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A B S T R A C T

We consider superconductor/ferromagnet hybrid systems with intrinsic
spin-orbit coupling, and investigate theoretically how the proximity effect
manifests in two measurable quantities, namely the density of states and
critical temperature. For concreteness, the spin-orbit coupling is taken to
be of the experimentally common Rashba–Dresselhaus type. Our results
are obtained via the quasiclassical theory of superconductivity, which has
been extended to include spin-orbit coupling as an SU(2) gauge field. We
present both an analytical discussion of the weak proximity regime, and
a full numerical investigation of the strong proximity regime. The results
show that the spin-orbit coupling leaves a clear trace in the density of
states, which displays a highly nonmonotonic behaviour as a function of
magnetization directions and phase differences. We also determine how
the critical temperature is affected and, interestingly, demonstrate that
one can achieve a spin-valve effect using a single ferromagnet. The critical
temperature is found to exhibit a highly nonmonotonic behavior, both
as a function of magnetization direction and type of spin-orbit coupling.
Compared to the earlier inhomogeneously magnetized structures, this
offers a new way to control the superconductivity of proximity structures.
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S A M M E N D R A G

I denne masteroppgaven granskes superleder/ferromagnet-hybridsystem
med iboende spinn–bane-kobling, og det undersøkes spesielt hvordan
samspillet deres påvirker tilstandstettheten og den kritiske temperaturen.
Det antas at spinn–bane-koblingen er av Rashba–Dresselhaus-typen. Det
tas utgangspunkt i den kvasiklassiske tilnærmingen til superledning, og
mer spesifikt, en utvidet versjon som tar med spinn–bane-kobling som et
SU(2)-justerfelt. Vi presenterer både en analytisk diskusjon ved svake vek-
selvirkninger, og en full numerisk granskning ved sterke vekselvirkninger.
Resultatene viser at spinn–bane-koblingen har en klar påvirkning på til-
standstettheten, som får en sterkt ikke-monoton oppførsel som funksjon
av både magnetiseringsvinkler og faseforskjeller. Vi kommer også fram til
at den kritiske temperaturen har en sterkt ikke-monoton oppførsel som
funksjon av magnetiseringsretning og typen spinn–bane-kobling. Dette
kan lede til nye måter å kontrollere superledningen i hybridstrukturer på,
som vil muliggjøre f.eks. spinnventiler bestående av bare én ferromagnet.
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N O TAT I O N A N D U N I T S

Most of the mathematical notation in this thesis will follow the usual
conventions in physics. In particular, both real and complex scalars are
written with a light typeface as in z = x + iy, while three-dimensional
vectors and matrices are written with a bold typeface as in Ax = b. How-
ever, the Cartesian unit vectors will be denoted by ex,ey,ez, without the
conventional “hats”, to avoid confusion with the notation for matrices
in Nambu space. Partial derivatives are written in the short-hand form
∂x ≡ ∂/∂x, so the operator ∇ ≡ ∂xex + ∂yey + ∂zez. Other common
notation includes using a superscript dagger† for Hermitian conjugation,
a superscript asterisk∗ for complex conjugation, a superscriptt for matrix
transposition, square brackets for the commutator [A , B] ≡ AB − BA,
and curly braces for the anticommutator {A , B} ≡ AB+BA. Equations
with the triple equality sign ≡ should be taken as definitions, while ∼= is
used for approximate equality.

In order to make the physical nature of the mathematical objects clear,
we will also make use of some less common notation. Symbols with an
underbar such as S will be used for 2× 2 complex matrices in spin space,
and symbols with a hat such as P̂ will be used for similar matrices in
Nambu space. Both these spaces are spanned by the usual Pauli matrices:

σ0 ≡
(
1 0

0 1

)
, σx ≡

(
0 1

1 0

)
, σy ≡

(
0 −i

i 0

)
, σz ≡

(
1 0

0 −1

)
;

τ̂0 ≡
(
1 0

0 1

)
, τ̂x ≡

(
0 1

1 0

)
, τ̂y ≡

(
0 −i

i 0

)
, τ̂z ≡

(
1 0

0 −1

)
.

These basis matrices will also be combined to form the Pauli vectors,
which possess both a three-dimensional vector structure in geometric
space, and a matrix structure in either spin space or Nambu space:

σ ≡ σxex + σyey + σzez , τ̂ ≡ τ̂xex + τ̂yey + τ̂zez .

Objects with a structure in both spin space and Nambu space are spanned
by the 16 matrices τ̂n ⊗ σm that are formed by the Kronecker products
of the Pauli matrices above. Note that throughout this thesis, we use the
convention that sums and products of incompatible matrices should be
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resolved by taking Kronecker products with appropriate identity matrices.
For instance, the expression a + bσx + cτ̂y should be thought of as a
short-hand notation for a(τ̂0 ⊗ σ0) + b(τ̂0 ⊗ σx) + c(τ̂y ⊗ σ0), and τ̂nσm
should be interpreted as (τ̂n ⊗ σ0)(τ̂0 ⊗ σm) = τ̂n ⊗ σm. Beware of trace
expressions like Tr {a+ bσx + cτ̂y}, where the result depends on whether
the trace is a sum over the diagonal in spin space, Nambu space, or both.

In theoretical physics, it is common practice to select a unit system
where the most common physical constants get numerical values of one,
so that these constants can be removed from the equations. Through-
out this thesis, we will use rationalized natural units unless otherwise
stated, which means that the following constants are normalized to unity:
Planck’s reduced constant  h; the rationalized gravitational constant 4πG;
the speed of light c; and Boltzmann’s constant k. Since c = 1/

√
ε0µ0, we

can also set the vacuum permittivity ε0 and permeability µ0 to unity. So
the unit system can be summarized by the equation:

 h = k = 4πG = c = ε0 = µ0 = 1 .

This equation uniquely defines a system of physical units, which can be
related to any other unit system by plugging in the experimental values of
the constants in the equation. So we can say that the philosophy of natural
units is the exact opposite of conventional units: instead of defining the
base units and measuring the physical constants, we define the physical
constants and then determine the basic measures by experiment. A short
list of common natural units, as well as conversion factors for equivalent
si units, is provided in table 1.

table 1: Conversion table between natural units and some common si units.

quantity natural unit conversion factor

Length
√
4πG h/c3 5.73× 10−35m

Time
√
4πG h/c5 1.91× 10−43 s

Mass
√

 hc/4πG 6.14× 10−9 kg
Energy

√
 hc5/4πG 5.52× 10+8 J

Temperature
√

 hc5/4πGk2 4.00× 10+31K
Charge

√
 hcε0 5.29× 10−19C
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1
I N T R O D U C T I O N

1.1 background and motivation

Superconductivity is one of the main research areas of modern condensed
matter physics. Besides having interesting properties from a fundamental
physics point of view, these materials have also found a wide range of
practical applications. Their defining property is of course the dissipation-
less conductance of electric currents, which can greatly reduce the power
consumption of electronic circuits, while at the same time reducing the
cooling requirements of said circuits. Moreover, their other properties
make them highly attractive for high-precision measurement instruments.
For instance, magnetic field variations down to the attotesla scale can be
detected by averaging squid measurements over a few days.4 Another
example would be superconducting cameras, which excite around 17,000

electrons per electronvolt when an incident photon is detected, permitting
accurate measurements of individual photon colours.5 Some suggestions
for superconducting logic circuits also exist, including memory chips and
computer processors that have already been demonstrated to work.6–9

Spintronics is another major research field in condensed matter physics,
where the purpose is to process information by manipulating the flow of
electron spins. Two main strategies are to produce spin-polarized electric
currents using strong ferromagnets,10 and conversely, to alter the field ori-
entations of weaker ferromagnets using these spin-polarized currents.11

Compared to conventional electronics, this technology may yield higher
operation frequencies and a higher tolerance for unstable power supplies.
As for commercially available technology, most harddrives are based on
the giant magnetoresistive effect,12,13 and mram memory chips have also
been available for a decade.

Superconducting spintronics is a relatively new field, where the main
goal is to combine the strengths of superconductivity and spintronics.14,15

Both of these fields have been active for some time, and a lot of attention
has also been given to their interplay. This might seem a bit strange, since
superconductivity and magnetism are well-known to be two antagonistic
orders. On one hand, superconductors expel magnetic fields according to
the Meissner effect: an applied magnetic field induces perfect mirror cur-
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introduction

rents in the superconductor, which in turn cancel the applied field inside
the superconductor. On the other hand, conventional superconductivity
arises due to a condensate of spin-0 electron pairs, and these pairs would
be ripped apart by a ferromagnetic spin-splitting. Thus, the technologies
might at first sight seem fundamentally incompatible.

While the conclusions above are accurate for interactions at the macro-
scopic level, the situation is quite different at the mesoscopic level.a In
practice, there will always be a boundary layer around the interface where
properties from both materials coalesce. In this region, spin-0 electron
pairs from the superconductor fall under the influence of the magnetic
field, and may be transformed into different kinds of spin-1 pairs. This
solves the coexistence problem by superconductivity adapting to the pres-
ence of magnetic fields near the interface, yielding physical phenomena
known as triplet proximity effects. However, advanced nanotechnology is
required to create and manipulate such structures, so these effects were
experimentally inaccessible until around 15 years ago.

While a homogeneous ferromagnet may transform electron pairs from
the singlet state |↑↓〉− |↓↑〉 to the triplet state |↑↓〉+ |↓↑〉, the electrons still
have opposite spins, and eventually dissociate in a magnetic field. In or-
der for superconductivity to penetrate deeper into the ferromagnet, the
electron pairs would have to be rotated into one of the long-range triplet
states |↑↑〉 or |↓↓〉, which consist of two electrons with the same spin. One
way to accomplish this is using inhomogeneous magnetic fields, e.g. mul-
tiple homogeneous ferromagnets with noncollinear magnetizations.16,17

While such experiments have been performed with success, it has never-
theless proven notoriously difficult to control the relative magnetization
between different layers in mesoscopic multilayer structures, since the
magnetic elements tend to spontaneously align. To avoid this problem,
one alternative is to use a single ferromagnetic layer with an intrinsically
inhomogeneous field, like the conical ferromagnet holmium. However,
unlike the situation with two ferromagnets, this approach does not offer
a simple way to directly control the triplet generation externally.

Another possibility which was recently suggested, is that long-range
triplets may be generated using a single ferromagnetic material with a
property known as spin-orbit coupling.18,19 As we will see in later chapters,

aWith mesoscopic systems, we mean materials of size 1nm to 1µm. These are typically
small enough for quantum mechanical behaviour to start manifesting, and at the same
time large enough for collective phenomena like superconductivity and ferromagnetism
to take place. With the last statement, we refer to the fact that sub-nanometre structures
are typically too small to exhibit this kind of large-scale ordering.
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1.2 scope and structure

multilayer structures based on these materials not only permit production
of long-range triplets under the right circumstances, but also enable an
extensive external control over both singlet and triplet superconductivity
by rotating the magnetic field.

1.2 scope and structure

In this thesis, we consider mesoscopic superconductor/ferromagnet thin-
film structures with spin-orbit coupling of the Rashba–Dresselhaus type.
We investigate how the relationship between the singlet pairs and triplet
pairs in the system changes as a function of the various parameters, and
how this affects physical observables like density of states and critical
temperature. The investigation is part analytical and part numerical, and
ultimately results in physical predictions that may be tested empirically.

In the first half of chapter 2, we present the fundamental mathematical
and physical formalism, including the concepts of superconductivity, fer-
romagnetism, spin-orbit coupling, Green’s functions, and the equations
that bind these concepts together. In the second half of the chapter, we
proceed to review some of the well-known proximity-coupled systems
that have been investigated before, including superconductivity in nor-
mal metals, ferromagnets, spin-active interfaces, and Josephson junctions.
We focus on explaining their behaviour in an intuitive manner and how
their physical properties would be observed in a laboratory setting. In
chapter 3, we present a derivation of the self-consistency equation for the
superconducting gap, both in the Keldysh and Matsubara formalisms.
The original research starts with chapter 4, where an analytical investi-
gation of spin-orbit coupling in superconductor/ferromagnet structures
is performed. This is succeeded by a full numerical investigation of the
density of states and critical temperature in such structures in chapter 5,
where we consider the strong proximity regime. Finally, we conclude
with a short summary and outlook in chapter 6.

After the content outlined above, we have also enclosed some extra
material related to this thesis. The algorithm that was used to determine
the critical temperature in chapter 5 is presented in appendix A. After
the bibliography, we also include a paper that was written in conjunction
with the work presented herein. Finally, Matlab implementations of the
programs that were used to generate the data in chapter 5 are enclosed at
the end of the book.
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2
F U N D A M E N TA L C O N C E P T S

2.1 superconductivity

The physical origin of conventional low-temperature superconductivity
is a phonon-mediated attraction between the electrons in a crystal.20,21 In
the bcs formalism,22 this is described by the mean-field Hamiltonian

H = −

∫
d3x

[
∆(x, t)ψ†↓(x, t)ψ†↑(x, t) +∆∗(x, t)ψ↑(x, t)ψ↓(x, t)

]
, (2.1)

where the mean-field is defined as

∆(x, t) ≡ λ〈ψ↑(x, t)ψ↓(x, t)〉 . (2.2)

In the equations above, the operators ψ†σ(x, t) and ψσ(x, t) create or anni-
hilate quasielectrons with spin σ at position x and time t, and λ > 0 is the
effective coupling constant of the electron–phonon–electron interaction
that results in superconductivity. In general, the mean-field ∆ = |∆|eiϕ is
a complex function, where the norm |∆| is called the superconducting gap,
and the argument ϕ the superconducting phase. However, it is possible to
perform a U(1) gauge transformation ψσ 7→ ψσe

iϕ/2 in order to cancel
the superconducting phase ϕ from the Hamiltonian. We will therefore
assume a gauge where ∆ is real, except when considering hybrid systems
with multiple superconducting components such as Josephson junctions.

2.2 ferromagnetism

Ferromagnetism is a phenomenon where so-called exchange interactions
between the electrons in a material results in a macroscopic alignment of
their spins.1,23 This can be described by the mean-field Hamiltonian

H = −

∫
d3x

∑
σσ ′

ψ†σ(x, t)
[
h(x, t) ·σ

]
σσ ′
ψσ ′(x, t) , (2.3)

where the exchange field h(x, t) encapsulates the magnetic properties of
the ferromagnet, and σ is the well-known Pauli vector.
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fundamental concepts

2.3 spin-orbit coupling

Spin-orbit coupling refers to processes where the spin σ and momentum p

of each quasielectron become coupled, usually due to a broken spatial
symmetry in the crystal. Such phenomena are described by the linearized
single-particle Hamiltonian18,19

H = −p ·A/m , (2.4)

where the spin-orbit field A is an SU(2) vector field, i.e. an object with a
vector structure in real space and a 2× 2 matrix structure in spin space.
Moving on to quantum field theory, the presence of a spin-orbit field can
be accounted for by replacing partial derivatives of Green’s functions by
their SU(2) gauge covariant equivalents,1,18,19

∇( · ) 7→ ∇̃( · ) ≡ ∇( · ) − i
[
Â , ·

]
, (2.5)

where the spin-orbit field in Spin–Nambu space is Â ≡ diag(A,−A∗).
For a concrete example of such an interaction, consider a thin crystal

layer in the xy-plane, such that the growth direction is along the z-axis.
This crystal would have a structure inversion asymmetry near the interfaces,
which can be present throughout the structure if it is sufficiently thin. The
broken inversion symmetry results in a Rashba spin-splitting,24

Hr = α(pyσx − pxσy) , (2.6)

where α is called the Rashba coefficient. Other couplings with the same
symmetry structure can be produced by subjecting the crystal to a uni-
axial strain,25,26 or through interactions between different occupied sub-
bands in the material.27 Another kind of spin-orbit coupling arises due to
bulk inversion asymmetry, which occurs in crystals that lack an inversion
centre. One example of such a Dresselhaus spin-splitting is26,28

Hd = β(pyσy − pxσx) , (2.7)

where β is called the Dresselhaus coefficient. Couplings of the same kind
can also be produced by subjecting the crystal to a biaxial strain.25,26 There
is a plethora of other alternatives when it comes to spin-orbit coupling,
especially in noncentrosymmetric crystals,29 but we restrict our attention
to the experimentally common Rashba–Dresselhaus type in this thesis.

For a Rashba–Dresselhaus coupling in the xy-plane, comparing eqs. (2.4),
(2.6) and (2.7) reveals that the appropriate spin-orbit field is

A = m(βσx +ασy)ex −m(βσy +ασx)ey . (2.8)
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2.3 spin-orbit coupling

It will prove prudent to introduce a new notation for such couplings,
which will let us distinguish between the physical effects that derive from
the strength of the coupling, and those that derive from the geometry. For
this purpose, we will employ a polar notation defined by

mα ≡ a sinχ , mβ ≡ a cosχ , (2.9)

where we call a the spin-orbit strength and χ the spin-orbit angle. From the
definitions, we see that χ = 0 corresponds to a pure Dresselhaus coupling,
while χ = ±π/2 results in a pure Rashba coupling, with the geometric
interpretation of χ illustrated in fig. 2.1. In this notation, eq. (2.8) becomes

A = a(σx cosχ+ σy sinχ)ex − a(σy cosχ+ σx sinχ)ey , (2.10)

or in component form,

A = aex

(
0 e−iχ

eiχ 0

)
+ aey

(
0 ieiχ

−ie−iχ 0

)
. (2.11)

Note that A2x = A2y = a2, which means that A2 = 2a2. Another useful
property of the parametrization is that the transformation χ 7→ 3π/2− χ

is equivalent to switching Ax ↔ Ay.

σx cosχ+ σy sinχ

px
χ

py

σx sinχ+ σy cosχ

χ

figure 2.1: Geometric interpretation of the notation. The Hamiltonian couples
the momentum component px to the spin component σx cosχ + σy sinχ with
a coefficient −a/m, and the momentum component py to the spin component
σx sinχ+ σy cosχ with a coefficient +a/m.
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fundamental concepts

2.4 quasiclassical theory

Most modern treatments of condensed matter physics are expressed in
the language of Green’s functions, i.e. quantum field correlation functions.
There are many different ways to define these functions, but this thesis is
based on the Keldysh real-time formalism,30–32 with the occasional trans-
lation to the Matsubara imaginary-time formalism.33,34

The cornerstone of the Keldysh formalism is a set of three Green’s
functions that describe the quantum transport of electrons and holes,

Gr

σσ ′(x, t; x ′, t ′) ≡ −i〈{ψσ(x, t) , ψ†σ ′(x
′, t ′)}〉θ(t− t ′) , (2.12)

Ga

σσ ′(x, t; x ′, t ′) ≡ +i〈{ψσ(x, t) , ψ†σ ′(x
′, t ′)}〉θ(t ′ − t) , (2.13)

Gk

σσ ′(x, t; x ′, t ′) ≡ −i〈[ψσ(x, t) , ψ†σ ′(x
′, t ′)]〉 , (2.14)

along with their anomalous counterparts that describe Cooper pairs,

Fr

σσ ′(x, t; x ′, t ′) ≡ −i〈{ψσ(x, t) , ψσ ′(x
′, t ′)}〉θ(t− t ′) , (2.15)

Fa

σσ ′(x, t; x ′, t ′) ≡ +i〈{ψσ(x, t) , ψσ ′(x
′, t ′)}〉θ(t ′ − t) , (2.16)

Fk

σσ ′(x, t; x ′, t ′) ≡ −i〈[ψσ(x, t) , ψσ ′(x
′, t ′)]〉 . (2.17)

These matrices are then combined to form three matrices in Nambu space,

Ĝr ≡
(

Gr Fr

Fr∗ Gr∗

)
, (2.18)

Ĝa ≡
(

Ga Fa

Fa∗ Ga∗

)
, (2.19)

Ĝk ≡
(

Gk Fk

−Fk∗ −Gk∗

)
, (2.20)

which can be further conjoined to form a single matrix in Keldysh space,

Ǧ ≡
(

Ĝr Ĝk

0 Ĝa

)
. (2.21)

The most interesting physical observables in superconductor/ferromagnet
hybrid systems, such as the density of states and electrical currents, can
then be expressed in terms of the 8× 8 matrix function Ǧ(x, t; x ′, t ′).

In practice, it is often prohibitively difficult to find an exact solution for
the Green’s functions. We will therefore follow the standard procedure of
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2.4 quasiclassical theory

switching to the Wigner representation, Fourier transforming the relative
coordinates, performing a quasiclassical approximation, and taking the
dirty limit.1,35–37 The approximation can be summarized by the equation

ǧ(x, ε, t) ≡ i

π

∫
dξp〈Ǧ(x,p, ε, t)〉

f
, (2.22)

where ε is the quasiparticle energy, p is the momentum, ξp ≡ p2/2m− µ

is the kinetic energy measured from the Fermi level µ, and 〈 · 〉f denotes
an average over the Fermi surface. The approximation above is based on
two crucial assumptions:

(i) Ǧ is dominated by particles near the Fermi surface;

(ii) Ǧ is nearly isotropic with respect to momentum.

The first assumption can be justified using the Pauli principle. At low tem-
peratures, most states inside the Fermi sphere |p| 6 pf are occupied. Since
the Pauli principle prevents double occupancy of the states, this implies
that there are few available states with |p|� pf that particles can be scat-
tered into. On the other hand, most states outside the Fermi sphere are
unoccupied, so there are also few states with |p|� pf that particles may
be scattered from. Conservation of momentum then dictates that most of
the allowed scatterings have to be between different states with |p| ∼= pf.
These are the interactions that drive the transport processes in the system,
and which therefore dominate the behaviour of the Green’s functions. As
for the second assumption, this holds for highly diffusive systems, where
the frequent impurity scattering extinguishes the anisotropic components
of the Green’s functions.a We will restrict our attention to the special case
of thermal equilibrium herein, so the description is further simplified by
a time independence. Under the set of assumptions outlined above, the
Keldysh component can be written

ĝk = (ĝr − ĝa) tanh(ε/2T) , (2.23)

and the advanced component can be written

ĝa = −τ̂z ĝ
r†τ̂z , (2.24)

so all the physical characteristics of the system are actually encoded in
the retarded component ĝr due to these symmetries. Most of this thesis

aNote that the isotropic approximation breaks down near interfaces, so boundary con-
ditions for ǧmust be derived from a microscopic theory using the exact Green’s functions.
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fundamental concepts

is dedicated to calculating ĝr for superconducting hybrid systems, and
using the results to calculate physical observables in equilibrium.

The 4× 4 components of the retarded function ĝr are not independent,
since symmetries between electron-like and hole-like excitations affects
the Nambu space structure of ĝr,b

ĝr(x, ε) =
(

gr(x,+ε) fr (x,+ε)
−fr∗(x,−ε) −gr∗(x,−ε)

)
. (2.25)

Moreover, the matrix is subject to the normalization condition (ĝr)2 = 1,
which further constrains the components of ĝr by relating gr and fr,

gr(x, ε)gr(x, ε) − fr(x, ε)fr∗(x,−ε) = 1 , (2.26)

gr(x, ε)fr(x, ε) − fr(x, ε)gr∗(x,−ε) = 0 . (2.27)

Remarkably, by parametrizing ĝr in a way that automatically satisfies the
symmetry and normalization requirements above, then the 4× 4 matrix
equations for ĝr can be reduced to just 2× 2 matrix equations. In this
thesis, we employ the so-called Riccati parametrization for this purpose,38

ĝr =

(
N 0

0 −Ñ

)(
1+ γγ̃ 2γ

2γ̃ 1+ γ̃γ

)
, (2.28)

where the normalization matrices N ≡ (1− γγ̃)−1 and Ñ ≡ (1− γ̃γ)−1,
and the tilde conjugation γ̃(x, ε) ≡ γ∗(x,−ε) is a combination of complex
conjugation i 7→ −i and energy ε 7→ −ε. Using the parametrization above,
solving the equations for the 2× 2 matrix function γ(x, ε) is sufficient to
uniquely construct the whole Green’s function ĝr(x, ε). It is also note-
worthy that ĝr → 1 when γ → 0, while all the elements of ĝr diverge
to infinity when γ → 1; so we see that a finite range of variation in γ
parametrizes an infinite range of variation in the elements of ĝr. This
choice of parametrization has proven especially useful for numerical sim-
ulations of superconductivity because γ is single-valued and bounded.

In the Matsubara formalism, the field operators ψσ(x, t) and ψ†σ(x, t)
are analytically continued to imaginary times t = −iτ to describe systems
in thermal equilibrium, where |τ| < 1/T at temperature T . We define the
Matsubara Green’s functions as

Gm

σσ ′(x, τ; x ′, τ ′) ≡ −i〈Tτψσ(x, τ)ψ̄σ ′(x ′, τ ′)〉 , (2.29)

Fm

σσ ′(x, τ; x ′, τ ′) ≡ −i〈Tτψσ(x, τ)ψσ ′(x ′, τ ′)〉 , (2.30)

bThe reason eq. (2.25) has a different sign structure from eq. (2.18), is the imaginary
unit in eq. (2.22), which results in an extra minus sign upon complex conjugation.

12



2.4 quasiclassical theory

where ψσ(x, τ) is the analytic continuation of ψσ(x, t), ψ̄σ(x, τ) is the
analytic continuation of ψ†σ(x, t), and Tτ orders field operators such that
τ increases from right to left. Like the other Green’s functions discussed
so far, the above can be combined to form a matrix Ĝm in Nambu space.
After a quasiclassical approximation, the Matsubara functions can also be
expressed in terms of the retarded and advanced functions,

ĝm(x,ω) =

{
iĝr(x, iω), ω > 0;

iĝa(x, iω), ω < 0.
(2.31)

Note that the i’s in eqs. (2.29) and (2.30) are unconventional, and also the
source of the extra i in eq. (2.31). These definitions of Gm and Fm were
chosen to eliminate some extraneous i’s from the equations in chapters 3

and 4. This alternative definition of the Green’s function is equivalent to
rotating the superconducting gap ∆ 7→ i∆ in the complex plane, which in
turn is equivalent to a U(1) gauge transformation. We also note that since
the imaginary time τ is restricted to the region (−1/T , 1/T), ω can only
be one of the discrete Matsubara frequencies ωn = (2n+ 1)πT for n ∈ Z.
In superconductors, the relevant Matsubara frequencies are those below
the Debye frequency ωc, so n ∈ (−nc,nc) with the cutoff nc ∼= ωc/2πT .

It is the anomalous Green’s functions that describe the dynamics of
Cooper pairs, and therefore the formation and behaviour of superconduc-
tivity. The anomalous function f, which should be interpreted as either
fr or fm depending on the formalism employed, can be parametrized as

f = (fs + ft ·σ)iσy, (2.32)

or in component form,
(
f↑↑ f↑↓

f↓↑ f↓↓

)
=

(
ify − fx fz + fs

fz − fs ify + fx

)
. (2.33)

The singlet component fs corresponds to conventional spin-0 electron pairs,
and transforms as a scalar under spin rotations; while the triplet component
ft = (fx, fy, fz) describes the more exotic spin-1 pairs, and transforms as
a vector.39,40 Furthermore, the triplet component can be further decom-
posed into a short-range triplet component f‖ along the exchange field h,
which decays over a characteristic length scale

√
D/h in a ferromagnet;

and a long-range triplet component f⊥ perpendicular to h, which decays
over the larger length scale

√
D/2πT . This decomposition of the Green’s

functions will play an important role in the derivations in chapter 4.
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The fundamental physical quantity that describes the transport proper-
ties of a classical electric circuit is the electric current,

Ie = GLE , (2.34)

where G is the conductance of the material, L the length of the material,
and E the electric field in the material. Similarly, one may define a matrix
current Ǐ in Keldysh space to describe the transport properties of quasi-
classical spintronic circuits,

Ǐ ≡ GLǧ∇̃ǧ , (2.35)

which is subdivided into the same components as the Green’s functions,

Ǐ ≡
(
Îr Îk

0 Îa

)
. (2.36)

In this thesis, we consider thin-film structures that are homogeneous in
the xy-plane, in which case Ǐx = Ǐy = 0, and only Ǐ ≡ Ǐz is relevant.
This matrix function encapsulates information about the flow of particles,
energy, charge, spin, phase coherence, etc. throughout the system. For
instance, the energy current Iε, electric current Ie, and spin current Iσ
can all be extracted from the Keldysh current Îk,41–45

Iε =
1

4e2

∫
dεTr

[
εÎk(ε)

]
, (2.37)

Ie =
1

4e

∫
dεTr

[
τ̂z Î

k(ε)
]
, (2.38)

Iσ =
1

8e2

∫
dεTr

[
τ̂zσ̂ Î

k(ε)
]
, (2.39)

where σ̂ = diag(σ,σ∗) is the spin operator in Nambu space. It can also
be shown straight from the definitions that

∂zγ =
[
2GLN

]−1[
Ir

12
− Ir

11
γ
]
+ iAzγ+ iγA

∗
z , (2.40)

where Irij refers to the (i, j) component in Nambu space of the retarded
current Ir. The boundary conditions for a physical system in equilibrium
can therefore be conveniently expressed as a retarded matrix current. The
spin-orbit terms come from using the general definition Ǐ ≡ GLǧ∇̃ǧ in
terms of the covariant derivative in eq. (2.5). However, for the spin-orbit
coupling in eq. (2.10), these terms are inconsequential since Az = 0.
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2.4 quasiclassical theory

All the systems considered herein consist of diffusive materials with a
superconducting gap ∆(x), exchange field h(x), and spin-orbit field A(x).
The quasiclassical Green’s function ĝr(x, ε) for such a system can be cal-
culated from the Usadel diffusion equation,1,2,18,19,31,35,37,46,c

iD∇̃ ·
(
ĝr∇̃ĝr

)
=
[
ετ̂z + ∆̂ + h · σ̂ , ĝr

]
, (2.41)

whereD is the diffusion constant of the material, ∇̃ is the gauge covariant
derivative defined in eq. (2.5), the spin operator in Nambu space is

σ̂ ≡
(
σ 0

0 σ∗

)
, (2.42)

and the superconducting gap matrix is

∆̂ ≡




0 0 0 ∆

0 0 −∆ 0

0 ∆∗ 0 0

−∆∗ 0 0 0


 . (2.43)

It is worth noting that h · σ̂ = τ̂0 ⊗ (h · σ) for an exchange field in the
xz-plane, and that ∆̂ = ∆(τ̂x ⊗ iσy) when we work in a real gauge. Per-
forming a Riccati parametrization yields the equation

D
[
(∂2zγ) + 2(∂zγ)Ñγ̃(∂zγ)

]

=− 2iεγ−∆σy + γ∆
∗σyγ− ih · (σγ− γσ∗)

+D
[
AAγ− γA∗A∗ + 2(Aγ+ γA∗)Ñ(A∗+ γ̃Aγ)

]

+ 2iD
[
(∂zγ)Ñ(A∗z + γ̃Azγ) + (Az + γA

∗
zγ̃)N(∂zγ)

]
,

(2.44)

where we have assumed a thin-film hybrid structure with the z-axis as the
layering direction.1,2 Note that Az = 0 for the Rashba–Dresselhaus cou-
pling in eq. (2.10), in which case the last line of the equation vanishes. On
the other hand, if the spin-orbit field only couples to spins in the xz-plane,
then A = A∗, which implies that the second line of the right-hand side
could be written more compactly as [A2 , γ ] + 2{A , γ }Ñ(A+ γ̃Aγ).48

cNote that the left-hand side of the Usadel equation is essentially just the derivative of
the matrix current ∇̃ · Îr, so the diffusion equation may also be interpreted as an equation
that describes the leakage of a matrix current.41,42,47
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To determine an appropriate boundary condition for the matrix current,
one may in principle devise a microscopic model of the interface, and use
this to derive a scattering matrix for each available transport channel n.
However, in practice, knowing the transmission probability Tn for each
channel is sufficient. Assuming elastic scattering at a general spin-inactive
interface, the matrix current satisfies the Nazarov boundary condition,41,42

Ǐ = 2Gq

∑
n

Tn
[
ǧl , ǧr

]

4− 2Tn + Tn
{
ǧl , ǧr

} , (2.45)

where ǧl and ǧr are the quasiclassical Green’s functions at the left and
right sides of the interface, respectively, and the prefactor Gq ≡ e2/π is
the conductance quantum. Very high transmission probabilities can be
achieved using a variety of experimental setups, such as superconduc-
tors connected to monocrystalline semiconductor nanowires (T ∼= 0.75),49

monocrystalline metallic nanowires (T ∼= 0.95),50 monolayers of the same
material (T ∼= 0.98),51 or monolayers of graphene (T ∼= 0.98).52 However,
it is easier to manufacture interfaces with low transmission probabili-
ties, since e.g. crystal structure misalignments and interfacial impurities
tend to lower the transmission probability. In the tunneling limit Tn � 1,
the Nazarov boundary condition reduces to the commonly employed
Kuprianov–Lukichev boundary condition,41,42,53

2Ǐ = Gt

[
ǧ

l
, ǧ

r

]
, (2.46)

where we introduced the tunneling conductance Gt ≡ Gq

∑
n Tn. In other

words, we do not need to know the full transmission spectrum {Tn}, as
the single scalar Gt fully describes the interface in this limit.

The boundary conditions at magnetic interfaces are more complicated,
and has only recently been derived after decades of research on the topic.
There are two main new physical effects that requires addressing. Firstly,
the transmission probabilities at a magnetic interface depend on the spins
of the quasiparticles, resulting in spin-filtering. We therefore need two
parameters to characterize each transmission channel, namely the aver-
age transmission probability Tn ≡ (Tn↑ + Tn↓)/2 and spin-polarization
Pn ≡ (Tn↑ − Tn↓)/(Tn↑ + Tn↓). Secondly, quasiparticles that reflect off a
magnetic interface acquire different phase shifts ϕn↑ or ϕn↓ depending
on spin, resulting in spin-dependent interfacial phase shifts φn ≡ ϕn↑ −ϕn↓.
By causing a relative phase shift between the electrons in a Cooper pair,
the spin-dependent phase shifts can cause a singlet pair to transform into
a triplet pair, thus causing spin-mixing. To linear order in the transmission
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2.4 quasiclassical theory

probabilities and spin-dependent phase shifts, but for arbitrarily high
spin-polarizations, the boundary condition may be written44,45,54–57

Ǐ = Gq

∑
n

[
t̂nǧl

t̂†n − iφn(m · σ̂) , ǧ
r

]
, (2.47)

where the transmission matrix t̂n ≡ t0+ t1(m · σ̂), m is a unit vector that
describes the interface magnetization, and the transmission coefficients
tn0 ≡ (tn↑ + tn↓)/2 and tn1 ≡ (tn↑ − tn↓)/2 are real numbers. If we
expand this equation, it can be written in the more explicit form

2Ǐ = Gt0

[
ǧ

l
, ǧ

r

]
+Gt1

[
ǧ

l
, (m · σ̂)ǧ

r
(m · σ̂)

]

+Gmr

[
ǧ

l
,
{
ǧ

r
, m · σ̂

}]
+ iGφ

[
ǧ

l
, m · σ̂

]
.

