


Chapter 5. Proposed Solution 43

Figure 5.6: Example Code - TUG-Test



Chapter 5. Proposed Solution 44

5.4 Top-level Architecture

The architecture at the top-level for the NoFall platform is shown in figure 5.7. The

idea is that several different applications (independent or coherent) connects and uses

NoFall through an API: Content Provider.

The Content Provider grants applications that are external access to the database of

NoFall. It provides inserts, writes, deletes and updates. The Content Provider is a

standard method Android provides for developers, and it is recommended to use when

working with databases in many use cases. Since this is a recommended method, there

exist several examples and tutorials of how to use the API. This is important, since

one of the issues NoFall tries to improve is development time, and therefore needs to be

easy to learn and understand. To make it simpler for developers to use the platform,

NoFall will provide several content contracts - which are utility classes with constant

variables that point to the different attributes in the database. This is also a standard

way Android recommends to handle Content Contracts and its contents.

Figure 5.7: Overall Architecture

The most important part of the platform is the database and how it is modelled based

on the findings in chapter 3 & 4. The model is divided into six different areas (see



Chapter 5. Proposed Solution 45

figure 5.8 for a simple overview). They consist of data definitions (Measurement/Risk

definition) and data gathering (survey, test, sensor, medication, user). See table 5.2 for

the rationale behind each specification.

The idea behind the specification is to ensure that even if new methods for testing, new

surveys are made or new types of sensors are invented, they can easily be registered in

the database as a new specification. By modelling the database in such a fashion, it can

accommodate a large amount of different use-cases.

An example of the table sensor specification:

Specification example for a sensor:

Table Name Contents

Sensor Spec This table will contain the sensors name and accuracy. It will also
have an ID tag for which application registered this sensor.
E.g. Name: Gyroscope, Accuracy: 95%, Owner: PedometerApp

Table 5.1: Sensor Specification Example

This specification could then in turn collect data on movement. All of this data would

be logged to a table that has a foreign key linked back to the specification. This way,

it is easy to figure out from who and where the data came from, and how reliable it

is. The data gathered would have a relationship to the measurement for e.g. movement

speed, where movement speed would be related to a risk definition.

As discovered from the previous chapters, there exist several ways to collect fall risk

data and several ways to measure it. The measurement/risk definition is where the

developers specify which data that is gathered and what kind of measurement they use

for it - as for the pedometer example:

• The data measurement gathered are steps and steps per minute, which can calcu-

late speed.

• The data unit used is int and long.

They can also relate this measurement to different risk definitions. A simple way to do

this is relating data-intervals to risk increments:

• The walking speed can be divided into intervals which correlates to increased risk

of falling: 0 - 0,7 m/s = high, 0,7 - 1,3 m/s = medium and 1,3 m/s - = low.



Chapter 5. Proposed Solution 46

Specification Rationale

User When defining risk for a person, their age and gender
will affect this. It is also important for flexibility to
collect and store the total risk for the user in one place.
Based on findings in chapter 3.

Medication Studies have shown that the use of medication will
increase the risk of falling. This should therefore be
taken into account. Based on findings in chapter 3.

Survey A good way to find out if a person is in risk of falling
is a quick survey. The questions are meant to identify
several important factors for the person that could
relate to fall (e.g. history of falls). Based on findings
in chapter 3 & 4.

Test Tests can be quick and easy way to screen a person to
check if they are in risk of falling (e.g. the TUG-test).
Based on findings in chapter 3 & 4.

Sensor Sensors are excellent ways to monitor a person. This
can be used to measure walking speed, movement pat-
terns, pressure points etc. Based on findings in chapter
4.

Measurement/Risk
Definitions

To make sense of the data that is gathered, it has to be
stored with a correlation to some sort of measurement
and risk definition, otherwise it will only be some ran-
dom number for other people than those who actually
gathered and stored it in the NoFall DB. The basis for
this was from findings in chapter 3 & 4.

Table 5.2: DB Specification Rationale

Figure 5.8: Simple DB overview



Chapter 6

Requirement Specification

To be able to create a good solution, having a well-built foundation and understanding

of what requirements and goals the solution has to support is important. Based on

the findings in chapter 3 and chapter 4 the requirements were established. They were

iteratively updated during the lifetime of the project, since the implementation was done

by following an agile methodology.

This chapter lists the component and technical constraints, details the functional and

quality requirements.

6.1 COTS - Components and Technical Constraints

When defining a solution it is important to know which constraints one has to work with.

By knowing them - one will not try to envision a solution that is in theory excellent,

but impossible because of certain constraints with hardware or the technology.

Android is a Linux-based operating system. It is designed primarily for use on smart-

phones and touch screen devices. Android is open source and is released under the

Apache license [33]. The constraints for the solution manly relate to Android and the

devices.

47



Chapter 6. Requirement Specification 48

6.1.1 Android Platform

The solution will be developed for Android, and will therefore only work on Android

devices.

6.1.2 Android Device

The Android devices has limited amount of processing power and memory. Therefore,

it is important to develop a solution that can run on several different devices and still

perform well.

6.1.3 API level

The solution will be developed for Android 4.0 and target API 19. Some APIs will not

work or work incorrectly if a particular device runs a lower version of Android. This

will affect back-wards compatibility.

6.2 Requirements

In this section, the functional and quality requirements are detailed.

6.2.1 Functional Requirements

FR1 - Content Provider

The content provider must provide access to all the tables that exist in the DB.

Priority: High

FR2 - Content Contract

Each table in the DB with its attributes must have a corresponding content contract for

it. These classes will be used as convenience classes, making it easier to use the DB.

Priority: High

FR3 - SQLite DB

The platform must have a consistent, working DB with all the important tables (from

the model).



Chapter 6. Requirement Specification 49

Priority: High

FR4 - DB Helper

Predefined standard queries such as insert/delete/update should be available for the de-

velopers through the API.

Priority: Low

FR5 - Persistent Data

The platform must retain all information registered during usage, so it is available at

next launch.

Priority: High

FR6 - Data security

The solution must secure the data (since it will be available for several sources), by sani-

tising the inputs to prevent SQL injection attacks.

Priority: High

6.2.2 Quality Requirements

In development, there exist many different quality requirements (often referred to as non-

functional requirements). For this project the two most important are maintainability

and documentation. In this section the rationale for focusing on these two are made,

and some requirements are detailed. Each requirement has scenario(s) associated with

it.

6.2.2.1 Maintainability

The applications platform should ensure that it is easy to build easily maintainable

applications on top of it. This is because if using the platform results in an application

that is hard to maintain, the benefit of using it, over creating the application from

scratch is diminished. How easy it is to maintain in order to cope with a changed

environment, and maximize efficiency and reliability are factors that have to be taken

into account when assessing maintainability. In this respect, especially reliability, since

the framework will be used with fall prevention technology, and humans are at risk.



Chapter 6. Requirement Specification 50

U1 - Re-factor a class to improve reliability

Re-factoring is a task that has to be done regularly when developing. This is to improve

the work done, and ensure simple and readable code, which is easy to understand and

maintain.

Scenario M1

1. Source of stimulus Developer.

2. Stimulus Input from co-worker.

3. Environment Lifetime of application.

4. Artifact System.

5. Response Re-factor class.

6. Response measure Depending on complexity: maximum two workdays.

U2 - Fix an error

Unforeseen errors occur while an application is in use (release). There should be good

error reporting in place, to ensure that it will be easy in the future to debug errors and

fix them.

Scenario M2

1. Source of stimulus End user.

2. Stimulus Input from user.

3. Environment Usage of application.

4. Artifact System.

5. Response Debug and fix error.

6. Response measure Depending on complexity: maximum a workweek.



Chapter 6. Requirement Specification 51

6.2.3 Documentation

To ensure that the NoFall platform (API) is used, good and thorough documentation

is necessary. In many cases, if the documentation is lacking, the developers will chose

another solution to reduce challenges, frustration and surprises.

D1 - Map the NoFall platform

The development team has decided to use the NoFall platform. To ensure that everyone

in the team knows what the API provides, how to use it, and its limitations, they create

a mapping of the platform based on the documentation.

Scenario D1

1. Source of stimulus Developers.

2. Stimulus Project team.

3. Environment Usage of application platform.

4. Artifact System.

5. Response Map the platform.

6. Response measure One workday.

D2 - Look into the application examples

A developer knows what he wishes to accomplish, but not entirely sure how to do it. He

looks into the example applications to see if this has been solved previously, or if similar

solutions exist that can be adapted to his problem.

