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Abstract

In this thesis we discuss symmetry considerations of field theories that are both Lorentz
invariant and Lorentz noninvariant. We develop an example of a free Lorentz noninvari-
ant field theory, invariant under E(2), whose associated Euler-Lagrange equation is the
Schrödinger equation. After quantization, the ground state of the theory is found to be
ambiguous, hence the theory exhibits spontaneous symmetry breaking. Introduction of a
chemical potential, taking the thermodynamic limit and adiabatically removing said poten-
tial reveals that the theory admits a single type-II Nambu-Goldstone boson. Goldstone’s
theorem is proved for classical field theories under the assumption of Lorentz invariance,
and a short discussion on quantum corrections is given. The application of this theorem
is illustrated in the context of two Lorentz-invariant field theories. It is noted that the
counting of NG-bosons as the number of broken generators does not apply to Lorentz
noninvariant field theories such as the Schrödinger field theory, but another method of
counting them developed by Watanabe does hold. We then discuss a Lorentz invariant
theory that also is invariant under SU(2) × SU(2). The Lorentz invariance is broken by
introducing a chemical potential which also breaks the SU(2) × SU(2) invariance down
to an invariance under U(2). Spontaneous symmetry breaking of this theory is then proved
to imply one type-I and one type-II NG-boson. Again, the number of NG-bosons is seen
not to equal the number of broken generators but depends on them in a more complicated
way given by Watanabe’s formula.
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Sammendrag

I denne avhandlingen diskuterer vi symmetrier av feltteorier både med og uten Lorentz-
invarians. Vi konstruerer en feltteori fri for interaksjoner som er invariant under den Euk-
lidske gruppen E(2), har tilhørende Euler-Lagrange likning gitt av Schrödingerlikningen
og som ikke er invariant under Lorentztransformasjoner. Etter å ha kvantisert denne felt-
teorien finner vi at grunntilstanden ikke er entydig slik at symmetriene blir spontant brutt.
Teorien blir så modifisert ved å introdusere et kjemisk potensial som gjør gunntilstanden
entydig. Ved å ta den termodynamiske grensen og fjerne det kjemiske potensialet kon-
kluderer vi med at teorien impliserer ett enkelt type-II Nambu-Goldstone boson. Vi gir et
bevis for Goldstones teorem for klassiske Lorentz-invariante feltteorier og diskuterer kort
hvilken effekt kvantisering har på validiteten av dette teoremet. Teoremet blir så illustrert
for to Lorentz-invariante feltteorier. Ved å se tilbake på den E(2)-invariante feltteorien
blir det illustrert hvordan antallet Nambu-Goldstone bosoner ikke er lik antallet brukne
generatorer hvis teorien ikke er Lorentz-invariant. På den annen side viser vi at en metode
for telling av disse bosonene som nylig er blitt utviklet av Watanabe holder også i dette
tilfellet. Til sist tar vi for oss et eksempel med en Lorentz-invariant feltteori som også er
invariant under gruppen SU(2) × SU(2). Vi bryter Lorentz-invariansen med et kjemisk
potensial som også bryter SU(2)× SU(2) ned til en U(2) invarians. Denne teorien viser
seg å implisere et type-I- og et type-II Nambu-Goldstone boson. Antallet bosoner er igjen
ikke lik antallet brukne generatorer, men avhenger av dem via den nevnte nylig, utviklede
metoden som gjør bruk av deres kommutatorer.
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Notation

Some abbreviations and clarification on the notation and conventions used in this thesis.

• SSB: Spontaneous symmetry breaking.
• NG-boson: Nambu-Goldstone boson.
• nBG: Number of broken symmetry generators.
• nNGB: Number of NG-bosons.
• We use the Minkowski metric of the form familiar from particle physics
nµν = diag(1,−1,−1,−1).

• The term map is a shortening of mapping which is synonymous to function.
• The notation for a mapping is written as f : D → V, a 7→ b. In this notation D is

the domain of the map f and V is its codomain. The notation means that the map f
takes an element a ∈ D and maps it to an element b ∈ V .

• In equations, the symbol ‘;’ should be read as such that.
• For the set of all m × n matrices with entries in the field F, the symbol Mm×n(F)

will be used. If n = m, then m will be omitted, and the set is thus written Mn(F).
For example set of all 2× 2 complex matrices is written M2(C).

• For a complex matrix or scalar A ∈ Mm×n(C), the notation A∗ means complex
conjugate, AT is the transpose and A† is the conjugate transpose of the matrix.

• Propositions & theorems: we use the term proposition for theorems that are less
important and or have shorter proofs than theorems.

• The end of proofs are marked with the quod erat demonstrandum symbol �.
• Bold text is used in defining new terms.
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Chapter 1
Introduction

The notion of a symmetry is central in Quantum Mechanics, there’s also
in Classical Mechanics, but it comes up and really hits you over the head
in Quantum Mechanics.

LEONARD SUSSKIND (2013)
Advanced Quantum Mechanics Lecture 1

Over the history of advancements in physics, symmetries have been used with varying
degrees of overtness to simplify problems and even draw conclusions when the explicit
solution of a problem is yet unknown. One such example is when considering a system
with a spherically symmetric potential, may it be a hydrogen atom or a classical two body
system. Then we can utilize the inherent symmetry to simplify the problem considerably
by using spherical instead of Cartesian coordinates. The dynamical implications of sym-
metries were first elucidated in 1917 when Emmy Noether proved the famous theorem
that now bears her name [1]. The details of Noether’s theorem will be presented later in
this thesis but quickly summarized; it shows that for every continuous symmetry of Nature
there is a corresponding conservation law.

1.1 Symmetry in particle physics
Before formulating the details of the Standard Model what is called internal symmetries
played an important role in classifying the numerous “elementary particles” discovered
through experiments with cosmic rays and particle accelerators from the 1920s to the
1960s. Historically, the idea of isospin symmetry among the elementary particles was dis-
covered after Heisenberg noticed that the masses of the proton and neutron are nearly the
same. Based on this observation he claimed that the force that held these particles together,
the strong nuclear force, did not distinguish between them [2, p. 129]. This was thus a
symmetry where, barring the effects of electromagnetism, you could exchange a proton
for a neutron without changing the behaviour of the system. This kind of transformation
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Chapter 1. Introduction

of a system is called a symmetry transformation. Specifically these are transformations
you can do (at least conceptually) to a system such that the answers to questions about
the physical behaviour or properties of the system remain the same. A set of transforma-
tions satisfying certain properties, like the property that combining two transformations in
the set results in a transformation that is also in the set can then be described by a group
and we say that the system is invariant under a group when it is invariant under all the
transformations of that group. To see how this works in practice consider the case of the
proton and the neutron. In modern terminology, Heisenberg proposed that for this system
the strong force is symmetric under the group SU(2). Any element in this group can be
expressed as a 2 × 2 complex matrix such that if the state of a nucleon is described by a
vector N = (α, β)T ∈ C2 where the proton state is given by the vector (1, 0)T and the
neutron state is given by the vector (0, 1)T, then a symmetry transformation A of SU(2)
can be described by

N 7→ AN.

Since SU(2) is a continuous group giving three independent symmetry transformations,
then Noether’s theorem implies three conservation laws for three conserved quantities.
Collecting these three quantities in a vector we call isospin we can say that isospin is
conserved by the strong nuclear force.

In 1961 Murray Gell-Mann and Yuval Ne’eman independently came up with the idea
of using an extension of this symmetry called SU(3) to classify the baryons and mesons
known at the time [3, 4]. Gell-Mann called this classification the Eightfold Way, in which
particles are placed at different positions in different geometrical patterns according to the
values of the conserved quantities. These patterns then correspond to different dimensional
representations of the symmetry group SU(3). For example the baryon decuplet places
10 different heavy baryons in a triangular array and on this array one can then act with a
10-dimensional representation of SU(3). Incidentally this particular pattern was used to
predict the existence of a new particle called the Ω− [5].

1.2 Symmetry breaking and the Higgs mechanism

In this thesis we focus on the situation where symmetries are not exact, but broken in a par-
ticular way. This situation happens all the time in Nature and the mathematical framework
by which we understand this phenomenon plays an integral part in our understanding of,
among many others; supersymmetry, phase transitions, superconductivity and the Higgs
mechanism. The latter is perhaps currently the most popular because of the recent dis-
covery of the Higgs boson in 2012 [6, 7]. In the context of Quantum Field Theory the
Higgs boson, as well as all other particles, is understood as an oscillation of a field, in
this case the Higgs field. What is special about the Higgs field is that it has a non-zero
vacuum expectation value, meaning that in a vacuum, where no particles exist, the field
still prefers to have some non-zero value. This is the hallmark of spontaneous symmetry
breaking. Historically this field was needed in the Standard Model of elementary particle
physics to explain why the weak and strong nuclear force are confined to act over very
short distances. It was then realized that the existence of such a field could also explain
how the particles responsible for some of these forces obtain masses. The mechanism
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1.3 The structure of this thesis

by which they did this was dubbed ‘the Higgs mechanism’. Informally speaking, it can
be explained by first postulating that a force of Nature, like the strong Nuclear force, is
invariant under a continuous symmetry, like SU(2). If now this symmetry is not shared
by the ground state of the system then Goldstone’s theorem, which we will discuss later
in this thesis, tells us that there must exist a certain number of massless particles called
Nambu-Goldstone bosons. If the symmetry however is a gauge symmetry, which means
that the symmetry transformations can vary at different points in spacetime, then instead
of massless particles appearing, the lack of the symmetry in the ground state gives rise to
masses of the particles responsible for the force considered. In a cute “dogma” of particle
physics, one says that the gauge bosons eat the Nambu-Goldstone boson and thus gains
a mass. In the case of weak interactions the gauge bosons that acquires a mass in this
fashion are the W and Z bosons.

1.3 The structure of this thesis
We follow a textbook-esque approach where first the mathematical details are presented
and then they are applied to example field theories in order to explore the effects of spon-
taneous symmetry breaking. First we will give a brief review of the mathematical ideas
concerning symmetries called group theory. This is divided into sections about basic group
theory, Lie groups which are basically continuous groups which have infinitely many el-
ements, Lie algebras; a special type of algebra usually connected with Lie groups, and a
section about representations of groups which is what we actually use to do transforma-
tions on a system. Then we introduce the language of field theory and through it present
and prove Noether’s theorem. Our main example of a non-relativistic field theory is then
discussed by first quantizing a classical field theory related to the Schrödinger equation,
calculating the energy spectrum of this theory and then examining how the vacuum in this
theory is degenerate because of a symmetry. The degeneracy of the ground state is lifted
by introducing a chemical potential which singles out a ground state from which we build
the Hilbert space of this theory. In the last chapter Goldstone’s theorem is presented and
proved for classical field theories. We then take a look at how this theorem is applied to
some relativistic theories and give a short discussion of how well the theorem holds for
quantum theories where one has to worry about loop corrections. Finally, we look at a last
example of a field theory invariant under the group SU(2)× SU(2) which we modify by
introducing a chemical potential like before and find the Goldstone bosons of this modified
theory.

3
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Chapter 2
Mathematical preface

To understand Goldstone’s theorem and its applications in quantum field theory it is im-
perative to first have a solid background in the theory of groups and their representations.
In this chapter we briefly review the most pertinent definitions and results of these math-
ematical notions. For a more thorough understanding and rigorous proofs the reader is
referred to [8, 9, 10].

2.1 Groups
Definition 2.1. A group 〈G, ∗〉 is a setG, closed under a binary operation ∗ : G×G→ G,
such that the following axioms are satisfied [10]:

(a) Associativity: ∀a, b, c,∈ G
(ab)c = a(bc).

(b) Identity element: ∃e ∈ G; ∀x ∈ G
ex = xe = x

(c) Inverse: ∀a ∈ G, ∃a−1 ∈ G;
aa−1 = a−1a = e

In the remainder of this report the 〈〉 and ∗ may be omitted when referring to a group
〈G, ∗〉 so that groups will only be written with the symbol G, as it will be clear from the
context whether the symbol represents a group or some other mathematical object.

Example 2.1. An important example of a group is the group G of all invertible n × n
matrices with real elements, where the binary operation × is defined as matrix multiplica-
tion. From the rules of matrix multiplication, associativity follows. The identity element
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Chapter 2. Mathematical preface

is given by the identity matrix

I =


1 0 · · · 0
0 1 · · · 0
...

...
. . .

...
0 0 · · · 1

 ,
because for any matrix with n × n real elements (i. e. A ∈ Mn(R)), multiplication with
the identity matrix gives AI = IA = A. Finally, existence of the inverse follows from the
requirement that all matrices in G should have an inverse. Because I ∈ G, G is nonempty.
The group described here is called the general linear group of degree n, usually denoted
by GL(n,R). Note that the complex field C could just as well have been used in the
construction of the group [9]. In this case the group is called the complex general linear
group GL(n,C).

Example 2.2. A subset of GL(n,R) consisting of all invertible n × n matrices A where
AT = A−1, gives a group of its own called the orthogonal group O(n). To see that this
group is closed under matrix multiplication letA,B ∈ O(n). From the definition ofO(n),
A−1 = AT and B−1 = BT. Then the inverse of the product is also the transpose of the
product because

(AB)−1 = B−1A−1 = BTAT = (AB)T,

which means that AB ∈ O(n) and thus O(n) is closed under matrix multiplication. As-
sociativity follows from matrix multiplication. The identity matrix I = I−1 = IT

and is thus in O(n). The inverse of any element A ∈ O(n) is also in O(n) because
(A−1)−1 = A = (AT)T = (A−1)T.

Definition 2.2. LetG be a group, and let there be a subsetH ⊆ G. ThenH is a subgroup
of G if H itself is a group under the binary operator in G. This is denoted H ≤ G, or
H < G if H 6= G.

Example 2.3. The group O(n) introduced in Example 2.2 is a subgroup of GL(n,R).

Theorem 2.1. Let H ⊆ G with the same binary operation as G. Then H is a subgroup of
G if and only if all the following statements are true:

(a) H is closed under the binary operation, i. e. ∀a, b ∈ H, ab ∈ H

(b) The identity element e of G is in H .

6



2.1 Groups

(c) ∀a ∈ H, a−1 ∈ H .

For a proof of this theorem see Appendix A.1.

Example 2.4. Define the subset U(n) ⊆ GL(n,C) as all complex invertible matrices that
are unitary, meaning that:

A† = A−1 ∀A ∈ U(n).

For complex matrices A† = (AT)∗ where A∗ is the complex-conjugate of the matrix.
U(n) is a subgroup of GL(n,C) called the unitary group. Showing that this is indeed
a group, first it is checked that U(n) is closed under the binary operation in GL(n,C)
(matrix multiplication): Let A,B ∈ U(n). Then

(AB)† = ((AB)T)∗ = (BTAT)∗ = (BT)∗(AT)∗ = B†A† = B−1A−1 = (AB)−1

⇒ AB ∈ U(n)

Then because trivially the identity matrix I† = (IT)∗ = I = I−1 ⇒ I ∈ U(n), the
identity element in GL(n,C) is also in U(n). Finally the inverse matrices exists because
if A ∈ U(n) then the conjugate transpose of A−1 ∈ GL(n,C) is

(A−1)† = (A†)† = A = (A−1)−1 ⇒ A−1 ∈ U(n).

By Theorem 2.1 then, U(n) ≤ GL(n,C).

Definition 2.3. The special orthogonal group SO(n) is defined as the subset of O(n)
such that

SO(n) = {R ∈ O(n) | detR = 1}

with matrix multiplication as the binary operation.

The fact that SO(n) actually is a subgroup of O(n) can be proved through Theo-
rem 2.1. By definition SO(n) ⊆ O(n). SO(n) is closed because given A,B ∈ SO(n),

det(AB) = detAdetB = 1.

det I = 1 which implies that I ∈ SO(n). Finally detR−1 = 1
detR = 1, thus for any

R ∈ SO(n),R−1 is also an element in SO(n). By Theorem 2.1 this implies that SO(n) ≤
O(n).

Definition 2.4. The special unitary group SU(n) is defined as a subset of U(n) such that

SU(n) = {A ∈ U(n) | detA = 1}

with matrix multiplication as binary operation.

7



Chapter 2. Mathematical preface

Because the extra condition to be an element in SU(n) is the same as for SO(n), given
that SU(n) ⊆ U(n), the proof that SU(n) is a subgroup of U(n) is completely analogous
to the argument that SO(n) ≤ O(n) and is therefore omitted.

Example 2.5. To find the general form of a matrix in SU(2) let A ∈M2(C)

A =

[
α β
γ δ

]
.

Applying the condition A† = A−1 implies that γ = −β∗ and δ = α∗. If we then enforce
detA = 1 we see that A takes the form

A =

[
α β
−β∗ α∗

]
, α, β ∈ C; |α|2 + |β|2 = 1.

2.2 Lie groups
To define Lie groups rigorously one must describe them using the language of differential
manifolds, however for virtually all physical applications it is sufficient to only consider a
special class of Lie groups called matrix Lie groups or sometimes linear Lie groups, hence
we mostly concern ourselves with matrix Lie groups in this thesis.

Definition 2.5. A matrix Lie group G is a subgroup G ≤ GL(n;C) such that any
sequence of matrices {Ai} ⊂ G either converges to a matrix A ∈ G or to a matrix
A /∈ GL(n;C) (i. e. a non-invertible matrix) if it converges at all.

