
CHASSIS Tool
A model-driven approach

Juni Angelfoss

Master of Science in Informatics

Supervisor: Guttorm Sindre, IDI
Co-supervisor: Christian Raspotnig, IFE

Department of Computer and Information Science

Submission date: May 2014

Norwegian University of Science and Technology

Abstract

Safety and security, and unifying these two aspects are important when elicit-

ing requirements to form both new and existing computer systems. As a means

to support this, the CHASSIS method was developed. With this a new issue

emerged: a need for a computer tool supporting CHASSIS during requirement

elicitation. This report presents an initial approach to a tool for CHASSIS,

focusing on generation of the Failure Sequence Diagram (FSD). Included in the

report are CHASSIS’ background, related safety and security techniques and

their limitations compared to CHASSIS. Further on, different approximations

to a CHASSIS tool are presented resulting from industry input. The back-

ground, related techniques and input together form a proposed solution. The

report continues presenting requirements of the tool as well as how these where

implemented programmatically. An investigation of the tool and its abilities

to fulfil the stated functional and non-functional requirements was carried out

through a student experiment. The results of the experiments and other tech-

niques utilised during the project is then evaluated and validated. A short

summary and notes on further work concludes the report.

i

ii ABSTRACT

Preface

Denne masteravhandlingen er den avsluttende delen av et to-̊arig masterstudie

innenfor Informatikk med spesialisering innefor retningen informasjonsforvalt-

ning ved Norges teknisk-naturvitenskapelige universitet (NTNU). Arbeidet med

oppgaven begynte i august 2013 og ble ferdigstilt i slutten av mai 2014.

Jeg vil her benytte anledingen til å takke min hovedveilder Guttorm Sindre for

avgjørende veiledning jeg mottok under arbeidet med oppgaven. Jeg ønsker

ogs̊a å takke min biveileder, Christian Raspotnig, for innsikten han gav meg til

CHASSIS som metode, men ogs̊a for gode tips til utformingen av et verktøy for

CHASSIS. Denne oppgaven hadde ikke vært til hadde det ikke vært for ham.

En takk sendes ogs̊a til Avinor som tok meg godt imot og bidro med verdifull

informasjon om tiltenkt bruk av et CHASSIS verktøy.

Min familie, og da speiselt mine kjære foreldre, fortjener ogs̊a en stor takk for

støtte gjennom hele prosessen.

iii

iv PREFACE

Contents

Abstract i

Preface iii

List of Acronyms ix

1 Introduction 1

1.1 Background . 1

1.2 Tool need . 3

1.3 Research questions . 3

1.4 Research and development method 4

1.5 Structure of the report . 5

2 Research method 7

2.1 Main research method - overview 7

2.2 Artifact design . 8

2.2.1 Design activity - choosing a development approach 8

2.2.2 Design activity - gathering tool requirements 9

2.2.3 Design activity - choosing software development method . 9

2.3 Artifact construction . 9

2.3.1 Construction activity - choosing a platform 10

2.4 Artifact analysis . 11

2.4.1 Analysis activity - usability testing 11

2.5 Evaluation . 11

3 Background (CHASSIS) 13

3.1 What is CHASSIS? . 13

3.2 The CHASSIS process . 15

3.3 Failure Sequence Diagram . 16

v

vi CONTENTS

3.4 Misuse Sequence Diagram . 18

4 Related techniques and modeling tools 19

4.1 Safety . 19

4.1.1 Hazard and Operability Study 20

4.1.2 Failure Mode and Effect Analysis 21

4.1.3 Fault and Event Tree Analysis 22

4.1.4 about functional hazard assessment 24

4.2 Security . 24

4.2.1 Secure Tropos . 24

4.2.2 KAOS Security Extension 25

4.2.3 CORAS . 25

4.3 Safety and security . 26

4.3.1 Cross-fertilization . 26

4.3.2 Combining safety and security 27

4.4 Modeling tools . 28

4.4.1 SDL Threat Modeling Tool 28

4.4.2 SdEdit . 29

4.4.3 SeaMonster . 29

5 Artefact design - CHASSIS 31

5.1 Input from industry . 31

5.2 Problem description . 33

5.3 Proposal and suggested solution 34

5.4 Collecting domain data . 35

5.5 Creating a Domain Specific Language 36

5.6 UML extension techniques . 38

5.6.1 Featherweight extension 38

5.6.2 Lightweight extension . 39

5.6.3 Middleweight extension 43

5.6.4 Heavyweight extension . 43

6 Artefact construction - Technology 45

6.1 Technology requirements . 45

6.2 Platform - Eclipse . 46

6.3 Eclipse plugin - Papyrus . 47

CONTENTS vii

7 Artifact construction - CHASSIS tool 51

7.1 Functional requirements - first version 51

7.1.1 Actor and hazardous actor 53

7.1.2 Marks and notes . 54

7.1.3 Components . 55

7.1.4 Links . 56

7.2 First edition FSD UML profile 58

7.3 Second edition FSD UML profile 60

7.3.1 Functional requirements - second version 61

7.3.2 Implementing changes into the FSD profile 69

7.4 Creating a custom palette . 71

7.5 Applying the profile . 72

7.6 The CHASSIS artefact - GMF approach 73

7.6.1 Graphical Modeling Framework 73

7.6.2 Functional requirements 74

7.6.3 Implementation . 77

8 Artefact analysis - student experiment 81

8.1 Scope and purpose . 81

8.2 Location, equipment and process 82

8.3 Scenarios . 84

8.4 Participants . 85

8.5 Results . 86

9 Artefact evaluation and validation 93

9.1 DSR and Iterative development 93

9.2 Gathering tool requirements . 94

9.3 MDSD . 94

9.4 Development platforms - Papyrus and GMF 95

9.5 Student experiment . 95

9.6 Threats to validity . 97

10 Conclusions and further work 99

A High level specification of CHASSIS tool 107

B Domain model - GMF tool 111

C Notation for CHASSIS tool - GMF 113

viii CONTENTS

D Proposed case for usability testing 115

E Case used during artefact analysis 117

List of Acronyms

BDMP - Boolean-logic Driven Markov Process

CHASSIS - Combined Harm Assessment for Safety and Security of Informa-

tion Systems

CTA - Concurrent Thinking Aloud

CORAS - no abbreviation

D-MUC - Diagrammatical Misuse Case

DSL - Domain Specific Language

DSR Design Science Research

EMF - Eclipse Modeling Framework

EMP - Eclipse Modeling Project

ETA - Event Tree Analysis

FHA - Failure Hazard Assessment

FMEA - Failure Mode and Effect Analysis

FR - Functional Requirements

FSD - Failure Sequence Diagram

FTA - Fault Tree Analysis

GEF - Graphical Editing Framework

GMF - Graphical Modeling Framework

GTBS - Goal- or Task-Based Scenarios

IDE - Integrated Development Environment

IDI - Institutt for datateknikk og informasjonsvitenskap

IFE - Institutt for Energineknikk

ix

x LIST OF ACRONYMS

IS - Information System

KAOS SE - Keep All Objectives Satisfied/Knowledge Acquisition in Auto-

mated Specification Security Extension

HAZOP - Hazard and Operability Study

MBSA - Model Based Safety Analysis

MDSD Model Driven Software Development

MDT - Model Development Tools

MOF - Meta-object family

MUC - Misuse case

MUSD - Misuse Sequence Diagram

NTNU - Norges Teknisk-naturvitenskapelige universitet

OMG - Object Management Group

RP - Retrospective Probing

SD - Sequence Diagram

SdEdit - Quick Sequence Diagram Editor

SDL - Security Development Lifecycle

ST - Secure Tropos

T-MUC - Textual Misuse Case

TEA - Threat Effects Analysis

UC - Use Case

UCD - Use Case Diagram

UML - Unified Modeling Language

VSU - Visual Studio Ultimate

List of Figures

2.1 Graphical representation of the design science process model[37] 10

3.1 A single iteration in an iterative development life cycle[76] . . . 14

3.2 The CHASSIS process[33] . 15

3.3 Example use of the FSD[2] . 17

4.1 A fault tree showing a single top event, three intermediate causes

and eight base causes[77] . 23

4.2 Threat diagram using the CORAS UML profile[78] 25

4.3 The SeaMonster tool with an example MUC drawn 30

5.1 UML extension vs. MOF[29] . 36

5.2 The inheritance levels when creating a DSL via MOF[7] 37

5.3 Using a keyword to distinguish between a class and an interface 38

5.4 Using a keyword to distinguish between different relations in a

diagram[29] . 39

5.5 Adapting UML by the means of a stereotype 40

5.6 Adapting UML by the means of a profile[7] 41

6.1 A sequence diagram drawn using the Papyrus diagram editor . . 48

7.1 The first edition notation of FSD[6] 52

7.2 Graphical presentation of first edition of FSD Profile 58

7.3 How icon and shape are added to a stereotype 59

7.4 Indicators and part/complete component failure in second version

of FSD notation . 61

7.5 Messages in second version of FSD notation 64

7.6 Notes, parallel/alternative failures and interaction in second ver-

sion of FSD notation . 67

xi

xii LIST OF FIGURES

7.7 Second version of the FSD profile 70

7.8 Creating a custom palette, showing the complete component fail-

ure and its related stereotype . 71

7.9 The steps taken in the development of a GMF project[73] 78

8.1 Resulting sequence diagram after completing the first scenario

during session 1 . 86

8.2 A version of how the router failing was visualized during one of

the sessions . 87

8.3 Decomposition of the router component 88

8.4 Showing Router as a complete component failure 89

8.5 Adding a watch-dog to the decomposed Router component . . . 91

List of Tables

1.2 Overview of CHASSIS compared to popular safety techniques . . 2

1.4 Overview of CHASSIS compared to popular security techniques . 3

4.1 Guide words and parameters, and how they are combined in HA-

ZOP . 20

6.1 Initial high level requirements (see Appendix A) 46

6.3 Comparing Papyrus, GMF and VSU 49

7.1 Requirements of actor and hazardous actor notation 53

7.2 Functional requirements of marks notation 54

7.3 Functional requirements of notes 55

7.4 Functional requirements of failure component 55

7.5 Functional requirements of links connecting an actor/hazardous

actor to a lifeline/component failure 56

7.6 Functional requirements of links creating a connection between a

lifeline/component failure and a lifeline/component failure 57

7.7 Functional requirements of part component failure 62

7.8 Functional requirements of message lost, found, failure and miti-

gation . 65

7.9 Functional requirements for alternative and parallel failures . . . 68

7.10 Functional requirements for failure and mitigation interactions . 68

7.11 Additional functional requirements for complete component failure 69

7.12 Functional requirements inherited from of the CHASSIS tool -

Papyrus version . 75

7.13 Additional functional requirements - GMF version 76

8.1 Non-functional requirements for the CHASSIS tool 81

8.2 Basic information about participants in the sessions 85

xiii

xiv LIST OF TABLES

Chapter 1

Introduction

This chapter serves as a presentation of the work conducted and documented

in this report. It begins with a background of the current situation, providing

the context of study in this report.

1.1 Background

Safety, defined by the Oxford Dictionary as condition of being protected from

or unlikely to cause danger, risk, or injury [11] and security, the state of being

free from danger or threat [12] are two central terms in functional requirement

elicitation area. Techniques in the safety field, including the Hazard and Oper-

ability Study (HAZOP), Failure Mode and Effect Analysis (FMEA), Functional

Hazard Assessment (FHA) and Fault and Event Tree Analysis (FTA/ETA),

have remained more or less the same the last couple of decades.[3] In the se-

curity field however, techniques such as Secure Tropos (ST), KAOS Security

Extension (KAOS SE) and CORAS tend to be based on more modern modeling

languages.

1

2 CHAPTER 1. INTRODUCTION

Property CHASSIS HAZOP FMEA
FTA/

ETA
FHA

Can cover safety aspects yes yes yes yes yes

Can cover security aspects yes yes yes yes1 -

Unifying safety and security aspects yes - - - -

Graphic analysis visualisation yes - - yes -
Address interaction

between components
yes - - - -

Modeling multiple failures yes - - yes2 -

Table 1.2: Overview of CHASSIS compared to popular safety techniques

Despite including a wide range of options, very few techniques in the safety and

security field provide the means to or aim at unifying safety and security aspects

when performing system modeling activities.[4] A method aiming at providing

just such an approximation, and thereby give a more nuanced view of the system

under analysis, is the Combined Harm Assessment for Safety and Security in In-

formation Systems (CHASSIS) method. Table 1.2 and 1.4 presents an overview

comparing CHASSIS to other popular techniques from the safety and security

field, respectively. These techniques are further discussed in section 4.1-4.3.

One advantage with CHASSIS is the fact that the method utilizes the Unified

Modeling Language (UML). This provides means to visualize how failures in a

system can propagate (safety) and how an attacker can exploit the vulnerabil-

ities in a system (security). In CHASSIS, these two aspects are presented by

a Failure Sequence Diagram (FSD) and a Misuse Sequence Diagram (MUSD),

respectively, both based on the UML Sequence Diagram (SD). FSD and MUSD

have both been applied in experiments, presented in [2, 4, 5, 6]. The same

papers presents the problem addressed in this report: approximating a tool for

CHASSIS with the focus on the Failure Sequence Diagram (FSD)

1Only FTA[3]
2Only FT (see 4.1)

1.2. TOOL NEED 3

Property CHASSIS ST KAOS SE CORAS

Can cover safety aspects yes - yes yes

Can cover security aspects yes yes yes yes

Unifying safety and security aspects yes - - -

Graphic analysis visualisation yes yes yes yes

Table 1.4: Overview of CHASSIS compared to popular security techniques

1.2 Tool need

The need for a CHASSIS tool facilitating the generation of FSDs emerges in sev-

eral papers describing conducted CHASSIS experiments. Here, it is suggested

that a tool for the FSD would give the diagram more structure and that this

structure would facilitate the collection of all relevant information directly in

the FSD. Yet another issue during the experiments was related to drawings be-

coming to complex and taking up too much space on the whiteboard. Creating

a computer tool can provide solutions to support this and other issues related

to whiteboard-drawings; storing and sharing files, simplifying diagram editing,

structure in large and complex diagrams, facilitate common understanding of

the system through a common notation set and collaboration possibilities.

An investigation of existing modeling tools (see section 4.4) reveals that none of

these encompasses the functionality need for a tool approximation to CHASSIS,

further justifying the tool development effort presented in this report.

1.3 Research questions

In this report, the research questions revolve around approximating a tool for

CHASSIS, approximating being the stressed word. The work conducted and

described in this report has been performed by one person during the course

of a singe academic school year. For these reasons, this report only means to

present a first approach to a CHASSIS tool and not a completed product.

4 CHAPTER 1. INTRODUCTION

The fact that the CHASSIS method has not been included in any previous

attempts at tool creation, leads to two interesting research questions:

1. What approximations are there to a CHASSIS tool?

2. Does such an approximation work in a realistic setting?

Methods and activities supporting the realisation of the CHASSIS approach,

and means to answer these two research questions are presented in section 1.4.

1.4 Research and development method

This report utilizes several methods and activities to support the CHASSIS tool

approximation. The main research method, Design Science Research (DSR),

provides structure guiding the developer through the the process resulting in a

novel artefact: the CHASSIS tool. In addition, the iterative development pro-

cess method supports the main research method by allowing further decompo-

sition of the phases in DSR. The Model Driven Software Development (MDSD)

is yet another supporting modeling method applied in this report. MDSD offers

metamodeling, a technique used to create the domain specific language (DSL)

for the first attempt at a CHASSIS tool approach.

Deciding on a development platform is based on a CHASSIS background study

and a set of high-level requirements provided by a CHASSIS domain expert,

Christian Raspotnig. The functional requirements of the tool to be developed on

the chosen platform are results of the CHASSIS background, related papers and

input from the aviation industry and Raspotnig. In addition, the OMG (Object

Management Group) UML superstructure supported the election of metaclasses

to be extended in the FSD DSL. The tool analysis was performed by conducting

student experiments, by the means of a usability testing technique.

1.5. STRUCTURE OF THE REPORT 5

1.5 Structure of the report

This section aims at giving an overview of the contents of the chapters through-

out this report.

Chapter 1 presents the background, identifies the tool need and research ques-

tions this report addresses.

Chapter 2 describes the main research method, as well as supporting methods

and activities applied during the development process.

Chapter 3 gives a detailed background on the CHASSIS method.

Chapter 4 compares the CHASSIS method to other popular safety and secu-

rity techniques and takes a look at existing modeling tools.

Chapter 5 presents the problem and proposal and the intended solution.

Chapter 6 discusses the platform selection.

Chapter 7 presents the implementation of the CHASSIS tool approximation.

Chapter 8 documents the conducted student experiment with the CHASSIS

tool and its results.

Chapter 9 evaluates the methods and techniques used during the development

period and answers the research questions.

Chapter 10 draws a conclusion on the work presented in the report and sug-

gests further work.

6 CHAPTER 1. INTRODUCTION

Chapter 2

Research method

This chapter provides an insight to the main research method used in this

project, as well as supporting methods and activities.

2.1 Main research method - overview

The design science research (DSR) involves creating new knowledge. The cre-

ation is realised through design of novel or innovative artifacts (things or pro-

cesses that have or can have material existence) and analysis of the use and/or

performance of such artifacts along with reflection and abstraction.[37] The pur-

pose of the research method is to both improve and understand behavioural

aspects of Information Systems (IS).

In this particular project, the artefact is a new tool: The CHASSIS tool. As a

method, DSR is conveniently organised into four phases;

1. Artifact design

2. Construction

3. Analysis

4. Evaluation

These are presented in further detail, along with appropriate activities support-

ing the development of the CHASSIS tool, in sections 2.2-2.5.

