
A Web-Based Code-Editor
For Use in Programming Courses

Christian Rasmussen
David Åse

Master of Science in Computer Science

Supervisor: Hallvard Trætteberg, IDI

Department of Computer and Information Science

Submission date: September 2014

Norwegian University of Science and Technology

Abstract

In this thesis a code-editor was implemented as a part of a bigger web-based system for solving

programming assignments in the course TDT4100. The editor was created in order to allow the

students of the class to focus solely on writing code, and not on setting up the surrounding

framework (installing programming languages and IDEs, setting up projects, etc.).

The editor supports syntax highlighting, error checking, code completion, multiples classes, and

running of tests, along with all of the more basic editor functionality such as block indentation,

bracket matching, line-numbers, etc. The editor is embedded into each problem contained in an

assignments, which allows students to solve basic and intermediate programming challenges

directly in their web-browser, without the need for any setup.

The system also utilizes several gamification elements, as described in the thesis’ preliminary

study, “Gamification of Assignment Systems” (Åse, 2014). Responsive web design principles were

used while implementing the system, which allows students to check their ranks and scores from

any device (cellphone, tablet, laptop and similar). This was done in order to foster competition

between the students, which will in turn increase motivation even further.

The results from the experiments performed indicate that the editor is well suited for use on

programming assignments in courses such as TDT4100, TDT4110 and TDT4120, or any other

course which has assignments that can be tested programmatically, as the editor has a low

response time even for very large programs (64KB). However, the editor is not suited for courses

such as TDT4180, or other GUI-programming courses, since the he editor is currently limited to

displaying console output and test-results.

Sammendrag

I løpet av denne masteroppgaven ble det implementert en kodeeditor som en del av et større

web-basert system for å løse programmeringsøvinger i faget TDT4100. Dette ble gjort for å la

studentene få fokusere på å skrive kode, og ikke på rammene rundt (det å installere

programmeringsspråk, konfigurere utviklingsverktøy og operativsystem, osv.).

Editoren støtter syntax highlighting, error checking, code completion, flere klasser og kjøring av

tester/kode, i tillegg til mer grunnleggende funksjonalitet som blokkinnrykk, bracket matching,

linjenummer, osv. Editoren er tilgjengelig i hver oppgave i en øving, hvilket gjør det mulig for

studenter å løse grunnleggende og middels avanserte programmeringsøvinger direkte i

nettleseren, uten å måtte tenke noe på oppsett.

Systemet benytter seg også av flere spillifiseringselementer, som beskrevet i oppgavens

forstudium “Gamification of Assignment Systems” (Åse, 2014). Prinsipper for responsivt design

ble brukt under implementasjonen av systemet, noe som gjør det mulig for studenter å holde seg

oppdatert fra alle typer enheter (mobil, nettbrett, PC o.l.). Dette ble gjort for å tenne

konkurranseinstinktet, som igjen fører til høyre motivasjon.

Testresultatene viser at editoren er godt egnet for bruk på programmeringsøvinger i fag som

TDT4100, TDT4110 og TDT4200, samt andre fag med øvinger som kan testes programmatisk,

siden editoren har lav responstid selv for store programmer (64KB). Editoren er derimot ikke

like godt egnet for øvinger i fag som TDT4180, eller andre GUI-programmeringsfag, siden den på

nåværende tidspunkt kun kan vise konsollutskrift og testresultater.

Preface

This is the project report for the subject “TDT4900 – Master Thesis”, written summer 2014.

The project was conducted by Christian Rasmussen and David Åse, who are, at the time of writing,

studying Computer Science at the Norwegian University of Science and Technology (NTNU).

The project was completed under the supervision of Associate Professor Hallvard Trætteberg.

To get the most out of this report, the reader should have a basic understanding of computer

science, and be familiar with Eclipse and its ecosystem.

Nomenclature List

AJAX Asynchronous JavaScript and XML

API Application Programming Interface

BPMN Business Process Modeling Notation

CORBA Common Object Request Broker Architecture

CPU Central Processing Unit

CSS Cascading Style Sheets

DAO Data Access Object

DSL Domain Specific Language

DTO Data Transfer Object

ECJ Eclipse Compiler for Java

EMF Eclipse Modeling Framework

GOMS Goals, Operators, Methods, and Selection rules

GUI Graphical User Interface

HQL Hibernate Query Language

HTML HyperText Markup Language

HTTP Hypertext Transfer Protocol

IDE Integrated Development Environment

IDL Interface Definition Language

ISO International Organization for Standardization

JAR Java Archive

JDK Java Development Kit

JPEG Joint Photographic Experts Group

JSON JavaScript Object Notation

JSP JavaServer Pages

JVM Java Virtual Machine

MVC Model-View-Controller

OCL Object Constraint Language

ORB Object Request Broker

ORM Object-Relational Mapping

OSGi Open Service Gateway initiative

PC Personal Computer

PNG Portable Network Graphics

RAM Random Access Memory

REST Representational state transfer

RMI Remote Method Invocation

RPC Remote Procedure Call

SQL Structured Query Language

SSE Server-Sent Events

SSL Secure Sockets Layer

SUS System Usability Scale

TA Teaching Assistant

TCP Transmission Control Protocol

UML Unified Modeling Language

URL Uniform Resource Locator

UUID Universally Unique Identifier

VM Virtual Machine

XML Extensible Markup Language

YAML YAML Ain't Markup Language

Table of Contents

1 - Introduction ... 1

1.1 Background and motivation .. 1

1.1.1 The pre-study .. 1

1.1.2 Thesis scope ... 2

1.2 Goals .. 3

1.3 Research approach .. 3

1.4 Thesis structure .. 4

2 - Background theory .. 5

2.1 Process efficiency (usability) .. 5

2.1.1 GOMS ... 5

2.1.2 BPMN .. 7

2.2 IDE functionality ... 8

2.2.1 Syntax highlighting .. 8

2.2.2 Error checking ... 8

2.2.3 Code completion ... 9

2.2.4 IDE architecture .. 10

2.3 Editor performance .. 13

2.3.1 Response time .. 13

2.3.2 Scalability ... 14

2.4 Responsive design ... 14

2.5 Gamification... 16

2.6 State of the art .. 16

2.6.1 Educational systems .. 16

2.6.2 Pure editors ... 19

2.6.3 Comments and conclusion .. 23

3 - Re-engineering system processes .. 25

3.1 The current system processes ... 25

3.1.1 Publishing an assignment .. 25

3.1.2 Solving an assignment .. 25

3.1.3 Approving an assignment .. 34

3.2 New system processes .. 34

3.2.1 Publishing an assignment .. 35

3.2.2 Solving an assignment .. 35

3.2.3 Approving an assignment .. 39

3.3 Conclusion .. 39

4 - Editor architecture ... 40

4.1 Supported functionality .. 40

4.2 The evolution of the architecture ... 41

4.2.1 High-level architecture ... 41

4.2.2 Making the web-server explicit... 43

4.2.3 Adding core functionality .. 45

4.2.4 Alternative architecture ... 47

4.2.5 Conclusion.. 50

4.3 Communication .. 50

4.3.1 Communication between client and server ... 50

4.3.2 Internal communication .. 51

4.3.3 Editor API ... 53

4.3.4 Conclusion.. 53

4.4 Possible improvements .. 54

4.4.1 Re-use Eclipse processes ... 54

4.4.2 Reduce the footprint of the Eclipse software .. 56

4.4.3 Scalability ... 56

4.4.4 Simplify deployment.. 57

5 - Experiments and results .. 58

5.1 Experimental plan ... 58

5.2 Testing editor response time.. 58

5.2.1 Startup time .. 59

5.2.2 Running code, running tests, error checking, and code completion 60

5.2.3 Conclusion.. 63

5.3 Testing editor scalability .. 64

5.3.1 Startup time .. 64

5.3.2 Running code, running tests, error checking and code completion..................................... 65

5.3.3 Conclusion.. 69

5.4 Testing responsive design ... 70

5.4.1 The “assignment overview” view ... 70

5.4.2 The “leaderboards” view ... 72

5.4.3 The “my progress” view ... 73

5.4.4 The “problem” view ... 74

5.4.5 Conclusion.. 75

6 - Evaluation and conclusion .. 76

6.1 Evaluation ... 76

6.2 Discussion ... 76

6.3 Future work ... 77

6.4 Closing remarks ... 77

7 - Bibliography .. 78

8 - Appendix A – Constraints, requirements and architecture ... 82

8.1 Implementation constraints ... 82

8.2 System requirements ... 82

8.2.1 Data model ... 83

8.2.2 Web-based code-editor .. 84

8.2.3 Non-functional requirements .. 84

8.2.4 Additional requirements.. 85

8.2.5 Requirements from the preliminary study that were cut .. 85

8.3 System architecture.. 85

8.3.1 Architectural patterns... 85

8.3.2 System architecture in ArchiMate ... 88

9 - Appendix B – Implementation ... 91

9.1 Data storage ... 91

9.1.1 Querying the data model ... 91

9.1.2 Choice of ID .. 92

9.1.3 The EMF model .. 95

9.2 Web server ... 97

9.2.1 Specialized libraries for EMF ... 97

9.2.2 Generic web frameworks... 98

9.2.3 Conclusion.. 102

9.3 Communication .. 102

9.3.1 Real-time updating of the web page ... 103

9.3.2 Communication with the Eclipse application.. 104

9.4 JavaScript frameworks and libraries... 106

9.4.1 Why does this project need JavaScript? .. 106

9.4.2 Why do we need a frameworks or a library? .. 108

9.4.3 Determining possible framework candidates ... 108

9.4.4 Determining possible library solutions ... 109

9.4.5 Conclusion.. 110

9.5 JavaScript code-editors ... 111

9.5.1 Why does this project need a JavaScript code-editor? .. 111

9.5.2 Determining possible candidates ... 111

9.5.3 Determining the best candidate.. 112

9.5.4 Conclusion.. 113

9.6 CSS-framework ... 113

9.6.1 Why does this project need a CSS-framework? .. 113

9.6.2 Determining possible candidates ... 113

9.6.3 Conclusion.. 114

9.7 CSS-preprocessor .. 114

9.7.1 Why does this project need a CSS-preprocessor? ... 114

9.7.2 Determining possible candidates ... 115

9.7.3 LESS or SASS? ... 115

9.7.4 Conclusion.. 116

9.8 The complete stack ... 117

9.8.1 Technology in relation to the architecture ... 118

9.9 Minor technologies ... 119

9.9.1 LESS Hat .. 119

9.9.2 jQuery Collapsible ... 120

9.9.3 Font Awesome .. 120

9.9.4 Faker.js .. 120

10 - Appendix C – Miscellaneous ... 121

10.1 Requirements from the preliminary study .. 121

10.1.1 Functional requirements .. 121

10.1.2 Non-functional requirements ... 121

10.2 Experiment results ... 122

10.2.1 Startup time scalability .. 122

10.2.2 Run code scalability .. 123

10.2.3 Run tests .. 124

10.2.4 Error checking ... 125

10.2.5 Code completion ... 126

10.3 Setup guide .. 127

10.3.1 Setting up Eclipse ... 127

10.3.2 Installing Java 8 plugin ... 127

10.3.3 Setting up JRE8 in eclipse ... 127

10.3.4 Installing Maven plugin ... 127

10.3.5 Installing Akka dependencies into Eclipse .. 127

10.3.6 Generating model code .. 128

10.3.7 Create a Run configuration .. 128

10.3.8 Exporting to JAR ... 128

10.3.9 Set up automatic building ... 128

10.3.10 Setting up IntelliJ ... 128

List of Figures

Figure 1.1: Pre-study prototype – “Assignments overview” .. 1

Figure 1.2: Pre-study prototype - “Solve assignment” .. 2

Figure 2.1: A complete GOMS model .. 7

Figure 2.2: BPMN legend subset ... 7

Figure 2.3: Java syntax highlighting in Eclipse ... 8

Figure 2.4: Java error checking in Eclipse .. 9

Figure 2.5: Java code completion in Eclipse .. 9

Figure 2.6: The architecture of the Eclipse platform .. 10

Figure 2.7: Layering of the OSGi specification ... 11

Figure 2.8: Simplified architecture of an IDE ... 12

Figure 2.9: Eclipse IDE’s hierarchical structure .. 13

Figure 2.10: Traditional and fluid layout ... 15

Figure 2.11: Code Hunt’s editor ... 17

Figure 2.12: CodingBat’s editor ... 18

Figure 2.13: Learn Java Online’s editor .. 19

Figure 2.14: Ace code-editor ... 21

Figure 2.15: CodeMirror editor ... 21

Figure 2.16: Orion editor .. 22

Figure 2.17: Eclipse Flux's editor .. 24

Figure 2.18: Eclipse flux activity diagram ... 24

Figure 3.1: Solve assignment setup (current, BMPN)... 26

Figure 3.2: Solve assignment weekly (current, BPMN) ... 30

Figure 3.3: The system's editor.. 35

Figure 3.4: Solve assignment weekly (new, BPMN) .. 37

Figure 4.1: The supported functionality in the editor .. 40

Figure 4.2: 2-tier architecture .. 41

Figure 4.3: The interfaces that the server expose .. 42

Figure 4.4: The Java interfaces for the communication between the client and the server 43

Figure 4.5: The architecture including the web server .. 44

Figure 4.6: The interfaces that the web server and the services expose .. 44

Figure 4.7: The architecture including the data storage and the Eclipse plugin 46

Figure 4.8: The interfaces including the Eclipse Plugin Layer .. 46

Figure 4.9: An example of how the data flows through the interfaces .. 47

Figure 4.10: Alternative architecture .. 48

Figure 4.11: The interfaces for the alternative architecture ... 49

Figure 4.12: An example of how the data flows through the interfaces (Alternative architecture)

 ... 49

Figure 4.13: The architecture including the actors ... 52

Figure 4.14: Messages sent between client and server (Akka messages) ... 53

Figure 4.15: Data flow between the web browser and the Eclipse plugin .. 54

Figure 4.16: A single problem per workspace ... 55

Figure 4.17: Multiple users per workspace .. 55

Figure 4.18: Multiple problems per workspace .. 56

Figure 4.19: Distribution of plugins across multiple nodes ... 57

Figure 5.1: Editor startup time .. 60

Figure 5.2: Editor scalability prediction .. 68

Figure 5.3: “Assignment overview” view (laptops and desktop computers) 71

Figure 5.4:” Assignment overview” view (mobile devices) ... 71

Figure 5.5: “Leaderboard” view ... 72

Figure 5.6: “My progress” view .. 73

Figure 5.7: “Editor” view .. 74

Figure 5.8: “Editor” view with maximized editor ... 75

Figure 8.1: Data model requirements ... 83

Figure 8.2: The Client-Server pattern ... 86

Figure 8.3: The classic MVC pattern... 86

Figure 8.4: Typical web-MVC pattern ... 87

Figure 8.5: Publish assignment architecture ... 88

Figure 8.6: Solve assignment architecture .. 89

Figure 8.7: Approve assignment architecture ... 90

Figure 9.1: EMF model ... 95

Figure 9.2: Dynamic instance for validating the model ... 96

Figure 9.3: Relative popularity between 5 web frameworks .. 99

Figure 9.4: Relative popularity between 5 more web frameworks .. 100

Figure 9.5: The relative popularity between the 4 most popular web frameworks 100

Figure 9.6: A typical implementation model of Java RMI .. 105

Figure 9.7: A client sends a request through its local Object Request Broker (ORB) and to a remote

ORB’s servant .. 105

Figure 9.8: Pure HTML code editor .. 107

Figure 9.9: A JavaScript-powered editor ... 107

Figure 9.10: JavaScript MVC-framework popularity .. 108

Figure 9.11: JavaScript library usage survey ... 110

Figure 9.12: CSS-framework popularity .. 114

Figure 9.13: SASS syntax example .. 116

Figure 9.14: LESS syntax example .. 116

Figure 9.15: The complete technology stack .. 117

Figure 9.16: MVC implementation .. 118

Figure 9.17: Client-Server implementation .. 119

List of Tables

Table 2.1: JavaScript code-editor comparison .. 20

Table 2.2: Code-editor feature comparison .. 23

Table 5.1: David's machine specs ... 59

Table 5.2: Christian's machine specs ... 59

Table 5.3: Editor startup time .. 60

Table 5.4: Running code (performance experiment results) .. 61

Table 5.5: Running tests (performance experiment results) .. 61

Table 5.6: Error checking (performance experiment results) .. 62

Table 5.7: Code completion (performance experiment results)a ... 62

Table 5.8: Editor performance results summary ... 63

Table 5.9: Editor performance (goals vs results) ... 63

Table 5.10: Editor startup scalability .. 64

Table 5.11: Running code (scalability experiment result) ... 66

Table 5.12: Running tests (scalability experiment result) ... 66

Table 5.13: Error checking (scalability experiment result) ... 67

Table 5.14: Code completion (scalability experiment result) ... 67

Table 5.15: Editor scalability results summary .. 67

Table 5.16: Editor scalability prediction .. 68

Table 9.1: List of Java web frameworks (as of 5/26/2014) ... 98

Table 9.2: JavaScript framework comparison ... 109

Table 9.3: JavaScript code-editor comparison .. 111

Table 9.4: Code-editor feature comparison .. 112

Table 9.5: LESS and SASS features.. 115

Table 9.6: The complete technology stack .. 117

Table 9.7: LESS Hat and generated CSS .. 119

Table 10.1: Startup time (2 clients) ... 122

Table 10.2: Startup time (4 clients) ... 122

Table 10.3: Startup time (8 clients) ... 122

Table 10.4: Startup time (16 clients, time in seconds)... 122

Table 10.5: Run code (2 clients) .. 123

Table 10.6: Run code (4 clients) .. 123

Table 10.7: Run code (8 clients) .. 123

Table 10.8: Run code (16 clients, time in seconds) ... 123

Table 10.9: Run tests (2 clients) .. 124

Table 10.10: Run tests (4 clients) ... 124

Table 10.11: Run tests (8 clients) ... 124

Table 10.12: Run tests (16 clients, time in seconds) .. 124

Table 10.13: Error checking (2 clients) .. 125

Table 10.14: Error checking (4 clients) .. 125

Table 10.15: Error checking (8 clients) .. 125

Table 10.16: Error checking (16 clients, time in seconds) ... 125

Table 10.17: Code completion (2 clients) .. 126

Table 10.18: Code completion (4 clients) .. 126

Table 10.19: Code completion (8 clients) .. 126

Table 10.20: Code completion (16 clients, time in seconds) ... 126

Page 1 of 128

1 - Introduction

This chapter contains the background and motivation for the thesis, the thesis goals, the research

approach for the thesis, and the thesis structure.

1.1 Background and motivation

This thesis builds on a pre-study where the primary motivation was to utilize gamification to

create a prototype for a fun and engaging assignment system which could motivate students and

increase the overall learning outcome of a programming class (Åse, 2014).

1.1.1 The pre-study

In the pre-study, Åse mentions two primary goals for utilizing gamification in higher level

programming courses:

 To increase student motivation

 To increase the learning outcome of a class

By examining case studies and theory, the specific gamification elements which would be most

likely to fulfill these goals were identified and a conceptual model for a gamified assignment

system was created. The current assignment system of TDT4100 was then fitted into the

conceptual model, and the refinements were made where needed. After this, an interactive

prototype utilizing these elements was created and a usability test was conducted.

The prototype (Figure 1.1, Figure 1.2) was designed top down in Adobe Fireworks, and the design

was completely platform independent. The choice of platform was discussed as a part of the pre-

study, but no decision was reached. No technologies for implementation were discussed.

Figure 1.1: Pre-study prototype – “Assignments overview”

Page 2 of 128

Figure 1.2: Pre-study prototype - “Solve assignment”

1.1.2 Thesis scope

This thesis aims to implement the prototype described in the pre-study, while also focusing on

streamlining the assignment system processes.

The overall design of the prototype from the pre-study was well received (by the test candidates),

so only minor changes will be made, but some focus will also be given to implementing the system

with a responsive design. This will ensure a good user experience whether the students access

the system from their cellphones, tablets, or laptops, and will allow the more competitive students

to always remain updated on their leaderboard placements and rankings, further increasing

motivation.

We will narrow the scope from the pre-study, and focus primarily on implementing functionality

for solving one assignment. We will implement the prototype as a web application, as this will

allow the students to focus all of their attention on the code they are writing, and not the usual

setup associated with programming in Java (installing JDK, installing an IDE, downloading and

configuring JUnit tests, etc.). To ensure minimal setup and configuration we will try to create a

web-based code-editor which requires no setup, and which will allow students to write and run

Java code directly in their web browser. We aim to support advanced functionality of modern

development tools, mainly syntax highlighting, error detection, and code completion.

Page 3 of 128

The data model and the backend services for the editor will be modelled in Eclipse Modeling

Framework, as this is a formal requirement from the faculty, but the other technologies will be

decided as part of the thesis.

