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Oppgavetekst 
 

 
Bakgrunn og målsetting 

 

Gjennom at EUs energidirektiv ble underskrevet har Norge og Sverige forpliktet seg til 

å bygge ut over 26 TWh fornybar energi. For å få fart på utbyggingen har Norge og 

Sverige innført såkalte elsertifikater. Elsertifikater tildeles også for økt energi-

produksjon som følge av forbedring av eksisterende vannkraftverk. Dette innebærer at 

man må måle virkningsgraden både før og etter oppgradering av kraftverk. Måling av 

kraftverk med lave fallhøyder kan være problematisk både med tanke på økonomi og 

nøyaktighet. 

 

I prosjektoppgaven har kandidaten undersøkt og beskrevet metoder for måling av 

virkningsgrader ved lave fallhøyder. 

 

Under prosjektarbeidet har han diskutert påvirkning av hastighetsfordelingen inn mot 

turbinen. Det er av stor interesse, spesielt for lavtrykksturbiner, å se nærmere på 

hvordan vannveidesignene påvirker innløpsbetingelsen for turbinen og dermed 

påvirker virkningsgraden 

 

 

Oppgave bearbeides ut fra følgende punkter 

 

1. Analysere hvordan skjevt hastighetsprofil kan gi årsak til lav virkningsgrad 

 

2. Skaffe en oversikt over hvordan og i hvilken grad ulike rørbendgeometrier 

  påvirker strømningsforhold og hastighetsfelt. 

 

3. Simulere strømning gjennom en turbins spiraltromme og stagskovler hvor  

  innløpsbetingelsene er definert av vannveien. 

 

4. Planlegge gjennomføring av målinger 

 

 

Oppgaven gitt:   14. januar 2013 

Hovedveileder:   Torbjørn Kristian Nielsen, EPT 

 





 



 

 

Problem description 
 
 

Background and goal 

 

After the European Union directive called the “Renewables Directive” (2009/28/EC) 

was signed, Norway and Sweden have committed themselves to increase the renewable 

energy production by another 26 TWh. In order to stimulate this increased production, 

Norway and Sweden have implemented so-called “el-certificates”. El-certificates are 

also granted for the increased energy production following improvement of existing 

hydropower plants. This involves measuring efficiency both before and after upgrading 

the actual power plant. Carrying out measurements at low head power plants may be 

challenging both economically and with respect to the measurement accuracy. 

 

During the specialization project, the candidate investigated and described methods for 

efficiency measurements at low head power plants. 

 

During the author's specialization project (Augustson, 2012), the effect of bends on 

velocity profiles, and the importance of the velocity distribution at the inlet of turbines, 

were briefly discussed. It is of great interest, especially concerning low head turbines, 

to look closer into how conduit designers affect the inlet conditions of the turbine, and 

hence the turbine efficiency. 

 

 

Work description 

 

1. Analyse how skewed velocity profiles may cause low efficiency. 

 

2. Get an overview of how and to which extent various bend geometries affect    

  flow conditions and velocity fields. 

 

3. Simulate the flow through a spiral casing including stay vanes, using flow  

  conditions determined by the conduit geometry. 

 

4. Plan execution of measurements 

 

 
Task given:  January 14, 2013 

Supervisor:  Torbjørn Kristian Nielsen, EPT 
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Sammendrag 
 

 
Både tidligere eksperimenter og CFD-simuleringer viser at bend har betydelig 

innvirkning på hastighetsfeltet nedstrøms, spesielt ved å danne såkalte «skjeve 

hastighetsprofiler». Basert på simuleringene utført i OpenFOAM under arbeidet med 

denne oppgaven, har de aksielle hastighetsprofilene nedstrøms bend med utvalgte 

geometrier blitt plottet, og beskrevet i mer detalj enn forfatteren har kunnet finne i 

tidligere arbeider. Funnene ble delt inn i karakteristikker for hastighetsprofiler i «Plan 

AA» og Plan BB», som er definert i Figur 2.1, mens bend-simuleringene ble utført på 

fire ulike bendgeometrier med to ulike vinkler og to ulike relative radier, som er 

oppsummert i Tabell 4.1. 

Generelt sett ble det observert at større bendvinkler og mindre relativ radius medført 

større skjevhet i hastighetsprofilene. Bend med små relative radier har ofte skarpere 

konvektive hastighetsgradienter, dvs. større endring i hastighet over posisjon, spesielt 

like etter utløpet av bendet. 

Ved 45-gradersbend (relativt liten bendvinkel), ser innflytelsen av å bruke ulike relative 

radier (f. eks. R/r=2 vs. R/r=8) ut til å ha mindre innvirkning på hastighetsfeltets 

skjevhet enn den har ved 90-gradersbend. 

 

En rekke simuleringer ble utført på et mesh av NTNUs Tokke-spiraltromme-modell, 

ved bruk av ANSYS til meshing og CFX til simulering og post-prosessering. Radielle 

hastighetsprofiler ved utløpet av stagskovlene ble plottet mot den vinkelbaserte 

posisjonen ved utløpet. Som ventet, gjorde de 14 stagskovlene at hastighetsprofilet ble 

delt opp i 14 «topper» (se Figur 5.4.3.2a og b), hver tilsvarende en av de 14 

stagskovlkanalene som vannet passerer gjennom på vei mot ledeskovlene, og tilslutt 

inn i løpehjulet. Basert på plott av radielle hastighetskomponenter, ser det ut til at det 

oppstår en generell form på hvert hastighetsprofil, som ser ut som en enkel, skjev, 

«hoggtann-formet» topp. Hoggtann-formen til hvert hastighetsprofil skyldes en 

skjevhet mot innsiden av kanal-kurvaturen, der gradienten til den radielle hastigheten 

over vinkelbasert posisjon (
𝜕𝑢𝑟

𝜕𝜃
) er større på innsiden av kanalkurvaturen enn utsiden. 

Dette fenomenet er veldig likt det skjeve hastighetsprofilet i Plan AA, som oppstår like 

etter at et hastighetsfelt passerer innløpet til et bend, før det skifter side og heller mot 

siden som tilsvarer utsiden av bendkurvaturen. 

Selv om spiraltromme- og stagskovl-designet til Tokke-spiraltromme-modellen oppnår 

lignende radielle hastighetsprofiler fra hver kanal, varierer hastighetenes størrelser, og 

dermed volumstrømmen, gjennom hver kanal mer enn det som antageligvis er 

optimalt. F. eks. har peak-hastighetene gjennom første og siste kanal, some er kanalene 

med henholdsvis høyest og lavest peak-hastighet, et absolutt peak-hastighetsforskjell 

på 25%. 

  



 

 

      

Abstract 
 

 
Both previous experiments and CFD simulations show that bends have a significant 

influence on the downstream flow field, especially by causing so-called “skewed ve-

locity profiles”. Based on the simulations carried out in OpenFOAM during this thesis, 

the axial velocity profiles downstream of bends of a few selected geometries have been 

plotted and described in more detail than what the author has managed to find in previ-

ous work. The findings were divided into characteristics of velocity profiles in “Plane 

AA” and “Plane BB”, which are defined in Figure 2.1, while the bend simulations were 

carried out on four different bend geometries of two different angles and two different 

relative radiuses, which are listed in Table 4.1. 

In general, it was found that a sharper bend angle and a smaller relative radius lead to 

more skewness in the velocity profiles. Bends with small relative radiuses also tend to 

have sharper convective velocity gradients, i.e. sharper change in velocity over change 

in position, especially shortly after the outlet of the bend. 

In the case of the 45 degree bend (relatively small bend angle), the influence of using 

various relative radiuses (e.g. R/r=2 vs. R/r=8) seemed to make less impact on the ve-

locity field skewness than that of the 90 degree bend.  

 

A number of simulations were carried out on a mesh of the NTNU Tokke spiral casing 

model, using ANSYS for meshing and CFX for simulation and post-processing. Radial 

velocity profiles at the outlet of the stay vanes were plotted against the angular position 

at the outlet. As expected due to the effect of the 14 stay vanes on the velocity distribu-

tion, the velocity field appeared divided into 14 velocity profile “peaks” (see Figure 

5.4.3.2a and b), each corresponding to one of the 14 stay vane channels that the water 

passes through on its way towards the guide vanes, and eventually into the runner. 

Based on the plots of the radial velocity components, it appears that the general shape 

of each velocity profile looks like a single, skewed and “fang-shaped” peak. The fang-

shape of each profile is caused by a skewness leaning towards the inner curve of the 

channel curvature, where the gradient of the radial velocity over angular location (
𝜕𝑢𝑟

𝜕𝜃
) 

is larger at the inner part of the channel than at the outer part. This phenomenon is very 

similar to the skewed velocity profile in Plane AA that occurs shortly after a flow field 

enters the inlet of a bend, before it switches and starts skewing towards the side corre-

sponding to the outer curve of the bend curvature. 

