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Abstract

During the spring of 2012, Lorentz Fjellanger Barstad developed a method for
modelling the flow in a Pelton turbine subject to a high-speed water jet using
the Computational Fluid Dynamics (CFD) software ANSYS CFX. The torque
measurement was validated against experimental data. The aim of this master’s
thesis has been to develop a similar method with the Open Source tool OpenFOAM
and to compare the two models.

A method has been created using the OpenFOAM solver interDyMFoam, capable
of handling two-phase flow together with mesh motion. The approach has been to
use both a stationary and a rotating mesh domain to allow for the relative motion
between the high-speed jet and the turbine buckets. The Arbitrary Mesh Interface
(AMI) was used as a boundary condition for the patches between the two domains
to allow simulation between them. Meshing was done both with the built-in tool
snappyHexMesh and with ANSYS Meshing. The latter gave the best control over
mesh refinement and the mesh quality.

The results achieved from the method were unfortunately not as desired. Much
water seems to accumulate between the buckets, giving severe backwash. The mea-
sured torque was significantly larger than both the experimental torque and the
torque measured with the ANSYS CFX method. Additionally, the torque measure-
ment curve from OpenFOAM contained instabilities and did not coincide well with
the one generated in ANSYS CFX. The measured maximum torque of the method
seemed to go towards the actual solution when the density of the mesh increased,
but at the same time it gave more noise in the output, and made smoothing of
the results necessary. The computational time needed for the simulations has been
problematic, being almost thirty times that of ANSYS CFX.
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Sammendrag

I løpet av v̊aren 2012 utviklet Lorentz Fjellanger Barstad en metode for å mod-
ellere strømningen i en peltonturbin p̊avirket av en vannstr̊ale med høy hastighet.
Det ble gjort ved hjelp av Computational Fluid Dynamics (CFD) programvaren
ANSYS CFX. Dreiemomentet beregnet med metoden ble deretter validert mot
eksperimentelle data. Målet med denne masteroppgaven har vært å utvikle en
lignende metode med Open Source verktøyet OpenFOAM og sammenligne de to
modellene.

En metode har blitt utviklet ved hjelp av OpenFOAM løseren interDyMFoam, som
er i stand til å h̊andtere to-fase strømning sammen med mesh som er i bevegelse.
Dette er gjort ved å bruke b̊ade et stasjonært og et roterende domene for å tillate
relativ bevegelse mellom vannstr̊alen og turbinskovlene. Arbitrary Mesh Interface
(AMI) ble brukt som grensebetingelse for overflatene mellom de to domenene for
å muliggjøre simulering mellom dem. Meshing ble gjort b̊ade med det innebygde
verktøyet snappyHexMesh og med ANSYS Meshing. Sistnevnte ga den beste kon-
trollen over forfining og kvalitet i meshet.

De beregnede resultatene med den utviklede metoden ble dessverre ikke som ønsket.
Mye vann syntes å bli samlet opp mellom skovlene, noe som ga mye bakvask.
Det m̊alte dreiemomentet var betydelig større enn b̊ade det eksperimentelt målte
dreiemomentet, og momentet beregnet i ANSYS CFX-modellen. I tillegg inneholdt
m̊alekurven for dreiemomentet fra OpenFOAM ustabiliteter og sammenfalt d̊arlig
med den generert i ANSYS CFX. Det m̊alte maksimale dreiemoment fra modellen
s̊a ut til å g̊a mot den virkelige verdien n̊ar tettheten av meshet økte, men ga p̊a
samme tid mere støy, slik at glatting av resultatene ble nødvendig. Beregningstiden
for simuleringene har vært et problem, da den var nesten 30 ganger s̊a stor som for
tilsvarende simuleringer i ANSYS CFX.
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Chapter 1

Introduction

Hydro power is a source of renewable energy that has been used globally for the
generation of electricity since the 19th century. In Norway, it is the main source of
electrical energy, and hydro power plants have been built throughout the country.
About 30 % of the 1050 hydro power plants in Norway are equipped with Pelton
turbines. Many of these have been running for more than 40 years and are due
for refurbishing. When replacing an installed turbine the aim is to increase the
efficiency of the power plant by redesigning the turbine. Model testing and Com-
putational Fluid Dynamics (CFD) are used in the design process to optimise the
result.

The flow in a Pelton turbine is complex and, even though numerous turbines have
been built throughout the years, there are still phenomena that are not fully un-
derstood. Using CFD can facilitate our understanding of the interaction between
the high-speed water jet and the rotating Pelton buckets.

OpenFOAM is a powerful Open Source software for resolving flows numerically,
and its popularity is increasing globally. Being distributed without licensing costs,
it gives new users the possibility to experiment with and utilise CFD. As the source
code is publicly available, it has been especially popular with scientists. In addition
to providing the transparency needed for researching applications, being distributed
as Open Source makes it possible to modify or develop program modules. However,
OpenFOAM is far less intuitive than many commercial packages, mainly because
of its lack of an integrated Graphical User Interface (GUI). The documentation is
basic, and not regularly maintained.

The aim of this thesis is to develop a method for predicting the torque in a Pelton
turbine using OpenFOAM, and to compare it with the results from ANSYS CFX
and experiments conducted at the Waterpower laboratory. The method developed
in this thesis will be a useful contribution to other studies carried out at the Water-
power labratory at NTNU. One such example is the design process of a reference
Pelton design that PhD-candidate Bjørn Winther Solemslie is working on at the

1
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time of writing. Developing a method for predicting the torque in a Pelton turbine
using OpenFOAM will also make possible the use of CFD for Pelton turbines with-
out the need for expensive commercial CFD software. Overall, the method that
is developed in this thesis will be a valuable contribution to the future study and
development of the Pelton turbine.



Chapter 2

Theory

This section presents relevant theory for Pelton turbines together with an overview
of CFD and model testing aspects.

2.1 The Pelton Turbine

The Pelton turbine is a hydro power turbine used for high heads and relatively
low volume flows. Pelton turbines are almost exclusively used for heads higher
than 600 meters. The turbine is appreciated for its wide efficiency area, which is
due to its regulation capabilities made possible by a varying number and opening
of nozzles[6]. The main dimensions of a Pelton turbine and nozzle are shown in
Figure 2.1.

2.1.1 Energy conversion

The Pelton turbine is an impulse turbine, meaning that all the energy converted in
the turbine is due to the velocity energy of the water. The turbine runs in a turbine
casing with atmospheric pressure, and there is no pressure difference between the
turbine inlet and outlet.

Figure 2.2 gives a schematic overview of the energy conversion, and shows that

• The water has a high potential energy in 1*, when it enters the nozzle.

• The pressure energy is converted to kinetic energy in the nozzle.

• When reaching the bucket at 1, the kinetic energy of the water is converted
to rotational energy in the Pelton turbine.

3
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Figure 2.1: Main dimensions in a Pelton turbine[7]

• The remaining energy at the outlet of the turbine (step 2) consists of a small

velocity
c2m2

2 relative to the jet and a potential energy gh3 relative to the tail
water.

Figure 2.3 shows the velocities of the flow in a Pelton turbine. Entering the bucket,
the jet has the diameter d1, absolute velocity c1 = cu1, velocity relative to the
bucket w1, and a bucket speed u1. Exiting the bucket, there is an absolute velocity
c2, a relative velocity w2, and a peripheral velocity u2. The bucket is moving with
the peripheral velocity u = u1 = u2[6].

For an ideal Pelton turbine the inlet velocity is

c1,theoretical =
√

2gH (2.1)

A friction coefficient φ can be used to account for the losses in the system.

c1 = φ · c1,theoretical = φ ·
√

2gH (2.2)

The energy converted in a Pelton turbine can be found with the use of an energy
analysis, by assuming that it is a function of the peripheral and absolute velocity
at the inlet and the outlet[6],

Em = ω(cu1r1 − cu2r2) = cu1u1 − cu2u2 (2.3)
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Figure 2.2: Energy conversion in a Pelton turbine[7]

Figure 2.3: Inlet and outlet velocities in a Pelton bucket[6]
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where Em is the mechanical energy transferred from the water to the turbine. The
available energy is both the energy that is converted to mechanical energy and the
energy that is lost in the turbine. This can be expressed as

E = gH (2.4)

We can now define the hydraulic efficiency using equations 2.3 and 2.4, and get

ηh =
1

gH
(cu1u1 − cu2u2) (2.5)

Equation 2.5 is known as the Euler equation.

2.1.2 Optimal Rotational Speed

To find the optimal rotational speed we use the Euler equation and assume that
the velocity cu2, when leaving the turbine, is equal to zero.

ηh =
cu1u1
gH

(2.6)

Assuming that cu1 = c1 the optimal rotational speed uopt is calculated

uopt =
ηhgH

c1
=

ηhgH

φ
√

2gH
=
ηhc1
2φ2

(2.7)

By using equation 2.8[6] and 2.9 the optimal angular velocity ω can be calculated.

ω =
u

r
=
ηhc1
φ2D

=
ηh
√

2gH

φ ·D
[rad/s] (2.8)

n =
60

2π
· ω =

30 · ηh
√

2gH

π · φ ·D
[rpm] (2.9)

2.2 Model testing of Pelton turbines

One or more model tests are usually conducted to verify the performance and oper-
ational area of the turbine when designing new turbines. Even with the increased
computational power of today, model tests are needed to get a clear picture of
the performance and undiscovered errors of the design. Additionally, it is used by
the turbine producer to guarantee the hydraulic performance of a turbine to the
customer.
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2.2.1 Dimensionless terms and scaling

To compare a turbine model with a geometrically similar prototype, expressions
for the reduced flow and the reduced velocity are used. The values are reduced
using the head H of the machine as shown below.

QED =
Q

D2
√
gHe

(2.10)

nED =
nD√
gHe

(2.11)

Equal QED and nED give the same velocity diagrams both in the model and the
prototype turbine[19]. There will, however, be a dissimilarity due to the higher
Reynolds number in the prototype, resulting in lower friction losses. Thus, the
efficiency will be higher in the prototype than in the model. Additionally, there
are differences in the relative roughness between the model and the prototype
turbine that will have to be taken into account. Consequently, the test results have
to be scaled.

The method for scaling test results is different in reaction and impulse turbines.
For reaction machines, scaling laws are well established and in use, while scaling
for Pelton turbines is considerably more difficult. The various flow phenomena
have to be taken into account when scaling. These are the: pipe flow, free-jet
flow, unsteady flow with free surface in the buckets, and two-phase flow in the
casing. The size and distribution of the mentioned flow phenomena, however, are
not sufficiently known[12].

2.2.2 Efficiency scale-up procedure in IEC 60193

The international standard IEC 60193 of the International Electrotechnical Com-
mission applies to laboratory testing of model turbines. The equations given in
IEC 60193, Annex K[15] give a procedure to approximate the efficiency scale-up
for Pelton turbines. This procedure will be summarised below.

The specific flow rate ΦB , the Froude number Fr, the Weber number We and the
Reynolds number Re are calculated for the model. The expected corresponding
dimensionless values for the prototype are also calculated. Formulas 2.12, 2.13,
2.14 and 2.15 are used, where Q is the volume flow, z0 is the number of nozzles,
E is the specific energy, B is the bucket width, g is the gravitational constant, ρ
is the density, V is the velocity, σ∗ is the surface tension coefficient and ν is the
kinematic viscosity.

ΦB =
4Q

z0 · π · (2E)
1/2 ·B2

(2.12)
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Fr =

(
E

g ·B

)1/2

(2.13)

We =

(
ρBv2

σ∗

)1/2

(2.14)

Re =
B · V
ν

(2.15)

The following ratios of similitude can then be calculated:

CFr =
FrP
FrM

(2.16)

CWe =
WeP
WeM

(2.17)

CFr =
ReP
ReM

(2.18)

Ultimately, the model hydraulic efficiencies ηhM are scaled up to prototype condi-
tions using the following formula:

∆ηh = ∆ηhP −∆ηhM = ∆ηFr + ∆ηWe + ∆ηRe (2.19)

∆ηh = 5, 7 · ΦB
2(1− CFr

0,3) + 1, 95 · 10−6
CWe − 1

ΦB
2 + 10−8

(CRe − 1)
2

ΦB
2 (2.20)

2.3 Computational Fluid Dynamics

This section covers general CFD theory and an overview of selected software. It is
based mainly on Versteeg[29], Ferziger[11], Kristoffersen[17] and White[30].

