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Similarly as with the GA, the solutions show that there are a few general traits,
but that the MOEA is indifferent between small changes to the genome. The
results show that it is common for a solution for N UAVs to be the same as
for N + 1, with one additional UAV disabled. This is as expected, due to the
information exchanged between the solutions. In certain cases, where the removal
of a UAV caused the formation to be degraded, there would be a larger, but still
minor jump in the formations developed. This jump in the solutions is natural,
as the disabled UAV leaves a vacuum to be filled.

The way the genes are encoded, it is trivial for the MOEA to move the path
of one UAV to cover a hole left by the removal of another. By using a relative
encoding, a simple change in the first angle for a given UAV will cause the entire
remaining path of that UAV to be shifted along with it. What is lost by such a
change would be specific optimizations, which only benefited the path in a certain
direction. For example, a curvature that was highly optimized.

The ability to handle the disabling of a UAV is related to the robustness of the
formation when faced with UAV failure. For the solutions generated, only small
changes are required going from, for instance, 7 to 6 UAVs. This is promising, as it
could imply that the loss of the seventh UAV did not cause a major disruption to
the strategy developed. At the same time, it could be a result of the information-
exchange between the solutions for different numbers of UAVs. More investigation
is required into this matter to be certain of either case.

Whenever a UAV is disabled, it is usually one of the UAVs along the edge of the
fan-formation. This might indicate that the UAV-paths close to the middle of
the formation are more important to the performance of the solution. A possible
reason for this could be that these are the UAVs that will come closest to the
emitter at the end of their path. There is a strong connection between the
distance to the emitter-location and the accuracy of the predictions.

From the analysis of Complete path, two general formations, or categories, were
introduced: Scorpion and Scattershot. Also in this experiment, similar tendencies
were present, although somewhat weaker than previously. This is consistent with
results from the GA using a large number of UAVs, as described in the result sec-
tion for Complete path. As more information and more samples are introduced,
the pressure to select the location of each sample carefully, decreases.

As was the case for the results from the Complete path experiment, there is a
great focus on moving towards the emitter. The cause is assumed to be the
same as for the Complete path optimization. By moving closer to the emitter,
the samples gathered come from a higher signal-strength position of the Log-
Distance path model, and gives a stronger contribution to removing ambiguities
and increasing accuracy of predictions.
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Optimizing the step length, in addition to the paths themselves, proved to in-
troduce further variation in solutions.
(Figure 5.22), but the variation in the solutions made them hard to work with.
This optimization was, therefore, not prioritized, and the work was focused on

other optimizations.
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Figure 5.22: MOEA 5 UAVs, 3 steps and total path length 220-370m
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5.6 The value of a sample

Early in the project assignment, an attempt was made to quantify the value of a
sample. How much is a sample worth? How much does precision increase when
adding a sample? How does prediction error scale with the number of samples?
From the project assignment, the results showed that there is a clear diminishing
return after a number of samples have been gathered. For the problem, as de-
scribed under Step 4, this return becomes small after around 4-6 samples (Figure
3.2).

From the optimization done in this work, the GA and MOEA indicates that
getting close to the emitter is important. 4 UAVs and 5 steps are comparable in
precision to 8 UAVs and 4 steps. In other words, unless time is critically short it
would be better and more efficient to use another step and less UAVs.

Most importantly, ambiguities should be avoided. It is perfectly possible to
introduce situations where the predictions gather in two or more locations that
are otherwise indistinguishable. This is a problem, and a situation best avoided.
Even modelling the predictions would require advanced methods, such as FMM.
Ambiguities seem to be less of a problem, given larger amounts of samples. During
the testing of the heuristics, ambiguities were not a problem. This is likely
because of the amount of data collected. As the heuristic gathers more data, the
dynamics of the problem become more stable and anomalies are less frequent.
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Figure 5.23: Diminishing returns, using multiples of 3 samples
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Figure 5.23 show the decrease in average error of adding more samples as either
steps or an additional UAV. The number of samples is the number of UAVs
multiplied with the number of steps. The red line represents adding samples as
additional UAV. Starting with one UAV with 3 steps, adding an additional UAV
with 3 steps for each jump. The blue line represents adding samples as additional
steps. Starting with 3 UAVs with 1 step each, adding an additional step to each
UAV for each jump.
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Figure 5.24: Diminishing returns, using multiples of 4 samples

There is a clear stacking-penalty and diminishing return as the amount of sam-
ples increases. The table for Complete path (Table 7.2) shows a weak effect from
adding more UAVs, while adding more steps will lead to near zero error in pre-
dictions, as soon as a sample is located close to the emitter. This effect is also
shown in Figure 5.24. After 4 to 5 UAVs there is very little gain from adding
more UAVs. However, adding more steps show a gain in precision, for up to and
including 40 samples (4 UAVs and 10 steps each).

