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Abstract

We give a definition of haze in reflection from two-dimensional surfaces and study this quantity
for Gaussian randomly rough surfaces. A simplified model of light scattering, assuming a scalar
incident plane wave, the Kirchhoff approximation and an impenetrable surface is used as a basis.
Using this model, we are able to derive relatively simple approximate analytical expressions for
haze. Haze is studied with and without these approximations for exponential- and Gaussian
correlation functions, and we find that the approximate expressions are accurate. The model
gives results comparable the to scattering of unpolarized light from a perfectly conducting surface
given that we only look at the total scattered intensity and that the surface roughness is not
too high.
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Chapter 1

Introduction

Gloss and haze are terms used in the optical industry to quantify the visual appearance of
materials. Haze quantifies the fraction of light that is reflected or transmitted away from the
specular direction if one were to shine a beam of light on to the material. Gloss on the other hand
is a measure of the fraction of light that is reflected or transmitted in or around the specular
direction. If a material is measured to have a high haze value it will have cloudy or blurry visual
appearance. As an example, a mirror would have a low value of haze as most of the light is
reflected in the specular direction. A sandblasted metal surface on the other hand would have a
high value. Although mainly being a measure of the visual appearance of materials, the concept
of haze has also found to be a useful quantity when studying light trapping in solar cells[9].
Gloss and haze are almost considered complimentary qualities. In fact, as defined in this thesis,
gloss(G) and haze(H) satisfies the simple relation G +H = 1. For this reason, only haze will be
discussed, as the results for gloss always can be easily aquired when the haze is known.

To study haze, one has to move into the field of rough surface scattering as the familiar example
from electromagnetism of planar material interfaces is no longer sufficient. Lord Rayleigh was
the first to consider wave scattering from a rough surface around the year 1877 when he studied
light scattering from a sinusoidal surface. The study of wave scattering from rough surfaces
is still an active field today with a wide range of application, though one today mostly deal
with so called randomly rough surfaces[12]. When dealing with randomly rough surfaces, the
surface is described in a statistical manner, allowing one to study scattering without knowing
the particular shape of the surface in detail. This allows for results to be valid not only for
one particular surface, but for a class of surfaces which, although not identical, has similar
properties.

Gaussian random surfaces are the most well studied of these randomly rough surfaces and are
the ones that will be considered here. If one for such a surface were to measure the height of the
surface at a sufficiently high number of points and make a detailed histogram of the results, it
would look like a Gaussian distribution. Surfaces obeying these kinds of statistics are practical
to work with from a theoretical perspective, but can luckily also be manufactured in practice
and are also found to exist in nature.

In this thesis the scattering of a scalar plane-wave by a two dimensional Gaussian random surface
will be the model from which haze is studied. The Kirchhoff approximation is also assumed,
neglecting multiple scattering. Analytical expressions will be given for the mean differential
reflection coefficient(MDRC), the fraction of scattered power that goes into an infinitesimal an-
gular interval around a given direction, for three common correlation functions. An approximate
analytical expression for haze for two common correlation functions will be derived and tested.
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CHAPTER 1. INTRODUCTION

Haze will be studied using these expressions and compared to results from rigorous scalar scatter-
ing simulations, which again have been found to correlate well with the scattering of EM waves
off a perfect conductor, when the polarization of the scattered wave is not recorded. The re-
sults will aslo be directly compared to simulations of EM-scattering from a perfectly conducting
surface.
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Chapter 2

Background

The scalar scattering problem is described including the scattering geometry, an outline of the
derivation of the integral equation describing the scattered field, the Kirchhoff approximation
and definition of the mean differential reflection coefficient(MDRC). A section about Gaussian
surfaces is then introduced, before looking at the validity of the Kirchhoff approximation for
Gaussian surfaces. Sections 2.1 through 2.3 are based on the book ”Designer Surfaces”[2].

2.1 Scattering geometry

The scattering system consists of an incident wave with wavevector k, a randomly rough surface
representing the interface between a vacuum and a hard wall, and the scattered wave as a
superposition of plane waves with wavevectors q. The surface is oriented so that the mean
surface, which is planar, is described by x3 = 0, i.e. lies in the x1x2-plane. Introducing the
vector x‖ = (x1, x2, 0), the surface can then be described by its height deviation x3 = ζ(x‖).

As depicted in Figure 2.1, the wave vectors are defined as:

k =
ω

c
(sin θ0 cosφ0, sin θ0 sinφ0,− cos θ0) (2.1)

q =
ω

c
(sin θs cosφs, sin θs sinφs, cos θs). (2.2)

Both k and q have length ω
c . Since the x3-component of the wave vectors always can be found

when knowing the x1 and x2 components, the scattering problem can be described in terms of
the x1 and x2 components of the wave vectors:

k‖ =
ω

c
sin θ0(cosφ0, sinφ0, 0) (2.3)

q‖ =
ω

c
sin θs(cosφs, sinφs, 0). (2.4)

The absolute value of the x3-component of the wave vectors can be calculated by the function
α0():

α0(k‖) =
√

(ω/c)2 − k2
‖ =

ω

c
cos θ0 (2.5)

α0(q‖) =
√

(ω/c)2 − q2
‖ =

ω

c
cos θs. (2.6)

3



CHAPTER 2. BACKGROUND

Figure 2.1: Scattering geometry

The wave vectors now can be written:

k(k‖) = k‖ − α0(k‖)x̂3 (2.7)

q(q‖) = q‖ + α0(q‖)x̂3. (2.8)

Since the q‖, k‖ will be used instead of angles, one might also want to calculate the Jacobian
determinant for q‖ as given by Eq.(2.4). It relates integration over angles to integrations over
q1 and q2, which will come in handy:

d2q‖ = (ω/c)2 cos θsdΩs. (2.9)

2.2 Wave theory

The wave in the model is scalar and satisfies the wave equation:

∇2Ψ(x, t)− 1

c2

∂2

∂t2
Ψ(x, t) = 0, (2.10)

where c is the speed of the wave. The field, Ψ(x, t), is assumed to be real and monochro-
matic:

Ψ(x, t) = Re{ψ(x|ω) exp(−iωt)} =
1

2
[ψ(x|ω) exp(−iωt) + ψ∗(x|ω) exp(iωt)]. (2.11)

Substituing this assumed waveform into the wave equation, one sees that the complex wave
amplitude, ψ(x|w), satisfies the Helmholtz equation:

[∇2 + (ω/c)2]ψ(x|ω) = 0. (2.12)

4



CHAPTER 2. BACKGROUND

The wave is scattered from a rough surface defined by x3 = ζ(x‖). The surface is assumed to
be a hard wall, with no transmitted field. To describe such a surface, it is assumed that the
field either is zero at the surface, the so called Dirichlet boundary condition, or that it’s normal
derivative at the interface is zero, the Neumann boundary condition. The Dirichlet boundary
condition will be assumed here :

ψ(x|ω)|x3=ζ(x‖) = 0. (2.13)

The free-space scalar Green’s function of the Helmholtz equation has the form:

g0(x|x′) =
exp(i(ω/c)|x− x′|)

|x− x′|
=

∫
d2k‖

(2π)2

2πi

α0(k‖)
exp(ik‖ · (x‖−x′‖)+ iα0(k‖)|x3−x′3|), (2.14)

and is defined so that it satisfies the equation

[∇2 + (ω/c)2]g0(x|x′) = −4πδ(x− x′). (2.15)

Green’s second integral theorem reads:∫
Ω

d3x(u∇2v − v∇2u) =

∫
Σ

dS(u
∂v

∂ν
− v∂u

∂ν
), (2.16)

where Σ is the surface bounding the volume Ω and ∂
∂ν is the derivative with respect to the normal

to the surface Σ, pointing outward. Using Green’s second integral theorem for u(x) = ψ(x|ω)
and v(x) = g0(x|x′) and letting Ω be the volume bounded by the rough surface x3 = ζ(x‖) and
a hemispherical cap of infinite radius in the upper half space, in addtion to using Eqs. (2.12)
and (2.15), one gets:

−4πθ(x3 − ζ(x‖))ψ(x|ω) = −
∫
S

dS

[
ψ(x|ω)

∂

∂n
g0(x|x′)− g0(x|x′) ∂

∂n
ψ(x|ω)

]
+

∫
S(+∞)

dS

[
ψ(x|ω)

∂

∂ν
g0(x|x′)− g0(x|x′) ∂

∂ν
ψ(x|ω)

]
.

(2.17)

Here S denotes the part of Σ that coincides with the surface x3 = ζ(x‖), while S(+∞) is the
hemispherical cap. Assuming the Dirichlet boundary condition, Eq. (2.17) can be rewritten
:

θ(x3 − ζ(x‖))ψ(x|ω) = ψ(x|ω)inc −
1

4π

∫
d2x′‖[g0(x|x′)]x′3=ζ(x′‖)

L(x′‖|ω), (2.18)

where θ(x) is the Heaviside step-function and the source function L(x‖|ω) is defined by:

L(x‖|ω) = [
∂

∂N
ψ(x‖|ω)]

∣∣∣∣
x3=ζ(x‖)

. (2.19)

The incident part of the wave is assumed to be a plane wave and can be written: ψ(x|ω)inc =
exp(ik‖ · x‖ − iα0(k‖)x3). Under the condition x3 � ζ(x‖), the last term in Eq. (2.18) repre-
senting the scattered field, can be written:

ψ(x|ω)sc =

∫
d2q‖

(2π)2
RD(q‖|k‖) exp(iq‖ · x‖ + iα0(q‖)x3), (2.20)

with scattering amplitude

RD(q‖|k‖) = − i

2α0(q‖)

∫
d2x‖L(x‖|ω) exp(−iq‖ · x‖ − iα0(q‖)ζ(x‖)). (2.21)

5



CHAPTER 2. BACKGROUND

2.2.1 Kirchhoff approximation

The Kirchhoff approximation constitutes that the scattering takes place as reflections from the
tangent-plane at each point of the surface. It is a single-scattering approximation, that is
expected to hold for weakly rough surfaces. It’s validity in terms of the parameters used in
describing Gaussian surfaces, will be adressed in section 2.4.

