


2.3. ARM MMU 13

Reg Bits Function

cl [0] MMU enable/disable
0 = disabled
1 = enabled
1] Alignment fault checking enable/disable
0 = disabled
1 = enabled
[8] System protection bit, used in Access permissions
[9] ROM protection bit, used in Access permissions
c2  [31:14] Translation table base
c3 [31:0] Domain access control
c4 [31:0] Reserved
co [3:0] Fault status: Indicate the type of access being attempted
[7:4] Fault status: Specify which domain was being accessed
8] Fault status: Returns zero
c6 [31:0]  Fault address
c8 TLB invalidate functions (shootdown)
cl0 TLB lockdown

Table 2.1: Listing of MMU control via system coprocessor registers

2.3.3 Translation

The MMU supports the use of pages and sections. Pages can be tiny, small, or large,
with a block size of 1KiB, 4KiB, and 64KiB, respectively. Sections are comprised of
1MiB blocks of data. Sections and large pages are supported for mapping large regions
of memory while using only a single entry in the TLB. For pages, the translation table
is split into two levels that hold first- and second-level descriptors.” The translation
process runs in hardware on every TLB miss occurrence, and is depicted as the
translation table walk hardware box of Figure 2.4.

The first step retrieves the first-level descriptor by combining the contents of the
translation base register (system coprocessor register 2) with the first-level table
index of the virtual address. The first-level descriptor contains the base pointer to
the second-level descriptor in addition to domain access control bits. The domain
bits are used for setting access permission to large areas at a time in conjunction
with access permission bits of the second level. The address for the second-level
descriptor is formed by the page table base address of the first-level descriptor and the

"The process for a small page table is presented due to its use in the Amber system.



14 2. BACKGROUND

second-level table index of the virtual address. The second-level descriptor consists
of the page base address (the physical page number) and access permission bits.

2.3.4 Page Faults and Access Control

Access control is performed by the access control hardware depicted in Figure 2.4,
which notifies the processor of errors that occur during address translation. This is
done through the use of an abort signal coupled with status bits that detail the fault
specifics, and are acted upon differently depending on the source of the error. For
a data access, a Data Abort signal is passed to the processor and the Fault Status
Register and Fault Address Register (registers 5 and 6 in Table 2.1) are updated
with information detailing the exception. For instruction fetch, a Prefetch Abort
signal is issued to the processor. No additional information is collected in the case
of a Prefetch Abort, and the exception is only handled if the instruction executes.
This is done to avoid handling an exception for an instruction that does not execute,
for example, due to a branch. By not setting the Fault Status Register and Fault
Address Register for a Prefetch Abort, data integrity for these registers is ensured in
the case where a Prefetch Abort would corrupt the data before being branched past.
On any abort, the processor will branch to a defined address where the appropriate
abort handler resides, allowing the OS to apply the appropriate actions.

Figure 2.5 shows the fault checking sequence of the ARM processor. The points
of interest are the descriptor fault checks after each descriptor fetch, which checks
bits[1:0] of the descriptor. The value 'b00 determines an invalid descriptor, where the
first descriptor check will signal a section fault and the second a page fault. Domain
and access permission checks verify user access rights.

External aborts are caused by errors in the memory system rather than those caught
by the MMU. These are expected to be extremely rare and likely fatal to the running
process.

2.3.5 Walking the Page Table

On a TLB miss the ARM TLB will automatically look up the missed entry in the
page table. To look up a page table entry, memory accesses are placed on the memory
bus twice; once to retrieve the first-level descriptor, and once again to retrieve the
second-level descriptor. Due to the way page table entries are retrieved, the action is

referenced as a page table walk. A high-level overview of the hardware is shown in
Figure 2.4.

Figure 2.6 details the process of translation for a small page. Bits [31:14] of the
translation table base register in the coprocessor are concatenated with bits [31:20]
of the virtual address along with two zeros, forming the 32-bit address of the fld.



2.3. ARM MMU 15

Virtual address

Checking
alignment?

Translation
external
abort

Section
translation
fault

Yes Descriptor
fault

Section Page

Get second-level descriptor
External Ye!
abort
No

Invalid Ye
descriptor?
No

Check domain

Translation
extemal
abort

Page
translation
fault

Check domain

" Manager Page
Section anmess Access J Access amsi domain
omal type type fault
Client Client

Check access permissions

Section
permission
fault

Uik

Check access permissions
4

Yes Sub-page
permission
fault
Physical address

Figure 2.5: Fault checking sequence, as seen in [6] p. B3-20

The two zeros ensure the beginning of each word is addressed in the byte-addressable
address space. The fld address is then placed on the memory bus until the fld is
retrieved.

Looking closer at the fld, bits [1:0] are used to determine page presence in memory
and the value 'b00 will trigger a page fault. The value 'b01 indicates a valid first-level
descriptor. The address for the sld is formed by fld bits [31:10], concatenated with
bits [19:12] of the virtual address, and two zeros. In reference to bits [9] and [4:2],
SBZ stands for should be zero and the meaning of IMP is implementation defined.
The domain bits are used by the access control hardware.



16 2. BACKGROUND

3 1413 a

Translation
table base Translation base sBZ
. 31 20 19 12 11 o
::| Virtual First-level Second-evel i
| aass | e i Page nex
3t i 113 210
Address of ! Firstevel .
first-level descriptor franslation base table indox I
First-level fetch |" -
=l 10gs 1554 210
5
First-level descriptor Page table base address B Domain | IMP |0 1
31 'R_ T 210
Address of Second-level
second-level descriptor Page table base address tabie ndex |0 O

Second-level fetch |*

N =~ 121110 618,16 54 3 21 0

Second-level descriptor Small page base address APz |apz|api|arolc|s| 1 o
31‘-;_"7 PRI o
Physical address Small page base address ‘ Page index

Figure 2.6: Small page translation, as seen in [6] p. B3-14

Looking at the second-level descriptor, bits[1:0] determine page validity in the same
way as for the fld, where the value 'b00 will trigger a page fault. Bits [11:4] are used
by the access control hardware, and the C (cacheable) and B (bufferable) control
the cache and write buffer. Bits [31:12] represent the physical page number, and
concatenation with the page index forms the physical address.

