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Abstract

In this thesis, I explored strategies for locating an Radio Frequency (RF) emit-
ter. Expanding on an idea conceived at Norwegian Defence Research Establish-
ment (FFI), of using small, cheap Received Signal Strength (RSS) sensors and
Unmanned Aerial Vehicles (UAVs) to search for unknown RF emitters. Cheap
and simple, will in most cases, mean that some property of the system suffers,
compared to more complicated and expensive systems. This thesis attempts to
circumvent these issues by using multiple sensors instead of one single larger
sensor.

How to best organize and use multiple sensors in a distributed autonomous con-
text is a problem that is complicated, if not impossible, to solve analytically.
Applying artificial intelligence methods to this problem allows for finding good
solutions and strategies while maintaining computational feasibility. The results
of this work outline a strategy from emitter-detection to location-prediction, in-
cluding analysis of trade-offs between accuracy and resource consumption. The
strategy presented here may be implemented in a functional real-world demon-
stration platform, with few modifications, and provides the ground-work for a
cheap, fully autonomous, distributed UAV system for locating unknown RF emit-
ters.

I have found that the marginal gain from adding more UAVs decrease faster
than that from adding more steps (time) per UAV. Furthermore, it is important
to avoid ambiguities. Ambiguities present two or more locations which cannot
be distinguished without a carefully selected formation. Finally, it may not be
possible to optimize this problem fully with the computational capacity available
today. This leads to developing good heuristics, approximate solutions, that
provide sufficient performance. A few such heuristics are presented here, most
notably using an attraction force to model optimized behaviour.
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Preface

This project spans numerous fields, and the result is a complex system combining
knowledge from all of these fields. Managing this has been a challenge, but I
have had the opportunity to learn much during the course of this work. In the
research phase of the project I learned that the same methods and knowledge is
often described in widely varied ways. Often, I would find information on the
same topic, but where the keywords chosen or the names of the methods were
different. One such example is Power Difference of Arrival (PDOA), which may
also be known as RSS geolocation methods (Section 2.4). Similarily, triangulation
in imaging and navigation is effectively Angle of Arrival (AOA) in RF emitter
geolocation (Section 2.3 and 2.4). Upon realizing this, finding related material
became significantly easier.

Expanding, from the single-objective and time indifferent problems explored in
the project assignment, to a dynamic and multi-objective setting explored in
this thesis, was a great jump in complexity. Many of the problems encountered
in this work would seem insurmountable and daunting at times. Breaking the
problems down and resolving them proved one of the greatest challenges of this
work. Without being able to fully resolve any given part of the problem at a time
I was left with reducing, resolving and attempting to explain smaller pieces in an
effort to reduce the complexity.

In this work, finding analytic solution may be impossible, finding optimal solu-
tions is hard and finding good solutions may be easier. The results, as presented
here, highlights problems and potential solutions to a few of the challenges in this
research area. Optimally, I would have wanted to fully reduce the problems I was
faced with, but not all of the problems I came across were possible to resolve.
There is still work remaining. While I still may just have scratched the surface,
I believe I have completed much of the ground work for a real-world test of an
autonomous distributed geolocation system.
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Chapter 1

Introduction

This chapter gives a general overview of the problem at hand. It will attempt
to give the reader insight into the reasoning behind this study, as well as present
arguments for why this particular field is of interest to researchers.

15



16 CHAPTER 1. INTRODUCTION

1.1 Introduction

Unmanned Aerial Vehicles (UAVs) are to an increasing degree being used both
in military and civilian contexts. Key properties like operator safety, high mobil-
ity, potential for long endurance and reduced costs make unmanned vehicles an
attractive option to manned vehicles in many cases. Coupled with recent minia-
turization and mass-production of UAVs, it is possible to envision many small
and cheap units working together to solve problems more efficiently than a single
unit.

One problem, that may benefit greatly from the use of many small units working
together, is to locate a Radio Frequency (RF) emitter. Most, if not all current
methods of locating an RF emitter involve either; expensive and complex hard-
ware or several simpler units working together [10]. Using more than one sensor
allows this problem to be solved easily, even if each sensor is simple and small.
Making this type of technology cheaper and more available could help aid in
search and rescue situations such as avalanches or natural disasters.

Modern communication systems operate in increasingly higher frequency spec-
tra. To localize these communication systems there are increasing requirements
to physical proximity between emitter and sensors. Norwegian Defence Research
Establishment (FFI) therefore wishes to look at the possibility to distribute sen-
sors on-board autonomous UAVs, to perform a coordinated search for unknown
RF emitters. Being an elevated platform, these UAVs will give better mobility
and easier be able to obtain a line of sight to the RF emitter. This increases the
detection ability of the system in comparison to ground-based sensors.

With the help of cheap and simple RF sensors it should be possible to locate
an unknown emitter based on the Power Difference of Arrival (PDOA) method.
PDOA works by comparing received signal power from multiple independent RF
sensors. Due to different types of noise, it is expected that the location predicted
by the PDOA will not always reflect the true location of the emitter. The pre-
cision of the location estimate will depend on the propagation environment, the
number of RF sensors and their relative position to the unknown RF emitter. In
light of this, exploring how to best use these algorithms and exploit their strengths
and weaknesses, in order to achieve maximum precision and utility in their lo-
cation estimates, is an important part of making this technology applicable to
real-world problems.



1.1. INTRODUCTION 17

In this study, I explore different strategies and trade-offs in order to locate an RF
emitter accurately, using as few resources as possible. This work consists of two
parts; a project assignment and the master thesis. In the project assignment two
scenarios were explored; optimizing a formation around the emitter, and another
scenario, where the receivers are far away from the emitter and trying to get a
general direction of the emitter. These two scenarios can be considered the first
and final step of predicting the location of an emitter. It is assumed that the
emitter has been detected (signal to noise ratio above a given threshold).

The master expands on the work, done in the project assignment, by considering
a non-static world, where the sensory platform (UAV) may use its mobility to
better predict the emitter-location. This extensively complicates the setting by
adding a dynamic time-dimension to the problem. Time increases the search and
solution space by several orders of magnitude. Finding good solutions in this
search space is not trivial. Complex dynamics and the sheer size of the search
space make this a challenging problem.

In a real-world system, there will be noise distorting the predictions. For the
optimizations, the noise adds additional complications, in that evaluation of so-
lutions become non-deterministic. When comparing solutions, the important
factor is their qualitative difference when faced with similar conditions (noise).
Solutions should be robust in the face of noise; this means that each solution
has to be tested using a wide variety/selection of noise. Preferably, each solution
should be tested so thoroughly that the random draw of noise seizes to be a fac-
tor, leaving only the properties of the solution and the magnitude of the noise as
factors affecting the performance of the solutions.

With all of these contributions, it is clear that computational capacity is a lim-
itation in this work. Applying massive parallel architecture, such as Compute
Unified Device Architecture (CUDA), alleviates this problem, but does not solve
it fully. The problem can be simplified and divided into smaller pieces. Several
stages, or phases, have been devised and explored. These serve both as a way to
simplify the problem and as reference points between the different optimizations.
The stages are described in the following section.
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1.2 Problem vision

Step 1 Step 2

Step 3 Step 4

Figure 1.1: Problem overview

The end goal of this work is a fully autonomous distributed system that is able
to detect and locate RF emitters without human intervention. In order to reach
this goal, there are multiple stages with varying amount of information that
has to be surpassed, in order to successfully locate the emitter. Breaking the
system down to smaller pieces has the advantage of making each step possible to
analyse separately, and as such, reducing the complexity of the task. Locating an
unknown RF emitter can be broken down in the steps seen in Figure (1.1).

The different phases can be described as:

• Step 1 - Exploration of the search area and initial detection

• Step 2 - Rough location-prediction

• Step 3 - Effectively relocate sensors and converge on the emitter

• Step 4 - Optimal location-prediction/closing in on the emitter
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In Step 1, none of the UAVs have detected a signal using their sensors. In other
words, the signal may be absent or out of range. Using methods from artificial
swarm intelligence combined with a number of UAVs, it is possible to search a
large area quickly and efficiently. This is covered in the master thesis by Jørgen
Nordmoen [14]

Once at least one of the UAVs in the swarm detect the emitter/comes within
range of the emitter, it is able to call out for help, letting other members of the
swarm come to aid in the search. At this point, it is assumed that the UAVs are
able to detect the signal, but do not have more than a vague indication of location
of the emitter. For this work, it is assumed that there is only one emitter. Due
to the nature of signal propagation, it will be possible for the system to assume
that the emitter is within a relatively restricted area. The size of the area is
given by the frequency and the strength of the emitter. Under the assumption
of an unknown RF emitter, the emitted signal-strength will not be known to the
swarm of UAVs.

Since the emitter can be restricted to a relatively confined area, we can apply an-
other method of geolocating RF emitters. This method is based on the Received
Signal Strength (RSS) of the signal. Using the differences in RSS at different
positions, it is possible for the swarm, as a unit, to estimate the location of the
emitter. This is known as PDOA algorithm. A minimum of three samples from
different positions are required for this method to be applicable. The accuracy of
the predictions, as given by the PDOA algorithm, will vary based on the receiver
configuration and noise in the environment. Noise can be filtered using filtering
methods, but it is impossible to remove the noise completely. The positions of
the receivers, in this case the UAVs, can be optimized to minimize the error in
prediction.

Unfortunately, minimizing the error in prediction requires optimizing a non-linear
and fairly complex system. This is hard, if not impossible, using analytic meth-
ods. An idea was conceived to use Artificial Intelligence (AI) methods, in partic-
ular a Genetic Algorithms (GAs), to make it possible to find good strategies and
configurations for receivers in finite time and using less computational resources.
This is the basis for this project assignment and master thesis.

In the project assignment, Step 2 and Step 4 was explored. Step 2 is when a
detection of an emitter has occurred and some indication of its location is required
(Subsection 3.1.3). In Step 4, pinpoint accuracy of the emitter is required, and
the receivers/UAVs assume a configuration around the emitter to achieve this
(Subsection 3.1.2).
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It would be wise to maximize the utility of the samples the UAVs inevitably will
collect during the transition from Step 2 to Step 4. This involves optimizing
the flight path of multiple UAVs, to maximize emitter prediction precision while
minimizing resource consumption (flight time). To summarise, make an opti-
mal decision about the flight path and actions of multiple UAVs using limited
information from Step 2, and minimize the resource consumption. Step 3 and
associated problems are covered in this thesis.

The thesis also contains additional exploration of the problems discovered in the
project assignment, specifically anomalies in predictions. This is documented in
Section 5.2 of this thesis. Noise and ambiguities significantly complicate many of
the optimizations in this work. Initial experiments in the thesis work therefore
explored why ambiguities occur, and what could be done to make solutions more
robust, leading up to Step 3 and the optimization of paths.

A significant part of this work consists of well-chosen optimizations, chosen to
provide insight into the important factors in precise geolocation of an unknown
RF emitter. Numerous scenarios and optimizations were created in this work.
Those presented here are only some of the optimizations developed. In order to
provide a concise and well-defined structure to this thesis, not all optimizations
could be included. A master thesis is also time restricted. This leads to situations
were optimizations have to be kept reasonably short in order to stay within the
allotted time-frame, and allowing for more than one iteration with feedback from
supervisors.



Chapter 2

Background

This chapter seeks to provide some background information for the different fields
this report covers. This chapter is not a comprehensive knowledge-base for this
study, but should give the reader the background needed to follow the rest of the
report.
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2.1 Unmanned Aerial Vehicle

In general, there are many types of UAVs, ranging from micro-sized surveillance
helicopters, to large fixed-wing long-range autonomous planes. They all have one
factor in common: the pilot, if any, does not have to be located in it or even
near it. This allows for a lowering of cost, as human resources often are at a
premium.

For the purpose of geolocation of RF emitters, UAVs can be divided into two
groups:

• Flying platforms that are able to hover

• Flying platforms that are not able to hover

Whether a platform can stand still or not is important because a moving platform
adds additional requirements to the rest of the hardware, in terms of real-time
processing and fast refresh rates. A platform that can hover has the benefit of
being able to follow an arbitrary flight pattern, but at the cost of endurance, in
most cases.

UAVs are able to provide functionality, previously only available to those willing
and able to commit a large amount of resources. There is an ever increasing
number of applications for UAVs, both in civilian and military context, mainly
due to reduced cost associated with the use of UAVs. These are only some of the
possible applications of UAVs:

• Real-time monitoring of assets

• Journalistic coverage

• Disaster relief and recovering

• Geolocation and rescue of missing persons

• Relay-station for communications

As cost continues to decline, other applications for groups of UAVs will become
viable. Groups of UAVs have the benefit of being able to decentralize and dis-
tribute a task across many units. Quite a few tasks can be very challenging to
solve, given only one UAV. However, a greater number of UAVs would allow
such tasks to be solved with greater ease. One such application is the geoloca-
tion of RF emitters. This task is normally performed by a number of different
techniques, as described in Section 2.4.
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In short, there are two options for geolocating RF emitters:

1. Specialized and expensive sensor equipment

2. Large number of general and cheap sensors

One specialized sensor is not necessarily better than a group of general and cheap
sensors. Combining this with the use of UAVs leads to a highly mobile and
versatile platform. In addition, the sensors will get better signal-to-noise ratio at
higher altitudes, as will be described in Section 2.2. UAVs provide both mobility
and the elevated platform, making it an excellent choice for a sensor platform.

2.2 Radio Frequency propagation modelling

RF signal propagation is very complex. Some of the contributing factors to the
RF environment are:

1. Antenna properties: gain, directionality, size etc.

2. Free space loss: dampening of signal intensity, due to increasing area of
coverage

3. Frequency of transmission: high-frequency signals are more easily damp-
ened by environmental factors

4. Physical objects: trees, buildings etc. cause reflections and dampen signals

5. Weather, especially rain

6. Interference from other signals

Estimating and properly including all of these factors into a propagation model
will not be feasible in any reasonable amount of time. There are far too many
contributing factors to be able to perfectly simulate the propagation of a signal
through space. I, therefore, have to simplify and approximate these factors by an
appropriate model. The model I used in this work is called the Log-distance Path
Loss (PL) model [15]. This model gives the loss in signal strength, or received
intensity at distance d from the emitter.
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Figure 2.1: Signal loss from emitter to receiver

Pt is the emitted signal strength. L is the loss in signal strength from emitter to
receiver. Pr is the received signal strength. d is the distance from the emitter
to the receiver. PL is the loss in signal intensity; from the figure this is given by
the following equation:

Pr = Pt − L (2.1)

L = Pt − Pr (2.2)

L refers here to the loss due to the distance the signal travels from the emitter
to the receiver. Commonly, this is approximated using this formula (unit is dB
unless specified):

L(d) = Lf (d0) + 10α log
d

d0
(2.3)

Lf (d0) defines the loss at a given reference distance d0. This is used because the
signal propagation often does not conform to the model close to the emitter. Esti-
mating Lf (d0) may be done empirically for real systems, however approximations
exist. For the purpose of this work, the exact value of Lf (d0) is not important.
It is a constant and is cancelled out where it is used (Section 2.5).

L(d), the loss in signal strength at a distance d from the emitter, uses a parameter
α. α is the PL exponent for the given environment. A higher α results in a greater
attenuation of signal power. In free space, where the only cause of signal strength
loss is the signal dispersion itself, α is equal to 2.0. In a real environment, where
other factors are likely to contribute, α may vary from 2 to 6.
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Figure 2.2: Log-distance Path Loss (PL) model

Figure 2.2 is a plot of the received signal power (Pr) against the distance from
the emitter. The signal power drops rapidly at first, and then tapers off. This
directly effects the detection range, as receivers are often specified at a certain
sensitivity. Sensitivity refers to to the minimal detectable signal power the sensor
can distinguish from noise.

Figure 2.3: Näıve geolocation algorithm. Intersecting circles
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A näıve geolocation algorithm could use the Pr directly by correlating the recorded
signal strength with the distance. This could be done by inverting Pr so that,
given an RSS, a distance from the receiver is returned. Each reading of the RSS
would then give a distance to the emitter from the sensor’s position. Combining
multiple sensor-readings would result in a set of circles which intersect at the
emitter-location.

The näıve approach to geolocation assumes that we know the strength of the
signal sent by the emitter. This is often not a viable assumption, as emitters
may not wish to be found. Emitters that do not wish to be found can use
this assumption to mask their actual position by varying their signal-strength.
An emitter that does not behave predictably does not give information to help
locate it or is little known about, is said to be an uncooperative emitter. As a
result, a robust geolocation algorithm cannot make any assumptions concerning
the emitter’s signal strength and has to consider the emitter uncooperative.

The assumption made about α and the propagation model can be tested empiri-
cally. As part of a summer internship at FFI, I worked with a group conducting a
set of experiments to show that the assumptions reflect the real world [20]. The
figure below depicts real measurements following the Log-Distance PL model.
As can be seen from the figure, depending on the height of the observation, α
may vary. The green samples were taken at a height of 10m above ground level,
resulting in a lower α than the blue samples. The blue samples were measured
at ground level, which adds additional noise and reflections (which is modelled
as a higher α).

Figure 2.4: Real-world data: signal strength vs distance
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The model, as presented here, is not exact - it leaves out many contributions that
can affect the received signal positively or negatively. All the remaining contri-
butions are appended as noise. This noise is modelled as a Gaussian stochastic
variable X with zero mean and variance that depends on the environment. Real-
world trials have found the variance to be anywhere from 5dB to 15dB [15]. In
most of this work, only a small amount of noise is used (1dB). It is assumed that
a rolling average or some other filtering method is applied before attempting to
predict the emitter-location.

L(d) = Lf (d0) + 10α log
d

d0
+X (2.4)

Figure 2.5: Log-distance Path Loss (PL) model with noise

Figure 2.5 shows the Log-distance PL with noise added (6dB). The addition of
noise is of high importance. Noise with a high variance can cause an emitter
to appear significantly closer or further away (it adds or subtracts to the signal
power). Clearly, this is a major problem for any geolocation algorithm based on
RSS. Adding noise makes it impossible to use the näıve approach of inverting For-
mula 2.4 to get the distance to the emitter. Hence, other options for geolocation
has to be considered.
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2.3 Methods for geolocating objects

A large amount of research has been conducted in the area of predicting positions
of objects in 2D and 3D space [19]. Some of the methods that can be used
include:

1. Triangulation

2. Trilateration

3. Multilateration

Triangulation refers to using direction to an object from a number of known
points to estimate the position of the object. Using angles to get a position
estimate has the benefit of giving a general direction, even with only one known
point-reading. Adding another known point would give a position estimate in 2D
space. A third point would be needed for 3D space. Alternatively, if we are only
interested in a 2D position in 3D space (for example in the case where Z is 0 and
the emitter is assumed to be on the ground), only two points would be required
for a position estimate. The introduction of noise in the angular measurements
would make the lines in Figure 2.6 cones instead, effectively giving an intersecting
area, instead of a single point.