Although the spiral casing and stay vane design of the Tokke spiral casing model suc-

cessfully achieves similar radial velocity profile shapes from each channel, the magni-

tude of the velocities, and thus the volumetric flow, going through each channel, varies 

more than what should be optimal. E.g., the peak velocities going through the first and 

the last channel. which are the channels with the lowest and highest peak velocity, re-

spectively, have an absolute velocity difference of about 25%.  
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Nomenclature 

 
Latin symbols 

A Near universal constant for outer velocity profile 

B Near-universal constant for inner velocity profile 

C Coefficient of the power-law overlap formula; 

 constant 𝐶𝜇 ≈ 0.09 for estimating turbulent dissipation rate 

c Absolute water velocity       m/s 

d Hydraulic diameter       m 

f Darcy friction factor 

g Gravitational acceleration      m/s
2
 

h Pipe head loss        m 

k Turbulent kinetic energy      m
2
/s

2
 

𝑙 Turbulent length scale       m 

L Pipe length        m 

V Average flow velocity       m/s 

p Pressure        Pa 

P Kinematic pressure       m
2
/s

2
 

𝑅𝑒𝐷 Reynolds number,  𝑉𝑑/𝜈 

T Turbulence intensity        

u Local velocity �̅�; wall-friction velocity 𝑢∗;     m/s 

   tangential velocity 𝑢2 of runner; velocity fluctuations 𝑢′;  

 mean flow velocity 𝑢𝑎𝑣𝑔   

𝑈 Stream velocity 𝑈e; mean flow velocity 𝑈ref    m/s 

𝑦 Distance perpendicular to the wall     m 
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Greek symbols 

𝛼 The exponent of the power-law overlap formula 

𝛥 Difference/loss (𝛥𝑝 = Pressure loss)  

𝛿 Velocity boundary-layer thickness     m 

𝜖 Turbulent dissipation rate      W/kg 

𝜅 Kármán constant (≈ 0.41) 

𝜈 Kinematic viscosity       m
2
/s 

𝜌 Density         kg/m
3
 

 

 

Subscripts 

avg Average value (e.g. average flow velocity 𝑢𝑎𝑣𝑔) 

D Stating that the Reynolds number 𝑅𝑒𝐷 is based on the pipe diameter 

f Caused by friction (e.g. the pipe head loss ℎ𝑓) 

i Related to intensity (e.g. turbulence intensity 𝑇𝑖) 

𝜇 Separates the dissipation rate constant 𝐶𝜇 ≈ 0.09 from the power-law 

   coefficient C 

2 Used in Chapter 2.4 to denote flow characteristics at the inlet of a runner 

 

 

Superscripts 

̅  Time-average (e.g. time-averaged local velocity �̅�) 

∗ Used to separate friction velocity 𝑢∗ from local velocity �̅� 

+ Used to specify that 𝑢⁺ and 𝑦⁺ specify dimensionless velocity and  

         distance, respectively 

∗  Used to specify that 𝑐2
∗  is the ideal water flow velocity. 

′ Separates the root-mean-square 𝑢′ of the velocity fluctuations from     

  other forms of velocity 𝑢. 
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1 Introduction 

 

The hydraulic efficiency of a hydro power plant is a measure of how well the power 

plant is able to transfer the potential energy of the water to mechanical energy in the 

runner. Two important causes of reduced hydraulic efficiency, or hydraulic losses, in a 

power plant may typically be: 

1. Losses upstream of the turbine, due to wall friction, trash racks, valves,       

   bends etc. 

2. Inefficient flow conditions in the spiral casing and runner, e.g. swirls,  

  strong secondary flows and non-uniform velocity distribution at the    

  runner inlet. 

Identifying the right causes of hydraulic losses is of great importance both when it 

comes to making good decisions concerning operation and maintenance, as well as 

concerning the actual power plant and turbine design. The ability of identifying the 

causes of hydraulic losses will usually depend on a combination of making the right 

measurements at the right places, and an accurate understanding of what is likely to be 

the cause of the losses in each specific case. There is currently a wide range of 

empirical loss factors and equations available on how to calculate to expected 

hydraulic losses, caused by e.g.: 

 Wall friction:  the Moody diagram with the Darcy-Weisbach  

   equation 

 Trash racks:  flow angle and rack design dependent loss-factors 

   with Kirschmer’s equation 

 Valves and bends: various empirical loss factors with the Darcy- 

   Weisbach equation 

However, as these empirical relations are typically based on simple assumptions and 

ideal cases, they may not always be sufficient to predict accurately how a more 

complex system of factors may interact in an actual hydro power plant. Some examples 

are the losses caused by a valve designs which have not yet been subject to extensive 

empirical testing, or the combination of two or more consecutive bends, where the 

skewed velocity field created by the first bend may cause unexpected phenomena as it 

passes through the second one. These are examples of cases where computational fluid 

dynamics (CFD) may represent a good and useful alternative to laboratory 

experiments, which may not always be feasible or practical to carry out. 
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Considering the fact that the vast majority of hydro power plants with a spiral casing 

installed will also have a bend placed somewhere upstream of the actual spiral casing, 

makes the influence of this bend on the flow conditions developing through the spiral 

casing an interesting and potentially useful field of study, when it comes to further 

understanding the factors determining the hydraulic efficiency of a hydro power plant. 
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2 Background theory 

2.1 Pressure losses in pipe flows 

 

The Darcy-Weisbach applies to duct flows of any cross-section, and for laminar and 

turbulent flows. It gives a very useful relationship between the pipe head loss hf, the 

Darcy friction factor f, the actual pipe length L, the pipe diameter d, the average flow 

velocity V and the gravitational acceleration g, and is written as follows (White, 2001, 

p. 340): 

 ℎ𝑓 = 𝑓
𝐿

𝑑

𝑉²

2g
 (2.1) 

 

 

Head loss hf may also be expressed in terms of pressure loss Δp, by the equation 

(White, 2001, p. 345): 

 𝛥𝑝 = 𝜌𝑔ℎ𝑓 (2.2) 

 

 

where ρ is the density of the water. Thus, a practical way of expressing pressure loss is 

given by combining Eq. (2.1) and (2.2): 

 𝛥𝑝 = 𝜌𝑔ℎ𝑓 = 𝜌𝑓
𝐿

𝑑

𝑉2

2
 (2.3) 
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2.2 Turbulent velocity profiles in straight pipes 

The following subchapters will summarize some important relationships occuring in 

turbulent pipe flows. Similar relationships exist for the entrance length and velocity 

profiles of laminar pipe flows, but these are not treated here as they are not considered 

relevant for this report. 

 

2.2.1 Entrance length of turbulent pipe flow 

According to an approximation for smooth walls, the entrance length Le is given by the 

relation [1]: 

 
𝐿𝑒

𝑑
≈ 4.4𝑅𝑒𝑑

1/6
 (2.4) 

 

where d is the pipe diameter and Red is the Reynolds number. 

 

2.2.2 The logarithmic overlap-law 

According to the logarithmic overlap-law there are two equations suited to describe the 

shape of velocity profiles relative to smooth, impermeable walls [2]: 

 

Inner variables: 
�̅�

𝑢∗
=

1

𝜅
𝑙𝑛

𝑦𝑢∗

𝜈
+ 𝐵 (2.5) 

 

Outer variables: 
𝑈𝑒 − �̅�

𝑢∗
= −

1

𝜅
𝑙𝑛

𝑦

𝛿
+ 𝐴 (2.6) 

 

which include the local velocity �̅�, the wall-friction velocity 𝑢∗, the distance 𝑦 

perpendicular to the wall, the kinematic viscosity 𝜈, the stream velocity 𝑈𝑒, velocity 

boundary-layer thickness 𝛿, the near-universal constants 𝜅 ≈ 0.41 and 𝐵 ≈ 5.0, and 

the pressure gradient-dependent (and possibly other parameter-dependent) constant 𝐴. 
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2.2.3 The power-law 

A new non-logarithmic formula has been proposed for the overlap law. This alternative 

overlap formula is proposed for both pipe flow and flat-plate flow, and relates the 

dimensionless flow velocity u
+
 to the Reynolds-dependent constants C and α, and the 

dimensionless distance from the wall y+, by the following equation [2]: 

 𝑢⁺ ≈ 𝐶(𝑦⁺)𝛼 (2.7) 

 

The constants C and α are acknowledged to vary with the Reynolds number Reθ, as 

follows: 

 

 𝐶 ≈ 3 + 0.62ln(Re𝜃)   and   𝛼 ≈
1.24

ln(Re𝜃)
 (2.8) 
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2.3 Axial velocity profiles in curved pipes 

To the author's knowledge, there are currently no simple analytical solutions describing 

turbulent velocity profiles in curved pipes, which do not involve solving the Navier-

Stokes equation numerically on a larger flow field. However, there are plenty of 

experimental data and numerical analyses available, and a selection of these is listed in 

the following subchapters. 