Scenario D2

1. Source of stimulus Developer.

2. Stimulus Idea from developer.

3. Environment Usage of application platform.

4. Artifact System.

5. Response Solve a problem related to the API.

6. Response measure One workday.



Chapter 7

Design and Architecture

Giving some thought into the planned solution by performing design activities and defin-

ing the architectural choices, ensures that some effort have been put in before the imple-

mentation begin. Typically implementing something without design, results in a finished

product that does not meet the requirements, is delivered late or is of poor quality.

The importance of good design increases with the lifetime of the application. There is

no such thing as a perfect code-base, and it will always be susceptible for change. In

this context, design is measured in regards to how easily it accommodates change.

Based on recommendations from IEEE 1471, this section contains a detailed description

of architectural tactics and patterns based on the architectural drivers, the identified

stakeholders and their concerns.

7.1 Architectural Drivers\Architecturally Significant Re-

quirements

The main drivers that affect architecture and the system:

Developer Inexperience

I have done small projects before with android and mobile application development.

This is the first time I work on a large-scale project alone, and not in a team, which

affects the process. I have also never worked with the development of platforms.

52



Chapter 7. Design and Architecture 53

Project Lifetime

By wishes from both my project advisor and me, the work done in this thesis can be

used in other research or further improved. Therefore, it should always be kept in mind

that this will be looked at by others.

Technical Constraints

The application platform is for Android and minimum 4.0 Android version.

Project Deadline

The thesis is done over two semesters. This makes it important to plan well to ensure

that the project is completed by the deadline and satisfying work is delivered.

Agile Development Process

The project followed an agile development process. By having short deadlines with

incremental progress, the risk of not having something working and completed by the

deadline is reduced.

Modifiability

The code has to be easily modifiable because:

• There is new research emerging in the respective field, and the application platform

has to be able to adapt easily.

• The requirements will change and evolve during the development process.

Modularity

The application platform should have low coupling, so it is easy to remove, change or

add new functionality to the platform. This is both related to the need for an easily

modifiable code base, and that further work might be done on it in the future.

7.2 Stakeholders and Concerns

The stakeholders of the system, and their concerns:

Developer

Constructability: The solutions complexity must be kept within borders of what is

possible to complete within the deadline.



Chapter 7. Design and Architecture 54

Quality: The report and code for the application must have a high level of quality, to

achieve a satisfying grade.

Advisor

Reviewability: Easy to review and give feedback.

Future developers

Modularity: It is important that it is easy to change or remove parts without making

ripple effects in the code.

Documentation: Well documented code, so it becomes easier to understand.

7.3 Architectural Description

In software architecture, a common approach is to follow already existing design patterns,

which are reusable solutions to common problems. They conform to best practices and

are in general a great way to tackle a problem. Many of the design patterns are excellent

ways to guide architecture, but most of them were made before mobile development.

For the architecture in this project, some patterns and rules were adopted, such as

naming convention and package structure. Otherwise, the code follows the Android

framework architecture, which is a model view-controller architecture.

The Model-view-controller [36] pattern is a common pattern when developing a system

that has both a GUI and some data handling. It separates the logic and the rendering

of the GUI, which increases decoupling. The design pattern is less specific than many

other patterns. It is more an idea for design, rather than a strict list of rules, leaving a

lot of room for alternative implementations. In Android, each Activity is usually treated

as a user interface making it act as both the controller and the view.

File Organization

When organizing files for an android project there are two sensible approaches:

• Organize all files by type: All activities in one package, all DB files in one package,

all providers in one package etc.



Chapter 7. Design and Architecture 55

• Organize all files by functionality: By this, all the files for one given functionality

would be stored in the same package. E.g. for the start-up screen, the activity,

adapter, DB files etc. would be stored in the same package.

For this project the first suggestion was chosen. This was based on previous experience

with android development and sampling of existing projects on the web. See figure 7.1.

for the structure used in this project.

Figure 7.1: Package Structure

Naming Convention

For naming, it is recommended to use prefixes to easily separate and identify files and

components.

• Naming for XML files: The files should begin with what type they are. E.g.

activity NAME, dialog NAME.

• Naming for components: A component should begin with which type it belongs

to, and what type it is, followed by a name. E.g. activity main btn login.

Following these will optimize auto complete, organization and avoid name collision. It

will also make it easier for other developers to read and understand the code.



Chapter 7. Design and Architecture 56

Base Classes

The android framework comprise of four main components that are the building blocks

for an application [37].

• Activity - The activity is a class that represents a single screen with UI.

• Service - The service is a class that runs in the background to perform different

types of operations, or remote processing.

• Content Provider - The Content Provider class handles data storing and sharing.

• Broadcast Receiver - The Broadcast Receiver is a class that handles and responds

to system-wide broadcast announcements. E.g. battery is low.

It is recommended to use these types for everything the application will do, mainly

because this is how the android framework has been designed, and is intended to be

built.

System Architecture

Based on the previously mentioned methods and patterns, the main layout of the system

architecture can be seen in figure 7.2.

7.3.1 System Goals

To realize the system a set of main goals and sub goals where defined:

• Provide storage for different types of fall related applications.

– The DB should provide tables for the most common types of data that is

related to fall.

– It should provide recommendations/suggestions for standards to use, to make

it easier to share the data with others. This ensures that third parties can

make sense of the data.

• Possibility to share data

– A content provider that provides access to the storage.

– Content contracts for the different content that the provider has. They will

function as convenience classes.



Chapter 7. Design and Architecture 57

Figure 7.2: System Architecture

7.4 Data model

In this section, the SQLite DB model will be described in detail.

7.4.1 NoFall Data model

The DB is divided into separate sections, which corresponds to each major area that

affects the risk of falling - as found in chapter 3, see appendix B for the full model.

This is done to retain the modularity of the software, ensuring that it will be simple

to update the DB in accordance with new functionality. Each section is divided into

Specification and Log. Tables ending with Spec are used to store the information that

e.g. a survey consists of, while the tables ending with Log are what the user and/or

application registers during use.



Chapter 7. Design and Architecture 58

7.4.2 User

The User specification will mainly be used to store risk calculations and results from the

other different specifications. It will also be important to register the gender and age

of the user, since this will also affect the results. The main idea with this specification

is to enable developers an easy way to store data in a single table, to use it for data

representation, or give warnings about risk levels etc.

Figure 7.3: DB: User

User Log

This table is for the storage of general information about the user. It will contain the

age and gender, since they both will affect the risk of falling.

Example of data stored in User Log:

ID 1

Gender Male

Age 67

Total Risk Log

This table will be a log of all the risks registered in the DB. At given date intervals it

will be of interest to store the current risk, so it becomes easy to see the progression. If

it has gone up or down, if there are spikes at certain dates. By having this kind of data

and possibilities, one can identify causes for risk, and mitigate them.



Chapter 7. Design and Architecture 59

Example of data stored in Ttl Rsk Log:

ID 1 2

Date 10.05.14 21.05.14

Med Risk Low Risk Low Risk

Test Risk Low Risk Low Risk

Survey Risk Med Risk Med Risk

Sensor Risk Low Risk Med Risk

7.4.3 Risk Definitions

To make it possible to evaluate, compare, and collaborate data that is registered in the

DB, the data has to be correlated to some risk definitions. This means that the different

types of measurements the data will be gathered as, has to be related to risk definitions.

Otherwise the different results might become unintelligible.

Figure 7.4: DB: Risk Definitions

Measurement Standards

This table will contain measurement standards for different types of measurements that

can be made, depending on the application. The measurement type (walking speed, step



Chapter 7. Design and Architecture 60

count, medication consumption), the data type (integer, long, string) and the data unit

it stores (e.g. meter/second, pressure).

Example of data stored in Meas Std:

ID 0 1 2

Measure Type Walking Speed Time Measurement Medication

Data Type long long int

Data Unit meter/second seconds Number Of

Risk Definitions

This table will contain the different types of risk definitions the measurement standards

can have. Several different risks have been found through research, and these will be

stored here (E.g. WalkingSpeed can consist of AverageWalkingSpeed, maximum walking

speed, sprint).