7

8 CHAPTER 2. RESEARCH METHOD

2.2 Artifact design

The initiator to the DSR is a problem. The problem may originate from several

sources, here from reference disciplines. [6, 4, 2, 5] and the supporting doctorate

dissertation, [3], all enlighten the matter: the need for an artefact covering the

CHASSIS method that aid experts in requirement elicitation activities.

The result of the problem awareness step is a formal or informal proposal, con-

taining a new research effort. Here, the proposal suggest creating a tool for

CHASSIS as a mean to support the method. Figure 2.1 presents the suggestion

step, also known as the creative step, as the recipient of the proposal. The

proposal is then investigated in further detail and the a design sketch for the

artefact, the solution to the problem, is created.[38] Now having covered the

problem, proposal and a solution, the CHASSIS tool design and how to imple-

ment it needs to be described in further detail. Here, three design activities,

choosing a development approach, gathering tool requirements and choosing

software development method support this. These activities are covered in sub-

sections 2.2.1-2.2.3.

2.2.1 Design activity - choosing a development approach

In software engineering, a development method is a framework used to plan,

structure and control the information system process.[45] As the initial plan

of a project, especially with respect to the requirements, often is flawed and

therefore in need of editing an iterative development approach is preferred.[32]

Figure 3.1 gives a graphical presentation of a single iteration in a iterative

development cycle: planning (see Chapter 5), requirements, analysis and design

and implementation (see Chapter 7 and 6), test (see Chapter 8) and finally

evaluation (see Chapter 9). Comparing the iterative development methodology

in Figure 3.1 to the stages of DSR, it is evident that they have a great deal

of overlap. Using DSR as a main method and an iterative support method

gives the artefact developer opportunity to return and to previous steps in the

cycle several times during development should factors defining the tool need

editing, as well as aid in the decomposition the activities in each step of DSR

into manageable sized tasks.

2.3. ARTIFACT CONSTRUCTION 9

2.2.2 Design activity - gathering tool requirements

In the world of software development, there are fields of opportunities related

to the gathering of system requirements, [39, 40, 41] and [42] to mention a few.

Most of these, however, focus solely on user interaction during the elicitation

process. In this project, the elicitation used has a more theoretical centered

approach, based on investigating the CHASSIS method (see Chapter 3), re-

lated modeling tools (see section 4.4), input from domain experts (Raspotnig),

the formal OMG UML structure[30] and [6, 4, 2, 5, 43, 44], representing arti-

cles where the CHASSIS method has been evaluated. These sources together

gives a holistic and nuanced view of CHASSIS and the requirements related

to approaching a CHASSIS tool, and thus provides sufficient information for

the extraction of functional as well as nonfunctional requirements. Here, the

functional requirements covers how the artefact should behave, specifying what

is needed for the development. The non-functional, or user-, requirements de-

scribes user expectations and enlightens how the user will interact with the

artefact.[64]

2.2.3 Design activity - choosing software development method

Central in the selection a sub-method to aid in the software development is

the list of functional and nonfunctional requirements (see Chapter 5). As it

suggests, the CHASSIS tool can be realised through metamodeling, one of the

most important aspects of the Model-Driven Software Development method

(MDSD).[7] As the name suggests, a metamodel is a model that can make

statements about modeling.[7] In this project, a metamodel of FSD, detailed

in a Domain Specific Language (DSL), is created through the extension of the

unified modeling language (UML) model (see Chapter 7).

2.3 Artifact construction

As the title suggests, the second phase of DSR involves implementing the design

developed in the previous phase. Here, the techniques for implementation will

vary depending on what type of artefact is to be created.[38] For instance, if

the artefact is a system, software development is a natural construction activ-

ity and if the artefact is an algorithm, the construction activity would involve

the development of a formal proof. In this project the artefact to be created

is, as previously mentioned, a tool, and the construction phase would imply

10 CHAPTER 2. RESEARCH METHOD

software development. The subsection describes a final activity conducted be-

fore the actual implementation of the CHASSIS tool can take place: choosing a

development platform.

2.3.1 Construction activity - choosing a platform

Choosing a development platform is a crucial decision in developing the CHAS-

SIS tool. Here, demands the platform needs to address and meet are not only a

set of high level requirements, but functional and non-functional requirements

as well. Failing to meet these could result in the project failing. Additional im-

portant factors that should be evaluated when a development platform is chosen

are the developers familiarity with the platform, but also supporting informa-

tion related to the platform including tutorials and other publications. One

platform addressing these factors are the Eclipse IDE (integrated development

environment) and one of its available plugin tools: Papyrus. Both of these are

further described and discussed in Chapter 6.

Figure 2.1: Graphical representation of the design science process model[37]

2.4. ARTIFACT ANALYSIS 11

2.4 Artifact analysis

When the software development has taken place and an artefact has been de-

veloped, the third phase, the artefact analysis, takes place. Here, the artefact

is evaluated according to the elicited requirements (see Chapter 7). Any de-

viations from expectations discovered here are noted and must be tentatively

explained.[38] In other words, this is where the hypothesis, which in this project

is represented by the second research question (see section 1.3), are either con-

firmed or contradicted. The evaluation of the CHASSIS tool approximation

is, in this project, evaluated through the means of an activity called usability

testing.

2.4.1 Analysis activity - usability testing

According to [51], usability testing involves the evaluation of a product or a

service with representative users. As a general, the purpose of this activity is

identifying any useability problems, collecting data and determine the partici-

pant’s level of satisfaction with the artefact. A successful test-execution requires

solid preparatory work: developing a well thought out test plan and acquiring

participants who satisfy a set of properties. Here, the test plan documents what

parts of CHASSIS tool is being tested, how the test is going to be conducted

and details regarding what data is to be collected. Additionally, the plan de-

scribes scenarios the participants are to complete via the artefact, including

requirements supporting these scenarios. As the testing is completed, the data

collected needs to be analyzed and findings reported..

2.5 Evaluation

The evaluation phase of DSR, in this project, represents the finale of a research

effort.[38] The results of the study performed in the artifact analysis phase are

discussed and evaluated. In this project, the evaluation additionally covers all

methods and supporting activities performed during the project. The evaluation

is further detailed in Chapter 9.

12 CHAPTER 2. RESEARCH METHOD

Chapter 3

Background (CHASSIS)

This chapter presents the Combined Harm Assessment for Safety and Security in

Information Systems (CHASSIS) method in detail, focusing on how CHASSIS is

applied and two of the methods visualization utilities: failure sequence diagram

(FSD) and misuse sequence diagram (MUSD).

3.1 What is CHASSIS?

The CHASSIS method is a unifying process, joining both assessment of the

safety and security fields. This results in a method covering both harm and at-

tack identification and analysis.[4] In an iterative development project, a project

consisting of several consecutive system development life cycles[32], CHASSIS

belongs mainly to the software development stage covering requirements activ-

ities (the blue arrow in Figure 3.1).[33, 5] At this stage, the functional and

physical needs related to how a product must be able to perform are stated.[34]

Here, the CHASSIS method, through team activities, enables visual modeling

and a structured harm assessment to support the elicitation of safety and se-

curity requirements based on the functional needs.[4, 5] More active usage of

models during the assessments of safety and security can give several benefits.

One of them is improved understanding and better discussions of the system

that is under assessment.[3]

13

14 CHAPTER 3. BACKGROUND (CHASSIS)

Figure 3.1: A single iteration in an iterative development life cycle[76]

The visual modeling part of CHASSIS covers both security and safety aspects

of the requirement elicitation development stage. The security features includes

Textual and Diagrammatical Misuse Case (T- and D-MUC) and the MUSD,

whereas T-MUC and D-MUC is used alongside the FSD in the safety field.[4]

(see sections 3.2-3.4) The harm assessment functionality is realised by utilizing

HAZOP.(see section 4.1.1) In the CHASSIS setting, HAZOP takes the role as the

creativity enhancer, allowing a structured elicitation process and specifying the

requirements based on the safety and security output from CHASSIS itself.[4]

Together, MUC, FSD, MUSD and HAZOP is combined into a process; the

CHASSIS process which is covered in the next section.

3.2. THE CHASSIS PROCESS 15

3.2 The CHASSIS process

As Figure 3.2 shows, the CHASSIS process is separated into three stages. First

stage, the elicitation of functional requirements, covers the definition system

functions and services. The system definition can be performed in three differ-

ent ways. The first one, using operational and environmental descriptions of the

system. The second one is realised through discussion with stakeholders, and

the third one using both former approaches in combination.[4] To further aid the

elicitation, UML diagrams are included at this stage. One of them is a Usecase

Diagram (UC). Usually detonated as a behaviour diagram, a UC describes a

set of actions a system can perform in collaboration with one or more external

users.[35] Additional description of the UC’s is covered in the Textual Usecases

(T-UC). The other UML diagram included in the first third of the CHASSIS

process is Sequence Diagram (SD).[33] As a common interaction diagram, SD is

focused on message flow between lifelines.[36] Here, a lifeline represents a single

component of a system.

Figure 3.2: The CHASSIS process[33]

16 CHAPTER 3. BACKGROUND (CHASSIS)

The elicitation of safety and security requirements are the central activities in

the second CHASSIS process step, performed by creating MUC, T-MUC, FSD

and MUSD. MUC are created based on the UC from step 1, by extending it and

adding notation to the UC indicating possible misusers (mischievous external

users) and harm, and the MUC if further detailed through the creation of T-

MUC. The T-MUC then provides a list of harm scenarios which are refined in

the FSD and MUSD. If any new relevant information is discovered when refining

the sequence diagrams, this is fed back to the T-MUC, and new mitigations are

defined as new usecases. The mitigations will then initiate a new iteration start-

ing at the first step in the CHASSIS process. When the T-MUC is completed,

HAZOP tables are prepared, the corresponding security and safety requirements

are defined, thus completing the third and final step in the CHASSIS process.

3.3 Failure Sequence Diagram

At the same time as the first approach to a CHASSIS tool was developed, the

long term scope was kept in mind. The natural next step after the completion

of the functionality for a FSD editor, would be adding new functionality to the

tool: the means to create MUSDs. Because of this, and because the plan for

a short time was to create a tool for both methods simultaneously, MUSD is

covered in detail equally to FSD in the next section. But first of is the Failure

Sequence Diagram.

As mentioned in section 3.2, the FSD is a graphical diagram utilized in the

elicitation of safety and security requirements step of the CHASSIS process.

The diagram is the result of the adaption of the security field of MUSD into

the safety engineering field.[2] Here, FSD poses as a modeling technique for de-

tailed safety assessment, thus facilitating failure analysis and the modeling of

unintentional system failures.[2, 3, 4] The failure analysis feature is realised by

developing the FSD with the Sequence Diagram (SD) of UML as a base and

adding supporting functionality.[3]

3.3. FAILURE SEQUENCE DIAGRAM 17

In practise, FSD offers an overview of the system under evaluation. The overview

covers components of the system, details related to how these components in-

teract (both of these SD functionality) and relevant failure effects (additional

FSD specific functionality).[6] In short, FSD focuses on the identification of how

components of a system can fail and how the failures propagates through said

system.[2, 6] During an analysis, FSD is created in three steps:[3]

1. Drawing normals interactions in a SD

2. Brainstorm for failures and include these visually in the diagram drawn

in 1.

3. Brainstorm for mitigations, relate these to the failures identified in 2. and

include them visually in the diagram drawn in 1.

Figure 3.3: Example use of the FSD[2]

18 CHAPTER 3. BACKGROUND (CHASSIS)

The overview of the system, its components and their interactions provided by

FSD can help increase an analysts understanding of the system to be analysed.[6]

In addition, the FSD notation enhances creative thinking during a system

analysis.[2]

3.4 Misuse Sequence Diagram

As with FSD, the Misuse Sequence Diagram (MUSD) is a modeling tool uti-

lized in the second phase of the CHASSIS process. MUSD is a modelling tech-

nique at system level that can be employed in assessment of security, as op-

posed to FSD that covers safety aspects.[2] The technique is inspired by Misuse

Cases (MUC)[3], redefining its notation and combining this with the notation

of the UML SD, in addition to MUSD specific notation. Here, the additional

MUSD notation represents visualization of the steps attackers take against sys-

tem components by exploiting vulnerabilities.[5] When modeling with MUSD,

the diagram relates components in a system and displays interactions between

an attacker and and these components, resulting in an overview of attacker-

sequences. The MUSD focus is therefore on vulnerabilities and exploit events,

as apposed to FSD that aims at modeling unintentional system failures.[2]

Chapter 4

Related techniques and

modeling tools

This chapter presents techniques and modeling tools related to the CHASSIS

method. It focuses on representing the techniques and tools, and comparing

them to CHASSIS. The fist and second section covers safety and security tech-

niques, respectively. The third section presents techniques that are subject of

cross-fertilization and techniques used in both the safety and security field. The

final section covers example modeling tools.

Common for both the safety and security field is the importance of commu-

nicating associated aspects amongst stakeholders during system development.

Failing to do so could result in serious errors and useless systems. Another

commonality of safety and security aspects are that they both are concerned

with enlightening how a system can fail to perform.[2]

4.1 Safety

Techniques for the identification and analysis of safety aspects has remained the

same the last couple of decades, the field continuing relying on established and

traditional techniques. Examples of such techniques are Hazard and Operability

study (HAZOP) and the Failure Mode and Effect Analysis (FMEA).[2] These

two, Fault and Event Tree Analysis (FTA and ETA) and the Functional Hazard

Assessment (FHA) are the topics for the next subsections.

19

20 CHAPTER 4. RELATED TECHNIQUES AND MODELING TOOLS

4.1.1 Hazard and Operability Study

HAZOP started out as a safety technique for the chemical industry, but its use

has since been generalised. Today the technique is included in many industries

who are addressing safety as a part of their products.[3] Executing HAZOP

starts out with a block diagram of the system that is to be analysed.[1] A block

diagram serves as an overview of the principal parts or functions of the sys-

tem, including links between the blocks representing relationships.[46] Selecting

a single block in the diagram, HAZOP is applied to that block by combining

predefined guide words with a set of parameters as shown in Table 4.1.[3] Based

on this activity a set of possible hazards are collected and structured in a HA-

ZOP worksheet. This worksheet serves as both documentation of the hazards

and as a guideline for hazard discussions.[6]

Parameter/

Guide word
More Less None

Time to long/to late to short/ to soon sequence step skipped

Start-up/shut-down to fast to slow

Level high level low level no level

Table 4.1: Guide words and parameters, and how they are combined in HAZOP

HAZOP is especially appropriate in the analysis of new systems, that is systems

still in the planning or design phase.[1] Additionally, the quite systematic process

for communicating and collecting information approach that is HAZOP provide

good coverage of hazards.[4, 1] As a result, HAZOP table is included in the

third step of the CHASSIS process (see section 3.2), to help sum up information

about harm.[5] As a stand-alone technique however, HAZOP is quite limited in

terms of graphical visualisation. It uses models as input just like the CHASSIS

method, but unlike CHASSIS, HAZOP tends to utilize worksheets to document

and discuss hazards.[6]

4.1. SAFETY 21

4.1.2 Failure Mode and Effect Analysis

The Failure Mode and Effect Analysis technique (FMEA) started out as as a

reliability analysis for the U.S military. FMEA has, since then, evolved and

become a widely used safety technique.[3] This technique is, alongside with i.e

HAZOP (see section 4.1.1) one of the traditional methods for hazard analysis.[1]

The main focus of FMEA is threefold: the identification of failure modes of com-

ponents in a system, the effects of these failure modes and finding the factors

that are causing failures.[6] As a result, FMEA is often complemented by FTA

(see section 4.1.3).[2] In executing FMEA, the analyst reviews as many compo-

nents, assemblies and subsystems as possible.[47] Then for each component the

failure modes found during the review and the resulting effect they have on the

rest of the system is listed in a specific FMEA worksheet/table.

In [2], it is investigated how FSD can be used to support FMEA. During the

case study, the participants agreed that the optimal use of the FMEA worksheet

was to structure the safety analysis-process. The participants also preferred us-

ing the worksheet when brainstorming failure modes, whereas when using FSD

alone, this tended to be neglected. The worksheet was in addition used to struc-

ture discussions, and thus to ensure that the local and system effects of a failure

represented in the FSD where specified and agreed upon. Here FSD posed as

an overview of the system, giving participants the means to physically point

at a specific component in the system. The conclusion therefore stated that it

would be most beneficial using FSD and FMEA in parallel.

22 CHAPTER 4. RELATED TECHNIQUES AND MODELING TOOLS

During safety assessment, FMEA offers a systematic process for communication

and the collection of information. The technique relates failure modes to both

the system component and the complete system. However, FMEA does not

address interactions between components[6], a functionality covered in both

FSD and MUSD in the CHASSIS method. (see sections 3.3 and 3.4) Another

weakness of FMEA is related to failure propagation. The technique has no

support for how a failure propagates through the system other than reasoning

about the failure mode effect locally or system wide.[3] The propagation between

interacting components in a system is covered diagrammatically in CHASSIS,

for instance through FSD (see section 3.3).[6] Yet another weakness with FMEA

becomes visible when assessing multiple failures. This situation is not supported

by FMEA and was not supported graphicly in the first edition of FSD either

(see section 7.2), but was included in the second version (see section 7.3).