The above definition implies that the group fulfills the criteria for being a differentiable
manifold in a topological sense [8], which roughly means that G looks locally (in the
neighborhood of an element) like a piece of Rn, but the proof of this will not be presented
here. The convergence of the series {Ai} to a matrix A means that every entry should
converge to the corresponding entry in A. So if (Ai)jk is the jkth entry in the matrix Ai
then

lim
i→∞

Ai = A ⇔ ∀j, k lim
i→∞

(Ai)jk = (A)jk.

Example 2.6. The general linear groups GL(n,C) and GL(n,R) are both matrix Lie
groups. Here this is only proved for GL(n,C), but the proof for GL(n,R) is analogous.
Take any convergent sequence of matrices {Ai}; Ai ∈ GL(n,R) ∀i, and let its limit be
denotedA. ThenAmust be a matrix with complex (or real) entries, thus by Definition 2.5,
GL(n,C) is trivially a matrix Lie group since either A ∈ GL(n,C) or A 6∈ GL(n,C).

The previously defined groups O(N), SO(N), U(N) and SU(N) also satisfy the
criteria for being matrix Lie groups [8].

8



2.3 Lie algebras

2.3 Lie algebras
Definition 2.6. The Lie algebra g of a matrix Lie group G is defined as

g = {X ∈Mn(C) | ∀t ∈ R etX ∈ G}

Example 2.7. The Lie algebra of GL(n,C)
This Lie algebra is usually denoted gl(n,C). X ∈ gl(n,C) ⇔ etX is invertible for all
real t. However for any X ∈Mn(C)

∀t ∈ R etXe−tX = I = e−tXetX ,

thus etX is invertible and the condition etX ∈ GL(n,C) ∀t ∈ R is trivially satisfied
⇒ gl(n,C) = Mn(C).

Proposition 2.2. If G ≤ GL(n,R) is a matrix Lie group, then its Lie algebra g must
consist of only real matrices.

Proof. G ≤ GL(n,R) ⇒ (A ∈ G ⇔ A is real). Then all the entries of etX are real
for any real t if X is in the Lie algebra g. All these entries can then be thought of as real
functions of the real variable t. Because the derivative of a real function must be real then(

d
dte

tX
)
ij

must be real for the ijth entry. Taking the derivative and evaluating at t = 0

yields (
d

dt
etX
∣∣∣∣
t=0

)
ij

=
(
Xe0X

)
ij

= (XI)ij = Xij .

Thus Xij must be real and because the ij are arbitrary, X must be real. �

Example 2.8. The Lie algebra of SO(n)
Denote this Lie algebra as so(n). From Proposition 2.2 so(n) must consist of real n × n
matrices because SO(n) ≤ GL(n,R). Now X ∈ so(n) ⇒ ∀t ∈ R, etX ∈ SO(n) ⇒(
etX
)T

=
(
etX
)−1 ⇔ etX

T

= e−tX , ∀t ∈ R. Taking the derivative at t = 0,

etX
T

= e−tX ∀t ∈ R ⇒ d
dte

tXT
∣∣∣
t=0

= d
dte
−tX

∣∣
t=0
⇔

XT = −X. (2.1)

This proves that X ∈ so(n) ⇒ XT = −X . Conversely assume Eq. (2.1) for a matrix
X ∈ Mn(R). Note that Eq. (2.1) implies that Xii = −Xii ⇔ Xii = 0 ⇒ Tr(X) = 0

where Xii are the diagonal elements of X . Then for any t ∈ R
(
etX
)T

= etX
T

=

e−tX =
(
etX
)−1

, and det etX = etTr(X) = e0 = 1. These two properties of etX makes

9



Chapter 2. Mathematical preface

it an element of SO(n). Because t is arbitrary then etX ∈ SO(n) ∀t ∈ R ⇒ X ∈ so(n).
In conclusion

so(n) =
{
X ∈Mn(R) | XT = −X

}
.

It is worth noting that the extra condition that is put on etX to make X an element
of so(n) as opposed to o(n) (the Lie algebra of O(n)), is that ∀t ∈ R det etX = 1.
However it was proved that this followed automatically from the condition XT = −X ,
thus so(n) = o(n).

Example 2.9. The Lie algebra of SU(n)
This Lie algebra is denoted su(n). X ∈ su(n) ⇔ ∀t ∈ R : etX ∈ SU(n) ⇔ (etX)† =

(etX)−1 ∧ det
(
etX
)

= 1 ⇔ etX
†

= e−tX ∧ etTr(X) = 1. Because this has to hold
for all t, then the derivatives of both sides of etX

†
= e−tX evaluated at t = 0 must be

equal, thus
d

dt
etX

†
∣∣∣∣
t=0

=
d

dt
e−tX

∣∣∣∣
t=0

⇔ X† = −X.

Also the derivatives of both sides of etTr(X) = 1 evaluated at t = 0 have to be equal. Thus

d

dt
etTr(X)

∣∣∣∣
t=0

=
d

dt
1

∣∣∣∣
t=0

⇔ Tr(X) = 0.

Note that in the last equation the derivative was of a normal exponential, whilst in the
previous, it was of the matrix exponential.

Conversely assuming an X ∈ Mn(C) satisfies X† = −X and Tr(X) = 0, then
∀t ∈ R

(
etX
)†

= etX
†

= e−tX =
(
etX
)−1

and det(etX) = etTr(X) = e0 = 1 ⇒
∀t ∈ R : etX ∈ SU(n) ⇒ X ∈ su(n).

Consequently

su(n) =
{
X ∈Mn(C) | X† = −X ∧ Tr(X) = 0

}
.

Theorem 2.3. Let G be a matrix Lie group with Lie algebra g, X and Y any two elements
in g and A any element in G. Then g is a real vector space and the following properties
hold:

(a) AXA−1 ∈ g,
(b) ∀r ∈ R, rX ∈ g,
(c) X + Y ∈ g,
(d) [X,Y ] = XY − Y X ∈ g.

A proof of this theorem is included in Appendix A.2.
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2.4 Representations

2.4 Representations
Definition 2.7. A finite-dimensional vector space V and a mapping Π constitute a real
(complex) finite-dimensional representation of a matrix Lie group G if and only if V is
a real (complex) vector space and and Π is a Lie group homomorphism from G into the
group of linear invertible transformations on V :

Π: G→ GL(V ).

Because the vector space V is implied by the definition of Π, sometimes the vector
space is omitted, and the representation is referred to only as Π. The reason for the name
is that for a g ∈ G, Π(g) can be thought of as representing the group element g as a linear
transformation on a vector space. If Π is a representation as in the definition, then the
convention is to write that Π is a representation of G acting on V . If V is an inner-product
space and Π(g) preserves this inner product for all g, then the representation is said to be
unitary.

Since we have defined representations in terms of Lie group homomorphisms we also
need to define these.

Definition 2.8. A Lie group homomorphism is defined as a map Π: G → G′ between
Lie groups G and G′ such that

∀a, b ∈ G Π(ab) = Π(a)Π(b), (2.2)

and Π is continuous. Eq. (2.2) is called the homomorphism property. If Π is bijective,
meaning that it has an inverse, then Π is called an isomorphism, and the groups G and G′

are said to be isomorphic. This is denoted G ' G′ and implies that the structure of the
groups is the same, and only the names of the elements differ.

Example 2.10. The fundamental representation of a matrix Lie group G (sometimes
also called the standard representation) is as the name suggests a rather intuitive represen-
tation. Because by definition G ⊆ GL(n,C), the elements of G are matrices. Then it is
natural to say that the group elements are represented by the n × n matrices that define
them, but now interpreting these matrices as linear transformations on the n-dimensional
vector space Cn. The definition of this representation is thus that

Π: G→ GL(Cn), A→ Π(A) = A. (2.3)

To prove that this map satisfies the homomorphism property is trivial1 and because G ⊆
GL(n,C) then Π(A) ∈ GL(n,C) = GL(Cn) for any A ∈ G. Since Cn is a complex
vector space, Π is a complex representation of G.

1Π(AB) = AB = Π(A)Π(B)

11



Chapter 2. Mathematical preface

If G happens to be a subset of GL(n,R) as in the case of O(n), then Π might be
considered to be a real representation mapping any element of G into GL(n,R). In this
case the representation acts on the vector space Rn.

The fundamental representation of common Lie groups have their own names. As a
rule of thumb these depend on which vector space the representation acts on. If V = Rn
for some n, then the fundamental representation is usually called the vector representation,
while if V = Cn it is called the spinor representation [9]. Thus the fundamental represen-
tation ofO(3) or SO(3) is called the vector representation because it acts on R3, while the
fundamental representation of SU(2) is called the spinor representation of SU(2) because
it acts on C2.

Example 2.11. Another easy example of a representation is the trivial representation.
This representation results from the trivial homomorphism which for any group G (it does
not have to be a matrix Lie group) maps each element g in the group to the identity in the
group in the codomain. In the case of the trivial representation the codomain is the group
GL(V ). This group is well defined for any finite-dimensional vector space V , thus given
any such V the trivial representation Π is defined as

Π: G→ GL(V ), g 7→ I.

Π is (trivially) a homomorphism because for any g1, g2 ∈ G, Π(g1g2) = I = II =
Π(g1)Π(g2).

Because Π(g) = I for any g ∈ G, then for any v ∈ V : Π(g)v = Iv = v and the
trivial representation of the group “does nothing” to the elements of the vector space.

Definition 2.9. A Lie algebra representation of a Lie algebra g is a Lie algebra homo-
morphism π : g→ gl(V ) where V is any vector space.

Analogous to (group) representations, Lie algebra representations are said to be finite
dimensional, and real or complex if the vector space V enjoys these properties. Since we
have defined Lie algebra representations in terms of Lie algebra homomorphisms we need
to explain what we mean by the latter.

Definition 2.10. A Lie algebra homomorphism is a linear map φ : g→ h between two
Lie algebras g and h such that for all X,Y ∈ g

[φ(X), φ(Y )] = φ ([X,Y ]) ,

where the brackets signify the commutator in h on the left side of the equation and the
commutator in g on the right side.

12



2.4 Representations

If a Lie algebra homomorphism should happen to be bijective, then it is a Lie algebra
isomorphism which means that the Lie algebras g and h should be thought of as the same
mathematical objects.

In many ways the Lie algebra representations are easier to work with and to visualize
than group representations because for a finite dimensional Lie algebra they are fully de-
termined by how they act on the basis vectors of the Lie algebra. This follows since Lie
algebra representations are linear maps, and for any linear map f : V → W between two
vector spaces V andW the range of f is a subspace ofW . To see this assume {ei}i is a ba-
sis on V . Then any vector in the range of f can be written as f(v) for some v ∈ V . Then
expanding this v in the basis using Einsteins summation convention f(v) = f(viei) =
vif(ei). Thus any v in the range of f can be written as a linear combination of the vectors
f(ei) ∈ W and the set of all linear combinations of these vectors, written span

(
f(ei)

)
is

thus the range of f . Let w1 and w2 be any two vectors in span
(
f(ei)

)
. Then w1 + w2 =

wi1f(ei) +wi2f(ei) = (w1 +w2)if(ei) ⇒ w1 +w2 ∈ span
(
f(ei)

)
. Also for any scalar

λ in the field of V , λw1 = λwi1f(ei) = (λw1)if(ei) ⇒ λw1 ∈ span
(
f(ei)

)
. Because

span
(
f(ei)

)
is a subset of W , this means that span

(
f(ei)

)
= ran f is a subspace of W .

For the Lie algebra homomorphism π from the Lie algebra g with basis {ei}i this means
that the range of π is the space spanned by the vectors π(ei), which must be a subspace
of gl(V ). Also remember that if V is n-dimensional, then gl(V ) is the set of all n × n
matrices c.f. Example 2.7, which can be interpreted as linear operators on vectors in V by
expanding these vectors in a basis.
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Chapter 3
Field theory

3.1 Noether’s theorem for fields
Definition 3.1. In Minkowski space the action S of a field configuration φ(x) is given by

S[φ] =

∫
Ω

d4xL,

where L is the Lagrangian density that depends on the fields φ(x), their derivatives and
possibly explicitly on the coordinates x themselves.

From this point on, we may use the shorthand notation of commas representing deriva-
tives of the fields, e.g.

φi,µ =
d

dxµ
φi.

When total derivatives are used in field equations this implies that the derivative is also to
take into account any implicit dependence in the fields, e.g.

d

dxµ
(xνφ,ν) = φ,µ + xνφ,νµ.

Proposition 3.1. Let {φi} be an arbitrary collection of fields and let L be allowed to
depend on xµ, φi and φi,µ for any i and µ. Then the field configuration extremizes the
action if and only if the fields satisfy the equations

∂L
∂φi
− d

dxµ

(
∂L
∂φi,µ

)
= 0,

henceforth called the Euler-Lagrange field equations.
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Chapter 3. Field theory

Proof. The Euler-Lagrange field equations are derived by insisting on the action obtained
from the Lagrangian density being stationary. Let L be a Lagrangian density as described
above. Consider a small deviation in the fields φi(x) 7→ φ̃i(x) = φi(x) + δφi(x) where
the deviation is zero on the boundary of the spacetime region Ω over which the Lagrangian
density is integrated to obtain the action. Inserting this into Definition 3.1 and expanding
to first order in the deviation yields

δS =

∫
Ω

d4x

(
∂L
∂φi

δφi +
∂L
∂φi,µ

δφi,µ

)
. (3.1)

To proceed we write the second term as a total divergence and use Gauss’ law such that∫
Ω

d4x
∂L
∂φi,µ

δφi,µ =

∫
Ω

d4x
d

dxµ

(
∂L
∂φi,µ

δφi
)
−
∫

Ω

d4x
d

dxµ

(
∂L
∂φi,µ

)
δφi

=

∫
∂Ω

d3Sµ
∂L
∂φi,µ

δφi −
∫

Ω

d4x
d

dxµ

(
∂L
∂φi,µ

)
δφi

= −
∫

Ω

d4x
d

dxµ

(
∂L
∂φi,µ

)
δφi,

by the assumption that the variation in the fields δφi vanish on the boundary ∂Ω. Inserting
this back into Eq. (3.1) and requiring that δS = 0 for an extremum when expanding to first
order, we find

δS =

∫
Ω

d4x

(
∂L
∂φi
− d

dxµ

(
∂L
∂φi,µ

))
δφi = 0

⇒ ∂L
∂φi
− d

dxµ

(
∂L
∂φi,µ

)
= 0, (3.2)

because the infinitesimal deviation in the fields δφi is arbitrary. This proves then that φ̃
being an extremum of S is equivalent to the resulting L satisfying Eq. (3.2) because S was
expanded to first order.

�

Proposition 3.2. Let {φi}i be a collection of fields that transforms as φ̃i(x̃) = (δij +

εa(x)ij)φ
j(x) under an infinitesimal coordinate transformation

xµ 7→ x̃µ = xµ + εξµ(x).

Then the new fields can be written in terms of the old fields as

φ̃i(x̃) = φi(x̃) + ε(a(x̃)ijφ
j(x̃)− ξµφi(x̃),µ),

where φi(x̃) are the old fields but now denoting the variables x̃µ instead of xµ, and a(x̃)ij
is a matrix that depends on the nature of the fields φi(x).

16



3.1 Noether’s theorem for fields

Proof. Assume an infinitesimal coordinate transformation is given by

x̃µ = xµ + εξµ(x).

Because ε is infinitesimal we can neglect all but first order terms, thus εξµ(x) = εξµ(x+
εξ(x)) = εξµ(x̃). This implies that the coordinate transformation is invertible through the
inverse

xµ = x̃µ − εξµ(x) = x̃µ − εξµ(x̃).

Now let {φi(x)} be a collection of fields as defined in the proposition, such that the trans-
formed fields can be written as

φ̃i(x̃) = A(x)ijφ
j(x) (3.3)

for coefficientsA(x)ij = δij+εa(x)ij . Inserting the inverse of the coordinate transformation
in this equation yields

φ̃i(x̃) = A(x̃− εξ(x̃))ijφ
j(x̃− εξ(x̃)). (3.4)

Expanding this to first order in ε we obtain

φ̃i(x̃) =
(
δij + εa(x̃)ij

)(
φj(x̃)− εξµφj(x̃),µ

)
= φi(x̃) + ε

(
a(x̃)ijφ

j(x̃)− ξµφi(x̃),µ
)
,

which is exactly the expression for φ̃i(x̃) we wanted to prove.
�

Proposition 3.3. If the original fields φi(x) satisfy the Euler-Lagrange field equations
then any infinitesimal field transformation φi(x) 7→ φi(x) + δφi(x) implies a change in
the Lagrangian density L given by

δL(φi) = L(φi + δφi)− L(φi) =
d

dxµ
Mµ

with
Mµ =

∂L
∂φi,µ

δφi.

Proof. Assume that an infinitesimal coordinate transformation is given by φi(x) 7→ φ̃i(x) =
φi(x) + δφi(x). Then the new Lagrangian density resulting from these new fields is

L̃ = L
(
φ̃i, φ̃i,µ, x

µ
)
,

where the new fields have been inserted in the old Lagrangian density. Since the field
transformation is infinitesimal, L̃ can be expanded in terms of φi and φi,µ as

L̃ = L
(
φi + δφi, φi,µ + δφi,µ, x

µ
)

= L(φi, φi,µ, x
µ) +

∂L
∂φi

δφi +
∂L
∂φi,µ

δφi,µ,

17



Chapter 3. Field theory

thus L̃ can be written as L̃ = L+ δL with

δL =
∂L
∂φi

δφi +
∂L
∂φi,µ

δφi,µ.