2.3.6 TLB and Caches

PIPT caches are simple and avoids problems with aliasing as described by [9][10],
but suffer a performance penalty as the virtual address must be translated before it
can be sent to cache.

There are two ways to solve this problem, where one is more efficient than the other
at a cost of increased complexity. The simplest way is to stall the core while the



2.4. VIRTUAL MEMORY IN MULTICORE SYSTEMS 17

TLB reads, adding a delay of one cycle for every instruction. The more advanced
way is to pipeline the MMU, increasing the penalty of pipeline flushes. Once again,
simplicity has been favored over performance, and the former solution was chosen.

2.4 Virtual Memory in Multicore Systems

Early recognition of TLB influence on system performance steered uniprocessor
designs into adapting the multilevel hierarchies used for caching in TLBs. As chip
multiprocessors become more mainstream, TLBs have been exposed to coherency
issues with implications on performance. Various strategies have been explored to
increase performance and simplify design. A common design is to keep an MMU
and the TLB hierarchy for each core, (and perform TLB shootdowns when pages are
invalidated?)

Research done by [7] suggests shared last-level TLBs perform better than private
per-core L2 TLBs in addition to offering a simpler design, while [22] demonstrates
the benefits of a different coherence protocol.

2.5 Amber

The Amber processor core is the processor into which the MMU detailed in this thesis
has been implemented. Amber is an ARM-compatible 32-bit RISC processor that
supports the ARMv2 ISA| created by Conor Santifort [1], and comes in two versions; a
3-stage pipeline named Amber23, and a 5-stage pipeline named Amber25. Amber25 is
the processor this thesis focuses on. The system features an external communications
interface named Wishbone, an opensource system-on-chip interconnect architecture
[3] that is used for memory communication and peripheral control. The five-stage
pipeline featured in Amber25 is depicted in Figure 2.7. The five stages are fetch,
decode, execute, memory, and write-back, and there are separate L1 instruction and
data caches. There is only one level of cache.

Instruction Fetch Decode Execute Write Back
Instruction 0
sl
Bank

Figure 2.7: The Amber core




18 2. BACKGROUND

The program counter is driven by the execute stage and supplies fetch with the next
instruction address. An unregistered version of the address is sent directly to the
cache, and in the following cycle the cache tag output is compared to the registered
version of the address that entered the fetch stage. If the cache misses, the pipeline
is stalled until data is retrieved over the wishbone bus. On a cache hit, the data is
passed on to the decode stage where the instruction is decoded and sent on to the
execute stage in the following cycle, and so on. Performance of the two remaining
pipeline stages, memory and write-back, differ somewhat from traditional five-stage
pipline implementations, like the MIPS pipeline shown in [19]. Here, the register
bank is updated by the write-back stage, whereas in Amber registers are updated in
the execute stage. To avoid data hazards, Amber stalls the pipeline during load and
store operations.

The SHMAC project has continued development of the Amber core to support the
more recent ARMv4T ISA, done by Andersson and Amundsen in the spring of 2014
[15]. The most significant improvement in relation to this project was the addition
of the CPSR and SPSR registers, used to save program status during exception
handling. Amber has previously been verified by booting Linux, although without
virtual memory enabled due to the lacking hardware [15].

The Amber project also comes with a test suite that run assembly code on the core
which is used to verify correct behavior. The test suite can be extended to verify the
integrity of new designs, and will notify the user should any functionality be broken.
At the point of writing it consists of 89 tests written in assembly.

2.5.1 Wishbone Bus

The wishbone interface supplies a communications bus that serves as the memory
interface between the core and external SRAM. It features an interface with four
inputs and two outputs. The write signal and input data are only involved in the
case of writes, and for modules that only do reads these ports are grounded.



Module

req

2.5. AMBER

19

address[31:0]

Y

write

data[127:0]

>

ack

A

data[127:0]

Figure 2.8 shows how the wishbone interface looks from the perspective of any module

A

Figure 2.8: Wishbone interface

Wishbone

in the processor. Asserting req places a memory request for the accompanied address.
The wishbone module will then handle the memory access, and pulse ready to notify
when data is ready on the data bus. As the data bus is 128 bits wide it can carry up

to four words.

The wishbone module will also store simultaneous requests and give priority in a
predefined order. Since the pipeline stalls during memory reads, modules that feature
a wishbone connection must have a state machine that is not blocked by the core
stall signal, otherwise the core could get stuck in a deadlock. Data is assured to be
available for one cycle before before any new request is served.






Vilma

This Chapter describes the changes made to Amber in order to make it support
virtual memory. The core is named Vilma - VIrtual. Memory on Amber. The chapter
starts by laying out some of the design decisions before giving an architectural
overview of the implementation. Next, the MMU and TLB implementations are
shown, followed by the access control and table walk hardware. The edits made to
the coprocessor are shown last.

3.1 Design Decisions

Except bits that can be implementation defined, the ARM Architecture Reference
Manual [6] leave little room for alternative design choices on an ARM core. However,
certain shortcuts can be made possible by simplifying Vilma where performance is
would otherwise be gained through increased complexity. Two main shortcuts were
made in the project. First, Vilma supports only small pages. Tiny and large pages
as well as sections have to be enabled by software, and since 4KiB is a widespread
default small pages were deemed sufficient. Second, the TLB is direct mapped.
TLBs are commonly designed as fully associative to provide storage flexibility in a
buffer where balancing size versus speed is critical. By comparing the outputs of
each register, a fully associative TLB gains speed through complexity. Dropping
the comparators meant a substantial simplification of the design, and consequently
reduced development time. Since the main focus of this thesis has been to get a
working MMU implemented into the core, simplicity has been favored at the cost of
speed.

Further, caches have been left untouched and are considered virtually indexed,
physically tagged (VIPT). This was possible because the caches are sized by the
address offset.!