1.2 Goals

 Goal 1: To re-engineer the assignment processes to allow the students to focus on

writing code, and not setting up the surrounding framework (Java, IDE, downloading

tests, etc.)

 Goal 2: To create a web-based code-editor with good IDE-functionality.

 Goal 3: To determine what kind of assignments in TDT4100, and in general, the finished

editor is suited for (size, complexity, etc.).

 Goal 4: To implement the prototype system as described in the pre-study, focusing

primarily on one assignment.

o Goal 4.1: To decide which architectural patterns to use, which technologies to

use, etc.

o Goal 4.2: To utilize responsive design, providing students with a good user

experience on cellphones, tablets and computers.

1.3 Research approach

The thesis has multiple goals which require different approaches.

Goal 1 – Re-engineering the assignment processes

To meet the goal pertaining to streamlining the assignment processes (reducing the overhead

related to configuring a computer when solving programming assignments, allowing students to

focus all of their attention on actual programming), an analytical approach is necessary. We will

analyze the tasks in the current assignment system using GOMS (Goals, Operators, Methods,

Selection rules) analysis, as described in section 2.1.1. We will also model the system in BPMN, as

described in section 2.1.2, to get a good overview of the system and its different environments.

We will then create a new system based on the findings from the first modeling session. When the

new system is finished, we will analyze and model it using the same notation, making it easy to

compare the old and the new system. We will then discuss the comparison.

Goal 2 – Creating a good editor

To meet the goal pertaining to editor quality, we will use both an analytical and empirical

approach. To get the graphical design right, we will try to mimic existing IDEs as they are founded

on years of experience. To ensure that our technical functionality is good, we will model the

Page 4 of 128

problem domain using diagram tools, and validate these models with real data. Based on the

resulting models we can implement a solution using suitable design patterns. Finally, we will run

some quantitative experiments to ensure that everything works as intended.

Goal 3 – Editor use cases

To meet the goal to determine the optimal use cases for our finished editor, we will analyze the

empirical results obtain during the testing of the editor and compare the editors performance to

the needs of assignments in the current TDT4100 assignment system, along with the assignments

in other courses’ assignment systems. This will be a brief discussion and not a thorough analysis.

Goal 4.1 – System implementation

To meet the system implementation goal we will use an analytical approach to determine the

most suited technology candidates for our system. We will find the most used technologies by

examining online articles, forums and trends. We will then analyze the technologies mentioned

and compare them to each other. When we have a good understanding of the potential candidates,

we can determine which of the technologies that fits our project better, and include them in our

implementation stack.

Goal 4.2 – Responsive design implementation

To meet the goal about responsive design, the principles described in section 2.4 will be utilized,

and the system will be continuously tested with an emulation service during the design process.

A final test will be performed after the system is finished, and the results (screenshots from all

devices) will be included in the report, along with comments about the design.

1.4 Thesis structure

Chapter 1 describes the motivation and background for the thesis. Chapter 2 covers the necessary

background theory. Chapter 3 contains an analysis of the current assignment system processes,

and introduces a new set of processes. Chapter 4 describes the editor architecture. Chapter 5

covers experiments and results. Chapter 6 concludes the thesis.

Appendix A and B contain the system realization details, such as requirements, architecture, and

the technological stack used to implement the system, while Appendix C is reserved for

miscellaneous information.

Page 5 of 128

2 - Background theory

This chapter describes the necessary background theory needed to implement the editor and the

prototype, along with a state of the art analysis of other services.

2.1 Process efficiency (usability)

The ISO definition of usability is as follows:

Usability - ISO 9241 definition (World Wide Web Consortium, 2014)

The effectiveness, efficiency and satisfaction with which specified users achieve specified goals in

particular environments.

 effectiveness: the accuracy and completeness with which specified users can achieve specified

goals in particular environments

 efficiency: the resources expended in relation to the accuracy and completeness of goals achieved

 satisfaction: the comfort and acceptability of the work system to its users and other people

affected by its use

In the pre-study for this thesis, the effectiveness and satisfaction of the prototype were measured,

but efficiency was not considered. This thesis expands on the work done in the pre-study, and one

of the goals of this thesis is to create a system which will enable the students to maximize their

efficiency, allowing them to learn more programming (goals achieved) per hour spent (resources

expended). We believe that a lot of overhead related to computer configuration and assignment

setup can be removed by re-engineering the processes in the system.

To achieve this re-engineering, we will use GOMS and BPMN to analyze the tasks and processes

in the current system, identifying any time drains. After the analysis is done we will create a new

set of processes, and use the same method to analyze them.

2.1.1 GOMS

The GOMS model is centered on four principles: goals, operators, models, and selection rules. The

general GOMS concept is defined very simply:

It is useful to analyze the knowledge of how to do a task in terms of goals, operators, methods, and selection

rules. (Bonnie E & David E, 1996)

We will explain each category with examples, before we present an example of a GOMS model

containing all four concepts.

Page 6 of 128

Goals

Goals refers to what the user wishes to accomplish by using the software. They are usually divided

into subgoals. For example, a student using TDT4100’s assignment system has a main goal of

being allowed to take the final exam. To meet this goal he first has to collect enough points for

each individual assignments, and to earn points for the assignments there is yet a number of

subgoals he has to meet.

Operators

Operators are defined as the actions that the software enables the user to perform. In most GOMS-

models operators are limited to concrete actions, like button events, menu-click events, input

events, and so on, but they can also be defined on a more abstract level. We will use a higher level

definition in this thesis, such as “navigate to”.

Methods

Utilizing system operators to reach a goal or a subgoal is called a method. For example, a process

which involves using “It’s learning” to navigate to the test code for assignments in the current

assignment system for TDT4100 can be classified as a method.

Selection rules

Selection rules become necessary when you have more than one method to reach the same goal.

For example, in the current assignment system of TDT4100, you can either download test code

by navigating to the correct file from “It’s learning” each time, or you could clone the entire repo

once by visiting GitHub, where the source code is hosted. Selection rules are personal and based

on the user’s preferences.

GOMS optimization

GOMS analysis is often used to estimate the time needed to perform a task by breaking it down

into the detailed steps a user need to perform to successfully complete it and measuring the time

each step takes (usually in milliseconds). This information can then be used to optimize the

processes in the system. Due to the high abstraction level we operate on in this thesis, we will

only compare the number of steps, not the time each step takes.

Figure 2.1 shows a complete GOMS model which includes all four concepts. You have an initial

situation, a selection between two methods (each of which have different operators) and a goal.

Not all models need selection rules. Many companies, such as Apple, argue that the fewer methods

there that are available to the user, the easier the interface is to understand. We agree.

Page 7 of 128

Figure 2.1: A complete GOMS model

2.1.2 BPMN

BPMN (Business Process Model Notation) is used to model business processes. The BPMN legend

is very comprehensive, but we will only use BPMN to give our GOMS-tasks context, which means

we will only need to use a small subset of the legend. This subset can be seen in Figure 2.2. Swim

lanes are typically used to represent entities or roles, but we will use them to represent the

different environments the tasks take place in.

Figure 2.2: BPMN legend subset

Page 8 of 128

2.2 IDE functionality

In this section we will look at typical functionality that IDEs include and how the IDEs are

architected to support this functionality.

2.2.1 Syntax highlighting

Syntax highlighting is a very common feature among IDEs and advanced text editors and it is used

to improve the readability of code. It works by changing the color of certain key elements of the

code, such as string literals and their delimiters, variables, etc. Figure 2.3 shows Java syntax

highlighting in the Eclipse IDE.

Figure 2.3: Java syntax highlighting in Eclipse

2.2.2 Error checking

Error checking is another common feature among IDEs, but it is much less common in text editors,

as many forms of error checking relies on the language compiler or interpreter.

By changing one of the println lines in Figure 2.3 to banana, Eclipse gives us the error checking

result that can be seen in Figure 2.4. The whole method gets a red gutter, the line with the mistake

is annotated with a light bulb and red square, and the incorrect word is underlined.

Page 9 of 128

Figure 2.4: Java error checking in Eclipse

2.2.3 Code completion

Code completion is about as common in IDEs and text editors as error checking is. While it is not

strictly necessary to rely on the compiler or interpreter to create code completion, it helps

provide much better suggestions than a simple dictionary approach would. We will now try to

erase the banana from Figure 2.4 and see what Eclipse can come up with (Figure 2.5).

Figure 2.5: Java code completion in Eclipse

Page 10 of 128

Most IDEs sort their code completion list alphabetically, not taking into account the different

usage statistics for each method.

2.2.4 IDE architecture

As we are going to create an editor, it is natural to look at how existing IDEs are architected.

In this section we will focus on the Eclipse IDE, as this is the IDE of choice of the course

responsible, and its architecture is representative for modern IDEs.

Modularity

The architecture of Eclipse is designed to be very modular, shown in Figure 2.6. The modularity

is achieved by bundling code into plugins. Even some of the internal subsystems are written as

plugins, i.e. the Java Development Tooling (JDT) and the Plugin Developer Environment (PDE).

These specific plugins help create new plugins by exposing the internal functionality of Eclipse

(The Eclipse Foundation, 2014).

Figure 2.6: The architecture of the Eclipse platform1

The plugin support is based on the Open Service Gateway initiative (OSGi) specification. The

layering of the OSGi specification is shown in Figure 2.7.

1 Source: http://help.eclipse.org/juno/topic/org.eclipse.platform.doc.isv/guide/images/sdk-arch.jpg

http://help.eclipse.org/juno/topic/org.eclipse.platform.doc.isv/guide/images/sdk-arch.jpg

Page 11 of 128

Figure 2.7: Layering of the OSGi specification2

The OSGi Alliance has defined these layers as follows (OSGi Alliance, 2014):

 Bundles – Bundles are the OSGi components made by the developers.

 Services – The services layer connects bundles in a dynamic way by offering a publish-

find-bind model for plain old Java objects.

 Life-Cycle – The API to install, start, stop, update, and uninstall bundles.

 Modules – The layer that defines how a bundle can import and export code.

 Execution Environment – Defines what methods and classes are available in a specific

platform.

 Security – The layer that handles the security aspects.

The OSGi specification makes it is easy to create plugins that depend on each other. A common

way to structure the plugins is to create GUI components that mirror some core components. A

simplified view of this division between components is shown in Figure 2.8.

2 Source: http://www.osgi.org/wiki/uploads/About/layering-osgi.png

http://www.osgi.org/wiki/uploads/About/layering-osgi.png

Page 12 of 128

Figure 2.8: Simplified architecture of an IDE

The advantage of this structure is that you can have different GUI components that use the same

core components. Or said in another way, it is possible to replace the GUI components with a

different set of GUI components, e.g. a web interface.

Code analysis

To support syntax highlighting, error checking and code completion the Eclipse IDE must perform

a lexical, syntactic and semantic analysis on the source code files. These types of analytic

processes (ordered from the easiest to the hardest) can be described as:

 Lexical analysis – The process of converting a sequence of characters into a sequence of

tokens.

 Syntactic analysis – The process of analyzing a sequences of tokens according to the

rules of a formal grammar.

 Semantic analysis – The process of adding semantic information to the parse tree and

building the symbol table.

Syntax highlighting can be implemented using lexical and syntactic analysis, while error checking

and code completion also require semantic analysis. Because semantic analysis requires a full-

blown compiler, general-purpose text editors (such as Sublime Text 23, Ace.js4) usually only

include syntax highlighting and not error checking and code completion. To get error checking

and code completion you must turn to more powerful IDEs like Eclipse, where the compiler is

integrated.

Code analysis is performed during the build process. In the case of the Eclipse IDE, the project is

built incrementally whenever a file changes. To avoid introducing errors in other files, the Eclipse

3 Available at: http://sublimetext.com
4 Available at: http://ace.c9.io

http://sublimetext.com/
http://ace.c9.io/

Page 13 of 128

IDE has a notion of a working copy. A working copy is an open document (a source file in this

case) that is not saved to disk. The point of a working copy is that this file will be analyzed

separately from the other source files, i.e. if you remove a method in a class that other classes

utilize, the other files will not report any errors until the working copy is saved to disk.

The Eclipse IDE organizes the source files in a hierarchical structure, as shown in Figure 2.9:

Figure 2.9: Eclipse IDE’s hierarchical structure

The Eclipse IDE contains exactly one workspace at a time (not shown in the figure), a workspace

may contain multiple projects, a project may contain multiple source folders, a source folder may

contain multiple packages, and a package may contain multiple source files.

2.3 Editor performance

Performance is often thought of as the useful amount of work done by a system, compared to the

time and resources spent to achieve that work. There are many ways to measure performance,

for example, response time, throughput, scalability, availability, etc. In this thesis we will focus

primarily on response time and scalability.

2.3.1 Response time

Responsive time is defined as the total amount of time it takes for a computer to respond to a

request. Since our system is web-based, this will include the transmission time (the time spent

traveling back and forth across the internet) and the time it takes to establish an internet

connection, in addition to the performance of our code. We want our editor to behave like a native

IDE, so in order to ensure good usability all of these have to be taken into account.

The transmission time is often the limiting bottleneck in modern web-applications (Leighton,

2009), but since our system will be highly localized (the majority of our users will probably be

within walking distance of the server), transmission times will most likely not be a problem.

The time associated with establishing connections to send and receive data across the internet,

however, could be a big problem. For example, a standard HTML request requires the client and

server to establish a TCP connection, which has a three packet handshake. The best case scenario

then is one round trip per message sent, which takes about 115ms (Sissel, 2010). Since our editor

needs to have a low response time, establishing TCP connections all the time is not an ideal

Page 14 of 128

situation, and we will have to look for other approaches, such as SSE or WebSockets, where a

channel is kept open until it is closed (Kaazing Corporation, 2014).

2.3.2 Scalability

Scalability has no generally accepted definition (Hill, 1990), but the basic notion is intuitive: how

does growth (both in tasks and computing power) affect the system. There are two broad

categories for improving performance when scaling a system: scaling out and scaling up (Michael,

Moreira, Shiloach, & Wisniewski, 2007). Scaling up (also called vertical scaling) refers to

improving the performance of a single node, while scaling out (also called horizontal scaling)

refers to distributing the system by adding more nodes. In our system we are most concerned

with how the system handles the number of users and the files sizes growing, and how we can

ensure that the response time is still kept low even when the system is stressed.

The editor response time and scalability potential will be tested extensively in Chapter 5, and

suggestions for improvement will be presented.

2.4 Responsive design

Responsive was born out of necessity with the advent of the smartphone. With so many different

smartphone operating systems (iOS, Windows Phone, Android, Symbian, and more), companies

could not afford to develop native apps for each different platform. Thus, a new design philosophy

was born.

Responsive Web design is the approach that suggests that design and development should respond to the

user’s behavior and environment based on screen size, platform and orientation. (Knight, 2011)

In his article, “Responsive Web Design: Enriching the User Experience” (Gardner, 2011), Brett

Gardner mentions that responsive design has three main elements: fluid layouts, flexible images

and media queries. We will take a closer look at each of these three elements.

Fluid layouts

Fluid layouts are layouts that utilize a flexible grid system, which can adapt to different device

sizes. This is the main cornerstone of responsive design. As an example, picture a website which

has three news article previews in a row on the front page. With a traditional non-fluid layout,

this layout will remain the same on a cellphone, rendering three boxes in a row. This will cause

every news article to become very small, and the user will have to zoom in to see the articles. With

a fluid layout, these boxes will be placed underneath each other in a column, instead of after each

other in a row. How this looks is illustrated in Figure 2.10. You can clearly see that the design

responds to the device’s size.

Page 15 of 128

Figure 2.10: Traditional and fluid layout

Flexible images

Flexible images are images that adapt to the size of their container. This is typically achieved by

setting the image width to the desired percentage of its container, but in some cases image-

cropping is more suitable.

Media queries

Media queries are less general than the two other elements mentioned. With media queries, the

designer can write specific behavior for the website based on the dimensions of the devices.

A media query typically specifies what should happen below or above a certain limit. For example:

@media (max-width: 600px) {
 #left-menu {
 display: none;
 }
}

Page 16 of 128

This code specifies that the element that has the ID #left-menu should be hidden for all devices

with a width of less than 600px. Media queries are typically used to achieve things such as

transforming traditional left-menus to dropdown-menus on mobile devices.

Testing responsive design

The only real way to test responsive design is by looking at it on different devices. Since this is

not an option most people can afford, different services which emulate devices exist. One example

of this is Responsinator5, a website which emulates the six most popular devices (based on

American user data), in both portrait and landscape mode. We will use this service.

2.5 Gamification

The background theory for gamification carries over from the pre-study. The most important

theoretical elements were “Self-determination theory” (Ryan & Deci, 2000) and “Fogg’s behavior

model” (Fogg, 2009). This theory, along with three case studies, were used to determine which

game elements would be best suited for an assignment system for programming challenges.

2.6 State of the art

There are a plethora of websites dedicated to teaching programming online, but most of them are

very limited in what they offer in terms of editor-capabilities. The most comprehensive site with

the best online editor seems to be Microsoft’s “Try F#” website6. This website is powered by

Microsoft’s Monaco Editor, which pretty much gives full IDE-functionality, including instant code

completion, error detection, imports, and more. Unfortunately, Monaco is a closed source project,

and only used by Microsoft for their own programming languages, such as F#, C#, TypeScript, etc.

Since we are looking to implement a Java editor, we focus on what Java alternatives there are

available today. We will first look at complete educational systems and, later, pure editors.

2.6.1 Educational systems

Since we are trying to create a system for teaching novice programmers about Java, we will first

have a look at the most relevant competitors in this category.

Code Hunt7

Code Hunt is another Microsoft project, aimed at teaching (presumably younger) people

programming in a fun and visually overwhelming way. It supports both C# and Java.

5 Available at: http://responsinator.com
6 Available at: http://tryfsharp.org
7 Available at: http://codehunt.com

http://responsinator.com/
http://tryfsharp.org/
http://codehunt.com/

Page 17 of 128

Code Hunt is a game! The player, the code hunter, has to discover missing code fragments. The player wins

points for each level won with extra bonus for elegant solutions. As players progresses the sectors, they

learn about arithmetic operators, conditional statements, loops, strings, search algorithms and more.

Code Hunt is a great tool to build or sharpen your algorithm skills. Starting from simple problems, Code

Hunt provides fun for the most skilled coders. (Microsoft Corporation, 2014)

Code Hunt features an editor with syntax highlighting, bracket matching, block indentation, and

other basic IDE-functionality, but lacks core features such as code completion and error-

detection. The game centers on changing an existing piece of code (“discover missing code

fragments”) in order to make some tests pass. The tests are always displayed on the right hand

side of the application and are run when the user clicks “capture code”. Unfortunately, most of

the problems seem to be about discovering what mathematical function to return. A screenshot

of Code Hunt can be seen in Figure 2.10, where the challenge is to change the “0” on line 4 to “x+1”.

The game also features loud noises when code runs and tests pass or fail.

Figure 2.11: Code Hunt’s editor

Page 18 of 128

CodingBat8

CodingBat is a website created by Nick Parlante, a computer science lecturer at Stanford

University. CodingBat aims to teach Java and Python to novice programmers.

CodingBat is a free site of live coding problems to build coding skill in Java, and now in Python (example

problem), created by Nick Parlante who is computer science lecturer at Stanford. The coding problems

give immediate feedback, so it's an opportunity to practice and solidify understanding of the concepts.

(Parlante, 2014)

The website is aimed at beginner programmers learning the very basics of programming.

CodingBat features an editor without any form of IDE-functionality at all, not even single line

indentation is possible. It uses a simple HTML <textarea> element where the user can write code.

It does, however, feature unit test results, which are displayed in a table. How this looks can be

seen in Figure 2.12.

Figure 2.12: CodingBat’s editor

Learnjavaonline.org9

LearnJavaOnline.org is a free interactive Java tutorial. Our vision is to teach Java in the browser using

short and effective exercises. By running real Java code directly from the web browser, students are able

8 Available at: http://codingbat.com
9 Available at: http://learnjavaonline.org

http://codingbat.com/
http://learnjavaonline.org/

Page 19 of 128

to try out Java without installing it. This creates a more efficient learning process, because students focus

on the important stuff - learning how to program. (LearnJavaOnline.org, 2014)

Learn Java Online (hereby LJO) is probably the system that is the most similar to ours. It offers

different categories, such as “Variables and types” and “Conditionals”, and each category page has

code examples with explanations, and an integrated editor. LJO’s editor features functionality

such as syntax highlighting, bracket matching, block indentation, and other basic IDE-

functionality, but just like Code Hunt it lacks core features such as code completion and error-

detection. The editor can be seen in Figure 2.13. Running code in LJO’s editor is incredibly slow,

as it took an average of 6.1 seconds per run (ten runs) to execute the following snippet:

LJO uses a third party service called Sphere Engine™ to run code, so the slowness is probably due

to the communication between LJO’s and Sphere Engine’s servers (Sphere Research Labs, 2014).