(2.48)

To more accurately identify the interesting parameter regimes, it can be
convenient to describe the system using the dimensionless parameters

µ ≡ Gmr

Gt0

=

∑
n TnPn∑

n Tn(1+
√
1− P2n)

, (2.49)

λ ≡ Gφ

Gt0

=
−2
∑
nφn∑

n Tn(1+
√
1− P2n)

, (2.50)

κ ≡ Gt1

Gt0

=

∑
n Tn(1−

√
1− P2n)∑

n Tn(1+
√
1− P2n)

, (2.51)

where the magnetoresistive factor µ ∈ [−1, 1] describes spin-polarization,
the phase factor λ ∈ (−∞,∞) describes spin-dependent phase shifts, and
κ ∈ [0, 1] is a correction factor for high polarizations. This version of the
equation describes Ǐ using a sum of commutators with ǧl, but a similar
equation for the other side of the interface can be found by letting Ǐ 7→ −Ǐ

and l↔ r in the equations above.
For non-magnetized tunneling junctions, it is relatively straight-forward

to obtain boundary conditions for the Riccati parameter γ by substituting
eq. (2.46) into eq. (2.40),1,2

∂zγl =
1

Llζl

(1− γl
γ̃

r)Nr
(γr − γl) + iAzγl + iγlA

∗
z , (2.52)

∂zγr =
1

Lrζr

(1− γr
γ̃

l)Nl
(γr − γl) + iAzγr + iγrA

∗
z , (2.53)

where we introduced the dimensionless interface parameters ζj ≡ Gj/Gt.
Throughout this thesis, we will assume the value ζ = 3 for all material
interfaces, and ζ = ∞ for vacuum interfaces. Corresponding boundary
conditions for γ̃ are found by tilde conjugation of the equations above.
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Performing an explicit Riccati parametrization of eq. (2.48) is far from
trivial. To be able to implement such boundary conditions numerically, a
viable alternative is to use eq. (2.40) directly instead,

∂zγl =
[
2GlLlNl

]−1[
Ir

12
− Ir

11
γ

l

]
+ iAzγl + iγlA

∗
z , (2.54)

where the components Ir
11

and Ir
12

are extracted from eq. (2.48),

2Ir
11

Gt0

=
[
g

l
g

r
− f

l
f̃

r

][
1+ µ(m ·σ)

]

−
[
1+ µ(m ·σ)

][
g

r
g

l
− f

r
f̃

l

]

+
[
g

l
(m ·σ)g

r
− f

l
(m ·σ∗)f̃

r

][
µ+ κ(m ·σ)

]
(2.55)

−
[
µ+ κ(m ·σ)

][
g

r
(m ·σ)g

l
− f

r
(m ·σ∗)f̃

l

]

+ iλ
[
g

l
(m ·σ) − (m ·σ)g

l

]
,

2Ir
12

Gt0

=
[
g

l
f

r
− f

l
g̃

r

][
1+ µ(m ·σ∗)

]

−
[
1+ µ(m ·σ)

][
g

r
f

l
− f

r
g̃

l

]

+
[
g

l
(m ·σ)f

r
− f

l
(m ·σ∗)g̃

r

][
µ+ κ(m ·σ∗)

]
(2.56)

−
[
µ+ κ(m ·σ)

][
g

r
(m ·σ)f

l
− f

r
(m ·σ∗)g̃

l

]

+ iλ
[
f

l
(m ·σ∗) − (m ·σ)f

l

]
,

and gj = 2Nj − 1, fj = 2Njγj. The corresponding boundary condition
for ∂zγr is then found by letting z 7→ −z and l ↔ r in all the equations
above, and boundary conditions for ∂zγ̃l

and ∂zγ̃r
are found by tilde

conjugation of the equations for ∂zγl and ∂zγr.
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2.5 proximity effect

2.5 proximity effect

One of the key observable properties of a superconducting hybrid system
is the local density of states Nσ(ε, z), i.e. the number of quantum states
at position z that a quasiparticle with energy ε and spin σ could occupy.
This quantity is proportional to the real part of the Green’s function,58

Nσ(ε, z) = N0 Re
{
gr

σσ(ε, z)
}

, (2.57)

where N0 is the density of states per spin at the Fermi level when the ma-
terial is in its normal state. Technically, N0 should have been a function of
energy, but in quasiclassical theory it is assumed that the quasiparticle en-
ergy ε is much smaller than the Fermi energy, in which case N0 is nearly
constant.20 Since typical superconductors have gaps of order 1meV,59,60

while the Fermi energy is around 1–10 eV,61 this usually holds very well.
Numerically, it is more convenient to study the normalized density of
statesDσ ≡ Nσ/N0, and in most cases the system is adequately described
by the spin-independent density of states D ≡ (D↑+D↓)/2. We therefore
focus on the normalized and spin-independent density of states

D(ε, z) =
1

2
Re Tr

{
gr(ε, z)

}
(2.58)

throughout this thesis, which after Riccati parametrization takes the form

D(ε, z) =
1

2
Re Tr

{
N(1+ γγ̃)

}
. (2.59)

Although the density of states as defined above is a local quantity, we
will frequently refer to D(ε) without explicitly specifying the location, in
which case it is implied that it is measured at the center of the material.
Notably, in the limit of weak superconductivity ‖fr‖ � 1, the zero-energy
density of states D(0) can be written in the form

D(0) ∼= 1−
1

2

∣∣fr

s(0)
∣∣2 + 1

2

∣∣frt(0)
∣∣2 . (2.60)

The characteristic density of states is therefore flat and featureless for a
normal metal (fig. 2.2a), displays a zero-energy gap for singlet supercon-
ductors (fig. 2.2b), and has a zero-energy peak for triplet superconductors.
Thus, measuring the density of states provides a simple yet effective way
to determine whether the system is dominated by singlet or triplet pairs.
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(b) Superconductor.

figure 2.2: Density of statesD(ε) for a normal metal and a bulk superconductor.
In the former case, the density of states is flat and featureless; in the latter, it is
suppressed within the gap ε ∈ (−∆,+∆), but enhanced at the edges ε = ±∆.

Empirically, the density of states can be directly probed using tunneling
spectroscopy.20,21,62 The basic concept is that an electron with energy ε can
only tunnel between two materials with a nonzero density of states N(ε),
so the tunneling probability depends on a product TNl(ε)Nr(ε) between
the interface transparency T , left density of statesNl(ε), and right density
of states Nr(ε). However, when a voltage V is applied to the junction,
the electron acquires the energy eV when tunneling, thus shifting the
product to TNl(ε)Nr(ε+ eV) instead. By using a normal metal with a
constant density of states Nl as the left material, and a superconductor
with an energy-dependent density of states Nr(ε) as the right material,
measuring the tunneling probability as a function of voltage provides a
way to probe the density of states of a superconductor. More precisely,
what an experimentalist would measure is the net tunneling current

I = 2πT

∫
dεNl(ε)

[
n(ε) −n(ε+ eV)

]
Nr(ε+ eV) , (2.61)

where n(ε) = 1/
[
1+ exp(ε/T)

]
is the Fermi–Dirac distribution function.

At sufficiently low temperatures and voltages, this implies that

dI
dV

∼= 2πeT Nl(0)Nr(eV) , (2.62)

so measuring the differential conductance dI/dV provides a direct insight
into the density of states in the superconductor for the energy ε = eV .20,21

These measurements can be performed with around 100nm precision us-
ing metallic probes at predefined locations,63 or in principle all the way
down to atomic precision using a scanning tunneling microscope.64,65
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When a superconductor is brought into contact with a normal metal,
it can induce superconducting properties in the normal metal near the
interface, while the same properties are suppressed in the superconduc-
tor. This can intuitively be understood as a leakage of Cooper pairs from
the superconductor into the normal metal, or conversely, as a drainage
of Cooper pairs from the superconductor by the normal metal. The mi-
croscopic explanation is given by Andreev reflections at the interface.66–68

When an electron in the normal metal reaches the interface to a super-
conductor, and has a subgap energy |ε| < |∆|, it cannot enter the material
as a normal electron since the density of states is zero there. Instead,
there are two possible outcomes: the electron can either be reflected as an
electron, or Andreev reflected as a hole. In the latter case, what actually
happens is that the electron joins up with another electron at the interface,
and is transmitted into the superconductor as a Cooper pair. The net ef-
fect of this process is to transfer two subgap electrons from the normal
metal to the superconductor, thus lowering the density of states in the
normal metal, and inducing a minigap near the interface. Conversely, a
hole can also be Andreev reflected off the interface as an electron, effec-
tively removing a Cooper pair from the superconductor, and suppressing
the superconductivity of the material. Combined, the Andreev reflec-
tion of electrons and holes explains how a minigap is induced in normal
metals, and how the gap is suppressed in superconductors (see figs. 2.3
and 2.4). This proximity effect can be studied by measuring supercurrents
up to roughly one coherence length from the interface, i.e. ξs =

√
D/∆

for superconductors, ξt =
√
D/2πT for normal metals at temperature T ,

and ξf =
√
D/h for ferromagnets with exchange field h.

The figures we present on the next page highlight both the forward
proximity effect, which is how the superconductor affects the normal
metal, and the inverse proximity effect, which is how the superconductor
reacts. Numerically, this requires a self-consistent approach, where we al-
ternate between solving the equations in the superconductor and normal
metal until the solution stabilizes. However, for sufficiently large super-
conductors and low interface transparencies, the density of states in the
normal metal can be calculated to a close approximation while neglecting
the inverse proximity effect, saving a tremendous amount of computation
time. In the rest of this thesis, this simplification is made when computing
the density of states. We emphasize that this is adequate for calculating
observables in the normal metal in equilibrium, such as tunnelling cur-
rents and density of states, but not for calculating the critical temperature
or non-equilibrium properties.
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figure 2.3: Proximity effect. The superconductor induces a so-called minigap
in the normal metal, and since the calculation was performed self-consistently,
the normal metal simultaneously induces subgap states in the superconductor.

figure 2.4: Local density of states D(ε, z) for a superconductor/ferromagnet
bilayer. Since the length of the system is only 2ξs, the superconductor manages
to induce a minigap throughout the normal metal (z > 0), while the gap is
weakened throughout the superconductor (z < 0).
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When a superconductor is brought into contact with a ferromagnet, the
proximity effect can manifest in radically different ways.14,16,17,69–74 The
essential physics can again be understood as a leakage of Cooper pairs
into the adjacent material. In a conventional bcs superconductor, all the
Cooper pairs reside in a singlet state |↑↓〉− |↓↑〉. However, in a ferromag-
net the exchange field h produces a spin-splitting of the density of states,
which causes the pairs to acquire a finite momentum q = 2mhz/p. This
in turn leads to spatial oscillations in the superconducting wave function,
so the singlet state |↑↓〉− |↓↑〉 can transform into the triplet state |↑↓〉+ |↓↑〉
as the pairs penetrate into the ferromagnet:

|↑↓〉− |↓↑〉 7→ cosqz
[
|↑↓〉− |↓↑〉

]
+ i sinqz

[
|↑↓〉+ |↓↑〉

]
. (2.63)

This is known as spin-mixing. The presence of ferromagnetic order also
modifies the fundamental process of Andreev reflection. The reason is
that an incoming particle flips its spin under Andreev reflection, thus
switching between the two spin bands N↑(ε) and N↓(ε) in the process. In
strong ferromagnets, the difference between the spin bands can be large
enough to suppress Andreev processes, resulting in a very different be-
haviour from normal metals.73 In the extreme case of half-metals, which
are 100% spin-polarized ferromagnets, conventional Andreev reflections
are entirely forbidden.75

Note that the triplet pairs |↑↓〉+ |↓↑〉which are generated by the proxim-
ity effect in a ferromagnet are what we call short-range triplet components,
which decay over the typically short distance scale ξf in the ferromagnet.
For practical applications, generating the long-range triplet components |↑↑〉
and |↓↓〉 is a lot more interesting. These pairs consist of particles from
the same spin band, and decay over the much longer distance scale ξt,
making applications in mesoscopic spintronic circuits possible. They can
be produced by a spin-rotation of short-range triplet pairs, which may be
caused by either inhomogeneous magnetic fields,16,17 or materials with
spin-orbit coupling,18,19 where the latter is the subject that will be further
investigated in this thesis. One common feature for both the short-range
and long-range triplet components, is that their spectroscopic signature
is a zero-energy peak in the density of states (see figs. 2.5 and 2.6), which
follows directly from eq. (2.60).76
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figure 2.5: Proximity effect in a ferromagnet with the exchange field h = 3∆0.
The density of states exhibits either an induced minigap or a zero-energy peak,
depending on whether the singlet or triplet pairs dominate in eq. (2.60).

figure 2.6: Zero-energy density D(0) as a function of the ferromagnet length Lf

and exchange field strength h. For sufficiently large parameters, there is a sud-
den onset of triplet pairing in the ferromagnet, resulting in a large zero-energy
peak. As the system parameters increases past this point, the density of states
gradually flattens and converges towards that of a normal metal.
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Another way to generate triplet superconductivity is to exploit materi-
als with spin-active interfaces, which typically take the form of ferromag-
netic insulators a few nanometers thick.43,54–56 The spin-mixing is then
caused by the spin-dependent interfacial phase shifts, which produces
a sudden onset of triplet superconductivity when λ = ±1 (see figs. 2.7
and 2.8).77,78 For practical applications, spin-active interfaces between su-
perconductors and ferromagnets are especially interesting, since the com-
bination can be used to generate long-range triplets if the ferromagnetic
insulator and conductor are noncollinearly magnetized.
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figure 2.7: Proximity effect in a normal metal with spin-active interface (P = 0).
There is either a minigap or a zero-energy peak, depending on the value of λ.
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figure 2.8: Zero-energy density D(0) as a function of λ. The superconductor
induces a minigap in the normal metal, which abruptly transforms into a peak
for λ = ±1. For larger values of λ, the peak gradually flattens to D(0) = 1.
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An especially interesting scenario occurs when two superconductors
couple through a region of normal metal, forming a Josephson junction.79

Cooper pairs can tunnel between the two superconductors, and due to
interference effects, the dynamics of the junction depends strongly on the
phase difference φ ≡ ϕr −ϕl between the Cooper pairs in the right and
left superconductor.20,21 These effects can also be understood in terms of
multiple Andreev reflections.70 When a hole in the normal metal reflects
off the interface to a superconductor as an electron, it annihilates one of
the Cooper pairs in the superconductor. The electron then moves through-
out the normal metal, and reflects off the second superconductor as a hole,
thus producing a new Cooper pair in that superconductor. Through this
process of successive Andreev reflections, the net effect is that a Cooper
pair has been transmitted in a phase-coherent manner through a region
of normal metal by an intermediary electron/hole loop. Depending on
the phases of the two superconductors, the resulting interference can be
either constructive or destructive, which manifests as an enhancement or
suppression of the minigap in the normal metal (see fig. 2.9).

If the interfaces are opaque enough to be treated in the tunneling limit,d

and no magnetic interfaces or materials are involved, then the equations
that govern the behaviour of the Josephson junction are

I = Ic sinφ ,
dφ
dt

= 2eV . (2.64)

These equations show that applying a constant voltage V over the junction
causes the phase difference to vary linearly with time, and this produces
a sinusoidally varying current I. So a conventional Josephson junction
is a perfect voltage-to-frequency converter. We also note that the current
through the junction is maximized for φ = ±π/2, in which case it reaches
the critical current Ic. By integrating the electric power P = VI over time,
we find the energy of the junction to be

E =
Ic

2e
(1− cosφ) , (2.65)

which shows that energy can be stored in the junction by adjusting the
phase difference φ. In all conventional junctions, the critical current Ic is
a positive quantity, so the ground state has to be φ = 0. These systems
are therefore also referred to as 0-junctions.

dFor a discussion of high-transparency Josephson junctions, see Nazarov & Blanter.42
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figure 2.9: Density of states D(ε) for a conventional Josephson junction as a
function of the phase difference φ. The minigap shrinks as the phase difference
increases, and when it reaches φ = π, the density of states becomes entirely flat.

In Josephson junctions with magnetic elements, a whole range of new
effects are possible. First of all, the critical current Ic can become negative
due to the spatial modulation of the superconducting wave function. This
shifts the ground state to φ = ±π, resulting in a so-called π-junction.69,70

Furthermore, by combining 0-junctions and π-junctions, it is also possible
to create ϕ-junctions with degenerate ground states φ = ±ϕ.74 Moreover,
by exploiting materials with the right spin-orbit coupling, it should be
possible to create ϕ0-junctions, which would have a single but arbitrary
ground state φ = ϕ0.80,81 Both π-junctions and φ-junctions have already
been fabricated,82,83 while the ϕ0-junction remains a prediction for now.
Another recent prediction is that spin-orbit coupled Josephson junctions
can have a significant triplet proximity effect, even when φ = π.84 In other
words, Josephson junctions with ferromagnetic and spin-orbit coupled
components presents a rich set of novel physical phenomena, which may
have applications in both digital and quantum computing.85
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In addition to density of states and electrical currents, superconducting
hybrid systems exhibit another key observable that should be addressed:
the critical temperature. In conventional bulk superconductors, the gap ∆
starts at a material-dependent maximum ∆0 at absolute zero, and then
gradually decreases as the temperature of the system is increased. When
the temperature reaches a critical value Tcs, then the system undergoes
a phase transition to a non-superconductor, where the gap ∆ is the or-
der parameter of the transition.20–22 However, this process is modified
in mesoscopic hybrid systems. In figs. 2.3 and 2.4, it was shown that
the inverse proximity effect leads to the induction of subgap states in a
superconductor near the interface. This leads to a reduction of the su-
perconducting gap at all temperatures, which in turn shifts the phase
transition to a lower temperature Tc < Tcs. The magnitude of this effect is
strongly dependent on the composition of the hybrid system, and is usu-
ally maximized when the superconducting material is small (fig. 2.10),
when the adjoining material is large (fig. 2.11), when the interface trans-
parency is high, and in the presence of magnetic fields. In some extreme
cases, the critical temperature can even drop to Tc = 0, in which case the
superconducting properties are destroyed regardless of the temperature.

These effects have led to the suggestion of a superconducting spin-valve,
which consists of a superconductor interlocked between homogeneous
ferromagnets.86,87 When the magnets have a parallel field configuration,
the net magnetic field is quite strong, while in the antiparallel configura-
tion, the net magnetic field is zero. Since the two scenarios have vastly dif-
ferent effects on the superconductor inbetween, the critical temperature
of the system can have a strong dependence on the relative magnetization
angle. When operated in the correct temperature range, this permits the
superconductivity of the system to be toggled on and off by a rotation of
the magnetic field, thus providing a transistor-like switching effect based
on a magnetic input signal. Several such devices have already been man-
ufactured by experimentalists,88–93 and may have important applications
in the emerging field of superconducting spintronics.

We emphasize that critical temperature calculations always require a
self-consistent approach, thus making it a much more time-consuming
task than density of states calculations. However, the computation time
can be reduced by orders of magnitude when using a suitable algorithm.
Such an algorithm based on the principle of binary search is suggested in
appendix A, and an implementation in Matlab is enclosed at the back.
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figure 2.10: Critical temperature of a superconductor/ferromagnet bilayer as
a function of the length Ls of the superconductor. The adjoining ferromagnet
has three different lengths Lf and an exhange field h = 10∆0. Note that the
superconductivity vanishes entirely for Ls

∼= 0.5ξs, but reaches nearly 50% of the
bulk value already at Ls

∼= 0.6ξs, indicating that the system is very sensitive to
parameter changes in this region.
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figure 2.11: Critical temperature of a superconductor/ferromagnet bilayer as a
function of the length Lf of the ferromagnet. The exchange field is h = 10∆, and
the superconductor has three different lengths Ls. For Ls = 0.525ξs, the critical
temperature drops to zero for Lf

∼= 0.6ξs. No indications of nonmonotonic be-
haviour are observed; this is consistent with the results of Fominov et al., who
only reported such behaviour for systems where either the interface parameter ζ
or exchange field h is much smaller than for the systems considered here.94

29





3
S U P E R C O N D U C T I N G G A P

In this chapter, we derive a self-consistency equation for the gap ∆(x),
which will enable the gap to be calculated from the Green’s functions of
the material. We will presume a conventional bcs superconductor with
an s-wave symmetry. Applying the results to a bulk superconductor then
produces self-consistency conditions that relate the Debye frequency ωc,
zero-temperature gap ∆0, and critical temperature Tc of the material.
These results are finally substituted back into the equations from whence
they came, which reduces the number of independent parameters in the
equations. The derivation is initially restricted to the Keldysh formalism,
but the results are later translated to the Matsubara formalism as well.

3.1 keldysh formalism

The starting point for deriving the gap equation is the Keldysh Green’s
function, and specifically the anomalous component defined in eq. (2.17).
By evaluating this function at opposite spins but coinciding spacetime
coordinates, and then rewriting commutators according to the fermionic
anticommutation relations, we obtain the equations

Fk

↑↓(x, t; x, t) = −2i〈ψ↑(x, t)ψ↓(x, t)〉 , (3.1)

Fk

↓↑(x, t; x, t) = +2i〈ψ↑(x, t)ψ↓(x, t)〉 . (3.2)

The superconducting gap was defined as ∆(x, t) ≡ λ〈ψ↑(x, t)ψ↓(x, t)〉, so
the above immediately suggests two different ways to calculate the gap,

∆(x, t) = +
iλ

2
Fk

↑↓(x, t; x, t) , (3.3)

∆(x, t) = −
iλ

2
Fk

↓↑(x, t; x, t) . (3.4)

Note that the only assumption we have made so far, is that the material
is a conventional bcs superconductor, i.e. that it is described by eq. (2.1).
Insofar as this assumption is satisfied, the gap equations above are exact.

Now that we know the superconducting gap as a function of the exact
Keldysh Green’s function Fk, the next step on the agenda is to derive a
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similar equation for the quasiclassical version fk. First, we introduce the
Wigner mixed coordinates,

Fk(x, t; x, t) = lim
ζ→0

lim
τ→0

Fk(x+ ζ/2, t+ τ/2; x− ζ/2, t− τ/2) , (3.5)

where the limits ensure that the relative coordinates ζ and τ are set to zero,
which is necessary because the absolute coordinates were coinciding. We
then proceed to Fourier transform the relative coordinates,

Fk(x, t; x, t) = V lim
ζ→0

lim
τ→0

∫
dε
(2π)

∫
d3p
(2π)3

ei(p·ζ−ετ)Fk(x,p, t, ε) , (3.6)

where V is the volume of the system. Evaluating the limits, we then get

Fk(x, t; x, t) = V
∫

dε
(2π)

∫
d3p
(2π)3

Fk(x,p, t, ε) . (3.7)

The momentum integral can be parametrized using spherical coordinates,

Fk(x, t; x, t) =
V

4π3

∫
dε
∫

dpp2
∫

dΩ
4π

Fk(x,p, t, ε) , (3.8)

where the last integral is an angular average over momentum directions,

Fk(x, t; x, t) =
V

4π3

∫
dε
∫

dpp2 〈 Fk(x,p, t, ε)〉 . (3.9)

The kinetic energy of the quasiparticles is defined as ξ ≡ p2/2m − µ,
where µ is the Fermi energy, so this may also be written as a ξ-integration,

Fk(x, t; x, t) =
V

4π3

∫
dε
∫

dξ
√
2m3(ξ+ µ) 〈 Fk(x,p, t, ε)〉 . (3.10)

Under the quasiclassical approximation, it is assumed that the excitation
energy ξ is much smaller than the Fermi energy µ, so the above becomes

Fk(x, t; x, t) ∼=
V

4π3

√
2µm3

∫
dε
∫

dξ 〈 Fk(x,p, t, ε)〉 , (3.11)

or written in terms of the density of states per spin N0 at the Fermi level,

Fk(x, t; x, t) ∼=
N0
2π

∫
dε
∫

dξ 〈 Fk(x,p, t, ε)〉 . (3.12)

Substituting in eq. (2.22), we finally obtain a direct relationship between
the exact function Fk(x, t; x, t) and its quasiclassical counterpart fk(x, t, ε),

Fk(r, t; r, t) ∼= −
i

2
N0

∫
dε fk(x, t, ε) . (3.13)

32



3.1 keldysh formalism

Substituting this into eqs. (3.3) and (3.4), we get the quasiclassical results

∆(x, t) = +
1

4
N0λ

∫
dε fk

↑↓(x, t, ε) , (3.14)

∆(x, t) = −
1

4
N0λ

∫
dε fk

↓↑(x, t, ε) . (3.15)

For reasons that will become apparent later, it will prove prudent to aver-
age the two equations above, such that we obtain the single equation:

∆(x, t) =
1

8
N0λ

∫
dε
[
fk

↑↓(x, t, ε) − fk

↓↑(x, t, ε)
]
. (3.16)

So far, we have assumed a singlet superconductor in the quasiclassical
regime—but we have not yet made any mention of thermal equilibrium.
Thus, the gap equation above is equally valid for non-equilibrium systems.

We will now restrict our attention to thermal equilibrium, in which case
eqs. (2.23) and (2.24) provide a direct relationship between the Keldysh
Green’s function fk and the retarded Green’s function fr,

fk(x, ε) =
[
fr(x, ε) + frt(x,−ε)

]
tanh(ε/2T) . (3.17)

We begin by extracting the antidiagonal elements of the matrix equation,

fk

↑↓(x, ε) =
[
fr

↑↓(x, ε) + fr

↓↑(x,−ε)
]

tanh(ε/2T) , (3.18)

fk

↓↑(x, ε) =
[
fr

↓↑(x, ε) + fr

↑↓(x,−ε)
]

tanh(ε/2T) , (3.19)

and then perform a singlet/triplet decomposition according to eq. (2.32),

fk

↑↓(x, ε) =
[
fr

z(x, ε) + fr

s(x, ε) + fr

z(x,−ε) − fr

s(x,−ε)
]

tanh(ε/2T) , (3.20)

fk

↓↑(x, ε) =
[
fr

z(x, ε) − fr

s(x, ε) + fr

z(x,−ε) + fr

s(x,−ε)
]

tanh(ε/2T) . (3.21)

When we substitute these identities into eq. (3.16), the triplet components
cancel, and we are therefore left with an equation that depends solely on
the singlet component of the retarded Green’s function,

∆(x) =
1

4
N0λ

∫
dε
[
fr

s(x, ε) − fr

s(x,−ε)
]

tanh(ε/2T) . (3.22)

If the integral above is performed for all real values of ε, it turns out to be
logarithmically divergent for a bulk superconductor. However, physically,
the energy spectrum that should be considered is restricted by the energy
spectra of the phonons that mediate the attractive electron–electron inter-
action in the superconductor. More precisely, the attractive interaction λ
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only exists in a limited regime (−ωc,ωc) for the energy transfer in the
electron–electron scattering process, where the cutoff ωc is the Debye
frequency. We therefore restrict the integration domain to this range,

∆(x) =
1

4
N0λ

ωc∫
−ωc

dε
[
fr

s(x, ε) − fr

s(x,−ε)
]

tanh(ε/2T) . (3.23)

Note that both tanh(ε/2T) and fr

s(x, ε) − fr

s(x,−ε) are odd functions of ε,
such that their product has to be an even function of ε. Exploiting this
symmetry, we can constrain the domain of integration to positive energies:

∆(x) =
1

2
N0λ

ωc∫
0

dε
[
fr

s(x, ε) − fr

s(x,−ε)
]

tanh(ε/2T) . (3.24)

We have not yet made the assumption that ∆(x) is real, so eq. (3.24) holds
when the superconductor has a phase as well. Even though the integral
is only taken over positive values of ε, because of the term fr

s(x,−ε), we
still need to know the Green’s function at negative energies to calculate
the gap. This nuisance can be alleviated by exploiting another symmetry,

fr

s(x, ε) = −fr∗
s (x,−ε∗) , (3.25)

which holds in the gauge where ∆(x) is real. Substituted into eq. (3.24),
we obtain a particularly convenient version of the gap equation, which
only depends on the real part of the singlet component fr

s(x, ε) for ε > 0:

∆(x) = N0λ

ωc∫
0

dεRe
{
fr

s(x, ε)
}

tanh(ε/2T) . (3.26)

Now that a suitable self-consistency equation is available, the next step
is to apply it to a bulk superconductor. In this kind of system, the Usadel
equation has the exact solution

ĝr

bcs
(θ) =

(
cosh(θ)σ0 sinh(θ)iσy
sinh(θ)iσy − cosh(θ)σ0

)
, (3.27)

which has been parametrized by θ(ε) ≡ atanh(∆/ε).35–37 Substituting the
top-right block fr = sinh(θ)iσy into eq. (2.32), solving for fr

s, and using
sinh(atanh(u)) = u/

√
1− u2 to untangle the result, we for ε > 0 find that

fr

s(ε) =
∆√

ε2 −∆2
. (3.28)
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Note that this function is purely real for |ε| > |∆|, and purely imaginary
otherwise, which means that the real part is Re

{
fr

s(ε)
}
= fr

s(ε)θ(|ε|− |∆|).
By substituting this into eq. (3.26), and dividing the result by ∆N0λ, we
obtain the self-consistency equation for the gap of a bulk superconductor,

1

N0λ
=

ωc∫
∆

dε
tanh(ε/2T)√
ε2 −∆2

. (3.29)

Let us consider the zero-temperature limit. The gap approaches some
finite upper bound ∆→ ∆0 as T → 0, and the hyperbolic tangent is elimi-
nated by the convergence tanh(ε/2T)→ sgn(ε), so the equation becomes

1

N0λ
=

ωc∫
∆0

dε√
ε2 −∆20

. (3.30)

The integral can be solved by the substitution ε = ∆0 coshu, followed
by some standard hyperbolic identities. Reordering the results to isolate
the Debye frequency ωc, we then obtain an equation that can be used to
calculate it from the zero-temperature gap ∆0:

ωc = ∆0 cosh(1/N0λ) . (3.31)

Hence there is one less parameter that has to be measured experimentally.
We then turn to the critical temperature Tc of the bulk superconductor,

which is the temperature where the gap vanishes. Going back to eq. (3.29),
and letting T → Tc and ∆→ 0, we get

1

N0λ
=

ωc∫
0

dε
tanh(ε/2Tc)

ε
, (3.32)

which can be cast in a more convenient form by an integration by parts,21

1

N0λ
= tanh(ωc/2Tc) ln(ωc/2Tc) −

1

2Tc

ωc∫
0

dε
ln(ε/2Tc)

cosh2(ε/2Tc)
. (3.33)

In the weak-coupling limitωc � Tc, the factor tanh(ωc/2Tc) converges to
unity, and it follows that the first term can be approximated by ln(ωc/2Tc).
As for the second term, the integral converges rapidly to ln(π/4eγ), where
γ ∼= 0.57722 is the Euler–Mascheroni constant. Ergo, the self-consistency
equation above may be approximated as

1

N0λ
= ln(ωc/2Tc) − ln(π/4eγ) , (3.34)
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and solving for the Debye frequency ωc we obtain:

ωc =
πTc

2eγ
exp(1/N0λ) . (3.35)

This provides an alternative to eq. (3.31) by enabling the calculation of
the appropriate cutoff from the critical temperature Tc instead of the
gap ∆0. Since we assumed the weak-coupling limit ωc � Tc, the above
suggests that N0λ� 1, in which case exp(1/N0λ) ∼= 2 cosh(1/N0λ). Note
that the accuracy of this approximation varies drastically, even among
typical low-temperature superconductors; for instance, the deviation is
less than 0.02% for beryllium (N0λ ∼= 0.23), about 0.5% for aluminum
(N0λ ∼= 0.38), and almost 9% for niobium (N0λ ∼= 0.82).95 There also ex-
ist strong-coupled superconductors with N0λ > 1, such as the niobium
alloys Nb3Al (N0λ ∼= 1.7) and Nb3Sn (N0λ ∼= 1.8),96 for which the approx-
imation would be off by more than 30%. Some caution should therefore
be exercised before making the assumptionN0λ� 1. However, assuming
for the time being that it is satisfied, we may combine eqs. (3.31) and (3.35)
to obtain the well-known bcs ratio between the zero-temperature gap ∆0
and critical temperature Tc:21,22

∆0
Tc

=
π

eγ
. (3.36)

With eqs. (3.31) and (3.36) in our repertoire, measuringN0λ and either the
Debye frequency ωc, zero-temperature gap ∆0, or critical temperature Tc
is sufficient to determine the rest of these parameters—thus halving the
number of independent parameters in the model. Substitution of these
results into eq. (3.26) produces the improved self-consistency equation:

∆(x) = N0λ

∆0 cosh(1/N0λ)∫
0

dε Re
{
fr

s(x, ε)
}

tanh
(
π

2eγ
ε/∆0
T/Tc

)
. (3.37)

This equation is particularly well-suited for numerical simulations. One
advantage is that we measure all energies relative to the zero-temperature
gap ∆0, and temperatures relative to the critical temperature Tc. The cal-
culations may therefore be executed in a material-agnotic way, and then
adapted to a number of physical materials later by tuning ∆0 and Tc to
their empirical values. The only physical parameter that we need to know
at the time of the calculation, is the dimensionless coupling constant N0λ,
which measures the relative significance of bcs interactions in a material.
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We also emphasize that the Green’s function is evaluated only at positive
energies, which entails that it is sufficient to solve the Usadel equation
for 0 6 ε 6 ∆0 cosh(1/N0λ) to determine the gap. Finally, the fact that
the integrand is real can be convenient implementation-wise, as not all
numerical integration/interpolation routines support complex functions.
We emphasize that this result is only valid for quasiclassical isotropic bcs

superconductors in equilibrium in a real gauge.

3.2 matsubara formalism

We will use eq. (3.23) as a starting point for deriving a gap equation in the
Matsubara formalism. Closing the integration contour along a half-circle
in the upper complex half-plane as shown in fig. 3.1, but neglecting the
integral along the half-circle in the weak coupling limit ωc � Tc, we get

∆(x) =
1

4
N0λ

∮
Γ

dε
[
fr

s(x, ε) − fr

s(x,−ε)
]

tanh(ε/2T) . (3.38)

Since the hyperbolic tangent has poles at the imaginary energies ε = iωn,
where ωn ≡ (2n+ 1)πT are the Matsubara frequencies, we can recast the
integral as a sum using Cauchy’s residue theorem,

∆(x) = πiTN0λ

nc∑
n=0

[
fr

s(x, iωn) − fr

s(x,−iωn)
]

, (3.39)

where nc ∼= ωc/2πT is the index of the largest Matsubara frequency ωn
below the Debye frequency ωc. However, this result is a bit unsettling:
eq. (2.31) only relates the retarded functions to the Matsubara functions at
positive Matsubara frequencies, while the second term above is evaluated
at negative frequencies. The solution to this problem is to select different
integration contours for the two terms in eq. (3.23),

∆(x) =
1

4
N0λ

{∮
Γ

dε fr

s(x, ε) tanh(ε/2T) −
∮
Γ ′
dε fr

s(x,−ε) tanh(ε/2T)
}

,

(3.40)
where the new contour Γ ′ consists of a half-circle in the lower complex
half-plane as shown in fig. 3.2. The first term in eq. (3.40) is equivalent to
the first term in eq. (3.38), but the second term has two new properties.
Firstly, since the contour Γ ′ has negative orientation, we have to remember
to include an extra minus sign upon invocation of the residue theorem.
Secondly, since the poles enclosed by Γ ′ are located at ε = −iωn, we
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have fr

s(x,−ε) = fr

s(x,+iωn), which is evaluated at positive Matsubara
frequencies. Thus, applying the residue theorem to eq. (3.40) produces

∆(x) = 2πiTN0λ

nc∑
n=0

fr

s(x, iωn) . (3.41)

In conjunction with eq. (2.31), the above can be rewritten as an equation
for the superconducting gap in terms of the Matsubara Green’s function:

∆(x) = 2πTN0λ

nc∑
n=0

fm

s (x,ωn) . (3.42)
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figure 3.1: The integration contour Γ . The radius of the contour is the Debye
frequency ωc, and the indicated poles are the Matsubara frequencies ε = iωn.
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figure 3.2: The integration contour Γ ′. The radius of the contour is again ωc,
but the enclosed poles are now at the negative Matsubara frequencies ε = −iωn.
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3.2 matsubara formalism

The Matsubara Green’s function for a bulk superconductor can be found
by substituting ε = iωn and ifr

s(iωn) = f
m

s (ωn) into eq. (3.28),

fm

s (ωn) =
∆√

ω2n +∆2
. (3.43)

Substituting the above into eq. (3.42), and subsequently dividing by ∆N0λ,
we obtain a self-consistency equation for bulk superconductors,

1

N0λ
=

nc∑
n=0

2πT√
ω2n +∆2

. (3.44)

We will then consider the limit of critical temperature T → Tc, which
means that ∆→0. Reinstating ωn = (2n+ 1)πT , the equation reduces to

1

N0λ
=

nc∑
n=0

1

n+ 1/2
, (3.45)

which may be written in a closed form using the digamma function ψ( · ),

1

N0λ
= ψ

(
nc +

1

2

)
−ψ

(
1

2

)
. (3.46)

This result was derived at the critical temperature Tc. However, the cutoff
nc = ωc/2πT − 1/2 is inversely proportional to temperature, so we may
as well rewrite the result in a form that is valid at arbitrary temperatures:

1

N0λ
= ψ

(
T

Tc

[
nc +

1

2

])
−ψ

(
1

2

)
. (3.47)

This result is the Matsubara equivalent to eq. (3.31), in that it provides a
method of determining an appropriate cutoff nc from the coupling N0λ.
Alternatively, the cutoff nc may be calculated from the explicit equation

nc =
1

4eγ

(
Tc

T

)
exp

(
1

N0λ

)
−
1

2
, (3.48)

which follows by substitution of eq. (3.35) into nc = ωc/2πT − 1/2.a This
result shows that one in principle has to include infinitely many terms in
the sum as T → 0, regardless of the coupling strength N0λ. On the other
hand, as T → Tc fewer and fewer terms are required, and the Matsubara

aThe calculated value of the cutoff nc should of course be truncated to an integer,
regardless of whether we used eq. (3.47) or (3.48) to calculate it.
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formalism becomes increasingly efficient. This behaviour can intuitively
be understood by consulting figs. 3.1 and 3.2; since the spacing between
the Matsubara frequencies ωn = (2n+ 1)πT increases with T , more and
more frequencies will be pushed out of the integration contours as the
temperature rises, resulting in fewer enclosed poles at high temperatures.

