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Abstract

With the advancement of deep-sequencing technologies, it has become clear that
individual miRNAs show varying degrees of heterogeneity in the expressed mature
sequence. Recent evidence has suggested isomiR variants may be biologically
relevant, and that small sequence variations can affect e.g. miRNA stability and
RISC loading.

The goal of this work was to investigate and characterize such isomiRs to
determine whether isomiRs of the same miRNA show biologically relevant differ-
ences. The work can further be divided into two sub-studies.

I first present a support-vector machine classifier for predicting expression
changes for isomiRs in Ago2-knockout cells. The classifier is constructed from
miRNA sequence features, and is trained and tested using the observed read data
for individual isomiRs, thus handling the possibility that highly similar isomiRs
can experience different expression changes. The classifier is not successful, sug-
gesting expression changes in Ago2-knockout is determined by other factors. I
also look more closely at whether there are isomiR variants that experience sig-
nificantly different expression changes, but find no strong evidence of this.

Working with the Ago2-knockout sequencing data, a second line of work was
set off from the discovery of a group of short ∼ 10 nt reads that align to the
3’ end of mature miRNAs. I initially searched for such reads with the goal of
finding products of Ago2 cleavage, but interestingly the reads are found in both
wildtype and Ago2-knockout samples. I present an analysis of these reads and
their corresponding miRNAs, and suggest they are produced by a previously
undescribed regulated miRNA degradation process. In light of this, I also study
the project data for isomiRs with non-templated 3’ A/U-tails, which previously
has been reported to affect miRNA degradation. I find both A- and U-tailing is
common in the studied samples, but find neither a strong correlation nor a lack of
overlap between miRNAs targeted by 3’ tailing and miRNAs with corresponding
short 3’-aligning reads.
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CHAPTER 1

Introduction

MicroRNAs (miRNA) are a group of short non-coding RNA molecules that since
their discovery in the early 2000s have been found to play a key role in post-
transcriptional gene-regulation [Bartel, 2009]. After being processed from longer
precursor sequences, mature ∼ 22 nt miRNAs are loaded by a multiprotein com-
plex called the RNA-induced silencing complex (RISC), where miRNAs act as
guide molecules by binding to target messenger RNA (mRNA) of partial com-
plementarity. Having been guided to a target, RISC can silence the gene either
by site-specific cleavage, mRNA degradation or translational repression.

RISC silencing of mRNAs is carried out by a member of the Ago protein
family. It is also an Ago protein that binds and loads the miRNA guide, and a
minimal RISC molecule has been reported to consist of only a single Ago and the
bound miRNA [Cenik and Zamore, 2011]. Many species encode multiple variants
of Ago proteins, some of which are known to be functionally distinct. In mammals
there are four Agos, Ago1-4, and all four can act as the Ago component of RISC.
Of these, Ago2 is known to be functionally distinct, being the only mammalian
Ago with slicer activity, and is vital for animal development. But the significance
of Ago1, Ago3 and Ago4 is not well understood [Wang et al., 2012].

The importance of Ago2 for miRNA activity was recently studied in a deep-
sequencing experiment conducted at NTNU’s Department of Cancer Research
and Molecular Medicine, where the expression of short RNA sequences were mea-
sured for mouse Ago2-knockout and wildtype cells. In [Mossin, 2013], I worked
with a dataset derived from this project that contained expression levels and
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2 CHAPTER 1. INTRODUCTION

knockout fold-changes for miRNAs, and tried to create a classifier for predicting
whether a miRNA, based on features of its sequence, would be up- or down-
regulated in Ago2-knockout cells. The sequence features were computed using
reference miRNA sequence data (i.e. each miRNA was represented by its refer-
ence sequence), and although the classifier seemed to have some success, I argued
that a better result could likely be obtained by taking advantage of the fact that
most miRNAs show some degree of sequence heterogeneity.

With the development of deep-sequencing technologies, it has become clear
that there is no single sequence representing each mature miRNA, but that there
often are several expressed variants of the mature miRNA product [Neilsen et al.,
2012], differing in which nucleotides are included from the precursor sequence at
the 5’ and/or 3’ end. These sequence variants are called isomiRs. While isomiRs
have been shown to be differentially expressed between cell-types, and some re-
ports have indicated isomiR sequence variations may affect mRNA targeting,
sequence stability and RISC loading, it is currently not clear to what degree the
expression of isomiR variants is a regulated process [Neilsen et al., 2012]. A goal
for my project has been to work with sequencing data at the isomiR level, taking
into consideration, and also investigating, the possibility that isomiRs may have
relevant biological differences.

Part of this report will describe my attempt at constructing a support-vector
machine classifier for predicting up/down-regulation in Ago2-knockout cells, where
instead of representing each miRNA by a single reference sequence I will take ob-
served isomiRs into consideration. Specifically, the analysis starting point will be
the raw sequencing read output, and each isomiR sequence will mostly be treated
individually. In summary, the classifier is not successful, which suggests Ago2-
knockout expression changes are not determined by sequence properties. But an
interesting observation is that some isomiRs seem to experience quite different
knockout expression changes, and so I spend some time trying to find common
features that differ between these otherwise very similar sequences. This analysis
also give no strong results, and I discuss that the difference seen between isomiRs
of the same miRNA appear to be due to a natural variation.

In addition to the work on differential expression, I also used the sequencing
data from the Ago2 experiment to try to find Ago2-cleavage products; short ∼ 10
nt sequences that align to the 3’ or 5’ end of mature miRNAs. The initial goal was
to try to see if Ago2 targets specific miRNAs (or isomiRs) for cleavage, and find
common features among the targets. The search revealed a number of short reads
aligning to the 3’ end of mature miRNA sequences (for the sake of convenience
I will denote these reads as “end-reads” below), but interestingly, the reads are
found both in wildtype and Ago2-knockout samples. This implies that the end-
reads cannot have been produced by Ago2-cleavage. The natural suggestion is
then that they result from a different miRNA degradation process. In light of this,
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I also study the sequencing data for a previously reported mechanism affecting
miRNA degradation, namely non-templated 3’ additions of A- or U tails. If end-
reads and A/U additions represent different degradation mechanisms, it could
be expected that individual miRNAs are targeted primarily by only one of the
respective processes, but I find no evidence of this.

There are extensive differences in both which miRNAs have corresponding
end-reads, and which miRNAs experience non-templated 3’ additions. And in-
terestingly, in both cases there are also significant differences between isomiRs of
the same miRNA. I have performed a statistical analysis to try to find sequence
features that cause the observed differences. For end-reads I find no such fea-
tures, while whether a miRNA experiences non-templated 3’ additions seems to
be affected by the 3’ end sequence composition.

The outline of this report is as follows. In chapter 2 I give an introduction
to the theory underlying the work of the report, which include topics from both
biology and computer science. Chapter 3 gives a brief summary of previous
studies related to my work. Chapter 4 first gives a description of the project data,
before describing the main tools and techniques used to derive the results of the
project, which are presented in chapter 5. The experiments and results of chapter
5 can broadly be grouped in two: those dealing with differential expression in
Ago2-knockout, presented in sections 5.1 and 5.2, and those dealing with end-
reads and non-templated isomiRs, presented in sections 5.3 and 5.4. Finally, in
chapter 6 I give a summary of the presented work and results, and discuss possible
areas for future work.
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CHAPTER 2

Background

This chapter gives an introduction to the main background material necessary
for an understanding of the work presented, and basic knowledge of the various
topics covered here will later be assumed. Bioinformatics is by nature an inter-
disciplinary field, and this chapter will cover a wide range of topics. I start with
giving a brief and general biology introduction, before discussing microRNAs in
some more depth in section 2.2. For the biologist, the first section will be ele-
mentary, but I have included it to give someone with only a computer science
background a better understanding of the later material. To give some context
on the nature of the datasets used, section 2.3 gives an introduction to the basics
of RNA-sequencing. Section 2.4 covers some techniques for processing the out-
put of an RNA-sequencing exeriment, including aligning the reads to a genome.
As much of this report deals with analysing differentially expressed miRNAs, I
discuss statistical methods for determining differential expression in section 2.5.
Finally, in section 2.6 I give an introduction to classification using support-vector
machines, and discuss how the performance of a classifier can be estimated.

2.1 Cells, DNA, RNA, and proteins

All living beings are made up of cells, which are the smallest replicating units
of life [Sung, 2011]. From single-celled organisms to complex animals, cells are
the basic functional and structural units; they perform the processes necessary

5



6 CHAPTER 2. BACKGROUND

for life, and are the building blocks for more complex structures within multi-
cellular organisms. Each cell of an organism contains the complete genome of
the organism stored as double stranded DNA. DNA molecules are built from
chains of four smaller molecules called nucleotides. These nucleotides are known
as adenine (A), cytosine (C), guanine (G) and thymine (T), and DNA sequences
can be represented as strings over the alphabet {A, C, G, T}. In a DNA double
helix an adenine base will only bind to a thymine base from the other strand (and
vice versa), and cytosine will only bind with guanine, so that knowing one strand
completely determines the other, meaning the two strands code the same genetic
information. An example double-stranded DNA molecule is shown in Figure 2.1.
During cell division, the process by which a cell divides into two children cells,
the strands are unfolded and replicated to give each child an identical copy of the
genome.

Figure 2.1: A simple illustration of a double-stranded DNA molecule

Throughout the life cycle of a cell its DNA is used to produce protein molecules,
which perform a large number of functions within the cell. In this process, illus-
trated in Figure 2.2, a sequence of DNA is first transcribed to a complementary
RNA sequence called messenger RNA (mRNA), which is then translated to pro-
duce a protein. RNA molecules are also built out of nucleotide sequences, but
with thymine replaced by Uracil (U). The production of a functional product
from a strand of DNA (a gene) is called gene expression. The product can be
either a protein, or as discussed below, a functional RNA molecule.

Figure 2.2: DNA is transcribed into messenger RNA, which is translated to
protein.

Not all RNA molecules are transcribed into proteins, but rather perform other
functions in the cell. Such RNA are collectively known as non-coding RNA
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(ncRNA), and it has recently become increasingly clear that ncRNA molecules
perform a wide range of biological functions [Mattick and Makunin, 2006]. In the
next section I will describe microRNAs, which are ncRNA that have been found
to play an important role in gene expression regulation.

2.2 MicroRNAs

The RNAs of interest for this report are miRNAs, and in this section I will go
through their biogenesis, function, and other miRNA specific details relevant for
my work. Except for where otherwise noted, the information given will be based
on material from [Soifer et al., 2007], [Bartel, 2009] and [Cenik and Zamore, 2011].

MicroRNAs are a group of short ncRNA consisting of approximately 21-24
nucleotides that play a key role in post-transcriptional regulation of gene expres-
sion in both plants and animals. As described in more detail below, miRNAs
mediate post-transcriptional gene silencing by binding to target mRNAs. The
first description of miRNA-induced gene silencing was given in [Lee et al., 1993],
where they suggested a short RNA product from the lin-4 gene regulates lin-14
mRNA translation via an antisense RNA-RNA interaction. Since being recog-
nized as a separate class of conserved ncRNA in 2001 [Lee and Ambros, 2001]
a large number of mRNAs have been found to be regulated by miRNA-induced
silencing, and abnormal miRNA expression levels have been linked to a variety
of diseases, including myocardial infarction and some types of cancer.

There are some differences in both the biogenesis and function of miRNAs
between animals and plants, as well as between different species. In the following
sections I will focus on the miRNA pathway as found in mammals, as it is the
most relevant for my work.

2.2.1 MicroRNA biogenesis

The miRNA biogenesis process is illustrated in Figure 2.3. In the standard path-
way, shown in the top left corner of the figure, miRNAs are transcribed from
their own genes, first resulting in a longer molecule known as a primary miRNA
(pri-miRNA). A pri-miRNA is then cleaved by the microprocessor complex, con-
sisting of Drosha and DGCR8, to produce a precursor-miRNA (pre-miRNA).
Precursor-miRNAs consist of about 70 nucleotides folded in a characteristic hair-
pin or stem-loop structure, and contain the mature miRNA candidates. An
example pre-miRNA hairpin is shown in Figure 2.4.

