
Monte Carlo Simulations of a simple 
Model for Charge Storage in a Single-file 
Nanopore

Endre Skeie

Master of Science in Physics and Mathematics

Supervisor: Peter Berg, IFY

Department of Physics

Submission date: June 2015

Norwegian University of Science and Technology



 



iii

Preface

This Master’s thesis is the final part of the Master of Science program in Applied

Physics and Mathematics at the Norwegian University of Science and Technology.

The thesis is equivalent to one semester’s work and was written from January to

June 2015. It was written at the Department of Physics under the supervision of

Professor Peter Berg.



iv

Acknowledgement

I would like to thank my supervisor Professor Peter Berg for the fruitful discussions

and valuable guidance during the Master’s thesis. I would also like to thank
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Abstract

This Master’s thesis is focusing on charge storage in a nanopore inside an elec-

trode. It introduces a simple model where the only present interactions are elec-

trostatic and steric effects, which allows only one ion to be at a lattice point. The

nanopore modelled is a defect nanopore, where only the end of the pore interior

has the potential of an electrode. Monte Carlo simulations are used for studying

the behaviour of the model. Interesting behaviours found in the model are over-

screening, charge density oscillations and oscillating differential capacitance as a

function of the imposed charge, which all disappear at high temperatures. If the

electrolyte is a filled ionic liquid, the differential capacitance curves are found to

have camel-shape. When the electrolyte is diluted, the peaks of the oscillating

differential capacitance are shifted and at the point of zero charge the differential

capacitance has a bell-shape. These findings are the opposite of a system when

the ions are not confined, studied previously as a flat capacitor by Démery et al.
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Sammendrag

Denne masteroppgaven omhandler elektrisk lagring i en pore p̊a størrelsen av et

ion i en kondensator. Den introduserer en enkel modell, hvor de eneste kreftene er

elektrostatiske i tillegg til steriske effekter som begrenser at kun et ion kan være

p̊a et gitterpunkt. Poren som blir laget modell av er en defekt pore, hvor bare

innerste delen av poren er p̊a samme potensial som elektroden. Monte Carlo simu-

leringer er brukt for å beskrive egenskapene til modellen. De interessante egen-

skaper til modellen er over-skjerming, oscillerende ladningstetthet langs poren og

oscillerende kapasitans som funksjon av ladning ved elektrodene, som alle forsvin-

ner ved høy temperatur. Hvis elektrolytten er en fylt ionisk væske, stiger kapa-

sitansen med økende ladning ved elektrodene rundt null ladning ved elektrodene.

Hvis elektrolytten fjerner ione-par, endrer lokasjonen til topp-punktene til den

oscillerende kapasitansen seg. Og rundt null ladning ved elektrodene, synker ka-

pasitansen med økende ladning ved elektrodene. Disse funnene er motsatt av n̊ar

ionene kan bevege seg fritt, studert som en flat kondensator av Démery et al.
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Chapter 1

Introduction

This thesis is focused upon a simple model for charge storage in a nanopore

capacitor, where its behaviour is presented with Monte Carlo simulations.

1.1 Background

Storing electrical energy is a bottleneck of technology which limits technical de-

velopment. An more effective way to store electrical energy would help the trans-

formation form a hydrocarbon-fueled society to a low carbon one. For example,

electricity generated from renewable energy sources such as solar and wind can

have large variations in the power output [5]. Storing some of the energy from

peak hours and delivering it later, would greatly improve the stability of these

sources. Batteries have mostly been used in electrical energy storage the last cen-

tury, due to their energy density and relatively cheap production costs. However,

their power density and cycle lifetime are limited. Recent research has shown

promising results to improve these limitations of batteries [6].

Supercapacitors, also called electric double layer capacitors or electrochemical

capacitors, have high power density and impressive cycle lifetime, but have moder-

ate energy density [7, 8]. These store energy by attracting ions to counterbalance

the surface charge of an electrode. Supercapacitors have high power density and

1
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cycle lifetime because the charge cycle does not involve chemical reactions. In or-

der to improve supercapacitors one must predict the electro-chemical flow, which

is highly influenced by the interface of the electrolyte and the charged electrode.

A phenomenon occurring at the interface which is not yet completely understood,

is the electric double layer.

1.1.1 Electric Double Layer

The electric double layer is formed because the surface charge attracts ions of

opposite charge in the electrolyte and a layer of these so-called co-ions is formed

next to the surface, hence the name. Figure 1.1 shows a schematic of the interface

between a negatively charged surface and an electrolyte. Ever since Helmholtz’s

first model of the interface between an electrolyte and a charged solid [9] assumed

the presence of a compact layer of ions in contact of the charged surface, scientists

have tried to model the phenomena. The next step forward came from a model

by Gouy and Chapman, who introduced a diffuse double layer which extended to

some distance from the surface due to the Boltzmann distribution. A problem

with this model was that the distance between the surface and the solution-phase

charge zones decreased towards zero for high charge densities. A modification by

Stern removed the singularity by introducing a minimum distance between the

phases. Even though these models are almost a century old, they still have an

impact more modern models.

In more recent times, modified Poisson-Boltzmann equations are used to model

the electric double layer [10]. These mean-field models predicts the formation of

the electric double layer where the ions are loosely bound to the surface. At small

surface charge densities, the models qualitatively explain experimental results.

However, the models fail to describe the electric double layer as the surface charge
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Figure 1.1: Schematic of the electric double layer with negative surface charge,
where solvent molecules are not drawn.

densities and the valency of the co-ions increase [11].