Needless to say, we will not be using this service.

Figure 2.13: Learn Java Online’s editor

2.6.2 Pure editors

When researching the complete educational solutions, it became clear that many systems used

an editor plugin (Code Hunt uses Monaco, Learn Java Online uses CodeMirror). Even though none

of the complete solutions fit our needs, perhaps there exists an editor which does?

There is an actively maintained Wikipedia entry which has an overview of available JavaScript

editors. It features a very handy comparison matrix (Wikimedia Foundation, Inc, 2014). We will

use this matrix to determine possible candidates to have a closer look at. We first do a screening

public class Main {
 public static void main(String[] args) {
 System.out.println("Hello, slow!");
 }
}

Page 20 of 128

based on some key criteria and then take a closer look at the candidates that make it through. The

complete list consists of 16 editors, as can be seen in Table 2.1.

Editor Cost License Open source Activity

Ace Free BSD3 Yes Yes

CodeMirror Free MIT Yes Yes

Orion Free BSD3/EPL Yes Yes

Codenvy - “Public Cloud” No Yes

Monaco
Used only by

Microsoft
- No Yes

MDK Depends on use “Dual” No Yes

Markitup Free MIT/GPL Yes Some

Micro Free GPL Yes Some

LDT Free MIT/GPL Yes Some

Ymacs Free BSD Yes Some

Codepress Free LGPL Yes No

CodeTextArea Free BSD Yes No

EditArea Free LGPL Yes No

Helene Free GPL Yes No

9ne Free GPL Yes No

jsvi Free GPL Yes No

Table 2.1: JavaScript code-editor comparison

We need an editor which is being actively developed, open source and free. In addition we need

it to have a software license which will allow us to use and modify it. This leaves us with just three

editors: Ace (Ace, 2014), CodeMirror (CodeMirror, 2014) and Orion (The Eclipse Foundation,

2014).

Ace

Ace is an embeddable code editor written in JavaScript. It matches the features and performance of native

editors such as Sublime, Vim and TextMate. It can be easily embedded in any web page and JavaScript

application (Ace, 2014)

Page 21 of 128

Figure 2.14: Ace code-editor

CodeMirror

CodeMirror is a versatile text editor implemented in JavaScript for the browser. It is specialized for editing

code, and comes with a number of language modes and addons that implement more advanced editing

functionality (CodeMirror, 2014)

Figure 2.15: CodeMirror editor

Orion

Develop your software where ever you go. It'll be there, in the cloud, right where you left it. Just login from

a web browser on desktop, laptop, tablet, at an airport, on a bus or even in your office. Orion incorporates

leading edge client technologies together to make an extensible tooling platform (The Eclipse Foundation,

2014)

Page 22 of 128

Figure 2.16: Orion editor

Editor Comparison

As can be seen from the pictures, all of the editors look roughly the same. Any difference is best

summed up in a feature comparison matrix, which can be found in Table 2.2. The matrix is

inspired from a similar matrix from the previously mentioned Wikipedia article, but we have

added key criteria pertaining to the goals of our thesis (the three rows in the beginning of the

matrix with No’s).

Page 23 of 128

Feature Ace CodeMirror Orion

Java syntax highlight Yes Yes Yes

Java error highlight No No No

Multiple class support No No No

Maximizable No No No

Code completion Some Some Some

Tab support Yes Yes Yes

Indent, new line keeps
level

Yes Yes Yes

Indent, syntax Yes Yes Yes

Indent, selected block Yes Yes Yes

Bracket matching Yes Yes Yes

Keyboard shortcuts
All common

shortcuts and custom
key bindings

Fully configurable Yes

Line numbers Yes Yes Yes

Search & replace Regex supported Yes Yes

Visual styling Fully theme-able CSS-based themes Yes

Undo/Redo Yes Yes Yes

Non US charset
support

Yes Yes Yes

Code folding Yes Yes Some

Multiple cursors /
Block selection

Yes Yes No

WebJar available Yes Yes No

Indent guides Yes No No

Code snippets Yes Through add-on Some

Spell checking Through add-on No No

Table 2.2: Code-editor feature comparison

Looking at Table 2.2 the three candidates already support a lot of functionality, but neither of

them support all of the goals for our thesis.

2.6.3 Comments and conclusion

Eclipse Flux

Midway through our thesis, our supervisor emailed the Eclipse Foundation about our work, and

they responded saying they were working on something similar called Eclipse Flux.

Page 24 of 128

Figure 2.17: Eclipse Flux's editor

Eclipse Flux utilizes the Orion Editor (which we mentioned in section 2.6.2), and is connected to

Eclipse via WebSockets (which we mentioned as an alternative in section 2.3.1). This allows for

real-time collaboration between eclipse and a web-view of the same eclipse project (you can see

the project path in the browser address bar). Unfortunately, flux appears to be dying. There has

only been 35 commits in the past six months (see Figure 2.18).

Figure 2.18: Eclipse flux activity diagram10

Conclusion

None of the current educational systems or editors support multiple classes, error checking or

code completion, but most support syntax highlighting.

While researching online editors, we also found websites claiming to be complete online IDE’s

(cloud9, Koding, etc.). They all supported multiple classes and syntax highlighting, but neither of

them supported error checking or code completion. Most of them used one of the three editors

described in section 2.6.2.

10 Source: https://github.com/spring-projects/flight627/graphs/commit-activity

https://github.com/spring-projects/flight627/graphs/commit-activity

Page 25 of 128

3 - Re-engineering system processes

This chapter contains a description of the processes required to publish, solve and approve

assignments in the old system and their new counterparts. These new processes act as

constraints for the editor described in chapter 4. All the processes will be described textually, but

the process for solving assignments will also be analyzed with GOMS and modeled with BPMN

notation. We will misuse the BPMN syntax slightly, and have each swim lane represent either a

physical or virtual environment. We will only analyze and model the assignment solving process

because it is the process that has the biggest impact on student efficiency, and it is also the only

process which utilizes our editor.

3.1 The current system processes

The current assignment system in TDT4100 has three main groups of actors: the students, the

teaching assistants (TAs), and the course instructor. The assignment system consists of ten

assignments, and each assignment has one or more problems that the students have to solve.

3.1.1 Publishing an assignment

To publish an assignment in the system, the course instructor starts by creating different problem

pages on the course wiki. He does this by writing problem descriptions, uploading test code, and

giving each problem a score. When all the problems are done, he collects the various wiki links

(URLs) for the problems that make up the assignment and publishes them as an assignment to

the “It’s Learning” platform. This assignment is a text block with links, and it is up to the student

to figure out how it is all connected.

3.1.2 Solving an assignment

First time setup

To configure a computer for Java-development, there are a number of things one has to do.

Experienced programmers might think this is trivial, but to a first year student, who has very little

experience with development, the task might seem daunting. First the student has to download

the correct version of JDK from the Java website. Then he has to install it and set the system

environment variables (PATH). Then he has to download the (correct) IDE-version, and, maybe,

configure it, depending on which IDE he chose.

The process is different for each of the three major platforms (OS X, Windows, Linux), and a lot of

time at the beginning of the semester is spent getting everything up and running.

Page 26 of 128

BPMN model

The model (Figure 3.1) shows the process for first time setup, and all the different tasks the

student has to deal with throughout the process. Each swim lane represents an environment.

The tasks are broken down into smaller steps in the next section.

Figure 3.1: Solve assignment setup (current, BMPN)

Page 27 of 128

Task analysis

Goal: Identify and download correct JDK-version

Primary method: Manual Setup
 - Open browser
 - Navigate to JDK webpage
 - Determine correct JDK edition (not always trivial for first year students)
 - Locate JDK download section
 - Determine correct JDK edition version (not always trivial for first year students)
 - Check license agreement
 - Click download

Secondary method: Use Ninite11
 - Open browser
 - Navigate to Ninite webpage
 - Check “JDK”
 - Click download

Selection rules and comments

Ninite is not a well-known application, so most students will perform manual setup by default.

Determining the correct JDK-version can be tricky for a new student. When googling “java jdk” or

“download jdk” Oracle’s download page is the top results. This page has a left menu with three

similar options “Java SE”, “Java EE” and “Java ME”, which can be confusing. When clicking on one

of them, you are taken to a product page with different tabs. You then have to find the download

tab, which leads you to a list of the operating system specific versions of the JDK edition you

selected. You then have to identify the version corresponding to your operating system.

None of this has anything to do with object oriented programming. It is purely operating system

specific configuration, so the task should be avoided altogether.

Goal: Identify and download correct IDE

Primary method
 - Open browser
 - Navigate to appropriate IDE website
 - Determine correct IDE version
 - Click download

Comments

As with JDK-versions, determining the correct IDE edition and version can be hard for new

students. As an example, the Eclipse download section features 13 editions in both 32-bit and 64-

bit versions.

11 https://ninite.com is a service which performs batch-install operations. It can be used to install
JDK+IDE, among other things

https://ninite.com/

Page 28 of 128

Goal: Install JDK and set Path

Installing JDK is different for each operating system. Only the Windows approach will be

described here, as Windows is still the dominant operating system.

Primary method
 - Navigate to and run the downloaded JDK file
 - Follow the installation Wizard
 - Finish installation
 - Navigate to “Environment variables” settings (not always trivial for first year students)
 - Locate JDK installation directory
 - Add JDK dir to the “Path” variable (not always trivial for first year students)
 - Add new system variable “JAVA_HOME”
 - Add JDK dir to the “JAVA_HOME” variable (not always trivial for first year students)

Comments

Many newer students have never needed to access the system variables before, thus the process

can be confusing, especially on Windows 8 systems where advanced functionality is hidden by

default. Teaching Assistants spend a lot of time on these task at the start of each semester, and

this is operating system specific knowledge, so the task should be avoided altogether.

Goal: Install and configure IDE

For some IDEs this require that JDK is installed and that the correct path is set. Since this is not

the case with Eclipse, we will show how it is done with IntelliJ IDEA.

Primary method
 - Open IntelliJ IDEA
 - Open the Project Structure dialog (e.g. Ctrl+Shift+Alt+S).
 - In the left-hand pane, under Platform Settings, click SDKs.
 - To add a new SDK, click add and select the desired SDK type.
 - In the dialog that opens, select the SDK home directory and click OK.

Comments

This is tool-specific knowledge and not related to object oriented programming, so the task

should be avoided altogether.

Conclusion

As we saw in all the methods, everything related to first time setup is specific to the user’s

operating system or IDE and has nothing to do with object oriented programming. There are

many places for students to make mistakes (determining correct versions and configuring), and

whatever knowledge the students obtain doing this is irrelevant to the curriculum and exam.

If possible, first time setup should be completely avoided.

Page 29 of 128

Weekly use

To solve an assignment in the system, the students first open “It’s Learning”, where they can find

the assignment (some text and a collection of links). They then click the different problem links

to visit the wiki where they can download the source code and test code to solve the problems in

an IDE of their choice. After the files are downloaded, the students create a new project and

import and configure the test files with JUnit.

Each problem has two types of points, “dekningsgradspoeng” and “omfangspoeng”. The students

have to choose problems in such a manner that the total score is at least 100 points for both kinds

of points. Students have complained that the current score system is confusing and cumbersome

to use, as it requires them to manually calculate and keep track of how many points they have

earned before they can deliver their assignment.

To deliver the assignment, students seek out a TA who reads their code and then decides how

many points to give and approves the assignment.

BPMN model

The model (Figure 3.2) shows the current way to solve assignments on a weekly basis, and the

different environments the student has to deal with throughout the process. Each swim lane

represents a physical or virtual environment.

The models describes what we think is the optimal way of using the current system and

navigating between the different environments, but this is not a process that is presented to the

students at any point, they have to figure it out by themselves.

Page 30 of 128

Figure 3.2: Solve assignment weekly (current, BPMN)

Page 31 of 128

Task analysis

Goal: Read assignment description

Primary method
 - Open web browser
 - Navigate to Innsida
 - Click “It’s Learning” in the right hand pane
 - Log in via Feide
 - Find and click “TDT4100” in the course dropdown
 - Click the assignment folder in the left hand pane
 - Click the correct assignment
 - Click assignment description file
 - Read the assignment description

Comments

In order to just read the assignment description, student have to deal with both “Innsida” and “It’s

learning”. It should be possible to go to “It’s learning” directly, but neither of the authors were

able to figure out how this could be done, so it is unlikely that new students will either.

Goal: Choose problem

In order to choose a problem, you first need to know your score. After you have assessed that you

need more points, you can use one of the following methods to select a problem.

Primary method: Starting over
 - Open web browser
 - Navigate to Innsida
 - Click “It’s Learning” in the right hand pane
 - Log in via Feide
 - Find and click “TDT4100” in the course dropdown
 - Click the assignment folder in the left hand pane
 - Click the correct assignment
 - Click assignment description file
 - Read the assignment description
 - Click problem (opens course wiki)
 - Read problem description
 - Solve current problem, or go back to assignment description to choose another problem

Primary method: Keeping a tab open
 - Do not close the tab after you chose the last problem
 - Click problem (opens course wiki)
 - Read problem description
 - Solve current problem, or go back to assignment description to choose another problem

Comments

If the students never close their tabs, then this goal is not too difficult to fulfill. However, since

solving problems usually takes a few hours, students are likely to close their tabs. The methods

require the students to deal with three different environments.

Page 32 of 128

Goal: Download source code and test code

This task takes place after the students have chosen a problem.

Primary method: Save as
 For each test or source code file:
 - Right click file
 - Select save as
 - Select directory
 - Click save

Secondary method: Copy paste
 For each test or source code file:
 - Click file
 - Select all text and copy
 - Create new file on computer
 - Open file
 - Paste
 - Save file with appropriate extension

Comments

Most students will probably use the first method, but as tablet use is becoming more and more

widespread, less and less people are familiar with right clicking. The copy/paste method can also

be used to paste directly into the IDE, which can actually make it more effective than the first one.

Goal: Setup project

This task is different for all IDEs. We will describe the process as it is in Eclipse, as this is the

recommended IDE for the course. This tasks also requires the students to have obtained any

necessary test and source code files.

Primary method
 - Open Eclipse
 - Click the “File” menu item
 - Select “New > Java Project”
 - Write a name
 - Click “Finish”
 - Right click the “src” folder
 - Select “New > Package”
 - Located and open the downloaded test-file
 - Copy package name from test file to the eclipse-wizard
 - Click “Finish”
 - Copy downloaded test-file to the newly created package
 - Install JExercise (or delete JExercise annotations)
 - Right click the newly created package
 - Select “New > Class”
 - Write name (find either at course wiki or in test file)
 - Click “Finish”

Page 33 of 128

Comments

Project setup is biggest hurdle for students to overcome when solving an assignment. Classes and

tests have to be placed in correct packages for everything to work, and you either have to install

JExercise (which is a task all in itself) or edit the tests files to remove the JExercise annotations.

Teaching assistants spend a lot of time on project setup, and while it can be useful to know, it is

not a part of the curriculum, and ideally it should be avoided completely when designing the new

processes.

Goal: Work on problem solution

Primary method
 - Read problem description (at course wiki)
 - Write code (in eclipse)
 - Run tests (in eclipse)
 - Repeat

Comments

This is highly individual, of course, but in most cases it probably looks something like described.

Goal: Calculate scores

Method 1: Starting over
 - Open web browser
 - Navigate to Innsida
 - Click “It’s Learning” in the right hand pane
 - Log in via Feide
 - Find and click “TDT4100” in the course dropdown
 - Click the assignment folder in the left hand pane
 - Click the correct assignment
 - Click assignment description file
 For each solved problem:

 - Click problem (opens course wiki)
 - Check problem scores

Method 2: Writing down
 - Create a local score file

 For each problem
 - When choosing a problem, write down score in local score file
 - If the problem was solved, keep the score
 - If you give up and choose another problem, delete the score

Comments

While method 2 is clearly more efficient, it is still needlessly cumbersome and introduces another

environment: a score keeping file. Keeping track of what you have completed should not be up to

the student. This also becomes a problem when you want to have your assignment approved, and

the Teaching Assistant has to double check that everything is okay.

Page 34 of 128

Goal: Discuss assignment and have it approved

Primary method
 - Find teaching assistant in computer lab
 - Show and discuss your solution with teaching assistant
 - Calculate score
 - Teaching Assistant then has to:

 - Open web browser
 - Navigate to Innsida
 - Click “It’s Learning” in the right hand pane
 - Log in via Feide
 - Find and click “TDT4100” in the course dropdown
 - Click the assignment folder in the left hand pane
 - Click the correct assignment
 - Score the student

Comments

To be fair, the Teaching Assistant probably never closes “It’s learning” during his or her two hour

approving-session, but it is still needless manual labor.

Conclusion

Some of the tasks in the current system are very complex, often requiring the students to interact

with three different environments to complete them. The tasks that are especially complex are

“Setup Project” and “Calculate Score”, which are also the two least useful tasks in regards to

learning outcome and the curriculum. When designing the new system, these two tasks should be

ideally be removed altogether. Tasks such as “Select problem” and “Read assignment description”

naturally have to be a part of the new system processes, but the amount of environments needed

to complete these tasks should be minimized.

3.1.3 Approving an assignment

To approve an assignment, the TA reads through the student’s code manually, while asking

questions and offering comments. If the TA decides that the student should pass, he finds the

student on “It’s learning” and checks an “Approved” box for the assignment in question.

3.2 New system processes

This section describes the processes for publishing, solving and approving assignments in our

new assignment system. The main idea behind the new system processes is to maximize student

efficiency and create a more seamless and fun experience. To maximize efficiency we move the

system to the web, making it platform independent and eliminating first time setup. To make the

system fun we utilize gamification and immediate feedback to motivate the students.

A screenshot of the finished editor (Figure 3.3) is included to help the reader understand how the

new system will behave in use. Skeleton classes and tests are preloaded into the editor.

Page 35 of 128

Figure 3.3: The system's editor

3.2.1 Publishing an assignment

The course instructor creates an assignment, adds problems to the assignment, and then adds

tests to the problems, all in the same system.

3.2.2 Solving an assignment

First time setup

The system runs Eclipse instances on a webserver and requires no setup on the students’ part,

except choosing a username and a password (these could also be assigned by the system).

This is a good solution, since everything related to first time setup was either operating system

specific or tool (IDE) specific, as we saw in the GOMS analysis and BPMN model of section 3.1.2.

Weekly use

This section details the process for the solving of assignments in the assignment system.

When a new assignment is available, the student can open the assignment in the web portal.

Page 36 of 128

From here he can choose which problems he wants to solve, and write his solution directly in the

browser-window. The student can test his code by clicking a test-button in the same browser

window. If all tests pass, the problem is solved and the student picks a new problem to solve.

When the student has enough points, the assignment is automatically approved. The student’s

score is automatically displayed every time the student runs the tests, and is calculated based on

the amounts of tests that pass.

This is a good solution, as it eliminates all the excess environments the student had to deal with

before, in addition to greatly simplifying the weekly setup and score calculation tasks, as

described in section 3.1.2.

BPMN model

The model (Figure 3.4.) shows the process for weekly use, and the different environments the

student has to deal with throughout the process. Each task is broken down into different steps in

the next section.

Page 37 of 128

Figure 3.4: Solve assignment weekly (new, BPMN)

Page 38 of 128

Task analysis

Goal: Read assignment description

Method 1
 - Open web browser
 - Navigate to system webpage
 - Select assignment
 - Read description

Comments

All assignments are immediately available on the welcome page, and the assignment description

is available when you select an assignment.

Goal: Choose problem

 - Hover over a problem to see its score
 - Compare to score total displayed in right hand column
 - Click problem

Comments

The need for manually calculating score has been removed, and all problem score are available

from the assignment page (in the old system you had to visit the course wiki and scroll to the

bottom of the page to find the problem score).

Goal: Work on problem solution

Primary method
 - Read problem description (problem page in system)
 - Write code (problem page in system)
 - Run tests (problem page in system)
 - Repeat

Comments

Since the editor is embedded in the problem page, the user never has to leave the programming

environment to check the problem description.

Conclusion

The new system has successfully reduced the number of environments to a minimum (just one),

and the new tasks are fewer and simpler than before. Everything related to setup and manual

calculations has been removed completely, and the student never has to leave the programming

environment. This ensures that the students can focus on actually writing code, and not

configuring their computers, their tools or their projects, and that they do not have to navigate

around different environments in order to fetch files or calculate scores.

Page 39 of 128

3.2.3 Approving an assignment

If a student is able to collect the required amount of points for an assignment, the assignment is

automatically approved by the assignment system, as shown in Figure 3.4. If the student is unable

to solve an assignment, the system will set the assignment as not approved. The student can then

request help or a manual override from a teaching assistant. The teaching assistant then has to

decide if the assignment should be approved or not, and how many points should be awarded.

3.3 Conclusion

The process for solving the first assignment (first time setup + weekly setup) in the current

system requires the student to deal with seven or eight different environments: The Java website,

the IDE website, the operating system, “It’s Learning”, the course wiki, the IDE, the computer lab

and an optional file for keeping scores.

