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Problem Description
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Abstract

The task of automated plagiarism detection is about finding out pieces of a text which have been
derived from another text. This task could require to scan a large number of documents, until
the one from which the text it stolen is found. However, this project is confined only to the
problem of finding stolen text in a given document when the original document from which it
is taken is already given to the detector which should thus only consider a comparison of these
two documents. The more refined concern of this project was to enhance the performance of
a given plagiarism detector by combining its approach with another complementary approach.
Moreover we tried to improve this system by addressing some of its deficiencies, the most
important of these being the detection of whole paragraphs
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Chapter

Introduction

1.1 Background and Motivation

Plagiarism is an old phenomenon. It has been present since humans started to tell stories and
write them down in words. It can manifest itself in different disguises, making it sometimes
difficult to infer a clear judgement about the originality of some work. The question of under
which systematic examination a work can be precisely doomed as plagiarised or not, doesn’t
have a definite answer. It is of course easy for a human reader to identify cases when the pas-
sage is a verbatim copy of another. This passage can be a whole document or even a sentence,
a phrase,or a mere metaphor or other figures of speech. The act of detecting the misdeed boils
down to identifying the lexical similarity between the texts. Detecting paraphrases of original
works also falls under the category of simple tasks; here the problem is slightly more advanced
as the content words may be exchanged with words of different lexical form but same meaning,
broadly referred to as synonyms. Here the reader has to derive the judgement by calculating
with the meaning of words. Or we could face the case when the plagiariser has stolen the struc-
ture of a passage or sentence, something which is up to some point or completely covered by
the syntax of the sentence, so here a syntactic analysis could reveal the similarity. The more
complicated case of whether a text shows clear features of influence by another, falls outside
the topic of this thesis.

The development of text processing and distributing technologies has given new advantages
to both the plagiarisers and the techniques for detecting plagiarism (16). The web provides a
vast amount of information, offering to a possible plagiarist what he now may need about a
specific topic. The increasingly improved search engines do provide this information in critical
time and the digitalized text is easily copied over in a matter of seconds. But on the other hand,
these same strengths of the technology can assist a human detector in a plagiarism-hunt. It is
impossible for a human to skip through eventually millions of source documents in reasonable,
practical time, while information retrieval systems can complete the task in short time. It is
also difficult for a human to remember details of texts he has already read, and find these same
details reproduced in a plagiarised text, while a plagiarism detection system is better suited to
find the needle in the haystack. The qualities still lacking in plagiarism systems are those of
identifying similar meanings in acclaimed different texts, or detecting an overall similar struc-
ture among large texts.
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This thesis focuses on that part of plagiarism detection that has to do with finding similar
passages between two given texts, thus skipping the step of retrieving candidate source texts
on the basis of a given suspicious text. So we are only concentrated on the problem of text
alignment between two documents where one of them has, or has not, text snippets that are
derived from the other.

1.2 Goals and Research Questions

Goal 1 Find existing solutions and methods for the plagiarism detection systems in the NLP
literature.

This goal is reached by researching the literature available, about NLP and more specifi-
cally, automated plagiarism detection systems.

Goal 2 Enhance the performance of the system described by (28) by:
e Improving the weights used in the Graph-Edit-Distance algorithm.

e Improve the precision of paragraph detection by accounting for sentences that are part of
plagiarised paragraphs but give low score of similarity.

e The system shall still scale well enough to run and be tested on the PAN data. PAN is
going to be introduced later in this paper.

e Combine the analysis of the above mentioned system (28) with the features obtained by
another algorithm that accounts for semantic similarity between text snippets.

In order to achieve this goal we have to acquire an insight into the workings of the system,
by understanding the overall architecture and the low level details of the implementation in
order to interfere in it. Moreover, a survey of the theoretical background upon which the system
is built has to be surveyed.

The fulfilment of this goal requires also an investigation in the workings of this other al-
gorithm, and the implementation that allows for an integration of these two similarity/distance
measures.

Research question 1 How to improve the detection of whole paragraphs, when sentences
adjacent to an already detected sentence, get a lower similarity score, even though part of the
plagiarised section?

Research question 2 Can graph edit distance methods, in particular the approach taken by
Rgkenes (28), be combined with methods that measure semantic relatedness/similarity of texts?

Research question 3 Given that a combination of the two methods is possible, is this done
best by adding a semantic similarity measure in the word level, or by combining the scores
derived by the two algorithms when these are given the same text passages as input? The two
approaches should be tried.

Research question 4 What are the respective advantages and disadvantages of measuring
syntactic similarity versus measuring semantic similarity?

2
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1.3 Research Method

In order to attempt an experimentation in the field, firstly the state of art of automatic plagiarism
detection systems had to be reviewed. This did also ask for a further review, that of background
material, most of which was unknown before. Most of the basic knowledge about NLP was
derived from the Jurafsky and Martin’s book on the topic (2), which was curriculum for the
“Natural Language Interfaces” course, TDT4275 !. The slides of the ”"Computational Seman-
tics” course TDT13? were also reviewed, when knowledge about Computational Semantics was
needed. Since this work relies primarily on a previous master thesis®> and the prototype system
that was developed in its context, much of the initial research was constrained by the themes
covered in it. These themes included: graph-based representation of natural language sen-
tences, graph-edit distance algorithms and the assignment problem. Since this system is built
on the assumption that it will be trained and tested by the datasets offered by plagiarism detec-
tion competition held in the PAN workshop at CLEF*, we also had to review the techniques and
concepts relevant to this workshop.

The papers produced by the previous PAN participants, have also been an important part of
the curriculum, as PAN claims to promote a state of the art situation for the plagiarism detection
techniques.

When using the web, the main keywords that were adopted in searching were :plagiarism,
plagiarism detection and text alignment. The subcategories that fall under these fields are listed
in the Table 1.2.

Of course, when doing literature research one has to pick only a portion of the articles
retrieved on a given topic. When deciding which articles would be considered relevant, the
criteria that we used for the selection were:

1. Does the article describe a solution to the problem topic we have? A time-constraint of
choosing not-too-old articles, was also applied.

2. Does the article provide commanding background material that underlies the understand-
ing of the field? In other words, is the material relevant enough to be used in the theoret-
ical part of the thesis?

Some of the articles that were cited in a given relevant article were also exploited for gain-
ing further insight. Sometimes this was necessary, as the understanding of a work that relies on
another craves knowledge of its precursor. The relevance of an article was mostly judged by
reading the abstract or introduction and/or the conclusion. When this was not enough, we had
to flip through the whole thing. Most of the articles retrieved were provided from the sources
given in Table 1.1.

Thttp://www.idi.ntnu.no/emner/tdt4275/
Zhttp://www.idi.ntnu.no/emner/tdt13/
SRgkenes,Graph-based Natural Language Processing,2012
“http://www.clef2013.org/
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Source Url

IEEE Xplore http://ieeexplore.ieee.org/Xplore/guesthome.jsp
Springer Link http://springerlink.com

CiteSeerX http://citeseerx.ist.psu.edu

Table 1.1: Sources of documents with background knowledge.

Plagiarism Natural Language Processing Plagiarism Checker
Plagiarism Dependency Grammar CaPD
Automated Plagiarism Detection Parsing

Dependency Parsing

Semantic Similarity

Language Models

Table 1.2: Keywords used in search.

1.4 Report Structure

In this section we presented the method used to explore the field. The following chapter shall
go through the concepts and definitions that are considered necessary to comprehend the rest
of the thesis. After we have showed an understanding of the basic concepts and principles that
are important to automatic plagiarism detection systems and natural language processing, some
related work of the area is introduced in the next chapter. After that we present the prototype
that is implemented to test the ideas cited in the background material. In the end an evaluation
of the system is launched. The thesis is closed with conclusions derived from the experiments
and proposals for further work.

1.5 Contributions

The work that we contributed with during this project, was that of defining the weights of depen-
dency relation substitutions, integrating the graphd-edit distance algorithm with an algorithm
that accounted for semantic distance between pairs of sentences and finally, we implemented a
strategy that merges sparse detected passages into whole paragraphs.




Chapter

Theory and Background

Plagiarism detection by an application is a topic which subsumes the even more fundamental
matter of how to make computers cope with natural language in general, may the task include
language understanding, language generation or both (9). The issue of natural language pro-
cessing has been addressed as an important aspect of artificial intelligence, since the early years
of computer science, the most important milestone being Turing’s 1950 paper "Computing Ma-
chinery and Intelligence” (6), where the Turing-test! is sketched and proposed. Using natural
language (besides reasoning, having knowledge and being able to learn) is one of the criteria to
be fulfilled in the test. This aim is hitherto addressed by trying to formalize natural language
down to the point of making it processable by the application (14). In this chapter we show,
among other things, some of these formalization techniques.

Our plagiarism detection goal can thus be transfigured into the goal of finding similarities be-
tween these formalized structures of language. How we define and measure the similarity is
strictly dependent on the specific representation chosen. Various plagiarism techniques ask
for different detection strategies. Plagiarism is a product of the human mind; it is though a
highly non-deterministic event. This thesis is confined to the goal of detecting the plagiarism
on document level, which means, finding which passages of a suspicious document correspond
to and can be claimed equivalent to passages that are to be found in some source (original)
documents. This task entails two subtasks: the first is finding the source document from which
the suspicious document has stolen the passage. The second is pointing exactly to the passage
plagiarised. Again, these two tasks can be broken down into other tasks, but in the bottom of
both of them, lie three problems: the first, also mentioned above, that of representing natural
language in computational terms.The second is that of determining when two passages are sim-
ilar enough for the case to be an instance of plagiarism. One challenge here is that plagiarism
assessment is discussable even among humans. The third, to develop techniques that measure
these similarities.

2.1 Plagiarism

This section presents what is understood by plagiarism in general and discusses some instances
of this phenomenon that are of interest to this thesis.

Thttp://plato.stanford.edu/entries/turing-test/
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2.1.1 The concept

The term plagiarism appears for the first time as early as in the 1* century, when it was coined
by the latin poet Martial, in the 1.52 passage of his ”Epistemmes” (30). It has since then been
used to define the theft of not only language artifacts, but of any work that beares authorship
and originality. We shall, however, confine our study to the detection of plagiarism in texts.
Plagiarism is the act of using someone else’s work without giving a proper recognition of its
original author. Although the concept and its connotation are familiar, it has given rise to a
variety of definitions, making thus vague the parameters that would decide if a work can be
considered as plagiarised or not. This lack of clarity in the definition also contributes to the
difficulty of automating plagiarism detection. Sometimes it can be unambiguously clear that a
certain piece of text is a mere copy of another. But plagiarists often use techniques that alienate
the new, plagiarised text from the source. Here the problem becomes more intriguing, but it still
remains decidable to a human reader who is faced with both the source and the suspicious text.
Here is a definition that lies most nearly to our understanding of the concept:

”The wrong in plagiarism lies in misrepresenting that a text originated from
the person claiming to be its author when that person knows very well that it was
derived from another source, knows that the reader is unlikely to know this, and
hopes to benefit from the reader’s ignorance.” (Samuelson, 1994)

The core phrase that serves our purposes is stating that a plagiarised text is “derived from
another source”. The task of an automatic plagiarism detector, is primarily to find out from
which source the text is taken, but also argue about the nature of the specific derivation used.
Showing what kind of plagiarism the text has been a victim of, is more persuasive than giving a
plagiarised/not-plagiarised binary classification. Upon which rules a plagiarism checker should
make its examination, is one of the oldest and still relevant research problems. So one of the
goals for the automatic detection is to find suitable, quantifiable features that can be used as
parameters in the detection (10). In the following, we show some instances of plagiarism, to
make concrete the tasks a detector has to accomplish.

2.1.2 Kinds of plagiarism

To illustrate the concept and the kind of problems we are faced with, we present here some
examples of plagiarising from a text, taken from the website of Georgetown University. > The
recycled text is typed in red, the reformulated phrases or sentences are in blue:

THE ORIGINAL PASSAGE

This book has been written against a background of both reckless optimism and
reckless despair. It holds that Progress and Doom are two sides of the same medal;
that both are articles of superstition, not of faith. It was written out of the conviction
that it should be possible to discover the hidden mechanics by which all traditional
elements of our political and spiritual world were dissolved into a conglomeration
where everything seems to have lost specific value, and has become unrecognizable

2http://gervaseprograms.georgetown.edu/honor/system/53501.html
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for human comprehension, unusable for human purpose. Hannah Arendt, The Ori-
gins of Totalitarianism (New York: Harcourt Brace Jovanovich, Inc., 1973 ed.),
p.vii, Preface to the First Edition.