2.3.1 Governing equations

The governing equations of Computational Fluid Dynamics represent the conser-
vation laws of physics:
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1. Conservation of mass - The continuity equation

∂ρ

∂t
+ div(ρV) = 0 (2.21)

2. Conservation of momentum - The Navier-Stokes equation

ρ
DV

Dt
= ρg +∇ · τ ′ij −∇p (2.22)

3. Conservation of energy - First law of thermodynamics

ρ
Dh

Dt
=
Dp

Dt
+∇(k∇T ) + Φ (2.23)

where DV
Dt = ∂V

∂t + (V · ∇)V , the last term Φ in equation (2.23) is the dissipation
function and the viscous stress tensor τ ′ij is

τ ′ij = µ(
∂vi
∂xj

+
∂vj
∂xi

) + δijλ · divV (2.24)

The Navier-stokes equation can be simplified if we assume incompressible flow and
a constant viscosity

ρ
DV

Dt
= ρg −∇p+ µ∇2V (2.25)

The same applies to the continuity equation, which becomes

∇ · V = 0 (2.26)

2.3.2 Meshing

The first step taken in creating a CFD simulation is dividing the domain into a
grid of discrete control volumes, for which the different variables will be calculated.
The quality of the mesh used for solving a problem is critical to the quality of the
solution. Mesh generation is dependent of the simulation that will be performed,
and the effects that will be investigated. It is also a compromise between ensuring
sufficient quality and limiting the number of cells, as this highly affects computa-
tional time. This is an iterative process, and a fair amount of experience with CFD
is necessary to create a high quality mesh.

Structured meshes, identified by regular connectivity and consecutive numbering of
elements[11], are most efficient with regards to calculation time, and are therefore
often preferable. However, it is not possible to generate structured meshes for
many complex geometries, as is the case for the Pelton bucket. Consequently, it
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is necessary to use an unstructured type of grid for parts of the computational
domain.

In OpenFOAM, mesh quality is determined with the checkMesh application. This
application evaluates certain parameters that are essential for mesh quality, such
as[28]:

• Aspect Ratio: Ratio between the longest and shortest edges. 1.0 is ideal.

• Cell volumes: Very small or large cells (relative to each other) should be
avoided.

• Mesh non-orthogonality: The angle between the line connecting two cell
centres and the normal of their common face. 0 is ideal.

• Skewness: The distance between the intersection of the line connecting two
cell centres with their common face and the centre of that face. Smaller is
better.

Additionally, the growth ratio of the cell size is an important quality parameter
that should not exceed 1.25[8]. By limiting the growth ratio, there will not be big
”jumps” in cell volumes, that could in worst case give instabilities or inaccuracies.

2.3.3 Courant Friedrich Levy criteria

The Courant number, or the Courant Friedrich Levy criterion, is important to
consider when performing a CFD analysis. In a one-dimensional grid it is defined
as

Courant =
uδt

δx
(2.27)

where u is the fluid speed, δt is the timestep and δx is the mesh size. For a three-
dimensional case this is generalised to a scale taking into account the dimension of
the control volume[4].

The CFL-criteria means that if the Courant number is less than or equal to 1.0,
the fluid does not travel more than one cell for each timestep. For time dependent
explicit analyses, this criterion is necessary for stability and the Courant number
should be limited below 1.0. Meanwhile, for implicit solvers like Ansys CFX, this is
not a requirement for stability, and the Courant number can be larger than 1.0[3].

2.3.4 Discretisation

The governing equations have to be discretised in time and space to be solved
numerically. Gaussian finite volume integration is based on summing values on cell
faces, which must be interpolated from cell centres, and is the most common choice
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for discretisation in OpenFOAM. The discretisation schemes can be of any order,
but higher order schemes will be more complex and can give stability issues.

OpenFOAM provides great flexibility with regards to the choice of discretisation
schemes and interpolation between points. A central differencing scheme based on
the two nearest neighbour points on each side of the cell center, the Gauss linear
scheme, is commonly used. This gives a second order accurate scheme as illustrated
below.

∂u

∂x
=
ui+1 − ui−1

2δx
+O(δx2) (2.28)

For discretisation in time, the Forward Euler scheme is used, giving first order
accuracy:

∂u

∂t
=
un+1
i − uni
δt

+O(δt) (2.29)

Together this is known as the Forward-Time Central-Space scheme, giving first-
order convergence in time and second-order convergence in space.

The Upwind discretisation scheme shown in equation 2.30 is commonly used for
discretisation in space when stability issues are present, but can give unsatisfactory
accuracy.

∂u

∂t
=
uni − uni−1

δx
+O(δx) (2.30)

The vanLeer option is a variant of Total variation diminishing. It can, for instance,
be used together with the Gauss scheme to better resolve fields that are prone to
have areas with strong shocks or large discontinuities. In those cases, using vanLeer
can decrease the risk of checker-board errors.

OpenFOAM offers enhanced versions of some of the schemes for scalars that need
to be strictly bounded. A thorough description of these options can be found in
the User Guide[22], section 4.4.1.1.

2.3.5 Solver procedures

After discretising the equations as presented in the previous section, a set of alge-
braic equations are obtained. Those equations need to be solved with an iterative
technique by: 1) guessing a solution, 2) linearising the equations about that solu-
tion, and 3) improving the solution until it converges[11].

Several linear solvers are available, and it should be noted that OpenFOAM distin-
guishes between symmetric and asymmetric matrices, depending on the structure
of the equation being solved. However, the solver will give an error message if a



2.3. COMPUTATIONAL FLUID DYNAMICS 12

symmetric linear solver is used for an asymmetric matrix, or the other way around.
Some linear solvers, such as the Preconditioned conjugate gradient (PCG), will also
require the use of a preconditioner to increase its performance.

As the matrix solvers are iterative, they will produce a residual as a measure of the
error in the solution. A smaller residual gives a more accurate solution. A solver
tolerance has to be specified to control the accuracy of the linear solver. Specifying
a low tolerance might be time consuming, and it is therefore important to consider
an appropriate compromise between accuracy and the number of iteration loops
needed to achieve convergence.

The Geometric-algebraic multi-grid solver (GAMG) is commonly used to solve the
pressure equations. The principle behind GAMG is to first calculate an interme-
diate solution on a coarse mesh, and then map it onto a finer grid using the first
solution as an initial guess. This is considered a relatively quick method. The High
Performance Computing Group at NTNU investigated the parallel performance of
OpenFOAM on the Vilje supercomputer[20], and recommends using the GAMG
solver for the pressure equation for any incompressible analyses up to about 9
nodes/144 processes.

The flow pressure gradient contributes to all three momentum equations in the
Navier-Stokes equations, complicating their solution. Therefore, special methods
are used for pressure-velocity coupling. Pressure Implicit with Splitting of Operators
(PISO) is a common choice for transient analyses. It can be summarised as shown
below[28][11].

1. Solve the discretised momentum equation to compute an intermediate veloc-
ity field, using the latest solutions as the starting estimate.

2. Compute the mass fluxes at the cells faces.

3. Solve the pressure equation.

4. Correct the mass fluxes at the cell faces.

5. Correct the velocities on the basis of the new pressure field, update initial
values for pressure and velocity.

6. Repeat step 2 until 5 the desired number of times.

7. Advance to the next time step.

Pressure-velocity coupling is an important aspect for segregated solvers, also known
as uncoupled solvers. A segregated solver means that the three momentum equa-
tions are solved sequentially, before using the updated velocity field to calculate
the pressure equation for continuity. OpenFOAM uses the principle of segregated
solvers, while ANSYS CFX is an example of a coupled solver. In a coupled solver,
all three momentum equations and the pressure equation are solved simultane-
ously in the same matrix, thus eliminating the need for pressure-velocity coupling.
A coupled solver will need significantly more resources for each time step, but will
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Figure 2.4: Time averaging for a statistically steady flow (left) and ensemble aver-
aging for an unsteady flow (right)[11].

at the same time converge with fewer time steps. This is further described in the
ANSYS CFX-Solver Theory Guide, section 11.2[3].

2.3.6 Turbulence modelling

All flows relevant to engineering problems, from the very simple to the advanced
ones, become unstable and turbulent above a certain Reynolds number. Thus,
there is a need for tools that can represent the effects of turbulence. There are
several ways to address turbulence numerically, ranging from Direct Numerical
Simulation (DNS), via the simpler Large Eddy Simulation (LES), to Reynolds Av-
eraging Navier-Stokes (RANS). The latter is the most commonly used for practical
and industrial applications.

RANS assumes that for large time windows, relative to the period of the fluctua-
tions, the mean velocity U varies slowly with time as illustrated in Figure 2.4. The
same method is used for the pressure variable. The variable U can be represented
as the mean U plus a fluctuating value U ′, so that

U = U + U ′ (2.31)

where

U =
1

T

t0+T∫
t0

Udt = U + U ′ = U + U ′ (2.32)

and U ′ is by definition equal to zero. The averaged velocities and pressure can then
be inserted into the Navier-Stokes equation.

ρ
DV

Dt
+ ρ

∂

∂xj
(u′iu′j) = ρg + µ∇2V −∇p (2.33)
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Rewriting the equation for the mean viscous stress tensor components expressed
by τij gives

ρ
DV

Dt
= ρg +∇ · τij −∇p (2.34)

τij = µ(
∂vi
∂xj

+
∂vj
∂xi

)− ρv′iv′j (2.35)

Averaging the momentum equations yields six additional unknowns, which require
additional equations to be solved. Therefore, turbulence models have been de-
veloped to predict the Reynolds stresses and to close the system of mean flow
equations (equations 2.21 and 2.34). These are classified by the number of extra
transport equations that need to be solved[29].

No. of extra transport equations Name
Zero Mixing length model
One Spalart-Allmaras model
Two k-ε model

k-ω model
Algebraic stress model

Seven Reynolds stress model

Table 2.1: Turbulence models listed by the number of extra transport equations
needed [29].

The standard k-ε model is extensively tested and well-established, and is known
to have an excellent performance for many industrially relevant flows. However, it
has a poor performance when it comes to certain unconfined flows, as well as flows
with large extra strains (e.g. curved boundary layers, swirling flows), and rotating
flows[29]. According to Perrig[24], the k-ε-model has shown poor performance in
the bucket regions where the flow is suspected to high shear stresses.

The Wilcox k-ω model does not require wall-damping functions in low Reynolds
number applications, which is why it is more accurate and robust in near wall areas.
It is, however, very sensitive to the free stream value in ω, as the eddy viscosity
becomes indeterminate or infinite when k → 0 and ω → 0.

The k-ε model is much less dependent than the k-ω model on the assumed values
in the free stream. Menter[18] proposed a hybrid model, blending the k-ε and k-ω
models in near wall regions, and using the standard k-ε model in high turbulent
areas far from the wall. This is known as the Shear Stress Transport (SST) model.
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2.3.7 Verification and validation

For the results of a CFD simulation to be useful, it is essential to be aware of
the quality and uncertainties it contains. This process is called verification and
validation. Solution verification is defined as:

The process of determining that a model implementation accurately rep-
resents the developer’s conceptual description of the model and the so-
lution to the model[1]

The goal of verification is to quantify the errors in the implementation and solution
of a certain calculation, and to present an estimation of the accuracy of the calcu-
lation. Common verification steps are checking the code, the iterative convergence,
the consistency, the grid convergence, and the temporal convergence[17].

Validation is defined as:

The process of determining the degree to which a model is an accurate
representation of the real world[1]

This involves verification of the numerical calculation as described above and com-
paring CFD results to experimental data or results from Direct Numerical Simula-
tions. It is important to keep in mind the uncertainties of experimental data.

Numerical solutions are always approximations. Ferziger[11] lists three kinds of
systematic errors:

• Modeling errors: The difference between the real world and the mathe-
matical solution.

• Discretisation errors: The difference between the exact solutions of the
conservation equations and the exact solution of the discretised equation sys-
tem.

• Iteration errors: The difference between the iterative and the exact solution
of the discretisized equation system.

Numerical diffusion can occur as a result of misaligning the mesh with the flow, es-
pecially when using low order discretisation schemes. Perfect alignment is normally
not possible, and diffusion will therefore to some extent be present. Figure 2.5 il-
lustrates how diffusion affects the flow when a low resolution discretisation scheme
is used[4].

Additionally, uncertainties in the input data, code errors and user faults will affect
the quality of the solution.
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Figure 2.5: Diffusion effect on flow with wrongly aligned cells, using a low resolution
discretisation scheme. The top right figure shows the ideal grid alignment[4]

2.4 Previous work on CFD for Pelton turbines

The use of CFD for Pelton turbine design is challenging due to the turbine’s free
surface, complex geometry and the relative motion between the jet and bucket.
These effects are difficult to implement numerically. Hence, it is especially impor-
tant to study the possibilities and limitations related to its use.

