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Problem Description

Using quasiclssical theory, we solve the Usadel equation via a Ricatti-parametrization
in a system consisting of a SNS Josephson junction with spin-active interfaces. This
is done both analytically and numerically, incorporating spin-dependent phase-
shifts and magnetoresistance terms coming from interface scattering. We deter-
mine how an exotic form of superconductivity known as odd-frequency pairing is
manifested in experimentally accessible quantities such as the supercurrent and
density of states.





Spin- and Charge-Supercurrent and
Density of States in Diffusive Spin-Active

Josephson Junctions

Ingvild Ruud Gomperud

Master thesis, supervisor Jacob Linder.

Trondheim, June 2015





Abstract

In this thesis we investigate theoretically the properties of spin-active Josephson
junctions, using a normal metal as the weak link. The system is examined both
analytically in the weak proximity effect regime and numerically in the full proxim-
ity effect regime. We consider the diffusive limit, and use the quasiclassical Usadel
equation to find the Green function representation of the system. We assume
that all materials are in equilibrium, i.e. in the absence of applied voltages and
temperature gradients, and show that a conserved long-ranged spin-supercurrent
flows through the normal metal, driven by both magnetic misalignment and the
difference in phase between the two superconductors.

Another result from this thesis is that we find the 0-π transition to be accessi-
ble not only through the superconducting phase difference θ, but also by varying
the magnetic displacement angle α between the magnetizations of the spin-active
interfaces. Moreover, we show analytically that the spin-supercurrent has a term
which is independent of the superconducting phase difference, and that the re-
maining term goes like cos θ, in contrast to sin θ which is found for the charge-
supercurrent. The charge-supercurrent can be split into one singlet and one triplet
term, where both has an s-wave symmetry and where the triplet term is odd in
frequency.

The numerical solutions consider both the situations in absence and in presence
of isotropic spin-flipping on magnetic impurities and isotropic spin-orbit coupling.
We find that the spin-flip scattering weakens the overall superconductivity, and
that the spin-flip strength has monotonic behavior on the supercurrents. Inter-
estingly, we find different behavior for the spin-orbit coupling. Here it seems like
the triplet correlations are converted back into singlets, which can be understood
by the averaging over spin, due to the isotropic form of the spin-orbit coupling.
At last, we briefly discuss how the inverse proximity affects the superconducting
correlations.





Sammendrag

I denne masteroppgaven har vi gjennomført en teoretisk analyse av spinn- og lad-
ningssuperstrøm og tilstandstettheter i en nanostuktur best̊aende av to superledere
separert av et normalmetal som svakt bindeledd. Ved begge grensesjiktene mel-
lom superleder og normalmetal er det innsatt tynne spinn-aktive magnetiske isola-
torer, og vi kaller denne strukturen en spinn-aktiv Josephson junction. Systemet
er undersøkt b̊ade analytisk i grensetilfellet hvor superlederen har svak virkning
p̊a normalmetallet, og numerisk hvor vi løser likningene fullt ut. Vi betrakter
diffuse materialer og bruker den kvasiklassiske Usadel likningen til å finne Green-
funksjonene som representerer systemet v̊art. Det er antatt at materialer er i
likevekt, som vil si i fravær av tilførte spenninger og temperaturendringer. Vi
viser at en bevart langt-rekkende spinnsuperstrøm propagerer igjennom normal-
metallet, drevet av b̊ade ikke-parallelle magnetiseringesretninger og faseforskjell
mellom superlederne.

Fra før av er det kjent at man kan styre fortegnet p̊a ladningsstrømmen gjen-
nom endring av den superledende faseforskjellen θ. Dette er kalt en 0-π overgang.
Vi finner at denne overgangen ogs̊a kan styres via endring i den relative vinkelen
α mellom magnetiseringsretningene ved grenseflatene. Videre finner vi analytisk
at spinnsuperstrømmen har et ledd som er uavhengig av θ og at det resterende
leddet g̊ar som cos θ, i kontrast til sin θ som vi finner for ladningsstrømmen. Lad-
ningsstrømmen kan bli delt inn i to ledd, hvor det ene leddet kommer fra spinn-
singlet-kopling, mens det andre kommer fra spinn-triplet-kopling. B̊ade singlet-
og triplet-superledningen har s-bølge-symmetri i impulsrommet og triplet-leddet
er derfor odd i frekvenssymmetri, som følge av Pauli prinsippet.

I den numeriske løsningen ser vi p̊a situasjonene b̊ade i fravær av og i tilst-
edeværelse av isotropisk spinn-flipping ved å introdusere magnetiske urenheter, og
spinn-orbital-kopling. Det blir vist at tilstedeværelsen av magnetiske urenheter
svekker den overordnede superledningen p̊a en strengt avtagende m̊ate. Vi finner
det interessant at spinn-orbital-koplingen er av annen karakter. Her virker det som
om triplet-korrelasjonene blir konvertert tilbake til singlet-kopling. Vi begrunner
dette ved midlingen over spinn, som følge av at orbital-koplingen er isotrop. Helt
til slutt er det inkludert en kort diskusjon om hvordan kontakten med normalmet-
allet kan kan i gjengjeld p̊avirke superlederen.





Preface

This master thesis was conducted during the spring of 2015, and marks the end of
the master program “Physics and Mathematics” at NTNU. It was written within
theoretical physics, at the Department of Physics and Faculty of Natural Science.
The work has resulted in a research article available on arXiv:1503.08229 that is
currently undergoing review in Physical Review B. The theory is building upon
a project that was written by me in the fall of 2014, which again partly is based
on the master thesis of Jan Petter Morten of 2003 [1], with corrections of 2005.
To get the most out of this thesis the reader should be well acquainted with the
Green function representation used in many particle quantum mechanics. As an
example of a sources on this topic, we have the text book by Mahan [2]. For a
general introduction to superconductivity, the reading of the book [3] is one of
many useful ways to acquire better insight into this field.

The chapters are organized as follows: Chapter 1 gives a qualitative introduc-
tion to the field of superconducting spintronics. In chapter 2 we present the theory
of our theoretical framework. And in both chapter 3 and 4 we present results and
discuss each result subsequently. The last chapter is a summary of the thesis along
with a section that proposes further work. In addition to the main chapters, we
also have four appendices where the first one summarizes the Pauli matrices used
throughout the thesis, the second appendix provides some insight regarding the
underlying Green function representation and the quasiclassical approximation,
while the third appendix is an attachment of selected MATLAB-scripts used in
the numerical calculations. The the last appendix we have inclosed a preprint of
the research article.

Conventions

We have defined the electron charge as e = −|e|, and denoted θ = θR − θL as
the superconducting phase difference. When going from the Cartesian coordinate
system (x, y, z) to the Polar coordinates, we use α as the polar angle from the
z-axis and φ as the azimuth angle in the xy-plane measured relative the x-axis
with positive angle towards the y-axis. We define β = 1/kBT as the inverse
temperature with kB as the Boltzmann constant, and use natural units, meaning
that the reduced Planck constant is defined ~ = 1 and the speed of light c = 1.

The commutator notation [A,B] means AB−BA and the anti-commutator is
defined as {A,B} = AB+BA. To save space, we introduce the common derivative
symbol ∂x ≡ ∂/∂x. The superconducting coupling strength λ is a negative constant
λ = −|λ|, due to the attraction between electrons.

To avoid confusion, we use L and R as notation for the left and right side of the
normal metal, and l and r as the left and right side of a magnetic interface. The



Latin R for right should not be mistaken for the upright R for “retarded”, used
for the retarded Green function. Many articles write “Green’s function” while we
chose to use the correct English term “Green function”.
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Chapter 1

Introduction

The field of superconducting spintronics has been a very active research field over
the past decades [4, 5]. The work has mostly been evolving around the theoretical
description of hybrid nanostructures [6, 7], but there has also been some upswing
in the experimental field [8]. Superconducting spintronics has created a promising
area for observing novel quantum phenomena such as spin-polarized supercurrents
[9], and showed that the interplay between superconductivity and magnetism still
exhibits many unexplored features [10, 11].

The word spintronics originates from spin-electronics and the basic idea is to
utilize spin-polarization to represent information transfer [12], instead of charge-
currents as in conventional electronics. This technique has already been taken into
use in most computer hard-drives, where the giant magneto resistance effect [13]
is responsible for the reading-writing process. A huge challenge within spintronics
today, is the overflow of heating from such devices. However, by introducing su-
perconducting components in spintronic devices, the possibility to strongly reduce
heating appears due to the zero resistance property of superconductors. Idealisti-
cally, this will also lessen the energy requirement.

For a physicist, the main motivation for working with superconducting spin-
tronics is the promising opportunities of learning about new and interesting quan-
tum phenomena, which in itself creates an alluring effect on the curious individual.
At the moment, experimental scientists are facing challenges when trying to ob-
serve some of the theoretical predictions. To examine systems at the nanoscale,
the quality of the available equipment becomes extremely important. In addition,
the development of broader and more accurate theory will contribute to improving
our understanding of nanophysics and be of great advantage when engineering the
components in laboratories.

1
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1.1 Conventional Superconductivity

The zero resistance property of superconductivity was experimentally discovered
as early as in 1911 by Heike Kamerlingh Onnes, but it took more than 40 years
before a successful theoretical explanation was introduced. It were the scientists
Bardeen, Cooper and Schrieffer (BCS) that published a paper [14] in 1957, ex-
plaining the emergence of superconductivity by an effectively attractive potential
between electrons. The attraction can be illustrated by imagining an electron trav-
eling through a lattice, disturbing the ions. Shortly after, another electron enters
the area and gets influenced attractively by the phonon caused by the first one.
We call this a phonon-mediated interaction, and when it becomes stronger than
the repelling Coulomb potential, we get a total attractive interaction between elec-
trons. This coupling causes electrons to behave in an orderly manner, known as
Cooper pairing [15]. Due to this pairing, superconductors are phase coherent and
have zero DC resistance. The most likely scenario for this attraction to occur is
when the electrons involved are of opposite momentum and opposite spin. In BCS
theory a superconductor is described by an order parameter ∆ that is isotropic.
By use of BCS theory, we can describe an s-wave spin singlet superconductor, or
a conventional BCS superconductor, if you will.

In 1933, long before the BCS theory was developed, it was discovered that
when trying to apply a magnetic field to a superconducting sample the field would
not penetrate the superconductor. This phenomenon is called the Meissner effect
[16] and appears as if the superconductor was a perfect diamagnet. It was later
shown that the diamagnetism originates from currents running at the surface of
the superconductor. Thus, it seemed like magnetism was not compatible with
superconductivity. However, as we know today, this is not the case. When con-
sidering hybrid structures at the nanoscale unconventional superconductivity may
arise, leading to the possibility of creating polarized spin-supercurrents.

1.2 Symmetries and Odd-Frequency Pairing

Due to the fact that electrons are spin-1/2 particles, they have to obey the laws for
fermions. The Pauli exclusion principle states that the fermionic wave function has
to change sign when interchanging two particles in time, space and spin, at equal
times. In table 1.1 the possible symmetry combinations are listed. There are strong
indications that there exists intrinsic triplet p-wave symmetry in the ferromagnet
UGe2 [17] when exposed to pressure, and that also URhGe and UCoGe [18] exhibit
p-wave symmetry. A p-wave has negative parity causing the wave function to
change sign when inverted in momentum space.

For a dirty material we need to have an s-wave symmetry to get a net propa-



1.2. SYMMETRIES AND ODD-FREQUENCY PAIRING 3

Table 1.1: Symmetry combinations of the wave function
Momentum Spin Time

Even-frequency singlet even odd even
Even-frequency triplet odd even even
Odd-frequency singlet odd odd odd
Odd-frequency triplet even even odd

gation of particles, due to impurity scattering [19]. This means that the only two
options in Table 1.1, are the conventional spin-singlet even-frequency pairing and
the unconventional spin-triplet odd-frequency pairing. When a superconductor of
opposite spin-pairing is in contact with a collinear ferromagnet the supercurrent
decays rapidly inside the ferromagnet, since the magnetism breaks the pairing.
This is the case for the singlet

√
1/2(|↑↓〉 − |↓↑〉) and the opposite pairing triplet√

1/2(|↑↓〉 + |↓↑〉). However, if the superconducting pairing is of equal spins, it
does not have to fight the magnetic exchange field, and experiments have shown
that a supercurrent can flow a long distance inside a ferromagnet [20, 21, 22]. To
obtain this effect we need to have misaligned magnetizations, which will produce
the equal spin triplet pairings |↑↑〉 and |↓↓〉, due to spin rotation.

The first to initiate the odd-frequency superconductivity was Berezinskii back
in 1974 [23]. His idea was to create a wave function that was odd in time by trans-
forming the function into a Matsubara sum. This would provide the opportunity
for the total sum to be zero, while having odd-frequency in the components of
the sum. This way, we avoid breaking the Pauli principle at equal times, since
changing the sign of something zero remains zero. A review on odd-frequency
superconductivity is given in Ref. [24].

It has been shown experimentally that textured ferromagnets like Ho [25] and
compositions with layers of non-collinear ferromagnets [26], can in contact with an
s-wave superconductor give rise to triplet currents. It is known that triplet pairing
can be generated from a conventional s-wave superconductor when connected to
a spin-dependent interface [27]. This effect is due to the fact that spin-↑ and
spin-↓ electrons reflected from such an interface picks up different phases, leading
to a mixture of singlet and triplet pairing. Experimentally, the triplet pairing
is manifested as a low energy peak in the density of states [28]. However, such
a peak may also occur from other effects that we call dirt effects, for instance
found in some cuprates [29] and topological insulators [30]. When we calculate
observables in a system, it is a good idea to analyze both the density of states and
the transport of spin and charge to obtain a more comprehensive understanding
of the properties.
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1.3 Spin-Active Josephson Junctions

Already in 1960, experiments by H. Meissner [31] suggested that the superconduc-
tivity from a superconductor could leak into a normal metal contact. This has been
known as the proximity effect [32, 33] and causes many interesting quantum phe-
nomena. A few years later, B. D. Josephson published a paper on the possibility of
tunneling currents in a bilayer of two superconductors separated by an insulating
layer. This phenomenon has been called the Josephson effect [34, 35]. Intuitively,
we also expect the normal metal to affect the superconducting correlation at the
superconducting side of the interface. This is the inverse proximity effect, and it
is known that for low interface transparencies this effect can be neglected when
using large superconducting reservoirs.

Figure 1.1: Illustration of a spin-active Josephson junction. The junction is called
spin-active when the interfaces are complimented by spin-active components, in
this case thin layers of magnetic insulators. Such interfaces give rise to spin-
dependent effects, which cause spin-imbalance.

The main goal of this thesis is to investigate the charge- and spin-supercurrent
occurring in spin-active Josephson junctions, and to understand how to control
these quantities and how to manipulate their behavior. The setup for the junction
that we will analyze is illustrated in Figure 1.1, where the two very thin magnetic
insulators (MI’s) at the interfaces give rise to spin-dependent interfacial phase
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shifts and spin polarization. These layers are just a few nanometers in thickness,
and will be accounted for by boundary conditions, whereas the length of the normal
metal is much larger than the Fermi wavelength and is described by the Usadel
equation, which we will come back to.

A long-ranged supercurrent has been theoretically reported as a second har-
monic feature [36] when using only two ferromagnets. However, it would be of
great desire to have a long-ranged spin-current in the first harmonic, since it gen-
erally is quantitatively much larger than the second harmonic and does not need
any fine-tuning in order to be observed. We therefore want to explore systems
that have as few ferromagnetic elements as possible and still generate long-ranged
spin-supercurrents. This is why we have chosen to use a normal metal as the weak
link, illustrated in Fig. 1.1.

The spin-active SNS junction proposed in this thesis has so far not been ex-
plored in the literature. However, a spin-active junction that has been experimen-
tally examined is that of only a single magnetic insulator as the weak link between
two superconductors [37]. Here the authors use the s-wave superconductor NbN
and the magnetic insulator GdN. It is shown that the second harmonic in the
current-phase-relation is insensitive to the change in barrier thickness, in contrast
to earlier predictions for a ferromagnetic junction. In ref. [38] it is argued that the
second harmonic can dominant when the first harmonic is suppressed, which can
be near the 0-π transition. Due to band splitting the 0-π transition is again con-
trollable by the length of the ferromagnet, which means that this cannot explain
the second harmonics found in the junction with a single magnetic insulator.

To experimentally control the superconducting phase difference, the supercon-
ducting reservoirs can be connected in a loop geometry that uses a flux minute, as
demonstrated in Ref. [39] on a conventional SNS junction. To map the density of
state we can use scanning tunneling microscope (STM), and to trace the sample
spatially we can use atomic force microscopy (AFM). In addition, the magnetic
interface directions can be altered via an applied weak magnetic field. To do this,
we need one spin-active interface to be more resistant to external magnetization
than the other. One way to obtain this effect is to use a different thickness of
each magnetic insulator, demonstrated in Ref. [40]. Alternatively, we could use
different materials for the two magnetic insulators, where one of them has a higher
magnetic anisotropy than the other. This means that the experimental techniques
needed to test our results are in fact available, making it highly relevant to examine
a Josephson junction with spin-active interfaces.
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Chapter 2

Theory

In this chapter we will provide the theory essential to perform the calculations
presented in the two subsequent chapters. We will start from the kinetic equation
called the Usadel equation, and its belonging boundary conditions. From quasi-
classical theory [41, 42, 43], we have the 8×8 Green function in the Nambu-Keldysh
space constructed as

ǧ =

(
ĝR ĝK

0 ĝA

)
. (2.1)

Here we find the 4×4 advanced Green function ĝA and the Keldysh Green function
ĝK from the retarded Green function ĝR via the relations

ĝA = −
[
ρ̂3ĝ

Rρ̂3

]†
, ĝK =

(
ĝR − ĝA

)
tanh

(
βE

2

)
, (2.2)

where E is the quasiparticle energy and β is the inverse temperature. The last
relation is valid since we consider materials in equilibrium.

Conventional Green functions are represented by annihilation and creation op-
erations from the second quantization representation of many particle quantum
mechanics (see Appendix B). These functions are interpreted as matrices of prob-
ability amplitudes describing different fermionic actions in the material, whereas
the quasiclassical Green function (2.1) is an approximation where we have in-
tegrated out the relative oscillations at the atomic level, and averaged over the
momentum value. The quasiclassical description of hybrid structures has proven
to fit experimental results in a very satisfactory manner [44, 45] and is considered
as a highly realistic approximation for metals.

7
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2.1 The Usadel Equation

The Usadel equation is the dirty material description from the quasiclassical Eilen-
berger equation [46, 47], which again is based on kinetic equations developed by L.
P. Gor’kov. We can derive the Usadel equation from the Eilenberger equation by
approximating the Green function to only include the first and second harmonic,
and average over the momentum direction [48]. This is valid since we consider
dirty materials where electrons behave in a diffusive manner. This gives us

D
[
∂̂ ◦, ǧ ◦

[
∂̂ ◦, ǧ

]]
+ i
[
Eρ̂3 − Σ̌ + ∆̂ ◦, ǧ

]
= 0, (2.3)

which is the Usadel equation and only depends on the first harmonic Green func-
tion. Here we have that D = 1

3
τv2

F is the diffusion constant in the material, τ
is the elastic scattering relaxation time, and vF is the Fermi velocity. We have
also used the third Pauli matrix in particle hole-space ρ̂3 = diag(1, 1,−1,−1), and
defined [∂̂ ◦, ǧ] = ∇Rǧ − ie[Aρ̂3

◦, ǧ], where A is the magnetic vector potential.
The matrix Σ̌ contains the possible contribution from self-energy terms due to
scattering events, and the superconducting gap matrix is defined as:

∆̂ =

(
0 iσy∆

iσy∆
∗ 0

)
, (2.4)

where ∆ is the scalar energy gap and σy = offdiag(i,−i) is the third Pauli matrix
in spin-space.