EXAMPLE I: Word-for-word(verbatim) plagiarism

This book has been written against a background of both reckless optimism and
reckless despair.It holds that Progress and Doom are two sides of the same medal;
that both are articles of superstition,not of faith.Interestingly enough, Arendt avoids
much of the debates found in some of the less philosophical literature about totali-
tarianism.

EXAMPLE II: The Paraphrase

Hannah Arendt’s book, The Origins of Totalitarianism, was written in the light of
both excessive hope and excessive pessimism. Her thesis is that both Advancement
and Ruin are merely different sides of the same coin. Her book was produced out of
a belief that one can understand the method in which the more conventional aspects
of politics and philosophy were mixed together so that they lose their distinctiveness
and become worthless for human uses

EXAMPLE III: The Mosaic

The first edition of The Origins of Totalitarianism was written in 1950. Soon after
the Second World War,this was a time of both reckless optimism and reckless de-
spair. During this time, Dr. Arendt argues, the traditional elements of the political
and spiritual world were dissolved into a conglomeration where everything seems
to have lost specific value. In particular, the separation between the State and So-
ciety seems to have been destroyed. In this book, she seeks to disclose the hidden
mechanics by which this transformation occurred.

EXAMPLE IV: The “Apt Phrase”

Following the Second World War, scholars from a variety of disciplines began to
explore the nature of “totalitarianism.” One of the most pressing issues for these
writers was understanding the “essence” of totalitarianism. How, for example, is a
totalitarian regime different from an authoritarian regime? Although authors dis-
agree on the precise answer to this question, a common thread running throughout
most of the classic works on totalitarianism deals with the relationship between
State and Society. In a totalitarian state, the traditional boundaries between State
and society are dissolved into a conglomeration so that the two become indistin-
guishable.

To define the plagiarism methods, we follow (10) who distinguishes five ways of doing pla-
giarism. The list below is taken from (8):
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1. Verbatim (word-for-word) plagiarism: direct copying of phrases or passages from a
published text without quotation or acknowledgement. This is what we see in Example I and
is also the easiest to detect. The algorithm could simply identify the perfect one-to-one match
between the lexemes of the text.

2. Paraphrasing plagiarism: is the case when words or syntax are rewritten, but the source
text can still be recognised. This is illustrated in Example II. The task is more complicated for
an automated detector as the phrases are lexically different. Here is the list of transformations:

e “reckless despair and reckless optimism” — “excessive hope and excessive pessimism’.
Here we have both a change of lexicon and a switch of the word-order inside the phrase. In
this case, the algorithm would have to know how to find out that ”despair” — “’pessimism”
, “optimism” — hope and “reckless” — “excessive” are pairs of synonyms. In order to
give a high score of phrase similarity the algorithm must also ignore the order of content
words.

e “progress and doom are two sides of the same medal > — “both advancement and ruin
are the merely different sides of the same coin”
In addition to reformulation of the phrases, here we have the insertion of “merely” and
“both”. Besides equating between “progress” and “advancement”, “doom” and “ruin”
and, “medal” and “coin”, the algorithm should assign very little importance to the inser-
tion of ”both” and “merely”. One could for example argue that ”both” is in the second
sentence a semantic equivalent of ”two” in the first sentence, which is deleted. While
“merely”, as an adverb, has little to add to the meaning of the sentence. So the algorithm
should be able to judge “merely” as redundant.
While the last sentence of the Example II is completely reformulated, asking for the de-
tector to disclose the similarities by detecting the similarities between the two sentence
meanings. Here the problem of defining the meaning of a sentence computationally is
encountered. This shall be further discussed later on.

3. Plagiarism of secondary sources: When original sources are referenced or quoted, but
obtained from a secondary source text without looking up the original. We will not pay much
attention to this case, as it involves a chain comparison between texts. E.g, comparing textl
with text2 which is in turn compared to text3.

4. Plagiarism of the form of a source: Appears when the structure of an argument in a
source is copied. This can be the same case as when paraphrasing by keeping the sentence
structure and exchanging content words with synonyms as in Example II. Or merely copying
the syntactical content of a sentence, without regard to word meaning.

5. Plagiarism of ideas: Is the reuse of an original thought in a source text without de-
pendence on the words or form of the source. Assuming that ideas have a meaning, this case
could count as paraphrasing with different words. This can be illustrated by the last sentence of
Example II.

Another method, that is not listed by (10) or (8), is that of Back Translation. This consti-
tutes in translating a text, verbatim, from the original to another language and then retranslating
it back to the original with the structure, words and meaning somehow changed. In this case
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we mean machine translation, so the semantic and the syntax of the translated/retranslated text
could miss some of its accuracy after this process. (16) argues that among other factors, this
form of plagiarism is encouraged by the easiness of pursuing it, given the continuously ame-
liorating state of the online automatic translation applications. For example, by using Google
Translate®. In the case below, the application obfuscates an English sentence by translating it to
Italian and then back to English:

“They have lived here all their lives, they know the land” — “Hanno vissuto qui tutta la
vita, conoscono il territorio ”— “They have lived here all my life, know the territory” . So
Google suggests substituting “land” with “territory”.

In this thesis, we try to address the Verbatim, Paraphrasing and the Mosaic cases of plagia-
rism since, as we shall see below, they are considered by the PAN challenge (see next section)
which is used as an evaluation reference.

2.1.3 PAN and Artificial plagiarism

In order to develop an intelligent plagiarism checker, in most cases one has to train it on a large
amount of data. Test data is also needed when one has to measure the performance of the sys-
tem. It is, however, quite difficult to get hold of big sets of real plagiarism cases, as these cases
are often held secret and publishing them would ask for a permission from both the plagiariser
and the author of the original (25).

PAN (Plagiarism analysis, Author identification and Near-duplicate detection) evaluation
lab is a workshop held in the context of the annual CLEF (Conference and Labs of the Evalua-
tion Forum) # event.

The PAN evaluation lab proposes, following (25), a corpus of suspicious and source doc-
uments, where the suspicious documents are created utilising the source documents by using
three obfuscation strategies. Here sy, denotes the plagiarised passage and s denotes the source
passage. The below definitions are taken directly from (25):

e Random Text Operations : s, is created from sy by shuffling, removing, inserting, or
replacing words or short phrases at random. Insertions and replacements are taken from
the document d;;, where s, i to be inserted.

e Semantic Word Variation: s, is created from sy by replacing words with their syn-
onyms, antonyms, hyponyms, or hypernyms, chosen at random. A word is kept if none
are available.

e POS-preserving Word Shuffling: The sequence of parts of speech in s is determined and
Spig 1s created by shuffling words at random while retaining the original POS sequence.

The drawback of the artificial plagiarism, is that is does not allow us to talk about the
meaning of the sentence as a whole. It is also not reasonable to try capturing the meaning of
a word by analysing its neighbours, as there is no intentional connection between them. We
show here a fragment taken from a plagiarised document of the PAN13 data set, which has been
prone of random obfuscation. The text below is reproduced keeping the original indentation:

3http://translate.google.com
4clef2014.clef-initiative.eu
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“table alcohol” in the sake existence, and make up about 80 of all welfare that
is make. Sake like this
1s added with distilled amounts of copious concentrated intoxicant make to addition
give.

2.2 Formal Representations of Natural Language

Machines do not speak. In order for a computer application to use the knowledge that relies in
a natural language utterance, it must have it represented in a way that is suitable for processing.
This section discusses some of the techniques used to formalize natural language. Representing
linguistic knowledge is a subtopic of the the problem of knowledge representation in computer
science. As (11) show, one of the properties of knowledge representation is that of being a
surrogate, which means, being an incomplete representation of a real world concept. This
quality, or lack of quality, is also valid for the problem of representing knowledge about natural
language. What makes this problem more complicated, is the fact that natural language is
prone to containing ambiguities that occur at all levels of representation, as well as across
representation levels. These ambiguities are a source of confusion not only for a computer
application, but even for humans. The list below, taken from (5), states some instances of these
ambiguities.

e Lexical ambiguity: Appears when a given morpheme can take on different part-of-
speech roles, depending on the context. For example, light” can be a noun, as in "the
light is on” or an adjective, as in “’the package is light”.

e Structural or syntactic ambiguity: Has to do with finding out in which phrase group a
word belongs to. For example, ” I saw a man with a telescope”, here the telescope could
”be held” by the subject or by the object, and it is be debatable what the sentence actually
denotes.

e Semantic ambiguity: Many words have more than one meaning, as for example the verb
”g0”, for which we could list ten different meanings.

e Pragmatic ambiguity: Sometimes it is confusing what a phrase or sentence is hinting to.
For example, ”Can you lift that rock?” could be a yes/no question or a request to lift the
rock.

Humans resolve the lexical ambiguity by using the context defined by the sentence in which
a phrase is used. The syntactic ambiguity craves a larger context, like in the above example
it can be solved in the context of a paragraph. The semantic ambiguity above could be solved
within the sentence, while the pragmatic ambiguity asks again for a larger context. It is obvious
that the larger the context the more difficult it is to take a decision by formal means.
Another feature of language is that of being redundant, which means that phrases or whole pas-
sages have elements that they can exist without, both semantically and syntactically. As in the
Example II of section 2.1.2 above, where deleting “merely” from the sentence would not harm
it in any way.
These characteristics of natural language are kept in mind when we try to build formal repre-
sentations of it that are computationally consistent.

10



Chapter 2. Theory and Background 2.2 Formal Representations of Natural Language

2.2.1 From Texts To Tokens: Basic text processing

Expressing linguistic knowledge in a way that it can be processable by formal means is a con-
tinuously developing trend, as (14) argue. The majority of NLP systems do employ a

Below are listed the most widespread techniques of expressing text in computational terms
that are shared by the majority of systems that do natural language processing.

e Sentence partitioning: In some cases it is desirable to work within or with relations among
sentences, so whole texts are partitioned into sentences.

e POS-tagging : Part-of-speech tagging is also known as word-category disambiguation, as
it assigns a corresponding part-of- speech tag to every word in a sentence. This is done
based on the words’ definition and on the context where it is used. In computational lin-
guistics, POS-tag algorithms are divided into rule-based and stochastic. The first perform
the tagging based on a set or rules, similar to the rule-based expert systems, while the
second ones rely on probabilistic models.There are also two types of taggers: the one the
assigns syntactic roles (like subject, object, etc) and the ones that attach functional roles
(like noun, verb, etc).

e [.emmatisation: Is the process of determining the lemma of a word. Lemma denotes the
cannonical or dictionary form of a word. For example the past tense “fed” has as lemma
“feed”.

e Stopword removal: This step removes function words like articles, pronouns, prepositions
and determiners.

e Punctuation removal: This technique removes punctuation symbols.

e Parsing: This is a more complicated task as it requires both the POS-tag preprocessing
step and the lemmatisation of the text as a prerequisite for its own processing of the
sentence. Parsing means to do a grammatical analysis of the sentence and this requires a
definition of the language grammar. The three main categories of approaches to parsing
are those of :formal grammars , head-driven phrase structure grammar and dependency
parsing. A detailed representation of dependency parsing is going to be carried later on.

A central question posed by the need for formal representation is how we model natural
language in computational components. Or, in the case of a plagiarism detector: How do we
represent documents and sentences in computational terms? These concerns are addressed by
several techniques. In the following sections, we list some of these:

N-grams

N-grams are sequences of units that follow after each other consecutively. These units can be
single characters, words or even phrases.The n in n-grams denotes how many elements we have
in this structure. When talking about the similarity between two texts, n-grams can be used to
denote the number of phrasal overlaps between these texts. A question that arises in this context
is that of the size of n. A large n would help to detect larger pieces of similar text. The problem
that a large n is faced with is that of sparsity. For example in the face of paraphrasing or that of
syntactical obfuscation, the plagiarised text does not show the same consequence of words as
the original one.