The doctoral thesis of Morten Hana[14] is to the author’s knowledge the first study
of CFD for Pelton turbines. Hana carried out a 2-dimensional simplified case, a
3-dimensional fixed jet case, and a 3-dimensional calculation with motion. The
software RIPPLE, Flow-3D and CFX-4 were used, comparing the results and ver-
ifying them experimentally. Hana concluded that commercial CFD codes could
in fact replace the graphical method developed by Henrik Christie[7], which was
earlier used for evaluating Pelton turbine designs.

The PhD-thesis of Alexandre Perrig[24] investigated the free surface flow in the
buckets using four experimental and numeric approaches: 1) Unsteady onboard
wall pressure measurements, 2) high-speed flow visualisations, 3) onboard water
film thickness measurements, and 4) CFD simulations. The 2-Phase Homogeneous
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Model and the 2-Fluid Model were compared with experimental data, and Perrig
found that the latter appeared to be the more accurate.

The master’s thesis An experimental and numerical study of the free surface Pelton
bucket flow of Lars Erik Klemetsen[16], investigated a simplified representation of
the free surface flow through a static Pelton turbine. The thesis included mea-
surements of the pressure distribution through the majority of the flow domain,
together with the location of the air-water interface. The experimental results were
compared with a numerical analysis in both CFX and Fluent. Measurements of
the jet energy distribution were included and were found to be important for the
numerical results. With the grid resolution above a certain limit, the definition of
the inlet was found to be the main parameter.

The master’s thesis of Lorentz Fjellanger Barstad[5] had the objective of developing
and validating a numerical model for the torque applied to a non-stationary Pelton-
bucket. The model was developed in ANSYS CFX and based on a model turbine
supplied by the turbine producer DynaVec1. Mesh independency was identified at
approximately 4.5 million elements. Head independency was found to be likely, but
not verified properly. A comparison of experimental and simulation results showed
a torque over-prediction of approximately 1.5 % for this specific geometry, at a
head of 75 m.

1DynaVec is a company based in Trondheim, Norway, that designs, manufactures, and installs
pumps and turbines in areas with sand erosion and corrosion problems.
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Chapter 3

Setup of CFD analysis in
OpenFOAM

A CFD model method for a Pelton turbine has already been developed and val-
idated for ANSYS CFX at the Waterpower laboratory[5]. This thesis has inves-
tigated the possibilities of developing a similar method for OpenFOAM, with the
goal of comparing the results from the two.

OpenFOAM version 2.1.1 has been used in this thesis. However, version 2.2.0
became available during the spring of 2013, and has been used to run some simu-
lations as it was installed on NTNU’s high performance computer Vilje1 that was
used for several of the simulations.

The simulations that were conducted form the basis for the analysis in this thesis.
Case files used in one of the simulations are found in Appendix B. Additional
case files, as well as an animation of a completed simulation, are found in the files
delivered together with this thesis. The mesh and geometries are not included,
however, as a commercial turbine design has been used for the simulations.

1Vilje is ranked number 44 on the top 500 ranking of the most powerful commercially available
computer systems (http://www.hpc.ntnu.no)
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3.1 Solution approach

A good resolution of the flow is critical to correctly represent the various flow
phenomena. Special attention will be paid to the following effects:

• Unsteady free surface flow in the buckets

• High speed jet with free surface

• Two-phase flow in the casing

Together this gives a complex solver and case setup, and an appropriate mesh is
essential to achieve an accurate solution. At the same time, the computational
cost will be high as a result of this type of simulation, and the mesh should not
be refined more than necessary. Thus, it is important to refine the mesh in the
necessary areas, while keeping it coarser where possible. Mesh quality criteria, such
as for instance Growth Rate and Skewness, should be carefully monitored.

The approach of modelling three buckets, rather than the whole turbine, is chosen
to reduce the calculation time, while still being able to model the effects of jet cut-off
from the next bucket and possible backwash from the water in the previous bucket.
To further simplify the calculations, only half of the three buckets and the jet are
modelled, and a symmetry plane is used. Together, these simplifications make it
necessary to correct the calculated results before comparing with the experimental
data. These corrections are further described in Section 3.5, Post-processing.

When developing the model it was necessary to use a solver that could handle
certain needs, such as:

• Two-phase flow

• Rotational movement of the mesh

• Sliding interface between rotating and stationary mesh

The interDyMFoam solver was found to satisfy these needs and chosen for the
analysis.

3.1.1 Rotational movement of the mesh

In the CFX-simulation, a sliding mesh interface is used between the stationary
and rotating mesh. One approach would be to use the same type of interface in
OpenFOAM, as functionality is present both in OpenFOAM version 2.1.1, and in
the Extend-Project’s2 OpenFOAM 1.6-ext. The different interfaces are described
below.

2The Extend-Project aims to open OpenFOAM to community contributed extensions[26]. It
provides repositories to facilitate worldwide collaboration, and is responsible for the Unofficial
OpenFOAM Wiki[28]. The Extend-Project is not supported by the developer of the official
OpenFOAM software.
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The Arbitrary Mesh Interface (AMI)
AMI was introduced with OpenFOAM version 2.1.0, to allow simulation across
disconnected, but adjacent, mesh domains. The principle behind AMI is to project
the interface patch of one domain onto that of the other domain and interpolate[27].

The Generalised Grid Interface (GGI)
OpenFOAM 1.6-ext provides an implementation of the Generalised Grid Interface
(GGI) to allow interaction between meshes. It was available before AMI was im-
plemented in the official OpenFOAM distribution, and has thus been more widely
used. Certain cases testing GGI have been made available by the Extend-Project
and others. Grunde Olimstad, a former student at the Waterpower laboratory,
used GGI successfully in his Master’s thesis[21], calculating characteristics for a
reversible pump turbine. Olimstad emphasised the need to use the boundary con-
dition cyclicGgi, as it is independent of face numbering while this is not true for
the cyclic boundary condition. Face numbering can be a problem when converting
meshes from the Fluent format.

Another approach, proposed by H̊akan Nilsson[13] at the Chalmers University of
Technology, is to make a single domain-rotating mesh with a rotating inlet bound-
ary condition, rather than using the two-domain approach of the CFX method.
By avoiding the sliding mesh approach computational costs will be reduced. This
method could also be applied in CFX.

In this project, it was chosen to use the Arbitrary Mesh Interface (AMI) for han-
dling the sliding mesh interface between the two domains. The reason was that
it is available in the official version of OpenFOAM, and does not require any new
boundary conditions to be developed.
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Figure 3.1: OpenFOAM file structure

3.2 OpenFOAM case structure

OpenFOAM cases are made up of files in a folder structure. There are separate
files for velocity, pressure, and turbulence fields, as well as for necessary constants
and settings. The files that are necessary in order to run a simulation are shown
in Figure 3.1, and are commonly mentioned as dictionaries. Depending on the
case and settings specified, additional files might be necessary, for instance when
using the built-in meshing tools of OpenFOAM. These files might not be included
in Figure 3.1, but will be mentioned when relevant.

Constant directory
This folder contains physical constants needed for the simulation, as well as a
description of the mesh in the folder polyMesh.

System directory
Parameters for the solver settings and for controlling the simulation are found in
this folder. The start and stop as well as time step settings are found in controlDict,
while decomposeParDict contains the settings for decomposing a case to run it in
parallel.

Time directories
Initial settings for the simulation can be found in the 0 -directory, while results are
written by OpenFOAM to directories named by the time step, for instance 0.001.
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Fields such as the velocity field (0/U ), the dynamic pressure field (0/p rgh), or
turbulent quantities like epsilon (0/epsilon) are each stored in separate files.

3.3 Geometry and meshing

OpenFOAM comes with various tools for mesh generation and manipulation.

blockMesh
The blockMesh tool is a native mesh generation tool that can be used for defining
simple geometries and meshes. The dictionary constant/polyMesh/blockMeshDict
is necessary.

snappyHexMesh
For more complex geometries snappyHexMesh should be used. In those cases,
geometry files have to be supplied in the Stereolithography (STL) format, and a
bounding domain needs to be defined with the blockMesh tool. snappyHexMesh
will then mesh the surface geometries in the STL file, using the bounding do-
main as a base mesh. snappyHexMesh provides numerous options for the mesh
generation and gives the user a lot of control over the result. The dictionary sys-
tem/snappyHexMeshDict is necessary.

fluent3DMeshToFoam
There are tools for converting from various mesh formats to an OpenFOAM mesh.
fluent3DMeshToFoam is such a tool and is used for converting meshes generated
with ANSYS Meshing (Fluent .msh-format) to the OpenFOAM format.

snappyHexMesh was initially chosen as the preferred mesh generator due to its
great flexibility and the possibility for automated mesh generation. However, the
quality of the meshes generated with snappyHexMesh turned out to be less than
satisfactory, often causing the simulations to crash. The simulations crashed mainly
due to bad control of mesh refinement and important quality parameters, such as
skewness. It was therefore decided to rather use ANSYS Meshing. The process of
mesh generation with snappyHexMesh will nonetheless be included in this thesis
for future reference.
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(a) Principal sketch of CFX
domains (b) Principal sketch of OpenFOAM domains

Figure 3.2: Principal sketches of computational domains

3.3.1 Computational domain

The CFD model of a Pelton turbine in OpenFOAM has been developed on the basis
of the geometries and the setup used in the CFX model. Both the stationary and
the rotating domains have been extended so that they are completely circular in
order to satisfy the requirements of overlapping patches in the OpenFOAM sliding
mesh interface (AMI). The principal sketch of the domains used in CFX is shown in
Figure 3.2a, while the domains used in OpenFOAM are illustrated in Figure 3.2b.

The mesh consists of one stationary domain (outer) with the jet inlet, and one
rotating domain (inner) with three half buckets. The boundaries are described in
section 3.4.1.

3.3.2 Mesh generation with snappyHexMesh

The elements listed below are needed for mesh generation with snappyHexMesh.
The workflow used for mesh generation with snappyHexMesh is further described
in Appendix A.

• Background mesh generated with blockMesh

• Geometry files in .stl or .obj format

• Dictionary file system/snappyHexMeshDict
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Activation rows
castellatedMesh Create the castellated mesh
snap Do the surface snapping stage
addLayers Add surface layers

castellatedMeshControls Castellated mesh controls sub-dictionary
geometry Sub-dictionary of all surface geometries
maxGlobalCells Total cell limit (approx.)
locationInMesh Location vector inside the region to be meshed
features Refinement level for cells intersected by its edges
refinementSurfaces Refinement level for cells intersected by its surfaces
refinementRegions Refinement level for cells in relation to a surface

meshQualityControls Generic mesh quality settings sub-dictionary
maxNonOrtho Maximum non-orthogonality allowed
maxBoundarySkewness Max skewness allowed on boundaries
maxInternalSkewness Max skewness allowed on internal mesh
minVol Minimum pyramid volume

Table 3.1: Important keywords in the snappyHexMesh dictionary sys-
tem/snappyHexMeshDict [22]

The geometry files were made in ICEM CFD 14.0 by manipulating a mesh made
in ANSYS Meshing, as exporting .stl-files is not possible in ANSYS Meshing or
Design Modeler. The geometries were then scaled and converted to .obj with
surfaceTransformPoints.

The background mesh was defined in constant/polyMesh/blockMeshDict, consisting
of four blocks. The inner diameter of the rotating domain coincided with that of
the rotating mesh generated in ANSYS Meshing, while the outer diameter of the
blockMesh was larger than that of the original stationary domain. These dimen-
sions allowed the desired domains to be extracted from the blockMesh-generated
background mesh. All surfaces were extracted from the background mesh af-
ter it was generated, and the corresponding surface files were generated in con-
stant/triSurface.

Mesh generation is an iterative process, and snappyHexMeshDict needs to be tuned
to achieve the desired mesh refinement. An example snappyHexMesh is attached
in Appendix A.7 as a complete reference of the parameters used. The parameters
are many and can be overwhelming at first. The most important parameters,
however, are listed in Table 3.1 to give an overview. After specifying the geometries
(geometry sub-dictionary), it is important to specify locationInMesh correctly. In
this case, the specified geometries created an enclosed region, smaller than the
background mesh created with blockMesh. It was desirable that the cells outside
the enclosed region were removed, thus the locationInMesh had to be set to a
location inside this region.
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The maximum mesh size is specified in maxLocalCells. Cell refinement can be
specified in three ways:

1. Explicit feature edge refinement: Cells intersected by the edges of a
specified geometry are refined

2. Surface based refinement: Cells intersected by geometry surfaces are re-
fined

3. Region-wise refinement: Cells related to a surface are refined. Those can
be cells inside or outside a closed surface, or cells that are within a specified
distance of the surface

A combination of all the three refinement options is used. The refinement level
is specified as a number, with a higher number giving more refinement, and 0
being the level of the background mesh specified in blockMeshDict and generated
by blockMesh.

