory region descriptions. Each array entry contains a base address, the
binary logarithm of the size of the region, and a type field indicating what the region
contains. The most common region types are RegionType_Empty, which denotes an
area of free RAM, and RegionType_Module, which denotes an area containing an
executable loaded by the bootloader.

Init proceeds by spawning mem_serv and monitor. The capabilities to free RAM
are transferred to mem_serv, and the other capabilities are transferred to monitor.
The bootinfo structure is further passed along to both mem_serv and monitor as a
program argument. Finally, init sets up a monitor-connection for mem_serv and a
mem-connection for monitor, before it terminates.

When mem_serv is started, the bootinfo list is used to initialize its allocator. It
iterates through the region list in the bootinfo looking for regions of type Region-
Type_Empty. For each such region, mem_serv will expect a capability to be present
in a designated capability node. This capability, described by the base and size field
in the bootinfo memory region entry, can then be added to the allocator.

20 2. BACKGROUND

Dispatcher

Kernel

page table

L1 page table

frames

...

L2 page table

Root CNode

CNode

0

7

0

15

...

0

7

Frame

...

0

15

3

12

CNode

CNode

1

5

Figure 2.7: An example demonstrating how user-space capability references map
to kernel-space capabilities when executing a virtual address space map request.

The monitor first starts a pre-defined set of applications, specifically ramfsd and skb.
Next, it iterates through the bootinfo memory region structure looking for regions
of type RegionType_Module. Each module which is marked as a boot-time module
will then be started. This will typically include the applications spawnd and startd.
Finally, the monitor enters a loop waiting for requests to arrive from applications.

Spawnd is started with an argument stating which cores should be booted. For each
such core, spawnd sends a boot-request message to its local monitor to start the boot
procedure. The initialization on these cores begins with app kernel initialization,
followed by starting the monitor. The monitor will spawn a spawnd dispatcher on its
own core, before announcing to the BSP monitor that its initialization is complete.
When receiving these messages, the BSP monitor will set up the communication
between the newly booted monitor and any other monitor which has previously
started.

Startd will first wait for all spawnd dispatchers to be initialized. Next, it starts a set

2.2. BARRELFISH 21

of applications flagged by the bootloader. For example, to launch the shell application
the bootloader would specify that serial, angler and fish should be started.

Figure 2.8 illustrates the started-by relationship between running executables with
a tree, where each node represents an executable and each child was started by its
parent.

kernel 1

mem_serv

init

monitor

ramfs skb spawnd startd serial

angler fish

kernels
#2..n

Figure 2.8: A visualization of the spawned-by relationship between executables in
Barrelfish. Adapted from [BS13].

Barrelfish Library All executables running on Barrelfish, apart from the CPU
driver, will be linked to a special library called libbarrelfish. This library implements
most of the code specific to Barrelfish, such as capability management, the user-space
thread library, and interaction between applications and the system applications. This
library also contains the entry point of all executables, which enables initializing the
library state before the main function of the executable is called. During initialization,
Barrelfish distinguishes between init-domains and non-init-domains. Init-domains
are executables launched before the local OS-node has been fully initialized. The
library can therefore not perform any initialization which relies on the presence of
the monitor. Non-init-domains are executables launched after the OS-node, which
means that a complete initialization can be done using the local monitor.

Memory Allocation For all applications except the CPU driver, memory alloca-
tion is initially done using a pre-allocated memory area. The memory area is passed
to the executable at a fixed location in its capability space. This enables memory
allocation during libbarrelfish initialization. Eventually, different executables switch

22 2. BACKGROUND

to different strategies for issuing allocation requests. The differences are summarized
in Table 2.6, which divides executables into three categories based on their final allo-
cation request strategies. The kernels, init and mem_serv are treated specially, and
use their own allocators. All other executables request memory allocation through
a service. Typically, this is done by setting up a connection to the mem service and
sending requests there. App-core monitors are an exception, as they instead set up
and use a connection to the monitor_mem service.

Table 2.6: An overview of how different executables in Barrelfish issue memory
allocation requests, once initialization is complete.

Executable Strategy
Kernels, init and mem_serv Use their own allocator.
Non-init-domains and BSP monitor Uses a connection to mem.
App-core monitors Uses a connection to monitor_mem.

2.2.3 The Port to SHMAC

The port of Barrelfish to SHMAC was initiated based on the observation that the
design goals of Barrelfish were suited for the diverse multicore architectures to be
studied in the SHMAC project. Several other research operating systems which are
similar to Barrelfish, such as Helios [NHM+09], Corey [BWCC+08] and Factored
Operating System (fos) [WA09], could potentially also have been selected. However,
Barrelfish was deemed to be the most suited for investigating the research questions
in the SHMAC project. Corey and fos focus primarily on many-core systems, while
the focus of the SHMAC project is on heterogeneity in many-core systems. Helios
also focuses on heterogeneity, but its primary goal is simple application deployment
and tuning on heterogeneous platforms rather than creating an adaptive operating
system. Another important factor was that Barrelfish is open source, whereas Helios
is not.

At the beginning of this dissertation, the SHMAC port supported booting Barrelfish
and running a multiprogrammed user workload on a single core [BS13]. A conclusion
from the work on this port was that Barrelfish was not suited for a memory-constrained
execution environment. Specifically, the RealView platform could not support
executing Barrelfish on multiple cores without a rewrite of core components of the
OS. This experience, along with that of other projects which encountered memory
problems, was the motivation for acquiring the more powerful Versatile Express
platform.

The SHMAC port of Barrelfish shares the general characteristics of Barrelfish de-
scribed in the previous section. One SHMAC-specific utility is the shmacfish boot-
loader generator. Shmacfish reads a configuration file, which specifies the available

2.3. ENERGY EFFICIENCY EVALUATION STRATEGIES 23

address space and which Barrelfish executables should be uploaded. Then, it pro-
duces a module segment containing all the modules as well as a multiboot-compliant
metadata header [FB13]. It also produces a set of OS boot parameters, denoting
where in memory the multiboot module specification is situated and the number of
modules in it. Finally, it produces a script, which may be run on the SHMAC host
to upload the kernel binary to address zero, the kernel boot parameters after the
kernel, and the module segment to the end of the address space before starting the
SHMAC processor.

2.3 Energy Efficiency Evaluation Strategies

Research on energy efficiency is no novel endeavour; however, the recent recognition
of power as a cross-cutting design limitation [DBSDBM13] has spawned an increasing
number of research projects on the energy efficiency of computer systems. This
section will describe approaches to energy efficiency evaluation taken in different
kinds of studies.

2.3.1 Measurements

The most straight-forward solution for evaluating the energy efficiency of a system
is to simply measure the power drawn from its power supply. Such measurements
can be made by connecting a power meter between the system under examination
and the wall outlet; this monitors complete system power, which may be used to
compare complete systems against each other [RSR+07]. It may also be possible to
derive the processor power by first measuring system power when the processor is
halted, and subsequently subtract this from measurements gathered during tests to
compare processor power draw specifically [BMS13]. If independent power supplies
are present for different components, the power meters may potentially be directly
connected there instead for more accurate data [ECX+11].

2.3.2 Performance Counters

Using measurement tools to obtain power consumption is a good strategy for bench-
marking system performance. However, it is also useful for system software to be able
to gauge the current power consumption in order to implement power-aware system
control algorithms. Power measurement tools are not suitable for this purpose, as
they will not be able to feed the power data back to the system in a timely manner.
Even if this were possible, having a power meter attached for proper system operation
would not be a feasible requirement in many situations.

An additional shortcoming of measurement tools, is the granularity with which they
can attribute power dissipation to different subsystem components. The granularity

24 2. BACKGROUND

of power meter measurements is limited to the different power supplies, and will
typically not be able to provide particularly fine-grained measurements. For instance,
it may not be possible to separate the power consumption of different cores on a Chip
Multi-Processor (CMP), much less determine which part of the microarchitecture is
responsible for the power consumed.

To tackle these issues, researchers have investigated methods for correlating activity
in the processor with power consumption. Modern processors often expose a set of
registers which count certain hardware events, such as cache misses and pipeline stalls.
By correlating these values with measured system power, one can obtain a model
which enables estimating the processor power consumption from the performance
counters visible to the system software. Singh et al. [SBM09] explore this possibility,
and demonstrate an implementation of a scheduling algorithm which uses the created
model to make sure that the system executes within a set power envelope. Bertran et
al. [BGM+10] stress the importance of creating power models which are decomposable,
i.e. the total power can be attributed precisely to subcomponents, and responsive, i.e.
fluctuations in power consumption are accurately captured. They present a generic
scheme for creating such models. Bircher and John [BJ07] illustrate how such a
scheme may even be used to characterize the power consumption of systems external
to the processor, such as graphics cards, hard-drives and network devices.

2.3.3 Architectural Simulators

During research or in an initial phase of a design project, the system under examina-
tion might not yet exist. In such cases, measurements can not be used for energy
evaluation. As the power consumption of a system is intrinsically related to activity,
one may turn to simulators in order to obtain the activity factors.

One common simulator approach is to implement the behaviour of a system architec-
ture in software. In this dissertation, we will refer to such simulators as architectural
simulators. The software may model the architecture at arbitrary levels of detail,
typically ranging between functional equivalence and a truthful representation of
the Register Transfer Level (RTL) behaviour of the system. Running the software
model under some stimuli will trigger activity events, observable and loggable by
the simulator. An example of such a simulator is gem5 [BBB+11], which provides
behavioural models for a large number of cores for different ISAs as well as a variety
of memory system implementations. The gem5 simulator is a result from merging the
older processor core models in the M5 simulator [BDH+06] and the memory system
models in the GEMS simulator [MSB+05]. A different, more recent simulator is
Sniper [CHE11]. Sniper focuses on scalable simulator performance by using multiple
cores, and allows trading simulator speed for accuracy. It currently only supports
cores implementing the x86 and x86-64 ISA.

2.3. ENERGY EFFICIENCY EVALUATION STRATEGIES 25

Having obtained activity events, power estimates can be obtained by using software
power estimation tools. One such tool is Wattch [BTM00], which uses power models
for commonly used hardware structures to estimate processor power consumption
given some switching activity. More recently, McPAT [LAS+13] has been developed
to succeed Wattch, with more comprehensive power models updated to use the current
state of process technology. To estimate the power consumption of on-chip RAM,
one can use the tool CACTI [WJ96]; estimates for off-chip RAM power consumption
can be obtained using DRAMSim2 [DRA14].

An example of the use of this kind of method can be seen in the work by Govindaraju
et al. [GHS11]. In the study, a new kind of reconfigurable hardware unit developed
for energy efficiency is investigated. The power data is obtained by using the GEMS
simulator extended with the new hardware unit to gather activity, and Wattch-based
power models integrated in the simulator to calculate power consumption. In a
different study, Kumar et al. [KFJ+03] combine the simulator SMTSIM and Wattch
to investigate the potential energy efficiency improvements achievable by combining
different versions of an existing processor core on a single chip. In the study presenting
McPat [LAS+13], a Design Space Exploration (DSE) study for investigating the
optimal core clustering count considering energy, delay and area is conducted using
the M5 simulator for activity data and McPAT for calculating energy consumption.

2.3.4 Circuit Simulators

Instead of developing models of a proposed architecture in software, one may create
synthesizable HDL implementations of the architecture. Such models may be synthe-
sized into a gate-level netlist, describing how the hardware implementation would
translate into combinations of gates in a given cell library, and potentially also placed
and routed to describe precisely the wiring and layout of the gates. As cell libraries
specify the power consumption of the different gates, the netlist makes it possible to
calculate the power consumption of the entire circuit under the influence of some test
stimuli. This is done by employing a circuit simulator such as ModelSim [Men14]
or VCS [Syn14e] to gather the switching activity of the different gates, and using
a power estimation tool like Synopsys PrimeTime [Syn14d] to combine the activity
with per-gate and per-wire power consumption estimates to accurately calculate the
power consumption of the entire circuit. With a netlist and layout sufficiently similar
to a final silicon implementation, it should in theory be possible to calculate the
exact power consumption to within the error margins of the cell library. Considering
the errors present also in power meters, the method might rival measurements in
accuracy. In contrast to measurements, however, this method is slow due to high
computational demands of gate-level simulation where the size and complexity of
the design is substantial.

26 2. BACKGROUND

Slow simulation speed notwithstanding, several research projects have used this
method to estimate the efficiency of proposed hardware enhancements. A project
by Venkatesh et al. investigates extending processor cores with energy efficient
accelerators called conservation cores, tailor-made for typical system workloads
[VSG+10]. They evaluate the efficiency of their idea by generating Register Transfer
(RT)-language models of their accelerators, which are subsequently synthesized,
placed and routed. To make simulation speeds manageable, they use a software
simulator to sample the register state at different intervals, and run the circuit
simulator for a limited number of cycles starting from this register state. The power
is calculated using Synopsys PrimeTime. To get power estimates for the other parts
of the system, they model the processor core power consumption as a constant
mW/MHz, and use CACTI for the memories. A similar evaluation strategy is used
in the project by Park et al. [PPPM12], where a configurable SIMD unit called Libra
is proposed; and in the project by Gupta et al. [GFA+11] which investigates the
efficiency of a proposed coarse-grained configurable accelerator unit called BERET.

2.4 Hardware Regression Models

When investigating how energy efficiency estimation using the SHMAC infrastructure
may be supported, all the techniques described in Section 2.3 were found to be wanting.
The measurement and performance counter techniques described in Sections 2.3.1
and 2.3.2 require measuring power consumption, which is not possible for the SHMAC
project as no system exists to be measured. The architectural and circuit simulators
described in Sections 2.3.3 and 2.3.4 lift this restriction, but they do not align with
the SHMAC project goal of using FPGA prototyping to speed up evaluation.

Ideally, we would like to gather activity data at hardware speeds and estimate the
resulting power consumption with the accuracy of measurements without being
dependent on the presence of a physical implementation of the design being tested.
In order to close in on this ambition, the following observations were made of the
capabilities of the SHMAC infrastructure and the known energy efficiency estimation
techniques:

1. The SHMAC infrastructure implemented on an FPGA offers RTL activity at
hardware speeds.

2. Circuit-level simulators may be used to accurately estimate the power consump-
tion of an RTL-design under some stimuli, as described in Section 2.3.4.

3. With performance counter readings and corresponding power estimates attained
from initial benchmark runs, it is possible to create performance-counter-

2.4. HARDWARE REGRESSION MODELS 27

based power models predicting power consumption in general as described in
Section 2.3.2.

4. The SHMAC infrastructure may be extended with any kind of performance
counter.

From these observations, we got the key insight that the performance counter method
may be used by having circuit-level simulators take the place of measurement tools.
Since the performance counter method only requires power measurements during
model construction, the dependency on the simulator is limited to design time. Once
the model has been created, any performance counters may be implemented on the
SHMAC infrastructure and gathered at FPGA execution speed. Presumably, this
would fulfil our goals of high accuracy and estimation speed without the need to
measure a physical system.

The above reasoning lead us to envision the method illustrated in Figure 2.9 as a
potential candidate for enabling energy efficiency estimation with the SHMAC infras-
tructure. The three leftmost stages implement the circuit-level simulator estimation
strategy described in Section 2.3.4. These stages are used to get the power data
required to implement the performance counter strategy described in Section 2.3.2,
where regression modelling correlates hardware activity with power consumption. The
resulting regression model may either be implemented as an expression in hardware,
or implemented in software by exposing the selected performance counters.

Further literature studies revealed that the proposed method was considered a sound
technique for gathering energy efficiency estimates from a design running on an
FPGA. The studies found also highlighted different design choices when using this
technique, as well as potential challenges. The studies are summarized in Table 2.7.

Table 2.7: The studies found employing similar techniques to that of Figure 2.9 to
evaluate the energy efficiency of HDL designs using FPGA execution.

Authors Keyword Summary
Coburn et al.
[CRR05]

Power Emulation Model the RT-level building blocks of a
design. High precision, high overhead.

Bhattacharjee et al.
[BCM08]

Full-CMP Model the design at an architectural
level using event counters. Lower tran-
sient precision, low overhead.

Sunwoo et al.
[SWPC10]

PrEsto Semi-automate modelling by specifying
regression model form in terms of per-
cycle signal values. Presumed higher
transient precision, medium overhead.

28 2. BACKGROUND

ASIC Design Flow

Circuit Simulator

HDL Files

Test activity
data

Synopsys
PrimeTime

Regression
modelling

Test power
data

Regression
model

Test
benchmarks

Validation
benchmarks

Validation
activity data

SHMAC

Validator

Estimated
powerValidation

power

Figure 2.9: Possible method for combining different power estimation techniques
to enhance the SHMAC platform with power consumption estimation capabilities.

The oldest study found which considers FPGA-based estimation of the power con-
sumption of HDL designs was conducted by Coburn et al, in which they name this
technique power emulation [CRR05]. Their approach to modelling was to include
simple models for components at high granularity. For each RTL building block, such
as multiplexers and adders, they associate a fixed power draw from toggle activity in
a single bit. Thus, the power consumption of an N-bit component was modelled as∑N

i=1Coeff i ·Activity(biti). The hardware overhead per model is small, as it may be
implemented with and-gates and an adder. However, naïvely including such a model
for every RTL component in the system lead to an average increase in system size
by 18.2×. Their work discusses techniques which reduce this resource requirement,
leading to an average area overhead of 3.1×.

The high overhead of the technique proposed by Coburn et al. limited its applicability

2.4. HARDWARE REGRESSION MODELS 29

to specific hardware functions with the largest being an MPEG4 decoder unit.
The next study found, conducted by Bhattacharjee et al. [BCM08], proposed
overcoming the area overhead limitations by focusing on power models for higher-
level architectural components based on similarly high-level event counters. Their
system under test was a 2-core Leon cache-coherent CMP. They first incorporated
36 event counters into this system, counting events such as cache misses and pipeline
stalls. The selection of counters was based on intuition and experience with the
architecture. They subsequently followed the same flow as depicted in Figure 2.9.
The ASIC design flow stage was limited to synthesis, as including placement and
routing details allegedly lead to exponential increases of simulation time with modest
increases in accuracy. The resulting model was found to be within 10% of the
PrimeTime estimates on average. To keep the area overhead to a minimum, they
opted for incorporating the resulting regression model in the operating system kernel,
thus only requiring the addition of the event counters themselves to the system.

Selecting the event counters before gathering the energy estimation training data
might be difficult, and yield suboptimal regression models if the selection is poor.
Additionally, as event counters represent hardware behaviour averaged over a period
they are not particularly suited for modelling transient and peak-power consumption
estimation [BCM08]. The latest study found, conducted by Sunwoo et al., proposes
a method named PrEsto in which these points are addressed [SWPC10]. The input
to the method is activity data for a selection of hardware component inputs and
outputs, as well as corresponding power data for the hardware component being
modelled. The remainder of the modelling is automated by performing the regression
modelling with a pre-defined formula format, in which terms may be a multiplication
of at most two binary signals and the Hamming distance of one bus signal3. The
large number of terms in the resulting regression model is subsequently sorted based
on their significance in the model. The most significant terms are selected to create
the final model. Thus, the selection of model terms is automated. Since signal values
are used directly, instead of being summarized in event counter values, there is also
an increased opportunity for precise prediction of transient power consumption.

The PrEsto method is tailored for use with the researchers’ own FAST FPGA
accelerated simulator [CSK+07], which implements only parts of the simulator on the
FPGA instead of emulating the entire system there. Consequently, one target cycle
might take several host cycles. For instance, the PrEsto power models demonstrated
in their study take seven host cycles at 133 MHz to complete. Whether the models
would be suitable as enhancements for a complete FPGA prototype, or whether they
would be too costly either in area or computation time, has not been studied.

3The Hamming distance between two binary strings is the number of bits which differ between
them. The Hamming distance of a bus is the hamming distances of bus values in successive cycles.

Chapter3Energy Efficiency Estimation
Framework Design

This chapter will introduce the design of an energy estimation framework which uses
the modelling method presented in Section 2.4. The framework is split in two parts:

1. Energy models which calculate an energy consumption estimate based on RTL
activity. It is the construction of such models that is explained in Section 2.4.

2. The infrastructure which must be added to the SHMAC infrastructure to
support using the energy models to estimate energy consumption at run-time.

Section 3.1 will first list what functionality and attributes we would want in an energy
estimation framework. From this list, we will derive our design goals. Section 3.2
will next present the design of an infrastructure which meets the functional goals,
assuming the existence of energy models for the hardware components in the SHMAC
infrastructure. Finally, Section 3.3 will expand on Section 2.4 and explain what
different modelling methods are employed when creating energy models for different
hardware components.

3.1 Design Goals

The SHMAC platform is designed to be able to quickly run experiments investigating
new hardware or software solutions for different heterogeneous architectures. The
ultimate goal of an energy efficiency estimation framework is enhancing this plat-
form with support for somehow analysing the energy efficiency of the hardware or
software solution being studied when running the experiments. This section will
discuss how such an enhancement should work by presenting both functional goals,
describing which capabilities should desirably be present in such a framework, and
non-functional goals, pertaining to the desired characteristics and quality of the
framework components.

31

32 3. ENERGY EFFICIENCY ESTIMATION FRAMEWORK DESIGN

Functional Goals

1. The arguably most important framework functionality is the ability to report
the energy efficiency to the host system, for storage and subsequent analysis of
experiment results.

2. It is desirable to be able to separate the energy efficiency of individual hardware
components. For example, knowing that a significant fraction of the energy
consumption originates from the router between cores and scratchpad tiles may
motivate the development of an algorithm or system improvement in which
more local processing is employed and the communication requirements are
reduced.

3. To enable research on software which uses the current energy efficiency as
feedback to steer its operation in a more energy-efficient manner, it is desirable
that the energy efficiency estimates are not only available to the host system,
but also to software running on the SHMAC platform.

Non-functional Goals

1. The reported energy efficiency should be as accurate as possible.

2. The energy efficiency metric should preferably be reported per time, and
not merely as an estimate of average efficiency over the entire course of an
experiment. Having a per-time breakdown of energy consumption enables more
accurate analysis of the hardware or software being studied, and may help
identify the main sources of energy consumption in a hardware or software
design. Additionally, the transient consumption may be interesting in itself,
for instance if the research in question considers thermal constraints in which
peak power is a limiting constraint.

3. It is also desirable with as fine-grained a report per time as possible. This
goal implies that the speed of operation of the framework should be as high as
possible.

4. The framework should preferably have little implementation overhead, so as
not to constrain the design space available for investigation with the SHMAC
platform. Specifically, the framework should not impede the clock frequency
of the SHMAC platform as this would slow down simulation runs. and the
resource requirements for the infrastructure should be minimal to allow for the
instantiation of as large SHMAC configurations as possible.

3.2. INFRASTRUCTURE DESIGN 33

5. The granularity with which the energy efficiency is reported should be customiz-
able, to reduce communication and storage demands when only coarse-grained
reports are required.

6. The coverage of modules contributing to the reported energy efficiency should
be high. The energy consumption of a module should not be ignored, as this
would increase the possibility of erroneous conclusions.

7. The framework should be as user-friendly as possible. This matters for both
developers of the platform, who benefit from simple model creation and inte-
gration to be as simple as possible, and researchers using the platform, who
benefit from simple acquisition of energy efficiency results.

3.2 Infrastructure Design

In this section, the design of the infrastructure of an energy efficiency framework
for the SHMAC project will be presented. The infrastructure design will assume
the existence of energy models relating hardware activity to energy consumption,
and demonstrate how such models may be employed to best fulfil the design goals of
Section 3.1. The design will also illuminate how the exact character of the energy
models impacts the potential quality of the infrastructure, and this insight will yield
efficiency guidelines for the subsequent design of the models.

The infrastructure is built to use energy consumption as the energy efficiency metric,
instead of for instance power or raw performance counter values, for reasons of user-
friendliness and implementation efficiency which will be discussed in Section 3.2.2.
Implementing the functional goals listed in Section 3.1 therefore involves transferring
energy data to the host, attributing energy consumption to specific modules, and
exporting energy consumption data to SHMAC software. To construct a solution to
these goals, the infrastructure uses a design of three layers of components: energy
monitor modules, energy report units, and a scan chain. The composition of these
component layers is depicted in Figure 3.1, giving an overview of the complete
infrastructure design. The energy monitor module implements the energy models;
the energy report units aggregate data from several models and define the granularity
at which energy data is available; and the scan chain transfers data to the host.
Section 3.2.1, Section 3.2.2 and Section 3.2.3 will discuss the design of each of the
layers, how it relates to the one below it and what constraints it imposes. The
design of the interface to host will then be described in Section 3.2.4, and finally
Section 3.2.5 describes the SHMAC system software interface.

34 3. ENERGY EFFICIENCY ESTIMATION FRAMEWORK DESIGN

APB

Core

Router

Accumulate

Accumulate

Fetch

Decode

Execute

Memory

Writeback

Energy
estimate

Energy
estimate

Energy
estimate

Energy
estimate

Energy
estimate

+
ECORE

Amber core fetch stage

Fetch energy monitor

Regular fetch logic

Inputs Outputs

EFETCH

ECORE

EFETCH

Energy
monitor

Energy
report unit

Scan chain

Figure 3.1: An overview of the energy efficiency estimation infrastructure. The
main components, namely monitors, report units and the scan chain, are explained
in detail in separate sections.

3.2.1 Scan Chain

The scan chain is the primary engine in the transfer of energy data from the SHMAC
platform to the host. The chain connects energy report units, whose reported energy
values may be shifted one by one into the APB tile for transfer to the host. Using a
scan chain instead of point-to-point links between the energy report units and the
APB tile leads to lower routing resource overheads on the FPGA, in conformation
to the non-functional goals. It is also a more flexible solution, since extra energy
report units may seamlessly be inserted anywhere along the chain. The maximum

3.2. INFRASTRUCTURE DESIGN 35

sample rate is limited by how fast the scan chain can supply values to the APB tile,
with optimum value reached if the APB is saturated. Since scan chains typically
may provide a new value every cycle, we would expect this to be attainable from
an implementation. Since the APB bandwidth is one transfer every two cycles, a
scan chain which may transfer one sample per cycle allows saturating the APB and
therefore optimally adhering to non-functional design goal 3.

The scan chain is designed to support sampled gathering of energy data, at the
discretion of the host. It would not be possible to base the design on the ability to
stream out one sample each cycle for several reasons: the APB is not sufficiently fast;
using the link to transfer energy data at every chance would hinder other common
uses such as terminal I/O; and the APB tile is a slave unit, so data transfer will
necessarily be reactive anyway.

Gathering data samples is supported through two mechanisms:

1. A sample signal is used to signal a snapshot of the energy consumption registered
so far in a report unit.

2. A shift signal is used to shift energy values stored in the scan chain registers,
when a new sample is needed for transfer on the APB.

The APB is 32 bits wide, which makes 32 bits a natural maximum energy sample
width for an implementation. However, due to the flexibility of a scan chain it is
possible to use a higher bit width simply by using several 32-bit registers in the report
unit and connect them all to the chain. This possibility should only be used if it is
necessary for sufficient accuracy, since it will have an adverse impact on throughput.
A doubled sample width will double the amount of cycles it takes to transfer all
samples out to the host, and thereby halving the maximum theoretical sample rate
of the infrastructure.

Using the scan chain, the host will be able to attribute samples to sources if it knows
two things: the bit width of each sample, and the order of energy report units in
the scan chain. Support for dynamically determining this is not part of the current
design, thus favouring reduced complexity and overhead over user-friendliness for
those interfacing the infrastructure directly.

3.2.2 Energy Report Unit

The energy report unit is used to define the granularity at which energy consumption
may be attributed to hardware modules. It is designed to work by summing the
contributions from one or more energy monitors, and accumulating the energy

36 3. ENERGY EFFICIENCY ESTIMATION FRAMEWORK DESIGN

consumed until a sample signal is received from the scan chain. Upon the reception
of this signal, the energy accumulated so far is stored in the scan chain register, and
the counter is reset to zero. Resetting the values to zero leads to new estimates being
reported for each time interval, which fits non-functional goal 2 on the ability to
report energy efficiency over time.

The report units may be situated at any location the researcher deems appropriate,
thereby fulfilling non-functional design goal 5 on customizable granularity of energy
consumption attribution. Since the report units are all connected in a scan chain, a
new report unit U can always be inserted between two existing units U1 and U2 by
connecting the output of U1 to the input of U and the output of U to the input of
U2 at the cost of reduced maximum sample rate because of the extra data transfer
requirements.

The design of the energy report unit accommodates using either energy-per-event-
based models, as used by Bhattacharjee et al. [BCM08], or models calculating
energy based on per-cycle signal values, as in the design of PrEsto by Sunwoo et al.
[SWPC10], in the energy monitors. Supporting both kinds of models gives modelling
flexibility, which is good since lack of modelling flexibility may hurt non-functional
goals 1, 6 and 7. The PrEsto models are formulae based on transient signal state,
and are as such trivially supported by the energy report unit. The energy-per-event
models are typically evaluated after longer periods of execution by multiplying the
total count of occurrences of one event with the energy per event occurrence. However,
the energy-per-event models may also be evaluated every cycle as the sum of energy
values for all events which occurred this cycle. Thus, both models may be built to fit
the expectations of the energy report unit.

The report unit design is what enforces the infrastructure to work with energy
consumption, instead of just exposing event counters which it is up to software to
use. Implementing the models in hardware leads to higher overhead than just using
event counters, but is still a superior choice for the following reasons:

1. Shipping event counters off the SHMAC to the host system is likely to require a
large amount of extra bandwidth. For example, in [BCM08] 36 event counters
are used. If we conservatively assume that the average size of the event counters
is 3 bits, then transmitting all these counter values would require 108 bits
and therefore 4 APB cycles per model. Transmitting 32-bit energy values
instead would permit a quadrupled maximum theoretical sampling rate from
the infrastructure.

2. It is possible to limit the overhead from implementing energy models by using
event-counter based models, since these are simple to implement. This is

3.2. INFRASTRUCTURE DESIGN 37

demonstrated in Figure 3.2. Instead of a register counting the number of
occurrences of each event, an implementation would require one vector and-
gate per event and log2(n) adders. Thus, the modelling flexibility can be traded
for implementation simplicity.

3. Finally, it is more practical for both host software and SHMAC software to make
use of a completely calculated energy estimate instead of having to implement
the formulae relating event counters to energy.

...

event 1

+

event n

+

+

event 1 coefficient 1 event n coefficient n

...

Figure 3.2: Implementing performance counters versus implementing per-cycle
energy-per-event energy models.

The energy report unit design also enforces using energy consumption as an energy
efficiency metric instead of power. Energy may be accumulated more easily than
power, leading to simpler implementations which makes it preferable according to
non-functional design goal 4. Power is more difficult to accumulate since it is a
rate, and therefore the sum of power numbers have no inherent meaning. The most
obvious summary of a sequence of power numbers is its average value, and calculating
this requires division. Both divisor and dividend will vary since it is not known how
much time will pass between each sample, which mandates the implementation of
relatively expensive division circuits conflicting with non-functional design goal 4.
Additionally, the latency of performing the division would add a minimum latency
before scan chain operation could commence, reducing the maximum sample rate
and thereby hurting non-functional design goal 3.

3.2.3 Energy Monitors

The role of the energy monitors is to implement the energy model for the SHMAC
hardware module in which it is contained. This model is assumed to be dependent
only on input, output and internal signals within the module, and possibly signals
derived from these. The infrastructure requires that models calculate energy as an
integer value with the necessary resolution determined during modelling. Apart from
these restrictions, the monitors are black-boxes in the infrastructure to be determined
through modelling. Modelling will also determine the required granularity based

38 3. ENERGY EFFICIENCY ESTIMATION FRAMEWORK DESIGN

on non-functional goals 1 and 6 on accuracy and coverage, implying where in the
infrastructure monitors must be included.

As energy monitors and report units are decoupled, the modelling granularity may be
varied independently from the report granularity. It is therefore possible to have high
coverage and accuracy from high modelling granularity without incurring significant
costs from high report granularity. The left hand side of Figure 3.1 exemplifies this
situation. Although the modelling granularity is at the level of pipeline stages, the
report granularity may be set to the level of the complete core by feeding a report
unit with the sum of contributions from individual pipeline stage monitors.

3.2.4 Host Interface

The host interface to the energy estimation infrastructure extends the existing
memory-mapped register interface to the SHMAC platform. Two new registers are
included:

1. SampleEnergy is a write-only register. Writes will cause a new sample to be
taken.

2. NextSample is a read-only register. Reads will return the next sample in the
scan chain.

The SampleEnergy register could be removed if reads to NextSample issued a sample
request once all sources had been read. However, using two separate signals will
require a less complex infrastructure implementation as there is no need to keep
track of which samples have been read and optionally asserting the sample signal.
Explicit control of the sample signal also offers more flexibility to host software.

3.2.5 SHMAC Software Interface

The interface to the energy estimation infrastructure from SHMAC software is also
based on memory-mapped registers, extending the existing interface for access to
core peripherals. There is one set of registers per energy monitor whose data is
exported to the SHMAC software. The interfaces do not depend on energy report
units or the scan chain, to avoid dependence on or conflict with sampling activity by
software running on the host. Which set of energy monitors to export to SHMAC
software may therefore be decided independently of the host report granularity.

The registers available to software on the SHMAC are only meant to guide run-time
system software decisions, and not logging of energy consumption which is better
handled through the host interface. Consequently, there are two possible access
patterns to the energy estimate registers:

3.2. INFRASTRUCTURE DESIGN 39

1. The software makes periodic samples, with the intention of extracting the energy
consumption since the last sample was taken. Varying the sample period allows
the software to balance sample resolution with sampling overhead.

2. The software samples at strategic points, aperiodically spread out in time, with
the intention of gauging the current energy or power consumption. What is to
be considered current should ideally be specifiable by the software.

Supporting the first use-case of periodic sampling is straight-forward for an implemen-
tation, but supporting the second may require complex implementations depending
on the exact semantics of the interface. For instance, reporting the energy consumed
the past X cycles, with X configurable by the software, requires remembering the
past X samples and managing a dynamically varying history size.

The proposed interface design attempts to strike a balance between semantic power
and implementation simplicity. The interface consists of five registers per selected
monitor, listed in Table 3.1. In addition to these per-monitor registers, a per-tile
register reporting the emulated operating frequency of the tile is also included.