Example of data stored in Risk Def:

ID 0 1 2

Name Walking Speed Medication TUG Basic

Description The average walk-
ing speed of the
user can be used
to calculate risk.

Number of medication
taken.

Basic TUG test mea-
surement.

FK: Meas Std 0 2 1

Reference Risk Levels

This table will contain reference risk levels. This enables the developers to define some

easy levels of risk for their gathered data. By doing this, it makes it easier for the

application to indicate some level of risk for the user. Examples of such levels could be;

No increment, Low, Medium and High or 0 - 1 - 2 - 3.

Example of data stored in Ref Rsk Lvls:

ID 0 1 2 3

Name No increment Low Med High

Description No increased risk Minor increased risk of falling — —

Risk Mapping

This table will contain a mapping between the reference risks levels and the risk defini-

tions. A given measurement can often have a value range associated with it. If there is

no range, or if it is hard to define a range, the attribute Range To will be empty.



Chapter 7. Design and Architecture 61

Example of data stored in Risk Mapping:

ID 0 1 2 3

FK: Risk Def 0 0 2 2

FK: Ref Risk Level 1 2 0 2

Range From 0 0,7 0 14

Range To 0,7 1,3 14 -

7.4.4 Medication

The aspect of medication and increased risk of falling is still quite unspecific. Most of

the research can tell that certain medications might have an increased affect and they

also say that if the patient is on more than four different medications, it is an indication

of increased chance of falling. The medication specification tries to consider this, but

still be able to support new findings from research. The Medication Spec table can be

used to specify different types of treatments (e.g. heart-decease or depression).

Figure 7.5: DB: Medication

Medication Specification

This table will contain a medication spec for medications that has been identified as risk

increasing. It will contain a name and description. It will also have a foreign key to a

risk definition, which could be the number of medications that is taken. The Owner ID

attribute is to identify where the data came from.



Chapter 7. Design and Architecture 62

Example of data stored in Med Spec:

ID 0

Name Standard Med

Description Standard recording of medication that calculates risk based
on the number of medications, and not the specific medica-
tion

Owner -

FK: Risk Def 1

Medication Category

This table is used for the storage of all the different categories of medication that have

been identified as associated with increased risk of falling. (e.g. Antidepressant).

Example of data stored in Med Cat:

ID 0 1 2

Name Antidepressant Anticonvulsants Antihistamines

Med Type

This table is used for the storage of all the different types of medication that have been

identified as associated with increased risk of falling. (e.g. Amitriptyline). The foreign

key binds the table to the category, so all the antidepressant medications are linked to

this category.

Example of data stored in Med Type:

ID 0 1 2

Name Amitriptyline Bupropion Brompheniramine

FK: Medication Category 1 1 3

Med Log

This table is used for the storage of how many medicaments the user are currently taking.

Through research it has been shown that by knowing how many medicaments a person

takes, one can deduce a risk of falling. This risk is associated with a risk measurement

standard defined in the DB (see measurement for details). It is not needed to know

which medications they are taking.

Example of data stored in Med Log:

ID 0

Number Of 3

Date 10.05.14

FK: Med Spec 0

Med List Log

This table will store which medications the user is taking, if they know and registers this



Chapter 7. Design and Architecture 63

through the application. The foreign keys link this list to the medication log, indicating

from which date they are currently prescribed the different drug(s), and which drug(s)

it is.

This table can be empty, because it is not necessarily that the user knows which medi-

cations they are taking. Many will just take what the doctor prescribes and be content

with that.

Example of data stored in Med List Log:

ID 0 1 2

FK: Medication Type 0 1 2

FK: Medication Log 0 0 0

7.4.5 Survey

Several different surveys have been made through different research in fall risk, e.g.

Hendrich Fall Risk Model II contains simple questions with a point scores that will

indicate risk of falling. To enable the users of NoFall to register surveys the want to

use, they can specify all the different specifics such as the questions and the risk factors

related to different answers.

Figure 7.6: DB: Survey



Chapter 7. Design and Architecture 64

Survey Spec

This table will contain the specification for a given survey. This will consist of the name

of the survey and a description. The Owner ID attribute is to identify from where the

data came from; if it was from an external or internal application.

Example of data stored in Survey Spec:

ID 0

Name Hendrich Fall Risk Model II

Description A model consisting of some risk categories

Owner ID NoFall

Survey Question Spec

This table stores all the questions associated with a given survey. Each survey can have

one-to-many questions. The foreign key links the question to the correlating survey.

Example of data stored in Surve Q Spec:

ID 0 1 2

Question Are you often con-
fused or disoriented?

Are you depressed? Do you experience dizzi-
ness/vertigo?

FK: Survey 0 0 0

Survey Question Risk Spec

Often the questions can have several different answers to a question (yes, no, maybe)

and each answer has its own risk. This risk is associated with a risk level. This is linked

to risk levels, because an answer will always have no increased or increased risk, and

each question will affect this. The foreign key link the risk and answer to the correct

question.

Example of data stored in Survey Q Rsk Spec:

ID 0 1

Answer Yes No

FK: Ref Risk Levels 2 0

FK: Survey Question 2 2

Survey Log

This table contains the date at which the user completed the given survey.

Example of data stored in Survey Log:

ID 0

Date 14.05.14

FK: Survey Spec 0

Survey Answer Log

This table contains all the answers the user made. The foreign keys link the answers to



Chapter 7. Design and Architecture 65

the date at which they were given. It also links the answer the user made in the survey

to the risk table, so it is easy to look up the risk for that given answer.

Example of data stored in Survey Ans Log:

ID 0

FK: Survey Question Risk 1

FK: Survey Log 0

7.4.6 Sensor

When using sensors in relation to fall risk detection, several different types are used.

These can be accelerometers, gyroscopes, pressure readers etc. The sensor specification

enables developers to specify which sensor they use, register relevant info such as accu-

racy (this is so other users can see at what degree they can trust the data). They can

also save all the data they gather with a given sensor.

Figure 7.7: DB: Sensor

Sensor Spec

This table contains all the information about a given sensor. It will have the name of

the sensor (e.g. accelerometer). The sensor will also gather some type of data, which



Chapter 7. Design and Architecture 66

will be identified through the foreign key Risk Def ID. The Owner ID attribute is to

identify where the data came from; if it was from an external or internal application.

The type of data that is stored will have to have some sort of risk definition for the

measurements; this will be stored in the risk definition specification.

Example of data stored in Sensor Spec:

ID 0

Name Accelerometer

Owner ID NoFall

Accuracy 95%

FK: Risk Def 0

Sensor Log

This table will store the average value (Value Avg) that is recorded by the sensor if this

is of interest (e.g. the average movement speed of the user over the last week). It will

contain when the recording started. The foreign key ensures that the values that are

stored here are linked to the correct type of sensor.

Example of data stored in Sensor Log:

ID 0 1

Value Average 0.75 M/S 0.72 M/S

FK: Sensor Spec 1 1

Start Time 10.05.14:10.45 16.05.14:12.30

Sensor Log Item

This table will store each reading that is made during the logging. It will contain the

value and time of the reading. Based on the data stored here, the average can be

calculated and stored in the Sensor Log table. Having each item stored like this, one

can for example see changes in movement over two months by comparing the data.

Example of data stored in Sensor Log Item:

ID 0 1

Time 10.05.14:10.45 16.05.14:12.45

Value 0.75 M/S 0.72 M/S

FK: Sensor Log 0 0

7.4.7 Test

To determine risk of falling there exists many different types of tests that a person can

take (e.g. timed-up-and-go(TUG) test or sit-to-stand test). Some consists of a test and

questions related to the test (e.g. for the TUG: Did you use more than one attempt



Chapter 7. Design and Architecture 67

to rise out of the chair?). The test specification covers the most relevant attributes

identified from research analysis. Enabling them to specify their own tailored tests, or

register known established tests.

Figure 7.8: DB: Test



Chapter 7. Design and Architecture 68

Test Spec

This table will contain the name of a specific test. It will also store an Owner ID which

will indicate who stored the data for this certain test; if it was an internal or an external

application.

Example of data stored in Test Spec:

ID 0

Name TUG

Owner ID NoFall

Description A standard TUG test...

Test Measure Spec

Many tests will have some form of measured values (e.g. the TUG test will record the

time a person takes to walk 3 meters, turn, walk back and sit down). This table will

contain which type of measure is to be recorded for this test, what kind of data type

it records and what kind of data unit. These sorts of measures will follow defined risk

definitions that are stored in a risk definition table, the foreign key will point to this

table. The foreign key Test Spec ID ensures that the measure is linked to the correct

test.