11



Chapter 2. Theory and Background

Bag of Words

When the 7 in n-grams is equal to 1, then we get the bag-of-words model. This model is widely
used in information retrieval when a simple lexical representation of a document is needed (?
). Here the ordering of the words is completely lost, but we do retain the number or times a
words appears in a document. This representation is useful when we do not want to consider
word-reordering during plagiarism detection.

Vector space model

As the name suggests, the Vector Space Model (VSM), represents texts as vectors of terms. The
elements of these vectors denote the occurrence of a term in a document. These occurrence
quantifiers are defined by several methods. The simplest one is to set a 0 when the given
term does not show up in the document, and a 1, if it is present in the document. Another
quantifying scheme is the one known as #f*idf weighting, where #f denotes the term frequency
in the document, which is, how many times the given term appears in this document, while idf
stands for inverse document frequency, which denotes how many documents in the whole given
corpus do contain this term.

In the following sections we discuss techniques used to represent two central features of
language: its syntax and its semantics.

2.2.2 Representing syntax

In linguistics, language is analysed in terms of its syntax and its semantics. The syntax sets the
rules by which sentences must be constructed,i.e its grammar, while semantic is concerned with
meaning. We can use syntax to analyse the structure of a sentence and find out properties about
the syntactical relations between words in a sentence. While semantics can be used in both a
word level and text level. We can argue about the semantic relation between two words that
do or do not belong to the same sentence, but we can also talk about the meaning of a whole
sentence.

When looking for plagiarism cases, we could use syntax to find out syntactically similar
sentences. If these sentences in addition share a number of common lexemes, then they can be
easily detected as plagiarised. Semantics can be used to claim sentences that mean the same
thing, even though words can be substituted or syntactical structure may have been changed.
We shall come back to these two linguistic fields when discussing various plagiarism detection
techniques.

Dependency-based representation

Dependency grammar is a class of grammar formalisms where the syntactical relations between
the words in a sentence are expressed as dependencies. (23) states that the ”[...] dependency
syntax postulates that syntactic structure consists of lexical items linked by binary asymmetric
relations (“arrows”) called dependencies. These arrows are commonly typed with the name of
grammatical relations(subject, prepositional object, apposition, etc.) The arrow connects a head
(governor, superior, regent) with a dependent (modifier, inferior, subordinate).” Consider the
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Chapter 2. Theory and Background 2.2 Formal Representations of Natural Language

figure below:

1. I shot an elephant in my pajamas

OBJ PMOD
SBJ DETMOD NMOD DETMOD
I shot an elephant in my pajamas

Figure 2.1: An example of dependencies within a sentence.(Figure taken from nlkt.googlecode.com
https://nltk.googlecode.com/svn/trunk/doc/images/depgraph0.png)

The arrows denote the direction of the dependency from the head to the dependent. The de-
scriptions over the arrows sign the type of the relation that exist between the two nodes. A list
of these relations and their meaning can be found in (19). For example, the SBJ arrow means
that / is the subject of the verb shot, the arrow NMOD means that the preposition in is the noun
modifier of the noun elephant and so on. It results that dependency parsing turns the sentences
into directed graphs, called dependency graphs. It is worth mentioning that this representation
operates with the sentence as a unit.

Here we list some of the criteria that have been proposed for identifying a syntactic relation
between a head H and and a dependent D in a construction C taken from (23) :

1. H determines the syntactic category of C and can often replace C.

2. H determines the semantic category of C; D gives semantic specification.
3. H is obligatory, D may be optional.

4. The form of D depends on H.

This list contains a mixture of different criteria, some syntactic and some semantic. In our
work we have used the dependency relations specified in (19), which does exclusively use only
the syntactic criteria.

This kind of sentence representation is favourable for the task of detecting sentences that
are similar to each other.Since sentences are transformed into graphs, then the detection of sim-
ilar sentences can be done by using graph edit distance algorithms. The smaller the distance
between two graphs, the more similar are the two compared sentences. (28) concludes that the
problem of measuring the distance between them can be transformed to that of finding the least
cost for an assignment of changes, thus, to the assignment problem (17).

2.2.3 Representing meaning

In linguistics, semantics is the area coupled with the study of the meaning of texts. These texts
can have the form of a word, phrase, sign or symbols °. So when talking about the semantics of

Shttp://en.wikipedia.org/wiki/Semantics
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a word or a sentence we are looking for a definition of its meaning. The discussion of how we
assign meaning to a single word both individually and by using what Eco (1) calls Contracts can
soon become a philosophical one, so we shall not give much attention to the precise meaning of
(the meaning?) of a word.

The meaning is a quality of the word and we can define a relation between two words by
quantifying the relation between their meanings. Linguistics provides a list of these relations,
we are mentioning some of them that are of most practical interest:

e Homonymy: The words share a form but have unrelated, distinct meanings
e Polysemy: A polysemous word has different related meanings.

e Metonymy: It’s a form of polysemy that arises when we use a concept to denote some
similar related concept. E.g, use the name of the author when talking about his work, or
use the name of the tree when we actually mean the fruit.

e Synonymy: Different words that have the same meaning in some or all contexts.
e Antonymy: Two words that define a binary opposition, like cold/warm, long/short etc.

e Hyponymy and Hypernymy: A hyponim is a word whose meaning is included within
that of another word, its hypernym. In other words, a hyponym shares a IS-A relationship
whith its hypernym. E.g, pine is a hyponym of tree.

The relevant question is how to represent these relations formally. The following sections
discuss this question.

Taxonomies

The most ubiquitous resource that defines the meaning of a word is the dictionary. Computa-
tional approaches to the formalization of the dictionary include both ontologies and taxonomies.
Ontologies are used to represent knowledge as a ”[...]Jhierarchy of concepts within a domain”
®, They are hierarchically structured formalizations where two nodes are connected with each
other by a link that represents the relationship between them. Taxonomies are also hierar-
chical structures in which concepts are organized as nodes linked by edges. The links in the
taxonomies do also qualify the relationships between nodes. Ontologies do however define a
larger number of relationships than taxonomies, since an ontology should ideally capture the
whole knowledge that relies in a certain domain. While the type of relationship that is defined
between two directly connected nodes in a taxonomy is of IS-A type, which means that a node
can be either a parent or a child. E.g car IS-A vehicle entails that car is a child of vehicle.
Taxonomies, thus, are branched schemes which are used to classify concepts or things. The
structure of a taxonomy can be used to classify words of natural language. How words are
organized and what their connecting edges denote is specific to the taxonomy in consideration.
Semantic networks do also adopt the hierarchical form of a taxonomy. They consist of nodes
which represent concepts and edges that represent relations between concepts ’

®http://en.wikipedia.org/wiki/Ontology (computer’science)
"http://en.wikipedia.org/wiki/Semantic network
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WordNet

WordNet 8 is an example of a semantic network.It is a lexical database which is available online
and provides a large repository of English lexical items. There is a multilingual WordNet for
European languages which are structured in the same way as the English language WordNet.
WordNet was designed to establish the connections between four types of POS: noun, verb,
adjective and adverb. The smallest unit in WordNet is a synset, which represents a specific
meaning of a word. It includes the word, its explanation and its synonyms. The specific meaning
of one word under one type of POS is called a sense. Each sense of a word is in a different
synset.Synsets are equivalent to senses, structures containing sets of terms with synonymous
meanings. Each synset has a gloss which defines the concept it represents. For example, the
words night, nighttime and dark constitute a single synset that has the following gloss: the time
after sunset and before sunrise while its dark outside. Synsets are connected to one another
through explicit semantic relations. Synsets are nodes in this taxonomy and they represent
one sense of the words contained, so if a word has more than one sense it will be a member
of different synsets in various locations in the taxonomy. WordNet defines relations between
synsets and relations between word senses. A relation between synsets is a semantic relation,
while a relation between word senses is a lexical relation. The difference is that lexical relations
are relations between members of two different synsets, but semantic relations are relations
between two whole synsets. In the example below, the relation between the synset conveyance,
transport and vehicle is a semantic one, while the relation between the word automotive and car
is a lexical one. The most used relation is the hyponymy, hypernymy or the IS-A relation. It
connects the more general synsets to the more specific ones. The IS-A relation is transitive, so if
car is a kind of automotive and automotive is a kind of wheeled vehicle than car is also a wheeled
vehicle. WordNet distinguishes between common nouns and specific instances. Instances are
always leaf nodes in the hierarchies they belong to.

| abjact |
| artifact |
l instmmﬁltality' J l a;-tin:...le ]
|c::m'-.regfance. transport | | 1;'.-.=|re |
| vehicle | | table ware |
[ wheeled vehicle ] | cutlery, eating utensil |
| autnmutive:,.l.'nnmr | | bllce bicycle | %ﬁrlc |

car, auti:-:.- I I ---tl-'llﬂk J

Figure 2.2: An extract from WordNet. (Taken from %)

8http://wordnet.princeton.edu/
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Also verbs are structured in hierarchies where the verbs that lie in the bottom express the
more specific characterization of an event, like in communicate-talk-whisper. While adjectives
are arranged by using the antonymy relation. Pairs of antonyms denote their strong semantic
relation between their members but they are also associated with semantically similar ones. In
the dry-wet dichotomy, the word dry is linked to parched , arid, dessicated etc.

As mentioned, the most common practice in WordNet is to connect words that belong to the
same POS category, but a few cross-POS points do also exist. These do formalize the mor-
phosemantic links that exist between words that share a stem with the same meaning like in:
observe, observant, observatory.

Since WorNet groups the words together according to their meanings, it corresponds to a kind
of thesaurus. But, unlike a thesaurus, it can be used to disambiguate the semantics of words that
lie near each other.

2.3 Plagiarism detection techniques

The advantage of automatic detection is that of being able to determine the authenticity of a
given text by comparing it with a large amount of other texts in a reasonable time span, some-
thing which is not feasible for a human detector. A plagiarism detector is a system that when
faced with a certain text is able to determine if it contains plagiarised passages and to disclose
these passages. This process is conducted differently by different detectors. A detector may
choose to detect plagiarism internally, by doing an analysis of the style and vocabulary changes
inside a single document, something that can be an indicator of the fact that not all parts of the
document come from a single, proclaimed author. But it can also choose to disclose plagiarism
by using external sources. In this case the detector compares the document either with a large
number of other documents, and in this task it must first retrieve the most relevant ones, or it can
compare two given documents where the one is suspected to contain passages that are derived
from the other.

As (? ) states, different systems of automatic plagiarism detection employ different techniques,
but usually all of these approaches go through three main steps: 1) text-preprocessing, 2) fil-
tering (or candidate retrieval) and 3)detection. The most severe challenges posed to automatic
detectors come from the changes made to the original text. (21) lists some techniques of rewrit-
ing an original text:

e Lexical changes
With lexical changes is understood the substitution of content words with respective syn-
onyms or related concepts.

e Structural changes
These changes may include a transformation from active to passive voice. Changing
the word order without affecting the meaning of the sentence, like changing the order
of the tokens that constitute an enumeration. Another technique is that of splitting long
sentences or merging short ones.

e Textual Entailment
Is the case of deriving a new, but at least semantically equivalent text, from another one.
In this scenario the source text is merely refered to as the text, while the derived one is
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Chapter 2. Theory and Background 2.3 Plagiarism detection techniques

called the hypothesis. The authors employ this term to mean paraphrasing as discussed
above in 2.1.2.

(3), makes an account of the main plagiarism detection techniques employed in detection sys-
tems. These techniques differ from the unit of comparision they use, the particular feature of
natural language they use as a measure of similarity and from the computational approach they
utilize. The list below, taken from (3) is not complete, as we chose to mention only those tech-
niques that are more relevant to this project:

e Syntax-based: These are techniques that use the POS tags in the representation, in order
to derive a distance/similarity measure between the texts according to how similar they
are in their syntactical structure.

e Cross language-based: In this method, the similarity between a plagiarised and an original
document is calculated by using statistical models to establish the probability that the
plagiarised document was derived by the original one, regardless of the order of the terms
in these documents.

e Semantic-based: These methods use the semantic dimension of texts to derive a score of
their similarity. They rely primarily on the meaning of the word (or lemmas) and employ
further techniques for getting the meaning of larger texts built from these lemmas. These
methods can be knowledge-free, like in the case when the meaning of a word is derived
from its distribution in a corpus, or knowledge-based, when we look up the definition of
a word in a dictionary.

e Citation-based: Are methods that try to find the academic documents that are obviously
used in another document, but which have not been referred to. According to , these tech-
niques are related to the semantic-based ones, since they look at the semantic content of
the document in order to find out which part of it has been stolen from another document.