The student has to go through 18 distinct tasks of varying difficulty. The task called “Setup

Project” in Figure 3.2 is fairly complicated task with 16 steps, and requires the student to create

a project with the appropriate packages and setting up JUnit to run the tests, something a lot of

students ask their teaching assistant to help with.

The 18 tasks consist of a total of 74 steps if the student uses the optimal methods, and 94 if the

student uses the sub-optimal methods. This is assuming the first assignment has only one

problem to solve, and that the student does everything correctly the first time. For each additional

problem, the optimal process increases with 12 steps, and the sub-optimal process increases with

29 steps.

In the new system, the number of environments is reduced to one: the system’s website.

The student can visit the computer lab if he requires assistance from the teaching assistants, but

it is no longer necessary to have an assignment approved in person. The number of tasks needed

to solve the first assignment is reduced from 18 to 4, as our system requires literally no setup on

the students’ part, neither first time nor weekly. The number of steps in the 4 tasks is reduced to

just 11 and increases with 7 steps for each additional problem. As we can see, almost every step

is associated with selecting and solving problems, and very few steps are wasted elsewhere.

In the pre-study it was discussed which would make for a better solution; a web based system or

an IDE-plugin. As one of the goals of this thesis is to increase student efficiency, we decided to go

with a web-based version, as the plugin version would still require the computer to be configured

for Java development and an IDE-plugin would have to be installed on top of that. A web based

system clearly enables the most efficient design, as all setup is taken care of on the server side,

and the student can start programming right away.

Page 40 of 128

4 - Editor architecture

This chapter contains the description and evaluation of different architectures which can be used

to realize the web-based code-editor for the assignment system.

4.1 Supported functionality

The web-based code-editor should support the following functionality:

1. Running code and reporting its output

2. Running tests and reporting the test results

3. Delivering an assignment

4. Syntax highlighting

5. Live error checking

6. Code completion

This list is a summary of the requirements listed in section 8.2.2.

A screenshot of the editor is shown in Figure 4.1 (annotations are displaying the relevant

functionality). More in-depth information about the supported functionality can be found in

section 2.2.

Figure 4.1: The supported functionality in the editor

Page 41 of 128

4.2 The evolution of the architecture

In section 4.1 we looked at what functionality we want the editor to support. In this section we

will look mainly at the functionality for running code, running tests, live error checking and code

completion. We are omitting the “Syntax highlighting” functionality because it is solved on the

client side, and we are omitting the “Delivering assignments” functionality because it only

requires us to set a flag in the database.

To explain the evolution of the architecture we will start at the highest level and delve deeper into

the details as we go.

4.2.1 High-level architecture

In section 2.2.4 we looked at how existing IDEs are architected. We will create the architecture of

our editor by expanding on this knowledge.

A common way to architect web applications is to use a 2-tier, client/server architecture. This

architecture is shown in Figure 4.2.

Figure 4.2: 2-tier architecture

The server part of this architecture consist of the business logic for our web application. The

server might comprise a database system (in this case the architecture is usually called a 3-tier

architecture) or even multiple nodes. The main point is that the web browser (client) is

communicating with a central web server (server).

Another way of looking at the relationship between the client and server is looking at how the

client uses a set of interfaces that the server exposes, shown in Figure 4.3.

Page 42 of 128

Figure 4.3: The interfaces that the server expose

Figure 4.3 should be familiar, as it is almost identical to Figure 2.8. The reason is simple: We want

to reuse the common pattern where GUI components mirror core components. The actual Java

interfaces for the server are shown in Figure 4.4. We will not supply the actual Java interfaces for

the rest of this chapter, as they will look very similar to this.

Page 43 of 128

Figure 4.4: The Java interfaces for the communication between the client and the server

4.2.2 Making the web-server explicit

We have already stated that we are going to create the editor using web technologies. This means

that we need to have a web server in our architecture. Using Figure 4.2 as the starting point, we

can make the web-server explicit as shown in Figure 4.5.

Page 44 of 128

Figure 4.5: The architecture including the web server

This architecture will require a new set of interfaces, shown in Figure 4.6. The way that an

interface wraps another interface is known as the adapter design pattern (Data & Object Factory,

LLC, 2014).

Figure 4.6: The interfaces that the web server and the services expose

In this architecture, the web server layer should be a thin layer on top of the services layer. The

actual business logic resides in the services layer. One reason for keeping the web server layer

small is to not lock the architecture to a specific web framework (we used Play Framework, as

explained in section 9.2).

The web server will handle incoming requests (either by HTTP or through WebSocket) and

translate these into the relevant Java method calls in the services layer. The only logic that the

web server has to perform is to map a specific request to a corresponding call to the services

Page 45 of 128

layer. When calling the services layer, the web server will forward the current client’s ID (thus

the client must have previously logged in). If the request is a HTTP request, the web server will

respond with a rendered HTML template, while if the request is a message through WebSocket,

the web server will respond with JSON data.

In the case of the editor, all communication is handled through WebSocket (explained in further

details in section 4.3).

4.2.3 Adding core functionality

In order for the editor to be functional, it must at least be able to run and test code. There are

multiple ways to add this support:

 Sun JDK’s Java-compiler

 Eclipse ECJ (Eclipse Compiler for Java)

 Eclipse JDT (Java Development Tools)

 External services, e.g. Sphere Engine from Sphere Research Labs (Sphere Research Labs,

2014)

Each of these options would suffice to run and test code. However, we want to support all the

functionality listed in section 4.1. We could either try to find libraries that give us this

functionality or implement it ourselves. It turns out that the Eclipse JDT exposes much of the

internal functionality of Eclipse, like live syntax checking and code completion.

Based on the functionality that we want to support and given the functionality available in the

Eclipse JDT, it is clear that we should build the system around Eclipse and the Eclipse JDT. To be

able to use the Eclipse JDT we must create a plugin for Eclipse. The way a plugin works is that it

hooks into a running Eclipse process. Usually, the plugin is activated from the GUI of Eclipse. In

our case we need to run an Eclipse instance in the background and expose its functionality to the

rest of the system and, ultimately, to the client.

In addition to the core functionality we also need a data storage (implemented as EMF, as

explained in section 9.1) for saving and loading data. The expanded architecture is shown in

Figure 4.7.

Page 46 of 128

Figure 4.7: The architecture including the data storage and the Eclipse plugin

This architecture will require a new set of interfaces, shown in Figure 4.8.

Figure 4.8: The interfaces including the Eclipse Plugin Layer

Page 47 of 128

Figure 4.9 illustrates how the data flows through the interfaces, from the web browser to the

Eclipse plugin and back again. In this example, we show what happens when the user modifies

the source code in the browser.

Figure 4.9: An example of how the data flows through the interfaces

The small rectangles (showing the processing time of each layer) emphasize that the processes

are run asynchronously. This is important to not freeze the user interface for the user. By allowing

the system to work asynchronously, we can potentially move some parts of the system to different

nodes. We expect that the Eclipse plugin will become the bottleneck in the system (as compiling

and running code are expensive operations). To alleviate this bottleneck we can distribute the

load across multiple nodes. How we achieved the asynchronous behavior is described in more

details in section 4.3.

Figure 4.9 is also showing how the data from the user is sent to the data storage to be persisted

to disk. Even if the user leaves the system, the data will still be available the next time the user

enters the system.

4.2.4 Alternative architecture

Another architecture that we considered was to move the plugin layer below the data storage,

meaning that the services layer communicates with the plugin layer through the data storage. The

alternative architecture is shown in Figure 4.10.

Page 48 of 128

Figure 4.10: Alternative architecture

The interfaces for the alternative architecture are shown in Figure 4.11.

Page 49 of 128

Figure 4.11: The interfaces for the alternative architecture

This architecture would result in another data flow, as shown in Figure 4.12.

Figure 4.12: An example of how the data flows through the interfaces (Alternative architecture)

Page 50 of 128

This architecture could possibly lead to a more elegant implementation as the services layer

would only communicate with the data storage (using a single interface), in contrast to both the

data storage and the plugin layer (using two different interfaces).

If this architecture were to be implemented, both the services layer and the plugin layer should

observe the data storage for changes and react upon those changes.

A big advantage with this architecture is that the services layer will always have immediate access

to the latest data from the plugin layer (because the data is cached in the data storage). In the

original approach, the services layer must wait until the plugin layer is ready before it can retrieve

the data.

However, this architecture would make the data storage more complex as it must store more data,

e.g. data about run code results, problem markers, etc., which is transient in the original approach.

If we consider the scalability of this architecture, we see that data storage could potentially

introduce a new bottleneck (in the previous section we stated that we expect the Eclipse plugin

to become a bottleneck in the system) because all communication between the services layer and

the plugin layer is funneled through the data storage. Depending on how the data storage is

implemented, the data storage might save all the data to disk (which require expensive I/O

operations) for each request.

4.2.5 Conclusion

Because the alternative architecture (described in section 4.2.4) does not add any significant

improvements to our solution (based on the functionality listed in section 4.1) we decided to

implement the architecture as shown in Figure 4.7 (from section 4.2.3). Thus, the following

sections are based on this architecture.

4.3 Communication

In this section we will look closer at the communication between the different parts of the

architecture.

4.3.1 Communication between client and server

As we are using web technologies, we are left with the following options for communication:

 Polling/long-polling

 SSE (Server-Sent Events)

 WebSocket

Page 51 of 128

More information about these technologies are found in section 9.3.1.

Because the client and the server will exchange messages quite frequently (up to 5 messages per

second) we chose to communicate using WebSocket. It has the least overhead (it does not need

to open a new connection for every message) and it supports bi-directional, asynchronous

messaging.

4.3.2 Internal communication

The internal communication must naturally handle the same amount of messages sent between

the client and the server (up to 5 messages per second).

Because the Eclipse plugin runs in a separate process, we could not stick to normal Java method

invocation. We looked at the following technologies for handling inter-process communication:

 Java RMI

 Jini

 CORBA

 Akka

 Storm

More information about these technologies are found in section 9.3.2.

We elected to use Akka for the internal communication. Akka is a good choice because it is based

on the actor model. The actor model makes it easy to communicate across threads, processes and

even different nodes (explained in more details in section 9.3.2). Akka also includes a package

that is compatible with OSGi, which makes Akka easy to set up with our Eclipse plugin.

As described earlier, our architecture is divided into multiple layers (shown in Figure 4.7). To

avoid overlapping responsibilities, we added an actor to each of these layers, shown in Figure

4.13.

Page 52 of 128

Figure 4.13: The architecture including the actors

The WebSocket Actor is responsible for translating JSON data (received through WebSocket) into

Akka messages (and vice-versa) and forwarding them to the Editor Actor. The Editor Actor is

responsible for bootstrapping the Eclipse plugin (shown as Plugin Actor). The Plugin Actor is

responsible for controlling the Eclipse workspace.

The system will create a new set of actors (WebSocket Actor, Editor Actor, Plugin Actor) for every

client. This also means that a new Eclipse instance will be started. We will discuss how this affects

the performance of the system and possible improvements in section 4.4.

Because Akka supports “stashing” and “unstashing” of received messages, we set up the Editor

Actor to “stash” incoming messages from the client until the Eclipse plugin is ready. What

“stashing” means is that an actor can receive messages before it is ready to handle them (maybe

because it waits for a specific message). When the actor is ready, it will be able to handle the

previously “stashed” messages. We utilize this functionality to allow the client to send source code

updates and other actions to the server before the Eclipse process is ready. When the Eclipse

process is ready, the messages will be handled and the client will consequently receive the results.

Page 53 of 128

4.3.3 Editor API

In order for the client to know what messages and data to expect from the server, we created an

API for the editor. Figure 4.14 shows the messages that the client can send to the server as well

as the corresponding replies from the server. These messages are based on the previously defined

Java interfaces, shown in Figure 4.4. The methods’ parameters denote the values sent from the

client to the server, while the methods’ return values denote the data that is sent from the server

to the client.

Figure 4.14: Messages sent between client and server (Akka messages)

4.3.4 Conclusion

With the aforementioned setup we have a complete communication channel between the client

(web browser) and the Eclipse plugin.

To give an example of how the data flow works, we can look at how the system is initiated. The

following sequence describes a similar flow as shown in Figure 4.9:

1. The client requests a WebSocket from the server. When the WebSocket is initialized on

the client, it sends a “Notify on ready” message as JSON data.

2. The WebSocket Actor receives the JSON data and translates it to an Akka message and

forwards it to the Editor Actor.

Page 54 of 128

3. The Editor Actor starts a new Eclipse plugin in the background, passing its own Akka-

address so that the Plugin Actor can inform the Editor Actor when it has started.

4. The Editor Actor receives a “Ready” message from the Plugin Actor and forwards it to

the WebSocket Actor.

5. The WebSocket Actor translates the “Ready” message to JSON data and sends it to the

client.

From this point the communication is established. Other messages follows the same route. An

illustration of the data flow, showing multiple clients, is shown in Figure 4.15.

Figure 4.15: Data flow between the web browser and the Eclipse plugin

4.4 Possible improvements

In this section we will look at some possible improvements that we could have made to editor.

4.4.1 Re-use Eclipse processes

Instead of creating new Eclipse processes for each request, we could instead have re-used old

Eclipse processes. This would require some changes in the services layer. The services layer must

keep track of which Eclipse processes that are currently in use and it must be able to wipe the

contents from the previous user.

Page 55 of 128

In section 2.2.4 we saw that the Eclipse IDE has a notion of a workspace, projects, source folders,

packages and source files. This is an important distinction when deciding how we should re-use

the Eclipse process.

In the current solution we create a new workspace for each user and for each problem, as shown

in Figure 4.16. This is the simplest solution because it means that there is no shared state between

the users or the problems. However, from a resource allocation-perspective, this solution is not

an optimal solution, which is evident in section 5.2.1 and 5.3.1.

Figure 4.16: A single problem per workspace

We could divide this differently, e.g. share a single workspace for all users, where each user gets

a single project and each problem gets a separate package inside of this project, as shown in

Figure 4.17. This division is probably too fine-grained and it would limit the system to a single

node. Another problem with this division is that changes in one package would trigger a re-build

of the whole project (all problems in that project).

Figure 4.17: Multiple users per workspace

To accommodate these problems, a better solution would be to give a single workspace for each

user and separate projects for each problem, as shown in Figure 4.18. This division would allow

users to be divided on multiple nodes and changes in one project would only trigger a re-build

for that exact project.

Page 56 of 128

Figure 4.18: Multiple problems per workspace

The big advantage of re-using Eclipse processes is that it would significantly reduce the startup

time as well as reduce both CPU and memory consumption.

4.4.2 Reduce the footprint of the Eclipse software

A simpler optimization, but not as effective as re-using Eclipse processes, is to reduce the number

of bundled plugins for the installed Eclipse software. Both optimization can be applied

simultaneously or individually.

To reduce the footprint of the Eclipse software we could use the Eclipse Target Platform (The

Eclipse Foundation, 2014). The Eclipse Target Platform lets us specify the minimum number of

plugins that are required by the system. By default, all plugins that are bundled with the Eclipse

installation are loaded. The specification is saved in a target definition file.

This optimization would reduce the startup time as well as reduce both CPU and memory

consumption.

4.4.3 Scalability

The current version of the system is only able to scale up and not scale out (see definitions in

section 2.3.2). However, because we have used Akka as the communication interface, the system

is well-prepared to distribute the work across multiple nodes. An example of such distribution is

shown in Figure 4.19. This figure is very similar to Figure 4.15, where the main difference is that

the plugin actors now live on separate nodes instead of in separate processes.

Page 57 of 128

Figure 4.19: Distribution of plugins across multiple nodes

By scaling out, we could (in theory) support a vast amount of users.

4.4.4 Simplify deployment

The current version of the system uses Play Framework as the web server. The Play Framework

makes it easy to get started developing web applications (See section 9.2 for more reasons why

we chose this web framework).

To simplify the deployment we could have embedded a web server, namely Equinox HTTP

service, inside an OSGi plugin (The Eclipse Foundation, 2014). Then the whole system would

consist of only OSGi plugins, making the system easier to deploy.

One could take this idea even further by integrating the whole system into a single OSGi plugin.

This would, however, limit the scalability of the system.

Page 58 of 128

5 - Experiments and results

This chapter contains the experiments performed on the system to make sure it meets the project

goals. We will primarily be testing the goal pertaining to the performance of the web-based code-

editor, as the goal pertaining to student efficiency was already proven analytically in Chapter 3,

but the goal pertaining to responsive design will also be tested as part of this chapter. The goal

pertaining to what kind of assignments the editor is most suited for will be a part of the discussion

in section 6.2.

5.1 Experimental plan

We remember from the introduction that the editor goals were:

 To create a web-based code-editor with good IDE-functionality.

 To determine what kind of assignments in TDT4100, and in general, the finished editor

is suited for (size, complexity, etc.).

What we mean by “good IDE-functionality” is described in the requirements appendix (section

8.2.2). We mention that we want instantaneous syntax highlighting, one second code completion

and one second error checking. We also mention that we want the editor to be ready for use in

less than 15 seconds (the measured startup time of Eclipse).

This means that the first goal is primarily about response time, which is easily testable by

simulating user interactions and measuring the response time, which is exactly what we will do.

We will also test the scalability of the system by simulating multiple users.

The second goal requires a more analytical approach where we have to compare the editor

features and the results from the experiments to the kind of assignments available in the course.

This is not directly measureable, and will therefore be a part of the discussion in Chapter 6

instead.

We also have a goal about utilizing responsive design when implementing the prototype. This will

be tested by simulating running the website on these three types of devices and discussing the

results in relation to the theory in section 2.4.

5.2 Testing editor response time

The editor will be tested on two different machines, both belonging to the authors of the thesis.

Which machine was used will be written before each experiment. The machine specs can be seen

in Table 5.1 and Table 5.2. All measurements in this section are given in milliseconds.

Page 59 of 128

CPU RAM Disk OS

i7-3517U
1.9-2.4GHz

10GB
1600MHz

256GB SSD
Read: 540MB/s
Write: 520MB/s

Windows 7
PRO 64bit

Table 5.1: David's machine specs

CPU RAM Disk OS

i7-3820QM
2.3GHz

16GB
1600MHz

256GB SSD
Read: 400MB/s
Write: 400MB/s

Mac OS X 10.9

Table 5.2: Christian's machine specs

In comparison, a typical blade server like the Dell PowerEdge M820 has 16 Xeon cores at 2.2 – 2.9

GHz. It also has a much larger cache, and runs a dedicated operating system, giving it maybe four

or five times the power of our best test machine (Christian’s laptop).

5.2.1 Startup time

Setup

To notify the users that the editor is ready, we created a readiness-indicator in our editor.

When a user loads the webpage, the indicator is red, and when the server side is ready to handle

client requests it changes to green. This was achieved by tapping into the WebSocket

communication. The startup time of the editor can be easily measured with JavaScript in the same

manner (key lines highlighted in red).

To measure the startup time, we will simply start the editor ten times, and calculate the average.

The tests will be run from Christian’s machine, and David’s machine (see Table 5.1) will be used

as the server.

webSocket.onopen = function() {
 sendMessage("notifyOnReady");
 console.time("measureStartupTime");
};

webSocket.onmessage = function(msgevent) {
 var object = JSON.parse(msgevent.data);
 if (object.type === 'ready') {
 console.timeEnd("measureStartupTime");
 $('#readiness-indicator').addClass('ready');
 }
}

Page 60 of 128

Results

As can be seen from Figure 5.1 and Table 5.3, the editor starts in 3.5 seconds on average, with a

standard deviation of 178ms. This is a very good result, considering our goal of being ready in

below 15 seconds (see 8.2.2). We will find out how well this scales in section 5.3.1.

Figure 5.1: Editor startup time

Average startup time 3543ms

Startup time standard deviation 178ms

Table 5.3: Editor startup time

5.2.2 Running code, running tests, error checking, and code completion

Setup

We will use the same approach for measuring the performance of user initiated and real-time

events as we did for startup time. We will also be trying out different file sizes to see how much

of an impact that will have on the performance. We will use the file sizes 1KB, 16KB, 32KB and

64KB. 64KB allows the students to write programs up to around 3 000 lines of code (assuming an

average of 20 bytes per line of code) and is the maximum capacity of WebSocket.

We believe this is more than enough for the intended use of the system, where a typical problem

solution is most likely to be around a couple of kilobytes.

Due to the amount of tests that have to be run, we will only test each category five times instead

of the previous ten. We feel confident in this decision due to the low standard deviation of the

first measurements. The reduction makes for 80 measurements instead of 160, and while 160

measurements might seem doable, we are going to be running these multiple times when we are

testing the scalability of the editor. Reducing the amount of runs from 10 to 5 reduces the total

amount of measurements from around 700 to 350.