We will now use the results for a bulk superconductor to rewrite the
non-bulk self-consistency equation in a more convenient form. First, we
rewrite eq. (3.45) in the form

1

N0λ
∼=

n ′c∑
n=0

1

n+ 1/2
−

n ′c∫
nc

dn
n+ 1/2

, (3.49)

where we have increased the summation cutoff from nc = ωc/2πTc− 1/2

to n ′c = ωc/2πT − 1/2, and approximated the difference as an integral.
Rewriting the summand as 2πT/ω ′n, and evaluating the integral, we get

1

N0λ
= 2πT

n ′c∑
n=0

1

ω ′n
+ ln

(
T

Tc

)
. (3.50)

Finally, we multiply eq. (3.50) by ∆(x), divide eq. (3.42) by N0λ, and then
subtract the results to obtain the improved self-consistency equation:47

∆(x) ln
(
T

Tc

)
= 2πT

nc∑
n=0

(
fm

s (x,ωn) −
∆(x)

ωn

)
. (3.51)

In the above,ωn = (2n+1)πT andωc = (2nc+1)πT , i.e. the primes were
dropped, as there should be no risk of confusion with (2n+ 1)πTc here.
This form of the equation is particularly popular for critical temperature
calculations in superconducting hybrid systems.87,94 As a concluding re-
mark, the above equation may also be solved explicitly for the gap ∆(x),

∆(x) =
2eγ(T/Tc)∆0

ln(T/Tc) +ψ(nc + 1/2) −ψ(1/2)

nc∑
n=0

fm

s (x,ωn) , (3.52)

where we evaluated the sum over 2πT/ωn in terms of digamma functions,
and assumed that the bcs coupling is weak enough for eq. (3.36) to hold.
This result has the same form as eq. (3.42); the difference is that N0λ has
been replaced by a function of the relative temperature T/Tc and cutoff nc,
where the latter abstracts all information aboutN0λ according to eq. (3.48).
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4
W E A K P R O X I M I T Y E F F E C T

In this chapter, we consider layered structures with superconducting and
magnetic elements, and include the effects of in-plane Rasha–Dresselhaus
couplings. We linearize the diffusion equations of the system, and then
separate the equations into singlet and triplet projections. The results are
valid in two notable regimes. The first is near the critical temperature Tc,
when superconductivity is suppressed in the entire structure. The second
is when the interface transparency is low, in which case superconductivity
is suppressed in the magnetic regions, while the superconducting regions
may be approximated by bcs bulk solutions. As we will see in chapter 5,
these equations also provide a very good qualitative explanation for the
behaviour of the system in the strong proximity regime.

4.1 linearization of the diffusion equation

While the Green’s functions are g = 1 and f = 0 for normal metals, super-
conductivity is associated with the appearance of a nonzero anomalous
component f in the system. The assumption of a weak proximity effect may
therefore be translated to the mathematical statements g ∼= 1 and ‖f‖ � 1,
which justifies a linearization of the diffusion equation in this regime. In
terms of the Riccati parametrization, this means that N ∼= 1 and ‖γ‖ � 1.
Neglecting all factors of N and Ñ and all higher-order γ and γ̃ terms in
eq. (2.44), we obtain the linearized Usadel equation

D∂2zγ =− 2iεγ−∆σy − ih · (σγ− γσ∗)
+D

[
2AγA∗ +AAγ+ γA∗A∗

]

+ 2iD
[
Az(∂zγ) + (∂zγ)A

∗
z

]
.

(4.1)

For simplicity, we focus on the Rashba–Dresselhaus coupling in eq. (2.10).
Note that each product involving A above should be interpreted as a dot
product of the vector structure and matrix product of the matrix structure,
which means that AγA∗ = AxγA

∗
x +AyγA

∗
y and A2 = A2x +A

2
y. Clearly

AA = A∗A∗ = 2a2 and Az = A
∗
z = 0, so eq. (4.1) simplifies to

D∂2zγ = −2iεγ−∆σy − ih · (σγ− γσ∗) + 4Da2γ+ 2DAγA∗ . (4.2)
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In the weak proximity regime, the anomalous Green’s function fr and
Riccati parameter γ are related by fr = 2γ. Combining this with eq. (2.32),
we get the singlet/triplet decomposition

γ =
1

2
(fr

s + f
r

t ·σ)iσy , (4.3)

from which we derive the trace identities

ifr

s = Tr
{
γσy
}

, ifrt = Tr
{
γσyσ

}
, (4.4)

ih · frt = Tr
{
(h ·σ)γσy

}
, ihfr

s = Tr
{
(h ·σ)γσyσ

}
, (4.5)

−ih · frt = Tr
{
γ(h ·σ∗)σy

}
, −ihfr

s = Tr
{
γ(h ·σ∗)σyσ

}
. (4.6)

To derive these relations, substitute eq. (4.3) into the expressions, and use
the identities Tr {a+b ·σ} = 2a, Tr {(a+b ·σ)σ} = 2b, and σyσ∗σy = −σ.
If we right-multiply eq. (4.2) by σy and σyσ, respectively, and then use
the list of identities above to evaluate their traces, we obtain the equations

i

2
D∂2zf

r

s = εf
r

s +h · frt + 2iDa2fr

s +DTr
{
AγA∗σy

}
−∆ , (4.7)

i

2
D∂2zf

r

t = εf
r

t + hfr

s + 2iDa2frt +DTr
{
AγA∗σyσ

}
. (4.8)

As for the remaining trace terms, an explicit matrix calculation shows that

AγA∗σy = −ia2fr

s − ia
2(fr

xσy + f
r

yσx) sin 2χ+ ia2fr

zσz , (4.9)

from which it follows directly that

DTr
{
AγA∗σy

}
= −2iDa2fr

s , (4.10)

DTr
{
AγA∗σyσ

}
= −2iDa2(fr

xey + f
r

yex) sin 2χ+ 2iDa2fr

zez . (4.11)

Substituting these results back into eqs. (4.7) and (4.8), we finally obtain
the linearized Usadel equations for the components fr

s and frt,

i

2
D∂2zf

r

s = εf
r

s +h · frt −∆ , (4.12)

i

2
D∂2zf

r

t = εf
r

t +hf
r

s + 2iDa
2Ω(χ)frt , (4.13)

where we have defined the spin-orbit interaction matrix

Ω(χ) ≡




1 − sin 2χ 0

− sin 2χ 1 0

0 0 2


 . (4.14)
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4.2 linearization of the boundary conditions

Note that all the spin-orbit terms in the singlet equation cancelled,
while the corresponding terms in the triplet equation could be neatly
factored into a strength-dependent factor a2 and a geometry-dependent
factorΩ(χ). The interaction matrixΩ(χ) describes two different physical
effects. The first kind is caused by the diagonal terms, which modifies
the effective energy of the triplet component fr

k to Ek = ε+ 2iDa2Ωkk.
Imaginary energies are usually associated with inelastic scatterings that
destroy Cooper pairs, and are well-known to have a detrimental effect
on superconductivity. The diagonal elements of Ω(χ) therefore suppress
triplet superconductivity in a material. The second effect is caused by
off-diagonal terms, which causes a mixing of the components fr

x and fr

y.
If the exchange field h has a projection in the xy-plane, these terms may
cause the short-range triplet component fr

‖ along h to oscillate into a long-
range triplet component fr

⊥ perpendicular to h, leading to a manifestation
of long-range triplet superconductivity in the material. The off-diagonal
elements may therefore enhance triplet superconductivity. These triplet
mixing terms are proportional to sin 2χ, which suggests that the mixing
will be strongest for χ = ±π/4, but vanishing for χ = 0 and χ = ±π/2. In
other words, as long as both the exchange field and spin-orbit field are
confined to the xy-plane, a pure Rashba coupling or pure Dresselhaus
coupling is insufficient to create any triplet mixing, while a Rashba and
Dresselhaus coupling of equal magnitude maximizes the triplet mixing.

4.2 linearization of the boundary conditions

We will now consider the Kuprianov–Lukichev boundary conditions in
the weak proximity limit. Linearizing eqs. (2.52) and (2.53), we get

∂zγl =
1

Llζl

(γr − γl) + iAzγl + iγlA
∗
z , (4.15)

∂zγr =
1

Lrζr

(γr − γl) + iAzγr + iγrA
∗
z . (4.16)

Inserting Az = 0 and fr = 2γ, performing a singlet/triplet decomposition
like before, and assuming that the interface is located at z = 0, we get:

Llζl∂zf
r

s(0
−) = Lrζr∂zf

r

s(0
+) = fr

s(0
+) − fr

s(0
−) ; (4.17)

Llζl∂zf
r

t(0
−) = Lrζr∂zf

r

t(0
+) = frt(0

+) − frt(0
−) . (4.18)

So the derivative changes by a factor Llζl/Lrζr across the interface, and
will on both sides be proportional to the difference across the interface.
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4.3 magnetization in the z-direction

In this section, we consider the special case when the ferromagnet has
an exchange field along the z-axis, and where the spin-orbit coupling is
restricted to the ferromagnetic region. First of all, starting with a gap ∆
in the superconductor, eq. (4.12) implies that we necessarily also have a
singlet component fr

s there, and according to eq. (4.17), this component
leaks into the ferromagnet as well. Once inside the ferromagnet, eq. (4.13)
shows that the presence of a singlet component also induces a short-range
triplet component fr

z. However, the spin-orbit term in eq. (4.13) does not
provide any way for fr

z to rotate into one of the long-range components
fr

x and fr

y, so these components decouple entirely from the equations.
This means that we only need two equations in the superconductor,

i

2
D ∂2z f

r

s = εfr

s − ∆ , (4.19)

i

2
D ∂2z f

r

z = εfr

z , (4.20)

and two equations in the ferromagnet,

i

2
D ∂2z f

r

s = εfr

s , (4.21)

i

2
D ∂2z f

r

z = Ezf
r

z , (4.22)

where we defined the effective triplet energy

Ez ≡ ε + 4iDa2 , (4.23)

and the boundary conditions are given by eqs. (4.17) and (4.18). As was
pointed out in the previous section, an imaginary energy contribution is
detrimental to the presence of Cooper pairs, so the net effect of eq. (4.23)
is to make the triplet pairs less energetically favourable than singlet pairs.
This effect increases with the spin-orbit strength a, but is notably inde-
pendent of the spin-orbit angle χ. The latter implies that the effect should
be equally significant for systems with Rashba coupling and Dresselhaus
coupling, as long as the strength of the coupling is the same. Following
this argument a bit further, the implication would be a suppression of
triplets for high values of a, which would lead to a larger induced mini-
gap in the ferromagnet. If this suppression also reduces the leakage of
singlet pairs from the superconductor, we would also expect an increase
in critical temperature of the system for increasing a.
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4.4 magnetization in the xy-plane

4.4 magnetization in the xy-plane

We will now consider a slightly different geometry, where the exchange
field of the ferromagnet is constrained to the xy-plane instead,

h = h(cos θ ex + sin θ ey) . (4.24)

According to eq. (4.13), the presence of a singlet component fr

s will again
produce a short-range triplet component fr

‖ in the ferromagnet, but this
time along the direction (cos θ, sin θ, 0) in the xy-plane. Depending on the
particular values of the magnetization angle θ and spin-orbit angle χ, the
spin-orbit term in eq. (4.13) may then produce a long-range triplet compo-
nent fr

⊥ along the perpendicular direction (− sin θ, cos θ, 0). However, the
triplet component fr

z decouples completely from the equations since the
spin-orbit term only mixes fr

x and fr

y. This is in other words the opposite
situation from what we considered in the previous section, where it was
fr

x and fr

y that decoupled from the rest of the equations.
This can be made more explicit by rewriting the diffusion equation in

terms of fr

‖ and fr

⊥ , which can be expressed as

fr

‖ = cos θ fr

x + sin θ fr

y , (4.25)

fr

⊥ = − sin θ fr

x + cos θ fr

y . (4.26)

Rewriting eq. (4.12) using h · frt = hfr

‖ , and projecting eq. (4.13) along the
unit vectors (cos θ, sin θ, 0) and (− sin θ, cos θ, 0), respectively, we obtain

i

2
D∂2zf

r

s = εfr

s + hf
r

‖ −∆ , (4.27)

i

2
D∂2zf

r

‖ =
[
ε+ 2iDa2(1− sin 2θ sin 2χ)

]
fr

‖

− 2iDa2 cos 2θ sin 2χ fr

⊥ + hf
r

s ,
(4.28)

i

2
D∂2zf

r

⊥ =
[
ε+ 2iDa2(1+ sin 2θ sin 2χ)

]
fr

⊥

− 2iDa2 cos 2θ sin 2χ fr

‖ .
(4.29)

From this result, we get three decoupled equations in the superconductor,

i

2
D∂2zf

r

s = εfr

s −∆ , (4.30)

i

2
D∂2zf

r

‖ = εf
r

‖ , (4.31)

i

2
D∂2zf

r

⊥ = εfr

⊥ , (4.32)
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and three coupled equations in the ferromagnet,

i

2
D∂2zf

r

s = εfr

s + hf
r

‖ , (4.33)

i

2
D∂2zf

r

‖ = E‖f
r

‖ +Xf
r

⊥ + hf
r

s , (4.34)

i

2
D∂2zf

r

⊥ = E⊥f
r

⊥ +Xf
r

‖ , (4.35)

where we defined the effective energies and mixing factor

E‖ ≡ ε+ 2iDa2(1− sin 2θ sin 2χ) , (4.36)

E⊥ ≡ ε+ 2iDa2(1+ sin 2θ sin 2χ) , (4.37)

X ≡ −2iDa2 cos 2θ sin 2χ . (4.38)

The boundary conditions are still given by eqs. (4.17) and (4.18).
These equations clearly elucidate the interplay between the different

kinds of pairing in the system. If we start with a singlet component fr

s,
the presence of an exchange field h causes a singlet/triplet mixing, which
produces the short-range triplet component fr

‖ . The spin-orbit field then
causes a triplet/triplet mixing given by X ∼ cos 2θ sin 2χ, which produces
the long-range component fr

⊥ . However, contrary to the case in ferro-
magnets without spin-orbit coupling, the long-range triplet component
is not necessarily the most stable species in the system. Notably, when
sgn θ = sgnχ, eqs. (4.36) and (4.37) show that the long-range component
has a much larger imaginary energy contribution than the short-range
component, suggesting that a strong spin-orbit interaction might make
the short-range component the most stable of the triplet components. It is
only when sgn θ = −sgnχ that both the exchange field and spin-orbit cou-
pling favours the long-range component, so this is the parameter regime
where we would expect a significant triplet proximity effect. Curiously,
for θ = −sgn(χ)π/4, there is no way to generate the long-range triplets
because X = 0, while E‖ is simultaneously maximized. This suggests
that we would observe a suppression of all triplet components for these
parameters, making the singlet component the dominant species.

While χ = ±π/4 is the optimal spin-orbit angle for generating long-
range triplets, it is not immediately obvious what an optimal value of θ
would be. One one hand, |X| is maximized for the axial field configura-
tions θ = 0 and θ = ±π/2 (see fig. 4.1); but on the other hand, E‖/E⊥ is
maximized for the intermediate value θ = sgn(χ)π/4 (see fig. 4.2). As
we will see in chapter 5, the result of the competition between these two
factors is a highly nonmonotonic dependence on θ.
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4.4 magnetization in the xy-plane

figure 4.1: Plot of the absolute value |X|/2Da2 of the mixing factor as a function
of the magnetization angle θ and spin-orbit angle χ. We see that |X| drops to
zero for χ = 0 and χ = ±π/2, so there is no triplet mixing for pure Rashba or
Dresselhaus couplings. The same happens for θ = ±π/4. This is consistent with
the results of Bergeret and Tokatly for in-plane field configurations.19

figure 4.2: Plot of the logarithmic energy ratio ln(E‖/E⊥) as a function of the
magnetization angle θ and spin-orbit angle χwhen ε = 0. In the bright yellow re-
gions where sgn θ = −sgn χ, we see that E‖ � E⊥, making the long-range triplet
components highly energetically favoured. The exact opposite situation E‖ � E⊥
occurs in the dark blue regions where sgn θ = sgn χ. In both cases, the most
extreme behaviour clearly happens when χ = ±π/4 and θ = ±π/4.
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4.5 matsubara formalism

If we extract and combine the anomalous components of eqs. (2.24) and (2.31),
we see that the Matsubara Green’s function fm can be expressed as

fm(z,ω) =

{
ifr(z, iω), ω > 0,

−ifrt(z,−iω), ω < 0,
(4.39)

which after a singlet/triplet decomposition using eq. (2.32) becomes

fm

s (z,ω) = ifr

s(z, i|ω|) , (4.40)

fmt (z,ω) = ifrt(z, i|ω|) sgnω . (4.41)

Note that the singlet component fm

s is an even function of the Matsubara
frequency ω, while the triplet component fmt is an odd function. Letting
ε 7→ i|ω| in eqs. (4.12) and (4.13), and substituting in eqs. (4.40) and (4.41),
we obtain the linearized diffusion equations in the Matsubara formalism,

1

2
D∂2zf

m

s = |ω|fm

s − i sgnωh · fmt −∆ , (4.42)

1

2
D∂2zf

m

t = |ω|fmt − i sgnωhfm

s + 2Da2Ω(χ)fmt . (4.43)

The boundary conditions take the exact same form as eqs. (4.17) and (4.18).
In general, the equations above have to be accompanied by eq. (3.51).

However, the linearized equations are only valid when either the interface
transparency is very low, or the system is close to the critical temperature.
In the first case, using a bulk approximation ∆ ∼= ∆0 in the superconducting
region is justified. In the second case, it is common to use the single-
mode approximation ∆ ∼= δ cos

[
k(z+ Ls)

]
for the superconducting region,

where Ls is the length of the superconductor, and the modulation k is
determined by solving the Usadel equation in both regions.94,97 The latter
can also be generalized to a multi-mode approximation by adding higher-
order terms of the kind δn cosh

[
κn(z + Ls)

]
.94 We will not pursue the

analytic solution of the linearized equations further in this thesis; instead,
we move on to the full numerical solution of the nonlinear equations
in the next chapter, but will use the linearized equations for qualitative
explanations of the observed phenomena.
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5
S T R O N G P R O X I M I T Y E F F E C T

In this chapter, we present numerical results for the density of states and
critical temperature of superconductor/ferromagnet hybrid systems with
in-plane Rashba–Dresselhaus coupling. We find that the observables have
a highly nonmonotonic dependence on magnetization angles and phase
differences, and that this behaviour can be qualitatively explained using
the linearized equations from the previous chapter.

5.1 density of states in bilayers

First, we will consider a superconductor/ferromagnet bilayer, where the
ferromagnetic region has an intrinsic spin-orbit coupling (see fig. 5.1).
The simulations are performed using a zero-temperature bulk solution
in the superconducting region, and the proximity effect is studied in the
form of the central density of states in the ferromagnetic region. We use
a ferromagnet of length Lf = ξs/2 which has a homogeneous in-plane
magnetization h = 3∆0(cos θex + sin θey), and study the behaviour of
the system as a function of the magnetization angle θ. The two materials
are adjoined by a tunneling interface with a relative resistance ζ = 3, and
the structure is surrounded by a vacuum of infinite resistance ζ =∞. We
assume an in-plane Rasbha–Dresselhaus coupling as defined in eq. (2.10),
which is parametrized by a spin-orbit strength a and spin-orbit angle χ.
Without the spin-orbit coupling, the density of states for a system with
these parameters is quite flat (D(0) = 1.025), but an explicit calculation of
the singlet and triplet projections confirms that both are present.

Superconductor

Ferromagnet + SOCLf

Ls

figure 5.1: The physical system considered in this section.
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The first plot that we present, is of the zero-energy density of statesD(0)

as a function of the spin-orbit angle χ and magnetization angle θ (fig. 5.2).
In the upper-right and bottom-left quadrants of the plot, i.e. the regions
where sgn(θ/χ) = +1, the spin-orbit coupling seems to have little to no
effect on the zero-energy density, resulting in flat regions with D(0) ∼= 1.
However, the situation is drastically different for the quadrants where
sgn(θ/χ) = −1. In these regions, D(0) increases as θ → −sgn(χ)π/4,
and the zero-energy peaks indicate a long-range triplet proximity effect
for these parameters. When θ gets too close to −sgn(χ)π/4 on the other
hand, D(0) abruptly drops to zero. This means that the density of states
has been split by a minigap, and that we have had a sudden transition
from a triplet-dominated to singlet-dominated state. There is nothing spe-
cial about the parameters chosen here; the behaviour persists even in very
strong ferromagnets with h = 20∆0, as long as a is scaled proportionally.a

figure 5.2: Zero-energy density D(0) as a function of the spin-orbit angle χ and
magnetization angle θ. Note the nonmonotonic dependence on magnetization
angle for χ = ±π/4, which corresponds to a Rashba and Dresselhaus coupling
of equal strength. This plot was generated for the spin-orbit strength aξs = 2.

aNumerically, the behaviour persists for even higher field configurations than this.
However, the quasiclassical approximation is only valid when the spin-orbit strength a
is well below the Fermi wavenumber, which is of the order 1010Å−1 in typical metals.61

Assuming a superconducting coherence length of ξs
∼= 30nm, this implies that we must

require aξs � 300, so we should expect to obtain reasonable results as long as aξs
. 15.
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5.1 density of states in bilayers

This behaviour is in excellent agreement with what we would expect
from eqs. (4.36) to (4.38). When sgn(θ/χ) = +1, the imaginary energy of
the short-range triplets Im{E‖} ∼ (1− sin 2θ sin 2χ) is minimized, while
the corresponding quantity Im{E⊥} ∼ (1+ sin 2θ sin 2χ) for the long-range
triplets is maximized. In other words, the short-range triplets are nearly
unaffected by the presence of a spin-orbit coupling, while the long-range
triplets are strongly suppressed. In this regime, we therefore get the same
result D(0) ∼= 1 as without spin-orbit coupling. When sgn(θ/χ) = −1 on
the other hand, the same equations show that short-ranged triplets are
penalized by a large imaginary energy, while the long-range triplets be-
come energetically favourable. This results in a large-scale conversion
from short-ranged to long-ranged triplets in the system, causing the pro-
nounced zero-energy peaks that we see in the figure. However, the triplet
mixing factor X ∼ cos 2θ sin 2χ that is responsible for this conversion van-
ishes as θ→ ±π/4, so the long-range triplets decouple from the equations
in this limit. Since the short-range triplets are already heavily suppressed
by the spin-orbit coupling, the most stable species in the system will be
the singlet component, and this manifests as a minigap with D(0) < 1.
For a visualization of these competing effects, we note that the top-left
and bottom-right quadrants of fig. 5.2 can be thought of as some kind of
product between figs. 4.1 and 4.2, which again highlights the qualitative
agreement between the linearized equations and numerical results.

According to fig. 5.2, the optimal spin-orbit angles for observing a large
θ-dependence are χ = ±π/4, corresponding to a Rashba and Dresselhaus
coupling of equal strength. We also see that θ ∼= −0.17π and θ = −0.25π,
respectively, correspond to one of the greatest zero-energy peaks and
deepest minigaps for χ = π/4. We therefore focus on these two extrema,
and display the density of states D(ε) for these configurations in fig. 5.3.
When θ = −0.25π, the qualitative features of the density of states are
altered as the spin-orbit strength a is increased. When aξs = 1, we get
the same result D(0) ∼= 1 as without a spin-orbit coupling, which means
that the coupling is not strong enough to suppress the short-range triplet
components. When the strength is increased to aξs = 2, we seem to have
reached some critical value where a minigap with D(0) = 0 forms. If
the strength is further increased to aξs = 4, then the minigap opens com-
pletely, indicating a strong singlet proximity effect. When θ = −0.17π on
the other hand, a zero-energy peak forms in all three cases, suggesting
long-range triplet proximity effects. Thus, we may toggle between a minigap
and zero-energy peak by rotating the magnetization. This is a novel phenomenon
caused by the spin-orbit coupling, and one of the main results presented herein.
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(f) aξs = 4 and θ = −0.17π.

figure 5.3: Density of states D(ε) for different spin-orbit strengths a and mag-
netization angles θ. These plots were generated for the spin-orbit angle χ = π/4.
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5.2 density of states in trilayers

5.2 density of states in trilayers

We will now consider a trilayer consisting of a ferromagnet interlocked
between two bulk superconductors (see fig. 5.4), where the materials have
the same dimensions and properties as in the previous section. The sys-
tem is a kind of Josephson junction, and is sensitive to the phase differ-
ence φ between the superconductors. There are therefore two interesting
parameters to vary in experiments on such junctions: the magnetization
angle θ, which can be rotated by an external magnetic field; and the phase
difference φ, which can be altered by an external electric field.

Superconductor

Superconductor

Ferromagnet + SOC

Ls

Lf

Ls

figure 5.4: The physical system considered in this section.

Following the same strategy as in the previous section, we will start the
investigation by considering how the zero-energy density of states D(0)

varies with the system parameters. The results are shown in fig. 5.5, and
are consistent with the results in fig. 5.2. First of all, a minigap forms near
θ = −π/4, which is explained by a suppression of short-range triplets in
the system. In fact, the effect is even stronger for the trilayer than it was
for the bilayer, which might be explained by having an influx of singlet
pairs from two neighboring superconductors instead of one. Furthermore,
the singlet-dominated region is bordered by a triplet-dominated region,
where we interpret a zero-energy peak as a long-range triplet proximity
effect. These zero-energy peaks are nonexistent for χ = 0.15π, and maxi-
mized as χ → 0.25π, so the most interesting configuration is again when
the Rashba and Dresselhaus coupling are of roughly equal strength. We
will therefore focus on the special case χ = π/4 for the rest of this section.
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(a) χ = 0.15π;

(b) χ = 0.22π;

(c) χ = 0.25π.

figure 5.5: Zero-energy density D(0) as a function of the phase difference φ
and magnetization angle θ. These plots were generated for aξs = 2.
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5.2 density of states in trilayers

It is particularly noteworthy that the system exhibits a nonmonotonic
behaviour as a function of the magnetization angle and phase difference.
The first of these is visible in any horizontal section of constant φ . 0.7π
in fig. 5.5c; we observe that D(0) ∼= 1 for θ = 0, D(0) ∼= 2 for θ = −0.10π,
and D(0) ∼= 0 for θ = −0.25π. So by simply rotating the magnetization by π/4
radians, the system passes through a neutral region, strongly triplet-dominated
region, and strongly singlet-dominated region, thus offering a convenient way
to switch between these regimes in a laboratory setting. The nonmonotonic
dependence on phase difference is clearly visible in the vertical sections
θ = −0.20π and θ = −0.30π, where we observe D(0) ∼= 0 for φ = 0,
D(0) ∼= 2 for φ = 0.75π, and D(0) = 1 for φ = π.

To better illustrate the nonmonotonic behaviour discussed above, we
present a more detailed comparison of the density of states in fig. 5.6.
For θ = −0.10π, there is a significant zero-energy peak when φ = 0, but
the peak disappears when we increase the phase difference to φ = 0.75π.
This means that passing a current through the junction should lead to a
diminishing zero-energy peak, which is similar to how a ferromagnetic
junction without spin-orbit coupling would behave. For θ = −0.25π, there
is a significant minigap for φ = 0, which is weakened when we increase
the phase difference to φ = 0.75π. Passing larger current through this
junction should lead to a diminishing minigap, which is how a junction
with neither exchange field nor spin-orbit coupling would behave. How-
ever, for the intermediate value θ = −0.20π, something entirely different
happens: we get a significant minigap for φ = 0, but a significant peak
for φ = 0.75π. Passing a current through this junction should therefore lead to
a transition from a singlet-dominated to triplet-dominated state. This is a new
kind of behaviour, and does not appear in junctions without spin-orbit coupling.
The behaviour outlined above also persists in much stronger exchange
fields as long as the spin-orbit strength is scaled accordingly (see fig. 5.7).

55



strong proximity effect

0/"
0

-2 -1 0 1 2

D
(0

)

0

1

2

(a) θ = −0.10π and φ = 0;

0/"
0

-2 -1 0 1 2

D
(0

)

0

1

2

(b) θ = −0.10π and φ = 0.75π;

0/"
0

-2 -1 0 1 2

D
(0

)

0

1

2

(c) θ = −0.20π and φ = 0;

0/"
0

-2 -1 0 1 2

D
(0

)

0

1

2

(d) θ = −0.20π and φ = 0.75π;

0/"
0

-2 -1 0 1 2

D
(0

)

0

1

2

(e) θ = −0.25π and φ = 0;

0/"
0

-2 -1 0 1 2

D
(0

)

0

1

2

(f) θ = −0.25π and φ = 0.75π.

figure 5.6: Density of statesD(ε) for various magnetization angles θ and phase
differences φ. Depending on magnetization angle, the effect of increasing the
phase difference can be classified as either a triplet suppression, singlet/triplet
transition, or singlet suppression. These plots were generated for the exchange
field h = 3∆0, spin-orbit strength aξs = 2, and spin-orbit angle χ = π/4.
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(f) θ = −0.25π and φ = 0.75π.

figure 5.7: Density of states D(ε) for different magnetization angles θ and
phase differences φ. These plots are similar to those in fig. 5.6, but were gener-
ated for the stronger exchange field h = 10∆0 and spin-orbit strength aξs = 6.
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5.3 critical temperature

In this section, we will return to the superconductor/ferromagnet bilayer
shown in fig. 5.1, and discuss the critical temperature Tc of the structure.
The interface parameters are the same as in section 5.1, but we consider a
shorter ferromagnet Lf = 0.2ξs with a stronger exchange field h = 10∆0.
Since a self-consistent approach is required when determining the critical
temperature, the superconductor can no longer be approximated by a
bulk solution. Instead, we use eq. (3.37) to determine the gap, where we
assume a material with the bcs coupling strength N0λ = 0.2. The critical
temperature was calculated using algorithm 3 in appendix A withN = 12

iterations, yielding Tc/Tcs to a precision of about 0.0001.
The first plots, figs. 5.8 and 5.9, show how the critical temperature Tc

varies with the spin-orbit angle χ for an exchange field in the z-direction.
The critical temperature is clearly independent of the spin-orbit angle χ,
and behaves the same way for any combination of Rashba and Dressel-
haus couplings with the same net strength. Furthermore, when the spin-
orbit strength a increases, we see that the critical temperature Tc increases
as well. This behaviour can be explained by the linearized equations from
the previous chapter. According to eq. (4.23), the imaginary part of the
effective triplet energy is ImEz = 4Da

2. The imaginary energy term sup-
presses the triplet component more and more as the spin-orbit strength a
is increased, regardless of the spin-orbit angle χ. This effect reduces the
amount of triplets in the ferromagnet, and as the triplet proximity chan-
nel is suppressed, the critical temperature is restored to higher values.

The same situation for an exchange field along the x-axis is shown in
figs. 5.10 and 5.11. For this geometry, we observe a somewhat smaller
critical temperature for all a > 0 and all χ compared to figs. 5.8 and 5.9.
This can again be explained by the linearized equations. According to
eqs. (4.36) and (4.37), the effective energies of the triplet components have
the imaginary parts ImE‖ = ImE⊥ = 2Da2 when θ = 0. In other words,
the triplets are less suppressed for an exchange field along the x-axis than
z-axis because ImEz is twice as large as ImE‖ and ImE⊥. We also observe
a drop in critical temperature as χ → ±π/4. According to eq. (4.38), this
is exactly when the triplet mixing factor X ∼ sin 2χ is maximized. The
explanation is therefore that long-range triplets are generated for these
parameters, and as a new triplet proximity channel opens, the critical
temperature is reduced. Note that for θ = 0, there is no change in the
effective energies E‖ and E⊥ when we vary χ, so the critical temperature
reduction observed here is solely due to changes in the mixing factor X.
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figure 5.8: Plot of the critical temperature as a function of the spin-orbit angle χ
when the superconductor length Ls = 1.00ξs and exchange field h ∼ ez.
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figure 5.9: Plot of the critical temperature as a function of the spin-orbit angle χ
when the superconductor length Ls = 0.55ξs and exchange field h ∼ ez.
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figure 5.10: Plot of the critical temperature as function of the spin-orbit angle χ
when the superconductor length Ls = 1.00ξs and exchange field h ∼ ex.
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figure 5.11: Plot of the critical temperature as function of the spin-orbit angle χ
when the superconductor length Ls = 0.55ξs and exchange field h ∼ ex.
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5.3 critical temperature

In figs. 5.12 and 5.13, we examine how the critical temperature varies
with the magnetization angle θ in the xy-plane. We include plots for the
three representative spin-orbit angles χ = 0 and χ = ±π/4. For χ = 0, i.e.
a pure Dresselhaus coupling, the critical temperature is independent of
the magnetization angle. For χ = ±π/2 (not shown), i.e. a pure Rashba
coupling, the results are identical. If χ = ±π/4, on the other hand, we find
a more interesting behaviour: the critical temperature has a minimum
at θ = +χ and maximum at θ = −χ. Furthermore, for the choice of
physical parameters in fig. 5.13, the effect results in a striking trough-to-
peak increase of nearly 60%. As shown in fig. 5.12, the effect persists in
larger structures as well, but is then weaker.

These results may again be interpreted using the linearized equations.
Both the minimum and maximum are located at points where the mixing
factor X ∼ cos 2θ sin 2χ vanishes, which indicates that the explanation
cannot be related to the long-range triplets in this case. We will therefore
focus on the relationship between the singlets and short-range triplets.
When θ = +χ, the imaginary term in eq. (4.36) vanishes, so the short-
range triplets have the energy E‖ = ε. In other words, the spin-orbit
coupling has no effect on the short-range triplets for these parameters, so
we get the same low critical temperature as without spin-orbit coupling.
However, when θ = −χ, the imaginary term in eq. (4.36) is maximized,
and we find that E‖ = ε+ 4iDa2. This means that the spin-orbit coupling
has a destructive influence on the short-range triplets. The suppression of
the triplet proximity channel limits the leakage of Cooper pairs from the
superconductor into the ferromagnet, increasing the critical temperature.

The results discussed above show that the critical temperature can be
controlled via the magnetization direction of a single ferromagnetic layer.
This is a new result originating from the presence of spin-orbit coupling:
in conventional superconductor/ferromagnet bilayers, the critical temper-
ature is independent of the magnetization direction of the ferromagnet.
By using a spin-valve setup with a superconductor interlocked between
two ferromagnets, it is well-known that the relative magnetization con-
figuration between the ferromagnetic layers will tune the critical temper-
ature of the system. In contrast, in our case such a spin-valve effect can be
obtained with a single ferromagnet: by rotating the magnetization by π/2 radi-
ans, the critical temperature goes from a maximum to a minimum. This is one of
the main results presented in this thesis. The fact that only one ferromagnet
is required is of practical importance since it can be difficult to control
multiple magnetization directions within a single mesoscopic structure.
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figure 5.12: Plot of critical temperature as function of the exchange field angle θ
when the superconductor length Ls/ξs = 1.00 and spin-orbit strength aξs = 2.
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figure 5.13: Plot of critical temperature as function of the exchange field angle θ
when the superconductor length Ls/ξs = 0.55 and spin-orbit strength aξs = 2.
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6
S U M M A RY A N D O U T L O O K

In this thesis, we have demonstrated that the physics of superconducting
hybrid structures can be drastically altered in the presence of a spin-orbit
coupling. The effects were especially pronounced for the case of a Rashba
and Dresselhaus coupling of similar strength, which suggests focusing
on this class of systems in experimental setups. We also noted that these
effects persist even in very strong ferromagnets, as long as there is also a
proportionally strong spin-orbit coupling in the system.

For superconductor/ferromagnet bilayers, we observed that a rotation
of the in-plane magnetization could cause the system to switch between
strongly singlet-dominated and triplet-dominated regimes. This was in-
dicated by the appearance of either a minigap or zero-energy peak in the
density of states. Furthermore, self-consistent calculations revealed a very
large variation in the critical temperature during such a rotation, at least
if the superconductor is sufficiently small. This suggests that it should
be possible to construct a superconducting spin-valve consisting of only
one superconductor and one ferromagnet, in contrast to previous designs
which required two ferromagnets. This is beneficial in laboratory settings,
since it is quite difficult to control the relative magnetization between the
components in a mesoscopic multilayer structure.

For the Josephson junctions, we observed that the system had a non-
monotonic behaviour as a function of both the magnetization and the
phase difference. By rotating the magnetization, it is therefore possible
to switch between a singlet-dominated and triplet-dominated junction. A
particularly interesting phenomenon occurs for intermediate magnetiza-
tion directions, where increasing the phase difference causes a minigap
to transform into a zero-energy peak. Since the phase difference is re-
lated to the amount of electricity flowing through the junction, passing
a current through the junction should lead to a transformation from a
singlet-dominated to triplet-dominated state for this magnetization.

The conclusion from the observations above is that spin-orbit coupling
offers exciting new ways to exert control over superconductivity in hybrid
structures, which may have important applications in the emerging field
of superconducting spintronics.
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summary and outlook

We have presented how in-plane Rashba–Dresselhaus couplings affect
the properties of superconducting hybrid systems. The natural next step
would be to check the behaviour of related structures. For instance, we
would intuitively expect superconductor/normal-metal/ferromagnet tri-
layers with a spin-orbit coupling in the normal metal to behave similarly
to the superconductor/ferromagnet bilayer considered in this thesis. An-
other possibility would be superconductor/normal-metal bilayers with
highly polarized spin-active interfaces, where we again have a spin-orbit
coupling in the normal metal. Such configurations, where the magnetism
and spin-orbit coupling reside in different layers, would provide the flex-
ibility for experimentalists to select optimal materials for each purpose.