Example of data stored in Test Meas Spec:

ID 0

FK: Risk Def 1

FK: Test Spec 0

Test Measure Log

The test measure log will contain the results of an executed test that has some sort of

measurements.

Example of data stored in Test Meas Log:

ID 0

Value 13 seconds

FK: Measure Spec 0

FK: Test Log 0

Test Question Spec

Some tests also have questions that will be asked in relation to the test. (e.g. in the

TUG test, it can ask if the person used one, two or several attempts to rise out of the

chair).

Test Question Risk Spec

The questions will often have several answer options, and each option might have a risk



Chapter 7. Design and Architecture 69

Example of data stored in Test Q Spec:

ID 0

Question Did you take several attempts to get out of the chair?

FK: Test Spec 0

value. This risk is associated with a risk level defined in the DB (see measurements for

details). This table will contain such information, where the foreign key ensures that

the risk and answers are connected to the correct question.

Example of data stored in Test Q Risk Spec:

ID 0 1 2

Answer No One Two

FK: Ref Risk Level 0 2 3

FK: Test Question ID 0 0 0

Test Log

The test log table will contain at which date the test was completed.

Example of data stored in Test Log:

ID 0

Date 15.05.14

FK: Test Spec 0

Test Answer Log

This table will contain all the answers the user gave during a test. The foreign key will

ensure it is connected to the correct test and date (Test Log table).

Example of data stored in Test Ans Log:

ID 0

FK: Test Q Risk Spec ID 1

FK: Test Log ID 0

7.5 Chapter Summary

In this chapter the main driving points and design for the architecture is presented.

Stakeholders and concerns that affect the choices made in relation to architecture and

design are explained. The goals that the system is aimed to achieve are listed. Finally,

the database model design and rationale are described.

To avoid technical debt, which is the consequence of poor software design, it is impor-

tant to begin the design process of the software architecture and database before the



Chapter 7. Design and Architecture 70

implementation begins, to avoid coding from scratch, blind and bewildered. Since the

development is an iterative process, changes will occur to the design, almost at each new

sprint. Good design takes into account that changes will occur during the lifetime of

the project, and they need to be easily addressed.

The entire process removes normal pitfalls developers find themselves in, if they do

not follow any sort of plan or design. Planning and designing will also remove some

unneeded changes that would otherwise occur, since they have already been predicted

and overcome. One final benefit is that the risk of having to revert to previous versions

of the software is diminished, because the chance of starting to develop something that

will ruin the platform or be totally wrong is small.



Chapter 8

Implementation

This chapter details the strategy followed during the implementation. The tools and

technologies that were used will be described, and the rationale for their usage explained.

The process for how each major part of the platform was implemented, with issues, will

also be presented.

8.1 Strategy

As mentioned in chapter 2 this project followed an adoption of Scrum. The implemen-

tation tasks were divided as:

• Requirements: These are larger parts of the platform, which also has to cover

the requirements specified in chapter 5. E.g. complete the implementation of the

Survey Spec in the DB.

• Requirement tasks: Tasks are smaller portions of the entire requirement. The

requirements are divided into small, manageable assignments, which is never larger

than a workday. E.g. write the SQLite code for the table Survey Log.

All the requirements and tasks were gathered in the backlog, see figure 8.1 for some of

the requirements set for the implementation. Each requirement was then divided into

several tasks, see figure 8.2 for the tasks for requirement 1. For each sprint, the amount

of time to complete a requirement were estimated, and moved to active. Based on how

71



Chapter 8. Implementation 72

many hours of work was completed in comparison to how many hours in a work week

were available, the burn down was calculated.

Figure 8.1: Partial Backlog

Figure 8.2: Backlog - Requirement 1 tasks

Using an iterative methodology with rigorous follow-up each sprint made it possible to

complete the implementation in time. This also mitigated the risk of not managing to

complete in time. Another risk mitigation that was used, where the usage of a personal

rule in regards to the report: Each week a minimum of four pages was to be written, or

an equal amount of time to revise, restructure or plan new chapters was to be directed

at the report. This removed the danger of becoming to focused on the development,



Chapter 8. Implementation 73

and ignoring the report. Other risks were taken into account, such as sickness, personal

issues that obstructed progress, delay in receiving/obtaining vital assets.

Testing was performed on two different Android devices: LG-P990 and Huawei-U9000.

Since the platform only provides back-end functionality, and the test applications written

are only made to provide developers with examples of how to use the platform, the need

to test if the GUI scaled well on many screen sizes did not exist. That is why the use of

such a limited number of devices was sufficient.

8.2 Tools & Technologies

8.2.1 Java & SQLite

Java

NoFall was developed using Java programming language, this relates to the wishes of

my advisor that the platform was to be developed for Android devices. Android would

also have been my choice to develop for, since it has the largest community, and it is

focused on open source.

Java [38] is an object-oriented programming language first released by Sun Microsystems

in 1995, the languages syntax is based on C and C++. Java is the programming language

that Android applications are based on.

SQLite

SQLite is an in-process library that implements a self-contained, serverless, zero-configuration,

transactional SQL database engine. SQLite is an embedded SQL database engine. Un-

like most other SQL databases, SQLite does not have a separate server process. SQLite

reads and writes directly to ordinary disk files. A complete SQL database with multiple

tables, indices, triggers, and views, is contained in a single disk file. [39]

Working with sensitive and private information in relation to the storage of fall risk

data, there were no possibilities for any external storage. This is because a major

process of applying for permission to store this kind of information, and the need for

such functionality did not outweigh the tedious process of getting it granted, or if it

would be granted.



Chapter 8. Implementation 74

This led to the usage of an internal database for each mobile phone and no external

web-storage. SQLite works great with android, providing an easy to use API, quick

read/writes and since SQLite requires little to no administration, it works well for in-

ternal databases that have to work unattended.

8.2.2 Eclipse

I did the development in Eclipse with Android SDKs installed. I chose Eclipse as my

development tool because it is familiar, easy to use and has good support for Android

and Java development. It provides easy debugging support, with great logging that can

be viewed with Logcat.

Eclipse [40] is one of the most used open source IDE. By supporting various plug-ins

the Eclipse makes it possible to develop mobile applications, web-applications and even

develop in different languages then Java.

By using the Android SDK with Eclipse, the API libraries and developer tools needed to

build, test and debug Android applications in Eclipse is provided. This includes Logcat,

which is an excellent way to use logging to track data flow for debugging.

Another IDE that I could have used was Android Studio, which is an IDE based on

IntelliJ IDEA, and will be the official IDE for Android when it is released. Android

Studio is still in Beta, which is the reason I decided not to use it, since I prefer not to

risk bugs and problems related to an unfinished product.

8.2.3 SQLitebrowser

To view the SQLite DB to verify that the correct tables were created, SQLitebrowser

[41] was used. This is a light GUI editor for SQLite DBs.

8.2.4 TeXstudio

The report was written in TeXstudio [42]. This is an integrated writing environment for

creating LaTeX documents. It provides several features to make it easier to manage a

document, such as syntax-highlighting, reference checking and integrated viewer.



Chapter 8. Implementation 75

8.2.5 Android

Android is an OS designed primarily for touch screen devices such as tablets and smart-

phones. The OS is released under the Apache license, which means it is open source

and anyone can modify it or develop their own products. The user interface focuses

on logical interaction such as touch, swiping and pinching. This makes the interaction

suitable for novice users, and the user learning curve is minimal.

8.3 Coding

This section will give a short description of the implementation, and issues that occurred

during this process.

8.3.1 SQLite Database

The implementation of the DB was straightforward, by following the design from chapter

7, and looking up examples and best practices from the SQLite homepage. The specifi-

cations with its corresponding tables was implemented in a systematic order, completing

one section at a time, and testing it to see that the tables were created correctly by using

SQLitebrowser. Simple test queries were written to test inserts, deletes and updates.

Issues

An issue that occurred during the implementation was syntax mishaps with the strings

that create tables (see figure 8.3 for an example). These are not forgiving when it comes

to syntax, and minor errors create problems. They are also hard to find, since the IDE

does not detect any error when it is a string of text.