 

2.3.1. Definition of “Plane AA” and “Plane BB” 

Before presenting the velocity profiles 

that tend to occur in turbulent pipe flows, 

it is useful to define the location of the 

lines for which these velocities will be 

plotted. This is illustrated by Figure 1, 

which shows that “Plane AA” is the line 

lying parallel to the radial direction of the 

bend curvature. “Plane BB”, on the other 

hand, is perpendicular to both “Plane 

AA” and the axial direction of the pipe, 

but parallel to the bend's axis of rotation. 

It is useful to note that “Plane AA” and 

“Plane BB” will be referring to one-

dimensional lines at which the velocity 

vectors are plotted, and not planes in the 

sense of two-dimensional surfaces. The 

author has chosen to refer to these two 

lines as “Plane” because this is what they 

were referred to in the paper Prediction  

of turbulent flow in curved pipes [3] by 

Patankar, Pratap and Spalding (1974). 

 

 

Figure 2.3.1 [3]: Illustration of the 

location of Plane AA and Plane BB 
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2.3.2 Axial velocity profiles in Plane AA and Plane BB 

Figure 2 illustrates both simulated and experimental data for fully-developed axial 

velocity profiles in Plane AA and BB of a flow with a Reynolds number  

Re=8.9∙10
4
 and a relative radius R/a=25.9. The simulated data was found by Patankar, 

Pratap and Spalding [3] using the k-ε model. 

 

 

 

 

 

 

The simulated and experimental data correspond well, suggesting that the k-ε model 

yields acceptable results for this type of simulations. 

  

Figure 2.3.2 [3]: Simulated (lines) 

and experimental (dots) data for 

axial velocity through a bend 
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2.4 Runner inlet velocities 
Figure 2 shows how the direction of the absolute velocity c2 of the water flowing 

towards the runner is described by the angle α2, and that the direction β2 of the relative 

velocity into the runner is set by the design of the runner. Furthermore, the absolute 

tangential velocity u2 of the runner is restricted by the rotational velocity of the runner. 

When assuming that all the parameters α2, β2 and u2 are fixed, then there should be an 

ideal value (which we will refer to as *c2) of our absolute velocity c2 of the water. 

 

 

 

 

If we imagine that c2 at any given side of the runner inlet is higher than *c2, then the 

immediate effect of this is likely to be an increased pressure at the pressure side of the 

actual blade channel. On the contrary, if c2 < *c2, then the effect is likely to be opposite: 

a decreased pressure on the pressure side of the blade channel, and increased pressure 

on the suction side. Since c2 < *c2 implies that the flow moves slower than the blades it 

ought to pass, the effect will eventually be that the water starts extracting energy from 

the runner, rather than transferring it. 

In other words, an evenly distributed velocity field at the inlet of the Francis runner 

should be ideal in terms of hydraulic efficiency. Consequently, this becomes an 

important parameter for spiral casing design. In fact, literature states that the spiral 

casing of a Francis turbine is designed such that the velocity distribution in the 

circumferential area of the inlet to the stay vanes is uniform. [10] 

 

Figure 2.4 [11]: Velocity 

components in a Francis turbine 



 

 

9  

 

 

2.5 Using OpenFOAM 

 

2.5.1 Handling the kinematic pressure values given by  

  OpenFOAM 

When dealing with pressures in OpenFOAM, it is important to be aware of the 

somewhat unusual unit used to express them, namely m²s⁻² [3]. This is the unit of the 

so-called “kinematic pressure” P, which is given by the pressure p and the constant 

mass density ρ0, by the following relation (Wiki, n.d.): 

 𝑃 =
𝑝

𝜌0
 (2.9) 

 

Thus, when combining Eq. (2.3) and (2.9) to find an equation that gives us the 

kinematic pressure loss ΔP, the density ρ is eliminated: 

 𝛥𝑃 = 𝑔ℎ𝑓 = 𝑓
𝐿

𝑑

𝑉²

2
 (2.10) 

 

Since the Darcy friction factor does not appear to be given directly in the OpenFOAM 

code, finding a relation to allow checking whether the friction factors maintain a 

reasonable value is useful. This is done simply be rearranging Eq. (2.10) to give the 

Darcy friction factor f as follows: 

 𝑓 = 𝛥𝑃
𝑑

𝐿

2

𝑉²
 (2.11) 

 

 

2.5.2 Estimating the parameters k and ε of the k-ε model 

In order to apply the k- ε model to a specific CFD case, it is necessary to set the “inlet 

distributions” of  k and ε for the actual case. If measurements of k and ε are not 

available, and relevant values are not available from literature, it is possible to obtain 

crude approximations for k and ε in internal flows, based on the turbulence intensity Ti 

and the characteristic length (or equivalent pipe radius) L of the equipment. 
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Estimating the turbulent kinetic energy k 

The turbulent kinetic energy k is then given by [5]: 

 𝑘 =
3

2
(𝑈ref𝑇𝑖)² (2.12) 

 

where Uref  is the mean flow velocity. The turbulence intensity Ti is given by [6]: 

 𝑇𝑖 = 𝐼 ≡
𝑢′

𝑢𝑎𝑣𝑔
= 0.16(𝑅𝑒𝐷)−1/8 (2.13) 

 

where u' is the root-mean-square of the velocity fluctuations, 𝑢𝑎𝑣𝑔 is the mean flow 

velocity, and 𝑅𝑒𝐷 is the Reynolds number. 

 

 

Estimating the turbulent dissipation rate ε 

The turbulent dissipation rate ε is estimated by: 

 휀 = 𝐶𝜇
3/4 𝑘3/2

𝑙
 (2.14) 

 

where 𝐶𝜇 ≈ 0.09 is an empirical constant, k is the turbulent kinetic energy from (1.8), 

and l is the turbulence length scale. 

 

In fully developed duct flows, calculating an approximated turbulent length scale l may 

be as simple as: 

 𝑙 = 0.07𝑑 (2.15) 

 

where 𝑑 is the hydraulic diameter of the duct. 

 

When it comes to wall-bounded flows in which the inlets involve a turbulent boundary 

layer, one depend on the boundary layer thickness δ99 to calculate the turbulence length 

scale l: 

 𝑙 = 0.4𝛿99 (2.16) 
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For a turbulent boundary layer on a flat plate, the boundary layer thickness δ is given 

by [2]: 

 
𝛿

𝑥
≈

0.37

Re𝑥
1.5 (2.17) 

 

where x is the distance travelled along the plate in the primary flow direction. 
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3 Relevant previous work 
 

The following chapter aims to be a summary of some of the most relevant work carried 

out previous to this thesis, primarily covering CFD analyses of spiral casings. 

 

3.1 “Analysis of flow in the spiral casing using a streamline 

upwind Petrov Galerkin method” 

This paper is interesting because it analyses and displays both velocity and pressure 

contours from inside the spiral casing. Unfortunately it does not seem to include the 

stay vanes in the mesh. It has, however, successfully managed to plot the so-called 

Dean vortices in the tube-shaped part of the spiral casing, as well as the velocities at 

the outlet of the spiral casing when neglecting the stay vanes. However, since the 

simulation does not include the stay vanes, it might not give an accurate estimate of the 

flow distribution between the various channels. [7] 

     

   

  

Figure 3.1.1 [7]: Mesh for the 

spiral casing, which appears to 

have been modeled without stay 

vanes 

Figure 3.1.2 [7]: Average flow 

characteristics at the outlet of the 

spiral casing, as a function of the 

angular location (polar angle) 
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3.2   “Assessment of turbulence modelling for CFD simulations 

    into hydroturbines: Spiral casings” 

In this paper, CFX 5.5.1 was applied to simulate the flow going through a model 

consisting of a 90 degree bend and the spiral casing of a Kaplan turbine. An interesting 

aspect of this thesis is the application of three different types of turbulence models: the 

two-equation models k-ε and k-ω, and a one-equation model called KE1E. In addition, 

an experimental investigation using Laser Doppler Velocimetry (LDV) had been 

carried out on a specific cross-section in the spiral casing (see Figure 3.2.3 and 3.2.4), 

and the experimental results were compared to the simulated results. 

