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Abstract

Hydro power plants are operated in a different manner than what they
used to be, due to increased focus on economy, and less on operating on
best efficiency point. This creates new challenges related to wear and tear
of the plant. In order to maintain and avoid degradation, the need for
control is increased. Installing sensors in a hydro power plant may be dif-
ficult, and modeling and estimating parameters could be a solution. This
thesis will cover real time modeling of flow systems, with particular focus
on the Kalman filter. The filter is an important part of control engineer-
ing, but the utilization in hydro power seems to be limited. The goal of
this thesis is to understand how the Kalman filter works for hydro power
applications, and how it can be implemented in LabVIEW.

The Kalman filter investigated is the nonlinear Discrete Extended Kalman
filter. The case chosen is the estimation of flow, based on two different
pressure losses. The Kalman filter program was run at different operating
points in order to investigate the filters function on the dynamics of the
system.

The experimental rig used was the existing Swirl rig at the Water Power
lab at NTNU. Some modifications had to be made in order for the rig to fit
the experiment specifications. One of the main valves were changed, and
some extra pressure outlets were made. Both flowmeters, absolute pres-
sure transducers and differential pressure transducers were used for the
experiment, all of these calibrated by the calibration program presented.
The calibration includes uncertainty analysis.
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Both the calibration program and the Kalman filter program is presented
step by step in order to describe the features and logic behind the pro-
gramming.

The main part of the results seemed to coincide with the Kalman fil-
ter theory. The estimations of the flow based on pressure loss over the
valve seemed to follow the measured values, but the estimations for the
pressure loss over the swirl generator did not. Some of the estimations
showed reduction in loss compared to the measurements. These and more
results are presented and discussed.



Sammendrag

Vannkraftverk blir driftet annerledes nå enn før i tiden. Fokuset har gått
fra å kjøre på best mulig virkningsgrad til å ha et overveiende fokus på
økonomi. Dette skaper utfordringer både med tanke på vedlikehold og
slitasje, men også økt fokus på overvåkning av kritiske parametere. In-
stallering av sensorer og volumstrømsmålere i et vannkraftverk kan være
både vanskelig og økonomisk utfordrede, og dette fører til økt fokus på
andre metoder. Modellering av vanskelige parametere er muligens en
løsning. Denne oppgaven vil omhandle sanntids modellering av strømn-
ingssystemer med spesielt fokus på Kalman-filteret, og hvordan dette kan
implementeres i LabVIEW. Kalmanfilteret er en viktig ressurs i mod-
erne reguleringsteknikk, dog er bruken innen vannkraftbransjen begrenset.
Målet med denne oppgaven er å forstå hvordan Kalmanfilteret fungerer på
vannkraftrelaterte problemstillinger, og hvordan dette kan implementeres
i LabVIEW.

Det Kalmanfilteret som er brukt er det ikke-lineære ”Discrete extended
Kalman filter”. Det blir forsøkt modellert volumstrøm ut i fra to forskjel-
lige trykktap. Programmet ble kjørt på flere ulike driftspunkt for å un-
dersøke den dynamiske responsen i modellen.

Riggen som ble brukt i oppgaven er den eksisterende Swirl-riggen som
står på Vannkraftlaboratoriet på NTNU. Det har blitt gjort noen modi-
fikasjoner for å få den til å passe til eksperimentet. En av hovedventilene
ble endret og ekstra trykkuttak er sveist ut. Både volumstrømsmålere, ab-
solutt trykktransdusere og differensial-trykkstransdusere er brukt, og de
er kalibrert med kalibreringsprogrammet som er beskrevet. Kalibreringen
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inneholder også en usikkerhetsanalyse.

Både kalibreringsprogrammet og Kalman-filter programmet er presentert
steg for steg for å forklare funksjonene og logikken bak programmeringen.

Resultatene fra eksperimentet virker å sammenfalle med teorien om Kalman-
filteret. Estimeringen av volumstrømmen basert på trykktap over ventil
ser ut til å følge de målte verdiene godt, men volumstrømmen basert på
trykktap over swirlgeneratoren gjør det ikke. Noen av estimatene viser
tegn på redusert støy i forhold til målingene. Disse og flere resultater er
presentert og diskutert.



Scope

There are many ways of modeling a flow system. For the current work
the Kalman filter has been chosed. The method is widely used in control
engineering, but not so much in the hydro power industry. The method is
suited for real time applications, and is available in the LabVIEW control
and simulation package.

The filter is relatively easy to implement, but can be cumbersome to de-
bug, due to no error handling in the LabVIEW function, and this can
make small errors time-consuming to find.

The measurements and modeling were conducted with a LabVIEW pro-
gram on a RIO (Reconfigurable input/output). Originally a single board
evaluation kit RIO was to be used for the experiments. Due to few input
terminals, the SbRIO was swapped with an older compact RIO. Later the
some of the application in the Kalman filter program proved difficult to
deploy on the cRIO, and the single board RIO had to be used after all.
Due to the few input terminals, the number of sensors had to be reduced
to 6. This resulted in a change in the test-case and modifications to both
the program and the experiment. This meant that many of the sensors
calibrated were not really used and that the calibration was conducted
through the wrong RIO. It also meant extra work to convert all the am-
pere signals to voltage signals and redo the setup in the rig.

Connecting to the RIO is supposed to be a smooth operation, but connec-
tion issued proved to be somewhat challenging. Some of it was due to the
age of the cRIO, but software issues, the RIOs operating system and the
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firewalls on the computer were not all that innocent either. A lot of time
was used figuring out connection issues.

The rig had to be modified to fit the project specification. More pres-
sure outlets were made, and the back-pressure valve had to be changed
to one that was controllable from the 2.floor. The work on the valve was
delayed by quite some time, and resulted in a large delay on both the
calibration and the experiments. In addition the pressure sensors that
were used had to be shared with another project that was delayed several
times, which delayed this experiment even further. The result was that
the experiment was done at the very end of the semester, and that the
time for both tuning and experimenting with variables, in addition to post
processing of the results were limited.
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Chapter 1

Introduction

The increasing pressure on the energy sector results in higher demand for
efficient and flexible solutions. Power station are often operated based
on economy, which implies more operation off best efficiency point. This
increases the wear and tear on the power plant, and so the need for con-
trol of critical parameters increases. A real time monitoring system with
permanently installed sensors allows a continuously overview of the states
in the hydro power plant. Methods that can give reliable estimates could
improve the way that power stations are run, which could result in both
more efficient solutions and better usage of the water recourses.

For simulations of hydro power problems the accuracy of the model is
of great importance, but in order to model the reality, an extreme amount
of computer capacity would be needed. Therefore the models are nor-
mally somewhat inaccurate, in order to be solvable. The imperfections
in the model may lead to errors in the results, and when simulating for
some time, even small imperfections may escalate. A filter that is able
to ”catch up” with reality by using real measurements will improve the
results dramatically.

The Kalman filter is an estimator that estimate values based on both
the mathematical model and measurements. If the systems redundancy
and observability is high it can both estimate accurate values, monitor
sensor function and remove noise from measurement values. It also has
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4 CHAPTER 1. INTRODUCTION

good implementation with real time systems due the fact that the only
values needed are the measurements value and the previous states. This
implies that the method does not require large data storage or have to do
calculations on large data sets.

The relatively new technologies and good computer capacity in modern
RIOs enables the possibility to run a stand alone modeling program in
real time.

Implementing a good modeling and control system may result in a more
efficient way of gaining control of the power plant. Estimated values are
found, malfunctioning sensors are discovered, and uncertainties reduced.
The result will be better use of the water recourses, and better economical
results. Good control of the system can also help discovering more or less
critical errors, like rock-slides in the tunnel, and can by this help avoiding
accidents.



Chapter 2

Dynamic modeling

2.1 Control engineering

In order to control and regulate flow systems some theory of control engi-
neering and modeling is investigated. The conditions in a dynamic system
changes with time. A condition or state variable can for instance be pres-
sure or flow, and set of measurements of the states is expressed as state
vectors. When modeling flow systems the dynamics of the systems must
be investigated.

There are two different ways to govern a dynamic system. The first is
a feed-forward system, also called program control. This is used when
the disturbance is known, and the control signal needed to get the system
to the desired operating point can be calculated. The second way is the
feedback system. This system measures the parameter, calculates the con-
trol signal, and sends this information to a regulator. A dynamic system
will have inertia, and will oscillate towards the desired operating point
when being treated with more or less load. The two different governing
techniques can be combined for an even better system. The feed forward
system is the rapid, but inaccurate correction, while the feedback system
will do the fine adjustments to the correct value.

For dynamic processes the regulating response can take various forms de-
pending on the system. It is also possible to manipulate the response of

5



6 CHAPTER 2. DYNAMIC MODELING

the system by using different amplifier values. To regulate a dynamic pro-
cess the process is modeled by the use of mathematic equations. A good
response is only achievable when there is good knowledge of the system,
therefore the mathematical model must be accurate. The most central
tool in modeling is the use of differential equations.

2.2 Kalman filter

The Kalman filter is one of the most important technologies in modern
control engineering, but the use is the hydro power industry is limited.
Here some basic theory on how the filter works is presented, and some
examples of its implementation. The derivation of the linear equations is
presented along with how the nonlinear filter works.

The Kalman filter is a model based state estimator of a stochastic sys-
tem. The filter bases the estimations on a mathematical model. The
model should be accurate, the better the model is, the better the esti-
mation will be. It is still important to consider the performance to the
complexity so the system is not too complicated when it is not required.

A Kalman filter algorithm uses a mathematical model to calculate the
optimal values of the estimations. Only stochastic models can be used,
that is, models that are random and non-deterministic, and can only be
described statistically. The Kalman filter can be implemented on both
linear and nonlinear systems. For the nonlinear system is called extended
Kalman filter.

The Kalman filter has numerous applications in the water power indus-
try. If the redundancy of the system is high, the filter can be used to
detect measurement error, losses and find malfunctioning sensors. The
measurement for pressure loss can for instance be used to find the flow in
the plant, which can be hard to measure using traditional methods. The
filter can even be used for calibration of flow meters in the plant, if the
observability and redundancy is high.