The self-energy term from isotropic spin-flip scattering [10] is given by

Σ̌sf = − i

8τsf

τ̂ ǧτ̂ (2.5)

and when including isotropic spin-orbit coupling [49] we get the similar self-energy
term

Σ̌so = − i

8τso

τ̂ ρ̂3ǧρ̂3τ̂ . (2.6)

We have introduced the vector matrix τ̂ = (τ̂x, τ̂y, τ̂z), where the components are
defined as the matrices

τ̂ν =

(
σν 0
0 (σν)

∗

)
(2.7)

constructed from the Pauli spin matrices (see Appendix A equation (A.1)). We
now define the normalized scattering strengths gso,sf = 1/8∆0τso,sf , for future use.
The scattering lifetime reflects the average time between two scattering events,
and we see from equations (2.5) and (2.6) that when the scattering lifetimes τsf,so

goes to infinity, these terms vanish as expected.
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In the absence of applied field, when A = 0, and when only considering the
retarded part of the Green function in the x-direction, we write the Usadel equation
like

D∂xĝ
R(∂xĝ

R) + i
[
Eρ̂3 − Σ̂ + ∆̂, ĝR

]
= 0, (2.8)

where Σ̂ is the same as in (2.5) and (2.6) only with ĝR instead of ǧ. To solve this
equation we also need to know the boundary conditions, which we will come back to
in section 2.2. After we have found the solution of the retarded Green function, we
can easily get the advanced and Keldysh Green functions via the aforementioned
relations (2.2). When we are solving the Usadel equation in the normal metal we
set ∆̂ = 0 in the Usadel equation, and when excluding spin-dependent scattering
we also set Σ̂ = 0.

The symmetry of the retarded Green function is such that we may write

ĝR =

(
g f

−f̃ −g̃

)
, (2.9)

where g is the normal 2×2 Green function describing transport of particles, and f
is the anomalous Green function describing pairing of particles. We have defined
the tilde operator ˜ that equals changing the sign of the quasiparticle energy and
complex conjugate, such that F̃ (E) = (F (−E))∗. The 2 × 2 anomalous Green
function can again be parameterized as

f =

(
f↑ ft + fs

ft − fs f↓

)
, (2.10)

where fs and ft respectively describe the singlet and triplet pairing correlations of
opposite spins, and f↑, f↓ are the correlations of equal spins.

Riccati Parameterization

To our convenience, we apply the Riccati parameterization [50, 51] to support
numerical calculations. This way we ensure the correct symmetry properties and
normalization of the Green function, and provide an environment for simplifica-
tions to a 2× 2-matrix representation via the Riccati matrices (γ, γ̃),

ĝR =

(
N(1 + γγ̃) 2Nγ

−2Ñ γ̃ −Ñ(1 + γ̃γ)

)
. (2.11)

Following from the Riccati parameterization and our choice of normalization (ĝR)2 =
1, we have the relations

N = (1− γγ̃)−1, Nγ = γÑ, ∂xN = NDN, D = ∂x(γγ̃),

Ñ = (1− γ̃γ)−1, Ñ γ̃ = γ̃N, ∂xÑ = ÑD̃Ñ , D̃ = ∂x(γ̃γ). (2.12)
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In an earlier project [52], we have shown that when employing the Riccati param-
eterization to the Usadel equation and using the relations in (2.12), it gives us the
two parameterized equations

D[2(∂xγ)γ̃N(∂xγ) + (∂2
xγ)] + i[aγ − γd+ γcγ − b] = 0,

D[2(∂xγ̃)γÑ(∂xγ̃) + (∂2
xγ̃)]− i[dγ̃ − γ̃a+ γ̃bγ̃ − c] = 0.

(2.13)

Here we have defined the 2× 2 a, b, c, d matrices as follows:

(
a b
c d

)
= Eρ̂3 − Σ̂ + ∆̂, (2.14)

which gives us

a = E + i(gsf + gso)(σxgσx + σygσy + σzgσz),

b = iσy∆ + i(gsf − gso)(σxfσx − σyfσy + σzfσz),

c = iσy∆
∗ − i(gsf − gso)(σxf̃σx − σyf̃σy + σzf̃σz),

d = −E − i(gsf + gso)(σxg̃σx + σyg̃σy + σzg̃σz).

(2.15)

We now see that the two equations in (2.13) are exactly the tilded versions of each
other.

BCS Solution

The solution of the conventional s-wave superconductors at the left and right side
is given by

ĝR
L(R) =

(
cosh Θ iσy sinh ΘeiθL(R)

iσy sinh Θe−iθL(R) − cosh Θ

)
, (2.16)

where we have defined Θ = tanh−1(|∆|/E). The superconducting phases θL and
θR are constant inside each bulk superconductor, and the physics will eventually
only depend on the phase difference θ = θR − θL.

By comparing equation (2.11) with (2.16), we get the BCS solution written
with Riccati matrices

γL(R) =
iσy sinh Θ

[1 + cosh Θ]
eiθL(R) , (2.17)

γ̃L(R) = − iσy sinh Θ

[1 + cosh Θ]
e−iθL(R) , (2.18)

which can be useful in numerical calculations.
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2.2 Spin-Active Boundary Conditions

When solving a second order coupled differential equation like the Usadel equation,
we need to know the boundary conditions in order to get an unambiguous solution.
The boundary conditions for a spin-active interface in the tunneling limit [53] are
given by

2`lζlǧl(∂xǧl) = [ǧl, ǧr] +GMR

[
ǧl, {Â, ǧr}

]
+ iGl

ϕ

[
ǧl, Â

]
,

2`rζrǧr(∂xǧr) = [ǧl, ǧr]−GMR

[
ǧr, {Â, ǧl}

]
− iGr

ϕ

[
ǧr, Â

]
.

(2.19)

Here the [ǧl, ǧr] terms are the usual Kupriyanov-Lukichev (KL) boundary con-
ditions [54], valid for interfaces with low transparency, and the last two are the
spin-dependent terms. To extend the KL boundary conditions we could employ the
Nazarov boundary conditions instead, which allows us to have higher transparency
at the interfaces [55]. However, this migth affect the spin-dependent boundary con-
ditions, since they are derived in the tunneling limit. The subscripts l and j stand
for the solution of the left and right side of the interface. We use `l(r) as the length
of the material on the left (right) side, and have ζl(r) = RB/Rl(r), where RB is the
normal state resistance of the interface, and Rl(r) is the bulk resistance on the left
(right) side of the interface.

We have defined the interface parametersGMR =
∑

n TnPn/
∑

n 2Tn andG
l(r)
ϕ =

−∑n dφ
l(r)
n /

∑
n Tn, where the Tn is the transmission probability for channel n,

Pn is the spin polarization of the transmission probability, and dφ
l(r)
n is the spin-

mixing angle describing the spin-dependent interfacial phase shift at the left (right)

side of the interface. We have that the parameter G
l(r)
ϕ could be both larger and

smaller than one, but that GMR � 1, due to the assumption that Pn � 1 in the
derivation in Ref. [53]. Finally we have used the interface matrix

Â =

(
m · σ 0

0 m · σ∗
)
, (2.20)

where m is the magnetization direction of the interface, and σ is the 2× 2 Pauli
matrix vector in spin space. When only considering the retarded Green function,
we insert equation (2.1) into (2.19) and get the boundary conditions

2`lζlĝ
R
l (∂xĝ

R
l ) =

[
ĝR
l , ĝ

R
r

]
+GMR

[
ĝR
l , {Â, ĝR

r }
]

+ iGl
ϕ

[
ĝR
l , Â

]
,

2`rζrĝ
R
r (∂xĝ

R
r ) =

[
ĝR
l , ĝ

R
r

]
−GMR

[
ĝR
r , {Â, ĝR

l }
]
− iGr

ϕ

[
ĝR
r , Â

]
,

(2.21)

which are similar to the equations in (2.19), only as 4× 4-matrices.
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Riccati Parameterization

When employing the Riccati parameterization (2.11) to the boundary conditions
(2.21), we get the following expressions after some extensive derivations using the
properties given in equation (2.12)

4`lζl∂xγl = Γl + 2iGl
ϕ[γl(m · σ∗)− (m · σ)γl]− 2GMR[arγl − γldr + γlcrγl − br],

4`rζr∂xγr = Γr − 2iGr
ϕ[γr(m · σ∗)− (m · σ)γr] + 2GMR[alγr − γrdl + γrclγr − bl],

4`lζl∂xγ̃l = Γ̃l − 2iGl
ϕ[γ̃l(m · σ)− (m · σ∗)γ̃l] + 2GMR[drγ̃l − γ̃lar + γ̃lbrγ̃l − cr],

4`rζr∂xγ̃r = Γ̃r + 2iGr
ϕ[γ̃r(m · σ)− (m · σ∗)γ̃r]− 2GMR[dlγ̃r − γ̃ral + γ̃rblγ̃r − cl].

(2.22)

The detailed derivation was performed in the project [52]. All of these four con-
ditions only belong to one interface, so that in the most general case, we get 8
boundary conditions for a spin-active SNS junction. In (2.22) we have the sym-
metry relations d̃j = −aj and c̃j = −bj, where the matrices are defined as

(
al(r) bl(r)
cl(r) dl(r)

)
=
{
Â, ĝR

l(r)

}
, (2.23)

which means that we only need to know the two elements

aj = Nj(1 + γj γ̃j)(m · σ) + (m · σ)Nj(1 + γj γ̃j),

bj = 2Njγj(m · σ∗) + (m · σ)2Ñj γ̃j,
(2.24)

with j = l, r.
We have also defined the KL term given by

Γj = N−1
j

[[
ĝR
l , ĝ

R
r

]
12
−
[
ĝR
l , ĝ

R
r

]
11
γj
]
, (2.25)

with the matrices[
ĝR
l , ĝ

R
r

]
11

= Nl(1 + γlγ̃l)(1 + γrγ̃r)Nr − 4Nlγlγ̃rNr

−Nr(1 + γrγ̃r)(1 + γlγ̃l)Nl + 4Nrγrγ̃lNl,[
ĝR
l , ĝ

R
r

]
12

= 2Nl(1 + γlγ̃l)γrÑr − 2Nlγl(1 + γ̃rγr)Ñr

− 2Nr(1 + γrγ̃r)γlÑl + 2Nrγr(1 + γ̃lγl)Ñl,

(2.26)

where we recognize N(1 + γγ̃) = g and 2Nγ = f .

2.3 Physical Observables

To couple our theoretical work to experimentally accessible observables, we will
calculate the spin- and charge-supercurrent and the density of states. These ob-
servables can be measured with existing techniques, which makes the calculations
highly relevant.
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Supercurrents

The charge-supercurrent is given by the expression

IQ =
N0eDA

4

∞∫

−∞

dETr {ρ̂3 [ǧ(∂xǧ)]K} , (2.27)

and the spin-supercurrents are given by

IνS =
N0~DA

8

∞∫

−∞

dETr {ρ̂3τ̂ν [ǧ(∂xǧ)]K} , (2.28)

where ν = x, y, z. In equation (2.28) we have included the reduced Planck constant
~, even though we have defined it equal to one. We have that N0 is the density of
states at the Fermi level in the normal state, and that A is the cross section area,
whereas Tr{· · · } means the sum over all elements on the diagonal. For further
reference we define the constant I0 equal to N0eDA/4 for the charge-supercurrent
and N0~DA/8 for the spin-supercurrents.

By use of (2.1), (2.2) and (2.9) we can show that

[ǧ(∂xǧ)]K =

(
A B

B̃ Ã

)
tanh

(
βE

2

)
, (2.29)

where we have the 2×2-matrix

A =

(
A11 A12

A21 A22

)
=
[
g(∂xg)− g†(∂xg†)

]
−
[
f(∂xf̃)− f̃ †(∂xf †)

]
. (2.30)

The B-matrix will not be relevant to the following calculations, and is therefore
not written out. Moreover, we now write for the supercurrents:

IQ =I0

∞∫

−∞

dE tanh

(
βE

2

)[
A11 + A22 − Ã11 − Ã22

]
,

IxS =I0

∞∫

−∞

dE tanh

(
βE

2

)[
A12 + A21 − Ã12 − Ã21

]
,

IyS =I0

∞∫

−∞

dE tanh

(
βE

2

)
i
[
A21 − A12 + Ã21 − Ã12

]
,

IzS =I0

∞∫

−∞

dE tanh

(
βE

2

)[
A11 − A22 − Ã11 + Ã22

]
.

(2.31)
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By using the definition F̃ = F ∗(−E) we can write the energy integral as follows:

∞∫

−∞

dE tanh

(
βE

2

)[
F (E)− F ∗(−E)

]

=

∞∫

−∞

dE tanh

(
βE

2

)
F (E)−

∞∫

−∞

dE tanh

(
βE

2

)
F ∗(−E)

=

∞∫

−∞

dE tanh

(
βE

2

)
F (E)−

−∞∫

+∞

(−1)dE(−1) tanh

(
βE

2

)
F ∗(E)

=

∞∫

−∞

dE tanh

(
βE

2

)
2<e

{
F (E)

}
, (2.32)

and similarly we get

∞∫

−∞

dE tanh

(
βE

2

)[
F (E) + F ∗(−E)

]
=

∞∫

−∞

dE tanh

(
βE

2

)
2i=m

{
F (E)

}
.

(2.33)

Next, we use the last two relations to simplify the equations for the supercurrents
in (2.31) and obtain

IQ =I0

∞∫

−∞

dE tanh

(
βE

2

)
2<e{A11 + A22},

IxS =I0

∞∫

−∞

dE tanh

(
βE

2

)
2<e{A12 + A21},

IyS =I0

∞∫

−∞

dE tanh

(
βE

2

)
2=m{A21 − A12},

IzS =I0

∞∫

−∞

dE tanh

(
βE

2

)
2<e{A11 − A22},

(2.34)

where we see that all supercurrents are purely real quantities, as they should be
since they are physical observables.
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The Energy Gap Function

The gap equation is given by

∆ = −1

8
N0λTr

{ ρ̂1 − ρ̂2

2
σz

∫
dEĝK

}
, (2.35)

where the coupling strength λ is a negative constant in the superconductor, and
zero elsewhere. By employing the definitions from (A.2) and (B.7) from the ap-
pendices into equation (2.35), we end up with

∆(x) =
1

4
|λ|N0

−∞∫

∞

dE(fs − f̃ ∗s ) tanh
(βE

2

)
. (2.36)

First of all, the integrand is symmetric with respect to energy, meaning that
it is sufficient to solve it for positive energies. Secondly, this integral diverges as
it approaches infinity, and we have to change the boundaries of the integral. This
gives us the resulting gap equation

∆(x) =
1

2
|λ|N0

ωc∫

0

dE(fs − f̃ ∗s ) tanh
(βE

2

)
, (2.37)

where we have the cutoff frequency ωc = ∆0 tanh(1/|λ|N0). This limit is found by
solving the gap equation for the BCS solution, where fs = |∆|sign(E)/

√
E2 − |∆|2

after inserting Θ. Later we will use the convention that all energies are measured
in unites of ∆0, which equals ∆0 = 1.

Density of States

The density of states expresses the number of quantum states at a given energy,
and can easily be found from the Green function as

N(E) = <e

(
g↑ + g↓

2

)
=

1

2
Tr
{
<e(g)

}
, (2.38)

where g = N(1 + γγ̃). We also define the spin-resolved density of states for spin-↑
and spin-↓, since it is of interest to see how the spin-active interfaces affect the
different spin species.

N↑(E) = <e
(g↑

2

)
=

1

4
Tr
{

(1 + σz)<e(g)
}
, (2.39)

N ↓ (E) = <e
(g↓

2

)
=

1

4
Tr
{

(1− σz)<e(g)
}
. (2.40)

When defining the spin-resolved densities of states in this way, we have that
N(E) = N↑(E) + N↓(E), which is useful to keep in mind when we look at the
numerical solutions later in chapter 4.



16 CHAPTER 2. THEORY



Chapter 3

Analytical Solution

Before we get to the numerical calculations, we will derive analytical solutions
in the weak proximity limit. This gives us guidelines to what we should expect
from the full solutions. The main result from this chapter is the derivation of the
expressions for the spin- and charge-current.

3.1 The Weak Proximity Effect Regime

In a normal metal bulk, we have the Green function solution

ĝR
Normal =

(
1 0
0 −1

)
., (3.1)

where the anomalous Green function is set to zero, and hence we have no Cooper
pairing. In the weak proximity effect, the superconducting correlations in the
normal metal are small and the Green function will be close to the solution for the
normal metal bulk. We now assume that γ � 1 which means that f = 2γ, g = 1,
and N = 1. This gives us the weak proximity retarded Green function

ĝR ≈
(

1 2γ
−2γ̃ −1

)
=

(
1 f

−f̃ −1

)
. (3.2)

Usadel

Furthermore, the parameterized Usadel equation (2.13) reduces to the simple un-
coupled differential equation

∂2
xγ +

2iE

D
γ = 0 ⇒ ∂2

xf +
2iE

D
f = 0, (3.3)

17
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with exactly the same equation for γ̃. This gives us the general scalar solutions of
the elements of f

fn = Aneikx +Bne−ikx, (3.4)

f̃n = Ãne−ikx + B̃neikx, (3.5)

where k =
√

2iE/D and n = ↑, ↓, s, t denotes the electron pairing.

Boundary Conditions

When we use the bulk BCS solution as the solution at the superconducting side
of the interface, the boundary conditions can be written

2`ζRĝ
R(∂xĝ

R) =
[
ĝR, ĝR

R

]
+GR

MR

[
ĝR, {Â, ĝR

R}
]

+ iGR
ϕ

[
ĝR, Â

]
,

2`ζLĝ
R(∂xĝ

R) =
[
ĝR
L , ĝ

R
]
−GL

MR

[
ĝR, {Â, ĝR

L}
]
− iGL

ϕ

[
ĝR, Â

]
,

(3.6)

where L and R refers to the left and right superconductor and interface, and not
the left and right side of the one magnetic interface as before with the lower case
letters l and r. Both equations in (3.6) are the ones for the surfaces facing towards
the normal metal, and it is implied that ĝR in the first and second equation should
be taken at x = l− and x = 0+ respectively. We use l as the length of the normal
metal.

Next, we will express the different terms of the boundary conditions, first in
2×2-matrices and then in scalars. This will lead to a solution by use of linear alge-
bra. We only need to solve for the non-tilded versions of the boundary conditions,
and find the equivalent expressions from symmetry considerations.