Robustness can be achieved by increasing the number of samples. As the amount
of data increases, the dynamics of this problems become more stable, and less
anomalies are present. With few samples there is a greater pressure to select the
location of each sample with care. This has to be done in order to not introduce
ambiguities and maximize the gain from the sample.
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The value of a sample is, generally, a composite of multiple effects. If the sam-
ple is used to remove an ambiguity, the sample can be considered quite valuable.
Looking past the possible reduction/removal of ambiguous data, the gain from an
additional sample would depend on how much data is already available. Increas-
ing the number of steps per UAV is the most effective way of increasing accuracy
and precision. Increasing the sample count by adding another UAV proved to be
less effective.



112 CHAPTER 5. RESULTS AND ANALYSIS

5.7 Heuristics for UAV behaviour

5.7.1 Heuristics

Each of the heuristics implemented attempts to solve the problem of geolocating
an unknown RF emitter in a slightly different way. These heuristics are a result
of the optimizations done (Complete path and Incremental path), and attempts
to approximate different traits from the optimized solutions. Three different
heuristics were implemented:

1. Random walk
2. Whack-A-Mole
3. Attraction

A random walk heuristic was implemented as a baseline for the other strategies.
It is generally assumed that this strategy should be the worst, as it ignores all
information available and picks a random move at every step. Increasing the
amount of samples available reduces the pressure on selecting good positions for
each sample. This may make random walk strategy a viable candidate, given
enough data.

Often, the predictions form a complicated pattern, even given a reasonably simple
formation. The predictions may group, or cluster, in multiple areas, or spread out
over a larger area. Modelling the predictions is a challenge. FMM can be used
to approximate complex distributions by using multiple simpler distributions.
When using FMM, a number of components/distributions are optimized to fit
the input data. Each of these components will then indicate points where the
predictions cluster. It is assumed that there can only be one emitter, as such, all
but one of the components must indicate false positives. Eliminating all of the
false positives should lead to the true emitter-location. Whack-A-Mole strategy
will attempt to send one UAV to each presumed emitter-location to eliminate
each ambiguity.

The results of the optimization would suggest that it is beneficial to move closer
to the location of the emitter to reduce the error in the predictions. The Attrac-
tion heuristic takes the knowledge, that ”closer is better”, and applies it using
an attraction force to where the set of the UAVs believe that the emitter may
be located. This location does not have to be the correct location, but it can
be. Over time, this strategy should converge on the actual emitter-location as
ambiguities are resolved. This heuristic is based on the solutions found by the
GA (Section 5.3). There are two parameters to this strategy that have to be
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decided empirically: strength of the attraction force and initial velocity vectors
for each UAV.

For the Attraction and Whack-A-Mole heuristic, attraction forces are used to
determine the next action to take. This attraction force directly affects the
velocity of the UAV at each step simulated. A force coefficient is used to scale
the contribution of the force, to the velocity for the next step. This is a value
between 0 and 1. A value of 1 would imply that the UAV should move directly
towards the presumed emitter location. A value of 0 would make the UAV ignore
the attraction force, continuing forwards, in the current direction. At any given
point in time, the position and velocity of the UAV is calculated as following:

1.
Lavg — Ezmpred,i
=0
b = Lavg — Luav
Vyay = (1_f)*vpi_~_f*7
[Vprev]] [1]]
v a
Tyay = Tuav + 50.0 % T b
Uuav”

f is the force coeflicient. b is a vector in the direction of the presumed emitter-
location. v,y is the current, unormalized velocity vector. vprey is the velocity
vector from the previous step. The velocity is normalized at each step to give
a constant step length of 50m. This is the same step length as was used in
the optimizations. For the Whack-A-Mole heuristic @, is replaced with the
center-point of a component from the FMM model.

5.7.2 Characteristics

Using a random walk heuristic is a poor choice, as it ignores all information
available to assist in the search. In choosing a random direction at each step,
it rarely moves far away from the initial point, leading to poor coverage of the
search area and low performance. Most often, this heuristic would not be able to
reach the termination threshold. It was therefore excluded from the performance
comparison

Attraction heuristic is predictable and works well. Attraction heuristic calculates
a center of gravity for all the predictions available, and uses this as an attraction-
point for the UAVs. This is a promising and fairly robust strategy. It works
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well, even with highly erratic initial predictions (as a result of few samples), but
quickly converges on the emitter as more data is added.

Whack-A-Mole tries to eliminate ambiguities as soon as possible. For a set of
predictions, multiple points of interest can be found using FMM. Each component
is then mapped as the attraction-point of one UAV. This strategy is similar to the
Attraction heuristic, however, as there are multiple attraction-points, it is more
unpredictable. The results is often that one or two UAVs choose a highly erratic
path, compared to the rest. This is caused by insufficient amount of predictions
to form a robust model using FMM, and a high chance of ambiguities with few
samples. See Figure 5.25 for examples of behaviour.