3.3.3 Mesh generation with ANSYS

The procedure to generate the meshes in ANSYS is based on the method of
Barstad[5], but modified to fit with the way OpenFOAM handles geometry. In-
stead of generating separate files for the rotating and the stationary domain, both
domains are generated as one, before splitting them into two adjacent meshes
at the rotating-stationary mesh interface. A Body of Influence is created across
the domains to ensure an equal surface and refinement at the interface of both
the rotating and stationary domain. This also eliminated the need for importing
and merging two separate meshes in OpenFOAM, thus increasing the effectiveness
of the workflow. The location of the rotating-stationary mesh interface was also
moved closer to the turbine buckets to avoid disturbances in the jet shape as long
as possible.

Another obvious difference between the meshes of Barstad[5] and the ones used in
this simulation is that those used in OpenFOAM were extended to be completely
circular in order to support the use of the Arbitrary Mesh Interface (AMI) (see
section 3.1.1).

The mesh refinements can be seen in Figure 3.3. Refinements are applied in the
entire area of the Body of Influence to achieve a sufficiently fine mesh for resolving
the air-water-interface of the jet both before and after reaching the buckets. A face
sizing is applied to both the middle bucket and the first bucket exposed to the jet.
Inflation layers in the bucket surfaces are also necessary to model the boundary
layer where the jet interacts with the buckets. This was implemented in one mesh,
but unfortunately the simulation did not finish in time to be included in this thesis.
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Figure 3.3: Mesh refinement in ANSYS

3.3.4 Defining zones for mesh movement

To implement the movement of the rotational domain it is necessary to group the
different parts of the mesh in cell zones. Firstly, faces to be used in the AMI-
patches need to be defined. Secondly, the cells of the rotating domain need to be
grouped together.

The topoSet application is used to create the necessary zones. The zones must
be defined in the dictionary system/createAMIFaces.topoSetDict. The procedure is
executed with the Allrun2.pre script, and is roughly as follows: A cylindrical cellSet
is created by specifying the dimensions of a cylinder coinciding with the interface
between the rotating and stationary domain. It is important to specify accurate
dimensions, or the AMI-surfaces will be uneven and of a low quality, and will most
likely crash the simulation. The cellSet is used as a starting point to generate a
cellZoneSet named outerCells, containing the stationary domain. The faceZoneSet
named rotif is then created, containing the cell faces that will be converted into
AMI-patches.

createBaffles is then executed to write the rotif -faces to the AMI-patches in
constant/polyMesh/boundary.
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alpha1 U
Boundary Type Value Type Value
jetinlet fixedValue 1 fixedValue ( -38.38 0 0 )
jetwalls zeroGradient - fixedValue 0
mb, mbu zeroGradient - fixedValue 0
bb, bbu 0
tb, tbu
rotsym symmetryPlane - symmetryPlane -
rotopen inletOutlet 0 pressureInlet- 0
statopen OutletVelocity
AMI1 cyclicAMI 0 cyclicAMI 0
AMI2

p rgh
Boundary Type Value
jetinlet zeroGradient -
jetwalls zeroGradient -
mb, mbu zeroGradient -
bb, bbu
tb, tbu
rotsym symmetryPlane -
rotopen totalPressure 0
statopen
AMI1 cyclicAMI 0
AMI2

Table 3.2: Boundary conditions used in the OpenFOAM simulation

3.4 Pre-processing

Simulations in OpenFOAM are set up by creating and configuring the case files
shown in Figure 3.1. The details of that process is described in this section.

3.4.1 Boundary and initial conditions

An overview of the boundary conditions can be found in Table 3.2 and Figure 3.4.
The conditions are specified in the files 0/alpha1, 0/U, and 0/p rgh, for the volume
fraction, velocity and the dynamic pressure, respectively.

The domains are initially filled with air, while water is defined to enter through
the jet inlet by setting the alpha1 field to a value of 1, with a speed of 38.38 m/s.
This speed corresponds to a water height of 75 m.

All walls are defined as no slip walls by specifying zero velocity in all directions.
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Figure 3.4: Overview of boundaries

mb, bb and tb contribute to positive torque and refer to the upper part of the
middle, back, and top turbine buckets, respectively, while mbu, bbu and tbu refer
to the back side of the buckets.

The jet wall has the same diameter as the nozzle ring of the model turbine tested
by Barstad[5]. Friction is applied to the water jet by the wall with the aim of giving
it a more realistic velocity profile compared to that of a free slip wall. Instead of
using Barstad’s method, with a small no-slip wall area adjacent to the jet inlet, a
longer area of jet walls are modelled at the borders of the jet. The aim is to better
reflect the effect of the jet nozzle ring on the jet velocity profile. Alternatively,
testing an approach using a free slip jet wall could be of interest.

As previously mentioned, only half of the turbine buckets are modelled, thus a
symmetry plane is used as a boundary condition. rotsym refers to the symmetry
boundary for the entire fluid domain.

Since the Pelton turbine runs in a turbine casing with atmospheric pressure (see
section 2.1.1), it is necessary to define corresponding boundary conditions. An
outlet is also necessary so that fluid can exit the domain and the continuity can
be fulfilled. rotopen and statopen are considered as outlets that are free to the
atmosphere, allowing both outflow and inflow according to the direction of the
internal flow. For alpha1, the inletOutlet boundary condition is specified, which
provides a generic outflow condition, and also contains a specified inflow condition
for the case of return flow. Thus, the condition is dependent of the direction of
the flux crossing the patch. For positive fluxes (out of domain) the zero-gradient
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condition is applied. For the opposite case (into domain) the user-specified fixed
value is applied[27]. In this case, the inlet value is set to zero, so that only air will
enter the domain if a negative flux is present. A similar approach is used for U, so
that the zeroGradient is applied to outward flow. The totalPressure condition is
used for the dynamic pressure field p rgh, applying a fixedValue condition calculated
from the specified total pressure and the local velocity[22].

The surface tension between the fluid interface and a wall surface can be specified
by using the alphaContactAngle boundary condition[22] for the alpha1 field. This
also requires that values are provided for a static contact angle theta0 ; leading and
trailing edge dynamic contact angles thetaA and thetaR, respectively; and a velocity
scaling function for dynamic contact angle, uTheta. In addition, the keyword limit
controls the gradient of alpha1 on the wall and must be specified. The option
gradient, that limits the wall-gradient so that alpha1 is bounded on the wall, has
been tested in this thesis. It is important to note that the flux has to be corrected
to be zero at the wall for all options of limit except zeroGradient. This is done by
setting the following boundary condition for p rgh:

patchName

{

type fixedFluxPressure;

adjoint no;

}

Surface tension effects can be neglected by specifying the zeroGradient boundary
condition on alpha1, as presented in the OpenFOAM User Guide section 2.3.3[22].

A visual comparison of boundary conditions can be seen in Figure 3.5. One simula-
tion was run with the constantAlphaContactAngle boundary condition in the buck-
ets instead of the zeroGradient condition used otherwise. zeroGradient seemed to
give a better result, and it was therefore decided to continue using this condition.

3.4.2 Configuring mesh movement

The simulations were set up with fixed speed rotational movement of the inner
domain. The movement was specified in constant/dynamicMeshDict, giving the
angular velocity for the desired cellZone containing the cells of the rotational do-
main. The angular velocity was calculated using equation 2.8, assuming ideal
conditions. As the angular velocity needed to be specified in degrees per second, it
can be expressed as

ω =

√
2gH

D

180

π
(3.1)



31 CHAPTER 3. SETUP OF CFD ANALYSIS IN OPENFOAM

(a) constantAlphaContactAngle used as a boundary condition for tur-
bine buckets in 0/alpha1

(b) zeroGradient used as a boundary condition for turbine buckets in
0/alpha1

Figure 3.5: Comparison of boundary conditions at time step 0.007, alpha1>0.3
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3.4.3 Fluid properties

The fluid properties are found in the constant/transportProperties file. The two
phases have separate sub-dictionaries phase1 and phase2. The transport model was
selected to be Newtonian for both phases, meaning that the kinematic viscosity is
single valued and specified under the keyword nu[22]. The density was specified
under the keyword rho. Parameters for other viscosity models can be specified in
sub-dictionaries such as CrossPowerLawCoeffs and BirdCarreauCoeffs.

The surface tension coefficient sigma was specified outside the phase sub-dictionaries.
Additionally, the viscosity nu for phase1 (water) was copied outside the phase sub-
dictionaries as a workaround for using the forces function in multiphase. This is
further described in section 3.5.

Gravity was specified in constant/g simply by entering the desired value vector. In
this case, a gravity of 9.82 ms−2 in the negative z-direction was used, specified as

dimensions [0 1 -2 0 0 0 0];

value ( 0 0 -9.82 );

where dimensions gives the unit of the supplied value.

3.4.4 Turbulence

The turbulence model was chosen in constant/turbulenceProperties. Using a Reynolds
Averaging Navier-Stokes (RANS) approach to solve turbulence can be done by
specifying RASmodel for the simulationType keyword. When doing this, a dic-
tionary file constant/RASProperties also needs to be created. This contains three
options: RASModel, where a model for solving the RANS-equations should be
specified, i.e. kEpsilon for the k-ε model described in section 2.3.6; turbulence can
be used to switch the model on or off; and enabling printCoeffs prints a copy of
relevant coefficient dictionaries if the user wishes to override the default coefficients
for the chosen turbulence model.

In this thesis, only the laminar model has been used to simplify the simulations.
The laminar model is chosen by specifying laminar as simulationType in turbu-
lenceProperties. No additional parameters need to be specified when the laminar
model is used.

3.4.5 Solver settings

The choices made with regards to linear solvers and discretisation schemes are
essential for both stability and simulation speed, and should be carefully chosen.

The linear-solver control is specified in system/fvSolution. Each discretised equa-
tion needs to have a linear-solver chosen, and the solution tolerances specified.
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The linear-solver iterates so that the equation residual reaches the desired toler-
ance, and stops when either: 1) the residual falls below tolerance, 2) the ratio of
current to initial residuals falls below reltol, and 3) the maximum number of iter-
ations maxIter is reached. reltol is normally set equal to 0 for transient analyses
forcing convergence to the solver tolerance in each time step[22].

The pressure loops are the most time-consuming, thus setting the solution toler-
ance to an appropriate level is critical. If it is set to high, the accuracy of the
final solution might not be adequate, but if it is set too low, the time needed
to obtain a solution may become very high. The Geometric-algebraic multi-grid
solver (GAMG) was chosen to solve the pressure equations, as described in sec-
tion 2.3.5. The smoothSolver was used for the velocity fields together with the
smoother GaussSeidel, which is generally the most reliable option[22].

The tolerances were initially set to 1e-06 for all equations, but were later changed
to 1e-04 in order to make the simulations more time efficient. This can affect the
accuracy and stability of the simulations, and a comparison between the results
with regards to the tolerance level could be beneficial. If this is done, convergence
of the pressure equation loops should be monitored as it can sometimes be difficult
to achieve with tight convergence criteria[2]. It could be interesting to investigate
the result of lowering the pressure equation residuals in a future study.

The settings for the pressure-velocity coupling loops are as follows:

PIMPLE

{

momentumPredictor yes;

nCorrectors 4;

nNonOrthogonalCorrectors 3;

nAlphaCorr 1;

nAlphaSubCycles 3;

cAlpha 1.5;

correctPhi no;

}

PIMPLE is a combination of the PISO (Pressure-Implicit Split-Operator) and
SIMPLE (Semi-Implicit Method for Pressure Linked Equations) algorithms, but
PISO is implemented when no over-relaxation factor is given[10]. This can be ob-
served in the beginning of the simulation log files. Several parameters should be
specified as shown above. nCorrectors controls the number of corrections in the
PISO-loop as explained in section 2.3.5. The number of non-orthogonal correctors
is specified with nNonOrthogonalCorrectors, the value depending on the level of
non-orthogonality of the mesh used. 0 should be specified for completely orthog-
onal meshes. Enabling the momentum predictor allows an approximation of the
new velocity field to be calculated, described as the first step in the PISO-loop in
section 2.3.5. The nAlphaCorr and nAlphaSubCycles refer to the number of correc-
tions and sub-cycles, respectively, to perform for the alpha1 phase equation[22][28],
and are used to increase the stability of the solution. cAlpha refers to compression
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ddtSchemes
default Euler

gradSchemes
default Gauss linear

divSchemes
div(rho*phi,U) Gauss limitedLinearV 1
div(phi,alpha) Gauss vanLeer01
div(phirb,alpha) Gauss interfaceCompression
div((muEff*dev(T(grad(U))))) Gauss linear
div((nuEff*dev(T(grad(U))))) Gauss linear

laplacianSchemes
default Gauss linear limited 1.0

interpolationSchemes
default linear

snGradSchemes
default limited 1.0

Table 3.3: Settings used in fvSchemes

of the fluid interface, where a higher number refers to and enhanced compression
and possibly a sharper interface, which can improve cases with a diffusive alpha1.
The enhanced compression, however, gives a higher computational cost[9].