Table 3.1: Register interface per energy monitor exported to SHMAC software

Register Semantics
Time Window Maximum number of cycles in a period.

If zero, the period is unlimited.
Current Period Energy Register to which energy consumption

is added each cycle.
Current Period Duration Set when current period energy is read.

Reports the number of cycles from which
energy data was gathered when
Current Period Energy was last read

Previous Period Energy Set when Current Period Energy either
overflows, or has accumulated energy for
more cycles than Time Window allows.

Previous Period Duration Set when Previous Period Energy is written.
Reports the number of cycles of energy data
accumulated in Previous Period Energy

The periodic access pattern is supported by periodically reading the Current Period
Energy register when Time Window is set to zero. The Current Period Duration
register supports getting precise information on the sample period of the last read
value. It is possible to handle one overflow event by checking whether the Current

40 3. ENERGY EFFICIENCY ESTIMATION FRAMEWORK DESIGN

Period Duration is lower than expected, and if so read the Previous Period Energy
register to get the value at which the energy counter overflowed. Multiple overflows
will not be detectable. The strategy of reporting the accumulated value since last
read resembles the energy counters available on modern Intel processors [Int14].

The aperiodic sampling access pattern is supported by setting the Time Window
register to the desired definition of recency, and reading from the Previous Period
Energy to get the last completed sample for this period. This strategy gives a number
which in the average case is outdated by half the Time Window resolution. If more
accuracy is required, the Current Period Energy and Current Period Duration may
be read first to determine whether the Previous Period Energy value is too outdated.
The strategy of reporting values for the last time frame resembles the power registers
available on AMD processors [AMD13].

3.3 Modelling Methods

Section 3.2 described the infrastructure which enhances the SHMAC platform with
energy efficiency estimation capabilities. However, the usefulness of such an infras-
tructure is no better than the usefulness of the data it emits. This section will present
the methods which enable the creation of models relating hardware activity to energy,
providing the fundament for a complete energy efficiency estimation framework.

For HDL components which are specially created for the SHMAC infrastructure, the
regression modelling method introduced in Section 2.4 provides a structured approach
to producing accurate models. This method will be used to design models for the
Amber cores and routers in the SHMAC infrastructure, with method details presented
in Section 3.3.1. However, for components generic in nature whose HDL-specific
implementation is perceived as inconsequential, analytical modelling may be more
efficient especially if existing work may be leveraged. Section 3.3.2 presents the
modelling of the energy consumption resulting from on-chip RAM access, off-chip
RAM access, and the APB tile, and explains why the regression modelling method is
either unsuitable or at present unnecessary for these components.

3.3.1 Regression Modelling

This section will flesh out the description of the regression modelling method given
in Section 2.4 with details specific to the environment in which the models will exist,
i.e. the infrastructure design, and to the design goals for the framework.

Infrastructure Design Implications

1. The infrastructure enforces a hardware implementation of the models.

3.3. MODELLING METHODS 41

2. Since the infrastructure is based on reporting energy, the regression model must
relate hardware activity to energy. This differs slightly from previous work
using this method, where the resulting models have calculated power.

3. A result is expected from the energy monitors every cycle. Thus, the model
should be a formula which it is possible and inexpensive to evaluate every cycle,
which calculates the energy consumption from just one cycle. Specifically, there
is no need to create new event counters as independent variables.

Design Goal Implications

1. As the models must be implemented in hardware, design goal 4 on implemen-
tation overhead must be respected. This necessitates making several trade-offs
during modelling:

a) Variable selection, term complexity and the number of terms to use present
trade-offs between accuracy and implementation overhead.

b) The modelling granularity trades off coverage for implementation overhead.

For our purposes, it is desirable with a trade-off where models have sufficient
accuracy and minimal implementation overhead. The modelling step of the
method should therefore be executed by first creating a model with sufficient
accuracy to establish feasibility, and subsequently optimize for implementation
overhead.

2. A necessary assumption which will be made to satisfy the design goal on
user-friendliness is that the energy model for a component will be independent
of its location in the SHMAC configuration. It would be infeasible to create
location-specific models for each possible SHMAC layout, and hardware design
space exploration would be severely limited if researchers had to create models
for each layout they wanted to experiment with the since the method is both
time-consuming and manual. A consequence of assumed location-independence
is that the place-and-route step in the ASIC design flow is obviated, leading to
simpler and less time consuming modelling. The trade-off is reduced accuracy
from missing place-and-route information.

3. To ensure trueness in the energy models, the regression modelling should be
done using the HDL of the SHMAC without the energy estimation infrastructure
added. The infrastructure is merely an addition to enhance the capabilities
of the SHMAC as a platform for running experiments, and not a component
the system being studied is supposed to include. Therefore, there must be
two versions of the SHMAC HDL maintained: one with the infrastructure,

42 3. ENERGY EFFICIENCY ESTIMATION FRAMEWORK DESIGN

used to generate the FPGA bitfile, and one without it, used when creating the
regression models.

3.3.2 Analytical Modelling

On-chip RAM On-chip RAM resources are used in the SHMAC infrastructure
for the scratchpad memory and the processor core caches. As these are implemented
in the SHMAC RTL code, it would be possible to use regression modelling for these
components as well. However, if the SHMAC was realized in silicon it is likely that
the RAM blocks used for cache and scratchpad memory would be custom modules
selected from a memory library since RAM construction is more low-level than the
RTL of an HDL specification. It is therefore uncertain how true a regression model
of cache and scratchpad memory energy consumption based on the SHMAC HDL
would be to a hypothetical real system.

An alternative for estimating on-chip memory energy consumption, mentioned in
Section 2.3.3, is the tool CACTI. CACTI calculates the average energy consumption
of a memory module based on parameters such as size, banks, ways, and process
technology. The models CACTI use are based on analysis of the low-level structure
of the RAM resources. If care is taken to have the CACTI parameters mirror the
process technology parameters used for ASIC synthesis, it is likely that the CACTI
estimates are more representative of a real instantiation of the architecture. An
additional benefit from using CACTI is that it is less time-consuming than regression
modelling, making it simpler to experiment with alternative cache organizations.
Therefore, on-chip RAM structures will be modelled using CACTI.

Off-chip RAM Off-chip RAM energy consumption is difficult to model accurately,
both because of advanced memory controller operation and because the energy
consumption of DRAM chips is highly dependent on run-time characteristics such
as the access patterns and timing [DRA14]. Creating such a model would require
intricate knowledge of the DRAM chip and memory controller in question, and
the resulting model would likely be dependent on large amounts of state to prop-
erly respect timing and access pattern implications. Thus, constructing a precise
hardware implementation of an energy model for off-chip DRAM will incur a high
implementation overhead.

Such precise off-chip RAM power models are not likely to be relevant for the majority
of research conducted using the SHMAC platform, whose primary focus is the impact
and use of heterogeneous computing resources. It is important not to ignore the
energy consumption of the off-chip RAM as memory traffic may incur significant
energy costs. For instance, evaluating a scheduling algorithm reliant on vast amounts
of memory while ignoring memory access energy consumption may lead to misguided

3.3. MODELLING METHODS 43

conclusions as to the efficiency of the algorithm. However, having a detailed model
for how the energy consumption of the off-chip RAM varies for different access
patterns and timings will only be interesting for studies which attempt to exploit this
behaviour. This may also fall under the scope of the SHMAC project, for instance
having accelerators which attempt to capitalize on application memory request
characteristics, but not omnipresently as precise reports of the energy consumption
of the cores on the chip does.

Therefore, to limit the scope of this dissertation the off-chip RAM model will be
designed using an average-case estimate for the energy consumption of reads and
writes. This model will ensure memory activity is not ignored, but it will not report
trends apart from access intensity.

Host Communication Communication with the host system is largely uninter-
esting for the purposes of the SHMAC project, since the cost of terminal I/O is either
negligible due to slow user input or suppressible by reducing console output. The
only experiments where this might matter are attempts to integrate the SHMAC
into a larger system where there would be substantial communication needs between
the SHMAC and another component. For instance, if the SHMAC is used as a
coprocessor for a regular host processor and the two processors do not share memory,
it may be interesting to determine the cost of transferring data back and forth
between the systems. However, if this communication mattered it is unlikely that
the current low-performance APB connection would be the basis for the experiment.
The energy consumption of the APB communication is therefore either uninteresting,
or irrelevant for experiments where communication would be interesting. It should
also be mentioned that the reported energy consumption would be perturbed by the
fact that energy data are transmitted across the APB link to the host, making it
difficult to report a true estimate of its energy consumption. Therefore, no attempt
will be made in this dissertation to design an accurate model of the energy cost of
communication with the host system. If one is desired at some point, the regression
modelling method in Section 3.3.1 could be employed. Special care would then have
to be taken to ensure trueness of the behaviour of the modelled system, preferably
by using separate links between the observer host system and the controlling host
system.

Chapter4Energy Efficiency Estimation
Framework Implementation

This chapter will explain how the methods and designs presented in Chapter 3 are
implemented. First, Section 4.1 discusses the implementation of both the regression
modelling method and the analytical modelling method. Finally, Section 4.2 discusses
the implementation of the infrastructure design, and the utility software which makes
use of it.

4.1 Modelling Method Implementation

This section will first present the implementation of the regression modelling method,
in the order illustrated in Figure 4.1. Section 4.1 will discuss the work required
to execute the ASIC synthesis step for the SHMAC. Section 4.1.2 discusses how
the selection of test and validation benchmarks was performed. Then, how the
test and validation benchmarks are converted into signal and power data through
simulation and power calculation is discussed in Section 4.1.3 and Section 4.1.4,
respectively. The final regression modelling step is treated in Section 4.1.5. This
section focuses primarily on how a model is created, but also explains how the
validation power is predicted1 and how validation may be performed. The presentation
of validation results is deferred to Chapter 6. Finally, Section 4.1.6 discusses the
analytical modelling of on-chip and off-chip RAM. A detailed description of the
software infrastructure supporting the execution of the modelling method is given in
Appendix B, and a walk-through of its use is given in Appendix C.

4.1.1 Synthesis

To synthesize the SHMAC infrastructure, we use the tool Synopsys Design Compiler
[Syn14c]. The tool works as illustrated in Figure 4.2. It accepts a set of HDL files,
and creates an implementation of the design using logic gates. The set of gates

1Prediction for the purpose of validation may be done without executing the benchmarks on a
SHMAC platform by using the signal data from simulation, which causes the slight discrepancy
between Figure 4.1 and the general method presented in Figure 2.9.

45

46 4. ENERGY EFFICIENCY ESTIMATION FRAMEWORK IMPLEMENTATION

4.1.1
(Synthesis)

4.1.3
(Simulation)

HDL Files

Test activity
data

4.1.4
(Power Estimation)

4.1.5
(Regression Modelling -

Creation)

Test power
data

Regression
model

4.1.2
(Test benchmarks)

4.1.2
(Validation benchmarks)

Validation
activity data

Chapter 6
(Validation)

Estimated
powerValidation

power

4.1.5
(Regression Modelling -

Prediction)

Figure 4.1: The order in which steps in the regression modelling method are
discussed.

available is determined by the selected cell library, which is a collection of gates listed
in a file which is also fed to the synthesizer. The implementation must also respect a
set of design constraints, such as maximum delays, minimum clock frequency, and
maximum area, which the user may set. These constraints therefore also act as
inputs to the synthesis tool. Implementing the synthesis thus consists of three steps:

1. Select a cell library.

2. Ensure that the HDL is amenable to ASIC synthesis.

3. Determine design constraints.

4.1. MODELLING METHOD IMPLEMENTATION 47

These steps are described below. In addition to these steps, the Design Compiler tool
must be invoked appropriately. The steps for controlling the tool have been written
into scripts, automating the synthesis process which simplifies any desired tuning
and adjustment of synthesis options by researchers who are not familiar with the
synthesis tool. The implementation and use of the automated synthesis infrastructure
is described in Appendix B.1.1.

module adder(
input a, b,
output [1:0] c

);

assign c = a + b;

endmodule

Cell library HDL

…………………..

Synopsys Design
Compiler (Synthesis)

c[1] c[0]

ab

Gate-level netlist

Design constraints

set_max_delay a c 2
...

Figure 4.2: An example demonstrating the synthesis process.

Cell Library Selection The selected cell library is a standard 65 nanometre
process, with a 1.00 Volt nominal operating voltage. The cell library is selected
because of limited availability at IME servers. Still, the cell library is a reasonable
target for SHMAC as it strikes a middle-ground between cutting-edge process nodes at
14 nanometre used in high-end processors and older process nodes at 180 nanometre
still in use in embedded systems [Sem14].

48 4. ENERGY EFFICIENCY ESTIMATION FRAMEWORK IMPLEMENTATION

HDL Modifications Four attributes of the SHMAC HDL required modification
to support ASIC synthesis:

1. The multiplier used in the Amber core employs an FPGA-specific component
not available during ASIC synthesis.

2. The on-chip RAM resources as described in the SHMAC HDL infer flip-flops for
each storage element during ASIC synthesis, resulting in intolerable synthesis
times for moderately sized scratchpad memories.

3. The DDR tile uses an FPGA-specific memory controller module.

4. Reset logic was not completely implemented, as read-only registers may be
initialized during configuration when loaded on an FPGA.

The first and second issue were both solved by using ASIC synthesis specific compo-
nents instead, from the Synopsys DesignWare component library [Des14].

The third issue could not be solved this way, since no similar memory controller was
available in the ASIC library. Therefore, the DDR tile is not used for ASIC synthesis;
instead, the Zero Bus Turn-around RAM (ZBTRAM) tile is used. The choice of
off-chip RAM tile is inconsequential, since the off-chip memory tile is not modelled
using regression modelling.

The fourth issue was remedied by enhancing the SHMAC with reset logic where this
was missing.

The SHMAC infrastructure configuration used during synthesis is a commonly used
2× 3 layout with an APB, off-chip RAM and a scratch pad tile on the top row, and
three Amber tiles on the bottom row. Synthesizing this takes approximately three
hours.

Design Constraints To ensure that timing analysis is performed at all, it is
necessary to set some timing constraint on the design. We set a maximum clock
period of four nanoseconds, which the synthesis tool is able to comfortably attain with
a slack of 0.43 nanoseconds. We do not set any area constraints. It is also possible to
set other options, such as chip input and output delays, ambient temperature, and
register-level clock gating. No such options are set, either; instead, default values
from the synthesis tool and the cell library are accepted. As there is no detailed
specification for a physical implementation of the SHMAC infrastructure, there are
no real values to mimic, and so default values are acceptable.

4.1. MODELLING METHOD IMPLEMENTATION 49

4.1.2 Benchmark Selection

The next paragraphs discuss the implementation of the test benchmark and the
validation benchmark separately, as they must fulfil different requirements. Once
constructed, both are embedded in a benchmark framework which implements the
execution environment used during simulation. The details concerning the benchmark
framework and its features is provided in Appendix B.2.

Test Benchmark The test benchmark is a custom-made program which executes
in several short phases designed to exercise the system in different ways. The phases
exhibit the following behaviour:

1. Uncached memory access.

2. Cached memory access.

3. Access to scratchpad memory.

4. Software and timer interrupt management.

5. A sequence of varied ALU operations.

6. A system call followed by the same ALU operations, now in privileged mode.

Internally in the Amber core, these phases cause variation in memory access compo-
nents; execute stage operation; interrupt management; decoding of instructions; and
control flow. All peripherals, namely the interrupt controller and timer module, are
also exposed to varied access. Finally, the router faces varied work with access to
the scratchpad memory tile, the off-chip RAM tile, and additionally the APB tile
because of print statements between the phases.

Validation Benchmark To properly validate the models which are created, the
validation benchmark should be more extensive than what is used to create the
models. Additionally, it should bear little resemblance to the test benchmark if it is
to ensure that models created with the test program works in any scenario. However,
designing a good validation benchmark suite is a substantial undertaking. To limit
the scope of this dissertation, the Dhrystone benchmark [Wei84] is selected as the
primary validation benchmark as a port of it to the SHMAC architecture exists.
The benchmark is of suitable length, as it is far longer than the test benchmark but
still sufficiently small to run to completion in a circuit simulator. It is also designed
to be representative of integer code in systems programming, based on statistical
frequency of occurrence of programming language statements. These qualities make
the benchmark a suitable first selection as a validation benchmark. Shortcomings

50 4. ENERGY EFFICIENCY ESTIMATION FRAMEWORK IMPLEMENTATION

with Dhrystone which should be considered before conducting research with models
validated with it are discussed in Section 7.4.1.

4.1.3 Simulation

To run post-synthesis simulation of the SHMAC infrastructure, we use the circuit
simulator Synopsys VCS [Syn14e]. As with other circuit simulators, an HDL testbench
is used to generate the stimuli which one wishes to run through the design under test.
For this purpose, an existing test bench in the SHMAC project is used. The test
bench works by loading a program into simulated memory and then starting the first
Amber core in the system, which will run the program. This test bench can therefore
be used to run the test and validation benchmarks. The test bench was extended
to interpret writes to address zero as a termination signal, which the benchmarking
framework exploits to stop simulation when the benchmark has completed.

The simulation is configured to operate in zero-delay mode. The goal of simulation
is creating models which relate activity visible at the RT-level to power consumption.
Gate delays and transition times are not visible at the RT-level, and it therefore
makes little sense to use signal data which report state transitions occurring in the
middle of clock periods2 . Using zero-delay mode is also beneficial for both execution
time and disk space requirements, since it obviates the need for large per-wire delay
files and reduces the required resolution of data files from one picosecond to the
target clock period of four nanoseconds.

We use the VCDPlus Dumping (VPD) format to store the signal data, as recom-
mended by the VCS user guide [Syn14b]. This reduces storage needs during synthesis,
and the resulting diminished I/O also speeds up simulation. The VPD file is a binary
format, so it is converted to the text format Value Change Dump (VCD) before
subsequent analysis.

The generation of signal data is controlled through a signal-dump statement in the
test bench. Data for all the signals on the tile with the running Amber core are
included in the output, which is feasible due to the use of the compact VPD format.
Including all signals makes it unnecessary to run the simulation more than once.
The signals are limited to one Amber tile, however, since all components which
are modelled with regression modelling are included on this tile. Additionally, the
assumed location-independent energy consumption of tiles makes it unnecessary to
gather activity from other Amber tiles.

2Initial modelling work revealed that it is actually harmful to the efficacy of the modelling
to take delays into account, since the corresponding power profile exhibits erratic behaviour not
possible to capture using an RT-level model.

4.1. MODELLING METHOD IMPLEMENTATION 51

Using the simulator has also been automated, as described in Appendix B.1.2.
Simulating the test benchmark takes approximately five minutes, and yields a VPD-
file of 28 MB and a VCD file of 366 MB. Simulating the Dhrystone benchmark takes
approximately four hours, and the resulting VPD file is 259 MB. Conversion of the
entire VPD file was hindered due to disk quota restrictions on the server with the
ASIC tools installed, but the first 2.23 milliseconds of simulation was converted to a
VCD file of size 2.7 GB.

4.1.4 Power Analysis

The tool Synopsys PrimeTime PX is used to calculate power consumption from the
VPD file. The process is illustrated in Figure 4.3. The tool analyses the VPD file
from simulation, and calculates the energy consumed for each gate-level event. The
sum of energy is distributed over the selected time resolution, which is one clock
cycle in zero-delay mode; thus, PrimeTime calculates the power consumption per
clock cycle.

M

c[1] c[0]

ab

Gate-level netlist

 t=1 t=2 ...

 a

 b

...

Activity file Cell library

a
b

a
b

...

a*!b 3pJ
!a*b 2pJ
...

a*!b 5pJ
!a*b 8pJ
...

Synopsys
PrimeTime (power
analysis)

 t=1 t=2 ...

 M

...

Power file

8 10

Figure 4.3: A figure demonstrating the power analysis process.

As with simulation, we use a compact binary output format to reduce computation
time and storage requirements. The binary format is called FSDB. Before the power
values are used in later stages, the data is converted to a text file format called OUT.

PrimeTime offers three options for the granularity of reporting power: one selected
module; one selected module and all descendants of this module; or one selected
module and all descendants of this module, except the leaf modules. The last option

52 4. ENERGY EFFICIENCY ESTIMATION FRAMEWORK IMPLEMENTATION

is selected in the interest of time and space: time is saved by not having to rerun
the power calculation to get the power consumption of different modules, and space
is saved by not including the power consumption of leaf modules which represent
individual gates. The use of FSDB as the output format and using the clock period
as the time resolution makes it possible to store all non-leaf modules simultaneously
in the output file. As with simulation, power data is only gathered from modules on
the first Amber tile.

As with the other tools, invocation of PrimeTime PX for power calculation has been
automated. Details may be found in Appendix B.1.3. Calculating power for the test
benchmark took approximately two hours; calculating power consumption for the
validation benchmark VCD file took approximately 60 hours. The FSDB and OUT
files for the test benchmark take 3.5 MB and 15 MB, respectively; for the validation
benchmark, these files take 41 MB and 239 MB.

4.1.5 Regression Modelling

To conduct the regression modelling, we use the statistical package R [R14]. We will
first discuss how input data is managed, before turning to the actual modelling.

Input Data Management The synthesis and power analysis result files contain
data for the entire first Amber tile. However, when modelling a given module the
modeller will only want some subset of data relating to this particular module. It
is undesirable to load unnecessary information, since this will increase the resource
consumption of R needlessly. Additionally, the VCD and OUT files must be converted
to a format readable by R. Consequently, the information in the output from synthesis
and power analysis must be filtered and converted before it may be loaded for
modelling purposes.

To meet these ends, utility programs were developed for selecting a subset of signals
from a VCD file and a subset of modules from an OUT file. The available signals
or modules are presented in a menu, from which a selection can be made. Once
completed, the program filters the file for the selected information and writes it to
a data frame file which may be loaded in R. A screenshot of the signal selection
program is provided in Figure 4.4; the program which filters and converts power data
is similar. These utility programs are described in further detail in Appendix B.3.1.

Model Creation The creation of models is supported by a set of R utility functions,
which is described in detail in Appendix B.3.2. These utility functions operate on
three kinds of data structures: benchmarks, power models, and evaluations. When
creating models, the first step is to load a test benchmark object from signal and
power data frame files. The next step is to create a power model object by correlating

4.1. MODELLING METHOD IMPLEMENTATION 53

Figure 4.4: A screenshot demonstrating how VCD files may be converted and
filtered before modelling.

the benchmark activity and power data. To do this, the modeller first decides on an
expression with a sum of terms created from hardware signal data. For a hardware
module with inputs a, b and c, this expression could for instance be a+ b · c+ a · c.
Then, the R linear regression engine is invoked to calculate coefficients for each
term, using the least-squares method. For our example, the result would be an
expression α1 · a + α2 · b · c + α3 · a · c + β. This expression is the power model of
the module. Finally, the precision of the power model is evaluated using validation
benchmarks objects. If unsatisfactory, the modeller must revise the expression input
to the regression modelling engine either by modifying the terms, including more
terms, or increasing the modelling granularity.

The end result from modelling is a formula P = α1x1 + ... + αnxn + β relating
terms of signal values to power. The final goal, namely a model for energy, can be
attained simply by scaling the regression coefficients by the clock cycle ∆t since
E = P∆t = ∆tα1x1 + ...+ ∆tαnxn + ∆tβ.

As described in Section 3.3.1, the first goal of modelling is reaching a certain accuracy.
Implementation complexity may then be reduced while retaining accuracy. When
creating modelling expressions, the model terms and granularity were therefore
managed as follows:

Variable Selection The selection of variables used to create terms initially includes
all named input, output and internal signals. For most buses, the Hamming

54 4. ENERGY EFFICIENCY ESTIMATION FRAMEWORK IMPLEMENTATION

distance of their value is calculated and used as the independent variable. This
choice is inspired by the work on PrEsto by Sunwoo et al. [SWPC10]. Trying to
relate the numerical value of the bus to power consumption makes little sense;
there is no intrinsic reason why the most significant bit should be responsible
for twice the power consumption of the next-most significant bit. The Hamming
distance, on the other hand, reflects the amount of charge movement having
occurred from one cycle to the next, which is the origin of dynamic power
consumption and therefore makes more sense to use as an independent variable.
Buses which act as multiplexer control signals are treated differently. The
reason is that the amount of change in the selection of the multiplexer is not
important; rather, it is the fact that the multiplexer control signal has changed
that matters, since this results in the propagation of a different value from the
multiplexer. Such multiplexer control signals are therefore modelled as binary
values, reflecting whether the selection signal has changed since the last cycle.
Finally, bus signals may also be split if the bus gathers unrelated signals. For
instance, the bus feeding instructions to the decode stage may be split into
terms of the individual fields in the instruction.
Once a sufficiently accurate model has been created, reduction in complexity
may be attempted by reducing the number of variables taken into account.
This reduction should be based on which variables were the most significant in
earlier modelling, while also trying to represent as diverse a range of sources as
possible.

Term Complexity The initial model term complexity used is also inspired by
[SWPC10]. Initially, all Hamming distance variables may be combined with
any binary signal value. Based on the state of the binary control signals,
different signal values will be propagated through the circuit and therefore
different Hamming distances will be significant. This can be viewed as a form
of tree regression [BBDM00]: different regression models are used based on
whether a control signal value is true or false.
We do not initially include cross-products of binary signals, as in PrEsto, since
this leads to high analysis times when the number of signals is high. Instead,
extra cross-products between signal values may be included manually guided
by what interactions exist in the HDL if accuracy is insufficient.
The term complexity is not further reduced in an attempt to reduce implemen-
tation overhead; it is instead initially low, to limit the time requirements for
model creation.

Granularity The initial modelling granularity is set to one model for each pipeline
stage of the Amber core; the timer, interrupt and tile register peripherals; and
the router. The implementation complexity may be reduced for instance by

4.1. MODELLING METHOD IMPLEMENTATION 55

creating a model for the entire Amber core, instead of one model per pipeline
stage. Reduction of complexity by coarsening the granularity is relatively
simple, since the significance of inputs and outputs of each submodule has
already been determined in earlier modelling steps. This information can be
used to guide the variable selection for the more coarse-grained module.

Due to the topology of the synthesized SHMAC infrastructure configuration, the
benchmarks only induce activity in the local port, the north-bound port, and the
east-bound port of the router. Regression modelling will therefore not deem the west-
bound and south-bound port activity as significant for an energy model. Terms for
these ports are therefore manually included, based on the terms for the north-bound
and east-bound ports under the assumption that similar activity in off-tile ports of
the router induce similar energy consumption.

Model evaluation is done while varying the precision used to represent the coefficients,
as this will impact the required resolution and bit width of the energy monitor modules.
Ensuring that the model is accurate also with a reduced coefficient precision permits
its eventual implementation in hardware as an integer computation, with the required
precision determining the necessary energy sample bit width. The final models are
listed in Appendix D.1, and their evaluation is presented in Chapter 6.

4.1.6 On-Chip and Off-Chip RAM

We will use CACTI to implement a model for on-chip RAM energy consumption
of the form Ecyclei = Estatic + readcycleiEread + writecycleiEwrite, where readcyclei

and writecyclei
are binary variables indicating whether a read or write is active in

cycle i, respectively.

Static energy consumption is derived from the CACTI report on total leakage power
of a bank. The static power consumption is multiplied by the synthesis target clock
period of four nanoseconds to attain a static per-cycle energy consumption estimate,
and multiplied by the number of banks to get total energy for the RAM resource.

CACTI reports energy per read access, which may be read directly from the output.

To calculate write energy, one may subtract 1/associativity of the energy consump-
tion of bitlines and sense amplifiers from the read energy to attain the write energy.
The reason is that writes incur the same energy consumption as reads, except that it
is only necessary to access the one way which is written [BSDB05].

We set the CACTI configurations to be as similar as possible to the cache and
scratchpad parameters in the SHMAC. The CACTI configurations and resulting
read, write and static energy consumption values are listed in Table 4.1.

56 4. ENERGY EFFICIENCY ESTIMATION FRAMEWORK IMPLEMENTATION

Table 4.1: The CACTI configuration for scratchpad and cache RAM blocks, and
resulting energy consumption.

Parameter Value
Temperature 300 K
Process technology 65 nm, itrs-hp roadmap predictions (1.1 Volt)
Read-only ports 1
Write-only ports 1
I/O bus width 128
Use ECC false
Caches Size: 8 KB

Ways: 2
Banks: 2
Energy consumed per read access: 0.0359628 nJ
Energy consumed per write access: 0.0336836225
Static energy consumption per cycle: 0.03355264 nJ

Scratchpad Size: 128 KB
Ways: 1
Banks: 1
Energy consumed per read access: 0.128824 nJ
Energy consumed per write access: 0.128824 nJ
Static energy consumption per cycle: 0.3148172 nJ

Off-Chip RAM To model off-chip DRAM power consumption, we use a spread-
sheet from Micron with which you can estimate average power consumption for a
DDR3 memory system. The spreadsheet calculates expected power consumption
based on selected memory system characteristics. The spreadsheet also uses an
estimate of average access behaviour to estimate the expected average power con-
sumption. The calculations are based on DRAM construction as explained in a
technical note [DDR14a]. The spreadsheet itself may be downloaded through the
home page of Micron [DDR14c].

We configure the spreadsheet to estimate the power consumption of a DDR3 SDRAM
with eight DRAM blocks of 4 Gb density with speed grade -103. A screenshot of the
results from the spreadsheet is given in Figure 4.5.

The power consumption is split in three main categories: activation power, read-
/write power, and background power. For simplicity, we will implement an energy
model similar to that used for on-chip RAM: Ecyclei

= Estatic + readcyclei
Eread +

writecyclei
Ewrite. The energy values are calculated by calculating corresponding

4.1. MODELLING METHOD IMPLEMENTATION 57

Figure 4.5: A screenshot of the spreadsheet results when estimating average DDR3
SDRAM power consumption.

power values, and multiplying them by the SHMAC clock period to get energy
consumed per SHMAC clock cycle. The calculations are tabulated in Table 4.2. The
average activation power, based on the default access patterns in the spreadsheet, is
merged with the background power to produce the static power. In order to take
read and write access intensity into account at run-time, the reported read and write
power consumption values are scaled up by the inverse of the average access rates for
reads and writes.

Table 4.2: Calculation of energy consumed by off-chip RAM activity.

Estatic = ∆tSHMAC Pstatic

= ∆tSHMAC (Pbackground + Pactivate)
= 4 ns · (75 mW + 110.9 mW) = 0.7436 nJ

Eread = ∆tSHMAC Pread

= ∆tSHMAC
1

avg_read_access_ratePtotal_read_reported

= ∆tSHMAC
1

avg_read_access_rate (PRD + PREAD_IO)
= 4 ns · 1

0.45 (69.9 mW + 18.5 mW) = 0.78577 nJ
Ewrite = ∆tSHMAC Pwrite

= ∆tSHMAC
1

avg_write_access_ratePtotal_write_reported

= ∆tSHMAC
1

avg_write_access_rate (PW R + PW rite_ODT)
= 4 ns · 1

0.25 (33.0 mW + 53.1 mW) = 1.3776 nJ

58 4. ENERGY EFFICIENCY ESTIMATION FRAMEWORK IMPLEMENTATION

4.2 Infrastructure Implementation

This section presents the hardware implementation of the energy efficiency estimation
infrastructure, and utility software developed for using it.

4.2.1 Monitor Integration

Integrating the models into the infrastructure entails implementing monitors which
evaluate the models each cycle. This section will first describe the implementation of
the Hamming distance calculation mandated by the regression model terms described
in Section 4.1.5. Next, we will describe the complete implementation of the regression
models. Finally, we look at how the RAM models were implemented.

Hamming Distance Calculation Calculating the Hamming distance between
two buses is done by summing the number of bits which differ between them, where
differing bits are determined using exclusive-or. For wide buses, this sum can be
expensive. One alternative strategy is to index a lookup table with the exclusive-or
result, which costs memory instead of adders. We implement the Hamming distance
by combining the two approaches, drawing inspiration from Sklyarov et al.[SS13b]
and exploiting the fact that FPGAs are constructed from lookup tables. We can
use the 6-input Look-Up Tables (LUTs) on the Virtex 7 to divide the exclusive-or
result bus into 6-bit segments, and use three LUTs to calculate its Hamming weight3.
Then, we use an adder tree to calculate the sum of all Hamming weights. The final
hamming distance calculation structure is depicted in Figure 4.6.

Hardware Regression Model Implementation The regression model terms
consist of multiplications between constants, binary signals, and at most one Hamming
distance value. When terms do not include a Hamming distance, the multiplication
is implemented at low cost using and-gates with the coefficient and the boolean
condition as input. Some multiplications involving Hamming distances may also be
optimized by implementing the multiplication using bit-shifts and sums. Otherwise,
the multiplications are mapped to FPGA DSPs. The multiplications are not wide,
due to limited coefficient resolution and Hamming distances being logarithmic to the
bus widths4, which renders them possible to implement at reasonable cost.

It is not possible to implement the regression models in a single cycle except in rare
cases, for the following reasons:

3The hamming weight is the sum of bits equal to 1 in a bit string. For a six-bit long input, the
maximum result is six, which requires three LUTs to compute.

4The largest widest multiplication is between a seven-bit coefficient and a six-bit Hamming
distance.

4.2. INFRASTRUCTURE IMPLEMENTATION 59

3
LUTs

3
LUTs

[5:0][11:5]

3
LUTs

3
LUTs

66
…...

+ +

…...

+

current
value

previous
value

Figure 4.6: The implementation of Hamming distance calculation.

1. The model may use internal signals in the module being modelled, and internal
signals may be available only after a certain delay.

2. The Hamming distance calculation delay is significant.

3. The delay through the sum of terms in the model is significant.

These issues are mitigated by using pipelining, which the monitor implementation is
amenable to. At most three pipeline stages are used. The first pipeline stage simply
stores model inputs, removing delays due to internal signal input. The second pipeline
stage calculates all term values, including Hamming distances and multiplications.
The final stage calculates the sum of all model terms.