Another possibility which has been neglected in this thesis, is the case
of an out-of-plane spin-orbit coupling, which can occur in noncentrosym-
metric crystals. In such systems, a whole range of new effects enter the
equations due to the derivative terms in eq. (2.44) and nonzero terms
in eqs. (2.52) and (2.53). Recent results for such a system have already
shown that there is a significant triplet proximity effect for Josephson
junctions where the superconductors are in antiphase, which is a novel
phenomenon which has not been reported for other structures before.84

This thesis has provided a thorough investigation of how superconduc-
tivity manifests in ferromagnets with spin-orbit coupling. However, it is
by no means a complete investigation of the topic; there are still plenty
of unexplored situations left to consider, and it is likely that even more
novel phenomena will be discovered in these systems with time.
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A
A L G O R I T H M

In this appendix, we describe and compare algorithms which can be used
to calculate the critical temperature of superconducting hybrid structures.

a.1 linear search algorithm

In order to introduce the notation, we will begin the discussion with a
simple linear search algorithm, as shown in algorithm 1 below.

algorithm 1: Linear search algorithm for finding the critical temperature.

procedure CriticalTemperature

T ← 0

∆← ∆0
γ ← γ

0

while max |∆| > δ do
T ← T + τ

repeat
γ ← Usadel(γ,∆)
∆∗← ∆

∆ ← Gap(γ, T)
until max |∆−∆∗| < δ

end while
end procedure

When the procedure is executed, we initialize the current temperature T
to the absolute zero, the gap ∆ to the corresponding bulk value ∆0, and
the Riccati parameter γ to the bcs bulk solution γ0. Since γ = γ(z, ε) is
actually a function of position and energy, a numerical implementation
would have to discretize these variables, and store one copy of γ for each
position and energy on the lattice. To obtain reliable results, we found
that the calculations had to be performed for around 500 energies in the
range (0, 2∆0), and 100 more energies in the range (2∆0,ωc), where the
Debye cutoff ωc ∼= 74∆0 if we use the coupling constant N0λ = 0.2. As
for the resolution in position space, around 100–150 evenly spaced points
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in each material seemed to be sufficient for most parameters. In practice,
it is also convenient to store a copy of γ̃, as well as the first derivatives
∂zγ and ∂zγ̃, at each lattice point. However, for brevity, we will simply
refer to all this information about the Riccati parameters by the symbol γ.

After initializing the state variables, the temperature is increased by a
small amount τ. The Riccati parameter γ is then recalculated by solving
the Usadel equation, using the current value for the gap ∆ as a constant
background source, and using the previous value of γ as an initial guess
for a solution.a The gap ∆ is then recalculated using the new value for γ,
by solving the gap equation at the current temperature T . This procedure
is then repeated until the gap converges, which is measured by checking
whether or not the current value of ∆ has changed from the previous
value ∆∗ by less than some threshold δ. The algorithm will then continue
to increase the temperature by τ at every iteration, until the maximum
gap |∆(z)| in the superconductor goes below the threshold δ. When this
occurs, the system must have reached the critical temperature, so the
current value for T is the final result for Tc.

The linear search algorithm presented here gets the job done, but is not
very efficient. For instance, if we wish to calculate the critical temperature
with a relative accuracy of 0.0001, we would need to test up to 10,000

temperatures between T = 0 and T = Tcs. For each of these temperatures,
we have to solve a nonlinear differential equation at roughly 300 locations
and 600 energies—and then repeat this procedure again and again until
the gap converges. In other words, this is truly a formidable computation
task, and may in practice take days to complete depending on hardware,
implementation, and parameters. Note that all of this was required just
to calculate a single number Tc; in order to gain physical insight into the
behaviour of hybrid systems, the whole procedure would also have to
be repeated for several different geometries and field strengths, adding a
whole new dimension to the required computation time.

aIn the case of e.g. a superconductor/ferromagnet bilayer, solving the Usadel equation
involves first solving the equation in the ferromagnet using the old superconductor state
as a boundary condition, and then solving the equation in the superconductor using the
updated ferromagnet state as a boundary condition.
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A.2 binary search algorithm

a.2 binary search algorithm

To reduce the required computation time, one alternative is to switch to
a binary search algorithm instead, as outlined in algorithm 2 below.

algorithm 2: Binary search algorithm for finding the critical temperature.

procedure CriticalTemperature

T1 ← 0 . T1 6 Tc
T2 ← Tcs . T2 > Tc
for n← 1, . . . ,N do

T ← (T1 + T2)/2
γ← γ

0

∆← Gap(γ, T)
repeat

γ ← Usadel(γ,∆)
∆∗← ∆

∆ ← Gap(γ, T)
until max |∆−∆∗| < δ

if max |∆| < δ then . T > Tc
T2 ← T

else
T1 ← T

end if
end for
T ← (T1 + T2)/2 . |T − Tc| 6 |T2 − T1|/2

N+1

end procedure

For this algorithm to successfully determine the critical temperature, three
crucial assumptions about the problem have to be made:

(i) 0 6 Tc 6 Tcs;

(ii) ∀ T < Tc : |∆| > 0;

(iii) ∀ T > Tc : |∆| = 0.

The first assumption, that the critical temperature Tc of a hybrid system
has to be between the absolute zero and the bulk value Tcs, is quite trivial.
It is well-known that the effect of an inverse proximity effect is to sup-
press the superconductivity of a material. If somehow an exception were
to occur, the symptom would be the result Tc = Tcs, which could prompt
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new calculations with the initial value T2 > Tcs to verify the result. The
two other assumptions may be taken as a definition of critical tempera-
ture, together with the requirement that it is a single-valued quantity. It
is more subtle to justify the single-valuedness, since the gap can be a reen-
trant function of temperature in e.g. bilayers with holmium.98 However,
no signs of reentrant behaviour were observed in the systems considered
herein, possibly due to the choice of interface transparency ζ = 3. We
stress that ∆ can still exhibit a nonmonotonic dependence on tempera-
ture, and a reentrant dependence on any other system parameters—just
not a reentrant dependence on temperature. If this assumption is vio-
lated, the algorithm would likely return one of the critical temperatures,
but which one would not necessarily be well-defined. Such a violation
could therefore manifest as a discontinuous behaviour of the critical tem-
perature.

In this algorithm, we also define variables that give a lower limit T1 and
upper limit T2 for the critical temperature. Just like in algorithm 1, we
assume that the critical temperature is between the absolute zero and the
bulk value, and initialize these variables accordingly. For every iteration
of the binary search, we then set the current temperature of the system to
the midpoint T = (T1 + T2)/2, initialize the system to a zero-temperature
bulk solution γ0, and perform a self-consistent calculation like before. If
the gap ∆ drops to zero, expressed numerically as dropping below the
threshold δ, we conclude that T > Tc according to assumption (ii), and
update the upper limit to T2 = T . If not, meaning that the gap must have
converged to some finite value |∆| > δ, we conclude that T < Tc according
to assumption (i), and update the lower limit to T1 = T . By repeating this
procedure of testing the midpoint T = (T1 + T2)/2 of the interval, and
updating the limits T1 and T2 based on the results, the possible location
of the critical temperature is confined to an interval (T1, T2) that decreases
exponentially with the number of iterations N. For instance, while a
precision of 0.0001 requires up to 10,000 iterations with algorithm 1, the
number is reduced to just 12 iterations with algorithm 2, resulting in a
remarkable increase in efficiency for high precision requirements.
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a.3 optimized algorithm

While algorithm 2 was a remarkable improvement upon algorithm 1, it is
still converges relatively slowly for two main reasons:

(i) For every iteration, we restart the calculation from a bulk solution γ0;

(ii) For temperatures T > Tc, the convergence ∆ → 0 takes a nearly ex-
ponential amount of time, often changing by just 1–2% per iteration.

To solve the first issue, it may be tempting to initialize γ to a bulk solution
only at the start of the program, and then reuse the last calculated value
of γ when switching temperature. The problem with this approach, is
that the non-superconducting solution with γ = 0 and ∆ = 0 satisfies the
Usadel equation at all temperatures, but this is not the solution branch
that is interesting when T < Tc. Thus, if the system converges to γ = 0

for some T > Tc, and we later use this as an initial guess for some T < Tc,
then we risk ending up on the wrong solution branch γ = 0, yielding
unphysical results. The solution to this problem is to save a copy of the
last nonzero solution to a backup variable γ∗. This should be done at the
end of each iteration where we have confirmed that T < Tc, so that we
always use a value of γ from a lower temperature as the initial guess.

To handle the second issue, we make an additional assumption about
the behaviour of the system, namely that the gap decreases monotonically
to zero if T > Tc. In other words, for supercritical temperatures T > Tc,
we assume that every time we solve the Usadel equation and recalculate
the gap, the new value for the gap must be lower than the previous one.
This assumption should be quite reasonable; an exception would have to
be a system with a highly nonlinear dependence on the gap, such that
the amount of Cooper pairs spontaneously increases when the gap is
in a range (∆1,∆2), but decreases for all other values of the gap. This
would imply the existence of metastable states with ∆ = ∆2, in addition
to the critical state with ∆ = 0, making the gap a multivalued function of
temperature. The author is unaware of any superconductors where this
sort of behaviour occurs, and we therefore neglect this possibility herein.

Given the assumption above, we do not need to obtain a self-consistent
solution at all temperatures. If we ever observe that the gap increases be-
tween two iterations, the new assumption leads to the conclusion T < Tc,
regardless of whether the gap changed by more than a threshold δ during
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the iteration or not.b The strategy for reducing the computation time is
as follows: we reduce the gap ∆ 7→ ∆/2, and then perform two iterations
of the self-consistent solver.c The next step is to perform M iterations of
the usual self-consistent solver, where we declare that T < Tc if the gap
increases during an iteration, and T > Tc if it goes below the threshold δ.
Remarkably, by performing the operation ∆ 7→ ∆/2 regularly, the number
of iterations before the gap drops to zero for T > Tc goes from roughly
exponential to logarithmic, saving a tremendous amount of computation
time. On the other hand, for T < Tc, the only information required is
whether the gap converges towards a finite value or not. Letting ∆ 7→ ∆/2

regularly, and simply checking whether the gap then increases between
iterations, permits us to obtain this information much quicker.

Pseudocode describing the resulting algorithm is given in algorithm 3

on the next page. An implementation in Matlab has also been enclosed
at the back of this thesis. The attachment critical_superconductor.m
illustrates the basic concept for a superconductor in vacuum, and was pri-
marily used as a guinea pig during the initial tests of the algorithm. The
more interesting critical_bilayer.m implements the same algorithm for
superconductor/ferromagnet bilayers with spin-orbit coupling, and was
used to calculate all the critical temperature data presented in this thesis.
We used M = 6 iterations between each time the gap was reduced to
allow the system a few iterations to stabilize numerically, and performed
in total N = 12 iterations of the binary search algorithm.

bThe converse is however not true: if the gap decreases between two iterations, then
both T < Tc and T > Tc are possible conclusions, so more calculations are required.

cIf we performed only one iteration after reducing the gap, we might in principle
observe an increasing gap due to Cooper pairs leaking back into the superconductor from
the ferromagnet. By performing two iterations, we ensure that the effect of reducing the
gap has had an impact on both the ferromagnetic region and the superconducting region.
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algorithm 3: Optimized algorithm for finding the critical temperature.

procedure CriticalTemperature

T1 ← 0 . T1 6 Tc
T2 ← 1 . T2 > Tc
γ ← γ

0

γ∗← γ
0

for n← 1, . . . ,N do
T ← (T1 + T2)/2

∆ ← Gap(γ, T)
m← 0

loop
∆∗← ∆

m ← m+ 1

if m mod M = 0 then
∆← ∆/2
γ← Usadel(γ,∆)
∆← Gap(γ, T)

end if
γ← Usadel(γ,∆)
∆← Gap(γ, T)
if mean(|∆|− |∆∗|) > 0 then . T 6 Tc
T1 ← T
γ∗ ← γ

break loop
else if max |∆| < δ then . T > Tc
T2 ← T
γ ← γ∗
break loop

end if
end loop

end for
T ← (T1 + T2)/2 . |T − Tc| 6 |T2 − T1|/2

N+1

end procedure
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We investigate theoretically how the proximity effect in superconductor/ferromagnet hybrid structures with
intrinsic spin-orbit coupling manifests in two measurable quantities, namely the density of states and critical
temperature. To describe a general scenario, we allow for both Rashba and Dresselhaus type spin-orbit coupling.
Our results are obtained via the quasiclassical theory of superconductivity, extended to include spin-orbit coupling
in the Usadel equation and Kupriyanov–Lukichev boundary conditions. Unlike previous works, we have derived
a Riccati parametrization of the Usadel equation with spin-orbit coupling which allows us to address the full
proximity regime and not only the linearized weak proximity regime. First, we consider the density of states
in both SF bilayers and SFS trilayers, where the spectroscopic features in the latter case are sensitive to the
phase difference between the two superconductors. We find that the presence of spin-orbit coupling leaves clear
spectroscopic fingerprints in the density of states due to its role in creating spin-triplet Cooper pairs. Unlike
SF and SFS structures without spin-orbit coupling, the density of states in the present case depends strongly
on the direction of magnetization. Moreover, we show that the spin-orbit coupling can stabilize spin-singlet
superconductivity even in the presence of a strong exchange field h� ∆. This leads to the possibility of a
magnetically tunable minigap: changing the direction of the exchange field opens and closes the minigap. We also
determine how the critical temperature Tc of an SF bilayer is affected by spin-orbit coupling and, interestingly,
demonstrate that one can achieve a spin-valve effect with a single ferromagnet. We find that Tc displays highly
non-monotonic behavior both as a function of the magnetization direction and the type and direction of the
spin-orbit coupling, offering a new way to exert control over the superconductivity of proximity structures.

I. INTRODUCTION

Material interfaces in hybrid structures give rise to proximity
effects, whereby the properties of one material can “leak” into
the adjacent material, creating a region with properties derived
from both materials. In superconductor/ferromagnet (SF) hy-
brid structures1, the proximity effect causes superconducting
correlations to penetrate into the ferromagnetic region and vice
versa. These correlations typically decay over short distances,
which in diffusive systems is of the order

√
D/h, where D is

the diffusion coefficient of the ferromagnet and h is the strength
of the exchange field. However, for certain field configurations,
the singlet correlations from the superconductor may be con-
verted into so-called long-range triplets (LRTs)2. These triplet
components have spin projection parallel to the exchange field,
and decay over much longer distances. This results in physical
quantities like supercurrents decaying over the large length
scale

√
D/T �

√
D/h, where T is the temperature. This dis-

tance is independent of h, and at low temperatures it becomes
increasingly large, which allows the condensate to penetrate
deep into the ferromagnet. The isolation and enhancement
of this feature has attracted much attention in recent years as
it gives rise to novel physics and possible low-temperature
applications by merging spintronics and superconductivity3.

It is by now well-known that the conversion from singlet
to long-range triplet components of the superconducting state
can happen in the presence of magnetic inhomogeneities4,5,
i.e. a spatially varying exchange field, and until recently such
inhomogeneities were believed to be the primary source of
this conversion6–15, although other proposals using e.g. non-
equilibrium distribution functions and intrinsic triplet super-
conductors also exist16–19. However, it has recently been es-
tablished that another possible source of LRT correlations is

the presence of a finite spin-orbit (SO) coupling, either in the
superconducting region20 or on the ferromagnetic side21,22. In
fact, it can be shown that an SF structure where the magnetic
inhomogeneity is due to a Bloch domain wall, as considered
in e.g. Refs. 50–52, is gauge equivalent to one where the
ferromagnet has a homogeneous exchange field and intrinsic
SO coupling21. It is known that SO scattering can be caused
by impurities23, but this type of scattering results in purely
isotropic spin-relaxation, and so does not permit the desired
singlet-LRT conversion. To achieve such a conversion, one
needs a rotation of the spin pair into the direction of the ex-
change field24. This can be achieved by using materials with
an intrinsic SO coupling, either due to the crystal structure in
the case of noncentrosymmetric materials25, or due to inter-
faces in thin-film hybrids26, where the latter also modifies the
fundamental process of Andreev reflection27,28.

In this paper, we establish how the presence of spin-orbit
coupling in SF structures manifests in two important exper-
imental observables: the density of states D(ε) probed via
tunneling spectroscopy (or conductance measurements), and
the critical temperature Tc. A common consequence for both
of these quantities is that neither becomes independent of the
magnetization direction. This is in contrast to the case with-
out SO coupling in conventional monodomain ferromagnets,
where the results are invariant with respect to rotations of the
magnetic exchange field. This symmetry is now lifted due to
SO coupling: depending on the magnetization direction, LRT
Cooper pairs are created in the system which leave clear finger-
prints both spectroscopically and in terms of the Tc behavior.
On the technical side, we will present in this work for the first
time a Riccati parametrization of the Usadel equation and its
corresponding boundary conditions that include SO coupling.
This is an important advance in terms of exploring the full
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physics of triplet pairing due to SO coupling as it allows for a
solution of the quasiclassical equations without any assumption
of a weak proximity effect. We will also demonstrate that the
SO coupling can actually protect the singlet superconducting
correlations even in the presence of a strong exchange field,
leading to the possibility of a minigap that is magnetically
tunable via the orientation of the exchange field.

The remainder of the article will be organised as follows:
In Section II, we introduce the relevant theory and notation,
starting from the quasiclassical Usadel equation, which de-
scribes the diffusion of the superconducting condensate into
the ferromagnet. We also motivate our choice of intrinsic SO
coupling in this section, and propose a new notation for de-
scribing Rashba–Dresselhaus couplings. The section goes on
to discuss key analytic features of the equations in the limit
of weak proximity, symmetries of the density of states at zero
energy, and analytical results needed to calculate the critical
temperature of hybrid systems. We then present detailed nu-
merical results in Section III: we analyze the density of states
of an SF bilayer in III A (see Fig. 1), and of an SFS Josephson
junction in III B (see Fig. 2). We study different orientations
and strengths of the exchange field and SO coupling, and in the
case of the Josephson junction, the effect of altering the phase
difference between the condensates. Then, in Section III C, we
continue our treatment of the SF bilayer in the full proximity
regime by including a self-consistent solution in the supercon-
ducting layer, and focus on how the presence of SO coupling
affects the critical temperature of the system. We discover
that the SO coupling allows for spin-valve functionality with a
single ferromagnetic layer, meaning that rotating the magnetic
field by π/2 induces a large change in Tc. Finally, we conclude
in Section IV with a summary of the main results, a discussion
of some additional consequences of the choices made in-text,
as well as possibilities for further work.

S FSO

z = 0z =−LS z = LF

FIG. 1: The SF bilayer in III A and III C. We take the thin-film
layering direction along the z-axis, and assume an xy-plane
Rashba–Dresselhaus coupling in the ferromagnetic layer.

S FSO S

z =−LF/2 z = LF/2

FIG. 2: The SFS trilayer in III B. We take the thin-film layering
direction along the z-axis, and assume an xy-plane Rashba–
Dresselhaus coupling in the ferromagnetic layer.

II. THEORY

A. Fundamental concepts

The diffusion of the superconducting condensate into the
ferromagnet can be described by the Usadel equation, which
is a second-order partial differential equation for the Green’s
function of the system29. Together with appropriate boundary
conditions, the Usadel equation establishes a system of cou-
pled differential equations that can be solved in one dimension.
We will consider the case of diffusive equilibrium, where the
retarded component ĝR of the Green’s function is sufficient
to describe the behaviour of the system30,31. We start by ex-
amining the superconducting correlations in the ferromagnet,
and use the standard Bardeen–Cooper–Schrieffer (BCS) bulk
solution for the superconductors. In particular, we will clarify
the spectroscopic consequences of having SO coupling in the
ferromagnetic layer.

In the absence of SO coupling, the Usadel equation29 in the
ferromagnet reads

DF ∇(ĝR∇ĝR)+ i
[
ερ̂3 + M̂, ĝR]= 0, (1)

where the matrix ρ̂3 = diag(1,−1), and ε is the quasiparticle
energy. The magnetization matrix M̂ in the above equation is

M̂ =

(
h ·σ 0

0 (h ·σ)∗
)
,

where h = (hx,hy,hz) is the ferromagnetic exchange field, (∗)
denotes complex conjugation, σ = (σx,σy,σz) is the Pauli vec-
tor, and σk are the usual Pauli matrices. The corresponding
Kupriyanov–Lukichev boundary conditions are32

2L jζ jĝR
j ∇ĝR

j = [ĝR
1 , ĝ

R
2 ] , (2)

where the subscripts refer to the different regions of the hybrid
structure; in the case of an SF bilayer as depicted in Fig. 1,
j = 1 denotes the superconductor, and j = 2 the ferromagnet,
while ∇ denotes the derivative along the junction 1→ 2. The
respective lengths of the materials are denoted L j, and the in-
terface parameters ζ j = RB/R j describe the ratio of the barrier
resistance RB to the bulk resistance R j of each material.

We will use the Riccati parameterisation33 for the quasi-
classical Green’s function ĝR,

ĝR =

(
N(1+ γγ̃) 2Nγ
−2Ñγ̃ −Ñ(1+ γ̃γ)

)
, (3)

where the normalisation matrices are N = (1− γγ̃)−1 and
Ñ = (1− γ̃γ)−1. The tilde operation denotes a combination of
complex conjugation i→−i and energy ε→−ε. The Riccati
parameterisation is particularly useful for numerical computa-
tion because the parameters are bounded, contrary to the multi-
valued θ-parameterisation30. In practice, this means that for
certain parameter choices the numerical routines will converge
in the Riccati parametrization but not the θ-parametrization.
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To include intrinsic SO coupling in the Usadel equation, we
simply have to replace all the derivatives in Eq. (1) with their
gauge covariant counterparts:21,35

∇( ·) 7→ ∇̃( ·)≡ ∇( ·)− i[Â, · ] . (4)

This is valid for any SO coupling linear in momentum. We con-
sider the leading contribution; higher order terms, e.g. those
responsible for the SU(2) Lorentz force, are neglected here.
Such higher order terms are required to produce so-called ϕ0
junctions which have attracted interest of late36, and conse-
quently we will see no signature of the ϕ0 effect in the systems
considered herein. The object Â has both a vector structure in
geometric space, and a 4×4 matrix structure in Spin–Nambu
space, and can be written as Â = diag(A,−A∗) in terms of the
SO field A = (Ax,Ay,Az), which will be discussed in more
detail in the next subsection. SO coupling in the context of
quasiclassical theory has also been discussed in Refs. 34,35.
When we include a SO coupling in this way, we derive the
following form for the Riccati-parametrized Usadel equation:

DF
(
∂2

kγ+2(∂kγ)Ñγ̃(∂kγ)
)

= −2iεγ− ih · (σγ− γσ∗)
+DF

[
AAγ− γA∗A∗+2(Aγ+ γA∗)Ñ(A∗+ γ̃Aγ)

]

+2iDF
[
(∂kγ)Ñ(A∗k + γ̃Akγ)+(Ak + γA∗k γ̃)N(∂kγ)

]
,(5)

where the index k indicates an arbitrary choice of direction
in Cartesian coordinates. The corresponding equation for γ̃ is
found by taking the tilde conjugate of Eq. (5). Similarly, the
boundary conditions in Eq. (2) become:

∂kγ1 =
1

L1ζ1
(1− γ1γ̃2)N2(γ2− γ1)+ iAkγ1 + iγ1A∗k ,

∂kγ2 =
1

L2ζ2
(1− γ2γ̃1)N1(γ2− γ1)+ iAkγ2 + iγ2A∗k , (6)

and the γ̃ counterparts are found in the same way as before.
For the details of these derivations, see Appendix A.

We will now discuss the definition of current in the presence
of spin-orbit interactions. Since the Hamiltonian including SO
coupling contains terms linear in momentum (see below), the
velocity operator v j = ∂H/∂k j is affected. We stated above
that the Kupriyanov–Lukichev boundary conditions are simply
modified by replacing the derivative with its gauge covariant
counterpart including the SO interaction. To make sure that
current conservation is still satisfied, we must carefully exam-
ine the Usadel equation. In the absence of SO coupling, the
quasiclassical expression for electric current is given by

Ie = I0

∫ ∞

−∞
dεTr{ρ3(ǧ∇ǧ)K}, (7)

where ǧ is the 8×8 Green’s function matrix in Keldysh space

ǧ =

(
ĝR ĝK

0̂ ĝA

)
, (8)

and I0 is a constant that is not important for this discussion.
Current conservation can now be proven from the Usadel equa-
tion itself. We show this for the case of equilibrium, which is

relevant for the case of supercurrents in Josephson junctions.
In this case ĝK = (ĝR− ĝA) tanh(βε/2) and we get

Ie = I0

∫ ∞

−∞
dεTr{ρ3(ĝR∇ĝR− ĝA∇ĝA)} tanh(βε/2). (9)

Performing the operation Tr{ρ3 · · ·} on the Usadel equation,
we obtain

D∇ ·Tr{ρ3(ĝR∇ĝR)+ iTr{ρ3[ερ3 + M̂, ĝR]}= 0. (10)

Now, inserting the most general definition of the Green’s func-
tion ĝR, one finds that the second term in the above equation is
zero. Thus, we are left with

∇ ·Tr{ρ3(ĝR∇ĝR)}= 0 , (11)

which expresses precisely current conservation since the same
analysis can be done for ĝA. Now, let us include the SO cou-
pling. The current should then be given by

Ie = I0

∫ ∞

−∞
dεTr{ρ3(ǧ∇̃ǧ)K} , (12)

so that the expression for the charge current is modified by the
presence of SO coupling, as is known. The question is now
if this current is conserved, as it has to be physically. We can
prove that it is from the Usadel equation by rewriting it as

D∇·(ĝR∇̃ĝR)

= D[A, ĝR∇ĝR]+D[A, [A, ĝR]]− i[ερ3 + M̂, ĝR] , (13)

and then performing the operation Tr{ρ3 · · ·},

D∇ ·Tr{ρ3(ĝR∇̃ĝR)}= 0, (14)

so we recover the standard current conservation law ∇ · Ie = 0.

B. Spin-orbit field

The precise form of the generic SO field A is imposed by
the experimental requirements and limitations. As the name
suggests, spin-orbit coupling couples a particle’s spin with its
motion, and more specifically its momentum. As mentioned in
the Introduction, the SO coupling in solids can originate from a
lack of inversion symmetry in the crystal structure. Such spin-
orbit coupling can be of both Rashba and Dresselhaus type and
is determined by the point group symmetry of the crystal67,68.
It is also known that the lack of inversion symmetry due to
surfaces, either in the form of interfaces to other materials or
to vacuum, will give rise to antisymmetric spin-orbit coupling
of the Rashba type. For sufficiently thin structures, the SO cou-
pling generated in this way can permeate the entire structure.
Intrinsic inversion asymmetry arises naturally due to interfaces
between materials in thin-film hybrid structures such as the
ones considered herein. Noncentrosymmetric crystalline struc-
tures provide an alternative source for intrinsic asymmetry, and
are considered in Ref. 43. In thin-film hybrids, the Rashba spin
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splitting derives from the cross product of the Pauli vector σ
with the momentum k,

HR =−α
m
(σ× k) · ẑ , (15)

where α is called the Rashba coefficient, and we have chosen
a coordinate system with ẑ as the layering direction. Another
well-known type of SO coupling is the Dresselhaus spin split-
ting, which can occur when the crystal structure lacks an in-
version centre. For a two-dimensional electron gas (quantum
well) confined in the ẑ-direction, then to first order 〈kz〉= 0, so
the Dresselhaus splitting becomes

HD =
β
m
(σyky−σxkx) , (16)

where β is called the Dresselhaus coefficient. In our structure,
we consider a thin-film geometry with the confinement being
strongest in the z-direction. Although there may certainly be
other terms contributing to the Dresselhaus SO coupling in
such a structure, we consider the standard form Eq. (16) as an
approximation that captures the main physics in the problem.
This is a commonly used model in the literature to explore the
effects originating from SO coupling in a system. When we
combine both interactions, we obtain the Hamiltonian for a
general Rashba–Dresselhaus SO coupling,

HRD =
kx

m
(ασy−βσx)−

ky

m
(ασx−βσy) . (17)

In this work, we will restrict ourselves to this experimentally
common form of SO coupling. As explained in Ref. 21, the
SO coupling acts as a background SU(2) field, i.e. an object
with both a vector structure in geometric space, and a 2× 2
matrix structure in spin space. We can therefore identify the
interaction above with an effective vector potential A which
we will call the SO field,

HRD ≡−k ·A/m , (18)

from which we derive that

A = (βσx−ασy,ασx−βσy,0) . (19)

At this point, it is convenient to introduce a new notation
for describing Rashba–Dresselhaus couplings, which will let
us distinguish between the physical effects that derive from
the strength of the coupling, and those that derive from the
geometry. For this purpose, we employ polar notation defined
by the relations

α≡−asinχ ,
β≡ acosχ , (20)

where we will refer to a as the SO strength, and χ as the SO
angle. Rewritten in the polar notation, Eq. (19) takes the form:

A = a(σx cosχ+σy sinχ)x̂−a(σx sinχ+σy cosχ)ŷ . (21)

From the definition, we can immediately conclude that χ = 0
corresponds to a pure Dresselhaus coupling, while χ =±π/2

results in a pure Rashba coupling, with the geometric interpre-
tation of χ illustrated in Fig. 3. Note that A2

x = A2
y = a2, which

means that A2 = 2a2. Another useful property is that we can
switch the components Ax↔ Ay by letting χ→ 3π/2−χ.

σx cosχ+σy sinχ

kx

χ

ky

σx sinχ+σy cosχ

χ

FIG. 3: Geometric interpretation of the SO field (21) in polar
coordinates: the Hamiltonian couples the momentum com-
ponent kx to the spin component (σx cosχ+σy sinχ) with a
coefficient +a/m, and the momentum component ky to the
spin component (σx sinχ+σy cosχ) with a coefficient −a/m.
Thus, a determines the magnitude of the coupling, and χ the
angle between the coupled momentum and spin components.

The appearance of LRTs in the system depends on the inter-
play between SO coupling and the direction of the exchange
field. Recall that the LRT components are defined as having
spin projections parallel to the exchange field, as opposed to
the short-ranged triplet (SRT) component which appears as
long as there is exchange splitting37 but has spin projection
perpendicular to the field and is therefore subject to the same
pair-breaking effect as the singlets3,24, penetrating only a very
short distance into strong ferromagnets. Thus if we have an
SO field component along the layering direction, e.g. if we had
Az 6= 0 in Figs. 1 and 2, achievable with a noncentrosymmetric
crystal or in a nanowire setup, then a non-vanishing commuta-
tor [A, h ·σ] creates the LRT. However, we will from now only
consider systems where Az = 0, in which case the criterion for
LRT is21 that [A, [A, h ·σ]] must not be parallel to the exchange
field h ·σ. Expanding, we have

[A, [A, h ·σ]] = 4a2(h ·σ +hzσz)

−4a2(hxσy +hyσx)sin2χ , (22)

from which it is clear that no LRTs can be generated for a pure
Dresselhaus coupling χ = 0 or Rashba coupling χ = ±π/2
when the exchange field is in-plane. However, the effect of
SO coupling becomes increasingly significant for angles close
to ±π/4 (see Fig. 5 in Section III A). We also see that no
LRTs can be generated for in-plane magnetization in the spe-
cial case hx = hy and hz = 0, since hxσy + hyσx can then be
rewritten as hxσx + hyσy, which is parallel to h. There is no
LRT generation for the case hx = hy = 0 and hz 6= 0 for sim-
ilar reasons. In general however, the LRT will appear for an
in-plane magnetization as long as hx 6= hy and the SO coupling
is not of pure Dresselhaus or pure Rashba type. Once the
condition for long-range triplet generation is satisfied, increas-
ing the corresponding exchange field will also increase the
proportion of long-range triplets compared with short-range
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triplets. Whether or not the presence of long-range triplets can
be observed in the system, i.e. if they retain a clear signature
in measurable quantities such as the density of states when
the criteria for their existence is fulfilled, depends on other
aspects such as the strength of the spin-orbit coupling and will
be discussed later in this paper. Thus, a main motivation for
this work is to take a step further than discussing their exis-
tence, and make predictions for when long-ranged triplet pairs
can actually be observed via spectroscopic or Tc measurements
in SF structures with spin-orbit coupling. However, we will
also demonstrate that the presence of SO coupling offers ad-
ditional opportunities besides the creation of LRTs. We will
show both analytically and numerically that the SO coupling
can protect the singlet component even in the presence of a
strong exchange field, which normally would suppress it. This
provides the possibility to tune the well-known minigap oc-
curing both in bilayer and Josephson junctions magnetically
simply by altering the direction of the magnetization.

C. Weak proximity effect

In order to establish a better analytical understanding of the
role played by SO coupling in the system before presenting the
spectroscopy and Tc results, we will now consider the limit of
weak proximity effect, which means that |γi j| � 1, N ≈ 1 in
the ferromagnet. The anomalous Green’s function in general is
given by the upper-right block of Eq. (3), f = 2Nγ, which we
see reduces to f = 2γ in this limit. It will also prove prudent to
express the anomalous Green’s function using a singlet/triplet
decomposition, where the singlet component is described by a
scalar function fs, and the triplet components encapsulated in
the so-called d-vector44,45,

f = ( fs +d ·σ)iσy . (23)

Combining the above with the weak proximity identity f = 2γ,
we see that the components of γ can be rewritten as:

γ =
1
2

(
idy−dx dz + fs

dz− fs idy +dx

)
. (24)

Under spin rotations, the singlet component fs will then trans-
form as a scalar, while the triplet component d = (dx,dy,dz)
transforms as an ordinary vector. Another useful feature of this
notation is that it becomes almost trivial to distinguish between
short-range and long-range triplet components; the projection
d = d · ĥ along the exchange field corresponds to the SRTs,
while the perpendicular part d⊥ = |d× ĥ| describes the LRTs,
where ĥ here denotes the unit vector of the exchange field. For
a concrete example, if the exchange field is oriented along the
z-axis, then dz will be the short-range component, while both
dx and dy are long-ranged components. In the coming sections,
we will demonstrate that the LRT component can be identified
from its density of states signature, as measurable by tunneling
spectroscopy.

In the limit of weak proximity effect, we may linearize both
the Usadel equation and Kupriyanov–Lukichev boundary con-
ditions. Using the singlet/triplet decomposition in Eq. (24), and

the Rashba–Dresselhaus coupling in Eq. (19), the linearized
version of the Usadel equation can be written:

i
2

DF ∂2
z fs = ε fs +h ·d , (25)

i
2

DF ∂2
z d = εd + h fs +2iDF a2Ω(χ)d , (26)

where we for brevity have defined an SO interaction matrix

Ω(χ) =




1 −sin2χ 0
−sin2χ 1 0

0 0 2


 . (27)

We have now condensed the Usadel equation down to two
coupled differential equations for fs and d, where the coupling
of course is proportional to the exchange field and the SO
interaction term. The latter has been written as a product of a
factor 2iDF a2 depending on the strength a and a factor Ω(χ)d
depending on the angle χ in the polar notation. The matrix
Ω(χ) becomes diagonal for a Dresselhaus coupling with χ = 0
or a Rashba coupling with χ =±π/2, which implies that there
is no triplet mixing for such systems. In contrast, the off-
diagonal terms are maximal for χ =±π/4, which suggests that
the triplet mixing is maximal when the Rashba and Dresselhaus
coefficients have the same magnitude. In addition to the off-
diagonal triplet mixing terms, we see that the diagonal terms
of Ω(χ) essentially result in imaginary energy contributions
2iDF a2. As we will see later, this can in some cases result in a
suppression of all the triplet components in the ferromagnet.

We will now consider exchange fields in the xy-plane,

h = h cosθ x̂+h sinθ ŷ . (28)

Since the linearized Usadel equations show that the presence of
a singlet component fs only results in the generation of triplet
components along h, and the SO interaction term only mixes
the triplet components in the xy-plane, the only nonzero triplet
components will in this case be dx and dy. The SRT amplitude
d and LRT amplitude d⊥ can therefore be written:

d = dx cosθ+dy sinθ , (29)
d⊥ =−dx sinθ+dy cosθ . (30)

By projecting the linearized Usadel equation for d along the
unit vectors (cosθ,sinθ,0) and (−sinθ,cosθ,0), respectively,
then we obtain coupled equations for the SRTs and LRTs:

i
2

DF ∂2
z fs =ε fs +hd , (31)

i
2

DF ∂2
z d =[ε+2iDF a2(1− sin2θ sin2χ)]d

−2iDF a2 cos2θ sin2χ d⊥+h fs , (32)
i
2

DF ∂2
z d⊥ =[ε+2iDF a2(1+ sin2θ sin2χ)]d⊥

−2iDF a2 cos2θ sin2χ d . (33)

These equations clearly show the interplay between the singlet
component fs, SRT component d , and LRT component d⊥. If
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we start with only a singlet component fs, then the presence
of an exchange field h results in the generation of the SRT
component d . The presence of an SO field can then result in
the generation of the LRT component d⊥, where the mixing
term is proportional to a2 cos2θsin2χ. This implies that in the
weak proximity limit, LRT mixing is absent for an exchange
field direction θ = π/4, corresponding to hx = hy, while it is
maximized if θ = {0,π/2,π} and at the same time χ =±π/4.
In other words, the requirement for maximal LRT mixing is
therefore that the exchange field is aligned along either the
x-axis or y-axis, while the Rashba and Dresselhaus coefficients
should have the same magnitude. It is important to note here
that although the mixing between the triplet components is
maximal at θ = {0,π/2,π}, this does not necessarily mean
that the signature of the triplets in physical quantities is most
clearly seen for these angles, as we shall discuss in detail later.