1.1.2 Ionic Liquid

Another way to improve the performance of the supercapacitors is to use elec-

trolytes with fitting properties. The internal resistance and operation voltage are

mostly determined by the properties of the electrolytes. Ionic liquids are salts

whose ions are so large that their electrostatic interaction is small enough to re-

main in the liquid state at room temperatures. They are solvent-free electrolytes,

which makes them well suited for applications requiring a high concentration of

ionic charge, such as in supercapacitors [12]. Additional desirable properties are

high thermal and chemical stability, low vapour pressure and low flammability

[13, 14]. The interest of this research topic has grown along with the interest of

supercapacitors.
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1.1.3 Nanopores

There are two ways to increase the energy density of supercapacitors, increasing

interfacial area per volume or increase the double layer capacitance per unit sur-

face area. To increase the interfacial area per volume, porous electrodes are used

[15]. Carbon based porous electrodes are often used because of their low cost, high

electric conductivity and stability [16]. The carbon electrodes can have different

forms and properties depending on source materials, forming process and forming

conditions. The electrodes become a three-dimensional network of nanopores with

various sizes.

A significant increase in the capacitance has been observed experimentally

when the pore sizes approached the size of an ion, indicating a different behaviour

of the capacitance when the ions can not move freely [1, 17, 18]. Figure 1.2 shows

the results from reference [1]. These findings was later confirmed with classical

density functional theory [19], and molecular dynamics [20, 21].

1.2 Previous Work

A formally, exactly solvable model for a flat ionic liquid capacitor has been studied

by Démery et al. [3].Here the authors introduced the one-dimensional Coulomb

lattice fluid capacitor, where the system interacts as sheets of charge density fixed

at the lattice points. On both ends, the electrodes are represented by imposing

a positive and negative charge density or a potential drop between them. The

sheets in the electrolyte can swap location, and the steric effect by restricting the

maximal occupancy at any lattice site to one sheet. This model predicted results

not found in mean-field models, such as strong oscillations in capacitance as a

function of applied voltage. The analytical results were confirmed with Monte
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Figure 1.2: (A) Plot of specific capacitance for three different studies using identi-
cal electrolytes. Insets are the sketch of organic electrolyte molecular used in the
experiments. (B to D) Schematic of solvated ions with distance between adjacent
pore walls (B) greater than 2 nm, (C) between 1 and 2 nm, and (D) less than 1
nm. From ref. [1]. Reprinted with permission from AAAS. Link

Carlo simulations.

The observations of the different behaviour of the capacitance as pore size de-

creases, such seen in figure 1.2, have sparked a great interest in understanding the

charge storage in supercapacitors. The first to publish theoretical work on this

behaviour were Huang et al. in 2008 [22, 2]. The authors proposed a heuristic

theoretical model based on the traditional parallel-plate capacitor which takes the

pore curvature into account. In the macropore regime (> 50 nm) the pore curva-

ture is no longer significant and the model is reduced to the classical Helmholtz

model. For mesopores (2 − 50 nm), assuming cylindrical pores, the counter-ions

tend towards the surface and form a double cylindrical capacitor along with the

pore. For micropores (< 2 nm), the pore size prevents formation of a double cylin-

http://www.sciencemag.org/content/313/5794/1760
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drical capacitor. The authors assumed instead that the counter-ions line up in the

pore to form an electric wire in a cylinder capacitor. Figure 1.3 shows a schematic

of of ions in negatively charged mesopores and micropores. The authors showed

that their model can match experimental data of capacitance in nanopores, giving

an explanation for the behaviour of increasing capacitance as pore size decreases.

Figure 1.3: Schematic diagrams of a) a negatively charged mesopore creating
a double cylindrical capacitor with the solvated cations, and b) a negatively
charge micropore forming an electric wire in a cylinder capacitor with the cations.
Reprinted with permission from ref. [2]. Copyright 2008, John Wiley and Sons.
Link

The capacitance of the double layer formed at a metal and ionic liquid inter-

face can be remarkably large, which mean-field theories fail to explain. Skinner

et al. [23] proposed an alternative theory, which allowed the binding between

discrete ions and their image charge in the metal. Hence demonstrated the ca-

pacitance can be larger than predicted by the Helmholtz model. In 2011 [24],

the authors extended their model from the planar electrode to narrow pores with

high interfacial area per volume. They showed that for ions confined within nar-

row pores, the ions induced an infinite row of image charges going into the pore,

which screened the ions. At low ion densities, capacitance increases as voltage

and pore size decreases. The authors presumed that as the pore size decreases,

the screening of ions increases and therefore also the capacitance. The opposite

http://dx.doi.org/10.1002/chem.200800639
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was presumed for imperfect metals with limited screening effects, hence giving a

larger effective pore size. As for decreasing voltage fewer ions will be inside the

pore, causing a decrease in ion-ion interaction and giving higher capacitance.

The screening of the ions seems to be the reason for the high capacitance of

nanopore capacitors. Lee et al. [25] introduce an exactly solvable one-dimensional

lattice model for charging a nanopore. The model takes into account the exponen-

tial screening of ion-ion interaction by introducing a ”super-ionic” state explained

in [26]. The ion-ion interaction is approximated to a nearest neighbour interac-

tion. The analytical expressions describe the mechanism of charge storage and the

qualitative form of the capacitance. The capacitance is sensitive to how favourable

it is for ions to occupy the neutral pore as well as the pore radius. At zero voltage

the capacitance increases with decreasing pore size, in agreement with experimen-

tal observations. The authors consider the electrode to be a metallic conductor,

screening the ions. However, some porous electrodes in use today are not perfect

metallic conductors. In addition, the screening ions are spread along the electrode

in a mean-field like way, not following the respective ions in the liquid.