Hardware Analytical Model Implementation The analytical models used
for the RAM resources are cheap to implement, as they only consist of sums of
conditionally-included coefficients. The models of caches and scratchpad memory
are thus trivially implemented. However, there is a slight difficulty in calculating the
conditions for including the coefficients in the case of off-chip RAM. The model is
based on knowing in which cycles the off-chip DDR is processing requests. However, all
DDR requests are immediately forwarded to an FPGA soft-macro memory controller,
which obfuscates the relationship between HDL activity and DDR activity. We

60 4. ENERGY EFFICIENCY ESTIMATION FRAMEWORK IMPLEMENTATION

therefore estimate the DDR activity based on DDR timing specifications [DDR14b],
which state that the latency for read and write operations is determined by the
metrics CAS Latency (CL) and CAS Write Latency (CWL). For the DDR module
used to create the model, CL is 13.75 nanoseconds and CWL is 10 nanoseconds. As
one cycle on the SHMAC is 16 2

3 nanoseconds, we implement the off-chip RAM model
by scaling the energy values for reads and writes by the ratio of CL and CWL values
to the SHMAC cycle period and counting one cycle of activity per request.

4.2.2 Energy Report Unit

The implementation of the energy report unit is depicted in Figure 4.7. There are
no particularly complex elements. There are two separate input control signals: one
sample signal, indicating that a new sample should be taken, and a shift signal,
indicating that the values should be shifted along the scan chain. The unit also takes
as input the current energy sample, and the value from the report unit behind it
in the scan chain. The operation of the unit is then to sum the observed energy
samples, until a sample is taken. When this happens, the sum is clocked into the
scan chain output register, and the sum is reset. When shift operations are requested,
the value from the previous unit in the scan chain is clocked into the scan chain
output register.

+energy value

scan chain
input

sample signal

shift signal

write
enable

scan chain
output0

1
1

0

Figure 4.7: The RTL implementation of the energy report unit.

4.2.3 SHMAC Software Interface

The interface from the infrastructure to software running on the SHMAC is imple-
mented by adding an additional peripheral to the existing Wishbone bus [Wis14], as
illustrated in Figure 4.8. The peripheral maintains one set of registers described in
Section 3.2.5 for each energy monitor which is exposed. Each monitor occupies 32
bytes of address space, allocated sequentially from the new peripheral base. Which
monitor counters to access is thus determined by bits 31-5 of the Wishbone address,
and which register to access in this monitor is determined by bits 4-2. Including

4.2. INFRASTRUCTURE IMPLEMENTATION 61

a new monitor among those available to software may be done by hooking a new
register set up to the energy counter peripheral.

Amber core

Wishbone bus

Interrupt
Controller

Timer
module

Energy
Counters

Monitor 1
counters

Monitor n
counters

Figure 4.8: The energy counters are integrated into the SHMAC infrastructure by
inclusion in the Amber core Wishbone bus.

The implementation of the register set for each monitor is depicted in Figure 4.9. An
internal counter register is used to keep track of how many cycles the current energy
count represents, and its value is written to the current period duration when the
current energy count is read. Since the registers are designed to be read sequentially,
we do not need to output the duration before the cycle after the energy is read.
Overflow in either the energy sum or the counter value will trigger an update of the
previous period duration and energy count. Overflow also resets the internal counter
to one, and the current energy count is set to the value of the next energy sample.

4.2.4 Scan Chain

The scan chain is constructed by chaining together the energy report units on each
tile, and adding extra signals at each tile boundary to connect the chain across tiles.
The sample and shift signals are globally distributed to each report unit, to ensure
that the units operate in lock-step. The complexity lies in the implementation of
the control unit, which is responsible for triggering the sample and shift signals
based on commands received from the host over the APB link. Because the APB
uses a different clock than the SHMAC architecture, it is necessary to construct a
clock-domain-crossing protocol. The control unit is located on the APB tile, and its
implementation is depicted in Figure 4.10.

The control unit is split in three constituents. One part provides the interface to
the APB control module and runs in the APB clock domain, and another part

62 4. ENERGY EFFICIENCY ESTIMATION FRAMEWORK IMPLEMENTATION

Current
Duration

Previous
Duration

Current
Energy

Previous
Energy

Time
Window

=

0

counter

current
energy
read
enable

0

1

0 1

0

1

0x7fffffff

+
new
Time
Window

Time
Window
write
enable

1

+

=

1

Current
energy

[32]

overflow

[31:0]

Figure 4.9: The implementation of the register set for one energy monitor.

Clock-domain-crossing
units

scan
chain
head

sample

shift

front

sample
ack

sample

APB clock domainSHMAC clock domain

Virtex 7 FIFO

Counter

<

data

full

write enable

data

empty

data read

data
read

Edge-detecting
synchronizer

Level synchronizer

reset
pulse

current value
max value

level

Figure 4.10: The implementation of the scan chain control unit.

interfaces the rest of the SHMAC infrastructure and runs in the SHMAC clock
domain. The final part synchronizes the APB interface and the SHMAC interface
using an FPGA-specific dual clock domain FIFO for data transfer, and synchronizer
circuits for sample signal transfer [Ste03]. The design is simplified by assuming that
the APB clock is not faster than the SHMAC clock, which is currently true. It may
also be trivially ensured by slowing down the APB clock if necessary.

4.2. INFRASTRUCTURE IMPLEMENTATION 63

The scan chain control is primarily situated in the SHMAC clock domain. It is driven
by a counter, which keeps track of the number of samples which have been shifted
from the scan chain into the FIFO. While below a maximum value, new samples
are continuously shifted into the FIFO. Once all samples have been shifted into the
FIFO, this shifting is stopped.

The APB clock domain interfaces the APB tile, which may either read a new sample
value or request that a new sample is taken as per the design of the host interface
in Section 3.2.4. New sample requests are forwarded to the SHMAC clock domain,
which cause the counter to be reset and the scan chain sample signal to be pulsed.

4.2.5 Host Interface

Implementing the host interface consisted of adding support for the SampleEnergy
and NextSample registers, described in Section 3.2.4, to both the APB tile and the
Linux driver on the host which communicates with the SHMAC.

User-space programs are given access the energy data through a special file, which is
exported from the Linux driver as a binary sysfs attribute. Reading n bytes from
this file causes the driver to read the next n bytes of sample data available from
the NextSample register on the APB tile. If a read to the file starts at offset zero in
the file, the driver first issues a write to the SampleEnergy register to request a new
sample to be taken. This way, new samples are made available each time the file is
re-read.

To facilitate interpretation of the energy sample data, the driver was extended with
additional sysfs attributes which report the layout of the current SHMAC instance,
the distribution of energy report units, and their respective sample sizes. The values
exported through these attributes are configured in the driver itself. Exporting the
configuration through the driver removes the need to hard-code such values in all
software which needs it, so that installing new SHMAC instances in theory will only
require updating the configuration in the driver accordingly.

Along with the driver extensions, two user-space tools were developed to give
command-line access to the energy data. The first tool is called shmac_read_energy,
which merely reads one set of energy samples and writes them as text to standard out-
put. The other tool is called shmac_stream_energy, and provides more fine-grained
control over sampling rates. It accepts a sample period parameter and an output file
argument, and operates by copying the contents of the energy samples attribute to
the output file once every sample period. Details concerning the user-space utility
programs are given in Appendix B.4.1.

64 4. ENERGY EFFICIENCY ESTIMATION FRAMEWORK IMPLEMENTATION

4.2.6 Monitoring and Logging Tool

The shmac_stream_energy utility makes it possible to log data directly on the
SHMAC host. However, the host system uses an SD card with limited storage
capacity. For long-running experiments, it is therefore desirable to ship the sampled
data directly to a different server instead of requiring to store the data on the SHMAC
host first.

To this end, a monitoring and logging tool was developed. The operation of the
tool is illustrated in Figure 4.11. First, a UDP socket is set up on the machine
running the logging tool. Second, the utility program socat [Rie14] is used to set up
a link between a pipe file on the SHMAC host and the UDP socket on the developer
machine. Third, the shmac_stream_energy program is invoked with the pipe file as
the output file. In this way, all the data that shmac_stream_energy writes to the
pipe file is automatically sent as UDP packets to the developer machine, where they
may be logged to file and optionally displayed as real-time energy data. Once these
three steps have been executed, energy samples are being continually read from the
SHMAC instance on the FPGA. The energy consumption of a program may then be
analysed by starting it while the sampling framework is running. Further details on
the capabilities of the tool is given in Appendix B.4.2.

Energy
Sample
Thread

SHMAC
SHMAC

driver

Developer machine

SHMAC hostSHMAC
FPGA

APB shmac_stream
_energy

Syscalls /tmp/pipeI/O

User spaceKernel

Data
Logger

UDP
SocketGUI

Steps:
1. Start UDP socket
2. Setup pipe-to-UDP link with socat
3. Start shmac_stream_energy
4. Start test program on the SHMAC.

socat

Figure 4.11: The complete flow of energy sample data when using the energy
monitoring and logging tool.

Chapter5Barrelfish Implementation

5.1 Requirements Specification

In this section, we elaborate on what modifications and enhancements to Barrelfish
are necessary to implement each of the tasks identified in Section 1.4:

– Supporting the Barrelfish boot process which starts multiple cores, i.e. task B1.

– Maintaining compatibility with new versions of the underlying SHMAC plat-
form, i.e. task B2.

– Development of console support in Barrelfish, i.e.task B3.

An explicit non-goal of the multicore port is retaining compatibility with the old
RealView SHMAC platform. Since a new execution environment with sufficient
amounts of RAM has been acquired partly for the purpose of avoiding the effort
required to shoehorn Barrelfish into a memory-constrained environment, it would be
counter-productive to undertake this endeavour.

5.1.1 Multicore Support Requirements

Launching New Kernels The most obvious requirement for supporting multiple
cores in the operating system is the ability to load kernels and start running them on
other cores. This requires loading a new kernel image for each core, and allocating
resources the kernel requires when booting. Loading the kernels at arbitrary locations
at run-time also mandates implementing support for relocatable kernel images, as
suggested in the previous work on the Barrelfish port [BS13]. Additionally, the
BSP kernel needs to transfer information, such as where allotted boot resources are
located, to the app kernels.

65

66 5. BARRELFISH IMPLEMENTATION

Dynamic Interrupt Vector Dispatch A requirement identified in the previous
project [BS13] is supporting dynamic dispatch in the interrupt vector, i.e. branching
to a core-local implementation of the interrupt handler. Each Barrelfish kernel is
supposed to have its own binary image to avoid sharing state with other kernels;
however, the interrupt vector is shared by every kernel since the Amber core expects
this to be located at address zero. Without virtual memory support, it is not possible
to redefine what memory a core retrieves when accessing the interrupt vector entry
addresses. Thus, if special measures are not taken then upon execution of a core
interrupt routine all cores will execute with the kernel image of core 0, thereby also
accessing its local state.

Intercore Communication Finally, in addition to booting kernels on new cores
the Barrelfish monitors must be set up to communicate with each other.

5.1.2 SHMAC Compatibility Requirements

Supporting Upgrades to the Instruction Set In the work on porting Linux to
SHMAC [AA14], the Amber core was upgraded first from ARMv2a to ARMv3, and
subsequently from ARMv3 to ARMv4T. These upgrades were necessary in order to
run Linux. The ISA upgrades were also adopted in a master dissertation on creating
a high-performance core for SHMAC [AB14]. As such, any future experiments on
system software conducted using the SHMAC platform would likely be based on a
platform with the upgraded cores. Thus, for the Barrelfish port to stay relevant it
was necessary to update the operating system to handle any binary incompatibilities
introduced from the ISA upgrades. Since ARMv3 is not backwards compatible with
ARMv2a, support for this instruction set would require modifications to Barrelfish.
ARMv4T, on the other hand, is binary compatible with ARMv3; supporting ARMv3
would as such be sufficient for Barrelfish to run on the latest SHMAC CPU tiles.

A benefit of upgrading to ARMv4T, however, is that this is the oldest ISA properly
supported by default by the GNU toolchains. At the beginning of this dissertation,
Barrelfish as well as all other software for SHMAC had to be built with a specially-
patched toolchain. This requirement may be dropped if the software supports being
built targeting ARMv4T, so ensuring that Barrelfish supports this build target would
make development more accessible to others. Additionally, Barrelfish would then
also benefit from the new instructions of ARMv4T.

Allocate Shared Memory from Scratchpad Tiles Another improvement which
was planned for the SHMAC platform, was to fix the bug mentioned in Section 2.1
which prevented data caches from being used. If this bug was fixed, it would of course
be desirable to run Barrelfish using caches. However, since there is no cache coherence
either existing or planned for the SHMAC platform, any memory resources shared

5.2. IMPLEMENTING MULTICORE SUPPORT 67

between cores must be allocated from an uncached area of memory. Specifically, this
would entail allocations from the FPGA BRAM resources available on the scratchpad
tiles, since these were created for the purpose of sharing data between cores.

Avoid Architecture Dependencies As the SHMAC project is still in its early
stages, there will most likely be other changes apart from those already planned for
completion during the timeframe of this dissertation. In an attempt to keep Barrelfish
as relevant for the future as possible, an overarching design goal would be to avoid
architecture dependencies to as large a degree as possible. For instance, in anticipation
of virtual memory the port should ideally make use of the Barrelfish memory system
abstractions instead of accessing raw addresses directly. This particular goal is a
bigger trade-off than it might seem: the memory system and capability abstractions
in Barrelfish are relatively complex, and using them in a port to a completely
unprotected SHMAC platform will yield more complex code than necessary. The
temptation to bypass these systems should be resisted, however, to increase portability
within the SHMAC infrastructure families.

5.1.3 Console Support

Barrelfish may run benchmarks by including them as modules in the shmacfish
configuration and specifying that they should be started when the boot is completed.
To run different benchmarks, it is therefore necessary to edit the configuration, rebuild
Barrelfish and restart SHMAC. If support for a console application was included, then
a researcher wishing to run different benchmarks or the same benchmark multiple
times could simply include every benchmark in the set of uploaded modules and
start them interactively as desired. Porting the console application in Barrelfish,
fish, to SHMAC would enable this scenario. The implementation of fish itself is
architecture-independent, as it uses the angler session management application to
connect to the serial driver. The serial driver, on the other hand, must be extended
with support for the SHMAC-specific interface to host serial communication. Since
serial is a user space driver, it is also necessary to extend the SHMAC kernel to
support registering user-space interrupt listeners and deliver interrupts to them.

5.2 Implementing Multicore Support

This sections details how the Barrelfish port was extended with multicore support.
Section 5.2.1 explains what steps are taken from the request to boot a new core is
received until a new kernel is running on this core. Next, Section 5.2.2 explains how
interrupts are forwarded to the correct kernel. Finally, Section 5.2.3 explains how
communication between the cores is set up.

68 5. BARRELFISH IMPLEMENTATION

5.2.1 Booting New Cores

Boot Request Message Handling

As described in Section 2.2, multicore boot is initiated by spawnd who sends one
boot request message to its local monitor for each core it has determined to start.
The handling of said message in the monitor is architecture-dependent, and is in the
SHMAC port implemented as illustrated in Figure 5.1.

spawnd monitor
spawn_core(2)

First boot request

Kernel 2

Kernel n

...1.

alloc area 2

...

alloc area n

2.

RAM

kernel

4.
invoke_spawn_core(2)

channel
1 <-> 2

BRAM

3.

Successive boot requests

spawnd monitor
spawn_core(3)

kernel

4.
invoke_spawn_core(3)

channel
1 <-> 2

BRAM

channel
1 <-> 3

3.

alloc area n

Kernel 2

Kernel n

...

alloc area 2

...

RAM

1. Load kernel images

2. Allocate allocation
areas

3. Allocate monitor
channel

4. Invoke system call

Figure 5.1: Handling the request of the boot of a new core in the monitor. The
numbered arrows are steps in the implementation. Note that kernels and allocation
areas are only contiguous in memory for illustration purposes; this may not be the
case in actuality.

As can be seen, the first boot request is handled specially, with successive boot
requests being handled in a different manner. This is due to the discrepancy between
the Barrelfish assumptions that cores are booted one at a time, and the actual

5.2. IMPLEMENTING MULTICORE SUPPORT 69

capabilities of the underlying SHMAC platform where the only option is to start
all the remaining cores simultaneously. Therefore, certain boot tasks must be done
for all cores immediately. However, the semantics expected by Barrelfish for the
boot-request message are upheld by blocking app kernels in their initialization code
until they have been explicitly started. The reason is that the BSP monitor initializes
the bindings to other monitors when the request for booting them arrives. If all app
kernels are permitted to start after the first message, Barrelfish may fall victim to
a race condition where an app-core monitor sends a message to the BSP monitor
before its binding is initialized.

The implementation of the first boot request is comprised of the following four steps:

1. Load a New Kernel Image As Barrelfish is a multikernel, each kernel executes
using its own image to avoid sharing data. As such, one must be allocated when
a new core is started. Therefore, kernel images for all cores are loaded when first
receiving a boot request message, to make sure they all can execute their own kernel.
To support arbitrary load locations, the build system was enhanced to produce
relocatable kernel images. Extra relocation support was then added to the Barrelfish
ELF loader.

2. Provide a Memory Allocation Area When starting a new kernel, memory
is required for initializing the capability tree, loading the first unprivileged executable,
and initializing its capabilities. As such, when the monitor starts a new kernel it
allocates a memory region on its behalf which may be used to service the initial
allocations. It is possible to know how much memory the app kernel requires for
loading the monitor image by consulting its ELF file; it is harder to automatically
determine the amount of memory required for initial capabilities, as this is dependent
on the behaviour of the app kernel. To minimize any overhead from allocating
memory up-front, the amount of memory required by an app kernel for capabilities
was first summed up on a test run, and subsequently used to calibrate the amount
of memory allotted to the app kernel. The calibration works for all app kernels as
they allocate the same resources, but modifications to the app kernel allocations may
require recalibration.

3. Allocate Channel Memory Intercore communication in Barrelfish is in
general set up by having the core-local monitor forward connection requests on the
behalf of application programs to monitors on other cores. The requirements for
bootstrapping intercore communication is therefore to initialize the communication
between the monitors on different cores manually. When processing the boot request
message, a message passing channel memory area is therefore allocated. Its address
is sent to the app kernel which may subsequently send this to its monitor. Using

70 5. BARRELFISH IMPLEMENTATION

such lazy channel allocation supports using only a subset of the cores on the SHMAC
platform without wasting the scarce BRAM resources.

4. Invoke System Call The final thing which is done is invoking a system call,
requesting the BSP kernel to start the other cores. The monitor sends the address of
the kernel image; the allocated memory area; the location of the monitor ELF file;
the size of inter-monitor channels; and the address of the channel between the BSP
monitor and the monitor on the core being booted. Having invoked the system call,
the work in the monitor is completed.

Handling any successive boot request messages in the monitor only requires executing
points 3 and 4.

Core Boot System Call Implementation To ensure that the app kernels are
able to run, several parameters must be passed from the BSP kernel. These parameters
are explained in Table 5.1. The parameters are stored in shared scratchpad memory.
Since the location of the parameters must be determined by convention between the
kernels, they are deterministically stored at the beginning of the first scratchpad tile.

Table 5.1: The boot parameters sent to an application kernel by the BSP kernel.

Parameter name Description
relocation_distance Kernel image location
monitor_binary Location of the monitor ELF file
monitor_size Size of the monitor ELF file
free_memory Free memory for initial allocations
free_memory_size Amount of free memory
log2_channel_size Length of a channel
ump_frame_base Location of channels to BSP monitor
is_started Allow app kernel to proceed
printf_lock_addr Address of the mutex guarding printf

Most of the parameters are supplied from the monitor as parameters to the system call.
The two which are not, are is_started and printf_lock_addr. The is_started
flag is used to emulate starting only one core at a time. When the BSP kernel handles
a boot request system call for a core, it will set its is_started flag to true. The
app kernels can therefore check whether it has logically been started by checking the
value of this parameter.

The printf_lock guards access to the SHMAC output register, to avoid garbled
output when multiple cores wish to print something. Locks must also be located in
shared memory, and instead of placing the printf_lock at an absolute address it is

5.2. IMPLEMENTING MULTICORE SUPPORT 71

allocated after allocating space for boot parameters. Keeping all allocations gathered
avoids fragmentation of the shared memory, which is important for capability creation
purposes. Since the printf_lock is dynamically allocated, its address is sent to app
kernels to enable them to initialize their own lock variable.

The implementation of the system call managing core boot is illustrated in Figure 5.2.
As with the boot request message handler in the monitor, the system call performs
some initialization only the first time it is invoked. Specifically, it sets the parameters
it receives from the monitor as well as the printf_lock_addr variable for all the
app-cores. It also initializes each is_started flag to zero. Then, it starts all the
app-cores by writing to the system register SYS_READY. Apart from these steps, all
core boot system calls are handled similarly. First, the address to the intermon
channel is set: since the monitor allocates intermon channels lazily, these are supplied
for each system call invoked. Finally, the is_started flag of the core which should
be started is set to 1, allowing the kernel on this core to progress.

First boot request

Successive boot requests

App kernel boot
parameters

monitor

kernel

invoke_spawn_core(2)

params 2

...

params n

…
…

...
..

1.

SYS_READY

2.

1. Init kernel and
memory area
parameters

2. Start cores

3. Set monitor
channel
address

4. Set is_started

3.
4.

App kernel boot
parameters

monitor

kernel

invoke_spawn_core(3) 3.

4.

params 3

params 2

...

params n

params 3

Figure 5.2: Implementation of the system call booting new cores.

72 5. BARRELFISH IMPLEMENTATION

Application Kernel Boot Procedure

Once SYS_READY is set to 1, the app kernels begin executing their reset handler,
located at address zero. In order to start executing in their own kernel, they have
to jump the relocation distance. To make it easy for the app kernels to find this
parameter, all relocation distances are stored consecutively first in the scratchpad
memory instead of being placed with the rest of the boot parameters. This way,
app kernels can use only their core ID as index instead of having to multiply it
by the required bytes of boot parameter data. This lets the interrupt handler
assembly implementations be independent of the number and size of app kernel boot
parameters. The complete memory layout describing the BSP kernel’s use of the first
scratchpad tile is illustrated in Figure 5.3.

relocation_distance 1

...

relocation_distance

app_kernel_boot_param 2 is_started

monitor_binary

monitor_size

free_memory

free_memory_size

urpc_frame_base

log2_channel_size

printf_lock_addr

app kernel
boot
parameterapp_kernel_boot_param n

...

printf_lock

free BRAM

0xF8000000

0xF8000000 + BRAM_SIZE

Figure 5.3: The BSP kernel’s use of the first scratchpad tile.

5.2. IMPLEMENTING MULTICORE SUPPORT 73

Having jumped to its own image, it is important to keep in mind that kernels
having an image each imply that the global variables in the app kernel images are
not the same as those set in the BSP kernel. Consequently, the app kernels must
first initialize such global variables. Specifically, this includes initializing the global
variable pointing to the app kernel boot parameters. Using this, the app kernel can
loop on the condition of the is_started parameter, initialize the printf lock, and
initialize its own memory allocator.

Having made all necessary kernel initializations, boot proceeds by loading the monitor,
initializing its capabilities, and running it. This is similar to the boot of the BSP
processor, with an important difference in the capability initialization: the app
kernels have to set up a capability to the channel memory intended to bootstrap
communication between the monitor on this core and the BSP monitor. Setting up
capabilities to the rest of memory is not required, in contrast to BSP kernel boot
code, since this is controlled by mem_serv running on the BSP.

5.2.2 Dynamic Interrupt Vector Dispatch

The jump in the reset routine to the local image of an app kernel is just a special
case of the implementation of dynamic interrupt vector dispatch. As with the reset
routine, all interrupt handlers must jump the relocation distance before executing
code dependent on global variables. By including this as a prologue to every interrupt
handler, the handlers can be implemented exactly as they were without concern
about kernel image location. Since the dynamic dispatch code is generic for all
handlers except reset, the functionality can be wrapped in a macro and reused by all
handlers. This macro is listed in Listing 5.1.

Listing 5.1: The first code executed in every interrupt handler except reset.

1 #define I N T E R R U P T _ H A N D L E R _ P R O L O G U E (ha ndl er_ nam e) \
2 ha ndl er_ nam e : \
3 push { ip } ; \
4 \
5 /∗ Load c ore number ∗ 4 i n t o ip ∗/ \
6 ldr ip, =TILE_BASE ; \
7 ldr ip, [ip] ; \
8 lsl ip, ip, #2 ; \
9 \
10 /∗ Index the r e l o c a t i o n d i s t a n c e s at BRAM0_BASE ∗/ \
11 add ip, ip, #BRAM0_BASE ; \
12 ldr ip, [ip] ; \
13 add pc, pc, ip ; \
14 nop ; \
15 local_##ha ndl er_ nam e : \
16 pop { ip }

74 5. BARRELFISH IMPLEMENTATION

The handler starts by using ip as a temporary register, backed up on the interrupt
stack in question in case its value is used by the interrupt handler. Next, the
index is calculated by loading the core ID into ip and multiplying it by 4 since
the relocation distance is a four-byte quantity. Next, the index is added with the
base to form the final address, which is used to load the relevant relocation distance
into ip. This distance is added to the current instruction address and stored to the
program counter, which will execute the jump into the local interrupt handler code
labelled as local_handler_name. Since the pc register in the Amber core points
two instructions ahead of the currently executing instruction, the instruction after
the jump will be skipped. It is therefore padded with a nop instruction.

The reset vector must be treated differently, both because a stack has not been set
up yet so push and pop instructions should not be used, and because the relocation
distances have not yet been initialized. The reset vector therefore has a separate,
special-case branch checking if it is executing on the BSP processor, and if so it
initializes its own relocation distance to zero to make the other interrupt handlers
work. The app kernels use the same logic as in the prologue macro.

Having defined this macro, wrapping all the existing interrupt handler labels in it
was sufficient to complete the dynamic vector interrupt dispatch support.

5.2.3 Bootstrapping Intercore Communication

Once the app kernels have started their monitors, channels must be set up between
monitors on the app kernels to establish point-to-point connections between all cores.
When running with caches disabled, this required no special support for SHMAC,
and it was possible to reuse the code from the existing ARM ports of Barrelfish. The
only exception was that it was necessary to implement SHMAC-specific access to a
hardware cycle counter to support the Barrelfish implementation of blocking UMP
message reception algorithm, which uses polling for a set number of cycles before
yielding the CPU and leaving to the monitor to wake it up in response to the arrival
of a message.

5.3 Supporting Upgrades to the Instruction Set

5.3.1 Adding ARMv3 Support

As explained in Section 2.1, the upgrade from ARMv2a to ARMv3 was not a binary
compatible one. In order to run Barrelfish on the new processor core, it was therefore
necessary to retarget the operating system to the new instruction set. This required
the following changes to the implementation:

5.4. SHARED MEMORY ALLOCATION 75

– All context switch code had to be modified to store and restore the new CPSR
register.

– Code manipulating status bits, interrupt mode bits or CPU mode bits had to
be modified to use new assembly instructions introduced for this purpose, and
adopt to the new format of the status register. This includes stack initialization
for different modes, sanity checks in context switch code ensuring proper status
bits for user mode, and interrupt management routines.

– As the entire PC now contained a valid address, code which previously masked
out the top or bottom bits of the PC now had to use the entire value. Specifically,
this affected looking up syscall values using the LR register; printing stack
traces by following a chain of LR register values; and checking whether an
instruction address was within a critical region at the time of context switch.

– Stacks had to be allocated for the new undefined instruction mode and abort
mode. The undefined instruction mode was used by the debugger, and the
abort mode was used as a trigger for hardware assertion errors indicating logical
faults in the RTL.

– Finally, the build system configuration had to be set up to target ARMv3.
This also implied that architecture-dependent code in Barrelfish where the
implementation was selected based on the preprocessor macro __ARM_ARCH_2__
had to instead check for the existence of the macro __ARM_ARCH_3__.

5.3.2 Upgrading to ARMv4T

Adding support for targeting ARMv4T was relatively trivial, as it was a binary
compatible upgrade. The changes consisted of specifying ARMv4T as the com-
pilation target in the build system configuration file, in addition to altering the
conditional compilation clauses introduced in the SHMAC port to be dependent
on __ARM_ARCH_4T__ instead of __ARM_ARCH_3__. The system mode introduced in
ARMv4T could also be considered used. Since the Barrelfish CPU drivers are by
design single-threaded and nonpreemptable to simplify the kernel implementation,
and since there was currently no need for nested interrupt handling, system mode is
currently unused in the SHMAC port.

5.4 Shared Memory Allocation

This section will present the support for shared memory allocation which was added
in this dissertation to Barrelfish to support running it on multiple cores on the
SHMAC with caches enabled.

76 5. BARRELFISH IMPLEMENTATION

5.4.1 Shared Memory Allocator Structure

To simplify allocation of shared memory in applications, the shared memory allocator
created in this dissertation was integrated into the existing mem_serv application.
This section will describe how the allocator represents the available shared memory
resources; how it is initialized; and how it operates.

Resource Representation The memory map of the SHMAC supports up to eight
different scratchpad tiles. These tiles are represented with their own struct variable in
the allocator source code, with minimum and maximum addresses set according to the
values specified in the SHMAC memory map. Each variable structures information
on the BRAM available on the tile it represents into buckets, where each BRAM
region of size 2i is placed in the bucket with index i. Since capabilities may only
refer to regions which has a power-of-two size — the size of each region is actually
specified as the binary logarithm of its size rather than its size — this will always be
accurate. If there are several regions of the same size, they are stored in a linked list.

The resulting structure is exemplified in Figure 5.4. For simplicity, the figure only
includes two tiles. The buckets in the tiles are numbered with their index, indicating
the binary logarithm of the size of the regions they point to. Filled circles indicate
NULL-pointers. The first tile has 32 KB BRAM available, split into two 214 = 16
KB regions. The second tile has 64 KB BRAM available, available in a single 216

memory region.

Currently the number of buckets is set to 20, allowing BRAM regions up to size 512
KB as this has been the largest BRAM tile size used so far. This constraint may
be easily altered by setting the value of a macro, and Barrelfish will issue an error
message and abort the boot if a BRAM region larger than what the implementation
allows is passed to it by the kernel. As such, there is no practical drawback with
limiting the supported BRAM region size to the practical maximum instead of the
theoretical maximum.

Initialization Supporting allocation from BRAM required transferring information
about what BRAM resources are available from the BSP kernel to mem_serv. Similar
to how this information is transmitted for regular RAM, as described in Section 2.2.2,
the BSP kernel boot procedure was extended by setting up capabilities to the
available BRAM resources, add these capabilities to the capability space of init, and
add memory region descriptions to the bootinfo structure. With the ultimate goal
being location-aware allocation, it was necessary to separate the management of the
shared memory from the regular memory allocator. To make sure that the BRAM
capabilities were not added to the regular memory allocator during initialization, a
new region type called RegionType_UmpRam was added. Thus, mem_serv could

5.4. SHARED MEMORY ALLOCATION 77

Tile 0
Free RAM: 32K

0 1 32

5 764

9 11108

13 151412

17 191816

Region

capability

next

Region

capability

next

Tile 1
Free RAM: 64K

0 1 32

5 764

9 11108

13 151412

17 191816

Region

capability

next

Tiles

Figure 5.4: The representation of available shared memory in the shared memory
allocator.

separate between memory regions of type RegionType_Empty, managed by the
regular memory allocator, and regions of type RegionType_UmpRam, managed by
the new BRAM allocator.

When the BSP kernel creates capabilities to the BRAM, it is important to not hand
away capabilities to the BRAM used to pass app kernel boot parameters and for
containing the printf lock. Special care is therefore taken in the BSP kernel to
allocate what is required for these purposes first, and allocate capabilities to the
rest of the BRAM afterwards. This is only a concern for the first scratchpad tile;
no resources on the other tiles are reserved for any particular purpose, and as such
capabilities may be created to their entire address space.

When initializing the shared memory allocator, the RegionType_UmpRam regions
are enumerated. Each region is added to the appropriate tile structure by checking
which address space it falls into, based on the tile minimum and maximum addresses,
and entered in the appropriate bin based on its size.

78 5. BARRELFISH IMPLEMENTATION

Operation The work of the shared memory allocation algorithm is split in two:

1. First, find the best tile available. When not considering the tile location,
the main goal is finding a memory region of the exact size to avoid memory
fragmentation. A reasonable strategy is returning the first tile amongst those
considered, to keep the memory unfragmented in as many BRAM tiles as
possible. Other algorithms may be more desirable if tile locations are considered,
as discussed in Section 5.4.3

2. Second, allocate a memory region from this tile. Once the optimal tile has been
selected, the only objective for allocation within a tile is finding the region
with the best fit. As memory allocation requests send the logarithm of the
amount of memory required, this size can be used as an index into the bucket
list to check if any region which exactly matches the request is available. If not,
progressively higher-index buckets are checked until the first bucket containing
a memory region of a sufficient size is encountered. If the region in this bucket
is too large, the region is split in two. One of the resulting regions is stored
in the lower-numbered bucket. The other is returned if the size matches what
was requested; if not, the split procedure just described is repeated until a
matching region size is acquired.

If the best tile available does not have sufficient memory, the search is repeated while
disregarding the tile just considered. If no tiles have sufficient memory, an error
value is returned to the caller.

As an example, consider an allocation request for a memory region of size 215 bytes
to the memory allocator instance illustrated in Figure 5.4. With no advanced tile
selection algorithm, tile zero will be considered first for providing the BRAM. Since
the requested size is 215, the first bucket considered is the bucket with index 15.
Since this is empty, buckets 16 up to 19 are also considered. Since all are empty,
the tile is determined to not be able to service the memory allocation request. Note
that even though there is sufficient BRAM available in the tile, since it is split in
two regions of size 214 no single capability will serve as the return value to the caller.
Since Barrelfish does not support merging capabilities, the tile cannot satisfy the
request.

Since tile zero had inadequate resources, the next tile to check is found from the
remaining tiles—in this case, tile one. Since tile one has a capability to a region of
size 216, the region is split into two regions, and a capability allocated to each. One
of the regions is stored into bucket entry 15 of tile one. Since the other region with
size 215 matches the allocation request, its capability is returned to the caller.

5.4. SHARED MEMORY ALLOCATION 79

5.4.2 Bootstrapping Memory Allocation

As explained in Section 2.2, memory allocation in Barrelfish is done by sending
messages to the mem service hosted on the BSP. For applications to allocate memory
in this way, they first need to allocate a message-passing channel to be able to send
messages to mem. Thus, it is necessary to somehow bootstrap the memory allocation
by allocating a channel to mem by some other means.