In general, the source function L(x‖|ω) satisfies an integral equation that is complicated to solve.
Under the Kirchhoff approximation, L(x‖|ω) simplifies to:

L(x‖|ω) =2

(
−
∂ζ(x‖)

∂x1

∂

∂x1
−
∂ζ(x‖)

∂x2

∂

∂x2
+

∂

∂x3

)
ψ(x‖|ω)inc

∣∣∣∣
x3=ζ(x‖)

=− 2i

(
k1

∂ζ(x‖)

∂x1
+ k2

∂ζ(x‖)

∂x2
+ α0(k‖)

)
exp(ik‖ · x‖ − iα0(k‖)ζ(x‖)).

(2.22)

Applying the expression to the scattering amplitude RD and rewriting so that the surface deriva-
tives no longer appears, one gets:

RD(q‖|k‖) =−
(ω/c)2 + α0(q‖)α0(k‖)− q‖ · k‖

α0(q‖)[α0(q‖) + α0(k‖)]

×
∫

d2x‖ exp(−i(q‖ − k‖) · x‖) exp(−i(α0(q‖) + α0(k‖))ζ(x‖)).

(2.23)

It is also worth noting at this point that if the Neumann boundary condition was applied instead
of the Dirichlet condition, it can be shown that the scattering amplitude under the Kirchhoff
approximation would become: RN = −RD. In the far field and under the Neumann condition,
the scattered field can be expressed from Eq. (2.20), with RN taking the place of of RD. This
means that the field will be the same in the far-zone, except for a phase shift that is irrelevant
for the physical quantities that will be discussed.

2.3 Mean differential reflection coefficient(MDRC)

The differential reflection coefficient is defined so that ( ∂R∂Ωs
)dΩs is the fraction of total time-

averaged incident flux that is scattered into a solid angle element dΩs around a given scattering
direction as dΩs goes to zero. By calculating the energy flux across the area of the surface in the
x1x2-plane for the incident and scattered wave, it can be shown that the differential reflection
coefficient can be written:

∂R

∂ΩS
=

1

S

( ω

2πc

)2 cos2 θs

cos θ0
|R(q‖|k‖)|2. (2.24)

Taking the mean of the expression, one ends up with:

〈
∂R

∂ΩS

〉
=

1

S

( ω

2πc

)2 cos2 θs

cos θ0
〈|R(q‖|k‖)|2〉. (2.25)

6
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Plugging in the approximation for R(q‖|k‖) from equation 2.23, the expression for the mean
differential reflection coefficient(MDRC) becomes:

〈
∂R

∂Ωs

〉
=

1

S

1

4π2 cos(θ0)

[
(ω/c)2 + α0(q‖)α0(k‖)− q‖ · k‖

]2

[
α0(q‖) + α0(k‖)

]2
×
∫

d2x‖

∫
d2x′‖ exp{−i(q‖ − k‖) · (x‖ − x′‖)}

×
〈

exp{−i(ω/c)(α0(q‖) + α0(k‖))(ζ(x‖)− ζ(x′‖))}
〉
.

(2.26)

2.4 Gaussian random surfaces

The height ζ(x‖) is assumed to be a zero-mean Gaussian stationary process defined by:

〈ζ(x‖)〉 = 0 (2.27)

〈ζ(x‖)ζ(x′‖)〉 = δ2W (x‖ − x′‖). (2.28)

The parameter δ denotes the root mean square of the surface roughness and W (x‖ − x′‖) is the

height-height correlation function normalized so that W (0) = 1.

Gaussian random surfaces have height-distributions given by:

p(ζ) =
1√

2πδ2
exp

(
− ζ2

2δ2

)
. (2.29)

Assuming an isotropic height-distribution the two-point height probability function is:[10]

p2(ζ, ζ ′,x′‖ − x‖) =
1

2πδ2
√

[1−W 2(x′‖ − x‖)]
exp

(
ζ2 + ζ ′2 − 2ζζ ′W (x′‖ − x‖)

2δ2[1−W 2(x′‖ − x‖)]

)
. (2.30)

2.5 Validity of the Kirchhoff approximation

Having established the description of Gaussian randomly rough surfaces, the validity of the
Kirchhoff approximation can be discussed based on the relevant physical quantities describing
the surface. Historically, the most used criterion is 2π

λ rc cos3 θ0 � 1, with rc being the local
radius of curvature[15]. It determines the validity of the assumption of the scattering taking
place from tangential planes of the surface. This criterion does not, however, consider global
effects such as multiple scattering effects and shadowing effects that take place at large angles.
The criterion:

δ2

a
≤ 0.2λ, (2.31)

given θ0 = 0◦ has been suggested as a more practical criterion for Gaussian correlation functions
by Shi et al.[11] It is based upon the error in the peak MDRC being less than 1dB at normal
incidence. It also was suggested that the scattering angle should also not exceed ≈ 70◦ for this
formula to be valid. Increasing the angle of incidence is thought to increase the range of validity,
since it reduces the Rayleigh parameter R = 2π

λ δ cos θ0, which effectively reduces the roughness
somewhat. This can be understood later by inspecting the equations for the MDRC. This is

7
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however only true as long as the angle of incidence is modest, θ0 ≤ 30◦. For large incident
and scattering angles, the Kirchhoff approximation becomes invalid due to lacking to take into
account multiple scattering. An important part of the lacking multiple scattering effects is
shadowing. In our model, the entire surface will be illuminated by the incident beam. In reality,
parts of the surface will be shadowed by others for large angles θ0.[3]

In this thesis however, these criteria will not be followed strictly. Instead, the criterion that the
scattered energy equals that of the incident will be used as a guideline.

2.6 Summary

In summary, some remarks on the model:

• The wave is scalar.

• The incident beam is a plane wave.

• The scattering surface is mathematically a hard wall(No transmission), and has infinite
area.

• The scattering surface has a Gaussian height-distribution.

• The Kirchhoff approximation has been made, neglecting multiple scattering and putting
constraints on what parameters δ/λ and a/λ can be used.

• The Neumann and Dirichlet boundary conditions gives the same physical results.

• Three input parameters for isotropic correlation functions: θ0, a/λ, δ/λ (φ0 is redundant
in this case). Five for anisotropic: θ0, a1/λ, a2/λ,δ/λ, φ0.

The fact that the model can be expressed in terms of a/λ and δ/λ is perhaps not immediately
apparent when looking at the equations as they stand in this section. It can be shown for
instance by changing integration variables in Eq. (4.3) to y1 =

u‖1
a1

and y2 =
u‖2
a2

. Then one can
see that every factor δ, a1, a2 (or simply a) can be moved next to a factor α0(...), q‖, k‖ or (ω/c)
who carry a 1/λ dependence.

8



Chapter 3

Definition of haze

Haze and gloss are terms that are often used in the optical industry to quantify the visual
appearance of materials. Gloss is a measure of the fraction of reflected light intensity that is
directed around the specular direction. Haze is a complimentary quantity that is a measure
of the fraction of the reflected light intensity that is directed into other directions than those
around the specular. Having defined the MDRC, a definition of these quantities for scattering
from two-dimensionally surfaces can now be made.

There is no standard definition for haze and gloss in the industry. Nor is there a standard
for how far away from the specular direction the reflected light can go and still be around
it. In this thesis, these directions are defined as the directions where the angle between the
scattered momentum vector and a vector pointing in the specular direction is less than some
limit angle Θlim. The definition builds on the definition that has often has been used previously
in the theoretical study of gloss from 1D-surfaces[13]. One can also talk of gloss and haze in
transmission, but that will not be discussed in this thesis, since the model used here only allows
for reflection. Yet, the following definitions are valid for haze/gloss in reflection for all surface
models

The total time-averaged flux of reflected light is defined as the surface integral of the MDRC
over all scattering directions:

U =

∫
θs<π/2

〈
∂R

∂Ωs

〉
dΩs =

∫
|q‖|<(ω/c)

1

(ω/c)α0(q‖)

〈
∂R

∂Ωs

〉
d2q‖. (3.1)

Haze, being defined as the fraction of this flux going into directions not around the specular,
can be defined as:

H(Θlim) =
1

U

∫
∆ΩH

〈
∂R

∂Ωs

〉
dΩs =

1

U

∫
AH

1

(ω/c)α0(q‖)

〈
∂R

∂Ωs

〉
d2q‖. (3.2)

The area AH has the outer bound |q‖| = (ω/c) and inner bound defined by the curve where
the the angle between the scattered momentum vector and a vector pointing in the specular
direction is Θlim: q(q‖) · q(k‖) = (ω/c)2 cos(Θlim).

Gloss can be defined as:

G(Θlim) =
1

U

∫
∆ΩG

〈
∂R

∂Ωs

〉
dΩs =

1

U

∫
AG

1

(ω/c)α0(q‖)

〈
∂R

∂Ωs

〉
d2q‖. (3.3)

The area AG is the area enclosed by q(q‖)·q(k‖) = (ω/c)2 cos(Θlim). This is the same curve as the
inner boundary for the area AH. Using that fact, the expression for haze can be rewritten:

9



CHAPTER 3. DEFINITION OF HAZE

H(Θlim) =
1

U

(
U −

∫
AG

1

(ω/c)α0(q‖)

〈
∂R

∂Ωs

〉
d2q‖

)
= 1− G(Θlim). (3.4)

By changing to a coordinate system rotated φ0 about the x3-axis, so that k‖ lies along the
x′1-axis, it can be shown that the curve enclosing AG is an ellipse.x′1x′2

x′3

 =

 cosφ0 sinφ0 0
− sinφ0 cosφ0 0

0 0 1

x1

x2

x3

 . (3.5)

The edge of AG satisfies the equation:

q(q‖) · q(k‖) = (ω/c)2 cos(Θlim), (3.6)

which in the new rotated coordinate system can be written:

q′1k‖ + α0(q‖)α0(k‖) = (ω/c)2 cos(Θlim)

⇓
(q′1k‖ − (ω/c)2 cos(Θlim))2 = α2

0(k‖)((ω/c)
2 − q′21 − q′22 ).

This can be rewritten to the form:

(q′1 − k‖ cos(Θlim))2

(α0(k‖) sin(Θlim))2
+

q′22
((ω/c) sin(Θlim))2

= 1, (3.7)

which is recognized as the expression for an ellipse.