4.1.3 Fault and Event Tree Analysis

The Fault Tree Analysis (FTA) is a deductive systematic process that can be

separated into four steps:[48]

1. Definition of an undesired event, a failure or a hazard

2. Resolving the event downwards into its immediate causes

3. Continuing resolution of events until the base is identified, the conse-

quences of the root event node

4. Construction of a fault tree showing the logical event relationships (see

Figure 4.1)

Following these steps, the analyst traverses from an event and through causes

related to this event until the base cause (or causes) for this event, the faults of

the system, is discovered. Since its maiden voyage in the modeling of Minuteman

Missile System in the early 60’s, FTA has been used in several industries; ATM,

aerospace and nuclear to name a few.[3]

4.1. SAFETY 23

Figure 4.1: A fault tree showing a single top event, three intermediate causes

and eight base causes[77]

Unfortunately, the fault tree often became impossible to manage when it was

created for complex large scale nuclear power plant systems. The solution, devel-

oped by the nuclear industry, was the inductive Event Tree Analysis (ETA).[3]

As apposed to the fault tree, an event tree starts with bottom node contain-

ing a failure or hazard (the leaf node of the FT), expanding in an upwards

manner in the tree, identifying consequences at each level and ending up with

a causing event.[2] The industry also combined the FTA and the ETA into a

single structure, often referred to as the Bow Tie technique. Here the failure or

hazard represents the knot that ties the two trees together into a single cause-

consequence diagram.[2]

Unlike the first edition of FSD (see section 7.2), the fault tree facilitates the

modeling of multiple failures, representing them as nodes in the tree structure.

However, the undesired event that act as the initiator in the construction of the

fault tree has to be foreseen and all intermediaries anticipated by the analyst.[49]

Limits with ETA includes the addressing of only one undesired event at a time,

whereas diagrams in CHASSIS can present several in a single diagram. More-

over, distinguishing partial failures are not possible in the event tree, but in

the second version of the failure sequence diagram this can be visualized by

extending the means of a part component failure (see section 7.3).

24 CHAPTER 4. RELATED TECHNIQUES AND MODELING TOOLS

4.1.4 about functional hazard assessment

The functional hazard assessment (FHA) is a technique primarily operating at

system level. Over the past decades, FHA has facilitated system-analysis in

the aviation industry.[3, 55] Here, the technique is applied to high-level- and/or

sub-functions. Focusing on high-level-functions FHA allows for identification

and analysis of hazards in the system, whilst the focus looking at sub-functions

centers around identifying and analysing failures.[3] Furthermore, FHA is recog-

nized as the first technique included in the Safety Assessment Methods (SAM).

As the first of three steps, FHA is combined with other safety techniques such

as HAZOP, FMEA, FTA and ETA (see sections 4.1.1, 4.1.2 and 4.1.3, respec-

tively). Despite being able to identify and analyse failures in a function, and

the option to include FHA in SAM, the security aspect included in CHASSIS

is not covered in FHA, posing as a significant disadvantage.

4.2 Security

As mentioned in the previous section, most safety techniques currently used

today are relying on established and traditional techniques with minor mod-

ifications. In the security field however, many of the techniques are based on

modern modeling languages.[3] Examples of such modeling techniques are Secure

Tropos, the KAOS Security Extension and CORAS, all of which are presented

in this section.

4.2.1 Secure Tropos

Secure Tropos (ST), an extension of the Tropos methodology, aims at captur-

ing security concepts such as security and functional requirements from in early

parts of a system development process.[57] By the means of four different mod-

eling techniques, relevant requirements are elicited from the system in the early

and late requirement as well as architectural and detailed design phases.[56] By

extending Tropos, ST includes the means of graphical notation[4], allowing the

analysts to visualize security constraints, dependencies and entities.[3] Being

able to graphically visualize threats like ST offers could help increase an ana-

lysts understanding of the system at hand. Compared to CHASSIS however,

ST only considers security and not safety aspects, thus making it deficient.[4]

4.2. SECURITY 25

4.2.2 KAOS Security Extension

As opposed to Secure Tropos, KAOS to a greater extent focuses on requirement

engineering, taking a more goal-based approach.[3] Here, the KAOS Security ex-

tension (KAOS SE), expands KAOS by including semi-formal graphical security

notation. The notion presents, among others, malicious obstacles to security

goals and vulnerabilities and countermeasures.[58] Unfortunately KAOS, and

KAOS SE by extension, does not reference a unifying method resulting in a less

structured requirement-elicitation method then the one CHASSIS represents.[4]

4.2.3 CORAS

According to [59], CORAS consists of three artifacts: a language, a tool and

a method. The language of CORAS is a diagrammatic language consisting of

simple graphical symbols and relations based on the Unified Modeling Language

(UML). A CORAS diagram, such as the one in Figure 4.2 are created using the

tool. The method gives a detailed description of how a assert-driven risk analy-

sis can be conducted.[59] In early work with CORAS, UML was combined with

HAZOP (see section 4.1.1) and FMEA (see section 4.1.2). Thus, when compar-

ing CORAS to CHASSIS, it is the modeling technique with most similarities.

Despite the work on combining UML with HAZOP and FMEA, CORAS re-

mains focused at modeling security and does not aim at combining safety and

security aspects like CHASSIS does.

Figure 4.2: Threat diagram using the CORAS UML profile[78]

26 CHAPTER 4. RELATED TECHNIQUES AND MODELING TOOLS

4.3 Safety and security

Only modeling the part of the system that succeed will never lead to satisfactory

solutions. [2] references the importance of modeling failures related to safety

and security aspects as it can aid in acquiring more nuanced knowledge, and

then using this knowledge to identify solutions to failures within a system. A

common weakness for the techniques presented in the two previous sections

are the focus on safety aspects and security aspects only, respectively. The

remainder of this section sheds light on to two proposals that aim at reducing

the limitations of the techniques in sections 4.1 and 4.2: Cross-fertilization and

combining safety and security.

4.3.1 Cross-fertilization

In terms of safety and security techniques, cross-fertilization entails adapting

a safety technique to the security field and vice versa. The activity aims at

promoting a better understanding of a system as it might lead to identification

of risks that otherwise would have been overlooked.[60] Two techniques subject

to cross-fertilization is HAZOP (see section 4.1.1)and FMEA (see section 4.1.2).

An attempt at adapting HAZOP to the security field involves establishing spe-

cialised guidewords and attributes for security. [61] presents another approach

to HAZOP cross-fertilization where the original guidewords in HAZOP where

combined with elements of the Misuse Case (MUC); guidewords where here sys-

tematically applied to flow of events in textual MUCs.[3]

4.3. SAFETY AND SECURITY 27

By the means of small modifications, FMEA has been used in the analysis of

threats and intrusions.[3] FMEA cooperates with the Threat Effects Analysis

(TEA) technique facilitating the identification, classification and analysis of

threats and mitigation-suggestions aiming at reducing risk. Another attempt at

FMEA cross-fertilization combines the technique with the Intrusion Mode and

Effect Analysis (IMEA) in order to perform dependability analysis.[3]

Despite the possibilities presented in the cross-fertilization of HAZOP and FMEA,

the other limitations these techniques holds (see sections 4.1.1 and 4.1.2) gives

CHASSIS an advantage.

4.3.2 Combining safety and security

As the title suggest, the techniques in this section aims at unifying safety and

security aspects. One example of such a technique is previously presented in

section 4.2.2; KAOS. Even though it does not present an explicit safety-security-

combination and does not aim at combining these, a union may be achieved by

the means of KAOS goals.[4] One of these goals, namely the obstacle feature,

provides the means to represent different goals; for instance safety and security

goals. Hazard and threats pose as two goal-obstacles and can be visualized in a

KAOS obstacle model.[62]

Boolean-logic Driven Markov Process (BDMP) has been adapted from the safety

to the security field[63], but now it poses as a technique capable of combining

both aspects.[3] The technique, resembling the graphical notation of FTA (see

section 4.1.3) has extended features allowing more extensive modeling.[5] In

[43] however, CHASSIS proved as a more suited model for the visualization

capabilities caused by its use of UML.

28 CHAPTER 4. RELATED TECHNIQUES AND MODELING TOOLS

4.4 Modeling tools

This section covers a selection of modeling tools. In addition, these are evaluated

against CHASSIS and FSD.

4.4.1 SDL Threat Modeling Tool

This Microsoft tool is meant to be a part of the design phase of the Security De-

velopment Lifecycle (SDL). This way, the tool facilitates so software architects

can identify and mitigate potential issues related to security in an early stage of

system development. The idea is that nipping the issues in the bud will reduce

the development-costs, i.e the time and money it takes to resolve it, as well as

how difficult it will be to resolve.[14]

As opposed to several other modeling approaches that centers on assets or at-

tackers or a complex blend of the two, SDL is centered on the software. This is

one of the key areas that separate SDL from other tools. The other key point

is it’s analysis focus: The tool is a focused design analysis technique instead of

a requirements analysis technique.[14] Since the CHASSIS process aims at uni-

fying both safety and security aspects during requirement elicitation, the SDL

modeling tool does not comprise the correct functionality as this tool focuses on

design analysis, and does not aim at covering both safety and security aspects.

4.4. MODELING TOOLS 29

4.4.2 SdEdit

Quick Sequence Diagram Editor (SdEdit) is a tool that allows the user to cre-

ate sequence diagrams (SDs) based on a formal metamodel; UML. Following a

simple syntax, the diagrams are created by rendering a pure textual descrip-

tion, meaning that there is no need to drag and drop figures onto a canvas.[65]

Looking at FSD, the SdEdit tool will cover only the first step of FSD creation

(see section 3.3): creating the UML SD, as SdEdit provides no means to add

new figures to the diagram generator. The tool, in other words, have no way

of expressing either safety nor security aspects. It can also be discussed if a

pure textual editor would aid or hinder a team brainstorming activity that the

CHASSIS method encourages. Yet another model based tool, the Model Based

Safety Analysis (MBSA)[66] is, unlike SdEdit, a graphical tool editor. MBSA

unfortunately suffers the same extensibility limitations as SdEdit, making it an

ill fit for generating Failure Sequence Diagrams.

4.4.3 SeaMonster

SeaMonster is a graphical security modeling tool.[8] The project was initi-

ated in 2007 by SINTEF, the largest independent research organisation in

Scandinavia.[18, 19] From 2007-2008 the tool was developed together with stu-

dents at NTNU. In 2008, SeaMonster was included in the SHIELDES project

where it was further developed for two additional years.[18]

30 CHAPTER 4. RELATED TECHNIQUES AND MODELING TOOLS

Figure 4.3: The SeaMonster tool with an example MUC drawn

The purpose of SeaMonster was to create a common platform for security mod-

eling. The tool was meant to facilitate the reuse of models, and thus reducing

the time it takes developers and security experts to model security.[18] An ad-

vantage with this modeling tool is the notation and modeling techniques it

supports, namely the Attack Tree and misuse case diagram (MUC). These are

familiar models for both security experts and analyzers and strengthens this tool

in regards of learning curve and usability.[18] On the other hand, SeaMonster

does not have any support for the generation of UML SD, and like SdEdit (see

section 4.4.2) no options for adding new diagram types or figures to an existing

diagram type to meet the additional notation requirement of FSD.

Chapter 5

Artefact design - CHASSIS

This chapter serves as the last information source, with Chapters 3 and ??,

together defining the constructs of the CHASSIS tool. The following section

present input from safety domain experts, a presentation of the problem, pro-

posal and suggested solution, details regarding collecting domain data and tech-

niques aiming at Domain Specific Language (DSL) creation.

5.1 Input from industry

Meeting the aviation industry, here represented through safety experts at Avi-

nor, aimed at shedding light on their process when performing hazard analysis

as the means to extract system requirements. Moreover, the meeting focused

on how the safety experts envisioned a computerized tool for hazard analysis, a

tool for CHASSIS, and how such a tool could fit into the analysis task.

31

32 CHAPTER 5. ARTEFACT DESIGN - CHASSIS

When performing a hazard analysis, Avinor tend to utilize brainstorming. Here,

a facilitator, a secretary and several domain experts arrange a meeting where

the system at hand is discussed from a safety point of view. The facilitators’

responsibility here includes ensuring and maintaining structure during the brain-

storming in order to try and cover all relevant input from the domain experts. It

is also possible for the facilitator to join in the safety experts discussions during

the meeting, whereas the secretary mainly makes notes of the discussion. The

notes can be pure text, but is often accompanied with low-level sketches of the

system under analysis. After the meeting ends, the safety experts collects notes

from the secretary and begins the work with tidying them and structure the

conducted analysis and resulting requirements.

Presenting the FSD of CHASSIS, as described in section 3.3, a discussion re-

garding the extensive functionality provided by the FSD creation process quickly

emerged. It was suggested that the constrictions provided by the UML SD fol-

lowed by additional constrictions when adding failures and mitigating factors

would be to heavy. Worst case, this strictness actually would prevent the loose

flow of suggestions and ideas during the brainstorming as the sketch-possibilities

of the tool would force the direction of the brainstorming. Here, it was stated

that the more limited the notation, the better. One participant in the meeting

with Avinor even suggested that a circle, a rectangle and a line would be suffi-

cient as notation go. These two statements lead to a proposal of a twofold tool.

The first part is utilized in the brainstorming process. This tool has limited or

no restrictions connected to the notation, giving the user or users free reigns

to sketch as they please. Then afterwards the second tool can be used by the

person cleaning up and structuring the brainstorming data. In this version,

the tool would be more syntactically strict, thus including UML SD and FSD

functionality constricting the notation.

5.2. PROBLEM DESCRIPTION 33

5.2 Problem description

Chapter 1 briefly presented the problem covered in this thesis: a CHASSIS tool

for creating FSDs aiding in the requirements elicitation process. For one, the

case study looking into how FSD could support FMEA in ”modelling failures

and their effects through interactions between system components” documented

in [6] suggests that a tool would give the FSD more structure. Furthermore,

this structure would facilitate ”collecting all the relevant information directly in

the FSD.”[6] In another paper adapting MUSDs to support failure analysis, an

adaption resulting in the FSD technique, a need for a tool is also mentioned.

The main problem while conducting the experiment was challenges related to

complex drawings taking up too much space on the whiteboard, one of many

issues that may be resolved with a computer tool.

As CHASSIS aims at aiding analysis and requirement elicitation in the aviation

industry[3], which often are faced with both large and complex systems, the

advantages of a tool will increase proportionally with the size of the system:

diagrams may be stored, divided into several sub-diagrams (see section 7.3)

and distributed between stakeholders easily. Another advantage of using com-

puter software versus an analog approach are programs’ ability to make tasks

easier.[10] For instance, graphical software allows the user to easily edit and

remove notation in the figure without having to redo the entire diagram as you

might have to if the figure where drawn on a whiteboard or a piece of paper.

The software will also encourage users to apply a common set of notation, thus

creating a shared platform for understanding the system and its content. In ad-

dition, the software will ensure that notation outside the scope of the diagram

in question is unavailable for the user. During a brainstorming, the tool will

therefore serve as a base language when discussing the system, a language that

may also be used when the notes from the brainstorming is to be tidied up.

34 CHAPTER 5. ARTEFACT DESIGN - CHASSIS

5.3 Proposal and suggested solution

The problem, input from Avinor, a thorough investigation of CHASSIS (see

Chapter 3),looking at related techniques and tools and comparing them to the

CHASSIS method (see Chapter 4) all point at the same conclusion: there is a

need for a CHASSIS tool focusing on FSD generation. The input from Avinor

(see section 5.1) presented an interesting issue regarding the tool and what was

to be covered in this first CHASSIS tool creation effort: creating a twofold tool

or focusing on one half only? Deciding on the second option was a result of a set

of high level requirements constructed by CHASSIS’ domain expert, Raspotnig

(see Table 6.1). This version of the CHASSIS tool will, based on these require-

ments, cover the modeling of FSDs, including all accompanying functionality

and restrictions.

Failure Sequence Diagram, as presented in section 3.3, reviles that the diagram

to a great extent utilizes a SD. This positions the the tool creation against the

metamodel of the SD; Unified Modeling Language (UML). In addition to SD

notation, the tool needs the functionality to draw extra FSD specific notation.

(see Table 6.1) These two points together suggests that Model-Driven Software

Development (MDSD); a method allowing for the creation of a custom meta-

model, a FSD model with UML as a base language, would be a perfect fit for

the realization of the CHASSIS tool approximation. In MDSD, the activity that

is metamodeling covers several relevant challenges:

1. Constructing a Domain Specific Language (DSL) by describing the ab-

stract syntax,

2. Validating the model against constraints defined in the metamodel,

3. Tool generation and

The remainder of this chapter and the two next chapters presents the DSL for

FSD, how it is developed and how this is used in the creation of the CHASSIS

approximation.

5.4. COLLECTING DOMAIN DATA 35

5.4 Collecting domain data

In order to create a DSL that fulfils it’s purpose, which in this situation is

defining the constructs of FSD, understanding the domain is crucial. If the

DSL is incorrect or incomplete, the implementation of that DSL might be erro-

neous to the degree that it is unable to fulfill its purpose. To ensure that the

FSD domain is covered properly, the data collected in order to create a DSL

for FSD originates from several sources: the background study of the CHAS-

SIS method (see Chapter 3), domain experts on CHASSIS and the OMG UML

superstructure.[30] The CHASSIS background study provided an overview of

the CHASSIS method as a whole. Furthermore, the papers covering the exper-

iments conducted with FSD[6, 4, 2, 5] shed light over existing notation as well

as possible improvements.

The second information source on the road to a DSL was a CHASSIS domain

experts. Here, Raspotnig provided valuable information regarding the syntax

and the intended use of the notation in FSD. He gave insight to, and clarifica-

tion of, each of the FSD notation components by sharing information retaining

details about the graphical appearance and the functionality of the notation.

By clarifying the intended use for each element in the notation list, Raspotnig

also provided the information needed in deciding which UML metaclasses corre-

sponded to the FSD notation. The third source, the OMG UML superstructure,

was vital in understanding how notation of the FSD elements would turn out,

giving a detailed list of all constraints and associations connected to each meta-

class of UML (see section ??). This is quite useful if an extension of a metaclass

includes new constraints, as the listings in the structure can aid the developer

so that he or she avoids adding constraints that will be in conflict with existing

ones. As the structure of the UML SD, including constraints and associations, is

already incorporated in the Papyrus tool (see section 6.3) and is quite complex,

I see no need for the complete listing of the constraints and associations of each

of the metaclasses that are to be extended. For those interested, the complete

superstructure is located in [30].