Inserting the BCS solution in the Kupriyanov-Lukichev condition for the left
interface we get

[
ĝR
L , ĝ

R
]

=

(
cosh Θ iσy sinh ΘeiθL

iσy sinh Θe−iθL − cosh Θ

)(
1 f

−f̃ −1

)

−
(

1 f

−f̃ −1

)(
cosh Θ iσy sinh ΘeiθL

iσy sinh Θe−iθL − cosh Θ

)
, (3.7)

with the 2×2-components
[
ĝR
L , ĝ

R
]

11
= −iσy sinh ΘeiθL f̃ − fiσy sinh Θe−iθL , (3.8)

[
ĝR
L , ĝ

R
]

12
= 2f cosh Θ− 2iσy sinh ΘeiθL , (3.9)

[
ĝR
L , ĝ

R
]

21
= 2iσy sinh Θe−iθL + 2f̃ cosh Θ, (3.10)

[
ĝR
L , ĝ

R
]

22
= iσy sinh Θe−iθLf + f̃ iσy sinh ΘeiθL . (3.11)
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Keeping in mind that f = 2γ, we see that
[
ĝR
L , ĝ

R
]

11
is already proportional to γ,

which means that this part will be neglected when put together with the additional
γ from equation (2.25). After this, we are left with the expression

ΓL = 2f cosh Θ− 2iσy sinh ΘeiθL . (3.12)

Assuming that γ << sinh Θ, we neglect the first term relative to the second and
after generalizing to the right side as well, we get

ΓL(R) = ∓2iσy sinh ΘeiθL(R) . (3.13)

The Gϕ term is already as simplified as possible, so next we handle the GMR

term. When inserting the BCS solution, the expressions in (2.24) becomes

aL(R) = 2(m · σ) cosh Θ

bL(R) = iσy sinh ΘeiθL(R)(m · σ∗) + (m · σ)iσy sinh ΘeiθL(R) = 0
(3.14)

where we also find dL(R) from dL(R) = −ãL(R) = −2(m · σ∗) cosh Θ. To show that
bL(R) = 0 we can use the anti-commutator relations {σν , σµ} = 2δνµ, where δνµ is
the Kronecker delta. We then get

σy(m · σ∗) + (m · σ)σy = σy(m · σ∗)− σy(m · σ∗) = 0. (3.15)

This relation is easily verified by writing out the full matrices as well.
Finally, we arrive at the simplified 2×2 boundary conditions for weak proximity

effect. At the left interface (x = 0) we have

2`ζL(∂xf) = −2iσy sinh ΘeiθL − iGL
ϕ[f(mL · σ∗)− (mL · σ)f ]

+ 2 cosh ΘGL
MR[(mL · σ)f + f(mL · σ∗)], (3.16)

2`ζL(∂xf̃) = 2iσy sinh Θe−iθL + iGL
ϕ[f̃(mL · σ)− (mL · σ∗)f̃ ]

+ 2 cosh ΘGL
MR[(mL · σ∗)f̃ + f̃(mL · σ)], (3.17)

and at the right interface (x = `) we have

2`ζR(∂xf) = 2iσy sinh ΘeiθR + iGR
ϕ [f(mR · σ∗)− (mR · σ)f ]

− 2 cosh ΘGR
MR[(mR · σ)f + f(mR · σ∗)] (3.18)

2`ζR(∂xf̃) = −2iσy sinh Θe−iθR − iGR
ϕ [f̃(mR · σ)− (mR · σ∗)f̃ ]

− 2 cosh ΘGR
MR[(mR · σ∗)f̃ + f̃(mR · σ)] (3.19)
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To make the calculations easier to read, we will from this point avoid using
the left (right) notation of the magnetization until the very last set of equations.
However, it is fairly easy to find out which interface the magnetization originates
from, since the equations for the left and the right side are fully separated.

At this point we only proceed with the non-tilded version of the equations,
since the procedure to solve for f̃ is exactly the same. We continue to simplify the
expressions by writing out the matrices in scalars via the relation (2.10). From
the left side of the equations (3.16) and (3.18) we get

2`ζL(R)(∂xf) = 2`ζL(R)

(
∂xf↑ ∂x(ft + fs)

∂x(ft − fs) ∂xf↓

)
, (3.20)

while the first term on the right side gives us

2iσy sinh ΘeiθL(R) = 2

(
0 sinh Θ

− sinh Θ 0

)
eiθL(R) . (3.21)

The spin-mixing term may be expressed as:
(

Φ↑ Φt+s

Φt−s Φ↓

)
(3.22)

≡ iGϕ[f(m1 · σ∗)− (m1 · σ)f ] (3.23)

= iGϕ

(
f↑ ft + fs

ft − fs f↓

)(
mz mx + imy

mx − imy −mz

)
(3.24)

− iGϕ

(
mz mx − imy

mx + imy −mz

)(
f↑ ft + fs

ft − fs f↓

)
, (3.25)

with the components

Φ↑ = iGϕ [2(mx − imy)fs] , (3.26)

Φt+s = iGϕ [(mx + imy)f↑ − 2mz(ft + fs)− (mx − imy)f↓] , (3.27)

Φt−s = iGϕ [−(mx + imy)f↑ + 2mz(ft − fs) + (mx − imy)f↓] , (3.28)

Φ↓ = iGϕ [−2(mx + imy)fs] , (3.29)

whereas the polarization term gives:
(
M↑ Mt+s

Mt−s M↓

)
(3.30)

≡ 2 cosh ΘGMR[f(m1 · σ∗) + (m1 · σ)f ] (3.31)

= 2 cosh ΘGMR

(
f↑ ft + fs

ft − fs f↓

)(
mz mx + imy

mx − imy −mz

)
(3.32)

+ 2 cosh ΘGMR

(
mz mx − imy

mx + imy −mz

)(
f↑ ft + fs

ft − fs f↓

)
, (3.33)
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with the components

M↑ = 2 cosh(Θj)GMR [2mzf↑ + 2(mx − imy)ft] , (3.34)

Mt+s = 2 cosh(Θj)GMR [(mx + imy)f↑ + (mx − imy)f↓] , (3.35)

Mt−s = 2 cosh(Θj)GMR [(mx + imy)f↑ + (mx − imy)f↓] , (3.36)

M↓ = 2 cosh(Θj)GMR [−2(mx + imy)ft − 2mzf↓] . (3.37)

At last, we write out the scalar equations. Notice that we have separated the
singlet and triplet anomalous Green function in the following. At the left interface
we have:

`ζL∂xf↑ = iGL
ϕ

[
(mx − imy)fs

]
+ 2 cosh ΘGL

MR

[
mzf↑ + (mx − imy)ft

]
, (3.38)

`ζL∂xft = −iGL
ϕmzfs + cosh ΘGL

MR

[
(mx + imy)f↑ + (mx − imy)f↓

]
, (3.39)

`ζL∂xfs = − sinh ΘeiθL − i

2
GL
ϕ

[
(mx + imy)f↑ − 2mzft − (mx − imy)f↓

]
, (3.40)

`ζL∂xf↓ = −iGL
ϕ

[
(mx + imy)fs

]
− 2 cosh ΘGL

MR

[
(mx + imy)ft +mzf↓

]
. (3.41)

And similarly, at the right interface:

`ζR∂xf↑ = −iGR
ϕ

[
(mx − imy)fs

]
− 2 cosh ΘGR

MR

[
mzf↑ + (mx − imy)ft

]
, (3.42)

`ζR∂xft = iGR
ϕmzfs − cosh ΘGR

MR

[
(mx + imy)f↑ + (mx − imy)f↓

]
, (3.43)

`ζR∂xfs = sinh ΘeiθR +
i

2
GR
ϕ

[
(mx + imy)f↑ − 2mzft − (mx − imy)f↓

]
, (3.44)

`ζR∂xf↓ = iGR
ϕ

[
(mx + imy)fs

]
+ 2 cosh ΘGR

MR

[
(mx + imy)ft +mzf↓

]
. (3.45)
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After employing the solution for fn, we wind up with the following equations

`ζLik(A↑ −B↑) = iGL
ϕ

[
(mx

L − imy
L)(As +Bs)

]

+ 2 cosh ΘGL
MR

[
mz
L(A↑ +B↑) + (mx

L − imy
L)(At +Bt)

]
, (3.46)

`ζLik(At −Bt) = −iGL
ϕm

z
L(As +Bs) + cosh ΘGL

MR

[
(mx

L + imy
L)(A↑ +B↑)

+ (mx
L − imy

L)(A↓ +B↓)
]

(3.47)

`ζLik(As −Bs) = − sinh ΘeiθL − i

2
GL
ϕ

[
(mx

L + imy
L)(A↑ +B↑)

− 2mz
L(At +Bt)− (mx

L − imy
L)(A↓ +B↓)

]
, (3.48)

`ζLik(A↓ −B↓) = −iGL
ϕ

[
(mx

L + imy
L)(As +Bs)

]

− 2 cosh ΘGL
MR

[
(mx

L + imy
L)(At +Bt) +mz

L(A↓ +B↓)
]
, (3.49)

`ζRik(A↑ −B↑) = −iGR
ϕ

[
(mx

R − imy
R)(As +Bs)

]

− 2 cosh ΘGR
MR

[
mz(A↑ +B↑) + (mx

R − imy
R)(At +Bt)

]
, (3.50)

`ζRik(At −Bt) = iGR
ϕm

z
R(As +Bs)− cosh ΘGR

MR

[
(mx

R + imy
R)(A↑ +B↑)

+ (mx
R − imy

R)(A↓ +B↓)
]
, (3.51)

`ζRik(As −Bs) = sinh ΘeiθR +
i

2
GR
ϕ

[
(mx

R + imy
R)(A↑ +B↑)

− 2mz
R(At +Bt)− (mx

R − imy
R)(A↓ +B↓)

]
, (3.52)

`ζRik(A↓ −B↓) = iGR
ϕ

[
(mx

R + imy
R)(As +Bs)

]

+ 2 cosh ΘGR
MR

[
(mx

R + imy
R)(At +Bt) +mz

R(A↓ +B↓)
]
, (3.53)

where we have clarified which side the respective magnetization directions belong
to and moved the x, y, z notation to be a superscript like in the spin-current no-
tation.

A good reality check is to see that when using equal interface parameters at the
left and right side of the normal metal, we obtain that the boundary conditions
are equal at both interfaces except from an overall minus sign at the left side of
the equations above. This means that if we define the x-direction in the opposite
way and rename left to right and vice versa, the total collection of equations is
the same, which it should be since this corresponds to being an observer at the
opposite side of a symmetric junction.

To solve these equations we organize them on the form Ǎx = b, known from
linear algebra. Ǎ is a matrix of parameters, while x as a column vector, containing
the unknown coefficients x = (A↑, B↑, At, Bt, As, Bs, A↓, B↓)

T and b is a column
vector of the remaining constant terms. We have used the computer program
Maple to solve this equation for the case of zero GMR effect, since the effect of Gϕ

is the prominent one.
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We see that the singlet equations (3.48) and (3.52) are independent on GMR,
and that when we set Gϕ = 0 the constants As and Bs for the singlet component
is solved solely from these two equations. The solutions are independent on the
triplet components, and we would expect that the singlet correlations would be
modified when triplets was made from it. This indicates that we need Gϕ to
create triplet pairing, and we notice that the singlet terms always enters the triplet
equations proportional to Gϕ. Since we know that the triplet pairing is made from
the singlet there cannot be any triplet pairing when the singlet terms are zero. We
have also verified in Maple that for the case of zero Gϕ, the analytical solution is
independent of GMR. This could be due to the assumption of weak polarization in
the derivation of the boundary conditions in Ref. [53], and if we had extended the
boundary conditions to include strongly polarized interfaces, we might get another
result. If we uses different superconductors on the left and right side, the Θ in the
equations above should be dependent on which side it originates from.

When we have the magnetizations at both interfaces in the z-direction, we see
that we do not generate f↑ and f↓, only fs og ft, which is in accordance with the
requirement of misalignment magnetizations to produce long-ranged currents in a
ferromagnet since a ferromagnet favors equal spin pairing.

3.2 Spin- and Charge-Supercurrent

In the weak proximity limit, the first part of (2.30) goes to zero since g is regarded
as a constant, and we are left with

A = −
[
f(∂xf̃)− f̃ †(∂xf †)

]
. (3.54)

Nevertheless, the contribution to the charge-supercurrent IQ from the removed
term is zero regardless of the approximation of weak proximity effect. This can be
shown by writing out the matrices in scalars and using (3.61). When employing
(2.10), the components of (3.54) can be expressed as:

A11 = −f↑∂xf̃↑ − (ft + fs)∂x(f̃t − f̃s) + f̃ ∗↑∂xf
∗
↑ + (f̃ ∗t − f̃ ∗s )∂x(f

∗
t + f ∗s )

A12 = −f↑∂x(f̃t + f̃s)− (ft + fs)∂xf̃↓ + f̃ ∗↑∂x(f
∗
t − f ∗s ) + (f̃ ∗t − f̃ ∗s )∂xf

∗
↓

A21 = −(ft − fs)∂xf̃↑ − f↓∂x(f̃t − f̃s) + (f̃ ∗t + f̃ ∗s )∂xf
∗
↑ + f̃ ∗↓∂x(f

∗
t + f ∗s )

A22 = −(ft − fs)∂x(f̃t + f̃s)− f↓∂xf̃↓ + (f̃ ∗t + f̃ ∗s )∂x(f
∗
t − f ∗s ) + f̃ ∗↓∂xf

∗
↓

(3.55)

To find the supercurrents, we calculate the following terms in consistence with the
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expressions in (2.34)

<e{A11 + A22} =<e{−(f↑∂xf̃↑ − f̃↑∂xf↑)− 2(ft∂xf̃t − f̃t∂xft)
+ 2(fs∂xf̃s − f̃s∂xfs)− (f↓∂xf̃↓ − f̃↓∂xf↓)}, (3.56)

<e{A12 + A21} =<e{−(f↑ + f↓)∂xf̃t + (f̃↑ + f̃↓)∂xft

− ft∂x(f̃↑ + f̃↓) + f̃t∂x(f↑ + f↓)

− (f↑ − f↓)∂xf̃s − (f̃↑ − f̃↓)∂xfs
+ fs∂x(f̃↑ − f̃↓) + f̃s∂x(f↑ − f↓)}, (3.57)

=m{A21 − A12} ==m{(f↑ − f↓)∂xf̃t + (f̃↑ − f̃↓)∂xft
− ft∂x(f̃↑ − f̃↓)− f̃t∂x(f↑ − f↓)
+ (f↑ + f↓)∂xf̃s − (f̃↑ + f̃↓)∂xfs

+ fs∂x(f̃↑ + f̃↑)− f̃s∂x(f↑ + f↑)}, (3.58)

<e{A11 − A22} =<e{−(f↑∂xf̃↑ − f̃↑∂xf↑) + (f↓∂xf̃↓ − f̃↓∂xf↓)
− 2(fs∂xf̃t + f̃s∂xft) + 2(ft∂xf̃s + f̃t∂xfs)}, (3.59)

where we have used that <e{Z∗} = <e{Z}, and that =m{Z∗} = =m{−Z}, where
Z is just a complex number. From these equations we use the following relations
to simplify the current integrals in (2.34).

∞∫

−∞

dE tanh

(
βE

2

)
<e
{
F (E)− F ∗(−E)

}
= 2

∞∫

0

dE tanh

(
βE

2

)
<e
{
F (E)

}
,

(3.60)
∞∫

−∞

dE tanh

(
βE

2

)
<e
{
F (E) + F ∗(−E)

}
= 0, (3.61)

∞∫

−∞

dE tanh

(
βE

2

)
=m
{
F (E) + F ∗(−E)

}
= 2

∞∫

0

dE tanh

(
βE

2

)
=m
{
F (E)

}
,

(3.62)
∞∫

−∞

dE tanh

(
βE

2

)
=m
{
F (E)− F ∗(−E)

}
= 0. (3.63)

After removing terms that are anti-symmetric in quasiparticle energy E, we are
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left with only terms that are symmetric in energy, and our supercurrents become:

IQ = I0

∞∫

0

dE tanh

(
βE

2

)
4<e{−(f↑∂xf̃↑ − f̃↑∂xf↑)− 2(ft∂xf̃t − f̃t∂xft)

+ 2(fs∂xf̃s − f̃s∂xfs)− (f↓∂xf̃↓ − f̃↓∂xf↓)},

IxS = I0

∞∫

0

dE tanh

(
βE

2

)
4<e{−(f↑ + f↓)∂xf̃t + (f̃↑ + f̃↓)∂xft

− ft∂x(f̃↑ + f̃↓) + f̃t∂x(f↑ + f↓)},

IyS = I0

∞∫

0

dE tanh

(
βE

2

)
4=m{(f↑ − f↓)∂xf̃t + (f̃↑ − f̃↓)∂xft

− ft∂x(f̃↑ − f̃↓)− f̃t∂x(f↑ − f↓)}},

IzS = I0

∞∫

0

dE tanh

(
βE

2

)
4<e{−(f↑∂xf̃↑ − f̃↑∂xf↑) + (f↓∂xf̃↓ − f̃↓∂xf↓)}.

(3.64)

Here I0 is different for spin- and charge-supercurrent, as mentioned earlier. Fur-
thermore, we insert the weak proximity solution of the Usadel equation, fn =
Aneikx + Bne−ikx and f̃n = Ãne−ikx + B̃neikx into the supercurrent expressions
(3.64), which gives us

IQ = I0

∞∫

0

dE tanh

(
βE

2

)
8<e{ik[(A↑Ã↑ −B↑B̃↑) + 2(AtÃt −BtB̃t)

− 2(AsÃs −BsB̃s) + (A↓Ã↓ −B↓B̃↓)]},

IxS = I0

∞∫

0

dE tanh

(
βE

2

)
8<e{ik[(A↑ + A↓)Ãt − (B↑ +B↓)B̃t

+ (Ã↑ + Ã↓)At − (B̃↑ + B̃↓)Bt]},

IyS = I0

∞∫

0

dE tanh

(
βE

2

)
8<e{k(−(A↑ − A↓)Ãt + (B↑ −B↓)B̃t

+ (Ã↑ − Ã↓)At − (B̃↑ − B̃↓)Bt)},

IzS = I0

∞∫

0

dE tanh

(
βE

2

)
8<e{ik[(A↑Ã↑ −B↑B̃↑)− (A↓Ã↓ −B↓B̃↓)]}.

(3.65)
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The last step in the analytical derivation is to use the expressions for the con-
stants obtained from Maple when we solved the linear algebra problem Ǎx = b.
We also do the explicit calculations in Maple, since these are lengthy expressions.
When having arbitrary magnetization direction at both interfaces the charge-
supercurrent is given by

IQ = I0

∞∫

0

dE tanh

(
βE

2

)
16ik sinh2 Θ sin θ sin(k`)

(
k2`2ζLζR +mL ·mRG

L
ϕG

R
ϕ

)

Λfull

,

(3.66)
where we have defined Λfull as

Λfull =
(
hL(GL

ϕ)2 + k2`2ζ2
L

) (
hR(GR

ϕ )2 + `2k2ζ2
R

)
cos2(k`)−

(
wGL

ϕG
R
ϕ + k2`2ζLζR

)2
,

(3.67)
and hL(R) and w as

hL(R) = (mz
L(R))

2 − (mx
L(R))

2 − (my
L(R))

2,

w = mx
Lm

x
R +my

Lm
y
R −mz

Lm
z
R.

(3.68)

We also get that the absolute value of the spin-supercurrent is given by

|IS| =
√

(IxS)2 + (IyS)2 + (IzS)2

= I0

∞∫

0

dE tanh

(
βE

2

)
16ikGL

ϕG
R
ϕ sinh2 Θ sin(k`)|mL ×mR|Λ−2

Full

(
cos θ

[
{hL(GL

ϕ)2 + k2`2ζ2
L}{hR(GR

ϕ )2 + k2`2ζ2
R} cos2(k`) + (wGL

ϕG
R
ϕ + k2`2ζLζR)2

]

+
[
{hL(GL

ϕ)2 + hR(GR
ϕ )2 + k2`2(ζ2

L + ζ2
R)}{wGL

ϕG
R
ϕ + k2`2ζLζR} cos(k`)

])

(3.69)

Here both (3.66) and (3.69) only depend on the relative magnetization angle,
such that without loss of generality, we lock the right interface in the z-direction
so that mR = (0, 0, 1), while leaving the left side with the arbitrary magnetization
direction mL = (sinα cosφ, sinα sinφ, cosα), where we use α as the polar angle
and φ as the azimuth angle. At last, the spin- and charge-supercurrent is finally
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given by

IQ = I0 sin θ

∞∫

0

dE tanh

(
βE

2

)
16<e

{
Λ−1ik sin(k`) sinh2(Θ)[k2`2ζLζR + cosαGL

ϕG
R
ϕ ]
}
,

IxS = I0 sinα sinφGL
ϕG

R
ϕ

∫ ∞

0

dEtanh
(βE

2

)
16<e

{
Λ−2 sin(k`) sinh2(Θ)ik(a1 + a2 cos θ)

}
,

IyS = −cosφ

sinφ
IxS ,

IzS = 0,

(3.70)

where we have defined the expressions

Λ = [k2`2ζ2
L + 2(GL

ϕ)2 cos2 α− (GL
ϕ)2][k2`2ζ2

R + (GR
ϕ )2] cos2(k`)− [k2`2ζLζR −GL

ϕG
R
ϕ cosα]2,

a1 = [2(GL
ϕ)2 cos2 α− (GL

ϕ)2 + k2`2(ζ2
L + ζ2

R) + (GR
ϕ )2][k2`2ζLζR −GL

ϕG
R
ϕ cosα] cos(k`),

a2 = [k2`2ζ2
L + 2(GL

ϕ)2 cos2 α− (GL
ϕ)2][k2`2ζ2

R + (GR
ϕ )2] cos2(k`) + [k2`2ζLζR −GL

ϕG
R
ϕ cosα]2.