From Eq. (3.7) it can be seen that AG is the area of an ellipse with origin at (q′1, q
′
2) =

(k‖ cos(Θlim), 0) or (q1, q2) = k‖ cos(Θlim)(cosφ0, sinφ0). The minor axis lies along the x′1-

axis(Or similarly the line x2 = k2
k1
x1) and has length Lmin = 2α0(k‖) sin(Θlim). The major axis

has length Lmaj = 2(ω/c) sin(Θlim).

Figure 3.1 shows the integration area AG when θ0 = 70◦ and Θlim = 15◦.For such large values
of θ0 and Θlim it becomes apparent that AG is an ellipse and that its origin is not at the point
(q′1, q

′
2) = (k‖, 0), but rather (q′1, q

′
2) = (k‖ cos(Θlim), 0). This is helpful to bear in mind, since

we will do the approximation of the shape of AG being circular when deriving approximate
expressions for haze.
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Figure 3.1: AG when Θlim = 15◦ and θ0 = 70◦ in the rotated coordinate system x′1x
′
2. The red

dot marks the origin of the ellipse.
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Chapter 4

Expressions for MDRC

Under the assumption that ζ(x‖) is a Gaussian, isotropic and stationary process, the factor
〈exp[−i(ω/c)(α0(q‖) + α0(k‖))(ζ(x‖)− ζ(x′‖))]〉 from the expression for the MDRC as given by
Eq. 2.26 can be calculated analytically by using the two-point height probability function given
in Eq. (2.30) to obtain:

〈exp[−i(ω/c)(α0(q‖) + α0(k‖))(ζ(x‖)− ζ(x′‖))]〉

=

∫ ∞
−∞

∫ ∞
−∞

exp[−i(ω/c)(α0(q‖) + α0(k‖))(ζ − ζ ′)]p2(ζ, ζ ′,x‖
′ − x‖)dζdζ ′

= exp[−δ2(α0(q‖) + α0(k‖))
2(1−W (x‖

′ − x‖))].

(4.1)

Plugging this expression into the formula for the MDRC as given by Eq. (2.26) and dubbing
u‖ = x‖

′−x‖, one obtains an expression for the MDRC for a surface with a Gaussian, stationary
and isotropic height distribution:

〈
∂R

∂Ωs

〉
=

1

S

exp[−(α0(q‖) + α0(k‖))
2δ2]

4π2 cos(θ0)

[
(ω/c)2 + α0(q‖)α0(k‖)− q‖ · k‖

]2

[
α0(q‖) + α0(k‖)

]2
×
∫

d2x‖

∫
d2x′‖ exp[−i(q‖ − k‖) · u‖] exp[(α0(q‖) + α0(k‖))

2δ2W (u‖)].

(4.2)

Changing the coordinate of the inner integration to u‖, the outer integral simply amounts to a
factor S and the equation becomes:

〈
∂R

∂Ωs

〉
=

exp[−(α0(q‖) + α0(k‖))
2δ2]

4π2 cos(θ0)

[
(ω/c)2 + α0(q‖)α0(k‖)− q‖ · k‖

]2

[
α0(q‖) + α0(k‖)

]2
×
∫

d2u‖ exp[−i(q‖ − k‖) · u‖] exp[(α0(q‖) + α0(k‖))
2δ2W (u‖)].

(4.3)
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4.1 Gaussian and exponential correlation functions

Writing out the last exponential function of Eq. (4.3) as its series representation, the equation
becomes:

〈
∂R

∂Ωs

〉
=

exp[−(α0(q‖) + α0(k‖))
2δ2)

4π2 cos(θ0)

[
(ω/c)2 + α0(q‖]α0(k‖)− q‖ · k‖

]2

[
α0(q‖) + α0(k‖)

]2
∞∑
n=0

[(α0(q‖) + α0(k‖))δ]
2n

n!
F [Wn(u‖)](q‖ − k‖).

(4.4)

Here we have introduced F [Wn(u‖)](q‖ − k‖) as the two dimensional fourier transform of the
n’th power of the correlation function:

F [Wn(u‖)](q‖ − k‖) =

∫
d2u‖W

n(u‖) exp[−i(q‖ − k‖) · u‖]. (4.5)

For Gaussian isotropic-, Gaussian anisotropic-, exponential- and other correlation functions
where an analyitcal expression for this Fourier transform can be found, the series form of the
MDRC as given in Eq. (4.4) is convenient.

The zero’th component of the series representation of the MDRC corresponds to the coherent
component of the scattered wave. Independent of correlation function it is:

〈
∂R

∂Ωs

〉
coh

=
exp[−(α0(q‖) + α0(k‖))

2δ2]

4π2 cos(θ0)

[
(ω/c)2 + α0(q‖)α0(k‖)− q‖ · k‖

]2

[
α0(q‖) + α0(k‖)

]2
× (2π)2δ(q‖ − k‖).

(4.6)

The incoherent part of the MDRC is:

〈
∂R

∂Ωs

〉
incoh

=
exp[−(α0(q‖) + α0(k‖))

2δ2]

4π2 cos(θ0)

[
(ω/c)2 + α0(q‖)α0(k‖)− q‖ · k‖

]2

[
α0(q‖) + α0(k‖)

]2
×
∞∑
n=1

[(α0(q‖) + α0(k‖))δ]
2n

n!
F [Wn(u‖)](q‖ − k‖).

(4.7)

Due to the factor 1/n!, the sum in Eq. (4.7) is expected to converge rapidly, especially when δ/λ
is small.For the correlation functions that will be studied in this thesis, the Fourier transforms,
F [Wn(u‖)](q‖ − k‖), are given in Table 4.1.

4.2 Isotropic correlation function

Although only the previously mentioned correlation functions will be discussed in this thesis,
the MDRC for a general isotropic correlation function will be given for completeness. For such
correlation functions, where no analytic expression for fourier transform of Wn(u‖) can be found,
some progress can still be made in the sense that the complex 2d-integral in Eq. (4.3) can be
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Table 4.1: Fourier transforms of different correlation functions to the n’th power.

W (u‖) F [Wn(u‖)](Q‖)

Gaussian exp
(
−u2‖
a2

)
πa2

n exp
(
−Q2

‖a
2

4n

)
Gaussian anisotropic exp

(
−
(
u21
a21
+ u22

a22

))
πa1a2
n exp

(
−
(
Q2

1a
2
1

4n + Q2
2a

2
2

4n

))
Exponential exp

(
−u‖

a

)
2πa2n(n2 +Q2

‖a
2)−3/2

reduced to a real 1d-integral. The incoherent part of the MDRC given as given by Eq. (4.3)
is:

〈
∂R

∂Ωs

〉
incoh

=
exp[−(α0(q‖) + α0(k‖))

2δ2]

4π2 cos(θ0)

[
(ω/c)2 + α0(q‖)α0(k‖)− q‖ · k‖

]2

[
α0(q‖) + α0(k‖)

]2
×
∫

d2u‖ exp[−i(q‖ − k‖) · u‖]
[
exp[(α0(q‖) + α0(k‖))

2δ2W (u‖)]− 1
]
.

(4.8)

The coherent part is still given by Eq. (4.6). Dubbing f(u‖) =
(
exp((α0(q‖) + α0(k‖))

2δ2W (u‖))− 1
)

for readability, the integral in Eq. (4.8), can be rewritten:

I(|q‖ − k‖|) =

∫
d2u‖ exp[−i(q‖ − k‖) · u‖]f(u‖)

=

∫ ∞
0

du‖u‖f(u‖)

∫ 2π

0
dΘu exp[−i|q‖ − k‖|u‖ cos Θu]

= 2π

∫ ∞
0

du‖u‖f(u‖)J0(|q‖ − k‖|u‖).

(4.9)

Here J0 denotes the zero’th order Bessel function of the first kind. The integral I(|q‖−k‖|)/(2π)
is also referred to as the Hankel transform of f(u‖). This is an oscillating integral that can be
computed numerically. Moreover, there exists numerical methods for computing a discrete
Hankel transform which could also be used.

For a general isotropic correlation function:

〈
∂R

∂Ωs

〉
incoh

=
exp[−(α0(q‖) + α0(k‖))

2δ2]

4π2 cos(θ0)

[
(ω/c)2 + α0(q‖)α0(k‖)− q‖ · k‖

]2

[
α0(q‖) + α0(k‖)

]2
× 2π

∫ ∞
0

du‖u‖
[
exp[(α0(q‖) + α0(k‖))

2δ2W (u‖)]− 1
]
J0(|q‖ − k‖|u‖).

(4.10)
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Chapter 5

Approximate expressions for haze

In deriving the following expression for haze, three additional approximations has been made:

1. U = 1. The total scattered energy is assumed to be equal to the incident energy.

2. AG is circular. For all the approximate expressions this assumption is made, except for
the one for a general anisotropic correlation function, where it can be evaded. The length
of the minor axis of AG goes like ∝ (1 − cos θ0), and should thus the contraction not be
too prominent for modest angles of incidence.

3. Except for the factors F [Wn(u‖)](Q‖), the MDRC is approximated by taking q‖ = k‖. Since

the haze is calculated by integrating over a relatively small area around k‖ and that
F [Wn(u‖)](Q‖) typically is more rapidly changing than the other parts of the MDRC,
this is expected to give decent results. In the more general approximate expressions that
will be given, this corresponds to putting q‖ = k‖ everywhere except for the oscillating
exponential function in Eq. (4.3)

Before getting into deriving approximate expressions for haze, it can often be helpful to notice the
contribution to the haze from the coherent part of the scattered wave. This result is independent
of the approximations made above except for U = 1 and independent of what correlation function
is assumed. The coherent contribution reduces the value of the haze and and gives an upper
bound on what the final value can be. When δ/λ is low, this reduction becomes significant.

H < 1− exp(−4α2
0(k‖)δ

2). (5.1)

When δ/λ is very small, the haze can be approximated by the coherent contribution only.

Also, some points should be made on the radius of AG . When θ0 = 0◦, the radius is ∆Q =
(ω/c) sin(Θlim). As stated earlier, the integration should not be carried out over an circular area
in the q1q2-plane when the angle of incidence is non-zero. Rather it should be carried out over
an ellipse with area A = π(Lmin/2)(Lmaj/2) = π(ω/c)2 sin2(Θlim) cos θ0. Choosing:

∆Q = (ω/c) sin(Θlim)
√

cos θ0, (5.2)

will give an integration area of correct magnitude, though the shape is still not correct. There
is however no correct choice for this radius and other smarter choices could be made, giving a
better behaviour for large θ0.