2.3.1 Semantic relatedness approaches

When talking about the semantic relatedness between words, we mean one of the semantic
relations described in section 2.2.3. Two words can be semantically related by one of these
relationships.Semantic similarity is a special case of semantic relatedness. It is the case when
the words are not only semantically related but also semantically similar, which is, when they
express the same meaning '°. In computational approaches we do also talk about semantic dis-
tance, which is the reverse of similarity and quantifies how dissimilar two words are.

2.3.2 Calculating semantic similarity

1Ohttp://en.wikipedia.org/wiki/Semantic—similarity
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Chapter 2. Theory and Background

Edge-based approach

The structure of a taxonomy makes it natural to think about the distances between the concepts
as the sum of the edges that one must traverse in order to get from one concept to the other.
These concepts do have meanings so the distance between them would also denote how closely
their semantics are related. In semantic networks, concepts could be related by a various num-
ber of properties, not only by the IS-A relation.

(29) represent the Distance metric which can be used to quantify the degree of semantic related-
ness between the concepts in a hierarchical knowledge base. They argue that the more properties
the concepts have in common, the more links are there between them, which means that they
are closely related. While semantic distance would be path between the concepts which has the
minimal length. (29) do also argue that when only IS-A relations are considered, then semantic
relatedness is similar to semantic distance, since IS-A relations are based on similarity between
the properties of the concepts. This approach of measuring the semantic distance between con-
cepts by counting the edges that lie in between, is called the edge-based approach. (29) points
that Distance should have the properties of a metric: zero property, symmetric property, positive
property and triangular inequality.

This approach does however have some weaknesses.

Resnik Similarity

In (27), Resnik presents a method for assessing semantic similarity between words based on
their representation in a semantic space like WordNet. This method embraces the suggestion
of (29) that in semantic networks, similarity can be evaluated by considering only the (IS-A)
links. As stated in 2.2.3, one way of using taxonomies in assessing the semantic similarity
between words, is that of measuring the distance between the concepts that these words are
assigned to. (27) acknowledges the problem that the edge-counting methods does not take into
account the spanning of these links. In a taxonomy, there can be dense sections with a large
number of links between closely related concepts as well as there can be sparse sections where
a single link spans between two less related concepts. (27) proposes to evaluate the relatedness
by using the view of information content by deflecting thus the dependency on link distances. It
uses the intuition that two similar concepts have much information in common. This common
information is represented in the taxonomy by the most specific concept that subsumes both
these two concepts. The edge counting schema is also aware of this property, as the long
distances would mean that we have to go up high in the taxonomy in order to find a concept
that subsumes the two respective concepts we are comparing. In order to avoid edge distances,
(27) supplements the taxonomy with the function p : C' — [0, 1] where C is the set of concepts,
such that for any ¢ € C, p(c) is the probability of encountering an instance of the concept c. So,
if ;1S — Acy then p(c;) < p(c2) . From this follows that the p is monotonic and that the most
abstract concept in the taxonomy (if this is unique) has a probability of 1.

The information content of a concept c is defined as the negative log likelihood — log(p(c)).
This form of quantifying information content gives the desirable result that while the probability
increases the information content decreases,something which corresponds with the intuition that
abstract concepts bear little specific information. The similarity between concepts based on this
notion is than measured by the amount of information content they have in common. This is
measured by the information content of the concept that subsumes these two concepts, as stated
below:
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sim(ci,c2) = max [—logp(c)] (2.1)
ceS(cl,c2)

Where S(c1, c2) is the set of concepts that subsume both c1 and ¢2. Notice that although
similarity is computed by considering all upper bounds for the two concepts, the information
measure has the effect of identifying minimal upper bounds, since no class is less informative
than its superordinates. In practice one often needs to measure word similarity, rather than
concept similarity. Using s(w) to represent the set of concepts in the taxonomy that are senses
of word w, define:

sim(wy,we) = max [—logp(c)] (2.2)
ceS(c1,c2)
where ¢; and ¢, range respectively over s(w;) and s(wsz).
The probabilities are usually derived by large corpora, by using the following formula:
The frequency of a concepts is estimated by the counting the occurrences of the words that are
subsumed by the concept.

freq(c) = Z count(n) (2.3)

newords(c)

Then the probability of the concept is computed as the relative frequency against the total
number of nouns N observed.

ey = L0

(2.4)

Jiang & Conrath Similarity

(15) present a method for computing word semantic similarity where the taxonomy structure
is combined with statistical evidence derived from a corpus. This approach takes off from the
edge counting method and enhances this with the node-based approach. Firstly, it accounts for
the fact that the link between nodes should be weighted. In particular, it determines the strength
of the edge that links a parent node to a child node. It starts with the argument that the strength
of a child link is proportional to the conditional probability of encountering an instance of the
child concept ¢; given an instance of its parent concept p : P(c;|p). Further it defines the link
strength (LS) by taking the negative logarithm of the probability, hence obtaining the formula:

LS(ci, p) = —log(P(cilp) = 1C(c;) = IC(p). (2.5)

So utilizing the notion of information content, the link strength is defined as the difference
between the information content values of the child concept and its parent concept. The paper
provides the derivation of the overall edge weight for a child node and its parent, as well as
the distance between two nodes when this derivation is set in the distance formula. But the
implementation of the algorithm for our project does not employ these fine grained calculations.
The distance used in our work is that described by the following formula:

Dist(wl,w2) = IC(c;) + IC(cg) — 2 x IC(LSuper(cy, c2) (2.6)

where LSuper(cy, c2) denotes the lowest superordinate of ¢; and cs.
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Semantic Similarity Between Sentences

The approaches described above compute the semantic distance between two single words. But
in the task of plagiarism detection we are concerned with, it is desirable to consider the seman-
tic similarity between sentences. Here we describe the algorithm from (26) which uses one of
the metrics for word to word similarity and a measure for the specificity of words to compute
the semantic similarity between two text segments, which we call sentences, 7'1 and 7'2. The
algorithm, which we shall later refer to as the aggregator follows this procedure:

1. For each word in sentence T1 determine which word of sentence T2 gives the highest se-
mantic similarity when compared with the given word. The similarity score is derived by
using an algorithm that computes semantic similarity between words. The function words
are discarded and only open-class words and cardinals are considered in the process.

2. Repeat the same procedure for each word in sentence T2.

3. Weight the results with the corresponding word specificity, sum up and normalize with the
length of each segment: The word specificity is computed by using the inverse document
frequency (idf), which is defined as the total number of documents in the corpus divided
by the total number of documents including the word in question (31).

> wer, (mazSim(w, Ty) x idf(w))+zw€T2 (mazSim(w,Ty) X idf (w))

. 1
sim(T1,72) = 5( S er, 1 (w) Ler, 1df ()

)

2.7)

The result is a number between 0 and 1, where 0 denotes perfect dissimilarity and 1 denotes
perfect semantic match. If the algorithm used is a knowledge-based one it can happen that
it doesn’t compute the similarity between words with some given POS tags,like adjectives or
adverbs. In this case the aggregator uses a lexical similarity measure which assigns a maxSim
of 1 for exact matches of the words in the two sentences.

2.3.3 The Longest-shared-passage problem

This problem is formulated like this: given a document that contains plagiarised text and another
one from which the plagiarised passage is derived, how to detect which passage is plagiarised
from which passage when the detection algorithm returns a score in a word/sentence level?. In
this case, with passage we mean a text that is longer than a sentence. The figure below is used
to illustrate the case:
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2.4 Performance evaluation
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Figure 2.3: The Longest-shared-passage Problem

If the detector rightly reports every occurrence of plagiarised word/sentence, then this prob-
lem is problem could be reduced to the question of how to merge the detected elements in a way
that the result constitutes in a whole paragraph.

2.4 Performance evaluation

As mentioned in section 2.1.3, the PAN challenge offers a corpus of documents for both training
and testing a plagiarism detector. The corpus consists of a set of suspicious documents, hereafter
referred as Dy, a set of source documents, Dy, and sets of XML document-pairs listing the
suspicious and source documents that are related to each other, with pointers to the plagiarised
passages. As stated in (20) the majority of the systems that were delivered to be tested on the
task, implement three basic steps which are shown in the ?? taken from (7). These steps are
seen as standard for all the detectors.

21



Chapter 2. Theory and Background
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7~ | document
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Figure 2.4: Generic retrieval process to detect plagiarism (Figure taken from (20))

These steps consist in:

1. Candidate retrieval, which is the process of selecting a set of documents from the source
documents corpus that most likely correspond to the source documents from which the
suspicious documents have been derived.

2. The detailed comparison phase where each retrieved source document is compared to the
plagiarised document, and passages of high similarity are extracted.

3. In the last phase the results go through a kind of post-processing where they are cleaned
and filtered.

Before, the detectors were evaluated as a whole in their performance, but since many con-
testants were dropping the candidate retrieval step, given the relatively small amount of source
documents available, the evaluation was changed to a stepwise one, where the candidate re-
trieval and the detailed analysis are judged separately. Here the focus shall be only on the
measures used for the detailed analysis stage.

First, it is important to give a summary description of the text corpus which is used as input in
training and in a possible cross-validation. This corpus contains documents grouped into two
categories: suspicious-documents and source documents, where the suspicious documents are
derived by obfuscating the source ones by the methods described in Section 2.1.3. It does also
contain sets of result XML documents, similar to those that a detection system conforming to
the PAN criteria should produce as a result, grouped by the kind of plagiarism that they point
to. These result XML documents are used as a blueprint when evaluating the performance of a
detector.

The plagiarism disclosed can be one of these cases:

e No-plagiarism. These documents point exactly to the passages that have nothing to do
with each other.

e No-obfuscation. These are the passages that are copied verbatim.
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e Random obfuscation. These passages are obfuscated by using artificial plagiarism tech-
niques and are of the kind shown in 2.1.3.

e Translation obfuscation. These are passages that are obfuscated by the method of back
translation.

e Summary obfuscation. These are the ones that belong to the case of paraphrasing. The
sentences of a source document may be split into a number of shorter ones, or a small
group of shorter sentences may be merged to form a longer one.

In 2012 (20), the organizers of PAN changed their submission requirements from that of
delivering submission results, to delivering the detection software itself. This was justified by
the , as by getting hold of the system one could check the runtime, could give as input real pla-
giarism cases and it could be later tried on other datasets ,as for example that of PAN13. This
last thing allows for a more fair comparison between the systems that were originally tested on
different data sets. Since the participants were allowed to deliver systems based on whatever
programming language, the The TIRA (35) platform was used for dealing with the complexity
of the organizational issues. TIRA was also used in the training phase, as it returned the per-
formance value for the submitted results after the system was run on the corpus described above.

In order to measure the performance of the detector, PAN provides a quantifier called
plagdet, which combines precision, recall, the F-measure and a measure that designates the
granularity of the results. Since plagiarism is usually carried out in whole paragraphs, the gran-
ularity score tells if the detector fragments the whole paragraphs into smaller passages and
whether these reported passages overlap or not. R is the set of plagiarised passages reported
from the detector while S is the set of plagiarism cases in the corpus.

Granularity measure:

gran(S, R) Z | Ry | (2.8)

sESr

The plagdet measure combines the scores mentioned above, together with the F-measure,
denoted below, in order to provide a unique classification of the participant’s results.

F
lagdet(S, R 2.9
plagdet(S, R) = 4 (8. 1) 29)
F-measure:
2
F, = 2.10

The pros and cons about the plagdet score and a more thorough evaluation of this measure
are to be found in (20).
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Chapter

Related Work

This chapter presents works that are somehow related to this project. Since the main novelty we
brought to the existing detector was that of integrating semantic similarity between sentences,
the first section does discuss two other approaches to detecting similarity between sentences.
The second section is concerned with the creation of datasets used for training and evaluating
semantic similarity detectors. The third section provides a short description of the team that
scored best in the “Text Alignment” task, in PAN13.