Figure 2.6: Triangulation in 2D space using two known points
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Trilateration will predict the position of an object by looking at distance to
other known points. This is equivalent to drawing circles with radiuses equal
to the distance to the object and examining where they intersect. If noise was
introduced in the distance measurements, the circle-radiuses as seen in Figure
2.7, would become thicker. As for triangulation, it would give an intersection
area instead of a single point.

Figure 2.7: Trilateration in 2D space using three known points

Berle [1] suggests using both triangulation and trilateration, as this would be
beneficial in cases where either method is inaccurate on its own, or the object
being located is attempting to deceive the geolocation algorithm. In this work,
I apply previously defined algorithms directly. Using a combination of methods
for geolocation is left as a topic for future exploration, and outside the scope of
the current work.
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Multilateration looks at the difference in distance to the object measured from
two or more known points in space. This will give a number of possible locations,
which can be narrowed down by using more reference points.

D12 = |D1 −D2| (2.5)

D13 = |D1 −D3| (2.6)

D23 = |D2 −D3| (2.7)

D1, D2 and D3 are the distances to the unknown point from the respective
reference points 1, 2 and 3, which are not known. If they were known trilateration
could be applied. All that is known are the differences D12, D13 and D23.

Figure 2.8: Multilateration in 2D space using three reference points

The points in red are possible locations of the emitter, given that we know a set of
distance-differences D12, D13 and D23. By combing a set of these differences, it
is possible to locate an unknown object by finding the points in space that satisfy
all of the requirements. For instance, being D12 distance closer to or further away
from reference point 1 than reference point 2. Similar restrictions apply for all
other pairs of reference points. Noise in the distance-differences would make the
bands in Figure 2.8 wider, effectively, giving a larger intersection area where the
object being located may be.
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2.4 Geolocation of uncooperative emitters

Locating an uncooperative RF emitter is significantly harder than locating an
emitter that cooperates. In a scenario where the emitter wishes to be found, the
emitter could simply broadcast Global Positioning System (GPS) coordinates,
making it trivial to find it. An uncooperative emitter may resist attempts to
locate its position. This can be done by a number of techniques masking the true
location of the emitter, such as varying signal strength, frequency hopping and
burst transfers. A robust method for locating emitters should assume that the
emitter is unwilling to cooperate in the search.

There are several techniques to locate an uncooperative RF emitter. Among
them are:

1. Angle of Arrival (AOA)

2. Time of Arrival (TOA)/Time Difference of Arrival (TDOA)

3. Frequency Difference of Arrival (FDOA)

4. Received Signal Strength (RSS)/Power Difference of Arrival (PDOA)

Angle of Arrival (AOA) uses a highly directional antenna in order to get a direc-
tional vector for the emitter. Combining a number (at least two) of these sensors
can give an estimate of position in two dimensions.

Time of Arrival (TOA) exploits the property of signal propagation, more con-
cisely, it looks at the time when a signal was detected at one location and com-
pares that to the time it reached another. This will, effectively, give an indication
of where the signal is coming from.

Frequency Difference of Arrival (FDOA) makes use of Doppler-shift in order to
give a reading of the emitter’s position. Doppler-shift affects the frequency of the
signal when moving towards and away from the emitter. A moving sensor may
be able to use this to say something about the location of the emitter.

PDOA looks at the intensity of the signal. Given a suitable propagation model
and a set of sensors, it is possible to estimate the position of the emitter, looking
at only the difference in intensity of the signal received at multiple locations.
PDOA has the advantage of being very simple to implement, requires little in
terms of hardware, and the hardware required is widely available. For these
reasons, I will be using the PDOA method for this study.

Multiple algorithms for PDOA exist. The project assignment explored: Non-
Linear Least Squares (NLLS), Discrete probability density (DPD) and Intersec-
tion Density (ID). NLLS was chosen for giving the best predictions [10].
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2.5 PDOA algorithm: Non-Linear Least Squares

NLLS is a non-linear estimator of emitter-location. It is based on comparing mea-
sured difference in RSS between two sensors, to a calculated/expected estimate
of the difference given an emitter-location, and squaring the result. This can be
used to give an emitter-location prediction, since the true emitter-location will
result in a lower error than any other position. The non-linear property of the
underlying mathematical equations makes the problem hard to solve analytically.
NLLS is therefore used with a grid that specifies the possible prediction values
for the algorithm.

A two-dimensional grid is commonly used, however, there are no restrictions
that would prohibit an extension to three dimensions. The prediction precision
is directly tied to the granularity of the grid itself. A more finely grained grid
will also lead to longer computation time for the algorithm to give a prediction.
This means that trade-off between prediction precision and computation time is
required. Exploring the trade-off between grid granularity and computation time
is outside the scope of this work.

Pkl = Pk − Pl (2.8)

Q(x, y) =
∑
k<l

[Pkl − 5α log(
(x− xl)2 + (y − yl)2

(x− xk)2 + (y − yk)2
)]2 (2.9)

Consider a set of sensors S. For each pair of sensors in S, the difference in RSS
(Pkl) can be calculated. Pkl is the actual difference in measured signal strength.
It is possible to derive an expression for the expected difference in RSS for a pair
of sensors, given the location of the emitter. This can be seen as the second part
of formula 2.9 (5α log(...)). Squaring the deviation between the two differences,
we have a measure of how well the sensor readings conform to the PL model,
given the emitter-location (x,y).

min
0≤x≤m

( min
0≤y≤n

Q(x, y)) (2.10)

Q(x, y) can be considered a measure of how well the emitter-position (x,y) fits
with the given sensor readings. By minimizing Q(x, y) over a suitable grid, the
most likely emitter-position (x,y) can be determined.
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2.6 Genetic Algorithm

Taking inspiration from nature has led to many breakthroughs in artificial intelli-
gence (ref swarm intelligence [2, 11], particle swarms [4, 18], neural networks and
GAs [5, 7]). GAs is a way to simulate evolution within a computer. Evolution is
a very powerful way of finding good solutions (not necessarily great solutions) to
very hard problems that may even border what we can attempt to fully under-
stand. Unlike solving a problem analytically, using a GA only requires a measure
of testing and comparing which solutions are better than others. Like evolution
in nature, genes are passed from parents to children. The better fit an individual
is, the greater the chance of that individual having its genes passed down. Mu-
tation is added on top of this to optimize already good solutions and introduces
a random element. Together, this makes up the GA in its most basic form.

A GA can be said to be a directed search: more exploration is performed in
areas that show promise and have high fitness. This search is conducted by a
population of possible solutions; each of these solutions is usually a complete,
valid solution to the search problem. The GA will optimize the solution on the
basis of their fitness. The fitness of a solution is a single value (often a real number
or integer). The absolute value of the fitness of an individual in the population is
of little interest. How the fitness value compares (higher or lower) to the rest of
the individuals in the population, will determine the given individuals’ success.
Indirectly, this specifies which genes are passed on and are considered viable for
future exploration of the search space.

A simple GA can be expressed in the following steps:

1. Create a random population of individuals

2. Calculate the fitness of the individuals in the population

3. Select some individuals from the population for mating; these are considered
the parents

4. Create a new set of individuals based on the ones previously selected (the
children)

5. Mutate the children based on some (low) probability

6. Calculate the fitness of the new individuals and combine the children with
the parent generation

7. If the desired performance of the population as a whole has been reached,
stop executing, else go back to step 3
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The GA has been used on a number of real-world problems. As described above, it
lacks any domain-specific knowledge needed to solve the given problem. Tailoring
it to a specific problem involves defining the following properties:

1. Genome and phenome (a common decomposition of an individual)

2. Fitness-function

3. Crossover and mutation-operators

Beginning with the genome, this can be compared to DNA in nature, which
encodes the properties and acts as a recipe or blueprint. A common and simple
genome representation is a bit-string. A number of bits may be combined to
form a gene, which defines one property or value of the phenome. The phenome
is the matured individual, and can be said to be the expression of its genes. The
relation between genome and phenome acts as an abstraction layer, allowing the
specification of a solution space that is easier to work with and may not include
many or any invalid solutions. By careful design of the phenome-genome relation
it is possible to restrict the GA to solutions that are within the boundaries set
by the problem.

Consider a problem where the goal is to find the best usage of a single room, given
a set of activities with durations (scheduling). Best usage would be a schedule
that allows for as many as possible of the activities to be run without colliding.
Having a way of mapping from one search space that does not have to consider
the case of overlapping activities (invalid solution), would greatly simplify the
problem. By encoding the schedule as start-time for each activity, it would be
possible to schedule two activities so that they overlap. If one instead used an
encoding based on the ordering of activities, this would not be possible. Problems
that are more complicated often feature similar restrictions that could cause
invalid solutions. The point is: a good genome-phenome relation may significantly
reduce the size of the solution space by removing invalid solutions.

As mentioned previously, the fitness-function is the measure of how fit an in-
dividual/phenome is. This measure should be defined in such as a way that
it accurately describes the problem at hand. Modelling complicated real-world
problems to give a good relation between the fitness-values and the performance
of the solution can be challenging. Far from all problems can be modelled in
a simple way to allow for easy verification of the solution to the problem, but
an accurate fitness-function is vital to enabling the GA to solve the problem.
For problems that do not have an easy way of estimating the performance of an
individual/phenome, simulation may be the only option.

Using simulation in the fitness estimation adds further challenges due to the
(often) stochastic nature of the simulation. This problem may be illustrated by
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selecting the dice that gives you the best roll from a crate of dices. Each dice can
have a different start value and number of sides, making the values produced by
a random roll in the long run different for each dice. Picking a single dice and
testing it may result in a very high value for a single roll, however, it is not given
that this is repeatable, nor representable for the long-time performance of that
dice. Solving this problem could be done by rolling each dice a number of times
to make it more statistically significant, however, this takes more time. Each
generated genome (which is then ”evolved” into a phenome) has to be evaluated
at least once. Having a fitness-function that is time-consuming to evaluate will
clearly slow down the exploration of the search space, and thereby the problem-
solving itself.

The two operators, mutation and crossover, create new genomes (children) from
old genomes (parents). In general, there are some common choices for a crossover-
operator, the simplest ranging from single-point crossover of the bit string, to
complex methods of combining two tree-structured genomes. The single-point
crossover selects a single index into the bit string. The bit strings from the parents
are then split at that index, making two parts for each parent. Combining one
part from each parent makes one child.

How crossover is implemented is highly dependent on the internal representation
chosen for the genome, but there are a few guidelines:

• Should include some part of each parent’s genome, in most cases (a chance
of just bringing the parents ”as is” is sometimes used)

• Often, a random element is included, for instance, the index in single-point
crossover may be chosen at random

Crossover can, in early generations, do large jumps in search space by combining
two solutions and retaining properties from both. Mutation is often a relatively
small step in comparison. Mutation becomes an important factor in later gen-
erations, where crossover has little effect, as most individuals of the population
are fairly similar. At that point, mutation can improve already good solutions,
making them great, or help to get the solution out of a local maximum. Simplest
form of mutation would be to flip some bits in the bit string of the genome, given
a low random probability. More complicated forms of mutation are also possible,
and can be tailored to better fit the solution space. For instance, searching for
a solution in N-dimensional space could apply a small step in either of the N
directions.

Choices for genome and phenome encoding are described in Subsections 4.2.2 and
4.2.3. Information related to crossover is found in Subsection 4.2.4, and mutation
in Subection 4.2.5.
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2.7 Multi-Objective Evolutionary Algorithm

A Multi-Objective Evolutionary Algorithm (MOEA), is an evolutionary optimization-
method, sharing most features of a regular GA. Much like the GA, the MOEA
has a concept of the genetic operations: crossover and mutation. There is little-
to-no difference in the way crossover and mutation operates in a GA, compared to
that of the MOEA. Crossover implementations, such as single-point or two-point
crossover is applicable to a MOEA

Fitness-evaluation for the MOEA has one major difference compared to that of a
regular GA. A MOEA optimizes on multiple objectives concurrently, and as such,
each solution/phenome must be evaluated on multiple criteria. The output from
a fitness-evaluation of a phenome is a list of values, representing the performance
in the different criteria that are being optimized.

For a GA, the result of a run is a population of solutions with a single best-
solution. When multiple objectives are being optimized at the same time, it is
not possible to return a single best-solution. Instead, the MOEA will return
a set of solutions, known as a pareto front. The pareto front is a set of solu-
tions, in which no solution dominates another solution in all criteria/objectives.
Another feature of a solution on the pareto front, is that it is not possible to
improve it in any objective without simultaneously decreasing the performance
in another objective. It is important to understand, that the pareto front should
span the entire spectrum of trade-offs between the objectives given. In effect, the
pareto front highlights the best solutions, without giving preference to any of the
objectives.

A MOEA algorithm must try to maintain diversity in the solutions of the pop-
ulation to properly span the pareto front. This is done using an appropriate
selection method. A commonly used selection method for MOEA is the NSGAII
[3]. Another method for selecting diverse individuals along the pareto front for
mating is MOEA/D [21]. These differ in the way individuals are selected, and
which individuals are selected to become the next generation.

As the MOEA returns a set of solutions on the pareto front, additional choices
have to be made if one wishes to be left with only one solution. Choosing the
optimal trade-off between the objectives requires expert knowledge about the
problem, or at least some preference on the trade-off between the objectives. It
is not unreasonable to consider the MOEA, an expert support system, aiding the
decision maker in making good decisions. By highlighting and showcasing good
solutions to the problem, many solutions that should not receive any attention
from the decision-maker have already been excluded.
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2.8 Finite Mixture Model

The world is not normally distributed. Often, normal distributions can be ap-
plied with good results, but not always. Depending on the complexity of the
distribution and how closely it resembles a normal distribution, it may be a
reasonable simplification. Some distributions are too loosely related to the nor-
mal distribution to allow a normal distribution to make a good approximation. A
fairly common example would be any type of multimodal probability distribution.
Multiple peaks make a single normal distribution a rough approximation.

By approximating real-world data to known distributions, it is possible to get a
parametric model for the data. This can be extremely useful when attempting to
interpret data. For multimodal distributions, it is not hard to imagine using mul-
tiple common distributions, such as a normal distribution, to model more complex
shapes. This is what Finite Mixture Model (FMM) [13] does: by approximating
and fitting multiple distributions or components to the data, more complex data
can be accurately modelled and parametric distributions created.

FMM is not a new concept, but the recent advances in computer technology has
increased the number of applicable use-cases. Given a set of data, the FMM
method is able to generate a parametric model. Only simple normal distribu-
tions are used as components for the FMM in this work. FMM requires some
computational resources, as the components are fitted to the data using iterative
steps. FMM cannot guarantee an optimal fitting, but multiple random restarts
can be applied to get better results.

The number of components is given as an input to the fitting algorithm. This
means that the user has to know how many components are required to model the
data. Selecting the number of components is not always trivial. The result of too
many components are wasted resources and an overly fitted model. Humans are
skilled at detecting patterns and seeing tendencies, machines in general are not.
Automating the selection of component-count can therefore be a challenge.

In this work, FMM was used for visualizations in the Interactive simulator (Sub-
section 4.4.4). FMM was also used for clustering predictions in the Whack-A-
Mole strategy (Subsection 5.7.1)
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2.9 Related work

2.9.1 General

This section provides an overview over work done by others, that relates to the
problems at hand. Not all of the presented work may, at first glance, seem to be
of high relevance, however, it is the intention to provide the reader with references
to other research that is applicable to this field of study.

2.9.2 Comparison of PDOA methods

Jackson et al. [10] at Defense Research and Development Canada has conducted
an in-depth study and comparison of the different algorithms for Power Difference
of Arrival (PDOA). Their work shows promising results, predicting the location
of an emitter over a fairly large area. Additionally, they compared the computa-
tional intensities of the algorithms and their prediction precision.

All their work was done on the ground, using a mobile measurement station,
averaging samples over time. Being on the ground, they were subject to more
noise than what would be the case if the measurements had been taken from an
elevated platform.

2.9.3 Geolocation of RF emitters by UAVs

Scerri et al. [16] from Carnegie Mellon University, did research and some practical
work on Unmanned Aerial Vehicles (UAVs) [16, 17]. They used a group of flying,
fixed-wing planes in order to scan an area for Radio Frequency (RF) emitters,
and implemented a method of effective path-planning for each of the UAVs.

Binary Bayesian Grid Filter (BBGF) was used to give an estimate of the like-
lihood that any given location contains an emitter. New information from the
sensors of the UAV was used to update the BBGF. The resulting output (from
the BBGF) was then used to make a map of entropy in the area.

This map gives a view off which sample-readings would provide the most in-
formation and value to the model. Path-planning can then be conducted by
maximizing the information gain or reduction of entropy in the model. Their
structure allowed them to select the flight-path that gave the most information
about the area.
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2.9.4 Optimal Landmark Selection for Triangulation

Madsen and Andersen [12] from the Aalborg University, compared different triplet-
configurations, and gave an overview of the uncertainty in positioning, based on
the triplet selected. Their work was based on a camera-based sensor and a set of
known landmarks. The goal was for a robot to be able to use this information to
give a good estimate of its own position at any given time.

2.9.5 NASA antenna

Antenna design is a challenging problem that has not yet been fully solved. Part
of the problem is that antennas may perform very well without engineers being
able to explain why. Hornby et al. [9] investigated this using an Evolutionary
Algorithm to evolve an antenna for use on a space probe. They found that they
could make antennas that were smaller and performed better than the currently
known antennas. The only problem was that no one could explain why the
antenna performed so well. Without fully understanding why it worked so well,
it is considered high risk to use it for critical applications. NASA therefore could
not use the antenna on their space probe.

In their work, they used a relative recursive tree-like genetic encoding. This was
adapted for use in this work and was used to encode the path of UAVs. See
Subsection 4.2.3 for details on the encoding used in this work.
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Chapter 3

Summary of the project
assignment

The thesis is the extension of a project assignment. This chapter is a summary of
the work conducted as part of the project assignment. Introduction, background
and methods for this work is covered in the respective chapters of the main
report.

41
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3.1 Introduction

3.1.1 Problem background

The two problems I have looked at are related, however, also significantly dif-
ferent. In order to be able to find an emitter, a search has to be conducted.
This search is not necessarily starting in a location where it is possible to get a
direct reading of the emitter. It is also not given that we will be able to easily
and without cost, move to check out every signal detected in the search. There-
fore, a trade-off between precision of estimates and computational cost has to be
made. First step towards a solution to this problem is to look at the following
two problems:

1. The optimal configuration (freely placed) to gain best precision possible.
Sensors will be able to assume a configuration around the emitter’s actual
location.

2. A configuration (sta ic) that gives best precision on estimates (using N
= 3,4,6,.. receivers), given that the sensors have to remain in relative
proximity to each other, and not have the emitter within the formation
itself.

Problem 1 is of interest, since it will effectively give an estimate of the precision,
it is possible to achieve, given a PDOA algorithm and a number of sensors.
Furthermore, it may be of interest to see whether the trivial solution (a triangle,
square or in general a ring) is, in fact, the optimal solution, given a freely placed
configuration around the emitter.