36 CHAPTER 5. ARTEFACT DESIGN - CHASSIS

5.5 Creating a Domain Specific Language

A DSL is a language designed to be useful for a specific set of tasks.[29] In

this project, the DSL is contains the information that constitutes the FSD

(see sections 3.3, 7.2 and 7.3). DSLs are created to solve specific problems in a

particular domain, and only cover this domain.[29] The first decision made when

creating a DSL whether or not to build the it on top of existing UML concepts,

and thereby limit the DSL to extending or restricting UML meta-types and

concepts, or not.

Figure 5.1: UML extension vs. MOF[29]

The answer to this decision can be found in the domain space of the DSL you are

going to create. Figure 5.1 displays two different DSL domain spaces, the figure

on the right representing Meta-object family (MOF) approach. Extensions using

MOF is realised by using the language found in M3 (see Figure 5.2). The result

is a meta-model (top level M2 of Figure 5.2) which is applied to a meta-domain

model which again is applied to an application model (the model actually visual

to the end-user). An advantage with extension using MOF is the modification

possibilities. MOF allows both the modification of an existing metamodel as well

as the creation of a new metamodel, meaning MOF is not limited to extending

UML, but also other modeling languages.

5.5. CREATING A DOMAIN SPECIFIC LANGUAGE 37

Figure 5.2: The inheritance levels when creating a DSL via MOF[7]

In this setting however, with FSD as the basis for the DSL, and thus the resulting

DSL in large part overlapping with UML as previously mentioned (see section

3.3) and like the left image of Figure 5.1 shows, the UML extension option is

chosen. The next step in the process will be selecting an appropriate technique

for extending UML.

38 CHAPTER 5. ARTEFACT DESIGN - CHASSIS

5.6 UML extension techniques

In short, there are four different technique categories for UML extension; feath-

erweight, lightweight, middleweight and heavyweight.[29] Which one you choose

is based on your DSL and the amount of extension that will be required in order

to adapt UML into what the requirements of the tool, the CHASSIS tool, states.

5.6.1 Featherweight extension

The featherweight extension entails the adding of keywords. A keyword is a

reserved term, normally appearing as a text annotation attached to a UML

element.[29] The purpose of the keyword is adding the functionality of distin-

guishing between different elements in a diagram. An example of keyword use

is seen in Figure 5.3. Here, the keyword <<interface>> is added to the Inter-

face meta-type (the left figure) in order to distinguish between the UML::Class

classifier from the UML::Interface.

Figure 5.3: Using a keyword to distinguish between a class and an interface

Another use of the keyword functionality is separating different types of relationships.[29]

Figure 5.4 shows how adding the keyword <<extend>> helps separating a

dependency- from an extension-relationship. A third use is specification of a

meta-attribute value (a value attached to a UML concept). An example would

be adding the keyword <<singleExecution>> to an Activity, indicating that

the isSingleExecution() attribute of Activity is true. A last example of use is

stereotype-indication. Adding a keyword, for example <<modelLibrary>>, to

a package would indicate that the package contains a set of elements meant to

be shared by multiple models.

5.6. UML EXTENSION TECHNIQUES 39

Advantages of the featherweight extension include the simplicity of adding the

keywords and that the functionality of a keyword offers a great way to sepa-

rate similar looking elements. On the other hand, the extension is limited to

keyword-use only and does not provide the means to add new figures to a dia-

gram editor, as FSD will require. The limitation of the featherweight extension

leads us to the second alternative; lightweight.

Figure 5.4: Using a keyword to distinguish between different relations in a

diagram[29]

5.6.2 Lightweight extension

According to eclipse.org, the developer should, as mush as possible, favor using

the lightweight extension. This is conveniently the chosen extension type in

this project, and therefore described in greater detail throughout the next three

subsections.

40 CHAPTER 5. ARTEFACT DESIGN - CHASSIS

Lightweight extension in UML 1.x

This type of lightweight UML extension applies a UML-specific functionality,

namely the use of stereotypes. A stereotype is defined as a part of the profile

mechanism. Because of this, the UML itself can act as a way of extending the

UML metamodel without being required to use the means of a MOF-provided

modeling language.[7] The stereotype, in this setting, acts like an instance of

a metaclass and defines how that metaclass may be extended.[15] Extending

a model using stereotypes is UML specific, meaning that other MOF-based

modeling languages have to define extension mechanisms of their own.[7]

[7]

Figure 5.5: Adapting UML by the means of a stereotype

Figure 5.5 is a typical example of UML extension using a stereotype. The

UML metaclass is extended by the CM:Component stereotype, who have a

tagged value (see section 5.6.2), transactional. Formally, this extension is a M1

model of the MOF hierarchy in Figure 5.2 since it isn’t a part of the UML’s

metamodel, but rather a UML model itself. From a semantic point of view

however, the extension is on the M2 MOF-level because of the presence of a

UML metaclass (the UML::Class).[7] The main advantage of adapting a UML

1.x model using the stereotype-functionality is the usability found in the fields

of UML tools.[9, 26, 27, 28] Unfortunately, this solution has serious limitations

compared to metamodel extension with MOF (see section 5.5). All tagged

values, such as the transactional tag in Figure 5.5 are not typed, meaning that

all tags will be detonated as text (often refereed to as Strings in the field of

software programming). In addition it is not possible to define any new meta-

associations between stereotypes or existing metamodel classes. These issues

have fortunately been resolved in UML2 and is presented in the next section.

5.6. UML EXTENSION TECHNIQUES 41

Lightweight extension in UML 2

In the UML2 definition, the stereotype mechanism has been extended and placed

in the context of a more encompassing profile mechanism. Here, extensions are

a crucial concept. Looking at Figure 5.6 you will see the extension as a new sym-

bol, detonated by a solid inheritance arrow from the stereotype CM::Component

to the UML::Class metaclass. This extension is an entirely new construct of the

UML language, formally defined in the UML metamodel, and not a version of

existing concepts such as inheritance, association, implementation or stereotyp-

ical dependency.[7]

Figure 5.6: Adapting UML by the means of a profile[7]

A stereotype in UML2 can have attributes.[7] As in UML1.x, the stereotypes are

rendered as tagged values in the model the stereotype is used. New in UML2 is

the assigning of a type to an attribute. The result is the possibility of assigning

attributes to a stereotype with type other than String. The extension of the

stereotype concept to a new construct and the new functionality of typesetting

the attributes is the base for why this is the best solution for the development

of a CHASSIS plugin, and therefore also the selected alternative. The next

subsection will present the UML profile diagram to further detail the profile

construct.

UML Profile diagrams

A profile diagram is a structure diagram [15], showing the static structure of

a system and its parts on different abstraction and implementation levels, in-

cluding how they are related.[16] The diagram describes lightweight extension

mechanisms to the UML by allowing the adaption of a metamodel (here: the

UML metamodel) with constructs that are specific to a particular domain.[15]

The profile is created through the inclusion of metaclasses, definition of custom

stereotypes by extensions.

42 CHAPTER 5. ARTEFACT DESIGN - CHASSIS

Metaclass - a profile class from an existing metamodel which can be extended

through one or more stereotypes.[15]

Stereotype - an instance of a metaclass. This construct defines how a meta-

class may be extended as a part of a profile. A Stereotype can not be used by

itself, and must be used alongside one of the metaclasses it extends. In addition,

it can’t be extended by another stereotype.

Extensions - an associative relationship. Its purpose is indicating that a

metaclass’ properties are extended in a stereotype. Detonated graphically as an

arrow (see Figure 5.6), where the tip ties the extension to a metaclass and the

end to the stereotype extending it.

Tagged values - properties/attributes of a stereotype (see section 5.6.2).

Constraints - presents some restriction related to a construct. The construct

can be a metaclass, where constraints are build into the class, or a stereotype

where the constrains are new additions included with the constraints the stereo-

type already has inherited from the metaclass it extends.[67]

As apposed to MOF, profiling in this manner allows neither the modification of

existing metamodels or the creation of a new metamodel. What is allowed how-

ever is adapting or customizing an existing metamodel, the UML metamodel

in this particular situation, with constructs specific to a particular domain,

platform or domain. Furthermore, it is impossible to remove any constraints

applying to a particular metamodel, but it is possible to add new constraints

witch will be specific to the profile.[15]

The UML profile diagram provides the exact construct needed to aid in the de-

velopment of a CHASSIS tool for generating FSD’s: a base metamodel, UML,

and the means to extend this model by adding new notation to the FSD DSL,

metaclass extension by stereotypes. Naturally, this technique is chosen. The

middle- and heavyweight extensions are still presented in the two next subsec-

tions, further justifying the selection of the UML profile diagram option.

5.6. UML EXTENSION TECHNIQUES 43

5.6.3 Middleweight extension

Extending UML through middleweight extension entails the specialisation of

UML-meta-types. The extension begins with referencing the UML.metamodel.uml

a a whole, here containing a merged set of meta-types. The next, and final, step

is to add your own specific types to selected meta-type-set. This allows the

developer to add and modify the behaviour, structure as well as the constrains

of an element. Despite the quantities of development possibilities and the fact

that creating a middleweight extension is quite easy[29], this type of UML adap-

tion is often discouraged. The main issue relates to the fact that the extension

creates a dependency on a specific version of UML. This could mean that if

any extended meta-type form the UML metamodel is edited in any way, the

model element representing the actual extension might also need editing. The

developer is also forced to extend all of UML, even if he or she only is interested

in a subset.[29]The final section briefly present the heavyweight extension.

5.6.4 Heavyweight extension

What separates the middleweight from the heavyweight is what gets extended.

When middleweight extension involve reuse by specializing types from the refer-

enced UML.metamodel.uml, the heavyweight extension focuses on copying and

merging meta-types.[29] First, the developer selects the units of the language

to be extended, and merges them. This facilitates a selective extraction of the

UML concepts required for the extension, and only them. The second step is

for the developer to add his or hers own types that are to be specific for the

domain. However great the abilities to customize and specify behaviour is, this

alternative cost to much to develop, both in time and level of difficulty.

Now that the construct that will aid in the extension of UML have been defined,

a lightweight extension in UML2 by the means of a profile, the tool approxima-

tion implementation can begin.

44 CHAPTER 5. ARTEFACT DESIGN - CHASSIS

Chapter 6

Artefact construction -

Technology

This chapter introduces a set of high level requirements for the CHASSIS tool

and presents a platform containing the functionalities meeting these.

6.1 Technology requirements

The table bellow are high level requirements extracted from a written high level

description of the CHASSIS tool, provided by Raspotning. The full version of

the description is found in Appendix A.

45

46 CHAPTER 6. ARTEFACT CONSTRUCTION - TECHNOLOGY

Id Requirement

HL1 The tool shall implement FSD of CHASSIS

HL2
The tool should integrate with other development,

safety or security analysis tools using XML

HL3
It should be possible to extend the tool

to connect to other diagrams, especially MUC diagrams
HL4 The tool should support functionality to save and save as...

HL5 Print jpeg and xml-based reports

HL6
The user should be constrained from specifying elements

that are syntactically wrong, e.g, vulnerabilities in FSD
HL7 The system shall be user friendly

HL8
The tool shall implement all the rules and notation

from UML sequence diagram (SD)

HL9 The tool shall implement all the notation of FSD

HL10

The tool user interface (UI) should have a

palette displaying the notation of

1. SD and

2. FSD

Table 6.1: Initial high level requirements (see Appendix A)

6.2 Platform - Eclipse

In the world of computer programming, Eclipse is an integrated development en-

vironment (IDE).[20] An IDE is a software program providing holistic facility to

computer programmers for software development.[20] It includes both a compiler

that transforms source code to an executable program[21] and an interpreter

that directly performs instructions written in a programming language.[20][22]

The Eclipse IDE contains a base workspace where the programmer gathers

source code files and other recourses, combining them to a uniform unit.[23] In

addition, in order to customize and add specific feature to the unit, Eclipse can

access an extensive collection of plugins.[20] An example of a plugin is Papyrus,

a plugin for UML model extension, which is covered in section 6.3.

6.3. ECLIPSE PLUGIN - PAPYRUS 47

6.3 Eclipse plugin - Papyrus

The Eclipse Modeling project comprises all official projects in Eclipse that fo-

cuses on model based development technologies.[24] In the project category

Model Development Tools (MDT) we find the Papyrus project. The goal of

the project is creating a user-consumable environment that can edit any kind

of Eclipse Modeling Framework (EMF) model, focusing on UML and related

modeling languages. [17] The result; the Papyrus tool.

Papyrus presents as the glue between UML editors and other model-driven

engineering tools.[17] It can be used both as a stand-alone tool or as a plugin to

Eclipse.[25] Stand-alone, Papyrus presents a comprehensive tool facilitating the

generation of several different formal UML diagrams: class-, sequence-, usecase-

and activity diagram to mention a few. Installing Papyrus as a plugin on the

Eclipse platform facilitates the diagram editor from the stand-alone-version, as

well as an extensive environment for UML Profile diagram generation.[17][13]

As described in ??, an UML Profile is a construct allowing extension of the

UML metamodel with stereotypes (HL1, HL9). The result is a DSL customized

for a particular domain, constrained by the UML metamodel.(HL6) The editor

support in Papyrus is also quite advanced and includes:[13, 9, 25]

• Editor functionality to save diagram-files as .di (digital illusion), .xml

(extensible markup language) and image format of your choosing (HL2,

HL4, HL5),

• An editor palette displaying the complete notation of UML SD (HL8),

• Functionality to customize the editor, adding new notation to the palette

(HL1),

• The creation of several custom editors in the same tool, allowing the cre-

ation of different diagrams and facilitating linking between them (HL3)

• Displaying both UML notation as well as new custom notation in the same

palette (HL10)

48 CHAPTER 6. ARTEFACT CONSTRUCTION - TECHNOLOGY

Figure 6.1: A sequence diagram drawn using the Papyrus diagram editor

Even though Papyrus is the chosen development tool for this project, it was not

the only tool investigated and evaluated. Table 6.3 therefore compares Papyrus

with two other means to tool generation: Microsoft Visual Studio Ultimate

(VSU) and the Graphical Modeling Framework (GMF).

6.3. ECLIPSE PLUGIN - PAPYRUS 49

Property VSU GMF Papyrus

Development platform Microsoft VS Eclipse Eclipse

Platform licence cost 110,127.56 NOK[68] Free Free

Underlying development language C# Java Java
Tool makes the UML

metamodel available
Yes No Yes

Complete SD notation

in the palette (HL8)
No - Yes

Adding new notation (HL9) Easy3 Easy Easy3

Presentation of DSL

model in the tool
pure xml file graphical graphical

Reediting an applied DSL Easy Demanding4 Easy5

Adding shape to new notation
Attaching image-file

to the stereotype
Custom made (see 7.6)

Attaching image-file

to the stereotype

Table 6.3: Comparing Papyrus, GMF and VSU

Table 6.3 aids in the justification of choosing Papyrus as the preferred devel-

opment tool for this project. Having made this decision, the next step is con-

structing the artefact. The next chapter present the functional requirements of

the CHASSIS tool approximation for FSD generation, and how Papyrus aids in

the construction.

3With both Papyrus and VSU adding new notation that is not a part of the UML diagram

is not possible.[31] This demands that the DSL of the new model i quite similar to the original

diagram model
4Editing the tool in any way after the diagram code has been generated is a gruesome

process. Editing parts of the domain model will require the regeneration of all the other

connected models, resetting up all relations between them (see section 7.6)
5Editing the profile diagram after a profile has been applied is a simple process. The

developer simply updates the stereotype connections to the specific notation and applies the

edited/added stereotypes to the appropriate notation in the diagram, leaving the unchanged

extensions untouched

50 CHAPTER 6. ARTEFACT CONSTRUCTION - TECHNOLOGY

Chapter 7

Artifact construction -

CHASSIS tool

This chapter gives a detailed overview of the functional requirements of the

CHASSIS tool approximation, how these are fulfilled by extending metaclasses.

Further on, the chapter presents how the profile is applied in Papyrus. Finally,

the approach selected when realising the degree incompleteness in the Papyrus

tool is presented along with it’s set of functional requirements and implementa-

tion means.

7.1 Functional requirements - first version

Tables 7.1-7.5 display the functional requirements related to the notation of

FSD. Because of HL8 in table 6.1 and thus to avoid redundant notation in the

tool palette (see section 7.4), the following notation presented in Figure 7.1 are

not created as stereotypes:

1. Event message which is an instance of the Message Async of UML SD

2. Note which is an instance of a Comment of UML SD

3. Component which is an instance of a Lifeline of UML SD

Each of the stereotypes extending UML metaclasses in this project will include

attributes for a shape and an icon. The shape represent the figure used in the

actual diagram and the icon is used as a visual aid in the diagram palette.

51

52 CHAPTER 7. ARTIFACT CONSTRUCTION - CHASSIS TOOL

Figure 7.1: The first edition notation of FSD[6]

7.1. FUNCTIONAL REQUIREMENTS - FIRST VERSION 53

7.1.1 Actor and hazardous actor

Id Requirement

FAH1
Hazardous actor shall be represented by

a stick-figure with a filled red head (see Figure 7.1)

FAH2 Actor shall be represented by a stick-figure

FAH3
It should be possible to connect an actor

to a component through a link

FAH4
It should be possible to connect an actor

to a complete component failure through a link

FAH5
It should be possible to connect a hazardous actor

to a component through a link

FAH6
It should be possible to connect a hazardous actor

to a complete component failure through a link
FAH7 Actor should have a name

FAH8 Hazardous actor should have a name

FAH9
The name of an actor should be placed

beneath the actor shape

FAH10
The name of a hazardous actor should be placed

beneath the hazardous actor shape

Table 7.1: Requirements of actor and hazardous actor notation

As mentioned in 5.6.2, a stereotype extending a metaclass will inherit all the

functionality it contains. The UML Annotated Link is one of Comment meta-

class’ associations. FAH3-FAH6 are therefore met by the means of this link

facilitating a connection between a UML Comment and other components in

the diagram. The extension of the Annotated link is located in Table 7.5.