In an alternative pathway, known as the mirtron pathway, miRNAs are tran-
scribed from short introns of host genes. In this process the resulting transcript is
not processed by the microprocessor complex; instead the pre-miRNA hairpin is
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Figure 2.3: The miRNA biogenesis process. Modified from original image cour-
tesy of Daniel Ramsköld, under CC BY-SA 3.0 license.

produced by the mRNA splicing machinery and lariat-debranching enzyme [Oka-
mura et al., 2007]. After the production of a pre-miRNA the two paths merge,
and the next step is the transportation of the pre-miRNA from the nucleus to
the cytoplasm through a process involving the Exportin-5 protein. In the cy-
toplasm the pre-miRNA is cleaved by the Dicer enzyme to produce a 21-24 nt
miRNA/miRNA* duplex, corresponding to the section marked in blue in Figure
2.4. One of the two duplex strands will form the mature miRNA product and
take part in mRNA silencing. This process will be described in the next section.
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Figure 2.4: The pre-miRNA hairpin structure for mmu-mir-17. The most com-
monly found 5’ (CAAAGUGCUUACAGUGCAGGUAG) and 3’ (ACUGCAGU-
GAGGGCACUUGUAG) mature sequences are marked in blue and yellow, re-
spectively. Figure created using Mfold [Zuker, 2003], with modifications

2.2.2 MicroRNA-mediated gene regulation

MicroRNAs mediate post-transcriptional gene silencing by taking part in a mul-
tiprotein complex known as the RNA-induced silencing complex (RISC). The
catalytic component of the RISC is a member of the Ago protein family, which
first binds the miRNA/miRNA* duplex to form what is called a pre-RISC. There
exists many variations of Ago proteins, and most species produce more than one
version. Mammals produce four Agos, Ago1-4, all of which can act as the Ago
component in a RISC. Of these, Ago2 is known to be functionally distinct, be-
ing the only one to cleave target RNAs. This cleaving of targets is called slicer
activity. It is not known whether the other three have differing functions.

Of the two miRNA-miRNA* strands, only one will remain to form a mature
RISC and take part in the mRNA silencing process. This strand, called the
guide strand, has a bias towards the strand with the thermodynamically less
stable 5’ end. The other strand, called the passenger strand, is evicted from
the pre-RISC and ultimately degraded. The eviction and degradation of the
passenger strand depends on the type of the Ago protein. Ago2 and other Agos
showing slicer activity are thought to release the passenger by cleaving it, while
for slicer-independent Agos the process is not fully understood [Kawamata et al.,
2009].

The guide strand leads the RISC to target mRNA by binding to a section
of the target sequence of at least partial complementary, usually in the 3’ un-
translated region of the mRNA. Silencing of the mRNA is executed by the Ago
protein, and can happen either by site-specific cleavage, mRNA degradation, or
translational repression. In mammals, cleavage of the mRNA can only be carried
out by Ago2, and additionally requires a high degree of miRNA/mRNA com-
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plementarity in the guide seed region (nucleotides 2-8). Ago2 then cleaves the
target at the phosphodiester bond connecting the nucleotides laying across from
the 10th and 11th nucleotides of the guide strand. The two other methods of
silencing can be carried out by RISC containing any of the four mammalian Agos
[Gu and Kay, 2010].

Figure 2.5: A RISC molecule with a loaded guide strand. The miRNA guide
leads the RISC molecule and its Ago protein to a target miRNA.

Another class of ncRNA, known as small interfering RNAs (siRNA), are also
known to associate with Ago and act as guide strands in RISC. The general
process of either miRNAs or siRNAs mediating gene silencing by taking part in
RISC is known as RNA interference (RNAi).

2.2.3 IsomiRs

An important detail relevant for this report is that most mature miRNAs show
some degree of variation in the expressed sequence [Neilsen et al., 2012]. These
different sequences for the same mature miRNA are known as isomiRs. One pos-
sible way for isomiRs to arise is through imprecise Drosha and/or Dicer cleav-
age, resulting in differences in the miRNA/miRNA* duplex product and thus in
differences between the mature miRNAs. Another possibility is through post-
transcriptional removal or addition of nucleotides at the ends, with the latter of
these possibly resulting in a sequence not matching the parent gene. An isomiR is
said to be templated or non-templated depending on whether its sequence is found
in the pre-miRNA. Figure 2.6 shows some example isomiRs for mmu-miR-17-5p,
for which the reference sequence is also shown in blue in Figure 2.4.
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Figure 2.6: The reference sequence for mmu-miR-17-5p with some example
isomiRs. The grey colored ends of the reference sequence show the hairpin bases.
The 3’ and 5’ isomiRs differ with respect to the reference sequence at their 3’ and
5’ ends, respectively, while the last isomiR differs at both ends. The 3’ end of
the last isomiR also does not have a match in the pre-miRNA hairpin sequence,
and is said to be a non-templated isomiR.

IsomiRs have been shown to associate with Ago proteins, and are likely to
be functional in mRNA silencing [Cloonan et al., 2011]. But it is not clear to
what extent they are functionally significant, and whether their biogenesis is a
regulated process or the result of “errors” in e.g. Dicer cleavage.

2.3 RNA sequencing

The complete set of RNA transcripts present in a cell or group of cells is known as
the transcriptome [Wang et al., 2009]. Transcriptomes change over time and un-
der different physiological conditions, and comparing the measurements obtained
from cell samples representing different states of the transcriptome is a common
type of experiment, e.g. comparing samples from healthy and sick individuals, or
when trying to measure the effect of an external change such as a gene knockout.

RNA-seq is a method for transcriptome profiling based on recent advances
in high-throughput DNA sequencing technologies (next-generation sequencing).
Several different next-generation sequencing platforms can be used for RNA-seq
profiling, but all experiments follow a similar preparation process regardless of
the specific sequencing technology used. The main steps are illustrated in Figure
2.7 and briefly described below.

The first step is the isolation of total RNA from the sample cell group. An
adapter sequence is then ligated to the 3’ end of the transcripts. To reduce the
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Figure 2.7: The main steps of a cDNA library generation process for RNA-seq
profiling. Figure adapted and simplified from [Farazi et al., 2012]

cost and overhead of profiling multiple samples, a barcode unique to each sample
can be included as part of the 3’ adapter [Farazi et al., 2012]. For example, using
a barcode of 5 nucleotides, 20 samples can then later be processed together by
using the barcodes to map reads back to samples after sequencing. An adapter
containing a sequencing primer at its 3’ end is then ligated to the 5’ end of the
transcripts. The RNA molecules are then reverse transcribed into complementary
DNA (cDNA) molecules, and amplified using PCR to generate what is known as
a cDNA library. The cDNA library represents the relative expression levels of the
original RNA transcripts, and is used as input to the sequencing platform. If only
short RNA, such as miRNA, are of interest for the experiment, the cDNA library
is filtered on sequence length so that only shorter sequences are kept. Finally, the
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sequencing will result in an output of the reads observed, typically in the form of
a FASTQ file, a common text format for storing the output of high-throughput
sequencing. A FASTQ file contains one entry per read, as shown in Figure 2.8.
The same figure also describes the FASTA format, a simpler text-representation
that I will make use of later in the report.

Figure 2.8: The FASTQ and FASTA formats. In FASTQ the first line is a read
identifier, the second line contains the read sequence, the third line starts with
a ’+’ character that is optionally followed by the read identifier, and the fourth
line contains read quality information (one read quality character per sequence
character). See e.g. [Cock et al., 2010] for more information. In the FASTA
format, each entry starts with a single-line description, identified by the “>”
character, followed by an arbitrary number of lines giving the sequence.

The number of reads for the different sequences give relative expression levels,
and not the actual amount of RNA in the original sample. But if wanted, abso-
lute expression can be obtained by adding known amounts of certain calibrator
sequences to the sample.

As illustrated in Figure 2.7, the 5’ adapter contains the sequencing primer at
its 3’ end termini, so that the reads obtained run from the position corresponding
to the 5’ end of the original RNA. The probability of a sequencing error, i.e. that
the wrong nucleotide is reported, increases with distance from the 5’ end, so that
the reads closer to the 5’ generally will have higher quality scores. The reads
typically consist of approximately 50 nucleotides or more, so that for short RNA
a part of the 3’ adapter will be included in the reads. This is discussed in the
next section, where I describe some common preprocessing steps after obtaining
the raw read output.
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2.4 Preprocessing of sequencing data

In this section I will look at ways to perform some common first steps in the
analysis of RNA-seq data. First, to obtain the original RNA transcripts the 3’
adapters must be removed. I will then describe a method for aligning the reads
against a reference genome, before looking at identifying differentially expressed
sequences.

2.4.1 Adapter trimming

As mentioned above in section 2.3, the length of the reads output from RNA-seq
experiments are normally longer (51 nt for the data I have worked with) than
short RNA sequences such as miRNA. Reads of such sequences will therefore
include part or all of the 3’ adapter. Since the adapter is assumed to be attached
to the 3’ end of the insert RNA there are two possibilities to consider, shown in
Figure 2.9. Either the full adapter is included in the read with additional filler
nucleotides at the 3’, or the read runs into the adapter. For the first case, the
full adapter and any nucleotides following it should be removed. For the latter,
the part of the read matching the adapter should be removed.

Figure 2.9: The two possible 3’ adapter alignments. The black rectangle repre-
sents the adapter and its alignment to the read, and the grey rectangle shows the
removed suffix.

Due to the possibility of sequencing errors, an exact match against the adapter
(or a prefix of it) would possibly discard valid reads. One approach to deal with
this is to align each sequence against the adapter using semi-global alignment
(see e.g. Durbin [1998] for the dynamic programming algorithm and initial con-
ditions). To force that the adapter should not overlap the 5’ end of the read in
the alignment, a penalty is added for initial gaps in the read sequence. This is
the approach implemented by cutadapt [Martin, 2011], the program I have used
for my work.

The standard dynamic programming algorithm for global alignment runs in
time O(nm) for strings of length n and m. Aligning k reads of length n to
an adapter of length m is then O(knm), making this a computationally heavy
operation.
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2.4.2 Read alignment

To filter out and identify previously annotated sequences the reads can be aligned
against a reference genome or set of sequences. For example, to identify miR-
NAs, we can match the reads against known miRNA precursor sequences. In
this section I will outline the ideas behind Bowtie, a fast and memory efficient
short read aligner [Langmead et al., 2009]. Bowtie is based on building an index
from the Burrows-Wheeler transform (BWT) [Burrows et al., 1994] of the refer-
ence genome/sequence(s). Every read is then aligned to the reference sequence
by searching the index for a possible match. The original algorithm for using
the BWT for exact search was first described in [Ferragina and Manzini, 2000].
Bowtie augments this algorithm with a backtracking procedure to handle indels
and mismatches.

The Burrows-Wheeler transform

The Burrows Wheeler transform is a reversible permutation of the characters of
a string. Originally developed for lossless compression, as it will tend to group
equal characters together, it can also be used to create an efficient index for
searching in the input string. For a string S over the alphabet A, BWT(S) is
defined as follows: First add a character $ that is not part of A to the end of S,
and define $ to be lexicographically smaller than any element of A. Then form
all cyclical shifts of the resulting string and sort them lexicographically to form
a matrix M . BWT(S) is then the last column of M , as illustrated in Figure
2.10. In the following I will denote the first and last column of M as F and L,
respectively.

Figure 2.10: Burrows Wheeler Transform

Note that because the rows correspond to cyclic shifts, all columns of M
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correspond to a permutation of S. From this it also follows that for every row
the last character of the row will precede the first character of the same row in
the original input. And because the rows of M are sorted lexicographically, F
can be reconstructed from L simply by sorting L (or any column).

A key property of the BWT, known as Last-First (LF) mapping, is that for
any character X, the i’th occurrence of X in L corresponds to the same character
in the original input as the i’th occurrence of X in F. Proof: Consider two equal
characters L(i) and L(j ) in L, and the characters that follow them in their re-
spective rows, F(i) and F(j ). Let k and l denote the two rows in M obtained by
shifting rows i and j one position to the right, respectively, so that F(k) = L(i)
and F(l)=L(j ). We see that the second character in rows k and l will be F(i)
and F(j ), respectively. And because M is sorted lexicographically, it follows that
the relative order between rows k and l will be the same as for rows i and j.

An example LF-mapping, where each character in L is mapped to the corre-
sponding character in F , is shown in Figure 2.11.

Recovering the original input

Recovering the input S can be done by following the links of the LF-mapping. To
construct the LF-map it is useful to first define two precomputed tables: Let C(c)
be the number of characters in S from the set {$, 1, 2..., c − 1}, i.e. the number
of characters in S lexicographically smaller than c. It follows that if c appears at
least once in S its first occurrence in F will be at position C(c). Also, let r(c, i)
be the number of occurrences of c among the first i characters of L.

The LF-mapping can then be computed as LF (i) = C(L[i]) + r(L[i], i). The
position of the i’th character in L is mapped to the position of the corresponding
character in F . Algorithm 2.1 shows how S now can be recovered from L, starting
from the known last character and following the LF-map. This is also illustrated
with an example in Figure 2.11

Algorithm 2.1 Recover original input S from L =BWT(S), adapted from [Fer-
ragina and Manzini, 2000]

Precondition: Assume LF(i) precomputed.

1: function ReverseBWT(L)
2: rowIndex ← 0
3: S[0] ← L[0]
4: for i← len(L)− 1 to 1 do
5: rowIndex ← LF[rowIndex]
6: S[i] ← L[rowIndex]

7: return S
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Figure 2.11: Example LF-map and recovery of the input string S from
L =BWT(S). S =aabrac, L =c$araab. An arrow from row i to j indicates
that LF (i) = j. The reversal steps show how Algorithm 2.1 uses the LF-map to
recover S.