In Barrelfish, initial memory allocation is handled by using a set of pre-allocated
frame capabilities stored at a known location in the application’s capability tree.
Initial memory allocation requests then simply allocates regions sequentially from this
set of capabilities, disregarding any specified preference of memory address location.

When applications running on app-cores want to bind to the mem service, the message-
passing channel must be allocated from shared memory. However, trying to allocate
this memory using the standard initial memory allocator in Barrelfish will not work
since it disregards any memory area specifications. The same problem holds true
for app-core monitors, when trying to set up the initial communication channel to
monitor_mem.

The issue was solved by exploiting the existing message passing channels between the
intermon service on the BSP core and the app-core monitors. These are bootstrapped
as described in Section 5.2.1, and enable app-cores to communicate with the BSP
core running the mem service. Initial shared memory allocation requests can then
be made by sending requests to the BSP intermon, which forwards the requests to
mem. To support this, the intermon interface was extended with an extra method to
allocate shared memory.

Figure 5.5 illustrates how this method is used to set up a connection between an
app-core monitor and the monitor_mem service. The app-core monitor allocates a
shared memory channel using the allocate_shared_memory method in the BSP
intermon service. The newly allocated channel is used to set up a connection to
monitor_mem, which services further allocation requests.

The BSP intermon connection is similarly leveraged to allocate the channel between
non-monitor applications and mem. Since applications do not have direct access
to the intermon binding, only to their own local monitor, the monitor interface
was also extended with an allocate_shared_memory method which delegates the
work across the intermon binding. This procedure is illustrated in the first step in
Figure 5.6, where the first allocate_shared_memory call is between the application
and its local app-core monitor.

An additional difference between bootstrapping memory allocation in app-core

80 5. BARRELFISH IMPLEMENTATION

BSP App-core
monitor

Shared
mem

Allocated with previous
service call

First allocation

Subsequent allocations

Shared
mem

Pre-allocated

Figure 5.5: To set up the binding to monitor_mem, the monitor uses the existing
binding to the BSP intermon to allocate a message-passing channel in shared memory.
Subsequent allocation requests can be sent to monitor_mem.

monitors and other app-core applications is how the allocate_shared_memory call
is used. For regular applications, the monitor method is used to allocate a single
channel, which is added as a special shared-memory capability in the initial memory
allocator of Barrelfish. When the connection to mem is subsequently being initialized,
the shared memory request to the initial allocator is serviced using the previously
allocated channel memory. The reason the allocation is done beforehand is that the
connection setup to mem is done as part of a message handler. This is illustrated
as the second step in Figure 5.6, where the shared memory is requested when
handling a response from a message requesting the ID of mem. Since the same
application may only handle a single message at a time, the message handler cannot
request shared memory by sending messages and waiting for a reply. Because the
connection to mem is set up during the Barrelfish library initialization, however, the
limitation is surmountable as it is possible to verify that no other shared memory
allocation requests will happen before the connection to mem has been completed.
Subsequent allocations can therefore be serviced through the connection to mem, which
is illustrated in step three of Figure 5.6. The bind to monitor_mem in the monitor is
not executed as part of a message handler, and does therefore not suffer from the
same restriction. Thus, initial requests to shared memory in monitor is handled by
sending allocation requests to intermon when necessary, instead of allocating the
required memory beforehand.

5.4. SHARED MEMORY ALLOCATION 81

BSP
intermon

App-core
monitor

Shared
mem

mem

allocate_shared_memory()

alloc()

Allocated with the
stored shared

memory

Subsequent
allocations

Shared
mem

Pre-allocated
<application>

libbarrelfish
init allocator

allocate_shared_memory()

add_shared()

get_mem_id()
connect_to_
mem()

1.

2.

3.

Figure 5.6: Connecting an application to mem is done in two steps. First, libbar-
relfish initialization requests channel memory through its local monitor and stores it
with its initial allocator. Second, as part of a message handler the connection to mem
is initiated using the shared memory stored in the allocator. Subsequent allocations
use the connection to mem.

5.4.3 Location Awareness Support

A central idea behind the scratchpad tiles is that if the cores use tiles in their
proximity, communication may be efficient without special message-passing support.
To be able to realize this idea, it is necessary to take core location into account
when allocating the shared memory. This required two enhancements to the general
shared-memory allocation support

1. Informing the BRAM allocator of which tiles will be using the memory, i.e.
enhancing the shared memory allocation requests.

2. Using this information in the BRAM allocator, i.e. enhancing the shared
memory allocator itself.

Enhancing Shared Memory Allocation Requests An assumption made when
enhancing the requests, is that only two cores will communicate using a shared
memory channel. This assumption holds for all known uses of shared memory in
Barrelfish, most importantly inter-core communication which always uses dedicated
point-to-point channels. Thus, instead of allocating and transmitting an entire array

82 5. BARRELFISH IMPLEMENTATION

of core location data, only two parameters were necessary in the allocation interface
methods.

Another decision simplifying the allocation requests, is that the request may contain
the IDs of the cores involved in the communication instead of their tile locations. A
core can not in general determine the location of other cores, so the translation logic
is instead gathered in the BRAM allocator. This also makes the interface method
simpler, requiring two extra arguments (core IDs) instead of four (two pairs of x-y
coordinates).

To facilitate transmitting this information, an extra method called allocate_shared
was added to the mem interface. The method is similar to the existing allocation
method, but replaces the minimum and maximum address arguments with two core
IDs. The methods introduced in order to bootstrap memory allocation were also
expanded to include two core ID parameters.

To make use of the new mem method, libbarrelfish was extended with a function for
allocating frame capabilities from shared memory. Instead of specifying the address
range from where you wish to allocate memory, allocating a frame, and resetting
it, it is possible to instead call the shared frame allocation function directly. It has
the same signature as the normal frame allocation function, with the addition of a
parameter specifying with which core the memory is to be shared. Instead of calling
the regular RAM allocation function, it calls a new, architecture-specific function
called shared_ram_alloc. In SHMAC, this allocator checks whether a connection
to mem has been established. If it has, it uses the shared memory allocation method
in the mem interface, passing its own core id and the supplied core ID along with
the regular allocation parameters as arguments. If the mem connection has not been
set up, this indicates that the request for a shared memory frame arrived during
bootstrapping of memory allocation. The shared RAM allocator then uses the normal
RAM allocator with address range limits set to the uncached address range, since
the bootstrapping memory allocator previously was enhanced with support for using
the shared memory allocation methods in monitor. The bootstrapping allocators
were also modified to pass the necessary core IDs on to the monitor methods.

Finally, all shared-memory allocation sites were modified to use the new allocation
function. This requires determining which core will be sharing the memory with the
allocator. When allocating shared memory when starting new cores, this is possible
since the monitor knows which core it is booting. For generic UMP channel creation,
this information is not explicitly available. However, the channel creation routine
gets the ID of the service the channel is a connection to as an argument. We exploit
the fact that the core ID is contained in the top 24 bits of the service ID to determine
which core will use the other end of the channel. Shared memory is also used for bulk

5.4. SHARED MEMORY ALLOCATION 83

transfer, but no existing means was available for determining the ID of the sharing
core when creating bulk transfer areas. The current implementation therefore simply
assumes that core zero is the sharing core ID. This holds at least for the Barrelfish
system applications used in SHMAC, as bulk transfer is only used when connecting
to the ramfs service which runs on the BSP.

This library function works well for applications which connect to mem to do their mem-
ory allocation. However, the monitor uses the connection to the BSP monitor_mem
to perform allocation. Instead of creating a special-case check in the general library
function, the monitor handles shared memory allocation itself by employing the
method introduced in the intermon interface to bootstrap memory allocation.

Enhancing the Shared Memory Allocator To enable location-aware allocation
algorithms, the shared memory allocator had to be supplied with SHMAC layout
information. Since there is no method exposed by the hardware for determining this,
the bootloader was enhanced to pass this information as a boot parameter to the
BSP kernel. The updated boot parameter structure is illustrated in Figure 5.7. The
first field added was the amount of memory in each scratchpad tile. Although this
size is still hard-coded in the Barrelfish source tree, where the configuration file is
located, it arguably makes more sense to hard-code it in the configuration file than
in the kernel source code. Next, the SHMAC layout is passed as a NULL-terminated
string, using the same format as described in Section 2.1. The parameter to the
shmacfish bootloader generator is the path to a configuration file. This may be set
either to the file in the SHMAC source tree, or a local configuration file.

num_modules

module_pointer

BRAM size

SHMAC layout string

0x0

0x4

0x8

0x12

0x12 + #tiles + #rows

Structure Example

7

0xf76d5000

“VDR\n”

0x2000

0x0

0x4

0x8

0x12

0x16

0x20
“ARA\0”

Figure 5.7: The BSP kernel boot parameter structure after adding SHMAC layout
specification.

As the shared memory allocator gets information on the available memory regions
based on the capabilities it is provided, the kernel does not have to transmit the
BRAM size explicitly to the allocator. The layout string, on the other hand, must be
explicitly handed to the mem_serv system application. The string is therefore first
copied into a separate memory frame to which a capability is created. This capability
is sent along with the capabilities describing BRAM regions. The shared memory

84 5. BARRELFISH IMPLEMENTATION

allocator can then access the string by mapping the memory from this capability
into its address space. Using the layout string, the allocator updates the coordinates
of each tile in its tile list. It also maintains an array of core tile locations, indexed
with the core ID.

When a memory allocation request arrives, the allocator uses a lazy in-place selection
sort algorithm to determine which scratchpad tile should be used to service the request.
The sort criterion is determined by the ranking function find_optimal_tile_among(
**tiles, core1_loc, core2_loc), which returns a pointer to the tile array element
in the tiles argument deemed to be most suitable. An attempt is then made to
allocate memory from this tile. If there is sufficient memory, the allocation request
completes. If not, then the best tile is swapped with the tile at the front of the list
under consideration. The search then proceeds on the tail of the list, disregarding
the first tile.

The algorithm is demonstrated in Figure 5.8. Assume that there are four scratchpad
tiles available, and based on some criterion the tiles are ranked as indicated in the
figure. Also assume that the two most fitting tiles do not have sufficient memory
available to satisfy the request, while the third most fit tile has sufficient memory.

2 4 1 3

tiles considered

1 4 2 3

tiles considered

1 2 4 3

tiles considered

First pass complete

Second pass complete

Figure 5.8: An example demonstrating how the lazy selection sort of tiles works.

In the first pass, all tiles are passed to the ranking function for consideration. The
ranking function will return a pointer to element number three, as this tile is deemed
the most fitting. Since the tile does not have enough memory, it is swapped with the
first element in the array, and the first pass completes. Next, all but the first element
in the tile array are passed to the ranking function, Again, a pointer to array element
number three is returned, and again it is swapped with the front element of the list
under consideration as it had no space available. This completes the second pass.

5.5. IMPLEMENTING USER-SPACE CONSOLE 85

In the third pass, only the two remaining tiles are considered. A pointer to element
number four is returned from the ranking function, as this is the best fit among the
tiles considered. Since this tile has sufficient memory available, the allocation request
completes without swapping its place.

The division of labour in the allocation algorithm makes it simple to experiment
with different tile prioritizations, since it is only necessary to implement variants of
the ranking function. The following are three algorithm options, of which the first
two have been implemented:

1. Always return a pointer to the first tile element. This approximates the best-fit
algorithm, since the most segmented scratchpad tile will be considered first as
long as no allocated regions are subsequently returned to the allocator. This is
because tile zero is the only tile which is not a whole power-of-two size from the
start. Since the first element is always returned, there will be no permuting of
the tile order in the list, so the most segmented tile will always be considered
first. However, location is not considered.

2. Return a pointer to the tile element which is on a shortest path between
the tiles through a scratchpad tile to minimize expected latency and energy
overhead when routing access requests. In a mesh topology, the distance
between tiles is |tile1x − tile2x|+ |tile1y − tile2y|, so the best tile will be the
tile with a minimal value for the expression |core1x − bram_tilex|+ |core1y −
bram_tiley|+ |core2x − bram_tilex|+ |core2y − bram_tiley|.

3. Consider the needs of other cores in an attempt to optimize the total system
performance. For instance, use the same metric as in algorithm option 2, but
in the case of draws select the tile which is the least popular alternative for
other cores. Alternatively, it might be beneficial for total system performance
to select the next-best tile if the best tile is the only viable alternative for
another communicating core pair. No such algorithms have been implemented,
but may merit further investigation as research questions when it comes to
memory management in grid Non-UMA (NUMA) systems.

5.5 Implementing User-Space Console

The facilities in Barrelfish for getting access to a serial terminal are mostly architecture-
agnostic. The architecture-specific enhancements required are two-fold:

1. Adding interrupt registration and delivery facilities in the kernel.

86 5. BARRELFISH IMPLEMENTATION

2. Adding a system call for reading the input data. The user space serial driver
cannot read the data itself, since reading the data is the way to clear the
interrupt in the current SHMAC infrastructure. Additionally, the interrupt
notification mechanism in Barrelfish does not currently permit sending data
along with the interrupt request.

An illustration of the common interactions between the SHMAC user space serial
driver and the kernel is given in Figure 5.9. Four scenarios are illustrated. The
first is how the serial driver registers an interrupt listener. Interrupt delivery to
user space processes in Barrelfish is done by delivering empty messages to dedicated
LMP endpoints. From the perspective of the program trying to register an interrupt
handler, the registration is performed through a message to the monitor running
on the same core as the application trying to register the interrupt handler. The
LMP endpoint is passed to the monitor, as illustrated in the figure. The monitor
then requests the kernel to deliver the specific interrupt to the given endpoint.
Authorization for making such requests is ensured by passing an IRQ capability,
owned by the monitor as illustrated in the figure, with the system call. The syscall
is as such invoked with the IRQ capability and the LMP endpoint as parameters,
the figure illustrates. When the syscall is invoked, the kernel checks that the IRQ
capability is valid and that no other listener is registered. If these checks pass,
the listener endpoint is stored in the kernel so that interrupt notifications may be
delivered to it. The modifications implemented in this dissertation to support this
step amounted to adding the IRQ capability to the initial capability space of the
monitor, and implementing the syscall.

The second scenario in Figure 5.9 illustrates how the serial driver is notified of
interrupts. In addition to the LMP endpoint, the kernel maintains an input character
buffer and a flag denoting whether the listener has been notified of an interrupt.
When the kernel receives a serial interrupt, it stores the input character in the buffer.
In the figure, an example serial interrupt is received with the input character ’y’.
Since the input buffer was empty, the letter is stored as the first character in the
buffer. Next, the kernel checks whether the registered listener has been notified
of an interrupt previously. If no interrupt has been delivered, which is the case in
scenario two in Figure 5.9, a notification is delivered to the registered endpoint and
the interrupt notification flag is set to true.

Since handling the LMP notification is done in user space after scheduling the serial
driver for execution, several interrupts may occur before the user space driver has
had a chance to react to the first interrupt. This situation is illustrated in the third
scenario in Figure 5.9. In the figure, the kernel gets a serial interrupt with the letter
’o’. This is stored at the end of the input buffer. Since the notification flag is set to
true, however, no extra notification is delivered to the LMP endpoint.

5.5. IMPLEMENTING USER-SPACE CONSOLE 87

serial_driver

monitor

kernel

arm_irq_handle()

irqtable_set(,)

endpoint

IRQ
capability

Scenario 1: Interrupt listener registration

“”input
buffer

serial_driver

kernel
notified=true

lmp_deliver_notification()

Scenario 2: Interrupt notification

“y”

serial_interrupt(‘y’)
notified=false

serial_driver

kernel
notified=true

Scenario 3: Interrupt without notification

“yo”

serial_interrupt(‘o’)

serial_driver

kernel
notified=false

sys_get_buffered_input()

Scenario 4: Buffer read

“”

return “yo”

registered
listener

1. Check IRQ capability
2. Store listener endpoint

Figure 5.9: An overview of four scenarios in which the SHMAC user space serial
driver and the kernel interact with each other.

The fourth scenario illustrates how the serial driver retrieves the input characters
using the system call sys_get_buffered_input, which was added to the SHMAC
kernel in this dissertation. This system call copies the contents of the input buffer to a
supplied user-space buffer pointer. In the figure, this causes the input buffer contents
“yo” to be returned to the serial driver. Finally, the input buffer and notification
interrupt flags are cleared.

Chapter6Evaluation

This chapter will present an evaluation of the systems which have been implemented.
Section 6.1 will evaluate the functional correctness of the Barrelfish port to SHMAC.
Section 6.2 will evaluate important properties of the energy efficiency estimation
framework, such as accuracy and performance, as well as functional correctness.

6.1 Barrelfish

Previous work on the Barrelfish port developed a stability test, designed to exercise
various portions of Barrelfish including message passing, memory allocation, and
context switching [BS13]. The same test program was used in this dissertation to test
the stability of the multicore extensions. The test launches three programs, calc,
verify, and print, whose communication pattern is shown in Figure 6.1. The calc
program performs a computation on a randomly sized array, and sends both the array
and the result in a message to verify which verifies the result by independently
performing the same computation. Both programs then send the array and result to
print, which emits output to the screen. Any errors in verification or other system
crashes will cause the program to stop; continued operation indicates stability in the
exercised subsystems. Since the test makes heavy use of message passing, launching
the three programs on different cores makes the test exercise both the multicore
initialization and inter-core message passing developed in this dissertation.

calc verify

print

V D AR

A R AR

APB DDR BRAM

Figure 6.1: The programs included in the stability test of Barrelfish, and their
placement on cores on the SHMAC instance which was used during testing.

89

90 6. EVALUATION

The test was run on a 2 × 4 SHMAC configuration with three Amber cores. The
distribution of programs to cores is indicated by the colouring scheme in Figure 6.1.
The test was first run once without cache support, and therefore not using scratch-
pad memory, and once with caches on when shared memory support had been
implemented.

Without caches and scratchpad memory, we ran the stability test for several days
without failure. This indicates that initialization of new cores and the code relating
to the ISA upgrades is implemented correctly. When scratchpad memory support
was included, the stability test was unfortunately hampered by a bug in the SHMAC
platform causing Amber cores to occasionally freeze for unknown reasons on accesses
to BRAM1. Using the test setup in Figure 6.1, the test program runs for approximately
one minute before a freeze occurs. Moving the calc program to the same core as
print, using only two cores, lessens the pressure on BRAM and makes the test run
for approximately one hour before freezing. This bug has not yet been fixed, and
it is outside the scope of this dissertation to do so. Therefore, the verification of
functional correctness of the Barrelfish port is limited to partial completion. The
shared memory support is only responsible for the initialization of channels, however.
This is extensively tested by the time the test programs start, through the creation
of shared-memory channels both between the test programs and between Barrelfish
services. Therefore, the tests indicate that the port works as expected.

The user-space console support was separately tested simply by starting the shell
program after system boot, and running commands using it. This test was run
successfully, verifying the ability to transfer text from the kernel to the registered
user-space listener.

6.2 Energy Efficiency Estimation Framework

In this section, we evaluate the quality of the energy efficiency estimation framework
as per task E3. Where applicable, we will separately evaluate the quality level
supported by the generic infrastructure and modelling methods, and the quality
of the models which have been implemented. Due to the current volatility of the
SHMAC project, the former is of greater importance as it reflects the ability of the
framework to adapt to modifications or enhancements to the SHMAC infrastructure.
The quality of the models which have been implemented demonstrate to what degree
the theoretical potential of the infrastructure may be exploitable.

1The fact that there is a hardware fault was ascertained by using the energy efficiency estimation
framework to ship out internal signals as debug information. This revealed that the memory stall
signals of the frozen Amber core was constantly high, with the address requested being in BRAM.

6.2. ENERGY EFFICIENCY ESTIMATION FRAMEWORK 91

6.2.1 Accuracy

This section will discuss the accuracy of the models which have been implemented.
We will first discuss the trueness and then the precision, as the terms were defined in
Section 1.4 and Appendix A.

Trueness Certain aspects of the modelling present a definitive threat to the trueness
of the models. The impact of the following points should be considered before drawing
conclusions from experiments conducted using the SHMAC platform with the new
energy efficiency estimation framework.

– The SHMAC HDL implementation, and the Amber core in particular, is
originally tailored for FPGA synthesis [Ope13]. It may therefore be undesirable
to consider an ASIC realization of the SHMAC HDL exactly as it is written to
be the true system, as there are different microarchitectural trade-offs between
FPGA and ASIC designs [WBR11]. Since the models are created using the
HDL, any differences between the HDL specification and the true system would
cause discrepancies between the model output and the true value, To take one
example, register files in ASIC processors may be created using specially-crafted
SRAM blocks whereas the Amber register file is implemented with flip-flops
and multiplexers. There would likely be significant discrepancies between the
model and the true system if the latter was assumed to use SRAM register
files, since the register file is responsible for approximately 70 % of the energy
consumption of the execute stage in the Amber core as is reflected in its model
in Appendix D.1.

– The CACTI analysis of cache and scratchpad memory power consumption is
based on process characteristics which are dissimilar to those in the cell library
used to synthesize the SHMAC platform. For instance, the CACTI process
uses a 1.1 V supply voltage, whereas the target cell library uses a 1.0 V voltage
level.

– Place-and-route details are not represented by the model. As physical imple-
mentations are placed and routed, there will be differences between the model
and the true value. In particular, both the assumption that similar tiles in
different locations will have the same energy consumption and that inter-tile
router ports have the same energy consumption may be untrue.

– The ASIC synthesis target clock frequency is 250 MHz, but the SHMAC
execution frequency is 60 MHz. This discrepancy between target and host time
causes untrue representation of interaction between components which are not
scaled similarly. For the SHMAC, this concerns off-chip memory requests made
by Amber tiles since the off-chip RAM is not slowed. Thus, a memory request

92 6. EVALUATION

which would require 25 stall cycles on a 250 MHz core would only require 6
stall cycles on a 60 MHz core. As a result, memory requests do not have the
same impact on energy consumption and system performance as they would
on a true system.

– The fact that the emulator includes an energy estimation framework and the
emulator target does not, may adversely affect trueness in two ways:

1. Terminal I/O operations may be disrupted by host sampling activity. The
effect may be avoided by ensuring that terminal I/O is not used during
an experiment.

2. The energy consumption of energy monitors is not included in any esti-
mates. This is appropriate as the monitors are not supposed to be part of
the system under study, and will ensure trueness when characterizing en-
ergy efficiency under general workloads using the host interface. However,
if system software algorithms make use of the energy estimates provided
by the SHMAC interface then some way of obtaining such estimates is
required in the true system as well. If hardware energy counters similar to
those in the infrastructure are required, the cost of implementing these in
an ASIC processor should be considered before drawing conclusions as to
the efficiency of any proposed algorithm. Alternatively, one may lean on
the fact that several studies have demonstrated methods for calculating
such estimates based on event counters which are already present in ex-
isting processors [SS13a, BGM+10, SBM09]. The impact of the necessity
to calculate the energy values during algorithm operation must then be
estimated.

The previous points describe definitive discrepancies between the models and an
ASIC implementation of a SHMAC instance. In addition, there are aspects of the
model construction where arbitrary choices have been made due to the lack of an
exact specification of the true system. Although these points do not constitute a
threat to the trueness at present, we mention them here since it is still important to
be aware of the exact characteristics of the system which has been modelled. These
aspects should also be controlled explicitly if the need to faithfully represent a real
implementation arises.

– The majority of synthesis parameters, such as load capacitance and ambient
temperature, are accepted at default values. The models will as such represent
a system which operates in such default conditions.

– The models created are specific to the target cell library. Actual ASIC produc-
tion would maybe make use of a different cell library.

6.2. ENERGY EFFICIENCY ESTIMATION FRAMEWORK 93

– By using CACTI to model SRAM resources, the SRAM modules are implicitly
assumed to have the same organization and layout as those assumed by CACTI
models. Specific SRAM cache and scratchpad modules may be organized
differently.

– The off-chip RAM system which is modelled is based on an arbitrarily selected
DDR RAM module, and implicitly models a simple memory controller by
assuming that its consumption is shadowed by that of the RAM module and
not including any estimates for it at all. Particular off-chip RAM systems may
use different RAM modules, as well as a memory controller which is sufficiently
heavy weight to warrant an energy model of its own.

Precision We evaluate precision quantitatively by comparing model predictions to
the values which are calculated by PrimeTime. We will present precision numbers
for the model for a complete Amber tile, with five decimal places used as the model
coefficient resolution. The characteristics of the model of each submodule are listed
in Appendix D.1.

The predicted power consumption, the actual power consumption, and the estimation
error in each cycle of the validation benchmark is plotted in Figure 6.2. The plot
aggregates estimates over a time window of 500 cycles, as there are too many sample
points to visualize clearly otherwise. Figure 6.3 plots a subset of sample points
and predictions per cycle, which enables a clearer inspection of individual sample
instants. The error in the estimate of total energy consumed is 0.19 %, and the
average absolute error each cycle is 1.1 %. Only 0.2 % of per-cycle errors exceed 5 %
in absolute value, and 95 % of estimates have an absolute error less than 2 %.

As energy estimates read through both the host and the SHMAC software interface
will report energy values summed over a number of cycles, we evaluate the impact
of time window on the estimation error. Figure 6.4 plots the average absolute error
when considering all time windows of a certain size in the validation benchmark
results. Of the time window sizes considered, the highest average error is 1 % when
the time window is 500 cycles. This indicates that the longest sequence of consistently
erroneous estimates last on the order of a hundred cycles. With higher time window
sizes, errors are averaged out, with less than 0.2 % average error when time windows
are larger than 5000 cycles.

Figure 6.5 illustrate how the resolution of model coefficients affect the precision of the
model. The resolution was varied by rounding off coefficients to their nearest multiple
of the x-axis values, which is equivalent to varying the number of digits included in
the decimal fraction of the coefficient. Although average absolute cycle-by-cycle error
stays relatively low for lower coefficient resolution values, the 99th quantile is doubled
going from five decimal places to four, and the fraction of absolute estimation errors

94 6. EVALUATION

Figure 6.2: The predicted power consumption versus the actual power consumption
versus the error per cycle of the validation benchmark. Power values are on the left
axis, while error values are on the right.

above 5 % suffers an eleven-fold increase from 0.27 % to 3 %. From five to six decimal
places, however, the difference is small.

6.2.2 Coverage

As defined in the introduction, coverage indicates how many system components may
influence the reported energy consumption. We will first evaluate how the generic
infrastructure supports high coverage, before turning our attention to the coverage
of the models which have been implemented.

Infrastructure Coverage Support In theory, any level of coverage desirable is
supported by the infrastructure. Monitors may be included in any module in the
system, and any input, output and internal signals may be used as input to the
module models. Therefore, coverage may always reach 100 % through incremental
inclusion of new monitors. However, the attainable coverage may have practical
limits due to implementation overhead. The framework infrastructure has been added
to all tiles except a newly developed high-performance Amber tile [AB14] and the
ZBTRAM tile, and may easily be included on these tiles as well if deemed necessary.
The potential for high coverage is therefore also readily exploitable.

6.2. ENERGY EFFICIENCY ESTIMATION FRAMEWORK 95

Figure 6.3: A limited set of one thousand sample points, which more clearly
demonstrates the precision of the model per cycle.

Figure 6.4: The mean absolute error when considering time windows of varying
granularity.

Current Model Coverage Evaluating the coverage of models is primarily inter-
esting as an examination of the quality of the validation benchmark. Coverage by
itself is not necessarily indicative of model quality: models with high coverage may
still have wrong weights for different signals, and low coverage may be justified if the
activity in ignored signals cause low variation in energy consumption and therefore
may be represented as a constant value. Model quality is instead evaluated through
the validation benchmarks. However, if the validation benchmarks do not contain
sufficient activity diversity, models with low coverage may get inappropriately good
validation scores. Evaluating the coverage of models may help uncover such issues.

96 6. EVALUATION

Figure 6.5: The impact the coefficient resolution has on absolute per-cycle error
values.

In the current energy models, all HDL modules in the Amber, scratchpad and DDR
tile are covered either through a separate monitor or through a monitor in a parent
module. For instance, the execute model uses signals from the barrel shifter, the
multiply unit, the ALU, and the register bank to ensure that all the components the
model encompasses are represented. Thus, there are no modules whose activity is
completely unaccounted for.

6.2.3 User Friendliness

We will evaluate the user friendliness for three different roles in which persons may
interact with the framework: a user who merely wishes to run experiments on a
SHMAC system with the infrastructure and software tools installed; a researcher
who wishes to configure the number of energy monitors or energy report units; and a
researcher extending the framework with a regression model for a new hardware unit.

Experimentation In order to run experiments using an existing SHMAC installa-
tion, the monitoring and logging tool is almost the only tool the researcher has to use.
Running an experiment requires no more actions than starting this tool, pressing the
’Connect’ and ’Start’ buttons, and then logging in to the SHMAC host and launching
the experiment application. Disregarding the design of the GUI, the user friendliness
is high due to the simplicity of steps required to run an experiment. One shortcoming
is that the framework provides no means of announcing the beginning and end of an

6.2. ENERGY EFFICIENCY ESTIMATION FRAMEWORK 97

experiment. The researcher must therefore manually extract the relevant subset of
the logged samples.

Configuration Configuring a new set of energy report units or energy monitors
requires manually rewriting the HDL source of SHMAC to include or remove units as
desired. This is cumbersome, albeit simple if familiar with the infrastructure. HDL
source code modifications also necessitate running FPGA synthesis and installing
the new bitfile for modifications to be available. This process is relatively time-
consuming, taking approximately three hours. In addition to HDL modifications, the
configuration in the driver must be updated with the new information and installed
along with the new bitfile. This is simple and fast, but possibly easy to forget. In
conclusion, although all required steps are kept simple by design, the time required
and the mundaneness of the tasks result in a final evaluation score of low user
friendliness for altering the energy efficiency estimation framework configuration.

Extension Extending the framework with models for new components requires
ASIC synthesis, benchmark design, simulation and power estimation, regression
modelling, and finally hardware implementation. The steps are largely kept as simple
as possible. The use of all ASIC tools is automated, as described in Appendix B.1.
Benchmark design cannot be trivially automated, but the benchmark framework
described in Appendix B.2 reduce the required workload to implementing the actual
benchmark program. Having written the C code implementing the benchmark, it is
only necessary to run make benchmarks to generate signal and power data.

The regression modelling is a difficult step, as the selection of model variables and
term construction is a completely manual endeavour. As with benchmark design, the
workload is kept minimal by the support software described in Appendix B.3. Notably,
the R library which was developed include functions for reading in benchmark data;
creating a new model; evaluating a model; and plotting the evaluation in various
formats.

Finally, the creation of hardware implementations of models is simple, but tedious.
Generic modules for calculating Hamming distance values are available, but as HDLs
are verbose, coding a formula may require writing a significant amount of code2.

Overall, the user friendliness of extending the framework is evaluated as medium.
Most tasks are automated, and the manual intervention required is largely kept
as focused as possible. However, the manual work is difficult with no support for
assisted design space exploration, and the creation of hardware implementations of a
model could be better supported.

2The longest energy monitor file is 211 lines of Verilog.

98 6. EVALUATION

6.2.4 Infrastructure Correctness

To test correct infrastructure operation, test benches were created for each hardware
unit in the infrastructure. The test benches are similar to software unit tests since
they are self-asserting, terminating simulation if an error condition is met and
reporting what went wrong. The test benches toggle the control signals of a design
under test to test specific operations, and use randomly generated data for any data
input. For instance, the test for the energy counter module checks correct operation
depending on whether energy read-enable signals or time window write-enable signals
are set, while using randomly generated values as the energy sample input. The
randomization functions are configured with constant seeds, to ensure reproducibility
between different runs of the same test bench. All test benches pass, which indicates
that each individual unit works as expected.

The test benches were developed using the Bitvis VHDL utility library [Bit14],
which simplifies writing self-asserting test benches in VHDL as common functions
for checking values, logging, and generating random values are provided. The test
benches were made together with a generic test bench framework, described in
Appendix B.5, which may also be useful for the development of tests for other parts
of the SHMAC system.

The infrastructure was also verified to work once realised on an FPGA by creating a
SHMAC design in which each energy report unit was set to report a different constant
value instead of a sum. When reading sample data from this SHMAC system once
installed on the FPGA, the same constant values were read out in the expected order.
This indicates that the scan chain and the communication between the SHMAC and
the host system works as expected.

The correct operation of energy report units and energy monitors was verified by
executing a program where only the first SHMAC core is running. The energy
consumption estimate for the stalled cores should be a fixed value each cycle. The
value attained from the report units on the stalled cores was therefore compared to
the known constant value multiplied by the sample period in clock cycles and found
to be equivalent as expected.

6.2.5 Performance

In this section, we will evaluate the performance of the energy efficiency estimation
infrastructure. We will first study the maximum sample rate we can get from the
system, as well as sample period variability. Second, we will evaluate the hardware
overhead of including the infrastructure on the system. Finally, we investigate the
impact of using UDP in the monitoring and logging tool.

6.2. ENERGY EFFICIENCY ESTIMATION FRAMEWORK 99

Maximum Sample Rate The infrastructure implementation nearly maximizes
the theoretical sample rate. Since the APB is the only connection to the host,
saturating the APB bandwidth maximizes sample rate. With the current host
interface, only the sample operation uses more than minimal time to complete due
to the four-way handshake employed to send the sample request to the SHMAC
clock domain. The sample operation therefore has approximately four APB clock
cycles and four SHMAC clock cycles of delay, which equals eight APB clock cycles
since the clocks currently run at the same frequency. The read sample commands,
however, execute as fast as the APB protocol permits. The theoretical minimum
sample period is therefore eight clock cycles higher than the optimal value, under
the current host connection conditions. Since one APB read request takes 2 cycles,
transferring n samples requires 8 + 2n cycles.

The previous expression describes the hardware-imposed overhead of energy estimate
transfers to the host. As the host interface relies on user space software requesting
samples from the driver, however, it is not clear from the design of the hardware alone
what sample rates will be supported in practice as it is affected by overhead from
driver access in addition to operating system interference such as context switching.
The minimum sample period attainable in practice was therefore estimated by
creating a program which continuously re-reads the binary energy attribute of the
driver. The program was parametrized by the number of samples to request from
the driver, and run once for all integers between 1 and 11. The program was run
for 10000 iterations each time, to take variability into account. The time taken is
calculated from the number of SHMAC cycles spent between each sample, a metric
attainable by setting the per-cycle energy of the first report unit to one. This is done
because the real-time clock on the SHMAC host runs too slowly, as comparisons to
other clocks confirm.