FAH10 and FAH11 are requirements the Papyrus tool covers (see section 7.5).

54 CHAPTER 7. ARTIFACT CONSTRUCTION - CHASSIS TOOL

7.1.2 Marks and notes

Id Requirements

FMN1 Failure mark shall be represented by a red dotted circle

FMN2 Current control shall be represented by a green dotted circle

FMN3

Failure mark shall have the option of a text field

that may contain failure item number from FMEA

FMN4

Current control shall have the option of a text field

that may contain current control number from FMEA

FMN5
Text field of current control shall be located

inside the current control shape

FMN6
Text field of failure mark shall be located

inside the failure mark shape

Table 7.2: Functional requirements of marks notation

As with actor and hazardous actor, current control, failure mark and the failure

and mitigation note extends the UML comment metaclass. FMN1, FMN2,

FMN7 and FMN8 are met by adding a shape and an icon attribute to each of

the failure mark, current control, mitigation and failure note stereotypes. All

four notations will require the functionality of a text field. These requirements,

FMN3, FMN4, FMN9 and FMN10, are met by utilizing the text field attribute

of UML Comment. FMN11 and FMN12 are, as with actor and hazardous actor,

met through the Annotated link association. The placement of the text fields in

the notation, FMN5, FMN6, FMN13 and FMN14, are covered in the Papyrus

tool (see section 7.5).

7.1. FUNCTIONAL REQUIREMENTS - FIRST VERSION 55

Id Requirements

FMN7

Mitigation note shall be represented by a green box with

upper right corner folded down

FMN8
Failure note shall be represented by a red box

with upper right corner folded down
FMN9 Mitigation note shall contain a text field

FMN10 Failure note shall contain a text field

FMN11
It should be possible to connect a mitigation note to a

current control through a link

FMN12
It should be possible to connect a failure note

to a failure mark through a link

FMN13
Text field for mitigation note shall be

located inside the mitigation note shape

FMN14
Text field for failure note shall be

located inside the failure note shape

Table 7.3: Functional requirements of notes

7.1.3 Components

Id Requirement

FC1
Failure component shall be represented by a

red square and a red tail (see 7.1)

FC2 Failure component shall have the option of a text field

FC3
The text field of the failure component

shall be located inside the red square

FC4
It should be possible to connect a failure

component with a UML Lifeline through a link

FC5
It should be possible to connect a failure

component with another failure component through a link

Table 7.4: Functional requirements of failure component

The Component and Failure Component elements of FSD extends the UML::Lifeline

metaclass. As previously, the graphical representation of the notation is covered

by adding a shape and icon to the stereotype, fulfilling FC1. The option of a

text field in the head of the Failure Component, FC2, is inherited from the UML

Lifeline metaclass. Functionality connecting Failure Components together, or

with a Lifeline, are also inherited feature from UML Lifeline[30], meeting FC4

and FC5. The placement of the Failure Component title is covered in the Pa-

pyrus tool (see 7.5).

56 CHAPTER 7. ARTIFACT CONSTRUCTION - CHASSIS TOOL

7.1.4 Links

Id Requirement

FL3
Link between actor and component shall be represented by a

green dotted line

FL4
Link between actor and failure component shall be represented

by a green dotted line

FL5
Link between hazardous actor and component shall be

represented by a red dotted line

FL6
Link between hazardous actor and failure component

shall be represented by a red dotted line

FL9

A green link should have actor as source and

1. component or

2. component failure as a target

FL10

A red link should have hazardous actor as source and

1. component or

2. component failure as a target

Table 7.5: Functional requirements of links connecting an actor/hazardous actor

to a lifeline/component failure

The links included in FSD are the most complex elements in the notation list,

due to their functionality to connect different notation in the editor window.

Failure Effect and Recommended Action are both the result of an extension

of the Message Async UML metaclass[30]. The reason for this is that other

message types in SD (Message Synch/Lost/Found/Create/Delete and so on)

require the presence of an Execution Specification on the Lifeline (see section

??). The UML Message Async link has built in attributes that allows a user

to place a message between a UML Lifeline and a Failure Component(FL7 and

FL8). Remember that a Failure Component is an instance of the UML Lifeline,

but with added functionality.

7.1. FUNCTIONAL REQUIREMENTS - FIRST VERSION 57

Adding arguments to a Failure Effect and a Recommended Action (FL11 and

FL12) are fulfilled through one of Message Async’s associations. FL1 and FL2

are met by adding shapes and icons to each of the Failure Effect and Recom-

mended Action stereotypes. Table 7.5 displays requirements for Failure Effect

and Recommended Action from FSD. In addition, a new notation not included

in the notation for FSD in Figure 7.1 is included in the table. These links

provides the means to link an Actor or a Hazardous Actor to a another figure

in the diagram. FL8 and FL9 are therefore met by including two instances of

an Annotated Link in the diagram palette: one green link connecting an Actor

to a Lifeline/Component Failure (FL3 and FL4) and a red link connecting a

Hazardous Actor to a Lifeline/Component Failure (FL5 and FL6). FL13-FL15

are fulfilled by utilizing an element called Enum when creating the FSD UML

Profile.

Id Requirement

FL1 Failure effect shall be represented by a red dotted arrow

FL2 Recommended action shall be represented by a greed dotted arrow

FL7

A failure effect should be able to have

1. a component or

2. a failure component as a source and

1. a component or

2. a failure component as a target

FL8

A recommended action should be able to have

1. a component or

2. a failure component as a source and

1. a component or

2. a failure component as a target
FL11 Failure effect should have an argument

FL12 Recommended action should have an argument

Table 7.6: Functional requirements of links creating a connection between a

lifeline/component failure and a lifeline/component failure

58 CHAPTER 7. ARTIFACT CONSTRUCTION - CHASSIS TOOL

7.2 First edition FSD UML profile

Based on the requirements presented in the previous section, a UML Profile

defining the constructs of FSD is created. For each notation in Figure 7.1, and

the additional links defined in Table 7.5, the appropriate metaclasses that are to

be extended are created in the FSD UML Profile. Remembering that a metaclass

may be extended by several stereotypes (see section 5.6.2), each metaclass need

only be created once. A graphical illustration of this is seen in Figure 7.2, where

<<metaclass>> Message occurs only once, but is extended twice: through the

<<Stereotype>> Failure Effect and <<Stereotype>> Recommended Action.

The figure also shows how a metaclass is connected to a stereotype through an

extension-arrow.

Figure 7.2: Graphical presentation of first edition of FSD Profile

All FSD notation will require the corresponding stereotype to include both a

icon and a shape image of the notation. The icons support HL7 in Table 6.1, as

they provide the means to present the notation in the palette (see section 7.4) in

a graphical manner in addition to the textual one. FAH1-FAH2, FMN1-FMN2,

FMN7-FMN8, FC1 and FL1-FL4 presented in Tables 7.1-7.5 are all met when

7.2. FIRST EDITION FSD UML PROFILE 59

the stereotypes are included with shapes. In the stereotypes, both images are

added as Attributes, as can be seen in an example in Figure 7.3. When all the

metaclasses are created and extended and necessary attributes have been added,

the model is validated to ensure its syntactical correctness.

Figure 7.3: How icon and shape are added to a stereotype

60 CHAPTER 7. ARTIFACT CONSTRUCTION - CHASSIS TOOL

7.3 Second edition FSD UML profile

As anticipated with a method as new as the CHASSIS method is, there was

an update of the notation for the FSD; removing notation (the Actor and Haz-

ardous Actor), adding new components (Message Lost, Message Found, Part

Component Failure, Alternative and Parallel Failures and Mitigation and Fail-

ure Interactions) and editing existing notation (Failure Component, Failure Ef-

fect, Recommended Action, Failure and Current Control). The new notation

is presented in Figures 7.4,7.5 and 7.6. The new notation meant a second

round with establishing notation defining requirements, and translating these

into UML Profile components. The modifications made to the first-edition pro-

file described in section 7.2 are stated below. But first, a few comments on the

existing collection of functional requirements (see section 7.1).

1. Failure Component is now called Complete Component Failure

2. Recommended Action is now called Message Mitigation

3. Failure Effect is now called Message Failure

Failure has changed name to failure indication and Current control to mitigation

indication. In addition, these two notations no longer include a text field for

failure item number and mitigation control number, respectively. Fmn3, FMN4,

FMN5, and FMN6 in Table 7.2 are therefore no longer considered functional

requirements.

Finally, FC4 and FC5 in Table 7.4 are no longer considered as the second version

of the FSD UML Profile applies A Part Component Failure functionality by

extending the UML Execution Specification.

7.3. SECOND EDITION FSD UML PROFILE 61

7.3.1 Functional requirements - second version

Removing Actor and Hazardous Actor

When comparing the first edition notation of FSD to Figure 7.4, 7.5 and 7.6, you

will notice the absence of both actor and hazardous actor. As a notation, actor

and hazardous actor are the result of inspiration from Misuse Case (MUC)

notation Misuser. In FSD, the purpose of the two actors where representing

an operator/user or an external system affecting the system under analysis.

However, after with Raspotnig, the CHASSIS domain expert, is was decided

that the use of Mitigation and Failure Notes would be better at describing

the external component effecting the system. As for the requirements in 7.1,

removing these notations therefore invalidates Table 7.1 and 7.5.

Figure 7.4: Indicators and part/complete component failure in second version

of FSD notation

62 CHAPTER 7. ARTIFACT CONSTRUCTION - CHASSIS TOOL

Part Component failure

Part Component Failure is created by extending the UML Execution Specifica-

tion, and thus letting the Part Component Failure inherit all its functionality.

According to [30], this UML metaclass is a specification of the execution of a

unit of behavior or action within the Lifeline. In other words, this notation

is used to specify when a Lifeline or a Complete Component Failure is active.

In Figure 6.1, you see two execution specifications, both represented by oblong

squares on top of the tail of Lifeline A and B. In addition, the figure shows how

messages linking the two Lifelines together go back and forth via the Execution

Specification and not from Lifeline-tail to Lifeline-tail as shown in Figure 3.3.

Id Requirement

FPC1 Part component failure shall be represented by a red dotted square

FPC2 Part component failure shape shall be placed on a lifeline tail

FPC3

A part component failure shall be the source of

1. a message failure

2. a message mitigation or

3. a message lost

FPC4

A part component failure shall be the target of

1. a message failure

2. a message mitigation or

3. a message found

FPC5

A part component failure should have eighter

1. none

2. one or

3. several messages as sources

FPC6

A part component failure should have eighter

1. none

2. one or

3. several messages as targets

FPC7
It should be possible to change a UML Execution Specification into a part

component failure without having to delete the UML Execution Specification

FPC8

It should be possible to change a part component failure into a

UML Execution Specification without having to delete

the part component failure

Table 7.7: Functional requirements of part component failure

7.3. SECOND EDITION FSD UML PROFILE 63

Similar to requirements related to graphical presentation of notation in section

7.1, FPC1 is fulfilled by adding a shape and an icon to the Part Component

Failure stereotype. One of the associations related to an Execution Specification

is a reference to which Lifeline the notation covers, meeting FPC2 through

the extension. FPC3 and FPC4 are set in the associations of the message

going between two Execution Specifications; sendEvent and recieveEvent. The

number of sources and/or targets associated to a Part Component Failure (FPC5

and FPC6) is set in yet another association it possesses. FPC7 and FPC8 are

met by including an Enum in the UML Profile diagram (see section 7.3.2).

64 CHAPTER 7. ARTIFACT CONSTRUCTION - CHASSIS TOOL

Messages

Figure 7.5: Messages in second version of FSD notation

The Message Lost and Message Found stereotypes are the result of the extension

of the UML Message Lost and UML Message Found, respectively. Both of the

stereotypes contain icons and shapes so the links are fulfilling FM1 and FM2.

As with the extension of UML Message Async in section 7.1, FM3-FM6 are met

through associations included in the metaclass’ functionality. FM3, as shown

in Table 7.8, does not say anything about the target of Message Lost. As the

message’s name alludes, this message has no source as it never arrives at its

destination. In the same way, the Message Found has no source as its origin

is unknown (FM4). Allowing the editing of a message-types without deletion

requirements, FM7-FM11, are met by introducing Enums (see section 7.3.2).

7.3. SECOND EDITION FSD UML PROFILE 65

Id Requirement

FM1
Message lost shall be represented as a black solid arrow

with a red circle at the tip of the arrow

FM2
Message found shall be represented as a black solid arrow

with a green circle at its tail

FM3

Message lost should have

1. Execution specification or

2. Part component failure as source

FM4

Message found should have

1. Execution specification or

2. Part component failure as target
FM5 Message lost should have an argument

FM6 Message found should have an argument

FM7

It should be possible to change a

UML Message Async into a

1. Message Lost

2. Message found

3. Message failure or

4. Message mitigation without having to delete the UML Message Async

FM8

It should be possible to change a

Message Lost into a

1. UML Message Async

2. Message found

3. Message failure or

4. Message mitigation without having to delete the Message Lost

FM9

It should be possible to change a Message found into a

1. UML Message Async

2. Message Lost into

3. Message failure or

4. Message mitigation without having to delete the Message found

FM10

It should be possible to change a Message failure into a

1. UML Message Async

2. Message Lost into

3. Message found or

4. Message mitigation without having to delete the Message failure

FM11

It should be possible to change a Message mitigation into a

1. UML Message Async

2. Message Lost into

3. Message found or

4. Message failure without having to delete the Message mitigation

Table 7.8: Functional requirements of message lost, found, failure and mitigation

66 CHAPTER 7. ARTIFACT CONSTRUCTION - CHASSIS TOOL

Adding alternative/parallel failure and interaction

Through experiments investigating how FSD (see section 3.3) could be used

to support FMEA, documented in [6, 2], a limitation in FMEA (see section

4.1.2), namely its inability to model multiple failures, was pointed out. As it

turned out, FSD shared the same limitation; modeling multiple failures in a

single FSD would result in the diagram becoming to complex. In an effort to

try and resolve this issue, one of the experiments in [2] included a new notation:

the Alt interactionOperator. This notation is a part of the semantics of the

UML CombinedFragment metaclass, allowing the representation of a choice of

behaviours/paths in a SD.[30] The use of the Alt operator showed promise in

[2], and justifies adding the Alternative Failure-notation in the second edition of

FSD. Parallel Failure, an extension of the Parallel interactionOperator, is added

for the same reason[2], and provides the means to display graphically how mul-

tiple paths in SD can occur simultaneously[30] and how these may propagate

differently through a system.

Yet another feature aiming at reducing the complexity, and hopefully increasing

the readability, of a SD is discussed in [2, 5]. The feature, InteractionUse,

allows the analyst to define certain interactions as separate diagrams, and then

being able to reference them form other diagram instances.[2, 30] As a result,

Mitigation and Failure Interaction notation are added to the second edition of

FSD.

7.3. SECOND EDITION FSD UML PROFILE 67

Alternative/Parallel failures and interaction

Figure 7.6: Notes, parallel/alternative failures and interaction in second version

of FSD notation

Both the alternative and parallel failures presented in 7.6 are the result of

extending two UML metaclasses: CombinedFragment (CF) and interaction-

Operand (IO). The upper half of the figures extends CF and the lower half ex-

tends IO into corresponding Combined failure fragment and Interaction failure

operand (see Figure 7.7). The graphical requirements presented in RAPF1 and

RRAPF2 are both met through including icons and shapes. RAPF3, RAPF4,

RAPF6, and RAPF8 are all covered by associations included within CF and IO

metaclasses. Requirements stating the placement of text, RaAPF5 and RAPF7,

are met through functionality in the Papyrus tool as the FSD profile is applied.

68 CHAPTER 7. ARTIFACT CONSTRUCTION - CHASSIS TOOL

ID Requirement

RAPF1
Combined failure fragment shall be represented by a red

dotted square with an imbedded square in the upper left corner (see 7.6)

RAPF2 Interaction failure operand shall be represented by a red dotted square

RAPF3
It should be possible to connect an interaction failure operand

to a combined failure fragment
RAPF4 Combined failure fragment shall have the option of a text field

RAPF5
The text field of the Combined failure fragment shall be

located inside the red square
RAPF6 Interaction failure operand shall have the option of a text field

RAPF7
The text field of the Interaction failure operand shall be

located inside the red square

RAPF8

The interaction failure operand should be an instance of

1. Alt or

2. Par

Table 7.9: Functional requirements for alternative and parallel failures

According to the OMG UML superstructure[30], an Interaction Use refers to an

Interaction. Thus, by creating Failure and Mitigation interaction stereotypes

extending the interaction use metaclass, Rfmi3 and Rfmi4 are met. Including

icons and shapes in the stereotypes will cover RFMI1 and RFMI2.

ID Requirement

Rfmi1
Failure interaction shall be represented by a red dotted square with

an imbedded square in the upper left corner (see Figure 7.6)

Rfmi2
Mitigation interaction shall be represented by a green

dotted square with an imbedded square in the upper left corner

Rfmi3
A failure interaction should be able to reference

another interaction through a written link

Rfmi4
A mitigation interaction should be able to reference

another interaction through a written link

Table 7.10: Functional requirements for failure and mitigation interactions

7.3. SECOND EDITION FSD UML PROFILE 69

Complete Component Failure and Lifeline

As a means to aid in fulfilling HL7 in Table 6.1, FCCL1 and FCCL2 (see Table

7.11) allows the user to change a complete component failure into a UML Lifeline

and vise versa without having to delete the shape from the diagram.