BWT exact search

Searching can be done by building an index consisting of L, C(c) and r(c, i),
known as a full-text minute-space (FM) index. The procedure is shown in Al-
gorithm 2.2. Searching proceeds one character at a time, starting from the end
of the search string q. An interval of rows with a prefix matching the suffix of
q currently being considered is kept at each stage. If q is found, the interval of
rows starting with q is returned. If a suffix of q is not found the interval becomes
empty. A simple example search is also shown in Figure 2.12.

It is clear from the discussion above that the search runs in O(|q|) time for
a query q, and that storing L, C(c) and r(c, i) takes O(n) space. In [Ferragina
and Manzini, 2000] a procedure is given for computing r(c, i) in constant time
(assuming the machine word size is at least log2(|S|) bits) for a given c, so that
this precomputation step is also O(q). Building the index is thus dominated by
the BWT and computation of C, both of which are O(|S|).

Allowing for mismatches

When mapping reads to a reference genome one typically wants to allow for
some degree of mismatches. To achieve this Bowtie uses a modified variant of
the exact search algorithm. When the interval becomes empty, i.e. the query
string is not found, the search may backtrack to an already matched position
and substitute in a different base, thus introducing a mismatch. The search then
proceeds as normal from the substituted position. The position substituted is
chosen randomly from the positions having the lowest read quality.
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Algorithm 2.2 Exact search in FM-index, adapted from [Ferragina and Manzini,
2000]. An interval (start, end) of rows matching a suffix of the query q is kept as
the suffix is increased one character at a time.
Precondition: Assume C(c), r(c, i) precomputed.

1: function FM-ExactSearch(q)
2: n ← len(q)
3: c ← q[n-1]
4: (start, end) ← (C(c), C(c+1))
5: i ← n-1
6: while start < end and i ≥ 0 do
7: c ← q[i]
8: start ← C(c) + r(c, start)
9: end ← C(c) + r(c, end)

10: i ← i - 1
11: return (start, end)

To avoid excessive backtracking an upper limit on the number of backtracks
is used. This means it is possible to miss the best alignment, giving a tradeoff
in runtime vs increasing probability of missing the best alignment. For the case
when only one mismatch is allowed, a special “double index” technique is used,
where an additional BWT of the reverse genome (i.e. the character string as read
3’ to 5’) is used. The starting point of the technique is the obvious fact that
the mismatch must be in either the right or left half of the query, and that most
excessive backtracking happens for bases close the 3’ end. A search is first done
on the forward index, but with the constraint that a substitution cannot be done
in the right half of the query. A second search is then done using the reverse
index on the reversed query, with the same constraint that no mismatches are
allowed in the right half. Together these two searches cover the two possible cases
of a mismatch in the left and right half, and reduces excessive backtracking close
to the 3’ end.

2.5 Identifying differentially expressed RNA

In this section I will look at identifying differentially expressed sequences from an
RNA-seq experiment. I will focus on a simple design setup where we are interested
in measuring differential expression between two different sample groups, Sa and
Sb, although the described procedure can also be applied to more complex designs.
If the samples have been sequenced to give m RNA-seq profiles (some from Sa

and some from Sb) and we are considering the expression of n sequences, the
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Figure 2.12: An example exact search. The borders show the interval of rows
matching the prefix for each step.

starting point for the analysis can be represented by a n∗m matrix Y , where the
i’th row gives the raw expression counts for sequence i over the m profiles. I will
denote a row of Y as yi and a single read by yi,j , i ∈ [n], j ∈ [m].

The methods I will describe here are implemented in the limma R package
[Smyth et al., 2004], which I have used for my work, and are detailed in [Law
et al., 2013] and Smyth [2005]. The following material is based on the presentation
given in these papers. The key idea is to fit a weighted linear model to the counts
for each sequence (i.e. to each row of Y ), and to use an empirical Bayes approach
where variance information from all sequences is incorporated as a prior when
testing each sequence individually.

I will first discuss the idea of fitting a linear model to the data, then look at
normalization and handling heteroscedasticity, before giving a test for differential
expression.

2.5.1 Sequence-wise linear modeling

A linear model for each sequence can be represented as

E(yi) = Xαi (2.1)

Here X is the design matrix of the experiment, and αi are the coefficients to be
fitted. For the setup considered here, a natural choice for X is (assuming two
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wild-type profiles and two knockout profiles):

X =



WT KO

1 0

1 0

0 1

0 1


so that the coefficients αi,1 αi,2 of αi describe wild-type and knockout contribu-
tions, respectively. By adjusting X more complex designs can be tested using
the same methods described here.

Differences (or contrasts) in certain coefficients of αi are then tested to identify
differential expression. This can be written as

Bi = Cαi (2.2)

where C is the contrast matrix and Bi are the contrasts of interest. Again consid-
ering the WT-KO design from above, we are interested in testing for a difference
in the two coefficients, so the contrast matrix would simply be C =

(
−1 1

)
, giving

a single contrast value to be tested in Bi.

2.5.2 Normalization and read weighting

Because there can be significant differences in the sequencing depth between the
runs, i.e. some columns of Y have overall higher counts than others, it is necessary
to normalize the data. The standard way to do this is to express the counts in
counts-per-million (CPM), so that the counts for each profile are normalized by
the total read count of the profile. Counts can then more naturally be compared
between profiles.

One problem with now using these normalized CPM for fitting linear models is
the heteroscedastic nature of such count data. Intuitively, the higher the expected
value for a read Yi,j the higher the variance. If assuming sequencing of a sample
follows a Poisson process, as argued in [McCarthy et al., 2012], the mean-variance
relationship would be linear. It can then be shown that by taking the logarithm
of the counts the mean-variance becomes approximately constant, except for a
higher variance for sequences with few reads (see Figure 2.13). To avoid taking
the log of zero, the log-CPM for a read is computed as

log-CPM(yi,j) = γi,j = log2(
yi,j + 0.5

Ri + 1.0
∗ 106) (2.3)

Where Ri is is the sum of the reads for profile i, i.e. the sum of column i of Y.
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The idea is to use the mean-variance relationship to assign a weight to each
individual read yi,j , and use the weights to fit a weighted linear model to each
yi to test for differential expression, as explained below. Because the variance
depends on the raw read count, the weights should be computed for this count and
not a normalized count. To derive the weights, a least square linear model is first
fitted for the log-CPM values γi for each sequence, giving fitted values ûi = Xα̂i

and corresponding residual standard deviations si. The average log-cpm γ̄i is
computed and converted back to an average log-count, which is plotted against
si to obtain a mean-variance plot. A curve w is fitted to this data to obtain an
estimated mean-variance relationship. The predicted standard deviation for a
read yi,j is calculated by first converting the fitted log-cpm values ûi,j to fitted
log-counts (by reversing equation 2.3), and then looking up the value of w for
this log-count. The weight given to yi,j is then calculated as a function of the
estimated standard deviation. See [Law et al., 2013] for more details. Figure 2.13
shows an example mean-variance plot for log-counts, computed using one of the
datasets I have worked with.

Figure 2.13: An example mean-variance plot. The variance can be seen to ap-
proach a constant value for log2 counts & 6.

2.5.3 Testing for differential expression

Using the individual read weights and log-CPM values, a linear model is fitted as
described in 2.5.1, using a e.g. weighted least squares, to obtain estimates α̂, s2i
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and covariance matrices Vi; var(α̂) = Vis
2
i . If we assume the estimated contrast

values B̂i,j are approximately normally distributed as follows:

B̂i,j |Bi,j , σ
2
i ∼ N(Bi,j , vi,jσ

2
i )

then we can construct a t-statistic with dg = m − 1 degrees of freedom (the
number of terms in si minus one) for testing whether Bi,j is different from 0:

ti,j =
B̂i,j

si
√
vi,j

(2.4)

This statistic is improved upon by utilizing information from all sequences to
put a prior on σ2

i . The conjugate prior for the variance of a normal distribution
is a scaled inverse chi-squared distribution, so that given a prior estimate s20 of d0
degrees of freedom: σi ∼ Scale-Inv-χ2(d0, s

2
0). The posterior estimate s̃2i is then

(see e.g. [Wikipedia, 2014] for a derivation):

s̃2i =
d0s

2
0 + dis

2
i

d0 + dg

The moderated t-statistic, of d0 +dg degrees of freedom, is formed by using s̃i for
si:

ti,j =
B̂i,j

s̃i
√
vi,j

(2.5)

See [Smyth et al., 2004] for more details, including derivation of the hyperparam-
eters s0 and d0, as well as a comparison between using the moderated t-statistic
from Equation 2.5, and other simpler approaches including the t-statistic from
Equation 2.4.

2.6 Machine learning and classification

In this section I describe the theory of the core methods employed in section 5.1,
where I try to perform classification of up- and down regulated isomiRs. These
methods are part of the broader field of machine learning, which in general can be
defined as the study of computer systems that learn from data; the performance of
the system is improved by learning from observed data, instead of being explicitly
programmed [Mitchell, 1997]. I first give an introduction to classification with
support-vector machines, before discussing how the performance of a classifer can
be estimated.
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2.6.1 Classification with Support Vector Machines

The support vector machine (SVM) introduction given here is a modified and
somewhat shortened version of the one I gave in [Mossin, 2013], and is based on
material from [Ben-Hur and Weston, 2010] and [Barber, 2012].

In classification, the goal is to correctly predict the label of new observations,
given that a training set of labeled data has been observed. SVMs perform
classification by constructing a separating hyperplane in the feature space of the
observations. Given such a hyperplane, the label of a new observation is simply
determined by which side of the plane it belongs.

In the following I will denote the p-dimensional feature space of all possi-
ble observations by X ∈ Rp, a single observation by xi, the components of an
observation by xi ∈ R, and the label of observation xi by yi ∈ {−1, 1}.

Linearly separable data

The notion of a separating hyperplane and its usage in classification is best in-
troduced in the case of data that is linearly separable in X. This is illustrated in
Figure 2.14 for a 2-dimensional example.

If we represent the hyperplane by its normal vector w and an offset constant
b, as follows:

{ a : f(a) = a ·w + b = 0 }

we can classify an observation x by taking the sign of f(x) as the label.
Now let x− and x+ denote the vectors from the negative and positive groups,

respectively, that are closest to the hyperplane, and let the hyperplane be defined
such that the distance is the same for x− and x+: f(x+) = −f(x−) = k. The
constant k can be set arbitrarily by scaling w and b, and it is convenient to set
it to k = 1. Then we can define the margin of the hyperplane, i.e. the distance
from x+ to x−, as follows:

mf =
w

‖w‖
· (x+ − x−) (2.6)

mf =
2

‖w‖
(2.7)

The main idea of SVMs is to use the maximum margin hyperplane, and
from Equation 2.7 we that the maximum margin is found by minimizing ‖w‖ =√

wTw. This can be formulated and solved as a quadratic programming (QP)
problem:

minimize
(w,b)

wTw

subject to yi(xi ·w + b) ≥ 1, i = 1, . . . ,m.
(2.8)
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Figure 2.14: An example of data that is linearly separable in 2D. The planes H3
and H2 separates the data, while H1 does not. For H2 and H3 the grey lines
show the closest data points from each group, and we see that H3 has a larger
margin. Image courtesy of Zack Weinber, under CC BY-SA 3.0 license.

Soft-margin SVMs and kernel functions

If the training data is not linearly separable then the QP problem 2.8 has no
solution. To account for this we need to relax the constraints to allow for points
to be on the wrong side of or inside the margin. As illustrated in Figure 2.16,
this may also help in constructing a better classifier for the case of linearly sepa-
rable training data. Equation 2.8 is modified by adding “slack“ variables to the
constraints as follows:

minimize
(w,b)

wTw + C
∑
i

ξi

subject to yi(xi ·w + b) ≥ 1− ξi, i = 1, . . . ,m.

(2.9)

Data points with non-zero ξ are those that are inside or on the wrong side of the
margin, and the parameter C determines how hard to penalize such points.

To further deal with data that is hard to separate in a good way with a linear
plane, SVMs can be made to work with what is known as kernel functions. To



2.6. MACHINE LEARNING AND CLASSIFICATION 25

Figure 2.15: Soft margin SVM example. A higher C (on the right,) gives a higher
penalty to points with non-zero ξ. Even though the data is linearly separable, the
left hyperplane (C=1), which has two datapoints inside the margin area, seems
like it would generalize better to new data.

obtain a non-linear decision plane we can map the observations x in a non-linear
way to a new feature space with a mapping φ(x) : X→ F. F will typically be of a
much higher dimension (e.g. exponential in the size of the original feature space),
making computing the mappings unpractical. I will skip the details (see e.g.
[Ben-Hur and Weston, 2010]), but the main point is that it is possible to define
useful mappings φ for which dot products can be efficiently computed without
explicitly computing the mappings, and that the SVM equations can be stated
in terms of dot products only. In fact, F can be an infinite-dimensional space,
as long as it has well defined finite dot products. The kernel I have used for
my work, called the radial basis function (RBF), defines a mapping to such an
infinite space.