The Kalman filter works by stating equations for the measurements vec-
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tor, calculates the estimated values for the measurements and compares
them to the actual values. The prediction error will then indicate a cor-
rection to the states in order to make the calculated measurement values
more equal to the actual ones. The filter has good implementation with
real time systems, the only values needed are the measurements value and
the previous states. This implies that the method does not require large
data storage, and does not need to handle large amounts of data at every
calculation. Despite of this the filter require a lot of computer capacity
because of the heavy calculations.

A linear system can be described by the following equations:

xk+1 = Axk +Buk +Gwk (2.1)
yk = Cxk +Hvk (2.2)

and on general form:

xk+1 = f(xk, uk) +Gwk (2.3)
yk = g(xk, uk) +Hvk (2.4)

The different variables are explained in table 2.3 The estimator for the
linear system will be:

x̄k+1 = Ax̄k +Buk +K(yk − ȳk) (2.5)
ȳk = Cx̄k (2.6)

Where u is the control vector and y are measurements from the real system.
K is the amplification matrix that makes the error as small as possible. A
sketch of the Kalman filter principle can be seen in figure 2.1. As shown,
the Kalman filter has a model that runs simultaneously as the real process.
The z−1 in the figure is a symbol of a discrete integrator. z is the discrete
version of the Laplace transform s.
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Figure 2.1: Sketch of the Kalman filter principle [3]
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x State vector with n states x =


x1
x2
...
xn



u Control vector with m values u =


u1
u2
...
um



y Measurement vector with r measurements y =


y1
y2
...
yr



w White process noise vector with n states w =


w1
w2
...
wn



v White measurement noise vector with r states v =


v1
v2
...
vr


A State matrix n × n
B Control matrix n × m
G Process noise matrix Normally G = I.
C Measurement matrix r × n

D
Control matrix working

directly on the measurements Normally D = [0]
H Measurement noise matrix Normally H = 0

Table 2.1: Explanation of the variables in the Kalman filter [3]
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2.2.1 Examples of applications

The regulation of a water tank is to be improved, as shown in figure
2.2[3]. The level h is measured, and a normal PID regulator is used for
the regulation. In the bottom of the tank there is a pipe where water
is running out. This flow is not measured, and the tank uses a feedback
system to regulate the level h. In order to improve the system, a feed-
forward system is installed, and we use the Kalman filter to predict the
flow Fout . The mathematical model of the system will be.

Aḣ = Kpu− Fout

Figure 2.2: A tank with water level h [3]

And the state matrices will become:[
ẋ1
ẋ2

]
=
[
0 −10
0 0

] [
x1
x2

]
+
[
0.02

0

]
u

y =
[
1 0

] [x1
x2

]
+
[
0
]
u
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From this Fout can be estimated in every time step, and the feed forward
system corrects the flow in.

The Kalman filter can also be used for dynamic positioning. For instance
by the use of an GPS. The signals will be updated in a certain time inter-
val, and does not show the position in between the updates. In this case
one can use the Kalman filter to predict the position between the updates.
A model alone would probably give a good estimate in the beginning of
the simulation, but small errors would escalate. By the use of the Kalman
filter the measurement values can ”pull” the estimates back on track.

2.2.2 Apriori and Aposteriori

There are two different types of Kalman algorithms. The difference is how
they handle the estimates:

• x̄ = Apriori estimate, calculated before the current measurements
are taken. Also called time update.

• x̂ = Apoteriori estimate, calculated after the current measurement.
Also called measurement update.

The predictor type of Kalman filter does not distinguish the apriori and
aposteriori estimate, this will give a time-delay. The predictor-corrector
type does distinguish, and this is the most common type used today.

2.2.3 Derivation of the equations- Kalman Gain

For the linear equations

xk+1 = Axk +Buk +Gwk (2.7)
yk = Cxk +Duk +Hvk (2.8)

Where the estimators are:

x̄k+1 = Ax̄k +Buk +K(yk − ȳk) (2.9)
ȳk = Cx̄k +Duk (2.10)
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Where K is the Kalman, used for updating the estimations.

The error between the measurement and the process is:

ek = xk − x̄k (2.11)

We insert the equations for xk and x̄k, and then for yk and ȳk.

ek+1 = xk − x̄k+1 = Axk +Buk +Gwk − [Ax̄k +Buk +K(yk − ȳk)]
= Axk +Buk +Gwk − [Ax̄k +Buk +K(Cxk +Duk +Hvk − (Cx̄k +Duk))]
= Axk +Gwk −Ax̄k −K(Cxk +Hvk + Cx̄k)
= Axk +Gwk −Ax̄kKCxk −KHvk −KCx̄k
= A(xk − x̄k)−KC(xkx̄k) +Gwk −KHvk
We insert the error
= Aek −KCek +Gwk −KHvk

ek+1 = (A−KC)ek +Gwk −KHvk (2.12)

This is the equation for the error. The Kalman filter algorithm will find
the smallest variance of the error estimate.
We define the covariance matrix

Pk = E[ekeTk ] (2.13)
and (2.14)

Pk+1 = E[ek+1e
T
k+1] (2.15)

The autocovariance will predict how large the error in the system will be.
We insert (2.12) into (2.15) .

Pk+1 = (A−KC)E[ekeTk ](A−KC)T +GE[wkwTk ]GT −KHE[vkvTk ]KHT

and insert the matrices

Q = [wkwTk ] = auto-covariance matrix to process noise
R = [vkvTk ] = auto-covariance matrix to measurement noise
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to the covariance matrix, and get:

Pk+1 = (A−KC)Pk(A−KC)T +GQGT −KHR(KH)T (2.16)

Then, the optimal K is found. The optimal K is the K that makes the
error smallest possible. We derivate Pk with relation to K, and set it equal
to 0.

∂Pk
∂Kk

= 0 (2.17)

We use matrix derivation and end up with the optimal K:

Kk = APkC
T [CPkCT +R]−1 (2.18)

If we then put the equation for K into equation (2.16), we get:

Pk+1 = APkA
T +GQGT +APkC

T [CPkCT +R]−1CPkA
T (2.19)

This equation must be solved in every time-step to find the optimal K for
the current step. The equation is called the Ricatti equation [3].

These derivations are done for the linear case. The nonlinear, extended
Kalman filter will find a linearizion of the equations around the current
estimate, and is from this able to implement the algorithm.

2.2.4 Q, R and K

Q and R are the Kalman filters tuning parameters. Q is the auto co-
variance matrix to the process noise w, and R for the measurement noise
v. The larger the Q the larger the Kalman gain K, and the stronger the
estimate update. A large Q will however imply more noise, and so the
two effects must be balanced. If the measurement noise is very large, the
K will be very small. This implies that the filter will nearly not use the
current measurement when calculating new estimates. The R and Q ma-
trices give a statistic description of how the noise in the system works[9].

The Kalman gain is the parameter that updates the estimates. If K was
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set to be 0.5, the Kalman filter would simply be an averaging, so the filters
job is to find a more clever K to improve the estimates [4]. If the apriori
error is small, K is correspondingly small, and therefore the correction is
also small. This implies that the previous estimate will be weighted more
than the measurements estimating the next value. If the apriori error is
large on the other hand, the measurement noise is unimportant, and the
K will be large. This effect weighs the current measurements more than
the previous state [9].

2.2.5 Example of calculations

A sensor gives a voltage reading, a. The sensor measure a constant physical
property, but the measurement will be noisy, so the volt signal will vary
a bit above and below a. The standard deviation of the noise is 0.1 volts.
The model will look like this [4]:

xk = Axk−1 +Buk + wk

zk = Hxk + vk

• The model is 1 dimensional, so the matrices will be reduced to nu-
merical values.

• A will be 1 as the signal is a constant value.

• We have no control signal, so uk is zero.

• The value H is also 1. We know that the measurement is the mea-
sured value plus some noise. H is normally 1.

The equations reduces to:

xk = xk−1 + wk

zk = xk + vk

The measurements are presented in table 2.2.

The iterations start at k=0, and initial states must be assumed. For
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Time 1 2 3 4 5 6 7 8 9 10
Value [v] 0.39 0.5 0.48 0.29 0.25 0.32 0.34 0.48 0.41 0.45

Table 2.2: Measurements [4]

simplicity we set x0=0 and P0=1. P must be nonzero, if not, there will
not be any gain.

The calculation of the two first iterations are shown, the rest follow the
same pattern.

k 1 2
Zk 0.39 0.5
x̂k−1 0 0.355
Pk−1 1 0.091

Time update
x̂k−1 = 0
Pk−1 = 1

x̂k−1 = 0.355
Pk−1 = 0.091

Measurement
update

Kk = 1
1+0.1 = 0.909

x̂k = 0 + 0.909(0.390− 0)
= 0.35544

Pk = (1− 0.909) ∗ 1 = 0.091

Kk = 0.091
0.091+0.1 = 0.476

x̂k = 0.355 + 0.476(0.5− 0.355)
= 0.4244

Pk = (1− 0.0.476) ∗ 0.091 = 0.0486
x̂k 0.355 0.424
Pk 0.091 0.048

The signs of convergence in visible in figure 2.3.
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k 3 4 5 6 7 8 9 10
Zk 0.48 0.29 0.25 0.32 0.34 0.48 0.41 0.45
x̂k−1 0.424 0.442 0.405 0.375 0.365 0.362 0.377 0.38
Pk−1 0.048 0.032 0.024 0.02 0.016 0.014 0.012 0.011

Time update
Measurement

update
x̂k 0.0442 0.405 0.375 0.365 0.362 0.377 0.38 0.387
Pk 0.032 0.024 0.020 0.016 0.014 0.012 0.011 0.010

Table 2.3: Iteration results [4]

Figure 2.3: The kalman filer converges to the real over a few iterations.
[4]
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2.2.6 Observability

To implement the Kalman filter the system must be observable. For the
following system:

xk+1 = Axk +Buk

yk = Cxk +Duk

The observability matrix is defined

O =


C
CA
...