Another issue was that it became troubling to keep track of the entire DB as it contin-

uously grew and the design changed. It happened that some changes to the design did

not get into the current build at the correct time, because it was overlooked.



Chapter 8. Implementation 76

Figure 8.3: SQL String example

8.3.2 Content Provider

The content provider was developed by following the guidelines and looking at the

example applications provided by Android. For each database specification that was

completed, the content provider was updated, so it could be accesses through it.

Content Contracts

When the DB and Content Provider version 0.1 was completed, the content provider was

re-factored. The result was content contracts for each specification and its tables. The

content contracts for the provider are utility classes that are created for the convenience

for developers. A contract class defines constants that help applications work with the

content URIs, column names, intent actions, and other features of a content provider.

Issues

An issue with the content provider was the sheer size of it. It became rather hard to

establish an overview of it at times, especially if it had been a while since I had been

working with it. This problem became less when I managed to form good contract

classes, which contains much of the information that was previously in the content

provider.

There was also some initial problems, related to inexperience, such as not fully under-

standing what or how the Uri and Urimatching, and authority granting worked.



Chapter 8. Implementation 77

8.3.3 Example Application

Example applications was developed to ensure that the DB and the content provider

fulfilled the requirements and scenarios established, and to provide the potential devel-

opers that will use NoFall with some examples. An easy and intuitive way to become

familiar with a platform or framework is to view examples made by the creator(s).

The focus of the example applications was to show possible applications that could use

the platform, give inspiration or ideas, and not on designing good and robust applica-

tions. Therefore, several short cuts were taken during the development of them; such as

good GUI design was neglected.

• A pedometer application made by Levente Bagi [43] was incorporated and cus-

tomized to work with the NoFall platform. This was to demonstrate that existing

complete applications could be adapted to the NoFall platform.

• A graphical displaying application was developed to have some way to present the

data gathered from the pedometer application. This application was developed

to demonstrate the power of sharing data, and how simple the implementation of

an application can be - other applications and APIs handled the majority of the

complexity.

• A simple listing of medicaments that can be selected. This application was devel-

oped as more a suggestion of functionality that applications can have, rather than

demonstrating the NoFall platforms functionality.

• A widget application was developed, this shows data based on the pedometer

application as well, but it could be used to display e.g. the current level of risk of

falling based on several risk factors.

• A simple testing application was developed. It is a simple TUG-testing application

that explains the TUG-test and how to perform it. It also saves the data from the

test to the NoFall platform.

Issues

An issue, or more a challenge arose during the development of the different example

applications; the process of figuring out which applications to develop. They had to be



Chapter 8. Implementation 78

relevant to the usage of NoFall and in turn be relevant to fall prevention or risk detection.

They also had to demonstrate how to use the content provider with its contract classes.

Initially the TUG-test application was intended to be semi-automatic. The user was

supposed to be able to press start, place the phone in a pocket, wait for the phone

to beep and begin the test. The phone would automatically beep again after 3 meters,

signalling for the user to turn and walk back. It would also notice when the user stopped

moving, saving the result of the test. This became too complex and time-consuming, and

in the end there was not enough time to make it. Therefore, the TUG-test application

is now a glorified stopwatch that saves the timed results.

8.4 Chapter Summary

In this chapter, the strategy used for the implementation and the writing of the report

has been explained. Which main tools and technologies that were used has been dis-

cussed, and the main parts of the implementation and related issues has been presented.

When approaching a new project, selecting the correct tools and technologies is an

important process. Therefore putting some time into research and comparison can in

the end improve the result, make life easier and earn the time put into finding the correct

tools back.

A well-defined and rigorous strategy, that has weekly and daily goals, ensures continuous

results. Using an iterative methodology will push the developer to always improve and

enhance the product, pushing out new or improved functionality on time. This helped

me to avoid what is called a zero-day, which is a day where nothing is achieved on

the dissertation. Everyone can have a bad day, but a day that is non-zero is easily

achievable, and this accumulates over such a long process and leads to a lot of work

getting done.

By breaking the entire solution up into smaller, more manageable sizes (such as the

requirement tasks), makes it more plausible to execute. Another benefit of such a

process is that to be able to define these requirements and tasks, the entirety of the

solution and process must be thoroughly thought through. By doing this, one gains a



Chapter 8. Implementation 79

better overview of the task at hand, which can lead to changes, improvements or removal

of unnecessary complexity.



Chapter 9

Results and Evaluation

This chapter will present the final implemented solution. An evaluation of the hypotheses

presented in chapter 1.2 relative to the final implemented solution. The evaluation of

the results is presented. Finally, some of the major challenges that occurred during the

dissertation are listed.

9.1 Final Solution

All the implementation requirements that were set during the planning and designing

phase for the NoFall platform was completed. This includes the implementation of

the database foundation and the content provider that grants access to it. The test

applications had their own requirements and tasks, in which several of the planned test

applications were implemented, albeit not all of them because of lack of time.

9.1.1 Database

The database was implemented following the design from chapter 7. The DB covers

each major important aspect of fall risk research discovered and presented in chapter 3.

9.1.2 Content Provider

A content provider was implemented following Androids tutorial and guidelines. It

allows for access to the entire DB with read, inserts, deletes and updates. To ensure

80



Chapter 9. Results & Evaluation 81

that it is simple to use and user-friendly, each specification with its tables has a content

contract class. These classes contain constants that are used to reference the different

table names, attributes and URIs.

9.1.3 Example Applications

The example applications implemented are listed below:

• Pedometer - an application that records number of steps and calculates the move-

ment speed.

• Graphical display - this application displays data in a normal graph, and in a pie

chart.

• Medication registration - this application has many different medications and cat-

egories that have been identified with correlation to fall risk. It shows how one

could list these, register them to a user and calculate risk from it.

• TUG-Test - this application is a simple TUG-test.

• Widget - a simple widget with some queries for different data to present.

9.2 Hypothesis

The focus of this thesis has been fall prevention applications with the hypothesis:

Hypothesis: Having a platform for fall detection applications will make it easier for

future developers to build high-level applications that are well defined and achieve a

higher level of quality.

Through my work with this thesis; designing and implementing, it is my opinion that

providing future developers with a platform will increase the speed at which prototypes

or even fully functional applications made for different application markets are devel-

oped. This will also make it easier for the developers to build high-level applications,

since they can focus solely on functionality, usability and other aspects, than the process

of defining the underlying storage and how this is supposed to be designed.



Chapter 9. Results & Evaluation 82

Based on my results, I believe that the hypothesis is true. This is however my opin-

ion, which is inevitably biased, based on my experience using the NoFall platform to

develop example applications. Further work, testing and feedback by other developers

are mandatory to be able to fully evaluate the hypothesis.

9.3 Research Questions

Main Research Question

What is the effect of a platform on the ease and quality of developed applications?

How it is answered in the thesis:

The platform has several effects that have been identified through the work on this thesis

(See chapter 5.3 for a demonstration of these findings).:

• It reduces the number of lines of code that has to be written, which translates to

shorter development time, or more time to be used on improving other parts of

the application.

• It allows for sharing of code (e.g. queries) - which reduces work time.

• It is easy to adapt existing solutions to the platform. This is important, so that

existing solutions do not have to go through a big overhaul to adapt to the platform.

• The data that is stored in the DB can easily be shared between different applica-

tions, making collaboration easier and more accessible.

Secondary Research Questions

Question one

What are common and easily measurable risk factors used in fall risk assessment?

How it is answered in the thesis:

From the literature analysis (see chapter 3 for details) several factors where identified -

a short summary of some of the important ones are listed below:

• Medication: What type of medication (e.g. antidepressant) and how many different

types of medication the person takes will affect fall risk



Chapter 9. Results & Evaluation 83

• Poor strength and balance: If the person is physically weak, the risk of falling will

increase. The implication of the fall will also be more severe with low physique.

• Psychological: The state-of-mind of the person will affect the risk of falling (e.g.

fear of falling, nervousness).

Question two

How can one design a meaningful data model based on the knowledge of which patient

information/data is useful for predicting the level of risk of falling?

How it is answered in the thesis:

The most important aspects of modelling data, is identifying what kind of data that will

be stored - and how it relates to each other. Based on the analysis done in chapter 3,

the sort of data that is typically gathered was identified. This analysis also helped to

form relations between the different data, seeing how they relate to fall risk.