Unfortunately, the conduit and spiral casing geometry is more box- or cake-shaped 

than a typical Francis spiral casing, and the flow direction at tha spiral casing outlet is 

vertical rather than horizontal. [8] 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.2.1 [8]: Full overview of a 

simulated mesh, with a 90 degree 

bend located in close vicinity of the 

cake-shaped spiral casing 

 

Figure 3.2.2 [8]: A close look at the mesh 

surrounding the stay and guide vanes, which 

appear as black, droplet-shaped holes in the mesh 

 

Figure 3.2.3 [8]: The location of the 

measured cross-section, seen from 

above 

 

Figure 3.2.4 [8]: A vertical cross-section of the 

left side of the Kaplan spiral casing and runner, 

with the measured cross-section coloured in 

green 
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3.3 “Structure- and fluide-borne acoustic power sources 

  induced by turbulent flow in 90˚ piping elbows” 

This paper has aimed to simulate the vibro-acoustic power spectra induced to a 90 

degree piping elbow. In this process, CFD has been applied to simulate a detailed flow 

field through the bend, and both perpendicular slices and velocity profiles have been 

plotted successfully. The main geometric parameters of the pipe are mean radius of 

curvature R=4.50'' and internal pipe diameter d=3.50'', yielding a relative radius 

𝑅 𝑟⁄ = 2 ⋅ 4.50 3.50⁄ ≈ 2.57. This relative radius lies between the two relative 

radiuses applied in Chapter 4 in this thesis, but it is interesting that the figures below 

show similar tendencies as those found in this thesis.   

  

Figure 3.3.2 [9]: Slices of velocity 

magnitude through and downstream 

of a 90 degree pipe bend 

 

Figure 3.3.4 [9]: Velocity profile, 

plotted in red, near the exit of the 

computational domain downstream 

of the pipe bend. 

 

Figure 3.3.3 [9]: Velocity profile, 

plotted in red, in the fully develop 

region upstream of the pipe bend 

 

Figure 3.3.1 [9]: Slices showing 

secondary flow pattern at outlet of 

pipe bend 

 

http://www.sciencedirect.com/science/article/pii/S0889974609001212
http://www.sciencedirect.com/science/article/pii/S0889974609001212
http://www.sciencedirect.com/science/article/pii/S0889974609001212
http://www.sciencedirect.com/science/article/pii/S0889974609001212
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4 Bend simulations using OpenFOAM 
The following chapter describes simulations that were carried out in order to get an 

overview of the influence of various bend geometries on the downstream flow. The 

simulations were carried out in OpenFOAM, both because of the flexible possibilities 

OpenFOAM yields concerning defining your own mesh, and the author’s good 

experience with this specific software. 

 

4.1 Definition of geometries 

 

The water conduits simulated in this chapter are determined 

to be shaped like two perfect cylinders, connected by a bend, 

which also has perfectly circular cross-sections. The 

parameters of the geometries described were largely chosen 

due to simplicity: Choosing round relative radiuses and bend 

angles makes it more likely that comparable experimental 

data is available, which allows to compare to the results 

yielded from the simulations.  

Table 4.1 gives an overview of the difference between the 

geometries used for various bends. The definition of the 

relative radius 𝑅/𝑟 and the bend angle 𝜙 is illustrated in Figure 2.1 in Chapter 2. Note 

that the angle 𝜙 is measured as the angular distance between the bend inlet and the 

bend outlet, thus it will equal the angle between the centerlines of the pipes upstream 

and downstream of the actual bend. 

 

          

 

 

Geometry R/r 𝜙 

I 2 45° 

II 8 45° 

III 2 90° 

IV 8 90° 

Table 4.1: Parameters of 

simulated geometries 

Figure 4.1.1: Geometry I Figure 4.1.4: Geometry IV Figure 4.1.3: Geometry III Figure 4.1.2: Geometry II 
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4.2 Pre-processing in OpenFOAM 

 
4.2.1 Defining number of cells 

The meshes were made using blockMeshDict files, as described in the recipe given in 

Appendix A. The number of cells defined in the various parts of the mesh is defined in 

the section called “blocks” in the blockMeshDict file. For the actual bend geometries, 

the “blocks” section looks as follows: 

 
blocks 

( 

 hex (0 1 2 3 4 5 6 7) (20 20 40) simpleGrading (1 1 1)  //Downstream 

  hex (4 5 6 7 8 9 10 11) (20 20 10) simpleGrading (1 1 1)  //Bend 

  hex (8 9 10 11 12 13 14 15) (20 20 120) simpleGrading (1 1 1) //Upstream 

); 
 
In each line started by “hex”, the 8 digits inside the first pair of parentheses represent 8 

vertices forming the 8 corners of a hexagonal block. In order to make sure that the 

pipes become cylindrical and not hexagonal, the “arc vertices” in Appendix A are 

added. 

The next pair of parentheses in each line represents the number of cells along each of 

the three dimensions of the blocks. The parenthesis (20 20 40) defines that the cross-

section of the downstream pipe has 20x20 (a total of 400) cells, while the final number 

40 defines that there are 40 cells in the axial direction of the pipe. Thus, the total 

number of cells for this mesh becomes: 

20 ∙ 20(40 + 10 + 120) 𝑐𝑒𝑙𝑙𝑠 = 68000 𝑐𝑒𝑙𝑙𝑠 

 
4.2.2 Defining boundary conditions 

The location of the various patches “Inlet”, “Wall” and “Outlet”, which were used in 

the simulated geometries, was defined in the blockMeshDict file. Their boundary 

conditions, however, are defined in the various files in the /0 directory. When using a 

solver for turbulent flow, like “simpleFoam” for this case, it is necessary to choose a 

turbulence model, and for this case the simple k-ε model is chosen. This model 

requires the following boundary conditions to be defined: velocity U, pressure p, 
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turbulent kinetic energy k and turbulent dissipation rate ε. These parameters have been 

defined according to Table 4.2. 

 

 

 

Parameters Inlet Wall Outlet 

Velocity U type fixedValue 

 

value 

uniform (2.5 -2.5 0); 

type fixedValue 

 

value  

uniform (0 0 0); 

type  

zeroGradient 

Pressure p type zeroGradient type zeroGradient type  

fixedValue 

 

value uniform 0; 

Turbulent 

.kinetic 

energy k 

type fixedValue 

 

 

value 

uniform 0.01107; 

type  

kqRWallFunction 

 

value 

uniform 0.01107; 

type 

zeroGradient 

Turbulent 

dissipation 

rate ε 

type fixedValue 

 

 

value 

uniform 0.002734; 

type epsilonWallFunction 

 

 

value 

uniform 0.002734; 

type  

zeroGradient 

 

 

 

  

Table 4.2: Boundary conditions at the various patches 
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4.3 Post-processing using ParaView 

 

OpenFOAM does not have its own GUI for post-processing, so this task is usually 

performed using another software called ParaView. Once all the pre-processing is done 

and the simulation has been run, it is possible to watch the results in ParaView by 

writing “paraFoam” in the terminal window. When pressing “Apply” in ParaView, the 

model will appear. Note the time-step must should be adjusted to the desired one 

(steady state in this case) for the desired results to appear.  

 

 

4.3.1 Creating Slice views as used in Chapter 4.4.1 

Now there should be a drop-down list available at the upper left area of the window, 

which in default is set to “Solid Color”, making the model grey. This drop-down list 

allows colouring the model according to velocity U or pressure p. However, until the 

model has been sliced, you will only be able the see the coloured values of these 

parameters at the surface of the model. To display the inside of the model, click 

“Filters” at the top of the window, go to “Common” and choose “Slice”. According to 

the way the geometry is set in the blockMeshDict of the actual simulations, the 

following setup must be used in the “Object Inspector” menu for the Slice: 

 

Origin  [0 ][0 ][0 ] 

Normal [0 ][0 ][1 ] 

 

Now the Slice plots in Chapter 4.4.1 should appear. 

 

 
 

  Figure 4.3.1: There is also a Slice button 

available in one of the upper toolbars. 
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4.3.2 Plotting velocity profiles as used in Chapter 4.4.2 

When adjusting the drop-down list described in the previous subchapter, make sure that 

it is set to velocity U, as the velocity is what we are aiming to plot. As also described in 

the previous subchapter, the drop-down list called “Filters” should be clicked (upper 

right corner of Figure 4.4). However, once inside Filters click “Data Analysis” and 

“Plot Over Line”. You will now be asked to define the start and end point (“Point 1” 

and “Point 2”, respectively). These coordinates will depend on the geometry your are 

plotting, and the which plane and position you desire to get your plot from. Once the 

correct start and end point is chosen, click “Apply”. In default mode, “U (Magnitude)” 

and “p” will usually be plotted automatically. 

 

 
 
When defining start and end point, you are located in the “Properties” tab of the Object 

Inspector. In order to choose which variables to plot, the colour of the plots, and their 

tags, click the “Display” tab in the Object Inspector. Since all the pipe geometries 

described in this report are parallel to the x axis after the outlet of the bend, the variable 

with the default name “U (0)” was chosen for plotting.  By double clicking at the 

desired variable in the “Legend Name”, you may choose its colour. By left clicking at 

the area where the legend name is written, you may rename the variable. Plotting 

velocity profiles similar of those in Chapter 4.4.2 should now be possible. 