(3.71)

From the charge-current in (3.70) we can extract the following relation:

IQ = sin θ(IQ,0 + cosαGL
ϕG

R
ϕIQ,1) , (3.72)

where the expressions of IQ,0 and IQ,1 can be found from the expressions in (3.70).
This is one of the main results of this thesis. Here the first term is the current
contribution from singlet pairing and second term is the contribution from the total
triplet pairing. According to this equation we need to have a non-zero value for the
spin-active parameter Gϕ on both interfaces in order to have a triplet contribution
to the charge-supercurrent. Interestingly we also see that for the special case of

IQ,0 = − cosαGL
ϕG

R
ϕIQ,1, (3.73)

the current goes to zero, which means that we get a 0-π transition that is control-
lable via the relative misalignment angle of the magnetizations of the magnetic
interfaces, a feature that also that was reported in the ballistic regime [56]. The
fact that the charge-supercurrent goes as sin θ is a known result called the first
Josephson equation, and that the current changes sign when going from a positive
to a negative superconducting phase difference, is easily understood by observ-
ing the same symmetric junction from the opposite side, since physics should be
independent of our choice of coordinate system.
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When considering the spin-supercurrent we find that

IxS = sinαGL
ϕG

R
ϕ (IxS,0 + cos θIS,1) , (3.74)

which is another of the main results. This shows that the spin-current has a term
that is independent on the superconducting phase difference, whereas the other
term goes as cos θ, and not sin θ as for the charge-supercurrent. This is consistent
with the fact that a spin-current is invariant under time-reversal symmetry, in
contrast to a charge-current. A spin-↑- particle traveling to the right, will be the
same as a spin-↓ going left when reversing the time, both carrying the same spin-
current. While we find that the magnitude of the spin-current only depends on
the relative misalignment angle, logically, we get that the x, y and z components
depend on the spatial orientation. The spin-supercurrent appear in the direction
mL ×mR, which means that as long as we only consider magnetizations perpen-
dicular to the tunneling direction, where φ = π/2, both IyS and IzS will always be
zero. Very recently, similar dependencies on α and θ was found in a theoretical
study of multiband superconductors coexisting with a spin-density wave state [57],
although the system considered is quite different from ours.

The triplet part of the charge-supercurrent derived here is in the first harmonic
(sin θ), in contrast to the second harmonic (sin 2θ) long-ranged supercurrent found
in Ref. [36]. This is an important difference, since we do not need any special
fine-tuning in order to suppress the first harmonic in favor of the second. In
addition, our system has no ferromagnetic elements that could disturb the spin-
current conservation, unlike previous proposals.

Special-Case Solutions

To prove the consistency to earlier reported results we set the spin-dependent phase
shift parameters GL

ϕ = GR
ϕ = Gϕ to zero and the interface transparencies equal

ζL = ζR = ζ, and regain the result of a normal non-spin-active SNS Josephson
junction. We easily see that all the spin-currents go to zero in this case, and we
get for the charge-supercurrent:

I0
Q =

N0eDA

4`ζ2
8 sin θ

∞∫

−∞

dE tanh

(
βE

2

)
<e
{i sinh2(Θ)

k` sin(k`)

}
, (3.75)

where we have extended the limits. Some places in the literature the normal
conductance GN is used instead of the constant I0, and we can use the relation
GN = 2e2N0DA/` to compare results. This solution can be rewritten into a sum by
taking the real part operator outside the integral and using the residue integration
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method. It is known that if the function goes to zero in the infinity of the complex
plane [58], we can use the equation

∞∫

−∞

dE F (E) = 2πi
∑

Res F (z), (3.76)

where F (E) is a function of real energies and F (z) is the same function, only
including complex energies z = E + iω. In (3.76) we have to sum over the residue
of all poles in the upper half plane, and the specific residue formula we are going
to use is given by

Res
z=z0

Fn(z)

Fd(z)
=

Fn(z0)

∂zFd(z)
, (3.77)

where the subscripts n and d stand for numerator and denominator. We divide
the integrand as

Fn(z) = sinh

(
βz

2

)
<e
{i sinh2(Θ)

k` sin(k`)

}
, and Fd(z) = cosh

(
βz

2

)
. (3.78)

This means that we have poles for all z = iωn, where ωn = π(1+2n)/β and n is all
positive integers. Since the sinh(βz/2) in the numerator and the sinh(βz/2) coming
from the denominator ∂z cosh(βz/2) cancels, we are only left with a factor 2/β from
these functions. In reference [59] the authors have included spin-flip scattering to a
normal SNS junction and obtained an additional term in the dimensionless product
k` =

√
2(iz − δ)/ET. The addition from δ-energy ships the pole into the lower

complex plane, and we will assume that we have an infinitesimal such term to
avoid dealing with poles at the real axis. If this is not the case our solution will
still be correct, only with possible additional current-terms due to the sum over
residues. If so, it is normal to take half the residue of poles that are situated on
the counter path.

The total sum from this calculation becomes

I0
Q =

N0eDA

`ζ2β
8π sin θ

∑

ωn

|∆|2
|∆|2+ω2

n√
2ωn/ET sinh(

√
2ωn/ET)

, (3.79)

and we recognize ωn as the Matsubara frequency. We have used sin2 θ = |∆|2/(|∆|2−
E2), which comes from Θ = tanh−1(|∆|/E)

If we now instead assume that k`ζL(R) � G
L(R)
ϕ and again choose equal interface-

parameters, we still get

Λ = (k`ζ)4 sin2(k`) (3.80)
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which gives us the approximated charge-supercurrent:

IQ = I0
Q + Itriplet

Q . (3.81)

The dominating first term I0
Q is the normal non-spin-active SNS-solution, but the

last term is a triplet term expressed as

Itriplet
Q =

N0eDA

4`
sin θ cosαGL

ϕG
R
ϕ

∞∫

−∞

dE tanh

(
βE

2

)
8<e

{ i sinh2(Θ)

ζ4(k`)3 sin(k`)

}
.

(3.82)
The triplet term can now be expressed as a sum in a very similar way as for the
singlet term

Itriplet
Q = −N0eDA

`ζ4β
8π sin θ cosαGL

ϕG
R
ϕ

∑

ωn

|∆|2
|∆|2+ω2

n

(2ωn/ET)
3
2 sinh(

√
2ωn/ET)

. (3.83)

We see that the triplet term is negative compared to the singlet term, which means
that the two charge-current contributions add to a maximum value at α = π.



Chapter 4

Numerical Solution

We will now look further than the assumption of weak proximity and turn back to
the full equations from the theory chapter. For selected MATLAB scripts, see Ap-
pendix C. In sections 4.2 and 4.3 we will neglect the inverse proximity and assume
that we can use the BCS solution at the superconducting side of the interfaces. In
reality, the superconducting correlations decline when approaching the interface,
where this correction will be briefly discussed in section 4.4. We emphasis that in
all forthcoming figures, we have chosen the magnetization of the right magnetic
interface in the z-direction so that α and φ is related to magnetization of the left
magnetic insulator, as in the analytical expressions.

4.1 Dimensionless Quantities

To support numerical calculations we write all equations in terms of dimensionless
quantities. We choose to represent the x-coordinate by the dimensionless length
u = x/`, and the energy with the dimensionless energy ε = E/∆0. Here we use
∆0 as the magnitude of the superconducting energy gap for the bulk solution in
the superconductors. We also introduce the Thouless energy ET = D/`2 and its
dimensionless partner εT = ET/∆0. By using that the superconducting coherence
length is given by ξS =

√
D/∆0, we can write εT = (ξS/`)

2. In many published
papers the Thouless energy is written with an additional ~, but then the Usadel

31
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equation also has an extra ~. The Usadel equation will now transform as follows:

D∂x
(
ĝR(∂xĝ

R)
)

+ i
[
Eρ̂3 − Σ̂ + ∆̂, ĝR

]
= 0

→ D

`2

∂

∂u

(
ĝR

(
∂

∂u
ĝR

))
+ i
[
Eρ̂3 − Σ̂ + ∆̂, ĝR

]
= 0

→ ∂

∂u

(
ĝR

(
∂

∂u
ĝR

))
+

i

ET

[
Eρ̂3 − Σ̂ + ∆̂, ĝR

]
= 0

→ ∂u
(
ĝR(∂uĝ

R)
)

+
i

εT

[
ερ̂3 −

Σ̂

∆0

+
∆̂

∆0

, ĝR

]
= 0. (4.1)

This equals changing x → u and D → ET , and dividing by ET in the original
Usadel equation while measuring all energies relative to ∆0.

When making the boundary conditions dimensionless, we only need to change
the left side of the equations, so that (`∂x = ∂u), which equals setting the normal
metal length equal to one in the original conditions. From this we get

2`ζlǧl(∂xǧl) = [ǧl, ǧr] +GMR

[
ǧl, {Ǎ, ǧr}

]
+ iGl

ϕ

[
ǧl, Ǎ

]

→ 2ζlǧl(∂uǧl) = [ǧl, ǧr] +GMR

[
ǧl, {Ǎ, ǧr}

]
+ iGl

ϕ

[
ǧl, Ǎ

]
(4.2)

and equivalently for the other condition in (2.19)

To make the Riccati parameterized version dimensionless, we just follow the
same recipe and set

x→ u, D → ET, `→ 1, and ∆0 = 1. (4.3)

When we have solved the Usadel equation for many energies and want to integrate
over these energies, we have to determine the value of βE. For this we use the
known relation ∆ = 1.76kBTc, which is valid as long as T << Tc, and we write
βE = ε∆/kBT = 1.76εTc/T .

In all equations the normal metal length only enters relative to the super-
conducting coherence length, which means that the result will be valid for other
choices of these parameters as long as the relative ratio is the same, leading to
unchanged Thouless energy. However, it is important to stay inside the scope of
the quasiclassical theory. In the computer script, we have added a small imaginary
energy term δ � ∆0 to the quasiparticle energy. This imaginary energy represents
a finite inelastic scattering relaxation time in the normal metal and will provide
more realistic results, in addition to making the calculations faster.
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4.2 Solving the Usadel Equation in the Normal

Metal

In this section we neglect the spin-flip and spin-orbit scattering, and the parame-
terized Usadel equations from (2.13) reduce to

[2(∂xγ)γ̃N(∂xγ) + (∂2
xγ)] +

2iε

εT
γ = 0,

[2(∂xγ̃)γÑ(∂xγ̃) + (∂2
xγ̃)] +

2iε

εT
γ̃ = 0.

(4.4)

For the boundary conditions (2.22), the results from (3.14) still hold when assigning
L → l and R → r. This is because we still use the BCS bulk solution at the
interface for the superconducting side. This gives us the conditions:

4`lζl∂xγl = Γl + 2iGl
ϕ[γl(m · σ∗)− (m · σ)γl]− 4 cosh ΘGMR[(m · σ)γl + γl(m · σ∗)],

4`rζr∂xγr = Γr − 2iGr
ϕ[γr(m · σ∗)− (m · σ)γr] + 4 cosh ΘGMR[(m · σ)γr + γr(m · σ∗)],

4`lζl∂xγ̃l = Γ̃l − 2iGl
ϕ[γ̃l(m · σ)− (m · σ∗)γ̃l]− 4 cosh ΘGMR[(m · σ∗)γ̃l + γ̃l(m · σ)],

4`rζr∂xγ̃r = Γ̃r + 2iGr
ϕ[γ̃r(m · σ)− (m · σ∗)γ̃r] + 4 cosh ΘGMR[(m · σ∗)γ̃r + γ̃r(m · σ)],

(4.5)

which will remain the same when we include spin-flip and spin-orbit scattering in
the normal metal in section 4.3. We have that

Γl(r) = ±N−1
l(r)

[[
ĝR
l(r), ĝ

R
R(L)

]
12
−
[
ĝR
l(r), ĝ

R
R(L)

]
11
γl(r)

]
, (4.6)

with
[
ĝR
l(r), ĝ

R
R(L)

]
12

= i sinh ΘeiθR(L)(gσy + σyg̃)− 2f cosh Θ,
[
ĝR
l(r), ĝ

R
R(L)

]
11

= i sinh Θ(fσye
−iθR(L) + σyf̃eiθR(L)),

(4.7)

where we recall that ĝR
R is the BCS solution in the right superconductor, while ĝR

r

is the solution on the right side of the left interface. When we in the following leave
out the L,R notation of the interface parameters, we use the same values at both
interfaces, except from the phase difference that was defined θ = θR − θL. Notice
that in the literature the phase difference sometimes is defined as θ = θL − θR,
and e = |e|, which both is the negative of the convention used here. However, the
charge-supercurrent will still appear in the same way in both conventions since
these signs cancel each other out. The spin-supercurrent will also appear in the
same way, due to its independency of both the e and the sign of θ.
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Figure 4.1: Spin- and charge-supercurrent (red and blue) as a function of the
superconducting phase difference θ. In the first row we have ` = 60 nm and ζ = 8,
while in the second row we have ` = 20 nm and ζ = 5. In (a) and (c) α = π/2,
GMR = 0, and Gϕ varies with the values in the respective legend, whereas in (b)
and (d) α = π/4, Gϕ = 1.1, and GMR varies. The other parameters are ξS = 30
nm, T/Tc = 0.02 and φ = π/2.

Spin- and Charge-Supercurrent

In Figure 4.1 we demonstrate how the spin- and charge-supercurrent behave as
functions of the superconducting phase difference θ for various values of Gϕ and
GMR. We have in Figure 4.1 (a) and (b) used large normal metal length ` = 2ξS and
low interface transparencies, which we get from large values of ζ. This should bring
us close to the weak proximity limit, and we see that the charge-current indeed
goes as cos θ and that the spin-current goes as sin θ in addition to a constant term.
This is the same as the dependencies we found from the analytical expressions
(3.72) and (3.74) However, to go further than the weak proximity limit we also
plot the solution for a shorter normal metal length ` = (2/3)ξS and ζ = 5 in Figure
4.1 (c) and (d). Firstly, we find that the solutions resemble to the weak proximity
limit but with distinct deviations. The θ-dependence of the charge-current looks
more like a deformed sine function, and the spin-supercurrent is almost constant
for small phase differences. When we derived the analytical solution in the weak
proximity limit, we neglected a cosh θ term that might explain these deviations.
Secondly, we see that in spite of the fact that we have used a nonzero value for
Gϕ effect and chosen a nontrivial α, the GMR parameters have very little impact
on the currents. For this reason we set the GMR parameters equal to zero for
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the rest of this thesis. The effect from GMR could change for strongly polarized
insulators, and very recently new boundary conditions have been developed [60].
These general conditions can describe strongly polarized interfaces.

We notice in Figure 4.1 (a) and (c) that the spin-supercurrent increases when
we increase the Gϕ parameters. The analytical expression for the spin-current
is proportional to GL

ϕG
R
ϕ which makes it reasonable that the spin-current should

increase for higher values. In the case of Gϕ = 0 we find that the spin-current is
zero, as expected since we then have a conventoinal SNS-junction. At θ = 0 we
demonstrate that there can exist a spin-current in absence of charge-current.

Figure 4.2: Spin- and charge-supercurrent as function of the magnetization dis-
placement angle α. In the first row Gϕ = 3, while in the second row we have used
Gϕ = 4. In (a) and (d) ` = 5 nm and φ = π/2, in (b) and (e) ` = 20 nm and
φ = π/4, and in (c) and (f) ` = 40 nm and φ = π/2. We have used ζ = 5, ξS = 30
nm, θ = π/2, T/Tc = 0.02, and GMR = 0.

When plotting the spin- and charge-supercurrent as functions of α, we see from
Figure 4.2 that a new way of controlling the 0-π transition occurs, as expected from
the analytical expression (3.72). We can now change the sign of the current, simply
by altering the relative magnetization angle. The transition point is dependent on
the interface parameters, and to move the point further towards the antiparallel
configuration, we have to shorten the length `, lower the parameter ζ, or increase
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Figure 4.3: Spin- and charge-supercurrent as function of the magnetization dis-
placement angle α. In (a) and (b) ` = 90 nm, GR

ϕ = 0.3 while GL
ϕ varies with the

values given in the upper legend. In (c) and (d) ` = 60 nm, GR
ϕ = 2 while GL

ϕ

varies with the values given in the lower legend. The other parameters are ζ = 10,
ξS = 30 nm, φ = π/2, θ = π/2, T/Tc = 0.02, and GMR = 0.

Gϕ. We illustrate the Figure 4.2 (b) and (e) that then φ = π/4, the spin-current
components IxS and IyS are of equal size with opposite signs as found in (3.70).

We show in Figure 4.3 (a) and (b) that for parameters close to the weak prox-
imity limit, the spin-current behaves as a pure sinα and that the charge-current
goes as cosα with a constant term, as in the analytical expressions from (3.72) and
(3.74). Since the nominator Λ (3.71) in the current expressions also depend on α
we have chosen Gϕ to be small, which causes the spin-current to be weak. However,
when we increase the value of Gϕ, still having quite long normal metal length and
low transparency, we show in Figure 4.3 (c) and (d) that the spin-current is almost
linear for values close α = 0, and that the charge-current also has some change in
the curvature. This means that we cannot neglect the additional α dependence
for large values of Gϕ.

Motivated by the fact that it is likely that the two parameters of Gϕ are unequal
in real samples, we also show in Figure 4.3 how the currents changes when we keep
GR
ϕ constant while GL

ϕ changes weakly. We see that the overall behavior is the same
for the currents only with small deviations, which we also would have obtained
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when changing both interface parameters.

Figure 4.4: Spin- and charge-supercurrent in the plane of superconducting phase
difference θ and magnetization displacement angle α. The values in (a) are given
in IQ/I0 and values in (b) are given in IS/I0. We have used the parameters ζ = 2,
Gϕ = 4, ` = 10, ξS = 30 nm, φ = π/2, GMR = 0, and T/Tc = 0.02.

To get a more complete picture of the α,θ-dependencies we include Figure
4.4 displaying surface-plots of spin- and charge-supercurrent. Here we keep the
magnetizations in the x, y-plane and have therefore only spin-current values for IxS .
The charge-current is given in Figure 4.4 (a) and we see that the 0-π transition
occurs for small values of α, and is the most prominent around θ = π/2. In Figure
4.4 (b) we show that the spin-current for this case has one area that is mostly
positive and one that is mostly negative. These areas are separated by the α=θ-
line. This gives us the opportunity to reverse the spin-current, which could be
useful in spintronic devices.

Density of States

All forthcoming figures of density of states are normalized to its normal-state value.
A collection of density of states surface-plots, given in the plane of E and θ, is
shown in Figure 4.5. Firstly, we realize that when the interface magnetizations
points in opposite directions as for Figure 4.5 (g), (h) and (i), the low energy
enhancement we see for the other plots, vanish and we get solely a minigap in
the density of states. The low energy enhancement indicates triplet pairing [61],
and the minigap is the singlet signature. That we get a minigap at α = π, can
be understood as spin polarization filtering. This is not much different from the
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Figure 4.5: Density of states in the the plane of quasiparticle energy E and super-
conducting phase difference θ. The first, second, and third row has the α values
0, π/2, and π respectivily, while the first, second, and third column have the Gϕ

values 0.5, 1.1 and 1.5. The other parameters used are ` = 20 nm, ξS = 30 nm,
ζ = 4, and GMR = 0.

effect we get from applying two linear polarization filters to an optical light source,
where we know that when the relative angle between the filters is π/2, no light
will get through. Secondly, we see that for several other cases, we can access
both the singlet and triplet nature of the superconductivity, simply by varying
the phase, starting with a minigap for small phases and going towards a low
energy enhancement before flatting out at θ = π. This is the case in Figure 4.5
(a), (d), and (e). That the density of states should be equal to its normal state
value at θ = π, can be justified by the fact that we measure the density of states
in the middle of the junction. A difference of π equals a shift of sign for the
superconducting order parameter. If the wave function is +Ψ at left side and
−Ψ at the right side, it changes smoothly and has to be zero in the middle of
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a symmetric structure. Hence, we get the normal metal value for the density of
states here.

