
From Sketches to Functional Prototypes
Extending WireframeSketcher with Prototype

Generation

Fredrik Haugen Larsen

Master of Science in Informatics

Supervisor: Hallvard Trætteberg, IDI

Department of Computer and Information Science

Submission date: December 2014

Norwegian University of Science and Technology

From Sketches to Functional Prototypes:
Extending WireframeSketcher with Prototype
Generation

Fredrik Haugen Larsen

Master of Science in Informatics
Submission date: December 2014
Supervisor: Hallvard Trætteberg, Associate Professor, IDI

Norwegian University of Science and Technology
Department of Computer and Information Science

Problem description:

When developing user interfaces (UI) the designers often utilize prototypes of varying
fidelity (how real and functional it is), e.g. sketches and more functional prototypes.
In order to save time it would be practical if low fidelity prototypes, such as sketches,
could be quickly developed to a prototype with higher fidelity and functionality.

There are several Eclipse based tools for prototyping among themWireframeSketcher
for creating wireframe sketches. This project should explore how such a tool can be
extended in order to turn a sketch into a functional prototype.

Assignment given: January 15th 2014
Supervisor: Hallvard Trætteberg, Associate Professor, IDI

Abstract

When designing graphical user interfaces (GUI) for software applications
an important part of the process is prototyping. Initially layout and in-
teraction is often more interesting than the actual look of the design
itself. There are several tools available that allow users to create sim-
plistic low fidelity sketches which are fast and easy to work with. The
problem arrives when developers need to implement the design in order
to create functional prototypes - prototypes that also include some of the
functionality of the planned application. The underlying sketch-design
data is normally not compatible with the tools used by the developers,
so it gets discarded and the same design has to be recreated by the
developers which affects costs and efficiency. This process works poorly.

In this thesis the prototyping tool WireframeSketcher has been extended
with information that makes it possible to generate a functional proto-
type to a certain degree from a sketch. The solution is implemented
using Eclipse and consists of two programs. One program handles the
parsing of sketches and generation of data required for the functional pro-
totype, while the other program is responsible for running the functional
prototype itself. The solution utilizes simple graphical notes within Wire-
frameSketcher in order to augment the sketch with information regarding
functionality. This information is interpreted by the programs and the
result is a functional prototype. After development a set of qualitative
user-tests were conducted and they indicate that the result is a viable
solution for turning sketches into functional prototypes.

Index terms— prototyping, functional prototype, wireframe, interaction design,
sketch, design, javafx, code generation, fxml, xtend, emf, wireframesketcher, eclipse

Sammendrag

Når man designer grafiske brukergrensesnitt (GUI) for programvare-
applikasjoner er prototyping en viktig del av prosessen. I starten er det
mer interessant hvordan utforming er og hvordan interaksjon fungerer,
enn hvordan det grafiske designet ser ut. Det finnes mange tilgjengelige
verktøy som tillater brukere å lage forenklede lav-fidelitet (gjengivelse)
skisser som er raske og enkle å arbeide med. Problemet oppstår når
utviklere må implementere designet for å lage funksjonelle prototyper —
prototyper som også inkluderer litt av funksjonaliteten til den planlagte
applikasjonen. Den underliggende skisse-dataen er normalt ikke
kompatibel med verktøyene som utviklerne bruker, så den forkastes og
det samme designet må lages på nytt av utviklerne, noe som påvirker
kostnad og effektivitet. Dette fungerer dårlig.

I denne oppgaven har prototypingsverktøyet WireframeSketcher blitt
utvidet med informasjon som gjør det mulig å generere en funksjonell
prototyp til en viss grad fra en skisse. Løsningen er implementert i Eclipse
og består av to program. Det ene programmet håndterer tolkning av
skisser og genererer data som er nødvendig for den funksjonelle proto-
typen, mens det andre programmet har som ansvar å håndtere utførelsen
av den funksjonelle prototypen. Løsningen benytter enkle grafiske
notislapper inne i WireframeSketcher for å utvide skissen med
informasjon som beskriver funksjonalitet. Denne informasjonen tolkes av
programmene og resultatet er en funksjonell prototyp. Etter utviklingen
ble et sett av kvalitative brukertester gjennomført. Testene antyder at
resultatet er en potensielt brukbar løsning for å gjøre skisser om til
funksjonelle prototyper.

Contents

Abstract i

Sammendrag iii

Contents v

Preface x

List of Figures xi

1 Introduction 1
1.1 Motivation . 1
1.2 Research Questions . 2
1.3 Structure of the report . 3

2 Methodology 5
2.1 Design science . 5

2.1.1 Using the method . 6

3 Background 9
3.1 Prototyping . 9
3.2 Iterative design . 11

3.2.1 Evolutionary prototypes . 13
3.3 Prototyping tools . 13

3.3.1 Functionality coverage . 13
3.3.2 Different approaches . 14
3.3.3 Program architecture . 15

3.4 Model-driven Engineering . 16
3.4.1 Model-to-text transformation 16
3.4.2 Code generation . 17

3.5 Eclipse IDE . 19
3.6 Eclipse EMF . 20

v

4 Criteria 21
4.1 Empirical data from GUI design course 21

4.1.1 Analysis . 22
4.2 Eclipse Workbench . 23

4.2.1 Perspectives . 23
4.2.2 Editors . 23
4.2.3 Views . 24
4.2.4 Adding additional behavior 24

4.3 Tools . 24
4.3.1 WireframeSketcher . 25
4.3.2 JavaFX and FXML . 28

4.4 Creating requirements . 29
4.4.1 Target group . 29
4.4.2 Deciding on functionality . 29

4.5 The Functional Requirements . 31
4.6 Non-functional requirements . 32
4.7 Exploring the dimensions . 32

5 Initial development 35
5.1 Focusing on different aspects . 36
5.2 Decorating sketches with a decorator model 37
5.3 Screen decorator model . 37

6 Design 39
6.1 1st Iteration . 39

6.1.1 Editing screen decorators in views 39
6.2 2nd Iteration . 41

6.2.1 Representing screen decorators using custom widgets 41

7 Technique 47
7.1 How development was done . 47

7.1.1 SceneBuilder . 47
7.1.2 Xtend programming language 48

7.2 1st Iteration . 49
7.2.1 Initial architecture . 50
7.2.2 Choosing JavaFX layout styles 51

7.3 2nd Iteration . 51
7.3.1 Prototyping process . 52

8 Analysis 55
8.1 Comparing manual and generated implementations 55

8.1.1 The sketch . 55

8.1.2 Implementing the sketch manually using JavaFX 56
8.1.3 Generating the implementation 59

9 Evaluation 61
9.1 User-testing the prototype . 61

9.1.1 How testing was performed 61
9.1.2 The tasks . 62
9.1.3 Challenges with the test . 62
9.1.4 The sketch applications . 63
9.1.5 Evaluating the user-tests . 66

9.2 Evaluating the design based on the user-tests 68
9.3 Evaluating the research questions . 69
9.4 Further development . 70
9.5 Conclusion . 71

References 73

Appendices

A Observational notes from User-testing 77

B Source code 95

Preface

This master’s thesis was written at the Department of Computer and
Information Science at the Norwegian University of Science and Technol-
ogy (NTNU). It is the culmination of research, study, empirical trial and
error, prototyping, development, user-testing and discussions that took
place during 2014. It has been a challenging and very interesting year,
and I have learned a lot about myself in addition to the technical aspects
of the project.

I would like to express my deepest gratitude towards my supervisor
Hallvard Trætteberg. Due to the nature of this thesis, his knowledge and
help has been invaluable. Over the course of the last year we have had
a lot of meetings discussing both general subjects and subjects strictly
related to the thesis. They have all been interesting and is partially re-
sponsible for making this a fun project to work on. Thank you for being
patient and understanding.

I would also like to thank Magnus Jerre for assisting me during the user-
testing process. I hope some of my work will prove useful for his own
thesis. His presence and smalltalk at Fiol, the room where I have done
most of my work, has been motivating. On that regard I would like to
thank everyone who has been studying in the room. It is a great incentive
to have students around you who are hard-working.

Thank you for the experience,

Trondheim, December 7th, 2014

List of Figures

1.1 An overview of how the development process will be presented. First the
design will be presented in both iterations, then the technique will be
presented in the same manner. 4

2.1 The process of design science. Wieringa, 2009 [1] 5
2.2 A simple decomposition of a problem. Wieringa, 2009 [1] 6

3.1 Prototyping in general usually focus on one or a few aspects of the prod-
uct on which they prototype. When designing an aircraft, there are
multiple properties of the aerofoil that can be changed to improve the
aerodynamics. 10

3.2 Two prototypes with different levels of fidelity. The left one is very low,
while the right one is higher, but still not high fidelity. 11

3.3 ISO 13407: Human centered design. An iteractive design cycle. The
design can be redefined after each evaluation. 12

3.4 The typical iterative process usually settle on a solution that is found
before the last. 13

3.5 Tools placed according to how much of the interface functionality they
cover. Notice that the tools are clustered inside the two regions. The
y-axis is irrelevant. 14

3.6 The Model-View-Controller software architectural pattern. 15
3.7 An overview of Eclipse 4.4 Luna . 19

4.1 An overview of the Eclipse Workbench - Window, perspective, editor and
view. 25

4.2 An overview of theWireframeSketcher GUI. Project Explorer in the upper
left corner. Below that is the Properties and Links view. Screen Editor
in the middle, and Palette on the right. 27

4.3 The Properties View inside the WireframeSketcher perspective. Notice
that the properties pertain to the selected button widget Week. 28

4.4 The ideal scenario where just a little developer effort result in a lot more
user functionality. 30

xi

4.5 A non-ideal scenario where a lot of developer effort results in just a little
more user functionality. 30

5.1 Starting to explore the design interpreting a property list. 35
5.2 The screen decorator model used to create screen decorator models. Ac-

tion in red and ViewRule in violet. 38

6.1 A sketch of the tabbed view that could be used to manipulate the screen
decorators. Notice the Properties and Links tabs that already exist in
WireframeSketcher. 40

6.2 The screen decorator types in their respective color suit, with the widget-
connecting arrow. 42

6.3 The screen decorator types with data from listing 6.1, 6.2 and 6.3 44
6.4 A sketch decorated with functionality. 45

7.1 The initial architecture of the prototype. 50
7.2 Overview of the prototype program architecture and the interaction with

WireframeSketcher. The runtime application uses the story file to deduce
which FXML file should be loaded first. 52

8.1 A WireframeSketcher sketch of a Login section. 56
8.2 AWireframeSketcher sketch of a Login section decorated for the generator. 60

9.1 The Exampleapp sketch login section. 63
9.2 The Exampleapp sketch after logging in. 64
9.3 The Muniapp sketch after logging in. 65
9.4 The Muniapp sketch for adding a new event. 66

Chapter1Introduction

In a time when computer applications, be it desktop or mobile, are becoming more
and more intertwined with our lives, the importance of prototyping is increasing.

Because the number of computer users increase, it is now more difficult than before
to develop solutions that conform to each specific target group. It is crucial for
designers and developers to test the underlying ideas behind the application without
spending unnecessary time and work on actual programming and implementation.
This also helps to reduce development costs. Prototyping can be used to better
customize the solution for the specific target group. It can be used together with
an iterative process where revisions and refinements become results of testing and
evaluation. Prototyping and the iterative process is an accepted way of working in
the field. Traditionally the prototypes are of a disposable nature. They are created,
used for testing and then thrown away. Most times this is because there are different
classes of prototyping tools depending on how functional they are, and there is no
practical way of transitioning between one class to another. The prototyping process
could become more agile by reusing the underlying prototype data in order to make
a smooth transition between each class.

1.1 Motivation

When the author attended the graphical design course IT3402 [2] at NTNU in 2013
the focus was on the process behind developing GUI prototypes. One of the experi-
ences during the course was that even though one would traditionally use disposable
paper prototypes, a lot of different digital tools are now available and they are of
different complexity. Most of them utilize a simple WYSIWYG 1 architecture that
enables designers to drag and drop the elements (e.g. buttons, labels) they want
in their design. The sketches are also known as wireframes, due to the nature of
their layout. There are even simpler tools that only support images, but most tools

1 WYSIWYG stands for What You See Is What You Get. The finished layout should look very
similar to what is displayed in the editor - preferably identical.

1

2 1. INTRODUCTION

support some kind of navigation between the designs. The end product from such
a prototyping tool is a series of static sketches that can be navigated amongst. It
became obvious that there are several possible improvements related to current pro-
totyping tools. The group experienced that when creating an interactive prototype
that allowed users to navigate from one design to another it required a lot of du-
plication. If a design represented the screen state before there was e.g. text in a
field, another duplicate of that design had to be made where the field was populated.
Creating an interactive prototype that emulates a real program and presents the
interaction design generated a lot of duplicates using this method. Although many
prototyping tools support different levels of fidelity, the process of designing a GUI
normally starts out as a low-fidelity design. The designers focus on layout placement
and interaction. The graphical design itself i.e. how a button looks is not important
this early on. When the solution meets the requirements many choose to implement
a functional prototype, which implement strategically chosen parts of both the user
interface and the functionality of the planned application. [3]

The problem is that even though the functional prototype use the same design
created in the prototyping tool, it usually has to be implemented from scratch by
developers. The underlying data of the design is discarded, because it is incompatible
with the tools used by the developers. This forces the developers to recreate the
design which is a duplication of effort. This disposable approach is time consuming
and decremental to the development process. If a functional prototype could be
implemented directly from a prototyping tool, the process would not require the
duplication of effort associated with the design, it would be more efficient and it
could also allow less technical users such as designers to perform the task. The
goal is to be able to create something that is more functional, without loosing the
strength of the approach which is simplicity. Could such a solution also be used
to create a finished application? At least this thesis will explore ways to extend
prototype sketches with functionality.

1.2 Research Questions

This thesis will explore how a wireframe sketch can be transformed into a functional
prototype by extending a low fidelity sketching tool with information. There are
various aspects of a functional prototype that should be explored as well. It is
interesting and necessary to see how it would be structured for a modern target
group. Before extending a sketching tool, some study of which parts of such a tool
is important should be used as rationale. There are most likely multiple ways of
implementing a solution, so the specific implementation itself is not that interesting,
but it is interesting to see how a modern toolkit can be used in such a project. One of
the advantages with low fidelity sketching tools is that they are simplistic by nature.
It is important to retain this simplicity.

1.3. STRUCTURE OF THE REPORT 3

This can be concretized into the following research questions (RQ):

• RQ 1: How can a low fidelity sketching tool be enriched with information that
enables generation of a functional prototype.

◦ RQ 1.1: How can functionality be added to a sketch without loosing the
simplicity inherent in low fidelity sketching tools.

◦ RQ 1.2: How can the added information be utilized together with a modern
toolkit in order to realize a functional prototype.

In order to answer the research questions it is helpful to look at how other tools work
and which functionality they provide to the user (designer). Depending on the tech-
nical requirements of the chosen tools a state-of-the-art and modern toolkit should
be used. A fitting research methodology should be used in order to help the devel-
opment process.

1.3 Structure of the report

This report aims to present the rationale behind the various choices made to answer
the research questions, and discusses the two programs made during this project.
The programs and choices are evaluated against the research questions and against
data from user-tests. The report has been written in such a way that it should be
possible to jump directly to a specific chapter or section. Most sections refer to
relevant information, but it is recommended that the reader look through the first
chapters before continuing.

• Chapter 2 discusses the rationale behind the chosen research methodology
and how it was executed.

• Chapter 3 presents general background information about the field. It gives
an introduction to what prototyping is and how it is related to iterative design.
It also covers prototyping tools and other related subjects that the reader
should be familiar with before reading on.

• Chapter 4 discusses the rationale behind and the technologies used to create
the thesis programs.

The development process is divided among three chapters.

• Chapter 5 discusses the intial development and includes implementation spe-
cific theory.

4 1. INTRODUCTION

• Chapter 6 presents the design related work.

• Chapter 7 presents the technical choices and implementation. Both chapters
6 and 7 are separated into two main iterations. Figure 1.1 shows a matrix that
depicts the way it will be presented.

• Chapter 8 presents an analysis of typical JavaFX implementations compared
to the generated implementation.

• Chapter 9 evaluates the design based on the user-tests and it also evaluates
the system based on the research questions. It suggests further development
and include the conclusion.