3.1 Detecting Similarity Between Sentences

3.1.1 SimPaD

(Nathaniel Gustafson) present a plagiarism detection method called SimPaD. This method is
designed for finding similar passages between document pairs and is based on finding simi-
larity between sentences. Here we will present only the derivation of similarity between two
sentences, not between documents.

The SimPaD method accounts for synonym substitution, word addition/deletion and the fact that
the plagiarised sentence could be a result of merging or splitting. But not all the sentences are
considered. Based on the assumption that identical short sentences are more probable to appear
in texts that are not plagiarised from one another, these short sentences are removed from the
analysis input. In order to define the similarity between sentences, the approach first applies a
similarity-match between the single words. The stopwords are removed and do not participate
in the process. In the case when the sentences share a large number of lexically identical words,
they are easily defined as plagiarised. When the content words are substituted by synonymous
ones, the algorithm derives the similarity score by comparing their meanings. The larger the
number of words that ware similar meanings the higher is the similarity score for the two sen-
tences. In the case of word deletion/addition, the algorithm searches in the “opposite” sentence
for words that share the same meaning with those added to the sentence under suspicion. The
semantic similarity between lexically different words is derived by using word-correlation fac-
tors. These scores are produced by using the Wikipedia collection.

Another thing to be mentioned is that the algorithm does not take into account the changes in the
sentence structure, so the word-reordering does not have any weight in the calculation process.
To make up for this, the algorithm uses n-gram correlation factors, for n = 2 and n = 3. After
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having calculated a similarity value for each word pair, the algorithm computes the similarity
for each sentence pair by a function that adds these particular word-word scores and delivers a
result between 0 -no similarity and 1 - identical sentences.

To summarize, this method accounts for both lexical matching and semantic relatedness be-
tween two sentences.

3.1.2 Dao & Simpson

This subsection treats the work of (Thanh Ngoc Dao) on measuring similarity between two sen-
tences. Their approach is based on comparing the semantic content of two input sentences. The
input must first undergo a preprocessing phase which consists of 1)tokenization 2)stemming
3) POS-tagging. Afterwards, there is taken a word sense disambiguation procedure for each
word in the two sentences. (? ) first consider the Michael Lesk algorithm for WSD (18). This
algorithm is based in the dictionary definition of senses and decides the most appropriate sense
of a word in a given sentence, by comparing the gloss of each of the senses of the given word
with that of each of the senses of every other word in the sentence. Then the algorithm chooses
as the proper sense the one whose gloss has most overlapping words with another sense gloss.
(Thanh Ngoc Dao) do however use what they call, ”an adapted version” of the algorithm which
does no longer perform WSD for a single word by using all the other words in the sentence,
but by choosing only a limited number of words (say &£ words) both to the left and to the right
of the word in question. It does moreover use WordNet synsets in the disambiguation process.
Besides considering the word’s gloss, it also considers the glosses of the synsets that are con-
nected to this word’s synset by these relations: 1) hypernymy, 2)hyponymy 3) meronymy and
4)troponymy. After having gathered all these gloss-pairs, the algorithm performs a similarity
match between these glosses in order to find the pair that reports the highest overlap between the
two glosses involved. After having assigned a sense to each word, the next step in the process
is that of defining the pairwise similarity of these word-senses. WordNet is again used in this
step as the similarity is defined by measuring the path length from one synset to the other. A
word-word matrix is built where the cells denote the similarity between two words.

The two sentences are then transformed to two sets of disjoint nodes which constitute a bi-
partite graph. Finding the semantic similarity between these sentences is than transformed to
calculating the maximum total matching weight of this graph.

3.2 Semantic Similarity in WordNet

3.3 Evaluating the Detection of Sentence Semantic Similarity

There exist many methods that approach the problem of disclosing similar texts by applying
semantic similarity measures. SemEval http://www.cs.york.ac.uk/semeval-2012/ is a workshop
which evaluates systems that detect various semantic traits in texts. STS, short for Semantic
Textual Similarity, is a task presented in SemEval 2012, which raises the challenge of finding
how semantically similar two given sentences are. The expected output from a detector system
is a graded similarity value ranging from O - no similarity, to 5 - identical sentences. STS
provides a unified framework for testing of various semantic modules that otherwise have been
tested in isolation from each other. The set of these different modules is described in (13). One
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of the main points of STS was the construction of training and testing datasets for this kind
of task. As mentioned also in chapter 2, it is not easy to obtain a large dataset of plagiarism
cases. The smallest dataset STS bestows is the one containing 65 sentence pairs whose scale
of similarity is annotated by humans. This set is however to small for the purposes of the task.
A larger one was that of 50 documents whose pairwise similarity was also assessed by human
users, but though a bit larger, this dataset does not address the problem of sentence- sentence
similarity.

The main datasets used from STS are those provided by the Microsoft Research. The first
one, MSR Paraphrase which contained cases of paraphrasing annotated by binary tags was
enriched by STS with tags that reflected a similarity score from O to 5. The second MSR
dataset was the MSR Video, which is constructed by letting human annotators from Amazon
Mechanical Turk (AMT) watch the same video and write down a sentence or a few sentences
that describe the semantics of the video. There were used 2000 videos which produced 120
thousand sentences. The dataset created was divided into two parts: in the first one, they put all
the sentence-pair combinations for a given video, while in the second is put sentence pairs that
come from different videos. It is however not given that different annotators do not denote the
same video with semantically contradictory descriptions or, likewise, that different videos do
not get descriptions with similar semantic content.

The STS task in SemEval 2012 had 35 teams which delivered 88 runs of their systems. Besides
the similarity scores, the team was allowed to assign a confidence score in addition. This second
score did however not play any role in the final evaluation. STS provides an evaluation baseline,
which derives the results by using a simple word overlap metric between the sentence pairs that
were represented as vectors in a multidimensional token space.

STS does provide three different evaluation metrics:

3.4 PAN13 Participants

The plagiarism detector we present in this project was originally built for the ”Plagiarism De-
tection” task posed by PAN10 and PAN11. We have further adapted the system, so that its
functionality can be tested by the dataset of PAN13. PAN13 does however present a different
challenge by splitting the “Plagiarism Detection” into two subtasks: “Source Retrieval” and
“Text Alignment”. We are only concerned with the second one. (? ) presents in his "Related
Work™ chapter, a description of the most successful participants of PAN11. We do here present
the method from

341 o
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Chapter I

A Detector Based on Graph Edit Distance

In chapter 2 we mentioned the graph-based representation of sentences. Here we discuss the
plagiarism detection system described in (28) whose detection algorithm is based on this rep-
resentation. A brief description of the system: it reads files from a corpus and processes them
with NLP techniques presented in section 2.2. It then reduces the plagiarism search space by
doing document retrieval on the basis of the post-processed format and undertakes a detailed
plagiarism analysis on the relevant documents.Finally the system produces XML formatted files
that contain information about the plagiarised passages.

4.1 The Plagiarism Detector Created by Rgkenes

The system is intended for use on the datasets published as a part of PAN10 and PAN11 .
The input corpus is divided into original source documents and suspicious documents which
are a production of the artificial plagiarism techniques performed on these source documents.
These techniques were described in chapter 2. The preprocessing step takes as input the plain
documents of the dataset. These documents are then partitioned into sentences, discarding thus
the document structure. They are sent afterwards to the preprocessing pipeline that consists of
these steps:

1. POS-tagging
2. Lemmatising

3. Dependency Parsing

The POS-tagging used is the english-left3words-distim.tagger, one of the models of the
Stanford Part-Of-Speech Tagger?. After the lemmatising, the sentences are turned into depen-
dency graphs. The dependency graphs are created by the MaltParser’, which is data-driven
4

'http://pan.webis.de/
Zhttp://nlp.standford.edu/software/tagger.html
3http://maltparser.org
“http://www.delph-in.net/courses/07/nlp/Niv:Hal:Nil:07.pdf
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The graph-sentences are put into a MongoDB graph database . After these steps, each
sentence in the database exists as a list of lemmatised tokens.Each token is annotated with a
POS-tag and an integer id that denotes which token in the sentence it is dependent on, and the
name of this dependency relation, which is represented by the deprel field. In the case when
there is no dependency, for example when the token is the root of the sentence, this id is set to
0.

So when discussing ”a sentence” from this point in the text,we refer to a structure such as the
one in the example below taken from the PAN13 dataset:

"id": ObjectId( "5lecleleed4b029dcablOlafc" ),
"id": "suspicious—-document00006.txt-135",
"filename" : "suspicious—-document00006.txt",
"sentenceNumber": 135, "offset": 1415¢,
"length": 112,

"tOkenS": [ ||id": "1“, "WOId": "In", "lemma" . ||in", "pOS": "IN",
"rel" : "8" , "deprel" : "prep" , "id" : "2" , "Word" : "addition" ’
"lemma": "addition",

"pOS": "NN", "rel": "l"’ "deprel" : "pObj"]

As it is argued in (20) doing an exhaustive all-to-all comparison does increase the recall of
the result but the strategy is far from optimal or even feasible, given a set of large source docu-
ments such as the web. In order to reduce the amount of sentences that each suspicious sentence
i1s compared to, the system performs a “Candidate Retrieval” phase, during which a number of
source sentences are discarded as not relevant to getting analysed against the suspicious ones.
After the retrieval step, the database elements have this form:

"source_file: source_documentxxxxx.txt, suspicious_sentence: xxx,
candret_score: xX.xX, source_sentence: xxX,
suscpicious_file :"suscpicious_documentxxxxx"

This is the format of the input handed over to the ”Detailed Analysis” phase whose main
processing steps are pictured below:

L Graph Edit Distance

Cenhhae Create cost Assignment
matrix problem

Plagiarised
passages

sentence Passage Merger -

pasSAges

Figure 4.1: Overview of the detailed analysis phase. (Taken from (28))

As the system is based on graph representations and dependency parsing whose scope is
limited to the sentence, the comparison algorithm returns a distance value that denotes the lack

Shttp://www.mongodb.org/
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of similarity between two sentences. The main idea of the detection strategy is: The Graph-Edit-
distance algorithm decides the distance between each pair of source sentence and suspicious
sentence and uses this information to report for a suspicious document, which passages are
plagiarised from which passages of one or more source documents.

As the internal workings of the program are described in (28), we shall not delve into many
details here. It is important to mention that the distance calculation between these graphs is
reduced to an assignment problem for a cost matrix. The cost matrix itself is a word-word
matrix for a sentence pair, where the values in the cells represent the distance between two words
that come from a suspicious sentence and a source sentence. If the two lexemes compared are
identical and their deprel and POS values the same, they are acclaimed to be perfectly similar.
When this is not the case, the following formula is used to calculate the distance value between
two nodes,

NLD,, , + EDy,
2

where n and m are two nodes, SC stands for the substitution cost, NLD stands for Node La-
bel Difference, which is the difference between the POS values, ED stands for Edge Difference,
the difference between the deprel values, while S is the highest possible substitute cost given as
input, which in this case was set to 2 (two). The sum of NLD,, ,, + ED,, ,, is a number be-
tween 0 and 1. The system accounts for the weighting of the differences between POS labels by
taking as input a table with these weights. But it does not take into consideration the difference
in deprel relations, a possible deficiency that was pointed out by the author (28).

x S (4.1)

SCn,m =

The picture below shows the main building modules of the system created by (28)

Pre-
processing

Wt

corpus Retrieval Analysis passages

L ]

Figure 4.2: The overall architecture of the system. (Taken from (28))

Fig. 4.2

4.2 Results and Deficiencies

When tested on the PAN11 dataset, the ”Detailed Analysis” phase of the system gives this
result:

Plagdet Recall Precision Granularity
0.224  0.223 0.479 1.56
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This result would place the system in the fourth place among the participants of PAN11 if we
consider only precision and recall. The system does however exhibit some deficiencies which
are discussed below:

1. It does often not detect the sentences that lie near an already judged-as-plagiarised sen-

tence as part of the plagiarised passage, even though they in reality are. (28) argues that
the approach taken by the PassageMerger class, by gluing together all sentences that are
within a given distance, called mergedist, in order to reduce the granularity which is held
as an important trait by the PAN challenge, does not solve this problem. These sentences
could in the first place have been left out of the "Detailed Analysis” phase by the "Candi-
date Retrieval” phase. (28) thus proposes, to lower the threshold of similarity required, for
the sentences in the original suspicious documents (not the truncated ones) that lie after
a detected sentence to classify them as plagiarised. The problem could also be solved by
increasing the recall of the ”Candidate Retrieval” case. We also discuss another solution
in chapter 5.