Figure 4.6: Spin-resolved density of states in the plane of quasiparticle energy E
and superconducting phase difference θ. In (b) we have the total density of states,
while in the (a) and (c), respectively, we have extracted the contributions from
spin-↓ and spin-↑. The parameters used are ζ = 5, Gϕ=0.9, GMR = 0, ` = 10 nm,
ξS = 30 nm, α = 0, and φ = π/2.

Figure 4.7: Spin-resolved density of states for spin-↑, as function of quasiparticle
energy E. The values of Gϕ are given in the legend. We have used the parameters
ζ = 3, φ = π/2, GMR = 0, ` = 20 nm, ξS = 30 nm, α = 0 and θ = 0.

We show in Figure 4.6 that the spin-resolved density of states for spin-↑ has a
gap mostly for positive energies while spin-↓ has the mirrored image for negative
energies. For a normal SNS junction, without spin-active interfaces, the density of
states for spin-↑ and spin-↓ are equal, and we have no total spin transport in the
system. When the energy states split up, we can get a net spin-current. In figure
4.7 we have given only the density of spin-↑ particles, but for various strengths
of the spin-active interface parameter Gϕ, as we know that the spin-↓ is exactly
the same only inverted around E = 0. We see that by increasing the strength of
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spin-mixing, the gap moves further and further away from zero energy and at the
same time the width is reduced.

The enhancement in the density of states can be traced to the sum of the split
densities. When the splitting is so large that the gap for spin-↑ and spin-↓ are fully
separated, the weak enhancement in each spin-resolved density of states add to a
clear enhancement. If the strength of the Gϕ’s becomes even stronger, we can use
the same arguments to explain the folding of the low energy peak. The low energy
enhancement should appear in the case of Gϕ ≈ 1, and this value distinguishes
between the appearance of a minigap and a folded low energy peak. This specific
value was examined in [62], and showed that a system undergo a transition from
singlet to triplet nature at Gϕ = 1.

Figure 4.8: Density of states in the plane of quasiparticle energy E and the mag-
netization displacement angle α. The parameters are ζ = 3, Gϕ=0.9, GMR = 0,
` = 20 nm, ξS = 30 nm, θ = 0, and φ = π/2.

In Figure 4.8 (b) and (c) we show that we can change the nature of the super-
conductivity by changing the relative misalignment angle, which also was indicated
in Figure 4.5. To be able to change the nature of the proximity effect, we need
the junction to exhibit clear triplet pairing in the parallel configuration, otherwise
we only get a gap in the density of states for all values of α as in Figure 4.8 (a).
We notice that when α goes from zero to π the energy gap on in Figure 4.8 (a)
expands, which suggests that the gaps are weakly split at sharper angles of α.

The magnetic interfaces can be tweaked when the interfaces are made with
different thicknesses. The thinnest layer will be easily influenced by an applied
field. We estimate that appropriate thicknesses will be about 1-2 nm. This will
naturally lead to a difference in the two Gϕ values, since they are dependent on the
tunneling resistance. The thicker layer will have higher resistance, meaning that
the value of Gϕ and possibly GMR could be weaker at this interface. However, an
enhancement in polarization for thicker interfaces could change GMR differently.
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Another way to access the relative magnetization angle is to use different materials
at each interface, where one of them is more sensitive to applied magnetic fields,
giving us more options to engineer the junction.

4.3 Including Spin-Dependent Scattering

To create a more realistic model of our junction, we include scattering on magnetic
impurities and spin-orbit coupling. Since the magnetic insulators are very thin
layers, we expect that spin-orbit coupling is present at the magnetic interfaces
[63, 64]. Up to this day, no boundary conditions have been developed that take
this effect into account. However, the physics should not be essentially different
from the one where we include spin-dependent scattering at the interface, since
both mechanisms create triplet paring. This means that we will use the boundary
condition from (4.5), together with the parameterized Usadel equation (2.13) where
we still have ∆̂ = 0.

Figure 4.9: Spin- and charge-supercurrent as function of the magnetization dis-
placement angle α, with varying contribution of spin-flip and spin-orbit scattering.
In (a) and (d), gso = 0 and gsf varies with the values in the legend. In (b) and (e),
gsf = 0 and gso varies with the values in the legend. And at last, in (c) and (f)
gsf = gso and varies with the legend. The other parameters are ` = 10 nm, ξS = 30
nm, ζ = 2, θ = π/2, φ = π/2, Gϕ = 4, GMR = 0, and T/Tc = 0.02.
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Spin and Charge Supercurrent

The spin- and charge-supercurrent are affected quite differently by the two scat-
terings, depending on which kind of scattering the system is subject to. In Figure
4.9 we have plotted the supercurrents as function of α for a variety of different
scattering strengths. We see that, whereas the spin-flip scattering monotonically
decreases both the spin- and the charge-current in (a) and (d), the spin-orbit scat-
tering seems to only destroy the triplet part of the superconductivity in (b) and (e),
and in fact enhance the singlet correlations. It seems like the triplet Cooper pairs
are converted back into singlet ones giving us an overall enhancement of singlet
superconductivity, since the charge-current increases due to spin-orbit scattering.
The trend is that we lose the 0-π transition via α, and that the spin-current de-
creases and goes towards a pure sin θ behavior, like in the weak proximity limit.
We also notice that the spin-flip scattering destroys the spin-current more rapidly
than the spin-orbit coupling does, and that the combination of both destroys the
spin-current even faster.

Figure 4.10: The singlet (red) and triplet (green) components of the charge-
supercurrent as function of superconducting phase difference θ, with and without
spin-orbit coupling. The coupling strength gso is given in the legend. The param-
eters are ` = 15 nm, ξS = 30 nm, Gϕ = 3, ζ = 3, α = 0, GMR = 0, φ = π/2, and
T/Tc = 0.02.

To study the spin-orbit effect deeper, we have separated the singlet and triplet
terms of the charge-current as function of θ, as shown in Figure 4.10. Here we
see that when exposed to spin-orbit coupling, the singlet current increases while
the triplet current decreases. Interestingly, the magnitude of the changes is not of
equal value. In fact the singlet component gain more than the triplet component
loses, leading to a total enhancement in this particular case.

In figure 4.11 we show how the charge-current decreases as function of the
normal metal length ` in the parallel configuration with critical current. We see
that we also here access a 0-π transition. This transition cannot originate from
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Figure 4.11: Charge-supercurrent as function of the normal metal length ` with
different contributions of spin-flip and spin-orbit scattering. In (a) gso = 0 while
gso changes with the values in the shared legend, and the inset shows two of the
functions when zoomed in. In (b) gsf = 0 while gsf changes with the values in the
legend. The parameters are ξS = 30 nm, α = 0, θ = π/2 Gϕ = 4, GMR = 0, ζ = 3,
φ = π/2, and T/Tc = 0.02.

the energy bands in the normal metal, since there are not any magnetic fields
present to split the bands like in a ferromagnet. While a normal SNS junction
decays monotonically to zero current from above, we find that the transition in
the current length plot comes from the triplet pairing. This transition occurs
towards shorter lengths of the normal metal when including spin-flip as in Figure
4.11 (a). It is interesting to notice that the maximum current in Figure 4.11 (b)
is not obtained for the shortest length when spin-orbit coupling is included, as
for a non-spin-active Josephson junction. The normal metal length that gives
the maximum current is probably a compromise resulting in the shortest length
possible that has enough scattering to convert all the present triplets. This would
explain that this length is shorter for stronger values of gso.

In the analytical expressions we found that not only the spin-current but also
the charge-current was independent of the position inside the normal metal. In
Figure 4.12 we show that this is also the case for the full proximity effect regime,
and that the result even holds when spin-orbit and spin-flip scatterings are present.
Form conservation of charge, we know that the charge-current in Figure 4.12 (a)
has to be independent of x, since this is the only direction current flows in our
system. That the spin-current in Figure 4.12 (b) is independent on position in
the absence of scattering events, can be understood since there are no mechanism
that can destroy the spin once it is inside the normal metal. However, when we
include the spin-orbit and spin-flip scatterings the spin-current is still independent
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Figure 4.12: Spin- and charge-supercurrent as function of position x inside the
normal metal, where x = 0 corresponds to the left interface. The scattering
strengths are given as [gsf gso] in the legend. The other parameters are ` = 10 nm,
ξS = 30 nm, α = 3π/4, θ = π/2 Gϕ = 3, ζ = 5, φ = π/2, and T/Tc = 0.02.

of position. This is a surprising finding which could warrant further investigation.

Density of States

The density of states confirms the results found from the supercurrents. Figure
4.13 shows how the spin-flip and spin-orbit scattering modifies the density of states
from zero scattering to large values of the scattering strength. The spin-flip scat-
tering suppresses all superconductivity and pushes the density of states towards
the normal-state value, whereas the spin-orbit coupling turn the low energy en-
hancement to a clear BCS gap for large values of the coupling strength. This is in
accordance with the decay of the triplet current component in Figure 4.9 and the
loss of 0-π transition for the total current. The findings also agree with what was
found in Ref. [65] for a normal-metal/superconductor junction, where the singlet
superconductivity is found to be insensitive to isotropic spin-orbit scattering.

In Figure 4.14 we show how the density of states in the parallel configuration
from Figure 4.5 are affected by scattering events. The first row shows spin-orbit
coupling and the second row shows spin-flip scattering. In all cases we have used
the same strength, and we see that for higher values of the interface parameter Gϕ,
the junction is less affected by spin-dependent scatterings. This can be understood
since the superconductivity is stronger and hence have higher tolerance towards
scattering.
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Figure 4.13: Density of states as function of the quasiparticle energy E, with
varying contribution of spin-flip scattering in (a) and spin-orbit coupling in (b).
the vaulues of gsf,so are given in the legend. The other parameters are ` = 20 nm,
ξS = 30 nm, θ = 0, α = 0, Gϕ = 1.1, GMR = 0, and φ = π/2.

Figure 4.14: Density of states in the plane of quasiparticle energy E and supercon-
ducting phase difference θ, with contribution of spin-flip and spin-orbit scattering.
In the first row gso = 1 and gsf = 0, and in the second row gso = 0 and gsf = 1.
In the first, second, and third column we have the Gϕ values 0.5, 1.1 and 1.5
respectivily. We use ` = 20 nm, ξs = 30 nm, α = 0, ζ = 4, φ = π/2, and GMR = 0.
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4.4 The Inverse Proximity Effect

In real materials, the normal metal properties will to some extent leak into the
superconductor, forcing the superconducting correlation to decline near the inter-
face. This correction can be accounted for by solving the Usadel equation not only
in the normal metal, but also in the superconductors. Effectively we may consider
this scenario as an SS’NS’S junction where the boundary conditions between the
S and S’ layer are ideal, because they are in fact the same material.

The boundary conditions for ideal interfaces state that the Green function
has to be equal at each side of the interface. The Usadel equation will in the
superconductors naturally depend on the gap function ∆, and we only use the
BCS solution in the uttermost layers and calculate ∆ (2.37) in the S’ layers. It is
important to do this in a self-consistent manner, so that we get the correct solution
in the end. We can use the initial guess that ∆ equals the BCS solution also in the
S’ layers and calculate the Green function, which gives us a new ∆. This ∆ is used
again in the next iteration, until the solution converges. If we for simplicity only
want to look at an SN bilayer surrounded by vacuum, we can use the boundary
conditions ∂xγ = 0 facing the vacuum.

The overall effect of the inverse proximity is that the effective superconducting
phase difference θeff , which is the one measured at the interfaces of the supercon-
ductor, is smaller than the actual phase difference θ measured in the bulk of the
superconductors [32]. We also get that the magnitude of the superconducting order
parameter ∆ at the interfaces in the real case is smaller than the bulk magnitude
∆0, only effecting the results quantitatively and leaving the qualitative findings
unaffected.



Chapter 5

Summary and Outlook

We have shown that there exists a dissipationless spin-supercurrent in a spin-
active Josephson junction with a normal-metal weak link. This spin-supercurrent
is found controllable via the magnetization misalignment angle α of the magnetic
insulators, and has a component that is independent of the superconducting phase
difference θ. This means that spin-supercurrent is generally present in the absence
of phase difference as long as there is a magnetization misalignment. This is
in contrast to the charge-supercurrent which is proportional to sin θ. The charge-
current consists of one singlet and one triplet term, and also depend on the relative
misalignment angle. The nature of the junction can be controlled both via the
misalignment angle and the phase difference externally, showing clear spectroscopic
fingerprints for example as a low-energy enhancement in the in the density of state.
Changing θ from 0 to π can lead to a change from singlet to triplet proximity effect.
Equivalently, the transformation of α from 0 to π leads to a change from triplet
to singlet proximity effect.

It has been shown that we can create a 0-π transition by changing the relative
magnetization of the two interfaces. This is an effect that is accessible for instance
by rotating one layer via a weak applied magnetic field. The transition point is
dependent on parameters such as the normal metal length, interface transparency
and the spin-dependent interfacial phase shift parameter.

The effect of spin-flip scattering shows a general reduction in the supercon-
ducting condensates and thereby the supercurrents, while the effect from spin-
orbit coupling destroys the triplet component faster than the singlet, effectively
leading to an SNS junction when including strong spin-orbit effects. We shown
that the spin-flip scattering reduces the overall supercurrent faster than spin-orbit,
and that the spin-current remains independent of position, surprisingly even when
including isotropic spin-flip and spin-orbit scattering.

47
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Future Prospects

In this thesis we consider the boundary conditions for weakly polarized interfaces
Pn � 1. However, it would be of great interest to look at the case when having
arbitrary polarization. There has recently been developed boundary conditions
for exactly this [60], which gives us additional terms to the boundary condition.
By extending our calculations, we might get an effect from the polarization in
contrast to our findings in this work. It could also be interesting to include more
dimensions since we only have solved the Usadel equation in one dimension, while
there could be additional transport in other directions too. Then we could look at
more complex systems. In addition we could also include the orbital effect from
an applied magnetic field since we actually apply weak fields to the spin-active
junction in order to control the magnetization directions. Other aspects could be
temperature dependence and the effect of an applied bias voltage. It has been
predicted that the spin-splitting in the density of state can lead to thermoelectric
effect [66, 67].
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Appendix A

Pauli Matrices

The identity matrix and the 2x2-Pauli matrices are given by

σx =

(
0 1
1 0

)
, σy =

(
0 −i
i 0

)
, σz =

(
1 0
0 −1

)
. (A.1)

These are all matrices in spin-space. The Pauli matrices in particle-hole space are
denoted ρi with i = 1, 2, 3, and are defined by:

ρ̂1 =

(
0 σx
σx 0

)
, ρ̂2 =

(
0 −iσx
iσx 0

)
, ρ̂3 =

(
σ0 0
0 −σ0

)
. (A.2)

We have also used the matrices:

τ̂i =

(
σiν 0
0 σ∗ν

)
, τ̂ =

(
σ 0
0 σ∗

)
, σ = (σx, σy, σz). (A.3)

where we have ν = x, y, z. When matrices of different size are present in the
same expression it is implied that the smallest matrix should be expanded on the
diagonal, so that σν ρ̂i = diag(σν , σν)ρ̂i. This also goes for the adding of a scalar
constant to the matrix. Then the constant is regarded as accompanied by a unit
vector of the size of the matrix.

When we write diag(· · · ) it means that these are the elements on the diagonal of
an empty matrix, such that σz = diag(1,−1), and we also use σy = offdiag(i,−i).
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Appendix B

Green Functions and Keldysh
Formalism

The quasiclassical 8x8-Keldysh Green function is a matrix in spin⊗particle-hole⊗Keldysh-
space:

ǧ =

(
ĝR ĝK

0 ĝA

)
. (B.1)

The quasiclassical retarded Green function ĝR originates from the normal retarded
Green function

ĜR = −iΘ(t1 − t2)
〈
[ψ(r1, t1), ψ†(r2, t2)]

〉
, (B.2)

where we have ψ(r, t) =
(
ψ↑(r, t), ψ↓(r, t), ψ

†
↑(r, t), ψ

†
↓(r, t)

)T

. The † means com-

plex conjugate and taking the transvers (T), and is called the Hermitian conjugate.
The arrows denote the spin configuration, ψ↑(r, t) is the annihilation operator for

spin up and ψ†↑(r, t) is the creation operator for spin up. We use the 〈· · · 〉 to
denote the average value. To get the quasiclassical retarded Green function, we
first integrate out the relative oscillations by use of the mixed representation, and
then we integrating over the energy ξp = p2/2m

ĝR =
i

π

∞∫

−∞

dξpĜ
R. (B.3)

This approximation is excepted since the Green function mostly has values around
the Fermi momentum.

The advanced and Keldysh Green functions can be constructed from the re-
tarded via:
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ĝA = −
[
ρ̂3ĝ

Rρ̂3

]†
, ĝK = ĝRĥ− ĥĝA (B.4)

and in equilibrium we have that ĥ = tanh (βE/2).
When parameterizing the retarded Green function as

ĝR =

(
g f

−f̃ −g̃

)
, (B.5)

we get from these definitions that

ĝA = −
(
g† f̃ †

−f † −g̃†
)
, (B.6)

ĝK =

(
g + g† f + f̃ †

−(f̃ + f †) −(g̃ + g̃†)

)
tanh

(βE
2

)
. (B.7)



Appendix C

MATLAB-script

Here we include some of the MATLAB scripts that are used. These are examples of
the ones that include spin-flip and spin-orbit scattering. We can set the scattering
strength to zero, if we want to disregard these effects. When actually preforming
the simulation it will be time-saving to remove terms that are not in use, such as
all terms for GMR, when it is set to zero.