CAn−1

 (2.20)

The system is observable if the range of the system is equal to n, or
the determinant of O is not equal to 0.

The Kalman filter can only be implemented in a observable system. The
systems initial conditions x(t0) must be possible to find from y(t) over a
final time interval. For instance, if measuring the speed of a car, without
any information of the position, the system is not observable if the infor-
mation on both the speed and position are required. If the position had
been measured, the speed could have been found by derivation. The sys-
tem is observable because the speed influences the position, and therefore
also the measured values. [3].

2.3 Modeling equations and losses
The loss equations has been used to predict some of the variables in the
Kalman model. The original plan was also to calculate the loss in different
parts of the rig, and compare this to both the measured values and the
Kalman filter values to see how well the Kalman filter operates. The loss
equations has been implemented into labVIEW subVIs, but because of the
late change of the RIO, many of the sensors signals were not logged and
the use of the subVIs reduced. They have therefore not been implemented
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in the main Kalman filter program.

A general loss formula is on the form:

∆h = KQ2 (2.21)

A graphical representation of equation (2.21) is shown in figure 2.4

Figure 2.4: The relation between ∆H and Q

2.3.1 Bernoulli

The Bernoulli equation states that if a fluids velocity is increased, the
pressure will drop, and visa versa. Bernoulli is applicable on incompress-
ible flow moving at low Mach numbers. The equation is for frictionless
flow, but a loss segment can be added.

1
2ρv

2 + ρgh+ p = constant (2.22)
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2.3.2 Reynolds number

The Reynolds number describes how the flow behaves. The conditions
changes throughout the rig and with different operating points. The flow
in pipes are said to be laminar when the Reynolds number is below 2300,
above this there is a transition phase before the flow is fully turbulent
at Reynolds equal to approximately 106 [14]. The flow in the swirl-rig is
considered turbulent at all times, even though there might be cases where
the flow is in transition phase. Several of the parameters in the Reynolds
equations are temperature dependent. From White [14] there are some
curve fits that finds the correct values for different temperatures.

Re = ρUDH

µ
= ρQDH

Aµ
(2.23)

ρ ≈ 1000− 0.00178 | T − 4 |1.7 (2.24)

ln
µ

µ0
≈ −1.704− 5.306z + 7.003z2 (2.25)

where

z = 273K
TK

µ0 = 0.001788Kg
ms

In order to get the correct Reynolds number, the rig has been parted into
Reynold-zones to simplify the calculations.

2.3.3 Major losses in pipes

Turbulent flow are strongly affected by roughness in the pipe wall, and
the loss created from this is what we call Major losses in piping systems.
The most used way to find the friction in pipes is by use of the Moody
diagram, based on the formula :

1
f

1
2

= −2.0log
(

ε
d

3.7 + 2.51
Redf

1
2

)
(2.26)



20 CHAPTER 2. DYNAMIC MODELING

Figure 2.5: The Moody Diagram [5]

The Moody diagram is shown in figure 2.5.

There is an alternative equation, developed by Haaland, which is easier to
solve.

1
f

1
2

= −1.8log
[

6.9
Red

+
( ε

d

3.7

)1.11]
(2.27)

This equation varies less than 2 percent from (2.26)[14].

The relation between f and head loss is

hf = f
LV 2

d2g (2.28)
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2.3.4 Pipes in series

To calculate losses in pipes in series some basic continuity rules apply. The
flow rate will be the same in all the pipes, and the head loss in the system
will be the separate head losses added up.

Q1 = Q2 = Q3 = constant (2.29)
V1d

2
1 = V2d

2
2 = V3d

2
3 (2.30)

∆hA→B = ∆h1 + ∆h2 + ∆h3 (2.31)

2.3.5 Pipes in parallel

For pipes in parallel the pressure drop in each pipe will be the same as in
the others, and continuity states that the total flow is the sum of all the
flows.

∆hA→B = ∆h1 = ∆h2 = ∆h3 (2.32)
Q = Q1 +Q2 +Q3 (2.33)

2.3.6 Pipe network

Piping networks can be quite complex, and cumbersome to calculate, but
they follow the same basic rules:

• The net flow in any junction must be zero

• The net pressure around any closed loop must be zero.

• All pressure changes must satisfy the Moody losses and the minor
losses.

By using these rules for every junction and independent loop in the system,
a set of equations. Solutions may be found by numerical iteration.

2.3.7 Minor losses

For any pipe system there will be minor losses in addition to the friction
losses. The minor losses can be parted into these types:
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• Pipe entrance or exit.

• Sudden expansion and contraction.

• Bends, elbows, tees and other fittings.

• Valves, open or partially closed.

• Gradual expansion or contraction.

In the swirl rig there will be both bends, valves, t-bends, contraction
and expansion. Even though the name of the losses is minor, the losses
are not necessarily that small. In the case of an partially closed valve, the
loss coefficient can reach very high values, and add on large losses to the
system.

2.3.8 Bends

A bent curve in a pipe will always induce more loss than a straight pipe.
The bend creates low separation of the curved walls and creates a swirl
because of the centripetal acceleration. For a 90 degree bend the curve fit
formula for the loss is:

K ≈ 0.338α
(
R

d

)0.84
Re−0.17

D (2.34)

α = 0.95 + 4.42
(
R

d

)−1.96
≥ 1 (2.35)

Where R is the radius of the bend in center of pipe, and d is the diameter
of the pipe.

2.3.9 Losses in valves

The swirl rig contains 4 gate valves of which 1 can be controlled electron-
ically. The remaining three are manually operated. There are one valve
on every pipe section. The losses in the valves are very dependent of the
opening, and the losses become large when the valve are almost closed.
From [10] we have these formulas for the losses:
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K = exp(2.3
6∑
i=0

ai

(
h

D0

)i
(2.36)

for

0.2 ≤
(
h

D

)
< 0.9

Where

a0 = 7.661175
a1 = −72.63827
a2 = 345.7625
a3 = −897.8331
a4 = 1275.939
a5 = 938.8331
a6 = 28.8193

and

K = 0.6− 0.6
(
h

D0

)
(2.37)

for (
h

D0

)
≥ 0.9

D is the pipe diameter, and h is the opening height of the valve.

2.3.10 Losses in T-bends

Losses in a T-bend is different for which direction the flow travel and what
section that is of interest. For t-bends where flow is leaving the main pipe,
the losses in the main pipe can be described as follows [10]:

Kst = ∆P
ρV

2

2
(2.38)

Kst = ζc,st(
1− Qs

Qc

)2 (
Fc
Fst

)2 (2.39)



24 CHAPTER 2. DYNAMIC MODELING

And the losses in the side branch as follows:

Kc = ζc,s(
QsFc

QcFs

)2 (2.40)

ζc,s and ζc,st is found by the use of tables in [10].
For flows where the branch is going into the main pipe the losses for the
main pipe is the following:

K = 1.55Qbranch
Qtot

−
(
Qbranch
Qtot

)2
(2.41)



Chapter 3

The Test Rig and
Equipment

The experiment was conducted at the Water power lab at NTNU in Trond-
heim. The existing Swirl rig on the 2. floor was used.

3.1 The rig

The rig is originally made to simulate the swirl that may occur in the
draft tube of a Francis turbine when operating off best efficiency point. A
schematic drawing of the rig is shown in figure 3.6.

The flow is pumped from a reservoir and through a flowmeter. Three
throttling valves allows distribution flow into three different pipes: the
main pipe, the swirl generator pipe and the nozzle pipe. A valve is shown
in figure 3.1. The swirl generator flow will meet the main pipe in the so
called swirl generator, and will increase the swirl and create a fluctuating
vortex downstream of the joint, whereas the nozzle flow will inject water
contrary to the swirl flow, and therefore suppresses the the formation of
the fluctuating vortex. The flow continues through a observation section
made of plexiglas and through a back pressure valve. The back pressure
valve enables the possibility to build pressure in the rig. The plexiglas
section is made for observations and to to optic measurements. This will
not be performed in this thesis.

25
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On several locations on the rig there are pressure outlets. The pressure
outlets are simply holes in the pipe wall, with nipples and threads to fasten
the pressure sensors. The holes are polished on the inside not to disturb
the flow too much.
The main pipe has an inner diameter of 150mm, the first part of the swirl
generator pipe is 100mm, then the area is reduced to 50mm before enter-
ing the swirl generator . The nozzle pipe has a diameter of 50 mm, and
ends up in a nozzle where the diameter is 10mm.

Figure 3.1: Valve

3.1.1 Modifications

The rig had to be modified for it to satisfy the test carried out in this
thesis. More pressure measurement point had to be welded, and the main
exit valve had to be changed; a control system was added so that the
opening was controllable and measurable directly from the 2.floor.

3.1.2 Calibration

The sensors must be calibrated to find the relations between the ampli-
tude signals and the real values. The sensors gives values from 4 to 20
mA. This implies that that when the pressure in the system is zero, the
signal will show 4mA. This will help discovering errors, as it it is possible
to distinguish between no pressure and no/wrong signal.
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The single board RIO input requires values from -10 to 10 Volt. The
signals are therefore transferred to Voltage signals by adding a resistance
of 500 ohm, and use Ohms law.

U = R× I
0, 5k × 4mA = 2V

0, 5k × 10mA = 10V

4− 20mA⇒ 2− 10V

The Compact RIO can log both V and mA, by using the equivalent mod-
ules. Because the logging was supposed to be done through the cRIO, all
the sensors are calibrated in Ampere through the cRIO. Because the late
change to the SbRIO, the calibration constant were recalculated to fit to
voltage signals instead. The transformation from ampere to volt is done
by a high precision resistance.

The calibration is carried out in a self-produced calibration program. The
senors are connected through the RIO, as they will be during the experi-
ment, to make sure that the measurements for calibration and experiment
is done the same way. The LabVIEW calibration-program is presented in
chapter 4.