1st iteration

2nd iteration

Design Technique

Figure 1.1: An overview of how the development process will be presented. First
the design will be presented in both iterations, then the technique will be presented
in the same manner.

Chapter2Methodology

2.1 Design science

The methodology used in the thesis is the Design Science Research Method. It is an
outcome based research method which provide project guidelines. In the words of
March & Smith: whereas natural science tries to understand reality, design science
attempts to create things that serve human purposes. [4] Wieringa generalize this
to also include attempts to improve existing things to serve human purposes better.
[1] The generalized method is depicted in Figure 2.1 which outlines the various
process steps. It revolves around a regulative cycle which starts by investigating
a problem. The problem can be the outcome of a solution to an earlier problem.
Then it specifies solution designs and validates them before implementing a selected
design. The implementation can then be evaluated, which could be the beginning
of a whole new turn trough the regulative cycle. [1]

Figure 2.1: The process of design science. Wieringa, 2009 [1]

Since a major part of this thesis consist of developing a prototype program, design
science is a viable choice. It provides an empirical approach for solving the problem.

5

6 2. METHODOLOGY

2.1.1 Using the method

The initial project description together with several discussions with the supervisor
was a basis for understanding the problem. The experiences of attending the design
course IT3402 [2] also made it easier to relate to the problem, but since it was quite
technical and depended on several new concepts it took some time learn. Figure
2.2 present a simple way to decomposition the problem into what Wieringa refers to
as Knowledge questions and Practical problems. [1] In the process it was no specific
structure to how knowledge problems and practical problems were approached, other
than what was discussed on the meetings. In the beginning the biggest challenge
was answering knowledge questions trying to figure out what the problem was. It
should be emphasized that there was not just one problem to decompose, but it
started with one general problem. The technique was used for the subproblems as
well.

Figure 2.2: A simple decomposition of a problem. Wieringa, 2009 [1]

Almost every week there was a meeting where both design related and technical
issues were discussed. Due to the fact that the supervisor was the one who created
the initial project description and that he had extensive background knowledge about
the problem, the meetings became valuable for both understanding the problem and
learning about new technologies.

Based on the problem several design solutions were discussed during the meet-
ings. The solutions were typically of a general nature, but for specific problems the
solutions could be specific as well. The supervisor would often provide information
on how to solve small technical problems related to the specific technologies dictated
by the project description. These problems were deemed not important by the su-
pervisor, since they were outside the scope of interest. This allowed more time to
be spent on solving the important problems.

Between each meeting it was attempted to implement one or more solutions,
independently of the supervisor. In the beginning a lot of trial and error was required
to do that. But the process of trying to implement a solution usually generated more
ideas about the overall design. And the new ideas could be discussed on the next
meeting together with an evaluation of the implementation. Many of the meetings
revolved around problems from earlier meetings, but the meetings served as an

2.1. DESIGN SCIENCE 7

important place for discussion. During the project two main iterations was defined
based on pre or post a graphical input mechanism. The differentiation is made in
order to easier summarize a lot of work into two distinct sections.

Evaluation

Choosing the design science methodology turned out to be a good choice. It’s difficult
to imagine how a different methodology could have worked out, but the processes
described in the design science method felt natural and non-intrusive. The iterative
process used to design, implement and evaluate the prototype was very helpful. In
total the method was a good fit for the project.

Chapter3Background

3.1 Prototyping

The word prototype derives from the Greek prototypon meaning ”primitive form”.
From protos - ”first” and typos -”impression”. [5] Thus, a prototype can be a first
draft or proof of concept of a physical object e.g. bicycle, car, tool or software in
the form of a computer program. Prototypes are not necessarily used to test all the
aspects of a product at once. But rather to test one or a few specific aspects e.g. the
design of a car door, or how a photo application should allow the user to add pictures
into an album. This narrows the focus of development and allows for faster iterations,
resulting in a product that is better and more thoroughly tested. Different fields of
study prototype in different ways. It also depends on what materials they work with.
Some materials, such as metals, are expensive and difficult to manipulate. Using
plastics or other cheaper materials can speed up the process and reduce costs, which
is the goal in any field. Nowadays the big hype when creating tactile prototypes
is 3D printing. It enables rapid prototyping by allowing designers to transform the
computer aided design (CAD) directly into a tactile prototype.

Figure 3.1 depicts an aerofoil with its nomenclature which can be modified to
change the aerodynamic properties of the foil. When prototyping an aircraft, many
would argue that aerodynamics is one of the most important factors. Prototyping
the aerofoil separately from the rest of the aircraft, allows the engineers to find
optimal aerodynamic properties for the foil before continuing. Only prototyping
parts of a product can be generalized to most prototyping scenarios.

9

10 3. BACKGROUND

chord line
α

trailing edge

leading edge

upper surface

lower surface

camber line

max. camber

relative wind

angle of attack

max. thickness

Figure 3.1: Prototyping in general usually focus on one or a few aspects of the
product on which they prototype. When designing an aircraft, there are multiple
properties of the aerofoil that can be changed to improve the aerodynamics.

Prototyping in general is a process which utilize prototypes in order to develop
and refine a design. In software development there are several elements of a program
that can be prototyped e.g. Software architecture, but prototyping the graphical user
interface (GUI) is probably most common. It is usually performed using tactile mate-
rials like paper-mash and paper, or digitally using computers. The paper prototypes
usually represent a program in low fidelity (i.e., sketched by hand), while computer
prototypes increases fidelity toward the higher end. But there are no rules against
having high fidelity paper prototypes and low fidelity computer prototypes. Inter-
estingly enough, studies have shown that users respond more openly to lower fidelity
designs. [6] Another proceeding advocates the use of low-fidelity prototypes because
they are cheaper to create and easier to iterate. Using low-fidelity prototypes allows
the designers to focus on interaction design and information architecture instead of
the graphical design itself. This is an important aspect of GUI prototyping. When
the designers create the early revisions, it is not how pretty or polished the design
looks that they want to prototype, it is the layout structure and how a user would
interact with the design that is interesting. The group found that both paper and
computer prototypes perform equally well, but acknowledges the advantage of being
able to automatically record and distribute the test electronically, if a computer is
used. [7]

Figure 3.2 shows two GUI prototypes. The left hand-drawn design is in very low
fidelity and the other is in slightly higher fidelity.

3.2. ITERATIVE DESIGN 11

Figure 3.2: Two prototypes with different levels of fidelity. The left one is very
low, while the right one is higher, but still not high fidelity.

In software development the process of GUI prototyping is very powerful, because
it allows the developer to test the layout of the product without spending time on
the actual programming. The design can be presented to a group of selected people
who individually attend a usability test together with a person responsible for the
test and an observer. 1. When the results of the tests are evaluated, the design can
be revised quickly without the need of any extensive programming. It also allows
for graphical designers with little technical computer experience to create prototypes
and test designs without having the skills required to program.

3.2 Iterative design

Prototyping is normally part of an iterative design cycle. A cycle consisting of
designing (developing) the prototype, testing it using usability testing and evaluating
the results from the test. Then refining the design according to the evaluation, before
continuing with testing, evaluation etc. The goal is to have iterations that span over
a relatively short time, e.g. two weeks, allowing for changes to the design to be tested
and refined quickly.

1 Usability testing is a process where test subjects interact with a prototype as if it was a finished
product. Facilitators handles the behavior of the prototype to create the illusion of a functional
program. It allows the developers to test their designs quickly and refine them if necessary.

12 3. BACKGROUND

Figure 3.3: ISO 13407: Human centered design. An iteractive design cycle. The
design can be redefined after each evaluation.

It is important to mention that the final solution is usually not the last solution
to be found. In order to settle on one solution, the developers should try different
alternatives. Normally a solution will be found that is acceptable, but the only way
to find out if it is the best solution is to continue and compare the results. Figure 3.3
illustrates the process on an axis from problem to solution. Thus the final solution
is normally found before the last solution.

3.3. PROTOTYPING TOOLS 13

Problem Solution

Figure 3.4: The typical iterative process usually settle on a solution that is found
before the last.

3.2.1 Evolutionary prototypes

A full fledged prototype of a computer program or system normally ends up being
a finished, working product. This process contain several design iterations that
modify the prototype in sequence. The iterative process stops when the designed
solution (prototype) meets the user requirements. In practice the prototype consist
of several smaller prototypes. Like how prototyping an aircraft would include the
prototyping process of the aerofoil in Figure 3.1. Not all prototyping processes result
in a finished product though. E.g. if the process involves only prototyping the GUI
of a computer program the result is not a finished, working product, but rather
an important aspect of such a product. Traditionally when prototyping a GUI the
programmers would write code for it. When the GUI meets the requirements the
result is a functional GUI. That would not be the case if the GUI was prototyped
in a prototyping tool.

3.3 Prototyping tools

The use of prototyping in a development process can help to reduce development
cost and result in a better end product. While prototypes can be made both digitally
on a computer and on actual paper, studies have shown that even with the same
level of fidelity, users prefer computer prototypes. [8]

3.3.1 Functionality coverage

There are several software tools available that can help a developer realize a pro-
totype. These tools can be placed along an axis from design to construction. The
farther on the right hand side the tool is the more it covers the user interface func-
tionality. In other words, a static image of a design would fall on the left side, and
a program that matches the prototype functionality would fall on the right side. As
a reference, paper prototype is placed on the left side and JavaFX on the right.

14 3. BACKGROUND

}

Design Construction

• PopApp

• InVision
• WireframeSketcher

• Balsamic

• Denim

• Silk

• Justinmind • JavaFX• Paper prototype

• Axure

}
Figure 3.5: Tools placed according to how much of the interface functionality they
cover. Notice that the tools are clustered inside the two regions. The y-axis is
irrelevant.

In Figure 3.5 one can see that the tools are mostly clustered together in two
regions. The voids represent regions where hypothetical tools could cover a different
amount of the user interface functionality. Although this is just the authors opinion,
one could argue that the reason for these voids are that adding just a little extra
functionality coverage does not yield better results for the end user. The tools are
either very simple, or require substantially more functionality in order to be useful.
It is important to determine where on the axis the tool should be according to the
target group. If it should cover more functionality it should be further to the right.

3.3.2 Different approaches

The feature set differ among the tools, and some are more advanced than others.
Depending on what platform the developer is working with, some tools might be a
better choice. E.g. PopApp supports only simple navigation among images which
could be useful for sketching on paper, taking a picture of it and then navigate among
those images. InVision implements swiping gestures, transitions and animations in
order to better support smartphone application development. Justinmind and Axure
RP also support state variables making it possible to navigate using conditional
logic like user authentication, selected attributes, etc. Many of the tools have an
overlapping feature set, but which tools fit the user best might be based on these
features.

3.3. PROTOTYPING TOOLS 15

Here are some tools and their strengths.

• Tools that only display images and allow for navigation between different im-
ages e.g. PopApp[9] and InVision[10]. They are simple and require little to no
explanation. The downside is limited functionality.

• Tools that allow for customized layouts using a WYSIWYG editor e.g.
WireframeSketcher[11], Balsamiq[12], Justinmind[13] and Axure RP [14]. They
allow the user to create a more realistic prototype but are a lot more complex
and require some time to learn.

3.3.3 Program architecture

In programming

When programming an application with a graphical user interface there are usually
several dimensions to be aware of. A normal implementation would contain a data
model layer, a controller layer and a visual representation layer. The data model
layer would represent and store all data required for the application. e.g. a Person
class that can store the name of a person and his or her Social Security number.
The visual layer (or view) would be the graphical interface between the user and the
program. The view only updates its data representation when the model notifies
that a change has been made. These changes are performed by the controller which
get input from the user. This is normally referred to as the architectural software
pattern MVC or Model-View-Controller and is depicted in Figure 3.6. MVC is a
widely used and time tested software pattern.

Figure 3.6: The Model-View-Controller software architectural pattern.

16 3. BACKGROUND

Typical prototyping tool approach

Not referring to the tool itself, but their prototypes - most prototyping tools do not
conform to the Figure 3.6 above. They typically exist just as one view with a very
simplistic navigation controller. Many would argue that the point of prototyping
is to reduce the amount of coding (if any) to a minimum so that the new design
can be tested as soon as possible and design iterations can become more frequent.
Depending on which tools are used some of the dimensions above are still relevant.
e.g. Prototypes in PopApp and InVision uses a view to convey the graphics to the
user. A small controller handles the linking between other graphics. In e.g. Axure RP
and Justinmind the prototypes also can have state variables. That is, the prototype
can have a state e.g. logged in which could affect the workings of the prototype.
These state variables would be stored in the prototype’s data model.

With that in mind using the MVC pattern as a guide for the prototype’s software
architecture makes sense. Having a prototype tool with an extended controller
functionality in addition to a data model could provide useful.

3.4 Model-driven Engineering

Model-driven Engineering (MDE) is a software development methodology that uti-
lize abstract representations of a particular application domain, named domain mod-
els, instead of the more usual code-driven programming approach. [15] Model-driven
engineering is centered around the model. The domain model describes entities with
attributes and roles. It also identifies the relationships among all the entities within
the scope of the problem domain. In e.g. UML, a class diagram is used to represent
the domain model.

The Object Management Group has developed a set of standards called Model-
driven Architecture (MDA), although unlike Eclipse EMF, described in section 3.6,
it is not a concrete framework. [16]

3.4.1 Model-to-text transformation

When working with models the developer might want to manipulate the data in other
ways than just modifying the model. This is particularly true when generating code
(see section 3.4.2). In order to retrieve a textual representation of the model, a
model transformation has to be performed. In the case where the output is text this
transformation is called a Model-to-text transformation or M2T for short. It is a
common transformation due to text being a ubiquitous format that is used by many
tools as either source, intermediate or target format - or a combination of them all.

3.4. MODEL-DRIVEN ENGINEERING 17

3.4.2 Code generation

There are different ways to generate code. Some tools can generate different class
files from a model using M2T transformation in order to supplement or substitute
the model. In MDE this is the most common way to generate code. Generic code
can also be generated, and many programs do that. That could be HTML files based
on a template and a set of input data e.g. a list of people. Or it could be program
code based on system dependancies, or some other conditions. If the program should
generate generic code, it is important that the developer use a programming language
that support an efficient and powerful mechanism for code generation.

As an example, think about how the developer could generate an HTML file in
the following format, using the input data Alice, Bob, Mallory, Eve.

Listing 3.1: HTML example

1 <html>
2 <body>
3 <p>Person #1: Alice<\p>
4 <p>Person #2: Bob<\p>
5 <p>Person #3: Mallory<\p>
6 <p>Person #4: Eve<\p>
7 <\body>
8 <\html>

It would be very cumbersome to generate that file using the following Java code.
Just imagine how this approach would effect scalability.

Listing 3.2: Generating HTML using Java

1 public void generatePersonHTML(String[] input) {
2 writeToFile("<html>\n\t<body>");
3 for (int i = 0; i < input.length; i++){
4 writeToFile("\n\t\t<p>Person #" + i+1 + ": "+ input[i] + "<\\p>");
5 }
6 writeToFile("\n\t<\\body>\n<\\html>");
7 }

Even if you are not familiar with Java, the problem lies within
writeToFile("<html>\n\t<body>"). This approach requires the programmer to
handle indentations and line breaks manually, resulting in very unreadable code
which gets exponentially more difficult to read and modify once its size increases. A
better approach would be to use a language that supports a mechanism to extract

18 3. BACKGROUND

indentation and line breaks from the code itself, so the developer can focus on the
overall program flow.

Acceleo is a code generator from the Eclipse Foundation that conforms to the
MOFM2T standard for performing model-to-text transformations (see section 3.4.1),
specified by the Object Management Group (OMG). It allows developers to use a
model-driven approach to building applications. [17]

Using Acceleo templates the HTML code in Listing 3.1 above could be generated
with indentations and line breaks in the code itself, making it much more readable
and scalable. The example in Listing 3.3 uses demonstrates this using data from an
EMF model. It is important to keep in mind that while generating HTML using
Java could be done differently (i.e., using DOM objects [18]), the key is to have a
mechanism that support generating code in a generic format e.g. Java/Xtend class
files.