  

Figure 4.3.2: Locations of the drop-down lists “Filters” 

and “Solid Color”,  the tabs “Properties” and “Display”, 

and the variables “p” and “U (Magnitude)” 
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4.4 Results from bend simulations 

 

4.4.1 Pressure and velocity fields in bends 

All of the following figures are taken from the symmetry plane of each mesh, which 

were 3D bend models. The simulations were carried out using the k-ε model, and the 

results look reasonable compared to similar simulations. 

 

4.4.1.1 45 degree bend with relative radius R/r=2     

  

       

        Figure 4.4.1.1b: Velocity field 

 

4.4.1.2 45 degree bend with relative radius R/r=8 

 

 

Figure 4.4.1.1a: Pressure field 

 

 

Figure 4.4.1.2a: Pressure field Figure 4.4.1.2b: Velocity field 
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4.4.1.3 90 degree bend with relative radius R/r=2 

 

   

 

 

 

4.4.1.4 90 degree bend with relative radius R/r=8 

 

1 

 

 

 Figure 4.4.1.3b: Velocity field 

 

       Figure 4.4.1.4a: Pressure field 

 
 

     Figure 4.4.1.4b: Velocity field 

  Figure 4.4.1.3a: Pressure field 
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4.4.2 Axial velocity profiles downstream of 

  various bend geometries 

 

The following two pages display velocity profiles downstream of bends with the same 

geometries as those displayed in the previous two pages. The location of Plane AA and 

Plane BB is the same as that given in Chapter 2.3. Along the abscissa, the values 0 and 

1 represent the inside and outside of the bend, respectively. Along the ordinate is the 

velocity [m/s], and the average velocity along the entire pipe cross-section is 3.5355 

m/s in each simulation. 

The various colours of the plots represent various axial distances from the outlet of the 

bends, for which the velocity profiles are plotted. The axial distance from the outlet of 

each bend is symbolized by 𝑥, while for each simulation, the diameter 𝐷 = 1 𝑚. These 

parameters allow forming the dimensionless parameter 𝑥/𝐷. 

Once well-developed, the velocity profiles seem to show similar characteristics as the 

plots from previous work and experiments displayed in Figure 2.2. 
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4.4.2.1 45 degree bend with relative radius R/r=2 

 

 

4.4.2.2 45 degree bend with relative radius R/r=8 

 

 

 

 

 

 

 

 
 

 
Figure 4.4.2.2a: Plane AA Figure 4.4.2.2b: Plane BB 

 

Figure 4.4.2.1a: Plane AA 

 

Figure 4.4.2.1b: Plane BB 
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4.4.2.3 90 degree bend with relative radius R/r=2 

 

 

 

 

 

 

 

 

 

 

 

4.4.2.4 90 degree bend with relative radius R/r=8  

 

 

 

 

 

 

 

 

 

 

 

  

Figure 4.4.2.4a: Plane AA 

Figure 4.4.2.3a: Plane AA 

Figure 4.4.2.4b: Plane BB 

Figure 4.4.2.3b: Plane BB 

Figure 4.4.2.4a: Plane AA 
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4.4.3 Axial velocity components plotted 

against axial distance downstream of 

various bend geometries 

 
Similarly as for the plots in chapter 4.4.2, the axial velocity u is plotted along the 

ordinate in the following subchapter, and the average velocity over the full pipe cross-

section is 3.5355 m/s. However, for the following plots the dimensionless axial 

distance x/D downstream of the bend outlet is plotted along the abscissa, covering the 

range 0 ≤ 𝑥 𝐷⁄ ≤ 20 for the 45 degree bends and  0 ≤ 𝑥 𝐷⁄ ≤ 10 for the 90 degree 

bends. 

The locations of the five velocity components plotted on the following two pages are 

defined in Figure 4.4.3.   

 

 

Figure 4.4.3: The location of the various velocity components plotted on the 

following two pages, defined in the YZ plane, relative to the pipe walls 
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4.4.3.1 45 degree bend with relative radius R/r=2 

 

 

4.4.3.2 45 degree bend with relative radius R/r=8 

 

 

Figure 4.4.3.1: When dealing with a 45 degree bend with R/r=2, the convective  

acceleration  
𝛿𝑢

𝛿𝑥
= 0 at x/D ≈ 12.6 for the “Center” velocity component. 

 

Figure 4.4.3.2: When dealing with a 45 degree bend with R/r=8, the convective 

acceleration  
𝛿𝑢

𝛿𝑥
= 0 at x/D ≈ 13.4 for the “Center” velocity component. 
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4.4.3.3 90 degree bend with relative radius R/r=2 

 

4.4.3.4 90 degree bend with relative radius R/r=8 

 
 

Figure 4.4.3.4: When dealing with a 90 degree bend with R/r=2, the convective  

acceleration  
𝛿𝑢

𝛿𝑥
= 0 at x/D ≈ 7.0 for the “Center” velocity component.  

 

Figure 4.4.3.3: When dealing with a 90 degree bend with R/r=2, the convective  

acceleration  
𝛿𝑢

𝛿𝑥
= 0 at x/D ≈ 5.5 for the “Center” velocity component. 



 

28       

5 Spiral casing simulations using CFX 
 

The following chapter describes simulations that were carried out in order to get an 

overview of the ability of NTNU’s Tokke spiral casing to distribute the inlet flow into 

the turbine equally from all sides. The simulations were carried out using ANSYS 

CFX, due to difficulties with importing CAD files into OpenFOAM, and the status of 

ANSYS as a well-established and validated simulation software. 

 

5.1 Definition and preparation of geometry 

 

A CAD model of the Tokke spiral casing model, which is currently installed at the 

Hydropower Laboratory at NTNU, has already been drawn in Pro/Engineer, and saved 

as a “.prt” file. This formed the basis for the spiral casing simulations carried out in this 

report. Initially, the CAD model was drawn to represent the solid parts of the spiral 

casing, but the model was edited to represent the internal flow volume, by PhD Bjørn 

Winther Solemslie. Once the geometry was successfully drawn, it was exported as a 

STEP file, in order to allow it to be imported into ANSYS for meshing.  

 

 

 

 

 

Figure 5.1: The internal flow volume of the Tokke 

spiral casing model, meshed in ANSYS 
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5.2 Pre-processing in ANSYS 

 

The navigation between the various parts of the processing in ANSYS is done in 

ANSYS Workbench. Once inside the Workbench, click “Import”, choose “Geometry 

file” in the drop-down list, and select the desired STEP file. If successful, you will get 

a green checkmark next to “Geometry” in your Project Schematic.  

 

5.2.1 Meshing in ANSYS 

In order to get to the Meshing software, go to “Analysis Systems” in your Toolbox and 

double-click at “Fluid Flow (CFX)”. You will now get another schematic component 

named “Fluid Flow (CFX)” in your Project Schematic, next to the one called 

“Geometry”. Each of these schematic components will have a cell named “Geometry”. 

In order to give the Geometry cell of the CFX schematic component a green 

checkmark, drag the Geometry cell from the Geometry component, and drop it in the 

Geometry cell of the CFX component. If successful, both of the cells will be checked 

green, and linked by a blue line. 

In your CFX component, there should be a cell called “Mesh”, which should be 

marked by a lightning bolt. Double-click in this cell, and a window called “Meshing” 

will be opened. If all settings are left at default, and the “Generate Mesh” button is 

pushed, the software will generate a mesh with 5 127 891 elements for the Tokke spiral 

casing model. The large number of elements is largely caused by the high 

concentration of small elements in the curvature around the stay vanes. Your “Mesh” 

cell in the Project schematic should now have a green checkmark. 

 

5.2.2 Defining boundary conditions in CFX 

The next step in the CFX component is the Setup cell. When double-clicking it, you 

will get into CFX-Pre. Once the CFX-Pre window is open, click “Insert” followed by 

“Boundary”, and give a name to the surface whose boundary condition you are about 

to specify.  

For the Inlet boundary, the “Boundary Type” should naturally be “Inlet”. The area may 

be specified simply by clicking at the desired surface, which should give the borders 

between the elements located in the inlet surface a green colour. Once “Location” is set 

correctly in the “Basic Settings” tab, go to the  
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“Boundary Details” tab, and set “Normal Speed” to 2.8645 𝑚 𝑠⁄ . This speed 

corresponds to a volumetric flow 𝑄 = 0.250 𝑚3/𝑠, when the inlet cross-section has a 

diameter 𝑑 = 0.33335 𝑚. When finished, remember to click “Apply”, before “Ok”. 

 

 

 

 

 

When defining the Outlet boundary, note that the mesh might have the outlet area 

divided into two parts. To specify both surfaces as outlet areas, hold Ctrl when 

selecting the second surface. For simplicity, set “Relative Pressure” to 0 in the 

Boundary Details tab.  

Once you have defined the Inlet and Outlet boundaries, you may define the remaining 

boundaries simply by editing the boundary called “Default Domain Default”. The wall 

boundary of the spiral casing should have the Boundary Type “Wall”. Now click 

Apply. You may rename the Default Domain to something reasonable, like “Walls”. 