These studies of charge storage in nanopores assume equilibrium or infinitely

slow charging. In practice, the capacitors operate with fast charging and dis-

charging. Simulations with molecular dynamics studying the cyclic charging be-

haviour [27] and time dependence of charging [28] have been conducted for a single

nanopore. As our work assumes equilibrium conditions the findings of these papers

are not so relevant, but are worth mentioning for a more complete understanding

of charge storage with capacitors.



8 CHAPTER 1. INTRODUCTION

1.3 Goal of Thesis

The goal of this thesis is to create a simple model for charge storage in a nanopore.

With this model we try to match the qualitative behaviour of the differential ca-

pacitance curves of experimental data and more complex models and simulations.

1.4 Thesis Outline

Following this introduction, the one-dimensional lattice model is introduced in

chapter 2 along with a method to simulate the model for different conditions.

Chapter 3 presents the results of the simulations. In chapter 4 the results are

discussed in the context of experimental data and existing literature. In the end,

a conclusion is drawn along with an outlook for further work.



Chapter 2

Model and Method

This chapter describes the model and the method used to simulate it.

2.1 The One-Dimensional Lattice Model

The following model is inspired by the exactly solvable one-dimensional model

of a three-dimensional ionic liquid capacitor [3] and the single-file charge storage

paper [25]. Here we consider a one-dimensional ionic liquid confined inside a pore

that is an insulator. The model mirrors the pore, making it anti-symmetric. An

illustration of the model is shown in Figure 2.1.

Figure 2.1: Schematic of the one-dimensional lattice model of the ionic liquid.

At both ends of the pore there are electrodes, represented in the model as

opposite point charges placed at the electrodes. They are placed at a distance of

half a diameter from the centre of the closest ions. The pore diameter is the same

as the diameter of the ions. The electrolyte is densely packed as an ionic liquid

9
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and it is assumed that the ions are hard spheres with the charge located at the

centre of the ion. The steric effects are represented in the model by keeping the

ions on fixed lattice points. It is assumed that the ions are monovalent, of same

size and can swap locations. The model is electroneutral and it is assumed that

the only interacting force is electrostatic, giving the following potential energy of

two particles i and j

Eij =
1

4πǫrǫ0

qiqj
rij

, (2.1)

where ǫr and ǫ0 are the relative and vacuum electric permittivity respectively,

qi and qj are the charges of the corresponding particles and rij is the distance

between them. When imposing charges at the electrodes, the one to the right is

positive while the left one is negative. This will keep the model electroneutral,

provided the electrolyte is electroneutral. The electroneutral set-up is chosen as

we focus on a system of finite size M .

We introduce the dimensionless interaction parameter

γ =
1

4πǫrǫ0d

q2

kbT
, (2.2)

where d is the diameter of an ion, kb is the Boltzmann factor, T is the temperature

and q is the charge of an electron. The reason for introducing this parameter is

explained in section 2.2. γ is the ratio of the electrostatic energy between two

ions at neighbouring sites and the thermal energy kbT . The potential energy of

two particles i and j can then be written as

Eij = γ
QiQj

Rij

kbT, (2.3)

where Qi and Qj are the dimensionless charges of ion i and j respectively and Rij
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is the dimensionless distance between the ions.

An experimentally measurable quantity for a supercapacitor is the differential

capacitance

c =
dσ

du
, (2.4)

where σ is the surface charge density on the electrode and u is the potential. For

this model where we impose the charge on the electrodes, we define our differential

capacitance to be the dimensionless

c =
dQ

d∆u
=

1

d∆u

dQ

, (2.5)

where ∆u is the dimensionless potential difference between the electrodes and Q

is the dimensionless imposed charge. The potential difference is the difference

between the dimensionless potential created by the electrolyte at the electrodes.

The dimensionless potential created by ion i at location j is Qi

Rij
. By simulating

the model at different values of the imposed charge Q, one can calculate the

differential capacitance by the central difference approximation.

An alternative method to calculate the differential capacitance would be to

obtain a continuous charge distribution by fitting splines of the discrete charge

densities with a constraint on charge conservation. Such spline fitting with in-

tegral constraint is explained in reference [29]. One could then calculate the

potential created by the electrolyte with Poisson’s equation [9]. This method is

not used because the spline fitting is expected to have significant error, which will

be enhanced when solving Poisson’s equation.
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2.1.1 Modifications of the Model

Different modifications have been done for the model. In section 3.5 the effects

of replacing ion pairs with voids or solvent, which still occupies space, are shown.

This can be seen as the transition from an ionic liquid to a more dilute electrolyte.

We introduce the filling factor µ. It describes how packed the pore is, that is the

ratio of the number of ions to the number of lattice points.

The authors Storey et al. and Bazant et al. [30, 31] introduce an additional

term to their free energy to enhance curvature of the mean electrostatic potential.

This was included to give the mean field models an approximation of discrete

interactions near the surface and the ability to describe overscreening. Although

the one-dimensional lattice model already has steric effects and ion to ion Coulomb

correlations, it would be interesting to evaluate what effect it would have to include

an extra energy term which favours like or different ions to neighbours. The

additional energy term of ion i and its neighbour

Ei,i+1 = γfQiQi+1kbT (2.6)

is included, where f is the scaling of the energy term. f is negative when favouring

same charged ions to group together and different charged ions to group together

when positive. Section 3.6 illustrates the effect of this energy term.