An overview of the discretisation schemes used, specified in system/fvSchemes, is
found in Table 3.3. The first order, bounded and implicit Euler Scheme is used for
discretisation in time (ddtSchemes). Gaussian finite volume integration is used for
the derivative terms. For the gradient schemes (gradSchemes) the linear interpo-
lation scheme is used as adviced in the OpenFOAM User Guide[27]. vanLeer01 is
specified for alpha1 with the aim of strictly bounding alpha1 between 0 and 1.

3.4.6 Simulation control

The general settings for simulation execution, such as start and stop time, time step,
writing of results, Courant number, and run time post-processing, are specified in
system/controlDict. An overview of the input parameters is found in Table 3.4.
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Time control
startFrom Start time, for instance latest written time or a specific time
startTime For specifying a start time, startTime must be given above
stopAt Controls end of simulation
endTime Specify end time for simulation, endTime must be given above
deltaT Time step of the simulation

Data writing
writeControl Controls the timing of output written to file
writeInterval The write interval is specified here

Data reading
runTimeModifiable Specify whether dictionaries are re-read at each time step

Table 3.4: Overview of parameters in system/controlDict [22]

Adaptive time stepping has been used for the simulations performed in this thesis
by specifying adjustTimeStep yes. That means that OpenFOAM automatically
adjusts the time step size to the largest possible value, while still fulfilling the
Courant Friedrich Levy (CFL) criteria. The settings listed below were used.

writeControl adjustableRunTime;

writeInterval 1e-3;

runTimeModifiable no;

adjustTimeStep yes;

maxCo 10;

maxAlphaCo 1;

maxDeltaT 1e-4;

Because of large computational time, the Courant number was specified as high as
possible to increase the simulation speed. Increasing the Courant number further
was attempted, but caused the simulations to crash. Therefore the Courant number
for the flow at the air-water interface (maxAlphaCo) was limited to 1.0. This is
normal for explicit solvers, as explained in section 2.3.3.

runTimeModifiable was set to no to avoid OpenFOAM checking the case files be-
tween each time step, potentially slowing the simulation. Also, no unnecessary
time steps were written as this would have resulted in a lot of files being created,
especially in the parallel cases subdivided into separate folders. adjustableRun-
Time was used for writeControl when using adaptive time stepping, making the
time steps adjusted to coincide with the specified writeInterval.
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3.5 Post-processing

There are various tools available for run-time post-processing in OpenFOAM,
among others the built-in forces function. forces calculates forces and torques by
integrating the pressure and skin-friction forces over a given list of patches[23].
The density of the flow has to be specified in rhoInf, and the centre of rota-
tion CofR is needed for torque calculations. The output is found in the file
forces/<timedir>/forces.dat. Note that the term moment is used for torque in
the output file.

The forces function is not designed to be used with multiphase flows, and will not
run without modifying the code or using a workaround. It will simply give the error
message of not recognising the kinematic viscosity nu. If only the forces from one
phase are needed, a workaround of defining nu outside of the phase-dictionaries in
transportProperties will be possible. This method was verified in the project work
of the author and others in a CFD course lectured at NTNU[17].

The output is given in columns containing time, pressure and viscous forces, and
torque due to pressure and viscous forces. All of the preceding are decomposed in
the x-, y- and z-directions. As the desired value in this thesis is the torque about
the y-axis, the torque values in the y-direction are summed.

The torque is only measured on one half bucket, thus the value achieved has to be
further post-processed to achieve the total torque of the turbine. That is done by
post-processing the results in Matlab using the script described by Barstad in his
master’s thesis[5] to generate the total torque matrix.

Further post-processing, such as visual inspection, is done in Paraview. Creating
an IsoVolume for certain values of alpha1 (for instance 0.3<alpha1<1.001) will give
a good visual view of how the water interacts with the buckets. Note that alpha1
is unfortunately not strictly bounded below 1.0, as was the aim with the solver
settings discussed in section 3.4.5. It was therefore necessary to use an IsoVolume
with a max alpha1 slightly larger than 1.0, as shown above.
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Mesh No. of cells Face size mb/tb Body size BoI
[mm] [mm]

SHM1 172323 N.A. N.A.
AM1 817914 default 4
AM2 2384935 1.2 2.6
AM3 4713956 0.6 1.8

Table 3.5: Simulation and mesh details

3.6 Simulations

An overview of the different meshes that were used in the simulations is found
in Table 3.5. SHM refers to snappyHexMesh, used for mesh generation, while
AM refers to ANSYS Meshing. Several other meshes were created and tested,
both with snappyHexMesh and with ANSYS Meshing, but did not give successful
simulations. As a general observation, meshes created with snappyHexMesh had
mesh skewness present in the bucket area, causing the simulations to crash when
the flow reached those areas. With regards to the meshes created with ANSYS
Meshing, cell numbers lower than AM1 resulted in unsuccessful simulations, while
at the same time the large number of cells that were used gave very large simulation
times.

The face and body sizing values are not available for SHM1 since they are not
specified in snappyHexMesh. Refinements are rather defined in a level relative to
the background mesh (see section 3.3.2). Face sizing is not defined for AM1, and
a default face size is therefore set automatically by ANSYS Meshing.



3.6. SIMULATIONS 38



Chapter 4

Results

A combination of stability errors due to unsatisfactory mesh generation in snap-
pyHexMesh, that was first used, and a high computational cost has put a limit on
the number of simulations that were completed. Table 4.1 contains an overview
of simulations that were run successfully. Please note that not all were run until
end time due to limited computational resources. The end time is specified for the
unfinished simulations.

Most simulations based on a mesh generated with snappyHexMesh failed to con-
verge, and are therefore not included in this thesis. Simulation SHM1, however,
ran until the end time despite having a very coarse mesh. The results, both visually
and with regards to torque measurement were not realistic, as could be expected.
However, some effects, such as the water flow out of the buckets, did look promising
despite the mesh coarseness. A uniform refinement of this mesh unfortunately did
not give satisfactory results, causing the simulations to crash.

Mesh No. of cells Run time Comment
[core hours] [Nm]

SHM1 172323 10 Stopped at 0.023
AM1 817914 1142
AM2 2384935 7200 Stopped at 0.019
AM3 4713956 18945

Table 4.1: Overview of simulation runs

39
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Figure 4.1: Curves for torque applied to the middle bucket in AM2 calculated by
OpenFOAM (blue), filtered and smoothed in Matlab (red)

4.1 Torque measurement

The torque applied to the middle bucket for AM2 and AM3 is shown in Figure 4.1
and 4.2. The blue line represents the original torque output of every timestep from
OpenFOAM. There are large fluctuations in the torque curve. A simple filter was
made in Matlab, based on a new matrix that was created with the median values
of the original output and applying the built-in smooth function. The red line
illustrates the values after filtering, which seems to represent the development of
the original output fairly well. The same filter was applied to AM1.
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Figure 4.2: Curves for torque applied to the middle bucket in AM3 calculated by
OpenFOAM (blue), filtered and smoothed in Matlab (red)



4.2. CONVERGENCE AND STABILITY 42

Figure 4.3: Comparison of the normalised torque curves generated in OpenFOAM
and ANSYS CFX

The calculated torque curves are compared with a reference torque curve in Fig-
ure 4.3. The reference torque curve was calculated in ANSYS CFX for the author’s
project thesis the autumn of 2012[25] based on the method of Barstad[5]. It is dif-
ficult to identify the fluctuations in the torque curves that are real fluctuations due
to the flow, and which that are related to numerical errors and can be considered
as noise. When analysing the torque curves produced by AM1, AM2 and AM3,
similar patterns in the curves should be emphasised as these are more likely to
represent the actual simulated flow. One such pattern is seen in the time interval
0.010 to 0.013, just before the maximum value of the reference torque curve. The
torque value of AM3 in this interval is lower than that of AM2, which is lower than
that of AM1, and at the same time closer to the maximum reference torque curve.

4.2 Convergence and stability

The residuals for AM3 are plotted in Figure 4.4 and do not exceed the specified
residual target. The Courant number for the interface between the air and water
phases, in contrast, is not always below the specified value of 1.0, as shown in
Figure 4.5. It exceeds the limit set for maxAlphaCo (explained in section 3.4.6) for
3.27 % of the time steps.
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Figure 4.4: Plot of residuals for AM3

Figure 4.5: AM3 Interface Courant Number
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4.3 Flow visualisation

A visualisation of the flow in the turbine buckets from the AM3 simulation can
be seen in Figure 4.6. When inspecting the calculated flow, several problematic
phenomena can be identified. These are described below.

• As seen in Figure 4.6a, the jet is split at the location where it crosses the
AMI-patches close to the lower bucket. A small amount of ”leaked” water is
present next to the top bucket.

• A large amount of water does not leave the buckets, causing severe backwash
on the backside of the next bucket.

• The water is unevenly distributed across the buckets and there are several
local accumulations of cells with a high volume fraction of water, most visible
in the lower bucket in Figure 4.6d.

• The jet assumes an unnatural shape from Figure 4.6d after it starts interact-
ing with the top bucket, and parts of it seem to disappear.
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(a) 23◦ (b) 32◦

(c) 41◦ (d) 51◦

(e) 60◦ (f) 69◦

Figure 4.6: Flow visualisation of the AM3 simulation displaying all cells with a
volume fraction of water (alpha1 ) larger than 0.5, colored by the water velocity
[m/s]. The angular position is specified below the separate sub-figures
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Figure 4.7: Comparison of the jet velocity before and after it is affected by the jet
split. The green part of the left contour represents the jet split, with the lower part
of the contour being outside the AMI-patches, and the top part inside.

The results from a further investigation of the jet split can be seen in Figure 4.7
and 4.8. The short distance between the AMI-patches and the buckets affects the
velocity in the jet area closest to the bucket, causing the velocity to decrease as
shown in Figure 4.7 (yellow half-circular area) and in Figure 4.8a (dip in the curve
around 0.030 m). Taking the effect of the closeness to the turbine bucket into
account, the velocity and the volume fraction of the jet seems to be unaffected by
the jet split.



47 CHAPTER 4. RESULTS

(a) Plot of U across the jet split

(b) Plot of alpha1 across the jet split

Figure 4.8: Comparison of the jet velocity and volume fraction across the jet split
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Figure 4.9: Isovolume for alpha1>0.1 in one of the turbine buckets

The uneven distribution of water in the buckets is illustrated in detail in Figure 4.9.
It displays all cells with a volume fraction of water higher than 0.1, colored by the
variation in the volume fraction (alpha1 ). This is the same bucket and time step
as in Figure 4.6d.

4.4 Computational time

The AM3 simulation needed as many as 379 318 iterations to complete because
of the small time step size. A plot of the time step size for AM3 is found in
Figure 4.10a. For most of the time steps, artificially high velocities were present
for a small number of cells, directly affecting the Courant number and the time
step size. The first written time step with an artificially high velocity is at the
time 0.004, visualised in Figure 4.10b. The effect the high velocities have on the
time step size is clearly seen in Figure 4.10a. The velocities on the back of the
middle bucket at the time 0.016 is included in Figure 4.11, showing velocities at
magnitudes of 104.
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(a) Time step deltaT for AM3.

(b) High velocity induced on the back of turbine bucket in AM3 at time 0.004.

Figure 4.10: Effect of high velocity on the back of bucket on the time step size.
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Figure 4.11: AM3 high velocities at time 0.016. Note that a logaritmic scale is
used.



Chapter 5

Discussion

The four simulations that produced a torque measurement will be discussed further
in this chapter. The computational time will also be discussed as it has been a
limitation during the work with this thesis.

5.1 Torque prediction

The reference curve gives a fairly realistic representation of the measured exper-
imental torque in the model turbine, as validated by Barstad. The torque mea-
surement curves from OpenFOAM are far from the reference curve generated with
ANSYS CFX both in shape and magnitude, as can be seen in Figure 4.3.