Listing 3.3: Generating HTML using Acceleo and an EMF model

1 [module generate('http://www.eclipse.org/emf/2002/Ecore')/]
2 [template public generate(e : EClass)]
3 [file (e.name + '.html', false, 'UTF-8')]
4 <html>
5 <body>
6 [for (attribute : EAttribute | eClass.eAllAttributes)]
7 <p>Person #[i + 1/]: [attribute.name/]
8 [/for]
9 </body>

10 </html>
11 [/file]
12 [/template]

Although it’s easy for a computer to copy the same code to several files, it is still
code and it should be reused if possible. Performance is always an issue and reducing
the amount of code that needs to be generated improves that. When generating code
for several files with minor differences, most of the underlying functionality is placed
further up in the program e.g. using superclasses, in order to reduce the amount. The
result is smaller files that are easier to read, maintain and debug if necessary.

3.5. ECLIPSE IDE 19

3.5 Eclipse IDE

Eclipse is an open-source integrated development environment (IDE) 2. It is written
mostly in Java and comes with built-in Java development support. Eclipse uses
a plug-in architecture revolved around a base workspace. Plug-ins provide all the
functionality within and on top of the runtime system. This allows it to support
different programming languages by means of different plug-ins. As of version 4.4
Luna the list is comprehensive, and include languages such as Ada, ABAP, C, C++,
COBOL, Fortran, Haskell, JavaScript, Lasso, Natural, Perl, PHP, Prolog, Python,
R, Ruby (including Ruby on Rails framework), Scala, Clojure, Groovy, Scheme, and
Erlang. In addition to adding support for other programming languages, plug-ins
can be used to work with typesetting languages e.g LaTeX [19] or other common
unix programs such as Terminal. The plug-in based architecture makes Eclipse a
very powerful platform. Because most of the code base in Eclipse is written in Java,
Eclipse is available for Mac OS X, Windows, Linux and Solaris. [20] Figure 3.7
depicts and overview of the Eclipse GUI. Section 4.2 describes the GUI in more
detail.

Figure 3.7: An overview of Eclipse 4.4 Luna

2 IDE - An Integrated Development Environment is a software application that provides com-
prehensive facilities to computer programmers for software development.

20 3. BACKGROUND

3.6 Eclipse EMF

The Eclipse Modeling Framework (EMF) is an open source Java framework for
modeling and it is one of the more known Model-driven Engineering initiatives [21].
It allows, among other things, automated generation of code from models. EMF
provides tools and runtime support to produce a set of Java classes for the model,
a set of adapter classes that enable viewing and editing of the model using a basic
editor. Models can be specified using annotated Java, UML, XML documents or
modeling tools, then imported into EMF.

Ecore is the core of EMF. It is a model used to express other models by defining
their constructs. Ecore is actually its own metamodel, as it is defined in terms
of itself. EMF is based on two meta-models. The aforementioned Ecore and the
Genmodel. While the Ecore consist of information regarding the defined classes, the
Genmodel also provide information regarding code-generation, such as file and path
information. The main purpose of the Genmodel is to control how the code should
be generated.

In EMF the model describing e.g. a Person class would be referred to as a model,
and what actually contains the name, age and similar attributes would be referred
to as the instance. To store these instances EMF uses XMI (XML Metadata In-
terchange) by default, but it is a plug-able framework that allow other formats to
be used. [22] Eclipse, and thus EMF include model-to-text transformations (see
section 3.4.1) so it is easy for a program to access the model data. Many Eclipse
based projects utilize EMF under the hood. One of them is the prototyping tool
WireframeSketcher discussed in section 4.3.1. �

�

Chapter4Criteria

4.1 Empirical data from GUI design course

In 2013 the design course IT3402 [2] had graphical designers working together with
system developers with the intention of creating an GUI prototypes for fictional
applications. The focus of the course was centered on the actual prototyping process,
more than the end result. Each group chose their own tools for designing and for
presenting their prototypes. And many chose different tools according to the different
stages they were in the process. The combination of graphical designers and system
developers in the course is very similar to how teams are organized in the industry.
They both face many of the same obstacles during the prototyping process. In the
reports provided by each group many have emphasized what tools they used, how
they used them, and what made them a good (or bad) choice in the prototyping
process. The reports are available digitally through the course lecturer. [2]

• Group 10 used Adobe InDesign to make the design, and printed out tactile
paper prototypes. They used images of the paper prototypes together with
the application POPApp for their interactive prototypes. In retrospect they
regretted the decision of using POPApp because of its linking limitations (It
can only link from one design to another), and because a highlight appears
if the user press on an unlinked region of the screen. Despite asking the
subjects to think out loud, they sometimes forgot and just pushed on the
screen. Because of the highlight, it was harder to deduce what the user was
thinking and thus the value of the test diminished. A way to turn this off
would have been helpful.

• Group 9 did not test using tactile paper prototypes, instead they took images
of the paper prototypes and presented them using POPApp. They found the
lack of transitions/animation to be limiting and used Justinmind for the final
interactive prototype. Illustrator was used to make the design.

21

22 4. CRITERIA

• Group 8 used Axure RP both for the design and the interactive prototype.
Only fonts available on the test device would work, so standard fonts had to
be used despite their vision.

• Group 7 created their interactive prototype using FluidUI. They reported that
slow load times and responsiveness was an issue and it worked against the
illusion of a real program.

• Group 5 drew their designs in Photoshop, and used Justinmind to create and
present an interactive prototype. They felt that bad responsiveness and long
load times worked against the illusion of a real program.

• Group 4 made the design using Adobe Photoshop and created interactive pro-
totypes with InVision. Each screen had to be made separately in Photoshop
since InVision only present finished pictures. They reported that it was cum-
bersome to duplicate the designs for every minor change.

• Group 3 used Adobe Illustrator for drawing, based on the members experience.
They used Axure RP Pro (trial) for the interactive prototype. The designs were
first made with Illustrator, then each component was isolated and exported
into Axure RP where they were reassembled and the interactions programmed.
The finished prototype was exported as HTML, which made it possible to test
on virtually any device including smartphones. They reported that the process
was very technically demanding, but the result was solid.

4.1.1 Analysis

What was in common for most groups was that the paper prototypes were as simple
as possible and easy to refine, while the interactive prototype was a little more com-
plex both in design and functionality. Based on the reports the total set of features
that the groups reported lacking were choosing fonts, choosing to turn off highlight-
ing indicators for links, animated transitions, a way of performing minor changes to
a design without duplicating it and fast and responsive load times. Although the
set does not include all the features that the groups enjoyed as well, it can be joined
with the feature set of each tool in order to find what features are important to sup-
port in such a tool. It is important to point out that depending on what stage in the
prototyping process the user is, it might not be desirable to support features such as
animations and transitions because it can be beyond the purpose of the prototype.
The requirements are different for tools used to create fast and simple prototypes
and prototypes that refine and finish the GUI design with custom buttons, images
and colors. The information from these reports can be used as a basis for how a
prototype that allow the user to create functional prototypes should be developed.

4.2. ECLIPSE WORKBENCH 23

4.2 Eclipse Workbench

As described in section 3.5 Eclipse is an integrated development environment (IDE)
written in Java. It is based on a plug-in architecture. All the functionality in
Eclipse is due to different plug-ins. The Eclipse GUI represents information using
Workbench Windows. Each window contains one or more perspectives. Perspectives
contain views and editors, and control the content of certain menus and tool bars. It
is possible to have more than one window open at the same time, but it is essentially
another running instance of Eclipse. The hierarchy is:

• Workbench

◦ Window
* Perspective

· Editor
· View

See Figure 4.1 for an overview with annotations.

4.2.1 Perspectives

In the workbench window, a perspective defines which set of views should be visible,
and their layout. The job of the perspective is to provide functionality in order
to accomplish a certain task or in order to work with a certain type of resource.
One of two examples is the Java perspective that combine views which are common
to use when editing Java source files, and the Java Debug perspective which use
a different set of views and layout for improving debugging of a Java application.
It depends on the task at hand which perspective is most practical to use. It is
possible to develop additional perspectives that can be used via the Window →
Open perspective menu-item. [23] [24]

4.2.2 Editors

Most perspectives in the workbench window consist of an editor. Each filetype can be
associated with an editor so when the user opens e.g. a Java source file an appropriate
Java editor is used. Or when an XML file is opened, an XML editor is used. The
user can manually specify which editor to use when opening files, however, not all
editors are compatible with every filetype. This can be helpful when there are several
ways to view the data e.g. HTML code and the interpreted page. It is possible to
have multiple editors open at once, but only one can be active at a given time. The
main menu and toolbar follow the active editor and contain operations which can

24 4. CRITERIA

only be performed upon it. Visually, the editors are presented using tabs, just like
the ones commonly used in todays web browsers. An asterisk beside its filename
indicate that there are unsaved changes to the file. Eclipse perspectives are highly
customizable and it is possible to view more than one editor at a time by dragging
the tabs to various positions inside the perspective. The containing editor space will
split into the current and the new editor. Although, only one editor can be selected
and active at the same time. Each perspective share the same set of editors within
the window. It is possible to develop additional editors that work with specific file
extensions. This allows existing or new perspectives to handle different file types.

4.2.3 Views

In addition to an editor, a perspective usually contain one or more views. Views can
provide alternative ways of displaying data and are used together with editors. An
example of a view is the console output of a typical program, or the Project Explorer
which display all the projects and files the user is working with. It is possible for a
view to have its own menu and toolbar. By closing or adding views to a perspective,
the user can change the layout and functionality. The view can register which
elements are selected in the editor, so it can update its content depending on the
specific element. It is possible to develop new views that represent/modify the data
from the editor differently than existing ones. Technically it’s quite simple, and it
can be accessed via the Windows → Show view menu-item. Both views and editors
can be added to existing perspectives extending the functionality.

4.2.4 Adding additional behavior

As described in section 3.5, Eclipse uses a plug-in architecture centered around a
base workspace. All the functionality of Eclipse within and on top of the runtime
system is provided using plug-ins. In addition to custom Perspectives, Editors and
Views Eclipse support additional behavior through plug-ins that makes it possible
to select a file in the Project Explorer and make it perform something e.g. a Java
class file with an included main method can be Run as Java Application. This will
compile and run the Java code. If the class file does not include a main method
that plug-in will issue an error stating ”Selection does not contain a main type” and
return. It is possible for developers to implement their own plug-ins that behave
differently. For instance a plugin that allows the user to right click on an image file
and press Convert to PNG.

4.3 Tools

There are several tools for prototyping, but the premiss for this thesis is to see how
an Eclipse based tool can be integrated in order to improve the efficiency of the

4.3. TOOLS 25

Perspective

Figure 4.1: An overview of the Eclipse Workbench - Window, perspective, editor
and view.

prototyping process. Thus, only prototyping tools based on Eclipse were considered.
As part of the initial project description WireframeSketcher was mentioned as a
prototyping tool candidate. It is available in an educational version, which made it
affordable enough to be considered for use. It is Eclipse based and as such met the
criteria. It was chosen as the tool to work with for this thesis.

4.3.1 WireframeSketcher

WireframeSketcher is a prototyping tool based on Eclipse that utilize EMF (see
section 3.6) to represent its designs (sketches), and comes both as a plugin for

26 4. CRITERIA

Eclipse and a standalone version. It is a WYSIWYG editor that support dragging
and dropping widgets (e.g. buttons and labels) and allow for some widget types to
link to other sketch files. Sketch files are known as screens and have the file extension
.screen. In addition to screen files, it is also possible to add a storyboard where
the user can get a visual representation of the linked screen files. The storyboard
file extension is .story.

To reduce confusion the prototypes created in WireframeSketcher are hereinafter
referred to as screens or sketches, while program refer to the thesis prototype
programs. Functional prototype refer to the end-product produced by the program.

When the sketch is complete, the user can enter a presentation mode where
clicking the linked widgets will navigate among the screens accordingly. It is not
possible to have conditional jumps, conditional layout or any form of variables. The
main purpose of WireframeSketcher is to create design mockups as quickly and
easily as possible. Due to the fact that WireframeSketcher only describes a visual
layout and nothing related to dynamics (except simple navigation), it’s important
that the program is optimized for that purpose. WireframeSkethcer comes with a
hand-written and a clean theme.

Since WireframeSketcher is based on Eclipse, its GUI also conforms to the Eclipse
Workspace layout depicted in Figure 4.1. The WireframeSketcher perspective in-
clude an active editor and several views. Screen files are edited in the Screen Editor
and Story files are edited in the Storyboard Editor. Because the files are stored using
XML they can alternatively be edited manually using the XML Editor.

As seen in Figure 4.2, in addition to the editor there are several views in the
perspective. The position of the editor and views can easily be changed, but the
default positions in the perspective are as follows: The Project Explorer used in most
perspectives (e.g. Java) is located in the upper left corner and has another tabbed
view below it for Properties and Links. The properties view depicted in Figure 4.3
shows options such as font face, font size and color for a text label; and solid, dotted
and dashed lines for a horizontal divider. Notice that the properties pertain to the
selected button widget Week. If the selected element supports linking, the link tab
has a dialog for linking to another screen. It’s important to emphasize that while
widgets make up the content of the screen, it is possible to change the properties
of the screen itself (e.g. Font Family and Sketched or Clean theme). Thus widgets
are not the only elements that can be selected in the editor. Depending on what
element is selected, the views show the appropriate information for that element.
On the right hand side is the Palette view. It contains a library of widgets that can
be dragged into the editor. It is possible to show all, or view them under different
categories. There is also an Outline view not depicted in Figure 4.2. It simply lists

4.3. TOOLS 27

Figure 4.2: An overview of the WireframeSketcher GUI. Project Explorer in the
upper left corner. Below that is the Properties and Links view. Screen Editor in the
middle, and Palette on the right.

all widgets in the editor.

As an Eclipse developer it is possible to create your own views that supplement
the existing ones. Section 4.2.3 outlines how this can be done. The goal is to develop
an extension that follows the architecture that Eclipse and WireframeSketcher is
built on. It has proven to work quite well in practice.

WireframeSketcher model

The WireframeSketcher EMF model contain all the data which is needed to represent
screens in WireframeSketcher. It is beyond the scope of this description to go into
too much detail, but the model includes classes for the different widget types and
various Support features i.e a button has Link support and thus can link to another
screen, and it also have Font support so it should be able to change font through the
Properties view.

28 4. CRITERIA

Figure 4.3: The Properties View inside the WireframeSketcher perspective. Notice
that the properties pertain to the selected button widget Week.

4.3.2 JavaFX and FXML

In order to generate a functional prototype based on a screen, the prototype layout
has to be represented using a format which allows generated code. In other words
the functional prototype must be able to load its graphical markup from files which
can be generated. This makes it possible for a program to parse the screen files
and generate markup files which can be used by an User Interface library. Because
Eclipse and EMF is Java based it makes sense to use Java or something that is
compatible with Java.

JavaFX (as of Java 8 named JavaFX8 following the same numbering) is replacing
Swing1 as the Java client UI library. It is designed to provide a lightweight, hardware-
accelerated Java UI platform for applications. As of JavaFX 2.2 the libraries are
installed as part of Java SE, which increases availability. The GUI markup for
JavaFX is stored in FXML files, which can be coded manually or generated using
the Scene Builder editor. It also supports CSS for additional layout modifications
like custom buttons, colors and event behavior. [25] JavaFX and FXML is the
recommended approach by Oracle, which makes it more future proof. It is state-of-
the-art and a logical choice for a UI library since it fits the criteria well.

1 Swing was until JavaFX the primary Java GUI widget toolkit

4.4. CREATING REQUIREMENTS 29

4.4 Creating requirements

4.4.1 Target group

Before any functional requirements can be created, some decisions has to be made
regarding functionality. A deciding factor for what functionality should be added
is the target group. If the tool is made for very programming savvy developers it’s
reasonable to assume that it’s functional to use full fledged scripting rather than
something less expressive, yet simpler. The opposite is true if the target group are
users with minimal programming experience. This decision affects how the program
should be made. When designing a GUI designers are involved and it makes sense
to use designers as the target group. Developers who are not involved in the GUI
prototyping process will not work with such tools anyway. In order to allow for
dynamics that are fairly easy to implement and use, the target group should be
designers with some programming experience.