When all your boundaries are defined, the Setup cell in your Project Schematic should 

have a green checkmark. The simulation may be started by double-clicking the 

“Solution” cell. 

  

Figure 5.2: What the model should look like in 

CFX-Pre after defining Inlet and Outlet boundaries. 
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5.3 Post-processing in CFX 

 

Once the simulation is finished, the post-processing may be started by double-clicking 

the “Results” cell. A window called “Fluid Flow (CFX) – CFD-Post” will open. In 

default view, the geometries in the “3D Viewer” will be limited to the borders between 

the boundaries defined during the pre-processing.  

 

5.3.1 Colour plot of the flow field inside the spiral casing 

To visualize the resulting flow field, click the drop-down list “Insert”, and choose 

“Volume Rendering”. Choose a name, choose whether you want to visualize the 

variable “Pressure” or “Velocity”, and click Apply. Now you will only be able to see 

the outer surface of the flow volume. Since we are interested in studying how the flow 

develops inside the flow volume, we will clip the spiral casing in half. This is done by 

clicking Insert and “Clip Plane”. First choose a name, then for “Method”, choose “XY 

Plane”, and set the location “Z” to 0.0 [m]. When clicking Apply, something similar to 

Figure 5.3 should appear: 

 

  

Figure 5.3:  

This figure should show up 

after applying “Volume 

Rendering” for Velocity and 

using a “Clip Plane” in 

CFX-Post. 
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5.3.2 Radial velocity plotted along the outlet of the spiral casing 

In order to plot the radial velocity given by the angular location at the outlet of the 

spiral casing, there is a number of input parameters to be defined: 

 

- The line one desires to plot the actual variables along, for which “Polyline” is a 

good solution. 

- The variable representing the angular location (referred to as “Angle”), which 

describes where the various radial velocities are located, as well as allowing to 

calculate these. 

- The variable representing the radial velocities flowing towards the runner.  

- The setup of the chart plotting the angular location vs. radial velocity. 

 

Defining the Polyline 

Go to Insert → Location → Polyline, and make the following selections: 

 

Method:  Boundary Intersection 

Boundary List : Outlet 

Intersect With: Outlet 

Now press Apply. 

 

Defining the angular location “Angle” 

For creating the variable “Angle”, first go to the tab “Expressions”, and click Insert → 

“Expression” to insert a new expression. This may be named “ExpAngle”. In the “Def-

inition” tab of the expression, write : 

 

atan2(X,Y) 

 

In this way, “Angle” will be defined as zero at the inlet of the spiral casing. Press Ap-

ply. Now go to the “Variables” tab, and click Insert → Variable, and name the variable 

“Angle”. At the “Expression” drop-down list, choose “ExpAngle”, and press Apply. 

 

Defining the radial velocities 

Insert another expression in the Expressions tab, and name it “ExpRadialvelocity”. In 

the “Definition” tab of the expression, write: 

 

-Velocity u*sin (Angle)-Velocity v*cos (Angle) 

 

Now insert a variable named “Radial velocity”, and link it to the expression “ExpRadi-

alvelocity”. Press Apply. 
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Defining the chart for plotting 

Click Insert → Chart, and the “General” tab, define “Type” as “XY”. Go to the “Data 

Series” tab, define a new data series, and define “Location” as your desired polyline. In 

the “X Axis” and “Y Axis” tabs, the variables should be defined as “Angle” and “Radi-

al velocity”, respectively. After pressing Apply, and switching to the “Chart Viewer” 

tab on the right side of the window, the chart showing “Radial velocity” plotted against 

“Angle” should appear. 
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5.4 Results from spiral casing simulations 
 

In the following subchapter, the main results from the CFD simulations of the Tokke 

spiral casing model, carried out in ANSYS CFX, are being presented. In order to 

validate the mesh independency, the simulations have been carried out using two 

different meshes with different number of cells:  

one with 1 641 075 and the other with 5 127 891 cells. The results for both of these 

meshes will be presented in the following. 

 

The pressure and velocity fields are plotted in what is referred to as the “centered” 

horizontal plane, emphasizing that the slice applied for plotting is located in the very 

middle of the vertical axis of the model, which for this model corresponds to the plane 

Z=0. 

 

 

5.4.1 Velocity fields in horizontal plane 

 

    
    

 

 

 

Figure 5.4.1a: 1 641 075-cell mesh 

 

Figure 5.4.1b: 5 127 891-cell mesh 
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5.4.2 Pressure fields in horizontal plane 

 

    

 

 

5.4.3 Streamlines below horizontal plane, with spiral casing 

surface 

 

    
 

  

Figure 5.4.2a: 1 641 075-cell mesh 

 

Figure 5.4.2b: 5 127 891-cell mesh 

Figure 5.4.3a: 1 641 075-cell mesh Figure 5.4.3b: 5 127 891-cell mesh 
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5.4.3 Radial velocity at the outlet of the spiral casing 

 
Based on the problem description this thesis is based on, one of the most interesting 

outputs from the CFD simulations of the spiral casing is the velocity distribution at the 

outlet. It was resonated in Chapter 2.4 that an even velocity distribution with flow 

velocities close to the ideal flow velocity is likely to be beneficial for the hydraulic 

efficiency of the turbine. 

 

 

5.4.3.1 Definition of angular location at spiral casing outlet 

In the figures on the following pages, the radial velocity is plotted against what is 

referred to as the “angular location” or “Angle”. This parameter is defined in the figure 

below, denoted as α. 

 

 

 

Figure 5.4.3.1: The definition of the angular location, which is being referred 

to on the following pages 
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5.4.3.2 Radial outlet velocity plotted against angular location 

 

 

Figure 5.4.3.2a: Resulting radial velocities from a simulation with a 1 641 075-cell 

mesh and an inlet velocity of 3.5355 m/s 

 

 

Figure 5.4.3.2b: Resulting radial velocities from a simulation with a 5 127 891-cell 

mesh and an inlet velocity of 2.8645 m/s 



 

38       
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6 Discussion 
 

6.1 Possible consequences of skewness and 

secondary flows at the spiral casing inlet 
 

In Chapter 2.4, the effect of a poor distribution of flow into the runner was briefly de-

scribed. References were made to literature stating that spiral casing should be de-

signed such that the velocity field into the stay vanes, and thus the runner, becomes 

uniform. In chapter 4.4.2, it was shown that especially sharp-angled bends tend to 

cause sharply skewed velocity profiles with peak velocity skewed towards the side 

corresponding to the outside of the bend in Plane AA, and a secondary on each side of 

the pipe in Plane BB. 

Since the spiral casing of a vertical axis Francis turbine is approximately symmetrical 

across its horizontal plane, it seems reasonable to assume that the formation of asym-

metrical velocity profiles along Plane AA (as defined in Chapter 2.3) in the conduit 

entering the spiral casing, may lead to asymmetrical velocity fields across the horizon-

tal plane throughout the spiral casing. 

It also seems reasonable to assume that the occurrence of two secondary flows in Plane 

BB may lead to poor velocity distribution at the runner inlet. Since the streamlines on 

each side of Plane BB in the inlet conduit tend to enter the some of the first and some 

of the last stay vane channels, respectively, one may expect to see increased flow ve-

locities in these specific channels when dealing with skewed inlet profiles in Plane BB. 

 

 

6.2 Reasons for simulating penstock and bend 

geometries isolated from spiral casing 

 

In this thesis, Chapter 4 was devoted to simulating various bend geometries along with 

straight penstocks, isolated from the spiral casing. This may seem like unnecessary 

efforts, when an important goal of the thesis is understanding how the bends influence 

the flow conditions in the spiral casing itself. However, there are two main, intercon-

nected reasons why running simulations on penstocks and bends isolated is useful: 
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1. Getting an overview of the various flow conditions that may occur as a 

result of various bend geometries 

In the previous subchapter, it was argued that skewed flow conditions into the spiral 

casing may lead to skewed flow conditions out of the spiral casing. Based on this 

assumption, the knowledge of which extent various bend geometries affect the 

downstream flow conditions may become of great interest when choosing the conduit 

bend geometry of various power plants.  

 

2.  Significantly reduced simulation run time for lower numbers of cells 

The relationship between run time and number of cells for a specific CFD case is 

sometimes challenging to predict, because it depends heavily on the implementation of 

the solution algorithm. However, according to the author’s experience, the run time 

may, in some cases, increase proportionally with the number of cells squared. I.e., 

doubling the number of cells yields four times longer run time. In such cases, limiting 

the number of cells is of great interest. Since a typical spiral casing with stay vanes is a 

far more complicated geometry than a penstock with a bend, isolating the penstock will 

reduce the run time significantly, and is especially interesting when it is desired to 

investigate a larger number of possible penstock geometries. 