Pygame window _ Pygame window

Samples: » Al Mode AttractionAgent 0 é?""'ﬂﬁ:. rerseds 2 Al Mode WhackAgent 0

.o

Avg (33242334.38) Avg: (356863332)
Eror: 500408 . Eror: 2605724
Stddev: 25.36958 Stddev: 87.25727

Attraction Whack-A-Mole

Figure 5.25: Example of heuristics behaviour

5.7.3 Performance comparison

A comparison of the performance of the three heuristics was conducted. This
comparison has a termination threshold - a minimum required precision in predic-
tion. Several values of the threshold were tested, but only minor differences were
experienced, unless very large threshold-values were selected. Using a threshold
of 10m error, each of the strategies were simulated 100 times to get a consistent
indication of their performance. This was repeated for 3, 4 and 5 UAVs. The
number of steps indicated in the tables are per UAV. To get the total sample
count, this number has to be multiplied with the number of UAVs. For instance,
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10 steps on average and 3 UAVs is actually 30 samples in total. There is a dis-
tance of 480m between the initial position for the UAVs and the emitter. With
the step length of 50m, 10 steps are required to reach the emitter.

Table 5.5: Strategy performance.

Threshold error 10 m. 3 UAVs

Strategy ‘ Avg. steps ‘ Var. steps ‘ Median steps
Attraction 11.08 0.61 11
Whack-A-Mole | 12.24 1.34 12

Table 5.6: Strategy performance.

Threshold error 10 m. 4 UAVs

Strategy ‘ Avg. steps ‘ Var. steps ‘ Median steps
Attraction 10.67 0.69 11
Whack-A-Mole | 11.26 1.00 11

Table 5.7: Strategy performance. Threshold error 10 m. 5 UAVs

Strategy ‘ Avg. steps ‘ Var. steps ‘ Median steps
Attraction 10.27 0.77 10
Whack-A-Mole | 10.37 0.73 11

Random walk heuristic performs worst of the three heuristics. This is as expected,
as it ignores the information available. The Random walk heuristic is not included
in the comparison, as it frequently failed to attain the required precision in order
to terminate the test and had to be terminated manually.

The second best is Whack-A-Mole. This heuristic often wasted samples and
steps going in the wrong direction (relative to the emitter). This is caused by two
factors: Whack-A-Mole tries to eliminate ambiguities, and since there can only be
one emitter, most of this effort is wasted once the emitter-location is known. The
second factor is an unreliable model from the FMM; due to insufficient amount
of predictions, the model of the predictions is erratic.

Attraction strategy performs best out of the three strategies. The difference in
performance between Whack-A-Mole and Attraction heuristic is minor, especially
as the number of UAVs increase. The Attraction heuristic may be preferred, since
it is much simpler than the Whack-A-Mole heuristic and have equal or better
performance, at least in the given test scenario.
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5.8 Heuristic optimization

5.8.1 Premise of optimizations

Attraction and Whack-A-Mole was found to both be promising strategies for UAV
behaviour (Section 5.7). Compared to Whack-A-Mole, Attraction offers more
predictable behaviour, given an attraction force and a set of initial velocities.
The parameters of the Attraction force heuristic were previously not optimized
in any way. Optimizing these parameters might lead to further improvement to
the heuristic’s ability to geolocate unknown RF-emitters.

Whack-A-Mole strategy uses an FMM to make a model of the predictions. In
order to generate this model accurately and robustly, many predictions are re-
quired. The heuristics operate by taking in a set of predictions and determining
the next step for each UAV. If the Whack-A-Mole heuristic was to be applied to
a real-world scenario, each UAV would have to take a large amount of samples
for each step (>> 100) to make the FMM-generated model robust. This is a
disadvantage using this heuristic and made the Attraction heuristic the preferred
choice for further investigation.

Optimizing was attempted using a real-coded GA. The parameters being opti-
mized was a force coefficient, giving the percentage contribution from the attrac-
tion force (compared to the current heading), and the initial velocities. Number
of steps taken, before the threshold was reached, was used as a performance met-
ric. This proved insufficient for two reasons: first, the integer number of steps did
not provide the GA with enough information to distinguish good solutions from
bad. Second, the GA consistently optimized the initial velocities in the same
presumptuous way, as the angles from previous optimizations. In short, the GA
optimized to direct the initial velocities towards the actual emitter-location.

Making a better optimization is possible and was done by using the fitness-value,
instead of the number of steps. The fitness-value was calculated based on the
positions chosen by the heuristic. In order to not allow the heuristic to get
too close to the emitter, a maximum number of samples were specified, to leave
the closest sample at an appropriate distance from the emitter (usually around
100m).

Like for the Complete path optimization, slight rotation in final solutions from
the GA made it hard to compare solutions. To simplify the optimization, the
initial velocities were removed from the optimization, and an even spread was
used instead. In the project assignment, during the optimizations for Step 2, a
circle or an equidistant triangle lattice was found to be good solutions. Using an
even spread with 3 UAVs, gives a 120 degree angle between each velocity vector.
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A 90 degree angle was used for 4 UAVs and 72 degree angle for 5 UAVs. If not for
the effect of the attraction force, the UAVs would fly in in straight paths, evenly
spaced out, radiating from the initial location. It might still be possible, given an
evenly spread-out formation, to gain a performance advantage if the emitter is in
a certain direction relative to the formation. Testing the formation in multiple
orientations solves this problem.