4.4.2 Deciding on functionality

All prototyping tools researched in this thesis (see section 3.3) support simple nav-
igation. Some tools support more advanced functionality like variables and actions.
Other tools might even support full fledged scripting. It is important to choose
functionality that gives a lot back to the user of the tool without being too time con-
suming to implement. I.e. with little developer effort create something that result
in substantially better user functionality. This can be explained using the analogy
of a staircase where the effort of developing a features is represented by the depth
of the step and user functionality is represented by the hight of the step. Figure 4.4
depicts the ideal scenario where it takes a small developer effort to implement a lot
of user functionality. The opposite scenario is depicted in Figure 4.5 where a lot of
developer effort result functionality that is not very useful for the user. Choosing
functionality that fits these criteria is crucial in a prototype where time is limited.
The implemented functionality should be useful for the user of the tool.

The target group for this program is slightly technical designers, rather than
very technical developers. It is therefore important to add functionality that is just
complex enough so that the designer can complete the task of building a functional
prototype, without the program being too complex and hard to use. This is a
very fine line, and it is difficult to choose what just enough functionality is. When
researching other prototyping tools and comparing them to the experiences of the
students in the course IT3402 2013 [2] the majority changed their tool because of
a lack of functionality (see section 4.1). Using data from these reports it looks like
the following functionality would be useful:

30 4. CRITERIA

Developer effort

User functionality

Developer effort

User functionality

Developer effort

Figure 4.4: The ideal scenario where just a little developer effort result in a lot
more user functionality.

Developer effort

User functionality
Developer effort

User functionality

Figure 4.5: A non-ideal scenario where a lot of developer effort results in just a
little more user functionality.

– Variables - string, int, boolean. e.g. Int can be used for counting login attempts.

– Action methods - e.g. set username to textfield value on button click

– Conditional jumps - e.g. jump only if isLoggedIn equals true

– Conditional layout - e.g. show text and color depending on variable value

Referring to Figure 4.4 it is the authors opinion that starting with a relatively
small set of the most crucial functionality is the better approach. Also, although
animations and transitions were wanted by most of the student groups, it will not
be implemented because the effects are testable using other software, and it takes
too much time to develop. Referring to Figure 3.5 the tool should be shifted to the
right of the existing tools since it should cover more functionality.

4.5. THE FUNCTIONAL REQUIREMENTS 31

After user testing this functionality could be altered to better accommodate the
users. Referring to the MVC methodology in section 3.3.3 it makes sense to follow
the same pattern for the functional prototypes produced by the program. The data
variables can be represented by means of a data model, the visual information can
be represented in a view, and the behavior can be placed in a controller.

In order to decide which functionality should be included, it is helpful to look at
the typical requirements of a functional computer prototype e.g. an application for
storing a secret message in a private user environment. It supports login and a way
to store the message. It also includes actions that only allow the login to proceed if
the username and password combination is correct. The program contains an error
message that is only visible when the user fails to log in. A typical implementation
could include the login credentials and message stored as string variables, along with
a boolean for the state of authentication (e.g. isLoggedIn). Assuming the program
follows the MVC pattern, the model would include String and Boolean variables.
Visual markup code would be placed in the view, and the actions that change the
variables and any layout conditionals would be integrated into the controller.

Using all this information the functional requirements for the program can be
described.

4.5 The Functional Requirements

Since WireframeSketcher store its projects in .screen and .story files, the program
should be able to load and parse them. Inside each screen file reside widgets. A
JavaFX node is the runtime representation of the WireframeSketcher widget. The
generator should generate JavaFX nodes for each widget that represent the same
type e.g. Button or TextLabel and store them in an FXML file. So if the screen
includes a button widget, the FXML should include a JavaFX button. When the
program loads the FXML file it should display (close to) the same visual information
as the original design.

In order to transform a static WireframeSketcher design into a functional proto-
type the program needs a mechanism for controlling certain behavior. As already
discussed with MVC a data model is used to store data. The screen in WireframeS-
ketcher represents the view, so the last component needed is a controller. The
controller can control behavior. How the user should interact with the controller is
part of the thesis to explore, but the controller should allow for navigation, state-
ments and layout conditionals. The rationale behind it is that it must be possible
to navigate from one screen to another. In order to support data variables it must
be possible to change their values using statements e.g. variableName = my string.
A mechanism for conditional layout e.g. if isLoggedIn == true; show button is

32 4. CRITERIA

required to change the layout depending on the variable values. Exactly how this is
implemented is not important, only that the functionality is covered.

As discussed in section 4.4.2 above, the data types should include String, Bool
and Int in order to allow for dynamic text, boolean conditionals and counters. Using
semantics from general programming languages, variables should be able to exist in
different scopes. It should be possible to have global data variables, variables per
screen and variables per widget. They should follow a scope hierarchy where a
variable declared in a more specific layer in the scope overrides a variable in a less
specific layer. e.g. a screen layer variable named hasSaved should override a global
layer variable with the same name. Similarly a widget layer variable with the same
name should override the screen layer variable. Since the data model is an EMF
model, the variable values are stored in an XMI instance of the model. In order to
store and change the instance variables, the user should be able to add actions that
set the value of a variable when triggered. e.g. when a button is pressed, the action
should be able to set a variable to the value of a specified text field or similar text
input widget. To reduce duplicates of screens where the only difference is a minor
text or visibility change, support for conditional layout, or styles, should be added.

Styles should allow the user to modify the JavaFX-node representation of the
widget, depending on variable values. e.g. the user should be able to change the
visibility of a Label depending on the value of isLoggedIn. Since the program
already must handle and parse EMF files (screen, story), the three dimensions Data,
Actions and Styles should also be stored and manipulated using EMF. In order to
make the program more convenient for the user, it should be possible to build the
functional prototype by right clicking on a Storyboard file and pressing Generate
Functional Prototype (see section 4.2.4). This makes the footprint of the program
very small and easy to use.

4.6 Non-functional requirements

Similar to how WireframeSketcher is integrated with Eclipse, the program should
integrate with the platform in such a way that the user can install it as a plugin. It
should be possible to run the program easily by right clicking on a sketch file within
Eclipse.

4.7 Exploring the dimensions

The three dimensions Data, Actions and Styles discussed in section 4.5 represent a
possible way of constructing the program. It’s important to emphasize that although
there are multiple ways these can implemented, the purpose of this thesis is not
to find the best implementation. The purpose is to look at how the dimensions

4.7. EXPLORING THE DIMENSIONS 33

function and how they can be used together in a design to realize a screen. One way
to approximate that is to create and test several sketch examples and see how the
dimensions work together.

Chapter5Initial development

Most of the initial work was researching existing tools and reading UI design reports,
discussed in section 4.1, in order to figure out what was state-of-the-art and which
features users were likely to want. This built a basis for which a design could
be developed. It was decided that dividing the challenges into different subtasks
would be advantageous. It would be easier to focus on a smaller problem at a time,
and each subtask could stand as proof of concept without being part of a complex
implementation. With this rationale the first thing that was explored was a simple
property list depicted in Figure 5.1. The goal was to design a program that could
interpret the sketch file and output a JavaFX representation of it.

Figure 5.1: Starting to explore the design interpreting a property list.

35

36 5. INITIAL DEVELOPMENT

5.1 Focusing on different aspects

There was several good reasons to start with a property list. The program had to
interpret different widgets and output corresponding JavaFX types. But first the
developer had to learn and map the different types. Using a property list made
it easy to manually inspect the screen file XML to see each widget type and their
attributes. In addition to exploring possible program design structures it acted as
a proof of concept as to how widget attributes could be copied to the output. Font
family, font size, font face, color, rotation, images and other attributes that are an
important part of a sketch could be copied to an FXML file and presented using
JavaFX.

It was discussed early on that the program would be a proof of concept and should
focus on different aspects. A successful representation of the sketched property list
was one aspect which proved that it was possible to transform a sketch into a JavaFX
program including the properties of each attribute. Other aspects was discussed
during the iteration. This included layout interpretation where the program could
interpret what layout to use based on the widget positions in the sketch. This could
be useful to enhance the resizing capabilities of the functional prototype. Another
aspect was Model data where authentic data could be automatically be used in
place of e.g. list. So if the sketch included a list or something that resembles a
list the program could use an actual list and populate it with generic data from
the model. This would make the result look more authentic than using e.g. John
Smith type of names or Content here for text fields. It also functions much in the
same as the Lorem Ipsum text fill used in web design, due to the fact that users
are distracted by repeating content. Using model data would speed up the process
and remove the designer from the task of creating dummy data. The layout for the
sketched prototype is obviously sketched, but the functional prototype which uses
JavaFX utilize normally styled buttons and labels which are not sketched. Many
prototyping tools support stencils for different layouts to emulate a specific platform
device. e.g. an iPhone or Android phone layout. An interesting aspect to explore is
how the program can apply various layouts either depending on the layout set in the
sketch, or in another more generic manner. If a team chooses to use a prototyping
tool because it supports layouts compatible with the platform they are sketching for,
implementing such a feature might make the program a lot more attractive the end
users. The last aspect is using a model to decorate the existing model in order to
add new functionality. It was decided that this was is the most interesting aspect
to focus on.

5.2. DECORATING SKETCHES WITH A DECORATOR MODEL 37

5.2 Decorating sketches with a decorator model

In model based programming it might be desirable to extend a model, but it is not
always possible to modify the model itself, e.g. due to wrong permissions or closed
source. One way to achieve the same effect is to create a decorator model. The
decorator model is a standalone model whose purpose is to decorate another model
e.g. adding new education attributes to a Person model, or adding completely new
classes. In the case of this project a decorator model was used to add functionality
to a sketch.

5.3 Screen decorator model

Using the decorator model technique, the program creates a decorator model in-
stance for each screen. The models are created using the screen decorator EMF model
depicted in Figure 5.2. It is modeled after the criteria discussed in section 4.5 and
it contains several classes for adding functionality, among them Action, ViewRule
and DataProperties. These are central components relating to the program. They
are consistently color coded to make it easier to differentiate between them. There
is no special reasoning behind the color choices other than that the colors should be
easy to differentiate and hopefully retain some aesthetic properties. That results in
the Action class in red, the ViewRule class in violet and DataProperties class in
blue.

38 5. INITIAL DEVELOPMENT

Figure 5.2: The screen decorator model used to create screen decorator models.
Action in red and ViewRule in violet.

These colored classes corresponds to the dimensions discussed in section 4.5 and
make up the three decorating elements:

• Data (corresponds to DataProperties in the model

• Actions (corresponds to ScriptAction in the model)

• Styles (corresponds to ViewRules in the model)

In order to create and manipulate the screen decorators there has to be an input
mechanism in the GUI. Chapter 6 discusses the various designs for the input mech-
anism.

Chapter6Design

6.1 1st Iteration

As discussed in section 4.2.3 it is possible to construct new views that allow the user
to manipulate underlying data. So the initial idea followed the Eclipse philosophy
of using additional views to manipulate the screen decorators.

6.1.1 Editing screen decorators in views

Several ideas was discussed as to what information should be available and how
the layout of the view should be. It made sense to design the view to conform to
the screenDecorator.ecore model so that the user could modify the underlying
data. Based on which screen file is active in the editor, the view should present the
corresponding screen decorator model. Only essential attributes should be presented.
Although the placement of the view wouldn’t be fixed, it was initially designed to
complement the Properties and Links view. A tabbed approach was used to save
real-estate space. One tab for each of the decorating elements Data, Styles and
Actions.

Figure 6.1 depicts a sketch of a possible design of the view.

39

40 6. DESIGN

Figure 6.1: A sketch of the tabbed view that could be used to manipulate the
screen decorators. Notice the Properties and Links tabs that already exist in Wire-
frameSketcher.

One of the downsides of using such an approach is that the user has to be more
technically competent, and the GUI is also rather complex. It could be modified to
assume EString for strings and EInt for numbers etc, but it is still not clear and it
is difficult to get an overview of all the information at the same time. Implementing

6.2. 2ND ITERATION 41

such a view is not very difficult, but deciding which attributes should be accessible
from the view, and their placement inside the view itself is time consuming. In the
second iteration this a new approach was implemented.

6.2 2nd Iteration

6.2.1 Representing screen decorators using custom widgets

In the second iteration the technical backend of the prototype was beginning to take
shape. It was technically possible to create and manipulate screen decorator models,
but no input mechanism was implemented. After a discussion with the supervisor,
it was decided not to utilize the view approach imagined during in the first iteration.
It was more time consuming to implement and a more unorthodox idea was put
forth. Instead of a view the widgets themselves would serve as an input mechanism.
After some research regarding the underlying WireframeSketcher model, it turned
out that creating custom widgets was fast and easy. These widgets could then serve
a special purpose when parsed by the generator. In order to connect the decorators
to other widgets the idea to use the existing annotation Arrow widget was realized.

Three custom note widgets was used to represent the decorators. When parsed
by the generator they have a special meaning. Since the only potentially ambiguous
color is the yellow used by WireframeSketcher for a normal Note, the same color
convention as presented in section 5.3 was used. Actions are represented by a red
note, Data is represented by a blue note, and Styles are represented by a violet
note.

42 6. DESIGN

�����

Figure 6.2: The screen decorator types in their respective color suit, with the
widget-connecting arrow.

The scripting format

When the intention was to implement the input mechanism using a view, the rel-
evant attributes had separate fields for its data as seen in Figure 6.1. When that
solution was discarded and special notes was chosen, there had to be another way
of manipulating the data in the model. A scripting format was chosen to do just
that. The scripting format was based on several real programming and scripting lan-
guages. In order to facilitate a less technical approach, the format loaned features
from natural languages like AppleScript and HyperTalk [26]. The goal was to make
it easier for designers to understand the format, rather than developers who already
know the defacto standards of using e.g. two equal signs to compare values.

During the project this format was never revised. It was decided that there was
no basis to do so, and that it might be better to implement an existing language like
JavaScript. In order to evaluate the effectiveness of the scripting format user-testing
was required, so the scripting format will be evaluated in section 9.1.5.

Data dictates which data variables are to be declared e.g.

Listing 6.1: ”Data”
1 String username
2 String password
3 Bool isLoggedIn

6.2. 2ND ITERATION 43

4 Int loginAttempts

The supported data types are String, Bool and Int. The way variables are declared
is semantically very similar to C like languages which include Java. The type can be
written in every capitalization e.g. sTrInG is allowed, however, the variable names
are case sensitive. Meaning that isLoggedIn and isloggedin are two separate
variables.

Actions dictates which variables should be set to which value when executed. A
set of actions are connected to a specific widget using the arrow. They are similar
to statements in most programming languages.

Listing 6.2: ”Actions”
1 isLoggedIn = true
2 username = ${nameField}
3 password = ${passField}

The actions is used to set a variable to a value. In listing 6.2 the bool variable
isLoggedIn is set to true. The special format ${identifier} is used to refer to
input fields like the ones used to enter username and password. The text field itself
set the identifier by containing the text =${identifier} in the sketch. In the case
of listing 6.2 it would be =${nameField}. Identifiers can be given to text areas as
well. The format ${variable} is also used for outputting variable values e.g. as the
text for a label.

Styles dictates which properties should be set depending on the state of a variable.
They are similar to if statements in most programming languages. Styles can be
connected to a specific widget via an arrow, or it can affect the whole screen if not
connect at all.

Listing 6.3: ”Styles”
1 if isLoggedIn is true
2 set visible to true
3 if isLoggedIn is false
4 set visible to false

The format of styles is very influenced by natural languages. It includes a condition
and a statement. if isLoggedIn is true - If the value of isLoggedIn is true, set
visible to true - Set the property named visible to false. Listing 6.3 includes
a style for both the true and false condition. visible is a property of the runtime

44 6. DESIGN

application’s representation of the widget - the node e.g. a button in the functional
prototype. In other words in case of a button, if the property is text and the code is
set text to Hello World then the text property of the button will be set to Hello
World In Xtend this would equal the code button.text = "Hello World". This
mechanism allows the property to be any method available to the node. In addition
to text and visible some useful properties are disable (hide the button) andstyle (set
CSS style).

Using the scripting in listing 6.1, 6.2 and 6.3 above the decorating notes would
look like Figure 6.3. The keyboard app inside the Data decorator indicates that the
variables should be global for the whole application, and not only visible for the
screen file it is defined in.

Figure 6.3: The screen decorator types with data from listing 6.1, 6.2 and 6.3

The decorators adds functionality when applied to a sketch and could be used
as the example in Figure 6.4.