Since the original fields φi satisfy the Euler-Lagrange field equations, δL can be written
as

δL =
d

dxµ

(
∂L
∂φi,µ

)
δφi +

∂L
∂φi,µ

δφi,µ

=
d

dxµ

(
∂L
∂φi,µ

δφi
)
.

By defining

Mµ =
∂L
∂φi,µ

δφi,

δL can be written
δL =

d

dxµ
Mµ.

�

Theorem 3.4. Noether’s theorem for fields
Given an infinitesimal field transformation φi 7→ φi + δφi, where φi satisfy the Euler-
Lagrange field equations, that results in a change in the Lagrangian density given by
δL = dMµ

dxµ , then

jµ =
∂L
∂φi,µ

δφi −Mµ

is a conserved current, i.e.
d

dxµ
jµ = 0.

Proof. In Proposition 3.3 it was proved that if the original fields satisfy the Euler-Lagrange
field equations, then an infinitesimal field transformation leads to a change in the La-
grangian density given by

δL =
d

dxµ

(
∂L
∂φi,µ

δφi
)
.

Assuming that the change in the Lagrangian density caused by the field transformation can
also be expressed as

δL =
d

dxµ
Mµ

for anMµ not necessarily different from ∂L
∂φi,µ

δφi, then

0 = δL − δL =
d

dxµ

(
∂L
∂φi,µ

δφi −Mµ

)
.

�
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3.1 Noether’s theorem for fields

Remark. To get a non-trivial conserved current however, one usually wants

Mµ 6= ∂L
∂φi,µ

δφi.

Typically the transformation leaves L invariant such that δL = 0. We can write this as a
total divergence because

δL = 0 =
∑
µ

d

dxµ
0 =

d

dxµ
Mµ

if we defineMµ = 0. Inserting this into Noether’s theorem yields the conserved current

jµ =
∂L
∂φi,µ

δφi,

as is immediately obvious from Proposition 3.3.

Proposition 3.5. Given a conserved current jµ one can obtain a family of conserved
currents by

j̃µ = jµ + ∂νT
µν

for any antisymmetric tensor Tµν .

Proof. The new current j̃µ is conserved because

∂µj̃
µ = ∂µj

µ + ∂µ∂νT
µν = ∂µ∂νT

µν = 0.

In the last equality we used that the contraction of a symmetric tensor with an antisym-
metric tensor is zero. �

Corollary 3.6. Given any conserved current jµ whose spatial components vanish at in-
finity, then

Q =

∫
V

d3x j0,

where V is all of space, is a globally conserved quantity.

Proof. That jµ is a conserved current means

∂µj
µ = ∂tj

0 +∇ · j = 0 ⇔ ∂tj
0 = −∇ · j.

Thus

dQ

dt
=

d

dt

∫
V

d3x j0 =

∫
V

d3x ∂tj
0 = −

∫
V

d3x∇ · j = −
∫
∂V

dA n̂ · j = 0.

In the last equality we used the assumption the j vanishes at infinity. �

19



Chapter 3. Field theory

Example 3.1. Let L be a Lagrangian density such that

∂L
∂xµ

= 0,

φi(x) be fields that transform as scalars

φi(x) 7→ φ̃i(x̃) = φi(x)

under a global coordinate transformation

xµ 7→ x̃µ = xµ + ξµ,

and let the fields satisfy the Euler-Lagrange field equations. Consider letting ξµ be in-
finitesimal. By Proposition 3.2 the transformed fields resulting from this coordinate trans-
formation can be written in terms of the old fields as

φ̃i = φi − ξµφi,µ ⇔ δφi = −ξµφi,µ, (3.5)

suppressing the argument x̃µ.
Since the old fields satisfy the Euler-Lagrange field equations, we want to use Noether’s

theorem to find a conserved current for this field transformation symmetry. To avoid a
trivial result we need to find a new way of writing δL. By expanding the new Lagrangian
density L̃ and inserting Eq. (3.5) we find

δL = L̃(φ̃i, φ̃i,µ)− L(φi, φi,µ) = L(φ̃i, φ̃i,µ)− L(φi, φi,µ)

=
∂L
∂φi

δφi +
∂L
∂φi,µ

δφi,µ = −ξν
(
∂L
∂φi

φi,ν +
∂L
∂φi,µ

φi,νµ

)
= −ξν

(
dL
dx̃ν
− ∂L
∂x̃ν

)
= −ξν

(
dL
dx̃ν
− ∂L
∂xν

)
=

d

dx̃ν
(−ξνL)

where in the last equation we have used the assumption that L does not have an explicit
x-dependence. Inserting this into Noether’s theorem yields the conserved current

jµ = −ξν
(
∂L
∂φi,µ

∂νφi − ηµνL
)

= −ξνTµν ,

where we have defined the canonical energy momentum stress tensor Tµν .
Since ξµ are independent constants this results in four independent translations and

thus the equation
d

dx̃µ
Tµν = 0.

By Corollary 3.6 this implies the four globally conserved charges

Qν =

∫
d3xT 0ν =

∫
d3x

(
∂L
∂φi,0

∂νφi − η0νL

)
.
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3.2 The Schrödinger field

To understand what these charges are we consider the zeroth component of Qµ, which is
obtained from Qν by Qµ = ηµνQ

ν :

Q0 =

∫
d3x

(
∂L
∂φi,0

φi,0 − δ0
0L

)
=

∫
d3x

(
∂L
∂φi,0

φi,0 − L

)
=

∫
d3xH,

where we have identified the Hamiltonian density H. Thus Q0 is nothing more than the
energy connected with the fields. By changing frame of reference we thus identify the spa-
tial components of Qµ as the components of a spatial momentum p. Thus Qµ is identified
with a four-momentum pµ.

3.2 The Schrödinger field
Consider the Lagrangian density

L = i~ψ∗∂tψ −
~2

2m
∇ψ∗ · ∇ψ, (3.6)

where ψ is a complex field and ψ∗ is the complex conjugate of this field.

ψ = ψ1 + iψ2

and thus depends on the two real fields ψ1 and ψ2. Because ψ1 and ψ2 can be solved in
terms of ψ and ψ∗, we can vary ψ and ψ∗ as if they were the independent fields to obtain
the Euler-Lagrange equations instead of varying ψ1 and ψ2. Varying ψ and requiring that
the action be stationary results in the Euler-Lagrange field equation

i~
∂ψ∗

∂t
=

~2

2m
∇2ψ∗

which is equivalent to the complex conjugate of the Schrödinger equation. Varying ψ∗

results in the Schrödinger equation

i~
∂ψ

∂t
= − ~2

2m
∇2ψ (3.7)

directly.
We now want to consider if the Euclidean group E(2) is a symmetry group of this

system in the sense that representations of its Lie algebra yields field transformations under
which the action is invariant. Any element of the Euclidean group can be decomposed in
a translation and an element of O(2) [11]. First we consider the infinitesimal translations

ψ1 7→ ψ1 + εξ1,

ψ2 7→ ψ2 + εξ2.

In terms of the fields ψ and ψ∗, which we have shown it is useful to work with, these
transformations become

ψ 7→ ψ + εξ ⇒ δψ = εξ,

ψ∗ 7→ ψ∗ + εξ∗ ⇒ δψ∗ = εξ∗,
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where we have defined the complex number ξ = ξ1+iξ2. Inserting this into the Lagrangian
density we get a new Lagrangian density L̃ such that the change in the Lagrangian density
is

δL = i~εξ∗∂tψ = δψ∗
∂L
∂ψ∗

,

where we have noticed that i~∂tψ is equal to the partial derivative of the Lagrangian
density with respect to ψ∗ and substituted δψ∗ for εξ∗. Since ψ satisfies the Schödinger
equation, the Euler-Lagrange equation

∂L
∂ψ∗

=
d

dxµ

(
∂L

∂(∂µψ∗)

)
is satisfied. Thus δL can be written as

δL =
d

dxµ

(
δψ∗

∂L
∂(∂µψ∗)

)
and we have succeeded in writing the change in the Lagrange density as a total derivative.
Note that we could take δψ∗ inside the derivative because it is a constant. Since the trans-
formations are infinitesimal and the original fields ψ and ψ∗ satisfy the Euler-Lagrange
equations, Proposition 3.3 applies and gives

δL =
d

dxµ

(
∂L

∂(∂µψ)
δψ +

∂L
∂(∂µψ∗)

δψ∗
)
.

Subtracting these two expressions for δL yields the equation

0 =
d

dxµ

(
∂L

∂(∂µψ)
δψ

)
=

d

dxµ

(
∂L

∂(∂µψ)
εξ

)
⇔ d

dxµ
∂L

∂(∂µψ)
= 0.

Substituting Eq. (3.6) for L and taking the complex conjugate, this equation becomes

i~
∂ψ

∂t
= − ~2

2m
∇2ψ

which is the Schrödinger equation. Inserting ψ1 and ψ2 into ψ and dividing both sides by
i~ we get (

∂ψ1

∂t
+∇ ·

(
~

2m
∇ψ2

))
+ i

(
∂ψ2

∂t
+∇ ·

(
− ~

2m
∇ψ1

))
= 0.

Since ψ1 and ψ2 are real, each of the outer parentheses have to be independently zero, so
we can read off a conserved current from each of these. For the first parentheses we get
the conserved current

j0
1 = ψ1, j1 =

~
2m
∇ψ2,

and from the second we get

j0
2 = ψ2, j2 = − ~

2m
∇ψ1.
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3.2 The Schrödinger field

Now writing ψ1 and ψ2 in terms of ψ and ψ∗, these conserved currents are equivalent to
the currents

j0
1 = ψ + ψ∗, j1 = − i~

2m
∇(ψ − ψ∗)

j0
2 = i(ψ − ψ∗), j2 =

~
2m
∇(ψ + ψ∗).

By Corollary 3.6, these conserved currents imply globally conserved charges

Q1 =

∫
d3xψ + ψ∗

Q2 = i

∫
d3xψ − ψ∗.

as long as ∇ψ vanishes at infinity. Note that we did not assume anything particular for
ξ or ξ∗ in the derivation, thus independent of what these are, we will always end up with
conserved currents that are equivalent to the ones shown as long as the current obtained is
non-trivial.

Now we consider the O(2) subgroup of E(2). Using the fundamental representation
of O(2) acting on the vector consisting of ψ1 and ψ2 we get the field transformations[

ψ̃1

ψ̃2

]
= r

[
cos θ sin θ
− sin θ cos θ

] [
ψ1

ψ2

]
for r = ±1, which in terms of ψ and ψ∗ becomes

ψ̃ = re−iθψ, ψ̃∗ = reiθψ∗. (3.8)

Inserting these new fields into L shows that δL = 0. Thus any element of O(2) leaves
the Lagrangian density invariant. To find the generators of this group representation we
consider transformations smoothly connected and infinitesimally close to the identity. This
implies that r = 1 and θ → εθ. Substituting this into Eq. (3.8) yields the changes in the
fields

δψ = −iεθψ, δψ∗ = iεθψ∗.

Because we are considering infinitesimal field transformations and the original fields ψ
and ψ∗ satisfies the Euler-Lagrange equations, Proposition 3.3 applies. Additionally the
transformation of the fields is an element of the fundamental representation of O(2) and
hence leaves the Lagrangian density invariant as shown above. Thus Proposition 3.3 im-
plies the equation

0 =
d

dxµ

(
∂L

∂(∂µψ)
δψ +

∂L
∂(∂µψ∗)

δψ∗
)
.

Inserting for the Lagrangian density and the changes in the fields, this equation can be
written as

∂

∂t
ψ∗ψ +∇ ·

(
i~
2m

(ψ∇ψ∗ − ψ∗∇ψ)

)
= 0,
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Chapter 3. Field theory

whence we can read off the conserved current

j0 = ψ∗ψ, j =
i~
2m

(ψ∇ψ∗ − ψ∗∇ψ) = Re

(
ψ∗

~
im
∇ψ
)
,

which we recognize as the equation for conservation of probability in quantum mechanics.
The conserved charge obtained by Corollary 3.6 is

Q =

∫
d3xψ∗ψ,

which is usually normalized to 1 and interpreted as the probability that the particle, ψ
represents exists somewhere in three dimensional space, i.e. Q is the number of particles
we are considering.

3.3 Second quantization of the Schrödinger field
We next quantize the field theory discussed in the last example. To this end we first find
a complete set of states in which any solution can be expanded. In any finite-dimensional
vector space the eigenvectors of a Hermitian operator gives such a set. The momentum
operator

p̂ =
~
i
∇

is Hermitian and thus furnishes a complete set of states. In addition to choosing this as the
Hermitian operator we restrict the system to a quantization volume V consisting of a cubic
box with sides L = 3

√
V . We assume periodic boundary conditions on this system such

that for any wave function ψ existing in it, we must have

ψ(xj + L) = ψ(xj)

for any j ∈ {1, 2, 3}. The eigenfunctions of the momentum operator are especially well
suited for this kind of system because translational invariance means that momentum is
conserved, thus p̂ commutes with the Hamiltonian and we can find simultaneous eigen-
functions of the Hamiltonian and p̂. As we will see, we can easily satisfy the boundary
conditions with these eigenfunctions by restricting k to have certain values.

Using separation of variables, we find that the solutions of the eigenvalue equation

p̂ψk =
~
i
∇ψk = ~kψk (3.9)

are
ψk = Cei(k·r)

for some normalization constant C. Normalizing the states such that∫
d3xψ∗kψk = 1
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3.3 Second quantization of the Schrödinger field

and choosing C real, the solutions are

ψk =
1√
V
ei(k·r).

The periodic boundary conditions restrict k to be of the form

k =
2π

L

3∑
j=1

njej (3.10)

for nj ∈ Z. Eigenvectors of Hermitian operators with different eigenvalues are orthogo-
nal, thus with the normalization above, the wave functions ψk satisfy the orthonormality
relation ∫

d3xψ∗k(r)ψk′(r) = δkk′ . (3.11)

At any point in time, any state ψ can be expanded in this basis set

ψ(r) =
∑
k

akψk(r)

for some coefficients ak.
Now we consider how the solutions evolve in time. This time evolution is determined

by the time-dependent Schrödinger equation in Eq. (3.7). Written in terms of the momen-
tum operator it says that

i~
∂ψk(r, t)

∂t
=

p̂2

2m
ψk(r, t) =

~2k2

2m
ψk(r, t) ⇒ ψk(r, t) = e−iωktψk(r),

where we have used Eq. (3.9) to evaluate p̂ψk(r, t) twice, solved the resulting first order
separable equation and defined the frequency

ωk =
Ek

~
=

~k2

2m
.

It follows from Eq. (3.11) that∫
d3xψ∗k(r, t)ψk′(r, t) = δkk′ .

Thus as time evolves, the wave function that was initially expanded in the momentum
eigenfunction basis becomes

ψ(r, t) =
∑
k

akψk(r, t). (3.12)

Taking the complex conjugate of this equation, we obtain the expansion of ψ∗:

ψ∗(r, t) =
∑
k

a∗kψ
∗
k(r, t). (3.13)
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Chapter 3. Field theory

To quantize this field theory we promote the functions ψ and ψ∗ to field operators ψ̂
and ψ̂† called the annihilation and creation field operators respectively. These operators are
assumed to obey the canonical harmonic oscillator commutation relations for a continuous
spectrum, i.e.

[ψ̂(r, t), ψ̂†(r′, t)] = δ(r− r′), [ψ̂(r, t), ψ̂(r′, t)] = 0, [ψ̂†(r, t), ψ̂†(r′, t)] = 0.

When these operators act on a quantum many-particle state, they are interpreted as creating
and annihilating a particle in position eigenstate r. To see what this means for the coef-
ficients in the Fourier expansion in Eq. (3.12) and Eq. (3.13), we multiply both of these
equations by the function ψk′(r, t) and integrate over all r. Since ψk(r, t) and ψk′(r, t)
are orthogonal, we obtain

âk =

∫
d3x ψ̂(r, t)ψk(r, t), (3.14)

â†k =

∫
d3x ψ̂†(r, t)ψk(r, t), (3.15)

after promoting the functions to operators. These operators âk and â†k create and annihilate
a particle in momentum eigenstate k. Using the commutation relations for ψ̂ and ψ̂†, âk
and â†k can be shown to satisfy the commutation relations

[âk, âk′ ] = 0, [â†k, â
†
k′ ] = 0, [âk, â

†
k′ ] = δkk′ , (3.16)

by inserting Eq. (3.14) and Eq. (3.15) into the commutators in Eq. (3.16).
Promoting ψ and ψ∗ to operators, the zeroth components of the conserved currents

found in Example 3.2 are given by

ρ̂1 = i(ψ̂ − ψ̂†), ρ̂2 = ψ̂ + ψ̂†, ρ̂3 = ψ̂†ψ̂.

The equal time commutation relations between these operators follows from the field op-
erator commutators such that

[ρ̂1(r, t), ρ̂2(r′, t)] = i2δ(r− r′),

[ρ̂3(r, t), ρ̂1(r′, t)] = −iδ(r− r′)ρ̂2(r, t),

[ρ̂2(r, t), ρ̂3(r′, t)] = −iδ(r− r′)ρ̂1(r, t).