Having removed the initial velocities from the optimization and replaced them
with a fixed spread and a rotation parameter, only two optimization parameters
remained: attraction force coefficient and rotation offset. This optimization can
be done exhaustively, given a suitable step for both parameters. The result of
this is a table with rotation offset on one axis, and force coefficient on the other.
These tables become quite large, and as such, only one example of such a table
is included here.

5.8.2 Optimization results

Table 5.8: Testing of coefficients. 500m distance. 1 dB noise. 3 UAVs

F. coeff.  Angle offset

0 deg 20 deg 40 deg 60 deg 80 deg 100 deg
0.00 1.77 2.10 3.02 3.10 3.14 2.12
0.05 2.05 2.44 3.38 3.74 3.37 2.49
0.10 2.78 3.15 4.26 4.72 3.86 3.25
0.15 4.40 4.76 5.97 6.15 4.67 4.90
0.20 7.81 7.81 8.43 7.97 5.89 8.07
0.25 11.83 11.58 10.92 9.77 7.60 11.61
0.30 14.50 13.95 12.35 11.02 9.46 13.96
0.35 14.79 14.51 12.51 11.55 10.79 14.29
0.40 13.52 13.57 11.82 11.53 11.60 13.00
0.45 11.77 12.09 10.89 10.89 11.31 10.91
0.50 9.84 10.00 9.24 9.09 9.19 6.76
0.55 7.01 6.29 5.09 5.84 5.95 4.42
0.60 5.16 4.47 3.37 3.57 3.56 3.27
0.65 3.91 3.41 2.60 2.48 2.36 2.49
0.70 3.04 2.70 2.11 1.92 1.74 2.01
0.75 2.42 2.21 1.83 1.60 1.41 1.65
0.80 1.97 1.88 1.62 1.39 1.21 1.42
0.85 1.68 1.64 1.47 1.25 1.09 1.24
0.90 1.49 1.48 1.36 1.15 1.02 1.10

0.95 1.36 1.36 1.28 1.08 0.95 1.00
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From Table 5.8 it can be seen that using an attraction force coefficient of 0.35
outperforms all other coefficients, assuming 500m start distance from the emitter
and 1 dB noise. Similar tables were generated for all combinations of 300m, 500m
and 700m and 1dB, 2dB and 3dB noise.
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Figure 5.26: Comparison Attraction heuristic and an older GA result

Left part of Figure 5.26 shows an example run of the Attraction heuristic using
a force coefficient of 0.35. Right part of Figure 5.26 shows a result from a GA
optimization. This particular result was excluded from Complete path results, as
it was from an older batch of results and uses a different mutation operator. The
rest of the solutions belonging to the same set of runs, were not equally smooth
(this is why the solution for 4 UAVs is shown).

The formation generated by the heuristic now resembles the results from the
Complete path optimization (Figure 5.12 in Section 5.3). Because of the way
the Attraction heuristic is implemented, the paths generated by the heuristic
will inevitably be smooth. The solutions generated by the GA has no similar
restriction or limit.

As the noise increases there is no longer a single force coefficient that is consis-
tently better than all others, this is related to the random sampling taken and the
increased error in predictions. In cases where multiple coefficients were shown
to give similar performance, ties were resolves by taking the average over all the
angle offsets. The coefficient with the greatest average was then chosen as the
best. At 3 dB noise, the best coefficient shows great variation. Table 5.9 shows
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that at 3 dB, the force coefficient no longer reflects the initial distance from the
emitter. Further experiments were done using limited noise (1 dB).

Table 5.9: Optimized coefficients for 3 UAVs

Distance Noise

1dB 2dB 3dB
300m 0.45 0.40 0.15
500m 0.35 0.35 0.30
700m 0.25 0.25 0.25

From the results, it appears that the distance to the emitter is the deciding factor
of the force coefficient. Noise has a limited effect. The effect of noise is hard to
examine as the increased noise makes the performance of the heuristic degrade as
well. From visual inspection/testing of the coefficients, it appears that the best
choice is a coefficient that makes the UAVs converge on the emitter, as seen in
Figure 5.26. If the starting position is close to the emitter, the coefficient has
to be higher (stronger force). Otherwise, the UAVs will just fly by the emitter,
unable to stop.

Table 5.10: Optimized coefficients for 3-5 UAVs. 1dB noise

Distance 3 UAVs 4 UAVs 5 UAVs

300m 0.45 0.40 0.35
500m 0.35 0.30 0.30
700m 0.25 0.25 0.20

Further optimizations were done for 3-5 UAVs. Excluding noise as a contribution
to be examined, the results can be seen in Table 5.10. Increasing the number
of UAVs appears to lessen the force coefficient. The result of this is that the
UAVs will be less attracted to the estimated emitter-position, and potentially
take longer to converge on the emitter. As the number of UAVs increases, it
makes sense to spread these out in a wider fan, covering a greater area. Distance
still remains a major factor in determining the force coefficient.