6.2. 2ND ITERATION 45

Figure 6.4: A sketch decorated with functionality.

Chapter7Technique

7.1 How development was done

� The two programs developed for this thesis was written in the Xtend Programming
Language using Eclipse EE Luna. It uses the WireframeSketcher EMF model (see
section 4.3.1) in order to generate a JavaFX (see section 4.3.2) application that uses
the wireframe designs for its layout. The result is a dynamic JavaFX representation
of one or more static wireframe designs.

Tools

The following tools were used during development:

• Eclipse EE Luna with JavaFX and Xtend - as IDE.

• WireframeSketcher for designing mockups stored using EMF, and for designing
new features for the program.

• SceneBuilder for creating early FXML drafts

7.1.1 SceneBuilder

SceneBuilder is a tool developed by Oracle which is designed to be a visual layout
tool for quickly designing JavaFX applications. Is is a WYSIWYG editor where the
user can drag and drop UI components to the work area, modify their properties and
apply CSS. SceneBuilder generates FXML code in the background. The tool was
of great help when learning how FXML works, and which properties combinations
were available for each component. It was used as an educational and debugging
tool during the development process. [27]

47

48 7. TECHNIQUE

7.1.2 Xtend programming language

The official website [28] defines Xtend to be ”…a flexible and expressive dialect of
Java, which compiles into readable Java 5 compatible source code.” It was chosen for
the development because it is well integrated with Eclipse and EMF, and supports
templates which makes generic code generation a lot more efficient and readable. It
also reduces code by supporting better defaults, type inference, lambda expressions
and extension methods.

Templates

Xtend supports Templates which makes it possible to generate code with whitespaces,
newlines and indentation kept intact. This is one of the major reasons why Xtend was
chosen as the programming language, along with the fact that Xtend is compiled to
readable Java code, and thusly works together with Java in the same project. Xtend
also support inline variable interpolation for fast and readable code using guillemets
« » (angle quotes). These are seldom used in programming languages, which makes
them a good choice. Continuing the HTML example from section 3.4.2 below is
an Xtend implementation of the HTML code in Listing 3.1. It is a method named
generatePersonHTML that takes one string array parameter input and returns a
text string with newlines, indentations and spaces as presented in the body of the
method. Notice how the FOR and ENDFOR is be placed inline with the code. person
is the current element of input.

1 def static generatePersonHTML(String[] input) {
2 writeToFile('''
3 <html>
4 <body>
5 «FOR person : input»
6 <p>Person #«input.indexOf(person) + 1» is «person»</p>
7 «ENDFOR»
8 </body>
9 </html>''')

10 }

Here is an excerpt from the generator program where templates are used to
generate an action method where required. The formatted string is stored in the
variable methodString which is written to a class file. The example also illustrate
how conditional template content is possible using IF/ENDIF:

1 methodString = '''
2 /* Generated */
3 @FXML
4 def handle«eventType»«widget.id»(«eventType» event) {

7.2. 1ST ITERATION 49

5 «IF eventType == "MouseEvent"»
6 if(event.button == MouseButton.PRIMARY){
7 «ENDIF»
8 val resource = getResourceForScreenFile(screenName + ".screen")
9 var id = getPropertyForNode(event.source as Node, "id")

10 if (id != null && id != PropertyResult.NO_SUCH_METHOD){
11 resource.performActionForWidgetId(id as String)
12 }
13 resource.evaluateRules
14 «IF eventType == "MouseEvent"»
15 }
16 «ENDIF»
17 }�
18 '''

After variable interpolation, in the case where eventType is the string "MouseEvent",
the result is:

1 /* Generated */
2 @FXML
3 def handleMouseEvent37(MouseEvent event) {
4 if(event.button == MouseButton.PRIMARY){
5 val resource = getResourceForScreenFile(screenName + ".screen")
6 var id = getPropertyForNode(event.source as Node, "id")
7 if (id != null && id != PropertyResult.NO_SUCH_METHOD){
8 resource.performActionForWidgetId(id as String)
9 }

10 resource.evaluateRules
11 }
12 }

The generated code is human readable which makes debugging a whole lot easier
and opens up the possibility of modifying the generated code as if it was written
manually. �

7.2 1st Iteration

Although researching other prototyping tools and designing was a big part of the first
iteration, it was desirable to begin exploring the technical side early on. Starting
to work with Eclipse EMF and programming test examples is a great way to get to
know the tools and to generate ideas.

50 7. TECHNIQUE

7.2.1 Initial architecture

Choosing an appropriate program architecture for the prototype can ease the de-
velopment process. Based on the requirements described in section 4 it was logical
to split the Generator and the Runtime Application into separate programs. One
of the major reasons being that the two processes can work independently of each
other, allowing for the generator to parse new sketches while the runtime application
is executing. The runtime application can then update the newly parsed and gener-
ated files during program execution without restarting. Splitting the two processes
also allow alternative runtime applications to utilize the generated files, or to use
another generator without changing the runtime application.

When making the prototype work with property lists (see Figure 5.1) the architec-
ture was fairly simple. The generator created FXML files of the WireframeSketcher
screen files, and the Runtime Application loaded them into a JavaFX environment.
This was an important step in mapping what functionality was needed in order to
get a JavaFX version of the sketch. The Runtime Application cached the FXML file
together with a MD5 hash of the file. This allowed the user to edit the sketch and
run the generator while the application was running. If a change was made to the
sketch and the generator was run, the runtime application loaded the new file and
updated the cache. If the file was not edited it simply loaded the cache.

Figure 7.1 depicts the architecture.

Generator Runtime Application

WireframeSketcher
screen files

FXML Files

FXML Cache

generates uses

uses

creates
& uses

Figure 7.1: The initial architecture of the prototype.

7.3. 2ND ITERATION 51

7.2.2 Choosing JavaFX layout styles

One way to increase the functionality of a generator is to generate FXML in a layout
depending on how the sketch is parsed. That is, the parser could interpret what
layout is most appropriate for the sketched elements. An example is the property
sheet where the generator could interpret labels on the left side and text fields,
checkboxes or radio-buttons on the right side to be a property sheet. This would
then enable the generator to group those elements inside a box, which could then
float inside the window, enabling automatic resizing. This aspect was not explored
much, because it is very narrow and time consuming. But two other layout styles
was implemented: AnchorPane and GridPane

AnchorPane is a layout style where elements are anchored using absolute coor-
dinates. That means that the x and y coordinates of the sketch widgets can be
translated directly into JavaFX nodes with the same coordinates. A part for small
differences in widget and node dimensions, the layout becomes identical. The down
side is that resizing the window will either crop the elements out or introduce white
space.

GridPane is on the other hand not an absolute layout style. Instead of using
coordinates to position elements, it utilize a grid structure with rows and columns.
Elements are positioned in the grid using row and column numbers, e.g. (0, 0) would
equal the upper left corner. (2, 5) would equal the second row and the fifth column.
The advantage of using grids is that resizing is handled automatically by the appli-
cation in a way that allow elements themselves to be resized. The way the generator
implements GridPane is in two main passes. First it registers the left and right side
of each widget. For each widget it checks if there are any other widgets that start
inside its boundaries, if so that’s a new column. If there is only space between two
widgets its adds a new column and sets the minimum width of that column to the
space. This assures that the layout ends up looking like the sketch. The same pro-
cess is done for the top and bottom sides of the widgets. Then they are positioned
in the grid using the information about the sides.

After some experimentation it was decided that when sketching designs it was
adequate to use AnchorPane since the elements already were placed where the user
wanted them. Thus, AnchorPane became the default layout. Further development
could enhance the parser to combine AnchorPane, GridPane and other layout styles
in order to create even better resizing capabilities.

7.3 2nd Iteration

Most of the work in the second iteration was related to parsing the scripting format
and handling the underlying screen decorator models in such a way that the program

52 7. TECHNIQUE

functioned properly. Figure 7.2 depicts an overview of the final program architecture
together with its interaction with WireframeSketcher.

Generator Runtime Application

WireframeSketcher
story & screen files

FXML Files

Xtend Action Controller Files

Screen Decorator files

XMI File

uses
story

 file

generates uses

uses

creates
& uses

Figure 7.2: Overview of the prototype program architecture and the interaction
with WireframeSketcher. The runtime application uses the story file to deduce which
FXML file should be loaded first.

One requirement has to be met in order for the generator to work with Wire-
frameSketcher. TheWireframesketcher project must utilize a Storyboard file (.story).
This is required because all the Wireframesketcher screen files are deduced from this
one file. This approach enables the user to have several unused screen files in the
project, and also allow for screen files which are not in the same directory. In ad-
dition to FXML files for graphical markup and Xtend Action Controllers that map
e.g. buttons to action IDs, the prototype utilize screen decorator files. They include
the specific actions and markup layout rules. Screen decorator files are a result of
the decorator model technique.

7.3.1 Prototyping process

The whole prototyping process from an idea to a functional prototype is as follows:

7.3. 2ND ITERATION 53

• WireframeSketcher The user creates one or several sketches in WireframeS-
ketcher and save the files as normal. In order to demonstrate the features of
this prototype the user also decorates the sketches (see section 5.2), although
this is not technically required.

• Generator The generator loads the Story file and deduces which screen files
should be parsed. For each screen file a corresponding FXML files is created.
These are the JavaFX layout markup files.

• The generator create Xtend Action Controller files for each sketch file. These
files will control ActionEvents and MouseEvent in the runtime application.

• The generator parses the special widgets who are used for the decorator tech-
nique and creates ecore files for the data variables and screendecorator files
for the Actions and Styles (see section 5.2 for more information about the
decorator models)

• Runtime Application The runtime application creates an XMI file with
instances for each ecore files. It deduces which screen file should be loaded
first by parsing the Story file. It then loads the screen file’s corresponding
FXML and Action Controller file. Before showing the newly loaded FXML
file the runtime application evaluates the Actions and Styles found in the
corresponding Screen Decorator file.

• The runtime applications reevaluates the rules each time an action is performed
(e.g. Button pushed, mouse click on text) and stores any variable changes
dictated by the Actions inside the XMI instance.

To see the inner workings of the process in greater detail, please refer to the source
code in Appendix B.

Chapter8Analysis

8.1 Comparing manual and generated implementations

In the process of manually implementing a sketch using JavaFX, patterns begin to
surface after a while. These patterns can be generalized in the process of automati-
cally generating implementations. The following sections shows how a sketch made
in WireframeSketcher could be implemented manually using JavaFX, and how the
implementation compare to the generated solution developed during this thesis. To
get the source code of the developed programs see Appendix B.

8.1.1 The sketch

This sketch example represents the Login section of an application. It is a minimal-
istic example, but it should convey the generalized technique that has been realized.

55

56 8. ANALYSIS

Figure 8.1: A WireframeSketcher sketch of a Login section.

One can imagine that the input fields store the username and password when the
login button is pressed. Pressing the login button also navigates to another scene.

8.1.2 Implementing the sketch manually using JavaFX

When implementing the sketch using JavaFX the developer has to create the FXML
file either by using SceneBuilder or by typing XML manually. The markup is then
stored in login.fxml and the program is implemented in AppController.xtend.
Notice that on line 6 of Listing 8.1 login.fxml the controller class is set to App-
Controller (fx:controller="application.AppController"). When implementing
a JavaFX program with FXML markup files, a controller include action methods
used to handle e.g. button presses. These actions are referenced from the FXML
file using onAction="#methodName". The methods can reside in the AppController
itself or in another class file. Following are three possible methods to structuring
the program:

Method 1: Using the AppController itself as fx:controller. The FXML files ref-
erences AppController through fx:controller="application.AppController".

U Fast and easy to implement. Needs
just one file.

D Poor scalability. For many FXML
files the result is a huge AppCon-
troller class file.

8.1. COMPARING MANUAL AND GENERATED IMPLEMENTATIONS 57

Method 2: Using a dedicated ActionController class to handle all action meth-
ods. The FXML files uses fx:controller="application.ActionController" to
reference the ActionController.

U Slightly better scalability and im-
proved readability.

D For large projects with many
FXML files it results in poor scal-
ability since the controller file be-
comes cluttered with several action
methods.

Method 3: Creating a unique ActionController class file per FXML file in or-
der to handle specific actions depending on which FXML file is loaded. When
the AppController loads an FXML file it also sets fx:controller to the corre-
sponding ActionController programmatically. A naming scheme convention e.g.
filenameActionController.xtend could be used in order to load the correct con-
troller for filename.fxml.

U Great scalability for a large amount
of FXML files. Very clear which
controllers and action methods cor-
respond to which FXML files. Ex-
cellent readability.

D Results in many files for small
projects.

Listings 8.1, 8.2 and 8.3 show login.fxml, AppController.xtend and ActionCon-
troller.xtend respectively. They represent Method 2 discussed above.

Package and imports are removed in order to save space and improve readability.

Listing 8.1: login.fxml
1 <?xml version="1.0" encoding="UTF-8" standalone="yes"?>
2 <AnchorPane xmlns="http://javafx.com/javafx/8"

xmlns:fx="http://javafx.com/fxml/1"
fx:controller="application.AppController" maxHeight="-Infinity"
maxWidth="-Infinity" minHeight="528" minWidth="349">

3 <children>
4 <Label alignment="CENTER_LEFT" layoutX="125" layoutY="7" rotate="0"

text="Exampleapp" textAlignment="LEFT" textFill="black">
5
6
7
8 </Label>

58 8. ANALYSIS

9 <Button alignment="CENTER" layoutX="253" layoutY="224"
onAction="#handleActionLogin" style="-fx-base:white;" text="Log in"
textAlignment="CENTER"/>

10 <Label alignment="CENTER_LEFT" layoutX="24" layoutY="88" rotate="0"
text="Log into exampleapp" textAlignment="LEFT" textFill="black">

11
12
13
14 </Label>
15 <Separator layoutX="24" layoutY="124" prefWidth="294"/>
16 <Label alignment="CENTER_LEFT" layoutX="24" layoutY="144" rotate="0"

text="Username" textAlignment="LEFT" textFill="black">
17
18
19
20 </Label>
21 <Label alignment="CENTER_LEFT" layoutX="24" layoutY="176" rotate="0"

text="Password" textAlignment="LEFT" textFill="black">
22
23
24
25 </Label>
26 <TextField alignment="CENTER_LEFT" layoutX="96" layoutY="144"

fx:id="username" prefWidth="222" text=""/>
27 <TextField alignment="CENTER_LEFT" layoutX="96" layoutY="176"

fx:id="password" prefWidth="222" text=""/>
28 </children>
29 </AnchorPane>

As seen on line 9 the Log in button references the controller action method
onAction="#handleActionLogin" . JavaFX will look for it in the controller class
set during runtime. The AppController loads login.fxml and sets the fx:controller
to a new instance of ActionController. Note that the controller can easily be set using
the FXML file by changing line 6. It only remains to prove as an example.

Listing 8.2: AppController.xtend
1 class AppController extends Application {
2 override start(Stage primaryStage) {
3 // Loading the markup from login.fxml
4 val fxmlLoader = new FXMLLoader(getClass().getResource("login.fxml"))
5 // Using the dedicated ActionController class
6 fxmlLoader.controller = new ActionController
7 try {
8 val root = fxmlLoader.load as Parent

8.1. COMPARING MANUAL AND GENERATED IMPLEMENTATIONS 59

9 primaryStage.scene = new Scene(root)
10 primaryStage.title = "Login"
11 primaryStage.show
12

13 } catch (IOException exception) {
14 throw new RuntimeException(exception)
15 }
16 }
17 def static void main(String[] args) {
18 launch(args)
19 }
20 }

ActionController includes the action method handleActionLogin that is called
when the login button is pressed. It also includes two special variables annotated
with @FXML which makes them accessible between the FXML file and the controller
using fx:id="username" and fx:id="password" on line 27 and 28 in Listing 8.1.
In this example the variables are only printed to console, but they could be stored
to disk and another FXML file could be loaded and displayed.