. It does not account for the semantics of the texts. The example below shows how the al-

gorithm gives a low distance for a sentence pair with completely different semantics and
a higher distance for a pair with different syntax but identical semantics. The examples
above show the results of running the GED.java class which gets two sentences as input
and returns their distance which is calculated by the Graph-Edit distance algorithm:

John kissed Mary.
John killed Mary.

GED for the two graphs: 0.083
Edit-path:(kill — kiss) = 0.25

John kissed Mary.
Mary was kissed by John.

GED for the two graphs: 0.625
Edit path:

(john —john) = 0.5

(mary — mary) = 0.5

(? —>be)=1.0

(? = by)=0.5

As it can be seen, the algorithm gives more importance to syntactic changes in the sen-
tence. A hypothetical help to this problem could be to differentiate between the possible
substitutions between dependency relations. This is discussed further in chapter 5.
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Chapter

Improvements to the Detailed Analysis
Algorithm

This chapter describes the details of the implementation done in order to validate our
theoretical assumptions. The main practical goal of the implementation was to enhance
the performance of the system described in chapter 4 by addressing its deficiencies which
were listed in section 4.2. In order to achieve this we needed to thoroughly understand the
existing codebase and adapt it to the new environments and tasks, such as those required
for the PAN13 shared task.

The first approach towards improving the detailed analysis phase was to adjust the weights
to the dependency relation substitutions. The second approach was to combine the largely
syntactic sentence distance measure with one incorporating semantic information. Fi-
nally, we implemented a new strategy for merging of detecting in order to reduce the
granularity of the produced results.

5.1 Weighting Dependency Relation Substitution

As stated in section 4.2, the original system does not take into account the impact that
the change of dependency relations could have on the derivation of different types of the
distance between sentences. In order to measure the impact of these weights we tried to
decide the degree of difference between these relations taken pairwise. A distance mea-
sure is used to denote the difference between two relations, where O denotes identical
roles and 1 denotes a maximal difference.

This process was guided by the definition and description of these relations found in (19).
The weights were estimated by answering for each pair of relations the following ques-
tions: "How much does the structure of the sentence change if the actual dependency
relation is transformed into the one we are comparing it to?” and "How much does its
meaning change in this occasion?”. It should be noted that the degree of how much a
sentence has changed is arbitrarily defined. Take as an example the case when the adv-
mod relation, short for adverbial modifier, that modifies the meaning of a word, when it
is substituted by the amod relation,which is the adjectival modifier of a noun phrase. This
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is illustrated by the example below:

"Genetically modified food" advmod (modified, genetically)

"Sam eats red meat" amod (meat, red)

Trying to transform the first sentence into a semantically similar one where the word ge-
netically is associated with amod relation, it would result in a sentence like:

The food is modified by genetic techniques.

This leads to the conclusion that a word connected by the advmod relation in a sentence
could possibly get assigned an amod relation, when the sentence is changed. This substi-
tution is weighted by 0.25.

It is, however, rarely the case that words get assigned new dependency relations without
requiring significant changes to the entire sentence. A quick look at the table of weights
(this is the deprel-sub.csv file in the resources folder in the attachment delivery), shows
that it is not usual for a word to get another grammatical role in the sentence when this is
transformed to an equivalent one by the help of syntactic transformations.

5.2 [Excluding the Candidate Retrieval phase

In 2013, PAN changed the “Text Alignment” task such that an implementation of the
Candidate Retrieval phase could be omitted, given that one would integrate in the system
the pairs.txt file included with the rest of the training corpus. This text file holds a list
of ”suspicious-document” — “’source-document” pairs, which tells for each suspicious
document, which source documents it must be compared to. This reduces the search
space for the detailed analysis that would otherwise have to make an all-to-all comparison
or, as in the approach of (28), to implement a candidate retrieval phase. This phase could
however leave out relevant documents as well as include the wrong ones. In order to adopt
this file we have added the getSentencesFromPairs() method in the PlagiarismSearch.java
class. This method reads the file and uses its information to generate sentence pairs and
puts them into the queue of the jobs to be processed in the next step. A job is simply a
pair of documents, the suspicious one and the source one. Moreover, the method matches
all sentences from the suspicious document with all sentences from the source document.
The sentences are then transformed into graphs. The format in which the detailed analysis
phase expects the input to be is thus preserved. In this way, the second phase, that of
retrieving candidates, is eliminated. The figure below shows the system after this package
is removed.
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Database

Document o Document-pair Detailed
corpus feprocessing retrieval Analysis

‘ XML files

Figure 5.1: Candidate retrieval phase is removed

5.3 Semantic Distance

DKPro Similarity is a framework for text semantic similarity, which in its standalone
mode offers a repository of text similarity algorithms that can be integrated even in
projects that have a different preprocessing platform from that of the DKPro.

DKPro was integrated with the system of (28), by using the LSR (Lexical Semantic Re-
sources)' package. The reason for choosing this package is that of wanting to compare
the semantic dimension of texts. The module offering the LSA (Latent Semantic Analy-
sis) would maybe work as well but there are two reasons for not having chosen that: 1)It
would require much more recoding of the base system since its unit of comparison is the
sentence and 2) it is better suited to analyse the semantic content of whole documents,
while PAN, as discussed in Chapter 2, is using artificially obfuscated documents that in
fact have no meaning when considered as a whole piece.

There are several subpackages inside the LSR package: the aggregate, the gloss and the
path package. We have been using two of these three packages. The path package con-
tains the implementation of among others the Resnik and Jiang & Conrath algorithms dis-
cussed in section 2.3, while the aggregate package contains an implementation of the ag-
gregator, described in section 2.3.2. The implementations of these three algorithms bear,
however, some deviations from the theoretical work of their authors. ResnikCompara-
tor.java 2 uses intrinsic informacion content (IC) that relies on the hierarchical structure
of the taxonomy alone, instead of corpus-based IC as it was proposed in the (27) paper.
The implementation of Jiang & Conrath does also use the intrinsic IC. Resnik and Jiang
& Conrath were designed to measure semantic distance between words, while DKPro
implementations measure semantic similarity. The aggregator * does also measure se-
mantic similarity. In our implementation, we have reversed the result of the aggregator to
measure the distance between texts by subtracting if from the maximum value that could

Thttps://code.google.com/p/dkpro-similarity-asl/source/browse/trunk/de.tudarmstadt.ukp.similarity.algorithms.Isr-
asl/src/main/java/de/tudarmstadt/ukp/similarity/algorithms/Isr/?r=257

Zhttps://code.google.com/p/dkpro-similarity-asl/source/browse/trunk/de.tudarmstadt.ukp.similarity.algorithms.Isr-
asl/src/main/java/de/tudarmstadt/ukp/similarity/algorithms/Isr/path/ResnikComparator.java?r=257

3https://code.google.com/p/dkpro-similarity-asl/source/browse/trunk/de.tudarmstadt.ukp.similarity.algorithms.lsr-
asl/src/main/java/de/tudarmstadt/ukp/similarity/algorithms/Isr/aggregate/MCS06AggregateComparator.java?r=257
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be produced by the calculation , which is 1.

First we tested Resnik and Jiang & Conrath separately by giving pairs of words as input.
Then there was built a test class around the aggregator. Since the aggregator uses one the
algorithms in the path package to derive similarity between words, the Resnik and Jiang
& Conrath were used interchangeably during testing. The idf values for the aggreagator
by using the index built from the Wesbury Lab Wikipedia Corpus * which is a corpus of
preprocessed Wikipedia documents from 2010.

The other similarity measures in the LSR package that used WordNet as a resource were
used to derive a combined score for the distance between two words. This combined
score is simply the arithmetic mean of the comparators: ResnikComparator, JiangCon-
rathComparator, LinComparator, WuPalmerComparator. Now we show the performance
of these algorithms on the examples taken from section 4.2:

Sentence 1:
John kissed Mary

Sentence 2:
John killed Mary

GED Resnik Jiang Conrath Combined Measure
0.083 0.083  0.08 0.078

Sentence 1:
John kissed Mary

Sentence 2:
Mary was kissed by John

GED Resnik Jiang Conrath Combined Measure
025 0.0 0.0 0.0

As it can be seen, the semantic distance algorithms rightly assign a 0.0 distance between
these two semantically identical sentences.

The following sentence pair is taken as an example from (26). We show it to illustrate the
behaviour of GED on paraphrased sentences and to test our part of the implementation of
the aggregator, which is the derivation of the idf values:

Sentence 1:
When the defendant and his lawyer walked into the court,
some of the victim supporters turned their backs on him.

Sentence 2:
When the defendant walked into the courthouse with his
attorney, the crowd turned their backs on him.

“http://www.psych.ualberta.ca/ westburylab/downloads/westburylab.wikicorp.download.html
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GED Resnik Jiang Conrath Combined Measure
0.5 0.4 0.4 0.4

Surprisingly the difference between GED and the semantic distance algorithms is not
too large. Moreover, (26) reports a score of 0.8 in similarity (or 0.2 in distance) while
our distance result is 0.4. This deviation from the expected score can be attributed to the
derivation of idf values and/or the specific similarity measure used by (26) which is using
a combined measure where other measures are used.

5.4 Combining GED and Semantic Distance

When deciding the integration of the semantic distance measurement into the system as
a whole, we decided to calculate for every sentence pair that enters the detailed analysis
phase, a simple arithmetic mean of GED and the aggregator. Since the sentences in the
database were represented as graphs and the aggregator expects two lists of lemmas, the
input had to be transformed to the latter form. The first idea was to drop the aggregator
and integrate one of the algorithms from path directly in the original GED matrix by
deriving the distance between words as an arithmetic mean of GED and Resnik/Jiang &
Conrath for each word-pair. This idea was dropped based on the argument that since the
detailed analysis is based on comparing whole sentences, we should also add a measure
that captures the distance between sentences.

5.5 Detecting whole plagiarised paragraphs

One of the questions arisen from (28) is that of the precise detection of whole plagia-
rised passages. The case of a plagiarised sentence that is isolated between many original
sentences is quite unusual, so the task of detecting plagiarism is not that of picking out
plagiarised sentences and their respective source, but that of pointing to whole passages
that are derived from whole source passages. The picture below is a simplified illustration
of a real example taken from the PAN 2013 dataset:
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Figure 5.2: The passage detection problem

This document pair belongs to the group generated by random obfuscation. In its original
form, the system detects plagiarism references by doing the core sentence to sentence
comparison. A plagiarism reference is a structure that holds the information about the
offset and the length of both the plagiarised text and source text. The list of references
detected for a document pair is then sent further to a merging function which merges
these references arbitrarily, by using the only criteria that they should not lie farther apart
than a distance of 1500 characters. This approach merges together all detected passages
including the passages in between which are not estimated as plagiarised by the Graph-
edit-distance algorithm. These not-detected passages could or could not be plagiarised
however, so including them doesn’t necessarily lower the precision. Following the ex-
ample above, if the algorithm hasn’t detected that sentence 5 is plagiarised while both
sentence 4 and 7 are detected as such, than the merging strategy pursued would correctly
include sentence 5 in the block by making thus up for the deficiencies of the algorithm.
The picture above shows the correct answer which is also expressed in numbers. The
length and offset variables are those described above:

Document 00027

Document 02493

Offset Length Offset Length
2811 262 2027 417
3814 1093 0 1363
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4908 487 2614 694

The XML file generated by the system, when using both the semantic distance and that
derived by GED gives these corresponding values:

Document 00027 Document 02493
Offset Length Offset Length
3906 1346 135 2716
2967 2374 408 2817

It seems like this approach doesn’t account for the problem of overlapping references.
This can be illustrated by the drawing below:
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Figure 5.3: Document representation of 00027-02493 XML result

Besides the missing recall, the inner circles in both the suspicious and the source docu-
ment are quite redundant and misleading. It is obvious that the kind of plagiarism that
this solution presents is not a possible scenario.