The meshes for the simulations were made with two different approaches: with the
OpenFOAM built-in tool snappyHexMesh, and with ANSYS Meshing. The torque
curves generated by OpenFOAM illustrate a clear difference between the results of
these two approaches. Firstly, AM1, AM2, and AM3 gave unstable torque curves
with large fluctuations, making it necessary to filter the data. Secondly, the SHM1
torque curve did not need filtering. Additionally, it can be seen in Figure 4.1
and 4.2 that the AM3 simulation, with twice as many cells as AM2, gave more
oscillations around the smoothed torque curve than AM2. AM1 produced an even
cleaner torque measurement curve. Consequently, it seems that the noise in the
torque measurement curve increases with mesh density.

The torque value of AM3 in Figure 4.3, after time 0.010, is lower than that of
AM2, which is again lower than that of AM1, and at the same time closer to the
maximum reference torque curve. This could mean that the flow is better resolved
in the denser mesh, even though the torque curve output is more unstable. The
mesh generated with snappyHexMesh, SHM1, seems to perform quite well despite
its mesh coarseness, giving an output torque measurement curve that is closer to
the reference curve than any of the ANSYS meshes.

51
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The time period that torque is produced in OpenFOAM seems to be both shorter
and at an earlier time than in the reference simulation. This was first thought to be
caused by a wrong rotation being applied, either because of an incorrectly specified
rotational speed, or because of an error in the way the rotation was performed by
the solver. However, the rotation was later verified to be correct, and there must
for that reason be another cause. One possibility is that the backwash taking place
in the turbine causes the steep decline in produced torque. To verify this possibility
further investigation is necessary and it should be considered in a further study.

5.2 Convergence and stability

The residual target for the pressure equations is specified to be 1e-4. This is
considered a relatively loose convergence, but is often sufficient. Using a residual
target of 1e-5 or even 1e-6 might perhaps give better results, but would calculate
slower. 1e-6 is used as the residual target for the velocity equations in this thesis
as these are less time-consuming than the pressure loops. It could be interesting to
see if lowering the residual target for the pressure equations would have any effect
on the torque measurement, either with regards to the actual size or the stability
of the results.

The residuals for AM3 are plotted in Figure 4.4. The residuals do not exceed
the specified tolerances as described in section 3.4.5, and are therefore converged
to the desired levels. The Interface Courant number, in contrast, was not always
below the specified value of 1.0, as shown in Figure 4.5. In AM3, the Interface
Courant number is larger than 1.0 for 3.27 % of the time steps, possibly affecting
the accuracy of the simulation results. This is believed to be caused by a limitation
in how much the time step size can change for each iteration, a limitation possibly
included to avoid large changes in the time step size between time steps. It seems
that the Courant number has to be set lower than 1.0 to ensure that it is strictly
bounded below this value, with the result of an even slower simulation.

5.3 Flow visualisation

With regards to the jet split and water leak across the AMI-patches, it is uncertain
if this is a visual problem due to the post-processing interpolation across the AMI-
patches in Paraview, or if the actual calculated flow is affected. However, taking
into account Figure 4.7 and 4.8, the jet velocity and the volume fraction are not
changed by the jet split. The shape of the jet seems to be constant across the jet
AMI-patches. Hence, its influence on the results is most likely insignificant.

Figure 4.6e and 4.6f illustrate severe backwash caused by water accumulated be-
tween the buckets. In reality, most of the water should leave the turbine bucket
during the cycle. The accumulation of water between buckets in the simulations
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can explain the instabilities in torque measurement of AM3 in Figure 4.2 from the
time around 0.018. The accumulation of water might be caused by a too coarse
mesh close to the bucket surfaces, causing the water to be influenced by the no-
slip boundary condition of the wall. If this is the case, an inflation layer could be
beneficial in the near-bucket area. A simulation implementing the inflation layer
has been made, but was unfortunately not finished in time to be included in this
thesis.

The unnatural shape of the jet, clearly shown in Figure 4.6d, but also in Figure 4.6e
and 4.6f, can be explained by numerical diffusion due to the mesh coarseness above
the top bucket. When comparing the above mentioned figures with Figure 3.3,
which illustrates the mesh refinement in ANSYS, it can be observed that the mesh
refinement due to the Body of Influence is no longer applied above the last bucket
subject to the jet. Consequently, the flow is not properly resolved. When inspecting
the results in Paraview it is found that the jet does not disappear as Figure 4.6d
can give an impression of, but is instead spread to nearby cells in volume fractions
lower than 0.5. The spreading of the flow is not visible in Figure 4.6 due to the
low volume fraction of water in the cells.

The uneven distribution of water in the buckets, illustrated in Figure 4.9, is highly
unnatural and does not resemble the flow in a real Pelton turbine. This effect might
possibly be connected with the large amount of water not leaving the buckets
in the simulations, resulting in backwash and most likely disturbing the torque
measurement. Thus, the cause of this effect should be investigated in future studies.

As mentioned in section 3.3.3, the rotating-stationary mesh interface was moved
closer to the turbine buckets than in the simulation by Barstad. Otherwise mostly
the same refinement parameters were used. This does not seem to have been benefi-
cial. The reason is that when the inner domain rotates relative to the outer domain,
the mesh in the stationary domain just outside the turbine buckets becomes too
coarse to resolve any flow that crosses the rotating-stationary mesh interface. Nor-
mally, water leaving the buckets should not cross this interface, but as the interface
is very close to the flow in the turbine buckets it might cause diffusion and disturb
the flow. More importantly, having the rotating-stationary mesh interface too close
to the buckets makes it difficult to visually inspect the flow close to the buckets,
as the jet split across the AMI-patches gives an unrealistic visualisation.

5.4 Computational time

The computational time has been an important issue while working with this thesis.
The simulation AM3, with a mesh size just above the mesh independence level
defined by Barstad, took almost 19 000 core hours to finish on the supercomputer
Vilje. For comparison, the reference CFX simulation needed about 667 core hours
on a 12 core Intel Xeon computer. In an implicit code such as ANSYS CFX,
simulations can be run with Courant numbers higher than 1.0, as described in
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section 2.3.3. This explains the difference in time step size between OpenFOAM
and ANSYS CFX, but at the same time, each time step should calculate faster in
OpenFOAM.

Several changes have been made to lower the simulation time, mainly adjusting the
numerical schemes and settings for the linear solvers and the pressure-velocity cou-
pling. However, the main parameter limiting the simulation speed is the Courant
number. For unknown reasons local velocities of the magnitude 104 are induced in
the boundary layers around the turbine buckets, thus reducing the time steps to
magnitudes down to 10−9 to fulfil the CFL-criterion.



Chapter 6

Conclusion and Further
Work

The aim of this thesis has been to develop a method for predicting the torque
applied to a Pelton turbine by a high speed water jet using the Open Source
software OpenFOAM. A method has been developed and tested, combining the
capabilities of multiphase and dynamic mesh handling of interDyMFoam with the
Arbitrary Mesh Interface (AMI) boundary condition. The built-in forces function
is used to measure the torque applied to one of the turbine buckets. The measured
torque was significantly larger than both the torque measured with the ANSYS
CFX method of Barstad and the experimental torque. Additionally, the torque
measurement curve from OpenFOAM contained instabilities and did not coincide
well with the one generated in ANSYS CFX. The measured maximum torque of
the model seemed to go towards the actual solution when the density of the mesh
increased, but at the same time it gave more noise in the output, making smoothing
of the results necessary.

A visual inspection of the simulations showed that water accumulates between the
buckets, causing severe backwash. This is most likely one of the sources of the insta-
bilities in the torque measurement, and can be caused by insufficient mesh density
in close-bucket areas. Furthermore, the water flow in the buckets is unnatural with
an uneven distribution of the volume fraction.

The simulations have demanded a large amount of computational resources, thus
limiting the development and testing of the model. The reason seems to be ar-
tificially large velocities that are induced in several areas close to the buckets,
resulting in a drop in the time step size to magnitudes as low as 10−9 in order to
fulfil the Courant Friedrich Levy (CFL) criteria. With the mesh density level found
by Barstad to be mesh independent, the method developed in this thesis needed
around 19 000 core hours to finish, almost thirty times that needed by ANSYS
CFX.
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The computational cost of the simulations has been the largest limitation in the
work with this thesis, and illustrates the need for further development of the
method. The first priority in further studies of the method should be to make
it more efficient with regards to simulation time. Running the simulations, the
time step size has been low due to certain artificially high local velocities in the
close-bucket areas, resulting in high computational costs. These should be inves-
tigated further to see what is causing them. Investigation of the discretisation
schemes and linear solvers can also be beneficial to improve both speed and ac-
curacy. Additionally, the accumulation and uneven distribution of water in the
turbine buckets will need to be investigated.

Continued development of the method could perhaps benefit from an approach
not utilising any sliding-grid interface, thus saving the time used for interpolation
between two meshes. By doing so, it may be possible to make a smaller domain
in order to reduce the total number of cells, while still maintaining a high mesh
density in the area around the buckets.
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Appendix A

snappyHexMesh Workflow

The workflow for creating a mesh using snappyHexMesh is described in this ap-
pendix. Example dictionaries blockMeshDict and snappyHexMeshDict are attached
in this appendix.

The method for creating a mesh using snappyHexMesh can roughly be described
as follows:

1. Prepare surface data files in OBJ format

2. Create a background mesh using blockMesh

3. Prepare the snappyHexMeshDict dictionary

4. Run the meshing script

5. Manipulate the mesh to create the AMI-interface

A.1 Preparing the geometry

The geometries are scaled to meters and converted to the Wavefront .obj format
using the command:

surfaceTransformPoints constant/triSurface/*.stl constant/triSurface/*.obj -scale
’(0.001 0.001 0.001)’

A.2 Creation of the background mesh

A simple mesh is created using the blockMesh-tool to define the extent of the
computational domain. The surfaces will later be subtracted from this domain,
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and it should be somewhat similar to, but not necessarily equal to, the desired
domain geometry.

The background mesh is defined in blockMeshDict by specifying vertices, blocks
and edges. The patches are defined by specifying the number of vertices. When
specifying faces of the patches it is essential to number the vertices in the correct
order. More information can be found in section 5.3 of the OpenFOAM User
Guide[22].

The blockMeshDict used for creating the background mesh can be seen in ap-
pendix A.6.

A.3 Configuring snappyHexMesh

Using snappyHexMesh is an iterative process, and it normally takes some time to
get a working mesh. One should start with modifying the required parameters, and
then tuning it afterwards to improve the mesh. An example snappyHexMeshDict
can be found in appendix A.7. The most important steps to start with are listed
below.

1. Turn on/off snappyHexMesh steps. These can be run separate for greater
control of the process.

2. Specify surfaces (.obj-files) to be used in the mesh

3. Set the maximum limit of mesh size in maxGlobalCells.

4. Specify refinement for cells intersected by geometry edges

5. Specify a minimum and maximum refinement for cells intersected by geome-
try surfaces

6. Specify refinementRegions by specifying a distance from surface and refine-
ment level. Refinement around the buckets is essential. Multiple refinement
levels can be specified for a single surface by listing the highest refinement
level first, for instance:
mode distance;
levels ((0.001 6) (0.01 5));

7. Specify a point for locationInMesh that is inside the desired domain, but not
on a cell face.

The refinement level is specified as a number, with a higher number giving more
refinement, and 0 being the level of the base mesh specified in blockMeshDict.
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A.4 Improving the mesh

The generated mesh has to be inspected both by using the built-in checkMesh
application and visually. The snappyHexMesh log file also provides useful info
about the mesh generation process. Any error in the snappyHexMesh log file or
from running checkMesh will have to be corrected in order to have a good mesh for
simulations. Improving the mesh is a time consuming process that requires tuning
the dictionary and inspecting the generated mesh several times.

snappyHexMesh will stop refining the mesh when the cell number reaches the max-
GlobalCells parameter, thus this will have to be in accordance with the specified
refinement levels. If the level of refinement is increased, the number of maxGlob-
alCells should also be increased, or the refinement will not be as specified by the
user.

When specifying refinementRegions it is important that the specified refinement
areas do not overlap, as there will be a conflict that snappyHexMesh handles poorly.
The user will not receive any error message, but it is likely that the area will not
be refined as desired.

The meshQualityControls are important for the quality of the generated mesh,
and should be adjusted if checkMesh results in errors. It is wise to change these
carefully while investigating the effect of a stricter or looser tolerance. The mesh
generation will most likely fail or give larger errors in checkMesh if the parameters
are set to a very strict level.

A.5 Define AMI-interface patches

1. Delete empty patches (nFaces=0 ) from the background mesh. Remember to
change the number of patches in the start of the file

2. Copy the endFace-ID from constant/polymesh/boundary. It is found by adding
the values of nFaces and startFace of the last boundary.