17
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5.1 Gaussian and exponential correlation functions

The haze as given by the expression H = 1 − G can be rewritten on the following form, when
the incoherent part of the MDRC is on the series form given in Eq. (4.4) and the three approx-
imations mentioned before are made:

H ≈ 1− exp(−4α2
0(k‖)δ

2)

[
1 +

∞∑
n=1

(2α0(k‖)δ)
2n

n!

∫
AG

F [Wn(u‖)](Q‖)
d2Q‖

(2π)2

]
. (5.3)

When the approximation of a circular AG is made, convenient, analytical expressions are found
for the integrals for the Gaussian and exponential correlation functions. For the Gaussian
anisotropic correlation function, the integrals over AG is reduced to 1d-integrals. The results are
found in Table 5.1

Table 5.1: Terms used in the approximate analytical expression for haze.

W (u‖)
∫
AG
F [Wn(u‖)](Q‖)

d2Q‖
(2π)2

exp(−u2‖
a2 ) 1− exp(−a2∆Q2

‖
4n )

exp(−(u
2
1

a21
+ u22

a22
)) a1a2

∫ ∆Q2
‖/(4n)

0 exp(−a21+a22
2 u)I0(

a21−a22
2 u)du

exp(−u‖
a ) 1− (1 + a2∆Q2

n2 )−1/2

5.2 General correlation function

The MDRC for a general correlation function is given in Eq. 4.3. Finding a simple approximate
analytical expression for haze in this case seems to be out of the question for now. The approx-
imations can, however, be applied anyway to get rid of a couple of integrations. Also, since we
have to perform a numerical integration anyways, the requirement of AG being circular can be dropped.
Assuming U = 1, the haze can be written:

H ≈ 1− exp(−4α2
0(k‖)δ

2)− I, (5.4)

where I is the integral of the incoherent part of the MDRC around the specular direction, which
we will try to find. Putting q‖ = k‖ everywhere in the incoherent part of the MDRC given by
Eq. (4.3) except for the oscillating exponential function, and integrating, one obtains:

I =
exp(−4α2

0(k‖)δ
2)α0(k‖)

4π2(ω/c)

∫
d2u‖(exp(4α0(k‖)δ

2W (u‖))− 1)

∫
d2p‖ exp(−i(q‖ − k‖)

Tu‖).

(5.5)

The integral is carried out over x′1x
′
2, a plane having x̂′3 ∝ q(k‖) as its normal vector. In Eq.

(5.5), pi are the components of the scattering vector q in this coordinate system and p‖ is q when

18
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the p3 is zero. The p3 component is calculated through p3 = α0(p‖). In this coordinate system
the integration over AG can be done over a circular area without making an approximation in
calculating haze. Choosing: q‖ = R(Ap‖ + b), where:

R =

[
cosφ0 − sinφ0

sinφ0 cosφ0

]
, (5.6)

A = AT =

[
cos θ0 0

0 1

]
, (5.7)

b =

[
α0(p‖) sin θ0

0

]
≈
[
(ω/c) sin θ0

0

]
. (5.8)

The approximation in b comes from that q‖ = k‖ corresponds to putting |p‖| = p‖ = 0. The
inner integrand in Eq. (5.5) now can be written:

exp(−i(q‖ − k‖)
Tu‖) = exp(i((kT‖R− bT )− pT‖A

T )(RTu‖))

= exp(−ipT‖AR
Tu‖) = exp(−ip‖ · (ARTu‖)).

(5.9)

The inner integral over p1p2 in Eq. (5.5) can now be evaluated:∫
d2p‖ exp(−ip‖ · (ARTu‖)) =

∫ ∆p‖

0
dp‖p‖

∫ 2π

0
dΘp exp(−ip‖|ARTu‖| cos Θp)

= 2π

∫ ∆p‖

0
dp‖p‖J0(|ARTu‖|p‖)

=
2π∆p‖

|ARTu‖|
J1(|ARTu‖|∆p‖),

(5.10)

where ∆p‖ simply is (ω/c) sin(Θlim). Plugging the expression into Eq. (5.5), and changing to

integration variable to v‖ = ∆p‖AR
Tu‖ we get the following expression for I for a general

correlation function:

I =
exp(−4α2

0(k‖)δ
2)

2π

∫
d2v‖(exp(4α0(k‖)δ

2W (Mv‖))− 1)
J1(v‖)

v‖
, (5.11)

where the matrix M is:

M =
1

∆p‖
RA−1 =

1

(ω/c) sin(Θlim)

[
cosφ0/ cos θ0 − sinφ0

sinφ0/ cos θ0 cosφ0

]
. (5.12)

5.3 Isotropic correlation function

If the correlation function is isotropic, i.e. W (u‖) = W (u‖) we might hope to get rid of another
integration. This can however, to the authors knowledge, not be done without going back to the
assumption that AG is circular. In terms of Eq. (5.11), this basicly means that we let:

|Mv| = 1

(ω/c) sin(Θlim)

√
(
v1

cos θ0
)2 + v2

2 ≈
1

(ω/c) sin(Θlim)
√

cos θ0
|v‖|. (5.13)

Going back to doing this approximation and writing:∫
d2v‖ =

∫ ∞
0

dv‖v‖

∫ 2π

0
dΘv, (5.14)
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the integration over Θv becomes trivial, and we end up with for the following expression for I
for an isotropic correlation function:

I = exp(−4α2
0(k‖)δ

2)

∫ ∞
0

dv‖(exp(4α2
0(k‖)δ

2W (βv‖))− 1)J1(v‖), (5.15)

where 1/β = (ω/c) sin Θlim

√
cos θ0.
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Methods

6.1 MDRC

Functions calculating the incoherent part of the MDRC for the different correlation functions,
as given by Eq. (4.7) and Table 4.1, was implemented in C. These functions are used in code
for various purposes such as plotting the MDRC or integrating it numerically over different
domains.

6.2 Energy conservation

The coherent part of the MDRC as given by Eq. (4.6) was integrated analytically. Independent
of what correlation function is used, its contribution to U is:

Ucoh = exp(−4α2
0(k‖)δ

2) = exp(−(2R)2), (6.1)

where R is the Rayleigh parameter defined by:

R = |k|δ cos θ0 = α0(k‖)δ = 2π
δ

λ
cos θ0. (6.2)

The incoherent part of the MDRC was integrated numerically over |q‖| < (ω/c) using the library
adaptint[8], an adaptive multi-dimensional integration(cubature) routine, which is an extention
to the GSL library. The error tolerance was set to εrel = 10−6.

6.3 Haze

In determining H, the MDRC needs to be integrated twice. Once over the area in which
q‖ < (ω/c) to find U , covered above, and once over the small area around k‖, AG .

In integrating the MDRC over AG , the integration was carried out by first changing coordinate
system to the plane which has a vector pointing in the specular direction(For instance q(k‖)) as
its normal-vector. This way, the integration area is circular. I.e the integration limits are not
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dependent on the integration variables.

IAG =

∫ ∫
1

(ω/c)α0(
√
p2

1 + p2
2)

〈
∂R

∂ΩS

〉
d2p‖

=

∫ 2π

0

∫ (ω/c) sin(Θlim)

0

1

(ω/c)α0(p)

〈
∂R

∂ΩS

〉
p‖dp‖dΘ.

(6.3)

The MDRC can be evaluated by mapping values from p1p2-plane to the q1q2-plane and inserting
them to the MDRC.[

q1

q2

]
=

[
cosφ0 − sinφ0

sinφ0 cosφ0

]([
cos θ0 0

0 1

] [
p1

p2

]
+

[
α0(
√
p2

1 + p2
2) sin θ0

0

])
. (6.4)

The integral IAG was integrated numerically. Again with an error tolerance of εrel = 10−6
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Results and discussion

7.1 Energy conservation

The scattering problem discussed in this thesis allows for neither absorption nor transmittance
of the incident wave. Thus, one would expect the energy of the scattered part of the wave to
be equal to that of the incident part, U = 1. This section will give results for which areas of
parameter space yields energy conservation for modest angles of incidence under the Kirchhoff
model, and discuss this requirement as a validity criterion for the MDRC.

The MDRC was integrated over all scattering directions in the upper heimsphere to assess for
which areas in parameter space U is close to unity. Figure 7.1 shows the results for U versus
δ/λ and a/λ for normal incidence and Gaussian and exponential correlation functions. At first
glance, one can see from the results that the Gaussian correlation has a larger region of parameter
space where U ≈ 1 than the exponential correlation function.

Figure 7.2 shows U versus δ/λ and a/λ for θ0 = 20◦. The results looks quite similar to the
normal incidence case. However, looking more closely one sees that in the θ0 = 20◦ case, the
line indicating U = 0.99 is shifted a little bit, freeing up a larger region of parameter space
falling into the category of having U > 0.99. This is consistent with what was mentioned in
section 2.5: increasing θ0 increases the range of validity for the Kirchhoff approximation as
long as one limits oneself to modest values, θ0 < 30◦. This is because introducing a non-
zero angle of incidence reduces the Rayleigh roughness parameter defined in Eq. (6.2). This
parameter appears numerous times in the equations for the MDRC in the form of the factor
(α0(q‖) + α0(k‖))δ. Also, the coherent scattered light’s contribution to U , given by Eq. (6.1),
which is the dominating contribution when δ/λ is low, is expressed solely in terms of the Rayleigh
roughness parameter.

Comparing the solid line in Figure 7.1a with the criterion for the validity of the Kirchhoff approx-
imation in section 2.5, one in fact finds that this criterion predicts the Kirchhoff approximation
to be OK even in areas of parameter space where U is not approximately unity. This validity
criterion by Shi et al[11]. is defined so that error of the averaged peak amplitude is less than 1dB.
This validity criterion also comes with the requirement that one only looks at scattering angles
that are not too high: θs < 70◦ when θ0 = 0. For angles approximately this value or higher,
one knows that the Kirchhoff approximation will overshoot due to lacking to take into account
shadowing effects. Because it neglects multiple scattering, there is nothing that stops the surface
from scattering light into unphysical angles, i.e. θs > 90◦ under the Kirchhoff approximation.
And it is this fact that allows for energy conservation to seemingly be broken under the Kirhhoff
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(a)

(b)

Figure 7.1: U vs. δ/λ and a/λ at normal incidence, θ0 = 0, for (a) Gaussian- and (b) exponential
correlation functions. The solid line indicates where U = 0.99. The dashed line indicates the
validity criterion of Shi et al[11].

approximation.
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(a)

(b)

Figure 7.2: U vs. δ/λ and a/λ with θ0 = 20◦, for (a) Gaussian- and (b) exponential correlation
functions. The solid line indicates where U = 0.99

7.2 Haze

Haze is plotted versus various parameters using both approximate analytical expression and
integrating the MDRC numerically(Cubature). Unless mentioned otherwise, the number of
terms used in obtaining the results for both cubature and approximation is set to some high
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number making sure the sums have converged for all practical applications.