With the knowledge of what kind of data and how it should relate to each other, the

design and architecting could begin. The database follows best practices and guidelines

from the SQLite homepage. See chapter 7 for the full detailed design of the database.

Question three

How should the technical architecture of a platform be designed and built?

How it is answered in the thesis:

When building a platform or a framework, the focus is on the developers and not end-

users, and this is something to take into consideration when designing the architecture.

The analysis done in chapter 4 showed how other researchers and developers had solved

their own problems related to fall risk and detection. The different solutions provided

knowledge that helped me in the design and architecture of the platform. Such as the

framework SPINE [32] was an excellent way to see how the design and architecture of a

large-scale project for a framework was done.

It is important that the platform covers use cases, and if a certain use case is not

supported, it should be easy to implement or adapt the platform to support it. This can

either be done by the creator of the platform, or if the developer writes an extension

class/method by themselves.



Chapter 9. Results & Evaluation 84

9.4 Evaluation

NoFall has three problems that it attempts to improve in regards to development; time,

interoperability, and reuse. It wants to reduce the time it takes to finish an application.

It tries to make it easy for systems to work together and share data. Finally, it wants

to increase the amount of code that can be reused. The three problems are all closely

related, and by improving one of them, the others will benefit. Such as reuse of code

between solutions could also be seen as interoperability.

To evaluate how successful the platform is, values that the NoFall platform could be

measured against were set for the three issues.

• Time: Number of hours saved when developing.

• Interoperability: How easy it is to share data between applications.

• Reuse: How much code is reusable.

Problem to Improve - Time

The time to develop an application is reduced when using the NoFall platform. If the

use case fits the platform correctly, almost half of the solution is already in place and

ready to be used.

This became evident during the development of the different test applications. When I

measured the amount of work and time that went into the different test applications, I

saw a big improvement in time consumption versus other projects I’ve worked on when

developing mobile applications.

Problem to Improve - Interoperability

The NoFall platform makes it easy to share the data between applications. The Content

Provider API is easy to learn and has several examples online on how to use it. Therefore,

it is pretty straightforward to write an application that access the NoFall DB trough

the API.

This showed to be simple when I was developing the graphical display application.

When I wanted to get some data, it was simple to query the DB and retrieve the data

the pedometer application had stored.



Chapter 9. Results & Evaluation 85

However, from the evaluation process it was not evident how easy it would be to make

sense of the data that is shared, even though it is simple to access. This comes from lack

of other testers than myself, and the inability to have access to data that was retrieved

by an outside source. Therefore, it is hard to determine if interoperability has become

easier.

Problem to Improve - Reuse

Many of the queries used to access the database can be reused by several applications,

especially queries that are only interested in e.g. all the data stored in certain tables.

Several inserts are also reusable, since they will be the same, only change which values

that are inserted. This makes it possible to copy queries written by other users, reducing

the amount of time needed to develop their own solution. If one views the entire NoFall

solution as ”reusable code”, the amount of code that is reusable multiplies for each

application that uses the platform.

9.5 Challenges

During the dissertation, I encountered several challenges, both minor and major. The

challenges with the largest impact and how I approached them is listed below:

• Changed direction of the dissertation

The initial goal of the thesis was to explore the possibilities and develop an ap-

plication for fall prevention. This application was supposed to be stand-alone,

diminishing or removing the need of having to interact or get help for healthcare

professionals.

From guidance from my advisor, the shift to explore and rather develop the NoFall

platform came relatively early on in the first semester, but it still required some

adjustment and re-evaluation of several aspects.

I accomplished this by researching more into platforms and frameworks, and in-

corporating this knowledge with the knowledge I had already acquired. It was

hard to develop a platform since this was the first time I had ever done this. In

addition, it was rather different from the normal application thought process.



Chapter 9. Results & Evaluation 86

• Designing the database

The database went through three larger overhauls. The overhauls were motivated

by the fact that I felt the design was moving in the wrong direction. It was very

hard to get a firm grasp on what kind of design would accomplish the desired

outcome. The biggest issue was how risk definition and measurements should be

handled. What kind of data would come in? What sort of risk would this data

indicate? How should this data relate to the source? How should it be stored, as

to make sense for other users of the NoFall platform?

This issue was addressed by getting feedback from my advisor and my father (Helge

Johansen) on the current design. I would not say this issue was entirely solved,

because I believe there is room for a lot of improvement on the current database

design.

• Example Application

– Pedometer

The customization of the pedometer was challenging, because it was imple-

mented targeting an older release of Android than what I was targeting. This

lead to some implications, such as several of the methods that existed was

deprecated, and had to be changed. These changes led to ripple effects in the

code, leading to new bugs and errors.

– TUG-test

The example application for the performance of a TUG-test was supposed to

be able to start and stop the timer automatically. The user was supposed to

press start test, the timer would then start when it noticed movement, make

some noise after 3 meters - to signal the turn, and stop when no motion was

noticed.

This was not implemented, because the sensor in the mobile phone was to

prone too false-positives, and the results became untrustworthy. This relates

to my lack of skill with writing algorithms in relation to human motion.

Therefore, the application is now a manual press start/stop timer.



Chapter 10

Conclusion & Further Work

10.1 Conclusion

The goal of this dissertation was to investigate challenges and solutions related to fall

prevention with focus on mobile applications. Based on the investigation, an issue of

research was formulated; (1) Having a platform for fall detection applications will make

it easier for future developers to build high level applications that are well defined and

achieves a higher level of quality. This led to the formulation of one main research

question and three secondary research questions, which helped to guide the direction of

the thesis:

Main Research Question

What is the effect of a data-storage platform on the ease and quality of developed

applications?

Secondary Research Questions

Question one

What are common and easily measurable risk factors used in fall risk assessment?

Question two

How can one design a meaningful data model based on the knowledge of which patient

information/data is useful for predicting the level of risk of falling?

Question three

How should the technical architecture of a platform be designed and built?

87



Chapter 10. Conclusion & Further Work 88

In order to achieve this, a platform was implemented which provides the foundation

for a fall related application. It provides a well-defined database based on the existing

research in the field of fall prevention with a content provider to access it.

To make it easier to use and diminish the learning curve, some example applications

were developed to show the usage of the platform. They are all related to fall prevention

to increase their relevance with the platform, and to serve as inspiration for application

ideas. The applications are small and simple, focused on showing what I have thought of

as ”high probability use case”, and not on best practices on application implementation

with high level of complexity and completeness.

The lack of real-life usage of the platform is the largest downside, limiting the possibilities

to uncover faults, bugs, needed or unneeded functionality. This could in turn have led

to a better result for both the report and the NoFall platform. Although this is the case,

my experience with the platform when developing test applications has been positive,

and I believe it is a good approach.

Solely I, the developer of Nofall, did the evaluation without any outside sources affecting

the results. Therefore, the results are biased and plausible at best. This was done

because there was no available and suitable test person, someone who was going to

develop an application related to fall prevention that would take the time to test a

prototype solution. This is understandable, because it is not always desired to test

someone’s prototype and impeding their own research when it is not a necessary risk.

It should be pointed out that this is acceptable because the result of this thesis is a

proof-of-concept, and not a final solution.

My results led to strong implications towards the hypothesis being true. This being the

case, I feel that the goals set for this dissertation has been fulfilled, and that my result

can contribute to further research and work in the field of fall prevention with focus on

mobile applications.

10.2 Further Work

The content provider is at the moment the only access-point to the DB, and it gives

access to the entire DB. It is not necessarily the case that a developer will have the need



Chapter 10. Conclusion & Further Work 89

to access the entire DB, and therefore the development of new content providers, which

gives access to less, could be useful. This could come in the form of read-only access,

or access to a limited number of tables or specifications. This could be a performance

improvement and it could reduce the complexity the new developer has to adhere to. The

security of data could also be an improvement, since less data or actions to manipulate

the data are available.

The DB is at the moment satisfying and ready to be put into use. The DB is currently

at version 1.0 and will be updated and improved as user feedback is given, and as the

maintainers matures, learns and understands more in relation to fall risk and prevention.

New use cases might also emerge during the lifetime of the platform, and the DB must

be modified accordingly as to support the eventual new usages.