Ibits [11:4] of the address

21



22 3. VILMA

3.2 Architectural Overview

With the addition of this thesis the Amber core has gained the three functional units
shown in Figure 3.1. While the coprocessor was already present, it has undergone
significant changes to the point where only fractions of the previous design remains
and is consequently presented as a new unit.

Instruction Fetch
Instruction
Cache

Instruction MMU

Execute Write Back

Register
Bank

~—

<

<
Control signals

Data MMU

Instruction address Data address

>
Access Access
LB Control TLB Control
Hardware )| Prefeich abort Data abort Hardware
Translation Table Translation Table
Lookup Hardware Lookup Hardware

Coprocessor

MMU and Cache
Control Hardware

Control signals Control signals

Figure 3.1: Architectural overview of Vilma

Due to the ARM core featuring split memory interfaces, translation is required
in two places. While a single MMU could do the job, it would consist mainly of
duplicate logic, and separate TLBs are needed regardless. Consequently, there is
one MMU for each memory interface and each MMU manages its own TLB. The
main difference between the two units is that the data MMU deals with both load
and store instructions and needs to check access permissions accordingly, while the
instruction MMU will handle nothing but loads and consequently need only check
read permissions.

Instead of going directly out from Execute to Memory and Fetch, addresses are wired
via the respective MMU for translation. Should the MMU be disabled, addresses are
forwarded instantly.



3.3. MMU IMPLEMENTATION 23

3.3 MMU Implementation

To help the reader understand how the MMU fits into the pipeline I will first explain
the flow of instruction addresses in an MMU-less pipeline. Figure 3.2 shows the
involved pipeline stages and hardware. The oblong rectangles depict pipeline registers,
where computed data is stored on every positive clock edge. The instruction cache is
really a module inside the Fetch stage, but to simplify this figure it is placed on the
Execute pipeline as there is no functional difference in regard to this example since
the signal is forwarded.

[ . .

Fetch Decode Execute

iaddr_nxt jaddr _

icache
he_read_data

clk SRR e I e S B

Figure 3.2: Instruction address flow in Amber

In between clock signals, Execute will produce the next instruction address. On the
next clock cycle, the address is written into a pipeline register and subsequently read
by Fetch. In the case where caches are disabled, Fetch will proceed to stall the core
and read the instruction from memory, releasing the stall when the data is ready on
the memory bus to be written into a pipeline register in the Fetch module. When
caches are enabled the procedure differs. Cache needs a cycle to index its registers,
so in order to provide cache with a clock signal without stalling the pipeline the
address is forwarded from execute. In the following cycle, if the cache tag matches
the address from execute, cache hits and Fetch will receive the data instantly and
there will be no stalling involved. On a cache miss the procedure is similar to what
happens without caches enabled, only that once fetched the instruction is also written
to cache.

As mentioned in Section 3.1, the caches are physically indexed meaning that address
translation is only necessary at tag comparison when virtual memory is enabled.



24 3. VILMA

Thus, cache and TLB can be accessed concurrently.

Fetch Decode Execute

[19:12]
virt_iaddr_nxt >

Figure 3.3: Instruction address flow in Vilma

Figure 3.3 shows what happens in Vilma. The pipeline remains the same, only with
the addition of translation being performed concurrently with cache. The cache
tag is compared with the physical address from the TLB to determine a hit. The
prerequisite for determining a hit is that the physical address is available. As the
TLB may also miss, cache can only hit if the TLB hits first. The TLB will also notice
when the cache stalls the core and hold advancement for the duration of the stall,
keeping the physical address intact. As long as the TLB hits, execution proceeds the
same way as in Amber. However, when the TLB misses there is no physical address
to compare the cache tag with. The TLB will then proceed to stall the core while
performing a table walk, and release the stall once done. Because the stall preserves
the processor state, nothing except for the TLB output will have changed by the
time the stall is released. Next, tag comparison with the physical address determines
if the cache hit, and normal execution follows.

There is one issue that arises in the case of a TLB miss. Because of the cache state
machine being unaffected by stalls, it will read that the tag comparison is false and
think that it missed. This triggers a memory access for a virtual address.

1| assign abort = page_fault || domain_fault || permission_fault;
2| assign o_tlb_hit = !i_mmu_enable 7 1’bl : tlb_hit && !abort;

Listing 3.1: MMU abort conditional in tlb hit signal



3.4. TLB IMPLEMENTATION 25

1| assign idle_hit = !i_tlb_hit ? 1’°bl : |data_hit_way;
2| assign read_miss = enable && !idle_hit && !invalid_read;

Listing 3.2: Cache way hit conditional in read miss signal

Listing 3.1 and 3.22 shows the verilog code that prevents the caching of not only
virtual addresses, but also addresses that cause page faults and access violations.
The TLB hit output from the MMU is logically ANDed with the negated abort
signal. Should either change, o tlb_hit goes low. Also, when the MMU is not
enabled, the effect of the signal is disabled by always being asserted. Cache will never
think it missed a read as long as idle_hit3 is asserted. Thus, by asserting idle_ hit
when 7 tlb_hit goes low, cache is told to always assume true tag comparison for the
duration of a TLB miss.

3.3.1 MMU Schematic

A simplified schematic of the MMU is shown in Figure 3.4. Trapezoid shapes represent
multiplexers, where the control signal enters from the side. The Some details have
been left out to save space and increase readability.

3.4 TLB Implementation

The TLB is driven by the state machine shown in Figure 3.5. Possible states are
idle, shootdown, read fld, and read sld, where default state is idle. While idling the
TLB serves buffered address translations in a single cycle. When a virtual address
appears for which no valid translation exists in the buffer, the state machine activates
translation table walk hardware to perform a table walk by entering the read fid
state. The state machine moves to read sld when the fld is ready on the memory
bus, or back to idle should the descriptor be invalid.

At any point an instruction to invalidate the TLB may be executed. Invalidating
the entire TLB is commonly referred to as performing a TLB shootdown. Due to
the MMU stalling the core whenever the TLB is not idling, the state machine will
always be in idle when a shootdown is triggered. The shootdown procedure simply
loops through every translation register and resets the valid bit to zero.