If the pore surrounding the ions is treated more realistically as a dielectric

medium or a metal, charge carriers inside the pore would be attracted by the ions

and partly screen the ions. For the model, one could therefore postulate that the

induced pore charges near an ion are smeared out uniformly around such an ion.

We introduce the screening factor s, ranging from zero (insulator) to one (metal).

For s equals one, the potential along the centre of the pore created by an ion i
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and its screening charge carriers becomes

u =
qi

4πǫrǫ0
(
1

r
−

s
√

r2 + (d/2)2
). (2.7)

By simplifying the expression in the parentheses it becomes

1

r
−

1
√

r2 + (d/2)2
=

1

r
(1−

1
√

1 + (d/2r)2
). (2.8)

Introducing x = (d/2r) and expanding fraction gives

1

r
(1−

1
√

1 + (x)2
) =

1

r
(

√

1 + (x)2 − 1
√

1 + (x)2
). (2.9)

By taking the Taylor series of
√

1 + (x)2 to the first order for x → 0 the expression

approximates to
1

r
(

√

1 + (x)2 − 1
√

1 + (x)2
) ≈

x2

2r
=

d2

8r3
. (2.10)

The potential scales like 1/r3 along the centre of the pore for r much larger than

the pore diameter, weaker than for a point charge (1/r) and a classical dipole

(1/r2). For s < 1 the potential scales like a point charge, but with a reduced

effective charge.

For computational purposes, we model the induced charges as two point charges

with charge qs/2 on opposite sides of the ion. The potential created along the

centre of the pore still is the same as equation (2.7), but the interaction between

the induced charge carriers will differ. Figure 2.2 illustrates the approximation.

Section 3.7 contains the results of this modification of the model.
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Figure 2.2: Illustration of the approximation from a smeared ring to two point
charges.

2.2 Sampling the Model

The model is in contact with a heat bath with a temperature T . Treating the

particles classically, the system follows the canonical ensemble [32]. This gives a

probability for the system to be in state n according to

p(n) =
e
−

En

kbT

∑

m e
−

Em

kbT

, (2.11)

where kb is the Boltzmann factor and m sums over all states. From this one can

easily calculate the average properties of the system by

Ā =
∑

n

p(n)A(n). (2.12)

However, if the number of particles grows too large, a problem occurs, because

the number of states becomes
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Ns =
M !

(M/2)!(M/2)!
, (2.13)

where M is the number of lattice points. For forty lattice points, the number of

states becomes O(1011).

Instead of sampling all these states, it would be more convenient to sample a

subset of states which represents the average distribution. A method to achieve

this is the importance-sampling technique using the Metropolis algorithm [33].

The algorithm creates a Markov Monte Carlo chain, where the probability to go

from state a to b is

pab = min(1, e−∆E/kbT ), (2.14)

where ∆E is the change in energy from state a to b. One can then calculate the

average properties of the system by averaging over the sampled subset states. For

more details, see appendix A. Because of the transition probability in equation

(2.14), it is convenient to calculate the potential energy of two particles with

equation (2.3), which is the reason for the usage of the parameter γ.

2.2.1 Sampling Algorithm

One initialises the model with the number of lattice points, number of ion pairs,

screening factor s and interaction parameter γ. Then the ions are given a random

configuration. To go from one state to another, two lattice points are randomly

selected and the change of energy is calculated if the two ions were to swap lo-

cations. The probability for a swap is calculated with equation (2.14). A pseudo

random number between zero and one is calculated and compared with the prob-

ability of changing the state. If the pseudo number is lower than the calculated

probability, the two ions swap locations. One Monte Carlo time step is complete
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when M attempts of changing the state have been made. As the two lattice

points are randomly selected, during one Monte Carlo time step some sites may

have been selected multiple times, while others were not. On average, each site is

given the chance to swap twice.

In order for the importance sampling to be successful, three requirements

must be met [34]. The first is that in a Markov chain, the next state of the

system only depends on the preceding state and not on the history of the system.

The Metropolis algorithm fulfils this requirement as the new state configuration

and probability is calculated considering only the previous state. The second

requirement is that the system is ergodic, which is that the properties of the system

averaged over time is the same as averaged over the phase space of the system. For

this system, the condition is fulfilled if all possible states are attainable. Although

the system has states with different probabilities, each state is attainable as no

state has infinite potential energy. The last requirement is the condition of detailed

balance. Detailed balance implies that the number of times the system changes

from state A to state B is equal to the number of times state B changes to state

A. The transition probability in equation (2.14) fulfils this requirement in the

Metropolis algorithm, as long as the states are Boltzmann distributed.

Before the sampling starts, the system is relaxed towards a lower energy, as

the random configuration at start can be in a highly unlikely state. After the

relaxation of the system, the sampling starts. For each Monte Carlo time step,

the ion configuration and the potential difference between electrodes are logged.

After the simulation is complete, the data is written to a text file. The simulations

have been done in the programming language C++ with the Mersenne Twister

random number generator, while Matlab has been used for post-processing the

data. During this work, the efficiency of the code has been improved. At first,
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the simulations were conducted on a personal computer, but to minimise the

calculation time a server at Norwegian University of Science and Technology were

used. The advantage of using the server was that one could run several simulations

at the same time. For ten simulations with M = 20, 104 Monte Carlo time steps

for relaxation (K), 105 Monte Carlo time steps for sampling (N) and imposed

charges (Q) ranging from 0 to 10 with spacing of 0.05, the simulations took several

hours.