 

3. The possibility of applying outlet boundary conditions from an upstream 

  simulation as inlet boundary conditions on a downstream simulation 

A common approach for simulating complex objects in CFD is dividing the object into 

smaller, less complex objects, and run the simulations separately. This may be applied 

on a penstock-spiral casing simulation by estimating the outlet flow field from a 

steady-state penstock simulation, and apply this on the inlet of a steady-state spiral 

casing simulation.  

 

Although there are several arguments for breaking large simulations into smaller ones, 

running large complete simulations of systems like a penstock-spiral casing case may 

be more accurate in some cases, especially in transient phenomena are of interest. 

Therefore, running complete penstock-spiral casing simulations is recommended for 

further work on the topic described in this thesis. 
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7 Conclusions 
 

In this chapter, the main findings during the work with this thesis are presented.  

 

 

7.1 Undesirable effects of poor velocity distribution at 

the inlet of a runner 

In Chapter 2.4, the basic velocity components at the inlet of a runner were presented, 

and it was reasoned that the magnitude of the ideal flow velocity at the inlet of the 

runner is given by the runner design and the rotational speed of the runner. Thus, an 

uneven velocity distribution at the inlet of the runner will always differ from the ideal 

velocity distribution, where the absolute flow velocity 𝑐 equals the ideal flow 

velocity 𝑐∗  at all inlet locations. 

When the flow velocity at the inlet of the runner differs from its ideal value, the flow 

velocity relative to the runner will not enter the runner parallel to the runner blades, 

which is what they would in an ideal case. Instead you will have parts of the flow field 

impinging on the runner blade, causing secondary flows to accelerate along the channel 

surface. Large formations of secondary flow are not ideal for the hydraulic efficiency 

of the turbine, as they complicate the pressure field in the runner channel, and cause 

increased friction losses. 

 

 

7.2 The influence of bends on flow conditions 

The most significant findings from the simulations carried out on bends in this thesis, 

using OpenFOAM, were presented in Chapter 4.4. One of the most obvious effects of 

applying a small relative radius (R/r=2 in this case) is the tendency of the velocity 

profiles in Plane AA to become skewed towards the inner side of the bend, before 

shifting and bending towards the outer side relative to the bend. (The inner and outer 

side relative to the bends correspond the left and right side, respectively, of the Plane 

AA plots in chapter 4.4.2.) This changed location of the peak velocity occurs over a 

distance of 𝑥/𝐷 ≤ 0.5 for all small relative radius simulations carried out in this thesis. 

This involves sharp convective velocity gradients, 
𝛿𝑢

𝛿𝑥
, and suggests that the flows 

occurring after bends of small relative radiuses are more chaotic than those occurring 

after bends of larger relative radius. 
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When comparing bends with a sharp angle (90˚ in this case) to bends with a smaller 

angle (45˚), the sharp angle bend tends to result in sharper convective velocity 

gradients in both Plane AA and Plane BB. Interestingly, the 90 degree bends develop 

velocity profiles that become skewed to such an extent that they develop two inflection 

points, even in Plane AA. The inflection point in the velocity profiles involve 
𝜕2𝑢

𝜕𝑦
= 0, 

where the parameter y is located along the abscissas of the Plane AA plots in Chapter 

4.4.2. 

In Plane BB after all of the bends simulated, a local minimum velocity tends to occur 

in the middle of each velocity profile, while a local maximum occurs on each side of 

the velocity profile. This might be compared to having two secondary flows going 

through the flow side by side, and the phenomenon clearly creates the largest second-

ary flows after the bends with sharp angles (90˚). It might be speculated whether these 

secondary flows might contribute to poor flow distribution at the outlet of the spiral 

casing. 
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8 Further work 

 
8.1 Validation of the Tokke spiral casing model simulations 

 

Validation is essential when determining whether specific CFD simulations are 

yielding an accurate picture of the flow phenomena in the case that is desired to 

investigate. According to NASA, validation is defined as “the process of determining 

the degree of which a model is an accurate representation of the real world from the 

perspective of the intended use of the model”. [15] 

Considering that the Tokke spiral casing model is available in the Hydropower 

Laboratory at NTNU, along with some instruments for velocity and pressure 

measurements, there seems to be great opportunities available for verifying the results 

from this thesis, and from other simulations related to the topic. Indeed, during spring 

2013, while this thesis was written, another thesis called “Pressure pulsations and stress 

in a high head Francis model turbine” (written by Julie Mari Hovland) involved 

carrying out pressure measurements at three locations in the “vaneless space”, located 

between the guide vanes and the runner. (see Figure 8.1). It is important to note that 

steady-state CFD simulations, carried out without a runner, naturally do not simulate 

pressure pulsations, but experimental data on relative static pressure may be 

comparable. 

 

Figure 8.1 [12]: Location of pressure sensors during measurements carried out by Julie 

Marie Hovland and Ingeborg Lassen Bue during the spring of 2013. 

As the main focus of this thesis has been the velocity field, an interesting question is 
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whether the openings and setup shown in Figure 8.1 may in any way be applied for 

carrying out velocity measurements. The author does not have sufficient insight into 

the setup to determine whether this is feasible, but will still present two possible 

velocity measurement methods, with pros and cons of each method: 

 

Pitot tubes 

Pitot tubes are indeed available at the NTNU Hydropower Laboratory, and is based on 

simply measuring the difference between the stagnation pressure and the static pressure 

in the flow. A drawback is that it is not particularly suited for measuring fluctuating 

phenomena in the flow. 

 

 

Hot wire/hot film anemometers 

The advantage of applying a hot-wire/hot-film anemometers for flow measurement is 

their ability to register flow fluctuations. To the author’s knowledge, hot-wire 

anemometers for airflow have been used recently (2013) at the NTNU Fluids 

Engineering Building, e.g. during theses supervised by Professor Lars Roar Sætran. 

The drawback is that hot-wire anemometers applied on airflow are very thin and 

fragile, and it is likely that these are not applicable on water flow. However, hot-film 

anemometers should be applicable to liquids. 

 

For more information about Pitot tubes and hot-wire anemometers, the author can 

recommend the compendium “Hydraulisk måleteknikk” by Arne Kjølle [13].  

Figure 8.1.1 [17]: Setup of a basic Pitot 

tube used for velocity measurements. 

 

Figure 8.1.2 [18]: Setup of a basic 

Pitot tube used for velocity 

measurements. 
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8.2 Running complete penstock-spiral casing 

  simulations 

In Chapter 6.2, it was suggested to apply “outlet boundary conditions from an 

upstream simulation as inlet boundary conditions on a downstream simulation”. 

This would allow running the spiral casing at a wide range of possible inlet 

conditions, which should be defined according to possible penstock designs of 

interest. However, the author has yet to discover a satisfying method for 

defining complex inlet conditions in ANSYS. In a previous thesis written by 

Klemetsen [14], an elegant method for defining symmetrical inlet profiles using 

polynomial functions is described. However, converting skewed, asymmetrical 

3D velocity fields to polynomial functions seems to be a rather tricky process.  

Thus, the author would recommend future researchers to look into the 

possibility of defining the inlet field using a matrix to define the velocity field. 

The author can confirm that this option is possible using less developed CFD 

software like OpenFOAM, and this is a good reason to believe that the same 

option should be available using well-developed software like ANSYS. 

 

8.3 The influence of valve geometries on spiral casing 

  flow conditions 

During the work with this thesis, the possibility of investigating the influence of 

various valves on the velocity field running into the spiral casing was suggested 

by Professor Torbjørn Nielsen. [16] Some interesting geometries to investigate 

further could be butterfly valves or spherical valves (see Figure 8.3.1 and 8.3.2). 

                           

 Figure 8.3.1 [19]: Butterfly valve Figure 8.3.1 [19]: Spherical valve 
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Appendix A: Calculations involved in a bend 

mesh creator for OpenFOAM's blockMeshDict 

 

Introduction 

OpenFOAM's blockMeshDict is a very flexible tool when it comes to creating a 

mesh of a desired geometric mesh, while also allowing to effectively adjust the 

number of cells and cell distributions at various locations in the mesh. However, 

the disadvantage of the current blockMeshDict setup is that it is very time 

consuming to create a mesh of a 3D bend, as it requires plotting the position of 

at least 36 points in an orthogonal coordinate system, which furthermore require 

performing at least 13 trigonometrical calculations, before putting the resulting 

values into order. The purpose of this appendix is to explain how all of the 

required calculations are carried out, in order to create a blockMeshDict of 3D 

bend of any angle between 0 and 90 degrees, solely by choosing 5 input 

parameters: bend radius R, conduit diameter d, bend angle 𝜙, downstream 

conduit length Ldown and upstream conduit length Lup. 