The actual buffer is a set of registers that store virtual to physical address mappings
along with a valid bit and the corresponding page access permission bits. Two sets
of registers called match registers and translation registers are used to store the
information. Figure 3.6 shows the contents of each register.

2The signals are simplified for clarity and while they provide a correct interpretation they do
not match exactly with the source.
34dle_hit is a local cache signal, not to be confused with tlb__hit.



26 3. VILMA

ransaton tate_basel310] ovakdato b cow_ s vitualsddress,nelo10] el _sddress(310] onave -

MMU

accoss_permsson rom | access permisson systom

Access Control Hardware

TLB

Table Walk {w._read_data31:12],80_comain, w_resd 3201 4] I IR

Hardware I

o.wb.r0q chosen_adires(19:12] Jchosen_adressiro-12]

Match Translate
Registers Registers

o.w6,_sddress[310]

Loy

L dataf310]

uuuuuu

o_sbort stas70] | o sbod o_mmu_stal o_physica_adaross.ready o_physical_addrese310]

Figure 3.4: MMU schematic

The virtual page number (vpn) of a virtual address is formed by the 20 most significant
bits of the word. Since Vilma indexes the translation and match registers by the 8
least significant bits of the virtual page number, the number of entries is 28 = 256.
Figure 3.7 shows how a TLB read is performed. The vpn in the match register is
compared against the input vpn, where the result combined with the valid bit (v in
the figure) determines the TLB hit signal. On a hit, the output of the translation
register contains the physical page number (ppn). On a miss, the translation entry is



3.4. TLB IMPLEMENTATION 27

Read request

READ FLD ’

Page fault

TLB hit

Entry index < TLB

size
> Invalidate: begin
gg(v)v?\l-r FLD read complete
Invalidate: done

Read request

SLD read complete

READ SLD

Figure 3.5: TLB state machine

20 10

Match register: Virtual Page Number ‘ Y, ‘

31 1211 87 65 43 21 0

Translation register: Physical Page Number ‘ Domain ‘ AP3 ‘ AP2 ‘ AP1 ‘ APO ‘

Figure 3.6: Buffer registers

looked up in the page table and written to the registers. A TLB write is indexed the
same way, the only difference being that entries are written instead of read.

This way of indexing is simple and fast, but falls short on utilization. Whereas a
fully associative TLB will fill up the whole buffer before replacing entries, a direct
mapped TLB may have completely unused entries. In addition, a fully associative
TLB is able to apply replacement strategies? to further increase performance. Such
strategies are impossible to employ in a direct mapped buffer.

Because of the extra hardware used in fully associative TLBs, the buffers may contain
only as few as 16 entries (see [19], page 503). Vilma attempts to make up for this
shortcoming by increasing the number of entries to 256, and may go even higher.
However, the number of entries should be measured against the frequency of TLB
shootdowns, as shootdowns stall the pipeline for as many cycles as there are TLB

4A common TLB replacement strategy is least recently used.



28 3. VILMA

virtual_address[19:12]

Match registers Translation registers
virtual page number |V physical page number |domain | access perm

entry 1 entry 1

entry 2 entry 2

entry 3 entry 3
index index

entry 256 entry 256
virtual_address[31:12]
TLB hit
Data out

Figure 3.7: TLB read process

entries.

3.5 Translation Table Walk Hardware

When invoked, the translation table walk hardware executes the procedure described
in Section 2.3.5. The hardware is contained within the TLB module, and controlled
by the TLB state machine in states READ FLD and READ SLD shown in Figure 3.5.
Vilma only supports small pages, and the use of any other data structure is undefined
and may cause the system to malfunction.

3.6 Access Control Hardware

The access control hardware is kept within the MMU and determines whether a
user process is allowed a requested operation on a given page. Vilma access control
support is shown in table 3.1.



3.7. COPROCESSOR 29

Priority Sources Supported
Highest Terminal Exception No
Vector Exception No
Alignment No
External Abort on Translation First level No

Second level No

Translation Section Yes

Page Yes

Domain Section Yes

Page Yes

Permission Section Yes

Page Yes

External Abort on Linefetch Section No

Page No

Lowest, External Abort on Non-linefetch  Section No
Page No

Table 3.1: Priority encoding of supported access control and faults in Vilma

3.7 Coprocessor

The only coprocessor present in Vilma is the system control coprocessor. The
coprocessor® in Amber had only cache control, and was set up with a cache enable
signal, a cache flush signal, and a set cacheable area range. The signals and their
function have been preserved, but the target of activation has changed. This was
done because the original implementation did not follow the arm specification for
cache control and was using the System Control register erroneously as well as laying
claim to MMU control registers. An example can be seen in Listing 3.3.

module a25_coprocessor

(

output o_cache_flush,

)

assign o_cache_flush = coprolb_regl_write;

// Flush the cache
assign coprolb5_regl_write = !i_core_stall &&
i_copro_operation == 2’d2 &&

5Numeration is not used consequently, but coprocessor should always be read as coprocessor
number 15, or system control coprocessor.



30 3. VILMA

i_copro_crn == ’dl

Listing 3.3: Cache flush control in Amber

If an mer instruction occurred to coprocessor register 4’d1, the cache flush signal
would be asserted.® Coprocessor 15 register 1 is the system control register. Flushing
the cache should be done by register 7, and was changed appropriately. Although
not irreparable, an unfortunate but necessary effect was that changing the cache
control broke the Amber test suite wherever cache control was used.

Vilma has been equipped with a fully functioning system coprocessor that supports
both MMU and cache control and functions in accordance with [6], a prerequisite for
running an operating system that makes use of virtual memory on the core.

6There is also a bug in this line, as the signal is not sensitive to coprocessor 15 but rather any
coprocessor write.



Evaluation & Discussion

In this Chapter I present the results derived from performance testing and discuss
how they verify core functionality. Specifically, I have measured FPGA-resource
usage to evaluate the feasibility of the increased tile area occupied by the MMU, and
core functionality has been measured using a test framework to prove that the core
behaves correctly.