3000

3200

3400

3600

3800

4000

1 2 3 4 5 6 7 8 9 10

Startup time

Average Observations

Page 61 of 128

Results

Running code

Table 5.4 shows the time in milliseconds it takes from you press the “Run code” button in the

client until the result is returned to the client. This operation includes getting the code from the

client editor, sending it to the server, compiling the code, running the code, sending the result

back to the client, and the client handling the received result.

It is clear from the results that the size of the program does not change the total runtime

drastically. When the file size was increased 6300%, the total runtime only increased about 30%

on average. This points to most of the time being spent on something other than transferring and

compiling/running code. The standard deviation is low meaning that the editor performance is

consistent.

Size Measure 1 Measure 2 Measure 3 Measure 4 Measure 5 AVG STDEV

1KB 643 608 648 622 611 626 16

16KB 820 642 728 737 723 730 56

32KB 761 799 751 759 692 752 34

64KB 912 850 788 779 769 820 54

Table 5.4: Running code (performance experiment results)

Running tests

Table 5.5 shows the time in milliseconds it takes from you press the “Test code” button in the

client until the result is returned to the client. This includes getting the code from the client editor,

sending it to the server, compiling it, testing it, sending the result back, and the client handling

the received result.

The results are very similar to those of running code, which is to be expected since the operation

is very similar too. It is basically running code plus running tests.

Size Measure 1 Measure 2 Measure 3 Measure 4 Measure 5 AVG STDEV

1KB 984 917 746 873 942 892 82

16KB 1008 949 944 983 992 975 25

32KB 862 900 925 924 1198 962 120

64KB 1046 933 1004 948 1021 990 43

Table 5.5: Running tests (performance experiment results)

Page 62 of 128

Error checking

Table 5.6 shows the time in milliseconds it takes from an error checking request is sent from the

client until the result is returned to the client (these requests occur 300ms after the last editor

change-event). This operation includes getting the code from the client editor, sending it to the

server, performing the analysis, formatting the analysis result, sending the result back, and the

client handling the received result. These measurements are considerably lower than the ones

we saw while running and testing code, and it appear that program size has very little impact on

the overall runtime.

Size Measure 1 Measure 2 Measure 3 Measure 4 Measure 5 AVG STDEV

1KB 297 296 204 246 271 263 35

16KB 325 286 305 336 329 316 18

32KB 281 289 308 270 267 283 15

64KB 386 287 395 205 372 329 73

Table 5.6: Error checking (performance experiment results)

Code completion

Table 5.7 shows the time in milliseconds it takes from a code completion request is sent from the

client until the result is returned to the client. This operation includes getting the code from the

client editor, getting the current offset (cursor position), sending this information to the server,

performing the code completion analysis, formatting the result (removing duplicates), sending

the result back, and the client handling the received result.

These measurements are the lowest of all the measurements we gathered, and they also have the

highest standard deviation (considering their average runtime). This further suggests that

program size has very little impact on the overall runtime, and it also suggest that the variation

in runtime is largely dependent of the other processes running on the server.

Size Measure 1 Measure 2 Measure 3 Measure 4 Measure 5 AVG STDEV

1KB 120 185 137 205 102 150 39

16KB 178 258 184 106 125 170 53

32KB 108 121 107 213 123 134 40

64KB 219 106 159 122 179 157 40

Table 5.7: Code completion (performance experiment results)a

Page 63 of 128

Results summary

The results summary table (Table 5.8) shows average runtime for each of the four operations and

each of the four file sizes. The numbers are collect from the “Average” column in Table 5.4, Table

5.5, Table 5.6 and Table 5.7 All times are in milliseconds.

File size Run code Test code Error checking Code completion

1KB 626 892 263 150

16KB 730 975 316 170

32KB 752 962 283 134

64KB 820 990 329 157

Table 5.8: Editor performance results summary

From comparing the runtimes of the different operations in Table 5.8 one is able to draw some

interesting conclusions. For instance, it appears that no more time than ~150milliseconds is

spent on actually transferring the program, as can be seem from the code completion column.

Further, there does not appear to be any significant increase in transfer time due to file size (this

is further support by the results from the error checking column). This means that the increased

runtime for “Run code” and Test code” is due to the runtime of the actual Java program that is

being executed on the server. Since the increase in “Run code” and “Test code” runtime is very

small in comparison to the increase in file size, it is reasonable that there is a constant cost

associated with compiling and running the program which we have little or no control over.

5.2.3 Conclusion

We are very pleased with the results of the response time experiments. As can be seen from Table

5.9, we beat our goals by a fair margin (the column “Actual” contains the worst case average from

our tests, disregarding file size). We had no time-goal for running code and running tests, as it

depends mostly on the nature of the program being run, and not on the editor.

Feature Goal Actual

Startup time Less than 15 seconds 3.5s

Error checking Less than 1 second 329ms

Code completion Less than 1 second 170ms

Table 5.9: Editor performance (goals vs results)

The editor feels just like a native application when running only one instance on the server, and

the startup time is much lower than full-fledged IDEs. We will have a look at how multiple users

affects the performance next.

Page 64 of 128

5.3 Testing editor scalability

In this section we will examine the impact multiple concurrent users has on our systems response

time. Since file size did not impact the performance much, we will use a 16KB file for all tests.

5.3.1 Startup time

Setup

To test the scalability of the startup performance we will double the amount of clients started

until we get bored. Each client will be started around the same millisecond, which is the worst

case scenario. This will be achieve by using a Chrome plugin called “Reload All Tabs”12. This

plugin, as the name suggests, allows the user to reload all tabs simultaneously.

Results

Table 5.10 contains the summarized results of the startup time scalability test, and each column

represents the average start up time of the individual editors that were started. The full results

are available in Table 10.1, Table 10.2, Table 10.3, and Table 10.4. The test was only run one time

for 16 clients, due to how long it took to run the tests. Even so, considering how low the standard

deviations are for the other groups, it is reasonable to assume that the measurement is

approximately representative of the true startup time.

The impact multiple users has on startup time is noticeable and expected. When the server has to

start N eclipse instances, the startup time increases by a factor of N-X (the discount factor X is

probably due to caching performed by the operating system).

This increase in startup time could be mitigated by starting only one Eclipse instance, and

allowing several editors to make use of that instance. The startup time of the each instance could

also be shortened by stripping the instance of plugins, but the increased would still be linear.

Size Measure 1 Measure 2 Measure 3 Measure 4 Measure 5 AVG STDEV

2 5443 5047 4859 5304 5024 5135 210

4 8927 9138 8853 9193 9277 9077 161

8 17783 17892 17797 17554 17614 17728 125

16 36233 - - - - 36233 -

Table 5.10: Editor startup scalability

12 https://chrome.google.com/webstore/detail/reload-all-tabs/lpkdnfkjhdkcpimadpdcgapffceacjem

https://chrome.google.com/webstore/detail/reload-all-tabs/lpkdnfkjhdkcpimadpdcgapffceacjem

Page 65 of 128

5.3.2 Running code, running tests, error checking and code completion

Setup

As mentioned, since there was very little variation as results of the file size, we will use a 16KB

file for all our tests. Due to the wait associated with the editor start-up time, and the low standard

deviations we have seen so far, we will only run tests with 16 clients one time. In order to ensure

that the client instructions are all execute at the same time, we will utilize a script-utility for

Chrome, called chrome-cli13.

The script code for running code can be seen in the snippet below:

Scripts like these allow us to control button clicks and keyboard events across all browser tabs,

which is necessary in order to start all the operations around the same millisecond.

13 Source: https://github.com/prasmussen/chrome-cli

#!/bin/bash

code="\$('#run-code-button').click()"

for n in $(chrome-cli list tabs | awk '{print $1}' | sed -e 's/\[//' | sed -e
's/\]//'); do
 chrome-cli execute $code -t $n > /dev/null
done

https://github.com/prasmussen/chrome-cli

Page 66 of 128

Results

Running code

What is included in the operation of running code was explained in section 5.2.2, and the average

runtime for a 16KB file was found to be 720ms. We expected the server portion of this runtime to

increase linearly with the number of active editors, but that there would be a discount due to the

fact that the time spent on the client side would be evenly distributed on the clients.

As can be seen from Table 5.11 the results appear to agree with our expectations. The full results

of these tests are available in Table 10.5, Table 10.6, Table 10.7, and Table 10.8.

Clients Measure 1 Measure 2 Measure 3 Measure 4 Measure 5 AVG STDEV

2 1155 1435 974 958 973 1099 183

4 1855 1800 1876 1754 1805 1818 43

8 3099 2954 2854 2977 2894 2956 84

16 5306 - - - - 5306 -

Table 5.11: Running code (scalability experiment result)

Running tests

Running tests is the same as running code, plus tests. Our findings reflect this fact. Table 5.12

shows the summarized results. The full results of these tests are available in Table 10.9, Table

10.10, and Table 10.11.

Clients Measure 1 Measure 2 Measure 3 Measure 4 Measure 5 AVG STDEV

2 1344 1378 1399 1353 1374 1369 19

4 2486 2571 2594 2437 2612 2540 67

8 4777 3390 3315 4676 4538 4139 647

16 6461 - - - - 6461 -

Table 5.12: Running tests (scalability experiment result)

Page 67 of 128

Error checking

What is included in the operation of error checking was explained in section 5.2.2, and the average

runtime for a 16KB file was found to be 316ms. The results here (summarized in Table 5.13) are

a little surprising, as the number of editors running does not seem to factor in a lot. This indicates

that much of the cost associated with error checking is handled on the client side, or at least that

the server side effort is minimal. The full results of these tests are available in Table 10.12, Table

10.13, Table 10.14, and Table 10.15.

Clients Measure 1 Measure 2 Measure 3 Measure 4 Measure 5 AVG STDEV

2 278 329 284 271 267 286 22

4 287 314 261 285 290 287 17

8 310 452 264 358 355 348 62

16 449 - - - - 449 -

Table 5.13: Error checking (scalability experiment result)

Code completion

What is included in the code completion operation was explained in section 5.2.2, and the average

runtime for a 16KB file was found to be 170ms. The results (summarized in Table 5.14) indicate

that this operation scales similarly to running code and tests, having a discounted linear increase.

The full results of are available in Table 10.17, Table 10.18, Table 10.19 and Table 10.20.

Clients Measure 1 Measure 2 Measure 3 Measure 4 Measure 5 AVG STDEV

2 395 387 374 362 376 379 11

4 681 663 710 701 703 691 17

8 1385 1325 1231 1812 1441 1439 199

16 3329 - - - - 3329 -

Table 5.14: Code completion (scalability experiment result)

Results summary

The result table (Table 5.15) shows the average times for each of the four categories and each of

the four file sizes. All times are in milliseconds.

Clients Run code Test code Error checking Code completion

2 1099 1369 286 379

4 1818 2540 287 691

8 2956 4139 348 1439

16* 5306 6461 449 3229

Table 5.15: Editor scalability results summary

Page 68 of 128

Scalability prediction

Based on the previous findings, we performed a regression analysis to predict how the editor

would scale if we pushed it beyond 16 clients. The result can be seen in Table 5.16 (predictions

in cursive) and Figure 5.2. As we have seen with all our experiments, the increase is linear,

although, when the server runs out of RAM, page swapping will most likely lead to huge delays.

Clients Run Code Test Code Error Checking Code completion Startup

1 730 975 316 170 3,5s

2 1,1s 1,4s 286 379 5,1s

4 1,8s 2,5s 287 691 9,1s

8 3,0s 4,1s 348 1,4s 17,7s

16 5,3s 6,5s 449 3,2s 36,2s

32 10,2s 12,5s 594 5,7s 62,9s

64 19,8s 24,3s 912 11,3s 123,1s

128 39,1s 47,7s 1,5s 22,4s 243,5s

256 77,8s 94,6s 2,8s 44,7s 484,4s

Table 5.16: Editor scalability prediction

Figure 5.2: Editor scalability prediction

0,0

100,0

200,0

300,0

400,0

500,0

600,0

1
6

2
4

3
2

4
0

4
8

5
6

6
4

7
2

8
0

8
8

9
6

1
0

4

1
1

2

1
2

0

1
2

8

1
3

6

1
4

4

1
5

2

1
6

0

1
6

8

1
7

6

1
8

4

1
9

2

2
0

0

2
0

8

2
1

6

2
2

4

2
3

2

2
4

0

2
4

8

2
5

6

Editor scalability predictions

Runcode Testcode Error-analysis Autocomplete Startup

Page 69 of 128

5.3.3 Conclusion

The editor scales more or less as expected. Running two identical Java programs should take

about twice as long as running just one, but there is a discount because some of the work is being

performed by the clients and the transfer time being distributed. Also the operating system

probably caches. Considering how a laptop was able to run 16 Java programs started at the same

time and return a result in five seconds, we are not worried about how the system will work in a

day to day setting on a server with four or five times the processing power.

One thing that is worrying, however, is the startup time. If, for example, the system is used in a

lecture where 200 users open it simultaneously, our predictions indicate that it would take about

six minutes for the editor to be ready on each client (if the system is running on David’s laptop).

Even if we were to strip down the Eclipse instance to reduce the startup time to just one second,

it would still take several minutes if 200 users opened it simultaneously. This could be remedied

by setting up several servers to run the system, but a change in architecture where multiple users

can make use of the same eclipse instance is probably more appropriate.

Another problem with having 200 users is that the RAM-usage for each eclipse instance is about

100MB (not stripped down). This makes for a total of about 20 GBs of memory usage, meaning

that we would start to see severe performance problems due to paging. This could be mitigated

by adding more RAM or stripping down the Eclipse instance (removing unused plugins), but a

change in architecture would again be more appropriate.

Page 70 of 128

5.4 Testing responsive design

To test the responsive design of our website we will use a service called Responsinator14, which

we mentioned in section 2.4. This service emulates iPhone 3-5, old and new Android phones,

iPads, and Android tablets, in both landscape and portrait mode. We will use this service to

emulate Apple and Android devices, in addition to testing on a laptop. We will test every device

in both portrait and landscape mode, but we will not include all tests in the report (it would

amount to over 50 screenshots for our four test-pages). The screenshots in this section will also

be shrunk in order to prevent report bloat.

5.4.1 The “assignment overview” view

The assignment overview page is the first page that students see when they open the system.

It shows an overview of all the assignments where the students’ scores are displayed as progress

bars (with star markings). If the user is on a laptop or desktop computer, a leaderboard pane is

available on the right hand side (see Figure 5.3). This leaderboard updates to display the correct

information when the user hovers over an assignment. On tablets and mobile devices (Figure 5.4),

only the assignment grid is shown, as hovering is not possible on touch devices.

This design is achieved by utilizing fluid layouts and media queries, as described in section 2.4.

Vector graphics are used to ensure that the icons look great on all devices and zoom levels.

A thorough test of the assignment view can be seen in Figure 5.3 (laptops and desktop computers)

and Figure 5.4 (mobile devices). As can be seen, there are very few differences between the

different mobile phones and tablets.

Going forward, we will only focus on Android devices, as the design is completely platform

independent and cutting and arranging the screenshots takes a long time.

14 Available at: http://www.responsinator.com/

http://www.responsinator.com/

Page 71 of 128

Figure 5.3: “Assignment overview” view (laptops and desktop computers)

Figure 5.4:” Assignment overview” view (mobile devices)

Page 72 of 128

5.4.2 The “leaderboards” view

The leaderboards page contains two leaderboards: one that shows the overall score, and one that

shows the score for the current week. It shows both columns side by side on laptops and tablets

in landscape mode, but on smaller devices they are positioned under each other (see Figure 5.5).

Figure 5.5: “Leaderboard” view

Page 73 of 128

5.4.3 The “my progress” view

The student progress page contains user information (nickname, score, leaderboard position),

along with information about all assignments, problems and achievements. The view has a single

column layout on cellphones and portrait mode tablets, and a two row/three column layout on

landscape mode tablets, laptops, and desktop computers (see Figure 5.6).

Figure 5.6: “My progress” view

Page 74 of 128

5.4.4 The “problem” view

The “problem” page displays the current assignment description, the current problem description

and the code-editor (remember, all problems belong to an assignment). It also displays the

leaderboard for the assignment.

Figure 5.7: “Editor” view

Page 75 of 128

On cellphones and portrait tablets, only the assignment score and leaderboard is displayed. While

on landscape mode tablets, laptops, and desktop computers, the full editor is available, and the

leaderboard is a side pane (see Figure 5.7). This is done to ensure that students have access to the

information they want immediately. When a student is checking a specific assignment using his

mobile phone, he is probably interested in seeing the leaderboard, not the editor. The editor can

also be maximized, in which case it looks identical on all devices (its width and height is set to

100% of the device). How the editor looks maximized on a laptop can be seen in Figure 5.8.

Figure 5.8: “Editor” view with maximized editor

5.4.5 Conclusion

As can be seen from the various figures in section 0, the implementation of a responsive design

was a success. The design utilizes all of the principles outlined in section 2.4, and all elements are

defined in percentages, resulting in a suitable layout on all target devices. No raster image files

were used, i.e. all icons and shapes are vector graphics and thus scale perfectly.

Comments

The use of Faker.js (mentioned in section 9.9) was an enormous help in ensuring that the design

would fit user generated content. It was used to generate all avatars, user names and achievement

images, which changes on every update. This is why the screenshots all have different placeholder

information.

Page 76 of 128

6 - Evaluation and conclusion

This chapter contains the evaluation and conclusion of the thesis.

6.1 Evaluation

We had several goals for this thesis, but to sum it up in an informal way: we wanted to create and

implement an online platform which would provide students with everything needed to solve

simple programming assignments, while simultaneously providing a motivating atmosphere and

reducing time spent on configuration, setup, and other non-programming tasks.

In Chapter 3 we analyzed and re-engineered the current assignment system, reducing the number

of environments the students’ have to deal with from 8 to 1, the number of tasks from 18 to 4, and

the number of distinct steps for the tasks from 74-94 (depending on how the students go about

performing the task) to just 11. We completely eliminated every task and step related to setup

and configuration, so that each of the 11 steps are concerned with actually solving the assignment.

In Chapter 4 we designed the architecture needed to realize the system from Chapter 3, and in

Chapter 5 we tested the finished system. The results from the experiments were very positive.

The response time for the various functionality (running code, running test, error checking and

code completion) were all well below 1 second, even for large files (64KB). These times are very

good, especially considering that the system was running on a laptop instead of a proper server.

We saw that the editor performance scaled linearly (with a discount rate), which means that the

system will scale well if distributed to more nodes. The experiments also showed that the

implementation of the responsive design was a success, and that the system works well on all

device types.

6.2 Discussion

Another goal of the thesis was to determine what kind of assignment the editor was best suited

for. To answer this question, we must first take a look at the findings from our experiments.

As we learned in section 5.2, file size had very little impact on the overall runtime of a program

written in the editor. The time it took to run code and tests increased about 200ms when the file

size increased from 1KB to 64KB, but the response time for code completion and error analysis

varied only with a few milliseconds. This indicates that the response time increase was in Java

runtime, and that one would most likely see the same runtime increase when using a native IDE.

This further means that program size is not an issue when it comes to what kind of assignments

the editor is best suited for. One thing the editor currently cannot do, however, is run GUI

programs. It can only display console output and tests results.

Page 77 of 128

This means that the editor is best suited for the first assignments of TDT4100, or any assignment

that can be tested programmatically. The editor is thus very well suited for solving algorithmic

problems in courses such as TDT4120. The editor would also be well suited for the type of

assignments found in TDT4110, but then it would have to utilize a Python interpreter instead of

a Java compiler. Our design is modular, however, and the web-part of the system would not need

to be changed in order to make this work.

6.3 Future work

A few things still remain to be done before the system can be taken into use.

As we saw from the scalability tests, a change in architecture is a good idea in order to reduce the

startup time and memory usage of the editor. The simplest way this could be achieve is probably

to start some editors when starting the server and let several students make use to the same

Eclipse instance. No other architecture changes are considered necessary before the system can

be taken into use, as the system performed and scaled surprisingly well.

The system is not secured against malicious code, and basically acts as a big back-door (or front-

door, rather) to the server. The editor should be placed in a sandboxed environment before it is

taken into use. Functionality for killing processes that are taking too long (infinite loops, etc.)

should also be implemented.

The system features simple authentication functionality, but lacks proper password hashing. The

system also does not utilize SSL. This has to be implemented before the system is taken into use.

The system as a whole currently relies on placeholder information to demonstrate the design.

Before the system is to be taken into use, these placeholders should be removed and replaced

with connections to the data model. The model is already integrated though, so this should be

easy enough to accomplish.

6.4 Closing remarks

Even if the system is not completely finished we are very pleased with what we have created

(especially considering the high complexity of the editor architecture), and we hope someone will

take over and finish the remaining work needed to take the system into use.

We believe our editor offers substantial benefits over other web-based Java editors on the market

today, and with a slight change in architecture (to enable better utilization of the Eclipse

instances) we think the editor could be become a popular tool for running Java code online.