One change that was considered, but excluded from the current DB version was a Med-

ication mapping table between Medication Specification and Medication Type for more

detailed medication risk definitions. This was omitted because as the current research

stands, it is rather vague on what kind of medications that would lead to increased risk

of falling, or if there is something that can be done (would it be more beneficial to reduce

medication vs. the reduced risk of falling?). This is something that should be added to

the design in a later phase.

Several example applications have been developed, such as a pedometer, graphical dis-

play of data and a widget, but there are certainly room for more good test examples.

There will definitely be problems and new usage areas for NoFall that will become evident

when other developers start using it. Therefore, it is important to update the existing

example applications, and develop new ones based on feedback from users, making sure

the applications are current and up-to date. This will benefit and ensure that it will be

easier for the next developer.

Porting the platform to a cross-platform solution could also benefit the research and

developer community. That will make it available to several mobile platforms, and

thereby making it possible to develop for more devices, reaching more users.

Step one after the delivery of this project could be to place the NoFall platform in a

testing environment. A possible opportunity to test and improve the NoFall platform

is to make it part of a bachelor or master project. This would be a good way to verify



Chapter 10. Conclusion & Further Work 90

that this is the way we want to do it, and this is how it should look like. The project

could be based on a two-part step; build applications with the platform, and improve

the platform as improvements are discovered during usage. Based on the findings, a

solution that would be put into production could be made - with the proof-of-concept

from this project and the results from the testing as a starting-point.



Appendix A

SQLite DB Model

Below is an image of the entire DB model. This image might be a bit hard to read the

small details, but it is intended to show how all the different specifications are connected.

See chapter 7.4 for the individual specifications and details.

91



Appendix A. SQLite DB Model 92

Figure A.1: Data model



Appendix B

NoFall Access

The NoFall platform can be found at:

• https://github.com/UbiCollab/NoFall or

• https://github.com/finnjohansen/NoFall

To get the platform just click Download ZIP (see figure B.1)

Figure B.1: Git Screenshot

The Wiki can be found at:

• https://github.com/UbiCollab/NoFall/wiki or

• https://github.com/finnjohansen/NoFall/wiki

93



Bibliography

[1] Browne et. al. Using information technology to assist in redesign of a

fall prevention program. Journal of Nursing Care Quality, 19(3):218–225,

2004. URL http://journals.lww.com/jncqjournal/Abstract/2004/07000/

Using_Information_Technology_to_Assist_in_Redesign.8.aspx.

[2] K. Petersen et. al. Systematic mapping studies in software engineer-

ing. URL http://robertfeldt.net/publications/petersen_ease08_sysmap_

studies_in_se.pdf.

[3] G.F. Fuller. Falls in the elderly. Am Fam Physician, 61(7):2159–2168, April

2000. URL http://www.aafp.org/afp/2000/0401/p2159.html?wvsessionid=

wvf503391fbb7c408b927404ac346c989a.

[4] Mary E. Tinetti. Preventing falls in elderly persons. N Engl J Med, 348(2):42–49,

January 2003. URL http://europepmc.org/abstract/MED/12510042.

[5] Tinetti ME. Clinical practice. preventing falls in elderly persons. The New England

Journal of Medicine, 348(1):42–49, 2003. URL http://europepmc.org/abstract/

MED/12510042.

[6] M. E. Tinetti and C. S. Williams. Falls, injuries due to falls, and the risk

of admission to a nursing home. N Engl J Med, 337:1279–1284, October

1997. URL http://www.nejm.org/doi/full/10.1056/NEJM199710303371806#t=

articleDiscussion.

[7] A. Ungar et. al. Fall prevention in the elderly. Clinical Cases in mineral and bone

metabolism, 10(2):91–95, October 2013. URL http://europepmc.org/articles/

PMC3797008.

94

http://journals.lww.com/jncqjournal/Abstract/2004/07000/Using_Information_Technology_to_Assist_in_Redesign.8.aspx
http://journals.lww.com/jncqjournal/Abstract/2004/07000/Using_Information_Technology_to_Assist_in_Redesign.8.aspx
http://robertfeldt.net/publications/petersen_ease08_sysmap_studies_in_se.pdf
http://robertfeldt.net/publications/petersen_ease08_sysmap_studies_in_se.pdf
http://www.aafp.org/afp/2000/0401/p2159.html?wvsessionid=wvf503391fbb7c408b927404ac346c989a
http://www.aafp.org/afp/2000/0401/p2159.html?wvsessionid=wvf503391fbb7c408b927404ac346c989a
http://europepmc.org/abstract/MED/12510042
http://europepmc.org/abstract/MED/12510042
http://europepmc.org/abstract/MED/12510042
http://www.nejm.org/doi/full/10.1056/NEJM199710303371806#t=articleDiscussion
http://www.nejm.org/doi/full/10.1056/NEJM199710303371806#t=articleDiscussion
http://europepmc.org/articles/PMC3797008
http://europepmc.org/articles/PMC3797008


Bibliography 95

[8] Cwikel J et. al. Gait and activity in the elderly: Implications for commu-

nity falls-prevention and treatment programmes. Disability and Rehabilitation,

17(6):277–280, 1995. URL http://informahealthcare.com/doi/abs/10.3109/

09638289509166647.

[9] Davies AJ and Kenny RA. Falls presenting to the accident and emergency depart-

ment: types of presentation and risk factor profile. Age and Ageing, 25(5):362–366,

1996. URL http://europepmc.org/abstract/MED/8921140.

[10] Louhivuori K. Hartikainen S, Lönnroos E. Medication as a risk factor for falls:

critical systematic review. The Journals of Gerontology, 62(10):1172–1182, 2007.

URL http://europepmc.org/abstract/MED/17921433.

[11] K. S-W. Kong et. al. Psychosocial consequences of falling: the perspective of older

hong kong chinese who had experienced recent falls. Journal of Advanced Nursing,

37(3):234–242, February 2002. URL http://onlinelibrary.wiley.com/doi/10.

1046/j.1365-2648.2002.02094.x/full.

[12] S. Heinrich et. al. Cost of falls in old age: a systematic review. Osteoporosis Inter-

national, 21(6):891–902, June 2010. URL http://link.springer.com/article/

10.1007/s00198-009-1100-1.

[13] J. A. Stevens et. al. The costs of fatal and non-fatal falls among older adults. Inj

Prev, 12:290–295, 2006. URL http://injuryprevention.bmj.com/content/12/

5/290.short.

[14] E. McInnes and L. Askie. Evidence review on older people’s views and experi-

ences of falls prevention strategies. Worldviews on Evidence-Based Nursing, 1

(1):20–37, March 2004. URL http://onlinelibrary.wiley.com/doi/10.1111/

j.1741-6787.2004.04013.x/full.

[15] P. Kannus et. al. Prevention of falls and consequent injuries in elderly people. The

Lancet, 366(9500):1885–1893, November 2005. URL http://www.sciencedirect.

com/science/article/pii/S0140673605676040.

[16] Gillespie LD et. al. Interventions for preventing falls in elderly people (review). The

Cochrane Library, October 2003. URL http://onlinelibrary.wiley.com/doi/

10.1002/14651858.CD000340/pdf/standard.

http://informahealthcare.com/doi/abs/10.3109/09638289509166647
http://informahealthcare.com/doi/abs/10.3109/09638289509166647
http://europepmc.org/abstract/MED/8921140
http://europepmc.org/abstract/MED/17921433
http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2648.2002.02094.x/full
http://onlinelibrary.wiley.com/doi/10.1046/j.1365-2648.2002.02094.x/full
http://link.springer.com/article/10.1007/s00198-009-1100-1
http://link.springer.com/article/10.1007/s00198-009-1100-1
http://injuryprevention.bmj.com/content/12/5/290.short
http://injuryprevention.bmj.com/content/12/5/290.short
http://onlinelibrary.wiley.com/doi/10.1111/j.1741-6787.2004.04013.x/full
http://onlinelibrary.wiley.com/doi/10.1111/j.1741-6787.2004.04013.x/full
http://www.sciencedirect.com/science/article/pii/S0140673605676040
http://www.sciencedirect.com/science/article/pii/S0140673605676040
http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD000340/pdf/standard
http://onlinelibrary.wiley.com/doi/10.1002/14651858.CD000340/pdf/standard


Bibliography 96

[17] Lee HC et. al. Effects of a multifactorial fall prevention program on fall in-

cidence and physical function in community-dwelling older adults with risk of

falls. Archives of Physical Medicine and Rehabilitation, 94(4):606–615, 2013. URL

http://europepmc.org/abstract/MED/23220343.