4.1 FPGA Resource Usage

With the introduction of new hardware, Vilma has increased resource usage of the
Amber core. The larges components are the TLBs, and while the size of the TLB
can be subject to change, the chosen size for synthesis has been 256. TLB size
optimization for use in a tiled SHMAC environment is not part of this thesis and
has been given little attention beyond verifying an acceptable level in comparison to
the original Amber core.

The FPGA resources measured are logic slices and block RAM at the tile level,
since tiles are the utilized units in a SHMAC environment. LUT usage is not listed
separately as it is included in logic slices. The following tables provide an idea of how
much space Vilma takes on an FPGA, and the scalability of the core with regard to
the SHMAC tile layout.

Resource Amber Vilma | Increase
Block RAM | 108 KB 252 KB 133 %
Logic slices 3709 4007 8 %

Table 4.1: Resource usage increase relative to Amber

Table 4.1 displays the resource usage of Vilma with respect to Amber. Table 4.2
shows how much space Vilma occupies on the Xilinx Virtex-5 XC5VLX330-f1760-1
FPGA, the FPGA element used in SHMAC development. All values are collected

31



32 4. EVALUATION & DISCUSSION

Resource Vilma Virtex5 Increase
Block RAM | 252 KB 19,368 KB 1,3 %
Logic slices 4007 51840 77 %

Table 4.2: Vilma’s resource utilization of a Virtex5

from design synthesis using Xilinx ISE 14.5, and the results in their entirety are
listed in Appendix A.

Table 4.1 shows that Vilma uses a larger amount of block RAM than Amber, which
is explained by the introduction of two TLBs. However, in light of available block
RAM on the Virtex-5, the increase is less significant compared to the use of logic
slices. Still, with an increase of only 8% in Logic slice usage, Vilma can be considered
only marginally larger than Amber.

4.2 Verification

In this Section I present the methods used for design verification in the project, and
the reasoning behind them.

The use of testbenches is common practice for digital design verification of hardware
description languages like Verilog. By giving a set of inputs to the circuitry and
comparing the output to the expected values, testbenches can be used to directly
simulate signal values as they progress with regard to inputs and clocks. While
offering great insight into system behavior, testbenches need to be defined at the most
detailed level by directly setting bit values, and their usefulness depend solely on their
design. As the set of possible input combinations may increase exponentially with
system size, so may the development overhead for designing testbenches. Considering
the size of the Amber core, time spent developing testbenches was considered to be
rather counterproductive.

Alternatively, processor design may be verified by running real applications on the
system. The Amber project comes with an extensive framework for simulating inputs
from real assembly applications, and supplies a test suite containing 89 assembly
programs. Its application in resent research [15][5] adds to the conclusion that this
framework is able to sufficiently test and verify the correctness of the processor,
especially considering there exists no alternative publicly available test suite.

In addition to running custom tests, booting an operating system on the processor
would be a considerable achievement, and can be viewed as the ultimate testimony
of functional correctness. Booting linux has been a goal throughout the development,



4.2. VERIFICATION 33

but as the project neared completion it became apparent there were bugs in the

design that originated from other parts of the pipeline.

The entire test suite has been modified to run with MMU enabled, and simulation
successfully completed on every test. The output can be found in Appendix ?7?.

4.2.1 MMU table walk

Figure 4.1 shows the instruction MMU performing a table walk. The MMU stalls the
core the moment it is enabled because of the TLB missing. Two wishbone requests
follow to perform the table walk, and retrieves data in accordance with the data

structure viewed in Listing 4.1.

init_mem:
ldr
nop
mcr
mov

ldr
ldr
str
ldr
ldr
str

r0,

15,
r0,

r0,
ri,
rl,
ro0,
ri,
rl,

translation_table_base

0, r0, c2,
#4

£1d0_addr
f1d0_data
[ro]
s1d0_addr
s1ld0O_data
[ro]

/* Page table values */
translation_table_base:

£f1d0_addr:
f1d0_data:
s1d0_addr:
s1dO_data:

c0, O

.word
.word
.word
.word
.word

Q@ set translation table base

@ put f1d4d0 in memory

@ put s1d0 in memory

0x40200000
0x40200000
0x40300001
0x40300000
0x00000002

Listing 4.1: Address and data for fld and sld

nduU_amber/u_innu/1_clk

Figure 4.1:

Instruction MMU performing a table walk



o

34 4. EVALUATION & DISCUSSION

4.3 Bugs in the pipeline

Specifically, the bugs are associated with coprocessor instructions and their control
of the MMU, and stem from load and store hazards. Two issues were discovered
and are explained in their respective subsections. I believe the main reason these
bugs have gone unnoticed so far is due to the lack of coprocessor usage. Since the
coprocessor was only used to enable caching in the old Amber design, these hazards
had no complication on system performance.

4.3.1 Load hazard

A load instruction (ldr) to a specific register, followed by a coprocessor store (mer)
of the same register will fail unless a cycle of no operation (nop) appears in between.
This happens because the load takes two cycles to complete, which is not accounted
for followed by a coprocessor store, the effect of which is that the coprocessor receives
the wrong contents.

init_mem:

mov r0, #4 @ rO = 4
ldr rO0, translation_table_base @ load base into r0
mcr 15, 0, r0, c2, c0, O @ set cpl5 table base

Listing 4.2: load r0, store r0 to coprocessor

u_coproceszorsi_clh
Yy i _hank. 0

Figure 4.2: ldr hazard

The load hazards was discovered while setting the translation table base register.
Listing 4.2 shows the code and Figure 4.2 displays what happens in simulation. The
first line of code sets the contents of register r0 to 4. Next, the ldr operation sets r0
to the value of ¢lb_ 11 _base (0x40200000), which is the table base to be loaded into
coprocessor register c2. However, by the time r0 is updated the mcr instruction is
already being executed, and so the value of the translation table register becomes
0x4 instead of 0x40200000 like it should be. An operating system will thus be unable
to update the translation table base correctly without modifying the source code for
the memory handling routine.