Page 78 of 128

7 - Bibliography

Ace. (2014, 05 10). Ace. Retrieved from Ace: http://ace.c9.io/

AngularJS. (2014, 05 03). AngularJS. Retrieved from AngularJS: https://angularjs.org/

Backbone.js. (2014, 05 03). Backbone.js. Retrieved from Backbone.js: http://backbonejs.org/

Bonnie E, J., & David E, K. (1996). Using GOMS for user interface design and evaluation: which

technique? ACM Transactions on Computer-Human Interaction, 287-319.

Camilo, A., Javier, C., & Jordi, C. (2014, 05 26). Introduction. Retrieved from EMF-REST:

http://emf-rest.com/

Catlin, H., Weizenbaum, N., & Eppstein, C. (2014, 04 26). Sass Basics. Retrieved from Sass:

http://sass-lang.com/guide

CodeMirror. (2014, 05 10). CodeMirror. Retrieved from CodeMirror: http://codemirror.net/

Coyier, C. (2012, 06 11). CSS-Tricks. Retrieved from CSS-Tricks: http://css-tricks.com/poll-

results-popularity-of-css-preprocessors/

Data & Object Factory, LLC. (2014, 07 23). Adapter . Retrieved from Data & Object Factory:

http://www.dofactory.com/Patterns/PatternAdapter.aspx

Durandal. (2014, 05 03). Durandal. Retrieved from Durandal: http://durandaljs.com/

Firebase. (2014, 05 26). Overview. Retrieved from Firebase - Build Realtime Apps:

https://www.firebase.com/

Fogg, B. (2009). A behavior model for persuasive design. Persuasive '09 Proceedings of the 4th

International Conference on Persuasive Technology, Article No. 40.

Gardner, B. S. (2011). Responsive Web Design: Enriching the User Experience. Connectivity and

the User Experience, 13-20.

GoPivotal, Inc. (2014, 05 26). Home. Retrieved from Grails: https://grails.org/

Hill, M. D. (1990). What is scalability? Computer Architecture News, 18-21.

Kaazing Corporation. (2014, 04 15). WebSocket.org. Retrieved from What is WebSocket?:

http://www.websocket.org/quantum.html

Knight, K. (2011). Responsive web design: What it is and how to use it. Smashing Magazine.

Page 79 of 128

LeadDyno. (2014, 05 26). intercooler.js. Retrieved from intercooler.js - Simple, declarativ AJAX

using HTML attributes: http://intercoolerjs.org/

LearnJavaOnline.org. (2014, 05 25). Welcome to LearnJavaOnline.org. Retrieved from Learn Java:

http://www.learnjavaonline.org/

Leighton, T. (2009). Improving Performance on the Internet. Communications of the ACM, 44-51.

Meteor Development Group. (2014, 05 26). Introduction. Retrieved from Meteor:

https://www.meteor.com/

Michael, M., Moreira, J., Shiloach, D., & Wisniewski, R. (2007). Scale-up x Scale-out: A Case Study

using Nutch/Lucene. Parallel and Distributed Processing Symposium, 1-8.

Microsoft Corporation. (2014, 05 25). Try F#. Retrieved from Try F#:

http://www.tryfsharp.org/

Object Management Group. (2014, 08 21). CORBA FAQ. Retrieved from CORBA Web Site:

http://www.omg.org/gettingstarted/corbafaq.htm

Oracle. (2014, 08 18). Remote Method Invocation Home. Retrieved from Oracle:

http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136424.html

OSGi Alliance. (2014, 07 28). The OSGi Architecture. Retrieved from OSGi Alliance:

http://www.osgi.org/Technology/WhatIsOSGi

Parlante, N. (2014, 05 25). CodingBat. Retrieved from CodingBat: http://codingbat.com/

Pivotal Software, Inc. (2014, 05 26). Introduction. Retrieved from Spring: http://spring.io/

Pusher. (2014, 05 26). Introduction. Retrieved from Pusher | HTML5 WebSocket Powered

Realtime Messaging Service: http://pusher.com/

Red Hat. (2014, 05 04). Hibernate ORM. Retrieved from Hibernate: http://hibernate.org/orm/

Reilly, D. (2014, 08 22). Java RMI & CORBA. Retrieved from Java Coffee Break:

http://www.javacoffeebreak.com/articles/rmi_corba/

Ryan, R. M., & Deci, E. L. (2000). Self-determination theory and the facilitation of intrinsic

motivation, social development, and well-being. American Psychologist, 68-78.

Sellier, A. (2014, 04 26). Language Features. Retrieved from Less.js: http://lesscss.org/features/

Page 80 of 128

Sissel, J. (2010, 06 04). SSL-Latency. Retrieved from Semicomplete:

http://www.semicomplete.com/blog/geekery/ssl-latency.html

Sphere Research Labs. (2014, 07 15). Introduction. Retrieved from Sphere Research Labs:

http://sphere-research.com/

The Apache Software Foundation. (2014, 08 18). About Apache River. Retrieved from Apache

River: https://river.apache.org/about.html

The Apache Software Foundation. (2014, 08 21). Storm. Retrieved from Storm: http://storm-

project.net/

The Eclipse Foundation. (2014, 05 04). Eclipse Modeling Framework Project (EMF). Retrieved

from Eclipse: https://www.eclipse.org/modeling/emf/

The Eclipse Foundation. (2014, 07 28). Embedding an HTTP server in Equinox. Retrieved from

Eclipse: http://eclipse.org/equinox/server/http_in_equinox.php

The Eclipse Foundation. (2014, 05 10). Orion. Retrieved from Orion:

http://www.eclipse.org/orion/

The Eclipse Foundation. (2014, 07 15). Platform architecture. Retrieved from Eclipse

documentation:

http://help.eclipse.org/juno/index.jsp?topic=%2Forg.eclipse.platform.doc.isv%2Fguide

%2Farch.htm

The Eclipse Foundation. (2014, 07 28). Target Platform. Retrieved from Help - Eclipse Platform:

http://help.eclipse.org/luna/index.jsp?topic=%2Forg.eclipse.pde.doc.user%2Fconcepts

%2Ftarget.htm

The Eclipse Foundation. (2014, 05 04). Teneo. Retrieved from Eclipsepedia:

https://wiki.eclipse.org/Teneo

The Eclipse Foundation. (2014, 05 26). Texo. Retrieved from Eclipsepedia:

http://wiki.eclipse.org/Texo

The jQuery Foundation. (2014, 05 05). jQuery. Retrieved from jQuery: http://jquery.com/

The World Wide Web Consortium. (2014, 05 05). The WebSocket API. Retrieved from W3C:

http://www.w3.org/TR/websockets/

Page 81 of 128

The World Wide Web Consortium. (2014, 05 05). W3C. Retrieved from Server Sent Events:

http://www.w3.org/TR/eventsource/

Typesafe Inc. (2014, 07 24). Akka. Retrieved from Akka: http://akka.io/

Typesafe Inc. (2014, 05 26). Introduction. Retrieved from Play Framework:

http://playframework.com/

Vaadin Ltd. (2014, 05 26). Home. Retrieved from Vaadin: https://vaadin.com/

W3Techs. (2014, 05 05). W3Techs. Retrieved from W3Techs:

http://w3techs.com/technologies/overview/javascript_library/all

Wikimedia Foundation, Inc. (2014, 05 10). Comparison of JavaScript-based source code editors.

Retrieved from Wikipedia: http://en.wikipedia.org/wiki/Comparison_of_JavaScript-

based_source_code_editors

Wikimedia Foundation, Inc. (2014, 05 26). Comparison of web application frameworks. Retrieved

from Wikipedia:

http://en.wikipedia.org/wiki/Comparison_of_web_application_frameworks#Java

World Wide Web Consortium. (2014, 04 19). Usability - ISO 9241 definition. Retrieved from

W3C: http://www.w3.org/2002/Talks/0104-usabilityprocess/slide3-0.html

Åse, D. (2014). Gamification of Assignment Systems for Programming Courses. NTNU, Trondheim:

Unpublished.

Page 82 of 128

8 - Appendix A – Constraints, requirements and architecture

This chapter contains the constraints, requirements and architecture for the system. First we look

at the constraints imposed on the system by NTNU, as these will affect the resulting architecture.

Then we look at the system requirements for the system as a whole and the web-based code-

editor specifically. Finally we describe the system architecture; which architectural patterns we

should use, and how we should use them. Each of the three main processes described in section

3.2 will be modelled in ArchiMate, presenting an overview of the system, and the code-editor

architecture will be modelled in detail.

8.1 Implementation constraints

Due to concerns relating to operation and further development, NTNU has placed three

constraints on our system.

IC1) The system’s server side implementation language shall be Java

IC2) The system shall use EMF for data storage

IC3) EMF shall be used to administer the system (no admin web-view shall be created)

The system designed in the preliminary study featured a web-view for administrators, but the

course instructor was clear about wanting to use EMF to administer the system. This is partly

because he is very familiar with EMF, but also in order to reduce the amount of code that needs

to be maintained if the system is taken into use.

8.2 System requirements

This section contains the requirements for the system that is to be implemented during the course

of this thesis. The main goal of the thesis is to implement the system designed in the preliminary

study as a web-application with a good code-editor with IDE-functionality, therefore a lot of the

requirements will carry over from the preliminary study. A complete list of the requirements

from the preliminary study can be seen in section 10.1.

We will first describe the data model and which entities and roles we have in the system. We will

then look closer at the specific requirements we have for our web-based code-editor. After this

we will look at the non-functional requirements for the system (which are for the most part

related to gamification and user-friendliness). The requirements that do not fit any of these

categories will then be listed in an “Additional requirements” section, and we will round of the

section by talking about the requirements from the preliminary study that have been cut.

Page 83 of 128

8.2.1 Data model

The requirements for the data structure were largely decided in the preliminary study, but they

will be modelled here to get a better overview.

The system consists of a collection of assignments which again consist of a collection of problems.

These assignments are created by the course staff. Students create submissions for the individual

problems, and the system creates an evaluation for the student-submitted solutions.

A teaching assistant can override the system created evaluation, allowing for manual evaluation.

A model of this data structure can be seen in Figure 8.1.

Figure 8.1: Data model requirements

Page 84 of 128

8.2.2 Web-based code-editor

We have mentioned “IDE-functionality” several times throughout this thesis. This section details

the specific functionality we want our editor to support. Only major functionality is included in

this list, but the editor should also support basic functionality like block-indentation, indentation

guides, etc. “Code-editor requirement” is abbreviated to CER.

CER1) The code-editor shall support Java syntax highlighting

CER1.1) Syntax-highlighting shall be instantaneous

CER2) The code-editor shall support Java error checking

 CER2.1) Error checking shall take no longer than one second

CER3) The code-editor shall support Java code completion

 CER3.1) Code completion shall take no longer than one second

CER4) The code-editor shall support multiple Java classes

CER5) The code-editor shall be updated automatically and asynchronously

CER6) The code-editor shall be maximizable

CER7) The code-editor shall be ready to use in less than fifteen seconds

The requirements are what we, in discussion with the course responsible, decided to be the most

important IDE-features that could realistically be implemented in a web-based code-editor. The

last requirement, CER7 was decided based on how long it takes to start eclipse (which is around

10 seconds on a high end gaming PC with an SSD).

8.2.3 Non-functional requirements

The first two requirements are the same as they were in the preliminary study (shown in section

10.1.2), but one more requirement has been added. “Non-functional requirement” is abbreviated

to NFR.

NFR3) The system shall utilize responsive design

NFR3.1) The system shall have views that adapt to device size

NFR3.1.1) The views shall support laptop, tablet and cellphone sizes

This non-functional requirement (NFR3) was added to further the competition between the most

eager students, thereby increasing the students’ motivation and hopefully grades. Having a

Page 85 of 128

system with a responsive design will allow the students to easily check the leaderboards or track

their progress from their cellphone or tablet.

8.2.4 Additional requirements

This section covers additional requirements to the system that is not covered in the other

sections. ”Additional requirement” is abbreviated to AR.

AR1) The system shall provide assignment feedback to users

 AR1.1) The system shall display unit test results from the code editor

AR2) JUnit shall be used to test student-submitted code

8.2.5 Requirements from the preliminary study that were cut

The requirements concerning quiz functionally have been cut from the original requirements-list,

as the main focus of this thesis is to create a solid web-based code-editor for solving Java

assignments. Implementing quiz functionality is important to the system, and it should indeed be

included in the finished product, but it is technically trivial and we have limited time available, so

implementing it will not be a part of this thesis.

The requirement concerning code-quality-analysis has been cut. While the feature is certainly

useful, we feel that the limited time available is better spent at getting basic IDE-functionality

right, instead of tacking on additional plugins.

No other requirements have been cut.

8.3 System architecture

This section contains the system architecture needed to fulfill the requirements and realize the

system. First, we will look at the architectural patterns we need to realize the architecture, then

we will model the architecture more in depth using the ArchiMate specification.

8.3.1 Architectural patterns

The system is a web-application where multiple users interact with a centralized server that

evaluates, stores, and displays user dependent content. This largely decides the architecture for

us: we have to use the Client-Server pattern and some sort of Model-View-* pattern.

The Client-Server pattern

The system we are implementing is a very typical client-server application, leaving no real

alternatives to this pattern. Requests are sent over the internet to a server where the user’s code

Page 86 of 128

is executed and evaluated. The server then responds back to the clients. An illustration of how

this works can be seen in Figure 8.2.

Figure 8.2: The Client-Server pattern

The Model-View-* pattern

Our application would have used the classic MVC pattern had it been a native application, but

bringing it to the web complicates things slightly. The basic MVC pattern as used in Java or other

languages can be seen in Figure 8.3. However, in a typical web-applications the view is usually a

static HTML document, and therefore it cannot observe the model in the same way a Java or other

native view would. All communication between the view and the model goes through the web

server and the controller. How this works can be seen in Figure 8.4.

Figure 8.3: The classic MVC pattern

Page 87 of 128

Figure 8.4: Typical web-MVC pattern

The process flow of Figure 8.4 can be broken into eight different steps:

1. The user sends a request to the web server via the browser

2. The web server processes the request and dispatches it to the appropriate controller

method, based on which route was used

3. The controller queries or updates the model in order to complete the request

4. The model complies to the request from the controller and returns a result

5. The controller feeds the appropriate information to the view and asks it to render

6. The view renders itself and gives the rendered HTML to the controller

7. The controller assembles the total page's HTML and gives it to the web server

8. The web server returns the page to the browser, which renders it to the user

There are many slight variations of how this pattern works, and which one we will end up using

depends largely on which web-server and framework we will choose to build the system with.

Page 88 of 128

8.3.2 System architecture in ArchiMate

This section describes the system architecture using the ArchiMate15 specification. We will focus

on the processes described in section 3.2. We will include the implementation constraints where

applicable.

Publish assignment architecture

Figure 8.5: Publish assignment architecture

Figure 8.5 shows the architecture needed to realize the publishing of assignments. The

assignment system uses information services for both assignments and tests, and offers an

assignment administration service. The information handling is taken care of by EMF.

15 Available at: http://www.opengroup.org/subjectareas/enterprise/archimate

http://www.opengroup.org/subjectareas/enterprise/archimate

Page 89 of 128

Solve assignment architecture

Figure 8.6: Solve assignment architecture

Figure 8.6 shows the architecture needed to realize the solving of assignments. EMF handles

information about users, assignments and tests, and the assignment system offers services for

administering a user assignment, testing and leaderboards calculations.

Page 90 of 128

Approve assignment architecture

Figure 8.7: Approve assignment architecture

Figure 8.7 shows the architecture needed to realize the approving of assignments. It utilizes the

same services as the solving process, except it does not need the leaderboard calculation service.

Page 91 of 128

9 - Appendix B – Implementation

This chapter contains the reasoning behind choosing the technology stack to use when

implementing our system. We will start at the lowest level of the backend (data storage) and move

sequentially to the highest level of the frontend (CSS).

9.1 Data storage

Because of maintainability and operational concerns, the course responsible wanted us to use the

Eclipse Modeling Framework (EMF) for data storage. The course instructor has extensive

experience with this tool.

EMF is a tool for modeling software (The Eclipse Foundation, 2014). The model can be created

using UML diagrams, XML markup or Java code. The software package “Eclipse Modeling Tools”

includes graphical tools to create a model. We used these tools to create the model shown in

section 0.

EMF does not enforce any specific persistence technology. By default, it can load and save data to

XML files. To add a specific persistence technology, we will use Teneo (The Eclipse Foundation,

2014). This technology was recommended to us by the course responsible.

Teneo is built on top of Hibernate and it integrates well with EMF. Hibernate is an object-

relational mapping (ORM) library and it supports multiple relational database systems, such as

HSQLDB, MySQL (Red Hat, 2014)

To maintain data consistency in the model and to make it easier to retrieve data from the model,

we will make a services layer, a data access object (DAO), on top of the model. To prevent this

layer from exposing its underlying model, we will instead expose the data in separate data

transfer objects (DTO).

9.1.1 Querying the data model

To query the data model we looked at several options:

1. EMF Query

2. EMF OCL Query (EMF Object Constraint Language Query)

3. EMF-IncQuery

4. HQL (Hibernate Query Language)

5. XPath

6. Manual traversal

7. EMF Resource.getEObject() method

Page 92 of 128

Because the system will be quite small (storing no more than 10,000 objects), we will not evaluate

the performance of each approach. Instead we will focus on which approach that is the most easy-

to-use.

EMF Query, EMF OCL Query and EMF-IncQuery are all part of the EMF project umbrella. It would

be natural to think that those libraries are the best way to query the data model. Unfortunately,

the first two libraries have an unwieldy API while the latter uses a domain specific language (DSL).

HQL (similar to SQL) and XPath are third party libraries that have an easier API than the EMF

libraries. However, they are not usable in all circumstances. HQL must be used in conjunction

with the Teneo library, which means that we need to have a relational database as the backing

store. While we develop the system it is easier to use the XMI-format defined by EMF. XPath, on

the other hand, will only work on the XML-document. Thus, we can’t change the backing store.

Another option is to manually traverse the object graph by using the getter methods. This is easy

if you only need to access the immediate children of an entity, but it gets harder (and slower) if

you need to access the children’s children or access objects even deeper into the object graph. In

addition to traversing the object graph, it is possible to get a reference to a specific object using

its ID. To retrieve a specific object you can use the getEObject() method which is available on

the Resource class.

Conclusion

To query the data model we elected to combine manual traversal of the object graph and the EMF

Resource.getEObject() method. We elected these methods because they complement each

other well, i.e. the Resource.getObject() method can fetch an object, which will be the starting

point, and then we can use manual traversal to get the desired objects. This combination will also

work for both for XML-documents and for relational databases.

9.1.2 Choice of ID

To be able to retrieve objects from the data model, we must be able to reference the objects by

some kind of ID. All objects in EMF have an inherent ID, which is based on its position in the object

graph, e.g.: //@courses.0/@assignments.0/@problems.0. However, these IDs quickly become

long and unwieldy.

Instead of using the implicit IDs we can model the IDs explicitly. An ID must be unique in a given

context. We are defining the contexts as follows:

 Local context – IDs are unique for a given collection of objects

Page 93 of 128

 Entity context – IDs are unique for a given entity type

 Global context – IDs are globally unique

We must evaluate how IDs assigned in these contexts affect the implementation of the system. To

evaluate the approaches we will focus on the following criteria:

 What the resulting URL for the system will be (the ID must be a part of the URL to

identify what information we are requesting)

 How easy it is to use the services API

 How much work it requires to implement the solution

Local context

Pros:

 Will result in the most user-friendly URLs:

/assignments/1/problems/a

I.e. the IDs reflect the actual assignment ID and problem ID

Cons:

 Methods need multiple ID-parameters:

updateSourceCodeFile(assignmentId, problemId, fileId, sourceCode)

 Must implement custom logic to query for the given IDs

Entity context

Pros:

 Will result in short URLs:

/assignments/3/problems/9

 Methods in services only need a single ID-parameter:

updateSourceCodeFile(fileId, sourceCode)

Cons:

 Must implement custom logic to handle IDs per entity (must consider thread safety)

 Must implement custom logic to query for the given ID

Page 94 of 128

Global context (using UUID)

Pros:

 Easy to generate ID:

EcoreUtil.generateUUID()

 Methods only need a single ID-parameter:

updateSourceCodeFile(fileId, sourceCode)

 Easy to query database:

resource.getEObject(id)

Cons:

 Will result in long URLs:

/assignments/_EU_5wNyCEeOKIfV4FdrdrA/problems/_xkgyENyIEeOuDKXZBf5e3g

Global context (using incremental ID)

Pros:

 Will result in short URLs:

/assignments/32/problems/57

 Methods only need a single ID-parameter:

updateSourceCodeFile(fileId, sourceCode)

 Easy to query database:

resource.getEObject(id)

Cons:

 Must implement custom logic to handle the current global ID (must consider thread

safety)

Conclusion

The two approaches that are based on assigning IDs in a global context are the easiest to

implement. The main difference between them are the actual IDs they use; the UUID-approach

has a 23 character long ID, while the incremental ID-approach has a number as the ID (starting

from 1). Because we want the URL to be as simple as possible, we will go for the latter solution

(using incremental ID).