Our suggestion to an improvement of the merging strategy is that of treating document
pairs as matrices, where the suspicious sentences are represented by the number of the
rows and the source sentences are represented by columns. The elements of the matrix
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define the value of the distance between two given sentences.The figure below shows the
case of the example above formulated as a matrix.

s1 52 s3 s4 s5 s6 s7 sB
1 X O X OE OB AR OE
52 Lo X, X X X
53 X X X I X
g Al e R s
<5 N G I G R ST
56 % % o3l T ox ® N W
57 % -X X X X OE
58 -l T B R

Figure 5.4: A case of random obfuscation in matrix representation

If we do not apply any merging to the detected elements, the algorithm would output a
large number of plagiarism references, one for each suspicious sentence—source sentence
pair. But this approach is already aware of not producing overlapping results since the
sentences are now given as input in ascending order and the comparison is done corre-
sponding to this order (i.e. suspcicious sentence 1 to source sentence 1, suspicious sen-
tence 1 to source sentence 2, etc.). While considering the merging strategy, we went back
to the question of how does one plagiarise text and how are these scenarios translated to
a matrix format. We took in consideration these methods:

e Strictly diagonal case: Suspicious sentences are plagiarised from at most one source
sentence. This is the 1-1 scenario which is always true in the case of verbatim
plagiarism. We call this the strictly diagonal case as the plagiarised elements would
lie in a diagonal line in the matrix.

e Horizontal case: The plagiarised sentence is the product of more than one original
sentences.

e Vertical case: A group of plagiarised sentences have their origin in only one source
sentence.

e Quadratic case (or the mosaic): Some source sentences have been transformed into
some suspicious sentences. This is the case of paraphrasing.
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Another way of discovering how plagiarism is carried is by inspecting the different classes
of plagiarism employed by PAN. Speaking in these terms, we can refer to the differ-
ent classes of plagiarism : no-obfuscation, random-obfuscation, translation-obfuscation,
summary-obfuscation, in order to gain insight into the techniques used. Hopefully, these
cases do not lie far from the real occasions of plagiarism.

In no-obfuscation (verbatim ) plagiarism, blocks are simply copied and pasted in the sus-
picious document. Perfect lexical matching between the sentences in the corpus would
give perfect results if we had kept the same sentence structure. The drawback here comes
from the way we partition the documents into sentences. Even though we distinguish
between several cases, the diagonal strategy lies at the bottom of them all. Consider the
case when a suspicious sentence is a product of several source sentences, something that
would coincide with the summary obfuscation data set. The matrix of this case would
then have this form:

sl s2 s3 s4 s5 sb s7 sB

<1 @@@x X E X X
) ¥ B E @@x X X
<3 i W E om @@x

g4 xxxxxxx@

55 X R E X O®E OE E X
<6 ¥ X K ¥ X % X X
57 ¥ X R X OE X E X
<8 ¥ X OE ¥ ¥ X X X

Figure 5.5: A case of shrinking paragraphs

The opposite case would be that when a bunch of suspicious sentences have sprung from
one single source sentence. This is how the matrix would look in that occasion.

41



Chapter 5. Improvements

sl s2 53 s4 s5 s6 =7 sB

<3 ¥ B OE X A B K
s X @x o G M o S |
<5 x @x T R A TH

56 x@xxxx}:x

57 xx@xxxxx
©

<8 E K E R E OE X

Figure 5.6: A case of expanding paragraphs

While the strictly diagonal case is that when whole paragraphs are either copy pasted or
every suspicious sentence is plagiarised (by some kind of obfuscation) from the corre-
spondig source sentence. The matrix would then look like:
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sl s2 s3 s4 s5 s6 s7 sB

]
S
]
2]
]

=1 ) x x

53 xx@xxxxx

54 % % & ¥ Rk W R %

sh xxxxx@.xx

58 XM W OE X A X X

Figure 5.7: Matrix of the strictly diagonal case

As it can be seen, all of these cases present a diagonal structure.We then seek for adjacent
plagiarised sentences by moving diagonally across the matrix. In the central findPlagia-
rism method in the PlagiarismFinder class, we first traverse the matrix picking out those
elements that are below the plagiarism threshold. These elements are then put in a sorted
map that reflects their position in the matrix, (row,column). This map is then fed to the
method that merges the relevant passages. The merging is done by checking the distance
between rows and columns for each consecutive element of the map. We allow a dis-
tance not larger than four (4) rows or columns between each two passages that should be
merged. One more thing we had to consider is that same source sentences cannot have{ test with 4,5
been plagiarised over and over again. Documents with several identical paragraphs are
not the goal of a plagiariser anyway. This means that there must be no overlapping be-
tween the source references of different detected passages. It is obvious that there must
be no overlapping between the suspicious references either.

Turning back to the example of document 00027 from the group of random obfuscation,
our strategy produces this result:
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Document 00027

Offset Length

2967 105
3814 1092
5068 274

Expressed in matrix form:

Document 02493

Offset Length

2027 110
0 1363
2684 611

As shown, we have missed some sentences of the passage. A more detailed inspection of
the matrix reveals that the detection algorithm assigns to these sentence pairs a value that
is far above the threshold, so letting the merger include the nearest sentence pairs if their
plagiarism score is slightly above the threshold is not always the right solution. There is
a limit on how much this strategy can make up for the defeats of the algorithms. This
search strategy is completely useful only for merging plagiarism passages that are part of

| s3 sd s5 sBb sT7 s8
=1 X T E X -F R X
52 X x E X X
s3 X x @ &) &) x ox
g4 X £ X% X X X
<5 X ] = X | E X
<6 X Xy L X X K X
57 X 5. A e
<8 X oW T SE O

Figure 5.8

a larger passage, when these are rightly detected by the algorithms.

We still keep the merging of 1500 characters (parameter tuning shows that in the case of
semantic distance we should allow merging of paragraphs that lie as far as 2500 characters
apart) in addition to the matrix strategy. After these changes, the detailed analysis phase

has taken this form:
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: | i GED_SD -> Find passages Remerge :
Document-pair Sentence-pair H Create matri H and Merge H passages XML file

Figure 5.9: The resulting Detailed Analysis phase

5.5.1 Merging Adjacent Passages

(28) proposed a merging strategy whereby the granularity would be reduced by allowing
passages adjacent to plagiarised passages get classified as plagiarised by letting their pla-
giarism threshold be lightly higher, for example, 0.4. We have implemented this idea by
using 0.4 as threshold for adjacent passages. It should be mentioned that this strategy is
not integrated with the matrix strategy but tested on its own.
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Chapter

Results and Evaluation

Every scientific work is justified by the results of its evaluation. The nature of this eval-
uation depends on the project itself and different disciplines impose different evaluation
methods. Computer science is mostly concerned with delivering technological products
that are usable in pragmatic contexts. Therefore it is natural to think of the evaluation of
an Artificial Intelligence project, in terms of the performance of the product that it has
created. This performance could be judged by the professionals in a qualitative analysis,
or we could measure it by how much it is widespread among the targeted users. This
chapter employs the evaluation method proposed by the ”"How Evaluation Guides Al Re-
search” (24) paper. The stages proposed for an evaluation process are first presented,
then a short overview of how an evaluation plan for this work is set up, follows.

6.1 How does Al research proceed

The (24) presents a framework for doing Al research.The authors advocate from the start
the importance of evaluation not only as a performance measure but also as an answer
to a series of questions: why we are doing the research, why the tasks we choose are
illustrative, why our views are avant-guard. Moreover they emphasize the necessity of
showing how these planned tasks are implemented by the resulting system, how this sys-
tem works and whether there are possibilities of improvement or the system has reached
its best performance. A thorough answering of these questions would illuminate the au-
dience of prospective researchers not only about the workings of the system, but more
importantly how research of a particular topic should proceed. Besides this, evaluation
is seen as a basis for accumulation of knowledge as documenting not only the answers
that the project delivers but also the new questions that are produced on the way, it gives
rise to new paths or other research topics. On the other hand, if a work is not evaluated,
it would be difficult to replicate its results. The authors base their evaluation framework,
on the five stages of a research process: refining the topic to a task; refine the view into a
specific method; implement the method; design experiments to test the implementation;
run the experiments. This is of course a bit idealized, they argue, but it can still work as a
reference for standard Al research. In the following the evaluation of each of these steps
is described.
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6.1.1 Refine a topic to a task

The first stage presented is to refine the topic at hand to a task and a view. The task itself
is what we want the computer to do while the view is an imprecise idea of how we expect
to accomplish the task. The questions listed below are supposed to guide this process.
These questions and the ones belonging to the other steps, are formulated by the authors.
We have merely tried to understand their importance to the research activity.

(a) Is the task significant and why?

(b) Is your research likely to meaningfully contribute to the problem? Is the task
tractable?

(c) Is the task representative of a class of tasks?

(d) Have any interesting aspects been abstracted away or simplified, if this problem has
been previously defined?

(e) What are the subgoals of the research? What key research tasks will be or have been
addressed and solved as part of the project?

(f) How do you know when you have successfully demonstrated a solution to the task?
Is the task one in which a solution can be demonstrated?

Asking for the significance of a task is asking if the completion of the work is at all mean-
ingful. If the specific problem addressed has been defined before, this would make the
task not worthy of accomplishment. After the task has been formulated one has to make
sure that it is tractable and how the solution could be classified as successful or not. It
should also be clear what aspects have been left out or made simpler.

In our approach the topic of combining different distance measures to detect plagiarism
was refined to the task of integrating into the given system that was based on a GED
algorithm an algorithm that accounted for the semantic distance between the texts. The
algorithms found were actually designed to compute the semantic similarity and we could
ask if turning similarity measures into distance measures does still preserve their original
confidence?

The task is representative for the class of tasks that employ a number of different features
when considering the detection of plagiarism. The subgoals of the research was to find
out if it was computationally plausible to use both algorithms and how they exactly should
be combined. Originally the idea was to let the algorithm that decided semantic similarity
between words get involved into the GED algorithm itself in the process of building the
matrix in the GraphEditDistance.java. But since the system was based in comparing
sentences, the approach of deciding semantic distance for the actual sentence as a whole
was considered as more favorable.

The other goal was that of increasing the precision by not allowing overlapping results and
increasing the recall by merging the non detected passages that lay in between detected
ones. This was achieved by building a matrix of sentence pairs that came from the two
documents getting compared. The ones getting scores lower than the threshold were then
listed in a sorted list. This accounted for non-redundant results.
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6.1.2 Designing the Method

The questions of the second phase ask for a researcher to get to know the field and the
latest results concerning the task at hand. In the case of producing a system for the PAN
challenge, one has for example to review the approaches taken by the participants of the
previous year. It would be rare if a given task in Al would not rely on other methods, so
it is important to explicitly denote which methods we are relying on. The assumptions
made do also need a clarification as the falsity of one of them would be disastrous during
the development. One should also count with not getting excellent results, but it is also
important to distinguish poor results from results that mirror a total failure. (24) here pose
these questions:

(a) How is the method an improvement over the existing technologies?

(b) Does a recognized metric exist for evaluating the performance of your method?
(c) Does it rely on other methods?

(d) What are the underlying assumptions?

(e) What is the scope of the method?

(f) When it cannot provide a good solution, does it do nothing or does it provide a bad
solution?

The methods we relied on was that of the reported success of the semantic similarity

measure algorithms that were used in other approaches . We cannot say that our method| cite here
is an improvement over the existing technologies of plagiarism detection. The recognized

metric, besides that of PAN, could be a human judgement correlation or an accuracy score

for the algorithms. When talking about natural language processing, the main assumption

is that of relying on the theories from linguistics.

The method does always produce a solution, though not always satisfying.

6.1.3 Build a Program

When building a program, Paul R. Cohen (24) point to four issues that need to be dis-
cussed:

(a) how demonstrative is the program?
(b) Is it specially tuned for a particular example?
(c) How well does the program implement the method?

(d) Is the program’s performance predictable?

We can say that the program was somehow tuned to the dataset of PAN. The specificities
that follow from this are the fact that it needs to read a file which tells it which pairs of
documents should be compared. The performance of the program is not predictable.
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6.1.4 Design Experiments

This phase could be totally omitted since we are going to evaluate by the PAN measures,
as the experiments are already set up. In general, however, Paul R. Cohen (24) bring forth
five issues that the design process needs to address:

(a) How many examples can be demonstrated?