3.2 Flowmeters
There are flow-meters placed on 4 different location on the rig. This
allows the user a good overview of the flow in the different pipes. The
flow meters are electromagnetic of the type Krohne, OPTIFLUX 2300C,
and 2000F. The measuring principle follows Faradays law; A electrically
conductive fluid flows inside the flow meter. Inside the flowmeter there is
a magnetic field generated by a current induced by a flow through a pair
of coils. A voltage is generated, and picked up by electrodes. This voltage
is proportional to the flow velocity, or Q, since the inner diameter of the
flow meter is known [11]. The principle is shown in figure 3.2, and one of
the flow-meters on the rig are shown in figure 3.3.



28 CHAPTER 3. THE TEST RIG AND EQUIPMENT

Figure 3.2: Flow meter principle [11]

3.2.1 Calibration

There are 3 flowmeters that needs to be calibrated. The main flowme-
ter will be calibrated to the calibration tank, and the two others will be
calibrated towards that. The main flowmeter is calibrated with voltage
signals.

The calibration tank has a computer controlled tilting valve. This will, for
a set amount of time, direct water into the tank. The valve has very good
time precision. The water in the tank is weighed by the use of calibrated
weights. The flow is calculated based on the weight, the filling time, and
other parameters like temperature and pressure. The calibration is a time
consuming process since a certain amount of water is needed to get the
uncertainties on an acceptable level. To do the calibration alone can be
cumbersome, and to get someone to help is recommended. One person
can control the calibration tank, and one can do the logging in the control
room. A small calibration procedure will be given in appendix A. The
results from the calibration process is shown in table 3.2.1, and the cali-
bration rapport is in appendix B.

The two remaining flowmeters will be calibrated towards the first. This
process is easier than using the calibration tank, but will imply somewhat
higher uncertainties. The calibration is conducted by running the rig at
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Figure 3.3: Flow meter

Type Serial number a b Error
Optiflux 2000 F A05 1090 0.012345462 -0.025160210 - %
Optiflux 2300 C A07 00871 6.187273 -0.025382 0.189443 %
Optiflux 2300C A07 00945 3.107779 -0.013078 1.372417 %

Table 3.1: Calibration results for flow meters

different operating points. When the mean signals from the two flowme-
ters are stable, a calibration point is logged. This is done for the whole
range of operating points. An important thing to notice is that calibrat-
ing in the lower flow range might not work , because when running the
pump on a too low rpm, the flow will disappear completely because of the
elevation of the rig in relation to the pump.

3.3 Pressure transmitters

To measure the pressure in the rig both pressure transmitters of the type
Druck PTX 610 and differential-pressure transmitters of the type Fuji
FCX, is used. The absolute pressure transmitters are placed tangentially
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to the flow direction, and will measure the static pressure. They measure
the pressure by use of a silicon pressure sensor that is restrained in a
high integrity glass metal seal, so that there is both electrical and physical
isolation from the pressure media. An diaphragm of hastelloy transmits
the pressure to the sensor via a silicone oil filling. Figure 3.5 shows the
inside of a PTX pressure transmitter [8]. The pressure transmitters can
measure 2.5 bar abs. The absolute pressure sensors is used because the
environment inside the rig may go below atmospheric.

Figure 3.4: The inside of a PTX pressure transmitter [1]

The differential pressure transducers measure the difference in pressure of
two locations. Because of this the pressure sensors work independently of
the atmospheric pressure. The inside of such a sensor is seen in figure 3.5.
The sensors are attached by small plastic hoses to the rig.

The pressure transducers will be placed as shown in figure 3.6. Normal
pressure transducers marked with red numbers and differential pressure
as red Dps.

The overview of which sensors is where it found in table 3.2.
The picture 3.7 shows 4 different pressure outlets, where one of them is
attached to a hose.
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Figure 3.5: The inside of a Fuji differential pressure transmitter [8]

3.3.1 Calibration

The pressure transmitter will deliver a certain signal for every pressure.
The calibration will be done by the use of a dead weight calibrator of the
type P3023-6-P from GE Sensing. The pressure transmitter is coupled to
a pressure chamber. The pressure is controlled by the use of a piston and
additional weights with an equivalent pressure. These weights have been
calibrated for international standard gravitation, so the pressure should
be corrected for local gravitation.

plocal = glocal
gSI

× pcalibrator

For local g at the Water Power Lab:

plocal = 982.147
980.665 × 1 = 1.0051

So all the measured pressures should be multiplied with 1.0051.

The calibrator is shown in figure 3.8. The calibration is done by log-
ging the pressure and the mA signal and do a linear curve fit. The results
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Sensors Type Location
PTX610 SN 2738456 Absolute pressure P2
PTX610 SN 2738458 Absolute pressure P1
PTX610 SN 2480173 Absolute pressure P3
Fuji FCX A5A5304 Differential pressure DP1

Fuji FCX AII A5E7992F Differential pressure Dp4
Fuji FCX 9602 N 0004 CK1 Differential pressure Dp2
Optiflux 2000 F SN:A05 1090 Flow Q1
Optiflux 2300 C SN:A07 00945 Flow Q3
Optiflux 2300 C SN:A07 00871 Flow Q4

Table 3.2: Location of sensors

Name Serial number a b max error %
PTX 610 SN 2480173 156.167608 -0.621796 0.056319
PTX 610 SN 2738456 156.244957 -0.623428 0.094633
PTX 610 SN 2738458 156.237595 -0.624527 0.07392
Fuji FCX A5A5304F 81.391035 -0.319467 0.162098

Fuji FCX AII A5E7992F 125.185811 -0.427860 0.318891
Fuji FCX 9602 N 0004 CK1 157.112975 -0.628592 1.145053

Table 3.3: Calibration results for pressure transmitters and the differential
pressure transmitters

will give a calibration formula on the form:

p = a×X + b

Where a and b are the calibration constants.

The results from the calibration can be found in table 3.3.1. And the
calibration rapports in appendix B.

3.4 Uncertainty
There are uncertainties connected to every measurements. To find the to-
tal uncertainty, the uncertainties from both the calibrator apparatus and
the ones connected to the measurements are added. The measurement
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error is the difference between the measured value and the correct value.
The correct value is not known, and therefore statistical methods for es-
timates are in order. From this it’s possible to find a confidence interval
where the actual value will be, with a certain probability. This probability
is chosen, the industry normally uses 95 %, and this is also done in this
thesis. The uncertainties in the calibration have been programmed into
the LabVIEW calibration program. This means that the errors are calcu-
lated along the way, and the error can be found even though the operator
does not have a good knowledge of uncertainty analysis. Both random
error and regression error has been implemented in the program. [13]

3.4.1 Random error

Random error are caused by the small variations in the signal from the
sensors, even though the physical values are the same. The measurements
deviation from the mean value will behave in a stochastic manner, and
therefore it is assumed that the measurements approach a normal distri-
bution when the number of measurements increase. That implies that the
error will decrease with the number of measurements. Since we have a fi-
nite amount of measurements the normal distribution cannot describe the
distribution accurately, and therefore the student-t distribution is used.
The confidence interval around the mean is shown in equation (3.1).

P

(
X̄ − t× S√

N
≤ µ ≥ X̄ + t× S√

N

)
= 1− α (3.1)

S =

√√√√ 1
N − 1

N∑
i=1

(Xi − X̄)2 (3.2)

X̄ = Mean value
t = Student t factor
S = Standard deviation
N = Number of samples
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3.4.2 Regression error

When making a linear approximation on the measurements, there will
be an error due to the assumption that all the measurements are on the
curve. The following equations are needed to calculate the regression error.

SXX =
N∑
i=1

(xi − X̄)2 (3.3)

SY Y =
N∑
i=1

(yi − Ȳ )2 (3.4)

SXY =
N∑
i=1

(Xi − X̄)(yi − Ȳ ) (3.5)

(3.6)

SXX is a measure of the error in the x direction, while SY Y is in the
y-direction. SXY is a measure of the combined error in both x and y di-
rection.

SEE = SY Y −
S2
XY

SXX
(3.7)

s2 = SEE

N − 2 (3.8)

The confidence interval of the mean response around the regression line is
expressed by:

Ŷ − t× s

√
1
N

+ (X0 − X̄)2

SXX
≤ µ ≥ Ŷ + t× s

√
1
N

+ (X0 − X̄)2

SXX
(3.9)

Ŷ = mean response of an input

SEE is the sum of squares of the errors about the regression line, and s2

is an estimate of the variance of the regression line produced with SEE.
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3.4.3 Total error

The total error is found by adding the squared of all the errors and taking
the square root of the total.

Errors = ±
√
E2
Calibrator + E2

Random + E2
Regression (3.10)
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Figure 3.6: Location of sensors on the rig, modified from [2]
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Figure 3.7: Pressure outlets on the rig

Figure 3.8: Dead weight calibrator
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3.5 Reconfigurable Input/output- RIO

A reconfigurable Input/Output, called RIO, is a technology that combines
the reconfigurable FPGA, real time and the graphical programming tools
in LabVIEW.

There are different types of RIOs, in this thesis a compact RIO (cRIO)
and single board RIO is used. The single board RIO has been used for
both training and experiments. It has an extra board mounted on top
where there are LEDs, temperature sensors, an LCD screen and other
applications. This makes the RIO a good beginners board because your
results can be visualized. The cRIO was to be used in the main experi-
ments because of its flexibility and many input terminals, but the RIO was
relatively old and did not support some of the functions in the program
automatically. The single board RIO has 16 analog inputs, but many of
them does not have a input terminal and some are used for the LEDS
and temperature sensor. In order to use them for the experiment, the
board must either be taken apart and the inputs soldered, or fewer sen-
sors must be used. In the end the single board RIO with fewer inputs
was used. It was considered not practical to start soldering, and there-
fore missing the opportunity to use all the training functions on the board.

The sbRIO and the cRIO are configured the same way, and the LabVIEW
project will have almost the same configuration. To be able to understand
the features of the RIOs, some background information might come in
handy, especially when trying to solve issues that will appear along the
way.

3.5.1 FPGA

A Field Programmable Gate Array, called an FPGA, is a digital inte-
grated circuit that contain programmable blocks of logic. These blocks
can be configured by the user, thereof the name ”Field Programmable”.
Some FPGAs can only be programmed once, so called one-time pro-
grammable(OTP), while others may be programmed over and over. They
contain millions of logic gates and can be used to implement very large
and complex functions. They come with embedded microprocessor cores
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and high speed input/output (I/O) interfaces, and this makes it possible
to implement almost anything [12].