First we present the function that solves the gamma-matrices inside the normal
metal. Here we make use of the MATLAB function bcp4c, which is especially useful
when solving coupled differential equations with boundary conditions. Note that
we have the matrix

v =




γ
γ̃
∂xγ
∂xγ̃


 (C.1)

but since the program need the result to be on vector form, we define y=v(:)

which means a vector where the columns are placed after each other.

y = (γ11, γ21, γ̃11, γ̃21, ∂xγ11, ∂xγ21, ∂xγ̃11, ∂xγ̃21, γ12, γ22, γ̃12, γ̃22, ∂xγ12, ∂xγ22, ∂xγ̃12, ∂xγ̃22)
(C.2)

The function myBvpSpinActiveSO

1 % The function myBvpSpinActive solves the Usadel equation in the
2 % normal metal of a spin-active SNS junction for the gamma-matrices
3 % given by the Riccati parameterization.
4

5 function y=myBvpSpinActive(e,a,d,eT,n,y0,z1,z2,Gp1,Gp2,Gm1,Gm2,so,sf)
6 % We use global parameters to get the same values in all
7 % underlying functions
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8

9 global E % Quasiparticle energy in the Usadel equation
10 global alpha % Angle from the z-axis of m1 (left)
11 global phase % Superconducting phase difference
12 global Et % Thouless energy in the normal metal
13 global N % Number of evaluated points at the x-axis
14 global yInit % Previous solution of y
15 global zeta1 % R Barrier/R N left interface
16 global zeta2 % ""
17 global Gphi1 % Relative conductance G phi1/G T.
18 global Gphi2 % ""
19 global Gmr1 % Relative conductance G mr1/G T.
20 global Gmr2 % ""
21 global SO % Spin-orbit: g so = 1/8*Delta*tau so
22 global SF % Spin-flip: g sf = 1/8*Delta*tau sf
23

24 global Theta % f BCS = sinh(Theta)
25 global m1 % Magnetization direction left
26 global m2 % ""
27

28 %% And here we give the global parameters values from the intake:
29 E = e;
30 alpha = a;
31 phase = d;
32 Et = eT;
33 N = n;
34 yInit = y0;
35 zeta1 = z1;
36 zeta2 = z2;
37 Gphi1 = Gp1;
38 Gphi2 = Gp2;
39 Gmr1 = Gm1;
40 Gmr2 = Gm2;
41 SO = so;
42 SF = sf;
43

44 Theta = atanh(1/E);
45 %phi = pi/4; % We use phi together with the alternative
46 % to m1 below, if we want the azimuth
47 % angle to be different from pi half.
48 m1 = [0 sin(alpha) cos(alpha)]; %...
49 % [sin(alpha)*cos(phi) sin(alpha)*sin(phi) cos(alpha)];
50 m2 = [0 0 1];
51

52 %% Here the main code is given:
53 x = linspace(0,1,N);
54 solinit = bvpinit(x,@myInit);
55 options = bvpset('Stats','{off}','RelTol',1e-6);
56 sol = bvp4c(@myOde,@myBc,solinit,options);
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57 y = deval(sol,x);
58

59 % For these lines to work we need to make three functions within this
60 % main function. The first solves the ordinary differential eq.,
61 % the next contains the boundary conditions and the last gives an
62 % initial guess on the solution.
63

64 function dydx = myOde(~,y)
65 global E
66 global Et
67 global SO
68 global SF
69

70 % In accordance with the definition of y we have:
71 gam = [y(1) y(9); y(2) y(10)];
72 gamt = [y(3) y(11); y(4) y(12)];
73 dgam = [y(5) y(13); y(6) y(14)];
74 dgamt = [y(7) y(15); y(8) y(16)];
75

76 N = (eye(2)/(eye(2)-gam*gamt));
77 Nt= (eye(2)/(eye(2)-gamt*gam));
78

79 % Via the Riccati parameterization we get Green function,
80 % the anomalous Green function and their tilded versions.
81 g = N*(eye(2)+gam*gamt) ;
82 f = 2*N*gam;
83 gt = Nt*(eye(2)+gamt*gam);
84 ft = 2*Nt*gamt;
85

86 % We define the Pauli matrices:
87 tau1 = [0,1;1,0];
88 tau2 = [0,-1i;1i,0];
89 tau3 = [1,0;0,-1];
90

91 a = E*eye(2) + 1i*(SF+SO)*(tau1*g*tau1 + tau2*g*tau2 + tau3*g*tau3);
92 b = + 1i*(SF-SO)*(tau1*f*tau1 - tau2*f*tau2 + tau3*f*tau3);
93 c = - 1i*(SF-SO)*(tau1*ft*tau1 - tau2*ft*tau2 + tau3*ft*tau3);
94 d = -E*eye(2) - 1i*(SF+SO)*(tau1*gt*tau1 + tau2*gt*tau2 + tau3*gt*tau3);
95

96 % Keep in mind that
97 % dv/dx = [dx(gamma); dx(gamma-tilde); dxˆ2(gamma); dxˆ2(gamme-tilde)]
98

99 dvdx = [dgam;
100 dgamt;
101 -2*dgam*gamt*N*dgam - (1i/Et)*(a*gam - gam*d + gam*c*gam - b);
102 -2*dgamt*N*gam*dgamt + (1i/Et)*(d*gamt - gamt*a + gamt*b*gamt - c);];
103 dydx = dvdx(:);
104

105 % Now, we turn to the boundary conditions
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106

107 function res = myBc(ya,yb)
108 global phase
109 global zeta1
110 global zeta2
111 global Gphi1
112 global Gphi2
113 global Gmr1
114 global Gmr2
115 global Theta
116 global m1
117 global m2
118

119 % ya equals the solution on the left side (x=0) in the normal metal
120 % and similarly, yb if the solution on the right side (x = \ell)
121

122 agam = [ya(1), ya(9); ya(2), ya(10)];
123 agamt = [ya(3), ya(11); ya(4), ya(12)];
124 adgam = [ya(5), ya(13); ya(6), ya(14)];
125 adgamt = [ya(7), ya(15); ya(8), ya(16)];
126

127 bgam = [yb(1) yb(9); yb(2) yb(10)];
128 bgamt = [yb(3) yb(11); yb(4) yb(12)];
129 bdgam = [yb(5) yb(13); yb(6) yb(14)];
130 bdgamt = [yb(7) yb(15); yb(8) yb(16)];
131

132 Na = eye(2)/(eye(2)-agam*agamt);
133 Nb = eye(2)/(eye(2)-bgam*bgamt);
134 Nat = eye(2)/(eye(2)-agamt*agam);
135 Nbt = eye(2)/(eye(2)-bgamt*bgam);
136

137 % We define the matrix i*tau y = itau2
138 % to make the code easier to read.
139 itau2 = [0,1;-1,0];
140

141 % The solution on the superconducting
142 % side of the interface is given by:
143 gBCS = eye(2)*cosh(Theta); % Same on R and L.
144 afBCS = itau2*sinh(Theta); % phase L = 0
145 bfBCS = itau2*sinh(Theta)*exp(1i*phase); % phase R = phase
146

147 gBCSt = eye(2)*cosh(Theta);
148 afBCSt = -itau2*sinh(Theta);
149 bfBCSt = -itau2*sinh(Theta)*exp(-1i*phase);
150

151 ag = Na*(eye(2)+agam*agamt);
152 af = 2*Na*agam;
153 bg = Nb*(eye(2)+bgam*bgamt);
154 bf = 2*Nb*bgam;
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155

156 agt = Nat*(eye(2)+agamt*agam);
157 aft = 2*Nat*agamt;
158 bgt = Nbt*(eye(2)+bgamt*bgam);
159 bft = 2*Nbt*bgamt;
160

161 % First we have the normal KL boundary conditions
162 KLa = (eye(2)-agam*agamt)*(gBCS*af - afBCS*agt - ag*afBCS...
163 + af*gBCSt - (gBCS*ag - afBCS*aft - ag*gBCS + af*afBCSt)*agam);
164 KLb = (eye(2)-bgam*bgamt)*(gBCS*bf - bfBCS*bgt - bg*bfBCS...
165 + bf*gBCSt - (gBCS*bg - bfBCS*bft - bg*gBCS + bf*bfBCSt)*bgam);
166 KLat = (eye(2)-agamt*agam)*(gBCSt*aft - afBCSt*ag - agt*afBCSt...
167 + aft*gBCS - (gBCSt*agt - afBCSt*af - agt*gBCSt + aft*afBCS)*agamt);
168 KLbt = (eye(2)-bgamt*bgam)*(gBCSt*bft - bfBCSt*bg - bgt*bfBCSt...
169 + bft*gBCS - (gBCSt*bgt - bfBCSt*bf - bgt*gBCSt + bft*bfBCS)*bgamt);
170

171 % Then we have the spin-active boundary conditions where we need
172 % Ma = (m vec*tau vec) for x = 0 and Mb = (m vec*tau vec) for x = L
173 Ma = [m1(3), (m1(1) - 1i*m1(2));(m1(1) + 1i*m1(2)), -m1(3)];
174 Mb = [m2(3), (m2(1) - 1i*m2(2));(m2(1) + 1i*m2(2)), -m2(3)];
175

176 % For the spin-dependent phase shift we have:
177 PHIa = 2*1i*Gphi1*(agam*conj(Ma) - Ma*agam);
178 PHIb = 2*1i*Gphi2*(bgam*conj(Mb) - Mb*bgam);
179 PHIat = 2*1i*Gphi1*(agamt*Ma - conj(Ma)*agamt);
180 PHIbt = 2*1i*Gphi2*(bgamt*Mb - conj(Mb)*bgamt);
181

182 % And for the spin polarization we have:
183 a1 = gBCS*Ma + Ma*gBCS;
184 b1 = afBCS*conj(Ma) + Ma*afBCS;
185 c1 = -afBCSt*Ma - conj(Ma)*afBCSt;
186 d1 = -gBCSt*conj(Ma) - conj(Ma)*gBCSt;
187

188 a2 = gBCS*Mb + Mb*gBCS;
189 b2 = bfBCS*conj(Mb) + Mb*bfBCS;
190 c2 = -bfBCSt*Mb - conj(Mb)*bfBCSt;
191 d2 = -gBCSt*conj(Mb) - conj(Mb)*gBCSt;
192

193 % where we have defined {diag(Ma,Ma*),g BCS} = [a1, b1 ;c1, d1].
194

195 MRa = 2*Gmr1*(a1*agam - agam*d1 + agam*c1*agam - b1);
196 MRb = 2*Gmr2*(a2*bgam - bgam*d2 + bgam*c2*bgam - b2);
197 MRat = 2*Gmr1*(d1*agamt - agamt*a1 + agamt*b1*agamt - c1);
198 MRbt = 2*Gmr2*(d2*bgamt - bgamt*a2 + bgamt*b2*bgamt - c2);
199

200 % This function treats the conditions in a vector that should be zero
201 % and we write the total boundary conditions first as a matrix:
202 % res = 0
203 res = [4*zeta1*adgam - KLa + PHIa - MRa;
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204 4*zeta2*bdgam + KLb - PHIb + MRb;
205 4*zeta1*adgamt - KLat - PHIat + MRat;
206 4*zeta2*bdgamt + KLbt + PHIbt - MRbt;];
207

208 % and then as a vector:
209 res = res(:);
210

211

212 % The last initial guess function only takes in a predefined
213 % number of points along the x-axis, which is the same number
214 % of x- positions as the initial y-solution gives. Then we only need
215 % to match the positions x to the rigth y.
216

217 function y = myInit(x)
218 global yInit
219 global N
220

221 xvec = linspace(0,1,N);
222 for i = 1:N
223 if x == xvec(i)
224 y = yInit(:,i);
225 end
226 end

Now we also include two scripts showing how to obtain the spin-supercurrents and
the density of states by using the function above.

Supercurrents

1

2 Evec = -3:0.001:0; % Energy/Delta 0 Alternativ 1
3

4 %Evec1= -3:0.02:-1.5;
5 %Evec2= -1.499:0.001:1.499;
6 %Evec3= 1.5:0.02:3;
7 %Evec = [Evec1 Evec2 Evec3]; % Alternativ 2
8

9 disp('Size of Evec: ')
10 disp(size(Evec))
11

12 d = 2e-2; % Inelastic scattering (finite lifetime)
13 ToverTc = 0.02; % Temperature in critical temperature
14 beta = 1.76/ToverTc; % Delta/(kB*T) = 1.76*Tc/T
15 aVec = linspace(0,pi,39); % Angle between m1 og m2 (alpha).
16 p = pi/2; % Phase difference.
17 xi = 30e-9; % Superconducting coherence length (e-9=nm)
18 L = 10e-9; % Length of normal metal (e-9=nm).
19 eT = (xi/L)ˆ2; % Thouless energy per Delta: E T/Delta 0.
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20 n = 20; % Length of x-vector
21 Gp1 = 4;
22 Gp2 = 4;
23 z1 = 5; % R Barrier/R N (left).
24 z2 = 5; % R Barrier/R N (right).
25 Gm1 = 0;
26 Gm2 = 0;
27 soV = [0 1 2 5 10 20]; %i/(8*tau sf)
28 sfV = [0 0 0 0 0 0]; %i/(8*tau so)
29 for m = 1:length(soV)
30 disp(['m = ' num2str(m)])
31 so = soV(m);
32 sf = sfV(m);
33 currQ = zeros(1,length(aVec)); % Charge-supercurrent Iq.
34 currX = zeros(1,length(aVec)); % Spin-supercurrent Ix
35 currY = zeros(1,length(aVec)); % Spin-supercurrent Iy
36 currZ = zeros(1,length(aVec)); % Spin-supercurrent Iz
37

38 currQt = zeros(1,length(aVec));% triplet component of Iq
39 currQs = zeros(1,length(aVec));% singlet
40 currQu = zeros(1,length(aVec));% up up
41 currQd = zeros(1,length(aVec));% down down
42 for j = 1:length(aVec)
43 a = aVec(j);
44 % To monitor our progress, we write.
45 disp(['alpha nr. ' num2str(j) '/' num2str(length(aVec))])
46 dcurrQ = zeros(1,length(Evec));
47 dcurrX = zeros(1,length(Evec));
48 dcurrY = zeros(1,length(Evec));
49 dcurrZ = zeros(1,length(Evec));
50

51 dcurrQt = zeros(1,length(Evec));
52 dcurrQs = zeros(1,length(Evec));
53 dcurrQu = zeros(1,length(Evec));
54 dcurrQd = zeros(1,length(Evec));
55 % For the first energy, we use the trivial
56 % zero matrix as the initial solution.
57 y = zeros(16,n);
58 for i = 1:length(Evec)
59 e = Evec(i)+d*1i;
60 y = myBvpSpinActive(e,a,p,eT,n,y,z1,z2,Gp1,Gp2,Gm1,Gm2,so,sf);
61 s = size(y);
62 k = round(s(2)/2); % Evaluates in the middle of N.
63

64 gam = [y(1,k) y(9,k); y(2,k) y(10,k)];
65 gamt = [y(3,k) y(11,k); y(4,k) y(12,k)];
66 dgam = [y(5,k) y(13,k); y(6,k) y(14,k)];
67 dgamt = [y(7,k) y(15,k); y(8,k) y(16,k)];
68
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69 D = dgam*gamt + gam*dgamt;
70 N = eye(2)/(eye(2) - gam*gamt);
71

72 g = N*(eye(2) + gam*gamt);
73 dg = 2*N*D*N;
74 f = 2*N*gam;
75 df = 2*(N*D*N*gam + N*dgam);
76 ft = 2*gamt*N;
77 dft = 2*(dgamt*N + gamt*N*D*N);
78

79 % Alternative 1: Integrate from 0 to inf.
80 dcurrQ(i) = 4*real(-f(1,1)*dft(1,1) + ft(1,1)*df(1,1)...
81 - f(1,2)*dft(2,1) + ft(1,2)*df(2,1) - f(2,1)*dft(1,2)...
82 + ft(2,1)*df(1,2) - f(2,2)*dft(2,2)...
83 + ft(2,2)*df(2,2) )*tanh(beta*(e-d*1i)/2);
84

85 dcurrX(i) = 4*real(-(f(1,1)+f(2,2))*0.5*(dft(1,2)+dft(2,1))...
86 + (ft(1,1)+ft(2,2))*0.5*(df(1,2)+df(2,1))...
87 - 0.5*(f(1,2)+f(2,1))*(dft(1,1)+dft(2,2))...
88 + 0.5*(ft(1,2)+ft(2,1))*(df(1,1)+df(2,2)))*tanh(beta*(e-d*1i)/2);
89

90 dcurrY(i) = 4*imag((f(1,1)-f(2,2))*0.5*(dft(1,2)+dft(2,1))...
91 + (ft(1,1)-ft(2,2))*0.5*(df(1,2)+df(2,1))...
92 - 0.5*(f(1,2)+f(2,1))*(dft(1,1)-dft(2,2))...
93 - 0.5*(ft(1,2)+ft(2,1))*(df(1,1)-df(2,2)) )*tanh(beta*(e-d*1i)/2);
94

95 dcurrZ(i) = 4*real(- f(1,1)*dft(1,1) + ft(1,1)*df(1,1)...
96 + f(2,2)*dft(2,2) - ft(2,2)*df(2,2) )*tanh(beta*(e-d*1i)/2);
97

98 dcurrQt(i) = 4*real(- 0.5*(f(1,2)+f(2,1))*(dft(1,2)+dft(2,1))...
99 + 0.5*(ft(1,2)+ft(2,1))*(df(1,2)+df(2,1)))*tanh(beta*(e-d*1i)/2);

100

101 dcurrQs(i) = 4*real( + 0.5*(f(1,2)-f(2,1))*(dft(1,2)-dft(2,1))...
102 - 0.5*(ft(1,2)-ft(2,1))*(df(1,2)-df(2,1)) )*tanh(beta*(e-d*1i)/2);
103

104 dcurrQu(i) = 4*real(-f(1,1)*dft(1,1)...
105 + ft(1,1)*df(1,1))*tanh(beta*(e-d*1i)/2);
106

107 dcurrQd(i) = 4*real(-f(2,2)*dft(2,2)...
108 + ft(2,2)*df(2,2))*tanh(beta*(e-d*1i)/2);
109

110 dcurrX(i)=dcurrX(i) + 4*real((g(1,1)-g(2,2))*(dg(1,2)-dg(2,1))...
111 - (g(1,2)-g(2,1))*(dg(1,1)-dg(2,2)))*tanh(beta*(e-d*1i)/2);
112

113 dcurrY(i)=dcurrY(i) - 4*imag((g(1,1)+g(2,2))*(dg(1,2)+dg(2,1))...
114 + (g(1,2)+g(2,1))*(dg(1,1)+dg(2,2)))*tanh(beta*(e-d*1i)/2));
115

116 dcurrZ(i) = 8*real(g(1,2)*dg(2,1)...
117 -g(2,1)*dg(1,2))*tanh(beta*(e-d*1i)/2);
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118

119 % Alternativ 2: Integrate from -inf to inf.
120 % A = (g*dg - ctranspose(dg*g)) - (f*dft - ctranspose(df*ft));
121 % dcurrQ(i) = 2*real(A(1,1)+A(2,2))*tanh(beta*(e-d*1i)/2);
122 % dcurrX(i) = 2*real(A(1,2)+A(2,1))*tanh(beta*(e-d*1i)/2);
123 % dcurrY(i) = -2*imag(A(1,2)-A(2,1))*tanh(beta*(e-d*1i)/2);
124 % dcurrZ(i) = 2*real(A(1,1)-A(2,2))*tanh(beta*(e-d*1i)/2);
125 %
126 % dcurrQt(i) = 2*real(-0.5*(f(1,2)+f(2,1))*(dft(1,2)+dft(2,1))...
127 % + 0.5*(ft(1,2)+ft(2,1))*(df(1,2)+df(2,1)))*tanh(beta*(e-d*1i)/2);
128 % dcurrQs(i) = 2*real(0.5*(f(1,2)-f(2,1))*(dft(1,2)-dft(2,1))
129 % - 0.5*(ft(1,2)-ft(2,1))*(df(1,2)-df(2,1)) )*tanh(beta*(e-d*1i)/2);
130 % dcurrQu(i) = 2*real(-f(1,1)*dft(1,1)...
131 % + ft(1,1)*df(1,1))*tanh(beta*(e-d*1i)/2);
132 % dcurrQd(i) = 2*real(-f(2,2)*dft(2,2)...
133 % + ft(2,2)*df(2,2))*tanh(beta*(e-d*1i)/2);
134 end
135

136 % We integrate over energy with the trapeze-method.
137 for i = 1:length(Evec)-1
138 currQ(j)= currQ(j)...
139 + 0.5*(dcurrQ(i) + dcurrQ(i+1))*(Evec(i+1)-Evec(i));
140 currX(j) = currX(j)...
141 + 0.5*(dcurrX(i) + dcurrX(i+1))*(Evec(i+1)-Evec(i));
142 currY(j) = currY(j)...
143 + 0.5*(dcurrY(i) + dcurrY(i+1))*(Evec(i+1)-Evec(i));
144 currZ(j) = currZ(j)...
145 + 0.5*(dcurrZ(i) + dcurrZ(i+1))*(Evec(i+1)-Evec(i));
146

147 currQs(j) = currQs(j)...
148 + 0.5*(dcurrQs(i) + dcurrQs(i+1))*(Evec(i+1)-Evec(i));
149 currQt(j) = currQt(j)...
150 + 0.5*(dcurrQt(i) + dcurrQt(i+1))*(Evec(i+1)-Evec(i));
151 currQu(j) = currQu(j)...
152 + 0.5*(dcurrQu(i) + dcurrQu(i+1))*(Evec(i+1)-Evec(i));
153 currQd(j) = currQd(j)...
154 + 0.5*(dcurrQd(i) + dcurrQd(i+1))*(Evec(i+1)-Evec(i));
155 end
156 end
157 % And at last, we plot the results, before it
158 % start the next iteration for other
159 % scattering strengths
160 figure(1)
161 plot(aVec,currQ,'b',aVec,currX,'r',aVec,currY,'g',aVec,currZ,'m')
162 legend('Iq','Ix','Iy','Iz')
163 ylabel('I/I 0, 1/(8*\tau {so})=[0 1 2 5 10 20], 1/(8*\tau {sf})=0')
164 xlabel('\alpha')
165 title(['L = ' num2str(L/1e-9) 'nm, \xi s = ' num2str(xi/1e-9)...
166 'nm, \theta = ' num2str(p/pi) '\pi, G {\phi}ˆ{1(2)} =' num2str(Gp1)...
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167 ', \zeta {1(2)} = ' num2str(z1) ', \phi = \pi/2, and T/Tc = '...
168 num2str(ToverTc) '.' ])
169 hold on
170 figure(2)
171 plot(aVec,currQ,'b',aVec,currQs,'r',...
172 aVec,currQt,'g',aVec,currQu,'m',aVec,currQd,'y')
173 legend('JQ','JQs','JQt','JQu','JQd')
174 ylabel('J/J 0 for 1/(8*\tau {so})=[0 1 2 5 10 20], 1/(8*\tau {sf})=0')
175 xlabel('\alpha')
176 title(['L = ' num2str(L/1e-9) 'nm, \xi s = ' num2str(xi/1e-9)...
177 'nm, \theta = ' num2str(p/pi) '\pi, G {\phi}ˆ{1(2)} =' num2str(Gp1)...
178 ', \zeta {1(2)} = ' num2str(z1) ', \phi = \pi/2, and T/Tc = '...
179 num2str(ToverTc) '.' ])
180 hold on
181

182 shg % shows the figures
183 end

Density of States

1 Evec = -1.5:1e-03:-1e-03; % Energy/Delta 0.
2 disp(['Size of Evec: ' num2str(size(Evec))])
3

4 delta = 2e-2; % Inelastic scattering.
5 phaseVec = 0:0.02*pi:0.99*pi; % Phase-difference.
6 disp(['Size of PhaseVec: ' num2str(size(phaseVec))])
7

8 z1 = 5; % R Barrier/R N.
9 z2 = 5; % R Barrier/R N.