3. Paste this value in the startFace-field for the AMI-patches in system/changeDictionaryDict

4. Update system/createAMIFaces.topoSetDict to correspond with the rotating
and stationary domain. rotif refers to the rotating domain, rotifFace to
the sliding interface between the rotating and the stationary domain, and
outerCells refers to the stationary domain.

5. Update removeRedundantZones.topoSetDict to remove the cellZone rotif that
is no longer needed

6. Update Allrun2.pre to generate the AMI-patches from rotif

7. Update the fields in the 0 -folder to be in accordance with constant/polymesh/boundary

8. Run Allrun2.pre
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9. Delete the empty rotif -patch. Remember to change the number of patches
in the start of the file.

A.6 blockMeshDict example

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object blockMeshDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

convertToMeters 0.001;

vertices

(

(-470 139.08 0) //0

(0 139.08 -470)

(470 139.08 0)

(0 139.08 470)

(-173.85 139.08 0)

(0 139.08 -173.85)

(173.85 139.08 0)

(0 139.08 173.85)

(-470 0 0) //8

(0 0 -470)

(470 0 0)

(0 0 470)

(-173.85 0 0)

(0 0 -173.85)

(173.85 0 0)

(0 0 173.85) //15

);

blocks

(

hex (0 1 5 4 8 9 13 12) (5 5 5) simpleGrading (1 1 1)

hex (1 2 6 5 9 10 14 13) (5 5 5) simpleGrading (1 1 1)

hex (2 3 7 6 10 11 15 14) (5 5 5) simpleGrading (1 1 1)

hex (3 0 4 7 11 8 12 15) (5 5 5) simpleGrading (1 1 1)

);
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edges

(

arc 1 0 (-332.34 139.08 -332.34)

arc 0 3 (-332.34 139.08 332.34)

arc 3 2 (332.34 139.08 332.34)

arc 2 1 (332.34 139.08 -332.34)

arc 9 8 (-332.34 0 -332.34) //5

arc 8 11 (-332.34 0 332.34)

arc 11 10 (332.34 0 332.34)

arc 10 9 (332.34 0 -332.34)

//Inner circle

arc 5 4 (-122.93 139.08 -122.93)

arc 4 7 (-122.93 139.08 122.93)

arc 7 6 (122.93 139.08 122.93)

arc 6 5 (122.93 139.08 -122.93)

arc 13 12 (-122.93 0 -122.93)

arc 12 15 (-122.93 0 122.93)

arc 15 14 (122.93 0 122.93)

arc 14 13 (122.93 0 -122.93)

);

boundary

(

outside

{

type patch;

faces

(

(0 1 9 8)

(1 2 10 9)

(2 3 11 10)

(3 0 8 11)

);

}

inside

{

type patch;

faces

(

(5 4 12 13)

(4 7 15 12)

(7 6 14 15)

(6 5 13 14)
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);

}

top

{

type patch;

faces

(

(0 4 5 1)

(1 5 6 2)

(2 6 7 3)

(3 7 4 0)

);

}

bottom

{

type wall;

faces

(

(8 9 13 12)

(9 10 14 13)

(10 11 15 14)

(11 8 12 15)

);

}

);

// ************************************************************************* //

A.7 Example snappyHexMeshDict

FoamFile

{

version 2.0;

format ascii;

class dictionary;

object snappyHexMeshDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

// Which of the steps to run

castellatedMesh true;

snap true;

addLayers true;
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// Geometry. Definition of all surfaces. All surfaces are of class

// searchableSurface.

// Surfaces are used

// - to specify refinement for any mesh cell intersecting it

// - to specify refinement for any mesh cell inside/outside/near

// - to ’snap’ the mesh boundary to the surface

geometry

{

jetinlet.obj

{

type triSurfaceMesh;

name jetinlet;

regions

{

jetinlet

{

name jetinlet;

}

}

}

jetwalls.obj

{

type triSurfaceMesh;

name jetwalls;

regions

{

jetwalls

{

name jetwalls;

}

}

}

BBC.obj

{

type triSurfaceMesh;

name BBC;

regions

{

BBC

{

name BBC;

}
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}

}

MBC.obj

{

type triSurfaceMesh;

name MBC;

regions

{

MBC

{

name MBC;

}

}

}

TBC.obj

{

type triSurfaceMesh;

name TBC;

regions

{

TBC

{

name TBC;

}

}

}

statopening.obj

{

type triSurfaceMesh;

name statopening;

regions

{

statopening

{

name statopening;

}

}

}

rotif.obj

{

type triSurfaceMesh;

name rotif;
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regions

{

rotif

{

name rotif;

}

}

}

rotopen.obj

{

type triSurfaceMesh;

name rotopen;

regions

{

rotopen

{

name rotopen;

}

}

}

rotsym.obj

{

type triSurfaceMesh;

name rotsym;

regions

{

rotsym

{

name rotsym;

}

}

}

statinlet.obj

{

type triSurfaceMesh;

name statinlet;

regions

{

statinlet

{

name statinlet;

}

}

}
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statsym.obj

{

type triSurfaceMesh;

name statsym;

regions

{

statsym

{

name statsym;

}

}

}

};

// Settings for the castellatedMesh generation.

castellatedMeshControls

{

// Refinement parameters

// ~~~~~~~~~~~~~~~~~~~~~

// If local number of cells is >= maxLocalCells on any processor

// switches from from refinement followed by balancing

// (current method) to (weighted) balancing before refinement.

maxLocalCells 100000;

// Overall cell limit (approximately). Refinement will stop immediately

// upon reaching this number so a refinement level might not complete.

// Note that this is the number of cells before removing the part which

// is not ’visible’ from the keepPoint. The final number of cells might

// actually be a lot less.

maxGlobalCells 500000;

// The surface refinement loop might spend lots of iterations refining just a

// few cells. This setting will cause refinement to stop if <= minimumRefine

// are selected for refinement. Note: it will at least do one iteration

// (unless the number of cells to refine is 0)

minRefinementCells 0;

// Allow a certain level of imbalance during refining

// (since balancing is quite expensive)

// Expressed as fraction of perfect balance (= overall number of cells /
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// nProcs). 0=balance always.

maxLoadUnbalance 0.10;

// Number of buffer layers between different levels.

// 1 means normal 2:1 refinement restriction, larger means slower

// refinement.

nCellsBetweenLevels 2;

// Explicit feature edge refinement

// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

// Specifies a level for any cell intersected by its edges.

// This is a featureEdgeMesh, read from constant/triSurface for now.

features

(

{

file "jetinlet.eMesh";

level 3;

}

{

file "jetwalls.eMesh";

level 3;

}

{

file "statopening.eMesh";

level 1;

}

{

file "rotif.eMesh";

level 3;

}

{

file "BBC.eMesh";

level 3;

}

{

file "MBC.eMesh";

level 3;

}

XIII



{

file "TBC.eMesh";

level 3;

}

{

file "rotopen.eMesh";

level 1;

}

{

file "rotsym.eMesh";

level 1;

}

{

file "statinlet.eMesh";

level 1;

}

{

file "statsym.eMesh";

level 1;

}

);

// Surface based refinement

// ~~~~~~~~~~~~~~~~~~~~~~~~

// Specifies two levels for every surface. The first is the minimum level,

// every cell intersecting a surface gets refined up to the minimum level.

// The second level is the maximum level. Cells that ’see’ multiple

// intersections where the intersections make an

// angle > resolveFeatureAngle get refined up to the maximum level.

refinementSurfaces

{

BBC

{

level (2 3);

}

MBC

{

level (2 3);

}

TBC
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{

level (2 3);

}

rotif

{

level (3 3);

cellZone rotif;

faceZone rotif;

cellZoneInside inside;

}

statopening

{

level (1 1);

}

jetinlet

{

level (2 2);

}

jetwalls

{

level (2 2);

}

rotopen

{

level (2 2);

}

rotsym

{

level (4 4);

}

statinlet

{

level (1 1);

}

statsym

{

level (4 4);

}

}

// Resolve sharp angles

resolveFeatureAngle 30;

// Region-wise refinement
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// ~~~~~~~~~~~~~~~~~~~~~~

// Specifies refinement level for cells in relation to a surface. One of

// three modes

// - distance. ’levels’ specifies per distance to the surface the

// wanted refinement level. The distances need to be specified in

// descending order.

// - inside. ’levels’ is only one entry and only the level is used. All

// cells inside the surface get refined up to the level. The surface

// needs to be closed for this to be possible.

// - outside. Same but cells outside.

refinementRegions

{

MBC

{

mode distance;

levels ((0.03 4));

}

TBC

{

mode distance;

levels ((0.03 4));

}

BBC

{

mode distance;

levels ((0.03 4));

}

jetwalls

{

mode distance;

levels ((0.01 4));

}

jetinlet

{

mode distance;

levels ((0.01 5));

}

}
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// Mesh selection

// ~~~~~~~~~~~~~~

// After refinement patches get added for all refinementSurfaces and

// all cells intersecting the surfaces get put into these patches. The

// section reachable from the locationInMesh is kept.

// NOTE: This point should never be on a face, always inside a cell, even

// after refinement.

// locationInMesh (21 601.1 211.1);

locationInMesh (-0.20545645 0.111378 0.202156456);

// Whether any faceZones (as specified in the refinementSurfaces)

// are only on the boundary of corresponding cellZones or also allow

// free-standing zone faces. Not used if there are no faceZones.

allowFreeStandingZoneFaces true;

}

// Settings for the snapping.

snapControls

{

//- Number of patch smoothing iterations before finding correspondence

// to surface

nSmoothPatch 5;

//- Relative distance for points to be attracted by surface feature point

// or edge. True distance is this factor times local

// maximum edge length.

tolerance 4.0;

//- Number of mesh displacement relaxation iterations.

nSolveIter 20;

//- Maximum number of snapping relaxation iterations. Should stop

// before upon reaching a correct mesh.

nRelaxIter 6;

//- Highly experimental and wip: number of feature edge snapping

// iterations. Leave out altogether to disable.

// Do not use here since mesh resolution too low and baffles present

nFeatureSnapIter 20;

}
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// Settings for the layer addition.

addLayersControls

{

// Are the thickness parameters below relative to the undistorted

// size of the refined cell outside layer (true) or absolute sizes (false).

relativeSizes true;

// Per final patch (so not geometry!) the layer information

layers

{

}

// Expansion factor for layer mesh

expansionRatio 1.0;

//- Wanted thickness of final added cell layer. If multiple layers

// is the

// thickness of the layer furthest away from the wall.

// Relative to undistorted size of cell outside layer.

// is the thickness of the layer furthest away from the wall.

// See relativeSizes parameter.

finalLayerThickness 0.3;

//- Minimum thickness of cell layer. If for any reason layer

// cannot be above minThickness do not add layer.

// Relative to undistorted size of cell outside layer.

minThickness 0.1;

//- If points get not extruded do nGrow layers of connected faces that are

// also not grown. This helps convergence of the layer addition process

// close to features.

// Note: changed(corrected) w.r.t 17x! (didn’t do anything in 17x)

nGrow 0;

// Advanced settings

//- When not to extrude surface. 0 is flat surface, 90 is when two faces

// make straight angle.

featureAngle 30;

//- Maximum number of snapping relaxation iterations. Should stop

// before upon reaching a correct mesh.

nRelaxIter 3;

// Number of smoothing iterations of surface normals
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nSmoothSurfaceNormals 1;

// Number of smoothing iterations of interior mesh movement direction

nSmoothNormals 3;

// Smooth layer thickness over surface patches

nSmoothThickness 10;

// Stop layer growth on highly warped cells

maxFaceThicknessRatio 0.5;

// Reduce layer growth where ratio thickness to medial

// distance is large

maxThicknessToMedialRatio 0.3;

// Angle used to pick up medial axis points

// Note: changed(corrected) w.r.t 17x! 90 degrees corresponds to 130 in 17x.

minMedianAxisAngle 90;

// Create buffer region for new layer terminations

nBufferCellsNoExtrude 0;

// Overall max number of layer addition iterations. The mesher will exit

// if it reaches this number of iterations; possibly with an illegal

// mesh.

nLayerIter 50;

}

// Generic mesh quality settings. At any undoable phase these determine

// where to undo.

meshQualityControls

{

//- Maximum non-orthogonality allowed. Set to 180 to disable.

maxNonOrtho 65;

//- Max skewness allowed. Set to <0 to disable.

maxBoundarySkewness 20;

maxInternalSkewness 4;

//- Max concaveness allowed. Is angle (in degrees) below which concavity
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// is allowed. 0 is straight face, <0 would be convex face.

// Set to 180 to disable.

maxConcave 80;

//- Minimum pyramid volume. Is absolute volume of cell pyramid.

// Set to a sensible fraction of the smallest cell volume expected.