Since these operators are the zeroth components of conserved currents, their integrals yield
conserved charges by Corollary 3.6. Defining the operators

Q̂i =

∫
d3x ρ̂i

such that

Q̂1 = i
√
V
(
â0 − â†0

)
, Q̂2 =

√
V
(
â0 + â†0

)
, Q̂3 =

∑
k

â†kâk. (3.17)
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3.3 Second quantization of the Schrödinger field

In deriving these identities we have used the evaluation of the integral over ψk(r, t)∫
d3xψk(r, t) =

√
Vδk0 (3.18)

which implies ∫
d3xψ∗k(r, t) =

√
Vδk0. (3.19)

The commutation relations between the Q̂i can be obtained directly by integrating the
commutation relations for ρ̂i with respect to r and r′;

[Q̂1, Q̂2] = 2iV Î , [Q̂3, Q̂1] = −iQ̂2, [Q̂2, Q̂3] = −iQ̂1, (3.20)

thus it follows that the set {iQ̂1, iQ̂2, iQ̂3, iÎ} is a Lie algebra. If the Lagrangian density is
invariant under a transformation, then in the canonical quantization, the conserved charges
generate the transformations by commuting with the fields [12]. In this case however, the
Lagrangian density is not invariant, and the Q̂i do not yield a Lie algebra representation
of the Euclidean group. This can be seen by computing the structure constants of the Lie
algebra of the Euclidean group, which stem from the commutation relations of its basis
vectors. This Lie algebra is spanned by the matrices

A1 =

0 0 1
0 0 0
0 0 0

 , A2 =

0 0 0
0 0 1
0 0 0

 , A3 =

 0 1 0
−1 0 0
0 0 0

 ,
whose commutation relations are

[A1, A2] = 0, [A3, A1] = −A2, [A2, A3] = −A1.

Hence the nonvanishing structure constants are given by

a312 = −1, a132 = 1, a231 = −1, a321 = 1.

Out of the 43 = 64 structure constants pertaining to the Q̂i and Î , the only nonvanishing
ones are

q124 = −2V, q214 = 2V, q312 = 1, q132 = −1, q231 = 1, q321 = −1,

which follows from Eq. (3.20) by denoting iÎ as the fourth operator. For a set of operators
to be a Lie algebra representation, it has to have an equivalent set of structure constants to
that of its Lie algebra [13], which the set of iQ̂i and iÎ thus do not possess. The problem
arises from the commutator between Q̂1 and Q̂2 which is proportional to the identity. Such
a proportionality factor is called a central charge and comes from the generators being
related to a projective representation of the group, rather than a representation [14]. In the
context of quantum mechanics, a projective representation is the same as a representation
up to a phase, which means that when applying two unitary operators corresponding to two
different symmetry transformations to a state, this might differ by a phase from applying
the unitary operator corresponding to the combined transformation of the two symmetry
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Chapter 3. Field theory

transformations [14]. This is indeed the case for the Q̂i since a unitary operator can be
obtained by exponentiation and

eiθ1Q̂1eiθ2Q̂2 |ψ〉 = exp

[
i(θ1Q̂1 + θ2Q̂2)− θ1θ2

2
2iVI

]
|ψ〉

= eiθ1θ2V exp
[
i(θ1Q̂2 + θ2Q̂2)

]
|ψ〉 .

We observe that the Q̂i are Hermitian and thus correspond to observable quantities. To
check that these quantities are conserved we need to see if the operators commute with the
Hamiltonian of the system. The Hamiltonian can be derived from the Lagrangian density
in Eq. (3.6) by a Legendre transformation and subsequent integration, i.e.

H =

∫
d3xH =

∫
d3x

(
∂L

∂(∂tψ)
∂tψ +

∂L
∂(∂tψ∗)

∂tψ
∗ − L

)
=

~2

2m

∫
d3x∇ψ∗ · ∇ψ.

Now promoting ψ and ψ∗ to operators and inserting their expansion in terms of âk and â†k
yields the second-quantized Hamiltonian

Ĥ =
∑
k

~2k2

2m
â†kâk. (3.21)

We can then use this Hamiltonian to evaluate the commutators [Ĥ, Q̂i] which vanish as
advertised.

3.4 Degeneracy of the vacuum state
Next we consider the state resulting from a transformation of the vacuum state by an
element of the projective representation of the Euclidean group generated by the conserved
charges Q̂1 and Q̂2:

|z〉 = ei(θ1Q̂1+θ2Q̂2) |0〉 , (3.22)

where |0〉 denotes the vacuum state defined by âk |0〉 = 0, i.e. the state without any
particles. The state |z〉 is thus, up to a phase, the result of translating the fields in field
space, starting from the vacuum state. Inserting Eq. (3.17) for Q̂1 and Q̂2, and defining
the complex number z = θ1 + iθ2 yields that

|z〉 = e
√
V(zâ†0−z

∗â0) |0〉 .

To calculate
〈z′|z〉 = 〈0| e

√
V(z′∗â0−z′â†0)e

√
V(zâ†0−z

∗â0) |0〉 , (3.23)

we make use of the Baker-Campbell-Hausdorff formula [8]

eXeY = exp

(
X + Y +

1

2
[X,Y ] +

1

12
[X, [X,Y ]]− 1

12
[Y, [X,Y ]] + . . .

)
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3.4 Degeneracy of the vacuum state

for any two linear operators X and Y , to express the two exponentials as

eiV Im(zz′∗) exp
[√
V
(
â0(z′ − z)∗ − â†0(z′ − z)

)]
.

Using the formula in reverse, the last exponential in the above expression can be written
as

e−
√
Vâ†0(z′−z)e

√
Vâ0(z′−z)∗e−

1
2V|z

′−z|2 .

Substituting this back into Eq. (3.23) we get

〈z′|z〉 = eiV Im(zz′∗)e−
1
2V|z

′−z|2 〈0| e−
√
Vâ†0(z′−z)e

√
Vâ0(z′−z)∗ |0〉

= eiV Im(zz′∗)e−
1
2V|z

′−z|2 〈0|0〉 ,

whence it follows that
| 〈z′|z〉 | = e−

1
2V|z

′−z|2 (3.24)

and
〈z|z〉 = 1

assuming the vacuum state |0〉 is normalized to unity. Now we consider acting on |z〉 with
the field operator ψ̂(r, t):

ψ̂(r, t) |z〉 =
∑
k

ψk(r, t)âke
√
V(zâ†0−z

∗â0) |0〉

= e−
1
2V|z|

2 ∑
k

ψk(r, t)âke
√
Vzâ†0e−

√
Vz∗â0 |0〉

= e−
1
2V|z|

2 ∑
k

ψk(r, t)

∞∑
n=1

âk
(z
√
V)n

n!
(â†0)n |0〉

= e−
1
2V|z|

2

ψ0(r, t)

∞∑
n=1

(z
√
V)n

n!
â0(â†0)n |0〉 ,

where we first have used the Baker-Campbell-Hausdorff formula in reverse to express
the exponent in |z〉 as three separate exponents, then we have used that eαâk |0〉 = |0〉
because âk |0〉 = 0 and finally we have used that for all k 6= 0, âk(â†0)n |0〉 = 0 because
[âk, â

†
0] = δ0k. This commutation relation can also be used to show that

â0(â†0)n |0〉 = n(â†0)n−1 |0〉 .

Inserting this and the fact that ψ0(r, t) = 1√
V

ψ̂(r, t) |z〉 = e−
1
2V|z|

2 1√
V
z
√
V
∞∑
n=1

(z
√
V)(n−1)

(n− 1)!
(â†0)(n−1) |0〉

= e−
1
2V|z|

2

z

∞∑
m=0

(z
√
V)m

m!
(â†0)m |0〉 = e−

1
2V|z|

2

zez
√
Vâ†0 |0〉

= e−
1
2V|z|

2

zez
√
Vâ†0e−

√
Vz∗â0 |0〉 = ze

√
V(zâ†0−z

∗â0) |0〉 = z |z〉 .

(3.25)
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Chapter 3. Field theory

Because ψ̂ acts as a lowering operator on the number of particles, Eq. (3.25) implies that
|z〉 is a coherent state by the definition in [15]. Taking the adjoint of Eq. (3.25) yields

〈z| ψ̂†(r, t) = 〈z| z∗.

With these two relations it is trivial to show that

〈z| ψ̂(r, t) |z〉 = z 〈z|z〉 = z,

〈z| ψ̂†(r, t)ψ̂(r, t) |z〉 = |z|2,

and indeed in general

〈z| (ψ̂†(r, t))n(ψ̂(r, t))m |z〉 = (z∗)nzm.

By the property of being a coherent state, we expect the state to give a minimum
uncertainty in measuring certain incompatible observables. In this case the observables
are given by the Hermitian operators Q̂1 and Q̂2. According to the general uncertainty
principle [16] the variance in measuring these two quantities is

σ2
Q̂1
σ2
Q̂2
≥
(

1

2i

〈
[Q̂1, Q̂2]

〉)2

=

(
1

2i
2iV
)2

= V2,

independently of what state the system is in. To evaluate the actual variance in measure-
ments when the systems is in a state |z〉, we first have to compute the expectation values

〈
Q̂1

〉
z

= 〈z|
∫

d3x i
(
ψ̂(r, t)− ψ̂†(r, t)

)
|z〉

=

∫
d3x i(z − z∗) = −2V Im(z),〈

Q̂ 2
1

〉
z

= 〈z|
∫

d3x

∫
d3x′ i

(
ψ̂(r, t)− ψ̂†(r, t)

)
i
(
ψ̂(r′, t)− ψ̂†(r′, t)

)
= −

∫
d3x

∫
d3x′

(
z2 − δ(r− r′)− 2 |z|2 + (z∗)2

)
= V − V2(z − z∗)2 = V + (2V Im(z))2 = V +

〈
Q̂1

〉2
z
,〈

Q̂2

〉
z

= 〈z|
∫

d3x ψ̂(r, t) + ψ̂†(r, t) |z〉 =

∫
d3x z + z∗ = 2V Re(z),〈

Q̂ 2
2

〉
z

= V +
〈
Q̂2

〉2
z
,

(3.26)

where the last equation was obtained through a similar calculation to that of
〈
Q̂ 2

1

〉
z
. Thus

in the state |z〉, the variance is given by

σ2
Q̂1
σ2
Q̂2

=
(〈
Q̂ 2

1

〉
z
−
〈
Q̂1

〉2
z

)(〈
Q̂ 2

2

〉
z
−
〈
Q̂2

〉2
z

)
= V2,

hence the uncertainty in measuring the observables connected with Q̂1 and Q̂2 is at a
minimum. Another consequence of the expectation values in Eq. (3.26) is that the states
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3.4 Degeneracy of the vacuum state

|z〉 and |z′〉 represent different physical states of the system for z 6= z′ since they will
result in different expectation values of these Hermitian operators which correspond to
physical observables.

Whilst exploring the properties of the |z〉 states, the energy is, as usual, of indispens-
able significance. We begin by translating the eigenvalue equation in Eq. (3.25) into the
context of the momentum annihilation operators âk. By relating the momentum annihila-
tion field operators to the position annihilation field operator through Eq. (3.14) then

âk |z〉 =

∫
d3xψk(r, t)ψ̂(r, t) |z〉 = z

∫
d3xψk(r, t) = z

√
Vδk0, (3.27)

follows from Eq. (3.25) and Eq. (3.18). Taking the adjoint of this equation yields

〈z| â†k = z∗
√
Vδk0. (3.28)

Inserting Eq. (3.21) for Ĥ we get〈
Ĥ
〉
z

=
∑
k

~2k2

2m
〈z| â†kâk |z〉 =

∑
k

~2k2

2m
V |z|2 δk0 = 0,

thus the energy vanishes for all |z〉 including the state resulting from the choice z = 0.
From the above discussion we recall that different zs yield physically distinct states. Since
there are infinitely many choices for z, we can say that the vacuum state is infinitely
degenerate because of the field translation symmetry in the Lagrangian density.

3.4.1 Lifting the degeneracy
Since the degeneracy prevents us from singling out a unique ground state which we can
use in building the Hilbert space, we would like to lift this degeneracy. We do this by intro-
ducing a term in the Hamiltonian that depends on some adjustable continuous parameter
such that the degeneracy can be turned on and off by taking a limit in this parameter. Let
the new Hamiltonian be defined by

Ĥµ3
= Ĥ − µ3Q̂3, (3.29)

where Ĥ is the old Hamiltonian and µ3 is a real scalar. Since Q̂3 is the number operator,
µ3 can be regarded as a chemical potential by comparison with the exponent in the grand
canonical partition function of Ĥ . In the state |z〉 the expectation value of Q̂3 is〈

Q̂3

〉
z

=
∑
k

〈z| â†kâk |z〉 =
∑
k

V |z|2 δk0 = V |z|2 , (3.30)

where we again have used Eq. (3.27) and Eq. (3.28) in evaluating the expression 〈z| â†kâk |z〉.
With the new Hamiltonian, the expected energy of the |z〉 state becomes〈

Ĥµ3

〉
z

=
〈
Ĥ − µ3Q̂3

〉
z

=
〈
Ĥ
〉
z
− µ3

〈
Q̂3

〉
z

= −µ3V |z|2 , (3.31)

thus we must require that µ3 ≤ 0 in order to avoid the energy becoming unbounded from
below. If µ3 = 0, Ĥµ3 is equivalent to Ĥ and again the ground state will be degenerate
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Chapter 3. Field theory

so that any value of z would yield a ground state. Finally if µ < 0 and we consider the
thermodynamic limit where V → ∞ then z = 0 is singled out as the ground state and
every other choice for z will be prohibited by its diverging energy eigenvalue.

The thermodynamic limit also has other interesting consequences. One of them is that
in this limit the generators Q̂1 and Q̂2 are not well defined as can be seen from Eq. (3.17).
This is an example of a general result saying that all broken generators are ill defined in the
thermodynamic limit [17], broken generators being generators that do not annihilate the
vacuum state. If the vacuum is assumed to be translationally invariant then ρ̂(r, t) |0〉 =
ρ̂(0, t) |0〉 for a charge density ρ. Thus considering the inner product of the state Q̂(t) |0〉
with itself yields

〈0| Q̂(t)Q̂(t) |0〉 =

∫
d3x 〈0| Q̂(t)ρ(r, t) |0〉 = 〈0| Q̂(t)ρ(0, t) |0〉

∫
d3x,

which diverges unless Q(t) |0〉 = 0. The definition of being an unbroken generator is
that Q(t) |0〉 6= 0 thus strictly speaking unbroken generators are not well defined in the
thermodynamic limit.

It is also worth noting that the |z〉 states have important physical consequences. From
Eq. (3.30) we see that the expectation value of Q̂3 diverges in the thermodynamic limit,
however the density remains finite such that |z〉 can be interpreted as the states where
all particles are in the ground state giving a homogeneous number density. Such states are
relevant in the study of Bose-Einstein condensates where a macroscopic number of bosons
are in a single quantum state [18].

Finally we would like to justify the method that has been used in singling out an un-
ambiguous ground state. In this approach we have used the operator Q̂3 governed by the
parameter µ3 to explicitly break the symmetry of the original Hamiltonian. By then con-
sidering the thermodynamic limit we were led to a unique ground state from which, as will
be shown in the next section, we may build the Hilbert space of excited states. We can then
adiabatically turn off the modification to the system by letting µ3 → 0. The reason why
we need to choose a specific |z〉 as our starting point is tied to the large size of the system
in the thermodynamic limit. Without any modification it might be natural to believe that
the true ground state of the system would be a superposition of |z〉 such that this superpo-
sition retained the symmetry of Ĥ . In the thermodynamic limit however, any off diagonal
elements 〈z| Ĥ |z′〉 , z 6= z′ are exponentially suppressed and so are the off-diagonal el-
ements of any small potentially symmetry-breaking perturbation Ĥ ′ to the Hamiltonian,
as long as this perturbation depends on local Hermitian operators [19]. Thus for any such
small perturbation, the diagonal elements of the resulting Hamiltonian will differ much
more than the off-diagonal elements such that the resulting ground state will be very close
to one of the |z〉 and not to a superposition of them. Exactly which |z〉, depends on the
perturbation. In Nature we will always have minuscule perturbations to the system and
thus the ground state will always collapse to a specific |z〉. In the case of our small µ3-
dependent perturbation, the ground state collapses to the choice z = 0. From Eq. (3.24) it
is clear that off-diagonal elements are suppressed since for z 6= z′, 〈z|z′〉 ∼ e−V .

This factor is analogous to the tunneling amplitude when going from one well to the
other in a double-well potential in quantum mechanics [13]. If we regard a quantum field
theory as an infinite set of oscillators where each is in such a double-well potential, then
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3.4 Degeneracy of the vacuum state

there is a tunneling amplitude for each of them to switch to the other well, but for the
field theoretic state |z〉 to turn into |z′〉, all the oscillators have to tunnel, the probability
of which is thus given by the probability of a single tunneling event to the power of the
number of oscillators, which scales as the volume and thus is zero in the thermodynamic
limit.