Id Requirement

FCCL1
It should be possible to change a complete component failure

into a UML Lifeline without having to delete the complete component failure

FCCL2
It should be possible to change a UML Lifeline into a complete

component failure without having to delete the UML Lifeline

Table 7.11: Additional functional requirements for complete component failure

7.3.2 Implementing changes into the FSD profile

New in the second version of the FSD Profile, is the use of Enums. [54] presents

an Enum as a special datatype, enabling the predefinition of a variable to a set

constant. In this setting, the Enum allows the user to edit a shape instead of

having to first delete, then regenerate it in the diagram.

Comparing the graphs representing the first (Figure 7.2) and second (Figure

7.7) FSD UML Profile, it is clear that applying the Enum datatype leads

to significant changes in the structure of the profile. Equating the exten-

sion of UML::Message shows that the message extension in version two is re-

placed by a single stereotype (as compared to the <<Stereotype>> Failure

effect and <<Stereotype>> Recommended action). This stereotype, namely

<<Stereotype>> Messages is through the included Enum, permitted to have

one of the set values (normal, lost, found, failure or mitigation). As the stereo-

types of the profile is applied to a diagram, which for the <<Stereotype>>

Messages for instance will occur five times (once for each value in the Enum),

the correct constant will be selected for the appropriate notation. Applying a

profile is described in further detail in section 7.5. But before a profile can be

applied, the custom palette to which it is to be applied to must be defined.

70 CHAPTER 7. ARTIFACT CONSTRUCTION - CHASSIS TOOL

Figure 7.7: Second version of the FSD profile

7.4. CREATING A CUSTOM PALETTE 71

7.4 Creating a custom palette

In this setting, a palette is a section in the diagram editor itself where all the

notation of FSD and SD (HL8 and HL9) are listed. In Papyrus, the palette is

created by selecting notation from a complete list of UML notation. Since SD

is the base when creating FSD (see section 3.3), the notation list is limited by

Papyrus to SD notation only. Supporting HL7, the notation of SD and FSD are

separated into two subfolders in the palette. Figure 7.8 displays the process of

adding notation into the palette. The next step now is applying the FSD UML

Profile and its stereotypes to the appropriate notation in the custom palette.

Figure 7.8: Creating a custom palette, showing the complete component failure

and its related stereotype

72 CHAPTER 7. ARTIFACT CONSTRUCTION - CHASSIS TOOL

7.5 Applying the profile

Applying a stereotype to a notation will, as mentioned previously (see 5.6.2)

cause the notation to incorporate the additional functionality stated in the

stereotype. Using the Papyrus tool, stereotypes are applied in the same window

as the custom palette is created. Figure 7.8 shows the Complete Component

Failure-notation and that it is created using a Lifeline extended with the Com-

ponent stereotype.

In order to meet requirements FPC7 and FPC8, the execution specification,

located in the SD subfolder in the palette, apply the Part Component stereo-

type (see Figure 7.7), tagged with the NORMAL value of the stereotypes Enum.

There are no additional functionality connected to the NORMAL constant; only

the indication that the execution specification is an instance of the Part Com-

ponent. The part component failure notation in the palette will also apply the

same stereotype, but here the new functionality required are added and FAIL-

URE constant is selected. FM7-FM11, FCCL1 and FCCL2 are realised using

the same technique.

According to [31], the official tutorial for profiling with Papyrus, creating the

profile and custom palette and applying the profile should result in a customized

tool. Here however, that turned out not to be the case. Only about half of

the notation, both with and without applied stereotypes, where visible in the

palette. After several days of troubleshooting and extensive Papyrus forum

searches a sad fact had to be realised: Several parts of the Papyrus program

logic code for extending SDs where still under development, not to be made

available to the public until late June 2014. The shortfalls would result in

Tables 7.2, 7.3, 7.6, 7.8 and parts of 7.9 all being void. Suddenly and quite

unexpected, the project had to take a new direction.

Inspired by the approximations to a CHASSIS tool presented by the safety ex-

perts from Avinor (see section 5.1), the a second tool approach to CHASSIS

would, instead of focusing on a syntactical complete diagram editor, focus on

a more low level, mostly syntactic-free tool aiding the CHASSIS method dur-

ing brainstorming activities. For this second approach, the need for a different

7.6. THE CHASSIS ARTEFACT - GMF APPROACH 73

development tool arose. As described in section 5.6.2, a stereotype extending

a metaclass is forced to inherit all of the functionality of that metaclass. This

solution would impose to much restrictions on the tool, and as . As a result

the Graphical Modeling Framework (GMF) was chosen as the preferred devel-

opment tool for the second CHASSIS tool approach.

Details about GMF, the requirements of the second tool approximation, how

they are realised with GMF and the implementation of the tool is described in

section 7.6.

7.6 The CHASSIS artefact - GMF approach

7.6.1 Graphical Modeling Framework

Like Papyrus, the Graphical Modeling Framework (GMF) is a component in the

Eclipse Modeling Project (EMP).[69] The means of GMF is providing a bridge

between two other projects in EMP: the Eclipse Modeling Framework (EMF)

and the Graphical Editing Framework (GEF). Here, the EMF facilitates the cre-

ation of a structured tool data model and the generation of executable model

code presenting the syntax of the tool.[70] The graphical editor, including the

visual content of the palette, placed on top of the model code, and thus creating

a tool with backhand logic and a visual front, is realised using GEF.[71] The

bridge, GMF, facilitates connecting the correct parts of model code with the

appropriate visual representation figures in the editors palette.

74 CHAPTER 7. ARTIFACT CONSTRUCTION - CHASSIS TOOL

Table 6.3 (see page 49) compares GMF with Papyrus and VSU. Here, GMF

was presented as a weaker choice than Papyrus when the task was creating a

strict UML based tool: GMF has no built in model for UML. The developer is

therefore forced to create the complete domain model, including how all com-

ponents in the model relates to each other and constraints, from scratch. When

creating a syntactically complex tool such as the CHASSIS tool in 7.3, using

GMF as a development tool puts tremendous pressure on the developers do-

main knowledge. All the details in the will need to be implemented correctly

in order to call the tool a full UML editor for SD and FSD (HL1, HL8, Hl9).

For a tool such as another approximation suggested by safety experts at Avi-

nor (see section 5.1), the tool this section describes, defines and implements,

however, GMF is the strongest development tool candidate. The limitations of

GMF not implementing the formal UML model is no longer an issue, as the new

approximation to a CHASSIS tool involves developing a nearly constriction-free

brainstorming tool aiding the CHASSIS method.

7.6.2 Functional requirements

As with the first and second version of the profile diagram for FSD, the func-

tional requirements (FR) constituting the domain model for the GMF version

of the second CHASSIS tool approximation are based on the same set of infor-

mation sources. (see Chapter 5) In addition, the functional requirements of the

first and second version of the CHASSIS approach inspired the tables containing

the FRs for the second approximation to the CHASSIS tool. Table 7.12 and

7.13 present the requirements inherited from the first and second version of the

CHASSIS approximation using Papyrus and the new requirements the existing

ones did not cover.

7.6. THE CHASSIS ARTEFACT - GMF APPROACH 75

Id Requirement

FMN1 Failure indicator shall be represented by a red dotted circle

FMN2 Current indicator shall be represented by a green dotted circle

FMN9 Mitigation note shall contain a text field

FMN10 Failure note shall contain a text field

FC1 Complete component failure shall be represented by a red square and a red tail

FC2 Complete component failure shall have the option of a text field

FPC1 Part component failure shall be represented by a red dotted square

FPC5

A part component failure should have eighter

1. none

2. one or

3. several messages as sources

FPC6

A part component failure should have eighter

1. none

2. one or

3. several messages as targets

FPC7
It should be possible to change a execution specification into a part

component failure without having to delete the execution specification

FPC8
It should be possible to change a part component failure into a execution

specification without having to delete the part component failure

FCCL1
It should be possible to change a complete component failure into a

component without having to delete the complete component failure

FCCL2
It should be possible to change a component into a complete

component failure without having to delete the component

Table 7.12: Functional requirements inherited from of the CHASSIS tool - Pa-

pyrus version

Comparing Table 7.12 and 7.13 to the numerous tables presenting the functional

requirements describing the first and second version of the CHASSIS approach

in Chapter 7, there is an obvious differentiation between the syntax-level of the

two. As this second CHASSIS approximation is environed as a tool excluding

all no crucial syntax, high level requirements HL2, HL3, HL6, HL8 and HL9

in Table 6.1 are considered no longer valid in order to meet the goal of tool

creation.

76 CHAPTER 7. ARTIFACT CONSTRUCTION - CHASSIS TOOL

Id Requirement

FGMF1 Mitigation note shall be represented by a green box

FGMF2 Failure note shall be represented by a red box

FGMF3 It should be possible to attach text to a Message

FGMF4 Component shall be represented by a black square and a black tail

FGMF5 A message shall be represented by a black arrow

FGMF6

A message should be able to have a

1. execution specification or

2. part component failure as a source and a

1. execution specification or

2. part component failure as a target

FGMF7
A 1. part component failure or

2. Execution specification shall be the source of a message

FGMF8
A 1. part component failure or

2. Execution specification shall be the target of a message

FGMF9

An execution specification should have eighter

1. none

2. one or

3. several messages as sources

FGMF10

An execution specification should have eighter

1. none

2. one or

3. several messages as sources
FGMF11 Failure fragment shall be represented by a red box

FGMF12 Failure fragment should have a text field in the upper left corner

FGMF13 Failure operand shall be represented by a red box

FGMF14 Failure operand should have a text field in the upper left corner

FGMF15 Failure interaction shall be represented by a red square

FGMF16 Mitigation interaction shall be represented by a green square

FGMF17 It should be possible to attach text to a failure interaction

FGMF18 It should be possible to attach text to a mitigation interaction

Table 7.13: Additional functional requirements - GMF version

7.6. THE CHASSIS ARTEFACT - GMF APPROACH 77

The first obvious difference between the CHASSIS approach using Papyrus and

the approximation using GMF is message types. The first-mentioned presents

four different message types (see Figure 7.5). [72] presents brainstorming as a

spontaneous and unsecured activity. The second approach therefore only con-

tains one message-type as the means to simplify the tool palette and further

promote unhindered creative thinking. The remaining notation in FSD as pre-

sented in section 7.3 are visually the same in the second tool approximation

despite a simplification of their former constraints.

7.6.3 Implementation

Implementing a tool using GMF is preformed by going through the steps pre-

sented in Figure 7.9. The CHASSIS tool editor creation begins with the con-

struction of a model that will cover all the functional requirements stated for

the second approximation to the CHASSIS tool: the domain model.

In GMF, the domain model is created using a core construct at the heart of EMF

called Ecore, providing class, attribute and reference elements.[73] At the center

of the domain model is a class named Interaction. This class has no attributes,

and serves mainly as a class connecting all the surrounding classes describing

the actual notation of the CHASSIS tool together. Of the surrounding classes,

the definition of a component and a complete component failure deserves some

extra attention. In order to mimic a real life sketching-tool, both component

and complete component failure are created using two classes in the domain

model: a component head (containing the title) and a tail (having messages

as in- and output). In order to fulfill FGMF3, FGMF17 and FGMF18, the

Comment is created in the domain model, thus allowing the placement of a text

field anywhere in the diagram editor. Additionally, FM9, FM10, FC2, FGMF12

and FGMF14, leads to the failure and mitigation note, component and complete

failure component head and the failure fragment and operand are equipped with

a text field attribute automatically. Facilitating the creation of connections be-

tween figures in the diagram editor, FPC5, FPC6 and FGMF6-FGMF10 are met

by drawing reference elements between the appropriate classes in the domain

model. In section 7.3, the Enum construct was implemented in order to meet

requirements stating that the user should be able to change certain notation

in the editor window without having to remove the notation first. (FP7, FP8,

FM7-FM11 and FCCL1-FCCL2) In the second tool approach, the still relevant

78 CHAPTER 7. ARTIFACT CONSTRUCTION - CHASSIS TOOL

requirements stating this type of functionality was met in a different way. The

tool permitted stacking figures in the editor window, so that placing a figure

directly on top of an existing one would meet the requirements.

Now the construction of the domain model is complete and the model is vali-

dated and model code is generated (Domain Gen Model in Figure 7.9). This

concludes the EMF part of the tool creation. The next step is describing the

functionality of the figures and the layout of the palette: GEF.

Figure 7.9: The steps taken in the development of a GMF project[73]

The palette of the CHASSIS approximation will contain the means to create

the notation presented in Appendix C. Each of these are individually defined in

a graphical definition model (see Figure 7.9). This decision contradicts a state-

ment made by one of the safety experts during the Avinor meeting. (see section

5.1) The expert commented that three figures, a simple link, circle and square

would be more than sufficient when drawing a diagram during a brainstorming

session. With only three figures in the palette whilst needing to draw a total of

sixteen shapes (see the graphical notation for the tool in Appendix C) could lead

to unclear affordance. Here, affordance entails the implying context of use and

functionality of an object by observing its sensory characteristics.[74] Having

one entry for each of the figures in the palette will help clarify the affordance,

the intended use, of each shape.

7.6. THE CHASSIS ARTEFACT - GMF APPROACH 79

In the graphical model, the definition of each notation includes amongst oth-

ers the size, line thickness and colour of the figure. Moving on to the actual

palette, the notation can be sorted in a sensible order and given appropriate

names. (HL7) The completion of the graphical and tooling definition, these two

along with the former created domain model are all mapped together. Final

adjustments, assuring that each domain class, graphical definition and palette

entry are correctly connected. The mapping model is then used to generate the

diagram editor code. The resulting code base contains an executable program

file of the FSD editor.

The second phase of the design science research method, construction, is now

completed. Chapter 8 describes the next step: artifact analysis, here through

usability testing.

80 CHAPTER 7. ARTIFACT CONSTRUCTION - CHASSIS TOOL

Chapter 8

Artefact analysis - student

experiment

This chapter presents the plan, conduction and results of the analysis phase:

student experiment.

8.1 Scope and purpose

The purpose of the student experiment is testing how the CHASSIS tool de-

scribed in 7.6 functions in a realistic setting. As mentioned earlier, the typical

setting where such a tool is used will be in brainstorming-meetings. With this as

a basis, the test will elucidate and hopefully fulfill the functional requirements

listed in 7.6 and the non-functional requirements listed in Table 8.1.

The main focus was not on how the participants interpreted CHASSIS as a

method, but rather how the CHASSIS tool was utilized in a brainstorming-

setting.

Id Requirement

NF1 It should be easy for a user to draw a figure from the palette

NF2
A user should easily be able to separate notations from each other

when notation is presented graphicly
NF3 A user should find it easy to locate a specific notation in the palette

NF4 It should be easy for a user to edit existing figures in a diagram

NF5 The visualizations should act as a motivator for the brainstorming

Table 8.1: Non-functional requirements for the CHASSIS tool

81

82 CHAPTER 8. ARTEFACT ANALYSIS - STUDENT EXPERIMENT

8.2 Location, equipment and process

The student experiment was conducted in a meeting room at Norwegian Univer-

sity of Technology and Science, campus Gløshaugen. Here, participants where

seated next to each other, facing a 21” computer screen with a accompanying

data-mouse and keyboard. The test leader was seated next to them, facing both

students. The screen was attached to a laptop, facing the test leaders way. This

setup permitted the leader to take screenshots of the editor window during the

sessions without having to disturb the participants’ workflow. Audio recordings

of of each session was made so that participant-feedback could be reviewed at

a later time.

In order to conduct a structured experiment, and to ensure that all participants

have the same starting point, an agenda for the testing was created:

1. Introduction to CHASSIS, FSD and the CHASSIS tool

2. Brief test-scope presentation

3. Presenting the scenarios

4. Test session - participants carries out scenarios using the CHASSIS tool

5. Discussion and Retrospective probing (RP)

Starting with an introduction, the CHASSIS method and it’s purpose was ex-

plained to the participants. Continuing with FSD, the participants was intro-

duced to the notation and provided with a sheet of paper containing the names

of the FSD-notation and a graphical representation of the figures. Moving on to

the CHASSIS tool, it’s intended use as a supporting tool when brainstorming

as an activity to elucidate and extract functional requirements in a system was

explained.

8.2. LOCATION, EQUIPMENT AND PROCESS 83

Presenting the scope of the test included giving participants an overview of the

non-functional requirements that their attendance was meant to cover. In ad-

dition, the participants where informed that only the CHASSIS tool, and not

the participants performance, where being tested. Next, the participants was

asked, to the extent of their ability, to utilize the concurrent thinking aloud

(CTA) technique, thus encourage them to keep a constant stream of conscious-

ness and think out loud during the experiment.[52] They where in addition

informed that they could ask questions during the experiment should anything

be unclear.

The next step on the agenda was presenting the scenarios (see 8.3). Here, the

participants where handed a sheet of paper containing a short story present-

ing the tasks at hand, and the participants began working through the story.

Additionally, the participants where given a sheet of paper displaying the FSD

notation graphically.(See Appendix C)

After completing the testing session, the participants where encouraged to dis-

cuss the scenarios and how they had chosen to implement them using the tool.

Using RP, a technique where participants are asked about their thoughts and ac-

tions during the session, provides the opportunity for asking participants follow-

up questions. Each session lasted 1,5 hours.

84 CHAPTER 8. ARTEFACT ANALYSIS - STUDENT EXPERIMENT

8.3 Scenarios

[53] present three different approaches to scenario-creation. One of the tree,

Goal- or Task-Based Scenarios (GTBS), only states what the user wants to do.

During a brainstorming, GTBS gives the participants a reason and a goal for

the activity, but at the same time leaving dictions regarding how a task is to

be performed up to the participants. During an experiment, this gives valuable

information as to the intended use as well as patterns for use. The following

numbered list represents an English version of the scenarios handed out to the

participants. For the original Norwegian version, see Appendix E.

1. A company, Duck AS, has all it’s company data stored in a server. This

server can distribute data through a router to two different clients, two

computers located in the company’s facilities. Primarily, the router com-

municates with the clients via cable, but may switch to a wireless option

should a routing error occur.