A FPGA consist of one basic logic cell duplicated thousands of times.
The small logic cell is made from one lockup table (LUT), a flip-flop and
a 2 to 1 mux (multiplexer) that selects which signal to forward. The Lut
is similar to a small RAM that is able to implement any logic function, it
has some inputs and a AND gate, and the result from this is OR-ed with
another input. Each logic cell can be connected to other cells, and this
interconnection makes it possible for the different logic cells to interact to
create all the functions of an FPGA. An illustration of the connections
are illustrated in figure 3.9 [7].

Figure 3.9: Several logic cell connected [7]

3.5.2 Real time

A real time system does not necessarily mean a fast system, it means that
it has absolute reliability, that it should meet a certain timing demand. A
real time system needs to be in sync with the world. If it falls out, it has
failed. Determinism is the term used to decide if a system is able to com-
plete a task in a specified amount of time. The real time system has to be
faster than the events coming in. If it is connected to a fighter airplane, it
has to be really fast. If it is connected to a glacier, not necessarily that fast.
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The real time system does this by having complete control of all the tasks
to be executed. A operating system in a computer on the other hand, has
background programs, interference by the outside (mouse, keyboard) and
can set high priority tasks to wait while executing lower priority tasks.
The real time system will prioritize important tasks first, not disturbed
by anything else.
A real time system is parted into 2 types, hard and soft real time systems.
If a system fails to meet the deadline, but will function despite of this, it
is called a soft real time system. If a hard real time system fails the results
will be much more severe, like an aircraft crash. [6]

3.5.3 Setup - connection to a PC

Both the Single board RIO and the cRIO is connected to a computer
through the ethernet, via a switch. This switch decides how to treat the
connected traffic from various ports, based on their knowledge of the net-
work. The computer has one input and one output in the network card,
and so does the RIO. Without the switch the computer would have sent
information from the output on the computer to the output on the RIO.
The switch rearranges this so that the information from the computers
output will go to the RIOs input.

When the RIO is properly connected to the computer, it will show as
a local network. This network needs to be given a static IP address so
that LabVIEW is able to find it. The RIO used in this thesis has the
IP address 192.168.0.2, and it given a subnet mask of 255.255.255.0. The
subnet mask is a guide to where to find the RIO. The number 255 means
that the number has to be the same, in this case 192, 168 and 0 needs
to be the same, while the last number can be any number between 0-255.
The subnet mask is like a neighborhood, you specify which neighborhood
it has to search in, so it does not have to search the entire city of IP ad-
dresses. Figure 3.10 shows the IP address settings on the local network.
In order to get normal Internet back after finishing the programming. The
network must be set to find the IP address automatically.

The Rio board will appear in the NI MAX window (if it does not, the
firewall might be the problem). Here you must give the RIO a static IP



3.5. RECONFIGURABLE INPUT/OUTPUT- RIO 41

Figure 3.10: The local network settings

adress, this IP will must be set identical to the local network, except from
the last number which must different. This way the computer and the
RIO is in the same subnet and is able to communicate. Figure 3.11 shows
how you set a static IP adress in NI MAX

To check for connection try to ”ping” the RIO. Open the cmd.exe and
write ”ping 192.168.0.2” in the commando window. If it replies that all 4
messages were received, is is connected. This method can be very useful
for debugging connection issues between the computer and the RIO, which
may occur every now and then.

In NI MAX you will have to install software on RIO. This is done by
pressing Add/remove software, and install the programs you need. If the
RIO is lacking necessary programs it will say so when trying to deploy the
program. After the installation the RIO is ready and the programming
can commence.
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Figure 3.11: How you set the static IP adress in NI MAX

3.5.4 Transfer the program

To transfer the LabVIEW FPGA program to the RIO the compiler system
is started. LabVIEW will first make the program into logic functions,
and compile it into a bitfile that can be transferred to the FPGA. Then
the bitfile gets transferred through the ethernet connection and voila, the
FPGA works according to your logic function. The whole process takes
about 10-20 minutes, and it can be done as many times as desired. This is
great for developing purposes, if the first trial did not work out, it can done
again as many times as needed. The real time programs only needs to be
deployed, and does not nearly use as much time as the FPGA compiling.



Chapter 4

LabVIEW

4.1 Introduction

LabVIEW is a program used for virtual instrumentation. A LabVIEW
program consist of two parts, one logic background, where the program-
ming is located, and a front panel, or user interface, for reading results
and operating the program. The user interface is meant for operators both
with and without much previous knowledge of LabVIEW.

4.1.1 LabVIEW projects

When programming RIOs a project folder is required to systematize which
programs goes where. The RIO, the real time target, and any logging
modules must be added to the project. The real time VIs must be placed
on the real time target, the FPGA VIs on thee FPGA, and so on. The
project folder will also contain any subVIs and shared variables used in
the project. It is a handy way to keep an overview of all the elements in
the project.

4.2 Calibration program

In order to calibrate all the sensors used in the experiment, a calibration
program is required. The best results are obtained if the calibration is
performed through the same connections as used in the experiment. The
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program is made by help from Håkon H. Franckes calibration program.

The pressure sensor calibration requires input on pressure and uncertainty
variables. The flow calibration uses signals and calibration constants from
the main flowmeter to calculate the correct flow. As the program requires
user input, it also requires a user interface. In addition, the functions
needed to generate rapports were not available on the real time or FPGA
platform, hence the calibrator program is located in a VI that runs on
the host computer. The calibration program used for the pressure sen-
sor calibration will be the one presented. The calibration program for
the flowmeter is identical except from the pressure input, which has been
swapped with the calibrated signal from the main flowmeter.

The FPGA and RT programs are simple. Their purpose is to send values
through to the computer, and has no user interface. The RT program is
required to run simultaneously as the host program, in order to transfer
the measured values.

4.2.1 Host program

The host program is where the actual calibration takes place. First the
ampere value from the real time program is read through the shared vari-
able function. The refnum is connected to a read value function inside the
while loop. Outside the loop the connection to the variable is closed. The
ampere value is then transformed to an array, and the mean is calculated.
The array is made by the use of a shift register and a build array function.
This way the array will add the latest ampere value to the end of the array
for every while-loop iteration. All this shown in figure 4.1.

In order to calculate a new mean for every pressure change, the array of
ampere values requires a clear function. This is obtained by the use of
a case structure. When the boolean into the structure is false, the array
runs straight through, but when the boolean ”clear mean and graphs” is
pressed, the structure sends an empty array both to clear the array val-
ues, and to clear the history of the array. The graph for the mean is also
cleared. Every time the button is pressed the mean will be calculated from
scratch. This way the mean is calculated only for the desired values. The
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Figure 4.1: The first steps in the calibration program

Clear mean and graphs case structure is shown to the right in figure 4.1.

The mean and random error value is sent to a new case structure where
points are logged. When the pressure is correct, the mean value stable and
the random error small enough, the ”Log point” boolean button is pressed
and the value of the pressure, the mean value and the error is added to
their respective arrays. If a point is logged incorrectly it is possible to
delete the point by pressing the ”Delete point” boolean, after choosing
the correct index of the wrong number. The logging and deleting case
structures are shown in figure 4.2. The logged ampere and pressure points
are shown in a table in the front panel.

The pressure and ampere arrays are sent to a for-loop where the errors
are calculated. The for-loop with its calculations are shown in figure 4.3.
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Figure 4.2: Delete and log points

The pressure and the ampere arrays are linearized to find the fitted lin-
ear curve for the logged measurements. The fitted pressure values, the
pressure raw data and the upper and lower errors are clustered with the
ampere values and presented graphically. This graph is used in the report.
The raw pressure data, the ampere signal, the fitted pressure data, the
deviation between the raw and the fitted pressure data, and the error in
both bar and % are gathered in a array of string and saved in the report.
The linear fit slope and intercept are converted to the equation written
in the report by adding together as a string of the different elements and
sends this to the report generator block. All this is shown in figure 4.4.

The report generator is located inside a case structure. The report is
generated only when the ”Generate report” boolean is pressed. The head-
ers for the table and the report file location must be set. The report
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Figure 4.3: Calculation of random error

generates a HTML document that can be read in a browser, and saved as
a pdf- file later. The case structure is shown in figure 4.4.

The report generator block is a subVI. Its inside is shown in figure 4.5.
Here you can see the different variables and specifications is added to the
report one by one. It is a long line of blocks with relatively few inputs,
in order to make the main program cleaner the functions were put in a
subVI. The report generator subVI include other subVIs, one where the
calibration properties are gathered and rearranged to a presentable form
for the report. An equivalent subVI for the calibrator properties and for
the calibration summary are also made. These subVIs are shown in figure
4.6.

To check the linear equation, the estimated pressure is calculated and
shown in the front panel. So if the estimated pressure deviates much from
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Figure 4.4: Arrays gatherd for the graph

Figure 4.5: Generates the report

the real pressure, it is a sign that all is not ok.

4.2.2 User interface

The user interface, shown in figure 4.7, is build to fit a 22 inch screen.
The mean Amplitude, the measured amplitude and the random error is
graphed in the middle. This shows when the mean value is stable, and
when the error is small enough to log the point. To the left, underneath the
stop button, the properties for the calibration and the calibrator apparatus
is filled in. Beneath is the clear-mean button, the log point button and
the delete point button. The logged points are shown in the table at the
bottom. Next to it, the linear equation and the pressure input terminals
are shown. The large graph shows the raw signals, the linearizion and the
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errors. This graph is saved in the report. At the top the generate report
button is shown along with the report path and error light and -text. To
the right the student-t number is set, the uncertainties, slope, intercept
and calculated pressure is shown.
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Figure 4.6: SubVI calibration properties
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Figure 4.7: User interface
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4.3 Dynamic modeling
The Kalman filter implementation in LabVIEW is a relatively simple oper-
ation when the models and parameters are correct, but can be cumbersome
to debug and tune. Therefore it is important to be confident in the model
and the other variables before trying to implement it. The LabVIEW filter
has no error functions, and in the event of an error, the filter will either
not run at all, or return NaN, without giving information of where the
error is. The filter is also sensitive to dimension errors, this means that
all the matrices and arrays must be in the right dimensions in order for
the the filter to function.