4.3.2 Store hazard

In the Amber pipeline it takes three cycles from an instruction is created until it
is executed; fetch, decode, execute. This means that during normal operation we



[un

N

4.4. DISCUSSION 35

should expect to count three cycles from an address is created until it is executed.
However, by the time a move from register to coprocessor (mcr) instruction has been
issued to enable the MMU, to the point where the enable signal is asserted, the
subsequent instruction has already been executed.

enable_mmu:

orr rO0, r0O, #0x1 @ set MMU enable bit
orr r0, r0O, #0x100 @ set SYSTEM access permission
mcr pl5, 0, r0, c1, cO, O @ turn on

Listing 4.3: load r0, store r0 to coprocessor

w_coprocessor/1i_clk |1

Figure 4.3: mcr hazard

The store hazards was discovered while enabling the MMU. Listing 4.3 shows the
code and Figure 4.3 displays what happens in simulation. Due to stalls in the pipeline
from asserting the MMU enable signal, it is impossible to get the whole picture into
the waveform. As such it is challenging to properly explain the issue so I will proceed
to state the expected behavior. The MMU enable signal should be asserted one cycle
ealier, by the yellow marker if Figure 4.3. Current behavior results in the subsequent
address (0x00000060) not being translated, as an operating system would expect.
The result is the execution of a virtual address and will most likely cause the system
to misbehave, if not crash.

4.4 Discussion

Due to bugs in the pipeline, testing address translation was only done by building
page tables in assembly and running the test suite. As the programs in the test suite
are not sufficiently large to exceed a page, and since addresses start at 0x0 with
consecutive distribution not exceeding 0x000000FF, the instruction MMU needed
only one page table entry mapping 0x0 to 0x0. This allowed simulation of the
instruction MMU, but proved more challenging for the data MMU.

As opposed to instructions, data will be spaced at seemingly random places in the
address space by the compiler. Thus, building page tables in assembly that contain
accurate mappings would have been guess work at best, and, since compilation would
change it up regardless, was concluded impossible without a proper memory handler,
like that present in an OS. Without proper translations, the data MMU caused all
tests to fail. Concluding that digging through OS source code would not yield much



36 4. EVALUATION & DISCUSSION

other than wasted time, and that building one in assembly was similarly infeasible,
the data MMU output was unhooked during testing. As such, only the instruction
MMU was enabled to produce test results. Still, it should be noted that while the
Data MMU did not provide translations to the hardware, it attempted to and in
turn performed table walks that had an impact on performance. Consequently, the
effect of the data MMU is visible on performance output.

Due to these circumstances, only the instruction MMU has been tested, and since
the mapping was essentially physical to physical (0x0 to 0x0), a real virtual address
space has not been in place. However, I would like to argue that without properly
working hardware, the TLB entry for 0x0 would never been accessed. The MMU in
Vilma does a complete page table walk in compliance with the ARM Architecture
Reference Manual [6], and successfully locates the mapping and loads it into the
TLB. The TLB in turn supplies this translation without delay, resulting in the entire
design to be transparent to performance except for the initial table walk. In addition,
the access control hardware have also been tested with success, addressing page faults
and access permissions. Moreover, because both MMUs are instances of the same
module, verifying one also verifies the other, as behavior in terms of page table walks
and address translation is exactly the same.

Complete verification will not be available until the necessary debugging has been
done on the rest of the system to enable running an OS.



Conclusions and Further Work

In this Chapter I discuss the solution I have presented of the assignment. The first
section recaps at the list of requirements presented in Chapter 1 and elaborates on
the challenges faced and how the requirement was met. The second section discusses
areas for further work.

5.1 Assignment Requirements

The following is a re-listing of the requirements from Section 1.3.

Address translation Vilma features a hardware MMU capable of doing concurrent
address translation.

Resource balanced Vilma has been verified to occupy close to the same area as
that of the original Amber, and does not excessively drain any particular FPGA-
resources.

Portable The MMU in Vilma is in large part contained within one module and
only directly impacts caches.

Verified Vilma has successfully passed verification testing.

5.1.1 Address translation

Vilma should integrate a seamless address translation in hardware and work as
expected according to the ARM Architecture Reference Manual. Correct functionality
is vital for reusing architecture specific code, like that of an OS.

To satisfy this requirement I have written a test that enables the MMU and performs
some computations, and then tests the output. If the translations are incorrect, the
program will deviate from expected behavior and fail.

37



38 5. CONCLUSIONS AND FURTHER WORK

Since Vilma successfully passes the test, and because the page table in the test is
built in accordance with the ARM Architecture Reference Manual [6], I conclude that
both aspects of the requirement is met and that Vilma applies correct translation.
The only weakness with the test is that a proper virtual address space is lacking, but
I would like to underline that this is only possible to if the rest of the core behaves
as expected.

5.1.2 Resource balanced

Vilma should not excessively drain any particular FPGA-resources. The importance
of this requirement is its use in the SHMAC environment, where the number of cores
in a setup is limited by the exhaustion of the most critical resource. As Vilma drains
close to the same area as Amber when compared to the available resources on the
Virtex-5 FPGA, I conclude that this requirement has been fulfilled.

5.1.3 Portable

To introducing virtual memory to the SHMAC environment, the virtual address
space has to be used across a complete tile setup. Thus, when creating an MMU for
SHMAC processing tiles, care should be taken to avoid any significant dependencies
on the surrounding hardware.

For this requirement I would like to argue that the simplicity of the design with few
inputs and outputs and overall structuring, suffices to meet this requirement for most
ARMv4T compliant architectures.

5.1.4 Verified

Vilma should be verified to ensure the correctness correctness of the design. The
presence of an MMU that changes or breaks expected system behavior is worse than
having none at all, and so correct behavior is vital for success.

Completely meeting this requirement has proved impossible due to the hazards
discussed in Section 4.3. Without having tested running an Operating System on
the core, verification suffers. In addition, due to how the compiler spaces data in
the address space, the data MMU does not have correct page tables. This is the
unfortunate consequence of bugs appearing outside of the area of focus. Still, the
test suite that comes with Amber serves to give a strong indication that the core
functions as expected for those applications.