The mathematical consequence of Eq. (3.24) is that in the thermodynamic limit the set
of |z〉 cannot be contained in a single Hilbert space, but rather every choice of z forms a
separate Hilbert space. Each of these Hilbert spaces however gives a physically equivalent
description of the system [20].

3.4.2 Building the Hilbert space

The excited states of this Hilbert space can now be found by repeated application of the
creation operator on |0〉. Since the set of possible k from Eq. (3.10) is discrete we can
label possible k, ki. Let ni denote the number of excited ki modes such that

|n1, n2, . . .〉 =
∏
i

(
â†ki
)ni

√
ni!

|0〉 ,

are states with n1 modes in a k1 eigenstate, n2 modes in a k2 eigenstate, etc. These states
are both orthonormal and complete in what is called the Fock space. To prove that this set
is orthonormal we see that in general

âk′
(
â†k
)n |0〉 = n δkk′

(
â†k
)n−1 |0〉 ,

and consequently

(
âk′
)n′(

â†k
)n |0〉 =

{
n!

(n−n′)!δkk′
(
â†k
)n−n′ |0〉 , n ≥ n′

0, n < n′.
(3.32)

Using this and the fact that the âs commute for different k, then for two different sets {n′j}
and {nj}

〈n′1, n′2, . . . |n1, n2, . . . 〉 = 〈0|
∏
i

(
âki
)n′i√
n′i!

(
â†ki
)ni

√
ni!

|0〉

= 〈0|
∏
i

δn′ini
1√
ni!n′i!

ni!

0!
|0〉 =

∏
i

δn′ini .

On the last line we used Eq. (3.32) to see that the expression would vanish if ni < n′i
for any i and then further used the first case to argue that if ni > n′i then there would
be a remaining â†ki which would annihilate the left vacuum state, thus we get δnin′i . This
proves that these states are orthonormal.
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Chapter 3. Field theory

The states given by |n1, n2, . . .〉 are also eigenstates of the Hamiltonian because

Ĥ |n1, n2, . . .〉 =
∑
j

~2k2
j

2m
â†kj âkj

∏
i

(
â†ki
)ni

√
ni!

|0〉

=
∑
j

~2k2
j

2m

∏
i 6=j

(
â†ki
)ni

√
ni!

â†kj âkj

(
â†kj
)nj√
nj !

|0〉

=
∑
j

~2k2
j

2m

∏
i 6=j

(
â†ki
)ni

√
ni!

â†kj
nj√
nj !

(
â†kj
)nj−1 |0〉

=

∑
j

~2k2
j

2m
nj

 |n1, n2, . . .〉 .

A similar computation shows that

Q̂3 |n1, n2, . . .〉 =

∑
j

nj

 |n1, n2, . . .〉 ,

thus

Ĥµ |n1, n2, . . .〉 =

∑
j

(
~2k2

j

2m
− µ

)
nj

 |n1, n2, . . .〉 .

By now adiabatically turning off the modification to Ĥ by letting µ → 0 we see from
the above equation that this is a theory of single particles with momentum eigenstates
given by

|k〉 = â†k |0〉
and energy in these states given by

Ek =
~2k2

2m
. (3.33)

When k → 0, the energy vanishes. This means that these modes are massless and thus
examples of Nambu-Goldstone bosons which will be discussed in the next chapter.

3.5 Covariant derivatives in a U(1) invariant field theory

When including a term like µQ̂3 in Ĥµ in an originally Lorentz invariant theory, the result-
ing theory is generally not Lorentz invariant. To see this we consider a Lorentz invariant
theory with a Lagrangian density

L = ∂µφ∂
µφ∗ −m2φ∗φ− λ(φ∗φ)2, (3.34)

with a complex scalar field φ. Since φ is a scalar, the potential terms are Lorentz invariant
and since the Lorentz indices are contracted in the kinetic energy term this term is Lorentz
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3.5 Covariant derivatives in a U(1) invariant field theory

invariant as well. This scalar complex field can be written in terms of two scalar fields
φ = 1/

√
2(φ1 + iφ2) which upon evaluating the Euler-Lagrange equations satisfies the

Klein-Gordon equations with an interaction term due to λ. By considering φ and φ∗ as
two independent fields we get the two conjugate momenta

π =
∂L

∂(∂0φ)
= φ̇∗, π∗ =

∂L
∂(∂0φ∗)

= φ̇.

Thus the Hamiltonian density becomes

H = πφ̇+ π∗φ̇∗ − L = ππ∗ +∇φ · ∇φ∗ +m2φ∗φ+ λ(φ∗φ)2.

From Eq. (3.34) we see that L is left invariant by a U(1) transformation

φ 7→ eiαφ ⇒ δφ = iαφ, δφ∗ = −iαφ∗.

By Noether’s theorem this implies the conserved current

jµ =
∂L

∂(∂µφ)
δφ+

∂L
∂(∂µφ∗)

δφ∗ = α Im
(
φ∗
↔

∂µφ
)
,

where we have used the notation

A
↔

∂µB = A (∂µB)− (∂µA)B.

α can be scaled out of this current so that we can redefine j0 to be

j0 = Im
(
φ∗
↔

∂0φ
)

= i
(
φ̇∗φ− φ̇φ∗

)
,

which yields the charge

Q = i

∫
d3x

(
φ̇∗φ− φ̇φ∗

)
.

Next we modifyH as in Eq. (3.29) by defining

Hµ3
= H+ µ3j

0

= ππ∗ +∇φ · ∇φ∗ +m2φ∗φ+
λ

4
(φ∗φ)2 + iµ3 (πφ− π∗φ∗) .

for a scalar µ3, where we have inserted for the definitions of π and π∗ to get the Hamil-
tonian density in terms of only the conjugate momenta and fields. To obtain the related
Lagrange density we need to do another Legendre transformation, but sinceH has changed
we can not use the old relationships between the time derivatives of the fields and the con-
jugate momenta. We use Hamilton’s equations to obtain

φ̇ =
∂Hµ3

∂π
= π∗ + iµ3φ ⇔ π∗ = φ̇− iµ3φ,

⇔ π = φ̇∗ + iµ3φ
∗.
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Chapter 3. Field theory

Inserting this for π and π∗ we get that

Lµ3
= πφ̇+ π∗φ̇∗ −Hµ3

= (∂µ + iµ3δµ0)φ∗
(
∂µ − iµ3δ

µ0
)
φ−m2φ∗φ− λ(φ∗φ)2,

(3.35)

which we immediately see is not Lorentz invariant since it treats derivatives in space and
time differently. Thus modifying the theory with the term µ3j

0 has broken the Lorentz
invariance of L.
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Chapter 4
Goldstone’s theorem

4.1 Classical version
Theorem 4.1. Given a Lorentz invariant Lagrangian density L of the form

L = (derivatives of φ)− V (φ)

for some arbitrary collection of fields {φi} that is invariant under a compact Lie group G
and whose ground state is invariant under a subgroupH ⊆ G, then when expanding about
the ground state a number of massless modes called Nambu-Goldstone bosons appear.
The number nNGB of modes equals the dimension of the coset space G/H .

Proof. First assume a Lagrangian density that is of the form in the theorem and denote
the configuration of constant fields that minimizes the potential {φi0} or simply φ0. We
identify this configuration of fields with the ground state of the system. In quantum theory
where the fields are operators, the ground state configuration gives the vacuum expectation
value of the fields [21], but in the quantum case the ground state will be determined by
a different potential that includes all effects from loop corrections. Expanding about the
ground state gives to second order in the fields

V (φ) = V (φ0) +
1

2
(φ− φ0)i(φ− φ0)jMij ,

where we have defined the mass matrix

Mij =
∂2V

∂φi ∂φj

∣∣∣∣
φ0

.

Since φ0 is a minimum of the potential V , then Mij is a positive semi-definite matrix
meaning it only has positive or vanishing eigenvalues. Since the Lagrangian density is
Lorentz invariant, we can interpret oscillations of the fields about the ground state con-
figuration as particles whose masses are determined by mass matrix M . Specifically the
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Chapter 4. Goldstone’s theorem

eigenvalues of this matrix gives the square of the masses of the particles, whilst the parti-
cles are interpreted as oscillations of the fields in the corresponding eigenvector directions.
Since φ0 is a constant field configuration, the derivatives in L vanish and thus, since L is
invariant under G this means V must be invariant under G as well. Given a representation
U of this Lie group1 then for an infinitesimal transformation g ∈ G

V (φ0) = V (U(g)φ0) = V (φ0) +
1

2
δφiδφjMij , (4.1)

for
δφi = U(g)ijφ

j
0 − φi0 = iθa(T a)ijφ

j
0, (4.2)

where T a are the generators of G such that U(g) = eiθ
aTa . From Eq. (4.1) it follows that

Mijδφ
iδφj = 0 (4.3)

and it is this equation which we will see implies the massless eigenvalues and hence the
Goldstone bosons. To evaluate this equation for all infinitesimal transformations g ∈ G it
suffices to consider only one generator at the time meaning to set U(g) = eiθT

a

. For each
generator, either the corresponding g ∈ H or g 6∈ H .

(a) If g ∈ H then from Eq. (4.2) we see that

U(g)φ0 = φ0 ⇔ δφi = iθ(T a)ijφ
j
0 = 0 ⇔ T aφ0 = 0.

In this case we call T a an unbroken generator. Since δφi = 0, Eq. (4.3) is trivially
satisfied and thus does not imply a vanishing eigenvalue of the mass matrix.

(b) However if g 6∈ H , then δφi 6= 0 and T aφ0 6= 0. We say that the symmetry
associated with T a is spontaneously broken by the ground state. T a itself is called
a broken generator. By looking at δφi as elements in a vector δφ

Mijδφ
iδφj = 0 ⇔ δφTMδφ = 0 ⇔ Mδφ = 0 = 0 δφ.

This equation says that δφ is a non-zero eigenvector with zero eigenvalue of the
mass matrix M . In the classical case δφ is called a flat direction. Interpreting
oscillations about the ground state as particles, then oscillations in a flat direction
gives a massless particle called a Nambu-Goldstone boson.

From these two cases we see that the number of Nambu-Goldstone bosons nNGB is given
by the number of broken generators nBG. Since the unbroken generators generate the
subgroup H , their number is given by the dimension of the Lie algebra of H , thus

nNGB = nBG = dim(g)− dim(h),

or equivalently the dimensionality of the left coset space G/H .
�

1U must be unitary to preserve probabilities in quantum mechanics.
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4.1 Classical version

4.1.1 SSB in a Lorentz and U(1) invariant field theory
To illustrate this theorem consider the Lagrangian density

L = ∂µφ
∗∂µφ∗ +m2φ∗φ− λ

4
(φ∗φ)2, m, λ > 0 (4.4)

for a complex scalar field φ. Identifying V (φ) as the negative of the right part of L this
can be written as

V (φ) =
λ

4

[
(φ∗φ− v)

2 − v2
]
,

where we have introduced the constant

v =
2m2

λ
.

To find the ground state configuration of the field we want the constant field that minimizes
V (φ). Since φ ∈ C we can write it as φ(x) = ρ(x)eiθ(x) for two real fields ρ(x) and θ(x).
Then

V (φ) = V (ρ, θ) =
λ

4

[(
ρ2 − v

)2 − v2
]

= V (ρ)

so V is a function of one real variable ρ. Thus we can find the points where V is stationary
by requiring that

dV

dρ
= λ

(
ρ2 − v

)
ρ = 0 ∧ d2V

dρ2
= λ

(
3ρ2 − v

)
> 0.

Only ρ =
√
v satisfies both equations thus we have a continuum of ground state configu-

rations given by
φ0 =

√
veiθ.

This is illustrated by the lower dashed circle in Figure 4.1.
Next we claim that Eq. (4.4) is invariant under the Lie group U(1). To prove this recall

from Example 2.4 that U(N) is defined as the set of all N ×N invertible matrices A that
satisfies the equationA−1 = A†. Thus U(1) is the set of all complex numbers a ∈ C\{0}
with the property a∗ = a−1. Parameterizing a as a = reiω this condition becomes r = 1
such that any element a ∈ U(1) can be written eiω . Since φ is a scalar field it furnishes
the fundamental representation of U(1) such that a group element acting on an element of
the vector field C is defined by normal multiplication which is to say

U(a)φ(x) = eiωφ(x).

Also note that this representation is unitary as required by conservation of probability
in quantum mechanics. By inspection we see that transforming the field to φ̃ = eiωφ
leaves Eq. (4.4) invariant for any ω which proves our claim. Thus we have identified the
symmetry group G = U(1).

By expanding the exponential eiω = 1 + iω for small ω we see that the only generator
of U(1) is the number 1. Since 1φ0 = 1

√
veiθ 6= 0, this generator is broken and since

the theory is Lorentz invariant we can apply Goldstone’s theorem to conclude that there
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Chapter 4. Goldstone’s theorem

Figure 4.1: A geometric illustration of the potential V (φ) = λ/4
[
(φ∗φ− v)2 − v2

]
often called

the “Mexican hat” potential due to its characteristic shape.

must be one Nambu-Goldstone boson. In other words: since the ground state is a point
on the circle with radius

√
v in the complex plane, and acting on φ0 with eiω rotates

the configuration about the origin, any element in U(1) other than the identity leads to a
different point, thus the invariant subgroup H = I and

nNGB = dim(G/H) = dim(G) = 1.

To see how the Nambu-Goldstone boson comes about explicitly consider the field χ
defined by

χ(x) =
√

2(ρ(x)−
√
v).

Since the ground state is ρ =
√
v, the field χ has vanishing vacuum expectation value in

the quantum theory. Written in terms of χ(x) and the field θ(x) the Lagrangian density
becomes

L =
1

2
∂µχ∂

µχ+
1

2
(χ+

√
2v)2∂µθ ∂

µθ − λ

4

(
χ4

4
+
√

2vχ3 + 2vχ2 − v2

)
.

From the coefficient of the χ2 term we can identify the mass of this field as

m2
χ = λv = 2m2.

More importantly there is no θ2 term which implies that this is a massless field. Thus θ(x)
parameterizes the flat direction of the potential as can be easily seen in Figure 4.1. This is
the Nambu-Goldstone boson!
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4.1.2 SSB in a Lorentz and SO(N) invariant field theory
The preceding example was of spontaneous symmetry breaking of the abelian symmetry
group U(1). An example of symmetry breaking of a non-abelian group is given by the
Lagrange density

L =
1

2
∂µφ

i∂µφi +
1

2
m2φiφi − λ

4!
(φiφi)2, m, λ > 0, (4.5)

where repeated indices are implicitly summed from 1 to N for the N real scalar fields
φi. This Lagrangian density is invariant under the symmetry group SO(N); the group of
rotations in N dimensions. Recall from Definition 2.3 that SO(N) is given by the set

SO(N) =
{
R ∈ GL(R, N) | R−1 = RT, detR = 1

}
,

whereGL(N,R) is the general linear group of invertibleN×N matrices with real entries.
A particular set of fields {φi} can be considered a vector in a real N -dimensional vector
space, often called the field space, since the fields take on only real values. We can thus
choose the fundamental representation of SO(N) by letting group elements act on vectors
in field space through matrix multiplication such that the components of a transformed
configuration of fields φ̃i are given by

φ̃i = (U(R)φ)
i

= Rijφ
j ,

for an element R ∈ SO(N) and an initial set of fields denoted φ. To prove that the
Lagrangian density is invariant under such a transformation we calculate

φ̃iφ̃i = Rijφ
jRikφ

k =
(
RT
)
ji
Rikφ

jφk =
(
RTR

)
jk
φjφk

= δjkφ
jφk = φiφi,

where in the last expression we renamed the summation index i. This proves that the sec-
ond and third term in Eq. (4.5) are invariant. SinceRij is a constant matrix, the derivatives
in the first term have no effect on the calculation which proves that this term is invariant
as well, thus the Lagrangian density is invariant.

Now that we know L is invariant under SO(N) we would like to know how many gen-
erators there are. To this end consider the Lie algebra of SO(N) discussed in Example 2.8.
There we proved that

X ∈ so(N) ⇔ X = −XT.

From this condition we see that the diagonal elements vanish and that the lower di-
agonal elements are given as the negatives of the upper diagonal elements, thus only the
upper diagonal elements are independent. We can thus form a basis for this Lie algebra
consisting of matrices with 1 in an upper diagonal entry, −1 in the symmetric lower diag-
onal entry and 0 in all other entries. The dimension of this vector space is thus equal to the
number of upper diagonal elements in an N ×N matrix. Counting from the top row and
down there are N − 1 + (N − 2) + . . .+ 1 = 1

2N(N − 1) upper diagonal elements in an
N ×N matrix, thus

dim so(N) =
1

2
N(N − 1). (4.6)
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To apply Goldstone’s theorem we first need to choose a ground state for this theory.
From Eq. (4.5) we get the potential V (φ) which similarly to Example 4.1.1 can be written
as

V (φ) =
λ

4!

[(
φiφi − v

)2 − v2
]
, (4.7)

for the constant v = 4!m2/(4λ). Requiring that

∂V

∂φj
=

4λ

4!

(
φiφi − v

)
φj = 0 ∀j,

for a stationary point in field space we get two distinct possibilities: either φj = 0 ∀j or
φiφi = v. The second derivative of the potential is

∂2V

∂φj ∂φk
=

4λ

4!