18 CHAPTER 2. MODEL AND METHOD



Chapter 3

Results

In this chapter, all the results are presented.

3.1 Convergence of Simulations
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Figure 3.1: Error of Monte Carlo simulations as a function of number of Monte
Carlo time steps (N) for Q = 0, γ = 1 and K = 104. The solid line is a fitted line
of the points.

To study how the Monte Carlo simulations perform, the system was scaled

down to 8 ions. One could then sample every state and calculate the exact prop-

19
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erties with equation (2.11) and equation (2.12). The same system was then sim-

ulated with the Monte Carlo algorithm and the values of ∆u were compared.

This was done for different values of interaction parameter γ and imposed charge

Q. At large γ and Q values, the Monte Carlo algorithm performed better than

at smaller values. This is because the system becomes more bound, making the

subset of important states smaller and easier to sample for the algorithm. With

these findings, one scaled up the system and studied the ”worst case scenario”

used in the results. This was for M , Q and γ being respectively twenty, zero and

one. Conveniently for Q being zero, the correct potential difference is then known

to be zero as well. The difference between the exact value and the result of the

Monte Carlo simulation as function of number of Monte Carlo steps are shown in

figure 3.1. The fitted line in the figure are fitted as bNm, where b = 14.79 and

m = −0.6243.
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Figure 3.2: Error of average over ten Monte Carlo simulations as a function of
number of Monte Carlo time steps for Q = 0, γ = 1 and K = 104. The solid line
is a fitted line of the points.
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By averaging over ten such simulations, the simulations performed as shown

on figure 3.2. This method performed better than the individual simulations at

cost of more computational time. The fitted line in this figure had the parameters

b = 9.592 and m = −0.6982. All of the following results have been computed by

averaging over ten simulations with 105 Monte Carlo time steps, 104 Monte Carlo

relaxation steps and system size being 20. There was no observed change in the

qualitative results when the system size was increased to 40 and 100.

3.2 Over-screening
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Figure 3.3: Average charge at the first lattice point as a function of imposed charge
for γ = 1 (dashed) and 3 (dotted). The solid line is to visualise the absolute value
of the imposed charge.

The phenomenon of over-screening can be seen in figure 3.3. The charge at the

first lattice point can be higher than the imposed charge at the boundary, thus

over-screening it. As the interaction parameter γ increases, that is as temperature
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lowers, the over-screening becomes more prominent. Even at a relatively low

imposed charge, one can reach saturation at the first lattice point, keeping the

ion there.

3.3 Charge Density Oscillations
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Figure 3.4: Charge oscillations along the lattice for γ = 1 and Q equals 1.7 (solid),
1 (dashed) and 0.1 (dotted).

Along with the over-screening, comes charge density oscillations. As the first

ion over-screens the imposed charge, the second ion is attracted to the first ion.

The third ion is then attracted to the second, and this continues into the elec-

trolyte. Since the sites can be saturated, the charge density oscillations change

while increasing the imposed charge. At first the ion over-screens the imposed

charge, then the first ion becomes saturated. From this moment, charge oscilla-

tions decrease in amplitude as the imposed charge increases. This continues until
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Figure 3.5: Charge oscillations along the lattice for γ = 3 and Q equals 1.7 (solid),
1 (dashed) and 0.1 (dotted).

the first ion perfectly screens the imposed charge and average charge is zero for

the rest of the lattice point (except in the mirrored first ion). Then, as imposed

charge increases, the second ion starts to screen the imposed charge and the first

ion. The charge density oscillations increases until the two ions are saturated and

in this way it continues in cycles as the imposed charge is further increased. Sim-

ilar to the over-screening, the charge oscillations increase as γ increases. Figure

3.4 shows charge density oscillations for γ being 1 and figure 3.5 for γ being 3, at

three different imposed charges. The imposed charge is located at lattice point

0.5.
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Figure 3.6: Potential difference between the walls as a function of the imposed
charge for γ = 1 (solid), 3 (dotted) and 5 (dashed).

3.4 Temperature Dependence

Figure 3.6 shows the potential difference between the boundaries as a function of

the imposed charge at the boundaries. As the temperature is lowered, plateau-like

features emerge. These plateaus have a huge impact on the differential capaci-

tance, changing the features completely, as seen in figure 3.7. The peaks keep

increasing in height as the interaction parameter γ increases. At these tempera-

tures, the first lattice point quickly screens the imposed charge. As the imposed

charge increases, it is still over-screened and does not strongly attract opposite

charged ions. This continues until the imposed charge is high enough to strongly

attract another ion and saturates the lattice point. This results in repeating peaks

in the differential capacitance curves.

As the differential capacitance is the inverse of the derivative of figure 3.6, it
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Figure 3.7: Differential capacitance as a function of the imposed charge for γ = 1
(solid), 3 (dotted) and 5 (dashed).

is very sensitive to small fluctuations of the Monte Carlo simulation, hence the

spiky nature of the peaks in figure 3.7. At very high temperatures the peaks are

not present and the differential capacitance has a nearly linear behaviour. The

potential difference for γ equals five keeps oscillating around the higher tempera-

ture curve, with increasing width of plateaus, as the imposed charge is increased

further than visualised in the figures. Therefore, the same is then seen in the

differential capacitance, with increasing width of the peaks.