10 a = pi; % Angle between m1 og m2 (alpha).
11 xi = 30e-9; % Superconducting coherence length.
12 L = 20e-9; % Length of normal metal (e-9 = nm).
13 eT = (xi/L)ˆ2; % Thouless energy.
14 n = 20; % Length of x-vector.
15 k = round(n/2); % Where to evaluate at x.
16 Gp1Vec = [0.5 1.1 1.5]; % Vector of G phi1.
17 Gp2Vec = [0.5 1.1 1.5]; % Vector of G phi2.
18 so = 2; % Spin-orbit strength g so.
19 sf = 0; % Spin-orbit strength g sf.
20 Gm1 = 0;
21 Gm2 = 0;
22 % We make m number of plots in the plane
23 % of sc phase difference and quasiparticle energy.
24 for m = 1:length(Gp1Vec)
25 disp(['m = ' num2str(m)])
26 Gp1 = Gp1Vec(m);
27 Gp2 = Gp2Vec(m);
28 % We now construct the density of state matrix.
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29 DOS = zeros(length(phaseVec),length(Evec));
30 for j = 1:length(phaseVec)
31 p = phaseVec(j);
32 disp(['theta = ' num2str(p)])
33 % For the first energy, we use the trivial
34 % zero matrix as the initial solution.
35 y = zeros(16,n);
36 for i = 1:length(Evec)
37 e = Evec(i)+deltaE*1i;
38 % For all other energies we use the solution
39 % form the previous energy.
40 y = myBvpSpinActive(e,a,p,eT,n,y,z1,z2,Gp1,Gp2,Gm1,Gm2,so,sf);
41 % For the solution, we construct the gamma-matrices.
42 gam = [y(1,k), y(9,k); y(2,k), y(10,k)];
43 gamt = [y(3,k), y(11,k); y(4,k), y(12,k)];
44 N = eye(2)/(eye(2) - gam*gamt);
45 g = N*(eye(2) + gam*gamt);
46 % And the density of state at energy (i)
47 % and phase (j) becomes:
48 DOS(j,i) = 0.5*real(trace(g));
49 end
50 end
51 % Since the conventional density of state is symmetric with
52 % respect to energy, we have only solved for half the energies,
53 % and flip the solution into the other half-plane.
54 dos = [DOS fliplr(DOS)];
55 evec = [Evec -fliplr(Evec)];
56

57 figure(m+1)
58 surf(evec,phaseVec/pi,dos,'linestyle','none')
59 xlabel('E/\Delta 0')
60 zlabel(['Density of State, so=' num2str(so/1i) ', sf=' num2str(sf/1i)])
61 ylabel('\theta/\pi')
62 legend(['L=' num2str(L/1e-9) 'nm, \xi s=' num2str(xi/1e-9)...
63 'nm, \alpha = ' num2str(a/pi) '\pi, G \phiˆ{1(2)}=' num2str(Gp1)...
64 ',\zeta {1(2)}=' num2str(z1) ', deltaE=' num2str(deltaE) '.'])
65 shg
66 end
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Spin-Supercurrent and Phase-Tunable Triplet Cooper Pairs via Magnetic Insulators

Ingvild Gomperud and Jacob Linder
Department of Physics, Norwegian University of Science and Technology, N-7491 Trondheim, Norway

(Dated: June 10, 2015)

We demonstrate theoretically that a dissipationless spin-current can flow a long distance through a diffu-
sive normal metal by using superconductors interfaced with magnetic insulators. The magnitude of this spin-
supercurrent is controlled via the magnetization orientation of the magnetic insulators. The spin-supercurrent
obtained in this way is conserved in the normal metal just like the charge-current and interestingly has a term
which is independent of the superconducting phase difference. The quantum state of the system can be switched
between 0 and π by reversing the insulators from a parallel to antiparallel configuration with an external field.
We show that the spin-current is carried through the normal metal by superconducting triplet (odd-frequency)
correlations and that the superconducting phase difference can be used to enhance these, leaving clear spectro-
scopic fingerprints in the density of states.

INTRODUCTION

Using superconductors as active components in spintron-
ics devices is a research field that has attracted increasing
activity in recent years [1]. Such a synergy becomes possi-
ble both due to the special behavior of spin-polarized quasi-
particles in superconductors, featuring extremely long spin
lifetimes and spin relaxation lengths [2–4], and because su-
perconducting Cooper pairs can become spin-polarized [5–7].
This type of Cooper pairs occur not only in superconductors
with intrinsic triplet pairing, such as UGe2 [8] and its cousins
URhGe and UCoGe [9], but can in fact be artificially engi-
neered in hybrid structures between conventional supercon-
ductors and magnetic materials [10, 11]. For samples with
substantial impurity scattering, which is the experimentally
most common scenario, these triplet Cooper pairs acquire a
special property known as odd-frequency symmetry [12] in
order to satisfy the Pauli principle. What this means is while
the Cooper pair wavefunction is symmetric under both an ex-
change of space- and spin-coordinates, it is antisymmetric un-
der an exchange of time-coordinates. This property leads to
remarkable features such as gapless superconductivity [13],
anomalous Meissner effects [14–17], and the possibility to
create spin-supercurrents in diffusive ferromagnetic materi-
als [18]. It is worth mentioning that paramagnetic Meissner
effects and zero-bias conductance peaks can also originate
from other types of effects which are not related to uncon-
ventional superconductivity, as shown previously in the con-
text of d-wave superconductivity in the cuprates [19–21] and
more recently for topological insulators [22]. The quality of
the materials and avoiding crashing the STM tip into the sam-
ple are of paramount importance for proper identification of
unusual types of superconductivity such as the odd-frequency
one mentioned above.

In the context of utilizing superconductors for spintronics
purposes, the possibility of spin-supercurrents in ferromag-
netic materials [23] has earned the triplet Cooper pairs much
attention. It is known that in structures featuring inhomoge-
neous magnetic order, such as intrinsically textured ferromag-
nets like Ho [24, 25], or multilayers with several ferromagnets
[26], triplet supercurrents can arise even when using conven-

tional s-wave superconductors which feature spinless Cooper
pairs. However, spin-currents arising in this way in textured
magnetic layers are in general not conserved due to the spa-
tially changing magnetization direction. Moreover, it can be
difficult practically to control the magnetization direction of
each of the individual layers when using complex structures as
in Ref. [26] to create the spin-supercurrent. A large amount of
works have studied how triplet supercurrents can arise in var-
ious types of structures including both weakly and strongly
polarized ferromagnets (see e.g. Refs. [27–39]). However, it
would be highly desirable to create a spin-supercurrent flow-
ing in a normal (non-magnetic) metal with a minimum amount
of magnetic elements required due to the ensuing simplifica-
tion in how to control the existence, and the properties, of the
spin-supercurrent.

Now, it was recently experimentally shown in Ref. [40]
that by using magnetic insulators (MI) in a superconducting
spin-valve setup, it was possible to control the superconduct-
ing critical temperature Tc by changing the relative magne-
tization configuration from parallel (P) to antiparallel (AP)
by application of an external field, causing an essentially in-

Magnetic insulator

Superconductor

Normal metal

FIG. 1: (Color online) The proposed setup: a Josephson junction
with magnetic insulators (MIs) inserted between the superconduc-
tors and the normal metal. The magnetic insulators have a magneti-
zation that due to shape anisotropy is expected to be confined to the
plane perpendicular to the tunneling direction. The magnetic mo-
ments of the MIs on the left and right side of the junction, mL and
mR, may be misaligned and an applied superconducting phase dif-
ference across the junction drives both a charge and spin supercur-
rent.
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finite magnetoresistance effect. This finding prompted us to
pose the question: what happens when magnetic insulators are
used in a Josephson junction that has a normal, non-magnetic
metal as its weak link? Can this create a spin-polarized dis-
sipationless flow and, if so, can such a spin-supercurrent be
controlled externally? We here demonstrate that the presence
of magnetic insulators in a Josephson junction offers an inter-
esting way to create a conserved spin-supercurrent in a normal
metal (see Fig. 1). This spin-flow is controlled with the rel-
ative misalignment angle between the magnetic insulators. A
main advantage with this setup, compared to previous propos-
als using ferromagnets, is that (i) the magnetic configuration is
easily tunable since the magnetization of one single very thin
(1-2 nm) magnetic insulator needs to be altered and that (ii)
the spin-supercurrent is conserved in the normal metal, unlike
what happens in textured ferromagnets.

Moreover, the spin-supercurrent is carried by odd-
frequency Cooper pairs which leave a clear spectroscopic fin-
gerprint in the density of states. We show that by tuning
the superconducting phase difference θ, one can qualitatively
change the nature of the proximity effect from a conven-
tional singlet one to a triplet one in situ. We also show that
the presence of magnetic insulators not only creates a spin-
supercurrent, but that it has important consequences for the
quantum phase of the system which undergoes a dynamic 0-
π transition for a single sample by changing from a P to AP
configuration for the insulators.

THEORY

We use the quasiclassical theory of superconductivity [41,
42] in the diffusive limit, where the physics is described by
the Green matrix function ǧ of the system which is an 8×8
matrix in Keldysh-Nambu space. It is defined in terms of the
retarded, advanced, and Keldysh part of the Green function:

ǧ =

(
gR gK

0 gA

)
. In the absence of non-equilibrium effects,

such as applied voltages and temperature-gradients, it is suf-
ficient to consider the retarded part gR ≡ g, which may be
parametrized conveniently as follows [43]:

g =

(N (1 + γγ̃) 2Nγ
−2Ñ γ̃ −Ñ (1 + γ̃γ)

)
, g2 = 1. (1)

We have defined N = (1 − γγ̃)−1 for normalization and
the ˜. . . operation means complex conjugation and reversal of
quasiparticle energy. The Ricatti-matrices {γ, γ̃} are 2×2 ma-
trices in spin space and the Green function g satisfies the Us-
adel equation [44] in the normal metal

D∂x(g∂xg) + i[ερ3, g] = 0. (2)

Here, D is the diffusion coefficient of the normal metal, ρ3 =
diag(1,−1), and ε is the quasiparticle energy measured rela-
tive the Fermi level. In order to account for the magnetic insu-
lators at the interfaces, we use spin-dependent boundary con-
ditions discussed in Ref. [45]. The most important effect of

the magnetic insulators is the spin-dependent phase-shifts ex-
perienced by quasiparticles scattering at the interface, which
are described by a parameter Gϕ to be defined below. The su-
perconducting regions are described by bulk Green functions
which for the left and right side of the junction are denoted gL
and gR, where

γ
j

= iσys/(1 + 1c)eiθj , γ̃
j

= −iσys/(1 + 1c)e−iθj , (3)

with j = {L,R}. We have introduced

s = sinh Θ, c = cosh Θ, with Θ = atanh(∆0/ε), (4)

where ∆0 is the magnitude of the superconducting order pa-
rameter. The bulk solution is an excellent approximation for
low interface transparencies when using large superconduct-
ing reservoirs. We have used the second Pauli matrix σy , and
the superconducting phase difference across the junction is
defined as θ ≡ θR − θL. The boundary conditions read:

2dζLg∂xg = [gL, g] + iGLϕ[ML, g] at x = 0,

2dζRg∂xg = [g, gR]− iGRϕ [MR, g] at x = d,

(5)

where ζj = RB,j/RN is the ratio between the normal-state
barrier resistance on side j and the resistance of the nor-
mal metal, and Gjϕ = −∑n dϕn/

∑
n Tn where Tn is the

transmission probability for channel n and dϕn are the spin-
dependent part of the phase-shifts picked up by particles scat-
tered at the interface. Finally, the matrix Mj describes the
orientation of the magnetic moment of the magnetic insulator
on side j, while d is the length of the normal metal. Exper-
imentally, it is likely that the magnetic insulators will have
exchange fields lying in the plane perpendicular to the tunnel-
ing direction due to shape anisotropy if one uses a layered
’pancake’ geometry for the junction. This case, and other
configurations, are covered by us setting the right interface to
MR = diag(σz, σz) whereas the left interface is allowed to
have an arbitrary orientation, i.e.ML = cosαdiag(σz, σz) +
sinφ sinαdiag(σy,−σy) + cosφ sinαdiag(σx, σx). Here, φ
is the azimuthal angle in the xy-plane and α is the angle be-
tween the magnetization and the z-axis. For later use, we de-
fine the magnetic moments of the insulators on the left and
right side as mL and mR.

The boundary conditions used here can also be extended
[45] to include a magnetoresistance term GMR which ac-
counts for the different transmission probabilities for spin-↑
and spin-↓ particles. Inclusion of such a term amounts mainly
to an overall reduction of the superconducting proximity ef-
fect and we have explicitly verified numerically that the spin-
supercurrent exists even in its presence. The magnetic mo-
ment associated with each magnetic insulator should be un-
derstood as the net average moment of the interface region,
since a disordered interface might have an internal magnetic
structure. Moreover, interfaces in hybrid structures are intrin-
sically accompanied by the lack of inversion symmetry. For
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this reason, spin-orbit effects could arise at the interface and
modify the spin-dependent scattering at the superconducting
interface [46–48]. However, it is currently unknown how to
incorporate such interfacial spin-orbit scattering in the bound-
ary conditions of quasiclassical theory. Nevertheless, even
if such a mechanism existed, the spin-dependent phase-shifts
due to the magnetic insulators captured by the parameter Gϕ
in our work is sufficient to produce triplet Cooper pairs, and
so we do not expect that a second mechanism that accom-
plishes the same thing (due to spin-orbit interaction) would
bring about any major changes.

Finally, we will later on include non-ideal effects such as
spin-flip scattering due to magnetic impurities and spin-orbit
impurity scattering to see how they influence the spin- and
charge-flow as well as the density of states in the system.
These are accounted for [41, 42] by adding extra self-energy
terms in the commutator part of the Usadel equation Eq. (2):

Magnetic impurities: Σsf =
i

8τsf
τgτ ,

Spin-orbit scattering: Σso =
i

8τso
τρ3gρ3τ ,

(6)

Here we have defined the matrix vector τ = (τx, τy, τz),
where the components are given by:

τν = diag(σν , σ
∗
ν), ν = {x, y, z}. (7)

For future reference, we introduce the normalized strength of
magnetic impurity and spin-orbit scattering as gsf = 1/8∆0τsf
and gso = 1/8∆0τso, where τsf/so are the relaxation times as-
sociated with each type of scattering.

RESULTS

Spin-Supercurrent via Magnetic Insulators

We proceed to discuss how the charge- and spin-
supercurrents sustained by the system are influenced by the
presence of the ferromagnetic insulators. In the quasiclassical
framework, these are given by

IQ =
N0eDA

4

∫ ∞

−∞
dεTr{ρ3(ǧ∂xǧ)K} (8)

and

IνS =
N0~DA

8

∫ ∞

−∞
dεTr{ρ3τν(ǧ∂xǧ)K}. (9)

Here, N0 is the density of states at the Fermi-level in the
normal-state, e is the electric charge, ~ is the reduced Planck
constant, while A is the interface contact area. For future
use, we also define the bulk superconducting coherence length
ξS =

√
D/∆0. In the weak proximity effect regime, we were

able to find a general analytical result for the supercurrents of

spin and charge (see Appendix for details). We first briefly
consider the charge-supercurrent which reads:

IQ = (IQ,0 + IQ,1 cosαGLϕG
R
ϕ ) sin θ, (10)

where the coefficients IQ,0 and IQ,1 are lengthy expressions
that depend on junction parameters such as the width d, mis-
alignment angle α, temperature T , and the interface trans-
parencies ζL/R. The charge-current is found to be inde-
pendent of which orientation the magnetic moments have in
the xy-plane, φ. We see that the presence of magnetic in-
sulators coupled to the superconductors introduces a cosα-
dependence on the supercurrent, not only tuning its overall
magnitude, but also changing the quantum ground-state of the
junction from 0 to π when

IQ,1 cosαGLϕG
R
ϕ = −IQ,0. (11)

Thus, 0-π transitions can now occur even with a normal metal
interlayer by changing α, a feature which was also reported
in the ballistic limit in Ref. [27]. To demonstrate that this
is a robust feature, we have computed the charge supercur-
rent without any assumption of a weak proximity effect, thus
using the full Riccati parametrization. This is shown in Fig.
2(d), where the current changes sign at α ' 0.2π correspond-
ing to the 0-π transition. Further information may be inferred
from the analytical expression for the charge-supercurrent in
the Appendix, Eq. (18): as the width d of the junction in-
creases, larger values for the spin-dependent phase-shifts Gϕ
are required in order to make the 0-π transition possible.

Interestingly, there exists not only a superflow of charge in
the system, but also of spin. The polarization occurs in the
direction mL ×mR, and so we find that while IzS = 0, one
has:

IxS = GLϕG
R
ϕ sinφ sinα(IS,0 + IS,1 cos θ). (12)

Eq. (12) is one of the main results of this work. It is seen that
the spin-supercurrent vanishes if one only has one magnetic
insulator, in which case GLϕ or GRϕ is zero. Moreover, it is
proportional to sinα, which shows that it is also absent in the
P or AP alignment (α = 0, π). For other angles α, however, it
is in general present. The coefficients {IS,0, IS,1} are purely
real and vanish in the absence of superconductivity (∆ = 0).
There exists a simple relation between the components of the
spin-supercurrent in the xy-plane:

IxS
IyS

= − sinφ

cosφ
. (13)

This spin-supercurrent has several remarkable features: first
of all, it is conserved throughout the normal metal just like the
charge-current. Secondly, it is long-ranged as it flows through
a normal metal without any exchange field. Thirdly, it has one
component that is independent of the superconducting phase
difference θ. The other component goes like cos θ, mean-
ing that the total spin-supercurrent satisfies IxS(θ) = IxS(−θ).
This can be understood physically, since a spin-current is in-
variant under time-reversal symmetry. The latter operation
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transforms θ → (−θ) and causes the charge-supercurrent to
change sign. In the Appendix, we give the full expression of
the spin-supercurrents including the coefficients and their de-
pendence on the junction parameters. The spin-supercurrent
vs. misalignment angle α is shown in Fig. 2(a)-(c) for differ-
ent junction parameters.