[
(φiφi − v)δjk + 2φjφk

]
,

and evaluating it at φj = 0 we get the matrix

∂2V

∂φj ∂φk

∣∣∣∣
0

= −4λ

4!
vδjk,

which is a diagonal matrix. Thus we see directly that the non-zero eigenvalues are all
negative, hence this is a local maximum. Evaluating for φiφi = v, we get

∂2V

∂φj ∂φk

∣∣∣∣
φiφi=v

= 2
4λ

4!
φjφk.

This matrix is not diagonal so to obtain its eigenvalues we need to solve the equation

det

(
∂2V

∂φj ∂φk

∣∣∣∣
φiφi=v

− Λδjk

)
=

(
2

4λ

4!

)N
det
(
φjφk − ξδjk

)
= 0,

where we have used the notation that the determinant of an expression with two free indices
means the determinant of the N × N matrix that results when evaluating the expression
for different indices. We have also defined the variable ξ = 4!/(8λ) Λ. It is proved in
Appendix A.3 that

det
(
φjφk − ξδjk

)
= (−ξ)N−1(φiφi − ξ), (4.8)

thus the eigenvalue equation becomes

(−ξ)N−1(φiφi − ξ) = 0.

This gives two different eigenvalues; Λ = 0 or

Λ = 2
4λ

4!
ξ = 2

4λ

4!
φiφi = 2

4λ

4!
v = 2m2 > 0,

which shows that if φiφi = v then this configuration is a minimum of V (φ). Since L is
rotationally invariant we can without loss of generality pick the ground state configuration
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φi0 =
√
vδi1. We now want to find the subgroup H of SO(N) under which the ground

state is invariant. By transforming the ground state with an arbitrary element R of SO(N)
the condition for invariance becomes

φ̃0
i

= Rijφ
j
0 = Rij

√
vδj1 =

√
vRi1 = φi0 ⇔ Ri1 = δi1,

thus R is of the form

R =


1 ωT

0
... A
0


for an (N−1)×(N−1) matrixA and vector ω withN−1 components. SinceR ∈ SO(N)
we must require that RTR = RRT = I which implies that ω = 0 and ATA = AAT = I .
By requiring that detR = 1 then detA = 1 such that A ∈ SO(N − 1). From this we
conclude that φ0 is invariant under the group SO(N − 1), where the representation of
SO(N − 1) on the N -dimensional field space is given by

A ∈ SO(N − 1) 7→


1 0 · · · 0
0
... A
0

 .
Now since L is Lorentz invariant we can invoke Goldstone’s theorem to conclude that

since G = SO(N) and H = SO(N − 1) there must be

nNGB = dim g− dim h =
1

2
N(N − 1)− 1

2
(N − 1)(N − 2) = N − 1

Nambu-Goldstone bosons. Here we used Eq. (4.6) to evaluate the dimensions of the Lie
algebras. To see directly where these bosons comes from, we shift the fields such that they
will have a vanishing expectation value in the quantum theory. For the φ0 that was picked,
we do this by defining the field

χ = φ1 −
√
v.

Inserting this into Eq. (4.5) we get

L =
1

2
∂µχ∂

µχ+
1

2

N∑
i=2

∂µφ
i∂µφi +

λv2

4!

− λ

4!

χ4 + 4
√
vχ3 +

(
4v + 2

N∑
i=2

φiφi

)
χ2 + 4

√
vχ

N∑
i=2

φiφi +

(
N∑
i=2

φiφi

)2


From this equation we easily see that L is still invariant under rotations in SO(N − 1).
Furthermore we see from the coefficient of the χ2 term that

m2
χ = 2

4λ

4!
v = 2m2,

which incidentally is the non-zero eigenvalue of the second derivative matrix of the poten-
tial. There are on the other hand no square terms for the other N − 1 fields and these are
thus massless and hence the Nambu-Goldstone bosons of this theory.
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4.1.3 Generators and currents in a SO(4) invariant field theory
We now specialize to the case where N = 4 and consider the Lagrangian density

L =
1

2
∂µφ

i∂µφi − m2

2
(φiφi)− λ

4
(φiφi)2,

where repeated indices are implicitly summed from 1 to 4 and φi are real scalar fields. This
theory is invariant under SO(4) and we would like to find the generators of these trans-
formations. Following the discussion in Example 4.1.2 the group elements act through
the fundamental representation of SO(4) which means we can obtain their generators by
considering the Lie algebra so(4). From the discussion of so(N) in Example 4.1.2 we
conclude that a basis for this Lie algebra can be constructed by inserting a 1 and −1 such
that Bij = −Bji into a 4 × 4 matrix B with zeroes in the remaining entries. If B is a
matrix in this basis, then its corresponding generator T is given by T = −iB. From this
we get the generators

Lx =


0 0 0 0
0 0 −i 0
0 i 0 0
0 0 0 0

 , Ly =


0 0 i 0
0 0 0 0
−i 0 0 0
0 0 0 0

 , Lz =


0 −i 0 0
i 0 0 0
0 0 0 0
0 0 0 0

 ,

Kx =


0 0 0 −i
0 0 0 0
0 0 0 0
i 0 0 0

 , Ky =


0 0 0 0
0 0 0 −i
0 0 0 0
0 i 0 0

 , Kz =


0 0 0 0
0 0 0 0
0 0 0 −i
0 0 i 0

 .
Thus any transformation in SO(4) continuously connected to the identity can be written
as ei(n·L+k·K) for the vectors of operators L = (Lx, Ly, Lz) and K = (Kx,Ky,Kz), and
the vectors of scalars n and k. Since L is invariant under any transformation in SO(4),
Noether’s theorem implies the existence of a conserved current for each independent trans-
formation given by

jµ =
∂L

∂(∂µφi)
δφi =

(
∂µφi

)
δφi,

where δφi is the change in the fields under such a transformation. Each generator yields
a different current derived by considering infinitesimal transformations eiεLx , eiεLy , etc.,
which yields infinitesimal changes in the fields by

δφi = iεLx.

Denoting the current obtained from the generator Lx by jµLx and likewise for the other
generators we get

jµLx = φ3
↔

∂µφ1, jµLy = φ1
↔

∂µφ3, jµLz = φ2
↔

∂µφ1,

jµKx = φ4
↔

∂µφ1, jµKy = φ4
↔

∂µφ2, jµKz = φ4
↔

∂µφ3,

where we have used the
↔

∂µ notation introduced in Example 3.5.
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This theory can instead of four real fields be expressed in terms of two complex fields.
If we define the complex scalar fields α and β as

α =
1√
2

(
φ1 + iφ2

)
, β =

1√
2

(
φ3 + iφ4

)
,

the Lagrangian density takes the form

L = (∂µα) (∂µα∗) + (∂µβ)(∂µβ∗)−m2 (αα∗ + ββ∗)− λ (αα∗ + ββ∗)
2
.

Expressed in terms of these new complex fields, the conserved currents become

jµLx = − Im
(
α
↔

∂µβ + α
↔

∂µβ∗
)
, jµKx = − Im

(
α
↔

∂µβ + α∗
↔

∂µβ
)
,

jµLy = Re
(
α
↔

∂µβ + α
↔

∂µβ∗
)
, jµKy = Re

(
α
↔

∂µβ + β
↔

∂µα∗
)
,

jµLz = iα∗
↔

∂µα, jµKz = iβ∗
↔

∂µβ.

Since the generators form a basis of a finite-dimensional vector space, any set of linear
combinations of the generators can form an equivalent basis for this vector space as long
as the elements in this set are linearly independent and the set has the same number of
elements as there are generators. Thus we can define an equivalent set of generators by

A =
1

2
(L + K) , B =

1

2
(L−K) ,

and use these in the same manner as above to find an equivalent set of conserved currents.
To check that the set of currents really is equivalent we do an explicit calculation, denoting
them jµA1

, jµA2
, etc.:

jµA1
=

1

2

(
φ4
↔

∂µφ1 + φ3
↔

∂µφ2
)

= −2 Im (α∂µβ) ,

jµA2
=

1

2

(
φ4
↔

∂µφ2 + φ1
↔

∂µφ3
)

= Re
(
α
↔

∂µβ
)
,

jµA3
=

1

2

(
φ2
↔

∂µφ1 + φ4
↔

∂µφ3
)

= − Im (α∗∂µα+ β∗∂µβ) ,

jµB1
=

1

2

(
φ1
↔

∂µφ4 + φ3
↔

∂µφ2
)

= − Im
(
α
↔

∂µβ∗
)
,

jµB2
=

1

2

(
φ2
↔

∂µφ4 + φ1
↔

∂µφ3
)

= Re
(
α
↔

∂µβ∗
)
,

jµB3
=

1

2

(
φ2
↔

∂µφ1 + φ3
↔

∂µφ4
)

=
i

2

(
α∗
↔

∂µα+ β
↔

∂µβ∗
)
.

As expected from the definition of B we get that

jµB3
=

1

2

(
jµLz − j

µ
Kz

)
,

and similarly for the other currents, which proves that the new set of currents is equivalent
to the original.
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For future reference we work out the commutation relations for the Ai and Bi. The
result of this exercise can be summarized as

[Ai, Aj ] = iεijkAk, [Bi, Bj ] = iεijkBk, [Ai, Bj ] = 0. (4.9)

Note that the set of generators Ai have the same commutation relations as the generators
of SU(2), and so does the set of Bi. This will be of importance when we establish the
homomorphism between SO(4) and SU(2)× SU(2) in Section 4.4.2.

4.2 Quantum theory
One might be concerned that the masslessness of the Nambu-Goldstone bosons predicted
by the classical theory be lost due to loop corrections in the quantum theory. This issue
can be addressed by considering the quantum action2 denoted Γ(φ) which encapsulates all
loop corrections [13]. By expanding in terms of derivatives, Γ[φ] can be written as

Γ[φ] =

∫
ddx

[
−U(φ) +

1

2
Z(φ)∂µφ∂µφ+ . . .

]
,

where U is called the effective potential. We now assume that the (normal) action S[φ]
and the integration measure in the path integral in the quantum theory is invariant under a
Lie group. Considering the generators of the Lie group separately, an infinitesimal trans-
formation due to one of the generators acting on the configuration of fields can be written

φ̃i(x) = φi(x) + iεT aijφ
j

for the generator T a. Then by using functional derivatives

δΓ =

∫
ddx

δΓ

δφi
δφi = iε

∫
ddx

δΓ

δφi
T aijφ

j = 0. (4.10)

Specifying to constant fields the derivatives in the derivative expansion of Γ vanish such
that ∫

ddx
δΓ

δφi
=

∫
ddx

∫
ddy

(
− ∂U
∂φk

δikδ(x− y)

)
= −V ∂U

∂φi
.

Inserting this into Eq. (4.10) and dividing out constants we get

∂U
∂φi

T aikφ
k = 0.

Taking the partial derivative of this equation with respect to φj we get

∂2U
∂φi ∂φj

T aikφ
k +

∂U
∂φi

T aikδ
kj = 0. (4.11)

2The quantum action is also called the effective action or the quantum effective action.
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The minimum of U gives the vacuum expectation value of the fields [22]. Evaluating
Eq. (4.11) in this configuration the derivative in the second term vanishes such that the
equation simplifies to

∂2U
∂φi ∂φj

T aikφ
k

∣∣∣∣
φ0

= MijT
a
ikφ

k
∣∣
φ0

= 0,

where we have denoted the second derivative of the potential Mij . This is can be con-
sidered as a matrix equation where the matrix M is multiplied by a vector T aφ0. If
T aφ0 6= 0, i.e. T a is a broken generator, then T aφ0 is an eigenvector ofM with eigen-
value 0. Thus every broken generator implies a separate zero eigenvalue ofM. It can be
shown [19] that if the theory is Lorentz invariant then a zero eigenvalue ofM implies that
one of the fields are massless. From this point the argument parallels that of the classical
case resulting in the total number of

nNGB = dim g− dim h

massless fields where g is the Lie algebra of the original symmetry group and h is the Lie
algebra of the subgroup under which the ground state is invariant.

4.3 Revisiting Section 3.2 and counting NG-bosons
In 1975 Nielsen and Chadha showed that it is useful to classify NG-bosons according to
the behaviour of their dispersion relations in the long-wavelength limit [23]. An NG-boson
with an odd dependence on |k| is classified as a type-I NG-boson, while if the dependence
is even, it is called a type-II NG-boson. If we denote the number of type-I NG-bosons nI
and the number of type-II NG-bosons nII, Nielsen and Chadha proved that

nI + 2nII ≥ nBG, (4.12)

where nBG is the number of broken generators of the symmetry of the theory, holds for
Lorentz invariant as well as Lorentz noninvariant field theories.

In the field theory in Section 3.2 we have 3 generators of the E(2) symmetry given by

Q̂1 = i
√
V
(
â0 − â†0

)
, Q̂2 =

√
V
(
â0 + â†0

)
, Q̂3 =

∑
k

â†kâk,

with commutation relations

[Q̂1, Q̂2] = 2iV Î , [Q̂3, Q̂1] = −iQ̂2, [Q̂2, Q̂3] = −iQ̂1.

By the definition of the generators

Q̂1 |0〉 = i
√
V â†0 |0〉 6= 0,

Q̂2 |0〉 =
√
V â†0 |0〉 6= 0,

Q̂3 |0〉 =
∑
k

â†kâk |0〉 = 0.
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Thus nBG = 2. From Eq. (3.33):

Ek =
~2k2

2m
,

we see that in this field theory there is a single type-II NG-boson such that nI = 0 and
nII = 1. Inserting this into Eq. (4.12) we get that 2 ≥ nBG which in this case is an equality
since nBG = 2.

Recent progress has been made in the understanding of Nambu-Goldstone bosons in
Lorentz noninvariant field theories. In 2011 Watanabe and Brauner conjectured the for-
mula [24]

nBG − nNGB =
1

2
rank ρ, (4.13)

where ρ is the matrix given by

ρij = lim
V→∞

−i
V
〈0| [Q̂i, Q̂j ] |0〉 ,

and Q̂i are the generators of the symmetry, V is the spatial volume of the system and
nNGB is the total number of Nambu-Goldstone bosons. This conjecture was proved by
Watanabe in 2012 [25]. Here we make no attempt at independently proving this formula
but merely content ourselves with showing its validity for the free non-relativistic field
theory discussed in Section 3.2

Using the commutators and definitions of the generators of the E(2) symmetry given
above we can calculate the elements of ρ as

ρ12 = lim
V→∞

−i
V
〈0| [Q̂1, Q̂2] |0〉 = lim

V→∞

−i
V
〈0| 2iV |0〉 = 2,

etc., so that we get the matrix

ρ =

 0 2 0
−2 0 0
0 0 0

 .
Acting on a vector v ∈ R3 we see that

ρv =

 0 2 0
−2 0 0
0 0 0

v1

v2

v3

 = 2

 v2

−v1

0

 ,
thus the dimension of the range of ρ, which is its rank, is 2. According to the Watanabe
formula in Eq. (4.13) then

nNGB = nBG −
1

2
rank ρ = 2− 1

2
2 = 1,

which agrees with our previous results since we have shown that the theory has a single
type-II Nambu-Goldstone boson.
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4.4 Breaking an SU(2)× SU(2) invariant field theory

4.4 Breaking an SU(2)× SU(2) invariant field theory
In this section we want to investigate a theory that we posit is symmetric under the group
SU(2)× SU(2). First we discuss the construction of SU(2)× SU(2) as a direct product
of two SU(2) groups and justify our claim by establishing a homomorphism between
SU(2) × SU(2) and SO(4). We then attempt to construct representations of this group
on C2 to try to prove our postulate.

4.4.1 Direct product of groups
Definition 4.1. The direct product of two groups G and G′ is defined as the set

G×G′ = {(g, g′) | g ∈ G g′ ∈ G′},

which is the Cartesian product of the sets G and G′, with binary operation defined as

(a1, b2)(a2, b2) = (a1a2, b1b2).

Proposition 4.2. The direct product of two groups is also a group.

Proof. Associativity follows from the associativity of the groups G and G′ because if
ai ∈ G and bi ∈ G′ then

[(a1, b1)(a2, b2)] (a3, b3) = (a1a2, b1b2)(a3, b3) = (a1a2a3, b1b2b3)

= (a1, b1)(a2a3, b2b3) = (a1, b1) [(a2, b2)(a3, b3)] .

The identity element of the group is given by (e, e′) where e is the identity element in G
and e′ is the identity element in G′ because

(e, e′)(a1, b1) = (ea1, e
′b1) = (a1, b1) = (a1e, b1e

′) = (a1, b1)(e, e′).

Given any element (a, b) in G × G′, the inverse is given by (a−1, b−1) where a−1 is the
inverse of a in G, and b−1 is the inverse of b in G′ because

(a, b)(a−1, b−1) = (aa−1, bb−1) = (e, e′) = (a−1a, b−1b) = (a−1, b−1)(a, b).

Thus G×G′ has all the properties of a group. �

4.4.2 Relationship between SU(2)× SU(2) and SO(4)

Proposition 4.3. The groups SU(2)× SU(2) and SO(4) are homomorphic.