Moreover, these equations show another interesting conse-
quence of having an SO field in the ferromagnet, which is
unrelated to the LRT generation. Note that the effective quasi-
particle energies coupling to the SRTs and LRTs become

E = ε+2iDF a2(1− sin2θ sin2χ) , (34)

E⊥ = ε+2iDF a2(1+ sin2θ sin2χ) . (35)

When θ = χ = ±π/4, then the SRTs are entirely unaffected
by the presence of an SO coupling; the triplet mixing term
vanishes for these parameters, and E is clearly independent of
a. However, when θ =−χ =±π/4, the situation is drastically
different. There is still no possibility for LRT generation,
however the SRT energy E = ε+4iDF a2 will now obtain an
imaginary energy contribution which destabilizes the SRTs. In
fact, numerical simulations show that this energy contribution
destroys the SRT components as a increases. As we will see
in Section III C, this effect results in an increase in the critical
temperature of the bilayer. Thus, switching between θ =±π/4
in a system with χ ' ±π/4 may suggest a novel method for
creating a triplet spin valve.

When χ = ±π/4 but θ 6= ±π/4, the triplet mixing term
proportional to cos2θ sin2χ will no longer vanish, so we get
LRT generation in the system. We can then see from the ef-
fective triplet energies that as θ→ sgn(χ)π/4, the imaginary
part of E vanishes, while the imaginary part of E⊥ increases.
This leads to a relative increase in the amount of SRTs com-
pared to the amount of LRTs in the system. In contrast, as
θ→−sgn(χ)π/4, the imaginary part of E⊥ vanishes, and the
imaginary part of E increases. This means that we would
expect a larger LRT generation for these parameters, up until
the point where the triplet mixing term cos2θ sin2χ becomes
so small that almost no LRTs are generated at all. The ratio
of effective energies coupling to the triplet component at the
Fermi level ε = 0 can be written

E⊥(0)
E (0)

=
1+ sin2θ sin2χ
1− sin2θ sin2χ

. (36)

D. Density of states

The density of states D(ε) containing all spin components
can be written in terms of the Riccati matrices as

D(ε) = Tr[N(1+ γγ̃)]/2 , (37)

which for the case of zero energy can be written concisely in
terms of the singlet component fs and triplet components d,

D(0) = 1−| fs(0)|2/2+ |d(0)|2/2 . (38)

The singlet and triplet components are therefore directly com-
peting to lower and raise the density of states46. Furthermore,
since we are primarily interested in the proximity effect in the
ferromagnetic film, we will begin by using the known BCS
bulk solution in the superconductor,

ĝBCS =

(
cosh(θ) sinh(θ)iσyeiφ

sinh(θ)iσye−iφ −cosh(θ)

)
, (39)

where θ = atanh(∆/ε), and φ is the superconducting phase.
Using Eq. (24) and the definition of the tilde operation, and
comparing ĝR in Eq. (3) with its standard expression in a bulk
superconductor Eq. (39), we can see that at zero energy the
singlet component fs(0) must be purely imaginary and the
asymmetric triplet dz(0) must be purely real if the supercon-
ducting phase is φ = 0.

By inspection of Eq. (26), we can see that a transformation
hx↔ hy along with dx↔ dy leaves the equations invariant, as
would be expected for a one-dimensional system aligned along
the z-axis. The density of states, which is given by Eq. (38),
will therefore be unaffected by such permutations,

D[h = (a,b,0)] = D[h = (b,a,0)] , (40)

while in general

D[h = (a,0,b)] 6= D[h = (b,0,a)] . (41)

However, whenever one component of the planar field is ex-
actly twice the value of the other component, one can confirm
that the linearized equations remain invariant under a rotation
of the exchange field

h = (a,2a,0)→ h = (a,0,2a) , (42)

with associated invariance in the density of states.

E. Critical temperature

When superconducting correlations leak from a supercon-
ductor and into a ferromagnet in a hybrid structure, there will
also be an inverse effect, where the ferromagnet effectively
drains the superconductor of its special properties. Physically,
this effect is observable in the form of a reduction in the su-
perconducting gap ∆(z) near the interface at all temperatures.
Furthermore, if the temperature of the hybrid structure is some-
what close to the bulk critical temperature Tcs of the supercon-
ductor, this inverse proximity effect can be strong enough to
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make the superconducting correlations vanish entirely through-
out the system. Thus, proximity-coupled hybrid structures will
in practice always have a critical temperature Tc that is lower
than the critical temperature Tcs of a bulk superconductor. De-
pending on the exact parameters of the hybrid system, Tc can
sometimes be significantly smaller than Tcs, and in some cases
it may even vanish (Tc→ 0).

To quantify this effect, it is no longer sufficient to solve the
Usadel equation in the ferromagnet only. We will now also
have to solve the Usadel equation in the superconductor,

DS∂2
z γ =−2iεγ−∆(σy− γσyγ)−2(∂zγ)Ñγ̃(∂zγ) , (43)

along with a self-consistency equation for the gap ∆(z),

∆(z) = N0λ
∆0 cosh(1/N0λ)∫

0

dε Re{ fs(z,ε)} tanh
(

π
2eγ

ε/∆0

T/Tcs

)
, (44)

where N0 is the density of states per spin at the Fermi level,
and λ > 0 is the electron-electron coupling constant in the
BCS theory of superconductivity. For a derivation of the gap
equation, see Appendix B.

To study the effects of the SO coupling on the critical tem-
perature of an SF structure, we therefore have to find a self-
consistent solution to Eq. (5) in the ferromagnet, Eq. (6) at
the interface, and Eqs. (43) and (44) in the superconductor. In
practice, this is done by successively solving one of the equa-
tions at a time numerically, and continuing the procedure until
the system converges towards a self-consistent solution. To
obtain accurate results, we typically have to solve the Usadel
equation for 100–150 positions in each material, around 500
energies in the range (0,2∆0), and 100 more energies in the
range (2∆0,ωc), where the Debye cutoff ωc ≈ 76∆0 for the
superconductors considered herein. This procedure will then
have to be repeated up to several hundred times before we
obtain a self-consistent solution for any given temperature of
the system. Furthermore, if we perform a conventional linear
search for the critical temperature Tc/Tcs in the range (0,1)
with a precision of 0.0001, it may require up to 10,000 such
iterations to complete, which may take several days depending
on the available hardware and efficiency of the implementation.
The speed of this procedure may, however, be significantly
increased by performing a binary search instead. Using this
strategy, the critical temperature can be determined to a preci-
sion of 1/212+1 ≈ 0.0001 after only 12 iterations, which is a
significant improvement. The convergence can be further accel-
erated by exploiting the fact that ∆(z) from iteration to iteration
should decrease monotonically to zero if T > Tc; however, the
details will not be further discussed in this paper.

III. RESULTS

We consider the proximity effect in an SF bilayer in III A,
and the corresponding SFS Josephson junction in III B, using
the BCS bulk solution for the superconductors. We take the
thin-film layering direction to be oriented in the z-direction
and fix the spin-orbit coupling to Rashba–Dresselhaus type in

the xy-plane as given by Eq. (19). For these calculations, we
choose the superconductor coherence length to be ξS = 30 nm,
and use a ferromagnet of length LF = 15 nm. We solve the
equations using MATLAB with the boundary value differential
equation package bvp6c and examine the density of states
D(ε) for energies normalised to the superconducting gap ∆.
For brevity of notation, we include the normalization factor in
the coefficients α and β in these sections. This normalization is
taken to be the length of the ferromagnetic region LF , so that for
instance α = 1 in the figure legends means αLF = 1. Finally,
in Section III C, we calculate the dependence of the critical
temperature of an SF bilayer as a function of the different
system parameters.

A. SF Bilayer

Consider the SF bilayer depicted in Fig. 1. In section II B
we introduced the conditions for the LRT component to appear,
and from Eq. (22) it is clear that no LRTs will be generated
if the exchange field is aligned with the layering direction, i.e.
h∼ ẑ, since Eq. (22) will be parallel to the exchange field. Con-
versely, the general condition for LRT generation with in-plane
magnetisation is both that hx 6= hy and that the SO coupling is
not of pure Rashba or pure Dresselhaus form. However, it be-
came clear in Section II C that the triplet mixing was maximal
for equal Rashba and Dresselhaus coupling strengths, and in
fact the spectroscopic signature is quite sensitive to deviations
from this.

For SF bilayers without SO coupling and a homogeneous ex-
change field, one expects to see a spectroscopic minigap when-
ever the Thouless energy is much greater than the strength
of the exchange field. The minigap in SF structures closes
when the resonant condition h∼ Eg is fulfilled where Eg is the
minigap occuring without an exchange field and a zero-energy
peak emerges instead41. The minigap Eg depends on both the
Thouless energy and the resistance of the junction. For stronger
fields we will have an essentially featureless density of states
(see e.g. Ref. 39 and references therein). This is indeed what
we observe for α = β = 0 in Fig. 6. With purely out-of-plane
magnetisation h∼ ẑ, the effect of SO coupling is irrespective
of type: Rashba, Dresselhaus or both will always create a mini-
gap. With in-plane magnetisation however, the observation of
a minigap above the resonant condition39,41 indicates that dom-
inant Rashba or dominant Dresselhaus coupling is present. The
same is true for SFS trilayers, and thus to observe a signature of
long-range triplets the Rashba–Dresselhaus coefficients must
be similar in magnitude, and in the following we shall primar-
ily focus on this regime. To clarify quantitatively how much
the Rashba and Dresselhaus coefficients can deviate from each
other before destroying the low-energy enhancement of the
density of states, which is the signature of triplet Cooper pairs
in this system, we have plotted in Fig. 4 the density of states
at the Fermi level (ε = 0) as a function of the spin-orbit angle
χ and the magnetization direction θ. For purely Rashba or
Dresselhaus coupling (χ = {0,±π/2}), the deviation from the
normal-state value is small. However, as soon as both compo-
nents are present a highly non-monotonic behavior is observed.
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This is particularly pronounced for χ→±π/4, although the
conversion from dominant triplets to dominant singlets as one
changes θ is seen to occur even away from χ =±π/4.

FIG. 4: Zero-energy density of states D(0) as a function of the
spin-orbit angle χ and magnetization angle θ. We have used
a ferromagnet of length LF/ξS = 0.5 with an exchange field
h/∆ = 3 and a spin-orbit magnitude aξS = 2.

With either h = hx̂ 6= 0, or equivalently h = hŷ 6= 0, LRTs
are generated provided αβ 6= 0, and in Fig. 7 we can see that
the addition of SO coupling introduces a peak in the density
of states at zero energy, which saturates for a certain coupling
strength. This peak manifests as sharper around ε = 0 than the
zero-energy peak associated with weak field strengths of the or-
der of the gap (i.e. as evident from α = β = 0 in Fig. 7), which
occurs regardless of magnetisation direction or texture39,41. By
analysing the real components of the triplets, for a gauge where
the superconducting phase is zero, we can confirm that this
zero-energy peak is due to the LRT component, in this case
dx, also depicted in Fig. 7, in agreement with the predictions
for textured magnetisation without SO coupling4,39. However,
it is also evident from Fig. 7 that increasing the field strength
rapidly suppresses the density of states towards that of the
normal metal, making the effect more difficult to detect experi-
mentally. However, as we see in Fig. 5, the introduction of SO
coupling means the direction of the exchange field is crucially
important, and allows for a dramatic spectroscopic signature
for fields without full alignment with the x- or y-axes.

Fig. 5 shows how the density of states at zero energy varies
with the angle θ between hx and hy at zero energy; with θ = 0
the field is aligned with hx, and with θ = π/2 it is aligned
with hy. We see that the inclusion of SO coupling intro-
duces a nonmonotonic angular dependance in the density of
states, with increasingly sharp features as the SO coupling
strength increases, although the optimal angle at approximately
θ = 7π/32 and θ = 9π/32 varies minimally with increasing
SO coupling. Clearly the ability to extract maximum LRT
conversion from the inclusion of SO coupling is highly sen-
sitive to the rotation angle, with near step-function behaviour
delineating the regions of optimal peak in the density of states

and an energy gap for strong SO coupling. It is remarkable to
see how D(0) vs. θ formally bears a strong resemblance to the
evolution of a fully gapped BCS density of states D(ε) vs. ε to
a flat density of states as the SO coupling decreases.

π/4 π/20

D
(0

)

θ

α = β = 0

α = β = 0.5

α = β = 1

α = β = 5
α = β = 2

h=(6cos(θ), 6sin(θ), 0)

0

0.25

0.5

0.75

1

1.25

1.5

1.75

-π/4-π/2

FIG. 5: The dependence of the density of states of the SF
bilayer at zero energy on the angle θ between the x and y
components of the exchange field h/∆ = 6(cos θ,sin θ,0) for
increasing SO coupling. As the strength of the coupling in-
creases, we see increasingly sharp variations from an optimal
peak at around θ≈ 7π/32 and θ≈ 9π/32 to a gap at θ = π/4.

These results can again be explained physically by the lin-
earized equations (31)–(33). Since the case α = β corresponds
to χ = −π/4 in the notation developed in the preceding sec-
tions, Eq. (36) implies that E⊥(0)> E (0) when θ < 0, while
E⊥(0) < E (0) when θ > 0. In other words, for negative θ,
the SO coupling suppresses the LRT components, and the
exchange field suppresses the other components. Since the sin-
glet and SRT components have opposite sign in Eq. (38), this
renders the density of states essentially featureless. However,
for positive θ, both the SO coupling and the exchange field
suppress the SRT components, meaning that LRT generation is
energetically favoured. Note that E⊥/E → ∞ as θ→ +π/4,
which explains why the LRT generation is maximized in this
regime. Since the triplet mixing term in Eq. (33) is propor-
tional to cos2θ sin2χ, the LRT component vanishes when the
value of θ gets too close to +π/4. Furthermore, since E has
a large imaginary energy contribution in this case, the SRTs
are also suppressed at θ = +π/4. Thus, despite LRTs being
most energetically favored at this exact point, we end up with a
system dominated by singlets due to the SRT suppression and
lack of LRT production pathway Nevertheless, one would con-
ventionally expect that exchange fields of a magnitude h� ∆
as depicted in Fig.5 would suppress any features in the density
of states, while we observe an obvious minigap. It thus appears
as if the singlet correlations are much more resilient against
the pair-breaking effect of the exchange field when spin-orbit
coupling is present. To identify the physical origin of this
effect, we solve the linearized equations (31)–(33) along with
their corresponding boundary conditions for the specific case
ε = 0, θ = −χ = π/4. We consider a bulk superconductor
occupying the space x < 0 while the F has a length L that is so
large that one in practice only needs to keep the decaying parts
of the anomalous Green’s function in the F region. We then
find the following expression for the singlet component at the
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SF interface in the absence of SO coupling:

f 0
s =

s
2ζL

√
D
h
. (45)

With increasing h, the singlet correlations are suppressed in
the conventional manner. However, we now incorporate SO
coupling in the problem. For more transparent analytical re-
sults, we focus on the case 2(aξ)2� h/∆. This condition can
be rewritten as 2Da2� h. In this case, a similar calculation
gives the singlet component at the SF interface in the presence
of SO coupling:

fs = f 0
s

√
Da2

2h
. (46)

Clearly, the SO coupling enhances the singlet component in
spite the presence of an exchange field since

√
Da2/h� 1.

This explains the presence of the conventional zero energy gap
for large SO coupling even with a strong exchange field. A
consequence of this observation is that SO coupling in fact
provides a route to a magnetically tunable minigap. Fig. 5
shows that when both an exchange field and SO coupling is
present, the direction of the field determines when a minigap
appears. This holds even for strong exchange fields h� ∆ as
long as the SO coupling is sufficiently large as well.

Concerning the LRT component, we recall that is defined
as the component of d that is perpendicular to h, and this

perpendicular component d⊥ can be found easily from the
cross product of the two vectors: d⊥ = |d× ĥ|. We saw above
that the spectroscopic signature of LRT generation is strongly
dependent on the angle of the field, and this angle is a tun-
able parameter for sufficiently weak magnetic anisotropy. In
Fig. 8 we see an example of the dramatic effect this rota-
tion can have on the spectroscopic signature of LRT genera-
tion. Comparing the effect of increasing the exchange field
h = ∆ŷ→ 3∆ŷ in Fig. 7 , when the exchange field is changed
from h = (6∆,3∆,0)→ (6∆,5∆,0) (i.e. changing the direction
of the field), as shown in Fig. 8, we see that a strong zero-
energy peak now emerges due to the presence of LRT in the
system. If one were to remove the SO coupling, the low-energy
DOS would have no trace of any superconducting proximity
effect, which demonstrates the important role played by the
SO interactions here. Finally, for completeness we include
an example of the effect of rotating the field to have a com-
ponent along the junction in Fig. 9. Comparing the case of
h = (0,3∆,6∆) in Fig. 9 with h = (6∆,3∆,0) in Fig. 8, we
see that the two cases are identical, as predicted in the limit
of weak proximity effect, and increasing the magnitude of
the out-of-plane z component of the field has no effect on the
height of the zero-energy peak, which is instead governed by
the in-plane y component.



10

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

D
(ε

)

ε/Δε/Δ

h = (0, 0, 3Δ)

-1.5 -1 -0.5 0 0.5 1 1.5
0

0.5

1

1.5

2

2.5

ε/Δ

h = (0, 3Δ, 0)

α = β = 0 α = β = 0.5
α = β = 1 α = β = 2

α = β = 0 α = 0.1, β = 0.5 α = 0.1, β = 1 α = 0.1, β = 2

FIG. 6: Density of states D(ε) for the SF bilayer with energies normalised to the superconducting gap ∆ and SO coupling
normalised to the inverse ferromagnet length 1/LF . The table shows the spectroscopic effect of increasing SO with
α = β when the magnetisation h = 3∆ẑ, i.e. with the field perpendicular to the interface, and the effect of increasing
difference between the Rashba and Dresselhaus coefficients for both h = 3∆ẑ and h = 3∆ŷ. Although the conditions for
LRT generation are fulfilled in the latter case, it is clear that no spectroscopic signature of this is present.
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FIG. 7: Density of states D(ε) for the SF bilayer with energies normalised to the superconducting gap ∆ and SO coupling
normalised to the inverse ferromagnet length 1/LF . The table shows the spectroscopic effect of equal Rashba–Dresselhaus
coefficients when the magnetisation is oriented entirely in the y-direction, and also the correlation between the SO-induced
zero-energy peak with the long-range triplet component |Re(dx)| ≡ Re(d⊥). It is clear that the predominant effect of the
LRT component, which appears only when the SO coupling is included, is to increase the peak at zero energies. Increasing
the field strength rapidly suppresses the density of states towards that of the normal metal.
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rotated exchange field in the xy-plane. Again we see a peak in the density of states at zero energy due to the LRT
component, i.e. the component of d perpendicular to h, d⊥. The height of this zero-energy peak is strongly dependent
on the angle of the field vector in the plane, as shown in Fig. 5. For near-optimal field orientations increasing the SO
coupling leads to a dramatic increase in the peak of the density of states at zero energy.
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FIG. 9: Density of states D(ε) in the SF bilayer for energies normalised to the superconducting gap ∆ and SO coupling
normalised to the inverse ferromagnet length 1/LF . The table shows the spectroscopic features of the SF bilayer with a
rotated exchange field in the xz≡ yz-plane. Note that when the field component along the junction is twice the component
in the y-direction, here h = (0,3∆,6∆), the density of states is equivalent to the case h = (6∆,3∆,0) illustrated in Fig. 8,
as predicted in the limit of weak proximity effect.
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B. Josephson junction

By adding a superconducting region to the right interface
of the SF bilayer we form an SFS Josephson junction. It is
well known that the phase difference between the supercon-
ducting regions governs how much current can flow through
the junction48, and the density of states for a diffusive SNS
junction has been measured experimentally with extremely
high precision47. Here we consider such a transversal junction
structure as depicted in Fig.2, again with intrinsic SO coupling
in the xy-plane (Eq. 19) in the ferromagnet and with BCS bulk
values for each superconductor. In III B 1 we consider single
orientations of the exchange field along the principal axes of
the system, and in III B 2 we consider rotated fields.

Let us first recapitulate some known results. We saw in
Section II that the spin-singlet, SRT and LRT components
compete to raise and lower the density of states at low energies.
Their relative magnitude is affected by the magnitude and
direction of both the exchange field and SO coupling and
results in three distinctive qualitative profiles: the zero-energy
peak from the LRTs, the singlet-dominated regime with a
minigap, and the flat, featureless profile in the absence of
superconducting correlations. In the Josephson junction, the
spectroscopic features are in addition sensitive to the phase
difference φ between the superconductors. In junctions with
an interstitial normal metal, the gap decreases as φ = 0→ π,
closing entirely at φ = π such that the density of states is that
of the isolated normal metal; identically one47,49. Without
an exchange field the density of states is unaffected by the
SO coupling. This is because without an exchange field the
equations governing the singlet and triplet components are
decoupled and thus no singlet-triplet conversion can occur.
From a symmetry point of view, it is reasonable that the time-
reversal invariant spin-orbit coupling does not alter the singlet
correlations.

Without SO coupling and as long as the exchange field is
not too large, changing the phase difference can qualitatively
alter the density of states from minigap to peak at zero energy
(see Fig. 12), a highly useful feature permitting external con-
trol of the quasiparticle current flowing through the junction.
Beyond a system specific threshold strength of exchange field,
the minigap can no longer be sustained and increasing the
phase difference simply lowers the density of states towards
that of the normal metal. Amongst the features we outline in
the following subsections, one of the effects of adding SO cou-
pling is to make this useful gap-to-peak effect accessible with
stronger exchange fields, i.e. for a greater range of materials.
At the same time, the SO coupling cannot be too strong since
the triplet correlations are suppressed in this regime leaving
only the minigap and destroying the capability for qualitative
change in the spectroscopic features.

1. Josephson junction with uniform exchange field in single
direction

Consider first the case in which the exchange field is aligned
in a single direction, meaning that we only consider exchange
fields purely along the principal axes of the system. If we
again restrict the form of the SO field to (19), aligning h in the
z-direction will not result in any LRTs. In this case the spec-
troscopic effect of the SO coupling is dictated by the singlet
and short-range triplet features, much as in the SF bilayer case
(Fig. 6). This is demonstrated in Fig. 12, where again we see a
qualitative change in the density of states for low fields where
the resonant condition h∼ Eg can be met.

We will now examine the effect of increasing the exchange
field aligned in the x- or, equivalently, the y-direction. In this
case, we have generation of LRT Cooper pairs. If h is suffi-
ciently weak to sustain a gap independently of SO coupling,
introducing weak SO coupling will increase the gap at zero
phase difference while maintaining a peak at zero energy for
a phase difference of 0.75π (see Fig. 12). Increasing the SO
coupling increases this peak at zero energy up to a saturation
point before the short-range behaviour dominates, manifesting
in increasing side-peaks. As the exchange field increases suffi-
ciently beyond the resonant condition to keep the gap closed,
increasing the SO coupling increases the zero-energy peak at
all phases, again due to the LRT component, eventually reach-
ing a saturation point. As the phase difference φ = 0→ π,
the density of states reduces towards that of the normal metal,
closing entirely at φ = π as expected42,43,49. As the value of
the density of states at zero energy saturates for increasing SO
coupling, fixed phase differences yield the same drop at zero
energy regardless of the strength of SO coupling.

We note in passing that when the SO coupling field has a
component along the junction direction (z), it can qualitatively
influence the nature of the superconducting proximity effect.
As very recently shown in Ref. 43, a giant triplet proximity
effect develops at φ = π in this case, in contrast to the normal
scenario of a vanishing proximity effect in π-biased junctions.

2. Josephson junction with rotated exchange field

With two components of the exchange field h, e.g. from
rotation, it is again useful to separate the cases with and without
a component along the junction direction. When the exchange
field lies in-plane (the xy-plane), and provided we satisfy the
conditions hx 6= hy and αβ 6= 0, increasing the SO coupling
drastically increases the zero energy peak as shown in Fig. 13,
again due to the LRT component. This is consistent with the
bilayer behavior, where the maximal generation of LRT Cooper
pairs occurs at an angle 0 < θ < π/4. As the phase difference
approaches π, the proximity-induced features are suppressed in
the centre of the junction. This can be understood intuitively as
a consequence of the order parameter averaging to zero since
it is positive in one superconductor and negative in the other.

The 2D plots in this paper of the local density of states are
given for the centre of the junction (z = 0), where one naturally
expects the relative proportion of LRTs to be greatest. How-



13

ever, it is interesting to note that the zero-energy peak—the
signature of the LRTs—is maintained throughout the ferro-
magnet. This is shown in Fig. 10, for the case α = β = 1
and h = (1.5∆,3.5∆,0), where the maximal peak for φ = 0 is
almost twice the normal-state value. The depletion of this peak
is surprisingly small at the superconductor interfaces.

FIG. 10: Spatial distribution of the density of states D(ε)
throughout the ferromagnet of an SFS junction with phase
difference φ = 0, spin-orbit coupling α = β = 1 and magneti-
sation h = (1.5∆,3.5∆,0).

With one component of the exchange field along the junc-
tion and another along either x or y, a phase-dictated gap-to-
peak transition at zero energy is possible with stronger fields
than with the field aligned in a single direction, as shown in
Fig. 13. Notice that in this case increasing the phase difference
φ = 0→ 0.5π gives an increase in the peak at zero energy
before reducing towards the normal metal state. For higher
field strengths we find once again that increasing the SO cou-
pling increases the peak at zero energy, up to a system-specific
threshold, and increasing phase difference reduces the density
of states towards that of the normal metal.

It is also useful to consider how the zero-energy density
of states depends simultaneously on the phase-difference and
magnetization orientation. To this end, we show in Fig. 11 a
contour plot of the density of states at the Fermi level (ε = 0)
as a function of the superconducting phase difference φ across
the junction and the magnetization direction θ. The proximity
effect vanishes in the centre of the junction at φ = π for any
value of the exchange field orientation, giving the normal-state
value. Just as in the bilayer case (Fig. 4), we see that the
proximity effect is strongly suppressed for the range of angles
θ > 0. Rotating the field in the opposite direction, θ < 0,
strongly non-monotonic behavior emerges. For zero phase-
difference, the physics is qualitatively similar to the bilayer
situation. In this case, we proved analytically that the LRT
is not produced at all when θ = −π/4. Accordingly, Fig. 11
shows a full minigap there.

Whether or not a clear zero-energy peak can be seen due to
the LRT depends on the relative strength of the Rashba and
Dresselhaus coupling. In the top panel, we have dominant
Dresselhaus coupling in which case the low-energy density
of states show either normal-state behavior or a minigap. In-

terestingly, we see that the same opportunity appears in the
present case of a Josephson setup as in the bilayer case: a
magnetically tunable minigap appears. This effect exists as
long as the phase difference is not too close to π, in which
case the minigap closes. In the bottom panel corresponding to
equal magnitude of Rashba and Dresselhaus, however, a strong
zero-energy enhancement due to long-range triplets emerges as
one moves away from θ =−π/4. With increasing phase differ-
ence, the singlets are seen to be more strongly suppressed than
the triplet correlations since the minigap region (dark blue)
vanishes shortly after φ/π' 0.6 while the peaks due to triplets
remain for larger phase differences.

FIG. 11: Zero-energy density of states D(0) as a function of
the phase-difference φ and magnetization angle θ, both tunable
parameters experimentally. The other parameters used are
LF/ξS = 0.5, h/∆0 = 3, aξS = 2. The top panel shows a plot
for χ = 0.15π, and the bottom one χ = 0.25π.
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FIG. 12: The table shows the density of states D(ε) in the SFS junction with increasing SO coupling and exchange field in
a single direction, with D(ε) normalised to the superconducting gap ∆ and SO coupling normalised to the ferromagnet
length LF . With no SO coupling and very weak exchange field we see a phase-dictated gap-to-peak qualitative change in
the density of states at zero energy. When the field is strong enough to destroy this gap, increasing the phase difference
simply lowers the density of states towards that of the normal metal, which is achieved at a phase difference of φ = π. With
the addition of SO coupling we see a clear difference in the density of states due to the long range triplet component, which
is present when the field is oriented in y but not in z. When LRTs are present with weak exchange fields, a phase-dictated
gap-to-peak feature is retained and increased as the strength of SO coupling increases the gap, with the peak shown here at
a phase difference of 0.75π. For stronger exchange fields, increasing the SO coupling produces the minigap when there is
no LRT component, whereas the existence of an LRT component again introduces an increasing peak at zero energy when
no minigap is present.
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FIG. 13: Density of states D(ε) in the SFS junction for energies normalised to the superconducting gap ∆ and SO coupling
normalised to the ferromagnet length LF . The table shows the spectroscopic effects of increasing SO coupling in SFS with
rotated exchange field. In the absence of SO coupling, the density of states is flat and featureless at low energies. Increasing
the SO coupling again leads to a strong increase in the peak of the density of states at zero energy, while increasing the
phase difference reduces the peak and shifts the density of states weight toward the gap edge for higher SO coupling
strengths. With a component of the field in the junction direction a qualitative change in the density of states from strongly
suppressed to enhanced at zero energy can be achieved by altering the phase difference between the superconductors. This
change can occur in the presence of stronger exchange fields when SO coupling is included. Increasing the exchange field
destroys the ability to maintain a gap in the density of states and the LRT component of the SO coupling increases the
zero-energy peak as it did in the bilayer case.
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C. Critical temperature

In this section, we present numerical results for the critical
temperature Tc of an SF bilayer. The theory behind these inves-
tigations is summarized in Section II E, and discussed in more
detail in Appendix B. An overview of the physical system is
given in Fig. 1. In all of the simulations we performed, we
used the material parameter N0λ = 0.2 for the superconductor,
the exchange field h = 10∆0 for the ferromagnet, and the in-
terface parameter ζ = 3 for both materials. The other physical
parameters are expressed in a dimensionless form, with lengths
measured relative to the superconducting correlation length ξS,
energies measured relative to the bulk zero-temperature gap ∆0,
and temperatures measured relative to the bulk critical temper-
ature Tcs. This includes the SO coupling strength a, which is
expressed in the dimensionless form aξS. The plots presented
in this subsection were generated from 12–36 data points per
curve, where each data point has a numerical precision of
0.0001 in Tc/Tcs. The results were smoothed with a LOESS
algorithm.

Before we present the results with SO coupling, we will
briefly investigate the effects of the ferromagnet length LF
and superconductor length LS on the critical temperature, in
order to identify the interesting parameter regimes. The critical
temperature as a function of the size of the superconductor is
shown in Fig. 14.

LF/ξS = LF/ξS = 0.25LF/ξS = 0.50= 1.00
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FIG. 14: Plot of the critical temperature Tc/Tcs as a function
of the length LS/ξS of the superconductor for aξS = 0.

First of all, we see that the critical temperature drops to zero
when LS/ξS ≈ 0.5. After this, the critical temperature increases
quickly, already reaching nearly 50% of the bulk value when
LS/ξS = 0.6, indicating that the superconductivity is very sen-
sitive to small changes in parameters for this region.

The next step is then to observe how the behaviour of the
system varies with the size of the ferromagnet, and these results
are presented in Fig. 15.
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FIG. 15: Plot of the critical temperature Tc/Tcs as a function
of the ferromagnet length LF/ξS for aξS = 0.

We again observe that the critical temperature increases with
the size of the superconductor, and decreases with the size of
the ferromagnet. The critical temperature for a superconductor
with LS/ξS = 0.525 drops to zero at LF/ξS ≈ 0.6, and stays
that way as the size of the ferromagnet increases. Thus we
do not observe any strongly nonmonotonic behaviour, such
as reentrant superconductivity, for our choice of parameters.
This is consistent with the results of Fominov et al., who only
reported such behaviour for systems where either the interface
parameter or the exchange field is drastically smaller than for
the bilayers considered herein53.

We now turn to the effects of the antisymmetric SO coupling
on the critical temperature, which has not been studied before.
Figs. 16 and 17 show plots of the critical temperature as a
function of the SO angle χ for an exchange field in the z-
direction. The critical temperature is here independent of the
SO angle χ. This result is reasonable, since the SO coupling is
in the xy-plane, which is perpendicular to the exchange field
for this geometry. We also observe a noticeable increase in
critical temperature for larger values of a. This behaviour can
be explained using the linearized Usadel equation. According
to Eq. (26), the effective energy Ez coupling to the triplet
component in the z-direction becomes

Ez = ε+4iDF a2 ; (47)

so in other words, the SRTs obtain an imaginary energy shift
proportional to a2. However, as shown in Eq. (25), there is
no corresponding shift in the energy of the singlet component.
This effect reduces the triplet components relative to the singlet
component in the ferromagnet, and as the triplet proximity
channel is suppressed the critical temperature becomes restored
to higher values.
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FIG. 16: Plot of the critical temperature Tc/Tcs as a function of
the SO angle χ, when LS/ξS = 1.00, LF/ξS = 0.2, and h∼ ẑ.

aξS= 0 aξS= 2 aξS= 6 

                                  

0.3

0.4

0.5

0.6

0.7

0.8

-0.50 -0.25 0.00 0.25 0.50
χ π

T c
T c

s

FIG. 17: Plot of the critical temperature Tc/Tcs as a function of
the SO angle χ, when LS/ξS = 0.55, LF/ξS = 0.2, and h∼ ẑ.

The same situation for an exchange field along the x-axis
is shown in Figs. 18 and 19. For this geometry, we observe a
somewhat smaller critical temperature for all a > 0 and all χ
compared to Figs. 16 and 17. This can again be explained by
considering the linearized Usadel equation in the ferromagnet,
which suggests that the effective energy Ex coupling to the
triplet component in the x-direction should be

Ex = ε+2iDF a2 , (48)

which has a smaller imaginary part than the corresponding
equation for Ez. Furthermore, note the drop in critical temper-
ature as χ→±π/4. Since the linearized equations contain a
triplet mixing term proportional to sin2χ, which is maximal
precisely when χ = ±π/4, these are also the geometries for
which we expect a maximal LRT generation. Thus, this de-
crease in critical temperature near χ =±π/4 can be explained
by a net conversion of singlet components to LRTs in the sys-
tem, which has an adverse effect on the singlet amplitude in
the superconductor, and therefore the critical temperature.
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FIG. 18: Plot of the critical temperature Tc/Tcs as a function of
the SO angle χ, when LS/ξS = 1.00, LF/ξS = 0.2, and h∼ x̂.
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FIG. 19: Plot of the critical temperature Tc/Tcs as a function of
the SO angle χ, when LS/ξS = 0.55, LF/ξS = 0.2, and h∼ x̂.

In Figs. 20 and 21 we present the results for a varying ex-
change field h∼ cosθ x̂+ sinθ ŷ in the xy-plane. In this case,
we observe particularly interesting behaviour: the critical tem-
perature has extrema at |χ|= |θ|= π/4, where the extremum
is a maximum if θ and χ have the same sign, and a minimum
if they have opposite signs. Since θ = ±π/4 is precisely the
geometries for which we do not expect any LRT generation,
triplet mixing cannot be the source of this behaviour. For the
choice of physical parameters chosen in Fig. 21, this effect re-
sults in a difference between the minimal and maximal critical
temperature of nearly 60% as the magnetization direction is
varied. As shown in Fig. 20, the effect persists qualitatively in
larger structures as well, but is then weaker.
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FIG. 20: Plot of critical temperature as function of the magneti-
zation angle θ, when LS/ξS = 1.00, LF/ξS = 0.2, and aξS = 2.
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FIG. 21: Plot of critical temperature as function of the magneti-
zation angle θ, when LS/ξS = 0.55, LF/ξS = 0.2, and aξS = 2.

Instead, these observations may be explained using the theory
developed in Section II. When we have a general exchange
field and SO field in the xy-plane, Eq. (34) reveals that that the
effective energy of the SRT component is

E = ε+2iDF a2(1− sin2θ sin2χ) . (49)

Since the factor 1− sin2θ sin2χ vanishes for θ = χ =±π/4,
we get E = ε for this case. This geometry is also one where
we do not expect any LRT generation, since the triplet mix-
ing factor cos2θ sin2χ = 0, so the conclusion is that the SO
coupling has no effect on the behaviour of SRTs for these
parameters—at least according to the linearized equations.
However, since 1− sin2θ sin2χ = 2 for θ =−χ =±π/4, the
situation is now dramatically different. The SRT effective en-
ergy is now E = ε+4iDF a2, with an imaginary contribution
which again destabilizes the SRTs, and increases the critical
temperature of the system. We emphasize that the variation of
Tc with the magnetization direction is present when χ 6= π/4
as well, albeit with a magnitude of the variation that gradually
declines as one approaches pure Rashba or pure Dresselhais
coupling.

D. Triplet spin-valve effect with a single ferromagnet

The results discussed in the previous section show that the
critical temperature can be controlled via the magnetization
direction of one single ferromagnetic layer. This is a new
result originating from the presence of SO coupling. In con-
ventional SF structures, Tc is independent of the magnetization
orientation of the F layer. By using a spin-valve setup such
as FSF57–61, it has been shown that the relative magnetization
configuration between the ferromagnetic layers will tune the
Tc of the system. In contrast, in our case such a spin-valve
effect can be obtained with a single ferromagnet (see Figs. 20
and 21): by rotating the magnetization an angle π/2, Tc goes
from a maximum to a minimum. The fact that only a single
ferromagnet is required to achieve this effect is of practical
importance since it can be challenging to control the relative
magnetization orientation in magnetic multilayered structures.