Problem 2 represents a scenario where the emitter may just have been detected
by one or more sensors. This means that the sensors will have no way to proceed,
and an estimate with a reasonable precision from the current position will be of
great value for future path-planning.

In order to make the problems above manageable, the following assumptions have
been made:

1. A given configuration of N sensors can be said to be better (or worse) than
another configuration of N sensors. Better or worse is given by a criterion
such as estimate precision.

2. A sensor configuration may behave in a directional manner, meaning that
it may exhibit properties making it non-uniform in its precision of estimate,
depending on the location of the emitter.
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3. The UAVs are not allowed to use multiple samplings or averaging to remove
noise from their readings. Noise is therefore a bigger problem than it may
be in a real-world application

4. UAVs are able to get an exact position-fix on its own location (with no
noise).

The sections that follow aim to provide a better granularity to the problems, by
dividing them into questions that may be tested, or in other ways verified by the
results in this report.

3.1.2 Problem 1: Free configuration

The main focus of this problem is to explore how accuracy is affected by the
configuration chosen. Factors that increase or decrease precision of estimate are
of particular interest. In order to be able to classify the solutions provided by
the Genetic Algorithm (GA), I will be using the trivial solution as a point of
reference. The trivial solution, in this case, refers to putting all the available
sensors in a circle around the emitter. For three sensors this shape would be a
triangle.

Extending this, working with a higher number of sensors, seeing how well the
solutions generalize and which factors are driving for the accuracy is important.
In general, this can be described as: what is the value of adding another sensor to
the set of receivers? Knowing this will allow for better decision-making in higher
level planning, using groups of autonomous sensors.

Research questions:

1. Will the trivial solution (circle around the emitter) always be optimal in
terms of error in position estimate?

2. How will the propagation environment affect the distance from emitter to
sensor, given an optimal configuration?

3. Does the solution from (1) generalize to N sensors?

4. What is the value of adding another sensor?
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3.1.3 Problem 2: Remote pinpoint configuration

Cost is often a driving factor in development and decision-making. In this prob-
lem, the cost of moving to an optimal position, such as in Problem 1 (Section
3.1.2), is assumed to be high. Therefore, I wish to give a good location esti-
mate with reasonable precision, without allowing the sensors to place themselves
freely.

The restrictions in place to achieve this are simple:

1. A circle is defined, within which the sensors may configure themselves freely.

2. This configuration is encoded in such as way that it is possible not only
to relocate the sensors as a set (while maintaining their individual relation
to each other), but also that the configuration may be rotated arbitrarily
(Subsection 4.2.2).

Having these restrictions will allow for testing of the following research ques-
tions:

1. Does the configuration depend on the distance from the emitter?

2. Is the configuration found directional?

3. Is it possible to develop robust omni-directional configurations with good
accuracy?
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3.2 Results

3.2.1 Problem 1

Solutions The solutions provided by the GA are consistent for a low receiver
count (N = 3, 4). At 5 receivers, the solutions, as seen in the figure, is obtained
in most cases, as long as the GA is left to run for long enough.

Cartesian coordinates: Polar coordinates:

Cartesian, 3 receivers Polar, 3 receivers

Cartesian, 4 receivers Polar, 4 receivers

Cartesian, 5 receivers Polar, 5 receivers

Figure 3.1: Problem 1 - Comparison of formations (Cart. and Polar)
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Prediction precision and receiver count Problem 1 (Subsection 3.1.2) de-
scribes a research question of finding the value of a receiver. In other words:
the increase in prediction precision when adding another receiver. The value of
a receiver can be defined by comparing the precision of the prediction with and
without said receiver. Doing this for N = 3,. . . ,10, it is possible to get an impres-
sion of what the receiver is worth. Note that including or excluding a receiver
becomes a matter of comparing the optimized configuration for 3 receivers to the
optimized configuration for 4 receivers.

To give a fair comparison, all optimizations took into account that it is more
computationally intensive to find a more complex solution. As such, finding the
configuration for 10 was given significantly more computation time (generations
and population size) than 8 or 9.

Receivers Error (m) Gain (m)

3 10.77
4 7.04 3.72
5 5.43 1.61
6 4.47 0.97
7 3.96 0.50
8 3.82 0.14
9 3.35 0.47
10 2.56 0.79
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Figure 3.2: Prediction error vs receiver count

As seen in the Figure 3.2, adding a receiver to a configuration of 3 receivers results
in a significant decrease in location-prediction error. The gain of adding another
receiver (going from 4 to 5) is much less than from 3 to 4. In other words, the
absolute gain of adding another receiver is quickly with every added receiver.
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3.2.2 Problem 2

Explanation As in problem 1, problem 2 attempts to evolve a formation of
receivers to get accurate predictions of an RF emitter. Unlike problem 1, problem
2 has restrictions on the possible/allowed placement of the receivers. Problem 2
has greater issues with stagnation and getting stuck in local optima. Even so,
the GA provides some insight into the better and worse choices that are possible
to make when choosing a receiver-configuration, given the restrictions specified
in Section 3.1.3.

Problem 2 uses a slight variation of the fitness-evaluation from problem 1. There
are two distinct types of formations being evolved:

1. Directional formations - formations that are allowed to develop an attach-
ment to the relative direction of the emitter.

2. Robust omni-directional formations - formations that are rotated during
fitness-evaluation to remove any attachment to the direction of the emitter
(relative to the formation).

It was quickly discovered that left unattended, and using the same measure of
fitness as for problem 1, the configurations developed in problem 2 would become
”weighted” towards the emitter. Rotation during fitness-evaluation was added to
counter this effect. An example of this can be seen in Figure 3.3.

Figure 3.3: Problem 2 - 6 Receivers, not rotated
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Solutions Compared to problem 1 (Subsection 3.2.1), the solutions generated
for problem 2 show greater variation. This is likely due to the added difficulty
of obtaining accurate position estimates when the receivers are not allowed to
freely place themselves. In short, this results in less freedom and worse overall
predictions than the free configuration from problem 1. This means that the
fitness-values for all individuals in problem 2 are lower, and there is less span
which could help the GA to distinguish better solutions from worse. Multiple
solutions were generated for each N (= 3, . . . , 6). They show some similarities,
but it is difficult to draw general conclusions (Figure 3.4).

3 Receivers: 4 Receivers:

Figure 3.4: Problem 2 - Comparison of formations using 3 and 4 receivers
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Starting from 5 receivers and up (Figure 3.5), it becomes clearer that a set of
receivers is always placed reasonably close the emitter. To offset this ”weight” it
was also common that the GA placed some receivers further away.

5 Receivers: 6 Receivers:

Figure 3.5: Problem 2 - Comparison of formations using 5 and 6 receivers
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By introducing rotation of the formation as part of the fitness-evaluation, most of
the asymmetries vanish. The formations are, by this operation, not able to evolve
attachment to the direction of the emitter (relative to the formation). This can
be seen in Figure 3.6

Figure 3.6: Problem 2 with rotation

For 3 and 4 receivers, the formations approach a triangle and a square, respec-
tively. These formation makes the predictions independent of the direction of
the emitter, relative to the formation. Configurations for 5 and 6 exhibit same
symmetrical properties as for 3 and 4 receivers.
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3.3 Analysis

3.3.1 Problem 1

Problem 1 consisted of finding the best configuration in terms of prediction pre-
cision and low error in estimates. In this problem, the receivers were allowed to
place themselves freely around the emitter. A restriction on minimum distance
to the emitter was set to avoid the receivers gathering on the emitter. Hav-
ing the receivers gather on the emitter is not useful from a practical point of
view. Not only would this alert the emitter to the fact that it has been found,
but additionally, it could make the UAVs crash into each other if they got close
enough.

The initial assumption was that, given the ability to freely place themselves
around the emitter, the receivers would form a circle. This was assumed to be
the best option, as it would space the receivers out and therefore, provide the
most ”varied” samples while maintaining relative proximity to the emitter, which
gives better signal strength. From the results (Subsection 3.2.1), this appears to
be the case, at least for 3, 4 and 5 receivers.

For receiver count N = 3,4,5, each of the solutions appear to form a circle around
the emitter. Some formations are more perfect than others, but this is accredited
to fitness landscape being indifferent to slight asymmetries in the formation. As
a note for future work, it may be possible to develop a better fitness-function to
counter this and develop perfect formations.

The problem with fitness indifference is further extended at higher numbers of
receivers. Given a sufficient number of receivers, the predictions become very
accurate, and the position of each individual receiver matters less. In practice,
this makes optimizing receiver configuration with a high number of receivers
difficult. One idea might be to scale the fitness-value in such a way that, once
there is already a high precision and low error in prediction, a small change
matters more (gives a more significant increase in fitness). At the moment, fitness
behaves in a way that at first, given bad formations of receivers and high error
in estimates, improvements are large. Changing the scaling of the fitness-values
might help alleviate these issues.

In some cases, the GA got stuck in local optima. This was countered by reseeding
the GA or by changing the parameters to be less elitist. Population size also plays
an important role in maintaining population variance and avoiding stagnation.
Performance-problems limited the size of the populations used. Better hardware
or massive parallelization could help keep the GA from stagnating. Often, in the
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solutions that stagnated, multiple receivers were placed on top of each other or
close to each other; this behaviour could merit further investigation.

The following research questions were presented as part of the problem specifica-
tion in Subsection 3.1.2:

1. Will the trivial solution (circle around the emitter) always be optimal in
terms of error in position estimate?

2. How will the propagation environment affect the distance from emitter to
sensor, given an optimal configuration?

3. Does the solution from (1) generalize to N sensors?

4. What is the value of adding another sensor?

Answer, in turn, to each of the questions:

1. For a low number of receivers N = 3,4,5, the trivial solution of placing the
receivers on a circle appears to be optimal. For a higher number of receivers,
the trivial solution is also good, however, the GA had issues distinguishing
solutions due to indifference in fitness (many configurations has equal or
similar fitness-value).

2. The propagation environment, noise and α, each reduce the precision of
location-estimate as they increase (as expected). Increasing the noise re-
sulted in a lower baseline or best-fitness value possible to get, given a num-
ber of sensors. Increasing α makes the noise more visible and the location-
estimates more sensitive to the noise (lower signal-to-noise ratio).

3. As problems were encountered when using many sensors/receivers (see 1),
no certain conclusion can be made, in this case. However, nothing contra-
dicts that the assumption of the solution from (1) could generalize to N
receivers.

4. The value of adding another receiver depends on how many are already
in place. Diminishing returns are present. More in-depth results on this
question can be found in Subsection 3.2.1
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3.3.2 Problem 2

Problem 2 was about finding a formation of receivers that could estimate the lo-
cation of an emitter remotely. As specified in Subsection 3.1.3, this configuration
should not surround the emitter itself. This restricted the possible solutions. All
solutions found for problem 2 are worse than an equivalent solution with the same
number of receivers for problem 1. In other words, the additional restriction on
receiver-placement comes at the cost of prediction precision.

I will comment on the formations generated without rotation in the fitness-
evaluation first, then move on to formations generated using rotation as part
of fitness-evaluation. As stated in Subsection 3.2.2, early convergence and stag-
nation was a problem for testing of problem 2. This lead to a variety of different
configurations, with patterns (if any) being hard to detect.

Realistically, similar logic as for problem 1 (Subsection 3.3.1) can be applied.
Receivers benefit, in terms of prediction precision or reduced error in estimates,
of spreading out. Having multiple receivers positioned close to each other may
negate the value of the receivers, as they could have been replaced by a single
measurement/receiver.

My initial assumption was that the receivers would form a parabola towards the
emitter in order to get the best accuracy of predictions. This appears to be partly
true, as can be seen in the figures for 5 and 6 receivers (Subsection 3.2.2). In
addition, some receivers appear to have been placed far from the emitter. This
may be to counteract the weight of samples close to the receivers, and excludes
the solution that the emitter is at the edge of the grid (x, y = 0, 0).

All formations generated seem acutely aware of the emitter being placed in the
middle. Most, if not all of the configurations feature some centring or focus
towards the center of the search area. This confirms the assumption that the
direction in which the emitter is located affects the best configuration to locate
it. In a real-world scenario, where the emitters-location is unknown and a group of
UAVs is trying to locate it, it is not viable to make assumption of the direction of
the emitter. Unless, of course, this is done using alternate geolocation techniques,
such as triangulation (Section 2.3).

Now, I will take a look at the formations generated using rotation as part of the
fitness-evaluation. These have become more-or-less completely symmetric, mak-
ing them indifferent t the direction of the emitter. It appeared, early on, as if the
formations generally would form a circle around a center-point, effectively arrang-
ing the receivers along the border of the area that was allowed. The formation
of 6 receivers discredits this hypothesis by placing a receiver in the middle of the
formation (radius = 0). It would have been interesting to investigate what would
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happen with more receivers (N > 6). Due to performance and time constraints
this was not possible.

It was assumed that, restricted to a small area away from the emitter, the re-
ceivers would form some type of parabola to get the best prediction in the direc-
tion of the emitter. This was found to be the case, given that the formation was
allowed to evolve an affinity towards one direction (not rotated during fitness-
evaluation). Research questions for this problem can be found in Subsection
3.1.3, and are listed below:

1. Does the configuration depend on the distance from the emitter?

2. Is the configuration found directional?

3. Is it possible to develop robust omni-directional configurations with good
accuracy?

Some of the questions proved more challenging than others to answer. This
was mostly caused by instability of the GA in converging on a singular solution.
Instead, the GA produced a set of solution that varied significantly (Subsection
3.2.2). In turn, the answer to the research questions:

1. Attempting to test this by moving the emitter revealed unforeseen depen-
dencies to the grid-size and test setup. This made it impossible to test
this sufficiently, as the GA would get stuck in local minima. The reason
for it getting stuck is assumed to be related to the fitness-measure, and is
material for future studies.

2. The configurations found are highly directional. As can be seen in Subsec-
tion 3.2.2, they exhibit a parabolic shape in the direction of the emitter.

3. Developing a robust omni-directional configuration was done by including
rotation of the receiver-formation in each fitness-evaluation. Examples of
configurations generated can be found in Subsection 3.2.2.



Chapter 4

Methods

This chapter aims to provide insight into the methods used, and how the results
were achieved. It will provide a general overview over the work that went into
this study, and should make it possible to reproduce the work.

55
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4.1 Compute Unified Device Architecture

4.1.1 Hardware

Figure 4.1: Geforce Titan Black edition

Compute Unified Device Architecture (CUDA) is a massive parallel architecture
that makes use of one or more Graphical Processing Units (GPUs) to solve a
problem. A modern NVIDIA graphic card has an architecture that can best
be described as a Single Input Multiple Data (SIMD) architecture with a large
number of CUDA cores. Each of these cores are able to perform a set of operations
on input data. Compared to a general Central Processing Unit (CPU), these have
weak branching support and cannot operate independently of the other processors
in the same group. This, in turn, limits the problems to which CUDA can be
applied.

Most of this work was conducted using an NVIDIA Geforce Titan Black edition
GPU. This is a high-end graphics card with 2880 cores, each clocked at between
889-980 MHz. For comparison, a normal CPU often has 4-8 cores, each clocked
at 2.6-4.0 GHz. It should be noted that the characteristics of a CPU core are
very different from that of a GPU core. A comparison between a CPU and a
GPU core may not be fair, depending on the problem being solved.
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• CUDA cores 2880
• Base clock 889 MHz
• Boot clock 980 MHz

• Memory bandwidth 336 GB/s
• 5.1 TFlops single-precision

A common bottleneck using CUDA is memory bandwith between the GPU and
main memory. The system used for this work is also outfitted with an Intel i7-
4790K processor. This processor is able to handle tasks that are less suitable for
CUDA, such as serial code. The processor is capable of 45-70 GFlops, depending
on the benchmark.

4.1.2 PDOA NLLS - Qxy

Using the PDOA algorithm Non-Linear Least Squares (NLLS), the majority of
the work consists of calculating error-values across a predefined grid. The inter-
pretation of these error-values is roughly: what is the error if the emitter was
placed here, given what was measured. The resulting output of this calculation
is a matrix of Qxy-values. This task is embarrassingly parallel and perfect for
implementation on multiple-processor architectures, such as CUDA. Each point
on the grid/value in the Qxy-matrix can be calculated independently from any
other point/value.

CUDA features a concept of blocks and threads. A thread is able to perform a set
of instructions on input data. Each block consists of multiple threads. For the
purpose of calculating the Qxy-matrix, the simplest and most flexible division is
to assign one thread to calculate each value of the matrix.

Having assigned one thread to calculate each of the values in the Qxy-matrix,
these are then executed in groups of 32. Each of the threads are run on a single
CUDA core. It is not possible for a CUDA core to deviate from the set of
instructions common to the group of 32 cores. This usually requires care when
coding. Introducing branching within a group of threads, also known as a warp,
adds a severe performance penalty. In this case, calculating a Qxy-value is a
strictly non-branching task, making this a non-issue.

There are further considerations to be taken to optimize performance, however,
for the purpose of understanding the benefits of CUDA in this setting, they are
of minor importance.
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4.1.3 PDOA NLLS - Reduction

After calculating the Qxy-values across the grid, what remains is a NxM -matrix.
In order to return a prediction, the minimal value of the matrix has to be found.
This is a typical reduction-problem. For a highly parallel architecture, this can
be a problematic task, as it is inherently serial. The value being sought is the
least of all the values, implying that, directly or indirectly, all values have to be
compared.

There are ways of implementing this using a divide-and-conquer strategy, but
the gain from this is much less than what was gained by calculating the Qxy-
matrix itself. The alternative to finding the minimum on the GPU using CUDA,
would be to transfer the entire Qxy-matrix back to the main memory and doing
the reduction there. This is not a good solution, as the matrix can be large
(depending on the parameters of the problem) and bandwidth is often a greater
constraint than computational resources.

t 0 t 1 t 2 t 3 t 4 t 5 t 6 t 7

t 0 i 1 t 2 i 3 t 4 i 5 t 6 i 7

t 0 i 1 i 2 i 3 t 4 i 5 i 6 i 7

t 0 i 1 i 2 i 3 i 4 i 5 i 6 i 7Step 3

Step 2

Step 1

Step 0

Figure 4.2: CUDA reduction

Reduction is done by halving a number of threads repeatedly and finding the
lowest of two values. Each time a thread compares two value and stores the
value and index of the lowest one, the number of threads active for the next step
is halved. This continues until only one thread remains. However, due to the
way CUDA works, there is limited support for global synchronization across all
threads in all blocks. Synchronization is required to make sure that no thread
is on another ”step” than the rest of the threads. If a thread was to get ahead
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of the rest of the threads, this would cause incorrect results, as it would try
to use values that are not yet ready. In order to guarantee correctness, the
reduction is therefore done in two separate CUDA calls, or steps. The first step
reduces the number of values to be minimized significantly (using multiple blocks
of threads), and the second step will reduce it to one single value (using a single
block of threads).