Proof. The group SU(2) × SU(2) is compact and thus its elements can be written as
(eiv

iσi , ew
iσi) where σi are the Pauli matrices which (when multiplied by i) form a basis

of the Lie algebra of SU(2) and satisfy the commutation relations

[σi, σj ] = iεijkσk.
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Now let Ai and Bi be the generators of SO(4) discussed in Section 4.1.3. In that section
we defined them as linear combinations A = 1

2 (L+K) and B = 1
2 (L−K) of generators

Li and Ki obtained by inserting i and −i symmetrically about the diagonal in 4 × 4
matrices. Written out, these matrices are given by

A1 =
1

2


0 0 0 −i
0 0 −i 0
0 i 0 0
i 0 0 0

 , B1 =
1

2


0 0 0 i
0 0 −i 0
0 i 0 0
−i 0 0 0

 ,

A2 =
1

2


0 0 i 0
0 0 0 −i
−i 0 0 0
0 i 0 0

 , B2 =
1

2


0 0 i 0
0 0 0 i
−i 0 0 0
0 −i 0 0

 ,

A3 =
1

2


0 −i 0 0
i 0 0 0
0 0 0 −i
0 0 i 0

 , B3 =
1

2


0 −i 0 0
i 0 0 0
0 0 0 i
0 0 −i 0

 .
Also recall from Eq. (4.9) that these matrices satisfy the commutation relations

[Ai, Aj ] = iεijkAk, [Bi, Bj ] = iεijkBk, [Ai, Bj ] = 0.

Then for any vi and wi, the matrix eiv
iAieiw

iBi is in SO(4) since the generators Ai and
Bi commute. Now consider the map

Π: SU(2)× SU(2)→ SO(4), (eiv
iσi , eiw

iσi) 7→ eiv
iAieiw

iBi .

Let (eiv
iσi , eiw

iσi) and (eiv
′iσi , eiw

′iσi) be two arbitrary elements in SU(2)×SU(2). By
using the Baker-Campbell-Hausdorff formula we get that

eiv
iσieiv

′iσi = exp i

(
viσi + v′iσi +

1

2i
viv′j [σi, σj ] + . . .

)
.

By grouping together all the terms with σi we get a separate series for each σi. We denote
these series as

Σ(v, v′)i = vi + v′i +
1

2
vjv′kεjki + . . . .

Then we can write

eiv
iσieiv

′iσi = eiΣ(v,v′)iσi .
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4.4 Breaking an SU(2)× SU(2) invariant field theory

Defining the series Σ(w,w′)i analogously for the element eiw
iσieiw

′iσi we get that

Π
(

(eiv
iσi , eiw

iσi)(eiv
′iσi , eiw

′iσi)
)

= Π
(
eiv

iσieiv
′iσi , eiw

iσieiw
′iσi
)

= Π
(
eiΣ(v,v′)iσi , eiΣ(w,w′)iσi

)
= eiΣ(v,v′)iAieiΣ(w,w′)iBi

= eiv
iAieiv

′iAieiw
iBieiw

′iBi

= eiv
iAieiw

iBieiv
′iAieiw

′iBi

= Π
(
eiv

iσi , eiw
iσi
)

Π
(
eiv
′iσi , eiw

′iσi
)
,

where in line 4 we used that Ai and Bi separately satisfy the same commutation relations
as σi, and in line 5 we used that [Ai, Bj ] = 0. Thus Π is a homomorphism and the groups
SU(2)× SU(2) and SO(4) are homomorphic. �

4.4.3 An SU(2)× SU(2) invariant field theory
By promoting the fields φ and φ∗ in Eq. (3.34) to complex vectors with two components
we get the Lagrangian density

L = ∂µΦ†∂µΦ−m2Φ†Φ− λ(Φ†Φ)2, (4.14)

for Φ ∈ C2. Since this is a two component complex vector it can be written in terms of
four real field by

Φ =
1√
2

[
φ1 + iφ2

φ3 + iφ4.

]
.

If we rewrite the Lagrangian density in terms of these four real fields, we end up with the
Lagrangian density in Section 4.1.3. As we proved in that section, L is invariant under
SO(4). Since we know that SO(4) is homomorphic to SU(2)×SU(2) we might suspect
that this theory is invariant under SU(2)× SU(2) as well.

This is however not a very convincing argument because any group is homomorphic
to the trivial group. The trivial group is given by

G = {e},

where e is the identity element of the group. Now let L′ be an arbitrary theory that depends
on a single vector Φ′ in some vector space V . Then we can construct a representation of
G by

µ : e 7→ I

where I is the identity element in the group GL(V ). This is a faithful representation and
we see that µ(e)Φ′ = IΦ′ = Φ′. Thus L′ is invariant under G. Also, it is easy to show
that any group G′ is homomorphic to G by the homomorphism

Π: G′ → G, g 7→ e.
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Thus the fact that a group is homomorphic to a group that the theory is invariant under,
does not necessarily imply that the theory is invariant under the original group.

A more convincing argument is that the groups SU(2)×SU(2) and SO(4) are locally
identical close to the identity element, because they have isomorphic Lie algebras. In fact
SU(2) × SU(2) is the double cover of SO(4), thus we might suspect it to be possible to
find some representation of SU(2)× SU(2) under which L is invariant.

Our strategy is borrowed from the theory of QCD where it can be shown [19] that the
Lagrangian density

LQCD = −ūγµDµu− d̄γµDµd− . . . ,

is invariant under the transformation[
u
d

]
7→ exp i

(
viσi + γ5w

iσi
) [u
d

]
,

where γµ are Dirac’s gamma matrices satisfying the Clifford algebra given by the anti-
commutation relations

{γµ, γν} = 2ηµν ,

and γ5 is defined as
γ5 = iγ0γ1γ2γ3.

By separating the vector [u, d]T into a left-handed and right handed part, this invariance
means that LQCD is invariant under the group SU(2)L × SU(2)R, where elements of
SU(2)L act only on the subspace of left-handed multiplets and vice versa for SU(2)R.

We thus try to write Φ as
Φ = ΦL + ΦR, (4.15)

where ΦL and ΦR should be projections of Φ into some subspaces where separate SU(2)
representations should act. If we can make Φ†Φ invariant under some representation

Π: SU(2)× SU(2)→ GL(C2), (A,B) 7→ Π(A,B),

of SU(2)×SU(2), then L will also be invariant under this representation since the deriva-
tives in the Lagrangian density commute with representations.

Recall that a representation has to be a linear map. Since any linear map on C2 can
be expressed as a matrix we can, if we follow the strategy of Eq. (4.15), without loss of
generality write the projections as ΦL = PLΦ and ΦR = PRΦ for two projection matrices
PL and PR. Since we want these matrices to be projection operators, we require that they
satisfy the properties PL +PR = I and P 2

L/R = PL/R. With these projection operators at
hand we can define the map

Π(A,B) : Φ 7→ Φ′ = AΦL +BΦR = (APL +BPR)Φ.

Since this is a linear operator on C2 we can write Π(A,B) = Π(A,B) = APL + BPR.
For this to be a representation, then Π has to satisfy the homomorphism property. Thus we
must ensure that

Π(A,B)Π(C,D) = Π ((A,B)(C,D)) = Π(AC,BD).
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4.4 Breaking an SU(2)× SU(2) invariant field theory

First we calculate that
Π(AC,BD) = ACPL +BDPR.

Then we can show that we can write

Π(A,B)Π(C,D) = ACPL +BDPR +A[PL, C]PL +A[PL, D]PR

+B[PR, C]PL +B[PR, D]PR

= Π(AC,BD) +A[PL, C]PL +A[PL, D]PR

+B[PR, C]PL +B[PR, D]PR.

From this we conclude that for Π to be a homomorphism, then ∀A ∈ SU(2) : [PL/R, A] =

0. Since any matrix A ∈ SU(2) can be written as eiv
iσi , then

∀A ∈ SU(2)[PL/R, A] = 0 ⇔ ∀i : [PL/R, σi] = 0.

An explicit calculation shows that this criterion implies that PL/R has to be proportional
to the identity matrix. Thus we can write PL = xI and PR = yI for some complex scalars
x, y ∈ C. Requiring that PL/R be idempotent and that PL + PR = I , implies the two
possibilities x = 1 ∧ y = 0 or x = 0 ∧ y = 1. This corresponds to the two irreducible
representations of SU(2) × SU(2) on C2 which in the language of addition of angular
momentum are denoted (1/2, 0) and (0, 1/2). Since this is not a faithful representation
of SU(2) × SU(2) we can not conclude that L is invariant under this group. We have
thus proved that any attempt at splitting Φ using projection operators acting on the spinor
indices does not work. This begs the question why it does work in QCD. The answer is
that there the projection operators act on different indices from the ones acted on by the
SU(2) matrices, thus there is more structure to the space of the multiplets [u, d]T than that
supplied simply by C2.

A strategy that does work is to define

Φ =

[
ΦL
ΦR

]
for the two complex scalar fields ΦL,ΦR ∈ C, and then to construct the matrix

U(Φ) =

[
ΦL ΦR
−Φ∗R Φ∗L

]
.

This matrix has the same form as a matrix in SU(2) c.f. Example 2.5 without the restric-
tion that the determinant be 1. Hence we get that

U(Φ)†U(Φ) = (Φ∗LΦL + Φ∗RΦR)I.

Because of this property we can now write the term Φ†Φ in the Lagrangian density as

Φ†Φ = Φ∗LΦL + Φ∗RΦR =
1

2
Tr
[
U(Φ)†U(Φ)

]
.

This might seem like an unnecessary complication, but it simplifies the problem of con-
structing a representation of SU(2) × SU(2). The set of all such matrices forms a sub-
space V ⊂ M2(C) that is isomorphic to C2 and we can now define the representation of
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SU(2)× SU(2) on this vector space by

Π: SU(2)× SU(2)→ GL(V ), (A,B) 7→ Π(A,B)

such that
Π(A,B) : V → V, U(Φ) 7→ AU(Φ)B−1.

To see that this satisfies the homomorphism property let (A,B) and (C,D) be two ele-
ments in SU(2)× SU(2). Then

Π ((A,B)(C,D))U(Φ) = Π(AC,BD)U(Φ) = ACU(Φ)(BD)−1 = ACU(Φ)D−1B−1,

Π ((A,B)) Π ((C,D))U(Φ) = Π(A,B)CU(Φ)D−1 = ACU(Φ)D−1B−1,

thus Π satisfies the homomorphism property. The map Π(A,B) is also invertible by the
inverse Π(A−1,B−1) and linearity follows from matrix multiplication. We also see that
Π(A,B) maps elements in V to elements in V . This follows since U(Φ) has the same form
as elements in SU(2) as mentioned earlier. Thus the codomain of Π isGL(V ) and we have
proved that Π is a representation. This is also a faithful representation of SU(2)× SU(2)
since the two matrices act independently.

Now we can transform the elements of Φ by acting with this representation on U(Φ).
Let U ′(Φ) = Π(A,B)U(Φ) denote the transformed matrix in V and let Φ′ be the vector in
C2 we obtain by mapping the elements of U ′(Φ) back to C2. Then

Φ′†Φ′ =
1

2
Tr
[
U ′†(Φ)U ′(Φ)

]
=

1

2
Tr
[
BU†(Φ)A†AU(Φ)B†

]
=

1

2
Tr
[
B†BU†(Φ)U(Φ)

]
=

1

2
Tr
[
U†(Φ)U(Φ)

]
= Φ†Φ,

where we have used the cyclic property of the trace to move the matrix B† to the left.
From this we can conclude that the theory is invariant under the group SU(2)× SU(2).

We also note that this proof could have been accomplished by using quaternions since
the group SU(2) is isomorphic to the multiplicative group of quaternions with unit norm.
In that case we would identify Φ with a quaternion q and let elements of SU(2)× SU(2)
act on q by the representation

Π(A,B)q = aqb−1,

where we have used the isomorphism between SU(2) and the group of quaternions with
unit norm to identify A with the quaternion a and B with the quaternion b.

4.4.4 Goldstone bosons of a U(2) invariant field theory
We have seen that Eq. (4.14) is invariant under SU(2) × SU(2). If we now modify this
theory by introducing a scalar µI in the same way as was done in Eq. (3.35) we get the
Lagrangian density

L = (∂µ + iµIδµ0) Φ†
(
∂µ − iµIδµ0

)
Φ−m2Φ†Φ− λ

(
Φ†Φ

)2
= ∂µΦ†∂µΦ + iµI

(
Φ†Φ̇− Φ̇†Φ

)
+ (µ2

I −m2)Φ†Φ− λ
(
Φ†Φ

)2
.
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This theory is no longer invariant under SU(2) × SU(2). Furthermore it is not Lorentz
invariant because of the way time derivatives are treated, thus the counting of NG-bosons
by Goldstone’s theorem is not applicable. By letting the fields be constant, the derivatives
vanish and we obtain the potential for constant field configurations

V (Φ0) = (m2 − µ2
I)Φ
†
0Φ0 + λ(Φ†0Φ0)2 = λ

[
(Φ†0Φ0 − v)2 − v2

]
,

where we have defined the constant

v =
µ2 −m2

2λ
.

If we write the components of Φ0 as

Φ0 =

[
φ1 + iφ2

φ3 + iφ4

]
,

we can write V (Φ0) as

V (Φ0) = λ

( 4∑
i=1

φiφi − v

)2

− v2

 ,
which is of the same form as the potential for the SO(N) field theory in Eq. (4.7). The
discussion in Section 4.1.2 can thus be used to argue that the minimum is found for a
constant field configuration Φ†0Φ0 = v if µ2

I > m2. This gives a continuum of possible
ground states and because of perturbations as discussed towards the end of Section 3.4.1,
the true ground state will be either one of these. We choose the ground state

Φ0 =

[√
v

0

]
.

If we now were to naively apply Goldstone’s theorem we would need to find the sub-
groupH under which the ground state is invariant. To find this we act on Φ0 with a general
matrix U ∈M2(C) and require invariance. This implies that U can be written as

U =

[
1 β
0 α

]
.

Next we require unitarity since we need H to be a subgroup of U(2). This implies that
β = 0 and α∗α = 1. Writing α = eiθ we thus get that

U(eiθ) =

[
1 0
0 eiθ

]
. (4.16)

We recognize this as a faithful representation of U(1) given by the map

U : U(1)→ GL(C2), eiθ 7→
[
1 0
0 eiθ

]
.
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It is easily checked that this map satisfies the homomorphism property and gives a linear
invertible operator on C2. Thus H = U(1), and since the original theory was invariant
under U(2), which can be decomposed into U(2) ' SU(2) × U(1) we have 3 broken
generators from SU(2) and one unbroken generator from U(1). Goldstone’s theorem thus
would imply 3 NG-bosons.

To get the fields corresponding to fluctuations about the ground state we define new
fields Φ̃ with respect to some constant background field 〈Φ〉0 which we set to be the chosen
ground state:

Φ̃ = Φ− 〈Φ〉0 = Φ− Φ0.

We then rename Φ̃→ Φ so that we can write the Lagrangian density as

L =∂µΦ†∂µΦ + iµI

(
Φ†Φ̇ + 〈Φ〉†0 Φ̇− Φ̇†Φ− Φ̇† 〈Φ〉0

)
+ (µ2

I −m2)
(

Φ†Φ + 〈Φ〉†0 Φ + Φ† 〈Φ〉0 + 〈Φ〉†0 〈Φ〉0
)

− λ
(

Φ†Φ + 〈Φ〉†0 Φ + Φ† 〈Φ〉0 + 〈Φ〉†0 〈Φ〉0
)2

,

in terms of the new fields. Specifying to a set of four real fields by writing

Φ =
1√
2

[
φ1 + iφ2

φ3 + iφ4

]
,

and inserting for 〈Φ〉0, this becomes

L =
1

2

(
φ̇2

1 + φ̇2
2 + φ̇2

3 + φ̇2
4 −∇φ1 · ∇φ1 −∇φ2 · ∇φ2 −∇φ3 · ∇φ3 −∇φ4 · ∇φ4

)
− µI

(
φ1φ̇2 − φ2φ̇1 + φ3φ̇4 − φ4φ̇3 +

√
2vφ̇2

)
+
µ2
I −m2

2

(
φ2

1 + φ2
2 + φ2

3 + φ2
4 + 2v + 2

√
2vφ1

)
− λ

4

(
φ4

1 + φ4
2 + φ4

3 + φ4
4 + 4v2 + 8vφ2

1 + 2
(
φ2

1φ
2
2 + φ2

1φ
2
3 + φ2

1φ
2
4

+ 2vφ2
1 + 2

√
2vφ3

1 + φ2
2φ

2
3 + φ2

2φ
2
4 + 2vφ2

2 + 2
√

2vφ1φ
2
2 + φ2

3φ
2
4 + 2vφ2

3

+2
√

2vφ1φ
2
3 + 2vφ2

4 + 2
√

2vφ1φ
2
4 + 4v

√
2vφ1

))
.