The results are plotted in Figure 6.6. For the range of sample words tested, it is
apparent that the number of samples requested has insignificant impact on the sample
period. The only exception is a jump between requesting two and three sample
words, but there is no evident linear relationship. Thus, the driver infrastructure
access appears not to be significant for the sample period. This is also apparent from
the sample period values. Fetching one set of samples from the driver and computing
the time required takes approximately 12 ms to complete, whereas the infrastructure
in theory could support sample periods of (8 + 2 · 11)∆tAP B = 30 · 16 2

3 ns = 500 ns
when requesting 11 sample words. We may therefore conclude that the attainable
sample period is completely dominated by software overhead, limiting the granularity
at which energy consumption may be inspected.

The limited sample period causes energy report units to overflow before samples
may be collected when the sample size is set to 32 bits. Since the sample period is

100 6. EVALUATION

Figure 6.6: The sample period attainable from a user space program requesting a
varying number of samples from the driver. Error bars indicate standard deviation.

dominated by software overhead, all sample sizes may be increased to 64 bit with
little negative effect on the sample period. This is demonstrated in Figure 6.7. Apart
from the difference between collecting two 32-bit and two 64-bit samples, there is no
significant increase in maximum sample period going from 32-bit to 64-bit samples.

Sample Period Variability Since the infrastructure reports energy, it is necessary
to know the sample period in order to derive the power. Although a specific sample
period may be requested from the shmac_stream_energy tool, it may not be a
reliable estimate of the actual period due to software execution variability. To
quantify the sample period variability more thoroughly, we study the distribution of
sample periods when continuously gathering 11 sample words. The experiment is run
twice: first, SHMAC clock counts are stored temporarily in memory and logged to
file when the experiment has ended, and second, the clock counts are logged directly
to file after each measurement has been made. The first strategy quantifies the
variability which is primarily outside the control of the application, while the second
gives results which may be more realistic for applications.

The results are presented in Figure 6.8. Offline logging has a standard deviation of
only 2500 cycles with a median of 711500, although certain sample periods spike up
to a maximum of 762800. As expected, the offline logging sample period distribution

6.2. ENERGY EFFICIENCY ESTIMATION FRAMEWORK 101

Figure 6.7: A plot demonstrating that the sample period is not significantly
affected by going from 32-bit to 64-bit sample sizes.

is lower and more compact than that of online logging. Interestingly, the impact
of writing to file while sampling is typically not too severe, resulting in a median
value increase of only 0.63 %. However, intermittent writes to file suspect the sample
period to large spikes, with a maximum value which is 32× larger the median value.

The variation in sample rate is manageable if a dummy report unit which counts the
number of cycles since the last sample is included in the design. However, variability
at the current scale may lead to confusing plots of energy consumption trends. This
is demonstrated in Figure 6.9, which presents a screenshot of the monitoring and
logging tool. The top-left graph plots the clock count each sample, whereas the
graphs in the other corners plot the energy consumption of the Amber cores on
the system. Each Amber core is set to execute a separate workload, leading to
different energy consumptions, but the sample period variability is so considerable
that such trends are overshadowed by the difference in number of energy sample
values accumulated.

This confusion may be avoided by scaling the energy consumption down by the
reported sample period, plotting power instead. Figure 6.10 demonstrates the effect
this has on reported trends: the graph for each core now accurately reflects the
energy and power profile of the workload it is executing.

102 6. EVALUATION

Figure 6.8: The distribution of sample periods. The red bars represent measure-
ments when values are temporarily stored in memory, and the blue bars represent
measurements taken when values are logged directly to file.

Infrastructure Implementation Overhead The results in Section 6.2.1 demon-
strate that it is possible to use the regression modelling method to create a model
with high precision. This section evaluates the cost of implementing a model of such
precision in hardware. The models are implemented using five decimal points in the
coefficients based on the analysis in Section 6.2.1.

Table 6.1 summarizes the infrastructure cost in each module which is either enhanced
or new. The table lists the number of LUTs and flip-flops added to each module,
and what fraction this is of the resulting module resource consumption. The final
column lists average overhead, which is the increase in resource3 consumption in each
module when including the energy estimation infrastructure. In the Amber core, the
average resource overhead is approximately 18 %, whereas the router has an average
resource overhead of 104 % indicating that the energy monitor more than doubles its
implementation cost. For the complete Amber tile with two energy report units, the
overhead of the infrastructure is on average 55 %. Of the resources available on the
target FPGA, the tile consumes 1.68 % of the LUTs, 0.52 % of the flip-flops, and
0.37 % of the DSPs.

The cost of each of the regression model monitors is broken down in Figure 6.11.
For the router monitor, whose implementation cost is the most substantial, 95 % of
the LUT cost is owed to Hamming distance calculation. For the three other non-

3LUTs and flip-flops.

6.2. ENERGY EFFICIENCY ESTIMATION FRAMEWORK 103

Figure 6.9: A plot of energy consumption when running different tasks on each core.
Although the energy consumption differs, the sample period variability dominates
the plot trends.

trivial models, namely execute, core and timer, the Hamming distance calculation is
responsible for approximately 50 % of the LUT consumption. The remaining fraction
is mostly spent on summing all the model terms. The cost of multiplication, included
in the other category, is overall negligible.

Flip-flop consumption for the router again lies predominantly with Hamming distance
calculation. For the execute and core stage, where an extra pipeline stage is included
to register input values, the pipeline register cost is the greatest at approximately
50 %.

The possibility of reducing the infrastructure overhead through optimization of
the Hamming distance calculation was investigated by implementing the FPGA-
specialized technique for calculating the Hamming weight of 36-bit wide buses
described by Sklyarov et al.[SS13b]. The difference between this technique and the
earlier solution is depicted in Figure 6.12. The technique uses a second layer of
LUTs to calculate the number of most, middle and least significant bits from the six
three-bit outputs from the first layer of LUTs, which reduces the required number of
adders. Even this optimization only reduces the LUT consumption by 200 LUTs,
which amounts to reducing the overhead in the Amber tile to approximately 53.5 %.

104 6. EVALUATION

Figure 6.10: A plot of power consumption when running the same program as
in Figure 6.9, demonstrating how normalizing reported energy consumption by the
sample period may reveal energy efficiency trends in spite of sample period variability.

Figure 6.11: The distribution of resource usage in the implementation of regression
models.

Monitoring Tool Network Protocol Selection To quantify the effect of using
UDP as the network protocol for the monitoring and logging tool presented in
Section 4.2.6, we estimate the potential packet loss under near optimal conditions as
well as the sample rate difference between a UDP and TCP implementation.

For the packet loss experiment, the developer machine was connected to the NTNU

6.2. ENERGY EFFICIENCY ESTIMATION FRAMEWORK 105

Table 6.1: Infrastructure implementation resource cost. The percentages in the
first two columns indicate the fraction of the resource usage in the unit which is due
to the infrastructure.
Unit LUTs Flip-flops Average Overhead
Instruction Cache 1 (00.30 %) 3 (01.10 %) 0.70 %
Execute 563 (09.41 %) 450 (22.95 %) 19.30 %
Data Cache 6 (00.74 %) 12 (03.33 %) 2.08 %
Amber Core 920 (10.69 %) 742 (19.19 %) 17.56 %
Tile Registers 7 (14.29 %) 18 (28.57 %) 27.28 %
Timer Module 615 (59.19 %) 252 (62.22 %) 154.49 %
Interrupt Controller 9 (05.81 %) 21 (11.41 %) 9.42 %
Energy Counters 440 (100.0 %) 417 (100.0 %) N/A
Amber System 2293 (21.13 %) 1200 (23.43 %) 28.67 %
Router 5614 (65.77 %) 2704 (36.19 %) 104.00 %
Energy Report Unit 65 (100.0 %) 64 (100.0 %) N/A
Amber Tile 8037 (39.06 %) 4032 (31.64 %) 54.68 %

internal network using a network cable. The experiment was conducted near Christ-
mas, at which point in time the network activity may be assumed to be relatively
low. Under these conditions, out of 100318 packets sent from the SHMAC host to
the developer machine none were lost. These results indicate that UDP may, at least
through environmental control, serve as a sufficiently reliable transport protocol.

To investigate what sample rate benefits are attained by using UDP over TCP, a
TCP implementation of the tool was created. The UDP and TCP implementations
were run for 20 minutes, and the number of samples sent were counted. The results
are tabulated in Table 6.2. Using UDP, a 1.15 % increase in the number of samples
sent was observed. The benefit of using UDP is as such relatively inconsiderable.

Table 6.2: The number of samples sent during 20 minutes of monitoring using
different transport protocols, and the corresponding average sample period.

Samples sent during 20 minutes Average sample period
UDP 98749 729 121 SHMAC cycles
TCP 97631 737 470 SHMAC cycles

106 6. EVALUATION

3
LUTs

3
LUTs

66

+

+

current
value

previous
value

36 36

6

3
LUTs

3
LUTs

3
LUTs

66

+

6

3
LUTs

+

+

Original Implementation

3
LUTs

3
LUTs

66

current
value

previous
value

36 36

6

3
LUTs

3
LUTs

3
LUTs

66 6

3
LUTs

Optimized Implementation

3
LUTs

3
LUTs

3
LUTs

6 6 6

+
+

[3:1] [0] 4
0

[2:1]

[5:1]

[0]

[0]

66

#22 #21 #20

Figure 6.12: The optimized hamming distance calculation implementation from
[SS13b], compared with the original Hamming distance calculation implementation,
for a 36 bits wide bus.

Chapter7Discussion

In this chapter, we discuss important aspects relating to the current implementations.
Section 7.1 raises the question of how suitable Barrelfish is as an operating system
with which to conduct research in the SHMAC project. Section 7.2 discusses the
impact of planned modifications to the SHMAC infrastructure. In Section 7.3 we
investigate in what way trueness is important, and the implications on how precisely
the true model should be specified. Section 7.4 presents limitations in the present
implementation, and proposes strategies for mitigating them. In Section 7.5, we
describe a possible approach to automating modelling. Section 7.6 discusses the
special considerations required to support common power management features in the
energy models. Finally, Section 7.7 describes to what extent the problem description
subtasks identified in Section 1.4 have been fulfilled.

7.1 Barrelfish Suitability

There are two questions which should be kept in mind before using Barrelfish as the
operating system baseline in system software research.

1. The most obvious question is ’Why Barrelfish’, or inversely ’Why not Linux?’.
As Linux is an operating system with widespread adoption, experiments based
on Linux will be more equivalent to real world conditions than experiments
based on the experimental Barrelfish OS.

2. Additionally, one must consider whether Barrelfish may be directly unsuitable
for the research in question. In particular, the operating system is heavyweight
with a powerful capability and memory management system. This is reflected
in the selection of example applications in work conducted with Barrelfish
[BBD+09, ZGKR14], where the evaluation of performance is done with server
workloads such as database, web server and network subsystem benchmarks.
The SHMAC infrastructure realizations, on the other hand, are necessarily

107

108 7. DISCUSSION

relatively lightweight processors because of the limitations arising from targeting
FPGA implementation. As such, it may be more reasonable to evaluate the
SHMAC processor designs using embedded system benchmarks. For such
benchmarks, Barrelfish may be a questionable choice of an example multikernel.

These points imply that Barrelfish should be used judiciously. In particular:

– Barrelfish should be used when a multikernel is explicitly desirable in the
research, for instance to demonstrate the successfulness of a technique in un-
conventional kernel architectures or to investigate improvements to multikernel
implementations in particular.

– It must be possible to argue that the combination of operating system selection,
experiment workload and SHMAC infrastructure is coherent so that results are
generalizable to a real-world scenario.

– If an experiment involves comparing results attained using two different oper-
ating system architectures, the non-multikernel must be similarly targeted at
server workloads to ensure fair comparison.

– If two different Barrelfish versions are compared, the researcher should take
care that the efficiency of a technique is not owed to inadvertent reductions in
Barrelfish complexity.

7.2 Impact of Planned SHMAC Modifications

There are several changes recently planned for the SHMAC infrastructure, which
require some extensions to the work described in this dissertation:

– The ISA used in processor cores will be changed from ARMv4T to RISC-V
[RIS14]. This change mandates the creation of new energy models and monitors
for the new processor cores, and porting the ISA-specific parts of Barrelfish
again. This is limited to context switch code and the lowest-level interrupt
handling routines, and should as such not require much work. However, whether
such work will be worthwhile should be considered in light of the issues raised
in Section 7.1.

– The current router uses fully parallel I/O ports, sending entire packets at once.
There are plans to modify its implementation to be flit-based, where packets
are divided into so-called flits which are transmitted across less wide links. This
will mandate a new model and monitor implementation for the router.

7.3. THE IMPORTANCE OF TRUENESS 109

Overall, both the Barrelfish and energy estimation infrastructure implementations
are relatively resilient to the proposed SHMAC project changes and should therefore
retain their value also in the future of the project. The models which have been
developed for the current SHMAC components will be largely useless, however, if
both the core and the router is replaced. The models made for the DDR tile and the
scratchpad tile may still be used.

7.3 The Importance of Trueness

Discussing trueness primarily makes sense when there exists a notion of a true system.
When there is no such standard to adhere to, implementation and design choices
may be made arbitrarily1 as long as they are true to some realistic system. As
described in Section 6.2.1, this dissertation has therefore made arbitrary selections
in areas such as clock gating, operating environment, cell library selection, cache
organizations and memory system characteristics.

A precise specification of all the characteristics of the true system is not necessarily
required to make results attained with the SHMAC infrastructure applicable to
real world situations. However, such a specification may simplify ensuring result
validity as an explicit specification would make it easier to verify that the SHMAC
infrastructure characteristics are not unrealistic. It would also be simpler to spot
inconsistencies in the choices made. If it is not clear that the SHMAC infrastructure
is similar to a real system, it will be necessary to demonstrate result validity by some
other means. As such, trueness even in the details of system characteristics should
be considered important.

Therefore, it may be beneficial to create a complete SHMAC infrastructure specifi-
cation. Note that genericness will not be reduced by specifying the characteristics
explicitly, as some value would have to be selected anyway. Such a specification may
draw inspiration from characteristics of existing systems. This may be simplified by
the planned swap to the RISC-V ISA, since ASIC implementations have been made
of an open source core implementing this ISA. If necessary, several specifications
could be made for different envisioned realizations of the SHMAC infrastructure.
It would be interesting to quantify the impact different choices has on the model
results, and thereby also quantifying the importance of trueness in the details.

1I.e. driven by convenience and apparent validity rather than some specification.

110 7. DISCUSSION

7.4 Addressing Limitations

7.4.1 Validation Benchmarks

The current validation benchmark selection may be suboptimal. For one, Dhrystone
is a synthetic benchmark constructed based on the average frequency of use of
different programming language constructs. There is greater value in validating the
precise prediction of real programs, which may potentially be used to benchmark the
system at some point. In addition, the diversity of Dhrystone is limited since it is
based on iterations of the same computation. This attribute may make its power
consumption easier to predict than segments from different program phases in real
programs, which most likely exhibit more varied behaviour.

To address these limitations, a new set of validation benchmarks should be carefully
selected. One possible strategy is selecting programs from existing benchmark suites
which are likely benchmark candidates for future SHMAC experiments. The newly
created MachSuite [RAS+14] is one possible candidate benchmark suite, as it is
designed to benchmark accelerator performance. Other alternatives include MiBench
[GRE+01] and EEMBC [EEM14], which have been used to validate similar power
modelling work [BCM08][SWPC10].

In addition to selecting the benchmarks, the benchmarking framework described in
Appendix B.2 must be extended to support the new benchmark programs. This will
likely involve implementing functions from the C standard library, either directly
or through the implementation of system calls expected by an existing C standard
library implementation. As one example, MachSuite benchmarks read the input
data from a file. Supporting this requires extending the test bench to map files into
simulated SHMAC memory, and employing this functionality in the run-time.

More realistic benchmark programs most likely have running times which preclude
running them through simulation and power estimation tools in their entirety. It is
undesirable to mitigate this by using only the first millisecond of each benchmark,
as this may be dominated by initialization work. A better alternative is extending
the test bench to support fast-forwarding and prematurely terminating benchmark
programs. This way, different phases of a benchmark may be included, and diversity
preserved. Efficient support for such features also allows including very long-running
programs such as Barrelfish among the validation benchmarks.

7.4.2 Modelling

Regression Modelling

Threats to Trueness Section 6.2.1 identifies two threats to trueness related to
regression modelling:

7.4. ADDRESSING LIMITATIONS 111

1. HDL differences between FPGA and ASIC core implementations.

2. Missing place-and-route information.

The swap to RISC-V may help mitigate the first issue, as there exist both FPGA
and ASIC implementations of certain open source RISC-V cores. As long as these
implementations do not differ in behaviour such as number of cycles stalled on
memory accesses or vastly in what RTL signals exist, the ASIC version may be used
for modelling purposes and the FPGA for prototyping.

The second issue is one shared by other work on RTL-based regression models
[BCM08, SWPC10]. It would still be beneficial to estimate its impact by attempting
to set up and implement the necessary support for the place-and-route step in an
ASIC flow, but this requires deeper knowledge of layout issues such as power planes
and clock tree synthesis. Additionally, the tool support on IME servers is at present
limited2. Thus, on this point it may in the interest of project progression be advisable
to forsake some trueness certainty for implementation simplicity.

Negative Coefficients The regression modelling is performed using the method
of least-squares, which does not restrict coefficients from becoming negative. Energy
consumption models will therefore regularly have some negative terms, as may be
seen in Appendix D.1, which is natural if the activity represented by the term implies
missing activity from some other term. As an example, consider a multiplexer as
seen in Figure 7.1 where both a change in the selection and the Hamming distance
of the output are used as model variables. A change in Hamming distance alone
implies that there has been activity in the multiplexer input driver, whereas a change
in both the Hamming distance and the selection variable can only imply activity
in the multiplexer itself. This may be modelled by including a large term for the
Hamming distance of the output, and a negative term for the case when there also
was a change in the selection. This kind of term is present for instance in the model
for the execute stage (see Appendix D.1.2).

Although negative coefficients may be reasonable, they appear counter-intuitive as
they apparently express conditions under which the system gains energy. There is
also no need to support negative coefficients: less activity under certain conditions
may be modelled using an extra positive term in the negated condition. Additionally,
there is a possibility that the absence of activity indicated by one term is caused by
benchmark-specific activity. If the benchmark program never uses the multiply unit
and the barrel-shift unit simultaneously, for instance, activity in one may appear
to imply no activity in the other. Finally, additions are in general cheaper than

2A 2 × 3 SHMAC design was not loadable in the place-and-route tool currently installed because
of a restrictive license.

112 7. DISCUSSION

change(sel)

HD(out)

A B

Figure 7.1: A change in the output value with no change in the multiplexer
selection implies activity in the multiplexer driver, whereas a change in the selection
only implies activity in the multiplexer itself.

subtractions in terms of implementation overhead as there is no need for sign-extension
which enables smaller adders.

To circumvent these issues, future models should be considered modelled with
coefficients restricted to positive values. This is not a built-in feature of the R linear
modelling engine, but it is possible to implement using additional packages [Kei14].
Once encapsulated in support functions in the modelling infrastructure, creating
such models should not be any harder than creating unrestricted models.

Coefficient Resolution When implementing the power models in hardware, the
floating point coefficients from the R models are converted to a fixed point repre-
sentation to facilitate hardware implementation. This corresponds to selecting an
energy model unit scale and rounding off all coefficients to the nearest multiple of
the selected unit. As an example, consider the coefficient 0.005263. If a resolution
of 10−4 is selected, the coefficient will be represented in hardware as the integer 53
with an implicit model base unit of 10−4 Joules. This would cause a representation
error of 53·10−4−0.005263

0.005263 ≈ 0.7 %, and require dlog2(53 + 1)e = 6 bits.

In this work, the coefficient resolution is set to some number of decimal places as
described in Section 6.2.1. This is equivalent to considering energy model unit scales
which are inverse powers of ten, which is natural for human modellers. However, this
gives a coarse trade-off between precision and hardware implementation overhead
as demonstrated in Table 7.1. As increasing the precision with one decimal place
increases the coefficient values by a factor of ten, the size required to represent
coefficients is increased by three to four bits. Thus, it is not possible to trade one bit
of coefficient size for accuracy.

7.4. ADDRESSING LIMITATIONS 113

Table 7.1: The maximum numbers of bits required to represent the fractional part
of a coefficient at different power-of-ten coefficient resolutions.

Resolution 10−1 10−2 10−3 10−4 10−5

Maximum Bits Required 4 7 10 14 17

This limitation may be addressed by using powers of two as the base units instead.
The resolution of coefficients may then be varied at one-bit granularities, as increasing
or decreasing the unit will correspond to including or excluding single digits from the
R binary floating point fractions. This will allow investigation of a larger trade-off
space.

Although power-of-two-units guarantee single-bit trade-off granularities, other units
may still be preferable as coefficient divisibility significantly impacts how efficiently
a coefficient may be represented. This is demonstrated in Table 7.2, which tabulates
the efficiency of representing the coefficient 0.1234567 using different powers of two,
three and ten as unit scales. Considering powers of two instead of powers of ten does
provide extended trade-off opportunities, which is apparent by comparing unit scale
ranges 2−12 − 2−14 and 10−3 − 10−5. However, the unit scale 3−4 ≈ 0.0123456790
permits significantly higher efficiency since it almost divides the coefficient.

Table 7.2: Representation error when varying coefficient resolution.

Representing 0.1234567 (≈ 0.000111110011012)
2−x 3−x 10−x

x Error Bits Error Bits Error Bits
1 100 % 0 100 % 0 19 % 1
2 100 % 0 10 % 1 2.8 % 4
3 1.25 % 1 10 % 2 0.37 % 7
4 1.25 % 2 0.000073 % 4 0.0351 % 10
5 1.25 % 3 0.000073 % 5 0.003 % 14
6 1.25 % 4 0.000073 % 7 0.0002 % 17
7 1.25 % 5 0.000073 % 9 0 % 21
8 1.25 % 6 0.000073 % 10
9 0.332 % 6 0.000073 % 12
10 0.332 % 7 0.000073 % 13
11 0.064 % 8
12 0.064 % 9
13 0.0353 % 10
14 0.014 % 11

114 7. DISCUSSION

This suggests that future modelling should increase the number of unit scales con-
sidered. This will increase the available trade-off space, and allow discovering more
efficient representations.

Analytical Modelling

On-chip RAM As mentioned in Section 6.2.1, due to technology differences
between CACTI models and the cell library used the on-chip RAM models are only
true to an unlikely system which has a different voltage supply for caches than for
the processor core. The CACTI estimates are still likely to be more accurate than
regression models, as the caches included in the SHMAC HDL consume 96 % of the
power of an entire Amber tile when analysed with Synopsys PrimeTime. However,
the technology difference is still a probable source of inaccuracy. This discrepancy
may be mitigated by re-creating the regression models based on a cell library with a
1.1 Volt operating voltage, which is available on the build server. There may still be
other differences between the process technology assumed by CACTI, and the one
used in the cell library. Investigating this would clarify any potential accuracy losses.

Off-chip RAM Not including the consumption of a memory controller in the
off-chip RAM model limits which systems the model is true to. Additionally, the
DDR chip characteristics were arbitrarily selected. If the proposal in Section 7.3
about clearly defining the operating environment of the SHMAC is implemented, it
will be necessary to more rigorously ensuring that the off-chip RAM model is true to
the selected memory system configuration.

In the spreadsheet which is used to get the DDR power consumption data, the active
command power is calculated based on a combination of bank hits in the DDR and
the read and write access intensity. Although the first factor is hard to estimate,
it may be possible to use the access intensity to scale the contribution of power
consumption from activate commands based on the access patterns made at run-time.
This may be a simple way in which to make the off-chip RAM model a bit more
precise, making bursts of memory reads slightly less expensive.

7.4.3 Sample Granularity

As described in Section 6.2.5, the sample granularity is limited because the current
host interface to the energy estimation infrastructure is dependent on periodic
software polling. Additionally, the sample period has considerable variance with
occasional significant spikes. These issues may be resolved by moving the control
of sampling to hardware. We will here outline a strategy for implementing such a
change.

7.4. ADDRESSING LIMITATIONS 115

First, the host interface would be changed. A sequence diagram demonstrating
the difference between the existing and the proposed host interface is depicted in
Figure 7.2. The NextSample register would remain, but the SampleEnergy write-only
register would be replaced with a SamplePeriod read-write register. The driver
would write a value to the SamplePeriod register to request the scan chain control
unit to collect new samples at every SamplePeriod SHMAC clock cycle. The scan
chain control unit would then be altered to start sampling not on request from the
APB, but once every SamplePeriod clock cycles. Samples would still be stored in a
cross-clock-domain FIFO.

Driver Scan chain
control unit Scan chain

Write
SampleEnergy

Read
NextSample

Read
NumSamples

Write
ClearInterrupt

sample=’1’

loop

shift=’1’

Driver Scan chain
control unit Scan chain

Write
SamplePeriod

Old host interface New host interface

SamplePeriod
timeout

sample=’1’

shift=’1’loop

FIFO near full

interrupt

Read
NextSample

loop

Figure 7.2: A sequence diagram demonstrating how the new interface would differ
from the old.

Once the FIFO was nearly full, an interrupt would be sent to the SHMAC host
indicating that new samples should be read. The number of samples to read could be
determined by a new read-only NumSamples register, set to the number of samples
in the FIFO at the time of the interrupt. The interrupt could be cleared either by
using a separate write-only ClearInterrupt register, or automatically by the APB tile
when all NumSamples had been read. For the scheme to be safe, the SamplePeriod
value should be restricted to rates at which the driver can read out samples without

116 7. DISCUSSION

constantly handling interrupts. If necessary, lower SamplePeriod values may be
supported by using several FIFO primitives.

To give access to user-space, the driver could create a new binary sysfs attribute
sized to some multiple of the number of energy samples included in the scan chain.
The contents backing this attribute would be periodically refreshed, once the driver
had read new samples. User-space could register a signal handler with the driver,
which could be called when the energy sample contents was refreshed. The signal
handler should then copy all the data before the driver refreshes the contents.

With these changes, it would be possible to get exact sample periods with no
variability. Additionally, it is likely that the achievable sample granularity would be
significantly higher as the driver interrupt handler can execute with other interrupts
turned off, thus not being subject to context switching. The driver buffering would
then make it possible for the user-space application to stream out larger quantities
of data, which is faster than reading one set of samples at a time. Determining the
exact achievable sample rates would require experimentation. If the improvements
are sufficiently large, it will also be possible to keep sample sizes at 32 bits.

As this improvement makes it less critical with timely software readings of energy
values, there would be no need to use UDP in the monitoring and logging tool for the
1 % speed increase while risking packet loss under suboptimal network conditions.
Instead, a TCP connection could be used to to ensure safe packet delivery.

7.4.4 Implementation Overhead

The implementation overhead of the energy monitors is quite variable. While the
overhead for the Amber core is reasonable, the overhead for the timer module and
the router is substantial. However, this is foreseen to not be prohibitive for the use
of the energy estimation framework for the following reasons:

1. The relative overhead is large because the cost of the units which have been
modelled is small. Since the target FPGA is large, one processor tile consumes
only 1.68 % of the available LUTs even with the energy estimation infrastructure
included. As such, there is enough LUTs for nearly 60 processor tiles. Thus,
even a large relative overhead is negligible for the SHMAC infrastructure in its
current state.

2. The models have only been rudimentarily optimized with implementation
overhead in mind. More careful selection of model variables and minimization
of model terms may serve to reduce the overhead. For example, Appendix D.1
shows how the timer model may be improved by removing all Hamming distance
terms, reducing the number of terms and improving its accuracy by more careful

7.4. ADDRESSING LIMITATIONS 117

modelling. For the router, the Hamming distance overhead may perhaps be
reduced by using terms for more specific parts of input packets instead of one
term for each 196 bit link.

3. As discussed in Section 7.4.2, more experimentation with coefficient resolution
may yield trade-offs with less costly monitors at a reasonable expense in
precision.

4. There are unexplored optimization opportunities in the hardware implemen-
tation of the monitors. Several implementation techniques may reduce the
overhead further:

– The use of the optimized Hamming distance implementation in [SS13b]
may be perfected. For instance, the article describes an optimized imple-
mentation for 8-bit buses which we have not used. The optimal combina-
tion of Hamming distance implementations may also be investigated for
each different bus size. In particular, it would be beneficial to determine
whether a 32-bit Hamming distance calculation should be implemented
with four 8-bit implementations, one 36-bit implementation, or our original
implementation using a full adder tree.

– More of the monitor logic may potentially be moved before pipeline
registers without breaking timing. Since calculation results typically
require fewer bits than calculation inputs, this may reduce the number of
pipeline registers required.

– Terms with shared factors may be combined to a single term. For instance,
a model such as C1 · HD(x) + C2 · s · HD(x) may be implemented as
(C1 + C2 · s) ·HD(x). This reduces the cost of the final term sum. The
coefficient sum may be implemented using narrow adders or a multiplexer.

5. The router monitor overhead may be significantly reduced when the plans for
a less wide router implementation is realized, as discussed in Section 7.2, since
most of the router overhead comes from calculating the Hamming distance of
the 196 bit wide input and output links. Since the router monitor accounts for
70 % of the LUT usage of the infrastructure, the ability to reduce its complexity
will lead to considerable improvements in overall infrastructure overhead.

7.4.5 Target and Host Clock Frequency Discrepancies

There are two ways to handle the discrepancy between FPGA host and ASIC target
clock frequencies:

1. When modelling the energy consumption of the off-chip RAM, ensure that
the ratio between the true system off-chip RAM frequency and the SHMAC

118 7. DISCUSSION

off-chip RAM is the same as the ratio between the ASIC target clock frequency
and the FPGA host clock frequency. For the current setup, where the ratio
between target and host frequencies is 250 MHz

60 MHz ≈ 4.1667 and the DDR speed
is 800 MHz, this would be equivalent to assuming on off-chip RAM speed
of 800 MHz · 4.166̄ ≈ 3333.33 MHz. Memories with similar clock frequencies
do exist [HEX14], although they target niche audiences. The speed is also
outside of the range supported of the Micron DDR3 modelling tools, so proper
modelling would either require extrapolation or a different source for estimating
power numbers. On the plus side, this solution is simple and may be sufficient
for experiments where the impact of off-chip memory accesses on performance
and energy consumption is unimportant.

2. Add extra delay cycles before issuing responses in the off-chip RAM tile, such
that the off-chip memory accesses are slowed down by a factor similar to the
target clock frequency. The number of cycles required could be determined by
estimating average response latency, and multiplying it by the ratio between
target and host clock frequency. This strategy has already been planned for
inclusion in the SHMAC infrastructure once the need arises, since the target
and host time discrepancy affects the validity of performance results and not
just the energy efficiency estimation framework described in this dissertation.

7.4.6 User Friendliness

As described in Section 6.2.3, there are several areas where the user friendliness of
the energy efficiency estimation framework could be improved. The following list
describes how shortcomings may be addressed, in addition to other miscellaneous
possible improvements to the user friendliness:

– Dynamic configuration of the set of active energy report units would make it
unnecessary to synthesize a new SHMAC instance for this purpose. Dynamic
configuration could be implemented with varying flexibility and overhead.
The most flexible but most costly solution would be to permit including any
partial sum of energy monitor estimates. This would correspond to optionally
including energy report units at any level in the adder tree resulting from an
energy monitor setup, illustrated in Figure 7.3. Lower implementation cost
and flexibility could be obtained by making only a subset of the partial sums
selectable. The configuration could be trivially implemented as a mask register
in the scan chain control unit, with one bit per report unit denoting whether
the unit should be included or excluded.

– There is at present no support for determining when experiments start and
stop. When running an experiment, it is therefore necessary to gather energy

7.4. ADDRESSING LIMITATIONS 119

m1 m2 m3 m4 m5

+ +

+

+

Figure 7.3: An example hierarchy in a SHMAC tile, illustrating how partial
sums of energy monitor estimates correspond to the energy consumption of different
hardware modules in the hierarchy.

estimates from the reset instant and manually delimit the samples to the desired
time interval. Simpler and more precise experiment control may be attained by
including a new register in the SHMAC infrastructure, writeable by SHMAC
software, denoting whether an experiment is running or not. By inserting
writes to this register in the benchmark, it would be possible to control which
parts of a benchmark is included in a set of experiment data. This register
could work by controlling whether energy estimate sampling is enabled or not.
With the current host interface, this could be achieved by by returning energy
estimates of value zero if samples are requested when an experiment is not
running. When the host interface proposed in Section 7.4.3 is implemented,
sampling may instead simply be disabled when no benchmark is running.

– There is no way of determining the units of the values reported by the energy
estimation infrastructure. This should be added as a driver attribute, and
made use of in the energy monitoring and logging tool.

– As discussed in Section 6.2.3, writing energy monitors is tedious work. This
should be possible to automate by generating Verilog implementations from
R formula expressions. It would most likely not be possible to determine the
required number of pipeline stages, but the possibility of including pipeline
stages in the most common locations could be included and used when necessary.

120 7. DISCUSSION

– The configuration of the SHMAC instance which is installed is at present
hard-coded in the driver, as described in Section 4.2.5. When installing a new
SHMAC instance, it is as such necessary to update and install a new driver with
an updated attribute configuration. It may be more user friendly to include
the attribute configuration as a set of host-readable registers in the SHMAC
infrastructure. This would make it possible to use the same driver for SHMAC
instances with the same host interface. A potential downside is that writing
the configuration in hardware may be more cumbersome than it is in software.

7.4.7 Barrelfish Correctness

Although the tests of Barrelfish indicate that our extensions work, the limited runtime
of the stability test when using scratchpad memory limits its value. Once the SHMAC
infrastructure is working, the stability test should be rerun for a longer period to
uncover bugs such as race conditions, failure for rare inputs, or failure for rare code
interactions such as context switches.