Page 95 of 128

9.1.3 The EMF model

Figure 9.1 shows the complete EMF model needed to realize the system.

Figure 9.1: EMF model

Page 96 of 128

Validating the model

The system has to support the functionality of the prototype proposed in the pre-study. To ensure

this, one can create a dynamic instance in EMF, which makes it possible to test different use cases.

This section contains a checklist with all the required use cases, along with a screenshot of the

finished dynamic instance.

Use cases:

1. The administrator wants to create a staff-member: Hallvard.

2. The administrator wants to create two students: Christian and David.

3. The administrator wants to create a staff-member: Random TA.

4. Hallvard wants to create a course: TDT4100.

5. Hallvard wants to add an assignment to TDT4100: “Assignment 1 – The basics”.

6. Hallvard wants to add a code problem to the assignment: “Problem 1 – Hello World”.

7. Hallvard wants to add source code to the code problem.

8. David wants to submit his solution to the code problem in “Assignment 1”.

9. Hallvard wants to approve David’s solution to “Problem 1 – Hello World”.

Figure 9.2 shows the dynamic instance after applying the use cases.

Figure 9.2: Dynamic instance for validating the model

Conclusion

The model contains “one of everything” of the data we need to realize the system, and validated

without any problems.

Page 97 of 128

9.2 Web server

The main responsibilities of the web server is to supply web content to the users and to process

their submissions.

The web server should:

 Serve web content

 Authenticate the user

 Validate the input from the users

 Communicate with the services layer in the data storage

With EMF as the data storage, there are at least two approaches to structure the web server; using

specialized libraries to extend EMF, or using a generic web framework as a layer on top of EMF.

9.2.1 Specialized libraries for EMF

A specialized library will be able to expose the data in the data model directly as a web service.

The client can then consume the data as necessary. This approach is easy to get up and running,

but it has some flaws:

 Because the full data model is exposed, the client is responsible for data consistency

 Clients might be able to read more data than allowed, e.g. user data

This approach is feasible in cases where the EMF data model is consumed by a trustworthy client.

Thus, the web services should not be made available directly on the internet.

Example of specialized libraries for EMF are Texo and EMF-REST.

Texo

Texo is a library that can generate a web service based on an EMF model (The Eclipse Foundation,

2014). It also supports generating code from the EMF model to be able to interface with other

systems, like Google Web Toolkit and ORM solutions. The web service supports both JSON and

XML as data exchange formats.

EMF-REST

EMF-REST is a library that can generate a web service based on an EMF model (Camilo, Javier, &

Jordi, 2014). The web service follows the principles of REST (Read Roy T. Fielding’s dissertation

for more information16). EMF-REST also includes a tailor-made JavaScript library that makes it

easy to fetch the data from the REST API. The REST API only supports JSON as the data exchange

format.

16 Available at: http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm

Page 98 of 128

9.2.2 Generic web frameworks

There are a ton of Java-based web frameworks. Wikipedia has an up-to-date overview of many

popular web frameworks, shown in Table 9.1 (Wikimedia Foundation, Inc., 2014).

Project

Current
stable
version

Release
date License

Grails 2.4.0 5/21/2014 Apache

Spring 4.0.5 5/20/2014 Apache 2.0

4WS.Platform 2.1.6 5/7/2014 LGPL

Play! 2.2.3 5/1/2014 Apache 2.0

VRaptor 4.0.0.Final 4/23/2014 Apache 2.0

JavaServer
Faces (Mojarra)

2.2.6 3/4/2014 CDDL, GPL 2, Apache 2.0,

Google Web Toolkit 2.6.0 1/30/2014 Apache 2.0

Apache Wicket 6.13.0 1/14/2014 Apache 2.0

Apache Struts 2 2.3.16 12/8/2013 Apache 2.0

Vaadin 7.1.9 12/4/2013 Apache 2.0

Apache OFBiz 12.04.02 7/30/2013 Apache Software License 2.0 (ASL 2.0)

Oracle ADF 12.1.2.0 7/11/2013 Oracle Technology Network Developer
License

Apache Tapestry 5.3.7 4/24/2013 Apache

OpenXava 4.7 4/2/2013 LGPL

ZK 6.5.2 3/26/2013 LGPL, ZOL

Wavemaker 6.5.3 3/14/2013 Apache

Jspx-bay 1.2 2/14/2013 Apache 2.0

Eclipse RAP 2 2/11/2013 Eclipse

JVx 1.1 1/23/2013 Apache 2.0

Stripes 1.5.7 5/17/2012 Apache

JBoss Seam 3.1.0 final 1/13/2012 LGPL

ztemplates 2.4.0 9/11/2011 Apache

ItsNat 1.2 5/24/2011 LGPL, proprietary

FormEngine 2.0.1 5/8/2011 Proprietary

Apache Sling 6 4/18/2011 Apache 2.0

AppFuse 2.1 4/4/2011 Apache

Apache Click 2.3.0 3/27/2011 Apache Software License 2.0 (ASL 2.0)

Hamlets 1.7 3/11/2011 BSD

OpenLaszlo 4.9.0 10/21/2010 CPL

WebObjects 5.4.3 9/15/2008 Proprietary

Apache Shale 1.0.4
(Retired)

12/19/2007 Apache

ThinWire 1.2 9/17/2007 GPL

WebWork 2.2.6 7/21/2007 Apache

RIFE 1.6.1 7/14/2007 CDDL, LGPL

Table 9.1: List of Java web frameworks (as of 5/26/2014)

Page 99 of 128

To decide which library to use, we will consider the following factors:

1. Be under active development (latest release should be less than 6 months olds)

2. Use an open source license

3. Popular relative to the others

4. Use Java as the programming language

5. Fulfill our requirements for the web server

When we remove all the web frameworks that have not been updated in the last 6 months, we

end up with 10 web frameworks (marked with green background color in Table 9.1). All of these

web frameworks use an open source license.

To further reduce the number of choices, we will look at the relative popularity between the web

frameworks. Figure 9.3 and Figure 9.4 shows the relative popularity between the web

frameworks. Figure 9.5 shows the relative popularity between the most popular web

frameworks.

Figure 9.3: Relative popularity between 5 web frameworks

Page 100 of 128

Figure 9.4: Relative popularity between 5 more web frameworks

Figure 9.5: The relative popularity between the 4 most popular web frameworks

Based on the relative popularity between the web frameworks, we will look closer at:

 Grails

 Spring Framework

 Play Framework

 Vaadin

Grails

Grails is the most popular choice of the web frameworks, but it turns out that Grails is based on

the Groovy programming language (GoPivotal, Inc., 2014). This means that Grails does not meet

the previously listed criteria and that it will not be considered any further.

Spring Framework

The Spring Framework has been around since 2002, thus it should be quite mature. The creators

of Spring Framework has the following to say about the framework (Pivotal Software, Inc, 2014):

“Let's build a better Enterprise. Spring helps development teams everywhere build simple, portable, fast

and flexible JVM-based systems and applications.”

Page 101 of 128

Pros:

 Mature framework

 Integrates well with Eclipse-projects

 Supports JSP (and can use other template engines as well)

 Easy to set up authentication (session based authentication, OpenID-login as well as

other authentication providers)

 Integrates well with a vast amount of libraries (database adapters, authentication

providers, etc.)

Cons:

 Popularity is declining

 Routes are scattered across multiple classes

 Cumbersome to set up the development environment

Play Framework

The Play Framework is a newer web framework than Spring Framework, but it has quickly

become a popular framework. The framework supports both Java and Scala and you can even

have both languages in the same project. The creators of Play Framework are calling it (Typesafe

Inc, 2014):

“The High Velocity Web Framework for Java and Scala”

Pros:

 Popularity has an upward trend

 Integrates well with Eclipse-projects

 Flexible routing system

 Simple and powerful template system

 Easy to set up session based authentication

 Makes development a breeze

o Easy to get started ($ play new)

o Recompiles on reload

o Supports pre-compilation and minification of assets (LESS, CoffeeScript, etc.)

 Supports reactive constructs (promises, etc.)

Page 102 of 128

Cons:

 Uses Scala tool chain and configuration files

Vaadin

Vaadin is a web application framework, meaning it is intended for building large-scale web

application in contrast to basic web sites. The creators of Vaadin has the following to say about

the framework (Vaadin Ltd., 2014):

“Vaadin is a Java framework for building modern web applications that look great, perform well and make

you and your users happy.”

Pros:

 Popularity has an upward trend

 Can build websites solely with Java (no need for HTML/CSS/JavaScript)

 Easy to build large web applications

Cons:

 Intended for building web applications

 Hard to customize components

 Must learn concepts that are specific to the framework (data source, etc.)

9.2.3 Conclusion

Common for all the frameworks are big communities and good documentation, due to their

popularity.

The Vaadin framework is intended for building large-scale web application and it is quite heavy-

weight in that respect. Because the system is just a basic web site, Vaadin is probably not a good

fit.

Spring Framework and Play Framework are similar in many respects and both frameworks fulfill

the criteria for the web server. Because we (the authors) have prior experience with Play

Framework we will choose this framework to implement the web server.

9.3 Communication

In this section we will look at how to update the contents of the web page in real-time and how to

communicate with the Eclipse application.

Page 103 of 128

9.3.1 Real-time updating of the web page

To make the system more user-friendly, and to increase the competition between the students,

we will implement real-time updating of the web page. The content that will be updated

automatically includes the leaderboard as well as live error checking and console output from the

editor.

Polling

It may be dubious to call polling a real-time technology. However, what we mean by real-time is

simply that the user does not need to update the web page manually. In this respect, polling might

be suitable as long as we do not require quick updates.

The polling mechanism is the easiest approach to achieve real-time updating of content. It does

not require any special code on the server. The obvious disadvantage is that the server will incur

a higher load than necessary.

Polling can be implemented using JavaScript and by sending regular AJAX calls to the server.

There also exist JavaScript libraries to make it even easier to implement polling. One such library

is intercooler.js, which will let you specify the source URL and polling interval inside the HTML

markup (LeadDyno, 2014).

Long-polling (Comet)

Long-polling is similar to the polling mechanism as both mechanisms will open new connections

to the server intermittently. The difference is that long-polling will try to keep the connection to

the server alive as long as possible. To keep the connection alive longer the server can send a

“ping”-signal (usually a whitespace). Whenever the connection is closed, the client side JavaScript

will re-open a new connection.

Server Sent Events (SSE)

SSE is a specification to allow the server to send push notifications (events) to the client (The

World Wide Web Consortium, 2014). These notifications are sent over a normal HTTP

connection. To open an SSE connection, the browser must send an HTTP request that includes

the following header: Accept: text/event-stream.

SSE only supports one-way communication (simplex) which means that only the server can

communicate with the client and not the other way around. It does however support automatic

reconnection.

SSE has a very easy JavaScript API and it is trivial to implement SSE on the server.

Page 104 of 128

WebSocket

Similar to SSE, the WebSocket protocol also maintain an open connection to the server (The

World Wide Web Consortium, 2014). A big advantage with WebSocket is that it supports bi-

directional communication. The protocol is a more low-level protocol than SSE, as it only exposes

two data streams and it is up to the developer to define a communication protocol between the

server and the client.

There are numerous libraries that seek to make it easier to use WebSocket. One such library is

Pusher (Pusher, 2014). There are also complete web frameworks, e.g. Meteor.js (Meteor

Development Group, 2014), and even database systems, e.g. Firebase (Firebase, 2014), that

heavily rely on WebSocket.

Conclusion

As noted earlier, we want to support real-time updating of the leaderboard as well as live error

checking and console output from the editor.

The leaderboards are not something that needs to be updated very often, but we want to provide

real-time updating as convenience. We will implement this feature using polling because that is

the simplest solution and it ought to be sufficiently fast.

The editor will require bi-directional communication with the server (to send updated source

code and to retrieve console output). In practice, this leaves us with a single choice: WebSocket.

9.3.2 Communication with the Eclipse application

As the Eclipse application runs in a separate process we need to perform inter-process

communication. We will look at the following options:

 Java RMI (Java Remote Method Invocation)

 Jini

 CORBA (Common Object Request Broker Architecture)

 Akka

 Storm

Java RMI (Java Remote Method Invocation)

Java RMI is an object oriented equivalent of Remote Procedure Calls (RPC). Java RMI was

developed by Sun and it was released with the Java 2 SDK (Oracle, 2014). A typical

implementation model of Java RMI is shown in Figure 9.6.

Page 105 of 128

Figure 9.6: A typical implementation model of Java RMI17

The Java RMI is easy to use because it hides the complexity behind a proxy object, called a stub.

The stub’s methods are called using normal method invocation. The Java RMI has support for

sending executable code to remote systems. This feature is very powerful, but it also represents

a potential security threat. A drawback with Java RMI is that it only supports communication with

other systems running in a JVM.

Jini

Jini is a more advanced version of the Java RMI. Jini was originally developed by Sun, but the

project was later transferred to Apache and renamed to Apache River (The Apache Software

Foundation, 2014).

CORBA (Common Object Request Broker Architecture)

CORBA is a language-agnostic alternative to Java RMI. CORBA was developed by the Object

Management Group (Object Management Group, 2014). An example of how a request is sent from

the client to the server (called servant in the figure) is shown in Figure 9.7.

Figure 9.7: A client sends a request through its local Object Request Broker (ORB) and to a remote ORB’s servant18

The services are described by interfaces, written in the Interface Definition Language (IDL). The

IDL has mappings to many common programming languages. CORBA is not as powerful as Java

RMI because it does not allow executable code to be sent to remote systems. This does, however,

make CORBA safer to use (Reilly, 2014).

17 Source: http://upload.wikimedia.org/wikipedia/commons/thumb/b/ba/RMI-Stubs-
Skeletons.svg/600px-RMI-Stubs-Skeletons.svg.png
18 Source: http://www.javacoffeebreak.com/articles/rmi_corba/corba.gif

http://upload.wikimedia.org/wikipedia/commons/thumb/b/ba/RMI-Stubs-Skeletons.svg/600px-RMI-Stubs-Skeletons.svg.png
http://upload.wikimedia.org/wikipedia/commons/thumb/b/ba/RMI-Stubs-Skeletons.svg/600px-RMI-Stubs-Skeletons.svg.png
http://www.javacoffeebreak.com/articles/rmi_corba/corba.gif

Page 106 of 128

Akka

Akka was developed by Typesafe Inc, and they describes Akka as (Typesafe Inc, 2014):

Akka is a toolkit and runtime for building highly concurrent, distributed, and fault tolerant event-driven

applications on the JVM.

Akka is based on the actor model. An actor is usually just a separate thread, but it can also be

another process or even another node. Messages are sent asynchronously to and from actors as

objects, instead of normal method invocation. These objects can be serialized and thus sent over

the network.

Akka includes a package that integrates well with OSGi.

Storm

Storm was originally developed by BackType, but is now maintained by The Apache Software

Foundation (ASF). ASF describes Storm as (The Apache Software Foundation, 2014):

Apache Storm is a free and open source distributed realtime computation system. Storm makes it easy to

reliably process unbounded streams of data, doing for realtime processing what Hadoop did for batch

processing.

While it is possible to use Storm for inter-process communication, it is mainly used for processing

of big data across multiple nodes.

Conclusion

All of the alternatives that we looked at could work in our case. However, we decided to go with

Akka because it is included in the Play Framework (which we chose as the web server framework

in section 9.2) and it can easily be used in conjunction with OSGi.

9.4 JavaScript frameworks and libraries

This section contains an overview and evaluation of different JavaScript frameworks and

libraries. Only the biggest and most popular libraries will be considered.

9.4.1 Why does this project need JavaScript?

First things first. Why does this project even need JavaScript? The main focus of this project is to

create a web-based code editor in which students of TDT4100 can solve their weekly java

programming assignments. A standard webpage utilizing only HTML is static and stateless, and

requires the user to explicitly perform requests and then wait for the server to respond.

With JavaScript, requests can be sent asynchronously in the background, without the user

Page 107 of 128

knowing about it, and the webpage can be updated accordingly. Since JavaScript is executed on

the client side, it can also provide features like syntax highlighting on the fly.

Let us look at the difference between a pure HTML editor and a JavaScript-powered editor.

Pure HTML editor

Figure 9.8: Pure HTML code editor19

The pure HTML editor (Figure 9.8) is nothing more than a text area in which the user can input

code. When the user clicks “Go”, the code is sent to the server, compiled, run, and the result is sent

back to the user.

JavaScript powered editor

Figure 9.9: A JavaScript-powered editor20

The JavaScript editor (Figure 9.9) much more closely resembles the editor from an IDE.

It has features such as syntax highlighting, error detection, line numbering, and line highlighting.

The use of asynchronous requests would also make it possible to send the code from the editor

to the server, analyze it, and then send it back to the client. This allows for updating the editor

(with, for example, code analysis feedback) without the user performing any explicit requests.

19 Available at: http://codingbat.com
20 Available at: http://ace.c9.io

http://codingbat.com/
http://ace.c9.io/

Page 108 of 128

9.4.2 Why do we need a frameworks or a library?

The problem of making asynchronous requests to servers and handling the responses (effectively

making web-pages behave more like ordinary desktop applications) is a complex and difficult

problem with no one right solution. Still, the problem has been solved in various ways by different

frameworks and libraries. The use of asynchronous requests is but a means to an end in this

project, as our challenge is creating a good web-based editor. We need frameworks and libraries

to streamline the development process, allowing us to focus on the thing we want to create.

9.4.3 Determining possible framework candidates

We want our web based code editor to mimic a standard MVC application, so looking for the top

JavaScript MVC frameworks is a good start. There are a ton to choose from, but from reading

various website tutorials and guides, the most popular ones seem to be: Angular, Backbone,

Durandal, Ember, and TodoMVC. To determine which ones were the most popular, we ran these

through google trends. The result can be seen in Figure 9.10.

Figure 9.10: JavaScript MVC-framework popularity

As can be seen from the graph in Figure 9.10, Durandal and Backbone have been around for a long

time, but Angular surpassed them both shortly after it was released. Ember and TodoMVC have

seen increasing popularity since 2012, but are nowhere near the cumulative popularity of the

other frameworks. We will take a closer look at Angular, Backbone and Durandal.

Page 109 of 128

Feature Angular Backbone Durandal

Observables ✔ ✔ ✔

Routing ✔ ✔ ✔

View bindings ✔ ✘ ✔

Two-way bindings ✔ ✘ ✘

Partial views ✔ ✘ ✔

Table 9.2: JavaScript framework comparison

Upon further investigation it turns out that Backbone (as the name implies) is not a full-fledged

solution for mimicking a MVC architecture, but only offers the backbone for the pattern.

You need another framework on top of it in order to support views and bindings fully.

It also turns out that all of these frameworks are very extensive and have steep learning curves,

with different websites estimating ramp-up times of up to a few weeks. We primarily need to

handle asynchronous calls to our webserver when dealing with the code editor, so a full-fledged

framework might be overkill, especially considering the limited time frame of this project and the

fact that Play Framework (which we decided on in section 0) already provides routing and partial

view support. While frameworks definitely have a purpose, we will look for a more lightweight

solution. Information about the Angular, Backbone and Durandal were collected from their

respective websites: (AngularJS, 2014), (Backbone.js, 2014), and (Durandal, 2014).

9.4.4 Determining possible library solutions

Determining the candidates for libraries is much easier than it was for frameworks, thanks to a

continuous survey performed by w3techs.com. The survey (Figure 9.11) is created by examining

the top ten million websites in the world, and clearly shows that the jQuery library dominates

with its 97.3% market share (W3Techs, 2014).

What is jQuery?

jQuery is a fast, small, and feature-rich JavaScript library. It makes things like HTML document traversal

and manipulation, event handling, animation, and Ajax much simpler with an easy-to-use API that works

across a multitude of browsers. With a combination of versatility and extensibility, jQuery has changed

the way that millions of people write JavaScript. (The jQuery Foundation, 2014)

jQuery does exactly what we need and has an enormous ecosystem built around it, making the

choice of a JavaScript library exceptionally easy.

Page 110 of 128

Figure 9.11: JavaScript library usage survey

9.4.5 Conclusion

We definitely need JavaScript to realize the online code-editor, but a full-fledged framework was

considered to be counterproductive due to the steep learning curve involved. The jQuery library,

however, does everything we need and more, and has a thousands of plugins available, making it

a perfect candidate for this project.

Page 111 of 128

9.5 JavaScript code-editors

This section contains an overview and evaluation of different JavaScript code-editors that are

available today.

9.5.1 Why does this project need a JavaScript code-editor?

Creating functionality for solving Java-problems is the subject of this thesis, and the online editor

is the most technically complicated part of this. Luckily we do not have to start from scratch, as

many web-based code-editors have already been created. One of them will surely serve as a good

starting point.