(b) Should the program’s performance be compared to a standard such as another pro-
gram, or experts and novices, or its own tuned performance?

(c) What are the criteria for good performance? Who defines the criteria?
(d) Does the program purport to be general?

(e) Is a series of related programs being evaluated?

Numerous examples could be shown as the different combinations of the parameters and
the features involved leave room for this. The program’s performance could be compared
to that of the other participants in PAN. The last year’s results ' do, however, show that
the program’s performance is lower than the majority’s.

6.1.5 Analyze the Experiment’s Results

This stage is what most people regard as evaluation, that is why the previous stages and
the questions they come with are often left out or not even considered as part of the
evaluation. In addition to presenting the performance by the measures of evaluation, like
for example using the plagdet value, one could oversee other important factors like the
resources used to achieve those results. Paul R. Cohen (24) list four questions which the
analysis phase must answer:

(a) How did the program performance compare to its selected standard?

(b) Is the program’s performance different from predictions of how the method should
perform?

(c) How efficient is the program in terms of space and knowledge requirements?

(d) Is it easy for the intended users to understand?

The selected standard was that of the plagdet score. The version of combined GED and
Jiang Conrath appears to give the best performance on the whole dataset and this regards
both the plagdet score and the score from F-measure. This algorithm combination seems
to score best on all the types of datasets. We predicted that a combination of syntax -based
measures like GED and semantic based measures, like the aggregator and the semantic
distance algorithms it incorporates, would result in an improvement of a detector. This
was justified by the results achieved. The other question was if a different merging strat-
egy from the original would elevate the result. This did as well result in an improvement
of the score. Our other prediction, that by assigning weights to the substitution of de-
pendency relations we would improve the performance of GED, did not give any positive

Thttp://pan.webis.de/
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result. This could be due to the fact that our weights were not correctly defined.

The only knowledge required by the GED algorithm is that of delete, insert and substitute
costs for the POS tags and for the deprel edges. In contrast, the Jiang & Conrath/Resnik
algorithms require a lexical database, in our case WordNet. Moreover, the aggregator
requires a corpus in order to derive the idf values.

We suppose that this approach, the method and the way it is carried out, is simple and
easy for the intended users.

6.2 Experiments: Tuning parameters

As discussed in 2, we evaluate the system by using the plagdet score formulated by PAN.
Since the system was now enhanced by both an additional detection algorithm and a
new detection strategy, some tuning of the parameters was performed. The parameters
to be tuned were: 1) Plagiarism Threshold, 2) Merging distance inside the matrix 3) the
original Merging distance For this task, we used the method of K-Fold validation(3-Fold)
by partitioning the dataset into three almost equal pieces. We chose K=3, due to time
constraints. For each parameter, we ran the program on the 2 training partitions and then
tested in on the remaining data. In order to generalize the tests,the training corpus was
built by selecting an equal amount of data from the five categories of the PAN13 corpus .
The experiments resulted in these decisions:

e Plagiarism Threshold: The value 0.3 does still give the highest plagdet score.

e Merging distance inside the matrix: The original intuition was to set this value to a
degree lower than 10 and higher than 4, but the experiments showed that a value as
large as 25 or 30 gave a better score.

e Original merging distance: This was tested only on the version where the semantic
distance and the matrix strategy are employed since it was already decided as the
best parameter value for the GED algorithm alone. The new merging distance is that
of 2500 characters.

Another thing that had to be decided was if the original approach of merging detected
passages that lay in a distance not larger than 1500 characters, should still be kept. The
running experiments showed that a combination of the matrix strategy and this original
merging resulted in the best performance scores.

6.3 Results

The following tables present the scores achieved by several versions of the system at
hand. The short descriptions of the Algorithm column mean respectively:

e GED Original: The original system of (28) without the ”Candidate Retrieval” phase.

e GED Adjacent: The original system with the adjacent merging strategy and the
original merging of 1500 characters.
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e GED Matrix: The matrix merging strategy applied on the original system. The
merging of 1500 characters is still kept and performed after the matrix-merging.

e GED-SD-RESNIK: The combination of the graph edit distance and the aggrega-
tor that uses the ResnikComparator, the matrix merging strategy and the original
merging of 2500 characters.

e GED-SD-Jiang Conrath: The combination of the graph edit distance and the aggre-
gator that uses the JiangConrathComparator, the matrix merging strategy and the
additional merging of 2500 characters.

The parameters described during testing are those decided by training as described in
chapter 4:

Plagiarism Threshold 0.3
Merging Distance inside the Matrix 30
Additional merging distance 2500

The following tables show the performance results for the respective datasets. The dataset
of No-Plagiarism cases was left out, as the system evaluates to only zero values when
tested both with the GED algorithm alone and when combined with the SemanticDis-
tance. Arguably, this happens because the PAN evaluation expects the respective XML
documents to point explicitly to the non-plagiarised passages/documents, while the orig-
inal implementation did not account for this. The F-measure was taken in the evaluation
in order to have a combined score of the precision and recall alone when granularity is
not of importance.

PAN 13
Algorithm Plagdet | Recall | Precision | Granularity | F-measure
GED Original 0.153 | 0.086 0.870 1.026 0.156
GED Adjacent 0.106 | 0.057 0.811 1.021 0.107
GED Matrix 0.182 | 0.105 0.69 1.004 0.182
GED-SD-Resnik 0.239 | 0.141 0.808 1.006 0.240
GED-SD-Jiang & Conrath | 0.243 | 0.147 0.717 1.003 0.244

The first thing to note is that the original system (GED Original) reports a lower perfor-
mance when tested on PAN13 dataset. The plagdet score from PAN11 was as high as
0.24. We do therefore use the result from PAN13 as a baseline in our evaluation. We can
draw these conclusions from the table above:

(a) The adjacent merging does reduce the granularity but results in a drastic fall for the
recall. This sounds counterintuitive and raises the question whether this merging
was correctly implemented.

(b) The matrix strategy results in a higher recall but it lowers the precision. It does how-
ever lower the granularity as well, so it can at least not be judged as unsuccessful.
This strategy raises the baseline score by 19%.
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(c) The semantic distance algorithms do raise the plagdet score. It results in an im-
provement of 33& over the score from GED Matrix and an improvement of 58%
of the GED baseline. The difference between Resnik and Jiang & Conrath is quite
low (0.004) so we cannot say that the one algorithm performs considerably better
than the other when integrated in this system. Therefore the GED-SD-Resnik is not
presented in the following tables.

No obfuscation
Algorithm Plagdet | Recall | Precision | Granularity
GED Original 0.199 | 0.149 | 0.306 1.009
GED Adjacent 0.140 | 0.076 | 0.804 1.0
GED Matrix 0.172 | 0.156 | 0.214 1.070
GED-SD-Jiang & Conrath | 0.255 | 0.157 | 0.674 1.0

No obfuscation is the case of verbatim plagiarism. This is also the case where the GED
baseline performs best when compared to the other datasets. The Jiang & Conrath se-
mantic distance still gives the best plagdet score.

Random obfuscation

Algorithm Plagdet | Recall | Precision | Granularity
GED Original 0.089 | 0.057 | 0.208 1.007

GED Adjacent 0.082 | 0.052 | 0.198 1.0

GED Matrix 0.090 | 0.072 | 0.236 1.337
GED-SD-Jiang & Conrath | 0.215 | 0.124 | 0.816 1.0

Translation obfuscation

Algorithm Plagdet | Recall | Precision | Granularity
GED Original 0.087 | 0.569 | 0.184 1.0

GED Adjacent 0.069 | 0.043 | 0.169 1.0

GED Matrix 0.097 |0.075 | 0.152 1.047
GED-SD-Jiang & Conrath | 0.152 | 0.084 | 0.777 1.0

This is the case where the semantic distance algorithm gives the lowest performance when
compared to other datasets. As it can be seen, the recall is very low while the precision
still retains a high value.

Summary obfuscation
Algorithm Plagdet | Recall | Precision | Granularity
GED Original 0.062 | 0.066 | 0.067 1.102
GED Adjacent 0.061 0.065 | 0.066 1.10
GED Matrix 0.055 | 0.067 | 0.053 1.111
GED-SD-Jiang Conrath | 0.265 0.267 | 0.278 1.038
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This is the dataset where GED Original has its lowest performance while the combina-
tion with the semantic distance has the highest performance when compared with other
datasets. This indicates that the semantic distance is better suited to detecting paraphras-
ing.

Another thing to be mentioned is that when the FindPlagiarism class that employs the
matrix-merging strategy is used in the application, the runtime is considerably shorter
than that of the other, original version.
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The main abstract goal of this thesis was to explore ways of detecting plagiarised passages
by finding corresponding original passages from which they have drawn their content,
form or both. The more specific focus was set on improving a given plagiarism detection
system based on the graph edit distance strategy. This practical goal led us to the question
of whether a graph edit distance algorithm that mainly captures the syntactic and lexical
similarity between sentences could be combined with a semantic distance algorithm that
values the semantic relation between sentences. The other issue was that of merging de-
tected passages that lay near to each other.

In the course of this project, we have tried to answer the questions posed in the introduc-
tory chapter,section 1.2.

(a)

(b)

(©

(d)

Goal 1: Find existing solutions and methods for plagiarism detection in the NLP
literature

In ?? we presented the background material that is relevant for the area of automated
plagiarism detection. We presented some basic theory about NLP and did further
show some plagiarism detection approaches and algorithms.

Goal 2: Enhance the performance of the system described in (28)

In chapter 5 we described the implementation done in order to achieve this goal.
This goal was partially achieved. A concern is still that of why the original system
did perform worse in the face of the data from PAN13.

Research question 1: Does the combination of a graph edit distance measure with a
semantic distance measure result in an improvement of plagiarism detection when
faced with a large amount of data?

This question can be answered by the results obtained in the datasets. The scores
say that this combination is possible and results in an improvement of the detector.

Research question 2: How to detect whole plagiarised paragraphs when not all the
passages contained in are detected as plagiarised or even in the case when all the
sentences are discovered as plagiarised?
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Since our detailed analysis was based on comparing sentences with each other, we
found out that building a sentence-sentence matrix was a plausible strategy. It re-
sulted in an improvement of the precision and a reduction of the granularity.

7.1 Further Work

The performance of the system presented in this project is measured on a dataset of arti-
ficially constructed plagiarism cases. Since this dataset is delivered by the PAN compe-
tition we could compare our performance with that of the other participants. This com-
parison shows that the performance of our system is far from satisfying. Therefore there
i1s much that still can be improved. One thing could be a better tuning of the dependency
relation weights. These weights were defined by using the definition of the particular
relations. A better linguistic knowledge could result in different weights.

The results showed that the integration of semantic distance did enhance the performance
of the system, even though slightly. This improvement was more evident in the case
of paraphrasing. A further approach would thus be to let the GED algorithm decide
similarity between short sentences and use the semantic distance algorithm on the long
sentences. But this requires a dataset with “real” sentences , while our system creates
sentences arbitrarily. This leads us to the idea that this system could be better tested on a
dataset that is not based on artificial plagiarism.

Going back to the example where the original system assigned a low distance value to the
two sentences :

John kissed Mary
John killed Mary

we should mention that the semantic distance algorithm assigned an equally low distance
value to this example. This tells us that the problem presented by the original system of
detecting this kind of relationships between sentences, is yet not solved. The semantic
distance algorithms use WordNet where the relationships between certain kinds of POS
like verbs, adjectives and adverbs are rarely defined.

The other concern would be that of using a combination of semantic distance algorithms.
In our case we use only one algorithm at a time to derive the score. A combination
of different algorithms could result in a more precise score. There is also the question
of whether one should take a simple arithmetic mean between the algorithms or try to
decide their respective weights in the combination. It should, however, be mentioned that
the runtime of these semantic distance/similarity algorithms is quite high.

The last concern regarding the system as a whole is that of recall. For purposes of testing,
we tried to raise the plagiarism threshold to very large values and this did not result in any
significant change of the recall values. This indicates some malfunctioning of the system.
Due to time constraints, we were not able to explore this still remaining problem.
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