5.2 Further work

In this section I suggest what can be done to improve Vilma.



5.2. FURTHER WORK 39

5.2.1 Investigate coprocessor bugs

The bugs discussed in Section 4.3 inhibit running an OS on Vilma, and must be
resolved before virtual memory can be utilized. Significant effort should be made to
evaluate how coprocessor instructions are executed in order to assure correct system
behavior.

5.2.2 Increase TLB associativity

FPGA resources can be utilized more efficiently by increasing the associativity of the
TLB. Preferably a fully associative implementation should be implemented, which
will reduce miss percentage by maximizing the use of TLB entries, while at the same
time allowing the size to be reduced with minimal penalty.

5.2.3 Support entry invalidation

Vilma only supports complete TBL shootdowns. Supporting entry invalidation can
significantly decrease the performance penalty by invalidating single entries.

5.2.4 Support other data structures

As stated in Section 3.1, Vilma supports only small pages. If the use of other data
structures is desirable it will need hardware support. In its current state, only the
TLB module of Vilma will have to be changed to reach compliance, and behavior
must be in accordance with the ARM Architecture Reference Manual [6].

5.2.5 Make Caches Virtually Indexed, Physically Tagged

If cache size is increased, cache indexing will begin to use bits of the virtual page
number. This has implications on the design as explained in [9] [10], and must be
addressed accordingly for virtual memory to function.






[10]

[11]

Bibliography

Amber ARM-compatible core, OpenCores. http://opencores.org/project,amber.
Accessed December 2014.

Long Range Computation Study Group, MIT. https://stacks.stanford.edu/file/
druid:th919jh6519/sc0524  1995-247 b27 £30.pdf. Accessed Jan 2015.

SoC Interconnection: Wishbone, OpenCores. http://opencores.org/opencores,
wishbone. Accessed December 2014.

The Single-ISA Heterogeneous MAny-core Computer (SHMAC). http://www.
ntnu.edu/ime/eecs/shmac. Accessed May 2014.

Sebastian Akre, Anders Tvetmarken; Bge. Trubo amber: A high-performance
processor core for shmac. Master’s thesis, Norwegian University of Science and
Technology, 2014.

ARM. ARM Architecture Reference Manual, 2000. ARM DDI 0100E, Accessed
December 2014.

Lustig D. Martonosi M. Bhattacharjee, A. Shared last-level tlbs for chip multi-
processors. High Performance Computer Architecture (HPCA), 2011 IEEFE 17th
International Symposium on, pages 62-63, February 2011.

Mark Bohr. A 30 Year Retrospective on Dennard’s MOSFET Scaling Paper.
January 2007. Solid-State Circuits Society.

Dubois M. Chekleov M. Virtual-address caches. part 1: problems and solutions
in uniprocessors. Micro, IEEE, 17(5):64-71, Sep/Oct 1997.

Dubois M. Chekleov M. Virtual-address caches.2. multiprocessor issues. Micro,
IEFEE, 17(6):69-74, Nov/Dec 1997.

Yu H. Rideout L. Bassous E. Leblanc A. Dennard R., Gaensslen F. Design of
Ton-Implanted MOSFET’s with Very Small Physical Dimensions. October 1974.
IEEE Journal of Solid State Circuits SC-9 (5).

Peter J. Denning. Virtual memory. ACM Computing Surveys (CSUR), 2:153-189,
September 1970.

41


http://opencores.org/project,amber
https://stacks.stanford.edu/file/druid:th919jh6519/sc0524_1995-247_b27_f30.pdf
https://stacks.stanford.edu/file/druid:th919jh6519/sc0524_1995-247_b27_f30.pdf
http://opencores.org/opencores,wishbone
http://opencores.org/opencores,wishbone
http://www.ntnu.edu/ime/eecs/shmac
http://www.ntnu.edu/ime/eecs/shmac

(18]

[19]

[20]

[21]

[22]

42 BIBLIOGRAPHY

[13] J. Fotheringham. Dynamic storage allocation in the atlas computer, including an
automatic use of a backing store. ACM, 4:435-436, October 1961.

[14] Renée St. Amantx Karthikeyan Sankaralingamz Hadi Esmaeilzadehy, Emily Blemz
and Doug Burger. Dark Silicon and the End of Multicore Scaling. 2011. Appears in
the Proceedings of the 38th International Symposium on Computer Architecture
(ISCA '11).

[15] Hakon Amundsen Joakim Andersson. Linux for shmac. Master’s thesis, Norwegian
University of Science and Technology, 2014.

[16] Edwards D.B.G. Lanigan M.J. Sumner F.H. Kilburn, T. One-level storage system.
Electronic Computers, EC-11:223-235, April 1962.

[17 Y.K. ; Verma N. ; Chandrakasan A.P. Kwong, J.; Ramadass. A
65 nm sub- vymicrocontrollerwithintegratedsramandswitchedcapacitorde —
dcconverter. Solid — StateCircuits, 44 : 115 — —126, Jan20009.

Gordon E. Moore. Cramming more components onto integrated circuits. 1965.
Electronics Magazine. p. 4. Retrieved 2006-11-11.

David A. Patterson and John L. Hennessy. Computer Organization and Design -
The Hardware/Software Interface. Morgan Kaufmann, 4 edition, November 2011.

David A. Patterson and John L. Hennessy. Computer Architecture - A Quantitative
Approach. Morgan Kaufmann, 5 edition, 2012. Appendix B.4 - Virtual Memory.

R. Rojas. Konrad zuse’s legacy: the architecture of the z1 and z3. Annals of the
History of Computing, IEEE, 19:5-16, April 1997.

Lebeck Alvin R. Sorin Daniel J. Bracy A. Romanescu, Bogdan F. Unified instruction/-
translation/data (unitd) coherence: One protocol to rule them all. High Performance
Computer Architecture (HPCA), 2010 IEEE 16th International Symposium on, pages
1-12; January 2010.