2. Lately, Duck AS has had issues with the router; it fails to send mes-

sages/communicate with the clients. In an effort to try and resolve the is-

sue, the company decides to take a closer look at how the router-component

functions. The router consists of a send-, receive- and package-management-

component.

3. Following a discussion, the employees in Duck AS agrees to introduce a

watch-dog on the package-management-component. It’s task is to send

out heartbeats to the send- and receive-component. When the watch-dog

notices that the send-component is hung up, it will send a mitigating

message to the send-component, telling it to reset. Now, the package-

management-component will switch to a wireless connection and resend

the last messages should an error occur.

8.4. PARTICIPANTS 85

8.4 Participants

All participants in the experiment where students between the age 21-25. In

order to mimic a realistic brainstorming situation, participants where paired up

and asked to carry out the scenarios together. Even though CHASSIS’ main ap-

plication area is in aviator industry brainstorming situations[3], drawing SD and

FSD does not require the user to be a safety domain expert, as basic knowledge

about the concepts of UML SDs and FSD notation. Student pairs where there-

fore selected based on these premisses, and knowledge about safety-modeling

was not stated as a requirement. Each of the pairs in the sessions knew each

other already, aiming at creating a relaxed atmosphere during the experiment.

Table 8.2 presents basic information about the participants in each of the three

sessions.

Session ID Participant ID Gender Age

S1

P1

P2

Female

Female

21

21

S2

P3

P4

Female

Male

24

25

S3

P5

P6

Male

Male

25

23

Table 8.2: Basic information about participants in the sessions

86 CHAPTER 8. ARTEFACT ANALYSIS - STUDENT EXPERIMENT

8.5 Results

Participants in all sessions drew a router and two clients as a part of the se-

quence diagram in scenario 1. They also added part components and messages

going between the components. (see Figure 8.1) In one session, the participants

included components for a server from the beginning. Participants in one of the

sessions did not draw a server as a component in the diagram. One pair did

draw the server, but did not draw any links between the Server component and

the Router until after the completion of the second task.

Figure 8.1: Resulting sequence diagram after completing the first scenario dur-

ing session 1

8.5. RESULTS 87

In all three sessions the participants drew messages indicating messages going

from a router to either one or both of the clients. Two pairs followed up scenario

1 by drawing the situation where the router fails to deliver a message (first part

of scenario 2) by editing the title of the message and including a failure indicator

over the head of the message. The last pair placed failure indicators around the

heads of the messages and a failure note next to the failure indicators and wrote

that the router failed to deliver a message to the client (see Figure 8.2). None

of the pairs marked the Router-component as a failing component in any way.

Figure 8.2: A version of how the router failing was visualized during one of the

sessions

88 CHAPTER 8. ARTEFACT ANALYSIS - STUDENT EXPERIMENT

One of the pairs immediately created a new diagram-file when they where going

to decompose the router component (second half of scenario 2). Another team

started decomposing the router directly in the first diagram-file, but created a

new file and moved the router components once they where tipped about the

failure interaction-figure in the palette.

Figure 8.3: Decomposition of the router component

None of the participants in the sessions suggested stacking a part component

failure on top of a part component in order to change the one to the other

without removing the part component first (FPC7 in Table 7.12). Instead, one

session applied a failure indicator covering the execution specification and a

failure note explaining the error of that part of the component. During the

RP, this pair said they where aware of the part component failure notation, but

that they did not want to delete the execution specification and all its connected

messages in order to insert a part component failure. Further they stated that

8.5. RESULTS 89

marking the specification with the red circle and a note was sufficient. Another

session marked the specification with a failure indicator and added a freestand-

ing message next to it, explaining the error occurring. The last session created

a part component failure on the lifeline-tail, moved all messages connected to

the execution specification over to the part component failure figure and then

deleted the execution specification.

Figure 8.4: Showing Router as a complete component failure

A similar issue as when execution specification needed to become a part com-

ponent failure was apparent as one session decided that the Router component

was an instance of a complete component failure. Here, they created a complete

component failure next to the existing router component, moved the execution

specification from the old router component to the new, and deleted the old

router component. (see Figure 8.4)

90 CHAPTER 8. ARTEFACT ANALYSIS - STUDENT EXPERIMENT

The inclusion of the Watch-dog (scenario 3.) was implemented fairly similar in

all three sessions, even though only two sessions had a separate diagram for the

decomposition of the Router component. Heartbeat messages where drawn be-

tween the package-management-component and send-/receive-component. An

additional message was placed from the package-management-component to the

send-component encouraging it to reset if the component needs to be reset. (see

Figure 8.5) Additionally, one pair added mitigation indicators to both heartbeat

messages and included a mitigation message.

8.5. RESULTS 91

Figure 8.5: Adding a watch-dog to the decomposed Router component

92 CHAPTER 8. ARTEFACT ANALYSIS - STUDENT EXPERIMENT

During the RP, the participants gave several statements about the tool. Both

pairs in S1 and S2 commented that they found the creation of a component or a

complete component failure unnecessary complicated as they had to first draw

the head then the tail. The participants suggested a figure containing both the

head and tail together as a better solution. On the other hand, all participants

stated it was easy to drag a figure to the palette, as well as repositioning, resizing

and otherwise edit the shapes. Additionally, participants in all sessions stated

that finding a specific notation in the palette was easy. Here, participants in S1

and S3 suggested that including small icons of the figure next to its instance in

the palette would aid in visualizing the relevant shape.

A reoccurring issue in S2 was trouble separating failure- and mitigation nota-

tion from mitigation- and failure interactions when drawn in the editor window.

When asked, they had no suggestions how to improve this issue. S1 and S3

showed similar issues, but used the Comment-notation (see section 7.6.3) dili-

gently during the brainstorming to assure common understanding of the diagram

they where creating. When asked, they did not mention the similarity of the

notation as an issue. With this, the analysis of the too approach is concluded.

Chapter 9 evaluates the CHASSIS tool, as well as the supporting techniques

and methods utilized in the report.

Chapter 9

Artefact evaluation and

validation

This chapter present the results the tool analysis (see Chapter 8), answers re-

search questions stated in the introduction and evaluates main and supporting

techniques and methods used throughout the report. In addition, threats to

validation are discussed.

9.1 DSR and Iterative development

The main research method utilized in this report is design science research

(DSR). Having a new artefact as its final result, DSR provided a well-structured

process supporting the CHASSIS tool approximation: defining the problem and

describing a proposal to a problem solution, the construction of the CHASSIS

tool, investigating if the requirements of the tool are met and finishing with an

evaluation of the results from the artefact investigation. Supporting the DSR

method, this project has applied a supporting development method: iterative

development method. Despite overlapping with the DSR, the iterative develop-

ment method enables further detailing of each DSR phase. As a result, the two

methods together provided the necessary motivation and structure when con-

ducting software development such as the approximation to a CHASSIS tool.

In addition, the iterative process permitted decomposition of each development

phase into structured and manageable tasks to be performed several times dur-

ing the project life cycle.

93

94 CHAPTER 9. ARTEFACT EVALUATION AND VALIDATION

9.2 Gathering tool requirements

Whereas many techniques used to acquire requirements for a new system devel-

opment project to great extent utilizes future system users, this project has ap-

plied a mostly theoretical approach. The functional requirements related to the

CHASSIS tool approximation was based on exploring CHASSIS as a method,

mainly through written articles, but also through other written sources: the

OMG UML superstructure and other relevant tools and techniques. In retro-

spect, this theoretical approach to requirement elicitation was more than suffi-

cient as FSDs notation and realistic experiments using FSD in practise was well

defined in the articles. Furthermore, the OMG UML superstructure and an

expert on the CHASSIS domain, Raspotnig, provided any needed clarifications

when unclarities arose.

The answer to the first research question however, What approximations are

there to a CHASSIS tool?, emerged during a meeting with three safety experts

from Avinor. Here, one of the safety experts explained a brainstorming process

with first utilizing a low-level sketching-tool during the brainstorming activity

and then using a syntax strict tool to clean up the collected data after the

conclusion of the brainstorming. Both of these are further investigated in this

report and wholly or partly developed and implemented. Together these two

suggestions lead to a third CHASSIS tool approximation: a twofold tool allowing

the creation of both low- and high-level diagrams. This version is not covered

in this report, but is presented as a direction for further work.(see Chapter 10)

9.3 MDSD

Model Driven Software Development (MDSD) present yet another development

method supporting the DSR method. One of its key components is metamodel-

ing. One of the tool approximations in this report is a high-level tool including

all the syntax of both UML sequence diagram (SD) and CHASSIS’ Failure Se-

quence Diagram (FSD). MDSD, through metamodeling, aids in the creation of

a domain specific language (DSL) for FSD by the means of a model extension.

Here, existing metaclasses of the UML metamodel is extended through stereo-

types, adding the functionality required by the FSD syntax. The extensions are

9.4. DEVELOPMENT PLATFORMS - PAPYRUS AND GMF 95

collected in a UML Profile model. MDSD was, for the creation of the high-level

approach of a CHASSIS tool extremely valuable. Making the UML metamodel

and all its syntax available meant not having to construct all the details FSD

directly inherited from the UML SD. In addition, the extension of the UML

metamodel would guarantee that all the inherited functionality in the DSL was

syntactically correct.

9.4 Development platforms - Papyrus and GMF

As the first tool approximation to CHASSIS was to be implemented, several

development platforms where evaluated as possible candidates. Eclipse and the

Papyrus tool was chosen based on high level requirements, stated in Table 6.1,

where Papyrus, in theory was able to fulfill all. As the FSD UML Profile was

to be applied to a UML SD, however, several program core limitations where

revealed. The limitations where severe to the degree of over half of the func-

tional requirements of the FSD being void. As a result, the first approach to

the CHASSIS tool was abandoned in favor a second approach: a CHASSIS tool

supporting brainstorming. For this approach, the Papyrus tool would become

to advanced as it forced all functionality and constraints through the metaclass

onto the extending stereotype. Using Papyrus to solve the new problem; the

low-level brainstorming aid tool would be counterproductive as the approxi-

mation to a CHASSIS tool no longer depended on strict UML syntax. The

Graphical Modeling Framework (GMF) was instead used as it had no compul-

sory implemented metamodel. Instead, the domain as a whole is created from

scratch, allowing for the creation of a more low-level CHASSIS tool. Evaluating

the two up against the tasks they where set to aid, both where fitting solutions

for the approximation that was to be constructed.

9.5 Student experiment

The conducted student experiment provides information that answers the sec-

ond research question: Does such an approximation work in a realistic setting?

Supporting the answering of this questions are the non-functional requirements

states in Table 8.1.

96 CHAPTER 9. ARTEFACT EVALUATION AND VALIDATION

All participants in the three session understood quickly how to drag-and-drop

a figure from the palette onto the editor window (NF1). However, S1 and S2

stated that they found the two-part creation of a component or a complete com-

ponent failure unnecessary complicated. Here, they stated that a combination

of head and tail into a single figure would be a better solution.

NF2, stating that A user should easily be able to separate notations from each

other when notation is presented graphicly turned out to be an issue for the

participants during the sessions. Participants in S2 stated they had trouble

separating failure- and mitigation notation from mitigation- and failure interac-

tions when drawn in the editor window. When asked, they had no improvement

suggestions. The same issue was observed during two other sessions, but here

the participants utilized the Comment notation as a means to clarify the the

common diagram understanding and separating notation though textual state-

ments. During the RP, the participants in S1 and S3 did not state this observed

situation as an issue.

When asked, all participants stated they found it easy to locate specific notation

in the editor palette. (NF3) As a mean to further visualize the different nota-

tion in the palette, S1 and S3 suggested adding small icons next to the figure

instances in the palette.

Regarding repositioning and resizing of figures in the editor window (NF4), all

participants commented they found this easy. As an opposition, all the sessions

presented issues when scenarios called for editing execution behaviour into a

part component failure and a component into a complete component failure.

None of the participants in any of the three sessions attempted to edit existing

notation in the editor window by stacking notation. Instead, they either created

a new notation in the window and continued manually moving notation before

removing the now unused figure or refrained from editing the figures at all.

These are serious issues that affect the activity flow during the brainstorming

and should be a main priority during further development.

9.6. THREATS TO VALIDITY 97

Several syntactical errors where performed during the sessions. However, this

is outside the scope of the student experiment and is therefore accepted here.

With all five non-functional requirements mostly met, it is concluded that this

approximation to a CHASSIS tool does work in a brainstorming setting.

9.6 Threats to validity

This section covers validity threats that may occur during research. [75] de-

scribes different types of validity which are covered in the remainder of this

section.

Construct validity may be threatened if measures are not sufficiently defined

for the concepts subjected to the study. During the collection of background

knowledge the construct validity may be threatened if the presentation of this

data makes use of unclear and insufficiently understood vocabulary. In this

report, the threat to the collected data was handled by applying only quali-

fied sources, submitted papers, when acquiring the information. The conducted

experiment could also become a victim for threats to construct should the lan-

guage used during the test be unclear. At the end of the experiment, participants

where subjects to retrospect probing, aiming at resolving any unclarities. In ad-

dition, the participants where opted to ask questions during the experiments if

anything was unclear.

Internal validity are subject to threats that may arise when conclusions form

the data are drawn. During the student experiments, the validity may be threat-

ened if actions, comments and feedback made by participants are wrongly in-

terpreted by the test leader. Here, the internal validity threats where handled

by encouraging the participants to utilize the concurrent thinking aloud (CTA),

opting the participants to think out loud while working with the scenarios. In

addition, audio tapes of the sessions, screen shots and the test leaders notes

where used as the data from the experiment where analysed.

98 CHAPTER 9. ARTEFACT EVALUATION AND VALIDATION

External validity states whether or not the conducted study can be general-

ized. The external validity of the experiment could be exposed to threats. The

issues with visually separating figures as well as the substitution of a compo-

nent into a complete component failure, both stated feedbacks and observations

during the student experiments, is a matter of affordance within each of the

participants and is not related to their understanding of either SD or FSD, but

the tool itself. Therefore there is a possibility that this affordance will also apply

if an experiment using safety and security expert participants are conducted,

thus supporting the idea a generalisation of experiment findings.

Reliability concerns whether if the same data collection may be performed and

achieve the same result. As a mean to avoid threats to reliability, a test plan

was prepared in advance of the student experiments, thus facilitating a well

structured procedure for the execution of the usability testing.

Chapter 10

Conclusions and further

work

This report has presented two approximations to a CHASSIS tool allowing for

the generation of Failure Sequence Diagrams, see Chapters 5-9. As there does

not exist any previous attempts at approaching a tool for CHASSIS, the first

research question aimed at discovering if there existed several options to a tool

approach. This question was answered during a meeting with safety experts at

Avinor. Here, two approaches to a tool for CHASSIS was suggested: a low-

level, nearly syntactic free brainstorming tool and a formal and syntactically

strict tool utilizing the constrictions of the UML Sequence Diagram. These two

proposals lead to a third option: a two-fold tool containing both a high- and a

low-level tool option.

Of the three approximations to the CHASSIS tool, the two first are further inves-

tigated in this report. The strict high-level approximation was first attempted

to be implemented, but unforseen and unexpected instabilities with the program

core of Papyrus, the chosen development platform, lead to a change of direction.

Instead, the Graphical Modeling Framework was used to implement a low-level

brainstorming approximation to the tool.

99

100 CHAPTER 10. CONCLUSIONS AND FURTHER WORK

As a means to answer the second research question, asking if the approximation

would work if placed in a realistic brainstorming setting, a student experiment

was conducted. Despite some erroneous application of the Failure Sequence

Diagram notation and a slight affordance issue with some of the notation, the

experiment was considered a success and concluded that the tool did indeed

work in a realistic setting.

Computer tools may aid users in a wide spectrum of tasks. As this report only

present a first time approximation to a tool for CHASSIS, the list below suggest

possible areas that could be a part of further work with a tool for CHASSIS:

• Implementing the first high-level approximation to the CHASSIS tool.

• Run experiments with the first tool approximation.

• Correct issues that where apparent during the student experiment with

the second tool approach.

• Investigating the third approximation alternative by attempting to com-

bine the two approximations presented in this report into a single tool.

• Conducting experiments with safety experts form the industry.

Bibliography

[1] Böhm, P and Gruber, T. (2010), A Novel HAZOP Study Approach in the

RAMS Analysis of a Therapeutic Robot for Disabled Children, in Schoitsch,

E., Computer Safety, Reliability, and Security, Springer Berlin Heidelberg,

15-27

[2] Opdahl, A. L. and Raspotnig, C. (2012), Improving Security and Safety

Modelling with Failure Sequence Diagrams., IJSSE 3 (1) , 20-36.

[3] Raspotnig, C. (2014), Requirements for safe and secure information systems,

philosophiae doctor (ph.d), University of Bergen, Norway

[4] Raspotnig, C., Karpati, P., and Katta, V. (2012), A Combined Process for

Elicitation and Analysis of Safety and Security Requirements, in Bider, I.,

Halpin, T., Krogstie, J. Nurcan, S., Proper, E., Schmidt, R., Soffer, P. and

Wrycza, S., Enterprise, Business-Process and Information Systems Model-

ing, Volume 113, Springer Berlin Heidelberg, 347-361

[5] Raspotnig, C., Karpati, P. and Opdahl, A. (2013), An Evaluation if CHAS-

SIS with Two Air Traffic Management Suppliers, Manuscript to be submit-

ted

[6] Raspotnig, C. and Opdahl, A. (2012), Supporting Faliure Mode and Effect

Analysis: A Case Study with Faliure Sequence Diagrams, in Regnell, B. and

Damian, D., Requirements Engineering: Foundation for Software Quality,

Springer Berlin Heidelberg, 117-131

[7] Stahl, T. and Völter, M. (2006) Model-Driven Software Development - Tech-

nology, Engineering, Management, John Wiley & Sons, Ltd., 85-108, 55-70,

223-238

101

102 BIBLIOGRAPHY

[8] Meland, P. H., Spampinato, D. G., Hagen, E., Baadshaug, E. T., Krister, K.