2.6.2 Classifier generalization and cross-validation

The goal of a classifier is of course to perform well on new observations. With
this goal in mind, there are two central and related questions: How well can the
classifier be expected to perform on new data, and what setting of the parameter
values can be expected to give the best performance?

An obvious way to get an estimate of expected performance is to reserve part
of the available training data for evaluation (e.g. 25%), so that the classifier is
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Figure 2.16: An example of non-linearly separable data, and a hyperplane and
margin obtained using an RBF kernel.

trained on one part of the data and then tested on the remaining. If only a limited
amount of training data is available though, such a complete hold-out of part of
the data may not be desirable. Cross-validation (CV) is a performance estimation
technique that deals with this problem. In k-fold CV the training data is first
split into k folds of equal size, followed by k-rounds of training and evaluation. In
the i ’th round, the i’th fold is reserved for testing and the other folds are used for
training. The basic principle is illustrated in Figure 2.17. A score is computed in
each round, and the final score is computed from the individual scores (e.g. the
average).

One way to select the parameters of a model is then to perform CV for each
parameter setting and use the setting that performs the best. Though as an
estimation of a classifiers generalization to new data, the best score obtained
from such a grid search over different parameter settings is prone to overfitting,
as we are fitting the parameters to all available training data.

A technique for obtaining an unbiased performance estimate is known as
nested CV, where two nested rounds of CV is performed. The training data is
split into k-folds for the outer CV loop, as explained earlier and shown in Figure
2.17. The training fold is then used to select the model parameters by performing
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Figure 2.17: Illustration of k-fold cross validation. In each round, the classifier is
tested on the fold marked in blue, and trained on the others.

CV for each setting of the parameters. Having obtained the parameters, the
actual performance is estimated on the testing fold, which took no part in the
parameter selection search.
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CHAPTER 3

Related Work

In this chapter I will briefly go through some previous work and results relevant
for my project.

A review of the evidence suggesting isomiRs have distinct functional roles is
given in [Neilsen et al., 2012]. The main conclusion is that, while many isomiRs
seem to be functionally redundant, there is growing evidence for at least some
isomiRs being biologically significant, and the authors argue this should be con-
sidered when analysing miRNA data. In [Cloonan et al., 2011] isomiR variants
are found to associate with RISC and take part in mRNA silencing. They also
report that isomiR expression levels are highly correlated, and use this and other
findings to conclude that isomiRs generally target common biological pathways.

A related problem to finding isomiRs showing different knockout expression
changes has previously been studied for the case of differential expression of exon
transcripts. It is known that a single gene can give rise to multiple transcripts,
and that such variations in some cases result in proteins with functional dif-
ferences [Nilsen and Graveley, 2010]. This observation has helped explain how
highly complex organisms like mammals contain only a few times the number
of genes found in e.g. budding yeast. [Anders et al., 2012] presents a statistical
framework for determining whether the relative expression between the different
exon transcripts of a gene is preserved between samples of different experimental
conditions, i.e. whether the transcript variants show differing fold changes. The
starting point for such an analysis is similar to the problem I study for isomiRs
in section 5.2: a table containing the observed count for each exon over the dif-

29
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ferent samples. The presented method is based on modeling the counts for each
gene using generalized linear models (GLMs), with the random variable repre-
senting the observed count of a specific exon in a specific sample modeled by
a negative binomial distribution. Two types of models are fitted for each gene:
one model treating all exons of a gene together, representing the null hypothesis
that the relative fractions of exon expressions should equal between the studied
conditions, and one model which includes a coefficient for representing an exon
specific expression change. The former model is fitted once per gene, while the
latter is fitted for each exon. An analysis of deviance test is then performed to
test the significance of the exon-specific term.

In the introduction chapter I briefly described my previous work in [Mossin,
2013], where I tried to classify miRNAs based on expected expression changes
in Ago2-knockout cells. This study was the starting point for the work pre-
sented in section 5.1. Several other previous studies have also applied support
vector machines for performing classification of miRNA data, e.g. in [Xue et al.,
2005] where SVMs are used to separate real- and pseudo pre-miRNAs. Using
sequence features for classification has also been studied for determining miRNA
and siRNA efficacy and target prediction, see e.g. [Sætrom and Snøve Jr, 2004]
and [Saito and Sætrom, 2010].

A review of mechanisms affecting the degradation of mature miRNAs is given
in [Kai and Pasquinelli, 2010], including a discussion of 3’ A- and U-tailing. An
extensive study of 3’ additions is presented in [Wyman et al., 2011], and they
report that 3’ additions are commonly found in species ranging from humans to
C.elegans, and that the additions most often consist of either A- or U-tails. They
speculate A/U-tailing either serve as a tag for degradation, or represent a conse-
quence of miRNAs already being targeted for degradation, but conclude future
studies are required for determining the functional scale of such 3’ additions.



CHAPTER 4

Materials and Methods

4.1 Project datasets

I have used two different datasets for my work, both originating from small RNA
sequencing projects conducted at NTNU’s Department of Cancer Research and
Molecular Medicine.

The first dataset comes from an experiment conducted by Marie Lundbæk,
Robin Mjelle and P̊al Sætrom, measuring miRNA expression levels in mouse
Ago2-knockout cells and corresponding wild-type cells. The data is made up
of samples from two separate sets of cell lines, with three wildtype and three
knockout samples from each. The cell lines are described in [O’Carroll et al.,
2007] and [Liu et al., 2004], and when working with data from a specific cell type
I will refer to these as the DOC and GH cells, respectively. I will refer to the
complete dataset (the DOC and GH data together) as the GCF data.

The DOC wildtype and knockout samples are derived from cells that should
be otherwise equal. For the GH data the wildtype and knockout samples were
obtained from mice of different gender. Although unfortunate, the cells are still
similar enough for studying the effect of Ago2-knockout.

For work not related to differential expression in Ago2-knockout cells, I have
also used data from mouse CH12 cell lines [Nakamura et al., 1996], obtained from
a project by Hans Krokan and Robin Mjelle. I will refer to these samples as the
CH12 data. The data contains a total of 20 samples, and compared to the GCF
data the CH12 samples also generally contain more reads. Except for this detail,
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the specifics of the CH12 data will not be important for the work in this report;
it is included as an additional dataset to get stronger evidence for results first
discovered in the GCF data.

4.2 Reference sequence data

I have used miRBase (version 20) [Kozomara and Griffiths-Jones, 2011] to obtain
both reference mature and precursor sequences. MirBase is the primary public
repository for all published miRNA sequence data and corresponding annotation
information. I used the database dump files provided by miRBase to set up a local
MySQL version of the database. As of version 20, miRBase contains a total of
1186 mouse pre-miRNA sequences, of which 370 are labeled as “high-confidence”
miRNAs, i.e. hairpins that are believed to be real pre-miRNA with a high degree
of confidence. To reduce the possibility of noise due to pseudo-hairpins I have
worked only with the high-confidence miRNAs.

Predicted secondary structures are not included in the database files, but
can be separately downloaded from miRBase. The structure information is only
given in a format more suitable for visual inspection though, making it necessary
to parse the data to a more machine friendly format. I therefore converted all
structure information to a dot-bracket representation, shown in the following
example:

Example miRBase secondary structure representation:

c u u uu g u uagaguuac aa

ugca gu cccagg gag uag agguuguauaguu auc g

|||| || |||||| ||| ||| ||||||||||||| |||

acgu ca ggguuc uuc auc uccgacaugucaa uag g

c u - cu g c --------- ag

Corresponding parsed representation:

.((((.((.((((((..(((.(((.(((((((((((((.........(((......)))))))))))))))).))).)))..)))))))).)))).

4.3 Preprocessing pipeline

In this section I will describe the initial preprocessing steps I performed when
starting the analysis of a new dataset. I have followed the main steps in the anal-
ysis pipeline described in [Farazi et al., 2012]. The analysis starting point is a set
of FASTQ files containing the raw RNA-seq read data, each file representing the
reads from one sample. Each sample file is processed independently to produce
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Figure 4.1: High level overview of the preprocessing pipeline. The arrows indicate
input/output data, and the rectangles represent the work performed. Specific
tools used are indicated in parentheses. A FASTQ file is processed to produce
miRNA read frequencies for the sample. After all samples have been processed
the profiles can be combined to produce an expression matrix, which becomes
the starting point for further analysis.

a profile of miRNA read frequencies. An overview of the pipeline steps is shown
in Figure 4.1.

The first step of the pipeline is adapter removal. For the datasets I have
worked with the reads were already grouped by barcode, so that partitioning
of reads during adapter removal was not necessary. I used cutadapt to remove
the adapters, giving additional minimum and maximum read length parameters.
When working with mature miRNAs the minimum and maximum lengths were
set to 16 and 26 nucleotides, respectively. The next step is to obtain read counts
per individual sequence. For this I have used fastx collapser [FASTX-Toolkit,
2014], which counts the occurrences of each sequence to produce a .fasta file with
one entry per sequence. Collapsing the reads naturally removes read quality in-
formation, as there is no good way to combine quality scores for multiple reads.
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This means quality scores are not available when aligning the reads, but as de-
scribed below I have required a perfect match when aligning, so that it would
not have made a difference.

The relevant reads for this project are those that correspond to mature
miRNA sequences (including isomiR variants). The identification of these reads is
represented by step 3 in Figure 4.1. As a first step in extracting mature miRNA-
reads I used bowtie to align the reads against mouse pre-miRNA sequences. The
hairpin sequences were downloaded as a FASTA file from miRBase (version 20),
and used to build a bowtie index. Using the miRBase reference mature miRNAs,
I then kept the reads where the alignment position was no more than 3 positions
up- or downstream from a reference mature sequence. Figure 4.2 gives some
examples of included and excluded reads.

Figure 4.2: The first line gives a substring of the mmu-mir-17 hairpin sequence,
with mmu-miR-17-5p shown in blue. Then follow four example reads. The two
first reads will be kept as valid isomiRs, while the latter two will be discarded.
The third read, of length 28, will be removed during adapter trimming for being
too long. The fourth read aligns against the hairpin at an offset of 4 relative to
the canonical miRNA, and so will be removed when filtering for valid isomiRs.

The fourth pipeline step deals with the problem that some sequences will
map to multiple hairpins. This is especially true if mismatches are allowed in the
alignment, and I therefore decided to require a perfect alignment when running
bowtie. As the probability for RNA-seq read errors are higher the closer a base is
to the 3’ end of the read, small RNAs are less likely to have read errors than e.g.
mRNAs. But even requiring a perfect alignment, some sequences still have multi-
ple matches. By default bowtie reports only one alignment per sequence, choosing
randomly between the alignments to avoid a bias in the reporting [Bowtie, 2014].
This does not work well for my purposes, as a read could be attributed to differ-
ent pre-miRNA for different samples, making e.g. differential expression analysis
difficult. I therefore instructed bowtie to report all found alignments, and chose
one in a deterministic way: I first compared the alignment offsets with the po-
sitions of the mature miRNA for the respective hairpins, choosing the hairpin
where the alignment was closest to a reference mature miRNA. For further ties I
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chose the alphabetically smallest pre-miRNA.

An alternative approach could be to simply keep all found alignments and
keep track of which isomiRs map to multiple hairpins, but I decided against this
approach as it would make the later analysis more complicated.

An important practical detail is that the steps 1-4 described above can be
run in parallel per sample, i.e. the processing of several .fastq files can be done
concurrently. As I only aligned the reads against mouse pre-miRNAs and not a
genome, adapter removal was by far the most time consuming operation. Adapter
removal can itself be parallelized for reads within one sample, since each read
can be handled independently, but this is not currently supported by cutadapt.
Processing multiple samples concurrently thus greatly reduced the running time.

The read profile output from step 4 can be viewed as a vector vj, where the
i’th element vj,i is the read count observed in sample j for isomiR i. In the last
pipeline step, the read vectors vj are combined to form an expression matrix M ,
such that Mi,j = vj,i.

4.3.1 Read normalization and differentially expressed se-
quences

To obtain counts comparable between samples, the raw read counts were normal-
ized to log-CPM values using the R limma package, see section 2.5.2. For the
datasets where I have looked at differential expression, the limma package was
also used to find differentially expressed sequences. I used a p-value (adjusted
by limma for multiple testing) of 0.05 as the cutoff for labeling a sequence as
differentially expressed.