Synthesis Report

A.1 Vilma Xilinx Mapping Report File

Release 14.5 Map P.58f (1in64)
Xilinx Mapping Report File for Design ’vilma_wrapper’

Design Information

Command Line : map -intstyle ise -p xc5v1lx330-ff1760-1 -w -logic_opt off -ol
high -t 1 -register_duplication off -global_opt off -mt off -cm area -ir off -pr
off -1c off -power off -o a25_core_map.ncd a25_core.ngd a25_core.pct

Target Device : xc5v1x330

Target Package : ff1760

Target Speed : -1
Mapper Version : virtex5 -- $Revision: 1.55 $
Mapped Date : Mon Jan 19 15:20:44 2015

Design Summary

Number of errors: 0
Number of warnings: 0
Slice Logic Utilization:
Number of Slice Registers: 3,842 out of 207,360 1%
Number used as Flip Flops: 3,841
Number used as Latch-thrus: 1
Number of Slice LUTs: 11,058 out of 207,360 5%
Number used as logic: 9,000 out of 207,360 47,
Number using 06 output only: 8,284
Number using 05 output only: 88
Number using 05 and 06: 628

43



44 A. SYNTHESIS REPORT

Number used as Memory: 2,048 out of 54,720 3%
Number used as Single Port RAM: 2,048
Number using 06 output only: 2,048
Number used as exclusive route-thru: 10
Number of route-thrus: 125
Number using 06 output only: 94
Number using 05 output only: 30
Number using 05 and 06: 1

Slice Logic Distribution:

Number of occupied Slices: 4,007 out of 51,840 7%
Number of LUT Flip Flop pairs used: 11,807
Number with an unused Flip Flop: 7,965 out of 11,807  67%
Number with an unused LUT: 749 out of 11,807 6%
Number of fully used LUT-FF pairs: 3,093 out of 11,807  26%
Number of unique control sets: 142

Number of slice register sites lost
to control set restrictions: 215 out of 207,360 1%

A LUT Flip Flop pair for this architecture represents one LUT paired with
one Flip Flop within a slice. A control set is a unique combination of
clock, reset, set, and enable signals for a registered element.

The Slice Logic Distribution report is not meaningful if the design is
over-mapped for a non-slice resource or if Placement fails.

OVERMAPPING of BRAM resources should be ignored if the design is
over-mapped for a non-BRAM resource or if placement fails.

I0 Utilization:
Number of bonded IOBs: 314 out of 1,200 26%
IOB Flip Flops: 182

Specific Feature Utilization:

Number of BlockRAM/FIFO: 7 out of 288 2%
Number using BlockRAM only: 7
Total primitives used:
Number of 36k BlockRAM used: 7
Total Memory used (KB): 252 out of 10,368 2%
Number of BUFG/BUFGCTRLs: 2 out of 32 6%
Number used as BUFGs: 2

Average Fanout of Non-Clock Nets: 5.68



A.2. AMBER XILINX MAPPING REPORT FILE 45

A.2 Amber Xilinx Mapping Report File

Release 14.5 Map P.58f (1in64)
Xilinx Mapping Report File for Design ’amber_wrapper’

Design Information

Command Line : map -intstyle ise -p xcbvlx330-ff1760-1 -w -logic_opt off -ol
high -t 1 -register_duplication off -global_opt off -mt off -cm area -ir off -pr
off -1lc off -power off -o a25_core_map.ncd a25_core.ngd a25_core.pcf

Target Device : xcbvlx330

Target Package : ff1760

Target Speed -1
Mapper Version : virtex5 -- $Revision: 1.55 $
Mapped Date : Mon Jan 19 15:01:17 2015

Number of errors: 0
Number of warnings: 0
Slice Logic Utilization:
Number of Slice Registers: 3,617 out of 207,360 1%
Number used as Flip Flops: 3,616
Number used as Latch-thrus: 1
Number of Slice LUTs: 10,637 out of 207,360 5%
Number used as logic: 8,580 out of 207,360 49,
Number using 06 output only: 7,891
Number using 05 output only: 74
Number using 05 and 06: 615
Number used as Memory: 2,048 out of 54,720 3%
Number used as Single Port RAM: 2,048
Number using 06 output only: 2,048
Number used as exclusive route-thru: 9
Number of route-thrus: 92
Number using 06 output only: 79
Number using 05 output only: 12
Number using 05 and 06: 1

Slice Logic Distribution:
Number of occupied Slices: 3,709 out of 51,840 7%
Number of LUT Flip Flop pairs used: 11,386
Number with an unused Flip Flop: 7,769 out of 11,386  68%



46 A. SYNTHESIS REPORT

Number with an unused LUT: 749 out of 11,386 6%
Number of fully used LUT-FF pairs: 2,868 out of 11,386 25
Number of unique control sets: 127
Number of slice register sites lost

to control set restrictions: 192 out of 207,360 1%

A LUT Flip Flop pair for this architecture represents one LUT paired with
one Flip Flop within a slice. A control set is a unique combination of
clock, reset, set, and enable signals for a registered element.

The Slice Logic Distribution report is not meaningful if the design is
over-mapped for a non-slice resource or if Placement fails.

OVERMAPPING of BRAM resources should be ignored if the design is
over-mapped for a non-BRAM resource or if placement fails.

I0 Utilization:
Number of bonded IOBs: 314 out of 1,200 26%
I0OB Flip Flops: 182

Specific Feature Utilization:

Number of BlockRAM/FIFO: 3 out of 288 1%
Number using BlockRAM only: 3
Total primitives used:
Number of 36k BlockRAM used: 3
Total Memory used (KB): 108 out of 10,368 1%
Number of BUFG/BUFGCTRLs: 1 out of 32 3%
Number used as BUFGs: 1

Average Fanout of Non-Clock Nets: 5.80



	
	
	
	
	
	
	
	
	
	
	

	
	

	
	
	
	
	
	
	

	
	

	
	
	
	
	
	
	

	
	
	


	
	
	
	
	

	
	
	
	

	
	
	
	

	
	
	

	

	
	
	
	
	
	

	
	
	
	
	
	


	
	
	
	