The different filters has own LabVIEW functions, but they require dif-
ferent input. The Discrete Extended Kalman filter has been used in this
thesis, because the nature of real time analysis is discrete, and our models
are nonlinear. The filter require a noise model, a plant model, measure-
ment input, a control vector and initial values.The Kalman filter is located
in the Control and Simulation package, which is not a part of the basic
LabVIEW functions.

4.3.1 FPGA

Because the Kalman filter and other control and simulation functions are
only available in the Real Time module, the FPGA VI is relatively simple.
It contains a flat structure that controls timing, and shows the values of
the sensors. There is also a function that makes the FPGA-led blink in
the same speed as the program iterations. This way you can see when the
FPGA is running correctly. The FPGA program can be seen in figure 4.8.
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Figure 4.8: The FPGA code for the Kalman filter program
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4.3.2 Real time

The simulation program implements the Kalman filter is inside a control
and simulation loop. This loop is required for many of the simulation
functions. The timing specifications is set in the top left corner of the
loop, and can be set to run synchronous to the timing source, which in
this case will be the real time target. The different parameters are plotted
to visualize the filters function under operation. All the graphs are plotted
towards the simulation time. Inside the Control and simulation loop other
structures like while and for-loops are not allowed. The loop will also stop
other functions outside the loop until the simulation is done. In order to
implement the calibration constants and write the values to file, subVIs
with the required loops are made. One for the calibration and one for the
write to file operation. The subVIs can be seen in figure 4.9 and 4.10.

Figure 4.9: The calibration SubVI

Figure 4.10: Parts of the write to file SubVI
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Figure 4.11: The control and simulation loop where the Kalman filter is
implemented
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The dynamic model is generated in a model-file. The discrete nonlinear
plant model template from the LabVIEW library is the base for the model.
It is shown in figure 4.13. The model is sent to the Kalman filter via a
strictly typed static VI reference.

Figure 4.12: The noise model and the strictly typed VI reference to the
Model

The noise model is a cluster of the matrices R, Q, N, E(v) and E(w), where
N is the cross covariance matrix between the process noise vector and the
measurement noise vector. If they are uncorrelated N is a matrix of 0.
E(v) and E(w) are the expected values of the measurement noise and the
process noise. The default is 0.
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Figure 4.13: The Kalman filter model



58 CHAPTER 4. LABVIEW

4.3.3 User interface

The user interface on the real time program is made so that the operator is
able to investigate the process. The user interface is not really necessary,
and might claim some computer capacity. For real time programs that
run in a stand alone matter, the user interface is not required.

The user interface is build to fit a 22 inch screen, there are tabs im-
plementes, so that all the initial values can be set in the rear tab, and the
simulation and logging results can be seen in the front.
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Figure 4.14: The User interface for the Kalman filter program
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Chapter 5

Experiment

5.1 Introduction

The experiment will be conducted on the swirl rig in the Water Power
laboratory. The goal of the experiment is to see how well a real time
modeling Labview program will behave. The Kalman filter, described in
chapter 2, is implemented into LabVIEW, and logges the values from dif-
ferent sensors on the swirl rig. The experiment enables the verification of
the model and the implementation in LabVIEW. This will show how the
filter will behave when dealing with real life measurements and situations.
The experiment will also show how well the Kalman filter will work when
using models that are not completely accurate, on cases that are not so
intricate. This will give a hint of how real life problems of larger scale
must be handeled in order to get results that are satisfying.

The program requires that both logging and simulation are done simul-
taneously. A Real time project that is implemented on a RIO has the
advantage of being able to run in a stand alone matter, but since this ex-
periment is conducted in a lab with possibilities of monitoring and chang-
ing the system, there has been made a user interface to the program that
enables the operator to monitor the results along the way. This way the
operator is certain that the program and rig runs correctly and is able to
monitor critical variables.
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The experiment was conducted on several operating points to see how
well the simulations will behave when changing the conditions. First to
see how well the program went from initial conditions to good estimations,
and then to see how the program responds to dynamics in the system.

5.2 HSE
To work in the Water Power a special net-based HSE course designed for
the labs at EPT is required, in addition to a tour in the lab together with
the HSE responsible to be oriented of the locations of the fire extinguish-
ers, the first aid kits and other important features. Before an experiment
is carried out, a risk evaluation has to be made and approved. An appa-
ratus card must be placed on the rig at all times, and a work in progress
sign must be hung on the rig under the experiments. The experiment must
also be reported to the HSE responsible before starting. Important papers
like procedures must be in a permian next to the rig. For own protection,
protective glasses and hearing protection must always be used when ex-
periment is running, and the operating procedures must be followed. The
procedures are found in appendix A. The Apparatus card and Work in
progress sign will be in Appendix ??, along with the risk evaluation.

5.3 Equipment
Due to the late change of the RIO, the number of sensors were reduced.
Only some of the calibrated sensors are used. Notice that the numbering
on the sensors are changed for the same reason.

• 2 absolute pressure transmitters

• 1 Differential pressure transmitters

• 2 Flow meters

• A valve opening sensor

• A RIO with the correct LabVIEW programs and modules.

• A switch and network cables
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• A host computer

5.4 The case

To see how the Kalman filter works for different approaches there has been
established a test case. Q will be estimated both from∆P and P1 - P2.
The sensor location can be seen in 5.1. The two cases made into model
files in LabVIEW, so the model can easily be changed if other cases are
tested.

Figure 5.1: The sensor location, modified from [2]

The Kalman equations:
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xk+1 = f(xk, uk) +Gwk (5.1)
yk = h(xk, uk) +Hvk (5.2)

The flow is estimated based on the pressure measurements. The measure-
ments are:

yk =



∆P
P1
P2
Q1
h
Q2


(5.3)

The states are the paramenters that are calculated by the filter. Only the
two first of the parameters are calculated by the use of equations, the rest
are estimations of themselves. They are included for controlling purposes,
so that any deviations can be investigated further.

f(xk, uk) will become:

f(xk, uk) =



Qdp
QP
P2est
Q1est
Q2est
KV


(5.4)

The equations are derived from loss equations and Bernoulli.
h(xk, uk) will be:

h(xk, uK) =



ρK1Q2
DP

2∗105(KV )2

p2est − ρgh
105 + K2ρQ2

p

2∗105

P2est
Q1est
Q2est
KV−K3
K4


(5.5)
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Where the Ks are constants.
In the extended Kalman filter the equations are linearized in the current
state automatically. The linearizion is done by taking the partial deriva-
tion of the equations in the current state.

In order to implement the Kalman-filter in LabVIEW, the auto covari-
ance matrix for the noises, R and Q are needed for the noise model.

The matrix R will be:

R =


r11 0 0 0
0 r22 0 0

0 0
... 0

0 0 0 rii

 (5.6)

Where rii is the variance of the measurement noise. Q is similar, only the
variables are the variance is from the process.

The equations were inserted into the model in LabVIEW.

5.5 Test spesification

The experiment was run on three different operating points to see how well
the Kalman filter handled the changes. The rig was run at every operating
point for two minutes to make sure the values had time to stabilize. The
rig was run at approximately:

• 25 l/s

• 29.5 l/s

• 20.5 l/s.

The following parameters were chosen:
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• Initial values - All initial values were set to 1 for simplicity. The
calculations will converge faster with a more accurate value, but
they will end up the same

• Initial predicted covariance - The pii values in the matrix were set
to 1. The values must be nonzero in order for the filter to have any
gain.

• Measurement error - The rii values were estimated to be 0.1.

• Process error - The qii values were set to 0.01.



Chapter 6

Results

6.1 The measurements
The measurements were logged and analyzed by the Kalman filter Lab-
VIEW program presented in chapter 4. The results were written to text
files on the single board RIO, and collected at the end of the experiment

The goal of the experiment is to estimate the flow based on the pres-
sure loss from both the back-pressure valve and the pressure loss over the
swirl generator, but also to investigate all the different parameters in order
to gain a better understand how the filter treats them.

The estimated flow based on the pressure loss over the valve is plotted
in figure 6.1 and 6.2 along with the measured flow. The results were
parted into one graph for the first 20 measurement, and one for the rest
of the simulation. The first 20 measurements show the converging from
the initial values, and is therefore separated from the rest, in order to
visualize the different effects. As can be seen in the last part of running
at around 29 l/s the flow mysteriously increased without changing any of
the parameters like the valve opening. The results were a bit interesting,
so the results were kept.
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Figure 6.1: Qdp and Q measured

Figure 6.2: Qdp and Q measured the first 20 measurements
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The Kalman filter shows the calculated ŷ, this way the deviation from
the actual measured values can be found. A comparison between the mea-
sured ∆P and the estimated ∆P is found in figure 6.3 and 6.4. The first
20 measurements are again plotted by themselves. The estimated values
are quite similar to the measured except from a small time delay.

Figure 6.3: ∆P estimated and real

Figure 6.4: ∆P the first 20 measurements
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The Kalman gain is multiplied with the deviation between the mea-
sured and estimated y-value, and is a matrix that changes with time. The
gain for the first spot in the first row is presented in figure 6.5 and de-
scribes ∆ P in the first equation. The graph is plotted without the first
20 measurements. The graph 6.6 shows the gain for the fourth spot in the
fourth row, which represents the relation Q1 has to its own estimate Q1est.

Figure 6.5: The kalman gain for the estimation of Qdp

Some of the measurements in the measurement vector is set to be equal
to their own state, in order to see how the Kalman filter treats them. The
comparison between P2 and P2est can be seen in figure 6.7. A small part
is enlarged so the differences are visualized.
The Estimate of Q based on the pressure loss from P1 to P2 did not turn
out very good. The result is shown in figure 6.8. A possible explanation
is discussed later.
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Figure 6.6: Kalman gain for the measured Q

Figure 6.7: The measured P2 and filtered P2
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Figure 6.8: Qp



Chapter 7

Discussion

The experiments on the swirl rig were conducted in order to investigate
how well the Kalman filter worked. The cases used were relatively simple,
and the results were expected to be thereafter, though the results should
show the basic principle.