4.4 Finding short reads

In this section I will describe the identification of shorter 9-13 nt reads that align
to observed isomiRs, which I deal with in section 5.3. I will simply refer to such
reads as “short-reads”. I started with the same pipeline process as described
above in section 4.3, but instead now keeping only reads of length 9-13 during
adapter removal, to obtain a profile of such reads for each sample. For all datasets
the resulting reads turned out to contain a large number of low complexity G/C
sequences that generally will have many matches in the genome. To avoid having
to further process these reads, and to prevent possible random precursor align-
ments, I skipped all reads containing only 2 or fewer A/U bases. Although this
could lead to discarding short-reads that would align to a miRNA, the impact
should not be very significant. The average short-read length is around 11 nt,
and of the total 416 different miRNAs observed in the GCF and CH12 data, only
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36 contain an 11 nt substring of 2 or fewer A/U bases anywhere in the miRBase
reference mature sequence.

I then built a k-mer index out of the observed miRNA reads, mapping each
seen k-length substring back to a list of reads containing the substring. To find
miRNA reads fully containing a short-read as a substring, I used a k-length
substring of the short-read to look up potential miRNA reads, and checked each
of these for containing the complete short read sequence. In some parts of section
5.3, I have relied on associating short-reads with a specific isomiR. This causes
some problems when there are multiple matches, as there really is no way of
knowing which isomiR gave rise to a short-read. I have taken the following
approach: the miRNA reads were scored based on how close the short read
substring was to either the 5’- or 3’ end of the miRNA read. This is best explained
with an illustration, see Figure 4.3 and the accompanying description. For further
ties, the miRNA read with the highest average expression was chosen.

Figure 4.3: K-mer index search example for k = 5. There are 4 miRNA reads
containing ACGTA, and three of these contain the full short read sequence (ACG-
TAAATAT). A score is computed as the smaller of the distance from the miRNA
5’ end to the 5’ end of the short sequence, and the distance from the miRNA 3’
end to the 3’ end of the short sequence. For the first matching miRNA sequence
above, the 5’ distance is the shortest. For the two following isomiRs the 3’ dis-
tance is the smaller (0). Because of a tie between the two last isomiRs the one
with the highest observed expression would be chosen.
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4.5 Finding non-templated 3’ additions

As mentioned in section 2.2.3, a non-templated isomiR refers to an isomiR whose
sequence does not correspond to a sequence in the original gene. The work and
results relating to non-templated isomiRs is presented is section 5.4. An example
non-templated isomiR was given in Figure 2.6, where the last sequence has an
AA tail at the 3’ end not matching the precursor sequence. In this section I
describe finding isomiRs with such non-templated 3’ tails, when an isomiR not
having the tail has been observed. The tail should consist of an l-length single-
base sequence (e.g. AA or UUU) . For convenience I will below assume this base
to be U, but the same method of course applies to other nucleotides. The process
is also described with an example in Figure 4.4.

Figure 4.4: The read r contains a length 4 U-tail. After checking that no isomiR
containing r has been observed, the tail is removed to give c. MicroRNA reads
(marked 1, 2 and 3) containing c are found. The grey colored tails indicate the
hairpin sequence, and are not part of the reads. Only 1) and 2) are substrings
of r, and are considered further since r’s tail does not correspond to the hairpin
sequences. The longer read, 1), is compared against r, and r is found to have
length 2 non-templated U-tail.

A read r is first checked for having a U-tail suffix of length at least l. The
miRNA k-mer index described above in section 4.4 is reused to check that the
read is not a substring of an observed isomiR. The tail is removed to obtain a
cut sequence c, and the k-mer index is used to find miRNA reads containing the
sequence c. Of these miRNA-reads the ones that also are substrings of r, and
where r does not a have a match in the corresponding pre-miRNA sequence, are
kept. These reads will have c as a prefix and a possible 3’ U-tail (shorter than
r′s U-tail). The longest of any remaining miRNA reads is compared against r,
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and r is kept if its U-tail is at least l nt longer than that of the miRNA read.

4.6 Sequence statistics

This section describes the ways in which I have analyzed and compared sequence
data.

4.6.1 Sequence content and base-pairing

The two main statistics I have looked at and used to compare groups of miR-
NAs are position specific nucleotide content and base-pairing counts. With base-
pairing counts for mature miRNAs I mean whether the pre-miRNA hairpin struc-
ture has base-pairs at the positions corresponding to the mature sequence.

Features of both the 5’ and 3’ end of sequences are known to be of importance
for miRNAs. Because of the variable length of miRNAs I have therefore looked
at sequence content and base-pairing counting both upstream from the 3’ end
and downstream from the 5’ end. In addition, when looking at isomiRs and their
respective end-reads I have used the end-read alignment offset as the starting
position. These three different ways of counting are illustrated in Figure 4.5.

Figure 4.5: Three different ways of counting for either sequence content or base
pairing; downstream from the 5’ end, upstream from the 3’ end, and both down-
and upstream from a position corresponding to the alignment offset of an end-
read. For the latter case, the figure illustrates the scenario where the end-read
“AGUCGCAGGUA” has been observed.

4.6.2 Statistical testing

Having computed counts of either nucleotide content or base-pairing for groups
of isomiRs, I have used statistical tests to find features that differ significantly
between the groups. To do this I have mostly used Fisher’s exact test (see for
example [Weisstein, 2013]), by constructing a 2 ∗ 2 contingency table for each
tested feature. For example, for testing whether the proportion of isomiRs having
an A nucleotide at position 1 differs significantly between two groups, I construct
and test the following table:
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1=A 1 6= A
group 1 a b
group 2 c d

where a is the number of isomiRs in group 1 having an A at position 1, and
similarly for b, c and d.

An exception to this way of comparing features is the statistical feature se-
lection in section 5.1, where I use a built in chi-squared based feature selection
procedure from scikit-learn (see section 4.7).

4.7 Tools and languages used

For implementing the work of the project, I have mainly used the Python pro-
gramming language, together with the SciPy1 third party scientific computing
library. When working with support vector machines I have used the excellent
scikit-learn2 machine learning library, which in addition to providing an easy to
use SVM interface has a number of useful utilities, including feature selection
and cross validation.

A small amount of work was also done using the R language with the limma
package, specifically the normalization of read counts and identification of differ-
entially expressed sequences, as mentioned in section 4.3.1.

1scipy.org
2scikit-learn.org
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CHAPTER 5

Results and Discussion

In this chapter I present and discuss the work and results of the project. I
start by looking at classification of up/down-regulated isomiRs in section 5.1,
and continue in section 5.2 with looking at isomiRs of the same miRNA that
experience different Ago2-knockout expression changes. The central problem
addressed in these two first sections is to identify sequence features that determine
the observed expression changes. In sections 5.3 and 5.4 I describe the work
relating to short reads that align to the 3’ end of miRNAs, and non-templated
sequences, respectively.

5.1 Classification of up- and down regulated se-
quences

As mentioned in the introduction chapter, my main goal in [Mossin, 2013] was
the classification of miRNAs by whether a miRNA would experience a higher,
lower, or unchanged expression level in Ago2-knockout cells. The work was based
on data containing fold change and average expression information aggregated
per miRNA, thus ignoring possible differences between isomiRs. In the report I
identified such isomiR-differences as a possible cause of noise, and discussed the
possibility of improving the results obtained by taking individual isomiRs into
consideration.

In this section I describe my attempt at creating a support-vector machine
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# Feature description
1-60 Nucleotide content for 15 first 5’ bases

61-120 Nucleotide content for 15 first 3’ bases
121-135 Base-pairing for 15 first 5’ bases
136-150 Base-pairing for 15 first 3’ bases
150-155 Overall G/C, A, C, G, U content

Table 5.1: The features used for classification.

classifier for predicting up-/down regulation of isomiRs in Ago2-knockout cells,
utilizing all available sequence data for training and testing. A description of the
classifier construction is first given in section 5.1.1, before the results are given in
section 5.1.2. In essence, the classifier is not successful, and performs no better
than random. A valuable lesson from the classifier results will be the importance
of proper performance estimation, including handling highly similar sequences.

5.1.1 SVM construction

When mapping isomiRs to feature vectors, I have taken the approach of first auto-
matically generating a large number of features, and then incrementally reducing
the number of features used while observing classifier performance.

The underlying goal of the classifier is not simply successful classification in
itself, but to gain more knowledge of the underlying biological processes involved
in the miRNA pathway. Given a classifier achieving good performance, the bio-
logical interest will then center on which features are important for the classifier,
and whether the features support or can be explained from previous knowledge.
By measuring performance over different numbers of features, the goal was to
find the minimum set of features of importance for the classifier.

The initial set of features (i.e. all considered features) was constructed from
position specific nucleotide features, position specific pre-miRNA base-pairing
features, and features based on overall nucleotide content. The details are given
in table 5.1. All features are normalized to be in [0, 1]. For position specific
nucleotide content this is done by each position contributing 4 features, one binary
feature per nucleotide, where only one of the four will be “positive”. Base-pairing
features are binary by nature, and overall nucleotide content features are included
as percentages.

For an unbiased estimation of performance I have used a nested cross valida-
tion approach, shown in pseudocode in Algorithm 5.1. To avoid any overfitting,
both feature selection and parameter setting is done by considering only the
training data (Xtrain, Ytrain). The most significant features are determined by a
chi-squared test.
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Algorithm 5.1 Nested cross validation. The inner CV-loop is represented by
the call to gridSearchCV, which performs cross validation to select a parameter
setting from the given parameter grid. A subset of the features are selected by
calculating the most significant features from the training set.

1: function nestedCV(svm, paramGrid, numFeatures)
2: scores ← List()
3: outerCVFolds ← StratifiedCV(folds=3)
4: for trainIndices, testIndices in outerCVFolds do
5: Xtrain, Xtest ← trainTestSplit(X, trainIndices, testIndices)
6: Ytrain, Ytest ← trainTestSplit(Y, trainIndices, testIndices)
7: features ← kMostSignificantFeatures(Xtrain, Ytrain, k=numFeatures)
8: svm.params ← gridSearchCV(svm, paramGrid)
9: train(svm, Xtrain, Ytrain)

10: scores.append(score(predicted, Ytest))

11: return scores

There are more miRNAs that are down-regulated in KO than up-regulated,
around 2

3 vs 1
3 , so the cross-validation is performed such that the relative group

frequencies are retained within the folds (stratified cross-validation). Another
important element that should be handled during cross-validation is the high
similarity between many isomiRs. If such similar isomiRs are handled indepen-
dently when creating cross-validation folds, this could heavily bias the estimated
performance, as many isomiRs in the test fold can be expected to have one or
more similar isomiRs in the training folds. I have therefore taken care to always
put isomiRs of the same miRNA in the same fold.

5.1.2 The classifier has random performance

I have mainly used receiver operating characteristic (ROC) curves for evaluating
performance. Figures 5.1 a) and c) shows the number of features used plotted
against ROC-curve area, and a ROC-curve produced using 30 features, respec-
tively. These results were produced using all the GCF data, and the results are
equally weak when considering only the DOC or GH data. It is quite clear from
these figures alone that the performance is no better than random.

This classification failure then suggest that up/down-regulation in Ago2 knock-
out cells is not determined by properties of the sequence structure. This conclu-
sion contradicts the findings I reported in [Mossin, 2013], where the two-class
classifiers achieved ROC-area scores of 0.65. An unfortunate but likely explana-
tion for this contradiction is that my previous results were a result of overfitting.
The approach I used in [Mossin, 2013] in summary consisted of first using all
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a) b)

c) d)

Figure 5.1: Performance estimation curves. In a) and b): The number of features
used for classification plotted against ROC-curve area. For each feature count
K, the K most significant features are used in a 3-fold nested cross-validation
procedure to produce estimates of the ROC-curve area. The score for each K is
computed as the average of the 3 scores of the outer cross-validation loop. The
curve in a) is produced using the steps of Algorithm 5.1 for each feature count. In
b) the most significant features are computed before CV from all available data,
giving a biased result. In c) and d): ROC-curves obtained using 30 features.
In c)) care is taken to put isomiRs of the same miRNA in the same fold when
partitioning the data into training and testing folds The curve in d) illustrates
the biased result obtained if this is not done.
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data to find significant features, and then use these features when estimating the
performance using CV. Because the data in the CV testing folds will have been
part of the feature selection process, the reported results are susceptible to an
optimistic bias.

If the procedure used to generate Figure 5.1 a) is changed so that the signif-
icant features are first determined using all available data, the stronger results
from [Mossin, 2013] can be reproduced. Figure 5.1 b) shows the result of mod-
ifying Algorithm 5.1 so that the feature selection is done before the outer CV
loop.

Another result of a biased performance estimation is shown in Figure 5.1 d).
It illustrates the strong performance obtained if no care is taken to group similar
isomiRs when creating training and testing folds.

5.2 Variation in differential expression between
isomiRs

In addition to the classification of individual sequences discussed above in sec-
tion 5.1, I have also looked at identifying pairs of isomiRs of the same miRNA
that experience significantly different changes in expression between KO and WT
samples, with the goal of finding common features that result in a higher or lower
expression change for otherwise very similar sequences.