M., Velle, K. S. SeaMonster: Providing tool support for security modeling,

ResearchGate

[9] http://www.eclipse.org/papyrus/, downloaded 02.04.2014

[10] http://www.ehow.com/list 7202158 advantages-using-software.html,

downloaded 28.03.2014

[11] http://www.oxforddictionaries.com/definition/english/safety?q=safety,

downloaded 25.03.2014

[12] http://www.oxforddictionaries.com/definition/english/security?q=security,

downloaded 25.03.2014

[13] http://projects.eclipse.org/projects/modeling.mdt.papyrus, downloaded

02.04.2014

[14] https://www.microsoft.com/security/sdl/adopt/threatmodeling.aspx,

downloaded 23.04.2014

[15] 10http://www.uml-diagrams.org/profile-diagrams.html, downloaded

24.04.2014

[16] http://www.uml-diagrams.org/uml-25-diagrams.html#structure-diagram,

downloaded 29.04.2014

[17] http://wiki.eclipse.org/Papyrus, downloaded 01.05.2014

[18] http://sourceforge.net/apps/mediawiki/seamonster/index.php?title=Main Page,

downloaded 05.05.2014

[19] http://www.sintef.no/home/About-us/, downloaded 05.05.2014

[20] http://en.wikipedia.org/wiki/Eclipse (software), downloaded 05.05.2014

[21] http://en.wikipedia.org/wiki/Compiler, downloaded 05.05.2014

[22] http://en.wikipedia.org/wiki/Interpreter (computing), downloaded

05.05.2014

[23] http://en.wikipedia.org/wiki/Workspace, downloaded 05.05.2014

[24] http://en.wikipedia.org/wiki/Eclipse (software)#Modeling platform,

downloaded 05.05.2014

BIBLIOGRAPHY 103

[25] http://en.wikipedia.org/wiki/Papyrus (software), downloaded 05.05.2014

[26] http://www.sparxsystems.com/resources/uml datamodel.html, down-

loaded 06.05.2014

[27] http://www.dpi.ufv.br/projetos/geoprofile/tutoriais/Visual Paradigm

for UML Tutorial english.pdf, downloaded 06.05.2014

[28] http://msdn.microsoft.com/en-us/library/dd465143.aspx, downloaded

06.05.2014

[29] http://www.eclipse.org/modeling/mdt/uml2/docs/articles/

Customizing UML2 Which Technique

is Right For You/article.html, downloaded 07.05.2014

[30] http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/, down-

loaded 09.05.2014

[31] http://www.eclipse.org/papyrus/usersTutorials/resources/PapyrusUserGuideSeries

AboutUMLProfile v1.0.0 d20120606.pdf, downloaded 10.05.2014

[32] http://www.upedu.org/references/bestprac/im bp1.htm, downloaded

10.05.2014

[33] Guideline for applying CHASSIS, draft. Made avaliable by Raspotnig, C.

at request.

[34] http://en.wikipedia.org/wiki/Requirement, downloaded 10.05.2014

[35] http://www.uml-diagrams.org/use-case-diagrams.html, downloaded

10.05.2014

[36] http://www.uml-diagrams.org/sequence-diagrams.html, downloaded

10.05.2014

[37] http://desrist.org/desrist/content/design-science-research-in-information-

systems.pdf, downloaded 12.05.2014

[38] http://www.oxforddictionaries.com/definition/english/problem?q=problem,

downloaded 12.05.2014

[39] http://www.techrepublic.com/blog/10-things/10-techniques-for-

gathering-requirements/, downloaded 12.05.2014

[40] http://searchsoftwarequality.techtarget.com/tutorial/Software-

requirements-gathering-techniques, downloaded 12.05.2014

104 BIBLIOGRAPHY

[41] http://www.evalperiod.com/services/10-strategies-for-software-

requirements-gathering/, downloaded 12.05.2014

[42] http://www.cse.msu.edu/c̃se870/Lectures/Notes/02b-

RequirementsElicitation-bhc-notes.pdf, downloaded 12.05.2014

[43] S. Kriaa, C. Raspotnig, M. Bouissou, L. Pietre-Cambacedes, P. Karpati,

Y. Halgand, V. Katta (2013),Comparing Two Approaches to Safety and Se-

curity Modeling: BDMP Technique and CHASSIS method in Proc. of the

37th Enlarged Halden Programme Group (EHPG) meeting

[44] Raspotnig, C., Katta, V., Karpati, P. and Opdahl, A. (2013), Enhanc-

ing CHASSIS: A method for Combined safety and Security Assessments in

2013 Eighth International Conference on Availability, Reliability and Secu-

rity (ARES), IEEE, 766-773

[45] http://en.wikipedia.org/wiki/Software development methodology, down-

loaded 13.05.2014

[46] http://en.wikipedia.org/wiki/Block diagram, downloaded 14.05.2014

[47] http://en.wikipedia.org/wiki/Failure mode and effects analysis#Functional analysis,

downloaded 14.05.2014

[48] http://www.hq.nasa.gov/office/codeq/risk/docs/ftacourse.pdf, down-

loaded 14.05.2014

[49] http://www.tdi.texas.gov/pubs/videoresource/stpfaulttree.pdf, down-

loaded 14.05.2014

[50] http://www.usability.gov/how-to-and-tools/methods/planning-usability-

testing.html, downloaded 19.05.2014

[51] http://www.usability.gov/how-to-and-tools/methods/usability-

testing.html, downloaded 19.05.2014

[52] http://www.usability.gov/how-to-and-tools/methods/running-usability-

tests.html, downloaded 19.05.2014

[53] http://www.usability.gov/how-to-and-tools/methods/scenarios.html,

downloaded 20.05.2014

[54] http://docs.oracle.com/javase/tutorial/java/javaOO/enum.html, down-

loaded 20.05.2014

BIBLIOGRAPHY 105

[55] Wilkinson, P. J and Kelly, T. P. (1998), FUNCTIONAL HAZARD ANAL-

YSIS FOR HIGHLY INTEGRATED AEROSPACE SYSTEMS

[56] Pavlidis, M., Islam, S. and Mouratidis, H. (2012), A CASE Tool to Sup-

port Automated Modelling and Analysis of Security Requirements, Based on

Secure Tropos, in IS Olympics: Information Systems in a Diverse World,

Springer Berlin Heidelberg, 95-109

[57] Kiyavitskaya, N., and Zannone, N. (2008), Requirements model generation

to support requirements elicitation: the Secure Tropos experience, in Auto-

mated Software Engineering, Springer US, 149-173

[58] Fabian, B., Gürses, S., Heisel, M., Santen, T. and Schmidt, H. (2008),A

comparison of security requirements engineering methods, in Requirements

Engineering, Springer-Verlag volume 15 - issure 1, 7-40

[59] Lund, M. S., Solhaug, B. and Stølen, Ketil, (2011) Model-Driven Risk

Analysis- The CORAS Tool, Springer Berlin Heidelberg, 5-8

[60] Eames, D.,P. and Moffett, J., (1999) The Integration of Safety and Security

Requirements, in Computer Safety, Reliability and Security, Springer Berlin

Heidelberg, 468-480

[61] Srivatanakul, T., Clark, J., A., and Polack, F. (2004), Effective Security

Requirements Analysis: HAZOP and Use Cases, in Information Security,

Springer Berlin Heidelberg, 416-427

[62] http://www.utdallas.edu/s̃upakkul/tools/RE-Tools/creating-kaos.html,

downloaded 22.05.2014

[63] Piètre-Cambacédès, L. and Bouissou, M. (2010), Attack and Defense Mod-

eling with BDMP in Computer Network Security - 5th International Con-

ference on Mathematical Methods, Models and Architectures for Computer

Network Security, MMM-ACNS 2010, St. Petersburg, Russia, September 8-

10, 2010. Proceedings, Springer Berlin Heidelberg, 86-101

[64] http://www.usability.gov/how-to-and-tools

/methods/requirements.html, downloaded 22.05.2014

[65] http://sdedit.sourceforge.net/index.html, downloaded 26.05.2014

[66] http://www.all4tec.net/index.php/en/model

-based-safety-analysis, downloaded 26.05.2014

106 BIBLIOGRAPHY

[67] http://www.uml-diagrams.org/constraint.html, downloaded 26.05.2014

[68] http://www.visualstudio.com/en-us/

products/how-to-buy-vs, downloaded 27.05.2014

[69] https://wiki.eclipse.org/

Graphical Modeling Framework/Tutorial/Part 1#Tutorial, downloaded

27.05.2014

[70] https://wiki.eclipse.org/EMF, downloaded 27.05.2014

[71] https://wiki.eclipse.org/GEF, downlaoded, 27.05.2014

[72] Marshall, T. (2008), Brainstorming in Design Dictionary - Perspectives on

Design Terminology, Birkhäuser Basel, 49

[73] http://en.wikipedia.org/

wiki/Eclipse Modeling Framework, downloaded 28.05.2014

[74] http://www.usabilityfirst.com/glossary/affordance/, downloaded

27.05.2014

[75] Wohlin, C., Runeson, P., Höst, M., Ohlsson, C., M., Regnell, B. and

Wesslén, A. (2012), Experimentation in Software Engineering, Springer

Berlin Heidelberg, 104-110

[76] http://en.wikipedia.org/wiki/

Iterative and incremental development, downloaded 29.05.2014

[77] http://www.edrawsoft.com/

fault-tree-diagram-software.php, downloaded 30.05.2014

[78] http://what-when-how.com/information-science-and-technology

/integrating-security-in-the-development-process-with-uml/, downloaded

30.05.2014

Appendix A

High level specification of

CHASSIS tool

107

108 APPENDIX A. HIGH LEVEL SPECIFICATION OF CHASSIS TOOL

High level specification of CHASSIS
tool

High-level requirements
1. The tool shall implement FSD and MUSD of CHASSIS
2. The tool should integrate with other development, safety or security analysis

tools by using XML
3. It should be possible to extend the tool to connect to other diagrams, especially

MUC diagrams
4. The system shall be user-friendly

Functional requirements
1. The tool shall implement all the rules and notation from UML sequence

diagrams
2. The tool shall support the FSD

a. The tool shall implement all the notation of FSD
a.i. Failure and hazard of a component shall be represented by a red

dashed circle on a lifeline of a component
a.ii. Failure of interaction shall either be:

a.ii.1. Red colored variable in message arguments
a.ii.2. Red colored arrow and text

a.iii. Error propagation through interaction shall be red arrows or red
variable (on an arrow) that are connected to each other

a.iv. A mitigation against a failure shall be represented by a green
dotted circle

b. The tool shall allow decomposition of FSD
3. The tool shall support the MUSD

a. The tool shall implement all the notation of MUSD
a.i. Vulnerability and threat of a component shall be represented by

a red dashed circle on a lifeline of a component
a.ii. Vulnerability of interaction shall either be:

a.ii.1. Red colored variable in message arguments
a.ii.2. Red colored arrow and text

a.iii. Attacker sequence shall be red arrows or red variable (on an
arrow) that are connected to each other

a.iv. A mitigation against a vulnerability shall be represented by a
green dotted circle

b. The tool shall allow decomposition of MUSD

109

GUI requirements
1. The tool shall support additional GUI features

a. Save and save as
b. Print/documentation – jpeg, xml-based reports
c. ￼Search - data types

2. The user should be constrained from specifying elements that are syntactically
wrong, e.g., failures in a MUSD or vulnerabilities in FSD

Usability requirements
1. The tool shall be used as a discussion medium in hazard, threat, failure and

vulnerability analysis meetings
a. The tool shall be able to display the FSD/MUSD with

failures/vulnerabilities and mitigations to be visible to all stakeholders
in a brainstorming meeting

2. The tool shall be used to document the hazard, threat, failure and vulnerability
analysis

3. The tool should allow easy placement and changes to symbols in the
FSD/MUSD

4. The tool should allow to hide elements (e.g., notes) in the FSD/MUSD

110 APPENDIX A. HIGH LEVEL SPECIFICATION OF CHASSIS TOOL

Appendix B

Domain model - GMF tool

111

112 APPENDIX B. DOMAIN MODEL - GMF TOOL

Appendix C

Notation for CHASSIS tool

- GMF

113

114 APPENDIX C. NOTATION FOR CHASSIS TOOL - GMF

Appendix D

Proposed case for usability

testing

115

116 APPENDIX D. PROPOSED CASE FOR USABILITY TESTING

Case for brukertesting av FSD verktøy

De skal modellere en server som distribuerer data gjennom en router til to forskjellige
klienter. Routeren kommuniserer primært via kable med klientene, men kan svitsje til
trådløs løsningen om det oppstår en feil med rutingen via kablene.

I første omgang skal de modellere server, router og to klienter med vanlige
sekvensdiagrammer.

Så skal de med dette sekvensdiagrammet modellere at router feiler å sende meldinger
til klientene. De markerer feil på routeren og at meldinger forsvinner.

Videre skal de dekomponere router komponenten. Her skal de modellere at routeren
består av en mottaks-komponent, en pakkehåndterings-komponent og en sende-
komponent. De skal vise hvordan feilen skjer ved at prosessen for å sende meldinger
ut henger seg i sende-komponenten. De skal kunne relatere denne feilen (en under-
feil) til feilen på router i det overordnede sekvensdiagrammet. De skal også bruke
”parallel failures” her, ved at to melding skal sendes til hver sin klient, og at begge
feiler å bli sendt pga. feil i sende-komponenten.

Så skal de innføre en watch-dog på pakkehåndterings-komponenten, som sender ut
heartbeats til mottaks- og sende-komponenten. Når denne oppdager at sende-
komponenten har hengt seg, sender den en mitigerende melding til sende-
komponenten for å få den til å resette seg.

Videre skal de modellere at pakkehåndterings-komponenten svitsjer til trådløs
forbindelse og re-sender de siste meldingene (de er blitt bufret). Disse meldingen skal
vises som ”message found”.

Til slutt skal de bruke ”failure interaction” for feilsekvensen med prosessen som
henger seg på sende-komponenten og som fører til ”lost messages”. De skal videre
bruke ”mitigation interaction” utenpå ”failure interaction” for watch-dog, heartbeat og
”message found”.

Appendix E

Case used during artefact

analysis

117

118 APPENDIX E. CASE USED DURING ARTEFACT ANALYSIS

Case for brukertesting-session

Firmaet Duck AS har all sin firmatada lagret på en server. Denne kan

distribuere data gjennom en router til to forskjellige klienter; de to

datamaskinene firmaet har i sine lokaler. Routeren kommuniserer primært

via kabel med klientene, men kan svitsje til trådløs løsningen om det

oppstår en feil med rutingen via kablene.

Duck AS har for tiden hatt problemer med at at routeren feiler å sende

meldinger til klientene. For å prøve å finne ut av feilen velger de å ta en

nærmere titt på hvordan router-komponenten fungerer. Ruteren består av

en sende-, mottaks- og pakkehåndterings-komponent.

Etter en diskusjon blir de ansatte i Duck AS enig om å innføre en watch-

dog på pakkehåndterings-komponenten, som sender ut heartbeats til

mottaks- og sende-komponenten. Når denne oppdager at sende-

komponenten har hengt seg, sender den en mitigerende melding til sende-

komponenten for å få den til å resette seg. Nå vil pakkehåndterings-

komponenten svitsje til trådløs forbindelse og re-sender de siste

meldingene dersom noe skjer galt (de er blitt bufret).

	Abstract
	Preface
	List of Acronyms
	Introduction
	Background
	Tool need
	Research questions
	Research and development method
	Structure of the report

	Research method
	Main research method - overview
	Artifact design
	Design activity - choosing a development approach
	Design activity - gathering tool requirements
	Design activity - choosing software development method

	Artifact construction
	Construction activity - choosing a platform

	Artifact analysis
	Analysis activity - usability testing

	Evaluation

	Background (CHASSIS)
	What is CHASSIS?
	The CHASSIS process
	Failure Sequence Diagram
	Misuse Sequence Diagram

	Related techniques and modeling tools
	Safety
	Hazard and Operability Study
	Failure Mode and Effect Analysis
	Fault and Event Tree Analysis
	about functional hazard assessment

	Security
	Secure Tropos
	KAOS Security Extension
	CORAS

	Safety and security
	Cross-fertilization
	Combining safety and security

	Modeling tools
	SDL Threat Modeling Tool
	SdEdit
	SeaMonster

	Artefact design - CHASSIS
	Input from industry
	Problem description
	Proposal and suggested solution
	Collecting domain data
	Creating a Domain Specific Language
	UML extension techniques
	Featherweight extension
	Lightweight extension
	Middleweight extension
	Heavyweight extension

	Artefact construction - Technology
	Technology requirements
	Platform - Eclipse
	Eclipse plugin - Papyrus

	Artifact construction - CHASSIS tool
	Functional requirements - first version
	Actor and hazardous actor
	Marks and notes
	Components
	Links

	First edition FSD UML profile
	Second edition FSD UML profile
	Functional requirements - second version
	Implementing changes into the FSD profile

	Creating a custom palette
	Applying the profile
	The CHASSIS artefact - GMF approach
	Graphical Modeling Framework
	Functional requirements
	Implementation

	Artefact analysis - student experiment
	Scope and purpose
	Location, equipment and process
	Scenarios
	Participants
	Results

	Artefact evaluation and validation
	DSR and Iterative development
	Gathering tool requirements
	MDSD
	Development platforms - Papyrus and GMF
	Student experiment
	Threats to validity

	Conclusions and further work
	High level specification of CHASSIS tool
	Domain model - GMF tool
	Notation for CHASSIS tool - GMF
	Proposed case for usability testing
	Case used during artefact analysis