7.2.1 Contour plot

The haze was calculated over a wide range of parameters a/λ and δ/λ for the exponential and
Gaussian correlation functions. Figure 7.3 gives a filled contour plot of the results when θ0 = 0.
From the figure one can see that the Gaussian correlation function allows for studying a rather
large area of parameter space with non-zero haze without violating energy conservation, here
represented by the criterion U > 0.99. For the exponential correlation function, this is not the
case however. If one were to stick to the criterion U > 0.99, only areas in parameter space where
the haze is low, are left to be studied. The haze never gets above H ≈ 0.2 − 0.25 within thea
area with U > 0.99. For the Gaussian correlation function we used two validity criterions, and
it turned out that demanding energy conservation was a rather strict criterion. One can also
study large areas of parameter space where this does not hold, as long as one does not look at
too large values of the polar incident(θ0) and/or scattering angles(θs). It might well be that the
Kirchhoff approximation holds for modest angles in areas where the energy conservation is well
beneath 0.99 also for the exponential correlation function, but not much is known about that
at this point, and we are only left to speculate.

7.2.2 Versus correlation length

In Figure 7.4, haze is plotted versus correlation length on logarithmic scales for θ0 = 20◦ and
Θlim = 2.5◦. The red area shows where U < 0.99 and again one can see that the Gaussian
corrlation function has a larger area in parameter space where U ≈ 1, than the exponential
correlation function. Furthermore, Figure 7.4 show that for high correlation lengths, the haze
drops more rapidly for the Gaussian correlation function. The exponential correlation function
drops of as a straight line in the logarithmic plot, implying that it goes as a power law, H ∼
(a/λ)c, for higher correlation lengths, where c is a number determined by the inclination of the
line.

In the areas with U > 0.99 a good match is found between the approximation and cubature
results for the Gaussian correlation function. The exponential correlation function also has a
decent match, but the error is a bit higher. Moving into the low correlation length end of
plots 7.4(a)-(d) where U is far from unity, one sees that the cubature and approximation results
start to diverge. This comes from the assumption that U = 1 in the approximate analytical
expression. Calculating the haze as:

H = 1− 1

U

∫
∆Ωs

〈
∂R

∂Ωs

〉
dΩs, (7.1)

for a given δ/λ, it is clear that as the correlation length gets shorter, the haze will increase due to
the part of the integral in Eq. (7.1) representing the incoherent part of the MDRC getting smaller
and smaller. The coherent part is however unchanged. As one moves to even shorter correlation
lengths, U starts to drop for the cubature results, making the haze drop as well. One would not
expect this kind of behaviour experimentally or for a rigorous simulation. Instead one would
expect U to remain at unity and the haze to go to a constant value. This value is not necessarily
the same as the one predicted by the approximate analytical expression, though. For very rough
surfaces the MDRC is expected to become something like having the angular distribution of a
Lambertian diffuser, having a ∝ cos θs dependence, independent of angle of incidence[13]. For
such a surface one would expect the value of haze to become H ≈ 1 − sin(Θlim) for normal
incidence, which amounts to H ≈ 0.956 for Θlim = 2.5◦.
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(a)

(b)

Figure 7.3: H vs. δ/λ and a/λ with Θlim = 2.5◦ at normal incidence and (a) Gaussian- and (b)
exponential correlation functions. The solid line indicates where U = 0.99.

7.2.3 Versus rms-roughness

In Figure 7.5 the haze is plotted versus δ/λ. The results for the Gaussian and exponential
correlation functions look quite similar. The haze values for the Gaussian correlation function
are however somewhat lower than those of the exponential. Once again, it is clear that the
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(a) δ/λ = 0.05, W (u‖) gaussian. (b) δ/λ = 0.05, W (u‖) exponential.

(c) δ/λ = 0.1, W (u‖) gaussian. (d) δ/λ = 0.1, W (u‖) exponential.

(e) δ/λ = 0.3, W (u‖) gaussian. (f) δ/λ = 0.3, W (u‖) exponential.

Figure 7.4: Haze vs. a/λ for θ0 = 20◦ and Θlim = 2.5◦. In the area shaded in red, U < 0.99

Gaussian correlation function conserves the energy over larger regions of parameter space than
the exponential.

In the limit where δ/λ is close to zero, the haze is dominated by the coherent contribution and
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is approximately H ≈ (1 − exp[−(2R)2]), where R is the Rayleigh rougness parameter defined
in (6.2). I.e. it is not dependent on the correlation function W (u‖). The four subplots should
therefore be identical when δ/λ is close to zero. As δ/λ increases, the incoherent part of the
MDRC starts to contribute and the four plots start to show their differences. The plots then
goes from being convex to concave and the haze starts to converge towards a constant close to
1.

(a) a/λ = 3.0, W (u‖) Gaussian. (b) a/λ = 3.0, W (u‖) exponential

(c) a/λ = 11.0, W (u‖) Gaussian. (d) a/λ = 11.0, W (u‖) exponential.

Figure 7.5: Haze vs. a/λ for θ0 = 20◦ and Θlim = 2.5◦. In the area shaded in red, U < 0.99.
Note the different x-axes for the two correlation functions.

7.2.4 Error in approximate expression

As has been shown, there is some error in the approximate expression for the exponential corre-
lation function, while for the gaussian correlation function the error is smaller. The main reason
that the approximate analytical expression for the exponential correlation function performs
poorer than the Gaussian is, as will be shown, due to the first approximation of U ≈ 1. For the
exponential correlation function, U simply never quite gets close enough to 1 in the interesting
areas of parameter space.

Figure 7.6 plots the relative error versus a/λ between the approximation results and the cuba-
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ture results twice. Once in the regular way, and once using U calculated by cubature in the
approximate expression. For the exponential correlation function, the relative error, defined by
|εr| = |Happrox −Hcubature|/|Hcubature|, shrinks by more than an order of magnitude over all the
a/λ included in the analysis, when calculating U by cubature. Even when a/λ becomes as large
as 1000, the graphs show no intention of converging for the exponential correlation function.
The results for the Gaussian correlation function are also improved somewhat, but are already
deemed acceptable. One can also see that the two graphs for the Gaussian correlation function
having converged and being indistinguishable around a/λ = 5, indicating that U = 1. The same
parameters as in Figure 7.4(c)-(d) were used, giving us a reference point as to what the haze
was.

(a) W (u‖) Gaussian (b) W (u‖) exponential

Figure 7.6: Error in the approximate expressions for haze. The blue line uses U = 1 in the
approximate expression as usual. The green line uses U calculated by cubature. θ0 = 20◦,
δ/λ = 0.1, Θlim = 2.5◦.

7.2.5 Anisotropic effect

The haze from a surface described by a Gaussian anisotropic correlation function was calculated
over a series of incident azimuth angles φ0. The results are presented in Figure 7.7. The figure
shows that the haze varies slightly with the azimuthal angle of incidence, φ0, which one would
excpect for an anisotropic surface. This effect is also described by the approximate expression
for a general correlation function, given by the green line in Figure 7.7. In the special case
where the anisotropic correlation function is Gaussian, not much computational effort is saved
by using the approximation. The results does, however, give testament to the applicability of
the approximation, given by Eq. (5.11).

If the approximation for a Gaussian aniostropic correlation function was used instead of the
general correlation function approximation, one would not expect to describe the effect where
the haze varies with φ0. The reason for this is that in the former expression, the approximation
is made that the integration of the MDRC is made over Q‖ and is approximated by a circular
integration area. As stated earlier, this is only true for θ0 = 0. As θ0 increases, part of this
area is excluded due to the contraction of the minior axis of the elliptic integration area, AG .
The aniostropic effect of haze being dependent of φ0 comes from the fact that what parts of the
MDRC is excluded form the integration area as θ0 increases, is dependent on the orientation of
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Figure 7.7: Haze vs. φ0 for anisotropic correlation function. δ/λ = 0.2, a1/λ = 7, a2/λ = 14,
θ0 = 30◦,Θlim = 2.5◦. The approximation used is the one for a general correlation function.

the elliptic area AG(and thus φ0). For the same reason, one expects that the magnitude of the
difference between haze at 0◦ and 90◦ increases with θ0.

7.3 Dependence on wavelength and incident polar angle

In the previous section, various plots were made of the haze versus a/λ and δ/λ. In reality
the surfaces must have specific values of a and δ, and so the haze will in general vary with the
wavelength of the incident light. Figure (7.3) shows that there are multiple sets of parameters
δ and a giving the same value of haze for a given angle of incidence, and thus it might be of
interest to see how the different choices vary when it comes to the haze’s dependence on θ0 and λ.
Having established the validity of the approximate expression for haze for Gaussian correlation
functions, it is used to study the problem.