Selecting the strength of the attraction force appropriately, it is possible to gen-
erate a behaviour that results in the UAVs orbiting the emitter once they have
gotten close enough. This leads directly to Step 4 of the search, where a circle
was found to be a good solution in order to achieve robust and accurate predic-
tions.
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5.9 A strategy

5.9.1 Step 2 - Rough predictions

Originally, it was assumed that even at a distance, a rough idea of the location
of the emitter would be possible to attain. Later experiments showed that the
predictions made while standing in any formation, far away from the emitter, are
very rough. They will give the general direction of the emitter, but little to no
positional accuracy.

It is also possible to induce ambiguities by choosing a poor formation. One
example of a poor formation, capable of inducing ambiguities, is a circle. Given
a reasonable distance from the emitter and a circle formation, the receivers will
be unable to distinguish an emitter in the center of the circle from an emitter far
outside the circle. This is described in Subsection 5.2.1. The same effect can also
be seen using less samples in a triangle or a square formation.

The ambiguities can be resolved in a number of ways. Assuming a perfect circle,
the simplest method of resolving the ambiguities is to place another receiver, or
sample, in the middle of the circle. By placing a measurement in the middle
of the circle, it is possible to deduce the shape of the RSS intensity field. The
sample will, in the case of the emitter being in the middle of the circle, show a
peak in measured RSS. If a peak is found, it indicates that the emitter is in the
middle of the circle. In the case of the emitter not being in the center of the
circle, no peak is found.

In general, it is suggested that a good formation for Step 2, is to use an equidistant
triangle-lattice. Many formations may fulfil the requirements of not introducing
ambiguities. To not introduce ambiguities, they must, in some way have two
layers of measurements. Increasing the distance between the receivers in an
equidistant triangle-lattice, increases the precision of the predictions. Eventually,
increasing the distance too much, the spaces in-between receiver-locations may
introduce ambiguities as they grow large.

Finally, it is possible to use other external information, such as: approach di-
rection, topology or geographic information, to assist these initial predictions.
It is assumed that during Step 2, Step 1 will have been completed. Step 1 in-
cludes a convergence of multiple UAVs from different locations. Their respective
approach-vectors may be used to exclude some areas due to the data gathered
while approaching.
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5.9.2 Step 3 - Relocate

The relocation phase was investigated in this thesis, going from Step 2 to Step
4, converging on the emitter. It is possible to use this time to gather data,
maximizing the utility of the resources spent. This is a very complicated problem
with a large search space. In addition, the noise in the predictions and solution
make patterns hard to discern.

A perfect solution to this step would be the optimal heuristics defining the actions
of each UAV. Multiple GA and MOEA optimization-scenarios were implemented
and tested. This lead to further questions and questioning of the scenarios them-
selves. The solutions show tendencies to stretch out the different types of paths
implemented, but at the same time, there is a significant amount of noise clouding
the solutions.

The set of solutions from the optimizations often converge on the emitter in one
way or another. This indicates that getting to a higher signal-level is beneficial.
In other words, moving closer to the emitter is a sound way of decreasing the
error in predictions. Two heuristics spawned from this knowledge: Attraction
and Whack-A-Mole.

Attraction heuristic assumes that closer to the emitter is better. This is applied
to the heuristic as an attraction force, pulling the UAVs towards the assumed
emitter-location. As this is a continuous search, the UAVs cannot know where
the emitter is - they only have rough, error-prone predictions to guide them.
These are used as a guide for the direction the UAVs should explore. The result
is a system where the UAVs will be drawn towards the center of the predictions.
When additional information is added, the center may shift, and the error lessens.
Eventually, the UAVs will have gathered enough data to exclude any ambiguities,
and were often found to be orbiting the emitter (a result of the way the attraction
force is implemented).

Whack-A-Mole heuristic takes a different approach, by trying to resolve ambi-
guities as early as possible. By using FMM, it is possible to generate multiple
centers of gravity, as used by the Attraction heuristic. Under the assumptions
of the simulations, there can only be one emitter - all but one of these cluster-
ing of predictions must be ambiguities. By travelling towards each one of the
clusters, the UAVs will resolve the ambiguities until only one predicted location
remains.

Both of these heuristics show promise and offer similar performance, given an
error threshold. The Whack-A-Mole heuristic appears to act more randomly and
moves less predictably. This is a result of the limited amount of data available
when each choice is made. Without a lot of data to generate an FMM, the model
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is highly unstable. Attraction heuristic can be considered a simplified version of
the Whack-A-Mole heuristic, as it only has one attraction-point, leading to more
consistent behaviour (potentially using less resources).

Given a suitable initial velocity for each of the UAVs, both heuristics will form
fan-like formations approaching the emitter. Performance between the two heuris-
tics are comparable, but a simple Attraction heuristic may be preferred in this
setting, considering robustness and predictability.

Finally, the parameters of the Attraction heuristic were optimized, leading to
behaviour similar to that found in solutions during Complete path optimization
(Section 5.3). Initial distance from the emitter and UAV count was found to both
be important factors in determining the strength of the attraction force.