The results from the estimations of Qdp has quite a bit of noise. There
could be several explanations for this. If the graph for ∆P is investigated,
it is clear that these measurements are noisy compared to the ones from
the flowmeter, this will partly contribute to the large noise of the estima-
tion. In addition, the Q matrix will contribute to noise if the values are
set too high. Q was set to be 0.01. The model is somewhat simple and not
completely trusted, and the Q was therefore not set any lower. If the Q
is too high, the filter will ”trust” the measurements more than the model
and will therefore contribute to more noise. A lower process noise matrix
would probably calm the noise, but because of the noisy ∆P signal, the
effect would perhaps be limited.

The effect from Q is also visible in the plot 6.7 for P2. The noise from
the measurements are reduced some in the estimation, but could probably
been reduced even more. A smaller Q would also result in slower conver-
gence from initial values. As can be seen in the plot fo the first 20 seconds
of both flow and pressure measurements, the convergence happens within
the first few measurements.
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In order to get better results for the estimated values, more redundancy
to the systems could be added, this by the use of differential equations,
more measurements or more equations for the flow. This could contribute
to less noise, and more accurate results. The current model would also
be improved by a more sophisticated noise model and optimized constants.

For the sudden increase in the flow, the model seems to regulate the
estimations in a correct manner, even though the valve opening is con-
stant. When comparing the Kalman gain for the first equation it follows
the same pattern as Q, except from where the mysterious increase in flow
appear, where the Kalman effect is the opposite. The effect can perhaps
be explained by the H-Q diagram seen in figure 7.1. When the flow is
changing because of more or less opening of the valve, the loss and flow
will follow the red linear line, but when the flow is increased with a con-
stant valve opening the flow and head will follow the black arrow up or
down the current H-Q line, and thus move in a opposite manner of the
red line.

The Kalman gain for the figure 6.6 shows the gain for Q=Qest. The
gain will rapidly converge from initial values, and then stabilize. As the
estimate is only dependent of the one measurement, the gain will find the
relation between the two.

The flow estimation based on P1 and P2 did did not turn out very good.
A possible explanation is that the loss in the swirl generator is quite small,
in the order of magnitude or smaller than the noise in the measurements.
This makes the losses disappear in the noise, and the calculations will be
subsequently bad. The estimations does not give any reasonable answer
even with changing the parameter. Non of the trials has lead to good
results. This gives an indicator of the weakness in the simplified model
when the parameters in question are non significant. In order to increase
the quality of the results the model could be made by the use of the sys-
tems differential equations. This will increase the systems observability
and redundancy by adding more equations for the states.
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Figure 7.1: The relation between ∆H and Q for different operating points
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Chapter 8

Conclusion

The focus of this thesis has been learning and understanding the theory
behind real time modeling. This is a large subject, so the area was limited
down to one particular method, namely the Kalman filter. A thorough
investigation is made for the basic theory of the filter, the equations for
the linear case are derived, and the different parameters explained, in or-
der to increase the understanding of how the filter does the estimations.
This knowledge came in quite handy when implementing the filter into
LabVIEW. Even though the author had some knowledge of LabVIEW,
the control and simulation package had never been used. This package
opened a new world of control and simulation possibilities.

When making a program from scratch there are always possibilities of
implementing errors. Therefore, validation and verification is of great im-
portance. First to check that the method implemented in the program is
applicable, but also that the program and method is used the correct way.
Small errors that are large enough to affect the results, but are too small
to crash the program, are easy to implement, but hard to discover. The
results from such a program must therefore be treated with some caution.
The programs presented here have been tested on several different oper-
ating points and tested for strength and weaknesses. There will always be
improvements to be made, but for the application in this thesis the pro-
gram seemed to run satisfactory. When tested, the programs seemed to
respond according to theory. This is a good indication that the methods
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are implemented correctly.

Instead of building a test-section from scratch, it was considered better to
modify one of the existing rigs for the experiments. The existing swirl rig
at the Water Power lab was modified to fit the experiment specifications,
and proved to be a very good rig for testing modeling scenarios due to its
many ways to change the operating points. The modifications that were
made were the changing of the back pressure valve to one that could be
operated from the second floor, and the welding of more pressure outlets.
Both these changes will make the rig better to use for other experiments
as well, by adding more locations to measure pressure, and to control the
pressure and flow in the rig much easier than before.

The estimations in the experiment shows a relatively good result for appli-
cations where the measured values are significant in the calculations of the
estimated value. The simulations follow the measurements relatively well,
even though the estimations are noisy and not completely on the spot at
all times, as seen in figure 6.3. The noise and errors could be decreased
if the parameters of the noise model and constants were optimal, or the
system had more redundancy. Still, the results clearly show the desired
results, the estimations for the flow follows the real values as seen in figure
6.1, and the noise in the measurements were reduced as seen in figure 6.7.

The estimation of Qp shows that if the measured values are non signif-
icant for the estimations, the result will be rather bad. In those cases,
the estimations must be based on a better model with more observability.
This type of case is relevant for the hydro power industry as many of the
estimations could be based on small pressure and temperature differences.
It is very interesting to find both cases that work and those who don’t,
they increase the understanding of how this work can be continued.

Even though this thesis show a rather simple model, the results imply
that the Kalman filter could have a potential to be a useful tool for the
estimations of parameters in the hydro power industry.



Chapter 9

Further work

The investigation of how the Kalman filter works on flow problems, are
full of aspects that could be tested. The method and model presented
here is merely the beginning of what could end up to be what could be
successfully implemented in a hydro power plant.

As the model and parameters presented here were relatively simple, there
are several ways to improve the results, some of these are:

• Make a more sophisticated model.

• Optimize the constant in the current model.

• Investigate good values for the noise model.

• Add a control function to the model.

• Add more redundancy or observability to the system

• Add more measurements or parameters, this would require a RIO
with more input terminals.

• Investigate the effect of initial values.

in order to get better results for the estimation of Qp, some changes in the
model would be required. Preferably use a more accurate model, maybe
differential equations to improve the redundancy and observability. This
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could be a very interesting, to see how good the model had to be in order
to get a decent result.

The LabVIEW program where the filter is implemented seems to work
according to the specification. There will always be improvements to this
type of program, but for this use the program seemed to run well, there
are still many improvements to make, and a even better Kalman filter
program in labview would increase its usage

If the equipment for control systems were available, it could be inter-
esting to try to implement control functions based on the Kalman filter
calculations, this would probably require a more elegant model.

Yet another interesting application would be to try to implement the
Kalman filter on a real power station, or on the Francis rig at the Hy-
dro power lab. This would probably require the model and parameters to
have higher quality than what is presented in this thesis, but the results
would without a doubt be very informative.
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Appendix A

Procedures

A.1 Operating Procedure for Swirl rig

This procedure is a rewrite of the procedure written by Jarle V. Ekanger.

Before start up

1. Make sure all the valves are in correct position, so that the water goes
to the swirl rig and not the Pelton-rig. See figure A.1 for reference.
Green valves are open, black are closed.

2. The pump is controlled from the small window “Pelton pump/gen”.
The pump set point should be at 100 rpm before start up. The pump
is controlled by the buttons to the right and left for the set point
window.

Start up

1. The pump must be at 500 rpm before the water is let into the rig

2. When starting, the rig must be emptied for air. Follow the procedure
in step 3-10.

3. Open valve V3 (this may be left open the entire start-up).
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Figure A.1: Owerview of valves

4. Open the vent valves L1 and L2, and close the backpressure valve
VT completely.

5. To fill the rig with water, drive the pump to 600rpm.

6. When the water surface is above the Plexiglas section, control that
V2 is open and close valve V1 and vent valve L1.

7. When there is a continuously water stream through L2, close L2
and open L1. Then open V1 and closes V2. Hopefully all air is now
above the pipe where V2 and L2 is mounted, and will be vented
through L1. When there is a continuously water stream in L1 the
system is emptied of air.

8. Left over air can be vented by opening V1 and V2 so that the flow
approaches maximum. Make sure that the venting valves are closed
before opening the back pressure valve. If the static pressure drops
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below the atmospheric pressure, air will be sucked in, and the venting
will have to be repeated.

9. Open the back pressure valve VT in small steps. Adjust the valves
and the pump until the desired operating point is found.

10. If the nozzle is not in use, remember to close valve V3.

Operation

1. To adjust operating point, adjust the back pressure valve VT, V2
and V1 (and V3 if in use).

2. Remember that by adjusting one valve, this will affect the operation
point of the rest of the rig. The loss coefficient can become large
when dealing with low flow and when the valves are almost closed.

Shutting down

The pump speed should be reduced to 100 rpm before shutdown.
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Figure A.2: Valves



A.2. PROCESURE FOR CALIBRATING THE PELTON FLOW METER TO THE CALIBRATION TANK87

A.2 Procesure for calibrating the pelton flow me-
ter to the calibration tank

Before start up

1. Open the valve from the pelton basin and the francis basin. The
water will be taken in from the pelton basin, but out in the francis
basin, so if the valve is cosed the pelton basin will be emptied.

2. Make sure that nothing is leaning towards the calibration tank, and
loosen the three legs of the tank.

3. Make sure that all valves are in the right position. Some valves
above the inlet of the calibration tank must be handled manually.
The rest can be operated from the control room.

4. Before starting the pump it must be primed, or filled with water.
There are own small valves for this next to the pump.

5. The pump set point must be set to 100 before start up.

6. Set the flow points you want to test, and calculate the time you need
in order to get at least 1000-1500kg in the tank.

Operation

1. Start the pump, and slowly increase the speed until you find your
first measuring point. The approximate flow is given in the governing
program.

2. Read the measurements you need, the before weight, temperature
for both water and air, air pressure.

3. Set the timer on the tilting valve. If calibrating alone, set the waiting
time to as long as you need to get back to the control room before
the valve activates. The best would be to get some help from a friend
(with a walkie-talkie), so that there is one by the valve and one in
the control room.