3.5 Effect of Voids

The effect of replacing ion pairs with voids is shown on figure 3.8. Removing just

one pair from the ionic liquid softens the plateaus, yielding a similar effect as

increasing the temperature described in the previous section. However, removing
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Figure 3.8: Potential difference between walls as a function of the imposed charge
for γ = 5 and µ = 1 (thick), 0.9 (solid), 0.5 (dashed) and 0.3 (dotted).

more than one pair of ions gives a different effect. The difference appears where

the plateaus occur, therefore also where the differential capacitance peaks occur.

Figure 3.9 shows the differential capacitance for different filling factors. The peaks

for µ equals 0.3 appear around the minimum of the completely packed ionic liquid.

Figure 3.10 shows the differential capacitance for γ = 5 and µ = 0.1. The

shift of location where the peaks and plateaus occur, has great effect at the point

of zero charge. For a dilute electrolyte the differential capacitance has a peak

at Q = 0, opposed to the minimum of a packed ionic liquid. The peak at zero

charge is significantly smaller than the second peak, however it is still a compelling

change in qualitative behaviour.
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Figure 3.9: Differential capacitance as a function of the imposed charge for γ = 5
and µ = 1 (thick), 0.9 (solid), 0.5 (dashed) and 0.3 (dotted).

3.6 Effect of Extra Ion-Ion Correlation

Figure 3.11 shows the potential difference as a function of the imposed charge.

The dashed and dotted lines include an extra potential in addition to the electro-

static potential, with the strength of ten percent of the electrostatic force between

nearest neighbours. The dashed curve represents the system when same charged

ions attract each other and different charged ions repulse one another, existing

only for nearest neighbours. The opposite is simulated with the dotted curve. Fig-

ure 3.12 shows the corresponding differential capacitance. The ion-ion correlation

causes the peaks to drastically increase when different ions attract each other.

This makes sense as it increases the attracting force between opposite charged

ions, which should make the system behave similar to increasing the interaction

parameter γ. The opposite happens when same charged ions attract each other.
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Figure 3.10: Differential capacitance as a function of the imposed charge for γ = 5
and µ = 0.1.

However, the additional correlation also changes the width and at which imposed

charge the plateaus and peaks occur.

The assumed reason for this change is easier explained with figure 3.13. Here

the charge oscillations are visualised along the lattice for Q being 1.7. Due to

the attraction of like ions the positive ions group up at the boundary. This most

likely causes the earlier rise in potential difference seen in figure 3.11. The opposite

happens when different ions are attracted to each other. The first ion quickly over-

screens the boundary, but to attract two positive ions to the negatively charged

boundary it requires much higher imposed charge.
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Figure 3.11: Potential difference between walls as a function of the imposed charge
for γ = 5 and extra ion-ion correlation preferring like ions (dashed) and different
ions (dotted).

3.7 Screening of Ions

In figure 3.14a the potential difference of the two electrodes is plotted as a function

of the imposed charge for screening factor being 0, 0.1, 0.5 and 0.8. As the

screening increases, the potential difference decreases. This is expected as the

positive ions attracted to the negative surface is screened by negative charges,

hence reducing the potential at the boundary. Also, the repeating plateau-like

feature disappears with increased screening. The resulting differential capacitance

is illustrated in figure 3.14b.

As the ions get screened by the induced charges, the potential energy between

the ions is reduced in strength. In figure 3.15a, the potential difference is plotted

for screening factor 0.8 and γ being 5, 10 and 20. By scaling up the interaction, the

repeating plateau-like feature reappears. Figure 3.15b shows the corresponding
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Figure 3.12: Differential capacitance as a function of the imposed charge for
γ = 5 and extra ion-ion correlation preferring like ions (dashed) and different ions
(dotted).

differential capacitance. For screening factor 1, figure 3.16a shows the potential

difference for the same three γ values mentioned earlier. The repeating plateau-

like feature also reappears here, but is not shown as the second plateau requires a

higher imposed charge. The resulting differential capacitance is plotted in figure

3.16b. For Q equals five, the screening is so strong that the electrode attracts

only one ion to stay by the electrode. With screening factor 0.8, the electrode is

about to attract a second ion to stay at the electrode at Q = 5. For weak or no

screening, it is about to attract a third ion.
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Figure 3.13: Charge oscillations along the lattice for γ = 5, Q = 1.7 and extra ion-
ion correlation preferring like ions (dashed), different (dotted) and no preference
(solid).
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Figure 3.14: (a) Potential difference between the walls and (b) differential capac-
itance as a function of the imposed charge for γ = 5 and screening factor s = 0
(thick), 0.1 (solid), 0.5 (dashed) and 0.8 (dotted).
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Figure 3.15: (a) Potential difference between the walls and (b) differential capac-
itance as a function of the imposed charge for screening factor s = 0.8 and γ = 5
(solid), 10 (dashed) and 20 (dotted).
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Figure 3.16: (a) Potential difference between the walls and (b) differential capac-
itance as a function of the imposed charge for screening factor s = 1 and γ = 5
(solid), 10 (dashed) and 20 (dotted).



Chapter 4

Discussion and Conclusion

In this chapter, the results are discussed in context of existing literature. In the

end, a conclusion is drawn along with an outlook for further work.