Listing 8.3: ActionController.xtend
1 class ActionController {
2 /* These variables are references from login.fxml using

fx:id="variableName" */
3 @FXML
4 private TextField username
5 @FXML
6 private TextField password
7

8 /* This is the action method "handleActionLogin" referenced from
login.fxml using onAction="#handleActionLogin" */

9 def handleActionLogin(ActionEvent event){
10 println("Username is " + username.text + " and password is " +

password.text)
11 // Store information
12 // Jump to another screen
13 }
14 }

8.1.3 Generating the implementation

The generator works almost the same way as the example implementation in the pre-
vious section, but it follows Method 3 for structuring the program. First it generates

60 8. ANALYSIS

one FXML file for each sketch. Then it generates one unique ActionController per
FXML file, that include action methods for that specific FXML. For the generator
to succeed with generating an implementation it needs to decorate the sketch further
using the decorators discussed in section 5.3.

The Runtime Application (AppController) loads the FXML file and sets the
corresponding action controller class file. When e.g. buttons that reference the
controller are pushed the specific method is called and rules are evaluated and actions
for that button is performed.

Figure 8.2 depicts the same sketch, but with decorating elements added to it.
Two variables are declared and =${name} and =${secret} act as identifiers for the
input fields and serve the same purpose as fx:id in the previous example.

The resulting generated code is very similar to the manual example implementa-
tion. login.fxml ends up with a corresponding ActionController file named Screen-
NavigatorControllerLogin.xtend after following the naming scheme convention
ScreenNavigatorControllerfilename.xtend. It contains the action methods. In
addition to the AppController, ScreenNavigatorControllers and FXML files the gen-
erator also create screen decorator files. An ecore file for the data and a screendeco-
rator file for the actions. This is explained in depth in section 5.3.

Figure 8.2: A WireframeSketcher sketch of a Login section decorated for the gen-
erator.

Chapter9Evaluation

9.1 User-testing the prototype

Developing a prototype that transforms aWireframeSketcher sketch into a functional
prototype could yield different results. But without testing the result it is hard to
evaluate the different aspects of the prototype and rate how well they work. In order
to do this the prototype has to be user tested.

9.1.1 How testing was performed

The prototype was tested with 6 students attending Computer Science, Informatics
and Industrial Design at NTNU. There was 3 designers, and 3 developers. They
were all master students. Industrial Design had recently been divided into two sub-
studies: Product Design and Interaction Design. The former is less technical study
which focuses on the design itself, while the latter is more technical and include an
obligatory programming course as part of the study. Two of the three designers
attended product design and one attended interaction design. The developer versus
designer partitioning was a conscious choice made to see how the tool works for less
technical users compared to very technical ones. It represents a realistic target group
as this is often the users who work in teams in the industry. The users of such a
tool typically want it to be easy to use and fast. Those are the two most important
aspects.

It was a qualitative test that presented tasks to the user and it was dialogue
based as opposed to monologue based which is more common when testing GUI.
The rationale behind using a qualitative test instead of a quantitative test is that
the purpose was to observe what the user was thinking, what the user liked or disliked
about the prototype and what parts of the program the user seemed to struggle with.
It is very hard, if not impossible, to collect that kind of data using a quantitative
test. Also if the test should be quantitative the number of test users would have
to be increased. Much time and planning must have been put into creating a self-

61

62 9. EVALUATION

contained test application. As of the time of testing it was very impractical to setup
the prototype on a new computer by a test user.

The test consisted of 5 main tasks, and the tester who facilitated the test read
them out loud and explained in more detail what the user should do, if the instruc-
tions were unclear for the user. Before the test itself began the user was primed
about the prototyping process, the different approaches used to create prototypes,
Eclipse and WireframeSketcher and the prototype itself. Much emphasize was given
to separate the difference between WireframeSketcher and the prototype. A quiet
observer took notes during the test. After priming was over the tester started with
Task 1.

9.1.2 The tasks

Task 1: Interpret how muniapp would behave if run through the generator.

Task 2: Interpret how exampleapp would behave if run through the generator.

Task 3: Implement a way to change the username in exampleapp

Task 4a: In exampleapp, implement a way to store a textual note by using a
TextArea and a Button.

◦ Task 4b: Display the contents of the note somewhere in the window.

◦ Task 4c: Display the contents of the note inside the TextArea itself.

Task 5: Be creative! Create anything you want. Explain what you are thinking.
Do you feel there is a lack of functionality?

9.1.3 Challenges with the test

One of the big challenges of testing the prototype was that from the user’s perspec-
tive, the prototype is integrated with WireframeSketcher. That means that when
the user is asked to add functionality that require a new Button, the user has to re-
member where this is done in WireframeSketcher. The initial priming did decreased
the need for intervention, but in order to observe things related to the prototype
itself, the tester helped the user in such cases. Even though the tester intervened
many of the comments the users made was strictly related to WireframeSketcher
and not the prototype. The test itself was actually tested by a user, together with
a facilitator and an observer, which evaluated Task 5 to be potentially problematic.
After the first real test Task 5 was removed because the user unwittingly focused
more on WireframeSketcher than on the prototype.

9.1. USER-TESTING THE PROTOTYPE 63

9.1.4 The sketch applications

Exampleapp

Figure 9.1: The Exampleapp sketch login section.

The sketch application exampleapp was created in order to provide a simple demon-
stration of the prototype and in order to test how a user might extend it with
functionality. It was also used as part of the priming given to each user before the
test. It includes a login section and a section for changing the password. The sketch
is decorated with data, actions and styles. It also display how variable values can
be displayed and how input fields can be created. The Log in button links to the
section for changing password.

64 9. EVALUATION

Figure 9.2: The Exampleapp sketch after logging in.

There are two styles in the sketch. One is linked to the label Saved! and one is
not linked to anything. The former sets the label visible if the value of hasSaved
is true, while the latter is evaluated every time something triggers an action e.g. a
button is pressed. The result is that the label Saved! is visible until the user press
Log out (or any other button or label).

Muniapp

The sketch application muniapp was created in order to demonstrate all the function-
ality of the prototype. It models a typical ”todo” application where the user adds
tasks that needs to be done. It gives realistic examples related to the application,
and some examples that just demonstrate functionality. The muniapp was used as

9.1. USER-TESTING THE PROTOTYPE 65

part of the primer that each user was given before the test began. Muniapp consist
of a login section, the main section and an add new event section. The login section
is almost identical to Figure 9.1. The main section is depicted in Figure 9.3 and the
add new event section is depicted in Figure 9.4.

Figure 9.3: The Muniapp sketch after logging in.

66 9. EVALUATION

Figure 9.4: The Muniapp sketch for adding a new event.

The main purpose of Muniapp is to demonstrate all the features of the prototype
and as such exist as a set of working examples that the user can learn from. e.g.
newItemHidden = toggle is an action connected to the Show button. It toggles the
boolean value between true and false. The bottom style connected to the label
User: hides the label if the username is an empty string. For an in-depth explanation
of the decorators see section 5.3.

9.1.5 Evaluating the user-tests

The evaluation of the user-tests tries to focus more on conceptual ideas, rather than
design details. E.g. it is more interesting if scripting in general is a viable approach,
and less interesting which syntax is used. It is more a discussion based on the
observations rather than a point to point comparison between how the users solved
each task. Detailed anonymous observational notes can be found in the Appendix
A. In addition to the test itself, they record which year and program the students
attend, and what relevant background they have. e.g. programming or GUI design
course. It’s important to note that all the designers had been exposed to at least a
small amount of programming prior to testing and it should also be noted that the
users were primed with information about the prototype before the test, so testing
how intuitive certain implementations are might be inconclusive. The users discussed
several of the implementation choices. Some of these choices have alternatives that
might be better and will be discussed in section 9.2.

9.1. USER-TESTING THE PROTOTYPE 67

The graphical decorators

If this test indicates anything it is that representing data and scripts graphically
together with the prototype is a good idea. All the users said that they liked how easy
it was to get a clear view of what was happening. The semantics behind connecting
decorators to widgets using arrows was well received, although many wanted the
arrows to be created automatically and snap to the widget when dragged. This is a
WireframeSketcher limitation, but underlines a good point.

The data decorator was probably the easiest to understand. Most users used app
in order to declare global variables. Some gave feedback that they didn’t understand
the point with dividing variables into a scope hierarchy. It was pointed out that one
of the strengths with the graphical decorators was that all the data and script were
visible. But when global variables were declared in other sketch files, that was no
longer true. The feedback regarding color coding the three decorators was positive.
It helped the users differentiate between the decorators and their purpose. Two of
the users who had previous experience with Axure RP said the prototype was easier
to use, especially when knowing it came to dynamics such as actions etc. One user
said it was more programming based than Axure RP.

The scripting format

As mentioned the users were primed with information regarding the prototype. This
included the various scripting formats, although not in great detail. It was thus pos-
sible to ask questions about the formats. The users with heavier programming back-
ground found the format to be understandable, but more like a scripting language.
The designers thought it was understandable after the primer, and some said they un-
derstood it after studying the examples. When asked about the format, no one had
any suggestion as to how it could be improved. Some did mention that like most lan-
guages it requires some learning in the beginning, but ones that is over it was easy to
use. One user wanted the actions to follow the defacto standard of declaring strings
within double quotes e.g. stringVar = "Several words". But then commented
that the user would have to escape the quotes if he/she wanted to use them in the
string. Most users wanted to be able to drag arrows from one style to several widgets.
The formats ${variableName} used to display the value of a variable was easy for
most to understand. But =${identifier} used to identify an input field was a lit-
tle hard to understand before examples was given. Also, only the most programmer
savvy users understood the combination =${identifier}${variableName} meant
to indication both an input field and displaying the variable value. It would seem
that the prototype was easier to use for developers rather than designers, but one
of the designers who had programming experience found it easy to use and stated
that he would like to develop apps this way.

68 9. EVALUATION

Summary

Using a qualitative and dialogue based user-test was a good choice for highlighting
positive and negative parts of the program. Although there was only six users who
performed the test, using a qualitative method resulted in some usable data. The
graphical decorator seem to work as intended, and they seemingly provide a clear
overview for the user. The users who had experience with other prototyping tools
liked this graphical approach more than the dialogue approach in e.g. Axure RP.
Two users also found the dynamic text feature to be helpful in cutting down on
unnecessary duplicates. It might seem that the prototype is too scripting based for
designers without programming background, but the for the indented user group
of technical designers it seemingly fits quite well. The scripting format works ok,
but further testing should be performed to see if it can be improved. Section 9.2
discusses possible changes based on the user tests.

9.2 Evaluating the design based on the user-tests

There are several design choices that could be implemented differently. One of the
criteria for the program was to implement a scope hierarchy for variables, in order to
have local and global variables. The rationale behind the choice was that a variable
e.g. isSaved could have different meaning for a widget, a screen and globally. Several
test users pointed out that they would rather be able to prefix the variables with the
containing element. In other words if variable var was declared in screen1 it could
be referenced using screen1.var. This would also quickly show the user where the
variable is declared. It may be unnecessary to have scopes at all. It might be the case
that it increases the complexity of the program without yielding a better result. The
drawback is that variables would have to be declared globally and as such variable
names must be informative e.g. screen1SaveButtonHasBeenPressed for a boolean.
If this is better or worse require more testing, but based on the user-tests scoping
variables is not a very important feature. This might be a false-negative due to a
flaw with the test itself.

As mentioned in section 6.2.1 the scripting format used is based on a mixture
of common scripting languages and natural languages. There are similarities to
AppleScript and semantics such as equals, which is often represented using two equal
signs == has been replaced with is. One equal sign often used to set the value of a
variable is replaced with set property to value. The goal has been to create a format
that is more understandable for users with little to no programming background.
However, this was not a priority during the development process. Several things
should be mentioned regarding the user-test and the format. Most users found the
format easy to understand after spending some time with it. It is always desirable to
design a format that is intuitively easy to use. But some acquired knowledge might be

9.3. EVALUATING THE RESEARCH QUESTIONS 69

required, and should not be a problem. A few of them commented on the repeating
format, such as the style connected to the label Saved! in Figure 9.2. A final format
should include else to reduce typing. One user pointed out that strings should
be surrounded by double quotes ”string”, but discussed the problems of having to
escape the quote characters if they were to be used. It would seem that if the goal
is to keep it simple, double quotes might be bad choice. One of the difficulties to
creating a scripting format such as this is to satisfy the user requirements. If the
user has never seen a scripting language before, a natural language based scripting
language could prove effective. However, for technical developers the limiting format
might be a cause of annoyance. To meet both user groups the program could allow
the user to write a full fledged scripting language like JavaScript, Perl or Python.
All users wanted to be able to connect one style to several widgets using multiple
arrows. This should be possible to reduce duplicates. Arrows should be handled
automatically when dragging from one decorator to a widget.

9.3 Evaluating the research questions

The research questions were as follows:

• RQ 1: How can a low fidelity sketching tool be enriched with information that
enables generation of a functional prototype.

◦ RQ 1.1: How can functionality be added to a sketch without loosing the
simplicity inherent in low fidelity sketching tools.

◦ RQ 1.2: How can the added information be utilized together with a modern
toolkit in order to realize a functional prototype.

As seen throughout Chapter 6 and 7 the Generator and Runtime Application pro-
grams developed during this thesis answers the research questions. They represent a
possible implementation that create functional prototypes from sketches made using
WireframeSketcher by extending it with information in the form of special notes. In
other words they extend WireframeSketcher with prototype generation. And the pro-
totype functionality is added to sketches using the decorators discussed in section
6.2.1. Chapter 7 show how the modern toolkit JavaFX is used. It is state-of-the-art
and utilize the generated layout - the FXML files - as markup. It is indicated by
the user-testing in section 9.2 that the solution is viable and retain at least some of
the simplistic nature of a low fidelity sketching tool, although it is difficult to say
if it is simplistic enough. If a scripting format is considered easy by the user, the
solution is likely simplistic enough. It is feasible to create normal application using
this method, however, it would require further development.

70 9. EVALUATION

9.4 Further development

Finishing incomplete implementations

Some of the criteria outlined in section 4.5 and 4.6 were not completely implemented.
Alhtough it is not important with respect to the research questions it should be
possible to install the program as a plug-in and the user should have the option to
Generate Function Prototype when right clicking on a Storyboard file. Not much
time is required to finish the implementations and it would increase the availability
and usability of the program.

Looking at different aspects

During the development process of the prototype several ideas were discussed, but
only a fraction of them were realized. As discussed in section 5.1 there are several
aspects that can be of great interest for further development. The results from the
user-tests indicates that the system has potential. It would be very interesting to
see how the other aspects would improve the program.

Specifically a more expressive scripting format could be useful and allow for more
functionality such as a simple natural-language based syntax for novice users and
JavaScript for advanced users. The program could interpret which format is used
automatically. Custom note widgets seem to work quite well, but the arrow widget
used to connect each widget is cumbersome to use. It does not snap to the widgets
and it must be added manually. A better solution is to be able to connect the
two widgets by dragging from one to the other. It is most likely not be possible to
implement such a feature as an extension, but it could be implemented in the tool
itself. 1

The variable scope hierarchy should be redesigned and tested for effectiveness.
As a result of the user-tests it seems unnecessary to isolate variables depending
on their declaration layer. A better solution might be to use global variables, or as
another option declare local variables in each screen and allow referencing from other
screens possible i.e. allow the variable isLoggedIn declared in screen1 to be accessed
by screen2 using screen1.isLoggedIn. What solution works best for the end user
requires more user testing. Using model data in order to manually write dummy data
in lists etc. could be very useful. The prototype would automatically fill the desired
elements with model data such as names, addresses and food ingredients. Not only
would this save time for the user, it could also be combined with real model data.

1 In an email correspondence with Peter Severin, the author of WireframeSketcher, it was stated
that such a connector tool is planned.

9.5. CONCLUSION 71

Exploring different layout styles is also another interesting aspect. It might
increase the usability and also allow users to provide a close-to-reality functional
prototype that could be used in meetings with stakeholders, or in user-tests. There
are two general sub-aspects of this. One is for the program to generate a func-
tional prototype that use the same sketched layout (e.g. iPhone or Android) already
available in WireframeSketcher. The result being a functional prototype that looks
exactly like the sketch, not an approximation. The other sub-aspect is to include
hi fidelity layouts of the same styles in order for the functional prototype to look
like a native application. This latter aspect would diverge from the ideology where
prototypes should be very simple and focus on layout position over actual graphical
design, but it should be explored. The end result could be a full fledged working
program.