Another option would be to develop unit tests for the parts of Barrelfish developed
for the port to SHMAC. Such tests may uncover input-dependent failures, and yield
higher confidence of correctness without requiring long-running tests. However, the
development of such tests requires developing test stubs for the parts of Barrelfish
the code being tested is dependent on. The stubbing required may be substantial if
the number of dependencies is large. Unit test development was previously begun
and subsequently aborted due to considerable development overhead and limited
usefulness. However, a test development framework is ready for use if rigorous testing
is prioritized at some later time.

7.4.8 Coverage Analysis

The analysis of coverage has only been done qualitatively. It is possible to instead
define coverage quantitatively as the fraction of nets in a design reachable from a
subset of nets. A quantitative measure makes it easier to assess the level of coverage
of different models. However, a tool which calculates the coverage in this manner
from a gate-level netlist was to our knowledge not available. Developing such a
tool would require parsing the Verilog netlist, generating a graph describing the
connectivity of nets in a module, and traversing the graph from the nets used in the
models to count the number of reachable nets.

7.5 Modelling Automation

An interesting extension of this dissertation would be to investigate the possibility of
automating the creation of models: given a set of power and signal data from a test

7.5. MODELLING AUTOMATION 121

benchmark, can we automatically create a formula which is implementable on an
FPGA and relates RTL activity to energy consumption?

The state of the art in automated power modelling is the PrEsto method [SWPC10],
which we described in Section 2.4. Automation is achieved by specifying the formula
up-front, and using the maximum value of terms as a sorting criterion. Models are
then generated by inputting the model term count limit and training data for a set
of signals and buses. Since the selection of signals is done manually, the method
offers limited automation support. The fixed formula format is also simplistic, as
it disregards the structure of the hardware being modelled. Since implementation
overhead is a major concern for our purposes, it is desirable to create more specialized
models instead of achieving automation through generality.

Based on the modelling experience from this dissertation, we can envision two
contributions:

1. A method suitable for creating models used alongside FPGA prototypes. This
method should seek to reach a set of accuracy goals, for instance limits on
average error, average per-cycle error and maximum error, while minimizing
implementation overhead. The method would work as follows:

– First, model terms are created based on the hardware structures in the
module being modelled. For instance, the energy consumption of a mul-
tiplexer may be represented as the Hamming distance of the output
multiplied with the change in multiplexer selection. Creating terms which
more closely resembles the hardware being modelled may yield higher
predictive power per term. This was observed when creating a model for
a part of the Amber core, where a combination of three boolean signals
controlled a multiplexer. Taking the hardware being modelled into account
and creating a cross term with all three signals yielded significant benefits
to accuracy over restricting the model to the format of PrEsto, with at
most two boolean signals in a cross term.

– Second, terms should be selected for inclusion in the model based on
heuristics instead of creating a model with all terms and then selecting
those which appear to be most significant. The more terms which are used
during regression analysis, the more time-consuming it is. It is therefore
preferable to estimate the importance of a term before including it in
a model. Example heuristics for estimating term importance may be
its coverage of nets not currently covered; the energy consumption of
operations it covers; and its impact on implementation overhead.

– Finally, an optimization should be conducted which searches for a model
with minimal implementation overhead within some set accuracy limits,

122 7. DISCUSSION

or vice versa. This search could trade off accuracy and implementation
overhead by varying the selection of terms, or by varying the coefficient res-
olution as described in Section 7.4.2. To keep runtime low, the evaluation
of model accuracy should initially be conducted with test benchmark data
and heuristics. Evaluation using validation benchmarks should be used
in later phases of the search, to ascertain that models which accurately
estimates energy for the test benchmarks also are accurate for varied
activity.

2. Automated use of the method based on HDL implementations by creating
model terms automatically from the HDL. With this contribution, one could
in theory completely automate the generation of power models given an HDL
implementation and a set of test and validation benchmarks. One possible
approach would be to create a new back-end for the open source Icarus Verilog
synthesis tool [Wil14]. Another interesting avenue would be extending the open
source implementation of the Chisel HDL [BVR+12]. Since Chisel has higher
level HDL constructs, such as multiplexers, registers and memories, generation
of terms using this tool may be simpler. Since the new RISC-V cores planned
for SHMAC are written in Chisel, such an extension may have a significant
benefit for the SHMAC project.

7.6 Power Management

Many modern systems include support for clock gating, power gating, and Dynamic
Voltage-Frequency Scaling (DVFS). If the system architecture under investigation
is supposed to have such power management facilities, it is important that the
framework supports emulating the energy consumption characteristics resulting from
their use.

Power gating disconnects the power supply to a module, and clock gating stops the
clock driving a module. These techniques would most likely be emulated in the
FPGA implementation by faking a shut-down and start-up sequence with a suitable
delay, and causing module stall when the gating technique was active. The energy
monitors could support these techniques by taking two extra binary input signals,
denoting whether power or clock gating is active. If power gating is active, the energy
consumption is zero: if clock gating is active, the energy consumption should equal
the static leakage energy. These extensions are trivially implemented.

Supporting DVFS in the energy estimation infrastructure is more difficult. The most
apparent challenge is scaling the output of the power model by the change in voltage.
The simplest solution is to use the formula E = 1

2CV
2 as inspiration, and scale the

output by the square of the voltage difference. If the voltage is only altered in steps of

7.7. PROJECT DESCRIPTION FULFILMENT 123

powers of two, scaling the output may be done using a barrel-shifter. A problem with
this model is that it is only a valid representation of dynamic energy consumption.
The static energy consumption per clock cycle is E = V IleakTclk [KAB+03], so
scaling voltage and frequency similarly keeps the static energy consumption per cycle
approximately constant3. It may be beneficial to create monitor models where the
static and dynamic power consumption is separated in order to accurately represent
this behaviour [Sno10].

An additional challenge is the varying discrepancies between host and target time
due to varying target frequency, the impact of which is discussed in Section 6.2.1.
To limit this effect, it is important to introduce stall cycles in the hardware modules
to emulate the effect a reduction in frequency has on operation and interaction with
other system components.

The effect these techniques would have on energy monitor estimates, assuming a
monitor where dynamic and static energy is separated, is summarized in Figure 7.4.
The figure demonstrates a sequence of power management operations: first halving
frequency and voltage, then enabling clock gating, and finally enabling power gating.
Halving the voltage leads to a dynamic energy consumption one quarter of the
original. As the monitor models the energy consumption for one target cycle, halving
the emulated frequency makes it necessary to only emit an energy consumption
estimate from the monitor estimate every second host cycle. When the clock is
completely stopped due to clock gating, only the static energy is included. When
power gating is active there is neither static nor dynamic energy consumption, so
the energy estimate is zero.

Finally, if DVFS support is included it may be desirable to add the current operation
frequencies of tiles as host-accessible SHMAC registers. This would make it possible
to more accurately correlate power management operation with energy consumption.
As the energy monitor estimates are summed by energy report units, it is not possible
for the host to estimate the operating frequency from energy estimate waveforms.
Note that power may still be calculated directly from the energy estimates without
knowing the operation frequency, as the energy estimates from monitors are correctly
spread out in time.

7.7 Project Description Fulfilment

This section will discuss the fulfilment of each subtask identified in Section 1.4.

3Leakage current is also dependent on supply voltage [KAB+03], but the effect is negligible
unless the supply voltage is completely disabled since the leakage current is primarily dependent on
technology parameters [BS00].

124 7. DISCUSSION

Energy

Time
(cycles)

ED + ES

¼ ED + ES

ES

Full frequency
and voltage

Halved freq.
and voltage

Clock gating,
halved freq. and

voltage

Power gating Full frequency
and voltage

Figure 7.4: The effect of power management on energy monitor estimates. ED

denotes dynamic energy, and ES denotes static energy. For illustration purposes, the
dynamic energy consumption of the module is assumed to be independent of activity.
The delays for activating and deactivating the gating techniques are also not taken
into account.

Mandatory Tasks

B1: Support multiple cores in Barrelfish Successfully fulfilled, as Barrelfish
is able to boot and run communicating programs on multiple cores. The
extensions are described in Section 5.2. The stability has been asserted with
caches disabled, as described in Section 6.1. The port has not been formally
verified, and is as such not guaranteed to be fault-free, but as most extensions
relate to initialization the ability to start is sufficient to feel confident in the
correctness.

E1: Investigate energy efficiency estimation techniques Successfully executed
in Sections 2.3 and 2.4. The investigation began with a small survey on existing
estimation techniques in Section 2.3, which were used as inspiration for the
technique presented in Section 2.4 tailored to our purposes. Its efficacy was
underpinned by existing work, also presented in Section 2.4.

E2: Describe a prototype energy efficiency estimation framework Successfully
executed, with a description of a complete framework design given in Section 2.4
and Chapter 3. Shortcomings and potential improvements are discussed in this
chapter.

E3: Evaluate accuracy, coverage and user friendliness Successfully executed,
in Sections 6.2.1 to 6.2.3. Both trueness and precision is covered in detail in
Section 6.2.1, and user friendliness is thoroughly treated in Section 6.2.3. The
analysis of coverage in Section 6.2.2 may be improved by using a quantitative
measure, as discussed in Section 7.4.8. The evaluation was also extended with

7.7. PROJECT DESCRIPTION FULFILMENT 125

extra evaluation of infrastructure correctness and performance in Sections 6.2.4
and 6.2.5.

Optional Tasks

B2: Support new SHMAC platform features in Barrelfish Successfully ex-
ecuted, as both ISA upgrades and communication support over scratchpad
memory is implemented as described in Sections 5.3 and 5.4. The testing
described in Section 6.1 indicates correct operation, but stability of operation
when using scratchpad memory for inter-core communication has not been
verified due to bugs in the SHMAC infrastructure.

B3: Implement console support Successfully executed, as described in Section 5.5.
The console is able to obtain serial input data from the Barrelfish kernel, and
may be used to start different programs with different input on arbitrary cores.

E4: Implement the prototype framework Successfully executed, with a com-
plete implementation described in Chapter 4 and Appendix B. The implemen-
tation exceeds prototype grade as it is sufficiently functional to be used to
evaluate the energy efficiency of the current SHMAC infrastructure, with the
caveat that the model precision is based on validation benchmarks with room
for improvements as discussed in Section 7.4.1. Shortcomings and potential
improvements with the implementation are listed in this chapter.

E5: Evaluate Linux and Barrelfish energy efficiency Not executed. Linux
does not work on multiple cores and has never been run on the Versatile
Express platform, which limits the evaluation opportunities without a consider-
able investment of work. As the task is unimportant for the SHMAC project,
it was not prioritized.

Chapter8Conclusion and Future Work

8.1 Conclusion

This dissertation has described how research on energy-efficient system software
using the SHMAC infrastructure has been enabled through the implementation of
two extensions to SHMAC research project: a multicore-capable operating system
port, and support for online energy efficiency estimations.

The existing port of the operating system Barrelfish was extended to run on multiple
cores. This entailed adding support for launching operating system kernels on new
cores, and managing the allocation of shared memory message passing channels.
Additionally, the operating system was made more feature-complete by porting the
Barrelfish console application. Tests indicate that the port works as expected, as
every extension is used at least once without failure. However, due to bugs in the
SHMAC infrastructure it has not been possible to fully assert the stability of the
operating system port through prolonged program execution.

The first contribution towards energy efficiency estimation support is a method which
enables modelling the power consumption of hardware components which only exist
as an HDL description. By using ASIC synthesis tools, it is possible to estimate
the power consumption of a design under selected stimuli and thus create regression
models such that power consumption can be predicted from RTL activity. We also
present an analytical modelling method for on-chip and off-chip RAM, where an
alternative modelling strategy is either preferred or necessary.

The second contribution is the application of the methods to the existing processor
tile in the SHMAC infrastructure. This contribution is two-fold: first, the software
and tool infrastructure which was developed in order to create the regression models
facilitates the construction of models for new hardware components; and second,
the expected efficacy of the modelling scheme is quantified by comparing model
predictions with values from ASIC power estimation tools. The error in the estimate

127

128 8. CONCLUSION AND FUTURE WORK

for average power consumption is 0.19 %, and the average cycle-by-cycle estimation
error is 1.1 %.

The final contribution is the development of a hardware infrastructure which enhances
the SHMAC infrastructure with support for live energy consumption estimation based
on observed RTL activity. The infrastructure exposes the energy estimates to a host
system, which may log the energy consumption estimates through periodic sampling.
Additionally, the energy estimates are made available to software running on the
SHMAC infrastructure for potential employment in system software algorithms. The
current infrastructure supports sampling periods of approximately 12 milliseconds.
The FPGA resource overhead from implementing the energy models for the core and
router in hardware is 18 % and 104 %, respectively.

In conclusion, the SHMAC project has been enhanced with both operating system
and energy efficiency estimation support. This constitutes a significant contribution
towards the ultimate project goal of research on energy-efficient heterogeneous
computer architectures.

8.2 Future Work

Looking forward, there are numerous ways in which this work may be extended or
improved. In this section, we list possible future tasks in different categories. The
lists are sorted internally by suggested priority, and additional item labels suggest
inter-category task importance: high (A), medium (B) or low (C).

Benchmark Improvements

A. Investigate more thorough and representative validation benchmark suites in or-
der to ensure model validity. One possible approach is outlined in Section 7.4.1.

Infrastructure Extensions

A. Implement sample control in hardware to significantly improve the infrastruc-
ture performance in terms of possible granularity and variability of energy
consumption estimates, as described in Section 7.4.3.

A. Add a mechanism to the SHMAC infrastructure which allows the software
running on the SHMAC to enable or disable energy estimation. This makes it
possible to precisely control what part of a benchmark is included in experiment
data, as discussed in Section 7.4.6.

8.2. FUTURE WORK 129

C. Add clock frequency per tile as well as the unit of energy samples as at-
tributes exposed from the SHMAC driver, in accordance with Section 7.6 and
Section 7.4.6.

C. Add a set of host-accessible registers to the SHMAC infrastructure, which
report the current SHMAC instance attributes such as number of report units
and tile configuration. A more detailed discussion is given in Section 7.4.6.

C. Develop a scheme for dynamically configuring which energy report units should
be used, as discussed in Section 7.4.6, which obviates the need to re-synthesize
and install a new SHMAC instance for such customization.

Model Extensions

A. Investigate how model quality is affected when positive coefficients are enforced.
As discussed in Section 7.4.2, this may yield cheaper and more intuitive models.

A. Experiment with a wider range of resolutions than number of decimal places
included when converting model coefficients to integers, as discussed in Sec-
tion 7.4.2.

A. As there are plans to swap out the processor core currently used in SHMAC
with a different one, models should be created for the new processor core once
this change is implemented.

B. If support for power management features are added to the SHMAC platform,
the energy models should also be extended to support these features. This is
discussed in Section 7.6.

B. Create a specification for the operating environment of the SHMAC infras-
tructure, and tune power modelling parameters to match it as described in
Section 7.3. It may also be interesting to quantify the effect different specifica-
tions has on the power models.

Tool Extensions

A. Implement features in the benchmark framework which new validation bench-
marks require. Possible extensions are described further in Section 7.4.1.

A. Add energy and power units to the plots and logs from the monitoring and
logging tool, as discussed in Section 7.4.6.

B. Investigate how modelling may potentially be automated, as discussed in
Section 7.5.

130 8. CONCLUSION AND FUTURE WORK

B. Implement generation of Verilog implementations from model formulae, as
described in Section 7.4.6.

C. Create a script which calculates the coverage of models, which may be used to
check the quality of validation benchmarks and possibly to drive heuristics in
automated modelling as per Section 7.4.8.

Barrelfish Extensions

B. Port the operating system to the ISA of the new processor core planned for
inclusion in SHMAC.

B. Conduct a more thorough series of tests of correctness for Barrelfish, once the
SHMAC infrastructure is working.

C. Modify the bootloader to extract information about the SHMAC configuration
from the attributes which have been added to the driver, and pass these as
boot parameters to the Barrelfish kernel instead of using values maintained in
a configuration file in the Barrelfish source tree.

References

[AA14] Håkon Amundsen and Joakim Andersson. Linux for SHMAC. Master’s thesis,
Norwegian University of Science and Technology (NTNU), June 2014.

[AB14] Anders T. Akre and Sebastian Bøe. Turbo Amber, a high-performance processor
tile. Master’s thesis, Norwegian University of Science and Technology (NTNU),
June 2014.

[AMD13] AMD. BIOS and Kernel Developer’s Guide for AMD Family 15h Models 00-0Fh
Processors, Jan 2013. Running average power value and timer registers described
on pages 65, 421, 460.

[APB] AMBA 3 APB Protocol. https://web.eecs.umich.edu/~prabal/teaching/
eecs373-f10/readings/ARM_AMBA3_APB.pdf.

[Azo14] Thermal Analysis - Precision, Trueness, Accuracy and Errors. http://www.azom.
com/article.aspx?ArticleID=5744, November 2014.

[Bar] Barrelfish Documentation. http://www.barrelfish.org/#documentation.

[BBB+11] Nathan Binkert, Bradford Beckmann, Gabriel Black, Steven K. Reinhardt, Ali
Saidi, Arkaprava Basu, Joel Hestness, Derek R. Hower, Tushar Krishna, Somayeh
Sardashti, Rathijit Sen, Korey Sewell, Muhammad Shoaib, Nilay Vaish, Mark D.
Hill, and David A. Wood. The gem5 simulator. SIGARCH Comput. Archit. News,
39(2):1–7, August 2011.

[BBD+09] Andrew Baumann, Paul Barham, Pierre-Evariste Dagand, Tim Harris, Rebecca
Isaacs, Simon Peter, Timothy Roscoe, Adrian Schüpbach, and Akhilesh Singhania.
The multikernel: a new OS architecture for scalable multicore systems. In
Proceedings of the ACM SIGOPS 22nd symposium on Operating systems principles,
SOSP ’09, pages 29–44, New York, NY, USA, 2009. ACM.

[BBDM00] Alessandro Bogliolo, Luca Benini, and Giovanni De Micheli. Regression-based rtl
power modeling. ACM Transactions on Design Automation of Electronic Systems
(TODAES), 5(3):337–372, 2000.

[BC11] Shekhar Borkar and Andrew A Chien. The future of microprocessors. Communi-
cations of the ACM, 54(5):67–77, 2011.

131

https://web.eecs.umich.edu/~prabal/teaching/eecs373-f10/readings/ARM_AMBA3_APB.pdf
https://web.eecs.umich.edu/~prabal/teaching/eecs373-f10/readings/ARM_AMBA3_APB.pdf
http://www.azom.com/article.aspx?ArticleID=5744
http://www.azom.com/article.aspx?ArticleID=5744
http://www.barrelfish.org/#documentation

132 REFERENCES

[BCM08] A Bhattacharjee, G. Contreras, and M. Martonosi. Full-system chip multiprocessor
power evaluations using fpga-based emulation. In Low Power Electronics and
Design (ISLPED), 2008 ACM/IEEE International Symposium on, pages 335–340,
Aug 2008.

[BDH+06] Nathan L Binkert, Ronald G Dreslinski, Lisa R Hsu, Kevin T Lim, Ali G Saidi,
and Steven K Reinhardt. The m5 simulator: Modeling networked systems. IEEE
Micro, 26(4):52–60, 2006.

[BEA+08] S. Bell, B. Edwards, J. Amann, R. Conlin, K. Joyce, V. Leung, J. MacKay, M. Reif,
Liewei Bao, J. Brown, M. Mattina, Chyi-Chang Miao, C. Ramey, D. Wentzlaff,
W. Anderson, E. Berger, N. Fairbanks, D. Khan, F. Montenegro, J. Stickney,
and J. Zook. Tile64 - processor: A 64-core soc with mesh interconnect. In
Solid-State Circuits Conference, 2008. ISSCC 2008. Digest of Technical Papers.
IEEE International, pages 88–598, Feb 2008.

[BGM+10] Ramon Bertran, Marc Gonzalez, Xavier Martorell, Nacho Navarro, and Eduard
Ayguade. Decomposable and responsive power models for multicore processors
using performance counters. In Proceedings of the 24th ACM International
Conference on Supercomputing, pages 147–158. ACM, 2010.

[Bit14] Bitvis utility library. http://bitvis.no/products/bitvis-utility-library/, Dec 2014.

[BJ07] William Lloyd Bircher and Lizy K John. Complete system power estimation: A
trickle-down approach based on performance events. In Performance Analysis
of Systems & Software, 2007. ISPASS 2007. IEEE International Symposium on,
pages 158–168. IEEE, 2007.

[BMS13] Emily Blem, Jaikrishnan Menon, and Karthikeyan Sankaralingam. Power strug-
gles: Revisiting the risc vs. cisc debate on contemporary arm and x86 architectures.
In High Performance Computer Architecture (HPCA2013), 2013 IEEE 19th In-
ternational Symposium on, pages 1–12. IEEE, 2013.

[BS00] J.A. Butts and G.S. Sohi. A static power model for architects. InMicroarchitecture,
2000. MICRO-33. Proceedings. 33rd Annual IEEE/ACM International Symposium
on, pages 191–201, 2000.

[BS13] Benjamin Bjørnseth and Bjørn C Seime. Porting and Evaluating Barrelfish for
SHMAC. Master’s Project, December 2013.

[BSDB05] Rajeev Balasubramonian, Viji Srinivasan, Sandhya Dwarkadas, and Alper Buyuk-
tosunoglu. Hot-and-cold: Using criticality in the design of energy-efficient caches.
In Babak Falsafi and T.N. VijayKumar, editors, Power-Aware Computer Systems,
volume 3164 of Lecture Notes in Computer Science, pages 180–195. Springer
Berlin Heidelberg, 2005.

[BTM00] David Brooks, Vivek Tiwari, and Margaret Martonosi. Wattch: A framework
for architectural-level power analysis and optimizations. In Proceedings of the
27th Annual International Symposium on Computer Architecture, ISCA ’00, pages
83–94, New York, NY, USA, 2000. ACM.

http://bitvis.no/products/bitvis-utility-library/

REFERENCES 133

[BVR+12] Jonathan Bachrach, Huy Vo, Brian Richards, Yunsup Lee, Andrew Waterman,
Rimas Avižienis, John Wawrzynek, and Krste Asanović. Chisel: constructing
hardware in a scala embedded language. In Proceedings of the 49th Annual Design
Automation Conference, pages 1216–1225. ACM, 2012.

[BWCC+08] Silas Boyd-Wickizer, Haibo Chen, Rong Chen, Yandong Mao, Frans Kaashoek,
Robert Morris, Aleksey Pesterev, Lex Stein, Ming Wu, Yuehua Dai, Yang Zhang,
and Zheng Zhang. Corey: An operating system for many cores. In Proceedings of
the 8th USENIX Conference on Operating Systems Design and Implementation,
OSDI’08, pages 43–57, Berkeley, CA, USA, 2008. USENIX Association.

[CHE11] Trevor E. Carlson, Wim Heirman, and Lieven Eeckhout. Sniper: Exploring the
level of abstraction for scalable and accurate parallel multi-core simulation. In
Proceedings of 2011 International Conference for High Performance Computing,
Networking, Storage and Analysis, SC ’11, pages 52:1–52:12, New York, NY, USA,
2011. ACM.

[CRR05] J. Coburn, S. Ravi, and A Raghunathan. Power emulation: a new paradigm for
power estimation. In Design Automation Conference, 2005. Proceedings. 42nd,
pages 700–705, June 2005.

[CSK+07] Derek Chiou, Dam Sunwoo, Joonsoo Kim, Nikhil Patil, William H Reinhart,
Darrel Eric Johnson, and Zheng Xu. The fast methodology for high-speed soc/com-
puter simulation. In Computer-Aided Design, 2007. ICCAD 2007. IEEE/ACM
International Conference on, pages 295–302. IEEE, 2007.

[DBSDBM13] Marc Duranton, David Black-Schaffer, Koen De Bosschere, and Jonas Maebe.
The HiPEAC vision for advanced computing in horizon 2020, 2013.

[DCK07] Robert H. Dennard, Jin Cai, and Arvind Kumar. A perspective on today’s scaling
challenges and possible future directions. Solid-State Electronics, 51(4):518 – 525,
2007. Special Issue: Papers selected from the 2006 ULIS Conference.

[DDR14a] Calculating Memory System Power for DDR3. http://www.micron.com/~/media/
documents/products/technical%20note/dram/tn41_01ddr3_power.pdf, October
2014.

[DDR14b] Ddr3 sdram device operation. https://www.skhynix.com/inc/pdfDownload.
jsp?path=/datasheet/Timing_Device/DDR3_Device_operation_timing_
diagram_computing.pdf, Dec 2014.

[DDR14c] System power calculators. http://www.micron.com/support/power-calc, Dec
2014.

[Des14] DesignWare Library. http://www.synopsys.com/dw/buildingblock.php, Dec 2014.

[DGnY+74] Robert H. Dennard, Fritz H. Gaensslen, Hwa nien Yu, V. Leo Rideout, Ernest
Bassous, Andre, and R. Leblanc. Design of ion-implanted MOSFETs with very
small physical dimensions. IEEE J. Solid-State Circuits, page 256, 1974.

http://www.micron.com/~/media/documents/products/technical%20note/dram/tn41_01ddr3_power.pdf
http://www.micron.com/~/media/documents/products/technical%20note/dram/tn41_01ddr3_power.pdf
https://www.skhynix.com/inc/pdfDownload.jsp?path=/datasheet/Timing_Device/DDR3_Device_operation_timing_diagram_computing.pdf
https://www.skhynix.com/inc/pdfDownload.jsp?path=/datasheet/Timing_Device/DDR3_Device_operation_timing_diagram_computing.pdf
https://www.skhynix.com/inc/pdfDownload.jsp?path=/datasheet/Timing_Device/DDR3_Device_operation_timing_diagram_computing.pdf
http://www.micron.com/support/power-calc
http://www.synopsys.com/dw/buildingblock.php

134 REFERENCES

[DRA14] DRAMSim2, cycle-accurate modelling of DRAM memory controllers, DRAM
modules and buses. http://www.eng.umd.edu/~blj/dramsim/, October 2014.

[EBSA+12] Hadi Esmaeilzadeh, Emily Blem, Renée St Amant, Karthikeyan Sankaralingam,
and Doug Burger. Power limitations and dark silicon challenge the future of
multicore. ACM Transactions on Computer Systems (TOCS), 30(3):11, 2012.

[ECX+11] Hadi Esmaeilzadeh, Ting Cao, Yang Xi, Stephen M. Blackburn, and Kathryn S.
McKinley. Looking back on the language and hardware revolutions: Measured
power, performance, and scaling. In Proceedings of the Sixteenth International
Conference on Architectural Support for Programming Languages and Operating
Systems, ASPLOS XVI, pages 319–332, New York, NY, USA, 2011. ACM.

[EECa] The EECS research initiative. http://www.ntnu.edu/ime/eecs.

[EECb] The SHMAC Project. http://www.ntnu.edu/ime/eecs/shmac.

[EEM14] EEMBC homepage. http://eembc.org/, Dec 2014.

[FB13] Bryan Ford and Eric Stephan Boleyn. Multiboot Specification version
0.6.96. http://www.gnu.org/software/grub/manual/multiboot/multiboot.html#
Boot-information-format, November 2013.

[GFA+11] Shantanu Gupta, Shuguang Feng, Amin Ansari, Scott Mahlke, and David August.
Bundled execution of recurring traces for energy-efficient general purpose process-
ing. In Proceedings of the 44th Annual IEEE/ACM International Symposium on
Microarchitecture, MICRO-44, pages 12–23, New York, NY, USA, 2011. ACM.

[GHS11] Venkatraman Govindaraju, Chen-Han Ho, and Karthikeyan Sankaralingam. Dy-
namically specialized datapaths for energy efficient computing. In High Perfor-
mance Computer Architecture (HPCA), 2011 IEEE 17th International Symposium
on, pages 503–514. IEEE, 2011.

[GRE+01] Matthew R Guthaus, Jeffrey S Ringenberg, Dan Ernst, Todd M Austin, Trevor
Mudge, and Richard B Brown. Mibench: A free, commercially representative
embedded benchmark suite. In Workload Characterization, 2001. WWC-4. 2001
IEEE International Workshop on, pages 3–14. IEEE, 2001.

[HEX14] Corsair to launch 3ghz dominator platinum ddr3 memory. http://hexus.net/tech/
news/ram/40197-corsair-launch-3ghz-dominator-platinum-ddr3-memory/, Dec
2014.

[Int14] Intel. Intel 64 and IA-32 Architectures Software Developer’s Manual, Sep 2014.
Current energy status register information in volume 3B, chapter 14, on page 35.

[KAB+03] Nam Sung Kim, Todd Austin, D Baauw, Trevor Mudge, Krisztián Flautner,
Jie S Hu, Mary Jane Irwin, Mahmut Kandemir, and Vijaykrishnan Narayanan.
Leakage current: Moore’s law meets static power. Computer, 36(12):68–75, 2003.

http://www.eng.umd.edu/~blj/dramsim/
http://www.ntnu.edu/ime/eecs
http://www.ntnu.edu/ime/eecs/shmac
http://eembc.org/
http://www.gnu.org/software/grub/manual/multiboot/multiboot.html#Boot-information-format
http://www.gnu.org/software/grub/manual/multiboot/multiboot.html#Boot-information-format
http://hexus.net/tech/news/ram/40197-corsair-launch-3ghz-dominator-platinum-ddr3-memory/
http://hexus.net/tech/news/ram/40197-corsair-launch-3ghz-dominator-platinum-ddr3-memory/

REFERENCES 135

[KBSW11] J.G. Koomey, S. Berard, M. Sanchez, and H. Wong. Implications of historical
trends in the electrical efficiency of computing. Annals of the History of Computing,
IEEE, 33(3):46–54, March 2011.

[KEH+09] Gerwin Klein, Kevin Elphinstone, Gernot Heiser, June Andronick, David Cock,
Philip Derrin, Dhammika Elkaduwe, Kai Engelhardt, Rafal Kolanski, Michael
Norrish, Thomas Sewell, Harvey Tuch, and Simon Winwood. sel4: Formal
verification of an os kernel. In Proceedings of the ACM SIGOPS 22Nd Symposium
on Operating Systems Principles, SOSP ’09, pages 207–220, New York, NY, USA,
2009. ACM.

[Kei14] James Keirstead. Positive coefficient regression in R. http://www.jameskeirstead.
ca/blog/positive-coefficient-regression-in-r/, Dec 2014.

[KFJ+03] R. Kumar, K.I Farkas, N.P. Jouppi, P. Ranganathan, and D.M. Tullsen. Single-
isa heterogeneous multi-core architectures: the potential for processor power
reduction. In Microarchitecture, 2003. MICRO-36. Proceedings. 36th Annual
IEEE/ACM International Symposium on, pages 81–92, Dec 2003.

[Kin14] William B. King. R model formulae. http://ww2.coastal.edu/kingw/statistics/
R-tutorials/formulae.html, Dec 2014.

[KR06] Ian Kuon and Jonathan Rose. Measuring the gap between fpgas and asics. In
Proceedings of the 2006 ACM/SIGDA 14th International Symposium on Field
Programmable Gate Arrays, FPGA ’06, pages 21–30, New York, NY, USA, 2006.
ACM.

[LAS+13] Sheng Li, Jung Ho Ahn, Richard D Strong, Jay B Brockman, Dean M Tullsen,
and Norman P Jouppi. The mcpat framework for multicore and manycore archi-
tectures: Simultaneously modeling power, area, and timing. ACM Transactions
on Architecture and Code Optimization (TACO), 10(1):5, 2013.

[Men14] Mentor Graphics ModelSim. http://www.mentor.com/products/fv/modelsim/,
October 2014.

[Mod14] Modelsim compile script. https://www.doulos.com/knowhow/tcltk/examples/
modelsim/, Dec 2014.

[MSB+05] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty,
Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood.
Multifacet’s general execution-driven multiprocessor simulator (gems) toolset.
SIGARCH Comput. Archit. News, 33(4):92–99, November 2005.

[NHM+09] Edmund B. Nightingale, Orion Hodson, Ross McIlroy, Chris Hawblitzel, and Galen
Hunt. Helios: Heterogeneous multiprocessing with satellite kernels. In Proceedings
of the ACM SIGOPS 22Nd Symposium on Operating Systems Principles, SOSP
’09, pages 221–234, New York, NY, USA, 2009. ACM.

[Ope13] Opencores.org. Amber ARM-compatible core. http://opencores.org/project,
amber, November 2013.

http://www.jameskeirstead.ca/blog/positive-coefficient-regression-in-r/
http://www.jameskeirstead.ca/blog/positive-coefficient-regression-in-r/
http://ww2.coastal.edu/kingw/statistics/R-tutorials/formulae.html
http://ww2.coastal.edu/kingw/statistics/R-tutorials/formulae.html
http://www.mentor.com/products/fv/modelsim/
https://www.doulos.com/knowhow/tcltk/examples/modelsim/
https://www.doulos.com/knowhow/tcltk/examples/modelsim/
http://opencores.org/project,amber
http://opencores.org/project,amber

136 REFERENCES

[PPPM12] Yongjun Park, Jason Jong Kyu Park, Hyunchul Park, and Scott Mahlke. Libra:
Tailoring SIMD execution using heterogeneous hardware and dynamic config-
urability. In Proceedings of the 2012 45th Annual IEEE/ACM International
Symposium on Microarchitecture, MICRO-45, pages 84–95, Washington, DC,
USA, 2012. IEEE Computer Society.

[R14] The R Project. http://www.r-project.org/, Dec 2014.

[RAS+14] Brandon Reagen, Robert Adolf, Yakun Sophia Shao, Gu-Yeon Wei, and David
Brooks. Machsuite: Benchmarks for accelerator design and customized architec-
tures. IEEE International Symposium on Workload Characterization, 2014.

[Rie14] Gerhard Rieger. socat (1) man page. http://www.dest-unreach.org/socat/doc/
socat.html, Mar 2014.

[RIS14] The RISC-V instruction set architecture. http://riscv.org/, Dec 2014.

[RSR+07] Suzanne RIVOIRE, Mehul A SHAH, Parthasarathy RANGANATHAN, Christos
KOZYRAKIS, and Justin MEZA. Models and metrics to enable energy-efficiency
optimizations. Computer, 40(12):39–48, 2007.

[SBM09] Karan Singh, Major Bhadauria, and Sally A McKee. Real time power estimation
and thread scheduling via performance counters. ACM SIGARCH Computer
Architecture News, 37(2):46–55, 2009.