Since we are only interested in small fluctuations about the ground state we neglect terms
with fields of cubic power or higher and insert for v. After the algebraic dust settles, the
resulting Lagrangian density becomes

Lfree =
1

2
(∂µφ1∂

µφ1 + ∂µφ2∂
µφ2 + ∂µφ3∂

µφ3 + ∂µφ4∂
µφ4)

− µI
(
φ1φ̇2 − φ2φ̇1 + φ3φ̇4 − φ4φ̇3 +

√
2vφ̇2

)
+

(µ2
I −m2)2

4λ
− (µ2 −m2)φ2

1.
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4.4 Breaking an SU(2)× SU(2) invariant field theory

Despite this simplification, it is still not obvious how many massive or massless modes
are in the theory from this expression because of the mixing of the fields in terms such as
−µIφ1φ̇3. Analogous to how one finds the normal modes of coupled oscillators in clas-
sical mechanics, we find find the dispersion relations for this field theory by first making
the ansatz

φj(r, t) = φj(p)e
p0t−r·p

for plane wave solutions where p is a four vector. Then any term φ̇j = ip0φj and any term
∇φj = −ipφj . Thus we can write the terms quadratic in the fields as a product of two
vectors and a matrix

1

2
yTAy,

where y is
yT =

[
φ1 φ2 φ3 φ4

]
,

and A is the matrix

A =


−p2

0 + p2 − 2(µ2
I −m2) −2iµIp0 0 0

2iµIp0 −p2
0 + p2 0 0

0 0 −p2
0 + p2 −2iµIp0

0 0 2iµIp0 −p2
0 + p2

 .
By requiring that the determinant of this matrix vanish we obtain the 8 dispersion relations

E±1 = ±
√

p2 + µ2
I +m2 ±

√
(m2 + µ2)2 + 4µ2

Ip
2,

E±2 = ±
√

p2 + 2µ2
I ± 2µI

√
p2 + µ2

I ,

where E+
1 refers to a + in front of the second square root etc. To see which modes are

massive and massless we expand in the long wavelength limit given by |p|/µI � 1,
whence we get that

E+
1 ≈ ±

√
2(m2 + µ2

I)

[
1 +

p2(m2 + 3µ2
I)

4(m2 + µ2
I)

2

]
,

E−1 ≈ ±|p|

√
m2 − µ2

I

m2 + µ2
I

,

E+
2 ≈ ±2µI

(
1 +

p2

2µ2
I

)
,

E−2 ≈ ±
p2

2µ2
I

.

Since we are considering real scalar fields we discard the negative energy modes as un-
physical and hence see the above equations yield 4 different particles, two of whose en-
ergies approach zero in the long wavelength limit. These are thus the Nambu-Goldstone

57



Chapter 4. Goldstone’s theorem

bosons of the theory. Classifying them as in Section 4.3 we see that we have one type-II
NG-boson because of the quadratic |p| dependence, and one type-I NG-boson because
of the linear |p| dependence. As expected, Goldstone’s theorem which would have pre-
dicted 3 NG-bosons does not hold since the theory is not Lorentz invariant. However the
Nielsen-Chadha formula in Eq. (4.12) holds since

nI + 2nII = 3,

and the broken subgroup of U(2) is SU(2) which has 3 generators given by the Pauli
matrices, hence nBG = 3.

To see if Eq. (4.13) holds we first need to find the generator of the unbroken U(1)
subgroup. From the representation of elements in U(1) given by Eq. (4.16) we get that the
generator is given by

Q4 =

[
0 0
0 1

]
since

eiθQ4 =

[
1 0
0 eiθ

]
= U(eiθ).

Since the theory has not yet been quantized we can not apply Eq. (4.13) directly, but by
interpreting Φ0 as |0〉, Q̂i as σi for i ∈ {1, 2, 3} and Q̂4 as Q4, we can calculate the
elements of a matrix analogous to ρ by

ρ̃12 = Φ†0[σ1, σ2]Φ0 = iv,

ρ̃14 = Φ†0[σ1, Q4]Φ0 = 0,

etc. Thus we get that

ρ̃ =


0 iv 0 0
−iv 0 0 0

0 0 0 0
0 0 0 0

 .
By letting ρ̃ act on a vector in R4 we see that rank ρ̃ = 2, thus our interpretation of
Eq. (4.13) for this classical field theory yields that

nNGB = nBG −
1

2
rank ρ̃ = 3− 1 = 2,

which agrees with our results.
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Chapter 5
Conclusion and outlook

5.1 Conclusion

After presenting and defining relevant mathematical concepts relating to group theory,
our first result was to derive the Euler-Lagrange field equations by considering the field
configuration for which the action is stationary. This equipped us with the necessary tools
for proving Noether’s theorem from which we saw that every independent continuous
symmetry leads to an independent conservation law.

We then considered a Lagrangian density with a single scalar field whose associated
Euler-Lagrange field equation turned out to be the time dependent Schrödinger equation.
This Lagrangian density was shown to be symmetric under the Euclidean group E(2)
which through Noether’s theorem implied 3 conserved currents. Two currents tied to
translation in field space, and one to rotation. The conserved quantities obtained from
these currents gave a projective representation of E(2). Using periodic boundary con-
ditions on a finite volume we also found a complete set of solutions to the Schrödinger
equation which we used to quantize the theory in terms of field operators. By transform-
ing the Fock-vacuum state using generators in the projective representation of E(2) we
showed that the vacuum was infinitely degenerate with the vacuum states being orthogo-
nal to each other in the thermodynamic limit, and individually coherent states of the field
operator. We then lifted the degeneracy of the vacuum by introducing a chemical potential.
This singled out the Fock-vacuum as the true vacuum-state from which we could build the
Hilbert-space in terms of excited states. After adiabatically removing the chemical poten-
tial we saw that these excited states were excited states of a single massless particle which
we claimed to be a NG-boson. This agreed with the newly found formula for counting
Nambu-Goldstone bosons in theories that are not relativistically invariant. At the end of
the chapter we showed how adding a chemical potential in the manner done for the previ-
ously discussed field theory breaks the Lorentz invariance of a theory that initially has this
property by sending invariant derivatives to covariant derivatives.

In an effort to explain why the NG-boson appeared from a more general context we
discussed Goldstone’s theorem. We proved the theorem in the case of classical fields, from
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which we learned that for every broken independent symmetry there appears a NG-boson
if the theory is also Lorentz invariant. By a broken symmetry we mean a transformation
under which the Lagrangian density is symmetric, but the ground-state is not. We then
presented two examples where we applied this theorem. The first was for a theory with
a single complex scalar field invariant under the group U(1). This group has only one
generator which is broken by the ground state, thus one NG-boson appears by SSB. The
next example consisted of N real scalar fields and was invariant under the group SO(N),
but the ground state was spontaneously broken to SO(N − 1). This left N − 1 broken
generators and hence this same number of NG-bosons. We specialized this example to the
case of N = 4 and found the conserved currents implied by the SO(4) symmetry of the
theory.

Next, we gave a short discussion on the state of Goldstone’s theorem for quantum field
theories. We saw that the theorem still holds in this case given that there are no quantum
anomalies in the symmetries.

Finally we discussed a last example of a theory invariant under SU(2)× SU(2). This
group was found to be described simply as a Cartesian product such that each element
consisted of two separate SU(2) matrices. This group was proved to be homomorphic to
SO(4) and the field theory that was initially shown to be invariant under SO(4) was found
to be invariant under SU(2)×SU(2) as well. Next this theory was modified by introducing
a chemical potential µI as was done for the Schrödinger theory which broke the invariance
under SU(2) × SU(2) and led to spontaneous symmetry breaking of the group U(2) for
µ2
I > m2. A ground state was chosen and the fields expanded in terms of fluctuations

about this state. The dispersion relations for these fluctuating fields where found to admit
one type-I Nambu-Goldstone boson and one type-II Nambu-Goldstone boson.

5.2 Outlook
In this thesis we have discussed Goldstone’s theorem mostly in terms of classical fields and
worked out some concrete examples. We have found that the appearance of NG-bosons
is different for relativistic and non-relativistic field theories. In future work we would like
to explore these differences in a more systematic manner. In relativistic theories, we can
assume the effective Lagrangian to be invariant without loss of generality [26], however
for non-relativistic theories as we have seen in the case of the Schrödinger equation the
symmetries of the theories may change the Lagrangian density with a total derivative. This
foils attempts at using the methods developed in high-energy physics for Lorentz invariant
theories to construct effective Lagrangian densities. It would therefore be interesting to un-
derstand how one can construct such Lorentz noninvariant effective Lagrangian densities
and under what conditions the methods for doing so applies.

Additionally, we would also like to check explicitly that Goldstone’s theorem holds for
quantum field theories by working out some loop corrections.

Finally, it would be interesting to look at some concrete applications of these theo-
retical concepts to current condensed matter research. One such application could be to
study the pseudogap line occurring in high temperature cuprate superconductors. When
the amount of doping and temperature is varied in such superconductors there is a change
from the normal metallic phase to the strange metallic phase [27]. It is not yet clear if this
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is a bona fide phase transition resulting from a broken continuous symmetry, however re-
cent experiments [28, 29] indicate that this is the case. It would therefore be interesting to
see what consequences such a broken symmetry would have for the macroscopic physical
properties of such superconductors.
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Appendix A
Proofs

A.1 Proof of Theorem 2.1
Proof. Start by assuming that H ≤ G. Then from the definition of a subgroup H is closed
under the binary operation of G.
Next take a ∈ H and try to solve the equation ax = a. BecauseH is a group ∃(a−1)′ ∈ H;

ax = a

(a−1)′(ax) = (a−1)′(a)

((a−1)′a)x = (a−1)′a

e′x = e′

x = e′,

where e′ is the identity element in H . But because H ≤ G, a ∈ H ⇒ a ∈ G and G also
is a group, thus ∃a−1 ∈ G. Doing the same manipulation on ax = a then yields x = e.
Thus for identity element e′ ∈ H and identity element e ∈ G, e′ = x = e ⇒ e ∈ H .
Showing that a−1 ∈ H is done in the same way but now considering the equation

ax = e′ ∈ H,where a ∈ H
(a−1)′(ax) = (a−1)′e′ = (a−1)′

e′x = x = (a−1)′.

Then by considering the same equation but multiplying on the left side by a−1, one finds
that x = a−1 ∈ G ⇒ (a−1)′ = a−1 ∈ H . Now showing the other implication direction,
the properties listed are assumed. Closedness follows directly from the first property.
From the second property it as guaranteed that there is a identity element e′ ∈ H , namely
the identity element e′ = e from G. Existence of the inverse similarly follows from the
third property. To check associativity in H consider (ab)c with a, b, c ∈ H . Because
H ⊆ G, a, b, c ∈ G as well. Because G is a group, using the binary operator in G yields
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(ab)c = a(bc), and since the same operator is used in H , this equation is also valid there,
which guarantees associativity. Thus H ≤ G �

A.2 Proof of Theorem 2.3
Proof. First we prove property (a). To show that AXA−1 ∈ g, it has to satisfy that ∀t ∈
R etAXA

−1 ∈ G. Using the series expansion of the exponential we see that etAXA
−1

=

eAtXA
−1

= AetXA−1. SinceX ∈ g, etX ∈ G, soAetXA−1 is just a product of elements
inG. BecauseG is closed under matrix multiplicationAetXA−1 ∈ G, ⇒ etAXA

−1 ∈ G.
This must hold for all t because the choice of t was arbitrary, which means thatAXA−1 ∈
g.

Now proving property (b). Because X ∈ g, etX ∈ G ∀t ∈ R. Now for any s ∈ R,
sr ∈ R, thus ∃t ∈ R; t = st. This proves that for any s, esrX = etX ∈ G which is the
definition of rX to be in the Lie algebra.

Now proving property (c). Using the Lie product formula, for any t ∈ R

et(X+Y ) = etX+tY = lim
n→∞

(
e
tX
n e

tY
n

)n
.

In this limit n ∈ N ⊆ R, so using property (b), e
tX
n , e

tY
n ∈ G. Furthermore because G is

closed under group multiplication
(
e
tX
n e

tY
n

)n
∈ G. Construct the sequence{(

e
tX
n e

tY
n

)n}
n∈N

.

From the above discussion this sequence only consists of elements in G, and has limit
et(X+Y ). Because G is a matrix Lie group, the limit of any converging sequence of ele-
ments in G must either be in G itself, or be uninvertible. Since et(X+Y ) is invertible, this
eliminates the second possibility, thus et(X+Y ) ∈ G. Because t was arbitrary, this must
hold for all t, which is the defining property of the matrix Lie algebra.

Because g ⊆ Mn(C), it follows immediately from property (b) and (c) that g is a real
subspace of Mn(C) and thus a real vector space.

The final proof is of property (d). Consider the derivative of etYXe−tY evaluated at
0. Using the product rule for matrix valued functions,

d

dt

(
e−tYXetY

)∣∣∣∣
t=0

= −Y X +XY = [X,Y ].

Because Y ∈ g, e±tY ∈ G, then (a) implies that e−tYXetY ∈ G for all t. By the
definition of the derivative

d

dt

(
e−tYXetY

)
= lim
h→0

e−(t+h)YXe(t+h)Y − e−tYXetY

h
.

On the right side of the limit there is a sum and a scalar product of two elements in g.
Using properties (b) and (c) then,

e−(t+h)YXe(t+h)Y − e−tYXetY

h
≡ Z(h) ∈ g
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for any h. Because g is a vector space, any limit point must be inside g ⇒ limh→0 Z(h) ∈
g, which proves that

[X,Y ] =
d

dt

(
e−tYXetY

)∣∣∣∣
t=0

∈ g.

�

A.3 Inductive proof of Eq. (4.8)

Proof. To prove Eq. (4.8) which is repeated here for convenience:

det
(
φjφk − ξδjk

)
= (−ξ)N−1(φiφi − ξ),

first we see that matrices of the form

det


φ1φ1 φ1φn φ1φn+1 · · · φ1φN+1

φnφ1 φnφn φnφn+1 · · · φnφN+1

φn+1φ1 φn+1φn

...
... B

φN+1φ1 φN+1φn



= det


(φ1 + φn)φ1 (φ1 + φn)φn (φ1 + φn)φn+1 · · · (φ1 + φn)φN+1

φnφ1 φnφn φnφn+1 · · · φnφN+1

φn+1φ1 φn+1φn

...
... B

φN+1φ1 φN+1φn



=(φ1 + φn)φn det


φ1 φn φn+1 · · · φN+1

φ1 φn φn+1 · · · φN+1

φn+1φ1 φn+1φn

...
... B

φN+1φ1 φN+1φn

 = 0,

(A.1)

where B is an arbitrary (N − 2) × (N − 2) matrix and repeated indices are no longer
implicitly summed over.

Next we call the matrix in the determinant in Eq. (4.8)A1 and generalize this definition
such that

An =


φnφn − ξ φnφn+1 · · · φnφN

φn+1φn φn+1φn+1 − ξ
...

. . .
φNφn φNφn+1 φNφN − ξ


given that A1 is a N ×N matrix. Then we can prove that

det


φ1φ1 φ1φn · · · φ1φN+1

φnφ1

... An
φN+1φ1

 = (−ξ)N−n+2φ1φ1 (A.2)
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by induction where we have taken A1 to be an (N + 1)× (N + 1) matrix. Then the base
case is for n = N + 1 that

det

[
φ1φ1 φ1φN+1

φN+1φ1 AN+1

]
= det

[
φ1φ1 φ1φN+1

φN+1φ1 φN+1φN+1 − ξ

]
= (−ξ)φ1φ1 = (−ξ)N−(N+1)+2φ1φ1.

The induction step is that given this equation is true for n+ 1 then

det


φ1φ1 φ1φn · · · φ1φN+1

φnφ1

... An
φN+1φ1



= det


φ1φ1 φ1φn φ1φn+1 · · · φ1φN+1

φnφ1 φnφn φnφn+1 · · · φnφN+1

φn+1φ1 φn+1φn

...
... An+1

φN+1φ1 φN+1φn



− ξ det


φ1φ1 φ1φn φ1φn+1 · · · φ1φN+1

0 1 0 · · · 0
φn+1φ1 φn+1φn

...
... An+1

φN+1φ1 φN+1φn



=(−ξ) det


φ1φ1 φ1φn+1 · · · φ1φN+1

φn+1φ1

... An+1

φN+1φ1


=(−ξ)(ξ)N−(n+1)+2φ1φ1 = (−ξ)N−n+2φ1φ1,

where in the first line we have used the determinant as a sum of determinants, and in the
second we used that the first determinant vanishes due to Eq. (A.1). In the fourth we used
the induction hypothesis. Thus Eq. (A.2) is proved.

Finally we can prove Eq. (4.8) by induction. The base case is for N = 2

det

[
φ1φ1 − ξ φ1φ2

φ2φ1 φ2φ2 − ξ

]
= (−ξ)(φ1φ1 + φ2φ2) + (−ξ)2

= (−ξ)N−1

(
2∑
i=1

φiφi − ξ

)
.

For the induction step we assume Eq. (4.8) is true for N and want to show it for N + 1.
For this calculation then A1 is a (N + 1)× (N + 1) matrix (which is why we assumed this
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when proving Eq. (A.2)).

detA1 = det


φ1φ1 φ1φ2 · · · φ1φN+1

φ2φ1

... A2

φN+1φ1

− ξ det


1 0 · · · 0

φ2φ1

... A2

φN+1φ1


=(−ξ)Nφ1φ1 − ξ detA2 = (−ξ)Nφ1φ1 − ξ(−ξ)N−1

(
N+1∑
i=2

φiφi − ξ

)

=(−ξ)(N+1)−1

(
N+1∑
i=1

φiφi − ξ

)
,

where in the first line we have used the sum of determinants rule, then used Eq. (A.2) to
evaluate the first determinant and expanded the second determinant along the top row. In
the second line we used the induction hypothesis for A2 which is an N ×N matrix. Thus
Eq. (4.8) is proved by induction.

�
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