4.1 Discussion

Considering the convergence of the simulations, one could argue to change the set-

up. It would require approximately the same computational power to simulate

ten simulations with 105 Monte Carlo time steps and one simulation with 106

steps. Extrapolating the fitted line from figure 3.1, the error of one simulation

of 106 steps would be 0.0027. The fitted line of figure 3.1 for 105 steps gives an

error of 0.0031. The difference is marginal in favour of one simulation of 106, but

the uncertainty of the fitted lines would probably be higher than the difference of

the errors. Nevertheless, the simulations examined in the present work perform

well enough as potential difference between the electrodes is of order of one. The

fluctuations of the Monte Carlo simulations are the reasons for the spiky behaviour

of the differential capacitance curves, but it can be disregarded as the qualitative

behaviours are unambiguous.

The model does not behave like the nanopores described in [15]. Instead it

behaves like a defect nanopore where the wall along the pore is not properly

33
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connected with the rest of the pore. The pore still keeps the ions confined. A

schematic of such a defect pore is illustrated in figure 4.1. The appearance of

such a defect nanopore could be caused by impurities in the electrode, preventing

charge carriers to move into the pore wall.

Figure 4.1: Schematic of a defect nanopore.

The properties of the defect pore include overscreening and charge density

oscillations, similar to the flat ionic liquid capacitor in [3]. In the flat capacitor,

the authors experience perfect screening at integer charges, removing the charge

density oscillations. In the defect nanopore, the supposedly perfect screening

occurs around 1.5 depending on γ. The difference here might be due to the

different interactions as well as that the boundary is half a diameter from the first

lattice point.

The potential difference as a function of the imposed charge, as seen in figure

3.6, has a plateau-like behaviour as the temperature decreases. The same plot with

a different scaling of the potential is shown in figure 4.2 for the flat capacitor in

[3], where they impose charges at the electrodes. The γ is not the same for the two

systems. It is hard to compare these, as the exact solution has an oscillation term,

causing negative values for the potential difference and the differential capacitance.

By comparing the mean field solution and the high temperatures results, one can

see that they have a different shape. In the mean field solution, the potential

difference increases slowly at low imposed charges and increases more rapidly
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at higher imposed charges. For the defect nanopore at high temperatures, the

potential difference increases fast at low imposed charges and increases slower at

higher imposed charges.

0 2 4 6 8

Q

−40

0

40

80

120

∆
v

Figure 4.2: Average potential difference as a function of the imposed charge for
γ = 1 and µ = 1 for a flat capacitor. Reprinted with permission from ref. [3].
Copyright 2012, AIP Publishing LLC. Link

Figure 4.3 shows the charges accumulated at the surface of the electrodes as

a function of the imposed voltage drop between the electrodes studied in [3].

As ion sheets are replaced with voids and therefore µ decreases, the location of

the plateaus changes, similar to the replacement of ions with voids in the defect

nanopore shown in figure 3.8. The figures are quite similar, but their axes are

flipped, as in the flat capacitor the surface charge is a function of the imposed

voltage, opposite to the defect nanopore.

The differential capacitance is calculated as a function of the imposed voltage

in this thesis. Most other scientific approaches calculate the differential capac-

itance as function of the applied potential. Because the potential difference as

a function of the imposed charge is a monotonically increasing and one-to-one

function, the differential capacitance as a function of potential will have the same

http://scitation.aip.org/content/aip/journal/jcp/137/6/10.1063/1.4740233
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Figure 4.3: Average surface charge as a function of the imposed voltage. γ = 1
and µ = 1 for left figure and γ = 1 and µ = 0.5 for right figure. Reprinted with
permission from ref. [3]. Copyright 2012, AIP Publishing LLC. Link

qualitative behaviour as a function of the imposed charge. But it will differ in

shape. The resulting differential capacitance as a function of potential from γ

equals five in figure 3.6 would have thin, sharp peaks at a potential around three

and five. The differential capacitance as a function of the imposed charge is seen

in figure 3.7, with two broad peaks. The qualitative behaviour of the differential

capacitance is the same, making it possible to compare the differential capacitance

with existing literature.

A qualitative feature for differential capacitance is whether it has bell-shape or

camel-shape around the point of zero charge [35]. For the defect nanopore filled

with ionic liquid, the differential capacitance has a camel-shape. However, as the

ionic liquid is diluted and ion pairs are replaced with voids or solvent, the differ-

ential capacitance has a bell-shape as seen in figure 3.10. For the flat capacitor

in [3], when imposing charge at the electrodes results in the mean field solution

having a bell shape, opposite to the behaviour of the defect nanopore examined

in this study. When they impose a potential drop between the boundaries and

http://scitation.aip.org/content/aip/journal/jcp/137/6/10.1063/1.4740233
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calculate differential capacitance, they also receive a bell-shape. As the sheets

of ions are replaced with solvent in the ionic liquid, the differential capacitance

has the camel-shape. Both of the systems have oscillations or peaks in the dif-

ferential capacitance, which are caused by the plateau-like behaviour in figure 3.6

and 4.3 and disappear at high temperatures. The shape around the point of zero

charge are opposing for the two systems, assumed to be caused by the different

interactions.

For low densities (µ) and imposed charge, the defect pore could be seen as a

ionophobic pore. At no imposed charge, the few ions drift around in the pore and

when the charges are imposed, the cations move towards the negative charged pore

interior and the anions tend towards the positive charge pore interior. This could

almost be described as a empty pore beginning to get filled with ions. Around the

point of zero charge, it has the bell-shape. In [25], Lee et al. study the effect of

ionophobic or ionophilic. As the pores become more ionophobic, shown in figure

3 in [25], the differential capacitance starts as a camel-shape and becomes almost

a bell-shape. For very ionophilic pore the differential capacitance has a very clear

camel-shape, where at low voltages no ions reside inside the pore. The curve has

here two peaks, as it must first overcome the ionophilic term, and then the ion-ion

correlation. For a neutral and ionophilic pores, it has the camel-shape, similar to

the defect nanopore where the pore is with an ionic liquid. The defect nanopore

model has the same qualitative behaviour until one ion is fully attracted. After

this point the differential capacitance oscillates strongly, because only the interior

of the pore is charged and not the whole pore. The camel-shape is also seen for

the nanopore Monte Carlo simulation in [24].