Each value of the Qxy-matrix can be considered a measurement of how low the
error is while having the emitter in this location. The location is given by the
indexes of the matrix, which reflects the position in the grid used for NLLS. When
reducing the matrix, the index of the lowest value has to be kept, as this indicates
the most likely location of the emitter. Normally, a simple ”find the minimum
reduction” would return only the value, but in this case, the original index of the
lowest value is required. While the reduction takes place, the original index in
the Qxy-matrix is also kept.

It might be tempting to do the reduction, only keeping the index and not the
values, and using the index to look up the values as required. As the reduction
is carried out, the step between each value of interest in the original Qxy-matrix
becomes large. This can lead to poor performance, as cache-misses would be very
common. Bringing not only the original Qxy-matrix index, but also the associ-
ated value resolves this. Some time was spent optimizing this implementation,
but focus was on correctness, rather than perfect speedup. One potential area
for future improvement is memory access patterns, including better use of low
latency/high speed memory [8].
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4.2 Genetic Algorithm

4.2.1 Overview

CUDA

Python

Cython module

Evolution

Population Phenome

Genome

Replacement

Fitness

Selection

NllsCuda

Predict

Device calc. Qxy

Enviroment

Device reduction

Figure 4.3: Overview of code

The implemented code is separated into three parts: a GA implementation in
Python, a simulation and fitness-evaluation module in Cython, and an NLLS
PDOA implementation in CUDA (C++). This was done in order to achieve
sufficient performance, for testing configurations with more than a couple of re-
ceivers. NLLS, the PDOA algorithm used, scales as O(N ·M · D2). N and M
is the steps in the grid used, and D is the number of receivers. Increasing the
number of receivers from 3 to 4 increases the required computational effort by a
factor of 1.8. Doubling the grid size or cutting the step size in each direction of
the grid by a factor of 2 would increase the computational effort by a factor of
4.0.
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In this work, a real-coded GA was implemented. A problem-solving GA is com-
posed of both general and problem-specific parts. The general parts of a GA
include:

• Selection methods - used to select which genomes are allowed to reproduce
and pass on genes.

• Replacement strategy - defines how the new generation is created from the
parent generation

• Population manager - a container for a group of phenomes

These parts of a GA-implementation are usually general, and do not contain any
problem-specific knowledge. Defining the best selection method and replacement
strategy is an area where a considerable amount of research has been conducted
[7]. The result of this research are several methods for both selection and replace-
ment, which each have their strong and weak properties. Selection methods are
important, as they define what is known as the selection pressure. The selection
pressure is a measure of how hard it is for phenomes to pass down genes. A very
high selection pressure leads to a quickly diminishing variance in the population,
resulting in a very narrow search in the search space. Some examples of selection
methods are:

• Roulette selection - borrows features from a roulette, where a greater area
of the roulette is given to the individual with the highest (best) fitness.

• Sigma scaling selection - extension of the roulette selection that uses scaling
of the raw fitness values to make a less drastic difference between the best
and the worst phenome of the population, effectively reducing selection
pressure.

• Boltzmann scaling selection - scaling that implements a temperature mea-
sure in order to avoid selecting a local optima early on, and to keep the
selection pressure up during later generations.

• Rank scaling selection - scaling where the relation between the individuals
is considered. This reduces selection pressure, as fitness is set based on
individuals’ relation/rank in the population, rather than some variation on
its fitness.

During this work, all of the above selection strategies were implemented. At-
tempting different combinations of replacement and selection strategies lead to
using rank scaling selection to lessen the selection pressure. The selection pres-
sure initially is often high, as one individual can easily overcome all the others
that are still have a poor fitness.
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The replacement strategy selected also plays a role in the selection pressure.
When moving from one generation to the next, the replacement strategy will
define how the transformation between the old (parent) generation to the new
(children) generation is done. Some replacement strategies include:

• Full generation replacement - creating a new population based on the given
selection method; the new population is the same size as the old one.

• Over-production replacement - replacing the old generation ofN individuals
by creating a new population of N + M individuals (M > 0). From the
new population, N of the N +M is selected to form the next generation.

• Generational mixing replacement - creating a new generation based on the
old generation, and then combining this with the old generation, effectively
making the new generation and the old generation compete to be included
in the next generation.

Several replacement strategies, as mentioned above, were also implemented. For
this work, I ended up using a full generation replacement combined with elitism.
The number of old individuals kept was usually set to two. This is similar to a
generational-mixing replacement strategy, but has less selection pressure. Only
two individuals from the old generation are included, as opposed to including the
entire old generation and making old and new generations compete.

4.2.2 Genome and phenome - Step 2 and 4

Two different types of encoding were used for the genome:

1. Cartesian coordinates

2. Polar coordinates

Cartesian coordinates is a genome implementation where each coordinate is given
a real value. A genome consist of an array of 2N floating numbers, where N is
the number of receivers in the configuration. In addition, all genomes in a single
run will share a base position. Their coordinates can be considered offsets from
this base position.

Likewise, polar coordinates are encoded using two real numbers; an angle (θ) and
a radius (r). Each of these are a floating number. The genome therefore contains
2N floating numbers. Polar coordinate genome also uses a base position.

Cartesian coordinates offer an encoding that gives an intuitive world view for
the search, however, it does not handle rotation or relocation as gracefully as
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polar coordinate encoding. Using polar coordinates allows for easier manipula-
tion of the configuration in particular rotation and relocation. These are useful
properties in regard to problem 2 (Subsection 3.1.3).

4.2.3 Genome and phenome - Step 3

In Step 3, a concept of a path, or a set of waypoints for each UAV, is introduced.
This is reflected in the genome-encoding, using a variant of the NASA-antenna
encoding [9]. The NASA-antenna encoding is a recursive encoding, effectively
giving a tree-like structure. For the purpose of encoding a UAV path, only a
single branch per UAV is required. The encoding can therefore be flattened to
a list of angles. This is best illustrated in Figure 4.4, showing an example using
only one UAV and the path for this UAV.

ө1
ө2

ө1
ө3

ө2 ө3

Genome

ө0

ө0

Figure 4.4: Genome - Step 3

The first angle (θ0) is defined as an offset compared to a predefined fixed axis;
for instance, the X-axis as seen in Figure 4.4. Further direction-changes are then
defined as offsets compared to the current heading of the UAV. This method of
encoding allows the genome to optimize the general direction of the path just by
changing the initial angles. Since the path is specified relative to previous steps
in the path, the behaviour will be replicated in the new direction.
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Extending this encoding to multiple UAVs is trivial. The list of angles for one
UAV is replicated for each of the N UAVs. Effectively, the genome size then
becomes N ∗M , where N is the number of UAVs and M is the number of steps
per UAV. It is important to note that, in this encoding there is no way for the
GA to change the length of a step. The step length is considered fixed; this comes
from an assumption of a fixed travelling speed and a given fixed sample rate.

The phenome consists of a set of points in space, rather than the abstract list of
angles. Interpreting/developing the genome to a phenome is done by applying the
rules, as specified previously in this section, and returning a list of coordinates
that can be evaluated using the fitness-function (Subsection 4.2.7).

4.2.4 Crossover

Crossover was implemented as a standard, single-point crossover. In cases where
the representation required it, it was done by making a linear sequence of the
genome. For the Cartesian and Polar genome, each genome consists of a set of
receivers-locations. Each receiver-location consists of a set of coordinates. By
reducing this list of lists to single list of floats, a single point crossover can be
performed as normal:

1. Select an INDEX equal or greater than 0 and less than the ”length of the
lists”

2. Split serial lists of receivers in two parts, from 0 to INDEX, and from INDEX

to ”length of the lists”.

3. Take the first part of each of the list and append this to two new lists.

4. Take the second part of the two lists, append them to each of the new lists,
so that the new lists have one part from each parent

A single-point crossover is used for all genome representations, and works in a
similar way in all three cases. The effect that a crossover has differs between the
three different representations.

For a Cartesian coordinate genome, a receiver-position may be split between X
and Y coordinate, resulting in the corresponding receiver in the new genome being
a combination of two receivers. This will keep vertical or horizontal displacement,
but cause a (potentially) large jump along the other axis.

For Polar coordinates, the process could cause the angle (θ) from one receiver to
be combined with the radius (r) from another. The result is that the new receiver
would do a similarly large jump in either angle or radius.
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Using the Path genome (Subsection 4.2.3), a split could occur in the middle of
the sequence of angles describing the path of a UAV. The effect of this would be
that the UAV in question would get the first part of the path from one individual,
while the second part would originate from the other. As the direction of the
path is defined relative to previous steps, a change in the initial angles could
change the direction of the entire path.

4.2.5 Mutation

Mutation should, most often, provide a small change in some of the parameters
of the solution, in order to improve the solution. It should normally not result in
a large jump in the search space. In order to achieve this, the following solution
was applied for each parameter:

1. Draw a uniformly distributed random number, less than 100

2. If the random number is greater than a given percentage (default: 5), the
parameter will not be mutated.

3. Otherwise, mutate the parameter by adding or subtracting a small value

Which value is added or subtracted when mutation occurs is random, however,
care was taken to make sure that only applicable actions/mutations are possible.
There are several special cases to consider. These occur when:

• Cartesian coordinates: when bordering the defined maximum and minimum
area

• Polar coordinates: when on the edge of the maximum radius or minimum
radius

• Polar coordinates: when a full rotation has occurred (θ > 2π)

• Path genome: when a full rotation has occurred (θ > 2π)

For all of the cases above where a mutation would lead to a coordinate (Cartesian
or radius) being out of the predefined area, the given coordinate is locked to the
boundary.

Xnew = max (Xmin,min (Xmax, Xold))

This is the general method for constraint-handling used throughout the imple-
mentation. If the value, as given by the real-coded GA, is outside the bounded
area, it will be clamped to the border of the area.
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Any full rotations that might occur for Polar coordinate genome or Path genome
are handled by adding or subtracting 2π (normalizing the angle), depending
on the direction of the rotation. This is not strictly necessary, but is done for
consistency.

4.2.6 Fitness - Step 4

Fitness is defined as the average error of the location predictions. The actual
emitter-location is used as the reference point. This leads to the following formula
for fitness of a configuration:

di = xpred,i − xem

davg =

√√√√ 1

n

n∑
i=0

||di||2

F = 100−K ∗ davg

xpred,i is the coordinates of a location prediction i by the PDOA algorithm. xem

is the actual location of the emitter. di is the deviation of prediction i from
the actual emitter-location. davg is the average prediction error from the actual
emitter-location. F is the fitness value. K is a constant used to scale the fitness
value between 0 and 100.

The fitness-function, as described, is the simplest possible means of comparing
two sets of predictions in regards to their deviation from the exact answer. It will
only consider the absolute deviation in distance. This makes a set of predictions
spread around the emitter in a circle with radius R. These are indistinguishable
from a set of predictions in a single point at a distance R from the emitter.

Implementing a fitness-function that better handles the complex distribution of
the predictions, could be done using Finite Mixture Models (FMMs). FMMs
can estimate the distribution of the predictions and enable the fitness-function to
consider not only the deviation of each prediction, but more extensive character-
istics, such as the spread or variance of the predictions. Implementing this would
add another computationally intensive operation to each fitness-evaluation (esti-
mating the distribution). Preliminary tests, using FMM as part of an automated
evaluation process, showed that FMM-generated models may behave erratically
with limited data. Making a robust fitness-function utilizing FMM is, for this
reason, considered future work.
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4.2.7 Fitness - Step 3

The fitness-function for evaluating the performance of a set of paths is similar
to that of a set of points from Subsection 4.2.6. In addition to average error, a
concept of a bias (b) and variance (σ2) is introduced. b is the mean error of the
predictions. Generally, it is better if the ||b|| is close to 0. The spread of the
predictions are not taken into account yet.

xavg =
1

n

n∑
i=0

xpred,i

b = xavg − xem

Variance gives a measure of the spread of the predictions generated. In order to
not penalize formations that have a skewed mean (||b|| 6= 0), this variance (σ2)
is calculated relative to the average position predicted (xavg). εi is the error of
prediction i, relative to the average predicted location (xavg)

εi = xpred,i − xavg

σ2 =
1

n

n∑
i=0

||εi||2

Combining the variance and average error to form a fitness-measure is non-trivial,
as it is beneficial to scale the fitness-value (F ) to between certain values. In the
GA-implementation used for this work, fitness (F ) is assumed to be a value be-
tween 0 and 100. The solution developed involves a scaling that differentiates
strongly between good solutions, and has less numerical difference for bad solu-
tions.

F =
100.0

1.0 +K ∗ σ2 ∗ davg

The constant K is defined as a number 0.0 < K < 1.0. K is set as to allow the
really good solutions, for many UAVs and steps, to get a fitness value (F ) close
to 100. davg is the same as used for Fitness - Step 4 (Subsection 4.2.6). Solutions
with few resources may be as low as 1.0 − 3.0 in fitness value (F ) when fully
optimized by the GA.
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4.2.8 Fitness - Step 2

In the initial phases of the search, the receivers/UAVs are far away from the
emitter. In this state, a rough estimate of the location of the emitter is required
to know in which general direction to proceed. In this setting, the receivers
were restricted to a small area, a certain distance from the emitter. Initially,
solutions were tested against a fixed emitter, causing the formations to become
directionally dependant. This is an unfavourable trait, as the receivers have no
idea of the whereabouts of the emitter in this state, and would not be able to
direct themselves in the direction of the emitter. To counter this, a configuration
could be rotated in order to simulate the emitter being in different directions, in
relation to the receiver-configuration.

Changing the perceived direction of the emitter can be done simply by rotating
the formation. Polar coordinates make this operation trivial. Evaluating the
fitness of a receiver configuration is done as following:

1. Calculate the average error (in predictions) for the configuration using an
angle-offset (dθ), which is added to each of the angles specified in Polar
coordinate genome.

2. Add the average error to the list of results.

3. Select the next offset and go back to 1. If there are no more offsets, continue.

4. Calculate the fitness using the average of the values in the result list

Fitness-value (F ) in Step 2 is calculated in the same way as for Step 4 (Subsec-
tion 4.2.6). The distance from the center-point of the configuration (the pole of
the polar coordinates) to the emitter, is considered fixed for a GA run. Imple-
mentation does, however, allow the center-point of the configuration to be freely
specified, should it be required.
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4.3 Multi-Objective Evolutionary Algorithm

4.3.1 Overview
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Figure 4.5: Overview of Multi-Objective Evolutionary Algorithm (MOEA)

The Multi-Objective Evolutionary Algorithm (MOEA) borrows from the single-
objective GA optimization, and uses the same back-end for fitness-evaluation.
Most of the higher-level code from the GA has been replaced by specially tai-
lored functions, in addition to the Python DEAP framework [6]. The framework
handles selection and implements NSGAII. Problem-specific knowledge for the
individual encoding, mutation, crossover and evaluation was implemented and is
described in the following subsections.

Three different multi-objective scenarios were explored:

1. Variance vs average error

2. UAV count vs average error

3. Step length vs average error
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Variance vs average error is a result of previous work, where formations appeared
that seemed to predicted mean-value correctly, but had a large spread. In an
effort to improve on this, a contribution from the variance of the predictions is
included in the GA fitness-evaluation. Using the variance, as well as the average
error, proved to be problematic in regard to fitness-scaling and normalization.
Improving this could be done by trying to use a different method of combining
variance and average error to one fitness-value (instead of multiplying the two
factors, as in Subsection 4.2.7). One possibility would be to introduce a weighting
of the two components. In order to get a better impression about what the weights
could be, the variance vs average error MOEA-scenario was devised.

UAV count vs average error was conceived as a way to describe, not only the best
configuration for N UAVs, but also develop a good formation using N −1 UAVs.
A single-objective GA, generates a set of highly specialized solutions, given a
single selection criterion. Moderate variance in results from the single-objective
GA, along with highly specialized solutions, made it difficult to compare results
between runs. Optimizing both average error and UAV-count at the same time
allows the solution for N UAVs to inherit features from the solution for N − 1
UAVs. The relation between the different solutions can be used to better evaluate
the effect of adding another UAV, and is also able to say something about the
change in strategy, should a UAV be removed from the pool.

The way the encoding is structured for the GA, it is not possible for a UAV
to stand still at the same spot. This is a restriction that may or may not be
realistic; quad-copters, for instance, are perfectly able to stand still in one spot
while gathering data. Introducing a variable step length means increasing the
search space, and with it, the computational effort required to find good solutions.
With this scenario, the intention was to explore how the UAVs would use the new
freedom, in being able to stand still or, alternatively, move at a lower speed.

For the MOEA, one encoding was used for all of the different optimization-
scenarios. This means that for each of the scenarios, certain parts of the genome
was inactive and locked. Locking part of the genome was done to reduce the
search space, focusing the computational effort where it was more useful.
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4.3.2 Genetic encoding

UAV Enabled 1 Step length Angle 1 Angle N...

UAV Enabled 2 Step length Angle 1 Angle N...

UAV Enabled M Step length Angle 1 Angle N...

.. .

Figure 4.6: Genetic encoding for MOEA

The genetic encoding for the MOEA is implemented as a list consisting mostly of
real numbers. A general structure of this list can be seen in Figure 4.6. For each
UAV, there is a set of parameters consisting of: ”UAV Enabled”, ”Step length”
and angles. Within a single optimization run, the size of the genome will remain
constant. It is possible to configure for optimization of any number of UAVs and
steps. As a result, the size of the genome will vary between different runs of the
MOEA.

MOEA implements a distinction between genotype and phenotype by a separate
pre-evaluation step. This step converts the genome to a set of attributes which
can be evaluated. For each evaluation of an individual, the following values are
calculated:

1. Maximal distance travelled by one of the UAVs

2. The number of active UAVs

3. The average error and variance of the predictions generated

The maximum distance travelled by one of the UAVs is calculated by iterating
over the UAVs in the individual, and finding the highest step length. The step
length is then multiplied by the number of steps in total to find the distance
travelled. For the number of active UAVs, the value found under each of the
”UAV Enabled” genes are summed. An active/enabled UAV will have this value
set to 1, while an inactive UAV will be 0.

For more information about how the average error and variance is calculated,
refer to Subsection 4.2.6 and 4.2.7. The same approach is used, however, the raw
average error and variance-values are used instead of the fitness-value.
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4.3.3 Crossover and mutation

As crossover-operator, a modified single-point crossover is used. There were some
issues in regard to doing crossover between two individuals, resulting in a new
individual with no active UAVs. To solve this problem, a new crossover-index
will be selected until a suitable crossover-point is found. If it is not possible to
find a crossover that results in both new individuals having at least one active
UAV, the individuals will not be crossed.

When the mutation-operator is called, it is assumed that a mutation has to
happen (i.e the mutation probability is already accounted for). Choosing the
gene to be mutated is done as following:

• (Optional) If the ”UAV Enabled”-parameter is not locked, there is a 50/50
chance that a UAV will be turned on or off. If a UAV is turned on or off,
a mutation has occurred and the operator exits.