5.9.3 Step 4 - Maximize accuracy

A circle around the emitter is a very good option to maximize accuracy of pre-
dictions. As discussed under Step 2, a circle may introduce ambiguities to the
predictions. These ambiguities make it hard, if not impossible, to distinguish an
emitter in the center of the circle, as opposed to an emitter far away from the
formation. This is a problem that should be avoided whenever possible.

One way to resolve this ambiguity is to use an imperfect circle, with one sample-
point located outside the circle. Another option is to use an equidistant triangle-
lattice, with a sample in center of the hexagon. This type of ambiguity can, in
general, be resolved by introducing a two-or-more layered formation. Having two
layers in the formation allows for the detection of a peak in the middle of the
formation.

There is a strong correlation between distance to the emitter and prediction
accuracy. To maximize prediction accuracy, placing at least one receiver close
to the emitter is a good strategy. This can be explained by considering the PL
model. Close to the emitter, the receiver will measure high RSS. As a result, the
noise will be less significant and predictions become very accurate.
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5.10 Threats to solution validity

NLLS requires a grid to be specified. This grid effectively defines the possible
solutions that the geolocation algorithm may return as a prediction (Section 2.5).
The grid adds information to the system, since the emitter cannot be outside
the grid. For some scenerios, this assumption may hold, but in general, the
specification of the grid/search area may greatly affect the performance of the
algorithm, both positively and negatively.

Another concern is the ability to test each solution sufficiently. For most of these
simulations, 100 trials were run when testing each solutions. If time allowed, 1000
trials should have been used to test each solution, but this would have increased
the run time by a factor of 10. As it is currently, noise may give some solutions
favourable evaluations. This is unfortunate as, optimally, only the characteristics
of the solution itself should be able to affect its performance evaluation.

Evaluating fitness for this problem is complicated. The majority of this work uses
a fitness combined of two metrics: spread of predictions (variance) and average
error. These two factors are multiplied, as part of the fitness-value. Optimizations
revolve around minimizing these two values. It is possible to make solutions that
have a low spread (variance) and a high average error. These solutions will
have a fairly high fitness-value, as the product of variance and average error is
small (relatively). However, a solution with these attributes is most often not of
interest, but may be selected by the optimization, due to the high fitness value.
The result is the GA or MOEA converging to a suboptimal solution. Solutions
like these, are easily found by manual review in retrospect, but the lack of a more
robust fitness-estimation is concerning.

As this implementation also contains a simulation part, with its own non-deterministic
components and noise, the chances of an error in implementation is high. Simu-
lating a real environment includes making assumptions about how the real world
behaves. These assumption are often simplifications, which may lead to prob-
lems, should the simplification not accurately reflect the real world. The model

for RF propagation I have employed for these simulations ignores many important
real-world problems for RF propagation such as:

e Reflections
e Interference

e Signal dampening
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RF propagation problems may not seem that important, as devices using RF
emitters are commonplace for most people and work very well. For the purpose of
geolocating RF emitters, however, these effects cannot be discounted as easily. An
unknown and uncooperative emitter alone is not something most consumer-grade
RF communication systems have to deal with. Using methods based on RSS,
the dampening of the signal becomes a matter of importance. The dampening is
affected by, for instance weather conditions, topography or simply distance above
ground. Distance above ground can to a certain degree be account for, but as
mentioned in Section 2.2 there are significant differences between RF propagation
in the air compared to on the ground.

In a real-world application, emitters are not forced to stand still. A moving emit-
ter would further complicate the setting, as the samples gathered may not reflect
the current location of the emitter. This could be handled using a rolling time-
window, where samples are only valid/usable for a short time after collection.
Alternatively, by not sampling multiple times per UAV, time, effectively stands
still, making the emitter non-moving. The complications of a moving emitter was
not taken into account for the optimizations done in this work.

Furthermore, in a real-world scenario, there will likely be more than a single
emitter. Distinguishing multiple emitters in the same part of the frequency spec-
trum is a challenge that has not be considered in this work. Further work is
required in the area of separating and classifying multiple emitters in a noisy RF
environment.

Applying a theoretical study, such as this, to the real world is a challenge. Even
if the implementation is sound and the results therefore are valid, there may
be factors or problems that have not been taken into account. In other words,
even a theoretically sound implementation may encounter problems when put
into practice.

There is, as always, many problems that may lead to invalid results. In using
GAs and MOEAs, a host of issues that are not present with deterministic algo-
rithms presents themselves. Algorithms that do not behave predictably to the
programmer are notoriously difficult to debug, and prone to contain errors either
in logic or in function. Finding these errors is not impossible, but can be very
hard. I have tested and verified this implementation, yet I cannot exclude the
possibility of remaining errors.



Chapter 6

Conclusion and future
work

This chapter is a conclusion to the work conducted. Suggestions for future work
made here are based on the problems, experiences and ideas that appeared while
working with these problems.