IV. SUMMARY AND DISCUSSION

It was pointed out in Ref. 21 that for the case of transversal
structures as depicted in Fig. 2, pure Rashba or pure Dressel-
haus coupling and arbitrary magnetisation direction are insuffi-
cient for long range triplets to exist. However, although these
layered structures are more restrictive in their conditions for
LRT generation than lateral junctions they are nevertheless one
of the most relevant for current experimental setups10,11,54, and
herein we consider the corresponding experimentally accessi-
ble effects of SO coupling as a complement to the findings of
Ref. 21. We have provided a detailed exposition of the density
of states and critical temperature for both the SF bilayer and
SFS junction with SO coupling, highlighting in particular the
signature of long range triplets.

We saw that the spectroscopic signature depends nonmono-
tonically on the angle of the magnetic exchange field, and that
the LRT component can induce a strong peak in the density
of states at zero energy for a range of magnetization direc-
tions. In addition to the large enhancement at zero energy, we
see that by carefully choosing the SO coupling and exchange
field strengths in the Josephson junction it is again possible
to control the qualitative features of the density of states by
altering the phase difference between the two superconductors
e.g. with a loop geometry47.

The intrinsic SO coupling present in the structures consid-
ered herein derives from their lack of inversion symmetry due
to the e.g. junction interfaces, so-called interfacial asymmetry,
and we restricted the form of this coupling to the experimen-
tally common and, in some cases, tunable Rashba-Dresselhaus
form. A lack of inversion symmetry can also derive from
intrinsic noncentrosymmmetry of a crystal. This could in prin-
ciple be utilised to provide a component of the SO-field in
the junction direction, but to date we are not aware of such
materials having been explored in experiments with SF hy-
brid materials. However, analytic and numerical data suggest
that these materials could have significant importance for spin-
tronic applications making use of a large triplet Cooper pair
population43.
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It is also worth considering the possibility of separating the
spin-orbit coupling and ferromagnetic layers, which would
arguably be easier to fabricate, and we are currently pursuing
this line of investigation. In this case, we would expect similar
conclusions regarding when the long-range triplets leave clear
spectroscopic signatures and also regarding the spin-valve ef-
fect with a single ferromagnet, as found when the SO coupling
and exchange field coexist in the same material. One way to
practically achieve such a setup would be to deposit a very
thin layer of a heavy normal metal such as Au or Pt between a
superconductor and a conventional homogeneous ferromagnet.
The combination of the large atomic number Z and the broken
structural inversion symmetry at the interface region would
then provide the required SO coupling. With a very thin nor-
mal metal layer (of the order of a couple of nm), the proximity
effect would be significantly stronger, and thus analysis of this
regime is only possible with the full Usadel equations in the
Riccati parameterisation developed herein.

The current analysis pertains to thin film ferromagnets.
Upon increasing the length of ferromagnetic film one will
increase the relative proportions of long-range to short-range
triplets in the middle of the ferromagnet. For strong ferro-
magnets where the exchange field is a significant fraction of
the Fermi energy, the quasiclassical Usadel formalism may no
longer describe the system behaviour appropriately, since it
assumes that the impurity scattering rate is much larger than
the other energy scales involved, and the Eilenberger equation
should be used instead55.

In the previous section, we also observed that the presence
of SO coupling will in many cases increase the critical temper-
ature of a hybrid structure. This effect is explained through an
increase in the effective energy coupled to the triplet compo-
nent in the Usadel equation, which destabilizes the triplet pairs
and closes that proximity channel. However, for the special
geometry θ = −χ = ±π/4, the linearized equations suggest
that the SRTs are unaffected by the presence of SO coupling,
and this is consistent with the numerical results. We also note
that for the geometries with a large LRT generation, such as
θ = 0 and χ =±π/4, the LRT generation reduces the critical
temperature again. Thus, for the physical parameters consid-
ered herein, we see that there is a very slight increase in critical
temperature for these geometries, but not as large as for the
geometries without LRT generation.

One particularly striking result from the critical temperature
calculations is that when the Rashba and Dresselhaus contribu-
tion to the SO coupling is of similar magnitude, one observes
that the critical temperature can change by as much as 60%
of upon changing θ = −π/4 to θ = +π/4, i.e. by a 90◦ rota-
tion of the magnetic field. This implies that it is possible to
create a novel kind of triplet spin valve using an SF bilayer,
where the ferromagnet has a homogeneous exchange field and
Rashba–Dresselhaus coupling. This is in contrast to previous
suggestions for triplet spin valves, such as the one described
by Fominov et al., which have required trilayers with differ-
ent homogeneous ferromagnets56. The construction of such a
device is likely to have possible applications in the emerging
field of superconducting spintronics3.
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Appendix A: Riccati parametrization of the Usadel equation
and Kupriyanov–Lukichev boundary conditions

The 4×4 components of the retarded Green’s function ĝ are
not entirely independent, but can be expressed as

ĝ(z,ε) =
(

g(z,+ε) f (z,+ε)
− f ∗(z,−ε) −g∗(z,−ε)

)
, (A1)

which suggests that the notation can be simplified by introduc-
ing the tilde conjugation

g̃(z,+ε)≡ g∗(z,−ε) . (A2)

Moreover, the normalization condition ĝ2 = 1 further con-
strains the possible form of ĝ by relating the g components to
the f components,

gg− f f̃ = 1 , g f − f g̃ = 0 . (A3)

Remarkably, if we pick a suitable parametrization of ĝ, which
automatically satisfies the symmetry and normalization re-
quirements above, then both the Usadel equation and the
Kupriyanov–Lukichev boundary conditions can be reduced
from 4×4 to 2×2 matrix equations. In this paper, we employ
the so-called Riccati parametrization for this purpose, which
is defined by

ĝ =

(
N 0
0 −Ñ

)(
1+ γγ̃ 2γ

2γ̃ 1+ γ̃γ

)
, (A4)

where the normalization matrices are N ≡ (1− γγ̃)−1 and Ñ ≡
(1− γ̃γ)−1. Solving the Riccati parametrized equations for
the function γ(z,ε) in spin space is then sufficient to uniquely
construct the whole Green’s function ĝ(z,ε). It is noteworthy
that ĝ→ 1 when γ→ 0, while the elements of ĝ diverge to
infinity when γ→ 1; so we see that a finite range of variation
in γ parametrizes an infinite range of variation in ĝ.

We begin by deriving some basic identities, starting with the
inverses of the two matrix products Nγ and γÑ:

(Nγ)−1 = γ−1N−1 = γ−1(1− γγ̃) = γ−1− γ̃ ; (A5)

(γÑ)−1 = Ñ−1γ−1 = (1− γ̃γ)γ−1 = γ−1− γ̃ . (A6)

By comparison of the results above, we see that Nγ = γÑ. Sim-
ilar calculations for other combinations of the Riccati matrices
reveal that we can always move normalization matrices past
gamma matrices if we also perform a tilde conjugation in the
process:

Nγ = γÑ , Ñγ = γN , Nγ̃ = γ̃Ñ , Ñγ̃ = γ̃N . (A7)

Since we intend to parametrize a differential equation, we
should also try to relate the derivatives of the Riccati matrices.
This can be done by differentiating the definition of N using
the matrix version of the chain rule:

∂zN = ∂z(1− γγ̃)−1

=−(1− γγ̃)−1 [∂z(1− γγ̃)] (1− γγ̃)−1

= (1− γγ̃)−1 [(∂zγ)γ̃+ γ(∂zγ̃)] (1− γγ̃)−1

= N [(∂zγ)γ̃+ γ(∂zγ̃)]N . (A8)

Performing a tilde conjugation of the equation above, we get a
similar result for ∂zÑ. So the derivatives of the normalization
matrices satisfy the following identities:

∂zN = N [(∂zγ)γ̃+ γ(∂zγ̃)]N , (A9)

∂zÑ = Ñ [(∂zγ̃)γ+ γ̃(∂zγ)] Ñ . (A10)

In addition to the identities derived above, one should note
that the definition of the normalization matrix N = (1− γγ̃)−1

can be rewritten in many forms which may be of use when
simplifying Riccati parametrized expressions; examples of this
include γγ̃ = 1−N−1 and 1 = N−Nγγ̃.

Now that the basic identities are in place, it is time to
parametrize the Usadel equation in the ferromagnet,

DF ∇̃(ĝ∇̃ĝ)+ i
[
ερ̂3 + M̂, ĝ

]
= 0 , (A11)

where we for simplicity will let DF = 1 in this appendix. We
begin by expanding the gauge covariant derivative ∇̃(ĝ∇̃ĝ),
and then simplify the result using the normalization condition
ĝ2 = 1 and its derivative {ĝ, ∂zĝ}= 0, which yields the result

∇̃ · (ĝ∇̃ĝ) = ∂z(ĝ∂zĝ)− i∂z(ĝÂzĝ)

− i[Âz, ĝ∂zĝ]− [Â, ĝÂĝ] .
(A12)

We then write ĝ in component form using Eq. (A1), and also
write Â on the same form using Â = diag(A,−A∗). In the rest
of this appendix, we will for simplicity assume that A is real,
so that Â = diag(A,−A); in practice, this implies that A can
only depend on the spin projections σx and σz. The derivation
for the more general case of a complex Â is almost identical.
The four terms in Eq. (A12) may then be written as follows:

∂z(ĝ∂zĝ)

=

[
∂z(g∂zg− f ∂z f̃ ) ∂z(g∂z f − f ∂zg̃)
∂z(g̃∂z f̃ − f̃ ∂zg) ∂z(g̃∂zg̃− f̃ ∂z f )

]
; (A13)

∂z(ĝÂĝ)

=

[
∂z(gAg+ f A f̃ ) ∂z(gA f + f Ag̃)
−∂z(g̃A f̃ + f̃ Ag) −∂z(g̃Ag̃+ f̃ A f )

]
; (A14)

[Â, ĝ∂zĝ]

=

[
[A, g∂zg− f ∂z f̃ ] {A, g∂z f − f ∂zg̃}
−{A, g̃∂z f̃ − f̃ ∂zg} −[A, g̃∂zg̃− f̃ ∂z f ]

]
; (A15)

[Â, ĝÂĝ]

=

[
[A, gAg+ f A f̃ ] {A, gA f + f Ag̃}
{A, g̃A f̃ + f̃ Ag} [A, g̃Ag̃+ f̃ A f ]

]
. (A16)

Substituting these results back into Eq. (A12), we can find the
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upper blocks of the covariant derivative ∇̃ · (ĝ∇̃ĝ),

[∇̃ · (ĝ∇̃ĝ)](1,1)

= ∂z(g∂zg− f ∂z f̃ )− i∂z(gAzg+ f Az f̃ )

− i[Az, g∂zg− f ∂z f̃ ]− [A, gAg+ f A f̃ ] , (A17)

[∇̃ · (ĝ∇̃ĝ)](1,2)

= ∂z(g∂z f − f ∂zg̃)− i∂z(gAz f + f Azg̃)
− i{Az, g∂z f − f ∂zg̃}−{A, gA f + f Ag̃} . (A18)

In this context, the notation M̂(n,m) refers to the n’th row and
m’th column in Nambu space. Since the Green’s function ĝ
and background field Â also have a structure in spin space, the
(1,1) element in Nambu space is the upper-left 2×2 block of
the matrix, and the (1,2) element is the upper-right one.

There are two kinds of expressions that recur in the equations
above, namely the components of ĝ∂zĝ, and the components
of ĝÂĝ. After we substitute in the Riccati parametrization
g = 2N−1 and f = 2Nγ, these components take the form:

[ĝ∂zĝ](1,1) = g∂zg− f ∂z f̃
= 2N [(∂zγ)γ̃− γ(∂zγ̃)]N ; (A19)

[ĝ∂zĝ](1,2) = g∂z f − f ∂zg̃

= 2N [(∂zγ)− γ(∂zγ̃)γ] Ñ ; (A20)

[ĝÂĝ](1,1) = gAg+ f A f̃
= 4N(A+ γAγ̃)N−2{A, N}+A ; (A21)

[ĝÂĝ](1,2) = gA f + f Ag̃

= 4N(Aγ+ γA)Ñ−2{A, Nγ} . (A22)

If we explicitly calculate the commutators of Â with the two
matrices ĝ∂zĝ and ĝÂĝ, then we find:

[Â, ĝ∂zĝ](1,1) = [A, g∂zg− f ∂z f̃ ]
= 2N(1− γγ̃)AN [(∂zγ)γ̃− γ(∂zγ̃)]N
−2N [(∂zγ)γ̃− γ(∂zγ̃)]NA(1− γγ̃)N ; (A23)

[Â, ĝ∂zĝ](1,2) = {A, g∂z f − f ∂zg̃}
= 2N(1− γγ̃)AN [(∂zγ)− γ(∂zγ̃)γ] Ñ
+2N [(∂zγ)− γ(∂zγ̃)γ] ÑA(1− γ̃γ)Ñ ; (A24)

[Â, ĝÂĝ](1,1) = [A, gAg+ f A f̃ ]
= 4AN(A+ γAγ̃)N
−4N(A+ γAγ̃)NA

−2[A2, N] ; (A25)

[Â, ĝÂĝ](1,2) = {A, gA f + f Ag̃}
= 4AN(Aγ+ γA)Ñ

+4N(Aγ+ γA)ÑA

−4ANγA−2{A2, Nγ} . (A26)

If we instead differentiate the aforementioned matrices with
respect to z, we obtain:

[∂z(ĝ∂zĝ)](1,1) = ∂z(g∂zg− f ∂z f̃ )

= 2N[(∂2
z γ)+2(∂zγ)Ñγ̃(∂zγ)]γ̃N

−2Nγ[(∂2
z γ̃)+2(∂zγ̃)Nγ(∂zγ̃)]N ; (A27)

[∂z(ĝ∂zĝ)](1,2) = ∂z(g∂z f − f ∂zg̃)

= 2N[(∂2
z γ)+2(∂zγ)Ñγ̃(∂zγ)]Ñ

−2Nγ[(∂2
z γ̃)+2(∂zγ̃)Nγ(∂zγ̃)]γÑ ; (A28)

[∂z(ĝAĝ)](1,1) = ∂z(gAg+ f A f̃ )
= 2N(1+ γγ̃)AN[γ(∂zγ̃)+(∂zγ)γ̃]N
+2N[γ(∂zγ̃)+(∂zγ)γ̃]NA(1+ γγ̃)N
+4NγAÑ[(∂zγ̃)+ γ̃(∂zγ)γ̃]N
+4N[(∂zγ)+ γ(∂zγ̃)γ]ÑAγ̃N ; (A29)

[∂z(ĝAĝ)](1,2) = ∂z(gA f + f Ag̃)

= 2N(1+ γγ̃)AN[(∂zγ)+ γ(∂zγ̃)γ]Ñ
+2N[(∂zγ)+ γ(∂zγ̃)γ]ÑA(1+ γ̃γ)Ñ
+4NγAÑ[γ̃(∂zγ)+(∂zγ̃)γ]Ñ
+4N[γ(∂zγ̃)+(∂zγ)γ̃]NAγ̃Ñ . (A30)

Combining all of the equations above, we can express
Eqs. (A17) and (A18) using Riccati matrices. In order to
isolate the second-order derivative ∂2

z γ from these, the trick
is to multiply Eq. (A17) by γ from the right, and subsequently
subtract the result from Eq. (A18):

1
2

N−1{[∇̃ · (ĝ∇̃ĝ)](1,2)− [∇̃ · (ĝ∇̃ĝ)](1,1)γ
}

= ∂2
z γ+2(∂zγ)Ñγ̃(∂zγ)

−2i(Az + γAzγ̃)N(∂zγ)−2i(∂zγ)Ñ(Az + γ̃Azγ)

−2(Aγ+ γA)Ñ(A+ γ̃Aγ)−A2γ+ γA2 . (A31)

If we finally rewrite [∇̃ · (ĝ∇̃ĝ)](1,1) and [∇̃ · (ĝ∇̃ĝ)](1,2) in the
equation above by substituting in the Usadel equation (A11),
then we obtain the following equation for the Riccati matrix γ:

∂2
z γ =−2iεγ− ih · (σγ− γσ∗)−2(∂zγ)Ñγ̃(∂zγ)

+2i(Az + γAzγ̃)N(∂zγ)+2i(∂zγ)Ñ(Az + γ̃Azγ)

+2(Aγ+ γA)Ñ(A+ γ̃Aγ)+A2γ− γA2 . (A32)

The corresponding equation for γ̃ can be found by tilde conjuga-
tion of the above. After restoring the diffusion coefficient DF ,
and generalizing the derivation to a complex SO field A, the
above result takes the form shown in Eq. (5).

After parametrizing the Usadel equation, the next step is to
do the same to the Kupriyanov–Lukichev boundary conditions.
The gauge covariant version of Eq. (2) may be written

2Lnζnĝn∇̃ĝn = [ĝ1, ĝ2] , (A33)
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which upon expanding the covariant derivative ĝ∇̃ĝ becomes

ĝn∂zĝn =
1
2

Ωn[ĝ1, ĝ2]+ iĝn[Âz, ĝn] , (A34)

where we have introduced the notation Ωn ≡ 1/Lnζn for the
interface parameter. We will now restrict our attention to the
(1,1) and (1,2) components of the above,

gn∂zgn− fn∂z f̃n =
1
2

Ωn(g1g2−g2g1− f1 f̃2 + f2 f̃1)

+ ign[Az, gn]+ i fn{Az, f̃n} , (A35)

gn∂z fn− fn∂zg̃n =
1
2

Ωn(g1 f2−g2 f1− f1g̃2 + f2g̃1)

+ ign{Az, fn}+ i fn[Az, g̃n] . (A36)

Substituting the Riccati parametrizations gn = 2Nn− 1 and
fn = 2Nnγn in the above, we then obtain:

Nn[(∂zγn)γ̃n− γn(∂zγ̃n)]Nn = ΩnN1(1− γ1γ̃2)N2

−ΩnN2(1− γ2γ̃1)N1

− iNn(1− γnγ̃n)ANn

− iNnA(1− γnγ̃n)Nn

+2iNn(A+ γnAγ̃n)Nn , (A37)

Nn[(∂zγn)− γn(∂zγ̃n)γn]Ñn = ΩnN1(1− γ1γ̃2)γ2Ñ2

−ΩnN2(1− γ2γ̃1)γ1Ñ1

+ iNn(1+ γnγ̃n)AγnÑn

+ iNnγnA(1+ γ̃nγn)Ñn . (A38)

If we then multiply Eq. (A37) by γn from the right, subtract
this from Eq. (A38), and divide by Nn from the left, then we
obtain the following boundary condition for γn:

∂zγn = Ωn(1− γ1γ̃2)N2(γ2− γn)

+Ωn(1− γ2γ̃1)N1(γn− γ1)

+ i{Az, γn} . (A39)

When we evaluate the above for n = 1 and n = 2, then it
simplifies to the following:

∂zγ1 = Ω1(1− γ1γ̃2)N2(γ2− γ1)+ i{Az, γ1} , (A40)
∂zγ2 = Ω2(1− γ2γ̃1)N1(γ2− γ1)+ i{Az, γ2} . (A41)

The boundary conditions for ∂zγ̃1 and ∂zγ̃2 are found by tilde
conjugating the above. If we generalize the derivation to a
complex SO field A, and substitute back Ωn ≡ 1/Lnζn in the
result, then we arrive at Eq. (6).

Appendix B: Derivation of the self-consistency equation for ∆

For completeness, we here present a detailed derivation of
the self-consistency equation for the BCS order parameter62

in a quasiclassical framework. Similar derivations can also be

found in Refs. 48,63–66. In this paper, we follow the conven-
tion where the Keldysh component of the anomalous Green’s
function is defined as

FK
σσ′(r, t; r′, t ′)≡−i〈[ψσ(r, t), ψσ′(r, t)]〉 , (B1)

where ψσ(r, t) is the spin-dependent fermion annihilation op-
erator, and the superconducting gap is defined as

∆(r, t)≡ λ〈ψ↑(r, t)ψ↓(r, t)〉 , (B2)

where λ > 0 is the electron–electron coupling constant in the
BCS theory. For the rest of this appendix, we will also assume
that we work in an electromagnetic gauge where ∆ is a purely
real quantity. Comparing Eqs. (B1) and (B2), and using the
fermionic anticommutation relation

ψ↑(r, t)ψ↓(r, t) =−ψ↓(r, t)ψ↑(r, t) , (B3)

we see that the superconducting gap ∆(r, t) can be expressed
in terms of the Green’s functions in two different ways,

∆(r, t) =
iλ
2

FK
↑↓(r, t; r, t) , (B4)

∆(r, t) =− iλ
2

FK
↓↑(r, t; r, t) . (B5)

We may then perform a quasiclassical approximation by first
switching to Wigner mixed coordinates, then Fourier transform-
ing the relative coordinates, then integrating out the energy
dependence, and finally averaging the result over the Fermi
surface to obtain the isotropic part. The resulting equations for
the superconducting gap are

∆(r, t) =
1
4

N0λ
∫

dε f K
↑↓(r, t,ε) , (B6)

∆(r, t) =−1
4

N0λ
∫

dε f K
↓↑(r, t,ε) , (B7)

where f K
σσ′ is the quasiclassical counterpart to FK

σσ′ , ε is the
quasiparticle energy, and N0 is the density of states per spin at
the Fermi level.

In the equilibrium case, the Keldysh component ĝK can be
expressed in terms of the retarded and advanced components
of the Green’s function,

ĝK = (ĝR− ĝA) tanh(ε/2T ) , (B8)

and the advanced Green’s function may again be expressed in
terms of the retarded one,

ĝA =−ρ3ĝR†ρ3 , (B9)

which implies that the Keldysh component can be expressed
entirely in terms of the retarded component,

ĝK = (ĝR−ρ3ĝR†ρ3) tanh(ε/2T ) . (B10)

If we extract the relevant anomalous components f K
↑↓ and f K

↓↑
from the above, we obtain the results

f K
↑↓ = [ f R

↑↓(r,+ε)+ f R
↓↑(r,−ε)] tanh(ε/2T ) , (B11)

f K
↓↑ = [ f R

↓↑(r,+ε)+ f R
↑↓(r,−ε)] tanh(ε/2T ) . (B12)
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We then switch to a singlet/triplet-decomposition of the
retarded component f R, where the singlet component is de-
scribed by a scalar function fs, and the triplet component by the
so-called d-vector (dx,dy,dz). This parametrization is defined
by the matrix equation

f R = ( fs +d ·σ)iσy , (B13)

or in component form,
(

f R
↑↑ f R

↑↓
f R
↓↑ f R

↓↓

)
=

(
idy−dx dz + fs

dz− fs idy +dx

)
. (B14)

Parametrizing Eqs. (B11) and (B12) according to Eq. (B14),
we obtain

f K
↑↓(r,ε) = [dz(r,+ε)+ fs(r,+ε)

+dz(r,−ε)− fs(r,−ε)] tanh(ε/2T ) , (B15)

f K
↑↓(r,ε) = [dz(r,+ε)− fs(r,+ε)

+dz(r,−ε)+ fs(r,−ε)] tanh(ε/2T ) . (B16)

The triplet component dz can clearly be eliminated from the
above equations by subtracting Eq. (B15) from Eq. (B16),

f K
↑↓− f K

↓↑ = 2[ fs(r,ε)− fs(r,−ε)] tanh(ε/2T ) , (B17)

and a matching expression for the superconducting gap can be
acquired by adding Eqs. (B6) and (B7),

2∆(r) =
1
4

N0λ
∫

dε [ f K
↑↓(r,ε)− f K

↑↓(r,ε)] tanh(ε/2T ) . (B18)

By comparing the two results above, we finally arrive at an
equation for the superconducting gap which only depends on
the singlet component of the quasiclassical Green’s function:

∆(r) =
1
4

N0λ
∫

dε [ fs(r,ε)− fs(r,−ε)] tanh(ε/2T ) . (B19)

If the integral above is performed for all real values of ε,
it turns out to be logarithmically divergent e.g. for a bulk
superconductor. However, physically, the range of energies
that should be integrated over is restricted by the energy spectra
of the phonons that mediate the attractive electron–electron
interactions in the superconductor. This issue may therefore
be resolved by introducing a Debye cutoff ωc, such that we
only integrate over the region where |ε| < ωc. Including the
integration range, the gap equation is therefore

∆(r) =
1
4

N0λ
ωc∫

−ωc

dε [ fs(r,ε)− fs(r,−ε)] tanh(ε/2T ) . (B20)

The equation above can however be simplified even further.
First of all, both fs(ε)− fs(−ε) and tanh(ε/2T ) are clearly
antisymmetric functions of ε, which means that the product
is a symmetric function, and so it is sufficient to perform an
integral over positive values of ε,

∆(r) =
1
2

N0λ
ωc∫

0

dε [ fs(r,ε)− fs(r,−ε)] tanh(ε/2T ) . (B21)

However, because of the term fs(r,−ε), we still need to know
the Green’s function for negative values of ε before we can

calculate the gap. On the other hand, the singlet component of
the quasiclassical Green’s functions also has a symmetry when
the superconducting gauge is chosen as real

fs(r,ε) =− f ∗s (r,−ε) , (B22)

which implies that

fs(r,ε)− fs(r,−ε) = 2Re{ fs(r,ε)} . (B23)

Substituting Eq. (B23) into Eq. (B21), the gap equation takes
a particularly simple form, which only depends on the real part
of the singlet component fs(r,ε) for positive energies ε:

∆(r) = N0λ
ωc∫

0

dε Re{ fs(r,ε)} tanh(ε/2T ) . (B24)

Let us now consider the case of a BCS bulk superconductor,
which has a singlet component given by the equation

fs(ε) =
∆√

ε2−∆2
, (B25)

so that the gap equation may be written as

∆ = N0λ
ωc∫

0

dε Re
{

∆√
ε2−∆2

}
tanh(ε/2T ) . (B26)

The part in the curly braces is only real when |ε| ≥ ∆, which
means that the equation can be simplified by changing the
lower integration limit to ∆. After also dividing the equation
by ∆N0λ, we then obtain the self-consistency equation

1
N0λ

=

ωc∫

∆

dε
tanh(ε/2T )√

ε2−∆2
. (B27)

For the zero-temperature case, where T → 0 and ∆ → ∆0,
performing the above integral and reordering the result yields

ωc = ∆0 cosh(1/N0λ) . (B28)

Using the above equation for ωc, and the well-known result

∆0

Tc
=

π
eγ , (B29)

where γ≈ 0.57722 is the Euler–Mascheroni constant, we can
finally rewrite Eq. (B24) as:

∆(r) = N0λ
∆0 cosh(1/N0λ)∫

0

dε Re{ fs(r,ε)} tanh
(

π
2eγ

ε/∆0

T/Tc

)
. (B30)

This version of the gap equation is particularly well-suited
for numerical simulations. One advantage is that we only
need to know the Green’s function for positive energies, which
halves the number of energies that we need to solve the Usadel
equation for. The equation also takes a particularly simple form
if we use energy units where ∆0 = 1 and temperature units
where Tc = 1, which is common practice in such simulations.
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M AT L A B C L A S S E S

The following pages contain the implementation of five Matlab classes.
The class SpinVector implements a data structure for describing objects
with a vector structure in geometric space and a matrix structure in spin
space. This encompasses e.g. the Pauli vector σ and the spin-orbit field A.
The class State implements a data structure for describing the state of a
physical system at a given position and energy. This is essentially just a
wrapper class for the Riccati parameters γ and γ̃ and their derivatives, but
also includes some useful methods for e.g. calculating the singlet/triplet
projections, calculating the local density of states, and converting Riccati
matrices to/from the 16 element state vectors that bvp6c expects.

The by far largest class is Metal. This class describes the physical state
throughout a metal, where the core structure is a matrix of State objects
that correspond to a discretized range of positions and energies. The
class also contains subroutines for solving the Usadel equation with three
different boundary conditions: tunneling interfaces, spin-active interfaces,
or transparent interfaces. Finally, the class contains a range of methods
for visualizing the internal state, such as e.g. plotting the density of states.

The perhaps most important class is Superconductor. This class inher-
its the internal structure of Metal, but modifies the Usadel equation to
contain a superconducting gap Δ(z), and includes subroutines for self-
consistently calculating the gap. The purpose of this class is to be used in
conjunction with other Metal-based objects, and permits simulations of
both the forward and inverse proximity effects.

Finally, the class Ferromagnet inherits the internal structure of Metal,
but modifies the Usadel equation and tunneling boundary conditions to
account for exchange fields and spin-orbit fields.

Together, Metal, Ferromagnet, and Superconductor can be used to sim-
ulate a variety of multilayer structures, either interactively or in scripts.
The layers may have properties such as superconductivity, ferromagnetism,
interfacial spin-filtering, interfacial spin-mixing, and spin-orbit coupling,
and the combined multilayer structures can be used for calculations of
e.g. density of states and critical temperature.
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% Define a data structure to describe objects with both a 3x1 vector
% structure in geometric space and a 2x2 matrix structure in spin
% space, such as the Pauli vector, and in general SU(2) vector fields.
%
% Written by Jabir Ali Ouassou <jabirali@switzerlandmail.ch>
% Created 2015-02-14
% Updated 2015-02-16
    
classdef SpinVector
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % Define the internal variables for the data structure
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    properties (GetAccess=public, SetAccess=public)
        x = zeros(2);
        y = zeros(2);
        z = zeros(2);
    end
   
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % Define the internal methods and operator overloading
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    methods
        function self = SpinVector(Ax, Ay, Az)
            % Constructs a spin vector from three spin matrices Ax, Ay, Az.
            % The arguments are multiplied by 2x2 spin matrices in case
            % scalars are provided instead of matrices.
            self.x = Ax * eye(2);
            self.y = Ay * eye(2);
            self.z = Az * eye(2);
        end        
    
                
        % Overloading of display functions
        function display(self)
            name = inputname(1);
            disp(sprintf(':: %s.x:', name));
            disp([self.x]);
            disp(sprintf('\n:: %s.y:', inputname(1)));
            disp([self.y]);
            disp(sprintf('\n:: %s.z:', inputname(1)));
            disp([self.z]);
        end        
        
        
        % Overloading of unary operators and functions

function self = conj(self)
            % This overloads the complex conjugation function
            self.x = conj(self.x);
            self.y = conj(self.y);
            self.z = conj(self.z);
        end
        
        function self = transpose(self)
            % This overloads the matrix transposition function
            self.x = self.x.';
            self.y = self.y.';
            self.z = self.z.';
        end
        
        function self = ctranspose(self)
            % This overloads the complex transposition function
            self.x = self.x';
            self.y = self.y';
            self.z = self.z';
        end
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        function self = uplus(self)
            % This overloads the unary plus operator
        end
        
        function self = uminus(self)
            % This overloads the unary minus operator
            self.x = -self.x;
            self.y = -self.y;
            self.z = -self.z;
        end

        
        % Overloading of binary operators
        function lhs = plus(lhs, rhs)
            % This overloads the plus operator for spin vectors
            lhs.x = lhs.x+rhs.x;
            lhs.y = lhs.y+rhs.y;
            lhs.z = lhs.z+rhs.z;
        end
        
        function lhs = minus(lhs, rhs)
            % This overloads the minus operator for spin vectors
            lhs.x = lhs.x-rhs.x;
            lhs.y = lhs.y-rhs.y;
            lhs.z = lhs.z-rhs.z;
        end
        
        function result = times(lhs, rhs)
            % This overloads the arraywise multiplication operator for spin vectors
            if isobject(lhs)
                if isobject(rhs)
                    lhs.x = lhs.x*rhs.x;
                    lhs.y = lhs.y*rhs.y;
                    lhs.z = lhs.z*rhs.z;
                    result = lhs;
                else
                    lhs.x = lhs.x*rhs(1);
                    lhs.y = lhs.y*rhs(2);
                    lhs.z = lhs.z*rhs(3);
                    result = lhs;
                end
            else
                    rhs.x = lhs(1)*rhs.x;
                    rhs.y = lhs(2)*rhs.y;
                    rhs.z = lhs(3)*rhs.z;
                    result = rhs;
            end
        end
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        function result = mtimes(lhs, rhs)
            % This overloads the matrix multiplication operator for spin vectors

            if isobject(lhs)
                % Left-hand side is a spin vector
                if isobject(rhs)
                    % Right-hand side is a spin vector
                    result = lhs.x*rhs.x + lhs.y*rhs.y + lhs.z*rhs.z;
                elseif length(rhs) == 3
                    % Right-hand side is a vector
                    result = lhs.x*rhs(1) + lhs.y*rhs(2) + lhs.z*rhs(3);
                else
                    % Right-hand side is a matrix or scalar
                    lhs.x = lhs.x*rhs;
                    lhs.y = lhs.y*rhs;
                    lhs.z = lhs.z*rhs;
                    result = lhs;
                end
            else
                % Right-hand side is a spin vector, left-hand side is not
                if length(lhs) == 3
                    % Left-hand side is a vector
                    result = rhs.x*lhs(1) + rhs.y*lhs(2) + rhs.z*lhs(3);
                else
                    % Left-hand side is a matrix or scalar
                    rhs.x = rhs.x*lhs;
                    rhs.y = rhs.y*lhs;
                    rhs.z = rhs.z*lhs;
                    result = rhs;
                end
            end
        end
        
        function result = mpower(lhs,rhs)
            % This overloads the matrix power operator. Note that the
            % current definition is optimized for even exponents, and
            % will not produce correct output for odd powers!
            
            result = (lhs.x^2 + lhs.y^2 + lhs.z^2)^(rhs/2);
        end
        
        function lhs = mrdivide(lhs,rhs)

% This overloads the matrix division operator            
            lhs.x = lhs.x/rhs;
            lhs.y = lhs.y/rhs;
            lhs.z = lhs.z/rhs;
        end
    end
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    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % Define constant properties (available without object instantiation)
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
    properties (Constant)
          Pauli = SpinVector([0,1;1,0], [0,-i;i,0], [1,0;0,-1]);
    end
    
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % Define static methods (available without object instantiation)
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    methods (Static)        
        function result = RashbaDresselhaus(strength, angle)
        % This function returns an SU(2) vector field that describes the
        % a Rashba--Dresselhaus coupling in the xy-plane. The coupling
        % constants are given in polar coordinates, so that the Rashba constant
        % is strength*sin(angle), and the Dresselhaus one strength*cos(angle).