I first describe the modeling framework I have used to identify the isomiRs of
interest in section 5.2.1, before discussing the significance of the obtained results
in section 5.2.2. In section 5.2.3 I compare the isomiRs with high/low fold change
to try to find differing features. Finding no significant features, I conclude that
the differences seen between isomiR-pairs may simply be the result of a natural
variation.

5.2.1 Identifying Significant isomiR pairs

The core of this problem can be described as follows: Given sample counts for
each observed sequence, and under the null hypothesis that isomiRs of the same
miRNA should show the same change in expression between WT and KO cells,
then identify isomiR pairs where the expression changes observed for the two
isomiRs are significantly different. And for such pairs, see if there are common
features that differ between the isomiRs with a higher expression change and
those with a lower expression change.

“Higher” and “lower” expression change are here meant relative to a pair of
two isomiRs. If for one miRNA there are two isomiRs with KO fold changes of
5 and 1, and another miRNA with two isomiRs with KO fold changes of −1 and
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−5, then the isomiRs with “higher” KO fold change are the isomiRs with fold
change 5 and −1.

The problem does not lend itself well to standard tests of count data, such as
e.g. a chi-square test on a contingency table of counts. A read “count” c cannot
really be viewed as a count variable in the sense that it represents an outcome
that has been observed c times. Rather, it represents one observation from an
underlying distribution.

Below I will describe the modeling framework I have used. The idea is to
create a point of (average expression, ∆ logFC) for all pairs of isomiRs, estimate
the variance in ∆logFC for different levels of average expression, and then find
outliers in this data. A plot showing all such pairs is shown for the GCF data in
Figure 5.2.

Using average expression to determine the expected ∆logFC distribution is
likely to be too simplistic, as it can e.g. equal a pair consisting of one highly and
one lowly expressed isomiR with a pair consisting of two more equally expressed
isomiRs. Intuitively, pairs of one highly and lowly expressed isomiR should be
expected to show a higher variance, due to more variance in the fold change of the
lowly expressed isomiR. In an attempt to deal with this, the average expression
is computed as the geometric mean, which for the log-counts here will tend to
give a lower value to pairs with one lowly expressed isomiR, compared to using
the arithmetic mean (for example:

√
3 ∗ 10 = 5.48 < 3+10

2 = 6.5). Additionally, I
consider only isomiRs with average log2 expression (as reported by limma) larger
than 2.0.

The variance is estimated by partitioning all points into buckets by rounding
the average expression to the nearest integer, and calculating the variance for
each bucket. A second degree polynomial is then fitted to the points to obtain a
smooth estimator curve. To avoid estimating the variance with only a few points,
all points with an average expression higher than a cut-off value are put in the
same bucket. See Figure 5.2.

The normal distribution is used to model the data and find outliers. I have
used a p-value of 0.05 as the significance cut-off. Figure 5.3 shows a Quartile-
Quartile plot of the distribution of points within each bucket against the quartiles
of normal distributions. The normal distributions have been plotted with vari-
ances equal to the variances of the respective buckets. The data can be seen to
be approximately normally distributed, except for most buckets having heavier
tails than the respective normal distributions.

5.2.2 Model evaluation

As can be seen in Figure 5.2, there are many isomiR pairs that experience quite
different expression level changes. But an important question is to what degree
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Figure 5.2: For each miRNA, all pairs of isomiRs are generated and converted to a
point of (average expression, delta log fold change). A variance curve is estimated
by grouping points by rounding average expression to the nearest integer. The
dashed red line indicates the 0.05 significance cut-off for a normal distribution
under the estimated variance. For the data shown here all points with average
expression higher than 13 are represented by the last bucket.

the differences in fold change represent any real underlying biological difference,
or if they rather are a result of natural variation and multiple testing.

From the plotted curves in Figure 5.2 the significance cut-off can be seen to
vary approximately from a log fold-change between 3 and 2, depending on the
average expression. As an argument for the soundness of the model, this level
agrees well with the log fold-change required by limma to report an isomiR as dif-
ferentially expressed for the same sequence data. And if such a fold change is sig-
nificant for individual sequences, it seems sensible that a difference in fold-change
of around the same magnitude should also constitute a significant difference.

A weakness of the above argument of comparing the fold change levels with
those required in the limma analysis, is that there of course are many more
pairs of isomiRs than individual isomiRs, and because of this more outliers can
be expected. Looking more deeply at the data seems indeed to suggest that
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Figure 5.3: Q-Q plot of the distribution of points within each bucket vs respective
normal distributions with equal variance.

the larger fold change differences are a result of multiple testing. As a first
sign, if comparing the total number of isomiRs between those miRNAs for which
there is at least one significant pair (significant as defined by the cut-off line in
Figure 5.2) and other miRNAs, the first group have ∼ 9 observed isomiRs on
average compared with only ∼ 3 isomiRs for the latter group (p-value ' 1e−30).
This large difference may indicate that the significant pairs arise not due to
biological differences, but simply because there are many observed isomiRs for
some miRNA. But it can also be argued that many isomiRs gives more diversity
in sequence structure, thus creating a higher probability of the isomiRs exhibiting
different sequence features affecting the Ago2-knockout expression.

Figures A.1 - A.3 in the appendix show fold-changes and average expression
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for the isomiRs of the significant pairs. With some exceptions, the expression data
shown in the figures show that the pairs are often made up of one lowly expressed
isomiR and one more highly expressed isomiR. This seems to further strengthen
the argument that the observed fold-change differences between isomiR pairs are
a result of natural variation and multiple testing, not of a systematically different
reaction to Ago2 removal.

5.2.3 Comparing the isomiRs

In an attempt to identify common features that differ between the isomiRs with
a higher expression change and those with a lower expression change, I compared
all “high” fold change isomiRs against all the “low” fold change isomiRs. Again,
high and low are here meant relative to an isomiR pair, so that for each pair
one isomiR is put in the “high” group and one in the “low” group. To avoid
a bias from miRNAs where there are several significant pairs, only one pair per
miRNA is considered (the pair with the strongest p-value). Working with the
GCF, DOC and GH data, this then results in 42, 38 and 44 pairs, respectively.
Fold-change and expression data for these isomiRs is given in Figures A.1 - A.3
(only for GCF).

Because 3’ end differences are more common between isomiRs than differences
at the 5’ end (for the 42 GCF pairs all differ at the 3’ end, with about half also
differing at the 5’ end), any significant features will likely only show up when
counting upstream from the 3’ end. Alternatively, those isomiR pairs that do
differ at the 5’ end can be analysed separately, but I have not done this due to
the few such pairs in the data. Because the features I found in [Mossin, 2013] were
based on counting downstream 5’ to 3’, this makes a comparison with the features
found here difficult. Features for each of the GH, DOC, and GCF datasets with
p-values stronger than 0.05 are listed in appendix B. The p-values have not been
adjusted for multiple testing.

In summary, for the GCF and DOC data I found no features differing between
the groups with p-values stronger than around 0.01, and generally few features
with p-values better than 0.05. Considering the multiple testing performed, a few
such p-values can be expected. For the GH data, a C base at position 12, counting
3’ to 5’, stands out with a p-value of 0.0001 (see Table B.3 for the count details).
In [Mossin, 2013], I found the 5’ downstream positions 10 and 11 to be among the
most significant. Since Ago2 is known to cleave its targets at the bond between
the 10th and 11th nucleotide, this was a biologically interesting result. With
the average mature miRNA length being ∼ 22 nt, the 11th upstream position
will often correspond to the 10th or 11th position counted downstream. But
comparing the GCF, DOC and GH data I found no features, including the GH
position 11 feature, to be consistently significant between the datasets. Though
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given the above discussion of the nature of the fold change variance, finding few
features is not surprising, and in itself further supports the argument that the
fold change differences are not the result of sequence differences.

5.3 Short reads aligning to miRNAs

I now move away from the central topic of the last two sections of finding fea-
tures affecting differential expression in Ago-2-knockout cells. The raw read data
contains a significant number shorter reads of around 10 nucleotides that align
to mature miRNAs (here referred to as “short-reads”). The exact definition and
the method used to find the short-reads was given in section 4.4. In section 5.3.1,
I show that the majority of the short-reads that align to a miRNA align perfectly
to the 3’ end of an observed isomiR, i.e. the short read sequence is equal to the
3’ suffix of the isomiR sequence. Such short-reads that align to an isomiR 3’ end
will just be denoted “end-reads”. Section 5.3.2 presents the interesting find that
end-reads are also found Ago2-knockout samples, and section 5.3.3 further shows
a correlation between end-reads in the GCF and CH12 data. There are significant
differences in which isomiRs have corresponding end-reads, and in section 5.3.4
I try to find sequence features that differ between the isomiRs that have and do
not have end-reads.

With the exception of section 5.3.2, the work presented from here on is not
specific to Ago2-knockout experiments, and I will in addition to the GCF data
now also present results for the CH12 dataset.

5.3.1 The majority of short-reads are end-reads

Having first observed that many short-reads align to mature miRNAs, the further
analysis was set off from the finding that the majority of these alignments coincide
with the miRNA 3’ end, as illustrated and described in Figure 5.4.

The numbers in Figure 5.4 are obtained from assigning each short-read uniquely
to an isomiR, and therefore of course depend on how the mapping from short-
read to isomiR is done, as there often will be several candidate isomiRs that
align perfectly with a short-read. As described in more detail in section 4.4, I
have prioritized isomiRs by how close the alignment is to the 5’ or 3’ end of the
isomiR, which can be expected to give a bias for the two “0” positions in Figure
5.4. An alternative approach could for example be to use the matching isomiR
with the highest observed expression. If one assumes no prior knowledge of the
biological processes causing short-reads to be observed, this would arguably give
the maximum-likelihood isomiR. As expected, if Figure 5.4 is recreated using
this method, the 3’ bars over “-2”, “-1” and “0” are more equally sized, with
∼ 25% end-reads, as shown in Figure 5.5. This maximum expression approach
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Figure 5.4: Alignment of short-reads against isomiRs for the GCF (left) and
CH12 (right) data. Each short-read is matched to an observed isomiR by the
method described in section 4.4, and contributes to one of the bars depending on
its alignment to the isomiR. The first three bars, underlined in red and marked
as 5’, represent those isomiRs where the short-read aligns with an offset of 0, 1
or 2, counting from the 5’ end of the isomiR. For the bars underlined in green
and marked as 3’, the offset is counted from the 3’ end (i.e. the distance from the
isomiR 3’ to the short-read 3’ in the alignment). The end-reads are represented
by the rightmost bar: they have an align offset of 0 when counting from the 3’
end. The middle bar counts all other short-reads that are not captured by the
six 5’ and 3’ bars.
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Figure 5.5: Alignment of short-reads against isomiRs, using the matching isomiR
with highest expression. Results for GCF and CH12 datasets are given in the
left and right plots, respecivly. See Figure 5.4 for how to interpret the numbers.

can be seen as a simplification of a more robust probabilistic analysis, where each
isomiR is attributed for some fraction of the observed short-reads that align to
it, depending on its own expression level.

But although my approach likely has some degree of bias, no matter the
method used to map short-reads to isomiRs it is clear that a non-random fraction
of short-reads do align to the 3’ end. I believe this observation invalidates the
“maximum-likelihood” argument above, and justifies the method I have used.

5.3.2 End-reads are found in both WT and Ago2-KO sam-
ples

As Ago2 is known to cleave the passenger strand during RISC activation, a
natural first guess to the cause of the observation of end-reads would be that
they are produced from Ago2 cleavage. But under this assumption, one would of
course expect that the level of end-reads observed would be significantly lower in
Ago2 knockout cells. I found this not to be the case. Figure 5.6 shows end-read
counts for WT vs KO.

Some differences should be expected between WT and KO, due to many
sequences being differentially expressed. Specifically, more miRNAs are down-
regulated than up-regulated in knockout. And except for a few exceptions, most
end-reads have low read counts, which naturally leads to some random differences
between the samples. But the overall trend is clear: end-reads are found both
in WT and Ago2-knockout samples, and there is a clear correlation between KO
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Figure 5.6: End-reads in WT vs KO. The figure shows both that end-reads occur
in Ago2-KO samples, and that there is a clear correlation between read counts
in WT and KO.

and WT read counts.

5.3.3 End-read counts correlate between GCF and CH12

In the previous section, the end-read count correlation was between WT and KO
samples from the same dataset. I have also looked at correlation between datasets,
specifically between the GCF and CH12 samples. Figure 5.7 plots read counts for
end-reads in GCF against CH12, and shows a clear correlation. Because isomiR
expression levels vary considerably between the datasets, with some isomiRs more
highly expressed in CH12 and vice versa, differences are expected. The rather
large number of points along the lines x = 0 and y = 0 can likely be explained
by isomiRs with large expression differences between the datasets.