// Set to very negative number (e.g. -1E30) to disable.

minVol 1e-13;

//- Minimum quality of the tet formed by the face-centre

// and variable base point minimum decomposition triangles and

// the cell centre. This has to be a positive number for tracking

// to work. Set to very negative number (e.g. -1E30) to

// disable.

// <0 = inside out tet,

// 0 = flat tet

// 1 = regular tet

minTetQuality -1;

//- Minimum face area. Set to <0 to disable.

minArea -1;

//- Minimum face twist. Set to <-1 to disable. dot product of face normal

//- and face centre triangles normal

minTwist 0.01;

//- minimum normalised cell determinant

//- 1 = hex, <= 0 = folded or flattened illegal cell

minDeterminant 0.001;

//- minFaceWeight (0 -> 0.5)

minFaceWeight 0.05;

//- minVolRatio (0 -> 1)

minVolRatio 0.01;

//must be >0 for Fluent compatibility

minTriangleTwist -1;

// Advanced

//- Number of error distribution iterations

nSmoothScale 4;

//- amount to scale back displacement at error points
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errorReduction 0.75;

// Optional : some meshing phases allow usage of relaxed rules.

// See e.g. addLayersControls::nRelaxedIter.

relaxed

{

//- Maximum non-orthogonality allowed. Set to 180 to disable.

maxNonOrtho 75;

}

}

// Advanced

// Flags for optional output

// 0 : only write final meshes

// 1 : write intermediate meshes

// 2 : write volScalarField with cellLevel for postprocessing

// 4 : write current intersections as .obj files

debug 0;

// Merge tolerance. Is fraction of overall bounding box of initial mesh.

// Note: the write tolerance needs to be higher than this.

mergeTolerance 1e-6;

// ************************************************************************* //
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Appendix B

OpenFOAM case setup

Some of the case files for the simulations in OpenFOAM are included in this ap-
pendix. These are the settings used for one of the simulations with a mesh generated
in ANSYS Meshing. The settings for the snappyHexMesh simulations are similar,
but with a slightly different naming. Additional case files for both approaches are
delivered together with this thesis and should be used for further reference.

B.1 Velocity field U

FoamFile

{

version 2.0;

format ascii;

class volVectorField;

location "0";

object U;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [0 1 -1 0 0 0 0];

internalField uniform (0 0 0);

boundaryField

{

bb
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{

type fixedValue;

value uniform (0 0 0);

}

bbu

{

type fixedValue;

value uniform (0 0 0);

}

mb

{

type fixedValue;

value uniform (0 0 0);

}

mbu

{

type fixedValue;

value uniform (0 0 0);

}

rotopen

{

type pressureInletOutletVelocity;

value uniform (0 0 0);

}

rotsym

{

type symmetryPlane;

}

tb

{

type fixedValue;

value uniform (0 0 0);

}

tbu

{

type fixedValue;

value uniform (0 0 0);

}

jetinlet

{

type fixedValue;

value uniform (-38.38 0 0);

}

jetwalls

{

XXIV



type fixedValue;

value uniform (0 0 0);

}

statopen

{

type pressureInletOutletVelocity;

value uniform (0 0 0);

}

AMI1

{

type cyclicAMI;

value uniform (0 0 0);

}

AMI2

{

type cyclicAMI;

value uniform (0 0 0);

}

}

// ************************************************************************* //

B.2 Dynamic pressure field p rgh

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

location "0";

object p_rgh;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dimensions [1 -1 -2 0 0 0 0];

internalField uniform 0;

boundaryField
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{

bb

{

type zeroGradient;

}

bbu

{

type zeroGradient;

}

mb

{

type zeroGradient;

}

mbu

{

type zeroGradient;

}

rotopen

{

type totalPressure;

p0 uniform 0;

U U;

phi phi;

rho rho;

psi none;

gamma 1;

value uniform 0;

}

rotsym

{

type symmetryPlane;

}

tb

{

type zeroGradient;

}

tbu

{

type zeroGradient;

}

jetinlet

{

type zeroGradient;
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}

jetwalls

{

type zeroGradient;

}

statopen

{

type totalPressure;

p0 uniform 0;

U U;

phi phi;

rho rho;

psi none;

gamma 1;

value uniform 0;

}

AMI1

{

type cyclicAMI;

value uniform 0;

}

AMI2

{

type cyclicAMI;

value uniform 0;

}

// ************************************************************************* //

B.3 Phase fraction field alpha1

FoamFile

{

version 2.0;

format ascii;

class volScalarField;

location "0";

object alpha1.org;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //
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dimensions [0 0 0 0 0 0 0];

internalField uniform 0;

boundaryField

{

bb

{

type zeroGradient;

}

bbu

{

type zeroGradient;

}

mb

{

type zeroGradient;

}

mbu

{

type zeroGradient;

}

rotopen

{

type inletOutlet;

inletValue uniform 0;

value uniform 0;

}

rotsym

{

type symmetryPlane;

}

tb

{

type zeroGradient;

}

tbu

{

type zeroGradient;

}

jetinlet

{

type fixedValue;
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value uniform 1;

}

jetwalls

{

type zeroGradient;

}

statopen

{

type inletOutlet;

inletValue uniform 0;

value uniform 0;

}

AMI1

{

type cyclicAMI;

value uniform 0;

}

AMI2

{

type cyclicAMI;

value uniform 0;

}

}

// ************************************************************************* //

B.4 fvSchemes

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object fvSchemes;
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}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

ddtSchemes

{

default Euler;

}

gradSchemes

{

default Gauss linear;

}

divSchemes

{

div(rho*phi,U) Gauss limitedLinearV 1;

div(phi,alpha) Gauss vanLeer01;

div(phirb,alpha) Gauss interfaceCompression;

div((muEff*dev(T(grad(U))))) Gauss linear;

div((nuEff*dev(T(grad(U))))) Gauss linear;

}

laplacianSchemes

{

default Gauss linear limited 1.0;

}

interpolationSchemes

{

default linear;

}

snGradSchemes

{

default limited 1.0;

}

fluxRequired

{

default no;

p_rgh;

pcorr;

alpha;

}
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// ************************************************************************* //

B.5 fvSolution

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "system";

object fvSolution;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

solvers

{

pcorr

{

solver GAMG;

tolerance 1e-04;

relTol 0;

smoother DIC;

nPreSweeps 0;

nPostSweeps 2;

nFinestSweeps 2;

cacheAgglomeration true;

nCellsInCoarsestLevel 10;

agglomerator faceAreaPair;

mergeLevels 1;

}

p_rgh

{

solver GAMG;

tolerance 1e-04;

relTol 0;

smoother DIC;

nPreSweeps 0;

nPostSweeps 2;

nFinestSweeps 2;

cacheAgglomeration true;

nCellsInCoarsestLevel 10;

agglomerator faceAreaPair;
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mergeLevels 1;

}

p_rghFinal

{

solver GAMG;

tolerance 1e-04;

relTol 0;

smoother DIC;

nPreSweeps 0;

nPostSweeps 2;

nFinestSweeps 2;

cacheAgglomeration true;

nCellsInCoarsestLevel 10;

agglomerator faceAreaPair;

mergeLevels 1;

}

U

{

solver smoothSolver;

smoother GaussSeidel;

tolerance 1e-06;

relTol 0;

nSweeps 1;

}

UFinal

{

solver smoothSolver;

smoother GaussSeidel;

tolerance 1e-06;

relTol 0;

nSweeps 1;

}

}

PIMPLE

{

momentumPredictor yes;

nCorrectors 4;

nNonOrthogonalCorrectors 3;

nAlphaCorr 1;

nAlphaSubCycles 3;
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cAlpha 1.5;

correctPhi no;

}

relaxationFactors

{

fields

{

}

equations

{

"U.*" 1;

}

}

//Initialization with potentialFoam

potentialFlow

{

nNonOrthogonalCorrectors 10;

}

// ************************************************************************* //

B.6 transportProperties

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object transportProperties;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

nu nu [ 0 2 -1 0 0 0 0 ] 1e-06;

phase1

{

transportModel Newtonian;

nu nu [ 0 2 -1 0 0 0 0 ] 1e-06;

rho rho [ 1 -3 0 0 0 0 0 ] 1000;

CrossPowerLawCoeffs
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{

nu0 nu0 [ 0 2 -1 0 0 0 0 ] 1e-06;

nuInf nuInf [ 0 2 -1 0 0 0 0 ] 1e-06;

m m [ 0 0 1 0 0 0 0 ] 1;

n n [ 0 0 0 0 0 0 0 ] 0;

}

BirdCarreauCoeffs

{

nu0 nu0 [ 0 2 -1 0 0 0 0 ] 0.0142515;

nuInf nuInf [ 0 2 -1 0 0 0 0 ] 1e-06;

k k [ 0 0 1 0 0 0 0 ] 99.6;

n n [ 0 0 0 0 0 0 0 ] 0.1003;

}

}

phase2

{

transportModel Newtonian;

nu nu [ 0 2 -1 0 0 0 0 ] 1.48e-05;

rho rho [ 1 -3 0 0 0 0 0 ] 1;

CrossPowerLawCoeffs

{

nu0 nu0 [ 0 2 -1 0 0 0 0 ] 1e-06;

nuInf nuInf [ 0 2 -1 0 0 0 0 ] 1e-06;

m m [ 0 0 1 0 0 0 0 ] 1;

n n [ 0 0 0 0 0 0 0 ] 0;

}

BirdCarreauCoeffs

{

nu0 nu0 [ 0 2 -1 0 0 0 0 ] 0.0142515;

nuInf nuInf [ 0 2 -1 0 0 0 0 ] 1e-06;

k k [ 0 0 1 0 0 0 0 ] 99.6;

n n [ 0 0 0 0 0 0 0 ] 0.1003;

}

}

sigma sigma [ 1 0 -2 0 0 0 0 ] 0.0728;

// ************************************************************************* //
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B.7 dynamicMeshDict

FoamFile

{

version 2.0;

format ascii;

class dictionary;

location "constant";

object dynamicMeshDict;

}

// * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * * //

dynamicFvMesh solidBodyMotionFvMesh;

motionSolverLibs ( "libfvMotionSolvers.so" );

solidBodyMotionFvMeshCoeffs

{

cellZone rotif;

solidBodyMotionFunction rotatingMotion;

rotatingMotionCoeffs

{

CofG (0 0 0);

radialVelocity (0 4595 0 );

}

}

// ************************************************************************* //
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Appendix C

Scripts for mesh generation
and manipulation

Attached here are the scripts used for mesh generation and manipulation. The first
script is used to generate meshes with snappyHexMesh when all the parameters and
geometries are prepared, and the second script is used to create the AMI-patches
and the cell zones for the dynamic mesh.

C.1 snappyHexMex execution - Allrun1.pre

This script controls the mesh generation process of snappyHexMesh, starting with
preparing the background mesh, extracting the geometries and executing snappy-
HexMesh.

#!/bin/sh

cd ${0%/*} || exit 1 # run from this directory

# Source tutorial run functions

. $WM_PROJECT_DIR/bin/tools/RunFunctions

# - meshing

runApplication blockMesh

surfaces="

BBC

MBC
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TBC

rotif

rotopen

rotsym

jetinlet

jetwalls

statinlet

statopening

statsym

"

for s in $surfaces; do

runApplication surfaceFeatureExtract -includedAngle 150 -minElem 10 \

constant/triSurface/$s.obj $s

mv log.surfaceFeatureExtract log.surfaceFeatureExtract.$s

done

runApplication snappyHexMesh -overwrite

C.2 Mesh manipulation - Allrun2.pre

#!/bin/sh

cd ${0%/*} || exit 1 # run from this directory

# Source tutorial run functions

. $WM_PROJECT_DIR/bin/tools/RunFunctions

# - generate face/cell sets and zones

#runApplication setSet -batch removeRedundantZones.setSet

#mv log.setSet log.removeRedundantZones.setSet

runApplication topoSet -dict system/removeRedundantZones.topoSetDict

mv log.topoSet log.removeRedundantZones.topoSet

#runApplication setSet -batch createAMIFaces.setSet

#mv log.setSet log.createAMIFaces.setSet

runApplication topoSet -dict system/createAMIFaces.topoSetDict

mv log.topoSet log.createAMIFaces.topoSet

# - create the AMI faces by creating baffles, and then splitting the mesh
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runApplication changeDictionary

# force removal of fields generated by snappy

\rm -rf 0

createBaffles -internalFacesOnly -overwrite rotif ’(AMI1 AMI2)’ \

> log.createBaffles 2>&1

runApplication mergeOrSplitBaffles -split -overwrite

# - apply the initial fields

cp -rf 0.org 0
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