• (Optional) If the ”Step length”-parameter is not locked, there is a 50/50
chance that mutation will modify the step length of a UAV. The step length
is modified by adding or subtracting a random value from a Gaussian dis-
tribution. If a step length is modified, a mutation has occurred and the
mutation operator exits.

• A random angle from a random UAV is selected for mutation. The angle is
selected uniformly from the angles of the UAVs in the individual. Mutation
is applied by adding a random Gaussian-distributed value to the angle.
Gaussian distribution makes large mutation-steps possible, but not very
likely.

Based on the mutation, as described above, there is an equal chance that either a
step or ”UAV Enabled” gene is mutated. This effect is a result of the locking of
either the ”UAV Enabled” or ”Step length” genes, depending on if the scenario
is optimization of UAV-count or step length.
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4.4 Interactive simulation

4.4.1 Overview

Early in the process, it was clear that many of these problems are hard to anal-
yse, and solutions hard to verify without resolving to a simulated environment.
Similarly, it was equally challenging to get a good impression of the dynamics of
the problem with long iteration times and in a fairly strict, defined scenario. To
alleviate some of the issues, an interactive simulation was developed, allowing for
easy testing and verification of results from the evolutionary algorithms. This
framework allows the user to move around samples and see the results more-or-
less instantaneously.

There are three main features/modes to the interactive simulator developed:

1. Verification mode

2. Interactive mode

3. Heuristics mode

Verification mode works as a testing ground for the formations developed by the
GA and MOEA. In this mode, it is possible to load a formation developed by
either of the two optimization-algorithms and test manual modifications to this
formation, as well as relocate the emitter to get an impression of robustness.
Statistics are displayed in real-time as the user manipulates the formation.

This tool was developed as a way to get an intuitive feel for the problem. The in-
teractive components are hard to capture in this report; several videos were made
of this application and are included with this report. Otherwise, the videos are
also available on Youtube, and links are provided in the respective sections.
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4.4.2 Interactive mode

Figure 4.7: Simulator - Interactive mode

Interactive mode allows for manual testing of different formations to get a bet-
ter intuitive impression of the dynamics at work in this problem. This proved
extremely useful when trying to demonstrate the problem complexity and debug-
ging errors in the fitness-functions.

To get a better impression of how this mode works, there is a short video of it
found here: http://youtu.be/i0vveyy6uZk

http://youtu.be/i0vveyy6uZk
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4.4.3 Heuristics mode

Figure 4.8: Simulator - Heuristic mode

Heuristics mode allows for batch-testing of the different heuristics developed.
This can be conducted with or without a graphical user interface. The graphical
user interface takes a bit of extra computational power, but gives a much better
view on how the different agents/heuristics act in reaction to the information
available.

Youtube video: http://youtu.be/Z_lu8-Jifno

http://youtu.be/Z_lu8-Jifno
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4.4.4 Finite Mixture Model

Figure 4.9: Simulator - FMM

FMM involves fitting a model, consisting of multiple, well defined probability dis-
tributions, to arbitrary data. The prospective data to be modelled using FMM
are the predictions generated through simulations. These, generally, show decent
clustering, but their shape makes it hard to explicitly describe their distribution.
FMM might be able to give more information from a set of prediction. The main
advantage of using FMM would be that the different clusters of predictions would
become more apparent to a potential fitness-function using these. The clustering
of predictions is useful information for the fitness-function. Without this infor-
mation, a fitness-function would have a hard time distinguishing a formation
predicting the location of the emitter to be in two distinct spots, compared to a
formation whose predictions are wide-spread. More about this can be found in
the respective fitness-function in Subsections 4.2.8, 4.2.7 and 4.2.6

From the project assignment, one of the topics listed as future work, was using
FMM to better describe the distribution of predictions. This is still something
that requires more work. To be able to include FMM in a fitness-function, all of
the less desirable effects have to be handled. Both the GA and the MOEA proved
very good at finding ways to cheat the fitness-estimation. This exaggerates the
need for great care when defining the fitness-value estimators, as to avoid solutions
of little value.



Chapter 5

Results and analysis

This chapter will give an overview of the results from this study and the pro-
gression through which these results were achieved. It explains the progression
to the endpoint of the results, and adds an intuitive perspective and reasoning,
in order to better justify the outcome.

77
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5.1 Motivation for experiments

After the project assignment was delivered, many questions remained unan-
swered. Lack of raw processing power put an upper limit on what was possible
to explore within a reasonable time frame. The sheer complexity of the problem
made describing and exploring the dynamics challenging. Even simple questions,
such as the ramifications and weaknesses of the solutions generated by the GA
were, were hard to answer.

Using PDOA algorithm NLLS involves minimizing a value over a fairly large
grid. This algorithm presents itself as a prime candidate for parallelization, using
multiple processors, or even a large number of SIMD cores, such as CUDA. The
advantage of such parallelization would be to gain a sufficient speed-up to explore
problems previously inaccessible due to limited time and computational capacity.
A rough estimate of the speed-up gained, going from single-threaded CPU code
to CUDA, is 20-2000x. The large variation in speed-up is mainly depending on
the size of the problem, and the partitioning done between CUDA cores.

The speed-up gained from paralellization can be used to explore problems with
more samples. This new-found capacity can either be used for exploring many
UAVs acting together as a swarm, or by introducing a time-aspect to the scenario,
where each UAV is able to sample multiple times in different locations. Norwegian
Defence Research Establishment (FFI) seeks to implement a real-world prototype
based on this work in the near future. A lower number of UAVs, sampling several
times, seemed to be of greater practical value. For this reason, the paths for a
smaller number of UAVs were explored, instead of exploring large-scale swarm
behaviour for groups of UAVs.

The main goal of this work is to efficiently, and with high accuracy, locate an RF
emitter. Expanding on previous work from the project assignment, the first set
of experiments optimizing a flight-path for each UAV using a GA was explored.
This is different from the work conducted in the project assignment, as it includes
a concept of time. Time adds another dimension of dynamics that was previously
omitted. The emitter is still assumed to be standing still, as a moving emitter
would invalidate data gathered over time. In a realistic situation, it is likely
that an emitter may be moving but that is considered outside the scope of this
work.

Before taking on the complexities of optimizing paths/Step 3 in the search, the
anomalies found in Step 2 had to be explored further. Anomalies come in a
number of variants in this work, however, the anomalies of greatest impact was
the apparent tendency for ambiguous predictions.
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5.2 Fitness landscape

5.2.1 Formations with ambiguities

Choosing the position of the samples used to predict the location of an unknown
RF emitter is important. This is not always obvious, but can be shown graphically
and by examining the details of the algorithms in use.

Ambiguous Non-Ambiguous

Figure 5.1: Formations with and without ambiguities

Figure 5.1 shows two very similar configurations. Both have the same number
of sample-points. Each receiver is indicated as a blue circle with a number next
to it. The small black or blue points (old predictions are blue) are predictions
for the location of the emitter. The emitter is shown as a red circle. In the left
image, two samples are placed in the same spot, making it hard to see them both.
In the right figure, one of these samples has been moved to cover the central spot
in the formation. Moving one of these samples to the middle of the configuration
removes an ambiguity that could not otherwise be distinguished based on the
sensor-readings.

Continuing with the same two formations, approaching it by looking at the algo-
rithm, it can be shown that the formation with the ambiguity cannot distinguish
between the point in the center of the formation and the actual emitter-location.
From the NLLS algorithm PDOA, Qxy-values are generated as part of making a



80 CHAPTER 5. RESULTS AND ANALYSIS

prediction. These Qxy-values indicate the error, given the measurements of the
signal strength and an assumed emitter-location. Simplified, this can be inter-
preted as: what is the error, compared to the measurements, given that we place
the emitter in location (x,y)?

Emitter position Wrong position

Figure 5.2: Ambiguous formation

Figure 5.2 shows the distribution of Qxy-values for two points from the left im-
age in Figure 5.1 - the emitter-location and the ”wrong position”, where it is
frequently mispredicting. A prediction will occur at the position that features
the lowest error/Qxy-value. From the figure, it is possible to see that whether the
Qxy-value for the emitter-location or the center of the formation is the lowest of
the two, is likely to be left to chance. This is because the distributions are very
similar, and neither has a mean that is significantly higher than the other.

Emitter position Wrong position

Figure 5.3: Non-ambiguous formation
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Using the formation shown in the right image of Figure 5.1, removes the ambi-
guity. The distribution of Qxy-values for the emitter-location has a mean that
is significantly lower than that of the center of the formation (Figure 5.3). This
makes predicting the center of the formation as the emitters-location highly un-
likely, if not impossible.

Ambiguous formations Non-ambiguous formations

Figure 5.4: Correlation ambiguity

Figure 5.4 shows the correlation between the two points for each of the formations
in Figure 5.1. Each dot in the figure is one pair of Qxy-values. One from the
emitter-location and one from center of the formation. They are coloured green
or red, depending on whether it would result in predicting the actual emitter-
location or not. The non-ambiguous formation has only green points, however,
that does not mean that it will always predict correctly. In Figure 5.1, a large
cloud of predictions can be seen in the right image. This cloud is a result of there
being many other points on the grid used for NLLS that can be chosen (other
than the two being compared here). Reducing the size/spread and making the
cloud mean-value correct is part of what is investigated in this work.

5.2.2 Sensitivity landscape

Continuing with the same triangle/circle formation that was used for exploring
the problem with ambiguities, it is possible to get an indication of the robustness
of the predictions, depending on the location of the emitter. In an effort to explore
this, a set of plots representing the sensitivity over an area was developed. Figure
5.5 shows the average error (m) in predictions as a colour gradient. This plot is
generated by moving the simulated emitter around the area and measuring the
error in positions-predictions generated by the NLLS algorithm.
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Figure 5.5: Sensitivity landscape with 1.5 dB Gaussian noise

In Figure 5.5, there are two effects to be noticed:

• Precision decreases/error increases as the emitter is placed further away
from the receivers.

• A triangle or circle creates an area with anomalies in the center of the circle.

The anomalies in the center of the circle is the same effect causing the ambiguities
in predictions, as seen earlier. Placing a fourth sample/receiver in the middle of
the circle from the previous plot (Figure 5.5) removes the anomaly in the center
of the circle and gives a smoother overall appearance (Figure 5.6). This is related
to the way PDOA calculates emitter-location predictions and is not possible to
avoid, unless further information is added to the algorithm. From the perspective
of Step 4 (Subsection 3.1.2), this is a problem, as it introduces ambiguities. Based
on the sensory readings, it is impossible for the PDOA algorithm to distinguish
between an emitter in the middle of the formation and a strong emitter far outside
the formation.
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Figure 5.6: Sensitivity landscape with 1.5 dB Gaussian noise

Increasing the noise added to the measurements does not change the general
traits in any significant way. The only change is a narrowing of the dark blue
areas (with good accuracy). In effect, this results in a smaller area in which good
prediction precision can be achieved.

5.2.3 Optimizing angles

So far, only a formation consisting of individual points has been considered. As
mentioned previously, the additional computational capacity allows for exploring
formations with more samples. Considering a string of sample-points, a set of
way-points for a UAV is also possible. A simple, but inflexible optimization-
scenario is a set of paths moving away a from a single point. As was seen in the
plots under Sensitivity landscape, accuracy increases as the emitter moves closer
to one of the sample-points. It would therefore not be unreasonable to assume
that a path moving towards the emitter gives good prediction accuracy.
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Using 3 UAVs, sending two UAVs in direction of the emitter, while optimizing
the angle of the last, allows for the visualization of the results in an easy-to-grasp
manner. Figure 5.7 show two visualizations of the same data:

1. A graph over the angle of the last path, plotted against the fitness (Sub-
section 4.2.7) of the formation.

2. A visualization showing the outline of the two paths towards the emitter,
and the third path indicated as a colour gradient. Blue colour indicates high
fitness and good predictions, while white colour indicate poor prediction
accuracy.

The distance between each sample is assumed to be constant. This is given by
a constant sampling-frequency and an assumption of a constant travelling speed
for each UAV. The distance (D) between each sample is then D = V ∗ I. V is
the velocity of the UAV. I is the sample interval.

Graph
Visual representation

Figure 5.7: Optimizing angles of 3 UAVs with a 60 degree spread

As the spread increases between the two fixed paths (Figure 5.8), it becomes more
beneficial to place the path for the last UAV between the two already placed. The
result of this placement, is a fan-like formation, spanning less than 180 degrees
in the direction of the emitter.
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Graph Visual representation

Figure 5.8: Optimizing angles of 3 UAVs with a 100 degree spread

Graph Visual representation

Figure 5.9: Optimizing angles of 3 UAVs with an 80 degree spread

There is a gradual trade-off between placing the last path in the middle, between
the two already placed paths or backwards, away from the emitter. The deciding
factor is, for the most part, the angle of the spread between the two already
placed paths. This can be seen in Figure 5.9.
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In this limited search space, there seems to be two local maxima. One is found
using a spread of approximately 50 degrees, and with the last path away from
the emitter. The other solution is using a more general fan-formation, with
a spread of 100-150 degrees, placing the last path in-between the two already
placed. Plotting this entire search space as a two-dimensional plot, with the
spread between the two already placed paths on the Y-axis, and the angle of the
last path on the X-axis, results in the following plot (Figure 5.10).

Overview
Visual representation

Figure 5.10: Overview of optimization of angles for 3 UAVs

These plots were generated and smoothed using two techniques; the random seed
is reset for each angle being tested, and 500 trials/predictions were run for each
angle. Together, these two techniques smooth the graphs and account, to some
extent, for the uniform colour transitions, as seen in the plots.

As can be seen from Figure 5.10, there is two areas showing greater fitness than
the rest. This leads to a theory that there is, in general, two ways to proceed if
good predictions are required:

1. Placing two paths facing forward, with the last path backwards, away from
the emitter (Scorpion, as in Figure 5.7)

2. Using a more general fan-formation, spreading the UAVs evenly in a span
of 100-180 degrees, towards the emitter. (Scattershot, as in Figure 5.8)
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Scattershot Scorpion

Figure 5.11: Two good solutions for 3 UAVs

The formation nicknamed Scattershot features a wide spread (100-180 degrees) in
the general direction of the emitter. Comparing the fitness-values of this to that
of the Scorpion formation, Scattershot has slightly worse fitness-value (aprox.
2.75 vs 3.25). Scorpion formation has a similar fan-out formation as Scattershot,
but in addition, one UAV is kept back, forming what resembles a tail. The tail
appears to narrow down the spread of the fan-formation to about 60-100 degrees,
in the general direction of the emitter. The direction of the tail seem to be fairly
robust against minor direction-alterations.

It should be noted that these two formations are not the only options available.
There is a multitude of variants in-between these formations. As can be seen
in Figure 5.10, there is a gradual change and large areas which provide decent
performance, if not optimal. It is not unlikely for a GA or MOEA to get stuck
in these areas. The chance of getting stuck in a local maximum increases when
adding the possibility of a favourable selection of random noise (in the fitness-
evaluation).

Increasing the degrees of freedom in the optimization is possible, however, this
also significantly increases the size of the search space. Exhaustive search becomes
hard in such a large search space - instead, a GA is applied. By applying a GA,
it is no longer possible to guarantee that the optimal solution is found, only that
good solutions will be found.
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5.3 Complete path

Previous scenarios considered only straight-line paths. In a real-world applica-
tion, there is no constraint forcing the paths to be straight lines. Allowing for
curved paths is a logical extension to find potential even better solutions. The
NLLS algorithm requires spacial difference in all dimensions to predict accurately,
which a single straight line does not offer. Using a GA and the encoding described
in Subsection 4.2.3 - one angle per step of the path for each UAV - additional
freedom is given to the solutions. The drawback is a large increase in the search
space.

Using a GA on this problem is a challenge. The multi-modal fitness landscape,
as seen when optimizing an angle, is likely to gain additional local maxima as a
result of the increased freedom in solutions. The large search space means that
it is not feasible to hope to examine all the possible solutions. Determining the
fitness of a formation/set of paths, is a non-deterministic non-linear simulation
that requires significant computation to be statistically significant.

Table 5.1: Parameters for Complete path optimization

Population size Number of UAVs * Number of steps * 20

Num. trials 100
Num. gen. 100

Crossover rate 0.7
Mutation rate 0.05

The Complete path optimizations were conducted using the parameters listed
in Table 5.1. Mutation rate was set by general guidelines, between 0.05 (5%)
and 0.10 (10%). Crossover rate was set to 0.7 (70%). These parameters could be
adapted further to the problem being optimized. In benefit of further exploration
of the problem being optimized, this was down-prioritized. Remaining parameters
for the simulation can be found in the configuration files in the code archive.

Population size was set, based on the number of genes in the genome. This
proved to work well for most optimizations. In some cases, especially with many
genes, this may have been insufficient to fully span the solution space. Generally,
the solution space grow exponentially as genes are added, the population size
as described here, grows linearly. This leads to a situation where the initial
population may not fully span the solution space. Solving this would imply
increasing the population size significantly. Current optimizations are pushing
the limits within the time allotted. Increasing the population size further is
outside the scope of this work.



5.3. COMPLETE PATH 89

Figure 5.12: Complete path with 3 UAVs and 5 samples each

In Figure 5.12, the path of three UAVs, each with 5 steps/samples, have been
optimized. The performance-criteria used was precision in prediction-estimates.
Each black dot in the plot is one prediction, using the formation indicated. As
can be seen in the figure, two UAVs are focused on moving towards the emitter-
location. It is not beneficial for them to move in straight lines towards the emitter,
as this would yield little information. The result is a path where the two UAVs
converge on the emitter, but avoid moving straight towards it to maximize the
value of each of their sample-points. The last UAV moves away from the emitter;
this is consistent with the results from Subsection 5.2.3.
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5 UAVs 6 UAVs

7 UAVs 8 UAVs

Figure 5.13: Complete path - 5-8 UAVs - 5 steps

With five UAVs, four UAVs have chosen a more-or-less direct approach towards
the emitter, apart from the deviation required to not move in a straight line
towards the emitter. The four UAVs moving towards the emitter are partially
intertwined, which was a characteristic common to a number of solutions from
the GA. The GA got stuck in this solution, unable to untangle the paths. For
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the GA to untangle the paths towards the emitter, a sequence of favourable
mutations would have to occur, which is an unlikely event. The last UAV acts
as an anchor, going in the opposite direction of the emitter. By going in the
opposite direction of the emitter, this UAV is able to exclude any chance that
the emitter may, in fact be in the other direction, and for some formations this
also removes ambiguities.

Adding another UAV for a total of six UAVs, the paths evolved feature a wider
spread than for five UAVs. This is a fairly uncharacteristic solution; more com-
mon would be a narrow spread towards the emitter (< 180 deg.). The paths
developed show an attraction towards the emitter, but the paths are less pre-
dictable than for three or five UAVs. The addition of more samples increase the
information available. Seen in relation to earlier experiments: that an increase
in number of samples would increase the precision of the estimates, it is logical
to assume that it may also make the formation less sensitive to the individual
placement of the samples.