4. When the measurements are taken, timer is set and the flow is right,
press play. The screen will make a lot of noise, so wear ear protection.
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5. When the valve activates, press clear in the calibration program, and
when it closes, log the point.

6. Read the new weight of the calibration tank, and update the values
for the next measurement. Repeat step 2-6 for all the flows.

subsubsectionShut down

1. Reduce the pump speed to 100 rpm before it is shut down.

2. Fasten the tank legs and close the valves between the basins.

3. Insert all the values into the calibration excel document.
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Calibration rapports

B.1 Optiflux 2000 F A051090

Figure B.1: The calibration curve for Optiflux 2000 F A051090

Linear equation

y = 0.012345462x− 0.025160210 (B.1)
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Ambient pressure Water temp Density of water Density of air
[hPa] [oC] [kg/m3] [kg/m3]

100.47 12.6 999.4904 1.2030
100.47 12.54 999.4979 1.2024
100.49 12.61 999.4892 1.2030
100.52 12.85 999.4589 1.2044
100.52 12.88 999.4551 1.2044
100.52 12.91 999.4512 1.2045
100.52 12.94 999.4474 1.2045
100.54 12.97 999.4435 1.2047
100.55 12.98 999.4422 1.2047
100.56 13.01 999.4383 1.2047
100.56 13.14 999.4213 1.2042
100.56 13.16 999.4187 1.2043
100.55 13.19 999.4147 1.2041
100.55 13.21 999.4121 1.2038
100.55 13.22 999.4108 1.2037
100.57 13.23 999.4095 1.2042
100.58 13.24 999.4081 1.2046
100.6 13.25 999.4068 1.2050
100.6 13.24 999.4081 1.2049

100.59 13.28 999.4028 1.2048
100.6 13.25 999.4068 1.2046

Table B.1: Calibration of Large flowmeter
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Differential weight Calculated Flow Rate Manual Observation
[kg] [s] [m3/s] [V]

1334.1 150.12 0.0089020 2.795036
1383.6 120.101 0.0115396 2.975159
1482.4 100.100 0.0148346 3.256084
2094.2 100.101 0.0209573 3.729268
1751.5 70.100 0.0250296 4.070979
2143.3 70.102 0.0306278 4.515252
1740.2 50.104 0.0347937 4.856295
1572.8 40.103 0.0392890 5.220669
1777.4 40.105 0.0443959 5.635692
1882.5 40.102 0.0470259 5.850855
1968.3 40.103 0.0491681 6.019584
1875.1 40.104 0.0468398 5.836806
2244.9 50.104 0.0448858 5.674217
1988.6 50.104 0.0397608 5.254117
2432.5 70.103 0.0347609 4.855285
2098.9 70.104 0.0299933 4.45833
2473.6 100.103 0.0247548 4.04801
1987.9 100.106 0.0198933 3.632953
1488.9 100.102 0.0149001 3.241117
1213.9 120.105 0.0101249 2.841902
1104.5 150.105 0.0073717 2.619291

Table B.2: Calibration of Large flowmeter
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Calibration report

Calibration properties
Calibrated by: Sigrid Marie Skodje
Type/producer: FCX
SN: A5A5304F
Range: 1.3 bar 
Unit: bar

Calibrator properties
Type/producer: Pressurements deadweight tester P3223-1
SN: 66256
Uncertainty: 0.01%

Calibration summary
Max Uncertainty: 0.000170[%]
Max uncertainty: 0.162098[bar]
Calibration points: 13.000000

Linear fit eqation
Y=81.391035x+-0.319467



2/2

Logged calibration points

Pressure Ampere Best linear fit Deviation Uncertainty % Uncertainty

0.070106 0.004785 0.069960 0.000146 0.162098 0.000114

0.230347 0.006755 0.230308 0.000040 0.041781 0.000096

0.300453 0.007617 0.300482 -0.000028 0.030097 0.000090

0.430650 0.009217 0.430744 -0.000095 0.019462 0.000084

0.500755 0.010077 0.500747 0.000009 0.016678 0.000084

0.630952 0.011678 0.630986 -0.000034 0.013709 0.000086

0.701057 0.012540 0.701159 -0.000102 0.012974 0.000091

0.831254 0.014138 0.831240 0.000014 0.012426 0.000103

0.901360 0.015002 0.901553 -0.000193 0.012350 0.000111

1.031556 0.016599 1.031510 0.000046 0.012405 0.000128

1.101662 0.017460 1.101606 0.000056 0.012520 0.000138

1.231858 0.019058 1.231672 0.000186 0.012778 0.000157

1.301964 0.019922 1.302008 -0.000044 0.013054 0.000170
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Calibration report

Calibration properties
Calibrated by: Sigrid Marie Skodje
Type/producer: FCX-AII
SN: A5E7992F
Range: 2 bar 
Unit: bar

Calibrator properties
Type/producer: Pressurements deadweight tester P3223-1
SN: 66256
Uncertainty: 0.01%

Calibration summary
Max Uncertainty: 0.000356[%]
Max uncertainty: 0.318891[bar]
Calibration points: 19.000000

Linear fit eqation
Y=125.185811x+-0.427860



f 2/2

Logged calibration points

Pressure Ampere Best linear fit Deviation Uncertainty % Uncertainty

0.100151 0.004216 0.099886 0.000266 0.318891 0.000319

0.230347 0.005262 0.230807 -0.000460 0.125483 0.000289

0.430650 0.006861 0.431063 -0.000413 0.057388 0.000247

0.500755 0.007418 0.500817 -0.000061 0.046814 0.000234

0.630952 0.008456 0.630749 0.000202 0.033860 0.000214

0.701057 0.009014 0.700534 0.000524 0.029216 0.000205

0.831254 0.010054 0.830697 0.000556 0.023171 0.000193

0.901360 0.010620 0.901591 -0.000231 0.020971 0.000189

1.031556 0.011658 1.031550 0.000006 0.018253 0.000188

1.101662 0.012222 1.102184 -0.000522 0.017386 0.000192

1.231858 0.013256 1.231611 0.000247 0.016428 0.000202

1.301964 0.013819 1.302062 -0.000098 0.016290 0.000212

1.432160 0.014858 1.432130 0.000031 0.016100 0.000231

1.502266 0.015420 1.502486 -0.000220 0.016210 0.000244

1.632462 0.016456 1.632200 0.000262 0.016515 0.000270

1.702568 0.017019 1.702653 -0.000085 0.016715 0.000285

1.832765 0.018058 1.832686 0.000079 0.017145 0.000314

1.902870 0.018615 1.902446 0.000425 0.017411 0.000331

2.003021 0.019422 2.003529 -0.000507 0.017754 0.000356

Dette er en footer
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Calibration report

Calibration properties
Calibrated by: Sigrid Marie Skodje
Type/producer: PTX 610
SN: 2480173
Range: 2.5bar a
Unit: Bar

Calibrator properties
Type/producer: GE sensing Pressurements deadweight tester P3023-6-P
SN: 66611
Uncertainty: 0.008%

Calibration summary
Max Uncertainty: 0.000294[%]
Max uncertainty: 0.056319[bar]
Calibration points: 15.000000

Linear fit eqation
Y=156.167608x+-0.621796

Logged calibration points

Pressure Ampere Best linear fit Deviation Uncertainty % Uncertainty

0.327093 0.006078 0.327352 -0.000258 0.056319 0.000184

0.427244 0.006716 0.427060 0.000184 0.040400 0.000173

0.527396 0.007359 0.527433 -0.000037 0.030826 0.000163

0.727698 0.008640 0.727565 0.000133 0.020300 0.000148

0.827849 0.009284 0.828105 -0.000256 0.017257 0.000143

0.948030 0.010050 0.947660 0.000370 0.014669 0.000139

0.978075 0.010245 0.978185 -0.000110 0.014280 0.000140

1.128302 0.011206 1.128172 0.000130 0.012675 0.000143

1.228453 0.011850 1.228732 -0.000279 0.011900 0.000146

1.428755 0.013130 1.428618 0.000138 0.011152 0.000159

1.629057 0.014413 1.629005 0.000052 0.010974 0.000179

1.829359 0.015696 1.829429 -0.000070 0.011141 0.000204
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2.029662 0.016978 2.029571 0.000090 0.011475 0.000233

2.229964 0.018260 2.229807 0.000157 0.011777 0.000263

2.430266 0.019545 2.430510 -0.000244 0.012104 0.000294
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Calibration report

Calibration properties
Calibrated by: Sigrid Marie Skodje
Type/producer: PTX 610
SN: 2738458
Range: 2.5bar a
Unit: Bar

Calibrator properties
Type/producer: GE sensing Pressurements deadweight tester P3023-6-P
SN: 66611
Uncertainty: 0.008%

Calibration summary
Max Uncertainty: 0.000346[%]
Max uncertainty: 0.073927[bar]
Calibration points: 13.000000

Linear fit eqation
Y=156.237595x+-0.624527



s

f 2

Logged calibration points

Pressure Ampere Best linear fit Deviation Uncertainty % Uncertainty

0.326693 0.006087 0.326463 0.000230 0.073927 0.000242

0.426844 0.006729 0.426743 0.000101 0.052970 0.000226

0.526995 0.007369 0.526795 0.000200 0.040168 0.000212

0.727297 0.008653 0.727440 -0.000143 0.025996 0.000189

0.927599 0.009934 0.927552 0.000047 0.018743 0.000174

0.977675 0.010254 0.977602 0.000072 0.017550 0.000172

1.127901 0.011218 1.128182 -0.000281 0.015113 0.000170

1.228052 0.011859 1.228228 -0.000175 0.014198 0.000174

1.428355 0.013141 1.428513 -0.000158 0.013013 0.000186

1.828959 0.015706 1.829344 -0.000385 0.013003 0.000238

2.029261 0.016986 2.029357 -0.000096 0.013389 0.000272

2.229563 0.018267 2.229539 0.000025 0.013798 0.000308

2.429865 0.019546 2.429302 0.000564 0.014239 0.000346
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Safe job analysis
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