Say, one wanted a surface giving H = 0.65 at normal incidence, with Θlim = 2.5◦ and that said
surface is sufficiently approximated by the model. Figure 7.8(a) depicts the haze versus δ/λ
and a/λ as calculated by the approximate expression for Gaussian correlation functions. All
combinations of parameters δ and a, satisfying the validity criterion(dashed line) for the model,
that lies on the solid line will, according to the model, yield the same haze of H = 0.65. Figure
7.8(b) shows the derivative of the haze with respect to wavelength, ∂H

∂λ , along the solid line,

parametrized in a/λ. The wavelength used was λc = 600 nm. ∂H
∂λ starts out with a negative

value of ≈ −1.2(µm)−1 for small values of a/λ(and thus δ/λ), before steadily increasing and
creeping towards zero as a/λ ≈ 30 (and δ/λ ≈ 0.5). This indicates that the haze might be more
stable when varying the wavelength for high-δ, high-a solutions in this particular case. This
is confirmed by Figure 7.8(c), where the haze is plotted versus wavelength for two choices of
parameters giving the same haze at λ = λc = 600.0nm. One with high values of both parameters,
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(a) Dashed line: U = 0.99, solid line: H = 0.65 (b)

(c) λc = 600.0 nm (d) λc = 600.0 nm

Figure 7.8: The haze versus a/λ and δ/λ in (a). The solid line indicates H = 0.65 and the
dashed line indicates U = 0.99(validity criterion for the model). (b) shows ∂H

∂λ along the solid
line(parametrized in terms of a/λ). (c) and (d) shows how the haze varies with λ and θ0

respectively for two choices of surface parameters on the H = 0.65 line.

and one with low. Figure 7.8(d) shows how the haze varies with θ0 for the same two sets of
parameters. Having high values of δ and a is shown to also give a more stable haze when varying
θ0 in the given case.

∂H
∂λ being negative for low values of a/λ and δ/λ can be understood by assuming that the coherent
part of the MDRC dominates in contributing to haze. Then H ≈ 1 − exp(−4α2

0(k‖)δ
2). The

derivative can then be calculated analytically quite easily. Note, however, that it not always does
continue to rise steadily like in the case given above. For certain choices of parameters, especially
when looking for lower values of haze, the model will predict ∂H

∂λ rising before reaching small
positive values, and falling down again as one continues to move along the line with constant
haze. For instance: at normal incidence, and with Θlim = 2.5◦ and wavelength λc = 600nm, the
two sets of parameters (a = 2λc, δ = 0.044λc) and (a = 10λc, δ = 0.096λc) are both predicted
to give a haze of 0.25, but have different signs for ∂H

∂λ , with the latter having the positive
value.
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7.4 Comparison to rigorous scalar simulations

The results from the Kirchhoff model were compared to rigorous numerical simulations. The data
used was the same as was used in the Master thesis of Torstein S. Hegge[7]. The simulations
gives the MDRC of a scalar wave reflected off a hard gaussian correlated surface, averaged
over approximately 3000 surface realizations. The rigorous simulations does, in contrast to the
Kirchhoff model, take into account multiple scattering. However, some other differences between
the two models must also be mentioned. The rigorous simulations uses surfaces with finite area
and also uses incident beams that are superpositions of planewaves weighed by a Gaussian weight
function to get beams of finite width. This fact will contribute to some additional differences
between the results, especially when the roughness is low. Most prominently, the coherent
part of the MDRC from the simulations is not a delta-function in the rigorous simulation, but
rather a bell-curve shaped function, like the incident beam. In addition to this, the reader is
reminded that, unlike the Kirchhoff model, the rigorous simulation’s results are not invariant
when changing the wavelength or surface boundary condition(neumann / dirichlet). For the
rigorous simulations, the Dirichlet boundary condition and a wavelength of 1µm was used.

(a) δ/λ = 0.1 (b) δ/λ = 0.2

(c) δ/λ = 0.3 (d) δ/λ = 0.4

Figure 7.9: Incoherent part of the MDRC vs q‖ along the plane of incidence. a/λ = 2, θ0 = 20◦.

Figure 7.9 shows cuts of the incoherent part of the MDRC in the plane of incidence and compares
it with the ones aquired from rigorous simulations. Bear in mind, however, that the results from
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the rigorous simulations, due to a bug in the code, were found to have a total scattered energy
fraction of U ≈ 1.03. We have been reassured that the bug only affected the normalization of
the MDRC, and thus we expect the rigorous results for the MDRC to be a bit too high, but
be fine otherwise. This effect is expected to disappear when discussing haze, since we always
divide the integral over the MDRC by U when calculating haze. Going back to Figure 7.9 it is
clear that there is a rather big disrepancy between the results when the rms roughness is low,
and when the results would be expected to be the most alike. This is thought to be due to the
fact that the coherent part of the MDRC are different for the two cases because of the different
shape of the incident beams and the difference in area of the surface. A rather good match
is found when δ/λ = 0.3. Here, the coherent part of the MDRC has practically vanished, yet
the roughness is apparently not too high for a decent match. When δ/λ = 0.4, the differences
between the rigorous simulations and the Kirchhoff model has become more pronounced.In
Figure 7.9(c)-(d), where the MDRC is rather diffuse, the Kirchhoff approximation shows its
tendency to overshoot for large scattering angles, due to neglecting multiple scattering, and
thusly shadowing effects.

(a) Θlim = 2.5◦ (b) Θlim = 2.5◦

(c) Θlim = 1.25◦ (d) Θlim = 5.0◦

Figure 7.10: Haze vs. δ/λ. Results from integrating the Kirchhoff MDRC are compared to data
points made from integrating the MDRC from rigorous simulations. a/λ = 2.0, θ0 = 20.0◦,
W (u‖) Gaussian. U < 0.99 in the red area.

Figure 7.10 shows the haze plotted against δ/λ for the Kirchhoff model, together with points
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where haze has been calculated from the rigorous simulations. The MDRC was given on a
101x101 grid. For this reason a cubic spline interpolation was done before integrating the MDRC
and calculating haze. For three of the subplots, the haze has been adjusted for the rigorous
simulations. The total scattered energy for the coherent part of the MDRC for the rigorous
simulations was calculated independently and simply assumed to contribute to gloss(I.e. the
assumption that all of the coherently scattered energy went in the specular direction was made).
Doing this adjustment, the figure shows that a decent match is found between the Kirchhoff
model and the rigorous simulations when calculating haze. The rigorous scalar simulations
was compared to simulations from an electromagnetic field scattered by a perfect conductor in
Torstein S. Hegge’s master thesis[7], where it was concluded that the results were comparable
when the polarization of the scattered light was not recorded. Thus, this gives us hope that the
Kirchhoff model at least could be applicable to approximating haze in this special case. Some
further investigation will be made in the next section, where the Kirchhoff model is directly
compared to two rigorous simulations of electromagnetic waves from a prefectly conducting
Gaussian randomly rough surface.

7.5 Comparison to rigorous EM-simulations

The results of the model were compared to two rigorous simulations for the scattering of an
electromagnetic wave from a perfectly conducting randomly rough surface. The EM-simulations
are formally exact[14].The rigorous EM-simulations has, like the scalar simulations, a finite
scattering area and a Gaussian incident beam. A Gaussian correlation function was assumed
for the two simulations over incident angles θ0 = 0◦ and 20◦, and the surface parameters were
δ = 0.3λ and a = 2λ. The wavelength was 1µm. The rigorous simulations were averaged over
10000 surface realizations. Again the data was given on 101x101 grids, and was interpolated
before studying haze. Figure 7.11 shows cuts of the MDRC for the two cases, in and out of
the plane of incidence, for θ0 = 20◦. In addition it has a filled countour plot of the difference
between the two MDRCs. For the EM-simulations, we look at the total intensity only, summing
over outgoing polarizations and averaging over the incident polarizations, where the MDRC is
given by 1

2(MDRCpp + MDRCsp + MDRCps + MDRCss).

Figure 7.12 shows how the haze varies with Θlim for the rigorous simulations and Kirchhoff
model. The relative error is also included. For the given simulation, the match seems to be
good. The lines are almost indistinguishable, with the rigorous simulations having the slightly
higher haze. This is consistent with the difference between the rigorous simulation MDRC and
Kirchhoff MDRC around the specular direction in Figure 7.11. Around the specular direction,
the figure shows that the MDRC for the Kirchhoff model is higher than that of the rigorous
simulation, which will yield a lower haze.

All in all, the comparison with the electromagnetic simulations builds up under the the previous
indications from the comparison to scalar simulations: The scalar Kirchhoff model seems to be a
good approximation to the electromagnetic problem when the surface is assumed to be perfectly
conducting and when the polarization of the scattered light is not recorded. One should bear in
mind, however, that not only a small part of parameter space has been considered.
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(a) q‖,1(Plane of incidence) (b) q‖,2

(c)

Figure 7.11: MDRC for the rigorous EM-simulations and the scalar Kirchhoff approximation
with (a) In-plane cut, (b) out-of-plane cut. Contour plot of the difference of the incoherent parts
of the MDRCs in (c). Parameters used: θ0 = 20◦, δ/λ = 0.3, φ0 = 0◦ and a/λ = 2.0.

7.6 Further work

Other surface models.

The model was earlier found to give comparable results to rigorous scalar scattering simulations
that are known to be a good approximation to the scattering of EM waves by a perfect conductor
when the polarization of the scattered beam is not recorded. However, one wants to be able to
calculate haze from other surfaces as well, such as dielectrics or metals that does not conduct
perfectly.

The tangent plane approximation of the scattering taking place from tangent planes at each
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(a) θ0 = 0◦ (b) θ0 = 20◦

Figure 7.12: Haze vs. δ/λ. Results from integrating the Kirchhoff MDRC are compared to
data points made from integrating the MDRC from rigorous simulations. a/λ = 2.0, W (u‖)
Gaussian.

point of the surface, makes it natural to extend the model to dielectrics by applying the Fresnel
equations locally. Such models have been studied before. For instance by Caron et al., who used a
model based on the scalar Kirchhoff formalism to study scattering from dielectric randomly rough
surfaces. The model gave good agreement with published data for reflection. For transmission
there lacked published data.[5]

Validity of Kirchhoff approximation for arbitrary correlation functions

Before applying the model to exponential or other arbritrary correlation functions, more should
be known about the validity of the Kirchhoff approximation for these correlation functions.
The criterion U ≈ 1 could perhaps still be used as a guideline, but may be too strict in some
cases.

Improvements on the current model

Improvements could be made upon the current model to make it perform better or stretch its
limits of applicability without making the calculations more consuming.

The model could be improved without complicating the calculations considerably by introducing
a shadowing function in the style of Beckmann to make the model more applicable for larger
values of θ0.[3]

Other corrections could also perhaps be made on the model on a purely empirical basis, when a
greater understanding is aquired about the experimental results and rigorous simulations.