[18] N. M. Sjösten et. al. A multifactorial fall prevention programme in home-

dwelling elderly people: A randomized-controlled trial. Public Health, 121(4):308–

318, April 2007. URL http://www.sciencedirect.com/science/article/pii/

S0033350606002952.

[19] Gillespie LD et. al. Interventions for preventing falls in older people living in the

community. The Cochrane Database of Systematic Reviews, 9, 2012. URL http:

//europepmc.org/abstract/MED/12510042.

[20] Faber MJ et. al. Effects of exercise programs on falls and mobility in frail and pre-

frail older adults: A multicenter randomized controlled tria. Archives of Physical

Medicine and Rehabilitation, 87(7):885–896, 2006. URL http://europepmc.org/

abstract/MED/16813773.

[21] S. Mayor. Nice issues guideline to prevent falls in elderly people. BMJ, 329(7477):

1258, February 2004. URL http://www.ncbi.nlm.nih.gov/pmc/articles/

PMC534478/.

[22] B. L . Braun. Knowledge and perception of fall-related risk factors and fall-reduction

techniques among community-dwelling elderly individuals. Physical Therapy, 78

(12):1262–1276, December 1998. URL http://www.physicaltherapyjournal.

com/content/78/12/1262.short.

[23] K. Hughes et. al. Older persons’ perception of risk of falling: Implications for fall-

prevention campaigns. American Journal of Public Health, 98(2):351–357, February

2008. URL http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2376900/.

[24] A. Holzinger et. al. Mobile computing in medicine: Designing mobile questionnaires

for elderly and partially sighted people. Computers Helping People with Special

Needs Lecture Notes in Computer Science, 4061:732–739, 2006. URL http://link.

springer.com/chapter/10.1007/11788713_107.

[25] S.R. Nyman and L. Yardley. Usability and acceptability of a website that provides

tailored advice on falls prevention activities for older people. Health informatics

http://europepmc.org/abstract/MED/23220343
http://www.sciencedirect.com/science/article/pii/S0033350606002952
http://www.sciencedirect.com/science/article/pii/S0033350606002952
http://europepmc.org/abstract/MED/12510042
http://europepmc.org/abstract/MED/12510042
http://europepmc.org/abstract/MED/16813773
http://europepmc.org/abstract/MED/16813773
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC534478/
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC534478/
http://www.physicaltherapyjournal.com/content/78/12/1262.short
http://www.physicaltherapyjournal.com/content/78/12/1262.short
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC2376900/
http://link.springer.com/chapter/10.1007/11788713_107
http://link.springer.com/chapter/10.1007/11788713_107


Bibliography 97

journal, 15(1):27–39, 2009. URL http://jhi.sagepub.com/content/15/1/27.

full.pdf+html.

[26] Leirer et. al. Elders’ nonadherence, its assessment, and computer assisted in-

struction for medication recall training. Journal of the American Geriatrics So-

ciety, 36(10):877–884, Octoberl 1988. URL http://psycnet.apa.org/psycinfo/

1989-23420-001.

[27] R. M. Rippey et. al. Computer-based patient education for older persons with

osteoarthritis. Journal of the American Geriatrics Society, 30(8):932–935, August

1987. URL http://onlinelibrary.wiley.com/doi/10.1002/art.1780300814/

abstract.

[28] A. Scanlan V. Scott, K. Votova and J. Close. Multifactorial and functional mobility

assessment tools for fall risk among older adults in community, home support, long

term and acute care settings. Journal of Age and Ageing, 36(2):130–139, 2007. URL

http://ageing.oxfordjournals.org/content/36/2/130.short.

[29] N. Caporusso et. al. A pervasive solution for risk awareness in the context

of fall prevention. Pervasive Computing Technologies for Healthcare, pages 1–

8, 2009. URL http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.

ieee-000005191215.

[30] Shumway-Cook et. al. Predicting the probability for falls in community-dwelling

older adults using the timed up and go test. Physical Therapy, 80(9):896–903, 2000.

URL http://physicaltherapyjournal.com/content/80/9/896.short.

[31] A. L. Hendrich et. al. Validation of the hendrich ii fall risk model: A large con-

current case/control study of hospitalized patients. Applied Nursing Research,

16(1):9–21, 2003. URL http://www.sciencedirect.com/science/article/pii/

S0897189702109025.

[32] Fortino G. Giannantonio R. Gravina R. Guerrieri A. Bellifemine, F. and M. Sgroi.

Spine: a domain-specific framework for rapid prototyping of wbsn applications.

Softw: Pract. Exper., 41(3):237–265, 2011. URL http://onlinelibrary.wiley.

com/doi/10.1002/spe.998/full.

[33] The Apache Software Foundation. Apache licence. Accessed 22.02.2014. URL

http://www.apache.org/licenses/.

http://jhi.sagepub.com/content/15/1/27.full.pdf+html
http://jhi.sagepub.com/content/15/1/27.full.pdf+html
http://psycnet.apa.org/psycinfo/1989-23420-001
http://psycnet.apa.org/psycinfo/1989-23420-001
http://onlinelibrary.wiley.com/doi/10.1002/art.1780300814/abstract
http://onlinelibrary.wiley.com/doi/10.1002/art.1780300814/abstract
http://ageing.oxfordjournals.org/content/36/2/130.short
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.ieee-000005191215
http://yadda.icm.edu.pl/yadda/element/bwmeta1.element.ieee-000005191215
http://physicaltherapyjournal.com/content/80/9/896.short
http://www.sciencedirect.com/science/article/pii/S0897189702109025
http://www.sciencedirect.com/science/article/pii/S0897189702109025
http://onlinelibrary.wiley.com/doi/10.1002/spe.998/full
http://onlinelibrary.wiley.com/doi/10.1002/spe.998/full
http://www.apache.org/licenses/


Bibliography 98

[34] A. Cooper. The inmates are running the asylum. SAMS, 1999.

[35] J. M. Carroll. Making use: scenarios and scenario-based design. Proceedings of the

3rd conference on Designing interactive systems: processes, practices, methods, and

techniques, page 4, 2003. URL http://dl.acm.org/citation.cfm?id=347652.

[36] James Bucanek. Model-view-controller pattern. Learn Objective-C for Java Devel-

opers, pages 353–402, 2009. URL http://link.springer.com/chapter/10.1007%

2F978-1-4302-2370-2_20?LI=true.

[37] Android. Application fundamentals. Accessed 12.05.2014. URL http://

developer.android.com/guide/components/fundamentals.html.

[38] Java homepage. 2014. URL http://java.com/en/download/whatis_java.jsp.

[39] Sqlite homepage. 2014. URL http://www.sqlite.org/about.html.

[40] Eclipse homepage. Accessed 2014. URL https://www.eclipse.org.

[41] Sqlitebrowser homepage. Accessed 05.02.2014. URL http://sourceforge.net/

projects/sqlitebrowser/.

[42] Texstudio homepage. Accessed 25.01.2014. URL http://texstudio.

sourceforge.net/.

[43] Pedometer github. Accessed 04.06.2014. URL https://github.com/bagilevi/

android-pedometer.

http://dl.acm.org/citation.cfm?id=347652
http://link.springer.com/chapter/10.1007%2F978-1-4302-2370-2_20?LI=true
http://link.springer.com/chapter/10.1007%2F978-1-4302-2370-2_20?LI=true
http://developer.android.com/guide/components/fundamentals.html
http://developer.android.com/guide/components/fundamentals.html
http://java.com/en/download/whatis_java.jsp
http://www.sqlite.org/about.html
https://www.eclipse.org
http://sourceforge.net/projects/sqlitebrowser/
http://sourceforge.net/projects/sqlitebrowser/
http://texstudio.sourceforge.net/
http://texstudio.sourceforge.net/
https://github.com/bagilevi/android-pedometer
https://github.com/bagilevi/android-pedometer

	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	
	
	
	

	
	
	
	


	
	
	
	
	
	

	
	
	
	
	
	

	
	
	

	
	

	

	
	
	
	
	

	
	
	
	
	

	
	
	
	

	


	
	
	
	
	

	
	
	
	
	
	
	
	

	

	
	
	
	
	
	
	
	

	
	
	
	

	

	
	
	
	
	

	
	
	
	

	
	
	

	
	
	