[Sem14] Nordic Semiconductor. Capital markets day presentation. http:
//www.nordicsemi.com/eng/content/download/60199/1020095/version/1/
file/Capital+Markets+Day+September+15+2014+(1).pdf, Sep 2014.

[Sno10] David Snowdon. Operating System Directed Power Management. PhD thesis,
The University of New South Wales, 2010.

[SS13a] Sriram Sankaran and Ramalingam Sridhar. Energy modeling for mobile devices
using performance counters. In Circuits and Systems (MWSCAS), 2013 IEEE
56th International Midwest Symposium on, pages 441–444. IEEE, 2013.

[SS13b] Valery Sklyarov and Iouliia Skliarova. Digital hamming weight and distance
analyzers for binary vectors and matrices. Int. Journal of Innovative Computing,
Information and Control, 9(12):4825–4849, 2013.

[SSF99] Jonathan S. Shapiro, Jonathan M. Smith, and David J. Farber. Eros: A fast ca-
pability system. In Proceedings of the Seventeenth ACM Symposium on Operating
Systems Principles, SOSP ’99, pages 170–185, New York, NY, USA, 1999. ACM.

[Ste03] M Stein. Crossing the abyss: asynchronous signals in a synchronous world. EDN
design feature, July 2003.

[SWPC10] Dam Sunwoo, G.Y. Wu, N.A Patil, and D. Chiou. PrEsto: An FPGA-accelerated
power estimation methodology for complex systems. In Field Programmable Logic
and Applications (FPL), 2010 International Conference on, pages 310–317, Aug
2010.

http://www.r-project.org/
http://www.dest-unreach.org/socat/doc/socat.html
http://www.dest-unreach.org/socat/doc/socat.html
http://riscv.org/
http://www.nordicsemi.com/eng/content/download/60199/1020095/version/1/file/Capital+Markets+Day+September+15+2014+(1).pdf
http://www.nordicsemi.com/eng/content/download/60199/1020095/version/1/file/Capital+Markets+Day+September+15+2014+(1).pdf
http://www.nordicsemi.com/eng/content/download/60199/1020095/version/1/file/Capital+Markets+Day+September+15+2014+(1).pdf

REFERENCES 137

[Syn10] Synopsys. Design Compiler User Guide, Jun 2010.

[Syn14a] Synopsys. PrimeTime PX User Guide, Jun 2014.

[Syn14b] Synopsys. VCS User Guide, May 2014.

[Syn14c] Synopsys Design Compiler. http://www.synopsys.com/tools/implementation/
rtlsynthesis/pages/default.aspx, November 2014.

[Syn14d] Synopsys PrimeTime. http://www.synopsys.com/Tools/Implementation/SignOff/
Pages/PrimeTime.aspx, October 2014.

[Syn14e] Synopsys VCS. http://www.synopsys.com/Tools/Verification/
FunctionalVerification/Pages/VCS.aspx, October 2014.

[Sys] ARM System Mode. http://www.heyrick.co.uk/armwiki/Processor_modes#
System_mode.

[Tay12] Michael B. Taylor. Is dark silicon useful?: Harnessing the four horsemen of
the coming dark silicon apocalypse. In Proceedings of the 49th Annual Design
Automation Conference, DAC ’12, pages 1131–1136, New York, NY, USA, 2012.
ACM.

[Ver] Versatile Express Product Family. http://www.arm.com/products/tools/
development-boards/versatile-express/.

[VSG+10] Ganesh Venkatesh, Jack Sampson, Nathan Goulding, Saturnino Garcia, Vladyslav
Bryksin, Jose Lugo-Martinez, Steven Swanson, and Michael Bedford Taylor.
Conservation cores: Reducing the energy of mature computations. In Proceedings
of the Fifteenth Edition of ASPLOS on Architectural Support for Programming
Languages and Operating Systems, ASPLOS XV, pages 205–218, New York, NY,
USA, 2010. ACM.

[WA09] David Wentzlaff and Anant Agarwal. Factored operating systems (fos): The
case for a scalable operating system for multicores. SIGOPS Oper. Syst. Rev.,
43(2):76–85, April 2009.

[Wal14] Magnus Walstad. Task Based Parallel Programming on the SHMAC Multi-Core
Prototype. Master’s thesis, Norwegian University of Science and Technology
(NTNU), June 2014.

[WALK10] Robert NM Watson, Jonathan Anderson, Ben Laurie, and Kris Kennaway. Cap-
sicum: Practical capabilities for unix. In Proceedings of the 19th USENIX Security
Symposium, 2010.

[WBR11] Henry Wong, Vaughn Betz, and Jonathan Rose. Comparing FPGA vs. custom
CMOS and the impact on processor microarchitecture. In Proceedings of the
19th ACM/SIGDA International Symposium on Field Programmable Gate Arrays,
FPGA ’11, pages 5–14, New York, NY, USA, 2011. ACM.

http://www.synopsys.com/tools/implementation/rtlsynthesis/pages/default.aspx
http://www.synopsys.com/tools/implementation/rtlsynthesis/pages/default.aspx
http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx
http://www.synopsys.com/Tools/Implementation/SignOff/Pages/PrimeTime.aspx
http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/VCS.aspx
http://www.synopsys.com/Tools/Verification/FunctionalVerification/Pages/VCS.aspx
http://www.heyrick.co.uk/armwiki/Processor_modes#System_mode
http://www.heyrick.co.uk/armwiki/Processor_modes#System_mode
http://www.arm.com/products/tools/development-boards/versatile-express/
http://www.arm.com/products/tools/development-boards/versatile-express/

138 REFERENCES

[Wei84] Reinhold P Weicker. Dhrystone: a synthetic systems programming benchmark.
Communications of the ACM, 27(10):1013–1030, 1984.

[Wil14] Stephen Williams. Icarus verilog. http://iverilog.icarus.com/, Dec 2014.

[Wis14] Wishbone system-on-chip interconnectino architecture for portable ip cores. http:
//cdn.opencores.org/downloads/wbspec_b4.pdf, Dec 2014.

[WJ96] Steven JE Wilton and Norman P Jouppi. CACTI: An enhanced cache access and
cycle time model. Solid-State Circuits, IEEE Journal of, 31(5):677–688, 1996.

[ZBT14] ZBT SRAM Interface. http://www-mtl.mit.edu/Courses/6.111/labkit/ram.shtml,
October 2014.

[ZGKR14] Gerd Zellweger, Simon Gerber, Kornilios Kourtis, and Timothy Roscoe. Decou-
pling cores, kernels, and operating systems. In Proceedings of the 11th USENIX
Conference on Operating Systems Design and Implementation, OSDI’14, pages
17–31, Berkeley, CA, USA, 2014. USENIX Association.

http://iverilog.icarus.com/
http://cdn.opencores.org/downloads/wbspec_b4.pdf
http://cdn.opencores.org/downloads/wbspec_b4.pdf
http://www-mtl.mit.edu/Courses/6.111/labkit/ram.shtml

Glossary

Amber An open source implementation of a processor implementing the ARMv2
ISA. Both a three-stage and a five-stage pipeline is supported; in SHMAC, the
five-stage pipeline is used.

app kernel Operating system kernels in Barrelfish running on other cores than the
first.

application In the context of Barrelfish, an application refers to an executable
running on top of the OS-nodes.

Barrelfish An experimental operating system developed by ETH Zürich, whose
design goal is alleviating the problems of increasing system diversity, core
heterogeneity and core counts by modelling the operating system as a network
of independent nodes communicating through message passing.

BSP kernel The operating system kernel in Barrelfish running on the BSP.

CPU driver The privileged portion of an OS-node in Barrelfish. Manages core-local
resources, such as CPU time and peripherals. A CPU driver is also referred to
as a kernel.

Dark Silicon The phenomenon that transistor integration capabilities outpace the
transistor power consumption scaling, requiring increasingly dramatic fractions
of the chip area to be unused or “dark” at any given time.

ELF An abbreviation for Executable and Linkable Format, which is the object file
format most commonly used on UNIX systems. Amongst other things, ELF
files specify the memory requirements for loading the file, relocations which
must be handled when the file load location in memory is finally determined,
symbol tables for finding globally exported names, and the address of the entry
point into the binary if the ELF file is executable.

executable An executable is a file with machine instructions, static data and a
designated entry point.

139

140 Glossary

interface In Barrelfish, an interface is a set of remotely available procedures which
may be exported by an executable.

monitor The user space portion of a Barrelfish OS-node. Manages coordination
between different OS-nodes.

OS-node In Barrelfish, an OS-node refers to the operating system part managing a
given computing device.

service In this dissertation, in the context of Barrelfish we will refer to a service as
an interface being exported by a running executable; an interface is a static
concept, whereas a service is an interface made available at run-time. For
instance, an application wanting to use an interface will allocate a message
passing channel and bind to a service.

SHMAC SHMAC, an abbreviation for Single-ISA Heterogeneous MAny-core Com-
puter, can refer to one of two things: a research project at NTNU, or the
processor infrastructure developed as part of said project. In the majority of
this dissertation, SHMAC will refer to the latter.

shmacfish A bootloader generator program, written to start Barrelfish on SHMAC.

syscall An abbreviation for system call, which is a function exposed by the operating
system to user-space programs through which the operating system may be
requested to perform some privileged operation on behalf of the program. The
set of system calls exposed by the operating system defines the interface between
user-level programs and kernel-level operation.

system application In this dissertation, a system application refers to an ap-
plication which either implements typical OS functionality such as memory
management, or which is otherwise specially recognized by or related to Bar-
relfish.

system software Software which is responsible for control of the machine resources.
How broadly the definition spans may vary, but in this dissertation we will
include operating systems; drivers; run-time systems such as threading libraries
and garbage collectors; compilers; linkers; loaders; and debuggers.

toolchain A set of programs used to create software. A toolchain will typically
include a compiler, assembler and a linker, but may also include debugger,
loader, etc.

AppendixAOn Accuracy, Precision and
Trueness

Trueness

Precision

Accuracy

Figure A.1: Figure demonstrating the relationship between accuracy, precision
and trueness. Reproduced from [Azo14].

The definition of accuracy, precision and trueness used in this dissertation may be
illustrated as in Figure A.1. Along the x-axis precision increases from low to high,
and along the y-axis the trueness increases from low to high. These two may be either
high or low, independently. The figure illustrates four combinations of precision
and trueness: both are low, one is high while the other is low, and both are high.
The meaning of the term trueness and precision when talking of estimates of one
true value is illustrated using a target. The middle of the target represents the true
value. The shots on the targets, drawn as black dots, represent different estimates of
the true value. The trueness and precision describe how these estimates are spread

141

142 A. ON ACCURACY, PRECISION AND TRUENESS

relative to the true value.

The precision of estimates describes the variability of estimates. Low precision
means high variability, whereas high precision means low variability. The quality of
estimates illustrated in the bottom right corner of the graph, where precision is high
but trueness is low, may be describes as “consistent, but consistently wrong”.

The trueness of estimates describes the distance between the mean value of the
estimates and the actual true value. When trueness is low, the estimates are
consistently skewed from the true value. The mean value of the estimates will
therefore have a different value than the actual true value. When trueness is high,
there are no such consistent errors. There may still be random estimation errors,
leading to low precision, but these will on average cancel each other out. This leads
to a mean value of estimates close to the true value.

With accuracy defined to be the combination of trueness and precision, it will
increase when both trueness and precision increases. High accuracy requires both
high trueness and high precision.

AppendixBSoftware Infrastructure User
Guides

This chapter presents user guides for all the software infrastructures developed to
support the energy efficiency estimation part of this dissertation. The guides give a
brief overview of the construction and composition of each tool, what options are
available within it, and how it is meant to be used. As always, the authoritative
source of information is the source code, and so the sections also refer to where in
the SHMAC project source tree the products may be found. All paths will refer to
locations relative to the root of the SHMAC source tree unless context makes the
relative location clear.

B.1 ASIC Flow

The ASIC flow refers to the use of tools which enable the regression analysis between
activity and power necessary to create models of energy consumption. This flow
involves three steps: synthesis, simulation, and power consumption calculation. Fig-
ure B.1 illustrates the dependence between these steps in terms of inputs and outputs.
All the scripts which manage these tasks are located beneath the asic-synthesis
folder. At NTNU, all the tools are installed on the server mercury.iet.ntnu.no.

B.1.1 Synthesis

ASIC synthesis is handled by the tool Synopsys Design Compiler [Syn14c]. This tool
takes as input HDL source files, a cell library, a set of constraints, and execution
environment specifications. Its output is a gate-level netlist, describing how the
HDL design may be implemented using gates from the provided cell library while
respecting the set of constraints in the specified execution environment.

The synthesis process is implemented with setup scripts in the asic-synthesis
folder, synthesis control scripts in the asic-synthesis/scripts folder, shell scripts
running Design Compiler, and a Makefile target.

143

144 B. SOFTWARE INFRASTRUCTURE USER GUIDES

ConstraintsCell library gate
characteristics

Design
Compiler

VCS

PrimeTime PX

HDL files Operating
environment

Gate-level netlist
(verilog file)

Cell library gate
behaviour (verilog file)

Activity dump
(VPD file)

Testbench
(verilog file)

Simulator executable
“simv_zerodelay”

Test program
(hexdump)

Parasitic capacitances in
the design

Power dump
(FSDB file)

Figure B.1: Dependencies between different tools in the ASIC flow.

Setup Scripts The setup scripts are called homefolder_.synopsys_dc.setup and
localfolder_.synopsys_dc.setup. These scripts initialize synthesis environment
variables, such as defining where the cell library file is located and where the SHMAC
source folders are. The homefolder_.synopsys_dc.setup should be installed in
your home directory as .synopsys_dc.setup on the server where Design Compiler is
running. The localfolder_.synopsys_dc.setup file should be modified to reflect
your local setup, but its installation is automatically managed by the synthesis shell
scripts.

B.1. ASIC FLOW 145

Synthesis Scripts The Design Compiler tool may be programmatically controlled
using TCL scripts. The scripts in asic-synthesis/scripts read in the HDL source
files, elaborate the top-level design, set the constraints and operating environment,
and compile it. The entry point is the file called complete_synthesis.tcl.

To reduce synthesis time, a partial bottom-up synthesis strategy is employed [Syn10].
The synthesis script first compiles the cache tag and data array structures, the amber
core, and the scratchpad memory, setting the dont_touch attribute on each design.
This causes the compiled design to be reused at all locations, so that recompiling the
Amber core for every Amber tile on the system becomes unnecessary.

Which HDL files to read are specified in the read_hdl.tcl file in the folder
asic-synthesis/scripts. If the list of HDL files in the SHMAC project is al-
tered, this file should be updated accordingly, potentially with a version of the change
specific to the ASIC design.

Constraints are specified as script files in the asic-synthesis/scripts/constraints
folder. The only constraints currently used is a target clock period, but other con-
straints may also be used; see the Design Compiler user guide for details. The default
operation environment specification is currently used, so there are no environment defi-
nition files. There is, however, a folder called asic-synthesis/scripts/environment
which should hold any environment definitions created.

The output created are Synopsys design database .ddc files for each design which was
separately compiled, and a gate-level netlist, constraints file, and parasitic capacitance
file for the SHMAC toplevel.

Shell Scripts and Makefile Three shell scripts are responsible for actually
executing the design compiler tool. These are located in the asic-synthesis
folder. When running synthesis, directories called syn/passX are used to store
the build results. The X indicates the synthesis run number, which is incre-
mented each time to retain the results from time-consuming synthesis as the default
action. The folders should be deleted if the synthesis is outdated. The script
asic-synthesis/new_synthesis_folder.sh calculates the lowest number Y for
which there is no syn/passX folder where X < Y, and creates the folder syn/passY.
If no folder exists, the folder syn/pass1 is created. The name of the newly cre-
ated folder is sent to the script asic-synthesis/synthesize.sh, which copies the
localfolder_.synopsys_dc.setup file the newly created directory and runs the
Design Compiler executable from this location. Design Compiler is passed the
file asic-synthesis/scripts/complete_synthesis.tcl. Once the synthesis com-
pletes, asic-synthesis/copy_synthesis_results.sh creates symbolic links to the
gate-level netlist, the constraints file, and the parasitic capacitance file which was

146 B. SOFTWARE INFRASTRUCTURE USER GUIDES

produced by the synthesis.

These shell scripts are used in the Makefile target synthesize. Thus, running make
synthesize is sufficient to start a new synthesis job. The target is phony, and will
therefore run any time no matter whether other synthesis results exist or not.

B.1.2 Simulation

Simulation is performed using the tool Synopsys VCS [Syn14e]. The tool works
in two stages, as indicated in Figure B.1. First, the tool is fed the behavioural
description of the gates in the cell library, the gate level netlist from synthesis, and
the testbench. When run with this input, the tool produces an executable called
simv_zerodelay. The executable is suffixed _zerodelay because VCS is configured
with the +delay_mode_zero flag to produce a simulator which does not use delays
when calculating signal propagation [Syn14b].

The executable implements the simulation of stimulating the gate-level netlist with
the test bench. The testbench used works by reading the contents of a file called
shmac.hex, which is a text file containing the hex dump of a SHMAC executable,
and loading it into the memory of the SHMAC under test. As such, shmac.hex is
an implicit input for the simulator. Running the executable starts the simulation.
The result is a dump of signals in the file output.vpd, where the inclusion of signals
is as specified in the testbench.

There are two makefile targets which implement the simulation steps. The target
simv_zerodelay produces the simulator executable, if there has been any change
in the netlist and the testbench. The target output.vpd produces the output file
by running the simulator, if there has been any change to either simv_zerodelay
or shmac.hex. The target simulate is a synonym for output.vpd, so running make
simulate will build the simulator and run the simulation if the targets are not up
to date.

B.1.3 Power Estimation

Power estimates are calculated using Synopsys PrimeTime PX [Syn14d]. The program
works by first reading the gate-level netlist, the cell library, parasitic capacitances and
constraint files. Then, it works its way through the activity dump file produced by
the simulator, calculating for each event the power consumption resulting from this
event based on the resulting activity in gates and the characterized energy responses
for these gates. The energy is summed up over the interval of one clock cycle, and
then averaged over the clock cycle interval to calculate the power consumption this
cycle. PrimeTime PX estimates also include static power consumption [Syn14a].

B.2. BENCHMARK FRAMEWORK 147

Which modules energy estimates are collected for is specified in the modules.tcl
file. The file defines a TCL array of modules in the SHMAC design for which power
estimates should be calculated. This file may be modified to reduce the run-time of
the power analysis by only including power estimates for relevant parts of the design.

The script analyze_power.tcl controls PrimeTime PX, running the power esti-
mation as previously described for each module under consideration. The power
estimates also include all children of the modules listed, except leaf nodes in the
module hierarchy. This way, the output file does not explode in size with data
for all gates. For each module called module, the power estimates are stored in
a file called module_power.fsdb. The PrimeTime session is stored in the folder
ptsessions/module.

There is also a Makefile target for invoking PrimeTime PX. The modules.tcl file is
parsed with an awk-command to determine the expected set of output files. If these
are not all newer than the analysis dependencies, then PrimeTime is invoked with
the analyze_power.tcl script. The Makefile target power is a convenient alias for
the output power files, so running make power will run PrimeTime for all modules
which do not have up to date analyses.

It is possible to constrain the number of modules for which power is estimated by
including the flag -include top in the analyze_power.tcl file, and listing all the
modules for which power should be gathered in modules.tcl. This trades off result
file size for computation time, since the analysis is rerun for each module. This may
be necessary if the amount of activity data which it is desired to analyse results in
prohibitively large power estimate files.

B.2 Benchmark Framework

Creating and running benchmarks is the method for creating test and validation
data using the simulator and power analysis support described in Appendix B.1.2
and Appendix B.1.3. To facilitate this effort, a generic infrastructure was created
which automates and structures the process of obtaining activity and power data
from a set of C or assembly benchmark programs. The benchmark infrastructure is
located in the folder asic-synthesis/microbenchmarks, with its connection to the
ASIC flow implemented in the Makefile in the asic-synthesis folder.

To run the benchmarks in the VCS simulator, the already existing SHMAC toplevel
test bench is used as this is already designed to load programs into the memory
of a SHMAC configuration and run it. This is exactly what is needed for running
benchmarks. The testbench was also extended with a facility for the running program
to signal its termination. If a write to memory address zero is detected, the testbench

148 B. SOFTWARE INFRASTRUCTURE USER GUIDES

will terminate. This allows running benchmark programs from start to end in the
simulator.

The microbenchmarks folder contents is split in three: a Makefile controls the
microbenchmark build process, a lib folder contains microbenchmark utility code,
and a src folder contains all the benchmarks.

The benchmark utility code in microbenchmarks/lib include the microbenchmark
entry point which sets up run-time stacks, and some utility functions such as printing
text, registering interrupt handlers, and enabling or disabling caches. The benchmark
library run-time jumps to the actual benchmark code by calling the main function,
which all benchmarks are expected to define. As little configuration as possible is
done before main is called, since the library is not in charge but only a utility to
simplify benchmark development. Each benchmark should still be the master of the
state of the system at any point but the very beginning and the very end. Once the
main function of the benchmark completes, the run-time prints the string “DONE”
and ends the benchmark by writing to address zero. Emitting this string right before
the end allows gauging by output inspection whether the benchmark terminated
successfully or not.

The microbenchmarks/src folder is assumed to contain one file per benchmark.
Multi-file benchmark must place the files without the main function in the lib folder.
The files may be either assembly files with the extension .s or .S, or C files with the
extension .c. Assembly files with the extension .S are run through the preprocessor
first, so macros are available.

The Makefile in the microbenchmarks folder calls the ARM toolchain with prefix
specified by the variable CROSS. By default, CROSS is set to arm-none-eabi-. The
makefile creates one binary for each benchmark in the folder microbenchmarks/bin,
which may be run on the SHMAC platform instantiated on an FPGA for fast
verification of correct termination. If termination is not almost instant when run on
the FPGA, this is a sign that the benchmark is too extensive for running through the
simulator. Additionally, the makefile creates one textfile hexdump for each benchmark
in the folder microbenchmarks/hex in the format expected by the SHMAC testbench.

The microbenchmarks folder structure is exploited in the Makefile in the asic-synthesis
folder. The Makefile contains a phony target called microbench_activity, which
first runs make in the microbenchmark directory to create all the hex files. Then,
it iterates through all the hex files. For each hex file, it creates a symbolic
link to it named shmac.hex in the asic-synthesis folder, before running make
simulate. When simulation is done, the resulting output.vpd file is copied to
microbenchmarks/results/benchmark.vpd. To avoid simulating benchmarks for
which activity is already present, there are Makefile targets which explicitly state

B.3. REGRESSION MODELLING 149

the dependence between the output activity files and the input hex files.

In the asic-synthesis folder Makefile, there is another target called microbenchmark_power.
It works similarly to microbenchmark_activity, except that it is dependent on the
activity files in the microbenchmarks/results folder instead of hexfiles and produces
power estimate output files in directories called microbenchmarks/results/benchmark_power.
The phony target works by iterating through all benchmarks, making a link to the
corresponding activity file, running make power, and copying the result to the
appropriate directory.

To make invocation simpler, there is also a third target microbench which is an alias
for microbench_power. Running make microbench will therefore build all unbuilt
benchmarks, gather all non-existent activity data, and calculate all missing power
data.

B.3 Regression Modelling

This section describes the tools which have been developed to facilitate regression
modelling. Appendix B.3.1 will describe how the output files from simulation and
power analysis are converted to text files, and how subsets of signals and modules
may be selected from these to reduce the amount of data down to what is interesting
for the module which one is going to model. Appendix B.3.2 will then describe how
the resulting files, containing signals and power values for the module in question,
may be analysed, and the workflow which is used when creating models.

B.3.1 Data Scraping

The output from synthesis is in a binary format called VPD, and the output from
power analysis is in a binary format called FSDB. Being binary file formats, they
are more difficult to reverse-engineer and as documentation is scarce they are not
easily processed by custom programs. The first step in the processing of these files
is therefore to convert them to a text file equivalent, using the proprietary tools
vpd2vcd and fsdb2ns. The first program may be used to convert the simulation
output to a VCD text file, and the second program may be used to convert the
output from power analysis to the textual OUT format by passing the flag -fmt out
to the fsdb2ns tool.

The use of these tools has been automated using Makefile targets in the asic-synthesis
Makefile. The target vcd converts all VPD files in the microbenchmarks/results
folder to VCD files, and the target out converts all FSDB files in sub-folders of
microbenchmarks/results to OUT files. These targets should be invoked after
simulation and power analysis of the benchmark programs has been completed.

150 B. SOFTWARE INFRASTRUCTURE USER GUIDES

The next step is selecting a subset of activity and power data from the VCD and OUT
files and converting it to a format readable by the statistical processing program R
[R14]. This can be done using two programs written for this project: ConvertVcd1

and OutToDataFrame. These programs accept a VCD or OUT file, respectively, as
well as an output file argument. Once run, the user is prompted for a timescale.
This may be used to coarsen the data samples used for statistical modelling. When
using zero-delay simulations, specifying the clock period as the time scale is typically
sufficiently coarse.

The ConvertVcd program also accepts an optional argument of an existing output
file, which may be used to specify which signals should be selected. If this argument
is passed to ConvertVcd, the same signals as those in the file are selected from the
VCD file. If not, the user is presented with a menu as depicted in Figure B.2.

Figure B.2: A screenshot demonstrating the ConvertVcd utility program.

The ConvertVcd program uses two menus: one for browsing the hardware module
hierarchy, and one menu for selecting signals for inclusion in the output file. The
menus may be navigated using the arrow keys, and the active menu may be toggled
using the tabulator key. Signals which are included are highlighted in the menu.
Signal selection may be toggled by navigating to the desired signal menu entry, and
hitting the space bar. If the space bar is hit while the module menu is active, all
signals in the current module will be added unless they are all already included in

1The ConvertVcd program will be renamed VcdToDataFrame in the future.

B.3. REGRESSION MODELLING 151

which case they will be removed instead. Once selection has been completed, hitting
enter will start the conversion. Hitting the Q key will abort program execution.

The OutToDataFrame program is similar to ConvertVcd in operation. However, since
power consumption is reported per module only the left-most menu is used for active
selection of modules. The right-most menu is used to list which modules have been
selected.

To make it easier to automate the statistical processing, the input file organization
has been conventionalized. Data files gathered from the execution of test benchmarks
should be stored in a folder named test-data, and files gathered from validation
benchmarks should be stored in a folder named validation-data. These folders
should be located where it is desirable to run the modelling. The files for each
benchmark should be stored in a separate sub-folder with the name of the benchmark.
For instance, data files gathered from the Dhrystone validation benchmark are stored
in the folder validation-data/dhry/.

Conventions also exist for data file contents. Since power data files are not pro-
hibitively large, power data for all relevant modules should be included in a file
called power.dat. Signal data should be split into one file per module, named
<module name>_signals.dat. As an example, if the module u_execute is being
modelled, power and activity data from the Dhrystone benchmark would be found in
validation-data/dhry/power.dat and validation-data/dhry/u_execute_signals.dat
respectively.

The script regression/convdata.sh has been developed to simplify following these
conventions. This script contains a list of validation and test benchmarks. Addition-
ally, the script makes assumptions about where the OUT and VCD files are located
for benchmarks. The list of benchmarks should be updated when new benchmarks
are created, and the location benchmark VCD and OUT files must be customized for
each user. Having made any necessary customizations, the script should be invoked
using one of the following three symbolic links:

benchdata.sh This program accepts a module name and a benchmark name, and
runs ConvertVcd with input and output file names adhering to the previous
conventions. Similarly to ConvertVcd, it is also possible to pass the name of
an existing output file as a third optional argument which is used to specify
the signal selection.

powerdata.sh This program accepts a benchmark name, and invokes OutToDataFrame
with conventional input and output file names.

152 B. SOFTWARE INFRASTRUCTURE USER GUIDES

validations.sh This program is used to automate the creation of signal data used
for validation benchmarks. Since this has to mirror what has been used
when modelling with the test benchmarks, the signal data files existing in the
test-data folder are used to automate the creation of similar validation data.
The program thus accepts a list of validation benchmark names, and for each
a set of signal files matching those existing in test benchmarks are created
in an appropriate sub-folder of validation-data. The time scale prompt
when running ConvertVcd is slightly obstructive for automation, but may be
circumvented as follows:
while true; do echo <timescale>; done | ./validations.sh <benchmarks>

In addition to the programs preparing statistical processing, a program called
OutToMatlab may be used to generate matlab code which plots the power con-
sumption of selected modules.

B.3.2 Statistical Processing

Initialization Statistical processing starts by running the R program in the di-
rectory in which the directories test-data and validation-data reside. Person-
ally, I use a separate modelling directory with symbolic links to test-data and
validation-data. It is recommended to run R from Emacs using the ESS package,
which offers an interactive terminal with syntax highlighting, auto-completion, and
text editor integration such as debugging.

The statistical processing support is located in two files: evaluations.R and
dataconv.R. It is recommended to create a .Rprofile file in the modelling directory
which automatically loads the support files as follows:

1 source (" path / to / evaluations . R ")
2 source (" path / to / dataconv . R ")

Data Structures Once R is running and the two support files are loaded, modelling
may commence. The R code operates on three different data structures, which the
modeller will interface:

1. A benchmark is a collection of power and signal data for a selection of hardware
components, resulting from running one benchmark through simulation and
power analysis. Power data may be included independently of signal data,
and vice versa. Power is represented as a list of floating point numbers,
whereas signal data contains data for each signal selected with the tools in
Appendix B.3.1. An example benchmark instance is depicted in Figure B.3.

B.3. REGRESSION MODELLING 153

Benchmark
SignalsPower

...u_cache u_alu ...u_cache u_mem

1

2

3

i_ce

…

i_wen

0

1

0

0

11

0.028 0.038 0.032 …

Figure B.3: The benchmark data structure. All the components are fields,
accessible by name.

2. A power model is obtained through regression analysis of benchmark power and
signal data. The data structure is depicted in Figure B.4. The power model
targets a specific hardware module, identified by the “target” field, and is most
typically composed of models for submodules. Two optional fields, “internal”
and “children”, are used when modelling the energy consumption of signals
included in the target module only. The “children” field is a list of children
whose power consumption should be subtracted before running regression
modelling, and the “internal” field stores the resulting regression model. A
power model may also contain a transform, which is used on benchmarks either
when modelling or evaluating a model. For instance, since we model cache
power consumption separately we want to transform the benchmark data by
subtracting the cache power from all parent modules.

Power model

Submodels
...u_fetch u_decode

Target

“u_amber”

Transform Internal Children

Figure B.4: The power model data structure. All components are fields, accessible
by name.

3. An evaluation is a collection of statistics denoting how well a power model
predicts the power consumption in a benchmark using its signal data. The
evaluation objects are created by predicting the power consumption from a
benchmark object signal data based on a power model object, and comparing
the predictions to the power data in the benchmark object. The fields currently
included in evaluation objects are listed in Table B.1.

154 B. SOFTWARE INFRASTRUCTURE USER GUIDES

Table B.1: The fields included in the evaluation data structure.
Field name Semantics
predicted.power A list of predicted power values per cycle
actual.power A list of the actual power values per cycle
differences predicted.power - actual.power
absolute.differences abs(differences)
errors A list which gives per-cycle error values. The

error is relative to the predicted power if the
predicted power was less than the actual power,
and relative to the actual power if the predicted
power was larger. This makes an error of 100 %
correspond to an estimate twice as large as the
actual value, and an error of −100 % corre-
spond to an estimate half of the actual value.

absolute.errors abs(errors)
fraction.too.large A list of per-cycle error values, always relative

to the actual power.
fraction.too.small A list of per-cycle error values, always relative

to the predicted power.
errors.average The average value of errors.
absolute.errors.average The average value of absolute.errors
mean.fraction.too.large The average value of fraction.too.large
mean.fraction.too.small The average value of fraction.too.small
most.negative.error The minimum value of errors
most.positive.error The maximum value of errors

Modelling Workflow Overview When creating a model for some module from
scratch, the order of operation will typically be the following:

1. Create a benchmark object representing the test benchmark, with signal and
power data included as necessary.

2. Create a benchmark object representing the validation benchmark.

3. Create a model object which will represent the module being modelled, with
the transform set appropriately.

4. For each submodel in the modelling granularity:

a) Run regression modelling using the test benchmark and a formula.

B.3. REGRESSION MODELLING 155

b) Evaluate the model quality using the model coefficient of determination
(R2) and the test benchmark (how to do this is detailed further on in this
section).

c) If the previous point indicates acceptable model quality, add the necessary
signal and power data to the validation benchmark object and evaluate
the model quality using the validation benchmark.

d) If quality is deemed insufficient, revise regression formula and retry.

5. Once all submodels are created, a model may optionally be created for signals
internal to the target module.

6. Finally, the entire power model should be evaluated using the validation
benchmark. The impact of coefficient resolution should be examined. Once a
satisfactory model is created, the model is stored to file.

To make it easy to reproduce a modelling session, it may be a good idea to store the
commands used in files. I create functions in files modelling/create.validations.R,
modelling/create.models.R and modelling/create.evaluations.R which create
different validation benchmarks, power models and evaluations respectively. Using
ESS-mode and Emacs, these functions can be written to file and fed to the R shell
using the “Ctrl+c Ctrl+j” keyboard shortcut. This way, it is not necessary to retrace
what commands was executed at the end of a modelling session to write these files.

Utility Functions The modelling workflow is supported by the functions in
evaluations.R and dataconv.R. The available functions are tabulated in Table B.2.
The third column of the table indicates at which point in the previous workflow the
function is likely to be of use.

For the four categories in Table B.2, the first argument is typically respectively
a benchmark object; power model object; evaluation object; or list object. Use
argument completion in the R shell or consult the source files for more detailed
explanation of function arguments. One special argument worth mentioning here
is the resolution parameter to the pm.evaluate and pm.write functions. This
optional parameter may be set to an integer, corresponding to the number of decimal
places to be included in the coefficients when predicting power consumption. If it is
not set, the full coefficient precision is used.

There are other utility functions in the evaluations.R file as well. For instance,
several transformation functions exist. One example is the shrink function, which
removes the final element from all benchmark power data since the VCD files contain
one less cycle of data than the OUT files. The functions in Table B.2 are, however,
the ones most likely to be useful in general.