9.5 Conclusion

The goal of this project was to look at a way to extend a low fidelity sketching
tool in such a way that the sketches could be turned into a functional prototype.
Different aspects, such as how the functionality could be added to the sketch, was
an important part of the process. During the project several prototyping tools have
been categorized, and together with the reported opinions of students taking the
design course IT3402 [2] a set of features was chosen. There are several interesting
aspects to study, but this project followed a proof of concept mentality and focused
on aspects the was closely related to the research questions. The developed solution
can easily be integrated with Eclipse and uses EMF and JavaFX to realize the
prototype. It uses a graphical approach to extending WireframeSketcher designs
with functionality, and the user-tests strongly indicate that this is a viable solution
for making functional prototypes. The process of designing a more traditional tab
based approach to adding functionality indicated that it was less clear and more
complex than the graphical approach. The graphical approach seemed to retain
some of the simplistic nature of typical sketching tools, but it is hard to conclude if
it is simplistic enough, especially combined with scripting. In order for the solution
to be practical for the end-user it would require more development, but it is the
authors opinion that the research questions has been answered and that the report
discusses and presents the interesting and relevant parts of the process.

References

[1] Roel Wieringa. Design science as nested problem solving. In Proceedings of
the 4th International Conference on Design Science Research in Information
Systems and Technology, DESRIST ’09, pages 8:1–8:12, New York, NY, USA,
2009. ACM. ISBN 978-1-60558-408-9. doi:10.1145/1555619.1555630. URL http:
//doi.acm.org/10.1145/1555619.1555630.

[2] User interface design course. Online. URL https://sites.google.com/site/
userinterfacedesigncourse/. Accessed may 12th 2014.

[3] Dirk Bäumer, Walter R Bischofberger, Horst Lichter, and Heinz Züllighoven.
User interface prototyping—concepts, tools, and experience. In Proceedings of
the 18th international conference on Software engineering, pages 532–541. IEEE
Computer Society, 1996.

[4] Salvatore T. March and Gerald F. Smith. Design and natural science research
on information technology. Decis. Support Syst., 15(4):251–266, December 1995.
ISSN 0167-9236. doi:10.1016/0167-9236(94)00041-2. URL http://dx.doi.org/10.
1016/0167-9236(94)00041-2.

[5] Douglas Harper. Online etymology dictionary. Online, 2001-2014. URL http:
//www.etymonline.com/index.php?search=prototype&searchmode=none. Ac-
cessed april 29th 2014.

[6] Carolyn Snyder. Paper Prototyping: The Fast and Easy Way to Design and
Refine User Interfaces (Interactive Technologies). Morgan Kaufmann, 1 edition,
April 2003. ISBN 1558608702.

[7] Miriam Walker, Leila Takayama, and James A Landay. High-fidelity or low-
fidelity, paper or computer? choosing attributes when testing web prototypes.
In Proceedings of the Human Factors and Ergonomics Society Annual Meeting,
volume 46, pages 661–665. SAGE Publications, 2002.

[8] Reinhard Sefelin, Manfred Tscheligi, and Verena Giller. Paper prototyping -
what is it good for?: A comparison of paper- and computer-based low-fidelity
prototyping. In CHI ’03 Extended Abstracts on Human Factors in Computing
Systems, pages 778–779, New York, NY, USA, 2003. ACM. ISBN 1-58113-637-4.
doi:10.1145/765891.765986. URL http://doi.acm.org/10.1145/765891.765986.

73

http://dx.doi.org/10.1145/1555619.1555630
http://doi.acm.org/10.1145/1555619.1555630
http://doi.acm.org/10.1145/1555619.1555630
https://sites.google.com/site/userinterfacedesigncourse/
https://sites.google.com/site/userinterfacedesigncourse/
http://dx.doi.org/10.1016/0167-9236(94)00041-2
http://dx.doi.org/10.1016/0167-9236(94)00041-2
http://dx.doi.org/10.1016/0167-9236(94)00041-2
http://www.etymonline.com/index.php?search=prototype&searchmode=none
http://www.etymonline.com/index.php?search=prototype&searchmode=none
http://dx.doi.org/10.1145/765891.765986
http://doi.acm.org/10.1145/765891.765986

74 REFERENCES

[9] Popapp tool. Online. URL http://popapp.in. Accessed june 5th 2014.

[10] Invision prototyping tool. Online. URL http://invisionapp.com. Accessed june
4th 2014.

[11] Wireframesketcher tool. Online. URL http://wireframesketcher.com. Accessed
februrary 11th 2014.

[12] Balsamiq prototyping tool. Online. URL http://balsamiq.com. Accessed july
12th 2014.

[13] Justinmind prototyping tool. Online. URL http://justinmind.com. Accessed
june 6th 2014.

[14] Axure rapid prototyping tool. Online. URL http://www.axure.com. Accessed
july 3rd 2014.

[15] Douglas C. Schmidt. Guest editor’s introduction: Model-driven engineering.
Computer, 39(2):25–31, feb 2006. doi:10.1109/MC.2006.58.

[16] Richard Soley et al. Model driven architecture. OMG white paper, 308:308, 2000.

[17] Jonathan Musset, Étienne Juliot, Stéphane Lacrampe, William Piers, Cédric
Brun, Laurent Goubet, Yvan Lussaud, and Freddy Allilaire. Acceleo user guide.
2006.

[18] Gavin Nicol, Lauren Wood, Mike Champion, and Steve Byrne. Document object
model (dom) level 3 core specification. 2001.

[19] Texlipse - latex for eclipse. Online. URL http://texlipse.sourceforge.net. Ac-
cessed november 13th 2014.

[20] Eclipse - ide. Online, . URL http://www.eclipse.org/ide/. Accessed november
13th 2014.

[21] Eclipse modeling framework project (emf). Online. URL http://www.eclipse.
org/modeling/emf/. Accessed may 13th 2014.

[22] Lars Vogel. Eclipse modeling framework (emf) - tutorial. Online, 2007-2013.
URL http://www.vogella.com/tutorials/EclipseEMF/article.html. Revision 3.0,
Accessed november 11th 2014.

[23] Eclipse workbench user guide. Online, . URL http://help.eclipse.org/juno/
index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Fconcepts%2Fconcepts-2.
htm&cp=0_2_1. Accessed november 13th 2014.

[24] Using perspectives in the eclipse ui. Online, . URL https://www.eclipse.org/
articles/using-perspectives/PerspectiveArticle.html. Accessed november 13th
2014.

http://popapp.in
http://invisionapp.com
http://wireframesketcher.com
http://balsamiq.com
http://justinmind.com
http://www.axure.com
http://dx.doi.org/10.1109/MC.2006.58
http://texlipse.sourceforge.net
http://www.eclipse.org/ide/
http://www.eclipse.org/modeling/emf/
http://www.eclipse.org/modeling/emf/
http://www.vogella.com/tutorials/EclipseEMF/article.html
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Fconcepts%2Fconcepts-2.htm&cp=0_2_1
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Fconcepts%2Fconcepts-2.htm&cp=0_2_1
http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.user%2Fconcepts%2Fconcepts-2.htm&cp=0_2_1
https://www.eclipse.org/articles/using-perspectives/PerspectiveArticle.html
https://www.eclipse.org/articles/using-perspectives/PerspectiveArticle.html

REFERENCES 75

[25] Javafx frequently asked questions. Online. URL http://www.oracle.com/
technetwork/java/javafx/overview/faq-1446554.html. Accessed october 28th
2014.

[26] Matt Neuburg. AppleScript: The Definitive Guide: Scripting and Automating
Your Mac. ”O’Reilly Media, Inc.”, 2006.

[27] Scenebuilder 2.0. Online. URL http://www.oracle.com/technetwork/java/
javase/downloads/javafxscenebuilder-info-2157684.html. Accessed november
10th 2014.

[28] Xtend - modernizing java. Online. URL http://www.eclipse.org/xtend/. Ac-
cessed may 13th 2014.

http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html
http://www.oracle.com/technetwork/java/javafx/overview/faq-1446554.html
http://www.oracle.com/technetwork/java/javase/downloads/javafxscenebuilder-info-2157684.html
http://www.oracle.com/technetwork/java/javase/downloads/javafxscenebuilder-info-2157684.html
http://www.eclipse.org/xtend/

AppendixAObservational notes from
User-testing

Below are the observational notes made during the dialogue based user-tests dis-
cussed in section 9.1. They have been anonymized in order to protect the identity
of the test subjects.

77

Test person #1
Gender: Male
Background: Informatics, Msc (5th year)
Start time 12:35, end time 13:25

Abbreviations/codes:
WS - WireframeSketcher
FL - the prototype
TP - test person

Starts by explaining what WS is and how it works, including its features and
limitations. Explains that what he has added of functionality and shows what it can
do.

Asked if the user has understood the relevant difference between WS and FL, got an
affirmative answer.

Task 1: Interpret what "toduka" does: 10 min

Some misconceptions about exactly what he should interpret. Was supposed to
understand what blue, red, and purple note is used for, not what the meaning of the
app is. Seems to understand what the different notations mean, fail to explain out
loud what he's thinking, getting confirmation nod. Does not quite seem to understand
the script notation. Suggested that it displays the password form vs plain text. He
understood the second part of the task. The fact that a style that does not have an
arrow wont affect the entire screen was perhaps not entirely intuitive.

Task 2: Interpret what "exmpleapp" does. Time: 6 min (started 45)

Explains what the purpose of the app is.Tester asks for an explanation of what and
why things happen. Taking some time (not much) to get an overview of what is
happening in the app. Some confusion over what the tester really is looking for.
Perhaps because the TP have knowledge regarding variables and data? Thinking
that it is check the box that are properly referred, but it is the variable checked that is
referenced. Explains what toggle and bool have to do with the checkbox. Only
checked variable that was a bit confusing, the rest was properly explained. Tester
repeat now what the different things do. Tester understand in hindsight how things
are connected.

Task 3: Implement the ability to modify the username in exampleapp, time: 9 min
(started 51)
The tester explains that it is the same way as changing passwords. TP says he
would have copied the boxes and just replaced the text contents of them. Needs
help with mac -keyboard layout to find bracket characters. He believes he is finished
and explains how it works. He is able to explain it without problems. It worked! The
tester suggests to add a field that shows existing username. TP moves things down,
told to fix the arrows. Set arrows right? Yes, after som thinking. It ran without
problems.

Task 4a: In "exampleapp": Implement the ability to store a textual note using a

TextArea and a button. Time: 7 min at full 4 (started 1:00 p.m.)

Adds a TextArea and Button without problems. Then enters the variable reference in
the TextArea. Adds a property. Copies the existing action box and fill in some stuff
that is correct. Creates an arrow from the action box to the new button. Tester
demonstrates that the text has actually been saved by showing XMI file, so it works!

Task 4b: Implement a way to display the note another place in the window.
TP starts with copying an existing label. Changed single variable. Went quickly.

It worked!

Task 4c: Implement a wao to display the note in the TextArea
It is in a way already solved, since he has done it before in the test. Can he do

it? Yes, no problem!

Task 5: free rein. Create anything you want! Explain what you think and what
you respond to. time: (started 1:07 p.m.)

Skipped this task after directions from tester.

Qustions asked by the tester:

Q. What do you miss functionality?
A. The notes, wondering how they work. Commenting on what happens if an arrow
pointing errors. Tester explains how the program works in the background. Tester
shows XMI files. Explains how the decorators (red, purple) is generated. Remember
that actions must be no spaces, it understood the tester. Who is it aimed at (tester
ask)?

Suggestions: Did not quite understand what the tester wanted in the beginning. Did
not realize that the boxes were something that was done, but thought that it was only
a few pictures in the background. What is the difference with or without the keyboard
app in the blue box, the tester asks. TP thinks that it is a layout for mobile
applications. Tester explains that app does globally, no keyword makes them only
visible for the screen. Says that the tester should prime the TP a bit more before
starting. E.g. when things are running what a style without an arrow is. And when a
button is pressed all the values in the screen are evaluated.

Was there anything that was uintuitivt relative to script format?. TP thinks it is
the same as programming common. Believes that it is only the way it is when you
learn programming language. Clumsy having to drag the arrows manually without
snap.

Test person #2
Gender: Male
Background: Informatics, Msc (5th year), IT3402 2014.
Start time 11:03, end time 11:34

Abbreviations/codes:
WS - WireframeSketcher
FL - the prototype
TP - test person

Tester starts with explaning WS. Explains that decorating has been added by him.
Explains what the generator is and how it works. Continues with explaining the
purpose of the arrows. TP nods and generally says yes. Seems like he has a
computer background? NewItemString, understand how it works also.

11:15
Task 1: Intepret what "exampleapp" does.
TP: Updates the strings in the app independant of the input. It has to do with login.
The først screen was easy to understand. Log out gets you back, shows the
username you logged in with. Changing password is what is intended.
Tester: How does this look when the program is running?
TP: Shows password in clear text? Write the passord in order to add a new
password. It is a label. By pressing "Save" button the label "Saved" will appear.
{loggedInAs} is a label, the variable navn is displayed when running.

Tester: Password and username are variables. What is passwordField? TP: The
textbox
Tester: What does part two of it means? TP: It shows the password that is already
stored. Tester: Quite right.

TP: Doesnt that styles have to point to something? Tester: No arrow means it affects
the whole screen during runtime.

11:22:

Task 3: Implement a way to change the username in exampleapp
TP: Can one action point to several things? Copies the action and writes the same
text as in username.
Tester: Why did you name is usernameField? Is it something unique about the
name?
TP: I'm just following the standard as I see it. The TP understand that the name does
not have to be special.

Tester: Can you explain what happens when "Save" is pressed?
TP: No state is saved, change username to what is in the box.
Tester: There are states, but in the next login the variables are overwritten.

Task 4: In "exampleapp": Implement a way to store a textual note by using TextArea

and a Button.

TP: Adds a new TextArea and a Button, thinks that he needs a variable to store the
result in. Adds a variable in the blue decorator. Gives the TextArea a variable. Shows
the stored variable in the textarea in the same way that username does it. Creates
an action. Asks the tester if you can get an arrow from the action decorator. He
understands it is required. Finishes.
Tester: Quite right, apart from a few missing brackets in the syntax. Runs the
program.
TP: Verifies that the program works. TextArea is cleared when "Save" is pressed.

11:31

Task 4b: Display a note in another place in the windows
TP: Need a new textarea, but approx. the same.
Tester: says it doesnt necessarily need a textarea to display it.
TP: Try to use Text from WS palette.

It did not work because Text is not implemented.
Tester changed Text with Label and it works, so the approach was correct.

Task 4c: Display the note in the TextArea itself
Alreay implemented in 4b.

Task 5: Make whatever you want
Skipped by the tester.

11:34

Tester: What funcitonality do you feel was lacking? Something you felt was badly
implemented?
TP: It can be difficult for someone who hasn't programmed before. Although it
seemed like scripting, not programming. Haven't scripted much before, but it was
understandable.

Tester: Anything that should have been said in the priming?
TP: Many foreign words, that non-computer people would have a hard time with.

Tester: Was it obvious what the script was affecting?
TP: Yes, didn't use styles that much but it was ok.

Tester: Diffictult to find something for people who haven't programmed before.

TP: Works very nicely for prototypes. It gives extra features. More advanced
functions than Axure (his opinion). Advanced scripting language in Axure. It can have
variables.
TP: FL has a nice layout which is very clear. It displays all the information at once.
This was easier to use than Axure. Axure is a little cumbersome.
Tester: It's possible to change the scripting language with JavaScript, but simple
natural languages would be easier for non-programmers.

TP: Someone might try to display variables without dollar signs
Tester: It has to be a little gained knowledge. Without the dollar sign the text itself is
displayed.

Tester: Anything else to add?
TP: Nothing special. The colored notes were nice. Easy to see what was going on.

Tester: Have you used any other prototyping tools?
TP: InVision and Axure RP. Axure have some of the same features but the scripting
is complex. I dont like it.

Test person #3
Gender: Female
Background: Computer Science (5th year), IT3402 2013.
Start time 12:00, end time 12:33

Abbreviations/codes:
WS - WireframeSketcher
FL - the prototype
TP - test person

12:00

Tester explains how the program works. Both WS and FL. Shows exampleapp.
Tester: What does newItemString do?
TP: creates a new TextField?

12:08

Task 1: Intepret what "muniapp" does.