For both seven and eight UAVs (Figure 5.13), the situation remains similar to
previous results. Most of the UAVs will commit to a path towards the emitter-
location, while one or two (increasing with the total number of UAVs) will remain,
or move away from the emitter, eliminating the possibility of the emitter being in
that direction and resolving ambiguities. It can be seen that the formations have
degraded some - while the general characteristics remain the same, the paths
resulting from the optimization are no longer equally smooth. This was seen in
a number of similar runs and is accredited the increase in informations available,
in addition to the increased size of the search space.

The results presented here are single runs from the GA. There is a significant
amount of noise in the results. The main culprit of this is lack of computational
resources; even using massive parallel computation (CUDA), additional process-
ing would be useful. Each individual in the population is evaluated by doing
100 predictions. According to the formulas for fitness-calculation, these predic-
tions then form a fitness-value, which is used to estimate the performance of the
individual. Unfortunately, being able to use 1000 predictions for each evalua-
tion would have been better, but this would have increased the run-time of the
optimizations by a factor of 10. Using 100 predictions, there are cases where
the individual is able to get a favourable draw of noise. Favourable draw of
noise might lead to the solution getting better performance-scores than their real
scores. Multiple runs were executed with similar results as these (using different
initial seed). Computational restraints also made it impossible to increase the
population size further.
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Another cause of noisy solutions is: indifference. As the number of sample-points
increases, the selection pressure to select an optimal location for each sample
lessens. This is both a positive trait, in that solutions appear robust against
slight variations in placements, but also negative, in that there is no one clear-
cut solution to the problem that can be extracted.

Normally, solutions from a GA is compared and analysed by conducting numerous
experiments and using averaging or similar operations on the results. This would
have given the results greater credibility. The results in this optimization is a
set of paths for a group of UAVs. Comparing the solutions between runs proved
difficult. An average solution have little meaning in this context. Attempts were
made to plot results from a set of runs in the same figure, but even very similar
formations often featured rotation which amplified any differences when viewed
in a single figure. It was concluded that it may not be possible to do meaningful
statistical review of the solutions generated. This is a shortcoming that proved
difficult to surpass, which is part of the reason for exploring heuristics instead of
”blueprint”-solutions later in this work (Section 5.7)

The GA uses full generation replacement along with elitism of two individuals,
to maintain good solutions. While elitism ensures that known good solutions are
kept, it can also be problematic. In this case, the fitness-evaluation is a noisy
simulation. The noise in the simulation can greatly affect the performance of the
solution, both for better and worse. Solutions are also only evaluated once: old
solutions that are kept are not re-evaluated. This opens up for the possibility
that a solution could attain a favourable selection of noise, giving it a better
fitness-estimate than it should have had. Using the GA without elitism and with
re-evaluation, resulted in an insurmountable amount of noise in both intermediate
solutions during optimizations and final solutions. The conclusion from this was
that noise in these optimizations is a problem. Further work might include a
more thorough exploration of this issue.

Looking at the results from a qualitative perspective, there are a few general
traits characterising most of the solutions:

1. Move towards the emitter

2. Fan formation

3. Use a 180 degree span.

Moving towards the emitter is beneficial. From the Path Loss (PL) model it
is clear that the Received Signal Strength (RSS) increases rapidly for samples
taken closer to the emitter. This causes noise to become a minor factor, and
increases precision in predictions greatly. Just by having a single sample of the
RSS fairly near the emitter, excellent predictions are possible. This is discovered
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early on by the GA, as it focuses most of the resources to move UAVs towards
the emitter-location. In itself, this is a useful discovery, however, in an effort to
discover a strategy going from having no information of the emitters-location to
knowing where the emitter is, there is limited use for this knowledge.

Figure 5.14: Complete path with 6 UAVs and 4 steps

Figure 5.14 shows another variant of the solution. This is from the same set of
runs as the previous solutions, but using only 4 steps instead of 5. There is a
wider spread of the fan-formation towards the emitter in this solution. Solutions
with more steps show a greater tendency of stretching towards the emitter. With
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more steps, the UAVs can get closer to the emitter, and this becomes a driving
factor in prediction precision. With less steps, as is the case for Figure 5.14,
none of the UAVs are able to get close to the emitter with the number of steps
available. As such, a better solution is to spread out more, and instead try to
sample as large an area as possible to increase prediction precision.

Figure 5.15: Complete path with 1 UAV and 9 samples

In the case of only one UAV and 9 steps (Figure 5.15), the UAV is able to pin-
point the location of the emitter quite well. There is, however, one caveat with
the path that has been evolved here. By moving directly towards the emitter and
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only using the last step to sidestep, the predictions have low average error and
variance, but this is also presumptuous. At the beginning of its path, the UAV
cannot know in which direction the emitter is, even so, the GA has chosen a path
heading straight for the emitter. This is an effect caused by the GA introduc-
ing more information than it should, through the evaluation of the fitness of the
path. By allowing the path to optimize against the actual position of the emitter,
information that would not be available at the time the path was decided is intro-
duced to the path selection. Because of this, the viability of the strategies/plans
developed was put into question. Optimally, the solution to finding the emitter
is to go to where the emitter is and measure the RSS at that location. This
solution, obviously, only works if the location of the emitter is already known.
Further exploration was required to develop a robust strategy.

Knowing the emitter-location is a problem when trying to implement an incre-
mental strategy for path-planning, using these results. Without knowing exactly
where the emitter is located, the UAV could not possibly know that the path,
as seen in Figure 5.15, would be optimal, let alone which direction to chose at
the start. In order to address these problems, an ”Incremental path” approach
is suggested. Developing the path incrementally, first for 3 steps, then for the
next 3, adds a requirement that the path for N steps is also a part of the path
for N + M steps. This makes it impossible for the path, as seen in Figure 5.15,
to be used, as the first 3 steps would result in high prediction-error.
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5.4 Incremental path

Incremental path optimization consists of a fixed prefix and a path to be opti-
mized. The prefix is immutable for the duration of the optimization, and only
the appended path is available for the GA to change. An implication of this, is
that the first steps are optimized as if the last part of the path did not exist.
There are multiple interpretation of this:

1. Getting usable predictions without waiting for more data

2. Avoiding a situation where the GA assumes that all the measurements will
be included

3. Generating paths that are robust to UAV failure

Incremental path puts pressure on the GA to select solutions that, not only result
in good accuracy of predictions, but also provide useful data during the path
traversal. This is a very useful attribute, since getting some general indication of
the emitter-location along the way is valuable for an end user.

The prefix is generated in the same way the solutions for the Complete path are
generated. In other words, to generate a 3-step prefix for 3 UAVs, the Complete
path optimization is used. It would be possible to do more increments, i.e having
a base prefix of 3 steps and to do multiple increments of 3 steps each. For the
results described here, only one increment was applied and optimized.

Fitness is evaluated as if all of the points, both in the prefix and in the appended
path, was part of the genome to begin with. This is reasonable, as the samples
accumulated through the prefix path will also be available to help the location-
predictions.

As a result of the immutable prefix, the GA has limited ability to affect the
behaviour of the prediction produced, given the path. This made using an incre-
ment with too few steps of limited interest, as the GA had limited opportunity
to affect the outcome of the predictions. A minimum of 2-step increments were
used in these optimizations.

The main parameters used for the Incremental path optimization are listed in
Table 5.2. These are very similar to those used for Complete path.
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Table 5.2: Parameters for Incremental path optimization

Population size Number of UAVs * Number of steps * 10

Num. trials 100
Num. gen. 100

Crossover rate 0.7
Mutation rate 0.1

Figure 5.16: Incremental path with 3 UAVs and 2-step increment

Figure 5.16 shows a 2-step increment added to a 2-step prefix, using 3 UAVs.
Using a small number of initial steps, the GA shows a tendency to spread out,
more-or-less evenly, in every direction. As more steps are added, through incre-
ments or as part of the prefix, these steps are used in one of two ways:

1. Moving closer to the emitter-location

2. Acting as a counterbalance, moving away from the emitter
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4 UAVs 5 UAVs

7 UAVs 8 UAVs

Figure 5.17: Incremental path - 2-step increment

Figure 5.17 shows examples of Incremental path optimizations for 4-8 UAVs.
These are similar to the results from Complete path (Section 5.3), but they have
additional pressure on spreading out early on. This pressure is reduced as more
UAVs are added. Solutions for 7 and 8 UAVs are similar to the results found
when using the Complete path optimization.
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Whenever there is only a small amount of data/samples available, predictions
are likely to be highly erratic. Using few steps and/or few UAVs will not result
in good predictions. There is a connection between the spread of the samples
and the accuracy of the predictions. Assuming it is not possible to add more
data to the predictions, each sample has to be placed carefully to maximize the
utility of that sample. Placing the samples close to, or on top of each other is less
beneficial than spreading the samples out over a greater area. In other words,
with limited amount of sample-points, a good strategy is to spread them out as
wide as possible. Once additional information is added, for instance by adding
more steps to each UAV, this strategy becomes irrelevant and there are better
options to pursue. The important factor with few samples and a comparatively
large distance to the emitter, is the spread of the samples and the area covered
by the samples.

As the amount of data increases, by increasing the number of steps through an
increment, the trend changes. By adding an additional 2 or 3 steps, the steps are
no longer spreading out as evenly (as in the prefix path). Instead, an attraction
towards the emitter is seen. Samples taken closer to the emitter are of greater
help to narrow down the probable locations. This leads to a situation where
the UAVs appear to converge on the emitter-location. It is still beneficial to
have some distance between the samples, as two samples close together add little
information to the system.

In a way, the converging phenomenon appears to function much like an attraction
force. It is therefore not unreasonable to assume that this may be modelled as an
attraction force, using the current best, most likely, location of the emitter as the
attraction-point. This is the basis for the Attraction heuristic. There is, however,
a few challenges when trying to model this attraction force; in particular, how
strong should the force be and how does the distance to the emitter effect the
attraction force?

Solutions for different numbers of UAVs vary greatly. This may be seen as a result
of highly specialized solutions, generated by the GA. Comparing the solutions
across number of UAVs is challenging. In order to relieve this problem, a MOEA
may be applied, allowing the optimization of formations with different numbers
of UAVs at the same time. The advantage of this approach is the sharing of
genetic material between solutions with different numbers of UAVs.
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5.5 Multi-objective path

5.5.1 Motivation

When a MOEA is used to optimize, several objectives are considered at once.
Unlike the GA, a MOEA does not conclude with a single best solution, but a
set of good solutions. This is also known as a set of solutions on the pareto
front. These solutions will try to describe the best of both worlds, given two
criteria to be optimized. They represent solutions to which no better alternatives
have been found, unless one is willing to sacrifice performance in the other cri-
teria/objectives. In other words, the result of a MOEA-optimization is a set of
solutions, which showcase good choices for solving the problem. It is then up to
the user to infer which solution is best suited, given the user’s preferences.

The MOEA separates part of the optimization-process from the decision-making
process. By presenting a set of solutions instead of a single solution, an additional
choice has to be made in order to fully solve the problem. This is, generally,
considered expert knowledge. A person, or user, with expert knowledge about
the problem, may use the set of solutions generated to help in a decision-making
process. In a way, this can be thought of as the MOEA exploring and highlighting
the options of interest, while leaving the final decision to be taken, based upon
the preferences of the user or expert.

In this research, there were three reasons for using a MOEA:

1. Analysing the trade-off between two objectives/attributes of the solutions

2. Reducing variation in results from the GA across runs

3. Introducing a more flexible and realistic genetic encoding

Analysing the trade-off between two objectives is important to know what the
consequences of the choices made are. For instance, should an operator that
has 20 UAVs available commit all 20 to search for one emitter, or use 5 UAVs
and a bit more time? Should the UAVs move fast and cover a lot of ground, or
slowly and get data with a higher resolution over a smaller area? This type of
reasoning was also used in development of these systems, as it was unclear how
fitness-evaluation should combine both variance and average error to a single
fitness-estimate for the GA.

The results from the GA showed a great deal of variation between runs. A
common cause for this is that the GA has not been allowed to run for enough
generations, leaving the final result in a state of partial convergence. From the
results, this does not appear to be the case, as no more progress was made for



5.5. MULTI-OBJECTIVE PATH 101

many generations before the search was terminated. This variation is assumed
to be caused by a fitness landscape featuring a few clearly defined preferences,
but at the same time being indifferent in a lot of cases. To reduce the variation
in the results, the MOEA allowed solutions to inherit traits across, what would
for the GA be multiple runs. This made for a more uniform set of solutions, and
aided in comparing and analysing results.

Finally, introducing a more flexible and realistic genetic encoding was possible,
as solutions could be described, by the encoding, that would not degrade to a
trivial solution. An example of this is the precision and step-length encoding.
If step length had been introduced as a parameter to the GA, it would likely
have chosen to maximize this attribute as to reach the emitter with at least one
UAV. This can be seen from the Complete path results (Table 7.2 in Appendices
chapter), as paths that come close to the emitter will result in high prediction
accuracy. Once at least one UAV is able to sample the signal very close to the
emitter, all other samples become of little value, and the solutions become trivial.
By introducing the step-length gene, and at the same time adding the maximum
step length as an objective to be minimized, the MOEA is forced to make a trade-
off between precision and general proximity to the emitter-location. Proximity
to the emitter-location is a strong factor in decreasing the error in predictions
and increasing accuracy.
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5.5.2 Variance

While working with the GA, it appeared as if average error in predictions was an
insufficient mean of describing performance characteristics. This is best explained
by considering two distinct sets of predictions; on a ring with a radius of R and
in a single point, a distance R from the emitter. The näıve approach of an
average error in prediction-estimate, makes the two different sets of predictions
equivalent in terms of the final value describing them. This is because taking
only the average error, compared to the actual emitter-position has no way to
differentiate between the two. One idea that was attempted was to use not only
the average error, but also the variance of the predictions, to better describe the
performance characteristics of the formation being evaluated. Figure 5.18 shows
a solution from optimizing variance against average error.

Figure 5.18: Variance MOEA Generation 1000
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Table 5.3: Parameters for variance optimization

Population size 100
New individual per gen. 50
Num. trials 100

Crossover rate 0.7
Mutation rate 0.1
Num. gen. 1000

The parameters used for optimizing variance against average error is listed in
Table 5.3. The MOEA uses a generational mixing replacement, with a maximum
number of new evaluation per generation. For this optimization, an additional
50 new individuals were evaluated for each generation.

Early on, it was assumed that it would be possible to find a formation or a set of
paths for a group of UAVs, that result in predictions featuring any combination
of variance and average error. This can be considered as having a formation
that delivers low average error in predictions with a large spread, or a small
spread with high average error in predictions. The assumption included that
it would be very hard for a formation to be good at both at the same time,
making specialized solutions, featuring either low average error or low-variance
predictions, possible.

The result from the MOEA suggests that the trade-off, if any, is not large enough
to be significant, and that a solution, be it a formation or a set of paths for a
set of UAVs, can have a both a low average error and have low-spread set of
prediction. The pareto front, from optimizing variance against average error in
predictions, is degraded to a single solution featuring low average error and low
variance (good in both objectives). Based on these results, the conclusion must be
that variance and average error has little or no trade-off. This is consistent with
the results from the GA, that show that optimized formations narrow down both
variance and average error as resources increase (number of UAVs and number
of steps).

One of the main reasons for exploring the trade-off between variance and average
error, was to evaluate the fitness-function used for the GA. At times, the results
from the GA showed signs of degraded solutions, where the search had managed
to find solutions that were not interesting, but had good fitness-values (compared
to nearby solutions). Generally, it was found that the GA excelled at finding holes
in the fitness-function. As previously noted from the project assignment, making
good fitness-estimators for this problem is hard; most notably, because normal-
ization of the performance-values of a solution is challenging. The conclusion of
this experiment was that it is possible to have formations that feature both low
average error and variance. Using variance multiplied with average error as part
of the fitness-evaluation is not optimal, but is currently the best, most robust
solution known.
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5.5.3 UAV count

Figure 5.19: Precision and UAV count. 8 UAVs and 3 steps.

In an effort to compare formations for different number of UAVs, a MOEA sce-
nario that optimizes on prediction precision and UAV count was devised. Com-
paring end-results from individual GA-runs can be challenging, as rotation and
random factors make it hard to deduce the underlying structure of the solution.
By considering instead, the multi-objective problem of optimizing both precision
and UAV count at the same time, some of the noise present when comparing sep-
arate GA-runs are removed, as solutions are recombined across different numbers
of UAVs. An example of this optimization can be seen in Figure 5.19

Table 5.4: Parameters for UAV count optimization

Population size 200
New individual per gen. 100
Num. trials 100

Crossover rate 0.7
Mutation rate 0.1
Num. gen. 1000

Table 5.4 shows the parameters used for the UAV count optimization. These are
fairly standardized. Population size could have been increased even further, but
given 1000 generations, this was not possible in the given time-frame.



5.5. MULTI-OBJECTIVE PATH 105

8 UAVs 7 UAVs

6 UAVs 5 UAVs

Figure 5.20: UAV count - 3 steps and 5-8 UAVs

The solutions seen in Figure 5.20 are from the pareto front after 1000 generations
of optimizations. As can be seen in the figure, the general shapes found using
the single-objective GA are present. Generally, most of the UAVs are sent in the
direction of the emitter. Sometimes, one or two are sent in the opposite direction
of the emitter, to counterbalance the focus towards the emitter.
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4 UAVs 3 UAVs

2 UAVs 1 UAV

Figure 5.21: UAV count - 3 steps and 1-4 UAVs

For less than 5 UAVs (Figure 5.21), there is less consistency in the solutions.
Especially, the solutions for 1 and 2 UAVs deviate from the rest. This is caused
by the way the algorithm calculates the predictions. The case for 2 UAVs is
similar to that described in Subsection 5.2.1, and the solution for 1 UAV makes
a line, resulting in little-to-no depth perspective.
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Similarly as with the GA, the solutions show that there are a few general traits,
but that the MOEA is indifferent between small changes to the genome. The
results show that it is common for a solution for N UAVs to be the same as
for N + 1, with one additional UAV disabled. This is as expected, due to the
information exchanged between the solutions. In certain cases, where the removal
of a UAV caused the formation to be degraded, there would be a larger, but still
minor jump in the formations developed. This jump in the solutions is natural,
as the disabled UAV leaves a vacuum to be filled.

The way the genes are encoded, it is trivial for the MOEA to move the path
of one UAV to cover a hole left by the removal of another. By using a relative
encoding, a simple change in the first angle for a given UAV will cause the entire
remaining path of that UAV to be shifted along with it. What is lost by such a
change would be specific optimizations, which only benefited the path in a certain
direction. For example, a curvature that was highly optimized.