125



126 CHAPTER 6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

Geolocation of an unknown, uncooperative RF emitter using a RSS method
PDOA NLLS in a noisy environment, employing multiple distributed autonomous
UAVs, while minimizing resource-consumption in a time considerate optimiza-
tion is a challenging problem. A large solution and search space, with a non-
deterministic (noisy) fitness-evaluation with multiple maxima, make solving this
problem a non-trivial task. Even so, the work has been a valuable experience in
using multiple methods of optimization on real-world problems. In some situa-
tions, it was possible to reduce the effect of noise by carefully manipulating the
random-number generator to only generate randomness where it was required,
to provide accurate and realistic results. This technique was used, for instance,
in developing the fitness-plots showing an overview of the fitness-landscape for
different situations. By using the same random noise in-between sets of data that
should be compared for performance, the noise in the final figures were greatly
diminished. This has to be done with great care, as to not introduce random
samplings that may favour some solutions over others and invalidate results.

Often, this work turned out to be an exercise in examining and breaking down
the problem into smaller, individual pieces and examining each piece with some
degree of independence from the overall problem. Doing so while not disrupting
the problem itself, and figuring out reasonable subproblems to work on, was one of
the greatest challenges in this work. When it was possible to divide the problem,
this often lead to breakthroughs, where previously unassailable problems became
manageable and tangible. An example of this is, for instance, plots optimizing
angles between path for UAVs. These provide a much needed, clear-cut solution
to a smaller subproblem. However, these extracted subproblems and associated
solutions would not have been possible without first exploring the problem at a
higher level to determine which parts of the problem could be extracted. As such,
the progression of this work has had a major influence on the end result.

Proximity to the emitter is a clear driving-factor for most of the results from the
GA and MOEA. There is a strong correlation between distance to the emitter
and prediction accuracy. From ”The value of a sample” (Section 5.6) it can be
seen that adding more UAVs is not a fool-proof solution to gain perfect predic-
tion accuracy. As such, anyone seeking to use a system based on the concepts
described in this work should be aware that proximity to the emitter is likely to
be the limiting factor.

Ambiguities proved to be fairly common, given few resources (sample-points).
Such ambiguities result in two or more locations, which are indistinguishable
based on the emitter-location predictions given. This is a problem for a real-
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world system based on PDOA. To resolve this, a formation/set of locations to
sample, has to be chosen with care. An equidistant triangle lattice, is a simple
structure that will, in far most cases, not introduce ambiguities in predictions.
Multiple formations will fulfil the task without introducing ambiguities. The
main requirement for this is to introduce a multiple-layered formation that can
detect the actual shape of the RSS-field over the area.

In the analysis, two good ways of organizing a group of UAVs was suggested;
these were nicknamed Scattershot and Scorpion. Scattershot would spread all
the available UAVs out in a cone in the general direction of the emitter. Scorpion
would retain a couple of UAVs, sending these backwards, away from the emitter.
As the total number of UAVs increased, so would the number of UAVs being sent
away from the emitter. These are, by no means, exhaustive solutions, but they
are good general guidelines for UAV-behaviour in a RF-geolocation system.

Based on the optimizations of angles and paths for UAVs, two heuristics were
developed: Attraction and Whack-A-Mole. The Attraction heuristic approaches
the presumed emitter-location at all times. The Whack-A-Mole heuristic uses
FMM for clustering of predictions, allowing the heuristic to try to eliminate
ambiguities in the prediction. Attraction was chosen as the preferred heuristic
for greater predictability in behaviour and for being more robust when faced
with erratic predictions. The parameters of the Attraction heuristic was also
optimized for a particular scenario, resulting in similar behaviour as seen in the
results from the Complete path optimization (Section 5.3).

The work conducted here describes in total: a strategy from emitter-detection to
emitter-location prediction. Including the work of Jgrgen Nordmoen, in using a
swarm of UAVs to locate an emitter in a large area, this covers the entire pro-
gression from "no information” to having an accurate prediction on the emitter-
location. I believe, that with technology available today, it should be possible to
implement a functional demonstration-platform, proving these concepts.

There is still work remaining in making this a fully distributed system. As it
stands today, going from knowing that there is an emitter to knowing where it
is, requires cooperation between the different UAVs. Cooperation implies com-
munication, which may or may not be viable, depending on the environment and
context. More exploration is required to find out how much of this system could
be distributed completely, to avoid having to rely on a single point of failure.
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6.2 Future work

Implementing a real-world test system, testing and evaluating some of the data
presented here, should be first priority for any further work. A real-world im-
plementation may present new and unforeseen problems, or may invalidate some
of the assumption made in this work. In particular, it would be interesting to
see whether assumptions of noise in the system and performance, holds, given
real data. Signal detection and separation were also not included in this work,
as such, it would be most interesting to see how well a system based on small,
cheap distributed units might perform, faced with a complex RF environment,
tracking some commonly used protocol.

It is still an open question, whether a simple heuristic such as Attraction is
sufficient to optimally control the movement of each UAV. A possible extension
could be to evolve an artificial neural network to guide each UAV. The noise
present in the evolved solutions from the GA and MOEA, makes it clear that
a single template or recipe is insufficient. As such, looking into more robust
methods of describing a reactive agent, taking the information available to the
UAV and outputting the actions for each UAV, would be interesting.