Inverse problem

An advantage of using a simple model such as the Kirchhoff model and the approximate expres-
sions for haze based upon it, is that it has low computational cost. This gives an efficient base for

37



CHAPTER 7. RESULTS AND DISCUSSION

attacking the inverse problem of finding the rms-roughness and surface correlation that would
give a surface having some pre-determined scattering properties related to haze. Methods such
as photofabrication, gives the possibility of actually creating surfaces having a predetermined
correlation function[4]. As stated earlier, not much is known in practice about the validity of
the Kirchhoff approximation when the correlation function is no longer Gaussian.
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Conclusion

Haze in reflection was defined for scattering by two-dimensional surfaces, building on a method
that previously often has been used for theoretical 1D studies of haze/gloss in a straight forward
way. Under this definition, the gloss(G) and haze(H) are complimentary quantities related
through the formula G +H = 1.

Haze was studied using a simple model, assuming a scalar wave, surfaces with Gaussian height-
distributions and the Kirchhoff approximation. Haze was studied for the Gaussian and expo-
nential correlation functions, including the conservation of energy for these surfaces under the
model and how haze varies with the surface parameters a and δ. The haze’s dependence on the
azimuthal angle of incidence, φ0, for an anisotropic Gaussian correlation functions was briefly
studied.

Approximate analytical expressions for haze were derived for the isotropic gaussian and expo-
nential correlation functions in the form of a sum. The expressions were found to match well
with the results from manually integrating the Kirchhoff MDRC. Approximate expressions were
also given for a general isotropic- and anisotropic correlation functions, this time in the form of
a single and double integral, thus reducing the computational cost of calculating the haze for a
general correlation function considerably.

The relationship between haze, λ and θ0 was looked at, showing that different sets of surface
parameters δ and a, all giving the same haze, gives surfaces that are predicted to having different
properties when it comes to the haze varying with λ or θ0. Specifically it was shown that for
surface parameters giving H = 0.65 at normal incidence with Θlim = 2.5◦ and λ = 600.0nm,
choices with high-δ and high-a the haze changes less when varying λ and θ0 than choices with low-
δ and low-a for a Gaussian correlation function and when limiting the choices of rms-roughness
to δ < 0.5.

The model gave comparable results to simulations of EM-scattering from perfectly conducting
surfaces, when using unpolarized incident light and when not recording the polarization of the
scattered light. This was found by direct comparison to EM-simulations and also by comparison
to scalar scattering simulations that are known to give comparable results to the EM-scattering
problem.

Although its applicability is still limited to surfaces approximated by a perfect conductor, the
model has given promising results. Both considering comparison to rigorous simulations and
considering the simplicity of the approximate expressions for haze.
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Appendix A

Python code

Here follows some code in python, using the SciPy-stack[1]. It is also available digitally through
the DAIM-system of NTNU.

MDRC

The following code gives a function that calculates the whole MDRC on a MxN grid in q1q2,
and utilizes it to plot the MDRC for a specific set of parameters:

1 import math
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4

5 de f a lpha 0 (x , wc) :
6 i f wc∗wc−x∗x > 0 :
7 re turn np . s q r t (wc∗wc−x∗x )
8 e l s e :
9 re turn 0

10

11 #Inputs :
12 #M: Number o f po in t s in y−d i r e c t i o n
13 #N: Number o f po in t s in x−d i r e c t i o n
14 #theta 0 : Angle o f i n c i d e n c e in rad ians
15 #a r : Cor r e l a t i on l ength d iv ided by lambda
16 #d e l t a r : Rms−roughness d iv ided by lambda
17 #c o r r f u n c c h o i c e : ’ exp ’ , ’ gauss ’ or ’ g a u s s a n i s o ’
18 #num terms : Number o f terms in the sum . High rms−rougness−>many terms
19 #phi 0 : azimuthal ang le o f i n c i d e n c e ( An i so t rop i c co r r . func . only )
20 #a r y : Corr . l ength / lambda in y−d i r e c t i o n . ( An i so t rop i c co r r . func . only )
21 #
22 #Returns :
23 #qx − x component o f l a t e r a l s c a t t e r e d momentum vector ( array l ength N)
24 #qy − x component o f l a t e r a l s c a t t e r e d momentum vector ( array l ength M)
25 #mdrc − The incohe rent part o f the mdrc . ( Grid MxN)
26 de f mdrc kirch (M,N, theta 0 , a r , d e l t a r , c o r r f u n c c h o i c e , num terms , ph i 0 =0.0 , a r y

=0.0) :
27 lamb = 1E−6 #Dummy wavelength .
28 wc=2∗math . p i /lamb #Length o f momentum vec to r s : (w/c )
29

30 a=a r ∗ lamb
31 d e l t = d e l t a r ∗ lamb
32 ay=a r y ∗ lamb
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33

34 #Scat te red l a t e r a l s c a t t e r e d momentum vecto r
35 qx ar r=np . l i n s p a c e (−wc , wc ,N)
36 qy ar r=np . l i n s p a c e (−wc , wc ,M)
37

38 #Inc iden t l a t e r a l momentum vecto r and length
39 kv=wc∗math . s i n ( the ta 0 ) ∗np . array ( [ math . cos ( ph i 0 ) ,math . s i n ( ph i 0 ) ] )
40 klen=wc∗np . s i n ( the ta 0 )
41

42 #Meshgrid o f l a t e r a l s c a t t e r e d momentum ve c to r s and length
43 qx , qy = np . meshgrid ( qx arr , qy arr , spa r s e=False , index ing=’ xy ’ )
44 qlen = np . s q r t ( qx∗qx+qy∗qy )
45

46 #Make the i f−e l s e statement in a lpha 0 ( ) work f o r ar rays
47 valpha 0 = np . v e c t o r i z e ( a lpha 0 )
48

49 #Use fu l f a c t o r
50 alph2 = np . power ( d e l t ∗( va lpha 0 ( qlen , wc) + alpha 0 ( klen , wc) ) , 2 )
51

52 #Q vec=q vec−k vec
53 Qx=qx−kv [ 0 ]
54 Qy=qy−kv [ 1 ]
55 Qx2=Qx∗Qx
56 Qy2=Qy∗Qy
57 Q2=Qx2+Qy2
58

59 #Do the sum
60 mdrc = np . z e r o s ( (M,N) )
61 f a c = np . ones ( (M,N) )
62

63 #Case gauss ian c o r r e l a t i o n func t i on
64 i f c o r r f u n c c h o i c e == ’ gauss ’ :
65 f o r i in range (1 , num terms ) :
66 f a c ∗= ( alph2 / i )
67 mdrc += fac ∗a∗a∗math . p i ∗np . exp (−0.25∗Q2∗a∗a/ i ) / i
68

69 #Case gauss ian a n i s o t r o p i c co r r . func
70 e l i f c o r r f u n c c h o i c e== ’ g a u s s a n i s o ’ :
71 f o r i in range (1 , num terms ) :
72 f a c ∗= ( alph2 / i )
73 mdrc += fac ∗a∗ay∗math . p i ∗np . exp (−0.25∗(Qx2∗a∗a+Qy2∗ay∗ay ) / i ) / i
74

75 #Case exponent i a l co r r . func
76 e l i f c o r r f u n c c h o i c e == ’ exp ’ :
77 f o r i in range (1 , num terms ) :
78 f a c ∗= ( alph2 / i )
79 mdrc += fac ∗2∗math . p i ∗a∗a∗ i ∗np . power ( f l o a t ( i ∗ i )+Q2∗a∗a ,−1.5)
80 e l s e :
81 pr in t ’ Error . Choose v a l i d c o r r e l a t i o n func t i on : exp , gauss or ga u s s a n i s o

’
82 re turn −1
83

84 #Mult ip ly with p r e f a c t o r
85 mdrc ∗= np . exp(−alph2 ) /(4∗math . p i ∗math . p i ∗np . cos ( the ta 0 ) )
86 mdrc ∗= np . power ( ( wc∗wc+valpha 0 ( qlen , wc) ∗ a lpha 0 ( klen , wc)−qx∗kv [0]−qy∗kv [ 1 ] )

, 2 )
87 mdrc /= alph2 /( d e l t ∗ d e l t )
88

89 re turn qx ar r /wc , qy ar r /wc , mdrc
90

91 #Set parameters
92 M=201
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93 N=401
94 the ta 0 =20.0∗math . p i /180
95 phi 0 = 0.0∗math . p i /180
96 d e l t a r = 0 .3
97 a r = 2 .0
98 order = 200
99 c o r r f u n c = ’ gauss ’

100 a r y = 2 .0
101

102 #Get the mdrc .
103 qx , qy , mdrc = mdrc kirch (M,N, theta 0 , a r , d e l t a r , co r r func , order , 0 . 0 , 0 . 0 )
104

105 #Plot r e s u l t
106 cs = p l t . contour f ( qx , qy , mdrc , 5 0 0 )
107 p l t . c o l o rba r ( cs )

Approximate haze

The following code gives a function to calculate haze using the approximate expressions for
Gaussian or exponential correlation functions, and applies it to calculate haze for several values
of the correlation length.