 

                                        

 
Figure A1: A 3D 30-degree bend 

mesh created in blockMeshDict, 

featuring a relative radius R/r=1.5, 

and 5000 cells 
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The placement of the mesh in the coordinate system 

We start out by defining our Cartesian coordinate system such that the bend 

outlet cross-section is located in the yz plane at x=0. The downstream conduit is 

parallel to the x axis, such that the mesh outlet cross-section is located in the yz 

plane at x=Ldown . Furthermore, the rotational point of our bend radius will be 

set as the origin of our Cartesian cordinate system. If we carry on by defining 

the our conduit radius r=d/2, and choose that the downstream conduit will be 

constrained by the the boundaries𝑅 − 𝑟 ≤ 𝑦 ≤ 𝑅 + 𝑟and −𝑟 ≤ 𝑧 ≤ 𝑟.For 

simplicity and convenience, each of the 8 vertices defining the downstream 

conduit will have an angle of 45 degrees measured in the yz plane, relative to 

the center of the downstream conduit. This leaves us with sufficient information 

to define all of the vertices of the mesh outlet and the bend outlet: 

 

Calculating vertice coordinates 

 

Mesh outlet 

(x=Ldown  𝑦 = −𝑅 − 𝑟 √2⁄  𝑧 = −𝑟 √2⁄ )  //0 Lower-z 

(x=Ldown  𝑦 = −𝑅 − 𝑟 √2⁄  𝑧 = 𝑟 √2⁄ )  //1 Lower+z 

(x=Ldown  𝑦 = −𝑅 + 𝑟 √2⁄  𝑧 = 𝑟 √2⁄ )  //2 Upper+z 

(x=Ldown  𝑦 = −𝑅 + 𝑟 √2⁄  𝑧 = −𝑟 √2⁄ )  //3 Upper-z 

 

Bend outlet 

(x=0   𝑦 = −𝑅 − 𝑟 √2⁄  𝑧 = −𝑟 √2⁄ )  //4 Lower-z 

(x=0   𝑦 = −𝑅 − 𝑟 √2⁄  𝑧 = 𝑟 √2⁄ )  //5 Lower+z 

(x=0   𝑦 = −𝑅 + 𝑟 √2⁄  𝑧 = 𝑟 √2⁄ )  //6 Upper+z 

(x=0   𝑦 = −𝑅 + 𝑟 √2⁄  𝑧 = −𝑟 √2⁄ )  //7 Upper-z 

 

Bend inlet 

For these vertices, note that θ is our bend angle. 

 

(𝑥 = (−𝑅 − 𝑟 √2⁄ ) sin 𝜙 𝑦 = (−𝑅 − 𝑟 √2⁄ ) cos 𝜙 𝑧 = −𝑟 √2⁄ ) 

 //8 Lower-z 

(𝑥 = (−𝑅 − 𝑟 √2⁄ ) sin 𝜙 𝑦 = (−𝑅 − 𝑟 √2⁄ ) cos 𝜙 𝑧 = 𝑟 √2⁄ ) 
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 //9 Lower+z 

(𝑥 = (−𝑅 + 𝑟 √2⁄ ) sin 𝜙 𝑦 = (−𝑅 + 𝑟 √2⁄ ) cos 𝜙 𝑧 = 𝑟 √2⁄ ) 

 //10 Upper+z 

(𝑥 = (−𝑅 + 𝑟 √2⁄ ) sin 𝜙 𝑦 = (−𝑅 + 𝑟 √2⁄ ) cos 𝜙 𝑧 = −𝑟 √2⁄ ) 

 //11 Upper-z 

 

Mesh inlet 

For these vertices, note that Lup is our upstream conduit length. 

 

(𝑥 = (−𝑅 − 𝑟 √2⁄ ) sin 𝜙 − 𝐿up cos 𝜙  

𝑦 = (−𝑅 − 𝑟 √2⁄ ) cos 𝜙 + 𝐿up sin 𝜙 𝑧 = −𝑟 √2⁄ ) //12 Lower-z 

 

(𝑥 = (−𝑅 − 𝑟 √2⁄ ) sin 𝜙 − 𝐿up cos 𝜙  

𝑦 = (−𝑅 − 𝑟 √2⁄ ) cos 𝜙 + 𝐿up sin 𝜙 𝑧 = 𝑟 √2⁄ ) //13 Lower+z 

 

(𝑥 = (−𝑅 + 𝑟 √2⁄ )sin𝜃 − 𝐿upcos𝜃  

𝑦 = (−𝑅 + 𝑟 √2⁄ )cos𝜃 + 𝐿upsin𝜃 𝑧 = 𝑟 √2⁄ ) //14 Upper+z 

 

(𝑥 = (−𝑅 + 𝑟 √2⁄ )sin𝜃 − 𝐿upcos𝜃  

𝑦 = (−𝑅 + 𝑟 √2⁄ )cos𝜃 + 𝐿upsin𝜃 𝑧 = −𝑟 √2⁄ ) //15 Upper-z 

 

 

Setting blocks 

hex (0 1 2 3 4 5 6 7) 

hex (4 5 6 7 8 9 10 11) 

hex (8 9 10 11 12 13 14 15) 

 

Calculating arc coordinates 

 

Mesh outlet arcs 

arc 0 1 (x=Ldown  𝑦 = −𝑅 − 𝑟  𝑧 = 0)  //Lower 

arc 1 2 (x=Ldown  𝑦 = −𝑅  𝑧 = 𝑟)  //Middle 

arc 2 3 (x=Ldown  𝑦 = −𝑅 + 𝑟  𝑧 = 0)  //Upper 

arc 3 0 (x=Ldown  𝑦 = −𝑅  𝑧 = −𝑟) //Middle 
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Bend outlet arcs 

arc 4 5 (x=0   𝑦 = −𝑅 − 𝑟  𝑧 = 0)  //Lower 

arc 5 6 (x=0  𝑦 = −𝑅  𝑧 = 𝑟)  //Middle 

arc 6 7 (x=0  𝑦 = −𝑅 + 𝑟  𝑧 = 0)  //Upper 

arc 7 4 (x=0  𝑦 = −𝑅  𝑧 = −𝑟) //Middle 

 

 

 

Bend arcs 

arc 4 8  (𝑥 = (−𝑅 − 𝑟 √2⁄ )sin(𝜃 2⁄ )    𝑦 = (−𝑅 − 𝑟 √2⁄ )cos(𝜃 2⁄

    𝑧 = −𝑟 √2⁄ ) //Lower 

arc 5 9   (𝑥 = (−𝑅 − 𝑟 √2⁄ )sin(𝜃 2⁄ )    𝑦 = (−𝑅 − 𝑟 √2⁄ )cos(𝜃 2⁄ )

             𝑧 = 𝑟 √2⁄ ) //Middle 

arc 6 10 (𝑥 = (−𝑅 + 𝑟 √2⁄ )sin(𝜃 2⁄ )       

  𝑦 = (−𝑅 + 𝑟 √2⁄ )cos(𝜃 2⁄ )    𝑧 = 𝑟 √2⁄ ) //Upper 

arc 7 11 (𝑥 = (−𝑅 + 𝑟 √2⁄ )sin(𝜃 2⁄ )       

  𝑦 = (−𝑅 + 𝑟 √2⁄ )cos(𝜃 2⁄ )    𝑧 = −𝑟 √2⁄ )   //Middle 

 

Bend inlet arcs 

arc 8 9  (𝑥 = (−𝑅 − 𝑟)sin𝜃  𝑦 = (−𝑅 − 𝑟)cos𝜃  

  𝑧 = 0)  //Lower 

arc 9 10  (𝑥 = −𝑅sin𝜃   𝑦 = −𝑅cos𝜃   

    𝑧 = 𝑟)  //Middle 

arc 10 11  (𝑥 = (−𝑅 + 𝑟)sin𝜃  𝑦 = (−𝑅 + 𝑟)cos𝜃  

  𝑧 = 0)  //Upper 

arc 11 8  (𝑥 = −𝑅sin𝜃   𝑦 = −𝑅cos𝜃   

  𝑧 = −𝑟) //Middle 

 

Mesh inlet arcs 

arc 12 13 (𝑥 = (−𝑅 − 𝑟)sin𝜃 − 𝐿upcos𝜃 𝑦 = (−𝑅 − 𝑟)cos𝜃 +

𝐿upsin𝜃     𝑧 = 0)   //Lower 

arc 13 14 (𝑥 = −𝑅sin𝜃 − 𝐿upcos𝜃  𝑦 = −𝑅cos𝜃 + 𝐿upsin𝜃

  𝑧 = 𝑟) //Middle 

arc 14 15 (𝑥 = (−𝑅 + 𝑟)sin𝜃 − 𝐿upcos𝜃 𝑦 = (−𝑅 + 𝑟)cos𝜃 +

𝐿upsin𝜃 𝑧 = 0)   //Upper 

arc 15 12  (𝑥 = −𝑅sin𝜃 − 𝐿upcos𝜃  𝑦 = −𝑅cos𝜃 + 𝐿upsin𝜃

  𝑧 = −𝑟) //Middle 