To date, the algorithms and methods described here require a central overview,
or significant communication in-between each participating UAV. Examining the
possibilities with limited communication and a fully distributed system, would be
an important step in making the system robust against communication-disruption
and UAV failure. In short, exploring what constraints a fully distributed swarm
would impose on the system, would be interesting.

UAVs come in a multitude of different shapes and sizes. In this work few, if
any, restrictions were applied to the behaviour and paths a UAV could follow.
This is a realistic assumption, given a UAV with the ability to hover, for instance
a quad-copter. A fixed-wing UAV often offers increased endurance (compared
to a quad-copter), but at the cost of not being able to hover. The inability
to hover limits the paths the UAV could follow. Exploring the advantages and
disadvantages of different types of UAVs, in an RF geolocation context, might
shed light on some of the physical requirements and performance characteristics
a real-world implementation would have to contend with.

In this research, a simulator was developed for testing hypotheses and verifying
optimization-results. Researchers at FFI have expressed interest in taking this
one step further, increasing the level of human interaction to investigate how
humans would solve the problem of geolocation. Based on the human response,
it might be possible to use machine-learning to extract features of the human
approach to solving this problem.
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Table 7.3: Parameters for Complete path optimization

Population size

Replacement strategy
Selection strategy

Num. trials

Num. gen.

Grid size

Noise std.dev.
Mutation step (20)

Number of UAVs * Number of steps * 20

Full generation replacement (elitism = 2)
Rank scaling selection

100 Crossover rate 0.7

100 Mutation rate 0.05
[1000,1000] Grid resolution [256,256]
1dB Emitter position [330,330]
20 deg. Receiver base position  [670,670]

Table 7.4: Parameters for Incremental path optimization

Population size

Replacement strategy
Selection strategy

Num. trials

Num. gen.

Grid size

Noise std.dev.
Mutation step (20)

Number of UAVs * Number of steps * 10

Full generation replacement (elitism = 2)
Rank scaling selection

100 Crossover rate 0.7

100 Mutation rate 0.1

[1000,1000] Grid resolution [256,256]

1dB Emitter position [330,330]

60 deg. Receiver base position  (given by prefix)

Table 7.5: Parameters for UAV count optimization

Replacement strategy
Selection strategy

Num. gen.
Population size

New individual per gen.

Num. trials
Grid size
Noise std.dev.

Generational mixing replacement

NSGAIIL

1000 Crossover rate 0.7

200 Mutation rate 0.1

100 Emitter position [330,330]
100 Receiver base position  [670,670]
[1000,1000] Grid resolution [256,256]

1dB
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Abbreviations

AT Artificial Intelligence. 19, 123
AOA Angle of Arrival. 3, 31, 123

BBGF Binary Bayesian Grid Filter. 38, 123

CPU Central Processing Unit. 56, 78, 123
CUDA Compute Unified Device Architecture. 13, 17, 5660, 78, 91, 123

DPD Discrete probability density. 31, 123

FDOA Frequency Difference of Arrival. 31, 123
FFI Norwegian Defence Research Establishment. 5, 7, 16, 26, 78, 120, 123
FMM Finite Mixture Model. 13, 37, 66, 76, 106, 108-110, 113, 119, 123

GA Genetic Algorithm. 7, 19, 33, 34, 36, 43, 45, 47-49, 51, 52, 54, 60, 61, 64,
65, 67-70, 73, 76, 78, 88, 89, 91-94, 96-104, 106, 111, 113, 115, 118-120,
123

GPS Global Positioning System. 31, 123
GPU Graphical Processing Unit. 56-58, 123

ID Intersection Density. 31, 123

ML Maximum Likelihood. 123

MOEA Multi-Objective Evolutionary Algorithm. 13, 14, 36, 69-71, 73, 76, 88,
96-101, 103-106, 113, 115, 118, 120, 123

NLLS Non-Linear Least Squares. 31, 32, 57, 59, 60, 78, 79, 82, 89, 115, 123

PDOA Power Difference of Arrival. 3, 9, 16, 19, 31, 38, 42, 57, 60, 78, 79, 83,
118, 123
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PL Path Loss. 13, 23-27, 32, 91, 114, 123

RF Radio Frequency. 3, 5, 9, 16-20, 22, 23, 31, 38, 47, 78, 79, 108, 111, 116,
120, 123

RSS Received Signal Strength. 3, 5, 19, 26, 27, 32, 92, 93, 114, 119, 123

SIMD Single Input Multiple Data. 78, 123

TDOA Time Difference of Arrival. 123
TOA Time of Arrival. 31, 123

UAV Unmanned Aerial Vehicle. 5, 9, 10, 13, 14, 16, 17, 19, 20, 22, 23, 38, 39,
43, 51, 53, 63-65, 67, 68, 7T0-72, 78, 84-98, 100-114, 118-120, 123
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