156 B. SOFTWARE INFRASTRUCTURE USER GUIDES

Table B.2: The functions available in evaluations.R and dataconv.R. The four
groups of functions in the table relate to benchmarks (prefix bmd.), power model
(prefix pm.), evaluation processing, and functions used in regression model terms..

Function name Effect Use
bmd.new.test Create a new benchmark by folder name

in test-data.
1

bmd.new.validation Create a new benchmark by folder name
in validation-data.

2

bmd.add Add signal and power data for a module. 1, 4c
bmd.add.power Add power data for a module. 1, 4c
bmd.add.signals Add signal data for a module. 1, 4c
bmd.add.all Can be used to add power and/or signal

data for several modules.
1

pm.new Create a new power model object. 3
pm.with.new Add a new submodel to a model object. 4a
pm.with.internal Add a new internal model to a model

object
5

pm.write Store the power model object to file. 6
pm.evaluate Evaluate the power model quality for a

given benchmark object.
4b, 4c, 5, 6

print.evaluation Prints all data in the evaluation. 4b, 4c, 5, 6
summary.evaluation Prints a summary of the aggregate

statistics in the evaluation.
4b, 4c, 5, 6

plot.evaluation Create a standard plot of an evaluation. 4b, 4c, 5, 6
resolution.impact.plot Plots the impact of model coefficient

resolution given a set of evaluations with
different resolution used.

6

sliding.error Calculates the average evaluation error
over a given time window size for all
time windows of this size.

6

HD Calculates the Hamming distance be-
tween subsequent values in a list of sig-
nal values, returning a new list. The first
Hamming distance value is calculated
between zero and the first list element
value.

4a

lbit Extract a bit at a given position for a
list of signal values, returning a new list.

4a

lbits Extract a range of bits from a list of
signal values, returning a new list.

4a

change Calculates changes in a list of signal
values, returning a list of boolean values.

4a

B.3. REGRESSION MODELLING 157

Creating a New Regression Model The majority of the creative modelling
work is the execution of step 4a, in which a formula using benchmark signals is
correlated with the benchmark power data. We therefore illustrate how this step is
executed in more detail.

The most frequently used function in this step is pm.with.new. To explain it, consider
this example invocation:

1 core . model <- pm . with . new (core . model , " u _ alu " ,
2 ~ HD (i _ a _ in) * change (i _ alu _ f un c t io n) + i _ carry ,
3 test . bm)

There are four input arguments to the function. The first is the power model object,
the second is the name of the target submodule, and the fourth argument is the test
benchmark object. The third argument is an R expression for a formula. The gen-
eral syntax for a formula is <dependent variable> ~ <independent variables>,
which describes a relationship between the dependent variable and the independent
variables. The dependent variable will be set by the modelling utility functions, after
transforming the benchmark power data with its transform function field, and may
therefore be skipped. The list of independent variables also describes which variable
interactions should be considered. Using a + operator between two variables means the
two variables should be considered independently, whereas using a *means that a cross
product should be included as well. An intercept is always included unless the inde-
pendent variable specification contains the term −1. Thus, our example tries to create
a regression formula of the form α1 ·HD(i_a_in) +α2 · change(i_alu_function) +
α3 ·HD(i_a_in) · change(i_alu_function) +α4 · i_carry+ β. Consult [Kin14] for
a more complete overview of the syntax for writing R formulae.

The dependent variables are resolved based on their names. The utility function sets
the signal data in the benchmark object to be an extra name space during modelling.
In our example invocation, the names of variables in the test.bm$signals field is
used.

In our example invocation, the dependent variables are largely the result of function
calls. R supports this by evaluating the functions before running the regression
modelling, as one would expect. It is therefore in these formula specifications the
functions in dataconv.R are typically used.

For several other examples on how this step may be executed, one may examine the
file modelling/create.models.R.

158 B. SOFTWARE INFRASTRUCTURE USER GUIDES

B.4 Using the Energy Efficiency Estimation Framework

This section will present the available SHMAC host-side software which enables
actually using the energy efficiency estimation framework to perform experiments
where the energy efficiency of a hardware or software component is evaluated.

B.4.1 User-space Utilities

The following utility programs, located in directory software/shmac_tools, may
be executed on the SHMAC host to get energy estimates from the driver:

shmac_read_energy prints a new set of energy samples as plain text. The tool is a
shell script which prints the contents of the proper driver sysfs attribute, and
has no arguments or options.

shmac_stream_energy continuously reads binary energy data from the proper driver
sysfs attribute. It has three positional arguments. The first argument is
mandatory, and is the name of the output file. The second argument is
optional, and specifies the desired sample period in milliseconds. The default
value is 5. The sample period argument may be set to zero to read samples
in a tight loop with no sleep commands. The third argument is also optional,
and specifies the number of sample words to read from the driver. The default
value is eight.

B.4.2 Monitoring and Logging Tool

The tools in Appendix B.4.1 are not often used directly. Instead, a separate mon-
itoring and logging tool, runnable on other computers than the SHMAC host, is
meant to serve as the front-end for most research purposes. The tool is located
in directory software/shmac_energy_monitor relative to the SHMAC repository
root. The tool is written in python 3, and is started with the command python3
multicore_plot_test.py2. The tool accepts command line options for specifying
the network port to use for incoming energy samples, the IP address of the SHMAC
host, the name of the log file, and the option of using Transmission Control Protocol
(TCP) as the transport protocol. A summary of command line options may be
attained by executing python3 multicore_plot_test.py –help.

When the tool starts, it asserts that the computer it is run on is not behind a NAT
device. Since the SHMAC host is going to be sending samples across the network to
the computer, it needs to be able to set up a connection3 to the computer running

2The application entry point file will likely be renamed in the future.
3Support for NAT could be added when using TCP by restructuring the way connections are

set up, but there are no plans to implement this at the moment

B.4. USING THE ENERGY EFFICIENCY ESTIMATION FRAMEWORK 159

the monitoring and logging tool. Next, the tool connects to the specified SHMAC
host and reads the driver sysfs attributes reporting the configuration of the SHMAC
infrastructure instance which is currently installed. This way, the tool determines
the layout of tiles, the sample sources per tile, and the sample size for each sample
source.

Once the tool is initialized, a GUI is presented with one graph area for each tile. An
example screenshot is given in Figure B.5. The GUI is split into tiles in the same
layout the current SHMAC configuration has. Each tile is used to plot the energy or
power consumption of an energy report unit present on that tile. If several units are
present, their plots are kept in tabbed windows in each tile. By looking closely at the
screenshot, you may see that the upper right, bottom right and bottom left graph
tiles contain two tabs. These GUI tiles plot estimates from Amber tiles. The active
tab contains the plot of power for the Amber core, and the inactive tab contains the
plot of power for the router.

Figure B.5: Screenshot demonstrating the monitoring and logging tool.

The tool is relatively simple to operate, as it contains only two buttons, one check
box and one text field. The text field may be used to specify the desired sample rate
before starting sampling. The check box controls whether power or energy is plotted
by optionally scaling the energy samples with the sample period and clock frequency.
The left-most button is used to toggle the connection to the SHMAC host. Pressing

160 B. SOFTWARE INFRASTRUCTURE USER GUIDES

the button while disconnected causes socat to be run on the SHMAC host, and a
socket of the appropriate type on the specified port to be opened on the researcher’s
computer. The other button is used to start sampling. Pressing it while sampling is
not started causes shmac_sample_energy to be started on the SHMAC host, and a
new thread is spawned in the GUI program which continuously reads data from the
socket connection. New samples are sent to the main GUI thread, which temporarily
stores them in an array. In addition, a periodic timer is started which causes an
update of the plots every second.

In steps, the tool is used as follows:

1. Launch it with proper command line arguments.

2. Press the left-most button labelled ’Connect’.

3. Configure the sample period. A sample period of 0 ms is the most common
choice.

4. Check the ’Plot power’ check box (due to sample variability, this is typically
desirable).

5. Press the second button labelled ’Start’.

6. The ’Plot power’ check box may be toggled during operation if desirable.

7. To finish the sampling, press the second button (which is now labelled ’Stop’).
The samples are stored in the file specified on the command line for further
analysis.

8. Sampling may be restarted by following the items 5 to 7 again.

9. To disconnect, press the left-most button (which is now labelled ’Disconnect’).

B.5 Hardware Testbench Framework

To simplify the testing of hardware modules, a small framework was created which
manages the use of the circuit simulator Modelsim [Men14]. The generic simulator con-
trol is managed in the files hardware/tests/setup.do and hardware/tests/run_test.do,
located relative to the SHMAC repository root. The first file loads the required
libraries, notably the Bitvis Utility test library [Bit14], and reads all the HDL files
used in the SHMAC infrastructure. In addition, it sources a file containing useful
ModelSim functions courtesy of Doulos [Mod14]. The functions are simply named r
and rr, and cause a recompilation of changed or all HDL files respectively. These
functions significantly reduce the turn-around time between updating an HDL file
and testing the change in the simulator. The run_test.do file accepts an argument

B.5. HARDWARE TESTBENCH FRAMEWORK 161

denoting the name of the test bench. This test bench is then loaded, together with
the wave form file named the same as the test bench with the suffix _wave.do if this
file exists.

To make running each specific test easier, separate ModelSim script files called <test
bench name>.do are created. These files simply first source setup.do, and then
run_test.do with the test bench name as argument. As an example, the test bench
HD_tb may be run using the file HD_tb.do and its wave form is automatically loaded
HD_tb_wave.do.

Since the per-test-bench script file has a fixed structure, and there is considerable
repetition of test bench structure and contents, a script called gentb.sh was created.
This script accepts the name of the module to be tested as an argument, and generates
the files <module>_tb.do and <module>_tb.vhd. The contents of the ModelSim
script file is as previously explained. The VHDL file contains a template test bench,
with the overall test bench structure in place but with signal declarations, component
declarations and tests missing. A wave form file is not generated: this is created by
the tester as needed when running ModelSim.

AppendixCComplete Modelling Tour

This chapter will present a walk-through of how the software infrastructures presented
in Appendix B are used step-by-step to produce a model for some component in
the SHMAC platform, and how to integrate it with the infrastructure. This section
should be read before developing and embedding new cores, accelerators or other
components in the SHMAC platform.

The steps will be presented in the proposed order of execution. More details may be
found in the corresponding section in Appendix B. Appendix C.1 will first present a
list of prerequisites, which are setup steps which are typically executed only once.
Then, Appendix C.2 will list how modelling itself is conducted.

C.1 Prerequisites

– Get access to a server1 (we will call this the synthesis server) which has the
following tools installed:

◦ Synopsys DesignCompiler 64-bit edition2.
◦ Synopsys VCS
◦ Synopsys PrimeTime PX
◦ fsdb2ns

◦ vpd2vcd

– Upload the hardware and asic-synthesis directories to this server.

– Create a syn folder on the same level of the file tree as the asic-synthesis
folder.

– Install the file homefolder_.synopsys_dc.setup as explained in Appendix B.1.1.
1I use the mercury server at the IET department
2The 32-bit edition runs out of memory when synthesizing 2 × 3 SHMAC designs.

163

164 C. COMPLETE MODELLING TOUR

– Modify the file localfolder_.synopsys_dc.setup to contain the correct path
to your asic-synthesis and hardware directories.

– Get access to a server with sufficient disk space for containing the large VCD
and OUT files3 (we will call this the storage server).

– Upload the regression directory to the storage server.

– Modify the get_datadir function in the regression/convdata.sh file on the
storage server to reflect the location of VCD and OUT files.

– Get access to a server with R version 3.14 installed4 (we will call this the R
server).

– Upload the regression/{evaluation,dataconv}.R files to the R server.

– Make a directory on the R server meant for modelling, and create a .Rprofile
file as explained in Appendix B.3.2.

C.2 Modelling Steps

Synthesis The following steps should operate on the files uploaded to the synthesis
server.

1. Modify the list of HDL files in asic-synthesis/scripts/read_hcl.tcl ac-
cording to how you have updated the SHMAC sources.

2. If the addition involves a large module included in several locations in a SHMAC
design, it may be desirable to create a new script similar to asic-synthesis/
scripts/compile_a25_core.tcl which compiles your module alone.

3. If desired, modify synthesis parameters, design constraints and operating
environments:

– Edit the cell library selection in the installed homefolder_.synopsys_dc.setup
file.

– Edit design constraints in the appropriate asic-synthesis/scripts/
constraints file. Consult the DesignCompiler user guide for accepted
options [Syn10].

3I use the moog server at the IDI department, since the disk quota on the synthesis server is
small.

4I use my own machine, but setting up the environment on a server with large amounts of
memory is recommended.

C.2. MODELLING STEPS 165

– Edit the operating environment in the appropriate asic-synthesis/
scripts/environment file. Consult the DesignCompiler user guide for
accepted options [Syn10].

– Enable clock gating in the synthesis by adding the -gate_clock flag to the
compile command in the compilation scripts in asic-synthesis/scripts.

4. Run make synthesize in the asic-synthesis directory on the synthesis
server.

Benchmark Creation The development of benchmarks should be done on your
development machine for version control, and be uploaded to appropriate location
on the synthesis server when they should be run.

This step may be skipped if your modifications, for instance enhancements to an
existing microarchitecture, is sufficiently covered by existing benchmarks.

1. Create either an assembly5 or a C file in the asic-synthesis/microbenchmarks/src
folder. The file must define an externally accessible main label, which is the
benchmark entry point.

2. Write the benchmark. If the benchmark is split into several files, include the
files without the entry point in the asic-synthesis/microbenchmarks/lib di-
rectory. Add include files to the asic-synthesis/microbenchmarks/include
directory.

3. Specify whether it is a test or validation benchmark in regression/convdata.sh.

Simulation and Power Analysis These steps should be run on the synthesis
server, in the asic-synthesis directory. Ensure that the benchmarks you wish to
run have been uploaded there.

1. If you want to get both simulation data and power data from all benchmarks,
run make benchmarks.

2. If you only want simulation data from all benchmarks, run make microbench_activity.
To subsequently get power data, run either make benchmarks or make microbench_power.

3. If you want data from only a selected set of benchmarks, run make microbenchmarks/
results/<benchmark>.vpd to get simulation data and make microbenchmarks/
results/<benchmark>_power to get power data.

5Use the .S extension if you want it to be preprocessed first.

166 C. COMPLETE MODELLING TOUR

Data Scraping

1. Run make vcd and make out in the asic-synthesis directory on the synthesis
server. Copy the resulting VCD and OUT files to the storage server, if necessary.

2. Run ./convdata.sh for each test benchmark you want to use, with the name
of the module being modelled as the second argument.

3. Run ./convdata.sh for each validation benchmark you want to use, with the
name of the module being modelled as the second argument.

Statistical Processing

1. Copy the regression/{test,validation}-data directories on the storage
server to the modelling directory on the R server.

2. Perform the statistical modelling, as explained in Appendix B.3.2.

Infrastructure Integration

1. Create an HDL file in an appropriate location in the SHMAC source tree
which implements the model. Instantiate the HD module for Hamming distance
calculation, and the change module for change calculations.

2. Add the file to the list of HDL files in hardware/express/run_vivado_2012.4.tcl,
hardware/sim.do and hardware/tests/setup.do.

3. Use the ./gentb.sh in the hardware/tests directory to create test templates
as explained in Appendix B.5, and flesh out the template with tests of your
monitor ensuring it works.

4. Instantiate the monitor in the module being modelled. Route the energy output
to the appropriate aggregation of monitor estimates, or directly to an energy
report unit or energy counter register. Test correct integration with ad-hoc top
level testing, or a new test bench if deemed necessary.

5. Synthesize the SHMAC with the monitor added, update the driver if the report
unit configuration has been changed, and install the new SHMAC and driver
on the SHMAC system.

AppendixDEnergy Models

This chapter presents the energy models which were created for different SHMAC
platform components.Appendix D.1 and Appendix D.2 present the regression models
and analytical models respectively. All model units are given in nanojoules, and the
time to overflow is calculated based on 32-bit sample sizes. The model coefficients
are listed with five decimal places.

D.1 Regression Models

This section first presents the metrics which are used to evaluate the precision of
the models in Appendix D.1.1, before Appendix D.1.2 presents the models and their
precision numbers.

D.1.1 Model Precision Metrics

In expressions in this section, the variables f1, ..., fn will denote estimates by the
power model, the variables y1, ..., yn will denote actual power values as calculated by
Synopsys PrimeTime, and ȳ = 1

n

∑n
i=1 yi. To get a symmetric graph of error values,

we define the error in cycle i as

error(i) =
{

yi−fi

fi
if fi < yi

yi−fi

yi
otherwise

Coefficient of Determination The coefficient of determination, denoted R2, is
used to describe the quality of a regression model. It is calculated as 1−

∑n

i=1
(yi−fi)2∑n

i=1
(yi−ȳ)2 .

The value ranges from between 0 and 1, with 0 indicating no fit and 1 indicating
a perfect fit. The value is typically used when modelling as an indication of when
one may expect the model to be of sufficient quality to accurately predict validation
benchmarks. The values listed in tables in Appendix D.1.2 are calculated from the

167

168 D. ENERGY MODELS

test benchmark power data compared with model predictions, and as such indicate
at what R2 values models of different quality may be expected.

Relative error in average energy The relative error in average energy is the
difference between the total estimated and actual energy divided by the total actual
energy. Expression:

∑n

i=1
yi−fi∑n

i=1
yi

Average Cycle-by-Cycle Error The average cycle-by-cycle error is the average
error seen each cycle. Expression: 1

n

∑n
i=1 error(i)

Absolute Average Error The absolute average error is the average of absolute
cycle-by-cycle error values. This measure does not average out errors alternating
between being too large and too small. Expression: 1

n

∑n
i=1|error(i)|.

D.1.2 Current Models

All graphs in this section plot values summed over a time window of 500 cycles,
which is necessary for figure clarity due to the large number of sample points. Models
formulae are listed as R formula expressions, described in Appendix B.3.2.

Certain graphs appear to be more erroneous than their statistics say, which is because
the resolution of the y-axis is as fine-grained as possible. This allows a more clear
inspection of model precision than what is possible if the y-axis scale is set to reflect
significant variations.

All models except that of the Amber system have high average precision, but several
of the models for the submodules do not accurately capture trends. This is not of
great importance for the following reasons:

– Several modules have a power consumption which is completely overshadowed
by other modules, so even significant errors in the models for these modules is
insignificant.

– The model estimates will likely be gathered at higher time window granularities
than 500 cycles, which will make the average power estimate a more valuable
metric than per-cycle accuracy.

– The models are most likely being made superfluous by changes to the SHMAC
infrastructure, as explained in Section 7.2. Thus, only a modest amount of
work has been spent optimizing them.

D.1. REGRESSION MODELS 169

AmberWrapper The Amber wrapper model is created from the sum of submodule
models, which are those listed in the rest of this section. The aggregated Amber
model statistics are listed in this paragraph.

Maximum value 7880
Minimum value 1164
Minimum time before overflow (32 bit) 545046 cycles (9.0841 ms)
Maximum time before overflow (32 bit) 3689835 cycles (61.4972 ms)
R2 0.884
Relative error in average energy 0.3135 %
Average cycle-by-cycle error: 0.7519 %
Absolute average error: 1.3664 %

Figure D.1: Amber wrapper model evaluation.

170 D. ENERGY MODELS

Amber Core Without Execute

Ecore = 0.01318
+ 0.00304 · exec_stall
− 0.00209 · core_stall
+ 0.00189 · dcache_wb_uncached_req
+ 0.00184 · dcache_wb_cached_req
− 0.00126 · dcache_wb_cached_req:icache_wb_req
+ 0.00062 · dcache_wb_uncached_req:icache_wb_req
+ 0.00054 · execute_iaddress_valid:HD(execute_iaddress)
− 0.00050 · exec_stall:HD(execute_iaddress_nxt)
− 0.00049 ·HD(execute_iaddress)
− 0.00029 · exec_stall:HD(execute_iaddress)
+ 0.00019 · core_stall:HD(execute_iaddress)
− 0.00018 · icache_wb_req
+ 0.00016 · core_stall:HD(execute_iaddress_nxt)
+ 0.00016 · execute_iaddress_valid
+ 0.00015 ·HD(execute_iaddress_nxt)
+ 0.00011 · core_stall:HD(fetch_instruction)
− 0.00009 · exec_stall:HD(fetch_instruction)
+ 0.00009 · conflict
− 0.00005 · conflict:HD(execute_iaddress_nxt)
+ 0.00004 · execute_iaddress_valid:HD(fetch_instruction)
− 0.00002 ·HD(fetch_instruction)
− 0.00001 · conflict:HD(fetch_instruction)
+ 0.00001 · conflict:HD(execute_iaddress)

Maximum value 5922
Minimum value -2370
Minimum time before overflow (32 bit) 725256 cycles (12.088 ms)
Maximum time before overflow (32 bit) N/A
R2 0.8301
Relative error in average energy 0.2520 %
Average cycle-by-cycle error: 0.6707 %
Absolute average error: 2.0257 %

D.1. REGRESSION MODELS 171

Figure D.2: Amber core model evaluation.

172 D. ENERGY MODELS

Execute Stage

Eexecute = 0.01367
+ 0.00237 · change(i_alu_function)
+ 0.00105 · change(i_rs_sel)
− 0.00082 · i_core_stall
+ 0.00032 · change(i_rm_sel)
+ 0.00031 ·HD(reg_bank_rm)
− 0.00021 ·HD(reg_bank_rm):change(i_rm_sel)
+ 0.00019 · change(i_rd_sel)
+ 0.00014 ·HD(barrel_shift_out)
+ 0.00014 · change(i_rn_sel)
+ 0.00008 ·HD(reg_bank_rs)
+ 0.00006 ·HD(reg_bank_rn)
+ 0.00005 ·HD(reg_bank_rd)
+ 0.00003 ·HD(reg_bank_rs):change(i_rs_sel)
+ 0.00001 ·HD(reg_bank_rd):change(i_rd_sel)
+ 0.00001 ·HD(reg_bank_rn):change(i_rn_sel)

Maximum value 3982
Minimum value 613
Minimum time before overflow (32 bit) 1078595 cycles (17.977 ms)
Maximum time before overflow (32 bit) 7006471 cycles (116.775 ms)
R2 0.886
Relative error in average energy 0.757077 %
Average cycle-by-cycle error: 0.9018 %
Absolute average error: 1.7779 %

D.1. REGRESSION MODELS 173

Figure D.3: Execute stage model evaluation.

174 D. ENERGY MODELS

Timer Module

Etimer = 0.00130
+ 0.00029 · i_wb_stb
+ 0.00025 ·HD(timer0_load_reg)
+ 0.00025 ·HD(timer1_load_reg)
+ 0.00025 ·HD(timer2_load_reg)
− 0.00015 ·HD(timer0_value_reg):i_wb_stb
− 0.00015 ·HD(timer1_value_reg):i_wb_stb
− 0.00015 ·HD(timer2_value_reg):i_wb_stb
+ 0.00007 · change(lbits(i_wb_adr, 0, 11))
+ 0.00003 · change(lbits(i_wb_adr, 2, 3))
− 0.00002 ·HD(i_wb_dat):i_wb_stb
+ 0.00002 ·HD(timer0_value_reg)
+ 0.00002 ·HD(timer1_value_reg)
+ 0.00002 ·HD(timer2_value_reg)
+ 0.00001 ·HD(timer0_value_reg):i_wb_we
+ 0.00001 ·HD(timer1_value_reg):i_wb_we
+ 0.00001 ·HD(timer2_value_reg):i_wb_we

Maximum Value 1581
Minimum Value -1033
Minimum time before overflow (32 bit) 2709568 cycles (45.163 ms)
Maximum time before overflow (32 bit) N/A
R2 0.7728
Relative error in average energy 0.4852 %
Average cycle-by-cycle error: 0.7253 %
Absolute average error: 0.8358 %

D.1. REGRESSION MODELS 175

Figure D.4: Timer model evaluation.

176 D. ENERGY MODELS

Improved Timer Module Model This paragraph showcases how higher mod-
elling effort may improve model accuracy and implementation overhead. Based on
the insight from Section 6.2.5, I created a new model which tried to avoid the use
of Hamming distances. This reduces the implementation overhead. Interestingly,
it was possible to make these changes while also slightly improving accuracy. This
demonstration of potential model quality is promising for future work.

Etimer = 0.00130
+ 0.00012 · change(lbits(i_wb_adr, 0, 11))
+ 0.00006 · lbit(timer0_ctrl_reg, 1)
+ 0.00006 · lbit(timer1_ctrl_reg, 1)
+ 0.00006 · lbit(timer2_ctrl_reg, 1)
+ 0.00005 · i_wb_stb:(lbits(i_wb_adr, 2, 3) == 1)
− 0.00004 · change(lbits(i_wb_adr, 0, 11)):(lbits(i_wb_adr, 2, 3) == 2)
− 0.00004 · change(lbits(i_wb_adr, 0, 11)):(lbits(i_wb_adr, 2, 3) == 1)
− 0.00004 · i_wb_stb
+ 0.00002 · i_wb_stb:lbit(timer0_ctrl_reg, 1)
+ 0.00002 · i_wb_stb:lbit(timer1_ctrl_reg, 1)
+ 0.00002 · i_wb_stb:lbit(timer2_ctrl_reg, 1)
− 0.00001 · change(lbits(i_wb_adr, 0, 11)):lbit(timer0_ctrl_reg, 1)
− 0.00001 · change(lbits(i_wb_adr, 0, 11)):i_wb_stb:lbit(timer1_ctrl_reg, 1)
− 0.00001 · change(lbits(i_wb_adr, 0, 11)):i_wb_stb:lbit(timer2_ctrl_reg, 1)

Maximum Value 171
Minimum Value 115
Minimum time before overflow (32 bit) 25116767 cycles (418.61 ms)
Maximum time before overflow (32 bit) 37347541 cycles (622.46 ms)
R2 0.914
Relative error in average energy 0.2681 %
Average cycle-by-cycle error: 0.8095 %
Absolute average error: 0.8512 %

D.1. REGRESSION MODELS 177

Figure D.5: Improved timer model evaluation.

178 D. ENERGY MODELS

Interrupt Controller Module

EIRQ = 0.00123
+ 0.00012 · change(lbits(i_wb_adr, 0, 11))
+ 0.00008 · change(lbits(i_wb_adr, 2, 3))
+ 0.00002 · i_wb_stb
+ 0.00001 · i_wb_we

Maximum Value 146
Minimum Value 123
Minimum time before overflow (32 bit) 29417584 cycles (490.29 ms)
Maximum time before overflow (32 bit) 34918433 cycles (581.97 ms)
R2 0.8611
Relative error in average energy 0.075 %
Average cycle-by-cycle error: 0.2525 %
Absolute average error: 0.8953 %

Figure D.6: Interrupt controller model evaluation.

D.1. REGRESSION MODELS 179

Tile Register Module

ET ileRegs = 0.00047
+ 0.00005 · i_wb_stb
+ 0.00001 · change(lbits(i_wb_adr, 0, 11))

Maximum Value 53
Minimum Value 47
Minimum time before overflow (32 bit) 81037118 cycles (1351 ms)
Maximum time before overflow (32 bit) 91382282 cycles (1523 ms)
R2 0.6319
Relative error in average energy 0.494 %
Average cycle-by-cycle error: -0.0674 %
Absolute average error: 1.0386 %

Figure D.7: Tile register model evaluation.

180 D. ENERGY MODELS

Amber System Module

EAmberSystem = 6e− 05
+ 0.00037 ·HD(wb_stb_tileregs)
+ 0.00035 · change(lbits(o_wb_adr, 12, 15))
+ 0.00008 ·HD(wb_ack_cpu):change(lbits(o_wb_adr, 12, 15))
− 0.00005 ·HD(wb_ack_cpu)
+ 0.00003 ·HD(o_wb_stb)
− 0.00002 ·HD(o_wb_stb):change(lbits(o_wb_adr, 12, 15))
+ 0.00001 ·HD(wb_dat_r_cpu)

Maximum Value 217
Minimum Value 1
Minimum time before overflow (32 bit) 19792476 cycles (329.87 ms)
Maximum time before overflow (32 bit) 4294967296 cycles (71583 ms)
R2 0.9401
Relative error in average energy 30.3327 %
Average cycle-by-cycle error: 12.20 %
Absolute average error: 20.1 %

Figure D.8: Amber system model evaluation.

D.1. REGRESSION MODELS 181

Router Module

Erouter = 0.04300
+ 0.00140 · lbit(req_out, 0)
+ 0.00140 · lbit(req_out, 1)
+ 0.00140 · lbit(req_out, 2)
+ 0.00140 · lbit(req_out, 3)
+ 0.00106 · lbit(req_out, 4)
+ 0.00062 · lbit(req_in, 4)
+ 0.00027 · lbit(req_in, 3)
+ 0.00027 · lbit(req_in, 2)
+ 0.00027 · lbit(req_in, 1)
+ 0.00027 · lbit(req_in, 0)
− 0.00003 ·HD(lbits(data_in_fifo_head, 0, 195))
− 0.00003 ·HD(lbits(data_in_fifo_head, 196, 391))
− 0.00003 ·HD(lbits(data_in_fifo_head, 392, 587))
− 0.00003 ·HD(lbits(data_in_fifo_head, 588, 783))
+ 0.00003 ·HD(lbits(data_out_fifo_tail, 0, 195))
+ 0.00003 ·HD(lbits(data_out_fifo_tail, 196, 391))
+ 0.00003 ·HD(lbits(data_out_fifo_tail, 392, 587))
+ 0.00003 ·HD(lbits(data_out_fifo_tail, 588, 783))
+ 0.00003 ·HD(lbits(data_out_fifo_tail, 784, 979))
+ 0.00002 ·HD(lbits(data_in, 784, 979))
+ 0.00002 ·HD(lbits(data_in_fifo_head, 784, 979))
− 0.00001 ·HD(lbits(data_in, 0, 195))
− 0.00001 ·HD(lbits(data_in, 196, 391))
− 0.00001 ·HD(lbits(data_in, 392, 587))
− 0.00001 ·HD(lbits(data_in, 588, 783))

182 D. ENERGY MODELS

Maximum value 7880
Minimum value 1164
Minimum time before overflow (32 bit) 545046 cycles (9.0841 ms)
Maximum time before overflow (32 bit) 3689835 cycles (61.4972 ms)
R2 0.884
Relative error in average energy 0.3135 %
Average cycle-by-cycle error: 0.7519 %
Absolute average error: 1.3664 %

Figure D.9: Router model evaluation.

D.2. ANALYTICAL MODELS 183

D.2 Analytical Models

Cache Model

Ecache = 0.03355 + 0.03596 · read+ 0.03368 · write

Maximum Value 6951
Minimum Value 3355
Minimum time before overflow (32 bit) 617892 cycles (10.298 ms)
Maximum time before overflow (32 bit) 1280169 cycles (21.336 ms)

Scratchpad Memory Model

Escratchpad = 0.31481 + 0.12882 · read+ 0.12882 · write

Maximum Value 44363
Minimum Value 31481
Minimum time before overflow (32 bit) 96814 cycles (1.614 ms)
Maximum time before overflow (32 bit) 136430 cycles (2.274 ms)

Off-Chip RAM Model

EDDR = 0.74360 + 0.67527 · read+ 0.81035 · write

Maximum Value 155395
Minimum Value 74360
Minimum time before overflow (32 bit) 27639 cycles (0.461 ms)
Maximum time before overflow (32 bit) 57759 cycles (0.963 ms)

	List of Figures
	List of Tables
	List of Abbreviations
	Introduction
	The SHMAC Project
	Energy-Efficient System Software
	Estimating Energy Efficiency
	Assignment Interpretation
	Contributions
	Dissertation Organization

	Background
	The SHMAC Infrastructure
	Barrelfish
	Operating System Architecture
	Barrelfish Implementation Details
	The Port to SHMAC

	Energy Efficiency Evaluation Strategies
	Measurements
	Performance Counters
	Architectural Simulators
	Circuit Simulators

	Hardware Regression Models

	Energy Efficiency Estimation Framework Design
	Design Goals
	Infrastructure Design
	Scan Chain
	Energy Report Unit
	Energy Monitors
	Host Interface
	SHMAC Software Interface

	Modelling Methods
	Regression Modelling
	Analytical Modelling

	Energy Efficiency Estimation Framework Implementation
	Modelling Method Implementation
	Synthesis
	Benchmark Selection
	Simulation
	Power Analysis
	Regression Modelling
	On-Chip and Off-Chip RAM

	Infrastructure Implementation
	Monitor Integration
	Energy Report Unit
	SHMAC Software Interface
	Scan Chain
	Host Interface
	Monitoring and Logging Tool

	Barrelfish Implementation
	Requirements Specification
	Multicore Support Requirements
	SHMAC Compatibility Requirements
	Console Support

	Implementing Multicore Support
	Booting New Cores
	Dynamic Interrupt Vector Dispatch
	Bootstrapping Intercore Communication

	Supporting Upgrades to the Instruction Set
	Adding ARMv3 Support
	Upgrading to ARMv4T

	Shared Memory Allocation
	Shared Memory Allocator Structure
	Bootstrapping Memory Allocation
	Location Awareness Support

	Implementing User-Space Console

	Evaluation
	Barrelfish
	Energy Efficiency Estimation Framework
	Accuracy
	Coverage
	User Friendliness
	Infrastructure Correctness
	Performance

	Discussion
	Barrelfish Suitability
	Impact of Planned SHMAC Modifications
	The Importance of Trueness
	Addressing Limitations
	Validation Benchmarks
	Modelling
	Sample Granularity
	Implementation Overhead
	Target and Host Clock Frequency Discrepancies
	User Friendliness
	Barrelfish Correctness
	Coverage Analysis

	Modelling Automation
	Power Management
	Project Description Fulfilment

	Conclusion and Future Work
	Conclusion
	Future Work

	References
	Glossary
	On Accuracy, Precision and Trueness
	Software Infrastructure User Guides
	ASIC Flow
	Synthesis
	Simulation
	Power Estimation

	Benchmark Framework
	Regression Modelling
	Data Scraping
	Statistical Processing

	Using the Energy Efficiency Estimation Framework
	User-space Utilities
	Monitoring and Logging Tool

	Hardware Testbench Framework

	Complete Modelling Tour
	Prerequisites
	Modelling Steps

	Energy Models
	Regression Models
	Model Precision Metrics
	Current Models

	Analytical Models