The ability to handle the disabling of a UAV is related to the robustness of the
formation when faced with UAV failure. For the solutions generated, only small
changes are required going from, for instance, 7 to 6 UAVs. This is promising, as it
could imply that the loss of the seventh UAV did not cause a major disruption to
the strategy developed. At the same time, it could be a result of the information-
exchange between the solutions for different numbers of UAVs. More investigation
is required into this matter to be certain of either case.

Whenever a UAV is disabled, it is usually one of the UAVs along the edge of the
fan-formation. This might indicate that the UAV-paths close to the middle of
the formation are more important to the performance of the solution. A possible
reason for this could be that these are the UAVs that will come closest to the
emitter at the end of their path. There is a strong connection between the
distance to the emitter-location and the accuracy of the predictions.

From the analysis of Complete path, two general formations, or categories, were
introduced: Scorpion and Scattershot. Also in this experiment, similar tendencies
were present, although somewhat weaker than previously. This is consistent with
results from the GA using a large number of UAVs, as described in the result sec-
tion for Complete path. As more information and more samples are introduced,
the pressure to select the location of each sample carefully, decreases.

As was the case for the results from the Complete path experiment, there is a
great focus on moving towards the emitter. The cause is assumed to be the
same as for the Complete path optimization. By moving closer to the emitter,
the samples gathered come from a higher signal-strength position of the Log-
Distance path model, and gives a stronger contribution to removing ambiguities
and increasing accuracy of predictions.
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5.5.4 Step length

Optimizing the step length, in addition to the paths themselves, proved to in-
troduce further variation in solutions. Some of the solutions are shown below
(Figure 5.22), but the variation in the solutions made them hard to work with.
This optimization was, therefore, not prioritized, and the work was focused on
other optimizations.

Figure 5.22: MOEA 5 UAVs, 3 steps and total path length 220-370m
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5.6 The value of a sample

Early in the project assignment, an attempt was made to quantify the value of a
sample. How much is a sample worth? How much does precision increase when
adding a sample? How does prediction error scale with the number of samples?
From the project assignment, the results showed that there is a clear diminishing
return after a number of samples have been gathered. For the problem, as de-
scribed under Step 4, this return becomes small after around 4-6 samples (Figure
3.2).

From the optimization done in this work, the GA and MOEA indicates that
getting close to the emitter is important. 4 UAVs and 5 steps are comparable in
precision to 8 UAVs and 4 steps. In other words, unless time is critically short it
would be better and more efficient to use another step and less UAVs.

Most importantly, ambiguities should be avoided. It is perfectly possible to
introduce situations where the predictions gather in two or more locations that
are otherwise indistinguishable. This is a problem, and a situation best avoided.
Even modelling the predictions would require advanced methods, such as FMM.
Ambiguities seem to be less of a problem, given larger amounts of samples. During
the testing of the heuristics, ambiguities were not a problem. This is likely
because of the amount of data collected. As the heuristic gathers more data, the
dynamics of the problem become more stable and anomalies are less frequent.

Figure 5.23: Diminishing returns, using multiples of 3 samples
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Figure 5.23 show the decrease in average error of adding more samples as either
steps or an additional UAV. The number of samples is the number of UAVs
multiplied with the number of steps. The red line represents adding samples as
additional UAV. Starting with one UAV with 3 steps, adding an additional UAV
with 3 steps for each jump. The blue line represents adding samples as additional
steps. Starting with 3 UAVs with 1 step each, adding an additional step to each
UAV for each jump.

Figure 5.24: Diminishing returns, using multiples of 4 samples

There is a clear stacking-penalty and diminishing return as the amount of sam-
ples increases. The table for Complete path (Table 7.2) shows a weak effect from
adding more UAVs, while adding more steps will lead to near zero error in pre-
dictions, as soon as a sample is located close to the emitter. This effect is also
shown in Figure 5.24. After 4 to 5 UAVs there is very little gain from adding
more UAVs. However, adding more steps show a gain in precision, for up to and
including 40 samples (4 UAVs and 10 steps each).

Robustness can be achieved by increasing the number of samples. As the amount
of data increases, the dynamics of this problems become more stable, and less
anomalies are present. With few samples there is a greater pressure to select the
location of each sample with care. This has to be done in order to not introduce
ambiguities and maximize the gain from the sample.
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The value of a sample is, generally, a composite of multiple effects. If the sam-
ple is used to remove an ambiguity, the sample can be considered quite valuable.
Looking past the possible reduction/removal of ambiguous data, the gain from an
additional sample would depend on how much data is already available. Increas-
ing the number of steps per UAV is the most effective way of increasing accuracy
and precision. Increasing the sample count by adding another UAV proved to be
less effective.



112 CHAPTER 5. RESULTS AND ANALYSIS

5.7 Heuristics for UAV behaviour

5.7.1 Heuristics

Each of the heuristics implemented attempts to solve the problem of geolocating
an unknown RF emitter in a slightly different way. These heuristics are a result
of the optimizations done (Complete path and Incremental path), and attempts
to approximate different traits from the optimized solutions. Three different
heuristics were implemented:

1. Random walk

2. Whack-A-Mole

3. Attraction

A random walk heuristic was implemented as a baseline for the other strategies.
It is generally assumed that this strategy should be the worst, as it ignores all
information available and picks a random move at every step. Increasing the
amount of samples available reduces the pressure on selecting good positions for
each sample. This may make random walk strategy a viable candidate, given
enough data.

Often, the predictions form a complicated pattern, even given a reasonably simple
formation. The predictions may group, or cluster, in multiple areas, or spread out
over a larger area. Modelling the predictions is a challenge. FMM can be used
to approximate complex distributions by using multiple simpler distributions.
When using FMM, a number of components/distributions are optimized to fit
the input data. Each of these components will then indicate points where the
predictions cluster. It is assumed that there can only be one emitter, as such, all
but one of the components must indicate false positives. Eliminating all of the
false positives should lead to the true emitter-location. Whack-A-Mole strategy
will attempt to send one UAV to each presumed emitter-location to eliminate
each ambiguity.

The results of the optimization would suggest that it is beneficial to move closer
to the location of the emitter to reduce the error in the predictions. The Attrac-
tion heuristic takes the knowledge, that ”closer is better”, and applies it using
an attraction force to where the set of the UAVs believe that the emitter may
be located. This location does not have to be the correct location, but it can
be. Over time, this strategy should converge on the actual emitter-location as
ambiguities are resolved. This heuristic is based on the solutions found by the
GA (Section 5.3). There are two parameters to this strategy that have to be
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decided empirically: strength of the attraction force and initial velocity vectors
for each UAV.

For the Attraction and Whack-A-Mole heuristic, attraction forces are used to
determine the next action to take. This attraction force directly affects the
velocity of the UAV at each step simulated. A force coefficient is used to scale
the contribution of the force, to the velocity for the next step. This is a value
between 0 and 1. A value of 1 would imply that the UAV should move directly
towards the presumed emitter location. A value of 0 would make the UAV ignore
the attraction force, continuing forwards, in the current direction. At any given
point in time, the position and velocity of the UAV is calculated as following:

xavg =
1

n

n∑
i=0

xpred,i

b = xavg − xuav

vuav = (1− f) ∗
vprev

||vprev||
+ f ∗

b

||b||

xuav = xuav + 50.0 ∗
vuav

||vuav||

f is the force coefficient. b is a vector in the direction of the presumed emitter-
location. vuav is the current, unormalized velocity vector. vprev is the velocity
vector from the previous step. The velocity is normalized at each step to give
a constant step length of 50m. This is the same step length as was used in
the optimizations. For the Whack-A-Mole heuristic xavg is replaced with the
center-point of a component from the FMM model.

5.7.2 Characteristics

Using a random walk heuristic is a poor choice, as it ignores all information
available to assist in the search. In choosing a random direction at each step,
it rarely moves far away from the initial point, leading to poor coverage of the
search area and low performance. Most often, this heuristic would not be able to
reach the termination threshold. It was therefore excluded from the performance
comparison

Attraction heuristic is predictable and works well. Attraction heuristic calculates
a center of gravity for all the predictions available, and uses this as an attraction-
point for the UAVs. This is a promising and fairly robust strategy. It works
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well, even with highly erratic initial predictions (as a result of few samples), but
quickly converges on the emitter as more data is added.

Whack-A-Mole tries to eliminate ambiguities as soon as possible. For a set of
predictions, multiple points of interest can be found using FMM. Each component
is then mapped as the attraction-point of one UAV. This strategy is similar to the
Attraction heuristic, however, as there are multiple attraction-points, it is more
unpredictable. The results is often that one or two UAVs choose a highly erratic
path, compared to the rest. This is caused by insufficient amount of predictions
to form a robust model using FMM, and a high chance of ambiguities with few
samples. See Figure 5.25 for examples of behaviour.

Attraction Whack-A-Mole

Figure 5.25: Example of heuristics behaviour

5.7.3 Performance comparison

A comparison of the performance of the three heuristics was conducted. This
comparison has a termination threshold - a minimum required precision in predic-
tion. Several values of the threshold were tested, but only minor differences were
experienced, unless very large threshold-values were selected. Using a threshold
of 10m error, each of the strategies were simulated 100 times to get a consistent
indication of their performance. This was repeated for 3, 4 and 5 UAVs. The
number of steps indicated in the tables are per UAV. To get the total sample
count, this number has to be multiplied with the number of UAVs. For instance,
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10 steps on average and 3 UAVs is actually 30 samples in total. There is a dis-
tance of 480m between the initial position for the UAVs and the emitter. With
the step length of 50m, 10 steps are required to reach the emitter.

Table 5.5: Strategy performance. Threshold error 10 m. 3 UAVs

Strategy Avg. steps Var. steps Median steps
Attraction 11.08 0.61 11

Whack-A-Mole 12.24 1.34 12

Table 5.6: Strategy performance. Threshold error 10 m. 4 UAVs

Strategy Avg. steps Var. steps Median steps
Attraction 10.67 0.69 11

Whack-A-Mole 11.26 1.00 11

Table 5.7: Strategy performance. Threshold error 10 m. 5 UAVs

Strategy Avg. steps Var. steps Median steps
Attraction 10.27 0.77 10

Whack-A-Mole 10.37 0.73 11

Random walk heuristic performs worst of the three heuristics. This is as expected,
as it ignores the information available. The Random walk heuristic is not included
in the comparison, as it frequently failed to attain the required precision in order
to terminate the test and had to be terminated manually.

The second best is Whack-A-Mole. This heuristic often wasted samples and
steps going in the wrong direction (relative to the emitter). This is caused by two
factors: Whack-A-Mole tries to eliminate ambiguities, and since there can only be
one emitter, most of this effort is wasted once the emitter-location is known. The
second factor is an unreliable model from the FMM; due to insufficient amount
of predictions, the model of the predictions is erratic.

Attraction strategy performs best out of the three strategies. The difference in
performance between Whack-A-Mole and Attraction heuristic is minor, especially
as the number of UAVs increase. The Attraction heuristic may be preferred, since
it is much simpler than the Whack-A-Mole heuristic and have equal or better
performance, at least in the given test scenario.
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5.8 Heuristic optimization

5.8.1 Premise of optimizations

Attraction and Whack-A-Mole was found to both be promising strategies for UAV
behaviour (Section 5.7). Compared to Whack-A-Mole, Attraction offers more
predictable behaviour, given an attraction force and a set of initial velocities.
The parameters of the Attraction force heuristic were previously not optimized
in any way. Optimizing these parameters might lead to further improvement to
the heuristic’s ability to geolocate unknown RF-emitters.

Whack-A-Mole strategy uses an FMM to make a model of the predictions. In
order to generate this model accurately and robustly, many predictions are re-
quired. The heuristics operate by taking in a set of predictions and determining
the next step for each UAV. If the Whack-A-Mole heuristic was to be applied to
a real-world scenario, each UAV would have to take a large amount of samples
for each step (>> 100) to make the FMM-generated model robust. This is a
disadvantage using this heuristic and made the Attraction heuristic the preferred
choice for further investigation.

Optimizing was attempted using a real-coded GA. The parameters being opti-
mized was a force coefficient, giving the percentage contribution from the attrac-
tion force (compared to the current heading), and the initial velocities. Number
of steps taken, before the threshold was reached, was used as a performance met-
ric. This proved insufficient for two reasons: first, the integer number of steps did
not provide the GA with enough information to distinguish good solutions from
bad. Second, the GA consistently optimized the initial velocities in the same
presumptuous way, as the angles from previous optimizations. In short, the GA
optimized to direct the initial velocities towards the actual emitter-location.

Making a better optimization is possible and was done by using the fitness-value,
instead of the number of steps. The fitness-value was calculated based on the
positions chosen by the heuristic. In order to not allow the heuristic to get
too close to the emitter, a maximum number of samples were specified, to leave
the closest sample at an appropriate distance from the emitter (usually around
100m).

Like for the Complete path optimization, slight rotation in final solutions from
the GA made it hard to compare solutions. To simplify the optimization, the
initial velocities were removed from the optimization, and an even spread was
used instead. In the project assignment, during the optimizations for Step 2, a
circle or an equidistant triangle lattice was found to be good solutions. Using an
even spread with 3 UAVs, gives a 120 degree angle between each velocity vector.
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A 90 degree angle was used for 4 UAVs and 72 degree angle for 5 UAVs. If not for
the effect of the attraction force, the UAVs would fly in in straight paths, evenly
spaced out, radiating from the initial location. It might still be possible, given an
evenly spread-out formation, to gain a performance advantage if the emitter is in
a certain direction relative to the formation. Testing the formation in multiple
orientations solves this problem.

Having removed the initial velocities from the optimization and replaced them
with a fixed spread and a rotation parameter, only two optimization parameters
remained: attraction force coefficient and rotation offset. This optimization can
be done exhaustively, given a suitable step for both parameters. The result of
this is a table with rotation offset on one axis, and force coefficient on the other.
These tables become quite large, and as such, only one example of such a table
is included here.

5.8.2 Optimization results

Table 5.8: Testing of coefficients. 500m distance. 1 dB noise. 3 UAVs

F. coeff. Angle offset
0 deg 20 deg 40 deg 60 deg 80 deg 100 deg

0.00 1.77 2.10 3.02 3.10 3.14 2.12
0.05 2.05 2.44 3.38 3.74 3.37 2.49
0.10 2.78 3.15 4.26 4.72 3.86 3.25
0.15 4.40 4.76 5.97 6.15 4.67 4.90
0.20 7.81 7.81 8.43 7.97 5.89 8.07
0.25 11.83 11.58 10.92 9.77 7.60 11.61
0.30 14.50 13.95 12.35 11.02 9.46 13.96

0.35 14.79 14.51 12.51 11.55 10.79 14.29

0.40 13.52 13.57 11.82 11.53 11.60 13.00
0.45 11.77 12.09 10.89 10.89 11.31 10.91
0.50 9.84 10.00 9.24 9.09 9.19 6.76
0.55 7.01 6.29 5.09 5.84 5.95 4.42
0.60 5.16 4.47 3.37 3.57 3.56 3.27
0.65 3.91 3.41 2.60 2.48 2.36 2.49
0.70 3.04 2.70 2.11 1.92 1.74 2.01
0.75 2.42 2.21 1.83 1.60 1.41 1.65
0.80 1.97 1.88 1.62 1.39 1.21 1.42
0.85 1.68 1.64 1.47 1.25 1.09 1.24
0.90 1.49 1.48 1.36 1.15 1.02 1.10
0.95 1.36 1.36 1.28 1.08 0.95 1.00
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From Table 5.8 it can be seen that using an attraction force coefficient of 0.35
outperforms all other coefficients, assuming 500m start distance from the emitter
and 1 dB noise. Similar tables were generated for all combinations of 300m, 500m
and 700m and 1dB, 2dB and 3dB noise.

Attraction
Old GA result

Figure 5.26: Comparison Attraction heuristic and an older GA result

Left part of Figure 5.26 shows an example run of the Attraction heuristic using
a force coefficient of 0.35. Right part of Figure 5.26 shows a result from a GA
optimization. This particular result was excluded from Complete path results, as
it was from an older batch of results and uses a different mutation operator. The
rest of the solutions belonging to the same set of runs, were not equally smooth
(this is why the solution for 4 UAVs is shown).

The formation generated by the heuristic now resembles the results from the
Complete path optimization (Figure 5.12 in Section 5.3). Because of the way
the Attraction heuristic is implemented, the paths generated by the heuristic
will inevitably be smooth. The solutions generated by the GA has no similar
restriction or limit.

As the noise increases there is no longer a single force coefficient that is consis-
tently better than all others, this is related to the random sampling taken and the
increased error in predictions. In cases where multiple coefficients were shown
to give similar performance, ties were resolves by taking the average over all the
angle offsets. The coefficient with the greatest average was then chosen as the
best. At 3 dB noise, the best coefficient shows great variation. Table 5.9 shows



5.8. HEURISTIC OPTIMIZATION 119

that at 3 dB, the force coefficient no longer reflects the initial distance from the
emitter. Further experiments were done using limited noise (1 dB).

Table 5.9: Optimized coefficients for 3 UAVs

Distance Noise
1dB 2dB 3dB

300m 0.45 0.40 0.15
500m 0.35 0.35 0.30
700m 0.25 0.25 0.25

From the results, it appears that the distance to the emitter is the deciding factor
of the force coefficient. Noise has a limited effect. The effect of noise is hard to
examine as the increased noise makes the performance of the heuristic degrade as
well. From visual inspection/testing of the coefficients, it appears that the best
choice is a coefficient that makes the UAVs converge on the emitter, as seen in
Figure 5.26. If the starting position is close to the emitter, the coefficient has
to be higher (stronger force). Otherwise, the UAVs will just fly by the emitter,
unable to stop.

Table 5.10: Optimized coefficients for 3-5 UAVs. 1dB noise

Distance 3 UAVs 4 UAVs 5 UAVs

300m 0.45 0.40 0.35
500m 0.35 0.30 0.30
700m 0.25 0.25 0.20

Further optimizations were done for 3-5 UAVs. Excluding noise as a contribution
to be examined, the results can be seen in Table 5.10. Increasing the number
of UAVs appears to lessen the force coefficient. The result of this is that the
UAVs will be less attracted to the estimated emitter-position, and potentially
take longer to converge on the emitter. As the number of UAVs increases, it
makes sense to spread these out in a wider fan, covering a greater area. Distance
still remains a major factor in determining the force coefficient.

Selecting the strength of the attraction force appropriately, it is possible to gen-
erate a behaviour that results in the UAVs orbiting the emitter once they have
gotten close enough. This leads directly to Step 4 of the search, where a circle
was found to be a good solution in order to achieve robust and accurate predic-
tions.
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5.9 A strategy

5.9.1 Step 2 - Rough predictions

Originally, it was assumed that even at a distance, a rough idea of the location
of the emitter would be possible to attain. Later experiments showed that the
predictions made while standing in any formation, far away from the emitter, are
very rough. They will give the general direction of the emitter, but little to no
positional accuracy.