Experimental data for differential capacitance for nanopores is presented in

figure 4.4 from [4]. Here two different curves are presented, one camel shape
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and one bell shaped. The difference between the two is the distribution of pore

sizes. Since the pore size in the defect nanopore is only described to be the

same size as the ions to keep them confined, not much can be concluded by

the experimental data. In addition, the defect nanopores in an electrode are

most likely negligible for the capacitance, as most of the charge storage would

occur in proper functioning nanopores. If one were to compare the camel-shaped

experimental data with the results from the defect nanopore, one would see that

the capacitance as a function of the voltage from the results, one would receive

a much thinner and sharper peak than the experimental data. This is assumed

to be caused by the approximation that ions are hard spheres, when they should

be compressible. The simulations by Kondrat et al. [4] also has a camel-shape

capacitance.

In the models presented in [24] and [25], the screening of ions makes it possible

to store more energy in the nanopores. This is because the ion-ion correlation is

reduced and it becomes easier to pack same charged ions together. In the defect

nanopore, the induced charges reduce the attraction from the inner interior of

the pore to the ions as well. This makes it more difficult to store many charges

inside the pore. The extra ion-ion correlation makes it easier or harder to store

charges in the pore depending on whether it prefers same charged ions to form a

group or not. The results from the introduction of extra ion-ion correlation were

not considered relevant for the present work, as ion-ion correlation was already

included in the model.
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Figure 4.4: (a) Calculated specific differential capacitance as a function of applied
voltage for monodisperse pores. (b and c) Calculated capacitance for polydisperse
pores is compared with the experimental measured capacitance. The average pore
sizes are 0.94 nm (b) and 0.87 nm (c). Reproduced from ref. [4] with permission
of The Royal Society of Chemistry. Link

http://dx.doi.org/10.1039/c2ee03092f
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4.2 Conclusion

The main goal of this thesis was to create a simple model for charge storage in

a nanopore, and match its qualitative properties to experimental data and exist-

ing literature. The resulting model was a model of a defect pore, with its walls

along the pore unable to be at same potential as the ends of pore interior. The

behaviour of the defect pore was simulated with Monte Carlo simulations. Its

properties include overscreening, charge density oscillations and differential ca-

pacitance oscillations. All of these disappear at very high temperatures. The

differential capacitance of the defect nanopore has the camel-shape, but by re-

placing ion pairs with voids the differential capacitance has bell-shape. For both

cases it would have the opposite shape, if the ions were not contained inside the

pore, as the studied flat capacitor. When the pore wall transitioned from insulator

to dielectric medium, the induced charges screen both the ion-ion correlation and

the effect from the imposed charged at the boundary, making it harder to store

same charged ions in the pore.

4.2.1 Outlook

Although the charge storage in defect pores probably is negligible for the total

capacitance of an electrode, there could be some interest in finding a method to

better predict the behaviour of them. There are a few possible improvements to

the model presented in this paper. Since the pore is mirrored, it is only weakly

connected to the bulk. When two ions switch places it represents in the real pore

that one ion is replaced by the other. If the model is initialised as an ionic liquid

with only ions, the model will always be packed, which might not be the case

in a nanopore. There should be a way for an ion to leave the pore and go into
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the bulk and the other way around. With this integrated into the model one

would not need to initialise the pore, but rather decide if the pore is ionophobic

or ionophilic and study the effect of those as in [25]. Including the bulk, one might

not need the symmetry from mirroring the pore. Without the symmetry, it would

be possible to study how the system behaves with different sized and charged

ion, which is more realistic for ionic liquids. Another interesting question is how

defect nanopores would affect a network of nanopores, and in the end influence

the macroscopic capacitance of the capacitor.
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Appendix A

Theory Behind the Metropolis Al-

gorithm

Consider calculating averages by selecting phase space points xi with some prob-

ability P (xi) [34]. By selecting these points, the thermal average from equation

(2.12) becomes

Ā =

∑

n exp(−E(n)/kbT )A(xi)/P (xi)
∑

n exp(−E(n)/kbT )/P (xi)
. (A.1)

One would then want P (xi) to reduce the thermal average equation to

Ā =
1

N

∑

n

A(xi). (A.2)

Metropolis et al. [33] then constructed a Markov chain where each state xi+1 is

constructed from a previous state xi with a transition probability Tp(xi → xi+1).

It is possible to choose a Tp that when the length of the Markov chain goes to

infinity the distribution function P (xi) tends towards the equilibrium distribution

Peq(xi) =
exp(−E(xi)/kbT )

∑

n exp(−E(n)/kbT )
. (A.3)

43
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The principle of detailed balance

Peq(xi)Tp(xi → xi+1) = Peq(xi+1)Tp(xi+1 → xi) (A.4)

achieves this, giving the transition probabilities the ratio

Tp(xi → xi+1)

Tp(xi+1 → xi)
=

Peq(xi+1)

Peq(xi)
= exp(

−∆E

kbT
), (A.5)

which the Metropolis Algorithm is a solution of.
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