This correlation between datasets signify end-reads are produced as the result
of a regulated degradation process. As I discuss in the summary chapter, it would
be interesting to analyse more datasets and see how well the correlation holds. As
all data I have worked with originate from the same lab, analysing new datasets
with a different origin should give valuable information on the generality of the
observed correlation.
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Figure 5.7: End-read counts in GCF vs CH12. Of the higher expressed end-reads
in GCF almost all are also highly expressed in CH12.

5.3.4 Differences in end-read counts between miRNAs

There is a big difference in the number of end-reads observed for different miR-
NAs, and also between isomiRs of the same miRNA. Of course, highly expressed
isomiRs are expected to have more matching end-reads, but although I have
found an overall correlation between isomiR expression and end-read expression,
there are large deviations from the general trend. This is illustrated by the plots
in in Figure 5.8.

My focus has been on finding the cause of the differences seen: Why do some
miRNAs give rise to more end-reads than others? To try to determine this, I
have looked at finding features that differ significantly between the sequences
that have many corresponding end-reads and those that have few or none. A
complicating factor in the analysis is that an end-read can align to the 3’ end of
several isomiRs. Even though isomiR 3’ modifications are more common than
differences at the 5’ end, some ismomiRs still have identical 3’ suffixes. A point in
Figure 5.8 therefore represent all isomiRs with equal suffix. The question is then
what to do when comparing the groups for differing sequence features. I have
taken the approach of using for each point the isomiR with the highest expression
(of the isomiRs that are represented by the point).

I have used two different approaches when testing for significant features. In
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a) b)

c) d)

Figure 5.8: In a) (GCF) and b) (CH12): IsomiR expression summed by suffix
plotted against the number of end-reads aligning to the suffix. Because an end-
read can map perfectly to the 3’ end of several isomiRs, isomiR expression values
are summed for isomiRs having equal suffixes, counted from the last 9 bases. This
suffix count is then plotted against the total number of short-reads having the
same suffix. A clustering of the points is done by first finding the overall trend
of suffix expression vs short-read count by fitting a regression line. The points
marked in green represent the cluster of suffixes having many short-reads given
the isomiR suffix expression. Conversely, the suffixes with few short-reads in
relation to the isomiR suffix expression are marked in blue. All remaining points
are marked in red. In c) (GCF) and d) (CH12): The plots show a subset of the
points from the respective plots in in a) and b). The distance along the (1,−1)
vector is measured for all pairs of points representing isomiR suffixes from the
same miRNA. I have then used a distance of 3 or more along this vector to define
points that show large differences in the ratio of isomiR expression vs end-read
expression. Each miRNA contributes at most one pair of points. The clustering
is performed by labeling each point as the “high” or “low” point of its pair. Three
pairs of points are illustrated in the plots by a connecting line.
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the first approach, illustrated and described in Figure 5.8 a) and b), each suffix
is clustered independently depending its isomiR- and end-read expression values.
The second approach is similar to the analysis in section 5.2; I find pairs of
isomiR suffixes that have large differences in isomiR/end-read expression, and
construct one group of the isomiR suffixes with many end-reads and one group
of those with few end-reads (in relation to isomiR expression). See Figure 5.8
c) and d) and the accompanying description. The first technique thus looks
more generally at differences between sequences that have end-reads and those
that do not, while the latter technique looks for common differences between
pairs of isomiRs with many/few end-reads. I will denote the two approaches as
the “global” and the “pair-based” clusterings, respectively. For the pair-based
analysis, only differences counted upstream from the 3’ can be expected, since for
most pairs the two isomiRs will have equal 5’ ends. Though for both the GCF
and CH12 data the isomiRs of all significant pairs have different 3’ ends.

The features found for both types of comparisons are given by the tables
in Appendix C, which lists all features with a p-value less than 0.05. I have
found no very strong results, with most of the listed features having p-values in
the range 0.01− 0.05. This can not be considered significant under the multiple
testing performed, and as expected given the p-values, few features are consistent
between the datasets. The two strongest features both have p-values of 0.004.
The first is for the global CH12 analysis, where the isomiRs with many end-reads
are found to have a relative preference for a G base at 3’ position 3. The second
is for the pair-based analysis of the GCF data, where no isomiRs from the “low”-
group have a C base at the 3’ end. But neither of these two features are found
to be strong in both datasets. Perhaps the most interesting observation is that
three of the four base-pairing features are for positions that will be close to the
center of the sequences (9, 11, and 13, counted upstream). This could suggest
the stability of the precursor in this region is of importance. But the argument
is weakened by observing that the three features differ on which group has a
preference for base-pairing. To look more into this, I summed the base-pairs in
positions 9-13 for each isomiR, and then compared the values for the two groups
with a t-test. I ran the test twice, once counting the positions downstream and
once counting upstream, but did not get any significant results.

Thus the analysis result is that I have found no clear features that differ
between miRNAs with many/few end-reads. Some features are found with p-
values ∼ 0.01, but there is little consistency between the datasets. But even
so, it should still be interesting to look at additional datasets to get a stronger
indication of whether any of the features are of any real biological interest.
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5.4 Non-templated A- and U tails

In the previous section, I discussed the possibility that the observed end-reads
could be a result of a miRNA degradation process. As the stability and degra-
dation of some miRNAs has been reported to be regulated by the addition of
non-templated A- and U tails at the 3’ end, I have also analyzed the sequence
data for miRNA reads with such non-templated additions. I will refer to these
reads that except for a non-templated single-nucleotide 3’ tail align to a mature
miRNA as “tail-reads”. The method and criteria used to identify the tail-reads
was covered in section 4.5.

In section 5.4.1, I first show that I have found many A/U tail-reads, and that
these reads correlate between the GCF and CH12 data, while G/C additions are
hardly found. Section 5.4.2 then presents an analysis similar to that performed in
the previous section, where the goal is to find features differing between miRNAs
with many/few corresponding tail-reads. Finally, section 5.4.3 studies my main
reason for including this section on tail-reads: If both non-templated 3’ additions
and the end-reads discussed in the previous section are connected to miRNA
degradation processes, it could be expected that they target different miRNAs.
I have found no proof of this, though.

5.4.1 A/U tails are common, G/C tails are rare

The first observation that is clear when analysing both the GCF and CH12 data
for non-templated 3’ tails, is that there are a considerable number of reads with
A- and U tails, while G- and C tails are much more uncommon. Additionally,
although some isomiRs seem to experience only A- or U-tailing, there is in general
a clear correlation between the number of U-tails and the number of A-tails
observed for an isomiR. See Figure 5.9. Because of this correlation, I have chosen
to treat A/U-tailing together in the coming sections; summing the number of
reads of A- and U tails observed for an isomiR.

I have also found that there is a correlation between which isomiRs have tail-
reads in the GCF and CH12 data, shown in Figure 5.10. The figure is similar to
the corresponding result for end-reads shown in Figure 5.7. And as I discussed
for the end-read result, considerable deviations from the general correlation is
expected, due to sequences that are highly expressed in one dataset and lowly
expressed in the other. The correlation between the GCF and CH12 data, as
well as the observation that A/U-tailing is much more common than G/C-tailing,
agrees with A/U-tailing playing a role in miRNA degradation.



58 CHAPTER 5. RESULTS AND DISCUSSION

Figure 5.9: The number of A-tail reads vs U-tail reads, with fitted regression
lines, for the GCF (left) and CH12 (right) data.

Figure 5.10: Tail-read counts in GCF vs CH12.
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5.4.2 Differences in tail-read counts between miRNAs and
isomiRs

Similar to what I found for end-reads, the ratio of sequence expression to the
number of corresponding tail-reads differ significantly both at the miRNA and
isomiR level. While there is a strong general correlation between sequence ex-
pression and corresponding tail-reads, there are large variations.

I have performed an analysis analogous to that performed for end-reads in
section 5.3.4, with the goal of investigating whether sequence features can explain
why some miRNAs experience 3’ tailing while others do not. Like I did for
end-reads, I perform the analysis using both a “global” comparison approach,
where each isomiR is clustered independently based on its expression level and
corresponding tail-read count, and a “pair-based” approach, where I find pairs of
isomiRs of the same miRNA that have different tail-read/expression ratios. This
is illustrated and further explained in Figure 5.11.

The features found for both clustering approaches and both the GCF and
CH12 datasets are listed in Appendix D in the appendix. As can be read from
the tables, there are a few very significant features; the most significant feature
has a p-value of 5e-10. Adjusting for multiple testing, the significance cutoff
will be around 0.00051, so that the stronger features are still significant. These
features are all for nucleotide-preferences at either position 1 or 3 at the 3’ end,
and come up as significant in both the global and pair-based analyses of both
datasets. The preferences can be summarized as follows: At 3’ position 1, the
isomiRs with few tail-reads have a bias towards a C base and rarely have an
A base, while the isomiRs with many tail-reads have a bias for an A base and
rarely have a C base. At 3’ position 3, the preferences are the opposite of those
for position 1 (i.e. the isomiRs with many tail-reads have a bias for a C base, etc).
In addition to the strong results obtained for these features, there are several less
significant (not significant when adjusting for multiple testing), including some
other weaker preferences for positions close to the 3’ end, though these are not
as consistent between the datasets and clustering approaches.

As the isomiRs with corresponding (A/U) tail-reads are found to have a pref-
erence for an A at the 3’ end, it should be noted that such a bias is not created
by the method used to find tail-reads and map them to corresponding isomiRs.
In fact, a U base at position 1 actually comes up as a preference for isomiRs with
few tail-reads in the GCF data.

The nucleotides of the 3’ end thus appear to affect which miRNAs experience
non-templated A/U additions at the 3’ end. And sequence variations at the 3’ end
then also seem to explain the differences seen between otherwise equal isomiRs,
which suggest these variations are biologically relevant and can affect the relative

1Roughly 100 tests are performed, a simple correction gives: 0.05 / 100 = 0.0005
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a) b)

c) d)

Figure 5.11: In a) (GCF) and b) (CH12): IsomiR expression plotted against the
read count for corresponding tail-reads. A clustering is performed by first finding
the overall trend of isomiR expression vs tail-reads by fitting a linear regression
line. The points marked in green represent the cluster of isomiRs having a high
degree of corresponding tail-reads in relation to the isomiR expression, while the
blue points represent the cluster of isomiRs with high expression and no tail-
reads. All remaining points are marked in red.
Plots c) (GCF) and d) (CH12) show a subset of the points from a) and b),
respectively. The difference along the vector (1, -1) is measured for all pairs of
isomiRs of the same miRNA. I have used a distance of 3 or more along this vector
to define isomiRs that show large differences. Each miRNA contributes at most
one pair to avoid any bias in the analysis. For each pair, each isomiR is labeled
by whether it has the higher or lower ratio of tail-reads to isomiR expression.



5.4. NON-TEMPLATED A- AND U TAILS 61

expression of isomiR variants.

5.4.3 Tail- and end-read correlation

My main reason for first starting to analyse the project datasets for tail-reads
was to try to find out whether miRNAs targeted by A/U-tailing are less likely
to give rise to end-reads, and vice versa. If end-reads and tail-reads represent
products connected to two different degradation mechanisms, it could perhaps
be expected that most miRNAs are predominantly targeted by only one of the
two respective processes.

To investigate this, I have looked at the relationship between how many cor-
responding end-reads and tail-reads are observed for each isomiR. As I discussed
in section 5.3.4, end-reads generally can not be mapped uniquely to isomiRs, only
to the set of isomiRs containing the end-read sequence as a 3’ suffix. For a correct
comparison of the number of tail-reads against the number of end-reads observed
for isomiRs, tail-read counts must then also be summed for isomiRs with equal
suffixes. The resulting GCF and CH12 plots are shown in Figure 5.12.

Figure 5.12: End-reads vs tail-reads

From Figure 5.12 alone it is quite clear that there at least is no very strong
exclusiveness in targeted miRNAs, as clearly many isomiRs (or more precisely,
groups of isomiRs with equal suffixes) have both high end-read and tail-read
counts. For a statistically stronger test of this result, I have used the observed
data of isomiR expression versus end-read counts (the data shown in Figure 5.8)
and isomiR expression versus tail-read counts (shown in Figure 5.11) to create
distributions over observed end-read and tail-read counts, given the expression
of an isomiR: Pr(end-read count | isomiR expression), and Pr(tail-read count |
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isomiR expression). The distributions are created by rounding the isomiR expres-
sion values of Figures 5.8 and 5.11 to the nearest integer, so that for each integer
expression value there are empirical distributions over end-read and tail-read
counts. To test the hypothesis that miRNAs tend to have either corresponding
end-reads or tail-reads, but not both, to a larger degree than can be expected by
chance, I run a simulation by sampling random end-read and tail-read counts for
each isomiR based on its expression. Some example simulation results are shown
in Figure 5.13 a). To compare the data produced by the simulations to the result
presented in Figure 5.12 a linear regression line is fitted to to each simulation
outcome. Figure 5.13 b) shows the distribution of fitted linear regression slopes
for 1000 simulations. The slope from 5.12 is marked in red, and can be seen to
be consistent with the simulation results.

a) b)

Figure 5.13: End-reads vs tail-reads simulations. In a): The outcome of six
example simulations. In b): The distribution of fitted linear regression slopes for
1000 simulations. The red line shows the slope of the regression line from Figure
5.12.