9.5.2 Determining possible candidates

There is an actively maintained Wikipedia entry for this, with a very handy comparison matrix

(Wikimedia Foundation, Inc, 2014). We will use this matrix to determine possible candidates. We

first do a screening based on some key criteria, and have a closer look at the candidates that make

it through. The complete list consists of 16 editors, as can be seen in Table 9.3.

Editor Cost License Open source Activity

Ace Free BSD3 Yes Yes

CodeMirror Free MIT Yes Yes

Orion Free BSD3/EPL Yes Yes

Codenvy - “Public Cloud” No Yes

Monaco
Used only by

Microsoft
- No Yes

MDK Depends on use “Dual” No Yes

Markitup Free MIT/GPL Yes Some

Micro Free GPL Yes Some

LDT Free MIT/GPL Yes Some

Ymacs Free BSD Yes Some

Codepress Free LGPL Yes No

CodeTextArea Free BSD Yes No

EditArea Free LGPL Yes No

Helene Free GPL Yes No

9ne Free GPL Yes No

jsvi Free GPL Yes No

Table 9.3: JavaScript code-editor comparison

Page 112 of 128

We want to use an editor which is being actively developed, open source and free. In addition we

need it to have a software license which will allow us to use and modify it. This leaves us with just

three editors: Ace (Ace, 2014), CodeMirror (CodeMirror, 2014) and Orion (The Eclipse

Foundation, 2014).

9.5.3 Determining the best candidate

The article in which we found the comparison matrix also has a feature comparison matrix. We

will use this matrix as a starting point to determine which of the three candidates is most suited

for our project. Some rows have been changed to better fit our thesis, for example “Syntax

Highlighting” was changed to “Java Syntax Highlighting”, as Java is the language that is to be used

with our editor. Some new rows based on the requirements for our thesis have also been added.

Feature Ace CodeMirror Orion

Java syntax highlight Yes Yes Yes

Java error highlight No No No

Multiple class support No No No

Maximizable No No No

Code completion Some Some Some

Tab support Yes Yes Yes

Indent, new line keeps
level

Yes Yes Yes

Indent, syntax Yes Yes Yes

Indent, selected block Yes Yes Yes

Bracket matching Yes Yes Yes

Keyboard shortcuts
All common

shortcuts and custom
key bindings

Fully configurable Yes

Line numbers Yes Yes Yes

Search & replace Regex supported Yes Yes

Visual styling Fully theme-able CSS-based themes Yes

Undo/Redo Yes Yes Yes

Non US charset
support

Yes Yes Yes

Code folding Yes Yes Some

Multiple cursors /
Block selection

Yes Yes No

WebJar available Yes Yes No

Indent guides Yes No No

Code snippets Yes Through add-on Some

Spell checking Through add-on No No

Table 9.4: Code-editor feature comparison

Page 113 of 128

As can be seen from Table 9.4, the three candidates already support a lot of functionality, but

neither of them support all of the must-have requirements for our thesis. Out of all of the editors,

Ace is the one that supports the most features. Especially block selection and indent guides are

very nice features to have that the other editors do not support. As they are equal in all other

respects, we feel confident moving forward with Ace as our code-editor.

9.5.4 Conclusion

Many web-based code-editors already exist, but none of them support the requirements we

specified in 8.2.2, except the requirement about Java syntax highlighting. The Ace editor provides

the best starting point as we move forward trying to implement these missing features.

9.6 CSS-framework

This sections contains a brief overview and evaluation of different CSS-frameworks.

Only the biggest and most popular frameworks will be considered.

9.6.1 Why does this project need a CSS-framework?

A CSS-framework is a set of styling-rules used to speed up development and reduce browser

incompatibilities. The main focus of this project is to create a good online editor, so as little time

as possible should be spent on boilerplate HTML/CSS, such as a grid-system, a menu bar, etc.

9.6.2 Determining possible candidates

To determine what the most popular CSS-frameworks were, several CSS centric websites were

visited. The frameworks mentioned the most frequently were: “Twitter Bootstrap”, “Zurb

Foundation”, “Skeleton” and “YAML”. We then ran these through google trends to see which ones

were the most popular. The results can be seen in Figure 9.12.

Page 114 of 128

Figure 9.12: CSS-framework popularity

9.6.3 Conclusion

Twitter Bootstrap is by far the most popular CSS-framework, which means it will have the largest

online community and the most tutorials available. Since this project is not about design, no

further research into CSS-frameworks is really needed. We will go with the most popular one.

Twitter Bootstrap also offers a range of JavaScript plugins which are built with jQuery, which we

decided to use in section 9.4. This can probably further speed up development.

9.7 CSS-preprocessor

This section contains a brief overview and evaluation of different CSS-preprocessors.

9.7.1 Why does this project need a CSS-preprocessor?

A CSS-preprocessor is an extension of the CSS language, which adds more programming-like

features, such as variables, functions, etc. The main focus of this project is to create a good online

editor, so as little time as possible should be spent on getting the webpage styling to behave as

intended. CSS-preprocessors allow for more rapid prototyping, as changing just a few variables

can change every styling rule throughout your page. Preprocessors also allow you to break down

CSS code into more manageable pieces and stitch them together into a single minified CSS file

which is served to the client. This can reduce the load time for the webpage significantly.

Page 115 of 128

9.7.2 Determining possible candidates

According to a survey performed by CSS-Tricks, there are only two real contenders in this

category. Of the ~13 000 responses they gathered, about 50% had a preferred CSS-preprocessor.

Among these responses LESS was preferred by 51%, while SASS was preferred by 41%. Eight

percent preferred other preprocessors (Coyier, 2012).

9.7.3 LESS or SASS?

LESS features SASS features

Variables

Extend

Mixins

Import Directives

Import Options

Parametric Mixins

Mixins as Functions

Passing Rule sets to Mixins

Mixin Guards

Loops

Merge

Parent Selectors

Variables

Inheritance

Mixins

Import

Nesting

Partials

Operators

Table 9.5: LESS and SASS features

LESS and SASS both offer much of the same functionality (Sellier, 2014), (Catlin, Weizenbaum, &

Eppstein, 2014), although they may label each feature differently (for example “Extend” vs

“Inheritance”). At first glance LESS looks much more feature rich than SASS, but that is only

because the LESS team chose to include five different kinds of mixins and two different kinds of

Imports in their feature overview. SASS also supports these features, but does not list them

explicitly in the overview.

LESS uses the special character “@”, while SASS uses the special character “$”. SASS is

whitespace/indentation dependent, but most people usually use an extension of the language

called SCSS (Sassy CSS), which re-introduces semi colons and the curly bracket scope, making the

syntax more like regular CSS and LESS.

Page 116 of 128

Figure 9.13: SASS syntax example

Figure 9.14: LESS syntax example

9.7.4 Conclusion

LESS and SASS offer more or less the same features, the syntax being biggest difference. This

difference can be seen in Figure 9.13 and Figure 9.14. However, with the SCSS extension the only

real difference in syntax is which special character is used: “@” or “$”.

Since we already decided to use Play Framework (which has native support for LESS) in section

0, and Twitter Bootstrap (which is written in LESS) in section 9.6, LESS becomes the obvious

choice for our project.

Page 117 of 128

9.8 The complete stack

This section contains a tabular summary (Table 9.6) of all the technology choices made in the in

the previous sections, along with a technology stack diagram (Figure 9.15).

Data Storage EMF

Web server Play Framework

JavaScript-library jQuery

Code-editor Ace

CSS-framework Twitter Bootstrap

CSS-preprocessor LESS

Table 9.6: The complete technology stack

Figure 9.15: The complete technology stack

Page 118 of 128

9.8.1 Technology in relation to the architecture

The diagrams in Figure 9.16 and Figure 9.17 show how the architecture described in section 8.3

is implemented.

Figure 9.16: MVC implementation

Page 119 of 128

Figure 9.17: Client-Server implementation

9.9 Minor technologies

This section covers minor libraries and plugins included in the project. No extensive reasoning

will be given for choosing each plugin, but a short description of the plugin and what it is used for

will be included in each section.

9.9.1 LESS Hat

LESS hat is a library for LESS. It provides 86 mixins to help speed up development and reduce

cross-platform independencies and bugs. Table 9.7 shows a LESS Hat function and the resulting

CSS. One line of code turns into seven, due to all the browser specific prefixes.

LESS Hat Generated CSS

.flex-direction(row); -webkit-box-direction: normal;
-moz-box-direction: normal;
-webkit-box-orient: horizontal;
-moz-box-orient: horizontal;
-webkit-flex-direction: row;
-ms-flex-direction: row;
flex-direction: row;

Table 9.7: LESS Hat and generated CSS

Page 120 of 128

9.9.2 jQuery Collapsible

jQuery Collapsible is a simple jQuery plugin which allows every header in a <div> element to be

minimized. It is used primarily on the “problems” page to give the students the ability to hide the

assignment description and the problem description (giving the editor more space).

9.9.3 Font Awesome

Font Awesome is a font consisting of vector icons. There are no PNG, JPG or SVG files in the

implementation of the system, every icon is handled by the Font Awesome font. This reduces load

times and keeps the markup neat, in addition to scaling perfectly.

9.9.4 Faker.js

Faker.js is a JavaScript plugin which provides the website with fake content (fake names, fake

avatars, etc.). Faker.js will not be a part of the finished system, but we used it to give us a better

feeling of how the system will look when it is populated with real users. This allows us to notice

design flaws before actually taking the system into use.

Page 121 of 128

10 - Appendix C – Miscellaneous

10.1 Requirements from the preliminary study

This section contains the requirements for the system as described in the preliminary study.

The conceptual model and the prototype created in the pre-study was proven to fulfill all of these

requirements, meaning that our system also will fulfill them if implemented as it was designed.

10.1.1 Functional requirements

FR1) The system shall support at least ten assignments

FR2) Every assignment shall support at least six problems

FR3) Every problem shall have a score of between 0 and 100 points

FR4) Every problem shall support one or more tests

FR5) The system shall allow for manual assignment approval

FR6) The system shall provide automatic assignment approval

 FR6.1) The system shall use unit tests to test code

 FR6.2) The system shall use quiz functionality for summative assessment

FR7) The system shall provide feedback to users

 FR7.1) The system shall display unit test results

 FR7.2) The system shall use code analysis software and display results

 FR7.3) The system shall offer functionality for explaining quiz answers

FR8) The system shall let users track their progress

10.1.2 Non-functional requirements

NRF1) The system shall motivate the users

 NFR1.1) The system shall use gamification as found effective in case studies

 NFR1.2) The system shall use gamification that is effective in theory

NFR2) The system shall be easy to use

 NFR2.1) The system shall have a SUS score above average (above 68 points)

 NFR2.2) The system shall have a First Click score above 90%.

Page 122 of 128

10.2 Experiment results

10.2.1 Startup time scalability

All measurements are in milliseconds, unless stated otherwise.

Client Measure 1 Measure 2 Measure 3 Measure 4 Measure 5

#1 5443 4935 4865 5311 4747

#2 5443 5158 4853 5297 5301

AVG 5443 5047 4859 5304 5024

Table 10.1: Startup time (2 clients)

Client Measure 1 Measure 2 Measure 3 Measure 4 Measure 5

#1 7900 8744 8252 9056 9123

#2 9127 9378 9188 8995 9447

#3 9298 9079 9033 9404 8966

#4 9381 9349 8937 9316 9573

AVG 8927 9138 8853 9193 9277

Table 10.2: Startup time (4 clients)

Client Measure 1 Measure 2 Measure 3 Measure 4 Measure 5

#1 15015 14194 14501 13909 15240

#2 18258 18101 17775 16998 17723

#3 16968 18364 18600 16373 18076

#4 17863 18898 18198 18769 18639

#5 18605 18595 18880 18942 18019

#6 19192 19311 18621 18707 17296

#7 18122 16999 17023 18229 17377

#8 18243 18674 18780 18504 18538

AVG 17783 17892 17797 17554 17614

Table 10.3: Startup time (8 clients)

C #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 AVG

M 36 36 39 36 37 39 39 36 35 35 34 37 35 35 34 36 36

Table 10.4: Startup time (16 clients, time in seconds)

Page 123 of 128

10.2.2 Run code scalability

All measurements are in milliseconds, unless stated otherwise.

Client Measure 1 Measure 2 Measure 3 Measure 4 Measure 5

#1 1132 1311 1032 939 973

#2 1178 1559 916 976 973

AVG 1155 1435 974 958 973

Table 10.5: Run code (2 clients)

Client Measure 1 Measure 2 Measure 3 Measure 4 Measure 5

#1 1846 1892 1922 1829 1824

#2 1822 1801 1979 1820 1847

#3 1797 1760 1776 1741 1828

#4 1953 1745 1826 1624 1719

AVG 1855 1800 1876 1754 1805

Table 10.6: Run code (4 clients)

Client Measure 1 Measure 2 Measure 3 Measure 4 Measure 5

#1 3231 2953 2885 3062 2791

#2 3171 3147 3024 2987 3016

#3 3224 3011 3005 3063 3131

#4 3286 3121 3005 3213 2929

#5 3136 3001 2885 2977 2962

#6 3065 2874 2785 2934 2957

#7 2943 2909 2739 2811 2720

#8 2734 2617 2507 2771 2649

AVG 3099 2954 2854 2977 2894

Table 10.7: Run code (8 clients)

C #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 AVG

M 4,7 5,1 5,5 5,5 5,1 5,6 5,5 5,8 5,4 5,5 5,6 5,3 5,2 5,1 4,9 4,9 5,3

Table 10.8: Run code (16 clients, time in seconds)

Page 124 of 128

10.2.3 Run tests

All measurements are in milliseconds, unless stated otherwise.

Client Measure 1 Measure 2 Measure 3 Measure 4 Measure 5

#1 1348 1368 1396 1366 1387

#2 1340 1387 1401 1339 1360

AVG 1344 1378 1399 1353 1374

Table 10.9: Run tests (2 clients)

Client Measure 1 Measure 2 Measure 3 Measure 4 Measure 5

#1 2411 2765 2454 2360 2472

#2 2541 2589 2804 2598 2724

#3 2465 2526 2569 2455 2659

#4 2526 2403 2548 2335 2591

AVG 2486 2571 2594 2437 2612

Table 10.10: Run tests (4 clients)

Client Measure 1 Measure 2 Measure 3 Measure 4 Measure 5

#1 4588 3396 3086 3915 3906

#2 5158 3446 3505 4850 4707

#3 4914 3503 3457 4954 4688

#4 4725 3563 3509 4915 4927

#5 4629 3341 3385 4943 4512

#6 4874 3430 3303 4608 4676

#7 4704 3198 3190 4911 4587

#8 4625 3241 3082 4310 4298

AVG 4777 3390 3315 4676 4538

Table 10.11: Run tests (8 clients)

C #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 AVG

M 6,0 6,8 6,4 6,7 6,6 6,6 6,9 6,4 6,7 6,8 6,4 6,1 6,4 5,9 5,7 7,0 6,5

Table 10.12: Run tests (16 clients, time in seconds)

Page 125 of 128

10.2.4 Error checking

All measurements are in milliseconds, unless stated otherwise.

Client Measure 1 Measure 2 Measure 3 Measure 4 Measure 5

#1 267 339 287 260 259

#2 289 319 280 282 275

AVG 278 329 284 271 267

Table 10.13: Error checking (2 clients)

Client Measure 1 Measure 2 Measure 3 Measure 4 Measure 5

#1 266 303 251 261 236

#2 271 314 264 287 302

#3 302 359 254 298 352

#4 307 281 273 294 270

AVG 287 314 261 285 290

Table 10.14: Error checking (4 clients)

Client Measure 1 Measure 2 Measure 3 Measure 4 Measure 5

#1 272 259 248 266 254

#2 252 254 262 344 328

#3 304 317 243 388 304

#4 289 413 240 393 379

#5 306 438 299 397 227

#6 371 596 316 348 533

#7 345 290 251 362 493

#8 337 1046 255 363 321

AVG 310 452 264 358 355

Table 10.15: Error checking (8 clients)

C #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 AVG

M 0,4 0,4 0,3 0,3 0,3 0,5 0,8 0,8 0,5 0,5 0,5 0,2 0,5 0,5 0,3 0,4 0,4

Table 10.16: Error checking (16 clients, time in seconds)

Page 126 of 128

10.2.5 Code completion

All measurements are in milliseconds, unless stated otherwise.

Client Measure 1 Measure 2 Measure 3 Measure 4 Measure 5

#1 387 387 397 384 364

#2 403 387 350 340 387

AVG 395 387 374 362 376

Table 10.17: Code completion (2 clients)

Client Measure 1 Measure 2 Measure 3 Measure 4 Measure 5

#1 662 588 606 709 661

#2 714 666 725 649 749

#3 711 707 772 732 672

#4 638 690 735 713 728

AVG 681 663 710 701 703

Table 10.18: Code completion (4 clients)

Client Measure 1 Measure 2 Measure 3 Measure 4 Measure 5

#1 1207 972 1014 1479 1478

#2 1267 1140 1380 1422 1465

#3 1416 1299 1272 1973 1413

#4 1367 1512 1148 1737 1411

#5 1436 1382 1199 1870 1538

#6 1397 1450 1365 2079 1432

#7 1534 1410 1214 1991 1423

#8 1452 1435 1258 1944 1367

AVG 1385 1325 1231 1812 1441

Table 10.19: Code completion (8 clients)

C #1 #2 #3 #4 #5 #6 #7 #8 #9 #10 #11 #12 #13 #14 #15 #16 AVG

M 2,3 2,2 4,9 2,6 2,5 2,6 2,7 4,2 4,1 4,0 3,8 3,6 3,5 3,3 3,0 2,6 3,2

Table 10.20: Code completion (16 clients, time in seconds)

Page 127 of 128

10.3 Setup guide

10.3.1 Setting up Eclipse

1. Start Eclipse
2. Set workspace to the root of project (the folder containing README.md)
3. Open "File" > "Import..."
4. Select "General" > "Existing Projects into Workspace"
5. Press "Next"
6. In the "Select root directory" field, browse to "/no.ntnu.assignmentsystem.model"
7. Make sure the project is checked
8. Click "Finish"

10.3.2 Installing Java 8 plugin

1. Go to "Help" in the menu bar
2. Open "Eclipse Marketplace"
3. Search for java 8 kepler
4. Install "Java 8 support for Eclipse Kepler SR2"
5. Complete the wizard

10.3.3 Setting up JRE8 in eclipse

1. Go to "Window" > "Preferences" > "Java" > "Installed JREs"
2. If jre8 is not in the list, click "Add"
3. Choose "Standard VM"
4. Set "JRE Home" to your jre8 path.
5. Click "Finish"

10.3.4 Installing Maven plugin

1. Go to "Help" in the menu bar
2. Open "Eclipse Marketplace"
3. Search for maven 1.4
4. Install "Maven Integration for Eclipse (Juno or newer) 1.4"
5. Complete the wizard.

10.3.5 Installing Akka dependencies into Eclipse

1. Open terminal and navigate to "/setup" folder
2. Run mvn p2:site (https://github.com/reficio/p2-maven-plugin)
3. Open Eclipse
4. Go to "Help" > "Install new Software..." in menu bar
5. Click "Add..."
6. Click "Local"
7. Navigate to "/setup/target/repository" and click "Open"
8. Click "OK"
9. Check "Maven osgi-bundles" in table view
10. Click "Next >"
11. Click "Finish"

Page 128 of 128

10.3.6 Generating model code

1. Navigate to "model/model.genmodel"
2. Right-click on "Model"
3. Click on "Generate Model Code"

10.3.7 Create a Run configuration

1. Open "Run" > "Run Configurations" in menu bar
2. Right-click "Java Application" and select "New"
3. Set name to Main
4. Set project to "no.ntnu.assignmentsystem.model"
5. Set main class to Main
6. Click "Run" and confirm that it compiles

10.3.8 Exporting to JAR

1. Right-click the project and select "Export"
2. Select "Java" > "Runnable JAR file"
3. Click "Next"
4. Set launch configuration to "Main"
5. Set export destination to "AssignmentModel/lib"
6. Set library handling to "Copy required libraries into a sub-folder next to the generated

JAR"
7. Check "Save an ANT script"
8. Click "Finish"
9. Move the JAR-files from sub-folder to "AssignmentModel/lib"

10.3.9 Set up automatic building

1. Right-click project and select "Properties"
2. Go to "Builders"
3. Click "New..."
4. Select "Ant Builder"
5. Click "OK"
6. Set name to Model Builder
7. Set buildfile to the generated ANT-file
8. Set base directory to the root folder (folder containing README.md)
9. Click "OK"

10.3.10 Setting up IntelliJ

Generate IDEA-files (run activator idea in directory)
1. Start IntelliJ
2. Select "Open Project"
3. Navigate to "/AssignmentSystem"