        % Define the Rashba--Dresselhaus SU(2) field
        result = SpinVector( strength*(cos(angle)*SpinVector.Pauli.x   ...
                                     + sin(angle)*SpinVector.Pauli.y), ...
                            -strength*(cos(angle)*SpinVector.Pauli.y   ...
                                     + sin(angle)*SpinVector.Pauli.x), ...
                             0 );
        end
    end
end
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% Define a data structure to describe the state of the physical system
% for a given position and energy. This is done by describing the
% Riccati parametrized Green's function 'g', it's tilde conjugate 'gt', 
% and their first derivatives 'dg' and 'dgt' for that configuration.
%
% This class is mainly intended for use with differential equation
% solvers, and therefore provides the method 'vectorize' to pack the
% internal variables in a vector format, and constructor State(...)
% that is able to unpack this vector format. Alternatively, the
% vectorization can be performed without instantiating the class at all,
% by calling the static methods 'pack' and 'unpack'.
%
% Written by Jabir Ali Ouassou <jabirali@switzerlandmail.ch>
% Created 2015-02-14
% Updated 2015-05-06

classdef State
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % Define the internal variables of the data structure
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
    properties (GetAccess=public, SetAccess=public)
        g   = zeros(2);
        dg  = zeros(2);
        gt  = zeros(2);
        dgt = zeros(2);
    end
    
    
    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % Define the internal methods and overloaded operators
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
    methods
        function self = State(varargin)
            % This is the default constructor, which takes as its input either:
            %  (i)   four 2x2 matrices, which should correspond to the
            %        matrices g, dg, gt, dgt, in that order;
            %  (ii)  one 16-element complex vector, which should be produced
            %        by either the 'vectorize' method or the 'pack' method;
            %  (iii) no arguments, i.e. the empty constructor.
            switch nargin
                case 1
                    % If we get one input, then assume that we got a vector
                    % created by 'vectorize', and reverse the procedure
                    
                    [self.g,self.dg,self.gt,self.dgt] = self.unpack(varargin{1});
                    
                case 4
                    % If we get four input arguments, then assume that
                    % these correspond to g, dg, gt, and dgt, respectively.
                    % Multiply with a 2x2 identity matrix in case the
                    % input arguments were scalars and not matrices.
                    
                    self.g   = varargin{1} * eye(2);
                    self.dg  = varargin{2} * eye(2);
                    self.gt  = varargin{3} * eye(2);
                    self.dgt = varargin{4} * eye(2);
                    
                otherwise
                    % In any other case, we assume that we were called as
                    % an empty constructor, so do nothing to the members.
            end
        end
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        % Overloading of the display function
        function display(self)
            name = inputname(1);

fprintf(':: %s.g:            [  Riccati parameter g  ]\n', name);
            disp([self.g]);
            fprintf('\n:: %s.dg:           [   Derivative  dg/dz   ]\n', inputname(1));
            disp([self.dg]);
            fprintf('\n:: %s.gt:           [  Riccati parameter g~ ]\n', inputname(1));
            disp([self.gt]);
            fprintf('\n:: %s.dgt:          [   Derivative  dg~/dz  ]\n', inputname(1));
            disp([self.dgt]);
        end

        % Definition of other useful methods
        function result = vectorize(self)
            % Convert the internal data structure to a vector shape
            result = self.pack(self.g,self.dg,self.gt,self.dgt);
        end
                
        function g = eval_g(self)
            % Return the Green's function matrix g, i.e. convert the
            % Riccati parameter self.g to a normal Green's function.
            g = ( eye(2) - self.g*self.gt ) \ ( eye(2) + self.g*self.gt );
        end
        
        function gt = eval_gt(self)
            % Return the Green's function matrix g~, i.e. convert the
            % Riccati parameter self.gt to a normal Green's function.
            gt = ( eye(2) - self.gt*self.g ) \ ( eye(2) + self.gt*self.g );
        end
        
        function f = eval_f(self)
            % Return the anomalous Green's function matrix f, i.e. convert
            % the Riccati parameter self.g to a normal Green's function.
            f = ( eye(2) - self.g*self.gt )  \ (2 * self.g);
        end
        
        function ft = eval_ft(self)
            % Return the anomalous Green's function matrix f~, i.e. convert
            % the Riccati parameter self.g to a normal Green's function.
            ft = ( eye(2) - self.gt*self.g )  \ (2 * self.gt);
        end
        
        function result = eval_ldos(self)
            result = trace(real(self.eval_g))/2;
        end
        
        function result = singlet(self)
            % Calculate the singlet component of the Green's function,
            % i.e. the component proportional to iσ^y.
            f = self.eval_f;
            result = (f(1,2) - f(2,1))/2;
        end
        
        function result = singlett(self)
            % Calculate the singlet component of the t.c. Green's function 
            % i.e. the component proportional to iσ^y.
            f = self.eval_ft;
            result = (f(1,2) - f(2,1))/2;
        end
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        function result = triplet(self)
            % Calculate the triplet component of the Green's function,
            % i.e. the component proportional to [σ^x,σ^y,σ^z] iσ^y.
            f = self.eval_f;
            result = [(f(2,2) - f(1,1))/2,                ...
                      (f(1,1) + f(2,2))/2i,               ...
                      (f(1,2) + f(2,1))/2];
        end
        
        function result = triplett(self)
            % Calculate the triplet component of the t.c. Green's function,
            % i.e. the component proportional to [σ^x,σ^y,σ^z] iσ^y.
            f = self.eval_ft;
            result = [(f(2,2) - f(1,1))/2,                ...
                      (f(1,1) + f(2,2))/2i,               ...
                      (f(1,2) + f(2,1))/2];
        end
        
        function result = srtc(self, exchange)
            % This method returns the short-range triplet component, i.e.
            % the triplet component *along* the exchange field, where the
            % exchange field should be provided as an argument.
            unitvec = exchange/(norm(exchange)+1e-16);
            result  = dot(unitvec,self.triplet) .* unitvec;
        end
        
        function result = srtct(self, exchange)
            % This method returns the t.c. short-range triplet component, 
            % i.e. the component *along* the exchange field, where the
            % exchange field should be provided as an argument.
            unitvec = exchange/(norm(exchange)+1e-16);
            result  = dot(unitvec,self.triplett) .* unitvec;
        end

        function result = lrtc(self, exchange)
            % This method returns the long-range triplet component, i.e.
            % the triplet component *perpendicular* to the exchange field,
            % where the exchange field should be provided as argument.
            result = self.triplet - self.srtc(exchange);
        end
        
        function result = lrtct(self, exchange)
            % This method returns the t.c. long-range triplet component,
            % i.e. the component *perpendicular* to the exchange field,
            % where the exchange field should be provided as argument.
            result = self.triplett - self.srtct(exchange);
        end
    end
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    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    % Define static methods (available without object instantiation)
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    
    methods (Static)
        function [g,dg,gt,dgt] = unpack(vector)
            % This method is used to unpack a 16 element state vector into
            % the Riccati parametrized Green's function that it represents.
            args = reshape(vector, 2, 8);
            g    = args(:,1:2);
            dg   = args(:,3:4);
            gt   = args(:,5:6);
            dgt  = args(:,7:8);
        end
        
        function vector = pack(g,dg,gt,dgt)
            % This method is used to pack Riccati parametrized Green's
            % functions into a 16 element complex state vector.
            vector = reshape([g dg gt dgt], 16, 1);
        end
    end
end
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% This defines a data structure that describes the physical state of a
% metal for a given range of positions and energies. The purpose of this 
% class is mainly to be used as a base class for more interesting material
% classes, such as those that describe superconductors and ferromagnets,
% or to be used in conjunction with such materials in hybrid structures.
%
% Written by Jabir Ali Ouassou <jabirali@switzerlandmail.ch>
% Created 2015-02-23
% Updated 2015-05-07

classdef Metal < handle
    properties (GetAccess=public, SetAccess=public)
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Define the internal state variables of the Metal class
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

        % Vector of positions in the material
        positions       = [];

        % Vector of energies for the material
        energies        = [];                

        % Riccati parameters and derivatives for each position and energy
        states          = State.empty(0,0);

        % Riccati parameters and derivatives at the left boundary  
        boundary_left   = State.empty(0);    

        % Riccati parameters and derivatives at the right boundary
        boundary_right  = State.empty(0);    

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Define the basic physical parameters of the metal
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

        % Interface parameter zeta at the left boundary        
        interface_left  = inf;     

        % Interface parameter zeta at the right boundary          
        interface_right = inf;               

        % Thouless energy of the system
        thouless        = 1;                

        % Whether we should use transparent boundary conditions
        transparent     = false;             

        % Whether we should use spin-active boundary conditions
        spinactive      = false;             

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Define variables related to spin-active interfaces
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
        % Magnetization vector at left interface  (unit vector)
        magnetization_left  = [0,0,0];      

        % Magnetization vector at right interface (unit vector)
        magnetization_right = [0,0,0];

        % Polarization at left interface  [-1,+1]
        polarization_left   = 0;

        % Polarization at right interface [-1,+1]
        polarization_right  = 0;
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        % Spin-dependent phase-shift factor at left interface  [-inf,inf]
        phaseshift_left     = 0;    

        % Spin-dependent phase-shift factor at right interface [-inf,inf]
        phaseshift_right    = 0;   

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Internal variables that are automatically set during simulations
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

        % Coefficients in the differential equations for gamma
        coeff1  = {};                  
  
        % Coefficients in the differential equations for gamma~
        coeff2  = {};                   

        % Partially evaluated Jacobian functions
        jc      = {};                    

        % Partially evaluated boundary conditions
        bc      = {};                    

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Internal variables that determine the simulation behaviour
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

        % Maximum absolute error when simulating        
        error_abs = 1e-6;  
                  
        % Maximum relative error when simulating
        error_rel = 1e-6;                    

        % Maximum grid size to use in simulations
        grid_size = 32768;                   

        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Internal variables that determine the the program behaviour
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
       
        % Whether to show progress and intermediate results
        debug = true;           

        % Whether to plot intermediate results or not             
        plot  = true;                        

        % How long to wait between program iterations
        delay = 0;                           
    end
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    methods
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Define methods that instantiate the object
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

        function self = Metal(positions, energies, thouless)
            % This method constructs a Metal instance from a vector of
            % positions, a vector of energies, and the Thouless energy.
            
            % Set the internal properties to the provided values
            self.positions = positions;
            self.energies  = energies;
            self.thouless  = thouless;

            % Initialize the internal state of the metal
            self.states(length(self.positions), length(self.energies)) = State;
            self.init_superconductor;

            % Set the boundary conditions to vacuum states
            self.boundary_left(length(energies))  = State;
            self.boundary_right(length(energies)) = State;
        end

        function init_metal(self)
            % Initialize the internal state to a normal metal. This is useful
            % as an initial guess when simulating *weak* proximity effects.
            for i=1:length(self.positions)
               for j=1:length(self.energies)
                   self.states(i,j) = State;
               end
            end
        end
        
        function init_superconductor(self)
            % Initialize the internal state to a bulk superconductor with
            % superconducting gap 1. This is useful as an initial guess
            % when simulating *strong* proximity effects in energy units 
            % where the zero-temperature gap is normalized to unity.
            for i=1:length(self.positions)
               for j=1:length(self.energies)
                   self.states(i,j) = Superconductor.Bulk(self.energies(j), 1, 0);
               end
            end
        end
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        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Define methods that update the internal state of the object
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        
        function update_coeff(self)
            % This function updates the functions and coefficients passed to
            % the functions 'jacobian' and 'boundary' when solving equations.
            
            % Partially evaluate the Jacobian matrix and boundary conditions
            % for the different material energies, and store the resulting 
            % anonymous functions in an array. These functions are passed on
            % to bvp6c when solving the equations.
            self.jc = {};
            self.bc = {};
            for m=1:length(self.energies)
                self.jc{m} = @(x,y) self.jacobian(self,x,y,self.energies(m));
                if self.transparent
                    % If 'transparent' is true, use transparent b.c.
                    self.bc{m} = ...
                       @(a,b) self.boundary_transparent(self,a,b,self.energies(m));
                elseif self.spinactive
                    % If 'spinactive' is true, use spin-active b.c.
                    self.bc{m} = ...
                       @(a,b) self.boundary_spinactive(self,a,b,self.energies(m));
                else
                    % Else, use standard Kuprianov-Lukichev b.c. instead
                    self.bc{m} = ...
                       @(a,b) self.boundary(self,a,b,self.energies(m));
                end
            end
        end
        
        function update_boundary_left(self, other)
            % This function updates the boundary condition to the left
            % based on the current state of an adjoining material.
            self.boundary_left(:) = other.states(end,:);
        end

        function update_boundary_right(self, other)
            % This function updates the boundary condition to the right
            % based on the current state of an adjoining material.
            self.boundary_right(:) = other.states(1,:);
        end
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        function update_state(self)
            % This function solves the Usadel equation numerically for the
            % given position and energy range, and updates the current

% estimate for the state of the system.
            
            % Set the accuracy of the numerical solution
            options = bvpset('AbsTol',self.error_abs,...
                             'RelTol',self.error_rel,...
                             'Nmax',self.grid_size);

            for m=1:length(self.energies)
                % Progress information
                self.print('[ %3.f / %3.f ]  E = %2.4f ', ...
                           m, length(self.energies), self.energies(m));
                
                % Vectorize the current state of the system for the given
                % energy, and use it as an initial guess for the solution
                current = zeros(16,length(self.positions));
                for n=1:length(self.positions)
                    current(:,n) = self.states(n,m).vectorize;
                end
                initial = bvpinit(self.positions', current);
                
                % Solve the differential equation, and evaluate the
                % solution on the position vector of the metal
                solution = deval(bvp6c(self.jc{m},self.bc{m},initial,options),...
                                 self.positions);
                
                % Update the current state of the system based on the solution
                for n=1:length(self.positions)
                    self.states(n,m) = State(solution(:,n));
                end
                
                % Time delay between iterations (reduces load on the system)
                pause(self.delay);
            end
        end
        
        
        function update(self)
            % This function updates the internal state of the
            % metal object by calling the other update methods.
            
            % Update the state
            self.update_coeff;
            self.update_state;
                
            % Plot the current density of states (if 'plot' is set to true)
            if self.plot
                self.plot_dos_surf;
            end
        end
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        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Define miscellaneous helper methods for the class
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        
        function print(self,varargin)
            % This function is used to print messages, such as debug info
            % and progress, if the 'debug' flag is set to 'true'. The
            % message is preceded by the name of the class, which lets you
            % distinguish the output of 'Metal' instances from the output
            % of instances of daughter classes.
            
            if self.debug
                fprintf(':: %s: %s\n', class(self), sprintf(varargin{:}));
            end
        end

        function index = position_index(self, position)
            % Returns the vector index corresponding to a given energy value
            index = find(abs(self.positions-position) < 1e-8, 1, 'first');
        end
        
        function index = energy_index(self, energy)
            % Returns the vector index corresponding to a given energy value
            index = find(abs(self.energies-energy) < 1e-8, 1, 'first');
        end

        function backup = backup_save(self)
            % Returns a backup of the state of the metal
            backup = self.states(:,:);
        end
        
        function backup_load(self, backup)
            % Restores the state of the metal from a backup
            % NB: Remember to run 'update' after a call to 'backup_load' to
            %     make sure that the rest of the properties are consistent!
            self.states(:,:) = backup;
        end
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        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Define methods for printing and plotting the internal state
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

        function plot_dos_left(self)
            % Calculate the *left* density of states for the system.
            % Note: we assume that we only have data for positive energies,
            %       and that the negative energy region is symmetric.

            N = length(self.positions);
            M = length(self.energies);
            dos = zeros(2*M-1);
            erg = zeros(2*M-1);
           
            for m=1:M
                erg(M-m+1) = -self.energies(m);
                dos(M-m+1) = self.states(1,m).eval_ldos;
                
                if ~self.debug && dos(M-m+1) < 0
                    dos(M-m+1) = 1e3;
                end
                                
                erg(M+m-1) = self.energies(m);
                dos(M+m-1) = dos(M-m+1);
            end
            
            % Plot the results
            plot(erg, dos);
            xlabel('\epsilon/\Delta_0')
            ylabel('D(\epsilon)')
            set(gca, 'XTick', -20:20);
            set(gca, 'YTick', -20:20);
            set(gca, 'XLim',  [-2 2]);
            set(gca, 'YLim',  [ 0 2]);
        end
        
        function plot_dos_right(self)
            % Calculate the *right* density of states for the system.
            % Note: we assume that we only have data for positive energies,
            %       and that the negative energy region is symmetric.

            N = length(self.positions);
            M = length(self.energies);
            dos = zeros(2*M-1);
            erg = zeros(2*M-1);
            for m=1:M
                erg(M-m+1) = -self.energies(m);
                dos(M-m+1) = self.states(end,m).eval_ldos;
                
                if ~self.debug && dos(M-m+1) < 0
                    dos(M-m+1) = 1e3;
                end
                
                erg(M+m-1) = self.energies(m);
                dos(M+m-1) = dos(M-m+1);
            end
            
            % Plot the results
            plot(erg, dos);
            xlabel('\epsilon/\Delta_0')
            ylabel('D(\epsilon)')
            set(gca, 'XTick', -20:20);
            set(gca, 'YTick', -20:20);
            set(gca, 'XLim',  [-2 2]);
            set(gca, 'YLim',  [0 2]);
        end
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        function plot_dos_center(self)
            % Calculate the *central* density of states for the system.

% Note: we assume that we only have data for positive energies,
            %       and that the negative energy region is symmetric.

            N = length(self.positions);
            M = length(self.energies);
            dos = zeros(2*M-1);
            erg = zeros(2*M-1);
            pos = floor(length(self.positions)/2);
            for m=1:M
                erg(M-m+1) = -self.energies(m);
                dos(M-m+1) = self.states(pos,m).eval_ldos;
                
                if ~self.debug && dos(M-m+1) < 0
                    dos(M-m+1) = 1e3;
                end
                
                erg(M+m-1) = self.energies(m);
                dos(M+m-1) = dos(M-m+1);
            end
            
            % Plot the results
            plot(erg, dos);
            xlabel('\epsilon/\Delta_0')
            ylabel('D(\epsilon)')
            set(gca, 'XTick', -20:20);
            set(gca, 'YTick', -20:20);
            set(gca, 'XLim',  [-2 2]);
            set(gca, 'YLim',  [0 2]);
        end
        
        function plot_dos_surf(self)
            % Calculate the density of states throughout the system.
            % Note: we assume that we only have data for positive energies,
            %       and that the negative energy region is symmetric.
            
            N = length(self.positions);
            M = length(self.energies);
            dos = zeros(N, 2*M-1);
            for n=1:N
                dos(n,M) = self.states(n,1).eval_ldos;
                for m=2:M
                    dos(n,M-m+1) = self.states(n,m).eval_ldos;
                    if ~self.debug && dos(n,M-m+1) < 0
                        dos(n,M-m+1) = 1e3;
                    end
                    dos(n,M+m-1) = dos(n,M-m+1);
                end
            end
                        
            % Plot the results
            surf([fliplr(-self.energies) self.energies(2:end)], ...
                 self.positions, dos, 'EdgeColor', 'none');
            shading('interp');
            colormap(parula(256));
            caxis([0 2]);
            view(7.5,30);
            
            set(gca, 'XTick', -20:20);
            set(gca, 'YTick', -20:20);
            set(gca, 'ZTick', -20:20);
            set(gca, 'XLim',  [-2 2 ]);
            set(gca, 'ZLim',  [ 0 2 ]);
        end
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        function plot_dist(self)
            % Calculate the singlet and triplet distributions.

%
            % NB: This implementation only *adds* the contribution from
            %     every energy, and does not perform a proper integral!

            singlet = zeros(length(self.positions), 1);
            triplet = zeros(length(self.positions), 1);
            for m=1:length(self.energies)
                for n=1:length(self.positions)
                    singlet(n) = singlet(n) + norm(self.states(n,m).singlet);
                    triplet(n) = triplet(n) + norm(self.states(n,m).triplet);
                end
            end
            
            % Plot cubic interpolations of the results
            positions = linspace(self.positions(1), self.positions(end), 100);
            plot(positions, pchip(self.positions, singlet, positions), ...
                 positions, pchip(self.positions, triplet, positions));
            xlabel('Relative position');
            ylabel('Distribution');
            legend('Singlet', 'Triplet');
        end
    end
    
    
    methods (Static)
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Define static methods (available without object instantiation)
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        
        function dydx = jacobian(self, x, y, energy)
            % This function takes a Metal object 'self', the position 'x',
            % the current state vector 'y', and an energy as inputs, and
            % calculates the Jacobian of the system. This is performed
            % using the Riccati parametrized Usadel equations.
            
            % Extract the Riccati parameters and their derivatives
            [g,dg,gt,dgt] = State.unpack(y);
            
            % Calculate the normalization matrices
            N  = inv( eye(2) - g*gt );
            Nt = inv( eye(2) - gt*g );
            
            % Calculate the second derivatives of the Riccati parameters
            % according to the Usadel equation in the metal
            d2g  = -2 * dg*Nt*gt*dg - (2i/self.thouless) * (energy+1e-3i)*g;
            d2gt = -2 * dgt*N*g*dgt - (2i/self.thouless) * (energy+1e-3i)*gt;
            
            % Pack the results into a state vector
            dydx = State.pack(dg,d2g,dgt,d2gt);
        end
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        function residue = boundary(self, y1, y2, energy)
            % This function takes a Metal object 'self', the position 'x',
            % the current state vector 'y', and an energy as inputs, and

% calculates the Kuprianov-Lukichev boundary conditions. This
            % function will be used as b.c. when 'transparent' is false.
            
            % State in the material to the left
            s0   = self.boundary_left(self.energy_index(energy));
            g0   = s0.g;
            dg0  = s0.dg;
            gt0  = s0.gt;
            dgt0 = s0.dgt;
            
            % State at the left end of the material
            [g1,dg1,gt1,dgt1] = State.unpack(y1);
            
            % State at the right end of the material
            [g2,dg2,gt2,dgt2] = State.unpack(y2);
            
            % State in the material to the right
            s3   = self.boundary_right(self.energy_index(energy));
            g3   = s3.g;
            dg3  = s3.dg;
            gt3  = s3.gt;
            dgt3 = s3.dgt;
            
            % Calculate the normalization matrices
            N0  = inv( eye(2) - g0*gt0 );
            Nt0 = inv( eye(2) - gt0*g0 );
            
            N3  = inv( eye(2) - g3*gt3 );
            Nt3 = inv( eye(2) - gt3*g3 );
            
            % Calculate the deviation from the Kuprianov--Lukichev b.c.
            dg1  = dg1  - (1/self.interface_left)*( eye(2) - g1*gt0 )*N0*(  g1  - g0  );
            dgt1 = dgt1 - (1/self.interface_left)*( eye(2) - gt1*g0 )*Nt0*( gt1 - gt0 );
            
            dg2  = dg2  - (1/self.interface_right)*( eye(2) - g2*gt3 )*N3*(  g3  - g2  );
            dgt2 = dgt2 - (1/self.interface_right)*( eye(2) - gt2*g3 )*Nt3*( gt3 - gt2 );
            
            % Vectorize the results of the calculations, and return it
            residue = State.pack(dg1,dgt1,dg2,dgt2);
        end
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        function residue = boundary_spinactive(self, y1, y2, energy)
            % This function takes a Metal object 'self', the position 'x',

% the current state vector 'y', and an energy as inputs, and
            % calculates the spin-active version of the Kuprianov-Lukichev
            % boundary conditions. This function will be used as b.c. when 
            % the property 'spinactive' is set to 'true'.
            
            % State in the material to the left
            s0   = self.boundary_left(self.energy_index(energy));
            g0   = s0.g;
            dg0  = s0.dg;
            gt0  = s0.gt;
            dgt0 = s0.dgt;
            
            % State at the left end of the material
            [g1,dg1,gt1,dgt1] = State.unpack(y1);
            
            % State at the right end of the material
            [g2,dg2,gt2,dgt2] = State.unpack(y2);
            
            % State in the material to the right
            s3   = self.boundary_right(self.energy_index(energy));
            g3   = s3.g;
            dg3  = s3.dg;
            gt3  = s3.gt;
            dgt3 = s3.dgt;
            
            % Calculate the Green's functions
            I = eye(2);
            
            G0  = (I - g0*gt0) \ (I + g0*gt0);
            Gt0 = (I - gt0*g0) \ (I + gt0*g0);
            F0  = (I - g0*gt0) \ (2*g0);
            Ft0 = (I - gt0*g0) \ (2*gt0);
            
            G1  = (I - g1*gt1) \ (I + g1*gt1);
            Gt1 = (I - gt1*g1) \ (I + gt1*g1);
            F1  = (I - g1*gt1) \ (2*g1);
            Ft1 = (I - gt1*g1) \ (2*gt1);

            G2  = (I - g2*gt2) \ (I + g2*gt2);
            Gt2 = (I - gt2*g2) \ (I + gt2*g2);
            F2  = (I - g2*gt2) \ (2*g2);
            Ft2 = (I - gt2*g2) \ (2*gt2);

            G3  = (I - g3*gt3) \ (I + g3*gt3);
            Gt3 = (I - gt3*g3) \ (I + gt3*g3);
            F3  = (I - g3*gt3) \ (2*g3);
            Ft3 = (I - gt3*g3) \ (2*gt3);
            
            % Calculate the interface parameters
            LS = self.magnetization_left * SpinVector.Pauli;
            LT = self.magnetization_left * conj(SpinVector.Pauli);
            LM = self.polarization_left              ...
                /(1+sqrt(1-self.polarization_left^2));
            LK = (1-sqrt(1-self.polarization_left^2))...
                /(1+sqrt(1-self.polarization_left^2));
            LL = 1i*self.phaseshift_left; 
            
            RS = self.magnetization_right * SpinVector.Pauli;
            RT = self.magnetization_right * conj(SpinVector.Pauli);
            RM = self.polarization_right              ...
                /(1+sqrt(1-self.polarization_right^2));
            RK = (1-sqrt(1-self.polarization_right^2))...
                /(1+sqrt(1-self.polarization_right^2)); 
            RL = 1i*self.phaseshift_right;
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            % Calculate the left interface matrices
            L1  = (G1*G0 - F1*Ft0)*(I+LM*LS)               ...
                - (I+LM*LS)*(G0*G1 - F0*Ft1)               ...
                + (G1*LS*G0 - F1*LT*Ft0)*(LM + LK*LS)      ...
                - (LM + LK*LS)*(G0*LS*G1 - F0*LT*Ft1)      ...
                + LL*(G1*LS - LS*G1);
           
            Lt1 = (Gt1*Gt0 - Ft1*F0)*(I+LM*LT)             ...
                - (I+LM*LT)*(Gt0*Gt1 - Ft0*F1)             ...
                + (Gt1*LT*Gt0 - Ft1*LS*F0)*(LM + LK*LT)    ...
                - (LM + LK*LT)*(Gt0*LT*Gt1 - Ft0*LS*F1)    ...
                - LL*(Gt1*LT - LT*Gt1);
            
            L2  = (G1*F0 - F1*Gt0)*(I+LM*LT)               ...
                - (I+LM*LS)*(G0*F1 - F0*Gt1)               ...
                + (G1*LS*F0 - F1*LT*Gt0)*(LM+LK*LT)        ...
                - (LM+LK*LS)*(G0*LS*F1 - F0*LT*Gt1)        ...
                + LL*(F1*LT - LS*F1);

            Lt2 = (Gt1*Ft0 - Ft1*G0)*(I+LM*LS)             ...
                - (I+LM*LT)*(Gt0*Ft1 - Ft0*G1)             ...
                + (Gt1*LT*Ft0 - Ft1*LS*G0)*(LM+LK*LS)      ...
                - (LM+LK*LT)*(Gt0*LT*Ft1 - Ft0*LS*G1)      ...
                - LL*(Ft1*LS - LT*Ft1);            
            
            % Calculate the right interface matrices
            R1  = (G2*G3 - F2*Ft3)*(I+RM*RS)               ...
                - (I+RM*RS)*(G3*G2 - F3*Ft2)               ...
                + (G2*RS*G3 - F2*RT*Ft3)*(RM + RK*RS)      ...
                - (RM + RK*RS)*(G3*RS*G2 - F3*RT*Ft2)      ...
                + RL*(G2*RS - RS*G2);
           
            Rt1 = (Gt2*Gt3 - Ft2*F3)*(I+RM*RT)             ...
                - (I+RM*RT)*(Gt3*Gt2 - Ft3*F2)             ...
                + (Gt2*RT*Gt3 - Ft2*RS*F3)*(RM + RK*RT)    ...
                - (RM + RK*RT)*(Gt3*RT*Gt2 - Ft3*RS*F2)    ...
                - RL*(Gt2*RT - RT*Gt2);
            
            R2  = (G2*F3 - F2*Gt3)*(I+RM*RT)               ...
                - (I+RM*RS)*(G3*F2 - F3*Gt2)               ...
                + (G2*RS*F3 - F2*RT*Gt3)*(RM+RK*RT)        ...
                - (RM+RK*RS)*(G3*RS*F2 - F3*RT*Gt2)        ...
                + RL*(F2*RT - RS*F2);

            Rt2 = (Gt2*Ft3 - Ft2*G3)*(I+RM*RS)             ...
                - (I+RM*RT)*(Gt3*Ft2 - Ft3*G2)             ...
                + (Gt2*RT*Ft3 - Ft2*RS*G3)*(RM+RK*RS)      ...
                - (RM+RK*RT)*(Gt3*RT*Ft2 - Ft3*RS*G2)      ...
                - RL*(Ft2*RS - RT*Ft2);
            
            % Calculate the deviation from the Kuprianov--Lukichev b.c.
            % with spin-active interface terms from Machon et al.
            dg1  = dg1  + (0.25/self.interface_left)*(I - g1*gt1)*(L2  - L1*g1);
            dgt1 = dgt1 + (0.25/self.interface_left)*(I - gt1*g1)*(Lt2 - Lt1*gt1);
            
            dg2  = dg2  - (0.25/self.interface_right)*(I - g2*gt2)*(R2 - R1*g2);
            dgt2 = dgt2 - (0.25/self.interface_right)*(I - gt2*g2)*(Rt2 - Rt1*gt2);
            
            % Vectorize the results of the calculations, and return it
            residue = State.pack(dg1,dgt1,dg2,dgt2);
        end
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        function residue = boundary_transparent(self, y1, y2, energy)
            % This function takes a Metal object 'self', the position 'x',
            % the current state vector 'y', and an energy as inputs, and

% calculates the transparent boundary conditions. This function
            % will be used as b.c. when 'transparent' is set to true. Note
            % that if the interface parameters are infinite, we assume a
            % vacuum interface, and therefore use the derivative boundary
            % condition dg = 0 instead of the transparency condition.
            
            % State in the material to the left
            s0   = self.boundary_left(self.energy_index(energy));
            g0   = s0.g;
            dg0  = s0.dg;
            gt0  = s0.gt;
            dgt0 = s0.dgt;
            
            % State at the left end of the material
            [g1,dg1,gt1,dgt1] = State.unpack(y1);
            
            % State at the right end of the material
            [g2,dg2,gt2,dgt2] = State.unpack(y2);
            
            % State in the material to the right
            s3   = self.boundary_right(self.energy_index(energy));
            g3   = s3.g;
            dg3  = s3.dg;
            gt3  = s3.gt;
            dgt3 = s3.dgt;
            
            % Calculate the deviation from the boundary conditions. We use
            % the derivative boundary condition dg = 0 when there is an
            % infinite interface parameter (i.e. vacuum interface), and the
            % transparent boundary condition g1 = g2/interface_param when
            % there is a finite interface parameter.

            if isinf(self.interface_left)
                r1  = dg1;
                rt1 = dgt1;
            else
                r1  = g1  - g0/self.interface_left;
                rt1 = gt1 - gt0/self.interface_left;
            end
            
            if isinf(self.interface_right)
                r2  = dg2;
                rt2 = dgt2;

else
                r2  = g2  - g3/self.interface_right;
                rt2 = gt2 - gt3/self.interface_right;
            end
            
            % Vectorize the results of the calculations, and return it
            residue = State.pack(r1,rt1,r2,rt2);
        end
    end
end
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% This defines a data structure that describes the physical state of a
% superconducting material for a given range of positions and energies.
% This class inherits the internal structure of the 'Metal' class.
%
% Written by Jabir Ali Ouassou <jabirali@switzerlandmail.ch>
% Inspired by a similar program written by Sol Jacobsen
% Created 2015-02-15
% Updated 2015-05-05

classdef Superconductor < Metal
    properties (GetAccess=public, SetAccess=public)
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Define the internal variables of the Superconductor class
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

        % Temperature of the system (relative to the bulk critical temperature)
        temperature = 0;

        % Strength of the superconductor (material constant N₀λ in the gap equation)
        strength    = 0.2;

        % Superconducting gap as a function of position (relative to the bulk gap)
        gap         = griddedInterpolant([0,1],[1,1]);

% Superconducting phase as a function of position (defaults to zero)
        phase       = griddedInterpolant([0,1],[0,0]);

        % Whether we use a gauge where the superconducting phase is zero
        complex     = false;

        % Whether the superconducting gap and phase are locked to constant values
        locked      = false;
    end
    
    
    methods
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Define methods that instantiate the object
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

        function self = Superconductor(positions, energies, thouless, strength)
            % This method constructs a Superconductor instance from a vector
            % of positions, a vector of energies, the Thouless energy, and
            % the strength of the superconductivity (material constant N₀λ).
            %
            % Note: for self-consistent solutions to work properly, the energy
            %       vector should extend up to the Debye cutoff cosh(1/N₀λ).

            % Initialize the Metal superclass
            self@Metal(positions, energies, thouless);

            % Set the internal variables based on constructor arguments
            self.strength = strength;
        end
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        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Define methods which are useful for working with superconductors
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        
        function gap_reduce(self)
            % This function reduces the current value of the superconducting
            % gap everywhere in the material. (This can be useful for
            % accelerating the convergence of programs that search
            % for the critical temperature of a hybrid system.)
            
            self.gap.Values = self.gap.Values./2;
            self.update_coeff;
            self.update_state;
            self.update_gap;
        end        
        
        function result = gap_left(self)
            % This function returns the left superconducting gap.
            
            result = abs(self.gap.Values(1));
        end

        function result = gap_right(self)
            % This function returns the right superconducting gap.
            
            result = abs(self.gap.Values(end));
        end

        function result = gap_mean(self)
            % This function returns the mean superconducting gap.
            
            result = mean(abs(self.gap.Values));
        end
        
        function result = gap_max(self)
            % This function returns the maximal superconducting gap.
            
            result = max(abs(self.gap.Values));
        end
        
        function result = gap_min(self)
            % This function returns the minimal superconducting gap.
            
            result = min(abs(self.gap.Values));

end
        
        function phase_set(self, phase)
            % This function sets the superconducting phase at all positions,
            % and updates the internal state of the superconductor to a bulk
            % material with the correct phase.
            
            % Set the superconducting phase
            self.phase = griddedInterpolant([0,1],[phase,phase]);
            
            % Set the internal state to a bulk superconductor with a phase
            for i=1:length(self.positions)
                for j=1:length(self.energies)
                    self.states(i,j) = Superconductor.Bulk(self.energies(j), 1, phase);
                end
            end
        end
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        function plot_gap(self)
            % Plot the superconducting gap as a function of position
            xs = linspace(self.positions(1), self.positions(end));
            plot(xs, self.gap(xs));
            xlabel('Relative position');
            ylabel('Superconducting gap');
        end        

        function plot_phase(self)
            % Plot the superconducting phase as a function of position
            xs = linspace(self.positions(1), self.positions(end));
            plot(xs, self.phase(xs)/pi);

            axis([0 1 -1 1]);
            set(gca, 'XTick', [0,1/4,1/2,3/4,1]);
            set(gca, 'YTick', [-1,-1/2,0,1/2,1]);

            xlabel('Relative position');
            ylabel('Superconducting phase (\pi)');
        end
        
        
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Define methods that update the internal state of the object
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
        
        function update_gap(self)
            % This function updates the gap function, which contains the 
            % current estimate of the superconducting gap in the material.
            
            if ~self.locked
                % Calculate the gap and phase at every position in the system
                gaps   = zeros(1,length(self.positions));
                phases = zeros(1,length(self.positions));
                for n=1:length(self.positions)
                    [gaps(n),phases(n)] = self.calculate_gap(self, self.positions(n));
                end
            
                % Create a piecewise cubic interpolation of the results
                self.gap   = griddedInterpolant(self.positions, gaps,   'pchip');
                self.phase = griddedInterpolant(self.positions, phases, 'pchip');
            end
        end
        

function update_coeff(self)
            % This function updates the vector of coefficients passed to
            % the functions 'jacobian' and 'boundary' when solving equations.
            
            % Call the standard 'Metal' version of the method
            update_coeff@Metal(self);
            
            % Coefficients in the equations for the Riccati parameter gamma
            self.coeff1{1} = -2i/self.thouless;
            self.coeff1{2} = -SpinVector.Pauli.y/self.thouless;
            
            % Coefficients in the equations for the Riccati parameter gamma~
            self.coeff2{1} =  self.coeff1{1};
            self.coeff2{2} = -self.coeff1{2};
        end
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        function update(self)
            % This function updates the internal state of the superconductor
            % by calling the other update methods. Always run this after

% updating the boundary conditions or physical properties of
            % the superconductor, or after restoring from a backup.
            
            % Update the state
            self.update_gap;
            self.update_coeff;
            self.update_state;
            self.update_gap;
                
            % Plot the current DOS
            if self.plot
                self.plot_dos_surf;
            end
        end
    end        
    
    methods (Static)        
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Define static methods (available without object instantiation)
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    

        function dydx = jacobian(self, x, y, energy)
            % This function takes a Superconductor object 'self', the
            % position 'x', the current state vector 'y', and an energy
            % as inputs, and calculates the Jacobian of the system. This 
            % is performed using the Riccati parametrized Usadel equations.
            
            % Extract the Riccati parameters and their derivatives
            [g,dg,gt,dgt] = State.unpack(y);
            
            % Retrieve the superconducting gap at this point
            gap  = self.gap(x) * exp(i*self.phase(x));
            gapt = conj(gap);
            
            % Calculate the normalization matrices
            N  = inv( eye(2) - g*gt );
            Nt = inv( eye(2) - gt*g );
            
            % Calculate the second derivatives of the Riccati parameters
            % according to the Usadel equations in the superconductor
            d2g  = -2 * dg*Nt*gt*dg + self.coeff1{1} * (energy+1e-3i)*g ...
                 + gap * self.coeff1{2} + gapt * g*self.coeff2{2}*g;
             
            d2gt = -2 * dgt*N*g*dgt + self.coeff2{1} * (energy+1e-3i)*gt...
                 + gapt * self.coeff2{2} + gap * gt*self.coeff1{2}*gt;
            
            % Pack the results into a state vector
            dydx = State.pack(dg,d2g,dgt,d2gt);
        end
        
        function [gap,phase] = calculate_gap(self, position)
            % This function returns a vector [gap,phase] with the
            % superconducting gap and phase at the given position.
            % This is done by invoking either 'calculate_gap_real'
            % or 'calculate_gap_complex', depending on whether 
            % the parameter 'complex' is true or false.
            
            if self.complex
                    [gap,phase] = self.calculate_gap_complex(self, position);
            else
                    [gap,phase] = self.calculate_gap_real(self, position);
            end
        end
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        function [result_gap,result_phase] = calculate_gap_real(self, position)
            % This function extracts the singlet components of the Green's

% function at a given position, and then uses the gap equation
            % to calculate the superconducting gap at that point.
            % [This version works for purely real values of the gap.]
            