1 import math
2 import numpy as np
3 import matp lo t l i b . pyplot as p l t
4

5 #Calcu l a t e s haze by approximate e x p r e s s i o n s .
6 #
7 #Inputs :
8 #
9 #d e l t r : rms−roughness d iv ided by wavelength : d e l t a /lambda

10 #a r : co r r . l ength d iv ided by wavelength : a/lambda
11 #theta 0 : ang le o f i n c i d e n c e .
12 #Theta l im : Limit ang le . See ’ d e f i n i t i o n o f haze ’ .
13 #c o r r f u n c : ’ exp ’ f o r exponent i a l and ’ gauss ’ f o r gauss ian c o r r e l a t i o n func .
14 #num terms : Number o f terms in the sum .
15 #
16 #Returns : haze as number , array or gr id , depending on inputs .
17 de f haze approx ( d e l t r , a r , theta 0 , Theta lim , co r r func , num terms ) :
18

19 #Some f a c t o r s that are u s e f u l
20 a lph k = 2∗math . p i ∗np . cos ( the ta 0 )
21 r f= 4∗ a lph k ∗ a lph k ∗ d e l t r ∗ d e l t r
22

23 #Radius o f i n t e g r a t i o n area in q 1q 2
24 d e l t a q = 2∗math . p i ∗np . s i n ( Theta l im ) ∗np . s q r t (np . cos ( the ta 0 ) )
25 df = a r ∗ a r ∗ d e l t a q ∗ d e l t a q
26

27 #Apply sum formula .
28 tmp = 0
29 f a c = 1 .0
30 i f c o r r f u n c == ’ gauss ’ :
31 f o r i in range (1 , approx order ) :
32 f a c ∗= r f / i
33 tmp += fac ∗(1−np . exp(−df /(4∗ i ) ) )
34

35 e l i f c o r r f u n c == ’ exp ’ :
36 f o r i in range (1 , approx order ) :
37 f a c ∗= r f / i
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38 tmp += fac ∗(1−np . power(1+ df /( i ∗ i ) ,−0.5) )
39 e l s e :
40 re turn ’ no c o r r e l a t i o n func t i on given ’
41

42 #Haze i s 1 minus ( coherent part + incohe rent part ) o f g l o s s
43 h approx = 1.0−np . exp(− r f ) ∗(1+tmp)
44

45 re turn h approx
46

47 #Set input va lue s
48 d e l t r e d = 0 .3
49 the ta 0 = 20.0∗math . p i /180
50 Theta l im = 2.5∗math . p i /180
51 approx order = 1000
52 c o r r f u n c = ’ gauss ’
53 c l r e d=np . l i n s p a c e (0 . 1 , 100 , 200 ) #Corr . l ength i s an array in t h i s example .
54

55 #Approximate haze
56 haze = haze approx ( de l t r ed , c l r e d , theta 0 , Theta lim , co r r func , approx order )
57

58 #Plot
59 p l t . p l o t ( c l r e d , haze )
60 p l t . x s c a l e ( ’ l og ’ )
61 p l t . y s c a l e ( ’ l og ’ )
62 p l t . yl im ( (1E−3 ,1) )

Haze

In the thesis, haze was calculated in C using an adaptive integration routine on a function giving
the incoherent part of the MDRC for a specific direction. Since this is expected to be slow in
python, another approach will be given here(which also is not exactly fast): The MDRC is
calculated on a MxN grid, interpolated and then integrated. This is not fool-proof and the user
must inspect the MDRC to see if a finer grid is needed.

1 import math
2 import numpy as np
3 import s c ipy . i n t e g r a t e as i n t eg
4 import s c ipy . i n t e r p o l a t e as i t p
5 from mdrc import mdrc kirch #Import the func t i on c a l c u l a t i n g mdrc on MxN gr id
6

7 #Integrand when i n t e g r a t i n g over A G
8 de f in t eg rand g (Th, p , args ) :
9 the ta 0=args [ 0 ]

10 phi 0=args [ 1 ]
11 p1=p∗math . cos (Th)
12 p2=p∗math . s i n (Th)
13 p l en sq = p∗p
14 alph=math . s q r t (1.0− p l en sq )
15 qq1 = p1∗math . cos ( the ta 0 )+alph ∗math . s i n ( the ta 0 )
16 qq2 = p2
17 q1=qq1∗math . cos ( ph i 0 )−qq2∗math . s i n ( ph i 0 )
18 q2=qq1∗math . s i n ( ph i 0 )+qq2∗math . cos ( ph i 0 )
19 re turn p∗ f mdrc ( q1 , q2 ) / alph
20

21 #Set parameters
22 M=600
23 N=500
24 the ta 0 =20.0∗math . p i /180
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25 phi 0 = 0.0∗math . p i /180
26 Theta l im = 2.5∗math . p i /180
27 d e l t a r = 0 .1
28 a r = 5 .0
29 order = 500
30 c o r r f u n c = ’ gauss ’
31 a r y = 2 .0
32

33 #Arguments to pass to the integrand when i n t e g r a t i n g over A G
34 a r g s i = [ ]
35 a r g s i . append ( the ta 0 )
36 a r g s i . append ( ph i 0 )
37

38 #Get incohe rent part o f MDRC on MxN gr id .
39 qx , qy , mdrc = mdrc kirch (M,N, theta 0 , a r , d e l t a r , co r r func , order )
40

41 #I n t e r p o l a t e to get a func t i on mdrc ( qx , qy )
42 f mdrc = i t p . in te rp2d ( qx , qy , mdrc , kind=’ cubic ’ )
43

44 #Integrand when c a l c u l a t i n g U.
45 i n t e g r a n d u c a r t = lambda qx , qy : f mdrc ( qx , qy ) /math . s q r t (1−qx∗qx−qy∗qy )
46

47 #Calcu la t e i n t e g r a l over incohe rent part o f MDRC over a l l s c a t t e r i n g ang l e s .
Cartes ian .

48 a = in t eg . dblquad ( in t eg rand u ca r t , −1 ,1 , lambda x : −math . s q r t (1−x∗x ) , lambda x :
math . s q r t (1−x∗x ) , args =() , epsabs =1.49e−03, e p s r e l =1.49e−03)

49

50 #Calcu la t e i n t e g r a l over incohe rent part o f MDRC over A G. Polar coo rd ina t e s .
51 b = i n t e g . dblquad ( integrand g , 0 ,math . s i n ( Theta l im ) , lambda x : 0 , lambda x : 2∗

math . pi , a rgs=( a rg s i , ) , epsabs =1.49e−08, e p s r e l =1.49e−08)
52

53 #Add coherent c o n t r i b u t i o n s .
54 u = a [0 ]+ np . exp(−np . power (4∗math . p i ∗ d e l t a r ∗math . cos ( the ta 0 ) ,2 ) )
55 g = b [0 ]+ np . exp(−np . power (4∗math . p i ∗ d e l t a r ∗math . cos ( the ta 0 ) ,2 ) )
56

57 #Print U
58 pr in t u
59 #Print haze
60 pr in t (1−g/u)

Approximate haze for a general correlation function

The following code calculates haze over azimuthal angles of incidence ranging from 0◦ to 90◦

for a general correlation function. In this case, the anisotropic Gaussian correlation function is
used. It calculates the integral given in Eq. 5.11 in a polar coordinate system. I.e. d2v‖ →
|v‖|d|v‖|dΘv

1

2 import math
3 import matp lo t l i b . pyplot as p l t
4 import numpy as np
5 import s c ipy . s p e c i a l as sps
6 import s c ipy . i n t e g r a t e as i n t eg
7

8 #Gaussian a n i s o t r o p i c co r r . f unc t i on
9 de f W gauss aniso (ux , uy , args ) :

10 ax=args [ 0 ]
11 ay=args [ 1 ]
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12 re turn math . exp(−(ux/ax ) ∗( ux/ax )−(uy/ay ) ∗( uy/ay ) )
13

14 #Function that g i v e s the upper i n t e g r a l l i m i t o f | v | as a func t i on o f Theta v .
15 #Lef t f o r the reader to s p e c i f y something more s o p h i s t i c a t e d .
16 de f vmax(Th) :
17 re turn 15
18

19 #Evaluates the integrand f o r a g iven value o f | v | and Th v
20 de f integrand (v , Th v , args ) :
21 alph2=args [ 0 ]
22 d2=args [ 1 ]
23 dp=args [ 2 ]
24 costh0=args [ 3 ]
25 s=args [ 4 ]
26 c=args [ 5 ]
27 W=args [ 6 ]
28 W args=args [ 7 ]
29

30 vx=v∗math . cos ( Th v ) #Get c a r t e s i a n x−value o f i n t e g r a t i o n v a r i a b l e
31 vy=v∗math . s i n ( Th v ) #Get c a r t e s i a n y−value o f i n t e g r a t i o n v a r i a b l e
32 ux=(vx∗c/ costh0 − s ∗vy ) /dp #Get correspond ing Delta x 1 value
33 uy=(s ∗vx/ costh0+c∗vy ) /dp #Get correspond ing Delta x 2 value
34

35 y=(math . exp (4∗ alph2 ∗d2∗W(ux , uy , W args ) )−1)∗ sps . j 1 ( v ) #Evaluate integrand
36 re turn y
37

38

39

40 lamb = 457.9∗1E−9
41 wc = 2∗math . p i /lamb
42

43 ##############################################################
44 #INPUT PARAMETERS
45

46 the ta 0 = 30.0∗math . p i /180
47 phi 0 = 0.0∗math . p i /180
48 d e l t a = 0.2∗ lamb
49 Theta l im = 2.5∗math . p i /180
50

51 #Choose c o r r e l a t i o n func t i on
52 c o r r f u n c = W gauss aniso
53

54 #Arguments to be passed to the c o r r e l a t i o n func t i on .
55 #Here : Co r r e l a t i on l eng th s f o r x− and y−d i r e c t i o n , r e s p e c t i v e l y .
56 c o r r f u n c a r g s=np . array ( [ 7∗ lamb ,14∗ lamb ] )
57

58 #Error t o l e r a n c e f o r s c ipy . i n t e g r a t e . dblquad ( )
59 a b s e r r = 1 .0E−6
60 r e l e r r = 1 .0E−6
61 ###########################################################
62 a r g s i =[ ]
63 a r g s i . append (math . pow(wc∗math . cos ( the ta 0 ) ,2 ) )
64 a r g s i . append (math . pow( de l ta , 2 ) )
65 a r g s i . append (wc∗math . s i n ( Theta l im ) )
66 a r g s i . append (math . cos ( the ta 0 ) )
67 a r g s i . append (math . s i n ( ph i 0 ) )
68 a r g s i . append (math . cos ( ph i 0 ) )
69 a r g s i . append ( c o r r f u n c )
70 a r g s i . append ( c o r r f u n c a r g s )
71

72

73 N=50
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74 p h i a r r=np . l i n s p a c e (0 , math . p i /2 ,N)
75 haze a r r=np . z e r o s (N)
76

77

78 f o r i in range (0 ,N) :
79 a r g s i [4 ]=math . s i n ( p h i a r r [ i ] )
80 a r g s i [5 ]=math . cos ( p h i a r r [ i ] )
81 a = in t eg . dblquad ( integrand ,0 , 2∗math . pi , lambda x : 0 , vmax , args=( arg s i , ) ,

epsabs=abs e r r , e p s r e l=r e l e r r )
82 haze a r r [ i ] = 1−math . exp(−4∗ a r g s i [ 0 ] ∗ a r g s i [ 1 ] ) ∗(1+a [ 0 ] / ( 2 ∗math . p i ) )
83

84 p l t . p l o t ( p h i a r r ∗180/math . pi , haze a r r )
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