The properties of this spin-supercurrent are such that it
resolves two aforementioned challenges: the spin-current is
conserved and it is readily controlled with a weak external
field coupling to the magnetic insulators. We underline that
our structure, unlike previous works, does not include any
ferromagnetic metals. In fact, a conceptually similar exper-
imental structure to the one that we propose to use in our
manuscript has recently been demonstrated in Ref. [40].
There, the authors investigated a spin-valve structure consist-
ing of a superconductor flanked by two magnetic insulators of
slightly different thicknesses (both of order a few nm). Apply-
ing an external magnetic field would then control the magneti-
zation orientation of the thinner of these layers. This indicates
that our results are of experimental relevance using currently
available techniques.
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FIG. 2: (Color online) Plot of the spin- and charge-supercurrents in
the system. We have used ξS = 30 nm and the relative temperature
T/Tc = 0.02. The interface parameters are set to be equal, Gϕ = 3
and ζ = 2, and the phase difference is the one supporting the critical
current, θ = π/2. In (a), we have set d = 20 nm, φ = 0. In (b),
we have d = 5 nm and φ = π/4. In (c), we set d = 20 nm and
φ = π/4. As expected, the components of the spin-supercurrents
are mirror-images of each other in (b) and (c) due to the choice of
magnetic configuration of the insulators, φ = π/4 [see Eq. (13)].
The charge-supercurrent is independent of φ. As seen, it changes
sign when going from α = 0 to α = π, signalling a 0-π transition.
The normalization constant of the charge-current is I0 = N0eDA/4
while for the spin-currents it is I0 = N0~DA/8. The contour plot in
the bottom panel (d) is the charge-supercurrent in the θ-α plane using
d = 20 nm, showing the occurrence of the 0-π transition around
α ' 0.2π.

In an experimental setting, the normal metal sample may
well include some degree of magnetic impurities or spin-orbit
scattering on impurities. Thus, it is of interest to see how such
non-ideal effects influence the predictions made in this paper.
Although no tractable analytical expression is accessible in
this case, we have computed numerically the charge- and spin-
supercurrent in the presence of spin-flip scattering and spin-
orbit impurity scattering as described by Eq. (6). Interest-
ingly, the dissipationless flow of charge and spin are affected
very differently depending on the type of scattering. Consider
first the charge-supercurrent [top row of Fig. 3]. With in-
creasing spin-flip scattering, the current is monotonically sup-
pressed. However, this is not the case for spin-orbit impurity
scattering (middle panel). Instead, the 0-π transition point
vanishes and the current retains its order of magnitude even
for very large values of gso. Turning to the spin-supercurrent,
we find that both magnetic impurity scattering and spin-orbit
impurity scattering suppress the spin-flow monotonically.

The physical origin of the different behavior of the charge-
and spin-supercurrents when adding magnetic impurities and
spin-orbit scattering can be traced back to how the singlet
and triplet superconducting correlations are affected by them
[53, 54]. It can be demonstrated analytically that the singlet
component is insensitive to spin-orbit impurity scattering in
the absence of a magnetic field, as is reasonable since spin-
orbit scattering respects time-reversal symmetry. On the other
hand, the triplet component is suppressed as the spin-orbit
scattering rate increases. Based on this, one can now un-
derstand why the charge-supercurrent evolves different with
increasing spin-flip and spin-orbit scattering respectively. In
the former case, both the singlet and triplet components are

FIG. 3: (Color online) Plot of the charge-supercurrent and the com-
ponents of the spin-supercurrent in the presence of spin-flip scatter-
ing due to magnetic impurities and spin-orbit impurity scattering.
Column (a) corresponds to magnetic impurity scattering (lines corre-
sponding to different values of gsf), column (b) to spin-orbit scatter-
ing (gso), and column (c) to both present with equal magnitude. The
parameters are set to d = 5 nm, ξS = 30 nm, Gϕ = 3, ζ = 2,
T/Tc = 0.02, and θ = π/2
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suppressed, i.e. the total superconducting proximity effect is
reduced, and the current simply decays montonically. In the
latter case, however, only the triplet part is suppressed. With
only the singlet part remaining in the normal metal, there is
no mechanism to cause a 0-π transition and the sign of the
current remains positive and still of appreciable magnitude.

The same reasoning can be applied to the spin-current.
In this case, it is solely the triplet part which is responsible
for its existence. Since both magnetic impurities and spin-
orbit scattering suppress the triplet Cooper pairs, the spin-
supercurrent decays monotonically as the scattering rate in-
creases. It can be seen from Fig. 3 that the dependence of the
spin-supercurrent on the misalignment angle α between the
magnetic insulator moments goes toward a pure sinα profile
as gso becomes large.

Phase-tunable Triplet Superconductivity

Besides the appearance of this unusual spin-supercurrent,
a Josephson junction with magnetic insulator interfaces of-
fers a unique way to control triplet superconductivity as
we now demonstrate. It has previously been shown that a
crossover from pure conventional even-frequency pairing to
odd-frequency pairing is made possible via spin-active in-
terfaces in S|MI|N bilayer junctions [50]. The pivotal pa-
rameter is the ratio between the spin-dependent phase-shifts
and the normal-state tunnel conductance, in our notation Gϕ,
which causes a pure odd-frequency proximity pairing state at
the Fermi level (ε = 0) when Gϕ > 1 while a pure even-
frequency state occurs when Gϕ < 1. Experimentally, this
is manifested as a large zero-energy peak in the density of
states when the odd-frequency triplets dominate. Conversely,
a minigap appears in the spectrum for conventional singlet
pairing. To observe such an effect, it would be necessary to
fabricate several samples with a varying ratioGϕ. One way to
accomplish this could be to vary the width of the MI interlayer
in order to tune the tunneling probability.

Instead, we here show that when spin-active interfaces are
incorporated in a Josephson junction geometry, the crossover
from even- to odd-frequency pairing can now be controlled
by the superconducting phase difference θ, which in turn is
determined by the current flowing through the system. This
offers a new way to induce a triplet proximity effect which
can be changed in situ within a single sample, simply by vary-
ing θ. The crossover is manifested by the qualitative nature of
the proximity effect, going from a minigap (conventional sin-
glet proximity effect) to an enhanced low-energy peak (odd-
frequency triplet proximity effect). In order to probe how the
change in pairing symmetry is manifested experimentally, we
here compute the density of states in the normal metal region
and its phase-dependence numerically which allows us to re-
lax the assumption of a weak proximity effect. The DOS nor-
malized to its normal-state value is obtained from the solution

FIG. 4: (Color online) Proximity-induced density of states N(ε, θ)
(normalized to its normal-state value) in the middle of the normal
metal region. In all cases, we are considering the P configuration
where both magnetic insulators have moments pointing in the z-
direction. The strength of the spin-dependent phase-shifts occuring
at the interfaces are given by (a) Gϕ = 0.55, (b) Gϕ = 1.05, and (c)
Gϕ = 1.55. We have used the parameters d = 20 nm, ξS = 30 nm,
and ζ = 5.
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of the Ricatti equations via:

N(ε, θ) = Re{Tr[N (1 + γγ̃)]}/2. (14)

To make better contact with experimental measurements, we
have added a small imaginary part to the quasiparticle ener-
gies, ε→ ε+ iδ where δ/∆0 � 1, which represents inelastic
scattering.

We consider the most general case where each supercon-
ducting interface contains a magnetic insulator. The results
are shown in Fig. 4, where we have focused on the exper-
imentally most accessible configuration with the insulators
in the P state. Three choices of the strength of the spin-
active scattering at the interfaces are considered in (a)-(c) with
Gϕ = {0.55, 1.05, 1.55}. It is seen that the nature of the
superconducting proximity changes qualitatively due to the
presence of the magnetic insulators. It is known that in the ab-
sence of magnetic elements (Gϕ = 0), a minigap is induced
in the normal metal which is largest for θ = 0 and closes at
θ = π. In Fig. 4(a), the minigap is prominent at small phase-
differences θ. However, instead of monotonically closing the
minigap as θ is driven towards π, the density of states becomes
strongly enhanced at low energies. This feature arises due to
the odd-frequency symmetry of the triplet Cooper pairs in the
normal metal [49–51]. When the spin-active scattering, taking
place at the insulators, becomes stronger in Fig. 4(b) and (c),
the minigap has vanished all-together, leaving behind only a
clear zero-energy peak in the density of states.

The qualitative change in the density of states (going from
fully suppressed to enhanced at low energies) can be seen
clearly also when keeping the superconducting phase differ-
ence θ fixed and varying the magnetic configuration α. This is
shown in Fig. 5: as one changes from a P to AP configuration
(going from α = 0 to α = π), the system makes a transition
from hosting proximity-induced triplet superconductivity to
singlet superconductivity. Our work thus demonstrates a con-
version between singlet and triplet Cooper pairs in a normal
metal by tuning either the superconducting phase difference
or the configuration of the magnetic insulators. This has the
important advantage that it can be done in situ, as opposed to
using ferromagnets where e.g. several samples with different
widths are created to suppress the singlet component relative
the triplet one.

It is interesting to note that the density of states for each
electron-spin is highly non-degenerate and tunable, as shown
in Fig. 6. This could potentially be utilized in creating large
thermoelectric effects based on the idea of Ref. [55] which
demonstrated that the spin-splitted density of states arising
in superconductor/ferromagnet hybrids could yield a thermo-
electric figure of merits far exceeding what is obtained in the
non-superconducting phase.

Similarly to our treatment of the spin- and charge-
supercurrent, we also investigate the influence of spin-flip and
spin-orbit scattering on the density of states. In the left col-
umn of Fig. 7, we consider different values for Gϕ and the
spin-flip scattering rate. Regardless of the value ofGϕ, in par-
ticular of whether it is smaller than or greater than the critical

value Gϕ,c = 1, the influence of the superconducting proxim-
ity effect on the DOS is diminished. As discussed previously
in the context of the charge- and spin-supercurrents, this may
be understood physically from the fact that magnetic impu-
rities suppress singlet and triplet components alike, such that
the DOS eventually reverts to its normal-state value for any
phase-difference and energy. The situation is different when
considering spin-orbit impurity scattering, shown in the right
column of Fig. 7. Now, the spectroscopic manifestation of
the superconducting proximity effect depends on whether we
are in the singlet-dominated regime Gϕ < 1 or the triplet-
dominated regime Gϕ > 1. For Gϕ = 0.55, the presence of
spin-orbit scattering leaves the minigap intact while suppress-
ing the zero-energy peak that emerges as the superconducting
phase-difference increases. Hence, the superconducting prox-
imity effect remains clearly visible in the DOS. For Gϕ > 1
shown in (d) and (f), however, increasing the spin-orbit scat-
tering rate causes the low-energy enhancement of the DOS
to be absent since the triplet component is suppressed by this
type of scattering. When applying even stronger values of

FIG. 5: (Color online) Proximity-induced density of states N(ε, θ)
(normalized to its normal-state value) in the middle of the normal
metal as a function of quasiparticle energy ε and the misalignment
angle α of the magnetic insulators. In (a), the superconducting phase
bias is set to θ = 0, corresponding to zero current-flow. In (b), we
have θ = π/2, corresponding to the critical current-flow. The other
parameters are set to d = 20 nm, ξS = 30 nm, Gϕ = 1.05, ζ = 5.
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FIG. 6: (Color online) Spin-resolved density of states (normalized to
its normal-state value) in the ε − θ plane. In (b), the total density
of states is shown whereas in (a) and (c) the spin-↓ and spin-↑ con-
tributions are shown, respectively. The parameters used are ζ = 5,
Gϕ = 0.9, d = 10 nm, ξS = 30 nm, and α = 0.

spin-orbit scattering, a clear minigap appears for all the values
of Gϕ. It should also be noted that the spectroscopic finger-
prints of the superconducting proximity effect are much more
sensitive toward the presence of magnetic impurity and spin-
orbit scattering than the charge- and spin-supercurrents, the
former being suppressed in magnitude faster compared to the
current at a given value of gsf/so.

DISCUSSION AND CONCLUDING REMARKS

We here discuss in more detail how our work is related
to previous findings. In the proposal by Houzet and Buzdin
[28], a ferromagnetic trilayer was suggested as the minimal
structure that would be able to generate a long-ranged triplet
supercurrent. In another work by Grein et al. [32], strongly
polarized ferromagnets with two spin-active interfaces were
considered, thus in some sense being similar to the trilayer
system of Ref. [28] with the exception that the spin-bands
were now assumed to be completely decoupled in the bulk due
to the large exchange field. In this case, a spin-supercurrent
was shown to also be generated. Shomali et al. [31] stud-
ied the spin-current in a Josephson junction with a ferromag-
netic metal bilayer and it was realized that a long-ranged su-
percurrent in ferromagnets could in fact be generated with
only two ferromagnets [29], albeit only as a higher-order ef-
fect. More precisely, there would be a contribution to a long-
ranged triplet supercurrent from the second Josephson har-
monic sin(2θ). This could make experimental detection dif-
ficult, since the magnitude of the second harmonic latter is
usually much smaller than the first harmonic, and a very spe-
cific fine-tuning of the junction parameters would be required
to observe the effect. Spin-supercurrents have also been ana-
lyzed in other types of superconducting structures, including
magnetic textures such as spirals, and also using intrinsically
triplet bulk superconductors [58–62]. Very recently [64], spin
supercurrents in junctions composed of multiband supercon-
ductors coexisting with a spin-density wave state was stud-
ied theoretically. Similar dependencies on the superconduct-
ing phase difference and magnetic misalignment between the

spin-density waves as in our case was shown, even if the sys-
tem under consideration in this work is physically quite dif-
ferent from Ref. [64].

In contrast, the spin-supercurrent reported in our work oc-
curs in the first harmonic, i.e. it is not a higher-order effect,
meaning that it is present without any fine-tuning of parame-
ters in order to suppress the first harmonics in favor of higher
ones. Moreover, it occurs without use of any ferromagnetic
metals: the spin superflow takes place in a non-magnetic nor-
mal metal.

There are several different choices for magnetic insulators
that can be used in the proposed setup shown in Fig. 1. Pre-
vious experiments considering superconducting hybrid struc-
tures have utilized magnetic insulators such as EuO [52], EuS
[40], and GdN [56]. The particular choice of magnetic insu-
lator also depends on how well it can be grown at the inter-
face between the superconductor and the normal metal. We
speculate that suitable material combinations to construct our
setup could be Nb and EuO as the superconductor and mag-

FIG. 7: (Color online) Plot of the density of states N(ε, θ) (nor-
malized to its normal-state value) in the energy-superconducting
phase difference (ε-θ) plane. The top row illustrates the case where
Gϕ = 0.55 and (a) gsf = 0.05, (b) gso = 0.05. The middle row has
Gϕ = 1.05 and (c) gsf = 0.10, (d) gso = 0.10. The bottom row
shows Gϕ = 1.55 and (e) gsf = 0.15, (f) gso = 0.15. The remaining
parameters are set to d = 20 nm, ξS = 30 nm, and ζ = 5, in the P
configuration.
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netic insulator, or alternatively NbN and GdN. Concerning the
phase-dependent density of states in the normal metal, experi-
mental techniques are available for measuring this quantity as
demonstrated in Ref. [57] in a conventional SNS Josephson
junction. By integrating the junction in a loop geometry, the
superconducting phase θ is then tunable via a minute magnetic
flux. Using AFM-spectroscopy, a complete mapping of how
the density of states evolves spatially through the junction as
a function of θ is possible.

We note that very recently, quasiclassical boundary condi-
tions valid for any strength of the barrier polarization were
derived [63]. This opens the possibility to study theoretically
systems with very strongly spin-polarized magnetic insulators
and even half-metallic (fully polarized) ferromagnets.

In summary, we have shown that by integrating supercon-

ductors with magnetic insulators, one arrives at a unique way
to both create and control triplet superconductivity in a well-
defined way with the superconducting phase-difference, and
to also create a conserved and tunable spin-supercurrent flow-
ing through a normal metal.
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APPENDIX: DETAILED EXPRESSIONS FOR CHARGE- AND SPIN-SUPERCURRENTS

We here provide comprehensive results for the analytical expressions of the supercurrents of charge and spin supported by the
system. In the weak proximity effect, one finds the following completely general expressions:

IQ =
N0eDA

4

∫ ∞

0

dεtanh
(βε

2

)
4Re

{
[2fs∂xf̃s − 2ft∂xf̃t − f↑∂xf̃↑ − f↓∂xf̃↓]− [ ˜. . .]

}
,

IxS =
N0~DA

8

∫ ∞

0

dεtanh
(βε

2

)
4Re

{
[−(f↑ + f↓)∂xf̃t − ft∂x(f̃↑ + f̃↓)]− [ ˜. . .]

}
,

IyS =
N0~DA

8

∫ ∞

0

dεtanh
(βε

2

)
4Im

{
[(f↑ − f↓)∂xf̃t − ft∂x(f̃↑ − f̃↓)] + [ ˜. . .]

}
,

IzS =
N0~DA

8

∫ ∞

0

dεtanh
(βε

2

)
4Re

{
[−f↑∂xf̃↑ + f↓∂xf̃↓]− [ ˜. . .]

}
. (15)

Above, the notation ( ˜. . .) means changing the sign of energy and complex conjugate and we defined the inverse temperature
β = 1/(kBT ). It is seen that the spinless singlet correlations fs do not contribute to any of the spin-currents. In the special case
of a normal metal separating the superconductors, one can work further with the above expressions by inserting the solutions

fm = Ameikx +Bme−ikx,m = {s, t, ↑, ↓}. (16)

We then get expressions for the supercurrents which is independent of position:

IQ = N0eDA

∫ ∞

0

dεtanh
(βε

2

)
Re
{

2ik[(A↑Ã↑ −B↑B̃↑) + 2(AtÃt −BtB̃t)− 2(AsÃs −BsB̃s) + (A↓Ã↓ −B↓B̃↓)]
}
,

IxS =
N0~DA

2

∫ ∞

0

dεtanh
(βε

2

)
Re
{

2ik[(A↑ +A↓)Ãt − (B↑ +B↓)B̃t + (Ã↑ + Ã↓)At − (B̃↑ + B̃↓)Bt]
}
,

IyS =
N0~DA

2

∫ ∞

0

dεtanh
(βε

2

)
Re
{

2k[−(A↑ −A↓)Ãt + (B↑ −B↓)B̃t + (Ã↑ − Ã↓)At − (B̃↑ − B̃↓)Bt]
}
,

IzS =
N0~DA

2

∫ ∞

0

dεtanh
(βε

2

)
Re
{

2ik[(A↑Ã↑ −B↑B̃↑)− (A↓Ã↓ −B↓B̃↓)]
}
. (17)

The coefficients {Am, Bm} for the singlet and each of the triplet components are determined by the boundary conditions. For
instance, one finds for the charge-supercurrent that

IQ = N0eDA sin θ

∫ ∞

0

dεtanh
(βε

2

)
Re
{

4ikΓ−1 sin(kd) sinh2 Θ
(
k2d2ζLζR +GLϕG

R
ϕ cosα

)}
. (18)

upon defining the quantity:

Γ =
(
k2d2ζ2R + (GRϕ )2

)(
k2d2ζ2L − (GLϕ)2 + 2(GLϕ)2 cos2 α

)
cos2(kd)−

(
k2d2ζLζR −GLϕGRϕ cosα

)2
,

(19)
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The spin-supercurrent is given by:

IxS =
N0~DA sinφ sinαGLϕG

R
ϕ

2

∫ ∞

0

dεtanh
(βε

2

)
Re
{

4ikΓ−2 sin(kd) sinh2 Θ
(
a1 + a2 cos θ

)}
, (20)

where we have defined the expressions

a1 =
(

2(GLϕ)2 cos2 α− (GLϕ)2 + k2d2(ζ2L + ζ2R) + (GRϕ )2
)(
k2d2ζLζR −GLϕGRϕ cosα

)
cos(kd), (21)

a2 =
(
k2d2ζ2L + 2(GLϕ)2 cos2 α− (GLϕ)2

)(
k2d2ζ2R + (GRϕ )2

)
cos2(kd) +

(
k2d2ζLζR −GLϕGRϕ cosα

)2
. (22)
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