            % Extract the singlet components from the states
            singlets = zeros(size(self.energies));
            index    = self.position_index(position);
            for m=1:length(self.energies)
                singlets(m) = real(self.states(index,m).singlet);
            end
            
            % Create a cubic interpolation of the numerical data above
            singlet = griddedInterpolant(self.energies, singlets, 'pchip');
            
            % This is the expression for the gap equation integrand. Using
            % eq. (4.34) in Fossheim & Sudbø, we have rewritten the argument
            % of tanh(E/2T) such that E is measured relative to the
            % zero-temperature gap, while T is measured relative to Tc.
            kernel = @(E) singlet(E) .* tanh(0.881939 * E/self.temperature);
                   
            % Perform a numerical integration of the interpolation up to
            % the Debye cutoff. The Debye cutoff has been calculated from
            % the superconductor strength using eq. (3.34) in Tinkham.
            % The reason for cosh(1/N₀λ) instead of sinh(1/N₀λ), is that we
            % integrate the quasiparticle energy and not the kinetic energy.
            result_gap   = self.strength                                         ...
                         * integral(kernel, self.energies(1), cosh(1/self.strength));
            result_phase = 0;
        end
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        function [result_gap,result_phase] = calculate_gap_complex(self, position)
            % This function uses the gap equation to calculate the super-
            % conducting gap and superconducting phase at a given position.

% [This version works for general complex values of the gap.]
            
            % Calculate the singlet component of the anomalous Green's
            % functions and its tilde conjugate, and then their difference.
            index    = self.position_index(position);
            singlets = zeros(size(self.energies));
            for m=1:length(self.energies)
                singlets(m) = self.states(index,m).singlet/2     ...
                            - conj(self.states(index,m).singlett)/2;
            end

            % Create cubic interpolations of the numerical data above
            singletR = griddedInterpolant(self.energies, real(singlets), 'pchip');
            singletI = griddedInterpolant(self.energies, imag(singlets), 'pchip');
            
            % This is the expression for the gap equation integrand. Using
            % eq. (4.34) in Fossheim & Sudbø, we have rewritten the argument
            % of tanh(E/2T) such that E is measured relative to the
            % zero-temperature gap, while T is measured relative to Tc.
            kernelR = @(E) singletR(E) .* tanh(0.881939 * E/self.temperature);
            kernelI = @(E) singletI(E) .* tanh(0.881939 * E/self.temperature);
                   
            % Perform a numerical integration of the interpolation up to
            % the Debye cutoff. The Debye cutoff has been calculated from
            % the superconductor strength using eq. (3.34) in Tinkham.
            % The reason for cosh(1/N₀λ) instead of sinh(1/N₀λ), is that we
            % integrate the quasiparticle energy and not the kinetic energy.
            gapR = self.strength                                           ...  
                 * integral(kernelR, self.energies(1), cosh(1/self.strength));
            gapI = self.strength                                           ...
                 * integral(kernelI, self.energies(1), cosh(1/self.strength));
         
            % Extract the superconducting gap and phase from the results
            result       = gapR + 1i*gapI;
            result_gap   = norm(result);
            result_phase = phase(result);
        end
        
        function result = Bulk(energy, gap, phase)
            % This function takes as its input an energy and a superconducting
            % gap, and returns a State object with Riccati parametrized Green's
            % functions that correspond to a BCS superconductor bulk state.
                        
            theta = atanh(gap/(energy+1e-3i));
            c     = cosh(theta);
            s     = sinh(theta);
            g     = s/(1+c);
            
            result = State([0,  g; -g, 0]*exp( 1i*phase), 0, ...
                           [0, -g;  g, 0]*exp(-1i*phase), 0);
        end
    end
end
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% This defines a data structure that describes the physical state of a
% ferromagnetic material with spin-orbit coupling for a given range
% of positions and energies. This class inherits the internal structure
% of the 'Metal' class.
%
% Written by Jabir Ali Ouassou <jabirali@switzerlandmail.ch>
% Inspired by a similar program written by Sol Jacobsen
% Created 2015-02-16
% Updated 2015-02-26

classdef Ferromagnet < Metal
    properties (GetAccess=public, SetAccess=public)
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Define the internal variables of the Ferromagnet class
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

        % Exchange field in the ferromagnet
        exchange        = [0,0,0];

        % Spin-orbit field in the ferromagnet
        spinorbit       = SpinVector(0,0,0);
    end
    
    
    methods
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Define methods that instantiate the object
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

        function self = Ferromagnet(positions, energies, thouless, exchange, spinorbit)
            % This method constructs a Ferromagnet instance from a vector
            % of positions, a vector of energies, the Thouless energy, the
            % exchange field, and the spin-orbit field in the material.

            % Initialize the Metal superclass
            self@Metal(positions, energies, thouless);

            % Set the internal variables based on constructor arguments
            self.exchange  = exchange;
            self.spinorbit = spinorbit;        
        end
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        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Define methods which are useful for working with ferromagnets
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
        
        function plot_dist(self)
            % Calculate the singlet and triplet distributions.
            % NB: This implementation only *adds* the contribution from
            %     every energy, and does not perform a proper integral!

            singlet = zeros(length(self.positions), 1);
            triplet = zeros(length(self.positions), 1);
            srtc    = zeros(length(self.positions), 1);
            lrtc    = zeros(length(self.positions), 1);
            for m=1:length(self.energies)
                for n=1:length(self.positions)
                    singlet(n) = singlet(n) + norm(self.states(n,m).singlet);
                    triplet(n) = triplet(n) + norm(self.states(n,m).triplet);
                    srtc(n) = srtc(n) + norm(self.states(n,m).srtc(self.exchange));
                    lrtc(n) = lrtc(n) + norm(self.states(n,m).lrtc(self.exchange));
                end
            end
                
            % Plot cubic interpolations of the results
            positions = linspace(0, self.positions(end), 100);
            if norm(self.exchange) == 0
                % If there is no exchange field, don't distinguish SRT/LRT
                plot(positions, pchip(self.positions, singlet, positions),  ...
                     positions, pchip(self.positions, triplet, positions));
                legend('Singlet', 'Triplet');
            else
                % If there is an exchange field, do distinguish SRT/LRT
                plot(positions, pchip(self.positions, singlet, positions),  ...
                     positions, pchip(self.positions, srtc,    positions),  ...
                     positions, pchip(self.positions, lrtc,    positions));
                legend('Singlet', 'Short-Range Triplet', 'Long-Range Triplet');
            end
            xlabel('Relative position');
            ylabel('Distribution');
        end    
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        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Define methods that update the internal state of the object
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%  
                
        function update_coeff(self)
            % This function updates the vector of coefficients passed to
            % the functions 'jacobian' and 'boundary' when solving equations.
            
            % Call the standard 'Metal' version of the method
            update_coeff@Metal(self);
            
            % Coefficients in the equations for the Riccati parameter gamma
            self.coeff1{1} = -2i/self.thouless;
            self.coeff1{2} = (-i*self.exchange/self.thouless)*SpinVector.Pauli;
            self.coeff1{3} = self.spinorbit^2/self.thouless;
            self.coeff1{4} = sqrt(2/self.thouless)    * self.spinorbit.x;
            self.coeff1{5} = sqrt(2/self.thouless)    * self.spinorbit.y;
            self.coeff1{6} = sqrt(2/self.thouless)    * self.spinorbit.z;
            self.coeff1{7} = (2i/sqrt(self.thouless)) * self.spinorbit.z;
            
            % Coefficients in the equations for the Riccati parameter gamma~
            self.coeff2{1} = self.coeff1{1};
            self.coeff2{2} = conj(self.coeff1{2});
            self.coeff2{3} = conj(self.coeff1{3});
            self.coeff2{4} = conj(self.coeff1{4});
            self.coeff2{5} = conj(self.coeff1{5});
            self.coeff2{6} = conj(self.coeff1{6});
            self.coeff2{7} = conj(self.coeff1{7});
        end
    end        
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    methods (Static)        
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
        % Define static methods (available without object instantiation)
        %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%    

        function dydx = jacobian(self, x, y, energy)
            % This function takes a Ferromagnet object 'self', the
            % position 'x', the current state vector 'y', and an energy
            % as inputs, and calculates the Jacobian of the system. This 
            % is performed using the Riccati parametrized Usadel equations.
            
            % Extract the Riccati parameters and their derivatives
            [g,dg,gt,dgt] = State.unpack(y);
            
            % Calculate the normalization matrices
            N  = inv( eye(2) - g*gt );
            Nt = inv( eye(2) - gt*g );
            
            % Calculate the second derivatives of the Riccati parameters
            % according to the Usadel equations in the ferromagnet
            d2g  = -2 * dg*Nt*gt*dg + self.coeff1{1} * (energy+1e-3i)*g  ...
                 + (self.coeff1{2} + self.coeff1{3}) * g                 ...
                 + g * (self.coeff2{2} - self.coeff2{3})                 ...
                 + (self.coeff1{4} * g + g * self.coeff2{4})             ...
                   * Nt * (self.coeff2{4} + gt * self.coeff1{4} * g)     ...
                 + (self.coeff1{5} * g + g * self.coeff2{5})             ...
                   * Nt * (self.coeff2{5} + gt * self.coeff1{5} * g)     ...
                 + (self.coeff1{6} * g + g * self.coeff2{6})             ...
                   * Nt * (self.coeff2{6} + gt * self.coeff1{6} * g)     ...
                 + (self.coeff1{7} - g * self.coeff2{7} * gt) * N * dg   ...
                 + dg * Nt * (gt * self.coeff1{7} * g - self.coeff2{7});
             
            d2gt = -2 * dgt*N*g*dgt + self.coeff2{1} * (energy+1e-3i)*gt ...
                 + (self.coeff2{2} + self.coeff2{3}) * gt                ...
                 + gt * (self.coeff1{2} - self.coeff1{3})                ...
                 + (self.coeff2{4} * gt + gt * self.coeff1{4})           ...
                   * N * (self.coeff1{4} + g * self.coeff2{4} * gt)      ...
                 + (self.coeff2{5} * gt + gt * self.coeff1{5})           ...
                   * N * (self.coeff1{5} + g * self.coeff2{5} * gt)      ...
                 + (self.coeff2{6} * gt + gt * self.coeff1{6})           ...
                   * N * (self.coeff1{6} + g * self.coeff2{6} * gt)      ...
                 + (self.coeff2{7} - gt * self.coeff1{7} * g) * Nt * dgt ...
                 + dgt * N * (g * self.coeff2{7} * gt - self.coeff1{7});
            
            % Pack the results into a state vector
            dydx = State.pack(dg,d2g,dgt,d2gt);
        end
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        function residue = boundary(self, y1, y2, energy)
            % This function takes a Metal object 'self', the position 'x',
            % the current state vector 'y', and an energy as inputs, and

% calculates the Kuprianov-Lukichev boundary conditions.
            %
            % Note: this is an extension of 'Metal.boundary' which also
            %       works in the presence of spin-orbit coupling.
            
            % State in the material to the left
            s0   = self.boundary_left(self.energy_index(energy));
            g0   = s0.g;
            dg0  = s0.dg;
            gt0  = s0.gt;
            dgt0 = s0.dgt;
            
            % State at the left end of the material
            [g1,dg1,gt1,dgt1] = State.unpack(y1);
            
            % State at the right end of the material
            [g2,dg2,gt2,dgt2] = State.unpack(y2);
            
            % State in the material to the right
            s3   = self.boundary_right(self.energy_index(energy));
            g3   = s3.g;
            dg3  = s3.dg;
            gt3  = s3.gt;
            dgt3 = s3.dgt;
            
            % Calculate the normalization matrices
            N0  = inv( eye(2) - g0*gt0 );
            Nt0 = inv( eye(2) - gt0*g0 );
            
            N3  = inv( eye(2) - g3*gt3 );
            Nt3 = inv( eye(2) - gt3*g3 );
            
            % Calculate the deviation from the Kuprianov--Lukichev b.c.
            dg1  = dg1  - (1/self.interface_left)*( eye(2) - g1*gt0 )  ...
                          * N0  * ( g1  - g0  )                        ...
                        - (self.coeff1{7} * g1  - g1  * self.coeff2{7})/2;
            dgt1 = dgt1 - (1/self.interface_left)*( eye(2) - gt1*g0 )  ...
                          * Nt0 * ( gt1 - gt0 )                        ...
                        - (self.coeff2{7} * gt1 - gt1 * self.coeff1{7})/2;
            
            dg2  = dg2  - (1/self.interface_right)*( eye(2) - g2*gt3 ) ...
                          * N3  * (  g3  - g2  )                       ...
                        - (self.coeff1{7} * g2  - g2  * self.coeff2{7})/2;
            dgt2 = dgt2 - (1/self.interface_right)*( eye(2) - gt2*g3 ) ...
                          * Nt3 * ( gt3 - gt2 )                        ...
                        - (self.coeff2{7} * gt2 - gt2 * self.coeff1{7})/2;
            
            % Vectorize the results of the calculations, and return it
            residue = State.pack(dg1,dgt1,dg2,dgt2);
        end
    end
end
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M AT L A B S C R I P T S

The following pages contains a number of Matlab scripts, which builds
upon the classes that were introduced on the preceding pages. The scripts
can be classified into three groups:

(i) critical_*.m perform self-consistent calculations, and use them to
determine the critical temperature of a system;

(ii) simulate_bilayer_*.m calculates the density of states in bilayers;

(iii) simulate_josephson_*.m calculates the density of states in trilayers.

These scripts were used to create the vast majority of data presented in
this thesis. However, a number of plots—notably the contour plots—were
generated by interactive use of the Metal/Superconductor/Ferromagnet
classes, and the corresponding code has therefore not been included here.
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% This script calculates the critical temperature of a bulk superconductor,
% by performing a binary search for the temperature where the gap vanishes
% numerically. The result should be numerically one in the given unit
% system, so this script can be used to calibrate other simulation parameters.
%
% Written by Jabir Ali Ouassou <jabirali@switzerlandmail.ch>
% Created 2015-02-28
% Updated 2015-03-04

function critical_superconductor(superconductor_length, superconductor_strength)
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                 DEFINE PARAMETERS FOR THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Vectors of positions and energies that will be used in the simulation
    positions = linspace(0, 1, 10);
    energies  = [linspace(0.000,1.500,500) linspace(1.501,cosh(1/superconductor_strength),100)];

    % Number of iterations of the binary search to perform
    iterations    = 8;

    % Number of iterations that the system needs to stabilize
    stabilization = 5;

    % Upper and lower limits for the binary search
    lower = 0.00;
    upper = 1.50;
    
    % Filename where results will be stored
    output = 'critical_superconductor.dat';

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                   PREPARATIONS FOR THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Make sure that all required classes and methods are in the current path
    initialize;

    % Create a superconductor object based on the parameters above
    s = Superconductor(positions, energies, 1/superconductor_length^2, superconductor_strength);

    % Enable or disable various debugging flags
    s.delay = 0;
    s.debug = 1;
    s.plot  = 0;

    % This variable is used to keep a backup of the last non-critical object
    sb = s.backup_save;
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    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %        PERFORM A BINARY SEARCH FOR THE CRITICAL TEMPERATURE
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    tic;
    for n=1:iterations
        % Set the current temperature to the average of the two previous values
        s.temperature = (upper+lower)/2;

        % Keep updating the internal state of the superconductor until we
        % either reach a phase transition, or the gap starts to increase
        loop = 0;
        gaps = [ 1 ];
        while true
            % If too many iterations have passed without convergence, then
            % proceed to accelerate the convergence by reducing the gap
            loop = loop + 1;
            if rem(loop,stabilization) == 0
                % Status information
                fprintf(':: [ %3d / %3d ] [ Temp: %.6f ] [ Time: %2d min ] Accelerating!\n',...
                         n, iterations, s.temperature, floor(toc/60));

                % Reduce the superconducting gap everywhere in the system
                s.gap_reduce;
            end

            % Status information
            fprintf(':: [ %3d / %3d ] [ Temp: %.6f ] [ Time: %2d min ] [ Gap: %.6f ]\n',...
                     n, iterations, s.temperature, floor(toc/60), s.gap_max);

            % Update the superconductor state
            s.update;
            gaps(end+1) = s.gap_mean;

            if (gaps(end)-gaps(end-1)) > 0
                % The gap increased during the last iteration, so we must be
                % below the critical temperature. Updating the lower estimate, 
                % and using the current state as an initial guess in the next 
                % simulation. Then terminate the loop.

                lower = s.temperature;
                sb    = s.backup_save;
                break;

            elseif (s.gap_max < 0.005)
                % The gap is so small that we must have reached critical
                % temperature. Update upper estimate, load a noncritical
                % state from backup, and terminate loop.

                upper = s.temperature;
                s.backup_load(sb);
                break;

            else
                % If the superconductor is not critical, then use the current
                % state as an initial guess in the next simulation.

                sb = s.backup_save;
            end
        end
    end
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    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %           SAVE RESULTS AND CLEAN UP AFTER THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % The final estimate of the critical temperature is the mean of the current
    % upper and lower limits obtained by the above calculations
    critical_temperature = (upper+lower)/2;

    % Output the final result
    fprintf('Critical temperature: %.6f\nLower limit: %.6f\nUpper limit: %.6f\n:',...
             critical_temperature, lower, upper);

    % Save the results to file
    save(output);
end
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% This script calculates the critical temperature of a superconductor/ferromagnet
% bilayer with spin-orbit coupling, by performing a kind of binary search for
% the temperature where the superconducting gap vanishes numerically. 
%
% Written by Jabir Ali Ouassou <jabirali@switzerlandmail.ch>
% Created 2015-03-01
% Updated 2015-03-04

function critical_bilayer(superconductor_length, ferromagnet_length, ...
                          strength, exchange, spinorbit, angle)

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                 DEFINE PARAMETERS FOR THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Vectors of positions and energies that will be used in the simulation
    positions     = linspace(0, 1, 150);
    energies      = [linspace(0.000,1.500,500) linspace(1.501,cosh(1/strength),100)];

    % Number of iterations of the binary search to perform
    iterations    = 12;
    
    % Number of iterations that the system needs to stabilize
    stabilization = 6;

    % Upper and lower limits for the binary search
    lower = 0;
    upper = 1;

    % Filename where results will be stored
    output = 'critical_bilayer.dat';

    
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                   PREPARATIONS FOR THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Make sure that all required classes and methods are in the current path
    initialize;
    
    % Instantiate and initialize superconductor/ferromagnet objects
    s = Superconductor(positions, energies, 1/superconductor_length^2, strength);
    f = Ferromagnet(positions, energies, 1/ferromagnet_length^2, exchange, ...
                    SpinVector.RashbaDresselhaus(spinorbit, angle));

    s.temperature     = 0;
    s.interface_right = 3;
    f.interface_left  = 3;

    % This enables or disables various debugging options
    s.delay = 0;
    s.debug = 1;
    s.plot  = 0;
    f.delay = 0;
    f.debug = 1;
    f.plot  = 0;
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    % Print out parameters for verification purposes
    fprintf('SUPERCONDUCTOR:\n');
    fprintf(' :: Length:          %1.6f\n',   superconductor_length);
    fprintf(' :: Thouless energy: %1.6f\n',   s.thouless);
    fprintf(' :: Interface:       %1.6f\n',   s.interface_right);
    fprintf(' :: Strength:        %1.6f\n\n', s.strength);
    fprintf('FERROMAGNET:\n');
    fprintf(' :: Length:          %1.6f\n',   ferromagnet_length);
    fprintf(' :: Thouless energy: %1.6f\n',   f.thouless);
    fprintf(' :: Interface:       %1.6f\n',   f.interface_left);
    fprintf(' :: Exchange field h:\n');
    disp(f.exchange);
    fprintf(' :: Spin-orbit field Ax:\n')
    disp(f.spinorbit.x);
    fprintf(' :: Spin-orbit field Ay:\n')
    disp(f.spinorbit.y);
    fprintf(' :: Spin-orbit field Az:\n')
    disp(f.spinorbit.z);

    
    % Initialize the bilayer by performing 'stabilization' iterations at
    % zero temperature, to make sure that we do get the proximity effect
    tic;
    for n=1:stabilization
        % Status information
        fprintf('[ %3d / %3d ] [ Temp: %.6f ] [ Time: %2d min ] Initializing...\n', ...
                n, stabilization, s.temperature, floor(toc/60));
        
        % Update the boundary condition and state of the ferromagnet
        f.update_boundary_left(s);
        f.update;
        
        % Update the boundary condition and state of the superconductor
        s.update_boundary_right(f);
        s.update;
    end

    % These variables are used to keep a backup of the last non-critical object
    sb = s.backup_save;
    fb = f.backup_save;
    

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %          PERFORM A BINARY SEARCH FOR THE CRITICAL TEMPERATURE
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    for n=1:iterations
        % Set the current temperature to the average of the two previous values
        s.temperature = (upper+lower)/2;

        % Keep updating the internal state of the superconductor until we
        % either reach a phase transition, or the gap starts to increase
        loop = 0;
        gaps = [ 1 ];
        while true
            % If too many iterations have passed without convergence, then
            % proceed to accelerate the convergence by reducing the gap
            loop = loop + 1;
            if rem(loop,stabilization) == 0
                % Status information
                fprintf('[ %3d / %3d ] [ Temp: %.6f ] [ Time: %2d min ] Accelerating...\n',...
                         n, iterations, s.temperature, floor(toc/60));

                % Reduce the superconducting gap everywhere in the system
                s.gap_reduce;
            end
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            % Status information
            fprintf('[ %3d / %3d ] [ Temp: %.6f ] [ Time: %2d min ] [ Gap: %.6f ]\n',...
                     n, iterations, s.temperature, floor(toc/60), s.gap_max);

            % Update the ferromagnet boundary conditions and state
            f.update_boundary_left(s);
            f.update;
            
            % Update the superconductor boundary conditions and state
            s.update_boundary_right(f);
            s.update;
            
            % Store the current superconductor mean gap in 'gaps' 
            gaps(end+1) = s.gap_mean;

            % This is the logic that controls the while loop
            if (gaps(end)-gaps(end-1)) > 0
                % The gap increased during the last iteration, so we must be
                % below the critical temperature. Updating the lower estimate, 
                % and using the current state as an initial guess in the next 
                % simulation. Then terminate the loop.

                lower = s.temperature;
                sb    = s.backup_save;
                fb    = f.backup_save;
                break;

            elseif (s.gap_max < 0.005)
                % The gap is so small that we must have reached critical
                % temperature. Update upper estimate, load a noncritical
                % state from backup, and terminate the loop.

                upper = s.temperature;
                s.backup_load(sb);
                f.backup_load(fb);
                break;

            else
                % If the superconductor is not critical, then use the current
                % state as an initial guess in future simulations.

                sb = s.backup_save;
                fb = f.backup_save;
            end
        end
    end

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %           SAVE RESULTS AND CLEAN UP AFTER THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % The final estimate of the critical temperature is the mean of the current
    % upper and lower limits obtained by the above calculations
    critical_temperature = (upper+lower)/2;

    % Output the final result
    fprintf('Critical temperature: %.6f\nLower limit: %.6f\nUpper limit: %.6f\n:', ...
            critical_temperature, lower, upper);

    % Save the results to file
    save(output);
end
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% This script simulates the proximity effect in a normal metal.
%
% Written by Jabir Ali Ouassou <jabirali@switzerlandmail.ch>
% Created 2015-05-06
% Updated 2015-05-07

function simulate_bilayer()
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                 DEFINE PARAMETERS FOR THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Vectors of positions and energies that will be used in the simulation
    positions     = linspace(0.0, 1.0, 50);
    energies      = linspace(0.0, 2.0, 50);
    
    % Filename where results will be stored
    output = 'simulate_bilayer.dat';

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                   PREPARATIONS FOR THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Make sure that all required classes and methods are in the current path
    initialize;
    
    % Create a superconductor
    s = Superconductor([0], energies, 1, 0.2);
    
    % Create a normal metal connected to the superconductor above
    m = Metal(positions, energies, 1);
    m.interface_left  = 3;
    m.update_boundary_left(s);
    
    % This enables or disables various debugging options
    m.delay = 0;
    m.debug = 1;
    m.plot  = 0;

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                       PERFORM THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Update the internal state of the metal
    m.update;
    
    % Plot the results
    figure;
    m.plot_dos_surf;
    figure;
    m.plot_dos_center;
    
    % Save the results of the simulation
    save(output);
end
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% This script simulates the proximity effect in a metal with a spin-active interface.
%
% Written by Jabir Ali Ouassou <jabirali@switzerlandmail.ch>
% Created 2015-05-06
% Updated 2015-05-07

function simulate_bilayer_spinactive(interface_polarization, interface_phase)
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                 DEFINE PARAMETERS FOR THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Vectors of positions and energies that will be used in the simulation
    positions     = linspace(0.0, 1.0, 100);
    energies      = linspace(0.0, 2.0,  50);
    
    % Filename where results will be stored
    output = 'simulate_bilayer_spinactive.dat';

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                   PREPARATIONS FOR THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Make sure that all required classes and methods are in the current path
    initialize;
    
    % Create a superconductor
    s = Superconductor([0], energies, 1, 0.2);

    % Create a normal metal connected to the superconductors above
    m = Metal(positions, energies, 1);
    m.spinactive         = 1;
    m.interface_left     = 3;
    m.magnetization_left = [0,0,1];
    m.polarization_left  = interface_polarization;
    m.phaseshift_left    = interface_phase;
    m.update_boundary_left(s);
    
    % This enables or disables various debugging options
    m.delay = 0;
    m.debug = 1;
    m.plot  = 0;

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                       PERFORM THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Update the internal state of the metal
    m.update;
    
    % Plot the results
    figure;
    m.plot_dos_surf;
    figure;
    m.plot_dos_center;
    
    % Save the results of the simulation
    save(output);
end
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% This script simulates the proximity effect in a ferromagnet with spin-orbit coupling.
%
% Written by Jabir Ali Ouassou <jabirali@switzerlandmail.ch>
% Created 2015-02-06
% Updated 2015-05-07

function simulate_bilayer_spinorbit(exchange_strength, exchange_angle,...
                                    spinorbit_strength, spinorbit_angle)

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                 DEFINE PARAMETERS FOR THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Vectors of positions and energies that will be used in the simulation
    positions     = linspace(0.0, 1.0, 100);
    energies      = linspace(0.0, 2.0,  50);
    
    % Filename where results will be stored
    output = 'simulate_bilayer_spinorbit.dat';

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                   PREPARATIONS FOR THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Make sure that all required classes and methods are in the current path
    initialize;
    
    % Create a superconductor
    s = Superconductor([0], energies, 1, 0.2);
    
    % Create a ferromagnet connected to the superconductor above
    m = Ferromagnet(positions, energies, 1/0.5^2,                                   ...
                    exchange_strength*[cos(exchange_angle), sin(exchange_angle), 0],...
                    SpinVector.RashbaDresselhaus(spinorbit_strength, spinorbit_angle));
    m.interface_left = 3;
    m.update_boundary_left(s);
    
    % This enables or disables various debugging options
    m.delay = 0;
    m.debug = 1;
    m.plot  = 0;

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                       PERFORM THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

% Update the internal state of the metal
    m.update;
    
    % Plot the results
    figure;
    m.plot_dos_surf;
    figure;
    m.plot_dos_center;
    
    % Save the results of the simulation
    save(output);
end
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% This script simulates the proximity effect in a metal with both a spin-active interface
% to a bulk superconductor, and a Rashba-Dresselhaus spin-orbit coupling in the metal.
%
% Written by Jabir Ali Ouassou <jabirali@switzerlandmail.ch>
% Created 2015-05-20
% Updated 2015-05-20

function simulate_bilayer_spinorbitactive(interface_polarization,          ...
                                          interface_phase, interface_angle,...
                                          spinorbit_strength, spinorbit_angle)

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                 DEFINE PARAMETERS FOR THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Vectors of positions and energies that will be used in the simulation
    positions     = linspace(0.0, 1.0, 150);
    energies      = linspace(0.0, 2.0,  50);
    
    % Filename where results will be stored
    output = 'simulate_bilayer_spinorbitactive.dat';

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                   PREPARATIONS FOR THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Make sure that all required classes and methods are in the current path
    initialize;
    
    % Create a superconductor
    s = Superconductor([0], energies, 1, 0.2);

    % Create a normal metal connected to the superconductors above
    m = Ferromagnet(positions, energies, 1/0.5^2, [0,0,0], ...
                    SpinVector.RashbaDresselhaus(spinorbit_strength, spinorbit_angle));
    m.spinactive         = 1;
    m.interface_left     = 5;
    m.magnetization_left = [cos(interface_angle),sin(interface_angle),0];
    m.polarization_left  = interface_polarization;
    m.phaseshift_left    = interface_phase;
    m.update_boundary_left(s);
    m.init_metal;
    
    % This enables or disables various debugging options
    m.delay = 0;
    m.debug = 1;
    m.plot  = 0;

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                       PERFORM THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Update the internal state of the metal
    m.update;
    
    % Plot the results
    figure;
    m.plot_dos_surf;
    figure;
    m.plot_dos_center;
    
    % Save the results of the simulation
    save(output);
end
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% This script simulates the proximity effect in a normal metal connected
% to two superconductors with a constant phase difference between them.
%
% Written by Jabir Ali Ouassou <jabirali@switzerlandmail.ch>
% Created 2015-05-06
% Updated 2015-05-07

function simulate_josephson(phase_difference)
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                 DEFINE PARAMETERS FOR THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Vectors of positions and energies that will be used in the simulation
    positions     = linspace(0.0, 1.0, 50);
    energies      = linspace(0.0, 2.0, 50);
    
    % Filename where results will be stored
    output = 'simulate_josephson.dat';

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                   PREPARATIONS FOR THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Make sure that all required classes and methods are in the current path
    initialize;
    
    % Create two superconductors with 'phase_difference' between them
    s1 = Superconductor([0], energies, 1, 0.2);
    s1.complex = true;
    s1.phase_set(-phase_difference/2);
    
    s2 = Superconductor([0], energies, 1, 0.2);
    s2.complex = true;
    s2.phase_set(+phase_difference/2);

    % Create a normal metal connected to the superconductors above
    m = Metal(positions, energies, 1);
    m.interface_left  = 3;
    m.interface_right = 3;
    m.update_boundary_left(s1);
    m.update_boundary_right(s2);
    
    % This enables or disables various debugging options
    m.delay = 0;
    m.debug = 1;
    m.plot  = 0;

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                       PERFORM THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Update the internal state of the metal
    m.update;
    
    % Plot the results
    figure;
    m.plot_dos_surf;
    figure;
    m.plot_dos_center;
    
    % Save the results of the simulation
    save(output);
end



File: /Master/Scripts/simulate_josephson.m Page 2 of 2



File: /Master/Scripts/simulate_josephson_spinactive.m Page 1 of 2

% This script simulates the proximity effect in a normal metal connected
% to two superconductors with a constant phase difference between them,
% where both interfaces are assumed to be spin-active.
%
% Written by Jabir Ali Ouassou <jabirali@switzerlandmail.ch>
% Created 2015-05-06
% Updated 2015-05-07

function simulate_josephson_spinactive(phase_difference, interface_polarization, ...
                                       interface_phase, interface_angle)

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                 DEFINE PARAMETERS FOR THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Vectors of positions and energies that will be used in the simulation
    positions     = linspace(0.0, 1.0, 100);
    energies      = linspace(0.0, 2.0,  50);
    
    % Filename where results will be stored
    output = 'simulate_josephson_spinactive.dat';

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                   PREPARATIONS FOR THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Make sure that all required classes and methods are in the current path
    initialize;
    
    % Create two superconductors with 'phase_difference' between them
    s1 = Superconductor([0], energies, 1, 0.2);
    s1.complex = true;
    s1.phase_set(-phase_difference/2);
    
    s2 = Superconductor([0], energies, 1, 0.2);
    s2.complex = true;
    s2.phase_set(+phase_difference/2);

    % Create a normal metal connected to the superconductors above
    m = Metal(positions, energies, 1);
    m.spinactive          = 1;
    m.interface_left      = 3;
    m.interface_right     = 3;
    m.magnetization_left  = [cos(+interface_angle/2), sin(+interface_angle/2), 0];
    m.magnetization_right = [cos(-interface_angle/2), sin(-interface_angle/2), 0];
    m.polarization_left   = interface_polarization;
    m.polarization_right  = interface_polarization;
    m.phaseshift_left     = interface_phase;
    m.phaseshift_right    = interface_phase;
    m.update_boundary_left(s1);
    m.update_boundary_right(s2);
    
    % This enables or disables various debugging options
    m.delay = 0;
    m.debug = 1;
    m.plot  = 0;
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    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                       PERFORM THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Update the internal state of the metal
    m.update;
    
    % Plot the results
    figure;
    m.plot_dos_surf;
    figure;
    m.plot_dos_center;
    
    % Save the results of the simulation
    save(output);
end
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% This script simulates the proximity effect in a ferromagnet connected
% to two superconductors with a constant phase difference between them.
%
% Written by Jabir Ali Ouassou <jabirali@switzerlandmail.ch>
% Created 2015-05-06
% Updated 2015-05-07

function simulate_josephson_spinorbit(phase_difference,                 ...
                                      exchange_strength, exchange_angle,...
                                      spinorbit_strength, spinorbit_angle)

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                 DEFINE PARAMETERS FOR THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Vectors of positions and energies that will be used in the simulation
    positions     = linspace(0.0, 1.0, 100);
    energies      = linspace(0.0, 2.0,  50);
    
    % Filename where results will be stored
    output = 'simulate_josephson_spinorbit.dat';

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                   PREPARATIONS FOR THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Make sure that all required classes and methods are in the current path
    initialize;
    
    % Create two superconductors with 'phase_difference' between them
    s1 = Superconductor([0], energies, 1, 0.2);
    s1.complex = true;
    s1.phase_set(-phase_difference/2);
    
    s2 = Superconductor([0], energies, 1, 0.2);
    s2.complex = true;
    s2.phase_set(+phase_difference/2);

    % Create a normal metal connected to the superconductors above
    m = Ferromagnet(positions, energies, 1/0.5^2,                                   ...
                    exchange_strength*[cos(exchange_angle), sin(exchange_angle), 0],...
                    SpinVector.RashbaDresselhaus(spinorbit_strength, spinorbit_angle));
    m.interface_left  = 3;
    m.interface_right = 3;
    m.update_boundary_left(s1);
    m.update_boundary_right(s2);
    
    % This enables or disables various debugging options
    m.delay = 0;
    m.debug = 1;
    m.plot  = 0;
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    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                       PERFORM THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Update the internal state of the metal
    m.update;
    
    % Plot the results
    figure;
    m.plot_dos_surf;
    figure;
    m.plot_dos_center;
    
    % Save the results of the simulation
    save(output);
end
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% This script simulates the proximity effect in a normal metal connected
% to two superconductors with a constant phase difference between them.
% It is assumed that the interfaces are spin-active, and that the normal
% metal has a Rashba-Dresselhaus coupling in the xy-plane.
%
% Written by Jabir Ali Ouassou <jabirali@switzerlandmail.ch>
% Created 2015-05-22
% Updated 2015-05-22

function simulate_josephson_spinorbitactive(phase_difference,                           ...
                                            interface_polarization, interface_phase,    ...
                                            interface_angle_left, interface_angle_right,...
                                            spinorbit_strength, spinorbit_angle)

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                 DEFINE PARAMETERS FOR THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Vectors of positions and energies that will be used in the simulation
    positions     = linspace(0.0, 1.0, 100);
    energies      = linspace(0.0, 2.0,  50);
    
    % Filename where results will be stored
    output = 'simulate_josephson_spinorbitactive.dat';

    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                   PREPARATIONS FOR THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Make sure that all required classes and methods are in the current path
    initialize;
    
    % Create two superconductors with 'phase_difference' between them
    s1 = Superconductor([0], energies, 1, 0.2);
    s1.complex = true;
    s1.phase_set(-phase_difference/2);
    
    s2 = Superconductor([0], energies, 1, 0.2);
    s2.complex = true;
    s2.phase_set(+phase_difference/2);

    % Create a normal metal connected to the superconductors above
    m = Ferromagnet(positions, energies, 1, [0,0,0], ...
                    SpinVector.RashbaDresselhaus(spinorbit_strength, spinorbit_angle));
    m.spinactive          = 1;
    m.interface_left      = 5;
    m.interface_right     = 5;
    m.magnetization_left  = [cos(interface_angle_left),  sin(interface_angle_left),  0];
    m.magnetization_right = [cos(interface_angle_right), sin(interface_angle_right), 0];
    m.polarization_left   = interface_polarization;
    m.polarization_right  = interface_polarization;
    m.phaseshift_left     = interface_phase;
    m.phaseshift_right    = interface_phase;
    m.update_boundary_left(s1);
    m.update_boundary_right(s2);
    
    % This enables or disables various debugging options
    m.delay = 0;
    m.debug = 1;
    m.plot  = 0;
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    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
    %                       PERFORM THE SIMULATION
    %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

    % Update the internal state of the metal
    m.update;
    
    % Plot the results
    figure;
    m.plot_dos_surf;
    figure;
    m.plot_dos_center;
    
    % Save the results of the simulation
    save(output);
end
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