The conclusion from this comparison of end-reads and tail-reads, is then that
there is no significant lack of overlap between which isomiRs have matching end-
reads and which isomiRs have matching tail-reads.
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Summary and Future Work

This chapter first gives a summary of the presented work, before looking at
possible future work.

6.1 Summary and conclusion

This project was started from the goal of improving upon the results obtained in
[Mossin, 2013], by taking observed isomiR variations into consideration when pre-
dicting Ago2-knockout expression changes. From working with the raw sequenc-
ing output from an Ago2-knockout experiment I obtained sample read counts for
individual isomiR sequences, and analysed each sequence for differential expres-
sion. From this analysis, I constructed an SVM classifier for determining whether
an isomiR would be up- or down regulated in Ago2-knockout cells. Given that
proper care is taken in handling bias from highly similar isomiRs, the classifier
is not successful. As the classifier is constructed from features derived from se-
quence content and pre-miRNA base-pairing, this suggests expression changes in
Ago2-knockout is primarily determined by other factors.

I have also presented an analysis on whether there are miRNAs where isomiR
variants experience significantly different Ago2-knockout expression changes. To
this end, I developed a modeling framework based on fitting normal distributions
to the differences seen between pairs of isomiRs. I concluded that although some
pairs of isomiR show quite different expression changes, overall the differences

63
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appear to be due to natural variation and multiple testing.

Working directly with the sequencing data also led me to discover a group
of short ∼ 10 nt reads that align to mature miRNAs. For the majority of these
reads, the alignment was found to coincide with the 3’ end of the mature se-
quence (termed “end-reads”). Interestingly, this result is found both in wildtype
and Ago2-knockout samples. This implies end-reads are not products of Ago2-
cleavage, and the likely explanation is that they are produced from a different
degradation process. End-reads are observed for a large number miRNAs, though
the numbers differ significantly both between miRNAs and between isomiRs of
the same miRNA. I attempted to find sequence features differing between se-
quences having many and few/none corresponding end-reads, but found no sig-
nificant results.

Working under the hypothesis that end-reads are products of a miRNA degra-
dation process, I further analysed the project data for isomiRs with 3’ non-
templated A/U-tails, which previously have been suggested to affect miRNA
stability and degradation. I found that whether a miRNA experiences 3’ tailing
is affected by position specific nucleotide preferences at the 3’ end, and that these
preferences also cause differences between isomiRs of the same miRNA. This could
potentially represent a biologically relevant difference between isomiRs. Finally,
I looked at whether miRNAs with corresponding end-reads are less likely to be
targeted by 3’ tailing, and vice versa, but found no evidence of this.

6.2 Future work

In this section I will discuss areas where the work of the report can be either
improved or extended.

Other features affecting Ago2-knockout expression

It can be argued that the problem of predicting differential expression is more
naturally modeled as a regression problem, since the fold change observed for
each sequence is a continous variable. But because the classification results I
have obtained are so weak, it seems likely sequence features are of little im-
portance in affecting the expression change. Simply substituting regression for
classification should therefore not be expected to perform well. But of course,
the extreme differences in expression change must have some cause. Future work
should therefore be focused on investigating other possible features, e.g. are there
strong correlations within miRNA families?
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Modeling of differential expression differences between isomiRs

In section 5.2 I concluded that isomiRs of the same miRNA generally seem to
experience the same expression changes in Ago2-knockout, and that the differ-
ences seen between some isomiRs were likely a result of multiple testing. But
the modeling framework I used is obviously rather simple, and as described in
chapter 3 on related work, similar problems have previously been treated using
statistically more sophistacted techniques. It would be interesting to apply the
GLM-based method described in chapter 3 for a more robust analysis.

End-read/isomiR mapping

The fact that an end-read can not be mapped uniquely to an isomiR poses a
problem when looking at which isomiRs have corresonding end-reads and which
do not. When comparing sequence features between these two groups of isomiRs,
I took the straightforward approach of first finding all isomoRs such that the
alignment coincides perfectly with the isomiR 3’ end, and then used the most
highly expressed isomiR of these to compute sequence features. An alternative
approach could be to model the problem in a probabililistic way, where each
isomiR aligning with a short-read is given some probability of being the source of
the short-read. This probability could depend on a number of factors, including
isomiR expression and the offset of the alignment,

Generality of end- and tail-read results

Perhaps the most natural first step for continuing the work of this report, is
to extend the work on end- and tail-reads for more datasets. Especially more
evidence for the universality of end-reads would be very interesting. Sequencing
data from published miRNA experiments can be obtained from public databases
such as ArrayExpress1. I have tried to write the project code in such a way that
new datasets can be processed with little manual work, making it possible to
automatically perform the same analysis on a large number of datasets.

1www.ebi.ac.uk/arrayexpress/
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Appendix

A Isomir fold-change figures

Figure A.1: IsomiR Ago2-KO fold changes. See the description in Figure A.3.
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Figure A.2: IsomiR Ago2-KO fold changes. See the description in Figure A.3.
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Figure A.3: Ago2-knockout log2 fold-changes for isomiRs of miRNAs where there
is atleast one isomiR pair showing a significant difference in fold-change, as illus-
trated and defined in Figure 5.2. The “high” and “low” isomiRs that together
forms the most significant pair for each miRNA are shown in red and blue, re-
spectivly. The average expression for these two isomiRs are also shown in the
legend boxes in the upper right corner of each plot. The data for mmu-miR-10a-
5p, which has 30 different observed isomiRs, is not included due to the limited
space available for each plot.



B Features derived from IsomiR-pairs compari-
son

Feature p-value counts
C at -12 0.029 (7, 35), (17, 25)
C at -6 0.049 (12, 30), (4, 38)

C at -10 0.049 (16, 26), (7, 35)
Base-pair at -13 0.049 (38, 4), (30, 12)

Table B.1: Features with p-values < 0.05 from the GCF isomiR-pairs comparison.
Negative positions indicate the position is counted 3’ to 5’. Positions are 1 index,
i.e. 1 is the first 5’ position and -1 is the first 3’ position. The numbers in the
counts column indicate for the number of isomiRs from the “high” (i.e. high
Ago2-KO fold-change) and “low” groups, respectivly, that have and do not have
a given feature: The first row the table table shows that there are 7 isomiRs from
the high group with a C at position -12, and 35 isomiRs from the same group
with some other base at position -12. Similarly for the “low” group, the numbers
are 17 and 25.

Feature p-value counts
G at -6 0.006 (5, 39), (17, 27)

Table B.2: Features with p-values < 0.05 from the DOC isomiR-pairs comparison

Feature p-value counts
C at -12 0.0001 (2, 36), (17, 21)
A at -12 0.010 (13, 25), (3, 35)
A at -14 0.012 (11, 27), (2, 36)
C at -10 0.025 (17, 21), (7, 31)

Base-pair at -13 0.027 (36, 4), (27, 13)
G at -2 0.045 (16, 22), (7, 31)

A at -10 0.047 (4, 34), (12, 26)

Table B.3: Features with p-values < 0.05 from the GH isomiR-pairs comparison



C End-read analysis features

Feature p-value counts
G at -3 0.004 (20, 85), (34, 55)
C at -5 0.010 (32, 73), (13, 76)
G at -8 0.015 (20, 85), (31, 58)
G at 16 0.022 (20, 85), (30, 59)
G at 1 0.023 (3, 102), (10, 79)
C at -6 0.025 (25, 80), (10, 79)
Base-pair at -11 0.027 (61, 28), (87, 18)
C at -11 0.029 (14, 91), (23, 66)
T at -8 0.030 (32, 73), (15, 74)
A at 13 0.036 (22, 83), (31, 58)
T at 10 0.038 (23, 82), (32, 57)
T at 8 0.039 (30, 75), (14, 75)
G at 2 0.047 (27, 78), (12, 77)
A at 9 0.047 (15, 90), (23, 66)
Base-pair at -9 0.048 (83, 6), (88, 17)
A at -1 0.049 (22, 83), (9, 80)

Table C.1: Features with p-values < 0.05 from the CH12 “global” clustering
analysis of end-reads. Positions are 1 indexed, i.e. 1 is the first 5’ position and -1
is the first 3’ position. The numbers in the counts column indicate for the number
of isomiRs from the “high” (i.e. many end-reads) and “low” groups, respectivly,
that have and do not have a given feature: The first row of the table shows that
there are 20 isomiRs from the high group with a G at position -3, and 85 isomiRs
from the same group with some other base at position -3. Similarly for the “low”
group, the numbers are 34 and 55.
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Feature p-value counts
G at -11 0.009 (22, 30), (9, 43)

Base-pair at -13 0.021 (45, 7), (34, 18)
G at -2 0.024 (25, 27), (13, 39)
G at -3 0.037 (12, 40), (23, 29)
T at -3 0.040 (18, 34), (8, 44)
A at -2 0.041 (3, 49), (11, 41)

Table C.2: Features with p-values < 0.05 from the CH12 “pair-based” clustering
analysis of end-reads.

Feature p-value counts
T at 4 0.014 (28, 95), (3, 44)

Base-pair at -1 0.014 (44, 3), (95, 28)
G at 6 0.036 (29, 94), (19, 28)
C at -7 0.037 (24, 99), (3, 44)

Table C.3: Featuxres with p-values < 0.05 from the GCF “global” clustering
analysis of end-reads.

Feature p-value counts
C at -1 0.004 (0, 23), (8, 15)

Table C.4: Features with p-values < 0.05 from the GCF “pair-based” clustering
analysis of end-reads.
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D Tail-read analysis features

Feature p-value counts
A at -3 8e-05 (30, 55), (18, 126)
A at -1 0.0001 (9, 76), (48, 96)
C at -1 0.001 (27, 58), (19, 125)

C at -13 0.009 (11, 74), (41, 103)
G at 1 0.018 (9, 76), (4, 140)

G at -4 0.022 (31, 54), (32, 112)
G at -10 0.027 (14, 71), (43, 101)
G at 12 0.032 (16, 69), (46, 98)
T at -13 0.034 (32, 53), (34, 110)
T at -1 0.042 (36, 49), (41, 103)
C at 1 0.045 (16, 69), (45, 99)

A at -6 0.049 (21, 64), (20, 124)

Table D.1: Features with p-values < 0.05 from the CH12 “global” clustering
analysis of tail-reads. Positions are 1 indexed, i.e. 1 is the first 5’ position and -1
is the first 3’ position. The numbers in the counts column indicate for the number
of isomiRs from the “high” (i.e. many tail-reads) and “low” groups, respectivly,
that have and do not have a given feature: The first row of the table shows
that there are 30 isomiRs from the high group with an A at position -3, and 55
isomiRs from the same group with some other base at position -3. Similarly for
the “low” group, the numbers are 18 and 126.

Feature p-value counts
C at -1 5e-11 (45, 67), (5, 107)
A at -1 2e-10 (8, 104), (49, 63)
A at -3 0.0004 (37, 75), (14, 98)
G at -4 0.0008 (41, 71), (18, 94)

C at -13 0.017 (23, 89), (40, 72)
G at -1 0.019 (15, 97), (30, 82)
T at -1 0.032 (44, 68), (28, 84)
T at -8 0.0336 (31, 81), (17, 95)
G at -3 0.047 (22, 90), (36, 76)

Table D.2: Features with p-values < 0.05 from the CH12 “pair-based” clustering
analysis of tail-reads.
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Feature p-value counts
C at -1 3e-05 (24, 50), (12, 127)

A at -11 0.0004 (26, 48), (19, 120)
A at -1 0.002 (6, 68), (36, 103)
A at -3 0.004 (21, 53), (16, 123)
A at -6 0.016 (21, 53), (19, 120)
C at -3 0.0187 (8, 66), (34, 105)
C at -6 0.025 (10, 64), (38, 101)

A at -14 0.028 (24, 50), (26, 113)
C at -12 0.029 (21, 53), (21, 118)

G at 7 0.032 (9, 65), (35, 104)
T at -2 0.034 (18, 56), (54, 85)
G at -9 0.038 (14, 60), (45, 94)
T at -4 0.041 (15, 59), (47, 92)

T at -14 0.043 (16, 58), (49, 9)

Table D.3: Features with p-values < 0.05 from the GCF “global” clustering
analysis of tail-reads.

Feature p-value counts
C at -1 8e-08 (32, 47), (4, 75)
A at -1 0.0001 (5, 74), (24, 55)
A at -3 0.049 (22, 57), (11, 68)

Table D.4: Features with p-values < 0.05 from the GCF “pair-based” clustering
analysis of tail-reads.
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