Tester: What do you thinkg is going to happend? Please explain on a "variable level"
TP: When logging in the variable that is previously stored is checked. Password will
be several asterix' since it is secret
Tester: What is the blue box?
TP: It is variables for username and password, type string.

Tester: Red box?
TP: It is the thing that sends username and password when you log in.

Tester: In the red box, one of the elements is the username that is also in the blue
box. What is this?
TP: It's the variable used in the textfield as well.

New screen
Tester: What is the blue box this time?
TP: Boolean variable that is stored. The textfield.

Tester: The red box?
TP: Action to change the password.
Tester: How does the modification occur? What does the variable become
afterwards?
TP: It is set to the value of "new password" textfield. Not sure what the second half of
the field is. [It's not clear what TP is thinking]

Tester: What is the purple box connected to?
TP: It's connected to "Saved". It will be visible when save is pressed, hidden
otherwise.

Tester: The purple box without a box, what does it do?

TP: It resets the boolean isSaved so that the "Saved" label is hidden.

Task 2: Interpret what "exampleapp" does

TP: Asterix means that it can be anything. Toggle is that hide/show changes when
you pres it. At least it changes the layout.

Tester: Intepret the big styles box without arrows
TP: I think it affects the color of the text that is displayed by the show button.

Tester: What is newItemHidden? is it a string, int
TP: It's a boolean

Tester: if there was an arrow between it and the text it would have change the
textcolor. But since it has no arrow it affects the whole screen.

Task 3: Implement a way to change the username in exampleapp
Tester: You can copy/paster elements, or drag them from the right hand side.
TP: I'm thinking it's pretty similiar to changing the password. Copy paste ftw!
Mentions that the placement will be random.
TP: Can one action point to several elements or just one?
She is thinking of using an arrow from the existing action box.
Tester: Asks rhetorically: What do you need the arrow for?
She votes not to use it and says che can use the same action box.
TP: Adds the field in the action box in the same manner as password. Works.

Task 4a: In "examplapp": Implement a way of storing a textual note by using a
TextArea and a Button
Tester: How you design it is irrelevant.
He shows where the WS elements can be found.
TP drags one TextArea and a button and ads a new action box. Uses the dollarsign
notation in the textarea like prior examples.
TP: the color of the arrow is different.
Tester: No problem. What do you think happends when you press "Save"?
TP: Ah, I need to store the variable in the blue box.
TP plays with the program and sees that it works.

Task 4b: Display the note in a different place of the screen
TP copies the textfield with text "Hello: ${username}" and changes it with "Text: $
{text}". Moves the existing save button, but forgot to move the arrow.
Tester: Do you think there's anything special with the format you're using now?
TP: I think it just has to be the same in the field as in the other places it's used.

Task 4c: Display the note inside a TextArea
did that in 4a already.

Task 5 dropped by tester

Tester: What did you felt was lacking of functionality? Any comments?
TP: I like that it's presented graphically instead of dialogues. It was very a very well

presented way to solve the problems. Clear layout.

Tester: Was there anything that you felt was nonintuitive?
TP: No, not really. Different colors for the boxes was nice. I liked the graphical style
of adding scripting. The initial priming was important though.
TP: Very nice way of making prototypes. Instead of using photoshop!

12:33.

Test person #4
Gender: Male
Background: Industrical design, specialization Product design (4th year)
Start time 13:30, end time 14:00

Abbreviations/codes:
WS - WireframeSketcher
FL - the prototype
TP - test person

13:30

Tester explains what a prototyping applicaiton is. That is makes simple prototypes
that doesnt focus on the graphical design, but more of the layout and flow. Explains
what FL is and how it works. Compares WS with Adobe Illustrator. Only static
pictures that doesnt do anything. Runs the FL program and shows how it works. He
says he have some experience with simple programming. Explains what the different
colored decorator boxes do.

Task 1: Intepret what "exampleapp" does

TP says that ${username} shows the value of the variable.
Tester explains what the app keyword means int the blue box.

Tester: What is the blu ebox for?
TP: Not sure, it contains variables.

Tester: If "Saved" button is pressed, what happens?
TP: hasSaved variable is set to true. Password is set to whatever is in the field.

Tester: If you look at "Hello ${username}".What do you think the format in the field for
new password means?
TP: Not sure.

Tester: What is the "Saved" text?
TP: Something that pops up when you press save.
Tester: Can you tell that from the purple box?
TP: Yes, if it's true its visible, othervise not.

Task 3: Implement a way of changing the username in exampleapp

Tester: Copy paste is ok. Desing is not imporant.
TP: No quite sure what you want me to do.
TP copies the text of change password and creates a new button with a
corresponding action box. Correct implementation apart from the unecessary action
box (could have used the same). Adds an arrow from the action box. Copies the text
element that hides/shows. Changes the variables in the textbox with the correct
username.

Task 4a: In "examplapp" implement a way of storing a textual note

TP adds a TextArea and Button. Thinks about creating a new blue box, but realize
that it's not necessary. Was thinking about where the username password variables
were.
TP: I'm a little cought up in creating everything like the previous examples. One
button and a separate style for each.
TP thinks he should write code that store the text of the textarea.

Tester: Is the variable note declared anywhere?
TP: No, it has to be added to the blue box.
TP adds the variable.

Task 4b: Display the note in a nother place of the window.
TP: Copies a text element. Not quite sure how it should be done.
Tester: Are there any other elements in the screen that be of help?
TP says Yes and points at "Hello ${username}". Writes ${note} in the text box. Wants
to use visibility to say if tehre is anything visible or not.

Tester demonstrates that the program works.

Task 5 skipped by the tester.

Tester:Do you have any comments?
TP: I think it's something I could have used for developing apps.
Tester: Anything you would have liked to be different?
TP points to WS specific "bugs" like text completion that doesn't make sense for the
prototype.
Tester? Anything else?
TP: What was the tool called?
Tester: WireframeSketcher

14:00

Test person #5
Gender: Male
Background: Industrical design, specialization Interaction design (4th year), IT3402
2014
Start time 14:00, end time 14:30

Abbreviations/codes:
WS - WireframeSketcher
FL - the prototype
TP - test person

14:00

Tester explains what a prototyping application is. That is makes simple prototypes
that doesnt focus on the graphical design, but more of the layout and flow. Explains
what FL is and how it works. Compares WS with Adobe Illustrator. Only static
pictures that doesnt do anything. Runs the FL program and shows how it works. He
says he have experience with programming. Explains what the different colored
decorator boxes do.

Task 1: Intepret what "muniapp" does

TP: If the username is anything, set visible to true.
TP understand the purpose of the Arrow but he's not sure what the rules of
"connecting" it is. Can it overlap or does it have to be exact?

TP: The action turns Show button on and off.

Tester explains what toggle means
TP: So it if you press on Show, the text becomes visible. What is the text variable?
Tester recognizes that the user is familiar with programming langauges.
Tester: It is the property on the button used by JavaFx.
TP didn't quite understand so Tester explains more.
TP: It would be more intuitive if the string was surrounded by quotes. Easier to
understand, but then you have to escape if you want quotes. Hm.

Tester explains the reevaluation that occur each time something is pressed.

Task 2: Intepret what "exampleapp" does

TP: Declared variables in the blue box. Not sure what "app" means. By pressing "log
in" the red boxes are performed and the variables are updated.
Tester: App means that variables are visible for the whole application, not just the
screen.
Tester: What is visible if this is run. Ignoring the boxes.
TP: Username and password is displayed. Not quite ure what happens in "new
password". Maybe it's stored and displayed at the same time. By pressing "Save",
the red box is performed and the text by it will be visible. If it is not pressed, the text

will be invisible.
Tester: Explain the two variable elements of the text box
TP: It will show the variable and write the other.
Tester: What does the purple box do without an arrow?
TP: If the button is pressed, it will set the variable to false.
Tester: When is it called?
TP: everything time something is updated

Task 3: Implement a way to change the username in "examplapp"

TP copy pastes from the password textfield. Changes the text contents. Adds the
statements required in the existing action box. Went fluently.

Task 4a. In "examplapp" Implement a way of storing a textual note using
TextArea and Button
TP moves everything in the screen down a little to give extra room for a TextArea
that he drags from the WS palette.
TP: I'm thinking of writing pretty much the same as with the username, but using my
own variables.
TP uses the existing "Save" button and updates the corresponding action box with
the new statement. Adds the variable note in the blue box.

The program runs and everything works.

TP: I hope the variables are stored, but I guess they will be overwritten with the new
ones.
TP compares it to Axure.
TP: It's a little bit more programming oriented than Axure.

Task 4b and 4c is alreay done.

Task 5 is skipped by the tester.

Comments?

TP: If the arrows snapped it would be much better and easier to use.
Tester informs that WS is about to add that feature (according to the founder Petru
Severin)

TP: The things that affect the screen should be able to minimize and group. The
global once could be grouped. This could save space.

Test person #6
Gender: Male
Background: Industrical design (5th year), IT3402 2013
Start time 11:00, end time 11:30

Abbreviations/codes:
WS - WireframeSketcher
TP - test person

Tester explains how WireframeSketcher works by presenting an example (F5
Presentation Mode). Explains the prototype and what the differnet colored
decorators are. Blue is data, red is action, purple is styles. Explains the purpose of
the arrow. Explains the ${variable} format and the reasoning behind it. Tester
explains the difference between the prototype and wireframesketcher.

Task 1 Intepret what "muniapp" does

Tester: What do you think it does? Newstring. What is the purpose of the dollar sign
and brackets? What will be visible during runtime?
TP: I have no idea about the programming. Is it a code for something else that
should be displayed?
Tester: Yes, it displayes the value of the variable

Tester: What happens when you press show?
TP: It changes the variable to true and shows the text

Tester: What is the purple box that points to the buttons?
TP: I think its the same as action boxes.
Tester explains the difference.

Tester: What happens in the login screen?
TP: It shows the username an dpassword when you press login.

Tester explains the equals sign = format =${variable} used a input fields.
TP: So it saves the input for further use
Tester shows the program generation and that it runs successfully.

Task 2: Interpret what "exampleapp" does

TP: It looks familiar. The text written in the the fields username and password is
stored. By clicking login the action box is performed. Because it says app the
variables global. [This was explained in the primer]

Tester: Start by explaining the blue box
TP: I'm assuming it is something that checks if the username is true or not
Tester: Just focus on the blue box itself
TP: I'm assumin the stored value is true or false since it says Boolean

Tester: What about "Hello ${username}"?
TP: It shows whatever is set to username. Unsure if it is displayed by clikcing save or

by login. Most likely login.

Tester: What abour the password field? What happens when you press "Save"?
TP: I don't quite understand what passwordField does since it's already stored a
password. But it says new password so maybe it deletes the old and sets the new by
pressing save.

Tester: What is username and password set to?
TP: It says "secret" so I'm guessing it shows the password using asterix'

Tester shows that the first part of the format is equal to the login
TP: It will display the password as code for the secret password?

Tester: It will be blank since it stores whatever is in the field. What does part two of
the field mean?
TP: It is what already is stored in the password variable. It will display it.

Tester: What happens to hasSaved by pressing "Save"?
TP: It is set to true

Tester: What about the green text?
TP: By pressing "Save" the green text "Saved" will be visible if it is true and invisible
if false.

Tester: What about the style box with no arrows?
TP: It will affect anything.

Tester: If you intepret the purple style box literallly word by word. What do you think it
does?
TP: I'm assuming it is the message next to the button that is going to be set to false,
but that doesnt make any sense. Maybe the text in New Password disappears. I'm
not sure what the dollar sign is use for.
Tester explains what it means that it has no arrow.

Task 3: Implement a way of changing the username in "exampleapp"

TP discussed various complecated methods of implementing the task.
Tester: It can be visible all the time, no problem.

TP: I'll do it the same way as with the password change. I'm thinking there must be a
place to input the text.
TP copies the password field. Thinking outloud it is clear that she wants to do it the
same way as with password.

Tester: What do you think happens if you remove the last dollar sign part of the field?
TP: Then I don't think the text will appear when "Save" is pressed.
TP leaves the dollar sign part
TP: It's nice to show the username

Tester: What happends when you press "Save"?

TP: The username will be saved

Tester: Is there a connection between the save button and the username field you
added?
TP: I want that yes

Tester: Right now you have a connection between password
TP: I'm thinking it also must be one for username.
TP tries to write hasSaved (duplicated) in the box.
Tester: No quite sure why you want to do that?
TP: I'm thinking only parts of the box is performed.
Tester explains that the whole box is performed.

Task 4a: In "exampleapp": Implement a way of storing a textual note by using a
TextArea and a Button.

TP drags in a TextArea. Uses a variable named text in the TextArea. Makes a
TextField with an input field format =${textField}
Makes a new button. TP says she is thinking that it needs an action for the button.
Makes an arrow from the action to the button.

Tester: If you press "Save", what is text then.
TP: Hm
Tester: What is hasSaved? Technically, is it a String, Int?
TP: boolean
Tester: How do you know?
TP: It is depicted in the blue box.
Tester: Then what is text?
TP: It should be a String since it is inside the brackets
Tester: Do you remember that password was declared earlier?
TP: Oh, I have to declare text in the blue box.

Task 4b: Display the note another place in the window.

TP overcomplecates the task, but when Tester says it can be done easier she
changes username with ${text} and it works.

Comments

TP: I felt "green" when it came to the programming. Maybe I would have understood
more if I knew some more programming?
Tester: If you had to do it again, would you have understood more?
TP: Yes, definitely.

Tester: What do you think about making prototypes this way?
TP: Very nice and clear. Smart to have different colors on the boxes depending on
what they do.

Tester: Anything you would have done differently if you were to make it?
TP: The purple box without an arrow was a little vague. Maybe have all the variables

in one box so they were all visible?

Tester: Did you think it was logical that
${username} displays the content of the variable?

TP: Yes

That =${usernameRandomName} inputs to the identifer?
TP: Yes

The combo? =${usernameRandomName}{username}
TP: Yes

After seeing what they mean it seems logical.

TP: I would have liked several arrows from one box. Less clutter.

AppendixBSource code

For practical reasons the source code is available at GitHub. Please refer to the
README, and look at the wireframing-tutorial project as an example.

Dependencies: WireframeSketcher, Xtend, JavaFX, Apache Commons IO

– Create a WireframeSketcher project.

– Add a Screen, and a Storyboard.

– From the storyboard add the screen.

– Create the sketch inside the screen file. Refer to the examples in wireframing-
tutorial

– Edit Constants.xtend and ensure the correct directories.

– Run Generator.xtend

– Run AppController.xtend

Source code: http://github.com/frel/WireframeToJavaFX

95

	Abstract
	Sammendrag
	Contents
	Preface
	List of Figures
	Introduction
	Motivation
	Research Questions
	Structure of the report

	Methodology
	Design science
	Using the method

	Background
	Prototyping
	Iterative design
	Evolutionary prototypes

	Prototyping tools
	Functionality coverage
	Different approaches
	Program architecture

	Model-driven Engineering
	Model-to-text transformation
	Code generation

	Eclipse IDE
	Eclipse EMF

	Criteria
	Empirical data from GUI design course
	Analysis

	Eclipse Workbench
	Perspectives
	Editors
	Views
	Adding additional behavior

	Tools
	WireframeSketcher
	JavaFX and FXML

	Creating requirements
	Target group
	Deciding on functionality

	The Functional Requirements
	Non-functional requirements
	Exploring the dimensions

	Initial development
	Focusing on different aspects
	Decorating sketches with a decorator model
	Screen decorator model

	Design
	1st Iteration
	Editing screen decorators in views

	2nd Iteration
	Representing screen decorators using custom widgets

	Technique
	How development was done
	SceneBuilder
	Xtend programming language

	1st Iteration
	Initial architecture
	Choosing JavaFX layout styles

	2nd Iteration
	Prototyping process

	Analysis
	Comparing manual and generated implementations
	The sketch
	Implementing the sketch manually using JavaFX
	Generating the implementation

	Evaluation
	User-testing the prototype
	How testing was performed
	The tasks
	Challenges with the test
	The sketch applications
	Evaluating the user-tests

	Evaluating the design based on the user-tests
	Evaluating the research questions
	Further development
	Conclusion

	References
	Observational notes from User-testing
	Source code