It is also possible to induce ambiguities by choosing a poor formation. One
example of a poor formation, capable of inducing ambiguities, is a circle. Given
a reasonable distance from the emitter and a circle formation, the receivers will
be unable to distinguish an emitter in the center of the circle from an emitter far
outside the circle. This is described in Subsection 5.2.1. The same effect can also
be seen using less samples in a triangle or a square formation.

The ambiguities can be resolved in a number of ways. Assuming a perfect circle,
the simplest method of resolving the ambiguities is to place another receiver, or
sample, in the middle of the circle. By placing a measurement in the middle
of the circle, it is possible to deduce the shape of the RSS intensity field. The
sample will, in the case of the emitter being in the middle of the circle, show a
peak in measured RSS. If a peak is found, it indicates that the emitter is in the
middle of the circle. In the case of the emitter not being in the center of the
circle, no peak is found.

In general, it is suggested that a good formation for Step 2, is to use an equidistant
triangle-lattice. Many formations may fulfil the requirements of not introducing
ambiguities. To not introduce ambiguities, they must, in some way have two
layers of measurements. Increasing the distance between the receivers in an
equidistant triangle-lattice, increases the precision of the predictions. Eventually,
increasing the distance too much, the spaces in-between receiver-locations may
introduce ambiguities as they grow large.

Finally, it is possible to use other external information, such as: approach di-
rection, topology or geographic information, to assist these initial predictions.
It is assumed that during Step 2, Step 1 will have been completed. Step 1 in-
cludes a convergence of multiple UAVs from different locations. Their respective
approach-vectors may be used to exclude some areas due to the data gathered
while approaching.
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5.9.2 Step 3 - Relocate

The relocation phase was investigated in this thesis, going from Step 2 to Step
4, converging on the emitter. It is possible to use this time to gather data,
maximizing the utility of the resources spent. This is a very complicated problem
with a large search space. In addition, the noise in the predictions and solution
make patterns hard to discern.

A perfect solution to this step would be the optimal heuristics defining the actions
of each UAV. Multiple GA and MOEA optimization-scenarios were implemented
and tested. This lead to further questions and questioning of the scenarios them-
selves. The solutions show tendencies to stretch out the different types of paths
implemented, but at the same time, there is a significant amount of noise clouding
the solutions.

The set of solutions from the optimizations often converge on the emitter in one
way or another. This indicates that getting to a higher signal-level is beneficial.
In other words, moving closer to the emitter is a sound way of decreasing the
error in predictions. Two heuristics spawned from this knowledge: Attraction
and Whack-A-Mole.

Attraction heuristic assumes that closer to the emitter is better. This is applied
to the heuristic as an attraction force, pulling the UAVs towards the assumed
emitter-location. As this is a continuous search, the UAVs cannot know where
the emitter is - they only have rough, error-prone predictions to guide them.
These are used as a guide for the direction the UAVs should explore. The result
is a system where the UAVs will be drawn towards the center of the predictions.
When additional information is added, the center may shift, and the error lessens.
Eventually, the UAVs will have gathered enough data to exclude any ambiguities,
and were often found to be orbiting the emitter (a result of the way the attraction
force is implemented).

Whack-A-Mole heuristic takes a different approach, by trying to resolve ambi-
guities as early as possible. By using FMM, it is possible to generate multiple
centers of gravity, as used by the Attraction heuristic. Under the assumptions
of the simulations, there can only be one emitter - all but one of these cluster-
ing of predictions must be ambiguities. By travelling towards each one of the
clusters, the UAVs will resolve the ambiguities until only one predicted location
remains.

Both of these heuristics show promise and offer similar performance, given an
error threshold. The Whack-A-Mole heuristic appears to act more randomly and
moves less predictably. This is a result of the limited amount of data available
when each choice is made. Without a lot of data to generate an FMM, the model
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is highly unstable. Attraction heuristic can be considered a simplified version of
the Whack-A-Mole heuristic, as it only has one attraction-point, leading to more
consistent behaviour (potentially using less resources).

Given a suitable initial velocity for each of the UAVs, both heuristics will form
fan-like formations approaching the emitter. Performance between the two heuris-
tics are comparable, but a simple Attraction heuristic may be preferred in this
setting, considering robustness and predictability.

Finally, the parameters of the Attraction heuristic were optimized, leading to
behaviour similar to that found in solutions during Complete path optimization
(Section 5.3). Initial distance from the emitter and UAV count was found to both
be important factors in determining the strength of the attraction force.

5.9.3 Step 4 - Maximize accuracy

A circle around the emitter is a very good option to maximize accuracy of pre-
dictions. As discussed under Step 2, a circle may introduce ambiguities to the
predictions. These ambiguities make it hard, if not impossible, to distinguish an
emitter in the center of the circle, as opposed to an emitter far away from the
formation. This is a problem that should be avoided whenever possible.

One way to resolve this ambiguity is to use an imperfect circle, with one sample-
point located outside the circle. Another option is to use an equidistant triangle-
lattice, with a sample in center of the hexagon. This type of ambiguity can, in
general, be resolved by introducing a two-or-more layered formation. Having two
layers in the formation allows for the detection of a peak in the middle of the
formation.

There is a strong correlation between distance to the emitter and prediction
accuracy. To maximize prediction accuracy, placing at least one receiver close
to the emitter is a good strategy. This can be explained by considering the PL
model. Close to the emitter, the receiver will measure high RSS. As a result, the
noise will be less significant and predictions become very accurate.
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5.10 Threats to solution validity

NLLS requires a grid to be specified. This grid effectively defines the possible
solutions that the geolocation algorithm may return as a prediction (Section 2.5).
The grid adds information to the system, since the emitter cannot be outside
the grid. For some scenerios, this assumption may hold, but in general, the
specification of the grid/search area may greatly affect the performance of the
algorithm, both positively and negatively.

Another concern is the ability to test each solution sufficiently. For most of these
simulations, 100 trials were run when testing each solutions. If time allowed, 1000
trials should have been used to test each solution, but this would have increased
the run time by a factor of 10. As it is currently, noise may give some solutions
favourable evaluations. This is unfortunate as, optimally, only the characteristics
of the solution itself should be able to affect its performance evaluation.

Evaluating fitness for this problem is complicated. The majority of this work uses
a fitness combined of two metrics: spread of predictions (variance) and average
error. These two factors are multiplied, as part of the fitness-value. Optimizations
revolve around minimizing these two values. It is possible to make solutions that
have a low spread (variance) and a high average error. These solutions will
have a fairly high fitness-value, as the product of variance and average error is
small (relatively). However, a solution with these attributes is most often not of
interest, but may be selected by the optimization, due to the high fitness value.
The result is the GA or MOEA converging to a suboptimal solution. Solutions
like these, are easily found by manual review in retrospect, but the lack of a more
robust fitness-estimation is concerning.

As this implementation also contains a simulation part, with its own non-deterministic
components and noise, the chances of an error in implementation is high. Simu-
lating a real environment includes making assumptions about how the real world
behaves. These assumption are often simplifications, which may lead to prob-
lems, should the simplification not accurately reflect the real world. The model
for RF propagation I have employed for these simulations ignores many important
real-world problems for RF propagation such as:

• Reflections

• Interference

• Signal dampening
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RF propagation problems may not seem that important, as devices using RF
emitters are commonplace for most people and work very well. For the purpose of
geolocating RF emitters, however, these effects cannot be discounted as easily. An
unknown and uncooperative emitter alone is not something most consumer-grade
RF communication systems have to deal with. Using methods based on RSS,
the dampening of the signal becomes a matter of importance. The dampening is
affected by, for instance weather conditions, topography or simply distance above
ground. Distance above ground can to a certain degree be account for, but as
mentioned in Section 2.2 there are significant differences between RF propagation
in the air compared to on the ground.

In a real-world application, emitters are not forced to stand still. A moving emit-
ter would further complicate the setting, as the samples gathered may not reflect
the current location of the emitter. This could be handled using a rolling time-
window, where samples are only valid/usable for a short time after collection.
Alternatively, by not sampling multiple times per UAV, time, effectively stands
still, making the emitter non-moving. The complications of a moving emitter was
not taken into account for the optimizations done in this work.

Furthermore, in a real-world scenario, there will likely be more than a single
emitter. Distinguishing multiple emitters in the same part of the frequency spec-
trum is a challenge that has not be considered in this work. Further work is
required in the area of separating and classifying multiple emitters in a noisy RF
environment.

Applying a theoretical study, such as this, to the real world is a challenge. Even
if the implementation is sound and the results therefore are valid, there may
be factors or problems that have not been taken into account. In other words,
even a theoretically sound implementation may encounter problems when put
into practice.

There is, as always, many problems that may lead to invalid results. In using
GAs and MOEAs, a host of issues that are not present with deterministic algo-
rithms presents themselves. Algorithms that do not behave predictably to the
programmer are notoriously difficult to debug, and prone to contain errors either
in logic or in function. Finding these errors is not impossible, but can be very
hard. I have tested and verified this implementation, yet I cannot exclude the
possibility of remaining errors.



Chapter 6

Conclusion and future
work

This chapter is a conclusion to the work conducted. Suggestions for future work
made here are based on the problems, experiences and ideas that appeared while
working with these problems.
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6.1 Conclusion

Geolocation of an unknown, uncooperative RF emitter using a RSS method
PDOA NLLS in a noisy environment, employing multiple distributed autonomous
UAVs, while minimizing resource-consumption in a time considerate optimiza-
tion is a challenging problem. A large solution and search space, with a non-
deterministic (noisy) fitness-evaluation with multiple maxima, make solving this
problem a non-trivial task. Even so, the work has been a valuable experience in
using multiple methods of optimization on real-world problems. In some situa-
tions, it was possible to reduce the effect of noise by carefully manipulating the
random-number generator to only generate randomness where it was required,
to provide accurate and realistic results. This technique was used, for instance,
in developing the fitness-plots showing an overview of the fitness-landscape for
different situations. By using the same random noise in-between sets of data that
should be compared for performance, the noise in the final figures were greatly
diminished. This has to be done with great care, as to not introduce random
samplings that may favour some solutions over others and invalidate results.

Often, this work turned out to be an exercise in examining and breaking down
the problem into smaller, individual pieces and examining each piece with some
degree of independence from the overall problem. Doing so while not disrupting
the problem itself, and figuring out reasonable subproblems to work on, was one of
the greatest challenges in this work. When it was possible to divide the problem,
this often lead to breakthroughs, where previously unassailable problems became
manageable and tangible. An example of this is, for instance, plots optimizing
angles between path for UAVs. These provide a much needed, clear-cut solution
to a smaller subproblem. However, these extracted subproblems and associated
solutions would not have been possible without first exploring the problem at a
higher level to determine which parts of the problem could be extracted. As such,
the progression of this work has had a major influence on the end result.

Proximity to the emitter is a clear driving-factor for most of the results from the
GA and MOEA. There is a strong correlation between distance to the emitter
and prediction accuracy. From ”The value of a sample” (Section 5.6) it can be
seen that adding more UAVs is not a fool-proof solution to gain perfect predic-
tion accuracy. As such, anyone seeking to use a system based on the concepts
described in this work should be aware that proximity to the emitter is likely to
be the limiting factor.

Ambiguities proved to be fairly common, given few resources (sample-points).
Such ambiguities result in two or more locations, which are indistinguishable
based on the emitter-location predictions given. This is a problem for a real-
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world system based on PDOA. To resolve this, a formation/set of locations to
sample, has to be chosen with care. An equidistant triangle lattice, is a simple
structure that will, in far most cases, not introduce ambiguities in predictions.
Multiple formations will fulfil the task without introducing ambiguities. The
main requirement for this is to introduce a multiple-layered formation that can
detect the actual shape of the RSS-field over the area.

In the analysis, two good ways of organizing a group of UAVs was suggested;
these were nicknamed Scattershot and Scorpion. Scattershot would spread all
the available UAVs out in a cone in the general direction of the emitter. Scorpion
would retain a couple of UAVs, sending these backwards, away from the emitter.
As the total number of UAVs increased, so would the number of UAVs being sent
away from the emitter. These are, by no means, exhaustive solutions, but they
are good general guidelines for UAV-behaviour in a RF-geolocation system.

Based on the optimizations of angles and paths for UAVs, two heuristics were
developed: Attraction and Whack-A-Mole. The Attraction heuristic approaches
the presumed emitter-location at all times. The Whack-A-Mole heuristic uses
FMM for clustering of predictions, allowing the heuristic to try to eliminate
ambiguities in the prediction. Attraction was chosen as the preferred heuristic
for greater predictability in behaviour and for being more robust when faced
with erratic predictions. The parameters of the Attraction heuristic was also
optimized for a particular scenario, resulting in similar behaviour as seen in the
results from the Complete path optimization (Section 5.3).

The work conducted here describes in total: a strategy from emitter-detection to
emitter-location prediction. Including the work of Jørgen Nordmoen, in using a
swarm of UAVs to locate an emitter in a large area, this covers the entire pro-
gression from ”no information” to having an accurate prediction on the emitter-
location. I believe, that with technology available today, it should be possible to
implement a functional demonstration-platform, proving these concepts.

There is still work remaining in making this a fully distributed system. As it
stands today, going from knowing that there is an emitter to knowing where it
is, requires cooperation between the different UAVs. Cooperation implies com-
munication, which may or may not be viable, depending on the environment and
context. More exploration is required to find out how much of this system could
be distributed completely, to avoid having to rely on a single point of failure.



128 CHAPTER 6. CONCLUSION AND FUTURE WORK

6.2 Future work

Implementing a real-world test system, testing and evaluating some of the data
presented here, should be first priority for any further work. A real-world im-
plementation may present new and unforeseen problems, or may invalidate some
of the assumption made in this work. In particular, it would be interesting to
see whether assumptions of noise in the system and performance, holds, given
real data. Signal detection and separation were also not included in this work,
as such, it would be most interesting to see how well a system based on small,
cheap distributed units might perform, faced with a complex RF environment,
tracking some commonly used protocol.

It is still an open question, whether a simple heuristic such as Attraction is
sufficient to optimally control the movement of each UAV. A possible extension
could be to evolve an artificial neural network to guide each UAV. The noise
present in the evolved solutions from the GA and MOEA, makes it clear that
a single template or recipe is insufficient. As such, looking into more robust
methods of describing a reactive agent, taking the information available to the
UAV and outputting the actions for each UAV, would be interesting.

To date, the algorithms and methods described here require a central overview,
or significant communication in-between each participating UAV. Examining the
possibilities with limited communication and a fully distributed system, would be
an important step in making the system robust against communication-disruption
and UAV failure. In short, exploring what constraints a fully distributed swarm
would impose on the system, would be interesting.

UAVs come in a multitude of different shapes and sizes. In this work few, if
any, restrictions were applied to the behaviour and paths a UAV could follow.
This is a realistic assumption, given a UAV with the ability to hover, for instance
a quad-copter. A fixed-wing UAV often offers increased endurance (compared
to a quad-copter), but at the cost of not being able to hover. The inability
to hover limits the paths the UAV could follow. Exploring the advantages and
disadvantages of different types of UAVs, in an RF geolocation context, might
shed light on some of the physical requirements and performance characteristics
a real-world implementation would have to contend with.

In this research, a simulator was developed for testing hypotheses and verifying
optimization-results. Researchers at FFI have expressed interest in taking this
one step further, increasing the level of human interaction to investigate how
humans would solve the problem of geolocation. Based on the human response,
it might be possible to use machine-learning to extract features of the human
approach to solving this problem.
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Table 7.3: Parameters for Complete path optimization

Population size Number of UAVs * Number of steps * 20

Replacement strategy Full generation replacement (elitism = 2)
Selection strategy Rank scaling selection

Num. trials 100
Num. gen. 100
Grid size [1000,1000]
Noise std.dev. 1dB
Mutation step (2σ) 20 deg.

Crossover rate 0.7
Mutation rate 0.05
Grid resolution [256,256]
Emitter position [330,330]
Receiver base position [670,670]

Table 7.4: Parameters for Incremental path optimization

Population size Number of UAVs * Number of steps * 10

Replacement strategy Full generation replacement (elitism = 2)
Selection strategy Rank scaling selection

Num. trials 100
Num. gen. 100
Grid size [1000,1000]
Noise std.dev. 1dB
Mutation step (2σ) 60 deg.

Crossover rate 0.7
Mutation rate 0.1
Grid resolution [256,256]
Emitter position [330,330]
Receiver base position (given by prefix)

Table 7.5: Parameters for UAV count optimization

Replacement strategy Generational mixing replacement
Selection strategy NSGAII

Num. gen. 1000
Population size 200
New individual per gen. 100
Num. trials 100
Grid size [1000,1000]
Noise std.dev. 1dB

Crossover rate 0.7
Mutation rate 0.1
Emitter position [330,330]
Receiver base position [670,670]
Grid resolution [256,256]
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Abbreviations

AI Artificial Intelligence. 19, 123

AOA Angle of Arrival. 3, 31, 123

BBGF Binary Bayesian Grid Filter. 38, 123

CPU Central Processing Unit. 56, 78, 123

CUDA Compute Unified Device Architecture. 13, 17, 56–60, 78, 91, 123

DPD Discrete probability density. 31, 123

FDOA Frequency Difference of Arrival. 31, 123

FFI Norwegian Defence Research Establishment. 5, 7, 16, 26, 78, 120, 123

FMM Finite Mixture Model. 13, 37, 66, 76, 106, 108–110, 113, 119, 123

GA Genetic Algorithm. 7, 19, 33, 34, 36, 43, 45, 47–49, 51, 52, 54, 60, 61, 64,
65, 67–70, 73, 76, 78, 88, 89, 91–94, 96–104, 106, 111, 113, 115, 118–120,
123

GPS Global Positioning System. 31, 123

GPU Graphical Processing Unit. 56–58, 123

ID Intersection Density. 31, 123

ML Maximum Likelihood. 123

MOEA Multi-Objective Evolutionary Algorithm. 13, 14, 36, 69–71, 73, 76, 88,
96–101, 103–106, 113, 115, 118, 120, 123

NLLS Non-Linear Least Squares. 31, 32, 57, 59, 60, 78, 79, 82, 89, 115, 123

PDOA Power Difference of Arrival. 3, 9, 16, 19, 31, 38, 42, 57, 60, 78, 79, 83,
118, 123
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PL Path Loss. 13, 23–27, 32, 91, 114, 123

RF Radio Frequency. 3, 5, 9, 16–20, 22, 23, 31, 38, 47, 78, 79, 108, 111, 116,
120, 123

RSS Received Signal Strength. 3, 5, 19, 26, 27, 32, 92, 93, 114, 119, 123

SIMD Single Input Multiple Data. 78, 123

TDOA Time Difference of Arrival. 123

TOA Time of Arrival. 31, 123

UAV Unmanned Aerial Vehicle. 5, 9, 10, 13, 14, 16, 17, 19, 20, 22, 23, 38, 39,
43, 51, 53, 63–65, 67, 68, 70–72, 78, 84–98, 100–114, 118–120, 123
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